

Minerals yearbook: Metals and minerals (except fuels) 1956. Year 1956, Volume I 1958

Bureau of Mines

Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1958

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

MINERALS YEARBOOK

1 9 5 6 Volume I of Three Volumes

METALS AND MINERALS (EXCEPT FUELS)

Prepared by the staff of the BUREAU OF MINES
DIVISION OF MINERALS
Charles W. Merrill, Chief
Frank D. Lamb, Assistant Chief
Paul Yopes, Assistant to the Chief

UNITED STATES DEPARTMENT OF THE INTERIOR

FRED A. SEATON, Secretary

BUREAU OF MINES

MARLING J. ANKENY, Director

OFFICE OF THE DIRECTOR:

THOMAS H. MILLER, Deputy Director
PAUL ZINNER, Assistant Director for Programs
JAMES WESTFIELD, Assistant Director for Health and Safety
C. W. SEIBEL, Assistant Director for Helium Activities
PAUL T. ALLSMAN, Chief Mining Engineer
EARL T. HAYES, Acting Chief Metallurgist
CARL C. ANDERSON, Chief Petroleum Engineer
LOUIS L. NEWMAN, Acting Chief Coal Technologist
PAUL W. McGANN, Chief Economist
REXFORD C. PARMELEE, Chief Statistician
ALLAN SHERMAN, Chief, Office of Mineral Reports

DIVISIONS:

CHARLES W. MERRILL, Chief, Division of Minerals
T. REED SCOLLON, Chief, Division of Bituminous Coal
JOSEPH A. CORGAN, Chief, Division of Anthracite
R. A. CATTELL, Chief, Division of Percleum
ELMER W. PEHRSON, Chief, Division of Foreign Activities
W. E. RICE, Chief, Division of Administration

REGIONAL OFFICES:

MARK L. WRIGHT, Acting Regional Director, Region I, Albany, Oreg. R. B. MAURER, Acting Regional Director, Region II, San Francisco, Calif. JOHN H. EAST, JR., Regional Director, Region III, Denver, Colo. HAROLD M. SMITH, Regional Director, Region IV, Bartlesville, Okla. EARLE P. SHOUB, Acting Regional Director, Region V, Pittsburgh, Pa.

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1958

書館 物は苦る たちまとる

For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price \$4.50 (Cloth)

FOREWORD

MINERALS YEARBOOK, 1956, published in three volumes, provides a record of performance of the Nation's mineral industries during the year, with enough background information to interpret the year's development.

Volume I includes chapters on metal and nonmetal mineral commodities, with the exception of the mineral fuels. Included also are a chapter reviewing these mineral industries, a statistical summary, and chapters on mining technology, metallurgical technology, and em-

ployment and injuries.


Volume II includes chapters on each mineral fuel, an employment and injuries presentation, and a mineral-fuels review chapter that summarizes developments in the fuel industries, and incorporates all data previously published in the Statistical Summary chapter. Also now included in this review chapter are data on energy production and uses that have previously been included in the Bituminous Coal chapter.

Volume III is comprised of chapters covering each of the 48 States, plus chapters on the Territory of Alaska, the Territory of Hawaii and island possessions in the Pacific Ocean, and the Commonwealth of Puerto Rico and island possessions in the Caribbean Sea, including the Canal Zone. Volume III also has a Statistical Summary chapter, identical with that in Volume I, and another presenting employment

and injury data.

The data in the Minerals Yearbook are based largely upon information supplied by mineral producers, processors, and users, and acknowledgment is made of this indispensable cooperation given by industry. Information obtained from individuals by means of confidential surveys has been grouped to provide statistical aggregates. Data on individual producers are presented only if available from published or other nonconfidential sources, or when permission of the individuals concerned has been granted.

MARLING J. ANKENY, Director.

ACKNOWLEDGMENTS

The Bureau of Mines, through cooperative agreements with State and Territorial agencies, has been assisted in collecting domestic mineproduction data and the supporting information appearing in this volume of the Minerals Yearbook. For this assistance, acknowledgment is made to the following cooperating State and Territorial organiza-

Alabama: Geological Survey of Alabama. Alaska: Alaska Department of Mines.

Arkansas: Division of Geology.

California: Division of Mines.
Delaware: Delaware Geological Survey.
Florida: Florida Geological Survey.
Georgia: Department of Mines, Mining, and Geology.
Illinois: Illinois State Geological Survey.

Indiana: Indiana Department of Conservation.

Iowa: Iowa Geological Survey.

Iowa: Iowa Geological Survey.
Kansas: State Geological Survey of Kansas.
Kentucky: Kentucky Geological Survey.
Louisiana: Louisiana Geological Survey.
Maine: Department of Development of Industry and Commerce.
Maryland: Department of Geology, Mines, and Water Resources.
Michigan: Michigan Department of Conservation.
Mississippi: Mississippi Geological Survey.
Missouri: Division of Geological Survey and Water Resources.
Montana: Montana Bureau of Mines and Geology.
Nevada: Nevada Bureau of Mines.
New Hampshire: New Hampshire State Planning and Development

New Hampshire: New Hampshire State Planning and Development Commission.

New Hampshire: New Hampshire State Flanning and Deve New Jersey: Bureau of Geology and Topography. New York: State Geological and Natural History Surveys. North Carolina: Division of Mineral Resources. North Dakota: North Dakota Geological Survey. Oklahoma: Oklahoma Geological Survey.

Oregon: State Department of Geology and Mineral Industries.
Pennsylvania: Bureau of Topographic and Geological Survey.
Puerto Rico: Mineralogy and Geology Section, Economic Development Admin-

stration, Puerto Rico.
South Carolina: Department of Geology, Mineralogy and Geography.
South Dakota: State Geological Survey.
Tennessee: Tennessee Department of Conservation.
Texas: Bureau of Economic Geology, The University of Texas.
Utah: Utah Geological and Mineralogical Survey.

Utan: Utan Geological and Mineralogical Survey.
Virginia: Virginia Geological Survey.
Washington: Department of Conservation and Development.
West Virginia: West Virginia Geological and Economic Survey.
Wisconsin: Wisconsin Geological Survey.
Wyoming: Geological Survey of Wyoming.

Except for the four review chapters, this volume was prepared by the staff of the Division of Minerals. The following persons supervised preparation of the various chapters: Richard H. Mote, chief, Branch of Base Metals; Henry G. Iverson, chief, Branch of Ferrous Metals and Ferroalloys; Frank J. Cservenyak, chief, Branch of Light Metals; Charles T. Baroch, acting chief, Branch of Rare and Precious

Metals; G. W. Josephson, chief, Branch of Construction and Chemical Materials; and W. F. Dietrich, chief, Branch of Ceramic and Fertilizer Materials. Preparation of this volume was supervised and the chapters were coordinated with those in volume III by Paul Yopes,

assistant to the chief, Division of Minerals.

The manuscripts upon which this volume is based have been reviewed to insure statistical consistency between the tables, figures, and text, between this volume and volume III, and between this volume and those for former years by a staff directly supervised by Kathleen J. D'Amico, who was assisted by Julia Muscal, Hope R. Anderson, Helen L. Gealy, Ruby J. Phillips, Helen E. Tice, Anita C. Going, Fairy L. McClendon and Anne C. Rogers.

Minerals Yearbook compilations are based largely on data provided by the mineral industries. Acknowledgment is made of the willing contribution both by companies and individuals of these essen-

tial data.

Charles W. Merrill, Chief, Division of Minerals

CONTENTS

Foreword, by Marling J. Ankeny
Acknowledgments, by Charles W. Merrill
Review of the mineral industries (metals and nonmetals except fuels), by
William A. Vogely
Hayes
Statistical summary of mineral production, by Kathleen J. D'Amico Employment and injuries in the metal and nonmetal industries, by John
C. MachisakAbrasive materials, by Henry P. Chandler and Gertrude E. Tucker
Aluminum, by R. August Heindl, Arden C. Sullivan, and Mary E. Trought_
Antimony, by Abbott Renick and E. Virginia Wright
Arsenic, by Abbott Renick and E. Virginia Wright
Asbestos, by D. O. Kennedy and Annie L. Mattila
Barite, by Albert E. Schreck and James M. Foley Bauxite, by Richard C. Wilmot, Arden C. Sullivan, and Mary E. Trought
Bauxite, by Kienard C. Wilmot, Arden C. Sumvan, and Mary E. Irought.
Beryllium, by Donald E. Eilertsen Bismuth, by Abbott Renick and E. Virginia Wright
Boron, by Henry E. Stipp and Annie L. Mattila
Bromine, by Henry E. Stipp and Annie L. Mattila
Codmium by Arnold M Lansche
Cadmium, by Arnold M. Lansche Calcium and calcium compounds, by Richard A. Sperberg and Annie L. Mattila
Coment by D. O. Kennedy and Betty M. Moore
Chromium by Wilmer McInnis and Hilda V. Heidrich
Clays, by Brooke L. Gunsallus and Eleanor B. Waters
Cobalt, by Hubert W. Davis and Charlotte R. Buck
Columbium and tantalum, by William R. Barton
Copper by A. D. McMahon and Gertrude N. Greenspoon
Diatomite, by L. M. Otis and Annie L. Mattila
Diatomite, by L. M. Otis and Annie L. Mattila Feldspar, nepheline syenite, and aplite, by Taber de Polo and Gertrude E. Tucker
Ferroallovs, by P. H. Royster and Hilda V. Heidrich
Fluorspar and cryolite by Robert B. McDougal and Louise C. Roberts.
Gem stones, by John W. Hartwell and Eleanor B. Waters
Gold, by J. P. Ryan and Kathleen M. McBreen
Graphite, by Donald R. Irving and Eleanor B. Waters
Gypsum by Leonard P. Larson and Nan C. Jensen
Iodine, by Henry E. Stipp and Annie L. Mattila
Iron ore, by Horace T. Reno
Iron and steel, by James C. O. Harris
Iron and steel scrap, by James E. Larkin
Iron oxide pigments, by Taber de Polo and Eleanor B. Waters.
Jewel bearings, by Henry P. Chandler and Eleanor B. Waters
Kyanite and related minerals, by Brooke L. Gunsallus and Gertrude E.
TuckerLead, by O. M. Bishop, A. J. Martin, and Edith E. den Hartog
Lead, by U. M. Bishop, A. J. Martin, and Edith E. den Hartog
Lead and zinc pigments and zinc salts, by Arnold M. Lansche and Esther
B. MillerLime, by Oliver Bowles, James M. Foley, and Annie L. Mattila
Lithium, by Albert E. Schreck and Annie L. Mattila
Magnesium, by H. B. Comstock
TILGETIONIGHT DI TI D. COTTONOCATALA A CALANTA

	Page
Magnesium compounds, by H. B. Comstock and Jeannette I. Baker	775
Manganese, by Gilbert L. DeHuff and Teresa Fratta	789
Mercury, by J. W. Pennington and Gertrude N. Greenspoon	813
Mica, by Milford L. Skow and Gertrude E. Tucker	831
Molybdenum, by Wilmer McInnis and Mary J. Burke	857
Nickel, by Hubert W. Davis	869
Nitrogen compounds, by E. Robert Ruhlman	-889
Perlite, by L. M. Otis and Annie L. Mattila.	899
Phosphate rock, by E. Robert Ruhlman and Gertrude E. Tucker	908
Platinum-group metals, by J. P. Ryan and Kathleen M. McBreen	923
Potash, by E. Robert Ruhlman and Gertrude E. Tucker	939
Pumice, by L. M. Otis and Annie L. Mattila	957
Quartz crystal (electronic grade), by Waldemar F. Dietrich and Gertrude	957
	967
Salt, by R. T. MacMillan and Annie L. Mattila	
Sand and gravel, by Wallace W. Key and Dorothy T. Shupp	973 988
Secondary metals—nonferrous, by Archie J. McDermid	
Silver, by J. P. Ryan and Kathleen M. McBreen	1007
Short, by J. I. Ityan and Kathleen W. Webleen	1037
Slag—iron blast-furnace, by Wallace W. Key	1057
Sodium and sodium compounds, by Robert T. MacMillan and Annie L.	1067
	1056
	1075
Stone, by Wallace W. Key and Nan C. Jensen	1081
Strontium, by Albert E. Schreck and Annie L. Mattila	1121
Sulfur and pyrites, by Leonard P. Larson and Annie L. Mattila	1125
Talc, soapstone, and pyrophyllite, by Donald R. Irving and Eleanor B. Waters.	4446
	1143
Thorium, by John E. Crawford	1155
Tin, by Abbott Renick and John B. Umhau	1167
Titanium, by Jesse A. Miller	1199
Tungsten, by R. W. Holliday and Mary J. Burke	1225
Uranium, by John E. Crawford and James Paone	1245
Vanadium, by Phillip M. Busch and Kathleen McNulty	1291
Vermiculite, by L. M. Otis and Nan C. Jensen	1301
Water, by Robert T. MacMillan	1307
Zinc, by U. M. Bishop, A. J. Martin, and Esther B. Miller	1317
Zirconium and hafnium, by Glen C. Ware— Minor metals, by C. T. Baroch, William R. Barton, Donald E. Eilertsen,	1363
William R. Barton, Donald E. Eilertsen,	
Elmo G. Knutson, Wilmer McInnis, and James Paone	1373
Minor nonmetals, by D. O. Kennedy, Albert E. Schreck, and Annie L.	
Mattila	1391
Index	1395

Review of the Mineral Industries (Metals and Nonmetals Except Fuels)

By William A. Vogely²

Contents

	Page		Page
General summary	1	Investment.	24
Domestic production		Transportation	27
Net supply	5	Foreign trade	28
Consumption	9	World review	33
Stocks	11	Research and development ex-	
Labor and productivity	15	penditures	35
Prices and costs	20	Defense mobilization	35
Income	22	Nondefense minerals program	43

IGH ACTIVITY, continuing the substantial recovery from the slump of 1954, characterized the domestic nonfuels-mining industries during 1956

Income generated in producing nonfuel minerals and mineral products increased 9 percent over 1955 as compared with a 6-percent increase for all industries. Thus, the 1956 performance of the mineral industries, while not as dramatic as the 27-percent increase obtained in 1955, continued to exceed the gains of the total economy. Other measures of mineral activity strengthen this conclusion. The index of physical volume of mineral production, presented for the first time as an integral part of this review, reflects significant gains in all major sectors during 1956; and, although the overall increase was diminished somewhat by the steel and iron-ore strike in July 1956, the all-mineral index (including fuels) reached a new high.

Employment in nonfuels metal and mineral mining increased 5 percent over 1955, compared with a 3-percent rise in all industries, while the value of nonfuels metals and minerals production was up 11 percent to an alltime high figure. An important factor in the 1956 picture was exports, which rose to a value of \$800 million and were 37 percent of the value of mineral imports, as compared with 31 percent in 1955 and 16 percent in 1951-53.

Toward the end of 1956 several disturbing factors appeared to temper the very favorable outlook of the year as a whole. Stocks generally increased during the year, especially in the nonferrous metals. Although the average annual prices for most nonfuel minerals were considerably above those in 1955 for 1956 as a whole, those for December 1956 were somewhat lower than for January 1956 as regards the major items-iron ore, nonferrous metals, and fertilizer

¹ Fuels are covered in a number of instances in this chapter but only where specifically indicated. In general, this occurs where mining-industry data were not available for both nonfuels and fuels components.

² General economist, Office of Chief Economist.

³ Includes the following national income categories: Metal mining, nonmetallic mining and quarrying, primary metal industries, and stone, clay, and glass products.

Cost items for the mineral industries did not show materials. similar softening, and the index of relative labor costs per pound for iron-ore, copper, and lead-zinc mining all were substantially higher than in 1955. Imports, especially in the ferrous group, increased

their share of the market.

Although net changes in the statistics under the Government defense programs were relatively small, these Government actions did give additional buoyancy to the mineral industries in 1956. Deliveries of mineral commodities to the stockpiles were substantial during 1956—up at least one-third over the 1955 year-end figures. Assistance in the form of accelerated tax amortization, loans, and exploration contracts was given during 1956 but at slower rate than

in the years immediately preceding.

The domestic nondefense purchase program enacted July 19, 1956, provided for interim assistance to the domestic tungsten, asbestos, columbium-tantalum, and fluorspar industries, while the long-range minerals program was being prepared by the Administration. significant Government actions directly affecting the mineral industries were negotiation of several tariff decreases under the General Agreement on Tariffs and Trade (GATT) and the refusal of escape-clause relief for the ferrocerium and fluorspar industries under the Trade Agreements Act.

On the world scene, the general prosperity of the mineral industries The price of minerals entering into world trade was considerably above that in 1955, and both the value and volume of trade increased substantially. World mineral (including fuels) production more than matched the increase shown in the United States,

being 7 percent above that in 1955.

DOMESTIC PRODUCTION

Value of Mineral Production.—The value of nonfuel mineral production in the United States increased \$600 million in 1956 compared with 1955—a substantial rise, but not matching the nearly \$1 billion increase in 1955. Nonmetals represented almost 60 percent of the nonfuel mineral total, the same proportion as in 1955. The increase in each category resulted from both quantity and price increases,

but the former was the more significant.

Volume of Mineral Production.—New indexes of the physical volume of mineral production by groups and subgroups, 1880-1956, are presented in table 2. These indexes are believed to reflect the physical volume of mineral production over a long period of time more precisely than any other available index, in that the weights used to compute the indexes are adjusted as the importance of each mineral group to the economy changes. Table 3 gives the Federal Reserve Board indexes which are available currently, but not before 1947 on the 1947–49 base.

According to the Bureau of Mines index, the physical volume of metal production increased 2 percent in 1956 over 1955, nonmetals increased 7 percent, and the weighted average of both rose 5 percent. The Federal Reserve Board index of nonfuel mining indicated a slightly sharper rise for the same period—5.8 percent. These data compare favorably with the 3-percent rise in total industrial pro-

duction in 1956.

TABLE 1.—Value of mineral production in continental United States, 1947-51 (average) and 1952-56, by mineral groups

(Million dollars)

Mineral group	1947-51 (average)	1952	1953 1	1954 1	1955 1	1956 1	Change in 1956 from 1955 (percent)
Metals and nonmetals except fuels: Nonmetals Metals	1, 670	2, 163	2, 350	2, 629	2, 969	3, 276	+10
	1, 285	1 1, 617	1, 811	1, 518	2, 055	2, 362	+15
Total	2, 955	3, 780	4, 161	4, 147	5, 024	5, 638	+12
Mineral fuels	8, 616	9, 616	10, 257	9, 919	10, 780	11, 708	+9
Grand total	11, 571	1 13, 396	14, 418	14, 066	15, 804	17, 346	+10

¹ Includes Alaska and Hawaii.

The volume of physical production of all minerals (including fuels) reached a new high figure in 1956. The relatively small increase in the metals index is due to the steel strike, which closed down the iron-ore mines during July 1956, and to a local strike of Great Lakes fleet ships' officers, which lasted 5 weeks; together these caused the ferrous metals index to drop 5 percent from 1955. However, this drop in ferrous metals was more than offset by a 7-percent rise in total nonferrous, metals led by a 9-percent rise in base metals. The

TABLE 2.—Indexes of the physical volume of mineral production in the United States, 1880–1956, by group and subgroup ¹

(1947-49=100)

		<u> </u>		Me	tola				Nonr	netals		
Year	All min-			Me	Nonfe	errous						Fuels
	erals	Total	Fer- rous	Total	Base	Mone- tary	Other	Total	Con- struc- tion	Chem- ical	Other	
1880	6. 9 7. 7 8. 9 9. 4 10. 5 11. 7 12. 3 14. 5 14. 5 16. 7 17. 6 20. 6 21. 9 22. 5 25. 7 25. 7 20. 3 30. 3	16. 4 17. 2 18. 6 18. 9 19. 3 21. 1 22. 5 24. 4 26. 1 27. 9 29. 0 31. 7 29. 1 33. 5 36. 8 38. 7 41. 7 49. 8 49. 9 55. 1 69. 8	7. 9 7. 9 9. 8 8. 6 11. 3 12. 8 13. 5 16. 3 17. 9 16. 3 17. 8 17. 8 17. 8 19. 5 21. 7 27. 4 30. 6 32. 0 39. 2 38. 6 46. 9 52. 8	22. 3 23. 7 24. 5 24. 8 26. 8 28. 0 32. 1 33. 0 35. 0 37. 8 40. 3 41. 1 52. 1 57. 8 63. 3 64. 8 64. 8 64. 6 72. 6 77. 6	6. 4 7. 8 9. 0 10. 7 12. 8 12. 3 16. 8 17. 1 18. 5 21. 1 22. 8 22. 8 23. 7 30. 0 40. 4 40. 6 44. 0 46. 3 57. 6 59. 6	86. 0 87. 5 87. 7 83. 6 87. 0 87. 3 94. 7 99. 4 104. 0 108. 7 119. 3 119. 3 119. 3 112. 7 129. 9 142. 7 129. 4 164. 4 167. 5 181. 3 194. 0 210. 4	22. 2 22. 5 17. 3 11. 9 11. 1 12. 3 9. 8 8. 5 10. 4 11. 4 11. 5 12. 2 10. 8 11. 3 11. 4 11. 5 11. 5 11	8. 1 9. 1 9. 5 10. 1 10. 8 11. 2 12. 2 12. 4 14. 8 16. 0 15. 7 14. 4 13. 8 13. 8 14. 0 25. 5 26. 1 28. 5 30. 1	18. 1 20. 3 20. 9 21. 6 22. 2 23. 4 24. 5 27. 5 33. 1 36. 1 35. 5 30. 4 28. 3 36. 5 30. 4 26. 9 28. 4 26. 3 30. 7 34. 6 40. 4 42. 6	1.34.57 1.1.57 1.2.8091 2.2.2.2.3.3.65 6.65.4.3.2.4.4.5.6.6.5.7.3.2.4.4.5.6.6.5.7.3.2.4.2.2.1.1.2.2.2.3.3.3.4.4.5.6.6.5.7.3.2.4.4.5.6.6.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	3.87984.2144.6094.1997.7854.8214.571.6.7.78.54.8214.571.16.7.79.9.8214.571.16.7.79.9.8214.571.16.7.79.9.8214.571.16.97.99.9.8214.571.16.97.99.98214.571.17.79	4.52 6.22 6.66 6.87 7.99 9.59 9.05 10.91 11.22 11.79 12.31 14.88 15.49 16.77 20.33 22.84
1907 1908 1909	33. 2 30. 8 34. 8	68. 3 63. 6 77. 5	54. 7 39. 8 56. 8	76. 4 80. 4 92. 3	57. 0 60. 9 72. 2	189. 8 196. 0 213. 8	11. 4 8. 9 12. 4	32. 1 30. 3 35. 2	45. 1 41. 8 50. 0	12. 2 13. 6 12. 9	22. 3 18. 5 22. 5	27.5 25.2 27.5

See footnote at end of table.

TABLE 2.—Indexes of the physical volume of mineral production in the United States, 1880-1956, by group and subgroup 1-Continued

(1947-49=100)

					(1947-4	19=100)						
				Me	tals				Non	netals		
Year	All min- erals		Fer-		Nonf	errous			Con- struc-	Chem-		Fuels
		Total	rous	Total	Base	Mone- tary	Other	Total	tion	ical	Other	
1910	36. 9 36. 5 39. 2 41. 5 38. 7 41. 8 49. 8 49. 8 45. 0 50. 5 62. 1 58. 4 45. 6 60. 5 66. 6 72. 5 64. 4 43. 8 48. 2 55. 9 66. 8 72. 5 66. 8 72. 5 72. 8 73. 8 74. 8 75. 9 75. 9	78. 7 74. 7 83. 1 93. 9 116. 0 1112. 2 104. 7 78. 7 82. 7 43. 3 65. 5 89. 7 85. 3 93. 1 96. 7 91. 2 93. 5 103. 0 80. 3 54. 4 44. 9 57. 3 78. 7 102. 8 70. 2 110. 0 124. 8 135. 3 136. 4 137. 7 95. 2 101. 6	63. 1 48. 5 60. 9 68. 6 45. 9 61. 8 85. 6 67. 2 63. 3 28. 5 45. 9 61. 8 75. 2 62. 0 67. 0 61. 3 75. 4 79. 2 37. 9 79. 2 37. 9 10. 3 119. 4 119. 4 119. 7 177. 6 100. 3	90. 0 93. 1 98. 8 97. 1 116. 4 138. 3 131. 2 123. 9 88. 4 90. 4 53. 9 78. 6 102. 8 116. 8 111. 5 115. 3 116. 8 111. 5 115. 3 115. 9 96. 1 123. 1 124. 2 125. 0 126. 4 134. 3 137. 9 148. 3 137. 9 148. 3 137. 9 148. 3 137. 9 148. 1 149. 0 149. 0 159. 0 160. 0 170. 0	70. 8 73. 5 81. 7 82. 8 79. 3 100. 8 130. 1 125. 8 122. 5 83. 9 44. 6 74. 0 102. 3 110. 6 1117. 6 122. 1 131. 5 98. 9 72. 4 39. 7 38. 3 44. 5 107. 2 76. 6 111. 3 121. 1 132. 2 117. 8 97. 4 81. 0 102. 5	206. 4 212. 7 209. 6 216. 4 191. 9 166. 5 137. 8 129. 7 120. 0 131. 9 143. 9 143. 9 143. 9 143. 9 143. 0 101. 5 100. 8 151. 8 15	13. 0 13. 6 15. 5 14. 8 19. 3 27. 6 35. 8 31. 1 19. 4 6. 0 8. 9 13. 6 12. 0 13. 8 16. 7 26. 4 25. 0 19. 5 14. 8 20. 0 26. 4 45. 8 43. 0 116. 8 45. 8 47. 0 71. 0 116. 8 45. 8 47. 0 71. 0 116. 0 8 47. 0 71. 0 117. 0 118. 0 119.	36. 2 35. 8 7 39. 3 36. 5 38. 3 36. 6 31. 2 36. 2 36. 2 36. 2 36. 2 36. 7 36.	51. 4 50. 2 51. 3 49. 7 49. 7 49. 7 49. 7 49. 7 49. 7 49. 8 59. 2 68. 5 67. 2 68. 5 69. 4 59. 4 59. 6 68. 9 71. 4 59. 6 68. 9 71. 4 59. 6 68. 9 71. 4 59. 6 68. 9 71. 4 71. 6 71. 6	13. 0 14. 1 19. 7 16. 9 23. 4 26. 9 23. 4 27. 1 20. 5 20. 6 24. 7 27. 1 30. 5 31. 2 29. 2 46. 5 46. 5 47. 5 46. 5 47. 5 46. 5 47. 5 48. 5 49. 6 40. 7 40. 5 40. 5 40	25. 0 0 24. 0 25. 8 4 29. 4 26. 6 7 24. 5 29. 4 5 29. 3 5 24. 5 29. 3 5 24. 5 29. 3 5 24. 5 29. 5 29. 6 7 27. 3 36. 1 2 36. 1	30. 0 3 31. 3 32. 6 9 34. 5 33. 9 9 44. 6 45. 0 0 441. 2 7 44. 6 64. 6 63. 9 9 63. 2 2 55. 7 55. 6 2 64. 6 3 9 66. 2 6 64. 6 63. 9 9 66. 2 6 64. 6 63. 9 84. 2 9 84. 2 9 84. 2 88. 9 96. 3 84. 2 9 96. 3 84. 2 88. 2 9 96. 3 84. 2 9 96. 3 8 96. 3
1949 1950 1951 1952 1953 1954	92. 1 102. 6 112. 6 110. 9 112. 6 107. 9	94.1 108.8 117.2 112.7 119.1 97.6	91. 2 106. 1 126. 6 109. 5 133. 3 95. 5	96. 1 110. 7 110. 6 114. 9 109. 2 99. 0	95. 7 109. 0 110. 0 109. 4 103. 0 93. 2	97. 2 117. 4 100. 8 97. 4 98. 3 93. 6	98. 9 113. 9 149. 7 251. 8 236. 7 205. 2	101. 0 116. 1 127. 3 132. 1 135. 2 146. 4	102.8 117.9 128.3 134.6 137.5 152.4	98. 2 112. 9 123. 9 127. 7 133. 6 140. 9	93. 5 110. 0 130. 0 124. 2 118. 5 107. 8	90. 7 100. 1 110. 1 107. 8 108. 8 104. 0
1955 1956	119.0 125.8	115. 0 116. 9	122. 8 116. 4	109. 5 117. 3	106. 8 116. 2	95. 3 94. 3	194. 0 203. 4	161. 0 172. 5	170. 0 179. 5	146. 4 163. 4	128. 3 137. 0	113. 8 120. 5

¹ See text for sources and description of indexes.

7-percent increase in the nonmetals index was contributed to by increases in each subgroup, led by chemicals, up 12 percent. It is clear that the nonfuel mineral industries during 1956 continued their re-

covery from the 1954 slump.

Construction of Indexes.—These indexes represent the work of a number of persons both in the Bureau of Mines and the Division of Statistical Standards (and its predecessor, the Central Statistical Board) of the Bureau of the Budget. They were originally presented on a 1935-39 base in an article by Y. S. Leong (Division of Statistical Standards), Index of the Physical Volume Production of Minerals, 1880-1948, in the Journal of the American Statistical Association, March 1950, vol. 45, pages 15-29. That article briefly described the methods used in constructing the index. Subsequently, Leong revised the "All minerals" and "Fuels" indexes from 1930 to 1948 to allow for a new natural-gas-production series. Using essentially the

TABLE 3.—Indexes of physical volume of metal and mineral mining, production of metals, production of nonmetallic products, and industrial production, 1950-56 ¹

(1947-49=100)

Year	Mining: Metal, stone, and earth minerals	Pig iron and steel	Primary and secondary nonferrous metals ²	Stone and clay prod- ucts and fertilizer ²	Total industrial production
1950	111	117	111	118	112
1951	121	131	116	134	120
1952	115	115	121	131	124
1953	119	138	136	138	134
1953	106	108	136	137	125
1954	120	144	153	155	139
1955	8 127	142	161	164	3 143

¹ Source: Federal Reserve Bulletin, February 1957, pp. 196-199 and May 1957, pp. 568-571. Indexes for years before 1947 are not available on the 1947-49 base, and recent years are not available on the 1935-39 base.

base.

2 Weighted average, computed by authors of this chapter, employing Federal Reserve indexes and weights.

3 Preliminary figure.

same methods, Robert E. Herman, of the Office of the Chief Economist, Bureau of Mines, has brought the indexes up to date. The indexes through 1948 had been constructed by linking 4 overlapping segments of indexes computed with 4 different sets of weights. In updating the indexes, the Office of the Chief Economist computed a new segment, 1941–56, still on the 1935–39 base but devising and using 1947–49 weights. This fifth segment was linked to the original, using 1944 as the splicing origin. For "All minerals," "Nonferrous metals, total," "Monetary metals," "Construction," and "Fuels," a 3-year splicing interval was used, that is 1943–45; for the other groups and subgroups a 5-year overlap was spliced, namely, 1942–46. The indexes were then converted to the 1947–49 base, the one now in general use for Federal indexes.

The relative weight in the index of the various mineral groups in

1947-49 (average) is indicated by the following:

	Percent of
ta t	otal, 1947-49
Metals	9. 57
Ferrous	3. 95
Nonferrous	5. 62
Base	4. 43
Monetary.	. 90
Other	. 29
Nonmetals	10. 78
Construction	7. 24
Chemicals	2. 81
Other	. 73
Fuels	79. 65
Total minerals	100.00

Similar data for the earlier periods can be found in the article cited above.

NET SUPPLY

The net supply 4 of minerals and metals in 1956 showed a mixed pattern (when compared with 1955) contrasted with the general increases in 1955. The net supply of the ferrous group generally declined or remained stable as compared with 1955, the other metals generally increased, and the nonmetals showed no discernible pattern. Of the 31 minerals listed in table 4, 6 declined by more than 5 percent,

⁴ Sum of primary shipments, secondary production, and imports, minus exports.

TABLE 4.—Net supply of principal minerals in the United States and components of gross supply, 1955-56.1

(Thousand short tons, unless otherwise stated)

	-	Net supply		Cor	aponents (g	Components as a percent of gross supply (gross supply=100)	cent of gr oly=100)	idns sso.	ly .	Exports as a	88 88 89
Commodity	1955	1956	Change from 1955	Primary ship- ments ²	ship-	Secondary pro- duction 8	ry pro-	Imports	rts 4	percent of gross supply	of gross
			(percent)	1955	1956	1955	1956	1955	1956	1955	1956
Ferrous ores, scrap, and metals: Iron (equivalent)* Manganese (Cornent). Chromite (Cro3 content). Cobalt (content). Nickel (content). Tuggten ore and concentrate (W content). Inced (content). Inced (content). Inced (content). Inced (content). Aluminum (equivalent) " Aluminum (equivalent) " Tin (content). Aluminum (content). Aluminum (content). Aluminum (content). Aluminum content). Aluminum content. Alumin	111, 800 7, 820 7, 820 7, 820 1, 820 1, 164 1, 1487 1, 1875 1, 1875	117, 800 1, 246 1, 246	71-1-2-4 1-1-2-2-4 1-1-2-2-4 1-1-2-2-4 1-1-2-2-4 1-1-2-2-4 1-1-2-2-4 1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	25. 11. 17. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	455555 48845 528888 9855788888 9855788888	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	418 60 60 60 60 60 60 60 60 60 60	**************************************	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ES E S (9 16) (9 17) (17) (17) (17) (17) (17) (17) (17)

minus exports. Gross supply is the total before the substraction of exports.

2 Primary shipments are mine shipments or mine sales (including consumption by producers) plus byproduct production. Shipments more nearly represent quantities marketed by the domestic industry and as such are more comparable to imports. Use of shipments data rather than production data also permits uniform treatment among 1 Net supply is the sum of primary shipments, secondary production, and imports,

more commodities.

§ From old serap only.

§ From old serap only.

§ Imports for consumption, except where otherwise indicated; scrap is excluded where possible both in imports and exports but included are all other sources of minerals through the refined or roughly comparable stage, except where the commodity description indicates an earlier stage.

Iron ore reduced to an estimated pig-iron equivalent; reported weights used for all

Receipts of purchased scrap. Revised figure.

other items of supply

8 General imports; corresponding exports are of both domestic and foreign merchan-

Less than 0.5 percent

10 Consumption of purchased scrap.

¹¹ Includes 86 percent of bauxité mine production (rather than shipments) and Imports, and 92 percent of alumina imports, both converted to estimated aluminum equivalent (3.82 long tons bauxité to 1 short ton aluminum) in 1965; 86 and 29 percent

in 1956 (3.98 conversion factor). These percentages are based on estimated proportions tused in the production of metal. To avoid a diplicate adjustment for nonmetallic use, exports of bauxite to Canada were excluded from exports.

Is always production of bauxite.

Is Mine production of bauxite.

Is Includes ingot equivalent (weight times 0.9) of imports of scrap, which are largely scrap pig. Some duplication occurs because of small amount of loose scrap imported, which is also reflected in secondary production. See also footnote 11.

In find the secondary production. See also founds of the imports are represented as a percentage of total primary production in plants and the seminal presentage of such production plant imports are represented by the sum of the remaining percentage of such production plus imports of metal.

In 1965 the ratio was 34-66 but cannot be disclosed in 1966. Frimary compounds not made from metal, darks for which cannot be disclosed, are excluded for both years. Secondary includes recovery from both oil and new scrap. In 1966 secondary data are annot be disclosed and and and new scrap. In 1966 secondary data are annot be disclosed and and and new scrap.

 Primary production of metal.
 Includes secondary production, which was omitted in tables published before 1954.
 Becovery from both old and new scrap.
 Exports of foreign merchandise (that is, reexports) are included. 20 Estimated by adjusting production, excluding byproduct, for changes in producers'

²¹ For pyrites, includes sulfur content (48 percent) of production.

12 showed changes of less than 5 percent, and 13 increased by more than 5 percent. The relatively poor performance in the ferrous group reflected the month-long steel strike of July 1956. Except for the ferrous group, the net supply analysis strengthens the conclusion

that 1956 was a good year for the mineral industries.

Sources of Supply.—Mineral imports increased in importance as a source of supply in 1956 as compared with 1955. Iron, lead, zinc, aluminum, mercury, tungsten, and fluorspar were important minerals from domestic production considerations, where imports supplied a larger proportion of the market in 1956 (7 other categories also showed increased imports), while copper and titanium concentrates (plus 9 others) were the important minerals that showed a decreased import contribution to supply. When the 4-year period (1953-56) is analyzed for the above-mentioned major commodities, imports show a persistent upturn as a source of supply in iron, aluminum, and fluorspar, a downward trend in copper and tungsten, and no significant change in lead, zinc, and titanium (comparable data not available for mercury).

Sources of Imports.—Canada and Mexico increased their share of imports of iron (equivalent), copper, and fluorspar but generally lost a portion of their market, notably in nickel, lead, zinc, and aluminum.

TABLE 5.—Percentage distribution of imports of principal minerals consumed in the United States in 1955-56, by country group of origin 1

Commodity		nada Iexico		and h Pa- ic ²	Wes	her stern sphere		her World	U.S.	S. R.
	1955	1956	1955	1956	1955	1956	1955	1956	1955	1956
Ferrous ores, scrap, and metals: Iron (equivalent) 4. Manganese (content). Chomite (Cr20; content). Cobalt (content). Nickel (content). Tungsten ore and concentrate (W content). Other metallic ores, scrap, and metals: Copper (content). Lead (content). In (recoverable content). Aluminum (equivalent)? Antimony (recoverable content) 8. Mercury. Platinum-group metals. Platinum-group metals. Titanium concentrates: Ilmenite and slag (TiO2 content). Nonmetals: Asbestos. Barte, crude. Fluorspar, finished. Gypsum, crude. Mica (except scrap). Potash (K2O equivalent). Sulfur (content).	\$ 4 (6) 7 81 13 25 \$ 37 15 (6) 31 87 51 35 85 85 97 (6) (6)	46 8 (e) 9 79 11 299 666 13 (e) 36 52 244 28 59 92 76 66 72 96 (e) 100	35 47 5 38 6 16 12 21 1 (e) (e)	35 51 48 (e) 11 1 1 (e) (f) 6 5	37 5 17 3 10 11 4 5 2 2 6 2 8 4 4 (%) 1	35 19 2 	10 5 78 95 99 93 9 41 24 23 8 88 48 12 49 59 5 17 35 85 71 (6)	8 8 71 95 91 10 34 16 20 14 48 75 65 41 76 (6)	27.	

¹ Data are based upon imports for consumption and are classified like net new supply shown in table 4, ² West coast of South America (Salvador, Chile, Bolivia, Peru, and Ecuador), New Zealand, New Cale-

9 Metal and flue dust only.

West coast of South America (Saivador, Oline, Bolivia, Fera, and Bodosari, Todonia, and Australia,
 U. S. S. R., Bulgaria, East Germany, Albania, Ozechoslovakia, Hungary, Estonia, Latvia, Lithuania, Poland, Rumania, China, and North Korea.
 Includes iron ore, pig iron, and scrap.
 General imports.
 Less than 0.5 percent.
 See footnotes 11 and 13, table 4.
 Evoludes antimony from foreign silver and lead ores.

⁸ Excludes antimony from foreign silver and lead ores.

In nickel and aluminum the loss was to the other Western Hemisphere region, while in lead and zinc it was to the East and South Pacific region. Changes of 5 percentage points or more from Canada and Mexico were in iron equivalent (up 5 percentage points), lead (down 8), zinc (down 7), cadmium (down 35), mercury (down 27), platinumgroup (down 7), barite (down 6), and titanium concentrates (up 8). Changes of similar magnitudes from the East and South Pacific region were in lead (up 10 percentage points) and boron minerals and compounds (up 5). The other Western Hemisphere region showed tungsten (up 9 percentage points) and salt (down 6), and Other Free World's share changed in manganese (down 7), tungsten (down 7), copper (down 8), zinc (up 5), cadmium (up 30), mercury (up 26), platinum-group metals (up 6), titanium concentrates (down 8), and fluorspar (down 7). The Communist Bloc countries were very unimportant in mineral imports, contributing nothing significant to supply except about one-fifth of the potash imports, but total imports were less than 10 percent of supply in the potash industry.

CONSUMPTION

Patterns.—Consumption of mineral commodities in 1956 listed in tables 6 and 7 exhibited no common pattern when compared with 1955. Unlike the situation in 1955, when consumption of all commodities except bromine increased over 1954 (reflecting the end of the 1954 slump) 1956 consumption levels for several major commodities were about the same as or below 1955. Those less than in 1955 included copper, iron ore, lead, zinc, and tin. On the other hand, barite increased very substantially (41 percent), over 1955, and bauxite, chromite, magnesium, nickel, titanium concentrates, and cadmium all increased more than 10 percent over 1955.

TABLE 6.—Reported consumption of principal metals and minerals in the United States, 1955-56

(Thousand short tons, unless otherwise stated)

Commodity	1955	1956	Change from 1955 (percent)
Antimony, primary short tons. Barite, crude Bauxite thousand long tons, dried equivalent. Chromite gross weight Cobalt thousand pounds. Copper, refined Fluorspar, finished Iron ore thousand long tons, gross weight Lead Magnesium, primary short tons. Manganese ore gross weight. Mercury 76-pound flasks Mica splittings thousand pounds. Molybdenum, primary products (shipments to domestic destinations. thousand pounds, Mo content. Nickel, exclusive of scrap short tons. Platinum-group metals (sales to consumers) Tin long tons Titanium concentrate (ilmenite and slag) estimated TiO ₂ content. Tungsten concentrate short tons, W content 2 Zinc, slab.	1, 213 46, 463 2, 104 57, 185 8, 998 35, 935 1110, 100 851 90, 483	12, 897 2, 062 7, 751 1, 847 9, 562 1, 521 621 125, 170 1, 210 53, 610 2, 253 54, 143 8, 662 39, 082 127, 578 830 90, 324 579 4, 531 1, 009	+11 +17 -22 +1 +9 0 0 +15 +7 -5 -4

<sup>Revised figure.
Formerly reported in thousand pounds.</sup>

⁴⁶⁸⁸¹⁸⁻⁵⁸⁻²

TABLE 7.—Apparent consumption of metals and minerals in the United States. 1955-56 1

(Thousand	chart tone	บาทไดยข	otherwise	(botete
(I Housand	SHOLD TORRE	umess	OTHER WISE	Stateur

Commodity	1955	1956	Change from 1955 (percent)
Asbestos, all grades 2	782	727	-7
	702	701	0
	181	191	+6
	\$ 10, 690	\$ 12, 714	+19
	48, 027	50, 552	+5
	4 14, 431	14, 281	-1
	3, 447	3, 576	+4
	4 2, 067	2, 058	0
	22, 483	24, 248	+8
	4 5, 625	5, 735	+2
	719	735	+2

 Covers commodities on which reported consumption is not collected.
 Adjustments are not made for national stockpile acquisitions, if any.
 Not strictly comparable with figure for 1954, since 1955 and 1956 production data do not cover primary compounds not made from metal.

Revised figure 5 Estimated at 31 percent.

Sales and Orders.—Seasonally adjusted sales of the primary-metalmanufacturing industry dropped steadily during the first half of 1956 and hit a very low point in July as the steel strike was felt. The highest sales of the year were reached in October, but volume fell the last 2 months, with December 1956 slightly lower than December 1955. Adjusted sales value for all manufacturing, on the other hand, peaked in December 1956—5 percent above the December 1955 volume. Stone, clay, and glass adjusted sales behaved erratically during the year, volume being lowest in April and highest in October. The December 1956 volume was 2 percent below that in December 1955.

TABLE 8.—Sales, primary-metal industry and stone, clay, and glass industry, and new orders, primary-metal industry, 1953-56 i

(Million dollars)

Year	Primar	Stone, clay, and glass	
	Sales	New orders	(sales)
953 954 955 966	23, 841 20, 106 26, 468 28, 339	21, 044 18, 721 29, 542 29, 028	7, 09: 7, 21: 8, 67: 8, 98:
January February March April May June July August September October November December	2, 478 2, 511 2, 449 2, 407 2, 367 2, 311 1, 431 2, 144 2, 334 2, 551 2, 531 2, 462	2, 415 2, 671 2, 435 2, 433 2, 430 2, 335 2, 193 2, 460 2, 341 2, 511 2, 508 2, 372	76: 76: 73: 77: 73: 72: 74: 75: 72: 77: 74:

U. S. Department of Commerce, Office of Business Economics, Industry Survey: August 1957. This
publication presents newly revised data, 1953-56.
 Seasonally adjusted data; therefore will not add to 1956 total.

New orders (seasonally adjusted) for total manufacturing were erratic during 1956; they were very high in August and low in September, but December 1956 was virtually unchanged from December 1955. Primary metal manufacturing did not fare as well, showing a generally downward movement, with December 1956 9 percent below December 1955.

STOCKS

Physical Stocks.—Mineral stocks in the hands of manufacturers, consumers, and dealers at the end of 1956 were substantially changed from those at the end of 1955. Very large increases occurred in aluminum (up 582 percent), refined copper at primary smelting and refining plants (up 129 percent), and mercury (up 132 percent). Cement, blister copper, fluorspar, and nickel also increased 25 percent or more, but total lead stocks and total zinc stocks were up only 6 percent. Significant decreases occurred in arsenic and bauxite; iron ore remained unchanged. In general, 1956 saw a movement toward stock accumulation, to be expected in view of the slowing rate of consumption and the softness in mineral markets that became apparent toward the end of 1956.

TABLE 9.—Selected physical stocks of mineral commodities of mineral manufacturers, consumers, and dealers in the United States, at end of year, 1953-56 1

200			V	19	56
Commodity and type of stock	1953	1954	1955	Quantity	Change from 1955 (percent)
		*.			
Aluminum (short tons): Primary, at reduction plants	39, 300	21, 100	2 15, 020	102, 496	+582
Purchased aluminum scrap, consumers (gross weight)	26, 998 10, 8	18, 462 12, 5	² 19, 457 11, 6	24, 426 4. 9	+26 -58
Bauxité, at consumers (dried equivalent 3) thousand long tons	2 1, 999	² 2, 286	² 2, 248	2, 016	-10
Bismuth, consumers' and dealers' stocks thousand pounds.	166. 7	252.8	234. 3	228. 2	-3
Cadmium, metal and compounds, producers, distrib- utors, and consumers (Cd content) thousand pounds Cement, at mills	4 3, 872 19. 4	6, 294 ² 16. 6	5, 139 17. 5	5, 051 22. 4	-2 +28
Chromite, at consumers' plants (thousand short					
tons): Metallurgical Refractory Chemical	608 260 148	804 257 206	628 313 2 168	640 431 155	+2 +38 -8
TotalCopper (thousand short tons): At primary smelting and refining plants (Cu	1, 016	1, 268	1, 110	1, 227	+11
content): Refined	49 223	25 189	34 201	78 261	+129 +30
In fabricators' hands, refined, including in process and primary fabricated shapes (Cu content). Purchased copper scrap, consumers (gross	381	361	390	437	+12
weight)	⁵ 157	\$ 108	⁸ 152	⁵ 150	
Ferrous scrap and pig iron, at consumers' plants	•				
(thousand short tons): Total scrapPig iron	7, 149 2, 797	7, 349 2, 536	7, 210 2, 289	7, 416 2, 355	+3 +3
Total	9, 946	9, 885	9, 499	9, 771	+3
Fluorspar (thousand short tons): At consumers' plants Importers	227. 5 15. 5	143. 8 26. 1	140. 6 54. 0	189. 7 53. 9	+35

See footnotes at end of table.

TABLE 9.—Selected physical stocks of mineral commodities of mineral manufacturers, consumers, and dealers in the United States, at end of year, 1953-56 1—Continued

				1956		
Commodity and type of stock	1953	1954	1955	Quantity	Change from 1955 (percent)	
Iron ore (thousand long tons): At consumers' plants On Lake Erie docks	45, 242 7, 671	43, 139 6, 591	44, 358 6, 820	47, 292 4, 065	+7 -40	
Total	52, 913	49, 730	51, 178	51, 357		
Lead (thousand short tons, Pb content): At smelters and refineries: Refined pig lead. Antimonial lead. In base bullion, including in process at and in transit to refineries.	65. 0 16. 1	77. 9 14. 8	21. 2 9. 9	29. 4 11. 7	+39 +18	
In ore, matte, and in process at smelters	47. 5 67. 7	47. 1 62. 1	47. 9 71. 8	40. 2 77. 9	-16 +9	
Total	196. 3	201. 9	150.8	159. 3	+6	
Consumers' stocks: Refined Antimonial In unmelted white-metal scrap, percentage metals, copper-base scrap, and drosses,	75. 8 14. 9	82. 0 17. 6	73. 5 23. 1	73. 7 40. 2	 +74	
residues, etc	23. 1	25. 0	20.9	10.1	-52	
Total	113.8	124.6	117. 5	124.0	+6	
Manganese ore and ferromanganese, at plants, including bonded warehouses (thousand short tons, gross weight): Ore 6	1, 692	1, 579	1, 362	1, 272		
Ferromanganese (excludes producers' stocks) Mercury, in hands of consumers and dealers	137	175	152	155	+2	
thousand 76-pound flasks_ Molybdenum primary products, producers' stocks (Mo content)thousand pounds_	25. 9 3, 894	22. 3 3, 430	9. 1 2 3, 156	21. 1 2, 812	+132 -11	
Nickel, consumers' plants (short tons):						
Metal 7Ni content In other forms, exclusive of scrap 7do	6, 603 3, 752	8, 628 2, 146	² 7, 017 2, 262	9, 838 3, 044	+40 +35	
Total 7do Purchased nickel scrap (gross weight)	10, 355 1, 189	10, 774 1, 627	² 9, 279 1, 404	12, 882 3, 142	+39 +124	
Platinum-group metals, all forms, held by refiners, importers, and dealers (thousand troy ounces): Platinum Palladium Iridium, osmium, rhodium, and ruthenium	138. 8 110. 2 32. 0	135. 6 86. 8 34. 2	146. 2 111. 6 36. 1	146. 5 110. 1 34. 6	 -1 -4	
Total	281. 0	256. 6	293. 9	291. 2	-1	
jobbers)	14, 180 10, 845 976	14, 702 11, 164 547	18, 470 11, 552 2 915	18, 725 12, 156 585	$^{+1}_{+5}$	
(estimated TiO ₂ content)thousand short tons Tungsten concentrate, consumers and dealers (W	355	3 69	345	386	+12	
content)thousand pounds Zinc (thousand short tons): Slab; At primary smelters and secondary distilling	4, 335	3, 913	3, 502	2, 980	-15	
plants. At consumers' plants Purchased zinc scrap, at consumers' plants	180. 0 85. 7	² 120. 5 103. 7	39. 3 123. 5	66. 9 105. 0	+70 -15	
Purchased zinc scrap, at consumers' plants (gross weight)	25. 2	34.6	² 34. 1	41. 2	+21	

¹ The following are not included: Stocks in the National Strategic Stockpile, Reconstruction Finance Corporation tin stocks and Government-held nonstrategic stockpiles of bauxite. Where figures do not add to the totals given, the difference is due to rounding.

² Revised figure.

<sup>Revised figure.
Estimated, using conversion factor of 0.85 for crude and 1.00 for processed.
Consumers' stocks not available before 1954; consequently, the 1953 figure represents only producers' and distributors'.
Includes brass-mill home-scrap stocks.
Excludes small tonnages of dealers' stocks.
Includes amounts in transit to consumers' plants.</sup>

Mine Stocks.—Data on mine stocks are available for only those commodities listed in table 10. Movements in these stocks matched those shown in table 9, with increases in 10 commodities and decreases only in fluorspar and titanium concentrates. The most spectacular increase was in tungsten concentrate, up 266 percent over 1955 because of problems of Government procurement.

TABLE 10.—Stocks of minerals at mines or in hands of primary producers, 1955-56

Commodity and unit	1955	1956	Change from 1955 (percent)
Antimony ore and concentrate	1 200 1, 043 5 23, 439 4, 563 928 2, 730 1 829 1 629 3, 181 120 1 52, 665 87 1 202	240 1, 133 6 21, 794 2, 265 5, 465 1, 210 2, 920 1, 357 736 3, 935 121 29, 736 24 739	+20 +9 +20 -7 +20 +30 +30 +7 +64 +17 +24 +1 -44 -72 +266

¹ Revised figure. - Nev 1950 115.1. 2 Includes stocks of concentrate at plants making molybdenum products. 3Formerly reported in thousand pounds.

Stocks in Bonded Warehouses.—Movements in stocks in bonded warehouses generally followed the same pattern as that of other stocks, with only aluminum, cadmium, and clay showing decreases over 1955 year-end figures. Very substantial increases relative to stocks in the hands of manufacturers, consumers, and dealers occurred in zinc, tungsten, and fluorspar, and the cadmium decrease was also

significant in the total stock picture.

Value of Inventories.—Seasonally adjusted value of inventories for all primary-metal manufacturing (including several industries that are not ordinarily considered part of mineral manufacturing) increased during 1956 and in December 1956 stood 16 percent above December 1955. Inventory value in stone, clay, and glass products did not show as steady a change, dropping in May, August, and September, but December 1956 was still 9 percent above December 1955. data, when deflated by the change in the wholesale price index, still show increases of 13 and 7 percent, respectively, reinforcing the impression that 1956 was a year of movement toward stock accumulation.

TABLE 11.—Estimated changes in stocks of selected minerals in custom bonded warehouses, January 1, 1956–December 31, 1956 ¹

(Short tons, unless otherwise stated)

Commodity and unit	Estimated s	tock change
	Component	Class
Aluminum		-31
Metal and alloys in crude form	-313	
Antimony Regulus or metal, and oxide		+38
Regulus or metal, and oxide	+382	
Barite, crude. Cadmium (content)		+5,83
Cadmium (content)pounds-		-2, 607, 35
Cadmidm do	-1,367,561	
China clay on kaolin		-98
China clay or kaolin	-984	
Copper (content)		+36, 13
Copper ore and concentrate Regulus, black, coarse	+34, 123	
Paginal ingts plates berg	+2, 122	
Refined ingots, plates, bars	-115	
		+95, 13
Metallurgical grade	+11,744	
Reexport of foreign merchandise both grades	+83, 616 . -228	
ead (content)	-228	
Ores, flue dust, matte	+5.144	+5,54
Pigs and bars	+400	
Vianganese (content)		1 71 00
Wanganese ore. Battery grade	1 10 000	+71, 37
Manganese ore, Metallirgical grade	0 001	
rerromanganese and manganese-suicon	1 61 750	
dereury76-nound flasks	1 ' '	+2.668
41ca, except scrapnounds		+515,063
Unmanufactureddo	1.045.000	7510,000
Manufactureddo	+328, 700	
Manufactureddo Reexports of foreign merchandise, both typesdo	-158, 666	
NICKEL		+249
Nickel alloy and metal, including scrapungsten ore and concentrate (W content)	+249	(-Z±
ungsten ofe and concentrate (w content)	1	+150
me (content)		+63, 134
Zinc-bearing ores	⊥69 071	
Blocks, pigs, or slabs	+163 -	

¹ Estimated by the subtraction of "imports for consumption" and "reexports of foreign merchandise" from "general imports." All data from U. S. Department of Commerce. Minerals are those included in net supply table which enter bonded warehouses and for which a change occurred in 1956.

TABLE 12.—Seasonally adjusted book value of inventory, primary metal industry and stone, clay, and glass, December 1953–55 and monthly 1956 $^{\rm 1}$

(Million dollars)

Year and month	Primary metal	Stone, clay, and glass	Year and month	Primary metal	Stone, clay, and glass
1953: December 1954: December 1955: December 1956: December	3, 397 3, 138 3, 420 3, 975	940 917 1,013 1,171	1956—Continued MayJune	3, 589 3, 551	1, 098 1, 129
1956: January February March April	3, 440 3, 476 3, 492 3, 498	1, 041 1, 063 1, 086 1, 121	July	3, 529 3, 632 3, 687 3, 824 3, 891 3, 975	1, 142 1, 135 1, 129 1, 148 1, 168 1, 171

¹ U. S. Department of Commerce, Office of Business Economics, Industry Survey: August 1957.

LABOR AND PRODUCTIVITY

Employment.—Average employment in the mining of nonfuel metals and minerals increased by 10,600 employees during 1956, a 5-percent rise over 1955 as compared with a 3-percent rise in all industries for the same period. The increase was split between non-metallic mining and quarrying, up by 4,700 (4 percent) and metal mining, up by 5,900—a 6-percent rise. Employment in mineral manufacturing increased only 1 percent. The major patterns follow:

				Change in employment, 1956 over 1955 (per- cent)
All industries Mining (including fu Metals and min	els) erals (exce	pt fuels)	 	 $^{+3}_{+3}_{+5}$
Metal mining Nonmetallic min Fuels Mineral manufacturi	ning and q	uarrying 	 	 $^{+6}_{+4}_{+2}_{+1}$

¹ Based upon categories listed under "Mineral Manufacturing" in table 13.

Detailed monthly data for the mineral industries (nonfuel) are contained in table 13. Nonmetallic mining and quarrying showed the expected seasonal pattern of low employment during the first quarter of the year. Metal-mining employment reflected clearly the steel strike in July 1956 because of the iron mines, where employment dropped by over 25,000 employees during that month. This single-month decline in employment in the iron-ore mines was largely offset by unusually high employment before and after the steel strike, so that the average employment for 1956 in this industry was only slightly below that in 1955.

Total Wages and Salaries.—Wages and salary income in 1956 in the mining industries continued to rise from the 1954 low, with a 12-percent increase over 1955, as compared with an 8-percent increase in 1955. The total of \$4,088 million surpassed the previous high of \$3,718 million in 1953. All categories of mining shared in the increase, but the primary-metal industries, while up 8 percent to match the performance of all industries and manufacturing, did not reach the

22 percent attained in 1955.

Average Annual Earnings.—The mining and primary-metal industries reported greater increases than the average for all industries in average annual earnings in 1956 as compared with 1955. However, the rates were not as disparate as they were from 1954 to 1955, because the rate of growth in mining and primary metals slowed somewhat. Fuels mining had the highest rate of increase—6.9 percent—of those categories shown in table 15. The rates of increase of 1956 over 1955 were lower in all mineral categories than those from 1954 to 1955, with the greatest decrease in primary metals, which fell to 5.6 percent from 11.5 percent, probably because of the month-long steel strike in July 1956. All industry, on the other hand, showed an increased rate of change from 4.6 percent for 1954–55 to 5.0 percent for 1955–56. These comparisons clearly indicate the relative depth of the 1954 slump in the mineral industries as compared with

TABLE 13.—Total employment in the mineral industries (nonfuel) in the continental United States, 1953-56, by industries 1

(In thousands)

	Mining					<u> </u>
Year and month	•	Nonmetallic			Metal	
	Total	mining and quarrying	Total 2	Iro	n Copp	er Lead and zinc
1953	211. 9 3 204. 4 3 208. 0	105. 9 3 105. 1 3 107. 0	106. 0 3 99. 3 3 101. 0	3	0. 1 28 5. 2 3 27 3. 7 3 29	9 3 16.
1956: January February March April May June July August September October November December Year (average)	210. 5 211. 4 214. 6 220. 4 221. 0 225. 6 199. 7 224. 6 227. 6 225. 5 223. 3 219. 8 218. 6	104. 8 104. 5 107. 3 111. 1 112. 6 115. 1 114. 6 115. 5 114. 6 113. 3 110. 3	105. 7 106. 9 107. 3 109. 3 108. 4 110. 5 85. 1 108. 7 112. 1 110. 9 110. 0 109. 5 106. 9	3 3 3 5 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.7 33 4.0 33 4.1 33 5.5.9 33 5.5.1 34 6.0 34 4.6 34 4.6 35 8.0 35 3.7 35 3.7 35	.6 17.6 8 17.2 9 17.3 0 17.5 5 17.4 7 17.5 8 17.5 1 17.5 0 17.5 2 17.5 2 17.5
		M	ineral man	ufactu	ring	
	Fertilizers Cement, naces, steel nonf			nd refining of ous metals		
			rolling	mills	Primary	Secondary
1953	37. 36. 36.	8 3 41.	4 8	653. 3 580. 8 635. 3	61. 0 3 62. 3 3 63. 8	13. 5 12. 4 12. 7
1956: January	35. 37. 45. 48. 43. 34. 31. 30. 32. 34. 33.	8 42. 5 42. 4 43. 3 44. 4 43. 9 44. 7 43. 2 43. 4 43.	2 3 0 4 1 0 9 4 1 0 6 6 6 4	659. 3 661. 7 661. 7 665. 9 655. 2 310. 0 650. 6 669. 6 666. 9 666. 4 666. 6 633. 1	66. 4 66. 4 67. 4 67. 8 67. 9 69. 0 70. 9 67. 3 72. 7 72. 2 72. 2 73. 2 69. 4	13.5 13.7 13.6 13.8 13.3 13.3 13.3 13.4 13.6 13.9 13.6

¹ U. S. Department of Labor, Bureau of Labor Statistics; issued currently in the Monthly Labor Review, Employment and Payrolls, and other publications. Data are based on reports from cooperating establishments covering both full- and part-time employees who worked during, or received pay for, any part of the pay period ending nearest the 15th of the month. Data are for "all employees", those for "production and related workers" are also available in the above publications.

² Includes other worked windows set there contacting.

Includes other metal mining, not shown separately.
 Revised figure.

all industries. The average annual growth rates from 1953 to 1956 probably represent a more normal picture—they show nonfuel mining growing at a slower rate than all industries combined, with fuel mining and primary-metal industries growing at a higher rate than all industries.

Hours and Earnings.—The average number of hours worked per week in 1956 in nonfuel mining increased slightly to 43.5 over 1955 (43.4) but was still below the 1953 figure of 44.0. Hourly earnings increased 5 percent over 1955; as the result of both increases, weekly

TABLE 14.—Wages and salaries in the mineral industries in the United States, $1955-56^{\ 1}$

(Million dollars)

Industry	1955	Change from 1954 (percent)	1956	Change from 1955 (percent)
All industries	\$210, 339	+8	\$227, 237	+8
	3, 656	+8	4, 088	+12
	995	+10	1, 127	+13
	519	+11	588	+13
	476	+9	539	+13
	2, 661	+7	2, 961	+11
	72, 132	+9	77, 629	+8
	6, 660	+22	7, 200	+8

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 37, No. 7, July 1957, p. 16.

TABLE 15.—Average annual earnings in mining and primary-metal industries $1955{-}56\ ^{1}$

	19	55			
Industry	Average	Change from 1954 (percent)	Average	Change from 1955 (percent)	Average annual change from 1953 (percent)
All industries	2 \$3, 831 4, 693 4, 645 4, 990 4, 327 4, 710 4, 351 5, 155	+4.6 +7.3 +7.0 +9.2 +5.7 +7.4 +5.7 +11.5	\$4, 021 5, 004 4, 917 5, 297 4, 568 5, 034 4, 582 5, 446	+5.0 +6.6 +5.9 +6.2 +5.6 +6.9 +5.3 +5.6	+3.7 +4.6 +3.4 +2.8 +4.3 +5.0 +4.2 +4.9

 ¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 37
 July 1957, p. 20.
 ² Revised figure.

earnings were up by \$4.90, a 5.7-percent rise over 1955. All categories shown in table 16 shared the increased weekly earnings, although weekly hours worked declined in iron mining, copper mining, fertilizers, electrometallurgical products, and secondary smelting and refining of nonferrous metals.

Labor-Turnover Rates.—Metal mining in 1955 and in 1956 had a higher labor turnover (both accession and separation rate) than all manufacturing and than any of the categories shown in table 17. However, there is substantial variation in the metal-mining group, with iron and lead and zinc mining being below the group average and copper mining well above. The steel strike is reflected in the ironmining data for July 1956, the low accession and separation rates reflecting the fact that most miners were on strike.

In contrast to the high turnover rates in metal mining, the layoff rate was low, indicating that the employee changes were voluntary in nature. Iron mining, although showing the lowest accession-separation rates in the mining group, had the highest layoff rates, and the exact opposite was true of copper mining. The monthly everage layoff rate increased significantly in 1956 over 1955 for lead and zinc

TABLE 16.—Average hours and gross earnings of production and related workers in the mineral industries (nonfuel) in continental United States, 1953-56, by industries 1

[U. S. Department of Labor]

					Mining						
		Total 2				M	etal				
Year		10001		-	Total 3			Iron			
	Weel	kly—	Hourly	Weel	xly—	Hourly	Week	ly—	Hourly		
	Earnings	Hours	earnings	Earnings	Hours	earnings	Earnings	Hours	earnings		
1953 1954 1955 1956	\$82.27 4 80.85 4 86.54 91.44	44. 0 42. 4 4 43. 4 43. 5	\$1.87 1.91 4 2.00 2.10	\$88. 54 84. 46 4 92. 42 97. 52	43. 4 40. 8 4 42. 2 42. 4	\$2.04 2.07 2.19 2.30	\$90. 74 82. 03 4 92. 46 97. 44	42. 4 37. 8 4 40. 2 40. 1	\$2. 14 2. 17 2. 30 2. 43		
			Metal (c	ontinued)			Nonme	tallic min	ing and		
		Copper		L	ead and zii	ne		quarrying			
1953 1954 1955 1956	\$91. 60 4 87. 13 95. 70 100. 95	45. 8 4 42. 5 44. 1 43. 7	\$2.00 2.05 2.17 2.31	\$80. 60 4 76. 92 4 83. 82 89. 67	41. 7 4 40. 7 4 41. 7 42. 1	\$1. 92 1. 89 2. 01 2. 13	\$75. 99 77. 44 80. 99 85. 63	44.7 44.0 44.5 44.6	\$1.70 1.70 1.82 1.92		
•		1		Miner	al manufac	eturing	• • •		<u> </u>		
		Fertilizers		Cem			Cement, hydraulic		Blast furnaces, steelwor rolling mills 5		
1953 1954 1955 1956	\$59. 36 61. 48 63. 75 67. 94	42. 4 42. 4 42. 5 42. 2	\$1.40 1.45 1.50 1.61	\$73. 39 75. 71 4 78. 85 84. 01	41.7 41.6 441.5 41.4	\$1.76 1.82 1.90 2.03	\$87. 48 83. 38 4 95. 99 102. 47	40. 5 37. 9 40. 5 40. 5	\$2. 16 2. 20 4 2. 37 2. 53		
	Electrometallurgical products				Other			melting a ferrous m	nd refining etals ⁵		
1953 1954 1955 1956	\$80. 36 4 80. 20 87. 14 88. 66	41. 0 4 40. 3 41. 3 40. 3	\$1.96 1.99 2.11 2.20	\$87. 48 83. 16 96. 39 102. 47	40. 5 37. 8 40. 5 40. 5	\$2.16 2.20 2.38 2.53	\$80. 93 80. 00 84. 45 91. 46	41. 5 40. 2 40. 6 41. 2	\$1. 95 1. 99 2. 08 2. 22		
	Primary smelting and refining of copper, lead, and zinc			Primary refining of aluminum			Secondary of no	Secondary smelting and refin of nonferrous metals			
1953 1954 1955 1956	\$80. 41 4 76. 80 81. 61 89. 44	42. 1 4 40. 0 40. 6 41. 6	\$1. 91 1. 92 2. 01 2. 15	\$81. 81 4 84. 84 4 88. 88 95. 34	40. 5 4 40. 4 4 40. 4 40. 4	\$2.02 2.10 4 2.20 2.36	\$73. 63 74. 80 82. 03 86. 29	41. 6 41. 1 42. 5 42. 3	\$1. 77 1. 82 1. 93 2. 04		

 ¹ U. S. Department of Labor, Bureau of Labor Statistics, Monthly Labor Review: Vol. 80, No. 4, April 1957, p. 520f, table C-1.
 ² Weighted average of data for metal mining and nonmetallic mining and quarrying, computed by author of chapter.

mining, starting in July 1956. Layoffs in metal mining as a whole

were significantly higher during the last half of 1956.

Productivity.—Measures of productivity are currently available, as estimated by the Bureau of Labor Statistics, only for copper- and

Includes other metal mining, not shown separately.

Italicized titles which follow are components of this industry.

TABLE 17.—Monthly labor turnover rates in the mineral industries, 1955 average and 1956, by months

(Per 100 employees 1)

			Blast fur-	Primary smelting		Metal	mining	
	All manu- factur- ing	Hydrau- lic cement products	naces, steel- works, and rolling mills	and refining of non-ferrous metals: Copper, lead, zinc	Total metal mining	Iron mining	Copper mining	Lead and zinc mining
Total accession rate: 1955 average	3.7	2.0	2.7	2.7	4.5	2.8	5. 2	2, 5
January February March April May June July August September October November December	3.1 3.3 3.4 4.2 3.3	1.3 1.1 2.1 2.2 2.8 3.2 2.1 2.1 1.6 1.2	1.6 1.4 1.7 1.9 2.9 1.0 1.6 1.6 1.3	1.99 1.5902 2.5902 2.132 1.22	3.1909 5.096600 3.144.33.14 3.148	1.6 1.9 6.7 2.6 1.4 1.3 .6 1.9	4.1 3.8 3.9 3.8 4.0 4.3 4.1 4.8 4.2 3.1 3.1	1.9 2.8 2.4 2.3 4.1 5.1 3.4 2.9 4.8 2.7 1.9 1.8
Total separation rate: 1955 average	3. 2	1, 7	1.6	2, 1	3, 9	1, 6	4, 5	2, 1
January February March April May June July August September October November December	3.6 3.6 3.5 3.4 3.7 3.4	1. 4 1. 4 1. 6 1. 6 1. 3 1. 6 2. 4 3. 3 2. 1 2. 1 2. 8	1.4 1.3 1.3 1.3 1.3 1.4 2.7 1.4 1.1 1.5	1.6 1.15 1.6 2.6 2.7 2.7 2.2 2.1 1.7	3.49 3.11 3.54 4.0 5.36 3.69 2.99	1.7 1.6 1.1 1.0 .9 1.2 3.4 2.7 3.1 2.0	4.1 3.8 4.3 4.1 4.3 4.3 5.3 8.3 4.1	3.5 1.9 1.8 2.2 3.0 3.1 2.2 5.5 5.2 2.3 2.1 1.6 2.9
Layoff rate: 1955 average	1.2	.2	.3	.3	.4	.9	.2	.2
1956: January February March April May June July August September October November December	1.78 1.64 1.32 1.22 1.43 1.54	.3 .3 .1 .1 .2 .3 .1 .3 .8 .7 1.8	.3 .2 .3 .2 .1 .4 .7 .3 .3 .4	(2) .1 .1 .2 .1 .1 .2 .7 .2 .1 .3 .2 .1 .3 .2 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	.7 .4 .3 .1 .2 .2 .2 .1 .5 .1 .5 .1 .8 .4	1. 1 1. 0 . 9 . 1 . 1 (2) . 1 . 1 (2) 1. 3 2. 5 1. 5 . 7	.1 (2) (3) (2) (2) .1 (3) .2 (2) .3 .2 .1	2.0 .1 .1 (2) .1 .4 .2 .4 .2 .1 .5 .3

¹ U. S. Department of Labor, Monthly Labor Review: 1956 monthly issues, table B-2.

² Less than 0.05.

iron-ore mining. In both copper and iron ore mining, the 1956 indexes of crude ore mined per production worker and per man-hour reached new high values. However, the recoverable metal indexes for both industries dropped from the 1955 level.

Comparable data are not available from the Bureau of Labor Statistics for lead-zinc mining, but a tentative index can be computed using employment, average hours, and recoverable content of domestic production. This computed index of recoverable metal per man-hour shows, with 1949=100: 1950-110; 1951-101; 1952-98; 1953-100; 1954-100; 1955-103; 1956-102. Productivity has clearly not increased as much as that in the other two mining industries.

TABLE 18.—Labor productivity indexes for copper- and iron-ore mining, 1947–51 average and 1952–56 $^{\rm 1}$

(1947-49=100)

[U. S. Bureau of Labor Statistics]

	Copp	er ores	Iron	ores	
Year	Crude ore	nined per—	Crude ore mined per—		
	Production worker	Man-hour	Production worker	Man-hour	
1947-51 (average)	126. 9 119. 9 114. 4	107. 2 122. 9 115. 5 118. 8 2 134. 3 137. 2	106. 7 121. 3 122. 6 99. 0 2 132. 7 135. 0	105. 2 111. 7 116. 9 105. 8 2 133. 4 137. 1	
Year		ble metal r—	Recoveral	ole metal 3	
	Production worker	Man-hour	Production worker	Man-hour	
1947–51 (average) 1952 1953 1953 1954 1955 1956	119.6 112.2	106. 4 115. 8 108. 2 108. 1 2 122. 0 117. 6	104. 6 114. 5 114. 2 87. 4 2 118. 2 111. 2	103. 2 105. 4 108. 9 93. 4 2 118. 9 113. 0	

U. S. Department of Labor, Bureau of Labor Statistics, Monthly Labor Review: February 1956, vol. 79, No. 2, and later unpublished reports.
 Revised figure.

Figures refer to usable ore rather than recoverable metal. For iron ore, usable ore is that product with the desired iron content (by selective mining, mixture of ores, washing, jigging, concentrating, sintering, etc.)

PRICES AND COSTS

Prices.—The price indexes of all mineral categories listed in table 19 except one rose significantly in 1956. For the second consecutive year, iron and steel scrap showed the largest percentage increase in the annual average in 1956 compared with 1955, as well as from January to December 1956. The all-commodities index, while almost stable for 1955 compared with 1954, rose a significant 3 percent in 1956 compared with 1955 and 4 percent from January to December 1956. The period of virtual mineral price stability following the Korean War crisis definitely ended in 1956.

Costs.—Indexes of cost items rose approximately the same as the price indexes for mineral commodities during 1956, so the spread between price and cost did not widen as had been the case in 1955.

Relative Labor Costs.—The index of labor cost per pound increased for copper, lead-zinc, and iron-ore mining in 1956 and stood well above that for 1949 in all three industries, although still below the high reached for iron-ore mining during the slump in 1954. The increases in the value of recoverable metal in the copper- and

TABLE 19.—Price relatives for selected metals and mineral commodities, January and December 1956, and annual averages, 1955 and 1956 1

(1947-49=100)

Commodity	19	56	Change from	Annual	Change from	
Commonity	January	December	January (percent)	1955	1956	1955 (percent)
Iron ore. Iron and steel scrap. Iron and steel products. Nonferrous metals. Clay products. Gypsum products. Concrete ingredients. Building lime, insulation material, and asbestoscement shingles.	174. 5 135. 3 149. 4 156. 6 145. 3 127. 1 129. 7	172. 9 156. 5 163. 3 149. 6 150. 5 127. 1 131. 7	$ \begin{array}{c} -1 \\ +16 \\ +9 \\ -4 \\ +4 \\ 0 \\ +2 \end{array} $	160. 5 104. 6 140. 6 142. 7 140. 1 122. 1 124. 9	173. 0 132. 4 154. 7 156. 1 148. 0 127. 1 130. 6	+ 8 +27 +10 + 9 + 6 + 4 + 5
Fertilizer materials All commodities (minerals and all other)	113.1	105. 7 116. 3	- 6 + 4	111. 6 110. 7	114.3	+ 3

¹ U. S. Department of Labor, Bureau of Labor Statistics, Wholesale Price Index: Annual and monthly releases. Also published currently in Monthly Labor Review.

TABLE 20.—Price relatives for selected cost items in nonfuel mineral production, January and December 1956, and annual averages, 1955 and 1956 1

(1947-49=100)

Commodity	1956		Change from	Annual	Change from	
Commodity	January	December	January (percent)	1955	1956	(percent)
Coal	109. 9 145. 4 121. 1 117. 2 120. 0 127. 6 129. 5	123. 5 156. 3 119. 9 120. 9 122. 5 122. 5 133. 8	+12 + 7 - 1 + 3 + 2 - 4 + 3 + 9	104. 8 135. 2 111. 6 112. 8 118. 1 112. 4 125. 0	114. 4 149. 7 114. 3 118. 2 121. 4 127. 2 130. 5	$ \begin{array}{c} + 9 \\ +11 \\ + 2 \\ + 5 \\ + 3 \\ +13 \\ + 4 \end{array} $

¹ U. S. Department of Labor, Bureau of Labor Statistics, Wholesale Price Index: Annual and monthy releases. Also published currently in Monthly Labor Review.

TABLE 21.—Indexes of relative labor costs, copper-, lead-zinc-, and iron-ore mining, 1949-56

(1949=100)

Year	Index of la	abor costs p overable m	per pound etal ¹	Index of metal	value of re per man-h	coverable our ²	Index of l	abor costs j verable met	per dollar tal 3
1 ear	Copper	Lead- zinc	Iron ore	Copper	Lead- zinc 4	Iron ore	Copper	Lead- zinc 4	Iron ore
1949 1950 1951 1952 1953 1954 1955	100 91 97 108 122 126 118 129	100 93 112 124 122 120 124 133	100 96 100 115 129 153 128 141	100 128 146 146 160 166 4 235 254	100 109 130 116 89 89 102 106	100 114 132 130 150 130 4 168 172	100 83 77 86 82 4 82 4 61 60	100 94 87 105 137 135 125 128	100 90 88 95 97 113 4 93 95

4 Revised figure.

¹ Index computed by author from data in tables 16 and 18.
2 Index computed by author from data in table 18, multiplied by price of electrolytic copper, average lead and zinc, and iron ore and rebased.
3 Index computed by author, using the above index of value and data in table 16.

iron-ore-mining industries has more than offset the labor cost rise, however, so that the index of labor cost per dollar of recoverable metal is slightly below 1949 in iron ore (although slightly up from 1955) and substantially below 1949 in copper. The lead-zinc industry index of labor cost per dollar of recoverable metal is well above 1949 and increased in 1956. The copper index of labor costs per dollar of recoverable metal has declined steadily since 1952, while those for lead-zinc and iron ore have been more erratic in their movements.

INCOME

National Income Originated.—Metal mining led the other mineral industries, with a 13-percent increase over 1955 in national income originated during 1956, but all categories increased significantly. Although the increases in 1956 were not as outstanding as those in 1955 (which year represented recovery from the 1954 slump), they were substantial when compared with all industries and resulted in a higher percentage contribution to the total for all categories except stone, clay, and glass products, whose contribution remained stable.

TABLE 22.—National income originated in the mineral industries in the United States, 1954-56 ¹
(Million dollars)

Industry	1954 2	1955 ²	1956	Change from 1955 (percent)
All industries	298, 955 733 669	324, 068 994 721	343, 620 1, 123 790	+6 +13 +10
Except fuels	1, 402 4, 868 7, 665	1, 715 5, 447 10, 054	1, 913 6, 050 10, 963	$^{+12}_{+11}_{+9}$

Stone, clay, and glass products__ 3. 137 3, 748 3, 984 **+6** [Percent] All industries_ 100.00100.00 100.00 Metal mining . 25 . 31 Nonmetallic mining and quarrying. .22 . 22 . 23 Total mining: Except fuels 47 Including fuels Primary metal industries 1.63 2.56 1.68 3. 10 1. 16 3.19 Stone, clay, and glass products____ 1.05 1.16

Nonemployee Income.—Nonemployee income, comprised largely of business profits before taxes (small amounts of net interest and inventory valuation adjustments make up the remainder), increased considerably more during 1956 for the mining and primary metal industries than for all industries. The absolute increase in 1956 in metal mining was \$55 million, a 13-percent rise. Nonemployee income for metal mining rose at the same rate as total national income originated

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: July 1957, p. 16, table 13. In arriving at national income, depletion changes are not deducted. This affects the data for the mining industries.
² Revised figures.

in this industry and indicates that profits increased in proportion to wages. On the other hand, nonmetallic mining and quarrying had only a 1-percent increase in nonemployee income, indicating that increased employee compensation accounted for almost all of the 10-percent increase in national income originated for this category.

TABLE 23.—Nonemployee income in the mineral industries in the United States, 1955-56 ¹

Industry	1955 ² (million dollars)	1956 (million dollars)	Changefrom 1955 (percent)
All industries Metal mining Nonmetallic mining and quarrying Total mining except fuels Total mining including fuels Primary metal industries Stone, clay and glass products	100, 996	102, 248	+1
	435	490	+13
	225	228	+1
	660	718	+9
	1, 418	1, 555	+10
	2, 677	2, 974	+11
	1, 187	1, 216	+2

¹ Computed by the author by subtracting compensation of employees from national income as given in Office of Business Economics, Survey of Current Business: July 1957, p. 16, tables 13 and 14. ² Revised figures.

Profits and Dividends.—The annual rate of profit on stockholder's equity (after corporate income taxes) in the primary nonferrous metal industries rose for the second consecutive year to a quarterly average of 16.5 percent in 1956, as compared with 15.4 percent in 1955 and 10.4 in 1954. The comparable rate for primary iron and steel was 12.7 percent in 1956, down from 13.5 percent in 1955. The drop was due entirely to the steel strike, which caused the rate in the third quarter of 1956 to drop to 6.0 percent as compared with the 14.7, 15.1 and 15.1 percent in the 1st, 2nd and 4th quarters respectively. Stone, clay, and glass products showed a quarterly average of 14.8 percent in 1956, down from 15.6 percent in 1955. For comparison with the movements in these mineral industries the rate for all manufacturing was 12.3 percent in 1956 and 12.5 percent in 1955.

Business Failures.—The number of mining failures decreased in 1956 as compared with 1955, but the total current liabilities of the firms that failed increased. The decrease in failures was in contrast to a substantial increase (16 percent above 1955) in all industrial and commercial industries.

TABLE 24.—Industrial and commercial failures and liabilities, 1954-56 1

Industry	1954	1955	1956
Mining: * Number of failures	42	55	42
	8, 007	5, 156	8, 193
	2, 240	2, 147	1, 990
	163, 277	151, 789	183, 037
	11, 086	10, 969	12, 686
	462, 628	449, 380	562, 697

¹ Dun & Bradstreet, Inc., Dun's Statistical Review: New York, N. Y., February 1957, p. 8.
² Including fuels.

⁵ Federal Trade Commission and Securities and Exchange Commission, Quarterly Financial Report for Manufacturing Corporations, 1st Quarter, 1956 and 1st Quarter, 1957.

INVESTMENT

New Plant and Equipment.—Expenditures on new plant and equipment by fuel- and nonfuel-mining firms increased sharply in 1956 to \$1,241 million—up by \$284 million over 1955. All categories listed in table 25 increased, with primary nonferrous metals showing the largest percentage gain—93 percent—and petroleum and coal products the smallest—12 percent.

TABLE 25.—Expenditures on new plant and equipment by firms in mining and selected mineral manufacturing industries, 1954–56 ¹

	(1	villion a	onars)				
					19)56	
Industry	1954	1955	1956	January– March	April- June	July- Septem- ber	October- Decem- ber
Mining 2 Manufacturing Primary iron and steel Primary nonferrous metals Stone, clay, and glass products Chemicals and allied products Petroleum and coal products	975 11, 038 754 246 361 1, 130 2, 684	957 11, 439 863 214 498 1, 016 2, 798	1, 241 14, 954 1, 268 412 686 1, 455 3, 135	262 2, 958 219 69 132 283 627	319 3,734 306 88 172 364 803	314 3, 834 296 103 181 370 813	346 4, 428 447 152 201 438 892

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 37, No. 3, March, 1957, pp. 10, s-2.

² Including fuels.

Issues of Mining Securities.—The mining industry (including fuels) was the source of 4.2 percent of all new corporate securities offered in 1956, as compared with 4.1 percent in 1955 and 5.7 percent in 1954. Although common-stock financing was somewhat more important in the mining category than in the manufacturing or total corporate categories, the percentage contribution from this source dropped to 34 percent in 1956 as compared with 50 percent in 1955. The total gross proceeds from securities offered in 1956 was \$40 million above the 1955 figure for mining, a 10-percent increase, which compared with a 7-percent increase in total corporate proceeds and a 22-percent rise for manufacturing.

The cost of floating mining securities is considerably above that for all industries and for manufacturing.⁶ The total cost of flotation, expressed as a percentage of gross proceeds, for common stock, averaged nearly twice as high in mining as in all industries. Of the 55 issues in mining, 49 were by companies with assets under \$5 million, and high compensation paid to underwriters for handling speculative securities of small companies explains the high total costs. Bonds, notes, and debentures show the same pattern as common stock with respect to mining, but the number of issues is too small to attach much significance to this finding.

Prices of Mining Securities.—The mining-company common annual average stock price index for 1956 (including those for fuels) increased somewhat more than the all-corporate index but still lagged behind the increase shown in manufacturing. When compared with the

⁶ U. S. Securities and Exchange Commission, Cost of Flotation of Corporate Securities, 1951–55: Washington, D. C., June 1957.

TABLE 26.—Estimated gross proceeds of new corporate securities offered for cash in the United States in 1956 1

	Total corporate		Manufacturing		Mining 2	
Type of security	Million dollars	Percent	Million dollars	Percent	Million dollars	Percent
Bonds. Preferred stock Common stock Total	8, 002 636 2, 301 10, 939	73 6 21 100	2, 919 164 564 3, 647	80 5 15 100	281 17 157 455	62 4 34 100

¹ U. S. Securities and Exchange Commission, Statistical Bulletin: Vol. 16, No. 7, July 1957, p. 8. Substantially all new issues of securities offered for cash sale in the United States in amounts over \$100,000 and with terms to maturity of more than 1 year are covered in these data.

² Including fuels.

TABLE 27.—Total cost of flotation of corporate securities as percentage of gross proceeds, average 1951, 1953, and 1955 1

Industry of issuer	Commo	on stock		otes, and atures
	Number	Median	Number	Median
	of issues	percentage	of issues	percentage
Mining Manufacturing Electric, gas, and water Communication Other All industries	55	20. 00	2	3. 52
	90	10. 06	57	2. 67
	40	4. 55	156	1. 33
	15	6. 07	15	1. 01
	30	12. 26	35	1. 80
	230	10. 28	265	1. 49

¹ U. S. Securities and Exchange Commission, Cost of Flotation of Corporate Securities, 1951-55: Wash. ington, D. C., June 1957, tables 2 and 4.

TABLE 28.—Indexes of common-stock annual average prices, 1952-56 1 (1939 = 100)

Year	Composite 2	Manufac- turing	Mining 8
1952	195. 0	220. 2	275. 7
1953	193. 3	220. 1	240. 5
1954	229. 8	271. 3	267. 0
1955	304. 6	374. 4	312. 9
1956	345. 0	438. 6	357. 5

¹ Council of Economic Advisers, Economic Indicators (prepared for the Joint Committee on the Economic Report). July 1957, p. 30. These indexes are yearly averages of the weekly closing price indexes of common stock on the New York Stock Exchange, published currently in the U. S. Securities and Exchange Commission Monthly Statistical Bulletin.

² Covers, in addition to mining and manufacturing, transportation, utilities, and trade, finance, and service.
Including fuels.

1955 average, the mining index rose 14.3 percent, manufacturing 17.1 percent, and total corporate 13.3 percent. The monthly movements of the mining index roughly paralleled the all-corporate index in 1956, except for the last quarter, when the mining index rose from 349.3 in September to 362.0 in December, as compared with the all-corporate index of 344.8 and 344.0, respectively.

Foreign Investment.—The book value of United States (net) direct private investment in mining and smelting in foreign countries increased \$182 million during 1956. The largest increase

million) occurred in Canada, with Peru (\$30 million) and Chile (\$28 million) the next in importance. Net capital movements contributed over 50 percent of the increase in book value, as compared with only 36 percent in 1955, although both it and undistributed earnings of subsidiaries increased over 1955 (121 and 20 percent, The 9-percent increase in the mining and smelting respectively). category did not match the 15-percent rise for all industries during

The data on direct private investments abroad, while constituting all that are available on a regular basis, do not truly reflect the importance of United States foreign investment to the foreign countries or to the domestic economy. These data are measured in terms of the net flow of private investment dollars out of the United Statesthat is, liquidation and payoff of old investments are subtracted from the outflow of new investment dollars. A study of Latin America for 1955 indicates the gross flow of transactions from United States investments in mining and smelting. The net flow to Latin America (comparable with data in table 29) was only \$21 million in 1955. However, the study found that imports by Latin American Subsidiaries and branches of United States mining and smelting companies from the United States were \$76 million (\$25 million in capital equipment, \$51 million other imports), and exports by these companies to the United States were \$400 million. Remittances of dividends, interest, branch profits, and fees by these companies totaled \$93 million, while local payments in Latin America by these companies were \$563 million, including \$134 million in salaries, \$128 million for supplies, and \$149 million in income taxes. This Latin

TABLE 29.—Direct private investments of the United States in foreign mining and smelting industries, 19561

(Million dollars:	net inflows to t	he United	States (-))

	Mining and smelting			All industries				
Country	Book value, begin- ning of year ²	Net capital move- ments	Undis- tributed earnings of sub- sidiaries	Book value, end of year	Book value, begin- ning of year ²	Net capital move- ments	Undis- tributed earnings of sub- sidiaries	Book value, end of year
Canada Latin American republics: Chile Mexico Peru	862 406 154 191	34 27 -3 30	40 1 14 (*)	938 434 607 221	6, 494 639 165 305	544 34 28 40	360 4 46 9	7, 480 677 675 354
Total 4	1,024 40 111 77 96	(*) 4 4 3	20 4 7 3 15	1,090 44 122 84 113	6, 608 3, 004 637 259 2, 311	612 456 35 10 182	212 208 45 20 129	7, 408 3, 493 821 289 2, 627
Total, all areas	2, 209	95	89	2, 391	19, 313	1,838	974	22, 118

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 37, No. 8, August 1957, pp. 24–25. Figures may not add to totals owing to rounding. All figures are preliminary except as footnoted.

Final figures.

Less than \$500,000.

⁴ Includes countries not shown above.

⁷ U. S. Department of Commerce, Office of Business Economics, The Role of U. S. Investments in the Latin American Economy: Survey of Current Business, vol. 37, No. 1, p. 6 and following.

American study clearly indicates that the available data on foreign investments must be interpreted with care, as they seriously understate the income and trade impact of investment activity.

TRANSPORTATION

Rail and Water.—The total volume of metals and minerals transported by rail and water in the United States during 1956 was slightly below that in 1955, with rail traffic showing a slight rise and water traffic a somewhat larger percentage of fall. The overall decrease

TABLE 30.—Rail and water transportation of mineral products in the United States, 1955-56, by products

(Thousand short tons)

	Rail ¹			Water 2		
Product	1955	1956	Change from 1955 (percent)	1955	1956 3	Change from 1955 (percent)
Metals and minerals, except fuels: Iron ore	13, 741 18, 500 2, 421 7, 320 73, 980 55, 722 19, 888 34, 268 18, 830	113, 148 27, 918 14, 135 22, 108 2, 626 6, 913 76, 527 59, 588 19, 323 35, 769 21, 057 10, 911 4, 663 30, 484 445, 170	-8 +9 +3 +20 +8 -6 +3 +7 -3 +4 +12 +7 -4 +3 +7 -4 +3 +7	89, 521 2, 461 2, 962 (4) 59, 514 31, 555 4, 453 2, 421 1, 869 4, 716 4, 880 204, 352	77, 155 2, 121 2, 978 (4) 64, 160 31, 342 4, 651 2, 465 2, 226 5, 002 4, 478	-14 -14 +1 (4) +8 -1 +4 +2 +19 +6 -8 -4
Mineral fuels and related products: Coal: Anthracite 5 Bituminous 5 Coke 5 Crude petroleum Gasoline Distillate fuel oil Residual fuel oil Kerosine Other	20, 918 2, 829 10, 557	35, 106 380, 727 21, 528 2, 192 9, 803 10, 379 20, 206	+11 +8 +3 -23 -7 -4	1, 559 139, 813 657 63, 082 85, 771 { 69, 894 43, 287 { 10, 043 11, 980	1, 957 150, 640 477 67, 336 87, 617 74, 390 45, 200 10, 410 12, 895	+26 +8 -27 +7 +2 +6 +4 +4 +8
Total Total mineral products Grand total all products		925, 111 1, 435, 767	+7 +4 +4	426, 086 630, 438 745, 033	450, 922 647, 500 766, 221	+6 +3 +3
Mineral products as percent of grand total: Metals and minerals, except fuels. Mineral fuels and related products. Total mineral products.	32 32	31 33 64		27 57 85	26 59 85	

¹ Revenue freight originated, excluding forwarder and less than carlot shipments, for which categories commodity detail is not available. Source: Interstate Commerce Commission, Freight Commodity Statistics, Class 1 Steam Railways in the United States, for years ended Dec. 31, 1955 and 1956: Statements 56100

Less than 0.5 percent.

³ Domestic traffic, that is, all commercial movements between any point in continental United States or its Territories and possessions and any other such point. Traffic with the Panama Canal Zone, the Virgin Islands, and military cargoes carried in Defense Department vehicles are excluded. Source: Department of the Army, Waterborne Commerce of the United States, Calendar Year 1955, part 5, National Summaries, and preliminary tabulations for the 1956 volume.

Preliminary figures.

Not separately classified.

⁵ Figures for rail shipments include briquets. For water shipment briquets not reported by type of material and included with "Other."

was due almost solely to a smaller volume of iron ore, iron and steel scrap, and limestone—all commodities directly affected by the steel strike. When these commodities are removed from the data, the remaining commodities show an increase in volume of 6 percent for both rail and water transport.

Freight Rates.—The 1956 indexes of freight rates are not available for inclusion in this review. However, revenue per ton originated or terminated also gives an indication of the level of freight charges; and these data, with comparable indexes, are shown in table 31.8 Freight charges rose in 1956 for all categories under products of mines except for phosphate rock, which declined. All products of mines showed a 6-percent rise in average revenue per ton in 1956, compared with 1955. In the group, iron ore had the largest increase (13 percent), and phosphate rock decreased 9 percent. The rise in products of mines was greater than that of any other major group—all commodities increased only 1 percent. Ocean freight rates are discussed in the World Review section.

TABLE 31.-Indexes of average freight rates on carload traffic, 1954-55, and average revenue per ton, originated or terminated, 1954-56, in the United

Item	Inde (1950=			revenue (dollars)	per ton 2
	1954	1955	1954	1955	1956
Products of mines 3		107	2.82	2.78	2. 96
Iron ore	. 111	110	1.83	1.84	2.07
Clay and bentonite		114	6.09	6.35	6. 58
Sand, industrial	109	108	2.88	2.82	3.05
Gravel and sand, n. o. s	108	109	1.22	1.25	1.29
Stone and rock, broken, ground, and crushed	. 110	108	1.53	1. 52	1. 57
Fluxing stone and raw dolomite	112	113	1.52	1.50	1. 58
Salt	107	108	6.32	6.24	6.37
Phosphate rock	.1 113 1	105	2.99	2. 56	2.32
Mineral manufactures and miscellaneous		108	10.92	10. 54	10.68
Fertilizers, n. o. s.	113	111	5.81	6.07	7. 62
Iron, pig	113	114	3.83	4.20	4.49
Cement: Natural and portland	110	104	4.51	4.26	4. 14
Lime, n. o. s Scrap iron and scrap steel	113	111	5. 73	5. 62	5. 73
Scrap iron and scrap steel	111	108	3.75 1.73	3.62 1.71	3. 97 1. 88
Furnace slag	107	105	1.73	1.71	1.00
Nonmineral categories: Products of agriculture	110	109	8, 58	8, 38	8, 48
Animals and products	112	112	21.87	21.78	22. 34
Products of forests	113	113	7.85	7.83	7. 58
Forwarder traffic		112	38.74	38. 57	40.67
All commodities		108	6.48	6.23	6. 32

¹ U. S. Interstate Commerce Commission, Bureau of Transport Economics and Statistics, Indexes of Average Freight Rates on Railroad Carload Traffic 1947-55: Statement RI-1, 1947-55, Washington, November 1956; indexes are based on the Commission's 1-percent waybill sample.
² U. S. Interstate Commerce Commission, Bureau of Transport Economics and Statistics, Freight Commodity Statistics, Class 1 Steam (SIC) Railways in the United States: Statement 55100, 1954; 56100, 1955; and 57100, 1956, table 5.

FOREIGN TRADE

Value.—The value of imports and exports of nonfuel minerals and metals increased substantially in 1956 compared with 1955. increased over 38 percent, as compared with a 14-percent increase in imports, so that the ratio of the value of exports to the value of imports continued to increase—a trend evident for the past several The ratio, computed from the data in table 32 for 1954, 1955,

³ The difference between these statistics arises from length of haul, which is considered in the indexes and not considered in the data on revenue per ton originated or terminated.

and 1956, was 26, 31, and 37 percent respectively, as compared with an average of 16 percent for 1951-53. Imports in 1956 reached \$2.2

billion, while exports were up to \$0.8 billion.

Each of the major categories of imports and exports shared the increased volume of trade, but crude nonmetallic minerals increased substantially less than the other two categories. Exports of iron and steel scrap accounted for over 80 percent of the dollar increase over 1955 in crude metallic minerals and for over 50 percent of the increase in total exports. However, if the exports of iron and steel scrap are subtracted from the totals, a significant increase of 26 percent remains for the rest of the category. The increases in imports over 1955 were 14 percent for crude metallic minerals, 16 percent for metals, and 10 percent for crude nonmetallic minerals. Exports increased 48, 40, and 8 percent respectively.

TABLE 32.—Value of minerals and mineral products imported and exported by the United States, 1954–56, by commodity groups and commodities ¹ (Thousand dollars)

[U. S. Department of Commerce]

SITC No.	Group and commodity	Imports	for consu	nption 3	Expo	Exports of domestic merchandise 4		
		1954	1955	1956	1954	1955	1956	
	CRUDE METALLIC MINERALS 5							
281-01 282-01	Iron ore and concentrates Iron and steel scrap Ores of nonferrous base metals and concentrates:	119, 459 5, 949	177, 345 7, 051	250, 343 11, 331	24, 784 51, 612	36, 993 177, 526	48, 646 293, 672	
283-07 283-11	Manganese Tungsten	77, 030 76, 251	71, 835 56, 155	70, 907 57, 827	592 111	612 65	664 225	
283-06 283-01 283-08 283-05	Tin Copper Chromium Zine	41, 725 69, 142 34, 197 54, 328	36, 773 77, 868 37, 854 39, 556	32, 317 65, 214 49, 296 53, 260	1,309 50	7, 326 76	11, 648 99 162	
283-03 283-04 283-19	Bauxite (aluminum ore) and concentrates Lead Columbium	36, 289 48, 306 14, 191	36, 629 38, 272 19, 852	44, 381 51, 666 8, 387	666 25 1	528 5 10	834 340 9	
283-02 2 283-19	Nickel Titanium: Ilmenite Rutile	5, 358 4, 993 1, 323	3, 264 7, 031 1, 984	4, 638 9, 198) 7, 148	78	194	556 312	
² 283-19 ² 283-19 ² 283-19	Cobalt	5, 576 180 7, 489	5, 759 142 11, 016	3, 737 12, 767	13, 989 107	15, 783 1, 887	21, 296 312	
284-01	Nonferrous metal scrap: AluminumOld and scrap copper Old brsss and bronze and	4, 675 2, 081	16, 364 9, 058	10, 770 3, 463	12, 985 40, 234	6, 501 20, 560	8, 127 20, 056	
	clippings Other, not elsewhere in-	1, 568	5, 145	3, 003	6 38, 469	6 24, 507	6 29, 814	
285-02	cluded Platinum-group metals	4, 990 13, 643	6, 916 15, 801	9, 714 15, 606	7, 040 2	7,030	5, 753	
	Total crude metallic minerals	628, 743	681, 670	774, 973	192, 054	299, 603	442, 525	
	METALS (UNWROUGHT) 5 7						-	
681-01 681-02	Pig iron and sponge iron Ferroalloys:	15, 156	15, 849	19, 108	872	2,056	15, 038	
	Ferromanganese Ferrochromium Other	10, 903 3, 502 2, 142	12, 022 8, 012 3, 394	28, 512 11, 347 3, 861	615 996 1,780	643 2, 267 3, 325	682 2, 891 4, 984	
682-01 687-01 684-01	Copper Tin	277, 981 142, 504 83, 573	335, 721 141, 787 74, 695	383, 156 145, 958 100, 137	130, 625 467 1, 691	152, 384 504 2, 773	191, 162 1, 013 18, 968	
683-01 686-01 685-01	Nickel (including scrap) Zinc Lead	124, 454 33, 987 70, 376	149, 522 46, 638 74, 753	153, 839 65, 034 80, 903	5, 532 208	4, 203 154	2, 540 1, 300	

See footnotes at end of table.

TABLE 32.—Value of minerals and mineral products imported and exported by the United States, 1954-56, by commodity groups and commodities 1 (Thousand dollars)—Continued

SITC	Group and commodity	Import	for consu	mption 8	Exports of domestic merchandise 4		
No.		1954	1955	1956	1954	1955	1956
	METALS (UNWROUGHT) 57—Con.						
689-01 671-02	(Cobalt metal	35, 391 10, 784 9, 917	38, 585 5, 149 13, 575	32, 910 11, 026 26, 600	(8) 183 8, 103	(8) 155 11, 028	(8) 284 12, 093
	cluding unworked and partly worked	21, 641	32, 361	41, 980	2, 955	2, 724	3, 927
	Total metals Total metals and	842, 311	952, 063	1, 104, 371	154, 027	182, 216	254, 882
	metallic minerals	1, 471, 054	1, 633, 733	1, 879, 344	346, 081	481, 819	697, 407
	CRUDE NONMETALLIC MINERALS (EXCEPT FUELS)						
² 672-01 ² 272-07	Diamonds: Gems, rough or uncut Industrial	59, 424 48, 521	76, 735 66, 051	86, 289 72, 791	410 63	785 16	675 98
272-12	Total	107, 945	142, 786	159, 080	473	801	773
271-02 272-13	ground Sodium nitrate	55, 857 26, 818	60, 958 21, 699	61, 774 16, 337	276 1, 210	236 553	338 210
² 272-14 272-11	Mica, unmanufactured (including scrap) Fluorspar Stone for industrial uses ex-	8, 335 8, 962	10, 862 8, 540	11, 232 11, 225	79 50	35 65	92 31
272-06 271-03	Stone for industrial uses, except dimension	5, 807 58	7, 106 612	9, 078 5, 334	762 52, 524	738 51, 068	711 50, 079
272-04	Clay	3, 081 2, 485	2, 703 2, 941	2, 626 2, 969	21, 169 8, 350	20, 302 10, 891	25, 704 12, 576
	(except fuels)	20, 255	20, 473	26, 169	19, 635	22, 011	24, 927
	Total erude nonme- tallic minerals (ex- cept fuels)	239, 603	278, 680	305, 824	104, 528	106, 700	115, 441
	Grand total, minerals and metals (except fuels)	1, 710, 657	1, 912, 413	2, 185, 168	450, 609	588, 519	812, 848

¹ The grouping of the commodities is based upon Standard International Trade classification of the United Nations. Basic data were compiled by the Office of the Chief Economist, Bureau of Mines, from copies of unpublished tabulations prepared by the Bureau of the Census for the United Nations, which tabulations represent a tentative conversion of United States import and export classification to SITC categories. Revisions in these data have been made by the Office of the Chief Economist insofar as possible to (1) include for the various classifications the latest revisions complied by Mae. B. Price and Elsie D. Page of the Bureau of Mines, from the records of the U. S. Department of Commerce; (2) incorporate in all years shown changes in assignments of classifications to SITC categories made by the Bureau of Census; and, (3) in some few instances, make other changes in such assignments which it appeared would make the data more comparable and/or more in line with the SITC.

As could be expected, individual commodities and groupings shown or omitted will not in all instances

As could be expected, individual commodities and groupings shown or omitted will not in all instances be in accord with usual Bureau of Mines practice as followed in individual commodity chapters in this Minerals Yearbook. In a few instances, values will differ from those for the same commodity in the corresponding chapter because of reclassifications, exclusions, or other reasons usually explained by footnotes in the chapter.

2 Indirect of the contract of

2 Indicates that only part of the SITC category indicated is covered, the remainder of the category being covered elsewhere in the major grouping.

3 Includes items entered for immediate consumption, items withdrawn from bonded storage warehouse for consumption, and ores, etc., smelted and refined under bond—included at time smelted or refined product is withdrawn for consumption or for export. The figures for 1954 and following are not strictly comparable with figure for explicit wors due to holy the figure for consumption or for export. ble with figure for earlier years due to inclusion for the first time of imports individually valued at \$250 or less reported on informal entries.

4 Includes both mineral products of domestic origin and foreign mineral products that have been smelted,

refined, manufactured, or otherwise processed in the United States. ⁵ Excludes gold and silver.

6 Copper-base alloy scrap (new and old), including brass and bronze.

7 Includes alloys. ⁸ Exports, if any, are negligible and included with "Nonferrous metal scrap, other" (284-01; see "Crude metallic minerals").

Includes all SITC Nos. 271-04; 272-01, -02, -03, -05, -08, -15, -16, and -19; and those parts of Nos. 672-01, 272-07 and -14 not shown separately above.

Tariffs.—The first large-scale multilateral tariff negotiations under the General Agreement on Tariffs and Trade (GATT) since those at Torquay in 1951 were held in Geneva early in 1956. The United States entered these negotiations under the authority contained in the Trade Agreements Extension Act of 1955. Table 33 gives the major nonfuel mineral commodities affected by the negotiation. The tariff reductions are in 3 stages—the first effective June 30, 1956, and the other 2 at yearly intervals. The total value of imports of the commodities affected was \$115 million in 1956, dominated by the \$100 million imports of aluminum metal.

On November 13, 1956, the President rejected the unanimous recommendation of the Tariff Commission for restoration of the 1930 rate of duty on ferrocerium (lighter flints) under the escape-clause investigation completed December 21, 1955. The President first deferred action on February 14, 1956, while the Attorney General, at his request, investigated a possible antitrust violation and then

finally rejected the recommendation saying, in part:

It is the firm policy of the United States to seek continuously expanding levels of world trade and investment. Any departure from this established policy must, of course, therefore, be taken only as predicated upon sound evidence and reason. In my judgment such sound evidence and reason are lacking in this case for there is a very serious question that increased imports are contributing substantially towards causing or threatening serious injury.¹⁰

The Tariff Commission reported its findings in the Acid-grade fluorspar escape-clause investigation on February 18, 1956.¹¹ The Commission divided 3 to 3, with Commissioners Brossard, Talbot, and Schreiber finding that serious injury was threatened and Commissioners Sutton, Jones, and Dowling finding that there was no such threat. The former Commissioners pointed to the absolute and relative increase in imports as evidence of threatened injury.¹² The latter held that a finding of injury under the escape clause required that the conditions in the domestic industry must be seriously deteriorated as compared with conditions of other domestic industries and with previous normal conditions of the industry involved, and such evidence was not present.¹³ In cases where the Tariff Commission is evenly divided, the President can accept either finding as the Commission's decision. In this case, on March 20, 1956, he accepted the finding of the "no injury" Commissioners as that of the Commission.

Hearings were held before the House Committee on Ways and Means during March 1956 on H. R. 5550, the Agreement on the Organization for Trade Cooperation (OTC). The President strongly urged enactment of the bill in both the 1955 and 1956 State of the Union Messages. The OTC grew from the recommendation of the President's Commission on Foreign Economic Policy (the so-called Randall Commission). On April 18, 1956, the House Committee on Ways and Means issued a favorable report, but with a strong minority dissent signed by six Representatives. No action was taken during that session of the Congress.

tion, 1956.

12 Work cited in footnote 11, p. 6.
13 Work cited in footnote 11, p. 57.

Public Law 86, 84th Cong., 1st sess.

19 Letter from the President to the Chairman of the Senate Finance Committee and the House Ways and Means Committee, released by the Tariff Commission, Nov. 13, 1956.

11 U. S. Tariff Commission, Fluorspar, Acid Grade: Rept. to the President on Escape-Clause Investigation 1958.

TABLE 33.—United States tariff concessions negotiated at Geneva, Switzerland, 1956 1

			Value of			Rate of duty	duty	
Tariff para- Schedule	Schedule	Short commodity description	imports, 1956 thousand	Base of duty		Ge	Geneva 1956 Agreement	
nde 18	; ;		dollars)		January 1, 1956	1st stage, June 30, 2d stage, June 30, 1956		3d stage, June 30, 1958
67 81 206 206 234 (0) 302 (0) 302 (1) 302 (1) 302 (1) 303 (1) 374 375	8402000 5724100 6463100 5712200 5712200 5712200 5712200 6211000 6225000 6225200 6225200 6225200 6225000 6225000 6214100 6225000 6216000 6216000 67603100 67603100 67603100 67603100 67603100 67603100	Barytes ore————————————————————————————————————	3, 564 1, 963 103 103 881 285 285 285 285 118 652 106 602 100, 137 100, 137	Ton	\$3.00. 2 cents. 2 cents. 35 cent. 177 percent. 177 percent. 127 cents. 127 cents. 127 cents. 127 cents. 127 cents. 127 cents. 127 percent. 128 percent. 129 percent. 137 percent.	\$2.85. 1.9 cents. 0.0475 cent. 0.0425 cent. 16½ percent. 11½ cents. 11½ cents. 11½ percent. 11½ percent. 11½ percent. 11½ percent. 11½ percent. 11½ cents. 12, cents. 13, cents.	\$2.70. 1.8 cents. 1.0.046 cent. 1.0.12 cent. 1.157 percent. 1.157 percent. 1.16 cents. 1.16 cent. 1.18 cent. 1.19 cent. 1.18 cent. 1.19 cent. 1.19 cent. 1.19 cent. 1.19 cent. 1.19 cent. 1.20 cent. 1.30 cent. 1.40 cent. 1.41 cent. 2.7 cents.	\$2.55. 17 cents. 1.0425 cent. 1.11 cents. 1.11 cents. 1.11 cents. 1.12 cents. 101½ cents. 8 cents. 101½ cents. 8 cents. 101½ cents. 101½ cents. 11.25 cents. 11.25 cents. 11.25 cents. 11.25 cents. 11.25 cents. 12.5 cents.
		Total value of imports	115, 454					

1 General Agreement on Tariffs and Trade, Sixth Protocol of Supplementary Concessions; released by Department of State, June 1956.

WORLD REVIEW

World Production.—The United Nations index of world mining production (including fuels) increased to 117 in 1956 from 109 in 1955 (1953=100). The 7-percent rise in the world index was somewhat higher than the increase in the United States, as shown in table 2, but the index for all member countries of OEEC rose somewhat less (4 percent). Each member country reported increases in mining and quarrying, and all but the Netherlands enjoyed higher levels of activity in the basic metal industries (see table 34). The world-wide prosperity of the mineral industries is reflected in a 14-percent rise in the total value of international trade in mining products in 1956 over 1955, and a 7-percent increase in volume of international trade in mining products. The state of the

TABLE 34.—Index numbers of production in mining and quarrying, and production in basic metal industries in selected OEEC countries, 1950–56 i

				- 1	(1955=	100)				1 11 1		
Year	All member countries	Aus- tria	Belgium- Luxem- bourg ²	France	Ger- many, West	Greece	Italy	Nether- lands	Nor- way	Swe- den	Tur- key	United King- dom
				MINI	NG AND	QUARRYI	NG					
1950	\$ 88 \$ 95 98 100 101 105 109	74 88 93 100 109 116 120	91 99 101 100 2 97 100 100	3 90 3 99 3 102 100 104 3 108 112	81 91 97 100 104 110 115	22 41 58 100 123 132 150	69 75 88 100 104 127 172	98 100 100 100 100 101 103	70 77 88 100 100 3 108 121	81 89 99 100 8 91 3 103 113	69 77 83 100 88 97	96 99 100 100 101 99 100
				BASI	METAL	INDUSTR	IES					
1950 1951 1952 1953 1954 1955 1956	84 3 99 3 105 100 112 3 131 138	68 81 91 100 119 140 151	88 114 111 100 108 125 135	\$ 91 107 112 100 \$ 114 \$ 133 140	79 94 105 100 116 141 150	42 74 90 100 103 98 102	71 91 101 100 116 143 157	73 83 81 100 117 8 133 131	84 92 97 100 104 3 124 160	80 90 102 100 3 110 3 126 139		94 100 103 100 108 117 119

Organization for European Economic Cooperation, General Statistics: No. 3, May 1957, pp. 10, 14.
 Weighted average, computed by authors, using Organization for European Economic Cooperation weights.

weights.
3 Revised figure.

The Secretariat of GATT in 1956 prepared an estimate of future requirements of imported raw materials for North America and for Western Europe in 1973-75. This study indicates that total import requirements of ore and metals will be 80 percent higher than for 1953-55 in 1973-75, but the import requirements for North America will be only 25 percent higher. This disparity in import requirements results from an assumption of a lower percentage increase in consumption in North America and a higher percentage increase in production. Table 36 summarizes the conclusions reached in this important study of future mineral trade and production.

¹⁴ Work cited in table 35, footnote 1, p. vi.
15 Work cited in table 36, footnote 1, appendix table 111. Value figure was deflated by metal-ores price index in table 35 to arrive at volume figure.

World Prices.—Prices of metal ores rose significantly during 1956, in part reflecting substantial increases in ocean freight rates. metal ores and total mineral price indexes increased 8 percent in 1956 over 1955, as compared with a 1-percent increase in the primary commodities index.

Ocean Freight Rates.—The sharp ocean freight-rate increase reflected the worldwide shipping shortage occasioned by events

TABLE 35.-World trade price and freight-rate indexes, 1952-56, and quarterly, 1956 1

(1052:	<u></u> 1∩∩	ı١

	1	Price indexe	es	Trip cl	Trip charter freight rate indexes 2			
Year	Primary commod- ities	Total minerals	Metal ores	General cargo	Ore	Ferti- lizers		
1952 1953 1954 1955 1956	105 100 104 101 102	108 100 99 102 110	114 100 95 104 112	129 100 111 165 203	129 100 110 144 174	121 100 106 141 159		
First quarter Second quarter Third quarter Fourth quarter	100 100 102 105	108 108 109 114	113 111 111 113	186 202 202 202 221	165 176 172 183	(3) 154 158 164		

United Nations, Monthly Bulletin of Statistics: September 1957, special tables B and C. In the computation of the price indexes approximately half the weights are c. i. f. import prices and the other half f. o. b. export prices.
 United Kingdom indexes based upon weighted average of quotations by all flags on routes important to the United Kingdom tramp fleet.
 Data not available.

TABLE 36.—Production, consumption, and net imports of nonferrous metals in Western Europe and North America, 1953–55, and tentative prospects, 1973–75 1

Commedity	Western	Europe	North .	America	То	tal
	1953–55	1973-75	1953–55	1973–75	1953-55	1973-75
Major nonferrous metals (million tons copper equivalent): 2 Production: 3				= 1		
Conventional metals 4	0. 27 . 32	0.3 .5	1.75 1.21	2. 3 3. 0	2.02 1.53	2. 6 3. 5
	. 59	.8	2. 96	5.3	3. 55	6.1
Consumption: Conventional metals 4Aluminum	2.10 .44	3. 5 1. 6	⁵ 2. 66 1. 07	3. 5 2. 4	4. 76 1. 51	7. 0 4. 0
	2. 54	5, 1	§ 3.73	5. 9	6. 27	11.0
Net imports: Conventional metals 4 Aluminum	1. 83 . 12	3. 2 1. 1	. 91 —. 14	1.2	2.74 02	4. 4
.*	1. 95	4.3	. 77	.6	2.72	4.9
Value of net imports (f. o. b.) of all non- ferrous metals and ores, including iron and manganese ore (thousand million dollars) ²	1.01	2. 2	. 64	. 8	1.65	3.0

Contracting Parties to the General Agreement on Tariffs and Trade, International Trade, 1956: Geneva,

Mine production for the conventional metals; smelter production for aluminum.
 Copper, lead, zinc, and tin.

June 1857, p. 270.

² All figures (also values) refer in principle to primary metal only. Scrap is therefore excluded from the

⁴ Copper, lead, zinc, and tin.
5 Including about 330,000 tons in copper equivalent added to stocks.

leading up to the Suez Canal crisis and closing. It will be noted that, unlike tanker rates, the rate increases took place throughout the year.

RESEARCH AND DEVELOPMENT EXPENDITURES

Two studies of research and development expenditures in the United States and in the United Kingdom have recently become available. 16 They indicate that the pattern of research expenditures in the primary metals and stone, clay, and glass industries is similar in the two countries—3 percent of total expenditures. The general pattern is also similar, with over 80 percent of the expenditures devoted in each country to the same five industries—electrical equipment, aircraft, motor vehicles, chemicals, and machinery. Although the primary metal and stone, clay, and glass industries in the United States employ almost 6 percent of total scientists and engineers, they include only 3 percent of all scientists and engineers engaged in research and development. In contrast, the aircraft and electricalequipment industries employ 9 and 11 percent, respectively, of the total scientists and engineers, but each employs 18 percent of those engaged in research and development. The heavy emphasis on research in these industries leads, of course, to broadening sales and markets for many mineral products. Selected data from these studies are presented in table 37.

TABLE 37.—Research and development in industry, United States and United Kingdom 1

	Expen	ditures		yment ³ sand)
Industry ²	United States (million dollars)	United Kingdom (million pounds)	United States	United Kingdom
Electrical machinery Aircraft Automotive 4 Chemicals General Machinery Petroleum Primary metals Stone, clay, and glass Other	145.9	32.0 90.0 5.8 20.0 13.0 3.1 4.2 1.3	28. 8 27. 6 16. 6 21. 5 16. 3 6. 8 3. 7 2. 1 33. 9	27. 30. 4: 14. 10. 2. 3. 1.
Total	3, 699. 4	185.0	157.3	105.

DEFENSE MOBILIZATION

Defense Production Act.—Net changes of statistics under the programs under the Defense Production Act were relatively small in 1956. Gross transactions certified as of December 31, 1956, for all programs increased 5 percent over the 1955 figure to \$9.0 billion, but gross

¹ Work cited in text footnote 16. United States data are for 1953; United Kingdom for 1955.

² A general descriptive title is used herein, as the classifications employed in the two countries differ. These differences are not important enough to invalidate the comparisons.

³ United States data are "research and development scientists and engineers." United Kingdom data are "equivalent to full-time workers employed in research and development."

⁴ United States data include some "other manufacturing, n. e. c."

¹⁸ The Economist, Research Out of Balance: Vol. 158, No. 5898, Sept. 8, 1956, p. 811 and following; and National Science Foundation, Science and Engineering in American Industry: Washington, 1955.

transactions consummated increased less than 1 percent to \$7.7 billion. Metals and mineral programs represented \$6.1 and \$5.2 billion of the totals, respectively, and showed the same percentage changes over 1955 as the totals. The probable ultimate net cost of gross transactions certified for all programs increased slightly to \$1.0 billion, metals and mineral programs being \$0.8 million of the total.17

Purchases of metals and minerals comprise \$4.6 billion (67 percent) of the \$5.2 billion gross transactions consummated through December 31, 1956—an increase of \$79 million over 1955 year-end figures, when purchases of metals and minerals amounted to 66 percent of the total. The value of gross transactions consummated and probable ultimate

TABLE 38.—Costs of mineral programs under the Defense Production Act, as of December 31, 1956 1

	6	Mill	ion	doll	ars)
--	---	------	-----	------	------

Program		actions con- nated	Probable ultimate net cost of transactions consummated		
	Amount	Percent	Amount	Percent	
Aluminum Copper Nickel Manganese Tungsten	1, 555 827 706 485 374	20. 2 10. 8 9. 2 6. 3 4. 9	18 1 126 111 163	2. 1 . 1 14. 8 13. 1 19. 1	
Tin Titanium Molybdenum Magnesium Cobalt	222 215 155 129 114	2.9 2.8 2.0 1.7 1.5	5 105 4 18 7	.6 12.3 .5 2.2 .8	
Columbium-tantalum Mica Mercury Steel Chrome	99 50 47 45 41	1.3 .7 .6 .6	53 36 2	6.2 4.3 .2 2.6	
Zinc Bauxite. Copper and cobalt. Lead Dolomite	30 26 22 21 20	.4 .3 .3 .3 .3 .3	7 2	.8	
Fluorspar Cryolite Lead-zinc Uranium Lead-zinc-copper	16 16 8 6 3	.2 .2 .1 .1	4 2 8 5 3	.5 .2 .9 .6	
Asbestos Graphite Rare earths Total minerals and metals Other materials, including fuels Total administrative and interest expenses Total	2 1 (3) 5, 235 2, 390 73 7, 698	(2) (2) (2) 4 68. 0 31. 0 1. 0 100. 0	(3) 704 74 73 851	(2) 82. 7 8. 7 8. 6 100. 0	

¹ Executive Office of the President, Office of Defense Mobilization, Report on Borrowing Authority as of Dec. 31, 1956, p. 9.

² Less than 0.5 percent.

³ Less than \$500,000.

⁴ Does not add to total owing to rounding.

[&]quot;The terms used to account for the activities under the Defense Production Act are unique, requiring definition for complete understanding. Terms used in this section are defined as follows: "Program" is a plan for an expansion of capacity or supply of a specific material. "Transactions" are the individual contracts or agreements entered into in carrying out a certified program. "Certificate" is an Office of Defense Mobilization notification that a program is essential and that transactions may be consummated up to specified limits. "Consummated" means executed contracts or agreements. "Probable ultimate net cost" is the estimated nonrecoverable cost to the Government of transactions under a certified program.

net cost thereof for all programs for each mineral are ranked by order

of magnitude of the former in table 38.18

During fiscal year 1956 several new expansion programs were certified: A metallurgical bauxite program for \$38.6 million in gross transactions, with no probable ultimate net cost; a mica-research program for \$1.3 million in gross transactions and probable ultimate net cost; a cobalt program for \$36 million in gross transactions, including working capital but no probable ultimate net cost; and a synthetic manganese dioxide program for \$5 million in gross transactions and \$0.7 million in probable ultimate net cost. There were also upward revisions of the existing programs for beryl, metallurgical manganese, mica, and nickel purchases, and selenium research.19

Domestic Minerals Program Extension Act of 1953 (Public Law 206, 83d Congress) expired December 31, 1956, but buying was to continue until all contracts ran out. The beryl purchase regulation was amended in July 1956 to provide a termination date of June 30, 1962, and an increase in the program limitation by 200 percent to The mica purchase regulation was also extended 3,000 short tons. The manganese purchase regulation was extended to June 30, 1962. for domestic small producers to January 1, 1961, with an increase in the limitation by 47 percent to 28 million long-ton units of contained

manganese.20

The progress of the domestic purchase programs for tungsten, manganese, chrome, columbite-tantalite, beryl, mica, asbestos, fluorspar, and mercury is shown in table 39. The largest percentage increase in the cumulative total delivered in any of the minerals by the end of 1956 was in the asbestos program (over 50 percent), in which case the program was terminated June 30, 1956, with the goal The delivered amount of each commodity increased during 1956 at least a third over the previous total accumulation, except for mercury and columbium-tantalum ores and concentrates. case of the latter the purchases at the end of 1955 had reached the minimum goal of 15 million pounds authorized; and the program was terminated, while for mercury the market price was above the program purchase price, and accordingly none was offered for purchase during the year.

Total loans under the Defense Production Act 21 borrowing authority carried a gross transactions value of \$381 million at the end of 1956—a decrease of \$12 million from 1955. The probable ultimate net cost of these loans is carried on the Government books as zero, since interest income is assumed to offset expenses. Gross transactions consummated for loans on metals and minerals amounted to \$240 million, a decrease of \$17 million from 1955, all in copper projects.

No new loans had been certified during the year.

Cumulative advances to contractors in connection with purchase contracts for metals and minerals, as of December 31, 1956, stood at \$134.9 million—an increase of 9 percent over the total at the end of

¹⁸ Executive Office of the President, Office of Defense Mobilization, Report on Borrowing Authority, for the Quarters Ending Dec. 31, 1955, and Dec. 31, 1956.

19 Joint Committee on Defense Production Activities, Sixth Annual Report: House Rept. 1, 85th Cong., 1st sess., Jan. 22, 1957, p. 165.

20 Work cited in footnote 19, p. 116.

21 Work cited in footnote 18. General Services Administration, Defense Materials Service, Financial Report, Defense Production Activities, Dec. 31, 1956. Defense Production Act, Progress Report 38, 85th Cong., 1st sess., May 21, 1957, pp. 18-26.

TABLE 39.—Commodities delivered under United States Government domestic purchase programs, 1955-56 1

Commodity	Quantity delivered as of December 31, 1955	Quantity delivered as of December 31, 1956	Authorized total purchases
Asbestos, chrysotile, nonferrous (short tons): Crude No. 1 and No. 2 Crude No. 3 2 Beryl ore (short tons). Chrome ores and concentrates (long tons) 2 Columbium-tantalum ores and concentrates (thousand pounds combined contained pentoxides) 4. Fluorspar, acid grade (short tons). Manganese ore (thousand long-ton units):	1, 261 645 833 101, 634 15, 164 0	1, 864 1, 075 1, 203 137, 700 15, 601	3, 500 2, 000 4, 500 200, 000 15, 250 250, 000
Butte and Philipsburg Depots. Deming Depot. Wenden Depot. Domestic small producers (carlot program) Mercury (flasks, prime virgin) Mica: Block, film, and hand-cobbed (short tons hand-cobbed equivalent). Tungsten concentrates (thousand short-ton units WO ₃)	2, 037 6, 183 6, 108 5, 332 5 7, 526 2, 380	3, 262 6, 215 6, 108 10, 538 5 10, 124 3, 267	6, 000 6, 000 6, 000 28, 000 125, 000 25, 000 4, 250

General Services Administration, Report of Purchases under Domestic Purchase Regulations, as of Dec. 31, 1955, and Dec. 31, 1956, under section 4, P. L. 206, 83d Congress, and under P. L. 733, on delegation of authority by Department of the Interior.
 Purchased with stockpile funds for the national stockpile.
 Crude No. 3 accepted under P. L. 206 on the tie-in basis with other 2 grades, not figured into the quantity

4 Mostly foreign. Figures not published for domestic only.

Of this amount, the balance outstanding was \$63 million, 18 percent less than at the end of 1955.

A review of the mineral segment of the accelerated tax-amortization program is presented in table 40. The number of certificates of necessity 22 in the mineral industries at the end of 1956 represented 2.4 percent of all certificates granted and 7.8 percent of total cumulative cost of facilities.²³ The increase in the number of certificates involving minerals was smaller in 1956 than in 1955; only 14 new certificates were added (out of a total of 1,248 for all industries), representing a value of new facilities certified of \$49 million, as compared with 25 in 1955, with a value of \$95 million. Of the 14, 12 were for metals—copper, mercury, taconite, titanium, uranium, and zirconium; the other 2 were for cryolite and mica. The percentage of certified facilities reported in place as of December 31, 1956, was 81 percent for the metals and 94 percent for the nonmetallics.

A further reduction in open and unfilled expansion goals left only nickel, mercury, selenium, Chemical-grade chromite, and substitutes for strategic mica with open goals in the minerals field at the end of the year. Two other goals of interest to the mineral industry still open were for research and development laboratories and production facilities for military and AEC procurement, under which a few strategic The goal for nickel was increased to a total annual supply of 440 million pounds by 1961. Copper, rutile, and taconite goals were closed during the year. A number of requests were made for establishing new expansion goals in various fields—the steel industry

²² A certificate of necessity is an incentive for expansion of facilities which entitles the holder to write off a specified portion of the installation cost in 5 years instead of the normal depreciation period. This has the effect of an interest-free loan to the holder during that period. Only that portion of the cost of facilities that is attributable to defense purposes is certified.

23 Defense Production Act, Progress Report 38, 85th Cong., 1st sess., May 21, 1957, p. 58.

in particular, which filed numerous applications for rapid tax amortization covering proposed production facilities estimated to cost \$2.3

These requests were denied.24

In 1956, under three new GSA contracts with the Bureau of Mines, the Department of the Army, and the National Bureau of Standards, studies were made of testing waviness (surface imperfections) in natural mica and of developing synthetic mica. There was also a new contract with Battelle Memorial Institute to review the Nossen process for recovering manganese from low-grade domestic ores. Other research contracts still active at the end of the year covered location of columbium-tantalum deposits; research and development on manganese; investigation of selenium-ore deposits and methods of extraction; and development of a recovery process for producing titanium tetrachloride from domestic titaniferous raw materials.25

The standby operating production-control system for the use of priorities and allocations authority under title I of the Defense Production Act is known as the Defense Materials System. Under this system, the demand for certain materials in short supply has been controlled: Aluminum; copper and copper-base alloys; carbon, alloy, and nickel-bearing steel, including steel castings; and recently nickel alloys. In January 1956 the Defense Mobilization order on policy on the use of priorities and allocations authority was revised to limit the allotments for steel, copper, and aluminum under the Defense Materials System to the programs of the Department of Defense, Atomic Energy Commission, and directly related activities. Table 41 gives the allotments of "A" products for the quarters of 1955 and These represent purchase authority to prime contractors and producers of specially designed military equipment for the metals at the mill level. The severe competition for available nickel led to inclusion of nickel alloys in the fourth quarter of 1956 in this group of metals, subject to quantitative allotment control. Quarterly allotments vary with inventory levels, changes in materials specification, and model revisions, as well as schedule changes.

The total quantities of steel, aluminum, copper, and nickel alloy set aside at the mill level included additional amounts, known as "B" products, required by manufacturers of civilian-type items incorporated in military end items. These allotments are not included in the table, since during the year the shortage of these materials Thus industry grew less dependent on such allotments, and reported deliveries against them did not represent total use.²⁶

National Strategic Stockpile Program.27.—As of December 31, 1956, stockpile objectives were valued at prevailing prices at \$11 billion, consisting of \$6.6 billion in minimum objectives and \$4.4 billion in long-term objectives—the latter all associated with metals About 24.5 million tons of materials, having a value of and minerals. \$6.5 billion, were actually on hand in the strategic stockpile at 228 sites at the end of 1956. Of this total, inventories valued at \$5.2 billion applied toward minimum objectives.

<sup>Executive Office of the President, Office of Defense Mobilization, Defense Mobilization in a Full Economy: Rept. to the Joint Committee on Defense Production, Mar. 14, 1957, p. 22, 27.
Works cited in footnotes 18 and 22, p. 22.
Work cited in footnote 19, p. 81.
Executive Office of the President, Office of Defense Mobilization, Stockpile Reports to the Congress: January-June 1955 and July-December 1956, p. 2.</sup>

TABLE 40.—Certificates of necessity on facilities for the production of metals and minerals at end of year, 1951-56, and reported progress through December 31, 1956 ¹

285684248688 55%55%5%5554 | **2** | 88488 Percent reported in place Decem-ber 31, Reported value in place as of Dec. 31, 1956 (million dollars) 23.2 71.8 598.3 12.1 38.6 5.8 In prog-ress 16.0 1,053.4 392.0 302.0 30.0 136.7 41.0 24.8 24.8 1, 213, 9 26.11.15.0 16.4.0 20.25.0 Com-pleted 133.9 655.5 30.0 30.0 208.5 931.1 119.1 103.4 39.5 267.3 20.11.0 10.4 20.5 20.5 Total SĮ. 746.5 30.0 30.0 226.4 260.0 62.6 125.5 51.0 815.9 41.69.8 047.8 1956 Total reported value of facilities certificated * (million dollars) ď 134.3 746.5 30.0 91.8 91.8 253.2 62.6 19.1 23.0 41.9 44.0 11.0 19.7 25.2 3 1955 .89 ď 134.3 715.0 30.0 200.8 246.2 57.4 19.1 19.1 23.0 671.3 1954 લ 132.2 714.5 30.0 36.5 244.9 27.4 57.4 19.1 23.0 547.9 44.0 19.7 20.3 30.3 1953 132.2 648.8 30.0 30.0 210.3 57.4 19.1 23.0 8.1 414.6 25.25 25.24 25.24 35.24 1952 ď 132.2 516.4 26.8 26.8 97.3 50.6 60.6 17.5 7.9 16.2 1,364.4 1961 1956 -00m-00m-4 £ 0 1 1 0 Total number of certificates 2 -as-s--4aa--1955 374 £001-0 1954 £901-9 354 1953 55824864 8-1-12-727 P 334 ಚಿಹಿರಿ ಗೂ 1952 400-0 01088925240839 -2--8 . ⊕ – ⇔ 1951 022-12522224 d 183 Germanium. Refractory magnesia.... Antimony-----Mercury. Selenium Silicon Lime, limestone, and dolomite. Phosphate rock Bauxite______Cobalt and nickel______ Copper_ Iron, including taconite_____ Lead and zinc_____ Manganese Molybdenum Titanlum Cadmium Columbium-tantalum Rare earths..... Major nonmetallic ores and mate-Major metallic ores and materials: Uranium. Other metallic ores and materials: 'ungsten____ Commodity Aluminum____ Total metallic. Magnesium.

888888888888888888888888888888888888888	94	81
2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.8	1,072.2
.44	121.7	1, 335.6
	140.4	2, 407. 7
. 444		2, 965. 6
(44000°)	148.0	2, 916.8
.4444	145.4	2,816.7
.4445.441. E .121212121212122	145.2	2, 693. 2
.1.4444	120.7	2, 535.3
6. 24.10 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69.0	1, 433. 4
1917018611441919	130	516
191761100114611010	128	202
1912918931481818	124	478
79110001140100100	123	457
18177 88148181818	113	425
H HH4 0H 0H0HH H	53	236
Other nonnetallic ores and materials: Arsenic Barrie Borates Bromine Cryolite Distomite Fluorspar and fluorides Gypsum Gypsum Lithium Miss Mullie Miss Rutile and monazite Sand	Total nonmetal	Ile

i Source: Unpublished records of Defense Materials Service, General Services Administration, U. S. Department of Commerce; Office of Defense Mobilization. Figures may not add exactly owing to rounding. For definition of certificate of necessity see text footnote.

* Revised.

* Value is cost of facilities originally certificated including amendments and revisions of estimates indicated on latest Report of progress. (Form BDSAF-1).

*Latest available BDSAF-1 report which for most facilities covered the period through Dec. 31, 1956.

Forecastge based on amounts in thousand dollars.

Mined only.

466818-58

TABLE 41.—Allotments for "A" products 1

(Thousand short tons)

Commodity 2	First quarter	Second quarter	Third quarter	Fourth quarter	Year
Aluminum: 1955	58. 7	54. 5	53. 1	60. 8	227. 1
	60. 0	65. 9	62. 5	64. 5	252. 9
	+2. 2	+20. 7	+17. 7	+6. 1	+11. 4
	35. 2	31. 0	28. 9	28. 9	124. 0
	30. 0	27. 3	26. 0	25. 4	108. 7
Change from 1955percent_ Steel: 1955 1956 Change from 1955percent_	-14.8	-11. 9	-10. 0	-12. 1	-12.3
	601.3	681. 0	697. 0	654. 6	2,633.9
	642.3	607. 3	592. 2	606. 2	2,448.0
	+6.8	-10. 8	-15. 0	-7. 4	-7.1

Deliveries during 1956 amounted to \$322.4 million and consisted principally of metallurgical chromite, cobalt, copper, synthetic manganese dioxide, nickel, palladium, phlogopite-mica splittings, silicon carbide, tin, lead, and zinc, all toward minimum objectives except tin, lead, and zinc. Materials on order amounted to \$350 million at the end of 1956. Largest quantities (80 percent) of materials stockpiled came from purchases in the open market, of which about 40 percent consisted of deliveries primarily of lead, zinc, and tin to long-term objectives. In 1956 Battery-grade manganese, mercury, tin, iridium, and platinum were added to the list of completed long-term objectives, bringing this total to 12. The minimum objectives for 22 metals and minerals on the stockpile list had not been achieved at the end of 1956. These were: Antimony, amosite asbestos, refractory bauxite, celestite, chromite, cobalt, copper, diamond bort, fluorspar, iodine, jewel bearings, magnesium synthetic manganese dioxide, manganese (Chemical grade), mica, molybdenum, nickel, palladium, selenium, silicon carbide, steatite-talc block, and titanium. During the year beryl, bismuth, mercury, iridium, and platinum were dropped, because objectives had been achieved.

Surplus agricultural commodities were bartered abroad for minerals valued at about \$379 million during the year. Materials acquired under this authority may be placed in a "supplemental stockpile," which is additional to the minimum and long-term objectives, or placed in the strategic stockpile. During 1956 these barter arrangements represented the largest single Government accumulation of strategic materials—an amount about 20 percent greater than total deliveries to minimum and long-term strategic stockpile objectives in the same period. By the end of the year, \$168 million of the \$379 million total of barter arrangements had been made for the supplemental stockpile, with zinc, lead, titanium sponge, and bauxite heading the list in that order. Materials still to be delivered against outstanding barter contracts totaled \$370 million on December 31,

Defense Minerals Exploration Administration. 28—Government encouragement in the form of financial assistance for private exploration

 $^{^{\}rm I}$ Office of Defense Mobilization, various press releases. $^{\rm 2}$ Allotments for nickel alloys were begun in the fourth quarter, 1956, amounting to 11,900 short tons.

²⁸ Defense Minerals Exploration Administration, Report for 4th quarter, 1956: Stockpile report to the Congress, July-December 1956, p. 4.

for new sources of strategic and critical materials continued during 1956, with the issue of 56 certifications of discovery or development by DMEA, as compared with 51 in 1955. Certifications on projects in 14 States and Alaska were made on antimony, chromium, copper, lead, manganese, mercury, mica, tin, tungsten, uranium, and zinc. In all, 200 exploration contracts were in force December 31, 1956. The Government share of the cumulative amount of \$21.5 million total cost of work authorized at the end of the year was \$12.9 million (60 percent). Comparable amounts, as of the end of 1955, were \$24.4 million and 61 percent. The potential ore reserves on all 276 certified projects are estimated to have a net recoverable value of \$295 million at current market prices. Total royalties paid to the Government to the end of the year on all projects amounted to \$1.6 The net value of the minerals produced, on which royalties

have been received, is approximately \$32 million.

Office of Minerals Mobilization.²⁹—This office has responsibility for continuing evaluation of the preparedness position of the United States in mineral raw materials and solid fuels, for recommendation of action programs to ODM, and for development of measures that can be undertaken by Government and industry to assure continuity of supply of these commodities in a national emergency. In metals and minerals during 1956, with the assistance of the Bureau of Mines and the Geological Survey, comprehensive mobilization base evaluations were made for antimony, asbestos, beryl, columbium-tantalum, chromium, fluorspar, graphite, mercury, mica, and talc. Expansion goal studies were made for copper, Battery and Chemical grades of manganese, natural and synthetic mica, nickel, and rutile, to determine the need for Government assistance in reaching desired production capacity for these essential materials. A number of special studies were carried out, including those on fluorspar reserves, nickel-cobalt, and nonstockpiled materials.

Export Control Act. 30—The United States Department of Commerce administers export controls of two types—short-supply basis and security basis. As of December 31, 1956, the following mineral commodities were under short-supply control: Aluminum (including scrap), copper (including scrap), diamond bort and powder, iron and steel scrap, nickel (including scrap), and selenium (including scrap). Mineral groups on the so-called positive list of controlled items for security reasons were: Abrasives, sulfur, lithium-containing minerals, certain ferroalloys, beryllium, bismuth, cobalt, columbium, magnesium-base alloys, molybdenum, radium metal, tantalum, mercury, tungsten wire, zirconium, and lithium. All these commodities require an export

NONDEFENSE MINERALS PROGRAM

Purchase Programs.—The Domestic Tungsten, Asbestos, Fluorspar and Columbium-Tantalum Production and Purchase Act of 1956 31 provided authority to the United States Department of the Interior to purchase from domestic sources the listed minerals as shown in

license for shipment anywhere except Canada.

U. S. Department of the Interior, Office of Minerals Mobilization, Quarterly Report to the Joint Committee, January-March, April-June, July-September, October-December, 1956.
 Export Control, Thirty-Eighth Quarterly Report by the Secretary of Commerce to the President, the Senate and the House of Representatives, Feb. 15, 1957.
 Public Law 733, 84th Cong., 2d sess., July 19, 1956.

table 42. Although minerals purchased under this act are to be made available to the strategic stockpile, the legislation was enacted as interim assistance until a long-range program could be developed by the Administration and submitted to Congress. The Senate report on this legislation quoted with approval the following statement of Dr. Arthur S. Flemming, Office of Defense Mobilization;

I suggest, however, that where a domestic purchase program is about to terminate and where all defense needs have been met, the Congress should make provisions beyond the scope of defense legislation to assist the industry by providing for the purchase of specified amounts from nondefense funds until the Congress has had time to consider recommendations from the appropriate non-defense agency; namely, the Department of Interior, for a long-range program.³²

TABLE 42.—Domestic Tungsten, Asbestos, Fluorspar, and Columbium-Tantalum Production and Purchase Act of 1956 1

Commodity	Total limitation	Interim limitation (December 31, 1956) ²	Quantity purchased to Decem- ber 31, 1956 2	Base price
Asbestos, chrysotile, nonferrous: 3 Crude No. 1) Crude No. 2} Crude No. 3, when offered with No. 1 and/or No. 2short tons Columbium-tantalum bearing ores: 3	2, 000 2, 000	456 456	365 225	\$1,500. \$900. \$400.
Contained combined pentoxides pounds Fluorspar, Acid grade, 97 percent calcium	250, 000 250, 000	57, 173 57, 173	368 0	\$1.40-3.00 plus 100 per- cent bonus. \$53.
fluoride, f. o. b. milling point Tungsten trioxide, f. o. b. milling point.4short tons	1, 250, 000	285, 872	271, 315	\$55.

¹ Public Law 733, 84th Cong., 2d sess.
² General Services Administration, Report of Purchases Under Domestic Purchase Regulation, Dec. 31, 1956: Federal Register, Feb. 20, 1957, p. 1057.
³ Meeting same specifications and under regulations in effect on January 1, 1956, Public Law 206, 83d

Cong., 2d sess.

4 A maximum of 5,000 short-ton units accepted from 1 producer in 1 month.

The House report stated:

The committee has concluded that in view of world conditions, the increasing vulnerability of the mining industries of the United States to factors beyond its control, and the need of assured sources of supply of mineral raw materials to meet our future peacetime industrial requirements, a long-range nondefense domestic minerals program would be of considerable benefit to the economy of the United States. The committee also has concluded that the interim assistance which would be authorized by S. 3982, as amended, should be provided until the long-range program has been developed by the administrative agencies and considered by the Congress.33

Purchases under this legislation are shown in table 42, and are also included in the totals shown in table 39.

p. 5. $^{\rm 33}$ House of Representatives Report 2596, to accompany S. 3982, July 3, 1956, p. 13.

³² Senate Report 2146, to accompany S. 3982, Committee of Internal and Insular Affairs, June 6, 1956,

Review of Metallurgical Technology

By Oliver C. Ralston¹ and Earl T. Hayes²

UTSTANDING TRENDS of the year included the following:

1. Concentration and beneficiation of iron ores to provide improved blastfurnace feed and extend ore reserves.

2. Successful development of pelletizing and sintering procedures for fine

3. The realization that cyclone separation could replace existing classifiers in many grinding circuits.
4. The rapidly blossoming metallurgy of ultrapure silicon and improvements

in zone melting.
5. The rapid increase in the use of liquid-liquid extraction and ion exchange in hydrometallurgy.

6. The industrial application of vacuum melting on the 100-ton scale.

7. The hope for developing a columbium (noibium) base alloy for high-temperature use.

The technologic advancement in metallurgy that had the greatest effect on the American economy was the beneficiation of iron ores to give improved feed for blast furnaces and indirectly extend our This was not a sudden development but rather culminaore reserves. tion of a decade of intensive effort.

In the Upper Lake States increasing quantities of iron ores were concentrated, and the huge scale of operation of the many operating mills permitted technologic and economic comparisons of the various separatory methods. The success of pelletizing techniques in agglomerating finely divided magnetic or flotation concentrates made possible increases in output of iron blast furnaces by supplying

suitable sizes of higher grade raw materials.

Taconite concentration was well described in the report in the Engineering and Mining Journal on the Silver Bay, Minn., concentrator of Reserve Mining Co.3. At Silver Bay a total of 36,000 tons of ore was treated daily by 2-stage magnetic concentrators. ore had an average iron content of 32 percent, and the plant's annual production rate was 300,000 tons of pelleted concentrate analyzing about 65 percent iron, 9 percent silica, and only 0.22 percent Mn, with minor amounts of lime, magnesia, and alumina. Rake classifiers and cyclones were tested in the pilot-mill grinding circuits, and cyclones won out as the means of returning oversize to the ball mills. The material is pelletized in drums, and the damp pellets are rolled in coal dust to take up a coating of fuel. About 9 pounds of bentonite per ton improves the binding properties of the more colloidal constituents of the concentrate. The coal-coated pellets pass over a downdraft sintering machine and are burned to hard condition.

Chief metallurgist.

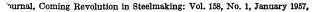
Assistant chief metallurgist.

8 Engineering and Mining Journal, The Concentrator at Silver Bay: Vol. 157, No. 12 pp. 88-97.

Return of hot combustion gases to dry the pellets before induration economizes on fuel. Oxidation of the magnetite to hematite during pelletizing causes recrystallization and additional binding and harden-

ing of the pellets and provides useful heat.

Jaspar concentration of Michigan iron ores came with starting of the Republic plant at Eagle Mills of the Cleveland Cliffs Co. iron mineral is a specular hematite that requires flotation concentration to produce a product analyzing about 64 percent iron and 8 percent silica, which is pelletized. The pelletizing apparatus is a dished disk (flying saucer) rotating on an axis quite far from vertical, over which the wet concentrate rolls into balls. The pellets are hardened on a new updraft traveling grate 224 feet long, with feed of pellets at 3 points along the travel. At the head end is introduced a bed of pellets 8 inches deep; when the heated zone has nearly reached the surface, a second layer 8 inches deep is added to absorb heat rising from below. A third layer is likewise added at two-thirds the length of the apparatus. Ultimately it was hoped to operate with a final 36-inch bed. By comparison of this plant with the Silver Bay plant, it can be seen that there is considerable individualism in procedures in the Upper Lakes iron districts.


Other new iron-ore-concentrating plants, small, only in comparison with the above two, went into production during the year. The first commercial flotation plant to be installed on the Mesabi range was under construction during the year at the Jones & Laughlin plant at the Hill Annex mine near Calumet, Mich. Tailings from old-style iron-ore "washeries" are to be dredged and pumped through classifying wet cyclones and to be prepared as feed for the float cells. The results from this plant, soon to be in operation, will be closely watched, as many other dumps of large size might be treated

in a like manner.

SART TROUTING

The revolution in preparation of blast-furnace feeds has aroused interest in all phases of steelmaking. Metallurgists have been attracted by the high efficiency of the so-called "cyclone burner" for firing large boilers. The cyclone burner is either a horizontal or vertical cylinder that burns tremendous quantities of coal in a small The coal used is crushed to only one-fourth inch and is volume. blown in through a spiral path with preheated air. Ash fuses to a slag, which flows out with little pellets of the iron component. The inside wall of the burner is actually frozen slag, held to definite thickness by an appropriate amount of water-cooling pipes on the inside of the steel shell. The burners can be shut down on short notice and started up very rapidly. Most of the 100 odd powerplant installations of today use 5- to 6-foot-diameter burners, but those in the planning stage vre 8 to 10 feet in diameter.

Pritish Iron and Steel Research Association made an interesting ment on the possibility of developing its "cyclosteel" process, retrical form of burner would be fired with a mixture of nore and coals of wide variety. The iron and slag are taneously in the whirling flame and melted, collecting urface of the burner and running down to another ber below. In the lower chamber the iron and

slag form layers and are tapped separately or passed to another settling chamber kept hot by the gases that pass on to waste-heat boilers.

The advantages expected are: (1) Sintering will be eliminated, permitting direct use of fine ore; (2) coking plants will be eliminated, permitting use of low-grade coals; (3) blast furnaces and perhaps Bessemer converters will be eliminated because absorption of carbon in the iron is unnecessary, and the vortex furnace might well operate at its highest efficiency if some unreduced iron oxide is left in the slag; (4) much of the usual flux will be eliminated because of the high temperatures that can be generated with preheated air or oxygenenriched air.

The Cyclosteel researchers warn against immediate expectation of a completed process and are prepared for 10 years of development.

Aside from iron reduction, there are other possible applications of vortexes, such as in copper smelting, where the heat of combustion of copper sulfide ores is ample from the theoretical standpoint to make them smelt themselves to copper matte and slag. F. C. Ramsing of Arizona ⁵ has presented a design for a "centrifugal reverberatory furnace" to which he has recently proposed the modification of feeding the charge into the burner pipes, approaching more nearly the cyclone burner type.

Direct use of the cyclone has been reported by the Russians, wherein part of the heat of the hot furnace gases was used for preheating the air. By control of the proportion of air to ore, the desulfurization and grade of matte produced can be controlled. It is apparent, also, that pyrite can be similarly burned to give a high percentage of SO₂

gas.

The promise of increasing efficiency, particularly in the use of fuel, makes these various vortex processes of high interest. For instance, it might be possible to electrolyze zinc-plant tailings to recover copper and precious metals as copper products and fume off zinc and lead.

Other ripples of iron-ore beneficiation spread from these mills to many related ore-dressing operations. Each mill had something new (like the flying-saucer pelletizer). Something entirely different in dense-medium separation came from Sweden. J. W. Franklin 6 reported a worldwide canvass and quoted J. Svenssen on the Stripa "absolute gravity process," invented by him while working for the Stripa Mining Co. Five Swedish plants were in operation, as well as 2 in Norway and 1 in Turkey on a chrome ore. the medium is made up of hematite-magnetite table concentrate-(minus 12-plus 200-mesh), analyzing 65 percent iron. The separator is a long, narrow, shallow trough with water inlets in the bottom; toward the end of the trough is a horizontal baffle separating the strata into which the ore separates, giving float-and-sink products. Little new water need be used, and most of it remains in the machine. Separations up to 3.3 specific gravity can be made, and tests have been made at a specific gravity of 5 when a medium of granul The machine worked well when the medium co iron is used. as much as 20 percent gangue.

Ramsing, F. C., Centrifugal Reverberatory Furnace: U. S. Patent 2,620,309, M. Franklin, J. W., Ore Dressing: Eng. and Min. Jour., vol. 158, No. 2, Febru

Cyclones were sometimes used in dense-medium separation, but their more common uses were for dewatering and thickening pulps or for classifying coarse from finer sizes of particles. In London, Liquid-Solid Separations, Ltd., offered a multiple unit, capable of producing a cut at 5 to 10 microns. This is evidently based on the fact that gas-cyclone experience has been that a small-diameter cyclone does better work than a large one; Western Precipitation Co. in Los Angeles offered similar multiclones for removing particles from gases. potential usefulness of the new wet multiclone may be in classifying pulps of nonmetallic minerals, because flotation separation of such minerals usually fails on particles smaller than 20 mm., a size 1,000 times as great as the new machine might work on. In the case of the nonmetallic minerals, the presence of slime sizes interferes with clean flotation, and they would much better be discarded. Another field for the new wet multiclone might be in treating cassiterite ores, in which there are large losses of tin minerals in the slime sizes. For many years tin losses in these slimes have been grievous, not only in Britain but also in Bolivia and the Malay States.

The Kennecott Copper Corp. used a single 20-inch cyclone and one 8-inch pump to replace 4 conventional classifiers in grinding circuits and cut the power demand from 120 to 60 hp. Manganese, Inc., at Henderson, Nev., used eight 12-inch cyclones for classification and others to thicken flotation concentrate. Cyclones have replaced conventional classifiers in the grinding circuit on auriferous pyrite at the Lake View and Star, Ltd., Fimiston, Australia, with a saving in maintenance and operating costs. Union Minière du Haut-Katanga, floating malachite in the Kolwezi area, uses cyclones on the middling, but not the primary grind, because of excessive wear of the malachite. Roan Antelope Copper Mines, Ltd., at Luanshya, Northern Rhodesia, built tailing dams with cyclones, using the oversize for the dam walls, while slimes are impounded in the center of the pond. Lower labor requirements and faster dam formation, as well as better resistance to rain wash, resulted, while capital cost was 10 percent of that of

other mechanical units.

benined ,

Contrasted with the wet cyclone, which was relatively novel and not yet proved thoroughly as to its total field of usefulness, the gas cyclone for recovery of dusts, fumes, and mists from gas suspension has been used many years and is well-documented in the various handbooks. An article worthy of attention, on the fundamentals of the apparatus of the U. S. S. R., where a mathematical study of the plant of the cyclone separator was made uation. The gas cyclone was useful not only in

rachine for concentrating or sizing minerals was described by Tedman. The British were sof concentrating minerals, and this author r-shaped, rotating cylinder, with a frustrum otated rapidly enough to keep solid particles but not enough to bring about serious he center of the apparatus, and light manigrate in opposite directions, to be dis-

, Gaxovaya Prom.: Chem. Abs., vol. 51, No. 11, 1956, p. 3202g. Fluid Boundary: Min. Mag., vol. 95, Aug. 1956, pp. 81-84. charged at the two ends. The apparatus will also separate sizes of

the same material.

The versatile concentrating and separating process known as flotation calls for a certain amount of physical chemistry in the design of reagents and in their application to pulps of ground minerals. One of the better reviews appeared in Industrial and Engineering Chemistry (American Chemical Society).9

Size reduction is a broader term for crushing and grinding. Dr. L. T. Work wrote an annual review on this subject ¹⁰ showing the

trends in practice and theory.

An outstanding series of papers on copper for the year was compiled by A. W. Knorr of Engineering and Mining Journal 11 on the San Manuel enterprise in Arizona, in which the new smelter is described, following other papers on the mine and the concentrating mill. Thirty thousand tons of ore per day was mined and concentrated, and the concentrate was smelted in a plant of the most modern design. Seventy thousand tons of copper was recovered per year from concentrate, averaging 28 percent copper, high in iron and low in silica. The silica used for flux came mainly from the oxidized zones of the mine, which is in deeply oxidized territory. Natural gas was used in firing the reverberatory furnaces, and waste-heat boilers supplied steam to a 10,000-kw. generator, which took care of power demands of the enterprise. A 500-foot stack discarded smelter gases, with their 75.000 annual tons of sulfur.

Electrolytic zinc held its own in competition with smelting, because the process is adaptable to the recovery of so many byproducts and the product is highly pure zinc. Continuous vertical retorts for smelting zinc ores have been in use many years and are quite efficient, but good operating details on their operation have not been given to the public. A continuous smelting process involving the vertical blast furnace has been known to be under development in England by National Smelting Co. Patents on changes in the mode of operation continued to be issued, and were the sole source of information. Prof. A. W. Schlechten, in his annual review of metallurgy, reviewed some of these patents. Roasted zinc ore and coke are fed to a hot-top blast furnace to yield a top gas at 950° C. containing zinc vapor, carbon dioxide, carbon monoxide, and nitrogen, which, if slowly cooled, would revert to zinc oxide fume, carbon monoxide gas, and nitrogen. Shock chilling by a shower of molten lead was the first method of recovering the zinc, but it was later found that molten zinc could be used.

The Anaconda Aluminum Co. aluminum-reduction plant at Columbia Falls, Mont., reached rated capacity production in 1956. It was patterned after the plant of the Pechiney Co. at St. Jean de Maurienne, France, cost \$60 million, and was equipped with huge Soderberg vertical pinpots of 90,000 to 100,000 amperes input.

There are 4 rooms, with a total of 240 pots. Current density is 300 amp. per sq. in., and 7 million pounds of aluminum busbars is

⁹ Hoffman, Itzhak, and Arbiter, Nathaniel, Flotation; Ind. Eng. Chem., vol. 49, No. 3, March 1957,

pp. 493-496.

Work, L. T., Size Reduction: Ind. Eng. Chem., vol. 49, No. 3, March 1957, pp. 534-537.

Knorr, A. W., San Manuel, the Smelter-Unique in Modern Design: Eng. and Min. Jour., vol. 157, No. 4, April 1956, pp. 95-100.

Schlechten, A. W., Metallurgy: Eng. and Min. Jour., vol. 158, No. 2, February 1957, pp. 128-131.

in use. Anode paste is 67 percent calcined petroleum coke and 30 percent coal-tar pitch. The cell gases resulting from electrolysis are collected, and the carbon monoxide flue gases are burned and sent to cyclones to remove dust and then to spray scrubbers using a lime

slurry to insure that no fluorine gases being vented.

Most of the innovations in hydrometallurgy were in the field of ion exchange and solvent extraction. The latter is also known as liquid-liquid extraction, and one modification of the latter is known as solvent-in-pulp, parallel to resin-in-pulp, which has been mentioned before. The uranium industry has been the heaviest user of ion-exchange resins for extraction, stripping dilute uranium leach solutions while many other metals pass through and then stripping the resin with a suitable regenerant, used in small quantity to get a strong solution of uranium.

Solvent extraction serves the same purpose as ion exchange and has proved a strong competitor because the organic solvents can be contacted easily with the pregnant aqueous leach or unfiltered pregnant pulp. Ores with large amounts of slime-sized solids cause formation of a frothy "gunk" that is slow to break down or may even break down to an oily paste; this locks up part of the organic solvent, for which there is no satisfactory way of recovery. Even violent centrifuging is not complete in the separation. Therefore the solvent-inpulp method of avoiding the necessity of settling and filtration is not yet certain of application. The large application to uranium hydrometallurgy, the separation of zirconium and hafnium salts, and the tantalum-columbum (niobium) separations coming into commercial practice was outstanding, however.

practice was outstanding, however.

Silicon has been one of the metals of the year on which much attention has been centered. The transistor grade of the metal is wanted in purity approaching only 1 part per 10 billion of boron—a highly harmful element. Bell Telephone Laboratories ¹³ announced that it has been found possible to remove boron down to this extreme by treating the molten metal with a mixture of hydrogen and water

vapor to vaporize boron oxide.

Most of the pure silicon was supplied by du Pont, although Sylvania Electric Co., Foote Mineral Co., Westinghouse Electric, and others had been busy, and the literature of the year was quite voluminous in the United States, United Kingdom, Germany, and U. S. S. R. Various methods of making it are of interest, but an unusual one was devised by C. C. Hein of Westinghouse. This patent presents the silicon-gold phase diagram, already in earlier literature, which shows a series of solid solutions at the gold end of the diagram; but at the silicon end, gold is soluble in silicon to the extent of less than 1 part in 100 million, making it possible to discard most of the other impurities into the gold of the melt. Several processes taking advantage of this fact were detailed. The final ultrapure silicon was doped with phosphorus, added to convert the pure silicon to the n-type transistor grade.

In spite of the fact that very small amounts of silicon are used in each transistor or rectifier unit, the United States produced several thousand pounds of the metal, valued at \$300 to \$350 per pound.

¹⁸ Chemical and Engineering News, Ultrapure Silicon: Vol. 34, Aug. 27, 1956, p. 4145.

Zone refining was not restricted to metals alone or to intermetallic compounds but was being tested for refining of molten salts and organic compounds and even for separating heavy water from normal ice.

Two reviews during the year were prepared by W. G. Pfann¹⁴ and R. J. Dunworth.¹⁵ Pfann differentiated among zone melting, zone refining, zone remelting, and zone leveling. The way to make zone melting a continuous process was pointed out. Zone leveling is a way of introducing activator elements uniformly. Refining was developed first for germanium, then for silicon, but has been applied to InSb, GaAs, AlSb, Sb, and As. Favorable results are reported for Bi, Zn, Fe, Cu, Al, Ga, Zr, and Cr. Mixtures of anthracene-naphthalene have yielded results, and removal of heavy water from normal water appears to be possible. Dunworth pointed out that calculation of the solute distribution coefficient permits estimation of the number of passes required to reach ultimate distribution. The importance of the solute gradient near the solidifying interface was pointed out, and the relation of this gradient to the necessity of using slow rates of solidification or liquid agitation was described.

An interesting solution of the problem of zone-refining gallium was reported by Richards.¹⁶ Some of the elements to be removed had segregation coefficients close to 1.0 in gallium, so that many passes would be required for purifying the gallium. The system was converted to metal chlorides; and GaCl₃, which melts at 75° C., was suc-

cessfully refined to under 1 part per million impurities.

The sodium production of the Nation has grown steadily, depending largely on the market for tetraethyl lead for gasoline, but recently three new outlets have called for more rapid building of new facilities. One was for titanium reduction, where it may have certain advantages over magnesium as a reductant. Zirconium may also use sodium for the reduction step. In the organic field isosebacic acid, an intermedia e in production of resins and plasticizers, demands more sodium. The result was that the 1956 output of the metal was 270 million pounds—20 to 25 percent more than in 1955. The new metallurgical center at Ashtabula, Ohio, where both titanium and zirconium have been added to the industry, as well as the existing output for tetraethyl lead, has attracted users of chlorine made during electrolysis of fused salt to get sodium.

Vacuum melting continued to grow in importance in 1956, and there was a noticeable trend toward expansion in the production of ferrous products. United States Steel Corp., at its Duquesne, Pa., works, constructed a vacuum casting chamber 17 feet in diameter and 31 feet in height. In operation, a ladle of molten steel is placed on top of an aluminum diaphram, forming the top seal, which melts and allows the steel to drop into an evacuated chamber at a rate of 3 to 10 tons per minute. În this manner the gas content of the steel is reduced substantially during pouring. Other steel companies were reported to be installing units up to 250 tons in size, using variations

¹⁴ Pfann, W. G., A Fresh Outlook for Fractional Crystallization: Chem. Eng. News, vol. 34, 1956, pp.

<sup>1440-1443.

18</sup> Dunworth, R. J., Some Theoretical Factors in the Zone Melting Process: Argonne Nationals Fab. Rept. ANL-5360, February 1956, 38 pp.; Astia File No. AD 84784; for sale by Office of Tech. Services, price, 30 cents.

18 Richards, J. L., Purification of a Metal by Zone Refining of One of Its Salts: Nature, vol. 177, 1956, pp. 182-183.

of the same technique; some were so elaborate that TV cameras were

used to control the operation.

Allegheny-Ludlum Steel Corp. engaged in an expansion program for its consumable-electrode vacuum arc-melting plant, and melting capacity at the end of 1956 was approximately 18 million pounds a year. This company also was turning out induction vacuum-melted ingots on a nearly continuous basis in a pilot plant.

Universal Cyclops finished a vacuum remelting furnace with a capacity of about 8 million pounds a year. This company could furnish ingots up to 20 inches in diameter and weighing 6,000 pounds.

These developments in vacuum melting are interesting because the new melting capacity was designed primarily for high-temperature alloys and stainless or premium-quality steels, in contrast to the work of previous years, when only the more expensive metals, like molybdenum, titanium, and zirconium, could be afforded the luxury of vacuum melting.

Continued demand for low hydrogen in fabricated titanium products lead Mallory-Sharon to construct one of the largest vacuum furnaces in this country at its plant at Niles, Ohio. This horizontal, electric, vacuum furnace is about 4 feet in diameter by 12 feet in length and will hold several tons of metal at 1 charging. This type of installation is almost a necessity to meet the current requirements of 150 ppm of

hydrogen in finished titanium sheet.

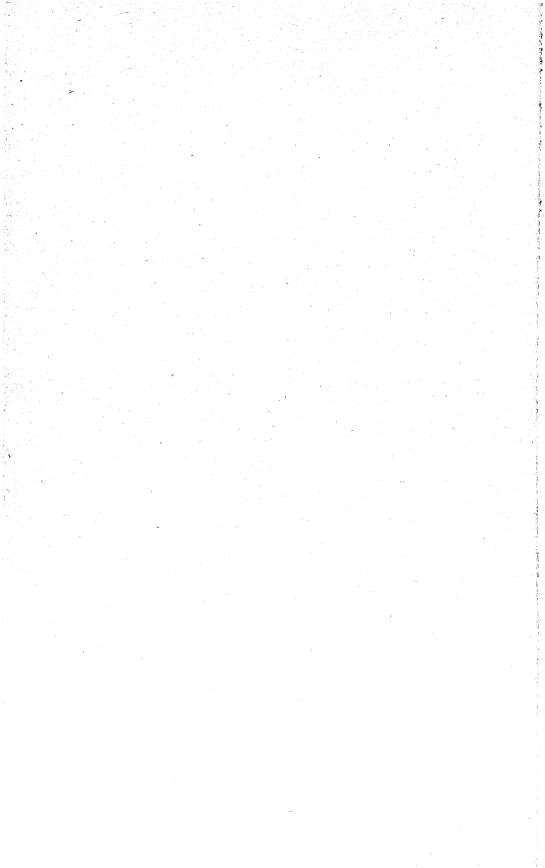
To avoid gas absorbtion in shaping processes Universal Cyclops of Bridgeville, Pa., announced that, under terms of a Defense Department contract, it would build a complete metallurgical fabrication unit to operate in an inert atmosphere. Although the primary contract is based on the working of molybdenum in an oxygen-free atmosphere, there should be no lack of users for such metals as titanium, zirconium, hafnium, uranium, and vanadium. In essence, this dry room will work under a slight pressure of purified argon, and the workmen will enter in diving suits to be fed their breathing oxygen from an external supply. The atmosphere of the room will be continuously purified to keep oxygen and water vapor at a minimum. All necessary metal-fabricating equipment, such as forges, rolls, furnaces, saws, and lathes, will be in this dry room.

Automation overtook one segment of the American steel industry, when Jones & Laughlin installed a completely automatic rolling mill. In this setup the mill can be used to follow any preset program that the operator punches into a card. The system is flexible, because it allows for the composition of the slab and variations in temperature

during rolling.

Precipitation hardening stainless steels continued to find wider use as the development of missiles and supersonic aircraft increased the demand for strength at high temperatures. Suitable heat treatment of the 17 chromium-7 nickel type resulted in guaranteed tensile strengths of 200,000 p. s. i.; in certain instances tensile strengths as high as 240,000 p. s. i. were obtained. Brazed honeycomb structures could be heat-treated satisfactorily to maintain this strength. An interesting part of this heat treatment is refrigeration of the material at minus 100° F. for a period of several hours.

Perhaps the greatest interest of this year centered on development of columbium-base alloys for high-temperature uses. The reasons for this were twofold:


(1) Columbium is one of the last unexplored elements that holds

promise of strength at high temperatures.

(2) The separation processes, such as those developed by the Bureau of Mines in the last few years for separating tantalum and columbium, offer a potential means of producing cheaper columbium and also provide for extraction of the metal from lower grade deposits.

In addition, the increasing production of tantalum for capacitor use, with the resultant increase in byproduct columbium, supplied an additional incentive to the study of columbium and its alloys. In spite of vigorous research programs by such installations as Wright Field Air Materiel Command and the National Advisory Committee for Aeronautics, along with several private companies interested either in sales of the metal or development of the alloys, no supercolumbium-base alloys were developed during the year. A number of the alloys that have been tested show promise, but none have been developed that are as satisfactory as the 3 or 4 commonly used turbine-bucket alloys. Any development of a high-temperature columbium-base alloy depends on long-term research rather than upon a short period of applied research.

Metal powders have been rolled for different purposes. such as the production of oilless bearings by Moraine Products Co., where metal powders are rolled onto a steel carrier that becomes a backing strip for the finished bearing. Some of the newer techniques use expendable carrier strips of paper. Fabrication by rolling metal powders offers another useful tool for certain specific applications. Mond Nickel Co. of England has produced purer nickel sheet by this method than by any other process, since intermediate steps of pressing and sintering and subsequent contamination are eliminated. The powders are randomly oriented; and, for material that will not be sintered, this offers a great advantage, as in the case of uranium, which can be formed into shape for reactors. Cladding tricks can be performed that are well-nigh impossible by any other forming technique.

Review of Mining Technology

By Paul T. Allsman, I James E. Hill, and Walter E. Lewis 3

HIS CHAPTER reviews the highlights of developments in mining technology during 1956 and presents a special report on the design of mine openings in stable ground. This special report is presented each year in an endeavor to stimulate use of the scientific approach to the solution of problems related to mining technology.

Assuming that the literature on mining technology reflects trends in mining, it appears that two areas of activity were given most attention in 1956. One was research on mining technology,4 and the other was improvement of transportation, particularly trackless transporta-

tion, both at surface and underground mines.

Although much of the organized research was by Government agencies, educational institutions, and privately financed organizations, both domestic and foreign, considerable research of a testing nature was done by several of the larger mining companies. Testing of equipment and certain supplies, such as rock bits and drill steel, against standards received the most attention.

Improvement in drilling, breakage, and loading in previous years had caused efficiency in these activities to surpass transportation, and the latter had become a "bottleneck." During 1956 the primary effort was directed toward bringing the mining cycle into better

balance by improving transportation.

EXPLORATION

The diamond drill continued to be the most widely used tool for exploring mineral deposits below the surface of the earth. Drilling techniques have changed little in the post-World War II years; however, use of the wireline core barrel appears to have introduced a method whereby the speed of core drilling can be increased. In many respects the drilling techniques in exploring for oil were much farther advanced than those for minerals. The oil industry has probed to great depths in its search for oil. The world's deepest oil well, com-The oil industry has probed to pleted May 5, 1956, in Plaquemines Parish, La., was 22,570 feet deep;5

Chief mining engineer.
Assistant chief mining engineer.
Mining engineer. 4 Colorado School of Mines, Symposium on Rock Mechanics: Vol. 51, No. 3, Golden, Colo., July 1956,

55

²³⁹ pp.
Missouri School of Mines and Metallurgy, Rolla, Mo., The Second Annual Symposium on Mining Research, Tech. Ser. 92, Nov. 12-13, 1956, 42 pp.
University of Minnesota, Sixth Annual Drilling and Blasting Symposium: Center for Continuation Study, Minneapolis, Minn., Oct. 11-13, 1956 (unpublished).

McGhee, Ed, Drill 'em Ever Faster, Drill 'em Ever Deeper: Oil and Gas Jour., vol. 54, No. 59, June 1956, pp. 152-153.

317 days was required to drill the hole. At this depth, to change bits required 9½ hours, to get cutting returns off the bottom took at least 7 hours, and to get complete circulation required 9½ hours. The pump pressure exceeded 2,800 pounds per square inch. Temperature at 21,809 feet was about 340° F.

Bear Creek Mining Co. utilized helicopter transport to service an exploration drilling project near the crest of the Cascade Mountains in Snohomish County, Wash.⁶ The field season in this region is usually limited to about 3 months; but with the helicopter transport no trailwork was necessary, and the field season was lengthened to 5 In-haul costs amounted to \$0.191 per pound and outhaul

costs were \$0.149 per pound.

Diamond drilling through permafrost in the northern regions of Canada required a method that prevented freezing of the drilling fluid.7 Different methods had been tried, including heating the water, use of petroleum products, and salt solutions. Heated water was suitable for short holes. Petroleum products did not freeze; however, because they are lighter than water, seepage water may displace them, and the actual drilling may be done with water, with the ever present danger that the hole will freeze. Drilling with a solution of calcium chloride was the best method to insure continuous operation, adequate depth of boreholes, and minimum loss of equipment. The best concentration was about 13 percent. The solution was easily made, could be reused without difficulty, and resisted freezing to the point where the end product was a slush of ice crystals and solution. Loss of drilling equipment was negligible where adequate strength of solution was maintained.

Calculation of ore reserves at the Berkeley pit, Butte, Mont., by Anaconda Copper Mining Co. demonstrated the necessity of adjustments of assay values on churn-drill samples in certain types of ground.8 Comparison of assay values on churn-drill samples with assay values on samples taken from crosscuts driven into the same area from neighboring mine levels showed that the difference between the analyses of churn-drill and crosscut samples was insignificant in low-grade material, but in the higher grade ore the churn-drill-sample analyses were high compared with the crosscut-sample analyses. The churn-drill results had to be reduced to check crosscut data, each churn drill had to be placed to avoid steeply dipping veins and gobs, and all segments in veins assaying above 1.1 percent copper had to be reduced to 1.1 percent copper. Churn-drill assays in disseminated copper-bearing material and those in other than veins were left unchanged.

In 1956 exploration was begun on the Precambrian shield in Canada and the United States. This study, the largest ever attempted on the North American Continent, will require 2½ years to complete.9 All known existing geological and geophysical data will be correlated with the resulting structural and mineral evaluation by stereo-

interpretation of aerial photographs.

Goddard, Charles C., Airlift Is Bear Creek Answer to Short Summer Drill Season: Min. World, vol. 18, No. 7, June 1956, pp. 60-61.
 MacDonald, L. R., Permafrost Drilling: Canadian Min. Jour., vol. 77, No. 10, October 1956, pp. 92-94.
 Shea, Edward P., Development and Planning of Open-Pit Mining in the Butte District: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956, press release, 6 pp.
 Mining Journal (London), Operation Overthrust—A New Conception in Minerals Exploration: Vol. 247, No. 6313, Aug. 17, 1956, pp. 193-194.

EXPLOSIVES FRAGMENTATION

A paper presented at the Mining Research Conference sponsored by the Missouri School of Mines discussed the reflection theory of rock breakage by explosives.¹⁰ The reflection theory suggests that the rock is pulled rather than pushed apart. The detonation of the explosive charge creates a high gas pressure on the drill hole in a few microseconds. The reaction of the high pressure on the walls of the drill hole generates a high-intensity compressive-strain pulse in the surrounding rock. The compressive-strain pulse travels outward from the drill hole in all directions. Near the drill hole the intensity of the strain pulse is sufficient to cause crushing of the rock; however, as the strain pulse travels outward, its intensity diminishes rapidly until no further crushing of the rock is possible.

The compressive-strain pulse continues to travel outward until it is reflected by a free surface, when it becomes a tensile-strain pulse. As the strength of the rock is less in tension than in compression by a factor of 50 or more, the reflected tensile-strain pulse can break the rock in tension, progressing from the free surface back toward the shot point. Crater tests were made of this theory of rock breakage under rigidly controlled field conditions. For this purpose, it was necessary to design and construct a mobile laboratory for recording

blasting data.11

The laboratory had facilities for making film recordings of 16 simultaneous transient electrical signals over a broad range of amplitude, frequency, and duration with specially designed oscilloscopes and high-speed drum cameras. The electrical measurements, by which the wave motion generated by a detonated charge are studied, are recorded by the mobile laboratory equipment and picked up by strain gages cemented into drill holes in rock.12 Strain-wave propagation data, recorded by strain gages, was converted to a voltage proportional to the strain and measured in the mobile laboratory. From these studies mathematical formulas have been derived for computing crater depths. A complete discussion of the reflection theory of rock breakage was to be a 1957 Bureau of Mines report of investigations.

Strip-coal-mine blasting practice since about 1953 has tended toward the use of explosives that contain mostly ammonium nitrate (no nitroglycerin) as the explosive ingredient. Most manufacturers pronitroglycerin) as the explosive ingredient. duced this type of explosive in 1956. Depending upon other ingredients mixed with the ammonium nitrate, the explosive may or may not have to be detonated by a primer or booster charge of more sensitive

material.

Liquid oxygen replaced conventional explosives at some surface mines. Sunnyhill Coal Co. No. 8 mine, New Lexington, Ohio, found that the cost of blasting high banks containing massive sandrock with the conventional fixed explosives was so high that some pits were abandoned.13 The pits were reactivated through use of liquid oxygen explosives, and coal was produced at a profit.

Duvall, Wilbur I., Rock Breakage by Explosives: Oral pres- at Mining Research Conference, Missouri School of Mining and Technology, Nov. 12-13, 1956.

11 Atchison, T. C., Duvall, W. I., and Obert, Leonard, Mobile Laboratory for Recording Blasting and Other Transient Phenomena: Bureau of Mines Rept. of Investigations 5197, 1956, 22 pp.

12 Obert, Leonard, and Duvall, W. I., A Gage of Recording Equipment for Measuring Dynamic Strain in Rock: Bureau of Mines Rept. of Investigations 4581, 1949, 24 pp.

13 Lamm, A. E., Recent Developments in Drilling and Blasting Overburden: Min. Cong. Jour., vol. 42, No. 10, October 1956, pp. 28-30, 40.

DRILLING

Rotary-percussive drill studies have led a foreign investigator to the conclusion that a combination of rotary drilling with percussive drilling, in the form of a continuous rotary motion with percussion superimposed, combines the best of both systems of drilling.¹⁴ The rotary-percussive drill is designed to activate rotation and piston

travel by separate power units.

Mine operators in the United States watched closely the results of rotary-percussive-drilling trials in Europe and the United States. Whether it will be adopted universally and eventually occupy the same position as the pneumatically operated percussive drill will depend upon the adaptability of the method in all types of ground and the cost and ability of the newly designed machines to fit into the operating schedule.

MECHANICAL FRAGMENTATION

Electrical load tests to determine the power required for operating different makes of continuous coal miners established the importance of keeping sharp bits in the mine.15 Tests comparing time and electrical-power use for dull and sharp bits showed that the total time required for a 20-foot fullface advance was 50 minutes with dull bits, whereas a 30-foot fullface advance was made in 54 minutes with sharp bits. Less than two-thirds as much energy per ton mined

was required when sharp bits were used.

In its strip pit near Carbondale, Pa., The Hudson Coal Co. mined anthracite with an auger unit designed for use in bituminous coal. A 32-inch-diameter cutting head equipped with tungsten carbide bits cut a 34-inch-diameter hole. Optimum advance up to November 1956 was reportedly 6 feet a minute at a drill speed of 150 r. p. m. Auger sections were 6 feet long, and about 1 minute was required to add a section. A 3-man crew drilled five 150-foot holes a shift and

produced 180 to 190 tons of coal.

Walton Sudduth Co., Oak Hill, W. Va., was successful in augering a 32-inch seam of coal. In an area previously stripped to an economic limit, a 24-inch auger produced an average of 150 tons of coal a shift with 6 men, 2 of whom were truck drivers. The high production in the thin seam was attained by assigning enough trucks to the job to provide storage capacity, allowing the auger to be employed continuously for a full shift. Two truck drivers operating 4 trucks drove the loaded trucks to the preparation plant while empty ones were being filled.

A planer patterned after a type used in coal mining was designed and built in Spokane in 1954. In a cooperative experiment with Montana Phosphate Products Co., Garrison, Mont., the Bureau of Mines test-operated the planer in 1955 and published a report on the research.¹⁷ The planer originally consisted essentially of a weldedsteel carriage in which a vertical bank of paving breakers or pneu-

¹⁴ Inett, E. W., Rotary-Percussive Drill Studies Explain New Drilling Technique: Eng. Min. Jour., vol. 157, No. 8, August 1956, pp. 75–79.

¹⁵ Oree, J. O., Power for Continuous Mining: Min. Cong. Jour., vol. 42, No. 10, October 1956, pp. 49–52.

¹⁶ Coal Age, 24-inch Auger Produces 150 Tons Per Day: Vol. 61, No. 12, December 1956, pp. 54–56.

¹⁷ Howard, T. E., Design and Development of a Pneumatic Vibrating-Blade Planer for Mining Phosphate Rock; a Progress Report: Bureau of Mines Rept. of Investigations 5219, 1956, 30 pp.

matic picks was so mounted that the chisels entered the solid phosphate rock at an acute angle as the machine was pulled along the mining The rock broken by the chisels was plowed away from the face. Although sustained high production was not attained in the initial tests, it was demonstrated that productivity could be increased with less dilution and greater mine recovery if the planer could be designed to work without excessive tool breakage. Data based on four test operations in 1955 were used in redesigning the planer in 1956.

LOADING, TRANSPORTATION, AND HOISTING

Hanna Coal Co. 60-cubic-yard shovel uncovered a 4\%-foot coal seam in eastern Ohio.¹⁸ A dipperload contains about 90 tons, complete cycle of digging, swinging, depositing overburden, and returning for another load was designed for 45 seconds. The principal factors that contribute to the greater capacity of the machine over other stripping shovels were the short cycle time, the 30-foot longer boom, and the 32-foot longer dipper handle, which made it possible for the machine to remove greater depths of overburden and deposit it farther away in higher piles. The huge shovel can remove overburden from a maximum depth of 90 feet; under favorable contour conditions, a maximum of 120 feet of overburden may be removed.

Efforts to speed tunnel driving resulted in the development of machinery that eliminates car servicing. 19 Engineers of San Francisco Chemical Co., Montpelier, Idaho, developed a slusher-hoist that is operated in conjunction with a mucking machine. mucking machine loads the car nearest the face; as the muck piles up in the car, the slusher transfers the excess to the other cars. Double bars lengthwise of the cars and aprons between the cars serve as a The muck can be dumped from the slusher at base for the slusher. any desired point on the train. A self-contained shovel loader and hopper drawn by tractor was developed at the Grandview mine near Metaline Falls, Wash., to avoid switching cars.20 The combine loads a full string of cars by running over the top of the cars and dropping the muck into them. Special flanges on the top and at the sides of the cars guide the loader on its course over them.

Grab-type shaft muckers operating under a double-acting air cylinder were considered in South Africa to be the most efficient, economical method of mechanical shaft mucking.21 New types used were suspended on two ropes anchored to the center girder of the grab carrying the grab blades. Sizes included 12-, 20-, and 30-cubicfoot capacities. Maximum working heights are 10 feet 4 inches, 11 feet 8 inches, and 13 feet 10 inches, respectively. One of the new

models had 6 grab blades; the larger 2 had 8.

Dravo Corp., Pittsburgh, used a crawler-mounted, compressed-airpowered loader to remove broken rock from an 18-foot-finished-diameter, 1,600-foot shaft at the Intermountain Chemical Co. plant in

¹⁸ Mining Congress Journal, The Mountaineer: Vol. 42, No. 3, March 1956, pp. 26-28, 75.

19 Wright, John S., Pierce, Roger V., For Faster Tunnel Driving—Meet the Whup d'Whup: Eng. Min.
Jour., vol. 157, No. 6, June 1956, pp. 88-89.

20 Engineering and Mining Journal, New Jumbo Carloading Combine Speeds Development and Tunnel
Work: Vol. 157, No. 3, March 1956, pp. 92-95.

21 Mining Journal (London), The New Cactus Grab: Vol. 247, No. 6311, August 1956, p. 143.

Green River, Wyo., at the rate of 225 feet per month.22 The muck was hoisted to the surface in 2½-cubic-yard buckets. For loading the bucket was set against the rib on one side of the shaft. The crawlermounted loader crowded the muck pile; when the dipper was loaded, it backed into the bucket and dumped its load into the bucket by overshot action. A crawler-mounted loader was also used for mucking in a 37-by-14-foot shaft sunk in Virginia for the Pocahontas Fuel

Co., Inc., by a contracting company.²³

Mass transfer of solid minerals between mine and consumer has been by railroad, truck, ship, or barge. Considerable research has been directed toward the hydraulic transfer of solids by pipeline. The result of this research approached a climax as Pittsburgh Consolidation Coal Co. completed laying a 110-mile, 10-inch (inside diameter) pipeline for transporting coal between Cadiz and Eastlake, Ohio, in September 1956. Three pumping stations about 35 miles apart were under construction to pump the slurry (fine coal mixed with water) through the pipeline to its final destination. The slurry will travel at a rate of 3½ miles per hour, delivering 150 tons per hour at the discharge end.

A good roadbed is a basic need for a modern open-pit and underground mine-transportation system. This applies to all types or combinations of transportation, including trucks, conveyors, inclined skips, rails, and shuttle cars. Poor roadbed may result in excessive operation and maintenance costs that may make a mine uneconomic

to operate.

The extent of modern-day company construction of haulage roads with good roadbeds is well-illustrated by U. S. Refining & Smelting Co., which constructed a 4-mile haulage road for transporting ores from the El Tiro open pit near Silver Bell, Ariz. The road was begun in mid-1953, and the subgrade was completed by mid-1954.24 To obtain the lowest possible costs, the road was designed with a maximum 2½-percent grade, 1,000-foot minimum radius of curvature. superelevations on all curves, and 2½-inch mat of asphalt mix surface. The asphalt surface was laid in mid-1955 after the fills settled. The total cost of construction was slightly less than \$50,000 per mile.

Transportation for removing ores and waste from open-pit mines continued to receive widespread attention from operators. Open-pittransportation methods may be classed broadly as rail, truck, conveyor, and inclined-skip haulage. These methods were used singly or in combination, depending upon the design of the transportation

system.

In a paper presented at the 1956 American Mining Congress, L. S. Campbell, assistant general superintendent, Eastern District, Oliver Iron Mining Division, United States Steel Corp., stressed that, in designing any open-pit-mine transportation system, the primary consideration is the maximum grades upon which the system can operate.²⁵ With rail haulage the maximum is about 3 percent; conveyors can be

²² Construction Methods and Equipment, Loader Mucks Narrow Shaft: Vol. 38, No. 11, November

²⁷ Construction Methods and Equipment, Boater Articles Market States 1956, p. 100.
28 Graddon, Fred C., Crawler-Mounted Loader Speeds Shaft Mucking: Eng. Min. Jour., vol. 157, No. 6, June 1956, pp. 105-106.
28 Purvis, D. R., Silver Bell Pit Operation: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956; press release, 2 pp.
29 Campbell, L. S., Belts and Belt Conveyors As Used in the Transportation of Ores From Open-Pit Mines: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956; press release, 4 pp.

operated on grades up to about 30 percent; inclined-skip haulage is limited only by the slope of the walls; and the truck-haulage maximum

is about 10-percent grade.

Conveyor installations in the Lake Superior district 26 have usually been confined to grades between 10 and 30 percent. The first belts installed in the Lake Superior district were 24 and 30 inches wide, designed to run at 500 feet per minute and to transport 600 tons per hour. The development of stronger belting allowed higher tensile stress on the belt. Belts were constructed with capacities up to 6,000 or more tons per hour. Speeds of 800 feet per minute were used in 1956, with belts 60 to 72 inches wide.

Rail-haulage practice has also changed, especially in mines having enough reserves to warrant such developments. The Morenci open pit has replaced trolley-electric with diesel-electric locomotives.²⁷

Three types of locomotives have been used at Morenci since rail haulage was introduced in July 1940. Four 1,000-horsepower dieselelectrics were purchased in 1939 and placed in service in 1940. type of locomotive had ample power to handle a train of eight 40cubic-yard-capacity cars. There were nine 1,000-horsepower diesel-electric locomotives in use in 1956, but they operated primarily above the 5,000-foot level, hauling waste, switching, and handling work-train assignments. Trolley-electric locomotives (1,350-horsepower), using 750-volt direct-current power, were designed for service at Morenci. They were used for short off-trolley operation on the mining benches by the addition of 500-ampere-hour batteries. batteries were good for level-bench hauls that did not exceed one quarter mile. By 1950 the length of haul had increased beyond the battery range, and two 290-horsepower diesel-electric auxiliaries per locomotive had to be used. Expansion of the mine and increasing length of haul resulted in replacement of the trolley-electric with 1,750-horsepower diesel-electrics in 1955. Sixteen of these locomotives

The use of trucks or rubber-tired vehicles in open-pit haulage approached the point where a combination of types and sizes was necessary for economic and efficient operation. Many models of trucks were described, suitable for almost any haulage problem.²⁸ Those suitable for hauling in small pits or in the early development stage of large operations were 2-axle rear-dump, ranging from 10-15cubic-yard capacity. This truck has proven excellent for limited working space and short hauls. Rear-dump trucks with a 20-25cubic-yard capacity require 3 axles, ample turning space, and good haulage roads. They are suitable for longer hauls than the 10-15cubic-yard capacity truck. The 32-cubic-yard, 3-axle, rear-dump truck has been used under somewhat the same conditions as the 25cubic-yard truck, but it has more power and can carry a larger load Two-axle, 40-50-ton, 400-horsepower trucks, using large

tires, were available but their use has not yet been proved.

Tractor-trailer, 15-25-cubic-yard capacity, bottom-dump units were used where good material was handled, and the dump on top of the

²⁵ Work cited in footnote 25.
²⁵ Fenzi, W. E., Rail Haulage—Morenci Open Pit—Morenci, Ariz.: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956; press release, 7 pp.
²⁶ Isbell, C. V., The Various Types of Trucks for Open-Pit Haulage: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956; press release, 3 pp.

fill was later bulldozed over. An advantage of bottom dump is unloading in motion; the use of large and small bottom-dumps, with a few rear-dump trucks, is justifiable on a cost basis. The larger units are used on the longer hauls, the smaller units on the shorter and limited working space hauls, and the rear-dumps for handling rock and other material that might not pass through the bottom dump. A 45-55-ton rear-dump tractor-trailer is equally as good on a short as a

long haul, provided the grades do not exceed 4 percent.

A 70-ton bottom-dump hopper trailer was to be placed in service for hauling coal from an open-pit coal mine in West Virginia.29 The haul distance is 7 miles downhill from the mine to the tipple. The trailer is rated at 75 cubic yards struck level but will carry well over 100 cubic yards when heaped. The total weight when loaded is approximately 120 tons. A diesel engine rated at 400 horsepower, continuous, at 2,100 r. p. m., supplies the motive horsepower. tires and wheels on the unit are interchangeable. The brakes are unusually large, powered by air, and also interchangeable. Each wheel has a 10-inch-wide brake shoe set around a 26-inch-diameter drum. Despite its size the unit has a shorter turning radius than a two-axle or single-axle-drive truck.

Since it was introduced about 1949, the Rockover skip system has come into common use on the Mesabi iron range.³⁰ The system has many desirable qualities of conveyor- truck- and rail-haul systems. Great flexibility of mining is permitted, and the cost compares favorably with that of the other methods. It can be designed to follow the natural repose of the pit wall, resulting in the shortest hauling distance from pit bottom to surface of any of the other haulage systems. The skip system of haulage must always be combined with truck haulage for gathering the ore from the pit bottom; however, no elaborate haulage-road system is needed other than to central loading points.

The use of diesel-powered trucks underground where relatively flatlying ore bodies were mined continued to expand. Where ventilation was good and the back or roof high enough, trucks proved to be the most economical mode of short-haul transportation.³¹ Minerva Oil Co. Fluorspar Division mine No. 1, Hardin County, Ill., found that in conveyor-belt and truck combinations, where trucks were used to feed long-haul belts, it was more efficient to shorten the conveyor-

belt distance and increase the truck-haul distance.

The St. Joseph Lead Co., Indian Creek mine in the southeast Missouri lead belt has changed haulage equipment from shuttle car to the faster diesel truck where haulage distances exceeded 1,000 feet.32 In comparative performance tests it was found that the cost for hauling 250 tons 1,000 feet a shift was 17 cents a ton for a 12-ton shuttle car or a 6-ton truck. At 2,000 feet, 2 shuttle cars were required to get the 250 tons a shift, at a cost of 25 cents a ton. Two 6-ton trucks could do the same job at 23 cents a ton. The hauling costs could be held to 25 cents a ton for distances over 2,000 feet by increasing the tonnage capacity of the trucks.

Diesel Power, Largest Bottom-Dump Hopper Trailer: Vol. 34, No. 10, October 1956. p. 70.
 Cardew, Richard P., Skip Haulage: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956: press release, 3 pp.
 Montgomery, Gill, Underground Transportation Symposium—Auto Trucks Underground: Presented at the Min. Show, Am. Min. Cong., Los Angeles, Calif., October 1-4, 1956, press release, 4 pp.
 Jones, Elmer A., Mechanization at Indian Creek Mine of St. Joseph Lead Co.: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956; press release, 5 pp.

The Duval Sulphur & Potash Co., Carlsbad, N. Mex., had a trackless operation at its Duval mine and moved everything on rubber.³³ A total of 3,200 tons of ore was moved daily by 2 miles of conveyor with 2 crusher and elevator installations on main-entry belts and 1 installation of a panel-entry belt that discharged onto a main-entry belt. Rubber-tired shuttle cars hauled ore from the face to roll crushers mounted on skid-type bases, designed to straddle the conveyor and discharge directly onto the belt. Production workers were transported to and from the active mining areas in trailers towed by jeeps, and maintenance equipment was transported in diesel-powered trucks.

Electric trucks equipped with 350-horsepower, 550-volt, direct-current traction motors were used to carry a net 30-ton load up a 10-percent grade at the Crestmore limestone mine, Riverside, Calif. The trucks operated under a standard trackless-trolley system, except when backing under a shovel, where a gathering-type locomotive reel extension was used. Fully loaded trucks pull up a 10-percent grade at about 12 miles an hour.

An extensible belt conveyor working with a continuous mining machine proved to be highly advantageous in moving broken coal away from the face at the Betsy mines of Powhatan Mining Co., Bloomingdale, Ohio. A series of movable pulleys, added to the regular conveyor system and housed in the same structure that contains the drive unit and head pulley, permits interlacing an extra 100-foot section of belting into the system. As the continuous mining machine advances, the conveyor operator changes the positions of the movable pulleys, and permits the belt to be extended a maximum distance of 50 feet from the fixed-head structure. After each 50-foot advance, another 100 feet of belting may be inserted and taken up by the movable pulleys. In turn, this added 100 feet of belting allows another 50 feet of advance without moving the belt-head structure. A total of 500 to 600 feet can be advanced in this manner before it is necessary to move the belt-head structure.

The Princess mine, Nova Scotia, installed a 3,800-foot, 42-inch-wide cable-belt conveyor, 35 with a carrying capacity of 750 tons an hour at a traveling speed of 400 feet per minute. All tension or pull is absorbed by the cables, with the rubber carrying only the load. The

conveyor was driven by a single motor at the upper end.

Three friction-type hoists were to be installed at the new Hogarth A-2 mine of Steep Rock Iron Mines, Ltd.³⁶ The friction-type hoist has been used extensively in Europe for nearly 50 years. Since 1950, 5 companies in Canada and 1 in the United States have installed this type of hoist.

Although several friction-type hoist installations have been made on the North American Continent, it is difficult to determine whether the installations will continue. Companies having new mines or making extensive revision of hoisting systems in old mines probably

³² Tong, J. E., Trackless Mining at Duval Sulphur & Potash Co.: Pres. at Min. Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956; press release, 3 pp.

³⁴ Wightman, R. H., New Underground Mining at Crestmore: Pres. at Mining Show, Am. Min. Cong., Los Angeles, Calif., Oct. 1-4, 1956; press release, 6 pp.

³⁵ Mining Journal (London), Conveyor Installation in Canadian Mine: Vol. 246, No. 6297, April 1956,

³⁸ Mining Journal (London), Conveyor Installation in Canadian Mine: Vol. 246, No. 6297, April 1956, p. 517.
38 Skillings' Mining Review, Hoist Ordered for Steep Rock's Hogarth A-2 Mine: Vol. 45, No. 30, October

will survey the field carefully before deciding upon the type of hoist installation. In all probability the increased number of friction-type hoists installed in Canada over those in the United States was due in part to the new mines being opened up in Canada, and specific conditions that are favorable to the friction-type hoist installation. The fact that installations in the United States are limited to new mines and those large mines revising their hoisting systems indicates that the number of installations in the United States will be relatively small for many years.

GROUND SUPPORT AND CONTROL

Knowledge of the action of a rock mass as it subsides into the opened area in longwall working is based on sound theories, but accurate instrumentation for measurements to prove such theories conclusively has not yet been accomplished. To date the measuring methods and measuring devices have disadvantages that are extremely difficult to overcome. Stress-measuring devices that must be emplaced into the subsiding mass by a new borehole or drive often have been found to be useless or to give inaccurate data because the opening itself releases the stress or induces other stresses.

The Mines Branch of the Canadian Department of Mines and Technical Surveys had underway an underground research program on the problem of strata stress. Initial studies were conducted in the

coal mines of Springhill, Nova Scotia.37

Observations were made of stress phenomena induced in a rock mass by longwall mining in the areas ahead of the advancing face, at the extraction face, and behind the face. Instrumentation for determining stress in these three areas required the design of an electric strain-gage cell. The stress observations were to continue; however, stress measurements observed from the load cells in the different areas have proved reasonably successful. The general nature of the results from the first series of cells installed indicates that stresses of high magnitude occurred. The work to date has shown that it may be possible to determine the stress changes, the approximate magnitude and direction of the stress changes, and establishment of whether the stress is increasing or decreasing.

The effect of excavation on rock strata lying in the intermediate area between the surface and extraction zones, with reference to its influence on shaft openings, was presented at a symposium on mine support in England.³⁸ This discussion revealed that, although observations of the phenomena in the immediate vicinity of the excavations may be necessary, the total complex of rock movements must not be neglected. Only by complete analysis of total rock movements can full understanding of rock pressure be reached. The author, Mohr, cited the three main zones of rock mass affected by longwall working as the zone of extraction, the surface zone, and the intermediate zone.

³⁷ Brown, A., Rock-Pressure Studies in the Mines of Springhill, Nova Scotia; A Progress Report: Part I, Zorychta, H., Application of Instruments Employed at the Mine; Part II, Buchanan, J. G., Description of the Load Cell and Analysis of Readings Obtained; Part III, Cameron, E. L., and Hardy, H. R., Determination of Rock-Strength Characteristics: Canadian Min. and Met. Bull., vol. 49, No. 530, June 1956, pp. 402-411

pp. 402-411.

33 Mohr, Dr. Ing. Habil F., Influence of Mining on Strata: Mine and Quarry Eng., vol. 22, No. 4, April 1956, pp. 140-152. Measurement and Rock Pressure: Mine and Quarry Eng., vol. 22, No. 5, May 1956, pp. 178-189. Rock Pressure and Support: Mine and Quarry Eng., vol. 22, No. 6, June 1956, pp. 224-233.

The zone of extraction includes the area above the excavation, where immediate and rapid subsidence occurs, and the area below the excavation, where the floor strata are lifting, causing side pressure. formations in the extraction zone occur a relatively short time after the excavation. In contrast, the surface zone has no overlying stratum, and the beds subside more or less under their own weight onto the strata below. In the intermediate zone rock subsidence occurs simultaneously with, but more slowly than, that of the strata in the excavation zone. The rock movements take place under the total

weight of overlying strata and other opposing influences.

Under longwall working the theory of roof subsidence overlying an excavated area assumes that each point of the overlying mass of rock attempts to move toward the center of the point of the excavated area; therefore, while the rock lying directly over the center of the excavated area subsides vertically, all other rock movement is diagonally downward. This diagonal, downward movement may be divided into horizontal and vertical components. The limits of the zone of rock movement above the excavation area are determined by the limit angle, which is the angle of the plane of the cave beyond the extremities of the excavation measured from the horizontal. Until the greatest possible subsidence occurs, the rock strata are undergoing vertical compression and stretching. The stretching (the tearing away and separation of layers) is due primarily to unequal

subsidence of the rock mass.

The plastic flowage of clay below coal pillars into mined-out entries and rooms in a dry coal mine, without the action of additional moisture, was investigated by the Coal Division of the Illinois State Geological Survey.³⁹ It was determined that squeezes result from a plastic condition of the clay caused either by moisture or by the presence of clay minerals (such as montmorillonite), which become plastic when enough natural moisture is present. Tests of clay below various coal beds in Illinois indicated that the clay minerals are chiefly micaceous in type, that montmorillonite is the dominant clay mineral in the clay fraction of the squeeze clay, and that it is less abundant in nonsqueeze clay. The montmorillonite crystal has the greatest ratio between thickness and the other two dimensions of any claymineral crystal, and this characteristic plate or leaf shape is claimed to supply the plastic properties of squeeze clay. Water in the layers between montmorillonite sheets flows under rock pressures and contributes further to the plastic properties of the clay. Although the property that causes squeezes in clay is known, no simple way is known to stabilize the clay by chemical treatment. Some success in preventing underclay squeezes has been attained by using floor bolts.

Impact testing with electronic instrumentation to detect whether a roof rock is "loose" or "drummy" was investigated by the Bureau The tests were made on shale and sandstone roof in the Dehue coal mine at Dehue, Logan County, W. Va. Test sites were selected by striking the roof with a bar and judging its soundness from the character of the air vibrations heard with the ear.

³⁹ White, W. Arthur, Underclay Squeezes in Coal Mines: Min. Eng., vol. 8, No. 10, October 1956, pp. 48 Summerfield, P. N., A Study of the Air and Rock Vibrations Produced by Impact Testing of Mine Roof: Bureau of Mines Rept. of Investigations 5251, 1956, 37 pp.

were selected that ranged from near solid to very drummy. each site the roof was struck with a hammer, and the vibrations were picked up in air with a microphone and in rock with an acceleration or velocity gage. The outputs from the gages and microphone were recorded on magnetic tapes. In the laboratory the tapes were replayed to obtain quantitative measurements of amplitude, frequency content, and duration of the vibrations. The work revealed a significant difference between the characteristics of vibrations produced in solid and drummy roof rock. The difference is such that the design of an electronic device to indicate the condition of the roof may be possible. The results obtained from airborne vibrations with the microphone appeared to be as good as those obtained from rockborne vibrations and the use of airborne vibrations for a practical rooftesting device may prove to be best.

The study by the Bureau of Mines of methods of determining the load on rock bolts was continued in 1956. Four reports have been published relating to fundamental rock-bolting research in underground mines, and the latest report described the testing of expan-

sion-type, %-inch rock bolts.41

As in previous tests with other types and sizes of rock bolts, a torque-load relationship was established for the % inch, expansiontype bolt (regular and high-strength), whereby the prestressed load on the rock bolt could be determined with a torque wrench. In the tests, unused, flat-steel bearing plates were employed. The relationship between the torque and load was found to be about 50 pounds of load per foot-pound of torque in both the regular and high-strength This torque-load relationship was valid up to 130 foot-pounds for regular bolts and up to 175 foot-pounds for high-strength bolts. A torque of 130 foot-pounds on the regular bolt will produce a load of 6,150 plus or minus 1,910 pounds 90 percent of the time, and a torque of 175 foot-pounds on a high-strength bolt will produce 8,050 plus or minus 2,750 pounds 90 percent of the time. Above the 130 and 175 foot-pound values, torque-load relationship becomes erratic because of binding between the bolt and plug threads. This binding causes excessive torque to be expended in producing torsion in the bolt, rather than tension, and the torsion adversely affects the yield load of the bolt. Thus, on the basis of the tests, it is recommended that the installed torques not exceed 130 foot-pounds on the regular and 175 foot-pounds on the high-strength, %-inch, expansion-type

Yieldable steel arches for roof support were used in slusher drifts at the Ruth mine operated by the Nevada Mines Division of Kennecott Copper Corp. 42 The yieldable steel sets replaced timber, which was high in maintenance cost and, through failure in key places, resulted in uneven draw of the ore from the panel. The ability of the yieldable steel sets to support the roof in the slusher drifts eliminated expensive branch-raise development, which has previously been necessary

to maintain uniform draw of the ore.

⁴¹ Barry, A. J., Panek, L. A., and McCormick, John A., Use of Torque Wrench to Determine Load in Roof Bolts; Part 3. Expansion-Type, 5%-inch Bolts: Bureau of Mines Rept. of Investigations 5228, 1956, 13 pp.

13 pp.

13 pp.

14 Nispel, R. C., Yieldable Steel Arches for Roof Support: Min. Cong. Jour., vol. 42, No. 7, July 1956, pp. 48-49.

Preformed, prestressed concrete structural units were used in 1954 to replace timber sets in a 100-foot section of the Bonney shaft, an entry to property of Banner Mining Co., Lordsburg, N. Mex.⁴³ The prestressed concrete shaft sets proved to be satisfactory in all respects. The cost of installation was about the same as for wood sets, and the concrete sets compare favorably in cost and weight with conventional wood sets and lagging. The advantages of concrete sets over wood are no decay, no fire hazard, and low maintenance cost.

An inclined tunnel driven through unstable ground in 1955 at the Tioga No. 2 open-pit iron mine, Grand Rapids, Minn., required solidifying of the ground with chemicals ahead of the advancing face. 44 Unstable ground was also chemically solidified at the Errington underground iron mine of Steep Rock Iron Mines, Ltd., near Atikokan, Ont. 45 The unstable ground was solidified at several locations on the

700-foot and 1,100-foot levels.

Stilfontein Gold Mining Co., near Klerksdorf in the Transvaal, placed about 1,300 cubic yards of Prepakt concrete in a pump station 3.000 feet below the surface.46 The forms were filled with coarse aggregate consisting entirely of waste mine rock taken directly from mine workings. The aggregate was prepared before placement by passing the waste mine rock through a trommel-type wash screen, removing the minus-%-inch material and rock dust clinging to the larger rock sizes. The gradation of coarse aggregate size ranged from 1 inch to more than 12 inches. The necessary mortar for bonding the packed aggregate was mixed on the surface and pumped down the shaft and into the forms through a one and one-half inch pipe. most satisfactory mix of mortar consisted of 2 cubic feet of sand to 1 bag of pozzolanic cement, a water-cement ratio of about 0.51, and 1 percent of Intrusion Aid by weight of the cementing materials. By using the Prepakt concrete method of placing it directly in the form from the mine working place, double handling of coarse aggregate was eliminated. Conveyance of the mortar by pipe eliminated mine cars carrying concreting material.

A Brieden pneumatic packing machine from Germany was installed in a mine of the Glen Alden Corp. in the Northern anthracite field of Pennsylvania. The second in the series of experiments in applying pneumatic packing for controlling strata movement (subsidence) above mine workings was reported in 1956.⁴⁷ The Brieden is a continuous-flow-type packing machine. Material for packing is fed to a hopper, from which it drops into a segmented, seven-compartment drum that rotates in a conical housing. As the drum rotates it drops the material into a discharge pipe through which compressed air travels at high speed. The air carries the material through pipes to the discharge point. The experiment demonstrated clearly that the machine could transport and pneumatically pack rock at a labor cost of about 35 cents per cubic yard of material packed and a compressed-

⁴⁴ Elgin, Robt. A., With These New Techniques Concrete Sets Prove Practical: Eng. Min. Jour., vol. 157, No. 9, September 1956, pp. 88-89.
44 Skillings' Mining Review, Chemical Soil Solidification: Vol. 45, No. 15, July 1956, p. 26.
44 Skillings' Mining Review, Solidify Ground in Underground Iron Mine: Vol. 45, No. 37, December

⁴³ Skillings' Mining Review, Solidify Ground in Underground Iron Mine: Vol. 45, No. 37, December 1956, p. 2.
46 Lamberton, Bruce A., Placing Concrete in a Deep Mine: Min. Eng., vol. 8, No. 10, October 1956, pp.

<sup>989-991.

47</sup> Whaite, Ralph H., Anthracite Mechanical Mining Investigations, Second Testing of Brieden Pneumatic Packing Machine: Bureau of Mines Rept. of Investigations 5273, 1956, 22 pp.

air cost of 19 cents; however, the decision of the cooperating company to abandon plans to recover pillars in the packed area prevented evaluation of the effectiveness of the backfilling for control of overburden subsidence.

SPECIAL REPORT ON DESIGN OF MINE OPENINGS IN STABLE GROUND 49

Although underground mining dates back almost to the beginning of recorded history, it has developed into its present state more as an art than as a science, and mining engineers today have to rely more on experience than quantitative methods. This lack of scientific approach does not reflect any lethargy or inability on the part of the mining profession. Rather, the problem has been complicated by many factors that make mining less amenable to the procedures or tools of science. For example, consider the structural design of a building. The engineer knows the strength of the component materials with reasonable accuracy. Generally the stress and the strain in the various structural components can be predetermined from theory. If the structure is too complicated for theory, accurate models can be made and tested. Finally, the full-scale structure can be instrumented with strain gages, load cells, etc., so that the results from the theoretical or physical-model study and prototype can be compared.

In contrast, consider the problem confronting the mining engineer. The strength of rock in place can at best only be approximated. Principally since about 1945 stress analysts have turned their attention to the structural problems of an underground opening or system of openings. Although the results of these analytic studies have been very helpful, a virtually unlimited field remains for future investigation. Finally, and with a few exceptions, the mining engineer has not been provided with satisfactory instrumentation. There were no instruments or methods available in 1956 for accurately measuring rock pressures, stresses, or strains in anything but relatively hard

uniform rock.
In order th

In order that the Bureau of Mines might contribute effectively to solution of these mining problems, the Applied Physics Laboratory was created in 1942. In the period 1942–56 this group worked on such diversified problems as stabilization of soil by freezing, diamond-drilling efficiency and diamond-bit design, physical processes involved in fragmenting rock with explosives, and the design of underground openings in rock. In 1956 its field of operation was devoted principally to problems involving rock (or soil) mechanics. Areas of investigation included rock fragmentation (the breaking of rock by dynamic stresses), mine design and operation in stable ground (the stability of relatively competent rock under static stress), and mine design and operation in unstable ground (the movement and failure of soils and incompetent rocks under static stress).

The dynamic-stress investigations have been concerned with breaking rock with explosives, although they could include breaking rock by other methods, such as with crushers, or the cutting action of

rock bits, etc.

⁴⁸ Prepared by Leonard Obert, chief, Applied Physics Laboratory, Bureau of Mines, College Park, Md.

Results of both fundamental and applied studies have been reported in Bureau of Mines and technical society publications.⁴⁹ One report of particular significance, by W. I. Duvall and T. C. Atchison and titled "Rock Breakage by Explosives," was being prepared in 1956. This report will present a unified theory for the mechanism of rock breakage by explosives.

The study of mine design in unstable ground has not reached the reporting stage. The objective of these studies is to determine the mechanism of block caving, particularly in regard to caving operations

at greater depths.

The design of mines in stable ground has been studied since creation of the Applied Physics Laboratory. A large number of reports has been published, the more significant of which cover (1) the distribution of stress around single and multiple mine openings as determined from theory and model study; 50 (2) instruments and procedures for measuring ground pressure and stress; 51 (3) application of both theory and measurement to the design of underground openings: 52 and (4) the

physical properties of mine rock. 58

The solution of problems related to mine design in competent rock starts with a laboratory study to determine the magnitude and direction of stress in theoretical or physical models of the proposed mine. Assumptions are usually made, and no allowance is made for rock defects. 54 Next, the physical properties of the rock and some geological information are obtained from diamond-drill cores (exploration) or from preliminary mine openings (shaft and early development). From this information and assuming an appropriate safety factor, pillar sizes, room dimensions, roof spans, etc., can be calculated. Finally, an experimental room is mined in the deposit and instrumented, permitting laboratory and field results to be compared. Such a procedure was used at the Bureau of Mines Oil Shale mine. Rifle, Colo., and at the Jonathan mine, Pittsburgh Plate Glass Co., Zanesville, Ohio. The agreement between the laboratory design, based on studies and exploration drill core, and the final full-scale room was remarkably good.

Il pp.

10 Dert, Leonard, Measurement of Pressures on Rock Pillars in Underground Mines, Part I: Bureau of Mines Rept. of Investigations 3444, 1939, 15 pp. Part II: Bureau of Mines Rept. of Investigations 3521,

of Strain Rock: Bureau of Mines Rept. of Investigations 4581, 1949, 11 pp. Generation and Propagation of Strain Waves in Rock, Part I: Bureau of Mines Rept. of Investigations 4683, 1950, 19 pp.

Duvall, Wilbur I., and Atchison, Thomas C., Vibrations Associated With A Spherical Cavity in an Elastic Medium: Bureau of Mines Rept. of Investigations 4692, 1950, 9. pp.

Blair, B. E., and Duvall, Wilbur I., Evaluation of Gages for Measuring Displacement, Velocity, and Acceleration of Seismic Pulses: Bureau of Mines Rept. of Investigations 573, 1954, 21 pp.

Grant, Bruce F., Duvall, Wilbur I., Obert, Leonard, Rough, R. L., and Atchison, T. C., Research on Shooting Oll and Gas Wells; Oil Gas Jour., vol. 49, No. 6, June 1950, pp. 65-73.

Duvall, Wilbur I., Stress Analysis Applied to Underground Mining Problems. Part I—Stress Analysis Applied to Single Openings: Bureau of Mines Rept. of Investigations 4192, 1948, 18 pp. Part II—Stress Analysis Applied to Multiple Openings and Pillars: Bureau of Mines Rept. of Investigations 4387, 1948, 11 pp.

Mines Rept. of Investigations 3444, 1939, 15 pp. Part II: Bureau of Mines Rept. of Investigations 3521, 1949, 11 pp.
Obert, Leonard, and Duvall, Wilbur I., Microseismic Method of Predicting Rock Failure in Underground Mining, Part I—General Method: Bureau of Mines Rept. of Investigations 3797, 1945, 7 pp.
Obert, Leonard and Duvall, Wilbur I., Use of Subaudible Noises for the Prediction of Rock Bursts, Part II: Bureau of Mines Rept. of Investigations 3654, 1942, 22 pp.
Merrill, Robert H., Design of Underground Mine Openings, Oil-Shale Mine, Rifie, Colo.: Bureau of Mines Rept. of Investigations 5089, 1954, 56 pp.
Obert, Leonard, Windes, S. L., and Duvall, Wilbur I., Standardized Tests for Determining the Physical Properties of Mine Rock: Bureau of Mines Rept. of Investigations 3891, 1946, 67 pp.
Windes, S. L., Physical Properties of Mine Rock, Part I: Bureau of Mines Rept. of Investigations 4459, 1949, 79 pp.
Windes of General Merchanical and Physical. Mechanical defects are those resulting from an imposed force and would consist primarily of fractures; the fractures classified as faults, joints, and fracture cleavage. Physical defects are innate defects in the rock such as bedding planes or vugs, which would constitute a source of weakness in the rock. would constitute a source of weakness in the rock.

The success of this procedure depends upon the ability of the research group to invent and develop or to adapt instrumentation that can be used in the mine to measure the stresses, strains, displacements, etc., that develop in the rock in place. A variety of strain gages, load cells, extensometers, and other devices have been developed for this purpose. Some of these instruments or procedures have a very specific application; others a general application.

For example, one method described illustrates the unusualness of the instruments and procedures required in studying ground pressure and movement problems. This method, referred to as the microseismic method, resulted from the discovery that rock under stress generates low-intensity seismic disturbances (subaudible rock noises) detectable with suitable geophones and amplifiers. These amplified rock noises can be reproduced audibly with earphones or loudspeaker and sound like the occasional rock noise that can be heard with the unaided ear.

In a series of laboratory tests rocks of various types were loaded in a hydraulic press in progressive increments. A geophone placed in contact with the rock picked up the "rock noises", which were amplified and graphically recorded. All rock types were found to generate these "rock noises"—some rocks at stresses as low as 25 percent of the crushing strength of the rock. Moreover, the rate at which these noises are produced increases with the applied stress varying; for example, in granite, 1 or 2 per minute at 25 percent of the crushing strength of the rock, to 100 or more per minute at 90 percent of the crushing strength. However, even at high stress only occasional rock noises could be heard without amplification.

To employ this phenomenon in detecting areas of stress in a mine, suitable geophone, amplifier, and recording equipment had to be developed. This equipment is described in Report of Investigations 3797.⁵⁶ Modifications of this basic equipment have been developed for special application.

The microseismic method has been employed in studying many mining problems, such as detecting "loose" rock in a mine roof, determining pillar loading, particularly in operations involving the recovery of pillar ore, predicting rock bursts, and controlling bedded mine roof. The details of this method, together with examples of the type of problems to which it can be applied, were described in a report to be published in 1957 as Bulletin 573.

The microseismic method is one of a number of special tools developed for studying ground-pressure problems. Other instruments were being developed. These instruments, with an improved theory and the accumulating data that have been made available both from model studies in the laboratory and operational studies in mines, have made possible a quantitative approach to mining in stable ground.

DRAINAGE

The corrosive and erosive effects of acid mine waters on metals and alloys used in pumping in the anthracite region of Pennsylvania

So Obert, Leonard and Duvall, Wilbur I., The MicroSeismic Method of Predicting Rock Failure in Underground Mining, Part II: Bureau of Mines Rept. of Investigations 3803, 1945, 14 pp.
Work cited in footnote 51.

were reported in 1956.57 The test program consisted of stationary and revolving-spindle immersion tests. In the stationary immersion tests, spool-type specimen holders containing specimens of metals and alloys were suspended in the sump, main pump discharges, or flumes from pump discharges to receiving streams at four mines. In the revolving-spindle immersion tests specimens of metals and alloys were spun in mine water from a selected mine to study the effects of velocity on corrosion. Corrosion rates obtained from the revolvingspindle tests were higher than those from the stationary immersion tests. Erosion or destruction by purely mechanical action may be accelerated by the effects of either chemical or electrochemical corrosive attack. Erosion may also accelerate corrosion by removing the initial corrosion products that normally tend to limit further corrosive action.

On the basis of the tests, types 302, 303, 304, 316, 410, 430, 446, Armco 17-4 PH, and Armco 17-7 PH stainless steels—cast stainless steel alloys (ACI) CE 30, CF8M, and HC—and titanium were found to have adequate corrosion resistance to the most severely corrosive acid mine waters in the anthracite region. The corrosion rate of the 89-2-9 bronze alloy was one-fourth that of the 75-15-10 bronze alloy ordinarily used in the anthracite region to resist corrosion by acid mine water. The weight loss on the 89-2-9 bronze alloy after 30 days testing was more than 300 times that of the type-HC stainlesssteel alloy, which had the highest average weight loss of the stainless steels after 150 days of testing. Increase in the lead content of the bronze alloy appeared to be detrimental, because the corrosion rate increased as the lead content increased.

VENTILATION

At the International Nickel Co. Frood-Stobie mine in Ontario, an air-conditioning system raises the temperature of cold air in winter and lowers the temperature of warm air in summer.⁵⁸ During the winter a fan blows fresh air from the surface through a 300-foot vertical shaft into 2 open stopes and thence into the main intake. In the two stopes, water is sprayed into the air, and as it turns to ice it gives up heat. This heat, along with that absorbed from the wall rock, has resulted in maintenance of an incoming air temperature of 27° to 30° F. The ice formed from the sprayed water accumulates in the stopes, and in summer it will be melted as the warm air passes through the stopes. It is expected that the warm air will be cooled 5° to 10° F.

HEALTH AND SAFETY

Mine health and safety studies often indicate a trend in the use of certain types of machines or mining methods. Bureau of Mines mine health and safety studies in 1956 covered several important subjects. The potential ignition hazards associated with compressedair blasting were investigated. 59 Originally developed for use in

⁸⁷ Ash, S. H., Dierks, H. A., Felegy, E. W., Huston, K. M., Kennedy, D. O., Miller, P. S., and Rosella,
J. J., Corrosive and Erosive Effects of Acid Mine Waters on Metals and Alloys for Mine Pumping Equipment and Drainage Facilities; Anthracite Region of Pennsylvania: Bureau of Mines Bull. 555, 1955, 46 pp.
⁸⁵ Mining Engineering, Mine Ventilation: Vol. 8, No. 7, July 1956, p. 685.
⁸⁶ Hanna, N. E., Zabetakis, M. G., Van Dolah, R. W., and Damon, G. H., Potential Ignition Hazards Associated With Compressed-Air Blasting Using a Compressor Underground; Bureau of Mines Rept. of Investigations 5223. 1956, 33 pp.

coal mines where on-shift blasting with explosives was prohibited, compressed-air blasting has been used for the past 15 years as a substitute for fixed explosives. The coal is dislodged by a high-pressure discharge of air from a pressurized shell placed in the borehole. Mobile compressor units, developed for furnishing air to the shell and proposed for use at the working face, are subject to the usual hazards associated with electric cables and motors. In addition, the compression of a flammable gas-air mixture, such as might enter the compressor at or near a poorly ventilated working face, could constitute an explosion hazard. On the basis of the investigation, it appeared that there will be no ignition hazard in operating an Armstrong-type compressor and its blasting device if the atmosphere in which the compressor is operated is never within the flammability limits specified in the provisions of the Federal Coal-Mine Safety Act and Federal Mine Safety Code.

The frequency and seriousness of fires in coal mines from 1947 to 1955, in which belt conveyors were the contributing cause, prompted the Bureau of Mines to review the safety aspects of controls and operations of belt conveyors. 60 Permissible mining-loading equipment was reviewed so that the mining public could compare the various machines of this nature approved as permissible.⁶¹ The Bureau of Mines investigates and approves equipment as permissible for use in gassy and dusty mines only when it meets certain minimum The first mining-loading machine was approved as permissible April 26, 1929, and up to January 1, 1955, 30 approvals for designs of machines has been granted. Drill-dust-collecting devices used in connection with rock drilling in coal mines are also approved by the Bureau, and as of January 31, 1956, 38 approvals had been granted for permissible units or combination units. 64

Information on equipment for analyzing mine atmospheres was published in 1956.63 Analysis of mine atmospheres is important in maintaining safe conditions in mining operations. Because of the diverse nature of the constituents of mine atmospheres and the various concentrations in which these constituents may occur, no one type of apparatus is suitable for their determination under all conditions that may be encountered in underground operations.

The use of high-speed machines for modern mechanized coal mining has greatly increased the production and dissemination of fine coal The control of this coal dust to prevent ignition dust in mine entries. and development of widespread mine explosion was the subject of a manuscript published by the Bureau of Mines.⁶⁴ To be effective, rock dust must be applied uniformly and continuously on the rib and roof surfaces as well as on the floor of coal-mine entries. The rate of application must be adequate to raise the incombustible content of the mine dust to a minimum of 65 percent.

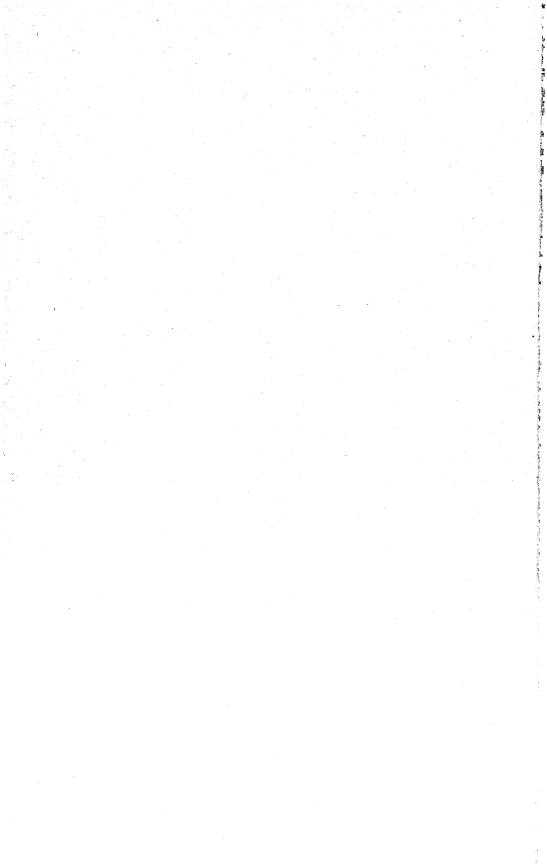
⁶⁰ Brown, C. L., Safety Aspects of Controls and Operations of Belt Conveyors in Coal Mines: Bureau of Mines Inf. Circ. 7749, 1956, 15 pp.
⁶¹ Bruno, H. B., Permissible Mining-Loading Equipment: Bureau of Mines Inf. Circ. 7736, 1956, 33 pp.
⁶² Owings, C. W., Anderson, F. G., Harmon, J. P., Johnson, L., and Berger, L. B., Drill-Dust Collectors Approved by the Bureau of Mines as of January 31, 1956: Bureau of Mines Inf. Circ. 7741, 1956, 25 pp.
⁶³ Watson, H. A., and Berger, L. B., Equipment for Analyzing Mine Atmospheres with Special Reference to Haldane-Type Apparatus: Bureau of Mines Inf. Circ. 7728, 1956, 51 pp.
⁶⁴ Hartmann, Irving and Westfield, James, Rock Dusting and Sampling, Including Wet Rock Dusting of the Bureau of Mines Experimental Coal Mine: Bureau of Mines Inf. Circ. 7755, 1956, 13 pp.

MINING METHODS AND PERFORMANCE

Major responsibilities of the Bureau of Mines are the accumulation and dissemination of information on mineral technology. The series of information circulars and bulletins on mining methods and costs published from 1928 to 1939 was an important phase of the Bureau's program in this respect. The program was interrupted by other activities resulting from the emergencies of World War II and the Korean War but was reactivated in 1955. One report was published in 1955 and 5 in 1956.65

The reports are intended to disseminate current information on mining methods and practices, with emphasis on those elements that influence the selection of efficient exploration, development, and mining procedures. When performance data are available for publication, they are reported in units of labor, power, and supplies, further supplemented by mine production costs in dollars, when such data are obtainable. These data are the means to evaluate comparative efficiencies and performance attained by the reported mining practices.

⁶⁵ Dare, W. L., Lindblom, R. A. and Soule, J. H., Uranium Mining on the Colorado Plateau: Bureau of Mines Inf. Circ. 7726, 1955, 60 pp.


Trengove, R. R., Methods and Operations at the Kaiser Steel Corp., Eagle Mountain Iron Mine, Riverside County, Calif.: Bureau of Mines Inf. Circ. 7735, 1956, 25 pp.

Reynolds, John R., Mining Methods and Costs at the Morning Mine, American Smelting & Refining Co., Shoshone County, Idaho: Bureau of Mines Inf. Circ. 7743, 1956, 40 pp.

Popoff, C. C., Block Caving at Kelley Mine, The Anaconda Co., Butte, Mont.: Bureau of Mines Inf. Circ. 7758, 1956, 102 pp.

Wideman, F. L., Block-Caving Method at the Sunrise Mine, Platte County, Wyo.: Bureau of Mines Inf. Circ. 7759, 1956, 30 pp.

Dare, W. L. and Durk, R. R., Mining Methods and Costs, Standard Uranium Corp., Big Buck Mine, San Juan County, Utah: Bureau of Mines Inf. Circ. 7766, 1956, 51 pp.

Statistical Summary of Mineral Production

By Kathleen J. D'Amico 1

THIS SUMMARY is identical to the summary given in volume III of this series of mineral production in the United States (including Alaska and Hawaii), its island possessions, the Canal Zone, and the Commonwealth of Puerto Rico and of the principal minerals imported into and exported from the United States. For further details on production see commodity and area chapters. A summary table comparing world and United States mineral production also is included.

Mineral production may be measured at any of several stages of extraction and processing. The stage of measurement used in the chapter is normally what is termed "mine output." It usually refers

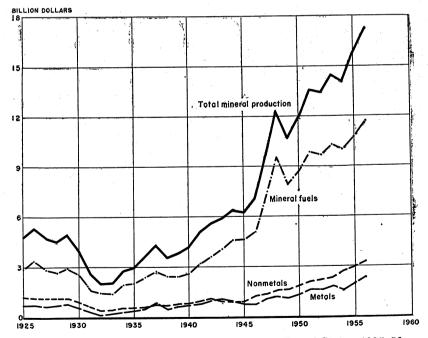


FIGURE 1.—Value of mineral production in the United States, 1925-56.

¹ Publications editor.

to minerals in the form in which they are first extracted from the ground but customarily included, for some minerals, the product of

auxiliary processing operations at or near mines.

Because of inadequacies in the statistics available, some series deviate from the foregoing definition. The quantities of gold, silver, copper, lead, zinc, and tin are recorded on a mine basis—that is, as the recoverable content of ore sold or treated; the values assigned to these quantities, however, are based on the average selling price of refined metal, not the mine value. Mercury is measured in the form of recovered metal and valued at the average New York price for

Data for clays and limestone, 1954-56 include output used in making cement and lime. Mineral-production totals have been adjusted

to eliminate duplication of these values.

The weight or volume units shown are those customary in the particular industries producing the respective commodities. No adjustment has been made in the dollar values for changes in the purchasing power of the dollar.

TABLE 1.—Value of mineral production in continental United States, 1925-56. by mineral groups 1

(Million	dollars)
----------	----------

Year	Mineral fuels	Non- metals (except fuels)	Metals	< Total	Year	Mineral fuels	Non- metals (except fuels)	Metals	Total
1925. 1926. 1927. 1928. 1929. 1930. 1931. 1931. 1932. 1933. 1934. 1935. 1936. 1937. 1938. 1998.	2,875 2,666 2,940 2,500 1,620 1,413 1,947 2,013 2,405 2,798 2,436	1, 187 1, 219 1, 201 1, 163 1, 163 671 412 432 520 564 685 711 622 754 784	715 721 622 655 802 507 287 128 205 277 365 516 756 460 631 752	4, 812 5, 311 4, 698 4, 484 4, 908 3, 980 2, 578 2, 000 2, 050 2, 744 2, 942 3, 606 4, 265 3, 518 3, 808 4, 198	1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1952 1953 1954 1955 1955 1955 1955 1955	4,028 4,574 4,569 5,090 7,188 9,502 7,920 8,689 9,779 9,616 10,257 9,919 10,780	989 1, 056 916 836 888 1, 243 1, 338 1, 552 1, 559 1, 822 2, 079 2, 163 2, 350 3 2, 699 3 3, 276	890 999 987 900 774 7, 219 1, 101 1, 351 1, 617 1, 617 1, 811 1, 518 2, 055 2, 362	5, 10' 5, 623 5, 93 6, 31(6, 23) 7, 06: 9, 61(12, 27; 10, 58(11, 852) 13, 359 14, 418 14, 060 15, 804

Data for 1925-46 are not strictly comparable with those for subsequent years, since for the earlier years
the value of heavy clay products has not been replaced by the value of raw clays used for such products.
 Includes Alaska and Hawaii.
 The total has been adjusted to eliminate duplicating the value of clays and stone.

TABLE 2,-Mineral production 1 in the United States, 2 1953-56

	190	1953	1954	7	1955	5	1956	9
Mineral	Short tons (unless other- wise stated)	Value (thousand dollars)	Short tons (unless other- wise stated)	Value (thousand dollars)	Short tons (unless other- wise stated)	Value (thousand dollars)	Short tons (unless other- wise stated)	Value (thousand dollars)
MINERAL FUELS								
Asphalt and related bitumens (native): Bituminous limestone and sandstone Galboutte. Carbon dioxide, natural (estimated)thousand cubic feet	1, 440, 544 60, 505 670, 600	4,349 2,184 203	1, 337, 822 75, 943 638, 900	3,686 2,724 211	1, 427, 207 82, 822 702, 417	4, 111 3, 117 234	1, 458, 533 89, 003 713, 030	4, 114 3,822 235
Bituminous ** Lignite Pennsylvania anthracite Helium Natural gas Monida.	454, 439 2, 851 30, 949 157, 652 8, 396, 916	2, 241, 150 6, 794 299, 140 2, 103 774, 966	387, 463 4, 243 29, 083 189, 873 8, 742, 546	1, 759, 290 10, 330 247, 870 3, 202 882, 501	464, 633 26, 205 235, 868 9, 405, 351	2, 092, 383 206, 097 3, 881 978, 357	500, 874 28, 900 266, 937 10, 081, 923	2, 412, 004 236, 785 4, 413 1, 083, 812
Natural gasoline and cycle productsthousand gallons LP-gases	5, 327, 448 4, 692, 870 204, 209 2, 357, 082	406, 242 191, 598 1, 618 6, 327, 100	5, 385, 282 5, 204, 304 2, 244, 163 2, 314, 988	402, 418 178, 994 2, 258 6, 424, 930	5, 844, 904 5, 972, 698 273, 669 2, 484, 428	423, 775 195, 231 2, 283 6, 870, 380	5, 807, 100 6, 487, 413 292, 097 2, 617, 283	431, 958 265, 185 2, 460 7, 262, 925
Total mineral fuels	1 2 3 4 9 1 1 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10, 257, 000		9, 919, 000		10, 780, 000		11, 708, 000
NONMETALS (EXCEPT FUELS)								
Abrasive stone: 4 Grindstones and pulpstones Millstones Pebbles (grinding) Triba-mill lines (natural)	2, 499 (6) 2, 472	170 18 81 81	(6) 2, 218 (8) 3, 070	(5)	2, 799 (6) 2, 130	(6) 68	(6) (6) 2, 330	(6) 4 4
Asbestos Bartle Boron interals Bromine Bromine Cement thousand properties	54, 456 944, 212 715, 228 164, 143 260, 697	4,857 9,436 17,668 35,372 698,268	47, 621 883, 283 790, 449 187, 399 274, 703	4, 698 8, 508 26, 714 41, 313 763, 413	1, 108, 103 924, 496 184, 454 306, 128	4, 487 10, 809 33, 816 39, 856 884, 381	1, 299, 888 1, 299, 888 944, 950 196, 730 321, 295	4, 742 13, 498 39, 592 47, 434 989, 233
Clays. thousand short tons. Emery Epson asks from epsomite. Foldsons alts from epsomite.	10, 562	125,025 144 4 504	42, 497 9, 758 (5)	123, 165 132 (5)	48, 106 10, 735 100 100		7 50, 149 12, 153 (6)	(6) 154
0		15, 737 15, 737 989 502	245, 628 245, 628 14, 183 (6)	9, #80 12, 333 971 613	405, 578 279, 540 11, 835 (6)		922, 429 329, 719 9, 812 (6)	14, 257 14, 257 1, 073 925
draphite. Gypsum	6, 281 8, 292, 876	23, 175	8, 995, 960	© 27, 384	(6) 10, 683, 733	33, 938	(6) 10, 316, 483	(6) 34, 099

See footnotes at end of table.

TABLE 2,-Mineral production 1 in the United States, 2 1953-56-Continued

	1953	23	1954	4	1955	ις.	1956	9
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless other- wise stated)	Value (thousand dollars)	Short tons (unless other- wise stated)	Value (thousand dollars)	Short tons (unless other- wise stated)	Value (thousand dollars)
NONMETALS (EXCEPT FUELS)—continued								
Line oxide pigment materials (crude). Lime Magnesium Magnesium Magnesium	9, 666, 845 553, 147	112,001	16, 259 8, 620, 735 284, 015	129 101, 525 1, 391	16, 190 10, 469, 536 486, 088	157 126, 890 2, 713	15,362 10,567,252 686,569	156 135, 532 2, 502
ement)	136, 824	10,460	206, 257	9,469	155, 779	12, 704	169, 019	13,668
	73, 259	1,824	81.073	1.734	95, 432	2.058	(e) 86.309	(9) 1 850
	1, 068, 706 198, 751 12, 504	2,154 1,440 76,632	668, 788 219, 703 13, 821	2, 393 1, 762 86, 669	842, 113 286, 157 12, 265	18, 2, 57 282 370 370 370	887, 871 310, 800 15, 747	2,747 2,747 97,922
Potassium saits. K ₂ O equivalent. Pumico. Pyrites. long tons.	1, 731, 607 1, 338, 206 922, 647	65, 403 2, 510 5, 006	1, 918, 157 1, 647, 397 908, 715	71,819 2,974 7,159	8 2, 005, 863 1, 804, 488 9 1, 006, 943	8 76, 176 3, 369 9 8, 391	2, 103, 347 1, 482, 214 1, 069, 904	79, 751 4, 750 9, 743
Quartz from the pegmatites and quartzite. Said (common). Sand and gravele	245, 755 21, 013 440, 086	1, 384 78, 146 374, 451	(10) 20, 926 556, 160	(10) 105, 487 503, 293	(10) 22, 693 9, 591, 683	(10) 123, 257 9 535, 510	(10) 24, 206 624, 697	(10) 136, 139 595, 101
State and Santonio (Bround). State Sodium carbonate (natural). Sodium sulfate (natural).	698, 792 698, 589 419, 206 248, 230	12,638	760, 921 527, 282 349, 701	13, 961 2, 961 2, 536	(11) 760, 440 613, 594	(1.) 12, 914 15, 901	(11) 645, 479 652, 891	(11) 11,666 17,400
Stone 12 thousand short tons. Strontum minerals (crude) Surfurum minerals (crude)	303, 814 50	476, 168	409, 196	(18)		9 702, 142 4	503, 396 4, 040	761,876 77
Trasch-process mines do do Suffur recovered elemental do do do		141, 054 769 8, 059	5, 328, 040 185, 085	142, 014 (5) 11, 209	5, 839, 300 199, 899	163, 156 (5) 12, 585	5, 675, 913 185, 532	150, 356 (6)
Tale, pyrophyllite and soapstone Titanium-iron concentrate (non-titanium use) Triboli	631, 538 1, 585 36, 183	3,524	(8) (1) (1) (1)	(e) 3, 493 450	725, 708 1, 350	8 4, 517 7	739, 039	4,859
Vermiculite Value of tiems that cannot be disclosed: Aplife, brucite, calcium- macenesium chloride certain class distonite incline treents		2,445	195, 538	2, 538	204, 040	2, 702	192, 628	2, 543
lithium minerals, ollvine, sharpening stones, wollastonite, and value memoriated by footnote 5. Excludes value of clays used for committee by footnote 5.		10		9		3		;
101 CCTTCCT (1000)		14, 410		22, 080		30,805		40, 778
Total nonmetallic minerals.		2, 350, 000		14 2, 629, 000		14 2, 969, 000		14 3, 276, 000

METALS			-					
Antimony ore and concentrateantimony content Banxie Ions tons dried emitvalent	2,161	(16)	766	(16)	633	(18)	590	(16)
entrate	5	355	,	304		268	460	237
					153,		16 207, 662	
od	1, 775, 489		2, 219, 396	(18) (18)	2, 438, 546	(E)	657,	3,462
				400 000			2,8	
Gold (recoverable content of ores, etc.)		68, 540		492, 929 64, 306	· ·	65, 805	1, 100, 210	
roduct from sinter)	1000 1			200 (-)	•		3	
thousand long tons, gross weight.	117, 198	790, 491	76, 126	525, 818	105, 237	748, 602	8 96, 730	8 747, 665
Lead (recoverable content of ores, etc.)				89, 165		100, 731	352, 826	
Manganese ore (30 percent or more Mu)				15, 170				
Manganiferous residuum				(15)				
Mergity 76-point fisher				4, 903				
th				64, 070		66,919		
Nickel (content of ore and concentrate)				(15)				
Silver (recoverable content of ores, etc.)troy ounces	37, 570, 838	34,004	36, 941, 383	33, 434		33, 666		35, 250
				į				
Ilmenite gross weight	512, 176	7, 223	531, 895	7,375	573, 192	10,268		14, 199
Minimaten on and amountate	0,470	703		870				L, 749
	717, 090	110, 244		(17)			3 000 000	67, 570
Variadium	6, 114, 851	E		(F)		E		(18)
of ores, etc.)	547, 430	125, 321	473, 471	102, 180	514, 671	126, 609	542,	148, 503
	21, 234	794		820			(E)	(1S)
Value of items that cannot be disclosed: Magnesium chloride for magnesium metal platinum-croin metals (cride) rere-earth								
metals concentrates, tin (1953–55), and values indicated by foot-								
note 15	1	34, 378		38,880	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40, 596		45, 242
Motel motels		1 011		000		1 2		9
T Ords Alfordia		1, 011, 000		1, 016, 000		2, 009, 000		2, 902, 000
Grand total mineral production		14, 418, 000		14, 066, 000		15, 804, 000		17, 346, 000
1 Production as measured by mine shipments, sales, or marked	marketable production		1 Beginning wi	th 1954, sand	11 Beginning with 1954, sand and sandstone (ground) included with sand and grave)	(promd) inc	inded with san	d and oraxel

rroduction as measured by mine shipments, sales, or marketable production (including consumption by producers).

 Excludes sharpening stones, value for which is included with "Nonmetallic items Includes small quantity of anthracite mined in States other than Pennsylvania. ² Includes Alaska and Hawaii.

that cannot be disclosed.

Figure withheld to avoid disclosing individual company confidential data; value included with "Nonmetal items that cannot be disclosed." Weight not recorded.

'Excludes certain clays, value included with "Nonmetal items that cannot be

10 Beginning with 1954, quartz from pegmatites and quartzite included with stone. Final figure. Supersedes preliminary figure given in commodity chapter. Revised figure.

¹³ Excludes abrastye stone, bituminous limestone, bituminous sandstone, and ground soapstone, all included elsewhere in table. Also excludes limestone for cement and lime in 1953.
¹⁴ Less than \$1,000.
¹⁴ The total has been adjusted to eliminate duplication in the value of clays and ¹¹ Beginning with 1954, sand and sandstone (ground) included with sand and gravel

stone

1 Figure withheld to avoid disclosing individual company confidential data, value
included with "Metal items that earnot be disclosed."

1 Figure with "Metal items that cannot be disclosed."

1 Indiudes 45,710 short tons of concentrate produced in 1955 and 1956 from low-grade

1 Indiudes 45,710 short form of concentrate produced in 1955 and 1956 from low-grade

1 Data not available.

TABLE 3.—Minerals produced in the United States, by States, and principal producing States in 1956

_			-													
State Ar	Anti-	Aplite	Asbes- tos	Asphalt	Barite	Bauxite	Beryl- lium	Boron	Bromine	Brucite	Calcium magne- sium chloride	Carbon dioxide	Cement	Chro- mite	Clays	Coal
Alabama				2		2					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CI		7	37
Arizona			2											*	7	> >
			e.		m ->	-	>	-	65		6	- F	>	6	77	2
Colorado			•		-		2	1				-01	7	,	>>	- >
Connecticut						-	>								>	
Plotida Florida	-										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7		> >	
					4	8	>						~ ~		4	>
nii	1,					-	-	-	-			1			>	-
Hipois	-				>		1		1			-	>7		> 7	4
						; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			1 1		; 1 1		-m		->	" >
-		1										1 9 9 9 1 1 1	>		~	>
+	1	-			-	1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1						>	-	>	7
-		-		>							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		>	-	>	က
÷	-	1				-	17	-	-			-	>7		> 7	
Maryland		1	-		-	1	-	-		1		-	> 7		> 7	7
otts													•		->	-
									2		-		4		~	
-	- !			1 1 1 1	1	1			1				>	-	>	
													>		>	-
÷	-	-		>	67-		-						>	-	>	ے.
-	-	-			>	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	>		>	>
Nevada	6	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	6		-	-		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		>	1	> 7	!
	'				,		4								- >	
<u> </u>											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1			~	
					>		က					-		-	>	>
New York	-												>	1	>	-
<u> </u>					!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		>						1		>	-
	-	!			-		-	-	1				-1.	-	>"	>7
Oklahoma	-			4			-			1	H		>>	-	1 -	7
												7		2	~ ~	-
-	;			***************************************	1								Н		.03	22
Rhode Island	-					1					1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
South Carolina	-				>								1		>	
South Dakota	-						-						>	-	>	>`
-	-	-			>								>`		>°	>
I exas.	-			46	1	1			-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-6	> 7		0-	Ţ
-	-	-	-	•			1					•	>		> 7	>
		-	4.	1	1		7		1	1		1	10		> >	7
							. !					4	~>	>	->	- >
sic	-	-			1				4	1	67	1	7	. :	>	
Wisconsin	1	1													7	

¹ Includes Alaska and Hawaii.

TABLE 3.—Minerals produced in the United States. 1 by States, and princinal pro

	1			7 200 > > >		دد ا د ا ا د ا د دد ا ها ا	0 42		7 707 707	(m)	
						دد د ددد [∞]	ω 4-> >		7 707	, m	
[2] [8]						F F F F F F F F F F F F F F F F F F F	45		707		
69						7	4.5		>07 >		
· · · · · · · · · · · · · · · · · · ·						רק ק	١٦ ١ ١ ٢			co i	
				> >		77				, m	
[C] [C]					© 0	77 7 7					
CQ				7) 69	7 7 7	7			0	
				7	α	7 7	7		7007 7 11		
					2	7 77	7		707 7	(n)	
CS CS						7 77			7m7 7		
ρ. (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B						7 7				(m)	
S				7		7 77			7	m	
C9 C9				7		7 77			1		
63				7		7 77			1		
				7		7 7					
C3 C9						7	-				
C3						77	1		-		
CS						> >			-		
ο ο										-	-
69					-	•					
	4 2			-	2	>	>	12.1.1	>		
	T					>`		1		-	-
				-/-	*	> 7	>		>		-
- κ				-	-	> 7	-			-	
	7					>	7	; ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		2	
co .		-			-	>	-		7	-	
8	^			1		>	>		-		
eq.											
6							-		>7	-	
8	7						7	1 1 2 2 7	•		
	٨			1	-	>	>				
			-				. ;	63			
							-			-	
	7			*		>	- 7		>	-	
Texas						6	>				
Utah	2				· · · · · · · · · · · · · · · · · · ·	17	2	1	* >	7	1
Vermont	۸	1				>	>				
Washington				^	1	>		-	>		
	*		-			41	>		>	-	-
Wisconsin	1					-17	-				
						>		-		-	-

¹ Includes Alaska and Hawaii.

TABLE 3.—Winerals produced in the United States, by States, and principal producing States in 1956—Continued

State	Iron ore	Iron oxide pigments	Kyanite	Lead	Lime	Magne- site	Magnesium chloride	Magnesium compounds	Manga- nese	Mer- cury	Mica	Molyb- denum	Natural gas	Natural-gas liquids	Nickel
Alabama	3				7					/-	4	1	7	1	
Arizona				>>	>>				€ CO	>>		69	77		
ArkansasCalifornia	>>			>	>>	3		1	* >	1	7	>	 -	>61-	
Connecticut	7			4	7			1 1			>	1	>	>	
Delaware							-			-	-	-	<i>F</i>		
Florida	7	2			>				7		က		>		
Hawaii	-			i	>					-6					
Idaho				77 - P	4					•			7	7	
Indiana				>	7								~		
Iowa		-			>					-			1	-1	
Kansas	1			>7	-								>>	>>	
Louisiana.	-			-	7						-		.03	.es	-
Maine				-	>	-	1				>	-	1		-
Massachusetts	1				> 7								-		
Michigan	2	1			~			63					7	>	
Minnesota		>		-	>				>				P	1	
Missouri	~~	7		-	2								->	-	
Montana	~	. !		>	>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		67				>	>	-
Nebraska		1	1	17		6			-	2		7	>	>	
New Hampshire	-			-	> !!				1	1	>				-
New Jersey	>				>		1	eo ~				7	4		-
New Mexico	>7	4		> 7	>7			>	>		>	+	د ا	>	
North Carolina	-	•		->							H				
North Dakota										-	-		7	> 7	
Oklahoma				7	7->								> m	>4	
Oregon	7	3		->	-					4				1	
Pennsylvania	~	>			က					-	>		1	-	
Khode Island			6	!					-	-	2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
South Dakota	7		1		7						-				
Tennessee	~			>	7		1,	-	>		>		>	17	
Texas.	>"			10	>		-	4		>	-	6	-1	- 7	1
Vermont	#			•	> 7							3	>	>	
Virginia		>	-	7	~				>		-	-	7		
Washington	>			>	>7								7	7	
Wisconsin	7			7	>>								•		

¹ Includes Alaska and Hawaii.

p _o	
Ħ	
臣	
ä	
ŏ	
ı	
9	į
<u> </u>	
п 1956—(
-=	
es	
ä	-
ŭ	
50	
믕	
Ĕ	
Ö	
īď	
E,	
ñ	
nc	
급	
ρ,	
꼄	
ය	
Š,	
흊	
尧	
52	
۵,	
7.	
ĕ	
ţ	
ďΩ	
eq	
ž	
G	
•	
4	
¤	
Ξ	
ĕ	
ĕ	
ಶ	
ď	
72	•
.a.	
<u>1</u>	
3	
×	
ı,	
တ	
TABLE	
B	
Ą	

TABLE	8.—M	neral	s prod	nced 11	the Unite	TABLE 3.—Minerals produced in the United States, by States, and Principal producing States in 1950—Continued	, states, a	na princ	ipai pro	ne Surann	T SOIR	1000	TOOTIET	nant		
State	Olivine	Peat	Perlite	Petro- leum	Phosphate rock	Phosphate Platinum-group Potassium rock metals	Potassium salts	Pumice	Pyrites	Rare-earth metals	Salt	Sand and gravel	Silver	Slate	Sodium car- bonate	
Alabama				>							>	7		-		
Alaska						_					-	>	>	-		
Arizona			4					ro Cr		>	!	> 7	#	-		
Arkansas	-			>0		6	6	-	ec	4	7	-	7	->	2	
Colorado		>	-67	ح ہ				۲>	4	7	>	>	>	.		
Connecticut		7						-			-	>		-		
Delaware	-	1			-					6	-	> 7		-		. L
Florida	-		-	>				-	1	4		> >		-		
Hawaii	-	>						>			>	7	1			
Idaho					8		-	4		က	-	>'		i		
Illinois	-	>		>							-	no -	>	1		<i>ع</i> د
Indiana	-	>		>							-	> 7				-
lows		4,						-/	-		1	> ?				•
Kansas		-	-	> 7							-	>	>			~
Lonisiana	-			-00							4	>		-		٠.
Maine		7		-							-	>	-	>		
Maryland							>				1	>	-	-		
Massachusetts		>	-	-								>		1		
Michigan	-	·		>			4				-	7	>	-		
Minnesota		>						-			-	> 7		-		-
Mississippi	!	-	-	> 7								>	7			•
Montana				>>	4			7	7			· >	.01			
Nebraska				>				>				>	1			
Nevada			60	>				>			>	>	>	1		
New Hampshire		>				1					-	> 7		-		
New Jersey		>						C		70.70	1	> 7	7			
New Mexico	-	-	-	> 7			-	٩		> ز	>00	>>	->	4		
North Carolina	-	<u>-</u>		-							,	>	>			
North Dakota	'			>				>			-	>		-		_
Ohio.		>		· .							>`	4	-	-		_
Oklahoma		-	-	4				>			>	>7			66	
Oregon		!	-	-			-	>	/*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		> >	> >	60		
Rhode Island	-	!		-					-			>	-			_
South Carolina										-		>				•
South Dakota		-	-	>							-	>	>	-		-
Tennessee	-	-		>'	67				-	-	-	>	>	-		_
Texas		-	-				6	>7	-	-	N -	> 7	65			
Varmont	-	-	>	>	>		•	>	7		-	>	-	7		•
Virginia				7					.67		>	~	>	>		
Washington	67	63		. !				>	1		-	>	>	-		
West Virginia		1	-	>					-		>	~ ?	-			
W ISCOUSIB.	-	-	-	7				7					>		-	
11 June 19 19 19 19 19 19 19 19 19 19 19 19 19			-	-												_
¹ Includes Alasks and Haw	me Haw	7811.														

	7
	į
٠,	i
	Š
	έ
1	ď
i	ò
. 1	
	2
	ğ
	+
٠,	÷
	h
	š
•	Ξ
,	Ξ
	چَ
	Ē
٠	~
	Ë
	2
	Ė
	Ξ
•	c
	۲
	_
	ď
•	ά
į	Z
	>
•	_
•	T.
	Ċ
	g
5	O
7	ğ
	Ľ
į	Ξ
F	_
4	9
7	7
	Ξ
7	J
-	3
3	₹
7	3
	5
•	2
-	3
2000	EIS
in one la	TRIATIO
Min one la	RIGHT
Winds	- Willera
o Minnend	
0	
0	
•	
0	LADILE O. THURSTAL

\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TABLE 3.		nerals	produc	ed in ti	Minerals produced in the United States. by States, and principal producing States in 1956—Continued	r by	States, a	nd princ	ipal pro	ducing S	tates in	1956—(Continue	ď		
1	State	Sodium		Stron- tium	Sulfur	Talc, pyrophyllite, and soapstone		Titanium		Tungsten	Uranium	Vana- dium	Vermicu- lite		Zinc	Zirco- nium	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Alabama	-	>			>											
0.000000000000000000000000000000000000	Alaska		>		-	1											
1		!	>>					-		>	4	က	3		>		
		<u> </u>	->	T	1 00	-22		-	-	6	/~						
0.000000000000000000000000000000000000	Colorado		. 2.		-					۷ >	- ~				> >	1	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Delaware		> 7		-		-			-	-				-		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Florida		>>		-		Ī	c		-							
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Georgia		->			4		7		-	-				-	-	
6	Hawaii	-	>									-	-	1	Ì		
9	Idaho		>					4		>					6		
2	Tradical		?		>		-		-	. !					ح د		
9	Town		> 7		>		Ì		-	-	-						
6	Kansas		> 7		-		Ī				-		-				
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Kentucky		>>				<u> </u>	-	-	-	-				>		
	Louisiana.		>		>				-	-	-				>		
6	Maine		>	1								!			-		
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Maryland		>			>	-						!		-		
9	Massachusetts	-	>				-								-		
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Minnesote	-	.7-						-	-	-					!	
9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mississippi		>7		-		Ì	-	-	-							
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Missouri		>7				Ì	-	-						_		
6	Montana	1	> 7		-/		-			-	-				>		
	Nebraska		> 7		>	>	1	-			-		-	1	-		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nevada		>			1	-	-	-	-					1		
2 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	New Hampshire									-	>				>		
2	New Jersey		>		>					-			-	-	-		
2 2 2 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	New Mexico		>		>					>		4	1	-	> 7		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	New rork		>		-	-	:	-						-	- - -		
2 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	North Carolina		>				-	-		69					1		
2 2 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Ohio	-	> 0		>		+	-	-	-							
2	Oklahoma	!	· -		> 7		+	-	-		-				-		
1	Oregon		> >		>	1	-				-		-	-	>		
2 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pennsylvania		. —		7	- P	-		6			-	-	-	1		
2	Rhode Island	1	>		. !				•		-	-		-	-		
2	South Carolina		>					7					6	-	-		
2 4 4 2 2 4 4 2 5 5 5 5 5 5 5 5 5 5 5 5	Tonnessee		>			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		-	-							
	Texas	-6	> <		-	1	+	-	-	-		-			4		
V V V V V V V V V V	Utah	4	# ~		-	>	+		1		>			1			
Virgina	Vermont		> >			- 1	1			>	Ć1	~ ~	-	-	>		
Washington Washington $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$	Virginta		~			<u>'</u> >		6				-	-	-	-		
West Vigitish Wisconsin Wyounding A V V V	Washington		>	7		->				7	7		-		>7		
Wyoming 3 V V V V V V V V V V V V V V V V V V	West virginia		>7		>		-	-	-	. !				1 1	>		
I Included Alocko and Howelt	Wyoming	60	>>		6		-		-						>		
	1 Inchides Alected	Tomost						-		^	>	^		-			

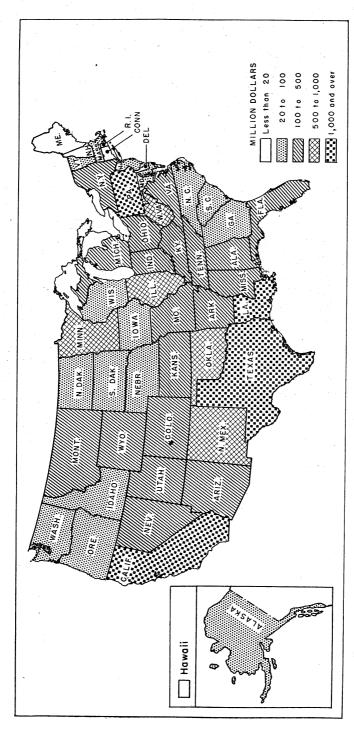


FIGURE 2.—Value of mineral production in the United States (including Alaska and Hawaii), 1956, by States

TABLE 4.—Value of mineral production in the United States, 1953-56, by States, in thousand dollars, and principal minerals produced

								· '		
	1956	Principal minerals in order of value	Coal, cement, fron ore, stone. Gold, coal, sand and gravel, platfuum-group metals. Copper, cement, fain, urantium. Petroleum, bauxite, sand and gravel, stone. Petroleum, cement, natural gas, natural-gas liquids.	Petroleum, molybdenum, coal, cement. Stone, sand and gravel, lime, clays. Sand and gravel, stone, clays.	Phosphate rock, stone, cement, titanium concentrate. Clays, stone, cement, sand and gravel.	Stone, sand and gravel, lime, pumice. Lead, zine, silver, phosphate rock. Petroleum, coal, stone, sand and gravel. Coal, cement, petroleum, stone. Coment, stone, sand and gravel.	Petroleum, natural gas, cement, stone. Ooal, petroleum, natural gas, stone. Petroleum, natural gas, natural-gas liquids, sulfur. Oement, sand and gravel, stone, slate. Stone, sand and gravel, cement, coal.	Stone, sand and gravel, ilme, clays. Iron ore, sement, copper, salt. Iron ore, sand and gravel, stone, cement. Petroleum, natural gas, sand and gravel, cement. Lead, cement, stone, ilme.	Copper, petroleum, zino, sand and gravel. Petroleum, cement, sand and gravel, stone. Copper, tungsten concentrate, manganese ore, sand and gravel. Sand and gravel, stone, mids, feddspar. Stone, sand and gravel, fron ore, magnesium compounds.	Petroleum, potassium salts, copper, natural gas. Cement, truo roe, sirone, sand and gravel. Stone, tungsten concentrate, sand and gravel, mics. Petroleum, coal, sand and gravel, natural-gas liquids.
i in and a		Percent of U.S. total	1.09 2.80 8.78 97	1.90	.83 88.	. 04 3.30 1.13 3.88	2.85 7.35 .07	2.27 2.89 7.77	1.23 41 73 02 37	2.96 1.37 .23
956		Rank	83182	16 50 50	31.24	29 7 7 8 8 8 8 8 8 8	38.3128	44°28	2888 30 30 34 48	8 3 3 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
in 1956		Value	189, 186 23, 408 485, 751 135, 210 1, 555, 263	329, 450 11, 876 1, 232	140, 490 67, 912	6, 972 75, 178 572, 321 195, 674 66, 529	493, 307 443, 168 1, 281, 849 12, 179 40, 532	25, 085 394, 536 501, 027 133, 098 163, 693	213,728 71,776 126,233 3,436 64,279	513, 303 237, 016 39, 985 53, 555
		1955	186, 453 25, 412 378, 277 132, 822 1, 456, 513	286, 219 10, 428 1, 658	108, 957 60, 417	3, 592 68, 513 533, 062 183, 479 63, 555	470, 830 391, 068 1, 156, 637 12, 991 35, 491	22, 109 363, 787 501, 151 122, 620 151, 626	166, 993 54, 237 113, 220 2, 605 57, 495	436, 494 216, 907 41, 210 44, 123
0 0 0 1 1 1	-	1954	154, 639 24, 408 254, 479 131, 745 1, 429, 627	255, 852 9, 581 947	106, 510 55, 828	3, 596 69, 689 473, 077 165, 369 58, 798	449, 587 327, 503 998, 057 10, 716 30, 743	18, 851 279, 940 351, 474 110, 563 131, 280	126, 412 42, 393 89, 138 2, 112 47, 044	373, 519 192, 738 41, 651 22, 223
initerat production in the circle prayers	-	1953	187, 087 24, 252 258, 471 127, 090 1, 393, 987	212, 690 7, 917 659	92, 336	3, 332 67, 063 462, 443 169, 781 51, 994	413, 231 381, 742 965, 237 10, 503 27, 085	17, 191 286, 487 542, 545 107, 868 128, 207	132, 184 33, 281 73, 523 1, 805 51, 945	336, 545 186, 868 38, 451 19, 237
IADLE 4.—Value of minefal		State	Alabama. Alaska. Arizona. Arixansas.	Colorado Connecticut Delaware	Florida	Hawaii Idaho Illinois Indiana Iowa.	Kansas Kentucky Louisana Matro Maryland	Massachusetts Michigan Minnesota Mississippl Missouri	Montana Nebraska Novada New Hampshre New Jersey	New Mexico

2.16 Coal, stone, cement, lime.	Petroleum, natural gas, natural-gas liquids, stone. Sand and gravel, cement, stone, nickel. Goal, cement, stone, petroleum, nickel. Sand and gravel, stone, graphite. Cement, clays, stone, sand and gravel.	Gold, sand and gravel, stone, cement. Coal, cement, stone, zinc. Petroleum, natural gas, natural-gas liquids, sulfur. Copper, coal, iron ore, uranium. Stone, slate, asbestos, copper.	Coal, stone, cement, sand and gravel. Cement, sand and gravel, stone, zinc. Coal, natural gas, natural-gas liquids, stone. Stone, sand and gravel, iron ore, zinc. Petroleum, clays, coal, sodium salts.	Petroleum, coal, natural gas, cement.
2.16	4	42	1.20 5.38 1.38 1.83	100.00
15	6 4 4 4 4 4 4 4 4	37 25 13 13 43	35 5 17 17	
375, 488	757, 116 34, 011 1, 088, 867 1, 627 21, 342	41, 797 137, 846 4, 211, 284 396, 942 23, 131	208, 806 61, 665 935, 074 65, 860 316, 897	17, 346, 000
340, 457	711, 089 31, 736 969, 910 1, 834 20, 197	40, 526 119, 316 3, 993, 310 331, 929 23, 884	172, 541 67, 334 755, 512 65, 813 297, 752	15, 804, 000
293, 659	650, 205 32, 268 925, 545 1, 461 17, 744	37,874 105,686 3,730,705 255,495 20,483	129, 603 53, 300 636, 311 54, 286 281, 306	14, 066, 000
302, 242	679, 003 24, 449 1, 121, 622 1, 462 17, 771	33, 823 98, 050 3, 647, 913 298, 589 20, 302	152, 979 54, 577 790, 110 55, 212 255, 906	14, 418, 000
Ohio	Oklahoma. Oregon. Pennsylvania. Rhode Island. South Carolina.	South Dakota. Tennessee. Tensa Utah. Vermont	Virginis Washington West Virginis Wisconsin Wyoming	Tetal

¹ Includes Alaska and Hawaii.

TABLE 5.-Mineral production 1 in the United States,2 1953-56, by States

ALABAMA

	1953	83	1954	54	31	1955	1956	9
Minoral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Cement 3 thousand 376-pound barrels. Clays Coal thousand short tons. Coal thousand short tons. Coal thousand short tons. I mon ore (usable) thousand long tons, gross weight. I mon ore (usable) thousand long tons, gross weight. I make (sheet) thousand short tons. Stone (areal) to rement and lime, 1963) thousand short tons.	10, 428 1,198 1,198 12, 532 17, 446 47, 641 (4), 641 1, 694 3, 711 3, 957	25, 701 1,816 79,370 55,640 (*) 2,5,018 3,290 3,290 8,155	11, 122 1, 331 10, 283 421, 807 (4) 87 1, 584 7, 394	28, 583 2, 258 67, 338 33, 327 4, 488 (4) 5, 690 3, 690 3, 451 11, 609	(4) 721 (5) 721 (6) 814 465, 194 (6) 194 (7) 721 (7) 721 (8) 8, 269 (9) 269 (1, 500	38, 350 (4) 79, 337 44, 657 6, 186 (5) 2, 910 2, 910 3, 524 11, 867 8	14, 065 52, 195 12, 663 465, 339 1, 122 1, 122 2, 206 2, 200	41,840 52,147 79,322 34,825 5,089 7,835 4,621 6,14,702 6,14,702
Tale. Value of items that cannot be disclosed: Native asphalt, bauxite, pozzolan cement, clays (kaolin), graphite (1963), scrap mice, salt, stone (dimension limestone and marble), and values indicated by footnote 4.		5,092		4, 856		4, 325		4, 083
Total Alabama		187, 087		7 154, 639		7 186, 453		7 189, 186
	AL	ALASKA						
Antimony ore and concentrate	861 253,783 253,783 7,689 35,387 47 49	8, 451 8, 882 8, 882 8, 080 170 170 (4) 06 (5) 162 1, 521 24, 252	2, 963 (6) 667 248, 511 1, 046 6, 640 33, 697 284 199	(4) 208 (6, 442 (8, 442 (8, 698 (8, 302 (8, 302 (9, 302 (10, 11, 572 (10, 6, 108 (10, 108 (10	7, 082 640 1 249, 29 1 9, 793 3, 693 8, 693 868 86 86 86	(8) 725 (8) 725 (9) (9) 725 (1	7, 188 727 727 209, 296 8, 286 8, 968 28, 860 195	(4) 711 6, 374 7, 325 (5) 853 6, 880 2, 26 6, 880 1, 644
L Orda Androne								

ARIZONA

9	6 112 6 168 10 66 506 430, 022	110 5, 114 666 366	876 008	392	928 609 932 185 6, 167 4, 687	186 580		17, 901	7 485, 751		35 11 254 4,256 432 13,307 719 1,636 690 4,601	485 162	529
	869 59 762	467 (9) 95, 95,	438	511 2,	84 15, 373 114, 519 7, 194 5, 179,			9, 201	277		25 26 76 1,6	727 799 29, 30,	239 41, 169 56,
€ —	338,	(£)	—— ⊕,∺,	 3,1	, & 4,0	 v, ro,		6	1 378, 277		—————————————————————————————————————	-1-1	6 000
€	254 9 454, 105	£2. €2.	112,		10, 82, 4, 634,	, <u>2</u>		-			(4) 462, 986 1, 721, 243 739 578	(9) 23, 744 32, 123	47, 483 57, 088
€	814 68 68 772, 977	(+) (+) 018	1, 131	1, 525	3, 067 3,891	1, 914 457 4, 636		8, 172	7 254, 479		(4) 3,489 15,994 2,556 3,589	(4) 1, 021 1, 841	3, 234
•	254 11 377, 927	(9) 114, 809 (4) 8, 385	88, 932	1,682	1, 296 80, 883 3, 764 4, 298, 811	1, 200 132 21, 461					(4) 370, 621 1, 949, 368 617 477	(10) 13, 728 33, 470	50, 778 58, 506
€	715 32 32 225, 883	(+) 3,949 44 44	(4) (4) (4)	115	10 2, 426 3,938	6, 332		8,010	258, 471	ARKANSAS	(4) 3,945 12,976 1,734 6,144	(4) 527 2, 200	4, 123 2, 562
(4)	197 197 393, 525 1 951	(e) 112, 824 13, 484 0, 438	96, 408 (+)	3, 721 1, 447	1, 511 123, 797 3, 447 4, 351, 429	134 27, 530				ARK	(4) 380, 763 1, 529, 976 775	(10) 6, 123 41, 510	58, 422
Beryllium concentrategross weight.	Clays Coal Coppert (recoverable content of ores, etc.)	Gen stones Gold (recoverable content of ores, etc.)troy ounces Gypan Appendix Content of ores, etc.)troy ounces		centrate)	itent of ores, etc.)	Source (accept americal and	195 feld	and values indicated by footnote 4	Total Arizona		Abrasive stones (whetstones). Barite Bautite Clayste Clayste Coal	roun stable) Thron ore (usable) Manganese ore (35 percent or more Mn) Manganese ore (18 percent or more Mn)	Natural gasoline and cycle productsthousand gallons. LP-gases.

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States—Continued

ARKANSAS-Continued

Short torus Contact									
Short tons Cuniess (thousand contents of the contents of t		190	53	198	1 4	15	155	196	9
## 4 965 6, 612 6, 667 9, 003 7, 663 10, 200 ## 5 546 5, 742 5, 742 7, 616 6, 325 ## 5 6 742 7, 616 7, 616 7, 616 ## 5 742 7, 616 7, 616 ## 5 742 7, 616 7, 616 ## 5 742 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 743 7, 617 7, 616 ## 5 743 7, 617 7, 616 ## 5 744 7, 7, 616 7, 7, 616 ## 5 742 7, 7, 616 7, 7, 616 ## 5 743 7, 7, 616 7, 7, 616 ## 5 743 7, 7, 616 7, 7, 616 ## 5 744 7, 7, 616 7, 7, 616 ## 5 744 7, 7, 616 7, 7, 616 ## 5 745 7, 7, 616 7, 7, 616 ## 5 745 7, 7, 616 7, 7, 616 ## 5 745 7, 7, 616 7, 7, 616 ## 5 745 7, 7, 616 7, 7, 616 ## 5 745 7, 7, 616 7, 7, 616 ## 5 746 7, 7, 616 7, 7, 616 ## 5 746 7, 7, 616 7, 7, 616 ## 5 747 7, 7, 616 7, 7, 616 ## 5 748 7, 7, 616 7, 7, 616 ## 5 748 7, 7, 616 7, 7, 616 ## 5 749 7, 7, 616 7, 7, 616 ## 5 749 7, 7, 616 7, 7, 616 ## 5 749 7, 7, 616 7, 7, 616 ## 5 749 7, 7, 616 7, 7, 616 ## 5 749 7, 7, 7, 616 ## 5 749 7, 7, 7, 7, 616 ## 5 749 7, 7, 7, 7, 7, 7, 7, 616 ## 5 749 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
CALIFORNIA CALIFORNIA CALIFORNIA CALIFORNIA CALIFORNIA To see setc.) To see water and bitterns (partly estimated) To res, etc.) To move Mrn. To see water and bitterns (partly estimated) To see wat	ment and Ilmo be disclosed: pstone (1954–5 otnote 4.	4, 904 34, 516 3, 545	4, 955 316 5, 070 5, 368	6, 612 41, 845 4, 604	6, 567 379 5, 930 5, 742	9, 003 (4) 6, 176	7, 663 (4) 8, 026 7, 616	10, 200 (4) 6, 325	8, 730 (4) 8, 113 8, 182
CALIFORNIA T15, 228 T17, 668 T00, 449 T00, 873 T17, 668 T00, 449 T00, 873 T17, 884 T00, 449 T00, 873 T17, 884 T00, 873 T17, 884 T00, 873 T18, 884 T00,	Total Arkansas.		127, 090		7 131, 745		7 132, 822		7 135, 210
thousand 376-pound barrels		CALIFOR	NIA						
	thous thousand 376 to ores, etc.) fores, etc.) fores, etc.) m sea water and bitterns (part mane Mn) percent Mn) cle products thousand 376	715 238 287 287 287 287 287 287 287 287 287 28				924, 496 924, 496 924, 496 927, 927 928, 929 928, 928, 937 928, 938 938, 938 938, 938 938, 938 938, 938 938, 938	33, 817 103, 804 1, 834 1, 834 1, 77 1, 457 1, 2, 463 2, 246 3, 274 3, 833 3, 833 3, 833 3, 833 110, 476 110, 476 110, 476	944, 960 27, 082 27, 082 27, 082 1, 082 1, 082 2, 144 9, 017 66, 007 66, 007 67, 458 876, 902 876, 902	98. 98. 113. 129. 129. 129. 129. 129. 129. 129. 129

2, 334 7, 606 96, 776 96, 776 (5) 1, 419 13, 449 2, 205 69, 025 11, 565, 263		(a) 1, 215 (b) 3, 554 (c) 3, 554 (d) 327 (e) 3, 554 (e) 3, 554 (f) 6, 235 (g) 7 (h) 6, 235 (h) 6, 235 (h) 6, 235 (h) 6, 235 (h) 7 (h) 7 (h) 8, 235 (h) 6, 235 (h) 7 (h) 109 11, 108
634, 386 1, 1, 444 88, 538 88, 138 93, 538 133, 710 8, 9, 7119 8, 9, 7119		3, 5622 8, 5622 4,4, 228 4,1, 014 (*)
1, 099 6, 751 8820 8840 87, 164 (*) 1, 553 16, 201 1, 682 1, 683 1, 486, 688		20, 118 20, 100 225 3, 225 3, 100 3, 100 4, 710 13 (0, 4, 866 144, 806 144, 806 (1, 866 144, 806 (2, 163 (3, 163 (4, 1
797, 306 1, 1315 964, 1817 964, 1817 24, 708 190, 559 166, 551 6, 888 6, 888		464 46, 114 46, 114 46, 114 46, 114 46, 114 46, 114 46, 114 46, 837 46, 118 699 699 699 699 699 699 699 699 699 69
6, 126 6, 136 6, 139 2, 280 (6) (1) 1, 211 13, 209 43, 738 1, 429, 627		1, 1003 16, 079 1, 003 1, 003
26, 664 70, 136 70, 525 80, 575 80, 575 13, 474 1, 416		60 8555 8556 856 856 856 856 856 856 856 8
6, 268 6, 268 6, 228 6, 228 6 18, 473 1, 138 8, 839 1, 232 1, 232 1, 383, 987		(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
433, 105 5, 1238 1, 036, 3420 1, 036, 3420 6, 14, 497 122, 208 1, 208 5, 388 5, 388	COLORADO	778 778 778 778 778 778 778 778
Pumice Salf (common) Sand and gravel Surveit (common) Surveit (common) Surveit (converable content of ores, etc.) Surveit (converable content of ores, etc.) Stront lum minerals Stront lum minerals Sulfur ore Tale, pyrophyllite and soapstone Thugsten concentrate		Beryllium concentrate Clays Clays Columbium-tantalium concentrate Columbium-tantalium concentrate Columbium-tantalium concentrate Columbium-tantalium concentrate Columbium-tantalium concentrate Columbium-tantalium concentrate Feldspar Fluorspar God (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Moly Sheet Moly bedeum Kape Ferroleum (crude) Ferroleum (crud

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States—Continued

COLORADO-Continued

	COLORAL				-	10,5%	1058	9
	1953	53	1954	74	Ĩ	900	Ta	
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Silver (recoverable content of ores, etc.)	2, 200, 317 6 884 817	1, 991 6 1, 751 2, 902	3, 417, 072 1, 804 927	3, 093 2, 112 3, 421	2, 772, 073 2, 149 1, 152	2, 509 3, 508 4, 079	2, 284, 701 2, 250 873	2,068 5,217 3,010
Uranium ove. Vanadium Zinc (receverable content of ores, etc.) Zinc (receverable content of ores, etc.) Value of items that cannot be disclosed: Carbon doxide, cement, lithum minerals (1935-46), natural-gas liquids, perlife, pyrites, stone (remshed Asselt 1933, tin (1955-55), vermiculite (1954), and values	4, 530, 612	(4) 8, 696	4, 528, 472 35, 150	(4) 7, 592	4, 595, 359	(4)	5, 582, 484	(4), 11, 027
indicated by footnote 4. Excludes value of clays used for cement (1953)		52, 713		67, 874	2	11 76, 969	1	83, 578
Total Colorado		212, 690		7 255, 852		7 11 286, 219		7 329, 450
	CONN	CONNECTICUT						
Beryllium concentrate. gross weight. Clays. Feldspar. Inne.	33 438 9,829 (*)	14 448 63 (4)	13 289 9,280 (*)	285 60 60 60 60	325 (4) 34, 917	3 315 (4) 503 13	(4) 338 (4) 39, 748 12, 310	(4) 390 (4) 609
جهاتا الما	7,475 3,026 6,2,827		5,856 4,846 2,829	4, 315 4, 269	(4) 4, 345 3, 642	(4) 4, 080 5, 451	22, 315 4, 369 6, 4, 428	4, 101 6, 590
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	877		725		123	1 1 1 1 2 2 3 4 5 1	124
Total Connecticut	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7,917		7 9, 581		7 10, 428		7 11, 876
	DEL	DELAWARE						
Sand and gravel thousand short tons Stone.	521	400	(4)	(4)	2, 297	1, 407 228	1, 160	967
value of items that cannot be disclosed; nonlinears and values that-		44		195	1	23		33
Total Delaware		629		947		1, 658	! ! ! ! !	1, 232

		٠,	
C	•	١	
•	7	1	
"		1	
ſ	۲	i	
7	-	Ċ	
۰	•	1	
	_	1	
Ċ	٠	:	
۳	•	١	

5, 826 490 3 203 (4) 74, 290 5, 034	25, 183 (4) (4) 2, 160 28, 452	7 140, 490	29, 501 1, 609 (4) 150 150 2, 183 6, 20, 714 14, 568 14, 568
432 39, 542 35, 542 58, 496 (4) 11, 822 5, 815	,84 ⊕⊕ 84		3, 047 8 877 (4) 8877 6, 226 20, 149 6, 226 2, 245 6, 9, 196 57, 916
(4) 232 (4) 53, 640 4 349	(4) (1, 122 1, 425 22, 787	7 108, 957	26, 145 62 994 36 (4) (4) (2, 19) 2, 190 14, 250 14, 250 11, 495 17, 495
(4) 36 61, 098 495 8, 747 5, 066	(4) (9) 182 28, 913		2, 963 12 12 139 6, 139 7, 4.88 6, 7, 488 67, 488 67, 488
3, 337 (4) 3 (4) 168 (4) 500 64, 500	6 16, 2, 15,	r 106, 510	24, 107 (1) (2) (3) (4) (5) (6) (7) (8) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (1) (9) (1) (1) (1) (1) (2) (3) (4) (4) (5) (4) (5) (7) (7) (7) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1
(4) 372 (4) 35 37, 449 548 10, 437 3, 469	6 14, 157, 17, 17,		2, 711 8 8 (÷) (±) (5) 5, 150 8, 053 8, 053 80, 636
2, 952 (4) 2 (1) 2 (4) 186 (5) 525 3, 199	6 11, 309 2, 322 703 794 14, 344	92, 336 GEORGIA	23, 455 (e) 71 (f) 101 1, 101 1, 95 1, 901 1, 756 1, 766 1, 766 1, 766 1, 766 1, 766 1, 766 1, 766 1, 766 1, 766 1, 907 1, 90
258 (*) 34 27, 678 643 9, 331 3, 731	6 9, 429 151 109 6, 476 21, 234	G.B.	2 651 14 200 200 14 200 14 003 17 112 17 112 17 181
Ulays. Lime. Natural gas. Peat. Peat. Petroleum (crude). Petroleum (crude). Petroleum (crude). Petroleum (crude). Petroleum (crude). Rossphate rock. Sand and gravel.	ment and lime, 1955 disclosed: Cemen e disclosed: Cemen altals concentrates (altals indicated by nt (1953).	Total Florida	Clays Coal Gold (recoverable content of ores, etc.) Gold (recoverable content of ores, etc.) From one (tashle) Lime. Lime. Milea (sheet) Fast. Sand and gravel Some (except limestone for cement and lime, 1953) Tale and sopystone. Tale and sopystone Tale and sopystone Tale and sopystone Tale and sopystone (1965-66), anaganese ore (1964-66), manganese ore (

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States—Continued

HAWAII

1956	Value (thousand dollars)	306 908 18 18 503 6,076	18 6, 972		(5) 6.13 (6) 6.13 (7) 197 (8) 20, 197 (9) (9) (197 (197 (197 (197 (197 (197 (197 (197
19	Short tons (unless otherwise stated)	2 9,555 58,851 (10) 193 3,494			2,385,013 2,15,900 16,656 16,656 17,031 2,344 2,314 11,438 101,438 101,913 11,438 11,731 49,611 49,611
1955	Value (thousand dollars)	(*) 202 (*) 76 (*) 426 2, 884	13 3, 592		(4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
#	Short tons (unless otherwise stated)	(4) 6,453 130,306 (4) 165 1,414			683 (+691, 334 (+691, 334 (+6) 572 (+6) 572 (+7) 107 (+7) 10
1954	Value (thousand dollars)	(+) 251 (+) (+) (+) 319 2,993	13 3, 596		\$\infty\$\circ\$\infty\$\circ\$\ci
19	Short tons (unless otherwise stated)	(4) (8, 375 (4) (5) (119 11, 485			(c) 764 (c) 702, 272 13, 282 13, 245 (d) 302 (e) 302 (e) 609 (f) 13 500 (f) 1033 (f) 764 (f) 11, 683 (f) 718 (f) 718 (
1953	Value (thousand dollars)	(4) 224 (4) 157 6 2, 654 297	3, 332	грано	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)
19	Short tons (unless otherwise stated)	(4) 7, 431 (4) 111 01, 300			(4) 1, 211, 039 1, 28, 136 1, 639 1, 639 1, 639 1, 639 1, 639 1, 639 1, 639 1, 142 1, 142 1, 142 1, 143 1,
	Mineral	Clays Lime. Final Company of the com	Total Hawaii		Antimony ore and concentrate Beryllium concentrate. Clabs. Clabs. Cobal. Columbium-tantalum concentrate. Topounds. Topounds. Mica. Since (content of ores, etc.). Nickel (content of ore and concentrate). Peat. Phosphate rock Phosphate rock Phosphate rock Phosphate rock Phosphate rock Columbium concentrate. Sand and sandstone (ground) Silver (recoverable content of ores, etc.). Tungsten concentrate.

13 6, 885	75, 178		27, 294 4,006 8,470 1, 203 (4) 933 24,10 1, 203 (5) 933 28, 254 (14) 1, 274 33, 254 (14) 6, 687 6, 687 6, 687 6, 687 8, 457 64, 061 14, 333 33, 778 33, 778 34, 778 66, 061 66, 688 66, 688 789 87, 688 87, 688	• 10 600
			2, 2, 30 178, 254 178, 254 178, 254 17, 123 11, 250 11, 250 11	
13 7, 002	68, 513		25, 032 10, 3, 973 11, 354 11, 354 11, 354 11, 036 12, 038 12, 038 12, 038 13, 062 14, 306 14, 306 16, 306	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,		(c) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
13 6, 308	689 '69		23,148 6,0233 6,0233 6,0233 6,0233 6,0233 1,423 1,345 1,3	
			(a) 1, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	
3,878	62, 063	ILLINOIS	21, 962 184, 553 189 189 189 189 188 188 188 188	
		TIL	8.5 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	
Value of items that cannot be disclosed: Barite, cement, fire clay (1956), abrashve garnet, gem stones (1964-66), fluorspar (1963, 1966), scrap mica (1964), monazite (1955-56), quartz (1963), stone (crushed limestone 1965), vanadium (1963-64), and values indicated by footnote 4.	Total Idaho		Cement Comparation Condition Filtorspar Filtorspar Condition Filtorspar Filtorspar Filtorspar Filtorspar Filtorspar Feat (recoverable content of ores, etc.) Feat (recoverable content of ores, etc.) Sand and gravel Sand and gravel Sand and gravel Sand and gravel Feat (recoverable content of ores, etc.) For (recoverable content of ores, etc.) Since (except limestone or cement and lime, 1953). thousand short tons. Since (except limestone for escent of ores, etc.) Institutal-gas liquids, recoverade elemental sulfur, tripoli, and values in dicated by footnote 4. Excludes value of clays used for cement (1953). Total Illinois Abrasive stones Cool Lime Natural gas Sone (except for cement) Natural gas Sone (except limestone for cement and lime, 1963). Fetroleum (crude) Fetroleum (cr	

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States—Continued

۲	≤
۲	_
C	2
ï	5
•	•

	1953	23	1954	45	ī	1955	1956	99
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Cement Clays Clays Colays Colays Colays Colays Colays Colays Colays Lead (recoverable content of ores, etc.) Ead and gravel Stone (except limestone for cement 1953) Value of Items that cannot be disclosed: Nonmetals and minerals indicated by lower Colay Colay of Items and Colays and Co	9, 111 1, 151, 692 1, 151, 692 17, 233 10, 385 10, 715	23, 330 5, 262 2, 940 (4) (4) (5, 401 13, 215 224	9, 859 883 1, 197 1, 106, 626 4 (+) 12, 200 13, 240	27, 044 921 4, 503 3, 036 (*) 1 (*) 276 16, 388 16, 388 758	10, 430 (+), 1, 268 1, 337, 160 (+) 11, 771 11, 705	29, 539 (+) 4, 402 4, 177 (+) (8, 345 18, 555 1, 262 1, 263	10, 760 6 852 1, 177, 488 27, 375 12, 895 14, 035	32, 823 6 1, 078 6 1, 078 3, 919 (4) 9, 525 17, 256 467
	KA	KANSAS						
Cement 19 Clays. Clays. Colays. Lead (recoverable content of ores, etc.). Natural gas. Natural gas. Natural gas. Natural gas. LP-gass. LP-gass. Sand and gravel. Zinc (recoverable content of ores, etc.). LP-gass. Colays. LP-gass. LP-gass. LP-gass. And of ores, etc.). Colays. Colay	8, 546 42, 715 42, 775 8, 337 420, 607 (4) (5) (14, 566 (7) 8, 778 8, 778 15, 515	21, 428 7700 7, 700 877 88, 772 481 5, 668 11, 304 10, 138	9, 076 (4) 1,372 37,530 412,339 (4) (4) (5) 119,317 10,377 10,377 10,317	23, 874 (5) 5, 603 1, 105 43, 711 (4) 38, 280 7, 779 7, 779 7, 779 12, 942 4, 128 9, 721 1, 128	42, 454 42, 742 42, 742 47, 1041 111, 649 12, 539 12, 669 12, 488 12, 488 13, 488 14, 488 16, 488 17, 488 18,	25, 854 8, 873 1, 658 1, 638 1, 638 2, 286 8, 432 8, 432 8, 432 8, 432 8, 432 9, 430 1, 616 1, 616 1, 616	10, 568 45, 685 46, 685 526, 691 105, 882 90, 287 11, 004 11, 104 12, 515 13, 434 28, 665	30, 696 2, 886 6, 448 6, 448 6, 6, 448 6, 6, 629 7, 168 8, 022 15, 703 1, 465 1, 465
Vatural centrote 4. Exc	(4) (4) 905 8, 728 8, 769 15, 515	(4), 481 5, 668 11, 304 3, 568 10, 138 413, 231		9, 721 12, 942 4, 128 9, 721 7, 449, 587	2, 320 911 10, 665 27, 611	8,4 8,4 15,9 6,7 1,6	30 16 246028	(€-1,2,2,8,8)

KENTUCKY

4, 079 331, 358 608 72	17,022 2,414 8,709 51,297 6,974	15,324 114 7,079	1 443, 168		215, 638 216, 638 217, 638 6, 677 66, 674 66, 674 66, 674 66, 674 66, 830 16, 683
74, 555 14, 865 228	73, 687 35, 275 248, 992 17, 628 5, 684	11, 553			27.5 884 1, 886, 302 1, 886, 302 305, 222 29, 421 2, 28, 4405 2, 288, 882
4, 416 288, 665 308	17, 352 2, 492 6, 451 44, 850 5, 298	15, 579	7 391, 068		8 659 587 189, 844 50, 323 793, 280 10, 942 10, 942 11, 961 15, 309 18, 1, 166, 637
876, 69, 020 8, 899	73, 214 34, 991 189, 247 15, 518 4, 899	11, 934			335, 371 1, 680, 032 1, 682, 338 291, 138 271, 010 3, 674 8, 574 8, 574 2, 072, 418
2, 995 236, 737 1, 510 22	16, 579 1, 552 5, 066 40, 270 4, 402	13, 286 99 5, 626	7 327, 503		6 941 (4) 531 (5, 531 (5, 531 (6) 532 (722, 370 (1), 101 (1), 101 (1), 101 (1), 102 (2), 127 (3), 127 (4), 222 (4), 222 (3), 127 (4), 222 (4), 222 (4), 222 (5), 127 (6), 127 (7), 127 (8), 127 (8
571 56, 964 35, 831 80	72, 713 28, 224 189, 966 13, 791 4, 730	10, 130			6714 1, 396, 222 665, 070 292, 226 246, 558 3, 563 1, 863, 563 1, 863, 563
3, 118 302, 872 2, 101 14	15, 638 2, 394 4, 993 33, 520 2, 900	6 9, 268 112 4, 812	381, 742	LOUISIANA	(e) 962 106, 070 106, 070 55, 421 12, 664 721, 186 6, 162 43, 453 43, 453 11, 177
711 65, 060 47, 244 52	71, 405 35, 406 176, 232 11, 518 3, 062	6 7, 430 489		LOU	(4) (2) (1) 283, 644 (665, 532 2867, 280 2867, 280 2867, 280 2867, 280 11, 609, 364 11, 609, 364
th ntent of ores, etc.)	Natural gas liquids: Natural gas liquids: Natural gasoline Lipeases Service and gasoline Petroleum (crude) Sand and gravel Sind and gravel Stock and gravel	ment, 1963). res, etc.). disclosed: Native asphalt, or discone, 1963). Excludes vali	Total Kentucky	*	Glays Gybsum Gybsum Natural gas liquids: Sand gas do liquid gas liquids: Sand and gravel. Sand and gravel. Sone (except limestone for cement and lime, 1953), thousand short tons: Sone (except limestone for cement and lime, 1953), thousand short tons: Sone (except limestone for cement and lime, 1953), thousand short tons: Natural gas liquids and gravel. Sone (except limestone for cement and lime, 1953), thousand short tons: Natural gas liquids: Sand gas

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States—Continued MAINE

						,		
	1953	53	1954	54	19	1955	1956	9
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
	(5) 2,001 11,637 (6) 3,042 8,242 8,072 8,072 8,072 MAR MAR 1,408 1,408 6,3,678	(4) 282 283 127 (5) 422 284 284 284 288 288 288 3 138 2 442 288 3 138 2 442 288 3 138 2 442 288 3 138 2 3 442 288 3 138 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(5) (1) 973 (1) 973 (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(*) 425 (*) 425 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	2, 2, 349 26, 283 3, 171 2, 1, 121 1, 182 7, 539 116 8, 5, 343	(4) (5) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	(4) 12 22, 23, 23, 23, 23, 23, 23, 23, 23, 23,	(4) 23 1444 1444 171 171 173 184 185 185 185 185 185 185 185 185 185 185
cement, bail clay, (1966), gens stones (1966), genesnant mari (1984-56), med (1964), potsasium salts, slate (1963-65) stone (dimension limestone and crushed marble 1963, oystershell 1965), and tale and sospstone. Excludes value of clays used for cement (1963)		7, 337	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7, 289	1 1 1 1 1 1 1 1 1 1 1	11, 028		10, 727
Total Maryland		27, 085		7 30, 743		7 35, 491		7 40, 532

	213 2,093 (*) 9,520 13,753	18 25, 085	67, 798 2, 401 52, 297 5, 861 98, 111	(4) 95 1, 451	475 30,824 35,644 35,146	31,010	38, 717	7 394, 536		\$ 91 461, 904 (4) (8)	18, 254	13, 443	13 501, 027
	134, 248 134, 248 300 10, 189 5, 442		21, 880 2, 110 61, 526 1, 715, 832 12, 536	(4) 157, 246 10, 911	31, 111 10, 740 42, 548 42, 150	33, 999 33, 999				62, 637 633, 919 875	28, 197 6 3, 084		
•	1, 957 (4) (8, 926 11, 381 6	18 22, 109	58, 048 2, 019 37, 349 5, 661 104, 258	5,064	22, 900 31, 668 29, 491	28, 909	31,850	1 363, 787		(4) 465, 170 (4) (4)	17, 429 6 7, 043	11, 739	13 501, 151
•	134, 952 (+) (+) 9, 581 4, 128		19, 738 1, 938 50, 066 1, 762, 105 14, 144	46, 336 119, 313 8, 300	(4) 11, 266 4, 975 37, 214	33, 636				(*) 69, 419 864, 628 (*)	25, 896 8, 3, 005	-	
MASSACHUSETTS	1, 709 (+) 8, 366 9, 040 12	18 18, 851	45, 692 1, 919 13, 920 5, 036 70, 004	(4) (4) 38 1, 239	(4) 35, 600 29, 397 25, 516	21, 904	29, 272	1 279, 940		(*) 319, 633 (*)	16,319 6 7,485	8, 204	13 351, 474
	127, 836 (4) 9, 640 2, 942		16, 712 1, 871 23, 593 1, 693, 279 9, 709	37, 038 15, 361 106, 668 6, 962	(*) 12, 028 5, 064 32, 041	27,758					629		
	2, 156 2, 156 1, 16 5, 931 8, 821 71	17, 191 MICHIGAN	41, 860 11, 686 13, 832 4, 091 94, 692	4, 592 (4) 73 1, 275	257 35, 870 22, 172 23, 171	17, 639	25, 277	286, 487	MINNESOTA	149 517, 851 (4) (4)	7,304	10, 654	542, 545
	135, 383 2, 061 7, 308 3, 458	MIC	15,853 1,646 24,097 1,446,973 13,313	43, 190 76, 251 183, 685 7, 774	25, 439 12, 285 5, 127 30, 460	21, 616			MINN	80, 534 1, 091, 491 (4)	19, 774		
	Clays Lime Peat. Beat. Stand and gravel Stone (except limestone for lime, 1963) Value of Items that cannot be disclosed: Mineral fuels and nonmetals.	Total Massachusetts	Cement. thousand 376-pound barrels. Clays Copper (recoverable content of ores, etc.) Tron ore (usable) Magnesium combounds from well brines foarthy estimated Met O enuity.	alent Manganilerous ore (5 to 35 percent Mn) Mar, calcareous (except for cement) Natural gas.	Peat. Peton (crude). Petroleum (crude). Salt (common). Sand and gravel.	Stone (except limestone for cement and lime, 1953). thousand short fours. Nation of items that cannot be disclosed: Bromine, calcium-magnesium chloride, gens stones (1965-56), lime, magnesium chloride, pen stones (1965-56), lime, magnesium chloride for metal (1965-56), matural-gas liquida, potassium salts, ground sand and sand-stone (1963, on a rather than the characteristic stones (1964, on	clays used for cement (1963)	Total Michigan		Clays. Iron ore (usable) thousand short tons. Iron ore (usable) thousand long tons, gross weight. Manganiferous ore (16 v8 percent Mn). Marl. calcarcous (except for cement)	Sand and gravel. Stone (except limestone for cement and lime, 1953). Value of items that cannot be disclosed: A brasive stones, cement, fire clay (1966), gen stones (1965-66), lime, manganese ore (1965-66), pest (1964	56), stone, crushed sandstone, 1954-56), and values indicated by foot- note 4	Total Minnesota.

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States—Continued

MISSISSIPPI

1953 1964 1965 1966	Value thousand dollars) Short tons (miless dollars) Value (miless dollars) Chousand dollars) Chousand dollars) Chousand dollars) Cherwise dollars) Cherwise dollars) Cherwise dollars) Cherwise stated)	thousand short tons thousand short tons thousand short tons thousand salons thousand short tons thousand s	-thousand 376-pound barrels.
1992	Mineral Short tons (unless otherwise stated)	154, 32, 35, 2,	

MONTANA

3,807	3, 468 81, 962 (4)	(4), 334 (5), 853 (4), (4)	1,758 56,141 3,957	(8) 7, 174 6, 685 1, 816	(4) 19, 322	21, 080	13 213, 728		154	2,84,7,209 7,404	4, 142	12, 772	1 71, 776
118,780	846 96, 426 59, 775	38, 121 18, 642 80, 552 4, 752	25, 847 21, 760 558	(*) 10,024 7,385,908 1,247	1, 230 1, 230 70, 520	 			153	13, 541 16, 204 10, 350		1	
3, 719	3, 782 60, 830 (4)	(4) (5) (5) (7) (4)	1, 724 35, 380 (4)	(4) 6,615 5,503 1,200	(4) 16, 873	25, 637	13 166, 993		151	2, 553 30, 810 6, 193	4, 177	11, 144	1 54, 237
118, 703	1, 247 81, 542 25, 223	28, 123 17, 028 106, 026 6, 341	28, 255 15, 654 (*)	(4) 13, 772 6, 080, 390 1, 274	1,211 68,588	; ; ; ; ; ; ;			151	12, 515 11, 203 8, 405	3,081	1	
4, 133	4, 157 35, 016 (+)	£.€.4.€.6 828 19 19 19		7, 460 4, 686 1, 385	3. 13, 166	18, 519	18 126, 412		164	21, 400 6, 992	3, 512	10, 637	7 42, 393
123, 096) 1, 491 59, 349 15, 102	23, 660 23, 660 14, 820 58, 661 5, 266		13, 341 13, 341 5, 177, 942 1, 320	(7) 678 60, 952	 		7.5	164	6, 801 7, 783 8, 548	2, 660	1	
870 38	4, 884 93 44, 552 (4)	867 45 6, 227 (4) (4)	1, 645 26, 020 (•)	2, 994 6, 054 6, 1, 125	(4) 18, 462	19, 293	132, 184	NEBRASKA	187	17, 190 4, 340	2,070	8, 583	33, 281
26,089	1,848 25 77,617 5,932	24, 768 19, 949 113, 429 5, 598	27, 889 11, 920 (*)	3, 000 6, 203 6, 689, 556 6 803	80, 271	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NE	176	6, 748 6, 344 5, 970	1, 407	1	
Chromite gross weight. Clays.	Coan- Bituminous do Bituminous do Copper (recoverable content of ores, etc.)	Gold (recoverable content of ores, etc.) Iron ore (usable) Manganeso ore (35 percent of ores, etc.) Manganeso ore (35 percent or more Mn) Manganiferous ore (5 to 85 percent Mn)	e) thousand 42- thous thous	Furnice Sum of gravel Silver (recoverable content of ores, etc.) Store (except limestone for cement and lime, 1963), thousand short tons.	Tungsten ore and concentrate. Zinc (recoverable content of ores, etc.)	Value or near that cannot be ensured: Antunous ore and concentrate (1963), barite, cement, elsy (bentonite 1966), grysum, lime, natural-gas liquids, pyrites, stone (dimension granite 1963), recovered elemental sulfur (1966), vermiculite, and values indicated by footnote 4	Total Montana		Claysthousand short tons	Netural gas. Petroleum (crude). thousand 425 gallon barrels. Sand and grevel. thousand short tons.	e for ceme	and pumice. Excludes value of clays used for cement (1953)	Total Nebraska

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 21953-56, by States—Continued

NEVADA

	19	1953	19	1954	1	1955	1956	9
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
of ores, etc.)	20 99, 525 (4) 61, 850 (5) (9) (9) 101, 799 701, 584 701, 584 444 444 444 443, 371	(4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	83, 833 70, 217 70, 217 (4) (5) (5) 79, 067 654, 422 654, 422 35, 061	(a) 617 (b) 41, 428 (c) 63, 43, 438 (c) 63, 43	113, 694 78, 925 (*) (*) (*) (*) (*) (*) (*) (*)	58, 878 (4) (4) (2), 552 2, 552 2, 836 1, 667 981	13, 178, 440 14, 14 82, 883 15, 646 (9) 72, 646 720, 356 6, 384	(÷) 1, 067 (÷) 450 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Manganese ore (5 percent or more Mn). Manganiferous ore (5 to 35 percent Mn). Mercury. Petroleum. Petroleum.	20, 150 25, 064 3, 254	1, 685 432 628	(*) 12,870 4,974 33	(4) 165 1,315 40	101, 469	1,669	121, 482	(4)
f ores, etc.) me, 1953)	21, 269 2, 266 697, 086 1, 036	2,089 2,089 1,399	(*) 3, 531 560, 182 1, 833	(.) 2, 957 2, 9011	(*) 3,580 845,397 1,612	(4) 3, 762 765 2, 609	11, 534 4, 687 1, 220, 473 1, 401	2, 281
Turgsten concentrate. Zine (recoverable content of ores, etc.). Value of tenns that cannot be disclosed. Brutet (1955-64, 1966), diatomite, lime meaneste colorance and match damme posities enference and match damme posities enference.	3, 683 5, 812	13, 824 1, 337	2, 800 5, 331 1, 035	20, 048	20, 732 6, 155 2, 670	22, 751 657 657	10, 540 5, 400 7, 488	98 19, 263 2, 052
	1	5, 891	-	12, 435		13, 752	1	14, 404
Total Nevada		73, 523		13 89, 138		11 18 113, 220		18 126, 233
	NEW HA	NEW HAMPSHIRE						
Beryllium concentrategross weight. Clays Columbium-tantalum concentrate Feldspar Gen stones Gen g	57 45 770 28, 961	33 41 286	12 36 255 (4)	36		(+) (+) (+)	98	(4) 47

Mica. Sheat. Scrap. Peat. Sand and gravel. Stone. Shone. Shone. Shone. Shone. Shone. Shone. Shone. Cated by footnote 4.	90, 716 (+) (+) 2, 249 77	(4) (4) (5) (5) 539 16	42, 466 (+) 325 (+) 2, 241 72	234 12 1, 095 1, 095 473 255	(4) (4) (4) 2, 432 (4)	(4) (5) (4) (4) (5) (5) (6)	50, 873 305 320 3, 862 (4)	178 (4) 10 (1), 822 (4) 1, 378	
Total New Hampshire		1,805		2,112		2, 605		3, 436	
	NEW	JERSEY						-	
thousand long tons, thousand long tons, 1963)	8	582 1, 326 8, 818 (9) 116 6, 821 (9) 188 6, 821 (9) 188 77, 921 (1), 886 77, 921 (1), 886 (1), 6, 036 (1), 919 (2), 700 (1), 923 (3), 700 (1), 923 (4), 700 (1), 945 (5), 825 (7), 923 (8), 825 (9), 825 (1), 945 (1), 945 (1), 945 (2), 923 (3), 923 (4), 923 (5), 923 (6), 923 (7), 923 (7), 923 (8), 923 (9), 933 (9), 933 (9), 933 (9), 933 (9), 933 (214, 476 214, 931 10, 005 (14), 005 (15), 005 (16), 005 (17) (16), 005 (17) (17) (18), 005 (18),	(4) 246 (6) 622 (7) 186 (7) 187 (1) 187 (1) 187 (1) 19	(4) 23.3.70 23.3.70 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	130, 912 130, 129 (4) (11) 194 (14) 10, 10 8, 972 4, 667 4, 069 4, 069	2, 214 16, 642 (*) (*) (*) (*) (*) (*) (*) (*)	
berylinm concentrate Jerylinm concentrate Colary Columbium-tantalum concentrate Copper (recoverable content of ores, etc.) Funorspar Guypsum Guypsum Holium concentrate Holium concentrate Holium concentrate The concentrate Holium concentrate The concentrate The concentrate The concentrate The concentrate The concentrate of ores, etc.) The concentrate of ores, etc.)	(e) 614 (72,477 72,477 11,890 (e) 2,614 2,614 11,158 2,943	3, 022 3, 081 4, 602 41, 602 (*) (*) 91 150 (*)	417 418 420, 508 60, 558 60, 558 6, 558 41, 755 887 887	44 83 727 4 35, 729 (+) (+) (5) (5) (4) 243	106 106 202 202 76 (4) (5) (1) 1,917 53,721 8,721 8,729 8,296	(a) 109 (b) 236 (c) 25 (d) 25 (e) 25 (e) 67 (e) 946 (e) 982	(e) 275 (f) 6,042 (g) 74,345 (h) 3,275 (h) 6,042 (h) 6,042 (h) 6,042 (h) 6,042	(*) 95 923 (8) 63, 198 115 11, 350 (*) 1, 887 1, 887	

See footnotes at end of table.

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States—Continued

NEW MEXICO-Continued

4		Ponumano OO	non					
	198	1953	1954	54	15	1955	1956	9
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Manganierous ore (35 percent or more Mn)gross weight Manganierous ore (5 to 35 percent Mn)do	(4)	(+)	20, 546	82	1, 390 40, 320	(£)	22, 011 38, 782	1, 834
Scrap. Sheet. Natural gas. Matural gas. million cubic feet.	399, 086	24, 344	2,054 449,346	35, 049	9, 431 540, 664	8 65 48, 119	6, 247 626, 340	22 53 55, 118
Natural gasoline and cycle products	171, 654 121, 212 84, 891 70, 441	10, 094 4, 618 662 185, 260	225,12	11, 744 5, 704 886 205 760	261, 023 278, 403 147, 805 82, 958	15, 425 6, 767 1, 091 227, 310	306, 595 308, 218 167, 705 87, 893	16, 560 11, 065 1, 271 241, 706
Potassium salts	1, 552, 831 528, 649 62 1 416		- ,	64, 367 1, 060 8 340	17 1, 841, 122 393, 597 4 556	17 69, 641 780 597 6 005	1, 930, 754 292, 330 58 6, 054	72, 802 667 501
ole content of ores, etc.) thousand short deconentrate 60-percent WOs 1	205, 309		100, 100,	714 714	251, 072 1, 573		392, 967 1, 268 (20)	., 356 1, 272
res, etc.) be disclosed: agnesium com 1956), recovered alues indicated	13, 373	3, 076	9	$\frac{1}{1}$	15	3, 758	35, 010	9, 593
Total New Mexico		336, 545		373, 519		11 436, 494		13 513, 303
	NEW	NEW YORK						
Cement 16 thousand 376-pound barrels. Clays. Emery	14, 965 961 10, 562	39, 388 1, 303 144	14, 497 1, 199 9, 758	38, 861 1, 494 132	17, 942 1, 394 10, 735	52, 150 1, 676 151	18, 604 1, 235 12, 153	57, 329 1, 508 174
Order Stouese Gypsum (ron ore (usable) Lead (recoverable content of ores, etc.) Line Natural gas million cubic feet.	987, 156 3, 415 1, 435 (+) 2, 347 3, 775	3, 507 36, 346 376 (4) 742 46	1, 133, 579 2, 803 1, 187 (+) 2, 598	31, 707 31, 707 (4) (4)	1, 249, 119 3, 202 1, 037 82, 890 3, 637 (4)	38, 019 38, 019 309 1, 366 1, 073	1, 140, 187 (4) 1, 608 86, 737 4, 900	(4) (5) (6) (7) (8) (1) (8) (1) (9) (1) (9) (1) (1) (1) (1) (2) (3) (4) (4) (5) (7) (7) (7) (8) (8) (8) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
. CCC.	2 6	2		-	-	2	7 000	3

12, 091 227, 545 28, 722 76 36, 136 16, 196 62, 734	1 237, 016		16 2,027 3,191 3,191 31 3 2,135 6,294 6,294 (*) 529 (*)
2, 748 2, 3, 873 2, 1815 3, 1815 5, 111 5, 111			1 454 255, 663 255, 663 255, 663 (**) 882 770, 903 7, 125 7, 125 7, 125 125, 453 125, 453 2, 732
10, 310 25, 214 26, 545 60 1, 345 13, 042 13, 042 8, 773	7 216, 907		(4) 12 2, 185 2, 185 (8) 7 2, 745 2, 745 (9) 6, 911 (9) 6, 911 (10, 075 41, 210
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2			(e) 227 242,2375 242,774 (e) 190 190 7,736 7,736 112,206 2,609
11, 149 22, 754 29, 756 3, 756 31, 426 (4) 11, 491 9, 883	1 192, 738		(*) 12 2,520 2,221 1,467 1,467 15,608 (*) 508 (*) 389 (*) 389 (*) 389 (*) 389 (*) 44,651
3, 257 3, 413 30, 413 34, 576 114, 929 19, 410 (5), 199		NA	(4) 587 1,873 230,744 214 4,049 4,049 4,049 1,744 112,704 112,704 2,538
16, 260 17, 351 23, 494 1, 733 2, 251 11, 852 11, 852 8, 102	186, 868	NORTH CAROLIN	(4) 16 2,535 3,291 1,429 1,308 4,993 6 14,424 (4) 578 (5) 577
3, 800 3, 3, 822 22, 853 32, 853 113, 875 116, 290 116, 290 116, 290 116, 200		NORTH	(4) 1,466 268,042 6,911 6,911 2,074
Petroleum (crude) Salt (common) Salt (common) Sand and gravel Salt (common) Sand sing fravel Salt (common) Sand sing fravel Salte (coverable content of ores, etc.) Stone (except limestone for cement and lime, 1953). thousand short tons. Tale Tale (recoverable content of ores, etc.) Value of items that cannot be disclosed: Abrasive garner, iron oxide plements (1955-54), heryllim concentrate (1954-196), and that cannot be disclosed. Abrasive garner, iron oxide plements (1955-66), calcareous mail (1955-64), stone (crushed unclassified 1953), recovered elemental sulfur (1954), titanium concentrate, wollastonite and values indicated by footnote 4. Excludes value of days used for cement (1953).	Total New York		Abrastve stones. Beryllium concentrate. Foldspar. Galdspar. Galdspar. Gold (recoverable content of ores, etc.). Mice: Scrap. Scrap. Sand and gravel. Slivet (recoverable content of ores, etc.). Sheet. Slivet (recoverable content of ores, etc.). Sheet. Subset. Subset.

See footnotes at end of table.

TABLE 5.-Mineral production 1 in the United States, 2 1953-56, by States-Continued

NORTH DAKOTA

	190	1953	1954	54	Ä	1955	1956	99
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Clays Coal (lignite) Oal (lignite) Oatural gas Petroleum (crude) Purnice Sand and gravel Sand and gravel Sulfur, recovered elemental Value of Items that cannot be disclosed: Certain nonmetals and yalues Indicated by footnote 4.	2, 803 4,908 5, 183 6, 174 35	48 6, 618 34 10, 370 2, 165	(4) (4) 1, 093 6, 025 7, 105	(4) (5) (6) 12, 890 2, 219 4 7, 041	(*) (3, 102 (5, 256 (11, 143 (3, 500 (11, 169 (77)	(*) 7, 261 7, 261 32, 200 32, 200 2, 638 80 1, 529	5 52 2, 815 11, 725 13, 495 4, 495 6, 946 1, 735	6, 578 6, 578 950 39, 136 4, 259 87 46
Total North Dakota		19, 237		22, 223		44, 123		53, 555
	0	оню						
Cement thousand 375-pound barrels. Clays. Clays. Clays. Clays. Lime. Watural gas. Petroleum (crude). Sand and gravel. Sand and gravel. Sand except limestone for cement and lime, 1963). Situme of items that cannot be disclosed: A brasive stones, calcium-magners stum elucide, gypsum, natural gasoline, ground sand and sandstone (1963), stone (dimension undassified 1963, erushed sandstone 1966), recovered elemental sulfur, and values indicated by footnote 4. Excitated values of clays used for cement (1963).	2, 945, 835 2, 945, 805 2, 945, 805 37, 542 37, 542 3, 610 3, 610 2, 040 2, 040 2, 030 2, 040	32,957 9,328 131,1475 35,310 8,334 9,710 7,485 27,076 6,39,041 1,265	13,077 2,549,046 2,549,046 29,540 29,540 2,540 2,540 2,540 2,540 3	35, 929 11, 137 11, 550 11, 550 11, 444 6, 111 10, 710 12, 359 27, 873 47, 802 2, 084 2, 084	14, 914 6, 297 3, 038, 949 8, 38, 949 22, 48, 88 27, 906 33, 273	42, 966 115, 677 115, 677 12, 884 12, 886 12, 885 2, 885 13, 407 40, 447 13, 467 13, 467 13, 467	16, 065 8, 6, 703 8, 995, 320 12, 536 12, 536 14, 536 15, 200 16, 30, 200 17, 200 18,	49, 794 117, 675 140, 865 40, 808 6, 088 1, 17, 025 115, 024 16, 923 36, 146 6, 50, 947 5, 394

OKLAHOMA

10, 341 12, 341 13, 341 14, 288 26, 543 28, 543 60, 096 9 9 9 9 9, 542 9	12, 417	7 757, 116	(4) 2001 278 278 278 260 (4) 96 (4) 2 11, 647 11, 647 7, 890 7, 890 7, 84, 011
2 705 2,007 12,350 678,603 678,101 215,862 305 6,947	27, 515		1, 583 6, 098 6, 098 6, 098
2 727 12, 688 4, 209 45, 508 28, 770 14, 297 563, 830 (*)	12, 295 10, 220 10, 220 15, 525	7 711, 080	(4) 60 (4) 60 (4) 60 (4) 1 11,832 9,418 9,418
5 724 2, 164 14, 126 614, 976 504, 692 512, 320 202, 817 (*)	11, 963		(e) 1, 708 (f) 1, 708 (f) 1, 708 (f) 1, 1066 (f) 1, 10
 1, 283 11, 265 11, 265 43, 145 43, 145 518, 520 (*) 4, 265	9, 326	7 650, 205	(4) 588 (5) 328 (7) 228 (1) 129 (7) 178 14, 150 14, 150 14, 150 1, 153 8, 618 8, 618
452 1, 915 14, 204 114, 204 616, 355 478, 590 453, 810 (4) (5) (5) (5) (6) (6) (6) (7) (7) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	43, 171		6, 655 (9) 5 (9, 520 (6, 520 1, 1988 67, 852 13, 157 14, 335 5, 872
637 13, 227 2, 438 41, 397 28, 066 14, 886 546, 940 4, 258	11, 538	679, 003 OREGON	(4) 294 296 296 (5) 1 (6) 125 1178 8,630 111 6,6,302 8,124 8,124
578 2, 168 9, 304 599, 955 433, 650 414, 036 202, 570 (+) (+) 5, 011	33, 413	O.B.	6, 216 292 (9) 9 8, 488 4, 64 271 648 73, 080 73, 080 8, 73, 080 8, 73, 080 8, 73, 080 8, 73, 080 8, 4, 939
es, etc.)	Stone (except innestone for cancer, and inne, 1900). Value of ttems that cannot be disclosed; Nettree saphalt, clay (bentonite, 1965-56), cement, gypsum, lime, ground sand and sandstone (1953), stone (dimension limestone 1964), recovered elemental sulfur, tripoli, and values indicated by footnote 4. Excludes value of clays used for cement (1963).	Total Oklahoma	Chromite Clays. Copyet (recoverable content or ores, etc.) Copyet (recoverable content or ores, etc.) Godd (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Manganies or 63 for 35 percent Mn) Nickel (content of ore and concentrate) Punice Salver (recoverable content or ores, etc.) Nickel (content of ore and concentrate) Salver (recoverable content or ores, etc.) Salver (recoverable content or ores, etc.) And and and gravel Salver (recoverable content or ores, etc.) And and and gravel Salver (recoverable content or ores, etc.) Total Oregon

TABLE 5.-Mineral production1 in the United States, 21953-56, by States-Continued

PENNSYLVANIA

1956	Value (thousand dollars)	102, 387 236, 785 236, 785 2470, 437 (÷) (÷) (±) (±) 251 251 251 251 251 251 251 251 251 251	, T, USS, 507
19	Short tons (unless otherwise stated)	51, 964 54, 413 28, 413 59, 287 59, 287 50, 287 50, 287 50, 300 1, 48, 430 1, 127 20, 128 8, 230 8, 240 8, 240 1, 400 1, 400 1	
1955	Value (thousand dollars)	141,969 12,413 206,087 206,087 (*) 56 (*) 56 (*) 52 281 28,622 280 (*) 200 (*) 50,512 20,512 20,512 20,512 17,68,913	11 808, 810
31	Short tons (unless otherwise stated)	26, 26, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	1
1954	Value (thousand dollars)	117, 912 10, 244, 870 247, 870 (•) 46 (•) 46 (•) 48 13, 230 83 83 83 84, 41 81, 150 89 20, 506 (•) 60, 193 (•) 60, 193	040,028
19	Short tons (unless otherwise stated)	43,008 29,008 27,010 517,1124 (-	
23	Value (thousand dollars)	114, 603 299, 140 516, 490 (-) 40, 117 16, 010 30, 717 (-) 40, 602 20, 602 20, 603 6, 4, 4, 400 6, 63, 694 (-) 64, 680 (-) 64,	1, 141, 044
1953	Short tons (unless otherwise stated)	42,094 9,575 9,094 9,094 9,094 1,008 9,200 1,008 9,200 1,008 1	
	Mineral	Cement Olays. Colays. Colays. Colays. Colays. Anthractic. Bluminous. Copper (recoverable content of ores, etc.) Copper (1955) C	A Ocal I Childy I Vallation of the contraction of t

医生物学 果然 经通过 的复数指挥者 经股份股份 经股份股份 医阿勒克氏 人名英格兰英格兰人名

RHODE ISLAND

Sand and gravel thousand short tons. Stone. Value of items that cannot be disclosed: Nonmetals and values indicated by foothote 4.	898	776 617 69	1, 013	(+) 481	1,941	(*)	1, 308	1,263 221 143
Total Rhode Island		1, 462		1, 461		1,834		1, 627
	SOUTH	SOUTH CAROLINA						
Mice (sheet). Mice (sheet). Made and gravel. Sand and gravel. Shone. Value of items that cannot be disclosed: Barite, cement, kyanite, scrap mice (1964-66), rare-earth medials concentrates (1965), stone (dimension grantle 1965-64, dimension grantle and crushed limestone 1966), ittamium (1966), vermiculite, and values indicated by footnote 4. Excludes values of clays used for cement (1963).	2,976	4, 802 2, 565 3, 976 6, 428	(+) 136 2, 814 2, 862	(*) (*) 2, 550 4, 233 6, 374	1, 086 (*) 3, 127 3, 455	(4) 5, 463 (2) 2, 677 4, 921 7, 400	1, 087 5, 400 3, 229 3, 304	5, 450 14 2, 926 4, 285 9, 277
Total South Carolina		17, 771		13 17, 744		13 20, 197		13.21, 342
	SOUTE	воитн ракота						
Beryllum concentrate. Coal (lignite) Coal (lignite) Coal (lignite) Coal (lignite) Coal (lignite) Coal (lignite) Columbium-tanitalium concentrate. Feldagar. Good (recoverable content of ores, etc.). Lead (recoverable content of ores, etc.). Lead (recoverable content of ores, etc.). Lead (recoverable content of ores, etc.). Sarab Sheet Natural gas Short Short Natural gas Short Short Thousand long tons, gross weight. Lead (recoverable content of ores, etc.). Short Short Short Natural gas Short Concept limestone for cement and lime, 1963, thousand short tons. Tungsten ore and concentrate and lime, 1963, thousand short tons. Tungsten ore and concentrate and lime, 1963, thousand short tons. Thus lithium minerals (1982-E4), perlocheum (1984-E6), stone (dimension miscellaneous 1963). Total South Dakota. Total South Dakota.	332 331 24, 431 24, 431 36, 601 35, 987 (4) 1, 174 11, 174 11, 174 11, 174 11, 174 11, 174 11, 188 11, 188 11, 188 11, 188	2188 828 828 82 82 82 82 82 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	(8) (9) (100 cm	(4) (4) (5) (6) (6) (7) (8) (9) (11) (9) (11) (11) (11) (11) (11)	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	(4) 157 90 10 207 7 18 545 (5) 16 (7) 10, 097 5, 680 5, 680 6, 115	195 201 201 201 201 200 (*) 568, 528 16, 794 12, 494 12, 498 12, 498 12, 498 12, 498 136, 118	(s) 90 (b) 90 10, 808 (c) 10, 808 (d) 101 (d)

TABLE 5.—Mineral production 1 in the United States, 2 1953-56, by States-Continued

TENNESSEE

1956	Short tons (thousand otherwise dollars)	8,755 1,379 8,848 10,449 (*), 8,609 (*), 8,82 (*), 8,609 1,459 1,436 1	1137,846		(4) (4) 25, 966 75, 695 5 3, 146 6 4, 765	(*) 1156, 956 3, 623 145, 830 2, 364 (*) (*) (*) (*) (*) 592, 136
1955	Value SI dollars)	23, 673 24, 170 27, 344 7, 344 7, 344 1, 102 1, 102 1, 102 1, 102 1, 280 1, 280 1, 280 1, 280 1, 814 6, 893 8, 893 6, 893	7 119, 316		(4) 67, 549 8 5, 100	4, 220 2, 272 (4) 5, 549
19	Short tons (unless otherwise stated)	8, 81, 208, 21, 208, 21, 208, 21, 208, 21, 208, 22, 22, 22, 22, 22, 23, 24, 24, 24, 34, 34, 34, 34, 34, 34, 34, 34, 34, 3			(4) 24, 856 8 3, 097	(e) 1, 349, 434 139, 397 875 584, 855
1954	Value (thousand dollars)	15, 734 28, 734 447 5, 382 8 (*) 8 8 (*) 8 11, 74 6, 141 6, 141 6, 550 6, 550 6, 550	7 105, 686		(4) 56, 674 7, 002	3, 773 1, 874 (*) 5, 422
19	Short tons (unless otherwise stated)	7, 7, 559 6, 429 6, 429 7, 015 7, 015			(4) 21, 928 2, 401	(9) 1, 218, 048 110, 588 915 547, 436
1953	Value (thousand dollars)	18, 28, 28, 28, 28, 28, 28, 28, 28, 28, 2	98, 050	TEXAS	48, 498 4, 679	(*) 2,861 1,389 (*),389 4,381
19	Short tons (unless otherwise stated)	7, 2, 2, 7, 1, 037 7, 5, 829 7, 629 114, 474 1, 619 8, 839 8, 10, 485 8, 10, 485 8, 10, 485 8, 465		TE	400 19, 140 2, 371	(%) 1, 067, 854 103, 711 1, 015 475, 569
	Mineral	Cement Clays Clays Copy Copy (coop or class) Fluoraganes or (35 percent or more Mn) Natural gas Fluoraganes or (35 percent or more Mn) Matural gas Fluoraganes or (35 percent or more Mn) Matural gas Fluoraganes or (35 percent or more Mn) Matural gas Sand and gravel Fluorand (recoverable content of ores, etc.) Fluorand gravel Sluor (recoverable content of ores, etc.) Fluorand gravel Thousand short tons Sluor (recoverable content of ores, etc.) Fluorand short tons Sluor (recoverable content of ores, etc.) Fluorand short tons Sluor (recoverable content of ores, etc.) Sluor (recoverable order of ores, etc.) Sluor (r	Total Tennessee.		Abrasive stone: Pebbles, grinding. Cement. Clays. Clays. thousand 376-pound barrels. Clays. thousand short tons.	

		~		للتعدي		. 01	. TATT	r4 mWW	100	ισυσ			
216, 378 144, 745	3, 097, 390 14, 370 27, 213	(4) 36, 350 91, 026 3, 865	98 89	7 4, 211, 284		(4)	34, 436 213, 013 265	14, 561 27, 508 15, 560		2, 435 9 5, 302	330 1,471	4, 476 5, 948 3, 298	22, 500 (4)
2, 964, 609 3, 731, 047	1, 107, 808 3, 963 29, 336	(4) 32, 773 3, 437, 061 140, 164	±1, 004			(+)	6, 522 250, 604 10, 581	(°) 416, 031 4, 002 49, 555	55, 110	17, 268 2, 271 2, 466	44, 769	5, 836 6, 572, 041 2, 322	1, 098, 802
206, 506 110, 414	2, 989, 330 12, 867 28, 480	1099 33, 544 105, 128 3, 144	50.069	7 3, 993, 310		3,117	40,005 173,780 151	15, 442 24, 688 15, 035	283	(4), 386 (5, 140	1, 339	3, 309 5, 657 2, 650 225	(‡)
2, 987, 808 3, 450, 430	1, 053, 297 3, 583 31, 518	46, 718 27, 321 3, 766, 882 114, 989 35, 064	5			82, 822	6, 296 232, 949 7, 328	(*) 441, 206 3, 847 50, 452	38, 710	17, 163 (*) 2, 227 (*)	2,041	6, 250, 565 1, 926 65	995, 873
200, 559 95, 913 (4)	2, 768, 490 9, 310 24, 841	(4) \$ 29, 344 92, 792 2, 889 138	52, 527	7 3, 730, 705		2,724	29, 761 124, 983 82	14, 119 19, 277 12, 322	(+) (+) (+) (+)	(+) (+) (+) (+) (+) (+)	1,020	3, 592 1, 583 309	(*)
2, 732, 100 2, 983, 962 (4)	974, 275 2, 864 26, 316 100	(4) 6 25, 840 3, 474, 477 107, 232 19, 362				75, 943	5,008 211,835 4,403	403, 401 3, 041 44, 972	30, 428 25 97	(4) (4) 1,905	3,588	6, 179, 243 1, 127 1, 127 84	575, 884
200, 479 109, 131 (4)	2, 777, 900 5, 011 12, 845	(4) 6 8, 550 97, 601 2, 202 71	39, 190	3, 647, 913	UТАН	2, 184	37, 689 154, 691 375	16, 920 26, 497 10, 879	(*) (*) 82 83	(3, 180 6, 087 1, 447 123	(4)
2, 750, 370 2, 777, 880 1, 375	1, 019, 164 2, 845 15, 101	(4) 6 9,095 3,614,838 84,717 16,210			, d	60, 505	6, 544 269, 496 15, 527	483, 430 4, 617 41, 522	(*) 550 5,155 7,078	(4), 515 1, 807 (4)	3,880	4, 628 6, 725, 807 997 35	385, 038
products	Petroleum (grude) Salt (common) Sand and gravel Saltyer (recoverable content of ores, etc.)	1 A 1 1 1	Value of teems that cennot be disclosed: Native aspitalt, bromine, clay (fuller's serth 1865-56), coal (lignite), graphite, magnesium chloride (for metal), magnesium compounds (except for metal), mercury (1855-56), pumite, stone (crashed basalt 1983, dimension sandsitone 1964), uranium ore (1965), and values indicated by footnote 4. Excludes value of elays used for cement (1963).	Total Texas.		Asphalt and related bitumens, native: Gilsonite	Copper (recoverable content of ores, etc.) Planorspar Copper (recoverable content of ores, etc.) Copper (able content of or le) able content of or	Manganese ore (35 percent or more Mr.) gross weight. Manganiferous ore (5 to 35 percent Mr.) dirting main on the form	thousand the	Fullities Salt (common) thousand short tons. Sand and grayel	Silver (recoverable content of ores, etc.) Stone (except limestone for eement and lime, 1963) thousand short tons. Tungsten ore and concentrate	Orangium ove. She footnotes at end of table

See footnotes at end of table.

TABLE 5 .-- Mineral production 1 in the United States, 2 1953-56, by States-Continued

UTAH-Continued

	1953	- FG	1954	42	19	1955	1956	9
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Zinc (recoverable content of ores, etc.) Value of items that cannot be disclosed: Carbon dioxide, cement, clay (kaolin 1956), gypsum, molybdenum, natural gasoline, potassium salts, and values indicated by footnote 4. Excludes value of clays used for cement (1953). Total Utah.	29, 184	6, 712 28, 692 298, 589	34, 031	7, 351 26, 203	43, 556	28, 738	42, 374	11, 610 33, 249 13 396, 942
	VER	VERMONT						
Clays. thousand short tons. Copper (recoverable content of ores, etc.) toy onnees Gold (recoverable content of ores, etc.) toy onnees Gold (recoverable content of ores, etc.) toy onnees Sand and gravel trecoverable content of ores, etc.) too sand short tons Silver (recoverable content of ores, etc.) too sand short tons Silver (recoverable content of ores, etc.) thousand short tons Talo. Talo. Value of items that cannot be disclosed: Asbestos, gem stones (1965), lime, and values indicated by footnote 4. Total Vermont.	(9) 3, 947 19, 486 1, 114 43, 128 (9) 527 80, 209	(*) 2,2,265 6 (*) 690 39 8,860 8,860 8,201 8,201	(4) 4, 352 20, 713 1, 482 48, 572 (4) 66, 195	(4) 2,568 (6) 6 (7) 1111 (7) 1111 (7) 18 (7) 199 (8) 401 (199 (8) 401	4, 305 1, 305 1, 763 1,	3, 212 (c) 6 1, 169 (d) 11, 061 (e) 8, 400 8, 400	(4) (5) (2) (4) (4) (4) (5) (5) (5) (6)	(4) 2, 893 (4) 107 905 (4) 3, 722 11, 622 (5) 3, 915 3, 915
	VIRC	VIRGINIA						
Beryllium concentrate Clays Coal Lead (recoverable content of ores, etc.) Inme Manganese ore (35 percent or more Mn) Mat, calcavous (except for cement) Mica, sheet	19, 119, 119, 119, 119, 119, 119, 119,	928 102,022 730 4,947 636 (+)	(4) 705 16, 387 4, 320 445, 158 22, 678 33, 174 (4)	(8) 723 72, 901 1, 184 1, 184 1, 781 (4) 21	(4) 838 (4) 838 (4) 838 (4) 838 (4) 838 (5) (4) 838 (5) (5) (4) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	(8) 874 108, 174 5, 049 2, 779 (4)	1, 000 28, 063 3, 035 512, 346 20, 231 10, 522 10, 896	(9) 1, 033 138, 127 953 5, 926 1, 902 1, 902 6

(4) 9, 240 1, 035 23, 076 5, 181 24, 981	7 208, 806	(e) 444 3 446 3 447 447 447 447 447 447 447 447 447 4	חחח לדח .
(4) (5) 7, 783 1, 874 14, 084 19, 196		28 28 28 28 28 28 28 28 28 28 28 28 28 2	
(*) 8. 076 820 119, 870 4, 508	1172, 541	(e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	±00',00'.
968 4 4 4 6, 461 1, 850 31, 536 11, 536 18, 329		€ & €74, 6, 7, 7, 5, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	
(4) 380 8, 628 28 469 18, 138 3, 615	7 129, 603	(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	, 00, au
1, 401 7, 115 1,777 17, 410 10, 894 16, 738		(**) *********************************	
(4) 954 (5) 101 (4) 116, 259 3, 835 17, 506	WASHINGTON	(*) 25, 53, 33, 22 26, 64, 64, 64, 64, 64, 64, 64, 64, 64, 6	04, 011
3, 697 6, 276 1, 169 (4) 9, 002 16, 676	WASH	(4) 288 288 3,740 (9) 200 (9) 200 (1) 200 (1) 1118 (1) 118 (1)	1
Natural gas. Badd and gravel	Total Virginia	Abrasive stone: Pebbles (grinding). Batio. Chays. Conjugation of the content of ores, etc.). Epsomite Gold (recoverable content of ores, etc.). Epsomite Gold (recoverable content of ores, etc.). Epsomite Gold (recoverable content of ores, etc.). For thousand short tons. Gold (recoverable content of ores, etc.). For thousand long tons. Lead (recoverable content of ores, etc.). For thousand short tons. Sand and gravel. Frail or (exceyrable content of ores, etc.). This and soopstone. This can despetime to ore demont and lime, 1933. thousand short tons. The of items that cannot be disclosed: Carbon dioride, cement, distonant, lime, lime, magnesite, managenese or (1935), ollvine, quartz (1935), ground sand and sandstone (1938), strontlum minerals (1936), uranium ore (1936), and values indicated by footnote 4. Excludes value of clays used for cement (1933).	Total Washington

See footnotes at end of table.

TABLE 5.-Mineral production 1 in the United States, 2 1953-56, by States-Continued

WEST VIRGINIA

	19	1953	1954	54	1	1955	1956	
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Clays. Coal Marti, calcarcous. Natural gas. Natural gasoline. Li-gasea Petroleum (crude). Stan (except limestone for cement and lime, 1953). Lihousand sbridns. Sand and gravel. Sand and gravel. Stand except limestone for cement and lime, 1953. Lihousand short tons. Calcium-magnestum chloride, cement, lime, ground sand and sandstone (1953), stone (dimension linestone (1653), recovered elemental sulfur, and values indicated by footnote 4. Excludes value of days used for cement (1963).	969 (134, 105 (105, 477 44, 352 153, 090 3, 103 6, 501	2, 488 683, 594 (4) 4,009 3, 245 6, 743 11, 570 11, 490 6, 071 11, 975	115, 986 (4) 986 (4) 601 194, 601 142, 884 2, 992 2, 992 7, 315	1, 451 (4) 370 (4) 45, 601 45, 601 25, 583 8, 886 8, 886 11, 743 10, 604	707 139, 168 (4), 212, 403 212, 403 88, 756 286, 871 2, 820 5, 899 5, 171 5, 899	655, 288 (655, 388 (4) 915 2, 375 2, 375 2, 477 6, 774 12, 930	204, 777 204, 777 35, 728 240, 889 2, 179 6, 579 6, 579	2, 449 8, 449 10, 758 10, 758
Total West Virginia		790, 110		7 636, 311		7 755, 512		7 935, 074
	WISC	WISCONSIN						
Abrasive stone: Pebbles (grlnding). Clays. Lino ore (usable) Lead (recoverable content of ores, etc.). Line Mari, calcarrous (except for cement).	(4) 175 1,655 2,094 123,997 15,871	(+) 175 (+) 549 1, 566 (+) 7	(4) 1, 429 1, 220 115, 397 116, 397 (4)	(4) 174 (4) 346 1, 558 (4) 10	(4) 1, 886 1, 948 134, 635 14, 087	(4) 166 (4) 581 1, 768	1, 093 1, 163 2, 582 (*) 11, 074	(4) 31 (4) 811 (4) 6
Sand and grayed included in the comment and lime, 1983. Libousand short tons. Zinc (recoverable content of ores, etc.). Value of items that cannot be disclosed. Abrasive stone (tube-millimers), earner, quartz (1983), ground sand and sandstone (1983), stone (crushed basalt 1986), and values indicated by footnote 4.	23, 664 7, 450 16, 830	16, 253 15, 980 3, 871 16, 811	23, 979 8, 289 15, 534	17, 396 16, 188 3, 355 15, 840	27, 978 12, 180 18, 326	19, 958 18, 843 4, 508 20, 528	27, 715 11, 126 23, 890	19, 097 20, 402 6, 546 19, 451
Total Wisconsin.		55, 212		6 54, 286		6 65, 813		6 65, 860

Claysthousand short tons	853	10, 037	944	9, 534	10,036	10,924	1,053	11,832
Copper (recoverable content of ores, etc.).		₹ (£	2,831	11,041	2, 92/	11,840	7,003	028 36
	E	Œ	(6)	€		57	(e)	0.12
Gold (recoverable content of ores, etc.)troy ounces				48		678		27
thousand long t	654	₹ €	458	€ €	749	68 (+)	11, 380	()
Natural gasmillion cubic feet	76, 262	6,025	71,068	5, 970	77,819	6,615	84,398	7, 258
	€:	€		3, 137		2,775	48,859	3, 160
Detroleum (crude)	(+) 82 618	195 800	46, 084	22, 128 230, 160	46, 106 99, 483	1,961	104 830	2,337
	(E)	(€)		€	55	345	119	721
Pumice.	3 140	2 00		(*) (*)	(4)	(4)	45,517	38
res, etc.)	7,11	(E)	74		3, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	(3),	154	(%) (%)
	€,		Đ	Đ	€	€	337, 851	8,345
Stone (except imestone for cement, 1953)thousand short tons	(4), 431	1,840	113, 101	1,665	1,303	2,034 3,234	1,333	2, 076 3, 914
				6			2	(÷)
Uranium ore Vermicalite	403	6		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	107, 400	2,100
disclosed: Beryllium concentrate	}		; ; ; ; ;		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	; ; ; ; ; ; ; ; ; ; ; ;	1	, ,
cement, manganiferous ore (1953), sodium sulfate, sulfur ore (1953),		5.						
by iootnote 4. Ex		16 433		19 897		14 093		7 091
the state of the s		10, 100		14,041		7.1° 000		1,001
Total Wyoming		255, 906		7 281, 306		7 297, 752	1	7 316, 897

Production as measured by mine shipments, sales, or marketable production including consumption by producers)
² Includes Alaska and Hawaii.

Figure withheld to avoid disclosing individual company confidential data.

Excludes certain clays, value for which is included with 'Items that cannot be ³ Excludes pozzolan cement, value for which is included with "Items that cannot be disclosed."

Excludes certain stone, value included with "Items that cannot be disclosed." Total adjusted to eliminate duplicating the value of clays and stone. disclosed

8 Less than \$1,000. • Weight not recorded. 10 Less than 1,000 short tons.

11 Revised figure.
12 Revised figure.
13 Theft mice only.
14 Total has been adjusted to eliminate duplicating the value of raw materials used in manufacturing cement and/or lime.

14 Beginning with 1954 sand and sandstone (ground) included with sand and gravel

¹⁶ Includes value of nonmetals; excludes value of clays used for cement,
¹⁶ Excludes natural cement, value for which is included with "Items that cannot be disclosed

17 Final figure. Supersedes preliminary figure given in commodity chapter.
18 Excludes masonry cement, value for which is included with "Items that cannot

be disclosed."

10 Recoverable zinc valued at the yearly average price of Prime Western slab zinc,
11 Recoverable zinc valued at the yearly average price of Prime Western slab zinc,
12 East St. Louis market. Represents value established after transportation, smelting,
and manufacturing charges have been added to the value of ore at mine.

²⁰ Less than 1 ton.
²⁰ I Less than 1 ton.
²¹ Arinding pebbles and tube-mill liners, weight of millstones not recorded.
²² Includes 45,710 short tons of concentrate produced in 1855 and 1956 from low-grade ore and concentrate stockpiled near Coquille, Oreg., during World War II.

TABLE 6.—Mineral production 1 in the Canal Zone and islands administered by the United States, 1953-56

	A STATE OF THE PARTY OF THE PAR								
		19	1953	1954	54	16	1955	1956	9
		Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
American Samoa: Sand and gravel. Stone.	thousand short tons.	1 75	(3) 17	64 85	1 15	100	H4.	2	9
Total American Samoa			17		16		5		9
Canal Zone: Sand and gravel Stone (crushed)	thousand short tonsdodo	86	95	187	245	36	47 240	40	48 230
Total Canal ZoneCanton: Stone (erushed)	thousand short tons.	4	327	က	245 5	1	287	2	278
Guam: Sand and gravel Stone	op op	2,081	5, 573	843	2,275	1, 241	3, 352	19	311
Total Guam Johnston: Stone	thousand short tons		5, 573	(#)	2, 275	112	3, 352		335
Midway: Stone (crushed)	op Op	E 11 12 12 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 46 21	э́. 4-ц	175		2000	203 12 22	304 32 22

1 Production as measured by mine shipments, sales, or marketable production (including consumption by producers).
 2 Production data for Canton and Wake furnished by the U. S. Department of Commerce, Civil Aeronautics Administration; Midway and Johnston, by the U. S. Department of American Samoa.
 3 Less than \$1.00.
 4 Less than 1,000 short tons.

TABLE 7.-Mineral production 1 in the Commonwealth of Puerto Rico, 1953-56

	,	1						
	19	1953	1954	54	1	1955	1956	9
Mineral	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)	Short tons (unless otherwise stated)	Value (thousand dollars)
Obeyent thousand 376-pound barrels. Clays. Two one (usable) thousand in a tross weight		9, 335 (2) 245	3, 682	9, 663		12, 507 122	4, 255 143	14, 065
Lime Salt (common) thousand short tons. Sand and gravel	7,338	158 132 250 250		199 98 834	10, 392 10 433	254 112 679	(s) 10 183	(2) 101 192
Stone (except limestone for cement and lime, 1983). thousand short tons. Value of items that cannot be disclosed: Other nonnetals and values indicated by footnote 2.		8 1, 237 44	\$ 1,752	8 2, 493 154	1, 784	2, 516		2, 556 195
Total Puerto Rico.	-	11, 401		4 12, 381		4 14, 917		4 16, 395

1 Production as measured by mine shipments, sales, or marketable production (including consumption by producers).
2 Figure withheld to svoid disclosing individual company confidential data.
3 Figure withheld disclosing individual company confidential data.
4 Excludes certain stone, value for which is included with "items that cannot be disclosed."
4 Total has been adjusted to eliminate duplicating the vialue of stone.

TABLE 8.—Principal minerals imported for consumption in the United States, 1955-56

[Compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census]

		<u> </u>		
	195	5	195	6
Mineral	Short tons (unless otherwise stated)	Value (thou- sand dollars)	Short tons (unless otherwise stated)	Value (thou- sand dollars)
METALS				
Aluminum:				
MetalScrap_	177, 652 2 40, 851	1 74, 695 1 2 16, 393	216, 401 25, 992	100, 137 1 10, 770
Scrap_Plates, sheets, bars, etc	20, 972	1 13, 973	22, 582	1 16, 480
Ore (antimony content)	2 7, 514	2 1, 877	6, 572	1,762
Needle or liquated	3, 667	19 1,860	46 4, 321	23 2, 245
Oxide	2, 210 7, 222	926	1,479	636
Arsenic: WhiteBauxite:	1	765	6, 422	745
Crude	3 4, 882, 373	³ 36, 656	³ 5, 670, 013	44, 414
Calcined: When imported for manufacture of firebrick				
Otherdo		2,453	138, 716 9, 960 12, 371	3, 198 221
Beryllium ore	(4) 6, 037	(4) 2, 226	12, 371	4, 459
Beryllium ore	603, 649 40, 837	1,128 75	924, 614 93, 675	1,830 172
	1			
Metaldo	927, 495 1, 832, 827	1,320 1,146	3, 115, 638 1, 451, 889	4, 640 876
Calcium:		P	1	
Metaldo Chloridedo	699, 799 1, 844	835 58	8, 387 1, 855	10 60
Chromate:	1			
Ore and concentrates (Cf2O3 content) Ferrochrome (chromium content) Metal	³ 765, 280 19, 397 268	² 38, 063 8, 011	919, 255 25, 969	49, 350 11, 347
Metal	268	434	409	11, 347 1 687
Allow (coholt content)	2, 464, 336	(4)	2, 013, 463	(4)
Metal do	223 15, 535, 040	(s) 38, 585	5, 839 12, 974, 393	32, 910
Oxide (gross weight)do	1,072,950 361,600	1,792 249	828, 450	1 1, 413
Ore	9, 612, 576	² 19, 912	828, 450 397, 711 5, 699, 553	247 8,387
Copper: (copper content)	7, 476	4,948	6,089	4,049
Ore. Concentrates. Regulius, black, coarse. Unrefined, black, blister. Refined in ingots, etc. Old and scrap.	105, 045	68, 406	74,651	54, 514
Hegulus, black, coarse	6,386	4, 515 182, 073	5, 198 276, 085	4, 395 1 225, 932
Refined in ingots, etc	2 202, 312	1 2 154 137	191.812.	157 944
Old brass and clippings	253, 693 2 202, 312 2 12, 577 2 8, 295	2 9, 030 1 2 5, 170 1 1, 993	5, 410 4, 310 5, 005	1 3, 463 1 3, 003 1, 737
Old brass and clippings. Ferroalloys: Ferrosilicon (silicon content)	5, 963	1 1, 993	5,005	1,737
Ore and base bulliontroy ounces	1,071,270	37,340	1, 197, 136	41,785
Bulliondo	1, 858, 736	67, 080	2, 532, 611	90, 882
Ore long tons Pyrites cinder do	223, 471, 956	2 177, 457	30, 431, 152	250, 527
Iron and stool:		1 16	1,430	6
Pig iron	283, 559	14, 564	326, 700	17,842
Pig iron Iron and steel products (major): Semimanufactures. Manufactures Scrap.	2 393, 919	1 2 34, 750	382, 769	1 44, 005
Manufactures	² 676, 170	1 2 34, 750 1 2 91, 043	1,094,796	1 44, 005 1 161, 089
Tin-plate scrap	² 393, 919 ² 676, 170 ² 196, 372 32, 167	1 2 6, 150 839	382, 769 1, 094, 796 222, 936 32, 633	1 10, 381 1 932
		1 38, 143	191, 302	50, 621
Base bullion (lead content)			31	111
Reclaimed, scrap, etc. (lead content)	263, 977 18, 944	73, 032 1 3, 931	262, 204 20, 464	1 77, 719 1 5, 268
Sheets, pipe, and shot	2, 048 2 1, 283	535	7, 654 2, 526	1 2, 017
Ore, flue dust, matte (lead content) Base bullion (lead content) Pigs and bars (lead content) Reclaimed, scrap, etc. (lead content) Sheets, pipe, and shot Babbitt metal and solder (lead content) Type metal and antimonial lead (lead content) Manufactures	2 1, 283 13, 213	1 2 1, 911 4, 379	8,500	1 77, 719 1 5, 268 1 2, 017 1 3, 381 2, 763
1.1011(1100)(til 05)	250	i 164	235	2, 763 1 184
See footnotes at and of table				

TABLE 8.—Principal minerals imported for consumption in the United States, 1955-56—Continued

	195	5	195	6
		1		
Mineral	Short tons	Value	Short tons	Value
	(unless otherwise	(thou-	(unless otherwise	(thou-
	stated)	dollars)	stated)	dollars)
Magnesium: Metallic and scrap	1,844	1,034	630	304
Metallic and scrap	9	52	24	203
Sium content)	4	· 24	2	8
Manganese: Ore (35 percent or more manganese) (manganese con-	1			
tent)Ferromanganese (manganese content)	2 1, 047, 152	69, 821	1,005,998	69, 653
Spiegeleisen, less than 30 percent manganese, more than	² 52, 236	² 11, 898	123, 953	28, 512
Spiegeleisen, less than 30 percent manganese, more than 1 percent carbon————————————————————————————————————			234	18
Compoundspounds_	20, 408	77	27, 985	1 100
Compounds pounds Metal flasks Minor metals: Selenium and salts pounds Molybdenum: Ore and concentrates (molybdenum contents)	20, 408 20, 354 191, 928	5 140	27, 985 47, 316 234, 969	11,010
Molybdenum: Ore and concentrates (molybdenum con-	191, 928	1 2 1, 483	234, 969	1 3, 452
(Ont) Dumus -	134, 395	142		
Nickel: Ore and matte	9,088	3, 264	12, 820	4, 592
Pigs, ingots, shot, cathodes	109, 404 2 464	148, 925 2 693	106, 534	1 152, 409
Ore and matte. Pigs, ingots, shot, cathodes. Scrap. Oxide.	32,896	² 29, 894	1, 078 32, 955	1 1, 479 31, 776
Platinum group:		,	02,000	02,110
Unrefined materials: Ore and concentratestroy ounces	407	29		
Ore and concentrates. troy ounces Grain and nuggets, including crude, dust, and residues. troy ounces. Sponge and scrap do Osmiridium do	40.710	0 505	04.010	0.054
Sponge and scrap do do	40, 713 8, 362	2, 787 1 653	34, 016 8, 204 971	2, 854 764
Osmiridiumdodo	1, 471	115	971	56
Platinumdo	450, 270	1 34, 419	433, 872	40, 628
Palladium do	450, 270 487, 174	8, 185	433, 872 530, 686	40, 628 1 10, 958
Osmiumdo	271 528	24 38	2, 323 347	203 25
Iridium	17, 783	1,787	20, 323	2,039
Radium:	2, 961	124	2, 220	87
Radium salts milligrams	65, 545 (8)	975 189	43, 221	633 1 514
Radioactive substitutesRare earths: Ferrocerium and other cerium alloypounds	6, 234	25	(6) 12, 536	40
Silver:	55, 658, 175	45, 755		52, 900
Ore and base bulliontroy ounces	28, 861, 015 1, 907, 686	25, 413 2 4, 820	63, 125, 065 99, 706, 716 1, 312, 865	75, 209 1, 180
	1, 907, 686	² 4, 820	1, 312, 865	1, 180
Ore (tin content)long tons_	20, 112	¹ 36, 773 ² 131, 606	16, 688	32, 317
Dross skimmings scrap residues and tin alloys	2 64, 815	² 131, 606	62, 590	136, 412
Ore (tin content) long tons. Blocks, pigs, grains, etc do Dross, skimmings, scrap, residues, and tin alloys, n. s. p. f Drinfoll, powder, flitters, etc.	2 13, 702, 355	1 2 10, 383	11, 364, 288	1 9, 430
Timoli, powder, flitters, etc	(6)	1 559	(6)	1 605
Ilmenite	353, 351	7, 031	359, 281 48, 906	1 9, 198 7, 148
Rutilepounds_	19, 526 1, 134, 098	1, 984 1 3, 433	48, 906 4, 095, 621	7, 148 9, 509
Ferrotitanium do Compounds and mixtures do do Compounds and mixtures do	63, 400 338, 061	27	4, 095, 621 225, 967 1, 387, 548	92
sengaton (terngaton content).	338,061	83	1, 387, 548	1 354
Ore and concentratesdo	20, 699, 528	56, 155	20, 860, 153	1 58, 011
Metaldodo	89, 221 676, 988	1 241 1, 276	37, 456 870, 621	119 1, 945
Ore and concentrates	44, 861 7 184, 737	152	146, 653	1 328
Zine;	7 184, 737	7 104		
Ores (zinc content) Blocks, pigs, and slabs	2 384, 648	2 36, 811	462, 379 244, 726	49, 231
Sheets	195, 059 431	46, 452 1 148	244, 726 454	65, 034 172
Old, dross, and skimmings	284	32	602	97
D	72	1 18	72	1 18
Dust Manufactures	(6)	1 190	(6)	1 287
SheetsOld, dross, and skimmingsDustManufacturesZirconium: Ore, including zirconium sand	(6) 29, 091	1 190 813	(6) 31, 140	1 287 792

TABLE 8.—Principal minerals imported for consumption in the United States, 1955-56—Continued

	195	5	195	6
Mineral	Short tons (unless otherwise stated)	Value (thou- sand dollars)	Short tons (unless otherwise stated)	Value (thou- sand dollars)
NONMETALS				
A brasives: Diamonds (industrial)carats_ Asbestos	² 15, 108, 085 740, 423	² 66, 312 ¹ 60, 958	16, 401, 781 689, 034	1 74, 295 1 61, 829
	359, 931	1 2, 191	583, 597	1 3, 577
Barite: Crude and ground Witherite. Chemicals. Bromine. pounds Cement. 376-pound barrels.	2, 363 2 4, 466 692	78 458 118	2, 934 4, 956 2, 918	110 1 467 135
Bromme pounds Cement 376-pound barrels Clays:	5, 219, 700	1 14, 354	4, 456, 120	1 14, 189
Raw	189, 138 3, 244	1 2, 857 1 86	172, 244 3, 617	1 2, 873 1 98
Manuactured. Cryolite	21, 980 105	3, 190	23, 122 258	2, 901 9
Fluorspar Gem stones:	1	1 8, 540	485, 552	1 11, 225
Diamonds carats do	45, 235	1 2151, 633 1, 565	1, 881, 474 50, 931	1 162, 039 1 1, 688
Other	(6) 48, 800	1, 565 1 22, 127 2, 387	(6) 47, 888	1 1, 688 1 24, 009 1 2, 594
		1 2 6, 331	4, 336, 650	17,853 1693
Gypsum: Crude, ground, calcined Manufactures Lodine, crude Jewel bearings Number, thousands Kyanite	1, 231, 994 66, 100 7, 581	943 1, 513 1 2, 875	1, 704, 868 54, 800	2, 180 1 2, 456
Jewei bearings	7, 581	339	6, 951	306
Lime: Hydrated	1, 359 30, 264 7, 993	1 18 559	757 31, 903	12 549
Other	E .	558	9, 031	587
Magnesite Magnesite Compounds	106, 253 12, 357	6, 873 1 396	102, 765 13, 423	6, 446 1 497
Mica: Unout sheet and numeh pounds	1, 747, 106	3, 334	1, 958, 907	1 3, 748
Scrap	9, 461 6, 156	121 17,814	7, 218 5, 411	1 7, 926
Mineral-earth pigments: Iron oxide pigments:	2 700	101	9 100	138
Natural Synthetic Synthetic	3, 702 6, 394 218	161 1850 15	3, 168 5, 997 206	1 879 12
Siennas, crude and refined	840 2,654	1 80 1 79	722 2,762	1 71 89
Vandyke brown	151 2 1, 584, 831	1 9	200 1, 473, 260	12 1 67, 431
Natural Synthetic Ocher, crude and refined Siennas, crude and refined Umber, crude and refined Vandyke brown Nitrogen compounds (major) Phosphate, crude Phosphate fertilizers	117, 256 29, 239	1 2 75, 285 2, 703 1 1, 788	109, 891 32, 251	2, 626 1, 906
Pigments and salts: Lead pigments and salts.	1, 146	267	1	
Lead pigments and salts. Zine pigments and salts. Potash.	4, 749 2 330, 563	904 11, 769	5, 851 5, 793 333, 952	1 1, 530 1 1, 146 1 12, 018
Pumice.	1	1 165	19, 487	111
Crude or unmanufactured Whole or partly manufactured Manufactures, n. s. p. f. Quartz crystal (Brazilian pebble) pounds	1,497	1 39	1,315	51 1 8 1, 249
	2 932, 075 185, 653	1 2 1, 429 1 2 1, 162	1, 166, 460 368, 212	1 2, 354
Sand and gravel: Glass sand Other sand Gravel	170 317, 947	172 1 385	478 332, 031	393 1 454
Gravel Sodium sulfate	1, 680 124, 474	(18) 2, 530	179 103, 249	(15) 2, 174
StoneStrontium: Mineral	1 (6)	1 5, 579 128	(6) 9, 439	7, 609 192
Sulfur and pyrites:	1			
Sultur: long tons Ore long tons Other forms, n, e, s do Pyrites do do Talc: Unmanufactured	24, 152 2 10, 475	595 2 264	14, 750 188, 550	359 4, 975
Pyritesdo Tale: Unmanufactured	8 80, 305 29, 079	1 8 520 1 986	8 73, 296 23, 351	1 8 480 1 749

TABLE 8.—Principal minerals imported for consumption in the United States, 1955-56—Continued

	195	5	195	6
Minera	Short tons	Value	Short tons	Value
	(unless	(thou-	(unless	(thou-
	otherwise	sand	otherwise	sand
	stated)	dollars)	stated)	dollars)
COAL, PETROLEUM, AND RELATED PRODUCTS				\$
Asphalt and related bitumen	4, 988	116	4, 116	99
Acetylene blackpounds_	8, 097, 358	¹ 1, 331	8, 373, 224	1,383
Gas black and carbon blackdo	53, 600	11	69, 890	18
Coal: Anthracite Bituminous, slack, culm, and lignite	170 337, 145	1 2, 640	46 355, 701 318	(5) 1 2, 885
Briquets Coke Peat:	126, 342	1 1, 405	130, 955	1 1, 471
Fertilizer gradePoultry and stable grade	217, 624	1 8, 683	233, 394	1 9, 764
	11, 686	1 579	14, 295	1 766
Petroleum: Crude thousand barrels Gasoline do Kerosine do	² 294, 096	² 654, 787	354, 727	1 837, 686
	² 5, 348	¹ ² 27, 317	9, 311	1 40, 506
	44	166	231	1 896
Distillate oil ¹⁰ dodododo	5, 089	1 15, 550	5, 572	1 17, 908
	2 155, 458	12305, 456	165, 761	366, 458
Unfinished oils do	6, 616	15, 540	4, 561	12, 499
	3, 324	7, 571	3, 602	8, 768
	(5)	1 36	(5)	1 34

aircraft.

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

2 Revised figure.

3 Adjusted by Bureau of Mines.

4 Data not available.

5 Less than 1,000.

6 Weight not recorded.

7 Includes 92,594 pounds of concentrate containing 29,804 pounds of vanadium, valued at \$16,811, received but not reported by the Bureau of the Census until 1956.

8 In addition to data shown an estimated 277,860 long tons (\$711,740) were imported in 1955 and 292,520 long tons (\$865,020) in 1956.

9 Includes naphtha but excludes benzol: 1955—764,000 barrels (\$7,168,000); 1956—1,656,000 barrels (\$17,813,000).

10 Includes quantities imported free of duty for supplies of vessels and aircraft.

11 Includes quantities imported free for manufacture in bond and export, and for supplies of vessels and aircraft.

TABLE 9.—Principle minerals and products exported from the United States, 1955-56

[Compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census]

	198	55	198	6
Mineral	Short tons	Value	Short tons	Value
	(unless	(thou-	(unless	(thou-
	otherwise	sand	otherwise	sand
	stated)	dollars)	stated)	dollars)
METALS		111		
Aluminum: Ingots, slabs, crude	5, 969 18, 290 8, 009 1, 139 204 1, 885, 582 14, 117 19, 594	2, 773 6, 501 7, 518 2, 425 71 115 528 733	34, 563 19, 329 12, 493 1, 247 33 628, 020 14, 921 16, 130	19, 07; 8, 12; 13, 09; 3, 09; 5; 83; 58;
Other aluminum compounds	8, 497 36, 124	1, 974 155	22, 452 89, 558	3, 18
Metals and alloys do Salts and compounds do Cadnium do Calcium chloride Colcium chloride	203, 667	363	287, 092	559
	59, 638	218	51, 251	182
	1, 393, 915	1,938	1, 284, 248	1, 932
	20, 743	608	32, 523	1, 057
Ore and concentrates:	1, 341 2, 950 701 4, 693 3, 823, 167 6, 370	76 87 374 2, 267 1, 231	1, 727 12, 990 637 5, 538 3, 025, 142 10, 500	99 502 351 2, 891 1, 820
Ores, concentrates, composition metal, and unrefined copper (copper content) Refined copper and semimanufactures. Other copper manufactures. Copper sulfate or blue vitriol. Copper base alloys. Ferroalloys:	1 12, 897	1 9, 479	13, 717	11, 648
	259, 942	207, 742	280, 575	253, 615
	234	309	185	291
	37, 382	8, 382	30, 177	8, 036
	(2)	46, 976	(2)	54, 847
Ferrosiliconpounds_	3, 377, 349	308	4, 229, 074	483
Ferrophosphorusdo	106, 109, 167	1, 346	150, 821, 010	2, 339
Gold: Ore and base bulliontroy ounces. Bullion, refineddo Iron orelong tons.	11, 206	392	19, 962	710
	151, 008	6, 561	713, 900	25, 851
	4, 516, 828	36, 993	5, 491, 246	48, 646
Pig iron Iron and steel products (major): Semimanufactures. Manufactured steel mill products Advanced products Iron and steel serap: Ferrous scrap, including rerolling	34, 989 ¹ 3, 315, 683 ¹ 1, 124, 299 (²)	1, 918 1 483, 367 1 255, 278 1 144, 473	267, 175 3, 025, 957 1, 721, 222 (2)	14, 872 496, 544 395, 422 167, 004
tron and steel scrap: Ferrous scrap, including rerolling materials	1 5, 171, 774	1 178, 560	6, 404, 140	298, 489
Ore, matte, base bullion (lead content) Pigs, bars, anodes Scrap Magnesium:	1 1, 334	1 408	1, 055	340
	403	154	4, 628	1,300
	2, 983	1, 340	2, 136	578
Metal and alloys	1 8, 230	1 4, 556	3, 388	2, 240
	236	515	487	902
	14	34	56	99
Ore and concentrates Ferromanganese Mercury:	6, 279 1, 789	612 643	6, 133 2, 248	664 682
Exports	451	155	1, 080	284
	267	78	2, 025	476
Ores and concentrates	14, 580, 358	15, 783	17, 981, 007	21, 296
	22, 564	19	35, 240	21
	11, 482	177	11, 440	202
	3, 952	12	4, 853	28
	21, 173	57	20, 735	44
	349, 193	353	944, 671	1, 052

TABLE 9.—Principal minerals and products exported from the United States 1955-56—Continued

	195	5	195	6
Mineral	Short tons	Value	Short tons	Value
	(unless	(thou-	(unless	(thou-
	otherwise	sand	otherwise	sand
	stated)	dollars)	stated)	dollars)
Nickel:				
OreAlloys and scrap (including Monel metal), ingots, bars,			27, 331	55
sheets, etc	429	15, 610 773 1, 481	16, 361 208 626	18, 019 836 1, 878
Bars, ingots, sheets, wire, sponge, and other forms including scrap————troy ounces— Palladium, rhodium, iridium, osmiridium, ruthenium and osmium metals and alloys, including scrap	17, 073	1,306	23, 823	2, 38
Platinum-group manufactures except jewelry	11, 895 (2) 366	1 1, 209 14	18, 249 (²)	634 2, 489
Cerium ores, metal and alloypounds_	19, 296	75	23, 784	79
Lighter flintsdo	10, 772	83	16, 303	110
Silver: Ore and base bullion troy ounces Bullion, refined do Tantalum:	71, 074	63	2, 058, 401	1, 868
	4, 821, 635	4, 378	3, 442, 479	3, 154
Ore, metal, and other formspounds	3, 390	107	3, 647	115
Powderdo	594	25	6, 080	245
	254	504	667	1, 013
	853	1, 748	451	1, 018
Ingots, pigs, bars, etc: Exports	6, 190	2, 441	4, 396	2, 130
	26, 490	11, 517	30, 502	13, 245
	311, 005	547	375, 021	672
Titanium: Ores and concentrates. Sponge (including iodide titanium) and serap Intermediate mill shapes. Mill products n. e. c. Ferrotitanium. Dioxide and pigments. Tungsten: Ore and concentrates:	1, 143 10 4 31 245	194 36 106 1,105 65 18,333	1, 838 14 469 90 364 64, 766	312 60 5, 509 2, 796 148 25, 137
Resports	34	65	117	225
	283	527	349	778
Vanadium ore and concentrates (vanadium content) pounds	1,729,103	3, 768	1, 789, 634	3, 899
Zinc: Ores and concentrates (zinc content) Slabs, pigs or blocks Sheets, plates, strips or other forms, n. e. c. Scrap (zinc content) Dust Semifabricated forms, n. e. c.	1 18, 069 3, 657 21, 612 445 651	1 4, 175 2, 193 2, 250 162 296	854 8, 813 4, 444 14, 921 372 582	162 2, 465 3, 031 1, 540 136 301
Zirconium: Ores and concentrates Metals and alloys and other forms pounds	779	58	1, 048	90
	106, 778	101	18, 987	200
NONMETALLIC MINERALS Abrasives: Grindstones and pulpstonespounds Diamond dust and powder	904, 683	85	859, 231	64
	215, 787	516	210, 841	616
	180, 405	850	187, 438	948
ucts	(2)	23, 409	(2)	25, 217
Exports. Reexports. Boron: Boric acid, borates, crude and refinedpounds Bromine, bromides, and bromatesdo Cement376-pound barrels	2, 161	236	2, 797	338
	626	31	153	37
	445, 176, 000	14, 533	487, 450, 563	16, 596
	3, 649, 861	1, 656	6, 111, 363	2, 557
	1, 795, 448	7, 067	1, 973, 221	7, 250
Center Stopould baries Clay: Kaolin or china clay Fire clay. Other clays	49, 830	1, 017	59, 138	1, 298
	109, 312	1, 358	152, 037	1, 561
	247, 397	8, 515	299, 641	9, 717

TABLE 9.—Principal minerals and products exported from the United States, 1955-56—Continued

	195	55	195	6
Mineral	Short tons (unless otherwise stated)	Value (thou- sand dollars)	Short tons (unless otherwise stated)	Value (thou- sand dollars)
NONMETALS—continued				
Cryolite	173	54	213	58
Fluorspar Graphite: Amorphous		65	197	31
Crystalline flake, lump, or chip	141 112	130 48 22	790 147 125	90 47 24
Gypsum: Crude, calcined, crushed Plasterboard, wallboard, and tile Manufactures, n. e. c. Iodine, iodide, iodates Kyanite and allied minerals Lime. Misos	22, 539 8, 686, 854	738 412	20, 757 7, 026, 932	711 364
Manufactures, n. e. c.	(2)	198	(2)	141
Kyanite and allied mineralspounds	243, 686 1, 716	357 87	505, 274 1, 331	750 63
Lime Mica:	82, 461	1,464	82, 737	1, 546
Unmanufacturedpounds	447, 491	35	546, 673	92
Ground or pulverizeddododo	5, 808, 347 372, 548	332 1,340	8, 901, 497 343, 159	486 1,139
Mineral-earth pigments: Iron oxide, natural and manufactured	4,744	894	5,071	909
Nitrogen compounds (major) Phosphate rock Phosphatic fertilizers Odo Pigments and salts (lead and zinc):	828, 117 1 2, 267, 648	44, 795 1 20, 301	1, 038, 307 2, 880, 484	53,090 25,704
Phosphatic fertilizersdodo	1 381, 537	1 12, 140	504, 612	17, 885
Lead pigments Zinc pigments	2,774	998	3,000	1,116
Zinc pigments Lead salts	4, 541 540	1,073 215	4, 135 1, 282	1,087 576
Potash: Fertilizer	222, 499	7,959	390, 716	13, 705
Chemical	6 804	1, 244	6,839	1,232
Quartz crystal (raw) Radioactive isotopes, etc.	(2)	66 1, 288	(2) (3)	65 906
Sait:	1	3,023	336, 320	2, 464
Crude and refined	10,019	721	11, 649	881
Sodium sulfate	24, 561	870	29, 784 239, 743	1,033
Sodium carbonateStone:	1 153, 257	1 4, 933	239, 743	8, 151
Limestone, crushed, ground, broken	936, 766	1, 149	1,060,560	1,359
cubic feet	437, 644 169, 074	1,024 2,924	344, 210 175, 364	976 2, 890
Stone, crushed, ground, broken	(2)	394	(2)	377
Crudelong tons Crushed, ground, flowers ofdo	1 1,600,951 34,701	1 48, 708	1, 651, 325	48, 304
Crushed, ground, flowers ofdo	34, 701	2, 454	24,006	1,775
Crude and ground	35, 230 135	859 102	42, 333 69	1,009 74
Manufactures, n. e. c Powders—talcum (face and compact)	(2)	1, 246	(2)	1,371
COAL, PETROLEUM, AND RELATED PRODUCTS		-		
Asphalt and bitumen, natural:	32, 723	1 444	30, 844	1 045
Unmanufactured. Manufactures, n. e. c. Carbon black. thousand pounds.	(2)	1,444 714	(2)	1, 845 937
Coal:	1 1	40,735	425, 328	36, 105
AnthraciteBituminous	3, 152, 213 151, 277, 256	48, 429 1 436, 559	5, 244, 349 68, 546, 290	73, 535 658, 472
Briquets Coke	106, 294	1,564	107, 452	658, 472 1, 716
See footnotes at end of table.	1 530, 505	8, 238	655, 717	11, 468

TABLE 9.—Principal minerals and products exported from the United States, 1955-56—Continued

			195	5	195	6
	Mineral		Short tons (unless otherwise stated)	Value (thou- sand dellars)	Short tons (unless otherwise stated)	Value (thou- sand dollars)
COAL, PETROLEUM, AND Petroleum: Crude- Gasoline 4. Kerosene Distillate oil. Residual oil. Lubricating oil. Asphalt. Liquefied petroleum Wax. Coke. Petrolatum Miscellaneous produ	gases	thousand barrels	1 25, 992 2, 497 1 21, 854 1 27, 725 13, 663 1, 477 4, 231 1, 248 4, 463	1 38, 650 1 177, 471 10, 215 1 80, 068 1 55, 470 188, 933 8, 024 15, 649 24, 253 15, 647 6, 304 16, 310	28, 515 28, 202 2, 876 31, 820 22, 147 13, 217 1, 294 4, 274 920 6, 376 307	90, 01; 191, 23; 12, 32; 121, 74; 53, 55; 193, 57; 7, 7, 16, 21; 20, 85; 20, 32; 6, 19, 16, 96;

TABLE 10.—Comparison of world and United States 1 production of principal metals and minerals, 1955-56

[Compiled under the supervision of Berenice B. Mitchell, Division of Foreign Activities, Bureau of Mines]

		1955			1956	
Mineral	World	United	States	World	United	States
		nd short ons	Percent of world	Thousand short tons		Percent of world
Coal: Bituminous Lignite Pennsylvania anthracite Coke (excluding breeze): Gashouse * Oven and beehive Fuel briquets and packaged fuel Natural gas million cubic feet Petroleum (crude) thousand barrels. Nonmetals: Asbestos Barite Cement thousand barrels. Corundum Diamonds thousand carats. Feldspar * Corundum Graphite Gypsum Magnesite Mica (including scrap) thousand pounds. Nitrogen, agricultural * Phosphate rock thousand long tons. Potash Ky0 equivalent.	49, 500 265, 900 114, 600 (4) 65, 580 5, 626, 225 1, 730 2, 600 1, 275, 100 970 1, 460 290 34, 930 4, 700 330, 000 6, 945 29, 800	9, 405, 351 274 2, 484, 428 45 1, 114 314, 913	(2) 28 28 1 (5) (2) 44 3 43 25	1, 701, 720 624, 680 155, 700 50, 800 279, 400 118, 400 (6) 58, 340 6, 125, 425 1, 705 3, 000 1, 379, 900 1, 155 1, 720 34, 200 5, 200 310, 000 7, 496 33, 500 8, 300	74, 454 1, 584 10, 081, 923 2, 617, 283 41 1, 352 333, 472	24
Pumice thousand long tons Salt	3,800	1,804 1,007	47 6	3,600 16,300	1, 482 1, 070	41

See footnotes at end of table.

¹ Revised figure.
2 Weight not recorded.
3 Includes naphtha but excludes benzol: 1955—59,000 barrels (\$990,000); 1956—64,740 barrels (\$1,114,968).

TABLE 10.—Comparison of world and United States 1 production of principal metals and minerals, 1955-56—Continued

		1955			1956	
Mineral	World	United	States	World	United	States
	Thousan ton		Percent of world		and short	Percen of world
Nonmetals—Continued						
Sulfur, nativethousand long tons. Tale, pyrophyllite, and soapstone Vermiculite 6	7, 000 1, 770 263	5, 800 726 204	83 41 78	8, 000 1, 830 254	6, 484 739 193	8: 40 70
Antimony (content of ore and concentrate) 6	51 46	(8) 11	1 24	54 44	(8)	30
Bauxitethousand long tons	16, 400 9 4, 000	1,788 (9) (4)	11 6 (4)	17, 400 13 4, 900	1,743 (9) (4)	(4)
Cadmium do do Chromite Cobalt (contained) short tons	17, 900 3, 800 14, 800	9, 754 153 926	54 4 6	19,020 4,200 16,000	10, 414 208 1, 269	55
Columbium-tantalum concentrates thousand pounds Copper (content of ore and concentrate)	11, 560 3, 400	13 999	(2) 29	9, 640 3, 750	217 1, 106	29
Goldthousand fine ounces Iron orethousand long tons Lead (content of ore and concentrate)	36, 400 365, 700	1,877 102,999	28	38, 400 ² 388, 000	1,865 97,849	25
Manganese ore (35 percent or more Mn) Mercurythousand 76-pound flasks. Molybdenum (content of ore and con-	2, 370 11, 715 185	338 287 19	14 2 10	2, 420 12, 145 197	353 345 24	15 3 12
entrate)thousand pounds_ Nickel (content of ore and concentrate) Platinum group (Pt, Pd, etc.)	67, 900 215	61, 781 4	91 2	63, 200 231	57, 462 7	91 3
thousand troy ounces_ Silverthousand fine ounces_ Tin (content of ore and concentrate)	950 223 , 400	36, 470	2 16	975 222, 400	38, 739	17
thousand long tons	180	(1 <u>0</u>)	(2)	180		
RutileTungsten concentrate60 percent WO ₃	1, 405 76	583 9	41 12	1,789 122	685 12	38 10
Vanadium (content of ore and concentrate) (short tons)	81, 600	16, 412	20	81, 400	14, 737	18
Zinc (content of ore and concentrate) Metals, smelter basis:	4, 004 3, 180	3, 286 515	82 16	4, 236 3, 330	3, 868 542	91 16
Aluminum Copper Iron, pig (incl. ferroalloys)	3, 470 3, 640 212, 200	1, 566 1, 107 79, 263	45 30 37	3,710 3,955 222,300	1,679 1,231 77,667	45 31 35
Lead	2, 220 143	79, 203 479 61	22 43	2, 370 2, 370 157	542 68	23 43
Magnesium Steel ingots and castings Tin. thousand long tons Zinc	297, 700 181 2, 970	117, 036 22 964	39 12 32	312,700 181 3,110	115, 216 18 984	37 10 32

¹ Including Alaska and noncontiguous Territories.
2 Less than one percent.
3 Includes low- and medium-temperature and gashouse coke.
4 Bureau of Mines not at liberty to publish United States figure separately.
5 Data not available.
6 World total exclusive of U. S. S. R.
7 Year ended June 30 of year stated (United Nations).
8 In 1955 United States production of antimony was 633 short tons, and 590 short tons in 1956.
10 In 1955 United States production of beryl was 500 short tons, and 460 short tons in 1956.

Employment and Injuries in the Metal and Nonmetal Industries

By John C. Machisak 1

THIS CHAPTER of the Minerals Yearbook relates to employment data and injury experience in the metal, nonmetal, and quarrying industries. Combined statistical data on the mineral industries as a whole can be found in volume III. Each industry in the chapter is shown separately, and no attempt has been made to combine and show an overall picture.

The voluntary reporting of data on injuries and employment by operators of metal and nonmetal mines and quarries has contributed

substantially to the promotion of safety in these industries.

Data on injury and employment in the clay mining and milling industry are included for the first time. Table 6 contains data for clay mines only for 1955 and for clay mines and mills for 1956. The clay-mill figures are included with other nonmetallic mills in table 5. The information for nonmetallic mills was compiled and published for the first time in the 1955 issue of this report.

METAL MINES

The safety record for metal mines improved in 1956. Fewer men were killed, and the number of nonfatal injuries reported was less than in 1955; and the overall injury-frequency rate decreasing 16 percent. Employment declined; 62,744 men were reported working in 1955, whereas in 1956 an average of 57,739 men was employed. The man-hours of employment and the number of active mine days decreased slightly during the year. The average employee worked

an 8.02-hour shift and averaged 2,100 hours of worktime.

Copper.—The injury-frequency rate for the Nation's coppermining operations improved somewhat over that for the previous year. The number of fatal injuries was 9 less than was reported for the previous year; nonfatal injuries were reduced by 316—decreases of 35 and 21 percent, respectively. The combined (fatal and nonfatal) injury-frequency rate declined 14 percent from the 37.92 reported for 1955 to 32.72 in 1956. The number of men employed at copper mines in 1956 was less than in 1955, and the drop was accompanied by a decline in the man-hours of worktime. Days active increased by 21 during the year, and the average employee worked an 8.00-hour shift, with 2,576 hours of work to his credit for the entire year.

¹ Chief, Branch of Accident Analysis, Division of Safety.

TABLE 1.—Employment and injury experience at metal mines in the United States, 1931-56

Year	Men working	Average active mine	Man-days worked	Man-hours worked		nber of juries	Injury million	rates per man-hours
	daily	days	(thousand)	(thousand)	Fatal	Nonfatal	Fatal	Nonfatal
1931	71, 991 46, 602 49, 338 58, 411 83, 975	232 209 201 219 218	16, 692 9, 748 9, 913 12, 776 18, 266	138, 237 80, 213 80, 006 100, 959 145, 134	147 100 87 108 157	7, 868 4, 486 5, 180 7, 105 9, 393	1. 06 1. 25 1. 09 1. 07 1. 08	56. 92 55. 93 64. 75 70. 38 64. 72
1938 1939	90, 552 108, 412 93, 501 102, 279 110, 340	249 252 227 233 241	22, 521 27, 296 21, 255 23, 836 26, 631	180, 803 219, 008 170, 343 189, 554 211, 740	195 206 150 163 209	13, 606 17, 068 11, 996 12, 991 13, 940	1. 08 . 94 . 88 . 86 . 99	75. 25 77. 93 70. 42 68. 53 65. 84
1941 1942 1943 1944 1944	87, 880	254 280 293 289 288	29, 034 27, 968 25, 790 20, 349 17, 673	230, 453 222, 093 206, 242 163, 027 141, 295	213 215 195 130 96	14, 590 12, 420 11, 533 8, 894 6, 922	. 92 . 96 . 95 . 80 . 68	63. 31 55. 67 55. 92 54. 56 48. 99
1946 1947 1948 1949 1950	71, 228 71, 436	249 275 282 252 271	16, 238 19, 567 20, 124 18, 067 18, 522	130, 406 157, 024 161, 516 144, 368 147, 765	90 126 104 69 84	7, 345 8, 293 7, 631 6, 940 6, 611	. 69 . 80 . 64 . 48 . 57	56. 32 52. 81 47. 25 48. 07 44. 74
1951 1952 1953 1954 1955 2	71, 603 74, 626 72, 529 66, 610 62, 744	278 265 270 245 264	19, 913 19, 770 19, 559 16, 294 16, 550	159, 417 158, 649 156, 605 130, 488 132, 317	95 117 92 86 79	6, 824 6, 684 6, 164 4, 994 5, 795	.60 .74 .59 .66	42. 81 42. 13 39. 36 38. 27 43. 80
1956 2	57, 739	262	15, 118	121, 259	67	4, 443	. 55	3 6. 64

¹ Fluorspar mines, previously included with lead-zinc data for the Mississippi Valley States, now included with nonmetal mines.
² Preliminary figures.

Gold Placer.—Employment and disabling work injuries in the Nation's gold placer mining increased somewhat during 1956. No fatal injuries were reported. Nonfatal injuries, on the other hand, increased by 10—8 percent over those reported for the previous year. The average number of men working daily was 1,594 compared with 1,300 reported for 1955. Employees averaged 8.48 hours per day and accumulated 1,743 hours during the year. The injury-frequency rate was 51.11 in 1956—an 8-percent decrease from the 1955 rate of 55.76.

Gold-Silver Lode.—Activity in the Nation's gold-silver lode mines was reported to be substantially lower during 1956 than in 1955. Approximately 774 fewer employees were engaged, reflecting a drop of 1,754,308 man-hours during 1956. The number of fatal and nonfatal injuries during 1956 dropped considerably more than did employment and man-hours, thus effecting a substantial reduction in the injury-frequency rate. There were 6 fewer fatalities (60 percent), and nonfatal injuries were reduced 205 in number (42 percent).

The overall injury-frequency rate (64.45) declined 20 percent from the previous year's rate (80.34). The average employee had a work year of 2,079 hours as compared with 2,129 hours in 1955. A 7.99-hour shift was worked per man per day in both 1955 and 1956.

Iron.—There was a substantial rise in employment in the iron mines in 1956 (9 percent), as measured by the number of men employed. Fatalities were increased by 3 (20 percent), and nonfatal injuries decreased by 73 (10 percent). The overall injury-frequency rate for 1956 was 14.71 as compared to 16.72 in 1955. Iron mines averaged 232 active days during the year and had a total of 47.5 million manhours in 1956, a 3-percent increase over the previous year. The average employee had a work year of 1,863 hours, with an 8.02-hour shift per man per day.

Lead-Zinc.—Employment in the lead-zinc mines showed a marked decline to an average working force of 9,388 men in 1956. Eighteen fatalities were reported during the year—an increase of 13 percent over

TABLE 2.—Employment and injury experience at metal mines in the United States, by industry groups, 1947-51 (average) and 1952-56

Industry and year	Men work- ing	Aver- age active	Man-days worked	Man-hours worked		nber of juries		rates per man-hours
	daily	mine days			Fatal	Nonfatal	Fatal	Nonfatal
Copper:		100						
1947-51 (average)	15, 924	298	4, 746, 054	37, 940, 012	22	1,379	0.58	36, 35
1952	14, 910	313	4, 661, 726	37, 279, 930	26	1, 165	.70	31. 25
1953	15, 894	311	4, 941, 301	39, 488, 069	25	1, 212	. 63	30, 69
1954	16,075	281	4, 517, 342	36, 143, 133	32	1, 115	. 89	30.85
1955 1	16, 580	301	4, 983, 697	39, 639, 285	26	1,477	. 66	37. 26
1956 1	13, 977	322	4, 500, 311	35, 998, 182	17	1, 161	. 47	32, 25
Gold placer:							1 1 1 1 1	
1947-51 (average)	3, 464	218	754, 005	6, 237, 953	1	196	. 16	31.42
1952	2,436	215	524, 577	4, 200, 622		151	. 24	35. 95
1953		212	549, 897	4, 397, 978	1	188	. 23	42.75
1954		215	440, 289	3, 519, 582	1	84	. 28	23. 87
1955 ¹	1,300 1,594	214	278, 465 327, 435	2, 367, 436 2, 778, 056		132 142	i	55.76 51.11
Gold ailyon	1, 594	205	327, 430	2, 118, 000		142		51.11
Gold-silver: 1947-51 (average)	5, 099	260	1, 326, 152	10, 333, 268	12	1.120	1, 16	108. 39
1952	3, 645	255	931, 214	7, 400, 300	12	763	1.62	103. 10
1953	3, 214	254	817, 573	6, 529, 816	6	680	. 92	104.14
1954		257	773, 283	6, 185, 439	6	593	. 97	95. 87
1955 1	2,894	266	770, 659	6, 160, 793	10	485	1.62	78. 72
1956 1	2, 120	260	551, 171	4, 406, 485	4	280	. 91	63, 54
Iron:	,			, , ,				
1947-51 (average)	27, 930	271	7, 557, 171	60, 677, 101	29	1, 278	. 48	21.06
1952	31,802	248	7, 879, 534	63, 307, 839	28	1,066	. 44	16.84
1953	30,862	270	8, 335, 343	66, 839, 538	19	1, 131	. 28	16.92
1954	27,840	220	6, 131, 671	49, 177, 496	14	713	. 28	14. 50
1955 1	23, 331	246	5, 739, 395	46, 012, 699	15	754	. 33	16.39
1956 1	25, 518	232	5, 926, 237	47, 529, 809	18	681	. 38	14. 33
Lead-zinc: 1947-51 (average)	15 506	061	4, 046, 927	32, 351, 534	25	2, 798	77	86. 49
1952	15, 526 16, 745	261 272	4, 548, 345	36, 351, 534	40	2, 798	. 77 1. 10	78.04
1953	13, 503	248	3, 341, 999	26, 727, 287	30	2, 135	1. 12	79, 88
1954	10, 755	256	2, 754, 503	22, 038, 722	19	1, 421	. 86	64.48
1955 1	11,301	256	2, 894, 574	23, 167, 144	16	1, 568	. 69	67.68
1956 1	9, 388	266	2, 498, 365	19, 996, 770	18	1, 394	.90	69.71
Miscellaneous: 2	0,000		2, 200, 000	20,000,110		-,001		00
1947-51 (average)	2,902	279	808, 394	6, 478, 257	5	488	. 77	75, 33
1952	5,088	241	1, 224, 861	10, 108, 156	10	702	. 99	69.45
1953	6,468	243	1, 573, 139	12, 622, 249	11	818	. 87	64.81
1954	6,880	244	1, 676, 576	13, 424, 116	14	1,068	1.04	79. 56
1955 1		257	1, 883, 635	14, 969, 917	12	1, 379	.80	92, 12
1956 1	5, 142	256	1, 314, 672	10, 549, 910	10	785	. 95	74.41
Total:						<u></u>		
1947-51 (average)	70, 845	272	19, 238, 704	154, 018, 126	94	7, 259	. 61	47. 13
1952	74, 626	265	19, 770, 257	158, 648, 566	117	6, 684	. 74	42. 13
1953		270		156, 604, 937	92	6, 164	. 59	39. 36
1954	66, 610	245	16, 293, 664	130, 488, 488	86	4, 994	. 66	38. 27
1955 ¹	62, 744	264	16, 550, 425	132, 317, 274 121, 259, 212	79	5, 795	. 60	43.80
1990 1	01, 109	262	15, 118, 191	121, 209, 212	67	4, 443	. 55	36. 64

¹ Preliminary figures.
² Includes antimony, bauxite, chromite, cobalt, manganese, mercury, molybdenum, pyrite, titanium, tungsten, vanadium-uranium, and several minor metal mines.

the 16 reported for the previous year and a fatal rate of 0.90, an increase of 30 percent over the rate of 0.69 reported in 1955. Nonfatal injuries totaled 1,394—an 11-percent decrease from 1955; however, the non-fatal rate increased 3 percent, as did the overall injury-frequency rate of 70.61 over the 68.37 rate reported for 1955. The average worker accumulated a total of 2,130 hours while working an

8-hour daily shift.

Miscellaneous Metals.—This group of mines includes those producing antimony, bauxite, chromite, cobalt, manganese, mercury, molybdenum, pyrite, titanium, tungsten, vanadium-uranium, magnesium, aluminum, and other minor metals. The safety record improved considerably over 1955. There were 10 fatalities, a decrease of 17 percent in 1956, when compared with 1955. The average number of men working daily in 1956 declined 30 percent to a total of 5,142 from an average of 7,338 men in 1955. Nonfatal injuries totaled 785—a 43-percent decrease from the previous year. The overall injury-frequency rate of 75.36 in 1956 represented a 19-percent decrease from the overall rate of 92.92 in 1955. The average employee at miscellaneous metal mines worked approximately 2,052 hours per year, with an 8.02-hour shift per day. Days active for 1956 were 256, approximately the same as in the previous year.

NONMETAL MINES (EXCEPT STONE QUARRIES)

Nonmetal mines include those producing abrasives, asbestos, asphalt, barite, feldspar-mica-quartz, fluorspar, gypsum, magnesite, phosphate rock, potash, salt, sulfur, talc and soapstone, and minor nonmetals. Employment in these mines increased in 1956—approximately 7 percent. Man-days and man-hours increased accordingly. The average employee worked an 8.13-hour shift and accumulated 2,204 hours of worktime during 1956. Fatalities numbered 14 for the year—a decrease of 4, or 22 percent. Nonfatal injuries dropped to 915—a decrease of 21 percent. The overall (fatal and nonfatal) injury-frequency rate was 28.71 per million man-hours worked in 1956, a 27-percent decrease from the rate of 39.46 for 1955.

Nonmetal Mills.—Statistical data on nonmetal mills for 1955 did not include clay. However, for 1956 clay-mill data are shown in table 5, which contains information for nonmetallic ore-dressing plants. For this reason, no comparable information is available

because of the difference in coverage.

Clay Mines.—Statistical data on injuries and employment at clay mines were published for the first time for 1955 and for clay mills in 1956. Employment at clay mines in 1956 increased approximately 8 percent; however, the man-hours worked decreased 2 percent from the previous year. Fatalities were 2 less than in 1955 (a decrease of 29 percent), and nonfatal injuries declined 27 percent. Each employee worked an average of 1,627 hours per year and an 8.16-hour shift per day. Clay mines worked an average of 199 days during the year.

EMPLOYMENT, INJURIES IN METAL AND NONMETAL INDUSTRIES 131

TABLE 3.—Employment and injury experience at nonmetal mines (except stone quarries) in the United States, 1931-56

Year	Men work- ing	Aver- age active	Man-days worked	Man-hours worked	Number	of injuries		rates per man-hours
	daily	mine days	(thousand)	(thousand)	Fatal	Nonfatal	Fatal	Nonfatal
1931	8, 949	227	2, 029	17, 941	11	841	0. 61	46. 88
1932	6, 686	201	1, 347	11, 825	7	528	. 59	44. 65
1933	7, 678	225	1, 729	14, 134	8	745	. 57	52. 71
1934	8, 234	236	1, 947	15, 187	8	787	. 53	51. 82
1936	8, 339	250	2, 086	16, 168	7	813	. 43	50. 28
1936	9, 526	259 256 236 228 247	2, 689 2, 561 2, 251 2, 196 2, 416	21, 556 20, 536 17, 827 17, 281 18, 988	4 13 6 10 14	1, 044 987 726 719 826	.19 .63 .34 .58 .74	48. 43 48. 06 40. 72 41. 61 43. 50
1941	11, 088	263	2, 920	23, 225	17	1, 182	.73	50. 89
1942	112, 677	274	3, 473	28, 093	22	1, 537	.78	54. 71
1943	12, 713	269	3, 426	27, 999	25	1, 471	.89	52. 54
1944	11, 261	282	3, 173	25, 760	17	1, 283	.66	49. 81
1944	10, 371	291	3, 016	24, 613	16	1, 145	.65	46. 52
1946	11, 312	291	3, 297	26, 877	26	1, 369	.97	50. 94
	12, 176	292	3, 555	28, 809	12	1, 308	.42	45. 40
	11, 950	287	3, 432	27, 784	15	1, 176	.54	42. 33
	12, 077	277	3, 340	26, 948	10	1, 125	.37	41. 75
	11, 977	293	3, 512	28, 456	19	1, 238	.67	43. 51
1951	12, 500	298	3, 729	30, 130	17	1, 351	. 56	44, 84
	12, 447	288	3, 588	28, 954	14	1, 171	. 48	40, 44
	12, 765	292	3, 727	30, 488	22	1, 419	. 72	46, 54
	12, 810	284	3, 638	29, 564	9	956	. 30	32, 34
	13, 740	267	3, 669	29, 732	18	1, 155	. 61	38, 85
1956 2	14, 681	271	3, 980	32, 351	14	915	. 43	28. 28

Fluorspar for Illinois and Kentucky previously included with lead-zinc data for Mississippi Valley States, now included with nonmetal mines.
 Preliminary, includes clay mines, not compiled before 1955.

TABLE 4.—Employment and injury experience at nonmetal mines (except stone quarries) in the United States, 1947–51 (average) and 1952–56 $^{\rm 1}$

Year Men work-ing daily	work- ing	Aver- age active	Man-days worked	Man-hours worked	Number	of injuries		rates per man-hours
	mine days		, -	Fatal	Nonfatal	Fatal	Nonfatal	
1947-51 (average)	12, 136 12, 447 12, 765 12, 810 13, 740 14, 681	290 288 292 284 267 271	3, 513, 720 3, 588, 289 3, 727, 298 3, 637, 783 3, 668, 540 3, 980, 135	28, 425, 551 28, 954, 402 30, 488, 130 29, 563, 983 29, 732, 267 32, 350, 566	15 14 22 9 18 14	1, 240 1, 171 1, 419 956 1, 155	0.53 .48 .72 .30 .61	43. 62 40. 44 46. 54 32. 34 38. 85 28. 28

Includes abrasives, asbestos, asphalt, barite, clay, feldspar-mica-quartz, fluorspar, gypsum, magnesite, phosphate rock, potash, salt, sulfur, tale and soapstone, and minor nonmetals.
 Includes clay mines, not compiled before 1955.

TABLE 5.—Employment and injury experience at ore-dressing plants in the United States, by nonmetallic groups, 1956

Nonmetallic group	Men work- ing	Aver- age active	Man-days worked	Man-hours worked	Number	of injuries		rates per man-hours
	daily	mine days			Fatal	Nonfatal	Fatal	Nonfatal
AbrasivesAsbestos	671 134	301 253	201, 773 33, 901	1, 614, 831 271, 207	1	30	0. 62	18. 58
AsphaltBarite	132 578	158 266	20, 888 153, 903	166, 904 1, 278, 135		3 50		17. 97 39. 12
Feldspar-mica-quartz Fluorspar Gypsum	398 395 1, 372	262 293 275	104, 302 115, 668 377, 071	853, 053 925, 334 3, 068, 837		16 7 12		18. 76 7. 56 3. 91
Magnesite Phosphate rock	101 1, 701	314 283	31, 705 480, 775	253, 638 3, 850, 298	1	20 26	.26	78. 85 6. 75
PotashSaltSulfur	1,059 788 7	362 303 138	383, 648 238, 533 964	3, 069, 192 1, 969, 462 7, 712	1	93 49 1	.33	30. 30 24. 88 129. 67
Talc and soapstone Minor nonmetals Clay	716 1, 420 7, 198	270 301 262	192, 997 427, 274 1, 884, 591	1, 573, 292 3, 321, 814 16, 392, 029	1	66 51 560	.30	41. 95 15. 35 34. 16
Total	16, 670	279	4, 647, 993	38, 615, 738	6	984	.16	25. 48

TABLE 6.—Employment data and injury experience at clay mines and mills in the United States, 1955 and 1956

Year	Men work- ing	Aver- age active	Man-days worked	Man-hours worked	Number	of injuries		rates per man-hours
	daily	mine days			Fatal	Nonfatal	Fatal	Nonfatal
Mine: 1955 1956 Mill:	3, 450 3, 740	222 199	766, 243 745, 347	6, 236, 974 6, 084, 041	7 5	247 180	1. 12 . 82	39. 60 29. 59
1955 1956	7, 198	262	(No figures 1,884,591	for clay mills 16, 392, 029	s compile	d in 1955) 560	.06	34. 16

METALLURGICAL PLANTS

The overall injury experience at metallurgical plants (ore-dressing and nonferrous smelters and refineries combined) was more favorable in 1956 than in 1955, although there were three more fatalities. The number of nonfatal injuries totaled 1,755 in 1956—a 25-percent decrease over the previous year, with a combined (fatal and nonfatal) injury-frequency rate of 15.79 per million man-hours, or a 17-percent decrease. There was a decline of 10 percent in the number of men employed and both man-days and man-hours decreased the same amount—9 percent. The average employee worked 8 hours per day or 2,505 hours during 1956.

TABLE 7.—Employment and injury experience at metallurgical plants in the United States, 1931-56

Year	Men work- ing	Aver- age active	Man-days worked	Man-hours worked	Number	r of injuries	Injury million	rates per man-hours
		plant days	(thousand)	(thousand)	Fatal	Nonfatal	Fatal	Nonfatal
1931	28, 938	299	8, 642	70, 374	16	1, 393	0. 23	19. 79
	21, 564	257	5, 542	44, 856	8	837	. 18	18. 66
	21, 999	267	5, 875	46, 180	13	1, 079	. 28	23. 37
	26, 932	274	7, 366	57, 966	13	1, 320	. 22	22. 77
	36, 493	291	10, 632	83, 874	28	1, 962	. 33	23. 39
1936	41, 167	309	12, 727	101, 218	32	2, 240	. 32	22. 13
	47, 530	313	14, 899	117, 551	41	3, 217	. 35	27. 37
	39, 043	292	11, 383	90, 018	20	2, 273	. 22	25. 25
	41, 583	303	12, 594	96, 737	24	2, 171	. 25	22. 44
	49, 068	295	14, 484	113, 116	18	2, 582	. 16	22. 83
1941	54, 349	311	16, 916	132, 102	34	3, 410	. 26	25. 81
1942	51, 154	334	17, 073	134, 998	29	3, 674	. 21	27. 22
1943	64, 735	336	21, 755	173, 633	31	4, 666	. 18	26. 87
1944	58, 085	329	19, 113	152, 326	38	4, 158	. 25	27. 30
1945	46, 467	329	15, 268	121, 491	19	3, 271	. 16	26. 92
1946	44, 954	284	12, 783	101, 673	20	2, 794	. 20	27. 48
	49, 082	313	15, 353	122, 630	21	3, 228	. 17	26. 32
	47, 768	317	15, 121	121, 028	14	2, 749	. 12	22. 71
	47, 663	294	14, 031	112, 095	23	2, 567	. 21	22. 90
	46, 277	314	14, 539	116, 430	29	2, 574	. 25	22. 11
1951	48, 019	318	15, 247	122, 088	16	2, 714	. 13	22. 23
1952	49, 032	319	15, 628	124, 967	16	2, 853	. 13	22. 83
1953	55, 283	318	17, 603	138, 811	12	2, 824	. 09	20. 34
1954	54, 396	307	16, 713	133, 675	16	2, 578	. 12	19. 29
1955 1	49, 892	309	15, 417	123, 524	10	2, 346	. 08	18. 99
1956 1	44, 697	313	13, 999	111, 980	13	1, 755	. 12	15. 67

¹ Preliminary figures.

ORE-DRESSING PLANTS

This group handles the crushing, screening, washing, jigging, magnetic flotation, and other milling of metallic ores. There was a 14-percent decline in the number of men employed and in the manhours of employment. The number of fatalities increased by 1. Nonfatal injuries in 1956 decreased 41 percent. The average ore-dressing plant employee worked 2,271 hours on an 8.02-hour shift during 1956. The combined (fatal and nonfatal) injury-frequency rate was 13.95 per million man-hours—a substantial decrease from the comparable rate of 20.46 in 1955.

TABLE 8.—Employment and injury experience at ore-dressing plants in the United States, by industry groups, 1949-51 (average) and 1952-56 1

Industry and year	Men working		Man-days worked	Man-hours worked		oer of in- iries	Injury million	rates per man-hours
	daily	days			Fatal	Nonfatal	Fatal	Nonfatal
3								
Copper: 1947-51 (average)	6, 119	321	1, 963, 253	15, 712, 446	2	256	0.13	16. 29
1952	6. 141	345	2, 121, 019	16, 968, 809	ī	306	.06	18.0
1953		345	2, 156, 732	17, 253, 852	î	211	.06	12. 2
1954	7, 096	294	2, 087, 365	16, 698, 943	4	273	. 24	16. 3
1955 2	6, 110	313	1, 915, 412	15, 563, 288		209		13. 4
1956 2	6, 076	342	2, 079, 732	16, 626, 935	2	153	. 12	9. 20
Gold-silver:	0,010	012	2, 010, 102	10, 020, 000	_	100		0.2
1947-51 (average)	888	286	253, 605	1, 981, 553	. 1	91	. 50	45. 92
1952	676	295	199, 571	1, 590, 554		39		24. 5
1953	494	289	142, 604	1, 140, 610		38		33. 3
1954	385	301	116,066	925, 843	1	34	1.08	36. 7
1955 2	408	298	121, 420	971, 223	•	43	1.00	44. 2
1956 2	313	292	91, 444	730, 076		20		27. 3
ron:	910	202	01, 111	100,010		20		21.0
1947-51 (average)	3, 492	243	847, 302	6, 861, 170	2	85	. 29	12. 39
1952	3, 914	222	869, 203	7, 037, 046		54		7. 6
1953	4, 439	244	1, 082, 748	8, 721, 861	2	88	. 23	10.0
1954	4, 153	226	939, 314	7, 574, 213	3.	80	.40	10. 5
1955 2	4, 055	258	1, 044, 212	8, 383, 134	2	87	. 24	10.3
1956 2	3, 939	218	859, 203	6, 940, 431	ĩ	73	. 14	10. 5
ead-zinc:	0, 000		000, 200	0, 010, 101	•			1 20.0
1947-51 (average)	3, 866	259	1,002,023	8, 027, 458	2	235	. 25	29. 2
1952		273	994, 480	7, 953, 964	3	221	.38	27. 7
1953		258	1, 080, 762	8, 650, 758	ĭ	220	12	25. 4
1954	3, 551	247	875, 911	7, 023, 574	î	132	.14	18. 79
1955 2	3, 404	220	748, 844	6, 068, 766	•	153		25. 2
1956 2	2, 330	251.	585, 414	4, 683, 662	1	78	. 21	16.6
Miscellaneous metals: 3	2,000	201.	000, 111	1,000,002	-			20.0
1947-51 (average)	1, 546	296	458, 043	3, 674, 291	1	146	. 27	39.7
1952	3, 172	308	977, 165	7, 819, 987	7	232		29.6
1953	4, 400	314	1, 380, 298	11, 045, 420		269		24. 3
1954	3, 910	317	1, 238, 274	9, 898, 374	1	311	. 10	31.4
1955 2	3, 279	305	1, 000, 798	8, 012, 937	î	303	.12	37. 8
1956 ²	2, 182	269	587, 691	4, 717, 923	-	142	1	30.1
Cotal:	2, 102	200	001,001	1, . 1 . , 0 2 0		7		1
1947-51 (average)	15, 911	284	4, 524, 226	36, 256, 918	8	813	. 22	22, 4
1952		294	5, 161, 438	41, 370, 360	4	852	10	20. 5
1953	19, 757	296	5, 843, 144	46, 812, 501	4	826	.09	17.6
1954	19, 095	275	5, 256, 930	42, 120, 947	10	830	. 24	19.7
1955 2	17, 256	280	4, 830, 686	38, 999, 348	3	795	.08	20. 38
1956 2	14, 840	283	4, 203, 484	33, 699, 027	4	466	.12	13. 8

¹ Includes crushers, grinders, and washers and ore-concentration, sintering, cyaniding, leaching, and all other metallic ore-dressing plants and auxiliary works.

NONFERROUS REDUCTION PLANTS AND REFINERIES

The nonferrous reduction plants and refineries that comprise this section of the mineral industries are engaged in the primary extraction of nonferrous metals from ores and concentrates and the refining of crude primary nonferrous metals, exclusive of iron and steel plants. The number of fatalities increased by 2, and there were 262 fewer nonfatal injuries during 1956. The combined injury-frequency rate (fatal and nonfatal) decreased 10 percent from that reported for 1955. Average hours worked per man per year were 2,622, on the basis of a 7.99-hour shift per day.

² Preliminary figures. ³ Includes antimony, bauxite, mercury, manganese, tungsten, chromite, vanadium, molybdenum, and other metals.

TABLE 9.—Employment and injury experience at primary nonferrous reduction and refinery plants in the United States, by industry groups, 1947-51 (average) and 1952-56 ¹

Industry and year	Men work- ing daily	Aver- age active smelter days	Man-days worked	Man-hours worked	Number of injuries		Injury rates per million man-hours	
					Fatal	Nonfatal	Fatal	Nonfatal
Copper:								
1947-51 (average) 1952 1953	10,629 11.177	321 323 324	3, 853, 934 3, 438, 403 3, 617, 642	30, 885, 844 27, 507, 902 28, 942, 736	5 6 1	571 367 332	0.16 .22 .03	18. 49 13. 34 11. 47
1954 1955 2 1956 2 Lead;	11, 244 11, 691 11, 089	303 312 319	3, 408, 422 3, 651, 422 3, 541, 619	27, 316, 287 29, 211, 324 28, 335, 167	4 5 1	323 401 309	.15 .17 .04	11. 82 13. 73 10. 91
1947-51 (average) 1952 1953 1954 1955 ² 1956 ²	3, 639 3, 753 3, 259	313 318 292 314 291	1, 230, 861 1, 158, 368 1, 095, 526 1, 021, 980 788, 077	9, 843, 039 9, 266, 594 8, 764, 219 8, 175, 841 6, 304, 539	3 2 1 1	165 105 80 93 135	.30 .22 .11 .12	16. 76 11. 33 9. 13 11. 37 21. 41
1956 ²	· ·	316 342	1, 078, 782 3, 290, 449	8, 630, 248 26, 144, 081	5 4	132 839	. 58	15. 30 32. 09
1952 1953 1954 1955 ² 1956 ² Miscellaneous metals: ³	9, 709	356 354 334 337 322	3, 440, 024 3, 436, 291 2, 969, 269 2, 639, 723 2, 712, 673	27, 384, 308 27, 354, 478 23, 612, 421 20, 955, 639 21, 615, 641	4 2 1	876 808 675 600 625	.15 .07 .04	31. 99 29. 54 28. 59 28. 63 28. 91
Miscellaneous metals: 3	0, 410			, - , - , - ,				
1947-51 (average) 1952 1953 1954 1955 ² 1956 ²	10 887	313 322 332 340 337 355	1, 958, 571 2, 429, 697 3, 609, 904 4, 056, 044 3, 506, 679 2, 462, 622	15, 724, 228 19, 438, 096 26, 937, 080 32, 449, 905 28, 053, 417 19, 700, 386	2 4 2 2	378 653 778 657 415 223	.13	24. 04 33. 59 28. 88 20. 25 14. 79 11. 32
Total:		324	10, 333, 815	82, 597, 192	. 14	1, 953	. 17	23. 64
1947-51 (average) 1952 1953 1954 1955 ² 1966 ²	35, 526 35, 301	332 331 325 324 328	10, 466, 492 11, 759, 363 11, 455, 715 10, 585, 901 9, 795, 696	83, 596, 900 91, 998, 513 91, 554, 454 84, 524, 919 78, 281, 442	12 8 6 7	1, 953 2, 001 1, 998 1, 748 1, 551 1, 289	. 17 . 14 . 09 . 07 . 08 . 11	23. 94 21. 72 19. 09 18. 35 16. 47

Includes smelters, refineries and roasting, electrolytic, retort, and all other nonferrous metal reducing or refining plants.
 Preliminary figures.

Includes mercury, antimony, tin, and magnesium plants.

STONE QUARRIES

The quarrying industry revealed a small decline in the number of fatal and nonfatal injuries for 1956. Fatal injuries declined 8 percent—53 reported in 1955, and 49 reported for the year 1956. Nonfatal injuries decreased 2 percent—3,778 reported for 1955 and 3,701 for 1956. The combined (fatal and nonfatal) frequency rate of 21.38 for 1956 was 5 percent lower than the rate of 22.43 reported the previous year. Man-hours worked increased as did the number of men employed.

Cement.—The cement industry's safety record was not as good in 1956 as in 1955, with a 14-percent increase in the number of fatal and nonfatal injuries. Fatal injuries increased by 3, nonfatal injuries increased by 37, or 33 and 13 percent, respectively; the overall injury rate increased 12 percent. The industry worked 9 more days in 1956 than in 1955, with a 2-percent increase in the number of manhours worked.

Granite.—The number of nonfatal injuries in the granite industry decreased by 4 percent; however, fatal injuries showed a 50-percent rise. The combined (fatal and nonfatal) injury-frequency rate per

million man-hours of employment increased 2 percent. The granite industry worked 6 fewer days than in the previous year. The number of men working during the year decreased by 143—from 5,944 em-

ployed in 1955 to 5,801 in 1956.

Lime.—The quarries that produced limestone chiefly for the manufacture of lime had a very good safety record in 1956. The industry employed more men and worked more man-hours in 1956 than in 1955. The number of fatal injuries reported in 1956 was the same as in the previous year; nonfatal injuries increased by 6 (1 percent). The combined (fatal and nonfatal) injury rate decreased 6 percent. Days worked in 1956 were fewer by 2 than those worked in 1955.

Days worked in 1956 were fewer by 2 than those worked in 1955.

Limestone.—The safety record at limestone quarries and related plants improved in 1956. The number of fatal injuries decreased by 39 percent; approximately the same number of nonfatal injuries was reported as in 1955. The combined (fatal and nonfatal) injury-frequency rate decreased 6 percent. More men were employed in 1956, and the man-hours worked increased 5 percent over 1955. Limestone quarries worked 231 days during 1956—5 less than in 1955.

Marble.—Marble quarries and their related plants worked more days, employed more men, and worked more man-hours during 1956, compared with the previous year. This increased employment was accompanied by a favorable frequency rate. There was a 9-percent decline in the number of nonfatal injuries reported; and 1 fatal injury was reported—the same as in 1955. The combined (fatal and nonfatal) frequency rate declined 19 percent from the comparable rate of the preceding year.

Sandstone.—The safety record for the sandstone industry improved in 1956 over that in 1955. Nonfatal injuries were fewer by 71 (a 19-percent decrease), 1 fatal injury was reported, the same as in 1955. The combined (fatal and nonfatal) injury rate declined 15 percent from 1955. Employment in the sandstone industry declined during

1956.

Slate.—Slate quarries and their related plants improved their safety record during 1956. No fatal injuries were reported for this industry; and there were 33 fewer nonfatal injuries, representing a 21-percent decline from the 159 reported in 1955. The combined injury-frequency rate (fatal and nonfatal) fell from 48.01 in 1955 to 42.80 in 1956—an 11-percent decline. The number of men employed, the number of active days, and the man-hours of employment were less than in 1955.

Traprock.—The traprock industry's safety record for 1956 was not as favorable as in 1955. Nonfatal injuries increased 9 percent—from 213 in 1955 to 233 in 1956. The fatal injuries rose from 2 in 1955 to 4 in 1956. The combined (fatal and nonfatal) injury rates increased 7 percent over the combined rate for 1955. More men were employed and more man-hours worked, although the average number of days the traprock industry worked was reduced by 27—from 232 days in 1955 to 205 in the current year.

EMPLOYMENT, INJURIES IN METAL AND NONMETAL INDUSTRIES 137

TABLE 10.—Employment and injury experience at stone quarries in the United States, 1924-56

				1					
Year	Men work- ing	Aver- age active	Man-days worked (thousand)	Man-hours worked (thousand)		nber of uries	Injury rates per million man- hours		
	daily	mine days			Fatal	Nonfatal	Fatal	Nonfatal	
1924.	94, 242	269	25, 328	236, 983	138	14, 777	0. 58	62. 35	
1925.	91, 872	273	25, 046	233, 222	149	14, 165	. 64	60. 74	
1926.	91, 146	271	24, 708	230, 464	154	13, 201	. 67	57. 28	
1927.	91, 517	271	24, 783	229, 806	135	13, 459	. 59	58. 57	
1928.	89, 667	272	24, 397	224, 953	119	10, 568	. 53	46. 98	
1929 1930 1931 1931 1932 1933	85, 561 80, 633 69, 200 56, 866 61, 927	268 255 224 195 183	22, 968 20, 559 15, 527 11, 114 11, 362	211, 766 186, 502 133, 750 93, 710 87, 888	126 105 61 32 59	9, 810 7, 417 5, 427 3, 574 3, 637	. 59 . 56 . 46 . 34 . 67	46. 32 39. 77 40. 58 38. 14 41. 38	
1934	64, 331	204	13, 108	95, 259	60	3, 924	.63	41, 19	
	73, 005	200	14, 623	110, 033	51	4, 152	.46	37, 73	
	80, 022	236	18, 874	147, 064	91	5, 717	.62	38, 87	
	84, 094	241	20, 264	158, 299	77	6, 348	.49	40, 10	
	77, 497	223	17, 256	133, 766	82	5, 027	.61	37, 58	
1939	79, 449	236	18, 726	143, 847	48	5, 204	.33	36. 18	
1940	79, 509	240	19, 121	147, 244	72	5, 188	.49	35. 23	
1941	86, 123	260	22, 370	173, 165	76	6, 870	.44	39. 67	
1942	84, 270	271	22, 808	180, 836	112	6, 349	.62	35. 11	
1942	69, 877	274	19, 136	155, 280	80	5, 199	.52	33. 48	
1944	58, 476	268	15, 691	129, 302	73	4, 437	. 56	34. 32	
1945	58, 180	264	15, 376	127, 168	53	4, 121	. 42	32. 41	
1946	70, 265	274	19, 262	158, 852	55	5, 137	. 35	32. 40	
1947	75, 245	279	20, 996	171, 979	75	5, 504	. 44	32. 00	
1947	77, 344	284	21, 993	179, 111	75	4, 994	. 42	27. 88	
1949	82, 209	275	22, 569	182, 258	66	4, 826	.36	26. 48	
	85, 730	272	23, 346	189, 535	54	4, 762	.28	25. 12	
	84, 802	277	23, 470	191, 113	57	4, 945	.30	25. 87	
	81, 879	279	22, 844	186, 552	74	4, 503	.40	24. 14	
	83, 641	278	23, 248	189, 777	43	4, 450	.23	23. 45	
1954	78, 910	273	21, 506	175, 817	34	3, 834	.19	21, 81	
1955 ¹	75, 980	275	20, 864	170, 808	53	3, 778	.31	22, 12	
1956 ¹	78, 701	272	21, 439	175, 424	49	3, 701	.28	21, 10	

¹ Preliminary figures.

TABLE 11.—Employment and injury experience at stone quarries in the United States, by industry groups, 1947-51 (average) and 1952-56

Industry and year	Men work- ing	Average active mine-	Man-days worked	Man-hours worked		nber of uries	millio	rate per on man- ours
	daily	days			Fatal	Nonfatal	Fatal	Nonfatal
Cement: 1		14						
1947-51 (average)	28, 677	324	9, 302, 371	73, 432, 153	20	646	0.27	8.80
1952	28, 384	329	9, 338, 887	74, 193, 087	17	481	. 23	6.48
1953	28, 925 27, 718	329 320	9, 504, 900 8, 879, 804	75, 800, 327 71, 058, 012	16 6	388 322	. 21	5. 12 4. 53
1954 1955 ²	28, 097	320	9,000,019	72, 097, 180	. 9	281	. 12	3.90
1956 2	27, 793	329	9, 138, 129	73, 194, 550	12	318	. 16	4.34
Granite: 1947-51 (average)	6, 625	- 250	1, 656, 319	13, 740, 081	5	600	. 36	43.67
1952	6,646	245	1, 630, 766 1, 631, 700	13, 585, 369	12	565	.88	41. 59
1953	6, 484	252	1, 631, 700	13, 506, 490	2	552	.15	40.87
1954 1955 ²	6, 469 5, 944	243 239	1, 571, 232 1, 421, 453	13, 018, 657 11, 800, 012	4	457 492	.31	35. 10 41. 69
1956 2	5, 801	233	1, 352, 321	11, 223, 641	8	474	.71	42. 23
Lime: 1947-51 (average)	9, 155	297	2, 715, 164	21, 705, 160	8	824	. 37	37.96
1952	9, 231	294	2, 716, 164	21, 705, 100	7	528	.32	24, 13
1953	9, 165	294	2, 690, 660	21, 877, 280 21, 663, 764 18, 809, 131	3	526	. 14	24.28
1954 1955 ²	7, 985 8, 366	294 292	2, 345, 142 2, 441, 932	18, 809, 131	10 6	457	. 53	24. 30 21. 20
1956 2	9,037	290	2, 441, 932	19, 672, 136 21, 164, 118	6	417 423	. 30	19.99
Limestone:	· ·	l .						
1947-51 (average)	25, 087	237 241	5, 953, 736 6, 462, 276 6, 651, 663 6, 224, 718 5, 608, 126	49, 998, 564	24 27	1, 886 1, 890	. 48	37. 72 34. 83
1953	27, 764	240	6, 651, 663	55, 839, 029	16	2, 039	. 29	36, 52
1953 1954 1955 2	26, 246	237	6, 224, 718	52, 231, 092	12	1,748	. 23	33.47
1955 ²	26, 818 27, 764 26, 246 23, 719 25, 740	236 231	5, 608, 126 5, 938, 401	54, 265, 172 55, 839, 029 52, 231, 092 47, 132, 663 49, 689, 337	28 17	1,641	. 59	34.82
Marble:	20, 140	201	0, 200, 101		17	1, 642	. 34	33.05
1947-51 (average) 1952	2, 782 2, 376	257	715, 477 604, 640 606, 435	5, 897, 907 5, 021, 773 4, 981, 451 5, 326, 541 4, 669, 780 5, 278, 402	1	191	. 17	32.38
1952	2,376 2,442	254 248	604, 640	5,021,773	1	196 161	. 20	39.03
1954	2, 558	252	643, 873	5, 326, 541	. u	159	. 20	32. 32 29. 85
1953	2, 221	251	643, 873 557, 180	4, 669, 780	1	210	. 21	44. 97
1956 ²	2, 510	253	635, 513	5, 278, 402	1	191	. 19	36. 19
1047-51 (9Vergge)	4,059	241	977, 636	8, 131, 625	. 3	371	. 37	45, 62
1952	3, 890	248	977, 636 964, 804 1, 027, 719 768, 252	7, 876, 133	6	367	. 76	46, 60
1953	4, 167	247 221	1,027,719	8, 369, 173	2	368 262	. 24	43. 97 41. 70
1955 2	3, 471 3, 340	240	802, 432	6, 515, 963	2	365	.31	56.02
1952 1953 1954 1955 2 1956 2	3, 243	232	753, 625	8, 131, 625 7, 876, 133 8, 369, 173 6, 283, 356 6, 515, 963 6, 197, 835	ī	294	. 16	47. 44
Slate: 1947-51 (average)	1, 927	266	512 056	4 431 011	2	218	. 45	49, 20
1952	1 616	271	512, 056 438, 334 442, 689 393, 270 401, 299	3, 692, 983		226		61. 20
1953	1,682	263	442, 689	3, 615, 041	1	186	. 28	51.45
1955 2	1,506 1,571	261 255	393, 270 401 200	3,276,274	1	181 159	. 30	55. 25 47. 71
1953	1,398	251	350, 202	4, 431, 011 3, 692, 983 3, 615, 041 3, 276, 274 3, 332, 462 2, 943, 767		126	. 50	42.80
Traprock:			· ·					40.01
1947-51 (average)	2, 753 2, 918	233 236	642, 287 687, 908	5, 462, 632 6, 040, 033 6, 001, 314	3 4	271 250	. 54	49. 61 41. 39
1953	3, 012	- 230	1 692, 605	6,001,314	2	230	.33	38. 32
1954	2, 957 2, 722	230	679, 468 631, 314	5, 814, 087 5, 588, 130	2	248	. 34	42.66
1953 1954 1955 ² 1956 ²	2, 722 3, 179	232 205	631, 314	5, 588, 130 5, 732, 793	2	213 233	. 36 . 70	38, 12 40, 64
Total:	l	1	'					
1947-51 (average)	81,065	277	22, 475, 046	182, 799, 133 186, 551, 830	66	5,007	. 36	27. 39
1952	81, 879 83, 641	279 278	22, 843, 676 23, 248, 371	189, 776, 589	74 43	4, 503 4, 450	.40	24. 14 23. 45
1954	78, 910	273	21, 505, 759	189, 776, 589 175, 817, 150	34	3,834	. 19	21.81
1953	75, 980	275	20, 863, 755	[170, 808, 326]	53	3,778	. 31	22, 12
1900	18,701	272	21, 438, 973	175, 424, 443	49	3, 701	. 28	21, 10

¹ Includes burning or calcining and other mill operations.
² Preliminary figures.

Abrasive Materials

By Henry P. Chandler 1 and Gertrude E. Tucker 2

Contents

	Page		Page
Natural silica abrasives	140	Industrial diamond	145
Special silica-stone products	141	Artificial abrasives	151
		Miscellaneous mineral-abrasive ma-	
Natural alumina abrasives	143	terials	154

OMBINED sales of abrasive materials in the United States during 1956 increased at about the same rate as the value of the Gross National Product in terms of 1954 dollars,3 which was nearly 3 percent. However, some segments of the industry did not follow the general pattern. Sales of abrasive grinding wheels increased 9 percent in value. Sales of surface-coated abrasives declined 5 percent in quantity but increased 1 percent in value.

Production of crude silicon carbide in the United States and Canada advanced both in tonnage and value, but that of abrasive-grade

TABLE 1.—Salient statistics of the abrasives industries in the United States, 1955-56

	1955		1	956	Change from 1955 (percent)	
	Short tons	Value	Short tons	Value	Short tons	Value
Natural abrasives (domestic) sold or used by producers: Tripoli '. Quartz, ground sand, and sandstone 's Grindstones. Millstones. Tube-mill liners. Grinding pebbles. Garnet. Emery. Artificial abrasives: Silicon carbide 's. Aluminum oxide 's. Metallic abrasives (various types)	(4) 2, 130 11, 835 10, 735 74, 805 195, 822	2 \$212, 566 1, 844, 371 195, 761 (6) 68, 268 1, 191, 456 151, 455 11, 027, 693 22, 141, 686	9, 812 12, 153 95, 778 195, 228	\$202, 537 2, 067, 238 14 261, 439 4, 400 73, 596 71, 392 1, 073, 386 174, 032 14, 937, 322 22, 553, 844	-9 +18 	(5) (5) (5) +5 -10 +15 +35 +2
shipments Foreign trade (natural and artificial abrasives): Imports Exports Reexports	157, 616	17, 911, 738 289, 794, 989 24, 876, 193 6, 444, 156		18, 201, 289 99, 940, 729 26, 845, 480 7, 755, 450	-11	+11 +8 +20

Data not comparable with earlier years.

<sup>Revised figure.
For abrasive purposes.
Includes oilstones and other sharpening stones.
Figures withheld to avoid disclosing individual company confidential data.
Production (United States and Canada).</sup>

<sup>Commodity specialist.
Statistical assistant.
Gross National Product is issued by the National Income Div., Dept. of Commerce, and published</sup> in its Survey of Current Business.

aluminum oxide showed little change. Production of metallic abrasive decreased in tonnage but increased in value. Domestic output of garnet declined, but domestic-emery production rose.

Imports of abrasive products increased 11 percent in value; exports, 8 percent; and reexports, 20 percent. Slightly more than 16 million carats of all types of industrial diamond exceeding \$74 million in value, were imported.

This chapter includes for the first time reexports of abrasive materials from the United States. It also includes the statistics for most materials used for abrasive purposes but omits certain clays, carbides, oxides, and other abrasive substances, which are discussed in the section Miscellaneous Mineral-Abrasive Materials.

NATURAL SILICA ABRASIVES

Tripoli.—Sales of processed tripoli, amorphous silica, and rottenstone declined 8 percent in tonnage and 10 percent in value from 1955. Beginning in 1955, table 1 shows data on crude tripoli instead of processed tripoli, sold or used by producers. No imports of tripoli were reported during 1956. A small production was reported from Australia.4

Companies mining and processing tripoli, amorphous silica, or rottenstone in 1956 were: Ozark Minerals Co., Cairo, Ill. (amorphous silica); Tamms Industries, Inc., Tamms, Ill. (amorphous silica); American Tripoli Division, The Carborundum Co., Seneca, Mo., and Ottowa County, Okla. (tripoli); Penn Paint & Filler Co., Antes Fort, Pa. (rottenstone); and Keystone Filler & Manufacturing Co., Muncy. Pa. (rottenstone).

Price quotations on tripoli in E&MJ Metal and Mineral Markets were as follows (per short ton, paper bags, minimum carlot 30 tons, f. o. b. Missouri): Once-ground through 40-mesh, rose and cream, \$50; double-ground through 110-mesh, rose and cream, \$52; and air-floated through 200-mesh, \$55.

TABLE 2.—Processed tripoli 1 sold or used by producers in the United States, 1947-51 (average) and 1952-56, by uses 2

Year	Abrasives		Filler		Other, including foundry facings		Total	
	Short tons	Value	Short tons	Value	Short	Value	Short	Value
1947-51 (average) 1952 1953 1954 1955 1956	27, 179 25, 000 25, 000 31, 050 32, 870 32, 189	\$737, 075 771, 000 852, 000 1, 181, 000 1, 376, 590 1, 327, 548	4, 372 7, 000 7, 000 8, 719 8, 189 7, 274	\$89, 791 156, 000 163, 000 202, 626 3 188, 748 173, 089	2,078 3,459 4,183 1,856 4 5,910 3,875	\$58, 392 116, 124 123, 635 75, 136 4 236, 597 116, 218	33, 629 35, 459 36, 183 41, 625 46, 969 43, 338	\$885, 258 1, 043, 124 1, 138, 635 1, 458, 762 1, 801, 935 1, 616, 855

¹ Includes amorphous silica and Pennsylvania rottenstone.

Abrasive Sands.—Glass grinding, stone polishing, sandblasting, and similar industries used substantial tonnages of natural sands with a high silica content as abrasive materials. Sales of these sands

Partly estimated.

3 Includes some tripoli used for abrasive purposes.

4 Includes some tripoli used for filter block.

⁴ Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 5, May 1956, p. 40.

totaled 1,668,502 short tons valued at \$5,250,606 in 1956, compared with revised figures of 1,734,611 short tons valued at \$4,637,959 in 1955. The 1956 figures include 776,961 short tons of blast sand valued at \$3,611,085. The tonnage and value of these sands, by States, are given in the Sand and Gravel chapter of this volume.

Quartz.—Information on production and sale of crude, crushed, and ground quartz and ground sand and sandstone, which formerly appeared in the Abrasive Materials chapter of Minerals Yearbook, is included in the Stone and Sand and Gravel chapters of this volume. However, the quantity and value of these materials used for abrasive purposes are reported.

The tonnage of graded quartz used by the coated-abrasive industry

in 1956 was slightly less than in the preceding year.

Development work continued in the silica-mining industry of Quebec; a large tonnage was blocked out. A plant was being constructed near Ste. Canut to produce silica for the ceramic and abrasive industries.5

TABLE 3.—Quartz, ground sand, and sandstone used for abrasive purposes, 1954-56

	1954		1	955	1956		
	Short tons	Value	Short tons	Value	Short tons	Value	
Ground sandSandstone, quartz, and quartzite	182, 046 32, 106	\$1, 466, 762 184, 573	209, 729 29, 301	\$1, 692, 064 152, 307	257, 656 24, 238	\$1, 939, 52 4 127, 71 4	
Total	214, 152	1, 651, 335	239, 030	1, 844, 371	281, 894	2, 067, 238	

SPECIAL SILICA-STONE PRODUCTS

Grindstones and Pulpstones.—Ohio was the only State reporting production of grindstones. No sales of pulpstones were reported.

Oilstones and Other Sharpening Stones.—Sales of natural sharpening stones increased 5 percent in tonnage but decreased slightly in value

TABLE 4.—Grindstones and pulpstones sold by producers in the United States, 1947-51 (average) and 1952-56

	Grind	stones	Pulpstones			
Year			Qua			
	Short tons	Value	Pieces	Equiv- alent short tons	Value	
1947-51 (average)	6, 601 3, 962 2, 499	\$333, 709 246, 526 169, 951	12 4	38 12	\$2,624 908	
1954	2, 218 2, 799 1 2, 789	163, 995 195, 761 1 261, 439				

¹ Includes oilstones and other sharpening stones.

⁴ Glass Industry, vol. 37, No. 3, March 1956, p. 146.

per ton compared with 1955. Oilstones and whetstones were produced in Arkansas; whetstones, in Indiana; and scythestones, in New Hampshire.

Millstones.—Rowan County, N. C., was the only area reporting

production of millstones. No output of chasers was reported.

TABLE 5.—Value of millstones and chasers sold by producers in the United States, 1947-51 (average) and 1952-56 1

Year	Number of pro- ducers	Value	Year	Number of pro- ducers	Value
1947–51 (average)	2	\$13, 524	1954	2	(2)
1952	1	9, 285		1	(2)
1953	2	18, 375		1	\$4, 400

Produced in New York (1947-48 and 1953-54), North Carolina, and Virginia (1947-50 only).
 Figure withheld to avoid disclosing individual company confidential data.

Grinding Pebbles and Tube-Mill Liners.—Production of grinding pebbles increased 9 percent in tonnage and 5 percent in value over the previous year. Output was reported from Minnesota, North Carolina, Texas, Washington, and Wisconsin. Tube-mill liners were reported from Minnesota, North Carolina, and Wisconsin.

TABLE 6.—Grinding pebbles and tube-mill liners sold or used by producers in the United States, 1947-51 (average) and 1952-56

Year	Grinding	pebbles	Tube-mi	ll liners	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1947-51 (average)	3, 449 3, 460 2, 472 3, 070 2, 130 2, 330	\$85, 163 95, 455 81, 159 99, 491 68, 268 71, 392	1, 378 1, 083 1, 219 933 (1) 1, 061	\$53, 703 66, 218 68, 688 59, 471 (¹) 73, 596	4, 827 4, 543 3, 691 4, 003 (1) 3, 391	\$138, 866 161, 673 149, 847 158, 962 (¹) 144, 988	

¹ Figure withheld to avoid disclosing individual company confidential data.

NATURAL SILICATE ABRASIVES

Garnet.—Sales of garnet declined 17 percent in tonnage and 10 percent in value from 1955. California garnet producers were inactive. The tonnage and value of garnet sales declined in all producing States.

Production of garnet in Australia, India, and Madagascar was noted

in Foreign Service dispatches and various publications.6

Domestic producers selling garnet were: Florida Minerals Co., Melbourne, Fla.; Idaho Garnet Abrasive Co., Fernwood, Idaho; Barton Mines Corp., North Creek, N. Y., and Cabot Carbon Co., Willsboro,

New York was the leading garnet-producing State; Idaho ranked

second; and Florida, third.

Although some garnet was produced as a byproduct of the concentration of other minerals, most output came from deposits mined

Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 5, May 1956, p. 31.
Mining World, India: Vol. 18, No. 9, August 1956, p. 83.
U. S. Embassy, New Delhi, India, State Department Dispatch 636: Nov. 23, 1956, p. 1.
U. S. Embassy, Paris, France, State Department Dispatch 2219: May 17, 1956, enclosure 1.

primarily for garnet content. Sales of garnet since 1920 are presented

graphically in figure 1.

The use of garnet in manufacturing coated abrasives declined 7 percent compared with 1955; its use in fine sizes as a polishing material increased.

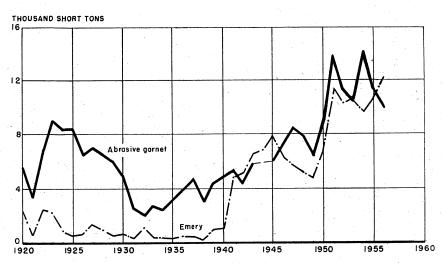


FIGURE 1.—Marketed production of abrasive garnet and emery in the United States, 1920-56.

TABLE 7.—Abrasive garnet sold or used by producers in the United States, 1947-51 (average) and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947–51 (average) 1952	9, 339 11, 390 10, 520	\$749, 521 981, 841 988, 797	1954 1955 1956	14, 183 11, 835 9, 812	\$971, 353 1, 191, 456 1, 073, 386

NATURAL ALUMINA ABRASIVES

Corundum.—Imports of corundum increased 33 percent in tonnage but decreased 14 percent in value over 1955. The drop in import value resulted from the decline in average value from \$69 a short ton in 1955 to \$45 in 1956. Union of South Africa continued to be the leading producer. There was no commercial production in the United States.

Canadian corundum deposits were inactive in 1956, but small quantities were produced in India and Malaya.⁷

Mining Journal (London), Metals, Minerals, and Alloys: Corundum: Vol. 246, No. 6294, Apr. 6, 1956,
 pp. 426, 427.
 Northern Miner, Abrasive Production Not Likely to Grow Unless Need Dire: Vol. 42, No. 25, Sept. 13,

Northern Miner, Abrasive Production Not Likely to Grow Unless Need Dire: Vol. 42, No. 25, Sept. 1 1956, p. 15.
U. S. Consulate, Singapore, State Department Dispatch 121: Sept. 14, 1956, p. 18.
U. S. Embassy, New Delhi, India, State Department Dispatch 636: Nov. 23, 1956, p. 1.

Nearly all corundum from Namaqualand and Southern Rhodesia was found to be unsuitable for abrasives and was used for manufacturing refractories.8

Prices for crude corundum were quoted in E&MJ Metal and Mineral Markets, c. i. f. United States ports, at \$100 to \$120 a short ton. significant changes in the price of graded corundum were noted during 1956.

TABLE 8.—World production of corundum, by countries, 1947-51 (average) and 1952-56, in short tons ²

[Compiled]				

Country 1	1947–51 (average)	1952	1953	1954	1955	1956
Argentina Australia French Equatorial Africa	20	(3) 61	(3)	(3)	(³) 10	(3)
IndiaMadagascar	623	713	363	527	149	395
Malaya, Federation of Mozambique Rhodesia and Nyasaland, Federation of	12 4		1	1	4 2 9	4 100
Nyasaland Southern Rhodesia South-West Africa	88 25 2	52	843	17 2, 840	20 1, 168	4, 448
Union of South Africa	3, 325	4, 179	1, 865	1, 443	834	2, 068
World total (estimate)1	9, 700	11,000	10,000	10,000	8, 000	11, 000

Emery.—Domestic production of emery increased 13 percent in tonnage and 15 percent in value over 1955. The average value per ton increased slightly. Imports of emery increased 133 percent. Emery was used principally as a nonskid component in stair treads, floors, and pavements. The only domestic producers were Joe DeLuca and DiRubbo & Ellis, both of Peekskill, N. Y. A plant for processing emery ore was operated at Peekskill. Domestic production of emery since 1920 is presented graphically in figure 1.

Emery production in Turkey during 1956 was 4,980 metric tons. Exports of emery from Greece were 4,651 metric tons. Both tonnages were less than in recent years.9

TABLE 9.—Emery sold or used by producers in the United States, 1947-51 (average) and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947–51 (average)	6, 739	\$86, 554	1954	9, 758	\$132, 313
	10, 352	141, 911	1955	10, 735	151, 455
	10, 562	143, 974	1956	12, 153	174, 032

⁸ Coleman, John, The Pella/Swartkoppies Corundum-Sillimanite Deposits: South African Min. and Eng. Jour. (Johannesburg), vol. 67, pt. 1, No. 3293, Mar. 23, 1956, p. 393.
Mining World (Africa), Federation of Rhodesia and Nyasaland: Vol. 18, No. 11, October 1956, p. 77.
⁹ U. S. Embassy, Ankara, Turkey, State Department Dispatch 676: Apr. 26, 1957, p. 2.
U. S. Embassy, Athens, Greece, State Department Dispatch 901: June 19, 1957, p. 5.

Corundum is produced in U. S. S. R. in addition to countries listed, but data on production are not available, and estimate is included in the total.
 This table incorporates a number of revisions of data published in previous Abrasive Materials chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 Data not available; estimate by senior author of chapter included in total.

INDUSTRIAL DIAMOND

Imports of industrial diamond into the United States during 1956 were over 16 million carats valued in excess of \$74 million, a record both for quantity and value. During 1956 world production of diamond increased to a total of 23,130,000 carats; 18,300,000 carats was classed as industrial.

The United States Government continued to purchase industrial diamond for the national strategic and supplementary stockpiles.

Continued industrial activity in the United States was reflected by the increased use of industrial diamond.¹⁰

Trade-practice rules and codes were established by Federal agencies

for the industrial-diamond trade.11

Production.—Industrial-diamond production throughout the world in 1956 showed an increase of 5 percent over 1955. As in recent years, 73 percent of the total came from Belgian Congo, the leading producer; 9 percent from the Union of South Africa, ranking second, and 8 percent from Ghana (Gold Coast), third in output. parts of Sierra Leone were opened to native African operators for mining, diamond production increased substantially. Much of the diamond listed as exported from Liberia may have originated in Sierra

Comparison of the value of the gem- and industrial-diamond sales indicated that, in recent years, 30 percent of the total value of the

TABLE 10.—World production of industrial diamond, by countries, 1954-56, in thousand carats 1

Country	1954	1955	1956
Africa:			
Angola	300	304	300
Belgian Congo	12,060	12,480	13, 280
French Equatorial Africa	100	90	95
French West Africa	140	210	260
Ghana (Gold Coast)	1,670	1,770	1, 415
Ghana (Gold Coast)Sierra Leone 28	260	540	780
South-West Africa	100	80	100
Tanganyika	160	150	187
Union of South Africa:	1	ł	
"Pipe" mines:			:
Premier	1,100	1,050	1, 100
DeBeers group	560	450	400
Others	60	100	100
"Alluvial" mines	90	65	60
Total Africa	16,600	17, 300	18, 100
Other areas:	1	· 1	
Brazil *	100	100	150
British Guiana	18	20	18
Venezuela	68	100	75
Australia, Borneo, India, and U. S. S. R.	3	3	3
World total	16, 800	17, 500	18, 300

¹ Prepared jointly by the Bureau of Mines and Dr. George Switzer, Smithsonian Institution.

² Includes unofficial production and Liberia.

Iron Age, Diamonds; Still on Upswing: Vol. 177, No. 13, Mar. 29, 1956, p. 23.
 Industrial Diamond Review, Color Codes for Diamond Pastes: Vol. 16, No. 193, December 1956, p. 227.
 Federal Trade Commission, Washington, D. C., Trade Practice Rules for the Diamond Industry: 1956,

sales was from industrial material, although industrial diamond composed over 80 percent of the total, by weight 12

Information about diamond mining in India, ¹³ Australia, ¹⁴ Borneo, ¹⁵ and U. S. S. R. ¹⁶ occasionally appeared in the technical press and Government dispatches.

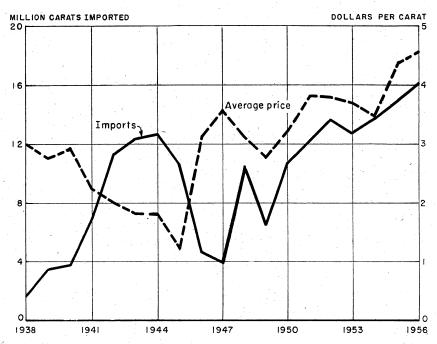


FIGURE 2.—United States imports and average price per carat of industrial diamond, 1938-56.

TABLE 11.—Industrial diamond (excluding diamond dust and manufactured bort) imported for consumption in the United States, 1947-51 (average) and 1952-56 [Bureau of the Consust

	[Saturd of the Company										
Year	Thou- sand carats	sand Year		Thou- sand carats	Thou- sand dollars						
1947–51 (average) 1952 1953	8, 772 13, 469 12, 769	29, 281 51, 117 46, 882	1954 1955 1956	13, 807 1 14, 952 16, 155	48, 018 1 65, 672 2 73, 264						

Revised figure.

² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with other years.

¹² Mining Journal (London), 1955—A Record Year for Diamonds: Vol. 246, No. 6282, Jan. 13, 1956, p. 60; De Beers: Gem Demand Still Greater Than Production: Vol. 246, No. 6300, May 18, 1956, pp. 616–617.

Wall Street Journal, World Diamond Sales in 3d Period Fell 2.3% Because of Stone Shortage: Vol. 148, No. 68, Oct. 5, 1956, p. 4.

South African Mining and Engineering Journal (Johannesburg), Diamond Sales Report Analyzed: Vol. 67, pt. 1, No. 3297, Apr. 20, 1956, p. 543.

¹³ Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 5, May 1956, p. 41.

Industrial and Mining Standard, Nationalisation of Mining in India?: Vol. 111, No. 2813, June 21, 1956, pp. 11. 12.

pp. 11, 13.

14 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 6, June 1956, p. 25.

15 Mining World, Indonesia: Vol. 18, No. 4, April 1956, p. 65.

16 Mining World, U. S. S. R.: Vol. 18, No. 8, July 1956, pp. 77, 79.

TABLE 12.—Industrial diamond (including diamond dust and manufactured bort) imported for consumption in the United States, 1955-56, by countries

[Bureau of the Census]

	[Bureau of the Census]										
Country	fac (dia	manu- tured amond lies)	(inclu types suits	aing bort ading all s of bort able for shing)	diamon ing gla eng diamo	industrial d (includ- ziers' and ravers' nd unset niners')	a	oonado nd illas		st and wder	
	Carats	Value	Carats	Value	Carats	Value	Carata	Value	Carats	Value	
1955											
North America: Bermuda					10 579	\$104 074					
Canada	132	\$596	1 170, 013	1 \$436, 884	1 591, 144	\$104, 974 13, 379, 219			7, 095	\$13, 168	
Haiti Mexico	. -				378 240	3 2,546		-			
Total	132	596	1 170, 013	1 436, 884	1 602, 335	13, 487, 239			7, 095	13, 168	
South America: Brazil					1 30, 102	1 529, 135	1 1 175	1895 609			
British Guiana					205	2, 370	- 1, 170				
Venezuela					13, 548	273, 302	-				
Total					1 43, 855	1 804, 807	1 1, 175	¹ 25, 602			
Europe:									-		
Austria Belgium-					289	3, 390				-	
Luxembourg	24				1, 018, 420	12, 091, 103					
France	1, 761	147, 507			35, 298	318, 455					
Germany, West- Netherlands	265 184		-		5, 856 317, 727	117, 315 2, 973, 774		-			
Sweden	20	502									
Switzerland United	5	317	879	2, 198	5, 330	37, 586			1,074	2, 547	
Kingdom	380	34, 578	1, 695, 603	3, 808, 399	15,120,245	125,598,380			40, 705	132, 798	
Total	2, 639	204, 543	1, 696, 482	3, 810, 597	16,503,165	141,140,003			41, 779	135, 345	
Asia:											
India					178	3, 850				l	
Israel					1,025	3, 850 11, 109					
Lebanon	-,				516	4,878					
Total					1, 719	19, 837					
Africa:											
Belgian Congo			4, 348, 729	9, 643, 360	567, 224	1, 661, 421			55, 570	148, 312	
French Equa- torial Africa					25, 657	295, 359					
Liberia Union of South			330	412	1, 243	22, 012					
∪nion oi soutn Africa			286, 843	739, 155	702, 112	3, 581, 338			48, 288	138, 295	
Total			4, 635, 902	10, 382, 927	1, 296, 236	5, 560, 130			103, 858	286, 607	
Oceania: Aus- tralia					1, 700	4, 208			·		
Grand total 1955	2, 771	205, 139	16,502,397	114,630,408	¹ 8.449.010	¹ 51,016,224	1 1, 175	125, 602	152, 732	435, 120	
1956											
North America:											
Bermuda					6, 342	79, 407					
Canada	192	1, 528	64, 066	218, 807	540, 839	3, 578, 769			10, 392	14, 984	
Mexico			301	724	609	5, 251					
Total	192	1, 528	64, 367	219, 531	547, 790	3, 663, 427			10, 392	14, 984	
South America:											
Brazil British Guiana					11, 642 240	230, 478	1, 549	23, 539			
Venezuela			2, 549	55, 996	11, 236	4, 382 282, 019					
			<u>-</u>				7 540	02 500			
Total			2, 549	55, 996	23, 118	516, 879	1, 549	23, 539			

See footnotes at end of table.

TABLE 12.—Industrial diamond (including diamond dust and manufactured bort) imported for consumption in the United States, 1955–56, by countries—Continued

Bureau	of the	Census

Country	Bort manu- (inclu factured types (diamond suits		ing bort ding all of bort ble for hing)	diamond ing glaz engra diamon	ndustrial i (includ- iers' and avers' id unset iners')	Carbonado and ballas		Dust and powder		
	Carats	Value	Carats	Value	Carats	Value	Carats	Value	Carats	Value
1956 Europe: Belgium-Lux- embourg France Germany, West-	3, 003 362	\$218, 349 28, 655			1, 044, 053 123, 077 3, 926	\$13,258,472 1, 084, 553 52, 459 1, 390, 212			5, 475 1, 250	\$30, 428 3, 563
Netherlands Sweden Switzerland United Kingdom	62	7, 484 3, 950			1, 300	1, 390, 212 13, 793 24, 324, 606				
Total	8, 648	329, 497	1, 824, 794	4, 411, 109	5, 296, 229	40, 124, 095	1, 150	16, 516	25, 838	110, 337
Asia: Hong Kong India Israel Japan Total					626	17, 625 21, 287 5, 840				
Africa: Belgian Congo_British West Africa, n. e. c. French Equatorial Africa_Liberia			6, 590, 447	15, 285, 268		1, 386, 115 52, 346 368, 936			81, 270	
Union of South Africa Total Oceania: Australia	214 214				<u> </u>	6, 136, 823 8, 000, 294			121, 250 202, 520	
Grand total 1956	9, 054	2332, 912	8, 805, 504	20, 843, 228		² 52,351,559		69, 474	238, 750	697, 73

1 Revised figure.

2 Owing to changes in tabulating procedures by Bureau of the Census, data known to be not comparable with other years.

Prices.—Advances in the price of several classes of industrial

diamond were noted during 1956.17

Technology.—Diamond genesis was reviewed in a series of technical The theory was that diamond crystallized during a late phase of volcanic activity and that differences between diamond crystals may be explained by varying gas pressure and different chemical and physical conditions in the magma.¹⁸

The extreme hardness of the diamond (compared with other materials used for abrasive purposes) and its superior abrasive qualities

explain its acceptance by industry, in spite of its high cost.¹⁹

The special techniques of sampling alluvial and kimberlite diamond deposits were described.20

¹⁷ Mining Journal (London), Industrial Diamonds Dearer: Vol. 247, No. 6328, November 1956, p. 667.

18 Ruzicka, P., The Diamond and Its Genesis: Ind. Diamond Rev., vol. 16, No. 191, October 1956, pp. 189-191; vol. 16, No. 192, November 1956, pp. 212-217.

19 Gemmologist, Hardness Numbers of Minerals: Vol. 25, No. 301, August 1956, p. 149.

20 Mining Magazine (London), Sampling Diamond Mines: Vol. 94, No. 5, May 1956, pp. 272-274.

A new edition of a book on diamond drilling was published by an industrial-diamond firm,21 and various types of diamond core drills and their application were described.22

Mechanization of the larger diamond mines increased production. and more efficient concentrating methods saved much of the finer

material, previously lost.²³

New concentration methods for recovering diamonds included the use of the heavy-medium process and the redesign of the better known

types of concentrators.24

Diamond material salvaged from grinding sludge, broken diamond tools, and core-drill bits was an important source of industrial-diamond supply. New methods were devised for secondary-diamond recovery.25

An important reason for the growing popularity of the diamond in industry was the trend toward closer tolerances in machined products. Diamond grinding wheels and tools were particularly effective in achieving this result. New methods of mounting diamonds on tools to form improved cutting edges were meeting with success.²⁶

Diamond tooling has increased production in some specialized jobs, which include machining hard rubber containing an abrasive filler, machining cemented carbides, and producing desired finishes on items

having high production quotas.27

The importance of industrial diamond in the manufacturing

economy of the United States was stressed.²⁸

A proposed set of standards for wire-drawing dies suggested that the diamond used be heavy enough to be resized to at least double the original hole diameter in small and intermediate sizes. Larger stones should warrant 4 to 6 recuts.29

**Moning Journal (London), New Uses for Diamonds: Vol. 247, No. 6326, Nov. 16, 1956, p. 590.

South African Mining and Engineering Journal (Johannesburg), Diamonds and Industry: Vol. 67, pt. I,

No. 3292, Mar. 16, 1956, p. 357.

Work cited in footnote 10.

We Wassaman W. H., and Chandler, H. P., The Diamond and Sheet-Mica Industries:

"Nork cited in hodnote to.

3 Dietrich, W. F., Waggaman, W. H., and Chandler, H. P., The Diamond and Sheet-Mica Industries:

Min. Cong. Jour., vol. 42, No. 9, September 1956, pp. 111-116, 122.

3 Leveredge, A. D., More and Better Wire From Each Diamond Die: Wire and Wire Products, vol. 31, No. 8, August 1956, pp. 903-904.

²¹ Cumming, J. D., Diamond Drill Handbook: 2d ed., J. K. Smit & Sons of Canada, Ltd., Toronto,

²¹ Cumming, J. D., Diamond Drill Handbook: 2d ed., J. K. Smit & Sons of Canada, Ltd., Toronto, Ontario, 655 pp.
22 Read, V., Exploration: Eng. and Min. Jour., vol. 157, No. 6, June 1956, pp. 19, 38.
23 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 2, February 1956, pp. 23-28; No. 3, March 1956, p. 24; No. 4, April 1956, p. 25.
Mine and Quarry Engineering (London), Royal Visit: Vol. 22, No. 11, November 1956, p. 460.
Mining Journal (London), Metallurgical Processes in Use at Mines of the Belgian Congo; Recovery of Diamonds: Vol. 246, No. 6237, Apr. 27, 1956, pp. 514-515; Casts to Extend Diamond-Mining Operations: Vol. 247, No. 6320, Oct. 5, 1956, p. 460.
Mining Magazine (London), Newsletters; Transvaal: Vol. 94, No. 1, January 1956, pp. 36-40.
Mining World, South-West Africa: Vol. 18, No. 3, March 1956, p. 78; Union of South Africa and South-West Africa: Vol. 18, No. 4, April 1956, p. 67; French Equatorial Africa: Vol. 18, No. 8, July 1956, p. 84; South-West Africa: Vol. 18, No. 13, December 1956, p. 74.
Mining World and Engineering Record (London), Consolidated African Selection Trust, Ltd.: Vol. 171, No. 4471, Dec. 8, 1956, p. 316.
Rocks and Minerals, South Africa: Vol. 31, No. 7-8, July-August 1956, pp. 365-366.
South African Mining and Engineering Journal (Johannesburg), Consolidated African Selection Trust: Vol. 67, pt. II, No. 3329, Nov. 30, 1956; p. 926; S. W. African Diamond Concession: Vol. 67, pt. II, No. 3329, Nov. 30, 1956; p. 926; S. W. African Diamond Concession: Vol. 67, pt. II, No. 3329, Nov. 23, 1956, pp. 951.
Vicker, Ray, Diamond Boom: Wall Street Jour., vol. 148, No. 90, Nov. 6, 1956, pp. 379; Newest Diamond Mine: Vol. 67, pt. II, No. 3320, Dec. 7, 1956, pp. 951.
Vicker, Ray, Diamond Boom: Wall Street Jour., vol. 148, No. 90, Nov. 6, 1956, pp. 11, 14.
28 South African Mining and Engineering Journal (Johannesburg), Chosh, pt. 379; Newest Diamond Mine: Vol. 67, pt. II, No. 3328, Nov. 23, 1956, pp. 385, 856, 863, 865.
Mining Journal (London), Use of the Centrifugal Concentrating Pan in Alluv

A method for calculating the most efficient ratio for diamond-tobond ratio in diamond-grinding wheels was devised. 30

Precision equipment has been designed to shape the diamond in a tool in a fraction of the time previously required, when the process

depended upon much handwork and frequent inspection.31

The manufacture and new uses of diamond tools and grinding wheels were described in the technical press.32 The advantages gained by the use of diamond tools and grinding wheels over other methods were explained during a series of lectures given at the Diamond Symposium, sponsored by the American Society of Tool Engineers in Chicago during March 1956.33

The pilot plant of the Carboloy Department of General Electric Co. manufactured synthetic diamonds. A domestic source of industrial diamond would relieve the United States strategic dependence

on supplies from overseas.

The original man-made diamond and some 500 carats of similar material were presented to the Smithsonian Institution as a permanent exhibit by the General Electric Co.34

Because of the rising price of industrial diamond and the difficulty of obtaining types necessary for certain grinding operations, the use of substitute grinding methods was given increased consideration.³⁵ Reports from England indicated that a new product, "diard,"

claimed to be the equal of industrial diamond, could be produced at

a competitive price.36

World Review.—A comprehensive review of the world diamond industry in 1955 was published during 1956,37 and an English translation of the 1954 review, by the same author, was published by a firm of diamond-tool manufacturers.38

²⁰ Lindblad, F. W., Determining Diamond Concentration in Diamond Wheel: Grinding & Finishing, vol. 2, No. 2, June 1956, p. 51.

21 Mining and Industrial Magazine of South Africa (Johannesburg), Students Learn Diamond Shaping at Rand Courses: Vol. 46, No. 2, February 1956, pp. 69-70.

22 Sinclar, E. L., Are You Using the Most Efficient Diamond Wheels?: Grits and Grinds, vol. 46, No. 2, February 1956, pp. 3-10.

Weavind, R. G., Simplified Manufacture of Diamond Tools: Optima (Johannesburg), vol. 6, No. 1.

March 1956, pp. 22-25.

Grodzinski, P., Automation and Diamond Tools: Ind. Diamond Rev. (London), vol. 16, No. 184, March 1956, pp. 45-46.

^{1956,} pp. 45-46.

^{500,} pp. *10-40. Mining Journal (London), New Uses for Diamonds: Vol. 247, No. 6326, Nov. 16, 1956, p. 590. 33 American Machinist, Diamond Tools by the \$Million: Vol. 100, No. 8, Apr. 9, 1956, pp. 181-182. 34 Mining Engineering, Diamonds: Vol. 8, No. 5, May 1956, p. 482. American Metal Market, Diamonds Now Being Produced by Carboloy: Vol. 63, No. 85, May 4, 1956,

American Metal Market, Diamonds Now Being Produced by Carbondy: Vol. 68, No. 88, May 4, 1986, pp. 1, 8.

Mining Journal (London), Diamonds: Vol. 246, No. 6299, May 11, 1956, p. 584.

South African Mining and Engineering Journal (Johannesburg), Synthetic Diamonds: Vol. 67, pt. I, No. 3300, May 11, 1956, p. 685, Synthetic Diamonds Now Produced in Limited Quantities: Vol. 67, pt. II, No. 3313, Aug. 10, 1597, p. 187.

Modern Machine Shop, Offhand Tool-Sharpening Machine: Vol. 28, No. 10, March 1956, pp. 294, 296,

Cass, W. G., Diamond Substitutes in the Soviet Union: Tooling, vol. 10, No. 4, April 1956, pp. 39-40.
Tooling and Production, Tool Sharpening Improved by Method X Process: Vol. 21, No. 11, February

Tooling and Production, Tool Sharpening improved by Method & Process: Vol. 21, No. 11, February 1956, pp. 176-177.

Machinery (New York), Save Cost of Diamonds: Vol. 62, No. 7, March 1956, p. 269.
Tooling, Electric Discharge Machining: Vol. 10, No. 5, May 1956, p. 21.
Weber, I., Electrolytic Grinding of Hard Metals and Carbides: U. S. Govt. Res. Rept., vol. 26, No. 2, Aug. 17, 1956, p. 66.
Reichardt, H., Grinding Single Point Carbide Tools: Grinding & Finishing, vol. 2, No. 6, October 1956,

pp. 34-39.

**Chemical Engineering and Mining Review (London), Substitute Diamonds: Vol. 48, No. 12, Sept. 10,

[,] A., L'Industrie du diamant en 1955: Brussels, Belgium, 1956, 125 pp. , A. [The Diamond Industry in 1954] J. K. Smit & Sons, Murray Hill, N. J., 1956, 69 pp. (trans. 38 Moyar, A rom French).

ARTIFICIAL ABRASIVES

Production of silicon carbide in the United States and Canada increased 28 percent in tonnage and 35 percent in value over 1955. Aluminum oxide production changed little in tonnage or value. Shipments of metallic abrasives manufactured in the United States declined 11 percent in tonnage but increased slightly in value over 1955.

The aluminum oxide production included 24,455 short tons of "white high-purity" material, valued at \$3,862,482. About 46 percent of the silicon carbide and 5 percent of the aluminum oxide were used for nonabrasive purposes. The ratio of production to annual plant capacity for silicon carbide was 81 percent in 1956, compared with 63 percent in 1955; for aluminum oxide, 69 percent in 1956, the same as in 1955; and for metallic abrasives, 53 percent in 1956 and 60 percent in 1955.

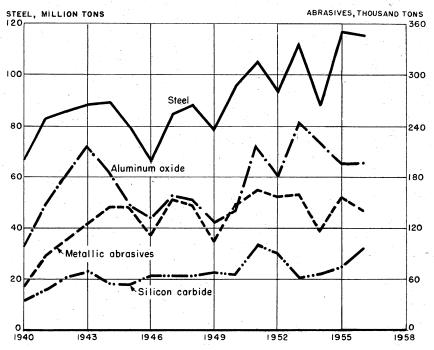


Figure 3.—Relationship between ingot-steel and artificial abrasive production, 1940-56.

Sales of abrasive grinding wheels were 9 percent greater in value than in 1955. The quantity of coated abrasive sold in 1956 decreased 5 percent, the value increased 1 percent.

Much broader utilization of grinding wheels and coated abrasives in the industry of the United States and foreign countries was noted by trade press and scientific journals.³⁹ Their increasing use was

³⁸ Steel, Abrasive Wheel Sales Gain: Vol. 139, No. 26, Dec. 24, 1956, p. 37.
Prikhod'ko, N., Recent Russian Advances in Production of Abrasives: Grinding & Finishing, vol. 2, No. 8, December 1956, pp. 21-23.

TABLE 13.—Crude artificial abrasives produced in the United States and Canada, 1947-51 (average) and 1952-56

Year	Silicon carbide ¹					etallic asives ²	Total	
	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value
1947-51(average) 1952 1953 1954 1955 1956	71, 960 91, 531 62, 391 66, 972 74, 805 95, 778	\$7, 320, 558 12, 040, 946 8, 190, 431 8, 787, 445 11, 027, 693 14, 937, 322	159, 496 180, 375 244, 136 219, 308 195, 822 195, 228	\$12, 468, 093 17, 813, 760 23, 807, 806 22, 420, 833 22, 141, 686 22, 553, 844	143, 131 157, 034 160, 500 118, 096 157, 616 140, 455	\$13, 312, 012 17, 582, 275 18, 038, 046 13, 271, 832 17, 911, 738 18, 201, 289	374, 587 428, 940 466, 937 404, 376 428, 243 431, 461	\$33, 100, 663 47, 436, 981 50, 036, 283 44, 480, 110 51, 081, 117 55, 692, 458

Bureau of Mines not at liberty to publish data for United States separately. Figures include material used for refractories and other nonabrasive purposes.
 Shipments from United States plants only.

TABLE 14.—Production, shipments, and stocks of metallic abrasives in the United States, 1955-56, by products

Product		Manufactured during year		or used ng year	Stock D	Average annual capacity	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons
1955							
Chilled iron shot and grit Annealed iron shot and grit. Steel shot	95, 588 30, 195 31, 251	\$8, 242, 831 3, 487, 544 5, 974, 305	96, 423 30, 114 30, 018	\$8, 267, 421 3, 664, 210 5, 697, 257	1 9, 398 11, 593 13, 119	2 \$868, 579 2 189, 086 2 499, 911	168, 534 52, 544 40, 194
Other types (including cut wire shot)	884	242, 783	1,061	282, 850	1 442	² 11 4 , 135	3, 010
Total	157, 918	17, 947, 463	157, 616	17, 911, 738	1 14, 552	2 1, 671, 711	264, 282
1956							
Chilled iron shot and gritAnnealed iron shot and grit_Steel shotOther types (including cut	72, 048 36, 501 28, 577	6, 943, 444 3, 911, 724 5, 338, 287	72, 410 35, 917 27, 553	7, 171, 128 4, 514, 354 5, 484, 056	9, 036 2, 177 4, 143	854, 343 267, 892 771, 014	142, 134 69, 484 45, 025
wire shot)	5, 438	1, 197, 124	4, 575	1, 031, 751	1, 305	342, 752	9, 875
Total	142, 564	17, 390, 579	140, 455	18, 201, 289	16, 661	2, 236, 001	266, 518

¹ Stock adjustment.
2 Revised figure.

TABLE 15.—Stocks of crude artificial abrasives and capacity of manufacturing plants, as reported by producers in the United States and Canada, 1947-51 (average) and 1952-56, in short tons

	Silicon	carbide	Alumin	ım oxide	Metallic abrasives ¹		
Year	Stocks, Dec. 31	A verage annual capacity	Stocks, Dec. 31	Average annual capacity	Stocks, Dec. 31	A verage annual capacity	
1947-51 (average)	10, 285 25, 347 18, 587 27, 852 10, 966 10, 314	83, 572 111, 200 110, 900 120, 000 118, 820 118, 900	34, 222 60, 354 25, 165 29, 924 39, 895 38, 551	238, 314 255, 100 273, 200 280, 200 282, 200 283, 500	9, 434 9, 801 11, 913 14, 414 2 14, 552 16, 661	234, 257 226, 427 255, 624 254, 950 264, 282 266, 518	

¹ Figures pertain to United States plants only.
² Stock adjustment.

attributed to fast and accurate cutting machinery and finishing of metal and plastic components by abrasives of all types.40

New methods of making abrasive grinding wheels followed the

mass-production techniques of other industries.41

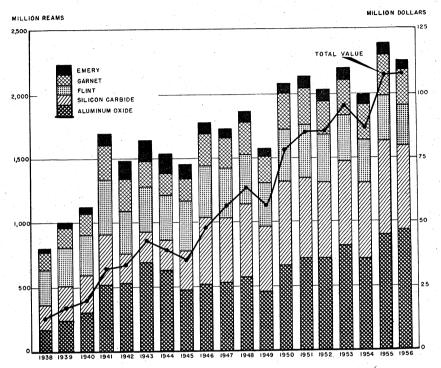


FIGURE 4.—Coated-abrasive industry in the United States, 1938-56.

In a paper presented at the 110th meeting of the Electrochemical Society, beginning September 30, 1956, the properties of silicon carbide were described, and new uses were forecast.42

New types of silicon carbide and new treatment methods resulted in a marked improvement in many of its uses as a refractory material. 43

Silicon-carbide-production facilities were expanded in Canada. The abrasive industries of Australia and West Germany were

described.44

Performance data on ceramic cutting tools machining various types of material indicate that high speeds are necessary to obtain the best results. Many advantages and limitations on their use are

⁶⁰ DeWitt, E. J., The Increased Use of Abrasive Cutting: Machinery (London), vol. 88, No. 2251, Jan. 6

⁴⁰ De Witt, E. J., The Increased Use of Abrasive Cutting: Machinery (London), vol. 88, No. 221, 281. 5 1956, pp. 22-23.
4 Canadian Machinery, Streamline Grinding-Wheel Making: Vol. 67, No. 11, November 1956, pp. 120-121.
4 Butler, G. M. (Carborundum Co.), Silicon Carbide Products; Present and Future: Electrochem. Soc. Jour., vol. 103, No. 9, September 1956, p. 208 (abs.).
4 Taylor, K. M., Improved Silicon Carbide for High-Temperature Parts: Materials and Methods, vol.
44, No. 4, October 1956, pp. 92-95.
Alliegro, R. A., Coffin, L. B., and Tinklepaugh, J. R., Pressure Sintered Silicon Carbide: Jour. Am. Ceram. Soc., vol. 39, No. 11, November 1956, pp. 386-389.
4 Chemical Week, Silicon Carbide: Vol. 79, No. 23, Dec. 8, 1956, p. 24.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 5, May 1956, p. 22; vol. 43, No. 5, November 1956, pp. 295-23.

pp. 25-33.

claimed; but, for certain purposes, they seem to have demonstrated their value. Aluminum oxide was the abrasive preferred for their manufacture.45

New developments were reported in manufacturing aluminum oxide.46

MISCELLANEOUS MINERAL-ABRASIVE MATERIALS

In addition to the natural and manufactured abrasive materials for which data are included herein, many other minerals were used for abrasive purposes. A number of oxides, including tin oxides, magnesia, and iron oxides (rouge and crocus), were employed as polishing agents. Certain carbides, such as boron carbide and tungsten carbide, were used for their abrasive properties, especially when extreme hardness was demanded. Other substances with abrasive applications included finely ground and calcined clays, lime, talc, ground feldspar, river silt, slate flour, and whiting.

Cerium Oxide.—The optical and glass industries reported increased

uses for cerium oxide for lens and other types of polishing.47

Regulations were issued on June 29, 1956, amending an act of 1951, which limited harvest of the walrus in Alaska. Walrus hide was used by the abrasive industry for buffing wheels. Exports of approximately 200 mature walrus hides may be expected annually. 48

FOREIGN TRADE 49

Imports.—Imports of abrasive materials during 1956 rose 11 per-Industrial diamond continued to be cent in value over 1955. dollarwise, the most important abrasive material imported. quantity exceeded 16 million carats; value was over \$74 million. Imports of crude silicon carbide and aluminum oxide gained slightly over the preceding year. Coated-abrasive papers and cloths, imported at nearly the same rate as in recent years, were equivalent in quantity to 1 percent of the domestic production. Imports of bonded abrasive products were negligible. Corundum and emery imports increased 33 and 133 percent, respectively, in quantity over 1955.

⁴⁶ American Machinist, How Good Are Ceramic Tools?: Vol. 100, No. 26, Dec. 3, 1956, pp. 113-136. de Marco, L. M., Ceramics Challenge Machines: Steel, vol. 138, No. 20, May 14, 1956, p. 130. Engineer, Ceramic Tools: Vol. 201, No. 5239, June 22, 1956, p. 732. Engineering, Ceramics for Cutting Steel: Vol. 181, No. 4702, Apr. 20, 1956, p. 228. Egan, E. J., Jr., "Throwaway" Ceramic Turns New Profits From Old Lathes: Iron Age, vol. 177, No. 18, May 3, 1956, pp. 91-94. Machinery (New York), Diamonite Ceramic Cutting Tools: Vol. 62, No. 6, February 1956, p. 226. Steel, Ceramic Tool Outcuts Carbide: Vol. 139, No. 5, Jan. 30, 1956, p. 89. Tangerman, E. T., What We Should Know About Ceramic Tools: Am. Machinist, vol. 103, No. 6, Mar. 12, 1956, pp. 154-159. Tooling, Ceramic Tools: Vol. 10, No. 12, December 1956, pp. 50-52. Wheildon, W. M., Notes on the Development and Performance of Ceramic Tools: Bull. Am. Ceram. Soc., vol. 35, No. 4, April 1956, p. 43. 48 Blast Furnace and Steel Plants, 44 Alundum Abrasive: Vol. 44, No. 10, October 1956, p. 1130. 47 Glass Industry, The Glass Division at the Annual C. C. S. Convention: Vol. 37, No. 3, March 1956, pp. 146, 153, 158, 160, 164. 48 Department of the Interior Information Service, Interior Dept. Issues Regulations for Walrus Hunting. 49 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 16.—Abrasive materials (natural and artificial) imported for consumption in the United States, 1954–56, by kinds

[Bureau of the Census]

		·							
Kind	1	954	1	955	1	956			
	Quantity	Value	Quantity	Value	Quantity	Value			
Burrstones: Bound up into mill-									
stonesshort tons	(1)	\$1,066			(1)	\$480			
Hones, oilstones, and whetstones number	22, 740	² 22, 599	58, 903	² \$31, 523	98, 689	2 39, 508			
Corundum (including emery): Corundum oreshort tons	1, 108	74, 072	1, 399	96, 762	1, 857 1, 960	83, 141 33, 775			
Emery oredo Grains, ground, pulverized, or	560	12, 625	840	10, 686	1, 900	33, 770			
refined short tons Paper and cloth coated with	243	52, 643	566	118, 163	480	107, 890			
emery or corundum_reams	38, 024	² 358, 337	3 27, 012	319, 565	32, 317	² 331, 425			
Wheels, files, and other manu- factures of emery_short tons_	10	² 18, 122	34	2 61, 467	48	² 75, 030			
Wheels of corundum or silicon carbideshort tons_	4	2 17, 318	4	2 10, 640	10	² 22, 312			
Garnet in grains, or ground, pul- verized, etcshort tons_					2	280			
Tripoli, rottenstone, and diatoma- ceous earthshort tons			28	4 1, 029					
Diamond:	0.000	9 101 700	0.771		0.054	² 332, 915			
Bort, manufacturedcarats Crushing bort (including all	2, 389	² 181, 766	2, 771	205, 139	9, 054	2 332, 912			
types of bort suitable for	0 021 207	20, 711, 297	46,502,397	14, 630, 408	8, 805, 504	20, 843, 228			
crushing)carats_ Other industrial diamond (in-	0, 021, 201	20, 111, 201	0,002,001	11, 000, 100	0,000,001	20,010,220			
cluding glaziers' and en- gravers' diamond unset and									
miners')carats	4, 782, 767	27, 276, 374	48,449,010	451, 016, 224	7, 344, 825	2 52, 351, 559			
Carbonado and ballasdo	3, 370	30, 533	4 1, 175	4 25, 602	3, 648	69, 474			
Dust and powderdo	181, 418	502, 896	152, 732	435, 120	238, 750	697, 734			
Flint, flints, and flintstones, un- ground short tons	5, 021	116, 321	7, 809	2 169, 612	9, 492	² 243, 166			
Grit, shot, and sand, of iron and steel short tons	492	² 156, 085	886	181,658	836	222, 718			
Artificial abrasives: Crude, not separately provided		,							
for:						-			
Carbides of silicon (carbo-									
rundum, crystalon, car-						-			
bolon, and electrolon) short tons	38, 935	4, 679, 202	67, 691	7, 914, 696	72,659	8, 906, 901			
Aluminous abrasives, alun-	00, 200	4, 010, 202	01,001	1, 011, 000	12,000	0,000,00			
dum, aloxite, exolon, and									
lioniteshort tons_	184, 177	17, 603, 570	151, 720	14, 201, 390	156, 982	15, 044, 90			
Otherdo Manufactures:	1,002	85, 081	1, 390	109, 288	2, 198	205, 000			
Grains, ground, pulverized, re-				l	1				
fined, or manufactured	ļ		1		i				
short tons	521	115, 749	1, 246	250, 168	1, 370	299, 91			
Wheels, files, and other manu-	1			1	1				
factures, not separately pro- vided forshort tons	5.	6, 964	3	5, 849	17	29, 370			
· radd idi	ļ				- -				
Total		272, 022, 620		2489,794,989		2 99, 940, 729			

Less than 1 ton.
 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with other years.
 Adjusted by Bureau of Mines; Bureau of the Census shows 271,012 reams.
 Revised figure.

Exports.—Exports of abrasive materials from the United States in 1956 rose to a record value of nearly \$27 million. Abrasive papers and cloths, including both natural and artificial abrasives, were 25 percent of the total value; all types of abrasive grain combined, 23 percent; all types of natural and bonded abrasives combined, 22 percent; natural abrasives not elsewhere classified, 19 percent; and manufactured diamond products, 6 percent.

Table 18, showing the reexports of abrasive materials, is included for the first time. It comprises the exported abrasive materials that have not changed their form since importation. Various kinds of industrial diamond constitute virtually all of the reported value.

these reexports, Canada received some 80 percent.

TABLE 17.—Abrasive materials exported from the United States, 1954-56 [Bureau of the Census]

Kind	19	054	19)55	19	56
	Quantity	Value	Quantity	Value	Quantity	Value
Natural abrasives:						
Diamond grinding wheels, sticks,	1					
hones and lapscarats	129, 868	\$553, 643	180, 405	\$850, 225	187, 438	\$948,007
Diamond dust and powder						
carats	90, 665	237, 657	215, 787	515, 555	210, 841	616, 038
Diamond suitable only for in-						
dustrial usecarats_	9,758	62, 845	1, 168	16, 320	11, 725	97, 937
Grindstones and pulpstones short tons	357	40 500	450	05 105		04.000
Emery powder, grains, and grits	307	46, 560	452	85, 167	430	64, 303
(natural)pounds_	2, 599, 462	169, 749	2, 800, 285	179, 810	3, 869, 277	248, 403
Corundum (natural)do	301, 878					
Whetstones, sticks, etc., (nat-	001,010	10,101	010,010	11, 10	100,001	10, 303
ural)pounds_	130, 765	70, 764	211, 134	95, 161	125, 580	95, 987
Natural abrasives 1 not elsewhere				,		1
classifiedpounds_	104, 688, 654	3, 743, 691	131, 419, 734	4, 699, 379	142, 196, 239	5, 124, 926
Manufactured abrasives:						
Aluminum oxide, fused, crude	00 001 000					
and grains pounds	22, 631, 036	2, 776, 940	26, 390, 434	3, 221, 190	24, 815, 955	3, 292, 934
Silicon carbide, fused, crude and grainspounds	13, 185, 745	2, 188, 640	14, 141, 545	0.000.979	15 600 400	0 727 000
Alumina, unfuseddo	387, 180					
Manufactured abrasives, not	301, 100	55, 501	250, 600	20, 310	07, 403	7, 641
elsewhere classifiedpounds_	34, 404	14, 356	113, 247	37, 412	158, 681	45, 061
Abrasive pastes, compounds and	,	,	,	0., 112	100, 001	10,001
cakepounds	463, 267	136, 331	744, 911	170, 608	518, 767	159, 551
Grinding wheels, except dia-	i i	1		, i	l '	
mond wheelspounds	4, 288, 194	3, 4 36, 676	4, 908, 799	4, 018, 404	4, 926, 902	4, 262, 429
Pulpstones of manufactured						
abrasivespounds_	2, 437, 279	557, 148	2, 670, 963	617, 831	3, 374, 244	860, 078
Whetstones, etc., of manufac- tured abrasivespounds_	405, 861	458, 431	410.070	F20 141	500 001	714 000
Abrasive paper and cloth (nat-	400, 801	408, 401	419, 979	539, 141	560, 661	714, 606
ural abrasives)reams_	72, 607	1, 160, 692	69, 222	1, 185, 061	55 914	1, 068, 057
Abrasive paper and cloth (arti-	12,001	1, 100, 002	00, 222	1, 100, 001	00,014	1,000,001
ficial abrasives)reams	133, 225	4, 478, 249	151, 706	5, 474, 299	158, 441	5, 567, 078
Metallic abrasives (except steel				0, 1, 1, 200	100, 111	, , , , , , , ,
wool)pounds	8, 202, 157	574, 579	11, 413, 127	812, 390	11, 547, 717	860, 559
m		l 			<u> </u>	
Total		² 20, 756, 553		² 24, 876, 193		26, 845, 480
	1	i	1	l	l	1

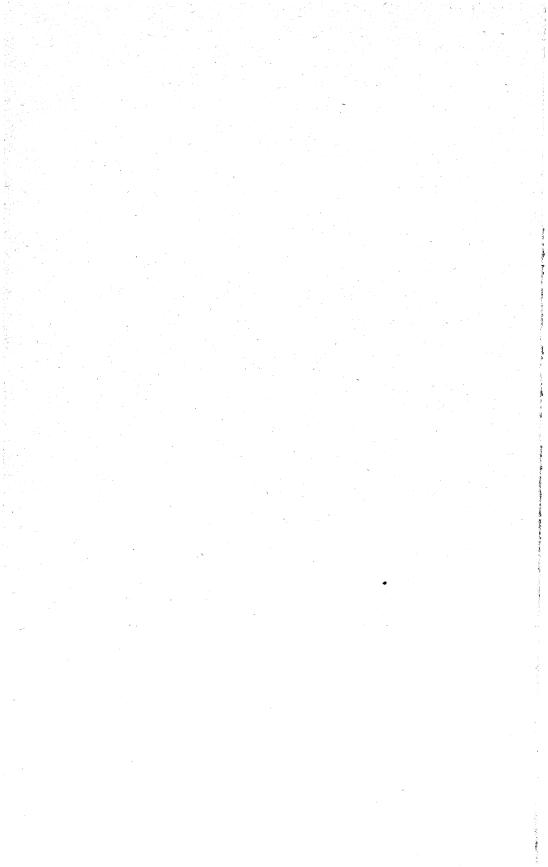

Includes: Flint, garnet, tripoli, rottenstone, natural rouge, polishing rouge, pumice, diatomaceous earth, infusorial earth, and kieselguhr.
 Revised to include diamond suitable only for industrial use.

TABLE 18.—Abrasive materials reexported from the United States, 1954-56, by kinds

[Bureau of the Census]

Kind	19	054	19)55	19	56
	Quantity	Value	Quantity	Value	Quantity	Value
Natural abrasives:						
Diamond grinding wheels, sticks,		40.444		410 105		
hones, and lapscarats_	284	\$3, 116	711			\$152, 991
Diamond dust and powderdo Diamond suitable only for industrial	20, 733	58, 556	29, 933	70, 200	55, 157	ф102, 991
1159 carats	1, 182, 858	6, 187, 478	1, 179, 752	6, 347, 745	1, 198, 589	7, 586, 414
Natural abrasives 1 not elsewhere	1, 202, 000		1	, ,	, , , , , , , , , , , , , , , , , , , ,	
classifiedpounds	55, 900	783	65, 660	1,400		
Manufactured abrasives:			1.5			
Aluminum oxide, fused, crude and					10, 197	13, 000
grainspounds_ Silicon carbide, fused, crude and					10, 151	15,000
grainspounds	135, 220	12, 959	27, 215	3, 257		
Alumina, unfuseddo	935	1,403				
Grinding wheels, except diamond						0.50
wheelspounds			6, 025	6,002	1, 200	856
Abrasive paper and cloth (natural			30	1, 158		
abrasives)reams Abrasive paper and cloth (artificial			30	1, 100		
abrasive paper and cloth (artificial		l	53	1,899		
Metallic abrasives (except steel wool)				,		
pounds					23, 243	2, 189
Total		6, 264, 295		6, 444, 156		7, 755, 450

i Includes: Flint, garnet, tripoli, rottenstone, natural rouge, polishing rouge, pumice, diatomaceous earth, infusorial earth, and kieselguhr.

Aluminum

By R. August Heindl, Arden C. Sullivan, and Mary E. Trought

ORLD PRODUCTION of primary aluminum reached an alltime high in 1956, and aluminum production in the United States was a record 1.7 million tons, an increase of 7 percent or 113,000 tons over the previous year. Of possibly greater significance was reversal of the supply-demand picture during 1956. By the end of the year two producers of primary aluminum had taken preliminary steps toward selling metal to the Government under contracts signed during the aluminum-expansion goal. Stock increases at the producing plants were another indication of the ample supply of aluminum. At the end of 1955 stocks were 15,000 tons, but by end of 1956 they had increased to 102,000 tons.

Despite this apparent surplus of aluminum, the three major and two prospective producers had large new production facilities under construction. These facilities were expected to increase the capacity for producing primary aluminum (1.78 million tons at the end of

1956) to 2.5 million tons by the end of 1958.

A study prepared by the Aluminum and Magnesium Division, Business and Defense Services Administration of the United States Department of Commerce, which described the primary aluminum industry and the fabricating facilities from 1900 through 1953, was published.4 This book described the world aluminum industry, with major emphasis on the United States. It included chapters on history, structure, economic characteristics, raw-material requirements, supply, and consumption.

TABLE 1.—Salient statistics of the aluminum industry, in the United States, 1947-51 (average) and 1952-56

						·
	1947–51 (a verage)	1952	1953	1954	1955	1956
Primary production Short tons Value	670, 834 \$214, 747, 000 16. 9 269, 730 147, 012 39, 087 1, 536, 000	\$344, 320, 000 19. 4 304, 522 150, 738 10, 614	\$496, 315, 000 20. 9 368, 566 359, 481 15, 355	\$592, 837, 000 21. 8 1 292, 041 243, 750 50, 096	\$684, 038, 000 23. 7 1 335, 994 2 239, 475 33, 834	\$805, 782, 000 26. 0 1 339, 768 264, 975 67, 977

¹ Not strictly comparable with previous year's data. The 1954-56 data are recoverable aluminum content; previous years' data are recoverable aluminum-alloy content.

² Revised figure.

² Statistical clerk.

159

¹ Assistant chief, Branch of Light Metals.

³ Statistical assistant Business and Defense Services Administration, Materials Survey—Aluminum: Washington, D. C., 1956, 318 pp.

GOVERNMENT REGULATIONS

Late in 1955 the Director of Defense Mobilization announced that no calls were to be issued for aluminum by the Government for the strategic stockpile during the first half of 1956. In February 1956 it was announced that the call for 25,000 tons, issued in September 1955 for delivery to the Government by April 30, 1956, was to be reduced to 11,000 tons. Subsequently the delivery date was changed to May 31, 1956. The Government stated in May 1956 that no deliveries were to be made in the latter half of the year, and in November it was further stated that no calls were to be made in the first half of 1957. The deferral was possible, according to the Director of Defense Mobilization, because the minimum stockpile objective for aluminum had been met, and purchases toward long-term objectives

are not made in times of strong industrial demand.

During December Kaiser Aluminum & Chemical Corp. invoked the "put right" provision of its Government supply contract. Under the contracts, through which the Government encouraged expansion of the aluminum industry during the Korean War, the companies have the right to sell to the Government metal that nonintegrated consumers do not purchase. Most of the rights, will expire during 1958. The quantity that Kaiser asked the Government to purchase—10,000 tons—was so small that it may have been only a token quantity to determine the procedures to be followed if larger deliveries should become necessary. However, this action, and the increase in producers' stocks, coupled with Reynolds Metals Co.'s advertising that it had metal for sale (a preliminary step before invoking the "put" clause), indicated that the supply of primary aluminum at the end of the year was becoming ample.

Under the Defense Materials system that had been in effect since July 1953, that portion of the aluminum supply available to the United States above the quantity set aside for defense and atomic energy requirements and the national stockpile was free for civilian consumption without any Government restriction. The total quantity of metal set aside was made up of an "A" allotment for specifically designed military equipment and a "B" allotment for aluminum required by manufacturers of civilian-type items incorporated in military end items. During 1956 the total of the two allotments, by quarters, as announced by Business and Defense Services Adminis-

tration were:

		Tons
First quarter 72, 5	500 Third quarter 71,	000
Second quarter 75, 0	000 Fourth quarter 73,	000

DOMESTIC PRODUCTION

PRIMARY

Primary-aluminum production in the United States set a new record for the fifth consecutive year. The output of nearly 1.7 million tons was 113,000 tons or 7 percent more than in 1955. Since 1951 production has doubled.

During the year water supplies for generating hydropower were mostly good. Small production losses occurred early in the year in the Tennessee Valley area, and low water in December in the Bonneville area also curtailed production. Most of the Bonneville hydropower loss was supplanted by steam-generated power, but at the end of the year there were indications that the producers in the Pacific Northwest would have to curtail operations.

TABLE 2.—Production of primary aluminum in the United States, 1952-56, by quarters, in short tons

Quarter	1952	1953	1954	1955	1956
First Second Third Fourth	226, 377 235, 158 240, 425 235, 370	287, 004 311, 687 329, 163 324, 159	349, 069 366, 330 371, 789 373, 377	374, 711 385, 156 396, 826 409, 028	419, 052 441, 252 376, 346 442, 304
Total	937, 330	1, 252, 013	1, 460, 565	1, 565, 721	1, 678, 954

¹ Quarterly production adjusted to final annual totals.

More serious production losses occurred in August, when strikes were called in 8 plants operated by the Aluminum Company of America and Reynolds Metals Co., representing about 47 percent of the productive capacity in the United States. Production of primary metal in August—92,000 tons—represented the lowest monthly amount since January 1953. On August 9 Alcoa signed a 3-year pact with the United Steel Workers, involving a 46-cent-per-hour package, including a 24½ cents direct wage increase over the 3-year period. Reynolds reached a similar agreement August 26. Shutdown in 5 plants of these companies, representing another 25 percent of primary capacity, was averted by settlement with the Aluminum Workers International Union. Labor contracts of the 3 Kaiser Aluminum & Chemical Corp. reduction plants expired August 31; but no strike occurred, as a new labor contract was established similar to those of the other 2 companies. It was estimated that the strikes resulted in loss of nearly 70,000 tons of aluminum production.

During 1956 the annual productive capacity for primary aluminum in the United States increased 166,300 short tons from 1,609,200 tons at the beginning of the year to 1,775,500 at its end. In addition, new facilities were under construction during 1956 to increase the capacity

an additional 777,000 tons.

The annual production capacity of domestic aluminum industry in 1955 and 1956 and expansions under way at the end of 1956 are shown in table 3. Expansion of alumina-production facilities to meet the requirements of the primary-aluminum industry are discussed in the

bauxite chapter of this volume.

The Aluminum Company of America during 1956 brought two additional potlines into production at its Rockdale Tex., plant. This addition increased the capacity of the plant 50,000 annual tons to 150,000 tons. Other additions increased Alcoa's annual capacity at Point Comfort, Tex., from 95,000 tons to 120,000. By providing more pots at the Wenatchee and Vancouver, Wash., works the combined annual capacity was increased 11,000 tons.

TABLE 3.—Primary-aluminum production capacity in the United States
(Short tons per year)

Chief for	s per year)		44 1 1	
Company and plant	End of 1955	End of 1956	Being built or planned in 1956	Total ¹
Aluminum Company of America:				
Alcoa, Tenn	157, 100	157, 100		157, 100
Badin, N. C.	47, 150	47, 150		47, 150
Massena, N. Y	112 250	112, 250		112, 250
Point Comfort, Tex	95, 000	120, 000	20,000	140, 000
Rockdale 'l'ex	1 100 000	150, 000	20,000	150, 000
Vancouver, Wash	95, 000	97, 500		97, 500
Wenatchee, Wash	100,000	108, 500		108, 500
Evansville, Ind	100,000	100,000	150, 000	150, 000
			130,000	
Total	706, 500	792, 500	170,000	962, 500
Revnolds Metals Co.:				
Arkadelphia, Ark	55,000	55, 000		55, 000
Jones Mills, Ark	97,000	109, 000		109, 000
Listerhill, Ala. (I)	50,000	77, 500		77, 500
Longview, Wash	50,000	60, 500		60, 500
San Patricio, Tex	80,000	95,000		95, 000
Troutdale, Oreg	82, 500	91, 500		91, 500
Listerhill, Ala. (II)			112, 500	112, 500
Total	414, 500	488, 500	112, 500	601,000
Kaiser Aluminum & Chemical Corp.:				
Chalmette, La Mead, Wash	_ 220,000	220, 000	27, 500	247, 500
Mead, wash	175,000	176, 000		176, 000
Tacoma, Wash	_ 33, 200	38, 500		38, 500
Ravenswood, W. Va			220, 000	220, 000
Total	428, 200	434, 500	247, 500	682, 000
Anaconda Aluminum Co.: Columbia Falls, Mont	60,000	60,000		60, 000
Harvey Aluminum Co.: The Dalles, Oreg	- 50,000	00,000	67, 000	67, 000
Ormet Corp.: Clarington, Ohio	-		180,000	180, 000
• • • • • • • • • • • • • • • • • • • •			100,000	100,000
Grand total	_ 1, 609, 200	1, 775, 500	777, 000	2, 552, 500

¹ Expected to be in production before or during 1958.

In April it was announced that Alcoa planned to construct a new primary plant near Evansville, Ind., on the Ohio River. The plant was to cost approximately \$80 million, and production was to begin in the fall of 1957. Initially power from Southern Indiana Gas & Electric Co. was to be used, but by mid-1958 Alcoa was to have its own power supply. Coal purchased under contract was to be used in the new powerplant, to be operated for Alcoa by the power company. Dock facilities were to be constructed primarily to handle river shipments of alumina from Mobile, Ala. This new plant would be Alcoa's eighth aluminum-reduction plant and the company's second plant to depend upon solid fuel for its power supply. Alcoa's reduction plant at Rockdale, Tex., utilizing power generated by steam obtained from burning lignite, was the first to utilize solid fuel exclusively.

Alcoa also announced in August that construction was to start on a seventh potline at Point Comfort, Tex., which would increase the capacity of that plant 20,000 annual tons. Electric power for the expanded operation was to be developed by radial engines driven by natural gas.

Reynolds Metals Co. in 1956 brought into production new facilities at 5 of its 6 reduction plants. Plants expanded, and the size of the

expansion in annual tons was: Jones Mills, Ark., 12,000 tons; Listerhill, Ala., 27,500 tons; Longview, Wash., 10,500 tons; San Patricio,

Tex., 15,000 tons; and Troutdale, Oreg., 9,000 tons.

In January Reynolds announced that work was to start on construction of a new primary-aluminum plant near its present plant at Listerhill, Ala. The new facility, costing between \$75 million and \$80 million and having an annual capacity of 100,000 tons, was to use power supplied by the Tennessee Valley Authority. Initial production was scheduled for the end of 1957. Reynolds also had a contract providing for shipment of an average of 32,000 tons of metal per year over a 10-year period to a new foundry of the Ford Motor Co. that was to be constructed adjacent to the Reynolds plant. Most of the metal was to be shipped molten. Later in the year the capacity of the new plant was revised to 112,500 tons.

Late in the year the New York State Power Authority voted approval of a proposed contract allotting 200,000 kilowatts of firm power from the St. Lawrence Seaway to Reynolds; the contract also required the approval of Governor Harriman. When the contract was approved it was expected that Reynolds would construct a new primary

plant with an annual capacity of 100,000 tons.

In October Reynolds picked up its option on a 4,000-acre tract in Wyoming, with a view to possible construction of an aluminumreduction plant in the area. The 4,000-acre tract covered a large seam of subbituminous coal, which would be satisfactory for power generation.

During 1956, Kaiser Aluminum & Chemical Corp., through the addition of new cells, increased the capacity of its Mead, Wash., plant 1,000 annual tons. Addition of a new potline to its Tacoma, Wash., plant increased capacity by 5,300 tons to 38,500 tons per year.

Kaiser announced that its Chalmette, La., plant was to have its capacity increased 27,500 tons to 247,500 tons, through addition of a ninth potline. Electric power for the new line was to be provided by Chalmette's existing generating facility, which used natural gas, supplemented by purchased power as required.

Construction of the first stage of Kaiser's Ravenswood, W. Va., reduction plant, announced in 1955, was well under way by the end The first potline was to be in operation late in 1957. Three more potlines, which would bring the capacity to 125,000 tons a year, would follow soon. Construction of 3 additional potlines, which would bring the total plant capacity to 220,000 tons, depended upon market conditions.

The 1956 production of the Anaconda Aluminum Co. Columbia Falls, Mont., plant slightly exceeded its rated annual capacity of 60,000 tons. Production in 1955 was less than 15,000 tons, as the first metal was not tapped until late in the year. Anaconda also reported that, upon expiration of its contract for obtaining alumina from Reynolds, the material would be purchased from Kaiser under

a long-term contract.

Olin Revere Metals Corp. was constructing a 180,000-ton-annualcapacity primary-production plant near Clarington, Ohio, on the Ohio River. At the beginning of the year the Olin Mathieson Chemical Corp. had announced plans to construct a 60,000-ton plant. However, when this company joined with Revere Copper & Brass, Inc., to form Olin Revere Metals Corp. the plans were revised upward. Olin was to receive 120,000 tons of the 180,000 tons of production, with the remaining 60,000 tons going to Revere. Capacity production was expected late in 1958, with some production before that time. The new plant was to use coal-generated power, to be supplied by two 225,000-kilowatt generating units owned by Ormet in a new power plant at Cresap, W. Va. A third 225,000-kilowatt unit will be owned by Ohio Power Co. All three units were to be operated by Ohio Power Co., a subsidiary of American Gas & Electric Co.

Harvey Machine Co. in mid-1956, announced that arrangements had been completed for funds to construct its proposed reduction plant at The Dalles, Oreg. The initial annual capacity of the plant was to be 54,000 tons, with first production scheduled for late 1957. This capacity was to be increased 13,000 tons in 1958, and the long-term program called for a second reduction plant of 67,000 tons annual capacity during 1960 to 1963. Harvey also announced that contracts had been signed with two Japanese aluminum companies for the

necessary alumina.

Plans for constructing a primary-aluminum plant in Pennsylvania—a joint effort of St. Joseph Lead Co. and Pittsburgh Consolidation Coal Co.—announced in 1955, were dropped in 1956. It was stated that failure of the company to obtain a rapid tax-amortization allow-

ance was the reason for dropping the plan.

In addition to expansion of primary facilities the three major producers were constructing additional fabricating works. Aloca had under way expansion of its sheet- and plate-rolling facilities at Davenport, Iowa, and Alcoa, Tenn., and at three locations new equipment was being installed for producing foil. A third mill for producing welded tube was added at Alcoa, Tenn. Capacity for producing extrusions was being increased through addition of presses at Cressona, Pa.; Vernon, Calif.; and Lafayette, Ind. A new die-casting plant was to be constructed at Edison, N. J., which would absorb all operations of the existing Garwood, N. J., plant. New and larger die-casting machines were being added at the Chicago works. The sand-

foundry operation at Cleveland, Ohio, was being enlarged. By the end of the year Kaiser had nearly completed constructing a plant at Ravenswood, W. Va., to provide cold-rolling facilities for light-gage sheet and foil. Construction was also well along on addition of a hot-rolling mill and additional cold-rolling equipment at the same plant. At Kaiser's Trentwood, Wash., rolling mill the stretching force of the heavy plate stretcher was increased from 5 million to 10 million pounds, and new plate facilities were installed. ment to provide greater capacity and variety of sizes of roll-form tubing was completed during the year. Kaiser purchased from the General Services Administration (GSA) the forging plant at Erie, Pa., and installed a 750-ton and a 1,500-ton hydraulic forging press to increase capacity. At the time of the purchase it was announced that 8,000-, 5,000-, and 3,000-ton presses were to be installed. At the Newark, Ohio, rod, bar, and wire plant three new wire machines were being placed. Upon completion of the additions in 1957 the plant was to have an annual capacity of 172,000 tons (including billet). Extrusion facilities at the Halethorpe, Md., light-extrusions-press plant were being increased by three 2,750-ton presses and one 3,500ton press. At the heavy-press plant at Halethorpe the second of two 8,000-ton hydraulic extrusion presses, operated under contract for the

Air Force, was completely installed.

Reynolds added plate-stretching equipment having 8,000 tons capacity at its McCook, Ill., sheet plant. A new extrusion plant was being constructed at Richmond, Va. Upon completion of expansions under way at these and other facilities, Reynolds was to have the following approximate fabricating capacity, in annual tons: Sheet and plate, 385,000; foil and foil products, 58,500; extrusions, 56,500; wire, rod, and bar, 30,000; cable, 25,000; powder and paste, 9,000;

and welded tubing, 6,000.

As a result of hearings before Subcommittee 3 on Minerals and Raw Materials to the Select Committee on Small Business, Chairman Sidney R. Yates, in his report, recommended that nonintegrated users of aluminum form a cooperative buying corporation under terms of the Small Business Administration Legislation. Congressman Yates felt that such an organization would permit nonintegrated users to compete more fairly with large users, who can make long-term contracts with primary producers.5 During the year the Aluminum Procurement Corp. was organized by the aluminum-extruding industry to study, with the primary producers, the availability and distribution of primary metal.

In January 1951 an antitrust suit against Alcoa was ended when the court reserved jurisdiction over the case for the next 5 years. 5-year period ended in January 1956, when the United States Department of Justice filed a petition requesting that the case be continued an additional 5 years. At the end of 1956 the court had not reached

a decision.

SECONDARY

Domestic recovery of secondary aluminum from new and old scrap totaled 340,000 short tons in 1956. Recovery from new scrap increased 3 percent to 268,000 tons, and recovery from old scrap decreased 6 percent to 72,000 tons. Secondary aluminum was recovered from the 439,000 tons of aluminum scrap consumed in the United States (337,000 tons of new scrap and 102,000 tons of old scrap) and also from the aluminum contained in copper-, zinc-, and magnesiumbase alloys produced from scrap. Used or discarded items that had been remelted were classified as old scrap; waste generated in fabrication or as rejected products was new scrap. Scrap was imported in both pig and unmelted forms. An estimated 90-percent recovery factor was applied to the scrap imports to compensate for duplication and losses incident to remelting.

Recovery was calculated from reports to the Bureau of Mines on consumption of purchased and toll-treated scrap, excluding all home scrap (scrap produced and consumed at the same plant). Aluminumscrap consumption was reported by the nonintegrated secondary smelters, primary producers, foundries, fabricators, chemical producers, and other miscellaneous consumers. Secondary-aluminum recovery was approximately the same as in 1955. Scrap imports

Subcommittee 3 on Minerals and Raw Materials to the Select Committee on Small Business, Report: House of Representatives, 84th Cong. 2d sess., Washington, D. C., 1956, 150 pp.

were 26,000 tons compared with 41,000 tons in 1955, and exports in 1956 were 19,000 tons compared with 18,000 tons in 1955.

For details on secondary aluminum see the chapter in this volume on Secondary Metals—Nonferrous.

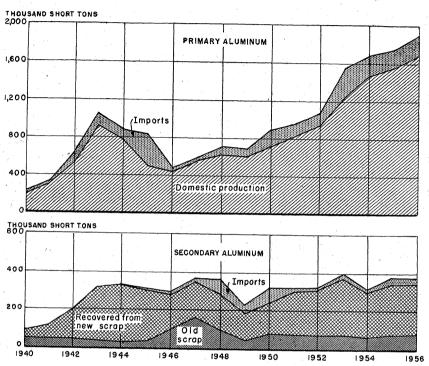


Figure 1.—United States production and imports of primary- and secondary-aluminum pig and ingot, 1940-56.

CONSUMPTION AND USES

For the seventh consecutive year the apparent consumption of primary aluminum increased and in 1956 totaled 1,782,000 tons—approximately 27,000 tons more than in 1955. The consumption figure includes aluminum destined for the national stockpile.

The new supply of aluminum was calculated as the sum of domestic primary production, secondary recovery from both old and new purchased and toll-treated scrap, imports of pig and ingot, and the ingot equivalent of imported scrap. Exports of crude forms of aluminum were considered as a type of consumption. In 1956 primary production was 1,679,000, secondary recovery 340,000, and imports of crude and scrap 240,000 tons to give a total new supply of 2,259,000 tons. This represented an increase of 143,000 tons (7 percent) over 1955.

A survey of the percentage of shipments of fabricated aluminum products by end uses indicated only minor changes in the pattern between the last 6 months of 1955 and the first 6 months of 1956.

American Metal Market, Aluminum End Use: Vol. 63, No. 206, Oct. 26, 1956, p. 9.

TABLE 4.—Apparent consumption of primary aluminum and ingot equivalent of secondary aluminum in the United States, 1947-51 (average) and 1952-56, in short tons

		Primary			Secondary	
Year	Sold or	Imports	Apparent	Domestic	recovery	Imports
	used by producers	(net) 1 2	consump- tion 2	From old scrap	From new scrap	(net) 8
1947-51 (average)	672, 154 938, 181 1, 219, 968 1, 478, 761 1, 571, 845 1, 591, 478	65, 600 134, 153 322, 086 218, 147 183, 080 190, 335	737, 754 1, 072, 334 1, 542, 054 1, 696, 887 1, 754, 925 1, 781, 813	91, 408 71, 264 78, 940 4 59, 989 4 76, 372 4 71, 673	178, 322 233, 258 289, 626 4 232, 052 4 259, 622 4 268, 095	38, 093 5, 374 19, 836 -22, 044 5 20, 305 5, 997

¹ Crude and semifabricated, excluding scrap. May include some secondary.

² Figures include mill shapes.
³ Ingot equivalent of net imports (wt. ×0.9). Imports are largely scrap pig. Some duplication of secondary aluminum occurs because of small amount of loose scrap imported, which is included as secondary

⁴ Not strictly comparable with previous years' data. The 1954-56 data are recoverable aluminum content; previous years' data are recoverable aluminum-alloy content.

⁵ Revised figure.

TABLE 5.—Sources of aluminum supply—crude and scrap, 1947-51 (average) and 1952-56, in short tons

Year	Primary	Recovery from scrap		Recovery from scrap Imports 2 Tota		Total	Exports ?
	production	Old	New		supply		
1947–51 (average)	670, 834 937, 330 1, 252, 013 1, 460, 565 1, 565, 721 1, 678, 954	91, 408 71, 264 78, 940 3 59, 989 3 76, 372 3 71, 673	178, 322 233, 258 289, 626 232, 052 259, 622 268, 095	133, 855 134, 531 324, 888 228, 611 4 214, 418 239, 794	1, 074, 419 1, 376, 383 1, 945, 467 1, 981, 217 4 2, 116, 133 2, 258, 516	5, 294 2, 312 6, 499 39, 448 22, 430 51, 959	

¹ Ingot equivalent of scrap.
 ² Crude metal (ingot, pig, slabs, etc.) plus ingot equivalent (wt. ×0.9) of scrap.
 ³ Not strictly comparable with previous years' data. The 1954-56 data are recoverable aluminum content; previous years' data are recoverable aluminum-alloy content.
 ⁴ Revised figure.

The survey showed that 19 percent of the wrought products went into building materials, 17 percent into transportation equipment, and 13 percent to consumer durable goods. Other major consuming categories were: Electrical, 8 percent; machinery and equipment, except electrical, 6 percent; and packaging and containers, 4 percent. Shipments for conversion into primary wrought products and shipments to distributors and jobbers consumed an additional 26 percent. Shipments of sand castings to transportation—motor vehicles (except military) decreased from 27 percent of the total shipments of sand castings in the last half of 1955 to 18 percent of the total in the first half of 1956. Other major shipments of sand castings were: Industrial and commercial machines, equipment and tools, 27 percent, up from 23 percent; transportation—miscellaneous (except military), 15 percent; and national defense, 20 percent. By far the largest proportion (68 percent) of the shipments of permanent mold castings went to transportation—motor vehicles (except military). Shipments for home appliances, furnishings, and equipment accounted for an additional 13 percent.

The data in table 6 present shipments of wrought products and castings, which increased slightly to 1,840,000 tons in 1956. Compared with 1955, shipments of rolled structural shapes increased 14 percent, forgings 8 percent, and die castings 6 percent. Shipments of permanent mold castings decreased 26,000 tons or 18 percent. The following distribution for wrought products also was obtained from figures published by the Bureau of the Census:

Plate, sheet and strip:		rcent
Non-heat-treatable	1955	1956
	37. 6	36. 4
Heat-treatable	10. 6	11. 3
Foil	7. 1	6. 6
Rolled structural shapes:		
Rod, bar, etc.	3. 9	4. 1
Wire, bare (nonconductor)	2. 1	1. 9
Cable, bare (including steel-reinforced)	5. 6	6. 5
Wire and cable, covered or insulated	1. 4	
Bare wire conductor	. 1	. 2
Extruded shapes:	• -	
Soft alloys	22. 8	22. 2
Hard alloys	1. 6	2. 2
Tubing:	1. 0	4. 4
Drawn, soft and hard alloys	2. 4	2. 1
Welded, non-heat-treatable 1	2.4	
Powder, flake, and paste:	. 9	1. 0
Atomized		
AtomizedFlaked	. 6	. 3
riaked	. 2	. 2
Paste	. 6	. 5
Forgings	2. 5	2. 6
Total	100. 0	100. 0

¹ Includes small amount of heat-treatable welded tube.

TABLE 6.—Net shipments ¹ of aluminum wrought and cast products by producers, 1952-56, in short tons

[Bureau of the Census]

				talan talah dari dari dari dari dari dari dari dari	
	1952	1953	1954	1955	1956
Wrought products:					
Plate, sheet, and strip Rolled structural shapes, rod, bar, and	542, 849	684, 083	582, 538	771, 362	784, 059
wireExtruded shapes, tube bloom, and	221, 773	211, 023	180, 641	183, 976	210, 600
tubing Powder, flake, and paste	173, 771 23, 982	225, 961 22, 366	256, 650 23, 452	387, 546 17, 840	396, 202 14, 210
Forgings				35, 172	37, 833
Total	962, 375	1, 143, 433	1, 043, 281	1, 395, 896	1, 442, 904
Castings:					
Sand Permanent mold	97, 308 73, 442	107, 277 100, 012	78, 277 107, 204	82, 741 149, 174	85, 890 122, 711
Die Other	84, 866 3, 874	119, 665 2, 057	122, 645 3, 401	177, 602 (2)	188, 115 (²)
Total	259, 490	329, 011	311, 527	³ 410, 390	397, 291
Grand total	1, 221, 865	1, 472, 444	1, 354, 808	3 1, 806, 286	1, 840, 195

Net shipments consist of total shipments less shipments to other metal mills for further fabrication.
 Withheld because the estimates did not meet publication standards of the Bureau of the Census because of the associated standard error.
 Revised figure.

Probably because of the size of the potential market considerable interest was shown in the increasing use of aluminum in automobiles. Data gathered by the Aluminum Company of America in its annual survey of the automotive industry showed that the 1955 models used an average of 29.6 pounds of aluminum per car and that the 1956 cars used 34.6 pounds per car. On this basis the total consumption of aluminum by the industry was nearly 100,000 tons. The major application, which accounted for nearly 50 percent of consumption in automobiles, was in automatic transmissions. Thirty percent was used in the engine and an additional 7 percent was used in body trim Results of surveys showing consumption by make and model and applications were published.7

The first railroad gondola cars built in the United States of allwelded aluminum bodies were to be used by Kaiser Aluminum & Chemical Corp. in its mining operations on Jamaica.8 It was reported that the new cars will transport 84 tons of bauxite per trip compared with 70 tons for the conventional car. The Canadian National Railway, as part of its 1956 building program, ordered 2,000 railroad boxcars equipped with aluminum-alloy roofs. This order followed delivery of 1,750 similar cars ordered in 1955, which had the first structural aluminum roofs ever to go into railroad service in quantity. The factors influencing the railroad in its decision were the light weight

of aluminum and its corrosion resistance.9

Increasing quantities of aluminum were used in constructing boats. Although the tonnage used represented a small part of the total shipments of aluminum, the growth of the industry had been rapid. At 1 exhibit of more than 600 boats, 33 percent were constructed entirely This represented a 2-percent increase above or mainly of aluminum. the previous year. Boats constructed of wood, sheet plywood, or molded plywood accounted for 46 percent of the total. io It was estimated that 8,000 tons of aluminum would be required in manufacturing light pleasure craft and that an additional 11,000 to 15,000 tons would be required in manufacturing outboard motors in 1957. Quantities of aluminum also were used in larger vessels. The S. S. United States contained over 2,000 tons of aluminum, and the aircraft carrier Forrestal over 1,000 tons of the metal.

A number of articles discussing the future markets for aluminum were published.¹¹ Most of the increase in aluminum consumption described in these articles was expected to be in expanding present uses. Such items as building and construction, highway construction, automotive, railroad, marine and aircraft uses, consumer durables, packaging, use of porcelain-enameled aluminum, and furniture and

Conlee, R. E., Still More Aluminum Used in Cars for 1956: Automotive Ind., vol. 114, No. 2, Jan. 15, 1956, pp. 48-49, 106, 111-112.
 Light Metal Age, Autos in '57—10 Percent More Aluminum: Vol. 15, Nos. 1 and 2, February 1957, pp.

Light Metal Age, Autos in '57—10 Percent More Aluminum: Vol. 15, Nos. 1 and 2, February 1957, pp. 16-18.

**American Metal Market, Aluminum Ore Cars Estimated as Increasing Payloads by 14 Tons: Vol. 63, No. 112, June 13, 1956, p. 9.

**American Metal Market, Aluminum Boxcar Roofs: Vol. 63, No. 61, Mar. 30, 1956, p. 15.

**O American Metal Market, Aluminum Use in Boat Construction Seen as Firmly on the Uptrend: Vol. 63, No. 31, Feb. 16, 1956, p. 9. Aluminum Industry Expects Increased Use in Water-Craft Manufacture: Vol. 64, No. 38, Feb. 26, 1957, p. 10.

**I Boyd, Ray G., The Next Ten Years for the Aluminum Extrusion Industry: Light Metal Age, vol. 14, Nos. 11 and 12, December 1956, pp. 26-28.

Smith, Harry L., Jr., Future Markets for Aluminum: Light Metal Age, vol. 14, Nos. 11 and 12, December 1956, pp. 28-29.

Perkins, George, Moving Along with Aluminum: Light Metal Age, vol. 14, Nos. 11 and 12, December 1956, pp. 30-31.

electrical uses were all expected to require increasing quantities of aluminum.

STOCKS

On December 31, 1956, inventories of primary aluminum held at reduction plants reached an alltime high of 102,000 short tons. The previous high was 78,054 tons on July 31, 1947. The substantial year-end stocks resulted from increased production, suspension of deliveries to the national stockpile, and an improved balance between supply and demand. On January 1, 1956, stocks totaled 15,000 tons when demand still exceeded supply. By May 31 they had dwindled to 12,000 tons, the low point of the year. During the next 7 months producers continued to build up their inventories, and by the end of the year they were 7 times the quantity held on January 1. Based on the December rate of production the year-end stocks were equivalent to 21 days' output. In addition to the pig-aluminum stocks reported, reduction plants also had inventories of ingot and aluminum in process.

Inventories of secondary-aluminum pig and ingot at secondary smelters increased gradually throughout 1956 until 20,000 tons was stocked on December 31. The 1956 closing stocks were 7,000 tons (54 percent) above the 1955 year-end stocks and represented 27 days' production. Consumers' stocks of aluminum-base scrap increased 20 percent from 20,000 tons to 25,000 during 1956.

TABLE 7.—Stocks of primary aluminum at reduction plants in the United States, 1952-56, by quarters, in short tons

Quarter ended—	1952	1953	1954	1955	1956
Mar. 31. June 30. Sept. 30. Dec. 31.	11, 171	15, 257	63, 246	11, 970	19, 240
	13, 753	17, 810	66, 555	12, 630	17, 399
	12, 495	26, 991	46, 611	9, 898	47, 179
	7, 274	39, 319	21, 144	15, 020	102, 496

PRICES

On January 1, 1956, the price of aluminum pig, 99 percent pure, was 22.5 cents per pound and that of aluminum ingot, 99 plus percent pure, was 24.4 cents per pound. In March there was a price increase of 1.5 cents per pound on both aluminum pig and ingot. One primary producer cited the rising costs, particularly of the industry's expansion program, and increased freight rates as reasons for the advance in price. Following the new wage contract negotiated in August 1 producer announced a second increase of 1 cent per pound on pig and 1.2 cents per pound on ingot effective August 10; within a few days the 2 other major producers followed suit. The new base price, f. o. b. shipping point, was 25 cents per pound for standard 99-percent aluminum pig and 27.1 cents per pound for standard 99-percent-plus aluminum ingot.

The combined average price of copper-silicon alloys 108 and 380 (AXS-679), as secondary ingot, was 27.01 cents per pound as compiled from quotations published daily in the American Metal Market. The average price in 1956 was 1.72 cents per pound below the 1955 average but 6.4 cents above the average for 1954. In March and during the summer months the price of alloy ingot rose, probably

TABLE 8.—Prices of aluminum, other selected metals, and the Bureau of Labor Statistics, wholesale price index, 1936-56 1

Year	Aluminum, primary ingot (cents per pound)	Copper electrolytic, New York (cents per pound)		Zinc, Prime Western, East St. Louis (cents per pound)	Wholesale price index (1947-49 = 100)
1936-40 (average)	19. 85	11. 08	2. 66	5. 50	52. 2
1941-45 (average)	15. 30	11. 87	2. 67	8. 10	64. 9
1946-50 (average)	16. 09	19. 62	3. 79	11. 77	96. 4
1951-55 (average)	20. 96	28. 97	5. 12	13. 61	111. 5
1956: First quarter Second quarter Third quarter Fourth quarter	24. 46	44. 21	5. 81	13. 48	112.4
	25. 90	45. 87	5. 82	13. 50	114.1
	26. 57	40. 44	6. 10	13. 50	114.7
	27. 10	36. 96	6. 27	13. 50	115.9
Average	26. 01	41. 88	6. 00	13. 49	114. 3
	31. 0	278. 0	125. 6	145. 3	119. 0

¹ Source: Metal Statistics, 1957 (American Metal Market).

because of advances in the price of primary aluminum. The American Metal Market listed the following closing market prices for December 31, 1956: Alloy 195, 25.50 to 26.50 cents per pound; Nos.

12, 108, 380, and 319, 23.50 to 24.00 cents per pound.

Scrap-aluminum prices also increased in March and during the summer months; a slight increase also occurred in November. Dealers' buying prices for new aluminum clips averaged 16.99 cents per pound in 1956 compared with 17.93 cents in 1955. The monthly averages ranged from a high of 20.50 cents in January to a low of 14.85 cents in November. Cast-aluminum-scrap prices averaged 13.99 cents per pound—1.35 cents below the 1955 average. The first-quarter monthly averages of 17.00 cents per pound represented the high point and the June average of 11.44 cents the low point. This was the first time the average price of new clippings and cast scrap have shown a decline since 1952. The closing market prices for scrap on December 31, 1956, according to the American Metal Market, were: 28, 38, 518, and 528 aluminum clips, 18.00 to 19.00 cents per pound; 758 clips, 15.25 to 16.00 cents per pound; and aluminum borings and turnings, 16.00 to 17.00 cents per pound.

FOREIGN TRADE 12

Imports.—As a result of tariff negotiations during 1956 under the General Agreement on Tariffs and Trade the duty on crude aluminum was to be reduced by 3 approximately equal increments during the next 3 years from the rate of 1.50 cents per pound in effect during the first half of 1956 to 1.25 cents per pound. The first reduction, effective in July 1956, reduced the tariff to 1.40 cents per pound.

Suspension of the 1½-cent-per-pound duty on scrap was continued

in 1956.

Aluminum imported for consumption in 1956 totaled 265,000 short tons—an 11-percent increase over the 1955 imports. Eighty-two percent of the total was crude metal and alloys; 8 percent plates,

¹² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

sheets, and bars; and 10 percent scrap. Crude and semifabricated imports increased 22 and 8 percent, respectively, from the previous year. Shipments of pig and ingot from Canada increased 17 percent, and those from Norway were almost 4 times the corresponding 1955 shipments. However, imports from West Germany dropped from 900 tons to 7 tons in 1956. Canada supplied 92 percent of the crude imports, Norway 7 percent, and 8 European countries the remainder. Twenty-seven percent of the semifabricated shapes was received from Belgium-Luxembourg, 20 percent from United Kingdom, 14 percent from Canada, and the remainder from Japan and from various European countries. Aluminum-base-scrap imports decreased 36 Although Canada continued to be the major percent from 1955. supplier of scrap providing 74 percent in 1956, the shipments received from that country were 34 percent less than in 1955. The quantity of scrap imported from France decreased from 5,000 tons in 1955 to 900 in 1956; as a result, the United Kingdom became the second largest supplier. The average values of aluminum imported in the United States in 1956 were 23.1 cents per pound for crude, 36.5 cents for semifabricated, and 20.7 cents for scrap.

TABLE 9.—Aluminum imported for consumption in the United States, 1954-56. by classes

Rurean	of the	Census	

		1954	in the second	1955	1956	
Class	Short	Value	Short	Value	Short	Value
Crude and semicrude: Metal and alloys, crude Scrap	215, 250 14, 845 13, 655	1 \$83, 573, 141 1 4, 674, 654 1 8, 042, 188	177, 652 ² 40, 851 20, 972	¹ \$74, 694, 865 ¹ ² 16, 393, 332 ¹ 13, 972, 690	216, 401 25, 992 22, 582	\$100, 136, 584 1 10, 769, 830 1 16, 479, 851
Total	243, 750	1 96, 289, 983	² 239, 475	1 2 105, 060, 887	264, 975	1127, 386, 26
Manufactures: Foil less than 0.006 inch thick Folding rules Leaf (5½ by 5½ inches)	918	¹ 1, 671, 880	1, 758 (*) (4)	1 2, 963, 111 31 7, 972	1, 653 (3) (4)	1 2, 608, 869 1 636 1 8, 171
Powder and powdered foil (aluminum bronze) Table, kitchen, hospital utensils, etc. Other manufactures	11 1,716 (5)	13, 578 1 2, 908, 513 1 2, 617, 119	25 2, 720	28, 329 1 4, 266, 911 1 1, 239, 292	81 2, 431 (⁵)	79, 830 1 3, 969, 91 1 2, 139, 10
Total	(5)	1 7, 223, 405	(5)	1 8, 505, 646	(5)	1 8, 806, 530
Grand total	(5)	1 103, 513, 388	(5)	^{1 2} 113, 566, 533	(5)	1136, 192, 79

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable

Exports.—United States exports of crude and semicrude aluminum in 1956 were 68,000 short tons—double the quantity exported in 1955. Exports of pig and ingot have increased every year since 1951, and in 1956 they were approximately 6 times those of 1955. The United Kingdom received 30 percent of the crude metal and Argentina 23 percent; Mexico and Italy each received 10 percent. The aluminum exported as plates, sheets, bars, castings, forgings, and semifabricated

<sup>Revised figure.
Number: 1955, 100; 1956, 1,200; equivalent weight not recorded.
Leaves: 1954, 3,748,423; 1955, 2,466,054; 1956, 3,030,097.
Quantity not recorded.</sup>

TABLE 10.—Aluminum imported for consumption in the United States, 1955-56, by classes and countries, in short tons

[Bureau of the Census]

		1955			1956	
Country	Metal and alloys, crude	Plates, sheets, bars, etc.	Scrap	Metal and alloys, crude	Plates, sheets, bars, etc.	Scrap
North America: Canada Other North America	171, 519	5, 802	29, 477 36	199, 919	3, 149	19, 350 168
TotalSouth America	171, 519	5, 802	29, 513	199, 919	3, 149	19, 515 33
Europe: Austria Belgium-Luxembourg Denmark France Germany, West Italy Notherlands Norway Sweden Switzerland United Kingdom Yugoslavia Other Europe	186 938 165 36 3,932 574 27	19 5, 141 22 1, 074 1, 426 1, 179 583 	56 696 206 4, 909 1, 488 1, 551 220 304 11 1, 327	220 13 301 7 14, 715 156 496 133 441	12 6, 184 2, 093 2, 131 1, 901 312 2 2 525 4, 462 15	58 168 53 897 314 (1) 1, 889 116 229 46 2, 017
Total Asia: India. Indonesia. Japan. Southern and Southeastern Asia, n. e. c.	2	2, 229	10, 823 	16, 482	1, 796	6, 071 33 61
TotalAfrica		2, 229	145 217 2 153		1, 796	162 131 80
Grand total: Short tons_ Value	177, 652 3 \$74,694,865	20, 972 \$\$13,972,690	² 40, 851 ² \$16,393,332	216, 401 \$100,136,584	22, 582 3 \$16,479,851	25, 992 3 \$10,769, 830

¹ Less than 1 ton.

shapes increased 47 percent, and Canada, Cuba, and Venezuela were the chief purchasers, as in previous years. Aluminum-base-scrap exports increased 6 percent. West Germany received 8,000 tons (41 percent of the total) compared with 14,000 tons in 1955. Italy purchased 6,000 tons (30 percent), which was more than twice the 1955 quantity. Japan and Canada were the next largest buyers and received 16 and 6 percent, respectively. The averge values of aluminum exports increased in 1956 and were as follows: 27.6 cents per pound for crude, 58.8 cents for semifabricated, and 21 cents for scrap. During 1956 the Bureau of Foreign Commerce set the following

export quotas on aluminum scrap:

	Tons		Tons
First quarter	6,000	Third quarter	4,000
Second quarter	4,000	Fourth quarter	4, 000

Near the end of the year it was announced that the export quota for the first quarter of 1957 for aluminum scrap would be 5,000 tons.

<sup>Revised figure.
Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.</sup>

TABLE 11.—Aluminum exported from the United States, 1954-56, by classes
[Bureau of the Census]

		1954	1955		1956	
Class	Short tons	Value	Short tons	Value	Short	Value
Crude and semicrude: Ingots, slabs, and crude Scrap Plates, sheets, bars, etc Castings and forgings Semifabricated forms, n. e. c	4, 044 39, 338 6, 050 619 45	\$1, 691, 059 12, 984, 970 4, 803, 109 1, 795, 482 87, 200	5, 969 18, 290 8, 009 1, 139 427	\$2, 773, 040 6, 501, 382 7, 518, 319 2, 424, 571 474, 395	34, 563 19, 329 12, 493 1, 247 345	\$19, 078, 286 8, 127, 295 13, 092, 897 3, 093, 905 376, 945
Total	50,096	21, 361, 820	33, 834	19, 691, 707	67, 977	43, 769, 322
Manufactures: Foil and leaf Powders and pastes (aluminum and	237	432, 444	543	957, 653	425	675, 985
aluminum bronze) (aluminum con- tent) Cooking, kitchen, and hospital uten-	403	456, 052	297	314, 814	351	419, 378
silsSash sections, frames (door and win-	1, 190	2, 448, 110	1, 422	2, 847, 748	1, 222	2, 863, 168
dow)	285 853 2, 234 2, 051 (¹)	551, 836 1, 029, 397 1, 359, 388 3, 751, 050 108, 286	570 2, 390 6, 581 3, 058 (¹)	1, 034, 373 2, 151, 654 3, 700, 399 5, 301, 981 229, 444	760 2, 875 3, 288 3, 644 (1)	1, 531, 357 2, 830, 531 2, 543, 250 6, 511, 631 204,918
Total	(2)	10, 136, 563	(2)	16, 538, 066	(2)	17, 580, 21
Grand total	(2)	31, 498, 383	(2)	36, 229, 773	(2)	61, 349, 53

¹ Weight not recorded.

TECHNOLOGY

In 1956 all commercial production of aluminum was by the electrolytic reduction of pure alumina. The industry's trend toward increasing the size of the reduction cells was continued when Kaiser announced that, by the addition of eighteen 100,000-ampere vertical stud Soderberg reduction cells at its Tacoma, Wash., plant the annual capacity was increased 5,000 tons. The new cells were twice the size of those already in the plant and used only 7.5 kw.-hr. per pound of metal produced as compared with 8.5 kw.-hr. per pound required by the older cells.

The water requirements of the aluminum-reduction industry, exclusive of that used in power generation, in 1952 averaged 105 million gallons daily.¹³ This indicated that the production of 1 pound of aluminum required approximately 20 gallons of water. Approximately 75 percent of the total water was used by the sprays in the gas scrubbers. Cooling rectifiers and transformers accounted for 13 percent of the consumption, and 8 percent was used for sanitary facilities. It was stated that the requirements varied widely between plants, depending upon the availability and cost of water. Surface water composed 63 percent, ground water 34 percent, and brackish water 3 percent of the total consumption.

The American Gilsonite Co. announced that a plant to process Utah gilsonite into high-octane gasoline and high-purity electrolytic

² Quantity not recorded.

¹³ Conklin, H. L., Water Requirements of the Aluminum Industry: Geol. Survey Water Supply Paper 1330-C, 1956, 36 pp.

TABLE 12.—Aluminum exported from the United States, 1955-56, by classes and countries, in short tons

[Bureau of the Census]

		1955			1956	
Country	Ingots, slabs, and crude	Plates, sheets, bars, etc.	Scrap	Ingots, slabs, and crude	Plates, sheets, bars, etc.1	Scrap
North America:						
Canada	77	4, 723	193	1, 422	7, 428	1, 23
Cuba		993	1	60	1, 180	
Mexico	3, 238	216	17	3, 466	180	2
Other North America		462	10		727	1 74
Total	3, 424	6, 394	220	4, 948	9, 515	1, 49
South America:						
Argentina		11		7,942	160	
Brazil		46		309	187	
Chile	17	2		755	5	
Colombia	3	41		1,390	124	
VenezuelaOther South America	1	929		30	1, 321	
Other South America		94			150	
Total	21	1, 123		10, 426	1, 947	
Europe:						
Denmark	94	20		1	25	
Finland	3	- š			2	
France		ň		1, 362	29	
Germany, West	658	5	14, 332	303	13	7, 8
Germany, West Ireland		326		300	. 56	
Italy		33	2, 436	3, 409	34	5, 7
Netherlands	1, 102	59			12	1
Spain.		2		220	114	1
United Kingdom	50	19	30	10, 392	155	1
Other Europe	18	19		37	68	
Total	1, 925	492	16, 798	16, 023	508	13, 78
Asia:					1	
India	28	396	1, 267		848	8
Japan		2	-,	770	25	3, 18
Philippines	398	800	5	1, 999	165	1
Turkev		5			292	
Other Asia		132		297	287	
Total	456	1, 335	1, 272	3, 066	1, 617	4, 04
Africa		164]	100	194	1
Oceania	143	67			304	
Grand total: Short tons	5, 969	9, 575	18, 290	34, 563	14, 085	19, 32
Value	\$2, 773, 040	\$10, 417, 285	\$6, 501, 382	\$19,078,286	\$16, 563, 743	\$8, 127, 29

Includes plates, sheets, bars, rods, extrusions, castings, forgings, and unclassified "semifabricated forms."

coke for the aluminum industry would be completed in 1957 at

Grand Junction, Colo.¹⁴

At the Third International Light Metal Congress in Leoben, Austria, in 1956, papers on several aspects of the aluminum industry were presented. These papers, which were abstracted in English, ¹⁵ covered aluminum in the economy of the major producing countries, electrolysis, superpurity aluminum, the subhalide process, foundry practice, secondary aluminum, surface treatment, powder metallurgy, and the use of aluminum in architecture, transportation, packaging, and electrical applications.

¹⁴ American Metal Market, Gilsonite Plant to Convert H-C Mineral to Electro Coke for Aluminum Industry: Vol. 63, No. 133, July 13, 1956, pp. 1, 9.
¹⁵ Light Metals, The Third International Light Metal Congress—Leoben, 1956: Vol. 19, No. 220, July 1956, pp. 215-224.

New alloys publicized in 1956 included casting alloy F132, announced by the Aluminum Company of America as a replacement of The new alloy was to be used in automotive pistons and had the same properties as the alloy it replaced. However, since it required less nickel than the older alloy, its availability would be relatively unaffected by shortages of the critical metal.¹⁶ Iron-aluminum alloys with unique electrical, magnetic, and refractory properties lagged in commercial development because of apparent room-temperature brittleness. Melting and casting practice, hot working, heat treatment, and the effect of alloying elements were studied.¹⁷

Utilization of compacts prepared from fine aluminum powder containing aluminum oxide appeared to extend the useful range for aluminum to temperatures above 600° F. Extrusions and forgings were prepared from this material, and in some instances the extruded pieces served as stock for further fabrication by forging, rolling, or drawing. The mechanical and physical properties of the APM (aluminum powder metallurgy) products were compared with commercial alloys. Corrosion, machinability, joining, and plating properties and anodizing were also discussed.¹⁸ The effect of heat encountered in high-speed aircraft and missiles on aluminum and other light-

metal alloys was reported.¹⁹

The rapid increase in new applications of aluminum resulted in studies of the corrosion and mechanical properties of its alloys. Seventy articles discussing the corrosion properties of aluminum in many diverse applications were summarized. 20 Results of 20-year-long corrosion tests on commercial aluminum alloys were published.²¹ The first paper included a discussion of weathering data obtained on wrought aluminum-base alloys. Pertinent data obtained after exposure periods of 1, 3, 6, 10, and 20 years were tabulated and arranged graphically to illustrate the effect of natural aging on the tensile strength of specimens stored indoors for 20 years, rating of corrosivity of 7 atmospheric conditions employed, and the rate of weathering of the 5 aluminum alloys. The results have been correlated with data from the Aluminum Research Laboratories on similar alloys in other atmospheric environments and on newer alloys that complement or supersede the alloys used in this study. The second paper stated that results of the study in marine atmospheres showed that all of the non-heat-treatable alloys containing less than 4 percent magnesium and 1 containing about 1 percent manganese were very resistant to corrosion. Of the heat-treatable alloys, the clad varieties and 1 alloyed with about 2 percent cadmium were quite corrosion resistant, while those containing copper, silicon, and manganese were least resistant. Surface films and protective paints were also evaluated.

¹⁶ American Metal Market, New Aluminum Casting Alloy Low in Nickel: Vol. 63, No. 21, Feb. 1, 1956,

Merican Metal Market, New Aluminum Casting Alloy Low in Nickel: Vol. 63, No. 21, Feb. 1, 1956, pp. 1, 10.
 Metal Progress, Tougher Iron-Aluminum Alloys: Vol. 70, No. 3, September 1956, pp. 182-184.
 Lyle, Jr., J. F., Aluminum Powder-Metallurgy Products: Materials and Methods, vol. 43, No. 4, April 1956, pp. 106-111.
 Levy, Alan V., Performance of Light Metals at Elevated Temperatures: Light Metal Age, vol. 14, Nos. 11 and 12, December 1956, pp. 12-13, 37.
 Horst, R. L., Materials of Construction, Aluminum Alloys: Ind. Eng. Chem., vol. 48, No. 9, September 1956, part II, pp. 1696-1701.
 Walton, C. J., and King, W., Resistance of Aluminum-Base Alloys to 20-year Atmospheric Exposure: ASTM Special Tech. Pub. 175, 1956, pp. 21-44.
 Reinhart, F. M. and Ellinger, G. A. Effect of 20-year Marine Atmosphere Exposure on Some Aluminum Alloys: ASTM Special Tech. Pub. 175, 1956, pp. 47-64.

A review of the information available on stress corrosion of alumi-

num and its alloys was published.22

Although most aluminum alloys do not show stress-corrosion failure, the use of alloy compositions and heat treatments designed to give the highest mechanical properties tended to result in susceptibility to stress corrosion to various degrees. In addition to the mechanism and environmental conditions leading to failures of the alloys, protective measures were described.

Increased interest in aluminum for applications in which appearance is important stimulated studies of coating and finishing methods. Decorative and corrosion-resistant surfaces had been obtained almost exclusively by electrolytic oxidation or anodizing methods; however, in many applications where resistance to abrasion was not required low-cost chemical treatments were replacing anodizing. Articles described these methods.²³ Commercial operations also were de-Development in 1951 of a porcelain enamel that could be fired on aluminum opened the way for industry to utilize such coatings. A number of operational difficulties had to be solved before commercial production could be started.25 Properties of such coatings and the equipment and operations used in preparing them were described.26

Revised specifications covering the allowable stresses, design rules, and fabrication procedures for structures built of aluminum alloys 6061-T6 and 2014-T6 were released.27 Alloy 6061-T6 was the alloy most commonly used for structural purposes where a high degree of corrosion resistance was required. Alloy 2014-T6 was a highstrength alloy most commonly used for heavy-duty structural

purposes.

All of the early nuclear reactors and many of those being constructed in 1956 used aluminum and steel as the principal structural materials. Low neutron-absorption characteristics, satisfactory resistance to low-temperature aqueous corrosion, excellent heat-transfer properties, and reasonable cost led to the widespread acceptance of aluminum for atomic energy uses. However, most aluminum alloys were found to oxidize and disintegrate rapidly in high-purity water at 250° to 275° C., the temperatures used for power production. indicated that addition of nickel up to 1 percent and of other materials such as copper and titanium in small quantities markedly reduced the tendency for 2S aluminum to disintegrate.28 The effects of radiation on aluminum also were studied.29 Boral, an aluminum-

²² Champion, F. A., The Interactions of Static Stress and Corrosion With Aluminum Alloys: Metallurgia, vol. 53, No. 316, February 1956, pp. 63-68.

22 Pocock, W. E., Finishes for Aluminum Alloys, Part I, Electrolytic or Anodic Coatings: Metal Progress, vol. 70, No. 4, October 1956, pp. 75-78; Part II, Chemical or Conversion Coatings: Metal Progress, vol. 70, No. 5, November 1956, pp. 97-101.

Linicus, W., and Krekel, P., Surface Treatment of Aluminum: Metal Industry, vol. 88, No. 10, Mar. 9, 1956, pp. 185-187.

24 Iron Age: New Building Trends Expand Anodizers' Market: Vol. 177, No. 3, Jan. 19, 1956, pp. 74-77.

25 Jensen, C. J., Tops in Wall Tile; Vikon's Porcelain-on-Aluminum: Modern Metals, vol. 12, No. 7, August 1956, pp. 33, 34, 36, 38.

26 Farrell, E. A., Glass on Aluminum: Modern Metals, vol. 12, No. 9, October 1956, pp. 66, 68, 70, 72, 74, 76, 78, 80, 82.

^{76, 78, 80, 82.}Close, G. C., Mass Producing Porcelain-Enameled Aluminum Parts: Light Metal Age, vol. 14, No. 7-8, August 1956, pp. 10-13.
Tournal, Structural Division of the American Society of Civil Engineers, Specifications for Structures of Aluminum Alloy 6061—76: Vol. 82, No. ST3, May 1956, pp. 970-1 to 970-34. Specifications for Structures of Aluminum Alloy 2014—76: Vol. 82, No. ST3, May 1956, pp. 971-1 to 971-32.
Lane, J. A., Where Reactor Development Stands Today: Nucleonics, vol. 14, No. 8, August 1956, pp. 970-37.

^{**} Kittel, J. H., Damaging Effects of Radiation on Solid Reactor Materials: Nucleonics, vol. 14, No. 9, September 1956, pp. 63-65.
Warde, J. M., Materials for Nuclear Power Reactors: Materials and Methods, vol. 44, No. 2, August 1956, pp. 121-144.

boron carbide sheet material, was found to be uniquely suited for shielding where hard gamma rays had to be avoided. This material consists of a core of boron carbide uniformly dispersed in aluminum and clad on both sides with commercially pure aluminum. was made commercially available.30

The use of significant quantities of honeycomb sandwich structures in aircraft was begun during World War II. Such sandwiches were first constructed of wood, but later high-strength aluminum alloys A number of applications in commercial aircraft, such as floorings, partitions, seats, and wings, have been suggested, as well as domestic and industrial uses in which pleasing appearance

and strength were both important.31

Research continued on the development of aluminum die cast engine blocks. In 1955 a six-cylinder in-line block was die-cast and tested. During 1956, in a joint development by the Doehler-Jarvis Division of the National Lead Co. and the Kaiser Aluminum & Chemical Corp., it was announced that design work on a V-8 automobile engine block to be die-cast in aluminum was completed.32 It was predicted that the V-8 aluminum block would weigh 60 to 70 The 6-cylinder engine block weighed 43 pounds when

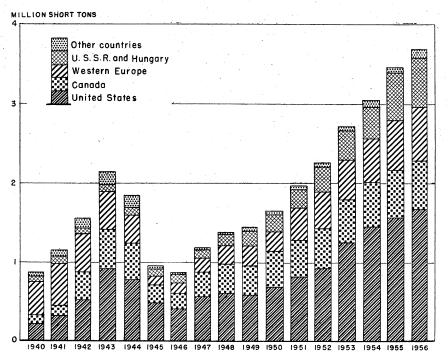


Figure 2.—Trends in world production of primary aluminum, 1940-56.

1956, pp. 1, 9.

³⁰ American Metal Market, Detroit Firm to Market Boral on Commercial Scale: Vol. 63, No. 104, June 1. 1956, pp. 1, 9. Alcoa Markets Plate of Boral for Atomic Use: Vol. 63, No. 126, July 3, 1956, p. 10. ²¹ Green, J. D., More About Metal Honeycomb: Light Metals, vol. 19, No. 209, June 1956, pp. 186–187. Cremer, G. D., Production of Honeycomb Sandwich Structures: Metal Progress, vol. 70, No. 5, November 1956, pp. 18–84. ²² American Metal Market, Progress on Aluminum Die-Cast V-8 Engine Block: Vol. 63, No. 73, Apr. 18, 1056 pp. 1

trimmed as compared with a weight of approximately 175 pounds in The Aluminum Company of America developed a method grav iron. of spraying a thin coat of steel on aluminum. Such a development was important, because aluminum pistons did not function well when bearing directly on an aluminum cylinder wall; they required a cylinder wall having a ferrous alloy surface.33

Electrical applications continued to utilize large quantities of alu-High-tension lines had been an established application for many years, but such uses as insulated conductors, busbars, telephone cables, service wires to homes, and windings were using aluminum.34 Charts were published showing variables and cost figures for economical ACSR conductor sizes for transmission voltages. 35

WORLD REVIEW

New facilities completed and put into operation during 1956 raised total world aluminum capacity to 4.2 million short tons—an increase of 446,000 tons over that at the end of 1955. The United States reported 166,300 tons of the new capacity; Canada, 112,000 tons; U. S. S. R. and satellite countries, an estimated 110,000 tons;

TABLE 13.—World production of aluminum, by countries, 1947-51 (average) and 1952-56, in short tons 1

[Compiled by Pear	[Compiled by Pearl J. Thompson and Berenice B. Mitchell]										
Country	1947-51 (average)	1952	1953	1954	1955	1956					
Australia Austria Brazil Canada China (Manchuria) Czechoslovakia France Germany: East West Hungary India Italy Japan Korea, North 4 Norway Pralend 4	16, 981 2 444 375, 918 70, 992 5 4, 400 30, 451 15, 000 3, 925 38, 024 20, 536 1, 124 40, 957	40, 468 1, 196 499, 758 (*) 116, 996 9, 800 110, 756 27, 000 3, 994 58, 235 47, 025	47, 924 1, 322 548, 445 (3) 3, 000 124, 581 10, 700 117, 881 31, 000 4, 209 61, 136 50, 145 (4) 58, 610	52, 920 1, 612 557, 83, 300 17, 000 132, 426 23, 100 142, 439 36, 000 5, 439 63, 462 58, 544 (4) 67, 584 2, 800	1, 450 63, 051 1, 834 612, 543 4 7, 700 26, 900 142, 701 29, 100 151, 089 41, 000 8, 091 67, 741 63, 392 (3) 79, 527 22, 000	10, 240 65, 447 6, 799 614, 721 4 11, 000 23, 400 165, 082 37, 800 162, 439 38, 374 7, 281 69, 896 72, 749 (3)					
Poland 4. Rumania 4. Spain. Sweden (includes alloys) Switzerland. Taiwan (Formosa) U. S. S. R. 4. United Kingdom United States Yugoslavia.	1, 997 4, 597 22, 928 1, 892 179, 700 32, 812 670, 834	2,825	3,078	3, 854	22, 000 6, 200 11, 508 11, 063 33, 069 7, 717 475, 000 27, 378 1, 565, 721 12, 675	16, 500 6, 600 14, 935 13, 734 35, 274 9, 655 500, 000 30, 892 1, 678, 954 16, 162					
World total (estimate)	1, 536, 000	2, 270, 000	2, 725, 000	3, 090, 000	3, 470, 000	3, 710, 000					

This table incorporates a number of revisions of data published in previous Aluminum chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.
 Average for 1 year only, as 1951 was the first year of commercial production.
 Negligible.
 Estimate.

Average for 1950-51.

<sup>Chemical and Engineering News, All-Aluminum Engines: Vol. 34, No. 38, Sept. 17, 1956, p. 4502.
Ridpath, C. H. E., Contributions of Aluminum to the Electrical Industries: Light Metals, vol. 19, No. 218, May 1956, pp. 156-158.
Shafer, A. J., and Vick, H. J., Pick Best ACSR Size and Voltage: Electrical World, vol. 145, No. 6, February 1956, pp. 74-77.</sup>

Free Europe, 42,800 tons; Asia, 11,700 tons; and Australia, 3,400

Estimated world production increased 7 percent in 1956 to a new high of 3.7 million short tons. All countries showed increases except Czechoslovakia, Hungary, and India. North America produced 62 percent of the total; Europe, 35 percent; Asia, 3 percent; and South America and Australia, less than 1 percent. The United States made the largest gain, with an increase of 113,000 tons.

NORTH AMERICA

Canada.—Production of aluminum in 1956, although only slightly more than in 1955, reached a new high of 615,000 tons. Power shortages experienced in the first part of the year affected operations

at Arvida, Isle Maligne, and Shawinigan Falls.

The Aluminum Company of Canada was granted permission by the Quebec Legislature to construct a new hydroelectric power plant at Chute-des-Passes on the Peribonka River, which would support 150,000 tons of new aluminum capacity, including the new 22,000-ton plant under construction at Isle Maligne. Three new potlines at the company's Kitimat plant in British Columbia began operating during the year at an annual rate of 90,000 tons. Total capacity of the company at the end of 1956 was 762,000 tons compared with 650,000 tons at the end of 1955.

Canadian British Aluminium Co., Ltd., subsidiary of British Aluminium Co., Ltd., and Quebec North Shore Paper Co. began constructing the first and second stages of an aluminum plant at Baie Comeau, Quebec. The plant was to be built in 4 stages, each with a designed capacity of 45,000 tons. The alumina requirements for the first two stages, through 1977, were to be obtained from the Aluminum Company of Canada. Under the contract alumina was to be exchanged for ingot on a harter basis over a period of 20 years, beginning in 1958. Alcan expected that by 1960 receipts of ingot from Canadian British Aluminium Co., Ltd., would exceed 20,000 tons a year. Ingot produced in excess of that delivered to Alcan was to be sold to one of the parent companies, British Aluminium Co., Ltd.³⁷

TABLE 14.—Primary-aluminum production capacity in Canada (Short tons per year)

(-,			
	End of 1955	End of 1956	Being built or planned in 1956	Total
Aluminum Company of Canada: Arvida, Quebec Beauhamois, Quebec Isle Maligne, Quebec Kitimat, British Columbia Saguenay area, Quebec Shawinigan Falls, Quebec	362, 100 37, 000 93, 000 90, 000	362, 100 37, 000 115, 000 180, 000	150, 000 1 120, 000	362, 100 37, 000 115, 000 330, 000 120, 000 68, 000
TotalBritish Aluminium, Ltd.: Baie Comeau, Quebec	650, 100	762, 100	270, 000 90, 000	1, 032, 100 90, 000
Grand total	650, 100	762, 100	360, 000	1, 122, 100

¹ Scheduled.

Feb. 8, 1957, p. 9.

³⁸ American Bureau of Metal Statistics, Yearbook of the American Bureau of Metal Statistics: 36th Ann. Issue for the Year 1956, 50 Broadway, New York, N. Y., June 1957, pp. 90-92.
37 American Metal Market, Canadian British Setting Stage for Operations in Late 1957: Vol. 64, No. 28.

SOUTH AMERICA

Brazil.—Brasileira de Aluminio completed a 40,000-kw. hydroelectric plant at Jaquia-Guacu and began building another 50,000-kw.

plant nearby.

A German group applied for permission to install an aluminum plant in Vitoria, Espirito Santo, to utilize the recently discovered bauxite deposit at Muqui and produce 20,000 tons of aluminum annually.

When enough power became available Reynolds Metals Co. reapplied for permission to exploit bauxite deposits in the lower São Francisco Valley and to build a 100,000-ton aluminum plant. The company's earlier application was denied because of a power shortage.

Kaiser Aluminum & Chemical Corp. was authorized to negotiate with Cia. Hidroelectrica do São Francisco for power to operate an aluminum plant at Recife or Salvador. Bauxite would be obtained from the Amapa Territory.

Venezuela.—Kaiser Aluminum & Chemical Corp. formulated plans for constructing an aluminum plant in Bolivar State, near the

Government's Caroni River hydroelectric project.

EUROPE

Czechoslovakia.—A decrease in imports of bauxite from Hungary in the last quarter of 1956 resulted in a reduction in aluminum output

to 23,400 short tons.

Germany, West.—New operating facilities at Vereinigte Aluminum Werke's (VAW) Erftwerk, as well as increased production at existing plants, made possible an 8-percent increase in primary-aluminum output in 1956. Of the 162,000 short tons produced, VAW accounted for 115,000 tons and Aluminium Hutte G.m.b.H. the remaining 47,000 tons. Production of secondary aluminum declined 6 percent as a result of lower imports, especially from the United States, and a drop in domestic sales.

The rapid increase in consumption of primary and secondary aluminum in recent years was halted in 1956. Increases of 29 and 30

percent, respectively, had been reported in 1954, and 1955.

Rising costs of raw materials resulted in an increase in the price of primary aluminum to DM 233 per 100 kilograms (about US\$0.25 per pound) delivered at railhead, from the previous price of DM 223

(US\$0.24 per pound) effective since June 1953.

As no significant new facilities were expected to be in operation before 1960, fabricators entered into long-term contracts with Canada for 55,000 short tons of aluminum per year and with Norway for 11,000 tons per year. The Federal Government renewed, for another year, the duty-free import quota of 44,000 short tons of primary aluminum. The normal duty was 12 percent ad valorem.

Imports of crude aluminum and aluminum scrap totaled 69,000 short tons, of which 17,000 was from Austria; 11,000 from the United States; 9,000 from Norway; 6,000 from the Soviet Union; 6,000 from Canada; 5,000 from Poland; 4,000 from Czechoslovakia; 2,000 from Switzerland; and 9,000 from other countries. Exports of aluminum

were 2,000 short tons.

Construction of a new 55,000-short-ton primary plant at Greven-broich was being considered by VAW during the year, but no definite plans were announced. VAW completed plans for constructing a 150,000-kw. brown-coal power station at Frimmersdorf, which, together with a similar project to be built by Rheinisch Westfaelishe Elecktrizitaeswerk A. G. (RWE), will supply part of the power for VAW's Erftwerke at Grevenbroich. The cost of power produced in a brown-coal station normally was 2.5 pfennigs per kw.-hr, compared with an average 4.5 pfennigs paid by the aluminum industry for electric power.

Hungary.—Shortages of electric power were reported as accounting for the decline in output of aluminum in 1956—38,000 short tons compared with 41,000 in 1955. At the end of the year the aluminum industry was reported to be at a standstill. Aluminum exports also declined in 1956 and totaled 12,000 short tons, compared with 14,000

tons in 1955.

Italy.—The total annual production capacity of the Italian primary aluminum industry in 1956 was slightly more than 70,000 short tons. Montecatini Company, because of increasing demand, planned to expand the annual capacity of its Bolzano plant from 28,600 tons to 33,000 and to build a new 13,200-ton plant at Crotone in southern

Italy near the Calabrian bauxite deposits.

Norway.—The output of 102,000 short tons of aluminum in 1956 was 28 percent more that that in 1955 but was still below capacity because of power shortages at the Sunndalsøra smelter of Aardal A/S. Demand, however, remained steady, and projects to increase aluminum capacity to 177,500 short tons were to be undertaken. Among these were the expansion of the Hoyanger smelter by Norsk Aluminium A/S from 9,900 short tons to 14,600, with initial production in 1958 and full production by 1960; the Sunndalsøra plant of Aardal A/S from 71,500 to 111,000 tons; and Det Norske Nitridaktieselskap plants from 26,400 to 31,900 tons. Elektrokemish A/S was to build a new plant at Mosjoen with an initial capacity of 20,000 tons, to be completed in 1959. The total capacity at the end of 1956 was 107,800 tons.

Exports of primary aluminum in 1956 were 88,000 short tons, of which 17,000 tons went to Sweden, 15,000 to the United Kingdom, 14,000 to the United States, 12,000 to Belgium-Luxembourg, and the

remainder to other countries.

Spain.—An aluminum output of 14,900 short tons in 1956 was 30 percent more than that produced in 1955 and was sufficient to meet domestic requirements. Empressa Nacional del Alumino was authorized to build an aluminum plant at San Balandran, Aviles, with an initial annual capacity of 16,500 short tons. The plant being built by Aluminio Iberico at Alicante was scheduled for completion in mid-1957. Aluminio y Aleaciones, S. A., was authorized to build an aluminum plant at Sabinanigo, Huesca, for producing aluminum and semimanufactured products. A new company was to be formed to operate the plant.

Switzerland.—Aluminium industrie A. G., despite a shortage of hydroelectric power, produced a record high of 35,000 short tons of aluminum in 1956. The company announced plans for constructing

a new aluminum plant at Steg with an initial capacity of 11,000 short

tons, which would be increased later to 22,000 tons.

U. S. S. R.—Aluminum capacity in the Soviet Union was estimated by the Metal Bulletin of London at 530,000 short tons at the end of 1955 and 600,000 tons at the end of 1956.38 Construction of a large aluminum plant was begun during the year at Krasnoyarsk, Siberia. Nepheline from deposits at Achlinsk was to be concentrated in an alumina plant now under construction at Achlinsk and then shipped to the aluminum plant at Krasnoyarsk. Two other plants were to be built in Siberia, 1 at Irkutsk and the other at Pavlodar, each with a capacity of 82,500 short tons.

A 33,000-short-ton aluminum plant was reported to be under construction in Stalingrad. A small plant of 11,000-ton capacity was operating at Nadvoytsy, which was to be increased to 29,000

tons under the Five-Year-Plan.39

Yugoslavia.—An aluminum plant and rolling mill began operations at Racine near Sibenik during the latter part of 1956. The initial capacity of the plant was 4,400 short tons, which was to be increased

to 9,400 in 1957 and to 18,200 by 1958.

An agreement was signed in August 1956 between the Government of Yugoslavia, the Soviet Union, and the German Democratic Republic, whereby the Soviet Union and East Germany would jointly loan \$175 million, to be repaid in aluminum, for constructing a 55,000short-ton-capacity aluminum plant near Titograd, Montenegro, and for expansion of the Kidricevo plant to 55,000 tons capacity. third plant was planned with Soviet-East German funds to be contributed later.40

Aluminum output reached a record high of 16,000 short tons in 1956, of which over 12,000 tons was produced at Kidricevo and the remainder at Lozovac. ASIA

India.—The Government of India's expansion plan to raise the annual aluminum capacity from 8,500 to 45,000 short tons included the building of 2 new 11,000-ton plants, 1 at Mettur in Madras and the other at Rihand in Uttar Pradesh. Plans of the Indian Aluminium Co., Ltd., subsidiary of Aluminium, Ltd., of Canada, for erecting an aluminum plant at Hirakud in Orissa were approved by the Gov-The plant was to have an initial capacity of 11,000 tons, which could be later increased to 22,000 tons. Alumina would be supplied from the Muri plant in Bihar and power from the Hirakud hydroelectric power station. The company also planned to increase the capacity of its Jaykaynagar plant from 2,800 tons to 5,900.

Japan.—Aluminum output reached a postwar high of 73,000 short tons in 1956, in spite of a power shortage in the latter part of the year. To compete with international prices, the companies lowered costs of production by reducing requirements for power, alumina, cryolite, By the end of the year aluminum was sold by producers at \forall 231,000 41 a short ton to large consumers and \forall 242,000 to small

and medium consumers.

Metal Bulletin (London), No. 4183, Apr. 2, 1957, pp. 14-15.
 Metal Bulletin (London), No. 4183, May 10, 1967, p. 24.
 American Metal Market, Yugoslavia To Expand Aluminum Industry With Aid From Russia: Vol. 63, No. 186, Sept. 27, 1956, p. 9.
 360 yen - US \$1.

Nippon Light Metals Co. began modernizing the idle Niigata plant in August 1956 so that it would produce about 24,000 short tons of aluminum per year. The company also planned to modernize the Kambara and Shimizu plants. The company aluminum capacity was raised from 33,000 short tons at the end of 1955 to 36,000 at the end of 1956.

Showa Denko Co. planned to install 22 new 100,000-amp. electrolytic cells at its Kitagata plant in 1957, which would increase capacity

some 5,500 short tons.

Sumitomo Chemical Co. converted 59 of its 178 electrolytic cells from 32,000 to 52,000 amperes capacity. Another 16 cells were to be refitted in 1957 and some 60 new 52,000-ampere cells installed at the Kikumoto plant, increasing production from 13,200 short tons in 1956 to 22,000 in 1957.

As a result of the exceptionally high level of industrial and other economic activities, domestic demand for aluminum in 1956 was high, making it necessary for the Government early in the year to take measures to restrict its exportation. Exports during the year were

only 2,965 short tons compared with 12,660 tons in 1955.

Taiwan (Formosa).—Taiwan Aluminium Corp. planned a large-scale modernization program that called for rebuilding the reduction pots into 55,000-ampere cells, installing 32 new pots, and constructing facilities to recover cryolite and make aluminum fluoride. The project also called for adoption of Alcoa's combination process for treating red mud. The capacity of the plant was to be 20,000 short tons of red mud annually, from which 3,800 short tons of alumina, 1,700 tons of caustic soda, and 5,500 tons of pig iron could be recovered. Ingot production was expected to reach 22,000 tons after modernization of the potlines and full utilization of the alumina capacity. Expansion of fabricating facilities also was to be undertaken.⁴²

Of the 10,000 short tons of aluminum produced in 1956, 4,000 tons was exported, principally to Korea, South Africa, and the United

States.

AFRICA

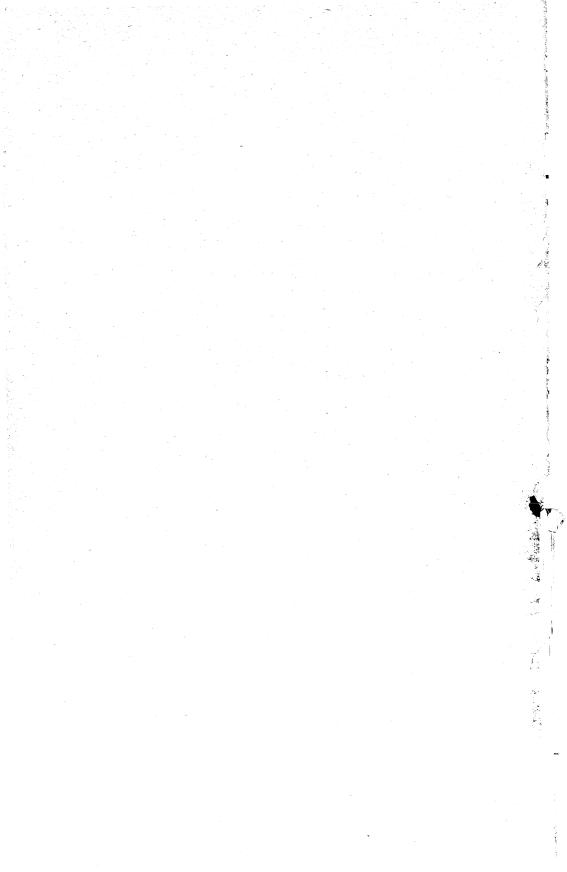
Belgian Congo.—An international syndicate composed of Belge de l'Aluminium of Belgium, Pechiney and Ugine of France, Société pour l'Industrie de l'Aluminium of Switzerland, Montecatini of Italy, Vereinigte Aluminium Werke of West Germany, Aluminium, Ltd., of Canada, and the Reynolds Metals Co. of the United States, was formed under the name of ALUMINGA to study the possibilities of building an aluminum plant in Belgian Congo near the mouth of the Congo River at Inga. This project depended largely on development of hydroelectric power in the area.

French Africa.—Initial production of aluminum at the new \$37 million plant at Edea in the Cameroons was scheduled for January 1957 by Compagnie Camerounaise de l'Aluminium Pechiney-Ugine (ALUCAM). A description of this, the first aluminum plant to be built in Africa, was given in a press release 43 issued by the Cameroons Information Service. The 45,000-ton-annual-capacity plant, work on

⁴² Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, pp. 3-5.
4 Bulletin d'Information et de Documentation, French Cameroons, No. 146, May 28, 1956, 3 pp. Translation submitted in Foreign Service Dispatch 17, Elisabethville, Belgian Congo, Plans for Aluminum Production in French Cameroons: Oct. 26, 1956, 4 pp.

which was begun in May 1955, was to contain a series of 208 electrolytic cells rated at 100,000 amperes, of the same type as those developed by Pechiney at its plants in France, and also installed by Anaconda Aluminum Co. at its plant at Columbia Falls, Mont. Alumina at first would be imported from France but would later be obtained from the French Guinea bauxite deposits, exploitation of which was planned for the near future. Other raw materials, such as petroleum coke, pitch, fluorine and cryolite products, and materials for lining, would be imported from France. Power was to be supplied from a powerplant at the falls on the Sanaga River. The ingots and plates produced at the plant would be shipped to France for conversion into end products. A small quantity of the aluminum, in the form of roofing sheets, would be returned to the Cameroons.

Société Europeene pour l'Étude de l'Aluminium en Afrique (AFRAL), which consists of the chief French, Italian, German, and Swiss aluminum producers, with Aluminium, Ltd., of Canada investigated the feasibility of establishing aluminum plants on the Konkoure River in French Guinea and on the Kouilou River in French Equa-


torial Africa.

Recent developments in bauxite and aluminum developments in

French Africa were described.44

Gold Coast.—The Preparatory Commission set up by the United Kingdom and Gold Coast Governments in 1953 to study the Volta River project stated in its report issued in 1956 that the plan was technically and economically sound.45 To accomplish the plan the following projects must be completed: (1) Development of the bauxite deposits in the vicinity of Aya and Yenahin, (2) construction of a 231,000-short-ton aluminum plant near Kpong, (3) building of new railways from mine to the smelter and thence to the port of Tema, (4) construction of a dam across the Volta River at Ajena, and (5) completion of port facilities at Tema. The commission estimated that construction of the dam and the installations would take 7 years, the railways about 6 years, and the smelter 4 years. Initial cost of the project, with an annual output of 88,000 tons of aluminum, would be £160 million and £230 million for the final stage.

⁴ Moyal, Maurice, Aluminium Developments in French Africa: South African Min. and Eng. Jour., vol. 67, No. 3332, Dec. 21, 1956, pp. 1057-1062.
4 Preparatory Commission, The Volta River Project: Report, London, 1956, vol. 1, 135 pp.; Appendixes to the Report of the Preparatory Commission: Vol. 2, 475 pp.; Engineering Report: Vol. III, 123 pp.

Antimony

By Abbott Renick 1 and E. Virginia Wright 2

STIMATED world production of antimony in 1956 was 54,000 short tons—6 percent more than in 1955. The free world supply of primary antimony came chiefly from Mexico, Bolivia, and Union of South Africa.

Domestic mine production (antimony content) was 590 tons compared with 630 tons in 1955. The Sunshine Mining Co. supplied virtually the entire output, recovering the impure cathode metal from complex silver-lead-copper ore in Shoshone County, Idaho. United States smelter production totaled 10,000 tons, a 22-percent increase over 1955 output.

The price of antimony metal, RMM brand, 99½ percent, f. o. b. Laredo, Tex., was quoted at 33.00 cents per pound throughout the year. The New York price for antimony metal, RMM brand, in cases was 34.97 cents per pound compared with 32.15 cents in 1955.

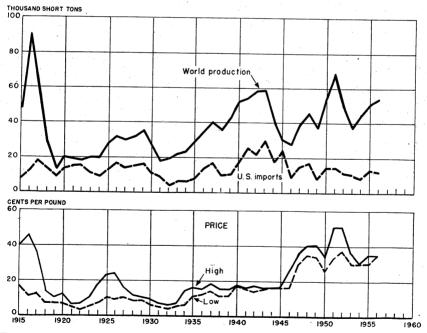


FIGURE 1.—Trends in world production, United States imports for consumption, and New York price for antimony, 1915-56.

Commodity specialist.
 Statistical assistant.

The United States new supply of primary antimony, in terms of recoverable metal,3 was 14,600 short tons compared with 15,000 tons in 1955. A breakdown of this supply shows that domestic ore and concentrate contributed 4 percent (500 tons), domestic and foreign silver-lead ore 14 percent (2,100 tons), and imports 82 percent (12,000 The types of antimony materials imported (general imports) arrived as follows: Ore and concentrate 6,050 short tons; metal 4,700 tons; oxide 1,250 tons; and a small quantity of antimony sulfide. The supply from secondary sources was 24,100 short tons.

Total consumption of antimony in the United States was 39,100 short tons and comprised 12,900 tons of primary antimony, 2,100 tons of antimony contained in foreign and domestic lead-silver ores consumed in manufacturing antimonial lead by primary lead refineries,

and 24,100 tons of secondary antimony.

TABLE 1.—Salient statistics of antimony in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Production: Primary: Mine	3, 882 11, 892	2, 160	372	766 7, 912	633 8, 169	590 10, 005
Smelter	21, 688	11, 860 23, 089	7, 100 22, 360 2, 790	22, 358 1, 956	23, 702	24, 106 2, 065
domestic and foreign ores	2, 414 14, 647 10, 415 3, 600	2, 777 12, 824 7, 945 3, 389	11, 492 7, 778 2, 627	8, 795 4, 722 2, 825 1, 225	1 13, 051 1 7, 514 3, 671 1, 834	12, 533 6, 572 4, 693 1, 236
Oxide Sulfide Exports of ore, metal and alloys ² Casumption of primary antimony ³	540 92 388 15, 181	1, 466 24 161 14, 988	1, 076 11 24 14, 300	1, 225 23 44 12, 180	1, 334 32 212 12, 472	32 65 12, 897
rage price of antimony at New York ants per pound)	36. 49 49, 000	44. 02 49, 000	35. 90 37, 000	30.47 44,000	32. 15 51, 000	34. 97 54, 000

¹ Revised figure.

DOMESTIC PRODUCTION MINE PRODUCTION

During 1956 domestic mine production totaled 590 tons of antimony, of which 540 tons was estimated as recoverable. Production was again confined almost entirely to the Sunshine Mining Co., Shoshone County, Idaho, where impure antimony metal was recovered as a byproduct of processing silver-lead-copper ore. The cathode metal was obtained by leaching a high-antimony concentrate (produced from ore from the Sunshine mine and adjoining properties operated by Sunshine on a profit-sharing basis), and subsequent electrolysis of the leach solution. The electrolytic plant produced metal containing about 95 percent antimony; arsenic was the major impurity. company plans to install facilities at Kellogg, Idaho, to produce refined antimony metal by removing arsenic.

<sup>Gross weight.
Does not include antimony contained in domestic and foreign silver and lead ores, recovered at primary lead refineries and marketed in antimonial lead.
American Metal Market.
Exclusive of U. S. S. R.</sup>

³ Calculated at 92 percent of gross metal content.

In addition, 2,100 tons of antimony contained in domestic and foreign silver-lead ore was recovered by primary lead refineries in producing antimonial lead.

TABLE 2.—Antimony-bearing ore and concentrate, produced (shipped) in the United States, 1947-51 (average) and 1952-56, in short tons

	Gross	Antimon	y content		Gross	Antimon	y content
Year	weight	Quantity	Average percent	year we		Quantity	Average percent
1947-51 (average) 1952 1953	11, 562 4, 854 2, 161	3, 882 2, 160 372	33. 6 44. 5 17. 2	1954 1955 1956	4, 686 3, 967 3, 505	766 633 590	16. 3 16. 0 16. 8

¹ Includes Alaska.

SMELTER PRODUCTION

Primary.—United States smelter production of antimony in 1956 was 10,000 tons, or 22 percent above the 8,200 tons in 1955. Of the total output, 47 percent was oxide; 43 percent, metal; 9 percent, primary residues and slags; and 1 percent, sulfide. Production was increased partly because the Bradley Mining Co. at Stibnite, Idaho, resumed smelter operations. In July that company contracted with Sunshine Mining Co. for the purchase of approximately 2,000 tons of cathode metal; by the end of 1956 the purchases were nearly completed.

Secondary.—Output of secondary antimony was 24,100 short tons, comprising 22,800 tons from secondary-metal plants and 1,300 tons from scrap at primary lead refineries. Production increased 2 percent over 1955. A detailed review appears in the Secondary Metals—Nonferrous chapter of this volume.

TABLE 3.—Smelter production of antimony, 1947-51 (average) and 1952-56, by types of material, in short tons, antimony content

	Year	Metal	Oxide	Sulfide ¹	Residues	Total
1947-51 (avera 1952	age)	4, 994 2, 533 2, 000 2, 178 2, 138 4, 291	6, 314 6, 805 4, 600 4, 925 5, 390 4, 731	113 108 100 124 92 129	(2) 2, 414 400 685 549 854	11, 892 11, 860 7, 100 7, 912 8, 169 10, 005

Also includes ground high-grade sulfide ore.
 Not reported before 1951.

CONSUMPTION AND USES

The total consumption of antimony was 39,100 tons, 2 percent higher than the 38,200 tons consumed in 1955. Primary antimony used was 12,900 tons (12,500 in 1955); the antimony content of leadsilver ore consumed by primary lead refineries in manufacturing antimonial lead was 2,100 tons (2,000 in 1955); secondary antimony totaled 24,100 tons (23,700 in 1955).

Consumption of primary antimony in manufacturing finished products increased 3 percent above 1955; of the total, 58 percent was in nonmetal products and 42 percent in metal products. Consump-

TABLE 4.—Antimony metal, alloys, and compounds produced in the United States, 1947-51 (average) and 1952-56, in short tons

	Primary	Anti						
Year	metal, oxide, Year sulfide,		Antimony content					
and residues (antimony	Gross weight	From domestic	From foreign	oreign From	Total		antimony (content of alloys) 3	
	content)		ores 1	ores 2	scrap	Quantity	Percent	٠.
1947-51 (average)	11, 892 11, 860 7, 100 7, 912 8, 169 10, 005	71, 092 58, 203 62, 373 59, 873 64, 044 66, 826	1, 756 2, 210 1, 684 1, 299 1, 307 1, 320	658 567 1, 106 657 725 745	2, 186 1, 615 1, 747 1, 565 1, 523 1, 283	4, 600 4, 392 4, 537 3, 521 3, 555 3, 348	6. 5 7. 5 7. 3 5. 9 5. 6 5. 0	21, 688 23, 089 22, 360 22, 358 23, 702 24, 106

Includes primary residues and small quantity of antimony ore.
 Includes foreign base bullion and small quantities of foreign antimony ore.
 Includes antimony content of antimonial lead produced from scrap at lead refineries.

tion decreased 4 percent in nonmetal products and increased 16 percent in metal products.

Consumption of secondary antimony, chiefly in metallic products, increased 2 percent.

TABLE 5.—Industrial consumption of primary antimony, 1947-51 (average) and 1952-56, by type of material, in short tons, antimony content

Year	Ore and concentrate	Metal	Oxide	Sulfide	Residues	Total
1947-51 (average) ¹	1, 776 2, 100 768 491 1, 149	4, 321 5, 400 4, 609 4, 041 4, 154	7, 465 5, 800 5, 885 7, 051 6, 843	117 100 94 127 112	1, 309 900 824 762 639	15, 181 14, 988 14, 300 12, 180 12, 472 12, 897

Breakdown by type of material not available before 1949.
 Estimated 100-percent coverage based on reports from respondents that consumed 89 percent of the grand total of antimony in 1952.

STOCKS

At the end of 1956 industry stocks, including 560 tons of cathode metal held by the Sunshine Mining Co., totaled 8,100 short tons, a 500-ton decrease from the 8,600 tons on hand December 31, 1955. Mine stocks, which are included in industry stocks, were 240 tons, compared with 200 tons at the end of 1955.

On May 24 in an appearance before the Senate Committee on Interior and Insular Affairs, Arthur S. Flemming, Director of Defense Mobilization, testified that the quantity of antimony on hand and on order was about 80 percent of the minimum stockpile objective. The long-term objective was stated to be substantially higher than the minimum.

In a directive issued July 9, Flemming authorized acquisition of antimony to meet the minimum or long-term stockpile objective for fiscal year 1957. The directive also authorized procuring antimony by barter or exchange of surplus agricultural commodities for the strategic and supplemental stockpiles. No purchases that could be acquired from domestic production were obtained from foreign sources.

TABLE 6.—Industrial consumption of primary antimony, 1947-51 (average) and 1952-56, in short tons, antimony content

Product	1947-51 (average) ¹	1952	1953 2	1954	1955	1956
Metal products:					1	
Ammunition	13	3	3	. 5	5	14
Antimonial lead		2, 196	2,300	1, 531	1,305	1,692
Battery metal	(3)	2, 253	3,000	1, 583 816	1, 214 831	1, 215 1, 077
Bearing metal and bearings	1, 512 92	1, 119 43	1,000 60	156	146	1,077
Cable covering	93	80	80	70	67	57
Collansible tubes and foil	33	32	60	47	24	12
Sheet and pipe	241	70	170	238	157	300
Solder	143	145	200	148	131	144
Type metal Other	859	624	700	613	598	528
Other	(3)	61	127	118	161	137
Total metal products	8,606	6, 626	7, 700	5, 325	4, 639	5, 366
Nonmetal products:						
Ammunition primers	12	24	30	22	20	13
Antimony sulfide (precipitated)	(4)	67	50	37	44	45 37
rireworks	(5)	36	50	27	32	. 3
Flameproofed coatings and com-	(5)	980	450	316	626	42
pounds	(5) 765	2,059	780	950	592	659
Flameproofed textilesFrits and ceramic enamels	1, 482	959	1,000	706	1,020	95
Glass and pottery	7,444	579	700	763	1,028	1, 23
Matches	35	22	20	15	17	18
MatchesPaints and lacquers	943	853	340	681	414	578
Pigments	. (5)	766	780	700	825	85
Plastics		632	560	620	767	970
Rubber products	51	66	20	1 000	78	150
Other 6	2,370	1,319	1,820	1,969	2, 370	1, 590
Total nonmetal products	6, 575	8, 362	6, 600	6, 855	7, 833	7, 531
Grand total	15, 181	14, 988	14, 300	12, 180	12, 472	12, 897
	1	l.	l	t	1	L

¹ Data for 1947-49 exclude certain intermediate smelting losses, which are included for subsequent years.
2 Estimated 100-percent coverage based on reports from respondents that consumed 89 percent of the grand total antimony in 1952.
3 Included with "antimonial lead."
4 Not reported as an end was a reduct before 1071

TABLE 7.—Industry stocks of primary antimony in the United States at end of year, 1955-56, in short tons, antimony content

	I	Dec. 31, 195	5	I	Dec. 31, 195	6
	Mine 1	Other	Total	Mine 1	Other	Total
Ore and concentrate	² 202	3, 366 1 267	² 3, 568 1, 267	242	2, 232 2, 236	2, 474 2, 236 2, 638
Oxide		1, 267 3, 234 94 445	3, 234 94 445		2, 638 159 598	2, 638 159 598
Total	2 202	8, 406	2 8, 608	242	7, 863	8, 105

Includes Alaska.
 Revised figure.

PRICES

The domestic price of antimony metal, RMM brand in bulk, 99½ percent f. o. b. Laredo, Tex., was 33.00 cents per pound throughout 1956. The corresponding New York price, in cases, was 34.97 cents per pound. Comparable prices during 1955 averaged 30.18 and 32.15 cents per pound, respectively.

⁴ Not reported as an end-use product before 1951.
5 Included with "Other nonmetal products."
6 Antimony trichloride and sodium antimonate included to avoid disclosing individual company operations.

Quoted prices of antimony oxide in 1956 were 27-29 cents per pound, carlots, in bags, and 28½-30½ cents per pound, less than carlots.

TABLE 8.—E&MJ Metal and Mineral Markets opening and subsequent changes in nominal quotations for antimony ore, 1956, antimony content, per unit (20 pounds)

Date	50-55 percent	Minimum 60 percent	Minimum 65 percent
Jan. 1	\$3. 20-\$3. 35	\$3. 90-\$4. 00	\$4. 05-\$4. 25
Feb. 16.	3. 20- 3. 35	3. 80- 3. 90	3. 95- 4. 15
June 14.	3. 20- 3. 35	3. 80- 3. 90	4. 05- 4. 20
Nov. 22.	3. 00- 3. 10	3. 55- 3. 65	3. 90- 4. 00

TABLE 9.—Foreign metal prices, New York, 1956, antimony content, cents per pound 1

[American Metal Market]

	Date	99.6 percent	99.5 percent	99 percent
Jan. 1 Mar. 21		 28. 00-28. 50 28. 00-29. 00	27. 00-28. 00 27. 50-28. 00	26. 00-27. 00 27. 00-27. 50
		20.00 20.00	200 20.00	21.00-21.00

¹ Duty paid New York-lots of 5 tons or more.

TABLE 10.—Antimony oxide prices, New York, 1956, cents per pound

[E&MJ Metal and Mineral Markets]

Date	Carlots, in bags	Less than carlots in bags
Jan. 1	29. 00	30. 50
May 10	27. 50-29. 00	28. 50–30. 50
June 7	27. 00-29. 00	28. 50–30. 50

FOREIGN TRADE 4

Imports.—General imports of contained antimony totaled 12,500 tons compared with 13,100 tons in 1955. Imports of recoverable metal were estimated to be 12,000 tons and comprised 6,050 tons in ore and concentrate, 4,700 tons of metal, 1,250 tons of oxide, and a small quantity of sulfide.

Imports of ore and concentrate, principally from Mexico, Union of South Africa, and Bolivia, decreased 13 percent from the preceding year; the average grade was 38 percent antimony (a decrease of 8 percent). Imports of metal, chiefly from United Kingdom, Yugoslavia, and Belgium-Luxembourg, increased 28 percent. Imports of oxide, 73 percent of which came from United Kingdom, decreased 33 percent, and imports of sulfide, chiefly from Yugoslavia, remained the same as in 1955.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

Exports.—In 1956 exports (gross weight) of ore and concentrate were 32 tons valued at \$1,900; metal and alloys, 33 tons valued at \$24,200; and compounds, 211 tons valued at \$134,400. By comparison, exports of ore and concentrate in 1955 totaled 8 tons valued at \$5,000; metal and alloys, 204 tons valued at \$71,000; and compounds, 189 tons valued at \$126,000.

No antimony was reexported in any form.

TABLE 11.—Antimony imported for consumption in the United States, 1947-51 (average) and 1952-561

Bureau of the Censu	

	timony ontent	Short		,		anti- monial		
	T	(gross	Value	Short tons	Value	lead 2 (short tons)	Short tons (gross	Value
tons	Value	weight)						
7,945 7,778 4,722	\$3, 179, 017 3, 200, 889 2, 035, 125 1, 289, 782	34 17 33	\$76, 018 20, 719 8, 678 17, 101	3, 559 3, 354 2, 612 2, 802 3, 667	\$2, 147, 410 2, 338, 938 1, 402, 226 1, 349, 179	962 1, 494 1, 350 771	651 1,766 1,296 1,476	\$396, 13 1, 056, 28 579, 60 645, 05 926, 31
200	8 10, 3 37 6 7, 945	8 10, 337 \$3, 179, 017 6 7, 945 3, 200, 889 2 7, 778 2, 035, 125 0 4, 722 1, 289, 782 7 \$7, 514 \$1,876, 601	8 10, 337 \$3, 179, 017 131 6 7, 945 3, 200, 889 34 2 7, 778 2, 035, 125 17 0 4, 722 1, 289, 782 33 7 7, 7, 14 31,876, 601 46	8 10, 337 \$3, 179, 017 131 \$76, 018 6 7, 945 3, 200, 889 34 20, 719 2 7, 778 2, 035, 125 17 8, 673 7 \$7, 514 \$1,876, 601 46 18, 628	8 10, 337 \$3, 179, 617 131 \$76, 018 3, 559 6 7, 945 3, 200, 889 34 20, 719 3, 354 2 7, 778 2, 035, 125 17 8, 678 2, 612 7 \$7, 514 \$1,876, 601 46 18, 628 3, 667	8 10, 337 \$3, 179, 017 131 \$76, 018 3, 559 \$2, 147, 410 6 7, 945 3, 200, 889 34 20, 719 3, 344 2, 338, 938 2 7, 778 2, 035, 125 17 8, 678 2, 612 1, 402, 226 0 4, 722 1, 289, 782 33 17, 101 2, 802 1, 349, 179 7 \$7, 514 \$1,876, 601 46 18, 628 3, 667 1, 859, 906	8 10, 337 \$3, 179, 017 131 \$76, 018 3, 559 \$2, 147, 410 962 65 7, 945 3, 200, 889 34 20, 719 3, 354 2, 338, 938 1, 494 20 7, 778 2, 035, 125 17 8, 678 2, 612 1, 402, 226 1, 350 0 4, 722 1, 289, 782 33 17, 101 2, 802 1, 349, 179 771 7 \$7, 514 \$1,876, 601 46 18, 628 3, 667 1, 859, 906 1, 366	8 10, 337 \$3, 179, 017 131 \$76, 018 3, 559 \$2, 147, 410 962 651 6 7, 945 3, 200, 889 34 20, 719 3, 354 2, 338, 938 1, 494 1, 766 2 7, 778 2, 035, 125 17 8, 678 2, 612 1, 402, 226 1, 350 1, 296 0 4, 722 1, 289, 782 33 17, 101 2, 802 1, 349, 179 771 1, 476 7 \$7, 514 \$1,876, 601 46 18, 628 3, 667 1, 859, 906 1, 366 2, 210

TABLE 12.—Antimony imported into the United States, 1947-51 (average), 1952-54 (totals), and 1955-56, by countries 1

[Bureau of the Census]

	Antimony ore		liqu	dle or nated Antimo mony		Antimony metal		Antimony oxide	
Country	Short		timony entent	Short	Value	Short	Value	Short tons (gross	Value
	(gross weight)	Short tons	Value	(gross weight)		tons		weight)	
1947–51 (average) 1952 1953 1954	27, 672 18, 246 17, 242 12, 870	10, 415 7, 945 7, 778 4, 722	\$3, 198, 286 3, 200, 889 2, 035, 125 1, 289, 782	132 34 15 33	\$76, 237 20, 719 7, 582 17, 101	3, 600 3, 389 2, 627 2, 825	\$2, 171, 208 2, 359, 525 1, 407, 424 1, 359, 497	651 1, 766 1, 296 1, 476	\$396, 138 1, 056, 286 579, 600 645, 057
1955				Λ.			•		
North America: Canada Mexico	262 7, 558	126 2, 296	22, 418 422, 787	9	1, 422	981	590, 089		
Total	7, 820	2, 422	445, 205	9	1, 422	981	590, 089		
South America: Bolivia 2 Chile 2 Peru 2	3 3, 259 234 279	3.2,098 3 155 179	* 571, 869 * 64, 879 63, 724						
Total	* 3, 772	3 2,432	³ 700, 472						

See footnotes at end of table.

Does not include antimony contained in lead-silver ore.
 Estimated antimony content; for gross weight and value, see Lead chapter of this volume.
 Revised figure.

TABLE 12.—Antimony imported into the United States, 1947-51 (average), 1952-54 (totals), and 1955-56, by countries 1—Continued

[Bureau of the Census]

en en figures de la companya de la La companya de la co	A	ntimor	iy ore	liqu	dle or nated mony	Antir	nony metal	Antim	ony oxide
Country	Short		atimony ontent	Short	Value	Short	Value	Short	Value
	(gross weight)	Short tons	Value	(gross weight)		tons		(gross weight)	
1955—Con.					-				
Europe: Austria Belgium-	6	3	\$1,328	ļ					
Luxembourg Czechoslovakia France Germany, West	32 28	11	2, 255	5	\$2,661 2,562	1, 087 30 159	\$528, 798 12, 342 72, 519	190 6	\$92, 850 2, 398
Netherlands United Kingdom. Yugoslavia	23	17 19	6, 230	10 5 11	4, 283 2, 212 5, 488	187 501 726	78, 123 244, 376 334, 225	99 1, 915	40, 757 790, 307
Total	89	50	20, 883	37	17, 206	2,690	1, 270, 383	2, 210	926, 312
Africa: 4 Algeria French Morocco Union of South	³ 772 275	3 353 107	⁸ 41, 664 13, 888						
Africa	8 3, 579	3 2,150	³ 654, 489				<u> </u>		
Total	4, 626	3 2,610	710, 041						
Grand total	* 16,307	⁸ 7,514	³ 1,876, 601	46	18, 628	3, 671	1, 860, 472	2, 210	926, 312
1956								-	
North America: Canada Mexico	386 11, 106	201 2, 977	41, 989 624, 742			791	521, 232	25	12, 463
Total	11, 492	3, 178	666, 731			791	521, 232	25	12, 463
South America: Bolivia ² Chile ² Peru ²	2, 013 221 377	1, 306 98 231	454, 854 29, 420 78, 021			200	79, 081		
Total	2, 611	1, 635	562, 295			200	79, 081		
Europe: Austria Belgium- Luxembourg	16	11	3, 883	6	2, 688				
France				2 7	1, 030 2, 873	964 131 56	472, 060 65, 656 26, 113	178	81, 686 83, 528
Italy United Kingdom_ Yugoslavia	6	4	2, 660	9 22	4, 256 11, 868	1, 346 1, 161	21, 818 657, 856 579, 978	1, 084	462, 247
Total Asia: Turkey	22 82	15 44	6, 543 14, 512	46	22, 715	3, 702	1, 823, 481	1, 464	627, 461
Africa: Algeria Union of South	744	260	41, 664						
Africa Total	2, 473 3, 217	1, 440	470, 465						
Grand total	$\frac{3,217}{17,424}$	6, 572	512, 129 1, 762, 210	46	22, 715	4, 693	9 492 704	1 400	690, 004
GIGHT BOUGHTEE	11, 141	0,012	1, 102, 210	**0	44, 110	1,003	2, 423, 794	1, 489	639, 924

さまり 東京の東京社会の「日本の大学」とは「日本の大学」というできます。 これのできません こうしゅうごうじゅうじょうじゅう

Data are general imports, that is, they include antimony imported for immediate consumption, plus material entering the country under bond. Table does not include antimony contained in lead-silver ores.
 Imports shown from Chile probably were mined in Bolivia or Peru and shipped from a port in Chile.
 Revised figure.
 Mozambique revised to none.

TECHNOLOGY

The Bureau of Mines conducted a laboratory study of selective extraction of mercury and antimony from cinnabar-stibnite ore. The results of this investigation indicated that bulk flotation of sulfides, followed by furnacing of the flotation concentrate with a carefully regulated admission of air, would yield an overall recovery of more than 95 percent of the mercury in the ore and would permit possible recovery of antimony from the furnace calcine. tive data were published 5 showing the results obtained.

A technical paper describing a new process for upgrading cathode antimony from the Sunshine Mining Co. leaching plant to 99.95 per-

cent antimony was presented; among other things it stated: 6

The procedure is to mix the cathode metal with flake sodium hydroxide. mixture is placed in an iron pot and heated in an electric furnace to 590° C. which is below the melting point of antimony but well above the melting point of caustic. The size of particle of the cathode metal does not seem to have much of a bearing on the rate of reaction as the metal is very porous. Heat transfer in the pot is slow and poor, consequently a small diameter long pot is used. The mixed charge is heated for 3 hours after the temperature has reached 450° C. and carried to a maximum of 590° C. The charge is removed from the pot by a boring bar or The charge is soft but it will not discharge from the pot simply by tipping and the auger tends to remove the fusion in small pieces which aids the leaching step. The discharged cake drops directly into water in a leaching drum which is heated with live steam. One and one-half hours leaching time at almost boiling temperature is enough to remove the arsenic. Leaching is followed by 3 hot washes for the complete removal of NaOH and soluble impurities. The washes The washes are cycled, as in conventional washing procedures, with the final wash being fresh water.

The final metal contains less than 0.05% of any impurity with copper, lead, arsenic, and iron present. Iron is the most troublesome impurity, mainly because

the heating has been done in a mild steel pot.

A technical article on antimony oxide glasses stated in the abstract: 7

Glass compositions containing antimony oxide as a glassformer were developed. The stabilizing oxides used in these compositions were Al_2O_3 , Na_2O and K_2O . Glasses formed from these oxides, containing antimony oxide in amounts up to 78% by weight, transmitted infrared radiation in wavelengths up to 6.2 u.

Two United States patents were issued during 1956 relative to antimony.8

WORLD REVIEW

Australia.—A report that the New England Antimony Mines suspended operations in 1956 9 stated:

Owing to lack of working capital, directors of New England Antimony Mines N. L. have found it necessary to discontinue all mining operations for the present. The mine, however, they report, is opening up quite promisingly and ore supplies in sight should provide for two years' profitable operation. *

Aug. 16, 1956, p. 21.

^{*} Erspamer, E. G., and Wells, R. R., Selective Extraction of Mercury and Antimony From Cinnabar-Stibnite Ore: Bureau of Mines Rept. of Investigations 5243, 1956, 15 pp.

* Gould, Wayne D., Sunshine Mining Co.—Metallurgical Practices: AIME, Northwest Section Meeting, Spokane, Wash., Apr. 30, 1956.

*† Hedden, Walter A., and King, Burnham W., Antimony Oxide Glasses: Jour. Am. Ceram. Soc., vol. 39, No. 6, June 1, 1956, pp. 218-222.

* Nixon, Alan C., and Deal, Carl H., Jr. (assigned to Shell Development Co.), Processes Relate to Separation of Xylenes With Antimony Tri-Bromide: U. S. Patents 2,768,222 and 2,768,220, Oct. 23, 1956.

* Industrial & Mining Standard (Australia), Rye Park Looks Forward to Big Profits, Vol. 111, No. 2817, Aug. 16, 1956, D. 21.

Bolivia.—Total exports of antimony contained in concentrates was about 5,600 short tons compared with 5,900 tons in 1955. Under Supreme Decree 4540, of December 15, 1956, the Bolivian Government established a scale of export taxes on the gross value of antimony contained in concentrates as follows:

Dollars United States, Cur-	Grade of concentrates				
rency per long-ton unit	65 per-	60 per-	55 per-		
antimony 1	cent	cent	cent		
\$2.50	2, 80	1.40	0. 50		
\$3.50	5, 60	4.20	2. 80		
\$4.50	8.40	7.00	5.6		

¹ At the free rate of exchange, official prices to be established for different grades of concentrate.

Canada.—Preliminary data for 1956 report that Canada's production of antimony totaled 910 short tons valued at \$576,300 compared with 1,011 tons in 1955. The only producer was the Consolidated Mining & Smelting Co. of Canada, Ltd., Trail, British Columbia, which recovered the metal as an antimonial-lead alloy from residues of lead refining.

Eire.—The Metal Bulletin (London) reported:10

High grade ores of antimony and gold have been found in a disused antimony mine at Clontibret, County Monaghan, according to a statement made in Dublin by the Mining Corporation of Ireland—a subsidiary of Can-Erin Mining Company of Toronto. * * *

Mexico.—Production of antimony increased to 5,000 short tons in 1956, compared with 4,200 tons in 1955. Total production, by type of material, was as follows:

Antimony content:	Short tons
Impure antimony bars	 880
Impure lead bars	 535
Other forms	 13
Total	5 022

Exports also increased and totaled 3,600 tons, all of which went to the United States.

Peru.—Output of antimony in Peru was 950 short tons, virtually

unchanged from 1955.

Union of South Africa.—The Union of South Africa continued as the leading antimony producer in the world. Production of antimony in concentrates totaled about 15,700 short tons, virtually unchanged from the previous year.

The Consolidated Murchison (Transvaal) Goldfields & Develop-

ment Co., Ltd., 1956 Annual Report to Stockholders stated:

¹⁰ Metal Bulletin (London), Antimony and Gold Found in Eire: No. 4168, Feb. 8, 1957, p. 19.

* * * Up to the present time all the lenses which have been exploited have been discovered by surface prospecting, but there is the possibility that other lenses may exist which are not disclosed by surface indications, and it has been decided to explore this possibility by initiating a programme of underground development within the line of antimony mineralisation at elevations ranging from 500 to 900 feet below the surface and designed to traverse the 50,000 feet of strike within this Company's Claim Area. * * * * * * The ore reserves at 31st December, 1956, which were deemed to be payable on account of the combined Gold and Antimony content amounted to 400,000 tons; an increase of 20,000 tons over the figure at the previous year end. The results of operations at the mine were as follows:

The results of operations at the mine were as follows:

	Years ende	ed December 31
	1955	1956
Tons milled	139, 673	163, 776
Gold produced-fine ounces	4. 818	4, 668
Concentrates and cobbed ore produced-short tons	24, 834	24, 897
Revenue from all sources	£1, 516, 857	£1, 294, 847
Revenue from all sources Working costs per ton milled-shillings	67 22	62.82
Working costs—total	£469, 420	£514, 410
Working costs—totalGross profit	£1, 047, 437	£780, 437
Canital expenditure	£46, 318	£6, 748
Stock of cobbed ore and concentrates at end of the		
vear-short tons	2, 320	4, 431
United Kingdom.—The following table provide consumption of antimony by principal uses. 11	nes miorma	
consumption of antimony by principal uses."		Long tons
Batteries		422
Other antimonial lead		
Bearings		
Oxides for white pigments		925
Oxides for other uses		183
Miscellaneous uses		100
Total all trades		4, 845
The above figures exclude the consumption	of antimon	y in scrap,
which was as follows:		
		Long ton
Antimonial lead		3, 856
For other uses		398
Total consumption in scrap		4, 254
The Mining Journal (London) reported: 12		
Antimony from China, the U.S.S.R. and other so	ources, mainly	y beyond the
Tron Curtain is being offered on the Continent at disc	counts of up	to £50 below

Iron Curtain, is being offered on the Continent at discounts of up to £50 below London prices for metal of equivalent grades. Yugoslavia.—Production of antimony ore totaled 91,500 short tons,

a 3-percent increase above 1955. Smelter output of metal totaled 1,833 short tons compared with 1,769 tons in 1955.

¹¹ British Bureau of Non-Ferrous Metal Statistics, Bulletin-Statistics for January 1957; Vol. 10, No. 1 p. 50. ¹³ Mining Journal (London), vol. 246, No. 6287, Feb. 17, 1956, p. 209.

TABLE 13.—World production of antimony (content of ore), by countries, 1947-51 (average) and 1952-56, in short tons 3

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 2	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada 4	896	1, 165	744	651	1,011	910
Honduras Mexico 4	7, 220					.
United States	3, 882	6, 098 2, 160	4, 063 372	4, 610 766	4, 209 633	5, 022 590
Total	12,001	9, 423	5, 179	6,027	5, 853	6, 522
South America:						
Argentina	5 30	(6)	(6)	(6)	7	2
Bolivia (exports)	11,903	10, 809	6,376	5, 751	5,907	5, 629
Peru	1, 267	567	1,062	933	960	953
Total	⁵ 13, 200	⁵ 11, 430	5 7, 490	5 6, 740	6,874	6, 584
Europe:						
AustriaCzechoslovakia *	403	429	543	429	440	410
France	3, 130	1,800	1,800	1,800	1,800	1,800
Greece	406 198	518 380	330		90	(6) (6)
Italy	654	692	660 465	\$ 60 217		
Portugal	26	155	1	317 10	358	310
Spain	217	288	254	120	210	5 250
Spain Yugoslavia (metal)	1,670	1, 465	1, 554	1,711	1,769	1, 833
Total 25	6, 900	6, 100	5, 900	4,700	4,800	4, 900
Asia:						
British Borneo: Sarawak	1					1
Burma 5	100	100	130	55	65	90
China 5	4,880	8,800	11,000	12,000	13,000	13,000
Iran 7 Japan	125	265	110	50	63	(6)
Thailand (Siam)	179 137	230	354	291	357	619
Turkey.	1, 216	77 1, 274	50 951	78	28	41
Total 5		<u> </u>		1,080	1,841	3, 700
	6, 640	10, 700	12,600	13, 500	15, 400	17, 500
Africa:	4.1		1.0			
Algeria	1,027	1, 456	1, 995	2, 535	1, 124	5 2, 300
French Morocco Rhodesia and Nyasaland, Fed. of	735	925	64	429	349	
Southern Rhodesia		***				
Spanish Morocco	50 250	110 475	26 341	72	223	77
Union of South Africa	7, 505	7, 949	3,009	9, 528	397	330
Total	9, 567	i			15, 641	15, 689
Oceania:	8, 501	10, 915	5, 435	12, 894	17, 734	⁵ 18, 400
Australia	266	000	05-	10-		
New Zealand.	200	268 7	251 12	131	344	315
Total	268	275	263	131	344	315
World total (estimate)2	49,000	49,000	37, 000	44,000	51, 000	54, 000

¹ Approximate metal content of ore produced, exclusive of antimonial lead ores.

2 Antimony is also produced in Hungary and U. S. S. R.; an estimate for Hungary by senior author of the chapter is included in the total, but there is too little information to include an estimate for U. S. S. R. and This table incorporates a number of revisions of data published in previous Antimony chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

4 Includes antimony content of miscellaneous smelter products.

<sup>Estimate,
Data not available; estimate by senior author of chapter included in total.
Year ended Mar. 20 of year following that stated.</sup>

Arsenic

By Abbott Renick 1 and E. Virginia Wright 2

RODUCTION of white arsenic in the United States increased 13 percent in 1956 compared with 1955. Imports, comprising a third of the new supply, decreased 11 percent from the previous year. As a result of heavier than usual boll-weevil infestations in the cotton-growing areas of the South, apparent consumption of white arsenic increased 34 percent. This circumstance, favorable to the producers brought their year-end stocks to the lowest point since 1951 and 58 percent below stocks at the end of 1955. White arsenic continued to be quoted at 5½ cents a pound throughout 1956.

World production of white arsenic, estimated at 44,000 short tons

in 1956, was 4 percent less than in 1955.

TABLE 1.—Salient statistics of the white arsenic industry in the United States, 1947-51 (average) and 1952-56, in short tons

Year	Produc- tion	Ship- ments	Imports	Exports 1	Apparent consumption 2	Producers' stocks, end of year	Price per pound 3
1947–51 (average) 1952 1953 1954 1955	15, 930 15, 673 10, 873 13, 167 10, 780 12, 201	15, 003 9, 244 11, 315 11, 523 11, 673 18, 876	11, 453 4, 483 4, 717 4, 848 7, 222 6, 422	4 200	26, 256 13, 727 16, 032 16, 37 18, 895 25, 298	4, 078 11, 263 10, 820 12, 464 11, 571 4, 896	\$0.06 .06½05½ .05½ .05½ .05½ .05½

Reported by producers.
 Producers' shipments, plus imports, minus exports.
 Refined white arsenic, carlots, as quoted by E&MJ Metal and Mineral Markets.
 Estimated by the Bureau of Mines.

DOMESTIC PRODUCTION

The domestic arsenic output was entirely a byproduct of the smelting and refining of complex copper and lead ores, and the quantity of arsenic produced was directly related to the output of these Production of white arsenic increased 13 percent compared metals. with 1955.

White arsenic was produced by The Anaconda Co., Anaconda, Mont. (copper smelter), United States Smelting, Refining & Mining Co., Midvale, Utah (lead smelter), and American Smelting & Refining Co., Tacoma, Wash. (copper smelter). Arsenic metal was not

produced during 1956.

¹ Commodity specialist. ² Statistical assistant.

TABLE 2.—Production and shipments of white arsenic by United States producers, 1947-51 (average) and 1952-56

		Crud	е		Refined	i		Total	
Year	Pro- duc-	Shi	pments	Pro- duc-	Shir	ments	Pro- duc-	Shi	oments
	tion, short tons ¹	Short tons	Value	tion, short tons	Short tons	Value	tion, short tons	Short tons	Value
1947-51 (average) 1952 1953 1954 1955 1956	14, 905 15, 046 10, 345 12, 630 9, 968 11, 423	13, 980 8, 719 10, 816 10, 921 10, 986 18, 048	\$1, 041, 617 563, 719 495, 673 492, 562 501, 104 685, 145	1, 025 627 528 537 812 778	1, 023 525 499 602 687 828	\$92, 300 46, 751 43, 383 48, 516 53, 557 69, 524	15, 930 15, 673 10, 873 13, 167 10, 780 12, 201	15, 003 9, 244 11, 315 11, 523 11, 673 18, 876	\$1, 133, 917 610, 470 539, 056 541, 078 554, 661 754, 669

¹ Excludes crude consumed in making refined.

CONSUMPTION AND USES

In 1956 more than half of the white-arsenic supply was consumed in manufacturing calcium and lead arsenate insecticides. The apparent consumption of white arsenic in the United States was approximately 25,300 tons—34 percent above the 18,900 tons consumed in 1955. One important factor in the expanded requirements of calcium arsenate during 1956 was its value as a replacement for chlorinated hydrocarbons. According to one investigation: 3

Late in 1955 it was found that a technique of treating individual weevils topically with known amounts of insecticide could be used to determine whether a population was resistant or not. Early in 1956 an extensive program of testing weevils from various areas of the state was undertaken in cooperation with county agents to delimit the area where resistance was a problem.

By early July it was found that about two-thirds of the cotton acreage including most of the Mississippi Delta, Red River Valley, and Macon Ridge was affected. Growers in these areas who had been advised to begin the season with the chlorinated hydrocarbons soon found they were not getting satisfactory control and were advised to change to calcium arsenate or Methyl Parathion.

Other major requirements for arsenic were in weedkillers, in soil sterilizers, and on firebreaks in national forests.

Arsenic also was used in manufacturing glass, lead-base alloys, dyestuffs, cattle dip, wood preservatives, poison bait, debarking trees, and animal husbandry and in oil wells as a corrosion inhibitor.

STOCKS

Stocks of white arsenic held by producers decreased 58 percent and at the end of 1956 totaled 4,900 tons, decreasing nearly 7,600 tons from the alltime high of 12,500 tons at the end of 1954. Producers' stocks of commercial calcium arsenate and lead arsenate on December 31, 1956, totaled about 2,000 and 1,400 tons, respectively.

³ The Cotton Trade Journal, Nashville, Tenn., Dec. 14, 1956, p. 2.

TABLE 3.—Production of arsenical insecticides and consumption of arsenic wood preservatives in the United States, 1947-51 (average) and 1952-56

	Production cides (she	of insecti- ort tons) 1	Consumption of wood pre- servatives (pounds) ²
Year	Lead ar- senate (acid and basic)	Calcium arsenate (70 percent Ca ₃ (AsO ₄) ₂)	Wolman salts (25 percent sodium arsenate)
1947-51 (average)	13, 660 7, 143 7, 098 7, 810 7, 388 5, 763	17, 883 3, 817 3, 630 1, 379 \$ 1, 885 12, 514	1, 237, 788 1, 658, 426 1, 900, 692 1, 966, 790 2, 133, 215 2, 009, 839

¹ Bureau of the Census, U. S. Department of Commerce. 2 Forest Service, U. S. Department of Agriculture. 3 Revised figure.

4 Preliminary figures.

PRICES

White arsenic was quoted at 5½ cents per pound (powdered, in barrels, carlots) throughout 1956. According to the Oil, Paint and Drug Reporter, calcium arsenate, in carlots, was steady at 9-10 cents per pound. Likewise, the quoted price for lead arsenate, carlots (3-pound bags), remained unchanged throughout the year at 27½ cents per pound. The domestic price for arsenic metal remained 54 cents per pound throughout the year. From January 1 to July 6 the London price for white arsenic, per long ton, 98–100 percent, was stable at £45–£50 nominal (equivalent to 5.63 to 6.25 cents per pound). From July 7 to the end of the year the price for white arsenic was steady at £40-£45 nominal (equivalent to 5.00 to 5.63 cents per pound). The London price for arsenic metal, per long ton, opened in January at £410 (equivalent to 51.25 cents per pound) and from the early part of August until December 31 was quoted at £400 (equivalent to 50.00 cents per pound).

FOREIGN TRADE 4

Imports.—White arsenic imported for consumption in 1956 totaled 6,400 short tons, 11 percent below 1955 receipts, and 11 percent below

the 5-year average (7,200 tons), 1951-55.

Mexico continued to be the principal supplier of white arsenic imports, with 91 percent of the total; Canada furnished 8 percent; and Sweden, France, and Poland-Danzig supplied the remainder (1 percent). Forty-two tons of arsenic sulfide was received from Belgium-Luxembourg; arsenical sheepdips came exclusively from the United Kingdom.

Imports of metallic arsenic totaled 44 short tons valued at \$31,200 compared with 114 tons valued at \$83,400 in 1955. Sweden supplied 64 percent; United Kingdom, 25 percent; and Poland-Danzig, 11

percent.

[•] Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the U. S. Department of Commerce.

⁴⁶⁶⁸¹⁸⁻⁵⁸⁻

TABLE 4.--White arsenic (As203 content) imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries [Bureau of the Census]

			3	custa or me census]	(enema)							
	194751	1947–51 (average)	19	1952	19	1953	18	1954	19	1955	61	1956
Country	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value
North America: Canada Mexico	242 9, 182	\$22, 748 871, 025	121 4, 252	\$14, 470 520, 112	292 4, 378	\$26, 018 543, 443	592 4, 212	\$48, 690 493, 681	683 6, 431	\$43, 048 713, 911	5, 831	\$49, 387 691, 354
Total	9, 424	893, 773	4, 373	534, 582	4, 670	569, 461	4,804	542, 371	7, 114	756, 959	6, 371	740, 741
South America: Bolivia Peru	88	208 6, 344									4 : 1 : 1 : 1 : 2 : 3 : 1 : 1 : 1 : 1 :	
Total	64	6, 552										
Burope: Belgium-Luxembourg France Germany	198 494 2 2	9, 300 58, 614 151 11, 496	110	12, 992	47	4, 605	44	2, 597	75	5, 880	12	927
Potand-Danzig Portugal Sweden U. S. S. R. United Kingdom	53 27 690 379	6, 548 3, 164 81, 781 41, 156			£	6			33	2, 413	33	2,954
Total Asia: Japan	1, 910 55	212, 210 7, 836	110	12, 992	47	4, 608	44	2, 597	108	8, 293	51	4, 456
Grand total	11, 453	1, 120, 371	4, 483	547, 574	4, 717	574, 069	4,848	544, 968	7, 222	765, 252	6, 422	745, 197

1 Less than 1 ton.

ARSENIC 203

Exports.—Exports of calcium arsenate totaled 314 short tons, valued at \$52,000, decreasing 67 percent from 1955. Nicaragua was the principal recipient, followed by Peru, Cuba, Canada, and the Philippines, in descending order. No direct foreign sales of white arsenic were reported by United States producers.

Exports of lead arsenate totaled 1,300 tons, valued at nearly \$576,000, an increase of 137 percent over 1955. Peru was the principal recipient, followed by Colombia, Canada, France, Uruguay, Venezuela,

Lebanon, and Bermuda, in that order.

Tariff.—White arsenic, arsenic sulfide, paris green, and sheepdip (certain varieties contain arsenic) were all free of duty. Arsenic acid was subject to duty at 3 cents per pound; lead arsenate, at 1½ cents per pound; and metallic arsenic, at 3 cents per pound. Compounds of arsenic not specified in the tariff act were subject to duty at 12½ percent of their foreign market value.

TABLE 5.—Arsenicals imported into and exported from the United States, by classes, 1947-51 (average) and 1952-56, in pounds

Class	1947-51 (average)	1952	1953	1954	1955	1956
Imports for consumption:						
White arsenic (As2O3 con-					** *** ***	10 040 01
tent)	22, 905, 648	8, 966, 906	9, 434, 212	9, 695, 722	14, 443, 828	12, 843, 81
Metallic arsenic	91, 817	60, 220	141, 472	117, 085	228, 960	88, 666
Sulfide	94, 429		20, 018		93, 717	84, 894
Sheepdip	63, 406	102, 415	52, 436	55, 700	40, 960	70, 421
Lead arsenate	26, 734	161, 316				
Arsenic acid	1, 560					60, 000
Calcium arsenate	356, 441	192, 205		42, 544	170 177	229, 616
Sodium arsenate	58, 038	65, 221	79, 520	173, 565	172, 175	229, 010
Paris green	17, 728	41, 255				
Exports:	4 220 202	F 000 010	0.000.040	1 077 004	1 00# #00	600 000
Calcium arsenate	4, 559, 595	5, 606, 613	3, 890, 246	1, 975, 894	1,885,582	628, 020
Lead arsenate	1, 533, 664	255, 268	303, 030	709, 752	1,080,498	2, 563, 17

TECHNOLOGY

The abstract of a technical paper on the extraction of cobalt metal from arsenical ores follows: ⁵

Cobalt recovery from arsenical concentrates by pressure leaching and reduction involves special methods and operating problems. Principal steps in the process are auto-oxidation acid leaching under pressure, filtration of the tailings, purification of the solution, hydrogen reduction of the ammoniacal solution, and electrical furnacing for sulfur removal and granulating the metal.

A United States patent was issued in 1956 relative to arsenic.6

WORLD REVIEW

Belgium.—Various arsenic products are made by Société générale métallurgique de Hoboken at plants near Antwerp, Herenthals, and Reppel; by Société des mines et fonderies de zinc de la Vieille-Montagne, Liége; and by Belgochimie S. A., Ghent.

Canada.—Arsenical ores are widely distributed throughout Canada, in association with gold, silver, cobalt, and certain sulfide ores. Re-

⁵ Mitchell, J. S., Pressure Leaching and Reduction at the Garfield Refinery: Min. Eng., vol. 8, No. 11, November 1956, pp. 1093-1095.

⁶ Bicek, Edward J. (assignor to Universal Oil Products Co., Chicago, Ill.), Process of Removing Arsenic from a Naphtha: U. S. Patent 2,769,770, Nov. 6, 1956.

covery of arsenic as arsenious oxide (As₂O₃), however, was confined to Beattie-Duquesne Mines, Ltd., and O'Brien Gold Mines, Ltd., in Quebec and Deloro Smelting & Refining Co., Ltd., in Ontario. Production of white arsenic in 1956 totaled 1,300 short tons compared with 800 tons in 1955.

Mexico.—Byproduct white arsenic was recovered by Cia. Metalurgica Peñoles, S. A. (subsidiary of American Metal Co.), at its Torreón, Coahuila, lead smelter. The American Smelting & Refining Co. produced white arsenic at its San Luis Potosi copper smelter. Output of white arsenic totaled 2,900 short tons in 1956, an 11-percent decrease from 1955.

TABLE 6.—World production of white arsenic, by countries, 1947-51 (average) and 1952-56, in short tons 2

[Compiled by Augusta W. Jann and Berenice]	B. Mitchelli

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	562	854	702	590	786	1,312
Mexico.	9, 388	3, 159	2, 204	2,675	3, 255	2, 913
United States	15, 930	15, 673	10, 873	13, 167	10, 780	12, 701
South America:	20,000	20,010	10,010	10, 10,	10, 100	12, 101
Brazil	1, 183	1,062	522	1,275	1,077	(3)
Peru	357	17	022	105	1,011	(9)
Europe:	001	11		100		
Belgium (exports)	807	1. 106	1,903	1,979	2, 281	4 3, 150
France	3, 743	6, 934	6, 217	812	6, 393	(3)
Germany: West (exports)	1, 531	122	675	239	635	334
Greece	31	97	68	209	42	(8)
Italy	1,052	2, 209	1, 179	1, 243	1, 166	1, 100
Portugal	972	1, 452	1, 301	1, 196	1, 973	1, 789
Spain	362	173	1, 60	1, 150	1, 510	1, 109
Sweden	16, 551	17, 189	569	10, 762	13, 803	(3) (3)
United Kingdom.	4 8 110	(3)	(3)	(3)	(3)	- 8
Asia:	1110	(-)	. 6	(9)	(9)	(9)
Iran 6	34			(3)	(3)	(3)
Japan	1,690	1, 545	1, 576	(3) 1, 583	1,910	1,833
A frica:	1 2,000	2,010	2,010	1,000	1,010	1,000
Rhodesia and Nyasaland, Fed. of:						
Southern Rhodesia	228	568	416	459	508	1,084
Union of South Africa	3	000	-10	100	,000	1,001
Oceania:	"					
Australia	500	134				
New Zealand	iŏ	201				
World total (estimate) 1	56,000	54,000	30,000	38, 000	46, 000	44,000

¹ Arsenic is produced in Argentina, Austria, and East Germany, and estimates by the author of the chapter are included in the total. Information is not adequate to estimate production in China, Czechoslovakia, Finland, Hungary, and U. S. S. R.

² This table incorporates a number of revisions of data published in previous Arsenic chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

³ Data not available; estimate by senior author of chapter included in total.

Estimate.
5 White arsenic, including arsenic soot.
6 Year ended March 20 of year following that stated.

Southern Rhodesia.—Output of white arsenic at the central roasting plant at Que Que, Southern Rhodesia, totaled 1,100 short tons, compared with 500 tons in 1955.

Sweden.—The Boliden Mining Co. continued to be the world's

leading white arsenic producer.

United Kingdom.—Arsenic metal was produced by Metallo Chemical Refining Co., Ltd., and Imperial Smelting Corp., Ltd., London. latter company also produces arsenic alloys. Arsenical copper is made by British Copper Refiners, Ltd., Prescot, Lancashire.

Asbestos

By D. O. Kennedy 1 and Annie L. Mattila 2

HE WORLD production of asbestos was nearly as high in 1956 as in 1955—approximately 1% million tons. Canadian production decreased slightly but was still over 1 million tons. Production within the United States declined for the third successive year and amounted to about 2 percent of the world production. Imports and consumption in the United States declined 7 percent in 1956 compared with 1955. Imports of low-iron chrysotile of spinning lengths from British Columbia were about the same as in 1955—close to 7,000 tons—but imports of shorter fibers from British Columbia increased. Imports of Canadian spinning fibers decreased 6 percent compared with 1955.

TABLE 1.—Salient statistics of the asbestos industry in the United States, 1947–51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Domestic asbestos: Producedshort tons. Sold or useddo Value	13, 874	53, 864 \$4, 713, 032 709, 469 \$61, 604, 601 10, 724 \$2, 670, 970 752, 609	54, 456 \$4, 857, 359 692, 245 \$59, 753, 583 3, 076 \$592, 222 743, 625	47, 621 \$4, 697, 962 678, 390 1 \$55,856,606 1, 894 \$291, 157 724, 117	44, 580 \$4, 487, 428 740, 423 1 \$60,957,578 2, 787 \$267, 776 782, 216	41, 312 \$4, 742, 446 689, 034 1 \$61,829,275 2, 950 \$374, 964 727, 396

Owing to changes in tabulating procedures by the U. S. Department of Commerce, data known to be not strictly comparable with earlier years.
 Includes material that has been imported and subsequently exported without change.

DOMESTIC PRODUCTION

Domestic output of asbestos decreased 7 percent in 1956, compared with 1955, reflecting a 3-percent decrease in Vermont production and a 24-percent decrease in Arizona. A small quantity of both amphibole and chrysotile asbestos was produced in California, but production of amphibole in North Carolina and Georgia was suspended.

The Vermont Asbestos Mines Division of the Ruberoid Co., operating in Vermont, continued to be the one large asbestos producer in the United States. Although over 3 percent of the fiber produced was of spinning grade, only a small part of it was sold for textile use; most of it was used in electrolytic cells.

Assistant chief, Branch of Construction and Chemical Materials.
 Statistical assistant.

The purchase program for acquiring Government warehouse stocks of Arizona asbestos, conducted by the Materials Branch, Emergency Procurement Service, was completed early in 1956. By Congressional action (Public Law 733, 84th Congress, dated July 19, 1956), a new program was established whereby the U.S. Department of the Interior was authorized to purchase domestic nonferrous chrysotile asbestos meeting the same specifications and under the same. regulations as those in effect during the former purchase program. The prices to be paid were those in effect January 1, 1956. Purchases were not to exceed 2,000 tons of Nos. 1 and 2 combined and not to exceed 2,000 tons of No. 3, except that No. 3 might be purchased only when offered with No. 1 or No. 2 or both in ratio not to exceed 1 ton of No. 3 to 1 ton of No. 1 or No. 2 or both. The Interior Department delegated the authority to make these purchases to General Services Administration July 31, 1956. Purchases were made with funds remaining from the previous program, and no new funds were authorized for the new program in 1956. Production in Arizona virtually ceased when the first program was completed and was not resumed until after the passage of Public Law 733 in July. Stimulated by the 2 purchase programs, production of the longer fibers (crudes Nos. 1, 2, and 3) increased 14 percent in 1956 compared with 1955, but production of shorts decreased 35 percent. During 1956, 94 percent of all crudes Nos. 1, 2, and 3 sold were purchased by the Government.

Ten companies operated in Arizona in 1956; but, as in previous years, 5 of them produced 97 percent of the State total. The following firms and individuals produced chrysotile in the Globe district of Arizona in 1956: American Asbestos Cement Corp., American Fiber Corp., Barry De Rose, Jaquays Mining Corp., Kyle Asbestos Mines of Arizona, Lawrence D. Poor, Metate Asbestos Corp., Phillips Asbestos Mines, Via Development Co., and Western Chemical Co.

The Bureau of Mines issued a report ³ describing 18 deposits in Arizona that were not discussed in a previous report (Information Circular 7706) published in 1955. Key maps in both reports showed the locations of all mines and deposits. A small quantity of short-fiber chrysotile was produced by the Tabor Mining Co. from the Phoenix mine in Napa County, Calif. The Huntley Industrial Minerals, Inc., produced a small quantity of amphibole asbestos in Inyo County, and Zimdars & Delmue produced tremolite from the Noon Day mine in the Iowa Hill district.

CONSUMPTION AND USES

Consumption of asbestos decreased 7 percent in 1956 compared with 1955. This decrease was entirely in the chrysotile variety, as imports of amosite were virtually unchanged, and imports of crocidolite were 24 percent greater in 1956 than in 1955. Nearly 96 percent of the asbestos consumed was chrysotile; of this only 24,000 tons (approximately 3 percent) was of spinning grade.

As asbestos was employed extensively in building construction, as well as in many industries, trends in asbestos consumption, industrial production, and volume of new construction are shown in figure 1.

³ Stewart, Lincoln A., Chrysotile-Asbestos Deposits of Arizona (Supp. to Inf. Circ. 7706): Bureau of Mines Inf. Circ. 7745, 1956, 41 pp.

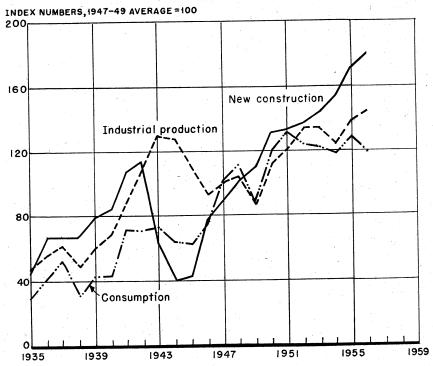


Figure 1.—Consumption of asbestos compared with total new construction and industrial production 1935–1956. Statistics on value of construction from Bureau of Foreign and Domestic Commerce and on industrial production from Federal Reserve Board.

TABLE 2.—Apparent consumption of raw asbestos in the United States, 1947-51 (average) and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	669, 728	\$41, 115, 464	1954	724, 117	\$60, 263, 411
	752, 609	63, 646, 663	1955	782, 216	65, 177, 230
	743, 625	64, 018, 720	1956	727, 396	66, 196, 757

PRICES

Price increases were announced by Canadian Johns-Manville Co., Ltd., in December 1955, amounting to about 10 percent for all long-fiber grades of chrysotile and 5 percent for all short fibers. The new price schedule, shown below, held throughout 1956:

	U. S. dollars per ton	
Crude No. 1	\$1, 400-\$1, 725	
Crude No. 2	750- 1, 100	,
No. 3—Spinning fiber	350- 575	•
No. 4—Shingle fiber	170- 225)
No. 5—Paper fiber	110- 140)
No. 6—Plaster fiber	82	;
No. 7—Shorts		,

The Arizona quotations, unchanged during 1956, were as follows:

Grade		Per ton f. o. b. Glob Ariz.	e,
No. 1 crude No. 2 crude	 	 \$1,500-\$1,75 900- 1.05	
No. 3 crude Filter fiber	 	 300- 1, 05 400- 45 250- 45	0

African asbestos was sold by negotiation with individual purchasers, and there were no market quotations. Department of Commerce reports show the following average figures for imports in 1955 and 1956, per short ton:

Amosite: Union o	of South Afric	a.		1955 \$125.38	1956
Crocidolite:	or South Hills			Φ120. 30	Φ120. 51
Bolivia			 		92.74
Australia	:		 	229. 00	224, 09
Union of Sou	th Africa		 	206. 06	186. 46

FOREIGN TRADE 4

Imports.—During 1956 imports of chrysotile asbestos totaled 654,845 tons, an 8-percent decrease from 1955. Although imports of amosite remained about the same as in 1955 and imports of crocidolite increased, these represented only 5 percent of the total imports; and total imports decreased 7 percent in 1956 compared with 1955. Nearly 92 percent of the 1956 imports originated in Canada, but so much of the Canadian imports was of short fiber that the Canadian imports represented only 85 percent of the total value of all imports of asbestos into the United States in 1956.

TABLE 3.—Asbestos (unmanufactured) imported for consumption in the United States, 1947-51 (average), 1952-54 (totals), and 1955-56, by countries and classes

[Bureau of the Census]

	İ	Crude (including blue fiber)		Mill fibers		Short fibers		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1947-51 (average) 1952 1953 1954	35, 281 38, 636 39, 201 37, 461	\$5, 889, 814 8, 048, 835 9, 052, 007 7, 502, 358	212, 684 170, 692	1\$19,337,583 31, 292, 506 27, 521, 438 24, 556, 953	458, 149 482, 352	\$16, 280, 692 22, 263, 260 23, 180, 138 23, 797, 295	643, 884 709, 469 692, 245 678, 390	\$41, 508, 089 61, 604, 601 59, 753, 583 55, 856, 606	
North America: Canada South America: Venezu- ela	873	471, 2 79	167, 191 1	27, 388, 074 435	,	25, 215, 464	699, 087 1	53, 074, 817 435	
Europe: France Germany, West Italy Portugal United Kingdom Yugoslavia	558 562	538 23, 276 23, 814	2 8 72 6	278 9, 310 20, 642 575 30, 805	7 9 16	9, 627	7 2 8 4 81 564 666	589 278 9, 310 538 30, 269 23, 851 64, 835	

⁴ Figures on Imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 3.—Asbestos (unmanufactured) imported for consumption in the United States, 1947-51 (average), 1952-54 (totals), and 1955-56, by countries and classes-Continued

Country	Crude blue	(including fiber)	Mil	ll fibers	Sho	rt fibers	1	Cotal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1955—Con.						2.5		
Africa: British East Africa					12	\$1,358	12	\$1,358
Rhodesia and Nyas- aland, Federation					4.1			, 14 J
of 2 Southern British	8, 168	\$1, 999, 787	237	\$73, 041	15	4, 312	8, 420	2, 077, 140
Africa	189	42, 458					189	42, 458
Africa 3	27, 508	4, 745, 488	635	105, 172	557	79, 168	28, 700	4, 929, 828
Total Oceania: Australia	35, 865 3, 348		872	178, 213	584	84, 838	37, 321 3, 348	7, 050, 784 766, 707
Grand total	40, 648	8, 049, 533	168, 152	127, 597, 527	531, 623	425, 310, 518	740, 423	460, 957, 578
1956								
North America: Canada.	273	208, 248	155, 961	27, 814, 601	477, 512	24, 261, 803	633, 746	52, 284, 652
South America: Bolivia Venezuela	34 120		14	2, 740	11	2, 31 6	34 145	3, 153 22, 922
Total	154	21, 019	14	2, 740	11	2, 316	179	26, 075
Europe: Germany, West Greece Italy Portugal	2 	400	11	12,060	40	1, 530	40 2 11 5	1, 530 400 12, 060 560
U. S. Š. R United Kingdom Yugoslavia	3, 73 5	141, 275	127	2, 750 32, 671	193	48, 688	320 3, 735	2, 750 81, 359 141, 275
Total	3, 742	142, 235	144	47, 481	233	50, 218	4, 119	239, 934
Africa: British East Africa French Morocco Rhodesia and Nyas-			13 3	1, 199 3, 111	9	1, 494	22 3	2, 69 3 3, 111
aland, Federation of 2	14, 271	2, 927, 727	339	180, 117	30	14, 244	14, 640	3, 122, 088
Union of South	32, 774	5, 381, 599	199	28, 097	202	35, 146	33, 175	5, 444, 842
Total Oceania: Australia	47, 045 3, 150	8, 309, 326 705, 880	554	212, 524	241	50, 884	47, 840 3, 150	8, 572, 734 705, 880
Grand total	54, 364	4 9, 386, 708	156, 673	428, 077, 346	477, 997	424, 365, 221	689.034	461, 829, 275

Chrysotile fibers of spinning length (Canadian crudes Nos. 1 and 2 and spinning fiber No. 3) were available in excess of United States requirements in 1956. Except for a few hundred tons imported from Southern Rhodesia, virtually all of the spinning-grade chrysotile was imported from Canada. Imports of low-iron chrysotile of spinning

¹ Includes 11 tons (\$1,632) classified by the Bureau of the Census as "amosite, crude"; reclassified by Bureau of Mines as "mill fibers."

2 Believed to be all from Southern Rhodesia.
2 Includes 1 ton (\$338) of blue crocidolite credited by the Bureau of the Census to United Kingdom.
4 Owing to changes in tabulating procedure by the Bureau of the Census data known to be not comparable with years before 1954.
5 Includes 225 tons (\$57,304) of chrysotile crudes, 30 tons (\$5,820) of blue crocidolite, and 15 tons (\$3,875) of short fibers credited by the Bureau of the Census to Mozambique, 302 tons (\$34,020) of amosite crude credited by the Bureau of the Census to The Federation of Rhodesia and Nyasaland; 2 tons (\$785) of amosite crude credited by the Bureau of the Census to the United Kingdom and 2 tons (\$679) of blue crocidolite believed to have originated in the Union of South Africa and processed in the United Kingdom.

grade from British Columbia increased from 5.742 tons in 1955 to 6,982 in 1956.

TABLE 4.—Asbestos (chrysotile) imported for consumption in the United States from Canada, by grades, 1947–51 (average) and 1952–56, in short tons

Bureau		

Grades	1947-51 (average)	1952	1953	1954	1955	1956
Crude No. 1. Crude No. 2. Other crudes. Spinning or textile fiber Shingle fiber. Paper fiber Short fiber.	232 255 416 19,845 82,524 69,698 434,578	144 332 79 24, 112 98, 577 87, 644 458, 012	168 207 467 19, 417 86, 540 63, 139 482, 179	82 181 844 18, 319 72, 242 57, 465 491, 149	65 164 644 21, 339 83, 898 61, 954 531, 023	50 217 6 20, 638 83, 032 52, 291 477, 512
Total	607, 548	668, 900	652, 117	640, 282	699, 087	633, 746

TABLE 5.—Asbestos (chrysotile) imported for consumption in the United States from Southern Rhodesia 1 by grades, 1947-51 (average) and 1952-56, in short tons

[Bureau of the Census]

Grades	1947–51 (average)	1952	1953	1954	1955	1956
Crude No. 1	1, 358 2, 982 156 2 5, 357	462 1, 363 177 8, 296 245	1, 039 814 730 7, 304 103	181 275 156 6, 243	105 162 76 7, 901 161 15	61 71 339 14, 139
Total	9, 859	10, 543	9, 990	7, 219	8, 420	14, 640

¹ Effective July 1, 1954, reported by the Bureau of the Census as Federation of Rhodesia and Nyasaland. Believed to be all from Southern Rhodesia. ² Includes small amounts credited by the Bureau of the Census to Mozambique.

Imports of crocidolite from the Union of South Africa increased nearly 32 percent to a high of 19,270 tons in 1956, but imports of chrysotile and amosite from the Union of South Africa were virtually unchanged.

TABLE 6.—Imports of amosite, crocidolite, and chrysotile into the United States from Union of South Africa, 1952-56, in short tons

[Bureau of the Census]

	1952	1953	1954	1955	1956
AmositeCrocidoliteChrysotile	1 18, 323 6, 885 1, 694	15, 261 7, 781 3, 388	14, 634 10, 911 1, 855	11, 745 3 14, 592 2, 363	² 11, 735 ⁴ 19, 270 ⁵ 2, 170
Total	26, 902	26, 430	27, 400	³ 28, 700	33, 175

¹ Includes 105 tons credited by Bureau of Census to Mozambique.
2 Includes 302 tons credited by Bureau of Census to Southern Rhodesia and 2 tons credited by Bureau of Census to United Kingdom.
3 Includes 1 ton credited by Bureau of Census to United Kingdom.
4 Includes 30 tons credited by Bureau of Census to Mozambique and 2 tons credited by Bureau of Census to United Kingdom.
4 Includes 240 tons credited by Bureau of Census to Mozambique.

Exports.—Exports of raw asbestos increased slightly in 1956. Compared with the quantity of asbestos imported and consumed in the United States, the quantity exported was insignificant (less than 0.5 percent).

TABLE 7.—Asbestos and asbestos products exported from the United States, 1947-51 (average) and 1952-56

Bureau	~*	4ha	Commo	ı
Bureau	OI	tne	Census	ı

		Unmanufactured asbestos				Asbestos products		
Year	Dom	Domestic 1		ign ³	Domestic 1	Foreign 3		
	Short tons	Value	Short tons	Value	Value	Value		
1947-51 (average)	11, 893 10, 265 2, 780 1, 847 2, 161 2, 797	\$2, 392, 803 2, 550, 065 540, 273 275, 778 236, 336 337, 696	1, 981 459 296 47 626 153	\$435, 139 120, 905 51, 949 15, 379 31, 440 37, 268	\$10, 508, 121 13, 027, 739 10, 615, 832 11, 475, 082 12, 820, 917 14, 171, 309	\$12, 384 1, 118 11, 461 9, 653 37, 587 9, 813		

Material of domestic origin, or foreign material that has been milled, blended, or otherwise processed in the United States.
 Material that has been imported and subsequently exported without change.

TABLE 8.—Asbestos and asbestos products exported from the United States, 1955-56, by kinds

[Bureau of the Census]

Products	19	55	1956		
	Quantity	Value	Quantity	Value	
Unmanufactured asbestos: Crude and spinning fibers short tons Nonspinning fibers do Waste and refuse do	240 287 1, 634	\$48, 858 42, 817 144, 661	514 301 1, 982	\$107, 022 54, 654 176, 020	
Total unmanufactureddo	2, 161	236, 336	2, 797	337, 696	
Asbestos products: Brake lining and blocks: Molded, semimolded, and woven Clutch facing and lining Construction materials Pipe covering and cement Textiles, yarn, and packing Manufactures, n. e. c.	1, 182, 728 16, 395 3, 040 1, 210	4, 995, 315 927, 597 3, 055, 227 806, 976 2, 605, 656 430, 146	1, 160, 166 19, 076 2, 262 1, 206 (2)	5, 380, 551 910, 820 3, 749, 659 737, 666 2, 785, 596 607, 017	
Total products		12, 820, 917		14, 171, 30	

¹ Owing to changes in classification, values have been summarized, quantities not shown. ² Quantity not recorded.

TECHNOLOGY

The use of asbestos in plastics is increasing. It was estimated that use in such products in 1956 had reached 14,000 tons per year of fibers ranging from group 4 to floats.

A report on possible substitutes for amosite asbestos was made by the National Academy of Sciences in 1956 in connection with studies

⁵ Badollet, M. S., and Ximenez, M. R., The Role of Asbestos in Plastics: Canadian Min. and Met. Bull., vol. 49, No. 531, July 1956, pp. 485-490.

by the asbestos subcommittee of the Interdepartmental Materials

Advisory Board.

New methods of milling asbestos were being developed in South One process in use at Shabani, Southern Rhodesia, was said to have so improved the quality of the fiber and reduced the cost of operation that some abandoned mines could be reopened and worked profitably.

It was claimed that another new process developed by The Star Asbestos Co. in Eastern Transvaal prepared fibers in exceptionally uniform grades. Plans were underway to increase the capacity of

the mill from 300 to 600 tons of fibers per month.7

The physical and chemical properties of chrysotile have a definite relation to its usability. Accordingly, research on the structure of the mineral may afford some clue to the variations in properties encountered and their significance in utilization. The Department of Mines and Technical Surveys, Ottawa, Canada, made pyrolysis studies of chrysotile in an effort to obtain more complete information on the structure and properties of the mineral (pyrolysis is defined as chemical decomposition by the action of heat). It was found that the thermal decomposition of chrysotile occurs in 3 stages; in the second, at a temperature range of 400° to 500° C., a greater part of the water of crystallization is expelled. Details of the research were published.8

Several patents appearing in 1956 related to the separation of asbestos fiber from barren material. They include new types of screens, equipment for separation of fiber from rock with minimum breakage of fiber, and methods of recovering asbestos fiber from waste.9

The filtering properties, as well as the fire resistance of asbestos, are utilized in developing new types of smoke filters for cigarettes and

pipes.10

New types of thermal, sound, and electric insulating asbestos products were patented.11

⁶ National Research Council, Report on Substitutes for Amosite Asbestos by the Panel on Substitutes for Amosite Asbestos of the Materials Advisory Board: Rept. MAB-112C, Oct. 1, 1956, 11 pp. 7 South African Mining and Engineering Journal, vol. 67, No. 3328, Nov. 23, 1956, p. 865; No. 3332, Dec.

South African Mining and Engineering Journal, vol. 67, No. 3328, Nov. 23, 1956, p. 865; No. 3332, Dec. 21, 1956, p. 1055.
 Woodrooffe, H. M., Pyrolysis of Chrysotlle Asbestos Fibers: Canadian Min. and Met. Bull., vol. 49, No. 533, September 1956, pp. 623-628.
 Weston, D., Method and Apparatus for Screening Materials: U. S. Patent 2,775,347, Dec. 25, 1956. Denovan, J. J., and Denovan, R. A. (assigned to Hall Machinery of Canada, Ltd., Sherbrooke, Que., Canada), Separatory Apparatus for Concentrating Asbestos Fibers: U. S. Patent 2,739,708, Mar. 27, 1956. Kennedy, J. E., Method of Reclaiming Fibrous Material from Waste Dumps: U. S. Patent 2,743,012, Apr. 24, 1956.

As Associated Property of the Company of the Compan

Dec. 18, 1956.
Schur, M. O., and Levy, R. M. (assigned to Ecusta Paper Corp., a corporation of Delaware), Cigarette Paper Wrapper: U. S. Patent 2,733,720, Feb. 7, 1956.
Knudson, H. W. (assigned to H. V. Specialties Co., Inc., East Walpole, Mass., and P. Lorillard Co., New York, N. Y.), Filter for Tobacco Snoke: U. S. Patent 2,761,798, Sept. 4, 1956.

"I Hooks, R. M. (assigned to Southwestern Petroleum Co., Inc., Fort Worth, Tex.), Fire-Resistant Protective Coating: U. S. Patent 2,734,827, Feb. 14, 1956.
Seipt, W. R. (assigned to Keasbey & Mattison Co., Ambler, Pa.), Method for the Manufacture of Calcium Silicate Type Insulation: U. S. Patent 2,766,131, Oct. 9, 1956.
Doorman, L. M., Method to Insulate Compartments and Maintain a Uniform Temperature in Automobiles and Other Transports: U. S. Patent 2,768,672, Oct. 30, 1956.
Waggner, J. H. (assigned to Owens-Corning Fiberglas Corp., a corporation of Delaware), Fibrous Structures and Methods of Manufacturing Same: U. S. Patent 2,772,603, Dec. 4, 1956.
Cryor, R. E., Unit Heat Insulation for Pipes: U. S. Patent 2,758,043, Aug. 7, 1956.

Several patents related to asbestos sheet and gasket materials, including certain mortar products.12

Either asbestos or mineral wool is used in new types of clutch facings

and brake linings.13

Chrysotile asbestos is an essential component of a new type of drilling fluid especially suited for use under high-temperature well conditions. 14 Asbestos is used in making a new type of fibrous liners for molds.15

WORLD REVIEW

World production of asbestos in 1956 was estimated to be nearly the same as in 1955. Production in Canada and the United States decreased nearly 5 percent but was offset by increases in other sections of the world.

NORTH AMERICA

Canada.—In May 1956 a contract was let by Lake Asbestos of Quebec, Ltd., a subsidiary of American Smelting & Refining Co., for constructing a mill having a capacity of 5,000 tons of rock per day at a cost of \$7.7 million. Completion of the mill is expected early in 1958, and an output of 100,000 tons of asbestos per year is forecast. The deposit underlies Black Lake, from which silt was being removed at a rate of about 1 million cubic yards per month.16

The Canadian Johns-Manville Co. operation at Asbestos, Quebec, already the largest asbestos mill in the world, was being enlarged to

provide additional floorspace of 75,000 square feet.

National Asbestos Mines, Ltd., a subsidiary of National Gypsum Co., made plans to mine and mill asbestos on a 500-acre tract acquired in part from Bell Asbestos Mines. The tract adjoins the Bell property. Production is expected in 1958.¹⁷

TABLE 9.—World production of asbestos by countries, 1947-51 (average) and 1952-56, in short tons 2 [Compiled by Helen L. Hunt and Berenice B. Mitchell]

(00mp=00.						
Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada (sales)	760, 408	929, 339	911, 226	924, 116	1, 063, 802	1, 014, 229
United States (sold or used by producers)	39, 719	53, 864	54, 456	47, 621	44, 580	41, 312
Total	800, 127	983, 203	965, 682	971, 737	1, 108, 382	1, 055, 541

See footnotes at end of table.

u Barnet, I. (assigned to Johns-Manville Corp., New York, N. Y.), Making a Dyed-Flameproof Fabric: U. S. Patent 2,755,534, July 24, 1956.
Feigley, D. A., Jr. (assigned to Armstrong Cork Co., Lancaster, Pa.), Beater Saturation of Asbestos Fibers: U. S. Patent 2,759,813, Aug. 21, 1956.
Poltorak, E. J. (assigned to Johns-Manville Corp., New York, N. Y.), Gaskets: U. S. Patent 2,766,055, Corp. 10,1956

Oct. 9, 1956 Burney, H. P., Jr., and Felder, J. L., Cement-Mortar Composition of Matter: U. S. Patent 2,763,561, Sept. 18, 1956.

Almen, J. O., and Carnegie, W. L. (assigned to General Motors Corp., Detroit, Mich.), Clutch With Porous Compressible Friction Linings: U. S. Patent 2,733,797, Feb. 7, 1956. Composite Wet Clutch, U. S. Patent 2,733,798, Feb. 7, 1956.
 Lowe, D. A. (assigned to Sun Oil Co., Philadelphia, Pa.), Drilling Fluid: U. S. Patent 2,732,343, Jan.

¹⁸ Rowe, D. A. (assigned to Sun Of Co., Finisherpins, 12.), Drining Frint. Co.: Fatent 2,757,426, Aug. 7, 1956.

18 Brennan, J. B., Method of Making Mold With Fibrous Liner: U. S. Patent 2,757,426, Aug. 7, 1956.

18 Skillings' Mining Review, Contract Let for Asbestos Mill Construction by Lake Asbestos of Quebec, Ltd.: Vol. 45, No. 8, May 26, 1956, p. 4.

17 Northern Miner, New Asbestos Mine for Thetford Area: Vol. 42, No. 1, Mar. 29, 1956, p. 21.

TABLE 9.—World production of asbestos by countries, 1947-51 (average) and 1952-56, in short tons 2—Continued

Country 1	1947-51	1952	1953	1954	1955	1956
Country -	(average)	1002	1800	1934	1900	1900
South America:	,					
Argentina	287	(4)	(4)	(4)	198	- 50
Bolivia (exports) Brazil	209	513	810	33	100	62
Brazil	1, 700	1, 439	1, 357	2, 816	3, 124	5 3, 300
Chile	277	(9)	(4)	(4)	(4)	(4)
Venezuela	237	434	185	743	1,757	5, 820
Total	2, 710	5 2, 800	⁵ 2, 800	5 4, 000	⁸ 5, 300	5 9, 500
Europe:						
Bulgaria	(4)	(4)	992	1, 213	1, 323	(4)
Finland 6	11, 123	11, 464	12, 047	7, 853	18, 674	8, 282
France	3, 942	8, 338	11, 419	14, 449	10, 913	9, 370
Greece Italy	26 18, 687	26 26, 387	00 404	6	3	00.4
Portugal	259	185	22, 484 105	25, 955 30	33, 266 56	36, 459 5 55
Spain	34	33	100	176	- 50	0 00
Spain U. S. S. R. ⁵	205, 000	240,000	240,000	240, 000	240, 000	240,000
Yugoslavia	1, 025	2, 762	4, 131	3, 598	4, 305	4, 165
Total 1 6	245, 000	290, 000	290, 000	300, 000	310, 000	305, 000
Asia:						
Cyprus	13, 145	18, 250	15, 966	17, 146	17, 143	7 14, 005
India	249	969	805	435	1, 564	1, 343
Iran 8		55			110	39
Japan Korea, Republic of	5, 744	3, 370	4, 495	6, 916	6, 932	9, 914
Taiwan (Formosa)	290	(4)		233	66	54
Turkey	226	20		163 50	405 259	118 176
Total 1 4	20, 600	25, 000	27, 000	33, 000	38,000	37, 000
Africa:						
Bechuanaland		528	548	729	1 400	1 050
Egypt	940	66	220	129	1, 426	1, 356
French Morocco	602	635	600	597	631	379
Kenya	532	390	166	224	152	170
Madagascar	4	3	8			
Mozambique Rhodesia and Nyasaland, Fed-				196	301	202
eration of: Southern Rho-						
desia	70, 328	84, 834	87, 739	79, 962	105, 261	118, 973
Swaziland	32, 397	34, 769	30, 104	30, 142	32, 613	29, 875
Uganda	68, 315	133, 839	04 017	7	2	. 2
			94, 817	109, 151	119, 699	136, 520
Total	173, 118	255, 064	214, 202	221, 008	260, 085	287, 477
Oceania:		-	1			
Australia	1, 909	4, 546	5, 567	5, 279	5, 993	9, 857
New Zealand.	192	764			172	368
Total	2, 101	5, 310	5, 567	5, 279	6, 165	10, 225
World total (estimate)1	1, 245, 000	1, 560, 000	1, 505, 000	1, 535, 000	1, 730, 000	1, 705, 000

The holdings of Dominion Asbestos Mines in Ham Township, Quebec, were surrendered to National Gypsum Co. which held a mortgage against the assets.18

¹ In addition to countries listed, asbestos is produced in China, Czechoslovakia, and North Korea. Estimates by author of chapter are included in total.

2 This table incorporates a number of revisions of data published in previous Asbestos chapters. Data do not add to totals shown owing to rounding where estimated figures are included in detail.

3 Exclusive of sand, gravel and stone (waste rock only), production of which is reported as follows: 1947-51 (average), 34,167 tons; 1952, 39,664 tons; 1953, 21,18 tons; 1954, 26,29 tons; 1955, 28,582 tons; 1956, 45,428 tons.

4 Data not available; estimate by author of chapter included in total.

⁵ Estimate Includes asbestos flour.

Figure 1 Exports.

Year ended March 20 of year following that stated.

¹⁸ Northern Miner, Dominion Asbestos Drops Interest in Asbestos Field: Vol. 42, No. 23, Aug. 30, 1956,

Eastern Asbestos Co. continued exploratory work on its property in Portland West Township, north of Buckingham, Quebec, and found a new fiber zone in the north crosscut. Plans were made early in 1956 to construct a mill having a capacity of about 300 tons of rock per day on the property.

Metro Asbestos Processors, Ltd., built a mill having a capacity of 300 tons of rock per day on its property in Deloro Township, 5 miles southwest of South Porcupine, Ontario. A large deposit of good-quality asbestos was reported.

Advocate Mines reported a major asbestos discovery near Baie Verte between White Bay and Notre Dame Bay on the north coast of Newfoundland. Brief notes concerning this discovery appeared in various publications and reports. It was reported that the fibers are of good quality, and that virtually all of them fall in the Group 4 and shorter grades.

TABLE 10.—Sales of asbestos in Canada 1955-56, by grades
[Dominion Bureau of Statistics]

		1955			1956				
Grades		Val	ue		Value				
<u>.</u>	Short tons	Total	Average per ton	Short tons	Total	Average per ton			
Crudes No. 1, 2, and other Milled Group:	724	\$610, 830	\$844	717	\$692, 677	\$966			
3 4	43, 081 234, 998	16, 205, 846 37, 400, 073	376 159	33, 929 246, 295	14, 071, 703 42, 124, 569	41. 17			
5 6	117, 017 172, 339	13, 207, 315 12, 797, 081	113 74	112, 759 168, 942	13, 200, 835 12, 685, 874	ii 7			
7 8	469, 149 26, 494	18, 885, 498 534, 455	40 20	428, 149 23, 438	16, 676, 046 407, 659	31			
Total, all grades Vaste rock	1, 063, 802 28, 582	99, 641, 098 34, 553	94	1, 014, 229 45, 428	99, 859, 363 52, 507	98			
Rock mined Rock milled	17, 696, 357 12, 427, 002			21, 921, 774 13, 739, 276					

Mining was begun a month earlier than expected at the Cassiar mine on McDame Mountain, British Columbia, in 1956; and the mill, which had a rated capacity of 500 tons of rock, was found capable of milling 750 or more tons per day. Consequently, output in 1956 reached more than 20,000 tons of fiber compared with about 15,000 tons in 1955.

EUROPE

Finland.—For many years Finland has been the leading world producer of anthophyllite asbestos. In addition, discovery of a high-quality chrysotile asbestos deposit was reported in Finnish Lapland in 1955. 19

Greece.—According to a consular report from Athens dated May 1, 1956, the Kennecott Copper Corp. was negotiating with the Greek Government concerning large-scale exploration of an asbestos deposit about 30 miles south of Kozani in northern Greece. The company

¹⁸ Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 3, March 1956, p. 18.

was said to be ready to invest \$6 million to develop the property if satisfactory arrangements could be made. Work conducted by the Greek Institute for Geology and Subsurface Research revealed existence of a large asbestos deposit. Extensive exploratory core drilling was done, and erection of a pilot mill was planned.

AFRICA

Bechuanaland.—Production of chrysotile at the Moshanang mine about 40 miles northwest of Labatsi was increased. The value of output in 1955 was about £150,000 compared with £113,000 in 1954.

Southern Rhodesia.—The asbestos occurrence at the Ethel mine, Southern Rhodesia, was described in some detail. Mining and milling methods, statistics of production, and cost data were included.²⁰

TABLE 11.—Asbestos produced in Southern Rhodesia, 1952-56

Year	Short tons	Value	Year	Short tons	Value
1952 1953 1954	84, 834 87, 739 79, 962	£6, 651, 975 6, 542, 731 5, 922, 724	19551956	105, 261 118, 973	£7, 051, 831 8, 524, 671

Union of South Africa.—The crocidolite deposits of the Union and methods of mining them were described.²¹

The availability of crocidolite, extent of reserves, inherent properties of the mineral that adapt it for specialized uses, and its possible replacement by substitutes were discussed in some detail.²²

TABLE 12.—Asbestos produced in the Union of South Africa, 1952-56, by varieties and sources, in short tons

Variety and source	1952	1953	1954	1955	1956
Amosite (Transvaal) Chrysotile (Transvaal) Blue (Transvaal) Blue (Cape) Anthophyllite (Transvaal)	63, 280 24, 970 20, 294 24, 441 854	38, 258 18, 840 16, 824 20, 883 12	45, 922 19, 373 15, 610 28, 136 110	50, 137 20, 535 13, 964 34, 878 185	50, 097 24, 336 14, 399 47, 688
Total	133, 839	94, 817	109, 151	119, 699	136, 520

vol. 66, pt. 2, November 1956, pp. 26-37.

Sinclair, W. E., The Kliphius Crocidolite Deposits; Bull. Inst. Min. and Met., vol. 66, pt. 3, December 1958, pp. 80-79.

^{1956,} pp. 69-78.

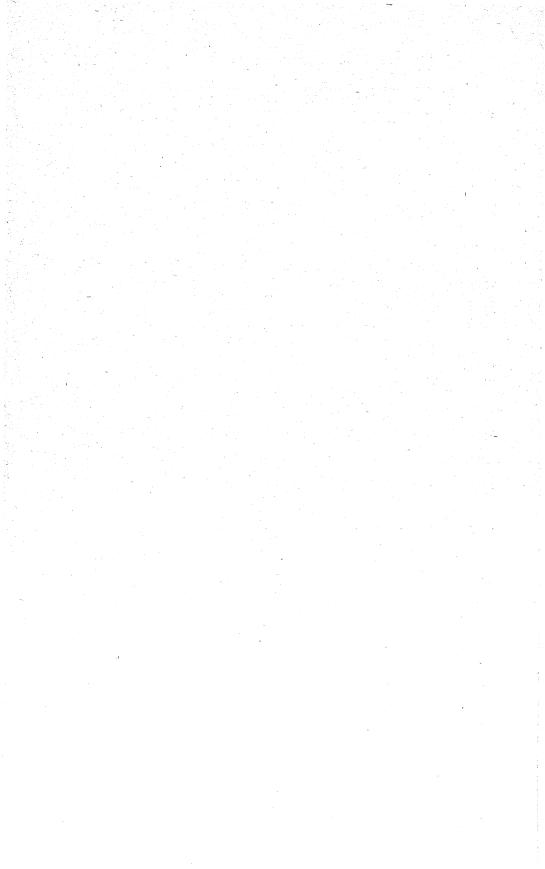
**Sinclair, W. E., The Distribution of Crocidolite Asbestos: South African Min. and Eng. Jour., vol. 67 pt. 1, No. 3300, May 11, 1956, pp. 675, 677, 679.

TABLE 13.—Asbestos produced in and exported from the Union of South Africa, 1952-56

		Produ	etion (short	Exports		
	Year	Transvaal	Cape Province	Total	Short tons	Value
1952 1953 1954 1955 1956		109, 398 73, 934 81, 015 84, 821 88, 832	24, 441 20, 883 28, 136 34, 878 47, 688	133, 839 94, 817 109, 151 119, 699 136, 520	106, 576 71, 791 94, 322 114, 056 122, 867	£6, 899, 086 4, 158, 476 5, 453, 116 6, 697, 352 7, 336, 037

OCEANIA

Australia.—The crocidolite deposits at Wittenoom Gorge in the Hamersley Ranges, Western Australia, were described; the asbestos occurs in 2 nearly horizontal zones about 20 feet apart. A discussion of the mining and milling methods followed by Australian Blue Asbestos, Ltd., was included in the article.²³


A new mine, which had been under development for 2 years, came into production late in 1954. As the proportion of fiber to rock was relatively high in this area, production costs were more favorable than in other areas. An increase in foreign demand for blue asbestos was

encouraged by a downward trend in prices.

According to a press statement issued by the Minister of National Development April 29, 1956, the Commonwealth of Australia joined with the State of Western Australia in subsidizing blue asbestos production at Wittenoom, Western Australia. The subsidy amounted to £10 (about \$22.10) per ton up to a limit of 6,000 tons for the period October 1, 1955, to September 30, 1956. The subsidy was in the interest of developing mineral resources and also involved strategic considerations.

Tasmania.—A recent report ²⁴ described numerous asbestos deposits in Tasmania but stated that only the Beaconsfield and Zeehan regions promise commercial production. They appear to be capable of supporting enough small enterprises for the needs of the State.

Broadhurst, C. H., Blue Asbestos Industry in Western Australia: Chem. Eng. and Min. Rev., vol. 49,
 No. 2, Nov. 15, 1956, pp. 37-40.
 Taylor, B. L., Asbestos in Tasmania: Geol. Survey, Miner. Res. No. 9, Dept. of Mines, Tasmania, 1955,
 pp.

Barite

By Albert E. Schreck 1 and James M. Foley 2

ECORD HIGHS in barite production and consumption were established in 1956. The oil- and gas-well-drilling industry used 95 percent of the ground-barite consumed. Imports of more than 580,000 short tons of barite in 1956 exceeded greatly the previous record high of 359,636 tons imported in 1955. Sales of barium chemicals and lithopone declined.

TABLE 1.—Salient statistics of the barite and barium-chemical industries in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Barite: Primary:						
Produced short tons Sold or used by producers:	786, 474	1,012,811	920, 025	926, 036	1 1, 114, 117	1, 351, 913
Short tons	781, 465	941, 825	944, 212	883, 283	1 1, 108, 103	1, 299, 888
ValueImports for consumption:	\$6, 533, 782	\$8, 797, 944	\$9, 435, 749	\$8, 508, 177	1\$10, 809, 119	\$13, 497, 972
Short tons	48, 748	107, 918	334, 788	317, 093	359, 636	583, 229
Value Consumption	\$373, 150	\$923, 336	\$2, 514, 828	2\$2, 274, 834	² \$2, 181, 119	² \$3, 563, 544
short tons Ground and crushed sold by producers:	837, 338	1, 033, 843	1, 149, 451	1, 215, 678	1, 459, 671	2, 030, 907
Short tons	602, 358	839, 428	920, 084	1, 037, 590	1, 232, 176	1, 503, 010
			\$20, 372, 002	\$24, 219, 785		\$41, 623, 390
producers:				i .		
Short tons	72, 274	83, 156		86, 745	105, 913	102, 892
ValueLithopone sold or used by producers:	\$7, 850, 330	\$12, 101, 474	\$13, 347, 359	\$11, 599, 394	\$14, 473, 458	\$13 , 510, 212
Short tons Value	118, 376 \$14, 019, 170	61, 832 \$8, 475, 200	52, 439 \$6, 923, 487	\$5, 929, 789	42, 845 \$6, 002, 832	38, 434 \$5, 630, 991

Revised figure.

DOMESTIC PRODUCTION

The output in 1956 of over 1.3 million tons of domestic, primary barite was the largest tonnage recorded in the history of the industry. Arkansas again led the producing States; Missouri was second and Nevada third. Production in each of these States was greater than in 1955.

Barite production declined in California and New Mexico and increased in Georgia, Idaho, Montana, South Carolina, and Tennessee. No barite production was reported from Arizona or Washington during the year.

Owing to changes in tabulating procedures by the Bureau of the Census, data known not to be comparable with previous years.
 Includes some witherite.

Commodity specialist.
 Statistical assistant.

TABLE 2.—Domestic barite sold or used by producers in the United States, 1947-51 (average) and 1952-56, by States

State	1947–51	(average)	19	952	19	53
	Short tons	Value	Short tons	Value	Short tons	Value
Arkansas	370, 424	1\$3, 010, 302	428, 522	1\$3, 963, 828	380, 763	1 \$3, 945, 583
Georgia	78, 388	814, 928	97, 540	1, 162, 249	81, 846	1, 066, 368
Tennessee Missouri Nevada Other States 2	250, 242 54, 771 27, 640	2, 187, 751 333, 208 187, 593	304, 080 68, 062 43, 621	2, 919, 795 391, 242 360, 830	330, 763 99, 525 51, 315	3, 338, 398 614, 686 470, 717
Total	781, 465	6, 533, 782	941, 825	8, 797, 944	944, 212	9, 435, 749
	,					
State	19	054	19	955	19)56
State	Short tons	Value	Short tons	Value	Short tons	Value
Arkansas		1				I
Arkansas	Short tons	Value	Short tons	Value	Short tons	Value
Arkansas Georgia	Short tons 370, 621	Value 1\$3, 488, 483	Short tons 462, 986	Value 1\$3, 755, 094	Short tons 486, 254	Value 1 \$4, 255, 98

1 Partly estimated.

² Includes Arizona (1947-55), California (1948-56), Idaho (1949-56), Montana (1951-56), New Mexico (1949-56), and Washington (1953-55).

Revised figure.

It was reported that American Colloid Co., Chicago, Ill., was preparing to mine barite in the Muddy Fork area, near Nashville, Ark. A plant was being built, and a dam was under construction to impound a 200-acre lake to provide water for the operation.3

Westvaco Mineral Products Division of Food Machinery & Chemical Corp. increased barium oxide production about 30 percent at its

Modesto, Calif., plant.4

The technology of barite production, processing, and use has become increasingly complex over the years; consequently, research and technical control have received more emphasis. Magnet Cove Barium Corp. announced plans for an expansion program to double its present office and laboratory space at Houston, Tex. The cost was estimated to be \$650,000, and completion was set for April 1, 1958.5

This firm's new 175- to 200-ton-per-day grinding plant south of Battle Mountain, Nev., began operating at the beginning of the year. The fine-ground mill product was packed in 100-pound bags for shipment to consumers primarily in the Western and Northwestern States

and Canada.6

Sherwin-Williams commenced production of barium carbonate from

its new chemical plant at Coffevville, Kans.7

Kelly and Clark Mining & Exploration Co. conducted underground development and exploration of a group of barite claims near Basalt, Nev. A large deposit of high-grade ore was reportedly encountered,

Rock Products, vol. 59, No. 9, September 1956, p. 37.
 Chemical Engineering, vol. 63, No. 8, August 1956, p. 138.
 Houston Chronicle, Dec. 12, 1956.
 California Mining Journal, vol. 25, No. 7, March 1956, p. 29.
 Chemical Engineering, vol. 63, No. 1, January 1956, p. 124.
 Mining Record, vol. 67, No. 24, June 14, 1956, p. 8.

TABLE 3.—Ground (and crushed) barite produced and sold by producers in the United States, 1947-51 (average) and 1952-56

Year	Plants	Production	Sales		
		(short tons)	Short tons	Value	
1947-51 (average)	24 24 29 29 29 29 30	603, 626 839, 457 924, 392 1, 038, 649 1, 314, 810 1, 625, 879	602, 358 839, 428 920, 084 1, 037, 590 1, 232, 176 1, 503, 010	\$11, 245, 313 16, 608, 546 20, 372, 002 24, 219, 785 30, 613, 095 41, 623, 390	

and various samples were analyzed. Results indicated a barium sulfate content of 0.92 to 96.4 percent and a specific gravity of 4.3 to 4.5.

Barium Metal.—Small quantities of barium metal were produced by Kemet Co., Cleveland, Ohio, and King Laboratories, Inc., Syracuse, N.Y.

CONSUMPTION AND USES

More than 2 million tons of crude barite was consumed in 1956. About 90 percent was used in manufacturing ground barite, and the remainder in manufacturing barium chemicals and lithopone.

Of the 1.5 million tons of ground barite sold, 95 percent was used by oil- and gas-well drillers as a weighting agent in drilling muds. Barite was preferred for this use because it is inert, soft, and relatively

The use of crushed or ground barite in the paint and rubber industries as a filler or extender declined; but increased quantities were

consumed as a flux by the glass industry.

Approximately 8 percent of the crude barite consumed was used in manufacturing various barium chemicals such as barium carbonate, chloride, hydroxide, oxide, and precipitated barium sulfate. Although the output of certain individual barium chemicals increased, the overall production and sales showed a decline compared with 1955.

The quantity of barite used in manufacturing lithopone was less than in 1955. The continued decline in the use of lithopone as a white pigment in paint was due primarily to competition from titanium

Barium metal was used as a getter to remove traces of gases from vacuum tubes which improves the vacuum and increases the efficiency of the tube.

TABLE 4.—Crude barite (domestic and imported) used in manufacturing ground barite and barium chemicals in the United States, 1947-51 (average) and 1952-56, in short tons

	In ma	nufactur	e of			In ma	e of—		
Year	Ground barite 1	Litho- pone	Barium chemi- cals ²	Total	Year	Ground barite 1	Litho- pone	Barium chemi- cals ²	Total
1947-51 (average)_ 1952 1953	611, 674 849, 246 933, 673	119, 963 61, 000 52, 308	105, 701 123, 597 163, 470	837, 338 1, 033, 843 1, 149, 451	1954 1955 1956	1, 044, 094 1, 256, 361 1, 839, 770	35, 866 45, 898 31, 065	157, 412	1, 215, 678 1, 459, 671 2, 030, 907

¹ Includes some crushed barite. ² Includes some witherite.

TABLE 5.—Ground (and crushed) barite sold by producers, 1947-51 (average) and 1952-56, by consuming industries

	1947 (aver		19	52	19	53	195	4	195	5	195	6
Industry	Short tons	Percent of total	Short tons	Per- cent of total	Short tons	Percent of total	Short tons	Per- cent of total	Short tons	Per- cent of total	Short tons	Per- cent of total
Well drilling Glass Paint Rubber Concrete ag-	521, 073 25, 881 25, 400 16, 600	87 4 4 3	758, 240 24, 604 25, 000 18, 000	90 3 3 2	24,000	3	968, 429 23, 208 22, 000 20, 000	2 2	25, 633	93 2 2 2	20,602	98 2 1
gregates Undistributed	10, 785 2, 619	(³) ²	12,000 1,584	(²) ²	25, 000 1, 181	(2) 3	(1) 3, 953	(1) (2)	(¹) 10, 393	⁽¹⁾ 1	6, 613	(2)
Total	602 , 3 58	100	839, 428	100	920, 084	100	1, 037, 590	100	1, 232, 176	100	1, 503, 010	100

¹ Included with "Undistributed."

2 Less than 1 percent.

TABLE 6.—Lithopone sold or used by producers in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Plants	7				77	
Short tonsValue	118, 376 \$14, 019, 170	61, 832 \$8, 475, 200	52, 439	44,011	42, 845	38, 434
	- 414, 019, 170	фо, ±10, 200	\$6, 923, 487	\$5, 929, 789	\$6,002,832	\$5, 630, 991

TABLE 7.—Distribution of lithopone shipments, 1947-51 (average) and 1952-56, by consuming industries

	1947 (aver		19	52	19	53	19	54	19	55	19	56
Industry	Short tons	Per- cent of total	Short tons	Per- cent of total	Short tons	Percent of total	Short	Percent of total	Short	Per- cent of total	Short	Per- cent of total
Paints, varnishes, and lacquers Floor coverings Coated fabrics and	¹ 90, 041 7, 554	76 6	45, 267 3, 009	73 5	37, 452 2, 575	72 5	32, 177 2, 351	73 9	30, 522 2, 378	71 6	28, 238 1, 600	7
textiles Paper Rubber Other	7, 244 4, 002 3, 582 5, 953	6 4 3 5	5, 698 3, 089 1, 523 3, 246	9 5 3 5	5, 806 2, 096 1, 723 2, 787	11 4 3 5	3, 995 1, 841 1, 701 1, 946	5 4 4 5	4, 242 1, 970 2, 163 1, 570	10 4 5 4	(2) (2) (2) (2) 8, 596	(2) (2) (2) (2) 2
Total	118, 376	100	61, 832	100	52, 439	100	44, 011	100	42, 845	100	38, 434	10

¹ Includes a quantity, not separable, used for printing ink.
² Included with "Other."

PRICES

The following prices on barite were quoted in E&MJ Metal and Mineral Markets during 1956: Barytes, f. o. b. cars: Georgia: Crude, jig and lump, \$15 per net ton, and increased to \$18 per net ton in March; beneficiated, \$21 per net ton, in bulk, \$23.50 to \$25 in bags. This price remained stable throughout the year. Missouri: Per ton, water-ground and floated, bleached, \$45, carlots, f. o. b. works, no change. Crude ore, minimum 94 percent BaSO4, less than 1 percent iron, \$16, no change. Crude—oil-well drilling, minimum 4.3 specific gravity, bulk, short ton, \$11.50.

TABLE 8.—Barium chemicals produced and used or sold by producers in the United States, 1947-51 (average) and 1952-56, in short tons

		Pro-	Used by producers 1	Sold by I	roducers *
Chemical	Plants	duced	in other barium chemicals 3	Short	Value
			chemicais -	LOHS	
lack ash: 4					
1947-51 (average)	14	141, 444 121, 061	140, 598	381	\$25, 04
1952	12	121, 061	120, 562	649	42, 47
1953 1954	11 11	138, 980 116, 246	137, 801	1, 126 1, 020	81, 64 73, 90
1955	9	135, 455	112, 863 134, 202	1,943	165, 50
1956	10	128, 661	127, 624	6, 356	524, 3
arbonate (synthetic):					
1947-51 (average)	4	47, 118	15, 807	31, 462	2, 335, 69
1952 1953	4	57, 935 74, 122	21, 591 26, 116	37, 214 46, 846	3, 175, 08 4, 223, 52
1954	4	65, 319	29, 150	43, 325	3, 985, 67
1955	4	78, 946	31, 938	53, 274	5, 021, 0
1956	- 5	76, 352	35, 712	45, 925	4, 439, 6
hloride (100 percent BaCl ₂):		10 440	0	0 555	1 104 5
1947-51 (average)	4	13, 442 14, 157	3, 555 3, 979	9, 557 10, 409	1, 124, 54 1, 407, 98
1953	4	14, 838	2, 186	12, 303	1, 703, 7
1954	3	12, 167	45	10 733	1, 407, 8
1955	3	14,668	120	12, 343	1, 672, 6 1, 705, 6
1956	3	14, 517	130	11, 926	1, 705, 6
(ydroxide:	4	7 919	223	6,828	1, 403, 3
1947-51 (average) 1952	5	7, 213 11, 759	585	10, 848	2 211 9
1953	5	12, 454	304	11, 843	2, 211, 9 2, 258, 2
1954	5	12, 616	326	11, 697	2, 200, 5
1955	4	15, 540	74	16, 150	3, 174, 10
1956vide:	5	16, 957	120	16, 762	3, 051, 3
1947-51 (average)	3	7, 567	6, 114	1,462	323, 2
1952	. 3	9,843	6,081	3, 818	907, 7
1953	3	14, 578	7,604	6,820	1, 678, 9
1954	3	15, 195	7,035	7,400	1, 853, 4
1955	3	16, 509 19, 816	8, 102 8, 117	8, 722 11, 222	2, 128, 9 1, 969, 8
1956ulfate (synthetic):		19, 010	0, 111	11, 222	1, 505, 0
1947-51 (average)	7	19,065	3, 209	15, 539	1, 459, 0
1952	7	13, 035		13, 274	1, 492, 3
1953	7	14, 390		13, 448	1, 653, 5
1954	6 5	10, 495 10, 722	367	10, 486 9, 976	1, 356, 3 1, 347, 2
1955	6	9, 981	192	9, 281	1, 263, 5
ther barium chemicals:		1		0, =0=	
1947-51 (average)	(6)	10, 389	3, 267	7,045	1, 179, 3
1952	(6)	8, 893 7, 822	1,669	6, 944 5, 122	2, 863, 8
1953	0000	2,660	1,762 722	2, 084	1, 747, 6 721, 7
1954 1955	8	2,396	176	3, 505	963, 9
1956	(6)	1,808	190	1, 420	555, 8
otal: 7	.,				
1947-51 (average)	19			72, 274	7, 850, 3
1952	19 18		[83, 156 97, 508	12, 101, 4 13, 347, 3
1953	18			86, 745	11, 599, 3
1955	16			105, 913	14, 473, 4
1956	17	I		102, 892	13, 510, 2

¹ Of any barium chemical. ² Includes purchased material.

Canadian barite ore, crude, in bulk, f. o. b. shipping point, was quoted at \$11 per long ton; ground in bags, \$16.50 per short ton.

This price remained unchanged.

In December, price quotations on foreign ore appeared in E&MJ Metal and Mineral Markets. Crude, oil-well drilling, minimum 4.25 specific gravity, bulk, short-ton unit, c. i. f. gulf ports, was quoted at \$16 to \$18.

Includes purchased material.
 Exclusive of purchased material and exclusive of sales by one producer to another.
 Black-ash data include lithopone plants.
 Includes barium acetate, nitrate, peroxide, sulfide and other unspecified compounds. Specific chemicals may not be revealed by specific years.
 Plants included in above figures.
 A plant producing more than 1 product is counted but once in arriving at grand total.

Prices for barium metal were not quoted in trade journals. Barium-chemical prices reflected little change throughout the year. Prices for selected compounds are given in table 9.

TABLE 9.—Quotations on barium chemicals in 1956

[Oil. Paint and Drug Reporter]

	Jan. 2	Dec. 31
Barium carbonate, precipitated, bags, carlots, worksshort ton_	\$100,00	Unchanged.
Smaller lots, worksdo	110.00	Do.
Barium chlorate, kegs, workspound	. 32 36	Do.
Barium chloride, anhydrous, bags, carlots, worksshort ton	165.00	Do.
Less carlots, worksdo	175,00	Do.
Less carlots, works do	. 35	Do.
Darium dioxide (peroxide), drums, ireignt equaled	. 20	Do.
Barium hydrate crystals, bags, carlots, ton lots, freight equaled short ton	200.00	2 \$208.00.
Less carlots, less ton lots, freight equaleddodo	210.00	2 218.00.
Less carlots, less ton lots, freight equaled do	. 16	Unchanged.
Less carlots, less ton lots, freight equaleddo	.17	Do.
Barium oxide, ground, drums, carlots, ton lots, freight equaledshort ton	275.00	Do.
Less carlots, less ton lots, freight equaleddodo	285, 00	(3).
Blanc fixe (dry):		17.
Byproduct, bags, carlots, worksdodo	190.00	(8).
Less carlots, worksdo	200.00	(3).
Direct process, bags, carlots, worksdodo	110.00	Unchanged.
Less carlots, worksdo	120.00	Do.
Less carlots, works do New York warehouse do do	155.00	Do.
Lithopone: 1		
Ordinary, bags, carlots, deliveredpound	. 071/6	4.08.E.
Less carlots, delivereddo	.081/4081/2	4.08¾.E.
Less carlots, delivered	.10	Unchanged.
Less carlots, delivereddo	. 11	Do.

Lithopone prices Pacific coast, 0.01 per pound higher.
 Increase published July 9, 1956.
 Not quoted.

FOREIGN TRADE®

With increased demand for barite in the United States, foreign barite sources were relied upon more heavily to supplement domestic production.

Total imports of crude barite were more than 200,000 tons greater in 1956 than in 1955. Canadian, Mexican, and Brazilian imports increased greatly; and imports were received for the first time from Peru, El Salvador, Sweden, and Greece.

Imports of the principal barium chemicals increased substantially in 1956, but exports of lithopone continued to decline.

TECHNOLOGY

A paper was published on the use of barite in ceramics; its thermal behavior and its effects when used as a major ingredient in whitewear were discussed.10 Feldspar-clay-barite, talc-clay-barite, and wollastonite-clay-barite body compositions were studied and compared conventional semivitreous bodies. Results indicated that barite bodies mature at low temperatures but exhibit maturing ranges 3 to 11 times greater than the conventional-type semivitreous bodies. Relatively uniform properties were maintained in the barite

Increase published Aug. 13, 1956.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.
 Russell, Ralston, Jr., Valencia, Camilo, and Emrich, H. W., Barite in Ceramic Whitewares: Jour. Am. Ceram. Soc., vol. 39, No. 2, Feb. 1, 1956, pp. 73-82.

TABLE 10.—Barite imported for consumption in the United States, 1953-56, by countries

[Bureau of the Census]

	1	1953		1954	1	1955	1	956
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Crude barite:								4 4
North America: Canada	204, 362	\$1,652,076	165, 612	\$1, 177, 616	187, 355	\$1, 364, 285	240, 650 58	\$1, 707, 597 395
El Salvador Mexico	63, 450	344, 211	43, 750	130, 384	108, 240	329, 335	204, 354	779, 044
Total	267, 812	1, 996, 287	209, 362	1, 308, 000	295, 595	1, 693, 620	445,062	2, 487, 036
South America: Brazil	6, 365	42,031	6, 184	35, 461	4, 960	22, 500	16, 069 30, 305	84, 877 225, 780
Total	6, 365	42, 031	6, 184	35, 461	4, 960	22, 500	46, 374	310, 657
Europe: Greece	9, 830	52, 989	5, 600	37,000			22, 365 26, 559	151, 757 265, 794
Italy Sweden Yugoslavia	50, 781	423, 521	95, 947	894, 373	59, 081	464, 999	42, 815	337 347, 963
Total	60, 611	476, 510	101, 547	931, 373	59, 081	464, 999	91, 793	765, 851
Grand total	334, 788	2, 514, 828	317, 093	2, 274, 834	359, 636	12, 181, 119	583, 229	13, 563, 544
Ground barite:								
Europe: Germany, West Italy	40 23	1, 368 434	63	2, 346	45 18	1, 614 509	49 74	2, 077 2, 212
TotalAfrica; Algeria	63 196		63 189		63 232	2, 123 7, 839	123 245	4, 28 8, 63
Grand total	259	8,097	252	8, 697	295	9, 962	368	12, 91

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known not to be comparable to years before 1954.

compositions even when fired over a wide range of temperatures. The author of the paper believed more attention should be devoted

to the use of barite in ceramic applications.

The microstructure of barium titanate ceramics was studied. The study samples were prepared by being rubbed with graded metallographic abrasive paper and polished with a cloth wheel, using diamond paste as the abrasive and kerosine as the polishing lubricant. The samples were etched with aqueous 5-percent hydrochloric acid containing a little hydrofluoric acid. From examination of the polished surfaces, information on voids and microporosity was obtained; and from the etched faces, information on grain structure, twinning, and domain.

Domain twinning were discussed.¹² It is believed that a study of these properties may reveal useful information on variations in the

electromechanical properties of the barium titanates.

National Lead Co. put into service in July 1956 a new type of vessel to be used for delivering drilling muds to offshore rigs. It has a capacity of over 1,500 tons. Although the barge must be towed to the vicinity of the rig by a tug, it can be maneuvered alone into

Kulcsar, Frank, A Microstructure Study of Barium Titanate Ceramics: Jour. Am. Ceram. Soc., vol. 39, No. 1, Jan. 1, 1956, pp. 13-17.
 Orook, William R., Jr., Domain Twinning in Barium Titanate Ceramics: Jour. Am. Ceram. Soc., vol. 39, No. 1, Jan. 1, 1956, pp. 17-19.

TABLE 11.—Barium chemicals imported for consumption in the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Lith	opone	(pre	anc fixe cipitated m sulfate)	Bariu	Barium chlor- ide			rium hy- roxide
	Short	Value	Short	Value	Short tons	V	lue	Shor	
1947-51 (average)	11 30 65	\$66, 487 2, 308 5, 658 7, 029 4, 355 119, 931	13 32 1,008 788 901 1,026	6, 481 57, 346 64, 026 91, 341	173 84 50 811 994 1,378	58 1 78	9, 892 1, 065 1, 567 3, 238 5, 069 7, 913	5 19 2 5 1 2	3 46,979 2 3,018 1 7,283 5 2,431
Year	Bar	lum nitr	ate		carbona pitated	te	Oth	or bari pour	um com-
	Short to	ns V	alue	Short ton	s Valu	1e	Short	tons	Value
1947-51 (average) 1952 1953 1954 1955 1955 1956	4: 2: 10	56 35 34 77	23, 636 80, 654 36, 433 24, 516 14, 906 91, 177	216 499 4, 219 325 1, 638 1, 801	30, 297, 26,	427 187 402 240	1,	19 82 513 344 841 138	\$7, 102 36, 944 103, 100 265, 472 1 170, 345 29, 735

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known not to be comparable to years before 1954.

TABLE 12.—Lithopone exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Short	Val	Value Year	Short	Value		
	tons	Total	Average	Teal	tons	Total	Average
1947-51 (average) 1952 1953	15, 791 9, 985 3, 927	\$2, 308, 138 1, 632, 106 584, 279	\$146. 17 163. 46 148. 79	1954	3, 013 1, 892 1, 387	\$454, 461 300, 960 239, 892	\$150. 83 159. 07 172. 96

TABLE 13.—Witherite, crude, unground, imported for consumption in the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Short tons	Value 1	Year	Short tons	Value 1
1947–51 (average)	1, 885	\$57, 398	1954	4, 415	\$153, 139
1952	5, 174	184, 003	1955	2, 363	77, 867
1953	4, 928	178, 846	1956	2, 934	110, 039

¹ Valued at port of shipment.

proper position. Mud in bulk form is pumped pneumatically through hoses to the rig storage bins. Bagged material is hoisted to the rig by cranes.

Wright Air Development Center awarded a contract to Horizons, Inc., to study barium titanate and related electrical ceramics for use in highly specialized aircraft.¹³

¹⁸ Chemical Engineering News, vol. 34, No. 7, Feb. 13, 1956, p. 692.

227BARITE

A process for recovering barium hydroxide from barium sulfate was patented.¹⁴ Finely ground barite and a mixture of 1 to 5 mols of finely ground iron sulfide to each mol of barium sulfate are formed into aggregates. The mixture is reacted in a steam current at a temperature greater than 750° C. but below the temperature of fusion. sulfur is driven off, and the aggregate is rendered porous. Hydrogen is passed through at a temperature of at least 550° C., but below fusion temperature, to drive off the oxygen. The soluble barium hydroxide is leached from the residue with hot water.

WORLD REVIEW

World production of barite increased substantially in 1956. Increases in output were noted in Brazil, Canada, Greece, Mexico, and Peru. The Philippine Republic reported barite production for the first time during 1956.

NORTH AMERICA

Canada.—Canadian barite production, which increased 20 percent in 1956 compared with 1955, set a new production high. Cove Barium Corp. mine at Walton, Nova Scotia, supplied 95 percent of the Canadian output; the remainder was produced by Mountain Minerals, Ltd., from its quarry near Brisco, British Columbia. 15 Over 90 percent of the Canadian output was exported; the United States was the largest consumer.16

A barite-fluorite occurrence in Inverness County, Nova Scotia, was being explored by diamond drilling, and a new occurrence in Hants

County also was being tested.¹⁷

Mexico.—The Mexican Bureau of Mines reported an increase in applications for concessions to mine barite chiefly in the States of Oaxaca and Puebla. La Platima Mining Co. filed two applications for mining rights in the Tecomaxtlan region of Puebla State. 18

SOUTH AMERICA

Venezuela.—Magnet Cove Barium Corp. organized a new subsidiary, Magcobar de Venezuela, C. A., to mine, process, and distribute barite for drilling-mud additives. 19 A processing plant was under construction at Puerto la Cruz, and a second plant in the Maracaibo area was considered.

National Lead Co. acquired an interest in Baritina de Venezuela, S. A., a drilling-mud distributor in that country since 1949. It was reported that the firm also planned to construct two processing plants

for manufacturing drilling-mud additives.20

EUROPE

Greece.—The principal barite deposits of Greece are on the Islands of Melos and Mykonos. On Melos the sole barite producer in 1956

¹⁴ de Jahn, Frederick W. (assignor of 55 percent to Alan N. Mann), Process of Decomposing Barium Sulfate and Obtaining Products of Value Therefrom: U. S. Patent 2,735,751, Feb. 21, 1956.
¹⁸ Northern Miner, vol. 42, No. 43, Jan. 19, 1957, p. 11.
¹⁸ Northern Miner, vol. 49, No. 38, Dec. 13, 1956, p. 28.
¹⁹ Precambrian, vol. 29, No. 1, February 1956, p. 45.
¹⁹ Mining World, vol. 18, No. 8, July 1956, p. 33.
¹⁰ Chemical Engineering News, vol. 34, No. 39, Sept. 24, 1956, p. 4646.
²⁰ National Lead Co., Public Relations Dept., News Release: June 26, 1956.

TABLE 14.—World production of barite, by countries, 1947-51 (average) and 1952-56, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	89, 370	136, 002	247, 227	221, 472	253, 736	307, 808
Cuba (exports)	2, 443		4, 904			
Mexico (exports) United States	786, 474	12, 421 1, 012, 811	63, 042 920, 025	56, 871 926, 036	117,654	235, 792 1, 351, 913
						
Total	878, 359	1, 161, 234	1, 235, 198	1, 204, 379	1, 485, 507	1, 895, 513
South America:						
Argentina	21,035	17, 637	16, 464	4 16, 500	22, 046	23, 149
Brazil		5 7, 605	⁵ 15, 863	5 6, 272	5 5.071	5 10, 426
Chile		2,464	1, 556	4 2, 200	4 2, 200	4 2, 200
Colombia		4,480	8, 543	9,921	6,614	8, 818
Peru	8, 983	10, 035	17, 129	12, 348	9,410	56, 130
Total	40, 696	42, 221	59, 555	4 47, 000	4 45, 000	4 101, 000
Europe:						
Austria	7, 454	5, 688	2, 116	4,802	4, 365	9 419
France	46, 096	47, 025				3, 413
Germany:	40,000	41,020	43, 869	52, 361	60, 627	52, 911
East 4	14,800	22,000	27, 600	27, 600	27, 600	27, 600
West	6 211, 892	314, 513	334, 422	414, 542	449, 052	453, 836
Greece	23, 040	23, 897	29, 655	24, 251	21, 451	38, 581
Ireland	8, 596	2,008	20,000	3, 031	6, 173	4 5, 500
Italy	69, 836	62, 588	79, 104	81, 931	103, 819	101, 185
Portugal	637	685	347	385	357	330
Spain	13, 499	17, 491	19, 727	11,740	9,833	7, 420
Sweden	060	11, 101	10, 121	108	137	1,420
U. S. S. R.4 United Kingdom	99,000	110,000	110,000	110,000	110,000	110,000
United Kingdom 7	116,004	78, 563	77, 175	81, 967	92, 906	86, 297
Yugoslavia	26, 377	38, 381	89, 457	114, 640	109, 129	4 71, 000
Total 1 4	643, 000	730, 000	820, 000	930, 000	1,000,000	960, 000
Asia:						
Asia: India	20, 385	11, 234	10, 528	21, 048	8, 537	4 7, 700
Janan	0,042	15, 687	19, 350	20, 815	20, 374	20, 578
Korea, Republic of	0,012	874	1, 210	336	933	744
Japan Korea, Republic of Philippines		012	1, 210	330	750	5, 045
Total 14		39,000	42,000	53, 000	46,000	56, 000
					====	
Africa:						- 1
Algeria		12,533	18, 821	21, 341	33, 720	32, 843
Egypt	53	11	33	35	67	4 60
French Morocco	3 1, 868	3, 429	. 55	10, 246	27, 170	32, 622
French Morocco Rhodesia and Nyasaland, Feder-		1			·	
ation of: Southern Rhodesia	200	299	268			
Swaziland	247	444	455	362	449	516
Tunisia	301	28				
Union of South Africa	2, 187	1,894	2,092	2, 342	1,892	2,713
Total	27, 157	18, 638	21, 724	34, 326	63, 298	68, 754
Oceania: Australia	5, 994	5, 537	6, 358	7, 696	7, 016	6, 629
World total (estimate)1	1, 634, 000	2,000,000	2, 200, 000	2, 300, 000	2, 600, 000	3, 000, 000

In addition to countries listed, barite is produced in China, Czechoslovakia, and North Korea, but data on production are not available. Estimates by author of chapter included in total.
 This table incorporates a number of revisions of data published in previous Barite chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 Average for 1949-51.
 Estimate.
 Exports.
 Beginning in 1950, marketable production is shown.
 Includes witherite.

BARITE 229

was the Silver & Barite Mining Co. The barite in this deposit occurs

in flat-lying beds, and mining was by open-pit methods.21

An agreement calling for an investment of \$530,000 in equipment, supplies, and working capital was made between Dresser Industries, Dallas, Tex., and the Mykonos Mining Co., Ltd., for the development

of barite deposits on Mykonos.

Yugoslavia.—Plans to mechanize the barite mine at Lokve were reported by the Yugoslavian Government. The investment was contingent upon completion of a survey to determine the extent of the deposit. Production from this mine began in 1953 and has expanded gradually. Output was exported to the United States and West Germany.²²

Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 6, December 1956, p. 34.
 Mining World, vol. 18, No. 3, March 1956, p. 74.

Bauxite

By Richard C. Wilmot, Arden C. Sullivan, and Mary E. Trought 3

ORLD PRODUCTION of bauxite in 1956 totaled 17.4 million long tons and continued the unbroken upward trend begun Domestic production was 1.7 million tons (dried in 1951. equivalent) and showed a slight decline from the 1.8 million tons Imports resumed the upward trend that had been mined in 1955. interrupted in 1955 after rising continuously since 1950. About 76 percent of the total new supply in 1956 in the United States was Jamaican shipments to the United States were 45 percent of the total imports on a dry basis. Exports of 15,000 tons showed little change from the previous year.

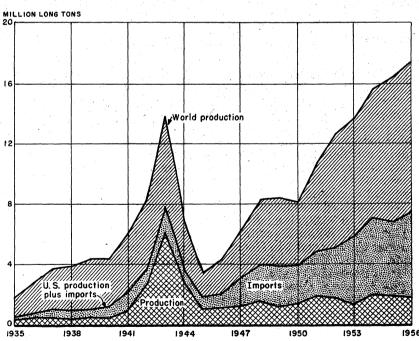


FIGURE 1.—United States supply and world production of bauxite, 1935-56, in million long tons.

¹ Commodity specialist.

² Statistical clerk.
3 Statistical assistant.

In the United States the production of aluminum metal consumed 85 percent of the bauxite used; the production of 1 short ton of aluminum metal consumed 3.93 long dry tons of bauxite. The 6 alumina plants in the United States produced 3.5 million short tons of alumina and aluminum oxide products in 1956. This production was close to rated capacity and indicated that, as the aluminum industry expanded, new alumina facilities would be needed. During the year construction was begun for increasing alumina-plant capacity by 1.7 million tons to a total of 5.2 million tons by mid-1958.

The tariff suspension on bauxite and calcined bauxite was extended for 2 years until July 16, 1958, and the tariff on alumina used for producing metal was suspended for 2 years beginning July 17, 1956.

Aluminum is discussed in the Aluminum chapter of this volume.

TABLE 1.—Salient statistics of the bauxite industry in the United States, 1947-51 (average) and 1952-56, in long tons

	1947-51 (average)	1952	1953	1954	1955	1956
Crude-ore production (dry equivalent) Imports (as shipped) Exports (as shipped) Consumption (dry equivalent) World production	1, 398, 240	1, 667, 047	1, 579, 739	1, 994, 896	1, 788, 341	1, 743, 344
	2, 466, 916	3, 497, 939	4, 390, 576	5, 258, 530	1 5, 225, 188	6, 075, 051
	63, 748	41, 330	27, 907	16, 174	14, 117	14, 921
	3, 047, 657	4, 228, 404	5, 628, 276	6, 427, 785	1 6, 988, 734	7, 751, 057
	8, 224, 000	12, 600, 000	113, 600, 000	115, 600, 000	1 16, 400, 000	17, 400, 000

¹ Revised figure.

DOMESTIC PRODUCTION

Production of crude bauxite in the United States during 1956 was 1.7 million long tons dried equivalent, a 3-percent decrease from the previous year. Some loss in production was caused by a strike in Arkansas during August. Aluminum Company of America mines were shut down for 9 days, and Reynolds Metals Co. mines for the entire month. The total output of ore was 24 percent of the new supply, calculated by adding production to imports. Shipments from mines and processing plants to consumers decreased 5 percent from those of 1955. The dried bauxite equivalent of the processed bauxite produced decreased 4 percent to 145,000 tons.

The combined bauxite production of Alabama and Georgia increased

12 percent to 75,000 long dried tons.

The D. M. Wilson Bauxite Co. operated 3 mines in Alabama—2 in Barbour County and 1 in Henry County. Its production was shipped crude. R. E. Wilson Mining Co. dried the ore from its mine at its plant in Barbour County.

The American Cyanamid Co., with mines in Floyd, Macon, and Sumter Counties, was the only producer in Georgia. The crude ore was dried at its plant at Halls Station, Bartow County, for use in

producing chemicals.

Production from the Arkansas mines—96 percent of United States production—decreased 3 percent from the previous year. Eightynine percent was mined in Saline County and the remainder in Pulaski County. Open-pit operations supplied 88 percent of the production.

The Reynolds Metals Co., through its subsidiary, the Reynolds Mining Corp., was the largest producer in Arkansas during 1956, mining

ore in both Pulaski and Saline Counties. The Aluminum Company of America, operating in Saline County, was the second largest producer. The ore of each company was shipped to its own plant for production of alumina. The American Cyanamid Co. operated the Berry Mayhan and the Lewis mines in Pulaski County. Crude ore was received for drying at the company mill in Pulaski County before

being consumed in producing chemicals.

The Dulin Bauxite Co. operated the Confederate Home pit and the Dixon pit in Pulaski County and the Anderson pit and the 400 B. C. mine in Saline County. Operations were discontinued at the Anderson pit in the middle of the year. A portion of the ore was dried and the remainder shipped crude. The Norton Co. produced from its mine in Saline County. Part of the production was calcined in its own plant in Saline County, and the remainder stockpiled. Consolidated Chemical Industries, Inc., shipped crude ore from stocks to its own plant in Pulaski County; the product was sold as dried bauxite. The Campbell Bauxite Co. plant in Pulaski County purchased ore for

TABLE 2.—Mine production of bauxite in the United States, 1952-56, by quarter years, in long tons 1 (Dried-houvite equivelent)

(1)11	Ju-De	Mario oq	di vaiciio)	
	100	1052	1053	10

Quarter ended—	1952	1953	1954	1955	1956
March 31 June 30 September 30 December 31	426, 269 458, 612 312, 370 469, 796	378, 806 411, 070 387, 054 402, 809	399, 300 367, 750 686, 323 541, 523	486, 743 474, 147 402, 440 425, 011	490, 991 470, 816 357, 320 424, 217
Total	1, 667, 047	1, 579, 739	1, 994, 896	1, 788, 341	1, 743, 344

¹ Quarterly figures adjusted to final annual totals.

TABLE 3.—Mine production of bauxite and shipments from mines and processing plants to consumers in the United States, 1952-56, by States, in long tons

	M	ine producti	o n		from mines a lants to consu	
State and year	Crude	Dried- bauxite equivalent	Value 1	As shipped	Dried- bauxite equivalent	Value 1
Alabama and Georgia: 1952	76, 582	63, 214	\$541, 000	50, 670	48, 463	\$520, 550
	61, 186	49, 763	463, 149	59, 985	56, 085	580, 471
	56, 431	45, 528	409, 501	58, 446	55, 050	705, 950
	89, 447	67, 098	516, 448	72, 952	67, 141	713, 900
	94, 444	74, 912	665, 392	73, 517	68, 248	728, 462
Arkansas: 1952	1, 903, 101	1, 603, 833	10, 235, 254	2, 067, 241	1, 849, 287	14, 084, 27-
	1, 802, 797	1, 529, 976	12, 975, 992	1, 889, 206	1, 689, 207	15, 042, 230
	2, 296, 528	1, 949, 368	15, 993, 887	1, 978, 216	1, 711, 386	15, 239, 24-
	2, 049, 623	1, 721, 243	14, 026, 190	1, 938, 811	1, 660, 263	14, 844, 79
	1, 966, 320	1, 668, 432	13, 307, 341	1, 827, 832	1, 576, 028	13, 724, 44
Total United States: 1952	1, 979, 683	1, 667, 047	10, 776, 254	2, 117, 911	1, 897, 750	14, 604, 82
	1, 863, 983	1, 579, 739	13, 439, 141	1, 949, 191	1, 745, 292	15, 622, 70
	2, 352, 959	1, 994, 896	16, 403, 388	2, 036, 662	1, 766, 436	15, 945, 19
	2, 139, 070	1, 788, 341	14, 542, 638	2, 011, 763	1, 727, 404	15, 558, 70
	2, 060, 764	1, 743, 344	13, 972, 733	1, 901, 349	1, 644, 276	14, 452, 90

¹ Computed from selling prices and values assigned by producers.

⁴⁶⁶⁸¹⁸⁻⁵⁸⁻⁻⁻¹⁶

preparing dried and activated bauxite. Activated bauxite was also

produced by the Porocel Corp. in Pulaski County.

Bauxite possibilities in the Territory of Hawaii were actively explored by several aluminum companies. Development was not advanced enough for determining the economic potential of the deposits.

TABLE 4.—Recovery of processed bauxite in the United States, 1947-51 (average) and 1952-56 in long tons

		ixite rècovere	ed.		
Year	Crude ore treated		Calcined	To	tal
		Dried	or activated	As recovered	Dried- bauxite equivalent
1947-51 (average)	731, 916 576, 430 200, 970 201, 894 199, 313 181, 625	511, 098 397, 067 100, 632 125, 511 114, 863 114, 685	78, 793 56, 191 34, 288 24, 686 23, 166 17, 914	589, 891 453, 258 134, 920 150, 197 138, 029 132, 599	632, 283 481, 705 155, 248 161, 638 151, 333 145, 166

CONSUMPTION AND USES

Domestic consumption of bauxite in 1956 increased 11 percent over that of 1955 to 7.75 million dry tons. In 1956, 24.9 percent of the ore consumed was of domestic origin. During the preceding 3 years approximately 27 percent of the consumption was domestic material. The tonnage of bauxite consumed in products other than alumina was approximately the same in 1956 as in 1955.

Of the domestic ore shipped from the mines in 1956, 11 percent was estimated to contain less than 8 percent silica. Approximately 77 percent of the ore contained 8 to 15 percent silica, and the remaining 12 percent contained more than 15 percent silica. The proportion of ore containing over 15 percent silica was sharply reduced from 1955, when 22 percent of the ore contained over 15 percent

silica.

The 6 domestic alumina plants operated by aluminum producers had a combined rated capacity of 3.5 million short tons of alumina per year; and their production, calculated on the basis of the calcined equivalent of alumina, was 3,444,000 short tons or about 98 percent of capacity. The actual weight of calcined alumina and aluminum oxide products was 3,487,000 short tons. Of this production 93 percent was shipped to the aluminum-reduction plants, and about four-fifths of the remaining 7 percent was shipped as commercial trihydrate or as activated, calcined, or tabular alumina for use primarily by the chemical, abrasive, ceramic, and refractory industries.

Compared with 1955 the production of calcined alumina increased

⁴ American Metal Market Industry's Interest Rises in Hawaiian Bauxite-Ore Deposits: Vol. 63, No. 238, Dec. 14, 1956, p. 9.

The production of other forms of 9 percent to 3,328,000 tons.

alumina decreased 14 percent to 159,000 tons.

Because the plants producing alumina were operating close to capacity, plans for increased aluminum production required increased alumina capacity. As a result, construction was begun on three new plants during the year, and capacity was being increased at another plant. The proposed increases (see table 7) were to add about 1.7 million tons to the 1956 capacity or 49 percent.

TABLE 5.—Bauxite consumed in the United States, 1955-56, by industries, in long tons

(Dried-bauxite	equivalent)

Industry	ndustry Domestic		Percent Foreign		Total	Percent	
1955			10 mg			7	
Alumina	1, 741, 576	90.8	4, 646, 517	91.6	6, 388, 093	91.4	
Abrasive 1	18,843	1.0	277, 476	5. 5	296, 319	4.3	
Chemical	2 88, 691	4.6	93, 497	1.8	² 182, 188	2.6	
Refractory	14, 285	.8	49, 367	1.0	63, 652	.9	
Other	53, 735	2.8	4,747	.1	58, 482	.8	
Total 1	2 1, 917, 130	100.0	5, 071, 604	100.0	2 6, 988, 734	100.0	
Percent	27.4		72.6		100.0		
1956							
Alumina	1, 765, 973	91.6	5, 374, 276	92.3	7, 140, 249	92, 1	
Abrasive 1	7,000	.4	270, 475	4.6	277, 475	3.6	
Chemical	87, 776	4.5	100, 865	1.7	188, 641	2.4	
Refractory	21, 964	1.1	62, 301	1.1	84, 265	1.1	
Other	46, 057	2,4	14, 370	.3	60, 427	.8	
Total 1	1, 928, 770	100.0	5, 822, 287	100.0	7, 751, 057	100, 0	
Percent	24.9		75.1		100.0		

¹ Includes consumption by Canadian abrasives industry.
² Revised figure.

TABLE 6.—Consumption of crude and processed bauxite in the United States by grades, 1956, in long tons

(Dried-bauxite equivalent)

	Domestic origin	Foreign origin	Total	Percent
Crude	1, 784, 631 115, 832 15, 614 12, 693	6, 118 5, 495, 314 320, 855	1, 790, 749 5, 611, 146 336, 469 12, 693	23. 1 72. 4 4. 3 0. 2
TotalPercent	1, 928, 770 24. 9	5, 822, 287 75. 1	7, 751, 057 100. 0	100.0

In April 1956 Kaiser Aluminum & Chemical Corp. began the construction of a plant at Gramercy, La., which was reported to cost \$70 million. It was to have a capacity of 430,000 tons per year and would process Jamaican ores. The plant was to include facilities for producing annually 40,000 tons of caustic soda and 36,000 tons of chlorine gas. Its alumina production was to be moved up the Ohio River by barge to Kaiser's Ravenswood smelter. Completion was scheduled for mid-1957.

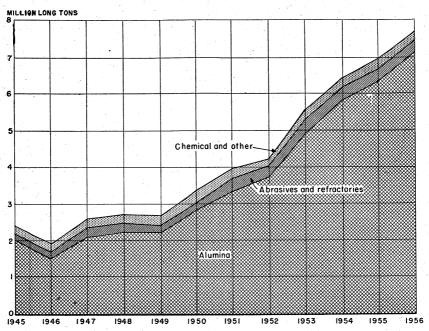


FIGURE 2.—Domestic consumption of bauxite, by uses, 1945-56.

TABLE 7.—Capacities of domestic alumina plants in operation and under construction

		4 4	
	Capacity	short tons	per year)
Company and plant	Operating plants, De- cember 1956	Plants un- der con- struction	Total
Aluminum Company of America: Mobile, Ala. East St. Louis, Ill. Banxite, Ark. Point Comfort, Tex.	. 328,500	1 750, 000	876, 000 328, 500 401, 500 750, 000
Total	1, 606, 000	750, 000	2, 356, 000
Reynolds Metals Co.: Hurricane Creek, Ark La Quinta, Tex	730, 000 365, 000	² 183, 000	730, 000 548, 000
Total	1, 095, 000	183, 000	1, 278, 000
Kaiser Aluminum & Chemical Corp.: Baton Rouge, La	800,000	² 430, 000	800, 000 430, 000
Total	800, 000	430, 000	1, 230, 000
Olin Revere Metals Corp.: Burnside, La		1 350, 000	350, 000
Total		350, 000	350, 000
Grand total	3, 501, 000	1, 713, 000	5, 214, 000
	1	1	

Initial production scheduled for mid-1958.
 Initial production scheduled for mid-1957.

237 BAUXITE

Alcoa started to build a new alumina plant to process ore from the Dominican Republic and Surinam at a site adjacent to its smelter at Point Comfort, Tex. The Federal Government was dredging a channel that would accommodate ships as large as 25,000 tons. New docks and storage facilities were to handle over 1 million tons of bauxite per year. The new alumina plant, scheduled to begin operations in 1958, was to produce 750,000 short tons of alumina per year for the company smelters at Point Comfort and Rockdale.

A third new alumina plant, to process trihydrate ore from Surinam supplied by the N. V. Billiton Co., was being constructed at Burnside, La., by the Olin Revere Metals Corp. The cost of construction, including all dock and loading facilities, was estimated by the company at \$54 million for a plant with a capacity of 350,000 tons per year. The alumina was to be shipped by barge to the company smelter under construction at Clarington, Ohio. Production was scheduled

to begin in 1958.

The increased alumina capacity planned by Reynolds Metals Co. was to be an addition to the existing La Quinta facilities, which treated Jamaica-type ore, and production was to be increased from 365,000 short tons of alumina to 548,000 tons per year. Its production was to be used to supply alumina for the new smelter capacity under construction at Listerhill, Ala. The \$25 million to \$30 million estimated included funds for expanding dock and storage facilities.

Harvey Aluminum, Inc., announced the signing of contracts with Nippon Light Metals Co. and Sumitomo Chemical Co., Ltd., of Japan, to deliver 105,000 short tons of alumina per year for 5 years to the Harvey plant at The Dalles, Oreg. Deliveries were to begin by August 1, 1957. This would be the first time an American aluminum smelter had operated entirely on alumina produced in a foreign Company plans called for constructing a 130,000-ton alumina plant during 1960-63.

Calcined alumina consumed by the 17 aluminum-reduction plants in the United States was 3,180,000 short tons in 1956, a 6-percent increase over 1955. An average of 2.07 long dry tons of bauxite was required to produce 1 short ton of alumina, and an average of 1.89 short tons of alumina was necessary to produce 1 short ton of aluminum metal. The overall ratio was 3.93 long dry tons of bauxite

to 1 short ton of aluminum.

Data on aluminum salts are shown in table 8. The principal source of aluminum salts was bauxite, although clay and other materials were also used.

TABLE 8.—Production and shipments of selected aluminum salts in the United States, 1955-56

			1955		
Type of salt	Production	of plants]	Con- sumed in pro-	
	(short tons)	produc- ing	Quantity (short tons)	Value f. o. b	ducing
Aluminum sulfate: Ammonium	(1)				
Potassium Sodium General:		2 2 1	(1)	(1) (i) (i)	
Commercial (17 percent Al ₃ O ₃) Municipal (17 percent Al ₂ O ₃)	15 500	3 41 7	791, 205	\$28, 094, 000	2 16, 86
Iron-free (17 percent Al ₂ O ₃)	2 68, 787 24, 525	² 10 8	24, 689 (1)	1, 694, 000 (¹)	(1)
Liquid (32° B.)	10, 234	1	} 14,790	946, 000	(1)
Aluminum fluoride, technical Aluminum trihydrate (100 percent Al ₂ O ₃ ·3H ₂ O) Other aluminum salts	50,970	9 4 28	32, 238 50, 946 2 102, 001	8, 901, 000 12, 083, 000 26, 308, 000	14, 597
Total				2 8 12, 165, 000 2 70, 191, 000	
	i				1
		· · · · · · · · · · · · · · · · · · ·	1956		
Type of salt	Produc-	of plants		ts and inter- transfers	Con- sumed in pro-
	(short tons)	produc- ing	Quantity (short tons)	Value f. o. b. plant	ducing plants (short tons)
Aluminum sulfate: Ammonium Potassium Sodium General:	(1) (1) (1)	2 2 1	(1)	(1) (1) (1)	
Commercial (17 percent Al ₂ O ₃) Municipal (17 percent Al ₂ O ₃) Iron-free (17 percent Al ₂ O ₃) Sodium aluminate (62.2 percent Al ₂ O ₃)	57, 824 28, 083	45 6 10 8	818, 161 (1) 26, 439 (1)	\$28, 824, 000 (1) 1, 677, 000 (1)	17, 889 12, 389 (1) (1)
Tignid (200 D)	1	J 10	} 13, 159	836,000	(1)
Liquid (32° B.)	59, 569	104	30, 117 57, 197	9, 176, 000 13, 669, 000	(1) (1)
Crystal (32° B.). Anhydrous (100 percent AlCl ₃) Aluminum fluoride, technical. Aluminum trihydrate (100 percent Al ₂ O ₃ ·3H ₂ O) Other aluminum salts. Total	36, 152 59, 569 121, 498	10	30, 117	9 176 000	(1)

Included with "Other aluminum salts."
 Revised figure.
 Includes cryolite, sodium-aluminum sulfate, sodium aluminate, potassium-aluminum sulfate, ammonium-aluminum sulfate, aluminum hydroxide (light or litho), and other aluminum compounds.

SOURCE: 1955 and 1956 data are based upon report Form MA-28E.1 (formerly MA19E), Annual Report on Shipments and Production of Inorganic Chemicals and Gases, Bureau of the Census.

STOCKS

According to reports received by the Bureau of Mines, 4.9 million long dry tons of bauxite was held as stocks in the United States on December 31, 1956. This represented a 2-percent decrease compared with the total stock figure of the previous year. Consumers' inventories of crude and processed bauxite decreased 9 percent on a dry-equivalent basis; those at mines and processing plants were 9 percent greater than in 1955. There were no withdrawals from the Government-held nonstrategic stockpile in Arkansas. All figures exclude bauxite held for the National Strategic Stockpile. Metaland Refractory-Grade bauxite remained on the Group I list of strategic materials for the National Stockpile. Abrasive-grade ore was in Group II.

TABLE 9.—Stocks of bauxite in the United States December 31, 1952-56, in long tons 1

		Producers and processors		Consumers		Total	
	Processed 2	Crude	Processed 2	Crude	Crude and processed 2	Dried- bauxite equivalent	
1952	755, 536 759, 165 964, 162 1, 042, 832 1, 132, 644	35, 440 44, 097 5, 810 4, 979 5, 812	473, 850 697, 653 762, 944 637, 508 483, 323	1, 518, 641 1, 405, 587 1, 637, 920 3 1, 705, 694 1, 605, 129	2, 454, 584 2, 261, 392 2, 261, 392 2, 204, 674 2, 204, 674	5, 238, 051 5, 167, 894 5, 632, 228 3 5, 595, 687 5, 431, 582	4, 680, 615 4, 623, 552 5, 041, 936 3 5, 011, 270 4, 889, 294

Excludes National Strategic Stockpile.
 Dried, calcined, and activated.
 Revised figure.

PRICES

No open-market price was in effect for bauxite mined in the United States, as the output was consumed mainly by the producing companies. The values in table 10 were determined from the approximate commercial value of the shipments and interplant transfers of crude and processed bauxite as assigned by the producers.

The average values in 1956 of bauxite as shipped and delivered to the 6 domestic alumina plants were \$9.94 per long ton for domestic

ore and \$14.73 per ton for imported ore.

Except for the quoted price of imported Abrasive-grade bauxite, which dropped from \$19.75 to \$19 per long ton, bauxite quotations in E&MJ Metal and Mineral Markets did not change from the previous

During 1956 the average value of calcined alumina shipped was

\$0.0319 per pound, as determined by producer reports.

TABLE 10.—Average value of domestic bauxite in the United States, 1955-56 1

Type		ts f. o. b. or plants ig ton)	Туре	Shipments f. o. b. mines or plants (per long ton)		
	1955	1956		1955	1956	
Crude (undried) Dried	\$7.00 9.65	\$6. 94 9. 68	Calcined	\$19.60 75.00	\$21. 78 74. 25	

¹ Calculated from reports to the Bureau of Mines by bauxite producers.

TABLE 11.—Market quotations on bauxite in the United States on Dec. 13, 1956 [E&MJ Metal and Mineral Markets]

Type of ore	Al ₂ O ₃ percent	Price	Type of ore	Al ₂ O ₃ percent	Price
Domestic (per long ton): Crude ¹	50-52 3 55-58 4 56-59 8 56-59	\$5.00-\$5.50 8.00- 8.50 8.00- 8.50 14.00-16.00	Domestic (per long ton): Abrasive grade, crushed and calcined ¹	80-84 86 min.	\$17.00 19.00 24.20

TABLE 12.—Average value of bauxite imported and exported into the United States, 1955-56, in long tons

[Bureau of the Census]

Type and country	Average v of ship	alue, port	Type and country	Average value, port of shipment	
	1955	1956		1955	1956
Crude and dried: British Guiana French West Africa	1 \$6. 74	\$6. 81 5. 86	Calcined: 8 British Guiana Surinam	\$22.78	\$23. 05 26. 13
Jamaica 3	8. 45 6. 75	9. 12 6. 77	AverageBauxite and bauxite concen-	22.78	23. 05
Average	7. 51	7. 83	trates exported	37. 39	55. 91

¹ Revised figure.

TABLE 13.—Market quotations on alumina and aluminum compounds [Oil, Paint and Drug Reporter]

Compound	Dec. 26, 1955	Dec. 31, 1956
Alumina, calcined, bags, carlots, workspound	\$0.0425 .0295 .18 1.85 3.55	1 \$0.0455 1.032 2.18 1.85 3.55

¹ First reported Aug. 27, 1956.

F. o. b. Arkansas mines.
 F. o. b. Alabama and Arkansas mines.
 1.5 to 2.5 percent Fe₂O₃.
 5 to 8 percent SiO₂.
 8 to 12 percent SiO₂.
 F. o. b. port of shipment, British Guiana.

² Dry tons are used for computation.
3 For refractory use. Calcined bauxite from British Guiana, other than when imported for refractory use, \$22.20 in 1956.

No price quoted on aluminum light hydrate from August 20 to end of year.

FOREIGN TRADE 5

United States bauxite imports in 1956 were 5.7 million tons—16 percent more than in 1955. Imports from Jamaica, computed on a dry basis, comprised 45 percent of the total and represented an 18-percent increase over 1955. Surinam supplied 49 percent of the total or 14 percent over 1955. Most of the remainder was imported from British Guiana. A shipment of 30 thousand tons was imported for test purposes from Kasai in French West Africa. On an "as-received" basis, 45 percent of the bauxite imports entered the United States through the Mobile (Ala.) customs district, 40 percent through the New Orleans (La.) customs district, 12 percent through the Galveston (Tex.) customs district, and 3 percent through other districts.

Except for 86 tons imported from Surinam in 1956, all calcined

Except for 86 tons imported from Surinam in 1956, all calcined bauxite for the refractory uses shown in table 13 was from British Guiana. Data on calcined bauxite imported for other uses, which became available for the first time July 1, 1956, showed that nearly 10,000 tons of such material was obtained from British Guiana during the last half of the year.

Aluminum compounds imported into the United States totaled 8,224 short tons; 57 percent came from Canada and the remainder from the countries of western Europe.

A statistical change in recording imports was introduced in the 1956 figures. Most ore imported into the United States was dried before shipment. Since the moisture content was not available on

TABLE 14.—Bauxite (crude and dried 1) imported for consumption in the United States, 1947–51 (average) and 1952–56, in long tons
[Bureau of the Census]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: Jamaica (dry equivalent) Trinidad and Tobago Other North America	(2) 6, 408 34	* 229, 000 12, 002	* 1, 016, 000 	3 1, 717, 000	2 , 178, 000	2 , 573, 000
Total	6, 442	241, 002	1, 016, 000	1, 717, 000	2, 178, 000	2, 573, 000
South America: British Guiana Surinam Other South America	108, 401 2, 000, 304 3, 334	178, 379 3, 023, 145	101, 911 3, 099, 554 2, 360	175, 002 3, 096, 120	4 241, 928 2, 462, 565	268, 62 2, 797, 71
TotalEurope	2, 112, 039	3, 201, 524	3, 203, 825 10, 257	3, 271, 122	4 2, 704, 493	3, 066, 33
Asia: Indonesia	348, 435 (²)	19, 425				30, 49
Grand total: Long tons. Value		3, 461, 951 \$23, 193, 991	4, 230, 082 \$29, 585, 129	\$ 4, 988, 122 \$36, 288, 926	3 4 4, 882, 493 4 \$36, 656, 142	\$ 5,669,83 \$44,414,42

¹ Only small quantities of undried bauxite were imported. Complete data on imports of calcined bauxite were not available until July 1, 1956. Calcined bauxite for refractory uses only was imported as follows: 1952, 31,412 tons (\$705,166); 1953, 91,606 tons (\$2,116,121); 1954, 99,421 tons (\$2,361,008); 1955, 107,694 tons (\$2,453,331); 1966, 138,716 tons (\$3,197,857). Beginning July 1, 1956, other calcined-bauxite imports were recorded as follows: 9,960 tons (\$221,112).

Less than 1 ton.
 Imports from Jamaica as reported by the Bureau of the Census contain 13.6 percent moisture. The table, as shown, was adjusted by Bureau of Mines to dry-equivalent basis.
 Revised figure.

⁵ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

all shipments, the ore was reported on an "as-received" basis. The Surinam and British Guiana ore usually contains less than 3 percent free moisture. To avoid handling difficulties, Jamaican ore is dried to an average moisture content between 13 and 14 percent before shipment. To obtain figures more comparable with other imports and with domestic production, the Jamaican imports have been recalculated to a dry-equivalent basis, using the "as-received" tonnage as reported by the Bureau of the Census and a moisture content of 13.6 percent, which represents the average water content of shipments from Jamaica for 1954, 1955, and 1956.

TABLE 15.—Bauxite (including bauxite concentrates 1) exported from the United States, 1947-51 (average) and 1952-56, in long tons

	[Bureau of t]	he Census]	(1.1.1) A.			
Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada Other North America	61, 925 831	40, 012 1, 105	26, 880 379	14,777 1,014	13, 115 606	13, 337 800
Total	62,756 30 758 185 19	41, 117 171 42	27, 259 95 553	15, 791 27 133 172 51	13, 721 70 326	14, 137 80 378 295 31
Grand total as exported Dried-bauxite equivalent ³ Total value	63, 748 99, 215 \$1, 395, 191	41,330 62,979 \$845,452	27, 907 43, 256 \$886, 275	16, 174 25, 070 \$666, 459	14, 117 21, 881 \$527, 888	14, 921 23, 128 \$834, 169

¹ Classified as "Aluminum ores and concentrates" by the Bureau of the Census.

Less than 1 ton.
Calculated by Bureau of Mines.

On July 16, 1956, two bills affecting tariffs were signed by the President. Public Law 724 continued the suspension of duty on crude and on calcined bauxite for refractories and extended the suspension to include all calcined bauxite imported for any purpose for a period of 2 years. Public Law 725 suspended, for the first time, the duty on alumina imported for producing aluminum during the 2-year period beginning July 17, 1957.

Duties on imports of aluminum hydroxide and alumina not used for

aluminum remained at one-fourth cent per pound.

Exports of bauxite and bauxite concentrates were about the same as in 1955. Shipments to Canada were 89 percent of the total. Approximately three-fourths of the 16,130 short tons of aluminum sulfate exports went to Canada, Colombia, and Venezuela. Of the other aluminum compounds, totaling 22,452 short tons, 55 percent went to

Norway and 35 percent to Canada and Mexico.

The international flow of bauxite for 1954 is given in table 16. Total exports of 10.3 million long tons represent an increase of 11 percent over 1953 (revised). Most of the principal exporting countries showed increases for 1954. The most significant change was in bauxite shipments from Jamaica. Its exports, all to the United States, increased 673,000 tons—a gain of 65 percent. Other large increases were in exports from Yugoslavia, Indonesia, French West Africa, and the Gold Coast.

As in 1953, five countries—the United States, Canada, West Germany, United Kingdom, and U. S. S. R.—received 95 percent of the total exports. The United States and Canada received 74 percent of the total exports or about the same quantity as in 1953.

TABLE 16.—Production and trade of bauxite in 1954, by major countries. in thousand long tons

[Compiled by Corra A. Barry and Berenice B. Mitchell]

	Pro- duc- tion	Exports, by countries of destination									
Exports, by countries of origin			North America				Europe			Asia	
		Ex- ports	Can- ada	United States	Ger- many, West	Italy	U. S. S. R. 1	United King- dom	Other Eu- rope	Japan	Other
North America: Jamaica ² United States South America: Brazil	2, 044 1, 995 27	1,728 16 (8)	15	1, 728		(3)		(9)	(3)	(3)	(3)
British Guiana_ Surinam Europe:	2, 310 3, 372	2, 126 3, 372	1, 787 139	303 3, 222	6			13	3 11		14
Austria France Germany, West Greece Hungary	17 1, 267 4 348 1, 240	313 (3) 338 771			9 162 		1771	131 35	7 (3) 53		13 13
Italy Rumania Spain	289 15 6	(6)									
U. S. S. R. Yugoslavia Asia: India	8 984 676 75	(6) 553 3			454	95			4	3	
Indonesia Malaya Africa:	171 166	243 167		(8)	104					139 118	(3) 49
French West Africa Gold Coast Mozambique	424 7 163 2	449 163 2	423 (³)		12			163			14 2
Oceania: Australia_ Total	5 15, 600	10, 253	2, 364	5, 253	984	95	1 771	342	78	260	106

TECHNOLOGY

The Anaconda Co. announced the successful recovery in its laboratory of metallurgical-grade alumina from clay. A pilot plant, costing approximately \$1 million and capable of treating 50 tons of clay per day, was to be built at Anaconda, Mont., to test the process on a semicommercial scale. If the operation proved commercially competitive the company planned to build an alumina plant near its clay deposits in Latah County, Idaho.

A method for extracting gallium from the sodium aluminate liquors resulting when bauxite is treated by the Bayer process was described.

Includes Czechoslovakia and Poland.
 Revised exports, dry basis: 1952, 240; 1953, 1,055.
 Less than 500 tons.

Export estimates revised by official data: 1951, 535; 1952, 713; 1953, 759. Estimate.

Data not available.

⁷ Exports.

⁶ de la Bretèque, Pierre, Gallium Recovery from From Bauxite: Jour. Metals, vol. 8, No. 11, November 1956, pp. 1528, 1529.

After precipitation of the alumina, the gallium is recovered in an electrolytic cell, using a nickel anode and a mercury cathode. The metal is purified by a second electrolysis, and the electrolytic action permits precipitation of the vanadium that is also contained in the original caustic soda solution. In 1955 Alcoa and Anaconda produced gallium in the United States. During 1956 only Alcoa produced gallium,

although both companies made shipments.

The Federal Geological Survey studied the water requirements of alumina and aluminum-reduction plants. The quantity of water used in the production of alumina varied widely according to availability and cost at different locations. On an average, 5 percent of the intake water was used for personnel and plant service, 19 percent for tailing-pond makeup, 22 percent for processing, and 54 percent for cooling. If the water was recirculated the overall quantity used varied from 0.28 gallon to 1.10 gallons per pound of alumina produced. The total quantity used was 11.8 million gallons per day in 6 plants producing 17,936,000 pounds of alumina per day or 0.66 gallon of water per pound of alumina.

A bulletin was published on the ferruginous bauxite deposits of Oregon.⁸ Previous reconnaissance had been reported on deposits in Columbia and Washington Counties. This latest publication described an area of 1,200 acres in Marion County. The average thickness of the deposit in 28 holes drilled by the Department was 14.4 feet. A weighted average showed 35 percent Al₂O₃, 6.7 percent SiO₂, 31.5 percent Fe₂O₃, 6.5 percent TiO₂, and 20.1 percent loss on ignition. The ore reportedly can be treated by either the Bayer or the Pederson

processes.

A review of sampling techniques, assay methods, and the use of thermal curves to give a quick field determination was included as an appendix.

WORLD REVIEW

The most outstanding event of the year was the discovery of large bauxite deposits on Cape York Peninsula, Queensland, Australia, which were reported to contain many hundreds of millions of tons of ore. New deposits also were reported in Bolivar State, Venezuela.

ore. New deposits also were reported in Bolivar State, Venezuela. Exploration in the Boké region in northwest French Guinea was far enough advanced for Aluminium, Ltd., to announce plans for constructing an alumina plant with an annual capacity of 250,000 short tons. An even larger plant, to be supplied with ore from the central part of French Guinea, was planned by an international group. New alumina plants were scheduled to be constructed in British Guiana and Jamaica by Aluminium, Ltd.

World production of bauxite increased 6 percent. The countries that produced more than 50,000 tons and reported significant changes

are shown below:

Country:	Increase percent		Decrease percent
Greece		Surinam	14
Brazil		Yugoslavia	_ 11
IndiaGold Coast, Jamaica,		French West Africa	8
each		Hungary	28
Indonesia	15	Italy	20

⁷ Conklin, Howard L., Water Requirements of the Aluminum Industry: Geol. Survey Water Supply Paper 1330-C, 1956, 36 pp.
8 Corcoran, R. E. and Libby, F. W., Ferruginous Bauxite Deposits in the Salem Hills, Marion County, Oregon: Dept. of Geol. and Miner. Ind., State of Oregon Bull. 46, 1956, 53 pp.

The Free World output was about 15 million tons; 60 percent was produced in Jamaica, Surinam, and British Guiana.

TABLE 17.—Relationship of world production of bauxite and aluminum, 1947-51 (average) and 1952-56, in million long tons

Commodity	1947-51 (average)	1952	1953	1954	1955	1956
Bauxite	8. 2	12.6	1 13.6	15. 6	¹ 16. 4	17. 4
	1. 4	2.0	2.4	2. 7	¹ 3. 1	3. 3
	5. 9	6.3	1 5.7	5. 8	¹ 5. 3	5. 3

¹ Revised figure.

TABLE 18.—World production of bauxite, by countries, 1947-51 (average) and 1952-56, in long tons ¹

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1947–51 (average)	1952	1953	1954	1955	1956
North America:						
Jamaica (dried equivalent of crude ore)		340, 220	1, 154, 172	2, 043, 786	2, 645, 345	3, 141, 330
United States (dried equivalent of crude ore).	1, 398, 240	1, 667, 047	1, 579, 739	1, 994, 896	1, 788, 341	1, 743, 344
Total	1, 398, 240	2, 007, 267	2, 733, 911	4, 038, 682	4, 433, 686	4, 884, 674
South America: Brazil British Guiana Surinam	14, 827 1, 702, 880 2, 136, 877	14, 093 2, 387, 953 3, 172, 854	18, 524 2, 274, 598 3, 222, 630	27, 182 2, 309, 934 3, 371, 703	44, 359 2, 435, 298 3, 013, 580	55, 089 2, 480, 983 3, 427, 539
Total	3, 854, 584	5, 574, 900	5, 515, 752	5, 708, 819	5, 493, 237	5, 963, 611
Europe: Austria. France. Germany, West. Greece. Hungary. Italy. Rumania 2. Spain. U. S. S. R.3. Yugoslavia. Total 2. Asia:	4, 706 831, 134 6, 323 70, 199 527, 900 149, 018 2, 600 9, 321 659, 000 252, 616 2, 513, 000	14, 940 1, 101, 341 7, 073 280, 414 1, 188, 000 261, 353 9, 800 11, 512 886, 000 603, 753 4, 364, 000	17, 932 1, 137, 864 7, 724 323, 058 1, 372, 000 267, 100 14, 300 5, 106 886, 000 470, 016	16, 993 1, 266, 959 4, 153 347, 937 1, 240, 000 289, 454 14, 800 5, 644 984, 000 675, 846	18, 838 1, 469, 229 3, 814 492, 273 1, 221, 000 320, 815 15, 800 984, 000 778, 527 5, 311, 000	22, 723 1, 442, 655 4, 817 688, 947 879, 900 255, 612 15, 800 7, 594 1, 083, 900 867, 500
IndiaIndonesia	42, 936 279, 142	63, 505 338, 326 21, 796	70, 848 147, 191 152, 171	74, 748 170, 504 165, 622	81, 173 259, 512 222, 164	98, 033 298, 511 264, 445
Pakistan Taiwan (Quemoy)	1, 150	1,990	7, 430		1,025	3,000
Total	323, 228	425, 617	377, 640	410, 874	563, 874	663, 989
Africa: French West Africa Gold Coast (exports) Mozambique	\$ 4, 033 123, 229 2, 344	108, 017 74, 369 2, 449	321, 384 115, 076 3, 058	424, 195 163, 517 2, 398	485, 216 116, 285 2, 611	444, 371 137, 873 3, 705 585, 949
Total Oceania: Australia	129, 606	184, 835 7, 235	439, 518	590, 110	7, 563	7, 056
World total (estimate)	8, 224, 000	12, 600, 000	13, 600, 000	15, 600, 000	16, 400, 000	17, 400, 000

¹ This table incorporates a number of revisions of data published in previous Bauxite chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

² Estimate.

³ A verage for 1949-51.

NORTH AMERICA

Costa Rica.—During the year, 29 exploration permits were granted to Kaiser Aluminum & Chemical Corp., 22 to Aluminum Company of America, 7 to Reynolds Metals Co., and 5 to American Metals Co. The permits were valid for 3 years and covered 50 square kilometers each. The general area explored by the companies was south of San Isidro del General near the Cordillera de Talamanca.

Dominican Republic.—Aluminum Company of America continued preparations for mining its concession, and shipments were expected

to begin by mid-1958.

Haiti.—Reynolds Haitian Mines, Inc., continued preparations for mining its concession near Miragoane. Included in the preparations were construction of a drying plant scheduled for completion in March 1957, a pier at Miragoane capable of loading ships of 13,000- to 32,000-ton capacity at an average rate of 1,400 tons an hour, and a 20-mile road from the mine to the port.

Jamaica.—Production of bauxite continued its upward trend in 1956 and was 19 percent more than that in 1955. Exports of bauxite,

all to the United States, exceeded 2.6 million long dry tons.

Kaiser Bauxite Co. expanded its south-coast production facilities from 1.3 million long wet tons to 2.1 million tons. A further expansion, which would increase capacity to 3.6 million tons, was under construction during the year. The company announced plans for developing the bauxite deposits of western St. Ann and Trelawny and for expanding the Discovery Bay facilities on the north coast. These plans included construction of a drying plant and storage and port facilities.

Reynolds Jamaica Mines, Ltd., was expanding its bauxite plant at Lydfort, St. Ann, from 0.9 million long wet tons to 1.9 million tons a

vear.

Alumina Jamaica, Ltd., began to enlarge the capacity of its Kirkvine plant from 235,000 short tons to 550,000 tons; it was to be completed by mid-1957. Construction of the other alumina plant near Ewarton, St. Catherine, with an annual capacity of 245,000 tons, was begun during the year. Shipments of alumina totaled 232,000 short tons in 1956, of which 204,000 tons went to Canada, 25,000 to Norway, 3,000 to Sweden, and 54 tons to Trinidad.

SOUTH AMERICA

Brazil.—The Brazilian National Department of Mineral Production surveyed bauxite deposits at the mouth of the Maracume River on the borders of the States of Para and Maranhao during the year. These deposits were estimated to contain 10 million tons of bauxite, averaging 30 to 40 percent alumina.

Reynolds Metals Co. reapplied for permission to exploit bauxite deposits in the lower São Francisco Valley and to build a 100,000-ton aluminum plant. Their first application was denied because of a

power shortage.

⁹ American Metal Market, Sizable Deposit of Bauxite in Brazil Being Investigated: Vol. 63, No. 230, Dec. 4, 1956, p. 10.

British Guiana.—As in 1955, bauxite production showed only a slight increase over that of the preceding year. Demerara Bauxite Co. produced 2,228,000 long tons of a total of 2,481,000 tons. Aluminium, Ltd., planned to build a 250,000-short-ton alumina plant at the Demerara Bauxite installations near Mackenzie.

Plantation Bauxite Co., a subsidiary of Demerara Bauxite Co., produced only 9,000 tons in 1956, a decrease of 75 percent from the

35,000 tons produced in 1955.

Reynolds Metals Co. produced 244,000 tons in 1956, an increase of

15 percent over the 213,000 tons produced in 1955.

Harvey Aluminum, applied to the Government of British Guiana for permission to explore more than 1 million acres.

An article on bauxite deposits in the Guianas was published by the Montana School of Mines. 10

TABLE 19.—Bauxite exported from British Guiana, 1955-56 1

	19)55	1956		
Country of destination	Long tons	Value BW\$ 2	Long tons	Value BW\$-2	
Canada	1, 752, 433 352, 373 19, 210 45, 205	16, 536, 644 6, 278, 407 513, 882 1, 458, 432	1, 585, 230 440, 527 19, 330 62, 556	18, 230, 828 8, 641, 709 544, 501 2, 118, 06	
Total	2, 169, 221	24, 787, 365	2, 107, 643	29, 535, 09	

¹ Includes exports of calcined bauxite as follows: 1955—252,330 tons valued at BW\$8,587,575; 1956—317,878 tons valued at BW\$11,146,382.

³ 1 BW\$=US\$0.58.

Surinam.—Bauxite production reached a new high in 1956, when over 3.4 million long tons was shipped.

Mining area: Surinam Bauxite Co. (Alcoa): Moengo Paranam	1955 1, 818, 801 594, 695	1956 2, 104, 441 747, 501
Billiton Co	503, 900	575, 552
	2, 917, 396	3, 427, 494

Of the 1956 shipments, 2,918,000 tons went to the United States,

470,000 tons to Canada, and 39,000 tons to Europe.

Surinam Bauxite Co. experienced its most successful year, with shipments of 2,852,000 long tons, of which 126,000 tons was calcined ore, 76,000 tons was chemical-grade ore, and 88 tons was calcined fines that had been discarded. Preparations were begun to mine the Onoribo deposits, which are in a swamp area traversed by the Para River about 5 kilometers from the Paranam plant. The Para River was to be diverted to permit mining the deposit, which is below sea level. A suction dredge ordered in the Netherlands was launched in November 1956. A heavy-medium separation plant was built at Rorac to treat low-grade ferruginous ores previously considered noncommercial.

¹⁰ de Munck, Victor C., Bauxite in the Guianas, South America: De Re Metallica, Montana School o Mines, Butte, Mont., vol. 21, No. 3, February 1956, pp. 1-6.

Billiton Co. shipped 576,000 long tons compared with 504,000 tons in 1955. A 10-day strike in the last quarter resulted in fewer shipments to Canada and depletion of company stocks. The company signed a 10-year contract with Olin Revere Metals Corp. for shipping 750,000 tons of bauxite a year. The company concluded an agreement with Aluminium Industries, A. G., Switzerland, Olin Mathieson Chemical Co., United States, and Vereinigte Aluminium Werke, Germany, in October 1956, to prospect jointly for bauxite. Billiton Co. applied for a concession covering 325,000 hectares at 3 places on the Coesewijne, Saramacca, and Coppename Rivers.

Negotiations were opened between the Government and Alcoa concerning the Brokopondo hydroelectric project. Alcoa would participate in building an alumina and aluminum plant near Paranam capable of producing 30,000 to 40,000 tons of aluminum annually. The Government, in return, would reserve the northeast section of the

country for the exploration of bauxite by Alcoa.

Reynolds Metals Co. and Guiana Exploration Co. continued ex-

ploration for bauxite in the coastal area.

Venezuela.—The Venezuelan Ministry of Mines reported discovery of bauxite deposits in the Nuria region of Bolivar, estimated to contain 10 million tons. Samples showed 40 percent alumina, 27 percent iron oxide and low silica content. However, the deposits were in the mountain region some distance from water transportation.

Kaiser explored the Guayana region, where Government geologists

reported deposits containing as much as 50 million tons.

EUROPE

France.—S. A. des bauxites de France opened new mines in southern France during the year. The output of bauxite declined to 1,443,000 long tons in 1956 after having reached a record high of 1,469,000 tons in 1955.

Germany, West.—Imports of bauxite into West Germany increased 16 percent in 1956 over those of 1955.

Country of origin:	1955 Long tons	1956 Long tons
Austria	8, 007	4, 608
British Guiana	11, 086	16, 413
France	183, 712	203, 081
French West Africa	49, 814	77, 310
Greece	228, 009	271, 617
Hungary		13, 780
Indonesia	57, 835	133, 478
Surinam	20, 022	32, 375
Yugoslavia	547, 491	534, 302
Other countries	5, 652	4, 449
Total quantity	1, 111, 628	1, 291, 413
Value, DM 1	56, 231, 000	69, 829, 000
11 DM equals TIS\$0 238	•	* *

Exports of alumina in 1956 totaled 80,100 short tons, of which 55,900 tons went to Austria, 14,500 to Spain, 3,000 to Switzerland, 2,900 to Norway, and 3,800 to other countries. Imports of alumina during the year were only 110 short tons, compared with 2,400 in 1955.

Greece.—Production of bauxite was 689,000 long tons in 1956, a 40-percent increase over that in 1955. Sales to the Soviet Union under the Greek-Soviet trade agreement provided the increase. Exports to the Soviet Union were 286,500 long tons in 1956, compared with 118,900 tons in 1955 and 11,900 in 1954. Exports to other countries during 1956 were 263,400 tons to West Germany, 42,100 to the United Kingdom, 34,500 to Norway, 20,700 to Sweden, and 11,700 to Spain—

a total of 658,900 tons.

Hungary.—During the October rebellion, bauxite installations were partly destroyed, and transportation was crippled, resulting in the lowest output of bauxite since 1951. Production in 1956 was 879,000 long tons, compared with 1,221,000 tons in 1955—a decrease of 28 percent. Exports of 365,000 long tons of bauxite, mostly to Czechoslovakia and Poland, were the lowest since 1950. Production of alumina was about the same—169,900 short tons in 1955 and 169,100 tons in 1956—whereas exports increased from 87,100 tons in 1955 to 97,500 in 1956.

A highly mineralized zone, extending in a northeasterly direction from the vicinity of Nyrad to Vác, has been exploited, in addition to

the main production from the Pécs area.

Italy.—Aluminium-Industrie, A. G., installed equipment at the recently acquired bauxite mines in Aquila Province, and production was scheduled to begin in 1957.

Spain.—Spanish and West German geologists were reported to be examining the possibility of exploiting bauxite deposits of Metallurgi-

cal grade in northwestern Spain.

Yugoslavia.—The output of bauxite reached a record high of 867,500 long tons in 1956, an 11 percent increase over 1955. New reserves, estimated at 8.8 million tons, were found at Zadar, Maslenica district, Dalmatia, in an area believed to have been exhausted. 12

Exports of bauxite reached an alltime high of 668,800 long tons in 1956, of which 541,400 tons went to West Germany, 123,800 tons to Italy, 3,500 tons to Czechoslovakia, 80 tons to Egypt, and 17 tons to

Poland.

ASIA

Japan.—Imports of bauxite increased 18 percent to 398,000 long tons, 204,000 tons from Malaya, 171,000 from Indonesia, 17,000 from

British Guiana, and 6,000 tons from other countries.

The output of alumina increased from 152,000 short tons in 1955 to 177,000 tons in 1956. Sumitomo Chemical Co., Ltd., and Nippon Light Metals Co. contracted to supply Harvey Aluminum, Inc., with 105,000 short tons of alumina per year for use in Harvy's reduction plant at The Dalles, Oreg. Another contract was signed to

Metal Bulletin (London), Hungary's Rich Bauxite Deposits: No. 4143, Nov. 9, 1956, pp. 13-14.
 Metall (Germany), vol. 10, No. 15-16, August 1956, p. 790.

supply Canada with 55,000 short tons of alumina by the early part of 1957.

Malaya.—Ramunia Bauxite Mining Co. increased the output of bauxite 19 percent—from 222,000 long tons in 1955 to 264,000 in 1956. The ore was blended from stockpiles of various grades maintained by the company to contain 55 percent alumina and just under 5 percent silica.¹³

Bauxite exports declined from 259,000 long tons in 1955 to 252,000 tons. Of the 1956 total, Japan was shipped 201,000 tons; Taiwan

(Formosa), 41,000 tons; and Australia, 10,000 tons.

AFRICA

French Africa.—Aluminium, Ltd., and its subsidiary, Bauxites du Midi, on November 15, 1956, announced plans for establishing a bauxite- and alumina-producing and -exporting industry in the Boké region of French Guinea at a cost of \$100 million. The plans involved developing bauxite deposits in the region, constructing about 75 miles of railroad to the Atlantic coast, establishing new storage and port facilities at the mouth of the Nunez River, and constructing a 250,000-short-ton-capacity alumina plant and facilities for employees. Construction was scheduled to begin in 1957 and to be completed by 1961.

Another alumina plant, which would form one part of an integrated operation and use bauxite from an area near the Conakry railroad and power from the Konkouré River, was planned by an international group of French, Italian, German, Swiss, and Canadian companies.

Several articles describing bauxite developments in French Africa

were published during the year.14

Nigeria.—The British Aluminium Co., Ltd., was investigating the

possibility of mining bauxite in Nigeria.

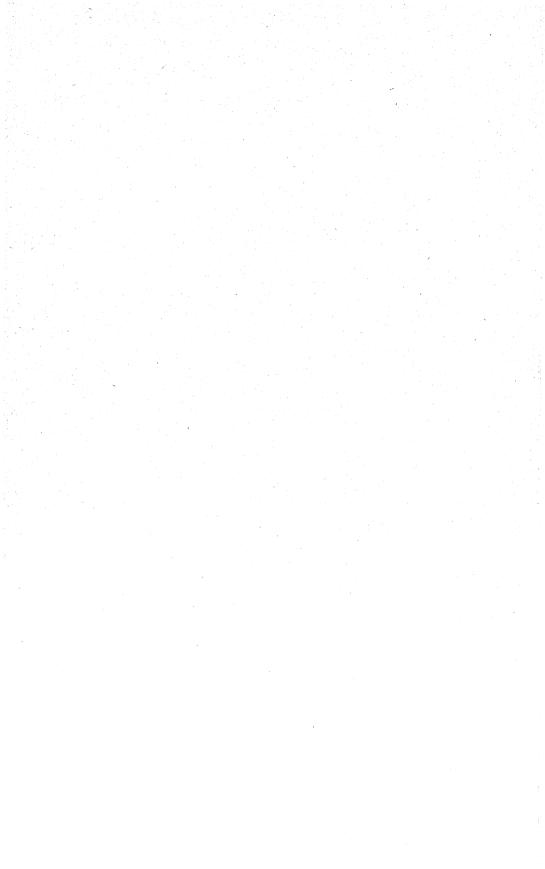
Portuguese Africa.—N. V. Billiton Maatschappij was granted rights to exploit bauxite in Angola and Portuguese Guinea. A company was to be formed of which 60 percent was to be Portuguese controlled.

OCEANIA

Australia.—The discovery of a large deposit of bauxite on the west coast of Cape York Peninsula, Queensland, was reported by Consolidated Zinc (Pty.), Ltd., in August 1956. On December 20 the company registered a subsidiary, Commonwealth Aluminium Corp. (Pty.), Ltd., which with British Aluminium Co., Ltd., was to investigate the deposits further and make necessary preparations for actual mining. The Commonwealth Aluminium Corp. had a 3-year exploratory concession covering approximately 2,600 square miles on the west coast of the peninsula, which extends from just north of Vrilya Point in the Gulf of Carpentaria, 150 miles south, to just below Archers Bay. The distance inland generally ranged from 8 to 10

Mining Journal (London), The Story of Bauxite in Malaya: Vol. 248, No. 6350, May 3, 1957, pp. 556-557.
 Metal Bulletin (London), French West African Developments: No. 4147, Nov. 23, 1956, pp. 20-21.
 Moyal, Maurice, Aluminum Developments in French Africa: South African Eng. Mining Jour., vol. 67, No. 3332, Dec. 21, 1956, pp. 1057-1062.

BAUXITE 251


miles; the central area around Albatross Bay extends inland approximately 25 miles. The deposit was 8 to 16 feet in depth and had little or no overburden. Thousands of analyzed samples showed an alumina content of 56 to 58 percent. Reserves were reported to be many hundreds of millions of tons.

Aluminium, Ltd., through its subsidiary, Aluminium Laboratories, Ltd., secured an exploratory concession just east of that of the Commonwealth Aluminium Corp. The concessions are roughly the same length. Aluminium's concession was reported to be as much as 30 miles wide in some places, and cover an area of 5,600 square miles.

Australian Mining & Smelting Co., Ltd., a subsidiary of Zinc Corp., was granted authority to prospect on Cape York. In addition, a number of American companies were stated to be interested in investment participation in the area.

A second potential area was discovered in the Lynd River area near

Cairns, Queensland.

Beryllium

By Donald E. Eilertsen 1

ORLD production of beryl, the only commercial-source mineral of beryllium was 40 percent larger in 1956 than the previous record established in 1955. Imports of beryl (12,371 tons) and consumption (4,431 tons) were the largest recorded. Domestic beryl production was 460 tons—a continuation of a downward trend since 1953 and the lowest output since 1948.

Production of beryllium-copper master alloy and beryllium-nickel in the United States increased over 1955, but less beryllium metal and beryllium-aluminum were made. The Atomic Energy Commission (AEC) announced in September that it had contracted to purchase 500 short tons of Reactor-grade beryllium metal for delivery over a 5-year period starting in 1957.

TABLE 1.—Salient statistics of beryllium in the United States 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Beryl, approximately 10-12 percent BeO: Domestic mine shipments Imports Exports Industrial consumption Industrial end-of-year stocks Approximate value per unit BeO, domestic Approximate value per unit BeO, imported World production Metal, alloys, compounds, and scrap: Exports	352 3, 095 0. 2 2, 226 1, 558 \$30 \$25 4, 597 90. 6	515 5, 978 1 1. 9 3, 476 2, 492 \$45 \$43 8, 300 94. 7	751 7, 998 2, 661 4, 978 \$47 \$47 8, 200 9. 7	669 5, 816 6, 8 1, 948 4, 101 \$45 \$44 37, 700 3. 8	500 6, 037 1.1 3, 995 2, 888 \$49 \$37 2, 8, 900	460 12, 371 0. 4 2 4, 431 2 4, 622 \$47 \$36 12, 500

¹ Excludes some secondary material exported to United Kingdom.

DOMESTIC PRODUCTION

Mine Production.—Domestic beryl production was 8 percent less than in 1955 and 39 percent less than the record high established in 1953.

About 200 mines in 11 States produced from a few pounds to a quarter million pounds of beryl each. South Dakota produced about 42 percent of the total domestic beryl; Colorado, 39 percent; New Mexico, 7 percent; and 8 other States, 12 percent. Colorado supplied almost 300 percent more beryl in 1956 than in 1955; output in South Dakota and New Mexico was reduced 34 and 71 percent, respectively,

² Estimated. ³ Revised figure.

¹ Commodity specialist.

Wyoming produced beryl for the first time in history. The Boomer Lode mine, about 7 miles west of Lake George in Park County, Colo., was by far the leading producer of beryl in the United States.

Although the Government purchased 370 short dry tons of beryl on the domestic purchase program, private companies maintained contacts by purchasing some ore from beryl mines, rather than the cheaper foreign ore. Beryl was one of the minerals eligible for Government aid under the Defense Mineral Exploration Administration (DMEA), but no new contracts or certifications were initiated in 1956.

TABLE 2.—Beryl shipped from mines in the United States, 1947-51 (average) and 1952-56, by States, in short tons 1

State	1947-51 (average)	1952	1953	1954	1955	1956
Colorado New Hampshire New Mexico South Dakota Other !	(2) (2) (3) (9) 98 254	54 (2) 101 334 26	75 57 89 392 138	59 12 117 337 144	46 20 106 294 34	179 (2) 31 195 55
Total: Short tons	352 \$107, 242 \$304. 66	515 \$233, 257 \$452. 93	751 \$354, 487 \$472. 02	669 \$303, 649 \$453. 88	\$ 500 \$267, 927 \$535. 85	\$ 460 \$236, 748 \$514. 25

Estimated 10 percent BeO.
 Included with "Other" to avoid disclosing individual company confidential data.
 Arizona (1947-51) and 1953-56; Connecticut (1947-51) and 1953-56; Georgia 1952-56; Idaho.1953-54; Maine (1947-55) and 1953-56; Maryland 1954; New York 1954; North Carolina (1947-51) and 1953-56; Virginia 1954-56; Wyoming 1956; and States included in footnote 2.
 Estimated 11 percent BeO.

Refinery Production.—Only 2 firms in the United States processed beryl to beryllium metal and alloys: The Beryllium Corp. of Reading, Pa., and The Brush Beryllium Co. of Cleveland, Ohio.

The Beryllium Corp. had processing and fabrication plants at Reading, Pa., a wire plant at Holyoke, Mass., and a casting plant at Exton, Pa. This firm made beryllium metal, beryllium-copper master alloy, beryllium-nickel, beryllium-aluminum, beryllium-iron,

and beryllium oxide at Reading, Pa.

Part of the Brush Beryllium Co. processing was done in a Government-owned plant at Luckey, Ohio, and completed it at Elmore, Ohio, where the following products were made: Beryllium metal, beryllium-copper master alloy and other beryllium-copper alloys, beryllium-nickel, beryllium-aluminum, beryllium oxide, beryllium nitrate, and other miscellaneous compounds. Its fabricating plants were at Elmore and Cleveland, Ohio.

Both firms began constructing new plants to process beryl to Reactor-grade beryllium: The Beryllium Corp. at Hazelton, Pa., and

The Brush Beryllium Co. at Elmore, Ohio.

Four other companies using beryl were: Beryl Ores Co., Arvada, Colo., produced ground beryl for the ceramic industry; Glass Coating Materials Division of A. O. Smith Corp., Milwaukee, Wis., produced ground-coat frit; and Lapp Insulator Co., Inc., LeRoy, N. Y., and The Ceramic Division, Champion Spark Plug Co., Detroit, Mich., used beryl for ceramic products.

CONSUMPTION AND USES

Domestic consumers used about 4,430 tons of beryl in 1956—about 11 percent more than the previous record established in 1955. Domestic production of beryl was only about 10 percent of consumption.

The United States produced more beryllium-copper master alloy and beryllium-nickel but less metallic beryllium and berylliumaluminum than in 1955. Beryllium was used as an alloying element with copper, aluminum, nickel, and iron; as a metal in the atomicenergy field and in X-ray-tube windows; and as beryllium oxide in crucibles and high-quality porcelains in sparkplugs and insulators. Some beryl was used to produce dielectric products. Demand for beryllium-copper alloys was greatest in springs and contacts for tabulating machines and electronic equipment and as bellows, diaphragms, and springs in aircraft and weather instruments. Modern bombers have about 3,000 electronic devices, which are subject to vibration from engines, turbines, air, and maneuvers. Beryllium-copper was used in a device 2 to reduce vibration, which damaged electronic in-Millions of beryllium-copper contacts in connectors were made for a variety of printed circuits for television, radio, radar, guided missiles, computers, and telephone equipment. Cast beryllium-copper parts were used in taximeters because of durability and accuracy.3

Beryllium metal, as a moderator material in nuclear reactors, slowed the speed of fission neutrons; and as a reflecting material reduced leakage by reflecting neutrons back into the core to increase the power that can be abstracted from nuclear reactors. Beginning in 1957, The Beryllium Corp. and The Brush Beryllium Co. will each produce 50 tons of Reactor-grade beryllium annually over a 5-year

period under contract to the AEC.

STOCKS

Consumers' stocks of beryl on hand at the close of 1956 were estimated at 4,622 short tons, 60 percent more than in 1955 and almost the largest on record. The Government program for purchasing domestic beryl, which originated in 1952, was extended to June 30, 1962, or when deliveries under this program total 4,500 short dry tons, whichever occurs first. Through December 1, 1956, 1,203 tons of domestically produced beryl had been purchased so far on this program and placed in the National Strategic Stockpile. Under the Department of Agriculture barter program in which the Commodity Credit Corporation exchanges surplus farm commodities for strategic materials, some beryl and beryllium-copper were obtained and placed in national stockpiles. Producers' stocks of beryllium products and national stockpile stocks of materials containing beryllium were not available.

PRICES AND SPECIFICATIONS

Throughout 1956 E&MJ Metal and Mineral Markets quoted beryl, 10-12 percent BeO, f. o. b. mine, Colorado, \$46-\$48 per short-ton unit, depending on quantity. Imported beryl per short-ton unit of BeO, c. i. f. United States ports, basis 10-12 percent BeO, ranged from

² Steel, Beryllium Copper Damps Vibration, vol. 138, No. 20, May 14, 1956, p. 139. ³ Iron Age, Beryllium Copper Contacts Better Printed Circuits, vol 177, No. 16, Apr. 19, 1956, pp. 140-141; and Iron Age, Beryllium Copper Parts Give Durability, Accuracy, vol. 177, No. 5, Feb. 2, 1956, p. 116.

\$36 to \$39.50 until May, when the price changed to \$36-\$38 and some

special high-grade beryl brought \$39.

During 1956 American Metal Market quoted beryllium metal, 97 percent lump or beads, f. o. b. Cleveland, Ohio, and Reading, Pa., at \$71.50 per pound. Beryllium-copper master alloy was quoted f. o. b. Reading, Pa., or Elmore, Ohio, at \$43 per pound of beryllium, the remainder as copper at market price on date of shipment. Beryllium-aluminum was quoted f. o. b. Reading, Pa., or Detroit, Mich., at \$72.75 per pound of contained Be, plus aluminum at market price, for 5-pound ingot; during March the price increased to \$74.75.

The price of beryllium-copper strip per pound ranged from \$1.78 to \$1.92 until March and from \$1.84 to \$1.91 for the remainder of the Beryllium-copper rod, bar, and wire sold for \$1.81 to \$1.89 per

pound until March then dropped to \$1.83 per pound.

The price of 1 million pounds of reactor-grade beryllium, which was to be purchased by the AEC from the two domestic beryllium producers, was to be about \$47 per pound.

FOREIGN TRADE 4

United States beryl imports were the largest ever recorded—6,334 short tons more than in 1955 and 4,373 tons greater than the previous record established in 1953. Beryl shipments were received from 15 countries, and that from India was the most ever received from a single country. India, Argentina, Belgian Congo, and British East Africa shipped more beryllium ore to the United States than in any previous Shipments of beryl were received from British Somaliland, British West Africa, and Pakistan for the first time. During the last 20 years Brazil, Argentina, Union of South Africa (including South-West Africa), and India were, respectively, the largest shippers of beryl to the United States.

In 1956, 2,000 pounds of a beryllium chemical, having a value of \$13,422 was imported from France. Exports included: 700 pounds of beryllium-ore concentrate shipped to Canada; 87,684 pounds of beryllium metal and alloys (except beryllium-copper) in crude form and scrap shipped to Italy, Japan, Norway, West Germany, and United Kingdom; 1,132 pounds of beryllium powder and alloys (except beryllium-copper) shipped to Canada and United Kingdom; and 42 pounds of semifabricated forms shipped to Argentina, Canada, France, West Germany, and United Kingdom. The total value of

the exported beryllium materials was \$259,640.

TECHNOLOGY

The results of exploration by the Bureau of Mines in 1950-51 were published,5 and a fluorometric method for determining the quantity of beryllium in ores and mill products was developed.

Many papers on beryllium technology submitted to the Geneva Conference by technicians from various countries in 1955 were published in 1956,7 and a two-stage process for conditioning pegmatite

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

⁵ McLellan, R. R. Brown Derby Pegmatites, Gunnison County, Colo.: Bureau of Mines Rept. of Investigations 5204, 1956, 21 pp.

⁶ Riley J. M., A Rapid Method for Fluorometric Determination of Beryllium: Bureau of Mines Rept. of Investigations 5228, 1956, 9 pp.

⁷ United Nations Publications, New York, N. Y., Proceedings of the International Conference on the Peaceful Uses of Atomic Energy: Vol. 8, 1956, pp. 587-616.

TABLE 3.—Beryllium ore (beryl concentrate) imported for consumption in the United States, 1953-56, by countries, in short tons

[Bureau of the Census]

Country	1953	1954	1955	1956	Total (short tons)	Percent of total
South America: Argentina. Brazil Surinam.	1, 459 2, 614	1, 828 10	441 1, 735	2, 330 2, 607	4, 230 8, 784 10	13. 1 27. 3
Total	4, 073	1, 838	2, 176	4, 937	13, 024	40. 4
Europe: Portugal Sweden	332	338 5	283	242	1, 195 5	3.7 .0
Total	332	343	283	242	1, 200	3.7
Asia: Afghanistan Hong Kong India Korea Pakistan	199 8	392 4	845 6	3, 360 15	11 1 4,796 18 15	(1) (1) 14.9 .1 (1)
Total	207	407	851	3, 376	4, 841	15.0
Africa: Belgian Congo British East Africa (principally Uganda) British Somaliland	22	11 23	128 93	992 264 29	1, 131 402 29	3. 5 1. 2 . 1
British West Africa, n. e. c. French Morocco Madagascar Mozambique	23 330	77 1, 295	28 620 3	22 26 212 1, 110	22 49 647 3,417	2. 0 20. 0 10. 6 (1)
Nigeria Rhodesia and Nyasaland, Federation of	1 1, 296	957	861	559	3, 673	11.4
Union of South Africa (includes South- West Africa)	1, 323	865	994	602	3, 784	11.8
Total	3, 386	3, 228	2,727	3, 816	13, 157	40.9
Grand total: Short tonsValue	7, 998 \$3, 752, 718	5, 816 \$2, 574, 061	6, 037 \$2, 226, 068	12, 371 \$4, 459, 387	32, 222	100.0

¹ Less than 0.05 percent. ² Southern Rhodesia.

minerals for electrostatic separation of beryl was patented.8 The Bureau of Mines continued research on pegmatites in its Rapid City Experiment Station, Rapid City, S. Dak., and Southern Experiment Station, University, Ala. At Kapid City, rock samples containing 0.1 to 2.5 percent beryl produced concentrate containing 25 to 88 Re-treatment of low grade concentrate, using batchpercent beryl. testing methods and other reagents, produced commercial-grade beryl, but losses of beryl were large, and more study is needed to improve and simplify procedures. The Bureau's Southern Experiment Station made studies on beneficiation of pegmatitic tailings obtained in North Carolina; results were encouraging, but more research is needed to perfect procedures. WORLD REVIEW

World production of beryl, estimated to be 12,500 short tons, was 3,600 tons larger than the previous record established in 1955. Of world production, North America (United States) produced 4 percent;

⁸ Fraas, Foster (assigned to the United States), Reagent Conditioning for Electrostatic Separation of Beryl: U. S. Patent 2,769,536, Nov. 6, 1956.

South America, 30 percent; Europe, 2 percent; Asia, 27 percent; Africa, 34 percent; and Oceania (Australia), 3 percent. India, the leading producer of beryl, broke all previous records established by other countries.

Austria.—Crystals of beryl were found near Linz in upper Austria.9 Mozambique.—Late in 1956 the Department of Industry and Geology was reported to have broadened the definition of radioactive minerals to include beryl in connection with mineral concessions.

Sweden.—Special permission from the Government was necessary for exporting ore having a beryllium content exceeding 1,000 grams per metric ton.

TABLE 4.—World production of beryl, by countries 1, 1947-51 (average), and 1952-56, in short tons 2

[Compiled by A			

`						
Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America: United States (mine shipments)	352	515	751	669	500	460
South America: Argentina. Brazil. Surinam.	1.916	694 3, 177	683 2, 126 2	705 1, 581 10	1, 488 1, 954	1, 722 3 2, 000
Total	1,999	3, 871	2, 811	2, 296	3, 442	8 3, 700
Europe: France Norway Portugal	4 2 6 7 3 36	103	(5) 414	(5)	(8)	(5)
Total (estimate)1				368	337	204
	150	210	520	480	450	310
Asia: Afghanistan India. Korea, Republic of	3 110	⁸ 600 (9)	6 200 4	30 6 392 6 4	33 4 845 6 6	30 6 3, 360
Total	3 116	³ 600	215	426	884	3, 390
Africa: Belgian Congo (including Ruanda-Urundi) British Somaliland			8	50	362 19	3 1, 800 10 17
French Morocco	4 110 231 160	142 438 229	36 516 276	17 648 1,002	316 960	196 950
Northern Rhodesia Southern Rhodesia South-West Africa Tanganyika	7 692 396 4 1	9 1; 186 592	1, 774 590	1, 077 564	20 965 472	14 606 454
Uganda Union of South Africa	37 7 610	3 413	55 531	77 203	110 137	10 103 133
Total	2, 243	3, 012	3, 792	3, 639	3, 363	4, 273
Oceania: Australia	63	98	140	166	230	348
World total (estimate)1	4, 900	8, 300	8, 200	7, 700	8, 900	12, 500

¹ In addition to the countries listed, beryl has been produced in a number of countries for which no production data are available, except for U. S. S. R., their aggregate output is not significant. An estimate is included for U. S. S. R.

2 This table incorporates a number of revisions of data published in Beryllium chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

Estimate 4 Average for 1948-51.

⁵ Data not available; estimates by author of chapter included in total.

United States imports.

Average for 1949-51.
Average for 1950-51.
Less than 0.5 ton.

Engineering and Mining Journal, vol. 157, No. 10, October 1956, pp. 194, 196.

Bismuth

By Abbott Renick 1 and E. Virginia Wright 2

OMESTIC PRODUCTION of refined bismuth increased for the second successive year in 1956 and was 38 percent greater than in 1955.

General imports of bismuth metal in 1956 constituted an alltime record at 918,200 pounds, a 54-percent increase over the 595,600 pounds received in 1955. Exports of bismuth metal and alloys increased for the third successive year and totaled 287,100—41 percent more than in 1955.

In the United States, industrial consumption of refined bismuth exceeded 1.5 million pounds, virtually unchanged from 1955. In addition, a substantial quantity of imported bismuth contained in alloys was consumed domestically.

Inventories of bismuth held by refiners, consumers, and dealers on December 31 were 11 percent more than those on hand at the beginning

of the year.

World output of bismuth in 1956 was estimated at about 4.9 million pounds, or 23 percent greater than in 1955. Of the free-world total, about 70 percent was estimated to have been mined in the Western Hemisphere, almost entirely in the United States, Mexico, Peru, and Canada

In 1956 stability again characterized the bismuth market. The quoted market price of bismuth metal in New York remained throughout the year at \$2.25 per pound in ton lots, unchanged since September

5, 1950.

DOMESTIC PRODUCTION

Virtually all bismuth produced in the United States was derived as a byproduct from smelting domestic and foreign lead ores and by refining imported bismuth bars containing lead as the principal

impurity. The 1956 output increased 38 percent over 1955.

Companies reporting output of refined bismuth metal in 1956 were American Smelting & Refining Co., at Omaha, Nebr., and Perth Amboy, N. J.; The Anaconda Co., Anaconda, Mont.; and United States Smelting Lead Refinery, Inc. (subsidiary of United States Smelting Lead Refinery, Inc. (subsidiary of United States Smelting, Refining & Mining Co.), East Chicago, Ind.

¹ Commodity specialist. ² Statistical assistant.

TABLE 1.—Salient statistics of bismuth metal, 1947-51 (average) and 1952-56, in pounds

	1947-51 (average)	1952	1953	1954	1955	1956
Consumers' and dealers' stocks beginning of year Consumption imports 2 Exports 3 World production. Price per pound, New York, ton lots. Consumers' and dealers' stocks end of year	(1) (1) 489, 600 226, 000 3, 400, 000 \$2, 06 (1)	195, 400 1, 775, 000 708, 300 244, 800 3, 900, 000 \$2. 25 211, 500	211, 500 1, 568, 000 641, 400 127, 000 4, 200, 000 \$2. 25 166, 700	166, 700 1, 439, 000 644, 300 137, 900 3, 600, 000 \$2. 25 252, 800	252, 800 1, 548, 000 595, 600 203, 700 4 4, 000, 000 \$2. 25 234, 300	234, 300 1, 513, 000 918, 200 287, 100 4, 900, 000 \$2. 25

1 Data not available.

Data 1947-51 are imports for consumption; 1952-56 are general imports.
 Gross weight. Includes weight of alloys.

4 Revised figure.

CONSUMPTION AND USES

In 1956 domestic consumption of refined bismuth totaled 1.5 million pounds, virtually unchanged from 1955. Of this total, 425,000 pounds of bismuth was consumed in pharmaceuticals, decreasing 46,000 pounds (10 percent) below the previous year. Consumption of bismuth metal in fabricating alloys was 72 percent of the total, virtually unchanged from 1955.

In addition to consuming refined bismuth metal, the United States used a substantial quantity of imported bismuth contained in alloys.

TABLE 2.—Bismuth metal consumed in the United States, 1951-56, by uses

	195	11	198	52	1953	
Uses	Pounds	Percent- age of total	Pounds	Percentage of total	Pounds	Percent- age of total
Fuse metal Solder Other alloys Selenium rectifiers Pharmaceuticals 2 Other uses	204, 000 109, 300 560, 100 55, 000 621, 400 187, 200	12 6 32 3 36 11	261, 700 145, 900 865, 800 25, 500 417, 000 59, 100	15 8 49 1 23 4	191, 200 221, 000 613, 800 47, 500 419, 500 75, 000	12 14 39 3 27 5
Total	1, 737, 000	100	1, 775, 000	100	1, 568, 000	100
	195	4	195	5	195	66
Uses	Pounds	Percent- age of total	Pounds	Percent- age of total	Pounds	Percent- age of total
Fuse metal Solder Other alloys. Selenium rectifiers Pharmaceuticals Other uses	192, 300 139, 600 415, 000 42, 600 433, 500 216, 000	13 10 29 3 30 15	176, 000 122, 000 568, 000 26, 400 471, 000 184, 600	11 8 37 2 30 12	179, 600 152, 800 601, 300 13, 000 425, 200 141, 100	12 10 40 1 28 9
Total	1, 439, 000	100	1, 548, 000	100	1, 513, 000	100

 ¹ Estimated annual figures. Based on 11 months' data compiled by National Production Authority,
 U. S. Department of Commerce.
 2 Includes industrial chemicals.

STOCKS

Consumers' and dealers' stocks of bismuth metal totaled 228,200 pounds at the end of 1956, a 3-percent decrease from those reported on hand January 1. Producers' inventories of refined metal increased during the year.

According to a semiannual progress report by the Office of Defense Mobilization, the minimum national bismuth stockpile had been met.3

PRICES

The E&MJ Metal and Mineral Market quoted New York price for refined bismuth metal at \$2.25 per pound, in ton lots, and the Metal Bulletin (London) quotations for bismuth metal and ores remained unchanged throughout the year. Prices of bismuth chemicals, as quoted by the Oil, Paint and Drug Reporter, remained unchanged. Price quotations were published in the 1955 Minerals Yearbook chapter on Bismuth.

FOREIGN TRADE 4

Imports.—During 1956 imports (general) of refined metal totaled 918,200 pounds, increasing 54 percent over 1955 and establishing an alltime peak. Imports from the Western Hemisphere of 497,000 pounds were the principal source of foreign metal and about equaled the previous year's figure. Outside the Western Hemisphere, imports of 421,200 pounds consisted of 24,300 pounds from Yugoslavia and 396,900 pounds (originally mined in Spain) from the United Kingdom.

Substantial quantities of bismuth entered the United States in imports of lead ores and base bullion. In some years bismuth also enters the United States in bismuth ore, concentrate, and lead bullion; base-bullion statistics on the bismuth contained in these articles are

not compiled by the Government.

Exports.—Exports of bismuth metal and alloys (gross weight) totaled 287,100 pounds, a 41-percent increase above the 203,700 pounds exported in 1955. The Netherlands received 203,000 pounds; France, 61,000; West Germany, 9,200; and all other countries, 13,900.

Tariff.—The tariff on refined bismuth metal, classifiable under paragraph 377 of the Tariff Act of 1930, as amended, was reduced from 7½ percent to 3½ percent ad valorem, effective July 29, 1942, as a result of a trade agreement with Peru; the rate was further reduced to 1% percent ad valorem, effective October 7, 1951, pursuant to the General Agreement on Tariffs and Trade. Chemical compounds, mixtures, and salts of bismuth are currently dutiable at 35 percent ad valorem, the rate originally provided under paragraph 22 of the Tariff Act of 1930. Bismuth ores and concentrates were entered free of duty under paragraph 1719 of this act.

Some bismuth entered the United States in lead-bearing ores and lead bullion or base bullion. The lead content of these articles was Lead-bearing ores are dutiable under paragraph 391 of the Tariff Act of 1930 at the rate of three-fourths cent a pound on the lead content, and lead bullion or base bullion is currently dutiable under

³ Office of Defense Mobilization, Stockpile Report to the Congress, January-June 1956: October 1956, p. 2.
4 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 3.—Bismuth metal and alloys imported for consumption in and exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Imports of bism		Exports of alloy	
	Pounds	Value	Pounds	Value
1947-51 (average)	489, 585 708, 254 641, 428 628, 833 603, 649 924, 614	\$813, 973 1, 451, 729 1, 273, 417 1, 235, 321 1, 127, 789 1, 829, 550	225, 999 244, 797 127, 010 137, 856 203, 667 287, 092	\$456, 756 635, 260 300, 963 185, 841 363, 186 558, 601

¹ Gross weight.

TABLE 4.—Metallic bismuth imported 1 into the United States, 1953-56, in pounds [Bureau of the Census]

Country	1953	1954	1955	1956
North America: Canada Mexico	21, 670 26, 605	34, 723 63, 866	54, 788 123, 722	50, 096 122, 1 1
TotalSouth America: Peru	48, 275 437, 779	98, 589 400, 278	178, 510 326, 415	172, 211 324, 824
Europe: Belgium-Luxembourg	11, 641			
NetherlandsUnited Kingdom	7, 716	3, 307	17, 204	396, 866
Yugoslavia	49, 419	74, 725	66, 039	24, 251
TotalAsia	68, 776 2 86, 599	78, 032 2 67, 358	83, 243 8 7, 398	421, 117
Grand total	641, 429	644, 257	595, 566	918, 152

¹ Data are "general" imports, that is, they include bismuth imported for immediate consumption plus material entering the country under bond.
² Republic of Korea.

paragraph 392 of this act at the rate of 11/16 cents per pound on the lead content; the bismuth content enters free of duty.

Alloys in chief value of bismuth, other than base bullion, are not specifically provided for under the Tariff Act of 1930 but are dutiable under paragraph 397 at the rate of 22½ percent ad valorem.

TECHNOLOGY

The Bureau of Mines reported results of its laboratory study of a qualitative evaluation of several electrolytes for electrorefining bismuth.⁵ Research was conducted with a variety of electrolytes for refining bismuth. Most extensive work was done with the basic tartrate, hydrochloric acid, and hydrofluosilicic acid electrolytes. Smooth and adherent deposits were obtained from these three electrolytes when low-cathode current densities were employed. All three electrolytes were effective in purifying crude bismuth, addi-

⁵ Gruzensky, P. M., and Crawford, W. J., A Qualitative Evaluation of Several Electrolytes for Electrorefining Bismuth: Bureau of Mines Rept. of Investigations 5182, 1956, 32 pp.

263BISMUTH

tional purification was indicated in each instance by a reelectrolysis step.

A rapid method of determining traces of bismuth in rocks was

published.

The United States Atomic Energy Commission announced the selection of Babcock & Wilcox Co. to design, fabricate, and operate a liquid-metal-fueled reactor experiment (LMFRE). The selection was contingent on negotiation of an acceptable contract. Plans called for fabrication of the reactor to be complete and projected experiments begun in about 3 years. No site had been selected for the reactor.7

An article 8 on manganese-bismuth superpermanent magnets discussed research on investigating permanent magnets made from the

new magnetic material. It stated:

* * * Perhaps the greatest advantage of MnBi magnets is their unusual resistance to demagnetization. * * * These magnets are at least ten times better in this respect than most commercial magnets available today. * * * With this material it is practical to make permanent magnets in a wide variety of shapes, particularly in the form of thin wafers or disks. In the future such magnets may become as commonplace as the traditional bar or horseshoe magnets of today.

A technical paper on debismuthizing of lead, was abstracted by its author as follows: 9

The fundamental principles by which bismuth may be removed from lead by pyrometallurgical processes are enumerated. Qualitative discussion of the phase diagrams concerned is followed by presentation of qualitative diagrams. Brief mention is made of the practical aspects. Data presented show how chemical lead (<0.005 pet Bi) may be produced by the Jollivet, Dittmer, and Kroll-Betterton processes.

Standard chemical methods for determining bismuth in pig lead, tin-base solder and white metal-bearing alloys were published.10

A patent related to improved thermoelectric materials and elements and more particularly to alloys containing bismuth, useful to thermoelectric devices, was issued during 1956.11

WORLD REVIEW

Australia.—Bismuth concentrate was produced in the Chillagoe and Herberton districts of Queensland, the New England district of New South Wales, and Hatches Creek in the Northern Territory of Aus-Bismuth concentrate was expected to be produced again in the Moina district of Tasmania after reopening of the old Shepherd and Murphy mine by Moina Tungsten-Tin Mining Co., N. L. Bismuth Products Pty., Ltd., of Sydney, produced bismuth metal, but annual production statistics were not available for publication.12

Bolivia.—Exports of bismuth contained in concentrate totaled about

75,000 pounds compared with 95,000 pounds in 1955.

Canada.—The Consolidated Mining & Smelting Co. of Canada, Trail, B. C., continued as Canada's leading bismuth producer. Several shipments of crude-bismuth metal totaling about 117,000 pounds

^{**} Ward, F. N., and Crowe, H. E., Colorimetic Determinations of Traces of Bismuth in Rocks: Geol. Survey Bull., 1036-1, 1956, pp. 173-179.

** U. S. Atomic Energy Commission statement for the Press: No. 824, May 6, 1956.

** American Metal Market, Westinghouse Develops Manganese-Bismuth Super-Permanent Magnets: Vol. 63, No. 116, June 19, 1956, pp. 1 and 13.

** Davey, T. R. A., Debismuthizing of Lead: Jour. Metals, vol. 8, No. 3, March 1956, pp. 341-350.

** American Society for Testing Materials, Methods for Chemical Analysis of Metals: 1956, pp. 459-485.

** Lindenblad, N. E. (assignor to Radio Corp. of America), Thermoelectric Materials and Elements Utilizing Them: U. S. Patent 2,762,857, Sept. 11, 1956.

** Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, p. 4.

TABLE 5.—World production of bismuth, by countries,1 1947-51 (average) and 1952-56 in pounds 2

[Compiled by Augusta W. Jann and Berenice Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada (metal) *	209, 889	162, 373	117, 366	258, 675	265, 896	273, 007
Mexico 3	585, 182	672, 297	739, 209	795, 900	773, 800	1, 391, 103
United States	(4)	(4)	(4)	(4)	(4)	(4)
South America:						1
Argentina:	r o moo					1.0
Metal	* 9, 700	• 1, 100			16, 300	
In ore 5	8, 800	1, 100	1, 340	10, 140	20,700	13,700
Bolivia (in ore and bullion	00.000	05 110	10001			
exported) 6 Peru 8	99, 289	35, 119	138, 731	101, 467	94, 600	74, 780
	525, 852	714, 828	631, 990	691, 726	734, 714	632, 262
Europe:	140.000	100 000	150 000			
France (in ore)	149,000	190, 000	159, 000	23, 631	69, 500	142, 200
Spain (metal)	40, 492	27, 044	56, 006	32, 985	48, 234	\$ 139,000
Yugoslavia (metal)	121, 623		(7)	(7)	145, 500	(7)
A sia:	121, 023	217, 600	217, 047	241,842	229, 516	245, 039
China (in ore)	5 25, 400	(7)	(7)	<i>a</i> n		
Japan (metal)	64, 941	96, 068	(7) 110, 1 59	110 010	(7)	(7)
Korea, Republic of	-8 132, 682	243, 000	529, 000	118, 610 254, 000	142, 364	156, 859
Africa:	102,002	240,000	528,000	204,000	287, 000	401,000
Belgian Congo (in ore)	1, 193	1,036		2,000	70	
Mozambique	1,008	11, 200	7, 057	1,905	4, 145	
South-West Africa (in ore)	5,700	11, 200	1,007	2,500		⁽⁷⁾ 310
Uganda	8 9, 522	6, 200	1, 100	2, 300 400	2,360	660
Union of South Africa (in	0,022	0, 200	1, 100	400	3, 100	000
ore)	7, 635	3, 391	1,600	1,080	228	
Oceania: Australia (in ore)	4, 927	3, 153	880	1, 345	3,000	5 110
World total (estimate) 1	3, 400, 000	3, 900, 000	4, 200, 000	3, 600, 000	4,000,000	4, 900, 000

¹ Bismuth is believed to be produced also in Brazil and U. S. S. R. Production figures are not available

1 Bismuth is believed to be produced also in Brazii and U. S. S. L. Production injures are not available for these countries, but estimates by senior author of chapter are included in total.

2 This table incorporates a number of revisions of data published in previous Bismuth chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

3 Refined metal plus bismuth content of bullion exported.

4 Production included in total; Bureau of Mines not at liberty to publish separately.

6 Excludes bismuth content of tin concentrates exported.
7 Data not available; estimate by senior author of chapter included in total.

8 Average for 1948-51.
 9 Average for 1949-51.

were made by the Molybdenite Corp. of Canada, Ltd., from its operations at La Corne, Quebec.

Korea.—Bismuth production at the San Dong mine was about

401,000 pounds compared with 287,000 pounds in 1955.

Mexico.—Production of bismuth (metal content) in Mexico totaled 1,391,000 pounds compared with 774,000 pounds in 1955. The principal Mexican producers were American Smelting & Refining Co. and the Compania Metalurgica Penoles, S. A. (subsidiary of the American Metal Co.).

Peru.—The Cerro de Pasco Corp. output of bismuth totaled 632,000 pounds compared with 735,000 pounds in 1955. This decline was attributed to a month-long labor strike at the smelter in La Oroya.

Spain.—Spanish output of bismuth totaled 139,000 pounds compared with 48,000 pounds in 1955. Several properties were reactivated in the Pozoblanco area, Province of Córdoba, and mining operations were expanded.

United Kingdom.—Demand for bismuth in the United Kingdom increased substantially compared with 1955. Quantitative data,

however, were not available for publication.

Yugoslavia.—Production of bismuth in Yugoslavia totaled about 245,000 pounds compared with 229,500 pounds in 1955.

Boron

By Henry E. Stipp 1 and Annie L. Mattila 2

EW USES for boron and boron compounds, such as an antiknock additive in gasoline and a neutron-absorbing material in nuclear reactions, and proposed uses, such as a fuel constituent for jet planes and rockets, received considerable publicity in 1956.

Industrial expansion was indicated as U. S. Borax & Chemical Corp. converted underground mines near Boron, Calif., to an openpit mine and constructed new concentrating and refining plants near the mine. Prospects for a substantial increase in the future demand for boron minerals appeared to be favorable owing to developing new uses for boron compounds. Production in 1956 exceeded the alltime high figure of 1955.

TABLE 1.—Salient statistics of boron minerals and compounds in the United States, 1947-51 (average) and 1952-56

	1947–51 (average)	1952	1953	1954	1955	1956
Sold or used by producers: 1 Short tons: Gross weight B ₂ O ₃ content	586, 198 170, 320	583, 828 169, 100	715, 228 213, 300	790, 449 230, 500	924, 496 293, 165	944, 950 315, 047
Value 2	\$14, 084, 747 1, 695 \$720	\$14, 105, 000 4 860 4 \$306	\$17, 668, 000 624 \$216	\$26, 714, 440	22, 046 \$22, 401	\$39, 591, 953
Exports: Short tonsValueApparent consumption: Short	124, 438 \$7, 442, 617	103, 292 \$6, 723, 925	139, 317	205, 614 \$12, 904, 410	222, 588	243, 725 \$16, 596, 090
tons 6	461, 763	480, 536	575, 911	584, 835	701, 919	701, 22

Borax, anhydrous sodium tetraborate, kernite, boric acid, and colemanite.
 Partly estimated.

4 In addition, 88 pounds of crude valued at \$2.

rable with earlier years.

6 Quantity sold or used by producers plus imports minus exports.

DOMESTIC PRODUCTION

During 1956 the entire output of boron minerals continued to come from bedded deposits and natural brines in California. The deposit of kernite (rasorite) and borax (tincal) in the Kramer district, California, was the world's principal source of boron minerals. Ore from this deposit was mined by shrinkage-stoping and room-and-pillar

Partly estimated
 Revised figure.

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with earlier years.

¹ Commodity specialist.

^{*} Statistical clerk.

methods; however, in 1956 stripping of overburden was begun, preparing to open-pit mine U. S. Borax & Chemical Corp. holdings. Three underground mines (the Baker, West Baker, and Jennifer) will be shut down when open-pit ore production is begun in 1957. A new concentrator-refinery was being constructed near the open-pit mine.

The following firms produced boron minerals in 1956: American Potash & Chemical Corp. recovered boron minerals from the brine of Searles Lake at Trona, Calif.; Pacific Coast Borax Division of U. S. Borax & Chemical Corp. mined kernite and borax from a bedded deposit in the Kramer district near Boron, Calif., colemanite at Death Valley Junction, and ulexite from a deposit near Shoshone, Calif.; West End Chemical Division of Stauffer Chemical Co. recovered boron minerals from Searles Lake brine.

Boron compounds and alloys were produced by the following firms:

Producer:

American Boron Products Division, Continental Copper & Steel Industries, Inc., Buffalo, N. Y.

dustries, Inc., Buffalo, N. Y.
American Electro Metal Corp.,
Yonkers, N. Y.

American Potash & Chemical Corp., Trona, Calif.

Bios Laboratories, Inc., New York, N. Y.

Cooper Metallurigical Associates, Cleveland, Ohio.

Electro Metallurgical Division, Union Carbide & Carbon Corp., Niagara Falls, N. Y. F. W. Berk Co., Inc., Wood-Ridge,

N. J.
Fairmount Chemical Co., Inc.,
Newark, N. J.

Foote Mineral Co., Philadelphia,

General Chemical Division, Allied Chemical & Dye Corp., Buffalo,

Hooker Electrochemical Co., Model

City, N. Y. Kawecki Chemical Co., Boyertown, Pa.

Metal Hydrides, Inc., Beverly,

Metalsalts Corp., Hawthorne, N. J. Molybdenum Corp. of America, Washington, Pa.

Niagara Falls Smelting & Refining Division, Continental Copper & Steel Industries, Inc., Buffalo, N.V.

Norton Co., Worcester, Mass____ Ohio Ferro-Alloys Co., Philo, Ohio-Pacific Coast Borax Division, United States Borax & Chemical Corp., Wilmington, Calif. Reading Chemicals, Wyomissing,

Pa.

Products

Aluminum, manganese, and copper alloys of boron.

Miscellaneous metal borides; experimental.

Elemental boron (purity: 90 to 92 percent).

Boron chemicals.

Elemental boron; borides of V, Fe, La, Mn, Zr, Ta, W, Nb, Si, Ti, Cr, Th, Mo, Co, Al, Ni, U; cobalt-boron; aluminum-boron; lithium-boron; copper-boron; aluminum-titanium boron; boron nitride.

Ferroboron, manganese-boron, nickelboron, cobalt-boron, chromium-boron, calcium boride, boron carbide.

Elemental boron.

Elemental amorphous boron.

Ferroboron (powder).

Boron chemicals.

Boron isotopes B10 and B11.

Boron compounds, aluminum-boron, and titanium-boron-aluminum master alloys.

Borohydrides of sodium, lithiumberyllium, and other elements.

Elemental amorphous boron.

Ferroboron, manganese-boron, cobaltboron, chromium-boron, calciumboron.

Manganese-aluminum boron, nickel-aluminum boron.

Boron carbide, boron, ferroboron. Borosil.

Amorphous elemental boron.

Boron chemicals.

Producer—Continued
Stauffer Chemical Co., Niagara Boron trichloride.
Falls, N. Y.

The Harshaw Chemical Co., Cleve-Boron chemicals. land, Ohio.

Titanium Alloy Mfg. Division, National Lead Co., Niagara Falls,

N. Y.
U. S. Atomic Energy Commission, Boron isotopes B¹⁰ and B¹¹.

Oak Ridge, Tenn.

Vanadium Corp. of America, Cambridge, Ohio.

Grainal alloys, ferroboron, boron-ferrosilicon.

The expansion of production capacity was accelerated during 1956. Stauffer Chemical Co. began a tenfold expansion of its facilities at Niagara Falls, N. Y., for producing boron trichloride. Stauffer also announced a 50-percent increase in the boric acid capacity of its San Francisco plant. Olin Mathieson Chemical Corp. began constructing a \$36 million plant at Model City, N. Y., which will produce high-energy chemical fuel for use in Air Force missile and aircraft engines. It was reported that boron was an ingredient of the fuel. Callery Chemical Co. recently announced plans to build a \$38-million plant near Muskegee, Okla., to produce chemical fuel for Navy missile and jet-aircraft engines. American Potash & Chemical Corp. began semicommercial production of boron trichloride in a 1-ton-per-day plant at Los Angeles, Calif. Metal Hydrides, Inc., has contracted to construct a new \$5 million plant that will produce sodium borohydride for the Government.

CONSUMPTION AND USES

The major outlet for boron minerals in 1956 was in the glass and ceramics industries, which consumed approximately 42 percent of production.⁴

Large quantities of borax or boric acid were consumed in soaps, cleansers, and detergents, flame-retardant chemicals, adhesives, pesticides, abrasives, fertilizers, and weedkillers. Elemental boron was used as a deoxidizer and grain refining alloy in nonferrous metals, an igniter in rectifier and control tubes, a neutron absorber in control rods and shields for atomic reactors, in fuses for rockets and flares, and in solar batteries. In addition to its use as an intermediate in producing boranes, sodium borohydride was used as a reducing agent in paper manufacture.

Potassium borohydride was used as a reducing agent for aldehydes, ketones, and esters. A potentially large new market for organic boron compounds was as an antiknock additive in motor fuel to prevent preignition firing and to improve removal of carbon deposits. Increased use of boron trichloride as an intermediate in producing of diborane (B_2H_6), pentaborane (B_5H_9), decaborane ($B_{10}H_{14}$), and alkyl borane was indicated as producers increased trichloride-production capacity in 1956. Boron trichloride was also used as a catalyst in silicone production, as a source of boron for borocarbon resistors, and as an extinguishing agent for magnesium fires.

Boron carbide (B₄C) was used as an abrasive, a neutron absorber in atomic reactors, and a chemical intermediate. Increasing use of

³ Chemical and Engineering News, A New High-Energy Chemical Fuel: Vol. 34, No. 31, July 30, 1956, p. 3645.
⁴ Business Week, From the Desert; Fuel for the Future: No. 1416, Oct. 20, 1956, pp. 44-58, 63, 64.

borate esters as dehydrating agents, synthesis intermediates, special solvents, catalysts, plasticizers, and adhesion additives for latex paint, and in soldering or brazing fluxes was reported during the year. Extremely small quantities of boron, in the form of boron compounds, are added to low-carbon and alloy steels to increase their hardenability and save alloying metals, such as chromium, nickel, and molybdenum. During 1956, 21 net tons of boron was consumed as alloying metal in manufacturing steel in the United States.⁵

TABLE 2.—Production of alloy-steel ingots (other than stainless-steel ingots) in the United States, net tons ¹

	19	955	1956	
Grade	Without boron	With boron	Without boron	With boron
Carbon-boron	05 554	51, 047	33, 347	29, 173
Nickel	35, 554 678, 558 277, 947	33, 346 18, 286	582, 640 205, 270	29, 192 38, 696
Manganese-molybdenumChromium	329, 397 1, 769, 489	121, 337	390, 241 1, 377, 028	106, 054
Chromium-vanadium Nickel-chromium	74, 449 141, 599	73	72, 222 114, 482 1, 195, 359	
Chromium-molybdenumNickel-molybdenumNickel-phromium-molybdenum	495, 293	6, 244 76, 323	405, 349 1, 330, 686	3, 202 65, 400
Nickel-chromium-molybdenum	119, 204 606, 647	10, 577	111, 788 582, 269	26, 379
Subtotal	6, 934, 056 843, 357	317, 233 15, 057	6, 400, 681 982, 918	298, 096 17, 060
High-strength steelsSilicon sheet steels	1, 263, 829	10,007	1, 313, 313	17,000
Total all grades	9, 041, 242	332, 290	8, 696, 912	315, 156

¹ American Iron and Steel Institute, Annual Statistical Report: New York, N. Y., 1956, p. 59.

PRICES

The price of most boron minerals was stable throughout the year, except for minerals exwarehouse, New York or Chicago; this latter price rose slightly from November through December. The Oil, Paint and Drug Reporter price quotations for boron minerals showed the following changes effective November 5, 1956.

	JanOct.	NovDec.
Borax, tech., anhydrous, bags, carlots, works, ton	\$80. 50	Unchanged.
Ton lots, exwarehouse, New York or Chicago, ton	$130.\ 25$	\$ 132. 25
Bulk, carlots, works, ton	71. 50	Unchanged.
Crystals, 99½ percent, bags, carlots, works, ton	69. 25	Do.
Ton lots, exwarehouse, New York or Chicago, ton	119.00	121.00
Granular decahydrate, 99½ percent, bags, carlots, works,	43. 25	Unchanged.
ton.		
Ton lots, exwarehouse, New York or Chicago, ton	93. 00	95. 00
Bulk, carlots, works, ton	36. 75	${f U}{f n}{f changed}.$
Pentahydrate, 99½ percent, bags, carlots, works, ton	57. 75	Do.
Ton lots, exwarehouse, New York or Chicago, ton	107. 50	$109.\ 50$
Powder, 99½ percent, bags, carlots, works, ton	48.25	Unchanged.
Ton lots, exwarehouse, New York or Chicago, ton	98. 00	100.00
Borax packed in kegs is \$45.50 per ton higher than in		
paper bags: in barrels \$24.50 higher. U.S. P. borax		

⁵ American Iron & Steel Institute, Annual Statistical Report: New York, N. Y., 1956, p. 24.

\$15.00 per ton higher than technical.

Acid, boric, tech., 99½ percent: Crystals, bags, carlots, works Ton lots, exwarehouse, New York or Chicago,	JanOct. \$126. 75 176. 50	NovDec. Unchanged. \$178.50
ton. Granular, bags, carlots, works, ton Ton lots, exwarehouse, New York or Chicago,	101. 75 151. 50	Unchanged. 153. 50
ton. Boric acid in kegs \$45.50 per ton higher than in paper bags II S P boric acid \$25.00 per ton higher.		

FOREIGN TRADE 6

In 1956 the United States imported 93,675 pounds of boron carbide valued at \$171,956 from Canada and West Germany. Imports of crude boron minerals from Turkey totaled 55,115 pounds valued at \$2,250. The United States exported boron compounds to nearly all countries in the world.

TABLE 3.—Boric acid and borates (crude and refined) exported from the United States, 1955-56, by countries of destination

	19	55	19	56
	Short tons	Value	Short tons	Value
North America				
North America:	11,657	\$907, 579	13, 637	\$1, 397, 191
Costa Rica	75	5, 566	123	11, 489
Cuba	476	36, 076	593	45, 977 2, 760
El Salvador	3	1, 260	16	2, 700 379, 469
Mexico	3, 694	341, 538 3, 466	4, 157 12	5, 937
Nicaragua	8 25	3, 400 1, 891	89	6, 975
Trinidad and Tobago		3, 700	13	2, 209
Other North America	21	0, 100		
Total	15, 959	1, 301, 076	18, 640	1, 852, 007
South America:	2, 587	182, 431	8, 188	596, 674
Brazil	2, 587 716	64, 817	695	58, 402
Colombia Ecuador Ecuad	110	846	22	2, 120
Peru	219	12, 790	417	31, 776
Uruguay	267	27, 994	161	15, 001
Venezuela	320	26, 537	308	27, 905
Other South America	35	4, 934	3	1,080
Total	4, 146	320, 349	9, 794	732, 958
Thursday				
Europe:	2, 358	111,004	3, 035	143, 184
Belgium-Luxembourg	4, 883	300, 312	4,013	268, 118
Denmark	432	26, 751	640	44, 538
Finland	767	46, 625	804	51, 629
France	25, 520	1, 475, 077	28, 472	1, 894, 777
Germany, West	53, 357	3, 121, 099	49, 235	3, 016, 752 9, 878
Greece	136	10, 129 52, 781	198 1, 237	76, 072
Ireland	710	495, 413	17, 778	893, 391
Italy	10, 017 11, 184	807, 779	12, 605	988, 271
Netherlands	1, 184	111, 792	2, 643	215, 473
Norway Portugal	1,450	41, 634	1,716	128, 658
PortugalSpain	688	34, 892	31	3, 378
Sweden	3, 361	208, 100	3, 532	227, 407
Switzerland	4, 192	276, 158	4, 659	310, 172
United Kingdom	47, 201	3, 305, 298	47, 156	3, 122, 600
Yugoslavia	346	26, 113	715	46, 963
Total	167, 293	10, 450, 957	178, 469	11, 441, 261

[•] Figures on imports and exports were compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 3.—Boric acid and borates (crude and refined) exported from the United States, 1955-56, by countries of destination—Continued

[Bureau of the Census]

	1	955	1956		
	Short tons	Value	Short tons	Value	
Asia: Ceylon Hong Kong India. Indonesia Iran	109 4, 765 3, 759 421 231	\$6, 227 292, 379 269, 289 22, 140	185 6, 138 4, 612 239	\$14, 918 349, 556 348, 212 14, 373	
Iraq Israel Japan Korea, Republic of Lebanon	11 352 15 082	11, 420 631 21, 589 997, 846	283 628 14, 274 252	16, 040 40, 779 973, 717 17, 349	
Malaya Pakistan Philippines Syria Taiwan	111 340 335 28 485	7, 302 21, 409 27, 234 2, 513 30, 288	33 134 314 356 28	4, 140 9, 404 19, 961 33, 633 2, 486	
Thailand	93 15 59	6, 472 2, 670 2, 868	1, 564 428 24 163	81, 835 26, 670 5, 420 10, 455	
Africa:	26, 214	1, 723, 757	29, 655	1, 968, 948	
Egypt	370	29, 347	206 56	15, 496 7, 770	
Mozambique. Rhodesia and Nyasaland, Federation of Union of South Africa Other Africa	289 2,019 39	19, 164 182, 802 5, 299	144 1, 452 44	9, 829 153, 182 6, 338	
Total	2, 717	236, 612	1, 902	192, 615	
Oceania: Australia	5, 239	415, 446	4, 073	318, 643	
British Western Pacific Islands New Zealand	1, 005	4, 692 80, 082	1, 192	89, 658	
Total	6, 259	500, 220	5, 265	408, 301	
Grand total	222, 588	14, 532, 971	243, 725	16, 596, 090	

TECHNOLOGY

Open-pit mining methods and new refining procedures that will be used by U. S. Borax & Chemical Corp. were described in 1956. Standard earth-moving equipment will remove approximately 9 million tons of overburden from the mine area. In the open pit, developed with bank slopes of 1½-horizontal to 1-vertical, ore benches 50 feet high will be drilled by auger drills and blasted. Electric shovels of 3-cubic-yard capacity will load ore into 24-ton dump trucks that will haul it to a primary crusher installed in the pit. Conveyed by belt to the surface, the crushed ore will be stacked in long piles for bedding and blending. A belt conveyor, fed by vibrating feeders, will deliver the ore to a hammermill that will reduce it to ¾-inch size. The ore will then be transferred by an inclined belt to storage bins before controlled feeding to the dissolving plant. A series of steam-jacketed, mechanically agitated tanks containing steam coils will dissolve the soluble constituent of the ore to form a mother liquor. The slurry will then be thickened by clay removal

⁷ Albright, H. M., A New Look at United States Borax & Chemical Corp. Min. Cong. Jour., vol. 42, No. 9, September 1956, pp. 54-56.

271 BORON

in a countercurrent-decantation system. The borax solution will be passed through clarification filters, pumped to vacuum crystallizers, then centrifuged to remove crystals that will be dried and stored,

or used for other purposes.

A description of mining methods and equipment used underground at U.S. Borax & Chemical Co. Jennifer mine was published.8 Continuous miners equipped with 168 tungsten carbide-tipped bits to cut and load ore in the same operation were employed. About 20,000 c. f. m. of fresh air flows to each continuous miner and carries off machine dust in the return aircourse. Ore was transported by shuttle cars equipped with four-wheel steering, dynamic braking, and dual controls. The modified room-and-pillar mining system permitted haulage parallel to the strike of the beds to avoid excessive grades thus facilitating movement of shuttle cars and continuous miners. Roof bolts were used, and ore was left in both the foot and hanging walls to support the weak shales. Ore was hauled by shuttle car to transfer raises that funnel ore from upper workings to entry conveyors on the lower level. These conveyors discharged to winze conveyors leading to underground crushers. Ore crushed to minus-4-inch size drops into a 200-ton-capacity bin. Skips were filled from the bin by automatic loaders and carried to surface storage bins by a double-drum, 500-horsepower hoist.

The discovery that diborane permeates certain plastic membranes at room temperature much faster than nitrogen or hydrogen was reported from Michigan State University.9 In one test diborane permeated a silicone-rubber membrane almost twice as fast as hydrogen The discovery was expected to serve and 4.6 times as fast as nitrogen. as the basis for an efficient diborane purification system that could be incorporated in a continuous diborane-production process.

A series of borohydrides was prepared by the hydrolysis of magnesium diboride (MgB₂) with bases. The exothermic reaction of MgB₂ with water produced hydrogen, traces of borones, a watersoluble fraction, and a gray water-insoluble solid consisting mostly of magnesium hydroxide and magnesium borates. The water-soluble fraction gave large quantities of hydrogen when acidified. Similar results were obtained from the hydrolysis of magnesium diboride (MgB₂) in strong bases. Hydrolysis of MgB₂ in KOH and (CH₃)₄N OH gave KBH₄ and (CH₃)₄N BH₄, respectively.

The preparation of alkyl borate esters by transesterifying methyl borate by ethyl isopropyl and t-butyl alcohols was reported.11 Sodium borohydride was reacted with both methyl and ethyl alcohol at their boiling points. The addition of an equivalent of acetic acid to the mixture resulted in the evolution of one mole of the corresponding alkyl borate. An equivalent of acetic acid added to a mixture of sodium borohydride and excess isopropyl alcohol resulted in the evolution of four moles of hydrogen and formation of isopropyl The reaction proceeded very slowly when tertiary alcohols Only three equivalents of hydrogen were evolved at

⁸ Engineering Mining Journal, U. S. Borax Expands to Meet a Greater Demand: Vol. 157, No. 11, November 1956, pp. 72-73, 128.

• Chemical and Engineering News, Diborane Discovery: Vol. 34, No. 39, Sept. 24, 1956, pp. 4690, 4692.

• King, A. J., Kanda, F. A., Russell, V. A., and Katz, W., A New Method for the Preparation of Borohydrides: Jour. Am. Chem. Soc., vol. 78, No. 16, Aug. 20, 1956, p. 4176.

• Il Brown, H. C., Mead, E. J. and Shoaf, C. J., Convenient Procedures for the Preparation of Alkyl Borate Esters: Jour. Am. Chem. Soc., vol. 78, No. 15, Aug. 5, 1956, pp. 3613-3614.

The fourth equivalent of hydrogen formed only room temperature. upon extended heating of the reaction mixture and recycling of condensate. No difficulty was encountered in esterifying an unsaturated alcohol.

Tetramethoxy- and tetraethoxy-borohydrides of lithium, sodium. potassium, calcium, zinc and thallium were prepared by the direct combination of the borate ester and the metal alkoxide.¹² The process took place by metathesis between the tetraalkoxyborohydrides and metal halides, and by reacting sodium borohydride with methanol Isopropyl and t-butyl alcohol failed to react with sodium borohydride to form the corresponding tetraalkoxyboro-

hydride.

Quantitative data were obtained on the effect of the alkoxy substituents on the reducing potential of the borohydride ion.13 Four typical trialkoxyborohydrides were prepared by the reaction of methyl, ethyl, isopropyl and t-butyl borates with sodium hydride in tetrahydrofuran solution. Results of the study indicated that the rate of reaction of sodium hydride with borate esters in tetrahydrofuran decreased in the order methyl, ethyl, isopropyl, and t-butyl. Reaction time for isopropyl and t-butyl borates was greatly reduced by using dimethyl ethers of di- and triethylene glycol at 130° and Disproportionation of sodium trimethoxy- and triethoxyborohydrides in tetrahydrofuran solution was reported; isopropoxyand t-butoxyborohydrides were stable. Sodium triisopropoxyborohydride reacted with isopropyl alcohol to yield hydrogen. It reacted very rapidly with acetone and reduced ethyl benzoate at a moderate

A practical synthesis of alkyl and arvl boron-substituted borazoles has been devised.14 Revision of the Kraus-Booth synthesis, which involved the reaction between n-butylboron dichloride and liquid ammonia in presence of metallic sodium, resulted in increased yields. In the final process sodium was omitted and a solvent system substituted, using amines for liquid ammonia. Possible uses for the boron compound are in neutron capture, therapy of brain tumors,

and high-temperature applications.

Sodium borohydride in the presence of aluminum chloride was reported to react readily with simple olefins, at temperatures of 25°, to form the corresponding trialkylboranes in yields of 90 percent. 15 Trialkylboranes were oxidized to borate esters, which were then hydrolyzed to the corresponding alcohols. The reaction was carried out without isolation of any of the intermediates. The yields based on olefin are in the range of 70 to 90 percent.

Potassium borohydride was produced commercially in 1956 at the Beverly, Mass., plant of Metal Hydrides, Inc., using a patented process. 16 The method consists of agitating sodium metal in an inert

¹³ Brown, H. C., and Mead, E. J., The Preparation and Properties of Sodium Tetraalkoxyborohydrides: Jour. Am. Chem. Soc., vol. 78, No. 15, Aug. 5, 1956, pp. 3614-3616.

¹³ Brown, H. C., Mead, E. J., and Shoaf, C. J., The Preparation of Sodium Triisopropoxyborohydride and Tri-t-butoxyborohydride. The Effect of Alkoxy Substituents on the Reducing Properties of Borohydride Ion: Jour. Am. Chem. Soc., vol. 78, No. 15, Aug. 5, 1956, pp. 3616-3620.

¹⁴ Chemical Engineering News, Boron Polymers Breach Barrier: Vol. 34, No. 17, Apr. 23, 1956, pp. 1004-1005.

 ¹⁸ Brown, H. C., and Subba Pao, B. C., A New Technique for the Conversion of Olefins Into Organo-boranes and Related Alcohols: Jour. Am. Chem. Soc., vol. 78, No. 21, Nov. 5, 1956, pp. 5694, 5695.
 16 Banus, Mario D., and Bragdon, Robert W. (assigned to Metal Hydrides Inc., Beverly, Mass.), Method for Preparing Borohydrides of Alkali Metals: U. S. Patent 2,720,444, Oct. 11, 1955.

273 BORON

liquid hydrocarbon in the presence of hydrogen to form sodium An alkyl borate is reacted with the sodium hydride to form a reaction mixture of sodium and borohydride and sodium alkoxide in the hydrocarbon. A compound, such as potassium hydroxide and an alkoxide, together with a solvent, is added to the reaction mixture to precipitate potassium borohydride.

A method of making an alkali-metal borohydride was patented in 1956.¹⁷ The process consisted of atomizing an alkali metal in a current of dry hydrogen at a temperature of about 150 to 350° C. and promptly reacting it with a mixture of dry, cool, hydrogen and

boron fluoride.

Quaternary ammonium borohydride was the subject of a patent.18 The process consisted of mixing a saturated solution of tetramethylammonium hydroxide in a solvent such as methanol or ethanol with a saturated solution of sodium borohydride and sodium methoxide in methanol, thereby precipitating tetramethylammonium borohydride

in substantially quantitative yield.

A process for producing a halide of boron other than the fluoride of boron was patented.¹⁹ An alkali metal fluoborate and a halide other than magnesium, calcium, or lithium fluoride were heated to a temperature between 500° and 1,000° C. The desired boron halide was recovered in the form of a vapor. The alkali metal and fluoride values remaining in the residue were reacted with a boron compound, and an alkali metal fluoborate was recovered and returned to the

process. Boron carbide was tested for use in nuclear engineering, inasmuch as it combines high boron content with good design potential.20 Structurally strong, corrosion-resistant components were produced that combined good properties at elevated temperature with good neutron-absorption characteristics. Boron content of the carbide ranged from less than 75 percent for Technical-grade to 80 percent for high-purity material. Boron carbide can be formed into a variety of shapes by hot or cold pressing and bonding with metal or ceramic materials. Self-bonded boron carbide elements have high physical strength, high melting point, and great resistance to chemical attack. Study of a mechanism proposed to explain the effect of boron on

the hardenability of steel showed that a critical amount of boron was required to obtain the maximum hardenability effect.21 Boron content, austenitizing temperature, quenching temperature, and austenite grain size were considered to be important variables in steels with boron contents between 0.00005 and 0.0017 percent.

Experiments on the effect of diborane (B₂H₆) on flame speeds of air and propane mixtures were conducted.²² Evaluation of data indicated that in general propane inhibited the combustion of diborane or mutual inhibition occurred. In rich mixtures of propane-diborane

¹⁷ Jackson, Carey B. (assigned to Callery Chemical Co., Pittsburgh, Pa.), Production of Compounds Containing Boron and Hydrogen: U. S. Patent 2,744,810, May 8, 1956.

18 Bragdon, R. W. (assigned to Metal Hydrides Inc., Beverly, Mass.), Method for Preparing Quaternary Ammonium Borohydrides: U. S. Patent 2,756,259, July 24, 1956.

19 Wainer, Eugene (assigned to Horizons Inc., Princeton, N. J.), Method of Preparing Halides: U. S. Patent 2,762,691, Sept. 11, 1956.

20 Henson, Charles W., Boron Carbide Looks Promising for Nuclear Uses: Materials and Methods, vol. 44, No. 6, December 1956, pp. 96–98.

21 Simcol, C. R., Elsea, A. R., and Manning, G. K., Further Work on the Boron-Hardenability Mechanism: Jour. Metals, vol. 8, August 1956, pp. 984–982.

22 Kurz, Philip F., Influence of Diborane on Flame Speed of Propane-Air Mixtures: Ind. Eng. Chem., vol. 48, No. 10, October 1956, pp. 1863–1868.

containing more than 6-volume-percent diborane, flame speeds

exceeded those of propane.

Studies of the effect of boron compounds on combustion reactions in gasoline engines were conducted in 1956.23 Observations were made on surface ignition, preflame reactions, octane requirements, scavenging and carbon-lead glow temperatures. Tests indicated that the frequency of surface ignitions was significantly reduced by the use of a boron compound in gasoline. Boron compounds reduced the preflame reactions and increased the F-1 octane number of commercial leaded fuel. The use of boron compounds resulted in less deposit on exhaust valves and longer valve life under severe operating conditions.

Experiments were conducted on the toxic effect of diborane on laboratory animals.²⁴ The primary effect of diborane poisoning of

animals appeared to be injury to the pulmonary system.

Studies of the toxic effects of decaborane on animals indicated that rabbits were very susceptible; dogs and monkeys were moderately susceptible; mice and rats were more resistant to the toxic effects.25 Toxic effects were attributed to interference with the activity of metabolizing cells.

WORLD REVIEW

Although several other countries produced moderate quantities, the world's principal supply of boron minerals came from the United States.

SOUTH AMERICA

Argentina.—Borates were produced in the Provinces of Salta and The principal deposits are in the salt flats of Caucharf and Olaroz in Jujuy and Arizaro, Pocitos, and Salina Grandes in Salta.26 In 1956 Argentina produced 22,046 short tons of ulexite.27

EUROPE

Germany, West.-West Germany produced 46,256 short tons of boron compounds in 1956.28

Italy.—Production of boric acid in 1956 totaled 4,065 short tons.29

ASIA

Turkey.—In 1956 Turkey produced 32,297 short tons of boron minerals.30

²³ Hughes, E. C., Fay, P. S., Szabo, L. S., and Tupa, R. C., Effect of Boron Compounds on Combustion Processes: Ind. Eng. Chem., vol. 48, No. 10, October 1956, pp. 1858–1862.

24 Kunkel, A. M., Murtha, E. F., Oikemus, A. H., Stabile, D. E., Saunders, J. P., and Wills, J. H., Some Pharmacologic Effects of Diborane: A. M. A. Arch. Ind. Health, vol. 13, April 1956, pp. 346–351.

25 Svirbely, J. L., and Roberts, J. C., Toxicity Tests of Decaborane for Laboratory Animals: AMA Arch Ind. Health, vol. 14, August 1956, pp. 163–168.

26 Bureau of Mines, Boron Minerals: Mineral Trade Notes, vol. 43, No. 5, November 1956, p. 33.

27 U. S. Embassy, Buenos Aires, Argentina, State Department Dispatch 1393: May 16, 1957, 3 pp.

28 U. S. Embassy, Bonn, Germany, State Department Dispatch 2133: May 24, 1957, 4 pp.

29 U. S. Embassy, Rome, Italy, State Department Dispatch 1505: May 14, 1957, 5 pp.

30 U. S. Embassy, Ankara, Turkey, State Department Dispatch 676: Apr. 26, 1957, 1 p.

Bromine

By Henry E. Stipp¹ and Annie L. Mattila²

RODUCTION of bromine and bromine compounds in the United States during 1956 reached a new record—7 percent over 1955. Applications of bromine compounds, such as flameproofing material for cotton fabric and fumigation of fruit from deciduous trees, received prominent mention in trade and scientific publications.

DOMESTIC PRODUCTION

In the United States bromine was extracted from sea water, well brines, and saline lake brines during 1956. A large part of production was derived from sea water, an inexhaustible source of bromine. Production (measured by sales) in 1956 resumed an upward trend,

which had been interrupted in 1955.

The Ethyl-Dow Chemical Co. recovered bromine from sea water at Freeport, Tex., and Westvaco Chemical Division of Food Machinery & Chemical Corp. operated a sea-water plant at Newark, The following firms recovered bromine from well brines in Michigan: The Dow Chemical Co., Midland and Ludington; Great Lakes Chemical Corp., Filer City; Michigan Chemical Corp., Eastlake and St. Louis; and Morton Salt Co., Manistee. The Westvaco Chemical Division at South Charleston, W. Va., also treated well American Potash & Chemical Corp. recovered bromine from the brine of Searles Lake in California.

Dow Chemical Co. was expected to spend considerably more than \$75 million beginning June 1, 1956, partly for expansion of bromine-

production capacity.

TABLE 1.—Bromine and bromine in compounds sold by primary producers in the United States, 1947-51 (average) and 1952-56

Year	Pounds	Value	Year	Pounds	Value
1947-51 (average)	94, 203, 257	\$18, 181, 003	1954	187, 399, 110	\$41, 312, 669
1952	156, 201, 577	30, 639, 292	1955	184, 453, 846	39, 855, 508
1953	164, 143, 348	35, 372, 386	1956	196, 730, 115	47, 433, 886

Great Lakes Oil & Chemical Co. started construction on a major addition to its bromine plant at Filer City, Mich. It was expected to cost about \$350,000.

Commodity specialist.
 Statistical assistant.
 Paint, Oil and Chemical Review, vol. 119, No. 21, Oct. 18 1956, p. 36.
 Chemical Engineering, Bromine: Vol. 65, No. 9, September 1956, p. 142.

TABLE 2.—Bromine and bromine compounds sold by primary producers in the United States, 1955-56

	Pounds		
	Gross weight	Bromine content 1	Value
1955			
Elemental bromine Sodium bromide	7, 643, 812	7, 643, 812	\$1, 884, 715
Potassium bromide	2, 660, 742	1, 786, 688	(2) 753, 992
Other, including ethylene dibromide	206, 381, 298	175, 023, 346	37, 216, 801
Total	216, 685, 852	184, 453, 846	39, 855, 508
1956			
Elemental bromineSodium bromide	9, 490, 006	9, 490, 006	2, 170, 056
Sodium bromide	2, 920, 367	1, 961, 027	(2) 878, 190
Other, including ethylene dibromide	218, 583, 248	185, 279, 082	(2) 44. 385, 640
Total	230, 993, 621	196, 730, 115	47, 433, 886

¹ Calculated as theoretical bromine content present in compound.

² Included with "Other, including ethylene dibromide."

CONSUMPTION AND USES

Ethylene dibromide was the chief bromine compound sold in 1956. Antiknock fluid was the principal outlet for this compound, and it was used also as a solvent for celluloid, in gums and waxes, as a reagent in the synthesis of dyes and as a pharmaceutical intermediate. Medicinally it was used as an anaesthetic, sedative, and antispasmodic agent. The use of ethylene dibromide in fumigation mixtures continued to grow during 1956. Methyl bromide and chlorobromopropene were also used as soil fumigants.

The second largest quantity of bromine sold in 1956 was in the form of elemental bromine. It was used as a germicide in treating water, and in manufacturing lachrymators, brominated dyes, and bromides for medicinal, photographic, and industrial uses.

Potassium bromide and sodium bromide were important commercial compounds of bromine. They were used in medicinal and pharmaceutical preparations, photographic emulsions, and analytical Ammonium bromide, another compound of bromine, was used in pharmaceutical preparations; in the preparation of photographic films, plates and papers, process engraving, and soldering fluxes; and in textile processes.

Potassium bromate was used in soya and high-protein wheat flour to improve baking characteristics and as an ingredient of yeast foods.

Various compounds of bromine were used in permanent-wave preparations and effervescent mineral waters, as a catalyst in controlling oxidations of hydrocarbons, as dehumidifying agents in air conditioning, and in the manufacture of rayon, hydraulic liquids. and fire-extinguishing fluid.

277BROMINE

PRICES

According to Oil, Paint and Drug Reporter the following prices were quoted for bromine and bromine compounds in 1956: Bromine, purified, cases, carlots, delivered east of the Rocky Mountains, 31 cents a pound for January to mid-June and 32 cents a pound for the remainder of the year; less than carlots, same basis, 33 to 38 cents a pound for January to mid-June and 34 to 39 cents a pound from mid-June through December; drums, lead-lined, carlots, delivered east of the Rocky Mountains, 30 cents a pound for January to mid-June, and 31 cents a pound for the remainder of the year; potassium bromide, U. S. P., granular, barrels, kegs, 36 cents a pound from January to mid-February, 35 to 36 cents a pound from mid-February through June, and 37 to 38 cents a pound for the remainder of the year; potassium bromate, drums, 1,000 pounds or more, 50 cents a pound from January through December; sodium bromide, U. S. P., barrels, works, 36 cents a pound from January through June and 38 cents a pound from June through December.

FOREIGN TRADE 5

A total of 6,111,363 pounds of bromine, bromides, and bromates (not separately classified) valued at \$2,557,008 was exported from the United States in 1956. Brazil purchased 2,895,586 pounds valued at \$1,461,294 and Canada 1,909,092 pounds valued at \$434,687, the remaining quantity, in smaller lots, was shipped to 42 other countries.

A total of 233 pounds of sodium bromide valued at \$3,430 was imported from the United Kingdom in 1956. An additional 2,685 pounds of bromine and bromine compounds valued at \$131,437 was imported from seven other countries. There were no imports of potassium bromide or ethylene dibromide.

TECHNOLOGY

Bromine-containing phosphonitrilates were studied as possible durable flame retardants for cotton fabrics.6 Tear strength of fabric and durability of the flame resistance to laundering were evaluated. On the basis of the standard vertical test, flame resistance of samples was satisfactory after 15 launderings with detergent but was not durable to boiling for 3 hours in an alkaline-soap solution.

A combination flame retardant based upon THPC resin and a bromine-containing phosphonitrilate was developed. Fabric was treated with a mixture of the flame retardants then dried and cured The THPC resin penetrated fibers of at an elevated temperature. the fabric and the bromine-containing phosphonitrilate was deposited

⁴ Figures on imports and exports compiled by Mae B. Price, and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

⁶ Hamalainen, Carl, and Guthrie, John D., Bromine-Containing Phosphonitrilates as Flame Retardants for Cotton: Textile Research Jour., vol. 26, No. 2, February 1956, pp. 141-144.

⁷ Hamalainen, Carl, Reeves, Wilson A., and Guthrie, John D., Cotton Made Flame-Resistant With Bromine-Containing Phosphonitrilates in Combination With THPO Resins: Textiles Research Jour. vol. 26, No. 2, February 1956, pp. 145-149.

on the surface. Medium- and light-weight fabrics could be made so flame resistant that ½-inch strips would not burn when held in vertical position and ignited at the bottom. Flame resistance was effective after 15 launderings with a detergent. Tear-strength retention was excellent with 8-ounce twill but only fair with 8-ounce sateen.

Experiments to improve the technique of grain fumigation in storage bins were conducted during 1954 and 1955.8 Tests included both recirculation and forced distribution of liquid and vaporized fumigants. Satisfactory distribution of methyl bromide in wheat and shelled corn was obtained by applying 2 pounds per 1,000 cubic feet and recirculating it for 1 hour at airflow rates of 800 to 1,200 cubic feet per minute. Good distribution of fumigant was obtained by drawing it through the grain without recirculating. Fumigant was sprayed into the top of the bin and pulled down through the grain by exhausting air at the bottom of the bin. A kill of 99 plus percent with the new technique was indicated by laboratory analysis of test insects. More than 3 million bushels of grain was fumigated at a cost of \$1.66 per 1,000 bushels in contrast to \$4.41 per 1,000 bushels with old techniques. Further reduction of costs was indicated.

A plant designed to extract bromine from brine of the Smackover oil district at the Catesville oil field, Union County, Ark., was being constructed by Murphy Corp. and Michigan Chemical Corp. The brine contains approximately 44 pounds of bromine per 1,000 gallons or 1½ pounds per barrel. Production of brine from 4 wells has been about 1,200 barrels daily. In the manufacturing process brine will be aerated to remove harmful gases, such as H₂S, and transferred through heat exchangers to granite towers. Heated brine will pass downward in the towers where bromine will be displaced by chlorine. Bromine will be passed off into collector coils, purified, and transferred to storage. Four towers will be operated in pairs. Waste water will be neutralized, filtered, and pumped into a disposal well.

An electrolytic process for producing bromates from bromides using a lead dioxide anode was developed by Sanwa Pure Chemical Co., Ltd., of Japan. The Graphite anodes, used in present processes, spall and form a mud that hinders continuous operation and gives yellowish, off-color bromate crystals. These problems appeared to be eliminated by using lead dioxide anodes.

WORLD REVIEW

A number of countries produce bromine and bromine compounds; however, production often is limited due to small domestic requirements and intense competition for foreign markets.

Schoenherr, William H., and Parker, Richard L., Forced Fumigation Gives Them Plus-Benefits: Food Eng., vol. 28, No. 9, September 1956, pp. 74, 95-96.
 Kincaid, E. E., Two Moves Pay off at Catesville: Oil and Gas Jour., vol. 54, No. 83, Dec. 3, 1956, pp.

<sup>96-98.

18</sup> Chemical Engineering, Another Job for Lead Dioxide Anodes: Vol. 63, No. 6, June 1956, p. 103.

Germany, West.—West German production of bromine and bromine

compounds totaled 1,394 short tons in 1956.11

In the Federal Republic of Germany bromine is recovered as a byproduct of potash production. An extensive area containing bedded deposits of potassium salts encircles the Hartz Mountains extending northwest to Hanover and southwest to Thuringia. This area is estimated to be approximately 10,000 square miles in extent and contains potash reserves calculated at 20 billion tons, of which slightly more than one-half lies in the Federal Republic. In addition, there are basins containing potash beds near the Eisenacher, Werra Fulda, and Baden districts.

Plants at Buggingen (Badin Potash Co.), Gross-Giesen and Wathlingen (Burbach Potash Works), Bad Salzdetfurth (United Salzdetfurth Potash Works), and the Heringen plant of the Wintershall A. G.

are principal producers of bromine.

Italy.—Production of bromine in Italy during 1956 totaled 48 short tons.¹²

U. S. Embassy, Bonn, Germany, State Department Dispatch 2133: May 24, 1957, 3 pp.
 U. S. Embassy, Rome, Italy, State Department Dispatch 750: Nov. 29, 1956, 1 p.

Cadmium

By Arnold M. Lansche¹

Cadditum refined in the United States and metal imported for consumption in 1956 each established new records. Combined supply was 28 percent more than in 1955 and totaled 13.7 million pounds. Demand, as measured by apparent consumption, also increased to a new high of 12.7 million pounds, exceeding the previous record year (1955) by 19 percent. Industry stocks of all kinds decreased almost 2 percent to 5 million pounds. Government-owned stocks were increased by the barter acquisitions of the Commodity Credit Corporation. Contracts negotiated for cadmium in 1956 by the Commodity Credit Corporation totaled \$5.1 million.

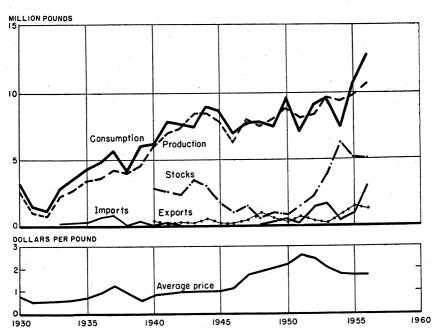


FIGURE 1.—Trends in production, consumption, year-end stocks, imports, exports, and average price, of cadmium metal in the United States, 1930-56.

¹ Commodity specialist.

TABLE 1.—Salient statistics of the cadmium industry in the United States, 1947-51 (average) and 1952-56, in pounds of contained cadmium

	1947-51 (average)	1952	1953	1954	1955	1956
Production (primary) Imports for consumption (metal) Exports (metal) Consumption, apparent	8, 402, 430 181, 496 556, 879 7, 945, 313	8, 567, 159 1, 478, 770 3 300, 918 9, 007, 577	9, 767, 197 1, 555, 140 3 65, 866 2 9, 570, 063	9, 551, 710 402, 299 3 998, 959 7, 498, 719	1 9, 753, 699 927, 495 3 1, 393, 915 410, 683, 705	2 10, 604, 356 3, 115, 638 3 1, 284, 248 5 12, 713, 675

Primary metallic cadmium only.
 Total metallic cadmium, including secondary.
 Includes metal, dross, flue dust, residues, scrap and alloys.

5 Apparent consumption of metallic cadmium only.

DOMESTIC PRODUCTION

Domestic production of cadmium, which was primarily a byproduct of slab-zinc production, set a new record in 1956 owing to the alltime

high slab-zinc output.

As in other years, cadmium recovered at cadmium refineries was produced from imported and domestic flue dusts and fumes obtained in the process of thermal reduction of zinc concentrate and lead and copper concentrates containing zinc and associated cadmium. Still another large source of raw material for the refineries was the cadmium precipitate made in purifying zinc electrolyte at electrolytic zinc plants and a quite similar precipitate made when zinc sulfate solutions were purified to make lithopone. A relatively small quantity of secondary cadmium was recovered in 1956, as in other recent years, by processing scrap bearings and other scrap alloys.

Of the 10.6 million pounds of cadmium produced in 1956 an estimated 40 percent was derived from domestic ores and secondary material, 18 percent was from flue dusts imported from Mexico, and the remaining 42 percent was derived from imported zinc concentrate or other base-metal concentrates that contained zinc with associated Imports of zinc concentrate in 1956 were the highest since 1943. Mexico, Canada, and Peru were the chief source countries, but important quantities were also obtained from Australia, Union of South Africa, and Guatemala. Cadmium in flue dust imported for consumption from Mexico totaled 1.45 million pounds compared with 1.83 million pounds from the same source in 1955.

Plants producing refined cadmium metal and secondary metallic cadmium, and those that did not produce the metal but had facilities for collecting cadmium fume, dust, sponge, and residues, were listed

in the 1955 Cadmium chapter of the Minerals Yearbook.

Changes in 1956 included a merger of The Bunker Hill and Sullivan Mining & Concentrating Co. and The Sullivan Mining Co. to form The Bunker Hill Co. The Eagle-Picher Co. reported production of cadmium metal at its Galena, Kans., plant as did The New Jersey Zinc Co. at its plant at Palmerton, Pa.

The cadmium content of cadmium sulfide, cadmium selenide, and

cadmium lithopone declined 7 percent in 1956.

TABLE 2.—Cadmium produced and shipped in the United States, 1947-51 (average) and 1952-56, in pounds of contained cadmium

	1947-51 (average)	1952	1953	1954	1955	1956
Production:						
Primary: Metallic cadmium Cadmium compounds 1	8, 115, 558 286, 872	8, 387, 824 179, 335	9, 682, 197 85, 000	9, 415, 710 136, 000	9, 753, 699 (³)	² 10, 604, 350
Total primary production	8, 402, 430	8, 567, 159	9, 767, 197	9, 551, 710	9, 753, 699	2 10, 604, 356
Secondary (metal and com- pounds) 1 4	241,066	80,000	70, 000	138, 000	285, 800	(3)
Shipments by producers:						
Primary: Metallic cadmium Cadmium compounds 1	7, 995, 679 286, 872	7, 746, 361 179, 335	8, 137, 045 85, 000	7, 921, 741 136, 000	11, 166, 830 (³)	2 10, 936, 459 (3)
Total primary shipments	8, 282, 551	7, 925, 696	8, 222, 045	8, 057, 741	11, 166, 830	2 10, 936, 459
Secondary (metal and com- pounds) 14	231, 007	122, 785	59, 636	148, 874	285, 800	(3)
Value of primary shipments: Metallic cadmium Cadmium compounds 6	\$15,434,874 534,402	\$17,130,966 396, 581	\$15,229,861 158,950	\$11,925,068 204,000	\$15,729,230 (³)	5\$16, 283, 10 (3)
Total value	15, 969, 276	17, 527, 547	15, 388, 811	12, 129, 068	15, 729, 230	§ 16, 283, 10

¹ Excludes compounds made from metal.

TABLE 3.—Cadmium oxide and cadmium sulfide produced in the United States, 1947-51 (average) and 1952-56, in pounds

Year	Oxi	de	Sulfi	đe 1
	Gross weight	Cd content	Gross weight	Cd content
1947-51 (average) 1952 1953 1954 1955 1956	508, 321 608, 236 1, 094, 263 958, 709 (2) (2)	443, 252 531, 018 956, 100 838, 222 (²) (²)	3, 354, 557 2, 665, 955 3, 920, 402 3, 470, 127 4, 190, 837 3, 936, 629	1, 186, 161 898, 629 1, 229, 282 1, 045, 669 1, 348, 100 1, 258, 446

CONSUMPTION AND USES

The apparent consumption of cadmium metal approximated 12.7 million pounds in 1956, as computed by adding production, net imports, and net stock changes of metal at producers', compound manufacturers', and distributors' plants. This record apparent consumption was 19 percent above the peak attained in 1955. that contributed to the continued increase in apparent consumption in 1956 were: (1) The lack of a premium price on cadmium in special shapes for platers; (2) the high level of production of manufactured goods using cadmium; and (3) barter acquisitions by the Commodity Credit Corporation under provisions of Public Law 480. Imports that were neither consumed nor reported in stocks were also a factor in the record apparent consumption.

¹ Executes compounds made from metal.
2 Total metallic cadmium, including secondary.
3 Figure withheld to avoid disclosing individual company confidential data.
4 Bureau of Mines not at liberty to publish figures separately for secondary cadmium compounds.
5 Value of total metallic cadmium shipments, including secondary.
6 Value of metal contained in compounds made directly from flue dust or other cadmium raw materials (except metal).

Includes cadmium lithopone and cadmium sulfoscientide.
 Figure withheld to avoid disclosing individual company confidential data.

TABLE 4.—Cadmium consumntion in the United States by uses. 1941-44 and 1955-56

	Caumium companipuon in the Onited Diates by uses, 1341-44 and 1333-30	OHOUTH	Peron in t	יוום סווי	ted brates	on on	28, 1941-	## and	00-0061			
	1941		1942		1943		1944		1955		1956	
Uses	Pounds	Percent of total	Pounds	Percent of total	Pounds	Percent of total	Pounds	Percent of total	Pounds	Percent of total	Pounds	Percent of total
Electroplating Pigments and chemicals. Low-metting alloys.	4, 586, 000 1, 325, 000	59 17	6, 661, 000 417, 000	87 5	6, 481, 000	8867	5, 496, 000 266, 000	93	4, 705, 186 2, 464, 488 351, 931	57.6 30.2	5, 121, 957 2, 131, 425 419, 568	24.4
Brating alloys. Bottler metal and alloys. Bottler metal and alloys. Boarting alloys. Cather uses.	221, 000 130, 000 1, 504, 000	68.83	98, 000 201, 000 282, 000	⊢ ∞4	198,000 285,000 249,000	es 4 es	89, 000 266, 000 798, 000	1 - 60 6	208, 697 177, 614 10, 209 4, 550	iqq	281, 645 292, 051 6, 974 12, 619	i,‱ -a.4∺a.
Total	7, 766, 000	100	7, 659, 000	100	7, 381, 000	100	8, 865, 000	1	28,168,	100.0	100.0 28,721,236	100.0

¹Includes copper-cadmium alloys (1935—1,280 pounds and 1956—622 pounds), paints and varnishes, ceramics, leather, chemical reagents, plastics and photography, (and printing inks in 1966).

² Includes cadmium oxide (cadmium content) (522,814 pounds in 1955; 441,410 pounds in 1965) of which 167,371 pounds in 1965 and 162,714 pounds in 1966 were used for electroplating and other metal alloys; 182,608 and 173,834 pounds in 1955 and 113,192 and 165,604 in 1956 were used for pigments and chemicals and other uses, respectively:

A consumption canvass in 1956 established the pattern of cadmium

use by industry.

On the basis of the 1956 canvass, consumption of metal was 69 percent of apparent consumption. The difference was attributed to unreported stocks and the incompleteness of the canvass. Electroplating, pigment and chemical production, and low-melting-point alloys accounted for about 88 percent of the measured consumption; electroplating was by far the largest use.

Electroplating.—Cadmium was used as a protective coating on iron and steel and to a smaller extent on copper-base alloys, other metals, and alloys. Such coatings were most commonly electrodeposited but may also be applied by spraying or hot dipping. Cadmium plate protects coated metals electrochemically, as well as by physical enclosure, and thus gives an added element of protection against corrosion. Distribution of electroplated cadmium, by end uses, is given in table 5. In addition to cadmium directly consumed in electroplating, a considerable part of the consumption of such chemicals as cadmium oxide, hydrate, and chloride is properly assigned to electroplating.

TABLE 5.—Distribution of cadmium in electroplating in 1955-56

	19	55	19	56
Use	Pounds	Percent of total	Pounds	Percent of total
Nuts, bolts, screws, nails, tacks, rivets, fasteners, etc	7516, 942 5516, 942 5516, 942 5516, 942 136, 502 136, 400 193, 270 88, 638 95, 240 43, 824 (1) 25, 647 9, 063 (1) 20, 392 14, 127 7, 044 12, 306 22, 522 2, 524	4.11 1.89	959, 972 672, 481 643, 699 642, 127 498, 633 479, 292 216, 833 100, 753 78, 290 65, 426 60, 699 36, 334 30, 231 28, 169 24, 900 17, 504 16, 709 10, 348 5, 954 (1)	1. 97 1. 53 1. 28 1. 18 1. 71 . 71 . 59 . 55 . 48 . 34
Total	4, 705, 186	100.00	5, 121, 957	100.00

¹ Included with "Other."

Cadmium Compounds.—Compounds other than those used in electroplating included the sulfide and sulfoselenide used primarily as paint pigments, providing colors ranging from yellow to dark maroon. These compounds, extended with barium sulfate, are known as cadmium lithopones. They have high heat resistance, which makes them suitable for use as finishes on automobiles. The 25-percent decline in automobile and truck production in 1956 was the primary reason for the 14-percent decline in consumption of cadmium for pigments and chemicals. The new cadmium-mercury lithopones found

increased consumer acceptance during the year, replacing some cadmium-selenium lithopones.

Cadmium bromide, iodide, and some chloride were used in photo-

graphic films, process engraving, and lithographing.

Cadmium Alloys.—Low-melting alloys, brazing alloys, other metal and alloys, solder, and bearing alloys composed about 12 percent of the cadmium consumed in 1956. Low-melting-point cadmium bearing alloys for use in fire-detection apparatus, automatic sprinkler heads, firedoor release links, automatic shutoffs for gas and electric water-heating systems, safety plugs for compressed-gas cylinders, and temperature-controlled safety clutches were the largest outlets. Cadmium-base bearing metals are useful in internal-combustion engines for service under high pressure and temperature and high This latter use was quite important during World War II but was relatively unimportant in both 1955 and 1956.

Other Uses.—Storage batteries using nickel cadmium cells were a minor use for the metal. Relatively small quantities of cadmium

were also consumed in the atomic energy program.

STOCKS

Industry stocks of cadmium in metal and cadmium compounds (exclusive of consumers' stocks) totaled 3.9 million pounds, a 2-percent decrease from those of 1955. Consumers' stocks increased 1 percent to about 1.1 million pounds.

During 1956 the Commodity Credit Corporation executed contracts for delivering cadmium amounting to \$5.1 million, or approximately

3 million pounds.

TABLE 6.—Industry stocks at end of year, 1955-56, in pounds of contained cadmium ¹

		1955 ²			1956	
	Metallic	Cadmium	Total	Metallic	Cadmium	Total
	cadmium	compounds	cadmium	cadmium	compounds	cadmium
Metal producers (primary) Compound manufacturers Distributors 3	3, 128, 583 129, 294 367, 858	301, 223 82, 742	3, 128, 583 430, 517 450, 600	2, 845, 955 128, 808 373, 043	490, 997 71, 016	2, 845, 955 619, 805 444, 059
Total stocksConsumers' stocks	3, 625, 735	383, 965	4, 009, 700	3, 347, 806	562, 013	3, 909, 819
	942, 939	186, 703	1, 129, 642	973, 074	168, 226	1, 141, 300

¹ Excludes cadmium in national stockpile.

PRICES

The quoted price of cadmium sticks and bars, delivered in 1- to 5-ton lofs, was \$1.70 a pound for the entire year—the same price held for special platers' shapes. Large quantities of cadmium were sold, both in the domestic and export markets, at prices considerably below the quoted price, which has remained at \$1.70 a pound since February 1, 1954. The London market quotation for cadmium sticks and bars increased from 11s. 6d. to 12s. in January (equivalent to \$1.68 on the

Figures partly revised.

3 The increase in distributors' stocks above those previously reported is due to the increase in the number of distributors reporting in the cadmium-consumption survey conducted for 1956.

basis of \$2.80 per £), where it remained for the rest of the year. The French market quotation for cadmium was 1,400 francs a kilogram throughout the year (equivalent to \$1.54 a pound on the basis of \$0.0024 per franc). During the year the quoted price paid in Italy for cadmium increased from 2,350 lira a kilogram (\$1.64) to 2,800 lira (\$1.95) (on the basis of \$0.00154 per lira).

FOREIGN TRADE 2

Imports.—General imports of cadmium metal and flue dust (cadmium content) in 1956 were, respectively, 1.75 and 1.62 million pounds, or a total of 3.37 million pounds. During the same period cadmium metal and cadmium in flue dust imported for consumption were, respectively, 3.12 and 1.45 million pounds and together were 4.57 million pounds.

Imports for consumption exceeded general imports because metal imported under bond as a general import in previous years was withdrawn from the bonded warehouse and counted as an entry for

consumption.

TABLE 7.—Cadmium metal and flue dust imported 1 into the United States, 1954-56, by countries

(Bureau	of	the	Census]
---------	----	-----	---------

	19	54	19	955	19	956
Country	Pounds	Value	Pounds	Value	Pounds	Value
METALLIC CADMIUM	_					
North America: CanadaSouth America: Peru	159, 400 28, 637	\$248, 529 50, 500	665, 392 27, 826	\$959, 236 47, 744	809, 750 28, 409	\$1, 211, 159 48, 298
Europe: Belgium-LuxembourgGermany, West	93, 000	165, 557	263, 344	382, 350	287, 496 44, 092	455, 990 67, 925
Italy Netherlands United Kingdom	22, 047 224	28, 617 587	760, 587 91, 557	1,070,797 131,328	234, 800 33, 075 2, 094	363, 071 51, 897 3, 078
TotalAsia: JapanAfrica: Belgian Congo	115, 271 44, 094	194, 761 65, 224	1, 115, 488 247, 046 220, 500	1, 584, 475 347, 480 330, 750	601, 557 43, 951 264, 410	941, 961 66, 774 407, 907
Oceania: Australia	54, 897	94, 558		000, 100	201,110	
Total metallic cadmium	402, 299	653, 572	2, 276, 252	3, 269, 685	1, 748, 077	2, 676, 096
FLUE DUST (CD CONTENT)						
North America: Canada	1, 505, 819	1, 117, 523	160, 774 1, 865, 335	186, 189 1, 200, 835	1, 624, 655	1, 149, 347
TotalSouth America: Peru	1, 505, 819 11, 400	1, 117, 523 18, 167	2, 026, 109 32, 562	1, 387, 024 35, 330	1, 624, 655	1, 149, 347
Total flue dust	1, 517, 219	1, 135, 690	2, 058, 671	1, 422, 354	1, 624, 655	1, 149, 347
Grand total	1, 919, 518	1, 789, 262	4, 334, 923	4, 692, 039	3, 372, 732	3, 825, 443

¹ Data are "general imports;" that is, include cadmium imported for immediate consumption plus material entering the country under bond.

Figures on U.S. imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 8.—Cadmium metal and flue dust imported for consumption in the United States, 1954-56, by countries

[Bureau of the Census]

	19	954	19	955	19	956
Country	Pounds	Value	Pounds	Value	Pounds	Value
METALLIC CADMIUM						
North America: Canada	159, 400 28, 637	\$248, 529 50, 500	565, 392 27, 826	\$802, 121 47, 744	932, 150 28, 409	\$1, 400, 474 48, 295
Europe: Belgium-Luxembourg	93, 000	165, 557	175, 829	252, 828	386, 034 44, 092	602, 047 67, 925
Italy Netherlands	22, 047	28, 617	66, 143 54, 606	88, 082 77, 161	936, 745 33, 075	1, 345, 780 51, 897
United Kingdom	224	587			2,094	3, 078
Total	115, 271 44, 094	194, 761 65, 224	296, 578 37, 699	418, 071 52, 025	1, 402, 040 268, 129 484, 910	2, 070, 727 382, 184 738, 657
Oceania: Australia	54, 897	94, 558				100,001
Total metallic cadmium	402, 299	653, 572	927, 495	1, 319, 961	3, 115, 638	4, 640, 337
FLUE DUST (CD CONTENT)						
North America: Mexico	1, 482, 565	1, 077, 992	1, 832, 827	1, 146, 253	1, 451, 889	876, 046
Total flue dust	1, 482, 565	1, 077, 992	1, 832, 827	1, 146, 253	1, 451, 889	876, 046
Grand total	1, 884, 864	1, 731, 564	2, 760, 322	2, 466, 214	4, 567, 527	5, 516, 383

Exports.—United States 1956 exports of cadmium (metal, alloys, dross, flue dust, residue and scrap), table 9, declined 8 percent in quantity, but only slightly in value. The United Kingdom, 742,000 pounds, and West Germany, 328,000 pounds, received the largest amounts.

TABLE 9.—Cadmium metal, alloys, dross, flue dust, residues and scrap exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Pounds	Value	Year	Pounds	Value
1947-51 (average)	623, 165	\$1, 398, 672	1954	998, 959	\$1, 422, 040
	300, 918	1, 005, 370	1955	1, 393, 915	1, 938, 355
	65, 866	60, 256	1956	1, 284, 248	1, 932, 305

Tariff.—The import duty on cadmium metal in 1956 was 3.75 cents per pound.

A brief review of the history of the tariff on cadmium is included because of the large imports of metal recorded in 1956 and the increas-

ing general interest in tariffs as a whole.

Before 1922 metallic cadmium imports were admitted duty-free. In that year offerings of cadmium from the electrolytic zinc plant at Risdon, Tasmania, became a serious threat to domestic producers. They found relief in the Fordney-McCumber Act of 1922 which imposed a tariff of 15 cents per pound on the metal. Subsequently the 15-cent-per-pound duty became a provision of the Tariff Act of 1930.

CADMIUM 289

The Canadian Trade Agreement signed November 17, 1938, reduced the tariff by 50 percent, effective January 1, 1939. Action taken at the Geneva Trade Conference of 1947 reduced the import duty on cadmium metal, effective January 1, 1948, from 7.50 to 3.75 cents

per pound.

Cadmium in flue dusts has never been dutiable. The Tariff Act of August 5, 1909, provided for a 30-percent ad valorem tax on cadmium sulfide. The rate was reduced to 15 percent by the Tariff Act of October 3, 1913, but subsequently was raised to 40 percent by the Fordney-McCumber Tariff Act of 1922. Imports of cadmium sulfide and other cadmium compounds, not specifically provided for, were included either as chemical compounds, dutiable at 25 percent ad valorem or as pigments also dutiable at 25 percent ad valorem. Artists' colors were dutiable at higher rates.

The Tariff Act of 1930 continued cadmium sulfide and other cadmium compounds, as chemical compounds or as pigments, dutiable at 25 percent ad valorem, except artists' colors, which were dutiable

at higher rates.

TECHNOLOGY

The high thermal neutron-absorption cross section of cadmium would make it an excellent material for controlling and shielding nuclear reactors, except that several of its other properties put it at a disadvantage for such use; namely, production of gamma rays upon irradiation with neutrons, a relatively low melting point, a relatively high vapor pressure, and a comparatively poor corrosion resistance.³

As a research tool in the advance of science in 1956 cadmium aided in the detection and establishment as fact the existence of the very

elusive neutrino, the smallest known particle of matter.4

WORLD REVIEW

Canada.—A record 2.3 million pounds of cadmium was produced in 1956, 18 percent above that in 1955 and more than 6 times that in 1945. Consolidated Mining & Smelting Co. of Canada, Ltd., produced about 1.8 million pounds of the metal at its Trail plant in British Columbia and the remainder was produced by the Hudson Bay Mining and Smelting Co. Ltd., at its Flin Flon plant in Manitoba.

About 85 percent of Canadian cadmium was exported, principally to the United States and United Kingdom. Domestic consumption

was primarily in the electrical and automotive industries.

In 1956 Consolidated Mining & Smelting Co. delivered 99.95-percent-pure cadmium in sticks, bars, or balls to eastern Canadian cities in lots of 5,000 pounds or more at \$1.75 per pound; 2,000-5,000 pounds at \$1.85 per pound; and less than 1-ton lots at \$1.95 per pound.

Chemical Rubber Publishing Co., Handbook of Chemistry and Physics: 37th ed., Cleveland, Ohio, 1955-56, pp. 415-416.
 Cowan, C. L., Jr., et al., Detection of the Free Neutrino: a Confirmation. Science, vol. 124, No. 3212, July 20, 1956, pp. 103-104.

TABLE 10.-World production of cadmium, by countries, 1947-51 (average) and 1952-56, in thousand pounds 1

[Compiled]	bу	Augusta	w.	Jann	and	Berenice B	. Mitchelll
-------------	----	---------	----	------	-----	------------	-------------

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
CanadaGuatemala	901	949	1, 118	1,087	1,919	2, 258 107
Mexico 2 United States:		1,618	2, 113	1, 130	2,855	1,892
Metallic cadmium	- 8, 116	8,388	9, 682	9, 416	9,754	10, 414
Cadmium compounds (Cd content)south America: Peru	- 287 - 2	179 38	85 23	136 66	138	(3) 124
Europe: Belgium 4	532	1, 210	1,040	1.100	(5)	(5)
France Germany, West	136	195 141	283 227	1, 100 313 618	397	238
ItalyNorway	192	293	401	458	709 433	645 403
Poland 4	346	163 420	197 485	178 500	255 550	277 542
Spain U. S. S. R.4	137	12 214	16 243	21 258	22 300	24 351
United Kingdom	261	347 367	380 459	315 611	337 757	251 886
Africa: Belgian Congo	54	45	71	1		
Rhodesia and Nyasaland, Fed. of: Northern	- 04	4.0	11	139	366	613
RhodesiaSouth-West Africa 6		1, 112	1, 194	1,620	1, 402	117 2, 327
Oceania: Australia		641	665	645	674	618
World total (estimate)	11,870	13,600	15, 380	15, 860	17, 900	19, 020
	. t	1 :	! .	l .	1 1	

This table incorporates a number of revisions of data published in previous Cadmium chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.
 Cadmium content of flue dust exported for treatment elsewhere; represents in part shipments from stocks on hand. To avoid duplicating figures, data are not included in the total.
 Bureau of Mines not at liberty to publish figures.

Data not available; estimate by author of chapter included in total.

6 Cadmium content of concentrates exported for treatment elsewhere. To avoid duplication of figures, data are not included in the total.

EUROPE

Germany, West.—Production of cadmium was down 9 percent from that of 1955. Imports in 1956 amounted to about 645 thousand pounds, and exports 153 thousand pounds. Consumption was at 1.1

million pounds.

United Kingdom.—Production of cadmium was down 26 percent from that in 1955. Apparent consumption was down 6 percent to 2 million pounds in 1956. Details of quantities used during the year for various purposes were as follows: Plating anodes, 1,028,800 pounds; plating salts, 178,080 pounds; cadmium-copper, 112,336 pounds; other alloys, 81,200 pounds; alkaline batteries, 191,296 pounds; dry batteries, 8,960 pounds; solder, 86,688 pounds; colors, 314,272 pounds; miscellaneous uses, 33,936 pounds.

In July the United Kingdom released its cadmium stocks (about 448,000 pounds) from its strategic stockpile of metals. Most of the metal was reported sold in the United States at prices considerably

below original cost.

AFRICA

Rhodesia and Nyasaland, Federation of.—The Rhodesian Broken Hill Development Co. in Northern Rhodesia began producing cadmium metal in June. Output in 1956 amounted to 117,000 pounds of refined metal.

Calcium and Calcium Compounds

By Richard A. Sperberg 1 and Annie L. Mattila 2

THE MOST STRIKING trend in the calcium-metal industry in 1956 was the sharp decline in imports, mainly owing to a cutback in demands. Imports composed only a fraction of the figures recorded for 1952-55. The demand for calcium-silicon alloy was reduced. On the other hand production of the compounds calcium chloride and calcium-magnesium chloride increased.

DOMESTIC PRODUCTION

Calcium chloride and calcium-magnesium chloride outputs from natural brines and dry lake deposits during 1956, were slightly greater than in 1955. Shipments of solid and flake (calcium chloride and calcium magnesium chloride, 77-80 percent CaCl₂) were 531,561 short tons valued at \$14,099,000 in 1956, compared with 515,338 tons valued at \$13,040,000 in 1955. Shipments of liquid calcium chloride and calcium-magnesium chloride (40-45 percent CaCl₂) in 1956 were reported as 174,283 short tons valued at \$1,779,000, compared with 161,556 tons valued at \$1,533,000 in 1955.

Calcium metal was produced by only one firm—Nelco Metals, Inc., Canaan, Conn.—during 1956. Lime was used as a raw material. The balance of domestic requirements was supplied by imports. Seaway Metals Corp., a subsidiary of Dominion Magnesium, Ltd., of Haley, Ontario, Canada, was organized at Rochester, N. Y., in 1955 to produce calcium, but because of the slump in demand for the metal in 1956 plans did not materialize. Calcium silicide was synthesized in the United States during 1956.

The following companies produced calcium chloride and calciummagnesium chloride from natural brines and dry-lake deposits in 1956:

Company:	Plant location
Hill Bros. Chemical Co	Amboy, Calif.
National Chloride Co. of America	Do.
California Salt Co	
Michigan Chemical Corp	St. Louis, Mich.
Morton Salt Co	Manistee, Mich.
Wilkinson Chemical Co.	Mayville, Mich.
Dow Chemical CoPomeroy Salt Corp	Midland, Mich.
Dow Chemical Co	Ludington, Mich.
Pomerov Salt Corp	Minersville, Ohio
Westvaco Chlor-Alkali Div., Food Machinery &	South Charleston, W. Va.
Chemical Corp.	

¹ Commodity specialist. ² Statistical assistant.

California production of these compounds was obtained from Bristol Lake brines; Michigan, Ohio and West Virginia production was recovered from well brines.

TABLE 1.—Calcium chloride and calcium-magnesium chloride from natural brines sold by producers in the United States, 1947–51 (average) and 1952–56 (average)

[In terms of 75 percent (Ca. Mg) Cb.]

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	292, 905	\$3, 675, 098	1952-56 (average)	377, 828	\$5, 755, 897

CONSUMPTION AND USES

As metallic calcium is a powerful reducing agent, it is employed in the metallurgy and production of many metals and alloys.

Calcium silicide is also a reducing agent and as such is used in

manufacturing steel and alloys.

Calcium chloride and the double salt calcium-magnesium chloride are used as dehumidifying agents, freezeproof additives, soil stabilizers, dust controlants, concrete accelerators, and ice-control agents and in refrigerant brines. Calcium chloride is also used to ballast tires on earth-moving and farm equipment.

PRICES

The quoted price in E&MJ Metal and Mineral Markets for calcium metal in ton lots, cast in slabs or small pieces, was \$2.05 per pound throughout 1956. The average value of imported calcium was \$1.21 per pound. Domestic prices for calcium silicide are not quoted. The average value of imported material was 16.5 cents per pound.

The following prices were quoted in Oil, Paint and Drug Reporter 3

for calcium chloride during 1956:

	Price, Jan. 1, 1956	Price, Dec. 31, 1956
Grade and form:		
USP CaCl ₂	\$0.32 per lb.; no change	\$0.32 per lb.
Crystalline Purified.	\$0.27 per lb., no change	\$0.27 per lb.
Flake 77–80 percent.	\$29.00 per ton (paper bags, c. l., lots, frt, equald.).	\$29.00 per ton.
Powdered 77–80 percent.	\$39.65 per ton (bags, c. l., lots at works, frt. equald. through Mar. 11, 1956, Mar. 12-25, \$37.65); after Mar. 26.	\$35.00 per ton.
Pellets 77-80 percent.	\$35.40 per ton (bags, c. l., lots at works, frt. equald.); no change.	\$35.40 per ton.
Solid 73-75 per- cent.	\$34.00-\$71.00 per ton (l. c. l., at works frt. equald.).	\$34.00-\$71.00 per ton.
Solid 73-75 per- cent.	\$27.50 per ton (drums, c. l., lots at works, frt. equald.); no change.	\$27.50 per ton.
Liquor 40 percent.	\$12.35 per ton (tank cars at works frt. equald.); no change.	\$12.35 per ton.

³ Oil, Paint and Drug Reporter, vol. 169, Nos. 1 to 27; vol. 170, No. 27, 1956.

FOREIGN TRADE 4

Calcium-metal imports in 1956 dropped to a mere fraction—about 1 percent—of these in 1955. All imports were supplied by Canada. Imports of calcium silicide were less than one-third those in 1955. All of these imports originated in France.

TABLE 2.—Calcium metal and calcium-silicon imported for consumption in the United States, 1947-51 (average) and 1952-56 Dames of the Congres

Dureau or an	Census		
	Calcius	m metal	Calc
	Dounds	Volue	Pounds

Year	Calciur	n metal	Calcium-silicon			
	Pounds	Value	Pounds	Value		
1947-51 (average)	131, 010 751, 215	\$135, 305 807, 997	206, 627	\$15, 767		
1953	990, 017 685, 417 699, 799 8, 387	1, 009, 934 728, 379 834, 732 10, 109	178, 138 689, 114 194, 869	22, 055 92, 366 32, 191		

Imports of calcium chloride for consumption in 1956 originated in six countries—West Germany, United Kingdom, Belgium-Luxembourg, Italy, Netherlands, and Canada.

In addition to the imports shown in tables 2 and 3, 1,800 pounds of calcium hypochlorite valued at \$2,303 was imported from Japan. Calcium chloride was exported to 24 countries in 1956. Canada,

Mexico, and Cuba received 95 percent of the total. Small quantities were exported to South America, Europe, Africa, and southwest Asia.

TABLE 3.—Calcium chloride imported for consumption into and exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Co	ensus			
:	Imp	orts	Exp	orts
	Short tons	Value	Short tons	Value
1947-51 (average)	590 1, 333 2, 671 1, 547 1, 844 1, 855	\$19, 481 45, 888 84, 594 51, 249 57, 881 59, 635	15, 753 19, 193 11, 572 10, 987 20, 743 32, 523	\$482, 188 594, 904 370, 799 374, 332 607, 579 1, 056, 958

TECHNOLOGY

Considerable interest was manifested in the use of calcium chloride

as an additive in concrete products manufacture.

A series of tests indicated that addition of calcium chloride at a rate of 2 percent by weight of cement used accelerated the curing time of lightweight concrete blocks and reduced breakage in early handling.5

⁴ Figures on imports and exports compiled by Mae B. Price and Elsle D. Page, Division of Foreign Activities, Bureau of Mines, from Bureau of the Census records.

⁵ Smith, Harry A., Tests Prove Benefits in Lightweight Block: Calcium Chloride Inst. News, vol. 6, No. 4, August 1956, pp. 6-7.

Calcium chloride in quantities ranging from 1 to 2 percent by weight of the cement used was added in the process of manufacturing prestressed concrete units.

A ready-mixed concrete supplier has perfected a method of furnishing any required proportion of calcium chloride used as a set accelerator

during cold weather.7

Advantages resulting from the use of calcium chloride in concrete products were discussed.8

A second important field of application in 1956 was as a stabilizing

agent on improved highways.

The Calcium Chloride Institute prepared a report covering the use of calcium chloride in highway-shoulder stabilization. Construction, reconstruction, and maintenance specifications were considered.9

Unpaved streets in Niles, Ohio, were constructed with a gravel base course, to which calcium chloride was added at the rate of 15 pounds per cubic yard. Its purpose was to furnish uniform moisture control

during compaction and to give a dust-free surface. 10

It was claimed that 2 applications of calcium chloride per year on unpaved roads at a rate of % pound per square yard of road surface will substantially reduce the average cost per mile of road maintenance.11

WORLD REVIEW

Canada. - Dominion Magnesium, Ltd., of Haley, Ontario, continued to be the leading world producer of calcium metal. The process used was the thermal reduction of lime (CaO) with aluminum in vacuum retorts. The metal was supplied as ingots, billets, granules, and powder. Most of the output was exported to the United Kingdom in 1956.

⁶ Concrete, Flyer in Prestressed Concrete: Vol. 64, No. 1, January 1956, pp. 34, 51.
7 Peck, Roy L., Elmburst-Chicago Stone Company's Redesigned Admixture Setup for Positive Control:
Concrete Manufacturer, vol. 49, No. 4, October 1956, pp. 216, 218, 221.
8 Dickinson, William E., Benefits of Using Calcium Chloride in Concrete Products: Concrete Manufacturer, vol. 48, No. 3, February 1956, pp. 190-192.
9 Calcium Chloride Institute, Shoulder Stabilization With Calcium Chloride: Washington, D. C., 10 pp.
19 Calvin, H. P., Economical Residential Streets: Street Eng., vol. 1, No. 10, October 1956, pp. 33-34.
19 Calcium Chloride Institute News, Save \$55 Per Mile Per Year on Your Unpaved Roads: Vol. 6, No. 2, April 1956, p. 12. April 1956, p. 12.

Cement

By D. O. Kennedy 1 and Betty M. Moore 2

HE PRESIDENT'S highway program, which had been under consideration in Congress for nearly 2 years, was approved on June 29, 1956, as Public Law 627, Federal-Aid Highway Act of 1956. Under the provisions of this act, the Federal Government was authorized to contribute \$32.5 billion for highway construction over a 13-year period, 1957 through 1969. Coupled with State matching money, these funds will constitute a \$50-billion Federal-aid program. In addition, States, counties, and cities probably will expend another \$50 billion on local road projects. It was estimated that the quantity of cement needed annually for road construction would increase from the 60 million barrels estimated consumed in highway construction in 1955 to 160 million barrels at the maximum level of the expanded program.3 Most planning agencies were confident that the cementindustry expansion programs would meet this demand. An 11-percent increase in the productive capacity of portland-cement plants in 1956, compared with 1955, supported this optimistic viewpoint. During the year, 23 companies announced plans for additions of over 20 million barrels' capacity to existing plants at a cost of over \$100 million, and 7 companies announced plans for constructing 7 new plants with over 13 million barrels capacity at a cost of \$107 million. It was evident that the projected expansion plans of the cement industry were well under way and that fears of overexpansion expressed early in 1956 by some elements of the cement industry were ${\it unfounded}.$

World production of cement increased 8 percent in 1956, compared with 1955. A 22-percent increase in production in Asia raised the world

figure above the 6-percent increase in the United States.

As in former years, the United States produced four classes of cement in 1956—portland, natural, slag, and hydraulic lime. addition, prepared masonry cements were produced at an increasing number of cement plants.

¹ Assistant chief, Branch of Construction and Chemical Materials.

² Statistical clerk.

³ Radzikowski, H. A., The Nation's High Requirements: Proc. 31st Ann. Meeting, Concrete Reinforcing Stell Institute, White Sulphur Springs, W. Va., Apr. 14-16, 1955, pp. 16-24.

Goldbeck, A. T., 1956 Report of Task Force No. 2 Materials and Supplies: Task Force Reports, The Highway Construction Industry in a Long-Range National Highway Program, Am. Road Builders Assoc., Apr. 1956, pp. 29-41. way Construction In April 1956, pp. 28-41. 295

TABLE 1.—Salient statistics of the cement industry in the United States, 1 1947-51 (average) and 1952-56

(average) and 199	~-00		
	1947-51 (average)	1952	1953
Production: Portlandthousand barrels. Prepared masonrydo Natural, slag, and hydraulic limedo	(2) 3 3, 454	249, 256 (2) 3 3, 402	264, 18. (2) 3 3, 488
Totaldo	218, 203	252, 658	267, 669
Capacity used at portland-cement millspercent_	81.8	87.8	90.
Shipments from mills: Portland. thousand barrels. Prepared masonry do. Natural, slag, and hydraulic lime do.	213, 357 (2) 8 3, 446	251, 369 (2) 8 3, 447	260, 879 (2) 3 3, 459
Total. do. Value of shipments 4 thousand dollars. Average value per barrel. thousand dollars. Stocks at mills, Dec. 31 thousand barrels. Imports. do. Exports. do. Apparent consumption 6 do. World production (estimated) do.	216, 803 493, 106 \$2. 27 13, 583 546 4, 521 212, 828 688, 750	254, 816 648, 264 \$2, 54 16, 046 476 3, 174 252, 117 5 945, 100	264, 338 707, 604 \$2, 66 19, 414 386 2, 551 262, 173 \$1, 050, 900
	1954	1955	1956
Production: Portlandthousand barrels Prepared masonrydo Natural, slag, and hydraulic limedo Totaldo	272, 353 (2) 3 3, 504 275, 857	297, 453 16, 519 941 314, 913	316, 438 15, 906 1, 128 333, 472
Capacity used at portland-cement millspercent	91. 4	94.3	90.6
Shipments from mills: Portlandthousand barrels Prepared masonrydo Natural, slag, and hydraulic limedo	274, 872 (²) ³ 3, 513	292, 765 16, 526 954	308, 678 15, 898 1, 074
Total	278, 385 773, 076 \$2. 78 16, 612 450 1, 859 276, 977 \$1,142,000	310, 245 896, 888 \$2, 89 5 17, 604 5, 220 1, 795 313, 669 5 1, 275, 100	325, 650 1, 003, 298 \$3. 08 22, 534 4, 456 1, 973 328, 133 1, 379, 900

¹ Includes Puerto Rico.

Not included in tabulation until 1955.
Includes masonry cement from natural, slag, and hydraulic lime cement plants.
Value received f. o. b. mill, excluding cost of containers.

Revised figure.

6 Shipments from domestic mills minus exports.

PORTLAND CEMENT

PRODUCTION AND SHIPMENTS

Production of portland cement increased from 297 million barrels in 1955 to 316 million barrels in 1956. Two-thirds of the 157 plants that produced cement in 1955 had larger outputs in 1956 than in 1955. Three new plants were opened in 1956: California Portland Cement Co., Mojave, Calif.; Peerless Cement Corp., Detroit, Mich.; and Consolidated Cement Corp., Paulding, Ohio. In addition, 3 cement plants and 1 clinker-grinding plant were under construction during the year.

TABLE 2.—Finished portland cement produced, shipped, and in stock in the United States, 1955-56, by districts

1 Dec. 31		Change from 1955 (per-	cent)	+20.2 -0.2 +54.1	+21.3 +16.3 -14.2	+ 39.1 + 40.4	+31.5 +49.7 -28.7	+43.1	+71.8 +41.0	+ 64.4 + 39.3 + 15.1	16.8 1.6.9 16.8 16.8	+27.8 +15.9 +67.6
Stocks at mills on Dec. 31	Thousand barrels		1956	3, 231 1, 334 1, 293	1,031 1,773 374	1, 203	476 551	1,404	1,373	1,489 466	1, 187 997 746 99	22.414 3,861 917
Stocks	Thousan		1955	1 2, 689 1 1, 337 1 839	1 850 1 1, 525 436	1 865 1 534	388	1 928	1 799	1 1,069 405	11,030 899 695 119	117, 539 13, 331 1 547
		e from ercent)	Aver- age value	+5.4 +6.6 +7.7	+7.8 +5.6 +9.1	+7.8 +6.7	+++ ×	+43.5	+7.7 +6.3	+++ 3.7.8.	+++++ 8.4.2.7.8 6.8.6.1.0	+6.6 +6.2 +7.7
		Change from 1955 (percent) in—	Bar- rels	++8. +8.4	$^{+10.7}_{-0.3}$	+4-	+-1-1 4.8.8	+ + 6.7	$^{+1.1}_{+12.9}$	-10.3 +5.0 +9.6	++ ⁺ + 2,2,2,8,6,9,0,4,4,4	++5. -2.8.8 -2.0
	9261		Aver- age per barrel	\$3.10 3.07 3.06	6.6.2 4.05 88				3.07		3.3.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	3.05 3.07
om mills	31	Value	Total (thou- sand dollars)	129, 528 59, 535 46, 342	41, 708 61, 749 24, 866				42, 787 29, 371		10, 297 48, 150 72, 361 23, 958 14, 065	940, 020 153, 506 36, 888
Shipments from mills		Thou-	sand barrels	41, 740 19, 412 15, 151	13, 713 20, 237 8, 629	12, 311	6,6,7 2,820 2,720 2,720 2,720	6,096	13, 924 10, 239		16, 353 22, 937 6, 881 4, 255	\$ 308, 678 49, 527 12, 014
Shi		0	Average age per barrel	\$2.94 2.888 2.84	2.2.2 2.83 2.80 2.80				2.85	2223	9.3.3.2.8 9.257 9.257	25.23 85.23 85.23
	1955	Value	Total (thou- sand dollars)	113, 315 55, 296 39, 643	34, 923 52, 353 22, 886	47, 912 31, 517	21, 176 19, 795	15, 923 27, 837	39, 262 24, 521		45, 257 68, 537 24, 381 12, 507	837, 526 132, 965 34, 912
		Thou-	sand barrels	38, 547 19, 171 13, 982	12, 392 18, 128 8, 655	17,042	6, 907 707 84 84 84	5,712 9,915	13, 776 9, 072	11, 402 24, 038 7, 640	16, 930 19, 054 7, 512 4, 117	2 292, 765 45, 527 12, 255
		Change from 1955 (per-	cent)	+12.6 +12.6	+11.6 +12.5 +0.1	++3	\$ 1.0 4.01.4	+9.0 +7.5	+7.9 +13.7	+ + 10.3 10.3	++1+++ 19:2:3:1- 10:8:3:1-	+7.5
Production	d barrels		1956	42, 720 19, 631 15, 723	14, 070 20, 485 8, 823	18, 125 12, 969	7,7,8	10,944	14, 554 10, 486		23,035 23,035 4,23,33	316, 438 50, 358 12, 441
д	Thousand barrels		1955	39, 967 20, 049 13, 966	12, 611 18, 205 8, 810				13, 484 9, 219		16, 142 19, 307 7, 500 4, 194	297, 453 46, 863 12, 001
ive	plants		1956	213	r- × 4	ဇာဏ	044	. 60 10	99	စည္သစ	700-100	82%
Act	pla		1955	21 11 9	7-7-4	© 00 4	044	60 rO	88	٠ 8 9	1000a	157 24 5
		District		Eastern Pennsylvania, Maryland New York, Maine		Alabama.	Virginia, South Carolina. Georgia, Florida.	Louisiana, Mississippi Iowa Restern Missouri Minnesote	Dakota		Wyothern California Southern California Oregon, Washington Puerto Rico	Total Pennsylvania Missouri

1 Revised figure. 2 Does not include finished cement used in manufacturing prepared masonry cement, as follows: 1955; 3,596,000 barrels, 1966; 2,884,000 barrels.

TABLE 3.—Production, shipment from mills, and stocks at mills of finished portland cement in the United States in 1956, by months 1 and districts, in thousand barrels

Decem-	841414141414141414141414141414141414141	24, 429 23, 075	24 884 7887 7887 7887 7887 883 883 888 888 888
Novem- ber	3.560 1.4645 1.4645 1.1566 1.2805 1.2805 1.1415 1.1415 1.1609 1.0809 1.0	25, 869 24, 894	3, 164 1, 1, 100 1, 100
October	4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	29, 051 27, 924	4,2,2,1,2,1,2,1,2,1,2,2,4,1,2,2,3,4,1,2,2,3,4,1,2,2,3,4,1,2,1,2,1,2,1,2,1,1,1,
Septem- ber	886 886 886 886 886 886 886 886 886 886	28, 648 26, 958	4,4,1,1,2,1,1,2,4,4,2,4,4,4,4,4,4,4,4,4,
August	4,1,200 906,1,1,200 1,1,200 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	30, 055 27, 861	44444444444444444444444444444444444444
July	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	29, 498 27, 332	444-1-141-1 686-69-69-69-69-69-69-69-69-69-69-69-69-69
June	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	28, 771 26, 762	444-1-141-14 888-1-1-141-1 177-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
May	825 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	29, 606 27, 031	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
April	8,488 1,1,090 1,1,250 1,1,250 1,1,250 1,1,250 1,1,188 1,1,188 1,1,188 1,1,316 1,316	26, 134 24, 818	3,968 1,175 1,167 1,067 1,067 1,063 1,063 1,063 1,063 1,063 1,064 1,064 1,063
March	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	23, 386 22, 340	2, 420 891 881 928 921 1, 192 1, 048 606 608 608 647
Febru- ary	2, 288 1, 1, 151 1, 020 1, 020 1, 084 1, 085 1, 188 1, 188	19, 578 17, 611	2, 03, 731
January	2,007 1,1723 1,077 1,073 1,073 1,028	21, 440 20, 223	1, 452 552 438 625 625 523 636 767 767 767 788 648 648 648 648 648 648 648 648 648 6
District	Eastern Pennsylvanla, Maryland New York, Maine Oblo. Western Pennsylvanla, West Virginia. Illinois. Indiana, Kentucky, Wisconsin. Alabana. Tennessea. Tennessea. Tennessea. Originia, South Carolina Georgia, Florida Louisiana, Mississippi. Louisiana, Mississippi. Lowis Sastern Missouri, Minnesota, South Dakota. Kensas.	Total: 1986	SHIPMENTS Bastern Pennsylvania, Maryland New York, Maine Ohio. Western Pennsylvania, West Virginia. Michigan. Hilhois. Indiana, Kentucky, Wisconsin. Alabama. Tennessee. Virginia, South Carolina. Georgia, Florida. Louisiana, Mississippl.

342 616 518	ਦੀ	1, 153 1, 488 341 396	17, 822 16, 979		e5 -	1,4×	₹#¥ 	#¥			1,4 3,5		ئىن	•	#	24. 24.	22, 412
501 780 683	1,976	1, 424 1, 689 1, 689 516 393	22, 705 21, 682		2,237	825 825	1,029	764	314	273		632	1.390	390	888	25.83 85.83	15, 973 11, 664
1,184	1, 117 2, 220 811	1, 623 2, 096 679 338	31, 354 28, 641		1,878	483	1881	146	488	***	441 741	ŝ	1.332	315	797	* & &	13,007 8,764
1, 146 1, 459 919	1, 034 1, 956 774	1, 478 1, 817 716 406	29, 935 29, 543		1,999	961	834	815	274	297	537 967	715	1.395	316	88		15, 532 9, 779
1,373	1, 118 2, 155 956	2,085 2,085 364 365	33, 324 31, 580		2, 598	1,002	1,368	1,072	276	888	1,072	608	1. 167	908	83	197 198	17,068
1,097	1, 156. 2, 134. 828.	1, 597 1, 940 328	31, 333 29, 124		3, 287	1,372	1,673	1,402	16.00 16.00	328	820 1, 236	811	1.064	460 194	814	888	20, 598 16, 727
1, 158 1, 599 1, 036	1, 117 2, 226 866	1, 513 1, 967 711 313	31, 996 31, 260		3, 607	1,591	1,841	1, 292	387	888	1, 417	763	1.081	452	972		22, 685 18, 855
1,360	1, 092 2, 435 847,	1, 489 2, 066 3, 816 375	31, 787 29, 172		4, 283 2, 050	1,850,	2,098	1,609	340	312	1, 222		1,089	513	1,111	842	26, 204 23, 672
1, 068 1, 295 1, 129	2,354 758 758	1,198 1,928 638 316	27, 087 24, 993			1,931			904 367	306 175	1, 566 1, 749	794	1,178	514	1, 157	109	28, 679 26, 106
1, 075 882	2, 513 636 158	2, 242 466 383	22, 222 22, 604		5,456 2,703	1, 024 1, 626	2,060 1,307	1,890	617	270 152	1,893	1,018	867 1, 181	263 264 264 264 264 264 264 264 264 264 264	1,039	888	29, 868 26, 516
317 501 543	388 1,787 386 87	1, 988 1, 983 219 331	15,929 13,806		5,086 2,374	1,833	1,758	1,749	624 524	282 219	1,759	896	911	268 268	1,209	88 18	28, 939 27, 087
183 285 350	320 1,630 448 113	1, 686 232 313	13, 273 13, 314		4, 269 1, 967	1, 432	1,594	1,460	555 510	282	1,450	#56 #56	1,526	28 28 28	1, 147	814 83	25, 454 23, 437
Iowa Eastern Missouri, Minnesota, South Dakota Kansas Western Missouri, Nabraska, Oklahoma, Arkan	888 Totas. Volorado, Arizona, Utah Wyoming, Montana, Idahe	Northern California Bouthern California Gorgon, Washington Puerto Rico.	Total: 1956.	STOCKS (KND OF MONTH)	Eastern Pennsylvania, Maryland New York, Maine.	Onio Western Pennsylvania, West Virginia	Michigan Illinois	Indiana, Kentucky, Wisconsin Alabama	Tennessee Virginia, South Carolina	Georgia, Florida Louisiana, Mississippl	Lowa Eastern Missouri, Minnesota, South Dakota	Western Missouri, Nebraska, Oklahoma, Arkan-	Bass Texas	Wyoming, Montana, Idaho.	Northern California Southern California	Oregon, Washington Puerto Bloo	Total: 1956.

 $^{\rm 1}$ Difference between monthly and annual reports not adjusted. $^{\rm 2}$ Revised figure.

A description of the cement plant at West Conshohocken was published.4 The quarry and haulage system of the Grotto cement plant was described. During the year another cement company changed from open quarrying to underground mining for its supply of limestone. A cement-distributing station at Seattle, Wash., utilized pneumatic conveyors for economic handling of bulk cement.6

The Pacific Coast Aggregates, Inc., purchased the plant of the Santa Cruz Portland Cement Co. at Davenport, Calif., and changed its name to Pacific Cement & Aggregates, Inc. The American Marietta Co. purchased the plants of the Southern Cement Co. at Roberta and Birmingham, Ala.

TYPES OF PORTLAND CEMENT

General-purpose and moderate-heat portland cement (types I-II), which constituted 93 percent of all the portland cement made in the United States in 1956, was produced by 159 of the 160 portland cement plants. Type III (high-early-strength) cement was produced at 101 plants in 1956; the total quantity was less than 4 percent of the portland-cement output.

TABLE 4.—Portland cement produced and shipped in the United States, 1947-51 (average) and 1952-56, by types

				Shipments			
Type and year	Active plants	Production (thousand		Value			
	-	`barrels)	Thousand barrels	Total (thousand dollars)	Average per barrel		
General use and moderate heat (types I and II):							
1947-51 (average)	151 156 156 157 157 160 89 95 99 102 106 101	181, 946 210, 720 217, 555 2255, 673 276, 248 292, 598 6, 326 8, 015 7, 949 3 10, 166 3 11, 744 3 12, 142	180, 709 212, 589 215, 103 258, 307 272, 064 285, 856 6, 213 7, 982 7, 794 10, 172 11, 459 11, 808	405, 968 534, 252 569, 217 705, 963 768, 520 858, 767 16, 429 23, 378 23, 743 31, 779 37, 550 42, 596	\$2. 25 2. 51 2. 63 2. 73 2. 82 2. 99 2. 64 2. 93 3. 05 3. 12 3. 28 3. 28		
Low-heat (type IV): 1947-51 (average) 1952 1953 1954 1955 1966	5 2 2 1 0 2	330 252 193 84	297 272 172 48	844 768 507 194	2. 84 2. 82 2. 95 4. 02 3. 29		

⁴ Trauffer, W. E., Allentown Portland Adds New Production Units: Pit and Quarry, vol. 48, No. 10, April 1956, pp. 80-81, 84.

5 Utley, Harry F., Northwestern Portland Cement Opens Second Quarry: Pit and Quarry, vol. 48, No. 8, February 1956, pp. 58-59.

6 Pit and Quarry, Bulk Handling at New Seattle Cement Distributing Station: Vol. 49, No. 6, December 1956, pp. 106-107.

TABLE 4.—Portland cement produced and shipped in the United States, 1947-51 (average) and 1952-56, by types-Continued

				Shipments	
Type and year	Active plants	Production (thousand		Val	ue
Type and year	planto	barrels)	Thousand barrels	Total (thousand dollars)	Average per barre
Sulfate-resisting (type V): 1947-51 (average)	5	76	102	339	\$3.34
1952 1953 1954 1955 1956	4 4 7 6 6	99 79 142 65 93	78 90 120 80 79	240 318 433 302 312	3. 07 3. 58 3. 62 3. 77 3. 98
Oil-well: 1947-51 (average) 1952 1953 1954 1955	16 18 17 16 16	1,714 1,842 1,861 1,641 1,898	1, 776 1, 788 1, 823 1, 665 1, 851	4, 487 5, 099 5, 464 5, 059 6, 429	2. 53 2. 85 3. 00 3. 04 3. 47
1956. White: 1947-51 (average) 1952. 1953. 1954. 1955.	16 4 4 4 4 4	1, 655 1, 055 1, 081 1, 114 1, 110 4 1, 191	1, 705 1, 034 1, 094 1, 091 1, 153 1, 205	5, 687 4, 905 5, 901 6, 088 6, 413 6, 580	3. 33 4. 74 5. 39 5. 58 5. 56 5. 46
1950 1956 Portland-pozzolan: 1947-51 (average) 1952 1963 1954	5 6 6 8 10	1, 171 1, 559 1, 862 2, 406 5 2, 413 5 4, 906	1, 133 1, 588 1, 857 2, 449 2, 251 4, 706	7, 025 3, 628 4, 646 6, 441 6, 100 13, 183	6. 20 2. 25 2. 50 2. 63 2. 77 2. 80
1956. Air-entrained: 1947-51 (average) 1952. 1953. 1954. 1955.	77 81 95 99 99	5 6, 936 20, 892 24, 485 32, 131 (6) (6)	6, 817 20, 782 24, 797 31, 474 (*) (6) (6)	20, 940 45, 626 61, 432 82, 594 (0) (6) (6)	3. 0° 2. 20 2. 49 2. 6°
Miscellaneous: 7 1947-51 (average) 1952 1953 1954 1955 1956	22 22 21 22	851 900 892 1, 124 1, 401 1, 829	856 911 883 1, 156 1, 400 1, 277	2, 486 2, 796 2, 891 3, 921 4, 962 4, 684	2. 90 3. 00 3. 22 3. 33 3. 54 3. 60
Grand total: 1947-51 (average)	151 156 156 157 157 160	214, 749 249, 256 264, 180 272, 353 297, 453 316, 438	213, 357 251, 368 260, 879 274, 872 292, 765 308, 678	484, 712 638, 512 697, 263 759, 862 837, 526 940, 020	2. 2 2. 5 2. 6 2. 7 2. 8 3. 0

¹ Including Puerto Rico.
² Includes air-entrained portland cement, as follows (in thousand barrels): 1954, 31,204; 1955, 31,858; 1956, 35,458.
³ Includes air-entrained portland cement, as follows (in thousand barrels): 1954, 2,651; 1955, 3,378; 1956,

<sup>Includes air-entrained portland cement, as follows (in thousand parrels): 1954, 2,651; 1955, 5,578, 1955, 3,444.
Includes a small amount of air-entrained portland cement.
Includes air-entrained portland cement as follows (in thousand barrels): 1954, 1,667; 1955, 945; 1956, a small amount.
See footnotes 3, 4, 5, and 6.
Includes hydroplastic, plastic, and waterproofed cements.</sup>

Portland-pozzolan cement was produced at 3 plants and portland blast-furnace-slag cement at 6 plants; all but 1 of these plants produced other types of cement, in addition to the portland-slag cement.

Type IV (low-heat) and type V (high-sulfate-resistance) cements

were produced in limited quantities to fill special orders.

Special cements, such as oil-well cement, white cement, and antibacterial cement, were produced in relatively small quantities at a few plants.

CAPACITY OF PLANTS

The estimated annual capacity of all portland-cement plants on December 31, 1956, as reported to the Bureau of Mines by producers, was 11 percent greater than that reported on December 31, 1955. The increase was due to expansion of facilities at 66 of the 157 plants in operation during 1955 and 3 new plants completed in 1956.

Although the increase in annual capacity during 1956 was over 25 percent less than had been forecast, the lower level attained represented simply a delay in fulfilment rather than curtailment of ex-

pansion plans.

Construction of two new plants by new companies scheduled for completion in 1956 was delayed by financial and material shortages.

Four new companies formed in 1956 announced plans to construct 4 plants with a combined capacity of 3 million barrels per year at a cost of \$28 million.

Number of portland-cement plants in the United States (including Puerto Rico) in 1956, by size groups

Estimated annual capacity, Dec. 31, million barrels:	Number of plants	Percent of total capacity
1 40 9	11	2. 4
2 to 3	67 57	28. 4 38. 5
3 to 5	18	18. 2
5 to 11	6	12. 5
Total	1 159	100, 0
ATT CONTRACTOR OF THE CONTRACT		

¹ Does not include clinker-grinding plant.

TABLE 5.—Portland-cement-manufacturing capacity of the United States, 1955-56, by districts

District	Estim (thousand		Percent utilized		
	1955	1956	1955	1956	
Eastern Pennsylvania, Maryland New York, Maine. Ohio. Western Pennsylvania, West Virginia. Michigan. Illinois. Indiana, Kentucky, Wisconsin. Alabama Tennessee. Virginia, South Carolina. Georgia, Florida. Louisiana, Mississippi. Lowa. Louisiana, Mississippi. Lowa. Kartses. Kartses. Western Missouri, Minnesota, South Dakota. Kartses. Colorado, Arizona, Utah. Wyoming, Montana, Idaho. Northern California. Southern California. Oregon, Washington. Puerto Rico.	20, 488 15, 010 12, 496 19, 495 8, 973 19, 048 8, 102 7, 140 8, 500 10, 453 14, 176 10, 661 11, 600 26, 925 8, 593 3, 000 16, 783 21, 420 8, 788	45, 955 20, 722 17, 820 14, 911 26, 370 9, 121 20, 323 18, 550 8, 990 12, 850 14, 883 11, 777 12, 411 28, 256 8, 984 3, 147 18, 440 24, 482 9, 510 5, 300	94. 4 98. 0 93. 0 93. 0 93. 4 98. 2 92. 3 93. 4 100. 1 96. 3 84. 1 102. 6 97. 4 95. 1 86. 5 97. 4 90. 0 98. 9 97. 1 102. 5 90. 1 85. 4	93. 0 94. 7 88. 2 80. 7 96. 7 97. 1 98. 4 86. 6 83. 3 101. 8 85. 2 99. 8 90. 8 94. 2 97. 2 89. 7 97. 2 97. 2	
Total	315, 299	349, 442	94.3	90. (

TABLE 6.—Capacity of portland-cement plants in the United States, Dec. 31, 1954-56, by processes

		Cap	acity, Dec	. 31				ercent		finis	cent of hed cer	nent
Process	Tho	usand bar	rels	Perc	ent of	total	capa	city ut	ilized	I	produce	d
	1954	1955	1956	1954	1955	1956	1954	1955	1956	1954	1955	1956
Wet Dry	169, 361 128, 665	179, 911 135, 388	203, 522 145, 920	56. 8 43. 2	57. 1 42. 9	58. 2 41. 8	92. 2 90. 4	94. 6 93. 9	89. 3 92. 3	57. 3 42. 7	57. 2 42. 8	57. 4 42. 6
Total	298, 026	315, 299	349, 442	100.0	100.0	100.0	91. 4	94. 3	90.6	100.0	100.0	100.0

Includes Puerto Rico.

CLINKER PRODUCTION

Production of clinker—the intermediate product between raw materials and finished portland cement—was 7 percent higher in 1956 than in 1955. The peak production of clinker was in August 1956, and the greatest accumulation of stocks was in March. At the end of the year stocks of clinker on hand were 33 percent greater than those reported at the end of 1955.

TABLE 7.—Production and stocks of portland-cement clinker at mills in the United States in 1956, by months and districts, in thousand barrels

3, 426 1, 1, 636 1, 1, 406 1, 1, 438 1, 104 1, 106 1, 100 1, 100 1, 100 26, 450 25, 771 Decem-Novem-3, 661 1, 667 1, 450 1, 997 1, 921 1, 931 1, 097 1, 078 1, 2,095 708 708 250 1,861 1,861 331 26, 607 25, 618 October 3, 880 1, 1, 745 1, 1, 304 1, 520 1, 120 1, 120 1, 120 1, 243 1, 940 242 810 242 1, 887 1, 887 468 407 745 603 89 88 88 88 54 54 62 122 132 195 2,8 Septem-ber 3, 697 1, 650 1, 333 1, 138 1, 138 1, 1682 1, 095 1 2, 169 781 781 313 1, 535 1, 903 424 324 892 3,3 7,755 1,013 7,232 7,232 7,50 1,501 7,501 407 334 August 216 274 274 274 275 1111 1111 575 516 82 82 83 భ్య 3,779 1,1,333 1,1,333 1,1,114 1,129 1,129 1,129 1,129 1,129 1,129 1,129 1,129 1,129 1,129 1,129 1,1414 1,023 2,062 2,234 2,234 2,599 2,057 4,510 4,510 4,55 883 1, 509 894 515 1, 065 1, 065 706 73 73 88 July 8,53 3, 683 1, 690 1, 288 1, 288 1, 761 1, 761 1, 086 690 610 610 652 652 653 7, 377 1, 377 2, 187 2, 157 2, 157 2, 028 2, 028 278 27,053 25,004 1, 653 1, 126 1, 126 617 453 1, 498 171 887 887 887 887 80 80 June 1,957 1,421 671 606 2,013 217 912 307 134 3, 687 1, 588 1, 314 1, 209 1, 751 1, 751 1, 163 739 694 694 694 1, 016 1, 318 1, 318 1, 016 993 319 292 301 1117 706 403 828 May 2,23 3,572 1,609 1,168 1,168 1,168 1,168 1,168 1,168 1,168 1,168 1,284 1,284 1,284 1,284 1,284 1,284 2223 266 266 266 346 346 2, 216 1, 715 719 2, 417 294 300 300 102 76 26, 047 24, 441 April 3,712 1,609 1,1,006 1,1,006 1,1,006 1,115 2, 203 649 1, 247 2, 013 560 345 25,811 24,318 2, 114 1, 608 2, 590 2, 431 859 953 208 1190 107 March 8,300 1,155 1,125 1,125 1,125 1,125 1,235 1,043 1,043 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,310 1,221 1,221 410 2,086 345 752 189 230 120 90 1,898 1,123 1,123 1,785 1,785 276 Febru-ary 131 జ్జ January 3, 512 1, 549 1, 104 1, 104 1, 105 1, 621 1, 057 1, 2, 161 725 725 1, 191 1, 778 625 359 25, 153 22, 943 918 915 915 280 285 504 130 125 62 Oblo.
Western Pennsylvania, West Virginia.
Michigan
Illinois
Indiana, Kentucky, Wisconsin. Tennessee Virginia, South Carolina Georgia, Florida Louisiana, Missisippi Texas.
Oolorado, Arizona, Utah.
Oolorado, Arizona, Idaho.
Northern California. Ohlo.
Western Pennsylvania, West Virginia.
Michigan.
Illinois.
Indiana, Kentucky, Wisconsin. Eastern Pennsylvania, Maryland.... New York, Maine Iowa Eastern Missouri, Minnesota, South Dakota Tennesseo. Virginia, South Carolina. Georgia, Florida. Kansas. Westorn Missouri, Nebraska, Oklahoma, Ar-Oregon, Washington Eastern Pennsylvania, Maryland Alabama kansas Puerto Rico..... New York, Maine STOCKS (END OF MONTH) Alabama_____ PRODUCTION District

63 152 428	908 808 808 808 808	464 359	119	1,879 623 131	9, 326
267	142	398	370	1,718	7, 476
288	115	341	3 28	1, 548	6,874
145 452	137	360	371	1,664	7,969
123 229 576	111 121	398	£51 451	1, 613	9, 264
381 608	138	463 241	143	1, 14,82	11,059
241 515 588	160	345 363	380 380 380	1,520 868 121	12, 537 8, 624
301 501 578	191	418	380 380 380	1,367 930 158	14, 222 10, 651
277 507 643	245	464 739	291 508	1,345 947	15, 951
222 504 606	279	639 842	378 546	1, 466 935 58	16, 151 12, 629
221 431 529	281	999	345	1, 474 810 83	13, 873
042 042 042	152	484	320 484	1,478 621	10, 460
Louislana, Mississippi. Iowa. Eastern Missouri, Minnesota, South Dakota	Kansas Western Missouri, Nebraska, Oklahoma, Ar- kansas	Texas Colorado, Arizona, Utah	Wyoming, Montana, Idaho Northern California	Southern California. Dregon, Washington.	Total: 1956

1 Revised figure.

TABLE 8.—Portland-cement clinker produced and in stock at mills in the United States, 1955-56, by processes, in thousand barrels 2

Process	Pla	nts	Produ	action	Stocks on	Dec. 31—
	1955	1956	1955	1956	1955 3	1956 4
WetDry	94 63	95 65	169, 647 129, 928	183, 002 136, 931	2, 893 4, 168	4, 047 5, 279
Total	157	160	299, 575	319, 933	7,001	9, 326

Including Puerto Rico.
 Compiled from monthly estimates of producers.
 Revised figures.

4 Preliminary figures.

RAW MATERIALS

The principal raw materials used in the United States for manufacturing portland cement in 1956 were limestone and clay or shale. Since 1943 approximately 70 percent of the output was made from these materials. Argilaceous limestone (cement rock) or a mixture of cement rock and pure limestone was used for 25 percent of the portland cement made in 1956. Eight portland-cement plants used oystershell in place of limestone.

TABLE 9.—Production and percentage of total output of portland cement in the United States, 1908-14, 1926, 1929, 1933, 1935, and 1941-56, by raw materials used

Year	Cement rock and pure limestone		Limestone a or shal	nd clay	Marl and	clay	Blast-furnace slag and limestone		
	Thousand barrels	Per- cent	Thousand barrels	Per- cent	Thousand barrels	Per- cent	Thousand barrels	Per- cent	
908	20, 679	40, 6	23, 048	45.0	2, 811	5. 5	4, 535	8.	
909 910		37. 3 34. 6	32, 219 39, 720	49. 6 51. 9	2, 711 3, 307	4.2 4.3	5, 787 7, 002	8. 9.	
911	26, 812	34.1	40,666	51.8	3, 314	4.2	7, 737	9.	
912	24, 713	30.0	44, 608	54.1	2, 467	3.0	10,650	12.	
913	29, 333	31.8	47, 832	51. 9	3, 735	4.1	11, 197	12.	
914	24, 907	28. 2	50, 169	56. 9	4,038	4.6	9, 116	10.	
926		26. 8	101, 638	61.8	3, 324	2.0	15, 477	9.	
929		29.9	97, 623	57. 2	4, 833	2.9	17, 113	10.	
933		22. 3	43, 638	68. 7	1,403	2. 2	4, 297	6.	
935	23, 812	31.0	45, 073	58.8	1,479	1.9	6, 378	- 8	
941	46, 534	28.4	102, 286	62. 3	3, 142	1.9	12,069	7	
942	49, 479	27.0	115, 948	63. 4	8,010	1.7	14, 344	7	
943 944	29, 915 17, 609	22. 4 19. 4	92, 310 65, 478	69. 2 72. 0	2,301	1.7 2.3	8, 898	. 6	
945	20. 384	19. 4	73, 410	71.4	2, 079 2, 035	2. 3	5, 740 6, 976	6 6	
946	39, 071	23.8	112.142	68.3	2,720	1.7	10, 131	6	
947		23.3	129, 338	69.3	2, 409	1.3	11, 344	6	
948	47, 560	23. 1	144, 855	70. 5	2, 620	1.3	10, 413	5	
949	45, 655	21.8	150, 436	71.7	3, 310	1.6	10, 326	4	
950	47, 120	20.8	164, 812	73.0	2, 597	1.1	11, 497	ŝ	
951	50, 328	20.4	169, 204	68.8	2, 653	1.1	23, 837	ğ	
952	48, 563	19.5	177, 901	71.4	4,038	1.6	18, 754	7	
953	54, 029	20.5	184, 182	69.7	5, 097	1.9	20, 873	7	
954		21.0	190, 611	69. 9	5, 082	1.9	19, 487	7	
955		24. 1	201, 412	67.7	5, 351	1.8	18, 926	6	
956	72, 722	23.0	216, 601	68.4	5, 347	1.7	21, 768	6	

¹ Includes Puerto Rico, 1941-56; Hawaii, 1945-46. There has been no production in Hawaii since 1946, ² Includes output of 2 plants using oystershell and clay in 1926; 3 plants in 1929, 1933, and 1935; 4 plants in 1941-45; 5 plants in 1946-49; 6 plants in 1950; 7 plants in 1951; and 8 plants in 1952-56 (includes 1 plant that used coquing shell).

Blast-furnace slag was used as an ingredient of portland cement at 19 plants, 6 of which used approximately 250,000 tons of blast-furnace slag to produce portland slag cement.

TABLE 10.—Raw materials used in producing portland cement in the United States. 1954-56

Raw material	1954	1955	1956
Cement rock Limestone (including oystershell) Marl. Clay and shale ³ Blast-furnace slag Gypsum Sand and sandstone (including silica and quartz) Iron materials ¹ Miscellaneous ⁴ Total Average total weight required per barrel (376 pounds) of finishement.	57, 467 1, 298 8, 597 1, 298 2, 009 895 399 169	Thousand short tons 19, 120 61, 117 1, 332 8, 692 1, 659 2, 319 923 327 311 95, 800 Pounds 644	Thousand short tons 19, 463 66, 117 1, 421 9, 905 1, 706 2, 449 1, 011 494 220 101, 976 Pounds 645

¹ Includes Puerto Rico.

Includes fuller's earth, disspore, and kaolin for making white cement.
 Includes iron ore, pyrite einder and ore, and mill scale.
 Includes fluorspar, flue dust, pumicite, pitch, red mud and rock, hydrated lime, fufa, calcium chloride, sludge, air-entraining compounds, and grinding aids.

FUEL AND POWER

The quantities of coal and natural gas utilized in the production of portland cement in 1956 increased 6 and 10 percent, respectively, compared with 1955, and the quantity of fuel oil decreased 7 percent.

TABLE 11.—Finished portland cement produced and fuel consumed by the portland-cement industry in the United States,1 1955-56, by processes

	Finish	ned cement p	roduced	F	uel consume	d. 3
Process	Plants	Thousand barrels	Percent of total	Coal (short tons)	Oil (barrels of 42 gal- lons)	Natural gas (M cubic feet)
1955 WetDry	94 63	170, 265 127, 188	57. 2 42. 8	4, 080, 463 4, 647, 111	6, 248, 524 2, 257, 297	91, 611, 457 39, 790, 053
Total	157	297, 453	100.0	* 8, 727, 574		4 131, 401, 510
1956 Wet Dry	95 · 65	181, 686 134, 752	57.4 42.6	4, 482, 581 4, 787, 051	5, 938, 246 1, 987, 4 13	100, 386, 160 43, 805, 360
Total	160	316, 438	100.0	5 9, 269, 632	7, 925, 659	• 144, 191, 520

Includes Puerto Rico.
 Figures compiled from monthly estimates of producers.
 Comprises 199,429 tons of anthracite and 8,528,145 tons of bituminous coal.
 Includes 54,569 M cubic feet of byproduct gas and 2,961,386 M cubic feet of coke-oven gas.
 Comprises 243,642 tons of anthracite and 9,070,661 tons of bituminous coal.
 Includes 101,645 M cubic feet of byproduct gas and 2,642,278 M cubic feet of coke-oven gas.

TABLE 12.—Portland cement produced in the United States, 1 1955-56, by kinds of fuel

	Finish	ed cement p	roduced	F	Fuel consumed 2			
Fuel	Plants	Thousand barrels	Percent of total	Coal (short tons)	Oil (barrels of 42 gal- lons)	Natural gas (M cubic feet)		
Coal		3 116, 035 3 27, 821 3 38, 135 35, 878 35, 408 30, 028 14, 148 297, 453	39. 0 9. 3 12. 8 12. 1 11. 9 10. 1 4. 8	6, 303, 628 1, 467, 343 731, 620 224, 983 6 8, 727, 574	5, 851, 248 1, 657, 869 883, 247 113, 457 8, 505, 821	4 50, 540, 495 5 31, 514, 037 34, 244, 613 15, 102, 365 131, 401, 510		
Coal	62 11 19 20 23 17 8	* 119, 713 * 25, 575 * 39, 161 39, 173 42, 256 39, 459 11, 101 316, 438	37. 8 8. 1 12. 4 12. 4 13. 3 12. 5 3. 5	6, 544, 780 1, 737, 232 882, 337 105, 283 9, 269, 632	5, 330, 254 1, 025, 827 1, 530, 096 39, 482 7, 925, 659	7 51, 131, 030 8 35, 991, 411 43, 082, 237 13, 986, 842 144, 191, 520		

¹ Includes Puerto Rico.
² Figures compiled from monthly estimates of producers.
³ Average consumption of fuel per barrel of cement produced as follows: 1955—coal, 108.7 pounds; oil, 0.2103 barrel; natural gas, 1,325 cubic feet. 1956—coal, 109.3 pounds; oil, 0.2084 barrel; natural gas, 1,306 cubic feet.

uble feet.

4 Includes 2,961,386 M cubic feet of coke-oven gas.

5 Includes 54,569 M cubic feet of byproduct gas.

6 Comprises 199,429 tons of anthracite and 8,528,145 tons of bituminous coal.

7 Includes 2,642,278 M cubic feet of coke-oven gas.

8 Includes 101,545 M cubic feet of byproduct gas.

9 Comprises 243,642 tons of anthracite and 9,070,661 tons of bituminous coal.

TABLE 13.—Electric energy used at portland-cement-producing plants in the United States, 1955-56, by processes

				Average electric				
Process		ed at port- ent plants		chased	Tot	al	Finished cement produced (thousand	energy used per barrel of cement
	Active plants	Million kilowatt- hours	Active plants	Million kilowatt- hours	Million kilowatt- hours	Per- cent	barrels)	produced (kilowatt- hours)
1955 Wet Dry	28 34	801 1,634	88 56	2, 719 1, 303	3, 520 2, 937	54. 5 45. 5	170, 265 127, 188	20. 7 23. 1
Total Percent of total elec- tric energy used	62	2, 435 37. 7	144	4, 022 62. 3	6, 457 100. 0	100. 0	297, 453	21.7
1956 Wet Dry	26 33	757 1, 569	89 60	3, 049 1, 478	3, 806 3, 047	55. 5 44. 5	181, 686 134, 752	20. 9 22. 6
Total Percent of total elec- tric energy used	59	2, 326 33. 9	149	4, 527 66. 1	6, 853 100. 0	100.0	316, 438	21. 7

¹ Includes Puerto Rico.

TRANSPORTATION

The trend toward shipping cement in bulk rather than in bags continued. Ten years ago, nearly two-thirds of the shipments were in bags; in 1956 less than one-fourth of the total shipments were in bags and three-fourths in bulk. The quantity of cement shipped by trucks has increased from 16 percent 10 years ago to 32 percent in 1956. Shipment by boat was confined almost entirely in Louisiana, Puerto Rico, and Alabama, where 33, 31, and 12 percent, respectively, of the total shipments were by boat. The few shipments by boat in other localities were insignificant.

TABLE 14.—Shipments of portland cement from mills in the United States,1 1954-56, in bulk and in containers, by types of carriers

	In b	ulk	4	In cor	itainers		Total sh	ipments
Type of carrier			В	ags	Other	Total	Thou-	
	Thou- sand barrels	Per- cent	Paper (thou- sand barrels)	Cloth (thou- sand barrels)	contain- ers ² (thou- sand barrels)	(thou- sand barrels)	sand barrels	Per- cent
1954								
Truek Railroad Boat	\$ 61, 007 123, 950 4, 821	32. 2 65. 3 2. 5	22, 589 61, 604 402	159 298 29	13	22, 748 61, 915 431	83, 756 185, 865 5, 251	30. 8 67. 6 1. 9
Total Percent of total	189, 778 69. 0	100.0	84, 595 30. 8	486 0. 2	(4)	85, 094 31. 0	274, 872 100. 0	100.0
1955								
Truck	\$ 65, 714 137, 328 6, 788 256	31. 3 65. 4 3. 2 . 1	21, 284 59, 900 797 217	121 301 32 1	19 7	21, 405 60, 220 829 225	87, 119 197, 548 7, 617 481	29. 7 67. 5 2. 6 . 2
Total Percent of total	210, 086 71. 8	100.0	82, 198 28. 1	455 0. 1	(4) ²⁶	82, 679 28. 2	292, 765 100. 0	100.0
1956								
Truck	⁸ 75, 374 150, 570 5, 868 601	32. 4 64. 8 2. 5 . 3	22, 993 52, 453 416 111	187 65 22 1	13 4	23, 181 52, 531 438 115	98, 554 203, 101 6, 307 716	31. 9 65. 8 2. 1 . 2
Total Percent of total	232, 413 75. 3	100.0	75, 973 24. 6	275 0.1	(4) 17	76, 265 24. 7	308, 678 100. 0	100.0

Includes Puerto Rico.
 Includes steel drums and iron and wood barrels.
 Includes cement used at mills by producers as follows (in thousand barrels)—1954, 2,956 barrels; 1955, 481 barrels; 1955, 716 barrels.
 Less than 0.05 percent.

CONSUMPTION

Shipments of cement to destinations in a State do not equal its actual consumption during the year covered, but they afford a fair index of consumption. Shipments were higher in 33 States and lower in 15 States and the District of Columbia in 1956 than in 1955.

Shipments of high-early-strength cement were greatest to Michigan,

New Jersey, New York, and Pennsylvania.

As indicated in figure 1, regional consumption of portland cement in 1956 followed the upward trends held since 1945.

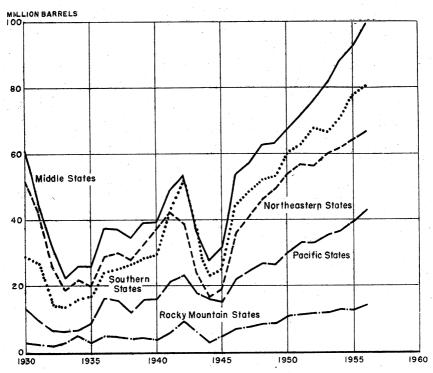


FIGURE 1.—Indicated consumption of portland cement in continental United States, 1930-56, by regions.

TABLE 15.—Destination of shipments of finished portland cement from mills in the United States, 1954-56, by States

	1954	1958	198	66
Destination	(thousand barrels)	(thousand barrels)	Thousand barrels	Chang from 19 (percer
ontinental United States:				
Alabama	3, 954	3, 940	4, 766	1 4
Arizona	2, 215	2, 337	2, 624	+
Arkansas	1,897	2,519	1,843	-
California	28, 761	31,643	35, 872	+
Colorado Connecticut ¹	3, 279	3, 486	3, 704	
Connecticut '	3, 264	3, 385	4, 321	4
Delaware ¹	910	1,096	1,085	
District of Columbia 1	1, 323	1,391	1,327	
Florida	8, 313	8, 946	9, 499	
Georgia.	4, 448	5, 201	5, 382	
Idaho	1, 221	923	1,073	-
Illinois	15, 018	14,670	16, 716	-
Indiana	6, 757	7, 984	9,064	-
IowaKansas	5, 908	5,974	6,771	4
Kentucky.	6, 597	7, 248	6, 963	
Louisiana	3, 041 6, 292	3, 640 7, 340	3, 510	
Maine			8, 507	+
Maryland	868	951	975	
Massachusetts 1	4, 448	4,882	5,772	
	4, 159	5, 239	5, 847	1
Michigan Minnesota	13, 085 5, 515	13, 893	16, 237	- +
Mississippi		5, 827 1, 887	5, 518	
Mississippi Missouri	1, 751	7, 919	1, 977	
Montana.	7, 571 1, 922	7, 919 951	7, 613	
Nebraska.	3, 742	3,485	1,409	- 4
Nevada 1	853	3, 485 740	3, 351 619	
New Hampshire 1	830	1.157	924	_
New Jersey 1	9, 207	9, 335	9. 427	
New Mexico 1	2,063	1, 995	2,086	
New York	20, 368	19, 400	20, 395	
North Carolina 1	3, 856	4, 415	4, 385	
North Dakota 1	1, 162	1,057	1, 290	4
Ohio	16 033	17.475	17, 552	
Oklahoma	4, 366	4.789	4, 814	
Oregon	2,089	4, 789 2, 392	2, 550	
Pennsylvania	15, 160	16,083	15, 540	
Rhode Island	690	830	747	-
South Carolina	2,071	2, 461	2, 358	· · · · · · ·
South Dakota	1, 116	1, 221	1,376	- 4
Tennessee	4,702	5,088	4,845	
Texas	19, 199	20, 782	20, 954	
Utah	1,507	1,835	2,009	
Vermont 1	242	294	825	- 4
Virginia	4, 495	4,802	5, 421	- 4
Washington	5, 631	5, 595	4, 683	-
West Virginia	2, 306	1,849	1, 938	
Wisconsin	5, 912	6, 186	6, 745	:
Wyoming.	582	579	654	+
Unspecified	28	18	6	-
Total continental United States	269, 827	287, 135	303, 399	
tside continental United States 2	5, 045	5, 630	5, 279	
Total shipped from cement plants	274, 872	292, 765	308, 678	-

¹ Non-cement-producing States.
² Direct shipments by producers to foreign countries and to noncontiguous Territories (Alaska, Hawaii, Puerto Rico, etc.), including distribution from Puerto Rican mills.

TABLE 16.—Destination of shipments	of finished	ed portland	nd ceme	cement from	mills in t	the United	d States	in 1956,	, by months,	ä	thousand l	barrels
Destination	January	Febru- ary	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
Alabama	236	282	504	486	455	439	403	465	429	445	396	397
Arizona	192	189	228	82	283	106	180	279	164	174	1188	
California	2 193	2.704	3.451	2.828	3, 194	3.118	3, 179	3.460	2,993	3.405	2, 883	2.447
Colorado	193	150	266	360	392	394	408	393	340	368	210	83
Connecticut	81.5	191	218	364	479	490	417	494	444	9	379	200
District of Columbia	6. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	88	88	112	137	159	35	8 1	127	112	7/2	38
Florida	969	718	282	715	785	210	722	821	865	874	911	36
Georgia	349	385	447	424	456	455	9	25	422	566	496	383
Idaho	37	8	8	011	122	25	125	127	118	66	74	4
Illinois	537	673	1, 175	1,588	1,761	1,848	1, 838	1,811	1,660	1,838	1,069	855
Towns	88	197	311	753	1, 130	1, 130	1,047	880	730	667	181	165
Kansas	241	342	209	782	803	764	593	704	645	712	446	388
Kentucky	88	139	263	330	359	407	326	398	347	421	251	170
Louisiana	989	263	622	689	811	692	725	735	718	77.1	999	572
Maine	ଛ	22	22	22	120	157	149	124	124	106	48	88
Maryland.	236	327	868	9	649	644	209	83	208	499	424	808
Massachusetts	197	281	279	202	736	654	029	618	837	519	483	88
Michigan	250	277	749	1, 207	1,621	1, 965	1, 902	1,871	1, 924	1, 999	1, 116	282
Minnesota	707	250	170	169	800	040	191	908	170	159	200	212
Missouri	212	336	649	000	789	810	715	86	793	252	138	412
Montana	25	8	24	101	156	168	169	213	199	98	328	122
Nebraska	8	106	200	331	426	421	403	381	347	361	170	124
Nevada	47	42	82	89	62	29	28	25	48	42	88	34
New Hampshire	16	8	28	22	38	154	149	8	77	73	75	ଛ
New Jersey	202	010	180	989	1,021	106	77.6	1,018	1,009	895	704	999
Now Vorb	104	120	100	188	212	0 210	0 200	200	104	100	200	101
North Concline	36	7 606	1,000	1,001	604	419	207 4	6,070	6, 49	4, 100	7, 492	7,000
North Dakota	17	424	74	107	162	155	193	180	180	190	33	3
Oblo	545	889	1.004	1.413	1.589	1, 778	1.993	2, 037	1.912	2,360	350	88
Oklahoma	211	301	457	452	452	398	365	448	422	479	464	365
Oregon	66	95	172	246	264	249	560	289	288	240	203	191
Pennsylvania	479	631	795	1, 316	1, 574	1, 724	1,649	1,818	1,764	1, 662	1, 217	816
Knode Island	3;	3;	48	88	108	88	75	82	23	74	8	88
South Carolina	140	100	221	55.0	182	211	202	217	174	188	194	199
PORM POROCE	3	5	3	3	5	007	781	707	2	=======================================	3	8

325 1, 589 92 92 111 336 205 121 121 121 27 27 27	17, 422	17,822
1, 678 1, 678 139 26 425 425 334 401 0	22, 308	22, 705
1, 860 211 211 39 422 450 205 753 71	30, 893	31, 354
1, 628 228 30 39 481 465 212 642 65	29, 517 418	29, 935
1, 790 260 260 38 578 578 552 231 920 79	32, 879 445	33, 324
1,802 1,802 1,772 44 637 637 199 199 827 70	30,849	31, 333
1,839 209 47 47 570 459 211 805 75	31, 474 522	31,996
1,992 1,992 219 41 41 566 519 202 783 783	31, 226	31, 787
1,905 1,905 194 26 495 495 455 151 151 628 62	26, 688	27,087
2, 054 146 1064 1064 1064 118 118 118 118 120 420 420	21, 790	22, 222
254 1, 493 51 6 326 183 87 255 22	15, 567	15,929
195 1, 328 84 84 248 180 180 205 205 0	12,872	13, 273
Tennessee Texas Texas Utah. Virginia Washington West Virginia Wisconsin Wysoning Unspecified	Continental United States	Total

1 Shipments by producers to foreign countries and to noncontiguous Territories of the United States (Alaska, Hawall, and Puerto Rico), including distribution from Puerto Rican mills.

TABLE 17.—Destination of shipments of high-early-strength cement from mills in the United States, 1955-56, by States

		1	956			19	956
Destination	1955 (thou- sand barrels)	Thou- sand barrels	Change from 1955 (per- cent)	Destination	1955 (thou- sand barrels)	Thou- sand barrels	Change from 1955 (per- cent)
Continental United States: Alabama Arizona Arkansas California Colorado Connecticut 2 Delaware 2 District of Columbia 2 Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts 2 Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada 2 New Hampshire 2 New Hampshire 2 New Jersey 2	1 20 20 75 9 343 54 88 8464 2220 5 576 126 69 75 49 149 490 1,660 261 135 5 5 4 4 14 14 14 14 14 14 14 14 14 14 14 14	428 1 18 13 355 75 75 581 221 6 6 2 360 161 164 43 72 63 145 507 1,647 218 20 146 6 10 0 2	+7 -10 +76 +44 +39 -15 +20 -15 +20 -38 -4 +29 -38 -16 -35 +20 -58 +20 -58 +17 -1	Continental United States—Continued New Mexico 2 New York North Carolina 2 North Dakota 2 North Dakota 2 North Dakota 2 North Dakota 2 South Carolina South Carolina South Carolina South Dakota Tennessee Texas Utah Vermont 2 Virginia Washington West Virginia Wisconsin Wyoming Unspecified Total continental United States Outside continental United States Outside continental United States Total shipped from cement plants	1,054 174 3 3 372 39 4 1,090 91 133 36 428 17 24 225 330 9	60 1,097 194 3 429 40 3 934 79 30 45 5 431 17 25 313 333 333 333 11 46 6 3 0	+5 +5 +4 +11 +15 +3 -25 -14 -13 +20 -19 +25 +1 +4 +39 +11 +22 -140 -20 -23 +3

Included in figures of finished portland cement, table 15.
 Non-cement-producing State.
 Direct shipments by producers to foreign countries and to noncontinguous Territories (Alaska and Hawaii).

TABLE 18,—Destination of shipments of high-early-strength cement from mills in the United States in 1956, by months, in thousand barrels

				2	2							
Destination	January	Febru- ary	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
Alabama	8	27	35	40	26	8	83	40	43	47	42	45
Arizona Arkansas Galifornia	1.0	120	67.0	45	-101	10	6100	89T	10	197	181	- E4
Connecticut. Delaware District of Columbia. Florida. Georgia.	21. 4 4 28. 18.	02 4 0 181	26 5 6 17	29 5 7 7 7 7 7 7 7 7	18 50 80 50 E	83 8 8 19	32 6 6 45 17	36 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	37 6 6 15 15	1858 1858 1	30 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	844881
Milinois Indiana Iorra Iorra Kansas Kentucky	ထိုင္သာ အဆင္သာ အ	3 510 8 8 1 7	3844 ₄ 7	35 35 4 4 4	59 36 117 15	83 55 E B B B B B B B B B B B B B B B B B	20 11 12 20 20 20 20 20 20 20 20 20 20 20 20 20	748214°4	20 20 20 20 20 20 20 20 20 20 20 20 20 2	52 37 119 21 5	4481 1234 34 4 5	4811.
Louisians Mana Maryland Masseinusetts Michigan Minnesota Missistipil	102 103 11 11 103 103	26 115 135 135 10	-45840121	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12 1 83 4 16 15 15 15 15 15 15 15 15 15 15 15 15 15		155 155 121 121 121	852 152 152 152 153 154 154 154 154 154 154 154 154 154 154	25.53 25.53 11.23	811 108 255 25 17 1	10 10 10 10 10 10 10	20 105 18 18 14 14
Montana. Nebraska. Newada. New Hampshire. New Mexico. New York.	11 82 82 82 81 13 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0	1 3 3 72 72 15	98 44 15	1 6 115 4 93 17	1 7 136 6 102 18	137 137 101 17	130 130 88 88 18	1 133 5 96 20	1 128 128 5 97 16	1 6 122 4 86 86	120 120 110 115	99 66 117 114
North Dakota Ohio Oklahoma	29	33 7	233	39	39	35.1	34	41	35 80	46	87	31
Oregon, Demsylvania, Rhode Island, South Davolina, South Davois, Tennessee, Tennessee, Utah.	47 16 18 30 30 11	57 13 2 2 3 3 3 1	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	90 82 22 38 38	93 177 177 38 38 35 25	98 921 98 98 1	98 2 4 8 8 9 1	8018046	82-04480	5001400G	35 5 3 1 2 4 6 1 1 2 4 6 1 1 2 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 113 80 113 113 113 113 113 113 113 113 113 11

TABLE 18.—Destination of shipments of high-early-strongth coment from mills in the United States in 1956, by months, in thousand barrels—Continued

Novem- Decem- ber ber	30 30 32 32 32 4 4 4	1,011 957	1,014 963
October No	24 39 1 1	1,059	1,062
Septem- c	83113	1,054	1,068
August	282	1,078	1,082
July	888 € 18	1,010	1,014
June	8.24.18	1,067	1,071
May	28117	1,141	1, 150
April	16-2282	1,057	1,059
March	222 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	911	916
Febru- ary	20 15 15 21	755	756
January	17 13 13 12 2	671	671
Destination	Vermont 1 Virginia 17 Washington 13 West Virginia 13 Wisconsin 2 Uorspecified 2	Continental United States. Outside continental United States 1.	Total

1 Shipments by producers to foreign countries and to noncontiguous Territories of the United States (Alaska and Puerto Rico).

STOCKS

Stocks of finished portland cement and clinker at portland-cement plants on December 31, 1956, were 28 and 33 percent higher, respectively, than on December 31, 1955.

Changes in stocks during the period 1950-56 are shown in figure 2.

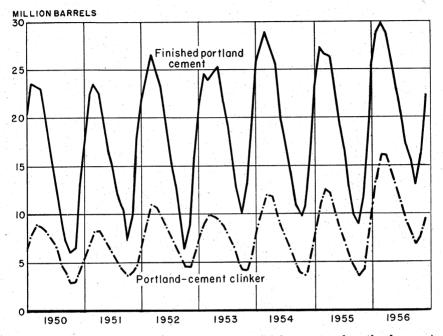


FIGURE 2.—End-of-month stocks of finished portland cement and portland-cement clinker, 1950-56.

TABLE 19.—Stocks of finished portland cement and portland-cement clinker at mills in the United States ¹ on Dec. 31, and yearly range in end-of-month stocks, 1952-56

			Ra	ange	
	Dec. 31 (thousand barrels)	Low		High	
	· · · · · · · · · · · · · · · · · · ·	Month	Thousand barrels	Month	Thousand barrels
$ \begin{array}{lll} 1952 = & \begin{array}{lll} \text{Cement} & \\ \text{Clinker} & \\ \text{Clinker} & \\ \end{array} \\ \begin{array}{lll} 1953 = & \begin{array}{lll} \text{Clinker} & \\ \text{Clinker} & \\ \end{array} \\ \begin{array}{lll} 1954 = & \begin{array}{lll} \text{Clinker} & \\ \text{Clinker} & \\ \end{array} \\ \begin{array}{lll} 1955 = & \begin{array}{lll} \text{Cement} & \\ \text{Clinker} & \\ \end{array} \\ \begin{array}{lll} 1956 = & \begin{array}{lll} \text{Clinker} & \\ \end{array} \\ \begin{array}{lll} \text{Cement} & \\ \end{array} \\ \begin{array}{lll} \text{Clinker} & \\ \end{array} \\ \end{array} $	15, 932 5, 385 19, 272 5, 349 16, 533 5, 294 2 17, 539 2 7, 001 22, 414 9, 326	October	6, 546 4, 329 10, 049 4, 022 9, 667 3, 634 8, 754 3, 514 13, 007 6, 874	Mareh	26, 62 10, 83 25, 24 9, 89 28, 90 11, 94 27, 08 12, 62 29, 86 16, 15

¹ Includes Puerto Rico. ² Revised figure.

PREPARED MASONRY CEMENTS

PRODUCTION AND SHIPMENTS

Prepared masonry cements were produced at 117 portland-cement plants, 3 natural-cement plants, and 2 slag-cement plants during 1956.

Prepared masonry cements are sold under proprietary names and vary considerably in the ratio of the constituents; consequently, the brands vary considerably in weight per cubic foot. Statistics on prepared masonry cements were reported in many different weight barrels but were converted to equivalent 376-pound barrels for compilation in tabulations.

The prepared masonry-cement tabulations in this chapter covered only production from cement-producing companies and did not include statistics on masonry cements made by companies that purchased portland cement for reprocessing.

TABLE 20.-Prepared masonry cement produced and shipped in the United States, 1955-56, by districts

	Acti	, de	Production	ction			Shipments from mills	from mills		
District	plants	st	Thousand barrels	l barrels		1955			1956	
	1955	1956	1955	1956	Thousand barrels	Value (thousand dollars)	Average	Thousand	Value (thousand dollars)	Average
Eastern Pennsylvania, Maryland New York, Maine New York, Maine Oblo Western Pennsylvania, West Virginia Michigan Illinois. Indeans, Kentucky, Wisconsin Alabama, Tennessee Tennessee Tennessee Georgia, Florida Louissispipi Louissispipi Louissispipi Kansas. Western Missouri, Minnesota, South Dakota Eastern Missouri, Mebraska, Oklahoma, Arkansas. Tensas. Western Missouri, Nebraska, Oklahoma, Arkansas. Tensas. Western Missouri, Raino Colorado, Arizona, Utah Wyoming, Montana, Idaho Wyoming, Montana, Idaho Northern California Southern California Oregon, Washington Undistributed	<u> </u>		2, 260 1, 109 1,	2,006 1,002 904 1,002 904 1,002 1,002 1,002 1,003 1,00	2, 287 1,119 802 1, 610 1, 610 1, 745 1, 889 1, 889 1, 889 1, 881 1, () 2, () 2, () 3, () 3, () 4, () 4, ()	2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	€ £ £ £ £ £ £ £ £ £ £ £ £ £	1, 1066 1, 1643 1, 1643 1, 1643 1, 1643 1, 1733 1, 173	25	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
Total	119	122	. 16, 519	15,906	16, 526	56, 343	3.41	15,898	59,689	3.75
Pennsylvania	21	21	2, 529	2, 406	2, 563	9,004	3.51	2, 437	8,882	3.64

1 Included with "Undistributed" to avoid disclosing individual company operations.

TABLE 21.—Production and shipments of prepared masonry cement from mills in the United States in 1956, by months 1 and districts, in thousand barrels

	Decem- ber	558884884848 1488848848	1, 179	51444884514418268
	Novem- ber	192 202 202 202 202 202 203 203 203 203 20	1, 228	142 105 105 135 135 135 135 135 135 135 135 135 13
	October	160 888 888 886 886 886 888 888 888 888 8	1, 204	141 102 103 104 104 105 106 106 107 107 107 107 107 107 107 107 107 107
	Septem- ber	193 99 100 108 188 188 118 188 188 188 188 188	1, 297	121 122 123 164 164 188 188 188 188 188 188 188 188 188 18
	August	178 1119 122 137 137 152 152 152 152 152 153 153 153 153 153 153 153 153 153 153	1,359	22 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	July	20121 888 8822323 8822323 8822323 8833 883	1, 326	195 125 109 109 175 197 197 197 197 197 198 198 198 198 198 198 198 198 198 198
	June	195 1100 1100 1100 1000 1000 1000 1000 1	1, 401	221 133 133 112 180 209 209 206 70 70 45 64 64
parreis	May	201 119 110 107 174 172 103 88 88 88 88 88 88 88 88 88 88 88 88 88	1, 384	239 131 105 105 162 203 203 204 49 64 64 13
tnousana	April	28 28 28 28 28 28 28 28 28 28 28 28 28 2	1, 293	12 105 105 128 128 128 128 129 129 129 129 129 129 129 129 129 129
In ti	March	2011 2012 2012 2012 2012 2012 2012 2012	1,354	152 163 163 164 174 174 174 174 174 174 174 174 174 17
	Febru- ary	82868888888888888888888888888888888888	1,093	122 383 383 1183 1183 142 143 143 143 143 143 143 143 143 143 143
	January	101 1044 888 888 888 888 888 888 888 888 888	1,048	848448E38450
	District	PRODUCTION Bastern Pennsylvania, Maryland New York, Manne Nestern Pennsylvania, West Virginia. Michigan Mississippl Louisiania, Mississippl Louisiania, Mississippl Mansas Ransas Ransas Ransas Colorado, Ationa, Utah Western Missouri, Nebraska, Oklahoma, Ar- Ransas Colorado, Ationa, Utah Western California Suthern California Suthern California Suthern California Suthern California Suthern California Puerfo Rico.	Total: 1956	SHIPMENTS Bastern Pennsylvania, Maryland New York, Maine Ohlo Western Pennsylvania, West Virginia Midigan Illinois Illinois Andiana, Kentucky, Wisconsin Tennesse Virginia, South Carolina Virginia, South Carolina Georgia, Florida Louislana, Mississippl

		1997
824 832	1 67	855 886
884 554	- 1	1,020
848 888	# 10 # 10	1, 327
#48 888 -	# 140	1, 389
858 858 858	1 1	1, 524
8248 8248	0 9	1, 457
128 238		1, 545
1973 4 85 84 1973 4 85 84 1973 1973 1973 1973 1973 1973 1973 1973	4	1, 577
경 면 4 성 5 원	41 2	1, 449
848 488	e e	1, 156
222 2521 -	1 1	823 778
2194C1		636
Lowa. Bastern Missouri, Minnesota, South Dakota. Kansas. Western Missouri, Nebraska, Oklahoma, Arkansas. Tenasa. Tenasa.	Wyoming, Montana, Idaho Northern California Southern California Orecon, Washington	

1 Difference between monthly and annual reports not adjusted.

TABLE 22.—Destination of shipments of prepared masonry cement from mills in the United States, 1955-56, by States

		1	956			19	956
Destination	1955 (thou- sand barrels)	Thou- sand barrels	Change from 1955 (per- cent)	Destination	1955 (thou- sand barrels)	Thou- sand barrels	Change from 1955 (per- cent)
Continental United States: Alabama Arizona Arkansas California Colorado Comecticut ¹ Delaware ¹ District of Columbia ¹ Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts ¹ Michigan Minnesota Mississippi Montana Nebraska Nevada ¹ New Hampshire ¹ New Jersey ¹	10 11 219 102 26 239 887 329 13 767 540 198 187 329 119 48 408 248 248 361 116 137 94	1, 234 7 132 1 1 195 97 222 191 887 290 12 799 573 171 170 315 107 54 381 1, 298 1, 298 30 71 1 46 480	-6 -30 +11 -11 -5 -15 -20 -11 -8 +4 +6 -14 -9 -4 -10 +13 -7 -4 -2 -9 -8 +23 +11 -24	Continental United States—Continued: New Mexico 1 New York North Carolina 1 North Dakota 1 Ohio	2 1, 104 24 377 48 482 731 20 25 693 38	79 1,041 754 4 1,285 179 2 1,081 22 1,081 22 330 45 499 667 19 31 617 38 168 531 8 42 15,876	+3 -6 -6 -5 -5 -15 -15 -2 -8 -12 -6 +4 -10 -5 +24 -11 -1 -70 +24 -70 +24 -72 -72 -72

Non-cement-producing States.
 Direct shipments by producers to foreign countries and to Alaska.

TABLE 23.—Destination of shipments of prepared masonry cement from mills in the United States in 1956, by months, in thousand barrels

Destination	January	Febru- ary	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
Alabama	20	9	6	8	2	=	6	12	ω,	11	6	6
Arizona. Arkansas	9	-12	12	13.	13.	7#	∞	14	†##	12	6	12
California Colorado Connecticut	10	9	17.	228	10.23	11	81	110	19 11 11	16	17.0	15
Delaware District of Columbia Florida		2152	72 19 7	~ K &	382	292		312°	17 82	13.	8118	1212
Georgia	14	81	8-	4 200	78	72	72	81	81	28	% -	18
Justio Illinois Indiana	38.	41 28	229	84 61	85 62 83	98.	523	22.53	123	80	288	2 52 0
Iowa Kansas	900	စ ဇာ ု	15	282	828	222	129	898	2 T E	17	122	×81.7
Kentucky Louisiana		. 8	ခွ တ (300	811,	400	40,	89°	101	3 ∞ «	0 7	100
Maine	13.2	2 23	317	4	- 2	·#	° 8;	8	- 88	24.8	*8;	າສ:
Massachusetts		18	89	22 23	88	140	282	18.29	888	325	7 55 ;	189
Minesota Mississippi	00 10	619	82	25.25	5 01	20.00	30	81	82	76	76;	25.
Missouri Montana		#7	92	<u>ಹ</u>	<u></u> 82 es	91 4	220	318	20 80	17	12.	3-1
Nebraska	60	4	6	∞	œ	αo	ග	9	7	9	4	
New Hampshire	- €	9.53	&	404	بى ئۇ بى	တက္က	947	47		9 %	3,00	
New Jersey.	3 64	, ro	-1	00	30	3.0	, × ;	0;	- 5	φ.		
New York	44	8 2	28.28	38.5	3 2	23	§ 8	. 118) 69 		259	
North Dakota	, , ,	301	900	, 2	۽ ص	9	70 6	4.6	4.5	4 6	2 2	
Ohio Oklahoma		82	18	18	2 %	16	15	15	14	16	511	
Oregon Pennsylvania	30	47	02	111	121	125	121	1	E		52,	51
Rhode Island South Carolina	19	- % °	- E 7	⊿ % 4	ంజ్లా	3.5.	18.5			. B. r.		- K
ROBERT LINE	-		•				1.					

TABLE 23.—Destination of shipments of prepared masonry cement from mills in the United States in 1956, by months, in thousand barrels—Continued

Destination	January	Febru- ary	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
Tennessee Texas Texas Texas Viran Verian Virginia Washington West Virginia Wyoming Unspecified	514 111 128 24 4 22 1	841-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	649 630 631 631 631 631 631 631 631 631 631 631	82100084918 100084918	60 60 60 60 60 60 60	38u48458un	450 00 00 00 00 00 00 00 00 00 00 00 00 0	27.24.88 44.083 1.75	3426 441 41 1	744 288 4714 1	464 1 24 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	33 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Continental United States.	635	822	1,155	1,447	1, 575	1, 543	1, 425	1, 522	1,386	1,325	1,019	852
Total	636	823	1, 156	1, 449	1, 577	1, 545	1, 427	1, 524	1,389	1, 327	1,020	822

1 Shipment by producers to foreign countries.

NATURAL, SLAG, AND HYDRAULIC LIME CEMENTS

Natural cement was produced at 3 plants, slag cement at 2, and hydraulic-lime cement at 1. At 2 of the 3 natural-cement plants and at both the slag-cement plants a prepared masonry cement also was produced. In addition the entire productive capacity of a fourth natural-cement plant was used for making prepared masonry cement. As all of the masonry cements contained some portland cement, they were included in the tabulations of masonry cement prepared at the portland-cement plants.

Production of these hydraulic cements increased 20 percent in 1956, compared with 1955. Producers of these cements reported consumption of 19,000 short tons of coal and 135 million cubic feet of natural

gas.

The 7 plants reported an estimated annual capacity of 1.3 million barrels. During 1956 they used 186,000 short tons of limestone, 153,000 tons of slag, and 52,000 tons of lime.

TABLE 24.—Natural, slag, and hydraulic lime cements produced, shipped, and in stock at mills in the United States, 1947-51 (average) and 1952-56

	Prod	uction	Shipr	nents	Stocks on
Year	Active plants	Thousand barrels	Thousand barrels	Value (thousand dollars)	Dec. 31, (thousand barrels)
1947-51 (average)	9 8 8 8 6 6	3, 454 3, 402 3, 488 3, 504 941 1, 128	3, 446 3, 447 3, 459 3, 513 954 1, 074	8, 394 9, 752 10, 341 13, 215 3, 019 3, 589	173 114 142 79 66 120

¹ Includes natural masonry cements through 1954.

PRICES

The average net realization of all shipments from cement plants in

1956 was \$3.08, compared with \$2.89 per barrel in 1955.

Portland-cement prices at the cement plants increased from an average of \$2.86 in the fourth quarter of 1955 to \$3.00 per barrel in the first quarter of 1956. During the second quarter the average increased to \$3.03; in the third quarter to \$3.04; and in the fourth quarter to \$3.08 per barrel.

Average prices of high-early-strength cement increased from \$3.45

per barrel in the first quarter of 1956 to \$3.55 in the final quarter.

Prepared masonry cements increased in price per barrel of 376 pounds from \$3.60 in the first quarter to \$3.68 in the fourth quarter.

The composite wholesale price index of portland cement, f. o. b. destination, according to the Bureau of Labor Statistics index (1947–49=100), was 139.7 in 1956, compared with 131.4 in 1955.

TABLE 25.—Average mill value per barrel, in bulk, of cement in the United States, 1947-51 (average) and 1952-56

Year	Portland cement	Natural, slag, and hydraulic lime cements	Prepared masonry cement ²	All classes of cement 3
1947-51 (average)	\$2. 27 2. 54 2. 67 2. 76 2. 86 3. 05	\$2.32 2.76 2.93 3.18 3.16 3.34	\$2. 66 3. 05 3. 22 3. 50 3. 41 3. 75	\$2. 27 2. 54 2. 68 2. 78 2. 89 3. 08

¹ Includes Puerto Rico.

Includes masonry cements made at portland-, natural-, and slag-cement plants.
3 Includes shipments of masonry for 1955 and 1956.

FOREIGN TRADE 7

Imports.—Nearly 41/2 million barrels of cement were imported during 1956. Imports from Canada and Mexico decreased substantially and those from Belgium-Luxembourg and West Germany decreased to about one-third the quantities imported in 1955. Imports from Yugoslavia and Israel increased several fold. Import values per barrel were substantially lower for the products from both these countries than from other competing European countries. Much of the cement from Israel entered through the port of New Orleans.

Exports.—Exports of hydraulic cement in 1956 were about the same as in 1954 and 1955, just under 2 million barrels. Shipments to South American countries decreased slightly, but those to North American countries (except Canada) Europe, Asia, Africa, and Oceania increased slightly, resulting in an increase in total exports of about

200,000 barrels.

TABLE 26.—Hydraulic cement imported for consumption in the United States, 1947-51 (average) and 1952-56

Year	Barrels	Value	Year	Barrels	Value
1947-51 (average)	545, 821	\$ '83, 355	1954	450, 248	1 \$1, 762, 708
1952	475, 986	\$7, 239	1955	5, 219, 700	1 14, 354, 412
1953	386, 051	1, 265, 821	1956	4, 456, 120	1 14, 188, 575

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with those for years before 1954.

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 27.—Roman, portland, and other hydraulic cements imported for consumption in the United States, 1954-56, by countries ¹

[Bureau of the Census]

Country	19	54	19	55	19	56
Country	Barrels	Value	Barrels	Value	Barrels	Value
						3.49
North America: Canada	67, 588	\$280, 989	724, 101	\$2, 663, 631	568, 032 12, 566	\$1, 664, 576 54, 000
Cuba Dominican Republic Mexico	7, 250	17, 013	149, 364 266, 907	347, 498 585, 769	149, 801 41, 772	358, 608 91, 708
Total	74, 838	298, 002	1, 140, 372	3, 596, 898	772, 171	2, 168, 886
South America: Colombia			56, 331	208, 016	194, 495	530, 213
Europe: Belgium-Luxembourg Denmark	194, 596	621, 069	1, 468, 341 24, 580 12, 899	4, 088, 744 65, 312 49, 500	552, 956 278, 886	1, 959, 412 833, 069
Finland France Germany, West Netherlands	52, 053	1, 746 185, 159	2, 588 1, 230, 608 1, 759	17, 612 3, 208, 697 7, 642	5, 733 386, 187 500	47, 109 1, 275, 739 2, 800
Poland-Danzig Portugal Sweden United Kingdom	22, 498 14, 103	43, 063 88, 637	2, 990 428, 820 27, 476	6, 273 865, 153 118, 968	12, 065 176, 379 283, 252 103, 860	21, 931 452, 817 1, 063, 974 388, 491
Yugoslavia	12, 919	66, 767	109, 506	328, 551	387, 533	1, 033, 86
Total	296, 220	1, 006, 441	3, 309, 567	8, 756, 452	2, 187, 351	7, 079, 204
Asia: Israel Japan			52, 497 1, 186	148, 574 2, 584	456, 414 4, 204	1, 368, 68 17, 46
Total			53, 683	151, 158	457, 618	1, 386, 142
Africa: French Morocco Tunisia	500	3, 433			60, 892	197, 76
Total	500	3, 433			60, 892	197, 76
Grand total	371, 558	2 1, 307, 876	4, 559, 953	² 12, 712, 524	3, 672, 527	² 11, 362, 20

¹ Excludes "white, nonstaining, and other special cements."
² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years prior to 1954.

TABLE 28.—Hydraulic cement exported from the United States, 1947-51 (average) and 1952-56

Year	Barrels	Value	Percent of total ship- ments from mills
1947-51 (average)	4, 521, 307 3, 174, 405 2, 550, 788 1, 859, 012 1, 795, 448 1, 973, 221	\$15, 188, 627 11, 148, 535 9, 347, 169 6, 651, 790 7, 066, 918 7, 249, 818	2.1 1.2 1.0 1.0 1.0

TABLE 29.—Hydraulic cement exported from the United States, 1954-56, by countries of destination

Country	1	954	1	955	19	956
	Barrels	Value	Barrels	Value	Barrels	Value
North America:						
Bermuda	1,762	\$5,956	425	\$2, 210 3, 032, 905		
Canada Central America:	639, 046	2, 493, 150	743, 671	3, 032, 905	628, 049	\$2, 649, 101
British Handurge	2, 312	8, 707 7, 257 96, 649 10, 561	2, 382	9, 527	750	2, 805
Canal Zone Costa Rica	1,632	7, 257	1,582	7, 042 34, 213 4, 880 7, 714	2, 622	13, 146
El Salvador	40,000 1,416	10 561	4, 125 760	34, 213	11, 775 725	37, 841
Guatemala	660	0, 621	926	7, 714	7.419	3, 557
El Salvador Guatemala Honduras Nicaragua Panama	31, 759	80, 136	11 461	38, 191	7, 419 9, 297	32, 817 33, 337
Panama	4, 637 692	18, 829 4, 817	5, 906 1, 785	31, 911	4, 417	28, 308 3, 428
MEXICO	209, 046	900, 025	213, 438	9, 791 985, 760	396 345, 086	1, 539, 987
West Indies: British:				000,100	010,000	1, 000, 001
Bahamas	13, 895	57, 872	14 774	04.000		
Barbados_	500	2,474	14, 774 1, 380	64, 926 7 038	6, 225 1, 000	36, 667
Tamaica	505	2, 474 2, 299	1,847	7, 038 13, 241	50	16, 833 1, 109
Leeward and Windward Islands	2, 430	10.010	F 140			
Trinidad and Tobago	3, 474	10, 910 16, 164	5, 149 5, 347	17, 188 25, 917	5, 600 464	19, 130
	395, 856	1 1 008 034	216, 349	574, 153	540, 352	2, 421 900, 449
Dominican Republic French West Indies	400	1, 510		l	l	
Haiti	8, 997 131, 585	25, 975 367 016	15, 203 269, 068	43, 353 775, 060	10, 025	27, 769
Netherland Antilles	55, 692	1, 510 25, 975 367, 016 166, 870	3, 550	9, 685	96, 266 842	263, 620 3, 145
Total	1, 546, 296	5, 291, 832	1, 519, 128	5, 694, 705	1, 671, 360	
South America:		0,201,002	1, 010, 120	0, 001, 100	1, 071, 300	5, 615, 470
Bolivia	2, 916	12, 980	725	4, 083		
Brazil	12, 385	57, 649	18, 388	85, 265	21, 230	93, 195
Chile					21, 230 1, 958	10, 016
Brazil British Guiana Chile Colombia	264 15, 385	2, 978 98, 650	1, 359 13, 060	17, 804 85, 606	1, 675 20, 193	10, 016 22, 166 129, 376
r.cuador	15, 385 8, 250	28, 875	625	2, 817	3, 058	13, 335
Peru	3, 511	16, 965	13, 422	2, 817 42, 085	5, 247	13, 335 19, 703
Surinam Venezuela	5, 937 213, 918	12, 655 873, 266	201 163, 752	1, 481 745, 475	132 126, 727	1, 494 596, 590
Total	262, 566	1, 104, 018	211, 532	984, 616	180, 220	885, 875
Europe:						
Belgium-Luxembourg	761	7, 264	1, 416	19, 809	995	11, 970
Germany West	293	1, 490	821	7, 591	1, 442	8,831
France	187	2 228			473	7, 442
Norway	32	2, 328 1, 850	100	500	140 774	6, 694 12, 978
Spain	250	1,020	884	4, 432	288	8, 843
United Kingdom					2, 005	27, 511
Norway Spain Sweden United Kingdom Other Europe	35	107	144	1, 553	369 475	9, 697 5, 593
Total	1, 558	14, 059	3, 365	33, 885	6, 961	99, 559
Asia:						
AdenIndonesia			894	5, 275 92, 097	894	6, 535
Iran	4,000	16, 600	18, 635	92, 097	43, 830	197, 992
Iran Iraq	250	1, 220	3, 434	17 136	1, 174 4, 490	8, 524 23, 728
Japan Republic of	422	9,075	1,990	17, 136 46, 832	3, 442	98, 970
Japan Korea, Republic of Kuwait Malaya	2, 235 13, 759	9, 298	6, 692	35, 942	6, 175	29, 265
Malaya	2, 250	53, 216 10, 748	5, 506 2, 000	20, 219 9, 992	15, 749 2, 132	72, 415 11, 400
Manaya Nansei and Nanpo Islands Pakistan Philippines Saudi Arabia Turkey Other Asia					58	3, 888
Philippines					3, 749	13, 892
Saudi Arabia	2, 255 8, 485	22, 253 47, 240	1,863 1,000	18, 596 4, 230	2,000	22, 310
Turkey				1, 200	1,004 1,000	18, 923 6, 019
	970	6, 320	1, 724	12, 425	425	3, 912
Total	34, 626	175, 970	43, 738	262, 744	86, 122	517, 773

TABLE 29.—Hydraulic cement exported from the United States, 1954-56, by countries of destination-Continued

Country	19	54	19	55	198	56
	Barrels	Value	Barrels	Value	Barrels	Value
Africa:						
British East Africa Liberia Libya	6, 479	\$25, 986	796 8, 953	\$3, 744 38, 569	1, 198 13, 111 894	\$6, 908 51, 172 4, 685
Mozambique Nigeria	1, 554	8, 100	132 250	1, 490 1, 225	632	3, 940
SomalilandOther Africa	963	6, 190	360	3, 181	1, 575 232	7, 409 1, 302
Total	8, 996	40, 276	10, 491	48, 209	17, 642	75, 416
Oceania: Australia British Western Pacific Islands	1, 682	10, 966	1, 330	15, 854	507 3, 440	4, 546 13, 968
New Guinea New Zealand Other Oceania	263 3, 025	2, 992 11, 677	532 5, 332	6, 038 20, 867	1, 064 5, 405 500	13, 087 22, 083 2, 041
Total	4, 970	25, 635	7, 194	42, 759	10, 916	55, 725
Grand total	1, 859, 012	6, 651, 790	1, 795, 448	7, 066, 918	1, 973, 221	7, 249, 818

TECHNOLOGY

Textbook covering the practical aspects of cement-manufacturing processes was published during 1956.8 Two members of the Portland Cement Association compiled a glossary of technical and operational terms in common use at cement plants.9 Interest in the reaction between alkaline sulfates and cement was manifested by the release of a report on tests made by 14 laboratories in cooperation with the ASTM, 10 and by papers relating to alkali aggregates in concrete presented at the fall meeting of the ASTM in Los Angeles 11 and also at the Third International Symposium on the Chemistry of Cement in London.12

The hydration of cement was the subject of investigations in both Europe and America.¹³ The role of gypsum in setting and hardening of portland cement pastes was described.14

Methods used in Germany to improve the efficiency of rotary-kiln operation include control of flame length and draft.¹⁵ A Germanpatented suspension preheater was installed at the Catskill, N. Y.,

⁸ Blanks, Robert F., and Kennedy, Harold L., The Technology of Cement and Concrete: Vol. 1, John Wiley & Sons, Inc., 1956, 422 pp.
9 Clausen, C. F., and Dersnah, W. R., Cement-Plant Glossary: Pit and Quarry, vol. 48, No. 10, April 1956, pp. 112-113, 116-117, 121-122, 125-126; vol. 48, No. 11, May 1956, pp. 160-166, 179, 190.
19 American Society for Testing Materials, A Performance Test for the Potential Sulfate Resistance of Portland Cement: Bull. 212, February 1956, pp. 37-44.
11 Rock Products, New Research in Cement and Aggregates: Vol. 59, No. 11, November 1956, pp. 94, 96.
12 Rockwood, Nathan C., Symposium on Chemistry of Cement: Rock Products, vol. 59, No. 2, February 1956, pp. 35, 132, 134.
13 Copeland, L. E., Specific Volume of Evaporable Water in Hardened Portland Cement Pastes: Jour. Am. Concrete Inst., vol. 27, No. 8, April 1956, pp. 863-874.
Rockwood, Nathan C., Cement and Concrete Under a Microscope: Rock Products, vol. 59, No. 5, May 1956, pp. 23, 106.

Rockwood, Nathan C., Cement and Concrete Under a Microscope: Rock Products, vol. 59, No. 5, May 1956, pp. 23, 106.

Bernal, J. D., Structures of Cement Hydration Compounds: Proc. Internat. Symposium on the Chemistry of Cement, 3d Symposium, London, 1952, pp. 216-260.

Kalousek, George L., Reaction of Cement Hydration at Elevated Temperatures: Proc. Internat. Symposium on the Chemistry of Cement, 3d Symposium, London, 1952, pp. 334-367.

¹⁴ Hansen, W. C., The Properties of Gypsum and the Role of Calcium Sulfate in Portland Cement: ASTM Bull. 212, February 1956, pp. 66-68.

¹⁵ Anselm, Wilhelm, Rational Approaches to Cement Manufacture (translated by C. F. Clausen): Pit and Quarry, vol. 49, No. 1, July 1956, pp. 70-74, 146.

plant of the Alpha Portland Cement Co. Many advantages in fuel economy were claimed to be possible with this closed system of cyclones for utilizing waste heat of the exhaust kiln gases. 16 Remarkable fuel efficiencies and low dust loss have, according to report, been demonstrated in a pilot plant utilizing a traveling grate to carry a pelletized kiln feed through two preheating chambers.¹⁷ The proper selection and installation of kiln lining were discussed as means of conserving fuel in rotary kilns. It was reported that the thermal effect of the heat zone upon magnesite insulating brick in rotary kiln linings was intensified if clinker formation was delayed. 19 Chain systems, installed in the upper one-fifth of the total kiln length, were studied in 75 wet-process cement plants to determine their most efficient and economical arrangement for heat exchange between the kiln gases and the slurry entering the kiln.20

Automatic controls for cement kilns were said to have improved fuel efficiency and cement quality; also automatic loading equipment was reported to have resulted in large economies in raw-material

handling costs.21

Analyses and tests of cements ground from freshly made clinker and from clinker that had been stored for some time showed no characteristic differences in their properties.²² A study of the grindability of cement clinker and limestone was made in Germany.²³

The various types of dust eliminators for cement plants were

reviewed.24

For improved handling of bulk cement, 70 covered hopper cars were ordered by the Lehigh & New England Railroad.

equipment for bulk-loading trailer trucks was described.²⁵

Quarry costs at the Calaveras Cement Co. plant were lowered by use of a crawler-mounted electric rotary drill. The drill jig was equipped with a mast which permitted drilling 33 feet without stopping.26 Underground mining of limestone at the Alpha Portland Cement Co. plant in West Virginia was facilitated by installation of a 12,470-volt transmission line from the surface to a substation 4,000 feet from the portal.27

¹⁶ Nordberg, Bror, Operate Suspension Preheater With Rotary Kiln in Waste-Heat Boller Plant: Rock Products, vol. 59, No. 1, January 1956, pp. 86-94, 96, 98-99, 102, 104-105.
Herod, Buren C., Modernized Catskill Plant of Alpha Portland Cement: Pit and Quarry, vol. 48, No. 7, January 1956, pp. 96-102, 238.
¹⁷ Chemical and Engineering News, Cement—One Barrel at a Time: Vol. 34, No. 24, June 11, 1956, pp.

 ¹⁷ Chemical and Engineering News, Cement—One Barrel at a Time: Vol. 34, No. 24, June 11, 1956, pp. 2906-2908.
 18 Tschirky, Leopold, Insulating Firebrick for Exposed Lining in Rotary Kilns: Rock Products, vol. 59, No. 2, February 1956, pp. 100, 102, 105, 108; vol. 59, No. 3, March 1956, pp. 88-89, 92, 170.
 19 American Ceramic Society Bulletin, Changes in Magnesite Refractories in Rotary Cement Kilns During Delayed Clinker Formation: Vol. 39, No. 8, August 1956, p. 158.
 20 Dersnah, W. R., Chain System Installations in Cement Kilns: Rock Products, vol. 49, No. 5, November 1956, pp. 94, 96-99, 104, 134; vol. 49, No. 6, December 1956, pp. 118-122.
 21 Galvin, Patrick, J., Automatic Controls Increase Cement-Plant Efficiency: Rock Products, vol. 59, No. 3, May 1956, pp. 84-87.
 22 Journal of American Ceramic Society, Tests With Fresh and Matured Cements: Vol. 39, No. 6, June 1956, pp. 111.

²² Journal of American Ceramic Society, 1000 1131 1156, p. 111.

²³ Anderberg, F. O., Grindability of Cement Clinker and Limestone: Rock Products, vol. 59, No. 2, February 1956, p. 142.

²⁴ Journal of Applied Chemistry, Industrial Dust Elimination From Cement Works: Vol. 6, No. 3, March 1956, pp. 313-314.

²⁴ Rock Products, Speeding Up Bulk Loading of Cement Trucks: Vol. 59, No. 11, November 1956, pp. 50.

²⁵ Lenhart, Walter, B., Cost-Cutting Drilling Practices: Rock Products, vol. 59, No. 3, March 1956, pp. 74-76.

<sup>74, 76.
&</sup>lt;sup>27</sup> Mining Engineering, Taking High Voltage Underground: Vol. 8, No. 10, October 1956, pp. 982-983.

331 CEMENT

Studies of portland-pozzolan and slag-lime cements were continued in Europe.²⁸ A Belgian practice of making portland-slag cement by adding the pulverized slag in a slurry form to the sand, aggregate, and portland cement in the concrete mix was used in constructing

dams in Scotland.29

Interest in additives for making lightweight concrete was manifested by test work in Kansas with foaming agents,³⁰ in England with polyvinyl acetate emulsion,³¹ by a report of a bubble-forming emulsion which is whipped to a creamy consistency, 32 and a patent utilizing an aluminum powder to develop hydrogen in the concrete mixture.33

Many articles on prestressed concrete appeared in trade publications during the year, describing various uses and special designs of

this important cement product.

Prestressed concrete was the subject of a short course given at St. Petersburg, Fla., where attention was directed toward the need for a greater care in selection of aggregates and mixing before casting prestressed units.³⁴ The use of prestressed concrete in hollow box girders for bridges in Cuba was described.35 A textbook on prestressed concrete was published in England, 36 and a new method of prestressing concrete pipe was developed in Norway.37

The characteristics of thins-shell concrete structures were discussed in a Russian book 38 and in a similar article in the German press. 39

The use of steel scrap as a coarse aggregate and iron ores as fine aggregate was described as a means of making heavy concrete. 40

WORLD REVIEW

World production increased over 100 million barrels in 1956 for the fourth consecutive year. The increase of 19 million barrels in the United States production was the largest of any country, but increases in Europe and Asia were greater than that in North America.

NORTH AMERICA

Canada.—Intense building activity in Canada resulted in a record output of portland cement, and expansion plans were announced for enlarging the capacity of Canadian cement plants to 34 million barrels

711-712.

American Concrete Institute Journal, General Equations of Shells: Vol. 23, No. 7, January 1957, p. 712.
 Journal of the American Concrete Institute, Proportioning of Mixes for Steel Coarse Aggregate and Limonite and Magnetite Matrix Heavy Concrete: Vol. 27, No. 5, Jan. 5, 1956, pp. 537-548.

Journal of American Ceramic Society, Behavior of Cements Under Attack by Special Alkaline Solutions: Vol. 39, No. 9, Sept. 1, 1956, p. 182.
 American Ceramic Society Bulletin, Influence of the Quality of Portland-Cement Clinker on the Initial Strength of Blast-Furnace Cement: Vol. 39, No. 8, August 1956, p. 167.
 Rock Products, Trief Cement; How Scotland Uses It To Build Dams: Vol. 59, No. 6, June 1956, pp. 98-98, 170, 172.
 Hardy, Ronald G., Some Preliminary Studies on Compositions of Lightweight Structural Shapes by Foam Methods: Georgia Mineral Newsletter, vol. 8, No. 4, Winter 1956, pp. 137-140.
 Bullding Science Abstracts, Polyvinyl Acetate Emulsion As an Addition to Cement: Vol. 29, No. 1, January 1956, p. 5.
 Pit and Quarry, Milkshake Concrete: Vol. 49, No. 5, November 1956, p. 72.
 Ulfstedt, Leo Torsten (assigned to Casius Corp., Ltd., Montreal), Process for Manufacturing Lightweight Concrete: U. S. Patent 2,740,722, Apr. 3, 1956.
 Wright, C. E., Prestressed Concrete—New Developments Here and Abroad: Rock Products, vol. 59, No. 2, February 1956, pp. 196, 200, 204, 206, 208, 210.
 Preston, H. Kent, Design of Prestressed Hollow-Box Girder Bridges: Eng. News-Record, vol. 157, No. 26, Dec. 27, 1956, pp. 34-36.
 Cowan, H. J., Theory of Prestressed-Concrete Design: MacMillan & Co., Ltd., London, and St. Martin's Press, Inc., New York, 1956, 264 pp.
 Schjodt, Rolf, New Way to Prestress Pipe: Chem. Week, vol. 157, No. 25, Dec. 20, 1956, p. 56.
 American Concrete Institute Journal, General Equations of Shells: Vol. 28, No. 7, January 1957, p. 712.
 American Concrete Institute Journal, General Equations of Shells: Vol. 28, No. 7, January 1957, p. 712.
 American Concrete Institute Journal, General Equations of Shells: Vol. 28, No. 7, January 1957, p. 712.

TABLE 30.—World production of hydraulic cement, by countries, 1947-51 (average) and 1952-56, in thousand barrels ¹

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country	1947–51 (average)	1952	1953	1954	1955	1956
North America:						
Canada (sold or used by pro-	200			1.0		
ducers)	14, 101	17, 238	20, 697	20, 885	23, 430	27, 66
Cube	1.841	2, 463	2, 386	2, 468	25, 450	3, 79
Cuba Dominican Republic	340	2, 403 803		938		
Dominican Republic			762		1,372	1, 54
Guatemala	229	358	334	364	463	46
Jamaica		440	592	575	639	78
Mexico	6, 684	9, 757	9,774	10, 261	11, 815	13, 35
Nicaragua	100	111	141	141	170	240
Panama	258	545	469	451	428	410
Salvador Trinidad and Tobago			211	287	334	40
Trinidad and Tobago				141	709	81
United States	218, 203	252, 658	267, 669	275, 857	314, 913	333, 47
Total	241, 756	284, 373	303, 035	312, 368	356, 917	382, 94
outh America:						
Argentina	8, 461	9,076	9, 710	9,850	10, 835	11, 89
Bolivia	229	217	199	193	223	11,00
Brazil	7. 212	9, 493	11, 902	14, 523	15, 948	19, 13
Chile	3, 342	4, 796	4, 468	4, 544	4, 714	4, 52
Colombia	2,814	4, 104	1, 100	4, 044	4, 714	7, 15
Econodor	305	522	5, 119	5, 640	6, 133	
Ecuador	300		534	557	856	89
Paraguay		23	18	41	70	8
Peru	1, 782	2, 175	2, 633	2,832	3, 195	3, 25
Uruguay	1,718	1,759	1,741	1, 741	1, 560	1, 98
Venezuela	2, 093	4, 925	5, 758	7, 112	7, 517	8, 508
Total	27, 956	37, 090	42, 082	47, 033	51, 051	57, 614
Europe:		100				
Albania 2	35	100	117	235	340	440
Austria	5, 705	8, 150	8, 173 27, 124	9, 510	10, 900	11, 35
Belgium	19, 718	24, 104	27, 124	25, 652	27, 493	27, 34
Bulgaria Czechoslovakia	2,779	3, 952	4, 163	4, 632	4,808	5, 03
Czechoslovakia	10, 255	12,958	13, 603	14, 658	16, 564	18, 45
Denmark	4, 802	7, 106	7, 388	7, 165	7, 382	7, 11
Finland	3, 753	4, 556	5, 494	6,098	5, 928	6, 08
France	36, 394	50, 688	53, 063	57, 144	61, 999	65, 58
Germany:	40,001	00,000	00,000	01,111	01, 000	00, 00.
East	2 6, 215	11,609	14,072	15, 245	17, 420	20, 16
West	47. 059		00 160		110 049	115 00
		75, 554	90, 160	95, 443	110,048	115, 26
Greece	1,900	3, 495	4, 116	5, 007	6, 620	7, 21
Hungary	2 3, 280	6, 198	6, 215 2, 767	5, 553	6, 889	5, 86
Ireland	2, 334	2, 697	2, 767	3, 471	4,005	3, 68
Italy	24, 772	39,003	45, 910	51, 368	62,075	63, 25
Luxembourg	674	668	862	885	921	95
Netherlands	3, 465	4, 767	5, 048	5, 699	6, 455	7, 36
Norway	3, 371	4, 139	4, 427	4, 515	4, 867	5, 37
Poland Portugal	12,770	15, 661	19, 314	19, 953	22, 357	23, 658
Portugal	3, 119	4, 263	4, 509	4, 591	4, 568	6,00
Rumania	3, 782	8,795	12, 313	9, 381	11, 727	12, 89
Saar	1, 038	1,395	1,671	1, 618	1, 659	1, 92
Spain	14, 107	17, 367	19, 091	22, 351	25, 400	25, 82
Sweden	10, 220	12, 407	13 700	14, 453	14, 916	14, 95
	6, 315	8, 115	13, 790 9, 270	10, 654	12, 413	13, 95
Switzerland	0, 010	82, 673	93, 813	111, 403	131, 924	145, 99
Switzerland	9 40 000				131 424	145. 99
Switzerland	² 49, 800	02,013				70,00
SwitzerlandU. S. S. RUnited Kingdom	53, 233	66, 355	66, 824	71, 274	74, 511	76, 059
Switzerland	2 49, 800 53, 233 7, 136	66, 355 7, 699				76, 059 9, 11

See footnotes at end of table.

333

TABLE 30.—World production of hydraulic cement, by countries, 1947-51 (average) and 1952-56, in thousand barrels —Continued

Country	1947-51 (average)	1952	1953	1954	1955	1956
sia:						
Burma	\$ 29	240	240	358	352	2 350
Ceylon	4 211	358	375	493	446	498
China	2 3, 710					
Hong Kong		16, 769	22, 750	26, 971	26, 385	36, 939
Hong Kong	334	399	375	586	686	709
India Indochina (Viet-Nam)	5 13, 005	21,073	22, 515	26, 203	26, 309	29, 35
Indochina (Viet-Nam)	756	1, 319	1,706	1, 489	1,524	3 1, 320
Indonesia	2 280	809	874	862	2 880	610
Iran	346	311	381	364	469	2 6 1, 180
Iraq	* 176	610		1, 161	1,859	2 2, 870
Israel	1, 818	2,615	1,038 2,726	3, 301	4, 104	3, 594
Japan						
	20, 387	41, 729	51, 409	62, 591	61,846	76, 364
Jordan		, <u>-</u>		369	2 500	528
Korea:						1
North	3 1, 230	(7)	(7)	(7)	(7)	2 3, 520
Republic of	94	(7) 211 1 671	258	317	328	270
Lebanon	1, 378	1, 671	1,788	1,964	2, 463	2,86
Malaya	2,010	1,011	188	504	639	610
	8 8 2, 474	9 100		9.000		
Pakistan	** 2, 4/4	3, 160	3, 553	3, 969	4,052	4,609
Philippines	1, 237	1,818	1,706	1,818	2, 345	2, 562
Syria	340	885	1,313	1,460	1,548	1, 911
Taiwan (Formosa)	1,689	2, 615	3,049	3, 143	3,459	3, 459
Thailand (Siam)	874	1, 448	1,689	2, 252	2, 263	2, 293
Turkey	2, 175	2, 691	2,832	3, 981	4, 814	5, 687
Total 2	52, 540	101, 610	122, 520	147, 090	149, 380	182, 100
frica:				•		
Algeria	1,360	2,844	2,896	3, 706	3, 840	3, 923
Angola	-, -, -,	-,	170	246	410	3 410
Belgian Congo	897	1, 407	1, 454	2,029	2,375	2 2, 640
Egypt.	5, 224	5, 553	6, 432	7, 828	8, 039	
Tithiania 9	0, 221			1,040		7, 921
Ethiopia 2	41	35	59	164	164	164
French Morocco	1, 694	2, 551	3, 577	3, 835	4,016	3, 436
French West Africa	* 311	469	352	487	756	803
Kenya	100	193	211	416	768	756
Madagascar	35					
Mozambique	287	487	510	598	616	885
Rhodesia and Nyasaland, Fed-			0.10		0.10	000
eration of:						
Northern Rhodesia	• 152	334	375	393	534	2 530
Northern Knodesia						
Southern Rhodesia	592	1, 120	1,519	1, 935	2, 363	2 2, 345
Spanish Morocco				29	246	2 290
Tunisia	938	1, 220	1, 325	1,665	2, 246	2, 111
Uganda		. 	117	246	293	358
Union of South Africa	9, 059	11, 850	12, 448	12, 676	13, 697	14, 482
Total	20, 690	28, 063	31, 445	36, 253	40, 363	2 41, 100
ceania:						
	8 467	7,956	0 270	11 900	11 669	12, 530
Australia New Zealand	6, 467	1, 900	9, 370	11, 222	11, 662	14,000
New Zealand	1, 337	1, 542	1,642	1, 894	2, 398	2, 644
Total	7, 804	9, 498	11,012	13, 116	14, 060	15, 174
World total (estimate)	688, 750	945, 100	1, 050, 900	1, 142, 000	1, 275, 100	1, 379, 900

¹ This table incorporates a number of revisions of data published in previous Cement chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

² Estimate.

² Estimate.
3 Average for 1949-51.
4 Average for 1950-51.
5 Pakistan included with India through 1947.
6 Year ended March 20 of year following that stated.
7 Data not available; estimate by senior author of chapter included in total.
8 Average for 1948-51.
9 Average for 1 year only, as 1951 was first year of commercial production.

annually. Operations at the Canada Cement Co., Ltd., plant at Fort Whyte, Manitoba, were described. The French Lafarge cement group announced plans to erect a cement plant at Lulu Island, Vancouver. Shipments were made from the new plant of the Ireland Cement Co. at Edmonton, Alberta.⁴² A British-financed expansion program in British Columbia included a new 750,000barrel-per-year plant of the International Cement Co. at Chilliwack. A new 800,000-barrel cement plant was officially opened September 21, 1956, by the Saskatchewan Cement Corp., Ltd., Regina, Saskatchewan. 43 A new plant of the St. Lawrence Cement Co. at Clarkson, Ont., was opened 3 months ahead of schedule.44

Haiti.—The plant of the Ciment d'Haiti was unable to supply more than the building trades' daily requirements. Inventories were

reduced.45

Mexico.—Mexican production of cement increased 1½ million barrels for the second successive year. Plans for new plants in the States of Sinaloa, Baja California, and Yucatan and expansion of plants in the States of Veracruz and Chihuahua were under consideration.46

SOUTH AMERICA

Brazil.—Construction programs including power dams and new highways were expected to provide the stimulant necessary to double the domestic production of cement as set forth in the President's

inaugural speech in February.

Peru.—Because of a shortage of domestic cement to meet the needs of accelerated construction, temporary exemption from duty was granted for imported cement at some seaports.47 The Cemento Andino S. A. announced plans to build a plant in the Central Sierra region of Peru.48

Venezuela.—Construction of a new cement plant at Chichiriviche was in progress in 1956. Machinery for the plant was obtained from

Italv.49

EUROPE

Representatives of the United States cement industry visited plants in Belgium and West Germany to study European production methods.50

France.—The export market for French cement has decreased for several years. Development of cement industries in the French Colonial States, competition from the Soviet Bloc countries in the

⁴¹ Dies, A. S., Canada Cement Expands: Pit and Quarry, vol. 49, No. 2., August 1956, pp. 104-105, 108-110, 112-113, 116-118.

Lies, A. S., Canada Cement Expands: Pit and Quarry, vol. 49, No. 2., August 1956, pp. 104-105, 108-110, 112-113, 116-118.

Gutschick, Kenneth A., Canada Cement's Largest Kiln Doubles Capacity of Fort Whyte Plant: Rock Products, vol. 59, No. 8, August 1956, pp. 94, 96, 99, 101, 104, 106, 204.

2 Canadian Mining Journal, New Cement Plant: Vol. 77, No. 5, May 1956, pp. 118.

3 Precambrian, \$8,000,000 Cement Plant Opened: Vol. 29, No. 10, October 1956, pp. 15, 34.

4 Rock Products, Start Ontario Cement Plant: Vol. 59, No. 11, November 1956, pp. 18.

Northern Miner, Toronto, Canada's Newest Cement Plant: Vol. 42, No. 33, November 8, 1956, p. 20.

Pit and Quarry, St. Lawrence Cement Co. Beats Scheduled Opening of New Plant by 3 Months: Vol. 49, No. 6, December 1956, p. 115.

45 Foreign Commerce Weekly, vol. 55, No. 18, Apr. 30, 1958, p. 18.

46 Foreign Commerce Weekly, Mexican Cement Firm Plans to Construct New Plant: Vol. 55, No. 15, Apr. 19, 1956, p. 10.

Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, p. 23.

17 Rock Products, Peru Exempts Cement Duty: Vol. 59, No. 5, May 1956, p. 46.

18 Rock Products, To Build Cement Plant: Vol. 59, No. 5, May 1956, p. 46.

18 Rock Products, Venezuela Cement Plant: Vol. 59, No. 1, January 1956, p. 61.

20 Pit and Quarry, European Cement Plants Visited by U. S. Industrialists: Vol. 49, No. 5, November 1956, p. 23.

^{1956,} p. 23.

335 CEMENT

Near East, and loss of the Indochina market to Japan have caused exports to drop below the 10-12 percent of total production considered as necessary to the economy of the French cement industry. Efforts were made to increase exports to the American Continent.⁵¹

Germany, West.—A survey of the West Germany cement industry showed increased efficiency amounting to nearly 50 percent in the output per workman through improved technical installations. Nearly 20 percent of the portland cement produced was portlandslag cement containing 30 to 50 percent slag. The 91 plants in Germany produced a little over one-third as much cement as did the 164 plants in the United States.⁵²

Iceland.—Plans were submitted for a \$2 million cement plant to

be constructed by a Danish firm.⁵³

Norway.—New plants at Dalen and Nordland that recently began production increased the capacity of the Norwegian cement plants beyond Norwegian consumption.54

Portugal.—The Portuguese Industrial Association requested reduction of the export duty on cement to assist the domestic industry

to recover its export markets.55

· U. S. S. R.—The expansion of the Russian cement industry into undeveloped areas was described as part of sixth Five Year Plan. Under the fifth Five-Year Plan (1951-55) the Soviet output of cement was doubled, and the new plan set a goal of double the 1955 production (132 million barrels). Production reports for 1956 indicated that output increased only 11 percent instead of 27 percent as $planned.^{56}$

Yugoslavia.—Completion of a cement plant at Paracin raised the total number of operating plants to 19. Exports were nearly doubled in 1956 compared with 1955; exports to the United States were nearly

four times greater in 1956 than in 1955.57

ASIA

Burma.—It was reported that domestic cement was produced for \$1.50 per barrel compared with \$2.50 per barrel for imported cement. The plant at Thayetmyo was being enlarged, and a new plant at Tegyigone was advocated.58

China.—It was reported in a Communist newspaper that three cement plants under construction were to be in operation in 1957.⁵⁹

India.—Associated Cement Companies, Ltd., announced tentative plans for expanding 7 of its plants and for constructing 5 new plants to meet the increasing demand for cement. 60 Bids from Russia and Rumania to supply 2½ million barrels of cement were accepted by the Indian Government.61

^{**}Si Foreign Commerce Weekly, French Cement Production at Alltime High; Loss of Export Markets Arouses Concern: Vol. 56, No. 16, Oct. 15, 1956, p. 27.

**Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 2, August 1956, pp. 21-30.

**Rock Products, Iceland Cement Plant: Vol. 59, No. 6, June 1956, p. 55.

**Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 1, January 1957, p. 17.

**Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, p. 24.

**Katkoff, V., Russians Have Doubled Their Cement Output: Rock Products, vol. 59, No. 10, October 1956, pp. 72-77.

**Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 1, January 1956, pp. 17-18.

**New Times of Burma, Cement Industry in Burma: Oct. 8, 1956.

**Bureau of Mines, Division of Foreign Activities: Monthly report, December 1956.

**Pit and Quarry, Indian Cement Association Announces Expansion Plans: Vol. 49, No. 4, October 1956, p. 37.

p. 37.
 61 Rock Products, India Buys Cement: Vol. 59, No. 6, June 1956, p. 55.

Indonesia.—Equipment for Indonesia's second cement plant under construction at Gresik was supplied by an American firm. Indonesian technicians were trained in the United States to prepare them for management of the new plant.62

Iran.—A cement plant at Doroud was under construction with

equipment supplied by an English firm.63

Japan.—Continued expansion in cement production resulted in Japan ranking fourth in the world in 1956. The Muroran plant

of the Fuji Cement Co. was described.64

Malaya.—Malaya's only cement plant at Rawang in the central area operated at full capacity of 600,000 barrels a year to supply cement for the Klang Gates Dam, designed by the United States Bureau of Reclamation. Shortage of domestic cement led to the proposal of a new plant in the Ipoh area as general building in the country continued to expand. 65

Pakistan.—The Zeal-Pak cement plant at Hyderdad began production January 15, 1956. The 700,000-barrel-per-year plant was built by the Pakistan Industrial Development Corp. with financial aid from New Zealand under the Colombo Plan. 66 A second 700,000-barrelcapacity plant, the Maple Leaf, at Karachi, began production on March 19, 1956. This plant was also built by the Pakistan Industrial Development Corp., but with financial aid from Canada under the Colombo Plan. The development corporation was considering plans for 2 more cement plants of 900,000 barrels capacity each at Sakur and Karachi.67

Philippines.—The Republic Cement Corp. began constructing a 900,000-barrel-capacity plant near Manila. Machinery was furnished

by a German manufacturer.68

Taiwan (Formosa).—Consumption of cement was limited by the Government to essential projects in 1956, but it is expected to increase when construction of the Shihmen Dam is in progress.⁶⁹

Thailand.—The Thailand Irrigation Department awarded a contract for the construction of a cement plant of 300,000 barrels per year

capacity at Tha Klee near Chainat.70

Turkey.—A large-scale cement plant building project was undertaken by the Turkish Cement Industry Corp. with Government endorsement and the cooperation of private enterprise. Three plants were completed, and 10 were under construction for completion in Plans for eight more plants were announced.⁷¹ 1957.

AFRICA

Egypt.—A 700,000-barrel cement plant was under construction at Helwan by the National Cement Co. Iron dross from the Iron & Steel Co., as well as the plant facilities, will be utilized by the cement

Rock Products, Javanese Learn About Cement: Vol. 59, No. 11, November 1956, p. 44.
 Rock Products, Cement Plant in Iran: Vol. 59, No. 6, December 1956, p. 156.
 Chemical and Engineering News, Japanese Cement Plant in Operation: Vol. 34, No. 51, Dec. 17, 1956,

p. 6208.

50 U. S. Embassy, Singapore, Malaya, State Department Dispatch 121: Sept. 14, 1956, p. 14.

51 U. S. Eroign Commerce Weekly, New Cement Plant Begins Manufacturing in Pakistan: Vol. 55, No. 9, Feb. 27, 1956, p. 19.

62 Pit and Quarry, Pakistan Cement Plant Goes Into Production: Vol. 48, No. 11, May 1956, p. 23.

63 Pit and Quarry, Republic Cement Corp. Building Plant Near Manila: Vol. 48, No. 7, January 1956,

Ph Blue Quarry, Repaired
 52.
 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 6, June 1956, p. 25.
 Rock Products, New Thalland Plant: Vol. 59, No. 12, December 1956, p. 170.
 Rock Products, Turkish Cement Program: Vol. 59, No. 2, February 1956, p. 44.

337CEMENT

The Czechoslovak Government contracted to construct the

plant and supply the mechanical equipment.72

Ghana.—Owing to lack of extensive limestone deposits suitable for cement manufacture, plans were announced to erect a clinker-grinding plant at Takoradi, using imported clinker and gypsum. Financing was divided between the Colonial Development Corp., the Ghana Government, and the Tunnel Cement Co.; the cement company was to manage the plant. Cement imported from Israel sold at nearly 25 percent below the market price. 73

Rhodesia and Nyasaland, Federation of.—The Pretoria Portland Cement, Ltd., added a fourth kiln at its plant and Chilanga Cement, Ltd., added a second kiln at its Lusaka plant. The latter plant supplied cement for construction work at the Kariba hydroelectric

installation 74

OCEANIA

Austrialia.—A new kiln was added to the Goliath Portland Cement Co. plant at Railton, increasing its annual capacity to 900,000 barrels.75

New Zealand.—Gippsland Industries, Ltd., an Australian firm. designed and supervised the installation of vertical kilns in two new cement plants at Te Kuiti and Orawia of the Waitomo Cement, Ltd.. and the Southland Cement, Ltd., respectively. The New Zealand Cement Co. began construction of a plant at Westport with equipment supplied by F. L. Smidth & Co.77

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 4, October 1956, pp. 25–26.
U. S. Consulate General, Accra, Ghana, State Department Dispatch 115: Nov. 3, 1956.
Mining Journal (London), vol. 246, No. 6303, June 8, 1956, p. 711.
Rock Products, Tasmanian Plant Enlarged: Vol. 59, No. 12, December 1956, p. 156.
Industrial & Mining Standard (Australia), Major Projects: Vol. 111, No. 2818, Sept. 6, 1956, p. 12.
Pit and Quarry, New Zealand Firm to Back 100,000-Ton-per-Year Plant: Vol. 48, No. 7, January 1956, p. 36.</sup>

Chromium

By Wilmer McInnis 1 and Hilda V. Heidrich 2

NITED STATES demand for chromium continued upward in 1956 to establish a new high in consumption of chromite ore and concentrate. Metallurgical uses of chromite increased the most (22 percent) over consumption in 1955, but refractory and chemical uses were higher also. The gain in metallurgical consumption was due chiefly to Government acquisition. Both domestic production and imports of ore and concentrate during 1956 were second highest. Consumption of chromium metal and chromium alloys decreased slightly compared with consumption in the preceding year.

TABLE 1.—Salient statistics of chromite in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Domestic production (shipments)	2, 492	21, 304	58, 817	163, 365	153, 253	² 207, 662
	1, 316, 978	1, 708, 969	2, 226, 631	1, 471, 037	3 1, 833, 999	2, 175, 056
Total new supply	1, 319, 470	1, 730, 273	2, 285, 448	1, 634, 402	\$ 1, 987, 252	2 2,382,718
	2, 557	1, 531	1, 166	864	1, 341	1,727
	914, 802	1, 185, 460	1, 335, 755	913, 973	1, 583, 983	1,846,600
	602, 855	754, 299	1, 015, 878	1, 267, 817	1, 109, 924	1,226,578
	2, 500, 000	3, 700, 000	4, 300, 000	3, 600, 000	3 3, 800, 000	4,200,000

Revised figure.

DOMESTIC PRODUCTION

United States production (shipments) of 161,952 short tons of chromite in 1956 was 6 percent higher than during the preceding year and comprised 7 percent of total domestic supply. In addition, 45,710 short tons of chromite concentrate (recovered by Pacific Northwest Alloys, Inc., during 1955 and 1956 from Government-owned low-grade ore and concentrate stockpiled near Coquille, Oreg., during World War II) is included as 1956 production data.

Virtually the entire output of domestic chromite during 1956 was purchased by the Government at incentive prices under the Purchase Program for Domestic Ores and Concentrates and under terms of a

contract with American Chrome Co.

Chromite was shipped from 138 mines and mills during 1956; 97 were in California, 38 in Oregon, and 1 each in Montana, Washington,

Including Alaska.
 Includes 45,710 short tons of concentrate produced in 1955 and 1596 from low-grade ore and concentrate stockpiled near Coquille, Oreg., during World War II.

¹ Commodity specialist. ² Statistical assistant.

and Alaska. About three-fourths of the total output was submetallurgical-grade concentrate that averaged 38.5 percent Cr₂O₃, with a Cr: Fe ratio of 1.7: 1, derived from the ores of the Mouat chrome mine in Stillwater County, Mont. Virtually all ore and concentrate shipped in California met minimum Government purchase specifications, and all reported production in Oregon, Washington, and Alaska was above the minimum requirements of the purchase specifications. The average grade of total ore and concentrate shipped, on a dry-weight basis, was 39.4 percent Cr₂O₃.

Over half of the chromite produced in California in 1956 was from four mines (Lambert, Butler Estate No. 1, Castro, and Trinidad Group). The Mistake mine—another major source of chromite in the State in 1955—was reported to have been closed because of litigation involving a township line.³ A 300-ton mill and other facilities were reported to have been purchased at a cost of over \$200,000 for

installation at the Chrome Queen mine in Yreka, Calif.4

The Kenai Chrome Co. completed constructing a \$70,000 mill for concentrating lower grade chromite ores at its Star 4 property on Red

Mountain near Seldovia, Alaska.⁵

The Defense Minerals Exploration Administration (DMEA) continued to grant assistance to legal entities on approved projects for the exploration for chromite within the United States and its Territories or possessions on a participating basis to the extent of 50 percent of the approved exploration cost, with repayment to the Government from income on future production. DMEA received only three applications for assistance during 1956.

TABLE 2.—Chromite production (mine shipments of ore and concentrate) in the United States, 1952-56, by States, in short tons, gross weight

				198	55	1956		
State	1952	1953	1954	Shipments	Value	Shipments	Value	
Alaska	14, 713 6, 591	26, 512 26, 089 6, 216	2, 953 30, 661 123, 096 6, 655	7, 082 22, 105 118, 703 5, 341 22	\$625, 340 1, 834, 277 3, 718, 882 463, 514 1, 706	7, 193 27, 082 118, 780 1 54, 577 30	\$711, 481 2, 191, 956 3, 806, 926 1 2, 001, 083 3, 330	
Total	21, 304	58, 817	163, 365	153, 253	6, 643, 719	1 207, 662	1 8, 714, 776	

¹ Includes 45,710 short tons of concentrate produced in 1955 and 1956 from low-grade ore and concentrate stockpiled near Coquille, Oreg., during World War II.

An amendment in August 1956 extended the domestic purchase program for Metallurgical-grade chromite to June 30, 1959, and provided for acceptance of chromite ore and concentrate at locations other than the Grants Pass, Oreg., Purchase Depot. According to General Services Administration (GSA), on December 31, 1956, 137,700 long dry tons had been accepted since inception of the program in August 1951, which provided for acceptance of up to 200,000 long dry tons of chromite ore and concentrate.

Mining World, Court Dispute Closes Open-Pit Chrome Producer: Vol. 18, No. 4, April 1956, p. 81.
 Mining Congress Journal, Chrome Mining Equipment: Vol. 42, No. 11, November 1956, p. 136.
 Mining World, vol. 19, No. 1, January 1957, p. 95.

TABLE 3.—Prices offered by GSA for domestic chromite 1951-59, per long dry ton 1

(Prices shown are for lump ore; payments for fines and concentrates are \$5 a ton lower)

Chromium:iron		Chromic oxide (Cr ₂ O ₃), percent											
ratio	42	43	44	45	46	47	48	49	50	51	52	53	54
5	\$117	\$120	\$123	\$126	\$129	\$132	\$135	\$139	\$143	\$147	\$151	\$155	\$159
4	113	116	119	122	125	128	131 127	135 131	139 135	143 139	147 143	151 147	150 151
3 2	109	112 108	115 111	118 114	121 117	124 120	127	127	131	135	139	147	14
1	101	104	107	110	113	116	119	123	127	131	135	139	14
0	97	100	103	106	109	112	115	119	123	127	131	135	139
9	94	97	100	103	106	109	112	116	120	124	128	132	13
8	91	94	97	100	103	106	109	113	117	121	125	129	13
7	88	91	94	97	100	103	106	110	114	118	122	126	13
<u>6</u>	85	88	91	94	97	100	103	107	111	115	119	123 120	12 12
5	82 79	85 82	88 85	91 88	94 91	97 94	100 97	104 101	108 105	112 109	116 113	117	12
4 3	76	79	82	85	88	91	94	98	103	106	110	114	ii
									99		107	iii	11
1	70	73	76	79	82	85	88	92	96	100	104	108	11
0	67	70	73	76	79	82	85	89	93	97	101	105	10
2 1			79 76 73		85 82 79				96			100 104	100 104 108

¹ Fractions appearing on analysis reports are prorated in computing premiums and penalties.

CONSUMPTION AND USES

Domestic consumption of chromite during 1956 increased 17 percent above 1955 to a new alltime high of 1.8 million short tons of ore and concentrate that averaged 43.5 percent Cr₂O₃ (550,000 tons of chromium). Consumption by the metallurgical and refractory industries reached new heights, but the quantity of ore and concentrate used by the chemical industry was 19 percent below the high of 199,000 tons reached in 1951. The spectacular increase in domestic consumption of chromium contained in the three grades of chromite (Chemical, Metallurgical, and Refractory) used during 1940–56 is shown in figure 1. The average annual increase during those years represented a cumulative rate of almost 8 percent.

Ore and concentrate consumed by the metallurgical industry during the year totaled 1,212,000 tons that averaged 46.8 percent Cr₂O₃ (388,000 tons chromium), of which 1,179,000 tons was used in producing 491,759 short tons of chromium alloys and chromium metal and 33,000 tons was added direct to steel. Of the quantity of ore used in producing alloys and metal, 973,000 tons (47.9 percent Cr₂O₃) was Metallurgical-grade, 74,000 tons (35.5 percent Cr₂O₃) Refractory-grade, and 132,000 tons (44.0 percent Cr₂O₃) Chemical-grade chromite. Of the metallurgical ore used, 69 percent had a Cr:Fe ratio of at least 3:1, 26 percent had less than 3:1 but at least 2:1, and 5 percent had less than 2:1.

The refractory industry consumed 475,000 short tons of ore that averaged 34.4 percent Cr₂O₃ (112,000 tons chromium) in making chrome bricks, cements, and other chromium refractories that were used in repairing and lining open-hearth and other types of furnaces. A new basic refractories plant at Columbiana, Ohio, was opened by Kaiser Aluminum & Chemical Corp. during the year, and Harbison-Walker Refractories Co. began to construct a plant at Hammond, Ind., to make chrome and other refractory products.⁶

⁶ American Metal Market, Harbison-Walker Refractories to Build New Plant at Hammond, Ind.: Vol. 63, No. 143, July 27, 1956, p. 8.

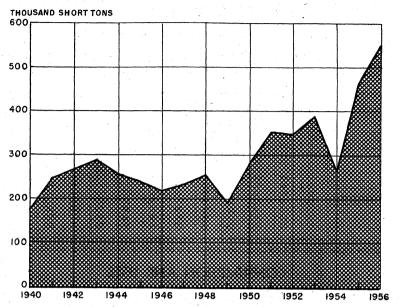


FIGURE 1.—United States reported consumption of chromium contained in chromite ore and concentrate, 1940-56.

Chemical-grade ore consumed by the chemical industry in manufacturing 120,208 short tons of chromium chemicals (sodium bichromate equivalent) totaled 160,000 short tons that averaged 45.4 percent Cr₂O₃ (50,000 tons chromium). The chemicals were used in pigments, electroplating, metal-surface cleaning, leather tanning, chemical reagents, and production of exothermic chromium. The chromium pigments found applications in paints, printing inks, linoleum, plastics, rubber, and various other products.

TABLE 4.—Consumption of chromite and tenor of ore used by primary consumer groups in the United States, 1947-51 (average) and 1952-56, in short tons

	Metallurgical		Refra	Refractory		mical	Total	
t	Gross weight (short tons)	Average Cr ₂ O ₈ (per- cent)	Gross weight (short tons)	Average Cr ₂ O ₃ (per- cent)	Gross weight (short tons)	Average Cr ₂ O ₃ (per- cent)	Gross weight (short tons)	Average Cr ₂ O ₃ (per- cent)
1947-51 (average) 1952 1953 1954 1955 1956	426, 936 676, 624 742, 822 502, 278 993, 653 1, 211, 914	47. 8 47. 1 46. 3 46. 3 46. 5 46. 8	340, 430 387, 085 441, 155 278, 324 431, 407 474, 562	34. 2 33. 8 33. 6 34. 3 34. 4 34. 4	147, 436 121, 751 151, 778 133, 371 158, 923 160, 124	44. 5 44. 6 44. 8	914, 802 1, 185, 460 1, 335, 755 913, 973 1, 583, 983 1, 846, 600	42. 0 42. 9 42. 7 42. 4 43. 0 43. 5

Slightly less chromium alloys and chromium metal were consumed in 1956 than in the preceding year. Of the 297,000 tons consumed, almost half was low-carbon ferrochromium that averaged 67.1 percent chromium and about a fourth was high-carbon ferrochromium that averaged 64.4 percent chromium. Ferrochromium-silicon, exothermic

and miscellaneous alloys, and metal containing about 20 percent of

the total chromium comprised the remainder.

The chromium content of all chromium alloys and chromium metal reported consumed during the year was 178,400 short tons of which 115,200 was used in stainless steels, 52,300 tons in high-speed and other alloy steels, 8,300 tons in high-temperature alloys, and 2,600 tons was used in other chromium-bearing alloys.

TABLE 5.—Consumption of chromium alloys and chromium metal in the United States, 1952-56, by major end uses

en Perjod	Chro (g	mium proc ross weigh	lucts consu t, short tor	imed is)		Percent consumed in—				
	Low- carbon Fe-Cr and Fe-Cr-Si	High- carbon Fe-Cr	Other ¹	Total	Stain- less steel	High- speed steel	Other alloy steels	High- tem- pera- ture alloys	Other uses	
1952 2 1953 1954 1955 1956	162, 727 176, 896 132, 190 181, 026 192, 061	60, 684 67, 794 48, 359 80, 821 69, 446	35, 605 39, 787 25, 839 38, 713 35, 340	259, 016 3 284, 477 206, 388 300, 560 296, 847	63. 3 63. 2 67. 3 65. 8 63. 3	0.4 .4 .4 .5 .6	30. 3 31. 0 26. 4 28. 5 30. 3	4.1 3.7 3.6 3.3 4.0	1. 1 2. 3 1. 4	

¹ Comprises chromium briquets, exothermic chromium additives, chromium metal, and miscellaneous chromium alloys.
2 End-use data for earlier years not available,

² End-use data for earner years ³ Revised figure.

TABLE 6.—End use of individual chromium ferroalloys and chromium metal in the United States, 1956 (percent)

Alloy	Stainless steel	High- speed steel	Other alloy steel	High- tem- perature alloys	Other
Low-carbon ferrochromium High-earbon ferrochromium	77. 3 47. 5	0.3 1.7	16. 0 46. 1 5. 0	6.1 1.7 13.5	0. 3 3. 0 81. 5
Chromium briquets. Chromium metal Exothermic ferrochromium silicon Exothermic ferrochromium (low and high carbon) Low-carbon ferrochromium-silicon Other chromium alloys !	2.5 .3 .1 91.5	. 5	8. 4 97. 1 98. 0 7. 6 29. 8	78.6 	10. 9 2. 6 1. 7 . 3 70. 2

¹ Includes V-5, alloy, chrome-silicon alloy, ferronickel chrome, and other miscellaneous chromium alloys.

STOCKS

All grades of chromite stocks at consumers' plants at the end of 1956 totaled 1,226,000 short tons averaging 42.1 percent Cr_2O_3 and were equivalent to an 8-month supply at the rate of consumption during the year. Metallurgical-grade stocks averaged 46.6 percent Cr_2O_3 , Refractory grade 34.4 percent Cr_2O_3 , and Chemical-grade 44.7 percent Cr_2O_3 . Stocks of Metallurgical and Refractory grades were 2 percent and 38 percent, respectively, higher than at the close of the preceding year, but Chemical-grade stocks were 8 percent lower.

Producers' stocks of chromium alloys and chromium metal at the end of 1956 were 56,000 short tons, a 47-percent increase over the previous year-end stocks, and consumer stocks totaled 37,000 short

tons, a 29-percent increase.

Stocks of chromium chemicals at producers' plants totaled 13,000 short tons, sodium bichromate equivalent, at the end of the year compared with 8,000 short tons at the end of 1955.

TABLE 7.—Stocks of chromite at consumers' plants, December 31, 1952-56, in short tons

Grade	1952	1953	1954	1955	1956
Metallurgical Refractory Chemical	364, 013 269, 933 120, 353	607, 724 259, 896 148, 258	803, 889 257, 451 206, 477	628, 244 313, 189 168, 491	640, 277 431, 285 155, 016
Total	754, 299	1, 015, 878	1, 267, 817	1, 109, 924	1, 226, 578

PRICES AND SPECIFICATIONS

E&MJ Metal and Mineral Markets quoted prices for chromite ore and concentrate were \$3 to \$20 per long ton higher at the end of 1956 than at the beginning of the year. Rhodesian ore and concentrate prices were reported to have advanced most, followed by prices on those from Turkey, Union of South Africa, and Pakistan.

on those from Turkey, Union of South Africa, and Pakistan.

As derived from reported values of United States imports of chromite, the average values per long ton at foreign ports were: Metallurgical grade, \$33; Refractory grade, \$17; and Chemical grade, \$14.

Quoted prices for ferrochromium in carlots, f. o. b. destination continental United States, at the end of 1956 were: High-carbon ferrochromium (4-9 percent carbon, 65-70 percent chromium), 27.75 cents a pound of contained chromium; low-carbon ferrochromium (0.06 percent carbon, 67-72 percent chromium), 39.50 cents a pound of contained chromium; and special ferrochromium (0.01 percent carbon, 63-66 percent chromium), 35.75 cents a pound of contained chromium. Commercial-grade electrolytic chromium metal (99 percent minimum) and 97-percent-grade chromium were quoted at \$1.29 a pound delivered at the year end. Chromium containing 9-11 percent carbon was quoted at \$1.38 a pound delivered on December 31, 1956.

TABLE 8.—Price quotations for various grades of foreign chromite in 1956
[E&MJ Metal and Mineral Markets]

Source	Cr ₂ O ₃	Cr: Fe	Price per l	ong ton 1
	(percent)	ratio	Jan. 1	Dec. 31
Pakistan. Rhodesia. Do Do South African (Transvaal). Do Turkey. Do	48 48 48 48 48 44 48 46	3:1 3:1 2.8:1 	* \$49-\$50 4 45- 46 4 33- 35 4 33- 35 31- 32 23. 50- 24. 50 52- 53 49. 50- 51	2 \$52-\$53 55- 58. 50 52- 56 46- 49. 75 38- 39 26. 50- 27. 50 59- 61 56- 58

¹ Quotations are on a dry basis, subject to penalties if guarantees are not met, f. o. b. cars, east coast ports.
2 Nominal.

Lump ore.

Long-term contract.
Lump and concentrate.

TABLE 9.—National stockpile purchase specifications

							2 114		
				Percent b	y weight,	dry basis			
Grade	Cr ₂ O ₃ , mini- mum	Fe, maxi- mum	Cr: Fe ratio, mini- mum	Cr ₂ O ₃ + Al ₂ O ₃ , mini- mum	SiO ₂ , maxi- mum	S, maxi- mum	P, maxi- mum	CaO, maxi- mum	MgO
Metallurgical: 1 Refractory 2 Chemical 4	48 31 44	12	3:1	60	8. 0 5. 5 5. 0	0.08	0.04	1.0	(8)
Oncimical	77				3.0				

forth in the specification.

3 Not specified but to be determined for each lot and reported.

4 Specification P-65, June 1, 1949. Material supplied against this specification shall be friable in nature

TABLE 10.—National stockpile specifications for chromium metal and chromium alloy

				Percent by w	eight			
	Cr min. except as indicated	Fe, max.	Al, max.	C max., except as indicated	Si max., except as indicated	S, max.	P, max.	Pb, max.
Chromium metal: 1 Electrolytic Exothermic	99. 20 98. 75	0. 20 . 27	0. 01 . 25	0. 02 . 06	0. 01 . 20	0.03	0.02	0.003
Ferrochromium: High-carbon ² Low-carbon ³	65. 0 65. 0			4.0 to 6.0	1. 50 1. 50	.10	.04	
Ferrochromium-silicon 4	39.0 to 41.0			. 05	42.0 to 46.0	. 05	. 05	

		- 1	Percent	by weigl	ht	
	Cu, max.	O+ N+H, max.	O max.	N, max.	H, max.	Other elements max.
Chromium metal: ¹ Electrolytic Exothermic	0. 01 . 02	0.12	0.55 .08	0.03 .04	0.008	0. 05 . 05
Ferrochromium: High-carbon ² Low-carbon ³						
Ferrochromium-silicon 4						

¹ Specification P-11-R1, June 4, 1956. All chromite shall be lumpy and shall be hard, dense, nonfriable material of which not more than 25 percent shall pass a 1-inch sieve (ASTM Designation E11). Chromite ore of a friable nature, regardless of an initially lumpy appearance, shall be rejected.

² Specification P-12-R1, July 1, 1955. Chromite shall be lump ore, and not more than 20 percent by weight shall pass a U. S. Standard Sieve No. 12 (Tyler Standard Sieve Mesh No. 10). Chromite ores from areas other than the Philippines and Cuba shall, in addition to meeting these specifications, meet the requirements for satisfactory refractory properties as determined by tests performed at the direction of the Government which will probably require from 6 months to a year, and other specific requirements set forth in the specification.

Specification P-96, Oct. 1, 1956. All electrolytic chromium metal shall pass a 2-inch sieve, and all exothermic chromium metal shall pass a 1-inch sieve (ASTM Designation: E11).
 Specification P-11b-R, Oct. 19, 1954. High-carbon ferrochromium shall be furnished in lump sizes, 1 inch and larger. The Government shall specify the lump sizes.
 Specification P-11a, Oct. 19, 1954. Low-carbon ferrochromium shall be furnished in lump sizes,
 Smesh or larger. The Government shall specify the lump sizes.
 Specification P-11c, Mar. 13, 1956. All ferrochromium-silicon shall be furnished in lump sizes,
 Specification P-11c, Mar. 13, 1956. All ferrochromium-silicon shall be furnished in lump sizes,

FOREIGN TRADE 7

Imports.—United States imports of chromite during 1956—the second highest in history—were 19 percent higher than in 1955. Although 14 countries shipped chromite to the United States during the year, 92 percent was from the Philippines (31 percent), Turkey (24 percent), Union of South Africa (21 percent), and Federation of Rhodesia and Nyasaland (16 percent). Of the 2.2 million short tons of chromite containing 629,000 tons of chromium, 56 percent was Metallurgical-grade ore and concentrate that averaged 46.9 percent Cr₂O₃, 31 percent was Refractory-grade ore that averaged 33.3 percent Cr₂O₃, and 13 percent was Chemical-grade ore with an average Cr₂O₃ content of 43.8 percent. Metallurgical-grade ore and concentrate were imported from 14 countries, with Turkey and Federation of Rhodesia and Nyasaland the sources of 43 and 28 percent, respectively, of the total. Eighty-seven percent of the Refractory-grade ore came from the Philippines, and all Chemical-grade ore was from the Union of South Africa.

TABLE 11.—Ferrochromium imported for consumption in the United States in 1956, by countries

		arbon ferroch han 3 percent			earbon ferroch cent or more	
Country of origin	Sho	rt tons		Sho	rt tons	
	Gross weight	Chromium content	Value	Gross weight	Chromium content	Value
Canada France Germany, West Italy	4, 728 16	3, 503 11	\$2,041,894 11,447	8, 998 156 55 1, 580	4, 839 110 38 1, 060	\$1, 901, 14 39, 50 16, 53 474, 71
JapanNorway Rhodesia and Nyasaland, Feder-	1, 021 1, 121	623 793	384, 053 416, 719	2, 102	1, 433	562, 800
ation of Sweden Union of South Africa	3, 300 641	2, 368 455	1, 225, 549 255, 089	1, 129 13, 134	735 8, 775	266, 67 3, 061, 64
Yugoslavia Total	1,899	9,068	733, 355 5, 068, 106	27, 154	16, 990	6, 323, 03

In 1956, 409 short tons of chromium metal valued at \$687,000 was imported from West Germany (250 tons), United Kingdom (103 tons), and France (56 tons). Chromate and bichromate imports, all from the Union of South Africa, totaled 1,295 short tons valued at \$227,556.

Exports.—United States exports of chromite ore and concentrate during 1956 consisted largely of material that originated in foreign countries.

Ferrochromium exports totaling 5,536 short tons valued at \$2,891,379 went to 13 countries, but Canada received 90 percent of the total. Sodium chromate and sodium bichromate (6,344 short

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from Bureau of the Census records.

tons valued at \$1,533,927) were shipped to 23 countries, and 637 tons of chromic acid valued at \$351,294 went to 15 countries. Exports of chromium metal and chromium-bearing alloys in crude form and scrap totaled 7 short tons valued at \$19,197.

TABLE 12.—Chromite ore and concentrate exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

	Domes	stic 1	Forei	gn 2
	Short tons	Value	Short tons	Value
947-51 (average)952	2, 557 1, 531	\$95, 368 73, 173	13, 207 21, 265	\$460, 73 1, 152, 94
953 954	1, 166 864 1, 341	56, 393 50, 371 75, 656	6, 071 427 2, 950	251, 55 7, 61 86, 98

¹ Material of domestic origin, or foreign material that has been ground, blended, or otherwise processed in the United States.

² Material that has been imported and subsequently exported without change of form.

Tariff.—Except for Soviet Russia and other designated Communistdominated countries and areas, duties on chromium metal and ferrochromium containing under 3 percent carbon were reduced from 12½ percent ad valorem to 11½ percent ad valorem, effective June 29, 1956, as a result of trade-agreement concessions granted by the United States in the Geneva General Agreement on Tariffs and Trade. These concessions provided for further reductions in duties on these commodities to 11 percent ad valorem, effective June 29, 1957, and to 10½ percent ad valorem, effective June 29, 1958. Duties on imports of other chromium products from Free World countries during 1956 were: Ferrochromium containing 3 percent or more carbon, % cents a pound of contained chromium; chromium carbide, chromiumnickel, chromium-silicon, and chromium-vanadium, 12½ percent ad valorem; chromium-cobalt-tungsten, chromium-tungsten, and ferrochromium-tungsten, 42 cents a pound of contained tungsten plus 12% percent ad valorem; and chromic acid and chrome green and other colors containing chromium, 12½ percent ad valorem.

The duties on imports of chromium products from Soviet Russia

The duties on imports of chromium products from Soviet Russia and other designated communist countries and areas were: Ferrochromium containing 3 percent or more carbon, 2½ cents a pound of contained chromium; ferrochromium containing less than 3 percent carbon, and chromium metal, 30 percent ad valorem; chromium-cobalt-tungsten, chromium-tungsten, and ferrochromium-tungsten, 60 cents a pound of contained tungsten plus 25 percent ad valorem; chromium carbide, chromium-nickel, chromium-silicon, chromium-vanadium, chromic acid, chrome green, and other colors containing

chromium, 25 percent ad valorem.

Duties on imports from all countries were: Chrome brick and shapes, 25 percent ad valorem; sodium chromate and bichromate, 1% cents a pound; and potassium chromate and bichromate, 2% cents a pound.

TABLE 13.—Chromite imported for consumption in the United States, 1955-56, by countries and grades

Short Gross weight		Short tons Cryot ght content	Value	Metallur Short tons Gross Court weight Court Court	Metallurgical grade	alt 25, 25, 26, 26, 26, 27, 27, 28, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34	Bhort Gross weight 155,106 155,106 155,106 155,106 155,106 155,106 155,002 125,465	Short tons Short tons Short tons Six Or ₂ O ₃ Six content 116, 516 11, 116, 116 119, 516 11, 116 2, 512 465 19, 281 11, 116	value Value (1,140,636 (1,140,636 (15,700 (157,300 (157,300 (1439,957	Bhort toms Gross Gross Gross Gross Gross Gross Gross Gross 12,454 Gross 12,454 Gross 142,011 11,454 Gross 11,454	Total tons Or ₂ O ₃ 24, 808 24, 808 820 3, 601 4, 481 117, 076	Value Value \$8, 484 28, 410 11, 472, 965 227, 700 279, 844
md, Fed-	1218,316	1 95, 697	12, 419, 948	116,546 2,063 1,54,377 406,777 1,486,930 1,322,332 116,834 1,439,166 31,256	17,795 2,963 124,873 188,822 1225,377 1225,377 152,417 1203,795 1203,795	1434, 546 226, 503 11, 278, 008 13, 133, 000 115, 187, 800 115, 187, 800 116, 148, 146 1, 533, 288 110, 048, 424 757, 612	1 25, 465 512, 967 1 538, 432 29, 531 42, 422	1 9, 281 1 168, 577 1 177, 858 1 12, 430 1 17, 994	1,439, 967 6,863, 273 17,303,230 250,315 342,755 593,070	142,011 2,033 1,037 1,024,362 111,024,362 1335,223 1364,681 1,699,904 31,266	117,076 2,963 963 1183,450 188,822 1403,235 11156,942 11166,544 1317,486 15,270	874, 503 56, 743 18, 141, 281 13, 181, 281 13, 181, 080 122, 491, 030 14, 286, 461 13, 061, 452 176, 612
Grand total, 1955	1 218, 316	1 95, 697	1 2, 419, 948	1 973, 821	1 451, 703	126, 448, 709	1 641, 862	1 217, 880	1 9, 194, 236	1 1, 833, 999	1 765, 280	1 38, 062, 893

	1, 168, 367 38, 420	1, 206, 787 30, 500	73, 500 487, 136	560, 636	637, 357 3, 979 88, 086 10, 581, 546 17, 798, 605	29, 109, 573	24, 658 10, 732, 545 6, 303, 992	17, 061, 195	49, 350, 032
	18, 733	19, 284 560	756	8, 625	14, 118 56 3, 216 235, 067 247, 254	499, 711	724 167, 683 197, 674	366, 081	919, 255
	51, 817 979	52, 796 1, 120	1, 680 16, 421	18, 101	31, 252 120 7, 307 677, 554 528, 266	1, 244, 499	1, 683 358, 807 448, 730	809, 220	2, 175, 056
	1, 024, 766	1, 024, 766		1	167, 326	8, 741, 901	365, 411 222, 205	587, 616	10, 354, 283
	16, 176	16, 176			4, 871	195, 867	6,961	13, 836	225, 879
	46, 154	46, 154			12, 103	600, 362	15, 961 16, 759	32, 720	679, 236
	143, 601 38, 420	182, 021 30, 500	73, 500 487, 136	560, 636	470, 031 3, 979 88, 086 2, 006, 971 17, 798, 605	20, 367, 672	24, 658 10, 367, 134 2, 649, 360	13, 041, 152	35, 563, 322
	2,557	3, 108 560	7,869	8, 625	9, 247 56 3, 216 44, 071 247, 254	303, 844	724 160, 722 72, 661	234, 107	575, 238
	5, 663 979	6, 642 1, 120	1, 680	18, 101	19, 149 120 7, 307 89, 295 528, 266	644, 137	1, 683 342, 846 162, 524	507, 053	1, 226, 373
							3, 432, 427	3, 432, 427	3, 432, 427
							118, 138	118, 138	118, 138
							269, 447	269, 447	269, 447
1956	North America: Guba	Total South America: Brazil	Europe: Greece. Yugoslavia	Total	Asia: India Japan Pakistan Philippines	Total	Africa: British Bast Africa. Rhodesia and Nyasaland, Federation of Union of South Africa.	Total	Grand total, 1956

1 Revised figure. 4 Assumed source; classified in import statistics under "French Pacific Islands."

TECHNOLOGY

Results of Bureau of Mines work over several years on utilization of low-grade chromite ore and concentrate in chromium alloys and refractories were published.8 The work included field investigations on the Chambers, Dry Camp, and Iron King chromite deposits in the John Day District, Grant County, Oreg., where over 200,000 tons of ore reserve averaging 22 percent chromic oxide was indicated. Use of the ore in producing high-carbon ferrochromium by direct smelting and in manufacturing chrome-magnesite refractory brick is technically feasible, but additional work on a pilot-plant scale would be necessary to determine the economics of the smelting process. Off-grade chromite concentrate presented no serious smelting problems in producing chromium ferroalloys, but the Cr: Fe ratio was not improved, and the resulting chromium ferroalloys had a much lower chromium content than the standard grades used by industry.

The Bureau's laboratory-scale work on production of Metallurgicalgrade chromite from low-grade ores by roasting and leaching indicated that the process might be economical. The work consisted of grinding the ore or concentrate to 20-mesh and finer, mixing with coke, soda ash, or salt cake, and roasting at about 1,000° C., followed by water and acid leaching. In nearly all tests the chromic oxide was increased to over 48 percent, and the Cr: Fe ratio was over 3:1. Incidental to the Bureau's work at Northwest Electrodevelopment Experiment Station, Albany, Oreg. on high-purity ductile chromium was the production of wire for experimental use in cancer treatment at Ohio State University. The radioactive chromium-51 has a 28-day halflife that was reported to be near ideal for that use. Another very important factor is that chromium-51 emits only gamma rays, requiring no shielding to offset harmful effects from other rays.

A monograph on chromium gave processes for the production of chromium chemicals, chromium ferroalloys, and metal, as well as

many data on other phases of the element."10

Binary chromium alloys with beryllium, boron, cerium, columbium, hafnium, tantalum, thorium, titanium, tungsten, and zirconium were investigated by the Bureau. Chromium-base alloys were also investigated under a Navy contract.¹¹ The mechanical properties of unalloyed chromium were studied under a project sponsored by the Department of the Air Force. 12 A process for producing a solution from chromite suitable for electrodepositing chromium was patented. 13 Another patent covered a process for upgrading disseminated chromite by mixing the ore with an aqueous solution of ammonium bisulfate to decompose and combine with substantially all of the metal present except chromium.14

Hundhausen, R. J., Banning, Lloyd H., Harris, Henry M., and Kelly, Hal J., Exploration and Utilization Studies, John Day Chromites, Oregon, Bureau of Mines Rept. of Investigations 5238, 1956, 67 pp.
 Walsted, J. P., Electric Smelting of Low-Grade Chromite Concentrates: Bureau of Mines, Rept. of Investigations 5288, 1956, 27 pp.
 Albany (Oreg.) Democrat Herald, Product of Albany Lab. Used in New Cancer Experiments: Dec. 106

Albany (Oreg.) Democrat Heraid, Froudet of Albany Bab.
 Udy, Marvin J., Chromium: Vol. 1, Chemistry of Chromium and Its Compounds, 433 pp.; vol. 2
 Metallurgy of Chromium and Its Alloys, 402 pp. Reinhold Publishing Corp., New York, N. Y., 1956.
 Massachusetts Institute of Technology, Chromium-Base Alloys: Progress Reports 32; May 1, 1956,
 pp.; 32, Sept. 1, 1956. 1 p.; 35, Nov. 1-Jan.1, 1957, 1 p.
 Armour Research Foundation, Mechanical Properties of Unalloyed Chromium: Quarterly Repts. 6,
 November 1956, 10 pp.; 7, January 1957, 7 pp.
 Dunn, Holbert E., Electrodeposition of Chromium: U. S. Patent 2,771,413 Nov. 20, 1956.
 Thomsen, Alfred M. (assigned to American Chrome Co.). Method of Processing Disseminated Chromite Ores: U. S. Patent 2,772,957, Dec. 4, 1956.

A new high-stength, corrosion-resistant stainless steel was developed for the Alloy Casting Institute by the Corrosion Research Laboratories, Ohio State University.¹⁵ The preferred composition range of the alloy, designated as CD4MCu by the institute, is 4.75 to 6.00 percent nickel, 25 to 27 percent chromium, 0.04 percent carbon (maximum), 1.75 to 2.25 percent molybdenum, 2.75 to 3.25 percent copper, 1 percent silicon (maximum), and 1 percent manganese (maximum. The alloy is used in the chemical process industries in plugs, disks, and seats for valves, pumps, and fittings, bolts, and other hardware, gears, and cutters.

WORLD REVIEW

Estimated world production of chromite ore and concentrate in 1956 was higher than in any year since 1953. The Philippines, the Federation of Rhodesia and Nyasaland, Turkey, and the Union of South Africa continued to be the major Free World producing countries.

Albania.—All chromite production in Albania during 1956 was believed to have been derived from the chrome mine at Bulshil. The Albanian state trade enterprise, "Exportalb," was reported to have signed contracts providing for the exportation of chromite to Italy and Switzerland.16

Cuba.—The Cayo Guan, Chromita, and Delta mines were among the more important sources of chromite in Cuba during 1956. decrease in chromite exports from Cuba during the year was due to elimination of the stockpile at mines during the previous year.

Greece.—Production of chromite in Greece in 1956 was 90 percent higher than in the preceding year. The country's exports of chromite went principally to the United Kingdom and Germany. Several small chromite mines at Kozani and in Thessaly were reported to have operated during 1956, and two new concentrating plants were completed in the Kozani area.17

New Caledonia.—Chromite production in New Caledonia during 1956 was only slightly higher than during 1955. About half of the production was exported to the United States and most of the re-

mainder to Europe.

Philippines.—Chromite production in the Philippines in 1956 was an alltime high. Of the 782,000 short tons produced, 82 percent was Refractory-grade and 18 percent Metallurgical-grade ore and concentrate. All Refractory-grade ore production was from Consolidated Mines, Inc., Masinloc property in Zambales Province, Luzon Island, which was operated by Benquet Consolidated, Inc. (formerly Benquet Consolidated Mining Co.). It was reported 18 that, as a result of litigation, a new agreement was executed in July 1956 which reduced the operating company's share of profits from 50 to 25 percent and limited chromite sales to a maximum of 600,000 tons a year.

The Acoje mine, also in Zambales Province, was the source of over three-fourths of the Metallurgical-grade ore produced.

¹⁵ Industrial and Engineering Chemistry, New High-Strength Stainless Steel: Vol. 48, December 1956, p.

⁵³A.

18 Metal Bulletin (London), No. 4116, Apr. 3, 1956, p. 24.

18 Metal Bulletin (London), No. 4081, Mar. 27, 1956, p. 12.

18 Engineering and Mining Journal, in the Philippines: Vol. 157, No. 9, September 1956, p. 230.

Palawan Consolidated Mining Co. on Palawan Island expanded operations and was completing loading facilities in anticipation of increased production. The firm made its initial shipment of 2,000 tons of high-grade Metallurgical-grade ore to Philipp Bros. in New York, which had exclusive buying rights.19 The Liberty Chromite Mining Corp. stockpiled chrome ore at its mine near Puerto Princesa, Palawan, pending completion of a loading dock at the port.20

TABLE 14,—World production of chromite, by countries, 1947-51 (average) and 1952-56, in short tons 2

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	848	- 1				
Cuba	114. 218	68, 132	77, 205	80,011	85, 107	³ 59, 248
Guatemala	592	116	441	146	320	4 650
United States	2, 492	21, 304	58, 817	163, 365	153, 253	5 207, 662
Total	118, 150	89, 552	136, 463	243, 522	238, 680	267, 560
South America: Brazil	1,603	2, 920	3,942	2, 108	4, 546	4 4, 000
Europe:						
Albania 4	34,000	57,000	61,000	107, 000	135,000	147, 000
Greece	10, 104	35, 452	40, 520	29, 508	27, 902	52, 900
Portugal	122	119	6	23	2.,002	02, 000
Portugal. U. S. S. R.46	560,000	600,000	600,000	600,000	600,000	600,000
Yugoslavia	101, 823	118, 192	139, 950	137, 216	139, 119	130, 913
Total 1 4	715, 000	800,000	900,000	900,000	900,000	1,000,000
Asia:						
Afghanistan	7 597					
Cyprus (exports)	12,820	14,867	9, 115	10,080	9, 599	6, 526
India	24, 666	8 40, 530	72, 543	50, 968	100,071	59,009
Iran 9	1, 946	22,046	23, 657	23, 406	38, 504	29, 700
Japan	24, 903	51, 975	41, 418	36, 138	29, 269	43, 984
Pakistan	20, 711	19, 518	26, 255	24, 487	31 808	25, 487
Philippines	283, 043	599, 121	614, 086	442, 230	655, 882	781, 598
Turkey	426, 780	889, 466	1, 005, 883	619, 001	710, 253	783, 697
Total 6	795, 466	1, 637, 523	1, 792, 957	1, 206, 310	1, 575, 386	1, 730, 001
Africa:						
Egypt	120		231 27, 277	584	926	281
Sierra Leone	15, 593	26, 312	27, 277	21,011	23, 231	3 21, 027
Rhodesia and Nyasaland,						•
Federation of: Southern		1.			1	
Rhodesia	269, 217	355, 679	463, 028	442, 506	449, 202	448, 965
Union of South Africa	491, 973	639, 366	798, 562	706, 935	597, 368	690, 851
Total	776, 903	1, 021, 357	1, 289, 098	1, 171, 036	1,070,727	1, 161, 124
Oceania:						
Australia	775	1, 565	3,070	5, 536	l	6, 828
New Caledonia	85, 571	118, 728	134, 032	93, 645	50, 790	53, 932
Total	86, 346	120, 293	137, 102	99, 181	50, 790	60, 760
World total (estimate)1	2, 500, 000	3, 700, 000	4, 300, 000	3, 600, 000	3, 800, 000	4, 200, 000

¹ In addition to countries listed, Bulgaria and Rumania produce chromite, but data on output are not available; estimates by senior author of chapter included in total.

² This table incorporates a number of revisions of data published in previous Chromite chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

Exports. Estimate.

<sup>Estimate.
Includes 45,710 short tons of concentrate produced in 1955-56 from low-grade ore and concentrate stock-piled near Coquille, Oreg., during World War II.
Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
Average for 1949-51.

Does not include 21,603 tons of low-grade ore accumulated from production from 1943 through 1948.
Year ended March 20 of year following that stated.</sup>

Engineering and Mining Journal, vol. 158, No. 1, January 1957, p. 180.
 Mining World, Republic of the Philippines: Vol. 18, No. 10, September 1956, p. 115.

Exploration of chromite deposits of the Zambales Range in Zambales Province, begun in August 1955 as a cooperative project of the Philippines Bureau of Mines and the International Cooperation Administration, indicated a major chromite-ore-bearing zone on Insular Chromite Reservation parcel 1, north of the South Lawis River, across from the great Coto ore body.21

Rhodesia and Nyasaland, Federation of.—Chromite production in Southern Rhodesia in 1956 decreased slightly compared with production in the preceding year. It was reported that the chromite producers had contracts and financial resources to have doubled production had they not been handicapped by lack of adequate rail transport.²²

Several new mines were opened during 1956 in the country's large reserves concentrated on both sides of the Great Dyke and in the Selukwe and Mashaha areas. Chromites found on the Great Dyke are of two distinct classes as to age and structure.23 The "Old Chrome," occurring in blocks or plums found at Seluke, is embedded in the dyke rock, and the "New Chrome," occurring in veins ranging in thickness from about 3 to 12 inches, found west of Salisbury, is granular and crystalline. It varies in hardness from very hard rock to a soft, puttylike structure.

Turkey.—Production of chromite ore and concentrate in Turkey in 1956 was the highest since 1953, and it was reported 24 that the supply of high-grade ore was largely sold out in advance of production, which resulted in higher prices for the small available quantities To stimulate production further, the Turkish on open market. Council of Ministers decided to allow the import of machines and spare parts against the export of low-grade chromite and manganese

ores on a basis set by the Ministry of Economy and Trade.

TABLE 15.—Exports of chromite from Turkey, 1947-51 (average) and 1952-56, by countries of destination, in short tons 1 [Compiled by Corra A. Barry]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America:		0.040			1 100	0.04
Canada.	1,590	2,240			1, 120	2, 24
United States	254, 661	468, 463	516, 577	224, 037	434, 014	490, 98
Europe: Austria	28, 193	43, 771	38, 455	31, 281	35,842	34, 39
Belgium	86	55	00, 200	01,201	667	77
France	24, 894	43, 411	20, 286	20, 224	27, 476	37, 88
Germany, West	12, 294	54, 863	25, 374	69, 568	72, 410	72, 01
Hungary	796					
Italy	5, 517	7,744	2, 470	5, 897	5,077	9, 73
Netherlands	61	8, 299	4,700	7,883	3, 797	2, 24
Norway	11,905	15, 826	23, 830	8,063		4, 44
Spain	245	17 000	1,764	661	8, 257	5, 19
Sweden	22, 611 583	17, 820 17, 764	24, 413 9, 060	12, 125	2, 205	8, 96 6, 59
Switzerland United Kingdom	11, 985	9, 689	14,807	12, 419	25, 264	22, 01
Yugoslavia	11, 500	0,000	11,001	882	551	22,01
Asia: Japan				002	001	8, 62
Other countries	431	551	1, 102		154	1, 58
Total.	375, 852	690, 496	682, 838	392, 040	616, 834	707, 69

¹ Compiled from Customs Returns of Turkey.

²¹ Peoples, Joe Webb, Geological Survey, Fernandez, Norberto, S., and Fontanos, Conrado A., Bureau of Mines, Philippines, Progress Report on Exploration on Insular Chromite Reservation Parcel Number 1: Rept. of Investigation 16, Manila, Philippines, February 1957, 14 pp.
22 Rhodesian Mining and Engineering Review (London), vol. 21, No. 13, December 1956, p. 25.
23 Vanadium Corp. of America, The Vancoram Review: Vol. 11, No. 2, Fall-Winter 1956, pp. 6-7.
24 E&MJ Metal and Mineral Markets, Chrome Ore: Vol. 27, No. 34, Aug. 23, 1956, p. 1.

Union of South Africa.—Although chromite production in the Union of South Africa in 1956 was 16 percent higher than during the preceding year, transportation difficulties continued to plague the producers who were reported to have large stocks of chromite ready for

shipment to port.

South African Minerals, Ltd., was reported ²⁵ to have granted an option to Johannesburg Consolidated Investment Co., Ltd., to survey mining activities in the Western Transvaal, 37 miles northeast of Rustenburg and 18 miles from Boshock, where extensive outcrops of chromite occur. The Northern Investment Co., Ltd., was reported ²⁶ to have installed a plant to produce 1,500 tons of chromite concentrate a month at its Isitilo Chrome mine in Natal.

Yugoslavia.—Chromite production in Yugoslavia in 1956 was the lowest in any year since 1952. A large area near Kumanova, Macedonia, was reported to contain chromite but its strata of cobalt

and nickel was considered more important.²⁷

Mining World, Africa, vol. 18, No. 11, October 1956, p. 74.
 Mining Magazine, vol. 94, No. 4, April 1956, p. 232.
 Mining World, vol. 18, No. 6, May 1956, p. 66.

Clays

By Brooke L. Gunsallus 1 and Eleanor B. Waters 2

	Page		Page
Review by type of clay	356	Consumption and uses	367
China clay or kaolin	356	Refractories	368
Ball clay	358	Heavy clay products	370
Fire clav	359	Technology	371
Bentonite	361	World Review	378
Fuller's earth	362		
Miscellaneous clav	364		

OTAL CLAYS sold or used by producers in 1956 increased 5 percent in tonnage compared with 1955. All six major classifications of clay-china clay or kaolin, ball clay, fire clay, bentonite, fuller's earth, and miscellaneous clay-reported increases in 1956 compared with 1955.

Kaolin sold or used by producers increased 4 percent in tonnage and 8 percent in value; ball clay, 12 and 13 percent; bentonite, 6 and 7 percent; fire clay, 9 and 28 percent; fuller's earth, 13 and 17 percent; and miscellaneous, 4 and 17 percent.

Prices for most clays and clay products in 1956, as shown in trade papers, remained steady.

TABLE 1.—Salient statistics of clays in the United States, 1955-56

	19	55	19	56
	Short tons	Value	Short tons	Value
Domestic clay sold or used by producers: Kaolin or china clay Ball clay, Fire clay, including stoneware clay Bentonite Fuller's earth Miscellaneous clays.	2, 166, 400 411, 354 10, 839, 829 1, 480, 205 369, 719 32, 974, 747	\$31, 883, 034 5, 386, 777 42, 119, 555 17, 219, 015 7, 620, 319 35, 432, 663	2, 249, 920 458, 806 11, 803, 093 1, 570, 610 417, 715 34, 384, 642	\$34, 503, 710 6, 081, 318 53, 749, 880 18, 414, 80 8, 879, 32- 41, 516, 00-
Total sold or used by producers	48, 242, 254	139, 661, 363	50, 884, 786	163, 145, 05
Imports: Kaolin or china clay Common blue and ball clay Bentonite Other clays ¹	33, 651	2, 444, 785 359, 143 30, 504 107, 055	144, 943 26, 180 4, 738	2, 479, 09 293, 28 197, 10
Total imports	192, 382	2, 941, 487	175, 861	2, 969, 48
Exports: Kaolin or china clayFire clay. Other clays (including fuller's earth)	49, 830 109, 312 247, 397 406, 539	1, 017, 262 1, 358, 159 8, 515, 353 10, 890, 774	59, 138 152, 037 299, 641 510, 816	1, 297, 774 1, 561, 133 9, 716, 819 12, 575, 72

¹ Includes fuller's earth and Gross Almerode.

¹ Commodity specialist. ² Research assistant.

Imports of kaolin for 1956 decreased 5 percent over 1955 and were 6 percent of the total domestic consumption of kaolin. Imports of common blue and ball clay in 1956 decreased 22 percent in tonnage

and 18 percent in value compared with 1955.

Exports of kaolin or china clay in 1956 increased 19 percent over 1955; 75 percent was shipped to Canada and 11 percent to Mexico. Exports of fire clay in 1956 increased 39 percent in tonnage and 15 percent in value compared with 1955. Canada received 76 and Mexico 17 percent of the fire-clay exports.

REVIEW BY TYPE OF CLAY CHINA CLAY OR KAOLIN

Domestic kaolin sold or used in 1956 increased 4 percent compared with 1955 and reached an alltime high of nearly 2.25 million short tons

Nine States produced kaolin in 1956, the same as for the 3 preceding years. Georgia continued to be the principal producing State, with 74 percent of the total United States output; South Carolina was second, with 17 percent. Both Georgia and South Carolina reported increases over 1955—the former 11 and the latter

2 percent.

As in several preceding years the paper, rubber, refractories, and pottery industries were the principal kaolin consumers. Paper consumed 55 percent of the total—29 percent for coating and 26 percent for filling. Rubber consumed 12 percent, refractories, 11 percent; and pottery, 7 percent. The remaining 15 percent was consumed for a wide variety of purposes, including cement, floor and wall tile, fertilizers, chemicals, insecticides, paint filler or extender, and

TABLE 2.—Kaolin sold or used by producers in the United States, 1955-56, by States

State	Sold by	producers	Used by	producers	То	tal
	Short tons	Value	Short tons	Value	Short tons	Value
1955	-					
California Georgia North Carolina Pennsylvania South Carolina Other States 2 Total 1956	(1) 1, 391, 031 21, 429 38, 823 366, 014 125, 072 1, 942, 369	(1) \$22, 494, 678 357, 647 211, 230 4, 621, 208 2, 258, 393 29, 943, 156	17, 388 104, 691 224, 031	\$881, 090 47, 390 1, 011, 398 1, 939, 878	31, 835 1, 492, 983 21, 429 38, 823 383, 402 197, 928 2, 166, 400	\$335, 651 23, 375, 768 357, 647 211, 230 4, 668, 598 2, 934, 140 31, 883, 034
Arkansas	(1) 42, 687 (1) 370, 949 1, 589, 451 2, 003, 087	(1) 1, 007, 451 (1) 4, 667, 321 26, 154, 617 31, 829, 389	(1) 324 (1) 20, 775 225, 734 246, 833	3, 240 (1) 51, 766 2, 619, 321 2, 674, 327	324 15, 711 42, 687 1, 663, 707 391, 724 135, 767 2, 249, 920	3, 240 144, 191 1, 007, 451 26, 604, 891 4, 719, 087 2, 024, 856

¹ Included with "Other States."

² Includes States indicated by footnote 1, and Alabama (1955–56), Arkansas (1955 only), Florida (1955 only), Pennsylvania (1956 only), and Utah (1955–56).

linoleum. All large uses for kaolin increased in 1956 over 1955

except refractories, which decreased 18 percent.

The average value of domestic kaolin sold or used, as reported to the Bureau of Mines in 1956, was \$15.34 per short ton compared with \$14.72 in 1955, \$14.96 in 1954, \$14.38 in 1953, and \$13.78 in 1952.

No quotations on domestic kaolin have been reported by E&MJ Metal and Mineral Markets since June 1951. In December 1956 the Oil, Paint and Drug Reporter quoted prices for Georgia kaolin as follows: Dry-ground, air-floated, 300-mesh, in bags, carlots, f. o. b. plant, \$13.50 to \$14.50 per short ton; l. c. l., same basis, \$35 to \$36 per short ton.

Prices for imported china clay in December 1956 were quoted by the Oil, Paint and Drug Reporter as follows: White lump, carlots, ex dock (Philadelphia, Pa., and Portland, Maine), \$20 to \$35 per long ton; powdered, ex dock, in bags, \$50 per net ton; l. c. l., ex warehouse,

\$60 to \$65.

Imports of kaolin for 1956 decreased 5 percent compared with 1955 and represented 6 percent of the total domestic consumption. Over 99 percent of the 1956 imports came from the United Kingdom and

the remainder from Canada and Mexico.

Exports of kaolin or china clay in 1956 increased 19 percent over 1955; 75 percent was shipped to Canada, 11 percent to Mexico, and 3 percent to Italy. Small tonnages also were sent to Central and South America, Europe, Africa, and Asia.

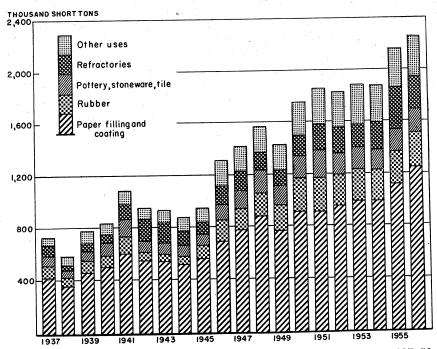


FIGURE 1.—Kaolin sold or used by domestic producers for specified uses, 1937-56.

TABLE 3.—Georgia kaolin sold or used by producers, 1947-51 (average) and 1952-56, by uses

	China c	hina clay, paper clay, etc.		R	Refractory uses			Total kaolin		
Year	Short			Short			Short	Value		
	tons	Total	Average per ton	tons	Total	Average per ton	tons	Total	Average per ton	
1952 1953 1954 1955	1, 009, 270 1, 145, 063 1, 170, 679 1, 190, 681 1, 327, 211 1, 456, 155	(1)	15. 40 15. 89 (1) (1)	183, 192		6. 37 6. 16 (1)	1, 143, 062 1, 328, 255 1, 341, 725 1, 304, 865 1, 492, 983 1, 663, 707	19, 659, 625 20, 525, 906	14, 16 14, 65 15, 73	

¹ Figures not available.

BALL CLAY

Ball clay sold or used by producers in 1956 increased 12 percent in

tonnage and 13 percent in value compared with 1955.

Beginning with 1943, Tennessee has produced the most of any State. In 1956 Tennessee production was 63 percent of the United States total; Kentucky was second, with 25 percent. Compared with 1955, ball-clay production increased 14 percent in Tennessee and 3 percent in Kentucky.

The pottery industry consumed 63 percent of the ball clay produced in 1956, compared with 67 percent in 1955. Ball clay used in making whiteware (the major use) increased 4 percent. Increases for other important uses were: Floor and wall tile (high-grade tile), 45 percent; and refractories, including saggers, pins, and stilts, 62 percent. No

decrease was noted in any important use.

Quotations on domestic ball clay have not appeared in E&MJ Metal and Mineral Markets since 1949. In December 1956 the Oil, Paint and Drug Reporter quoted the following prices for Tennessee ball clay, the same as those in December 1955: Crushed, in bulk, carlots, f. o. b. plant, \$10 per short ton; air-floated, in bags, carlots, f. o. b. plant, \$19.50 per short ton; and air-floated, purified, in bags, carlots, f. o. b. plant, \$20.50 per short ton. In 1956 the average value per short ton for ball clay, as reported by producers, was \$13.25, compared with \$13.10 in 1955. In 1956 the average value per short ton was: Tennessee ball clay, \$13.42, compared with \$13.13 in 1955; Kentucky ball clay, \$13.03, compared with \$13.43 in 1955.

Imports of common blue and ball clay in 1956 decreased 22 percent in tonnage and 18 percent in value compared with 1955. Unmanufactured blue and ball clays represented the major share of imports; the United Kingdom supplied 96 percent of this classification and all the imports of manufactured blue and ball clay. Small tonnages of unmanufactured blue and ball clays came from Canada and West Germany. Imports of Gross Almerode clays, including fuller's earth, totaled 2,103 short tons—1,576 from Canada, 98 from United Kingdom, and 429 from West Germany. Exports, if any, are not shown

separately on official foreign-trade returns.

TABLE 4.—Ball clay sold or used by producers in the United States, 1954-56, by States

State	Sold by 1	producers	Used by p	roducers	Tot	al
	Short tons	Value	Short tons	Value	Short tons	Value
1954 Kentucky	96, 483 13, 859 190, 762	\$1, 263, 526 209, 709 2, 458, 129	3, 310 (¹)	\$33, 100 (¹)	96, 483 13, 859 194, 072 23, 771	\$1, 263, 520 209, 70 2, 491, 22 204, 10
Total	301, 104	3, 931, 364	3, 310	33, 100	328, 185	4, 168, 57
1955 Kentucky	111, 600 20, 640 251, 104	1, 498, 950 267, 410 3, 305, 277	2, 930 (1)	29, 300 (¹)	111, 600 20, 640 254, 034 25, 080	1, 498, 95 267, 41 3, 334, 57 285, 84
Total	383, 344	5, 071, 637	2, 930	29, 300	411, 354	5, 386, 77
1956 California	115, 243 285, 792 38, 611	1, 501, 550 3, 849, 709 582, 868	14, 860 4, 300	104, 191 43, 000	14, 860 115, 243 290, 092 38, 611	104, 19 1, 501, 55 3, 892, 70 582, 86
Total	439, 646	5, 934, 127	19, 160	147, 191	458, 806	6, 081, 3

¹ Includes Maryland (1954 and 1956), New Jersey (1955–56), Mississippi (1955–56), and Oregon (1955 only). Individual figures combined to avoid disclosing individual company operations.

FIRE CLAY

Fire clay sold or used by producers in the United States increased 9 percent in 1956 compared with 1955 and was the second largest in history, exceeded only by 1951. High activity in the refractory and construction industries furnished most of the increase. Of the three States producing the largest amounts—Ohio, Pennsylvania, and Missouri—only Ohio reported a decrease in 1956 compared with 1955.

The principal uses of fire clay in 1956 were for refractories manufacture, which consumed 52 percent of the national output, and heavy clay products, including architectural terra cotta and lightweight aggregate, which consumed 45 percent. About 1 percent was consumed in chemicals, 1 percent for floor and wall tile, and 1 percent for a variety of uses.

In 1956 Ohio ranked first in fire-clay production, followed by Pennsylvania, Missouri, Indiana, California, Texas, Illinois, West Virginia, Colorado, Alabama, and Kentucky. These 11 States furnished 92 percent of the total production. The remainder was produced in 16 States. Of the 11 principal producing States, only Ohio and Kentucky

reported decreases in 1956 compared with 1955.

Price quotations on fire clay do not appear in trade journals. However, the average value per short ton of fire clay sold by producers, as reported to the Bureau of Mines in 1956, was \$2.86 compared with \$3.13 in 1955, \$3 in 1954, and \$3.14 in 1953. The average value of all fire clay, including both sales and captive tonnage, was \$4.55 in 1956 compared with \$3.89 in 1955, \$3.79 in 1954, and \$3.75 in 1953. The following quotations on firebrick manufactured from fire clay were reported in December 1956 in E&MJ Metal and Mineral Markets: Missouri, Kentucky, and Pennsylvania, superquality, \$128; high-heat

TABLE 5.—Fire clay, including stoneware clay, sold or used by producers in the United States, 1955–56, by States ¹

State	Sold by	producers	Used by	producers	To	tal
	Short tons	Value	Short tons	Value	Short tons	Value
1955						
Alabama	(2)	(2)	(2)	(2)	216, 289	\$1, 102, 770
Alaska			100	\$800	100	800
Arizona			4	4	4	500
California		\$575, 211	264, 953	720, 078	404, 502	1, 295, 289
Colorado	- 191, 768	456, 946	69, 797	279, 449	261, 565	736, 39
Illinois Indiana	- 275, 486	468, 459	105, 899	279, 201	363, 385	747, 66
Kentucky		697, 675	130, 702	323, 028	529, 310	1, 020, 703
Maryland	- 71, 445	396, 638	270, 417	1, 919, 077	341, 862	2, 315, 71
Mississippi	- (2)	(2)	(2)	(2)	65, 910	228, 39
Missouri	909 471	1 100 000	47,000	75, 670	47,000	75, 670
Montana	- 383, 471	1, 166, 997	1, 145, 788	4, 868, 027	1, 529, 259	6, 035, 024
Vebraska			1, 143	4, 572	1, 143	4, 572
New Jersey	46, 427	440, 731	2, 495 85, 240	2, 495	2, 495	2, 49
New Mexico	2,732	9, 142		528, 328	131, 667	969, 059
Ohio	1, 047, 353	3, 589, 317	6, 625 2, 181, 130	20, 569	9, 357	29, 711
Oklahoma	1,011,000	0, 000, 511	300	8, 529, 829	3, 228, 483	12, 119, 146
Pennsylvania	498, 670	1, 741, 154	1, 661, 795	3,000	300	3,000
Cennessee	100,000	1, 111, 101	4, 604	8, 559, 300	2, 160, 465	10, 300, 454
Texas		(2)	(2)	52, 300 (2)	4,604	52, 300
Jtah	17 207	44, 738	17, 635	70, 540	437, 595	1, 068, 664
Washington	19 708	21, 708	80, 989	152, 173	34, 842	115, 278
Vest Virginia	(2)	(2)	(2)	(2)	100, 697	173, 881
Other States 3	200, 620	656, 837	1, 488, 169	5, 465, 562	406, 025 562, 970	2, 277, 163 1, 445, 401
Total	3, 275, 044	10, 265, 553	7, 564, 785	31, 854, 002	10, 839, 829	42, 119, 555
1956						
labama	_ (2)	(2)	(2)	(2)	303, 329	000.040
rizona	.		13	13	13	990, 240
rkansas			274, 698	1, 188, 843	274, 698	1, 188, 843
California	175, 154	590, 374	431, 038	1, 397, 537	606, 192	1, 987, 911
olorado	. 185, 412	437, 975	118, 975	380, 414	304, 387	818, 389
llinois.		547, 249	148, 542	322, 378	440, 981	869, 627
ndiana	495, 499	826, 554	149, 755	375, 309	645, 254	1, 201, 863
ansas			139, 130	308, 960	139, 130	308, 960
entucky Iaryland	54, 119	235, 195	249, 156	1, 676, 820	303, 275	1, 912, 015
Iissouri		(2)	(2)	(2)	68, 434	409, 744
Iontana		1, 122, 293	1, 496, 955	5, 994, 528	1, 765, 921	7, 116, 821
ebraska	94	376	1,508	6, 032	1,602	6, 408
evada	597		2, 495	2, 495	2, 495	2, 495
ew Jersey	94, 928	5, 369	750	2, 138	1, 347	7, 507
ew Mexico	(2)	765, 220	75, 218	453, 780	170, 146	1, 219, 000
hio		2, 872, 176	(2)	(2)	8, 314	27, 481
klahoma	1, 1	4, 8/2, 1/0	2, 175, 997	11, 125, 758	3, 164, 720	13, 997, 934
ennsylvania	674, 124	2, 017, 498	290	2, 900	290	2,900
exas	(2)	2, 011, 238	1, 768, 862	16, 020, 260	2, 442, 986	18, 037, 758
tah	37 097	36, 274	19, 748	(7)	483, 417	1, 007, 188
ashington	12,000	24, 300	74, 674	51, 345 154, 256	56, 845	87, 619
est Virginia	(2)	(2), 000	(2)	(2)	86, 674 428, 033	178, 556
ther States 3	263, 389	668, 163	1, 132, 748	4, 137, 104	104, 610	2, 171, 942 198, 672
Total	3, 542, 541	10, 149, 016	8, 260, 552	43, 600, 870	11, 803, 093	53, 749, 886

quality, \$114; Ohio firebrick, intermediate grade, \$128; second grade, \$98 per thousand.

Imports of fire clay are not shown separately in foreign-trade statistics. Exports of fire clay in 1956 increased 39 percent in tonnage and 15 percent in value compared with 1955. Canada received 76 percent, Mexico 17 percent, and Japan 5 percent of the total exports. The remainder (2 percent) comprised small tonnages to many destinations in Central and South America, Europe, Asia, and Africa.

Includes stoneware clay as follows: 1955—62,446 tons; 1956—74,143 tons.
 Included with "Other States."
 Includes States indicated by footnote 2 above and Arkansas (1955 only), Idaho, Iowa (1955-56), Kansas (1955 only), Minnesota, Mississippi (1956 only), and Nevada (1955 only).

BENTONITE

The quantity of bentonite sold or used by producers in 1956 was the largest in the history of the industry. Production exceeded that for the previous high year—1955—by 6 percent in quantity and 7 percent in value. Increased activity in the petroleum and steel indus-

tries consumed most of the additional production.

The foundry and petroleum industries consumed 83 percent of the total tonnage in 1956, compared with 89 percent in 1955 and 1954 and 93 percent in 1953. Rotary-drilling mud consumed 40 percent in 1956 (40 percent in 1955, 43 percent in 1954, and 46 percent in 1953); foundry-sand bond, 26 percent (28 percent in 1955, 23 percent in 1954, and 27 percent in 1953); and filtering and decolorizing oils and other filtering and clarifying, 17 percent (21 percent in 1955, 23 percent in 1954, and 20 percent in 1953). The remaining 17 percent of the national output was used for a wide variety of purposes. The major uses that increased in 1956 over 1955 were insecticides and fungicides (14 percent) and rotary-drilling mud (5 percent). Filtering and decolorizing uses decreased 15 percent, and the use in foundry-sand bond decreased 3 percent compared with 1955. Fourteen States reported production of bentonite in 1956 compared with 13 in 1955.

The three States producing the largest amounts, whose output of bentonite in 1956 could be shown, and the percentage of total United States production they furnished were: Wyoming, 54 percent (56 percent in 1955, 58 percent in 1954, and 53 percent in 1953); Mississippi, 14 percent (15 percent in 1955, 1954, and 1953); and Texas, 10 percent (10 percent in 1955, 8 percent in 1954, and 4 percent in 1953.)

TABLE 6.—Bentonite sold or used by producers in the United States, 1954-56, by States

State	19)54	1955 1956			56
	Short tons	Value	Short tons	Value	Short tons	Value
Arizona	139, 171 3, 348 582	\$728, 326 90, 004 5, 339	124, 872 3, 942 207	\$674,309 66,192 931	(¹) 3, 618	(1) \$70, 328
Mississippi	185, 554	1, 998, 052	226, 852 442	2, 558, 399 4, 420	219, 216 (1)	1, 200 2, 360, 031
Texas Utah Washington	105, 744 2, 222	1, 299, 380 26, 620	155, 128 2, 520	1, 461, 873 30, 200	160, 723 2, 741 300	1, 182, 620 34, 700 3, 000
Wyoming Other States 2	742, 453 99, 319	9, 339, 755 1, 235, 388	825, 810 140, 432	10, 721, 577 1, 701, 114	847, 266 336, 626	11, 624, 185 3, 138, 743
Total	1, 278, 393	14, 722, 864	1, 480, 205	17, 219, 015	1, 570, 610	18, 414, 807

¹ Included with "Other States."

The price of Wyoming bentonite was given in the Oil, Paint and Drug Reporter for December 1956 as follows: 200-mesh, carlots, f. o. b. mines, \$14 per short ton. The average value per short ton, as reported by the producers to the Bureau of Mines in 1956, was \$11.72 compared with \$11.63 in 1955.

² Includes States indicated by footnote 1, and Louisiana (1954-56), Montana (1955-56), North Dakota (1954-56), Oklahoma (1954-56), and South Dakota (1954-56).

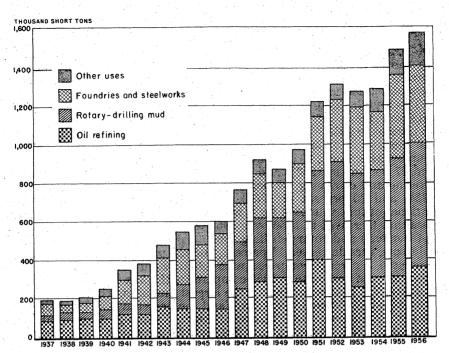


Figure 2.—Bentonite sold or used by domestic producers for specified uses, 1937-56.

No imports of bentonite into the United States were reported in 1956.

Bentonite exports are not shown separately in foreign-trade statistics but are included under the blanket classification of "Other clays and earths, not especially provided for." It is known, however, that some domestic producers export part of their production to destinations throughout the world.

The American Bentonite Co. of Utah leased 13,000 acres of land west of Thermopolis, Wyo., in 1956. The company began strip mining and planned to build a processing plant in Thermopolis.

A report stated that the Bethlehem Steel Corp. had purchased approximately 500,000 short tons of bentonite on claims in southern Johnson and northern Niobrara Counties in Wyoming. The firm was reported to have options to purchase an additional 1.5 million tons on other claims in the same area.³

FULLER'S EARTH

Fuller's earth sold or used by producers increased 13 percent in tonnage and 17 percent in value in 1956 compared with 1955 and was the highest in the history of the industry.

Absorbent uses required 41 percent of the national consumption in 1956 compared with 37 percent in 1955, 31 percent in 1954, and 30 percent in 1953; insecticides and fungicides, 27 percent compared

³ Mining World, vol. 18, No. 8, July 1956, p. 99.

with 25 percent in 1955, 19 percent in 1954, and 17 percent in 1953; and rotary-drilling mud, 19 percent compared with 13 percent in 1955, 11 percent in 1954, and 12 percent in 1953. Mineral-oil refining dropped to fourth place as a consumer of fuller's earth in 1956—11 percent compared with 15 percent in 1955. This industry has shown a gradual decline in the use of fuller's earth since 1950, when it consumed 40 percent of the total national output. This downward trend results mainly from changed methods of mineral-oil refining. Vegetable-oil refining required less than ½ percent of the total consumption in 1956 compared with 1 percent in 1955, 5 percent in 1954, and 4 percent in 1953. The remainder—less than 2 percent of the total—was used in other filtering and clarifying, in exports, and for other unspecified uses.

In 1956 Florida furnished 55 percent of the United States total production, Georgia 26 percent, and Tennessee 11 percent. California, Mississippi, and Texas reported decreases in 1956 compared with 1955.

All other States reported increases.

The average value, per short ton, of fuller's earth reported sold or used in the United States in 1956 was \$21.26, compared with \$20.61 in 1955, \$18.23 in 1954, and \$17.47 in 1953. The following quotations on fuller's earth were published in the Oil, Paint and Drug Reporter for December 1956: Powdered, Insecticide grade, dried, in bags, carlots, Georgia or Florida mines, \$17.50 per short ton; calcined, in bags, carlots, same basis, \$20 to \$21.75 per short ton; and Oil-Bleaching grade, 100-mesh, in bags, carlots, \$16.30 to \$17 per short ton.

Effective January 1, 1955, fuller's earth import statistics were not classified separately but were included under "Other clay." Exports

TABLE 7.—Fuller's earth sold or used by producers in the United States, 1954–56, by States

	State	Shor	t tons	Value
Florido and Coordia	1954		V60 E71	#F 044 F01
			263, 571 13, 920	\$5, 244, 591 512, 256
Tennessee			27, 532	449, 480
Utah			2,801	35, 400
Other States 1			68, 497	619, 876
Total			376, 321	6, 861, 603
	1955			
California			14, 462	82, 292
Georgia		1	103, 883	2, 226, 296
			713	3, 565
***			33, 791 2, 829	473, 074 35, 175
			214, 041	4, 799, 917
Total			869, 719	7, 620, 319
	1956			
California			8, 936	49, 458
			28, 624	5, 114, 050
Georgia			08, 632	2, 386, 122
TT. 1			48,000	658, 500 36, 962
			2, 855 20, 668	634, 232
Total		4	17, 715	8, 879, 324

¹ Includes California (1954), Florida (1955 only), Mississippi (1955-56), Nevada (1954 and 1956), and Texas (1954-56).

are not given separately in official foreign-trade statistics. Reports from producers to the Bureau of Mines did not indicate the quantity of exports in 1956.

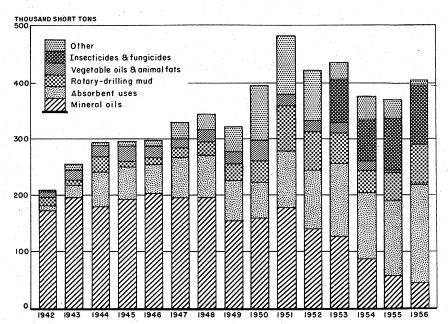


FIGURE 3.—Fuller's earth sold or used by producers for specified uses, 1942-56.

The fuller's earth industry in Florida and Georgia was discussed; a map showing the locations of active mines and plants and graphs of United States production from 1940 to 1952, were given. geology, preparation, and uses were explained.⁴
The Waverly Petroleum Products Co. of Philadelphia, Pa., began

to mine and process fuller's earth in a new plant near Meigs, Ga.

MISCELLANEOUS CLAY

This section presents statistics for the large-tonnage clays and shales—other than those discussed in the preceding pages—used in manufacturing heavy clay products, portland cement, and lightweight With these are grouped small tonnages of slip clay, oilwell drilling mud, pottery clay, and clays that cannot clearly be identified with one of the types discussed separately in this chapter.

Miscellaneous clay sold or used by producers increased 4 percent in tonnage and 17 percent in value in 1956 compared with 1955. cement production reached an alltime high in 1956, clay used in cement production reached a corresponding alltime high. neous clay consumed in manufacturing heavy clay products increased about 1 percent. In 1956, 60 percent of the total miscellaneous clay was used in manufacturing heavy clay products, 27 percent in cement,

Calver, J. L., The Fuller's Earth Industry, Florida-Georgia District: Min. Eng., vol. 8, No. 4, April 1956, pp. 393-395.

and 12 percent in lightweight aggregate. Captive tonnage—clay produced by mine operators for their own use in manufacturing brick, tile, cement, and lightweight aggregate and marketed for the first time as such—was 99 percent of the miscellaneous clay sold or used in 1956. The quantity of miscellaneous clay used in producing lightweight aggregate for concrete mixtures increased 32 percent in tonnage

compared with 1955.

Ohio was the only State that reported tonnage exceeding 3 million short tons. In decreasing order, the following States reported tonnage exceeding 2 million short tons: North Carolina, Texas, California, and Michigan. States reporting over 1 million and less than 2 million short tons were, in decreasing order of output: Pennsylvania, Illinois, Indiana, Alabama, Georgia, New York, Tennessee, and Virginia. Of the States for which data are shown in table 9 for both 1955 and 1956, 25 reported increases, and 17 reported decreases in output in 1956.

TABLE 8.—Miscellaneous clays, including shale and slip clay sold or used by producers in the United States, 1955-56, by States

State	Sold by p	roducers 1	Used by p	roducers 2	То	tal
5666	Short tons	Value	Short tons	Value	Short tons	Value
						
1955		44 444		A1 100 FF0	1 055 501	61 101 100
AlabamaAlaska	1, 796	\$1,616	1, 255, 725	\$1, 129, 576	1, 257, 521	\$1, 131, 192
Alaska			1,012	3, 036	1,012	3, 036
Arizona			129, 567	194, 351	129, 567	194, 351
Arkansas			212, 465	288, 387	212, 465	288, 387
California	232, 733	563, 747	2, 172, 921	2, 684, 210	2, 405, 654	3, 247, 957
Colorado	(3)	(3)	(8)	(8)	202, 459	380, 575
Connecticut	96, 490	63, 741	228, 342	250, 836	324, 832	314, 577
Florida	(3)	(3)	(3)	(3)	199, 641	205, 497
Georgia	(3)	(3)	(3)	(3)	1, 356, 412	542, 608
Illinois	49, 876	176, 424	1, 925, 318	3, 054, 888	1, 975, 194	3, 231, 312
Indiana	(3)	(3)	(3)	(3)	1, 199, 989	1, 917, 307
Iowa	12, 808	24, 213	866, 856	903, 292	879, 664	927, 505
Kansas	(3)	(3) (3)	(3)	(3)	767, 662	873, 016
Kentucky	. (3)	(3)	(3)	(3)	422, 237	601, 466
Louisiana			651, 268	659, 099	651, 268	659, 099
Maine	67	67	32, 531	32, 531	32, 598	32, 598
Maryland	8, 029	16,058	603, 678	753, 085	611, 707	769, 143
Massachusetts			124, 832	141,654	124, 832	141, 654
Michigan	7, 381	48, 519	1, 930, 212	1, 970, 558	1, 937, 593	2, 019, 077
Minnesote	46	46	72, 954	83, 821	73,000	83, 867
Mississinni			393, 841	395, 341	393, 841	395, 341
Mississippi Missouri Montana	14, 505	27, 686	858, 637	839, 613	873, 142	867, 299
Montana	1.,000		33, 286	25, 400	33, 286	25, 400
Nahraska			148, 340	148, 340	148, 340	148, 340
Nebraska New Hampshire			35, 184	35, 184	35, 184	35, 184
New Jersey	(3) (3)	(3)	(3)	(3)	511, 205	573, 135
New Mexico	3	(8)	(3)	(8)	35, 994	78, 871
New York		Ì3, 184	1, 392, 199	1, 663, 031	1, 393, 665	1, 676, 215
North Carolina		,	2, 354, 065	1, 434, 434	2, 354, 065	1, 434, 434
North Dakota			50, 936	69, 436	50, 936	69, 436
Ohio	197, 017	226, 664	2, 871, 913	3, 331, 579	3, 068, 930	3, 558, 243
Oklahoma	(3)		(3)	(8)	723, 856	723, 856
Pennsylvania		(3) 50, 458	1, 679, 106	1, 850, 951	1,820,621	1, 901, 409
Puerto Rico	111,010	00, 200	136, 563	121, 753	136, 563	121, 753
South Carolina			703, 090	794, 581	703, 090	794, 581
South Dakota	(3)	(3)	(3)	(8)	157, 778	151, 123
		(7)	915, 184	309, 934	915, 184	309, 934
Tennessee	(3)	(3)	(3)	(3)	2, 504, 236	2, 569, 385
Texas		15, 162	123, 312	321.892	133, 600	337, 054
Utah		10,102	14, 200	14, 200	14, 200	14, 200
Vermont			935, 941	873, 348	935, 941	873, 348
Virginia Washington	39, 223	29, 541	225, 411	208, 385	264, 634	237, 926
wasnington	37, 223	20,011	301, 408	286, 126	301, 408	286, 126
West Virginia		1,050	164, 088	164, 980	165, 088	166, 030
Wisconsin	1,000	1,000	209, 750	201, 944	209, 750	201, 944
Wyoming Undistributed 4		904 170	8, 121, 382	8, 550, 533	324, 903	317, 872
Undistributed •	284, 990	384, 178	6, 121, 382	0, 000, 000	321, 303	
Total	1, 099, 230	1, 642, 354	31, 875, 517	33, 790, 309	32, 974, 747	35, 432, 663

See footnotes at end of table.

TABLE 8.—Miscellaneous clays, including shale and slip clay sold or used by producers in the United States, 1955–56, by States—Continued

State	Sold by p	roducers 1	Used by p	oroducers 2	То	tal
	Short tons	Value	Short tons	Value	Short tons	Value
1956						
Alabama			1, 290, 830	\$1, 156, 440	1, 290, 830	\$1, 156, 440
Arizona			111.724	167. 587	111, 724	167. 58
Arkansas			444, 229	444, 229	444, 229	444, 22
California	405, 434	\$831, 136	1, 926, 844	2, 950, 302	2, 332, 278	3, 781, 43
Colorado			(3)	2, 000, 002	218, 186	396, 91
Connecticut	(3) 92, 626	(3) 54, 018	245, 358	336, 277	337, 984	390, 29
Georgia	02,020	04,010	1, 275, 128	509, 980	1, 275, 128	509, 98
Hawaii			1, 590	1, 988	1, 590	1. 98
Idaho	1		22, 500	12, 225	22, 500	12, 22
Illinois	16,062	108, 439	1, 800, 832	3, 027, 374	1, 816, 894	3, 135, 81
Indiana	(3)	(3)	(3)	(3)	1, 405, 366	2, 255, 24
Iowa		(3) 11, 127	851, 465	1, 066, 515	852,020	1, 077, 64
Kansas		44	837, 963	860, 044	837, 969	860, 08
Kentucky	(3)	(3)	(3)	(3)	486, 309	665, 62
Louisiana		(-)	785, 283	785, 283	785, 283	785. 28
Maine			26, 162	23, 045	26, 162	23, 04
Maine Maryland Massachusetts	(3)	(3)	(3)	(3)	567, 116	636, 77
Massachusetts		(-)	127, 547	213, 682	127, 547	213, 68
Michigan	(3)	(3)	(3)	(3)	2, 110, 030	2, 401, 05
Minnesota	53	53	79, 647	91, 176	79, 700	91, 22
Mississinni	1		299, 614	299, 614	299, 614	299, 61
Missouri Montana	9,400	21, 747	882, 494	877, 652	891, 894	899, 39
Montana	0, 100	#±, • ± •	31, 472	24, 597	31, 472	24, 59
Nebraska			150, 642	151, 054	150, 642	151.05
Nevada	2 625	3, 281	8, 745	10, 931	11, 370	14. 21
Nevada New Hampshire	2,020	0, 201	36, 320	47, 040	36, 320	47.040
New Jersey New Mexico New York North Carolina			480, 934	994, 965	480, 934	994, 96
New Mexico	(3)	(8)	(3)	(3)	31, 309	67, 90
New York	1 420	19, 294	1, 233, 430	1, 488, 455	1, 234, 860	1, 507, 749
North Carolina	1, 100	10, 201	2, 641, 387	1, 539, 842	2, 641, 387	1, 539, 84
North Dakota	1		52, 282	70, 555	52, 282	70, 55
Ohio	265, 524	226, 841	3, 272, 287	3, 450, 729	3, 537, 811	3, 677, 570
Oklahoma		40, 919	657, 219	657, 219	704, 771	698. 13
Oregon		(3)	(3)	(3)	256, 942	278, 20
Pennsylvania.	195, 057	68, 169	1, 774, 507	5, 676, 002	1, 969, 564	5, 744, 17
Drawto Dico		00, 108	142, 666	129, 166	142, 666	129, 16
South Carolina			695, 684	731, 598		731, 598
South Dakota	/3)	(3)	(3)	(3)	695, 684 201, 129	201, 129
Tennessee		(-)	1, 040, 420	336, 400	1,040,420	336, 400
Texas	6,388	72, 915	2, 495, 673	2, 502, 345	2, 502, 061	2, 575, 260
Utah	23,064	30, 091	141, 223	302, 417	164, 287	332, 508
Virginia		50,001	1,000,019	1, 032, 665	1,000,019	1, 032, 66
Washington West Virginia Wisconsin	FO.	150	232, 964	257, 755	233, 014	
West Virginia	"	100	341, 485	277, 266	341, 485	257, 90
Wisconsin	2 120	2, 460	160, 969	169, 627	163, 089	277, 26
Wyoming	2,120	۵, ±00	206, 186			172, 08
Wyoming Undistributed 4	419, 276	553, 873	5, 091, 696	207, 796 6, 589, 610	206, 186 234, 585	207, 796
		000,010	3, 031, 090	0, 909, 010	204, 080	240, 634
Total	1, 487, 222	2, 044, 557	32, 897, 420	39, 471, 447	34, 384, 642	41, 516, 00

The average reported value of miscellaneous clay sold as crude or prepared clay in 1956 was \$1.37, compared with \$1.49 in 1955, \$1.66 in 1954, and \$1.91 in 1953. Normal increased activity in the construction industry (heavy clay products, cement, and lightweight aggregate) furnished most of the gains in the consumption of miscellaneous clay.

Some special types of clay included under the miscellaneous-clay classification, however, sold at much higher prices. The value of the captive tonnage was computed from individual estimates that averaged about \$1 per short ton.

¹ Purchases by portland-cement companies of common clay and shale: 1955—55,518 tons, estimated at \$100,900; 1956—192,838 tons, estimated at \$192,858.
2 Includes the following: Common clay and shale used by portland-cement companies: 1955—8,963,716 tons, estimated at \$8,973,334; 1956—9,067,390 tons, estimated at \$9,301,741.
3 Included with "Undistributed."
4 Includes States indicated by footnote 3 and Delaware (1955–56), Florida (1956 only), Hawaii (1955 only), Nevada (1955 only), and Vermont (1956 only).

CONSUMPTION AND USES

Heavy clay products (building brick, structural tile, and sewer pipe) in 1956 comprised 51 percent of the total clay compared with 53 percent in 1955. Clays used in portland and other hydraulic cements, in 1956, consumed 18 percent of the total clay output; refractories,

TABLE 9,—Clays sold or used by producers in the United States in 1956, by kinds and uses, in short tons

	Kaolin	Ball clay	Fire clay and stoneware clay	Benton- ite	Ful- ler's earth	Miscel- laneous clay, in- cluding slip clay	Total
Pottery and stoneware: Whiteware, etc	143, 398	274, 728					418, 126
Stoneware, including chemical stoueware	1, 120	352	54, 754			3, 500	59, 726
Art pottery, flower pots, and glaze slip	6, 082	13, 394	19, 389			54, 479	93, 344
Total Floor and wall tile	150, 600 23, 718	288, 474 89, 891	74, 143 89, 184			57, 979 103, 713	571, 196 306, 506
Refractories:							
Firebrick and block Bauxite, high-alumina brick	217, 485 1, 000 7, 705		4, 701, 914 88, 264			1, 175	4, 964, 318 89, 264
Fire-clay mortarClay crucibles	7, 705 120	9, 040	161, 115 1, 637				179, 035 1, 757
Glass refractories Zinc retorts and condensers	10, 895		60, 834 57, 808				71, 729 57, 808
Foundries and steelworks	2,086	2, 113 19, 328	862, 190 13, 297	408, 399		12, 328	1, 287, 116 37, 066
Saggers, pins, stilts, and wads Other refractories	4, 441 4, 295	1, 046	13, 297 174, 574			336	180, 251
Total	248, 027	76, 446	6, 121, 633	408, 399		13, 839	6, 868, 344
Heavy clay products: Building brick, paying brick, drain tile, sewer pipe, and kindred productsArchitectural terra cotta	2, 327	57	5, 296, 355 9, 777			20, 710, 352 4, 087, 913	12, 161
Lightweight aggregates			55, 613			4, 067, 915	4, 140, 020
Filler: Paper filling Paper coating	584, 550 658, 555						584, 550 658, 555 268, 297 18, 989
Lineoleum and oileloth	268, 157 9, 036					140 2, 133 399	268, 297 18, 989 31, 237
Paint Asbestos products Fertilizers	591		486	30		4, 323	591 14, 063
Insecticides and fungicides Plaster and plaster products Plastics, organic Other fillers	40, 240 7, 517		486	18, 847	114, 427	2, 754	176, 754 7, 517
Plastics, organic	16, 740 30, 104			3, 859	1, 067	1, 171	16, 740 36, 926
Total	1, 656, 038	725	8, 306		115, 494	10, 920	1, 814, 219
Portland and other hydraulic cements	27, 767		3, 195			9, 260, 248	9, 291, 210
Miscellaneous:							
Enameling Filtering and decolorizing (raw and activated earths):		2, 323					2, 323
Mineral oils and greases Vegetable or animal oils and fats				151, 671 94, 997	1,606		196, 314 96, 603 21, 256
Other filtering and clarifying Rotary-drilling mud			3, 180	14, 888 628, 146	78, 775	44, 158	754, 259
Chemicals	8, 324 1, 500		120, 186	600	170, 328	1, 192	182, 128
Artificial abrasives Exports Other uses	177 22, 437	1	15, 414			2, 641	2, 818 84, 443
Other uses	109,005	080	6, 107	193, 521	151		400, 471
	141, 443	3, 213	144, 887	1, 139, 475	302, 221	139, 678	1, 870, 917
Total							
TotalGrand total:	0.040.555	450 000				34, 384, 642	50 994 TOP

13 percent; lightweight aggregate, 8 percent; and rotary-drilling mud, paper filler, paper coating, and pottery, slightly more than 1 percent each. The remainder was consumed for a number of purposes. Exports were shown separately as a use in 1956.

The total tonnage of clays consumed in 1956 increased 5 percent in 1956, but consumption in many branches of the clay industry, using

20,000 short tons or more each, decreased.

Increases for some of the more important clay uses were as follows: Lightweight aggregate, 34 percent; refractories, 9 percent; pottery (whiteware), 6 percent; paper filler, 7 percent; paper coating, 15 percent; rubber, 3 percent; cement, 3 percent; heavy clay products, 2 percent; filtering and decolorizing oils, 21 percent; absorbent uses, 23 percent; and insecticides and fungicides, 16 percent. Some uses that decreased were: Art pottery and flowerpots, 14 percent; floor and wall tile (high-grade tile), 11 percent; linoleum and oilcloth, 59 percent; and paint, 13 percent.

REFRACTORIES

The value of clay-refractories shipments increased 15 percent in 1956 compared with 1955. The value of fire-clay brick shipments (except superduty) represented 35 percent of the total value in 1956, the same as in 1955; ladle brick, 11 percent, the same as in 1955; superduty fire-clay brick, 9 percent in 1956, compared with 8 percent in 1955; and insulating firebrick, 7 percent in 1956 and 6 percent in 1955. A number of classifications composed the remaining 38 percent in 1956, compared with 40 percent in 1955, as shown in table 10.

TABLE 10.—Shipments of refractories in the United States, by kinds, 1955-56
[Bureau of the Census]

		Shipments				
Product	Unit of	19	955	1956		
	quantity	Quan- tity	Value (thou- sand dollars)	Quan- tity	Value (thou- sand dollars	
Clay refractories: Fire-clay brick, standard and special shapes, except superduty. Superduty fire-clay brick and shapes. High-alumina brick and shapes (50 percent Al ₂ O ₂ and over) made substantially of calcined diaspore or bauxite. ²	equivalent.	¹ 488,587 74, 272 21, 132	1 63,222 15, 137 7, 138	521, 604 82, 924 23, 593	73, 439 18, 631 8, 631	
Insulating firebrick and shapes ³ Ladle brick Hot-top refractories Sleeves, nozzles, runner brick and tuyeres. Glasshouse pots, tank blocks, feeder parts and upper structure shapes used only for glass tanks. ²	do do	54, 178 ¹ 246,533 ¹ 38, 304 58, 976 ¹ 18, 389	11, 196 1 20, 654 1 6, 114 1 10, 351 1 3, 602	244, 409 38, 263	13, 698 21, 928 6, 234 11, 108 4, 448	
Refractory bonding mortars, air setting (wet and dry) types. Refractory bonding mortars, except air-setting types.	do	1 73, 029 10, 785	1 7, 432 1, 021	84, 343 10, 931	8, 749 1, 099	
Plastic refractories and ramming mixes ² ————————————————————————————————————	do	139, 357 1 83, 767 12, 212	9, 232 1 7, 465 1, 363	159, 137 98, 051 14, 966	10, 567 9, 089 1, 716	

See footnotes at end of table.

TABLE 10.—Shipments of refractories in the United States, by kinds, 1955-56-Continued

[Bureau of the Census]

			Shipn	nents	
Product	Unit of	19)55	19)56
	quantity	Quan- tity	Value (thou- sand dollars)	Quan- tity	Value (thou- sand dollars)
Clay refractories—Continued Ground crude fire clay, high-alumina clay, and silica fire clay.4	Short ton	1 776,966	1 7, 474	621, 504	7, 598
Clay-kiln furniture, radiant-heater elements, pot- ters' supplies, and other miscellaneous refrac-			1 5, 448		6, 963
tory items. Other clay refractory materials sold in lump or ground form.					4, 723
Total clay refractories.			1 181,076		208, 608
Nonclay refractories: Silica brick and shapes	1,000 9-in. equivalent.	328, 414	55, 563	314, 514	58, 668
Magnesite and magnesite-chrome (magnesite predominating) brick and shapes (excluding molten east).	do	53, 153	32, 093	49, 653	32, 742
Chrome and chrome-magnesite (chrome ore predominating) brick and shapes.	do	· ·	28, 771	61,651	36, 725
Graphite and other crucibles, retorts, stopper heads, and other shaped refractories.	Short ton	12, 721	17,926	13, 677	8, 658
Mullite brick and shapes made predominantly of kvanite, sillimanite, and alusite, or synthetic	1,000 9-in. equivalent.	1 3, 959	¹ 4, 506	5, 687	6, 719
mullite (excluding molten cast). Extra-high alumina brick and shapes made predominantly of fused bauxite, fused or densestatered alumina.	do	1 2, 397	3, 810	3, 186	5, 349
Silicon carbide brick and shapes made substan-	40		1 9, 283	4, 220	10, 152
Zircon and zirconia brick and shapes made pre- dominantly of these materials.			1 1, 144		1, 631
Forsterite, pyrophillite, molten-cast, and other nonclay brick and shapes.			1 7, 316		9, 105
Nonclay refractory bonding mortars, air-setting (wet and dry) types.			7, 320	80, 124	8, 255
Nonclay refractory bonding mortars, except air- setting types.	do	1 20, 249	1 1, 933	20, 148	1,882
Nonclay plastic refractories and ramming mixes	do	1 202,476	17, 704	186, 206	17, 913
(wet and dry) types. Nonclay refractory castables (hydraulic setting) Other nonclay refractory materials sold in lump or ground form. ⁵	do	1 5, 597	1 1, 160 1 9, 747		1, 197 11, 768
Total nonclay refractories.			1 188,276		210, 764
Grand total refractories 6			1 369,352		419, 372

¹ Revised figure.
² Does not include mullite or extra-high alumina refractories. These products included with mullite and extra-high alumina brick and shapes in the nonclay refractories section.
² The 1954 quantity for this item should be 37,090 (1,000 9-in. equivalent) instead of 87,090 (1,000 9-in. equivalent) as previously published in M32C-05.
⁴ Represents only ground-crude fire clay and high-alumina clay material produced and shipped by manufacturers who also produced and shipped other types of refractories.
² In addition, the Bureau of Mines, U. S. Department of the Interior, reports that 1,521,000 tons of dead-burned dolomite (refractory lime), valued at \$21,961,000, was sold by producers in 1954 and 2,129,000 tons valued at \$31,425,000 in 1955. Comparable data for 1956 are not yet available.
⁴ Data for dead-burned magnesia and magnesite are excluded to avoid duplication, since an indeterminate quantity of these materials was shipped to refractory producers for incorporation into the refractory products covered in this report (such as magnesite brick and shapes). The total quantity and value of shipments of dead-burned magnesia and magnesite reported to the Bureau of the Census was 772,744 tons valued at \$22,439,000 in 1955 and 796,007 tons valued at \$24,613,000 in 1956.

During the year A. P. Green Fire Brick Co., Mexico, Mo., acquired Richard C. Remmey Son Co. of Philadelphia, Pa., and Pyro Refractories Co., Oak Hill, Durex Refractories Co., Jackson, and Portsmouth Clay Refractories Co., South Webster, all in southern Ohio.

Harbison-Walker Refractories Co. continued its program of expansion and modernization initiated in 1951, estimated to cost \$55 million ultimately. New plants were under construction at Ludington, Mich., and Hammond, Ind., the former to produce dead-burned magnesia and the latter to manufacture basic brick and other basic Both plants were to be provided with docks for water Upon completion of these plants the company will have shipment. 33 plants widely distributed in the United States and 1 each in Canada, Peru, and Mexico. Coupled with this large expansion the company accelerated its research program. A large research laboratory was being built near Pittsburgh in 1956, and the existing laboratory was to be converted entirely to testing raw materials and products.

Refractories Specialties Co. of Philadelphia, Pa., producers of castables and refractory cements, acquired control of three plants making ladle brick exclusively in central Pennsylvania—Falls Creek Refractories Co., Falls Creek, Pa.; Clearfield Clay Products Co., Clearfield, Pa.; and Blair Clay Products Co., Altoona, Pa.
The Laclede-Christy Co. Division of H. K. Porter Co., Inc., an-

nounced the initial phases of a \$1.5 million expansion program as follows: New grinding, screening, and sacking units and a complete chemical laboratory at the Christy plant, St. Louis, Mo.; a new finegrinding pilot plant and tunnel kiln at the Laclede plant, St. Louis, Mo.; new gas-burning equipment and clay-storage bins at the Clearfield, Pa., plant; new equipment for mixing, crushing, grinding, drying, and firing at the Bessemer, Ala., plant; and installation of facilities at the Canon City, Colo., plant to manufacture superduty silica refractories.

The following three eastern companies were consolidated as divisions of the Mexico Refractories Co.: National Refractories Co., Philadelphia, Pa. (silica brick); Big Savage Refractories Co., Frostburg, Md.; and Niles Fire Brick Co., Niles, Ohio (fire-clay and silica refractories). This consolidation was said to make Mexico Refractories Co. the third largest producer of firebrick in the United States.

The General Refractories Co., one of the largest manufacturers of refractory products in the United States, announced plans to build a basic refractory plant at Gary, Ind., to produce a complete line of chemically bonded basic refractories, as well as mortars, castables, and other specialty products.

The North American Refractories Co., Cleveland, Ohio, announced plans for constructing a research center at Curwensville, Pa., to coordinate all phases of quality control and new product development for

all company plants.

HEAVY CLAY PRODUCTS

Clay consumed in producing heavy clay products (see table 9) increased 2 percent in 1956.

The Belden Brick Co., Canton, Ohio, one of the oldest firms producing high-quality face brick in the United States, began operating

an ultramodern face-brick plant in March 1956. All equipment was controlled from one electric panel, designed so that if any part of the processing was interrupted the entire operation would cease. Four storage bins were provided for ground clay-1 for light-burning clay, 1 for buff-burning clay, 1 for coarse, and 1 for fine red-burning clay. The different kinds of clay were fed automatically from the several bins—a new concept in blending clay for face-brick manufacture. Only one man was required to operate all equipment used to process The drier comclay from raw material hopper to fine-clay storage. prised 8 tunnels 120 feet long, each holding 12 cars. Each car held 3,500 brick. The plant was equipped with 3 gas-fired tunnel kilnstwo 345 feet long and one 392 feet long.

A large deposit of clay was discovered in Bedford Canyon near Corona, Riverside County, Calif., by Gladding, McBean & Co., and it was reported that the company expected to construct a plant to utilize the clay in manufacturing vitrified-clay sewer pipe.

The trend that began in 1951 toward increased plant modernization and improved manufacturing methods in the structural-clay-products

industry continued through 1956.5

The Shalite Corp. built a plant with an estimated daily capacity of 400 cubic yards of aggregate near Knoxville, Tenn. The sinteringmachine method was used. The sinter charge was ignited by fuel-oil burners, with carbonaceous fly ash as the supporting fuel.6

The Onondaga Brick Corp. plant at Warners, N. Y.—built in 1861 but shut down in 1950—was converted to production of lightweight aggregate, using the sintering-machine method. The estimated pro-

duction per 24-hour day was 600 cubic yards.

The Carolina Tuff-Lite Co., one of the first producers of lightweight aggregate from expanded clay in the southeastern United States, had tripled its production in 3 years. The newest plant to be built was

near Salisbury, N. C.8

Sayre & Fisher Brick Co., Sayreville, N. J., one of the oldest brickyards in New Jersey, entered the lightweight-concrete-aggregate field and utilized clay nearby. The plant was on the bank of the Raritan River to facilitate transportation of the aggregate by boat.

TECHNOLOGY

The volume of the proceedings of the Fourth National Conference on Clays and Clay Minerals, sponsored by the Committee on Clay Minerals of the National Academy of Sciences—National Research Council, and The Pennsylvania State University, October 1955, was

<sup>Brick and Clay Record, vol. 128, No. 1, January 1956, pp. 57-58, 61; No. 2, February 1956, pp. 25, 27, 36-37, 40, 45-47; No. 3, March 1956, pp. 32, 46-51, 64-66, 69; No. 4, April 1956, pp. 50, 60-63, 65-68, 71, 72-74, 102, 104, 107; No. 5, May 1956, pp. 32, 44-55, 64-68, 71, 77, 79, 81-82, 101; vol. 129, No. 1, July 1956, pp. 36-40, 56-57; No. 2, August 1956, pp. 38-41, 46-49, 64-66; No. 3, September 1956, pp. 58-61; No. 4, October 1956, pp. 78-79; No. 5, November 1956, pp. 32, 44-45, 53-54; No. 6, December 1956, pp. 72-73, 85-86.
Ceramic Industry, vol. 66, No. 1, January 1956, pp. 41-42; No. 2, February 1956, pp. 70, 83, 104; No. 3, March 1956, pp. 39-43; No. 4, April 1956, pp. 62, 64, 134-135, 154; No. 5, May 1956, pp. 45-46; No. 6, June 1956, pp. 35-54, 102-103; vol. 67, No. 1, July 1956, pp. 78-80; No. 2, August 1956, pp. 57-61; No. 3, September 1956, pp. 63-67, 106-103; No. 4, October 1956, pp. 70, 82-83, 85-87; No. 6, December 1956, pp. 61-62.
Ceramic Age, vol. 67, No. 1, January 1956, p. 39; No. 2, February 1956, pp. 8-10; No. 3, March 1956, pp. 8-9; No. 4, April 1956, pp. 22-23, 30, 40-41; No. 5, May 1956, pp. 8-10, 12, 14, 16-19, 25, 32; No. 6, June 1956, pp. 18, 20-21, 22, 29, 34; vol. 68, No. 1, July 1956, pp. 13-15, 16, 25; No. 3, September 1956, pp. 18, 20-21, 22, 29, 34; vol. 68, No. 1, July 1956, pp. 13-15, 16, 25; No. 3, September 1956, pp. 12-14.
Brick and Clay Record, vol. 129, No. 5, November 1956, pp. 73-75.
Brick and Clay Record, vol. 129, No. 5, November 1956, pp. 62-63, 65.</sup>

published during 1956. Selected papers from this volume were of

special interest to the clay industry.9

A study of weathered feldspathic rocks in the southern Appalachian region revealed that hydrated halloysite was formed by weathering all types of feldspar where environmental conditions are favorable, as in the Spruce Pine district of western North Carolina.¹⁰

A review of clay-mineralogy techniques and an outline for identifying minerals in clays was published in conjunction with a clay-mineral research program being conducted by the Ohio Geological Survey.¹¹

A method of separating montmorillonite from other clay minerals (kaolinite, illite, beidellite, and silica) by their different stabilities in suspensions was investigated with a view to determining the contents of montmorillonite in bentonites. 12

The research program for 1956 of the Expanded Shale, Clay, and Slate Institute was as follows: The initial phase of work on the cor-

9 Swineford, Ada, Clays and Clay Minerals: Nat. Acad. Sci.—Nat. Res. Council, Washington. D. C..

* Swineford, Ada, Clays and Clay Minerals: Nat. Acad. Sci.—Nat. Res. Council, Washington, D. C., Pub. 456, 1956, 444 pp.
Kinter, E. B., and Diamond, Sidney, A New Method For Preparation and Treatment of Oriented Aggregate Specimens of Soil Clays for X-ray Diffraction Analysis: P. 21.
Milne, I. H., and Warshaw, C. M., Method of Preparation and Control of Clay Mineral Specimens in X-ray Diffraction Analysis: Pp. 22-30.
Murray, H. H., and Lyons, S. C., Correlation of Paper-Coating Quality With Degree of Crystal Perfection of Kaolinite: Pp. 31-40.
Bradley, W. F., The Green Compression Strength of Natural Bentonites: Pp. 41-44.
Henin, S., Synthesis of Clay Minerals at Low Temperatures: Pp. 54-60.
Brindley, G. W., and Comer, J. J., The Structure and Morphology of a Kaolin Clay From Les Eyzies (France): Pp. 61-66.
Sudo, Toshio, and Takahashi, Hiroshi, Shapes of Halloysite Particles in Japanese Clays: Pp. 67-79.
Roy, D. M., and Roy, Rustum, Hydrogen-Deuterium Exchange in Clays and Problems in the Assignment of Infrared Frequencies in the Hydroxyl Region: Pp. 82-84.
Rowland, R. A., Weiss, E. J., and Bradley, W. F., Dehydration of Monoionic Montmorillonites: Pp. 85-95.

Rowland, R. A., Weiss, E. J., and Bradley, W. F., Dehydration of Monoionic Montmorillonites: Pp. 85-95.
Sand, L. B., and Crowley, M. S., Comparison of a Natural Bentonite With Its Synthetic Analogue: Pp. 96-100.
Nelson, B. W., The Illites From Some Northern Ohio Shales: Pp. 116-124.
Roy, Rustum, and Brindley, G. W., A Study of the Hydrothermal Reconstitution of the Kaolin Minerals: Pp. 125-132.

Roy, Rustum, and Brindley, G. W., A Study of the Hydrothermal Reconstitution of the Kaolin Minerals: Pp. 125-132.

Albareda, J. M., Spanish Investigations on Clay Minerals and Related Materials: Pp. 147-157.

Dekeyser, W., Clay-Mineral Research in Belgium (1945-55): Pp. 158-160.

Hofmann, Ulrich, Summary of Clay-Mineral Studies in Germany, 1954 and 1955: Pp. 161-165.

MacEwan, D. M. C., A Study of an Interstratified Illite-Montmorillonite Clay From Worcestershire, England: Pp. 166-172.

Martin-Vivaldi, J. L., Cana-Ruiz, J., and Fontbote, J. M., The Bentonites From the Volcanic Region of Cabo de Gata (Almeria): Pp. 181-184.

Sudo, Toshio, Clay Mineral Work Proceeding in Japan: Pp. 185-195.

Gaskin, A. J., and Walker, G. F., Clay Mineral Research in Australia: Pp. 196-203.

van Olphen, H., Forces Between Suspended Bentonite Particles: Pp. 204-224.

Oakes, D. T., and Burcik, E. J., Electrokinetic Phenomena in Colloidal Clays: Pp. 225-239.

Wood, W. H., Granquist, W. T., and Krieger, I. M., Viscosity Studies on Dilute Clay Mineral Suspensions: Pp. 240-250.

Ormsby, W. C., Witucki, R. M., and Weyl, W. A., Effect of Wetting Agents on the Deformation Behavior of Kaolinite-Water Systems: Pp. 251-272.

Hofmann, Ulrich, in cooperation with Weiss, Armin, Koch, G., Mehler, A., and Scholz, A., Intracrystaline Swelling, Cation Exchange, and Anion Exchange of Minerals of the Montmorillonite Group and of Kaolinite: Pp. 273-287.

Marshall, C. E., Thermodynamic, Quasithermodynamic, and Nontronite by the Acid-Dissolution Technique: Pp. 301-321.

Kerr, G. T., Zimmerman, R. H., Fox, H. A., Jr., and Wells, F. H., Degradation of Hectorite by Hydrogen Ion: Pp. 322-329.

Mumpton, F. A., and Roy, Rustum, The Influence of Ionic Substitution on the Hydrothermal Stability of Montmornillonicies. Pp. 33-339.

Mumpton, F. A., and Roy, Rustum, The Influence of Ionic Substitution on the Hydrothermal Stability of Montmorillonoids: Pp. 337-339.

Murray, H. H., and Leininger, R. K., Effect of Weathering on Clay Minerals: Pp. 340-347. Dekeyser, W., Clay Minerals Research at Ghent University: Pp. 372-380.

Weaver, C. E., The Distribution and Identification of Mixed-Layer Clays in Sedimentary Rocks: Pp. 372-380.

Hathaway, J. C., Mixed-Layered Structures in Vanadium Clays: Pp. 387-388.

Tamura, Tsuneo, Weathering of Mixed-Layer Clays in Soils: Pp. 413-422.

Sand, L. B., Genesis of Residual Kaolins: Am. Mineral., vol. 41, No. 1-2, January-February 1956,

12 Buzágh, A., and Szepesi, K., Colloid-Chemical Determination of Montmorillonite Content in Bentonites: Acta chim. Acad. Sci., Hungary, vol. 5, No. 3-4, 1955, pp. 287-289; Ceram. Abs., vol. 39, No. 2 Cont. 1 1955, 200

relation program at the University of Toledo was completed, and some of the results from this program were published during the year. A program to determine ultimate deflection, plastic flow, and internal fiber stresses was under contract with Southern Methodist University, Dallas, Tex. Lightweight-Concrete Information Sheets on Mix Design and Thermal Insulation were published during the year. brought to four the number of technical-data sheets published. on a fifth, Design Coefficients, was started during the latter part of the year and was to be completed in 1957. A revision of the Bridge Deck Survey, published in 1954, was expected to be published in 1957.13

The Structural Clay Products Research Foundation, because of its primary interest in lower cost masonry construction, was working on construction-site techniques, new and more efficient wall designs, the development of new products, and product design. As the latter phases become greater in scope, more emphasis will be placed on the physical properties of raw materials and their effect on the products

manufactured from them.14

National Clay Pipe Manufacturers, Inc., continued its research in the development of longer lengths, greater strength, and new methods of jointing vitrified clay pipe and included advanced studies on house-connected pipe and the larger diameters of standard-strength and extra-strength clay pipe for sanitary sewer lines. This research was being done at various university laboratories in the United States and at the NCPMI laboratory in California. It was planned to study more efficient methods of horizontal extrusion of both large and small sizes of vitrified-clay sewer pipe. Automation in the vitrified-clay-pipe industry was expected to be an important factor in the production of vitrified clay pipe in the near future.15

Pacific Northwest clay resources were summarized by counties in a report published during the year.16 In addition, the ceramic plants of the region were listed, and available data on annual production, type of kilns, type and cost of fuel, power consumption, and the

cost of raw materials were given.

The processing of kaolin from core drilling to filter processing and

drying, was discussed.17

Extensive bentonite deposits (estimated to contain reserves of more than 1 million tons) along the Big Horn River in Wyoming and Montana were described by the Federal Geological Survey. The deposits were mostly on the Crow Indian Reservation. 18 Major regions of bentonite reserves in territory served by the Chicago & North Western Railway system were described. 19

Estimated reserves of 200,000 tons of swelling-type bentonite in the St. Victor-Pickthall area in Saskatchewan, and deposits of non-

¹³ Expanded Shale, Clay, and Slate Institute, letter to the Bureau of Mines: June 5, 1957.

14 Structural Clay Products Research Foundation, letter to the Bureau of Mines: Aug. 28, 1957.

15 National Clay Pipe Manufacturers, Inc., letter to the Bureau of Mines: Sept. 11, 1957.

16 Kelly, H. J., Strandberg, K. G., and Mueller, J. I., Ceramic Industry Development and Raw-Material Resources of Oregon, Washington, Idaho, and Montana: Bureau of Mines Inf. Circ. 7752, 1956, 77 pp.

17 Lane, G. J., Mining and Refining of Fiorida Plastic Kaolin: Bull. Am. Ceram. Soc., vol. 35, No. 4, April 1956, pp. 187-158.

18 Knechtel, M. M., and Patterson, S. H., Bentonite Deposits in Marine Cretaceous Formations of the Hardin District, Montana and Wyoming: Geol. Survey Bull. 1023, 1956, p. 116.

19 Chicago and North Western Railway Co., Bentonite Possibilities for Development in Chicago and North Western Territory: Resource Pub. 106, Dec. 1, 1956, 28 pp.

swelling bentonite in the east-central part of the province were

reported.20

A series of articles on drying of structural clay products was published. Among the topics discussed were drying theory and practices, types of commercial dryers, and drying problems and suggested solutions.21

arious aspects of drying, wet-column glazing, and dry-ware glazing of structural tile were considered, with emphasis on the

production problems.22

Spray drying, employed in many of the large kaolin-processing plants, is a process for converting solutions, slips, or slurries almost instantly into a dry, free-flowing product in one drying step. eliminated the necessity of shipping paper-coating clay in slurry form in tank cars. Essentially, this type of drier consists of a furnace. atomizer, spray chamber, dust collector, and fan.23

Need for a more reproducible technique of dry modulus of rupture determination prompted a study on a ball clay-flint body. It was concluded that a deairing extrusion technique or a casting procedure

should be used for determining the dry modulus of clays.²⁴

Static and dynamic moduli of elasticity tests on resilient materials, including firebrick and heat-treated plastic refractories, were found

to be in good agreement.25

A rotational viscometer was developed to determine the viscousflow properties of several clay-water systems in the complete range from fluid slips to thick pastes. Yield-point measurements could be obtained with the instrument by determining the torsion remaining after the clay had been sheared. The measurements of resistance to shear of the clay-water bodies were expressed in centipoises, and examples of measurements were given.²⁶

The durability gradings in ASTM Specifications C-62 and C-216

were found applicable to both deaired and nondeaired brick.27

Factors that affect dies used to form structural-clay products were noted as follows: Percentage of clay-mineral versus percentage of inert mineral fragments, particle-size ratio, tempering of the body, degree of auger starvation, number of blades on auger propeller, shape of blades, shape of approach to die, and frontal resistance against which the die works.28

An unusual manufacturing practice of mixing 1 part of surface

²⁰ Carlson, E. Y., Industrial Minerals in Saskatchewan: Canadian Inst. Min. Met. Bull., vol. 48, No. 527, March 1956, pp. 204–206.
²¹ Seanor, J. G., Brick and Clay Record: Practical Modifications of Drying Theory, vol. 128, No. 5, May 1956, pp. 98, 99, 106; How Applying Theory Can Improve Drying, vol. 128, No. 6, June 1956, pp. 81–83 and vol. 129, No. 1, July 1956, pp. 51–53, 77, 79; "Regain" Water Can Damage Ware, vol. 129, No. 2, August 1956, pp. 85–87, 89; Can A Dryer Be Too Large?, vol. 129, No. 3, September 1956, pp. 72–73; What is the Proper Length for a Dryer?, vol. 129, No. 4, October 1956, pp. 82–83; The Effects of Condensation on Green Ware, vol. 129, No. 5, November 1956, pp. 75–77; Control of Humidity for Drying, vol. 129, No. 6, December 1956, no. 55–56.

^{1956,} pp. 55-56.

22 Meeka, Edward, Drying and Glazing of Structural Tile: Bull. Am. Ceram. Soc., vol. 35, No. 6, June 15,

²² Meeka, Edward, Drying and Globing of States 1956, pp. 239-240.

23 Ceramic Industry, vol. 67, No. 4, October 1956, pp. 111-112.

24 Phelps, G. W., and Maguire, S. G., Jr., Factors Affecting Dry Modulus of Rupture of Ball Clay—Flint-Bodies: Bull. Am. Ceram. Soc., vol. 35, No. 6, June 15, 1956, pp. 224-227.

25 Mong, L. E., and Pendergast, W. L., Dynamic and Static Tests for Mechanical Properties of Fired Plastic Refractories and Other More Resilient Materials: Jour. Am. Ceram. Soc., vol. 39, No. 9, September 1958, pp. 301-308.

Plastic Refractories and Other More Resment Materials: Jour. Am. Ceram. Soc., vol. 09, 100. 0

clay, containing about 37 percent moisture, with 4 parts of shale (dry basis) to produce building brick was described. Other innovations, including redesign of the tunnel kiln to speed up the firing

cycle, almost doubled daily production.29

The status and future potential of lightweight aggregate were discussed.30 Manufactured lightweight aggregate was used in increasingly greater quantities as more was learned of its properties. Entirely new uses, such as bituminous-concrete aggregate, were being developed.

The Engineering Experiment Station at Ohio State University, Columbus, Ohio, was engaged in a long-range research program on lightweight aggregate. The phases under study were evaluation of Ohio raw materials, a study of bloating mechanisms, and problems in

the use of lightweight aggregate.31

The Armour Research Foundation of Illinois Institute of Technology, Chicago, Ill., developed a lightweight all-clay building block comparable in size and strength to the conventional concrete block and about 20 percent lighter in weight. The basic difference between the all-clay block and the conventional concrete block was that the binding element in the ceramic block was clay instead of cement and it was fired in a kiln like other clay products.32

The use of the drum pelletizer in manufacturing a lightweight

aggregate from clay was explained.33

Problems pertaining to the abrasion of refractories in service are usually complex, especially because the variety of conditions encountered is virtually unlimited. Three tests were described that have been used to obtain a measure of the resistance of refractories to There was a need for standardization of methods and new procedures of testing abrasion that would more closely simulate actual service conditions.34

New applications of refractories, resulting from the demand for higher operating temperatures in the field of nuclear power, were

discussed.35

Although refractories had not been used in existing reactors as materials of construction to utilize their desirable properties at high temperatures, they were of potential interest for such service and offered a possible solution to the materials problems in reactors dedesigned for a gas cycle operating at about 1,000° C. Conventional heavy refractories do not have the physical and nuclear properties required for nuclear-energy service, but special types such as pure oxides, graphite, carbides, silicides, and the cermets may be satisfac-Because of their brittleness, or lack of ductility, careful consideration must be given to design to make the most effective use of refractories.36

^{**} Brick and Clay Record, Boosts Tunnel-Kiln Output 50,000 per Day to 104,400 Solid From One Tunne Kiln: Vol. 129, No. 1, July 1956, pp. 44-49.

** Rowen, R. A., Lightweight Aggregate—Present and Future: Min. Eng., vol. 8, No. 11, November 1956, pp. 1103-1104.

** Brick and Clay Record, vol. 129, No. 5, November 1956, p. 34.

** Brick and Clay Record, vol. 128, No. 5, May 1956, p. 90.

** Brick and Clay Record, vol. 128, No. 3, March 1956, p. 57.

** Lesar, A. R., and McGee, T. P., Abrasion of Fireclay Refractories: Refractories Inst. Tech. Bull. 96, April 1956, p. 6.

** Schlüderberg, D. C., The Future Role of Refractories in the Field of Nuclear Power Generation: Brick and Clay Record, vol. 129, No. 2, August 1956, pp. 72-77.

** Warde, J. M., Refractories for Nuclear Energy: Refractories Inst. Tech. Bull. 94, February 1956, p. 18.

Thirty-five brands of super-duty and 52 brands of high-duty fireclay brick were tested for refractoriness by the ASTM load tests and by a 50-hour, 2,500° F. load test. The results of these tests were tabulated and their significance discussed. It was concluded that the 50-hour, 2,500° F. test permitted direct comparison of super-duty and high-duty brick and provided more accurate predictions of behavior in service.37

Kinds and specifications of refractories used in tunnel, periodic, and rotary kilns, and glasshouse and porcelain-enamel furnace construction were discussed.38

The requirements, conditions, and techniques of applying the principles of automation to a specialized line of production equipment used in manufacturing a stiff-mud refractory product were explained.39

Three brands of high-duty and two brands of super-duty fire-clay brick were fired and held for 12 hours at each of several temperatures. For each of the firing temperatures, the apparent porosity, bulk density, modulus of rupture, 50-hour load test at 2,500° F. and 25 p. s. i., and panel-spalling loss, were determined. The study showed that the firing temperature must be selected with regard to the firing behavior of the clays employed and the end use of the fired brick.40

A brief history and description of both round and rectangular downdraft, gas-fired, periodic kilns constructed of insulating firebrick was presented. Performance of firebrick and insulating firebrick linings and gas consumption in the two types of kilns were compared.41

Some patents issued during 1956 covered the uses of bentonite: In electrical insulating compositions, 42 in making a bandage with highly absorbent qualities, 43 as the stabilizer in a fiber dispersion for making felted organic products,44 as an ingredient in a coating for permanent molds,45 in a frozen-food-package telltale device, which shows when a package has been allowed to thaw during shipping or storage,46 in a resinous-coating composition, which upon curing produces a wrinklefinish surface,47 in manufacturing solid or semisolid compositions,48 and antimisting printing inks, 49 as a fusion product with sulfur in an effective carrier for a dichloronaphthaquinone fungicidal composi-

³⁷ Eusner, G. R., and Schaefer, W. H., Jr., Fifty-Hour Load Test for Measuring the Refractoriness of Super-Duty and High-Duty Fireclay Brick: Bull. Am. Ceram. Soc., vol. 35, No. 7, July 1956, pp. 265-270.

38 Brick and Clay Record, vol. 128, No. 1, January 1956, pp. 66-69, 71, 73, 75, 77, 79, 81, 83, 85, 78, 89.

39 Bettison, L. S., An Approach to Automation in Stiff-Mud Refractory Manufacture: Bull. Am. Ceram. Soc., vol. 35, No. 2, February 1956, pp. 71-72.

40 Eusner, G. R., and Debenham, W. S., Effect of Firing Temperature on the Properties of Fireclay Brick: Bull. Am. Ceram. Soc., vol. 35, No. 4, April 1956, pp. 151-154.

41 Robinson, R. R., and Parker, R. W., Operating Periodic Kilns Constructed of Insulating Firebrick: Bull. Am. Ceram. Soc., vol. 35, No. 5, May 1956, pp. 182-183.

42 McBride, B. V. (assigned to Westinghouse Electric Corp.), Insulating Composition for Magnetic Shects: U. S. Patent 2,739,085, Mar. 20, 1956.

43 Tollstrup, D. H., U. S. Patent 2,750,944, June 19, 1956.

44 Olson, R. C. (assigned to Wood Conversion Co.), Fiber-Size Emulsion and Use Thereof: U. S. Patent 2,754,206, July 10, 1956.

45 Zopl, G. S., Jr. (assigned to Monsanto Chemical Co.), Thaw Indicator: U. S. Patent 2,755,192, July 17, 1956.

46 Zopl, G. S., Jr. (assigned to Woostinghouse Electric Corp.), Modernal of Providing a Rose With a Wrip.

⁴ Zopf, G. S., Jr. (assigned to Monsanto Onemical Co.), Thaw Indicator.

1956.

47 McBride, B. V. (assigned to Westinghouse Electric Corp.), Method of Providing a Base With a Wrinkled Coating: U. S. Patent 2,763,568, Sept. 18, 1956.

48 Marshall, W. A., and Steininger, C. F. (assigned to The Pure Oil Co.), Clay-Thickened Lubricants Having Water-Resistant Characteristics: U. S. Patent 2,766,209, Oct. 9, 1956.

Erickson, J. G. (assigned to General Mills, Inc.), Organophilic Bentonite and Greases Produced Therefrom: U. S. Patent 2,767,176, Oct. 16, 1956; Complexes of Bentonite, Polyamine and Mono-Quarternary Ammonium Compounds: U. S. Patent 2,767,177, Oct. 16, 1956; Bentonite Complexes and Greases Derived Therefrom: U. S. Patent 2,767,189, Oct. 16, 1956.

40 Voct, A., and Williams, I. (assigned to J. M. Huber Corp.), Anti-Misting Printing Inks: U. S. Patent 2,766,127, Oct. 9, 1956.

tion.50 in weed-control compositions,51 and in a lightweight, fireresistant mineral-wool insulating board.52

Patents were issued during 1956 covering the use of kaolin in aqueous adhesive mixtures, 53 and in an aqueous bitumen dispersion

utilized as a coating agent.⁵⁴

A patent was issued to improve the "brightness" quality of Georgia kaolin to be used in high-quality paper by bleaching with a hydrosulphite at a pH below 3.2, then adjusting the pH to the range of 5.5 to 8.5 and separating the gray fraction from the slurry by sedimentation. The residual fraction had a markedly improved "brightness" quality.55

A method for manufacturing porous adsorptive catalytic material from a mixture of silica hydrogel and raw kaolin was patented.⁵⁶

A conversion process using halloysite activated with magnesium

oxide as a catalyst was patented.57

Patents were issued utilizing the absorptive properties of fuller's earth in purifying petroleum products 58 and halogenated liquids, 59 and in isolating biocytin.60 A patent was issued on the use of spent fuller's earth from petroleum refineries as an admixture to improve the properties of heavy clayey soils.61

Kaolin or bentonite were incorporated in improved slag-forming bodies for bolt welding,62 bentonite and fuller's earth were used in asphalt compositions,63 hard catalysts were made from a mixture of activated clay and kaolin or ball clay, 64 and kaolin and swelling-type

1956.

Sams, R. H. (assigned to Philadelphia Quartz Co.), Borated-Silicate Starch Laminating Adhesives and Manufacture of Combined Fiberboard Therewith: U. S. Patent 2,772,996, Dec. 4, 1956.

Mawyer, K., Eisenhut, F., and Seigel, A., Aqueous Bitumen Dispersions and a Process of Making Them: U. S. Patent 2,774,676, Dec. 18, 1956.

Rowland, B. W. (assigned to Georgia Kaolin Co.), Method of Clay Treatment: U. S. Patent 2,758,010,

**Rowland, B. W. (assigned to Georgia Kaolin Co.), Method of Clay Treatment: U. S. Patent 2,758,010, Aug. 7, 1956.

**O Flank, C. J., and Branton, P. D. (assigned to Socony Mobil Oil Co.), Cracking Catalyst Preparation: U. S. Patent 2,763,622, Sept. 18, 1956.

**O Flatt, W. C., and Whitaker, A. C. (assigned to Gulf Research and Development Co.), Catalytic Conversion Process: U. S. Patent 2,744,056, May 1, 1956.

**S Harris, R. G. (assigned to Texas Development Corp.), Process Employing Homogeneous Mixture of Inert Adsorbent and Substrate: U. S. Patent 2,769,750, Nov. 6, 1956.

McNelll, E., and Boyle, R. I. (assigned to the British Petroleum Co., Ltd.), Sweetening of Hydrocarbon Oils With Raw Clay Followed by Copper Sweetening: U. S. Patent 2,759,873, Aug. 21, 1956.

Salzman, L. (assigned to L. Sonneborn Sons, Inc.), Cloud Point Reduction of Mineral White Oils: U. S. Patent 2,731,391, Jan. 17, 1956.

Porter, F. W. B., and Northcott, R. P. (assigned to The British Petroleum Co., Ltd.), Removal of Vanadium and/or Sodium From Petroleum and Petroleum Products With Fuller's Earth: U. S. Patent 2,766,183, Oct. 9, 1956.

dium and/or Sodium From Petroleum and Petroleum Products with Fulier's Earlie U. S. Falent 2,100,100, Oct. 9, 1956.

80 Raab, E. L., and Gorsline, F. C. (assigned to General Electric Co.), Treatment of Halogenated Insulating Liquids: U. S. Patent 2,734,926, Feb. 14, 1956.

80 Wright, L. D., Wood, T. R., and Folkers, K. (assigned to Merck & Co., Inc.), Process for Isolating Biocytin: U. S. Patent 2,766,254, Oct. 9, 1956.

81 Edmond, R. E. (assigned to Esso Research & Engineering Co.), Soil Structural Improvement Process: U. S. Patent 2,760,308, Aug. 28, 1956.

82 Van der Willigen, P. C. (assigned to Hartford National Bank & Trust Co.), Slag-Forming Body for Use in Bolt Welding and Method of Making Same: U. S. Patent 2,755,164, July 17, 1956.

83 Sommer, H. J., and Peterson, W. H. (assigned to Shell Development Co.), Asphalt Compositions and Method of Preparing Same: U. S. Patent 2,730,454, Jan. 10, 1956.

84 Hanson, R. A. (assigned to Union Oil Company of Calif.), Conversion Catalysts and Process for Bonding the Catalyst Composites: U. S. Patent 2,759,899, Aug. 21, 1956.

^{**}Dye, H. W. (assigned to Food Machinery & Chemical Corp.), Composition for Controlling Growth of Fungi Comprising Dichloronaphthaquinone and Bentonite Sulfur: U. S. Patent 2,771,389, Nov. 20, 1956. Orwoll, E. F. (assigned to Food Machinery & Chemical Corp.), Method of Increasing the Colloidal Sulfur Content of Bentonite-Sulfur Mixtures: U. S. Patent 2,773,797, Dec. 11, 1956. Les Veaux, J. F. (assigned to Food Machinery & Chemical Corp.), Method of Producing Fused Bentonite-Sulfur Having a Stable Colloidal Sulfur Content: U. S. Patent 2,773,798, Dec. 11, 1956. Composition for Application of Sodium Borate for Vegetation Control: U. S. Patent 2,773,757, Dec. 11, 1956. Set Hollenberg, F. H., Jr. (assigned to Baldwin-Hill Co.), Method of Making Mineral-Wool Insulation: U. S. Patent 2,732,295, Jan. 31, 1956. Sowa, F. J., Herbicidal Composition: U. S. Patent 2,769,702, Nov. 6, 1956. Sowa, F. D. J. (assigned to Diamond Alkali Co.), Adhesive Silicate Composition and Method of Using the Same: U. S. Patent 2,736,678, Feb. 28, 1956.

Lander, J. G. (assigned to Diamond Alkali Co.), Silicate Glass Adhesive: U. S. Patent 2,772,177, Nov. 27, 1956.

bentonite were used to produce finely-divided silicates of low-bulk

density.65

Ball clay and silicon carbide were used to manufacture a refractory material suitable for supporting glass articles during heat treatment. 66 A process of making an aqueous wax emulsion incorporating clay, for use in making shaped articles such as ceramic ware, was patented.67

WORLD REVIEW

Australia.—Production of clays in 1954 totaled 4,133,000 short tons, including 46,200 tons of kaolin and ball clay, 1,500 tons of bentonite, and 80 tons of fuller's earth. Detailed data on production by States, imports, exports, and consumption were reported. 68

Canada.—The General Refractories Co. of Philadelphia, Pa., was constructing a refractories plant at Smithville near Hamilton, Ontario, to manufacture chemically bonded basic brick, mortars, castables, and

other refractory specialties.69

The increased production of clay products from Canadian and imported clays was attributed mostly to the increased demand for building brick, structural tile, floor and wall tile, sanitary ware, and re-The demand for lightweight aggregate produced from fractories. Canadian clays and shales kept pace with the demand for other types of construction products produced from clay or shale. Before World War II there was only 1 plant producing lightweight aggregate in Canada, compared with 8 in 1955 and 1 under construction. 70

Aggregates & Construction Products, Ltd., Regina, Saskatchewan, began to produce lightweight aggregate in a new \$300,000 plant near The plant had a capacity of 300 cubic yards of aggregate per day. Clay was obtained from an 80-acre site along Wascana Creek,

about 500 yards from the plant site.71

Winnipeg Light-Aggregate, Ltd., acquired 25 acres of land at Transcona and planned to erect a plant to manufacture lightweight concrete aggregate.72

Greece. Two firms began to produce bentonite from deposits on

the island of Melos.73

Hong Kong.—The output of kaolin totaled 6,779 short tons in 1954.⁷⁴

⁶⁵ Kloepfer, H., and Frey, A. (assigned to Deutsche Gold und Silber-Scheideanstolt vormals Roessler, Frankfurt on Main, Germany), Process for the Production of Finely Divided Silicates of Low Density: U. S. Patent 2,742,345, Apr. 17, 1956.
66 Silverberg, C. G. (assigned to American Optical Co.) Refractories: U. S. Patent 2,764,491, Sept. 25, 1956.
67 Porter, R. B., Jr. (assigned to American Cyanamid Co.), Method of Making a Wax and Clay Dispersion: U. S. Patent 2,764,499, Sept. 25, 1956.
68 Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 3, September 1956, pp. 21–26.
69 American Metal Market, vol. 63, No. 43, Mar. 6, 1956, p. 13.
70 Northern Miner (Toronto), vol. 42, No. 34, Nov. 15, 1956, p. 32.
71 Rock Products, vol. 59, No. 2, February 1956, p. 154.
72 Canadian Mining Journal, vol. 77, No. 3, March 1956, p. 80.
73 Metal Bulletin (London), No. 4081, Mar. 27, 1956, p. 12.
74 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 3, March 1956, p. 22.

Cobalt

By Hubert W. Davis¹ and Charlotte R. Buck²

ORLD production of cobalt increased for the 7th successive year to establish a record of 16,000 short tons in 1956, despite smaller demand by the United States, which was by far the largest market. Deliveries of metal to the National Stockpile and to consumers in the United States were 9 percent smaller than in 1955.

The recovery of cobalt was not geared to demand but was governed chiefly by the rate of mining copper and nickel, of which cobalt is a

byproduct or coproduct.

As a result of expansion programs underway, chiefly in the Belgian Congo and Canada, and new production from Cuba and Northern Rhodesia, output of cobalt was expected to increase substantially within a few years. Accordingly, the disparity between production and demand was expected to become greater, unless use increases greatly.

In anticipation of increased supply a cobalt information bureau, supported by an international association of cobalt producers, was established at Battelle Memorial Institute, Columbus, Ohio, in mid-1956. Its purpose was to encourage cobalt research and development, distribute technical information widely, and to provide technical aid

to users.

The Belgian Congo, establishing a new high in 1956, furnished 63 percent of world output, producing at a rate 6 percent greater than in 1955. The United States also established a new record and supplied a larger proportion of its requirements than in 1955. Domestic mines produced 27 percent of the cobalt consumed in the United States in

1956, compared with 19 percent in 1955.

The principal use of cobalt continued to be in high-temperature and cutting and wear-resisting materials comprised of multiple-element alloys. Domestic consumption declined to 9.6 million pounds; 77 percent was used as metal. Consumption was the fifth highest of record, but it was 2 percent less than in 1955 and also 2 percent smaller than the average for the 5 years, 1951–55. This decline resulted chiefly because smaller quantities of cobalt were used in high-temperature alloys, cemented carbides, and ground-coat frit for porcelain enamel. The decrease was almost offset by larger usage of cobalt in high-speed steel and alloy hard-facing rods. Probably because of the adequate supply of cobalt metal, consumption of purchased cobalt scrap, smallest since 1950, declined 23 percent.

Reflecting the smaller demand in the United States in 1956, imports of cobalt (mainly in the form of metal, white alloy, and oxide) declined to 15,577,000 pounds (contained cobalt), a 17-percent decrease

Commodity specialist.
 Statistical clerk.

from 1955. Belgian Congo and Belgium supplied 83 percent of the metal; Belgian Congo furnished all of the white alloy; and Belgium, all of the oxide. Norway and France were the only countries to

increase imports of metal in 1956.

Production of cobalt products at refining and processing plants in the United States was 6,519,000 pounds (contained cobalt) in 1956, a 26-percent increase over 1955. Cobalt metal furnished 76 percent of production, gaining 40 percent over 1955. Domestic concentrates and white alloy from the Belgian Congo supplied the raw materials for metal production. The refinery of Calera Mining Co., Garfield, Utah, produced 51 percent more metal than in 1955.

The reduction of about 10 percent in the price of cobalt metal and oxide on December 1, 1956 was made to encourage further use of cobalt. This was the first cut in price of metal since February 1934.

Interest continued high in developing high-temperature alloys employing cobalt, and a number of new cobalt-base alloys were made available.

DOMESTIC PRODUCTION

Mine Production.—The United States not only continued consuming the largest quantity of cobalt in the world but also continued to depend on foreign sources for most of its requirements. However, domestic mines furnished a larger proportion of United States requirements than in 1955. A record of 3.6 million pounds of cobalt, equivalent to 2.5 million pounds of recoverable cobalt, was produced from domestic mines, compared with 2.6 million pounds, equivalent to 1.9 million pounds of recoverable cobalt, in 1955. Thus, domestic mines produced 27 percent of the cobalt consumed in the United States, compared with 19 percent in 1955. When capacity operation is attained at the refineries of Calera Mining Co. and National Lead Co., domestic mine output will increase to more than 5 million pounds of cobalt annually.

Production and shipments of cobalt ore or concentrate (cobalt content) in the United States were 38 and 50 percent, respectively,

greater than in 1955.

TABLE 1.—Cobalt ore or concentrate produced and shipped in the United States, 1947-56 ¹

		Produced		Shipped from mines			
Year	Gross	Cobalt	Recoverable	Gross	Cobalt	Recoverable	
	weight	content	content	weight	content	content	
	(short tons)	(pounds)	(pounds)	(short tons)	(pounds)	(pounds)	
1947	22, 348	645, 295	412, 452	23, 442	676, 612	436, 882	
	25, 721	687, 464	437, 457	22, 173	580, 703	374, 955	
	19, 599	521, 656	330, 153	25, 175	673, 773	435, 049	
	28, 660	809, 328	512, 558	23, 662	660, 025	426, 172	
	28, 485	902, 629	588, 037	26, 564	755, 681	487, 904	
	21, 159	1, 363, 251	965, 994	24, 551	836, 372	560, 349	
	22, 524	1, 258, 924	878, 439	24, 026	1, 775, 489	1, 271, 583	
	19, 036	1, 996, 488	1, 438, 500	19, 738	2, 219, 396	1, 608, 980	
	28, 398	2, 608, 660	1, 852, 289	25, 101	2, 438, 546	1, 741, 494	
	35, 985	3, 595, 028	2, 538, 997	36, 956	3, 657, 491	2, 586, 462	

¹ Figures, by years, for 1933-46 are given in the Cobalt chapter in Minerals Yearbook 1952, vol. I, p. 316.

COBALT 381

The Calera Mining Co. (wholly owned subsidiary of Howe Sound Co.) mine and concentrator at Cobalt, Lemhi County, Idaho, remained the chief producer of cobalt concentrate in the United States. The ore carried about 0.7 percent cobalt, about twice as much copper, and minor values in nickel and gold. During the year 2,355,000 pounds of cobalt in concentrate was produced, a 34-percent increase over 1955. The concentrate, containing about 15 percent cobalt, was refined to metal at the company plant at Garfield, Utah. The company continued to explore for cobalt at its Blackbird property with financial assistance provided by the Defense Minerals Exploration Administration (DMEA) under the Defense Production Act.

In 1956 Idaho Metallurgical Industries, Inc., did not explore for cobalt under DMEA assistance in Lemhi County, near the Calera

operations.

Bethlehem Cornwall Corp. produced 9 percent less cobalt than in 1955 from its magnetite iron ore at Cornwall, Pa. Magnetite was recovered by wet magnetic separation, and cobalt-bearing pyrite concentrate was produced by differential flotation of the nonmagnetic tailing. The concentrate was roasted to remove sulfur, and the residue (averaging 1.53 percent cobalt in 1956) was shipped to the Pyrites Co., Wilmington, Del., for processing into metal and other products.

The St. Louis Smelting & Refining Division of National Lead Co. treated pyrite concentrate containing 3.29 percent cobalt, 4.31 percent nickel, and 4.30 percent copper. This concentrate was produced at its property near Fredericktown, Mo., where its refinery produced about five times more cobalt metal than in 1955 but did not attain

capacity production.

Bunker Hill Zinc Plant (formerly Sullivan Mining Co.), Kellogg, Idaho, continued to recover cobalt at its electrolytic zinc plant but, as in previous years, made no shipments. In 1956 it recovered 117

short tons of residues, containing 6,900 pounds of cobalt.

Refinery Production.—Although the United States produced a small quantity of cobalt ore compared with Belgian Congo, its output of cobalt products was important. A new record for production of metal, 40 percent greater than in 1955, was established. The metal was produced from white alloy from Belgian Congo, concentrates from Idaho, Missouri, and Pennsylvania, and domestic scrap. Calera Mining Co., Garfield, Utah, produced 2,436,000 pounds of cobalt metal in 1956, a 51-percent increase over 1955. Production of oxide was 2 percent more than in 1955. The oxide was produced from white alloy from Belgian Congo, concentrate from Pennsylvania, and metal from New York. Production of hydrate was 31 percent more than in 1955. The hydrate was produced chiefly from scrap, but some metal and concentrate were also used. Production of salts and driers was 20 and 7 percent, respectively, smaller than in 1955 and came chiefly from purchased hydrate, sulfate, and scrap and from cobalt metal. Refiners used 31 percent more cobalt contained in white alloy and concentrate than in 1955.

The cobalt refiners or processors in the United States that were listed in the Cobalt chapter of Minerals Yearbook 1954 were active in 1956; one new processor, Sherwin-Williams Co., Chicago, Ill., began pro-

ducing.

TABLE 2.—Cobalt products produced and shipped in the United States, 1950-54 (average) and 1955-56, in pounds

機能 動作 Land Province Till File (1997年) (1997年) 大学研究と呼吸 (1997年) (1997年) (1997年)	Produc	ction	Shipm	en ts
Product	Gross weight	Cobalt content	Gross weight	Cobalt content
1950-54 (average)				
Metal	2, 332, 682	2, 285, 155	2, 216, 633	2, 172, 386
Oxide	589, 112	422, 457	591, 726	424, 329
Crude oxide	18, 225	1, 336	18, 225	1, 336
Hydrate	271, 121	118, 792	268, 796	117, 128
Salts:		04 000	100 450	01 100
Acetate	135, 316	31, 662	133, 453	31, 199
Carbonate	107, 138	76, 896	168, 106	77, 375
Sulfate	679, 982	144, 796	676, 793	143, 559
Other	158, 727	35, 830	150, 636	34, 310
Driers	9, 013, 383	553, 616	8, 945, 168	546, 855
1955		1.1.		
rajo o rakti dajira 📅 🗸 di o di o di o di o di o				
Metal	3, 655, 389	3, 549, 319	4, 487, 971	4, 363, 843
Oxide	610, 120	438, 711	634, 154	455, 301
Hydrate	322, 995	169, 712	344, 726	180, 097
Colta.				
A cetate	73, 604	17, 153	76, 529	17, 834
Carbonate	380, 589	190, 462	320, 037	157, 049
Sulfate		143, 667	659, 305	140, 010
Other		68, 493	304, 961	66, 460
Driers	9, 791, 821	588, 027	9, 710, 882	582, 737
1956				
Metal	5, 122, 571	4, 964, 453	4, 618, 519	4, 466, 383
Metal	625, 908	448, 350	572, 596	410, 004
OxideHydrate	422, 288	221, 928	367, 798	191, 887
	744, 400	221, 820	001, 100	101,001
Salts: Acetate	57, 327	13, 354	59, 802	13, 936
Activite	298, 642	145, 826	327, 587	160, 633
Carbonate		121, 735	515, 599	112, 518
Sulfate		54, 231	242, 091	53, 239
Other			9, 502, 188	542, 305
Driers	9, 645, 405	549, 581	9, 302, 188	044, 300

TABLE 3.—Cobalt consumed by refiners or processors in the United States 1947-51 (average) and 1952-56, in pounds of contained cobalt

Cobalt material ¹	1947-51 (average)	1952	1953	1954	1955	1956
Alloy and concentrate Metal	2, 675, 992 677, 696 118, 916 6, 992 } 22, 875	3, 002, 087 643, 108 79, 733 292 53, 081	4, 059, 287 801, 192 74, 504 108 109, 204 8, 540	3, 950, 826 592, 257 56, 717 100 172, 757 57, 284	4, 879, 608 884, 196 79, 339 305 114, 181 63, 123	6, 398, 709 884, 032 90, 740 5511 95, 942 61, 370

¹ Total consumption is not shown because the metal, hydrate, and carbonate originated from alloy and concentrate; combining alloy and concentrate with these materials would result in duplication.

CONSUMPTION

Consumption of cobalt in industry in 1956 was the fifth highest on record but was 2 percent less than in 1955. For the 6th consecutive year the largest single use of cobalt was for cobalt-chromium-tungstenmolybdenum cutting and wear-resisting and high-temperature alloys, which required 34 percent of the total cobalt consumed in 1956 but utilized 4 percent less than in 1955.

As in the past 5 years, the use of cobalt for producing magnet

383COBALT

alloys ranked second and required 29 percent of consumption in 1956 but utilized 1 percent less than in 1955.

Less cobalt was also used for low-cobalt alloy steels, cemented carbides, ground-coat frit for porcelain enamel, and pigments. was used for high-speed steels and alloy hard-facing rods.

Consumption of cobalt metal was 1 percent larger, but usage of oxide and purchased scrap was smaller by 5 and 23 percent, respectively. Cobalt salts and driers were utilized at a rate about 10 percent lower than in 1955.

The importance of cobalt in soils, plants, animal nutrition, and human nutrition has been discussed.3

TABLE 4.—Cobalt consumed in the United States, 1947-51 (average) and 1952-56, by uses, in pounds of contained cobalt

Use	1947-51 (average)	1952	1953	1954	1955	1956
Metallic:			24.5	400.000	000 500	
High-speed steel	269, 465	223, 203	217, 652	168, 893	208, 720	258, 924
Other steel	143, 186	115, 761	162, 185	112, 323	151,030	122, 520
Permanent-magnet alloys	1, 717, 738	1,664,842	2, 336, 889	2, 123, 576	2, 818, 239 204	2, 787, 109 821
Soft-magnetic alloys Cobalt-chromium-tung-	J	18, 727	11, 559	721	204	041
sten-molybdenum al-						
loys:						
Cutting and wear-	h		(
resisting materials_	11		204, 939	182, 641	194, 253	269, 978
High-temperature	2, 100, 314	6, 408, 537	204,000	102, 011	101, 200	200, 0.0
high-strength ma-	1,200,022	0, 200, 001		10 mg - 11 mg		
terials	П	}	5, 116, 750	2, 571, 089	3, 220, 939	3, 018, 930
Allov hard-facing rods	ľ .		,,	, , , , , , , , , , , , , , , , , , , ,		
and materials	221, 292	505, 367	591, 909	432, 342	535, 488	625, 122
Cemented carbides	138, 088	610, 750	359, 125	166, 708	307, 366	253, 176
Other metallic	163, 174	132, 917	233, 428	113, 522	291, 191	364, 185
and the state of t						
Total metallic	4, 753, 257	9, 680, 104	9, 234, 436	5, 871, 815	7, 727, 430	7, 700, 765
Nonmetallic (exclusive of salts						
and driers):		1				
Ground-coat frit	555, 491	309, 167	374, 158	403, 953	567, 645	525, 190
Pigments	188, 355	85, 262	102, 612	145, 769	235, 866	231, 961
Other nonmetallic	61, 352	42, 960	84, 293	75, 686	115, 581	115, 344
						
Total nonmetallic	805, 198	437, 389	561, 063	625, 408	919, 092	872, 495
Salts and driers: Lacquers,						
varnishes, paints, inks, pig-	į	1				
ments, enamels, glazes, feed,	1 11 11	1 7				
electroplating, etc. (esti-						
mate)	860,000	701,000	953, 000	853, 000	1,094,000	989, 000
0 - 1 - 1 - 1 - 1	0.410.455	10.010.400	10 740 400	7 050 000	0.740.500	0 500 000
Grand total	6, 418, 455	10, 818, 493	10, 748, 499	7, 350, 223	9,740,522	9, 562, 260

TABLE 5.—Cobalt consumed in the United States, 1947-51 (average) and 1952-56, by forms in which used, in pounds of contained cobalt

Form	1947-51 (average)	1952	1953	1954	1955	1956
MetalOxideCobalt-nickel compound	4, 559, 366 779, 129 6, 552	8, 328, 552 418, 211	7, 727, 210 524, 401	5, 119, 853 587, 799	7, 226, 383 906, 265	7, 321, 477 856, 952
Ore and alloy Purchased scrap Salts and driers	1, 221 212, 187 860, 000	2,736 1,367,994 701,000	2, 451 1, 541, 437 953, 000	301 789, 270 853, 000	68 513, 806 1, 094, 000	394, 831 989, 000
Total	6, 418, 455	10, 818, 493	10, 748, 499	7, 350, 223	9, 740, 522	9, 562, 260

³ Young, R. S., Cobalt in Biology and Biochemistry: Science Progress, No. 173, January 1956, pp. 16-37. Fertiliser and Feeding Stuffs Journal (London), Cobalt Deficiency in New Zealand: Vol. 45, No. 7, Sept. 26, 1956, p. 299.

PRICES

Effective December 1, 1956, the price of metal rondelles (97-99 percent, in containers of 500 or 550 pounds) and metal granules (in containers of 2,152 pounds) was lowered to \$2.35 a pound f. o. b. Niagara Falls or New York, N. Y., and ceramic-grade oxide (72½-73½ percent, in 500 pound containers) was reduced to \$1.78 per pound east of the Mississippi River. The former prices of \$2.60 a pound for metal and \$1.96 a pound for oxide had been in effect since November 1, 1953.

FOREIGN TRADE 4

Imports.—The United States imported 15.6 million pounds (cobalt content) of cobalt, a 17-percent decrease from 1955 (the record year) but the fourth highest of record. Belgian Congo continued to be the chief source, supplying 73 percent of total imports. Belgium supplied 12 percent; however, the metal and oxide imported was produced from Belgian Congo white alloy. Imports of white alloy, metal, and oxide were 18, 16, and 23 percent, respectively, less than

TABLE 6.—Cobalt imported for consumption in the United States, 1947-51 (average) and 1952-56, by classes

	[Bureau of the	Census]
Ī	White allow 1	(nounds)

Ore and concentrate 2

		winte anoy	· (pounds)	Ore	and concenti	ate -	
Year		Gross	Cobalt	Pou	ınds		
		weight	content	Gross weight	Cobalt content	Value	
1947-51 (average)		4, 076, 909 6, 113, 102 5, 249, 781 5, 464, 511 5, 645, 894 4, 707, 634	1, 834, 998 2, 841, 210 2, 412, 804 2, 360, 360 2, 464, 336 2, 013, 463	3 535, 069 215, 572 445, 063 27, 130 2, 233 76, 729	* 55, 469 17, 384 51, 323 3, 349 223 5, 839	* \$46, 713 2, 281 88, 470 5, 914 289 2, 920	
	Metal			Oxide		and other	
Year	Mo	etal	Ox	ide			
Year	Pounds	value	Pounds (gross weight)	value			

¹ Reported by importer to Bureau of Mines. Figures for 1947-48 as reported by Bureau of the Census cover only partial imports of "White alloy," which were classed as "Ore and concentrates." Figures for "Ore and concentrate" for 1949-56 as reported by Bureau of the Census have been adjusted by Bureau of Mines to exclude "White alloy" from Belgian Congo.
² Figures represent imports from Canada, French Morocco, and Mexico, and therefore exclude receipts of "White alloy" from Belgian Congo.
² Excludes 7,054,000 pounds of ore containing 742,000 pounds of cobalt, valued at \$551,500, imported from Canada in 1948; see footnote 2, table 8, also 146 pounds of zaffer valued at \$215 in 1951.
4 Adjusted by Bureau of Mines.

⁴ Figures on U. S. imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsle D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census,

COBALT 385

in 1955. Imports from Belgian Congo, Belgium, Canada, and West Germany were smaller by 9, 50, 5, and 16 percent, respectively, than in 1955. However, imports from Norway were 63 percent larger.

TABLE 7.—Cobalt white alloy, ore, metal, and oxide imported for consumption in the United States, 1955-56, by countries, in pounds

[Bureau of the Census]

	White	alloy, ore	and conce	ntrate	Me	etal	Oxide (gross	
Country	1955		1956				weight)	
	Gross weight	Cobalt content	Gross weight	Cobalt content	1955	1956	1955	1956
North America: Canada			76, 729	5, 839	1, 347, 442	1, 276, 763		
Total			76, 729	5, 839	1, 347, 442	1, 276, 763		
Europe: BelgiumFrance					3, 164, 098 2, 535	9, 367	1, 071, 350	
Germany, West Norway					606, 863 250, 271	498, 044 407, 255		
Total					4, 023, 767	2, 275, 305	1, 072, 950	828, 45
Africa: Belgian Congo Morocco, French	1 5, 645, 894 2, 233	12, 464, 336 223	14, 707, 634	¹ 2, 013, 463	10, 163, 831	9, 422, 325		
Total	5, 648, 127	2, 464, 559	4, 707, 634	2, 013, 463	10, 163, 831	9, 422, 325		
Grand total	5, 648, 127	2, 464, 559	4, 784, 363	2, 019, 302	15, 535, 040	12, 974, 393	1, 072, 950	828, 45

Reported by importer to Bureau of Mines.

During the 34 years 1923-56 imports of cobalt into the United States have totaled 171,930,000 pounds (cobalt content), of which 74 percent was imported in the 10 years 1947-56. Receipts of metal during the 34 years comprised 66 percent of the cobalt imports, mostly supplied by Belgium and Belgian Congo. Smaller quantities of metal were received from Austria, Canada, Federation of Rhodesia and Nyasaland, Finland, France, Germany, Japan, Norway, Sweden, and United Kingdom. Imports of alloy represented the second largest quantity (26 percent); virtually the entire quantity came from Belgian Congo. About 7 percent of the imports of cobalt was in the form of oxide, chiefly from Belgium. Substantial quantities of oxide have also been received from Canada and Germany; smaller quantities came principally from Australia, Finland, and France. Cobalt ore, virtually all from Canada and Australia, has been about 1 percent of total imports. Substantial quantities of ore were imported from French Morocco in 1943-44 and Canada in 1948; however, these ores were not treated in the United States, and subsequently the French Morocco ore was exported to Belgium in 1952-53 and the Canadian ore returned to Canada in 1952 for refining to metal. As the quantities are included in the imports of metal, the figures for ore have been excluded from the tabulation of imports to avoid duplication. Cobalt sulfate and other compounds have been only 0.3 percent of the total imports.

TABLE 8.—Cobalt imported for consumption in the United States, 1947-51 (average) and 1952-56, in pounds ¹

		Gross weight				Total	
Year	White alloy	Ore and concentrate	Metal	Oxide	Sulfate and other compounds	Gross weight	Cobalt content (estimated)
1947–51 (average) 1952 1953 1954 1955 1956	4, 076, 909 6, 113, 102 5, 249, 781 5, 464, 511 5, 645, 894 4, 707, 634	2 535, 069 215, 572 445, 063 27, 130 2, 233 76, 729	6, 343, 240 12, 014, 920 14, 431, 894 14, 227, 868 15, 535, 040 12, 974, 393	648, 787 386, 935 610, 054 430, 400 1, 072, 950 828, 450	2, 014 13, 009 273, 286 353, 094 361, 600 397, 711	² 11, 606, 019 18, 743, 538 21, 010, 078 20, 503, 003 22, 617, 717 18, 984, 917	2 8, 635, 200 15, 031, 000 17, 237, 000 16, 865, 000 18, 732, 000 15, 577, 000

Figures, by years, for 1923-51 in chapter on Cobalt, Minerals Yearbook 1953, vol. I, p. 359.
 Excludes 7,054,000 pounds of ore containing 742,000 pounds of cobalt imported from Canada in 1948.
 This ore was reexported to Canada in 1952 for refining. The metal produced from the ore is included in the import figures for 1952-54.

Exports.—Exports of cobalt from the United States usually have been small, but from 1953–56 large quantities of cobalt-bearing scrap were shipped abroad. In 1956, 3,054,000 pounds of ore, concentrate, metal and alloys in crude form, cobalt-bearing scrap metal, and semi-fabricated forms valued at \$1,958,000 was exported. The bulk of the exports was cobalt-bearing scrap. Some oxide, salts, and driers were also exported, but the figures were not recorded separately by the Bureau of the Census.

Tariff.—Since June 7, 1951, the duty on cobalt sulfate has been 2½ cents a pound and linoleate 5 cents a pound. On September 10, 1955, the duty on salts and compounds was lowered to 15 percent ad valorem. On June 30, 1956, the duty on cobalt oxide was reduced ½ cent to 4½ cents a pound. Cobalt metal and ore entered the United States duty-free.

TECHNOLOGY

Rhokana Corp., Nkana, Northern Rhodesia, made a basic change in the flotation section by adopting a "copper-cobalt selective flowsheet," based on a pilot-plant flowsheet that had been devised by the Research and Development Division of Rhoanglo Mine Services, Ltd. Despite initial difficulties the new flowsheet improved the grade of separated cobalt in the concentrate from 2.78 percent to 3.18 percent and the recovery from 33.3 percent to 39.8 percent. Two new roasters were added to the cobalt plant in January and brought about considerably increased production.

Additional information on the process used at the refinery of Calera Mining Co., Garfield, Utah, was published in 1956.⁵ The principal steps in the process are autooxidation, acid leaching under pressure, filtration of the tailings, purification of the solution, neutralization

⁵ Mitchell, J. S., Pressure Leaching and Reduction at the Garfield Refinery: Min. Eng., vol. 8, No. 11, November 1956, pp. 1093–1095.

387 COBALT

with ammonia, hydrogen reduction of the ammoniacal solution, and electric furnacing for sulfur removal and granulating the metal.

The research laboratory of Howe Sound Co. (parent company of Calera), at Salt Lake City, Utah, developed the processing of highpurity electrolytic cobalt in its 250-pound-per-day pilot plant. As a result an electrolytic cobalt unit was under construction in the Garfield refinery to replace the hydrogen-reduction step of the operation.

The mining and milling of cobalt ore by the Calera Mining Co. at

the Blackbird mine in Lemhi County, Idaho, were described.6

Freeport Sulphur Co., near New Orleans, La., completed favorable pilot-plant tests on a new process for recovering nickel and cobalt from laterite deposits at Moa Bay, Cuba. No major changes in the flowsheet resulted from the tests, but a number of simplifications were In Cuba the company plans to produce a high-grade bulk nickel-cobalt concentrate, which will be shipped to the United States, where it will be reduced by a hydrogen process to yield separate products of high purity nickel and cobalt. An annual production of 4.4 million pounds of cobalt was anticipated.

The results of an investigation on the reaction of cobalt in the presence of alumina in powdered compact form at elevated temperatures, using (1) automatic balance-furnace, (2) differential thermal

analysis, and (3) X-ray diffraction analysis were described.7

The effect of sulfur on the hot-working characteristics of cobalt

was described.8

Two new nickel-cobalt-chromium high-temperature alloys—Inconel "700" containing 30 percent cobalt and Udimet 500 10—were developed for use in aircraft turbine buckets and blades. These alloys were reported to maintain adequate strength for forged buckets and blades at temperatures up to 1,650° F. and 1,600° F., respectively.

A patent was issued for a cobalt-base alloy containing 47 to 62 percent cobalt "having excellent stress rupture characteristics at a temperature of 1,500° F." 11

Nivco, a new and distinctively different high-temperature alloy, containing cobalt, nickel, chromium, and iron, was developed especially for steam-turbine blading. 12 Its properties included high strength and excellent damping capacity, even at 1,200° F.

A method of producing high-purity cobalt, 99.99 percent, was

described.13

⁶ Douglas, E. B., Mining and Milling of Cobalt, Ore: Min. Eng., vol. 8, No. 3, March 1956, pp. 280-283.

⁷ Crandall, W. B., and West, R. R., An Oxidation Study of Cobalt-Alumina Mixtures: Am. Ceram. Soc. Bull., vol. 35, No. 2, February 1956, pp. 66-70.

⁸ Martin, D. L., Sulfur Embrittlement of Cobalt: Jour. Metals, Trans. AIME, vol. 8, No. 5, May 1956, pp. 578-579.

⁹ Inco Mechanical Topics, vol. 17, No. 2, 1956, pp. 11.

¹⁰ Iron Age, vol. 177, No. 14, Apr. 5, 1956, pp. 142-143.

¹¹ Malcolm, V. T. (assigned to Chapman Valve Manufacturing Co.), Cobalt-Base Alloy: U. S. Patent 2,771,360, Nov. 20, 1956.

¹² Iron Age, New Blading Alloy Improves Turbine Performance: Vol. 178, No. 10, Sept. 6, 1956, pp. 100-101.

 ^{101.} Kershner, K. K., Hoertel, F. W., and Stahl, J. C., Experimental Production of High-Purity Cobalt: Bureau of Mines Rept. of Investigations 5175, 1956, 12 pp.

A number of patents pertaining to cobalt were issued in 1956.14 A bibliography of references on cobalt was published. 15 The bibliography contains several hundred references to cobalt literature and two-color phase diagrams of many binary alloy systems.

WORLD REVIEW

World output of cobalt continued its uptrend for the 7th consecutive year to establish a new high of 16,000 short tons in 1956, an 8-percent Belgian Congo increased its output 6 percent to increase over 1955. reach a new high and supplied 63 percent of the 1956 total. Record outputs were also made in Canada and the United States. Production in Northern Rhodesia was the largest since 1940.

TABLE 9.—World mine production of cobalt, by countries, 1 1947-51 (average) and 1952-56, in short tons of contained cobalt 2

[Compiled l	y Berenice	B. Mitchell]

Country 1	1947–51 (average)	1952	1953	1954	1955	1956
North America: Canada * Mexico (content of ore) United States (recoverable cobalt) *	(4) 427 228	711 59 483	801 439	1, 126 (4) 719	1, 659 926	1, 843
TotalAsia: Japan (content of concentrate)	655 1	1, 203	1, 240	1,845	2, 585	3, 112
Africa: Belgian Congo (recoverable cobalt) Morocco, French (content of concentrate) Rhodesia and Nyasaland, Federation of 7 (content of white alloy, cathode metal, and other products): Northern Rhodesia.	5, 110 384 559	7, 530 1, 100	9, 125 661 746	9, 490 811	9, 443 834 871	10, 019 710 1, 271
TotalOceania: Australia (recoverable cobalt)	6, 053 10	9, 275 12	10, 532	11, 565	11, 148	12,000
Grand total (estimate)1	7,000	11, 100	12, 500	14, 500	14, 800	16,000

¹ The world total includes an estimate of cobalt recovered from pyrites produced in Finland and other

The world total includes an estimate of copair recovered from pyrites produced in Financi and other European countries.

This table incorporates a number of revisions of data published in previous Cobalt chapters.

Figures comprise cobalt content of Canadian ore processed in Canada and exported (irrespective of year when mined), plus the cobalt recovered from nickel-copper ores at Port Colborne, Ontario, and Kristiansand, Norway; consequently, the figures exclude the cobalt recovered at Clydach, Wales, from Canadian nickel-copper ores, which was estimated by senior author of chapter and included in the world total.

⁴ Less than 0.5 ton.

4 Less than 0.5 ton.

5 Imports into the United States.

6 Figures are not strictly comparable with those for preceding years, which represented the cobalt contained in concentrate shipped.

⁷ Year ended June 30 of year stated.

¹⁴ Moline, W. E., and Clinehens, R. M. (assigned to National Cash Register Co.), Method of Electroplating Cobalt-Nickel Composition: U. S. Patent 2,730,491, Jan. 10, 1956.
Daubenspeck, J. M. (assigned to National Lead Co.), Method of Recovering Nickel and Cobalt From Nickeliferous Ores: U. S. Patent 2,733,983, Feb. 7, 1956.
Caron, M. H., Process of Separating Nickel and Cobalt: U. S. Patent 2,738,266, Mar. 13, 1956.
Binder, W. O., Kroft, F. C., and Fritzlen, G. A. (assigned to Union Carbide and Carbon Corp.), High Temperature Cobalt-Chromium Alloys: U. S. Patent 2,746,860, May 22, 1956.
Schaufelberger, F. A., and Czikk, A. M. (assigned to Chemical Construction Corp.), Cobalt Pentammine Separation: U. S. Patent 2,767,054, Oct. 16, 1956.
Gilbert, W. W., and Howk, B. W. (assigned to E. I. duPont de Nemours & Co.), Process of Hydrogenating Maleic Anhydride With a Nickel or Cobalt Molybdite Catalyst: U. S. Patent 2,772,293, Nov. 27, 1956. Sweetser, S. B., Bronson, S. O., II, and Weikart, John (assigned to Esso Research and Engineering Co.), Hydrodesulfurzation Process Using a Cobalt Molybdate Catalyst Presulfided With the Feed Under Specific Conditions: U. S. Patent 2,761,816, Sept. 4, 1956.
Sweetser, S. B., and Bronson, S. O., II (assigned to Esso Research and Engineering Co.), Hydrodesulfurzation Process With Preconditioned Catalyst: U. S. Patent 2,761,817, Sept. 4, 1956.
Reppe, Walter, von Kutepow, Nikolaus, and Koelsch, Walter (assigned to Badische Anilin- & Soda-Fabrik Aktiengesellschaft), Carbonylation of Olefins With Cobalt or Nickel Complex Catalysts: U. S. Patent 2,768,968, Oct. 30, 1956.

COBALT 389

NORTH AMERICA

Canada.—In Canada cobalt production was derived from the cobalt-silver ores in the Cobalt-Gowganda area of northern Ontario and as a byproduct of the nickel-copper ores of the Sudbury district, Ontario, and Lynn Lake area, Manitoba. Recovery of cobalt from uranium at the refinery at Port Hope, Ontario, was discontinued early in 1955, owing to a change in the refining process.

According to the Dominion Bureau of Statistics 1,843 short tons of

According to the Dominion Bureau of Statistics 1,843 short tons of cobalt (cobalt content) was produced, compared with 1,659 tons (revised figure) in 1955. These figures, however, do not include the cobalt recovered by Mond Nickel Co. at its Clydach (Wales) nickel refinery from nickel matte produced from the nickel-copper ores of

the Sudbury district.

Starting in 1947 International Nickel Co. of Canada, Ltd., recovered an impure cobalt oxide from the electrolytic unit at its nickel refinery at Port Colborne, Ontario; in October 1954, it began commercial production of electrolytic cobalt metal, also at Port Colborne. The cobalt is contained in nickel-copper ores of the Inco Sudbury district mines. In 1956 most cobalt oxide was shipped to Clydach (Wales) for producing high-grade cobalt oxides and salts, which were sold to consumers in the United Kingdom and many other foreign countries; some of it, however, was reduced to metal, which was sold chiefly in the United States. About 10 percent more cobalt was produced than in 1955; deliveries were 1,543,300 pounds in 1956 compared with 1,637,400 pounds in 1955. Deliveries were mostly in the form of oxides and salts from the Clydach refinery and were sold for use in driers, ceramics, and catalysts. Cobalt metal from the Port Colborne refinery was sold mainly for producing permanent magnets and high-temperature, high-strength materials.

Operating problems at the cobalt unit of Sherritt Gordon Mines, Ltd., at Fort Saskatchewan, Alberta, were reported to have been solved satisfactorily, and 107,414 pounds of cobalt metal was produced in 1956 compared with 16,330 pounds in 1955. The cobalt was contained in the nickel-copper concentrate produced by the company at Lynn Lake, Manitoba. During the second quarter cobalt production was suspended while the circuit was used as a pilot plant, treating a foreign concentrate. The pilot-plant work was completed during the third quarter, and the circuit was returned to cobalt production.

Falconbridge Nickel Mines, Ltd., produced 26 percent more electrolytic cobalt at its refinery at Kristiansand, Norway, than in 1955. Deliveries to customers were 543,000 pounds in 1956, compared with 337,600 pounds in 1955. An additional cobalt-precipitation section was completed. The cobalt was recovered from the matte produced

from Sudbury nickel-copper ore.

The smelter of Deloro Smelting & Refining Co., Ltd., Deloro, Ontario, was operated on arsenical cobalt-silver concentrates from the Cobalt-Gowganda area of northern Ontario for its own account and on Canadian concentrates for the account of the United States Government.

EUROPE

Finland.—The cupriferous pyrite of the Outokumpu mine in eastern Finland contains about 0.2 percent cobalt, 3 percent copper, 25 percent iron, 27 percent sulfur, and 1.2 percent zinc. Sinter produced by roasting pyrite concentrate to remove the sulfur was shipped to Duisburg, Germany, to recover the cobalt, copper, iron, and zinc. The cobalt content of the sinter averaged 0.4 to 0.5 percent.

Germany, West.—No cobalt ore was mined in West Germany in 1956, and its two refineries depended on foreign sources for their raw materials. The refinery of Duisburger Kupferhütte at Duisburg, the larger producer of cobalt, recovered it chiefly from pyrite sinter obtained from Finland, Spain, Norway, Sweden, and other countries. The refinery of Gebrüder Borchers A. G. at Goslar treated chiefly cobalt-bearing scrap from the United States.

TABLE 10.—Production of cobalt in West Germany, 1948-56

Year	Short tons	Year	Short tons
1948. 1949. 1950. 1951. 1952.	18 121 331 491 500	1953_ 1954_ 1955_ 1956_	642 951 986 969

Spain.—The Ministry of Industry authorized in 1955 erection of a plant in the Province of Oviedo (formerly Asturias) to obtain copper, cobalt, and nickel from low-grade ores in the area.¹⁶

AFRICA

Belgian Congo.—The Union Minière du Haut-Katanga continued to be the sole producer, and Belgian Congo continued to be the world's chief source of cobalt. Output of 10,019 short tons, a new high in 1956, increased 6 percent over 1955. The Jadotville-Shituru plant, which had a capacity of 6,000 tons, produced granules containing about 99.5 percent cobalt; and the Jadotville-Panda plant, which had a capacity of 4,400 tons, produced a white alloy containing about 43 percent cobalt, which was shipped to Belgium and the United States for refining.

The Union Minière du Haut-Katanga had underway an expansion program, which included opening new mines rich in copper and cobalt and constructing copper and cobalt electrolytic plants at Luilu for refining ores. The plants will be about 9 miles west of Kolwezi and on the railroad to the Atlantic port of Lobito in Portuguese West Africa. The annual capacity of the cobalt refinery was to be about 4,000 tons. When the new Kolwezi-Luilu plant starts operation in 1959, Union Minière will have the capacity to produce about 10,000 tons of electrolytic cobalt, but output can easily be expanded to 11,000

¹⁶ Corry, Andrew V., commercial attaché (U. S. Embassy, Madrid, Spain), Economic and Financial Review for Fourth Quarter 1955: State Department Dispatch 876, Feb. 15, 1956, p. 21.

COBALT 391

or 12,000 tons. However, the reserves of cobalt ore or concentrate suitable for treatment in electric furnaces at the Jadotville-Panda plant were limited, and future production of white alloy was expected

to be of diminishing importance.17

French Morocco.—Production of cobalt concentrate in French Morocco was 7,097 short tons containing 710 tons of cobalt in 1956 compared with 8,344 tons containing 834 tons of cobalt in 1955. La Société Minière de Bou-Azzer et du Graara, Casablanca, was the only producer.

Modernization work at the Bou-Azzer mine, begun in 1954, was reported to have progressed satisfactorily. Two new shafts and a washing plant have been completed and 2 additional diesel engines of 1,000 hp. each have been installed in the power plant. Work on a 20-mile water-supply pipe and a pumping station was under way.

Rhodesia and Nyasaland, Federation of.—Refining at Rhokana Corp. at Nkana, Northern Rhodesia, was reasonably steady, except in October, when production was curtailed because of a shortage of sulfuric acid resulting from a breakdown at the acid plant. A strike of African employees also adversely affected production in June. Nevertheless, output was 46 percent greater than in 1955. In the year ended June 30, 1956, production comprised 934 short tons of metal, 177 tons of cobalt in carbonate, and 160 tons of cobalt contained in alloy. Thus, total production of cobalt in saleable forms was 1,271 tons in 1956 compared with 871 tons in 1955.

The grade of ore treated was 0.165 percent cobalt in 1956 compared with 0.152 percent in 1955. Concentrate produced contained 1.39

percent cobalt in 1956, compared with 1.38 percent in 1955.

On May 6 the new flotation concentrator of Chibuluma Mines, Ltd., near Ndola, Northern Rhodesia, began producing cobalt concentrate for conversion into 10-percent matte at a plant consisting basically of a fluosolids roaster and an electric furnace that is under construction at Ndola. The plant was expected to begin operation in mid-1957. The matte will probably be shipped to Europe for refining. If the unusually high overall recovery of cobalt anticipated by the company is realized, eventual production may exceed 1 million pounds annually, rather than 500,000 pounds, as originally estimated.

Uganda.—Milling of copper-cobalt ore was begun June 18 at the flotation plant of Kilembe Mines, Ltd., in western Uganda. A leaching plant, to be in operation in 1958, was to be constructed at Kanese to produce cobalt carbonate, which will be refined overseas. The railway extension from Kampala to Kasese was completed March 6.

OCEANIA

Australia.—Production of cobalt in Australia was limited to the recovery of oxide from the zinc concentrate treated at the Risdon plant of the Electrolytic Zinc Co. of Australasia, Ltd. Most of the cobalt was from Broken Hill concentrate; concentrate from Rosebery, Tasmania, contained only a small quantity of cobalt.

¹⁷ Mining World, 50 Years of Growth Produces a Congo Metallurgical Empire: Vol. 19, No. 2, February 1957, p. 49.

The directors of Mining Corp. (Australia) N. L., announced that assays of 1.6 and 1.8 percent cobalt had been obtained from a site near the old Mount cobalt mine in the Cloncurry district, Queensland. The Mount mine produced 1,530,000 pounds of cobalt between 1920 and 1934, mostly during 1922–25. The Mount mine produced 1,530,000 pounds of cobalt between 1920 and 1934, mostly during 1922–25.

¹⁸ Metal Bulletin (London), No. 4066, Feb. 3, 1956, p. 20.
¹⁹ Bureau of Mines Materials Survey—Cobalt: 1952, p. VI-18.

Columbium and Tantalum

By William R. Barton 1

COLUMBIUM (niobium) and tantalum raw materials were available in ample quantity to supply all markets in 1956. Domestic production and industrial consumption of columbium-tantalum concentrate rose to new records, but world production declined from the alltime high of 1955.

Exploration of foreign deposits continued at a rapid pace, reflecting the confidence of larger mining companies in the increased future demand for the metals. Facilities for producing columbium and

tantalum were being expanded in the United States.

A technically feasible process for treating Canadian pyrochlore ore was developed. This process, if economically successful, will lessen United States dependence on waterborne imports of columbium concentrate.

DOMESTIC PRODUCTION

Mine Production.—Domestic production of columbium- and tantalum-bearing minerals was the highest in history because Porter Bros., Bear Valley, Idaho, began full commercial production from its euxenite deposit. Additional domestic production was supported by the Government Domestic Columbium-Tantalum Purchase Program under Public Law 733, 84th Congress. The regulation for this

program was published on October 10, 1956.

Shipments of concentrate increased almost 17 times from 1955. Idaho became the leading State, shipping 215,900 pounds of concentrate, more than 99 percent of the national total. Maine ranked second in total production. South Dakota, first in 1955, dropped to third in 1956. Other contributing States in 1956, in order of decreasing shipments, were New Mexico and Colorado. Arizona, Connecticut, and New Hampshire, producers in 1955, did not report shipments of concentrate in 1956.

Percentages of columbium and tantalum oxides in the concentrate were not reported, and no differentiation was made between columbite

r tantalite.

Porter Bros. Corp. dredged a placer deposit containing euxenite and some columbite. Its mill at Lowman, Idaho, produced euxenite, columbite, monazite, magnetite, ilmenite, garnet, and quartz-zircon fractions. The euxenite concentrate produced contained mixed oxides of columbium, tantalum, uranium, thorium, rare-earth metals, and

¹ Commodity specialist.

titanium. Mallinckrodt Chemical Works, St. Louis, Mo., processed the concentrate to separate the various metallic compounds. The operator's contract with the Government required delivery of 1,050,000 pounds of combined columbium and tantalum pentoxides by June 20, 1961, and Government purchase of all uranium oxide products.

All other domestic production was in the form of columbite or tantalite from pegmatites mined primarily for other minerals. Ten pegmatite operators reported shipments of columbium-tantalum concentrate in 1956, compared with 29 in 1955. Pegmatite operators reporting columbite-tantalite shipments in 1956 were Colorado: D. Rietveld, E. G. Van Berlinden, B. Waltz, G. E. West; Maine: White-hall Co., Inc.; New Mexico: Columbium Milling & Mining Co., Inc.; South Dakota: I. L. Babbington, S. Gamber, J. D. Long, Mineral Mills, Inc.

TABLE 1.—Salient statistics of columbium-tantalum concentrate 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Columbium-tantalum concentrate shipped from domestic mines						
Value	1, 361 \$2, 956	5, 385 \$16, 723	14, 867 \$29, 779	32, 829 \$57, 262	12, 954 \$22, 125	216, 606 (¹)
tratepounds_ Tantalum-mineral concentrate	1, 923, 266	1, 878, 135	4, 186, 080	6, 804, 076	9, 612, 576	5, 699, 553
World production of columbium-	250, 056	328, 866	759, 409	981, 872	1, 907, 686	1, 312, 865
tantalum concentratepounds_	2, 760, 000	3, 430, 000	5, 770, 000	9, 590, 000	11, 560, 000	9, 640, 000

¹ Figure withheld to avoid disclosing individual company confidential data.

Refinery Production.—In October Fansteel Metallurgical Corp. began constructing a new \$6.5 million plant at Muskogee, Okla., where a liquid-liquid-extraction process developed by the Bureau of Mines was incorporated to increase Fansteel's production of tantalum 50 percent and columbium 150 percent. The plant was expected to be completed by late 1957. Wah Chang Corp. began installing facilities for separating columbium and tantalum at Albany, Oreg. Columbium and tantalum metals up to 99.5-percent purity were made available in commercial volume by Kennametal, Inc., of Latrobe, Pa., which previously had produced only compounds and alloys of the two metals. Kawecki Chemical Co., Boyertown, Pa., began producing tantalum salts and metal in mid-August and announced that a columbium plant would begin operations in 1957. Mallinckrodt Chemical Works, St. Louis, Mo., began refining euxenite concentrate from Porter Bros. Idaho placer mine. The separated columbium-tantalum oxides and uranium oxide were purchased by the Government under a prior Byproducts were rare-earth carbonates, thorium concentrate, titanium concentrate, and a highly radioactive residue. Molybdenum Corp. of America announced its manufacture and sale of ferrocolumbium. Reading Chemicals Co., Wyomissing, Pa., began producing chrom-columbium late in 1956. Several other firms announced they were experimenting with separation processes or were studying market conditions in this field.

United States producers of columbium-tantalum metals, alloys, and compounds from concentrate or metal-bearing slag in 1956 were:

Electro Metallurgical Company, Division of Union Carbide Corporation, Niagara

Falls, N. Y.: Ferrocolumbium and ferrotantalum-columbium.

Fansteel Metallurgical Corp., North Chicago, Ill.: Columbium and tantalum metals, columbium and tantalum metal shapes, columbium and tantalum

oxides, carbides, compounds, and salts.

Kawecki Chemical Co., Boyertown, Pa.: Tantalum metal and salts.

Kennametal, Inc., Latrobe, Pa.: Columbium and tantalum metals, columbium and tantalum oxides and carbides, ferrocolumbium, ferrotantalum-columbium. Mallinckrodt Chemical Works, St. Louis, Mo.: Columbium-tantalum oxides. Molybdenum Corp. of America, Pittsburgh, Pa.: Ferrocolumbium. Reading Chemicals Co., Wyomissing, Pa.: Chrom-columbium. Wah Chang Corp., Glen Cove, N. Y.: Columbium compounds.

CONSUMPTION AND USES

Domestic consumption of columbium-tantalum-bearing minerals and slags, as measured by contained metal, was estimated to have increased about 40 percent in 1956 to a record level. Approximately 550 short tons of columbium- and tantalum-metal content was consumed from concentrate, and an additional 260 short tons of metal content, was used from metal-bearing tin slags.

Cancellation of the Department of Defense directive 4000.16 on October 11, 1956, removed restrictions upon consumption of columbium in jet engines. This action eliminated a major deterrent to increased consumption of columbium. The lower price, abundant reserves of columbium ores, and the production facilities available or under construction also encouraged wider use. Tantalum consumption continued to increase to full production capacity. Future expanded consumption was visualized for both metals.

Columbium was used principally in producing ferrocolumbium and ferrotantalum-columbium, which were consumed principally in manufacturing stabilized austenitic stainless steels. Production of ferrocolumbium and ferrotantalum-columbium increased 56 percent in 1956. The abundant columbium reserves discovered in this hemisphere assured a dependable strategic supply of the metal and removed a major reason for substituting other steels for those containing ferrocolumbium or ferrotantalum-columbium. Increased consumption of ferrocolumbium and ferrotantalum-columbium was The second major use of columbium was in high-temperature alloys such as employed in gas turbines and jet engines. Deterrents to greater use were the high cost of columbium and the oxidation behavior of the metal at high temperatures. Research groups hoped to solve the latter problem; larger scale production and new recovery techniques were expected to lower the cost. Columbium was employed in special alloys with chromium, vanadium, tungsten, zirconium, uranium, molybdenum, nickel, cobalt, aluminum, copper, brass, and iron. Other uses were as a constituent in welding electrodes for stainless steels, in nitriding chromium-aluminum steels, low-voltage rectifiers, electronic tubes, and in tantalum-columbium carbides in high-speed cutting tools. Columbium has already been used as a fuel-alloying element in nuclear reactors, which represent a large potential consumption of the metal. Other uses connected with reactors, such as structural material, fuel cladding, and piping

to contain corrosive fluids were being considered. The AEC sponsored intensive research on pure columbium and its alloys and in October requested bids for the delivery of 15,000 pounds of columbium melt-

ing stock.

The electrolytic-capacitor field was probably the most important use of tantalum. Demand for tantalum-bearing capacitors was expected to increase manyfold in the next 10 years. Other electronic applications were as anode and grid materials in high-temperaturehigh-voltage transmitting tubes and in rectifiers. Fansteel Metallurgical Corp. reported sales of tantalum capacitors, and tantalum capacitor components exceeding those of 1955 by 68 percent, increasing from \$50,000 in 1950 to \$5.8 million in 1956. Rectifier sales also continued their upward trend.² The chemical and petroleum industries consumed large quantities of tantalum metal. Tantalum heat exchangers made possible a high-heat-transfer rate, as its resistance to corrosion permitted the use of extremely thin walls. It was also used in leach tanks, bayonet heaters, condensers, tank and pipe linings, and other equipment where resistance to chemical corrosion and good mechanical properties were required. Certain metallurgical processes required the use of tantalum containers. Considerable tantalum carbide was used in cutting tools. Cutting and machining uranium were among the applications of tantalum carbide tools. its resistance to attack by body acids and its compatibility with body tissue, tantalum was used for sutures, sheet and plate for cranial repairs, woven gauze for abdominal-wall reinforcement, dental plates. and nerve repairs. Its uses included spinnerets for rayon manufacture, catalysts for manufacturing synthetic rubber, jewelry, and precision weights. Special springs for use at high temperature were manufactured of a tungsten-tantalum alloy.

PRICES

World prices of columbium-tantalum mineral concentrate as quoted in E&MJ Metal and Mineral Markets declined in 1956 until the week of October 18. The magnitude of price adjustments was obscured by concomitant changes in the selection of a basis for quota-At the start of the year ore or concentrate containing 50 percent combined pentoxides was nominally priced at \$1.35 @ \$1.65 per pound of contained pentoxide. The price base during the week of April 5 was changed to 65 percent combined pentoxides and the price was reported at \$1.15 @ \$1.50 per pound of contained pentoxides. For the week of April 26 the quotation changed to \$1.15 @ \$1.35 per pound of contained pentoxides. During the week of August 16 the price became \$1.15 @ \$1.40. In the week of September 20 the pricing base was again altered and prices were quoted for two classes of material containing 65 percent oxides. Concentrate containing a ratio of 10-1 Cb₂O₅ to Ta₂O₅ was quoted at \$1.35 @ \$1.50 per pound of contained pentoxides. Concentrate containing a ratio of 81/2-1 Cb₂O₅ to Ta₂O₅ was priced at \$1.05 @ \$1.15. The final readjustment

² American Metal Market, Fansteel sales expected to rise, says F. H. Driggs, vol. 64, No. 52, Mar. 16, 1957, pp. 1, 3.

during the year took place in the week of October 18 when quoted

prices became 10-1: \$1.25 @ \$1.35, 8½-1: \$1.05 @ \$1.15.

Domestic columbium-tantalum ore prices were affected during the latter part of 1956 by Public Law 735, 84th Congress. This authorized the purchase of concentrate with a content of 250,000 pounds of combined pentoxides through December 31, 1958, or until deliveries had been completed. Base prices were listed at \$1.40 to \$3.00 per pound of contained oxides, with additional premiums or penalties for meeting or failure to meet certain chemical-content requirements. An additional bonus of 100 percent was paid to whoever actually mined the ore. Most purchases were made, however, under section 99.504, paragraph (d) which provided for payment of \$3.40 per pound of contained combined pentoxides for material estimated to contain 50 percent of such oxides in random ratios. The price was calculated to include bonus, premiums, and penalties.

The price of ferrocolumbium remained stable for the entire year. The quotation per pound of contained columbium in ton lots, lump (2-inch) packed; f. o. b. destination continental United States (50-60 percent Cb, maximum 0.40 percent C, maximum 8 percent Si) was

\$6.90. Ferrotantalum-columbium was priced at \$4.65.

Tantalum metal was quoted at the start of 1956, per kilogram, base price, at \$137 for rod and \$93 for sheet. The price was constant until the week of August 9 when the year's only adjustment to \$128 for rod and \$100 for sheet took place. Columbium-metal powder was quoted in American Metal Market at \$120 per pound nominal for the entire year.

FOREIGN TRADE 3

Imports.—Columbium-tantalum mineral imports declined sharply from the record high quantity imported during 1955. Imports of columbium concentrate decreased by 41 percent and imports of tantalum concentrate by 31 percent in 1956. The decrease was a direct result of halting of buying under the United States Purchase Program in May 1955. Imports still included some material being delivered to complete forward commitments made under the program.

The quantity of columbium concentrate imported into the United States declined from 9.6 million pounds in 1955 to 5.7 million pounds in 1956. The average value per pound dropped from \$2.07 in 1955 to \$1.47 in 1956. Nigeria remained the major source, supplying 63 percent of the total imports, a 3-percent higher fraction than in 1955. Belgian Congo provided 13 percent of the total imports, approximately the same portion as in 1955. Malaya and Norway were third and fourth, respectively, each supplying about 9 percent of the total. Bolivia and the United Kingdom resumed export of columbium concentrate to the United States. The United Kingdom figure represented material that originated in another country. Argentina, Australia, British Guiana, British West Africa, French Equatorial Africa, West Germany, and Spain supplied concentrate in 1955 but did not ship to the United States in 1956. Columbium minerals were imported for This ore represented a transshipment the first time from Aden.

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

rather than native production. The Department of Commerce figures for 1956 reported that West Germany, the United Kingdom, and Norway shipped 15,144 pounds of columbium metal worth \$261,388 to the United States. It is believed that only 3,725 pounds worth \$218,218 from West Germany and the United Kingdom were metal; the remainder was probably ferroalloy. Details of ferrocolumbium, ferrotantalum-columbium, and metal-bearing tin-slag imports were not obtained in 1956.

The weight of tantalum-mineral concentrate entering the United States during 1956 was 1.3 million pounds, compared with 1.9 million pounds in 1955. The average value was \$0.90 per pound in 1956 compared with \$2.53 in 1955. This low value was due to inclusion of some Belgian Congo tin slags under the heading of tantalum mineral concentrates in Bureau of the Census statistics. If Belgian Congo totals are excluded from the average, the value per pound in 1956 was \$2.26.

TABLE 2.—Columbium mineral concentrates imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in pounds

	[Bt	reau of the	Census]			
Country	1947-51 (average)	1952	1953	1954	1955	1956
South America: Argentina Bolivia	6, 570	14, 678 5, 017 800	10, 375 34, 391 2, 324	11, 023 5, 714 124, 460	10, 800 233, 012 7, 033	3, 791 160, 462
Total	6, 570	20, 495	47, 090	141, 197	250, 845	164, 253
Europe: Belgium-Luxembourg ¹ Germany, West Norway Portugal Spain	421		40, 367 68, 121 4, 410	267, 957 342, 886 148, 732	849, 310 562, 759 168, 362 2, 525	521, 003 31, 024
Sweden United Kingdom 1	240		16, 713			11, 200
Total	6, 086		129, 611	759, 575	1, 582, 956	563, 227
Asia: Aden Japan ¹ Korea, Republic of	6, 367		2,000			1, 350
Malaya	6, 367	20, 264	101, 967	180, 225 180, 225	515, 688 515, 688	521, 741 523, 091
Africa: Belgian Congo British West Africa French Equatorial Africa Madagascar	178, 655	354, 732	580, 232	976, 832	1, 247, 901 14, 521 4, 700 36, 412	758, 919
Mozambique Nigeria Rhodesia and Nyasaland,	3, 656 1, 721, 568	21, 205 1, 450, 787	57, 894 3, 167, 344	31, 183 4, 575, 648	64, 974 5, 739, 526	43, 124 3, 593, 114
Federation of Uganda ³ Union of South Africa	364	4, 622 6, 030	² 20, 460 19, 891 34, 472	11, 788 4, 446 76, 714	13, 529 24, 399 55, 539	6, 652 18, 780 17, 772
TotalOceania: Australia	1, 904, 243	1, 837, 376	3, 880, 293 25, 119	5, 687, 671 35, 408	7, 201, 501 61, 586	4, 448, 982
Grand total: Pounds Value	1, 923, 266 \$838, 753	1, 878, 135 \$2, 368, 769	4, 186, 080 \$6, 890, 914	6, 804, 076 \$14, 191, 142	9, 612, 576 4\$19,912,381	5, 699, 553 \$8, 386, 659

¹ Presumably country of transshipment rather than original source.

Southern Rhodesia.
 Classified by the Bureau of the Census as British East Africa.
 Revised figure.

The Belgian Congo regained its position as the world's leading exporter of tantalum minerals supplying 73 percent of United States imports, followed by Brazil, 11 percent; Australia, 8 percent; and Nigeria, 2 percent. West Germany (the leading source of United States imports in 1955), Norway, Spain, the United Kingdom, Malaya, and Uganda supplied tantalum-mineral concentrates in 1955 but did not ship any to the United States in 1956. West Germany and the United Kingdom shipped 5,478 pounds of tantalum metal worth \$129,649 to the United States in 1956.

Exports.—During 1956 small quantities of columbium ores were exported: 5,853 pounds worth \$4,780 was purchased by West Germany, and 4,647 pounds worth \$4,532 was shipped to the United Kingdom. The United Kingdom was the destination of 1,926 pounds of tantalum ore worth \$2,071. Tantalum powder weighing 6,080 pounds and valued at \$245,359 was shipped to West Germany, the United Kingdom, France, and Brazil. Approximately 1,721 pounds of tantalum in semifabricated shapes and forms valued at \$112,930 were exported to eight countries.

TABLE 3.—Tantalum mineral concentrates imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in pounds

	1	1		T	T.:	т
Country	1947-51 (average)	1952	1953	1954	1955	1956
South America:		2				
Argentina Brazil French Guiana	31, 539	49, 813	46, 146 10, 987	255, 533 24, 809	6, 614 221, 834 23, 085	4, 409 140, 039 14, 532
Total	31, 754	49, 813	57, 133	280, 342	251, 533	158, 980
Europe:	01.070					
Belgium-Luxembourg 1 Germany, West	l				594, 030	
Netherlands 1 Norway					11, 729	
Portugal Spain		741	154, 323	86, 279	6, 614 11, 276	7, 054
Sweden United Kingdom			4, 242	19, 251	28, 533	
Total	27, 852	36, 169	158, 565	168, 395	652, 182	7, 054
Asia:						
Japan ¹ Malaya	2, 138	2,087	3, 639	1, 479	5, 853	
Total	2, 138	2,087	3, 639	1, 479	5, 853	
Africa:						
Belgian Congo		236, 701	507, 282	420, 562 6, 173	539, 214 10, 693	953, 092 20, 165
Mozambique Nigeria	8,056	2, 273		10, 893 50, 018	57, 184 2 303, 692	4, 409 31, 174
Rhodesia and Nyasaland, Federa- tion of	3 4, 768	³ 233	3 8, 163	4,944	18, 326	22, 166
Uganda 4 Union of South Africa	224		2,050 2,036	2, 158 4, 480	8, 507 14, 428	6, 511
Total Oceania: Australia	186, 125 2, 187	239, 207 1, 590	519, 531 20, 541	499, 228 32, 428	952, 044 46, 074	1, 037, 517 109, 314
Grand total: PoundsValue	250, 056 \$228, 323	328, 866 \$398, 849	759, 409 \$1, 229, 534	981, 872 \$1, 972, 320	1, 907, 686 5\$4,820,453	1, 312, 865 \$1, 180, 118

Presumably country of transshipment rather then original source.
 Includes material classified as columbite concentrate by producers in Nigeria.

<sup>Southern Rhodesia.
Classified by the Bureau of the Census as British East Africa.
Revised figure.</sup>

TECHNOLOGY

Research in metallurgy, properties, alloys, and new applications of

columbium and tantalum continued to expand in 1956.

The Federal Bureau of Mines announced development at its Albany, Oreg., station of a new process for separating columbium and tantalum by solvent extraction. The feed material, bearing hydrated oxides of the metals, was dissolved in an aqueous mineral-acid solution. This was then agitated in contact with an immiscible organic solvent, which preferentially extracted one of the metals. Subsequent separate treatment of the two solutions yielded both tantalum and columbium oxides of greater than 99-percent purity. Work was continued by the Bureau on further variations and refinements of liquid-liquid (solvent) extraction; domestic private industry was preparing to apply solvent extraction on a commercial scale.

A new and sensitive method for determining tantalum was developed.⁵ The method consisted of the fusion of tantalum oxide with potassium pyrosulfate and solution of the cooled melt in saturated ammonium oxalate, followed by development of a yellow complex with an ethanolic solution of gallic acid. The tantalum-gallic acid complex absorbed over a broad region in the blue and near ultraviolet.

A new chlorination process also developed by the Bureau of Mines at Albany was described at the Northwest Regional Meeting of the American Chemical Society. The process recovered columbium, tantalum, and other metals from western "black-sand" deposits. The sands were mixed with carbon and sodium or potassium chloride and dried before chlorination. Chlorination resulted in volatilization of tantalum, columbium, and titanium chlorides, which were then recovered by condensation. Uranium, thorium, and rare earths remained in the chlorination residue.

A method for rapid field analysis for columbium and tantalum in black sands was described. The speed, simplicity, and reasonable

accuracy of this technique made it suitable for field use.

Four papers concerning columbium were given at a symposium in London, March 22 and 23, 1956. One paper discussed various solvent-extraction methods for recovering metals, including techniques for recovering columbium and tantalum.8 Relative merits and costs compared with other methods were also mentioned. Five methods investigated to produce pure ductile columbium were discussed.9 Processes examined using ferrocolumbium as a starting material were: (1) The fluoride process, involving sodium reduction; (2) a caustic soda-solution-attack process; (3) a solvent-extractionpurification process; (4) a selective potassium-columbate process; and (5) a chlorination process. Factors, including costs, affecting the selection of a process for large-scale development were also

⁴ Higble, K. B., Werning, J. R., Separation of Tantalum-Columbium by Solvent Extraction: Bureau of Mines Rept. of Investigations 5239, 1956, 49 pp.

4 Freund, H., Hammill, K. H., and Bissonnette, F. C., Jr., Spectrophotometric Determination of Tantalum with Gallic Acid: Bureau of Mines Rept. of Investigations 5242, 1956, 11 pp.

5 Chemical and Engineering News, Cracking The Black Sands: Vol. 34, No. 28, July 9, 1956, p. 3346.

7 Curwen, H. C., A Field Method for the Rapid Estimation of the Oxides of Niobium and Tantalum in Black Sand Concentrates: Bull. Inst. Min. and Met. (London), vol. 66, part 2, November 1956, pp. 39-41.

8 Fletcher, J. M., Purification by Solvent Extraction: Symposium on the Extraction Metallurgy of Some of the Less Common Metals: Inst. Min. and Met. (London), Paper 2, 1956, 15 pp.

9 Dickson, G. K., and Dukes, J. A., The Selection of a Process for Development for the Production of Pure Niobium: Symposium on the Extraction Metallurgy of Some of the Less Common Metals: Inst. Min. and Met. (London), Paper 14, 1956, 14 pp.

discussed. A chlorination process was described in detail.10 four stages were: (1) Chlorination of ferrocolumbium; (2) purification of the mixed chlorides by hydrogen reduction; (3) separation of the columbium and tantalum; and (4) reduction of the columbium trichloride with hydrogen to yield columbium-metal powder. fourth paper described the process of separating columbium from tantalum, tungsten, and iron by fractionation of their volatile chlorides and methods to develop the process on a plant scale.11

Two solvent extraction systems using acid solutions and tributyl phosphate for separating and purifying columbium from its ores or from ferrocolumbium were investigated.12 An outline flowsheet and

a tentative estimate of costs were given for one system.

A patent was issued for a solvent-extraction process utilizing tantalum and columbium acid fluorides in an aqueous mineral-acidfeed solution.¹³ The aqueous solution was contacted by any of certain organic solvents and resulted in a tantalum-containing organic phase

and an aqueous columbium-containing phase.

Another patent granted was for a process of hydrogen reduction of mixed tantalum pentachloride and columbium pentachloride, resulting in formation of columbium trichloride, which was then separated by condensation.¹⁴ A second reduction of the remaining gaseous mixture yielded, by subsequent condensation, tantalum or The columbium trichloride was later reduced tantalum hydride. to metallic columbium.

A process for manufacturing particulate metallic columbium from a mixture of oxygen-containing compounds of nickel and columbium with a carboniferous sponge-forming agent was patented.15 The carboniferous agent was eliminated by heating; the resultant porous mixture was then reduced with hydrogen gas. The nickel-columbium mixture was then reduced with hydrogen gas. sponge was then treated to separate the two metals.

A new method for etching tantalum electrolytically made tantalum the anode in an electrolyte solution consisting of formamide, dimethyl

formamide, and ammonium bifluoride in water.16

Another etching process consisted of placing tantalum electrodes in an aqueous solution of hydrofluoric acid, hydrochloric acid, and a film-forming anion, such as chloride, bromide, nitrate, or sulfate.17

The characteristics of tantalum electrolytic capacitors were investigated at the Signal Corps Engineering Laboratories, Ft. Monmouth, Five types of capacitors were tested. All survived a 115-

¹⁰ McIntosh, A. B., and Broadley, J. S., The Extraction of Pure Niobium by a Chlorination Process; Symposium on the Extraction Metallurgy of Some of the Less Common Metals: Inst. Min. and Met. (London), Paper 15, 1956, 18 pp.

11 Steele, B. R., and Geldart, D., Distillation of Volatile Chlorides as a Means of Obtaining Pure Niobium: Symposium on the Extraction Metallurgy of Some of the Less Common Metals: Inst. Min. and Met. (London), Paper 16, 1956, 8 pp.

12 Fletcher, J. M., Morris, D. F. C., and Wain, A. G., Outline of a Solvent Extraction Process for the Purification of Niobium From Ores or From Ferroniobium: Trans. Inst. Min. and Met. (London), vol. 65, 1958, pp. 487-408

Purification of Niobium From Ores or From Ferroniobium: Trans. Inst. Min. and Met. (London), vol. 05, 1956, pp. 487-498.

19 Wilhelm, H. A., and Kerrigan, J. V. (Assigned to the United States of America). Process of Separating Tantalum and Niobium Values From Each Other: U. S. Patent 2,767,047, Oct. 16, 1956.

18 Schafer, Harold, (assigned to W. C. Heraeus) Production of Metallic Tantalum and Metallic Niobium From Mixtures of Compounds Thereof: U. S. Patent 2,766,112, Oct. 9, 1956.

18 Von Bichowsky, Foord, Process of the Manufacture of Particulate Metallic Niobium: U. S. Patent 2,761,776, Sept. 4, 1956.

19 Jenny, Alfred L. (assigned to General Electric Corp.), Method of Etching Tantalum: U. S. Patent 2,742,416, Apr. 17, 1956.

18 Lanchick, Apr. 17, 1955, Dec. 25, 1956.

18 Lunchick, Albert, and Gikow, Emanuel, Characteristics of Tantalum Electrolytic Capacitors: Elec. Manufacturing, vol. 58, June 1956, pp. 79-84.

percent overvoltage with not more than a 10-percent change in capacitance. The effect of the presence of water and NaCl were Properly sealed capacitors lost not more than 15-percent capacitance in 4,000 hours.

A new vitreous ceramic material was developed made up of barium

titanate and a cadmium columbate or tantalate. 19

A new type of miniature electronic valve was reported.²⁰ The component was said to consist basically of an insulated columbium wire wound around a straight tantalum wire immersed in liquid helium.

A pilot-scale hydraulic-jet mining plant was announced by Ribon Valley Tinfields, Ltd., at its tin-columbite property at Sabon Gida, Nigeria. A small steel shaft was sunk through the overburden to the pay layer by means of vertical water-pressure jets. Horizontal jets then washed a cavity in the mineralized horizon at the bottom on the shaft. Excavated material was pumped to the surface.²¹

RESERVES

Reserves of columbium-bearing ores throughout the world continued to increase during 1956. Known supplies were believed to be more than adequate for foreseeable future requirements. The indicated Free World reserve of contained Cb₂O₅ was estimated to be at least 4.5 million tons, mostly in low-grade pyrochlore deposits. Canadian deposits were reported to contain 600,000 tons of Cb₂O₅; African deposits, including pyrochlores and columbium- and tantalum-bearing tin ores, were estimated to contain 1.3 million tons of Cb₂O₅; and Brazilian reserves, mostly inferred, were estimated to contain 2.5 million tons of Cb₂O₅.

In the United States more than 80,000 tons of Cb₂O₅ was contained mostly in forms such as accessory minerals in bauxite and titanium

deposits and waste products or in subgrade black sands.

The world reserve of tantalum has not been estimated. columbium ores contain recoverable tantalum, and columbium- and tantalum-bearing tin slags also constitute a commercial source.

WORLD REVIEW

World (except the Soviet Union) production of columbium- and tantalum-mineral concentrates was 9.6 million pounds in 1956, 17 percent less than the record production in 1955, but still the second The Eastern Hemisphere produced 94.4 percent greatest in history. of the world supply of ore or mineral concentrates in 1956, compared with 96.3 percent in 1955. Record productions were reported in 1956 by Australia, Belgian Congo, Malaya, Rhodesia-Nyasaland, and the United States.

The drop in world production was attributed to the termination in 1955 of the United States Government program for purchasing foreign columbium-tantalum materials. Deliveries, but on a greatly reduced scale, were still being made in 1956 to General Services Administration under prior commitments to buy.

¹⁹ Wainer, Eugene (assigned to Radio Corp. of America), Modified Barium Titanate Ceramic Materials: U. S. Patent 2,742,370, Apr. 17, 1956.
29 Metal Bulletin (London), Another Use for Tantalum: No. 4124, Aug. 31, 1956, pp. 21–22.
21 Mining World, Ribon Valley Building Jet Mining Plant in Nigeria: vol. 18, No. 1, January 1956, p. 66.

TABLE 4.—World production of columbium and tantalum mineral concentrates by countries, 1947–51 (average) and 1952–56, in pounds ² Compiled by Augusta W. Jann and Berenice B. Mitchelll

29,320 11, 025 159, 655 8 758, 919 | 8 953, 092 8 14, 532 33,600 10,080 \$ 140,039 Tanta-lum 9,640,000 216,606 8 9961 619, 136 51, 971 832, 960 573, 196 7 31, 024 5, 080 6,607 Colum-bium 3 160, 462 \$ 127, 205 24,000 3 6, 614 35,840 3 6, 614 4, 660 2, 924 11, 276 390 594, 030 Tanta-11, 540, 000 34,003 12,954 1955 Colum-bium 62, 865 46,000 22, 400 3 86, 279 15, 552 3,868 12 \$ 108,025 19, 251 Tanta-lum 1 8 266, 757 4, 480 90 6, 261 28, 280 23,117 9, 590, 000 32, 829 954 8 11, 023 | 117, 967, 8 267, 967 36, 596 248, 640 527, 360 148, 732 18, 960 8, 960 22, 439 3 154, 323 27, 060 38,000 4, 242 5 40, 320 Tanta-lum 4, 410 16, 713 23, 542 5, 770, 000 124 902 7 58, 133 3, 514 13, 228 953 18, 15 623, 9 3, 366 677, 200 111, 200 8, 377 116, 480 388, 160 3 40, 367 5, 121 5, 100 Colum-bium 2,240 3 35, 428 10, 360 741 8 5 53, 760 Tanta-lum 3, 430, 000 85 042 042 5 9, 094 3, 527 4,400 952 1, 120 5, 732 105, 280 32, 0 ----. 2,5, 2,000 896, 320 Colum-bium \$ 83,768 11,192 5,999 5 39, 950 \$ 12,926 1947-51 (average) Tanta-lum 2, 760, 000 4, 484 4,020 3, 9 2, 335, 872 68,598 14,784 Colum-bium \$ 16,469 kian Congo (incl. Ruanda-Urundi) Shodesta and Nyasaland, Fed. of United States (mine shipments) World total (estimate). Country 1 rench Equatorial Africa Inion of South Africa. ritish Gulana.... Mozambique---weden 3 orway

¹ Frequently the composition (Ob₂O_F-Ta₂O₈) of these mineral concentrates lies in an intermediate position, neither Cb₂O₈ nor Ta₂O₈ being strongly predominant. In such instance the production figure has been centered.
² This table incorporates a number of revisions of data published in previous chapters. Data do not add to totals shown due to rounding where estimated figures are included.

In the detail.

§ United States imports.

§ United States in the columbium-tantalum concentrates were produced as follows: 1947–51 (average), 1,744,280 pounds; 1952, 2,813,070 pounds; 1953, 3,575,861 pounds; 1954, 5,970,097 pounds; 1955, 3,941,825 pounds; 1956, not yet available; columbian-tantalum content averaging about 10 percent.

§ Exports.

Average for one year only, as 1951 was first year of commercial production.
In addition to figure shown, 176 pounds of samarskite were produced in 1961, and 132 in 1963.
Average for 1960-51.
In addition, tin-columbium-tantalum concentrates were produced as follows: 1951, 336 pounds; 1962, 3,248 pounds; 1963, 4,480 pounds; 1964, 6,720 pounds; 1955, 515 pounds.

The United States used 73 percent of the non-Communist world production of columbium and tantalum concentrates in 1956 compared with 98 percent in 1955. Foreign sources furnished the United States with 97 percent of the country's supply in 1956, compared with 99.8 percent in 1955.

NORTH AMERICA

Canada.—Much of the Canadian columbium mineralization was associated with radioactive minerals or shared the complex crystal structure of perovskite, pyrochlore, and betafite with uranium, thorium, and rare earths. This association with minerals that can be detected by Geiger or scintillation counters was a great advantage in prospecting for columbium. Magnetite, another common accessory constituent, often caused marked magnetic anomalies to be revealed during airborne or ground magnetometer surveys. some instances, however, both associations were absent, and these two prospecting guides were of no use.22

Kennecott Copper Corp. acquired from Molybdenum Corp. of America a 51-percent interest in a columbium-bearing deposit at Oka, Quebec, 25 miles west of Montreal. A subsidiary company, Quebec Columbium, Ltd., was formed to hold title to the property. 23 company reported that exploratory work has confirmed the existence

of a large deposit.

Exploration programs have been conducted on at least eight mining properties in the Oka area. The deposits were in an oval area 4 miles long and 1½ miles at its maximum width. Disseminated columbium minerals, such as betafite, columbian perovskite, and pyrochlore, were found to be widespread within the complex. Pyrochlore, occurring in carbonate rocks, was the most important ore The columbium minerals were concentrated in lenticular shoots 50 to 1,700 feet in length and 10 to 200 feet in width. The shoots, 0.3 percent Cb₂O₅ or higher, were estimated to contain many million tons of columbium-bearing rock.24

Dominion Gulf Co. reported a very large deposit of pyrochlore in silicate rock at Nemogosenda Lake, 17 miles northeast of Chapleau, The deposit, originally discovered in 1955 by geophysical methods, has been outlined by diamond drilling. Reserves were believed to be more than 32 million tons of 0.4 percent Cb₂O₅. There were additional values in rare earths, uranium, zirconium, and iron,

which may be of interest.25

Beaucage Mines on Newman Island in Lake Nipissing, Ontario, was reported to have reserves of uraniferous pyrochlore-bearing rock of 5,400,000 tons, with an average content of 0.70 percent columbium oxide and 0.05 percent uranium oxide. Consolidated Mining & Smelting Co. and the Power Corp. of Canada helped to finance the operation. A pilot plant of 50 tons daily capacity was already testing the ore utilizing a process developed by Battelle Memorial Institute. A product containing approximately 80 percent Cb₂O₅ was obtained.²⁶

²² Maurice, O. D., Geology of the Oka Hills: Canadian Min. Jour., vol. 77, No. 5, May 1956, pp. 70-72.

<sup>83.

23</sup> Northern Miner, Moly Corp. and Kennecott Form New Company: Nov. 1, 1956, p. 18.

24 Rowe, Robert B., Columbium Deposits of Canada: Canadian Min. and Met. Bull., vol. 49, No. 533, September, 1956, pp. 644-647.

25 Northern Miner, Major Size Columbium Deposit Uncovered by Dominion Gulf: June 14, 1956, pp.

<sup>1, 4.
&</sup>lt;sup>28</sup> Mining Journal (London), Columbium in Canada: vol. 247, No. 6325, Nov. 9, 1956. p. 568.

A new company, Columbium Mining Products, Ltd., has been formed to operate the jointly held Oka property of Coulee Lead & Zinc Mines and Headway Red Lake Gold Mines. Further explora-

tion and development are planned.27

Exploration of other Ontario mines was reported.28 The Basin betafite deposit 8 miles southwest of Bancroft, Ontario, was explored. Betafite crystals up to 3 inches long were reported in a sill-like calcite body 300 feet long and 150 feet wide. Work done consisted of stripping, diamond-drilling, and underground exploration. seminated pyrochlore deposits were reported on the property of Multi-Minerals, Ltd., 14 miles southeast of Chapleau, Ontario. pyrochlore occurred in silicate, apatite-magnetite, and calcium carbonate rocks. Indicated reserves from diamond drilling were 32 million tons of 0.25 percent Cb₂O₅ rock.

Five miles east of Manson Creek in British Columbia, Northwestern Explorations, Ltd., trenched, stripped, and diamond-drilled a deposit.²⁹ The columbite was disseminated in feldspathic rock in an area 2,400 feet long and about 200 feet wide. Also in British Columbia the Bugaboo placer deposits 45 miles south of Golden were held by Quebec Metallurgical Industries. A small mill on the Bugaboo lease concentrated the ore to separate the black sand, which contains pyrochlore and polycrase-euxenite. Extraction tests were being conducted on black-sand concentrates in the company laboratories.

SOUTH AMERICA

Bolivia.—Bolivia reported no official exports of columbite in 1956. It was estimated that about 2 tons of concentrates left the country

during the year without being recorded.

Brazil.—Increased reserves of pyrochlore were reported from Minas The deposit at Barreiro, Araxá, in Minas Gerais has been estimated to contain 5.3 million short tons of pyrochlore with a content of 45 to 60 percent columbium oxide. The pyrochlore was reported to comprise an average of 6 percent of the rock in the deposit.30

Surinam.—Exploration of columbium-tantalum deposits was being conducted in 1956 by Surinam Mining Corp. Results were not made

public.31

EUROPE

Germany, West.-H. C. Starck A. G., Goslar, Germany, placed a solvent-extraction plant in full-scale operation. Imported tin slags

were used as raw material.

Norway.—A. S. Norsk Bergverk announced plans to manufacture ferrocolumbium, using columbium concentrates from its deposit at Sove, Southern, Norway. One ton of pyrochlore (koppite)-bearing ore was estimated to yield roughly 2 kilos of ferrocolumbium. The carbonatite lenses near Sove have been calculated to contain more than 2.5 million tons of ore containing 0.2-0.5 percent Cb₂O₅.32

[#] Engineering and Mining Journal, In Canada, Quebec: Vol. 157, No. 9, September 1956, p. 188.

Work cited in footnote 24.

Work cited in footnote 24.

Mining World, Brazil: Vol. 18, No. 1, January 1956, p. 73.

Mining World, Brazil: Vol. 18, No. 1, January 1956, p. 73.

Foreign Service Dispatch, American Consulate, Paramaribo, Mar. 4, 1957.

American Metal Market, Columbium and Titanium Have Role in Norway's Mining Expansion Vol. 63, No. 219, Nov. 16, 1966, pp. 1-2.

Spain.—Tantalum and columbium deposits in Orense and Pontevedra were provisionally reserved to the State by an order on January This reservation was to be in effect for 1 year, during which time the area was to be studied by the Spanish Geological Institute, and new development or prospecting permits would not be granted.38

U. S. S. R.—The 6th Five-Year Plan (January 1, 1956-December 31, 1960) for the Soviet Union included plans for expanded exploration for columbium ores and for increasing reserves 50 to 55 percent. U. S. S. R. production and reserve data were not available in 1956.

United Kingdom.—Fabricated columbium was placed on sale in

limited quantities by Murex, Ltd.34

The occurence of columbite in the Dartmoore granite of Devon was The granite resembled columbite-bearing granite of Nigeria. No economic deposits of columbite have been found in Devon in either fresh or decomposed granite.35

ASIA

Thailand.—On February 22 it was announced that the export from Thailand of minerals containing columbium or tantalum was prohibited, except by Government permission.³⁶

AFRICA

Belgian Congo.—Geomines continued to be the principal producer of tantalite-columbite as a byproduct of the tin-mining operations at Manono.

French Morocco.—Columbium ore, tantalum ore, and tantalum, raw or processed, excepting worked-out pieces, were included on a list of materials, which could not be exported from the southern zone of

Morocco without authorization.37

Nigeria.—Very large pyrochlore-containing granites were reported in the Kaffo Valley in northern Nigeria. The combined Cb2O5 and Ta₂O₅ was believed to average 0.28 percent. Considerable quantities of concentrates were recovered from decomposed columbite-bearing granite of the Jos-Bukuru complex in a 12-square-mile area. columbite, a primary accessory mineral, usually amounted to less than 0.5 pound per cubic yard; but several areas have been of appreciably higher grade. In one of these areas values ranged up to 6 pounds per cubic yard and averaged over 2 pounds per cubic yard. Areas of better than average value ranged in size from about 10 to several hundred acres. Depths of decomposition have been found which exceed 100 feet.38

Bisichi Tin, Ltd., reported it was selling columbite at a "satisfactory profit" and noticed a more widespread consumption since American stockpiling ceased. It was stated there had been a tendency to mine

³³ Foreign Commerce Weekly, Certain Ore Deposits in Spain Reserved: Vol. 55, No. 11, Mar. 12, 1956,

p. 23.

Mining Journal (London), Columbium: Vol. 246, No. 6300, May 18, 1956, p. 615.

Mining Journal (London), Columbite in Devon: Min. Mag. (London), vol. 95, No. 3, September 1956, pp.

<sup>142-144.

36</sup> Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 6, June 1956.

37 Decree of the Morocco Minister of Commerce, October 15, 1956.

38 Williams, F. A., The Identification and Valuation of Decomposed Columbite-Bearing Granites of the Jos-Bukuru Younger Granite Complex, Nigeria; Trans. Inst. Min. and Met. (London), vol. 65, 1956, pp. 180-170

only the highest grade ore during the period of a bonus price for colum-This practice had to be changed or higher costs without compensatory higher metal value could have resulted in the lower grade deposits becoming uneconomical to mine.39

United Tin Areas of Nigeria, Ltd., announced that development for

producing columbite at their Odegi property had been curtailed.40

Rhodesia and Nyasaland, Federation of.—Several pyrochlore-bearing carbonatite bodies were discovered in the Feira district in Northern One carbonatite covered an area of 5 or 6 square miles and was believed to be the largest in Africa.41

Another carbonatite with values in pyrochlore was being investigated at Nkumbwa Hill at Isoka in the remote northeastern corner of

Northern Rhodesia. 42

Tanganyika.—The Mbeya Exploration Co., Ltd., decided to erect a 150- to 200-ton-per-day pilot mill to concentrate the 0.1-0.6 percent Cb₂O₅ ore from its multimillion-ton carbonatite deposit at Panda Hill south of Lake Rukwa.43

Uganda.—Sukulu Mines, Ltd., was organized by Uganda Development Corp., Frobisher, Ltd., and Olin Mathieson Chemical Corp. to mine and treat 420,000 tons of raw material per year to recover apatite concentrates and columbium concentrates from deposits in the Sukulu Reserves of ore were said to be 202 million tons.44 Hills, near Tororo.

AUSTRALIA

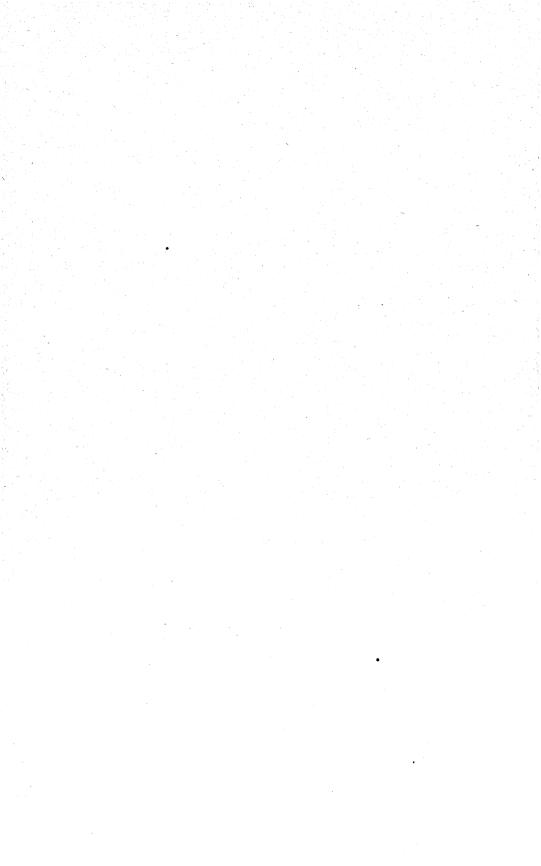
The plant and stores of Northwest Tantalum N. L. at Wodgina, Australia, were sold at auction during September 1955. Apparently no further production or exploration was planned at the property. 45

Kimberley Oil Exploration Syndicate Ltd., took an option on a

tantalite-spodumene claim near Ravensthorpe.46

4 Rodesian Mining and Engineering Review, Hill of Pyrochiore Being Examined. Vol. 21, No. 3, September 1956, p. 29.

4 Rhodesian Mining and Engineering Review, Pyrochlore: Vol. 21, No. 3, March 1956, p. 36.


4 Davies, K. A., The Geology of Part of South East Uganda: Geological Survey, Uganda, Entebbe, Memoir 4, 1956, pp. 63-67.

5 Industrial and Mining Standard (Melbourne), Northwest Tantalum N. L., Vol. 111, No. 2821, Oct. 18, 1956, p. 26.

4 Industrial and Mining Standard (Melbourne), Kimberly Options: Vol. 111, No. 2818, Sept. 6, 1956, 27

Metal Bulletin (London), Columbite: No. 4098, June 1, 1956, p. 25.
 Metal Bulletin (London), Columbite: No. 4092, May 8, 1956, p. 26.
 South African Mining and Engineering Journal, Big Niobium Deposits: Vol. 67, No. 3328, Nov. 23, 1956, p. 867.

42 Rhodesian Mining and Engineering Review, Hill of Pyrochlore Being Examined: Vol. 21, No. 9, Sep-

Copper

By A. D. McMahon 1 and Gertrude N. Greenspoon 2

THE INADEQUATE supply condition prevalent in the copper industry, starting in late 1954, changed in 1956 to one in which more than enough copper was available for requirements. Mine production, smelter output from domestic ores, and world production established new highs in 1956. Prices of domestic copper rose to the highest points in over 90 years, and foreign prices also increased to high rates. The first reductions of prices, however, by custom smelters in the United States and the London Metal Exchange near the end of the first quarter indicated that supply at existing prices exceeded demand; this situation became more pronounced throughout the rest of the year.

The record domestic mine output resulted mainly from high prices and operations uninterrupted by labor strikes for the first time since

1952.

In June agreements were reached between principal producers and the International Union of Mine, Mill, and Smelter Workers for a 3-year nonreopenable contract. Pay increases were to be spaced over 3 years, and new and improved pension plans and health and welfare benefits were provided.

Consumption of refined copper through May was as high as in the latter part of 1955; in the last 7 months, however, as a result of the slight slackening of general industrial activity, consumption decreased and for the year as a whole was virtually unchanged from 1955.

In February the price of copper quoted by primary producers in the United States rose to 46 cents a pound, the highest price in over 90 years. In July, as a result of a growing oversupply of metal, the price was lowered to 40 cents and again in October to 36 cents, where it remained through the end of 1956. Parallel-price actions were taken by the custom smelters, on the London Metal Exchange, by the Rhodesian Selection Trust Group, and Belgian Congo's Union Minière du Haut Katanga.

Commodity specialist.Statistical assistant.

Other evidences that the critical supply situation had eased were: The announcement in May that the Government was to negotiate with contractors for delivering previously deferred copper; relaxation of export controls on copper raw materials; and the closing of the copper-supply-expansion goal established in February 1952. in late October The Anaconda Company and the Phelps Dodge Corp. announced cutbacks in production of 16 and 7½ percent, respectively, at their Montana and Arizona properties.

Suspension of the 2-cent excise tax on copper had been extended to June 30, 1958 by action taken in 1955; in 1956 the suspension of non-

ferrous scrap duties was extended to June 30, 1957.

Increased production in many countries—principally Canada, Chile, Belgian Congo, Northern Rhodesia, and the United Statesresulted in a new world-production record. The San Manuel mine in the United States and the Gaspé mine in Canada were operated for the first full year in 1956; the Chibuluma mine in Northern Rhodesia began producing in May.

TABLE 1.—Salient statistics of the copper industry in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Smelters. Percent of world total Refineries. Percent of world total Refineries. From foreign ores, matte, etc., refinery reports. Total new refined, domestic, and foreign. Secondary copper recovered from old scrap only. Imports (unmanufactured) 2. Refined Exports of metallic copper 4. Refined (ingots and bars). Stocks at end of year (producers). Refined copper. Blister and materials in solution. Withdrawals (apparent) from total	861, 741, 296 861, 081 31 867, 311 261, 122 1, 128, 433 467, 145 530, 746 150	99, 947, 492 85 927, 365 30 923, 192 254, 504 1, 177, 696 414, 635 618, 880 346, 960 5 212, 390 174, 135 211, 000 26, 000	85, 85, 943, 391, 29, 932, 232, 360, 885, 1, 293, 117, 429, 388, 676, 104, 274, 111, 15, 171, 393, 109, 580, 272, 000, 49, 000	93, 654, 258 .83 .834, 381 .25 .841, 717 .370, 202 1, 211, 919 .407, 066 .594, 829 .215, 086 .312, 433 .215, 951 .214, 000 .25, 000	1112, 549, 665 .83 1, 007, 311 28 997, 499 344, 960 1, 342, 459 514, 585 2594, 100 3 202, 312 5 259, 942 199, 819 235, 000 34, 000	131, 775, 959 . 78 1, 117, 580 28 1, 080, 207 362, 426 1, 442, 633 468, 489 595, 747 191, 745 5 280, 575 223, 103 339, 000 78, 000
supply on domestic account: Total new copper Total new and old copper (old scrap only) Price average 6cents per pound_ World smelter production, new copper	1, 732, 000 21. 5	1, 360, 000 1, 775, 000 7 24. 2 3, 105, 000	1, 864, 000 7 28. 7	1, 642, 000 7 29, 5	3 1, 336, 000 3 1, 851, 000 7 37. 3 3, 640, 000	1, 835, 000 7 42, 5

¹ Includes old tailings smelted or re-treated. Not comparable with mine production figure shown in that latter includes recoverable copper content of ores not classified as "copper."

2 Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering country under bond. Comprises copper in ingots, plates, and bars, ores and concentrates,

Total exports of copper, exclusive of ore, concentrates, composition metal, and unrefined copper. Exclusive also of "Other manufactures of copper," for which quantity figures are not recorded before 1953. (See table 33.)

Solution of the Covered the Police of Metals Reserve under Premium Price Plan, which covered the period February 1, 1942, to June 30, 1947, inclusive.
 Exclusive of copper produced abroad and delivered in the United States.

COPPER 411

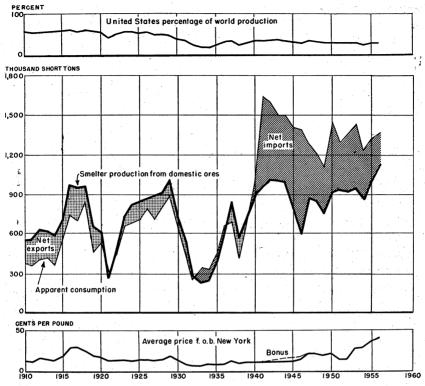


FIGURE 1.—Production, consumption, and price of copper in the United States, 1910-56.

DEFENSE PRODUCTION ACT STIMULATION

No contracts for expansion of copper production under the Defense Production Act of 1950, as amended, were entered into by the Government in 1956. A floor-price contract was amended in 1956, and one company was granted tax-amortization assistance.

Efforts to relieve the inadequate copper supply at the beginning of the year resulted in release of copper from Defense Production Act (DPA) inventories and postponement of national strategic stockpile deliveries. On March 13 the Office of Defense Mobilization (ODM) authorized postponement from June 30 to December 31, 1956, on delivery to the Government of approximately 36,000 tons of

copper under contract.

An easier supply position appeared early in the second quarter, and on May 10 ODM authorized the General Services Administration (GSA) to negotiate with contractors for orderly delivery of about 40,000 tons of the previously deferred copper. The tentative schedule of repayments called for delivery of 7,600 tons in the third quarter of 1956 and 11,200 tons in the fourth quarter. The remaining deliveries were to be made in 1957 in decreasing amounts in each of the four quarters. No additional deferments of copper were contemplated.

TABLE 2.—Contracts for expansion and maintenance of supply of copper under the Defense Production Act, as amended, in 1956

Type of contract, name of contractor, and location of project	Govern- ment pur- chase com- mitment (pounds)	Effective date of contract	Approximate term of contract	Commit- ment pur- chase price (per pound)
Floor price: National Lead Co., 1 Madison County, Mo	7, 200, 000	Dec. 21, 1956 2	6 years	\$0. 36
Type of contract or assistance, name of contract	tor and loca	tion of project	Approximate amount involved	Effective date of contract
Tax amortization: 3 Inspiration Consolidated Copper Co., Inspira	ation, Ariz		\$8, 500, 000	Mar. 15, 1956

Also 9,240,000 pounds of nickel and 7,320,000 pounds of cobalt.
 Replaces original contract effective Oct. 11, 1951.
 Amortization—5 years at 75 percent of total amount involved.

TABLE 3.—DMEA contracts involving copper executed during 1956, by States

			Contract			
State and contractor	Property	County	Date	Total amount 1		
ARIZONA						
Lewisohn Copper Corp	Peach & Elgin	Pima	Oct. 23, 1956	\$88, 780		
MARYLAND						
Parker Mining & Development Co	Dolly Hyde	Frederick	July 13, 1956	7, 558		
NEW MEXICO		111				
Mercury Uranium Oil Co	San Pedro	Santa Fe	July 27, 1956	105, 300		
Howe Sound Co	Holden	Chelan	Nov. 6, 1956	² 53, 850		

¹ Government participation was 50 percent in exploration projects in 1956.

On September 24 ODM closed the copper-supply-expansion goal established in February 1952. This goal required an annual supply of 2,270,000 tons of metal, consisting of domestic production. old scrap, and imports.

DOMESTIC PRODUCTION

Statistics on copper production are compiled on mine, smelter, and refinery bases. Mine data show most accurately the geographic distribution of production; smelter figures best show the actual recovery of metal and source of production; refinery statistics show recovery of metal but indicate only generally the source of crude materials treated. Differences among the three sets of figures are discussed in the Copper chapter of the 1954 Minerals Yearbook, volume I.

² Amendment to original contract for \$109,705 effective Dec. 7, 1953.

TABLE 4.—Copper produced from domestic 1 ores, as reported by mines, smelters, and refineries, 1952-56, in short tons

•	Year	Mine	Smelter	Refinery
1952 1953 1954 1955		925, 359 926, 448 835, 472 998, 570 1, 106, 215	927, 365 943, 391 834, 381 1, 007, 311 1, 117, 580	923, 192 932, 232 841, 717 997, 499 1, 080, 207

¹ Includes Alaska.

PRIMARY COPPER

Mine Production.—In the United States production rose 11 percent in 1956 and established an alltime record. This peak resulted from the incentive of high prices and uninterrupted activity at major mines in the country. The San Manuel mine, Pima County, Ariz., completed

its first full year of operation.

Arizona, continuing to lead all other States by a wide margin, supplied 46 percent of domestic mine production and exceeded its previous peak output in 1955 by 11 percent. Utah was second, with 23 percent. Arizona's output came from a number of important copper-producing districts and mines. Output from Utah was principally from one mine—Utah Copper—the largest copper producer in the United States. Production from Montana, Nevada, New Mexico, and Michigan ranked next in importance and made up 28 percent of the total. These 6 States produced 97 percent of the United States total copper output in 1956. Among the other copper-producing States, Idaho exceeded its previous peak output in 1955 by 18 percent, and production in Nevada and Tennessee approximated peaks established in 1942 and 1930, respectively.

Classification of production, by mining methods, showed that approximately 73 percent of the recoverable copper and 78 percent of the copper ore came from open pits in 1956. Most domestic copper ore was treated by flotation at or near the mine of origin, and the

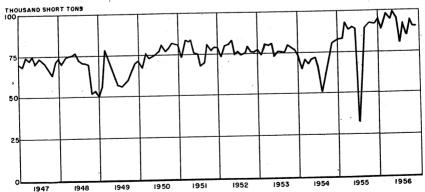


FIGURE 2.—Mine production of recoverable copper in the United States, 1947-56, by months, in short tons.

resulting concentrate was shipped for smelting. Some copper ores were direct-smelted either because of their high grade or because of their fluxing qualities.

The first 5 mines in table 9 produced 55 percent of the United States total, the first 10 produced 76 percent, and the entire 25

furnished 96 percent.

TABLE 5.—Copper ore and recoverable copper produced by open-pit and underground methods, 1939-56, percent of total

Year	Ope	n pit	Under	rground	Year	Ope	n pit	Under	ground
	Ore	Copper	Ore	Copper		Ore	Copper	Ore	Copper
1939	59 61 63 66 69 68 68 68 73	41 44 47 51 54 57 61 58 68	41 39 37 34 31 32 32 34 27	59 56 53 49 46 43 39 42 32	1948. 1949. 1950. 1951. 1952. 1953. 1954. 1955. 1956.	76 78 81 84 85 83 83 83	68 70 74 74 77 75 79 77 77	24 22 19 16 15 17 17 17 22	32 30 26 26 23 25 21 23 27

TABLE 6.—Mine production of recoverable copper in the United States in 1956, by months ¹

Month	Short tons	Month	Short tons
January_ February_ March April May_ June_ July	94, 631 89, 151 98, 000 95, 710 99, 769 95, 012 80, 693	AugustSeptemberOctoberNovemberDecemberTotal	92, 172 85, 795 94, 400 90, 455 90, 427 1, 106, 215

¹ Includes Alaska. Monthly figures adjusted to final annual mine-production total.

Quantity and Estimated Recoverable Content of Copper-Bearing Ores.—Tables 10-13 list the quantity and estimated recoverable copper content of the ore produced by copper mines in the United States in 1956.

Close agreement between the copper output as reported by smelters and the recoverable quantity as reported by mines indicates that the estimated recoverable tenor is close to actual recovery. Classification of some of the complex western ores is difficult and more or less arbitrary. "Copper ores" include not only all those that contain 2.5 percent or more recoverable copper but also those that contain less than this percentage if they are valuable chiefly for copper, notably the "porphyry ores." Mines report considerable copper from ores mined primarily for other products. These include siliceous gold and silver ores, lead and zinc ores, and pyritic ores.

TABLE 7.—Mine production of recoverable copper in the United States, 1946-56, with production of maximum year, and cumulative production from earliest record to end of 1956, by States, in short tons

Total pro- duction from earliest	record to end of 1956	685, 910 15, 224, 796 633, 944 283, 536 140, 207 7, 239, 882 2, 030, 246 12, 435 1, 384 7, 383, 720 138, 730		3 43, 369	() () () () () () () () () ()
	1956	(a) 505, 908 4, 228 4, 228 6, 656 96, 426 96, 426 74, 345 74,		1,890	61, 526 61, 526 10, 449 3, 403 79, 480 71, 106, 215
	1955	454, 105 4, 323 6, 613 78, 925 66, 417 73, 925 66, 417 73, 925 81, 542 73, 946 81, 542 73, 946		1, 722	60, 066 6, 066 6, 110 6, 911 4, 305 68, 392 88, 570
	1954	377, 927 3627, 927 4, 528 4, 828 56, 349 70, 217 60, 558 211, 835 3, 636	793, 245	1,925	23, 563 23, 563 3, 270 3, 087 4, 352 40, 302 885, 472
	1953	393,525 3,382 2,941 3,136 77,617 61,850 72,477 9 9,740 8,740	885, 174	2,374	3, 027 3, 927 7, 829 3, 947 38, 900
years	1952	395,719 3,606 3,213 61,948 67,537 76,112 1 1 282,894 4,357	886.205	2, 576	21,699 3,485 7,620 3,774 36,578 925,359
Production by years	1961	415, 870 8, 212 2, 160 2, 406 55, 474 73, 558 73, 568 71, 086 474, 086	*, 003 884, 789	2, 422	
Pro	1950	6 403, 301 3, 646 2, 107 2, 107 52, 530 6, 300 6, 300 7, 800 19	866.256	2,982	
	1949	259,010 649,010 2,403 1,438 56,611 38,058 55,388 55,388 7,245 197,245	716, 125	3,670	19, 506 8, 974 8, 974 2, 986 2, 986 82, 955
	1948	16 375, 121 2, 288 1, 624 1, 624 45, 242 74, 687 74, 687 2, 227, 007	290.418	2,370	5, 347 6, 693 2, 208 42, 025 834, 813
	1947	366, 218 2, 407 2, 407 2, 150 2, 150 6, 205 6, 205 6, 205 6, 205 14	2, 240	1,760	24, 184 3, 613 6, 825 2, 248 5, 248 86, 875 86, 875
	1946	289, 223 4, 240 1, 754 1, 038 58, 481 66, 191 7		1,857	21,663 2,839 6,985 3,026 3,4,513 608,737
Maximum production i	Quantity	50, 927 505, 908 28, 644 14, 171 176, 656 176, 666 80, 100 80, 100 1, 721 1, 721 224 224 225 226 227 227 228 228 229 229	2, 102	3, 670	
Maxin	Year	1916 1956 1909 1938 1938 1942 1942 1918 1918	1900	1949	1907 1918 1918 1917 1916 1908 1930 1949 1944 1944 1944
State	•	Western States and Alaska: Alsaka. Arizona. Arizona. Collorado. Idaho. Montana. Newada. Newada. New Mexico. Oregon. South Dakota. Texas. Texas.	Washington Wyoming	West Central States: Missouri.	States east of the Mississippi: Alabama. Georgia. Maryland. Maxyland. Maxyland. Massachusetts. Michigan. Now Hampshire. North Carolina. Pennsyl vania. South Carolina. Tennessee. Vermont. Virginia. Wisoonsin. Total.

1 For Missouri and States east of the Mississippi, maximum since 1905.

² Less than 1 ton.
³ Enable description of a parallable.
⁴ Data not available.
⁵ The 1908 volume of Mineral Resources credits this figure to Massachusetts and New Hampshire; the 1909 volume credits it to New Hampshire alone.

Less than 0.5 ton.
7 For States other than Michigan, figures represent largely smelter output. Excludes small quantity, not separable, for Wisconsin shown with Missouri.
8 Largely smelter production for States east of the Missispip except Michigan.

TABLE 8.—Mine production of copper in the principal districts 1 of the United States, 1947-51 (average) and 1952-56, in terms of recoverable copper, in short tons

19,31,28,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8	9 9 8
61.00	0 0 ania notice

¹ Districts producing 1,000 short tons or more in any year of the period 1952-56.
² Includes average for Burro Mountain for 1948-49 to avoid disclosing individual company operations.
³ Less than 0.5 ton.
⁴ Figures withheld to avoid disclosing individual company operations.

erations.

• Includes average for Peshastin Creek and Wenatchee for 1949–50 to avoid disclosing individual company operations.

Includes Ferry to avoid disclosing individual company operations.

Includes Ferry and King to avoid disclosing individual company operations.

⁵ Includes Spring Mountain and Texas to avoid disclosing individual company op-

TABLE 9.-Twenty-five leading copper-producing mines in the United States, in 1956, in order of output

Source of copper	Copper ore, Copper, Sold-silver ores, Copper, Isad-zine ores, Copper, Godd-silver ores, Copper, gold-silver ores, Copper ore, Do.
Operator	Kennecott Copper Corp. Phelys Dodge Corp. The Anaconda Co. Flenies Dodge Corp. Kennecott Copper Corp. Flenies Dodge Corp. Rennecott Copper Corp. Ran Manuel Copper Corp. Inspiration Conper Corp. Inspiration Consolidated Copper Co. Inspiration Corper Co. Magna Copper Co. Magna Copper Co. Magna Copper Co. Columnt & Hecla, Inc. Callumet & Corp. Kennecott Copper Corp. Remecott Copper Corp. Bethlehem Steel Co. Remecott Copper Corp. Bathlehem Steel Co. Remecott Copper Corp.
State	Utah Arizona Montana Antizona New Mexico. Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Arizona Go Go Go Go Michigan Nevada Arizona
District	West Mountain (Bingham) Copper Mountain (Morenci) Summit Valley (Butte) Warren (Bisbee) Contral Ajo Mineral Creek (Ray) Ajo Mineral Creek (Ray) Ajo Mineral Creek (Ray) Contral As Superior Globe-Miami Yerington Globe-Miami Holbo-Miami Jere Bell Clobe-Miami Achington Globe-Miami Lake Superior Robinson (Ely) Poli County Robinson (Ely) Funa Lebanon County Funa Lebanon County Pima Lebanon County Robinson (Ely) Funa Lebanon County Robinson (Ely) Funa Lebanon County
Mine	Utah Copper Morenet Morenet Morenet Copper Queen-Lavender Pit Cohno Chino New Cornella Ray Pit Ray Pit Ray Pit Ray Pit Ray Pit Copper Cities Miami Copper Cities Miami Calluery Pit Liberty Pit Liberty Pit Burra Burra Burra, Calloway, Mary, Eureka, Boyd Minnet Hill, Daisy, Copper Giance, Bullion No. 2. Oornwall Veteran Pit Elizabeth
Rank	112224455644564456445644564456445644564456

TABLE 10.—Copper ore sold or treated in the United States in 1956, with copper, gold, and silver content in terms of recoverable metals 1

		Recoverable metal content					
State	Ore sold or treated (short tons)	Coppe	r	Gold (fine ounces) Silver (fine ounces)		gold and silver per e ton of ore	
		Pounds	Percent				
Arizona 2	60, 468, 580	935, 039, 400	0.77 1.78	119, 435 292	3, 963, 579	\$0.13 1.34	
California Colorado ²	14, 866 21, 788	529, 500 1, 152, 500	2.64	1, 415	10, 758 344, 315	16. 58	
Idaho	276, 561	6, 933, 300	1.25	2, 463	7, 993	. 34	
Michigan 3	8, 660, 694	123, 052, 000	.71		379, 990	.04	
Montana	7, 782, 458	183, 804, 804	1.18	13, 540	3, 033, 314	.4]	
Nevada	12, 014, 339	165, 416, 400	. 69	47, 471 1, 890	612, 372 79, 337	.18	
New Mexico	8, 250, 490 68	113, 490, 000 11, 700	8.60	1, 090	157	4.60	
Oregon Tennessee 4	1, 377, 190	20, 898, 000	.76	189	64, 878	.00	
Utah	32, 322, 279	486, 548, 600	.75	379, 022	2, 925, 627	.49	
Vermont	268, 310	6, 806, 000	1.27	143	36, 561	.14	
Washington	318, 306	5, 768, 000	. 91	13, 752	53, 100	1.60	
Wyoming	30	5, 600	9. 33		32	. 97	
Total	131, 775, 959	2, 049, 455, 804	.78	579, 617	11, 512, 013	. 23	

Excludes copper recovered from precipitates as follows: Arizona, 69,637,200 pounds; Montana, 3,170,017 pounds; New Mexico, 31,531,200 pounds; Utah, 10,049,400 pounds.
 Excludes metals recovered as a byproduct of tungsten ore.

3 Includes tailings. 4 Copper-zinc ore.

TABLE 11.—Copper ore concentrated in the United States in 1956, with content in terms of recoverable copper

State	Ore concentrated	Recoverable cop	per content
	(short tons)	Pounds	Percent
Arizona 1	8, 660, 694 7, 782, 118 5 11, 885, 447 6 8, 031, 613 1, 377, 190 32, 321, 100	* 815, 757, 900 275, 400 6, 656, 400 123, 052, 000 183, 772, 605 * 155, 563, 900 7 110, 986, 100 20, 988, 000 486, 304, 400 6, 806, 000 5, 755, 600	0. 72 1. 16 1. 22 . 71 1. 18 . 65 . 69 . 76 . 75 1. 27
Total	127, 251, 488	1, 915, 828, 305	.78

Excludes copper recovered as a byproduct of tungsten ore.
 In addition, 3,480,652 tons was treated by straight leaching.
 In addition, 58,984,000 pounds of copper was recovered by straight leaching.
 Includes tailings.

⁵ Includes ore treated by straight leaching, and copper precipitates recovered therefrom; Bureau of Mines of a didition, 137,500 tons was treated by heap and vat leaching.

In addition, 147,100 pounds of copper was recovered by heap and vat leaching.

Copper-zinc ore.

TABLE 12.—Copper ore shipped to smelters in the United States in 1956, with content in terms of recoverable copper, and copper produced from all sources, in terms of recoverable copper

	Ore s	Ore shipped to smelters			
State	Short tons		ole copper tent	sources, including old tailings, old slag, smelter cleanings, and precipitates, etc.	
		Pounds	Percent	(pounds)	
Alaska				()	
Arizona California Colorado Idaho Michigan Missouri Montana Nevada New Mexico Oregon Pennsylvania and North Carolina	- 666, 708 - 2, 984 - 21, 788 - 2, 857 - 340 - 128, 892 - 81, 377 - 68	60, 297, 500 254, 100 1, 152, 500 276, 900 32, 199 9, 852, 500 2, 356, 800 11, 700	4. 52 4. 26 2. 64 4. 85 4. 74 3. 82 1. 45 8. 60	21, 07, 816, 000 1, 718, 000 8, 456, 000 13, 312, 000 123, 052, 000 3, 780, 000 2, 192, 852, 000 2, 148, 690, 000 148, 690, 000 3, 8, 294, 000 3, 8, 294, 000	
Utah Vermont	1, 179	244, 200	10.36	20, 898, 000 2 501, 208, 000 6, 806, 000	
Washington Wyoming	- 96	12, 400 5, 600	6. 46 9. 33	5, 852, 000 6, 000	
Total	906, 319	74, 496, 399	4.11	2, 212, 430, 000	

 Less than 1 ton.
 Considerable copper was recovered from precipitates. Mostly from magnetite-pyrite-chalcopyrite ore.

TABLE 13.—Copper ores 1 produced in the United States, 1947-51 (average) and 1952-56, and average yield in copper, gold, and silver

	Smelting ores		Concentrating ores		Total				
Year	Short tons	Yield in cop- per (per- cent)	Short tons 2	Yield in cop- per (per- cent)	Short tons 2 3	Yield in cop- per (per- cent)		Yield per ton in silver (ounce)	
1947–51 (average) 1952	766, 821 904, 486 893, 248 896, 363 877, 287 906, 319	3. 63 3. 27 3. 47 4. 02 3. 81 4. 11	83, 325, 520 95, 307, 233 96, 594, 903 89, 620, 197 108, 060, 525 127, 251, 488		87, 741, 296 99, 947, 492 101, 064, 945 93, 654, 258 112, 549, 665 131, 775, 959	0. 90 . 85 . 85 . 83 . 83 . 78	.0059 .0057 .0061 .0056 .0052 .0044	. 088 . 082 . 091 . 087 . 102 . 087	\$0. 29 . 27 . 30 . 27 . 28 . 23

Includes old tailings, smelted or re-treated, etc., for 1947-52.
 Includes some ore classed as copper-zinc ore.
 Includes copper ore leached.

Smelter Production.—Recovery of copper by smelters in the United States from domestic ores totaled 1,117,600 tons in 1956, an 11-percent increase over 1955; it was the largest since compilation of these data was begun in 1845. In 1956 output constituted 28 percent of world production, compared with 51 percent in 1925-29 and a range of 25-34 percent in 1945-55.

The smelter of the San Manuel Copper Corp. produced its first blister copper on January 8 and operated satisfactorily throughout the year. A list of copper smelters and refineries in operation in the United States before 1956 was published in the Copper chapter of

Minerals Yearbook 1955, volume I.

The figures for smelter production shown in table 14 are based upon voluntary reports from all domestic primary smelters handling copperbearing materials. Blister copper is accounted for in terms of fine-copper content. Some casting and electrolytic copper produced from ore or matte is included in the smelter production, as well as in the refinery output. In the case of Michigan, furnace-refined copper is included. Metallic and cement copper recovered by leaching is included in smelter production.

The quantity and value of copper produced from domestic ores by smelters in the United States were shown by years for 1845-1955 in

Minerals Yearbook, 1955, volume I.

TABLE 14.—Copper produced (smelter output from domestic ores) in the United States, 1947-51 (average) and 1952-56, and total, 1845-1956

Year	Short tons	Value 1 (thou- sand dollars)
1947-51 (average)	861, 081 927, 365 943, 391 834, 381 1, 007, 311 1, 117, 580	370, 911 448, 848 541, 506 492, 288 751, 454 949, 943
Total 1845-1956	42, 166, 675	14, 627, 524

¹ Excludes bonus payments of Office of Metals Reserve under Premium Price Plan in effect Feb 1, 1942 to June 30, 1947.

Refinery Production.—The refinery output of primary copper in the United States in 1956 was made by 14 plants; 8 of these employed the electrolytic method only; 3 used the furnace process on Lake Superior copper; and 2 used both the electrolytic and furnace methods. One western smelter fire-refines its blister but shipped part of its blister output to electrolytic refineries in 1956. The leaching plant of the Inspiration Consolidated Copper Co. at Inspiration, Ariz., produced electrolytic copper direct from leaching solutions; most of the output was shipped as cathodes to other refineries for melting and casting into merchant shapes.

These 14 plants constitute what commonly are termed "primary refineries." The electrolytic plants, exclusive of that at Inspiration, had a rated capacity of 1,687,000 tons of refined copper a year and produced at 90 percent of capacity in 1956, compared with 83 per-

cent in 1955.

Five large electrolytic refineries are on the Atlantic seaboard; 3 lake refineries, on the Great Lakes; and 4 electrolytic refineries, west of the Great Lakes; 1 each at Great Falls (Mont.), Tacoma (Wash.), El Paso (Tex.), and Garfield (Utah). The El Paso plant of the Phelps Dodge Refining Corp. and the Carteret plant of the American Metal Co., produced fire-refined copper, in addition to the electrolytic grade.

TABLE 15.—Annual capacity (in short tons) of primary refineries in the United States, Canada, and Mexico, in 1956 1

	Electrolytic	Lake	Fire-refined
Jnited States: American Metal Co., Ltd., Carteret, N. J	150, 000		121,000
American Smelting & Refining Co.:			221,000
Baltimore, Md	198, 000		
Perth Amboy, N. J.	168, 000 114, 000		
Tacoma, Wash The Anaconda Company, Great Falls, Mont	150,000		
Calumet & Hecla, Inc., Hubbell, Mich	100,000	60,000	
Inspiration Consolidated Copper Co., Inspiration, Ariz.	39,000		
International Smelting & Refining Co., Perth Amboy, N. J.	240,000		
Kennecott Copper Corp.: Hurley, N. Mex.			04 000
Hurley, N. Mex	204, 000		84,000
Garfield, UtahPhelps Dodge Refining Corp.:			
Phelps Dodge Renning Corp.: Laurel Hill, N. Y	175,000		
KI Paso Tex	288. UUU		25,000
Quincy Mining Co., Hancock, Mich.		12,000	
White Pine Copper Co., White Pine, Mich.		36,000	
	1, 726, 000	108, 000	230,000
Danada:			
Canadian Copper Refiners, Ltd., Montreal, East, Quebec.	205,000		
International Nickel Co. of Canada, Ltd., Copper Cliff,			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ontario	168, 000		
Mexico: Cobre de Mexico, S. A., Atzcapotzalco, D. F	373, 000		
Casting capacity	United States	Canada	Mexico
Talactualistic (including seron)	1, 853, 000	366,000	43,000
. Electrolytic (including scrap)	1,855,000	000,000	10,000
Fire refined (in addition to capacity reported under item 1)		1	
Total	2, 191, 000	366,000	43,000

¹ From 1956 Yearbook of American Bureau of Metal Statistics.

TABLE 16.—Primary and secondary copper produced by primary refineries in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Primary:						
From domestic ores, etc.: ¹ Electrolytic Lake Casting	762, 974 24, 596 79, 741	819, 539 21, 681 81, 972	826, 086 23, 671 82, 475	777, 507 22, 510 41, 700	883, 674 35, 387 78, 438	948, 732 57, 053 74, 422
Total	867, 311	923, 192	932, 232	841,717	997, 499	1, 080, 207
From foreign ores, etc.: Electrolytic Casting and best select	261, 122	254, 504	353, 727 7, 158	353, 667 16, 535	320, 822 24, 138	351, 768 10, 658
Total refinery production of new copper	1, 128, 433	1, 177, 696	1, 293, 117	1, 211, 919	1, 342, 459	1, 442, 633
Secondary: Electrolytic ² Casting	193, 884 16, 440	113, 827 8, 549	166, 802 22, 783	156, 764 23, 179	196, 386 10, 169	220, 340 13, 477
Total secondary	210, 324	122, 376	189, 585	179, 943	206, 555	233, 817
Grand total	1, 338, 757	1, 300, 072	1, 482, 702	1, 391, 862	1, 549, 014	1, 676, 450

¹ The separation of refined copper into metal of domestic and foreign origin is only approximate, as an accurate separation at this stage of manufacture is not possible.

² Includes copper reported from foreign scrap.

TABLE 17.—Copper cast in forms at primary refineries in the United States, 1954-56

	198	1954		5	1956	
Form	Thousand short tons	Percent	Thousand short tons	Percent	Thousand short tons	Percent
Wirebars	789 168 104 135 185	57 12 7 10 13 1	963 162 141 158 109 16	62 11 9 10 7	1, 049 190 155 141 125 16	63 11 9 8 8
Total	1, 392	100	1, 549	100	1, 676	100

Copper Sulfate.—Production of copper sulfate totaled 66,800 tons in 1956, a 14-percent decrease from 1955. Shipments of 67,000 tons, which excludes consumption by producing plants, were 15 percent less than in 1955, and stocks at the end of the year were 16 percent below those held a year earlier. Of the total shipments of 67,000 tons (79,100 in 1955), producers' reports indicated that 13,900 tons (18,200) was for agricultural uses, 22,000 (21,500) for industrial uses, and 31,100 (39,400) for other purposes, chiefly for export.

TABLE 18.—Production, shipments, and stocks of copper sulfate in 1947-51 (average) and 1952-56, in short tons

	Produ	ıction	Shipments	Stocks at
Year	Gross weight	Copper content	(gross weight)	end of year 1 (gross weight)
1947-51 (average) 1952.	91, 809 94, 536	22, 952 23, 634	91, 932 92, 472	7, 098 6, 884
1953	72, 944 65, 308 78, 088	18, 236 16, 327 19, 522	72, 188 66, 488 79, 112	7, 072 5, 540 4, 852
1956	66, 808	16, 702	67, 008	4, 068

¹ Some small quantities are purchased and used by producing companies, so that the figures given do not balance exactly.

SECONDARY COPPER

Copper recovered from copper scrap, copper-alloy scrap, and other copper-bearing scrap materials as metal, as copper alloys without separation of the copper, or as copper compounds is known as secondary copper. Secondary copper is produced from new and old scrap. These terms were defined in the Copper chapter of Minerals Yearbook, 1955, volume I.

Table 19 summarizes the production of secondary copper during 1947–56. Refined copper produced from scrap at primary refineries is included in the "unalloyed" class. Detailed information appears in the Secondary Metals—Nonferrous chapter of this volume.

In addition to the primary refineries, many plants throughout the country consume scrap exclusively, producing metallic copper and a variety of alloys. The output of the secondary plants is not included in refined-copper production in tables 16 and 17 but is included in table 19 on secondary-copper production.

TABLE 19.—Secondary copper produced in the United States, 1947-51 (average) and 1952-56, in short tons

	1947–51 (average)	1952	1953	1954	1955	1956
Copper recovered as unalloyed copper Copper recovered in alloys ¹	256, 875 654, 564	173, 904 729, 293	242, 855 715, 609	212, 241 627, 666	246, 928 742, 076	273, 060 657, 604
Total secondary copper	911, 439	903, 197	958, 464	839, 907	989, 004	930, 664
From new scrapFrom old scrap	444, 294 467, 145	488, 562 414, 635	529, 076 429, 388	432, 841 407, 066	474, 419 514, 585	462, 178 468, 489
Percentage equivalent of domestic mine output	107	98	103	101	. 99	84

¹ Includes copper in chemicals, as follows: 1947–51 (average), 18,322; 1952, 15,388; 1953, 21,550; 1954, 18,055; 1955, 15,898; 1956, 14,739.

CONSUMPTION

Apparent consumption of primary copper, which includes deliveries to the national strategic stockpile, when there are any, increased 2 percent in 1956.

TABLE 20.—New refined copper withdrawn from total year's supply on domestic account, 1952-56, in short tons

	1952	1953	1954	1955	1956
Production from domestic and foreign ores, etc. Imports 1. Stock at beginning of year 1.	1, 177, 696 346, 960 35, 000	1, 293, 117 274, 111 26, 000	1, 211, 919 215, 086 49, 000	1, 342, 459 ² 202, 312 25, 000	1, 442, 633 191, 745 34, 000
Total available supply	1, 559, 656	1, 593, 228	1, 476, 005	2 1, 569, 771	1, 668, 378
Copper exported 1Stock at end of year 1	174, 135 26, 000	109, 580 49, 000	215, 951 25, 000	199, 819 34, 000	223, 103 78, 000
Total	200, 135	158, 580	240, 951	233, 819	301, 103
Apparent withdrawals on domestic account 3	1, 360, 000	1, 435, 000	1, 235, 000	² 1, 336, 000	1, 367, 000

Actual consumption of refined copper in 1956 was virtually unchanged from 1955. The high consumption that prevailed in the last quarter of 1955 continued through May 1956 and in the first 5 months of the year averaged 144,000 tons. Vacations at fabricators in July and slight slackening of industrial activity in the latter half of the year resulted in decreased use of copper and in the last 7 months of the year consumption averaged 113,000 tons.

Distribution of consumption by principal consuming groups followed the pattern of recent years, with wire mills using 57 percent (54 in 1955) of the total consumed and brass mills 40 percent (43 in 1955) in 1956. Unlike table 20, in which all but new copper is eliminated so far as possible, table 21 does not distinguish between new and old copper but lists all copper in refined form.

Some copper precipitates were used directly in manufacturing paint and other items. The figures may not be shown separately and are not covered by table 21, which relates to refined copper only.

May include some copper refined from scrap.
 Revised figure.
 Includes copper delivered by industry to the national strategic stockpile.

TABLE 21.—Refined copper consumed in 1954-56, by classes of consumers, in short tons

Class of consumer	Cath- odes	Wire bars	Ingots and ingot bars	Cakes and slabs	Billets	Other	Total
Wire mills Brass mills Chemical plants Secondary smelters Foundries and miscellaneous		649, 567 54, 237	10, 231 82, 750 11 2, 064 16, 683		155, 359	19 2, 318 202 10, 964	668, 601 545, 645 2, 329 7, 434 30, 720
Total	98, 948		111, 739	170, 532	155, 895	13, 503	1, 254, 729
1955: Wire mills Brass mills Chemical plants Secondary smelters Foundries Miscellaneous 1	4, 768 4, 063	791, 816 63, 394 58 131	11, 797 133, 710 564 1, 213 13, 004 4, 079	200, 012 469 3 318	211	45 1, 180 377 139 9, 940	812, 663 647, 044 1, 744 6, 827 17, 478 16, 248
Total	120, 103	855, 399	164, 367	200, 802	149, 652	11, 681	1, 502, 004
1956: Wire mills Brass mills Chemical plants Secondary smelters Foundries Miscellaneous 1	5, 602	76	16, 415 102, 451 559 1, 411 13, 341 5, 532	177, 583 207 3 402	166, 426 237 538	35 1, 199 434 143 8, 933	864, 585 611, 098 1, 758 7, 654 18, 980 17, 314
Total	114, 187	911, 353	139, 709	178, 195	167, 201	10, 744	1, 521, 389

¹ Includes iron and steel plants, primary smelters producing alloys other than copper, consumers of copper powder and copper shot, and miscellaneous manufacturers.

Figures on apparent consumption of primary copper are available for a long period, whereas compilations on actual consumption of refined copper were begun in 1945. In estimating apparent consumption it has been assumed that copper used in primary fabrication of copper is consumed. Although table 20 aims to show primary consumption only, it should be noted that exports and stocks, as well as the import component of "total supply," doubtless include some refined secondary copper that cannot be determined separately. Actual consumption of new copper would also differ from the figures shown in the table by changes in consumers' stocks.

STOCKS

Producers' stocks of refined and unrefined copper rose 44 percent

in 1956 and were the largest since 1946.

Year-end producers' inventories of refined copper were more than double those held a year earlier, and stocks of unrefined metal gained 30 percent. Of the total stocks at the end of 1956, 23 percent was in the form of refined metal; not since 1948 have refined stocks accounted for more than 20 percent of total stocks. The remainder of producers' stocks was in smelter shapes and in transit to refineries and in smelter shapes and materials in process of refining at refineries. Table 22 lists domestic stocks of copper as reported by primary smelting and refining plants. Blister and anode copper in transit from smelters to refineries is included with stocks of blister copper.

TABLE 22.—Stocks of copper at primary smelting and refining plants in the United States at end of year, 1951-56, in short tons

Year	Refined copper ¹	Blister and materials in process of refining ²	Year	Refined copper 1	Blister and materials in process of refining ²
1951 1952 1953	35, 000 26, 000 49, 000	182, 000 185, 000 223, 000	1954 1955 1956	25, 000 34, 000 78, 000	189, 000 201, 000 261, 000

May include some copper refined from scrap.
 Includes copper in transit from smelters in the United States to refineries therein.

Figures compiled by the Copper Institute show that domestic stocks of refined copper increased from 61,554 tons to 120,645 in 1956. Inventory data of the Bureau of Mines and Copper Institute always differ owing to somewhat different bases. Before 1947 a principal reason was that Copper Institute coverage was limited to duty-free copper. After January 1, 1947, all copper was included by the Copper Institute, and differences were reduced chiefly to the method of handling metal in process of refining (included as "refined" by Copper Institute and as "unrefined" by the Bureau of Mines) and to other minor variations in interpretation until May 1951, when the Institute's inventory data began to include tonnages delivered to United States consumers at foreign ports. Bureau of Mines figures are on the basis of metal physically held at primary smelting and refining plants in the United States. In the Bureau of Mines classification cathodes to be used chiefly for casting into shapes are considered stocks in process and not refined stocks.

Fabricators' stocks of refined metal (including in-process copper and primary fabricated shapes), according to the United States Copper Association, were 437,200 tons at the end of 1956 (a 12-percent increase over those on hand at the beginning of the year). Working stocks (see table 23) were 336,200 tons (7 percent more than at the end of 1955). Fabricators' inventory position improved materially during the year, and for the first time since the end of 1940 there was no

TABLE 23.—Stocks of copper in fabricators' hands at end of year, 1952-56, in short tons

Į O II.	IIICU DIGIOD C	opper moodemen	,		
	Stocks of refined copper 1	Unfilled pur- chases of refined cop- per from producers	Working stocks	Unfilled sales to customers	Excess stocks over orders booked
	(1)	(2)	(3)	(4)	(5)
1952	331, 499 380, 881 360, 526 389, 974 437, 187	32, 652 25, 022 58, 125 139, 094 117, 601	292, 157 309, 664 304, 619 314, 145 336, 217	275, 608 170, 917 136, 581 293, 264 183, 834	-203, 614 -74, 678 -22, 549 -78, 341 34, 737

Includes in-process metal and primary fabricated shapes. Also includes small quantities of refined copper held at refineries for fabricators' account.
 Columns (1) plus (2) minus (3) and minus (4) equals column (5).

deficit in stocks. The deficit at the beginning of the year (78,300 tons) was reduced to 1,800 tons by May 31. Thereafter, fabricators reported an excess of stocks over orders booked. After the unfilled sales of metal are accounted for, copper classed as "available for sale" was 34,700 tons at the close of 1956.

PRICES

Reports from copper-selling agencies indicate that 1,100,600 tons of domestic refined copper was delivered to purchasers in 1956 at an average price of 42.5 cents a pound. The average price of foreign copper delivered in the United States was 43.2 cents a pound.

The comparative instability of copper prices was again an outstanding feature of the copper industry in 1956. At the beginning of the year principal producers were quoting 43 cents a pound for electrolytic copper delivered in the United States. By February 21 the price had advanced to 46 cents a pound, the highest figure in over 90 years. Custom-smelter quotations ranged from 50.5 to 51.5 cents per pound in January and by mid-March rose to a high of 55 cents. Toward the end of March the custom-smelter price dropped 4 cents a pound and continued downward until July 6, when the quotation was 37.5 cents a pound. The declining quotations by custom smelters, as well as reduced prices abroad, exerted some pressure upon domestic primary producers to reduce their price, resulting by July 12 in the lowered price of 40 cents a pound (the first reduction in the United States copper price in more than 2 years). The slight slackening of general industrial activity in the latter half of the year, together with a high rate of mine production, indicated the development of an oversupply and led to a further reduction to 36 cents by all primary producers on October 29 where it remained through the year end. Except for a slight increase in the custom-smelter price (39 to 39.75 cents) in August, the price declined gradually thereafter and at the year end was quoted at a range of 35.5 to 36 cents.

TABLE 24.—Average weighted prices of copper deliveries, f. o. b. refinery, 1952-56, in cents per pound

Year	Domestic copper	Foreign copper	Year	Domestic copper	Foreign copper
1952 1953 1954	24. 2 28. 7 29. 5	33. 6 34. 1 29. 4	1955 1956	37. 3 42. 5	37. 5 43. 2

¹ Covers copper produced in the United States and delivered here and abroad and copper produced abroad and delivered in the United States; excludes copper both produced and delivered abroad whether or not handled by United States selling agencies.
² In 1952-33 a substantial quantity of copper was sold on a delivered consumers' plant basis; beginning 1954 all deliveries were made on that basis and the delivered price is reflected in averages shown.

427

TABLE 25.—Average monthly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States, 1955-56, in cents per pound

		1955		1956			
Month	Domestic	Domestic	Export	Domestic	Domestic	Export	
	f. o. b.	f. o. b.	f. o. b.	f. o. b.	f. o. b.	f. o. b.	
	refinery ¹	refinery 2	refinery ²	refinery 1	refinery ²	refinery ²	
January February March April May June July August September Octoher November	30. 02 32. 87 33. 14 35. 87 35. 87 35. 87 37. 61 42. 87 42. 87	29. 783 32. 700 32. 935 35. 700 35. 700 35. 700 38. 150 44. 052 43. 030 42. 964	32. 574 36. 236 37. 314 37. 938 36. 187 36. 339 36. 504 40. 009 44. 339 43. 411 43. 860	42. 87 43. 90 45. 87 45. 87 45. 87 41. 59 39. 87 39. 87 39. 87	43. 749 44. 588 46. 728 46. 161 45. 531 45. 056 40. 807 39. 625 39. 597 38. 623 35. 696	45. 562 45. 822 48. 532 46. 964 43. 118 40. 266 36. 002 37. 663 37. 513 35. 481	
Average for year	42. 87	43. 480	44. 665	35. 87	35. 649	33. 870	
	37. 39	37. 491	39. 115	41. 88	41. 818	40. 43	

TABLE 26.—Average yearly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States, 1947-56, in cents per pound

	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956
Domestic f. o. b. refinery ¹ Domestic f. o. b. refinery ² Export f. o. b. refinery ²	20.958	22.038	19. 202	21. 235	24. 200	24. 200	28.798	26.694	37. 39 37. 491 39. 115	41.818

American Metal Market.

London Price.—London Metal Exchange prices began the year with an average of £392 per long ton (equivalent to 49 cents a pound) in January and rose to a high of £434-£437 (54.25-54.625 cents) on March 6. The price dropped sharply the latter part of March and was reduced the equivalent of 6 cents a pound. Thereafter, except for a slight advance in August, prices dropped gradually to a monthly

average of £273 (34.125 cents) in December.

The Rhodesian Selection Trust price of £360 a long ton (45 cents per pound) established in early September 1955, was raised to £385 (48.125 cents) on February 27. This price held until April 30, when it was reduced to £350 (43.75 cents); it was further lowered to £320 (40 cents) on May 28, again on June 18 to £300 (37.5 cents), and on July 2 to £275 (34.375 cents). On August 1, the price was increased to £300 and reduced on October 15 to £280 (35 cents), which equaled the original price announced on May 6, 1955, by Roan Antelope Copper Mines, Ltd., and Mufulira Copper Mines, Ltd. Effective October 24, the price was cut to £265 (33.125 cents); rose to £280 on November 12; was lowered to £270 (33.75 cents) on December 17; and remained there beyond the end of the year.

American Metal Market.
 E&MJ Metal and Mineral Markets.

² E&MJ Metal and Mineral Markets.

TABLE 27.—United Kingdom monthly average prices in 1956 1

		Cash				Three months			Settlement			
Month		Per long ton		Cents	Per long ton		Cents	Per long ton			Cents	
	£	s.	d.	pounds 2	£	s.	d.	pounds 2	£	s.	d.	pounds 3
January	392		7	49.14	378		10	47. 45	392		1	49. 20
February	403		11	50. 59	389		10	48.75	404		10	50.64
March	419		8	52. 54	410		7	51.39	420		6	52.60
April	374		9	46. 96	369		6	46. 25	375		6	47.0
May	332		5	41.71	326		4	40.92	333	2	9	41.7
June	296		2	37.14	298		2	37. 32	297	4	9	37. 1
ſuly	284		3	35. 51	284		- 1	35. 43	285		9	35. 5
August	. 304		11	37. 82	303		4	37.77	304		- 1	37.8
September	302		9	37. 61	301		3	37. 50	303		6	37. 6
October	. 281	18	11	35. 05	281		5	34. 98	282		.9	35.0
November	. 280		1	34.84	281		7	35.00	280		. 0	34.8
December	272	19	4	33. 94	273	8	2	33. 99	273	4	6	33. 9
Average	328	14	5	41.03	324	13	1	40. 52	329	1	8	41.0

¹ Metal Bulletin (London).

FOREIGN TRADE 3

Imports.—Imports of unmanufactured copper approximated those in 1955. As usual, Chile was the chief source of copper from abroad, supplying 40 percent of the total—4 percent more than in 1955.

Larger receipts of copper from Canada, Mexico, Peru, Union of South Africa, and Australia counterbalanced decreased imports from the Philippines, Belgian Congo, and Rhodesia.

Canada, the principal supplier of refined copper for the second successive year, sent 29 percent more refined metal than in 1955. Chile

supplied 38 percent less.

The large shippers of unrefined copper—Chile, Mexico, and Peru—all supplied larger quantities in 1956 than in 1955. Receipts from Rhodesia, on the other hand, were 78 percent less than in the previous year. Much of the foreign copper that entered the country was later exported in refined or manufactured forms. United States smelters and refineries continued in 1956 to treat foreign crude materials, both purchased and toll.

Exports.—Most of the copper exported from the United States was in the form of refined copper and in advanced forms of manufacture in which the copper content is not calculable. Refined and unrefined copper of foreign origin, except that produced from Canadian-origin copper scrap, continued under open-end licensing. Refined copper of domestic origin (except copperweld rods) and that produced from Canadian-origin scrap generally was not approved for export. As the copper-supply situation eased, the export quotas were changed. On June 22 the Bureau of Foreign Commerce (BFC) announced increases in the quotas for new and old copper scrap, new and old copper-base scrap containing 40 percent or more copper, and copper-base alloy ingots and other crude forms. Additional relaxations were announced on September 25, for the fourth quarter, on the foregoing items, except copper-nickel-alloy scrap containing 5 percent or more nickel, and all refined copper was open-ended.

² Averages per long ton converted to cents per pound by using average monthly rates of exchange by Federal Reserve Board.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 28.—Copper (unmanufactured) imported into the United States, 1947-51 (average) and 1952-56, in short tons, in terms of copper content ¹

the state of the s	100					**	
	Ore	Concentrates	Regulus, black or coarse copper, and ce- ment copper	Unrefined, black, blis- ter, and converter copper in pigs or con- verter bars	Refined in ingots, plates, or bars	Old and scrap cop- per fit only for remanu- facture; and scale and clip- pings	Total
1947–51 (average)	6, 863 3, 198 6, 997 5, 343	92, 613 98, 143 106, 574 107, 438	3, 450 3, 900 7, 019 5, 795	168, 347 162, 193 273, 610 256, 484	246, 150 346, 960 274, 111 215, 086	13, 291 4, 486 7, 793 4, 683	530, 714 618, 880 676, 104 594, 829
1955							
North America: Canada Cuba Mexico Other North America	1, 435 706 190	24, 909 19, 650 7, 889 8	1, 047 4, 226 2	301 28, 105	72, 371 7, 919	² 6, 971 766 1, 313 683	2 107, 034 21, 122 49, 642 693
Total	2, 331	52, 456	5, 275	28, 406	80, 290	2 9, 733	2 178, 491
South America: Bolivia	476 4, 560 760 5	2 2,816 16,876 7,947 10	9 164 1,141	137, 886 3, 483	² 67, 286 17, 771	17 5	² 3, 301 ² 226, 772 31, 119 20
Total	5, 801	2 27, 649	1, 314	141, 369	² 85, 057	22	2 261, 212
Europe: Belgium-Luxembourg France Germany, West Malta, Gozo and Cyprus. Netherlands Norway		4,388			338 3, 577 2, 291 149	45 2,128 5	383 2, 128 3, 582 4, 388 2, 291
Sweden United Kingdom Yugoslavia				542	1, 024 11, 105 2, 149	3	1, 024 11, 650 2, 149
Total		4,388		542	20, 633	2, 181	27, 744
Asia: Philippines Turkey Other Asia	(3)	³ 13, 321		547	145	100	13, 321 547 245
Total	(8)	\$ 13, 321		547	145	100	14, 113
Africa: Belgian CongoRhodesia and Nyasaland, Federation ofUnion of South Africa		262 10, 269		9, 231 62, 545 2, 218	4, 929 10, 656 602	1	14, 160 73, 464 13, 089
TotalOceania: Australia	(4)	10, 531 1, 152	1, 309	73, 994 8, 835	16, 187	1 531	100, 713 11, 827
Grand total	8, 132	2 109, 497	7, 898	253, 693	2 202, 312	² 12, 568	² 594, 100
1956							
North America: Canada Cuba Mexico Other North America	292 354 447 5	22, 857 15, 040 6, 482 (4)	1, 581 4, 017 3	1, 038 37, 411	93, 525 4, 033	1, 196 951 445 663	120, 489 16, 345 52, 835 671
Total	1,098	44, 379	5, 601	38, 449	97, 558	3, 255	190, 340

See footnotes at end of table.

TABLE 28.—Copper (unmanufactured) imported into the United States, 1947-51 (average) and 1952-56, in short tons, in terms of copper content ¹—Continued

	Ore	Concen- trates	Regulus, black or coarse copper, and ce- ment copper	Unrefined, black, blis- ter, and converter copper in pigs or con- verter bars	Refined in ingots, plates, or bars	Old and scrap cop- per fit only for remanu- facture; and scale and clip- pings	Total
1956							
South America: Bolivia Chile Peru Other South America	1, 417 3, 307 3, 146 18	3, 066 15, 404 8, 226 444	17 1, 174	175, 889 14, 294	41, 915 16, 001	108 310	4, 500 236, 623 42, 841 772
Total	7, 888	27, 140	1, 191	190, 183	57, 916	418	284, 736
Europe: Belgium-Luxembourg France Germany, West Malta, Gozo, and Cyprus Netherlands Norway Sweden United Kingdom Yugoslavia		6, 945			769 2,738 1 5,969 224 3,348 138	31 991 6 10	800 991 2, 744 6, 945 11 5, 969 254 3, 356 138
Total		6, 945			13, 187	1,076	21, 208
Asia: Philippines Turkey Other Asia Total	12	10, 896	4	5, 586	799		10, 911 5, 586 811
Africa:	23	10, 896	4	5, 586	799		17, 308
Belgian Congo Rhodesia and Nyasaland, Federation of Union of South Africa Other Africa	7, 907	244 7, 321	9	4, 345 13, 452 6, 054 1, 085	8, 419 13, 866		12, 764 27, 562 21, 291 1, 085
TotalOceania: Australia	7, 907 543	7, 565 479	9 506	24, 936 16, 931	22, 285	994	62, 702 19, 453
Grand total	17, 459	97, 404	7, 311	276, 085	191, 745	5, 743	595, 747

¹ Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering the country under bond.

² Revised figure.

Less than 1 ton.

TABLE 29.—Copper (unmanufactured) imported into the United States, 1947-51 (average) and 1952-56 1

[Bureau of the Census]

Year	Short tons of contained copper	Year	Short tons of contained copper
1947-51 (average)	530, 714	1954	594, 829
1952	618, 880	1955	2 594, 100
1953	676, 104	1956	595, 747

¹ Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering the country under bond.

² Revised figure.

² Revised ngure.
3 Some copper in "Ore" and "Other" from Republic of the Philippines is not separately classified and is included with "Concentrates."

TABLE 30.—Copper (unmanufactured) imported into the United States, 1947–51 (average) and 1952–56, by countries, in short tons, in terms of copper content $^{\rm 1}$

Country	1947–51 (average)	1952	1953	1954	1955	1956
North America:						
Canada (including Newfoundland						
and Labrador)	59, 491	81, 932	107, 427	89, 911	3 107, 034	120, 489
Cuba	18, 453	19, 934	18, 206	18, 282 51, 229	21, 122 49, 642	16, 345
MexicoOther North America	61, 766 541	50, 997 408	65, 818 629	406	693	52, 835 671
Total	140, 251	153, 271	192, 080	159, 828	² 178, 491	190, 340
South America: Bolivia	5, 564	3, 097	3,972	3, 913	2 3, 301	4, 500
Chile	277, 957	362, 303	281, 074	266, 933	2 226, 772	236, 623
Peru	22, 557	11, 317	26, 523	22, 450	31, 119	42.841
Other South America	862	213	328	7	20	772
Total	306, 940	376, 930	311, 897	293, 303	2 261, 212	284, 736
Europe:						
Belgium-Luxembourg	167	646	5, 615	718	383	800
France	1, 130	1,806	2, 160	1, 587	2, 128	991
Germany	1,100	3 8, 932	3 3, 570	3 81	3 3, 582	3 2, 744
Malta, Gozo, and Cyprus	4, 333	5, 441	3, 680		4, 388	6, 945
Netherlands	285	41	175		2, 291	11
Norway	851	1	4, 427	5, 664	149	5, 969
Sweden	11		2, 217		1,024	254
United Kingdom	773	37	2, 194	25	11,650	3, 356
Yugoslavia		14, 833	7, 775	3,886	2, 149	138
Other Europe	363	79		17		
Total	16, 835	31, 816	31, 813	11, 978	27, 744	21, 208
Asia:						
Japan	12, 140	223		1	-75	799
Philippines	7,029	14, 787	13, 538	19, 425	13, 321	10, 911
Turkey	1, 954	3, 779	11, 894	2,664	547	5, 586
Other Asia	509	4	110	32	170	12
Total	21, 632	18, 793	25, 542	22, 122	14, 113	17, 308
Africa:						
Belgian Congo	20	(4)	5, 799	15, 539	14, 160	12, 764
Northern Rhodesia	34, 375	28, 225	88, 042	61,905	73, 464	27, 562
Southern Rhodesia	5 1, 129	167	212	()		
Union of South AfricaOther Africa	8, 363 71	8, 588	7, 678	13, 482	13, 089	21, 291 1, 085
			101 701	00.000	100 710	
Total	43, 958	36, 980	101, 731	90, 926	100, 713	62, 702
Oceania:	1 000	004	12.041	10 070	11 007	10.459
AustraliaOther Oceania	1,096	684 406	13, 041	16, 672	11, 827	19, 453
Total	1,098	1,090	13, 041	16, 672	11, 827	19, 453
Grand total	530, 714	618, 880	676, 104	594, 829	² 594, 100	595, 747
arana mar	000, 114	310, 000	010, 104	001,023	002,100	000,.131

Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering the country under bond.
 Revised figure.
 West Germany.
 Less than 1 ton.
 Chiefly from Northern Rhodesia.
 Beginning July 1, 1954, classified as Federation of Rhodesia and Nyasaland.

TABLE 31.—Old brass and clippings from brass or Dutch metal 1 imported for consumption in the United States, 1947-51 (average) and 1952-56

	Short tons				Shor	rt tons	
Year	Gross weight	Copper	Value	Year	Gross weight	Copper	
1947–51 (average) 1952 1953	47, 992 10, 321 9, 679	33, 748 7, 627 7, 503	\$15, 387, 038 3, 765, 416 3, 737, 085	1954 1955 1956	5, 272 211, 758 6, 519	3, 657 3 8, 295 4, 310	\$1, 567, 574 2 3 5, 170, 383 3 3, 002, 940

1 For remanufacture.

TABLE 32.—Copper imported for consumption in the United States, 1947-51 (average) and 1952-56, by classes 1

(Quantity in terms of copper content)

[Bureau of the Census]

Year		Ore		Concer	ntrates		black, or copper and ce- opper	
		Short tons	Value	Short tons	Value	Short ton	s Value	
1947-51 (average) ²		3, 641 3, 666 5, 560 6, 182 7, 476 6, 089	\$1, 428, 143 1, 975, 987 3, 057, 966 3, 398, 562 4, 948, 251 4, 048, 965	73, 512 96, 563 96, 448 114, 353 105, 045 74, 651	\$29, 388, 29 52, 620, 10 53, 006, 53 62, 675, 60 68, 405, 68 54, 514, 49	0 4,02 1 6,54 9 5,40 7 6,38	2, 553, 797 4, 040, 632 3, 088, 549 4, 515, 264	
Year	verte	ned, black, or, and con- r copper in or converter	Refine plate	d in ingots, s, or bars	per fit manu	l scrap cop- conly for re- facture and and clippings	Total value	
	Short tons	Value	Short	Value	Short	Value		
1947-51 (average) ² 1952 ² 1953 ² 1954 ² 1955 ² 1956	148, 574 173, 425 279, 242 257, 393 253, 693 276, 085	106, 325, 258 179, 225, 693 150, 790, 719 182, 073, 314	347, 338 274, 111 215, 118 4202, 312	\$106, 863, 689 227, 213, 872 182, 190, 014 127, 130, 493 4154, 137, 270 157, 943, 985	5, 125 7, 827 4, 752	\$4, 458, 414 2, 559, 127 4, 017, 577 2, 080, 720 4, 030, 398 3, 463, 270	\$201, 821, 878 393, 248, 141 425, 538, 413 349, 164, 652 4 423, 110, 184 3 450, 297, 968	

¹ Exclude imports for manufacture in bond and export, which are classified as "imports for consumption"

rable with years before 1954.

4 Revised figure.

On October 5 BFC announced changes in special licensing for exports of copper raw materials in the fourth quarter. Under the new provision exporters were not required to certify as to the foreign or commingled origin of refined copper on their export applications. Exporters must certify that the material will be available for export during a 3-month validity period of the license. Applications cover-

² Revised figure. 3 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

by the Bureau of the Census.

2 Some copper in "Ore" and "Other" from Republic of the Philippines is not separately classified and is included with "Concentrates."

3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not compa-

ing refined copper produced under toll or conversion agreements, copper scrap, and copper-base-alloy scrap now must name the foreign consumer—a requirement previously applicable to refined copper only.

only.

Exports of refined copper were 12 percent more than in 1955 and the largest since 1940. Most of the increase was due to larger shipments to India and Japan. Exports of old and scrap decreased 18 percent from 1955 and went mainly to Japan.

TABLE 33.—Copper exported from the United States, 1947-51 (average) and 1952-56, in short tons

	_		~ 7
Bureau	Λf	the	Cengus

	Ore, con- centrates, composi- tion metal, and un- refined copper (copper content)	Refined in bars, ingots, or other forms	Rods	Old and scrap	Pipes and tubes	Plates and sheets	Wire and cable, bare ²	Wire and cable, insu- lated	Other copper manufactures
1947-51 (average)	728 648 495 2, 369 1 12, 897	141, 187 174, 135 109, 580 215, 951 199, 819	344	5, 733 8, 941 34, 568 75, 749 31, 137	3, 569 2, 591 1, 622 1, 199 1, 292	1, 894 553 367 300 542	7, 163 9, 313 4, 548	23, 632 17, 070 15, 622 14, 342 19, 974	(3) (3) 294 250 234
1956 North America: Canada	9, 996	2,875 4 104 2	170 5 4	5, 243	395 112 54 125	95 23 17 37	516 345 136 235	3, 427 1, 092 588 1, 438	162 4
Total		2, 985	179	5, 243	686	172	1, 232	6, 545	166
South America: Argentina		3 24 12 57	2 2 5		101 7 (4) 113 63 141 38	23 2 17 7 3 7 7	3 64 47 552 58 508 37 1,269	82 201 409 1,069 571 2,337 154	6 8
Europe: Belgium-Luxembourg Denmark France Germany, West Italy Notherlands Norway Spain Sweden Switzerland United Kingdom Other Europe	1,483	55 457 59, 969 32, 900 26, 159 8, 367 2, 472 1, 824 15, 093 15, 569 788	150 1	,•231	17 (4) 4 4 18 12 2	1 13	1 7 1 387 19 26 3,014	129 6 27 15 86 27 9 310 38 5 40 123	1
Total	1, 483	163, 653	152	6, 534	61	15	3, 634	815	4

See footnotes at end of table.

TABLE 33.—Copper exported from the United States, 1947-51 (average) and 1952-56,1 in short tons—Continued

				•					
	Ore, con- centrates, composi- tion metal, and un- refined copper (copper content)	Refined in bars, ingots, or other forms	Rods	Old and scrap	Pipes and tubes	and	Wire and cable, bare 2	Wire and cable, insu- lated	Other copper manufactures 2
1956—Continued Asia:							ž.	7.1	
IndiaIndonesia	ł	1 '	1.	110	8 5 30	45 4 4	59 33	157 289	1
Israel				13, 728	38 21	(4)	60 79	81 483 249	
lands Pakistan Philippines					22 4 122	2	27 1, 638 453	359 213 2, 438	
Taiwan Turkey Other Asia		909	1		1 2 47	23	145 202 1, 278	392 167 727	
Total	2, 238	46, 434	25	13, 838	300	84	3, 976	5, 555	1
Africa: Rhodesia and Nyasaland, Federation of Union of South Africa		156 475			18		299 320	6 467	
Other Africa		1	1	66	22		372	168	
Total		632	1	66	40		991	641	
AustraliaOther Oceania		560					(4) 2	11 44	
Total		560					2	55	
Grand total	13, 717	223, 103	366	25, 681	1, 550	337	11, 104	18, 434	185

¹ Changes in Minerals Yearbook 1955 should read as follows: Ore, concentrates, etc.—Mexico, 11,073 Short tons.

2 Owing to changes in classification, data for 1952-56 not strictly comparable with earlier years.

4 Less than 1 ton.

TABLE 34.—Copper exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Ore, concentrates, composition metal, and unre- fined copper (cop- per content)			copper and nufactures ¹	Other copper man- ufactures ¹		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average) 1952 1953 1954 1955 1956	728 648 495 2, 369 3 12, 897 13, 717	\$307, 691 494, 930 290, 405 1, 309, 158 29, 478, 941 11, 648, 348	171, 393 312, 433 259, 942	\$98, 193, 974 155, 121, 116 116, 212, 961 197, 050, 734 207, 741, 551 253, 614, 925	(2) 294 250	\$1, 994, 228 211, 201 352, 124 307, 848 308, 792 290, 552	213, 038 172, 182 315, 052 273, 073	198, 667, 740 3 217,529, 284

Owing to changes in classifications, 1952–56 data not strictly comparable with earlier years.
 Weight not recorded.
 Revised figure.

435

TABLE 35.—Unfabricated copper-base alloy 1 ingots, bars, rods, shapes, plates, and sheets exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	5, 892	\$3, 973, 343	1954 ²	3, 492	\$2, 924, 161
1952 ²	5, 514	5, 424, 662	1955 ²	2, 175	3, 200, 780
1953 ³	4, 453	3, 568, 657	1956 ²	2, 233	3, 844, 261

TABLE 36.—Copper-base alloys (including brass and bronze) exported from the United States, 1955-56, by classes

[Bureau of the Census]

Class	19	55	1956		
	Short tons	Value	Short tons	Value	
Ingots	810 45, 260	\$1, 186, 281 24, 506, 514	662 50, 485	\$1, 242, 624 29, 814, 431	
Scrap and other crude forms Bars, rods, and shapes	648	821, 335	734	1, 039, 402	
Plates, sheets, and stripsPipes and tubes	. 1, 107	1, 193, 164 1, 715, 171	837 1, 420	1, 562, 235 2, 293, 238	
Pipe fittings Plumbers' brass goods	1, 302 3, 081	3, 047, 430 7, 838, 925	1, 197 2, 887	3, 265, 883 8, 198, 263	
Welding rods and wireCastings and forgings	. 823	1, 641, 970 777, 191	890 405	2, 192, 198 772, 850	
Powder	(1)	236, 473 3, 398, 552	(1)	239, 025 3, 783, 403	
Semifabricated forms, not elsewhere classified Other copper-base-alloy manufactures	(1) 22	56, 724 555, 827	(1) 34	63, 183 380, 331	
Total	(1)	46, 975, 557	(1)	54, 847, 066	

¹ Weight not recorded.

TABLE 37.—Copper sulfate (blue vitriol) exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	36, 230	\$5, 568, 029	1954	29, 762	\$5, 780, 801
1952	43, 421	8, 482, 870	1955	37, 382	8, 381, 815
1953	32, 659	6, 250, 121	1956	30, 177	8, 036, 233

Tariff.—Suspension of the 2-cent excise tax on copper was extended to June 30, 1958 by action taken in 1955, and in 1956 the suspension

of nonferrous-scrap duties was extended to June 30, 1957.

At the June 1956 meetings in Geneva on General Agreements Tariffs and Trade (GATT), effective June 30, 1956, the United States agreed to a 15-percent reduction in duties on copper and other metals and minerals in exchange for similar action on tariffs by other countries on United States exports. Excises will drop 15 percent on copper metal, ores, and concentrates (5 percent for each of 3 years) provided the tariff is reimposed and the price of copper does not drop below 24 cents a pound. Ad valorem reductions of 15 percent (5 percent each year) were also granted on copper articles. The excise taxes for fiscal 1957, 1958, and 1959 will be 1.9, 1.8, and 1.7 cents, respec-

¹ Includes brass and bronze.
2 Owing to changes in classification, data not strictly comparable with earlier years.

tively, and shall assume the specified rate of the year in which reimposed. If the price of copper drops below 24 cents a pound the reimposed tax wlll be at the 2-cent rate.

TECHNOLOGY

During the year the Bureau of Mines 4 published information on results of investigations at copper deposits and laboratory studies on concentration of ores.

The Geological Survey 5 published information on copper deposits

in Arizona, Montana, and Colorado.

Stoping of large initial blocks at the San Manuel mine, Arizona,6 was designed to insure that the overlying overburden would cave. June 16, 1956, the first stope broke through to surface when it had been about 32 percent drawn. Smaller stopes were then worked to take advantage of the extensive development necessary to bring in one stope in each panel. This allowed mining to be confined to an area east of the No. 2 shaft, which will be lost to future mining but

which is vital to development on the 2015 and 2075 levels.

Underground mining at the Kennecott Copper Corp. Ray mine in Arizona was discontinued in January 1955, when conversion to an open-pit operation was accomplished. Because of the declining grade of ore, increased mining costs, and heavy ground, an extensive diamond-drilling program was begun in 1945, and the feasibility of mining the remaining ore by open-pit methods was studied. of overburden from the ore body was begun in 1947, and small quantities of ore were found in 1949. In 1952 all work was aimed toward ultimate production by open-pit methods alone. Output from the pit supplemented underground production to maintain a combined rate of 15,000 tons until the conversion was completed.

Substituting fertilizer-grade ammonium nitrate for nitro-carbonnitrate powder cut the costs of primary blasting explosives in half at The Anaconda Company's Yerington open-pit copper mine at Weed Heights, Nev.⁸ A saving of \$12.50 per blast hole is realized in the new charge, which consists of a 25-pound, 6-inch cartridge of

Rodriquez, E. R., and Look, A. D., Saiety in Friedmand Defining and Accidence Defining and Accidence Opencial Mine, Morenci Branch, Phelps Dodge Corp., Morenci, Ariz.: Bureau of Mines Inf. Circ. 7742, 1956, 23 pp.
Popoff, C. C., Block Caving at Kelley Mine, The Anaconda Co., Butte, Mont.: Bureau of Mines Inf. Circ. 7758, 1956, 102 pp.
Wells, R. R., Laboratory Concentration of Various Alaska Copper Ores: Bureau of Mines Rept. of Investigations 5245, 1956, 9 pp.
Creasy, S. C., and Quick, G. L., Copper Deposits of Part of Helvetia Mining District, Pima County, Ariz.: Geol. Survey Bull. 1027–F, 1955 (1956), pp. 301–323.
Anderson, C. A., Scholz, E. A., and Strobell, J. D. Jr., Geology and Ore Deposits of the Bagdad Area, Yavapai County, Ariz.: Geol. Survey Prof. Paper 278, 1956, 103 pp.
Peterson, N. P., and Swanson, R. W., Geology of the Christmas Mine, Gila County, Ariz.: Geol. Survey Bull. 1027–H, 1956, pp. 331–373.
Wallace, R. E., and Hosterman, J. W., Reconnaissance Geology of Western Mineral County, Mont.: Geol. Survey Bull. 1027–M, 1956, pp. 575–612.
Harrison, J. E., and Wells, J. D., Geology and Ore Deposits of the Freeland-Lamartine District, Clear Creek County, Colo.: Geol. Survey Bull. 1032–B, 1956, pp. 33–127.
Mining World, Size of Undercut Stopes Reduced as San Manuel Production Mounts: Vol. 18, No. 10, September 1956, pp. 74–80.
Mining World, How Fertilizer Cuts Anaconda's Blasting Cost At Weed Heights: Vol. 18, No. 9, August 1956, pp. 56–57, 88.
Mining World, Anaconda Modifies Weed Heights Pit Blasting To Save \$5.19 Per Hole: Vol. 18. No. 13, December 1956, pp. 54–55.

⁴ Hundhausen, R. J., Preliminary Investigation of the Takilma-Waldo Copper District, Josephine County, Oreg.: Bureau of Mines Rept. of Investigations 5187, 1956, 22 pp.
Soulé, John H., Reconnaissance of the "Red-Bed" Copper Deposits in Southeastern Colorado and New Mexico: Bureau of Mines Inf. Circ. 7740, 1956, 74 pp.
Rodriquez, E. R., and Look, A. D., Safety in Pneumatic Drilling and Related Blasting Operations: Openeut Mine, Morenci Branch, Phelps Dodge Corp., Morenci, Ariz.: Bureau of Mines Inf. Circ. 7742, 1656 22 pp.

60-percent special gelatin and 175 pounds of Fertilizer-grade ammonium nitrate impregnated with diesel fuel. An additional saving is anticipated from experimenting with reduction in the size of the

primer cartridge.

The Anaconda Company programed 2 new projects to increase daily mine production at Butte, Mont., by 32,500 tons.9 was the Berkeley open pit, where production of 17,500 tons of 0.8percent copper ore daily is expected by mid-1957; the second was the Northwest project, an underground operation that will ultimately add another 15,000 tons of copper-zinc ore to the daily total now produced from the Butte mines. Of two other projects under investigation, the East project involved underground development and the

Continental project was envisioned as a large open-pit mine.

Rock bolting at The Anaconda Company's Mountain Con mine at Butte, Mont., permitted the change from square-set to untimbered horizontal cut-and-fill stoping.¹⁰ The results of this method of ground support and the use of smelter tailings for stope-fill included: (1) Most timber requirements and service were eliminated; (2) tighter and closer filling reduced the amount of open area, resulting in maximum utilization and control of ventilation; (3) improved blasting procedures allowed longer rounds, fewer holes, less powder consumption, and better fragmentation; and (4) stoping was rapid and more The changes in stoping methods, resulted in a reduction of 12.3 percent in the mining cost per ton despite advancing costs of material and labor.

Gravity surveys have been used successfully for underground prospecting in Phelps Dodge Corp. copper mines at Bisbee, Ariz.11 The chief purpose of these surveys has been to reduce diamond drilling

and crosscutting necessary for exploration.

Union Minière du Haut Katanga's Western Group of copper mines near Kolwezi, Belgian Congo, has developed into one of the largest

copper-producing areas in the world.12

The ore deposits of the Western mines occur in sedimentary rocks called the "Serie des Mines". This series is composed of nine units; and outcrops are due to an overthrust fault, which brought the series to rest on rocks of much younger age. This faulting, accompanied by many secondary fractures, enclosed the ore bodies in more or less separated blocks surrounded by a breccia formed of upper sandstones and lower argilotalcous rocks. The blocks vary considerably in size and range in depth from 10 to approximately 1,000 meters. In the weathered zones the ore is composed mainly of malachite and black oxides of copper and cobalt; in the intermediate zones sulfides are intermingled with oxidized minerals; and deeper, where the rocks are unaltered, the ore minerals are mainly chalcocite, bornite, chalcopyrite, and carrollite (Co₂CuSO₄). The extraction operations at the Kolwezi open pits are, in general, rather similar to mechanized opencut mining of large, disseminated ore bodies in other countries; how-

Mining World, vol. 18, No. 12, November 1956, pp. 56-61. Mining World, vol. 18, No. 13, December 1956, pp. 47-50.

1956, pp. 47-50.

10 O'Leary, V. D., Changes at Mountain Con: Min. Cong. Jour., vol. 42, No. 3, March 1956, pp. 29-31.

11 Allen, William Jr., The Gravity Meter in Underground Prospecting: Min. Eng., vol. 8, No. 3, March 1956, pp. 293-295.

12 Murdock, Thomas G. (American consul), Union Minière's Western Group of Copper Mines: State Department Dispatch 40, Elisabethville, Belgian Congo, Mar. 1, 1956, 33 pp.

Mining World, Union Minière's Golden Jubilee: Vol. 19, No. 2, February 1957, pp. 40-42, 48.

ever, the great complexity of the mineralization requires selective mining and flexibility in methods of concentrating the various types of ore. Copper-cobalt oxide minerals are recovered by flotation, using hydrolized palm oil; mixed oxide and sulfide ore is treated by differential flotation, using a zanthate collector. The sulfide concentrate is given a sulfate roast by the Fluosolids process to make it amenable to leaching and electrolytic recovery of copper and cobalt.

The Phelps Dodge Corp. concentrator at Morenci, Ariz., produced approximately 49,000 tons per day of tailing for final disposition.¹³ Disposal involved distributing thickened tailing to dams in such a manner that solids were used for dam construction and water was impounded for reclamation. The distribution pipes or manifolds were placed on the crest of the dam, eliminating trestle construction and dam building. Under the older arrangement trestles erected on dams constructed of borrow material carried the pipelines from which

tailings were spigoted behind the dams.

How the Superior, Ariz., smelter of Magma Copper Co. met increased copper demand was the subject of an article.¹⁴ A third converter installed in 1949 eliminated lost time due to repairs and permitted better maintenance of all three converters. As a result smelter output appeared to be in balance with mine production. In 1952 zinc mining and milling activities were abolished, and all facilities were devoted to copper production. In order to increase smelter capacity it was necessary to provide more air for combustion. Additional tuyères could not be added to the converter owing to lack of space. The old United Verde Copper Co. tuyère arrangement consisting of 16 tuyères with 2-inch pipes was discovered to have 38 percent more cross sectional area than the 24-tuyère setup used at Magma. The changeover was made in the 1 converter and after only a few days operation the results were so encouraging that the other 2 converters were changed. Daily production for 10 months following the changes was found to be 17 percent higher than the best 10-month period preceding the changes.

The Cerro de Pasco Corp. smelter at La Oroya, Peru, processed 35,000 tons of new material per month through 12 Wedge roasters, 2 reverberatory furnaces, and 6 converters; most of the 3,000 tons of converter copper produced passed through a simple holding furnace and was cast directly into anodes for the local refinery; none of the metal was refined by blowing, poling, or other process to reduce the oxygen and sulfur contents. 15 Despite these poor castings, wide spacing (7 inch) in the electrolytic refining cells allowed achievement of good

current efficiency and normal cathode purity.

Canadian Copper Refiners, Ltd., increased the annual cathode capacity of its electrolytic tankhouse from 112,000 to 182,000 tons. 16 This was accomplished by an extension to the tankhouse, closer anode spacing and higher current densities. The anticipation of additional receipts of anodes from Gaspé Copper Mines and large stocks of

16 Forbes, Stuart S., Recent Developments in Electrolytic Copper Refining: Jour. Metals, vol. 8, No. 8, August 1956, pp. 1081-1086.

¹³ Allen, P. F., Tailing Disposal at the Morenci Concentrator: Min. Eng., vol. 8, No. 7, July 1956, pp.

<sup>129-732.

14</sup> Journal of Metals, Meeting Increased Copper Demand at Magma (based on an article by Edward J. Caldwell): Vol. 8, No. 10, sec. 1, October 1956, pp. 1461-1463.

18 Barker, I. L., Complex Metallurgy by Cerro de Pasco: Jour. Metals, vol. 8, No. 8, August 1956, pp. 1661-1662.

unrefined copper caused by the increase in custom smelting at Noranda necessitated larger output without immediately available

additional cell capacity.

Plans for constructing a new copper-cobalt electrolytic plant in the Belgian Congo were announced 17 by the Union Minière du Haut The plant was expected to come into production in 1960 and will produce about 110,000 tons of copper and 3,800 tons of cobalt annually. In the second and third stages of the plant, it was anticipated that production would be doubled or tripled. Raw materials for the Luilu plant will consist of a malachite concentrate, obtained by palm-oil flotation of surface oxide ores, and a chalcocite concentrate, obtained by xanthate flotation of the mixed or sulfide ores from the lower levels of the deposits, mainly from those in the Kolwezi The concentrates will be fluidized roasted and leached. leaching method will be similar to that in the Shituru plant; however, the Pachuca tanks will be replaced by mechanical agitators with a central airlift. Purification of the leach solution by neutralizing the iron with sandy malachite concentrate will be abandoned and a copper-hydrate precipitate obtained from neutralized-bleed-copper solution will be used.

At the refinery of Kennecott Copper Corp., Utah Copper Division, Garfield, Utah, 3,200-pound copper cakes were cast on a new vertical casting wheel. ¹⁸ The new casting wheel was placed in operation in the spring of 1956 and had been producing 2,000-pound cakes. Up to 4,000-pound cakes were expected to be produced in the future. The 3,200-pound cakes are 25 inches wide, 57% inches long, and 7 inches

thick, and are the shape from which copper sheet is rolled.

The 100-ton anode-casting furnace of The Anaconda Company at Great Falls, Mont., was converted to producing 3-inch, phosphorized billets. 19 The plant produced, from cathode copper, a 3-inch-diameter billet 50 inches long, weighing 110 pounds and containing 0.013 to 0.036 percent P at a rate of 150,000 pounds per day. The billets were then pierced and drawn into tubing.

Other technical articles published in 1956 20 covered various phases of the geology, mining, metallurgy, and operations related to the

exploration, exploitation, and recovery of copper.

¹⁷ Murdock, Thomas G., The Proposed Luilu Electrolytic Plant of Union Minière: U. S. Consulate, Elisabethville, Belgian Congo, State Department Dispatch 42, Mar. 26, 1957, 6 pp.

18 Mining Congress Journal, vol. 42, No. 11, November 1956, p. 134.

19 Miller, Roy H., and Ingvalson, L. J., Great Falls Billet Plant: Jour. Metals, vol. 8, No. 12, December 1956, pp. 1661–1664.

20 Hamilton, W. A., and Lessels, V., The White Pine Concentrator: Min. Eng., vol. 8, No. 5, May 1956, pp. 510-516.

pp. 510-516. Schaufelberger, F. A., Precipitation of Metal From Salt Solution by Reduction With Hydrogen: Jour. Metals, vol. 8, No. 5, May 1956, pp. 695-704. Smith, Warren T., The Lavender Pit: Min. Eng. vol. 8, No. 5, May 1956, pp. 506-509. Boyd, James, Economic Determination of a Mining and Milling Project: Min. Eng., vol. 8, No. 6, June 1956, pp. 614-615. Metal Industry, Smelting Copper-Nickel Concentrates: Vol. 88, No. 24, June 15, 1956, pp. 493-495. Clemmer, J. B., Metallurigical Planning for Porphyry-Copper Ores: Min. Eng., vol. 8, No. 7, July 1956, pp. 701-702.

Clemmer, J. B., Metalurigical Planning for Porphyry-Copper Ores: Min. Eng., vol. 8, No. 7, Suly 1896, pp. 701-702.

Pryor, E. J., and Lowe, G. M., Changes in Copper Solubility During Flotation of Malachite: Bull. Inst. Min. and Metal, vol. 65, Part 2, August 1956, pp. 469-486.

Van Voohis, B., Stoping Methods at Magma: Min. Eng., vol. 8, No. 8, August 1956, pp. 815-817.

Huttl, John B., How Scheduled Maintenance Keeps Pit Equipment in Top Condition: Eng. and Min. Jour., vol. 157, No. 9, September 1956, pp. 94-99.

Mossman, H. W., Magnetite in the Hurley Copper Smelter: Jour. Metals, vol. 8, No. 9, September 1956, pp. 1182-1191.

Sims, A. R., Kelley Mine of Anaconda Co.: Min. Eng., vol. 8, No. 12, December 1956, pp. 1194-1196.

Mining Journal (London), Block Caving in Montana: Vol. 247, No. 6330, Dec. 14, 1956, p. 727.

WORLD REVIEW

World mine output of copper established an alltime peak rate, 10 percent greater than in 1955. All the principal copper-producing countries gained in production. Output in the United States rose 11 percent, and production records were made also in Canada, Belgian Congo, and Northern Rhodesia. Chile maintained its rank as second in world production; its output was the largest since 1944. Production in Belgian Congo rose for the seventh consecutive year. Northern Rhodesia exceeded its previous peak production in 1954 by 2 percent, despite a number of labor strikes during the year.

Some of the smaller countries increasing production were: Australia, Japan, the Philippines, South-West Africa, and Union of South Africa.

NORTH AMERICA

Canada.—Production of copper reached an alltime high of 356,000 tons, a 9-percent increase over 1955. Nearly one-half of Canada's output came from the nickel-copper ores of the Sudbury district, Ontario. Quebec Province continued to rank second in production; output rose 21 percent over 1955, mainly owing to the first full year's operation of Gaspé Copper Mines. The remainder was supplied by Saskatchewan, British Columbia, Manitoba, Newfoundland, Nova Scotia, and New Brunswick, in that order.

Output of refined copper (all from plants of the International Nickel Co. of Canada, Ltd., at Copper Cliff, Ontario, and the Canadian Copper Refineries, Ltd., Montreal East, Quebec) was 331,000 tons compared with 289,000 tons in 1955. Consumption of refined copper

was 145,000 tons in 1956 and 139,000 tons in 1955.

The International Nickel Co. of Canada, Ltd., in Ontario, mined 15,510,800 tons of nickel-copper ore in 1956, compared with 14,247,600 tons in 1955. Total ore production was the highest in company history, comprising 14,351,500 tons from underground and 1,159,300 tons from open pits. For the first time underground mining exceeded the 13-million-ton goal set in the major underground expansion program underway since World War II. Greater output from the Frood-Stobie mine was largely responsible for the increase. Development programs were continued at the 5 operating mines—Frood-Stobie, Creighton, Murray, Garson, and Levack; construction of a new 6,000-ton-per-day concentrator was begun at Levack. Ore reserves increased to the highest figure on record and totaled 264 million tons containing 8 million tons of nickel-copper on December 31, 1956, compared with 262 million tons containing 7.9 million tons of nickel-copper at the end of 1955. The company delivered 135,652 tons of refined copper to customers in Canada and United Kingdom in 1956.

A record high production was also made by the Falconbridge Nickel Mines, Ltd., the other important producer of copper in the Province. A total of 1,850,300 tons of ore was produced from company mines, and 40,400 tons was received for treatment from 2 independent mines in the Sudbury district. Production from the Falconbridge and McKim mines decreased from 1955; output from the East and Hardy mines rose 39 and 33 percent, respectively. Output from the Mount Nickel mine was about the same as in 1955; and

TABLE 38.—World mine production of copper, by countries, 1947-51 (average) and 1952-56 in short tons 1

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	054 605	000 000	050.050			
Cuba	254, 605	258, 038		302, 732	325, 994	356, 251 18, 160
Mexico.	19, 297	19,700	17, 800		20, 800 60, 269	18, 160
Traited Chatan	68, 093	64, 444			60, 269	00,478
United States	854, 560	925, 359	926, 448	835, 472	998, 570	1, 106, 215
Total	1, 196, 555	1, 267, 541	1, 263, 802	1, 216, 117	1, 405, 633	1, 541, 104
South America:						
Boliva (exports)	6,058	5, 184	4, 920	4,034	3,855	4 000
Chile_	437, 989	450, 440	400, 287			4, 896
Ecuador	412	400, 440	400, 201	400, 801	477, 866	539, 835
Peru	28, 846	33, 563	20 000	40 250	- 47 044	40.000
		33, 303.	39, 023	42, 356	47, 844	48, 870
Total	473, 305	489, 187	444, 230	447, 251	529, 571	593, 601
Europe:						
Austria	1, 325	2, 913	3, 279	9 901	0.044	0 00-
Finland	19,078	24, 250			2, 841 23, 700	2, 695
France			21,000		23,700	23, 150
Cormonte	588	660	500	88	2 110	2 110
East 2	10.04		1	1	1	
East "	13, 944	12, 100	17,600	22,000	25, 300	25, 300
West	995	2, 593	2, 262 (³)	2,460	1, 335	1,077
Hungary	2 440	(3)	(3)	(3)	(3)	(3)
Italy	93	193	236	685	314	351
Norway Portugal	16, 385	15, 027	14, 362	14, 979	15, 419	15, 432
Portugal	500	705	825	475	600	660
Spain 4 5	7, 141	9,895	9,406	7, 951	6, 726	7, 525
Sweden	16, 491	17, 500	14, 924	14, 565	17, 275	18, 436
U.S.S.R.2 6 7	224,000	325,000	334,000	352,000	385,000	416,000
Sweden. U.S.S.R. ²⁶⁷ Yugoslavia ⁷	38, 734	36, 177	34, 381	33, 394	31, 151	32, 390
Total 26	340, 000	448, 000	453, 000	476, 000	510,000	544, 000
Asia:						
				1	4	
China 27	2, 900	6,600	8,800	8,800	9,900	11,000
Cyprus (exports)	2,900 21,708	29, 564	23, 937	30, 059	26, 179	39, 497
india	7, 158	7, 183	5, 500	8, 300	8,500	8,800
India	35, 779	59, 031	64, 907	73, 056	80, 466	85, 464
Korea, Republic of	114	550	1,540	550	1,760	970
Philippines Taiwan (Formosa)	7, 927	14, 596	14,016	15, 817	19, 247	29, 722
Taiwan (Formosa)	923	² 1, 100	287	550	1, 100	1, 593
Turkey 7	12, 597	25, 717	25, 901	27, 042	26, 234	26, 726
Total 2 6 8				ļ		
	89, 100	144, 400	144, 900	164, 200	173, 400	203, 800
Africa:						
Airica: Algeria	44	57	110	220	77	160
Angola	782	1, 256	1,397	3, 691	2,011	
Angola Belgian Congo ⁷	179, 809	226 700	236, 057			3, 154
French Morocco	215	226, 799 891	1, 264	243, 424	259, 161	275, 538
Rhodesia and Nyasaland.	210	091	1,204	004	823	884
Federation of:	1					
Northern Rhodesia	000 500	909 100	440 000	400		
Southern Rhodesia	286, 536	363, 190	410, 808	438, 708	395, 308	445, 4 66
South-West Africa	131	120	197	298	1, 179	1, 931
Tanganyika 9	9, 769	15, 457	13, 357	15, 668	23, 588	28, 980
	39	282	543	478	915	² 1, 500
Trutam of County A C			90.049	46, 638	49, 239	51, 252
Union of South Africa	35, 006	38, 704	39, 843	10,000	10, 200	01, 202
Total						
Union of South Africa.	35, 006 512, 331 15, 784	646, 756 22, 498	703, 576 40, 875	750, 009 45, 760	732, 301 50, 956	808, 865 58, 989

¹ This table incorporates a number of revisions of data published in previous Copper chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.

2 Estimate.

3 Data not available; estimate by authors of chapter included in continental and world totals.

4 According to Yearbook of American Bureau of Metal Statistics.

4 Does not include content of iron pyrites, the copper content of which may or may not be recovered.

6 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.

7 Smelter production.

1 Includes estimates for Burma, beginning in 1951.

8 Copper content of exports and local sales.

TABLE 39.—World smelter production of copper, 1947-51 (average) and 1952-56, by countries, in short tons ¹

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1947–51 (average)	1952	1953	1954	1955	1956
North America:	225, 888	196, 320	236, 966	253, 365	288, 997	331, 17
Canada	58, 271	56, 402	57, 633	48, 527	49, 730	52, 08
Mexico United States 2	954, 988	1, 024, 427	1, 047, 810	945, 899	1, 106, 526	1, 231, 35
	301, 300	1,021,121				
Total	1, 239, 147	1, 277, 149	1, 342, 409	1, 247, 791	1, 445, 253	1, 614, 61
South America:	440 700	400, 400	071 745	970 010	477, 232	506, 25
Chile	416, 586	422, 498	371, 745 25, 802	372, 818 29, 178	34, 862	34, 25
Peru	21, 674	22, 640	20, 802	29, 110		34, 20
Total	438, 260	445, 138	397, 547	401, 996	512, 094	540, 51
Europe:						
Austria	4,025	7, 097	10, 278	10, 357	11, 363	11, 79
Finland.	20, 151	20, 191	21,814	23, 551	24, 583	24, 76
France 8	202	(4)	(4)	(4)	(4)	(4)
Germany:	10 200	22,000	27, 500	-28,000	30,000	30,00
East 5	18, 300 142, 659	206, 746	233, 328	258, 271	286, 306	279, 46
West 6	142, 039	193	236, 328	685	314	33
Norway	9, 667	11, 033	13, 342	14, 210	15, 142	16.68
Spain	5, 982	5,070	6, 590	6, 374	6, 477	6, 93
Gwodon	17, 088	14, 840	19, 215	18, 422	19, 159	18, 67
Sweden	224,000	325,000	334,000	352,000	385,000	416,00
Yugoslavia	40, 199	36, 177	34, 381	33, 394	31, 151	32, 39
Total 5 7 8	482, 400	649,000	701,000	746, 000	810,000	837, 00
Asia:						
China 5 6	2,900	6,600	8,800	8,800	9,900	11,00
India	7, 142	6,808	5, 510	8,020	8, 155	8, 5
Japan	39, 133	54, 353	70,080	75, 914	89, 353	101, 9
Korea:		40	40	w	(4)	/A)
North	1,600	(4)	(4)	226	362	(4) 1,0
Republic of	348		655	1,012	1, 295	1,6
Taiwan (Formosa)	520 12, 597	798 25, 717	25, 901	27, 042	26, 234	26, 7
Turkey	·			<u> </u>		
Total 57	64, 200	95, 700	112, 400	122, 400	136, 700	152, 3
Africa:					000	
Angola	9 1, 225	1, 145	1,304	1, 989	926	1, 4 275, 5
Belgian Congo	179, 809	226, 799	236, 057	243, 424	259, 161	210, 0
Rhodesia and Nyasaland, Fed. of:	000 007	349, 837	406, 087	424, 045	383, 220	429, 5
Northern Rhodesia	280, 095	349, 837	400, 087	122,040	000, 220	120,0
Spanish Morocco Union of South Africa		37, 702	38, 575	45, 152	47, 480	48, 6
		017 700	000,000	714 010	600 707	755 1
Total.	495, 296	615, 566	682, 086	714, 610	690, 787	755, 1- 55, 7
Oceania: Australia	15, 990	22, 409	38, 258	42, 613	41, 932	
World total (estimate)		3, 105, 000	3, 275, 000	3, 275, 000	3, 640, 000	3, 955, 0

¹ This table incorporates a number of revisions of data published in previous Copper chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

2 Smelter output from domestic and foreign ores, exclusive of scrap. Production from domestic ores only, exclusive of scrap, was as follows: 1947-51 (average) 861,081; 1952, 927,365; 1953, 943,391; 1954, 834,381; 1955, 1,007,311; and 1956, 1,117,580.

3 Exclusive of material from scrap.

4 Data not available; estimate by authors of chapter included in continental and world totals.

5 Estimate

<sup>Includes scrap.
Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
Belgium reports a large output of refined copper which is believed to be produced principally from crude copper from Belgian Congo; this production is not shown here, as that would duplicate output reported under latter country.
Average for 1949-51.
Average for 1950-51.</sup>

TABLE 40.—Copper produced (mine output) in Canada, 1947-51 (average) and 1952-56, by Provinces, in short tons ¹

Province	1947-51 (average)	1952	1953	1954	1955	1956 (pre- liminary)
British Columbia Manitoba New Brunswick	22, 496 17, 578	20, 786 9, 374	24, 148 9, 411	25, 088 12, 274	22, 127 19, 380 35	21, 245 17, 904 16
Newfoundland Northwest Territories	3, 706	2, 959 3	2,814	3, 481	3, 052	3, 403
Nova Scotia Ontario Quebec Saskatchewan	118, 676 60, 191 31, 958	383 125, 343 68, 846 30, 344	788 130, 583 54, 920 30, 588	991 140, 776 83, 930 36, 192	1, 027 146, 407 101, 021 32, 945	357 154, 599 122, 459 33, 310
Total	254, 605	258, 038	253, 252	302, 732	325, 994	353, 2 93

¹Dominion Bureau of Statistics, Department of Trade and Commerce, Government of Canada, Preliminary Report on Mineral Production, 1956.

the Longvack mine, which came into production in May, produced 120,600 tons. Development work was continued at the Boundary, Onaping, and Fecunis Lake mines. The ore deposits at Fecunis Lake and at the Levack mine, owned by the International Nickel Co. of Canada, Ltd., form a larger ore body, which the two companies planned to mine jointly. According to the agreement all ore from each company's property would be returned to it for processing. Additions to the mill increased its capacity, but the smelter addition was not completed because of delay in arrival of steel. Developed and indicated ore reserves at the end of 1956 totaled 45 million tons, an increase of 5.4 million tons. The year-end reserves contained 1.43 percent nickel and 0.75 percent copper. The company delivered 13,211 tons of copper to customers in 1956 and 10,916 tons in 1955.

Elsewhere in the Province work was continued by Geco Mines, Ltd., and Willroy Mines, Ltd., at properties in the Manitouwadge area. At Geco the reserve was 15.2 million tons of ore containing 1.76 percent copper, and production was expected to begin about the middle of 1957. Willroy Mines planned to produce later in the year. At Coldstream Copper Mines, Ltd., construction was underway on a 1,000-ton mill in the Thunder Bay district, and Temagami Mining Co. planned to begin constructing a concentrator in the Temagami Lake area, 60 miles north of North Bay. A 1,000-ton plant will begin operating during 1957 at the Gordon Lake property of Eastern Mining & Smelting Co.

The Horne mine of Noranda Mines, Ltd., in Quebec, shipped 1,320,000 tons of ore to the mill or smelter: 515,000 tons was direct smelting ore averaging 2.16 percent copper, 805,000 tons was concentrating ore averaging 2.01 percent copper. A total of 1,264,000 tons of ore, concentrate, and secondary materials was smelted, of which 585,000 tons came from other companies on a toll basis. Copper recovered from Horne mine ore and concentrate was estimated at 26,308 tons. A third reverberatory furnace, under construction, was expected to begin operating by the middle of 1957. The increased capacity will enable Noranda to smelt additional tonnages of concentrate on a toll basis from new mines in Ontario.

The copper was recovered at the electrolytic copper refinery of Noranda's subsidiary, Canadian Copper Refiners, Ltd., Montreal

East. Output of refined copper was 187,000 tons compared with 159,000 tons in 1955. The extension to the tankhouse and casting facilities for handling increased production from the Noranda and Gaspé smelters was scheduled to be completed in August 1957.

Indicated ore reserves in the Horne mine on January 1, 1957, were 12.5 million tons, of which 11.6 million tons was sulfide ore averaging 2.29 percent copper and 940,000 tons of siliceous fluxing ore averaging

0.15 percent copper.

The Quemont Mining Corp., Ltd., mine, which adjoins the Horne mine, produced 840,900 tons of ore averaging 1.32 percent copper. Copper concentrate produced supplied 10,200 tons of copper, which was smelted at Noranda. Ore reserve dropped during the year to 8 million tons, averaging 1.30 percent copper and containing gold,

silver, zinc, and pyrite.

The mill of the Waite Amulet Mines, Ltd., subsidiary of Noranda, treated 310,100 tons of ore from the East Waite No. 3 shaft, Amulet Dufault, and "A-11" Winze. Copper produced was 11,400 tons. The West Macdonald mine, which began producing in 1955, shipped 353,500 tons of ore to the Waite Amulet concentrator. At Waite Amulet, the ore reserve was 411,000 tons of 3.32-percent copper and 111,000 tons of 4.0-percent copper; the Amulet Dufault reserve totaled 346,000 tons of 6.9-percent copper and 118,000 tons of 3.17-percent copper.

The Gaspé Copper Mines, Ltd., subsidiary of Noranda, produced 1,333,000 tons of ore, of which 1,310,000 tons was milling ore containing 2.01 percent copper and 23,000 tons was siliceous fluxing ore. A total of 101,700 tons of concentrate, including 8,500 tons stockpiled in 1955, was smelted and 27,700 tons of anodes was produced. Pro-

duction of copper was 27,600 tons.

Normetal Mining Corp., Ltd., milled 382,900 tons of ore assaying 2.09 percent copper. Copper concentrate produced was 35,000 tons, containing 7,400 tons of copper, and was smelted at Noranda. Ore reserve at the end of the year was 3.7 million tons containing 2.47

percent copper and 7.71 percent zinc.

Other producers in Quebec Province were Campbell Chibougamau Mines, Ltd.; Opemiska Copper Mines, Ltd., announced plans to triple mill production to 2,400 tons or more per day by the end of 1958; Chibougamau Explorers, Ltd., where a 500-ton mill went into operation in February; and Lyndhurst Mining, Ltd., came into production in July. A new producer was Rainville Mines, Ltd. At the company's properties in northwestern Quebec, a 400-ton mill began operating in April. The concentrate was shipped to the Noranda smelter.

Saskatchewan and Manitoba, together produced 14 percent of

Canada's total output in 1956,

The Hudson Bay Mining & Smelting Co., Ltd., milled 1,653,800 tons of ore, of which 85 percent came from the Flin Flon mine and the remainder from two smaller mines. Production of copper was 46,300 tons. Ore reserves at the end of 1956 were 20.5 million tons assaying 2.7 percent copper, 4.8 percent zinc, and containing gold and silver.

At the Sherritt Gordon Mines, Ltd., Lynn Lake property 749,500 tons of nickel-copper ore was milled. All ore was produced from the two main mines, the "A" and the "El". Copper concentrate con-

taining 2,900 tons of copper was shipped to a custom smelter. Orereserves at the end of the year were 13 million tons averaging 1.108

percent nickel and 0.58 percent copper.

The Granby Consolidated Mining, Smelting & Power Co., Ltd., mined and milled 1,930,000 tons of ore averaging 0.70 percent copper from the Copper Mountain mine in British Columbia. Concentrate produced contained 9,700 tons of copper. In its annual report to stockholders, the company stated that the drop in copper prices made it necessary to curtail the search for new ore. The Copper Mountain mine was expected to terminate operations during April 1957. Since the mine was reopened in 1937, 303,800 tons of copper have been produced from 34,204,900 tons of ore. Part of the equipment at Copper Mountain and Allenby will be used at the Phoenix property, now being developed. The company also continued development work on its Granduc property.

The Heath Steel Mines, Ltd., continued development work on its property near Newcastle, New Brunswick, and the 1,500 ton-per-day mill was completed. Production was expected to begin in early 1957. Full output was to be attained by the middle of the year. Ore mined from small open-pit and underground workings will be comprised of a copper ore and a lead-zinc-copper ore. Each type of ore will be treated in separate sections of the mill. The company is owned 75 percent by The American Metal Co., Ltd., and 25 percent by the

International Nickel Co. of Canada, Ltd.

Maritimes Mining Corp. was preparing its Tilt Cove mine on the northwest coast of Notre Dame Bay, Newfoundland, for production by October 1957; a 2,000-ton concentrator was under construction. Ore reserves were estimated at 3.9 million tons averaging 2.05 percent

copper.

Exports of copper in ore, matte, regulus, etc., totaled 40,994 (41,565 in 1955) tons, of which the United States was the destination of 25,354 (26,883) tons, Norway 13,373 (11,324), the United Kingdom 1,175 (1,130), West Germany 693 (1,828), Belgium 398 (400), and Pakistan 1 (none). In addition, 11,915 (19,162) tons of rods, strips, sheets, and tubing was shipped, of which 4,570 (6,219) went to Switzerland, 2,350 (4,320) to the United States, 1,730 (2,432) to the United Kingdom, and 861 (693) to Cuba. Copper-scrap slag skimmings and sludge totaling 14,593 (18,293) tons also were exported in 1955.

Imports of refined copper were 2,541 tons in 1956 compared with

35 tons in 1955.

Exports of ingots, bars, and billets from Canada in 1956, as compared with 1955, were as follows, by countries of destination, in short tons:

- · · · · ·	1955	1956
Destination:	67,071	96,747
United States	69, 198	63, 990
United Kingdom	8, 957	9, 860
France	1,724	3,972
India	$\frac{1}{3}, \frac{724}{993}$	3, 312
Australia		
Germany, West	937	
Other	1,319	275
Other		
Total	153, 199	174, 844
T O MAT		

Mexico.—Production of copper in 1956 was 60,500 tons, of which 50,300 tons was blister and matte, 8,000 tons concentrate, 1,800 tons precipitates, and 400 tons ore, slag, etc. All of the ore, slag, concentrate, and precipitate was exported to the United States. In addition, 16,500 tons of blister and matte was shipped to the United States.

Output of electrolytic copper was 35,300 tons in 1956 and 32,100 tons in 1955. Exports of electrolytic copper were 9,500 tons, compared with 15,700 tons in 1955. The trend of recent years of producing additional quantities of electrolytic copper from local production was continued in 1956.

Effective January 1, 1956, the Mexican Congress established a new set of taxes ²¹ covering concessions and production, provision of fiscal contracts for the stimulation of mining, and a new system of subsidies applicable to small and medium mining producers. Compared with superseded legislation, the new decree lowered the production tax on copper. The new tax was as follows:

D. C. 1		1		Percent
Refined			 	2. 68
impure pars				0.00
Concentrates, matt	es, precipitates.	or speiss		2 11
Ore			 	3 32

The charges were based upon a New York quotation of \$0.20 (US) per pound and were to increase or decrease according to fluctuations of the market quotation from the base price; the amount of the increase or decrease will be calculated by multiplying the difference between the base and the quotation, expressed in cents and fraction (US), by the factor 0.1656.

SOUTH AMERICA

Chile.—Mine production of copper rose for the third successive year and was 13 percent more than in 1955. The labor strikes, which began December 14, 1955, at Anaconda's and Kennecott's properties, were settled, and work was resumed January 9.

The annual reports to stockholders of The Anaconda Company and Kennecott Copper Corp. stated that, owing to legislation enacted during the year, more satisfactory procedures were established in connection with exchange rates, copper sales, new investments, and taxation and that progress was made in controlling inflation.

At the Braden mine of the Kennecott Copper Corp., 10,767,300 short tons of ore was mined and milled and 179,900 tons of copper was produced, compared with 8,857,000 and 156,200 tons, respectively, in 1955. In 1956 development of underground water sources augmented the water supply in the mill, and savings were made in power installations. Tonnage of ore treated was 22 percent more than in 1955, and copper production increased 15 percent.

The Chuquicamata mine of the Chile Exploration Co., subsidiary of The Anaconda Company, produced 266,000 tons of copper, an increase of 15 percent over 1955. In January 1956 the Chilean Government approved plans for expanding its operations and facilities of mines, plants, and townsites presented to the Government in September 1955, and two other decrees were issued during 1956

²¹ Bureau of Mines, Mineral Trade Notes: Spec. Suppl. 48, vol. 42, No. 1, January 1956, 21 pp.

covering additional equipment and conversion of part of the electrolytic tankhouse for refining blister copper. The new equipment and improvements were in operation during the last quarter of the

year.

At the Potrerillos mine of the Andes Copper Mining Co., another Anaconda subsidiary, 43,200 tons of copper was produced. According to the annual report of The Anaconda Company, development of the El Salvador mine of the Andes Copper Mining Co. was proceeding rapidly. Additional drilling and underground work increased ore reserve from 78 million tons averaging 1.6 percent copper to approximately 300 million tons of the same grade.

The anticipated increase in ore reserves led to the announcement in November of a revision in plans for the El Salvador property. The new plans called for a new crushing plant and concentrator with an initial capacity of 25,000 tons of ore daily. The thickened concentrate will be filtered at Llanta and shipped to Potrerillos for smelting. Production was expected to begin early in 1959 and reach capacity of 100,000 tons of copper later that year.

The Santiago Mining Co., another subsidiary of The Anaconda Company, continued construction work at La Africana mine, and production is expected to begin about mid-1957. The installation of additional milling equipment will increase output to 6,000 tons of

copper annually.

Empresa Nacional de Fundiciones, the Government agency that operates the national smelter at Paipote, produced 17,000 tons of

blister copper in 1956 compared with 15,600 tons in 1955.

Press reports during the year stated that a new smelter for central Chile and a refinery would be built. The new smelter will have an initial capacity of 110,000 tons of charge, mostly concentrate, and will produce 22,000 tons of blister copper. The refinery will produce 36,000 tons of electrolytic copper, of which 14,000 tons will be from Paipote and 22,000 tons from the Central smelter. This capacity can be increased to 55,000 tons annually. It has been estimated 22 that 4 years will be required for building the smelter and refinery.

TABLE 41.—Principal types of copper exported from Chile, in 1956, by countries, in short tons

	,			
	Ref	ined	Standard (blister)	Total
	Electrolytic	Fire-refined		
Argentina Belgium Brazil Denmark France Germany Italy Netherlands Spain Sweden Switzerland United Kingdom United Kiates Other	17, 635	202 84 1, 653 3, 516 5, 924 2, 417 2, 911 40, 376 40, 557	27, 293 7, 008 1, 427 4, 960 783 138, 169	2, 203 224 247 84 2, 753 48, 444 19, 526 33, 854 4, 960 2, 911 81, 525 179, 866
Total	99, 654	97, 640	179, 640	376, 934

²² Engineering and Mining Journal, vol. 157, No. 11, November 1956, p. 184.

In addition to the exports shown in table 41, 41,121 tons of ore and concentrate was shipped, of which 27,400 went to the United States, 10,708 to Germany, 1,848 to Japan, 410 to the Netherlands, 383 to Brazil, 192 to Argentina, 111 to Sweden, and 69 to Belgium.

Peru.—The upward trend in production of copper in Peru continued in 1956; output was 48,900 tons compared with 47,800 tons in 1955. According to the annual report to stockholders of the Cerro de Pasco Corp. (the leading producer), output of ore rose 11 percent over 1955, but production of copper declined 2 percent to 34,100 tons. The decrease was due to curtailment of refinery operations because of a power shortage and a strike at the smelter and refinery in November. Work was continued on the hydroelectric plant on the Paucartambo River that has been under construction for 5 years. The planned capacity of 72,000 kv.-a can be further expanded, if necessary, at little additional expense.

During 1956 work was proceeding on all phases of the Toquepala project of the Southern Peru Copper Corp. described in previous reports of this series. Development of the copper deposits was expected

to begin by 1961.

EUROPE

Ireland.—Construction was begun on a 4,000-ton-daily-capacity concentrator at Avoca, County Wicklow, and shipments of ore and concentrate to world markets or to the parent company in Canada were expected to begin about the third quarter of 1957. Irish ore reserves have been estimated at 21 million tons, averaging 1.13

percent copper.

Norway.—Mine production was unchanged from 1955; copper concentrate was produced by Sulitjelma and copper matte by Orkla Metal. Most of the copper concentrate and all of the copper matte was refined elsewhere and returned for use in Norway. Only one company, Falconbridge Nickel-verk A/S, Kristiansand S., a subsidiary of Falconbridge Nickel Mines, Ltd., Toronto, Canada, produced electrolytic copper. Output in 1956 was 16,500 tons.

It was said 23 that Orkla Metal planned to put a copper refinery into operation in 1957, with an expected output of about 4,000 tons

copper annually.

United Kingdom.—Consumption of primary and secondary copper decreased 3 percent in 1956 and was the first decline since 1953. As in recent years, United Kingdom ranked second in world consumption. Of a total consumption of 716,200 short tons in 1956, 541,000 tons was refined copper and 83,400 tons scrap for wrought products; 19,900 tons of refined and 71,900 tons of scrap was used for castings, sulfate, and miscellaneous products.

The easier supply situation evidenced at the beginning o the second quarter of 1956 became more apparent during the latter half of the year, and on July 2 the British Board of Trade announced that it would sell 36,000 tons of copper from the United Kingdom stockpile. In October the Board of Trade announced that 18,000 tons was to be offered for bids on October 17, for delivery between November 1956 and March 1957. The British Metal Corp. was to

²³ Grant, Constance (second secretary), Preliminary Minerals and Metals Annual, 1956: State Department Dispatch 770, Oslo ,Norway, May 8, 1957, 8 pp.

be offered 14,000 tons and the Rhodesian Selection Trust companies 4,000 tons.

According to the British Bureau of Nonferrous Metal Statistics, imports of copper into the United Kingdom in 1955 and 1956 were as follows:

TABLE 42.—Copper imported into the United Kingdom, 1955-56, in short tons

		1955			1956	
Country	Blister	Electro- lytic	Fire- refined	Blister	Electro- lytic	Fire- refined
Northern Rhodesia Chile		117, 785 30, 661 71, 434	27, 347	117, 076	144, 071 48, 497 65, 708	37, 402
Canada		28, 172 5, 684 7, 578	3, 839		10, 716 8, 624 5, 475	
Belgium Peru Turkey	3,348	6,356	1, 568	2, 232	2, 958 1, 887	
Germany, West Sweden Union of South Africa		3,090	1, 519		977 548	954
Norway Japan Other countries		1, 947 1, 854	533	223	756	267
Total	136, 498	286, 386	34, 806	119, 531	290, 217	38, 62

Exports and reexports of refined copper were 54,563 tons (29,634 in 1955), of which 22,221 (6,981) went to Germany, 6,379 (1,278) to France, 4,161 (12,275) to the United States, 3,735 (2,363) to the Netherlands, 3,666 (562) to India, 3,386 (45) to Switzerland, 2,970 (468) to Italy, 2,289 (1,551) to Belgium, and 1,221 (112) to Portugal. In 1956, 616 tons (560 in 1955) of blister and "rough" copper were exported and reexported; 560 tons (none) went to Germany and 56 (none) to Belgium.

ASIA

Cyprus.—Cyprus Mines Corp. continued as the principal producer of copper. It was reported that only 1 mine, the Mavrovouni, operated during the year and produced 1,045,700 tons of ore compared with 877,300 tons in 1955. The company produced 113,900 tons of copper concentrate containing 23.37 percent copper, 3,500 tons of precipitate averaging 77 percent copper, and 159,900 tons of cupreous pyrite containing 2.98 percent copper. In addition, 658,300 tons of flotation pyrite averaging 50.32 percent sulfur was produced. Exploration was continued at the Skouriotissa, Mathiati, and Apliki mines during 1956.

India.—A report ²⁵ stated that, although occurrences of copper ore have been reported at a number of places, workable deposits were limited to the Singhbhum copper belt in Bihar. The Indian Copper Corp. was producing about 8,000 tons annually, and most of the present demand of 30,000–35,000 tons was met by imports.

Japan.—Mine production of copper in 1956 was the highest since 1944. A total of 7 million tons of mixed ores containing 85,200 tons of

Mining World, vol. 19, No. 5, Apr. 15, 1957, p. 143.
 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 6, June 1956, p. 8.

copper was produced. Output of electrolytic copper was 139,100 tons, of which 81,600 tons was from domestic materials, 19,500 tons from foreign materials, 900 tons from byproduct slag, and 37,100 tons from scrap. Production of electrolytic copper was insufficient for domestic consumption, and 24,800 tons of refined copper was imported during 1956.

According to reports, ²⁶ three companies were proceeding with plans to increase production. At the Ashio smelter of the Furukawa Mining Co., flash smelting by a Finnish process was begun. Nippon Mining Co. added a hot-air-blowing, converter-type furnace to its Saganoseki plant, and at its Hitachi plant an oxygen-enriched air-blast flash-smelting-type smelter was being constructed. Capacity at the Dowa Mining Co. plant at Kosaka was being increased from 893 tons of electrolytic copper to 1,025 tons per month.

Consumption of refined copper in 1956 follows:

Electric wire and cable	 42, 300	
Total	169 100	

Philippines.—Copper production rose more than 10,000 tons in 1956; output was 29,700 tons compared with 19,200 in 1955. The increase was due in part to additional milling capacity at one large producer and to the startup of operations at smaller properties.

The Lepanto Consolidated Mining Co. milled 450,600 tons of ore from its Lepanto mine and produced 52,900 tons of concentrate averaging 24.3 percent copper. Although the grade of ore treated was lower, changes in the grinding section of the mill in late 1955 resulted in increased capacity, and the 1956 tonnage treated was 12 percent greater than in 1955. The average grade of concentrate produced rose from 21.5 percent copper to 24.3 as a result of a new mill section placed in operation in 1955. Output of copper was 12,800 tons compared with 12,300 tons in 1955. The ore reserve at the end of the year was 4,379,400 tons averaging 3.47 percent copper, an increase of 837,700 tons over 1955.

At the Toledo open-pit mine of the Atlas Consolidated Mining & Development Corp., Cebu Island, 1,993,000 tons of ore averaging 0.75 percent copper was mined. The mill treated 1,992,400 tons of ore and produced 58,300 tons of concentrate containing 12,000 tons of copper. According to the annual report to stockholders, expansion of the mill to a daily output of 10,000 tons was begun in the first half of 1956 but, owing to delay in arrival of machinery, would not be attained until March 1957. Company engineers estimated that, with installation of the new units, the mill would be able to treat as much as 12,000 tons daily. The ore reserve was estimated to be 83.5

²⁶ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 6. June 1957, pp. 6-8. Pouly, Paul E. (commercial attache), Non-Ferrous Metals and Minerals Report—Japan—1956: State Department Dispatch 1159, Tokyo, Japan, Apr. 26, 1957, 25 pp.

The company stated million tons averaging 0.904 percent copper. that studies were being conducted for constructing a smelter and a refinery at Toledo. It was planned that blister copper and possibly

refined copper would be produced.

Other operations in the Philippines were carried on by Mindanao Mother Lodes Mines, Inc., at its Cabapa mine in Zambales. One section of the flotation mill went into production in January and a second unit, the middle of March. Marinduque Iron Mines, Inc. began shipping high-grade copper ore from the Bagacay mine in July The 4,000-ton mill at the Sipalay mine in Negros Occidental was expected to begin producing in March 1957. The Philex Mining Corp. plans 27 to construct a 5,000-ton per day flotation plant to treat ore from its Santo Tomas group of mines in Mountain Province.

AFRICA

Belgian Congo.—Production of copper has increased without interruption since 1949. Output in 1956 was 6 percent greater than in The Union Minière du Haut Katanga was the only copper In 1956 the company celebrated its 50th anniversary, and a description of its operations and plants was published.28 A total of 7,968,000 tons of ore was mined, and 7,347,000 tons was sent to concentrators, washing plants, and the smelter.

The Kolwezi concentrator treated 3,649,000 tons of copper and mixed ores from the Musonoi, Ruwe, and Kamoto mines, and produced 601,000 tons of concentrate assaying 25.94 percent copper and 1.06 percent cobalt and 71,000 tons of concentrate averaging 10.14 percent copper and 7.68 percent cobalt. New extensions that increased the capacity of the plant to 353,000 tons per month went into

operation in November.

The Kipushi concentrating plant treated 1,177,000 tons of ore from the Prince Leopold mine and produced 43,000 tons of concentrate with 21.28 percent copper from straight copper ore, and 267,000 tons of 26.91 percent copper concentrate and 225,000 tons of 57.68 percent zinc concentrate from copper-zinc ore.

At the Ruwe concentrator 1,860,000 tons of material from the Ruwe mine was treated, and 124,000 tons of 23.83-percent copper concentrate and 142,000 tons of 6.49-percent copper of intermediate products

that required further treatment were produced.

The Kamoto washery treated 354,000 tons of copper-cobalt ores from mines of the Western Group and recovered 5,000 tons of 5.72percent cobalt concentrate and 80,000 tons of intermediate products destined for further treatment. It was planned to dismantle the washery to permit prospecting work on the Kamoto mine. The Ruashi washery treated 179,000 tons of ore from small mines in the southeast region and recovered 41,000 tons of products assaying 11.63 percent copper.

²⁷ Mining World, Philex Mining Planning Major Copper Mill In Mountain Province of Philippine Islands: Vol. 19, No. 1, January 1957, p. 79.

28 Mining World, vol. 19, No. 2, February 1957, pp. 38-64.

Production of copper at the Lubumbashi smelter and Shituru electrolytic plant increased 14,000 tons over 1955. The daily rate of blister output at Lubumbashi was increased from 440 tons in 1955 to 465 tons in 1956. At Shituru capacity was increased to 149,000 tons annually, and a new plant for production of electrolytic copper from cobaltiferous solutions went into operation. New equipment was added to produce scalped wirebars.

In 1956 work was begun on the new copper-cobalt electrolytic plant to be known as the Luilu plant. The plant is expected to begin producing in 1960 at an initial output of 110,000 tons of copper and 3,800 tons of cobalt. Provisions have been made to double and later triple production of the plant. A description of the electrolytic

project is given under Technology.

The output of copper, in short tons, was distributed as follows:

Lubumbashi smelter (blister) Jadotville-Shituru (electrolytic plant) Jadotville-Panda (electric copper-cobalt alloy furnaces) Copper recoverable contained in zinc concentrates Copper contained in anode slimes	1955 129, 099 126, 502 750 2, 330	1956 132, 093 138, 867 997 812
Total	258, 682	272 769

The company produced 5,522,000 tons of copper from the beginning

of operations through 1956.

Kenya.—The concentrator at the Macalder mine of Macalder-Nyanza Mines, Ltd., began producing in April. The roast-leach plant, which will produce cement copper to be treated in the Jinja smelter in Uganda, is expected to begin production in June. Construction was begun on a hydroelectric project on the Kuja River. Power from this plant would be available in early 1957; meanwhile.

diesel power was being used.

Rhodesia and Nyasaland, Federation of.-In Northern Rhodesia mine production of copper in 1956 was 445,000 tons. It was 13 percent greater than in 1955 and exceeded the previous record in 1954 by 2 percent, despite a number of work stoppages during the year. Inadequate coal supplies also continued to be a problem to the copper The Wankie Colliery supplied 78 percent of the requireproducers. ments; the remainder consisted of imported coal, wood, and oil. In 1953 the Rhodesia Congo Border Power Corp., the Union Minière du Haut Katanga, and the Comité Spécial du Katanga agreed that hydroelectric power would be imported from Belgian Congo. In the latter part of 1956 the Rhodesian electric-power system was interconnected with the Belgian Congo system, and power was coming in from the Le Marinel installation on the Lualaba River to the Central Switching Station at Kitwe. During 1956 the Government of Rhodesia and Nyasaland completed arrangements for financing the Kariba hydroelectric-power project. The 4 major copper-producing companies agreed to lend the Government £20 million to assist in the financing of the project.

Record outputs were recorded by the four major copper-producing companies in 1956, and operations were begun in May at the Chibuluma mine—the first new mine to come into production since just

before World War II.

Record production of ore and copper was made by Roan Antelope Copper Mines, Ltd., in the fiscal year ended June 30, 1956. mined and milled totaled 5,555,300 tons averaging 2.09 percent copper. Concentrate smelted yielded 99,400 tons of blister compared with The Roan Antelope smelter cast 2,033 tons of blister 92,600 in 1954. from 4,314 tons of Mufulira concentrate for Mufulira Copper Mines, Ltd., and produced 2,233 tons of blister from Nchanga concentrate. In addition, 720 tons of blister was produced from Nchanga ore used as a flux and 1,430 tons of blister for Chibuluma. Ore reserves at the end of June 30, 1956, totaled 89 million tons, averaging 3.14 percent copper.

Mufulira Copper Mines, Ltd., mined and milled record tonnages of ore in the fiscal year ended June 30, 1956. A total of 4,019,200 tons of ore averaging 3.11 percent copper was mined, and 4,007,400 tons was milled; 105,800 tons of copper was produced, of which 30,900 tons was blister, 64,200 tons cathodes, and 10,700 tons wirebars. The last section of the extension to the tankhouse was completed in Enough progress was made in the casting section of the refinery to enable the company to produce electrolytic wirebars for the first time in 1956. It was anticipated that the major part of Mufulira's production will be comprised of wirebars. The ore reserve on June 30, 1956, was estimated at 133 million tons, averaging 3.35 percent

The copper-cobalt mine of Chibuluma Mines, Ltd., came into production during the 1956 fiscal year. Ore hoisting was begun in October 1955, and the concentrator began operating in April 1956. A total of 125,950 tons of ore averaging 5.75 percent copper and 0.35 percent cobalt was milled. The Mufulira smelter treated 11,300 tons of concentrate and produced 3,431 tons of blister copper; the Roan smelter, under an exchange agreement, treated 3,900 tons of concentrate and produced 1,224 tons of blister copper. In addition, 206 tons of blister copper was produced from pilot-plant operations. Ore reserves remained at 7.3 million tons averaging 5.23 percent

copper on June 30, 1956.

Construction of the electrolytic refinery at Ndola, to be operated by Ndola Copper Refineries, Ltd., a subsidiary of Roan Antelope, continued satisfactorily during the year. Production at the initial capacity of 67,200 tons of copper is expected to begin in 1958, and full production of 123,200 tons annually for the plant is planned for 1960. The entire annual production of 95,200 tons of Roan Antelope blister will be refined at Ndola.

The Rhokana Corp., Ltd., mined 4,168,700 tons of ore from the Nkana and Mindola mines in the fiscal year ended June 30, 1956. A record tonnage of 4,139,500 tons of ore averaging 2.60 percent copper was treated in the concentrator and produced 312,800 tons of concentrates averaging 31.74 percent copper and 1.390 percent cobalt. Finished copper produced was 17,000 tons of blister and 65,000 tons of electrolytic copper. The smelter produced 176,000 tons of copper, of which 19,100 tons was blister and 72,700 anode copper for Nkana, 17,600 tons was blister and 66,600 anode copper for Nchanga, and 177 tons was blister for other companies. Ore reserves at the end of June 1956 were as follows:

Nkana north ore body	Short tons (millions) 29 26 68	Copper (percent) 3. 02 2. 64 3. 37
	123	3. 14

In the year ended March 31, 1956, a record tonnage of 3,221,500 tons of ore was milled by Nchanga Consolidated Copper Mines, Ltd. Production of finished copper was 23,600 tons of blister and 104,900 tons of electrolytic. Work was continued in preparing the Nchanga ore body for open-pit mining, which was expected to begin producing in early 1957. It is planned to mine 360,000 tons of ore per month; 200,000 tons will come from the Nchanga West ore body; 160,000 tons, from the Nchanga ore body. Total ore reserve on April 1, 1956, was estimated at 146 million tons averaging 4.74 percent copper.

The electrolytic copper refinery of Rhodesia Copper Refineries, Ltd., produced throughout the year except for a 1-week strike in June. Power supply was generally adequate, and production records were made in all sections of the plant. Output of finished copper in the fiscal year ended June 30, 1956, of 176,000 tons, compared with 136,000 in the 1955 fiscal year, comprised 171,000 tons of refinery shapes and 5,000 of cathodes.

TABLE 43.—Copper exported from Federation of Rhodesia and Nyasaland in 1956, in short tons

Destination	Ore and concentrate	Blister	Electrolytic			Copper
Destination			Bar and ingot	Cathodes	Wirebars	slimes
Australia Belgium Brazil	l	1, 170	112 785	1, 375	560 3, 783	11
rance Jermany, West ndia taly	461	25, 457 1, 284	923	1, 360 2, 662	2, 184 11, 135 6, 352	
painweden	45	2, 505 728 1, 848	112	336	14, 158	
Jnion of South Africa Jnited Kingdom Jnited States	5, 073	123, 912	824 2, 097	40, 266	16, 952 14, 209 104, 076	 3
Other countries Total	1, 452 129	14, 003		8, 164 168	8, 046 226	
1.0681	7, 396	170, 907	4, 881	54, 331	181, 681	19

Production of copper in Southern Rhodesia rose 64 percent and came mainly from the Umkondo mine of Messina (Transvaal) Development Co., Ltd. About 5,000 tons of concentrate was shipped to the Messina smelter in the Union of South Africa. One of the largest Southern Rhodesia copper projects, the Mangula mine in the Sinoia district (formerly the Mollie mine), was expected to begin producing by 1959. Mining in the district had been carried on for many years, but little development work was done until the Messina company acquired the property in October 1954. The project included a refinery, and output of 11,200 tons of copper annually was planned.

South-West Africa.—Mine output of copper rose substantially, exceeding the previous peak of 1955 by 23 percent. The Tsumeb mine of the Tsumeb Corporation, Ltd., produced copper in conjunction with lead and zinc. In the fiscal year ended June 30, 1956, sales of copper (refined or in concentrate) totaled 25,800 tons, compared with

14,400 tons in the 1955 fiscal period.

Uganda.—According to the annual report to stockholders of Ventures, Ltd., all phases of the plant construction program at the Kilembe mine of Kilembe Mines, Ltd., were completed. The concentrator began producing in June, and the roasting plant at Kasese and smelter at Jinja went into production later in the year; the first blister was produced before the year end. An account of the history and development of the deposits at Kilembe was published in commemoration

of the official opening on November 23-24, 1956. We Union of South Africa.—A new production record was made by O'okiep Copper Co., Ltd., in 1956. A total of 1,449,800 tons of ore averaging 2.25 percent copper was mined from three underground mines—Nababeep, East O'okiep, and Wheel Julia. Production of blister copper rose for the seventh successive year and totaled 32,300 tons in the fiscal year ended June 30, 1956, a 10-percent increase over 1955. Ore reserves were estimated at 21.5 million tons averaging 2.3 percent copper. At the Messina smelter of the Messina (Transvaal) Development Co., Ltd., 943,000 tons of ore averaging 1.7 percent copper was milled in the fiscal year ended September 30, 1956, and 14,700 tons of copper (including Umkondo) was produced. The ore reserve at the Messina was estimated at 5.9 million tons averaging 1.82 percent copper.

OCEANIA

Australia.—Copper mine production (59,000 tons) established a new record and exceeded that in 1955 by 16 percent. The Mount Isa Mines, Ltd., milled 1,548,000 tons of copper and lead-silver-zinc ores and produced 27,000 tons of blister copper in the year ended June 30, 1956. Estimated ore reserves on June 30 totaled 8.7 million tons averaging 3.75 percent copper. Work has begun on the electrolytic copper refinery at Stuart by a subsidiary, Copper Refineries Pty., Ltd. The plant was expected to begin producing some time in 1958 and will treat 33,600 tons of blister annually. The plant was designed

³⁰ Kilembe, Kilembe Mines, Ltd., D. A. Hawkins, Ltd., Nairobi, Kenya, 1956, 40 pp.

to be able to increase capacity to 67,200 tons. In Queensland, Mount Morgan, Ltd., delivered 943,000 tons of ore averaging 0.93 percent copper to the mills, and 7,700 tons of copper was produced. Other producers were Mount Lyell Mining & Railway Co., Ltd., Tasmania; Peko Gold Mines, N. L., Northern Territory; and a new producer, Ravensthorpe Copper Mines, N. L., in Western Australia. It was reported ³⁰ that Peko mines plans to build a smelter at its property. The plant will treat ores of other producers, as well as Peko's output, and was to be completed in about 3 years.

²⁰ Mining World, Peko Mines To Construct Northern Territory Plant: Vol. 18, No. 4, April 1956, p.59.

Diatomite

By L. M. Otis¹ and Annie L. Mattila²

•HE BUREAU OF MINES reports new production data for diatomite every 3 years, and 1956 is a reporting year. Although the 1933-35 span showed a slight decrease in production from 1930-32 each subsequent 3-year production total has been greater than the previous one, and each individual year of the 1954-56 period has shown a consistent increase.

DOMESTIC PRODUCTION

As in previous years, California was the leading diatomite-producing State in 1956, followed, in order, by Nevada, Oregon, and Washington. There was no production from Arizona or New Mexico, although both had produced in 1955. The annual output during 1954-56 averaged 368,400 short tons, with an average value of \$14,446,900. Output in 1954-56 was 22 percent greater in quantity and 31 percent higher in average value than during 1951-53. Twelve plants produced in 1956.

A Bureau of the Census preliminary report gave data collected in the 1954 Census of Mineral Industries.3 Total value of shipments in 1954 from primary producers was \$14,784,000. Principal expenses in 1954 were listed as: Wages and salaries,\$3,880,000; fuel and electrical energy, \$1,042,000; purchased machinery installed, \$1,036,000; average annual employment, 864; total horsepower of equipment available for use, 38,000. Water intake for use during the year was 143 million gallons.

The distribution and geology of postglacial fresh-water diatomaceous earth deposits near Kenai, Alaska, were described in a Geological Survey bulletin. The factors that would affect development of these

deposits are discussed.4

The Arizona Development Board, Phoenix, Ariz., distributed copies of a report by Arizona Research Consultants, Inc., on several diatomaceous earth deposits in Arizona.

¹ Commodity specialist. ² Statistical assistant.

^{*} Statistical assistant.

* U. S. Department of Commerce, Bureau of Census, Preliminary Report, 1954 Census of Mineral Industries: Ser. MI-14-9-2, May 1956, 8 pp.

* Plafker, George, Occurrence of Diatomaceous Earth Near Kenal, Alaska: Geol. Survey Bull. 1039-B, 1956, 23 pp.

TABLE 1.—Production of	diatomite in the	United States, f	or 3-year pe	riods.
	1930-56		-	

	Period	3-year pro- duction	Average per year	Average price
1930-32		248, 273	82, 758	\$15. 75
1933-35		244, 342	81, 447	14. 81
1936-38		279, 645	93, 215	15. 66
1939-41		360, 502	120, 167	15. 94
1942-44		524, 872	174, 957	18. 88
1945-47		640, 764	213, 588	20. 17
1948-50		722, 670	240, 890	25. 55
1951-53		908, 448	302, 816	29. 97
1954-56		1, 105, 279	368, 426	39. 21

Mine and Plant News.—The Federal Bureau of Land Management was considering use of a site near Lovelock, Nev., for proposed naval gunnery purposes. Until a final decision is reached, the Eagle-Picher Co. cannot proceed with contemplated work on a diatomite processing

and shipping plant in the area.5

The Johns-Manville Corp. completed its plant at Lompoc, Calif., for manufacturing synthetic calcium silicates. The crude diatomite is spread on the ground, broken with bulldozer treads, and bulldozed to After passing through 2-stage crushing, it is wet-ground in a 16-foot-diameter ball mill. Quicklime is transported from railroad cars to storage by an air-stream conveying system. then slaked, thickened, and eventually pumped to a mixing tank, meeting the finely ground diatomite. Here they are reacted by a hydrothermal process under high temperature and pressure to produce a series of end products. These are dewatered, flash-dried, and pneumatically conveyed through a heated system of cyclones and dust collectors. Coarse particles caught in the cyclones are reduced in a micropulverizer and passed on to join the fine dust particles in the filter-bag collector and thence to storage bins and bagging mechanisms. The end-product synthetic silicates have a wide market in the drycleaning trade and as extenders in such products as paints, rubber, paper, fertilizers, and insecticides.6

CONSUMPTION AND USES

Each year new uses are developed for this versatile material and many patents issued. Some diatomite producers maintain large research staffs and extensive laboratory facilities to widen their

markets and standardize their products.

Filtration continued to take more of the diatomite production in 1956 than any other single use, but this category dropped to 48 percent of the total from 50 percent in the previous year. Although less percentagewise, the tonnage used continued to expand for the purification of water, for such products as sugar, liquor, beer, wine, whiskey, fruit juices, and beverages of many kinds, pharmaceuticals, antibiotics, and innumerable oils, solvents, and other chemicals.

Mining World (News Item), vol. 18, No. 4, April 1956, p. 81.
 Briggs, Marion L., Synthetic Silicates From Diatomite and Lime: Rock Products, vol. 59, No. 11, November 1956, pp. 88-89, 92.

The percentage consumed as fillers was also smaller, dropping to 26 compared with 30 in 1955. Diatomite was used as a filler or extender in paper, paints, varnishes, oilcloth, linoleum, insecticides, plastics, soaps, and phonograph records and as an anticaking agent in fertilizers

and detergents.

Insulation against sound and temperature consumed 7 percent of total usage in 1956, the same as in the previous year. Insulation products were employed for ovens, industrial furnaces, kilns, boilers, steam and water pipes, flues, driers, stills, safes, storage tanks, warehouses, and refrigerators; and in the construction industries, for loose-fill insulation, sound-deadening panels, composition roofing, siding, plasters, and concrete.

Miscellaneous uses rose from 13 percent in 1955 to 19 percent in 1956. These included absorbents, abrasives, catalyst carriers, for ceramics, glazes, enamels, flatting agent for paint, and for the manu-

facture of sodium and calcium silicates.

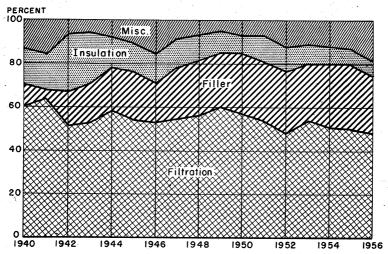


FIGURE 1.—Proportion of diatomite sales in the United States for each principal class of use, 1940-56.

PRICES

Diatomite prices varied according to purity, particle-size range, whether crude, calcined, or calcined with fluxes, whether in bulk or bagged, and type of bag used. Following are the average bulk values per short ton at producers' plants for five broad categories of use, as reported to the Bureau of Mines for 1956: Filtration, \$48.82; insulation, \$44.45; abrasives, \$134.68; fillers, \$43.97; miscellaneous, \$29.99. The overall average of all diatomite mined and sold in the United States during 1956 was \$43.77, a 5½-percent increase over 1955.

FOREIGN TRADE

Exports of processed diatomite from this country were substantial. Crude diatomite could be imported into the United States duty free under paragraph 1775 of the Tariff Act of 1930, but such imports probably were small or nonexistent, in view of the large proportion of world output produced in the United States.

TECHNOLOGY

Prepared diatomite was said to have been very beneficial when added to the usual mix in concrete used for pneumatic placing in a mine shaft and haulage drifts. These advantages were greater compressive strength, reduced segregation, increased workability, and a cost reduction of 50 cents per cubic yard. The concrete was moved through a 6-inch pipe under 90 to 100 pounds pneumatic pressure. down 335 feet of 30-percent slope to the shaft collar, then down the 430-foot shaft, after which it moved over 1,000 feet horizontally. All this was accomplished without serious segregation, the common difficulty under such conditions.7

Specifications for synthetic calcium silicates manufactured by the Johns-Manville Corp. from diatomite were: Color, white or off-white; absorption, percent by weight, 300-600 (water); 275-500 (oil); bulk density, pounds per cubic feet, 5-15; ultimate particle size, micron, 0.02-0.07; pH, 8.0-10.0; moisture (free), weight in percent, 5-8; refractive index, 1.52-1.55; available surface area, square meters per gram, 95-175.8

The ability of diatomite to adsorb moisture resulted in the manufacture of salt shakers containing what were termed filters, made of The filters are said to be effective in keeping the salt diatomite. dry.9

A leading producer of diatomite filter aid listed the maximum particle sizes of solids that will pass filter beds composed of various grades of filter-quality diatomite. Of the five grades of diatomite listed, the maximum of each corresponding particle size, in microns, is: 0.1, 0.5, 0.65, 0.8, and 1.1.10

Patents.—Because of its high surface area diatomite is claimed useful as a carbon carrier in manufacturing cellular glass.11

Depending on product specifications, various fibrous or granular minerals or materials may be used in a patented furane resin composition for manufacturing pipes, tubes, rods, and other shapes. Diatomite is one of the minerals specified.12

Patent protection has been secured for diatomite used with an alkyd resin and an organic polyisocyanate in manufacturing a foamed cellular sandwich panel.¹³

⁷ Mine and Quarry, Pneumatic Concrete Placing: Vol. 22, No. 11, November 1956, p. 496.
8 Industrial and Engineering Chemistry (news item), vol. 48, No. 2, February 1956, pp. 102A 11, 102A 111.
9 Rock Products (news item), vol. 59, No. 2, February 1956, p. 20.
10 Industrial and Engineering Chemistry (news item), vol. 48, No. 5, May 1956, p. 106A, 111.
11 D'Eustachio, D. (assigned to Pittsburgh Corning Corp., Pittsburgh, Pa.), Method of Producing Cellaluted Articles: U. S. Patent 2,775,524, Dec. 25, 1956.
12 Walters, J. M. (assigned to Electro Chemical Engineering & Manufacturing Co., Emmaus, Pa.), Method of Extrusion of Furane Resins: U. S. Patent 2,774,110, Dec. 18, 1956.
13 Pace, H. A. (assigned to Goodyear Tire & Rubber Co., Akron, Ohio), Method of Forming Laminated Structures: U. S. Patent 2,764,516, Sept. 25, 1956.

DIATOMITE 461

The use of extremely fine diatomite as a carrier for a silver precipitating agent employed in photography is covered in a patent. 4

A patent describes a dextran seed-coating composition modified with 2 to 5 percent minus-20-mesh diatomite or clay to lessen the

hardness of the dried coating.15

A patented mixture of high-grade fullers earth and diatomite is used to pack a chromatographic column utilized in a process for iso-

lating biocytin.16

A new method for making a calcium silicate type insulation is described in a patent. Amosite asbestos fibers are incorporated into an insulating material formed by mixing lime, chrysotile, and diatomite.17

A flotation patent covers substitution of diatomite and other finely divided solids for the usual mineral acid for deoiling the rougher concentrate accumulated in double flotation of Florida pebble phosphate

Some new patents granted during 1956 covered the use of diatomite

as filler material.19

An improved masonry mortar sand mixture consists of about 59 percent sand, 20 percent diatomite or bentonite, 20 percent volcanic pozzolanic material such as pumicite, rhyolite or calcined tuff, and small percentages of certain sodium salts.²⁰

A patent covered the use of diatomite in latent fluorescent inks. The diatomite acts as a diffusion retardant for the dye and also as a

drier for the varnish in the ink.21

Diatomite was specified in patents as a vehicle for distributing various chemicals used to control insects, mollusks, and fungus.22

Diatomite is among the materials specified in a patented latex coating composition that is stabilized against damage by freezing.23 A patent covering emulsion paints shows diatomite as one ingredient

in a sample formula contained therein.24

¹⁴ Land, E. H. (assigned to Polaroid Corp., Cambridge, Mass.), Process for Forming Print-Receiving Elements: U. S. Patent 2,765,240, Oct. 2, 1956.

13 Peake, P. Q. (assigned to the Commonwealth Engineering Co. of Dayton, Ohio), Dextran-Coated Seeds and Method of Preparing Them: U. S. Patent 2,784,843, October 1956.

14 Wright, L. D., Wood, T. R., Folkers, K. (assigned to Merck & Co., Inc., a corporation of N. J.), Process for Isolating Biocythi); U. S. Patent 2,766,224, Oct. 9, 1956.

15 Seipt, W. R. (assigned to Keesbey & Mathison Co., Ambler, Pa.), Method for the Manufacture of Calcium Silicate Type Insulation: U. S. Patent 2,766,131, Oct. 9, 1956.

16 Chapman, O. C., and Dean, A. W. (assigned to Virginia-Carolina Chemical Corp., Richmond, Va.), Process of Deolling Phosphate Concentrate by Means of Finely Divided Solids: U. S. Patent 2,766,883, Oct. 16, 1956.

16 Jelinek, U. (assigned to M. W. Kellogg Co., Jersey City, N. J.), Insulating Compositions and Method of Forming Same: U. S. Patent 2,767,768, Oct. 23, 1956.

Beatty, J. L. (assigned to A. B. Dick, Niles, Ill.), Lithographic Plates and Methods of Manufacturing Same: U. S. Patent 2,760,431, Aug. 23, 1956.

20 Tiersten, D., Sand Mixture Useful for Making Masonry Mortar: U. S. Patent 2,757,096, July 31, 1956.

21 Econard, N. J. (assigned to Phillips Petroleum Co., a Del. Corp.), Compositions Containing Esters of Pyridine Dicarboxylic Acids as Insect Repellants and Method of Using: U. S. Patent 2,757,120, July 31, 1956.

22 Leonard, N. J. (assigned to Monsanto Chemical Co., St. Louis, Mo.), Method for Controlling Mollusks with Diethyl Phiophopenberg Ris (Diimethyl-Amida) Phospheta: U. S. Patent 2,757,112, July 21, 1052.

^{1956.}Dye, W. T., Jr. (assigned to Monsanto Chemical Co., St. Louis, Mo.), Method for Controlling Mollusks with Diethyl Phiophosphoryl Bis (Dimethyl-Amido) Phosphate: U. S. Patent 2,757,118, July 31, 1956.
Johnson O. H., Harvey, A. M., and West, H. (assigned to Food Machinery & Chemical Corp., San Jose, Calif.), Process for Protecting Organic Matter Against Fungus Growth By Applying a Chlorine Substituted Thia- or Dihydro-Thianapthene Dioxide: U. S. Patent 2,758,955, Aug. 14, 1956.

2 Willis, V. M. (assigned to the Sherwin-Williams Co., Cleveland, Ohio), Freeze Stabilized Latex Coatings: U. S. Patent 2,773,849, Dec. 11, 1956.

3 Willis, V. M. (assigned to the Sherwin-Williams Co., Cleveland, Ohio), Fortified Emulsion Paints Containing a Zirconyl Compound: U. S. Patent 2,773,850, Dec. 11, 1956.

A patented laminated paper for wrapping food products includes one layer of diatomite-filled absorbent paper, which is said to permanently absorb oils and greases.²⁵

A new patented process for making apple syrup involves use of

diatomite as the filter aid.26

Catalytic uses for diatomite were the subject of several patents issued in 1956.27

An acoustic fiber board covered in a patent is composed of ben-

tonite and a mineral filler, such as diatomite.²⁸

Several new patents were granted during 1956, covering the use of diatomite as a carrier or filler in herbical compounds.²⁹

WORLD REVIEW

NORTH AMERICA

Canada.—No Canadian production of diatomite was reported in 1956.

Imports in 1955, mostly from the United States, increased 14 percent over 1954 to 19,373 short tons. The average unit value of imports in 1954 and 1955 was Can\$34.29 and Can\$35.59, respectively. Contrary to the United States consumption, 45 percent of use in Canada was classed as fertilizer dusting material in 1955, while filtration consumed only 41 percent.³⁰

EUROPE

Denmark.—For many years Denmark has ranked next to the United States in importance as a producer of diatomite. The principal Danish production has been from the Islands of Mors and Fur in the area of the Limfjord, North Jutland. Most Danish diatomite contains about 10 percent clay minerals and is called moler.

contains about 10 percent clay minerals and is called moler. The

**Hedstrom O. H. (assigned to Hartford City Paper Co., Hartford City, Ind.), Laminated Wrapping:
U. S. Patent 2,755,213, July 17, 1956.

**Gordon, M., and Gordon, L., Process for Making Apple Syrup: U. S. Patent 2,736,655, Feb. 28, 1986.

**Koelbel, H., and Laugheim, R. (assigned to Rheinpreussen Aktiengesellschaft für Bergbau und Chemie, Homberg, Lower Rhine, Germany), Method of Preparing Iron Catalysts Containing Keiselguhr: U. S. Patent 2,761,847, Sept. 4, 1956.

Finch, H. DeV. and Furman, K. E. (assigned to Shell Development Co., Emeryville, Calif.), Production of Alpha Beta-Unsaturated Alcohols: U. S. Patent 2,763,696, Sept. 18, 1956.

Humphreys, D. D. (assigned to Ethyl Corp., New York, N. Y.), Aromatization of Organic Chlorine Compounds: U. S. Patent 2,729,686.

DeBusk, R. E., Kingsport, Tenn., Oxo Synthesis in Presence of Activated Carbon: U. S. Patent 2,743,293, April 24, 1956.

**Scott, W. L. (assigned to E. I. dulpont de Nemours & Co., Wilmington, Del.), Weed Control Composition and Methods: U. S. Patent 2,764,478, Sept. 25, 1956.

Gerjovich, H. J., and Johnson, R. S. (assigned to E. I. dulpont de Nemours & Co., Wilmington, Del.), N-(Carbamyl) Amide Herbicides: U. S. Patents 2,762,695 and 2,762,696, Sept. 11, 1956.

LaLande, W. A., Jr. (assigned to Pennsylvania Salt Manufacturing Co., Philadelphia, Pa.), Defoliation of Plants: U. S. Patent 2,760,854, Aug. 28, 1956.

Gerjovich, H. J. (assigned to E. I. dulpont de Nemours & Co., Wilmington, Del.), Herbicidal Halophenyl-Alkyl-Urea: U. S. Patent 2,763,844, May. 28, 1956.

Gerjovich, H. J. (assigned to E. I. dulpont de Nemours & Co., Wilmington, Del.), Herbicidal Compositions Comprising Haloaryloxy Substitutes Aliphatic Acids: U. S. Patent 2,733,988, Feb. 7, 1956.

Morrill, H. R. (assigned to E. I. dulpont de Nemours & Co., Wilmington, Del.), Aliphatic Substituted Methyl Urea Herbicidal Compositions: U. S. Patent 2,733,988, Feb. 7, 1956.

Solane, N. E. (assigned to E. I. dulpont de Nemours

TABLE 2.—World production of diatomite, by countries, 1947-51 (average), and 1952-56, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
	68	28	103	4	16	
Canada Costa Rica	137	750	430	595	3,000	6, 737
United States	300,000	3 302, 816	3 302, 816	4 368, 426	4 368, 426	4 368, 426
South America:	000,000	002,010	002,010	000, 120	000, 120	000, 120
Argentina	1,650	(5)	(5)	(5)	2,750	2,860
Chile	1,015	(5)	(5)	(5) (5)	(5)	(5)
Firmono	1,010					
Austria	3,854	4, 300	3, 435	3, 532	4, 445	5, 490
Danmark.		1,000	0, 100	0,002	1,110	0, 100
Diatomite Moler 6 7	5, 161	15, 023	12, 454	30, 337	6 30, 000	6 30, 000
Moler 67	80, 500	110,000	110,000	120,000	120,000	120,000
Finland	1, 269	1, 236	1,985	1, 367	2,059	2, 535
France	41, 895	37, 159	58, 422	66,690	68, 320	66,000
France	8 36, 426	52, 748	55, 501	59, 745	67, 725	72, 890
Italy	7, 999	10, 505	11,023	11, 261	11, 314	13, 244
Sweden	1, 970	1, 733	1,504	1,013	1,625	1, 243
United Kingdom:	-,	-,,,,,	-, -, -	-, 0-0	-, -,	
* Great Britain	7, 361	19,040	13, 974	10,778	24, 656	6 22, 000
Northern Ireland	8, 613	9,742	8, 139	4,675	7, 293	6, 577
Asia: Korea, Republic of	(5)	-,,	,	1,377	3, 393	3,912
Africa:	,,,			-,	-,,,,,,	-,
Algeria	13, 940	22, 064	28, 162	37, 283	30, 384	6 19, 200
Egypt	1, 696	784	131	173	220	298
Kenva	1,883	6,644	4, 903	3, 649	3, 304	5, 418
Union of South Africa	818	1, 190	120	1,047	850	6 600
Oceania:		,		, , , , ,		
Australia	6, 495	7, 130	4,973	6,091	5, 647	4,631
New Zealand	195	228	115	188	623	152
World total (estimate)1	580,000	660,000	670,000	790,000	810,000	800,000

¹ Diatomaceous earth believed to be also produced in Brazil, Hungary, Japan, Mozambique, Norway, Peru, Portugal, Rumania, Spain, and U. S. S. R., but complete data are not available; estimates by senior author of chapter included in total.

This table incorporates a number of revisions of data published in previous Diatomite chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.
 Average annual production 1951-53.
 Average annual production 1954-56.

A clay-contaminated diatomite used principally for lightweight building brick. 8 Average 1948-51.

greatest market for the moler was in manufacturing lightweight burned brick used in the building industry as an insulator against

sound and temperature.

Finland.—Output of diatomite in Finland increased for the second successive year to 2,500 short tons in 1956. An extremely rainy season, which seriously hampered production, caused the dip in output for 1954 shown in table 2. Two new diatomite deposits were discovered in 1955, 1 at Kalvola near the railway junction at Toijala and 1 at Lummukka in the commune of Kauhava. The deposit at Kuona in Northern Finland was said to be nearing exhaustion. ports in 1954 were 790 short tons. Ninety-four short tons came from the United States in 1953, but none in 1954. The principal use in Finland in 1954 was for thermal insulating board, consisting of diatomite, asbestos and cement.31

Data not available; estimate by senior author of chapter included in total. 6 Estimate.

³¹ Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 3, March 1956, pp. 23-24.

France.—Exports of diatomite from France in 1954 reached 1,540 short tons and imports 8,940 short tons, of which 803 tons came from the United States. The value of the imports from the United States was \$70,400, or \$88 per short ton.³²

AFRICA

Kenya.—Kenya diatomite production in 1956 was the highest since 1952. The value of production in 1954 and 1955, respectively, was reported to be \$148,500 and \$109,700.³³

OCEANIA

Australia.—Output in 1956 was 4,631 short tons compared with 5,647 tons in 1955. The principal producing centers were the districts of Coonabarabran and Barraba, New South Wales; Gatton, Queensland; Kilmore and Newham, Victoria; and Waneroo, Western Australia.

Diatomite imports in 1954 totaled 2,723 short tons valued at \$157,700, compared with 2,349 tons valued at \$139,500 in 1953. Of the total 1954 imports, 2,555 short tons came from the United States. Exports for the first half of 1954 were 115 short tons, valued at \$7,625. Most of the imported material and some domestic diatomite produced in Victoria and New South Wales was used as a filtering medium. This comprised about 60 percent of the total Australian consumption.³⁴

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, pp. 25-26.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, pp. 26.
Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 2, August 1956, pp. 30-31.</sup>

Feldspar, Nepheline Syenite, and **Aplite**

By Taber de Polo 1 and Gertrude E. Tucker 2

FELDSPAR

OMESTIC PRODUCTION of crude feldspar and flotation concentrate continued to grow in 1956, with a rise in average value per ton.

The larger producing companies expanded facilities in 1956. A large plant was completed in Canada by Spar-Mica, Ltd., of Montreal, and Lawson-United Feldspar & Mineral Co. was organized to

process feldspar from alaskite rock in North Carolina.

International Minerals & Chemical Corp. began operating a new nepheline syenite plant at Blue Mountain, Ōttawa, Canada. Imports of ground nepheline syenite increased 25 percent and domestic production of aplite decreased 23 percent over 1955.

TABLE 1.—Salient statistics of the feldspar industry in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Crude feldspar: 1 Domestic sales:						
Long tons	419, 673	420, 831	452, 600	411, 018	465, 378	622, 429
Value A verage per long ton	\$2, 525, 549 \$6. 02	\$3, 696, 018 \$8, 78	\$4, 594, 450 \$10. 15	\$3, 490, 466 \$8, 49	\$3, 801, 291 \$8, 17	\$5, 763, 847 \$9, 26
Imports:				1		1.0
Long tons	18, 611	5, 576	5, 901	79	105	258
Value	\$136,600	\$53,016	\$60, 501	\$3, 357	\$9,346	\$9, 311
Average per long ton	\$7.34	\$9.51	\$10. 25	\$42, 49	\$89.01	\$36.09
Ground feldspar:				İ		
Sales by merchant mills:	455, 399	458, 920	463, 876	428, 895	479, 567	683, 519
Short tons Value	\$6, 241, 794				\$7, 698, 905	\$9, 049, 840
	\$13.71	\$14.63	\$15.41	\$15.20	\$16.05	\$13. 24
Average per short ton	\$10.71	\$14.05	φ10. 11	\$10.20	φ10.00	φ10.21

¹ Includes flotation concentrate, 1951-56.

DOMESTIC PRODUCTION

Crude Feldspar.—Crude feldspar (including concentrate obtained by flotation of feldspathic rocks and sands) sold or used by domestic producers in 1956 increased 34 percent in quantity and 52 percent in The tonnage and value were the highest in the value over 1955. history of the industry. Production was reported from 12 States, 1

¹ Commodity specialist. ² Statistical assistant.

more than in 1955, as Wyoming became a producer for the first time since 1953.

North Carolina continued to be the major producer, with 41 percent of the quantity and 55 percent of the value. California reported the largest increase, owing primarily to inclusion in statistics for the first time of the substantial production of "Silspar" (a mixture of feldspar and silica) from beach sands by the Del Monte Properties Co. result, some of the statistics for 1956 are not comparable with those of previous years. This partly accounts for sales of feldspar to the glass industry more than doubling in 1956.

Forty percent of all marketable feldspar was obtained by flotation treatment of feldspar and feldspathic rock in 1956; this was the same as in 1955.

TABLE 2.—Crude feldspar sold or used by producers in the United States, 1947-51 (average) and 1952-56 1

		Valu	e			Value	
Year	Long tons	Total	Average per ton		Long tons	Total	Average per ton
1947–51 (average) 1952 1953	419, 673 420, 831 452, 600	\$2, 525, 549 3, 696, 018 4, 594, 450	\$6.02 8.78 10.15	1954 1955 1956	411, 018 465, 378 622, 429	\$3, 490, 466 3, 801, 291 5, 763, 847	\$8.49 8.17 9.26

¹ Includes flotation concentrate, 1951-56.

TABLE 3.—Crude feldspar 1 sold or used by producers in the United States, 1954-56, by States

State	19	54	19	55	1956		
	Long tons	Value	Long tons	Value	Long tons	Value	
Colorado Connecticut New Hampshire Maine North Carolina South Dakota Wyoming	(2) 9, 280 44, 990 230, 744 (2)	(2) \$60, 463 375, 087 2, 220, 707 (2)	46, 114 44, 064 26, 282 242, 724 42, 164	\$313, 716 366, 383 188, 961 2, 184, 793 267, 286	47, 014 28, 657 22, 219 255, 637 45, 226 1, 201	\$327, 276 286, 802 143, 495 3, 191, 559 288, 843 8, 195	
Other States 3	126, 004	834, 209	64, 030	480, 152	222, 475	1, 517, 67	
Total	411, 018	3, 490, 466	465, 378	3, 801, 291	622, 429	5, 763, 84	

International Minerals & Chemical Corp. leased a feldspar mine at Casper, Wyo., to an operator who installed equipment and planned

to produce feldspar from this and other leases early in 1957.

The Gypsy Mining Co. announced that it had leased from the Whitehall Co. of New York extensive deposits of feldspar in the Crabtree Creek section of Mitchell County, N. C.

Lawson-United Feldspar & Mineral Co. started constructing a flotation plant in Mitchell County, N. C. The plant will recover feldspar from alaskite and will have a capacity of 100,000 tons of feldspar concentrate a month.

Includes flotation concentrate.
 Included with "Other States" to avoid disclosing individual company confidential data.
 Includes Arizona, California, Colorado (1954), Georgia, South Dakota (1954), Texas, and Virginia.

Ground Feldspar.—Ground feldspar sold by merchant mills in the United States increased 43 percent in quantity and 18 percent in value in 1956 compared with 1955. The average value dropped \$2.81 per ton from the 1955 average of \$16.05, the highest for many years. Fourteen States with 24 mills active reported production of ground feldspar in 1956 compared with 13 States in 1955 and 15 in 1954; Texas was the addition in 1956.

North Carolina, California, Colorado, and South Dakota were the leading producers. The Southeastern States (Georgia, North Carolina, Tennessee, and Virginia) produced almost half of the total

output of ground feldspar.

TABLE 4.—Ground feldspar sold by merchant mills 1 in the United States, 1947–51 (average) and 1952–56

		Domestic feldspar			Can	adian felds	Total				
Year	Active mills	Short	Total Average				Short		10	Short	
	minis	tons			tons	Total	Aver- age	tons	Value		
1947-51 (average) 1952 1953 1954 1955 1956 1956 1956 1957 1958	25 24 22 24 23 24	438, 535 448, 839 454, 692 427, 161 479, 567 683, 519	\$5, 850, 056 6, 473, 203 6, 909, 177 6, 471, 621 7, 698, 905 9, 049, 840	\$13. 34 14. 42 15. 20 15. 15 16. 05 13. 24	16, 864 10, 081 9, 184 1, 734	\$391, 738 239, 278 239, 512 45, 837	\$23. 23 23. 74 26. 08 26. 43	455, 399 458, 920 463, 876 428, 895 479, 567 683, 519	\$6, 241, 794 6, 712, 481 7, 148, 689 6, 517, 458 7, 698, 905 9, 049, 840		

¹ Excludes potters and others who grind for consumption in their own plants.

CONSUMPTION AND USES

Crude Feldspar.—Crude feldspar was either ground by the producing company or sold to merchant grinders. Some pottery, enamel, and soap manufacturers purchased crude feldspar for all or part of their requirements and ground it to company specifications in their own mills.

Ground Feldspar.—Most feldspar consumers bought material already ground, sized, and ready for use in their manufactured products. In 1956 the glass, pottery, and enamel industries consumed 95 percent of the ground feldspar sold by merchant mills. Glass consumed 62 percent (43 percent in 1955); pottery, 29 percent (47 percent in 1955); and enamel, 4 percent (5 percent in 1955). Other industries, including soaps, abrasives, and artificial teeth, have steadily increased from less than 1 percent of the consumption in 1951 to over 5 percent in 1956. Of the tonnage shipped to the three principal classes of consumers, enamel showed a 5-percent and pottery an 11-percent decrease, but glass increased 107 percent. Other uses rose 51 percent.

Ground feldspar was consumed in 27 specified States in 1956. California, Illinois, New Jersey, Ohio, Pennsylvania, and West Virginia accounted for over 70 percent of the total. All these States except Ohio reported an increased consumption, with California and

Illinois registering the largest.

TABLE 5.—Ground feldspar sold by merchant mills in the United States, 1947-51 (average) and 1952-56, in short tons, by uses

Year	Glass	Pottery	Enamel	Other 1	Total
1947-51 (average)	229, 320	194, 899	25, 921	5, 259	455, 399
	251, 489	179, 469	21, 809	6, 153	458, 920
	253, 596	179, 323	14, 383	16, 574	463, 876
	226, 157	167, 824	18, 088	16, 826	428, 898
	204, 757	224, 162	25, 919	24, 729	479, 567
	422, 969	198, 595	24, 732	37, 223	683, 519

¹ Includes other ceramic uses, soaps, and abrasives.

TABLE 6.—Ground feldspar shipped, by States of destination, from merchant mills in the United States, 1952-56, in short tons

Destination	1952	1953	1954	1955	1956
California Illinois Indiana Maryland Massachusetts New Jersey New York Ohio Pennsylvania Tennessee West Virginia Wisconsin Other destinations 2	30, 976 17, 214 4, 715 47, 046 31, 614 60, 884 65, 167 13, 392	11, 386 61, 751 20, 024 16, 871 5, 010 45, 835 30, 950 63, 410 66, 302 14, 468 51, 029 8, 617 68, 223	(1) 60, 391 13, 864 16, 324 4, 764 32, 465 28, 923 58, 198 79, 688 12, 618 46, 636 6, 534 68, 490	(1) 37, 305 (1) 15, 016 5, 539 38, 125 22, 242 102, 273 62, 072 (1) 36, 677 10, 674 149, 644	(1) 73,067 (1) 18,835 5,647 41,144 23,169 79,757 69,506 (1) (1) 10,813 361,581
Total	458, 920	463, 876	428, 895	479, 567	683, 519

TABLE 7.—Feldspar grinders in 1956, by State, county, and location of grinding plant

California Do	Mohave	Kingman	Congolidated Haldanan Dart T.
1)0 - 1	T ag Ammalag	the state of the s	Consolidated Feldspar Dept., International Minerals & Chemical Corp.
1)0 - 1	LOS Afreles	Los Angeles	Kennedy Minerals Co., Inc.
Colorado	Monterey	Pacific Grove	Del Monte Properties Co.
COMMAND	Denver	Denver	Consolidated Feldspar Dept., Interna-
1			tional Minerale & Chamical Com
Do	Chaffee	Salida	Wastern Foldener Milling Co
Connecticut	Middlesex	Conait	Worth Spar Co
D0	ao	Portland	Eureka Feldspar Mining & Milling Co.
Georgia	Jasper	Monticello	Appalachian Minerals Co
Illinois.	Knox	A bingdon	Abingdon Potteries Inc
Maine	Oxford	West Paris	Rell Minerale Co
1)0	Sagadahoe i	Toncham	Tonsham Foldanas Ca
Do	do	do	Consolidated Feldspar Dept., Interna-
1			tional Minerals & Chemical Corp
New Hampshire	Cheshire	Alstead	Golding-Keene Co
D0	ao	Cold River	J. F. Morton, Inc.
New Jersey	Mercer	Trenton	Golding-Keene Co.
North Carolina	Mitchell	Kona	Consolidated Feldspar Dept., Interna-
			tional Minarale & Chamical Corn
Do	do	Spruce Pine	I Do
D0		do ·	The Feldenge Corn
D0	Yancev	Burnsville	Το -
South Dakota	Custer	Custer	Consolidated Feldspar Dept., Interna-
			tional Minerale & Chemical Com
_ Do	Pennington	Keystone	Do
Tennessee	Unicoi	Erwin	The Feldspar Corp.
Texas.	Travis	Austin	Dezendorf Marble Co
Virgin ia	Bedford	Bedford	Clinchfield Sand & Feldspar Corp.

¹ Included with "Other destinations."

² Includes Alabama (1952-54), Arizona (1952), Arkansas, Colorado, Connecticut (1952-54 and 1956), Florida (1952-54), Georgia (1952-54), Kansas (1952 and 1954), Kentucky, Louisiana, Maine (1953), Michigan, Minnesota, Mississippi, Missouri, New Hampshire (1953-54 and 1956), New Mexico (1955), North Carolina (1952-54), North Dakota (1952 and 1956), Oklahoma, Puerto Rico, Rhode Island, Texas, Washington (1952 and 1954-56), and Virginia (1952), shipments that cannot be segregated by States, and shipments to States indicated by footnote 1. Also includes shipments to Belgium (1952-53), Canada, Cuba (1953), England (1954-56), Mexico, Panama (1954), Peru (1954), Philippines (1954), and Venezuela (1954-56).

TABLE 8.—Crude feldspar sold or used by producers in the United States, imports, and apparent domestic consumption, 1947-51 (average) and 1952-56

Year	Produ	uction Imp		orts	Apparent domestic consumption	
1947-51 (average)	419, 673 420, 831 452, 600 411, 018 465, 378 622, 429	\$2, 525, 549 3, 696, 018 4, 594, 450 3, 490, 466 3, 801, 291 5, 763, 847	18, 611 5, 576 5, 901 79 105 258	Value \$136, 600 53, 016 60, 501 3, 357 9, 346 9, 311	438, 284 426, 407 458, 501 411, 097 465, 483 622, 687	\$2, 662, 149 3, 749, 034 4, 654, 951 3, 493, 823 3, 810, 637 5, 773, 158

PRICES

Crude-feldspar prices do not appear in the trade publications. The average value, computed from producers reports to the Bureau of Mines in 1956, was \$9.26 per long ton compared with \$8.17 in 1955, a 13-percent advance.

Computed from reports from merchant grinders, the average selling price of ground feldspar in 1956 was \$13.24 per short ton, an 18-percent decrease from 1955.

The producing States having the highest selling price per short ton were as follows: Illinois, \$25; Tennessee, \$21.43; Arizona, \$20.75; Maine, \$20.07, New Jersey, \$20; Virginia, \$19.99, and New Hampshire, \$19.74. The lowest average value was listed for California.

Quotations on ground feldspar in Oil, Paint and Chemical Market Review were the same on December 31, 1956, as on January 2, 1956, and were as follows: North Carolina, bulk, carlots, 140 to 200-mesh, \$19.50 per short ton (in bags, add \$3 per ton to bulk price).

FOREIGN TRADE 3

Imports of crude feldspar for consumption in 1956 (all from Canada) increased 146 percent in quantity, but the value remained virtually the same, because the average value per long ton dropped from \$89 in 1955 to \$36 in 1956.

Imports of ground feldspar in 1956 increased 10 percent in quantity and 6 percent in value.

TABLE 9.—Feldspar imported for consumption in the United States, 1947-51 (average) and 1952-56

	[Bureau of the Census]										
	. 0	rude	Ground		Ground			Crude		Ground	
Year	Long tons	Value	Long tons	Value	Year	Long tons	Value	Long tons	Value		
1947-51 (average)	18, 611 5, 576 5, 901	\$136, 600 53, 016 60, 501	(¹)	\$71 	1954 1955 1956	79 105 258	\$3, 357 9, 346 9, 311	898 1, 254 1, 374	\$22, 449 31, 737 33, 589		

¹ Less than 1 ton.

³ Figures on imports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

According to reports from grinders, ground-feldspar exports increased in 1956. Countries of destination were Mexico, Canada, Puerto Rico, Venezuela, and England.

Cornwall Stone.—Imports for consumption of ground cornwall stone increased 34 percent—from 67 long tons in 1955 to 90 in 1956.

TECHNOLOGY

A comprehensive account was given of the occurrence, geology, petrology, chemistry, and mining of felsite-porphyry of the Saar area.4

Impure sand from a deposit in the Kansas River was beneficiated for use in a local fiber-glass plant. Hydraulic classifiers removed clay and most of the iron oxide, and a magnetic separator removed additional iron oxide from the feed. The ratio of silica to feldspar was maintained within the desired limits by screening.5

Vitrification characteristics of a range of feldspathic minerals and bodies containing them were investigated by means of optical methods and photomicrographs.6

A study was made of progressive change in dimension of pellets (3 mm. in diameter by 3 mm. in length) of 17 powdered-feldspar samples as they were heated to 1,400° C. at 8.3° per minute, and dimension-temperature curves were plotted. All samples expanded steadily temperature curves were plotted. up to 1,100° C., followed by a large contraction (9.6 to 15.8 percent, owing to sintering) up to 1,260° to 1,330° C.; expansion continued to a second inflection at 1,280° to 1,470° C., followed by resumption of contraction owing to melting. The inflection temperatures both decreased with increase of Na₂O/K₂O ratio. The curves were reproducible.7

The chemical composition, button fusion, and Seger-cone temperatures of 12 feldspars were correlated with the strength, whiteness, translucence, and softening of a hard, porcelain tableware body and with the translucence, glass, and bubble structure of glazes containing the feldspars. The most translucent porcelain or the glaze with the best glass was not necessarily given by the feldspar that melted to the clearest glass.8

X-ray studies of alkali feldspars were conducted. Oscillation photographs were used to measure reciprocal lattice angles by a new precision method and correlated with samples of known chemical Several high-temperature feldspars were studied, both optically and by X-ray. Single-crystal X-ray photographs of unmixed specimens enabled the separate phases to be studied.9

An experiment was conducted involving the action of hot water on feldspar under pressure.¹⁰

⁴ Zwetsch, Artur, and Jung, Dieter [Investigation of Birkenfeld Feldspar]: Tonind.-Ztg. u. keram. Rundschau, vol. 80, No. 5-6, May-June 1956, pp. 65-69; No. 7-8, July-August 1956, pp. 104-112; Ceram. Abs., vol. 39, No. 10, Oct. 1, 1956, pp. 223.

5 Pit and Quarry, Production of Feldspar: Vol. 48, No. 10, April 1956, pp. 147-148.

6 Sundius, N., and Nordgren, H., Influence of Soda Feldspar on the Reactions Occurring in Ceramic Bodies: Trans. British Ceram. Soc., vol. 55, No. 3, September 1956, pp. 177-190; Ceram. Abs., vol. 39, No. 10, Oct. 1, 1956, p. 216.

7 Zwetsch, Arfur [Identification of Feldspars]: Ber. deut. keram. Gesell., vol. 33, No. 11, November 1956, pp. 349-357; Ceram. Abs., vol. 40, No. 6, June 1, 1957, p. 148.

8 Zapp, F. [Effect of Transparent- and Opaque-Melting Feldspar in Porcelain]: Ber. deut. keram. Gesell., vol. 33, No. 11, November 1956, pp. 358-362; Ceram. Abs., vol. 40, No. 4, Apr. 1, 1957, p. 88.

9 MacKenzle, W. S., and Smith, J. V., Alkali Feldspars: Am. Mineral., vol. 40, No. 7-8, part I, July-August 1955, pp. 707-732; part II, Ibid., pp. 733-747; vol. 41, No. 5-6, part III, May-June 1956, pp. 405-427.

10 Morey, G. W., and Chen, W. T., Action of Hot Water on Some Feldspars: Am. Mineral., vol. 40, No. 11-12, November-December 1956, pp. 996-1000.

A patent was issued for recovering high-potash feldspar concentrate by various crushing stages and electromagnetic and electrostatic treatment to remove iron-bearing minerals, mica, and free silica. The process was put into operation by the Spar-Mica Corp. in its Quebec Province plant, Canada.¹¹

Patents for products utilizing feldspar in a welding electrode 12 and in making construction brick from fusible material, including

feldspar, 13 were issued.

WORLD REVIEW

The estimated Free World production of feldspar in 1956 reached a new high, with a rise of 19 percent over 1955. The United States furnished 54 percent of the Free World output. West Germany, France, Norway, Sweden, Italy, and Japan were other major producers, together supplying 39 percent of the production. Of these countries, Japan showed the largest advance, with a 59-percent increase in 1956 over 1955. No data are available on feldspar production in China, Rumania, and U. S. S. R.

Canada.—Feldspar production in 1956 was 17,763 short tons valued at \$365,370, a 2-percent decrease in tonnage and a 1-percent increase

in value.

Quebec Lithium Corp. completed plans to produce feldspar as a byproduct of its spodumene operation at Val d'Or, Quebec, Canada. New magnetic units to remove impurities from the feldspar, will produce 400-500 tons of high quality feldspar daily.¹⁴

NEPHELINE SYENITE

Domestic Consumption.—Domestic consumption of nepheline sye-

nite imported from Canada continued to increase.

Prices.—Prices of processed nepheline syenite, per short ton, were as follows at the close of 1955, f. o. b. Nephton or Lakefield, Ontario, Canada, carlots, in bulk: Glass grade (28-mesh) \$14.50; Pottery grade (200-mesh) \$18.50; Pottery grade (270-mesh) \$19; and B grade (100mesh) \$10. There was an additional charge of \$3 per ton for bagged material. All classes of nepheline syenite entered the United States duty free.15

Foreign Trade.—Imports of ground nepheline syenite, mostly for use in the glass industry, totaled 140,306 short tons (all from Canada) with a value of \$2,136,092. This represented a 25-percent

increase in quantity and a 15-percent increase in value.

World Review.—Canadian Flint and Spar Department, International Minerals & Chemical Corp., completed its nepheline syenite plant at Blue Mountain, Ontario, Canada, and began production. Ontario was the only producing province in Canada. There are poten-

Diamond, G. S., Process for Separating Ores: U. S. Patent 2,765, 074, Oct. 2, 1956.
 Gayley, C. T., Welding Electrode and Method: U. S. Patent 2,737,150, Mar. 6, 1956.
 Collini, Walter, Method of Making Construction Brick: U. S. Patent 2,744,360, May 8, 1956.
 Northern Miner, Quebec Lithium Gears for Feldspar Output: Vol. 42, No. 30, Oct. 18, 1956, p. 7.
 Janes, T. H., Nepheline Syenite in Canada, 1955 (Preliminary): Canada Dept. of Mines and Tech. Surveys, Ottawa, 1955, p. 4.

TABLE 10.—World production of feldspar by countries, 1 1947-51 (average) and 1952-56, in long tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada (sales) United States (sold or used)	36, 464 419, 673	18, 096 420, 831	18, 970 452, 600	14, 371 411, 018	16, 207 465, 378	15, 860 622, 429
Total	456, 137	438, 927	471, 570	425, 389	481, 585	638, 289
South America: Argentina Brazil Chile Peru	6, 011 4 6, 900 650 132	(3) (3) 592	(3) (3) 2, 047	(3) (3) (3)	4, 900 (³) (³)	4, 900 (³) (³)
Uruguay	1, 558	884	779	696	381	(3)
Total 4	15, 300	20, 000	21,000	22, 000	20, 000	20, 000
Europe: Austria. Finland. France. Germany, West. Italy. Norway. Portugal. Spain (quarry) 5. Sweden. Total 4. Asia: India. Japan 6.	2, 289 7, 699 50, 088 54, 599 16, 998 27, 076 867 2, 705 37, 931 209, 000 1, 743 20, 563 22, 306	2, 537 9, 635 63, 974 101, 284 21, 284 28, 834 689 47, 115 280, 000 2, 020 23, 812 25, 832	1, 332 9, 180 59, 053 94, 190 24, 342 18, 411 59 37, 333 249, 000 3, 881 24, 682 28, 563	2, 137 12, 062 61, 021 138, 323 28, 449 27, 764 	2, 510 12, 529 71, 847 169, 718 42, 887 44, 257 592 54, 064 403, 000 5, 230 30, 587 35, 817	2, 677 8, 799 70, 863 172, 718 49, 676 54, 000 (3) 2, 091 52, 303 418, 000 44, 900 48, 665
Africa: Eritrea. Kenya. Madagascar. Rhodesia and Nyasaland, Federation of: Southern Rhodesia.	128 13 7 919	2	3 24	6	12	12
Union of South Africa	3, 375	7, 361	5, 480	3, 525	6, 421	9, 730
Total	4, 435	7, 363	5, 507	3, 531	6, 433	9, 742
Oceania: Australia 8	11, 336	13, 589	6, 883	16, 384	20, 589	14, 697
World total (estimate) 1	720, 000	790, 000	780, 000	830, 000	970, 000	1, 155, 000

In addition to countries listed, feldspar is produced in China, Czechoslovakia, Rumania, and U. S. S. R., but data are not available; no estimates included in total, except for Czechoslovakia.
 This table incorporates a number of revisions of data published in previous Feldspar chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.
 Data not available; estimate by senior author of chapter included in total.

oso tons.

§ In addition, the following quantities of aplite and other feldspathic rock were produced: 1952, 70,287 tons; 1953, 71,263 tons; 1954, 74,817 tons; 1955, 66,291 tons; 1956, 63,723 tons.

§ Average for 1950–51.

§ Includes some china stone.

In addition, the following quantity of feldspar is reported as ground, but there is no crude production data to support these ground figures: 1952, 10,195 tons; 1953, 10,495 tons; 1954, 8,160 tons; 1955, 5,041 tons; 1956, 898 tons.

tially commercial deposits in other Provinces, but they are too remote

from present markets.

Russia has been the only other country producing nepheline syenite, but production data are lacking. Deposits occur in India and Finland, but no production has been recorded.

TABLE 11.—Nepheline syenite imported for consumption in the United States, 1947-51 (average) and 1952-56

Bureau of	the	Census]
-----------	-----	---------

	Cr	ude	Ground			Cr	ude	Ground	
Year	Short tons	Value	Short tons	Value	Year	Short tons	Value	Short tons	Value
1947–51 (average) 1952 1953	31, 627 4 181	\$122, 610 125 659	29, 274 68, 398 89, 195	\$403, 670 984, 050 1, 308, 058	1954 1955 1956			95, 782 111, 863 140, 306	¹ \$1,436,32 1,856,06 ¹ 2,136,092

 $^{^{\}rm 1}$ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

APLITE

Production of aplite decreased 23 percent in tonnage and 49 percent in value in 1956, compared with 1955, and sales of ground aplite fell 6 percent in quantity and 5 percent in value. Imports of foreign glass, especially windowglass, in part caused this decrease. The only aplite producers were: Riverton Lime & Stone Co. Division, Chadbourn Gotham, Inc., in Amherst County, and Consolidated Feldspar Department, International Minerals & Chemical Corp., in Nelson County, both near Piney River, Va.

Ferroalloys

By P. H. Royster¹ and Hilda V. Heidrich²

STEEL PRODUCTION in 1956 fell 1.82 million tons under the alltime record of 117 million ingot tons established in 1955. In spite of the 2-percent decline in ingot rate, 1956 ferroalloy production ran 9 percent over that in 1955, reaching a record high of

2,639,681 tons.

Sales of ferroalloys failed to follow the 9-percent increase in production, 1956 shipments being only 2 percent above those in the preceding year. Ferroalloys of the 3 principal alloying elements (manganese, silicon, and chromium) showed a combined production total of 2,459,913 tons in 1956, an 11-percent increase over the 1955 total (2,224,595 tons). These 3 ferroalloying elements represented more than 90 percent of the total tonnage of all ferroalloys produced or shipped.

The total dollar value of the ferroalloys shipped in 1956 was \$604 million, up 21 percent for the year, principally the result of a 19-percent increase in the average unit value of the ferroalloys produced. The value of 1 ton of ferroalloys averaged \$196.68 in 1955, compared

with \$233.18 in 1956.

Individual figures for the 1956 production and shipments of five ferroalloying elements (manganese, silicon, chromium, titanium, and phosphorus) are given in table 1. Production and shipments for seven other elements (molybdenum, vanadium, tungsten, zirconium, columbium, tantalum, and boron) are combined and reported under the title "Other" ferroalloys. This has been done, since permission to disclose data on the production of these elements separately has not been obtained from the producers. In addition to these 12 ferroalloying elements, 9 other elements, other than iron and carbon, were used during the year in producing steel ingots (nickel, aluminum, copper, lead, cobalt, sulfur, selenium, cesium, and cerium). Consumption of these 9 elements by the steel industry in 1956 totaled more than 90,000 tons, with a reported value well above \$110 million.

DOMESTIC PRODUCTION AND SHIPMENTS

Manganese Alloys.—In 1956, 1,062,171 tons of ferromanganese was produced by 11 companies operating 21 plants in 11 States. Although steel production was down 1.6 percent from 1955, ferromanganese production was up 9.0 percent. Shipments in 1956, however,

¹ Metallurgist. ² Statistical assistant.

TABLE 1.—Ferroalloys produced and shipped from furnaces in the United States, 1955-56

			1955			1956				
	Produ	oduction SI		oments	Production		Shipments			
	Gross weight (short tons)	Alloy element contained (average percent)	Gross weight (short tons)	Value	Gross weight (short tons)	Alloy element contained (average percent)	Gross weight (short tons)	Value		
Ferromanganese 1 Ferrosilicon Silvery iron Ferrochromium 2 Ferrotitanium Ferrophosphorus Other 3 Total	974, 902 382, 699 459, 291 407, 703 6, 565 77, 115 106, 514 2, 414, 789	75. 91 55. 74 12. 74 65. 45 23. 37 24. 30 26. 72 54. 97	1, 013, 619 424, 744 488, 292 421, 867 6, 881 75, 862 110, 224 2, 541, 489	\$198,022,243 67,310,237 35,501,323 141,344,460 3,326,047 2,058,932 52,320,868	1, 062, 171 460, 193 438, 694 498, 855 7, 762 73, 175 98, 831 2, 639, 681	75. 43 57. 93 12. 17 62. 56 24. 63 23. 60 28. 70	1, 052, 432 434, 213 413, 953 480, 169 7, 228 94, 545 107, 033 2, 589, 573	\$240, 220, 802 75, 187, 741 33, 906, 541 188, 727, 356 4, 628, 779 3, 292, 591 57, 882, 859 603, 846, 669		

TABLE 2.—Producers of ferroalloys in the United States in 1956

Producer	Plant at—
Ferromanganese—blast furnace:	
Bethlehem Steel Co	Johnstown, Pa.
E. J. Lavino & Co.	Sheridan, Pa.: Reusens, Va
U. S. Steel Corp. subsidiaries	Ensley, Ala.; Clairton and Duquesne, Pa.
Ferromanganese 1—electric furnace:	le de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
The Anaconda Co Electro Metallurgical Co	Anaconda and Black Eagle, Mont.
Electro Metallurgical Co	Sheffield, Ala.; Ashtabula, and Marietta, Ohio;
	Niagara Falls, N. Y.; Portland, Oreg.; Alloy,
Interlake Iron Corp	W. Va.
Ohio Forms Allows Corp	Beverly, Ohio.
Ohio Ferro-Alloys Corp Pittsburgh Metallurgical Co	Philo, Unio.
Tennessee Products & Chemical Corp.	Charleston, S. C.; Calvert City, Ky. Rockwood and Chattanooga, Tenn.
Tenn-Tex Alloy and Chemical Corp.	Houston, Tex.
Vanadium Corporation of America.	Niagara Falls, N. Y.
Ferrosilicon:	Magara Pans, N. 1.
Electro Metallurgical Co	Sheffield, Ala.; Niagara Falls, N. Y.; Ashtabula
	and Marietta, Ohio; Portland, Oreg.; Alloy,
Interlake Iron Corp	Tackson and Bayorly Ohio
Keokuk Electro-Metals Co.	Kenkuk lowa Wenatchee Wash
Montana Ferroallovs Inc	Woodstook Tonn
Ono Ferro-Alloys Corp	Brilliant and Phila Ohio: Tagoma Wash
Pacific Northwest Alloys, Inc	Mead. Wash.
Pittsburgh Metallurgical Co	Calvert City, Ky.; Niagara Falls, N. Y.; Charles-
Tannagas Products & Chamberla	ton, S. C.
Tennessee Products & Chemical Corp Tenn-Tex Alloy and Chemical Corp	Rockwood, Tenn.
Vanadium Corporation of America	Houston, Tex.
Ferrochromium and chrome allows:	Niagara Falls, N. Y.; Graham, W. Va.
Chromium Mining & Smelting Corp	Riverdale, Ill.
Electro Metallurgical Co.	Niggera Falls N V . Achtabula and Marietta
	Object Allow W. We
Interlake Iron Corp	Beverly Ohio
Keokuk Electro-Metals Co	Keokuk, Iowa.
Montana Ferroallovs, Inc	Woodstock, Tenn.
Ohio Ferro-Alloys Corp	Duilliant Ohio
Pacific Northwest Alloys, Inc.	Mead, Wash.
Pittsburgh Metallurgical Co	Calvert City, Ky.; Niagara Falls, N. Y., Charleston S. C.
Tennessee Products & Chemical Corp Vanadium Corporation of America	Rockwood and Chattanooga, Tenn.

See footnotes at end of table.

Includes manganese briquets and silicomanganese.
 Includes ferrochrome-silicon, chrom-X, chrom sil-X, and other chromium alloys.
 Includes alsifer, ferroboron, ferrocolumbium, ferrotantalum-columbium, ferronickel, ferrotungsten, ferromolybdenum, simanal, spiegeleisen, zirconium-ferrosilicon, ferrovanadium, and miscellaneous ferroalloys.

TABLE 2.—Producers of ferroalloys in the United States in 1956—Continued

Producer	Plant at—
Ferromolybdenum and molybdenum products:	
Climax Molybdenum Co	Langeloth, Pa.
Molybdenum Corporation of America	Washington, Pa.
Ferrotitanium:	1
Electro Metallurgical Co	Niagara Falls, N. Y.
Metal & Thermit Corn	Certaret N I
Titanium Allov Mfg. Co	Niagara Falls, N. V.
Vanadium Corporation of America	Niagara Falls, N. Y.; Cambridge, Ohio.
Ferrotungsten:	, , , , , , , , , , , , , , , , , , , ,
Electro Metallurgical Co	Niagara Falls, N. Y.
Molybdenum Corporation of America	Washington, Pa.
Reading Chemicals	Robesonia, Pa.
Ferropanadium.	
Electro Metallurgical Co	Alloy, W. Va.
Vanadium Corporation of America.	Cambridge, Ohio.
Silvery Iron—blast furnace:	Cambridge, Onto.
Interlake Iron Corp	Jackson, Ohio.
Hanna Furnace Corp	Buffalo, N. Y.
Jackson Iron & Steel Co	Jackson, Ohio.
Keokuk Electro-Metals Co Pittsburgh Metallurgical Co	Keokuk, Iowa; Wenatchee, Wash.
Pittsburgh Metallurgical Co	Calvert City, Ky.; Niagara Falls, N. Y.
Spiegeleisen:	Carvert City, My., Magara Tans, N. 1.
New Jersey Zinc Co	Palmerton, Pa.
U. S. Steel Corp	Ensley, Ala.
Ferrophosphorus:	Elisiey, Ala.
American Agricultural Chemical Co	Pierce, Fla.
Monsanto Chemical Co	Soda Springs, Idaho; Columbia, Tenn.
Shea Chemical Corp	Columbia, Tenn.
Tennessee Valley Authority	Muscle Shoals, Ala.
Victor Chemical Works	Tarpon Springs, Fla.; Silver Bow, Mont.; Moun
VICTOR CHAMICAL TVOIRE	Pleasant, Tenn.
Virginia-Carolina Chemical Corp	Nichols, Fla.; Charleston, S. C.
Westvaco Chemical Corp	Pocatello, Idaho.
Other ferroallouse 2	1
Electro Metallurgical Co	Shoffield Ale & Niegone Fells N. W. Ashtahala
Allow o Interation Stort Out.	Sheffield, Ala.; Niagara Falls, N. Y.; Ashtabula and Marietta, Ohio; Alloy, W. Va.
Ohio Ferro, Allows Corn	Philo, Ohio.
Ohio Ferro-Alloys Corp Hanna Nickel Smelting Co	Diddle Oreg
Molybdenum Corporation of America	Riddle, Oreg.
Vanadium Corporation of America.	
vanadium Corporation of America	Niagara Falls, N. Y.; Graham, W. Va.; Cam bridge, Ohio.

fell 9,739 tons below production. The unsold alloy corresponded to 3.3 days' production. This excess production raised the producers' inventory from a 24-day supply on January 1 to a 27-day supply at vear end.

Three companies, operating 8 blast furnaces in 6 plants in 3 States, produced 591,093 tons of standard high-carbon ferromanganese, with an average manganese content of 76.50 percent. The blast-furnace grade represented 55.64 percent of the total ferromanganese produced. The remaining 471,078 tons of ferromanganese was made in the electric furnace by 8 companies operating 21 plants in 12 States. Shipments of ferromanganese from blast-furnace plants exceeded

production by 19,438 tons, this quantity being shipped from producers' inventories. Electric-furnace production, however, ran 29,171 tons over shipments, diverting this tonnage to the electric-furnace producers' unsold inventories.

In addition to the total shipments of 1,052,432 tons of ferromanganese of all grades during the year, 123,953 tons of the ferroalloy was imported for consumption. Exports of domestic ferromanganese were neglibible (2,248 tons).

In 1956, 1,252,225 tons of manganese ore, averaging 42.74 percent manganese, was smelted in blast furnaces, with an average fuel con-

Includes silicomanganese and manganese briquets.
 Includes boron, columbium, nickel, tantalum, zirconium, and simanal.

sumption of 4,024 pounds of coke per ton of ferromanganese. The blast-furnace alloy averaged 76.50 percent manganese, and the overall recovery of manganese in the blast furnace was 84.48 percent. During the 5-year period 1952–56, coke consumption averaged 4,013 pounds per ton, differing a fractional percent from the 1956 rate. During this 5-year period, the reported fuel consumption ranged from 3,896 pounds per ton in 1955 to 4,138 in 1953. Manganese recovery in 1956 was 1.85 percent below the 86.07-percent average for 1952–56.

In smelting ore to produce ferromanganese, the equivalent of 194,345 tons of ore was lost in the slag and in the furnace gases. This 15.52-percent smelting loss was 11 percent greater than the

13.93-percent loss averaged for the preceding 5-year period.

In electric-furnace production of ferromanganese, 857,275 tons of ore averaging 46.80 percent manganese was consumed, with a smelting loss of 13.02 percent. In electric-furnace manganese operations during the year, the equivalent of 111,617 tons of ore was lost, bringing the combined smelting loss for blast and electric furnaces to 305,962 tons, equivalent to 5 year's consumption of domestic man-

ganese ore at the 1956 rate.

Ferromanganese was marketed: (1) As the high-carbon, (2) medium-carbon, and (3) low-carbon, low-silicon grades; and (4) the high-silicon, low-carbon alloy (silicomanganese). Although information on the production of ferromanganese, by grades, is not available, based on the reported consumption of the individual grades it is possible to estimate the 1956 production of high-carbon ferromanganese as 862,000 tons. All of the 591,000 tons of blast-furnace alloy was necessarily of the high-carbon grade, indicating that 271,000 tons of high-carbon ferromanganese was produced in the electric furnace. Production of silicomanganese is given by the AISI (American Iron and Steel Institute) as 124,227 tons. The combined production of the medium- and low-carbon grades are estimated at 76,000 tons.

Ferrosilicon.—Ferrosilicon containing 40 to 95 percent silicon was produced in 1956 by 11 companies operating 24 electric furnace plants in 11 States. In the preceding year shipments of ferrosilicon had exceeded production, and 42,045 tons of the alloy had been shipped from the producers' inventories. In 1956 the production rate was stepped up 20 percent, with the result that 25,980 tons of ferrosilicon produced during the year remained unsold on December 31. Overproduction to this extent did not adversely affect the market, however, as the average value of ferrosilicon moved up from \$158.47 in 1955 to \$173.16 per ton of alloy in 1956. At these prices the unit value of the silicon contained in the alloy was 14.22 cents per pound in 1955 and 14.95 cents in 1956, a 5-percent increase.

Silvery Iron.—High-silicon pig iron containing 8 to 16 percent silicon was produced by 5 companies operating 6 plants in 4 States. This low-grade alloy was produced in 3 blast-furnace and 3 electric-

furnace plants.

Comparable tonnages of the two types of silvery iron were produced in 1956. The blast-furnace grade averaged only 8.75 percent silicon; the electric-furnace grade averaged 15.87 percent. The overall average silicon content was 12.19 percent. Production of silvery pig iron in 1956 was 4 percent below 1955. Shipments fell 6 percent below production, 24,741 tons being added to the producers' unsold

stocks. The average value of the silvery iron sold in 1956 was \$81.90 per short ton, a 13-percent increase above the average price of \$72.71 in 1955.

Chromium Alloys.—In 1956, 1,178,558 tons of chromite was smelted in 17 electric-furnace plants operated by 10 companies in 9 States. The ore used averaged 46.70 percent Cr₂O₃ (31.96 percent chromium). The 498,855 tons of ferrochromium produced averaged 62.56 percent chromium. Recovery of chromium averaged 82.76 percent, equivalent to an annual loss of 203,184 tons of ore.

Ferrochromium was marketed as: (1) A low-carbon, low-silicon alloy; (2) a low-carbon, high-silicon chromium silicide; (3) a high-carbon, low-silicon ferroalloy; and, in minor tonnage, (4) "Other" chromium products, including technically pure chromium metal.

chromium products, including technically pure chromium metal.

Production figures for chromium alloys, by grades, are not available. It is possible however, from examination of the consumption records to estimate that 333,000 tons of low-carbon and 161,000 tons of high-carbon ferrochrome were produced in 1956. About one-fourth of the

low-carbon ferrochromium was of the high-silicon type.

In 1955 shipments of ferrochromium exceeded production, making it necessary for over 3 percent of the sales to be supplied from producers' stocks. The chromium contained in the ferroalloy shipped averaged 25.56 cents per pound in value in 1955. In 1956 ferrochromium production ran 22 percent above that in 1955. Shipments during 1956 lagged 4 percent behind production. The value of the chromium contained in all grades of the ferroalloy averaged 31.41

cents per pound in 1956, a 23-percent increase over 1955.

Molybdenum Products.—Production of the ferroalloy and other molybdenum products was continued by two companies operating plants in Pennsylvania. Ferromolybdenum with an average grade of 61.26 percent was valued at \$1.59 per pound of molybdenum contained (\$1,948 per short ton of the alloy). Only 22.6 percent of the total molybdenum contained in these products, however, appeared in the form of the ferroalloy; 77.4 percent was marketed as molybdic This product, having an average grade of 57.49 percent, was valued at \$1.33 per pound of contained molybdenum. The average grades of the ferroalloy and of the oxide for the 5-year period 1951-55 were 60.93 and 57.49 percent molybdenum, respectively. The value of these two forms during this period was \$1.47 and \$1.22 per pound of molybdenum, respectively. The price differential in favor of the oxide has averaged 25 cents per pound of molybdenum—a figure that has ranged from a low of 16 cents in 1954 to a maximum of 45 cents in

The production pattern has shown a continuing shift away from the ferroalloy and to the oxide. Of the total molybdenum marketed year-by-year from 1951 to 1955, 71.7, 73.5, 75.7, 76.2, and 79.5 per-

cent, respectively, was used as the oxide.

The price of molybdenum in alloy form has averaged \$1.47 per pound during the 5-year period cited. The 1956 value was 11 percent above this past average but was 4 percent under the peak price of \$1.65 obtaining in 1953.

Ferrophosphorus.—Ferrophosphorus was produced in 1956 by 7 operators in 11 plants in 6 States. All the ferroalloy was produced as a byproduct in the smelting of phosphate rock to produce fertilizers and

phosphate chemicals. The year-by-year increase in production, during the recent past, appears to have been halted, production during 1956 being actually 5 percent lower than the 1955 rate. Shipments, during the year, exceeded production by 21,370 tons, bringing the January 1 inventory (115,631 tons) down to a December tonnage of 89,151.

During 1952-56, 342,668 tons of ferrophosphorus was produced and 301,282 tons shipped; 47,765 tons was diverted to producers' unsold inventories. Of all the ferrophosphorus shipped in these 5 years, 73 percent was exported, only 23 percent being used in producing steel ingots, with a remaining 4 percent diverted to other uses.

The market value of ferrophosphorus had declined continually from \$49.53 per ton in 1952 to \$27.14 in 1955. The downward price trend was reversed in 1956, the average value of the alloy being reported at

\$34.83 per ton, up 28 percent for the year.

Titanium Alloys.—Titanium alloys were produced in 1956 by 4 companies operating 5 plants in 3 States. Production (7,762 tons) exceeded shipments (7,228 tons) by 534 tons. The titanium content of all the several grades of ferrotitanium averaged 24.63 percent, differing little from the 23.37 percent in 1955, 23.57 in 1953, and 24.42 average over the 5-year period 1951-55. The value of ferrotitanium, including ferrocarbon-titanium was reported as \$640 per ton of alloy, corresponding to \$1.30 per pound of the contained element. The 1956 value was 38 percent above the 94.28 cents average recorded during the preceding half-decade. The 1956 price level was 26 percent up from the \$1.03 price level of 1955. Shipments of titanium ferroalloys in 1956 ran 5 percent above those in 1955. Total sales (\$4.68 million), however, were 40 percent higher than the 1955 total (\$3.33 million).

Ferrovanadium.—In 1956 ferrovanadium was produced by 2 companies operating 2 plants in 2 States. The average grade of the ferroalloy was 54.05 percent vanadium, little changed from the 54.23-percent average grade for the period 1951–55. The reported value of the alloying element in 1956 (\$3.15 per pound of vanadium contained) was 5 percent above the \$3.01 average recorded in the preceding 5-year period. The maximum price during this period was \$3.11 (1954), with a minimum of \$2.90 (1953). Production of ferrovanadium in 1956 was 22 percent greater than in 1955. Only 2 percent of the alloy produced remained unsold at the end of the year.

Ferrozirconium.—Production of ferrozirconium was continued by 1 producer operating 2 plants in 2 States. Production in 1956 ran 2 percent above that in 1955. The average grade of the alloy, however, was 13 percent zirconium in 1956, down from the 14-percent grade of the preceding year. Shipments overran production by 2 percent in 1955 and by 8 percent in 1956. The value of the contained element in 1956 was 69.23 cents per pound, this being a 24-percent increase over the 56.02 cents reported in 1955. The 5-year

average for 1951-55 was 54.28 cents per pound of zirconium.

Ferroboron.—Production of ferroboron was continued in 1956 by 3 companies operating 3 plants in 3 States. The alloy averaged 16.82 percent boron compared with 15.10 percent in 1955 and with an average of 16.19 percent for the preceding 5-year period. The 1956 value of the ferroalloy was \$1.05 per pound, equivalent to \$6.21 per pound

of boron contained. This was 6 percent over the 5-year average but

9 percent below the 1955 price (\$6.82).

Ferrotungsten.—Ferrotungsten was produced by 3 companies operating 3 plants in 2 States. The alloy averaged 79.93 percent tungsten, slightly higher than the 78.68-percent average for the preceding 5-year period. The reported value of the contained element was \$3.34 per pound of tungsten. This was 3 percent over the 1955 price but 18 percent under the \$4.06 average for 1951–55. About one-third of the tungsten consumed in manufacturing steel was introduced in the form of ferrotungsten; two-thirds of the total was added to molten steel as nonmetallic calcium tungstate (scheelite). The open-market price of \$2.53 per pound of tungsten was 81 cents per pound below the ferroalloy price.

Columbium and Tantalum.—Ferroalloys containing columbium and tantalum were produced in 1956 by 3 companies operating 3 plants in 3 States. Two classes of ferroalloys were produced and shipped: (1) A ferrocolumbium (average, 56.48 percent columbium) relatively free from tantalum; and (2) a duplex alloy, ferro-columbium-tantalum (average, 40 percent columbium and 20 percent tantalum). The reported value of the two alloys was \$3.83 per pound for ferrocolumbium and \$2.84 per pound for ferro-columbium-tantalum. The \$3.83 price of ferrocolumbium corresponds to \$6.78 per pound of columbium. The value of the duplex ferroalloy was \$4.51 per pound of the elements contained. Shipments of ferrocolumbium during the year ran 16 percent below production. For ferrocolumbium-tantalum sales were 9 percent below production.

CONSUMPTION AND USES

Steel production in 1956, reported to the Bureau of the Census as 117,002,455 short tons, totaled 114,998,705 tons of ingots and 2,003,750 tons of steel castings. Of the 2 million tons of castings, 14 percent (277,723 tons) was produced by companies engaged primarily in making ingots, the remaining 86 percent (1,726,027 tons) being produced by foundries that do not make ingots.

Of the total ingots produced, 91 percent (104,678,069 tons) was of the alloy-free, carbon-steel grades into which no ferroalloying elements had been introduced other than manganese, silicon, aluminum, and similar nonalloying additives. The remaining 10,320,636 tons (9)

percent) was classed as alloy steel.

Alloy-steel ingot production was reported to the AISI as: 6,592,216 tons of heat-treatable engineering and constructional steel; 1,313,313 tons of high-silicon electrical sheets; 999,978 tons of low-alloy, high-strength ingots, which are not usually heat-treated; 757,854 tons of the nominal 18–8 nickel-chrome stainless grades (AISI 300 series); 490,435 tons of essentially nickel-free, high-chromium steels (AISI 400 and 500 series); 166,840 tons of alloy-tool and die steel; and 19,454 tons of manganese-substituted stainless steels (AISI 200 series).

In considering the consumption of chemical elements, other than iron and carbon, that are present in the several grades and types of steel, distinction is made between elements used as nonalloying additives to alloy-free, carbon steels (manganese, silicon, aluminum, phosphorus, lead, and sulfur) and elements used for their alloying effects

in producing alloy ingots (chromium, nickel, molybdenum, vanadium and the like, as well as manganese when used for its alloying effect).

Manganese has been added to every ton of steel produced since 1856. Silicon is added to carbon and alloy steel to produce deoxidized (killed) ingots. Aluminum is added to rimmed and capped ingots to control the rimming action of the molten metal during solidification. It is also added to killed ingots in order to produce a fine grain structure in the metal and to effect a greater degree of deoxidation than can be attained by using silicon alone. The demand for nonalloying additives is related to, and determined by, the total production of all grades of steel, rather than by the production of alloy steels. On the other hand, consumption of chromium, nickel, molybdenum, and the other elements used exclusively for their alloying effect is, of course, determined primarily by the production of alloy ingots.

In tabulating the score of diverse chemical elements other than iron and carbon that, on occasion, are used in producing steel, it has been frequently customary to omit the nine elements nickel, aluminum, cobalt, copper, lead, calcium, sulfur, selenium, and cerium. The quantity of these excluded elements consumed in steelmaking in

1956 was 92,803 tons at a reported value of \$113,477,546.

Information on the production and shipments of such metals as nickel, aluminum, copper, lead, and cobalt are presented in separate chapters of the Yearbook. Next to chromium, nickel is the second-ranking element used in alloying steel, and its omission from the list of ferroalloys may be somewhat misleading. Only an insignificant fraction of the total domestic consumption of aluminum, copper, and lead is added to steel. These three metals are nevertheless of considerable importance to the steel industry in their role as ferro-

alloying elements.

Table 3 lists the tonnage and value of 16 ferroalloying elements that were used in steel-ingot production in 1956; these elements are arranged in the descending order of their total market value. Sulfur, calcium, cerium, and selenium are not included in this table, since no information is available as to the quantities of each that were used. According to table 5, 97 tons of calcium silicide and 6 tons of ferrocerium were imported for consumption in 1956. The AISI reports 41 tons as the 1956 consumption of ferroselenium by the steel industry. The tonnage of sulfur used in the production of resulfurized, free-machining steels was considerable, but figures are not available to indicate its order of magnitude.

Manganese Alloys.—In the 1956 production of 115 million tons of ingots, 759,632 tons of manganese was consumed, the element being added in the form of: 816,591 tons of high-carbon ferromanganese; 64,773 tons of medium- and low-carbon ferromanganese; 98,383 tons of high-silicon, low-carbon alloy (silicomanganese); 52,166 tons of spiegeleisen; and 6,706 tons of technically pure manganese metal. The average content of all these alloys combined was 73.14 percent

manganese.

Consumption of manganese by ingot producers in 1956 averaged 13.19 pounds per ton of steel, a figure running 2.73 percent higher than the 12.84 pounds in 1955 and 4.60 percent over the 12.61 pounds in 1954. Manganese additions to steel ingots in 1956 was distributed:

TABLE 3.—Tonnage and value of ferroalloys and ferroalloying elements used in producing steel ingots in 1956

Alloying element	Ferroalloy consumed (short tons)	Alloying element contained (short tons)	Value
Manganese ¹ Chromium ² Nickel ³ Silicon ⁴ Molybdenum ⁵ Aluminum Tungsten ⁵ Vanadium Titanium Cobalt Columbium-tantalum Copper Zirconium Phosphorus Lead Boron	17, 749 26, 958 3, 592 2, 593 5, 231 726 340 4, 370 7, 648 16, 551	759, 632 167, 500 50, 296 158, 000 111, 154 26, 958 1, 973 1, 433 2, 820 726 199 4, 370 904 3, 906 1, 419 21	\$254, 403, 042 117, 337, 100 72, 358, 555 51, 329, 811 30, 851, 664 12, 337, 555 8, 831, 238 3, 872, 980 2, 188, 320 1, 887, 250 1, 376, 647 454, 221 2255, 76, 471
Total	1, 808, 919	1, 191, 401	572, 771, 25

Includes ferromanganese, silicomanganese, manganese metal, manganese briquets, and spiegeleisen.
 Includes chromium, chrome X, and chromium metal.
 Includes nickel and nickel oxide.
 Includes ferrosilicon, silicon metal, and silvery pig iron.
 Includes ferromolybdenum, molybdic oxide, and calcium molybdate.
 Includes ferrotungsten and calcium tungstate (scheelite).

83 percent as high-carbon ferromanganese, 6 percent as the mediumand low-carbon alloy, 9 percent as silicomanganese, 1 percent as

spiegeleisen, and 1 percent as manganese metal.

In addition to the 115 million tons of steel produced as ingots in 1956, 1,726,027 tons of castings was produced by independent steel foundries—a tonnage that is not included in the reported production of ingots. These castings consumed 33,588 tons of manganese. corresponding to 38.93 pounds of manganese per ton of castings. It is estimated that 5,200 tons of manganese was used in producing Hadfield-type, high-manganese steel castings. The remaining lowalloy and carbon steel castings are estimated to have consumed 33.81 pounds of manganese per ton. The primary metallurgical reason for using manganese in unalloyed carbon steel is, to minimize the harmful effect of sulfur on the rolling and forging properties of the ingot in the temperature range of red-short brittleness. Steel castings, of course, are neither rolled nor forged. The quantity of manganese added to 1 ton of steel castings in foundry practice, throughout years, has averaged 2½ times the manganese used to make 1 ton of ingots, which, on the other hand, are always rolled or forged at sulfur-sensitive temperatures.

Silicon Alloys.—The total tonnage of silicon alloys used in producing steel ingots in 1956 was 351.571 tons. Thirty percent of this tonnage (104,611 tons) appeared as high-silicon pig iron (silvery pig iron), with an average silicon content of 15.03 percent. The remaining tonnage was distributed among the 5 standard grades of ferrosilicon (50, 65, 75, 85, and 92.5 percent silicon), with minor quantities of silicon briquets, silicon metal, and other silicon alloys included. The 246,960 tons of ferrosilicon contained 142,298 tons of silicon (57.62)

percent).

The silvery iron used in ingotmaking contained 15,723 tons of silicon, bringing the total silicon in the 2 types of ferroalloys to 158,000 tons. To this total should be added 30,000 tons of silicon contained in the high-silicon grades of the other ferroalloys used in ingotmaking (primarily silicomanganese and chromium silicide), bringing the total silicon used in steel production to 188,021 tons.

In 1956, 1,313,313 tons of high-silicon sheets of transformer and other electrical grades consumed about 48,000 tons of silicon. The 9.12 million tons of other alloy ingots used about 30,000 tons of silicon. When this 88,000 tons of silicon is subtracted from total consumption (188,000 tons), an estimated 100,000 tons of silicon appears to have been used in 1956 in producing 106.8 million tons of unalloyed carbon-

steel ingots, equivalent to 1.87 pounds per ingot ton.

Silicon is added to steel to effect deoxidation and to produce mechanically sound ingots (killed steel). Smaller additions are made in producing the partly deoxidized grades (semikilled steel). The consumption of ferrosilicon in steel depends not on the tonnage of steel as such but on the tonnage of ingots that was silicon-killed. Information is lacking to indicate the tonnage distribution of carbon steels among the killed, semikilled, rimmed, and capped grades. The total tonnage of steel ingots that were deoxidized with silicon probably did not exceed one-half of the total of carbon ingots, indicating an average addition of 3.74 pounds of silicon per ton for those ingots only that were silicon-treated.

Production of all grades of ferrosilicon in 1956 totaled 460,193 tons (table 1); only 25,980 tons of this remained in producers' unsold inventories, and 434,213 tons was shipped to consumers. According to table 4, domestic consumption was reported as 374,077 tons. Examination of the reports to the Bureau, received from 500 manufacturers using the ferroalloy during the past several years, indicates that these reports from ingot producers are 97 percent complete. Reports from producers of steel castings appear to be as low as 54 percent complete. Reported consumption by manufacturers of "Other products" are estimated to cover only about 85 percent of the total silicon used. When adjustment is made for incomplete coverage, the 1956 consumption of ferrosilicon is estimated at 418,000 tons.

There were imports of silvery iron but none of ferrosilicon during 1956. Only 2,115 tons of ferrosilicon was exported (table 7). Domestic consumption of 418,000 tons, combined with 2,115 tons of exports, accounted for 420,000 tons, a figure 14,000 tons less than the 434,000 tons reported as shipped (table 1). Domestic consumers' unused inventories reportedly increased only 4,200 tons during the year. Since daily shipments averaged 1,190 tons, this difference of 4,200 tons represents a 3.5-day time-lag between the average tonnage reported as shipped from a producer's plant and the same tons reported as received at a consumer's plant.

Ferrophosphorus.—In 1956, 16,551 tons of ferrophosphorus was reported consumed in producing steel ingots. This was about 2 percent up from the 16,244 tons consumed in 1956 but was 18 percent higher than the average of 14,006 tons consumed annually during the 5-year period 1952–56. During this time producers of the ferroalloy shipped an average of 88 percent (60,256 tons) of their annual production (68,534 tons), 44,023 annual tons of the alloy being shipped

TABLE 4.—Consumption of silvery pig iron, ferrosilicon, silicon metal, silicon briquets, and miscellaneous silicon alloys in the United States in 1956, by end uses 1

		Short tons						
Alloy	Silicon content, percent	Steel ingots	Steel castings	Iron foundries and mis- cellaneous	Total			
Silvery pig iron		12, 308 92, 303 141, 397 30, 721 46, 779 2, 280 6, 217 63 411 19, 092	13, 229 7, 666 15, 194 117 988 106 33 22 2, 789 1, 262	136, 680 85, 033 42, 151 570 7, 897 1, 788 2, 569 20, 148 23, 597 7, 886	162, 217 185, 005 198, 742 31, 406 55, 664 4, 177 8, 819 20, 235 26, 797 28, 246			
Total		351, 571	41, 406	328, 319	721, 29			

¹ Coverage estimated as 97, 54, and 85 percent complete for ingots, steel casings, and foundries and miscellaneous, respectively.

2 Nearly all this material is in the range from 40 to 55 percent silicon.

abroad. Each ton of ferrophosphorus (23.03 percent phosphorus) can be oxidized to form 0.53 ton of a phosphate fertilizer and 0.74 ton of scrap steel acceptable as melting stock in the open-hearth

Exports of ferrophosphorus from 1952-56 were able to produce 163,000 tons of steel scrap and 116,000 tons of phosphate $(P_2\hat{O}_5)$. In continental Europe both the scrap and the fertilizer found a ready Ferrophosphorus is oxidized in the basic-lined bessemer converter, a device that has not been developed in this country. The 75,411 tons of ferrophosphorus exported in 1956 was valued at \$31.02 per short ton (\$34.74 per long ton), compared with the 1956 domestic price of top-quality steel scrap, which averaged something above \$50

per long ton.

Chromium Alloys.—Shipments of ferrochromium of all grades in 1956 totaled 480,169 tons, containing 300,394 tons of chromium. The AISI gave the steel-plant consumption of chromium for the year as 166,118 tons of the alloying element. Producers of alloy-steel ingots reported to the Bureau of Mines a chromium consumption of 167,500 tons. The Bureau's figure falls within 1 percent of that given by the AISI. Almost exactly half of the chromium devoted to ingot production was used in the form of the low-carbon, low-silicon alloy; the high-carbon, low-silicon grade totaled something less than one-third of ferroalloy consumed. High-silicon, low-carbon ferrochromium (chrome silicide) accounted for the remainder, the tonnage of technically pure chromium metal being a negligible fraction of 1 percent.

Of the total chromium used to produce steel ingots, 68.78 percent went into stainless and heat-resisting steels (AISI types 200, 300, 400, 500, and the like). The remaining tonnage (52,300 tons) was required to produce 4,261,231 tons of constructional alloy ingots, together with 148,000 tons of high-speed and other alloy hot-work,

tool and die steel.

Although 1,248,289 tons of stainless and heat-resisting ingots was produced in 1956, only 687,699 tons of these steels was shipped in

finished form after rolling, indicating a 44.91-percent production of stainless scrap—scarcely different from the 44.51-percent average obtaining during the period 1952-56. It may be estimated thus that 555,000 tons of rolling mill scrap was produced in 1956 with an average content of 5.98 percent nickel and 16.78 percent chromium. The tonnage of alloying elements in this scrap was 33,200 tons of nickel and 93,200 tons of chromium. The chromium content of 29 types of nickel-chrome stainless ingots (AISI 300 series), 17 types of essentially nickel-free, high-chrome ingots (400 series), 2 types of nickel-chromemanganese stainless (200 series) and 2 types of low-chrome, heatresisting ingots combined averaged 16.48 percent. The 1,248,289 tons of these high-alloy ingots contained 208,800 tons of chromium, a figure 93,600 tons greater than the 115,200 tons of chromium reported to have been added as ferroalloy. If no chromium had been lost in remelting, this excess tonnage could be taken as a minimum estimate for the chromium derived from home and purchased alloy scrap.

Nickel.—In 1956 nickel was an essential constituent of 2,710,320 tons of alloy-steel ingots. This total comprised 757,854 tons of the 18-8 type chemically resistant, nickel-chrome stainless ingots, with a nickel content of 72,880 tons (9.87 percent average nickel) and 1,952,466 tons of other alloy ingots. Over half of the nickel contained in the stainless ingots was recovered from remelted scrap (plant and purchased scrap combined). Reports to the Bureau of Mines from stainless ingot producers gave this year's consumption as 32,883 tons of nickel (as metal and as oxide, but not including scrap). Production of the 1.95 million tons of the 4 conventional grades of heattreatable, engineering and constructional steels represented a 1956 consumption of 17,413 tons of nickel, exclusive of plant and pur-

chased scrap.

In most industrial applications alternative alloying elements may be substituted for nickel in an engineering steel that is subjected to heat treatment to enhance its physical properties. Over two-thirds of the primary nickel consumed by the steel industry, however, is used to produce stainless ingots; for this purpose, no widely accepted substitute for nickel has been discovered or developed. The longawaited introduction of manganese as a partial substitute for nickel in the modified stainless grades (AISI 201 and 202) gained a 10-fold increase in commercial tonnage in a single year, having been 1,914 tons in 1955 and 19,454 tons in 1956. The quantity of nickel saved by manganese substitution did not, however, exceed 2 percent of the steel industry's nickel requirements and was less than 1 percent of the total annual domestic consumption of primary nickel.

Molybdenum.—Consumption of molybdenum by the steel industry in 1956 was reported to the Bureau of Mines as 11,154 short tons, with 1,317 tons used in producing some 30,000 tons of Class A high-speed tool-steel ingots and about 9,800 tons in producing 5 grades of heattreatable alloy steels. A total of 6,698,777 tons of constructional and engineering ingots was produced during the year. Of this tonnage, 57 percent (4,002,069 tons) contained additions of molybdenum. Of the total molybdenum used by the ingotmakers, 12 percent went

into tool steel and 88 percent into constructional alloy steel.

According to the AISI, the 1956 consumption of ferromolybdenum by the steel industry was 3,416 tons; this alloy contained 2,093 tons of molybdenum (average grade, 61.26 percent). The Institute gave 14,063 tons as the consumption of molybdenum oxide. This oxide contained 8,085 tons of molybdenum (57.49 percent). Total molybdenum consumption (ferroalloy plus the oxide), according to the AISI, was 10,178 tons, a figure 8.75 percent below the 11,154 tons reported to the Bureau.

In addition to the molybdenum used in producing steel, 3,078 tons was used by iron and steel foundries, bringing the 1956 molybdenum consumption to 14,233 tons for the entire iron and steel industry.

Molybdenum is added to molten steel optionally as the alloy or as the ferroalloying oxide. Since molybdenum is cheaper in oxide than in alloy form, it has been the preferred method of making this alloying addition. Year by year, from 1952 to 1956, 27.4, 25.2, 23.4, 22.1, and 19.6 percent, respectively, of the molybdenum has been added in the form of the ferroalloy, the relative use of molybdenum in alloy form having declined steadily at the rate of about 5 percent a year. The weighted average value of the molybdenum used in 1956 was \$1.27 per pound (19.6 percent as ferromolybdenum at \$1.47 and 80.4 percent as the oxide at \$1.22 per pound of the element).

Tungsten Products.—Shipments of all grades of high-speed steel in 1956 totaled 24,262 tons, a 3-percent decline from 1955. The three grades of Class B high-speed steel had a combined average of 19.71 percent tungsten; the 3,614 tons of this class shipped during the year contained 712 tons of tungsten. The 8 grades of Class A high-speed steel had an overall average tungsten content of 5.16 percent. The 17,405 tons of Class B shipped carried 897 tons of tungsten. The total quantity of tungsten contained in these 2

shipments was 1,609 tons.

Reports received by the Bureau from tungsten consumers indicate that 1,446 tons of tungsten entered into high-speed steel production. Consumer reports indicate further that 261 tons of tungsten was required to produce the 86,475 tons of tool steel (other than high-speed) that was shipped, with 265 tons of tungsten thus going into

alloy-steel ingots of unspecified composition.

Columbium and Tantalum Alloys.—If a nickel-chrome stainless steel of the 18-8 type is heated in welding or in service to elevated temperatures, the metal frequently suffers the effect of carbon segregation and intergranular corrosion. Two grades of stainless ingots (321 and 347) are customarily treated with a stabilizing agent in an attempt to control this tendency to segregation. In 1956, 50,388 tons of type-321 stainless ingots was stabilized by using an estimated 284 tons of titanium; at the same time, an estimate of 151 tons of columbium was used in producing 15,101 tons of type-347 stabilized stainless. In these 2 types recourse was had to columbium and tantalum in less than one-fourth of the total tonnage, titanium being used in treating 76 percent of the stabilized ingots.

The specification that prescribes 10 pounds of columbium for every pound of carbon (type-347) as written calls for 28 percent more stabilizer than is required to form columbium carbide. It has been widely assumed that, molecule for molecule, tantalum is as effective a stabilizer as columbium. Since the atomic weight of tantalum (181) is almost twice that of columbium (93), about 2 pounds of

tantalum would be needed to replace 1 pound of columbium. Information is not available to indicate the consumption of these two elements individually. The AISI Statistical Report for 1956 gives 199 tons as the steel industry's 1956 consumption of columbium

plus tantalum taken together.

In addition to the use of columbium and tantalum as stabilizing agents for type-347 ingots a comparable, if not greater, tonnage of one or both of these elements was employed in constructing gas turbines, jet engines, and other engineering equipment designed to operate at extremes of elevated temperatures. In a number of alloy steels and other heat-resisting ferrous metals used in this type of service, as much as 3 to 5 percent columbium and tantalum has been employed.

Titanium Alloys.—Introduction of a stabilizing agent is necessary to prevent carbon segregation and consequent intergranular corrosion in nickel-chrome steels that cannot be heat-treated after welding or which are subjected to high-temperature service conditions. During the past 5 years only 1 stainless ingot out of 11 (9 percent) however, has been stabilized. In this period, four-fifths of all stabilized ingots have been treated with ferrotitanium; the remaining fifth was treated

with columbium or with columbium and tantalum.

Alloy-steel specifications are written to require the minimum presence of 4 pounds of titanium for each pound of carbon in type—321 stainless ingots. In the case of type—347, stainless specifications call for a minimum of 10 pounds of columbium for each pound of carbon. At the 1956 price level (\$6.78 per pound for columbium and \$1.30 per pound for titanium) columbium-treated ingots require \$123 worth of stabilizer, compared with \$17.68 for the titanium treated metal.

There is indication, not too well confirmed in practice, that columbium is a more effective agent than titanium for combating segregation, regardless of the quantity of the individual element used, although conclusions on this subject remain somewhat controversial. The relative quantities of titanium and of columbium that have been used appear to have been influenced, in large measure, by the cost of

the ferroalloys used rather than by technical considerations.

In titanium-stabilized stainless ingots carbon is limited to 1.6 pounds per ton. It is estimated that 180 to 200 tons of titanium was used in the 50,388 tons of titanium-treated stainless ingots produced during 1956. Total consumption of titanium by the steel industry is reported to have been 2,820 tons for the year. Less than 7 percent of the titanium used in ingotmaking was directed toward stabilizing

stainless steel (type-321).

Titanium is not an essential constituent of any commonly specified types or grades of alloy steel, other than AISI type-321. Minor but undetermined quantities of ferrotitanium are used in producing special types of steel ingots which are included in the 608,648 tons of alloy ingots reported under as the catchall classification "All other." There is experimental evidence that titanium may be effective in combating red-heat brittleness due to sulfur and that metallurgically titanium may be a potential substitute for manganese. At current unit prices for titanium and manganese (\$1.30 per pound for titanium and 15.03 cents per pound for manganese), no significant tonnage of

ingots can be anticipated in which titanium will be used to replace

manganese.

Ferrovanadium.—Consumption of vanadium in the form of ferrovanadium in 1956 was reported by the AISI as 1,433 tons, a 5-percent increase over 1955. Vanadium is an essential element in the production of high-speed and other grades of tool steel. It is used also in producing a single grade of constructional steel (chromium-vanadium AISI 6100-series). Production of this grade of ingots in 1956 was 72,222 tons, estimated to contain about 123 tons of vanadium. Vanadium in steel intensifies the hardenability effect of all of the other ferroalloying elements that may be present in a steel when 5 pounds or less of vanadium is added to each ton of ingots. When more vanadium is present in the metal, however, hardenability is decreased. It is estimated that 600 tons or more of vanadium was consumed in the 1956 production of 24,262 tons of high-speed tool steel. An additional 472 tons of vanadium is estimated to have been contained in chrome-base tool and die steels and another 90 tons in hot-work steel. These 4 uses account for 1,220 tons of vanadium, a quantity falling 213 tons short of the 1,433 tons of vanadium reportedly used and comparable to the probable loss of vanadium by oxidation during introduction into steel.

Ferrozirconium.—Consumption of ferrozirconium by the iron and steel industry in 1956 (7,648 tons) was 41.57 percent greater than the 5,401 tons consumed in 1955. Consumption of zirconium itself, however, increased only 31 percent (765 tons in 1955 to 994 tons in 1956). The 1956 grade of the ferroalloy was lowered to 13 percent from its 1955 level (14 percent). Pound for pound, zirconium is as effective as molybdenum in increasing the hardenability of alloy steels. In the production of heat-treatable engineering steels, substitution of zirconium at its 1956 price (69.2 cents per pound) for molybdenum (\$1.27 per pound) should prove an incentive to replace molybdenum with zirconium. Commercial use of this alloying element as a hardenability agent, however, has been insignificant to date. Consumption of zirconium averaged 724 tons per year for the 5-year period 1951–55, with 854 tons as a maximum in 1951 and 498 tons as a minimum in 1954. Reported consumption in 1956 (994 tons) was an alltime high for the element; however, in alloy-steel production 14 pounds of molybdenum was used for every pound of zirconium.

Evidence indicates that zirconium, like titanium, may be a technically satisfactory substitute for manganese in controlling the detrimental effect of sulfur on the ductility of steel at red-heat temperatures. With zirconium at 69 cents per pound and with manganese only 13 cents per pound, little commercial employment of zirconium for this purpose is to be expected. Zirconium is not specified as a necessary component of any of the grades of alloy steel listed by the AISI. As in the case of titanium, the zirconium used in special analysis steels

has been reported as used in "Other alloy steel."

Ferroboron.—In heat-treating steel to enhance its physical properties, the presence ½ ounce of boron to 1 ton of alloy ingots has been long known to cause a 79-percent increase in the steel's depth-hardenability. Use of boron could thus permit a 35- to 45-percent saving in the quantity of the other alloying elements that would otherwise have been required. Commercial application of boron as a hardena-

bility intensifier in alloy steel became significant in 1951, when boron was added to 4.11 percent of the engineering steels produced. following year 662,136 tons of alloy ingots was boron-treated—10.50 percent of the entire production of these ingots. After this 2-to-1 jump in the use of this intensifier, boron-treated ingots fell to 6.67 percent of the total constructional ingots in 1953, followed by 4.69 percent in 1954. Use of boron appears to have leveled off at this figure, 4.57 and 4.71 percent of all engineering alloy ingots being treated with boron in 1955 and 1956, respectively.

The total quantity of ingots treated with boron in 1956 was 315,156 tons; the quantity of boron used for the purpose was reported as 21

tons.

FOREIGN TRADE 3

Although steel production in this country in 1956 fell 2 percent below 1955, shipments of domestic ferroalloys increased 2 percent. At the same time, however, imports of ferroallovs increased 85 percent

TABLE 5.—Ferroalloys and ferroalloy metals imported for consumption in the United States, 1955-56, by varieties

[Bureau of the Census]

		1955		1956			
Variety of alloy	Gross weight (short tons)	Con- tent (short tons)	Value	Gross weight (short tons)	Con- tent (short tons)	Value	
Calcium silicide	345 268 340 3	(1) (1) (1) (1)	\$92, 366 434, 396 99, 160 25, 148	97 409 244 6	(1) (1) (1) (1)	\$32, 191 687, 244 45, 852 40, 108	
Containing 3 percent or more carbon	20, 163 10, 137	12, 076 7, 321	4, 189, 470 3, 822, 132	27, 152 12, 605	16, 991 8, 978	6, 323, 037 5, 023, 997	
(tungsten content)	(¹) 128	22 113	152, 260 57, 041	(¹) 166	73 123	328, 154 60, 856	
Containing over 1 and less than 4 percent carbon. Containing not less than 4 percent carbon. Ferromolybdenum, molybdenum metal and powder, calcium molybdenum and other compounds and alloys of molybdenum (molyb-	17, 191 2 47, 802	14, 113 238, 010	4, 478, 465 27, 362, 877	19, 051 140, 986	15, 622 108, 208	4, 846, 062 23, 604, 772	
denum content) Ferrosilicon (23 percent silvery iron) Ferrosilicon-aluminum, ferroaluminum-silicon,	24, 359	5, 963	³ 1, 992, 565	22, 017	5, 005	23, 058 1, 736, 946	
and alsimin Ferrottanium Ferrotungsten Manganese silicon (manganese content) Silicon-aluminum and aluminum-silicon Silicon metal (silicon content) Solegeleisen	32 418 (¹) 263 (⁵)	(1) 338 2, 950 (1) (6)	26, 918 1, 275, 508 478, 461 106, 196 320	(4) 113 537 (1) 91 (7) 234	(1) (1) 435 6, 357 (1) (8) (1)	256 92, 450 1, 944, 595 1, 385, 759 46, 679 8, 121 18, 085	
Tungsten and combinations, in lump, grains, or powder (tungsten content) Tungstic acid and other alloys of tungsten, n. s.	(1)	45	³ 241, 116	(1)	19	118, 988	
p. f. (tungsten content)	(1)	(9)	394	(1)	1	4, 920	

Not recorded.

² Revised figure.

Due to changes in tabulating procedures by the Bureau of the Census data known not to be comparable to other years.
4 100 pounds.
7 147 pounds.

⁵ 2 pounds. ⁸ 129 pounds.

f 1 pound.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

tonnagewise and 86 percent dollarwise from 125,931 tons (valued at \$24,834,793) in 1955 to 233,980 tons in 1956 (valued at \$46,372,130). The overall average value of imported ferroalloys remained unchanged

during the 2 years (\$197.21 in 1955 and \$198.61 in 1956).

As in previous years, ferromanganese and ferrochromium constituted the bulk of the tonnage imported, the 2 metals representing 85 to 90 percent of the import trade. In 1955 ferromanganese comprised one-half and ferrochromium about one-fourth of the import market. First-place ferromanganese in 1956, however, reached 61 percent in dollar value; the relative position of ferrochromium fell to 24 percent. In 1955 and in 1956 silicon and tungsten alloys together constituted only 10 to 15 percent of the reported tonnage, all other ferroalloying elements combined failing to reach 1 percent.

TABLE 6.—Ferromanganese and ferrosilicon imported for consumption in the United States, 1955-56, by countries

[Bureau of the Census]

		anganese (1 excluding sili			Ferrosilicon (silicon content)				
Country		1955		1956		1955	1956		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
North America: Canada Mexico	926 122	\$311, 889 21, 533	2, 897 3, 832	\$694, 371 702, 722	5, 914	\$1, 980, 596	4, 956	\$1, 723, 001	
TotalSouth America: Chile.	1, 048 3, 910	333, 422 613, 356	6, 729 1, 861	1, 397, 093 392, 310	5, 914	1, 980, 596	4, 956	1, 723, 001	
Europe: Belgium- Luxembourg France	16, 267	3, 525, 982	1, 628 17, 149	340, 165 3, 831, 150					
Germany, West Norway Yugoslavia	113 119, 357 1, 722	57, 041 1 5, 031, 651 308, 014	58, 672 9, 901 1, 925	12, 920, 697 2, 596, 373 423, 085	5 44	4, 009 7, 960	5 44	5, 038 8, 907	
Total Asia: Japan	137, 459 9, 819	1 8, 922, 688 2, 028, 917	89, 275 26, 088	20, 111, 470 6, 610, 817	49	11, 969	49	13, 94	
Grand total	1 52, 236	111, 898, 383	123, 953	28, 511, 690	5, 963	1, 992, 565	5, 005	1, 736, 940	

¹ Revised figure.

TABLE 7.—Ferroalloys and ferroalloy metals exported from the United States, 1953-56, by varieties

[Bureau of the Census]

	1953			1954		1955	1956	
Variety of alloy	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value
Ferrochrome Ferromanganese Ferromolybdenum Ferrophosphorous Ferrosilicon Ferrottanium and fer-	607 1, 112 323 22, 959 1, 698	\$285, 900 389, 064 548, 502 1, 147, 707 287, 539	2, 105 1, 732 124 24, 342 2, 080	\$995, 797 614, 544 237, 698 792, 671 365, 338	4, 693 1, 789 175 53, 055 1, 689	\$2, 266, 579 642, 806 353, 073 1, 345, 514 308, 033	5, 538 2, 248 472 75, 411 2, 115	\$2, 891, 379 682, 257 1, 052, 281 2, 339, 328 483, 021
rocarbon-titanium Ferrotungsten Ferrovanadium Other ferroalloys	185 18 78 703	48, 722 122, 949 296, 157 256, 029	172 5 70 168	39, 885 3, 963 237, 333 102, 748	245 2 220 457	65, 091 9, 698 991, 955 251, 887	364 1 207 316	148, 459 4, 203 797, 742 158, 805
Total	27, 683	3, 382, 569	30, 798	3, 389, 977	62, 325	6, 234, 636	86, 672	8, 557, 475

Fluorspar and Cryolite

By Robert B. McDougal 1 and Louise C. Roberts 2

OMESTIC DEMAND for fluorspar increased substantially in 1956 to a new alltime high. Finished fluorspar production reported as shipments from mines and mills totaled 330,000 short tons, reflecting improved market conditions. Quoted prices that began to improve in the preceding year increased steadily throughout 1956, particularly for Metallurgical grade. The major mines and mills operated steadily throughout the year, and the opening of several new mines was reported. Fluorspar imports established a new record and continued to supply a larger proportion of the consumer requirements. In July a domestic purchase program—Public Law 733—was enacted to procure Acid-grade fluorspar (1 of 4 strategic minerals) for the The Office of Defense Mobilization (ODM) announced in July a premium purchase program for domestic Metallurgical-grade fluorspar. Hearings on the National Security amendment regarding imports, originally scheduled by the domestic producers before the ODM in June, were twice postponed at their request and later suspended indefinitely to permit the producers to study the effects of Public Law 733 upon their industry.

TABLE 1.—Salient statistics of fluorspar in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
D						
Domestic production:						
Crude fluorspar:	642, 000	885, 300	903, 400	616, 900	656, 500	922, 100
Mine production						775, 700
Crude material milled or washed.	602, 400	739, 300	823, 900	622, 600	667, 500	110, 100
Cleaned or concentrated fluorspar	000 000	045 400	000 500	045 500	000 500	050 000
recovered	308, 200	345, 400	322, 700	247, 700	239, 500	253, 800
Finished fluorspar: Production (ship-		004 000	010 000	047 000	050 500	900 500
ments from mines and mills)	309, 300	331, 300	318,000	245, 600	279, 500	329, 700
Value, thousand dollars	11,088	15, 354	15, 737	12, 333	12, 590	14, 257
Foreign trade:						405 550
Imports for consumption	126, 376	352, 503	1 359, 569	293, 320	363, 420	485, 552
Exports	912	675	767	643	874	197
Domestic consumption	410, 152	520, 197	586, 798	480, 374	570, 261	621, 354
Stocks on hand at end of year:			i			
Domestic mines:			ł			
Crude	64, 700	122, 145	176, 248	184, 143	139, 077	219, 389
Finished	27, 961	27, 464	31, 896	26, 370	23, 439	21, 794
Consumers' plants	145, 090	252, 193	227, 511	143, 813	140, 577	189, 679
Importers	4, 269	31, 400	15, 492	26, 100	54, 021	53, 900
*						
Total	242, 020	433, 202	451, 147	380, 426	357, 114	484, 762

¹ Revised figure.

Commodity specialist.
 Statistical clerk.

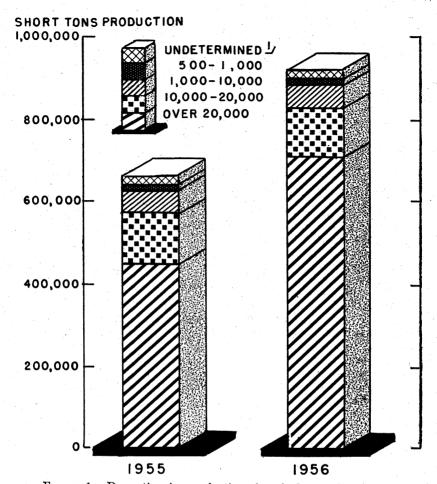


FIGURE 1.—Domestic mine production of crude fluorspar, 1955-56.

TABLE 2.—Domestic mine production of crude fluorspar, 1955-56, according to size of operation, in tons per year

		1955		1956			
Production	Number of mines	Short tons	Percent	Number of mines	Short tons	Percent	
Under 500. 500 to 1,000. 1,000 to 10,000. 10,000 to 20,000. Over 20,000. Total.	(1) 5 16 8 10	12, 800 4, 400 57, 700 126, 800 454, 800	1. 9 . 7 8. 8 19. 3 69. 3	(1) 6 17 8 12	15, 500 4, 000 66, 900 119, 600 716, 100	1. 7 . 4 7. 2 13. 0 77. 7	

¹ Estimated at 60 to 100 small mines, prospects, and reworked tailings of previous milling operations.

¹ Includes a large number of small mines, prospects, and material recovered from tailings of previous milling operations.

DOMESTIC PRODUCTION

Mine production of crude ore totaled 922,100 short tons in 1956 compared with 656,500 tons during the preceding year. Nearly 78 percent of the tonnage was from 12 mines, each of which produced

over 20,000 tons.

In 1956, 15 mills (including those operated by consumers) processed 755,700 tons of crude ore to recover 253,800 tons of finished fluorspar, including 198,700 tons of flotation concentrate. The output of finished fluorspar from 16 mills in 1955 totaled 239,500 tons, of which 189,600 tons was flotation concentrate. The balance of the shipments in 1956 (about 76,000 tons) consisted of crude material that was not processed.

Mines operated by consumers in 1956 produced 158,000 tons of crude material, and 81,600 tons of fluorspar was recovered from their

milling operations.

The Illinois-Kentucky fluorspar district was again the primary producing area, and production increased over the 1955 output in most

of the other States.

Illinois continued to be the leading fluorspar-producing State; it supplied about 54 percent (178,300 short tons) of finished fluorspar, including 124,400 tons of flotation concentrate, compared with 166,400 tons shipped in 1955, including 112,900 tons of flotation concentrate. Production was maintained throughout the year by the major producers. Humm Mackey-Hicks Creek Fluorspar Mining Co. installed a flotation plant on its property during the year. Equipment was purchased from Inland Steel Co., which had suspended its fluorspar operation in June 1954. J. W. Patton & Sons, Elizabethtown, began production from a newly developed fluorspar mine in A 200-foot shaft was sunk to reach the ore. Pope County.4 reported that in December New Jersey Zinc Co. began drilling operations at the Elmer Vineyard property on the Lee fault in Hardin County near the Lee mine southeast of Karber's Ridge. The Aluminum Company of America discovered two new fluorspar ore bodies at the Extension Works, which had been idle since 1922.6 The extent and nature of the discovery were not yet determined, and further exploration was planned.

Production in Kentucky increased to 14,865 tons of finished fluorspar, an increase of about 67 percent over the 1955 output (8,899 tons). Pennsylvania Salt Manufacturing Co. began operations in May from its new Dyer's Hill mine in Livingston County.7 The mine and mill were operated by Calvert City Chemical Co., a whollyowned subsidiary incorporated for that purpose in 1955. A 273-foot shaft to a new bedded deposit was completed on the Aluminum Company of America's Shouse-Skelton property 5 miles from Joy in

Livingston County, but immediate mining was not planned.8

Montana produced the second largest amount of fluorspar in 1956, supplying 59,800 tons of Metallurgical grade from the Cummings-

<sup>Engineering and Mining Journal, vol. 158, No. 4, April 1957, p. 142.
Rock Products, vol. 60, No. 2, February 1957, pp. 62, 66.
Engineering and Mining Journal, vol. 158, No. 3, March 1957, p. 141.
Engineering and Mining Journal, vol. 157, No. 9, September 1956, p. 164.
Herod, Buren C., Fluorspar Demands of Pennsalt Plant Met by New Mine, Expanded Mill: Pit and Quarry, vol. 49, No. 3, September 1956, pp. 71-74.
Engineering and Mining Journal, vol. 158, No. 3, March 1957, p. 141.</sup>

Roberts property at Crystal Mountain, Ravalli County. A fluorspar discovery, stated to be of considerable importance, near the Idaho-Montana border at the headwaters of Fish Creek in southern Mineral County was reported.9 Development of the property was begun in August by the Finlen & Sheridan Mining Co.

TABLE 3.—Shipments of domestic fluorspar, 1955-56, by State of origin

	1 1 1	1955		1956			
State	Short	Val	ue	Short	Value		
	tons	Total	Average per ton	tons	Total	Average per ton	
Illinois Kentucky Utah	166, 337 8, 899 7, 328	\$7, 838, 471 308, 140 151, 140	\$47. 12 34. 63 20. 63	178, 254 14, 865 10, 581	\$8, 469, 450 607, 704 265, 449	\$47. 51 40. 88 25. 09	
Other States: Montana New Mexico	25, 223	1		59, 775	1		
California Nevada Colorado Tennessee	71, 753	4, 292, 647	44. 27	66, 244	4, 914, 574	39.00	
Total	279, 540	12, 590, 398	45. 04	329, 719	14, 257, 177	43. 24	

TABLE 4.—Shipments 1 of domestic fluorspar by State of origin, 1947-51 (average) and 1952-56, with shipments of maximum year and cumulative shipments from earliest record to end of 1956, in short tons 2

		imum ments			Shipr	nents b	y years			Total shi from e	
State		[1947- 51					19	56	record to end of 1956	
	Year	Short	(aver- age)	1952	1953	1954	1955	Short tons	Percent of total	Short tons	Percent of total
TennesseeColorado 6	1956 1944	(3) 65, 209	28 24, 265				}	}566, 244	5 20.1		
California New Mexico Arizona Nevada Idaho	1934 1944 1953 1953 1951	181 42, 973 1, 951 (³)		434	1, 951		71, 753	(5)	(5)	1,438,739	14. 9
Illinois ⁶ Kentucky ⁶ Montana New Hampshire	1951 1941 1956 1917		156	48, 308	47, 244	35, 831	8,899	14, 865		5, 152, 523 2, 818, 259 122, 973 8, 302	29. 1 1. 3
Texas Utah Washington Wyoming	1944 1950 1945 1944	4, 769 18, 936 132 19	. 883		15, 527	4, 403	7,328	10, 581	3. 2	14, 779	
Total	1944	413, 781	309, 294	331, 273	318, 036	245, 628	279, 540	329, 719	100.0	9, 681, 205	100. (

Figures for 1880-1905 represent production.
 Quantity and value figures, by States, for 1880-1925 in Mineral Resources, 1925, pt. 2, pp. 13-14, and for 1910-40 in Minerals Yearbook Review of 1940, p. 1297.
 Figures withheld to avoid disclosing individual company confidential data.
 Synthetic calcium fluoride recovered by TVA.
 Figures for Negada included with Colerate and Temperate

⁵ Figures for Nevada included with Colorado and Tennessee

⁶ Figures on production not recorded for Colorado before 1905, for Illinois before 1880, and for Kentucky before 1886 and for 1888-95. Total unrecorded production (estimated) included in "Total shipments" column as follows: Colorado, 4,400 tons; Illinois, 20,000 tons; and Kentucky, 600 tons.

⁷ Less than 0.05 percent.

⁹ Engineering and Mining Journal, vol. 157, No. 10, October 1956, pp. 152, 156.

Metallurgical-grade fluorspar production in Utah in 1956 increased to 10,600 tons compared with 7,200 tons the previous year. duction of finished fluorspar increased in Nevada compared with 1955, but the output in Colorado declined. Metallurgical-grade fluorspar was produced in Tennessee in 1956.

TABLE 5.—Shipments of domestic fluorspar, 1955-56, by uses

		1	955		1956			
Use	Qua	intity	Valu	Value		antity	Value	
	Percent of total	Short tons	Total	Aver- age	Percent of total	Short tons	Total	Aver- age
Steel and iron foundry Glass Enamel Hydrofluoric acid ³ Miscellaneous. Exported	1 30. 7 7. 8 1. 5 56. 3 3. 7 (4)	1 85, 709 21, 711 4, 327 157, 327 10, 414 52	1 \$2,231,505 874, 296 174, 767 8, 882, 766 425, 009 2, 055	1 \$26. 04 40. 27 40. 39 56. 46 40. 81 39. 52	2 40. 5 6. 2 1. 7 47. 4 4. 2 (4)	2 133, 495 20, 363 5, 700 156, 158 13, 953 50	2 \$3,833,315 837, 640 240, 513 8, 754, 921 588, 619 2, 169	\$28. 72 41. 14 42. 20 56. 06 42. 19 43. 38
Total	100.0	279, 540	12, 590, 398	45. 04	100.0	329, 719	14, 257, 177	43. 24

Previously shown in separate breakdown of steel and iron foundry.
 Includes shipments to GSA and brokers.
 Includes shipments to GSA.
 Less than 0.05 percent.

TABLE 6.—Fluorspar shipped from mines in the United States, by grades and industries, 1955-56, in short tons

Grade and industry	1955	1956	Grade and industry	1955	1956
Fluxing gravel and foundry lump:	84, 756	1 131, 937	Ground and flotation concentrates—Continued Exported	22	20
Nonferrous Miscellaneous Exported	152 561 30	1, 095 127 30	TotalAll grades:	194, 041	196, 530
Total	85, 499	133, 189	Ferrous 2 Nonferrous	85, 709 498	1 133, 495 2, 173
Ground and flotation concen- trates:			Glass and enamel Hydrofluoric acid 3	25, 816 157, 327	26, 063 156, 158
Ferrous 2 Nonferrous	953 346	1, 558 1, 078	Miscellaneous Exported	10, 138 52	11, 780 50
Glass and enamel Hydrofluoric acid 3 Miscellaneous	25, 816 157, 327 9, 577	26, 063 156, 158 11, 653	Grand total	279, 540	329, 719

Includes shipments to GSA and brokers.
 Includes pelletized flotation concentrates.
 Includes shipments to GSA.

The total domestic shipments of gravel and lump fluorspar totaled 125,800 short tons compared with 85,500 tons in 1955. Shipments of flotation concentrate, including pelletized, totaled 203,900 tons compared with 194,000 tons in 1955. Most of the gravel and lump fluorspar was consumed in steel plants and iron foundries. shipments of Metallurgical-grade fluorspar were made to the General Services Administration (GSA) national stockpile. Small tonnages were shipped to ferroalloy plants, secondary metal smelters, and producers of fluxing compounds and for export. Approximately 77 percent of the flotation concentrate shipped was for use in manufacturing hydrofluoric acid or delivered to the national strategic stock-

pile, and about 13 percent was shipped to the glass and enamel industries. The remainder was shipped to aluminum-and magnesiumreduction plants, welding-rod manufacturers, secondary-metal smelt-

ers, and manufacturers of steel and ferroalloys.

Fluorspar reserves in the United States were estimated by the Federal Geological Survey to be 22.5 million short tons containing over 35 percent CaF₂, or the equivalent value in combined fluorspar and metallic sulfides. About 61 percent of the 22.5 million tons is measured and indicated ore; the remainder is inferred ore. Geological Survey's previous estimates were 17.5 million tons in 1954, and 15 million tons in 1952. The Geological Survey-Bureau of Mines estimate in 1945 was 14.5 million tons. It was reported that higher grade reserves, containing at least 35 percent CaF₂ or equivalent in fluorspar and sulfides, could support mine production for 30 years at the 1951-55 average rate of about 750,000 tons of crude ore annually and that additional ore probably will be discovered in sufficent quantity to support this rate of production for at least another decade beyond the 30-year period. New ore is being located, especially in Illinois, Kentucky, Colorado, and Montana, where sizable areas still are not adequately explored.

The major reserves are in the principal producing districts, with the Illinois-Kentucky district holding about 54 percent and the Western States (Colorado, Idaho, Montana, Utah, and Wyoming)

about 36 percent.

CONSUMPTION AND USES

Fluorspar consumption reached a new record of 621,400 short tons compared with 570,200 tons in 1955. Fluorspar for producing hydrofluoric acid—used to manufacture aluminum fluoride and synthetic cryolite (vital raw materials in the aluminum industry), as a major source of fluorine for the chemical industry, and as a catalyst in manufacturing high-octane aviation fuels-increased to 289,500 tons compared with 248,200 tons the previous year. The steel industry consumed about 264,400 tons during 1956 contrasted with 251,200 tons in 1955. Consumption was down approximately 23,000 tons in the third quarter, as a result of the month-long steel strike in July. An average of 5.4 pounds of fluorspar was consumed per long ton of basic open-hearth steel produced in 1956 compared with 4.9 pounds in 1955.

Fluorspar consumed in the glass and enamel industries declined to 36,300 tons compared with 38,500 tons in the previous year. As shown in table 9, fluorspar consumption was reported in 37 States; the 3 largest-Illinois, Ohio, and Pennsylvania-supplied about 41 percent of the total.

STOCKS

Producers reported that stocks of fluorspar at mines and shipping points at the end of 1956 were 21,800 tons of finished fluorspar and 219,400 tons of crude fluorspar.

An increase in stocks from 140,600 tons in 1955 to 189,700 tons at consumer plants was reported. Fluorspar stocks at steel plants increased to 154,300 tons from 107,100 tons the previous year, and at

¹⁰ Geological Survey and Office of Minerals Mobilization, Department of the Interior Press Release P. N. 7413-2, Fluorspar Reserves of the United States Estimated: Nov. 26, 1956, 3 pp.

the December 1956 rate of consumption these stocks approximated a 6-month supply. Changes in stocks at consuming plants in other industries were negligible.

TABLE 7.—Fluorspar (domestic and foreign) consumed and in stock in the United States, by industries, 1955-56, in short tons

	19	955	1956		
Industry	Consump- tion	Stocks at consumers' plants, Dec. 31	Consump- tion	Stocks at consumers' plants, Dec. 31	
Basic open-hearth steel. Electric-furnace steel Bessemer steel Iron foundry Ferroalloys. Hydrofitoric acid ² . Primary aluminum ³ Primary magnesium Glass. Enamel. M iscellaneous.	4, 293 248, 218 2, 071 872	107, 067 4, 049 859 20, 580 1, 281 239 4, 057 888 1, 557	227, 943 35, 967 524 13, 738 1 4, 601 289, 523 1, 682 832 1 30, 861 1 5, 442 1 10, 241	154, 331 2, 744 1, 07- 23, 187 1, 131 200 14, 161 1 936 1 1, 908	
Total	570, 261	140, 577	1 621, 354	1 189, 679	

Partly estimated.

TABLE 8.—Production of basic open-hearth steel and consumption and stocks of fluorspar (domestic and foreign) at basic open-hearth steel plants, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Production of basic open- hearth steel ingots and cast-	-					
ings long tons. Consumption of fluorspar in basic open-hearth steel pro-	72, 392, 000	75, 297, 000	85, 690, 000	70, 625, 000	89, 221, 000	84, 978, 000
ductionshort tons_ Consumption of fluorspar per long ton of basic open-hearth	207, 054	237, 483	252, 442	174, 198	217, 353	227, 943
steel madepounds_ Stocks of fluorspar at basic open-hearth steel plants at	5.7	6.3	5.9	4.9	4.9	5. 4
end of yearshort tons_	106, 700	195, 700	163, 600	95, 200	102, 200	142, 60 0

TABLE 9.—Fluorspar (domestic and foreign) consumed in the United States, by States, in 1955-56, in short tons

			, , , , , , , , , , , , , , , , , , , ,		
State	1955	1956 ¹	State	1955	1956 1
Alabama, Georgia, North Carolina, and South Carolina. Arkansas, Kansas, Louisiana, and Oklahoma California Colorado and Utah Connecticut Delaware and New Jersey Illinois	12, 952 58, 152 25, 727 20, 759 949 67, 701 86, 703	11, 851 76, 859 30, 766 21, 209 1, 148 81, 272 92, 016	Massachusetts Michigan Missouri New York Ohio Oregon and Washington Pennsylvania Tennessee Texas	530 24, 651 3, 668 20, 378 69, 031 2, 097 83, 679 974 19, 138	628 21, 013 3, 987 20, 088 74, 544 1, 682 87, 728 610 16, 318
Indiana Iowa, Minnesota, Nebraska, South Dakota, and Wisconsin Kentucky Maryland	5, 236 23, 021 5, 646	33, 311 5, 234 24, 836 5, 357	Virginia. West Virginia. Undistributed.	56 5, 891	6, 329 4, 522 621, 354

¹ Consumption partly estimated from sample canvass of consumers who accounted for more than 95 percent of total usage in 1955.

² Fluorspar used in making artificial cryolite and aluminum fluoride (aluminum raw materials) is included in the figures for hydrofluoric acid, an intermediate in their manufacture.

³ Figures on consumption represent fluorspar used as a flux; see footnote 2.

TABLE 10.—Stocks of fluorspar at mines or shipping points in the United States, by States, at end of year, 1954-56, in short tons

	1954		1955		1956	
	Crude 1	Finished	Crude ¹	Finished	Crude ¹	Finished
ArizonaCalifornia	287 200		1, 300		1, 300	
Colorado Nevada New Mexico	119, 509	1, 077 700	66, 843 14, 091	1, 067 420	} 118, 546	1,017
Illinois Kentucky Montana	32, 941 7, 759 5, 988	18, 128 6, 465	48, 271 7, 272 1, 000	13, 236 8, 716	98, 913	11,748 6,372 2,657
Utah	184, 143	26, 370	300	23, 439	630 219, 389	21, 794

¹ This crude (run-of-mine) fluorspar must be beneficiated before it can be marketed.

PRICES

Prices for Metallurgical-grade and Acid-grade fluorspar improved steadily throughout the year. Prices for Mexican fluorspar advanced slightly. Domestic Metallurgical-grade containing 72½ percent CaF₂ was quoted at \$33 per short ton, f. o. b. shipping point, Illinois-Kentucky, from July 1955 to February 1956, when the price increased to \$35 per ton. In August it advanced to \$39 per ton and again to \$41 in September, with no further advance for the remainder of the year. Metallurgical-grade containing 70 percent CaF₂ was quoted at \$32 per short ton f. o. b. shipping point, Illinois-Kentucky, until February, when the price increased to \$33 per ton early in April, to \$38 per ton in August, and to \$40 per ton in September, where it remained for the balance of the year. Metallurgical-grade containing more than 60 percent CaF₂ was quoted at \$28 per short ton f. o. b. shipping point, Illinois-Kentucky, until February, when the price rose to \$30 per ton, to \$35 per ton in August, and to \$36.50 per ton in September. Pelletized Metallurgical-grade flotation concentrate containing 60 percent CaF₂ was quoted as nominal, f. o. b. shipping point, Illinois-Kentucky, until April, when pellets containing 65 percent CaF₂ were quoted at \$30 to the end of the year.

Quoted prices on foreign Metallurgical-grade fluorspar containing 70 percent effective CaF₂ entering the United States c. i. f. ports, duty paid, was \$34 throughout the year. Mexican Metallurgical-grade fluorspar containing 72½ percent effective CaF₂, all rail, duty paid, f. o. b. border, in January was \$25.75 per short ton and \$26 per ton in February and rose to \$27.75 per ton in September. Prices on this grade, f. o. b. border, on barge, Brownsville, Tex., was quoted at \$27.75 per short ton in January, \$28.50 per ton from February to

September, when the price increased to \$30 per ton.

Ceramic-grade fluorspar containing 93-94 percent CaF₂, calcite and silica variable, and 0.14 percent Fe₂O₃, was quoted at \$41 per short ton, in bulk, f. o. b. Rosiclare, Ill., until May, when the price rose to \$43 and remained steady throughout the balance of the year.

Ceramic-grade fluorspar containing 95 percent CaF₂, was quoted in February at \$45 per short ton, in bulk, f. o. b. Rosiclare, Ill. Quoted prices for this grade in 100-pound bags was \$4 to \$5 per ton above

bulk shipment prices.

Acid-grade concentrate, f. o. b. Rosiclare, Ill., was quoted at \$47.50 per short ton until August, when it rose to \$52.50 per ton and again in September to \$55. In November the prices for this grade were \$52.50 per ton contract and \$55 spot lots. Foreign Acid-grade fluor-spar, c. i. f. United States ports, duty paid, was quoted at \$52.50 per short ton throughout the year.

FOREIGN TRADE 11

Imports.—Imports in 1956 increased to a new high of 485,600 short tons valued at \$11 million, and exceeded domestic output for the fifth consecutive year. Again, Mexico was the principal foreign source, supplying about 65 percent of the total quantity imported. Spain supplied 57,800 tons and Italy 56,300 tons each—about 12 percent of the total. Duty-free imports by the United States Government totaled 48,600 short tons in 1956 compared with 12,400 tons the

previous year.

The Tariff Commissioners, in their report of investigation of section 7 of the Trade Agreements Extension Act of 1951 as amended, split 3 to 3 in their findings of the effect of imported Acid-grade fluorspar upon the domestic producing industry. President Eisenhower, on March 20, 1956, accepted the position of the three who held that escape-clause relief was not warranted at this time. The other three commissioners, although they found no serious injury at present, did find a threat of such injury and recommended that the 1951 General Agreement on Tariffs and Trade (GATT) tariff concession rate of \$1.875 per short ton on Acid-grade fluorspar be withdrawn in full. This report was separate and distinct from the domestic industry's application for a hearing before the Director of the Office of Defense Mobilization (ODM) under the national security amendment of the Trade Agreements Extension Act of 1955, on whether fluorspar imports threaten to impair the national security by making it difficult for them to maintain their properties in operating status, since they cannot meet low-cost foreign production.

A hearing on the question of whether fluorspar imports threaten the national security was scheduled for June 27, 1956, between the domestic producers, interested parties, and the Director of ODM. At the request of the domestic producers, the hearing was postponed by ODM until September 13.¹² The delay was sought as legislation before Congress, in part, called for the purchase of about 250,000 tons of Acid-grade fluorspar. In July this legislation became Public Law

Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, of the Bureau of Mines, from records of the Bureau of the Census.
 U. S. Department of Commerce, Foreign Commerce Weekly, vol. 56, No. 2, July 9, 1956, p. 20.

733—the Domestic Mineral Purchase Program—authorizing the United States Department of the Interior to begin purchasing 250,000 tons of newly mined domestic Acid-grade fluorspar or until December 31, 1958, whichever occurs first, thus to provide temporary assistance to producers to enable them to adjust production to normal competitive market conditions. A base price of \$53 per short dry ton was established, with bonuses and penalties for material either above or below national stockpile specifications P-69a dated February 13, 1952. On July 31, 1956, and retroactive to July 19, the Department of the Interior delegated the authority to purchase this material to the General Services Administration (GSA).

There were few purchases of the Acid-grade material by GSA at first, but after the specifications were modified in January 1957 the volume increased. Effective January 14, 1957, the maximum sulfide-sulfur content was raised to 0.10 percent, and the minimum CaF₂ content was placed at 97 percent, with no substitution of CaCO₃ permitted. Meanwhile, the hearing rescheduled for September 13 before ODM by the domestic producers was again deferred to November 12 at their request to evaluate the effect of this recently authorized purchase program upon the industry. The investigation by ODM of

Acid-grade fluorspar imports was expected to be dropped. 13

Overseas purchases of fluorspar for the defense stockpile were ordered in June by ODM to halt deliveries pending a study of the possibility of obtaining the mineral from domestic sources. A premium purchase program for domestic Metallurgical-grade fluorspar at \$5.50 per ton above market prices was announced in July by the ODM. National stockpile specifications P-69b, dated January 24, 1951, were to be used for purchasing this material. Neither quantitity nor time restrictions were announced. Based upon an apparent historical price differential, the price for purchases by GSA containing 72½ percent effective fluorspar f. o. b. Illinois and Kentucky was set at \$39.50 per short ton and \$33.50 per ton from western producers. Prices for 70 and 60 percent effective CaF₂ were proportionally lower in the respective areas. Following protests from western producers a uniform price of \$39.50 was established on January 7, 1957, by ODM and GSA for 72½ percent effective CaF₂, \$38.50 for 70 percent effective CaF₂, and \$34.50 for 60 percent effective CaF₂. No purchases were made under this program until late in the year.

¹³ Oil, Paint and Drug Reporter, Fluorspar Investigation May Be Abandoned Soon: Vol. 170, No. 15, Nov. 8, 1956, p. 3.

TABLE 11.—Fluorspar imported for consumption in the United States in 1956, by countries and customs districts

[Bureau of the Census] Containing not more than 97 percent Containing more Total than 97 percent calcium fluoride than 97 percent calcium fluoride Country and customs district Value Short Value Short Value Short tons tons tons North America: Canada: Laredo_____ Philadelphia_____ \$1,418 1,365,029 17 34, 654 \$272 1, 365, 029 72 \$1,146 89 34, 654 72 1,146 34, 743 1, 366, 447 34,671 1, 365, 301 Mexico: 305 4, 342 235, 377 Arizona.... Buffalo.... 235, 377 917 15, 745 15, 745 271 43 39, 532 11 32 Dakota... 214, 703 1, 675 2, 687, 662 1, 471 604, 504 819. 207 8, 259 31, 273 El Paso. 819, 207 1, 675 4, 172, 722 2, 127 2, 403 155, 209 602, 317 1, 714 67 67 Galveston __ 213, 285 91,687 121, 598 1, 485, 060 Laredo Los Angeles... 91 59 32 656 2, 403 135, 245 602, 317 164 8, 628 37, 006 164 Massachusetts... 9, 310 682 19,964 Michigan Michigan.... Philadelphia.... 37,006 San Diego.... 62 1,714 62 100, 827 2, 927, 460 214, 783 3,070,550 315, 610 5, 998, 010 Total.____ 7, 364, 457 Total North America... 135, 498 4, 292, 761 214,855 3,071,696 350, 353 Europe: Germany, West: Philadelphia 715, 843 21,042 715, 843 21,042 Italy: Maryland 14, 003 447, 283 33, 814 1, 397, 129 447, 283 14,003 33, 814 1, 449, 569 1, 166 41, 177 Michigan. 1, 166 39, 573 1.604 52, 440 Philadelphia.... 56, 346 1, 930, 666 1, 878, 226 1,604 52, 440 54, 742 Spain: 74, 083 167, 507 5, 443 52, 357 74, 083 1, 139, 527 Maryland..... Philadelphia.... 5, 443 12, 600 39, 757 972,020 39, 757 972,020 18,043 241, 590 392 57,800 1, 213, 610 Total..... United Kingdom: New York... 392 3, 566, 089 135, 199 3, 860, 511 Total Europe 115, 541 19,658 294, 422 Grand total: 1956.... 251, 039 205, 087 ¹ 7, 858, 850 ¹ 6, 343, 333 234, 513 158, 333 1 3, 366, 118 1 2, 197, 098 1 11, 224, 968 1 8, 540, 431 1955____ 363, 420

TABLE 12.—Imported fluorspar delivered to consumers in the United States, 1955-56, by uses

	10	აა–აც, ს <u>ა</u>	uses				
		1955 1		1956 ¹			
Use	Selling price at tide- water, border, or f. o. b. mill in the United States, in- cluding duty			Short tons	Selling price at tide- water, border, or f. o. b. mill in the United States, in- eluding duty		
		Total	Average		Total	Average	
Steel	164, 480 193, 796 18, 777 10, 577	\$4, 459, 335 8, 330, 123 735, 546 286, 471 13, 811, 475	\$27. 11 42. 98 39. 17 27. 08	274, 348 170, 739 16, 802 13, 553 475, 442	\$7, 402, 284 7, 803, 732 610, 071 410, 019 16, 226, 196	\$26. 98 45. 71 36. 31 30. 25 34. 13	

¹ Partly estimated.

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

TABLE 13.—Fluorspar reported by producers as exported from the United States, 1947-51 (average) and 1952-56

Year	Short	v	Value Year		Short	Value		
tons	Total	Average		tons	Total	Average		
1947–51 (average) 1952	897 665 695	\$36, 515 31, 173 36, 906	\$40. 71 46. 88 53. 10	1954 1955 1956	479 52 50	\$23, 838 2, 055 2, 169	\$49. 77 39. 52 43. 38	

Exports.—The Bureau of the Census, United States Department of Commerce, reported total exports of 197 short tons valued at \$31,275. Canada received the bulk of the exports; Colombia, Netherlands, and France received smaller shipments.

TECHNOLOGY

Pennsylvania Salt Manufacturing Co. expanded its milling facilities at its Mexico, Ky., mill to handle the crude ore from Dyer's Hill.¹⁴ Overflow from the classifier, containing solids below 150-mesh, was pumped to the new section of the mill, where new flotation units removed lead and zinc sulfides. The flotation circuit was a battery of 9 cells where lead was removed, followed by an 8-cell zinc unit. Concentrates were dewatered in the thickeners and then with 6-foot disk filters.

Lead-zinc flotation plant tailings were pumped to a new 50-foot thickener to remove sulfide flotation reagents, and the underflow was transferred back to the older section of the plant, where the

fluorspar was recovered.

The Minerva Oil Co. found that breast stoping, locally called room-and-pillar mining, provided the flexibility necessary in mining its irregular ore bodies. Pillars were left on about 25-foot centers. Estimated recovery was about 70 percent, but it was expected that 95 percent will be reached when pillars are robbed. Standard highway-type end-dump trucks hauled the ore from the slushing ramp in the Crystal mine to the primary crusher at the mill. Victory properties purchased by Minerva in 1955 were reached by truck from the Defender mine, which was leased to provide access to the surface.

At the Crystal mill of the Minerva Co. a new lead-zinc circuit was installed to process high-sulfide ores. Future mining operations, as indicated by development drilling, will encounter substantial quantities of galena and sphalerite in the fluorspar. When the high-sulfide ores are mined, the dense, medium circuit will serve as a preconcentrator. The sink product will be high in lead and zinc and will have to be upgraded by grinding and flotation.

14 Work cited in footnote 7.

¹⁵ Schenck, George, Minerva's Crystal Fluorspar Operations "Buck the Tide": Rock Products, vol. 60, No. 1, January 1957, pp. 96, 98, 100, 102, 104-105.

An electrolytic apparatus for manufacturing fluorine was described in two patents.16 Another patent described a process for recovering mineral values of phosphorus, fluorine, calcium, and uranium from phosphate rock or similar phosphate material.¹⁷ The ground rock is heated with a reducing agent in an atmosphere containing chlorine. Fluorine and phosphorus volatize, calcium forms calcium chloride, and any uranium present remains in the siliceous residue as a water-soluble uranvl chloride.

Dowell, Inc., was reported to have developed an oil-well cementing material, "Detex," consisting of phosphoric acid, an aluminous material, and a fluoride accelerator. It has a controlled setting time, does not shrink on hardening, and will tolerate more than 20-percent con-Although effective at temperature tamination by drilling muds.18 ranges from 60° to 300°, the product was reported to be particularly applicable in ranges from 110° to 215°. Cementing is hastened because

pressure has no effect on the setting of the material.

Late in the year Pennsalt completed its plant at Calvert City, Ky., for producing Isotron aerosol propellants and refrigerant gases. 19 Under construction is a second Isotron unit scheduled for completion in 1957.

The development of a device by two Public Health Service scientists to reduce the cost of fluoridizing city water supplies may greatly modify future market patterns for sodium silicofluoride.20 This new type of waterworks equipment, a dissolver, reportedly makes the fluoride in fluorspar available in the presence of aluminum sulfate, a chemical now used as a clarifying agent. After the fluorspar is dissolved by an alum solution it is fed into the water by a solution feedera machine commonly used in water-treatment processes. The present cost of adding fluoride compounds to water (according to the agency) averages 10 cents per person per year in most sections of the country. The cost could be cut to about 3 cents by this new process.

Minnesota Mining & Manufacturing Co. developed and is producing a textile-treating agent based on a fluorochemical latex emulsion.21 The so-called Scotchgard treatment protects fabrics from water, oil, and combination staining materials, with no visible effect on the fabric's appearance. The fluorochemical is fixed in place on the fabric by heat treatment at 220° to 300° F. for 5 to 10 minutes, after the

emulsion is diluted in water before application.

¹⁶ Gall, J. F., and Miller, H. C. (assigned to Pennsylvania Salt Manufacturing Co.), Fluroine Cells:
U. S. Patents 2,739,114 and 2,739,115, Mar. 20, 1956.
17 Hollingsworth, C. A. (assigned to Smith-Douglas Co., Inc), Treatment of Phosphate Rock To Recover Phosphorus, Fluorine, Calcium and Uranium: U. S. Patent 2,773,736, Dec. 11, 1956.
18 Rock Products, vol. 59, No. 2, February 1956, p. 19.
19 Chemical and Engineering News, vol. 35, No. 3, Jan. 21, 1957, p. 20.
20 Oil, Paint and Drug Reporter, Fluorspar Water Fluoridation a Cloud in Silicofluoride Future as PHS Develops Dissolver: Vol. 171, No. 3, Jan. 21, 1957, pp. 5, 41.
21 Chemical and Engineering News, Stain-Resistant Clothing Near at Hand: Vol. 34, No. 43, Oct. 22, 1956, p. 5196. p. 5196.

On September 18 the Materials Advisory Board, National Academy of Sciences, at the request of the Emergency Procurement Service (now Defense Materials Service), GSA, convened to consider two questions: (1) Whether the present specification for Metallurgical-grade fluorspar to be purchased for the national stockpile should stand as now written, should be relaxed, or should be made more rigid; and (2) whether Acid-grade flotation concentrate could be used for general metallurgical purposes in an emergency. It was brought out in the discussion that Acid-grade flotation concentrate costs \$16-\$18 per ton more than Metallurgical-grade fluorspar. The panel felt that Acid-grade fluorspar could be effectively used in gravel sizes for metallurgical purposes. A pelletized flotation concentrate would not be blown out the stack, as would flotation fines.

As an outgrowth of the discussion on changes in the Metallurgical-grade stockpile specifications, P-69b, the GSA issued, on May 22, 1957, revised specifications P-69b-R. The only change was in the size

requirement, in that the material must pass a 1%-inch sieve.

Chemical requirements for lead, zinc, and sulfur remained the same, because it was brought out in the discussion that zinc would fume off and was not a problem and that lead in the form of an oxide or sulfide in the presence of iron is not stable and would be reduced in the furnace to metallic lead and settle to the bottom. Should the permissible content of lead be increased, the rate of lead accumulation on the bottom of the furnace would increase and thereby shorten the life of the furnace bottom.

Increasing the percentage of natural fines in the specifications was also discussed, but it was felt that additional fines in Metallurgical-grade material would not be beneficial, as they would be lost in the

stack gases.

WORLD REVIEW

NORTH AMERICA

Canada.—Construction was to have begun immediately on Canada's first liquid hydrofluoric acid plant by Nichols Chemical, Ltd., an affiliate of the General Chemical Division of Allied Chemical and Dye Corp., at its Valleyfield, Quebec, works.²³ The plant is intended to supply acid to the metal, glass, petroleum, atomic energy, and other industries, as well as to satisfy the company's own requirements that were formerly imported from the United States and Europe.

Materials Advisory Board, National Academy of Sciences, Meeting of the Panel on Fluorspar: Sept. 18, 1956, 23 pp.
 Chemical and Engineering News, HF Plant for Canada: Vol. 34, No. 42, Oct. 15, 1956, p. 5032.

TABLE 14.—World production of fluorspar, by countries, 1947-51 (average) and 1952-56, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:	68, 190	82, 187	88, 569	118, 969	128, 114	151, 738
Mexico (exports)		198, 680	173, 163	146, 198	200, 220	360, 117
United States (shipments)		331, 273	318, 036	245, 628	279, 540	329, 719
Total	445, 681	612, 140	579, 768	510, 795	607, 874	841, 574
South America:						
Argentina	3, 743	7,882	3 8,000	14, 308	12, 125	14, 330
Bolivia (exports)	_ 137	88	21	213	569	300
Brazil				4 487		
Total	4, 614	7, 970	3 8, 000	15, 008	12, 694	14, 630
Europe:						
Belgium	3 4, 400	(5)	(5)	(5)	(5)	(5) 89, 287
France	45, 661	78, 836	69, 702	81,788	71,650	89, 287
Germany:						
East 3		90,000	90,000	90,000	90,000	90,000
West	- 76, 816	161, 566	177, 719	190, 916	176, 370	170, 858
Italy	33,622	63, 546 750	83, 544 777	85, 041 488	110, 694 317	136, 678 198
Norway Spain		68, 899	56, 426	81, 032	73, 653	3 66, 000
Sweden (sales)	3, 628	4, 926	4,773	4, 140	1, 459	97
United Kingdom	74, 615	84, 922	88, 624	92, 607	96, 235	80, 708
Total 3	_ 334, 000	560,000	575, 000	630, 000	625, 000	640, 000
Asia:						
Japan	1,661	4, 356	7, 206	6,771	5, 738	8, 91
Korea Republic of	_ 3.058	6, 121	12, 139	9, 780	11, 111	3, 43
Turkey U. S. S. R. ³ 6	_ 110	277	110			
U. S. S. R. ³ 6	83,600	90,000	90,000	110, 000	110,000	110, 00
Total 1 3	94, 000	110,000	140, 000	170, 000	180,000	190, 00
Africa:			100			
French Morocco	7 543	3,642	3, 188	1, 188	11	17
Rhodesia and Nyasaland, Federation		, ,,,,,,	,	, -,		
of Southern Rhodesia	212		373	120	480	94
South-West Africa	187	4,870	5, 641	3, 063	675	
Tunisia	_ 201	2, 733	2, 249			
Union of South Africa	7, 199	11, 343	16, 029	21, 996	32, 839	35, 06
Total	8, 342	22, 588	27, 480	26, 367	34, 005	36, 17
Oceania: Australia	747	96	373	21	316	14
World total (estimate) 1	887, 000	1, 300, 000	1, 330, 000	1, 350, 000	1, 460, 000	1, 720, 00

¹ In addition to countries listed, fluorspar is produced in China and North Korea. Estimates by author of

chapter included in the total.

2 This table incorporates a number of revisions of data published in previous Fluorspar and Cryolite chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

Mexico.—Production of fluorspar increased considerably in Mexico in 1956. Private exploration was intensive.24

American Smelting and Refining Co.'s Encantada's mill at Agujita, Coahuila, operated throughout the year. The company's decision in 1953 to enter the fluorspar picture in Mexico and its current operation were described in an article.25

³ Estimate.

Exports.
5 Data not available; estimate by author of chapter included in total.
6 U. S. S. R. in Europe included with U. S. S. R. in Asia, as the deposits are predominantly in Asiatic Russia

⁷ Average for 1948-51.

Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 3, March 1956, p. 26.
 Pit and Quarry, American Smelting and Refining Processing High-Grade Ore in Mexican Fluorspar Mill: Vol. 49, No. 6, December 1956, pp. 116-122.

The two largest fluorspar mines operating in Mexico produced more than 9,000 tons per month of Metallurgical grade. 26 Production from these near-adjacent mines in the State of San Luis Potosi was

exported to United States steel mills.

Although similar geologically, one mine, La Consentida, was opencut and the other, Las Cuevas, had underground operations. two are related to a contact between Cretaceous limestone and later Tertiary rhyolite flows. At both mines fluorspar occurs as a replacement in the brecciated rhyolite near the contact, and at La Consentida

it is also found replacing the limestone.

La Consentida, operated by Minerales y Metales Industriales, wholly owned subsidiary of Pennsalt International Corp., Philadelphia, is 40 miles southeast of the city of San Luis Potosi. Production was at a rate of 50,000 tons a year. The deposit, an outcrop, was mined on 8 benches each 200 feet high and 300 to 400 feet long. Mill expansion at the mine was completed in August by the Denver Equip-Output was hauled to San Luis Potosi for grading, sizing, and assaying.

Originally begun as an opencut, operations at Las Cuevas, onehalf mile south of La Consentida, were shifted to underground roomand-pillar mining. Two levels, at 90 and 150 feet, were worked, and a third level at 210 feet was developed. Las Cuevas was owned by a group of individuals, principally Ralph Miner. The mine output, which reached about 60,000 tons a year, was sized in a grizzly at the mine and was hauled to San Luis Potosi, where it was reduced in a jaw crusher.

EUROPE

United Kingdom.—The Weardale Lead Co., Ltd., decided that its Wolfcleugh mine in County Durham could not be worked economically until it is electrified.27 As a result the pumps were pulled, and the machinery was placed on a care-and-maintenance basis. Although some 2,000 tons of fluorspar was mined from the Barbary mine, considerable additional development was undertaken, with favorable results expected later in the year. Initial investigations in lower levels at the Stotsfieldburn mine were not encouraging, due to the quality of the fluorspar; however, there are now considerable quantities of indicated reserves from this development.

Analysis of the operation of several fluorspar-beneficiating mills

installed in recent years in County Durham were reported.28

The following fluorspar-production data for 1956 were furnished to the embassy by the board of trade. Acid-grade, 22,480 short tons; Metallurgical-grade, 69,096 tons; and ungraded or crude, 10,960 tons.29 The total of these figures is considerably larger than that shown in table 14. Production figures for 1955 supplied by the board of trade showed 20,954 tons of Acid-grade, 60,536 tons of Metallurgical-grade, and 14,747 tons of ungraded. These figures correspond reasonably well with Bureau of Mines official statistics.

<sup>Engineering and Mining Journal, vol. 157, No. 9, September 1956, p. 216.
Mining World, vol. 18, No. 4, April 1956, pp. 63-64.
Robinson, H. Y., Fluorspar—Galena-Ore Concentration: Mine and Quarry Eng., vol. 22, No. 11, November 1956, pp. 462-470.
U. S. Embassy, London, England, State Department Dispatch 3027: May 28, 1957, p. 9.</sup>

AFRICA

Union of South Africa.—Exports in 1955 totaled 17,376 short tons valued at £103,002 (£1 equals U.S. \$2.80) f. o. b. from the Union of South Africa.30 Japan, Sweden, and Canada received a total of 14,509 tons; the remainder was shipped to Netherlands, Kenya,

Finland, Rhodesia, Belgian Congo, Norway, and Belgium.

Seven fluorspar producers were reported in 1955: Fluorspar Export (Pty.), Ltd., Johannesburg (direct exporter); Frank Martin & Co. (Pty.), Ltd., Gemiston; Kelly Syndicate, Lydenburg; Leeuwbosch Lead Mines, Ltd., Thabanzimbi, Transvaal; Rhenosterfontein Fluorspar Mines (Pty.), Ltd., Zeerust; G. R. Steenkampt (Antoinette mine), Vryheid, Natal; and Vergenoeg Mining Co., c/o General Overseas Trades (Pty.), Ltd., Johannesburg.

In 1954 only 7,165 tons valued at £47,784 was exported, Japan

receiving more than half of the fluorspar shipped.

ASIA

India.—Mineral surveys undertaken by the State Government in Bikaner, Rajasthan, indicate about half a million tons of fluorspar in Indokabala, Bikaner district.³¹ Additional prospecting was undertaken in the area. Deposits were located in 1955 at Mandwakapal in the Dungarpur district of Rajasthan as a result of a survey conducted by the State.

Japan.—Imports of 2,172 short tons valued at 16,910,000 yen (360 yen equals U. S. \$1.00) received from Communist China in

September were reported.32

Pakistan.—Fluorspar was discovered in the vicinity of Quetta, and the deposit may be developed to meet the requirements of a local steel plant, the fluorspar needs of which otherwise must be imported.33

Thailand.—Plans were underway for exploiting minor deposits

of fluorspar and other minerals that were discovered in 1956.34

OCEANIA

Australia.—The production of fluorspar in Australia increased due to the reopening of the Pine Mountain mine and to higher prices.35

CRYOLITE

The deposit at Ivigtut, Greenland, continued to be the only commercial source of cryolite. Synthetic cryolite was produced in the United States by the Aluminum Company of America at East St. Louis, Ill., and the Reynolds Metals Co. at Bauxite, Ark. These two companies and the Kaiser Aluminum & Chemical Corp., recovered cryolite from the scrap-pot linings of aluminum-reduction cells.

Cryolite prices quoted throughout the year in the Oil, Paint and

Drug Reporter were as follows:

Cryolite, nat., indust., bgs., c. l., works, 100 lb., \$13.00; l. c. l., works, 100 lb.,

Cryolite, insecticides, dealers, bgs., c. l., 36 dlvd. 100 lb., \$16.75; l. c. l., dlvd., 100 lb., \$17.75.

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 1, January 1957, pp. 19-20.
U. S. Embassy, New Delhi, India, State Department Dispatch 938: Jan. 31, 1957, p. 4.
U. S. Embassy, Tokyo, Japan, State Department Dispatch 685: Jan. 10, 1957, Incl. 3, p. 2.
U. S. Embassy, Karachi, Pakistan, State Department Dispatch 549: Feb. 18, 1957, p. 5.
U. S. Embassy, Bangkok, Thailand, State Department Dispatch 694: Apr. 4, 1957, p. 1.
U. S. Consulate, Melbourne, Australia, State Department Dispatch 102: Jan. 31, 1957, p. 2.
Not quoted after Oct. 29, 1956.</sup>

These listings, representing the lowest prices, were first-hand quotations prevailing on large lots, f. o. b. New York, and did not represent

bid and asked prices or a range over the week.

During the year several patents were issued. One described a method of recovering bath values such as cryolite, fluorspar, alumina, and other compounds from aluminum-reduction cells.37 Two patents described utilization of cryolite, fluorspar, industrial diamonds, abrasives, and other materials in bonded grinding wheels and abrasives. 28 Another patent pertained to the use of mineral materials, such as asbestos, cryolite, graphite, kaolin, silica, and talc as welding-rod coating compositions.39

Cryolite imports for 1947 through 1956, shown in table 15, do not differentiate between natural and synthetic cryolite, but it is believed that most of the shipments from countries other than Greenland and

Denmark were of synthetic cryolite.

Natural and synthetic cryolite exports in 1956, totaling 213 short tons valued at \$58,471, were shipped largely to Canada and Mexico; India and Portugal received smaller shipments.

TABLE 15.—Cryolite imported for consumption in the United States, 1947-51 (average), 1952-54 (totals), and 1955-56, by countries, in short tons [Bureau of the Census]

Short tons Value 1947-51 (average) ____ 20, 170 38, 373 29, 457 21, 141 \$1, 250, 998 3, 124, 801 3, 528, 148 2, 215, 887 1955 North America: Greenland 1 9,772 432,063 Europe: Denmark 441 29, 108 France_ 3, 316 817, 392 1, 201, 230 709, 968 Germany, West 5, 103 3, 348 Italy_ 12, 208 2, 757, 698 21,980 3, 189, 761 1956 North America: Greenland 1 12, 212 507,650 Europe: Denmark 41, 271 2, 204 5, 307 2, 866 526, 661 1, 200, 760 624, 265 748 Germany, West Spain_ 10,910 2, 393, 705 23, 122 2,901,355

¹ Crude natural cryolite.

Clukey, W. H. (assigned to Kaiser Aluminum & Chemical Corp.), Process of Recovering Cryolite, Alumina, and Other Bath Values: U. S. Patent 2,732,283, Jan. 24, 1956.
 Stone, H. N. (assigned to Norton Co., Worcester, Mass.), Resinoid Bonded Cutting-Off Grinding Wheels and Method of Cutting Metals: U. S. Patent 2,729,039, Jan. 3, 1956.
 Zalud, C. A. (assigned to Fitan Abrasive Co., Chicago, Ill.), Abrasive Article: U. S. Patent 2,734,813, Feb. 14, 1956.
 Wasserman, R. D. (assigned to Eutectic Welding Alloys Corp., New York, N. Y.), Electric Gouging Tool: U. S. Patent 2,761,796, Sept. 4, 1956.

Gem Stones

By John W. Hartwell 1 and Eleanor B. Waters 2

EM-STONE production in the United States in 1956 was \$925,000, a 13-percent increase over 1955, due largely to the reported increased production of agate, diamond, jade, and turquois. The reported United States production did not include considerable quantities of gem materials and mineral specimens gathered by individuals for their private collections.

During the year nationally distributed magazines and newspapers continued to publish articles on gem stones and reports of valuable discoveries by individuals, stimulating the hobby or 'industry' of gem-stone collecting and effecting increased production in many

States.

In 1956 the Rocky Mountain Empire Investors acquired the famous Yogo sapphire mines in Judith Basin County, Mont., from the New Mine Sapphire Syndicate owned by a British concern. These deposits produced an estimated \$20 million worth of gems during 37 years of operation

On March 10, 1956, the Federal Trade Commission put into effect rules on the trade practices of the diamond industry, providing controls on sales and on advertised offers for sale to prospective purchasers of any diamonds that have been artificially colored or tinted by irradiation, heating, or any other means without disclosure.

The United States Atomic Energy Commission announced on March 17, 1956, that requests for irradiation of gems would be treated in the same manner as requests for irradiation of other materials.³

DOMESTIC PRODUCTION

In 1956 quartz gems and mineral specimens comprised approximately 50 percent of the value of all gem materials collected. Jade and turquois followed in importance, with 11 and 8 percent, respectively. Gem diamonds, being reported for the first time in several years, were credited with over 1.5 percent of the total. Oregon was again the leading producing State, with a 67-percent increase over 1955. Other States that reported substantial increases were Arkansas, Arizona, Montana, New Mexico, New York, North Carolina, South Dakota, Utah, Washington, and Wyoming.

¹ Commodity specialist.

² Research assistant. ³ Atomic Energy Commission, Commission Announces Gem Irradiation Policy: Release 798, Mar. 17, 1956, 2 pp.

TABLE 1.—Estimated production of gem stones in the United States for 1955 and 1956, in thousand dollars

State	1955	1956	State	1955	1956
ArizonaArkansas		104 25	New Jersey	(2)	(2)
California	(1)	90	New Mexico New York	25 (2)	30
Colorado Florida	48	30	North Carolina	_ (2)	1
Florida Georgia	(2)	(2)	Oregon Pennsylvania	150	(2)
Idaho Maine	5	(1)	South Dakota	7.4	10
Maryland	5	(2)	South Dakota Texas Utah	115	118
Michigan	(2)	(2)	Virginia	(2)	10
Minnesota Montana		(2) 35	Washington	65	75
Nebraska	2.4	3	Other States and Territories	57 226	75 20
Nevada New Hampshire	(1)	50		-	
New Hampshire	3	(2)	Grand total	818	92

TABLE 2.—Localities in the United States where gem materials were reported to have been found in 1956

State, county, and locality	Gem material	State, county, and locality	Gem material
ALASKA		ARIZONA—continued	
Shungnak district: Ko-	Jade.	Yuma:	
Chichagof district: Petersburg.	Agates and petrified wood.	Quartzsite	agate, desert roses, and
ARIZONA			quartz crystal. Striped obsidian and jasper.
Apache: St. Johns	Agate.	Yuma	Petrified iron wood. Rhyolite and agate.
Cochise: Bisbee	Shattuckite.	ARKANSAS	Tony once and again.
Claypool Coolidge Dam	Agate	Garland:	
Four Peaks areaGlobe	Agate, chrysocolla, and	Crystal Springs Mountain Valley	Do.
Miami Salt River Canyon	serpentine. Turquois.	Hot Spring: Hot Spring Mountgomery: Mount	Do. Do.
San Carlos Reserva- tion.	Serpentine. Peridot.	Ida. Pike: Murfreesboro	Diamond.
Graham: Black Hills Greenlee:	Chalcedony.	CALIFORNIA	
Ash Springs Canyon Black Jack	Agate. Do.	Calaveras: Copperopolis Colusa: Sulphur Creek	Copper. Onyx (chalcedony).
Clifton	D ₀ .	Fresno: Coalinga	Chert and petrified wood.
Duncan Limestone Canyon	Agate and jasper	HumboltImperial:	Jasper (Chalcedony).
Mule Creek		Calexico Ogilby	Garnet and kvanite ore
Sunset Peak Maricopa:	Do.	Plaster City Do	Fossil ovstershell.
Saddle Mountain	chalcedony.	Inyo:	agate.
Superstition Mountains. Mohave: Chloride	Agate. Chalk turquois.	Inyo Mountains Panamint Mountains_	Quartz crystal. Bloodstone.
Navajo: Holbrook	var quoto.	Tecopa Kern:	Quartz (amethyst).
Petrified Forest Pima: Tuscon Moun-	Do.	Boron Rosamond	Jasper. Rhodonite.
tains. Pinal: Mammoth-Som-	Agate.	Lake	Do. Cinnabar, obsidian, jas-
brero. Yavapai	Agate, jasper, chromium	Marin: Bolinas Mendocino: Covelo	
- a rapat	spar, and white jade.	Modoc: Davis Creek	Obsidian.

Included in other States and Territories.
 Figures of less than \$1,000 included in "Other States and Territories."

TABLE 2.—Localities in the United States where gem materials were reported to have been found in 1956—Continued

State, county, and locality	Gem material	State, county, and locality	Gem material
california—continued		COLORADO—continued	
Mono: Hot Creek Monterey:	Geode.	Montrose: Long Park	Dinsoaur bone.
King City	Limestone. Jade.	Naturita Canyon Park: Hartsell	Jasper. Moss opal.
Jade Cove, near Big Sur.	Jace.	Saganche	The state of the s
Napa: Manhattan mine	Onyx.	Carnero Creek Del Norte	Agate. Moss-plume agate.
Placer	Jasper (chalcedony). Agate.	La Garita Twin Mountains	Agate and ametnyst.
Riverside:	log ₹ in the control of the control	Villa Grove San Juan: Eureka	Turquois. Rhodonite.
Blythe Chuckawalla Moun-	Fire agate. Agate geode.	Sedgwick	Fossil wood and agate.
tains. Wiley Well	Chalcedony, jasper, and	Teller: Cripple Creek	Agate.
San Benito:	geode.	Cripple Creek Crystal Peak area Florrisant	Amazonstone. Amazonite.
Hollister	Benitoite specimens.	Lake George	Amazonite and smoky
DoSan Bernardino:	Jadeite.	FLORIDA	quartz.
Blue Danube mine	Agate. Opalite.	Hillsborough: Tampa	Agatized coral.
Cadiz Kingston Mountains_ Havasu Lake	Amethyst. Blue agate.	GEORGIA	
Ludlow	Moss agata	Towns: Bell Creek	Corundum.
Needles	Petrified palm, blue agate, black palm,	Troup: La Grange	Rose quartz.
37	chalcedony, and jasper. Agate and petrified wood.	Canyon:	
Newberry area	Crawfordite.	Nampa Do	White plume.
Yermo San Diego:	Petrified wood.		Agate.
Mesa Grande	Spessartite garnet. Tourmaline, topaz, and	MAINE Oxford:	
	smoky quartz.	Albany	Rose quartz. Amethyst.
San Francisco: Indian Creek.	Nephrite.		minority su.
San Luis Obispo: Ni- pomo.	Agate.	MARYLAND	Williamsite.
San Mateo Santa Clara: Morgan	Jasper. Do.	Cecil: Conowingo	wintamsite.
нш.	20.	MICHIGAN	
Siskiyou: Clear Creek	Jadeite.	Keweenaw: Keweenaw Peninsula.	Agate and thomsonite.
Happy Camp	Californite. Jade.	MINNESOTA	
Tulare: Sequoia Na- tional Forest.	Crystal (rock).	Lake: Shore of Lake	
tional Polese.		Superior	Do.
COLORADO		MONTANA	
Chaffee:		Custer: Miles City Gallatin:	Agate.
Salida Wellsville district	Aquamarine. Agatized wood.	Gallatin Gateway	Corundum and rose
Do	Agate, onyx, and garnet. Amazonite.	Willow Creek	quartz. Petrified wood and blue
Clear Creek: Buffalo Creek. Custer: Westcliffe	·	Meagher: Fort Logan	agate. Agate.
Douglas: Devil's Head	Agatized wood. Topaz and smoky quartz.	Prairie: Terry Rosebud: Forsyth	Do. Montana agate.
Elbert: Kiowa Fremont:	Petrified wood.	Yellowstone: Billings	Agate.
Garden Park	Alabaster, coprolite, and	NEVADA	
Howard	satin spar. Agatized wood.	Esmeralda:	m
Jefferson: Crystal Peak	Amazonite.	Lone Mountain Do	Turquois. Howardite.
Pine Las Animas: Kim	Amazonstone and topaz. Rose agate.	Humboldt Lander:	Fire opal.
Mesa: Glade Park	Dinosaur bone.	Battle Mountain Cortez Mining district.	Turquois and rhodonite.
Mineral: Amethyst Mine	Amethyst.	Ivanhoe	Turquois. Opalite.
Amethyst Mine Bulldog Mountain	Banded agate. Agate and amethyst.	Lincoln: Empy Mountain	

TABLE 2.—Localities in the United States where gem materials were reported to have been found in 1956—Continued

State, county, and locality	Gem material	State, county, and locality	Gem material
NEVADA—continued		SOUTH DAKOTA—con.	
Mineral: Fish Lake Valley Montgomery Pass Do	Obsidian. Do. Turquois.	Custer—continued French Creek Hells Canyon	Jasper. Teepee agate.
NEW HAMPSHIRE	Turquois.	Pennington: Bad Lands	Blue chalcedony, agate agatized wood, and jasper.
Coos: Bald Face Mountain	Topaz.	Quinn	Petrified wood.
NEW JERSEY		Brewster:	
Passaic: Grove Brook Paterson	Carnelian. Amethyst and prehnite.	AlpineRio Grande RiverEl Paso: El PasoPecos: Hovey	Agate and fire opal. Agate. Do. Do.
NEW MEXICO		Taylor: Abilene	Topaz and smoky quartz
Bernalillo: Mud Springs. Catron:	Desert scenic stone.	UTAH	.
John Kerr Canyon Hidalgo: Red Rock	Agate. Agate and serpentine. Agate.	Emery: Castle Dale Garfield: Escalante	Agate. Petrified wood.
Luna: Deming Sierra: Engle Socorro: Socorro	Do. Do.	HatchGrand: Moab	Onyx. Agate.
Valencia: Laguna Reservation	Selenite, jasper, and	Juab: Thomas Range Kane:	Do.
NEW YORK	agate.	Kanab	Petrified wood and sep tarian nodule.
Herkimer: Middleville	Quartz. Tourmaline.	Orderville	Do. Agate.
Orange: Tuxedo Rockland: Hillburn Warren: North Creek Westchester	Pink garnet. Garnet. Garnet and quartz.	Millard: Black Rock Tooele: Dugway Utah: Lehi Washington: Central	Snowflake obsidian. Geode. Onyx. Agate and jasper.
NORTH CAROLINA		Wayne	Petrified wood, petrified bone, agate, and ob
Avery: Cranberry Buncombe: Balsam Gap Iredell: Statesville Macon:	Epidote and unakite. Kyanite. Rose quartz.	WASHINGTON Kittitas:	sidian.
Burningtown Gap Franklin Mitchell:	Corundum. Do.	Columbia River Klickitat: Lyle	Petrified wood. Agate.
Crabtree Roan Mountain Spruce Pine	Emerald. Unakite. Golden beryl, biotite,	Roosevelt	Petrified wood.
OREGON	and feldspar.	Albany: Bean Ranch	Dendritic agate.
Baker:	Petrified wood.	Carbon	Petrified wood and black jade.
Green Horn	Purple agate.	Absaroka Range	Agate and petrified wood. Jade.
Prineville	Agate and thunderegg. Polka-dot agate.	Dubois Lander Shoshoni	Nephrite. Jasper.
Jefferson:	Carnelian agate.	Sweetwater River	Jade. Agate.
Madras Do Do Do Do Do Do Do Do Do Do Do Do Do	Agate. Thunderegg.	Johnson Natrona	Petrified wood. Agate and petrified wood
Lake: Glass Butte Lane: London Mountain	Obsidian. Blue agate.	ParkSweetwater: Bitter Creek	Do. Oolitic and agatized
Malheur: Sucker Creek	Agate.	Eden	agate.
Do Morrow	Petrified wood. Thunderegg.	Eden Valley	Petrified algae, eden wood, turritella, and petrified wood.
SOUTH DAKOTA		Farson	Fossil wood and petrified
Custer:	Agate, rose quartz, jasper, agatized wood, and breccia.	Hays Ranch	wood. Petrified wood. Do.
Fairburn	and breccia. Fairburn agate, jasper, breccia, and agatized	Oregon Butte	Jade and turritella agate Turritella and algae
	wood.	Uinta: Carter	agate. Petrified wood.

Agate.—Many sections of the United States reported sales of agate below the average of the last 5 years; but increased production from Arizona, Montana, Oregon, South Dakota, Texas, and Wyoming overshadowed any losses and resulted in agate becoming the principal gem material produced in 1956. It was estimated that agate valued at over \$100,000 was produced during the year. Considerable quantities of this material were "tumbled" and sold as baroque gems.

Oregon was the leading producer in 1956, with an estimated value of \$50,000, doubling the 1955 figure. Agate was found in most sections of the State, but the more important areas were in Jefferson,

Crook, and Deschutes Counties.

Increased output in Arizona during 1956 resulted in the State producing the second largest quanity of agate, with a reported value of \$25,000. Areas in Greenlee, Yuma, and Yavapai Counties were the chief sources, with a reported production value at nearly \$10,000.

New Mexico continued production from a locality near Deming.

Luna County, with an increase of 10 percent over 1955.

Fairburn agates of South Dakota were reported scarce, and prices In 1956, Sweetwater and Fremont Counties, Wyo., reported production over \$8,000. The Montana agate deposits have been exploited for nearly 75 years, and known areas are now reaching depletion.

Diamond.—A 15.33-carat diamond valued at \$8,000 was found at the Crater of Diamonds, Murfreesboro, Ark., on March 4, 1956. During the year, over 15,000 individuals hunted for diamonds in the Murfreesboro, Ark., area, and 93 more diamonds were found averag-

ing 0.56 carat, with a total value of \$8,700.

A flawless, blue-white, rough diamond, 425 carats, the world's 9th largest, was purchased by a New York jeweler. The largest gem that could be obtained from this stone would be a 200-carat, emerald-

cut stone.

Jade.—The jade industry during 1956 experienced one of the best years since discovery of jade in Wyoming in 1930. It was estimated that United States and Alaska mined over 32,000 pounds valued at nearly \$100,000. The average price ranged from \$2 to \$8, depending upon quality and color. Large quantities of jade were exported to Germany and Japan for cutting and polishing.

In Wyoming, Fremont County was the leading producer, with a value estimated at \$50,000. Carbon and Sweetwater Counties pro-

duced smaller quantities, valued at approximately \$8,000.

The Empire Jade Co. and the Government-sponsored Shungnak Jade project continued procuring jade from the Shungnak district, It was reported that a 2,000-pound jade boulder was successfully removed from this district and was expected to be sold in the Orient.5

A small quantity of white jade was produced in Yavapai County, Ariz.

In California a small production was reported from Monterey,

Mendocino, and San Benito Counties.

Petrified Wood.—In 1956 over 150 tons of petrified wood was produced from an area west of the Petrified Forest National Monument

Life, The Big Diamond: Vol. 40, No. 8, Feb. 20, 1956, pp. 57-58, 60.
 Engineering and Mining Journal, vol. 157, No. 10, October 1956, p. 136.

in Navajo County, Ariz. Most of this material was sold to tourists and lapidaries for cutting and polishing, but some was used as building material for rock gardens and fireplaces. Production from Arizona was estimated at \$35,000.

Sweetwater County, Wyo., continued production in 1956, with a value estimated at \$5,000. Utah production was valued at nearly \$3,000, principally from Garfield County. In Nevada approximately

\$3,000 worth was produced in 1956.

Production was also reported from California, Colorado, Montana, Oregon, and Washington. Ginko, tempskya, and other rare fossil

woods were produced in small quantities.

Turquois.—Nevada was the leading turquois producer in 1956, with a value estimated at \$25,000. R. J. Frank and James Klopper, lessees of the Lone Mountain mine, and T. E. Sabin, of the Battle Mountain deposits, mined 85 percent of the total State production.

Arizona production of turquois in 1956 was nearly \$20,000, with most material originating from the Sleeping Beauty mine, Gila County. The Villa Grove turquois mine, Sagauche County, Colo., production

was valued at over \$15,000.

A report contained information on the origin, occurrence, and properties of turquois in three California and Nevada mines.

CONSUMPTION

The United States, which depends completely upon foreign sources for gem diamonds, has increased consumption each year and in 1956 imported 39 percent of the world supply. In 1956 the value of all gem material consumed in the United States was estimated at \$189 million, of which less than 1 percent was produced domestically. Most gem stones produced in the United States were used by amateur lapidaries, but some jade and other less valuable stones were exported to Germany and Japan for cutting, carving, and polishing and returned for sale in the United States.

PRICES

In 1956 the average diamond prices per carat, imported into the United States, were: Cut, but unset, \$109.35; and rough or uncut, \$72.58. The average price of cut diamonds per carat decreased from 1946 to 1956, whereas the price of rough stones increased because of a shortage and greater demand for better grade diamonds.

⁶ Hewett, D. F., Geology and Mineral Resources of the Ivanpah Quadrangle, California and Nevada: Geol. Survey Prof. Paper 275, 1956, pp. 165-166.

As a result of negotiations between the United States and 21 other countries, tariff rates were reduced in 1956 on several categories of jewelry and related goods, including imitation semiprecious and precious stones, cut, uncut, or faceted.

FOREIGN TRADE⁸

The value of gem-stone imports into the United States in 1956 increased 7 percent over 1955. Gem diamonds accounted for 86 percent of the total, the same as in 1955. Imports of pearls and precious, semiprecious, and synthetic gem stones increased 8 percent in 1956 over 1955.

In 1956 the United States exported 27 percent less and reexported 48 percent more gem stones (precious, semiprecious, synthetic, and

imitation) than in 1955.

TABLE 3.—Precious and semiprecious stones (exclusive of industrial diamonds) imported for consumption in the United States, 1955–56

L Bureau	of the Census	SJ		
Item		1955	1	956
	Carats	Value	Carats	Value
Diamonds:				
Rough or uncut (suitable for cutting into gem	1 1, 066, 637	1 2 \$76, 798, 651	1, 188, 332	\$86, 243, 214
stones), duty-free				² 75, 795, 826
Cut but unset, suitable for jewelry, dutiable		2 74, 883, 550	693, 142	
Emeralds: Cut but not set, dutiable	45, 235	1, 564, 676	50, 931	1, 688, 429
Pearls and parts, not strung or set, dutiable:	a financia			A 000 00F
Natural		669, 351		² 626, 237
Cultured or cultivated		2 6, 197, 897		2 8, 024, 660
Other precious and semiprecious stones:				
Rough or uncut, duty-free		228, 939		² 280, 692
Cut but not set, dutiable		2 2, 837, 932		2 3, 116, 372
Imitation, except opaque, dutiable:				
Not cut or faceted	.	2 25, 885		² 40, 496
Cut or faceted:				
Synethetic	.	1 2 298, 133		2 402, 272
Other		1 2 11, 806, 853		2 11, 448, 744
Imitation, opaque, including imitation pearls,		1,,		,,
dutiable	1	2 19, 185		2 30, 410
Marcasites, dutiable: Real and imitation		44, 439		38, 911
Marcasites, dittable. Iteal and initiation		11, 100		
m and a second s	,	1 9 177 207 401	1	9 107 726 262

¹ Revised figure.

² Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

Jewelers' Circular-Keystone, vol. 76, No. 11, August 1956, p. 210.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activ-ties, Bureau of Mines, from records of the Bureau of the Census.

TABLE 4.—Diamonds (exclusive of industrial diamonds) imported for consumption in the United States, 1955, 56, by countries

[Bureau of the Census]

	Re	ough or uncu	t	o	ut but unset	
Country	Carats	Val	ue	Carats	Val	ue
o o o o objektor o spolo Objektor Subbabba o o		Total	Average		Total	Average
1955					38 L-48	in in failure
North America:						addriðs.
BermudaCanadaNetherland Antilles	2, 205 5, 900	\$228, 467 569, 306	\$103. 61 96. 49	127 29	\$14, 125 39, 955	\$111. 22 1, 377. 76
Total	8, 105	797, 773	98. 43	156	54,080	346. 67
South America: Brazil British Guiana Venezuela	4, 127 2, 566 1 91, 348	199, 085 73, 104 2, 642, 087,	48. 24 28: 49 1 28. 92	113 .48	13, 427 7, 662	118. 82 159. 63
Total	1 98, 041	2, 914, 276	1,29.73	161	21, 089	130. 99
Europe: Austria Belgium-Luxembourg France Germany, West Italy Netherlands Switzerland United Kingdom	102, 676 9, 203 1, 141 2, 573 29, 965 1 728, 878	10, 692, 952 730, 133 11, 215 261, 443 1, 911, 100 157, 023, 753	104. 14 79. 34 9. 83 101. 61 63. 78 1 78. 23	7 427, 422 4, 470 48, 948 136 22, 243 250 5, 464	3, 674 45, 354, 711 869, 862 3, 452, 716 127, 461 2, 633, 320 58, 799 947, 127	524. 86 106. 11 194. 60 70. 54 937. 21 118. 39 235. 29 173. 34
Total	1 874, 436	170, 630, 596 .	1 80-77	508, 940	53, 447, 670	105. 02
Asia: Hong Kong India. Indonesia Iraq Israel Japan Lebanon Malaya Saudi Arabia	294 130 4, 136 549 71	1, 177 19, 497 44, 821 44, 750 12, 201	4. 00 149. 98 10. 84 81. 51 171. 85	249 103 157, 326 837	29, 042 9, 284 13, 735, 028 80, 848 700	116. 63 90. 14 87. 30 96. 59
Total	5, 180	122, 446	23.64	158, 517	13, 854, 902	87. 40
Africa: French Equatorial AfricaLiberia Nigeria Rhodesia and Nyasaland,	8, 110 14, 536 415	383, 815 422, 726 6, 158	47. 33 29. 08 14. 84			
Federation of	57, 814	1, 520, 861	26. 31	21 40, 064	8, 365 7, 447, 444	398. 33 185. 89
Total	80, 875	2, 333, 560	28. 85	40, 085	7, 455, 809	186.00
Grand total	1 1, 066, 637	² 76, 798, 651	72.00	707, 859	² 74, 833, 550	. 105.72
1956						
North America: Bermuda	498 4, 929	48, 664 576, 212	97. 72 116. 90	279 57	22, 304 23, 467	79. 94 411. 70
Total	5, 427	624, 876	115. 14	336	45, 771	136. 22
South America: Brazil British Guiana Colombia.	2, 456 6, 595 86	112, 342 200, 740 12, 055	45. 74 30. 44 140. 17	253	20, 196	79. 83
Surinam Uruguay Venezuela	56, 996	1, 644, 575	28. 85	85 75 156	834 23, 000 25, 363	9. 81 306. 67 162. 58
	ļi					

See footnotes at end of table.

TABLE 4.—Diamonds (exclusive of industrial diamonds) imported for consumption in the United States, 1955-56, by countries-Continued

	R	ough or uncu	t	Ċ	ut but unset	
Country	Carats	Val	ue	Carats	Val	ııe
-	*	Total	Average		Total	Average
1956—Continued	-			,		
Europe:			A	1		
Austria				480	\$52,800	\$110.0
Belgium-Luxembourg	139, 965	\$16, 579, 867	\$118.46	422, 002	46, 810, 415	110. 9
Czechoslovakia				25	5, 660	226. 4
France	4, 634	436, 790	94, 26	9, 293	1, 173, 809	126. 3
Germany, West	2, 442	108, 457	44, 41	38, 333	2, 750, 098	71.7
Italy				64	8,806	137. 59 122. 63
Netherlands	3,776	212, 270	56. 21 38. 74	21, 987 385	2, 696, 243 340, 049	883. 2
SwitzerlandUnited Kingdom	11,085	429, 418 60, 991, 614	75. 24	3, 526	536, 427	152. 1
United Kingdom	810, 591	00, 991, 014	75. 24	3, 320	000, 121	102.10
Total.	972, 493	78, 758, 416	80. 99	496, 095	54, 374, 307	109.60
Asia:	-	1,310				
Ceylon				14	1,058	75. 5
Hong Kong	76	1,662	21.87	4	419	104. 7
India				1, 424	121, 254	85. 1
Israel	2, 556	51, 011	19.96	145, 950	13, 169, 447	90. 2
Japan				1,050	88, 242	84.0
Lebanon	89	7,666	86. 13			
Malaya				111	15, 670	141.1
Total	2, 721	60, 339	22. 18	148, 553	13, 396, 090	90. 18
					,	
Africa:	11, 500	27, 042	2, 35			1.00
Belgian Congo British East Africa	74	740	10.00			
Egypt	/4.	140	10.00	77	6, 674	86.6
French Equatorial Africa	48, 012	1, 242, 420	25, 88	•••	0,0.1	00.0
Liberia	35, 536	1, 420, 676	39. 98	15	4, 130	275, 3
Southern British Africa				1	487	487.0
Union of South Africa	46, 436	2, 138, 993	46.06	47, 496	7, 898, 974	166. 3
Total	141, 558	4, 829, 871	34. 12	47, 589	7, 910, 265	166. 2
Grand total	1, 188, 332	86, 243, 214	72. 58	693, 142	275, 795, 826	109.3

¹ Revised figure.

TECHNOLOGY

Articles were published on cutting and polishing spinel; sapphire polishing, using rubber-bonded wheels; and gem-stone drilling. Processes and techniques used in photographing minerals in color were published. 12 A history on manufacture of synthetic diamonds, rubies, sapphires, emeralds, and their industrial uses was written.13 An automatic Verneuil furnace was described, and details and illustrations regarding its operation were given.14

Faustite, a newly identified mineral similar to turquois, was discovered in the Copper King mine, Eureka County, Nev. It occurred as an apple-green vein filling in altered shale. The mineral contains

² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

<sup>Mineralogist, How to Cut Spinel: Vol. 24, No. 12, December 1956, pp. 478, 480.
Mineralogist, Rubber-Bonded-Wheel Sapphire Polishing: Vol. 24, No. 11, November 1956, pp. 425-426.
Bowser, L. E., Notes on Gem Drilling: Mineralogist, vol. 24, No. 11, November 1956, pp. 426, 428, 430.
Getsinger, F. R., Photographing Minerals in Color: Arizona Highways, vol. 32, No. 11, November 1956, pp. 15-17.
Wisconsin Engineer, vol. 60, No. 6, 1956, pp. 18-20; Chem. Abs., vol. 50, No. 22, Nov. 25, 1956, column</sup>

<sup>16208-1.

16208-1.

18</sup> Verma, R. K., Sirkar, G. N., and Chatterjee, S., An Automatic Verneuil Furnace: Gemmologist (London), vol. 25, No. 296, March 1956, pp. 52-56.

zinc, in addition to the regular mineral composition of turquois. 15 Lazulite with a sky-blue color and hardness of 6 was found in coarse-grained crystal aggregates. An unusual garnet with rare cubic and octahedral faces, found between Canton and Ball Ground, Cherokee County, Ga., was described.¹⁷ Pale-blue cordierite was unearthed This gem material was in a mica mine in Monroe County, Ga. found in irregular masses up to ¾ inch across.18

Twelve mineral specimens were described, giving the synonyms, nomenclature, varieties, compositions, crystallography, physical and optical properties, tests and diagnoses, occurrence, and uses. mineral was illustrated in color. These mineral specimens were: Rhodochrosite, cuprite, smaltite, smithsonite, chalcopyrite, magnetite, cerussite, sodalite, molybdenite, apatite, wulfenite, and gypsum. 19

A historical article was published on the mining and production of

emeralds in Columbia.20

The origin of gem-quality corundum found in placer deposits in Ceylon was considered to be a contact zone where syenite was intruded into and desilicated by crystalline limestone.21

The gem material, benitoite (BaTiSi₃O₉), was synthesized hydro-

thermally.22

Conversion of one mineral to another was achieved in the laboratory by duplicating the conditions developed in the earth at extreme depth.23

A comprehensive report was written on the synthetic-gem-stone

industry of India.24

Experiments on diamond synthesis were continued in 1956 by the General Electric Co. The chamber in which the diamonds were formed was approximately 1/6 inch in diameter and 1 inch in depth. Operating pressures were increased from the original 1.5 million p. s. i. to 2.5 million p. s. i., with temperatures up to 5,000° F. percent of the raw material used was converted into diamond. largest diamond produced was one-hundredth carat.²⁵

A standard color code for diamond pastes, showing colors used by 15 manufacturers, was issued in chart form.²⁶ Methods of determining diamond color characteristics, with illustrations in color, were

described.27

A mixture of powdered TiO₂ and MgO, fused in a Verneuil furnace at 1,830°-1,870° C., produced a blue-black crystal. Subsequent

at 1,830°-1,870° C., produced a blue-black crystal. Subsequent

15 Erd, R. C., Foster, M. D., and Proctor, P. D., Faustite, A New Mineral and Zinc Analogue of Turquois:
Am. Mineralogist, vol. 38, No. 11-12, November-December 1953, pp. 964-972; Ceram. Abs., vol. 39, No. 11,
November 1956, p. 248j.

16 De, Aniruddha, Lazulite From Sini, Saraikela (Bihar): Sci. and Culture (India), vol. 21, 1956, p. 746;
Chem. Abs., vol. 50, No. 22, Nov. 25, 1956, column 16573-e.

17 Georgia Mineral Newsletter, vol. 9, No. 1, Spring 1956, p. 19.

18 Georgia Mineral Newsletter, vol. 9, No. 2, Summer 1956, p. 73.

19 Mine and Quarry Engineering (London), Minerals Specimens No. 28-39: Vol. 22, No. 1, January 1956;
pp. 12-13; No. 2, February 1956, pp. 58-59; No. 3, March 1956, pp. 102-103; No. 4, April 1956, pp. 136-137,
No. 5, May 1956, pp. 174-175; No. 6, June 1956, pp. 20-221; No. 7, July 1956, pp. 270-271; No. 8, August 1956,
pp. 318-319; No. 9, September 1956, pp. 362-363; No. 10, October 1956, pp. 412-413; No. 11, November 1956,
pp. 318-319; No. 9, Exptember 1956, pp. 508-509.

20 Morello, Ted, The Gem of Colombia: Americas, vol. 8, No. 10, October 1956, pp. 21-24.

21 Wells, A. J., Corundum From Ceylon: Geol. (Hertford, England), vol. 93, No. 1, January-February 1956, pp. 25-31.

22 Rase, D. E., and Roy, Rustum, Phase Equilibria in the System BaTio₃-Sio₂: Jour. Am. Ceram. Soc., vol. 38, November 1955, pp. 389-395.

23 Mining Journal (London), The Creation of Minerals: Vol. 246, No. 6284, Jan. 27, 1956, p. 125.

24 Sarma, M. V., Manufacture of Synthetic Gems in India: [1956 (?) Revision of an earlier publication],

25 Journal of Gemmology (London): Vol. 5, No. 7, July 1956, p. 387.

26 Industrial Diamond Review, Color Codes for Diamond Pastes: Vol. 16, No. 188, 1956, pp. 136-137;

Ceram. Abs., vol. 39, No. 11, November 1956, p. 231e.

27 Custers, J. F. H., Colors in Diamonds: Optima (Johannesburg), vol. 6, No. 2, June 1956, pp. 48-51.

oxidation at decreasing temperatures from 1,100°-500° C. produced a substantially white material exhibiting asterism.²⁸ Patents were obtained on a lapidary wheel 29 and a lapidary template and dopstick.30 Many agates can readily be colored by heat treating at 200°-300° C.,

cooling, and then applying inorganic salts by various methods.31

Polarized light regularly transmitted by fibrous chalcedony and the character of the spectra exhibited by iridescent agate were de-

scribed.32

In Japan the standard pearl necklace is 17 inches long, and the The largest pearl produced average center pearl is 7-7½ millimeters. is 11 millimeters but requires 5 to 6 years to grow. Normally, a 2-year cycle produces the average-size pearl.33 Seeds for pearls and pearl oysters treated for several minutes in thyroxine solution, and cultured in the usual manner, gave nearly 100 percent pink or rainbow-colored pearls.34

WORLD REVIEW

In 1956 world diamond production increased 1.6 million carats, or 7 percent, over 1955. Of the world total, 21 percent was of gem quality. Countries reporting increases in production were: Sierra Leone, 35 percent; South-West Africa, 22 percent; French West Africa, 22 percent; Tanganyika, 10 percent; Belgian Congo, 7 percent; and French Equatorial Africa, 6 percent.

Australia.—A joint Australian, Japanese, and United States pearl-culture farm was established in Brecknock Harbor between Augustus Island and the Australian mainland on June 20, 1956. It was reported that 35,000 immature oysters would be planted the first year. Most of the pearls produced were to be sold in the United States.³⁵

Belgian Congo. Belgian Congo, the world's largest producer of diamonds, increased production nearly 1 million carats in 1956 over 1955; 5 percent was gem quality.36 It was reported that inquiries were made by United States dealers regarding the feasibility of obtaining increased quantities of mineral specimens and semi-precious A low-grade diamond deposit in Belgian Congo being stones.37 developed by the Société Minière de Beceka, in 1956, undertook to lower costs and increase production by using a heavy-medium separation process in its washing and concentration plant.38

Colombia.—The quality and quantity of emeralds produced in Colombia during 1956 were below expectations. Three mines were in operation, one of which was owned by a United States company.39

French Equatorial Africa.—A 149-carat diamond was found in the mine, Société Minière de l'Est Oubangui. It was estimated that 40

²⁸ Merker, Leon (assigned to National Lead Co.), Monocrystalline Rutile: U. S. Patent 2,760,874, Aug,

<sup>28, 1956.

28</sup> Yorado, P. A., Lapidary Wheel: U. S. Patent 2,745,225, May 15, 1956.

28 Ponting, F. W., Lapidary Template and Dopstick: U. S. Patent 2,735,246, Feb. 21, 1956.

31 Gemmologist (London), Agate Coloring by Heat Treatment: Vol. 25, No. 304, November 1956, pp.

³¹ Gemmologist (London), Agate Coloring by Heat Treatment: Vol. 20, 140. 304, 140 tentor 140. 1928-209.

32 Raman, C. V., and Jayarman, A., Optical Behavior of Cryptocrystalline Quartz: Proc. Indian Acad. Scl., vol. 41A, January 1955, pp. 1-6; Ceram. Abs., vol. 39, No. 4, April 1956, p. 84f.

31 U. S. Consulate, Kobe-Osaka, Japan, State Department Dispatch 45: Sept. 13, 1956, p. 10.

34 Takaoka, Susumu, Pink or Rainbow-Colored Cultured Pearls: Japanese Patent 1330, Feb. 26, 1955; Chem. Abs., vol. 50, No. 22, Nov. 25, 1956, column 17260b.

35 U. S. Consulate, Perth, Australia, State Department Dispatch 1: July 27, 1956, p. 6.

36 Gemmologist (London), vol. 25, No. 294, January 1956, p. 8.

37 U. S. Consulate, Elisabethville, Belgian Congo, State Department Dispatch 45: Feb. 20, 1956, p. 1.

38 U. S. Consulate, Elisabethville, Belgian Congo, State Department Dispatch 40: Mar. 19, 1957, pp. 1, 5.

39 U. S. Embassy, Bogota, Colombia, State Department Dispatch 304: Nov. 9, 1956, p. 1.

TABLE 5.—World production of diamonds, 1947-51 (average) and 1952-56, by countries, in thousand carats 1 (including industrial diamonds)

	1947-51 (aver- age)	1952	1953	1954	1955	1956
Africa: Angola Belgian Congo. French Equatorial Africa French West Africa. Ghana (Gold Coast) 3. Sierra Leone. South-West Africa. Tanganyika. Union of South Africa: Lode. Alluvial 5. South America: Brazil 2 British Guiana. Venezuela. Other countries 2.	728 8, 332 119 91 1, 076 539 325 141 1, 259 273 235 63 3	743 11, 609 163 136 2, 190 451 541 143 2, 093 283 200 38 98	729 12,580 140 180 2,181 473 617 172 2,398 300 200 35 85	722 12, 619 153 216 2, 135 399 684 326 2, 544 314 200 30 97	743 13, 041 137 318 2, 277 930 797 326 2, 277 310 200 33 141	744, 011 144, 013 144 399 2, 127 2 3 1, 427 970 359 4 2, 235 300 300 94
Grand total (rounded)	13, 225	18, 695	20, 095	20, 445	21, 540	23, 135

Rounded from Jewelers' Circular-Keystone, 32d Annual Report on the Diamond Industry: 1956, p. 7. ² Estimated.

3 Including unofficial production and Liberia.
4 Includes alluvial diggings at Kleinzee.
5 Including State owned mines of Namaqualand.

to 50 percent of the diamonds mined in French Equatorial Africa

was of gem quality.40 India.—In 1956 it was reported that the Switzerland synthetic gem industry was establishing a similiar enterprise in India, to be called the Indo-Swiss Synthetic Gem Manufacturing Co., Ltd. Production would start early in 1957, with an annual production of 12 tons.

1956 India consumed about 50 tons of synthetic gem materials in the cutting of gem stones.41

Israel.—In 1956 diamond exports increased 14 percent by weight and 19 percent by value over 1955. About 20 percent of the imported material was purchased from sources other than the London Diamond The United States was the largest purchaser, with 54 percent of the diamond exports.42

Japan.—It was estimated that in 1956 \$1 million worth of hand-cut or carved semiprecious stones was produced in Japan. Wide varieties of semiprecious stones were imported by Japan for the hand-carving

Large losses in the pearl industry, caused by typhoons, were announced. Investigations were made to determine the possibility of moving the pearl industry to the Inland Sea and of establishing a crop of 30 million oysters the first year.44

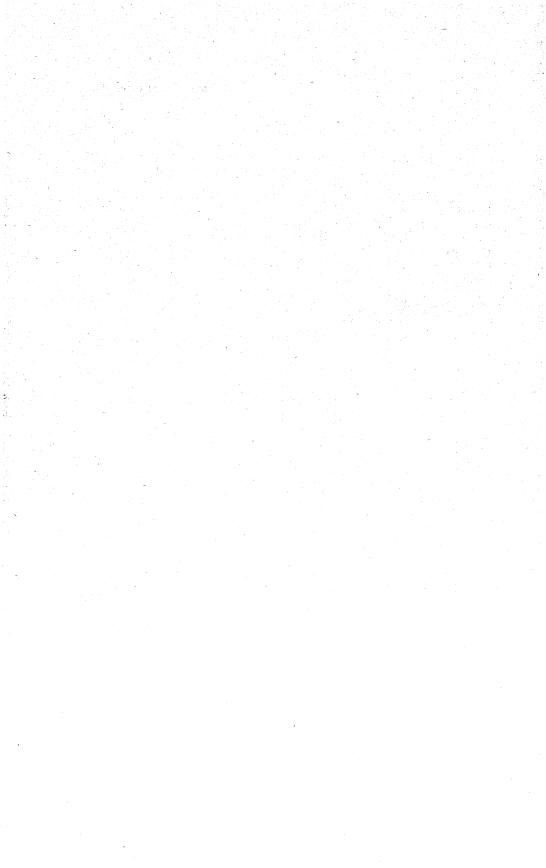
Liberia.—A diamond rush was reported in western Liberia, around

the Bomi Hills, and other areas. 45

⁴⁰ U. S. Consulate, Elisabethville, French Equatorial Africa, State Department Dispatch 18: Oct. 31,

^{406,} p. 5.
41 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, pp. 20-21.
42 U. S. Embassy, Tel Aviv, Israel, State Department Dispatch 486: Mar. 22, 1956, pp. 1, 2.
43 U. S. Consulate General, Yokohama, Japan, State Department Dispatch 22: Sept. 17, 1956, pp. 1, 2.
44 U. S. Consulate, Nogoya, Japan, State Department Dispatch 16: Oct. 8, 1956, p. 5.
45 U. S. Embassy, Monrovia, Liberia, State Department Dispatch 368: June 13, 1956, pp. 5, 6.

Thailand.—Few precious and semiprecious gem stones originate in Thailand—most were imported, cut and polished, and exported. In 1956 the value of imports was \$305,000 and exports \$660,000.46


Tanganyika.—In 1956 Tanganyika produced 10 percent more diamonds than in 1955. The Williamson diamond mine produced 96 percent, and Alamasi, Ltd., mined the balance. A new diamond-recovery plant with a crude-material capacity of 7,000 to 7,500 tons

per day was installed at the Williamson diamond mine.48

Union of South Africa.—A concession was obtained by the Planned Investment Trust, Ltd., Johannesburg, with Canadian financial support, to prospect for base metals and diamonds and other precious stones.⁴⁹ In 1956 Mallin diamond mines, Zwartruggens, Transvaal, Union of South Africa, expanded its diamond production by mining 6,500 tons a month, averaging 10,500 carats; 20 percent was gem quality.⁵⁰

⁴⁶ U. S. Embassy, Bangkok, Thailand, State Department Dispatch 695: Apr. 4, 1956, p. 6.
47 U. S. Consulate, Dar es Salaam, Tanganyika, State Department Dispatch 139: May 23, 1956, pp. 24, 25.
48 U. S. Consulate, Dar es Salaam, Tanganyika, State Department Dispatch 138: May 23, 1956, p. 25.
49 U. S. Consulate, Johannesburg, Union of South Africa, State Department Dispatch 108: Nov. 7, 1956,

p. 1. ⁸⁰ Gemmologist (London), vol. 25, No. 294, January 1956, p. 8.

Gold

By J. P. Ryan 1 and Kathleen M. McBreen 2

OMESTIC mine production of gold in 1956 was 2 percent lower than in 1955; output was the lowest since 1893, except for the war years 1943-46. In contrast, world gold production rose 6 percent to a postwar high owing almost entirely to increased output from South Africa. The decline in domestic production in 1956 was attributed to reduced output from straight gold mining in Alaska and California; the output of byproduct gold from base-metal ores was nearly the same as in 1955. Consumption of gold in the arts and industry of the United States rose for the third successive year in 1956, reaching a total of 1.4 million ounces—about 76 percent of domestic production.

Treasury gold stocks during 1956 increased \$259 million, and gold reserves of foreign countries (excluding the U. S. S. R.) and international institutions increased about \$200 million. The Treasury buying price during 1956 remained unchanged at \$35 per fine ounce.

In most of the free markets of the world the price of gold continued to fluctuate in a narrow range close to the official United States Treasury price, although in some eastern markets, where gold is traded in local currencies, the price of gold in United States dollars rose considerably above the official price.

TABLE 1.—Salient statistics of gold in the United States, 1947-51 (average) and 1952-56

	1947—51 (average)	1952	1953	1954	1955	1956
Mine productionfine ounces Ore (dry and siliceous) produced	2, 097, 994	1, 893, 261	1, 958, 293	1, 837, 310	1, 880, 142	1, 832, 58
(short tons): Gold ore	3, 270, 322	2, 339, 160	2, 198, 688	2, 248, 604	2, 233, 953	2, 255, 09
	430, 047	237, 211	81, 658	46, 345	120, 303	244, 80
	462, 350	502, 208	555, 050	680, 442	570, 303	687, 46
Dry and siliceous oresBase-metal oresPlacers	41	40	40	43	41	4
	31	38	39	34	37	3
	28	22	21	23	22	1
the artsfine ounces	2, 114, 578	2, 752, 872	2, 142, 860	1, 269, 800	1, 300, 000	1, 400, 00
Imports 2do	27, 938, 540	21, 139, 587	1, 343, 957	1, 083, 005	2, 930, 006	3, 729, 74
Exports 2do	8, 968, 522	784, 361	854, 250	493, 957	162, 214	733, 86
Monetary stocks (end of year) 3 (million dollars) Price, average, per fine ounce 4 World production	\$35.00	23, 186 \$35. 00 34, 300, 000	22, 030 \$35. 00 33, 700, 000	21, 713 \$35. 00 35, 100, 000	21, 690 \$35. 00 36, 400, 000	21, 94 \$35. (38, 400, 00

Includes Alaska

Excludes coinage.
 Owned by Treasury Department; privately held coinage not included.
 Price under authority of Gold Reserve Act of Jan. 31, 1934.

Commodity specialist.Statistical assistant.

Sales of gold by the U. S. S. R. in 1956 were estimated by a leading bullion firm at 4.3 million ounces—the largest quantity sold by the

U. S. S. R. in any post-World War II year.

On February 20, 1956, the United States Court of Claims ruled that a group of gold-mining companies was entitled to receive damages from the Government for losses suffered as a result of the closing of their mines by War Production Board Limitation Order L-208. On July 12 the Government motion for a new trial was overruled by the Court, thus reaffirming its previous decision. However, the Government appealed to the Supreme Court for a review of the decision; hence the measure of damages to be determined by the Court of Claims in further proceedings will be held in abeyance pending final decision by the high court.

TABLE 2.—Gold produced in the United States, 1947-51 (average) and 1952-56, according to mine and mint returns, in fine ounces of recoverable metal

	1947–51 (average)	1952	1953	1954	1955	1956
Mine	2, 097, 994	1, 893, 261	1, 958, 293	1, 837, 310	1, 880, 142	1, 83 584
Mint	2, 059, 236	1, 927, 000	1, 970, 000	1, 859, 000	1, 876, 830	1, 865, 200

¹ Includes Alaska.

DOMESTIC PRODUCTION

Mine production of gold in the United States in 1956 was 1.8 million ounces, about 2 percent less than in 1955 and the smallest since 1946. The decline in gold output resulted primarily from a reduction in the number and yield of placer-mining operations in Alaska and California and from the closing of a group of lode mines in California. The closing of gold mines in several areas was due chiefly to the squeeze on profits brought about by steadily rising costs in relation to the fixed price for gold. However, production of byproduct gold from base-metal ores, particularly copper, was slightly higher, partly offsetting the drop in gold recovered from straight gold mining. Of the total domestic production in 1956, 42 percent was recovered from precious metal ores, 19 percent from placers, and 39 percent as a byproduct from base-metal ores.

Units of measurement, classification of mines, and methods of calculating mine production are described in detail in the Gold chapter

of the 1954 Minerals Yearbook.

Again in 1956, South Dakota led all other States in gold production, followed in order by Utah, Alaska, and California. Alaska regained third rank from California. These 3 States and 1 Territory supplied 76 percent of the total domestic output. South Dakota's gold came almost entirely from one gold mine (Homestake); nearly all of Utah's production of gold was a byproduct of base-metal ores, chiefly copper ore at the Utah Copper mine; Alaska's gold was recovered from many placer operations, chiefly by bucketline dredging. Classification by recovery methods shows that 39 percent of the domestic gold was recovered by amalgamation and cyanidation, 42 percent in smelting ores and concentrates, and 19 percent from placer mining.

Lawrence County (Lead), S. Dak., for several years the leading gold-producing area in the United States, continued to rank first in 1956. The West Mountain (Bingham) copper district, Utah, again was second, and the Fairbanks gold-dredging district in Alaska ranked third. The two leading districts continued to produce about 50 percent of the total domestic output in 1956.

Of the 25 leading gold producers in the United States in 1956, 9 were lode-gold mines, 5 were placer mines worked by bucketline dredges, 5 were copper mines, 3 were lead-zinc mines, and 3 were copper-lead-zinc mines. The entire 25 mines supplied about 87

percent of domestic output valued at \$55.5 million.

Ore classification, methods of recovery, and metal yields, embracing all ores that yielded gold in the United States in 1956, are given in the following tables 7 to 11. The terminology used in classifying ores is described in detail in the 1954 Minerals Yearbook Gold chapter.

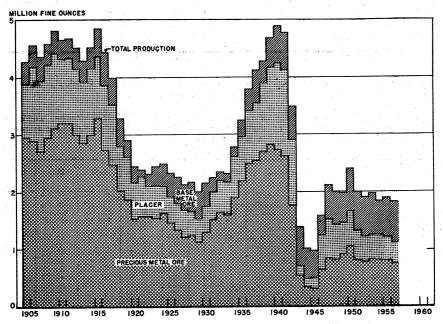


FIGURE 1.—Gold production in the United States, 1905-56.

TABLE 3.—Mine production of gold in the United States 1 in 1956, by months

Month	Fine ounces	Month	Fine ounces
January February March April May June July	132, 850 130, 822 135, 286 136, 796 149, 717 158, 010 157, 626	August	181, 497 177, 658 170, 740 162, 233 139, 349 1, 832, 584

¹ Includes Alaska.

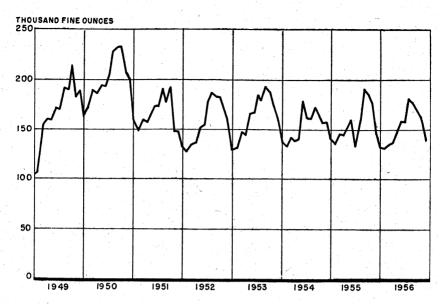


FIGURE 2.—Mine production of gold in the United States, 1949-56, by months, in terms of recoverable gold.

TABLE 4.—Mine production of recoverable gold in the United States, 1947-51 (average) and 1952-56, by districts that produced 10,000 fine ounces or more during any year (1952-56), in fine ounces ¹

District or region	State	1947–51 (average)	1952	1953	1954	1955	1956
West Mountain (Bingham) Fairbanks Yuba River Chelan County Republic (Eureka) Cripple Creek American River (Folsom) Robinson Warren (Bisbee) Ajo Summit Valley (Butte) Upper San Miguel Big Bug	Washington do Colorado California Nevada Arizona do Montana Colorado Arizona Arizona Arizona Arizona Arizona Colorado Arizona	455, 143 367, 733 118, 372 (2) 42, 651 (2) 31, 733 96, 576 45, 116 18, 017 35, 803 18, 690 39, 631 14, 773	482, 511 417, 607 125, 283 (2) * 54, 135 (8) 48, 527 73, 366 59, 521 26, 697 36, 372 16, 918 34, 822 17, 317	534, 984 450, 882 136, 571 (2) 51, 468 (2) 51, 559 65, 275 61, 093 29, 840 36, 599 19, 871 39, 876 17, 788	61, 885 34, 139 40, 208 32, 708 17, 325 21, 514 17, 802	529, 865 405, 194 146, 876 (3) 47, 171 55, 794 39, 430 42, 351 40, 030 22, 262 18, 987 19, 942	(8) 52, 544 49, 651 45, 911 45, 088 39, 04(31, 132 27, 137 25, 327
Grass Valley-Nevada City_Bullion_Park City_Aniak_Klamath River_Pioneer_Downieville_Alleghany_California (Leadville)_Red Cliff (Battle Mountain)_Battle Mountain_Yellow Pine	Nevada Utah Alaska California Arizona California do Colorado do	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (5) (6) (7) (7) (8) (9) (1) (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	38, 869 (2) 17, 824 13, 827 16, 752 37 11, 665 (2) 9, 683 18, 405 1, 700 (2) 17, 638 (2)	29, 560 (2) 27, 919 14, 184 3, 727 14, 480 (2) 13, 112 9, 321 3, 750 (2)	21, 177 (2) (2) 27, 900 19, 777 13, 838 13, 382 (2) 8, 483 5, 438 10, 121 (2)	23, 410 (2) (2) 32, 208 19, 384 21, 857 11, 299 (2) 5, 769 5, 149 8, 416 (2)	24, 05 (2) (2) 17, 64 16, 46 15, 04 11, 64 (2) (2) (2) 2, 03 (2)

Includes Alaska.
 Figure withheld to avoid disclosing individual company confidential data.
 Chelan and Ferry Counties combined in 1952-56 to avoid disclosing individual company confidential data.

TABLE 5.—Twenty-five leading gold-producing mines in the United States in 1956, in order of output

-					
Rank	Mine	District or region	State	Operator	Source of gold
1448466	Homestake. Utah Copper. Farbanks Unit. Yuba Unit Andrama. Ospoer. Ospoer. Queen-Layender Open	Whitewood (Lead) West Mountain (Bingham) Fairbanks Yuba River American River (Folsom) Waren	South Dakota Utah. Alaska. California. do Argona.	Homestake Mining Co Kennecott Copper Corp. U. S. Smelting, Refining & Mining Co Yuba Consolidated Gold Fields The Natomas Co Phelps Dodge Corp.	Gold ore. Copper ore. Dredge. Do. Do. Copper ore.
2	Pit. New Cornella	Ajo.	ф	op	Gold-silver, copper ores.
80	Knob Hill. Treasury Tunnel-Black Bear-	Republic (Eureka)	WashingtonColorado	Knob Hill Mines, IncIdarado Mining Co	Gold ore. Copper-lead-zinc ore.
	Smuggler Union. Iron King. Gold King.	Big Bug. Wenatchee River.	Arizona. Washington	Shattuck Denn Mining Co. Lovitt Mining Co. Golden Ovele Corp.	Lead-zinc ore. Gold ore. Do.
	Nome Unit Empire Star Group	Nome Grass Valley-Nevada City	Alaska California Navada	U. S. Smelting, Refining& Mining Co. Empire Star Mines Co., Ltd. The London Extension Mining Co.	Dredge. Gold ore. Do.
28422	Goldadres. Clinton-Portland Group. Tripp Pit. Nyac. Cresson.	Balld Mountain (Lead) Robinson. Aniak Cripple Creek	South Dakota. Nevada. Alaska. Colorado.	Bald Mountain Mining Co. Consolidated Coppennines Corp. New York Alaska Gold Dredging Co. Cresson Consolidated Gold Mining & Milling	Do. Copper ore. Dredge. Gold ore.
នដ	Siskon. United States and Lark	Klamath River	CaliforniaUtah	Siskon Corp. U. S. Smelting, Refining & Mining Co.	Do. Silver, lead, lead-zinc ores.
ន្តន្តន	Mayflower, Park Galena. Butte Hill Lead-Zinc Mines. Holden Group.	Park City. Summit Valley (Butte). Chelan Lake.	do	New Park Mining Co. The Anaconda Co. Howe Sound Co. Magma Copper Co.	Lead-zinc ore. Do. Copper ore. Do.
•					

TABLE 6.—Mine production of recoverable gold in the United States, 1947-51 (average) and 1952-56, by States, in fine ounces

State	1947–51 (average)	1952	1953	1954	1955	1956
7-1 Q1-1 1 1 1 1				**		
Vestern States and Alaska:	. 055 010	040 555	0.00			
Alaska	257, 312	240, 557	253, 783	248, 511	249, 294	209, 29
Arizona	109, 749	112, 355	112, 824	114, 809	127, 616	146, 110
California	404, 394	258, 176	234, 591	237, 886	251, 737	193, 81
Colorado	134, 519	124, 594	119, 218	96, 146	88, 577	97, 668
Idaho	65, 196	32, 997	17, 630	13, 245	10, 572	10, 02
Montana	59, 641	24, 161	24, 768	23, 660	28, 123	38, 12
Nevada	126, 095	117, 203	101, 799	79, 067	72, 913	72, 640
New Mexico	3, 436	2, 949	2, 614	3, 539	1,917	3, 27
Oregon	13, 760	5, 509	8, 488	6, 520	1,708	2, 73
South Dakota	455, 158	482, 534	534, 987	541, 445	529, 865	568, 52
Texas	45	39	001,001	011, 110	020,000	000, 02
Utah	398, 782	435, 507	483, 430	403, 401	441, 206	416, 03
Washington.	67, 311	54, 776	62, 560	66, 740		
Wyoming	400	02,770	02, 000	407	74, 360	70, 66
"yoming	400	1	1	407	52	763
Total	2, 095, 798	1, 891, 358	1, 956, 693	1, 835, 376	1, 877, 940	1, 829, 68
tates east of the Mississippi:						
Georgia	23		2			*
Maryland	4					
North Carolina	3					
Pennsylvania.				214	190	88
	1,861	1,500	1, 134	1, 317	1,610	(1)
Tennessee	180	241	293	218	221	189
Vermont	125	162	171	185	181	³ 1, 82
Total	2, 196	1, 903	1,600	1, 934	2, 202	2, 900
Grand total	2, 097, 994	1, 893, 261	1, 958, 293			

Included with Vermont.
 Includes gold recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.

TABLE 7.—Ore, old tailings, etc., yielding gold, produced in the United States, and average recoverable content, in fine ounces, of gold per ton in 1956 1

e 2	Average ounces of gold per ton	7,138 .003 .003 .004 .004 .004 .004 .005 .003 .003 .003 .003 .004 .004 .004 .003 .003
Total ore	Short	57, 617, 135 281, 102 1, 165, 019 3, 2, 071, 451 9, 685, 789 1, 77, 383 1, 77, 383 1, 77, 383 1, 783, 773 1, 687, 697 1, 687, 687 1,
Zinc-lead, zinc-cop- per, and zinc-lead- copper ores	Average ounces of gold per ton	0.068 .009 .001 .010 .001 .004
	Short	436, 549 180, 768 180, 768 180, 894 1, 801, 670 206, 929 6, 535, 351 1, 377, 190 7, 912, 541
ore	Average ounces of gold per ton	0.004 . 028 . 600 . 008 . 000 . 000
Zinc ore	Short	2 132 76 105 281 9, 787 9, 787 246, 942 448, 814 434, 874 1, 420, 491 1, 861, 365
ore	Average ounces of gold per ton	1,000 019 022 022 175 175 000 173 001 .007
Lead ore	Short	22 977 22,289 30,546 62,836 62,836 10,375 29,485 22,970 22,970 22,970 187,635
)re	Aver- age ounces of gold per ton	0.002 0.028 0.056 0.002 0.004 0.012 0.043 0.043
Copper ore	Short	57, 041, 781 15, 049, 21, 788 21, 788, 21, 788 7, 783, 348 8, 270, 314 8, 329, 852 33, 339, 852 318, 306 318, 073, 672 \$ 288, 310
ore.	Aver- age ounces of gold per ton	0.012 0.004 0.026 0.026 0.020 0.020
Silver ore	Short	40, 528 8, 091 168, 962 162, 965 18, 068 13, 566 111, 334 687, 461
er ore	Average ounces of gold per ton	0.007 0.007 0.005 0.005 0.003 0.003 0.003 0.003
Gold-silver ore	Short	88,709 737 6,634 9,634 9,514 8,514 3,957 113,350 244,808
ore	Aver- age ounces of gold per ton	7.163 6.33 6.33 6.33 6.33 6.33 6.33 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15
Gold ore	Short	246 1,456 190,190 124,114 8,114 146,465 147,476 1,748,173 1,748,173 8,172 2,264,046 2,264,046 2,265,096
	State	Western States and Alasks: Alasks. Alasks. Alasks. Alaska. Arizona. California. Colorado. Idaho. Montana. New Mexico. Oregon. South Dakota. Utah. Washington. Wyoming. Total. States east of the Missistippi.

Incides 71,774 tons of zine slag.
Excludes tingsten ore concentrate yielding copper-lead and gold.
Excludes 48,84 tons of zine slag.
Excludes a slag magnetite-pyrite-chalcopyrite ore and gold therefrom

TABLE 8.—Mine production of gold in the United States, 1947-51 (average) and 1952-56, by percentage from sources and in total fine ounces

Year	Placers	Dry ore	Copper ore	Lead ore	Zinc ore	Zinc-lead, zinc-copper, lead-copper, and zinc- lead-copper ores	Total fine ounces
1947-51 (average) 1952. 1953. 1954. 1955. 1956.	27.8 22.5 20.9 22.8 21.8 19.0	41. 0 39. 5 40. 4 42. 8 41. 3 42. 5	23. 3 29. 4 30. 9 28. 6 30. 1 31. 8	0.6 .4 .3 .3 .2 .6	0. 2 . 2 . 1 . 1 . 1	7.1 8.0 7.4 5.4 6.5 6.1	2, 097, 994 1, 893, 261 1, 958, 293 1, 837, 310 1, 880, 142 1, 832, 584

TABLE 9.—Mine and refinery production of gold in the United States in 1956, by States and sources, in fine ounces of recoverable metals

		1	Mine produ	ction				
State	Placers	Dry ore	Copper ore	Lead ore	Zinc ore	Zinc-lead, zinc-copper, and zinc- lead-copper ores	Total	Refinery produc- tion ¹
Alaska Arizona California Colorado	207, 533 94 134, 447 1, 916 2, 522	1, 762 1, 017 57, 380 53, 328 3, 137	119, 437 427 1, 435 2, 720	1 114 115 5, 339 43	8 2 9	25, 440 1, 445 35, 641 2 1, 607	209, 296 146, 110 193, 816 97, 668 2 10, 029	208, 90 147, 40 199, 00 95, 00 10, 70
Montana Nevada New Mexico North Carolina	1, 496 350 2	7, 362 20, 282 398 882	13, 540 47, 471 1, 890	643 3, 348 29	154 59 101	14, 926 1, 136 855	38, 121 72, 646 3, 275 882	36, 40 69, 00 3, 20 30
Oregon Pennsylvania South Dakota Tennessee Utah	354	2, 379 568, 523	(3)			189	2, 738 (3) 568, 523 189	2, 69 1, 70 569, 30 19
Vermont Vermont Vashington Vyoming	6	5, 145 56, 896 762	379, 027 4 1, 829 13, 752	844	5	31, 010 15	416, 031 41, 829 70, 669 762	440, 69 10 80, 00 62
Total	348, 720	779, 253	581, 533	10, 476	338	112, 264	1, 832, 584	1, 865, 20

Includes Alaska.
 Less than 0.1 percent.

U. S. Bureau of the Mint.
 Includes gold recovered from tungsten ores.
 Included with Vermont.
 Included with Vermont.
 Includes gold recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.

TABLE 10.—Gold produced in the United States from ore and old tailings, in 1956, by States and methods of recovery, in terms of recoverable metal 1

	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Ore and of	d tailings t	to mills				
Total ore, old tailings, etc. treated		old tail- ings, etc.		Recoverable in bullion		Concentrates smelted and recoverable metal		Crude ore to smelters	
	(short tons)	Short tons	Amalga- mation (fine ounces)	Cyani- dation (fine ounces)	Concentrates (short tons)	Fine ounces	Short tons	Fine ounces	
Western States and Alaska: Alaska. Arizona. California. Colorado. Idaho. Montana. Nevada. New Mexico. Oregon. South Dakota. Utah. Washington. Wyoming. Total. States east of the	57, 617, 135 281, 102 1, 156, 619 2*2, 071, 451 9, 535, 789 12, 300, 484 8, 771, 383 1, 991 1, 743, 173 433, 238, 773 436, 238, 773 1, 697, 099 3, 202 128, 417, 847 5 3, 073, 041	56, 760, 218 261, 029 1, 120, 685 1, 983, 117 9, 311, 230, 28, 651, 707 1, 743, 173 32, 935, 780 1, 632, 920 3, 161 126, 537, 393 3, 072, 966	637 9 24, 705 6, 206 954 1, 047 309 24 404, 525 93 517 439, 180	26, 181 52, 412 18, 507 163, 998 5, 819 2	18 1, 806, 359 33, 304 133, 901 198, 592 653, 734 302, 396 310, 917 175 1, 046, 978 75, 106 38 4, 561, 518 173, 674	323 108, 695 7, 484 35, 143 5, 966 28, 699 42, 182 2, 769 1, 735 409, 996 39, 607 223 682, 822 2, 900	856, 917 20, 073 35, 334 88, 334 224, 455 168, 182 119, 676 302, 992 64, 179 41 1, 880, 454	800 33, 44 999 1, 999 58' 6. 87' 11. 294 481 491 6, 03i 25, 144 88, 177	
Grand total	131, 490, 888	129, 610, 359	439, 180	270, 785	4, 735, 192	685, 722	1, 880, 529	88, 17	

TABLE 11.—Gold produced at amalgamation and cyanidation mills in the United States and percentage of gold recoverable from all sources, 1947-51 (average) and 1952-56 1

	Bullion ar tates re (fine oun	nd precipi- ecoverable ces)	Gold	from all s	ources (per	cent)
	Amalga- mation	Cyanida- tion	Amalga- mation	Cyani- dation	Smelt- ing 2	Placers
1947-51 (average)	440, 074 422, 087 467, 561 429, 558 445, 135 439, 180	273, 393 256, 787 265, 552 286, 989 268, 600 270, 785	21. 0 22. 3 23. 9 23. 4 23. 7 24. 0	13. 0 13. 6 13. 5 15. 6 14. 3 14. 8	38. 2 41. 6 41. 7 38. 1 40. 2 42. 2	27. 8 22. 5 20. 9 22. 9 21. 8 19. 0

Missouri excluded.
 Excludes tungsten ore concentrates yielding copper-lead.
 Includes 71,774 tons of zinc slag.
 Includes 48,804 tons of zinc slag.
 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

Includes Alaska.
 Both crude ores and concentrates.

TABLE 12.—Gold production at placer mines in the United States, by class of mine and method of recovery, 1947-51 (average) and 1952-56 ¹

			Material	G	old recovera	ble
	Mines pro- ducing	Washing plants (dredges)	treated (cubic yards)	Fine ounces	Value	Average value per cubic yard
rface placers:		, · ·				
Gravel mechanically handled:						
Bucketline dredges: 1947-51 (average)	ro.	70	110 557 514	400 050	010 100 000	
1947-51 (average)	50 37	70 56	110, 557, 514 69, 940, 758 65, 313, 835 62, 082, 120 53, 351, 709 48, 955, 036	462, 653	\$16, 192, 862 12, 547, 220 12, 009, 620 12, 460, 630 12, 184, 585 10, 310, 475	\$0.14 .17
1952 1953	21	41	65 313 835	358, 492 343, 132	12,047,220	.18
1954	22	44	62 082 120	356, 018	12,000,020	.20
1955	25	20	53, 351, 709	348 131	12 184 585	. 22
1954	19	32	48, 955, 036	348, 131 294, 585	10, 310, 475	. 21
Dragline dredges:			,		,,	
	. 39	36	5, 419, 886 1, 936, 587 659, 600 554, 460 479, 885	27,907	976, 745 298, 095 85, 855 146, 440 102, 865 87, 570	. 18
1952	16	16	1, 936, 587	8, 517 2, 453 4, 184 2, 939	298, 095	. 15
1953	14	13	659, 600	2, 453	85, 855	. 13
1954	15	15	554, 460	4, 184	146, 440	. 26
1955	19	7	479, 885	2,939	102,865	. 21
	16	1	774, 324	2, 502	87,570	.11
1047-51 (average)		1.6				5.5
1952–56						
Becker-Hopkins dredges: 1947-51 (average) 1952-56 Suction dredges:						
1947-51 (average)	12	11	177, 371 74, 100 87, 700 3, 800	924	32, 326 10, 675 11, 935	.18
1952 1953	. 9	9	74, 100	305	10,675	.14
1953	7	8	87, 700	341	11, 935	. 13
1954 1955	3	3 5	3,800	53	1,855 1,610	.48
1955	3 5 2	5	2, 400 23, 920	46	1,610	. 67
1956. Nonfloating washing plants: 1947-51 (average) 1952. 1953. 1954.	. 2	2	23, 920	27	945	.04
Nonfloating washing plants:						
1947-51 (average)	155	154	6, 164, 336	69, 942	2, 447, 970	. 39
1902	103	102	4, 795, 100	54,800	1,920,310	.40
1999	128 128	128 128	9 072 510	58, 295	2,040,525	. 50
1055	118	109	2, 913, 310	52, 491	1,007,100	. 61
1955	110	99	6, 164, 336 4, 795, 100 4, 019, 325 2, 973, 510 2, 259, 263 1, 354, 976	54, 866 58, 295 52, 491 53, 332 47, 808	2, 447, 970 1, 920, 310 2, 040, 325 1, 837, 185 1, 866, 620 1, 673, 280	1. 23
raval hydraulically handled	110	99	1, 302, 510	41,000	1,070,200	1. 20
1947-51 (average)	105		1, 244, 855	14 121	404 940	. 39
1952	33		130, 401	14, 121 1, 326	46, 410	.35
1953	48		130, 401 440, 290	1 1 0 9 2	67, 305	.15
1955	48		258, 100	2,079	72, 765	. 28
1955	44		200,001	1,528	53, 480	.26
1956 Small-scale hand methods:	36		258, 100 200, 001 49, 652	2, 079 1, 528 1, 438	46, 410 67, 305 72, 765 53, 480 50, 330	1.01
Small-scale hand methods: Wet:						
1047_51 (average)	247		338, 014	6, 624	231, 826	. 68
1952	119		101 152	2. 598	231, 826 90, 930	.89
1953	139		152, 565	6, 624 2, 598 2, 534	1 88 690	. 58
1954	112		171, 780	J 3. 248	113,680	.66
1952_ 1953_ 1954_ 1955_	78		152, 565 171, 780 236, 226 99, 355	3, 580 2, 141	113, 680 125, 300 74, 935	. 53
1956	69		99, 355	2, 141	74, 935	. 75
Dry:	11		1	110		
1947-51 (average) 1952	11		2, 464	118	4, 130	1.67
1953	3		9,875	103	3,605	. 36
1054	3		9,875	78	2 730	3. 01
1954 1955	2		420	75	2, 625	6. 25
1956	2		300	53	2, 730 2, 625 1, 855	6. 18
ground placers (drift):		ļ		1 30	1,000	
1947-51 (average)	30	l	9, 627	515	18, 018	1.8
1952	14		4, 370	159	5, 565	1.27
1953	13		3, 778 9, 130	172	6.020	1.59
1954	23		9, 130	304	10.640	1.10
	18 12		5, 358 3, 886	216	7, 560	1.4
1956	12		3,886	166	5, 810	1.49
assined placers:		1		l	1	1
assified placers: 1947–51 (average) 1952–53						
1957-55					9 81 000	
1954 1955–56			[2 1, 476	2 51, 660	(2)
nd total placars.	1				-	
1047-51 (average)	3 648		123 014 067	589 904	20 202 194	.10
1952	331		76 982 469	426 262	14 010 905	111
1953	373		70, 686, 968	408 953	14, 313, 355	.20
1947–51 (average) 1952 1953 1954	354	I	123, 914, 067 76, 982, 468 70, 686, 968 66, 053, 805 56, 535, 262 51, 261, 449	582, 804 426, 263 408, 953 419, 931 409, 847 348, 720	20, 398, 126 14, 919, 205 14, 313, 355 14, 697, 585 14, 344, 645 12, 205, 200	2
	1 201	1	Fe FOF 000	400 047	1 14 044 045	1
1955	309	l	1 00, 0an. Znz	409.044	1 14. 344. nan	.2

Includes Alaska.
 Included in total of gold recoverable and value but not computed into average value per cubic yard.
 A mine using more than 1 method of recovery is counted but once in arriving at total for all methods.

CONSUMPTION AND USES

Industry and the Arts.—Gold consumption in domestic industry and the arts in 1956 increased nearly 8 percent to 1.4 million ounces, according to data supplied by the Bureau of the Mint. This was equivalent to about three-quarters of the domestic mine production. mestic consumption represents the net amount of gold issued by Government mints and assay offices and private refiners and dealers for industrial, professional, and artistic use after deduction of secondary materials returned to monetary use and old jewelry, plate, and other scrap returned for refining.

A leading bullion firm estimated that over 10 million ounces of gold was absorbed from world production in 1956 for hoarding, in addition

to 3 million ounces used in the arts and industry.

The chief uses of nonmonetary gold were in jewelry and the decorative arts, including watchcases, utensils of various kinds, gold leaf, and ceramic finishes. The quantity of gold used in industry and the number of different applications continue to increase, despite the relatively high price of the metal. Gold was used in various alloys with platinum-group metals for spinnerets in manufacturing synthetic fibers, in various types of equipment in chemical plants and laboratories, and for thermocouples, and electrical fuses and contacts. Other uses for gold or its alloys included dental fillings and dentures, radium and X-ray therapeutic equipment, and wires and springs in scientific apparatus.

TABLE 13.—Net industrial 1 consumption of gold in the United States, 1947-51 (average) and 1952-56, in fine ounces [U. S. Bureau of the Mint]

		Year		Issued for industrial use	Returned from indus- trial use	Net indus- trial con- sumption
1947-51 (aver:	age)		 	3, 296, 193 3, 633, 985	1, 181, 615 881, 113	2, 114, 578 2, 752, 872
1953 1954			 	3, 210, 829 2, 236, 179	1, 067, 969 966, 379	2, 142, 86 1, 269, 80
1955			 	1, 964, 500 2, 186, 450	664, 500 786, 450	1, 300, 00 1, 400, 00

¹ Including the arts.

According to reports from producers to the Bureau of Mines, "natural gold" sold on the open market in the United States in 1956, aggregated about 1,500 ounces. Prices paid for "natural gold" averaged \$3 to \$5 above the Mint price.

Monetary.—Gold continues to be used chiefly as a means of settling international transactions and to give stability of value to currency. Demand for gold coins increased during 1956, and trading was active

due principally to the crisis over the Suez Canal.

MONETARY STOCKS

Reversing the decline in United States monetary gold stocks during the period 1952-55, stocks in the United States Treasury increased \$259 million in 1956 to \$21,949 million, approximately 60 percent of the Free World gold reserves, according to the Federal Reserve Bulletin. World monetary gold reserves, excluding the U.S.S. R. and satellite

countries but including the International Monetary Fund and other international financial institutions, at the end of 1956 was estimated at \$37,700 million—an increase of \$600 million during the year, according to the Annual Report of the International Monetary Fund. This compares with increases of about \$500 million in both 1955 and 1954.

The principal Free World monetary gold stocks, outside those in the United States Treasury, at the end of 1956 were: International financial agencies, \$2,150 million; United Kingdom, \$1,800 million; Switzerland, \$1,680 million; Germany, \$1,490 million; Canada, \$1,100 million; Belgium, \$930 million; France, \$861 million; and Netherlands, \$844 million.

PRICE

The official United States Treasury price of gold, established in 1934 at \$35 per fine ounce, remained unchanged. Virtually all domestic gold production was sold to Government mints or assay offices at the official price, less charges of \$0.0875 per ounce for handling and and refining. The price of gold on the London market, which handled most of the world's free-market gold, remained close to the United States official price; fluctuations were in the narrow range of \$34.97-\$35.07 per ounce and usually were determined by sterling/dollar exchange. The price at which gold was traded in western free markets other than London remained close to the London price, with variations reflecting local circumstances. In some eastern markets, where gold was traded in local currencies, prices ranged much higher than the official rate of \$35 per ounce.

An analysis of the problems connected with the restoration of gold to a fully convertible basis, its price in relation to the purchasing power of the dollar, and the establishment of a free market for gold in the United States was presented in a technical journal.³

An appeal for an increase in the United States official price for gold was made again in 1956 by the finance minister of South Africa at the annual meeting of the International Monetary Fund. The United States representative, W. Randolph Burgess, Under Secretary of the Treasury, stated that the United States would continue its stand in opposition to an increase in the price of gold by saying:

* * * While we are sympathetic to South Africa's specific problems, it would conflict with the great objective of the United States' monetary policy, which is to maintain a sound and stable currency both domestically and internationally. * * *

TABLE 14.—Value of gold imported into and exported from the United States, 1947-51 (average) and 1952-56, in thousand dollars

| Table | Part | Table | Part

¹ Revised figure.

³ Wiser, Ray B., Gold in Relation to Convertibility of Currencies: Min. Cong. Jour., vol. 42, No. 4, April 1956, pp. 92-95.

FOREIGN TRADE 4

Imports of gold in 1956 exceeded exports for the fifth consecutive year. The excess of imports over exports rose \$8.8 million during the year to \$106.1 million. Net imports of gold, plus domestic production, continued to exceed net consumption in the arts and industry by a wide margin, thus increasing monetary stocks. More than 80 percent of the gold imports in 1956 came from Canada; and nearly 85 percent of the gold exported during the year by the United States went to West Germany.

TABLE 15.—Gold imported into the United States in 1956, by countries of origin [Bureau of the Census]

Country of origin	Ore and b	ase bullion	Bullion,	refined
Country of origin	Troy ounces	Value	Troy ounces	Value
North America: Canada	702, 048	\$24, 508, 826	2, 374, 938	\$83, 092, 78
Costa Rica CubaEl Salvador	535 1,008 2,880	18, 731 35, 267 101, 095		
Guatemala Honduras Mexico	1, 577 82, 721	245 55, 172 2, 884, 614	23	800
Nicaragua Panama	138, 583 947	4, 857, 956 33, 166	302	10, 577
Total	930, 306	32, 495, 072	2, 375, 263	83, 104, 16
South America: Argentina. Bolivia. British Guiana. Chile. Colombia. Ecuador. French Guiana. Peru. Venezuela.	1 889 2, 458 2, 872 54, 171 5, 010 15, 222 354 75, 032 850	34 30, 992 86, 015 100, 477 1, 895, 785 175, 314 528, 331 12, 397 2, 586, 851 29, 750		
Total.	156, 859	5, 445, 946	14, 668	499, 40
Europe: France. Malta, Gozo and Cyprus Portugal. Switzerland United Kingdom	1, 939 21, 243	849 67, 701 743, 887 242, 539	163 607	5, 704 21, 207
Total	30, 125	1, 054, 976	770	26, 91
Asia: India Japan. Korea, Republic of Philippines. Turkey.	112 418 118 62, 202 1, 524	3, 895 14, 623 4, 105 2, 173, 755 53, 330	141, 360	7, 232, 40
Total	64, 374	2, 249, 708	141, 360	7, 232, 40
Africa: Angola	1 1, 113 2, 928 542 2	39 38, 874 102, 470 18, 970 78		
TotalOceania: Australia	4, 586 10, 886	160, 431 378, 664	550	19, 39
Grand total	1, 197, 136	41, 784, 797	2, 532, 611	90, 882, 27

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

⁴⁶⁶⁸¹⁸⁻⁻⁵⁸⁻⁻⁻⁻³⁵

TABLE 16.—Gold exported from the United States in 1956, by countries of destination

[Bureau of the Census	[Bureau	of the	e Census
-----------------------	---------	--------	----------

Country of destination	Ore and b	ase bullion	Bullion	, refined
	Troy ounces	Value	Troy ounces	Value
North America: Canada. Cuba			12, 135	\$425, 186
Cuba El Salvador Mexico Panama		\$391, 213	8, 257 316	965 289, 485 11, 029
Total	11, 152	391, 213	20, 735	726, 665
South America: Brazil. Chile Venezuela.	48	1, 690	732 1, 124 4, 793	25, 103 39, 327 169, 655
Total	48	1, 690	6, 649	234, 085
Europe: Germany, West Portugal United Kingdom		317, 490	623, 141 18, 951	21, 809, 934 663, 496
Total	8, 762	317, 490	642, 092	22, 473, 430
Asia: Ceylon Philippines Turkey			92 43, 313 1, 019	3, 414 2, 377, 935 35, 670
Total			44, 424	2, 417, 019
Grand total	19, 962	710, 393	713, 900	25, 851, 199

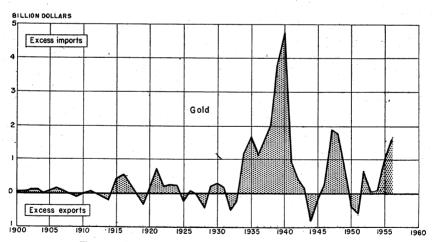


FIGURE 3.—Net imports or exports of gold, 1900-56.

TECHNOLOGY

At the Leopard mine in Rhodesia dramatic improvement in the recovery of gold from an ore containing gold sulfides was effected by replacing conventional wet ball milling by dry milling methods.⁵

Rhodesian Mining and Engineering Review, vol. 21, No. 3, March 1956, pp. 45-51.

539 GOLD

A new process for recovering gold from cyanide solutions that may radically change gold-recovery technique has been developed and is undergoing test. The process is based on selective absorption of gold and silver from normal gold-mill pregnant solution by certain weak-base ion-exchange resins and subsequent elution by an inexpensive reagent from which it can be recovered by electrolysis.

Tests on the application of the Aerofall mill to South African gold ores proved that substantial reductions in operating and capital costs could be effected and that recovery of gold was increased appreciably.7 The test results indicate that adoption of the Aerofall mill may rank as one of the most important developments in the gold-mining history of South Africa. Comparative performance data and costs were published for both standard and Aerofall milling plants.

A new rapid spot test that detects very small quantities of gold in 5 minutes was developed by Dr. Philip W. West at Louisiana State University.8 In making the test potassium chloride and butyl alcohol are added to a solution to be tested; naphthylamine, when added to the extract, will cause the appearance of a violet color if gold is present. The new spot test is expected to have wide use in

chemistry, metallurgy, and other fields.

Significant improvement in gold recovery was realized at the mills of Campbell Red Lake Mines, Ltd., and of Kerr-Addison Gold Mines, Ltd., in Canada by the installation of FluoSolid roasting equipment. At the Campbell property two-stage roasting of a sulfoarsenide concentrate resulted in lower losses of gold in the cyanide residue after cyanidation of the calcine. At Kerr-Addison treatment of the cyanidation tailing by Dorrclone and subsequent flotation of the Dorrclone sands and FluoSolid roasting resulted in the recovery of a substantial part of the refractory gold locked in pyrite and formerly lost.

Many difficult problems of deep mining related to high temperatures and high rock pressures and measures taken to overcome and control them and provide optimum, safe, efficient operations at mines in the famous Kolar Gold Field of India were described.9 Rock bursts occurring on the field are recorded on a seismograph, and rock-burst records have provided useful data on the relation of mining methods

to rock-burst incidence.

Although gold is one of the most adaptable metals, the extent to which it can be used as an industrial material is limited by its relatively high value. The economic limitations restricting industrial usage can be reduced somewhat by lowering fabrication and application costs. A new, economical method of applying gold coatings on ceramics, porcelain enamel, stainless steel, and aluminum was developed by the Bettinger Corp. and Hanovia Chemical & Manufacturing Co. for architectural use and other decorative purposes. The physical and chemical properties of gold, current commercial usage, and possible new uses of gold and gold alloys were described in a technical journal.10

<sup>Metallurgia, vol. 54, No. 321, July 1956, p. 54.
Waspe, L. A. Aerofall Mill Tests in South Africa Prove: Mining World, vol. 18, No. 6, May 1956, pp. 48-52, 77.
Manufacturers Record, vol. 125, No. 2, February 1956, p. 24.
Caw, J. M., The Kolar Gold Field: Mine and Quarry Eng., vol. 22, Nos. 7 and 8, July and August 1956, pp. 258-268 and 306-316.
Cald in Industry, Vol. 247, No. 282, Dec. 28, 1056, pp. 705, 707.</sup> pp. 258-268 and 306-316.

10 Mining Journal (London), Gold in Industry: Vol. 247, No. 6332, Dec. 28, 1956, pp. 796-797.

Other articles pertaining to the technology of gold were published during the year.13

WORLD REVIEW

World output of gold increased 6 percent in 1956, reaching 38.4 million ounces valued at \$1.34 billion, the highest production since 1941; gains in South Africa more than offset lower output from Canada, Colombia, Mexico, and the United States. In 1956 the gold-mining industry in most countries faced another year of rising production Financial assistance, in the form of subsidies or cost aid to gold mines, adopted by several countries was continued in 1956.

Australia.—Gold production in Australia dropped slightly in 1956 compared with 1955, owing principally to lower output from mines in Queensland and Victoria. Western Australia was again the main producer, with 79 percent of the total, followed by the Northern Territory with 7 percent, and Queensland with 5 percent. Mine operations in the Bendigo field, Victoria were closed during the year.

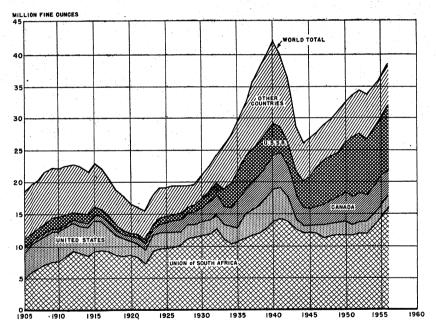


FIGURE 4.—World production of gold, 1905-56.

¹¹ Cholmeley, F. N., Metallurgical Practice on the Kolar Gold Field: Mine and Quarry Eng., vol. 22, No. 9, September 1956, pp. 366-371.

Waspe, L. A., Recent Reduction-Plant Practice in the Anglo-American Group: Canadian Min. Jour., vol. 77, No. 3, March 1956, pp. 49-56.

Gaudin, A. M., Schuhmann, Jr., R., and Dasher, J., Extraction Process for South African Gold-Uranium Ores: Mining Eng., vol. 8, No. 8, August 1956, pp. 802-806.

South African Mining and Engineering Journal, The Origin of the Auriferous Reefs of the Witwatersrand System: Vol. 67, No. 3320, Sept. 28, 1956, pp. 479-487.

Black, R. A. L., Mining-Group Management in South Africa: South African Min. and Eng. Jour., vol. 67, No. 331, Dec. 14, 1956, pp. 997, 999, 1003.

Matheson, A. F., The St. John Del Rey Mining Company, Ltd., Minas Gerais, Brazil: Canadian Min. and Met. Bull., January, 1956, pp. 37-43.

Deco Trefoll, La Luz Mines, Ltd. (Bull. M4-B85, Gold Flotation): Vol. 20, No. 2, March-April1956, pp. 7-10.

GOLD 541

Financial assistance to marginal mines under the Gold Mining Industry Assistance Act continued in 1956 and amounted to £401,000 (\$902,000). The act was extended for 3 years. Gold-mine operators obtained some additional revenue from premium sales made through the Gold Producers Association. Hong Kong continued to be the main export market for Australian gold.

TABLE 17.—World production of gold, 1947-51 (average) and 1952-56, by countries, in fine ounces 2

[Compiled by Augusta W. Jann]

and the second of the second o						
Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:	0.050.000	1 007 000	1 070 000	1, 859, 000	1, 876, 830	1, 865, 200
United States (incl. Alaska) 2 Canada	2, 059, 236 3, 913, 671	1, 927, 000 4, 471, 725	1, 970, 000 4, 055, 723	4, 366, 440	4, 541, 962	4, 395, 770
Central America and West Indies:						
Costa Rica	697 2, 828	881	1, 181	677	2,024	535 1,008
Cuba 4 Dominican Republic Guatemala 4	4 385	4 332			1	290
Honduras	92 23, 853	31, 967	47, 523	20, 429	817	5 1, 611
Nicaragua	⁵ 226, 196 2, 934	254, 675	261, 899	232, 212	237, 376	217, 140
Panama Salvador (exports) Mexico	22, 955	27, 682 459, 370	23, 359 483, 483	5, 326 386, 870	3, 818 382, 883	2, 983 329, 972
		<u>-</u>				
Total.	6, 661, 000	7, 173, 600	6, 843, 200	6, 871, 000	7, 045, 700	6, 814, 500
South America: Argentina	6 8, 000	6 8,000	6 8, 000	8 8,000	6, 700	6, 900
Bolivia	14, 249	10,770	22, 923	28, 614	31, 508	§ 24, 118
Brazil ⁶ British Guiana	180, 580	160,000	147,000	153,000	145, 000	160,000
British Guiana	16, 907	22, 237 167, 993	20, 966	26, 938	23, 766 141, 978	15, 818 94, 457
Chile	177, 459	422, 231	130, 693 437, 297	124, 970 377, 466	380, 824	438, 349
Colombia Ecuador	377, 579 68, 955	24, 294	29, 239	18, 942	15, 289	15, 076
French Guiana	13, 522	8, 231	2, 576	1, 512	8, 713	6 7, 500
Peru.	122, 631	130, 944	141, 193	147, 424	170, 747	194, 849
Surinam	4, 629	6, 134	6, 482	6, 771	7, 204	6, 736
Venezuela	34, 052	4, 797	27, 304	56, 074	61, 140	69, 826
Total 6	1, 018, 660	966, 000	974,000	950, 000	990, 000	1, 030, 000
E						
Europe: Finland	12, 691	19,741	19, 483	16, 976	18, 840	18, 229
France	55, 469	19, 741 68, 735	64,687	15, 947	28, 900	6 30, 000
Germany, West.	6 1, 190	2,009	6, 398	4, 665	3, 839	6 4, 500
(+reece			2,048	7,620	6, 655	5, 787
Italy Portugal Spain	12, 565	14, 854	12, 153	5, 208 18, 583	5, 562 28, 807	5, 337 5 27, 000
Portugal	14, 352 14, 080	17, 940 8, 944	14, 854 8, 263	9, 677	10, 449	6 10,000
Sweden	75, 419	65, 877	88, 254	110, 277	98, 767	116, 450
U. S. S. R.67	7, 700, 000	9, 500, 000	8 9,000, 000	9,000,000	9,000,000	10,000,000
Sweden. U. S. S. R. 67 Yugoslavia	29, 379	36, 266	36, 620	44, 785	41, 635	6 45, 650
Total 6	8, 000, 000	9, 900, 000	9, 400, 000	9, 400, 000	9, 400, 000	10, 400, 000
Asia:						
Burma	163	43	647	170	124	179
China	6 92, 800	\$ 100,000	6 100, 000	(9)	(9)	(9)
India	187, 925	253, 264	223, 020	240, 708	210, 880	209,000
Indonesia	6 35, 600	200, 935	(º) 228, 255	(9) 243, 149	(º) 240, 732	(9) 241, 388
Japan Korea:	104, 543	200, 800	220, 200	240, 140	240, 102	211,000
North	6 264, 400	(9)	(9)	(9)	(9)	(9)
North Republic of	6 6, 780	18, 647	15, 882	52, 406	47,037	49, 903
Malaya Philippines	12, 919	19, 806	18, 283	20, 955	22, 838	20, 253
Philippines	257, 938	469, 408	480, 625	416, 052	419, 112 463	406, 163 599
Sarawak	976 66, 428	843 69, 394	442 81, 566	531 34, 298	403	999
Saudi Arabia Taiwan (Formosa)	21, 970	33, 147	27, 200	25, 010	28, 100	33, 131
Total 67	1, 057, 000	1, 430, 000	1, 440, 000	1, 440, 000	1, 380, 000	1, 420, 000

See footnotes at end of table.

TABLE 17.—World production of gold, 1947-51 (average) and 1952-56, by countries,1 in fine ounces 2-Continued

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
Africa:						1.5
Angolo	277	40	20	36	57	34
Rechuanaland	1, 980	1, 245	1, 109	1, 216	560	590
Bechuanaland Belgian Congo ¹⁰ Egypt Eritrea	325, 359	368, 737	371, 020	365, 490	369, 926	373, 840
Egypt	8, 036	17, 059	14, 234	17, 387	6, 524	7, 697
Eritrea	1, 975	699	1, 363	1. 484	161	3, 215
Ethiopia	1 38 108	27, 291	26, 696	33, 894	22, 058	6 25, 000
French Cameroon	8, 749	2,604	1,022	686	518	463
French Equatorial Africa	59, 801	51, 655	54, 180	45, 307	46, 548	40, 712
French Morocco	933	4, 051	2, 533	3, 566	4, 270	265
French West Africa	52, 332	1,500	1,608	418	225	431
Gold Coast	659, 090	691, 460	730, 963	787. 075	687, 151	599, 316
Kenya		10, 210	9, 603	6, 607	9, 528	13, 843
Liberia	13, 254	5 11 949	-863	1, 135	672	500
Madagascar		1, 784	1,640	1, 363	981	894
Mozambique	2,897	831		2,027		
Mozamoique	2, 284	1, 348	1, 034 689	730	1, 248 681	1, 247 439
Nigeria Rhodesia and Nyasaland, Fed-	2, 201	1, 040	009	100	091	408
eration of:						
Northern Rhodesia 12	1.087	2, 523	3, 107	2,648	2, 234	3, 243
Southern Rhodesia	512, 685	496, 731	501, 057	535, 852	524, 701	536, 392
Sierra Leone		2, 638	1, 451	2, 254	474	5 452
South-West Africa.	l "iii	2,000	1, 101	2,201	7	102
Sudan	3, 283	1, 545	2, 175	1, 554		6 2, 000
Qwoziland	2, 741	1,010	2,110	1,001	- 2,000.	252
Swaziland Tanganyika	60, 922	64, 693	69, 886	71, 447	68, 892	59, 293
Uganda (exports)	781	201	511	568	450	293
Union of South Africa	11 524 080		11, 940, 616		14, 602, 267	15, 896, 693
Onion of Bouth Allica	11, 552, 506	11, 010, 001	11, 540, 010	15, 257, 119	14, 002, 207	10, 000, 000
Total	13, 320, 000	13, 570, 000	13, 740, 000	15, 120, 000	16, 350, 000	17, 570, 000
Oceania:						
Australia:	1				1.0	
Commonwealth	895, 351	980, 435	1, 075, 181	1, 117, 077	1,049,011	1, 029, 926
New Guinea		122, 431	120, 568	86, 195	73, 980	79, 085
Papua	440	149	141	318	873	391
Y. Zalad	97, 701	78, 282	76, 970	72, 200	70, 100	67, 475
Fiji New Zealand.	88, 536	59, 151	38, 656	41, 713	26, 443	26, 063
Total	1, 084, 625	1, 240, 448	1, 311, 516	1, 317, 503	1, 220, 407	1, 202, 940
Warld total (agtimata)	21 100 000	24 200 000	22 700 000	25 100 000	26 400 000	20 400 000
World total (estimate)	31, 100, 000	34, 300, 000	33, 700, 000	35, 100, 000	36, 400, 000	38, 400, 000

¹ In addition to countries listed, gold is also produced in Austria, Bulgaria, Czechoslovakia, East Germany, Hungary, Rumania, and Thailand, but production data are not available; estimates are included in total. Figures used derived in part from American Bureau of Metal Statistics. For some countries accurate figures are not possible to obtain owing to clandestine trade in gold (as for example, French West

* This table incorporates a number of revisions of data published in previous Gold chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

* Refinery production. Excludes production of the Philippines.

Refinery production. Exclusive Amports into United States.

Exports.

7 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
8 Production is believed to have decreased because of a probable diversion of forced labor into other activities.

**Potata not available; estimate included in total.

**Data not available; estimate included in total.

**Includes Ruanda-Urundi.

**In Year ended Sept. 30 of year stated.

**Included is yield from Nkana-mine refinery slimes: 1947-51 (average), 1,411 ounces; 1952, 2,503; 1953, 2,820; 1954, 2,470; 1955, 2,203; and 1956, 3,243.

Canada.—Gold output from Canada, the Free World's second largest producer, was 4.4 million ounces in 1956, a 3-percent drop from 1955. Ontario was again the principal producer, with 57 percent of the total; Quebec was second, with 24 percent, followed by Northwest Territories, with 8, and British Columbia, with 5. About 86 percent of the gold output in 1956 came from straight gold-mining operations, both lode and placer; the remainder was recovered as a byproduct from base-metal ores. Four gold mines closed during 1956, and no new mines came into production.

GOLD 543

Financial assistance to gold-mine operators under terms of the Emergency Gold-Mining Assistance Act continued through 1956; by an amendment to the act in 1956, financial assistance will be extended through 1958. Owing to an increase in the value of the Canadian dollar in relation to the United States dollar, the corresponding price of gold in Canada declined about 8 cents an ounce to an average of \$34.44 an ounce. Free gold trading was established in Canada during the year by lifting controls on the market and permitting unrestricted exports of gold.

Production of gold in Canada in 1955 and 1956 was distributed as

follows:12

	Fine	ounces
Province or Territory:	1955	1956
British Columbia	252, 979	210, 948
Manitoba	123, 888	119, 350
Northwest Territories	321, 321	352, 645
Ontario	2, 523, 040	2, 498, 072
Quebec		1, 032, 252
Saskatchewan	83, 580	82, 800
Yukon	72, 201	73, 240
Others ¹	10, 431	9, 555
Total	4, 541, 962	4, 378, 862

¹ Alberta, Nova Scotia, and Newfoundland.

According to a 1956 survey of the gold-mining industry of 92 lode-gold mines in operation at the beginning of 1949, following enactment of the Emergency Gold-Mining Assistance Act, only 54 lode mines were still operating at the end of 1956, notwithstanding the act. The survey also showed that the high cost of mining had forced many mines, still operating, to mill higher grade ore and delete large tonnages of low-grade ore from the ore-reserve accounts. However, aid to gold mines through the EGMAA had kept many of the lower grade mines in operation. Over \$97 million was paid to lode- and placer-gold-mining companies in cost aid to the end of 1956. With regard to the outlook of gold mining in Canada, the survey stated:

Without an increase in the price of gold it appears likely that Canada's future gold production will tend to come from a few large gold mines and as a byproduct from base-metal mines and may eventually be in the position of silver in Canada and become primarily a byproduct metal.

Colombia.—Output of gold from Colombia, the leading South American gold producer, rose 15 percent in 1956 to 438,000 ounces the highest output since 1945. Placer mines continued to supply

most of the production.

India.—Gold output from India declined for the second successive year in 1956. The Mysore Legislative Assembly in October passed a bill nationalizing the British-owned Kolar gold mines and providing compensation of £1,230,000 (\$3,444,000) to the owners. The Kolar mines have been worked for about 80 years and normally produce over 200,000 ounces a year. Ore reserves were estimated at slightly over 2 million tons averaging about 9 dwt. (0.45 ounce) per ton.

¹² Department of Mines and Technical Surveys, Ottawa, Canada, Gold in Canada, 1956 (Preliminary): No. 8, pp. 2-3.
¹³ Verity, Thomas W., A Survey of the Gold-Mining Industry in Canada During 1956: Canada Dept. o Mines and Tech. Surveys, Ottawa, Inf. Circ. MR 25, May 17, 1957, pp. 4-5.

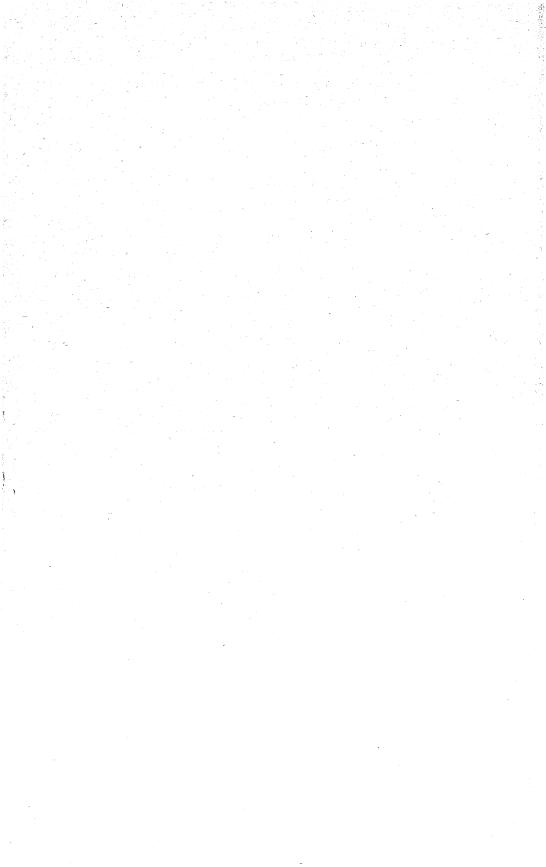
Philippines.—Production of gold in the Philippines dropped 3 percent in 1956 to 406,000 ounces, the lowest output since 1951. However, the value of the gold produced was slightly higher in 1956 than in 1955, due to a higher free-market price, which increased from ₱104.65 (average) per ounce in 1955 to ₱109.76 (average) per ounce in 1956, equivalent to \$52.32 and \$54.88, respectively. Approximately 49 percent of the gold production was sold to the Central Bank under the Emergency Gold Mining Assistance Act.

The Philippine Congress extended the term of the Government subsidy to gold mines under provisions of the Emergency Gold Mining Assistance Act to July 18, 1957. Subsidy privileges also were expanded to include four mining companies producing gold as a by-Under the revised regulations, mining companies are required to sell 75 percent of their gold production to the Central Bank under the subsidy arrangement and may sell the remaining 25 percent either to the bank at subsidy premium rates or in the free market.

Extension of the gold subsidy was expected to permit continued operation of several marginal mines, which otherwise would be forced The increase from 50 to 75 percent in the amount of gold required to be sold to the Central Bank and the inclusion of all mines producing gold in the subsidy program was expected to result in higher sales to the Central Bank and a corresponding decline in freemarket transactions. Subsidy premiums were \$\mathbb{P}\$ 39 per ounce (\$19.50) for "marginal" mines and \$\mathbb{P}\$ 33 per ounce (\$16.50) for "nonmarginal"

Union of South Africa.—A new alltime record output of gold was established in 1956 by the Union, the world's leading gold producer. Output increased during the year to 15.9 million ounces, a 9-percent gain over 1955. The increased output was attributed principally to rapidly expanding production from new mines in the Orange Free State, the Far West Rand, and the Klerksdorp district of the Transvaal. Continuing production from some of the older marginal mines on the Rand recovering uranium, either as a primary product or as a byproduct, and the improved labor market also contributed to the record gold output.

The income-tax regulations were revised during the year and provided considerable assistance to the industry as a whole, but


brought no appreciable benefit to most marginal mines.

Average working costs per ton milled, which have been rising steadily since 1949, continued to rise an additional 2s.6d. during the year, reaching 42s.11d. Increased costs were more than offset in some mines by increasing working revenue resulting from mining higher grade ores; but three of the older mines were forced to close during the year as a result of higher costs, and several others appeared likely to close unless circumstances improved.

TABLE 18.—Salient statistics of gold mining in the Union of South Africa, 1947–51 (average) and 1952–56 [Transvaal Chamber of Mines]

	1947-51 (average)	1952	1953	1954	1955	1956
Ore milled (tons) Gold recovered (fine ounces) Gold recovered (dwt. per ton) Working revenue Working revenue per ton Working cost Working cost per ton of ore Working cost per ounce of metal		11, 818, 681 3, 767 141, 271, 310 47s.1d. 102, 525, 003 32s.2d.	11, 440, 830 3, 893 142, 198, 156 48s.5d. 107, 306, 956 36s.6d	12, 682, 328 4, 068 158, 630, 787 50s.11d. 120, 435, 001 38s.8d.	14, 093, 668 4, 274 177, 414, 094 53s, 10d, 133, 161, 104 40s, 5d,	15, 373, 680 4. 553 193, 214, 230 57s.3d. 144, 763, 823 42s.11d.
Working profit£	34, 972, 507 12s.2d. 18, 029, 175	38, 746, 307 12s.11d. 3, 699, 124 125, 000	34, 891, 200 11s.11d. 1, 934, 421 1, 828, 067	38, 195, 786 12s.3d. 12, 999 8, 105, 744	44, 252, 990 13s.5d. 233, 942 17, 558, 208	14s.4d. 882, 368 24, 662, 054

^{11£} valued at \$4.03 (approx. average) from Jan. 1, 1947, to Sept. 19, 1949; after that date, 1£ valued at \$2.80.

Graphite

By Donald R. Irving 1 and Eleanor B. Waters 2

ORLD production of natural graphite in 1956 receded from the total recorded in 1955 because output of amorphous graphite dropped sharply in the Republic of Korea. Production in virtually all other countries increased moderately.

Because of its nuclear and high-temperature applications there was intensive research on the properties of manufactured (artificial)

graphite.

DOMESTIC PRODUCTION

Southwestern Graphite Co., Burnet, Tex., continued as the only producer of crystalline flake graphite in North America in 1956. Graphite Mines, Inc., Cranston, R. I., was the only producer of amorphous graphite in the United States. Production figures are

withheld to avoid disclosing confidential information.

Output of manufactured (artificial) graphite powder and products came from plants of the following companies: National Carbon Co., Division of Union Carbide & Carbon Corp., Niagara Falls, N. Y., Clarksburg, W. Va., and Columbia, Tenn.; Great Lakes Carbon Corp., Niagara Falls, N. Y., and Morganton, N. C.; International Graphite & Electrode Division, Speer Carbon Co., St. Marys, Pa., and Niagara Falls, N. Y.; Stackpole Carbon Co., St. Marys, Pa. The Dow Chemical Co. produced graphite electrodes for its own use at Midland, Mich.

TABLE 1.—Salient statistics of the graphite industry in the United States, 1955-56

	19	55	1956		
	Short tons	Value	Short tons	Value	
Domestic graphite produced	(1) (1) 45, 245	(1) (1) \$6, 289, 416	(1) (1) 40, 401	(1) (1) \$5, 920, 298	
Imports: Crystalline fiake Lump, chip, or dust Amorphous (natural) Artificial	7, 706 195 40, 663 236	1, 018, 600 28, 703 1, 328, 197 11, 130	7, 264 171 40, 370 83	997, 746 34, 707 1, 555, 828 5, 427	
Total imports	48, 800	2, 386, 630	47, 888	2, 593, 708	
Exports: Crystalline flake, lump, or chip Amorphous (natural) Other natural graphite	141 1, 141 112	47, 720 129, 876 21, 787	147 790 125	46, 670 89, 556 23, 566	
Total exports	1, 394	199, 383	1,062	159, 792	

 $^{^{\}rm 1}$ Figure withheld to avoid disclosing individual company confidential data.

¹ Assistant chief, Branch of Ceramic and Fertilizer Materials.
² Research assistant.

TABLE 2.—Production and shipments of natural graphite in the United States, 1947-51 (average) and 1952-56

	Produc-	Shipment:		Shipments		Shipments		Shipments		Shipments	
Year	tion (short tons)	Short tons	Value	Year	Produc- tion (short tons)	Short tons	Value				
1947–51 (average)	6, 535 5, 606	6, 541 5, 081	\$469, 325 594, 618	1953 1954–56	6, 281 (¹)	4, 850 (1)	\$488,008 (1)				

¹ Figure withheld to avoid disclosing individual company confidential data.

CONSUMPTION AND USES

Domestic consumption of natural graphite in 1956 decreased 11 percent, compared with 1955. Major decreases were reported as follows: Batteries, 26 percent, foundry facings, 21 percent, and steel-making, 14 percent. Increases reported for carbon brushes were 21 percent and for lubricants, 15 percent.

TABLE 3.—Consumption of natural graphite in the United States, 1947-51 (average) and 1952-56

Year	Consu	mption	Year	Consumption		
	Short tons	Value		Short tons	Value	
1947-51 (average) 1952 1953	22, 724 26, 911 34, 884	\$3,090,566 4,048,787 4,778,981	1954 1955 1956	33, 038 45, 245 40, 401	\$4, 386, 760 6, 289, 416 5, 920, 298	

TABLE 4.—Consumption of natural graphite in the United States in 1956, by uses

	Crysta	lline flake	Ceylon	Ceylon amorphous		morphous 1	т	otal
Use	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Batteries Bearings Brake lining Carbon brushes Crucibles, retorts, stoppers, sleeves, and nozzles Foundry facings Lubricants Packings Paints and polishes Pencils Rubber Steelmaking Other 3	26 8 313 150 3, 670 1, 141 3, 072 281 21 160 27 169 96	\$18, 358 4, 395 156, 531 71, 144 736, 501 167, 295 685, 837 147, 022 3, 676 68, 893 11, 709 31, 315 43, 232	54 267 352 696 2,067 95 6 798 (2) (2) 118	\$29, 163 75, 864 185, 089 118, 598 513, 711 43, 219 950 302, 652 (2) (2) (2)	1, 641 40 183 262 17 12, 184 2, 282 106 749 1, 049 1, 09 8, 075 125	\$119, 419 20, 604 44, 920 38, 399 2, 719 938, 645 274, 413 19, 432 57, 790 161, 031 15, 630 757, 863 25, 168	1, 666 102 763 764 3, 687 14, 021 7, 421 482 776 2, 000 136 8, 244 339	\$137, 777 54, 162 277, 315 294, 632 739, 220 1, 224, 538 1, 473, 961 209, 673 62, 416 532, 576 27, 339 789, 178
Total	9, 133	2, 145, 908	4, 453	1, 298, 357	26, 815	2, 476, 033	40, 401	5, 920, 298

¹ Includes small quantity of mixtures of natural and manufactured graphite.
2 Included with "Other."

Includes adhesives, carbon resistors, catalyst manufacture, chemical equipment and processes, copper refining, electrodes, electronic products, insulation, plastics, powdered metal parts, refractory materials, roofing granules, specialties, and other uses not specified, in addition to uses indicated by footnote 2.

PRICES

Price quotations for all grades of graphite except Mexican amorphous, as reported in the trade journals and in Bureau of Mines Minerals Yearbooks for the last few years, were unchanged in 1956. Amorphous graphite, Mexican, f. o. b. point of shipment (Mexico), was quoted by E&MJ Metal and Mineral Markets at \$9 to \$18 per metric ton, depending on grade.

FOREIGN TRADE 3

Imports for consumption of graphite in the United States decreased 2 percent in quantity but increased 9 percent in value in 1956, compared with 1955. Imports from Hong Kong increased 94 percent in quantity and 92 percent in value; those from West Germany, 57 percent in quantity and 68 percent in value; and those from Norway, 10 percent in quantity and 17 percent in value. Imports from Madagascar decreased 8 percent in quantity and 6 percent in value, and those from Mexico and Ceylon each decreased 6 percent in quantity and increased 8 percent in value. Although production of natural graphite in Canada was discontinued in 1954, 229 tons were imported into the United States in 1956, presumably representing shipments from inventory. For the first time, imports were received from Madeira Islands, but no production was reported.

Total exports of natural graphite, 1952-54, were: 1952, 1,786 tons, \$211,125; 1953, 1,760 tons, \$200,110; 1954, 798 tons, \$105,598.

TECHNOLOGY

The amorphous graphite deposits of Sonora, Mexico,⁴ and operations of a crystalline graphite mine and mill at Thika, Kenya,⁵ and the Kaiserberg graphite mine and mill in Styria, Austria, were described.6 At the Kaiserberg mill a chemical plant capable of concentrating microcrystalline graphite to 99-percent carbon from feed of 90-percent carbon was completed. Results of beneficiation tests on low-grade natural graphite from India and Australia were reported.7

The United States natural-graphite supply problem 8 and general problems of the graphite industry 9 were discussed.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

⁴ Reyna, J. G., Mineral Wealth and Mineral Deposits of Mexico: Cong. Geol. Internat., 20th Sess., Mexico City, 1956, 3d ed., 497 pp.

⁵ Mining Journal (London), Mining Graphite in Kenya: Vol. 247, No. 6309, July 20, 1956, p. 83.

⁶ Spatzek, H., and Frank, G., Austrian Graphite Miners Use New Chemical and Flotation Methods: Mining World, vol. 18, No. 6, June 1956, pp. 56-59.

⁷ Mathur, G. P. and Narayanan, P. I. A., Beneficiation of Low-Grade Graphite From Titilajarh, Orussa: Jour. Sci. Ind. Research (New Delhi, India), vol. 15 B, 1956, pp. 154-157. Chem Abs., vol. 50, No. 21, Nov. 10, 1956, p. 15365c.

John Ser, Int. Research (1988) John St. A., Further Recovery Tests on Graphite Ore From Munglinup, Western Australia: Ore-Dressing Investigations, Rept. 671, Commonwealth Sci. Ind. Research Organization and School Mines West. Australia (Kalgoorlie), 1956, 6 pp.; Chem. Abs., vol. 51, No. 5, Mar. 10, 1957, p. 3393d.

8 Cameron, E. N., The Domestic Graphite Supply Problem: Min. Eng., vol. 8, No. 10, October 1956, pp.

<sup>1020-1023.

1020-1023.</sup>Lamb, F. D., and Irving, D. R., Graphite: Mineral Facts and Problems, Bureau of Mines Bull. 556, 1956, pp. 327-337.

TABLE 5.—Graphite (natural and artificial) imported for consumption in the United States, 1947–51 (average) and 1952–56
[Bureau of the Census]

		Crysta	lline			Amorg	hous			
	F	lake	Lum or	p, chip, dust	N	atural	Art	ificial		Total
	Short	Value	Short tons	Value	Short	Value	Short tons	Value	Short	Value
1947-51 (average) 1952 1953 1954	4, 962 8, 878 10, 579 8, 464	\$620, 088 1, 473, 516 1, 608, 960 1, 198, 665	285 67 79 653	10, 733	33, 504 40, 382	1, 176, 613	93 337 283 212	\$5, 630 18, 502 15, 647 111, 629	45, 187 42, 786 51, 323 40, 839	\$1, 981, 82 2, 859, 786 2, 809, 178 1 2, 281, 256
1955 North America: Canada Mexico					108 32, 801	1, 967 597, 411	5 173	406		2, 373 600, 473
Total					32, 909	599, 378	178	3, 467	33, 087	602, 84
Europe: Austria France Germany, West Norway Switzerland	32 485	14, 109 81, 709	72	11, 636	503 1,676	583 53, 149 133, 564	17 13	604 4, 293	3 32 1, 077 1, 676 13	588 14, 109 147, 098 133, 564 4, 293
Total	517	95, 818	72	11, 636	2, 182	187, 296	30	4, 897	2, 801	299, 647
Asia: Ceylon Hong Kong Japan			123	17, 067	4, 093 1, 230 112	504, 970 26, 762 2, 312	28	2, 766	4, 244 1, 230 112	524, 803 26, 762 2, 312
Total			123	17, 067	5, 435	534, 044	28	2, 766	5, 586	553, 877
Africa: British East Africa Madagascar Mozambique	34 7, 155	4, 593 918, 189			92 45	5, 648 1, 831			126 7, 155 45	10, 241 918, 189 1, 831
Total	7, 189	922, 782			137	7, 479			7, 326	930, 261
Grand total 1955	7, 706	1, 018, 600	195	28, 703	40, 663	1, 328, 197	236	11, 130	48, 800	2, 386, 630
1956 North America: Canada Mexico					229 30, 866	10, 847 648, 395	50	1, 012	279 30, 866	11, 859 648, 395
Total					31, 095	659, 242	50	1, 012	31, 145	660, 254
Europe: Austria France Germany, West Italy Norway Switzerland	48 530 33	19, 741 96, 242 5, 909	132	30, 295	1, 026 1, 814	252 915 121, 084 154, 338	3 27 3	980 2, 455 980	1, 688 36 1, 841 3	252 20, 656 247, 621 6, 889 156, 793 980
Total	611	121, 892	132	30, 29 5	2, 843	276, 589	33	4, 415	3, 619	433, 191
Asia: Ceylon Hong Kong			39	4, 412	3, 964 2, 386	562, 321 51, 464			4, 003 2, 386	566, 733 51, 464
Total			39	4, 412	6, 350	613, 785			6, 389	618, 197
Africa: British East Africa. Madagascar Madeira Islands	61 6, 564 28	9, 915 861, 859 4, 080			82	6, 212			143 6, 564 28	16, 127 861, 859 4, 080
Total	6, 653	875, 854			82	6, 212			6, 735	882, 066
Grand total	7, 264	997, 746	171	34, 707	40, 370	1, 555, 828	83	5, 427	47, 888	2, 593, 708

 $^{^{\}rm I}$ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with earlier years.

TABLE 6.—Graphite exported from the United States, 1955-56, by countries of destination

[Bureau of the Census]

Country	Amo	rphous	Crystal lump,	line flake, or chip	Natura	l, n. e. c.
	Short tons	Value	Short	Value	Short tons	Value
1955						
North America: Canada	700	\$59, 643	28 24	\$13, 774 6, 701	9	\$2, 31
Mexico Netherlands Antilles			7 3	4,684		
			-	1, 500		
Total	700	59, 643	62	26, 659	9	2, 31
Chile			. 18	7, 956		
Colombia Ecuador	. 5	740	3	1, 107 1, 900		
Venezuela	. 5	893	10 2	546	5	91
Total	10	1, 633	33	11, 509	5	91.
Europe:						
Austria France	6 17	936 3, 011			3	549
Germany, West	25	3, 519			11	1, 56
GreeceNetherlands	. 11	1,461		1, 220		
Switzerland				1, 220	6	92
United Kingdom	366	58, 413			33	5, 33
Total	425	67, 340	1	1, 220	53	8, 374
Asia: India					27	4 699
Israel			<u>i</u>	550	21	4, 63
Philippines	6	1, 260	14	4, 222	18	5, 554
TotalOceania: Australia	6	1, 260	15 30	4, 772 3, 560	45	10, 187
Grand total 1955	1, 141	129, 876	141	47, 720	112	21, 787
1956 North America:						
Canada	546	49, 223	21	13, 258	36	4, 82
Cuba Mexico	10	1, 150	14	13, 258 2, 316 3, 966	12	3, 42
Total	556	50, 373	43	19, 540	48	8, 25
South America:		30,575	10	19, 040	40	0, 400
Brazil					1	- 580
Colombia Ecuador			11 10	2,666		
Venezuela			10	1,900 1,360		
Total			22	5, 926	1	580
Europe:			· ·			
Belgium-Luxembourg Denmark			2 2	980 1, 240	11	1, 813
France	11	2, 750				
Netherlands Switzerland	8	1,311	(1)	549		
United Kingdom	205	32, 532			23	3, 544
Total	224	36, 593	4	2, 769	34	5, 357
Asia:						
IndiaPakistan			3 75	1, 935 16, 500	34	5, 49 3
Philippines.	10	2, 590			4	1, 294
Total	10	2, 590	78	18, 435	38	6, 787
Africa:						
Egypt Libya					(¹) 4	1, 145 1, 444
Total					4	2, 589
Grand total 1956	790	89, 556	147	46, 670	125	23, 566
CHARL MAN TRAGETTE	190	00,000	14/	20,070	120	000 وهد

¹ Less than 1 ton.

Patents were issued during 1956 for producing high-purity graphite, ¹⁰ for the use of graphite in lubricating compounds ¹¹ and molds for continuous casting of metals, 12 as a filler or coating material for electrically conductive articles, 13 in batteries 14 and welding-rod coatings, 16 as a compound for extinguishing aluminum and magnesium fires, 16 and in powdered-metal articles. 17 A patent was issued on a mill suitable for grinding graphite.¹⁸

Most technical papers on graphite published during the year dealt with the properties of manufactured graphite and its nuclear applications.

In a discussion of the use of manufactured graphite as a moderator in thermal reactors to reduce neutrons of fission energy to thermal energy at a minimum of loss and in the smallest space. 19 it was stated:

Graphite has been employed more extensively than any other material for moderator service in existing reactors. Although its nuclear properties are not quite as good as heavy water, it has a high order of availability at reasonable cost. Its stability in oxygen and water-vapor-free atmosphere at elevated temperatures, good heat transfer characteristics, generally satisfactory mechanical properties and machinability add to its attractiveness as a reactor material. Its susceptibility to oxidation, relatively low impact strength and porous character

A book describing the production of reactor-grade graphite and the effects of raw material and processing variations on its physical, mechanical, and chemical properties was published.20 The proceedings of the first and second Conferences on Carbon, in November 1953, and June 1955, respectively, 21 a series of papers on the effect of fast neutron bombardment on various properties of manufactured graphite, 22 and other technical reports on properties of manufactured graphite 23 were published during the year.

¹⁰ Brooks, Lynn (assigned to United Carbon Products Co., Inc.), Method of Producing High-Purity Graphite: U. S. Patent 2,734,799, Feb. 14, 1956; Graphite Purification: U. S. Patent 2,734,800, Feb. 14, 1956; Method of Removing Boron From Graphite: U. S. Patent 2,734,801, Feb. 14, 1956.

11 Hudson, L. N., Sr., and Foin, T. C. (assigned to The Hudson Corp.), Die Forging Compound: U. S. Patent 2,735,814, Feb. 21, 1956.

Clatot, A., Lemoine, G., and Segal, A. (assigned to Société d'Exploitation des Brevets C L S, Paris, France), Metal Extrusion Lubricating Composition: U. S. Patent 2,757,138, July 31, 1956.

Ackerman, C. D., McCarthy, P. R., and Orem, T. R. (assigned to Gulf Research & Development Co.) High-Temperature Lubricating Compositions: U. S. Patent 2,761,844, Sept. 4, 1956.

13 Closs, N. P., Porous Mold for the Continuous Casting of Metals: U. S. Patent 2,747,244, May 29, 1956.

13 Eisen, J. B., Girardot, P. R., Paquette, E. G., and Rohowetz, S. E. (assigned to Bjorksten Research Laboratories, Inc.), Electrically Conductive Plastic Article: U. S. Patent 2,756,173, July 24, 1956.

Simon, Eli, and Thomas, F. W. (assigned to Lockheed Aircraft Corp.), Method of Forming a Light-Transparent Electrically Conductive Coating on a Surface and Article Formed Thereby: U. S. Patent 2,758,948, Aug. 14, 1956.

Silion, En, and Thomas, Thomas

First Conference:

Pinnick, H. T., Electronic Properties of Carbons and Graphites, pp. 3-11.
Castle, J. G. Jr., Heat Conduction in Carbon Materials, pp. 13-19.
Kmetko, E. A., The Structure and Graphitization of Fine Coke Particles and of Thermal Carbon Blacks, pp. 21-30.

Mrozowski, S., Mechanical Strength, Thermal Expansion, and Structure of Cokes and Carbons, pp. 31-45. Second Conference:

Warren, B. E., X-Ray Study of the Graphitization of Carbon Black, pp. 49-58.
Bowman, J. C., Imperfections in the Graphite Structure, pp. 59-64.
Loch, L. D., and Austin, A. E., Fine Pore Structure—Crystallite Size Relationships in Carbons, pp.

L., Jr., Gas Reactions of Carbons and Graphites, pp. 75-81.

Walker, P. L., Jr., Gas Reactions of Carbons and Graphites, pp. 75-81.
Kimey, C. R., Studies on Producing Graphitizable Carbons, pp. 83-92.
Winslow, F. H., Baker, W. O., and Yager, W. A., The Structure and Properties of Some Pyrolysed Polymers, pp. 93-102.
Hennig, G. R., Properties of Graphite Compounds, pp. 103-112.
Hennig, G. R., and Smaller, B., Paramagnetic Resonance Absorption in Graphite, pp. 113-115.
Seldin, E. J., Recent Work on Electronic Properties of Carbons at the University of Buffalo, pp. 117-124.
Hove, J. E., Radiation Damage Effects on Graphite, pp. 125-136.
Antal, J. J., Weiss, R. J., and Dienes, G. J., Long Wavelength Neutron Transmission as an Absolute Method for Determining the Concentration of Lattice Defects in Crystals, pp. 137-141.
Kosiba, W. L., Dienes, G. J., and Gurinsky, D. H., Some Effects Produced in Graphite by Neutron Irradiation in the BNL (Brookhaven Nat. Lab.) Reactor, pp. 143-148.
Carter, R. L., and Eggleston, R. R., Moderator Graphite for High-Temperature Reactors, pp. 149-153.
Jamieson, C. P., and Mrozowski, S., Thermal Conductivities of Polycrystalline Carbons and Graphites, pp. 155-166.

Jamieson, C. P., and Mrozowski, S., Thermal Conductivities of Polycrystalline Carbons and Graphites, pp. 155-166.
Beirne, T., and Hutcheon, J. M., The Shape of Ground Petroleum-Coke Particles, pp. 167-176.
Collins, F. M., Dimensional Changes During Heat Treatment and Thermal Expansion of Polycrystalline Carbons and Graphite, pp. 177-187.
Freehette, V. D., Hay, John, and Tao, Yung, Experiments in the Compaction of Graphite, pp. 189-194.
Mrozowski, S., Physical Properties of Carbons and the Formulation of the Green Mix, pp. 195-215.
Seldin, E. J., Density-Resistivity Relationship for Baked Carbons, pp. 217-222.

Neubert, T. J., Burton, M., Hirt, R. C., Van Dyken, A. R. Bowman, M. G., Royal, J., Burnes, W. R., Novick, A., Maurer, R., and Ruder, R., Neutron-Induced Discomposition of Graphite: Argonne Nat. Lab., U. S. Atomic Energy Commission Rept. ANL-5472, January 1956, 150 pp.
Burton, M., and Neubert, T. J., Effect of Fast Neutron Bombardment on Physical Properties of Graphite: A Review of Early Work at the Metallurgical Laboratory: Jour. Appl. Phys., vol. 27, No. 6, June 1956, pp. 557-567. 1956, pp. 557-567.

1956, pp. 557-567.
²⁸ Austerman, S. B., Stored Energy Release in Graphite Irradiated at Low Temperatures: North American Aviation, Inc., Canoga Park, Calif., Contract AT-11-1-gen-8, October 1956, 37 pp. U. S. Govt. Research Repts., Office of Tech. Services, U. S. Dept. of Commerce, vol. 28, No. 6, Dec. 14, 1956, p. 389.
Austerman, S. B., and Clark, J. R., X-Ray Measurements of Irradiated Graphite Annealed at Elevated Temperatures: North American Aviation, Inc., Canoga Park, Calif., Contract AT-11-1-gen-8, September 1956, 14 pp. U. S. Govt. Research Repts., Office of Tech. Services, U. S. Det. of Commerce, vol. 26, No. 6, Dec. 14, 1956, p. 381.
Craig, R. G., Van Voorhis, J. J., and Bartell, F. E., Free Energy of Immersion of Compressed Powders With Different Liquids. Part I, Graphite Powders: Jour. Phys. Chem., vol. 60, No. 9, September 1956, pp. 1295-1290

With Different Liquids. Part 1, Graphite rowders Jour. Phys. Chem., vol. 20, 1925-1230.

Croft, R. C., New Molecular Compounds of the Layer Lattice Type. I. New Molecular Compounds of Graphite: Australian Jour. Chem. (Melbourne), vol. 9, No. 2, May 1956, pp. 184-193.

Fillmore, F. L., Buckling of Graphite Moderated Lattices Containing Seven Rod Fuel Clusters: North American Aviation, Inc., Canoga Park, Calif., Contract AT (04-3)-49, August 1956, 18pp. U.S. Govt. Research Repts., Office of Tech. Services, U. S. Dept. of Commerce, vol. 26, No. 4, Oct. 19, 1956, p. 226.

Hove, J. E., Thermal Conductivity of Graphite: Theoretical Study of Electron-Phonon Scattering: North American Aviation, Inc., Downey, Calif., Contract AT-11-1-gen-8, January 1956, 43 pp. U. S. Govt. Research Repts., Office of Tech. Services, U. S. Dept. of Commerce, vol. 25, No. 2, Feb. 17, 1956, p. 91

Hove, J. E., and Smith, A. W., Low-Temperature Thermal and Electrical Conductivity of Graphite. II. Interpretation: North American Aviation, Inc., Canoga Park, Calif., Contract AT-11-1-gen-8, August 1956, 30 pp. U. S. Govt. Research Repts., Office of Tech. Services, U. S. Dept. of Commerce, vol. 26, No.

1956, 30 pp. U. S. Govt. Research Repts., Office of Tech. Services, U. S. Dept. of Commerce, vol. 20, No. 4, Oct. 19, 1956, p. 226.

Kalos, M., and Goldstein, H., Neutron Cross-Section Data for Carbon: Nuclear Development Corp. of America, White Plains, N. Y.. Contract W-7405-eng-26, March 1956, 13 pp. U. S. Govt. Research Repts. Office of Tech. Services, U. S. Dept. of Commerce, vol. 26, No. 4, Oct. 19, 1956, p. 226.

Laves, F., and Baskin, Y., [Formation of the Rhombohedral Graphite Modification]: Ztschr. Krist, vol. 107, 1956, pp. 337-356. Chem. Abs. vol. 51, Mar. 10, 1957, p. 33756.

Liljeblad, Ragnar, Equilibrium Pressure for Different Temperatures Between Graphite and Diamond: Arkiv. Kemi. (Stockholm), vol. 8, No. 5, 1955, pp. 423-432 (in English). Ceram. Abs., Sept. 1, 1956, p. 200. McDermot, H. L., and Lawton, B. E., The Adsorption of Nitrogen by Carbon Black and Graphite: Canadian Jour. Chem., (Ottawa), vol. 34, No. 6, June 1956, pp. 769-774.

McClure, J. W., Diamagnetism of Graphite: Phys. Rev., vol. 104, No. 3, Nov. 1, 1956, pp. 666-671. Mining Journal (London), The Nuclear Applications of Graphite: Vol. 246, No. 16287, Feb. 17, 1956, pp. 204-205.

Neubert, T. J., Royal, J., and Van Dyken, A. R., The Structure and Properties of Artificial and Natural Graphite: Argonne National Lab., Lemont, Ill., Contract W-31-109-eng-38, February 1956, 44 pp. U. S. Gott. Research Repts., Office of Tech. Services, U. S. Dept. of Commerce, vol. 25, No. 6, June 15, 1956, p. 349. Newell, G. F., Vibration Spectrum of Graphite and Boron Nitride. I. The Two-Dimensional Spec-

Newell, G. F., Vibration Spectrum of Graphite and Boron Nitride. I. The Two-Dimensional Spectrum: Jour. Chem. Phys., vol. 24, No. 5, May 1956, pp. 1049-1060.

Primak, W., and Quarterman, L. A., Heat of Reaction of Irradiated Graphite With Potassium: Jour. Am. Chem. Soc., vol. 78, No. 16, Aug. 20, 1956, pp. 3879-3881.

Smith, A. W., and Rasor, N. S., Low-Temperature Thermal and Electrical Conductivity of Graphite.

I. Observed Dependence on Temperature, Type, Neutron Irradiation, and Bromination: U. S. Atomic Energy Comm., NAA-SR-1590, 1956, 25 pp.

Riley, W. C., and Woodruff, E. M., Thermal Expansion of Pile Graphites: Hanford Atomic Products Operation, Richland, Wash., Contract W-31-109-eng-52, May 1956, 29 pp. U. S. Govt. Research Repts. Office of Tech. Services, U. S. Dept. of Commerce, vol. 27, No. 5, May 17, 1957, p. 281.

Spalaris, C. N., The Micropore Structure of Artificial Graphite: Jour. Phys. Chem., vol. 60, No. 11, November 1956, pp. 1480-1483.

During 1956 the Atomic Energy Commission declassified certain

reports dealing with the properties of graphite.24

Potential nuclear-power and rocket applications stimulated investigation of the properties of manufactured graphite at high temperatures.25 Graphite has a higher tensile strength at 4,500° F. than at room temperature. Its thermal conductivity up to 2,000° F. is in the same range as iron and higher than other refractories, which, combined with low thermal expansion and modulus of elasticity, give graphite excellent resistance to thermal shock.

The ease of application, chemical stability, and high lubricating value of colloidal manufactured-graphite suspensions, resulting in reduced metal pickup and longer tool and die life during wiredrawing operations were described.26 A method of welding graphite under high pressure in an atmosphere of argon, an inert gas, was announced.27 It was stated that the new technique might permit fabrication of sheets and panels to replace graphite blocks in the assembly of nuclear reactors.

WORLD REVIEW

World production of natural graphite in 1956 decreased 7 percent from 1955 because of a 32-percent decrease in the output of amorphous graphite in the Republic of Korea. Decreases also were reported for Norway, 7 percent; and Madagascar, 2 percent. Major increases were

²⁴ The following references were cited in U. S. Government Research Reports, Office of Technical Services. U. S. Dept. of Commerce (page number in parentheses after each reference): Vol. 25, No. 5, May 20, 1956: Ballinger, J. C., Graphite Machinability: Hanford Atomic Products Operation, Richland, Wash., Contract W-31-109-eng-52, December 1953, 13 pp. (p. 258). Garth, R. C., and Sailor, V. L., Thermal Conductivity of Graphite: Brookhaven Nat. Lab., Upton, N. Y., Contract AT-30-2-gen-16, November 1949, 19 pp. (p. 254). Woodley, R. E., Promotion of Chemical Reaction in Gas-Graphite Systems by Gamma Radiation: Hanford Atomic Products Operation, Richland, Wash., Contract W-31-109-eng-52, May 1954, 29 pp. (p. 237).

Contract AT-30-2-gen-16, November 1970, 15-19. Contract Woodley, R. E., Promotion of Chemical Reaction in Gas-Graphite Systems by Gamma Radiation: Hanford Atomic Products Operation, Richland, Wash., Contract W-31-109-eng-52, May 1954, 29 pp. (p. 237).

Vol. 25, No. 6, June 15, 1956:
Oppold, W. A., Mold Dressings for Graphite: Mallinckrodt Chem. Works, St. Louis, Mo., Contract W-7405-eng-29, March 1945, 3 pp. (p. 345).
Penneman, R. A., Diffusion of Helium Through Graphite: Chicago Univ. Metallurgical Lab., Contract W-7401-eng-37, September 1944, 4 pp. (p. 328).

Vol. 26, No. 3, Sept. 14, 1956:
Dibble, C. H., Graphite Tests: Univ. Calif. Radiation Lab., Berkeley, Calif., July 1944, 12 pp. (p. 160). Montet, G. L., Reaction of Graphite with Sodium: Argonne Nat. Lab., Lemont, Ill., Contract W-31-109-eng-38, June 1952, 3 pp. (p. 157).

Newkirk, W. H., Heating in the Graphite Due to a Cadmium Control Rod: Hanford Works, Richland, Wash., Contract W-31-109-eng-52, September 1951, 15 pp. (p. 169).

Vol. 26, No. 5, Nov. 16, 1956:
Beard, A. P., Thermodynamic Calculations on Reactions of UO2 with Graphite and Silicon Carbide: Knolls Atomic Power Lab., Schenectady, N. Y., Contract W-31-109-eng-52, October 1950, 5 pp. (p. 281).

Duvall, G. E., Calibration of the 305 Pile for Graphite Testing: Hanford Works, Richland, Wash., Contract W-31-109-eng-52, January 1951, 8 pp. (p. 294).

Past, E., NRX Graphite: Phillips Petroleum Co., Atomic Energy Div., Idaho Falls, Idaho, Contract AT (10-1)-205, October 1954, 5 pp. (p. 281).

Murray, Raymond, and Schmidt, G. W., Criticality in Graphite Systems: Tennessee Eastman Corp., Oak Ridge, Tenn., January 1974, 8 pp. (p. 281).

Schlegel, R., Temperature and Heat Flow in a Graphite Electrode: Chicago Univ. Metallurgical Lab., August 1944, 8 pp. (p. 284).

Yol. 26, No. 6, Dec. 14, 1956:

Lane, J. A., Thermal Column Graphite: Oak Ridge Nat. Lab., Oak Ridge, Tenn., Contract W-7405-eng-26, January 1960, pp. (p. 383).

Powell, R. W., Graphite Structure Tests (Monstrosity Tests): Brookhaven Nat. Lab

²⁴ The following references were cited in U. S. Government Research Reports, Office of Technical Services,

reported for Kenya, 157 percent; Hong Kong, 59 percent; and Ceylon, 52 percent. Production was reported from Taiwan (Formosa) for the first time since 1952.

TABLE 7.—World production of natural graphite, by countries, 1947-51 (average) and 1952-56, in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	2, 448	2,040	3, 466	2, 463		
Mexico.		26, 623	33, 433	24, 013	32, 342	32, 655
United States	6, 535	5, 606	6, 281	(8)	(3)	(3)
South America:		0,000	0,201	()	.()	. (7)
Argentina	4 440	(5)	(5)	(5)	2	386
Brazil	3, 702	938	648	(5) 1,008	859	(5)
Enropa	.,,,,,,,		0.0	1,000	000	(-)
Austria	13, 773	21, 728	16, 185	19. 184	19, 637	20, 597
Czechoslovakia	14,770	(5)	(6)	(5)	(8)	(5)
Germany, West	7, 325	9,880	8, 222	10, 448	11. 556	12, 878
Tentr	5, 615	4,837	5, 731	4, 165	3, 035	3, 262
Italy Norway	2, 590	4, 542	3, 255	3, 993	5, 970	5, 562
Spain	2, 350	863	352	451	319	363
Sweden	40	. 000	002	101	309	(5)
Yugoslavia	10	757			1, 033	(-)
Asia:		101			1,000	
Ceylon (exports)	13, 594	8, 578	8,084	8,655	11,064	16, 787
Hong Kong	10, 004	0,010	220	2, 061	1,722	2, 734
India		2, 405	859	1,657	1, 807	4 1. 650
Tonon		5, 126	4. 488	4, 515	3, 385	3, 757
Japan Korea, Republic of	23, 404	16, 601	21, 416	15, 344	99, 228	67, 367
Taiwan (Formosa)	20, 404	772	21, 410	10, 041	99, 220	2, 285
Africa:		112				2,200
Airica:	11					
EgyptFrench Morocco	213	23	108			
Venyo	210	39	205	347	241	619
Kenya Madagascar		20, 368	14, 847	13, 284	16, 194	15, 916
		20, 300	14,041	10, 204	10, 194	10, 910
Mozambique South-West Africa	2, 102	1, 305		115	1,011	(5)
Spanish Morocco		1, 303		110	1,011	137
		19	21		. 129	26
Tanganyika Union of South Africa		389	413	1, 396	1.829	4 1, 650
Oceania: Australia		89	17	1, 590	1, 829	- 1,000
Oceania. Austrana	191	- 39	1.7	18	24	
World total (estimate)	1 175, 000	205,000	200,000	185,000	290,000	270,000

In addition to countries listed, graphite has been produced in China, North Korea, and U. S. S. R., but production data are not available, estimates by senior author of chapter included in total.
 This table incorporates a number of revisions of data published in previous Graphite chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 Production included in total: Bureau of Mines not at liberty to publish.

Australia.—About 1,100 short tons of graphite has been consumed annually in Australia; virtually the entire quantity was imported.28 Production in recent years has been entirely from one mine at Jack's Creek, Queensland. Large deposits of flake graphite occur in South Australia and Western Australia, but it is estimated they cannot be exploited commercially because of the relatively low demand. 1866-1956 only about 6,400 short tons of graphite had been produced in Australia, mostly from New South Wales, Queensland, and South Australia. Imports of 1,089 short tons, in 1954, came mostly from Ceylon, West Germany, Madagascar, Norway, South Africa, United Kingdom, and the United States. Exports, in 1954, of 17 short tons were mostly to New Guinea and New Zealand.

Data not available; estimate by senior author of chapter included in total.

²⁸ Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 2, August 1956, pp. 33-35.

Ceylon.—Graphite mining was the chief mineral industry of Ceylon, but only small quantities were used locally.

TABLE 8.—Graphite exported from Ceylon, 1952-56, by countries of destination, in short tons 1

[Compiled by Corra A. Barryl

Country	1952	1953	1954	1955	1956
North America:				1.0	
Canada	28	112	196	453	737
United States	2, 539	1, 938	2,054	4, 234	4, 350
Europe:	_,	, , , , ,	7	, ,	7
Belgium	103				
France	143	83	163	198	2, 730
Germany	97	77	20	95	
Italy	3		8	8	
Netherlands			11	40	
Rumania	100				
United Kingdom	3, 374	3, 429	4, 172	3, 624	5, 400
Yugoslavia	112				
Asia:				7	
	244	417	8. 274	535	1, 635
	1, 122	1, 588	1, 219	1, 306	691
Japan Malaya	212	1,000	1, 219	1, 500	091
Pakistan	20		91	118	288
Thailand	3	9	91	110	. 200
Oceania:	· ·	,			
Australia	476	303	437	444	956
Other countries	1	128	i	2	
Other wantings					
Total	8, 577	8, 084	8, 654	11,064	16, 787
	•, •	5,502	-,		20,

¹ Compiled from Ceylon customs returns.

TABLE 9.—Exports of graphite from Ceylon to the United States, by grades, 1956 1

		Grade	Short tons	Percent of total	
				totai	ton
97 percent (90-96 percer	ıt C		1, 965 1, 649		\$157.74 122.51
	0 percent C		196	5.1	97. 50
Total			3, 810	100.0	\$139. 39

¹ U. S. Embassy, Colombo, Ceylon, State Department Dispatch 948, June 1, 1956, pp. 1–2; Dispatch 117, Aug. 9, 1956, pp. 1–2; Dispatch 399, Nov. 15, 1956, pp. 1–2; Dispatch 783, Mar. 13, 1957, pp. 1–2.

In July, the export duty on graphite was increased from 1 rupee (US\$0.21) to 2.5 rupees per hundredweight.²⁹ Data on the number of active mines and employees in 1954 and 1955 were taken from the Ceylon Administration Reports 1955, part IV, Education, Science, and Art.³⁰ According to a 1954 report entitled "Origin of the Graphite Deposits of Ceylon" by D. N. Wadia, there had been over 2,000 graphite mines in Ceylon in 1941.

Finland.—Only a few small graphite deposits are known in Finland. A graphite requirement of 330 to 440 short tons a year is imported, mostly from Norway and Japan.31

U. S. Embassy, Colombo, Ceylon, State Department Dispatch 372: Oct. 31, 1956, p. 6.
 Ceylon Daily News, Aug. 30, 1956.
 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 3, March 1956, p. 28.

TABLE 10.—Graphite mines and employment, Ceylon,1 1954-55, by Provinces

Province		of active les	Number of employees	
	1954	1955	1954	1955
Central. Northwestern. Sabaragamuwa. Southern. Western.	2 20 8 8	1 2 27 7 7	450 305 55 100	4 550 482 100 116
Total	38	44	910	1, 252

¹ Source: Ceylon Administration Reports 1955, part IV, Education, Science, and Art: Ceylon Daily News, Aug. 30, 1956.

France.—Production of graphite electrodes from manufactured graphite increased from 13,114 short tons in 1955 to 14,546 short tons in 1956.32

Hong Kong.—The graphite deposits on West Brother Island (Aka Tai Mor To) were estimated to contain 120,000 tons of graphite analyzing more than 80-percent carbon. About 90 percent of the output was exported to the United States. The Hong Kong Government royalty on mineral production was 5 percent of the overseas export price, or 5 percent of the local market value if sold within the colony. An official of the producing company reported that Chinese suppliers were prepared to sell graphite to local consumers below any price the company might establish.33

Japan.—In 1956, 1,024 short tons of amorphous graphite and 2,732 tons of crystalline graphite was produced, compared with 937 and 2,448 tons, respectively, in 1955. The amorphous graphite analyzed about 50 percent carbon, compared with about 76 percent carbon for the Imports in 1956 totaled 840 short tons of crystalline material.34 crystalline and 20,802 short tons of amorphous graphite.35

Korea.—In 1956, 582 short tons of crystalline graphite analyzing

about 85 percent carbon and 66,766 tons of amorphous graphite analyzing about 75 percent carbon was produced.36

Madagascar.—In 1956, the ratio of coarse flake (flake) to fine flake

(fines) produced was 60:40, compared with 66:34 in 1955.37

Mexico.—The official price of graphite for export tax purposes was set at 0.225 peso per kilogram, equivalent to US\$1.63 per short ton.38 All production was exported to the United States.

²² U. S. Embassy, Paris, France, State Department Dispatch 2219: May 17, 1956, p. 1; Dispatch 1959:

U. S. Embassy, Paris, France, State Department Dispatch 221. May 17, 266, p. 13.
 U. S. Embassy, Hong Kong, State Department Dispatch 659: Feb. 8, 1957, p. 26.
 U. S. Embassy, Tokyo, Japan, State Department Dispatch 910: Apr. 6, 1956, p. 3; Dispatch 1191, May 6, 1957, p. 3.
 Monthly Return of the Foreign Trade of Japan, Ministry of Finance, December 1956, p. 71.
 U. S. Embassy, Seoul, Korea, State Department Dispatch 339: Mar. 6, 1957, p. 2.
 U. S. Embassy, Paris, France, State Department Dispatch 2219: May 17, 1956, p. 1.
 U. S. Consulate, Johannesburg, Union of South Africa, State Department Dispatch 10: July 17, 1956, p. 1; Dispatch 34: Oct. 11, 1956, p. 1; Dispatch 164: Jan. 3, 1957, p. 1; Dispatch 224: Mar. 11, 1957, p. 1.
 U. S. Embassy, Mexico, D. F., State Department Dispatch 826: Jan. 13, 1956, p. 2.

Taiwan (Formosa).—Production of graphite was reported for the first time since 1952. The material was low-grade and used mainly in cement roofing products.³⁹

Tanganyika.—Good-quality graphite was reported near Masasi,

Southern Province. 40

United Kingdom.—The organization of Anglo-Great Lakes Corporation, Ltd., to produce nuclear and commercial manufactured graphite at Newcastle, England, was announced. Plant construction was to begin in 1957, with full production scheduled for late in 1958. Initial capacity was to be 15,000 long tons a year.⁴¹

³º U. S. Embassy, Taipei, Taiwan, State Department Dispatch 479: May 6, 1957, p. 4.
4º U. S. Consulate, Nairobi, British East Africa, State Department Dispatch 58: Sept. 13, 1956, p. 5.
4¹ American Metal Market, Great Lakes Carbon Forms U. K. Firm for Nuclear Graphite: Vol. 63, No. 227, Nov. 29, 1956, p. 2.

Gypsum

By Leonard P. Larson and Nan C. Jensen 2

WING to the sharp downward movement in house construction in the latter half of 1955 and continuing through 1956, an appreciable decline in gypsum production threatened. However, the recession of market demands in residential building was compensated by a 10-percent increase in private construction other than residential and public utilities and increases of 8 and 10 percent, respectively, in commercial construction and the requirements of community and related facilities. As a result of these compensating factors, production of crude and calcined gypsum in 1956 was only slightly below 1955 output.

During the first and second quarters, activity in the industry continued at record rates, but sharp declines followed in the third and fourth quarters. Although the production of crude gypsum declined, the supply available to the industry remained about the same owing

TABLE 1.—Salient statistics of the gypsum industry in the United States, 1947-51 (average) and 1952-56

	1947–51 (average)	1952	1953	1954	1955	1956
Active establishments 1	90	89	94	86	83	88
Crude gypsum; 2 Minedshort tons Importeddo	7, 385, 806 2, 853, 163	8, 415, 300 3, 087, 884	8, 292, 876 3, 184, 292	8, 995, 960 3, 368, 133	10, 683, 733 3 3, 977, 105	10, 316, 483 4, 335, 504
Apparent supplydo Calcined gypsum produced: Short tons	10, 238, 969 6, 363, 483	11, 503, 184 6, 874, 432	11, 477, 168 7, 166, 005	12, 364, 093 7, 617, 617	³ 14, 660, 838 8, 848, 029	14, 651, 987 8, 608, 378
Value	\$51, 713, 447	\$59, 696, 410	\$66, 668, 981	\$76, 170, 562	\$88, 575, 600	\$91, 335, 989
Gypsum products sold: 4 Uncalcined uses: Short tons Value Industrial uses:	2, 182, 953 \$7, 878, 391	2, 705, 727 \$9, 616, 780	2, 656, 446 \$9, 844, 330	2, 745, 571 \$10, 592, 392	2, 938, 108 \$11, 435, 694	3, 259, 312 \$13, 173, 189
Short tonsValueBuilding uses:	238, 648 \$4, 144, 298	252, 216 \$4, 999, 779	254, 148 \$5, 260, 875	250, 088 \$5, 383, 874	\$6, 337, 055	334, 382 \$7, 309, 336
Valué	\$168,876,057	\$210,307,189	\$229,948,261	\$256,176,655	\$301,550,728	\$301, 169, 171
Total value	\$180,898,746	\$224,923,748	\$245,053,466	\$272,152,921	\$319,323,477	\$321, 651, 696
Imported for consump- tion Exported	\$3, 177, 606 \$1, 496, 743	\$3,694,975 \$1,216,294	\$4, 792, 191 \$1, 993, 671	\$5, 377, 710 \$1, 600, 477	3 5 \$7,275,615 \$1,348,068	\$8, 546, 119 \$1, 214, 847

¹ Each mine, plant, or combination mine and plant is counted as 1 establishment.

Excludes byproduct gypsum.

Revised figure.

Made from domestic, imported, and byproduct gypsum.

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with previous years.

¹Commodity specialist. ² Statistical assistant.

to the increased tonnage of raw gypsum imported. During the second half of 1956 the easing of demand, occasioned in part by completion of previously planned expansions and modernization programs, resulted in a rapid inventory accumulation.

DOMESTIC PRODUCTION

Crude.—Domestic mine production of crude gypsum in the United States declined 3 percent from the previous year's record output of 10.7 million short tons to 10.3 million tons in 1956. Production during the first 6 months approximated an annual rate of 10.9 million tons—10 percent greater than in 1955. During the third quarter output of crude gypsum began a decline that continued in the fourth quarter. Percentagewise, the first and second quarter figures showed gains of 11 and 10 percent, respectively, whereas decreases of 11 and 17 percent were recorded for the third and fourth quarters. As usual since 1944, Michigan led all States in producing crude gypsum, supplying 17 percent of the United States total, followed by California with 14 percent. Michigan's output was concentrated principally in Iosco, Kent, and Wayne Counties from rock occurring in the Michigan formation. Production from Iowa, Texas, and New York ranked next in importance, furnishing 34 percent of the total production. Of the 63 active mines in 1956, 45 were open pits, 15 were underground, and 3 were combinations of the 2 types.

TABLE 2.—Crude gypsum mined in the United States, 1955-56, by States

State		1955			1956	
	Active mines	Short tons	Value	Active mines	Short tons	Value
Arizona California Colorado Iowa Louisiana Michigan Nevada New York South Dakota Texas Washington Wyoming Other States 2	3 5 1	(1) 1, 307, 625 76, 649 1, 337, 160 335, 371 1, 762, 105 836, 744 1, 249, 119 12, 592 1, 349, 434 3, 500 22, 373 2, 391, 661	(1) \$3, 273, 724 329, 321 4, 176, 710 586, 900 5, 660, 587 2, 835, 922 4, 403, 895 16, 369 4, 219, 652 14, 000 89, 493 8, 330, 987	3 12 6 4 1 4 3 5 1 5 (1) 2 17	95, 666 1, 399, 390 88, 026 1, 177, 488 275, 984 1, 715, 832 790, 356 1, 140, 187 15, 794 1, 156, 956 (1), 380 2, 449, 424	\$366, 11; 3, 401, 606 352, 76; 3, 919, 03; 598, 000 5, 861, 15; 2, 700, 708 4, 817, 35; 63, 17; 3, 623, 008; (1) 45, 521 8, 351, 016
Total	60	10, 683, 733	33, 937, 560	63	10, 316, 483	34, 099, 44

Included with "Other States" to avoid disclosing individual company confidential data.
 Includes Arkansas, Idaho (1955), Virginia, and Washington (1956), 1 mine each; Arizona (1955), Indiana, Kansas, Montana, Ohio, and Utah, 2 mines each; and Oklahoma (1955) 3 mines, (1956) 4 mines.

Calcined.—Calcined gypsum was produced from domestic and imported ore in the United States by 57 plants having 209 kettles and 63 other pieces of calcining equipment. Oil, natural gas, propane, and coal were the fuels used to supply the heat necessary for converting crude gypsum to the calcined form in which most gypsum is used. Production of calcined gypsum in the United States during 1956 totaled 8.6 million tons, 3 percent below the record output of 1955, was valued at \$91.3 million. The average mill value, which in most in-

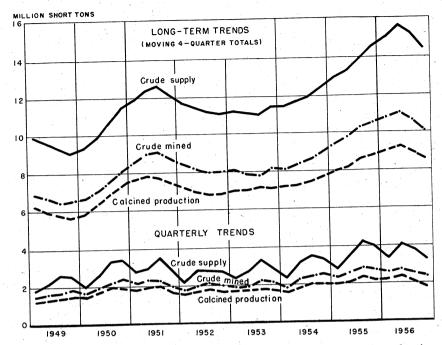


FIGURE 1.—Trends of new crude supply, domestic crude mined, and production of calcined gypsum, 1949-56, by quarters.

TABLE 3.—Calcined gypsum produced in the United States, 1955-56, by districts

District	19	55	1956		
New Hampshire, Massachusetts, and ConnecticutEastern New York, New Jersey, Pennsylvania, Georgia, and Florida. Ohio, Virginia, Indiana, and Maryland	316, 419 1, 582, 159 1, 445, 730 827, 105 686, 346 890, 560 536, 017 927, 890 375, 952 1, 259, 851	Value \$2, 900, 903 15, 143, 958 14, 985, 471 7, 811, 057 6, 833, 912 9, 367, 815 4, 852, 669 10, 590, 44 4, 604, 548 11, 484, 526	Short tons 295, 926 1, 640, 531 1, 547, 171 708, 447 673, 890 803, 137 503, 137 902, 046 308, 641 2 1, 210, 991	Value \$3, 191, 498 17, 347, 710 17, 404, 918 7, 731, 126 6, 673, 743 8, 484, 783 4, 410, 150 1 10, 169, 230 3, 958, 230 2 11, 964, 456	
Total	8, 848, 029	88, 575, 600	8, 608, 378	91, 335, 989	

¹ Includes Louisiana.

stances is the transfer value assigned by the producers who also mine crude, was \$10.61 per ton, an increase of \$0.60 above the 1955 value. Mine and Products—Plant Development.—Stripping was begun at the National Gypsum Co. new open-pit mine near Tawas City, Mich. Crude gypsum from this 2,700-acre deposit, estimated to contain 75 million tons of crude material, will be shipped by water to plants to be constructed in the Great Lakes region. Construction of plants at Waukegan, Ill., and Lorain, Ohio, was planned. Annual production

TABLE 4.—Active calcining plants and equipment in the United States, 1954-56, by States

		1954			1955		1956		
State	Calcin-			Calcin-	Equipment		Calcin-	Equipment	
	ing plants	Ket- tles	Other cal- ciners ¹	ing plants	Ket- tles	Other cal- ciners 1	ing plants	Ket- tles	Other cal- ciners 1
California Iowa Michigan. New York Texas. Other States 2. Total	5 5 4 7 4 24 24	12 21 20 21 28 82 184	8 4 7 23 42	5 4 4 7 4 26	12 21 20 21 29 94	9 4 6 32 51	6 4 4 8 4 31	13 21 20 24 29 102	122 4 3 6

¹ Includes rotary and beehive kilns, grinding-calcining units, and hydrocal cylinders.
² Comprises calcining plants in 1954-56 as follows: 1 each in Arizona (1956), Connecticut, Florida, Georgia, Maryland, Massachusetts, Montana, New Hampshire, Oklahoma, Pennsylvania, and Washington; 2 each in Kansas, Louisiana (1956), Nevada, New Jersey (1 in 1954-55), Ohio, Utah, and Virginia; 3 in Colcrado (2 in 1954-55) and Indiana (1 in 1954).

capacity of each plant will be sufficient to supply enough wallboard, sheathing, lath, and plaster for 30,000 homes. Plant, dock, and harbor construction was scheduled to begin during the summer of 1957. During 1956 this company completed plant facilities at Westwego,

La.; Anniston, Ala.; and Burlington, N. J.3

Johns-Manville Corp., a major producer of asbestos building materials, obtained an option to develop the Lucky Gypsum deposit in southern Nevada. The deposit, which is between Las Vegas and Henderson, will be thoroughly explored by diamond drilling and trenching to determine the quality and extent of the deposit. The company was considering embarking upon gypsum enterprises and had exploration crews examining additional deposits in various sections of the country.⁴

Flintkote Co., East Rutherford, N. J., announced plans for constructing a multimillion-dollar gypsum plant at Sweetwater, Tex., to be built adjacent to a large gypsum deposit, which was purchased by

the company.5

Pabco Building Materials, a division of Fibreboard Paper Products Corp., San Francisco, Calif., increased its productive capacity with dedication of gypsum products plants at Florence, Colo., and Newark, Calif. The company planned to construct a plant for processing gypsum from mines near Lovelock, Nev. 6

CONSUMPTION AND USES

Consumption of most categories of gypsum building products, particularly high-value prefabricated materials used in residential construction, followed the downward trend of the residential building

³ Chemical Engineering, vol. 63, No. 4, April 1956, p. 352. Rock Products, vol. 59, No. 9, September 1956, p. 37. Pit and Quarry, vol. 48, No. 7, January 1956, p. 36. Mining World, vol. 18, No. 13, December 1956, p. 41. Rock Products, vol. 59, No. 12, December 1956, p. 45. ⁴ Rock Products, vol. 59, No. 4, May 1956, p. 41. ⁵ Rock Products, vol. 59, No. 8, August 1956, p. 43. ⁵ Mining Record, vol. 67, No. 26, June 28, 1956, p. 46. Rock Products, vol. 59, No. 5, May 1956, p. 46.

industry from the high reached in 1955. Requirements for most gypsum products, although lower than in 1955, were greater than in any other previous year. Sales of sheathing and formboard increased, whereas decreases were reported for gypsum lath, wallboard, laminated board, and tile. Because of increased construction activity other than residential, uncalcined gypsum products and industrial plasters

were in high demand.

From 1928–1956 such factors as housing shortages, changes in building codes, and methods of construction significantly changed the gypsum products produced. In 1928 the value of sales of building plasters, f. o. b. plant, was 43 percent of gross sales compared with 27 percent for all board products excluding lath. By 1956 the sales distribution had changed enough that these percentages became 17 and 54, respectively. The use of gypsum-board products excluding lath made a fivefold gain over that of gypsum building plaster. The positions of other gypsum products did not change materially. Lath, which in 1956 furnished 21 percent of gypsum sales, has fluctuated between the 14 percent recorded in 1928 and a high of 30 percent in 1948. All other classifications of gypsum products decreased percentagewise after 1928.

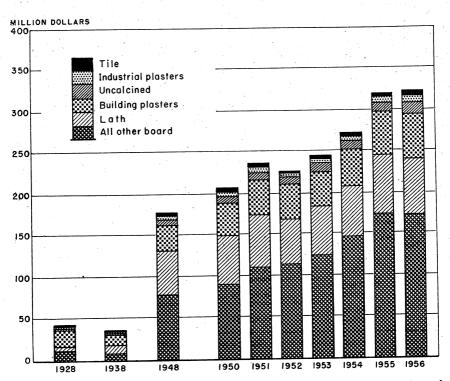


FIGURE 2.—Value of gypsum products sold or used in 1928, 1938, 1948, and 1950-56, by uses.

TABLE 5.—Gypsum products (made from domestic, imported, and byproduct crude gypsum) sold or used in the United States, 1955-56, by uses

		1955			1956		Dona	ent of
Use		Valt	10		Valu	1e		ge in—
Use	Short tons	Total	Aver- age	Short tons	Total	Aver-	Ton- nage	Average value
Uncalcined: Portland-cement re- tarder Agricultural gypsum Other uses 1	2, 225, 781 678, 332 33, 995	\$8, 725, 863 2, 298, 831 411, 000	3.39	2, 393, 502 830, 337 35, 473	\$9, 616, 456 3, 131, 822 424, 911	\$4.02 3.77 11.98	+8 +22 +4	+3 +11 -1
Total un- calcined uses	2, 938, 108	11, 435, 694	3. 89	3, 259, 312	13, 173, 189	4.04	+11	+4
Industrial: Plate-glass and terracotta plasters Pottery plasters Orthopedic and dental plasters	67, 664 49, 744 9, 454	931, 528 966, 578 345, 972	13. 77 19. 43 36. 60	67, 751 51, 296 10, 112	1, 007, 896 1, 056, 465 360, 045	14. 88 20. 60 35. 61	(2) +3 +7	+8 +6
Industrial molding, art, and easting plas- ters Other industrial uses 3.	84, 159 88, 098	1, 589, 972 2, 503, 005	18. 89 28. 41	91, 111 114, 112	1, 789, 975 3, 094, 955	19. 65 27. 12	+8 +30	+4 -5
Total industrial uses	299, 119	6, 337, 055	21. 19	334, 382	7, 309, 336	21.86	+12	+3
Building: Cementitious: Plasters: Base-coat	1, 799, 210	26, 846, 683	14. 92	1 700 774	0. 000 440			
SandedTo mixing plants	594, 275 7, 977	20, 340, 033 13, 159, 252 90, 422	14. 92 22. 14 11. 34	1, 566, 574 656, 551 4, 817	25, 028, 412 15, 224, 222 66, 738	15. 98 23. 19 13. 85	$\begin{vmatrix} -13 \\ +10 \\ -40 \end{vmatrix}$	$\begin{array}{ c c c } +7 \\ +5 \\ +22 \end{array}$
Gaging and molding Prepared finishes	165, 168	2, 844, 306	17. 22	152, 521	2, 819, 216	18. 48	-8	+7
Roof-deck Other 4 Keene's ce-	12, 470 385, 094 19, 673	823, 646 5, 666, 736 2, 144, 539	66. 05 14. 72 109. 01	12, 862 432, 139 21, 920	950, 459 6, 707, 468 2, 124, 817	73. 90 15. 52 96. 94	+3 +12 +11	+12 +5 -11
ment Total cemen-	54, 496	1, 270, 518	23. 31	46, 889	1, 156, 867	24. 67	-14	+6
titious Prefabricated:	3, 038, 363	52, 846, 102	17. 39	2, 894, 273	54, 078, 199	18. 68	<u>-5</u>	+7
Lath Wallboard Sheathing board Laminated board Formboard for poured- in-place gypsum	2, 274, 258 4, 439, 093 131, 235 2, 032	71, 340, 593 165, 899, 184 4, 671, 953 100, 479	⁵ 24. 27 ⁵ 35. 06 ⁵ 37. 10 ⁵ 56. 93	2, 021, 469 4, 184, 636 145, 493 1, 394	67, 819, 914 167, 055, 985 5, 458, 631 66, 806	⁵ 25. 35 ⁵ 36. 32 ⁵ 39. 37 ⁵ 53. 53	6 —9 6 —3 6 +10 6 —29	$^{+4}_{+4}_{+6}_{-6}$
roofdeck	53, 836 200, 174	2, 001, 467 4, 690, 950	⁵ 39. 88 ⁷ 87. 13	56, 176 181, 710	2, 205, 911 4, 483, 725	⁵ 41. 29 7 93. 20	6+6 6-10	+4 +7
Total pre- fabricated	7, 100, 628	248, 704, 626	35. 03	6, 590, 878	247, 090, 972	37. 49	6 -5	+7
Total building uses		301, 550, 728			301, 169, 171			
Grand total value		319, 323, 477			321, 651, 696			

Includes uncalcined gypsum for use as filler and rock dust, in brewer's fixe, in color manufacture, and for unspecified uses.
 Less than 1 percent.
 Includes dead-burned filler, granite polishing, and miscellaneous uses.
 Includes joint filler, patching, painter's, insulating, and unclassified building plasters.
 Average value per thousand square feet.
 Percent of change in square footage.
 Average value per thousand square feet of partition tile only.

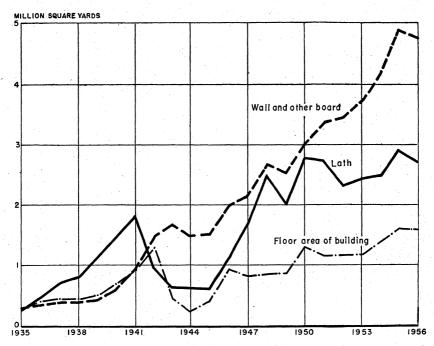


Figure 3.—Trends in sales of gypsum lath and wallboard and other boards (including wallboard, laminated board in terms of component board, formboard, and sheathing), compared with Dodge Corp. figures on combined floor area of residential and nonresidential buildings, 1935–56.

TABLE 6.—Gypsum board and tile sold or used in the United States, 1947-51 (average) and 1952-56, by types

		Lath		•	Wallboard	Sheathing			
Year	Thou-	Value		Thou-	Value	Thou-		Valu	е
	square feet	Total	Aver- age 1	square feet	Total	Aver- age 1	square feet	Total	Aver- age 1
1947-51 (av- erage) 1952 1953 1954 1955	2, 354, 817 2, 317, 191 2, 437, 481 2, 489, 652 2, 939, 914 2, 675, 184	58, 396, 664 60, 744, 726 71, 340, 593	23. 96 24. 40 24. 27	2 3, 312, 543 3, 564, 427 4, 006, 951 4, 732, 331	2 108, 974, 618 119, 967, 024 139, 010, 481 165, 899, 184	32. 88 33. 66 34. 69 35. 06	112, 628 117, 080 119, 560 135, 027 125, 921 138, 644	5, 010, 992 4, 671, 953	\$34. 32 36. 57 36. 52 37. 11 37. 10 39. 37

See footnotes at end of table.

TABLE 6.—Gypsum board and tile sold or used in the United States, 1947-51 (average) and 1952-56, by types-Continued

	Laminated board			F	ormboard	Tile 4			
Year Thou-		Value)	Thou-	Value		Thou- sand	Value	
	square feet !	Total	Aver- age ¹	square feet	Total	Aver- age 1	square feet	Total	Ayer- age 6
1947–51 (av- erage)	1, 985 (2) 2, 922 1, 808 1, 765 1, 248	\$172, 873 (2) 144, 050 94, 522 100, 479 66, 806	52. 28 56, 93		(7) (7) \$1, 519, 180 1, 666, 178 2, 001, 467 2, 205, 911	39.47	31, 059	3, 632, 397 3, 769, 157 4, 295, 133	\$73. 73 78. 54 84. 20 86. 20 87. 13 93. 20

1 Per thousand square feet, f. o. b. producing plant.
2 Laminated board and formboard included with wallboard.
3 Average value per thousand square feet of wallboard.
4 Neindes partition, roof, floor, soffit, shoe, and all other gypsum tiles and planks.
5 Area of component board and not of finished product,
6 Per thousand square feet, f. o. b. producing plant, of partition tile only.
7 Separate data not available.
8 Figure withheld to avoid disclosing individual company operations,

TABLE 7.—Gypsum lath and wallboard sold or used in the United States, 1955-56

by thickness

		1955		4.4	1956				
	Thousand		Valu	е	Thousand		Value	•	
	square feet	Short tons	Total	Average 1	square feet	Short tons	Total	Aver- age 1	
Lath: 3%-inch 2 ½-inch	2, 918, 034 21, 880	2, 251, 235 23, 023	\$70, 686, 408 654, 185	\$24. 22 29. 90	2, 654, 641 20, 543	2, 000, 176 21, 293	\$67, 193, 429 626, 485	\$25. 3 30. 5	
Total	2, 939, 914	2, 274, 258	71, 340, 593	24. 27	2, 675, 184	2, 021, 469	67, 819, 914	25. 3	
Wallboard: ½-inch ¾-inch ³ ½-inch ½-inch	84, 819 2, 043, 560 2, 523, 027 80, 925	48, 410 1, 651, 949 2, 626, 180 112, 554	2, 412, 285 66, 579, 279 92, 802, 066 4, 105, 554	28. 44 32. 58 36. 78 50. 73	120, 848 2, 074, 722 2, 310, 303 93, 054	69, 018 1, 617, 682 2, 370, 611 127, 325	3, 554, 065 69, 612, 368 88, 994, 890 4, 894, 662	29. 4 33. 5 38. 5 52. 6	
Total	4, 732, 331	4, 439, 093	165, 899, 184	35.06	4, 598, 927	4, 184, 636	167, 055, 985	36. 3	

Per thousand square feet, f. o. b. producing plant.
 Includes a small amount of ¼-inch lath.
 Includes a small amount of ½-inch wallboard.

STOCKS

Producers reported stocks of crude gypsum totaling 2,265,000 short tons on hand December 31, 1956, compared with 1,894,000 tons on the same date of the preceding year and 1,664,000 tons in 1954.

PRICES

According to reports from producers, the average value of crude gypsum mined in the United States in 1956 was \$3.31 per ton compared with \$3.18 in 1955 and \$3.04 in 1954. Among the uncalcined uses, the average value of portland-cement retarder and agricultural gypsum was higher, but prices of miscellaneous uncalcined gypsum products were lower. The average value of industrial and building plasters increased by 3 and 7 percent, respectively. Except for laminated board, which averaged 6 percent below the value of the previous year, all prefabricated gypsum products increased in average

Based on 1947-49 averages equaling 100, sales prices of gypsum products increased from 122.1 reported in December 1955 to 127.1 at the end of the year.

FOREIGN TRADE 7

Imports of crude gypsum into the United States increased from approximately 4 million short tons in 1955 to 4.3 million tons in 1956, a

TABLE 8.—Gypsum and gypsum products imported for consumption in the United States, 1947-51 (average) and 1952-56

			Durea	n or one o	Jensusj				
Year		including drite)	Ground or calcined		Keene's cement		Alabaster manu-	factures,	Total
	Short tons	Value	Short tons	Value	Short tons	Value	factures 1 (value)	es i n. e. c.	value
1947–51 (average) – 1952 1953 1954 1955 1956	2, 853, 163 3, 087, 884 3, 184, 292 3, 368, 133 4 3, 977, 105 4, 335, 504	\$2, 950, 734 3, 246, 143 4, 288, 589 3 4, 878, 405 3 4 6, 298, 410 3 7, 814, 223	735 854 888 684 937 1,146	\$21, 352 32, 200 31, 108 325, 438 32, 674 39, 333	(2) 11 1	\$274 193 2 433 834	\$100, 614 189, 478 181, 421 3 210, 503 3 346, 357 3 415, 973	\$104, 632 226, 961 291, 071 3 262, 931 3 597, 340 276, 590	\$3, 177, 606 3, 694, 975 4, 792, 191 3 5, 377, 710 3 47,275,615 3 8, 546, 119

¹ Includes imports of jet manufactures, which are believed to be negligible.
² Less than 1 ton.

TABLE 9.—Crude gypsum (including anhydrite) imported for consumption in the United States, 1954-56, by countries [Bureau of the Census]

Country	19	54	19	55	1956		
Country	Short tons	Value	Short tons	Value	Short tons	Value	
North America: Canada Dominican Republic Jamaica Mexico Total	2, 873, 633 22, 378 174, 348 297, 774 3, 368, 133	\$4, 352, 767 58, 813 197, 022 269, 803 4, 878, 405	1 3, 483, 179 45, 472 68, 294 380, 160 1 3, 977, 105	1 \$5, 770, 040 96, 807 80, 990 350, 573 1 6, 298, 410	3, 760, 651 38, 923 135, 441 388, 839 4, 323, 854	\$6, 986, 334 93, 943 357, 985 348, 563 7, 786, 825	
Europe: Italy United Kingdom					2 11, 648	268 27, 130	
Total					11,650	27, 398	
Grand total	3, 368, 133	² 4, 878, 405	1 3, 977, 105	126, 298, 410	4, 335, 504	2 7, 814, 223	

Revised figure. 2 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

³ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

Revised figure.

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

9-percent increase. Canada, the principal exporter of crude gypsum. supplied the United States with 3.8 million tons-26 percent of the total domestic supply. Imports increased from every foreign source except the Dominican Republic. Jamaica and Mexico expanded their export trade with the United States, increasing shipments of crude gypsum by 98 and 2 percent, respectively. Imports of crude gypsum from all sources supplied the Nation with 30 percent of domestic requirement, 3 percent more than in the previous year.

TABLE 10.—Gypsum and gypsum products exported from the United States. 1947-51 (average) and 1952-56

[Bureau	of th	e Census]

Year		crushed, cined ¹	Plasterbos board, a	ard, wall- and tile	Other manufac- tures.	Total
1947-51 (average)	22, 059	\$487, 821	25, 682, 363	\$774, 978	\$233, 944	\$1, 496, 743
	19, 884	517, 227	19, 571, 037	577, 780	121, 287	1, 216, 294
	23, 690	693, 632	45, 767, 496	1, 195, 168	104, 871	1, 993, 671
	22, 384	761, 524	20, 968, 956	688, 820	150, 133	1, 600, 47
	22, 539	737, 531	8, 686, 854	412, 397	198, 140	1, 348, 068
	20, 757	710, 564	7, 026, 932	363, 648	140, 635	1, 214, 847

¹ Effective Jan. 1, 1949, calcined gypsum not separable from crude, crushed, or calcined.

TECHNOLOGY

Specifications.—The American Society for Testing Materials' tentative specifications for precast reinforced gypsum slabs (C 337-56T) were released. Proposed revisions for testing gypsum and gypsum products (26-54) included use of Ottawa sand in section 18 (c) and modifications of sections 22 (a) and (b) describing the normal consistency of gypsum and gypsum mortar. Permission to use 2- by 4-inch cylinder molds instead of cube molds for determining compressive strength was also recommended.8

Milling.—The advantageous use of the impact mill in crushing crude gypsum was discussed in an article. The impact mill used less energy and produced a greater portion of particles smaller than 0.04 mm than most other type mills. Fields of application are considered.9

Calcination.—Western Precipitation Corp., Los Angeles, Calif., has developed a heat-exchanger unit incorporating a helical flight screw conveyor for cooling cement, sand, gypsum, etc. Depending upon operating conditions such as tonnage, space limitations, and time of retention, the equipment may include two or more pairs of "Synchro-Screws" nested and intermeshed as twins, quads, etc. Operating pressures are up to 150-pound-per-square-inch gage pressure, and screw feeds are generally maintained between 1 and 2 r. p. m. 10

A report on the use of gypsum for ceramic purposes stated that the material used in ceramics and building is chemically the hemitydrate

⁸ Pit and Quarry, vol. 49, No. 3, September 1956, p. 104.
6 Eipeltauer, Edward, [Use of Impact Mills in the Gypsum Industry]: Silikattech, vol. 7, No. 1, 1956, pp. 27-29.
Journal, American Ceramic Society, vol. 39, No. 6, June 1956, p. 11.
10 Rock Products, vol. 59, No. 12, December 1956, p. 77.

of calcium sulfate obtained by calcination of the dehydrate.11 The hemihydrate has the following physical properties: Mohss' hardness, 1.5 to 2.5, specific gravity 2.31 to 2.32, and a refractive index of 1.520 to 1.529. Crystallographically, all varieties of gypsum have the same monoclinic prismatic crystalline structure (crystalline network formed by layers of atoms of Ca and SO4 groups separated by layers of water). The water of crystallization is strongly bound to chains of calcium sulfate. Substantial modification of the crystalline network, accompanied by the consumption of considerable energy, takes place in transforming the dehydrate into the hemihydrate. Hydration (setting of gypsum plaster) is accelerated by vibrations. Volumetric increases during setting were ascribed mainly to an absorption of air by the gypsum mass and also to thermal expansion.

Properties of Plaster Products.—Tile-to-plaster gluing, previously limited principally to portland-cement plaster, was expanded to include gluing ceramic, plastic, and metal tile to gypsum plaster. The process recommended by the Gypsum Association includes applying a water-resistant primer coat to the plaster before spreading

the adhesive in the conventional manner.12

A report on the physical and mechanical properties of one cast (structural) plaster indicated that Young's modulus, compressive and tensile strengths, density, and maximum expansion after set decreased with increasing mix water, whereas Poisson's ratio remained constant for any water-plaster ratio. Expansion was noted in the set plaster for periods up to 24 hours after which contraction took place, reaching a stable minimum after 8 days. Both raw plaster and test pieces were stored at 70° F. and 60-percent relative humidity. The data given in the article were for only one brand of plaster.¹³

An article published in the U.S.S.R. described the phenomenon of the hardening of gypsum bonding materials.14 Hydration and crystallization processes are simultaneous, less than one hour after The greatest objection to the theory of crystallization of the dehydrate from a solution saturated with the hemihydrate of calcium

sulfate is thus eliminated.

A report on the movement of water in plaster molds discussed the internal structure of the gypsum mold, how absorption capacity is produced, and the size of gypsum crystals and of the pore spaces among them.¹⁵ The rate of water absorption of the mold samples under conditions of complete submersion and partial immersion in water were determined in a series of experiments. The internal pressure developed by capillary penetration of water into dry specimens was measured and explained. The drying rates of gypsum samples under typical clay-shop conditions were evaluated. Maximum rates of water movement into and out of molds under conditions characteristic of mold production, conditioning, and use were shown.

¹¹ Cini, Leopoldo, [Gypsum Used for Ceramic Purposes]: Ceramca (Milan), vol. 11, No. 4, 1956, pp. 61-66. Journal, American Ceramic Society, vol. 39, No. 9, Sept. 1, 1956, p. 183.

12 Engineering News-Record, Gypsum Association Okays Gluing of Tile to Plaster: Vol. 157, No. 16, Oct. 18, 1956, p. 73.

13 Russell, J. J., and Blakey, F. A., Physical and Mechanical Properties of One Cast Gypsum Plaster: Australian Jour. Appl. Scl., vol. 7, No. 2, 1956, pp. 176-190.

13 Journal, American Ceramic Society, vol. 39, No. 9, Sept. 1, 1956, p. 183.

14 Kuntsevich, O. V., Aleksandrov, P. E., Ratinov, V. B., Rozenberg, T. I., and Bogautdinova, G. G. [Problem of Theory of Hardening of Gypsum Bonding Materials]: Doklady Akad. Nauk S. S. S. R., vol. 104, No. 4, 1955, pp. 587-588.

13 Journal, American Ceramic Society, vol. 39, No. 9, July 1956, p. 139.

14 Niles, B. W., and Lambe, C. M., Movement of Water in Plaster Molds: Bull. Am. Ceram. Soc., vol. 35, No. 8, Aug. 15, 1956, pp. 319-324.

Patents.—A patent disclosed an improved method and the equipment used in producing high-quality calcined gypsum plaster. Calcination is carried out on a batch basis. This patent covered refinements of an earlier patent, United States Patent 2,616,789, issued to one of the patentors and is directed to mechanical improvements for

moving material through the apparatus.¹⁶

A method and apparatus were patented for producing cellulargypsum wallboard with strong edges. Three separate streams of core material are fed to the table ahead of the master rolls; the outside streams contain little or no foam. Alternately, the entire slurry may contain foam when deposited after which the edges may be defoamed by means of agitation, use of defoaming agents, or the like. 17

WORLD REVIEW NORTH AMERICA

Canada.—According to preliminary figures reported by the Dominion Bureau of Statistics, Canada produced 5.2 million short tons of crude gypsum valued at \$8.3 million during the calendar year 1956. 18 Production in Nova Scotia totaled 4,434,406 tons during 1956, an in-

crease of 15 percent over 1955.

Canadian Gypsum Co., Ltd. (a subsidiary of United States Gypsum, Chicago, Ill.), and National Gypsum (Canada), Ltd. (a subsidiary of National Gypsum Co., Buffalo, N. Y.), produced 65 and 35 percent, respectively, of the Nova Scotia total. Reflecting activity at the National Gypsum newly opened modern quarry at Milford near Halifax and the automatic loading dock at Wrights Cove, Burnside, near Dartmouth, the company employed 160 men in 1956, producing 46 tons per man-day worked as against 525 men producing 16 tons per man-day for Canadian Gypsum.

Demands for crude gypsum from Canada dropped 25 percent in the last quarter of 1956, resulting in capacity stockpiles both in the

United States and Canada.

Little Narrows Gypsum Co., the only remaining independent gypsum producer in Nova Scotia with a production of 500,000 tons per year, was purchased during 1956 by Canadian Gypsum Co., Ltd. Company operations at Windsor, Hants County, were supplemented by developing new deposits at Miller Creek.

Because the market for gypsum declined on the east coast, Certain-Teed Products Co. of Pennsylvania abandoned, at least temporarily,

plans to develop a mine at Cheveril in the Windsor area.¹⁹
Atlantic Gypsum, Ltd., Corner Brook, Newfoundland, which was recently sold to Bellrock Gypsum Products, Ltd., London, England, will add precast gypsum slabs for home construction to its sales line. The lightweight precast slabs, which have been well accepted in Scotland and England, were expected to reduce residential construction costs.20

¹⁶ Hoggatt, G. A., and Shuttleworth, C. G., U. S. Patent 2,767,065, Oct. 23, 1956.

17 Teale, R. R., Wallboard and Method of Producing the Same: U. S. Patent 2,762,738, September 1956.

18 Collings, R. K., Gypsum and Anhydrite in Canada, 1956 (Preliminary): Canada Dept. of Mines and Tech. Surveys, Mines Branch, Ottawa, No. 39, 8 pp.

19 Meyer, Paul, Gypsum Production in Nova Scotia—1956, Halifax, Canada: State Department Dispatch 44, Feb. 26, 1957, 3 pp.

20 Pit and Quarry, Precast Gypsum Slabs Added to Newfoundland Firm's Line: Vol. 48, No. 8, February 1956 p. 32.

^{1956,} p. 32.

Gypsum Lime & Alabastine Co. of Canada, Ltd., Toronto, Ontario, will begin a \$100,000 plant-improvement program at its recently purchased Windsor Plaster Co. plant at Halifax, Nova Scotia. The improvement program is expected to double the current Windsor

production.21

Plans were announced by Western Gypsum Products, Ltd., Vancouver, British Columbia, for constructing a \$3 million plaster-mill and gypsum-wallboard plant. The new plant, scheduled for completion early in 1956, will have an initial daily production capacity of 150,000 square feet of gypsumboard products and 100 tons of plaster. Gypsum rock obtained from the quarries on San Marcos Island, Mexico, will be delivered to the company deep-sea dock by a 17,000-ton freighter.²²

TABLE 11.—World production of gypsum, by countries, 1947-51 (average) and 1952-56, in thousand short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51	1952	1953	1954	1955	1956
North America:						
Canada 8	3, 390 4 20	3,554	3,839	4, 184	4,540	5, 19
Cuba Dominican Republic		4 33 14	4 33 20	4 33 29	4 35 64	2 8
Tomoico	15	50	83	186	92	14
Jamaica United States	7, 386	8, 415	8, 293	8, 996	10, 684	10, 31
Total 14	10, 855	12, 176	12, 378	13, 538	15, 525	15, 86
South America:						
Argentina	138	176	4 138	164	141	16
Brazil	4 45		82	83	178	4 19
Chile	68 3	82 5	77 9	4 83 17	4 83 24	4 8
Colombia Ecuador	(5)	(5)	(5)	(5)	24	(5)
Peru	42	35	31	26	35	(9)
Venezuela	3	2				
Total	4 299	300	4 337	4 373	4 461	4 58
Europe:						
Austria 8	90	207	331	404	454	49
Bulgaria 4	6	6	6	6	6	
Finland	4 2				9 6771	4 3, 3
France (saleable) ³ Germany, West ⁶	2, 258 573	2, 851 843	3, 193 857	3, 513 932	3, 671 999	1,0
Greece	3,3	21	28	22	17	1,0
Ireland	74	82	102	112	122	4 1
Italy		743	739	- 787	817	47
Luxembourg	20	6	10	2	3	
Poland	27	(7)	(7)	(7)	(7)	(7)
Portugal	41	44	51	64	52	. : `` ``4 ,
Spain	1,792	1,759	1, 154	957	1,067	. 6
Switzerland	134	132	138 2, 635	165 2, 799	4 220 3, 164	43.3
U, S, S, R United Kingdom 3	1, 516 2, 337	2, 437 2, 681	2, 635 2, 994	2, 799 3, 093	3, 266	3, 7
Yugoslavia	4 12	2, 081	2, 994	114	3, 200 85	ტ"
Total 14	9, 450	11, 950	12, 420	13, 100	14, 080	14, 0

See footnotes at end of table.

Rock Products, vol. 59, No. 11, November 1956, p. 42,
 Pit and Quarry, vol. 49, No. 6, December 1956, p. 24.

TABLE 11.—World production of gypsum, by countries, 1947-51 (average) and 1952-56, in thousand short tons 2-Continued

Country 1	1947-51	1952	1953	1954	1955	1956
Asia:	(5)	1	(5)	(5) 220	(5)	1
Ceylon	63	90	110	(")	280	330
China 4 Cyprus (exports)	31	62	116	112	106	33
Oyprus (exports)				114		950
India Iran ^{4 8}	152	461	656	686	773	
	292	140	180	220	740	380
Iraq 4	265	275	275	275	275	385
Israel 4	20	28	25	31	56	61
Japan	134	221	299	372	374	417
Pakistan	17	33	31	35	31	41
Philippines	2	l				
Syria 9	4	6	1	1	1	2
Taiwan (Formosa)	3	7	2	4	11	14
Thailand (Siam)	(5)					·
Total 4	983	1, 325	1,695	1,955	2,650	2, 615
10vai		1,020	1,000	2,000	2,000	
Africa:						
Algeria	51	59	100	80	132	4 110
		10		10		
Angola	3		6 7		3	⁽⁷⁾ 4 11
Belgian Congo	2	4		10	11	
Egypt	98	156	205	157	432	4 220
French Morocco	20	9	16	23	16	28
Kenya	1	2	1	1	1	2
Sudan	1	2	8	4	44	4 4
Tanganvika		1	2	5	9	11
Tunisia	23	26	25	33	38	4 33
Union of South Africa (sales and ex-						
ports)	106	164	166	171	191	211
Pot 00)						
Total	305	433	536	494	4 840	4 630
10001		100		101		
Oceania:						
Australia	336	394	370	492	526	502
Austrana	11	8	21	3	020	002
New Caledonia	11	0	21	9		
		400	201	407	500	
Total	347	400	391	495	526	502
		20 700	OF F00	20 055	04.000	04.000
World total (estimate) 1	22, 239	26, 580	27, 760	29, 955	34,080	34, 200

¹ In addition to the countries listed, gypsum is produced in Mexico and Rumania, but production dat a are not available. Estimates for these countries are included in the totals.

² This table incorporates a number of revisions of data published in previous Gypsum chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

Includes anhydrite.

4 Estimate.
5 Less than 500 tons.

Crude production estimates based on calcined figures.
 Data not available; estimate by senior author of chapter included in total.
 Year ended March 20 of year following that stated.
 Some pure, some 30 percent gypsum and 20 percent limestone.

ASIA

Burma.—Diamond drilling of 2 of 7 gypsum outcrops in an area between Hsipaw and the Namtu River disclosed a large gypsum Results of drilling indicated that the deposit extends to 150 feet in depth and is underlain by anhydrite. The quality of the gypsum, however, was too poor to warrant further exploration.23

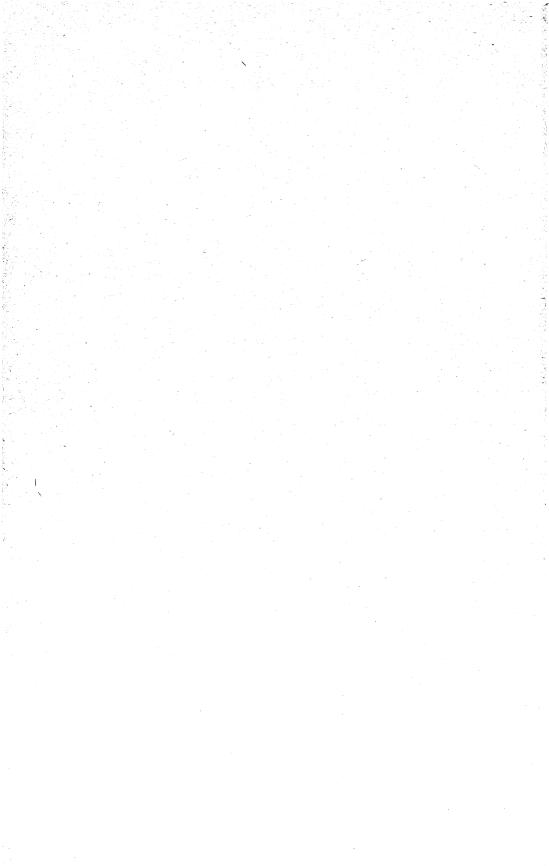
Ceylon.—Gypsum imported from India has been found unsuitable for use in producing cement at the Kankesanturai plant in North Suppliers of gypsum in Sicily and Pakistan have been approached by the Government to rush supplies to Ceylon.²⁴

Griffith, S. V., The Mineral Resources of Burma: Min. Mag., vol. 95, No. 1, July 1956, p. 17.
 Mining Journal (London), vol. 247, No. 6330, Dec. 14, 1956, p. 731.

573 GYPSUM

Israel.—The output of gypsum, although still not large, continued to increase in 1956. The entire quantity of gypsum was used to manufacture cement.²⁵

Pakistan.—As a result of a recent trade agreement negotiated with the Government of India for exporting 100,000 tons of gypsum, and establishing a fertilizer plant at Daudkhel, production of gypsum


was expected to be increased above the 1956 figure.²⁶

Thailand.—Requirements for gypsum as a cement retarder necessitated importation of 11,000 tons of crude gypsum, although several deposits in the Lampang area have not been commercially developed.27

OCEANIA

Australia.—Fred Ingham & Co., Ltd., manufacturer of gypsum plaster, has been granted a 500-acre mining lease at Salt Lake on Kangaroo Island. The deposit has been estimated to contain 2.5 million tons of gypsum, which will be used to supply the new company plaster plant to be built at Port Adelaide.28

Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 2, February 1956, p. 30.
 Chemical Age (London), vol. 75, No. 1941, Sept. 22, 1956, p. 541.
 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 2, February 1956, p. 31.
 Chemical Age (London), vol. 77, No. 1956, Jan. 5, 1957, p. 15.

lodine

By Henry E. Stipp 1 and Annie L. Mattila 2

MPORTS and exports of iodine rose to new highs during 1956. use of radioactive iodine continued to increase. The isotope-distribution program was started in 1946, and by 1956 civilian consumption of radioactive iodine 131 for medical and other uses was said to have grown to major proportions.

DOMESTIC PRODUCTION

In the United States iodine was produced from byproduct oil-well brines containing 10 to 135 p. p. m. iodide ion. Iodine was extracted by the silver iodide process, or chlorination, followed by blowing out with air and SO₂ absorption.³ Production during 1956 came entirely from California, where two firms, the Dow Chemical Co. at Seal Beach and Deepwater Chemical Co. at Compton, recovered iodine.

CONSUMPTION AND USES

During 1956 over 49 percent of iodine consumed in the United States was in the form of potassium iodide for use in photographic emulsions, animal feeds, pharmaceutical preparations, iodized salt, dyes, and in organic synthesis.

Sodium iodide, another important compound of iodine supplied 10 percent of total consumption. Its uses were virtually the same as

those of potassium iodide.

Approximately 30 percent of the iodine consumed during 1956 was used in preparing numerous organic and inorganic compounds. These compounds had a wide variety of uses in industry, agriculture, and medicine.

Crude iodine, which usually contains more than 99 percent iodine, was resublimed to greater purity or converted to iodine compounds. About 11 percent of consumption was in the form of resublimed iodine. In addition to its use in preparing iodine compounds, resublimed iodine was used as an antiseptic in solutions, tinctures, ampuls, and ointments.

Radioactive iodine 131 was used widely in biology, medicine, and industry. Biological studies, medical research, diagnosis and therapy, gaging and control operations, and radiographic inspection were some

of the uses for this new product.

¹ Commodity specialist.
2 Statistical assistant.
3 Shreve, Norris R., The Chemical Process Industries: McGraw-Hill Book Company, Inc., New York 1956, pp. 428-431.

STOCKS

Some stocks of iodine were maintained by domestic producers. In addition, large stocks were held in Chile and at Staten Island, N. Y., by Chilean Nitrate Sales Corp. The latter stocks fluctuate considerably, as they are replenished at irregular intervals.

Iodine was one of the commodities stockpiled by the United States

Government.

TABLE 1.—Crude iodine consumed in the United States, 1955-56

		1955			1956	
Compound manufactured	Number	Crude : consu		Number	Crude i	
	of plants	Pounds	Percent of total	of plants	Pounds	Percent of total
Resublimed iodine	6 8 5 10 12	175, 564 602, 216 99, 902 74, 421 424, 101	13 44 7 5 31	5 9 5 10 15	142, 647 622, 889 123, 493 86, 172 300, 459	11 49 10 7 23
Total	1 19	1, 376, 204	100	1 22	1, 275, 660	100

A plant producing over 1 product is counted but once in arriving at total.

PRICES

The prices of iodine and iodine compounds were listed in the Oil, Paint and Drug Reporter as follows: Crude iodine, in kegs, \$1.45 per pound from January to the latter part of February, \$1.42 per pound from February to last part of October, and \$1.10 per pound for the remainder of the year; resublimed iodine, U. S. P., drums, jars, \$2.30-2.32 per pound throughout the year; potassium iodide, drums, \$1.90-1.95 per pound throughout the year; sodium iodide, U. S. P., bottles, drums, \$2.55-2.62 per pound from January to December and \$2.55 per pound for the remainder of the year; ammonium iodide, N. F., drums, bottles, \$4.26-4.38 per pound throughout the year.

FOREIGN TRADE 4

Imports of iodide from Chile during 1956 increased 15 percent over imports in 1955. Imports of iodine from Japan in 1956 increased 93 percent over 1955 to a new high.

Exports of iodine and iodine compounds in 1956 increased 107

percent over 1955 to establish a new record.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities. Bureau of Mines, from records of the Bureau of the Census.

TABLE 2.—Crude iodine imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries

				[Burear	[Bureau of the Census]	[snst						
	194 (ave	1947-51 (average)	H	1952	Ä	1953	ä	1954	16	1955	1956	99
Comilia	Pounds	Pounds Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Pounds Value	Pounds	Value
South America: Chile	886, 855	\$1, 202, 439 471, 077	471, 077	\$858, 09	681, 484	1, 197, 379	615, 744	\$667,088	868, 040	\$667,088 868,040 \$1,034,834 1,001,701 \$	1,001,701	
Europe: France	92,066	137, 695	320, 131	504, 817	276, 154	408,645	330, 131	366, 354	363, 954	477, 673	703, 167	954, 008
Grand total	983, 921	1, 340, 134 791, 208 1, 362, 909	791, 208	1, 362, 909	957, 638	957, 638 1, 606, 024	945, 985	1, 033, 935 1, 231, 994	1, 231, 994		1, 512, 507 1, 704, 868	2, 179, 857

TABLE 3.—Iodine, iodide, and iodates exported from the United States, 1947-51 (average) and 1952-56

[Bureau	of	the	Census]
---------	----	-----	---------

Year	Pounds	Value	Year	Pounds	Value
1947–51 (average)	335, 275	\$633, 392	1954	338, 258	\$487, 633
1952	120, 789	264, 952	1955	243, 686	356, 531
1953	274, 690	452, 387	1956	505, 274	750, 140

TECHNOLOGY

Iodine that tingled but did not smart or sting was produced by adding iodine crystals to distilled water.⁵ A muddy slurry resulted, with clear fluid at the top that contained a diatomic form of iodine. It was said to be effective in very weak solutions. Used as a mouthwash, diatomic iodine killed 99.8 percent of organisms in record time.

The use of radioactive iodine to help patients with heart disease was reported.6 The iodine reduced the activity of the thyroid gland, thus lowering the rate of body metabolism. This gave the heart less work

Radioactivity in the thyroid glands of cattle, caused by I131 fallout from nuclear tests, was measured from November 1954 to March 1956.7 Cattle thyroid glands from United States, Canada, England, Germany, and Japan and human thyroids from Memphis, Tenn., Plotted data showed increases in radioactivity from were tested. February 18 to May 15, 1955, when nucular tests were being conducted by the United States in Nevada and in the eastern Pacific Ocean. Increases in radioactivity shown in October 1954 to February 15, 1955, and November 1955 to March 1956 were believed to be due to fission products released by other countries.

In surveys conducted to assess the incidence of thyroid enlargement in school children, domestic water in England and Wales was analyzed for iodine, fluorine, hardness, calcium, and magnesium.⁸ The difference in calcium content of the water tested was said to be the reason for a greater occurrence of goiter in some areas of England and a lesser occurrence in some areas of Scotland. An iodine 131 tracer study showed that other dietary factors influence the uptake and metabolism of iodine by the thyroid. It was concluded that an adequate iodine intake can be assured by using iodized salt.

A high incidence of goiter in any area was reported to produce important adverse effects on the health and social well-being of the Iodine was not regarded as a cure for established population.9 goiter, but its use was of great value in reducing soft colloid goiters in young children. The most effective procedure for administering iodine in goitrous areas was the use of iodized salt. Two techniques for producing iodized salt were reviewed.

Science News Letter, Find Stingless Iodine Is Real Germ-Killer: Vol. 69, No. 4, Jan. 28, 1956, p. 56.
 Science News Letter, Radioiodine Helps in Severe Heart Disease: Vol. 68, No. 16, Oct. 5, 1955, p. 247.
 Middlesworth, L. Van, Radioactivity in the Thyroid Glands Following Nuclear Weapons Tests: Science, vol. 123, No. 3205, June 1, 1956, pp. 982-983.
 Murray, Margaret M., Nutritional Requirements and Food Fortification: Chem. and Ind. (London) No. 51, Dec. 29, 1956, pp. 1513-1514.
 Holman, J. C. M., Nutritional Requirements and Food Fortification: Chem. and Ind. (London), No. 51, Dec. 29, 1956, pp. 1514-1516.

IODINE 579

Iodine 131 was used in about 1,300 medical institutions for diagnosis and treatment of thyroid-gland diseases. Civilian consumption was reported at nearly 3.5 million millicuries in more than 30,000 shipments since the isotope-distribution program was begun on August 2, 1946. The price of iodine 131 was listed as 50 cents per millicurie in shipments of less than 500 millicuries. Purchasers receive a 10-cent discount on larger lots.

A report on iodine and sanitation stressed the importance of en-

vironmental medicine on community health.11

Many direct and indirect benefits and monetary gains were said to result from proper modern sanitary practices. Cooperation between an enlightened public and well-trained sanitariums is important in providing clean, pleasant, sanitary surroundings.

Major emphasis of the report was placed upon the effectiveness of sanitization by chemicals and in the more recent use of free-iodine solutions and iodine-liberating preparations in sanitization procedures.

The report presented a review of various terms employed in sanitization procedures. Descriptions of iodophors and free iodine solutions and their many useful properties are given. Acid-buffered iodine-iodide solutions and certain iodophors were said to be effective in concentrations of from 25 to 75 p. p. m. of free iodine. Depending upon the specific practical application, even concentrations as low as 10 to 12.5 p. p. m. are effective. Solutions of free iodine used over a prolonged period of time during a working day, should contain at least 2 to 3 times the concentration indicated above.

It was indicated that future formulations for preparing free-iodine solutions probably would be prepared to determine the diatomic form of iodine, since this form of iodine appears to have the greatest

biocidal activity.

A process for removing metal contaminants (vanadium, nickel, and iron) from petroleum was reported.¹² Crude petroleum or a petroleum fraction was contacted with iodine, which converted the soluble metal-containing complexes to hydro-carbon-in-soluble compounds. These were removed from the hydrocarbon fraction by filtration, by centrifugal means, or by absorption with alumina or silicated.

A procedure for recovering iodine from aqueous glycol solutions containing dissolved free iodine, hydrogen iodide, and hydrolyzable organic-iodine compounds was patented.¹³ A glycol solution was treated with a sufficient amount of an oxidizing agent to oxidize the iodides present without affecting the glycol and the hydrolyzable iodine compounds, thereby precipitating free iodine. Iodine compounds were hydrolyzed by making the solution alkaline and heating to water-bath temperatures. The solution was again treated with an oxidizing agent to precipitate iodine.

¹⁰ Chemical and Engineering News, Radioisotopes Take on New Activity: Vol. 34, No. 38, Sept. 17, 1956, p. 4484.
11 Gershenfeld, Louis, Iodine and Sanitation: Milk and Food Technol., vol. 18, No. 9, September 1955, pp.

<sup>220-225.

12</sup> Kavanagh, Kevin E., Chesiuk, Douglaston, and Ralph P. (assigned to The Texas Company, New 12 Kavanagh, Kevin E., Chesiuk, Douglaston, and Ralph P. (assigned to The Texas Company, New York, N. Y.), Removal of Metal Contaminants From Petroleum: U. S. Patent 2,774,853, May 8, 1956.

York, N. Y.), Removal of Metal Contaminants From Petroleum: U. S. Patent 2,774,853, May 8, 1956.

York, N. Y.), Removal of Metal Contaminants From Petroleum: U. S. Patent 2,780,528, Feb. 5, 1957.

A book that referred to the amount and distribution of iodine in the lithosphere, hydrosphere, and atmosphere was published in 1956.14

A compilation of data on the physical properties of the organic derivatives of polyvalent iodine was issued by the Chilean Iodine Educational Bureau.15

WORLD REVIEW

Indonesia.—In 1956 Indonesia produced 3,176 metric tons of iodine as compared with 7,649 metric tons in 1955 and 10,806 (revised) metric tons in 1954.16

Japan.—Production of elemental iodine in Japan during 1956 was reported as 596,882 kg.17

¹⁴ Chilean Iodine Educational Bureau, Geochemistry of Iodine: Stone House, Bishopsgate, London,

^{1956, 150} pp.

18 Beringer, F. Marshall, and Gindler, E. Melvin, Organic Compounds of Polyvalent Iodine: Chilean Iodine Educational Bureau, New York, vol. 3, No. 3, 1956, 70 pp.

18 U. S. Embassy, Djakarta, Indonesia, State Department Dispatch 32: July 18, 1957, 1 p.

18 U. S. Embassy, Tokyo, Japan, State Department Dispatch 1191: May 6, 1957, 6 pp.

Iron Ore

By Horace T. Reno¹

OUBSTANTIAL production of iron-ore concentrate from taconite and jaspilite deposits and record high iron-ore imports were outstanding features of domestic iron-ore activity in 1956. large quantity of high-grade iron concentrate derived from taconite and jaspilite had marked effect on the pattern of iron-ore statistical data. United States iron-ore imports in 1956 were 30 percent more than the previous high of 1955.

TABLE 1.—Salient statistics of iron ore in the United States, 1947-51 (average) and 1952-56

1947- (avera		1952		19	953		19	54		1955	- 1	19	56
					1				17				
Iron ore (usable; less than 5 percent Mn): Production by districts:													
Lake Superior long tons 80, 246	121	77, 094	. 762	95.	655,	105	60,	93, 92	27 8	3, 255	, 400		317, 11
Southeasterndo 7,917	, 890	7,623	, 779		691,			150, 26		7, 105 4. 649		6,0)34, 63 367, 09
Northeasterndo 4, 385 Westerndo 5, 618 Undistributed (byprod-		4, 426 8, 030			161, 868,		6,)83, 60)64, 94		6, 954		8, (144, 87
uct ore)long tons 2 548	308	742	, 754	. (617,	448		336, 0	52	1,034	,002	1,0	085, 21
Totaldo 98, 716	, 498	97, 918	, 004	117,	994,	769	78,	128, 79	10	2, 998	, 969	97,	348, 93
Production by types of						-		5					
product: Directlong tons 73, 51:	3, 055	70, 358	, 493		163,		49,	105, 9		6, 746			897, 04
Concentratesdo 20, 209), 163 3, 816	22, 037 4, 918			161, 051,		23, 5,	172, 9 013, 8		8, 771 6, 446		9,	812, 50 554, 17
Byproduct material (py-	, 020	_,	,					-				1	
rites cinder and sinter)long tons 54), 464	604	, 141		617,	448		836, 0	52	1,034	, 002	1,	085, 21
Totaldo98,710		97, 918	3,004	117,	994,	769	78,	128, 7	94 10	2, 998	, 969	97,	848, 93
Production by types of				-									
ore:	4 074	83, 51	5 561	102,	552	404	66	384, 3	24	92, 957	. 669	81.	143, 60
Brown ore 2, 11	663	2, 729	, 524	2,	238,	236	2,	315, 4	07	2, 457	, 236		174, 76
Magnetitedo 8,03 Byproduct material (by-	1, 088	11,068	3, 778	12,	585,	681	8,	593, 0	11	6, 550	, 002	12,	445, 34
rites cinder and										1 09/	000		085, 2
sinter)long tons 54	0, 464	604	4, 141		617,	448		836, 0	-				
Totaldo 3 98, 71	6, 498	97, 91	3,004	117,	994,	769	78,	128, 7		02, 998		<u> </u>	848, 9
Shipmentsdo98,56	3, 617	97, 97	2, 584	117,	821,	981	76,	954, 0	81 1	06, 253	804	97,	719, 4 030, 8
Value\$443, 91 Average value per ton at	2, 11 0	\$596, 30	6, 850	\$796,	732,	ษษธ	*\$041,				•		
mine	\$4. 50	:	\$6.09		\$6	3. 76	İ	\$ 6.	99	. •	7.12	l	\$7.
Stocks at mines Dec. 31	5, 942	5, 52	8, 295		706,			077, 6		4, 28			465, 1
Imports	7,075	9, 76	0, 625		074, 788,			792, 4 458, 9	45 4 51	23, 47 77, 45	I, 956 7. 2 81		431, 1 526, 8
Value \$57, 08	9, 013 9, 253		2, 644		251,		3.	145, 7	14	4, 510	3, 828	5,	491, 2
Value \$17.02	5, 206	\$37, 40	3, 973	\$32.	421.			783, 9		36, 99			645, 5
Consumption long tons 101, 45	5, 998	100, 64	0, 636	122,	124,	, 661	94,	229, 1	50 1	25, 02	5, 300	120,	170, 7
Manganiferous iron ore (5												1	
to 35 percent Mn):	4, 442	90	0. 909	1.	106	. 598		498, 5	511		3, 961		565, 9
	4, 044				946			079, 8	380	\$ 5, 12	8, 255	1	(5)
				1									

Direct shipping ore, washed ore, concentrates, sinter, and byproduct pyrites cinder and sinter.
 Includes Puerto Rican ore—39,212 tons in 1951 and 138,613 tons in 1952.
 Includes 9 tons of carbonate ore (siderite).
 Revised figure.
 Bureau of Mines not at liberty to publish figure.

TABLE 2.—Employment at iron-ore mines and beneficiating plants, quantity and tenor of ore produced, and average output per man in 1955, by districts and States

			Iron contained	Per	0.028	1.173	686	345	. 852	.711	1. 368 1. 363 1. 302	1. 527	1.137
	; tons)	Usable ore	Iron co	Per shift	4. 224 2. 913 13. 115	9.384	8.208	2.739	6.832	5.697	10. 941 5. 221 10. 470 14. 175	12. 222	9.115
	an Jong	Usab	Per	hour	0.965 .699 3.243	2. 292	2. 703	. 536	1.244	1.048	2. 425 1. 249 2. 776 3. 328	2.884	2.225
	Average per man (long tons)		Per	shift	7. 720 5. 592 25. 945	18.333	22. 425	4.291	9.971	8.396	19.399 9.995 22.328 26.624	23.088	17.838
	Avera	e ore	Per	hour	1.013	3.007	3.968	1.185	3.002	2.499	5. 583 2. 917 3. 328	4.612	3.094
Production		Crude ore	Per	shift	8.110 5.592 35.419	24.053	32. 919	9.481	24.063	20.019	44. 666 23. 333 77. 271 26. 624	36.923	24.806
Pro		paule	Nat- ural,	(per- cent)	54. 71 52. 09 50. 54	61.19	36.60	63.84	68. 52	67.86	52.24 53.24 53.24	52.94	51.10
	Usable ore	Iron contained		Long tons	6, 735, 135 827, 462 35, 392, 025	42, 954. 422	2, 485, 238	420, 639	2, 734, 461	3, 155, 100	690, 977 136, 117 422, 312 2, 426, 174	3, 674, 580	52, 269, 540
	P		Long tons		12, 310, 611 1, 588, 523 70, 013, 956	83, 913, 090	6, 790, 267	658, 895	3, 990, 671	4, 649, 566	1, 225, 141 280, 560 900, 592 4, 555, 198	6, 941, 491	102, 294, 414
		Crude ore	(long tons)		12, 927, 012 1, 588, 523 95, 580, 664	110, 096, 199	9, 967, 733	1, 455, 891	9, 630, 403	11, 086, 294	2, 820, 905 608, 295 3, 116, 639 4, 555, 198	11, 101, 037	142, 251, 263
		Man-hours	3	T O C 8	12, 756, 947 2, 272, 382 21, 587, 669	36, 616, 998	2, 511, 759	1, 228, 487	3, 208, 055	4, 436, 542	505, 236 208, 559 324, 438 1, 368, 742	2, 406, 975	45, 972, 274
<u>+</u>	Time employed	Ms	Aver-	shift	8.8.8 0000	8.00	8.30	8.00	8.02	8.01	8.8.8.8 00.00 00.40 00.40	8.01	8.02
Employment	Time er		Total man shifts		1, 594, 614 284, 047 2, 698, 593	4, 577, 254	302, 795	153, 560	400, 219	553, 779	63, 155 26, 070 40, 334 171, 093	300, 652	5, 734, 480
A			A verage number of days		239 242 252	247	222	231	265	255	252 221 227 257	248	246
		A verage number	of men employed		6, 677 1, 173 10, 709	18, 559	1, 364	999	1, 508	2,174	251 118 178 667	1,214	23, 311
		District and State			Lake Superior: 1 Michigan. Wisconsin. Minnesota.	Total	Southeastern States: Alabama 2	Northeastern States: New Jersey New York and Pennsyl.	vania	Total	Western States: Oalifornis, Nevada, and Colorado Nessour! New Mastor and Texas. Utah and Wyoming	Total	Total 3

Includes manganese-bearing ore in the Lake Superior district.
 Georgia omitted to avoid disclosing individual company confidential data.
 Man-hour data for Montana, Oregon, South Dakota, Tennessee, and Washington not available; therefore production data for these States are excluded from all totals.

Iron ore was produced at record rates in 1956. Iron mines in Canada, Venezuela, Peru, and Liberia, which have been developed since 1950, and financed largely by the United States private capital, for the first time achieved virtual capacity annual production. Japanese steel companies diligently sought iron ore and were instrumental in developing iron mines in India, Philippines, Malaya, Canada, and the United States. All members of the European Coal and Steel Community produced more iron ore in 1956 than in 1955, and the community as a whole produced 6 percent more. United Kingdom imported more iron ore than ever before in history.

EMPLOYMENT

Employment statistics are given for 1955. The output of crude iron ore per man-shift in 1955 increased 38 percent compared with output in 1954 and 31 percent compared with 1953; usable iron-ore output per shift increased 41 percent compared with 1954 and 26 percent compared with 1953. Increased output in 1955 over 1953 probably reflects a better measure of efficiency than comparing 1955 with 1954 because 1955 and 1953 were relatively high production years and 1954 was a low production year. As iron-mining companies maintain a stable labor force, the yearly average output per man-shift is largely controlled by the quantity of ore produced in a year.

DOMESTIC PRODUCTION

Iron-ore production in the United States in 1956 was retarded by a 34-day steel strike from July 1 to August 3 and a subsequent 5-week local strike of ships' officers that prevented full operation of the Great Lakes fleet until the first week in September. Despite the interruptions, domestic mines produced almost 100 million tons of usable ore, and extension of the Great Lakes shipping season to December 21 permitted most of it to reach consuming centers. Production of iron from the huge taconite resources of Minnesota was highlighted by formal dedication of the Reserve Mining Co. E. W. Davis plant at Silver Bay on September 13. The marked trend to concentrating iron ore before shipment continued as 60 percent of the crude ore mined was treated in beneficiation plants.

Crude-ore production (mine product before being treated to remove waste constituents) increased almost 3 percent in 1956 compared with 1955. The increase was caused by substantial production from deposits that were too low grade to be mined commercially as recently as 1954. Open-pit mine production in 1956, which was about 82 percent of the total, increased 4 percent compared with 1955, but underground mine production decreased 4 percent. Minnesota maintained its place as the principal crude-ore-producing State, with almost 65 percent of the total, and Michigan was again the principal producer of crude ore from underground mines with 45 percent of the total mined underground

ground.

TABLE 3.—Crude iron ore mined in the United States, 1955-56, by States and varieties, in long tons

State	Num- ber of	Hematite	Brown ore	Magnetite	Total	Rank
	mines					
1077						
1955						
Alabama	1 32	6, 165, 458	3, 802, 275		9, 967, 733	1
Dalifornia	2			2 2, 420, 418	2, 420, 418	
Colorado	ī		4, 031	2, 120, 110	4,031	1
leorgia and Tennessee	1 15	49, 316	993, 179		1, 042, 495	1
Michigan	40	12, 927, 012			12, 927, 012	1 1
Minnesota	166	94, 187, 287	415, 002		94, 602, 289	
Missouri	1 12	407, 700	200, 595		608, 295	1
Montana	1			6, 631	6, 631	1
Vevada	8	105, 127		291, 329	396, 456	14
Vew Jersey	4	776, 157			1, 455, 891	10
New Mexico	1 5			9, 218	9, 218	10
Vew York				8, 078, 965	8, 078, 965	
)regon	1		1, 786		1,786	2
Pennsylvanialouth Dakota	1			1, 551, 438	1, 551, 438	1
		2,048			2,048	20
Pexas	6	0 704 600	3, 107, 421		3, 107, 421	
Jtah Vashington	1	2, 784, 683 2, 339		1, 021, 684	3, 806, 367	
Visconsin	3	1, 588, 523			2,339	19
V yoming	1	748, 831			1, 588, 523	15
y young	1	740,001			748, 831	12
Total	305	119, 744, 481	8, 524, 289	14, 059, 417	142, 328, 187	
Percent of total		84.0	6.0	10.0	100.0	
1956						
labama	1 46	4, 506, 076	5, 164, 863		9, 670, 939	
rkansas, Colorado, and Mississippi	5	1,000,010	21, 474		21, 474	1 1
Valifornia	š	(3)	21, 111	2 3 3, 451, 902	3, 451, 902	1
leorgia	1 25		1, 371, 760		1, 371, 760	10
Centucky	Ĩ.		1, 796		1, 796	18
Aichigan	37	13, 985, 951	-,		13, 985, 951	1 2
/Innesota	152	80, 214, 840	613, 499	13, 684, 035	94, 512, 374	lí
Issouri, Tennessee, and Texas	27	449, 303	3, 764, 748		4, 214, 051	l
Iontana	- 2	3, 358		8, 285	11, 643	1
Tevada	10	30, 122		842, 466	872, 588	ī
lew Jersey	4	768, 095		1,063,296	1,831,391	8
lew Mexico	2			5,899	5, 899	10
ew York and Pennsylvania	6			9, 791, 869	9, 791, 869	1
outh Dakota	1				893	19
	.1	22, 146			22, 146	13
Jtah	10	4 3, 247, 967		878, 844	4, 126, 811	
Vashington	1 3	2, 201			2, 201	17
Visconsin		1,551,894			1,551,894	1 9
Vyoming	2	647, 762		2, 231	649, 993	12
Total	338	105, 429, 715	10, 939, 033	29, 728, 827	146, 097, 575	

Excludes an undetermined number of small pits. Output of these pits included with tonnage given.
 Semialtered magnetite containing varying proportions of hematite.
 Small amount of hematite included with magnetite.
 Hematite mixed with minor amount of magnetite.

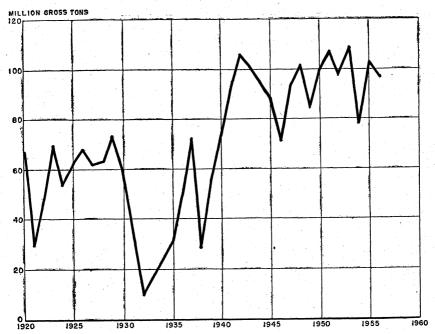


FIGURE 1.—Production of iron ore in the United States, 1920-56.

TABLE 4.—Crude iron ore mined in the United States, 1955-56, by States and mining methods, in long tons

		1955			1956	
State	Open pit	Under- ground	Total	Open pit	Under- ground	Total
AlabamaArkansas	3, 892, 766	6, 074, 967	9, 967, 733	5, 274, 327 1 21, 474	4, 396, 612	9, 670, 939 1 21, 474
California	2, 420, 418 4, 031 2 1, 042, 495		2, 420, 418 4, 031 2 1, 042, 495	3, 451, 902 (1) 1, 371, 760		3, 451, 902 (1) 1, 371, 760
Kentucky Michigan	1, 623, 843 92, 101, 489	11, 303, 169 2, 500, 800	12, 927, 012 94, 602, 289	1, 796 2, 269, 608 92, 338, 296	11, 716, 343 2, 174, 078	1, 796 13, 985, 951 94, 512, 374
Missouri Montana Nevada	200, 595 6, 631 396, 456	407, 700	608, 295 6, 631 396, 456	3 3, 808, 731 11, 643 872, 588	405, 320	* 4, 214, 051 11, 643 872, 588
New Jersey New Mexico New York	9, 218 5, 979, 599	1, 455, 891 2, 099, 366	1, 455, 891 9, 218 8, 078, 965	5, 899 6, 057, 197	1,831,391	1,831,391 5,899 4 9,791,869
Oregon Pennsylvania South Dakota	1,786 2,048	1, 551, 438	1, 786 1, 551, 438 2, 048	893 22, 146	(4)	(4) 22, 146
Tennessee Texas Utah	3, 107, 421 3, 806, 367		3, 107, 421 3, 806, 367	(3) (3) 4, 126, 811		(3) (3) 4, 126, 811
Washington Wisconsin Wyoming	2, 339 108, 119	1, 480, 404 748, 831	2, 339 1, 588, 523 748, 831	2, 201 84, 732 2, 231	1, 467, 162 647, 762	2, 201 1, 551, 894 649, 993
TotalPercent of total	114, 705, 621 81. 0	27, 622, 566 19, 0	142, 328, 187 100, 0	119, 724, 235 81. 9	26, 373, 340 18. 1	146, 097, 578 100. (

Mississippi and Colorado included with Arkansas.
 Tennessee included with Georgia.
 Tennessee and Texas included with Missouri.
 Pennsylvania included with New York.

Iron ore is classified as hematite, brown ore, or magnetite according to the iron-mineral constituent that predominates; inasmuch as most iron ores contain several types of minerals, the classification is seldom precise. In 1956 Minnesota produced almost 14 million tons of crude iron ore classed as magnetite, compared with none in 1955 and about 2 million tons in 1954. Part of these large differences were probably caused by misclassification of ore in 1954 and 1955, but the 1956 classification was doubtless reasonably accurate because taconite ore comprised such a large percentage of the total quantity of magnetite ore produced.

Usable iron ore is that produced from both mines and beneficiating plants measured in the form shipped to the consumer. Production in 1956 totaled 96.8 million long tons—about 5 million tons less than was produced in 1955. Hematite ore comprised 85 percent of the total magnetite ore 12 percent, and brown ore 3 percent. The Lake Superior district produced 5 percent less usable ore in 1956 than in 1955, and the Southeastern district produced 15 percent less; but the Northeastern district produced 5 percent more, and the Western States produced 16 percent more. The demand for Northeastern and Western States iron ore was strong throughout the year, and the steel strike had less effect on production in these areas than in the Lake Superior district. The market for domestic iron ore in the Southeastern district was adversely affected by imports of high-grade Venezuelan ore.

TABLE 5.—Crude iron ore shipped from mines in the United States, 1955-56, by States and disposition, in long tons

		1955			1956	
State	Direct to consumers	To benefi- ciation plants	Total	Direct to consumers	To beneficiation plants	Total
AlabamaArkansas	3, 773, 781	6, 184, 108	9, 957, 889	2, 825, 867	6, 817, 750 121, 474	9, 643, 617 121, 47
California Colorado	780, 457 3, 666	1, 619, 105	2, 399, 562 3, 666	1, 063, 523	2, 396, 599	3, 460, 122
Georgia Kentucky	² 73, 565	2 968, 930	² 1, 042, 495	18, 060	1, 353, 700 1, 796	1, 371, 760 1, 79 6
Michigan Minnesota	13, 721, 356 43, 638, 270	1, 040, 955 50, 733, 839	14, 762, 311 94, 372, 109	12, 031, 612 35, 380, 111	1, 435, 884 59, 425, 280	13, 467, 496 94, 805, 391
Missouri Montana	6, 631	608, 295	608, 295 6, 631	3 85, 403 11, 643	³ 4, 128, 648	3 4, 214, 051 11, 643
Nevada New Jersey	164, 238	1, 373, 577	324, 602 1, 537, 815	916, 592 144, 663	1, 698, 960	916, 592 1, 843, 623
New Mexico New York Oregon	9, 218 38, 440 1, 786	8, 038, 925	9, 218 8, 077, 365 1, 786	3, 120 39, 151 893	2,779 4 9,739,262	5, 899 4 9, 778, 413 893
Pennsylvania South Dakota		1, 544, 176	1, 544, 176 2, 048	22, 146	(4)	(4) 22, 14
Tennessee Texas	(2) 36, 002	(2) 3, 071, 419	(2) 3, 107, 421	(3) (3)	(3) (3)	(3)
Utah Washington	3, 847, 402 2, 339		3, 847, 402 2, 339	4, 001, 739 2, 201		4, 001, 739 2, 20
Wisconsin Wyoming	1, 886, 029 748, 831		1, 886, 029 748, 831	1, 488, 067 647, 762	750 2, 231	1, 488, 81' 649, 99
Total Percent of total	69, 058, 661 47. 9	75, 183, 329 52, 1	144, 241, 990 100, 0	58, 682, 553 40, 0	87, 025, 113 60, 0	145, 707, 666 100, 0

¹ Mississippi and Colorado included with Arkansas. Also includes small amount of direct shipping ore.

² Tennessee included with Georgia.
³ Tennessee and Texas included with Missouri.
⁴ Pennsylvania included with New York.

Minnesota was by far the principal producer of usable iron ore in 1956, with 65 percent of the total, 60 percent of the direct shipping ore. 82 percent of the iron-ore concentrate, and 51 percent of the iron-ore Iron-ore sinter production at the mines in Minnesota in 1956 increased 187 percent compared with 1955, thus stressing the new role of taconite mining in that State. Michigan ranked second among the States producing usable ore, with 13 percent of the total; Alabama ranked third, with 6 percent; Utah produced 4 percent; and New York and Pennsylvania together also produced 4 percent. These 6 States-Minnesota, Michigan, Alabama, Utah, New York, and Pennsylvania-together produced 92 percent of the usable iron ore, and of the several classes of material comprising usable iron ore, they produced 92 percent of the direct shipping ore, 94 percent of the concentrate, and 90 percent of the sinter.

Usable iron ore produced domestically in 1956 contained an average of 51.5 percent iron compared with 51.2 percent in 1955, 50.9 percent in 1954, and 50.4 percent in 1953. In 1954 and 1955 consumer selectivity was largely responsible for increasing the grade of ore; but in 1956 more beneficiation was almost solely responsible, as there was

a ready market for iron ore throughout the year.

TABLE 6.—Iron ore mined in the United States, 1955-56, by mining districts and varieties, in long tons

Variety of ore	Lake Superior district	South- eastern States	North- eastern States	Western States	Total
1955					
Crude ore: Hematite	108, 702, 822	6, 214, 774 4, 795, 454	776, 157 10, 310, 137	4, 050, 728 3, 313, 833 3, 749, 280	119, 744, 481 8, 524, 289 14, 059, 417
Total	109, 117, 824	11, 010, 228	11, 086, 294	11, 113, 841	142, 328, 187
Usable iron ore: Hematite Brown ore	82, 984, 730 1 270, 670	5, 868, 884 1, 236, 822	253, 020 4, 396, 546	3, 8 51, 035 949, 744 2, 153, 516	92, 957, 669 2, 457, 236 6, 550, 062
Total	83, 255, 400	7, 105, 706	4, 649, 566	6, 954, 295	101, 964, 967
1956					
Crude ore: HematiteBrown oreMagnetite	613, 499	4, 469, 272 6, 648, 206	768, 095 10, 855, 165	4, 358, 876 3, 758, 115 5, 189, 627	105, 348, 928 11, 019, 820 29, 728, 827
Total	110, 050, 219	11, 117, 478	11, 623, 260	13, 306, 618	146, 097, 575
Usable iron ore: Hematite	72, 376, 985 3 395, 026 5, 045, 102	4, 323, 140 1, 711, 498	252, 063 4, 615, 035	4, 191, 421 1, 068, 245 2, 785, 211	81, 143, 609 3, 174, 769 12, 445, 348
Total	77, 817, 113	6, 034, 638	4, 867, 098	8, 044, 877	96, 763, 726

¹ Produced in Fillmore County, Minn., not in the true Lake Superior district.
2 Includes 349,568 tons mined in Fillmore County, Minn.

TABLE 7.-Iron ore produced in the United States, 1955-56, by States and types of product, in long tons

(Exclusive of ore containing 5 percent or more manganese)

			1955					1956		
State	Direct- shipping ore	Sinter 1	Concentrates	Total	Iron con- tent, nat- ural (per- cent)	Direct- shipping ore	Sinter 1	Concentrates	Total	Iron con- tent, nat- ural (per- cent)
Mined ore: Alabams Arkansas	3, 739, 594	882, 000	2, 168, 673	6, 790, 267	36.60	2, 847, 650	651, 000	2, 227, 942	5, 626, 592	38.89
Colorado.	824, 654			824, 654	54.55	1,047,486		4/4/4	1,047,486	45.98
Georgia Kentucky	8 73, 565		\$ 241, 874	\$ 315, 439	3 40. 42	18, 060		338, 675	(2) 356, 735	(e) 41. 52
Michigan Minosota Miscouri	11, 866, 383 43, 508, 432	1, 930, 997	444, 228 23, 916, 837	12, 310, 611 69, 356, 266	54.71 50.65	12, 544, 598 35, 299, 467	55, 757 5, 539, 107	442, 909 22, 383, 837	13, 043, 264 63, 222, 411	51.72 51.49
Mondan	6, 631		260, 560	260, 560 6, 631	40°24 40°00	4 85, 403 11, 643		249,	334,	48,29
New Mexico.	92, 889 0, 889		566,006	396, 456 658, 895	63.28 8.88	872, 588 769, 375		164, 190	872, 588 933, 565	58.58 59.61 20.01
New York Oregon	38,440	2, 755, 128	353, 576	3, 147, 144	22.6	39, 151	8 3, 408, 315	\$ 486, 067		661.78
Pennsylvania South Dakota	2,048	708, 646	134, 881	843, 527	37.55	22.146	(9)	(9)		6
Texas Texas Utah	(3) 36,002 3,806,367	170,047	(3) 685, 325	(3) 891, 374 3, 806, 367	(e) 46.79 70.73	4 136 81	•	€€	€ € €	
washington Wisconsin Wyoming	2, 339 1, 588, 523 748, 831			2,339 1,588,523 748,831	52.09 50.90	1, 551, 144 649, 993		294	1, 551, 438 649, 993	
Total	66, 746, 189	6, 446, 818	28, 771, 960	101, 964, 967	51.14	59, 894, 508	9, 554, 179	27, 315, 039	96, 763, 726	51.31
Byproduct ore c Grand total	66, 746, 189	1, 034, 002 7, 480, 820	28, 771, 960	1, 034, 002 102, 998, 969	62. 44 51. 25	59, 894, 508	1, 085, 210 10, 639, 389	27, 315, 039	1, 085, 210 97, 848, 936	66. 14 51. 47

Exclusive of sinter produced at sintering plants. Small quantity of sinter included with concentrates to avoid disclosing confidential company data.
 Missisappi and Colorado included with Arkansas. Also includes small amount of direct shipping ore.
 Tennessee included with Mesorri.
 Pennessee and Texas included with Missouri.
 Pennsylvania included with New York.
 Clinder and sinter obtained from treating pyrites.

Although the United States produced over 11 million tons of iron ore classified as magnetite in 1956, about 5 million tons more than in 1955, the shortage of pure lump magnetite for speciality markets experienced in 1955 continued and eastern buyers sought lump magnetite at small mines in Montana, Wyoming, and New Mexico.

Iron-ore shipments, given for 1956 by States and uses, are in long tons; and the value is that at the mine, exclusive of transportation costs. The average value at the mines was \$7.75 per long ton compared with \$7.12 in 1955 and \$6.99 in 1954. Shipments are classified by uses according to data submitted by the producer and therefore may not be precisely classified because the shipper does not control the end use. Direct-shipping ore comprised 60 percent of the total shipments in 1956 compared with 65 percent in 1955, concentrates comprised 29 percent compared with 28 percent in 1955, and sinter comprised 11 percent compared with only 5 percent in 1955. Shipments to cement and paint plants in 1956 were about the same as in 1955, but shipments classified as miscellaneous totaled only about 100 thousand tons in 1956 compared with almost 1½ million tons in 1955. Better classification was principally responsible for the large decrease in the miscellaneous category.

The number of active iron mines in the United States, exclusive of a number of small, open-pit mines that operated intermittently, in-

TABLE 8.-Iron ore produced in the United States, 1955-56, by States and varieties, in long tons

	of ore containing		

		19	955			19	56	
State	Hema- tite	Brown ore	Mag- netite	Total	Hema- tite	Brown ore	Magnet- ite	Total
Alabama. Irkansas. Jalifornia. Jolorado. Jeorgia. Centucky. Michigan. Minnesota. Missouri. Montana. Nevada. New Jersey. New Mexico. New York. Dregon. Pennssylvania. South Dakota		4, 031 266, 123 270, 670 52, 553 1, 786	6, 631 291, 329 405, 875 9, 218 3, 147, 144	4, 031 3 315, 439 12, 310, 611 69, 356, 266 260, 560 6, 631 396, 456 658, 895 9, 218 1, 3, 147, 144 1, 786	(2) 13, 043, 264 57, 782, 283 4 281, 848 3, 358 30, 122 252, 063	1 21, 474 (1) 356, 735 161 395, 026 41, 053, 045	21, 047, 486 	(1) 356, 73 16 13, 043, 26 63, 222, 41 41, 334, 89 11, 64 872, 58 933, 56 5, 89
rennessee Feras. Utah Washington Wisconsin. Wyoming Total Byproduct ore \$	2, 784, 683 2, 339 1, 588, 523 748, 831 92, 957, 669	891, 374	1, 021, 684 	891, 374	3, 247, 967 2, 201 1, 551, 438 647, 762 81, 143, 609	3, 174, 769		2, 20 1, 551, 43 649, 99 96, 763, 72 1, 085, 21

Mississippi and Colorado included with Arkansas to avoid disclosing confidential company data.
 Small tonnage of hematite included with magnetite to avoid disclosing confidential company data.
 Tennessee included with Georgia.
 Tennessee and Tenas included with Missouri.
 Pennsylvania included with New York.
 Citidae and states obtained from treating pressure.

Cinder and sinter obtained from treating pyrites.

creased from 305 in 1955 to 338 in 1956; however, the number of mines operating in Minnesota and Michigan decreased from 206 in 1955 to 189 in 1956. In a year of high industrial activity, this substantial decrease in the number of mines operating in the principal iron-ore-producing States of the Lake Superior district was significant, in that it narrowed the broad base of iron-ore producers upon which the United States has depended to increase iron-ore output in an emergency.

Among the 338 active mines, 38 mines, each producing over 1 million tons of crude ore, together supplied 62 percent of the total domestic crude ore output and 59 percent of the total usable ore output; 38 mines, each producing ½ to 1 million tons of crude ore, together supplied 19 percent of the crude ore and 20 percent of the usable ore; 90 mines, each producing 100 thousand to ½ million tons of crude ore, together supplied 16 percent of the crude ore and 18 percent of the usable ore; and the remaining 172 mines, each producing under 100 thousand tons of crude ore, together supplied only 3 percent of the total domestic output of both crude and usable ore. The average ratio of crude ore to usable ore produced at the thirty-eight 1-millionton mines was 1.6:1; at the thirty-eight ½-million-ton mines it was

TABLE 9.—Shipments of iron ore in the United States in 1956, by States and uses, in long tons

	I	ron and st	eel				т	otal
State	Direct- shipping ore	Sinter 1	Concen- trates	Cement	Paint	Miscel- laneous	Gross tons	Value
Mined ore: Alabama Arkansas and Mississippi	2, 825, 867	551,000	2, 255, 841 18, 831				5, 632, 708 18, 831	\$34, 824, 465 86, 804
California Colorado Georgia	1, 036, 350 18, 060		1, 350, 754 (2 3) 338, 675	27, 173	(3)		2, 414, 277 (2) 356, 735	(2)
Kentucky Michigan Minnesota	12, 002, 679 35, 380, 111	35, 000	161 469, 397 21, 948, 216		28, 933		161 12, 536, 009	(2)
Missouri Montana Nevada	(2) 916, 592		188, 505	(2)			188, 505 (2) 916, 592	(2) (2) 2, 498, 374
New Jersey New Mexico New York Oregon	144, 663 39, 151		766, 791 330, 237	(2) 6, 780	81 	(2) 92, 027 (2)	911, 535 (2) 3, 188, 276 (2)	(2)
Pennsylvania South Dakota Tennessee	(2)	(2)	(2)	22, 146			(2) 22, 146 (2)	(2) 100, 456
Texas Utah Washington	3, 993, 026	(2)	(2) (2)	(2) 2, 201	8, 713		(2) 4, 001, 739 2, 201	27, 508, 089 (2)
Wisconsin Wyoming Undistributed	1, 488, 067 (2) 695, 103	874, 073	294 796, 744	52, 825		(2) 5, 903	1, 488, 361 (2)	(2) (2) 63, 079, 110
TotalByproduct ore 4	58, 539, 669	9, 489, 144 979, 383	28, 464, 446	111, 125	37, 727	97, 930		747, 656, 621 9, 374, 197
Grand total	58, 539, 669	10, 468, 527	28, 464, 446	111, 125	37, 727	97, 930	97, 719, 424	757, 030, 818

¹ Exclusive of sinter produced at consuming plants.

Tonnages and values not shown separately are combined as "Undistributed."
 Small tonnage for use in paint included with concentrates to avoid disclosing individual company confidential data.

dential data.

* Cinder and sinter obtained from treating pyrites.

TABLE 10.—Iron ore mined in the United States in 1956, by States and counties, in long tons

	(LIACI	usive of ore (i i	percent of more many			
State and county	Active mines	Crude ore	Usable ore	State and county	Active mines	Crude ore	Usable ore
				Montone			
Alabama: BarbourBibb	1 1	1, 466, 000	366, 805	Montana: Broadwater Judith Basin	1 1	11, 643	11, 643
Blount Butler	1 4 2			Total	2	11, 643	11, 643
Calhoun Cherokee Crenshaw	3 3 1	1, 027, 400	256, 963	Nevada: Churchill	- 1		
Etowah Franklin	9	2, 150, 904	606, 836	Douglas Eureka	1	391, 311	391, 311
Houston Jefferson Pike	1 8 9	4, 488, 635 416, 000	4, 261, 716 103, 754	Humboldt Nye Pershing	3 1 3	481, 277	481, 277
Shelby Talladega	1 2	416, 000 122, 000	103, 754 30, 518	Total	10	872, 588	872, 588
Total	46	9, 670, 939	5, 626, 592	New Jersey: Morris	3	1, 831, 391	933, 565
Arkansas: 1				Warren	1		
Baxter Fulton Randolph	1 1 1	21, 474	21, 474	Total	4	1, 831, 391	933, 565
Total	3	21, 474	21, 474	New Mexico: Grant	1 1	5, 899	5, 899
California: Riverside	1	3, 423, 447	1, 019, 031	Lincoln	2	5, 899	5, 899
San Bernadino	2	28, 455	28, 455	New York:			
Total Colorado: San	3	3, 451, 902	1, 047, 486	Clinton Essex St. Lawrence	1 3 1	9, 791, 869	3, 933, 533
Miguel	1	(1)	(1)	Total	5	9, 791, 869	3, 933, 533
Georgia: Bartow Polk	12	1, 371, 760	356, 735	Oregon: Columbia	1	893	893
Stewart	6 7			Pennsylvania: Lebanon	1	(4)	(4)
Total	25	1, 371, 760	356, 735	South Dakota: Lawrence	1	22, 146	22, 146
Kentucky: Crittenden	1	1,796	161	Tennessee:		22, 110	=======================================
Michigan: Baraga	1	225, 999	122, 401	Monroe Roane	1		
Dickinson Gogebic	6 14	130, 456 2, 909, 686 4. 322, 469 6, 397, 341	130, 456 2, 909, 686 4, 133, 951 5, 746, 770	Total	2	(3)	(3)
Iron Marquette	14	6, 397, 341	5, 746, 770	Texas: Cass	1		
Total	37	13, 985, 951	13, 043, 264	Cherokee Morris	2 1		
Minnesota: Crow Wing Fillmore 2	19	2, 996, 103	2, 242, 216	Total	4	(8)	(3)
Itasca	29 102	2, 996, 103 502, 295 32, 769, 030 58, 244, 946	349, 568 15, 677, 918 44, 952, 709	Utah: Iron	10	4, 126, 811	4, 126, 811
Total	152	94, 512, 374	63, 222, 411	Washington: Stevens	1	2, 201	2, 201
Mississippi: Montgomery Webster	1			Wisconsin: IronFlorence	2 1	1, 551, 894	1, 551, 438
Total	1	(1)	(1)	Total	3	1, 551, 894	1, 551, 438
Missouri: 3 Howell Oregon	13	119, 814	119, 814	Wyoming: Albany Platte	1 1	649, 993	649, 993
Ozark Shannon	1	4, 094, 237	1, 215, 079	Total	2	649, 993	649, 993
St. Francois Wayne	1			Grand total	338	146, 097, 575	96, 763, 726
Total	21	4, 214, 051	1, 334, 893		}		

Mississippi and Colorado included with Arkansas.
 Not in the true Lake Superior district.

Tennessee and Texas included with Missouri.
 Pennsylvania included with New York.

1.4:1; at the ninety 100-thousand-ton mines it was 1.3:1, and at the one hundred and seventy-two, less than 100-thousand-ton mines it was 1.6:1. Taconite and jaspilite mining in Minnesota and Michigan was responsible for the high ratio of crude to usable ore produced at the million-ton mines; and the enterprise of independent operators was responsible for the high ratio at the small mines.

TABLE 11.—Iron ore produced in the Lake Superior district, 1854-1956, by ranges, in long tons

(Exclusive after 1905 of ore containing 5 percent or more manganese)

Year	Marquette	Menominee	Gogebic	Vermilion	Mesabi	Cuyuna	Total
1854-1951 1952 1953 1954 1955 1956	4, 668, 550 5, 785, 118 4, 670, 603 5, 412, 956 5, 869, 171	232, 956, 476 4, 168, 465 4, 604, 765 3, 640, 320 4, 126, 417 4, 348, 683	4, 468, 039 5, 179, 608 3, 931, 233 4, 359, 761 3, 376, 848	86, 238, 331 1, 573, 748 1, 643, 039 1, 371, 967 1, 454, 365 1, 284, 536	59, 370, 538 75, 324, 236 45, 724, 827 64, 860, 493 59, 346, 091	47, 061, 845 2, 369, 180 2, 900, 579 1, 497, 296 2, 770, 738 2, 242, 216	2, 696, 458, 677 76, 618, 520 95, 437, 345 60, 836, 246 82, 984, 730 77, 467, 545
Total	289, 298, 229	253, 845, 126	298, 752, 200	93, 565, 986	2, 095, 499, 668	58, 841, 854	3, 089, 803, 06

TABLE 12.—Average analyses of total tonnages (bill-of-lading weights) of all grades of iron ore from all ranges of Lake Superior district, 1947-51 (average) and 1952-56

[Lake Superior Iron Ore Association]

			Content	(natural)	, percent	
Year	Long tons	Iron	Phos- phorus	Silica	Man- ganese	Mois- ture
1947-51 (average)	80, 219, 438 77, 225, 818 95, 438, 743 59, 585, 720 85, 404, 796 76, 407, 170	50. 48 50. 49 50. 37 50. 86 50. 63 51. 34	0.090 .111 .090 .095 .099	9. 57 10. 05 10. 25 10. 22 10. 11 9. 78	0. 76 . 77 . 75 . 70 . 72 . 67	11. 21 10. 78 10. 90 10. 47 10. 81 10. 39

TABLE 13.—Beneficiated iron ore shipped from mines in the United States, 1947-51 (average) and 1952-56, in long tons

Year	Beneficiated	Total	Proportion of beneficiated to total (percent)
1947-51 (average)	24, 615, 566	97, 986, 206	25. 1
	27, 023, 982	97, 375, 010	27. 8
	35, 895, 529	117, 197, 537	30. 6
	27, 756, 129	1 76, 125, 664	36. 5
	36, 178, 208	105, 236, 869	34. 4
	38, 054, 950	96, 740, 041	39. 3

¹ Revised figure.

TABLE 14.—Iron ore mines in the United States in 1956, by size of crude output

	4040	Nearest town	Range or district	Mining method	Production	Production (long tons)
Name of mine	200				Crude ore	Usable ore
						, 00
Poter Mitchell	Minnesota	Babbitt	Mesabi	Open pit	11, 330, 472	4, 225, 304 5, 727, 703
Sherman Group	qo	Fraser	gp	ao	5, 260, 662	5, 181, 764
Rouchleau Group	op	Virginia	Adirondook	00	4, 603, 693	
Benson	New York	Fools Mountain	Earle Mountain	op	3, 423, 447	1,019,031
Eagle Mountain	- Camornia	Hibbing	Mesabi	qo	3, 386, 381	3, 282, 332
Missing Group	do	Keewatin	op	qo	3, 178, 988	1, 660, 096
Tone Star	Texas	Daingerfield	East Texas	dp	582 608	1 782 020
Plummer	- Minnesota	Coleraine	Mesabl	Tradereround	2, 540, 236	2, 540, 236
Mather	- Michigan	Ishpeming	Marquene	Onen nit	2, 428, 307	
Patrick Group	Minnesota	IN ASII WAUK.	do	do	2, 339, 457	847, 470
Hawkins	ao	Chisholm	do	op	2, 287, 916	2, 287, 916
Monroe Group	Alahama	Bessemer	Birmingham	Underground	2, 208, 668	
Welloubu	Minnesota	Gilbert	Mesabi	Open pit	2, 137, 211	2, 124, 004
Cantetan	do	Coleraine	qo	do	2,003,342	1,018,111
Hill March Mall	do	Marble	op	do	1, 914, 201	000, 200
Holman-Oliffa	do	Taconite	qo	do	1, 908, 900	616, 487
Pilotae	-do	Mt. Iron	do	do	1,000,110	568 981
Harrison Group	qo	Nashwauk	do	do	1, 809, 464	1 056 114
King Group	do	Coleraine	do	ap	1, 205, 101	1,805,109
Mahoning Group.	op	Hibbing	do		1,654,675	
Hill Annex	op	Calumet	00	OD.	1, 496, 744	503, 928
	do	INIBIDIG		op	1, 478, 399	
Agnew No. 2 and South Agnew	do	Grand Ponide	do	do	1, 443, 827	
West Hill	Domestinosto	Tabanan	Comwall	Underground	•	Ξ
Cornwall and Lebanon Concentrators	Minnesota	Coleraine	Mesabi	Open pit	1, 371, 984	803, 734
AUDDET	New York	Tahawiis	Adirondack	do	1, 352, 799	616, 144
Miss No	Minnesota	Grand Rapids	Mesabi	op	1, 320, 053	570, 284
Trom Mountain	Titah	Cedar City	Iron Springs	qp	1, 266, 554	1,266,554
Doeset Mound	do	op	op	qo	1, 252, 625	1, 202, 020
Conton	Minnesota	Biwabik	- Mesabi	op	1, 224, 065	1, 224, 000
New Bed Harmony and Old Bed	New York	- Mineville	- Adirondack	Onderground	1, 220, 570	1 143 187
Enterprise	Minnesota	Virginia	- Mesapi	- Open pit-	1, 200, 100	884 620
Pyne	Alabama	Bessemer	- Birmingnam	Onen nit		636,021
Danube	Minnesota	Bovey	- Mesaul	- Open pur	1,004,130	1 076, 151
Spruce	op	- Eveleth	- ao	ao		7,010,10
7 000 000					1 90, 477, 523	1 56, 690, 587
Output of 38 mines producing 0ver 1,000,000 tons of crude one each	ns of crude ore each				27, 355, 493	19, 410, 491
Output of 38 mines producing 500,000 to 1,000, to 500 00.	Of tons of critice ore each				23, 571, 363	17, 768, 933
Output of 172 mines producing moder 100,000 tons of crude ore each	ons of crude ore each				4, 693, 196	2, 893, 715
					1 148 007 E7E	1 08 782 798
Grand total United States (338) mines.			***************************************		1±0, 021, 010	071 6001 600

1 Tonnages that may not be shown separately are included in totals to avoid disclosure of confidential company data.

CONSUMPTION AND USES

Despite the 5-week steel strike, the United States consumed slightly more iron ore in 1956 than in 1955. Consumption in blast furnaces decreased 6 percent, but consumption in sintering plants and ferroalloy furnaces increased 25 and 47 percent, respectively, to more than make up the loss. Blast furnaces consumed 71 percent of the total quantity of iron ore consumed in the United States in 1956; sintering plants, 22 percent; steel furnaces, 6 percent; and ferroalloy furnaces, cement, paint, and unclassified plants, the remaining 1 percent.

Sinter.—Sintering plants at mines and steel mills in 1956 consumed 35.8 million long tons of material, including 27.9 million tons of fine ore and concentrate, 7.3 million tons of flue dust, 0.5 million tons of mill scale, and 47 thousand long tons of pyrite cinder. Domestic sinter production increased 17 percent in 1956 compared with 1955, owing principally to a 67-percent increase in the quantity of sinter produced at mines. Sintering-plant output to input yield was 88 percent in 1956 compared with 89 percent in 1955.

STOCKS

Usable iron-ore stocks at mines on December 31, 1956, totaled 51/2 million long tons, 22 percent more than at the same time in 1955. The increase from the million-ton low in 1955 resulted in normal inventory and apparently was not caused by the steel and ship officers' strikes.

TABLE 15.—Consumption of iron ore in the United States in 1956, by States and uses, in long tons

(Exclusive of	ore containing	5	percent	or	more manganese)

		Metallur	gical uses		Misc	ellaneou	s uses	
State	Iron blast furnaces	Steel furnaces	Sintering plants	Ferro- alloy furnaces	Cement	Paint	Other	Total
Alabama California Colorado	6, 524, 356	116, 451 572, 217	847, 819 2, 677, 816		42, 183 (34, 104 6, 224			7, 530, 809 6, 762, 140
Utah Delaware Illinois Indiana Kentucky	9, 304, 951 11, 257, 592 926, 741	529, 962 899, 062 108, 840	140, 053 502, 153 976, 154		l			140, 053 10, 337, 066 13, 132, 808
Maryland Massachusetts Michigan Minnesota	7, 895, 438	780, 913 97, 355	2, 289, 608 6, 134, 605	{	(1)	(1) (1)		1, 035, 581 (1) 10, 965, 959 (1) 7, 311, 353
New York Ohio Oregon Pennsylvania	4, 986, 394 18, 284, 858	484, 196 1, 473, 786 2, 078, 669	4, 155, 878	100, 673 320, 216 1, 010 19, 946	18, 596 (1) (1) 26, 965		(1)	9, 745, 737 23, 097, 338 1, 010
Tennessee Texas West Virginia Undistributed 2	187, 136 724, 721	62, 307 66, 541	716, 093 202, 460 701, 851		(1) 60, 446 (1) 73, 860	32, 469	97, 037	29, 578, 894 903, 229 1, 049, 934 3, 375, 425
Total	89, 163, 405	7, 270, 299	27, 903, 269	441, 845	262, 378	32, 469	97, 037	203, 366 125, 170, 702

¹ Included with "Undistributed."

2 Includes States indicated by footnote 1 plus the following: For cement, Arkansas, Arizona, Florida, Georgia, Idaho, Iowa, Kansas, Louisiana, Missouri, Montana, Oklahoma, South Dakota, Virginia, and Washington; for other uses, New Mexico, and Wyoming.

TABLE 16.—Production and consumption of sinter in the United States in 1956, by States, in long tons

	Sinter	Sinter co	nsumed
State	produced	In blast furnaces	In steel furnaces
Alabama	1, 009, 146	1, 417, 043	31, 520
Palifornia Jolorado July	!}	2, 577, 626	
Delawarellinois ndiana	127, 717 957, 378 2, 028, 718	957, 829 1, 890, 298	170, 422 255, 798
Agryland)	2, 692, 553	2, 470
Fennessee	1, 146, 911 5, 539, 107	1, 127, 029	
New York	3, 715, 624	2, 182, 614 4, 078, 888	66, 373 400, 570
Pennsylvania Penasylvania Visconsin	6, 882, 498 174, 208 16, 921	8, 048, 422 193, 728	427, 24
Total	31, 214, 908	25, 166, 030	1, 354, 40

TABLE 17.—Stocks of usable iron ore at mines, Dec. 31, 1955-56, by States, in long tons

State	1955	1956	State	1955	1956
Alabama California Colorado Michigan Minnesota Nevada New Jersey	34, 569 64, 657 365 11, 647, 805 11, 688, 483 81, 541 10, 760	28, 453 47, 958 365 2, 155, 060 2, 273, 577 9, 850 31, 789	New York	277, 663 12, 946 104, 459 258, 104 99, 430 14, 280, 782	217, 855 8, 703 145, 868 383, 176 162, 507 5, 465, 161

¹ Revised figure.

According to the Lake Superior Iron Ore Association, stocks at Lake Erie docks totaled 4,276,605 long tons on January 1, 1957. Consuming-plant inventories of iron ore plus sinter totaled 47,292,433 long tons. Thus, United States stock of iron ore and sinter at the end of the year totaled 57,034,199 long tons, a 2-percent increase compared with 1955.

PRICES

The average value of usable iron ore per gross ton f. o. b. mines was \$7.75 in 1956, compared with \$7.12 in 1955, \$6.99 in 1954, and \$6.76 in 1953. The 9-percent increase in value of usable ore in 1956 over 1955 in all probability was a minimum increase reflecting higher wages and material costs at the mines, inasmuch as the average value increased only 3 and 2 percent in 1954 and 1955, respectively. Data in table 17, which gives the average value of iron ore at the mines of different types of product and varieties of ore, were taken directly from producers' statements and probably approximate the commercial selling price. Usually the value is given less transportation costs to the consuming plant. In the Lake Superior district the mine value is the Lake Erie price less freight from mines to lower Lake ports.

TABLE 18.—Average value per long ton of iron ore at mines in the United States, 1955-56

(Exclusive of ore containing 5 percent or more manganese)

				19	55						195	3		
		Direc	t	Co	ncent	rates			Di	rect			ncen- ates	
State	Hematite	Brown ore	Magnetite	Hematite	Brown ore	Magnetite	Sinter	Hematite	Brown ore	Magnetite	Hematite	Brown ore	Magnetite	Sinter
Mined ore: Alabama Colorado Georgia Michigan Minnesota Montana	\$6. 49 -(1) 7. 36 6. 50		\$6. 72		4. 03 (1)		(1) (1)	\$5. 97 7. 80 6. 92			\$7. 20 8. 36 7. 54	4. 59		(1)
New Jersey New York Pennsylvania Utah Other States 2	6. 25 6. 90		(1) (1) 6. 87 7. 55	(¹) 10. 80		(1)	\$12. 12 (¹)	6. 81 7. 92		(1) (1) (1) \$6. 90 2. 70	10. 47		(1)	\$13, 18 (1)
Average, all States Byproduct ore: 3	6.68	6. 38	7.87	7. 15	5. 72	10.41	10. 76 8. 09		5. 52	5. 80	7. 89	6. 70	13. 74	11. 00 9. 5

Included with average for all States to avoid disclosing individual company confidential data.
 Includes California, Missouri, Nevada, New Mexico, Oregon, South Dakota, Tennessee, Texas, Washington, Wisconsin, and Wyoming for 1955 and 1956, plus Arkansas, Kentucky, and Mississippi for 1956.
 Cinder and sinter obtained from treating pyrifes.

The 1956 Lake Erie prices of Lake Superior district iron ore, 51.5 percent iron, natural, per long ton, were as follows: Bessemer Old Range \$11.25; Bessemer Mesabi \$11.00; Non-Bessemer Old Range \$11.10 and Non-Bessemer Mesabi \$10.85.2

E&MJ Metals and Mineral Markets quoted eastern iron ore, 56 to 62 percent iron, at 17 and 18 cents per long ton unit and Swedish iron ore 60 to 68 percent iron at 22 cents per long ton unit, c. i. f., throughout 1956. From January 1 to April 5 the same publication quoted Brazilian iron ore, 68.5 percent iron, per long ton, f. o. b. port of shipment, contracts at \$11.50 and \$12.00 and nearby at \$12.25 and \$12.50. The Brazilian quotation was changed on April 5 to \$13.35 effective January 1 and changed again on November 22, 1956, to \$14.60, premiums for low phosphorus, effective with contracts January 1 and April 1, 1957.

² M. A. Hanna Co., Analyses of Iron Ores, 1957: Calvert-Hatch Co. 34 pp.

TRANSPORTATION

More iron ore was transported over salt water in 1956 than ever in history. The worldwide iron-ore-carrier shortage experienced in 1955 eased in 1956, and by the end of the year shipping companies actively

solicited business.

Great Lakes.—Iron-ore shipping on the Great Lakes began on April 4 in 1956 and continued at a high rate until July 1, when a 34-day steel strike stopped all United States iron-ore shipments. Full-scale shipping was not resumed until the first week in September, owing to a local strike of ships' officers, which tied up part of the fleet for 5 weeks. Despite this prolonged interruption to Lake shipping, over 77 million tons of iron ore was loaded at upper Lake United States and Canadian ports in 1956—only about 10 million tons less than was loaded in 1955.

Table 19 gives the 1956 carrying capacity of the Great Lakes ironore fleet, by year of ships' construction. The season carrying capacity of the fleet has been expanded substantially since World War II by adding vessels designed for speed, which permits them to make about 40 trips a season compared with about 30 trips for older vessels. Three bulk carriers were under construction in 1956; 1 was planned to be the largest vessel built for Great Lakes service, having dimen-

sions of 729 by 75 by 39 feet.3

TABLE 19.—Carrying capacity of Great Lakes iron-ore fleet, by year of construction
[Lake Carriers' Association]

Year built	Number of vessels	Aggregate carrying capacity per trip, long tons	Year built	Number of vessels	Aggregate carrying capacity per trip, log tons
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1911 1912 1912 1913 1914	7 4 2 3 3 22 25 31 18 10 16 5 1	12, 100 13, 700 51, 700 25, 450 21, 500 21, 500 25, 450 208, 750 247, 450 308, 950 160, 450 93, 300 55, 500 12, 600 45, 750 27, 500 69, 900	1917 1920 1922 1923 1924 1925 1926 1927 1929 1930 1930 1938 1942 1943 1943 1950 1951 1952 1952 1953 1954 1955 Total	4 2 5 2 2 4 5 16 1 1 1	103, 300 51, 900 27, 900 65, 500 55, 400 71, 400 26, 900 54, 400 28, 500 249, 600 20, 800 16, 000 236, 800 24, 000 27, 000 28, 500 29, 300 24, 000

Burnham, Oliver T. (vice president, Lake Carriers' Association), Letter to Bureau of Mines: May 23, 1957.

Freight Rates.—Effective March 7, 1956, total freight charges via the Great Lakes from the Mesabi range to the Pittsburgh-Wheeling district were \$5.54 per long ton, an increase of \$0.4094 over the 1955 rate. Component charges were: \$1.25, Mesabi range to Duluth, including \$0.16 dock-handling charges; \$2.04, Duluth to Lake Erie ports, including \$0.24 hold to rail of vessel handling charge; and \$2.25, Lake Erie ports to the Pittsburgh-Wheeling district, including \$0.16 vessel rail to car handling charge. Effective September 1, 1956, the ship rate from Duluth to Lake Erie ports was increased to \$2.14 per long ton, bringing the total freight charge from the Mesabi range to the Pittsburgh-Wheeling district to \$5.64 per ton. Iron ore freight rates for the 1957 season were changed on December 28, 1956 as follows: Mesabi range to Duluth, \$1.31 per long ton; and Lake Erie ports to the Pittsburgh-Wheeling district, \$2.41 per long ton.

FOREIGN TRADE 4

Iron ore imported for consumption in the United States in 1956 again reached a new alltime high—30 percent more than the record established in 1955. The total value of iron-ore imports increased 41 percent compared with 1955, and the value per long ton increased 9 percent from \$7.56 per long ton in 1955 to \$8.23 per ton in 1956. Canada maintained its position as the principal supplier, with 45 percent of the total; Venezuela was second, with 30 percent; and Brazil, Chile, and Peru together supplied 15 percent. Countries in the Western Hemisphere supplied 92 percent of the total iron-ore imports.

Thirty-six percent of 1956 iron-ore imports was received through the Maryland customs district—31 percent through the Philadelphia district, 11 percent through the Ohio district, 7 percent through the Mobile district, 4 percent through the Buffalo district, and the

remaining 11 percent through 12 other customs districts.

Iron ore was produced for export in the Western States, principally Nevada, at the highest rate since 1952, as about 1 million long tons of high-grade ore, valued at almost \$10 a ton, was exported to Japan. As in previous years, most of the exports of iron ore from the United States went to Canada.

World iron-ore export-import statistics are given for 1954, because the statistical pattern of iron-ore transactions in international trade does not emerge with acceptable accuracy for at least 2 years. However, preliminary data indicate that 1956 international trade in iron ore was similar to that in 1954, except for marked increase in United States imports.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 20.—Iron ore imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in long tons
[Bureau of the Census]

Country	1947-51	(average)	1	.952	19	953	1	954	19	955	1	956
J	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
North America: Canada. Costa Rica		\$10, 238, 429	449 87, 536	\$13, 884, 030 1, 005 882, 684	1, 840, 983 3, 076 196, 676	\$16, 050, 131 4, 588 1, 853, 187	3, 537, 489 32, 165	\$28, 622, 647 313, 563	10, 077, 238	1 \$79, 058, 021 1 328, 586	93, 041	\$117, 863, 104 909, 733
Dominican Republic Mexico Panama	46, 472 149, 692	198, 391 340, 684	18, 408 114, 309	197, 943 356, 845	80, 401 241, 636	947, 442 1, 048, 617	89, 160 140, 863	1, 066, 861 417, 539	101, 934 176, 293	1, 173, 494 573, 867	162, 612 132, 934 268	2, 043, 397 446, 461 2, 679
Total	1, 783, 936	10, 777, 504	2, 042, 740	15, 322, 507	2, 362, 772	19, 903, 965	3, 799, 677	30, 420, 610	110, 398, 162	1 81, 133, 968	14, 135, 161	121, 265, 374
South America: Argentina	4	4, 962										
Brazil Chile Peru	494, 350 2, 459, 002	3, 576, 417 6, 910, 137	1, 010, 919 1, 861, 575	14, 938, 163 8, 240, 661	458, 282 2, 363, 401 844, 481	6, 386, 308 12, 347, 510 5, 955, 545	595, 907 1, 664, 300 1, 931, 929	7, 016, 488 7, 865, 692 15, 594, 978	1, 010, 579 1, 035, 399	1 11, 215, 864 5, 379, 900 1 13, 691, 003	1, 223, 047 1, 563, 783 1, 840, 320	15, 415, 573 10, 813, 219 16, 334, 716 61, 839, 211
Venezuela	127, 083	756, 138	1, 845, 776	14, 610, 871	1, 949, 618	17, 026, 862	5, 209, 812	36, 034, 782	¹ 1, 558, 629 ¹ 7, 159, 832	1 45, 549, 052	9, 251, 254	61, 839, 211
Total	3, 080, 439	11, 247, 654	4, 718, 270	37, 789, 695	5, 615, 782	41, 716, 225	9, 401, 948	66, 511, 940	110, 764, 439	1 75, 835, 819	13, 878, 404	104, 402, 719
Europe: Belgium-Luxembourg Denmark		100			123	4, 408					169	4, 072
France Italy Netherlands	1, 893 1, 423	12, 973 12, 998 12, 805 159, 972										
Norway Spain Sweden United Kingdom	17, 991 1, 848, 455 490	148, 967 11, 879, 900 28, 612	4, 600 2, 111, 100 690	33, 482 24, 504, 292 23, 369	10, 690 2, 097, 522 444	124, 779 27, 207, 210 24, 011	235 1, 543, 753 354	5, 291 14, 241, 188 30, 129	1, 221, 334 2, 079	12, 334, 640 58, 461	999, 124 599	11, 914, 183 39, 102
Total	1, 899, 537	12, 256, 327	2, 116, 390	24, 561, 143	2, 108, 779	27, 360, 408	1, 544, 342	14, 276, 608	1, 223, 413	12, 393, 101	999, 892	11, 957, 357
Asia: Iran Philippines		106, 800 23, 339	2, 972	165, 755	2, 953	205, 053	2, 953	200, 858			3, 937 23, 500	266, 238 381, 000
Total		130, 139	2, 972	165, 755	2, 953	205, 053	2, 953	200, 858			27, 437	647, 238

See footnotes at end of table.

993

TABLE 20.-Iron ore imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in long tons-Con.

				-	Eureau oi the Census	ne Census						
Country	1947-51 (1947-51 (average)	19	1952	19	1953	1	1954	¥	1955	10	1956
	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
Africa: Algeria	358, 415 109, 907 1, 500	\$2, 083, 653 792, 124 17, 730	66, 008 217, 760	\$518,994 1,108,055	21, 150 231, 600	\$273, 888 1, 305, 910	29, 100 250, 820	\$339, 550 1, 404, 547	20, 255 137, 699	\$245, 176 800, 426	10,600 161,698	\$85, 8 1, 052, 9
French Morocco Liberia	-ំនុំ:	12, 166	572, 485	3, 156, 561	710, 290	5, 764, 548	763, 610	6, 304, 832	927, 988	7, 048, 791	1,217,960	11, 115, 2
Tunisia Airica Tunisia Union of South Africa	1500	381, 784 16, 960	19,200 4,800	188, 260 43, 536	19,700	231, 243 26, 978						
Total	588, 461	3, 487, 389	880, 253	5, 015, 406	983, 749	7, 602, 567	1, 043, 530	8, 048, 929	1, 085, 942	8, 094, 393	1, 390, 258	12, 254, 1
Grand total	7, 357, 075	37, 899, 013	9, 760, 625	82, 854, 506	11, 074, 035	11, 074, 035 96, 788, 218	5, 792, 450	2 119,458, 945	1 23,471,956	1 177,457, 281	30, 431, 152	250, 526,
The state of the s												

1 Revised figure. 2 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with earlier years.

TABLE 21.—Pyrites cinder 1 imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in long tons

		10.00					
	1956	Value	\$5,972		1	5, 972	
	118	Long tons	1, 430			1, 430	
	1955	Value	\$15,801			\$ 15,801	
	19	Long tons	3,879			3, 879	
	1954	Value	\$3, 556			3, 556	
	19	Long tons Value	868			868	
ne Census	1953	Value	\$54, 172			54, 172	
Bureau of the Census	19	Long tons	12, 053			12, 053	
	1952	Long tons Value Long tons Value	\$48,028			48, 028	
	18	Long tons	11,149			11, 149	
	1947-51 (average)	Value	\$44, 795	17 148 2	167	44, 962	
	1947-51	Long tons	12, 507	(2) 140 (3)	140	12, 647	
	4668	Country	North America: Canada	Europe: Belgium-Luxembourg. France.	Total	Grand total	
	-300		-				

1 Byproduct from ore.
2 Less than 1 ton.
3 Less than 1 ton.
4 Despitan 1 ton.
5 Despitan 1 ton.
5 Despitan 1 ton.
6 Despitan 1 ton.
6 Despitan 1 ton.
6 Despitant 1 ton.
7 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton.
8 Despitant 1 ton

TABLE 22.—Iron ore exported from the United States, 1947-51 (average) and 1952-56, by countries of destination, in long tons

		1																			
	1956	Value	\$39, 112, 525	41,486	39, 154, 011		26, 674	6,094	32. 768		1, 960 708			2, 668	9, 313, 164	9, 313, 164		900	142, 932	142, 932	48, 645, 543
		Long tons	4, 511, 701	3, 188	4, 514, 889		273	88	362		206 47			253	973, 862	973, 862		000	T, 38U	1,880	5, 491, 246
	1955	Value	\$34, 076, 880		34, 076, 880		089		089						2, 874, 243	2, 914, 243				720	36, 992, 523
		Long tons	4, 231, 806		4, 231, 806		18		18						284, 602	285,002				2	4, 516, 828
	1954	Value	\$21, 669, 146	2,379	21, 671, 525		1.700		1,700						3, 065, 285	3, 065, 285		43 808	20, 000	1, 679	24, 783, 997
		Long tons	2, 812, 367	88	2, 812, 455		46		46						332, 231	332, 231		826	2	978	3, 145, 714
[Bureau of the Census]	1953	Value	\$28, 094, 069		28, 094, 069										4, 327, 448	4, 327, 568					32, 421, 637
[Bureau of	1	Long tons	3, 853, 580		3, 853, 580		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							398, 374 1	398, 375	=				4, 251, 955
	1952	Value	\$24, 507, 789 212		24, 508, 001										12, 893, 934 120	12, 894, 054				1, 918	37, 403, 973
	H	Long tons	3, 790, 253		3, 790, 260										1, 332, 379	1, 332, 380			Ī	4	5, 122, 644
	1947-51 (average)	Value	\$14, 592, 338 113	22	14, 592, 476	65		15	08		1, 504	1,280	5.404	1	2, 417, 118 7, 586	2, 424, 704	066		900	1, 459	17, 025, 206
	1947-51	Long tons	2, 778, 092	6	2, 778, 106	ε		(i)	Θ		186	10 At	215		260, 095 812	260, 907		Ξ		25.0	3, 039, 253
	Destination		North America: Canada Canal Zone	Mexico	Total	South America: Brazil	Colombia	Other South America	Total	Europe: Germany, West	Netherlands Norway	Other Europe	Total		Japan. Philippines	Total	Africa: French Morocco	Union of South Africa.	Totel	Oceania: Australia	Grand total

1 Less than 1 ton.

TECHNOLOGY

The year was marked by increased emphasis on research to develop direct iron oxide reduction processes to bypass the blast furnace. This interest resulted from the availability of large quantities of finegrained, high-grade iron concentrate and low-cost reducing gases. and also growing awareness of the high capital investment required to construct a blast-furnace plant and the rapid depletion rate of domestic coking coal.

Several processes to reduce iron-ore fines directly with gases to produce metallic iron at relatively low temperatures and high pressures were patented or described. 5 Use of fluidized-solids techniques, which originated in the oil industry in the late thirties, gave promise of developing a reduction process that in some areas could compete economically with a blast furnace for treating a relatively pure iron

Agglomerating methods, principally sintering and pelletizing, were studied and refined in 1956 by virtually all major steel companies. A patent was issued for agglomerating iron ore in a blast furnace by

adding %th to 10 percent cementing agent to the charge.6

The Bureau of mines continued its long-range iron-ore mineral-The Bureau's work was concerned with possible dressing studies. processes for beneficiating nonmagnetic and complex mineral ironbearing materials. Industry apparently was more concerned with refining known mineral-dressing techniques than with developing new

A process developed by the International Nickel Company of Canada, Ltd., to treat pyrrhotite and obtain a high-grade iron product was described.7 In the process, which is covered by United States Patent 2,556,215, pyrrhotite concentrate is subjected to roasting and reduction of nickel to metal and hematite to magnetite, followed by leaching with ammoniacal solutions at atmospheric pressure to remove nickel and cobalt.

An acidic leaching method of separating nickel and cobalt from lateritic iron ores at high temperature and pressure, leaving a solid-

phase iron oxide residue, was patented.8

⁵ Unterweiser, P. M., H-Iron; Competition for Blast Furnace?: Iron Age, vol. 178, No. 2, July 12, 1956,

pp. 71-74. Freeman, H., Direct Iron in Canada: Canadian Min. and Met. Bull., vol. 49, No. 532, August 1956, pp.

Freeman, H., Direct not in Canada.

Taylor, A. Charlton, Method and Apparatus for Reducing Iron Ores by Counter-Flowing Reduction Gases: U. S. Patent 2,767,076, June 1, 1955.

6 Cohen, Harry, Agglomerating Ores in the Blast Furnace: U. S. Patent 2,771,355, Dec. 6, 1954.

7 Canadian Institute of Mining and Metallurgy, Development of the Inco Iron Ore Recovery Process: Trans., vol. 59, 1956, pp. 201–207.

8 Mancke, E. B., Separation of Nickel From Iron Ores: U. S. Patent 2,746,856, May 22, 1956.

TABLE 23.-World trade of iron ore, in thousand long tons, in 1954

[Compiled by Corra A. Barry]

							,	· .		
		Other coun- tries					21	EE	23	
		Asia: Japan	483 6	333						
		United King- dom	957		452	∞	467	85	4,209	
		Swit- zer- land				ε	c	4	40	
		Spain								
		Saar					6, 141	P		
tion		Po- land			132		120	3	405	
Exports by countries of destination	Europe	Nether- lands	01.6		30		(1)	37	243 1	
tries o	Ř	Italy	23	1 1 1 1 1 1 1 1 1 1 1 1	11		-	-	231	
by cour		Ger- many, West	693	Θ	225 75	10	100	(1) (24 (1) 595	4, 681 126	
xports		France			84		88	1	104	
		Fin- land						13	135	
		Czecho- slo- vakia			121	4	(3)	4 22		
		Bel- gium- Luxem- bourg					10,099	3	2, 273	
		Austria					107	œ i	67	16
	North America	United	3, 327	105	1,608	5, 401			1, 554	1
	A	Can- ada		2,812	2					
	Ex- ports		5, 470	105 143 3, 146	1,652	5,419	138 122 17,091	E 588	13,860	16
	Produc- tion		6, 573 25	105 514 78, 129	3, 022 1, 958	335	5, 875 132 43, 134 12, 830	1,074	15, 869 15, 083 100	1,093
	Fe, (per-	cent)	625	888	898	32 65	23388	3888	84848	34
	Exports by countries of origin		North America: Canada Cuba Dominican Re-	public Mexico United States	Brazil	Venezuela. Europe: Austria	Finland France Germany, West	Greece Italy- Norway-	Spain Sweden Switzerland	Yugoslavia

	(3)	38				167
- 98	1,039	501				4, 235
	10	19	2, 115 251 165	607 252 634		10, 787
			24			99
			ε	iao i		338
						6, 190
			25	18		846
	11	74	22.23	(E) 854 855	3	1,118
		88	127	43		618
	153	470 42	28 28 28	112 87	Œ	8, 496
7			23	24 16		257
						148
-	359				1 1	280
	16		39			12, 468
	17		2			242
			83 24	242		14, 944
			1			2, 930
8	1,1,88	1,128	2, 824 320	, 877 780 883	€	64, 430
5	1, 213	1,359	2,881	2, 180 817 917 935	1,863	4 300, 135
4	5842	822	52 45	8238	88	<u> </u>
Asia:	IndiaMalaya	Fortiguese India.	Algeria Algeria French Morocco.	Slerra Leone Spanish Morocco Tunisla	Africa Australia	Total

1 Less than 500 tons.

3 Data not syallsble.

2 The Bright of \$3,800,000 tons produced in U. S. S. R.

4 Estimate.

RESERVES

Iron-ore reserves of Michigan and of Minnesota represent only taxable and State-owned reserves and not the total that may become available. Reserves in the Lake Superior district are changed each year as deposits are further explored and mined. Operating companies try to keep reserves approximately static but have not been able to do so in Minnesota because the current mining limit of known deposits, excluding taconite deposits, apparently was reached in 1944. Taconite reserves of Minnesota have been estimated at from 4 to 7 billion tons, depending on the estimator's evaluation of the economic cutoff grade; taconite resources exceed 30 billion tons.

TABLE 24.—Iron-ore reserves in Michigan, Jan. 1, 1948-52 (average) and 1953-57, in thousand long tons

[Michigan Department of Conservation]

Range	1948–52 (average)	1953	1954	1955	1956	1957
Gogebie	31, 835 66, 458 57, 210	31, 468 64, 944 62, 189	28, 607 65, 364 60, 086	31, 326 69, 549 59, 322	30, 810 63, 820 58, 284	26, 209 64, 464 63, 536
Total Michigan	155, 503	158, 601	154, 057	160, 197	152, 914	154, 209

TABLE 25.—Unmined iron-ore reserves in Minnesota, May 1, 1947-51 (average) and 1952-56, in thousand long tons
[Minnesota Department of Taxation]

	1947-51 (average)	1952	1953	1954	1955	1956
Mesabi. Vermillion. Cuyuna.	908, 763 11, 498 43, 099	854, 281 12, 391 43, 473	839, 733 12, 989 43, 983	825, 292 12, 063 58, 903	787, 992 11, 307 58, 859	739, 971 10, 449 54, 518
Total Lake Superior district (taxable)	963, 360 524 26	910, 145 575 15	896, 705 608	896, 258 573	858, 158 666	804, 938 926
Aitkin County		850	850	870 118	870 118	825 118
State ore (not taxable)	4, 863	2, 486	117	117	117	2, 352
Total Minnesota	968, 773	914, 071	898, 280	897, 936	859, 929	809, 159

WORLD REVIEW

Canada.9—Canadian iron-ore production increased 35 percent in tonnage and 42 percent in value in 1956 compared with 1955. Increased output by the Iron Ore Co. of Canada from its mines in Labrador-New Quebec was principally responsible for the record high output. Dominion Wabana Ore, Ltd., operating on the southeast coast of Newfoundland, and Steep Rock Iron Mines, Ltd., operating in Ontario, also reported increased production.

⁹ Janes, T. H., A Survey of the Iron-Ore Industry in Canada during 1956: Canada Dept. of Mines and Tech. Surveys, Ottawa Mineral Resources Inf. Cr., M. R. 22, May 3, 1957, 83 pp.

Alberta.—West Canadian Collieries, Ltd., continued investigating its deposits of titaniferous magnetite north of Burmis in the southeastern part of the Province of Alberta. A large, low-grade (34-percent-iron) deposit of loosely consolidated colitic goethite, carrying siderite, reportedly was outlined by the McDougall-Segan Syndicate

in the Clear Hills area of the Peace River district.

British Columbia.—Shawano Iron Mines, Ltd., formed in 1956, investigated its 700-acre property, about 40 miles east of Terrace, British Columbia. Test pits sunk in limonite failed to reach bedrock at 30 feet. Frobisher, Ltd., through a subsidiary, Westfrob Mines, Ltd., investigated magnetite deposits at Tassoo Harbour on the west coast of Moresby Island, and the Utah Co. of the Americas continued exploring an iron-ore deposit about 20 miles southeast of Prince Rupert. Argonaut Mine Division of the Utah Co. of the Americas and Texada Mines, Ltd., operated mines in British Columbia in 1956.

Newfoundland-Quebec.—The Iron Ore Co. of Canada continued its large development and exploration program in Labrador-New Quebec and opened its fourth open-pit mine, the Gill, formerly known

as the Ruth Lake No. 1 deposit.

Atlantic Iron Ore, Ltd., International Iron Ore Company, Ltd., Oceanic Iron of Canada, Ltd., and Consolidated Fenimore Iron Mines, Ltd., have outlined large resources of low-grade, iron-bearing material at the far northern end of the Quebec-Labrador iron-bearing areas west of Ungava Bay. In 1956 the principal interest of these companies was in studying the economics of mining, beneficiating, and shipping ore and lining up assured markets involving large annual shipments for long periods.

Dominion Wabana Ore, Ltd., at Wabana, Newfoundland, completed its extensive expansion and modernization program started in 1950. The Quebec Iron & Titanium Corp. at Sorel, Quebec, continued to produce desulfurized iron from ilmenite mined at Allard Lake.

Ontario.—Steep Rock Iron Mines, Ltd., produced over 3 million tons of direct-shipping ore from the Hogarth open pit and about a ¼ million tons from the Errington underground operations in 1956. The Errington mine was developed to the stage where it could be brought into full production whenever the ore is required to meet company commitments.

Marmoraton Mining Co., Ltd., in its second year of operation, shipped over 300,000 tons of iron-bearing pellets from its operations near Marmora, Ontario. Algoma Ore Properties, Ltd., produced about 4,000 tons of iron sinter daily at its Jamestown sinter plant and began a rapid development program to prepare the Sir James

open pit for production.

The International Nickel Co. of Canada, Ltd., began commercial operation at Copper Cliff, Ontario, early in 1956 to recover iron from

nickeliferous pyrite.

Lowphos Ore, Ltd., a wholly owned subsidiary of National Steel Corp. of the United States, reported that about 10 million tons of iron ore had been indicated by diamond drilling at its property near Sellwood, 20 miles north of Sudbury, Ontario.

TABLE 26.—World production of iron ore, by countries, 1947-51 (average) and 1952-56, in thousand long tons 2

[Compiled by Pearl J. Thompsonand Berenice B. Mitchell]

	<u> </u>		,			
Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	3, 300	4, 707	5, 813	6, 573	14, 539	19, 640
Cuba	28	86	197	25	129	148
Dominican Republic		19	91	105	99	161
Mexico	376	515	538	514	705	801
United States	98, 716	97, 918	117, 995	78, 129	102, 999	97, 849
Total	102, 400	103, 200	124, 600	85, 300	118, 500	118, 600
South America:						
Argentina	8 40	65	70	60	70	65
Brazil	1,666	3, 112	3, 560	3, 023	4.084	3,000
Chile	2, 552	2, 174	2, 131	1, 958	1,685	2,756
Colombia		-, -, -, -		82	344	388
Peru			985	2, 188	1.703	2,604
Venezuela	4 722	1, 939	2, 260	5, 335	8, 306	10, 930
Total	5,000	7,300	9,000	12,600	16, 200	19, 700
Turono.	=====			12,000	10, 200	19, 700
Europe: Austria	1, 535	2, 611	2,713	2,678	2, 793	200-
Belgium	1,000	133	2, 113			3, 207
Riilogria	3 20	\$ 60	3 65	81 8 75	104	144
Czechoslovakia	1,570	1,555		1 000	3 100	232
Finland.	1,010	1,000	1,700	1,650	1, 955	2,050
France	27, 248	40, 158	41 777	132	181	203
Germany:	21,240	40, 108	41,777	43, 134	49, 525	51,858
East	* 350	760	1 990			
West	8, 790	15, 161	1,338	1,447	1,638	1,583
Greece	33	15, 161	14, 388	12,830	15, 436	16, 661
Hungary	311		87	76	189	394
Italy	465	311	353	421	347	\$ 295
Luxembourg	3,740	799	975	1,074	1, 328	1,629
Norway	242	7, 131	7,057 1,167	5, 794	7,091	7, 474
Poland	700	757 983	1, 167	1,077	1, 237	1, 526
Portugal	5 21		1, 288	1,550	1,827	1, 932
Rumania	3 300	88	143	110	187	230
Spain	1,870	640	675	685	625	685
Swoden		2,818	2,976	2,869	3, 709	4, 331
SwedenSwitzerland	12, 776 65	16, 681	16, 715	15,083	17,080	18,648
U. S. S. R.6	3 35, 200	105 \$ 49, 200	103	100	127	129
United Kingdom	13, 063		\$ 59,000	63, 300	70, 800	76, 900
Yugoslavia	741	16, 233 655	15, 818 782	15, 557 1, 093	16, 175 1, 376	16, 245
						1,698
Total 3	109, 100	157, 000	169, 200	170, 800	193, 800	208, 100
Asia:	. "					
China 3	1, 230	4,300	5,600	7, 200	8,600	10,800
Hong Kong	78	128	123	91	115	123
India	2,844	3,926	3,855	4,308	4,653	4, 830
Iran 7	5 14	10	8 10	. 10	8 10	5
Japan ⁸ Korea:	778	1, 372	1, 517	1,605	1, 492	1,882
North	3 100	(0)	(0)	(6)	(6)	(2)
Republic of	5 49	(9)	(9)	(9)	(9)	(9)
Lebanon.	- 49	21	19	31	29	62
Malaya	272	1,055	30	49	42	3 35
Philippines	372	1, 055	1,063	1, 213	1, 466	2, 445
Portuguese India	3/2 143		1, 199	1, 402	1,410	1,417
Thailand (Siam)		478	929	1, 359	2, 176	10 2, 029
Turkey	4 5 100	3	8	4	5	6
	199	474	489	577	860	939
Total 3 6	6, 100	13,000	14, 900	18, 300	21,800	25, 600

See footnotes at end of table.

TABLE 26.—World production of iron ore, by countries, 1947-51 (average) and 1952-56, in thousand long tons2-Continued

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
A 5-2						
Africa: Algeria French Guinea	2, 236	3,043	3, 335 393	2, 881 583	3, 539 640	2, 541 840
French Morocco Liberia Rhodesia and Nyasaland, Federa-	332 168	645 890	501 1, 264	\$ 1, 190	305 1,870	482 2, 108
tion of: Northern Rhodesia Southern Rhodesia	37	6 64	62 62	1 63 817	2 83 1, 235	114 10 1, 32
Sierra Leone Spanish Morocco Tunisia	1,038 893 686	1, 164 919 962	1,368 970 1,040	916 935 1, 863	1, 233 1, 017 1, 122 1, 967	1, 350 1, 151 2, 03
Union of South Africa	1, 216	1,731	1,940			12,00
Total	6,600	9,400	10, 900	9,600	11,800	12,000
Oceania: Australia New Caledonia	2,089 4 8	2, 684	3, 299	3, 519	3, 573	3, 92 2
Total	2, 100	2,700	3, 300	3, 500	3, 600	4,00
World total (estimate) 1	231, 300	292, 600	331, 900	300, 100	365, 700	388, 00

¹ In addition to countries listed Burma, Egypt, and Madagascar report production of iron ore, but quantity produced is believed insufficient to affect estimate of world total.

¹ This table incorporates a number of revisions of data published in previous Iron Ore chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

³ Estimate.

4 Average for 1950-51.

6 A verage for 1 year only, as 1951 was the first year of commercial production.
6 U. S. S. R. in Asia included with U. S. S. R. in Europe.

10 Exports.

Saskatchewan.—Triana Explorations Co. staked 125 claims covering an iron formation about 15 miles northeast of Stony Rapids in northern Saskatchewan. The deposit, traced by stripping, trenching, and magnetometer surveys, was reported to be about 4 miles long, with widths up to 400 feet and averaging about 200 feet. Concentration tests on a 50-pound sample yielded a product containing 65 percent iron, 8 percent silica, and negligible quantities of sulfur, phosphorus, and titanium.

Mexico.—According to a study of the Mexican iron and steel industry by the Bank of Mexico, iron-ore reserves in Mexico total Of this total, proved reserves approximately 340 million long tons. are probably not over 100 million tons.

Under revised Mexican mining laws, effective January 1, 1956, ironore production will be taxed 2.13 percent of the official price of iron

ore and will be charged in cash.10

<sup>Vear ended March 31 of year following that stated.
Includes iron-sand production as follows: 1947-51 (average), 78,148 tons; 1952, 316,923 tons; 1953, 430,954 tons; 1954, 501,439 tons; 1955, 541,890 tons; and 1956, \$46,153 tons.
Data not available; estimate by author of chapter included in the total.</sup>

¹⁰ Bureau of Mines, Mineral Trade Notes: Special Suppl. 48 to vol. 42, No. 1, January 1956, 21 pp

Altos Hornes de Mexico, S. A., awarded a contract for constructing the first iron-ore sintering plant in Mexico at Monclova. The plant will have an initial capacity of 900 tons of air-cooled sinter per day. Altos Hornes announced discovery of a large deposit of iron ore near Ciudad Camargo, Chihuahua, Mexico.

SOUTH AMERICA

Brazil.—A German industrial group headed by Ferrostaal A. G. announced that it is planning to exploit iron-ore deposits in southern Plans involve improving railway facilities, construct-Minas Gerais. ing a port at Angra dos Reis (State of Rio), and building a steel mill in Minas Gerais. It was reported that Ferrostaal is also planning to develop iron-ore resources in Itabira, Minas Gerais.¹¹

Chile.—The Bethlehem Chile Iron Mine Co. operated the El Romeral mine north of La Serena. The El. Tofo mine was closed. High-grade iron-ore output from relatively small deposits in Chile

increased in 1956 compared with 1955.

Peru.—Marcona Mining Co. installed a 10-ton-per-hour pilot plant to develop a flowsheet to beneficiate iron ore, using sea water at its iron mine near the coast in southern Peru.

Pan America Commodities, S. A., announced plans to develop the Acari iron-ore deposits east of Lomas, Peru, to build a 30-mile railroad from the mines, and to install modern harbor facilities at Lomas.12

Perulex Co., a joint Japanese-Peruvian venture, announced plans to develop the Inicia Tiva mine to produce about 1 million tons of

65-percent iron ore annually, principally for export to Japan. 13

Venezuela.—Venezuelan iron-ore export operations were little affected by the short dock strike in the United States, and shipments in 1956 were about 30 percent larger than in 1955. The Orinoco Mining Co. signed a contract with the National Waterway Institute whereby the company will dredge an alternate channel through the Orinoco River delta, providing a more direct iron-ore outlet to the sea.

EUROPE

Austria.—Sandy iron ore was successfully concentrated, using a combined system of washing, cyclones, and Humphreys spirals at the Styrian iron mine in Erzberg, Austria. 14

France.—In 1956 France ranked third among the world producers of iron ore, having increased its output 75 percent compared with the preworld War II period by a program of modernization that increased

the annual output per worker 90 percent.

Underground mining methods at the Lorraine iron mines were described. 15 The room-and-pillar mining method at the Lorraine mines employs mechanized equipment similar to that used in the coal mines of the United States for roof bolting, drilling, loading, and hauling.

Germany, West.—Large iron-ore deposits were found between Salzgitter and Gifhom, east Lower Saxony, in West Germany.

U. S. Embassy, Rio de Janeiro, Brazil, State Department Dispatch 790: Jan. 17, 1957, 40 pp.
 Mining World, vol. 18, No. 9, August 1956, p. 51
 Metal Bulletin (London), No. 4122, Aug. 28, 1956, p. 16.
 Mining World, vol. 18, No. 3, March 1956, p. 74.
 Pajot, G., and Marla, H., The Lorraine Iron Mines: Mine and Quarry Eng., April 1956, pp. 126–135.

deposits contain 25 to 30 percent iron in a neutral ore and reportedly are the second largest minette deposits on the European Continent. 16

The Hoesch Works A. G. announced development of a method to reduce iron ore to steel, which under certain conditions might make an interesting contribution toward integration of a steel industry.¹⁷

The Friedrich Krupp A. G., 3-kiln, Krupp-Renn plant at Salzgitter-Wattenstedt began operations to produce nodules containing 92 to

95 percent iron from high-phosphorus iron ores.¹⁸

Norway.—One of the largest ore-shipping plants in the world was opened at Narvik, Norway—the port through which Swedish iron ores are exported. The plant was equipped with 50-yard-radius grappling cranes, 2,600 feet of overhead transportation, and more than 6 miles of conveyors. Its capacity was 8,000 tons of iron ore an hour. This shipping plant is of special interest to iron-ore companies operating in the northern United States and Canada because of its subarctic location.¹⁹

Sweden.—Luossavarra-Kiirunavaara Aktiebolog (LKAB), the Swedish iron-ore-mining company, which will become State property October 1, 1957, announced a peak production record of over 13 million tons of iron ore during the 1955–56 season. A sublevel-caving system developed over the past 10 years to permit selective mining of different ore qualities at the Kiiaunavaara Mine of LKAB was de-

scribed.20

ASIA

India.—Indian Government regulations for export of iron ore from July to December 1956 set quotas to private shippers and mine owners on the basis of two-thirds of the quotas allotted them in July-December 1955. Private firms that did not receive a quota or make shipments of iron ore during that period received a quota equivalent to two-thirds that allotted them in the January-June 1956 licensing period.

The Indian Government reportedly reached an understanding with Japanese private interests to supply 1.5 million metric tons of iron ore to Japan in 1957, 2 million tons in 1958, 2.5 million tons in 1959,

and 3 million tons annually thereafter.

The Geographical Survey of India reported occurrence of 27 million tons of iron ore in the Tomaka and Kansa areas, Cuttack district, in Orissa.

Japan.—Japan, a have-not iron-ore nation, aggressively sought a reliable source of high-grade ore in 1956. The Japanese iron and steel industry concluded or negotiated agreements to supply iron ore with mining interests in Canada, United States, Malaya, India, Philippines, Peru, and Brazil. Following a decision of the Japanese Ministry of International Trade and Industry to raise Japanese steel production, the estimate of import requirements was raised to about 7.5 million tons. Decreased imports were expected from India and

Foreign Commerce Weekly, Iron-Ore Deposit Found in West Germany: Vol. 56, No. 9, Aug. 27, 1956,
 p. 21.
 Ir American Metal Market, German Firm Claims It Can Make Steel Directly From Ore: Vol. 63, No. 56,

Mar. 23, 1956, p. 1.

U. S. Consulate General, Düsseldorf, Germany, State Department Dispatch 105: Feb. 15, 1957, 64 pp.

Northern Miner (Canada), vol. 42, No. 27, Sept. 27, 1956, p. 20.

Berglund, Carl-Bertil, The Kiruna Operations: Mine and Quarry Eng., February 1956, pp. 48-57.

the Philippines, but more imports were planned from Goa, Canada,

and other countries.

Philippines.—The Atlas Consolidated Mining & Development Corp.'s iron mine, Mati Davao, made the first ore shipment—6,500 tons of ore assaying 65 percent iron—to Japan in July 1956.

AFRICA

Algeria.—Iron ore mining in Algeria was greatly handicapped by sabotage of the 300-kilometer railway line connecting the Ouenza

Mines with the port of Böne.21

Liberia.—The Liberian Government announced that deposits of high-grade iron ore were proved in the north central province of Liberia. It is not yet known if the deposits, reported to consist of hematite ore containing approximately 60 percent iron, are large enough for commercial mining operations. The Liberian-American-Swedish Minerals Co., under Swedish management, conducted a drilling program to determine their size.

²¹ U. S. Consul General, Algiers, Algeria, State Department Dispatch 155: Apr. 13, 1956, 1 p.

Iron and Steel

By James C. O. Harris 1

ESPITE the 34-day steel strike which started on July 1, domestic production of pig iron and of steel (75.0 and 115.2 million short tons, respectively) was only 1.8 million short tons less for each than in the record year 1955. Except for the months affected by the strike, blast and steel furnaces operated at over 95 percent of capacity—both exceeded 100 percent for 3 months. Record monthly outputs were established in October for steel and in December for pig iron.

There were significant developments in steel research and plant expansion. A large, modern research center at Monroeville, Pa., was completed by United States Steel Corp., and research laboratories were being planned or built by several other steel companies. The steel industry added 5 million tons to its steelmaking capacity and 1.3 million tons to its blast-furnace capacity during 1956 and established new record capacities of 133.5 and 86.8 million tons, respectively. Weirton Steel Co. lit its 600-ton open hearth, the world's largest, and electric-furnace plants were built at Flowood, Miss., and Roanoke, Va. In addition, a number of new furnaces were built or under construction, and others being enlarged at various locations. Following the United States pattern, many foreign countries completed, had under construction, or planned facilities to greatly increase iron and steel output.

Domestic shipments of steel, including exports, in 1956 totaled 83,251,168 short tons, a decrease of 1.5 million from the 1955 total

of 84,717,444.

Although the automotive industry was again steel's largest consumer, the quantity of steel was 4.6 million tons less than in 1955. Automotive units produced in 1956 and 1955 were 6.9 and 9.2 million, respectively. All other steel-consuming industries showed a slight increase in receipts except agricultural and ordnance and other direct military applications. Exports of steel totaled 3,622,427 tons—

slightly higher than 1955.

Average weekly hours worked per employee in the steel industry during 1956 was 40.4, compared with 40.6 in 1955. The average number of employees for the year was 534,000, compared with 545,000 in 1955, and the average hourly wage was \$2.52 in 1956, compared with \$2.38 for the previous year. The average value, f. o. b. mill, of all steel products, computed from figures supplied by the Bureau of the Census, United States Department of Commerce, was 7.731 cents per pound in 1956, compared with 7.099 cents per pound in 1955.

¹ Commodity specialist.

TABLE 1.—Salient statistics of iron and steel in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Pig iron:						
Production	61, 300, 287	61, 308, 424	74, 853, 319	F7 047 FF1	F0 040 F00	
Shipments	61, 242, 881	61, 234, 790	74, 162, 829	57, 947, 551	76, 848, 509	75, 030, 24
Imports	444, 598	380, 200	589, 825	57, 782, 686 290, 716	77, 300, 681	75, 109, 71
Exports	22, 530	14, 085	18, 837	10, 247	283, 559 34, 989	326, 700 267, 17
Steel: 1		-				
Production of ingots and castings:						j
Open-hearth:						
Basic	80, 543, 066	00 140 400	00 005 500			
Acid	635, 290	82, 143, 400	99, 827, 729	80, 019, 628	104, 804, 570	102, 167, 989
Bessemer		703, 039	646, 094	307, 866	554, 847	672, 590
Electric 2	4, 369, 575	3, 523, 677	3, 855, 705	2, 548, 104	3, 319, 517	3, 227, 99
194000110	5, 161, 797	6, 797, 923	7, 280, 191	5, 436, 054	8, 357, 151	9, 147, 567
TotalCapacity, annual, as of	90, 709, 728	93, 168, 039	111, 609, 719	88, 311, 652	117, 036, 085	115, 216, 149
Jan. 1	97, 043, 618	108, 587, 670	117, 547, 470	124, 330, 410	125, 828, 310	128, 363, 090
Percent of capacity	93. 5	85.8	94. 9	71.0	93.0	89.8
Production of alloy steel:						
Stainless	673, 316	935, 012	1, 054, 113	852, 021	1, 222, 316	1, 255, 725
Other	7, 427, 005	8, 199, 739	9, 274, 081	6, 340, 842	9, 437, 775	9, 072, 343
		-,,,		0,010,012	0, 101, 110	0,012,042
Total	8, 100, 321	9, 134, 751	10, 328, 194	7, 192, 863	10, 660, 091	10, 328, 068
Shipments of steel products:						
For domestic consumption	64, 399, 021	64, 732, 412	77, 472, 162	60, 618, 843	81, 134, 367	79, 628, 741
For export	3, 260, 087	3, 271, 200	2, 679, 731	2, 533, 883	3, 583, 077	
	.,=,		=, 5.0, 101	2, 000, 000	0,000,077	3, 622, 427
Total	67, 659, 108	68, 003, 612	80, 151, 893	63, 152, 726	84, 717, 444	83, 251, 168

American Iron and Steel Institute.
 Includes a very small quantity of crucible steel and oxygen converter steel for 1954-56.

The average composite price of finished steel, as published by the Iron Age, was 5.358 cents per pound, compared with 4.977 cents in 1955.

PRODUCTION AND SHIPMENTS OF PIG IRON

Domestic production of pig iron, exclusive of ferroalloys, in 1956 was 75.0 million short tons, a 2.4-percent decrease from 1955. Blast furnaces operated at well above 95 percent of capacity, except for the months affected by the steel strike, and exceeded 100-percent capacity for the last 3 months of the year. New monthly records exceeding the 7-million-ton mark were established for pig-iron production in March, October, and December, with an alltime record of 7.25 million tons in December. Despite the steel strike, production exceeded 1955 in California, Utah, Illinois, Michigan, Tennessee, and West Virginia. Pennsylvania and Ohio again ranked first and second in pig-iron production, supplying 27 and 20 percent, respectively, of the totalthe same as 1955.

Expansion during the year included a new blast furnace for Granite City Steel and enlargement of two furnaces by Armco Steel Corp. Expansion plans were announced for at least nine other blast-furnace plants, which included construction of new furnaces and the enlargement and modernization of existing furnaces. The Nation's pig-iron output will also increase through the use of more sinter and higher grade foreign iron ores in blast furnaces. In 1956 blast furnaces consumed 752 pounds of sinter and 464 pounds of foreign iron ore per ton

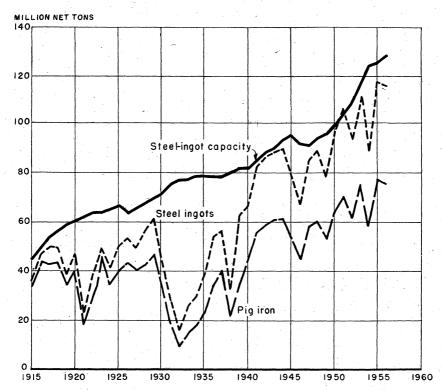


FIGURE 1.—Production of pig iron and steel ingots and steel ingot capacity in United States, 1915-56.

of pig iron, compared with 708 and 421 pounds, respectively, in 1955. Our sintering capacity increased and is expected to reach 63 million tons by the end of 1957—a rise of 66 percent since 1955. Pig-iron production in 1956 required 83,749,365 short tons of domestic iron and manganiferous ores and 17,405,794 tons of foreign ores. Canada, Venezuela, and Peru supplied 47, 37, and 9 percent, respectively, of imports.

Shipments of pig iron decreased 3 percent in quantity, while value increased 3 percent compared with 1955. Data on total shipments, consisting predominantly of molten pig iron transferred to steel furnaces on the site, are given in table 4. Values for merchant pig iron are included; however, the average value per ton of pig iron was lower than market prices published in trade journals because handling charges, selling commissions, freight costs, and other related items were excluded. The term "shipped" as distinguished from "production" refers (as in the case of on-site transfers) to departmental transfers, upon which value was placed for bookkeeping purposes, rather than to actual sales (as in the case of merchant pig iron).

Metalliferous Materials Used.—The production of pig iron in 1956 required 129.3 million short tons of iron ore, sinter, and manganiferous ore; 4.0 million tons of mill cinder and roll scale; 5.7 million tons of open-hearth and Bessemer slags; 3.4 million tons of scrap (purchased

TABLE 2.—Pig iron produced and shipped in the United States, 1955-56, by States

	Prod	uced	Shipped from furnaces					
State	1955 (short	1956 (short	1	955	1956			
	tons) tons)	tons)	Short tons	Value	Short tons	Value		
AlabamaCalifornia	4, 923, 552 1, 122, 091	4, 166, 593 1, 409, 105	4, 930, 579 1, 111, 279	\$236, 105, 703	4, 326, 511 1, 393, 875	\$217, 314, 68		
Colorado Texas Utah	3, 150, 534	3, 098, 865	3, 171, 015	220, 873, 220	3, 049, 036	223, 637, 07		
IllinoisIndiana	6, 489, 015 8, 716, 885	6, 515, 852 8, 245, 756	6, 466, 534 8, 734, 168	331, 126, 618 443, 621, 548	6, 537, 451 8, 203, 198	356, 432, 776 435, 543, 34		
Kentucky Maryland Massachusetts	817, 115 4, 043, 401 136, 586	669, 483 3, 865, 214 64, 159	817, 115 4, 055, 413 146, 690	(1)	669, 483 3, 852, 552 89, 697	(1)		
Michigan Minnesota	3, 294, 823 708, 738	3, 352, 790 645, 730	3, 345, 538 752, 393	(1)	3, 367, 323 636, 758	(1)		
New York Ohio Pennsylvania	5, 038, 451 15, 372, 349 20, 788, 373	4, 832, 293 15, 127, 518 20, 618, 260	5, 128, 759 15, 444, 439 20, 949, 219	264, 338, 459 762, 162, 095 1, 074, 680, 915	4, 817, 934 15, 086, 354 20, 651, 381	262, 782, 28 790, 897, 90 1, 135, 945, 12		
Tennessee West Virginia	2, 246, 596	2, 418, 631	2, 247, 540	(1)	2, 428, 161	(1)		
Undistributed 1 Total	76, 848, 509	75, 030, 249	77, 300, 681	584, 427, 329 3, 917, 335, 887	75, 109, 714	602, 124, 17 4, 024, 677, 35		

¹ Concealed to avoid disclosing individual company operations.

TABLE 3.—Foreign iron ore and manganiferous iron ore consumed in manufacturing pig iron in the United States, 1955-56, by sources of ore, in short

Source	1955	1956	Source	1955	1956
Africa	156, 911 58, 288 6, 755, 035 686, 381 7, 227 3, 573 204, 597	137, 699 17, 583 8, 196, 055 188, 423 74, 691 1, 954 121, 837	Peru. Sweden Venezuela Unclassified Total	2, 009, 280 577, 056 5, 640, 683 98, 984 16, 198, 015	1, 548, 032 290, 200 6, 482, 917 346, 403 17, 405, 794

and home, excluding blast-furnace home scrap), the total scrap charge consisted of 2,212,142 short tons of purchased scrap and 2,090,259 tons of home scrap; and 32,078 tons of other materials—an average of 1.900 tons of metalliferous materials (exclusive of 68,043 tons of flue dust charged directly to blast furnaces) per ton of pig However, 8,183,024 tons of flue dust was used in making sinter. Sinter is utilized in both blast and steelmaking furnaces.

Alabama furnaces consumed hematite from the Birmingham district and Missouri, brown ores from Alabama and Georgia, and byproduct ore from Tennessee; imported iron ores from Brazil, Labrador, Peru, Sweden, and Venezuela; and a small quantity of foreign manganese-bearing ores from Brazil and India.

Blast furnaces at Fontana, Calif., were supplied with iron ore from the Eagle Mountain mine, Riverside County, Calif.

Pueblo, Colo., furnaces (Colorado Fuel & Iron Corp.) used iron ores

from Wyoming and Utah.

All iron ores consumed at Sparrows Point, Md., were of foreign origin—from Labrador, Venezuela, Chile, Peru, and Sweden. The manganiferous ore came from Labrador and Egypt.

TABLE 4.—Pig iron shipped from blast furnaces in the United States, 1955-56, by grades ¹

		1955		1956			
Grade	Short tons	Valu	e	Short tons	Value		
		Total	Average		Total	Average	
Foundry	3, 268, 468 64, 268, 630 5, 693, 360 280, 971 3, 623, 386 165, 866	\$159, 611, 970 3, 260, 139, 719 288, 786, 970 15, 657, 626 184, 286, 212 8, 853, 390	\$48. 83 50. 73 50. 72 55. 73 50. 86 53. 38	2, 502, 265 62, 012, 160 6, 625, 236 346, 924 3, 471, 100 152, 029	\$129, 841, 696 3, 325, 547, 674 358, 447, 652 20, 603, 109 182, 801, 123 7, 436, 102	\$51. 89 53. 63 54. 10 59. 39 52. 66 48. 91	
Total	77, 300, 681	3, 917, 335, 887	50.68	75, 109, 714	4, 024, 677, 356	53. 58	

¹ Includes pig iron transferred directly to steel furnaces at same site.

The Lake Superior region was the primary source of iron ores for Pennsylvania blast furnaces. The major foreign sources were Venezuela, Peru, Canada, and Sweden; manganiferous ores came from Labrador and Africa.

Blast furnaces in Illinois, Indiana, Ohio, and West Virginia were supplied with iron and manganiferous ores from the Lake Superior region of the United States and Canada. Canadian ore and a small quantity of ore from South America were also used.

The Everett, Mass., blast furnace used iron ore from Newfoundland, Peru, Sweden, and Venezuela and iron and manganiferous ores from Labrador. Less than 10 percent of the iron ore used was of domestic origin.

In New York blast furnaces in the Buffalo district used magnetite from the Mineville area, hematite from Canadian and domestic mines in the Lake Superior region, and iron and manganiferous ores from

TABLE 5.—Number of blast furnaces (including ferroalloy blast furnaces) in the United States, December 31, 1955-56

American	Iron	and	Steel	Institute]

	1	Dec. 31, 195	5]	Dec. 31, 1956	
State	In blast	Out of blast	Total	In blast	Out of blast	Total
Alabama California Colorado Illinois Indiana Kentucky Maryland Massachusetts Michigan Minnesota New York Ohio Pennsylvania Tennessee Texas Utah Virginia West Virginia	8 3 16 48	1 1 1 1 5 4	21 3 4 22 23 3 9 1 8 3 17 53 78 3 2 5	17 3 4 4 22 23 3 9 1 8 3 16 49 75 3 2 5 5	1 4 3	2 22 22 21 11:55:77
Total	247	14	261	249	13	26

TABLE 6.—Iron ore and other metallic materials, coke, and fluxes consumed and pig iron produced in the United States, 1955-56, by States, in short tons

	oer ton Coke and fluxes consumed per ton of pig iron	Total Coke Elives	Pwo C		0.981 0	2. 003 . 852 . 357 1. 893 . 882 . 407 1. 869 . 852 . 409	. 765	1.862 .867 .447	1.796 .823 .323	1.914 .869 .431	1.748 .843 .386	1.910 .862 .384		830	1.867 .866 .379 1.853 .826 .388	. 769	1.831 .879 .434	1.734 .775 .307	2.015 .908 .416	1.867 .847 .359	
	Metalliferous materials consumed per ton of pig fron made	Mis-	. ~			153	. 058	. 139	. 114	. 065	. 148	.125			85.5		.135	911.	. 084	. 105	
	materials consur of pig iron made	Net	di v			.060		. 095	.019	. 085	020.	. 049			. 052	•	.081	.017	. 049	. 047	
	ferous me	Sinter 1	~		ο.	43.08.4 43.08.8	. 745	. 197	. 298	.306	. 459	. 354		•	3024	. 746	. 232	. 473	.316	400	
	Metallif	Ores				1. 595 1. 400 1. 229	. 993	1.431	1, 365	1.458	1.071	1.382			1.382	1.007	1.383	1.128	1.566	1.216	1
	Pig iron	produced			6, 489,	8, 716, 885 15, 372, 349 20, 788, 373	3, 560, 789	1, 724, 872	6, 094, 076	4, 003, 561	5, 175, 037	76, 848, 509	001.1	6, 100 6, 515, 2	20, 618, 260	3, 869, 003	1, 505, 111	6, 087, 184	3, 998, 520	4, 896, 452	9,000
rt tons	Fluxes				1, 734, 142	3, 116, 035 6, 258, 245 8, 496, 209	1, 105, 955	770, 650	1, 966, 016	1, 727, 381	2, 000, 148	29, 541, 446 76, 848,	1 964 409	2,090,416	5, 728, 531 8, 006, 628	1, 143, 112	653, 882	1,867,778	1, 664, 135	4, 148, 579 1, 755, 794	101 101
States, in short	Net coke				4, 828, 558 5, 637, 406	7 13, 554, 053 9 17, 710, 743	2, 724, 984	1, 495, 188	5, 017, 319	3, 480, 606	4, 364, 127	66, 237, 251	700	5, 463, 493	13, 107, 138 17, 027, 748	2, 973, 585	1, 323, 013	4, 716, 103	3, 630, 196	4, 148, 579	000 000 00
Dy States	.a	Total			98, 09,	286	6, 462, 118	3, 211, 782	524 10, 943, 052	7, 663, 187	9,044,458	146,818,166	8	, 443 13, 174, 450 186 16, 166, 991	284	7, 043, 370	2, 756, 320	705, 236 10, 556, 974	8, 057, 926	9, 142, 825	40 EES 177E
_	nmed	Miscel-			925 469	2, 015, 202 3, 131, 274	206, 631	239, 496	691, 524	262, 617	768, 507	9, 626, 230	05 874	1, 239, 443	1,974,032	184, 503	202, 512	705, 236	334, 135	512, 894	0 700 000 140 669 776 89 900 090 07 191 600 77 000 040
	terials cons	Net scrap 2	•		211, 006 345, 129	919, 055 1, 187, 847	65, 078	164, 266	117, 957	340, 236	362, 880	3, 812, 800	900 451	342, 215	1, 221, 819	74, 364	122, 222	101, 374	197, 732	229, 915	3 421 740
	Metalliferous materials consumed	Sinter 1			986,	4, 651, 900 8, 993, 763	2, 652, 881	339, 950	1, 816, 521	1, 223, 687	2, 373, 022	27, 190, 274	1 587 088	1,072,769	4, 568, 354 9, 014, 233	2,886,940	349, 882	2, 882, 752	1, 262, 273	2, 444, 528	
	Metall	manga- is ores	Foreign		1,888,279	3, 361, 585 4, 086, 975	2, 641	449, 763	5, 241, 333	7,862	443, 658	16, 198, 015 2	1 737 475	562	4, 352, 219	6,694	289, 114	4, 833, 797	238, 134	508, 212	7 405 704 9
		Iron and manga- niferous ores	Domestic		10, 505, 762	18, 154, 115 21, 458, 320	3, 534, 887	2, 018, 307	3, 075, 717	5, 828, 785	5, 096, 391	89, 990, 847 1			16, 557, 639 19, 886, 545	-3, 890, 869	-1, 792, 590	2, 033, 815	6, 025, 652	5, 447, 276	83, 749, 365 17, 405, 794, 28, 185, 953
	State			1955	Alabama	nia	Colorado	Kentucky Tennessee	Maryland West Virginia		New York		1956 Alabama			Colorado		a		S	Total

¹ Includes sintered flue dust.
² Excludes home scrap produced at blast furnaces.

³ Does not include recycled material.

Labrador. The Troy, N. Y., furnace consumed iron ore from eastern New York and manganiferous ore from Labrador, Africa, and India. Texas furnaces used brown ores from east Texas and iron and

manganiferous ores from Mexico.

Utah furnaces used iron ore from Iron County, Utah, and manganiferous ore from Mexico.

PRODUCTION AND SHIPMENTS OF STEEL

Steel production in 1956 in the United States was 115.2 million short tons, or 89.8 percent of capacity, with an AISI index of 137.2 (1947–49=100). The corresponding figures for 1955 were 117, 93, and 139.7, respectively. Except for the summer months, monthly steel production exceeded the 10-million-ton mark, and a new record of 11 million tons was established in October. Of the total tonnage of steel ingots produced in the United States in 1956, 89 percent was made in open-hearth furnaces, compared with 90 percent in 1955 and 91 percent in 1954; 8 percent in the electric furnace, compared with 7 percent in 1955 and 6 percent in 1954; and 3 percent in the Bessemer converter, the same as in 1955 and 1954. Electric-furnace output established a new record of 9.1 million tons.

In 1956, 35 percent of domestic steel was produced in the Pittsburgh-Youngstown district, 22 percent in the Chicago district, 22 percent in the Eastern district, 10 percent in the Cleveland-Detroit district, 6 percent in the Western district, and 5 percent in the Southern district, compared with 35, 23, 21, 10, 6 and 5 percent, respectively,

in 1955. The above districts are those designated by AISI.

During the year open-hearth capacity increased 4,595,370 short tons to 116,912,410 tons and electric-furnace capacity, 782,690 to 12,041,-700; Bessemer capacity decreased 282,000 tons to 4,505,000. The figure for electric-furnace capacity includes 540,000 short tons of

oxygen-converter capacity.

Steelmaking-capacity figures represent net-steel capacity after the producers deducted an average of 8.8 percent for operating time lost for rebuilding, relining, repairs, and holiday shutdowns (AISI). The output from steel foundries that did not produce steel ingots was not

included in the production data,

During the year between 15 and 20 million tons of additional ingot capacity at a cost of about \$2.5 to \$3.0 billion was planned, completed, or under construction at 45 steel plants. Some of the major expansions were as follows: Bethlehem planned to add 3 million tons, of which 2 million will be at Sparrows Point, Md.; United States Steel was to add 2 million; Republic had plans for 1.7 million; Armco, Inland, National Steel and Youngstown Sheet & Tube each planned 1-million-ton increases, part of which was completed in 1956; and Acme, Jones & Laughlin, Kaiser, and Phoenix Iron and Steel planned to add oxygen converters totaling 2 million tons.

Domestic shipments of steel in 1956 totaled 79,628,741 short tons. The automotive industry was again the largest steel consumer, receiving 14,141,887 short tons or 17.8 percent of total domestic ship-

ments, compared with 18,721, 880 or 23.1 percent in 1955.

The construction and container industries ranked second and third as consumers, receiving 10,441,126 and 6,818,361 short tons, respec-

tively. The 1956 percentages of domestic shipments were 13.1 and 8.6, compared with 11.9 and 8.3 in 1955.

Rail transportation and ordnance and other direct military uses

showed little change in the percentage of shipments received.

Alloy Steel.²—The 1956 domestic steel production included 10,-328,068 short tons of alloy steel, a decrease of 3 percent from 1955; it was 9 percent of the total steel output, compared with 9 percent

in 1955 and 8 percent in 1954.

Stainless-steel ingot production (12 percent of the 1956 alloy-steel output) was 1,248,289 short tons. The output for the year was 2.5 percent higher than in 1955 and 19 percent greater than in the previous record million-ton year—1953. The production of austenitic stainless steel AISI 300 (nickel-bearing) and 200 series (manganesenickel-bearing), representing 61 percent of the total stainless-steel production, increased 15 percent over 1955; and the ferritic and martensitic, straight chromium types, AISI 400 series, decreased 13 percent. Production of the AISI 200 series, reported for the first time in 1955, increased from 1,914 tons in 1955 to 19,454 in 1956. The AISI 200 series, grades 201 and 202, are used as substitutes for the higher nickel 300 series. The output of type 501, 502, and other highchromium, heat-resisting steels included in the stainless-steel-production figure increased 3 percent over 1955. Production of all grades of alloy steel, other than stainless, decreased 4 percent. High-strength steel, silicon sheets, manganese-molybdenum and chromium-molybdenum increased. All others decreased, with carbon-boron steel showing the greatest decline (43 percent). The percentages of alloy steel produced in the basic open-hearth, acid open-hearth, and electric furnaces were 61, 2, and 37 percent, respectively, compared with 63, 2, and 35 percent, respectively, in 1955.

TABLE 7.—Steel capacity, production, and percentage of operations, in the United States, 1947-51 (average) and 1952-56, in short tons ¹

[American	Iron	and	Steel	Institute]
-----------	------	-----	-------	------------

	Annual	Production								
Year	capacity as of Jan. 1	Open hearth	Bessemer	Electric ²	Total	Percent of capacity				
1947-51 (average)	97, 043 618 108, 587, 670 117, 547, 470 124, 330, 410 125, 828, 310 128, 363, 090	81 178, 356 82, 846, 439 100, 473, 823 80, 327, 494 105, 359, 417 102, 840, 585	4, 369, 575 3, 523, 677 3, 855, 705 2, 548, 104 3, 319, 517 3, 227, 997	5, 161, 797 6, 797, 923 7, 280, 191 5, 436, 054 8, 357, 151 9, 147, 567	90, 709, 728 93, 168, 039 111, 609, 719 88, 311, 652 117, 036, 085 115, 216, 149	93. 4 85. 3 94. 9 71. 4 93. 4				

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. Omitted portion is about 2 percent of total steel production.

² Includes a very small quantity of crucible steel and oxygen converter steel for 1954–56.

² The Bureau of Mines uses the American Iron and Steel Institute specifications for alloy steels which include stainless and any other steel containing one or more of the following elements in the designated amounts; Manganese in excess of 1.65 percent, silicon in excess of 0.60 percent, and copper in excess of 0.60 percent. It also includes steel containing the following elements in any amount specified or known to have been added to obtain a desired alloying effect: Aluminum, boron, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, and other alloying elements.

TABLE 8.—Open-hearth steel ingots and castings manufactured in the United States, 1947-51 (average) and 1952-56, by States, in short tons ¹

[American Iron and Steel Institute]

States	1947-51 (average)	1952	1953	1954	1955	1956
Mass., R. I., Conn	456, 992 4, 368, 159 23, 581, 628 4, 837, 613 3, 658, 729 14, 466, 234 10, 525, 177 6, 493, 105 3, 392, 706 2, 366, 202 3, 375, 277	436, 993 4, 521, 685 24, 224, 361 4, 621, 306 3, 303, 510 3, 493, 922 14, 759, 616 10, 414, 109 6, 508, 525 4, 270, 019 2, 390, 214 3, 902, 179	489, 967 5, 771, 684 28, 805, 249 5, 687, 465 3, 648, 235 4, 321, 489 17, 570, 814 13, 818, 187 7, 735, 397 4, 979, 4, 979, 4, 979, 4, 576, 603 100, 473, 823	327, 108 4, 596, 359 20, 549, 346 5, 582, 382 3, 689, 339 3, 451, 696 13, 661, 994 12, 330, 815 5, 963, 127 4, 247, 700 2, 868, 874 3, 678, 754	468, 893 6, 304, 168 29, 357, 878 6, 350, 784 3, 810, 285 4, 265, 487 15, 032, 809 8, 025, 038 5, 443, 738 5, 443, 738 4, 353, 397	378, 626 6, 045, 209 29, 218, 214 5, 986, 713, 935, 260 3, 439, 837 18, 240, 360 14, 323, 470 8, 065, 262 5, 318, 570 3, 250, 580 4, 638, 376

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. Omitted portion is about 2 percent of total steel production.

TABLE 9.—Bessemer-steel ingots and castings manufactured in the United States, 1947-51 (average) and 1952-56, by States, in short tons ¹

[American Iron and Steel Institute]

State	1947-51 (average)	1952	1953	1954	1955	1956
OhioPennsylvaniaOther States	1, 977, 411 1, 303, 051 1, 089, 113	1, 922, 776 751, 297 849, 604	2, 326, 983 689, 814 838, 908	1, 658, 176 451, 845 438, 083	2, 268, 715 589, 249 461, 553	2, 210, 386 593, 208 424, 403
Total	4, 369, 575	3, 523, 677	3, 855, 705	2, 548, 104	3, 319, 517	3, 227, 997

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.

TABLE 10.—Steel electrically manufactured in the United States, 1947-51 (average) and 1952-56, in_short tons 1

• [American Iron and Steel Institute]

Year	Ingots	Castings Total 3		Year	Ingots	Castings	Total 2
1947-51 (average) - 1952	5, 062, 416 6, 703, 734 7, 229, 340	99, 381 94, 189 50, 851	5, 161, 797 6, 797, 923 7, 280, 191	1954 1955 1956	5, 381, 762 8, 307, 138 9, 090, 264	54, 292 50, 013 57, 303	5, 436, 054 8, 357, 151 9, 147, 567

¹ Includes only that portion of steel for castings produced in foundries operated by companies manu facturing steel ingots. See table 7.

³ Includes a very small quantity of crucible steel and oxygen converter steel for 1954–56.

TABLE 11.—Alloy-steel ingots and castings manufactured in the United States, 1947-51 (average) and 1952-56, by processes, in short tons 1

1	American	Tron	and	Steel	Institutel

Process	1947-51 (average)	1952	1953	1954	1955	1956
Opén hearth: BasicAcidElectric 2	5, 664, 328 144, 901 2, 291, 092	5, 807, 191 218, 867 3, 108, 693	6, 599, 038 185, 341 3, 543, 815	4, 528, 336 130, 559 2, 533, 968	6, 735, 450 185, 473 3, 739, 168	6, 288, 649 201, 377 3, 838, 043
Total	8, 100, 321	9, 134, 751	10, 328, 194	7, 192, 863	10, 660, 091	10, 328, 06

Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.
 Includes a very small quantity of crucible steel and oxygen converter steel for 1954-56.

Metalliferous Materials Used in Steelmaking.—The data in table 12 include pig iron and scrap for all steelmaking furnaces in the United The combined consumption of these 2 commodities in 1956 was 128.7 million short tons. According to the American Iron and Steel Institute's consumption figures, which exclude independent steel foundries, the combined total was 124.6 million short tons. ages of pig iron and scrap charged were 52 and 48, respectively, compared with 53 and 47, respectively, for the institute. Record scrap consumption in steelmaking furnaces in 1956 was due to expanded electric-furnace production and decrease in open-hearth and Bessemer output.

For the third consecutive year the consumption of foreign iron ore in steelmaking furnaces exceeded that from domestic sources. percentages of foreign ore consumed, by countries, were as follows: Brazil, 25 percent; Chile, 18 percent; Liberia, Venezuela, and Sweden, each 15 percent; and Peru, 4 percent. The remaining 8 percent came from Canada, Africa, Santo Domingo, Cuba, Mexico, and India. Iron ore consumed in steelmaking furnaces by plants that do not have blast furnaces were not included in these figures.

CONSUMPTION OF PIG IRON

In 1956, 89 percent of the total pig iron consumed (74,995,479) short tons) was used in steelmaking furnaces (open-hearth, Bessemer, and electric), 4 percent for direct castings, and 7 percent in ironmaking Although plants in all 48 States and the District of Columbia used some pig iron, consumption was concentrated largely in the steelmaking centers of the East North Central, Middle Atlantic, South Atlantic, and East South Central States. These areas in 1956 consumed 93 percent of the pig iron. Pennsylvania (the leading consumer) used 27 percent of the total and Ohio (second largest) 20 percent—the same as 1955.

TABLE 12.—Metalliferous materials consumed in steel furnaces in the United States, 1947-51 (average) and 1952-56, in short tons

Year	Iron	ı ore	Sinter	Pig iron	Ferro-	Iron and	
	Domestic	Foreign			alloys 1	steel scrap	
1947–51 (average) 1952. 1953. 1954. 1955. 1956.	3, 605, 494 3, 511, 221 4, 178, 398 2, 619, 871 3, 352, 182 3, 398, 359	1, 429, 917 2, 275, 868 3, 459, 075 3, 640, 771 4, 615, 966 4, 741, 062	1, 262, 439 1, 614, 512 1, 817, 722 1, 143, 160 1, 751, 663 1, 516, 936	53, 375, 532 53, 491, 734 65, 839, 018 51, 658, 482 67, 957, 207 66, 437, 573	1, 260, 000 1, 460, 000 1, 650, 000 1, 270, 000 1, 620, 000 2 1, 630, 000	48, 194, 518 52, 217, 060 59, 100, 900 46, 064, 651 61, 774, 897 62, 276, 019	

 $^{^{\}rm l}$ Includes ferromanganese, speigeleisen, silicomanganese, manganese briquets, ferrosilicon, and ferrochromium alloys. $^{\rm l}$ Preliminary figure.

TABLE 13.—Consumption of pig iron in the United States, 1953-56, by type of furnace

Type of furnace	1953		1954	<u>.</u>	1955		1956	
or equipment	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percen of total
Open hearthBessemer. ElectricCupola AirCrucible	61, 306, 565 4, 351, 117 181, 336 5, 549, 522 313, 054 268 3, 005, 882	82. 1 5. 8 .3 7. 4 .4 (1) 4. 0	48, 632, 261 2, 848, 691 177, 530 4, 896, 703 232, 422 42 1, 874, 400	82. 9 4. 9 .3 8. 3 .4 (1) 3. 2	63, 750, 490 3, 932, 920 273, 797 5, 961, 861 295, 209 38 3, 002, 020	82. 6 5. 1 . 3 7. 7 . 4 (1) 3. 9	62. 165, 807 4, 038, 845 232, 921 5, 349, 402 292, 717 36 2, 915, 751	82. 5. 7. (1) 3.
Total	74, 707, 744	100.0	58, 662, 049	100.0	77, 216, 335	100.0	74, 995, 479	100.

¹ Less than 0.05 percent.

TABLE 14.—Consumption of pig iron in the United States, 1952-56, by States and districts, in short tons

District and State	1952	1953	1954	1955	1956
New England:					-
Connecticut	60, 598	63, 436	48, 981	50, 126	54, 104
Maine	4,072	5, 928	3,057	3, 357	4,556
Massachusetts		174, 513	140, 194	160,664	170, 658
New Hampshire		3,503	3, 731	3,731	4,059
Rhode Island	46,842	49, 432	38, 583	53, 316	52, 875
Vermont	14,643	8,974	9, 033	10, 626	13, 053
Total	296, 086	305, 786	243, 579	281, 820	299, 305
Middle Atlantic:					
New Jersey 1	244, 320	200, 572	207, 610	234, 153	245, 524
New York	3, 128, 013	3, 689, 763	2, 984, 809	3,891,870	3, 710, 751
Pennsylvania 1	17,026,406	20, 608, 854	14,601,423	20, 600, 273	20, 4 50, 118
Total	20, 398, 739	24, 499, 189	17, 793, 842	24, 726, 296	24, 406, 393
East North Central:					
Illinois 1	4, 893, 725	6,055,031	4, 320, 164	5, 877, 830	5, 942, 389
Indiana 1		8, 928, 835	7, 713, 815	9, 411, 067	9,015,531
Michigan		3, 811, 411	3, 140, 805	4, 642, 449	4, 401, 778
Ohio 1		14, 641, 399	11, 117, 854	15, 203, 917	14, 818, 433
Wisconsin	278, 670	258, 786	206, 221	259, 552	275, 984
Total	27, 162, 411	33, 695, 462	26, 498, 859	35, 394, 815	34, 454, 115

See footnotes at end of table.

TABLE 14.—Consumption of pig iron in the United States, 1952-56, by States and districts, in short tons—Continued

District and State	1952	1953	1954	1955	1956
West North Central:					
Iowa		89, 467	71,868	88,072	73, 814
Kansas		12, 378	6, 559	7, 322	5, 769
Nebraska)	12,010	3,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0, 10
Minnesota.		F10 000	400 =10		***
North DakotaSouth Dakota		518, 930	486, 718	601, 199	532, 39
Missouri.	80, 995	77,075	36,002	51, 864	45, 72
Total	695, 594	697, 850	601, 147	748, 457	657, 690
South Atlantic:					
Delaware District of Columbia Maryland	3, 144, 907	3, 919, 420	3, 877, 686	4, 260, 786	4, 050, 14
FloridaGeorgia	RO EOO	65, 111	24,600	45, 371	23, 24
North Carolina.		22,644	17, 886	23, 456	22, 10
South Carolina.	12, 911	10, 501	13, 107	14, 165	13, 77
Virginia	1 000 646	1, 933, 541	1, 706, 519	2,006,306	2,098,51
West Virginia			2,100,010	2,000,000	2,000,01
Total	5, 108, 186	5, 951, 217	5, 639, 798	6, 350, 084	6, 207, 78
East South Central:					
Alabama Kentucky 1		4, 163, 931	3, 554, 765	4, 319, 869	3, 674, 47
Mississippi Tennessee	845, 718	1, 055, 604	764, 232	1, 137, 360	958, 14
Total		5, 219, 535	4, 318, 997	5, 457, 229	4, 632, 61
West South Central:					
Arkansas Louisiana	11.961	12, 464	8, 673	10, 229	9, 13
Oklahoma			, ,,,,,		0, 20
Texas	418, 964	568, 161	661, 821	749, 298	675, 43
Total	430, 925	580, 625	670, 494	759, 527	684, 56
Mountain:					
Arizona]				- '
Nevada		195	266	82	18
New Mexico Utah and Colorado	1, 776, 397	2, 506, 885	1,889,089	2, 259, 694	2, 199, 91
Montana	1)		-,,	-,,	2, 100, 01
IdahoWyoming	} 685	478	324	180	31
Total		2, 507, 558	1, 889, 679	2, 259, 956	2, 200, 41
		2,001,000	1,000,00	2,200,000	2, 200, 11
Pacific:					
California 1	1, 288, 561	1, 233, 898	1,000,576	1, 223, 264	1, 430, 73
Oregon	} 19,706	15, 357	5,078	14, 887	
Washington		10,001	0,016	14, 007	21, 84
Total	1, 308, 267	1, 249, 255	1, 005, 654	1, 238, 151	1, 452, 58
Undistributed 1		1, 267			
Total United States	21 772 001	74, 707, 744	58, 662, 049	77, 216, 335	74, 995, 47

¹ Small tonnages of pig iron, not separable, shown as "Undistributed."

PRICES

The average value of all grades of pig iron, f. o. b. blast furnaces, was \$53.58 in 1956, compared with \$50.68 in 1955.

The weighted averages, f. o. b. value of all grades of steel, given in table 17, were computed from statistics supplied by the Bureau of the Census.

The 1956 average composite price of finished steel (published by Iron Age) was 5.358 cents per pound, compared with 4.977 cents per pound in 1955. Prices increased from 5.179 cents per pound in July to 5.560 in August and 5.622 in September.

TABLE 15.—Average value of pig iron at blast furnaces in the United States, 1947-51 (average) and 1952-56, by States, per short ton

State	1947-51 (average)	1952	1953	1954	1955	1956
AlabamaCalifornia	} \$36.88	\$45. 10	\$46.63	\$46.97	\$47.89	\$50. 2 3
ColoradoUtah	42.04	50. 83	51.14	51.08	53.82	50. 67
Illinois Indiana	39. 79 40. 04	48. 31 48. 16	49. 85 49. 29	50. 09 50. 16	51, 21 50, 79	54. 52 53. 09
New York	39.32	49. 31	50.46	50.60	51.54	54. 54
OhioPennsylvania	39. 67 40. 16	47. 65 49. 16	49. 44 50. 69	48. 92 50. 52	49. 35 51. 30	52, 42 55, 01
Other States 1	42. 28	48. 70	49.66	50. 61	50. 78	54. 19
Average	40. 11	48. 43	49. 83	49. 93	50. 68	53. 58

¹ Comprises Kentucky, Maryland, Massachusetts, Michigan, Minnesota, Tennessee, Texas, Virginia, and West Virginia.

TABLE 16.—Average monthly prices per short ton of chief grades of pig iron, 1955-56

Month	iron a	lry pig at Bir- am fur- ces	iron at	lry pig Valley aces	iron at	ner pig Valley aces	at Val	oig iron ley fur- ces
	1955	1956	1955	1956	1955	1956	1955	1956
January February March April	\$47. 22	\$49.11	\$50.45	\$52.68 52.94	\$50.89	}\$53. 13 53. 38	\$50.00	\$52. 23 52. 49
May	48. 66	52. 51	52. 12	54.02	52. 56	54. 46	51. 67	53. 57
September October December December	49.11	52. 68	52. 68	56. 25	53. 13	56. 70	52. 23	55. 80
Average	48. 13	50.88	51. 52	54. 63	51.96	55. 08	51. 07	54. 19

TABLE 17.—F. o. b. value of steel-mill products in the United States, 1955-56, in cents per pound ¹

	1955				1956			
Product	Carbon	Alloy	Stain- less	Aver- age	Carbon	Alloy	Stain- less	Aver- age
Ingots Semifinished shapes and forms. Plates Sheets and strips. Tin-mill products Structural shapes and piling Bars. Rails and railway-track material Pipes and tubes Wire and wire products. Other rolled and drawn products. Average total steel	3. 308 4. 668 5. 135 5. 992 27. 831 25. 120 6. 188 5. 848 8. 472 10. 077 8. 521 6. 391	29. 124 25. 439	25. 366 223. 056 55. 044 46. 874 	4. 431 5. 272 5. 475 26. 834 27. 831 25. 151 27. 521 5. 848 9. 243 10. 810 11. 503	4. 307 5. 081 5. 717 6. 474 8. 449 5. 540 6. 642 6. 328 9. 099 10. 938 7. 882	8. 361 8. 446 9. 471 13. 252 6. 986 12. 848 16. 614 34. 396 32. 343	31. 559 29. 487 54. 791 50. 991 	5. 398 5. 846 6. 241 7. 413 8. 449 5. 551 8. 158 6. 328 10. 071 11. 909 11. 081

¹ Computed from figures supplied by the U.S. Department of Commerce, Bureau of the Census. ² Revised.

FOREIGN TRADE 3

Pig-iron imports (326,700 short tons) were the highest since 1953, and exports of this commodity were almost 8 times the 1955 figure of 34,989 short tons. Canada supplied 93 percent of the pig iron imported. Exports of pig iron totaled 267,175 short tons, of which Japan received 93 and Canada 4 percent. Eight countries received the remaining 3 percent.

Exports of iron and steel products totaled 4.7 million short tons, an increase of 7 percent over 1955. Imports and exports of semi-finished iron and steel products both decreased, while imports and

exports of finished iron and steel products both increased.

TABLE 18.—Pig iron imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in net tons

	נו	Bureau of the	Census]			
Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada. Mexico.	87, 129 201	288, 722	305, 256	203, 303	260, 741	303, 121
Total	87, 330	288, 722	305, 256	203, 303	260, 741	303, 121
South America: Argentina Brazil Chile	(1) 6, 897 12, 965	2, 577				19, 621
Total	19, 862	2, 577				19, 621
Europe: Austria_Belgium-LuxembourgFinland_France_Germany	32, 767 14, 705 18, 636 116, 664 1, 025 82, 176 10, 853 1, 493 6, 810 12, 771 2, 71 3, 108	11, 071 3, 045 343 16, 203 1 12, 735 6, 369 25, 224 2, 096 77, 087	168 2 3, 539 18, 475 2, 692 4, 665 56, 633 86, 172	2 31, 854 7, 914 3, 482 11, 704 1, 203 56, 157	1, 232 224 3, 000 2, 466	
Asia: India Turkey	16, 101 7, 318	622	12, 659	7, 470	11, 217	336
Total	23, 419	622	12, 659	7, 470	11, 217	336
Africa: Rhodesia and Nyasaland, Federation of. Union of South Africa	4, 108		³ 6, 606	4 1, 944 5, 517	241 1, 425	128
Total Oceania: Australia	4, 108 9, 300	11, 192	6, 606 179, 132	7, 461 16, 325	1, 666 3, 013	128 1, 191
Grand total: Net tons Value	444, 598 \$18, 709, 753	380, 200 \$19, 846, 695	589, 825 \$25, 967, 43 5	290, 716 \$13, 315, 255	283, 559 \$14, 563, 612	326, 700 \$17, 842, 357

¹ Less than 1 ton.

West Germany.
Southern Rhodesia.

⁴ Southern Rhodesia not separately classified after July 1, 1954; 1,562 net tons January-June.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 19.—Major iron and steel products imported for consumption in the United States, 1954-56

[Bureau of the Census]

		1954		1955		1956
Products	Net tons	Value	Net tons	Value	Net tons	Value
Semimanufactures:						
Steel bars:	104 000	1011 000 000	150 050	1 410 770 100	170 000	1 617 014 071
Concrete reinforcement bars Solid and hollow, n. e. s Hollow and hollow drill steel Bar iron, iron slabs, blooms, or	164, 289 40, 873 378	1\$11,689,830 13,858,537 144,307	158, 973 2 33, 225 592	¹ \$13, 559, 126 ² 3, 664, 784 ¹ 183, 256	173, 302 47, 372 954	1 \$17, 314, 051 1 5, 794, 523 251, 145
other forms	219	49, 554	79	17, 909	93	¹ 21, 842
Wire rods, nail rods, and flat rods up to 6 inches in width	39, 848	4, 047, 003	47, 761	1 5, 699, 167	64, 193	7, 823, 521
Boiler and other plate iron and steel, n. e. s	2, 242	240, 682	2 3, 964	² 469, 571	62, 494	8, 414, 026
steel, n. e. s	8, 783	1 1, 216, 009	146, 103	1 10, 635, 444	26, 142	3, 069, 702
etc	310	1 80, 743	285	46, 464	487	143, 478
Circular saw plates	13	1 21, 904	24	18,688	41	34, 125
iron or steel	789	107, 121	2 2, 571	2 348, 957	6, 812	¹ 870, 834
n. s. p. f	197	262, 272	298	² 90, 287	223	119, 618
tin	143	1 31, 305	44	16, 826	656	¹ 148, 235
Total semimanufactures	258, 084	1 21, 749, 267	2 393,919	1 2 34, 750, 479	382, 769	1 44, 004, 500
Manufactures:	076 000	1.00 000 467	000 101	1 28, 963, 223	£14 701	1 76, 819, 259
Structural iron and steel Rails for railways	276, 828 3, 511	1 28, 000, 467 191, 847	266, 161 6, 278	362, 469	614, 781 7, 437	662, 853
Rail braces, bars, fishplates, or splice bars and tie plates	267	25, 029	772	1 36, 323	112	1 13, 709
Pipes and tubes: Cast-iron pipe and fittings Other pipes and tubes	6, 868 66, 250	1 876, 427 1 10, 810, 489	9, 219 2 77, 105	¹ 1, 383, 590 ¹ 2 10, 990, 257	10, 750 140, 365	2, 114, 747 1 22, 486, 171
Wire: Barbed	52, 948	1 6, 079, 100	60, 084	7, 695, 229	62, 296	¹ 8, 416, 191 ¹ 7, 790, 678
Round wire, n. e. s Telegraph, telephone, etc., except copper, covered with	52, 948 40, 794	1 6, 079, 100 1 4, 771, 604	40, 495	7, 695, 229 1 5, 627, 152	62, 296 49, 921	1 7, 790, 678
cotton jute, etc	422	1 295, 870	635	1 582, 963	1,747	1 1, 378, 254
Flat wire and iron and steel strips	17, 438 3, 939	1 4, 894, 711 1 1, 619, 444	² 24, 765 5, 537	1 2 7, 043, 253 1 2, 933, 517	18, 394 9, 662	1 8, 035, 028 1 5, 445, 568
Galvanized fencing wire and wire fencing	10, 435	1 1, 191, 220	13, 460	1 1, 709, 300	21, 988	1 2, 922, 962
Iron and steel used in card cloth- ing	(3)	308, 945	(3)	409, 196	(3)	1 609, 678
Hoop and band iron and steel, for baling	17, 500	1, 819, 972	6, 261	726, 812	13, 595	1, 876, 792
Hoop, band and strips, or scroll iron or steel, n. s. p. f.	20, 995	1, 669, 642		1		1
Nails Castings and forgings, n. e. s	92, 829 5, 459	1 11, 559, 148 1, 855, 545	132, 838 2 8, 011	² 2, 243, 672 ¹ 18, 093, 133 ¹ 2, 242, 451	20, 263 113, 480 10, 005	2, 434, 121 1 16, 860, 733 1 3, 221, 773
Total manufactures	616, 483	1 75, 969, 460		1 2 91, 042, 540	1, 094, 796	1 161, 088, 517
Advanced manufactures:						
Bolts, puts, and rivets	15, 568 1, 139	1 3, 964, 850 1 754, 590	21, 643 1, 556	¹ 5, 402, 242 ¹ 974, 561	23, 102 3, 201	1 7, 072, 721
Chains and parts Hardware, builders'	1, 109	1 249, 626		1 341,011		1 578, 734
Hinges and hinge blanks		1 1, 328, 068		1 1, 363, 490		1, 490, 011
Steel) Tools		1 708, 291 5, 255, 219		1 1, 328, 502 1 8, 198, 468		1 1, 507, 455 1 8, 887, 020
Other advanced manufactures		5, 255, 219 27, 297		¹ 8, 198, 468 ¹ 25, 672		1 83, 558
Total advanced manufactures.		1 12, 287, 941		1 17, 633, 946		1 21, 441, 447
Grand total		¹ 110,006, 668		1 2 143,426, 965		1 226, 534, 464
				<u> </u>		

 ¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.
 2 Revised figure.
 3 Weight not recorded.

TABLE 20.—Major iron and steel products exported from the United \States, 1954-56

[Bureau of the Census]

Products	1	954	1	955	1956		
Tioudos	Net tons	Value	Net tons	Value	Net tons	Value	
Semimanufactures:							
Steel ingots, blooms, billets, slabs, and sheet bars	29, 465	\$2, 619, 317	1 621, 333	¹ \$5 1, 3 50, 303	362, 724	\$35, 719, 065	
Iron and steel bars and rods: Iron bars	1, 142	333, 021	408	89, 559	1, 151	204, 186	
Concrete reinforcement bars	1, 142 29, 856 59, 895	333, 021 3, 078, 997 10, 434, 982 946, 232	73, 969 131, 276	89, 559 8, 018, 949 21, 424, 479 3, 227, 968	1, 151 97, 301 199, 599	204, 186 11, 927, 535 34, 287, 859	
Other steel bars	59, 895 9, 025	946 232	30, 930	3 227 968	17, 514	2, 056, 656	
Iron and steel plates, sheets,	0,020	010, 202	00,000	0,221,000	11,011	2, 000, 000	
Wire rods			100				
not fabricated	154, 149	19, 548, 635	215, 391	28, 803, 072	298 664	46 369 238	
not fabricated Skelp iron and steel	154, 149 56, 793	5, 214, 634	215, 391 88, 329	28, 803, 072 8, 455, 238	298, 664 148, 520	46, 369, 238 15, 704, 087	
iron and steel sheets, gal-		05 444 070	1 1 1			* * * * * * * * * * * * * * * * * * * *	
vanized	142, 945	25, 444, 070	157, 036	28, 102, 680	154, 598	30, 187, 805	
vanized	616, 266	97, 976, 710	1,067,085	164, 614, 295	929, 507	158, 029, 529	
Strip, hoop, band, and scroll iron and steel:							
Cold-rolled	31, 042	11, 264, 852	54, 149	19, 063, 245	49, 921	20, 676, 172	
Hot-rolled	31, 042 25, 355 712, 284	4, 148, 970	54, 149 38, 373 1 837, 404	7, 022, 547	40, 733 725, 725	7, 002, 004	
Tin plate and terneplate	712, 284	122, 895, 046	1 837, 404	1 143, 195, 161	725, 725	134, 379, 955	
Total semimanufactures	1, 868, 217	303, 905, 466	13,315,683	1483,367,496	3, 025, 957	496, 544, 091	
Manufactures-steel-mill prod-							
ucts: Structural iron and steel:						1985 — 1940 — 1948	
Water, oil, gas, and other storage tanks complete and							
storage tanks complete and	40 550	14 000 040	44 804	11 001 010		10 100 01	
knocked-down material Structural shapes:	60, 773	14, 389, 849	41, 781	11, 294, 219	75, 453	19, 482, 217	
Not fabricated	267, 259	28, 452, 461	1 279, 487	1 32, 198, 998	363, 400	46, 954, 245	
Fabricated	48, 054	15, 440, 392	1 87, 619	22, 080, 038	363, 400 84, 315	26, 206, 978	
Plates, sheets, fabricated, punched, or shaped	14,023	4, 040, 272	¹ 16, 653	1 4, 209, 725	21, 158	4 773 839	
Metal lath	2, 759	810, 947	2,452	829, 066	2, 689	4, 773, 832 875, 109	
Frames, sashes, and sheet				·			
piling Railway-track material:	23, 013	3, 444, 699	11,035	2, 116, 256	11,013	2, 294, 154	
Rails for railways Rail joints, splice bars, fish- plates, and tieplates Switches, frogs, and crossings Railroad spikes	96, 914	9, 778, 837	1 57, 825	1 4, 579, 185	68, 319	7, 559, 764	
Rail joints, splice bars, fish-	10.000	9 104 699	11 070	0.010 700	17 540		
Switches, frogs, and crossings	18, 006 2, 704	3, 194, 633 939, 349	11, 279 3, 000	2, 316, 702 932, 772	17, 549 6 104	3, 557, 549 1, 921, 048	
ream out spinos	2, 414	395, 871	1, 930	369, 962	6, 104 2, 850	559, 894	
Railroad bolts, nuts, washers,	917	940 519	010	017 400		400.044	
and nut locks Tubular products:	917	342, 513	818	317, 480	1,081	480, 344	
Boiler tubes	19, 899	7, 364, 461	1 26, 683	1 7, 679, 501	26, 375	9, 739, 104	
Casing and line pipe	306, 152	54, 738, 453	216, 049	1 44, 613, 066	602, 888	115, 995, 848	
Seamless black and galva- nized pipe and tubes, except casing, line and boiler, and other pipes and tubes							
casing, line and boiler, and							
other pipes and tubes	32, 007	6, 291, 517 8, 254, 480	22, 140	4, 977, 734 5, 351, 135	45, 658	10, 308, 943	
Welded galvanized pipe	56, 232 11, 273	2, 252, 681	22, 140 27, 929 12, 125	2, 449, 004	45, 658 30, 770 11, 254	6, 554, 216 2, 548, 844	
Welded galvanized pipe Malleable-iron screwed pipe							
fittings Cast-iron pressure pipe and	2, 013	1, 685, 040	1,857	1, 652, 137	1, 983	1, 849, 679	
fittings	21, 489	3, 360, 190	21,021	3, 077, 033	27, 345	4, 661, 595	
Cast-iron soil pipe and fittings_	10, 770	1, 830, 344	9, 243	1, 695, 536	9, 329	1, 907, 159	
Iron and steel pipe, fittings, and tubing, n. e. c.	43, 582	23, 374, 691	48, 928	27, 422, 795	71, 102	42, 107, 628	
Wire and manufactures:					1		
Barbed wire	3, 695	630, 744 1, 343, 608	1, 641 10, 668 23, 299	285, 576 2, 175, 877	1, 085 10, 677	216, 188 2, 448, 957 7, 531, 831	
Galvanized wire Iron and steel wire, uncoated_	5, 056 23, 441	1, 343, 608 4, 757 463	23 200 23 200	2, 175, 877 5, 670, 926	10, 677 30, 551	2, 448, 957 7, 531, 921	
Spring wire	23, 441 4, 242	4, 757, 463 2, 088, 331	4,696	2, 444, 793	30, 551 4, 714 18, 350	2, 577, 276	
Wire rope and strand	13, 228	6, 755, 653	14, 166	2, 444, 793 7, 263, 801	18, 350	2, 577, 276 9, 748, 332	
woven-wire tencing and	3, 244 26, 700	² 1, 831, 168	4, 174 30, 576	² 2, 265, 921 10, 816, 808	3, 905 34, 328	² 2, 274, 819 13, 385, 891	
screen cloth							

See footnotes at end of table.

TABLE 20.—Major iron and steel products exported from the United States, 1954-56—Continued

[Bureau of the Census]

Products	1	954	1	955		1956
	Net tons	Value	Net tons	Value	Net tons	Value
Manufactures—steel-mill prod- ucts—Continued Nails and bolts, iron and steel, n. e. c.:						
Wirenails, staples, and spikes	3, 235	\$1, 705, 901	3, 090	\$2,022,481	3, 273	\$2, 347, 621
All other nails, staples, spikes, and tacks	2, 489	1, 277, 073	2, 733	1, 401, 259	2, 208	1, 232, 351
Bolts, screws, nuts, rivets, and washers, n. e. c Castings and forgings: Iron and	13, 752			1 15, 445, 666		17, 462, 012
steel, including car wheels, tires, and axles	66, 121	16, 650, 107	109, 534	25, 323, 043	109, 745	25, 858, 696
Total manufactures	1, 205, 456	247, 654, 158	¹ 1, 124, 299	¹ 255, 278, 495	1, 721, 222	395, 422, 124
Advanced manufactures: Buildings (prefabricated and knockdown). Chains and parts. Construction material. Hardware and parts. House-heating boilers and radiators. Oil burners and parts. Plumbing fixtures and fittings. Tools. Utensils and parts (cooking, kitchen, and hospital). Other advanced manufactures.	9, 505 6, 762 1, 272	4, 998, 798 7, 693, 658 4, 000, 865 14, 342, 712 6, 644, 712 6, 203, 291 43, 238, 299 3, 783, 383 23, 595, 643	1 8, 206 8, 012	4, 727, 559 17, 123, 664 7, 896, 943 10, 134, 831 7, 407, 358 48, 183, 073	11, 211 10, 648	11, 118, 784 10, 480, 288 5, 958, 982 20, 533, 440 9, 491, 538 11, 030, 717 6, 917, 669 54, 161, 771 4, 687, 746 32, 622, 941
Total advanced manu- factures		122, 745, 935		¹ 144, 472, 867		167, 003, 856
Grand total		674, 305, 559		883, 118, 858		1, 058, 970, 071

¹ Revised figure.

² Includes wire cloth as follows—1954: \$952,431 (5,529,215 square feet); 1955: \$1,163,185 (6,950,825 square feet); 1966: \$1,104,787 (6,713,660 square feet).

TECHNOLOGY

The year 1956 was highlighted by a number of important developments in iron- and steel-making. There was sustained interest in achieving greater output from the installed blast furnaces through increased use of sinter, other agglomerates, and higher grade foreign iron ores. Limited application in the use of oxygen-enriched air, humidity control of the air blast, and high-top pressures continued to be interesting developments. The oxygen converter became more widely accepted as a tool for the United States steelmaker. There was increased emphasis on high-vacuum techniques in steelmaking, both in melting the steel and pouring the ingots. The use of basic refractories in open hearths increased. The portable gas-fired scrap preheater, developed by the Bureau, was adopted by industry. Considerable interest was shown in the American H-Iron process, the German Rotor furnace, and the British Cyclosteel process. Finally, more oxygen was used at iron and steel plants. The iron and steel industry consumed 23.9 billion cu. ft. of the reported United States production of 49.3 billion cu. ft. of oxygen during 1956. More than 200 cu. ft. per ton of ingots was consumed, compared with 175 in 1955, 105 in 1945, and 38 in 1935.

In addition to new construction, additional steel capacity was realized by improved techniques in iron- and steel-making. Changes in blast-furnace techniques or operations included: Better preparation of ore charges; increased use of higher iron content ores from foreign sources, increased use of concentrates, agglomerates, and oxygen; and use of high-top pressure and humidity control. One company that was increasing its steelmaking capacity 1 million tons planned on a 25-percent increase in pig-iron output by using a blast-furnace burden consisting of 50 percent sinter. It was anticipated that, by the end of 1957, sintering capacity would be 63 million tons, representing a 25-million-ton increase in 2 years. Increased output of pig iron through the use of oxygen-enriched air was noted in the

1955 chapter.

Advances in steelmaking and rolling mills continued. These included the following: (1) Improved layout, (2) use of richer fuels and oxygen, (3) mechanization, (4) better methods for handling materials and refractories, (5) faster rebuilding of units, (6) rapid charging and heating, (7) automatic controls and instrumentation, (8) better refractories, and (9) scheduled maintenance of equipment. The use of hot metal in electric arc furnaces was given further attention during 1956. At least 1 company used a charge composed of 50 percent hot metal. An interesting item in vacuum melting was the use of the continuous mass spectrometer to aid in controlling the process. A record of gases drawn off during melting and refining tells the operator when the process has reached the desired end point. number of steel companies were expanding their facilities for producing vacuum melting and vacuum casting of steel ingots. The pilot plant of one company could vacuum-melt heats up to about 6,000 pounds. Another company had a vacuum casting unit for large forgings which is essentially a 17-foot-diameter cylinder 31 feet high.

The H-Iron process under development by the Hydrocarbon Research, Inc., Trenton, N. J., offered possibilities as a new source of iron units for the American iron and steel industry. This process employs the fluidized-bed technique, using hydrogen as the reducing agent. The reduced iron is formed into shapes, with ordinary steel-plant rolls, which are used as melting stock for open-hearth and electric furnaces. H-Iron with only 75 percent of the oxygen removed was used experimentally in open-hearth furnaces to replace charge ore as well as to substitute for scrap. Cost of operation per unit of metal was reported to compare favorably with the cost of iron

and steel scrap.5

The portable, gas-fired scrap preheater developed by the Bureau of Mines to preheat scrap for top-charged electric furnaces was adopted by one steel plant. This innovation for reducing the energy cost and heat time for electric-furnace steelmaking was described at

the 1956 AIME Electric Furnace Steel Conference.

An experimental development in German steelmaking was the rotating furnace, known as the "Rotor," developed at the Oberhausen works. In this cylindrical furnace, which rotates on its horizontal axis, high- or low-phosphorus molten pig iron is converted directly

⁴ Madsen I. E., Developments in the Iron and Steel Industry During 1956: Iron and Steel Eng., January 1957, pp. 119-170.

⁸ Unterweiser, P. M., H-Iron: Competition for the Blast Furnace: Iron Age, vol. 178, No. 2, July 12, 1956, pp. 71-74.

into steel. Refining and the necessary heat are accomplished with oxygen, which is introduced through two separate, controlled jets. One is introduced beneath the surface of the molten metal and the other into the furnace atmosphere. A furnace with a heat capacity of 60 tons was operated, and a 100-ton furnace was under construction.6

During the year a new process for making steel directly from iron ore in a cyclone, called the Cyclosteel process, was announced by the British Iron and Steel Research Association. The process employs a preheater and a cyclone reactor. Powdered iron ore and powdered coal are fed into a fluidized-bed preheater, and the iron ore is partly reduced by the exhaust gases from the reactor. The mixture then passes through jet nozzles into the cyclone reactor and spirals downward through the reduction and burning zones. Oxygen is introduced to remove carbon and phosphorus and convert the carburized iron to steel. A pilot plant was being erected in England to further investigate this process.7 Substitutes for the nickel-bearing AISI 200 and 300 series received further attention during the year. The United States Steel Corp. announced a nickel-free stainless called "Tenelon," with the following typical analysis in percent: Manganese 14.50, chromium 17.00, and nitrogen 0.40. The new steel is completely austenitic, and its physical properties (tensile and yield strength) are higher at both room and elevated temperatures than the conventional nickelbearing austenitic grades. Its corrosion resistance is comparable to that of types 301 and 302 in mild acids. Magnetic permeability of "Tenelon" is equivalent to that of AISI 302. It can be readily spotwelded or welded by the shielded metal-arc process.8

The use of clad steel, conserving nickel and other critical metals, was manufactured by a number of steel companies in the United States. Consumption was estimated to have increased some 30 to 40 times since its inception during the late 1930's. A stainless-steel-clad plate is made of an ordinary carbon steel to one or both sides of which a veneer or cladding is uniformly and permanently bonded. This clad material may be substituted for a 100-percent stainless plate. It is less expensive and offers the same corrosion resistance as the steel or alloy for which it is substituted. Thickness of cladding generally ranges from 5 to 20 percent of the total thickness. In addition to cladding with stainless steel, high-purity nickel, aluminum, copper, and other metals may be used. During 1956 a number of methods were described for making metal claddings. Clad steel was widely used for restaurant equipment, cooking utensils, 10 and construction. The 250,000-gallon water tank and tower at the General Motors Technical Center near Detroit, Mich., was made of type 304 stainless clad

on Grade A283 carbon steel.¹¹

A new process of tinplating only the narrow margins of steel sheets that make up the soldered side-seams of tin cans was announced by the American Can Co. during the year. It was estimated that 5 million pounds of tin could be saved annually.12

<sup>Iron and Coal Trades Review, Technical Developments in the German Iron and Steel Industry: Nov. 23, 1956, pp. 1267-1268.
American Metal Market, vol. 63, No. 169, Sept. 1, 1956, p. 1. No. 170, Sept. 5, 1956, p. 13.
United States Steel Corp., Data on USS Tenelon (undated pamphlet).
Durst, George, A New Development in Metal Cladding: Jour. Metals, March 1956, pp. 328-333.
Watson, T. T., The Manufacture and Properties of Clad Steel Plate: Blast Furnace and Steel Plant, March 1933, pp. 318-355.
Engineering News-Record, Mar. 10, 1955, p. 33.
Daily Metal Reporter, vol. 56, No. 91, May 12, 1956, pp. 1, 6.</sup>

Designers were looking to special steels as the only materials that will retain their strength at temperatures of more than 600° C.

for use in skins and frames of supersonic aircraft.13

West Germany was building a ship that might be the first ever constructed of oxygen-jet converter steel. The Austrian steel firm, VOEST, supplied the steel and funds for this ship. Oxygen-converter steel has been recommended for sheets, strip, and wire because of its superior deep-drawing qualities, whereas ship steel is usually higher in carbon and less ductile. At least one Austrian producer stated that the higher carbon grade can be made by the oxygen-jet steel process.

Additional information on foreign technical developments is given for Sweden and the European Coal and Steel Community in the

World Review section.

WORLD REVIEW

World production of pig iron, including ferroalloys, and steel in 1956 reached a new high of 222.3 and 312.7 million short tons, respectively, a 5-percent increase in both pig iron and steel. The United States, the European Coal and Steel Community, and the Soviet Union ranked first, second, and third in both pig-iron and steel production. The United States produced 35 percent of world pig iron and 37 percent of world steel, compared with 37 and 39 percent, respectively, in 1955.

NORTH AMERICA

Canada.—Canada expanded its steelmaking and rolling-mill capacities at a number of locations. The Steel Co. of Canada began a \$100 million expansion program to include a new slabbing mill and a second electrolytic tinning line. The Dominion Foundries & Steel, Ltd., of Hamilton began to operate a new 2,000-ton-per-day blast furnace and a new oxygen-steelmaking converter in November. This company was also constructing a new roughing mill. At Welland, Ontario, a pipe mill that will produce 20- to 36-inch-diameter welded pipe was scheduled to start operations at the end of 1956. During the latter part of the year Algoma Steel Corp. announced an oxygensteelmaking installation that will boost ingot capacity to 1.6 million tons. A new blooming and plate mill was also planned. Operations of the new facilities were scheduled for early 1959. Western Canada Steel, Ltd., announced a \$2 million project at Vancouver. Future plans included a \$5 million electric smelting operation, which might be the first western Canadian steel plant to utilize west coast ores. On October 20, 1956, a new pipe mill called the Alberta Phoenix Tube & Pipe, Ltd., was dedicated at Edmonton, Alberta, Canada. The reported annual capacity of this mill was 100,000 tons. 14

Cuba.—Cuba was installing an open hearth that will raise output

to 112,000 tons per year.15

1957, p. 127.
U. S. Consulate General, Toronto, Canada, State Department Dispatch 138: Feb. 8, 1957.
U. S. Consulate General, Toronto, Canada, State Department Dispatch 138: Feb. 8, 1957.
15 Madsen, I. E., Developments in the Iron and Steel Industry During 1956: Iron and Steel Eng., January 1957, p. 127.

 ¹³ American Metal Market, vol. 63, No. 181, Sept. 21, 1956, pp. 1, 2.
 14 Madsen, I. E., Developments in the Iron and Steel Industry During 1956: Iron and Steel Eng., January 1957, p. 127.

—World production of pig iron (including ferroalloys), by countries, 1 1947–51 (average) and 1952–56, in thousand short tons 2 TABLE 21.-

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1947–51 (average)	1952	1953	1954	1955	1956
North America: Canada	2, 444 245 63, 163	2, 914 340 63, 391	3, 166 271 77, 201	2, 327 297 59, 752	3, 380 356 79, 263	3, 810 455 77, 667
Total	65, 852	66, 645	80, 638	62, 376	82, 999	81, 932
South America: Argentina. Brazil Chile Colombia.	4 22 667 87	30 906 298	39 985 315	30 1, 222 336 97	40 1, 198 282 109	31 1, 291 386 4 120
Total	776	1, 234	1, 339	1,685	1,629	1,828
Europe: Austria Belgium Bulgaria Czechoslovakia Denmark Finland France Germany: East West Hungary Luxembourg Netherlands Norway Poland Rumania 4 Saar Spain Sweden Switzerland U. S. S. R. 5 United Kingdom Yugoslavia	230	1, 295 5, 280 12 2, 540 40 119 10, 894 728 14, 194 33, 391 2, 028 430 2, 811 868 1, 228 427, 700 12, 015 317	1, 456 4, 641 28 3, 065 40 88 9, 678 1, 188 12, 846 777 1, 536 3, 000 2, 600 2, 626 911 1, 165 30, 200 12, 516 300 90, 175	1, 493 5, 098 44 3, 070 44 48 9, 868 1, 453 13, 792 201 1, 484 3, 086 672 271 2, 935 480 2, 752 1, 103 33, 100 13, 309 33, 100 13, 309 96, 490	1, 660 5, 941 50 3, 287 60 127 12, 220 1, 672 18, 168 942 1, 911 3, 401 3, 47 3, 47 3, 43 630 3, 174 1, 093 1, 375 60 36, 700 13, 966 60 36, 700 13, 966	1, 915 6, 350 5, 55 3, 618 62 114 12, 833 1, 735 19, 375 2, 200 3, 652 3, 365 3, 365 496 650 3, 341 1, 100 1, 552 4, 750 713 119, 471
Total 5	1,813 1,836 32 4 610 132	* 2, 200 2, 076 3, 952 22 7 4 2 216	90, 175 4 3, 300 1, 990 5, 129 55 8 6 239 10, 727	3, 340 2, 197 5, 237 55 10 2 216	4, 057 2, 122 5, 960 125 11 2 223	5, 616 2, 194 6, 905 200 18 4 243
Africa: Rhodesia and Nyasaland, Federation of: Southern Rhodesia Union of South Africa	7 31	43 1, 245	40 1,348	41 1, 319	63 1, 433	29 1, 498
Total	808	1, 288	1,388	1, 360	1,496	1,524
Oceania: Australia	1,333	1, 735	2,064	2, 079	2, 010	2, 321
World total (estimate)	134,600	168, 300	186, 300	175,000	212, 200	222, 300

¹ Pig iron is also produced in Belgian Congo and Indonesia, but quantity produced is believed insufficient to affect estimate of world total.

2 This table incorporates a number of revisions of data published in previous Iron and Steel chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

3 Excluding ferroalloy production, for which data are not yet available, but estimate has been included in total. Excluding fortunals, in total.
Estimate.
U. S. S. R. in Asia, included with U. S. S. R. in Europe.
Average for 1950-51.
Average for 1948-51.

⁴⁶⁶⁸¹⁸⁻⁵⁸⁻⁴¹

TABLE 22.—World production of steel ingots and castings, by countries, 1947-51 (average) and 1952-56, in thousand short tons ¹

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1947-51 (average	1952	1953	1954	1955	1956
North America:				-		
Canada	3, 258	3, 703	4, 116	3, 195	4, 529	5, 306
Mexico	397	595	579			
United States 2	90, 710	93, 168	111,610			
Total	94, 365	97, 466	116, 305		-	
South America:		01, 100	110,000	92, 193	122, 403	121, 514
Argentina 3	183	140	000			1
Brazil	687	140	220			310
Chile	72	984 268	1, 120	1, 265		
Colombia	3 10	3 11	345	354		408
					- 85	100
Total	952	1,403	1, 685	1,804	2, 015	2, 444
Europe: Austria	041	1 100				
Belgium	841	1,166	1,415	1,822	2,010	2, 291
Bulgaria	4, 295	- 5,585	4, 957	5, 482	6,504	7,043
Czechoslovakia	3 3, 175	4, 139	14	68	82	143
Denmark	108	4, 139	4, 813 198	4,819	4, 932	5, 381
Finland	118			219	261	265
France	8, 946	162 11, 947	162	195	206	217
Germany:	0, 940	11,947	10, 951	11, 627	13, 880	14, 770
East	862	9.007	0.400	0.500	0 -0-	
West	9, 569	2, 087 17, 423	2,400	2, 569	2,765	3,020
Greece	3 25	3 35	16, 998 3 45	19, 218	23, 519	25, 561
Hungary	999			62	73	83
Ireland 2	17	1, 608 22	1,701	1, 644	1,796	1, 571
Italy	2,490	3, 897	3, 858	33	33	33
Luxembourg	2, 638	3, 309		4,637	5, 947	6, 512
Netherlands	441	755	2, 931	3, 117	3, 555	3, 810
Norway	85	108	948 122	1,023	1,074	1, 149
Poland	2. 457	3, 509	3, 973	133 4, 353	183	316
Rumania	3 485	3 770	790	691	4,879	5, 527
Saar	1, 807	3, 112	2, 959	3, 092	3, 483	862
Spain	782	1,111	1,063	1, 296		3,719
Sweden	1, 490	1,836	1,939	2, 028	1, 427 2, 345	1, 365
Sweden Switzerland 4	134	172	173	165	183	2,650
U. S. S. R.	25, 375	38,000	42,000	45, 600	50,000	188 53, 600
U. S. S. R. United Kingdom	16, 891	18, 389	19, 723	20, 742	22, 165	23, 137
Yugoslavia	433	499	580	692	903	993
Total 5	³ 84, 500	119, 835	124, 735	135, 327	153, 049	164, 206
sia:						
China	3 365	1, 490 1, 768 7, 703	1, 955	2.500	3, 210	5, 025
India	1,519	1 768	1,688	2, 500 1, 887	1, 909	1, 947
Japan	3, 773	7, 703	8, 446	8, 543	10, 371	12, 242
Korea:	′ '	.,	0, 220	0,010	10,011	12, 212
North 3	1 47	ſ 11	11	60	150	210
Republic of	} 47	1	1	ĭ	(6)	(6)
Taiwan (Formosa)	9	17	22	28	44	68
Thailand	7 10	.8 4	1	- 2	4	4
Turkey	116	179	187	187	217	212
Total 5	5, 839	11, 173	12, 311	13, 208	15, 905	19, 708
frica:						
Belgian Congo	(6)	1	1	3	2	3 2
FAADE .	11	11	$2\overset{\mathtt{r}}{2}$	78	95	88
Rhodesia and Nyasaland, Federation			22	10	90	00
of: Southern Rhodesia	19	40	28	36	55	64
Union of South Africa	778	1, 326	1, 368	1,577	1,742	1, 769
j-		-,				1,100
Total	808	1, 378	1, 422	1, 694	1,894	1, 923
ceania: Australia	1, 491	1,839	2, 288	2,476	2,460	2, 915
World total (estimate)	188, 000	233, 100	258, 700	246, 700	297, 700	312, 700
	,		300, 100	220, 100	201,100	012, 100

¹ This table incorporates a number of revisions of data published in previous Iron and Steel chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

² Data from American Iron and Steel Institute. Excludes production of castings by companies that do not produce steel ingots.

³ Estimate. ⁴ Including secondary. ⁵ U. S. S. R. in Asia included with U. S. S. R. in Europe.

⁶ Less than 500 tons. ⁷ Average for 1950-51.

Mexico.—Mexico was building two integrated steel plants on the west coast, in addition to other expansion in ingot and rolling-mill capacity at various locations. During the year La Consolidada initiated production of its new 135-ton-per-day capacity furnace at Piedras Negras, thus becoming the third basic iron producer in the country. 16 Cia Fundidora de Fierro y Acero de Monterrey, S. A., obtained a \$26 million loan from the Import-Export Bank, which will be used to help finance a modern open-hearth plant with 250-ton furnaces, plus heating and rolling facilities, for the production of flat-rolled products. Mexico also was building a 900-ton-per-day sintering plant.17

SOUTH AMERICA

Argentina.—Steelmaking capacity in Argentina will be increased from 260,000 tons to 1,250,000 by 1960. Two 500,000-ton blast furnaces,18 coke plant, steelmaking facilities, blooming and billet mills, and plate, strip, sheet, and tinplate mills were planned, at an estimated cost of \$258 million. This will include approximately \$100 million for United States equipment. Credit of \$60 million has been given Argentina by the Import-Export Bank to help finance the program.

Brazil.—Brazil's largest steel company, Volta Redonda, will increase its steelmaking capacity from 700,000 to 1 million tons by

1960.

Venezuela.—In Venezuela 2 Italian firms were to build an integrated steel plant at Puerto Ordaz with a capacity of 421,000 tons.19

EUROPE

Sweden.—The year 1956 was one of continued progress for the Swedish iron and steel industry. Improvements in productive facilities and the modernization and expansion program begun at the end of World War II enabled the industry to achieve a new alltime record in both crude- and finished-steel production—2.6 and 1.8 million short tons, respectively. It was announced during the year that a new steel plant and rolling mill would be constructed by Trafik AB Grängesberg-Oxelösund (TGO) at Oxelösund, a Baltic seaport open to navigation throughout the year. The new plant will have an annual production capacity of 475,000 short tons of ingot steel. rolling mill was to be equipped for an annual capacity of 330,000 tons of rolled products, primarily ship's plate and heavy plate for other special requirements.

This project was scheduled for completion in 1961 at an estimated cost of 465.6 million kronor (1 krona equals US\$0.193). Of this amount, 169 million is for the rolling mill and 93.5 million for the steel plant. The balance is to be expended as follows: The existing coke plant is to be expanded from 27 coke ovens to 72; an iron-ore-sintering plant, with an annual capacity of 660,000 short tons, will be constructed; a new blast furnace of 330,000 tons annual capacity will

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 2, August 1957, pp. 10-11.
Madsen, I. E., Developments in the Iron and Steel Industry During 1956: Iron and Steel Eng., January 1957, p. 127.
Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 6, June 1957, pp. 14-15.
Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 6, June 1957, pp. 14-15.
Madsen, I. E., Developments in the Iron and Steel Industry During 1956: Iron and Steel Eng., January 1957, p. 127.</sup>

be installed; several limestone and dolomite kilns will be added; and facilities for generating and distributing electric power and gas

and other auxiliary installations will be provided.20

At the Domnarfvet works a new type of rotating converter designed to overcome the difficulties experienced when the Austrian Linz-Donawitz process is applied to high-phosphorus pig iron was used experimentally. A symmetrical, pear-shaped vessel is mounted on trunnions similar to the ordinary converter, but can also be revolved about its longitudinal axis at up to 30 r. p. m. Oxygen is injected into the mouth of the vessel when it is some 20° from the horizontal position and is rotating at 30 r. p. m. It is claimed that a 2-percentphosphorus pig iron can be dephosphorized and converted to lownitrogen steel without the difficulties of "slopping," foaming, and fume that have proved very cumbersome heretofore.

The Kalling process developed in Sweden for removing sulfur from high-sulfur pig iron is effective and inexpensive and was adopted by steel plants in various parts of Europe.21 The process consists of agitating molten pig iron with 1 to 2 percent of powder lime in a

revolving drum.

U. S. S. R.—Soviet Russia's Sixth Five-Year Plan (1956-60) stressed expansion, technologic developments, and automation. The plan calls for increasing pig-iron output from 37 million short tons in 1956 to 58 million tons by 1960, and steel production from 53.6 million tons to 75 million.

There were about 130 blast furnaces in Russia, and it was reported that 85 percent operate with automatic humidity control (moisture equals 2.5 percent of air blast by volume). Self-fluxing sinter was widely used, and its proportion will increase from 54 percent of the

iron-bearing burden in 1955 to 80 percent in 1960.

In steelmaking open-hearth capacity increased 25 percent by employing oxygen. Most of the plants used mixtures of blast-furnace gas and coke-oven gas for open-hearth fuel. The Russians favor open hearths of 300 tons or over, and some 500-ton furnaces are being built.22

The European Coal and Steel Community.—Pig-iron and steel production in the European Coal and Steel Community established a new record in 1956, with 48.5 million short tons of pig iron and 62.6 million tons of steel. Pig-iron and steel production was 6.4 and 7.9 percent, respectively, above 1955.

As in the rest of the world, the Community was expanding its ore-dressing, pig-iron, steelmaking, and rolling-mill facilities. Actual production for 1952 and 1956 and production potential or capacities

for 1956 and 1960 are given in table 23.

As noted in this table, the increased use of sinter in the Community parallels the trend in the United States. Sintering capacity in 1960 indicated by investments may double what it was in 1956. Counting the sinter produced at mines, approximately one-third of the blast-

²⁰ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, pp. 10-12.
21 Brandt, D. J. O., Technical Developments in the Steel Industry: Iron and Coal Trades Rev., vol. 174, No. 4627, Jan. 25, 1957, pp. 197-200.
22 Metal Bulletin (London), Challenge to West by U. S. S. R.: No. 4062, Jan. 20, 1956, pp. 9-10.
Voice, E. W., and Klemantaski, S., Ironmaking in the U. S. S. R.: Jour. Metals, vol. 9, No. 4, April 1957, pp. 592-596.
Iron and Coal Trades Review, Plant and Equipment at Two Russian Steel Centres: Vol. 174, No. 4626, Jan. 18, 1957, pp. 151-152.
Wilson, Lee, Russian Log: Iron and Steel Eng., vol. 33, No. 10, October 1956, pp. 150-162.

TABLE 23.—European Coal and Steel Community production and capacity for sintered ore, pig iron, and steel 1952, 1956, and 1960, in short tons

		V	Act	ual prod	Capacity as indicated by investments started or approved at the end of 1956			
			1952	1956	Change from 1952 (percent)	1956	1960	Change from 1956 (percent)
Sintered ore 1 Pig iron Steel Finished rolled pro	ducts		16. 1 38. 4 46. 2 32. 3	20. 1 48. 1 62. 6 43. 7	+25 +26 +36 +36	22. 0 50. 2 64. 5 45. 2	44 64 83 58	+100 +28 +28 +30

¹ Sintered ore and other elements in the ferrous charge, at iron and steel works only.

furnace metallic charge will be sinter by 1960. Pig-iron output will be increased through improved blast-furnace burdens and new construction. As a result of the scrap shortage, the emphasis in steel expansion will be in processes that utilize high percentages of pig iron. All existing processes will be expanded plus a predicted combined capacity of 3 million short tons for the Linz-Donawitz process and the German "Rotor" process. As a result of the uncoordinated investments in preceding years, the pig iron-to-steel ratio will drop from the 1956 level of 1,540 pounds per short ton to 1,490 during 1957–58 and back to 1,540 by 1960.

In increasing the proportion of pig iron in steelmaking charges,

two lines of action will be considered.

(a) The pig-iron input in open-hearth and electric furnaces may be increased considerably. Since the proportion of pig iron to scrap used in European open hearths is much below that in the United States, there is room for increasing the use of pig iron in this field. In the electric furnace the quantity of pig iron used may be increased by the use of the duplex process. Also, consideration will be given to Krupp-Renn balls, which may be employed as a substitute for scrap.

(b) Pig-iron input may also be increased by employing new techniques and new processes by which steel may be made to compare in quality with open-hearth and electric-furnace grades. These include: (1) The use of oxygen-enriched air in converters, which reduces the nitrogen and phosphorus content; (2) the use of mixtures of oxygen and steam or oxygen and carbon dioxide, which gives still better qualities of steel for certain purposes; (3) the Linz-Donawitz process, in which pure oxygen is surface-blown at high velocities onto the molten-metal bath and which enables hematitic and low-phosphorus pig iron to be refined at comparatively small capital expenditure; (4) the Perrin process, which produces higher quality steels by stirring in specially prepared slag melted in the electric furnace; and (5) conversion of basic Bessemer pig with oxygen in the rotary furnace. This process will be given a particularly attentive study.

In regard to research on steel in the Community, the High Authority set aside \$1 million to make comparative tests in 1956 with different grades of coke in blast furnaces. \$200,000 has been set aside to pinpoint the irregularities in steel rolling that affect the finished product

and to establish the factors governing the formation and adhesion of In addition, the High Authority alloted \$383,000 for studies in improving the quality of refractory materials and studies on flame radiation. A grant of \$850,000 was made to the international research program, covering the low-shaft blast furnace at Liége, Belgium. A credit of \$650,000 was allotted the various technical research centers that are making tests leading to the reduction of furnace inputs and improve efficiency. All of the assistance granted by the High Authority on steel totals \$3,830,000.23

ASIA

China.—The Chinese Communist Party Congress in Peking approved a Second Five-Year Plan during the year, for increasing steel production from the 1957 objective of 6.0 million short tons to 13.2 million tons by 1962. The program covered items other than steel, such as aluminum and electrical energy. Emphasis was placed on the use of atomic energy and automation in fulfilling the plan. Chinese pig-iron and steel production in 1956 was 5.6 million and 5.0

million short tons, respectively.24

India.—Production of steel in 1956 was about the same as in 1955. However, imports doubled, totaling about 2 million tons compared with 1 million in 1955. Three new steel plants, having a combined annual capacity of 2.5 million tons of finished steel, were being constructed at Rourkela, Bhilai, and Durgapur. The Rourkela and Bhilai plants were scheduled to go into production in late 1958 and the Durgapur in June 1959. The three existing plants, Tata Iron & Steel Co., Indian Iron & Steel Co., and Mysore Iron & Steel Works, were being expanded to about 2.7 million tons annual capacity by The total projected output for the country of 5.2 million tons of steel by 1960 should relieve India of its past practice of im-

porting approximately half of the steel requirements.25

Japan.—New records were established for pig iron, crude steel, and ordinary rolled steel. Tonnages and percentages of increase over 1955 were 6.9, 12.2, and 9.0 million short tons and 16, 18, and 20 percent, respectively. Although heavy industry, machinery, shipbuilding, and construction consumed record tonnages of steel, shortages occurred in the small consumer groups, chiefly light industry and building trades. Also, the shortage of pig iron resulted in increased dependence upon imported ferrous scrap to meet metallic requirements for the iron and steel industry. To cope with this situation, the Japanese steel industry revised its 5-year construction plan for blast furnaces to provide an increased capacity of 50 percent above the 1956 level. The revised plan included construction of additional oxygen-steel converters that will reduce the quantity of scrap needed for steel production. Planned converter production in 1960 will be 3.7 million short tons, compared with 0.5 million tons in 1956.

The price of steelmaking pig iron increased from \\$22,700 \quad 26 per short ton in January to \\$27,200 in December. Because of speculative buying the price of 19-mm. bars rose to \\$88,000 in September,

²² European Iron and Steel Community, Fifth General Report on the Activities of the Community: Pub. Dept., Apr. 13, 1957, 358 pp.

²⁴ Metal Bulletin (London), No. 4132, Oct. 2, 1956, p. 12.

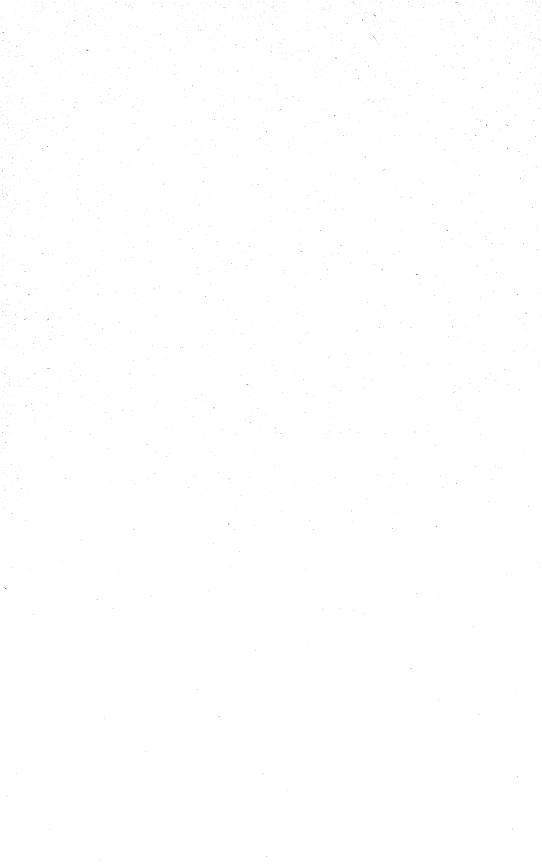
²⁵ Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 5, May 1957, pp. 9-15.

²⁶ US\$1=360 yen.

which prompted announcement of an allocation arrangement for certain steel products by the Government. As the result of this announcement, speculators were discouraged, and the price of these bars dropped to \\$60,800 in December. During the same period the mill price for this product increased from \(\frac{\frac{3}}{4}\)1,700 to \(\frac{3}{4}\)4,500.

The average wage of steelworkers per day was \$2.78.27

Taiwan (Formosa).—A preliminary agreement between the Chinese Nationalist Government and the Aetna-Standard Engineering Co. of Pittsburgh, Pa., to establish an iron and steel plant in Formosa was announced. This plant, with an output of 200,000 tons annually and costing between \$55 and \$60 million, will use local coal and Philippine iron ore. Formosa has consumed about 180,000 tons of steel yearly, of which about 110,000 tons has been imported in semifinished form for use in making plates, rails, structural steel, galvanized sheets, tinplate, and bars.²⁸


OCEANIA

Australia.—Australia's steel production continued to be about three-fourths million short tons below consumption. Pig-iron and steel production for 1956 was 2.3 and 2.9 million tons, respectively. To meet the shortage of steelmaking and finishing capacity, the Broken Hill Proprietary Co., Ltd., and its subsidiary, Australian Iron & Steel, Ltd., Australia's sole producers, have been expanding their plants. A new 1-million-ton-per-year hot-strip mill, the first wide hot-strip mill in Australia, was completed at Port Kembla in August 1955 at a cost of A30 million.

Also at Port Kembla 2 new 300-short ton open hearths were completed, increasing Australian steelmaking capacity by 400,000 tons. Several rolling mills were under construction or had recently been built at other locations. A tinplate mill with an annual capacity of 75,000 tons was scheduled for completion at Port Kembla in late An ore screening and sintering plant valued at A4.7 million was completed at Port Kembla. Blast-furnace output was expected

to increase through improving blast-furnace feed.29

<sup>U. S. Embassy, Tokyo, Japan, State Department Dispatch 1039: Apr. 2, 1957.
Metal Bulletin (London), No. 4151, Dec. 7, 1956, p. 25.
U. S. Consulate General, Sydney, Australia, State Department Dispatch 110: Jan. 22, 1957. Mining Journal (London), Steel Expansion: Vol. 245, No. 6264, Sept. 9, 1955, p. 288. Chemical Engineering and Mining Review, vol. 49, No. 4, Jan. 15, 1957, p. 111.</sup>

Iron and Steel Scrap

By James E. Larkin 1

OMESTIC consumption of ferrous materials—scrap and pig iron—during 1956 was 2 percent less than in 1955, due in part to the major steel strike of 34 days during July and August and to other work stoppages in the iron and steel industries throughout the year. Despite the more than 9-percent loss in operating time, scrap was consumed at new high rates in March and October, the 7,541,000 short tons used during March exceeded previous quantities used for any 1 month.

During January, March, October, November, and December, pig iron was consumed at a rate greater than in any previous month; a record quantity of 7,224,000 short tons was used in October. The 14,753,000 short tons of ferrous materials (scrap and pig iron) consumed during October was the highest monthly rate at which these materials have ever been used and was followed closely by the 14,-

616,000 short tons used during March.

On December 31, 1956, total stocks of ferrous scrap held by consumers reached an alltime high; the stocks were 3 percent greater than at the beginning of the year and were equivalent to a 34-day supply at an average daily scrap consumption rate of 219,000 short tons.

GOVERNMENT REGULATIONS

The continued record foreign steel production was again made possible to a large extent through the record quantity of iron and

steel scrap exported from the United States.

Export licensing of iron and steel scrap on an open-end basis, as established in December 1954 and modified in March 1955, remained in effect until September 13, 1956, when the United States Department of Commerce eased its regulations for licensing exports of iron and steel scrap.

The new regulations stated that bills of lading would not be required and licenses would be granted on less than a cargo-for-cargo basis, however, exporters would still be required to certify that the scrap

covered by their application was available for export.

On June 29, 1956, President Eisenhower approved Public Law 631, 84th Congress, extending the Export Control Act of 1949, without change, to June 30, 1958. Legislation was included in this act that directed the Secretary of Commerce to make a survey of available

¹ Commodity specialist.

and potentially available iron and steel scrap. The final results of such a survey were to be presented to Congress by January 15, 1957.

On July 16, 1956, Public Law 723, 84th Congress, H. R. 8636, was approved, and extended the suspension of import duties on all metal scrap until June 30, 1957, provided it would not apply to lead scrap, lead alloy scrap, antimonial lead scrap, scrap battery lead or plates, zinc scrap, or zinc alloy scrap, or to any form of tungsten scrap, tungsten carbide scrap, or tungsten alloy scrap, or to articles of lead, lead alloy, antimonial lead, zinc, or zinc alloy, or to articles of tungsten, tungsten carbide, or tungsten alloy, imported for remanufacture by melting.

CONSUMPTION

Of the 1956 consumption of ferrous scrap and pig iron for all purposes, 80.3 million short tons or 52 percent was scrap, which was 1 percent less than in 1955. The decreasing use of ferrous scrap was accompanied by a 3-percent decline in demand for pig iron. The 1956 consumption of pig iron was 75.0 million short tons, compared with 77.2 million short tons in 1955.

The output of steel ingots and castings (115 million short tons) decreased 2 percent from 1955 and required the melting of 128.7 million short tons of ferrous materials, scrap and pig iron, in steel-making furnaces (open-hearth, Bessemer and electric). These furnaces consumed 62.3 million short tons of scrap and 66.4 million short tons of pig iron, an increase of 1 percent and a decrease of 2 percent compared with 1955. In October and December records were established in the use of scrap and pig iron, respectively, in steel-making furnaces.

The proportions of scrap and pig iron used in steel furnaces in 1956 were 48 and 52 percent, respectively—the same as during 1955. The charge of scrap and pig iron used in iron foundries, mainly cupola furnaces, comprised 66-percent scrap and 34-percent pig iron, un-

changed from 1955.

Domestic consumption of scrap and pig iron decreased 1 and 3 percent, respectively, compared with 1955. New England, West North Central, West South Central, and Pacific Coast districts together consumed 11 percent of the total scrap and 4 percent of the pig iron in 1956, compared with 10 and 4 percent, respectively, in 1955. The average ratio of scrap to pig iron in these 4 districts was 2.7:1, compared with 2.8:1 in 1955. The United States average was 1.07:1, compared with 1.05:1 in 1955.

Open-hearth furnaces, the largest consumers of ferrous scrap and pig iron, consumed 63 percent of the total scrap in 1956, the same as in 1955. Pig-iron consumption in these furnaces represented 83 percent

of the total pig iron, unchanged from 1955.

Of the total scrap and pig iron consumed cupola furnaces used 14 percent and 7 percent, respectively, compared with 15 percent and 8 percent in 1955.

Bessemer converters (including the oxygen-steel process) consumed 5 percent of the pig iron and 0.5 percent of the scrap, the same per-

centages as during the previous year.

Electric furnaces consumed 14 percent of the total scrap (2 percent more than in 1955) and 0.3 percent of the pig iron, compared with 0.4 percent in 1955.

TABLE 1.—Salient statistics of ferrous scrap and pig iron in the United States, 1955-56

	1955 (short tons)	1956 (short tons)	Change from 1955 (percent)
Stocks, December 31: Ferrous scrap and pig iron at consumers' plants:			
Total scrapPig iron	7, 210, 329 2, 289, 200	7, 416, 055 2, 354, 796	+3 +3
Total	9, 499, 529	9, 770, 851	+3
Consumption: Ferrous scrap and pig iron charged to: Steel furnaces: 1			
Total scrap Pig iron	61, 774, 897 67, 957, 207	62, 276, 019 66, 437, 573	$^{+1}_{-2}$
Total	129, 732, 104	128, 713, 592	-1
Iron furnaces: ² Total scrap	18, 225, 324 9, 259, 128	16, 698, 026 8, 557, 906	-8 -8
Total	27, 484, 452	25, 255, 932	-8
Miscellaneous uses ³ and ferroalloy production: Total scrap All uses:	1, 374, 878	1, 341, 125	
Total ferrous scrapPig iron	81, 375, 099 77, 216, 335	80, 315, 170 74, 995, 479	-1 -3
Grand total	158, 591, 434	155, 310, 649	-2
Imports of scrap (including tinplate scrap)Exports of scrap:	4 228, 539	255, 569	+12
Tron and steel	4 5 5, 171, 774 4 16, 735	⁵ 6, 404, 140 28, 274	+24 +69
Scrap: No. 1 Heavy-Melting, Pittsburgh 6 No. 1 Cast Cupola, Chicago 6 For export	\$49. 5Z	7 \$53. 95 7 \$55. 05 \$52. 20	+32 +12 +35
Pig fron, f. o. b. Valley furnaces 6 Basic No. 2 Foundry	\$57. 19 \$57. 69	\$60. 67 \$61. 17	+6 +6

Includes open-hearth, Bessemer, electric furnaces, and oxygen steel process.
 Includes cupola, air, crucible, and blast furnaces, also direct castings.
 Includes rerolling, reforging, copper precipitation, nonferrous, and chemical uses.
 Revised figure.
 Includes rerolling materials.

Fron Age. 7 Estimate.

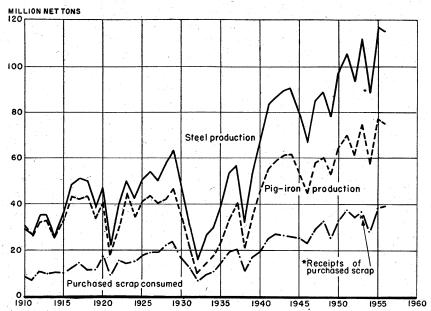


FIGURE 1.—Consumption of purchased scrap in the United States, 1910–52, and output of pig iron and steel, 1910–56. Figures on consumption of purchased scrap for 1910–32 are from State of Minnesota vs. Oliver Iron Mining Co., et al., Exhibits, vol. 5, 1935, p. 328; those for 1933–34 are estimated by authors; and those for 1935–52 are based on Bureau of Mines records. Data for 1953–56 represent receipts of purchased scrap by consumers, based on Bureau of Mines records. Data on steel output supplied by the American Iron and Steel Institute.

TABLE 2.—Ferrous scrap and pig iron consumed in the United States and percent of total derived from scrap and pig iron, 1955-56, by districts

	1955			1956			
District	Total con-		of total imed	Total con-	Percent		
	(short tons)	Scrap	Pig iron	(short tons)	Scrap	Pig iron	
New England	1, 221, 242 47, 869, 716 74, 221, 856 2, 978, 887 11, 495, 115 9, 689, 497 2, 622, 934 3, 917, 579 4, 574, 608	76. 9 48. 3 52. 3 74. 9 44. 8 43. 7 71. 0 42. 3 72. 9	23. 1 51. 7 47. 7 25. 1 55. 2 56. 3 29. 0 57. 7 27. 1	1, 280, 530 47, 904, 683 72, 076, 494 2, 841, 214 11, 179, 773 8, 730, 769 2, 578, 353 3, 868, 423 4, 850, 410	76. 6 49. 1 52. 2 76. 9 44. 5 46. 9 73. 4 43. 1 70. 1	23. 4 50. 9 47. 8 23. 1 55. 5 53. 1 26. 6 9 29. 9	
Total	158, 591, 434	51.3	48. 7	155, 310, 649	51.7	48.3	

TABLE 3.—Consumption of ferrous scrap and pig iron in the United States, 1955—56, by type of furnace, in short tons

\mathbf{T}_{i}	ype of furnace or equipment	Total scrap	Pig iron	Total scrap and pig iron
Om an haarth	1955	51, 555, 356	63, 750, 490	115, 305, 846
			3, 932, 920	4, 351, 288
Electric Oupola		9, 801, 173 12, 057, 789	273, 797 5, 961, 861	10, 074, 970 18, 019, 650
Air		1, 444, 981	295, 209 38	1, 740, 190 112
Blast		4, 722, 480	3, 002, 020	4, 722, 480
Ferroalloy		343, 563		3, 002, 020 343, 563 1, 031, 313
Total		81, 375, 099	77, 216, 335	158, 591, 434
Inan-haerth	1956	50, 805, 559	62, 165, 807	112, 971, 366
Bessemer 1		413, 347	4, 038, 845 232, 921	4, 452, 192 11, 290, 034
lunala		11, 025, 003	5, 349, 402	16, 374, 40
\ir		1, 269, 099	292, 717 36	1, 561, 810 12
Blast		4, 403, 833	2, 915, 751	4, 403, 83 2, 915, 75
Perroallov		371, 130	2, 310, 101	371, 13 969, 99
			74, 995, 479	155, 310, 64

¹ Includes scrap and pig iron used in oxygen steel process.

TABLE 4.—Proportion of scrap and pig iron used in furnaces in the United States, 1955-56, in percent

Type of furnace		19	55	1956		
		Scrap	Pig iron	Scrap	Pig iron	
Open-hearth Bessemer 1		44. 7 9. 6	55. 3 90. 4	45. 0 9. 3	55. 0 90. 7	
Electric Cupola Air		97. 3 66. 9 83. 0	2. 7 33. 1 17. 0	97. 9 67. 3 81. 3	2. 32. 18.	
Crucible Blast		66. 1 100. 0	33. 9	71. 7 100. 0	28.	

¹ Includes oxygen-steel process.

CONSUMPTION BY DISTRICTS AND STATES

Despite the small decrease from 1955 in total scrap and pig iron used during 1956, scrap increased in 5 of the 9 geographical areas; pig iron decreased in all but the New England and Pacific Coast areas. As in previous years, the largest consuming areas were East North Central, Middle Atlantic, and South Atlantic. The States consuming the largest quantities of scrap and the percentages consumed were: Pennsylvania, 23 (22 in 1955); Ohio, 18 (17 in 1955); Indiana and Illinois, 10 each (11 and 10, respectively, in 1955).

TABLE 5.--Consumption of ferrous scrap and pig iron in the United States in 1956, by type of consumer and type of furnace, in short tons

	Total seran	and pig iron	112, 971, 366 4, 452, 192 11, 290, 034	128, 713, 592	16, 374, 405 1, 561, 816 1, 403, 833	2, 915, 751 371, 130 969, 995	155, 310, 649 158, 591, 434
	Total	Pig iron	62, 165, 807 4, 038, 845 232, 921	66, 437, 573	5, 349, 402 292, 717 36	2, 915, 761	74, 995, 479 77, 216, 335
	T.	Scrap	50, 805, 559 413, 347 11, 057, 113	62, 276, 019	11, 025, 003 1, 269, 099 4, 403, 833	371, 130 969, 995	80, 315, 170 81, 375, 099
	cellaneous	Total scrap and pig iron	7, 294 206, 695	213, 989	14, 443, 335 1, 143, 446 10	1, 286, 396 371, 130 643, 898	18, 102, 304 19, 397, 606
	Iron foundries and miscellaneous users	Pig iron	1, 551 27, 268	28, 819	4, 717, 638 214, 732 36	1, 286, 396	6, 247, 621 6, 644, 769
Type of consumer	Iron found	Scrap	5, 743 179, 427	185, 170	9, 725, 697 928, 714 74	371, 130 643, 898	11, 854, 683 12, 752, 837
Type of	Manufacturers of steel castings ²	Total scrap and pig iron	1, 093, 784 15, 642 1, 991, 166	3, 100, 592	588, 138 366, 629		4, 055, 359 3, 526, 868
	irers of stee	Pig iron	170, 698 737 35, 372	206, 807	33, 300 62, 698		302, 805 245, 896
	Manufactu	Scrap	923, 086 14, 905 1, 955, 794	2, 893, 785	554, 838 303, 931		3, 752, 554 3, 280, 972
	ingots and	Total scrap and pig iron	111, 877, 582 4, 429, 256 9, 092, 173	125, 399, 011	1, 342, 932 51, 741 17 4, 403, 833	326, 097	133, 152, 986 135, 666, 960
	Manufacturers of steel ingots and castings 1	Pig iron	61, 995, 109 4, 036, 557 170, 281	66, 201, 947	598, 464	1, 028, 900	58, 445, 053 70, 325, 670
	Manufact	Scrap	49, 882, 473 392, 699 8, 921, 892	59, 197, 064	744, 468 36, 454 17 4, 403, 833	326, 097	64, 707, 933 65, 341, 290
	Type of furnace or equipment		Open-hearth Bessemer ³	Total steelmaking furnaces	Cupola Air Crucible Blast 4.	Ferroalloy.	Total: 1956

Includes only those eastings made by companies producing steel ingots.

Excludes companies that produce both steel ingots and steel castings.

Includes scrap and pig iron used in oxygen-steel process.

Includes consumption in bisst furnaces by both integrated and nonintegrated mills.

TABLE 6.—Consumption of ferrous scrap and pig iron in the United States, 1952–56, by districts

District and year	Total scrap (short tons)	Change from pre- vious year (percent)	Pig iron (short tons)	Change from pre- vious year (percent)
New England: 1952	940, 579	-20.3	296, 086	-26.8
1953	942, 226 757, 486	+.2 -19.6	305, 786	+3.3 -20.3
1954 1955	757, 486	-19.6 +24.0	243, 579	-20.3 + 15.7
1956	939, 422 981, 225	+4.4	296, 086 305, 786 243, 579 281, 820 299, 305	+6.2
Middle Atlantice		-10.4		-15.1
1952 1 1952 1 1953 1	20, 642, 588 23, 270, 654 16, 257, 629 23, 143, 420 23, 498, 290	+12.7	20, 398, 739 24, 499, 189 17, 793, 842 24, 726, 296	+20.1
1953 ¹	16, 257, 629	-30.1	17, 793, 842	-27.4
1955	23, 143, 420 23, 498, 290	$+42.4 \\ +1.5$	24, 726, 296 24, 406, 393	+39.0 -1.3
1956. East North Central:				
1952 ¹	31, 258, 860 35, 465, 748	-10.2 + 13.5	27, 162, 411 33, 695, 462	-13.7 +24.1
1954 1	29, 269, 021	-17.5	26, 498, 859	-21.4
1055	38, 827, 041	+32.7 -3.1	35, 394, 815 34, 454, 115	+33. 6 -2. 7
1956. West North Central:	37, 622, 379	-3.1		-2. 1
1952	2, 319, 763 2, 187, 526	-12.3	695, 594 697, 850 601, 147 748, 457 657, 696	-21.5
1953 ¹	2, 187, 526 1, 819, 496	-5.7 -16.8	697, 850	+. 3 -13. 9
1955	2, 230, 430	+22.6	748, 457	+24.
1956	2, 230, 430 2, 183, 518	-2.1	657, 696	-12.1
South Atlantic:	4 588 962	(2)	5.108.186	-13.9
1952 ¹	4, 588, 962 5, 078, 804	(2) +10.7	5, 951, 217	+14.2
1954 1	4, 221, 583	-16.9	5, 639, 798	-5.2 + 12.6
1955	4, 221, 583 5, 145, 031 4, 971, 985	+21.9 -3.4	5, 108, 186 5, 951, 217 5, 639, 798 6, 350, 084 6, 207, 788	-2.2
1906. 1956. East South Central:				
1952 ¹	3, 488, 798 3, 959, 665	$-14.9 \\ +13.5$	4, 373, 527 5, 219, 535	-11.5 +19.5
1954 1	3, 323, 212	-16.1	4, 318, 997	1 —17.3
	3, 323, 212 4, 232, 268	+27.4	5, 457, 229	+26.4 -15.
1956. 1956. West South Central:	4, 098, 150	-3.2	4, 632, 619	-15.
1952	1, 193, 583	-8.3	430, 925 580, 625	-27.
1953	1, 377, 747	+15.4	580, 625 670, 494	+34. +15.
1954 1955	1, 508, 612 1, 863, 407	+9.5 +23.5	759, 527	+13.
1056	1, 863, 407 1, 893, 789	+1.6	684, 564	-9.
Rocky Mountain: 1952.	1 453 409	-14.0	1 777 996	-4.
1953	1, 453, 402 1, 595, 976	+9.8 -7.0	2, 507, 558	+41.
1954	1, 483, 596	-7.0	1,889,679	-24. +19.
1955 1956	1, 483, 596 1, 657, 623 1, 668, 006	+11.7 +.6	1, 777, 226 2, 507, 558 1, 889, 679 2, 259, 956 2, 200, 417	-2.
Pacific Coast:	j .	•	1	
1952 1	3, 061, 178 3, 167, 946 2, 643, 106 3, 336, 457	-7.0 +3.5	1, 308, 267 1, 249, 255	+. -4.
1953 ¹	2, 643, 106	-16.6	1,005,654	-19.
1955	3, 336, 457	+26.2	1, 238, 151	+23. +17.
1956 Undistributed:	3, 397, 828	+1.8	1, 452, 582	+17.
1952 1	75, 411 84, 210			
1953 1	84, 210 70, 708			
1954 1 1955	10, 108			
1956				
United States 1947-51 (average)	65 150 167		61, 624, 272	
1952 1	65, 159, 167 69, 023, 124	-10.0	61, 550, 961	-13.
1953 1	77, 130, 502	+11.7	74, 707, 744	+21. -21.
1954 1 1955	77, 130, 502 61, 354, 449 81, 375, 099	$-20.5 \\ +32.6$	61, 624, 272 61, 550, 961 74, 707, 744 58, 662, 049 77, 216, 335 74, 995, 479	+31.
1956	80, 315, 170	-1.3	74, 995, 479	-2.

¹ Some scrap consumed in East North Central, West North Central, East South Central, Middle Atlantic, Pacific Coast, and South Atlantic districts, and some pig iron consumed in the East North Central district—not separable—are included with "Undistributed."

² Less than 0.05 percent.

TABLE 7.—Consumption of ferrous scrap and pig iron in the United States in 1956, by districts and States, in short tons

	1			1		1
District and State	Total scrap (short tons)	Per- cent of total	Pig iron (short tons)	Per- cent of total	Total scrap and pig iron (short tons)	Per- cent of total
New England:						
Connectiont	311, 199	0.4	54, 104	0.1	365, 303 14, 019	0.2
Maine Massachusetts New Hampshire Rhode Island	9, 463 499, 985	(1)	4, 556 170, 658	(1)	14, 019 670, 643	(1)
New Hampshire	21, 867 104, 350	(1)	4, 059 52, 875	(1)	25, 926	(1)
Vermont	34, 361	(1).1	13, 053	(1)	25, 926 157, 225 47, 414	.1
Total	981, 225	1, 2	299, 305	.4	1, 280, 530	.8
Middle Atlantic:		-			-,,	-
New Jersev	733, 664	.9	245, 524	.3	979, 188	
New York Pennsylvania	4, 056, 755 18, 707, 871	5.1	3, 710, 751 20, 450, 118	5.0	7, 767, 506	5.0
	10, 101, 811	23. 3	20, 450, 118	27.3	39, 157, 989	25. 2
Total	23, 498, 290	29. 3	24, 406, 393	32. 6	47, 904, 683	30. 9
East North Central:	- OFO O45					
Illinois Indiana	7, 850, 947 8, 285, 555	9. 8 10. 3	5, 942, 389 9, 015, 531	7. 9 12. 0	13, 793, 336 17, 301, 086 10, 622, 401 29, 107, 374 1, 252, 297	8. 9 11. 1
Michigan	6 220 623	7.7	4. 401. 778	6.0	10, 622, 401	6.8
Michigan Ohio Wisconsin	14, 288, 941 976, 313	17.8 1.2	14, 818, 433 275, 984	19.7	29, 107, 374	18.8
Total	37, 622, 379	46.8	34, 454, 115	45. 9	72, 076, 494	46, 4
West North Central:	=======================================		01, 101, 110	10. 0	12,010,434	40. 4
Iowa	412, 596	.5	73, 814	.1	486, 410	.3
Kansas and Nebraska Minnesota, North Dakota, and South	412, 596 105, 747	.1	73, 814 5, 769	(1).1	111, 516	.i
Dakota Missouri	625, 309 1, 039, 866	.8 1.3	532, 391 45, 722	.7	1, 157, 700 1, 085, 588	.7
Total	2, 183, 518	2.7	657, 696	.9	2, 841, 214	1.8
South Atlantic:					2,011,211	1.0
Delaware, District of Columbia, and						
Maryland Florida and Georgia	2, 821, 816 284, 509	3. 5 . 4	4, 050, 142 23, 245	5. 4 (1)	6, 871, 958 307, 754	4.4
North Carolina	56, 886	.1	22, 109	(1)	78, 995	
South Carolina Virginia and West Virginia	27, 955 1, 780, 819	(1) 2. 2	22, 109 13, 777 2, 098, 515	(1) 2.9	78, 995 41, 732 3, 879, 334	(1) 2, 5
Total	4, 971, 985	6. 2	6, 207, 788	8.3	11, 179, 773	7.2
East South Central:			0,201,100		11, 110, 110	- 1.2
Alabama	2, 433, 937	3.0	3, 674, 477	4. 9	6, 108, 414	4. 0
Alabama Kentucky, Mississippi, and Tennes- see	1, 664, 213	2.1	958, 142	1. 3	2, 622, 355	1.6
Total	4, 098, 150	5. 1	4, 632, 619	6.2	8, 730, 769	5.6
la la la la la la la la la la la la la l	1, 000, 100		1, 002, 010		3, 730, 705	
West South Central: Arkansas, Louisiana, and Oklahoma.	189, 325	.3	9 132	(1)	198 457	
Texas	1, 704, 464	2.1	9, 132 675, 432	.9	198, 457 2, 379, 896	. 1 1. 6
Total.	1, 893, 789	2. 4	684, 564	. 9	2, 578, 353	1.7
Rocky Mountain:						
Arizona, Nevada, and New Mexico Colorado and Utah	64, 821 1, 578, 024	2.1	184 2, 199, 915	(1) 2. 9	65, 005 3, 777, 939	. 1 2. 4
Idaho, Montana, and Wyoming	25, 161	2.0	318	(1)	25, 479	(1) 2. 4
Total	1, 668, 006	2.1	2, 200, 417	2. 9	3, 868, 423	2.5
Pacific Coast:						
California Oregon	2, 789, 406	3.4	1, 430, 737	1.9	4, 220, 143	2. 7
Washington	2, 789, 406 221, 049 387, 373	.3	2, 164 19, 681	(1)	223, 213 407, 054	.1
	3, 397, 828	4.2	1, 452, 582	1.9	4, 850, 410	3.1
Total			, ,		,,	U. 1
Total United States: 1956	80, 315, 170	100. 0	74, 995, 479	100.0	155, 310, 649	100.0

¹ Less than 0.05 percent.

TABLE 8.—Iron and steel scrap, net available supply 1 for consumption in 1956, by districts and States, in short tons

New England:	avail-supply con- roon-supply 306, 067 9, 663 479, 220 22, 857 105, 885 34, 488 958, 180 959, 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 291, 208 976, 111 618, 401 560, 713
Connecticut 130, 609 188, 618 310, 22 5, 300 Maine 5, 331 9, 773 115, 104 5, 441 Massachusetts 219, 475 283, 598 503, 073 23, 853 New Hampshire 9, 680 13, 881 23, 561 704 Rhode Island 49, 451 59, 612 109, 063 3, 178 Vermont 15, 248 19, 249 34, 497 9 Total: 1956 429, 794 571, 431 1, 001, 225 43, 045 1955 400, 832 595, 001 995, 833 36, 108 Middle Atlantic: 220, 717 536, 443 757, 160 34, 369 New York 1, 972, 364 2, 197, 326 4, 169, 690 39, 412 4, 2 Pennsylvania 11, 310, 456 8, 377, 762 19, 688, 218 859, 804 18, 777, 762 19, 688, 218 859, 804 18, 777, 172 19, 688, 218 859, 804 18, 777, 762 19, 688, 218 859, 804 18, 777, 762 19, 688, 218 859, 804 18, 777, 762 19, 688, 218 859	9, 663 479, 220 22, 857 105, 885 34, 488 958, 180 959, 725 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
Connecticut 130, 009 188, 318 310, 22 5, 300 Maine 5, 331 9, 773 115, 104 5, 441 Massachusetts 219, 475 283, 598 503, 073 23, 853 New Hampshire 9, 680 13, 881 23, 561 704 Rhode Island 49, 451 59, 612 109, 063 3, 178 Vermont 15, 248 19, 249 34, 497 9 Total: 1956 429, 794 571, 431 1, 001, 225 43, 045 1955 400, 832 595, 001 995, 833 36, 108 Middle Atlantic: 220, 717 536, 443 757, 160 34, 369 New York 1, 972, 364 2, 197, 326 4, 169, 690 39, 412 4, 2 Pennsylvania 11, 310, 456 8, 377, 762 19, 688, 218 859, 804 18, 777, 762 19, 688, 218 859, 804 18, 704 1955 13, 680, 059 10, 341, 868 24, 021, 927 944, 571 23, 83, 585 23, 111, 1531 24, 4615, 068 993, 586 23, 111, 1531 24, 4615,	9, 663 479, 220 22, 857 105, 885 34, 488 958, 180 959, 725 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
Maine 5, 331 9, 773 15, 104 5, 441 Massachusetts 219, 475 283, 598 503, 073 23, 853 New Hampshire 9, 680 13, 881 23, 561 704 </td <td>9, 663 479, 220 22, 857 105, 885 34, 488 958, 180 959, 725 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713</td>	9, 663 479, 220 22, 857 105, 885 34, 488 958, 180 959, 725 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
New Hampshire	22, 857 105, 885 34, 488 958, 180 959, 725 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
Rhode Island. 49, 451 59, 612 109, 039 34, 497 9 Total: 1956. 429, 794 571, 431 1, 001, 225 43, 045 1955. 400, 832 595, 001 995, 833 36, 108 Middle Atlantic: New Jersey. 220, 717 536, 443 757, 160 34, 369 New York. 1, 972, 364 2, 197, 326 4, 169, 660 39, 412 4, Pennsylvania. 111, 310, 456 8, 877, 762 19, 688, 218 859, 804 18, Total: 1956. 13, 503, 537 11, 111, 531 24, 615, 668 933, 585 23, 1955 13, 680, 059 10, 341, 868 24, 021, 927 944, 571 23, 1955 13, 680, 059 10, 341, 868 24, 021, 927 944, 571 23, 1955 13, 680, 659 10, 341, 868 24, 021, 927 944, 571 23, 1956 10, 341, 868 24, 021, 927 147, 086 60, 010, 010, 010, 010, 010, 010, 010,	105, 885 34, 488 958, 180 959, 725 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 299, 916 291, 208 976, 111 618, 401 560, 713
Vermont 15, 248 19, 249 34, 467 9 Total: 1956. 429, 794 571, 431 1, 001, 225 43, 045 Middle Atlantic: 220, 717 536, 443 757, 160 34, 369 New Jersey 220, 717 536, 443 757, 160 34, 369 New York 1, 972, 364 2, 197, 326 4, 169, 690 39, 412 4, Pennsylvania Total: 1956. 13, 503, 537 11, 111, 531 24, 615, 668 933, 585 23, 1955 East North Central: 3, 877, 107 4, 235, 031 8, 112, 138 266, 698 7, Michigan Michigan 3, 164, 426 3, 187, 786 6, 352, 212 147, 086 6, 352, 212 147, 086 6, 600 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 496 337, 288 14, 628, 49	958, 180 959, 725 722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
Middle Atlantic: 220,717 536,443 757, 160 34,369 A4,369 A7,369 A4,369 A7,369 A4,369 A7,369	722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
Middle Atlantic: 220,717 536,443 757, 160 34,369 A4,369 A7,369 A4,369 A7,369 A4,369 A7,369	722, 791 130, 278 828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
New Jersey. 220, 717 536, 443 757, 160 34, 309 1 1, 1972, 364 2, 169, 600 39, 412 4, 169, 600 39, 412 4, 169, 600 39, 412 4, 169, 600 18, 4169, 4169,	828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
Pennsylvania	828, 414 681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
Total: 1956	681, 483 077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713
East North Central: 3, 877, 107 4, 235, 031 8, 112, 138 266, 098 7, 110 103 103 104, 205 105, 205 1	077, 356 846, 040 299, 916 205, 126 291, 208 976, 111 618, 401 560, 713 407, 521
East North Central: 3,877, 107 4,235,031 8,112,138 266,098 7,1111015 Illinois 5,076,849 3,393,824 8,470,673 170,757 8,832 Michigan 3,164,426 3,187,786 6,352,2112 147,086 6,60 Ohio 8,187,240 6,441,256 14,628,496 337,288 14, Wisconsin 556,352 525,923 1,082,275 106,164 106,164 Total: 1956 20,861,974 17,783,20 38,645,794 1,027,393 37, 1955 22,118,354 17,636,493 39,754,847 1,194,134 38, West North Central: 160,29,837 78,746 108,583 3,409 Kansas and Nebraska 29,837 78,746 108,583 3,409 Minnesota, North and South Dakota 288,687 329,216 617,903 5,564 Missouri 200,317 894,005 1,944,322 3310 1, Total: 1956 665,106 1,570,865 2,235,971 16,305 2, <	291, 208 976, 111 618, 401 560, 713 407, 521
Illinois	291, 208 976, 111 618, 401 560, 713 407, 521
Wisconsin. 556, 352 520, 923 1, 082, 275 106, 164 Total: 1956 20, 861, 974 17, 783, 820 38, 645, 794 1, 027, 393 37, 194, 134 West North Central: 11092 268, 898 415, 163 7, 642 Kansas and Nebraska 29, 837 78, 746 108, 583 3, 409 Minnesota, North and South Dakota 288, 687 329, 216 617, 903 5, 564 Missouri 200, 317 894, 005 1, 094, 322 3 310 1, Total: 1956 665, 106 1, 570, 865 2, 235, 971 16, 305 2,	291, 208 976, 111 618, 401 560, 713 407, 521
Wisconsin. 556, 352 520, 923 1, 082, 275 106, 164 Total: 1956 20, 861, 974 17, 783, 820 38, 645, 794 1, 027, 393 37, 194, 134 West North Central: 11092 268, 898 415, 163 7, 642 Kansas and Nebraska 29, 837 78, 746 108, 583 3, 409 Minnesota, North and South Dakota 288, 687 329, 216 617, 903 5, 564 Missouri 200, 317 894, 005 1, 094, 322 3 310 1, Total: 1956 665, 106 1, 570, 865 2, 235, 971 16, 305 2,	291, 208 976, 111 618, 401 560, 713 407, 521
Total: 1956	618, 401 560, 713 407, 521
West North Central: 146, 265 268, 898 415, 163 7, 642 Iowa. 29, 837 78, 746 108, 583 3, 409 Kansas and Nebraska. 29, 837 78, 746 108, 583 3, 409 Minnesota, North and South Dakota. 28, 687 329, 216 617, 903 5, 564 Missouri. 200, 317 894, 005 1, 094, 322 3 310 1, Total: 1956. 665, 106 1, 570, 865 2, 235, 971 16, 305 2,	407, 521
West North Central: 146, 265 268, 898 415, 163 7, 642 Iowa 29, 837 78, 746 108, 583 3, 409 Kansas and Nebraska 29, 837 78, 746 108, 583 3, 409 Minnesota, North and South Dakota 288, 687 329, 216 617, 903 5, 564 Missouri 200, 317 894, 005 1, 094, 322 310 1, Total: 1956 665, 106 1, 570, 865 2, 235, 971 16, 305 2,	407, 521 105, 174
Iowa	105 174
Minnesota, North and South Dakota. 288, 687 329, 216 617, 903 5, 504 3 500 Missouri. 200, 317 894, 005 1, 904, 322 3 310 1, Total: 1956. 665, 106 1, 570, 865 2, 235, 971 16, 305 2,	
Missouri 200, 317 894, 005 1, 094, 322 3 310 1, Total: 1956 665, 106 1, 570, 865 2, 235, 971 16, 305 2,	105, 174 612, 339
	094, 632
	219, 666 247, 212
South Atlantic: Delaware, District of Columbia, and	022 000
	855, 228 281, 373
Florida and Georgia. 70, 850 208, 629 279, 479 \$1, 894 North Carolina. 28, 800 38, 474 67, 274 8, 198 South Carolina. 11, 829 10, 778 22, 607 971	59, 076
North Carolina. 28, 800 38, 474 67, 274 8, 198 South Carolina. 11, 829 10, 778 22, 607 971 Virginia and West Virginia. 857, 073 929, 104 1, 786, 177 67, 449 1,	21, 636 718, 728
	936, 041
Total: 1956. 3, 051, 997 1, 980, 559 5, 032, 556 96, 515 4, 1955 2, 113, 554 5, 247, 917 94, 752 5,	153, 165
East South Central:	275 565
Alabama 1, 430, 853 1, 169, 053 2, 599, 906 224, 341 2, Kentucky, Mississippi, and Tennessee 634, 702 1, 109, 066 1, 743, 768 40, 136 1,	375, 565 703, 632
Total: 1956. 2, 065, 555 2, 278, 119 4, 343, 674 264, 477 4,	079, 197
Total: 1956. 2, 065, 555 2, 278, 119 4, 343, 674 264, 477 4, 1955 2, 331, 075 2, 201, 345 4, 532, 420 301, 634 4,	230, 786
West South Central: Arkansas Louisiana and Oklahoma 52,052 156,944 208,996 2,596	206, 400
Arkansas, Louisiana, and Oklahoma 52, 052 156, 944 208, 996 2, 596 Texas 667, 621 1, 082, 655 1, 750, 276 50, 069 1,	700, 207
Total: 1956 719, 673 1, 239, 599 1, 959, 272 52, 665 1,	906, 607 998, 646
	990, 010
Rocky Mountain: Arizona, Nevada, and New Mexico 11, 479 55, 965 67, 444 2, 493	64, 951
Arizona, Nevada, and New Mexico 11, 479 55, 965 67, 444 2, 493 Colorado and Utah 1, 056, 738 576, 168 1, 632, 906 15, 171 1, Idaho, Montana, and Wyoming 5, 511 17, 330 22, 841 32	64, 951 617, 735 22, 809
Tuano, Montana, and 11 Journal - 1	
Total: 1956	705, 495 632, 747
Pacific Coast	
	824, 394 213, 333
California 1, 103, 780 1, 767, 7224 221, 088 7, 755 Washington 90, 646 293, 377 384, 023 5, 924	378, 099
Total: 1956 1, 304, 250 2, 239, 184 3, 543, 434 127, 608 3,	
1955 1, 251, 664 2, 248, 750 3, 500, 414 124, 232 3,	415, 826
Total United States: 1956. 43, 675, 614 39, 424, 571 83, 100, 185 2, 579, 289 80,	

¹ Net available supply for consumption is a net figure computed by adding home production to receipts from dealers and all others and deducting consumers scrap shipped, transferred or otherwise disposed of during the year.

2 Includes scrap shipped, transferred, or otherwise disposed of during the year.

3 Data shown in shipments column for Missouri (310 tons) and for Florida and Georgia (1,894 tons) are plus figures owing to adjustments in accounting procedures.

TABLE 9.—Consumption of iron and steel scrap and pig iron by districts and States, by type of manufacturers for year 1956, in short tons

· ·	1		1	, J	1	, 111 81101	1 00113	
District and State		gots and ings 1	Steel ca	stings ²	Iron four miscellan	ndries and eous users	Т	tal
	~	Ī., .		Ĭ				T T
	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron
New England:								
Connecticut Maine	170, 760	3, 680	8,609	309	131, 830 9, 463	50, 115 4, 556	311, 199	54, 104
Massachusetts	180, 165	72, 493		7, 147	280, 444	91.018	499.985	4, 556 170, 658
New Hampshire Rhode Island	63, 471	28, 529	4,764	137	17, 103	3, 922	21, 867	4, 059
Vermont	05, 471	20, 029			40, 879 34, 361	3, 922 24, 346 13, 053	104, 350 34, 361	52, 875 13, 053
Total	414, 396	104, 702	52, 749	7, 593	514, 080	187, 010	981, 225	299, 305
Middle Atlantic:								
New Jersey New York	200, 759 3, 357, 612	44, 843 3, 476, 189	67, 808	2, 144	465, 097 529, 558	198, 537	733, 664	245, 524
Pennsylvania	17, 134, 806	19, 478, 606	67, 808 169, 585 664, 639	2, 144 27, 328 87, 458	908, 426	207, 234 884, 054	4, 056, 755 18, 707, 871	3, 710, 751 20, 450, 118
Total	20, 693, 177	22, 999, 638	902, 032		1, 903, 081	İ		24, 406, 393
East North Central:								
Illinois Indiana	6, 149, 057	5, 297, 608 8, 674, 523	448, 125 270, 616 189, 003 573, 102 322, 983	36, 406	1, 253, 765	608, 375	7, 850, 947	5, 942, 389
Michigan	7, 343, 077 4, 091, 781	3, 632, 255	189, 003	18, 181 4, 660	671, 862 1, 939, 839	322, 827 764, 863	8, 285, 555 6, 220, 623	9,015,531
Ohio	12, 227, 396	13, 861, 902	573, 102	4, 660 69, 373	1, 488, 443	887, 158 260, 661	14, 288, 941	4, 401, 778 14, 818, 433 275, 984
Wisconsin					653, 330			
Total	29, 811, 311	31, 466, 288	1, 803, 829	143, 943	6, 007, 239	2, 843, 884	37, 622, 379	34, 454, 115
West North Central: Iowa Kansas and Ne-			49, 471	525	363, 125	73, 289	412, 596	73, 814
Kansas and Ne- braska Minnesota, North			45, 831	1, 122	59, 916	4, 647	105, 747	5, 769
Dakota Missouri	420, 776 734, 819	480, 420 2, 921	34, 140 120, 860	1, 564 8, 491	170, 393 184, 187	50, 407 34, 310	625, 309 1, 039, 866	532, 391 45, 722
Total	1, 155, 595	483, 341	250, 302	11, 702	777, 621	162, 653	2, 183, 518	657, 696
South Atlantic: Delaware, District				= 11, 102		102, 000	2, 100, 010	
of Columbia, and Maryland	2, 706, 808	4, 003, 881	38, 058	344	76 050	45 015	0.001.010	4 050 140
Florida and Georgia_	232, 118	4, 302	10, 532	204	76, 950 41, 859	45, 917 18, 739	2, 821, 816 284, 509	4, 050, 142 23, 245
North Carolina South Carolina					56, 886	22, 109	56, 886 27, 955	22, 109 13, 777
Virginia and West					27, 955	13, 777	27, 955	13, 777
Virginia	1, 400, 657	1, 951, 881	97, 467	13, 423	282, 695	133, 211	1, 780, 819	2, 098, 515
Total	4, 339, 583	5, 960, 064	146, 057	13, 971	486, 345	233, 753	4, 971, 985	6, 207, 788
East South Central: Alabama Kentucky, Mississippi, and Tennes-	1, 608, 075	2, 653, 224	72, 820	809	753, 042	1, 020, 444	2, 433, 937	3, 674, 477
sippi, and Tennes- see	1, 234, 378	673, 583	60, 351	1, 711	369, 484	282, 848	1, 664, 213	958, 142
Total	2, 842, 453	3, 326, 807	133, 171	2, 520	1, 122, 526	1, 303, 292	4, 098, 150	4, 632, 619
West South Central:								
Arkansas, Louisiana, and Oklahoma	81, 535	2, 128	64, 063	1, 371	43, 727	5, 633	100 205	0.100
Texas	1, 306, 448	636, 033	104, 602	551	293, 414	38, 848	189, 325 1, 704, 464	9, 132 675, 432
Total	1, 387, 983	638, 161	168, 665	1, 922	337, 141	44, 481	1, 893, 789	684, 564
Rocky Mountain:								
Arizona, Nevada, and New Mexico Colorado and Utah Idaho, Montana, and Wyoming	1, 392, 487	2, 134, 660	30, 069 34, 245	136 510	34, 752 151, 292	48 64, 745	64, 821 1, 578, 024	184 2, 199, 915
					25, 161	318	25, 161	318
Total	1, 392, 487	2, 134, 660	64, 314	646	211, 205	65, 111	1, 668, 006	2, 200, 417
Pacific Coast: California Oregon Washington	2, 223, 948 140, 914 306, 086	1, 314, 741 16, 651	145, 811 46, 606 39, 018	2, 215 167 1, 196	419, 647 33, 529 42, 269	113, 781 1, 997 1, 834	2, 789, 406 221, 049 387, 373	1, 430, 737 2, 164 19, 681
Total	2, 670, 948	1, 331, 392	231, 435	3, 578	495, 445	117, 612	3, 397, 828	1, 452, 582
Total United	64, 707, 933				11, 854, 683		80, 315, 170	
	, ,	,, 000	_,	302,000	, oo i, ooo	U, 411, U21	, 513, 170	12, 550, 419

Includes only those eastings made by companies producing steel ingots.
 Excludes companies that produce both steel ingots and steel eastings.

CONSUMPTION BY TYPES OF FURNACE

Open-Hearth Furnaces.—Despite the steel strike during 1956, production of ingots and castings (102.8 million tons) in open-hearth furnaces, only 2 percent less than the previous year, was the second highest on record, and resulted in the second largest quantity (113.0 million tons) of ferrous materials, scrap and pig iron, being consumed in these furnaces. The use of scrap and pig iron in open-hearth furnaces decreased 1 percent and 3 percent, respectively, from 1955. The open-hearth melt consisted of 45-percent scrap and 55-percent pig iron for the 4th consecutive year.

TABLE 10.—Consumption of ferrous scrap and pig iron in open-hearth furnaces in the United States in 1956, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England: Connecticut, Massachusetts, and Rhode Island	314, 391	107, 421	421,812
Total: 1956	314, 391 413, 750	107, 421 100, 856	421, 812 514, 606
Middle Atlantic: New Jersey and New York Pennsylvania	3, 197, 688 14, 166, 691	3, 535, 244 17, 883, 714	6, 732, 932 32, 050, 405
Total: 1956		21, 418, 958 21, 802, 244	38, 783, 337 38, 979, 523
East North Central: Illinois. Indiana. Michigan and Wisconsin. Ohio.	7, 240, 496 2, 079, 854 8, 839, 115	4, 743, 842 8, 683, 955 2, 999, 626 11, 166, 464	8, 994, 935 15, 924, 451 5, 079, 480 20, 005, 579
Total: 1956		27, 593, 887 28, 024, 492	50, 004, 445 50, 867, 317
West North Central: Minnesota and Missouri	916, 785	490, 318	1, 407, 103
Total: 1956		490, 318 556, 660	1, 407, 103 1, 515, 078
South Atlantic: Delaware and MarylandGeorgia and West Virginia	2, 444, 304 1, 262, 306	3, 631, 983 1, 962, 636	6, 076, 287 3, 224, 942
Total: 1956		5, 594, 619 5, 690, 794	9, 301, 229 9, 635, 847
East South Central: Alabama, Kentucky, and Tennessee	1, 853, 476	3, 185, 509	5, 038, 985
Total: 1956		3, 185, 509 3, 917, 487	5, 038, 985 5, 860, 991
West South Central: Oklahoma and Texas	1, 032, 072	518, 632	1, 550, 704
Total: 1956		518, 632 552, 918	1, 550, 704 1, 652, 280
Rocky Mountain: Colorado and Utah	1, 319, 201	1, 999, 654	3, 318, 855
Total: 1956		1, 999, 654 2, 070, 365	3, 318, 855 3, 409, 370
Pacific Coast: California and Washington	1, 888, 087	1, 256, 809	3, 144, 896
Total: 1956		1, 256, 809 1, 034, 674	3, 144, 896 2, 870, 834
Total United States: 1956	50, 805, 559	62, 165, 807 63, 750 490	112, 971, 366 115, 305, 846

New monthly high rates of consumption were established for scrap during March (4,852,000 short tons), for pig iron during December (6,017,000 short tons), and for ferrous materials, scrap and pig iron, (10,792,000 short tons).

Pennsylvania continued to lead in using scrap in open-hearth furnaces, followed by Ohio, Indiana, and Illinois; these States have

maintained the same order since 1936.

Bessemer Converters.—The 4.5 million short tons of ferrous raw materials used in Bessemer converters and the oxygen-steel process in 1956 represents a 2-percent increase over 1955. This increase in metallic charge in these furnaces resulted entirely from the greater use of pig iron, an increase of 3 percent over the previous year. The ratio of scrap to total charge was 1:11 compared with 1:10 during 1955.

Ingots produced only in Bessemer converters decreased 3 percent

from 1955.

TABLE 11.—Consumption of ferrous scrap and pig iron in Bessemer ¹ converters in the United States in 1956, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England and Middle Atlantic:			
Connecticut and New Jersey Pennsylvania	2, 159	53	2, 212
	79, 586	716, 047	795, 633
Total: 1956	81, 745	716, 100	797, 845
	127, 492	671, 226	798, 718
East North Central and West North Central:	1, 009	129, 715	130, 724
Michigan and MinnesotaOhio	170, 584	422, 353	592, 937
	150, 429	2, 401, 053	2, 551, 482
Total: 1956	322, 022	2, 953, 121	3, 275, 143
	280, 887	2, 875, 833	3, 156, 720
South Atlantic and West South Central: Delaware, Maryland, and Louisiana.	9, 013	369, 611	378, 624
Total: 1956	9, 013	369, 611	378, 624
	9, 534	385, 848	395, 382
Rocky Mountain and Pacific Coast: Colorado and Washington.	567	13	580
Total: 1956	567	13	580
	455	13	468
Total United States: 1956	413, 347	4, 038, 845	4, 452, 192
	418, 368	3, 932, 920	4, 351, 288

¹ Includes scrap and pig iron used in oxygen-steel process.

Electric Steel Furnaces.—The melt of ferrous scrap and pig iron used in electric furnaces in 1956 totaled 11.3 million short tons, a 12-percent increase over 1955. Scrap used in these furnaces increased 13 percent over 1955, whereas pig iron decreased 15 percent. The ratio of scrap to pig iron used in the electric furnaces was 47:1, compared with 36:1 in 1955. Consumption of scrap in the electric furnaces increased in all nine districts for the second consecutive year; the largest increase occurred in the East North Central district. The Middle Atlantic and East North Central areas continued to melt the largest quantity of scrap in the electric furnaces, consuming 72 percent of the total.

TABLE 12.—Consumption of ferrous scrap and pig iron in electric steel furnaces in the United States in 1956, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England: Connecticut and New Hampshire	126, 552	763	127, 315
	29, 334	850	30, 184
Total: 1956	155, 886	1, 613	157, 499
	52, 336	1, 806	54, 142
Middle Atlantic: New Jersey New York Pennsylvania	34, 238	2, 123	36, 361
	219, 367	4, 228	223, 595
	1, 897, 991	26, 715	1, 924, 706
Total: 1956	2, 151, 596	33, 066	2, 184, 662
	1, 980, 923	25, 809	2, 006, 732
East North Central: Illinois	1, 792, 635	106, 402	1, 899, 037
	147, 707	1, 722	149, 429
	1, 340, 487	48, 084	1, 388, 571
	2, 288, 088	19, 131	2, 307, 219
	223, 907	4, 994	228, 901
Total: 1956	5, 792, 824	180, 333	5, 973, 157
	5, 215, 562	223, 556	5, 439, 118
West North Central: Iowa, Kansas, and Nebraska Minnesota Missouri	93, 558	753	94, 311
	20, 646	1, 360	22, 006
	248, 153	945	249, 098
Total: 1956	362, 357	3, 058	365, 41,
	308, 577	1, 605	310, 18
South Atlantic: Delaware, District of Columbia, and Maryland Florida and Georgia North Carolina, Virginia, and West Virginia	133, 618	2, 143	135, 76
	227, 982	307	228, 28
	117, 650	359	118, 00
Total: 1956	479, 250	2, 809	482, 059
	377, 829	2, 959	380, 788
East South Central: Alabama Kentucky. Temnessee.	173, 241	292	173, 53
	514, 309	2, 713	517, 02
	25, 771	685	26, 45
Total: 1956	713, 321	3, 690	717, 01
	602, 352	10, 515	612, 86
West South Central: Arkansas, Louisiana, and Oklahoma Texas	59, 203	1, 278	60, 48
	319, 042	3, 433	322, 47
Total: 1956	378, 245	4, 711	382, 95
	315, 849	5, 042	320, 89
Rocky Mountain: Arizona, Colorado, Nevada, and Utah	61, 060	523	61, 58
Total: 1956	61, 060	523	61, 58
	42, 373	233	42, 60
Pacific Coast: CaliforniaOregonWashington	686, 731	2, 654	689, 38
	180, 280	167	180, 44
	95, 563	297	95, 86
Total: 1956	962, 574	3, 118	965, 69
	905, 372	2, 272	907, 64
Total United States: 1956	11, 057, 113	232, 921	11, 290, 03
	9, 801, 173	273, 797	10, 074, 97

Cupolas.—Consumption of ferrous materials, scrap and pig iron, in cupolas decreased 9 percent from 1955; scrap decreased 9 percent and pig iron, 10 percent. The charge to cupolas consisted of 67-percent scrap and 33-percent pig iron, the same percentages as during 1955.

Michigan continued to be the leading State in consumption of scrap in cupola furnaces, using 21 percent of the total. As a result, the East North Central district was the largest consuming area for these

furnaces, using 53 percent of the total.

Air Furnaces.—The total charge of scrap and pig iron in air furnaces in 1956 was 10 percent less than in 1955; total scrap consumed in these furnaces decreased 12 percent from the previous year, with pig iron decreasing slightly. As a result of the large consumption of scrap in air furnaces in Ohio, the East North Central district continued to be the largest consuming area for these furnaces, using 71 percent of the total scrap.

Crucible and Puddling Furnaces.—The consumption of scrap and pig iron in crucible furnaces in 1956, although negligible, was slightly larger than during 1955. No iron and steel scrap was reported as

being melted in puddling furnaces.

Blast Furnaces.—The proportion of scrap used in blast furnaces to pig iron produced was 5.8 percent, compared with 6.1 percent in 1955; total scrap consumption was 7 percent lower in 1956. Materials other than scrap constitute by far the largest proportion of blast-furnace charge and comprised 111,935,218 short tons of iron ore, sinter, and manganiferous ore; 4,046,667 tons of mill cinder and roll scale; 5,702,178 tons of open-hearth and Bessemer slag; and 9,780,923 tons of miscellaneous materials.

USE OF SCRAP IN FERROALLOY PRODUCTION

The ferroalloy plants operating electric furnaces or aluminothermic units during 1956 used 8 percent more scrap than in 1955.

Scrap used in blast furnaces in manufacturing ferroalloys is included

under blast furnaces in this chapter.

MISCELLANEOUS USES

Scrap consumed in 1956 for miscellaneous purposes, such as rerolling, nonferrous metallurgy, and as a chemical agent, was 1.2 percent of the total consumption, compared with 1.3 percent during the preceding year. The quantity so used decreased 6 percent from that used for similar purposes in 1955.

TABLE 13.—Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1956, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England: Connecticut	81, 471	42, 476	123, 947
	9, 463	4, 556	14, 019
	256, 824	90, 257	347, 081
	13, 850	2, 258	16, 108
	40, 879	24, 347	65, 226
	34, 361	13, 053	47, 414
Total: 1956	436, 848	176, 947	613, 798
	398, 787	167, 720	566, 507
Middle Atlantic: New Jersey New York Pennsylvania	360, 725	197, 775	558, 500
	394, 087	199, 244	593, 331
	767, 346	346, 810	1, 114, 156
Total: 1956	1, 522, 158	743, 829	2, 265, 987
	1, 422, 192	695, 309	2, 117, 501
East North Central: Illinois Indiana Michigan Ohio Wisconsin	1, 002, 008	280, 552	1, 282, 560
	567, 505	292, 137	859, 642
	2, 295, 302	925, 025	3, 220, 327
	1, 407, 803	591, 296	1, 999, 099
	573, 946	231, 954	805, 900
Total: 1956	5, 846, 564	2, 320, 964	8, 167, 528
	6, 875, 832	2, 743, 391	9, 619, 223
West North Central:	190, 947	69, 413	260, 360
	41, 686	5, 139	46, 825
	19, 973	403	20, 376
	174, 010	47, 768	221, 778
	175, 759	32, 071	207, 830
Total: 1956	602, 375	154, 794	757, 169
	662, 026	180, 552	842, 578
South Atlantic: Delaware and Maryland	80, 764	42, 636	123, 400
	7, 653	3, 095	10, 748
	32, 763	15, 644	48, 407
	56, 709	21, 952	78, 661
	24, 548	13, 777	38, 322
	268, 609	74, 275	342, 884
	22, 603	57, 877	80, 480
Total: 19561955	493, 649	229, 256	722, 904
	499, 342	260, 472	759, 814
East South Central: Alabama. Kentucky and Mississippi. Tennessee.	724, 675	1, 037, 667	1, 762, 34
	108, 959	141, 333	250, 29
	263, 721	203, 878	467, 59
Total: 19561955	1, 097, 355	1, 382, 878	2, 480, 23
	1, 223, 766	1, 528, 156	2, 751, 92
West South Central: Arkansas and Louisiana. Oklahoma. Texas.	8, 565	272	.8, 83°
	43, 106	7, 583	50, 68°
	313, 298	125, 068	438, 36°
Total: 1956	364, 969	132, 923	497, 89
	297, 983	174, 913	472, 89
Rocky Mountain: Colorado	85, 459	30, 885	116, 34
	73, 200	59, 522	132, 72
	17, 187	318	17, 50
Total: 1956	175, 846	90, 725	266, 57
	171, 216	80, 697	251, 91
Pacific Coast: California. Oregon. Washington.	405, 354	112, 370	517, 72
	36, 964	1, 997	38, 96
	42, 921	2, 719	45, 64
Total: 19561995	485, 239	117, 086	602, 32
	506, 645	130, 651	637, 29
Total United States: 1956	11, 025, 003	5, 349, 402	16, 374, 40
	12, 057, 789	5, 961, 861	18, 019, 65

TABLE 14.—Consumption of ferrous scrap and pig iron in air furnaces in the United States in 1956, by districts and States, in short tons

District and State	Total scrap	Pig iron	Total scrap and pig iron
New England:		1, 1, 1, 1, 1	
Connecticut	36, 767	7, 271	44, 038
Massachusetts and New Hampshire	18, 814	6,000	24, 814
Total: 1956		13, 271	68, 852
	47, 109	11, 402	58, 511
Middle Atlantic: New Jersey	1, 418	800	2, 218
New York	53, 295	14, 292	67, 587
Pennsylvania	163, 476	54, 812	218, 288
Total: 1956	218, 189	69, 904	288, 093
1955	203, 801	68, 262	272, 063
East North Central:			
Illinois	176, 004	35, 406	211, 410
Indiana	164, 243	37, 182	201, 425
Michigan	1 112,066	15, 541	127, 607
Ohio	349, 442	65, 210	414, 652
Wisconsin	96, 328	30, 184	126, 512
Total: 1956	898, 083	183, 523	1, 081, 606
1955	1, 086, 056	191, 145	1, 277, 201
West North Central: Iowa, Minnesota, and Missouri	13, 796	9, 496	23, 292
Total: 1956	13, 796	9, 496	23, 292
1955	14, 819	9, 628	23, 292 24, 447
South Atlantic:			
Delaware, North Carolina, and West Virginia	22, 251	11, 414	33, 665
Total: 1956		11, 414	33, 665
1955	20, 173	9, 872	30, 045
East South Central and West South Central:			
Alabama and Texas	50, 423	3, 877	54, 300
Total: 1956	50, 423	3, 877	54, 300
1955	55, 289	3, 305	58, 594
Pacific Coast:			
California.	10,776	1, 232	12,008
Total: 1956	10,776	1, 232	12,008
1955		1, 595	19, 329
Total United States: 1956	1, 269, 099	292, 717	1, 561, 816
1955	1, 444, 981	295, 209	1,740,190

TABLE 15.—Consumption of ferrous scrap in blast furnaces in the United States in 1956, by districts and States, in short tons

District and State	Total scrap	District and State	Total scrap
New England and Middle Atlantic: Massachusetts and New York Pennsylvania. Total: 1956	274, 657 1, 532, 895 1, 807, 552 1, 865, 880 400, 541 155, 273 306, 949 1, 101, 917 1, 964, 680 2, 141, 389	South Atlantic, East and West South Central: Alabama. Kentucky, Maryland, Tennessee, Texas, and West Virginia. Total: 1956	240, 307 323, 966 564, 273 649, 180 67, 328 67, 328 66, 031 4, 403, 833 4, 722, 480

TABLE 16.—Consumption of ferrous scrap by ferroalloy producers in the United States in 1956, by districts, in short tons

District	Total scrap	District	Total scrap
Middle Atlantic: Total: 1956	34, 251 41, 961 73, 366 47, 684 168, 421 163, 681	South Atlantic:	13, 547 16, 369 72, 659 66, 154 8, 886 7, 714 371, 130 343, 563

TABLE 17.—Consumption of ferrous scrap in miscellaneous uses in the United States in 1956, by districts and States, in short tons

District and State	Total scrap	District and State	Total scrap
New England:	***	South Atlantic:	
Connecticut and Massachusetts	16, 239	GeorgiaVirginia and West Virginia	1,442 45,346
Total: 1956	16, 239 16, 915	Total: 1956	
	10, 913	1955	50, 950
Middle Atlantic: New Jersey New York	138, 955 82, 191	East South Central and West South	
Pennsylvania	99, 536	Alabama and Texas	66, 024
Total: 1956 1955	320, 682 334, 397	Total: 1956 1955	66, 024 68, 019
East North Central: Illinois. Indiana Michigan and Wisconsin.	227, 658 10, 330 17, 975	Rocky Mountain: Arizona, Idaho, and Montana Colorado and Utah	37, 315 7, 973
Ohio	78, 708	Total: 1956 1955	45, 288 44, 697
Total: 1956	334, 671 365, 901	Pacific Coast:	40.477
West North Central: Minnesota	513	Washington	40, 477 506
Missouri	98,807	Total: 1956	40, 983 56, 676
Total: 1956 1955	99, 320 93, 760	Total United States: 1956 1955	969, 995 1, 031, 315

STOCKS

Complete iron- and steel-scrap figures covering 1956 year-end stocks are not available; producers (railroads and manufacturers) were not canvassed; dealers, automobile wreckers, and shipbreakers were

canvassed on a sample basis.

Consumers' Stocks.—Total iron-and-steel-scrap stocks held by consumers on December 31, 1956, were 3 percent higher than at the beginning of the year. Increases occurred in the following districts: Middle Atlantic, West North Central, West South Central, Rocky Mountain, and Pacific Coast. Stocks of pig iron held by consumers and suppliers on December 31, 1956, were 3 percent greater than those on hand December 31, 1955.

Suppliers' Stocks.—Stocks of iron and steel scrap in the hands of a combined total of 656 dealers, automobile wreckers, and shipbreakers, as reported voluntarily to the Bureau of Mines, totaled 577,389 short tons on December 31, 1956.

TABLE 18.—Consumers' stocks of ferrous scrap and pig iron on hand in the United States on December 31, 1955, and December 31, 1956, by districts and States, in short tons

District and State	Decembe	r 31, 1955	December	r 31, 1956
	Total scrap	Pig iron	Total scrap	Pig iron
New England: Connecticut	21, 248	5, 893	15, 412 1, 234 60, 337	10, 550
Maine Massachusetts	1, 043 80, 763	932 89, 266	1, 234 60 337	813 57, 431
New Hampshire	1,964	201	2, 955	295
Rhode Island Vermont	8,905	8, 997	11,921	7, 213
	2, 588	1,668	2, 570	2, 520
Total	116, 511	106, 957	94, 429	78, 822
Middle Atlantic: New Jersey	79, 617	37, 884	68, 672	32, 425
New Jersey New York Pennsylvania	79, 617 429, 482 1, 513, 491	37, 884 212, 483 398, 845	511, 863 1, 640, 957	32, 425 232, 784 425, 047
			1, 640, 957	425, 047
Total	2, 022, 590	649, 212	2, 221, 492	690, 256
East North Central: Illinois	826, 531	170, 332	813, 235	172, 846
Indiana	751, 556 387, 950	170, 332 92, 697 303, 830	813, 235 769, 542 362, 853	172, 846 137, 510 283, 262
Michigan Ohio	387, 950	303, 830	362, 853	283, 262
Wisconsin	1, 012, 508 72, 287	323, 690 29, 229	1, 013, 583 72, 295	390, 948 39, 295
Total	3, 050, 832	919, 778	3, 031, 508	1, 023, 861
West North Central:	99 701	17 100	90.700	00.00
Iowa Kansas and Nebraska	33, 701 12, 803	15, 126 532	30, 760 11, 860	23, 985 577
Minnesota, North Dakota, and South			1	
Dakota Missouri	154, 188 180, 996	15, 441 17, 270	145, 974 234, 868	24, 863 24, 105
Total	381, 688	48, 369	423, 462	73, 530
South Atlantic: Delaware, District of Columbia, and				
Delaware, District of Columbia, and Maryland	145, 940	27, 544	180, 793	37, 283
Florida and Georgia	11,830	3, 947	7.481	3, 169
North Carolina South Carolina	5, 328	2, 718 2, 509	6, 447 1, 911	1, 539
Virginia and West Virginia	1,779 217,696	20, 567	155, 634	2, 419 16, 860
Total	382, 573	57, 285	352, 266	61, 270
East South Central: Alabama	190, 038	260, 939	139, 741	112, 829
Kentucky, Mississippi, and Tennessee	113, 025	99, 840	152, 505	101, 615
Total	303, 063	360, 779	292, 246	214, 444
West South Central:				
Arkansas, Louisiana, and Oklahoma Texas	27, 000 305, 751	1, 424 51, 411	38, 380 295, 411	1, 484 43, 435
Total	332, 751	52, 835	333, 791	44, 919
		- 02,000	500, 191	71, 918
Rocky Mountain: Arizona, Nevada, and New Mexico	13 974	110	13 225	120
Colorado and Utah	13, 974 131, 624	41, 519	13, 225 171, 334 4, 561	79, 177
Idaho, Montana, and Wyoming	6, 924	141	4, 561	325
Total	152, 522	41, 770	189, 120	79, 622
Pacific Coast:	70 01"	F 400	OF FFG	10.000
Alaska and Washington Oregon	76, 215 37, 729	5, 493 510	65, 552 31, 678	10,098
California	353, 855	46, 212	380, 511	77, 604
Total	467, 799	52, 215	477, 741	88, 072
Total United States	7, 210, 329	2, 289, 200	7, 416, 055	2, 354, 796

TABLE 19.—Iron and steel scrap: Consumers' stocks, production, receipts, consumption, and shipments by grades, in 1956 in short tons

Grades of scrap	Total stocks on hand Jan. 1, 1956	Scrap produced	Receipts from dealers and all others	Total consumption	Shipments	Total stocks on hand Dec. 31, 1956
No. 1 Heavy-Melting steel No. 2 Heavy-Melting steel Bundles Low-phosphorus-scrap Cast-iron scrap other than	1, 768, 109 1, 043, 826 1, 085, 913 519, 586	17, 590, 009 2, 172, 371 1, 342, 069 1, 657, 057	6, 969, 583 5, 584, 183 9, 290, 146 3, 997, 100	24, 587, 294 7, 851, 972 10, 362, 473 5, 412, 469	167, 839	{ 1,852,780 1,010,610 1,197,020 577,495
Cast-iron scrap other than borings	966, 115 1, 826, 780	6, 952, 718 13, 961, 390	5, 092, 574 8, 490, 985	11, 732, 299 20, 368, 663	278, 361 2, 133, 089	1, 000, 747 1, 777, 403
Total, all grades	7, 210, 329	43, 675, 614	39, 424, 571	80, 315, 170	2, 579, 289	7, 416, 055

PRICES

Although the total domestic demand for iron and steel scrap during 1956 was slightly less than in the previous year, the cost of iron and

steel scrap reached a new high.

The price of No. 1 Heavy-Melting scrap at Pittsburgh, as reported in the Iron Age Annual Review, January 3, 1957, was \$52.50 per gross ton in January—\$16.00 higher than in January 1955. Prices for this grade of scrap dropped to a low of \$44.50 for the year during June, then fluctuated during the next 6 months to an alltime high of \$64.00 (estimate) in December.

Cast-iron scrap at Cincinnati averaged \$47.08 (estimate) per gross ton for the year. The lowest price, \$43.50 per ton, for this grade of scrap was during June and July; the highest price, \$50.00 per ton, was during April. During the last 3 months of the year the price was

firm at \$48.50 per ton.

The average composite price of iron and steel scrap, as reported by Iron Age, was \$52.33 per gross ton in January, \$17.71 higher than in January 1955; the price fluctuated during the first 6 months of the year from a high of \$54.88, per ton during April to a low for the year of \$45.08; per ton during June; the price continued to fluctuate until in December, when the price of \$63.33 (estimate) per gross ton The price for No. 1 Cast scrap at Chicago varied was established. from month to month from a low of \$48.50 per gross ton during June to a high of \$59.63 per ton during September—an increase of \$4.13 over the 1955 high of \$55.50 and the highest price paid for this grade of scrap since January 1951. The average for the year was \$55.05 (estimate) per ton. No. 1 Heavy Melting at Chicago ranged from a low of \$44.00 per gross ton during June to a record high price of \$64.00 (estimate) per ton in December. The average price for this grade of scrap for the year was \$52.97 (estimate) per ton—an increase of \$14.49 per ton over the average price for 1955.

TABLE 20.—Consumption and stocks, December 31, 1956, of iron and steel scrap, by grades, by districts and States, in 1956, in short tons

•									•					
	No. 1 Heavy. Melting steel	leavy- g steel	No. 2 I Meltin	. 2 Heavy- liting steel	Bundles	dles	Low-pho ser	Low-phosphorous scrap	Oast-iron scrap other than borings	n scrap 1 borings	All others	hers	Total all	grades
District and State	Consump-	Stocks	Consumption	Stocks	Consumption	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks	Con- sump- tion	Stocks
New England: Connecticut	21, 456		20, 219	363	31, 056	605	14, 738	601	76,113	6,	147, 617	7, 275	311, 199	15,412
Massachusetts New Hampshire Rhode Island Vermont	102, 904 3, 794 7, 679	15, 552 494 90 395	3,045 364 32,696 599	6,806	34, 093	6, 895	57, 005 198 15, 814	4, 469 40 49	226, 523 13, 811 24, 090 26, 083	19,177 2,181 2,227 2,175	76, 415 3, 700 26, 766	13, 720	499, 985 21, 867 104, 350 34, 361	60,337 2,955 11,921 2,570
Total	138, 175	17,083	56, 923	7, 716	69, 521	7, 500	87,755	5, 159	374, 353	32, 965	254, 498	24,006	981, 225	94, 429
Middle Atlantic: Now Jersey New York. Pennsylvania	22, 883 1, 464, 571 6, 734, 183	3, 932 166, 802 411, 656	25, 917 140, 121 1, 510, 501	2, 983 23, 032 152, 939	84, 072 720, 408 2, 300, 221	8, 408 175, 081 218, 847	56, 692 129, 518 1, 226, 251	9, 098 23, 414 175, 385	325, 666 421, 632 2, 016, 513	30, 475 40, 664 164, 437	218, 434 1, 180, 505 4, 920, 202	13, 776 82, 870 517, 693	733, 664 4, 056, 755 18, 707, 871	68, 672 511, 863 1, 640, 957
Total	8, 221, 637	582, 390	1, 676, 539	178, 954	3, 104, 701	402, 336	1, 412, 461	207, 897	2, 763, 811	235, 576	6, 319, 141	614, 339	23, 498, 290	2, 221, 492
East North Central: Illinois. Indiana. Michigan Ohio.	2, 170, 727 4, 238, 833 514, 703 4, 280, 645 62, 801	146, 023 395, 191 29, 748 247, 634 5, 495	936, 644 423, 510 311, 435 1, 050, 649 8, 815	61, 989 65, 489 5, 569 94, 296 435	1, 295, 588 992, 389 1, 181, 101 1, 787, 912 12, 337	198, 951 88, 771 89, 887 172, 044	650, 756 254, 475 903, 692 1, 202, 757 289, 153	89, 361 31, 601 73, 900 93, 186 25, 222	915, 136 794, 144 1, 409, 830 1, 576, 955 350, 408	83, 705 48, 933 43, 642 123, 326 21, 446	1, 882, 096 1, 582, 204 1, 899, 862 4, 390, 023 252, 799	233, 206 139, 557 120, 107 283, 097 19, 417	7, 850, 947 8, 285, 555 6, 220, 623 14, 288, 941 976, 313	813, 235 769, 542 362, 853 1, 013, 583 72, 295
Total	11, 267, 709	824, 091	2, 731, 053	227, 778	5, 269, 327	549, 933	3, 300, 833	313, 270	5, 046, 473	321,052	10,006,984	795, 384	37, 622, 379	3, 031, 508
West North Central: Iowa. Kanasas and Nebraska. Minnacota North Debrte and	11, 314 5, 260	1,448	5,888	1,145	1,745	10	49, 947 33, 006	3,019 2,279	148, 666 55, 738	11, 424 9, 214	195, 036 11, 743	13,714	412, 596	30, 760 11, 860
ģ	166, 993 32, 708	33, 023 16, 002	80, 102 543, 646	65, 215 98, 194	67, 044 14, 203	5, 929 1, 905	24, 264 26, 085	1, 565 1, 422	166, 899 279, 005	15, 597 61, 482	120, 007 144, 219	24, 645 55, 863	625, 309 1, 039, 866	145, 974 234, 868
Total	216, 275	50, 628	629, 636	164, 554	82, 992	7,844	133, 302	8, 285	650, 308	97, 717	471,005	94, 434	2, 183, 518	423, 462
						-		-			İ	Ī		

	180, 793 7, 481 6, 447	1, 911 155, 634	352, 266	139, 741	152, 505	292, 246	38,380	295, 411	333, 791	13, 225 171, 334 4, 561	189, 120	65, 552 31, 678 380, 511	477, 741	7, 416, 055
	2, 821, 816 284, 509 56, 886		4, 971, 985	2, 433, 937	1, 664, 213	4, 098, 150	189, 325		1, 893, 789	64, 821 1, 578, 024 25, 161	1, 668, 006	387, 373 221, 049 2, 789, 406	3, 397, 828	80, 315, 170
-	19, 681 1, 818	1,084	75, 098	43, 310	14, 309	619 '29	1,154	21,409	22, 563	6, 084 16, 009 1, 727	23, 820	9, 666 13, 798 46, 676	70, 140	, 777, 403 8
	697, 123 56, 232 3, 526	8, 292 841, 228	1, 606, 401	536, 098	142,876	678, 974	15, 316	131, 480	146, 796	37, 280 279, 525 10, 296	327, 101	67, 680 84, 912 405, 171	557, 763	20, 368, 663
	29, 326 1, 034 5, 907	827 35, 299	72, 393	46,851	25, 631	72, 482	3, 484	00, 100	68, 638	3, 198 28, 001 2, 834	34, 033	13, 450 1, 038 50, 402	64,890	, 000, 747 2
-	278, 015 34, 982 52, 557	19, 274,	629, 309	729, 576	304, 382	1, 033, 958	43,694	900, 049	409, 343	3, 054 247, 388 14, 865	265, 307	70, 548 31, 171 427, 718	529, 437	1, 732, 299
_	4, 701 40 74	12,026	16,841	7, 252	1, 337	8, 589	5, 110	3, 033	8, 743	467	467	1, 975 752 5, 517	8, 244	577, 495 1
-	36, 385 1, 857 803	70, 226	109, 271	44, 913	50, 692	95, 605	57, 276	89, 401	142, 727	4,882	4,882	20, 312 2, 858 102, 463	125, 633	5, 412, 469
	18,885	34,881	53, 766	13, 065	23,117	36, 182	1 1	6,	37, 575	12, 536	12, 536	4, 762 2, 585 82, 001	89, 348	1, 197, 020
	361, 201	333, 396	694, 597	255, 946	272, 047	527, 993	739		78, 225	64, 232	54, 232	21, 830 18, 430 440, 625	480, 885	10, 362, 473
•	37, 076 1, 165	19, 299	57, 540	14, 891	23, 500	38, 391	28, 565		191, 508	3, 943 - 23, 173	27,116	17,824 9,066 90,163	117,053	1, 010, 610
-	203, 551	227, 215	581, 277	147, 990	221, 607	369, 597	68, 268		1, 058, 468	24, 487 103, 265	127, 752	81, 787 21, 252 517, 688	620, 727	7, 851, 972
	71, 124 3, 424 430	1,650	76, 628	14, 372	64, 611	78, 983	29 6	9,090	3, 763	91, 148	91, 148	17, 875 4, 439 105, 752	128,066	1,852,780
	1, 245, 541 40, 927	34, 662	1, 321, 130	719, 414	672, 609	1, 392, 023	4, 032	04,180	58, 230	888, 732	888, 732	125, 216 62, 426 895, 741	1, 083, 383	24, 587, 294
South Atlantic:	Delaware, District of Columbia, and Maryland. Florida and Georgia. North Carolina.	South CarolinaVirginia and West Virginia	Total	East South Central: Alabama	- 1	Total	West South Central: Arkansas, Louisiana, and Okla- noma	Lexas	Total	Rocky Mountain: Arizona, Nevada, and New Mexico. Colorado and Utah	Total	Pacific Coast: Washington Oregon California.	Total	Total United States

TABLE 21.—Stocks of iron and steel scrap and pig iron on hand at plants of major consuming industries, in short tons

	Manufac- turers of steel ingots and castings	Manufac- turers of steel castings	Iron foun- dries and miscella- neous users	Total
		SCRAP	STOCKS	
Dec. 31, 1956 Dec. 31, 1955	6, 036, 585 5, 815, 310	425, 034 416, 901	954, 436 978, 118	7, 416, 055 7, 210, 329
		PIG IRON	STOCKS	
Dec. 31, 1956	1, 556, 121 1, 562, 917	81, 690 64, 324	716, 985 661, 959	2, 354, 796 2, 289, 200

FOREIGN TRADE²

Imports.—The quantity of iron and steel scrap including tinplate was the largest imported since 1951, 12 percent greater than 1955, and the value increased 62 percent. The largest quantity imported was from Canada-Newfoundland-Labrador (92 percent of the total imports) followed by Cuba (6 percent); 2 percent was from other countries. Of the total imports, 13 percent was tinplate scrap, mostly from Canada, compared with 14 percent during the previous year.

Exports.—Continued record demand by friendly nations and member countries of the European Coal and Steel Community resulted in a record for exports of ferrous scrap from the United States. Exports increased 24 percent over those in the previous high year of 1955 and were 94 percent greater than the 5-year prewar annual average (1935–39) of 3,298,000 short tons. Total ferrous scrap, excluding rerolling materials, exported during 1956 increased 23 percent in quantity and 65 percent in value over 1955.

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 22.—Ferrous scrap imported for consumption in the United States, by countries, 1947-51 (average) and 1952-56, in short tons

[Bureau of the Census]

				.,		
Country	1947–51 (average)	1952	1953	1954	1955	1956
North America:						
Bahamas	698	234	198	28	190	88
Canada-Newfoundland-]	1	1	1	1	
Labrador	60, 081	55, 101	131, 371	223, 030	1207, 617	235, 29
Canal Zone	4, 361	1, 141	2, 180 3, 012	511		
Cuba French West Indies	26, 233 939	22, 800	3,012	2, 893	3, 685	14, 94 29
Guatemala	453	1, 596 146	1, 381	1, 215	1, 363	33
Honduras	487	287	401		1,000	58
Netherlands Antilles	4, 189	951	7, 104	3, 360		-
Panama	197	1, 913	1,410			2
Other North America	4, 796	6, 208	2, 408	483	1 433	16
Total	102, 434	90, 377	149, 465	231, 520	1 213, 345	252, 53
South America:						
Peru	24	2,722			10, 554	
VenezuelaOther South America	268	8, 385	2, 240	2,912	674	
Other South America	1, 273	2, 695				
Total	1, 565	13, 802	2, 240	2, 912	11, 228	
Europe:						
Belgium-Luxembourg	10, 916	328			l	
Denmark	2, 287 38, 252	128			13	
France	38, 252	258	373	46		
Germany Netherlands	202, 081		2 253	21	2 78	2 15
Netherlands	59, 951	12	77	13		6
Norway Sweden	95 848	2, 576 11	3	152		
Switzerland	1, 347	11		102		1, 54
United Kingdom	4, 101	23	5, 686	591	2,062	13
Other Europe	1, 231	534	247	25	100	
Total	321, 109	3, 870	6, 639	828	2, 253	1, 89
A						
Asia: India	5, 345	13, 251				2
Tanan	84. 092	1, 259	1, 751	400	575	53
Korea, Republic of	1, 882	5, 741	2, 102			
Philippines	28, 389		51			
Other Asia	4, 931					
Total	124, 639	20, 251	1,802	400	575	56
A frica:						
Allgeria	7, 858	799	790	688	195	22
French Morocco	2, 939	2, 187	3,778	906	/	100
Union of South Africa	4, 384	5, 617	2, 167	1,399	802	14
Other Africa	196	820	316	224	122	10:
Total	15, 377	9, 423	7, 051	3, 217	1, 119	57
Oceania:						
Australia	12, 647	8, 755	6, 145	56		
New Zealand	1,990	431	318	102	9	
Western Pacific Islands	20	6, 720				
Other Oceania	1, 176	45			10	
	4 - 000	15, 951	6, 463	158	19	
Total	15, 833	10, 001	1			
Total Grand total: Short tons_	15, 833 580, 957	153, 674	173, 660	239, 035	1 228, 539	255, 569

Revised figure.
 West Germany.
 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable to years before 1954.

TABLE 23.—Ferrous scrap exported from the United States, 1947-51 (average) and 1952-56, by countries of destination, in short tons 1

[Bureau of the Census]

North America: Canada-Newfoundland-Labrador. Mexico	47-51 erage) 24, 114 90, 146 135 14, 395 2, 089 1, 099 1, 099 231 4, 459 75 79 5 169 367 22	1952 195, 370 135, 054 26 330, 450 741 296 3 1, 040 55 131 1, 300 34	76, 762 156, 394 233, 156 9 9 15	48, 544 224, 409 272, 953 75, 425 928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026 20, 906	1955 429, 751 258, 492 87 688, 330 103, 932 141 54 22 104, 149 185, 331 256, 631 2 3 677, 235 3 1, 152, 533 1, 152, 533	304, 702 245 1, 013, 486 14, 137 352 250 14, 774 256, 739 352, 612 249, 043 1, 306, 622 35, 667
Canada-Newfoundland-Labrador 11 Mexico 15 Other North America 21 South America: Argentina Brazil Chile Other South America 17 Total 21 Europe: Belgium-Luxembourg France Germany 1taly Netherlands Spain United Kingdom	2, 089 1, 049 1, 049 1, 090 231 4, 459 75 79 5 169 367	135, 054 26 330, 450 741 296 3 1, 040 55	156, 394 233, 156 9 9 15	224, 409 272, 953 75, 425 928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	258, 492 87 688, 330 103, 932 141 54 22 104, 149 185, 331 256, 631 2 3 677, 235 3 1, 152, 533	304, 702 245 1, 013, 486 14, 137 352 250 14, 774 256, 739 352, 612 249, 043 1, 306, 622 35, 667
Canada-Newfoundland-Labrador 11 Mexico 15 Other North America 21 South America: Argentina Brazil Chile Other South America 17 Total 21 Europe: Belgium-Luxembourg France Germany 1taly Netherlands Spain United Kingdom	2, 089 1, 049 1, 049 1, 090 231 4, 459 75 79 5 169 367	135, 054 26 330, 450 741 296 3 1, 040 55	156, 394 233, 156 9 9 15	224, 409 272, 953 75, 425 928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	258, 492 87 688, 330 103, 932 141 54 22 104, 149 185, 331 256, 631 2 3 677, 235 3 1, 152, 533	304, 702 245 1, 013, 486 14, 137 352 250 14, 774 256, 739 352, 612 249, 043 1, 306, 622 35, 667
Labrador 11 Mexico 11 Mexico 12 Other North America 22 South America: Argentina Brazil 11 Chile 11 Other South America 21 Total 21 Europe: Belgium-Luxembourg France Germany 11aly	2, 089 1, 049 1, 049 1, 090 231 4, 459 75 79 5 169 367	135, 054 26 330, 450 741 296 3 1, 040 55	156, 394 233, 156 9 9 15	224, 409 272, 953 75, 425 928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	258, 492 87 688, 330 103, 932 141 54 22 104, 149 185, 331 256, 631 2 3 677, 235 3 1, 152, 533	256, 739 352, 612 2 249, 043 1, 306, 622 35, 667
Mexico	2, 089 1, 049 1, 049 1, 090 231 4, 459 75 79 5 169 367	135, 054 26 330, 450 741 296 3 1, 040 55	156, 394 233, 156 9 9 15	224, 409 272, 953 75, 425 928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	258, 492 87 688, 330 103, 932 141 54 22 104, 149 185, 331 256, 631 2 3 677, 235 3 1, 152, 533	304, 702 245 1, 013, 486 14, 137 352 250 14, 774 256, 739 352, 612 249, 043 1, 306, 622 35, 667
Total 21 South America: Argentina Brazil Chile Other South America Total Europe: Belgium-Luxembourg France Germany Italy Netherlands Spain United Kingdom 22	135 14, 395 2, 089 1, 049 1, 090 231 4, 459 75 79 169 367	330, 450 741 296 3 1, 040 55 131 1, 300	9 9 15 171	272, 953 75, 425 928 191 76, 544 20, 330 31, 427 2 350, 212 2 52, 026	87 688, 330 103, 932 141 54 22 104, 149 185, 331 256, 631 2 3 677, 235 3 1, 152, 533	246 1, 013, 486 14, 133 352 26 26 14, 774 256, 738 352, 612 2 249, 043 1, 306, 622 35, 667
South America: Argentina Brazil	2, 089 1, 049 1, 090 231 4, 459 75 75 79 5 169 367	741 296 3 1,040 55	9 9 15 171	75, 425 928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	103, 932 141 54 22 104, 149 185, 331 256, 631 2 3 677, 235 3 1, 152, 533	14, 137 352 25 260 14, 774 256, 739 352, 612 2 249, 043 1, 306, 622 35, 667
Argentina Brazil Chile Other South America Total Europe: Belgium-Luxembourg France Germany Italy Netherlands Spain United Kingdom	1, 049 1, 090 231 4, 459 75 79 5 169 367	296 3 1,040 55 131 1,300	9 9 15	928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	141 54 22 104, 149 185, 331 256, 631 23 677, 235 31, 152, 533	352 25 260 14,774 256,739 352,612 249,043 1,306,622 35,667
Argentina Brazil Chile Other South America Total Europe: Belgium-Luxembourg France Germany Italy Netherlands Spain United Kingdom	1, 049 1, 090 231 4, 459 75 79 5 169 367	296 3 1,040 55 131 1,300	9 9 15	928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	141 54 22 104, 149 185, 331 256, 631 23 677, 235 31, 152, 533	352 25 260 14,774 256,739 352,612 249,043 1,306,622 35,667
Brāzil	1, 049 1, 090 231 4, 459 75 79 5 169 367	296 3 1,040 55 131 1,300	9 9 15	928 191 76, 544 20, 330 31, 427 2 350, 212 252, 026	141 54 22 104, 149 185, 331 256, 631 23 677, 235 31, 152, 533	352 26 260 14,774 256,739 352,612 249,043 1,306,622 35,667
Chile. Other South America Total Europe: Belgium-Luxembourg France Germany Italy Netherlands Spain United Kingdom.	75 79 5 169 367	55 131 1,300	9 15 	191 76, 544 20, 330 31, 427 2 350, 212 252, 026	185, 331 256, 631 2 3 677, 235 3 1, 152, 533	25 260 14, 774 256, 739 352, 612 2 249, 043 1, 306, 622 35, 667
Total	75 79 5 169 367	1,040 55 131 1,300	9 15 	76, 544 20, 330 31, 427 2 350, 212 252, 026	185, 331 256, 631 2 3 677, 235 3 1, 152, 533	256, 739 352, 612 2 249, 043 1, 306, 622 35, 667
Europe: Belgium-Luxembourg France. Germany Italy. Netherlands Spain United Kingdom	75 79 5 169 367	55 131 1,300	15	20, 330 31, 427 2 350, 212 252, 026	185, 331 256, 631 2 3 677, 235 3 1, 152, 533	256, 739 352, 612 2 249, 043 1, 306, 622 35, 667
Belgium-Luxembourg France Germany Italy Netherlands Spain United Kingdom	79 5 169 367	131 1, 300	171	31, 427 2 350, 212 252, 026	256, 631 2 3 677, 235 3 1, 152, 533	352, 612 ² 249, 043 1, 306, 622 35, 667
Belgium-Luxembourg France Germany Italy Netherlands Spain United Kingdom	79 5 169 367	131 1, 300	171	31, 427 2 350, 212 252, 026	256, 631 2 3 677, 235 3 1, 152, 533	352, 612 ² 249, 043 1, 306, 622 35, 667
France	79 5 169 367	131 1, 300	171	31, 427 2 350, 212 252, 026	256, 631 2 3 677, 235 3 1, 152, 533	352, 612 2 249, 043 1, 306, 622 35, 667
Germany	5 169 367	1,300	171 27	² 350, 212 252, 026	^{2 3} 677, 235 ³ 1, 152, 533	2 249, 043 1, 306, 622 35, 667
Italy Netherlands Spain United Kingdom	169 367	1,300	171 27	252, 026	³ 1, 152, 533	1, 306, 622 35, 667
Netherlands Spain United Kingdom	367	34	27	20, 906		35, 667
SpainUnited Kingdom		1 0-				00,007
United Kingdom Other Europe	ZZ	1	I	54, 492	25, 589	52, 488
Other Europe	36	9, 634	9,055	181, 342	⁸ 1, 056, 864	596, 108
	1, 550	398	126	87, 544	137, 684	40, 112
Total	2, 303	11, 552	9, 394	998, 279	3, 534, 354	2, 889, 391
Asia:						
	1, 437		121	939	541	525
India	538	1,763	3, 205	1, 929	1, 366	3, 192
Japan	942	4, 362	62, 471	316, 691	3 791, 086	2, 330, 210
Malaya	670	1,044	361	73	345	959
Philippines	58	l	287	439	722	1, 221
Taiwan	20				8,000	42, 694
Turkey	228	846	624	459		197
Other Asia	1,024	306	84	10, 741	904	966
Total	4, 917	8, 321	67, 153	331, 271	802, 964	2, 379, 964
Africa:						
Union of South Africa	301	28	91		50	,
Other Africa	105	33	ii	130	104	323
Total	406	61	102	130	154	323
Grand total: Short tons 22	26, 480	351, 424	309, 814	1, 679, 177	³ 5, 129, 951	6, 297, 938
Value\$6, 85		\$12, 423, 002	\$10, 827, 452	\$50, 746, 951	3\$176, 660, 967	\$201 537 027

¹ In addition to data shown rerolling materials exported as follows: 1949, Canada, 37 tons; Mexico, 1,095 tons; Honduras, 30 tons; Bolivia, 44 tons; total 1,206 tons (\$50,086): 1951, Mexico, 9,813 tons (\$358,146): 1952, Canada, 69 tons; Mexico, 1,217 tons; total, 1,286 tons (\$77,287): 1953, Belgium-Luxembourg, 163 tons; Japan, 5,873 tons; Mexico, 692 tons; total, 6,728 tons (\$391,464): 1954, Canada, 10 tons; Mexico, 3,062 tons; India, 2,824 tons; Japan, 10,688 tons; total, 16,684 tons (\$865,413): 1955, Canada, 454 tons; Mexico, 19,504 tons; El Salvador, 76 tons; United Kingdom, 24 tons; Belgium-Luxembourg, 793 tons; Japan, 19,304 tons; India, 1,107 tons; Hong Kong, 561 tons; total, 41,823 tons (\$1,898,357): 1956, Canada, 5,815 tons; Mexico, 61,208 tons; El Salvador, 147 tons; India, 1,343 tons; Hong Kong, 777 tons; Japan, 36,912 tons; total, 106,202 tons (\$6,951,-722). 722).

² West Germany.

³ Revised figure.

TABLE 24.—Ferrous scrap imported into and exported from the United States, 1947-51 (average) and 1952-56, by classes 1

[Bureau of the Census]

		Imports				Exports		
Year	Iron and steel scrap	Tinplate scrap	Total	Iron and steel scrap	Tin- plate scrap	Tinplate circles, strips, cobbles, etc.	Terne- plate clip- pings and scrap	Total
			SHOR'	T TONS				
1947-51 (average) 1952 1953 1954 1955 1956	534, 618 105, 896 131, 568 206, 316 2 196, 372 222, 936	46, 339 47, 778 42, 092 32, 719 32, 167 32, 633	580, 957 153, 674 173, 660 239, 035 228, 539 255, 569	218, 908 336, 287 291, 177 1, 664, 869 2 5, 113, 216 6, 269, 664	319 3, 998 5, 818 1, 057 2 161 3, 782	7, 074 11, 139 12, 819 13, 251 16, 574 24, 481	179	226, 480 351, 424 309, 814 1, 679, 177 2 5, 129, 951 6, 297, 938
			VA	LUE				
1947-51 (average) 1952 1953 1954 1956	\$14, 344, 802 4, 053, 529 4, 754, 939 3 5, 115, 808 23 6, 150, 376 3 10, 380, 668	\$1, 050, 148 1, 345, 041 1, 115, 276 831, 923 838, 984 3 932, 447	\$15, 394, 950 5, 398, 570 5, 870, 215 35, 947, 731 23 6,989, 360 311, 313, 115	\$5, 925, 677 11, 035, 285 9, 574, 911 49, 625, 759 2175,275,625 288, 807, 923	\$25, 426 85, 828 99, 041 22, 651 214, 423 211, 080	\$884, 957 1, 301, 889 1, 153, 500 1, 098, 541 1, 370, 919 2, 516, 954	\$18, 300 1, 080	\$6, 854, 360 12, 423, 002 10, 827, 455 50, 746, 951 2176, 660, 967 291, 537, 037

¹ In addition to data shown rerolling materials exported as follows: 1949, 1,206 tons (\$50,086); 1951, 9,813 tons (\$358,146); 1952, 1,286 tons (\$77,287); 1953, 6,728 tons (\$391,464); 1954, 16,684 tons (\$865,413); 1955, 41,823 tons (\$1,898,357); 1956, 106,202 tons (\$6,951,722). Not separately classified before 1949.

² Revised figure.

3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TECHNOLOGY

The portable, gas-fired, scrap preheater developed by the Bureau of Mines to preheat scrap for top-charged electric furnaces was adopted at one steel plant. This innovation, which greatly reduces the energy cost and heat time for electric-furnace steelmaking, was described at the 1956 AIME Electric Furnace Steel Conference.3

A baling press, with a crushing force of 1,018 tons and capable of crushing gondola-car sidings or automobiles down to smaller sizes, has been built.⁴ The feature of this giant press, designed to bale automobiles, light buses, and trucks, is that it produces bales of constant size and high density. The constant size is 24 by 60 inches, with an average height of 24 inches and weighing 3,000 pounds. The controls are arranged for immediately selecting manual, semiautomatic, or fully automatic operation; permitting a bale of scrap to be produced in 1 minute and 15 seconds.

Because the inlets in blast furnaces are relatively small, uniform scrap bales of a size to permit convenient charging have become a requirement for scrap dealers. To meet these requirements, dealers may now obtain small baling presses with automatic weighing equipment in a processing line that feeds scrap to the baler.5

³ Electric Furnace Steel Proceedings. (Note: This reference has not been published; therefore, the volume, number, date, and pages are not available at this time.)

⁴ Waste Trade Journal, vol. 100, No. 17, Jan. 14, 1956, pp. 8-10.

⁵ Scrap Age, Waste Age: Vol. 13, No. 10, October 1956, p. 63.

Advances were made toward cutting costs in a major department of scrap-yard operation through developing a guillotine-type, automatic, hydraulic shear for preparing large scrap. Production from this shear could exceed 50 tons per hour under proper feeding conditions.6

Dealers showed more interest in piping oxygen throughout scrap

yards for use in torch cutting equipment.

Various trends in flame-cutting methods at iron and steel scrapyards were: (1) Large-quantity users have tube trailers containing up to 57,000 cubic feet of oxygen left on the premises and connected directly to a pipeline; and (2) there is a preference for propane over acetylene gas because of its lower cost and greater convenience in These practices have resulted in savings to dealers through less handling of cylinders, saving of time lost in changing cylinders, less loss of cylinders, lower demurrage charges, and greater gas utilization.

As the result of a research program into broader and newer uses of iron and steel scrap carried out by the Battelle Memorial Institute, Columbus, Ohio, at the request of the Institute of Scrap Iron and Steel, Inc., nine suggested uses were developed; a 10th use of certain categories of scrap for stabilizing fill for highway construction was still being studied.8

The nine suggested uses were: (1) Powder metallurgy, (2) road fill, (3) paint pigment, (4) shielding material for radioactivity, (5) disposition of radioactive waste, (6) ferrosilicons, (7) ferrotitanium

alloy, (8) electrorefining, and (9) ornamental work.

Air-pollution legislation by cities and States to control smoke has presented the problem of smoke control at scrapyards that burn automobiles and wire; one solution is the use of incinerators fitted

with smoke controls, including electrostatic precipitators.9

In addition to problems presented in burning combustible material from certain types of scrap, other problems are involved in handling the materials before, during, and after burning. Where large quantities of such scrap for burning are available, a production-type continuous kiln with conveyor system offers a high degree of efficiency with low unit labor cost.

WORLD REVIEW SOUTH AMERICA

Argentina.—Steel production in Argentina during 1956 totaled approximately 220,000 short tons. Allowing 10 percent loss in processing, the total charge of pig iron and scrap was 243,000 tons. Centro Industriales Siderugicas estimates that, on the average, scrap made up 70 percent of the charge, which would give an annual steel-scrap consumption of about 165,000 short tons. Statistics on scrap consumption are not available; however, statistics are kept on scrap purchases for the primary steel producers, and these data tend to corroborate the estimated scrap-consumption figures. 10

⁶ Scrap Age, Waste Age: Vol. 13, No. 11, November 1956, p. 82.
7 Loveman, S. Michael, Piping Oxygen in Scrap Yards: Waste Trade Journal, vol. 100, No. 21, Feb. 11, 1956, pp. 10-11, 14.
8 Institute of Scrap Iron and Steel Inc., Special Letter 1392-A: July 27, 1956.
9 Houston, P. C. (manager, Smokatron Division, Summer & Co., Columbus, Ohio), Proc. 29th Ann. Convention, Inst. Scrap Iron and Steel, Inc., Jan. 13-16, 1957.
10 U. S. Embassy, Buenos Aires, Argentina State Department Dispatch 1358: May 7, 1957.

According to Fabricaciones Militares, a Government agency and the sole authorized importer of iron and steel scrap for the Argentine industry, imports from the United States decreased greatly during 1956, compared with 1955, owing to the increased cost of United States scrap, which induced the industry to seek domestic scrap. A buildup of stocks from large imports during 1954 and 1955 and greater availability of domestic scrap in 1956 enabled the industry to operate

during 1956 with almost no current scrap imports.

Relative proportions of imported and domestic scrap in the industry's supply are flexible and highly variable from year to year. The amount of foreign exchange made available for scrap imports as well as the price relationship between imported and domestic scrap, are the principal influences affecting the demand for domestic scrap. Purchases for the calendar year 1956, for which data are not yet compiled, probably exceeded 110,000 short tons, because of increased market supplies and because of a price relation favoring domestic over imported scrap.

EUROPE

Representatives of the European Coal and Steel Community (ECSC), in talks with the Secretaries of Interior, Commerce, and State on the subject of iron and steel scrap, assured them that the Community's policy was to keep purchases of United States scrap within

reasonable limits.¹¹

It was stated that the Community was making every effort to become more independent of imported scrap; for example, since 1954 the Community's steel producers have replaced scrap with other ironbearing materials at a saving of 661,000 short tons of scrap. The drive to reduce scrap utilization is reflected in the 33-percent increase in steel production in 1955 over 1954, while scrap consumption increased only 7 percent.

Austria.—The Suez Canal crisis induced the United States Embassy

Austria.—The Suez Canal crisis induced the United States Embassy to review some sectors of the Austrian economy, but no major repercussions were expected concerning scrap imports. Scrap shipped to Austria through the canal from January through September 1956 was

negligible; only 28 percent came from the United States.12

Rising scrap prices in the United States, increased ocean freight rates, availability of other foreign scrap, and higher quantities of domestically purchased scrap resulted in scrap imports being below

expectations in 1956.

Germany, West.—The domestic yield of ferrous scrap in 1956 in the Federal German Republic according to preliminary figures was 6.9 million short tons, or 302,000 tons more than in 1955. Exports totaled 856,000 tons and exceeded those of 1955 by 640 tons. Imports during 1956 totaled 707,000 tons, a decrease of 486,000 tons from the 1.2 million tons imported during the previous year. Therefore, scrap available to West Germany from foreign trade was 702,000 tons less than in 1955. 18

Imports of iron and steel scrap from the United States decreased decisively from 1955. Deliveries of ferrous scrap from the Federal Republic to other European Coal and Steel Community countries increased from 628,000 short tons in 1955 to 853,000 tons in 1956.

¹¹ American Metal Market, vol. 63, No. 29, Feb. 11, 1956, p. 11.
12 U. S. Embassy, Vienna, Austria, State Department Dispatch 578: Dec. 20, 1956.
12 U. S. Consul, Düsseldorf, Germany, State Department Dispatch 105: Feb. 15, 1957.

Exports to Belgium, France, and the Saar increased over 1955; imports of scrap from these countries declined. Exports from the Federal Republic to ECSC countries exceeded imports from these countries by 704,000 tons, which intensified their interest in imports from "Third Countries."

Total scrap consumption in blast-furnace and steel-mill operations of 12.2 million short tons in 1956 increased 1 million tons over 1955. Fifty-one percent of the 1956 consumption was generated by consumers; and 42 percent, including imports, was purchased from dealers. The remainder was taken from mill stocks or purchased directly from wrecking firms or scrap generators. Dealer stocks remained virtually unchanged.

Foundries purchased 1.6 million short tons, slightly more than their

purchases of 1.5 million tons during 1955.

The price of scrap remained stable during the year, in accordance with understandings among steel producers, the major consumers, and scrap dealers.

The European Coal and Steel Community received a request in March 1956, from the West German Steel Federation for permission

to establish a scrap-purchasing unit.14

It was believed that the work of this purchasing unit would be to reduce the price of scrap imported from countries outside the European Coal and Steel Community to a point that would not endanger steel prices at that time.

The association representing West Germany's scrap dealers protested establishing this purchasing unit by the West German steel industry and asked the High Authority of the Community to investigate whether some of the purchasing practices of the steel industry

were admissible under regulations of the Community. 15

Although the steel producers had not received a reply to their request, the Dealers' Association stated that most producers had arranged to insure their scrap supplies. Unofficial reports indicated that a group of steel producers, representing about 70 percent of the scrap consumers, agreed to make purchases from 18 scrap trading firms under fixed terms. The steel producers denied that the arrangement provided for any price agreements, but the West German Scrap Dealers' Association said that market developments showed that this was not correct.

Italy.—The European Coal and Steel Community ruled ¹⁶ that the common equalization price for scrap imported from third countries be replaced by 2 prices, 1 applying to Italy and the other applying to other members of the Community. This ruling was protested

by the Italian Government.

The new rate of payments to Italy from the equalization fund was approximately \$2 per metric ton lower than for other members. Traditionally higher scrap prices in Italy than elsewhere in the European Coal and Steel Community was the reason given for this new ruling.

The Italian Government received suggestions that it pay a scrapping premium to shipowners to encourage improvement of the mer-

American Metal Market, vol. 63, No. 48, Mar. 13, 1956, p. 1.
 Metal Bulletin (London), No. 4114, July 27, 1956, p. 26.
 Metal Bulletin (London), No. 4090, May 1, 1956, p. 20.

chant fleet and in that way increase the availability of scrap on the home market.¹⁷

ASIA

Japan.—It was estimated that the total supply of scrap steel for financial year 1956 would increase approximately 5 percent to 8.4 million short tons, comprising 3.3 million short tons of mill scrap, 3.2 million short tons of scrap collected by dealers, and 1.9 million short tons imported; of this total, the industry hoped to import 1.3 million short tons from the United States, according to the Japan Iron and Steel Federation.¹⁸

The federation estimated that about 30 percent of the estimated 11 million short tons of steel-ingot output during the 1956 financial year will become mill scrap. Steel-scrap dealers' collections are calculated on the premise that approximately 4 percent of the 80 million tons of steel produced in Japan during the past 2 years will

come out as scrap during the 1956 financial year.

Metal Bulletin (London), No. 4095, May 18, 1956, p. 24.
 American Metal Market, vol. 63, No. 40, Mar. 1, 1956, p. 12.

Iron Oxide Pigments

By Taber de Polo 1 and Eleanor B. Waters 2

EXPANDED industrial and residential construction, along with regional civic cleanup campaigns, helped to maintain paint sales at approximately the same high rate attained in 1955 and kept the value of iron oxide pigment sales above \$17 million for the second consecutive year. A contributing factor to the high demand for iron oxide pigments was the continued use of latex-base paints.

DOMESTIC PRODUCTION

Crude Materials.—The quantity of crude iron oxide pigment materials mined in 1956 decreased 4 percent from 1955; the quantity sold or used decreased 6 percent, and the value of sold or used material increased 12 percent. Red iron oxide pigments comprised 66 percent of the quantity and 67 percent of the value of crude material sold or used, compared with 63 and 64 percent in 1955.

Of the 50,000 short tons of material sold or used by crude-pigment producers, over 32,000 tons (65 percent) was supplied as a byproduct by iron-ore producers. The value of byproduct pigments increased \$1.79 per short ton; the value of material produced at iron oxide pig-

ment mines increased only \$1.05 per ton.

Eleven companies in 9 States mined raw material for producing iron oxide pigments in 1956; Missouri and Michigan together furnished 65 percent of the quantity sold or used and 64 percent of the value.

Finished Pigments.—Combined sales (almost 114,000 short tons) of natural and manufactured iron oxide pigments reported by processors in 1956 maintained the high record of 1955; quantity dropped only 1 percent and total value decreased 2 percent. The average price de-

creased \$1.75 per ton.

Natural pigments (excluding those in mixtures of natural, manufactured, and undesignated pigments) supplied 35 percent of the tonnage and 17 percent of the value of the total finished pigments in 1956. Mixtures of natural and manufactured pigments (all reds) furnished 5 percent of the tonnage and 5 percent of the value. The average value of finished natural pigments dropped from \$75.16 per ton to \$72.21; the average value of manufactured pigments increased from \$197.38 to \$200.18 per ton.

Of the 64,000 tons of manufactured pigments sold in 1956 (a 5-percent decrease from 1955) the reds comprised 73 percent of the market, virtually the same percentage as in 1955. Yellow pigments comprised 21 percent of the market in both 1955 and 1956. The reds

¹ Commodity specialist. ² Research assistant.

furnished 69 and 68 percent of the value in 1955 and 1956, respectively, and the yellows, 24 and 23 percent. The average value for the reds was approximately \$186, and the average value for the yellows \$226

per ton.

Of the finished iron oxide pigments (natural and manufactured) sold in 1956, the reds dominated the market, with 64 percent of the quantity and 63 percent of the value; yellows supplied 18 percent of the quantity and 20 percent of the value, and browns furnished 11 percent both of quantity and value. These figures correspond closely with 1955 percentages. The reported value for black pigments decreased from an average of \$214 per ton in 1955 to \$132 in 1956.

The highest total valued pigment in 1956, with almost 14 percent of the total tonnage and 26 percent of the value of the iron oxide pigment market, was manufactured red from calcined copperas, valued at \$274

per ton, compared with \$256 in 1955.

A total of 18 companies in 10 States reported sales of finished iron oxide pigments in 1956, compared with 17 companies in 9 States in 1955; Oregon was the newcomer.

TABLE 1.—Crude iron oxide pigment materials produced and sold or used by processors in the United States, 1955-56, by kinds

		1955			1956	
Pigment	Quantity mined (short tons)	Quantity sold (short tons)	Value	Quantity mined (short tons)	Quantity sold (short tons)	Value
Brown iron oxide: Metallic brown. Sienna. Umber. Vandyke brown. Red iron oxide. Yellow iron oxide:	30 6, 015 501 119 36, 129	30 5, 331 471 119 33, 363	\$240 67, 478 9, 145 714 267, 988	(1) 4, 270 495 36, 322	(1) 3, 514 455 32, 909	(1) \$74, 260 6, 857 312, 370
Natural yellow iron oxide. Ocher	2 2, 625 9, 522 400 877	2 2, 831 9, 516 400 877	2 19, 155 42, 476 6, 000 6, 224	(1) 8, 370 (1) 4, 476	(1) 8, 370 (1) 4, 533	(1) 47, 237 (1) 27, 542
Total	² 56, 218	² 52, 938	² 419, 420	53, 933	49, 781	468, 26

¹ Included with "Other."

TABLE 2.—Crude iron oxide pigment materials mined and sold or used in the United States, 1955-56, by sources

	4.7	1955		1956			
Source	Quantity mined	Quant or u	Quantity sold or used Quantity mined			antity sold or used	
	(short tons)	Short tons	Value	(short tons)	Short tons	Value	
Iron oxide pigment mines Iron ore mines	¹ 23, 576 32, 642	1 20, 296 32, 642	1 \$175, 857 243, 563	21, 464 32, 469	17, 312 32, 469	\$168, 021 300, 245	
Total	1 56, 218	1 52, 938	1 419, 420	53, 933	49, 781	468, 266	

¹ Revised figure.

² Revised figure.

TABLE 3.—Crude iron oxide pigment materials mined and sold or used in the United States, 1956, by States

State	Number of producers	Quantity mined (short tons)	Quantity sold or used (short tons)	Value			
Pennsylvania	1	600	600	\$6,600			
Colorado Minnesota Oregon	3	4, 827	3, 934	20, 229			
Michigan Missouri	} 4	32, 455	32, 455	300, 191			
Georgia New YorkVirginia	3	16, 051	12, 792	141, 246			
Total	11	53, 933	49, 781	468, 266			
	<u> </u>	l					

TABLE 4.—Finished iron oxide pigments sold by processors in the United States, 1947–51 (average) and 1952–56 $^{\rm 1}$

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	117, 339	\$12, 489, 556	1954	97, 951	\$13, 977, 538
	105, 242	13, 267, 766	1955	115, 302	17, 471, 681
	108, 350	14, 246, 726	1956	113, 827	17, 049, 288

¹ For 1947-51, includes mineral blacks.

TABLE 5.—Finished iron oxide pigments sold by processors in the United States, 1955-56, by kinds

Pigment	19	55	1956		
Light	Short tons	Value	Short tons	Value	
Disalege					
Blacks: Magnetite	596	\$19,009	2, 790	\$82, 220	
Manufactured magnetic black (pure)	2, 149	567, 869	1, 919	538, 61	
Browns:					
Natural brown iron oxide (metallic)	8, 365	739, 891	7, 390	684, 27	
Manufactured brown iron oxide (pure)	1,487	435, 451	1, 951	585, 74	
Sap brown	38	6, 073			
Umbers: Burnt	2, 819	400, 139	2, 901	427, 01	
Raw	622	80, 706	597	80, 46	
Vandyke brown	145	35, 015	179	39, 19	
Rade.					
Natural red iron oxide	16, 693	915, 087	18, 083	948, 92	
Sienna, burnt	1, 120	228, 500	1, 039	212, 88	
Manufactured red iron oxide:					
Pure red iron oxides Calcined copperas	19, 839	5, 088, 295	15, 914	4, 365, 53	
Other chemical processes	5, 849	1, 512, 579	6, 637	1, 839, 45	
Mixtures of natural and pure red iron oxides	6, 143	832, 739	5, 689	836, 95	
Other manufactured red iron oxides	20, 659	2, 179, 013	21, 329	2, 166, 31	
Venetian red (manufactured)	3, 701	417, 306	3, 273	375, 81	
Pyrite cinder	357	32, 825	3 59	32, 65	
Yellows:	119	16, 007	174	20, 88	
Natural yellow iron oxideOcher	6, 034	199, 234	5, 736	198, 02	
Manufactured yellow iron oxide (pure)		3, 142, 460	13, 261	2, 997, 18	
Sienna, raw	976	174, 824	908	173, 29	
Other	3, 674	448, 659	3, 698	443, 84	
Total	115, 302	17, 471, 681	113, 827	17, 049, 28	

TABLE 6.—Sales of finished iron oxide pigments in the United States, 1956, by States

	State	Number of producers	Quantity sold (short tons)	Value
Georgia Maryland Virginia		 } 4	17, 724	\$1, 555, 096
Illinois Ohio		 } 4	34, 218	4, 288, 45
New Jersey New York Other 1		 } 4 6	3, 984 57, 901	276, 44 10, 929, 29
Total		 18	113, 827	17, 049, 28

¹ Includes California, Oregon, Pennsylvania, and a quantity unspecified by State.

PRICES

Prices for most iron oxide pigments remained fairly constant in 1956 compared with 1955, with advances of ¼ to 1 cent a pound. Indian red, American common, advanced 2¾ cents, and Venetian red advanced 1½ cents a pound.

Prices of Italian raw powdered sienna and American burnt powdered sienna fluctuated considerably; the former dropped from 12% cents a pound at the beginning of the year to 6% cents a pound at the year end, and the latter increased from 5% to 16% cents a pound in August.

TABLE 7.—Prices quoted on finished iron oxide pigments in 1955, per pound
[Paint, Oil and Chemical Review]

	Dec. 15, 1955	Dec. 27, 1956
Blacks:		
Mineral blacks	\$0. 151/2	\$0.16
Black oxide of iron, pure	. 131/2	. 131
Black oxide of iron, synthetic	. 10/2	. 121
Browns:		
Brown, metallic	. 041/2	.04
Brown, iron oxide, pure	141/	
Umber, Turkey, burnt, powdered	. 07	. 07%
Umber, American	. 061/61	.071
vandyke brown	. 0934	. 091/2
Reds:		
Crocus martis	. 04	.04
Indian red, American common	.09	. 113/
Indian red, American pure	. 128/4	. 128
Iron oxide, casks:		
Domestic, natural	.04	.04
Persian Gulf	. 063/4	. 073/4
Spanish	. 0534	.06
Sienna, American, burnt and powdered, in bags	.053/4	. 161/4
Sienna, Italian, burnt and powdered, in barrels	. 12	$.06\frac{1}{4}$
Venetian redYellows:	. 031/2	. 05
t enows:		
Iron oxide, yellow, pure	.11	. 111/2
Other, domestic	.0134	.02
	$05\frac{1}{2}$.06
Sienna, American, raw, powdered, in barrels	. 0584	. 061/4
Sienna, Italian, raw, powdered, in barrels	. 123/4	. 061/2

FOREIGN TRADE 3

Total imports of natural and manufactured iron oxide pigments decreased 6 percent in quantity but increased 1 percent in value.

Natural pigments supplied 54 percent of the tonnage each year, but manufactured pigments furnished 73 percent of the value in 1956 and 71 percent in 1955. The average value of natural pigments imported was \$46 per ton and of manufactured pigments \$147 per

ton in 1956.

Iron oxide pigments designated by the United States Department of Commerce as "natural iron oxide and iron hydroxide pigments, n. s. p. f.," supplied 45 percent of all natural varieties and came from Spain (87 percent), United Kingdom (9 percent), West Germany, and France. The Union of South Africa furnished the entire supply of crude other and over 88 percent of refined other; the rest was supplied by France and Germany.

Crude and refined siennas came from Italy (68 and 76 percent);

Malta, Gozo, and Cyprus (32 and 20 percent); and West Germany.

The same sources also supplied the crude and refined umbers; Malta, Gozo, and Cyprus furnishing over 99 percent of the crude and 88 percent of the refined. The United Kingdom supplied a small quantity of refined umber. Vandyke brown was imported from West Germany (86 percent) and the Netherlands.

Imports of manufactured (synthetic) iron oxide pigments came from West Germany (61 percent), Canada (24 percent), United Kingdom (10 percent), Netherlands (3 percent), Spain, Belgium-Luxem-

bourg, Union of South Africa, and Sweden.

An apparent small increase in tonnage and value of iron oxide pigments was exported from the United States in 1956, but changes

TABLE 8.—Selected iron oxide pigments imported for consumption in the United States, 1953-56

	1	953	1	954		1955	1956		
Pigments	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	
Natural:						+ +			
Ocher, crude and re- fined	177	\$9, 122	154	\$8,666	218	\$15, 362	206	\$11,827	
Siennas, crude and refined Umber, crude and	700	59, 747	338	34, 848	840	1 80, 041	722	1 71, 190	
refined	2, 725	78, 310	2, 598	74,276	2,654	79, 446	2,762	89, 489	
Vandyke brown Other 2	164 2, 716	8, 958 123, 432	2, 546	5, 194 120, 600	3, 702	9, 206 161, 488	200 3, 168	12, 465 137, 507	
Total	6, 482	279, 569	5, 725	243, 584	7, 565	1 345, 543	7,058	1 322, 478	
Manufactured (synthet- ic)	4, 531	522, 618	4, 997	602, 847	6,394	1 850, 095	5, 997	1 879, 200	
Grand total	11,013	802, 187	10, 722	846, 431	13, 959	1 1, 195, 638	13, 055	1 1, 201, 678	

[Bureau of the Census]

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with prior years.

Classified by the Bureau of the Census as: "Natural iron oxide and iron hydroxide pigments, n. s. p. f."

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

in tabulating procedures by the Bureau of the Census made it difficult to compare figures with those of previous years. Almost 80 percent of all pigment exports went to countries in North America. Canada received 70 percent of the total exports. Other major recipients were Cuba (6 percent), Philippines (3 percent), Colombia (3 percent), Netherlands (3 percent), Venezuela (2 percent), and Mexico (2 percent).

TABLE 9.—Iron oxide pigments exported from the United States, 1953-56, by countries of destination

[Bureau of the Census]

	1	953	1	954	1	955	1	956
Country	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
North America:		1.0						
Canada	2,886	\$351,393	2, 208	\$265, 266	3, 149	\$404,717	3, 552	\$427, 46
Cuba Dominican Republic	293	69, 652	197	48, 578	205	53, 252	281	81, 80
Dominican Republic	35	11, 529	22	5, 122	35	9, 480	43	11, 51
Guatemala Haiti	42 23	13, 515	33 9	8, 162	20	6, 931	16	5, 80
Marian	181	4,615 47,474	128	3, 260 61, 525	38 64	4, 930 27, 300	111	35, 79
Mexico Netherlands Antilles	3	990	10	2,720	14	5, 195	111	30, 19
Panama	7	1,686	37	5, 193	1	390	12	5, 60
Other North America	40	12, 877	22	8, 320	39	13,075	21	8, 430
Total	3, 510	513, 731	2, 666	408, 146	3, 565	525, 270	4,036	576, 418
South America:								
Argentina					20	7,682	(1)	43
Bolivia	2	526	4	1,060	36	16, 763	41	14,83
Brazil Chile	3 45	912 8,750	78 8	21, 116	30 22	8,045 12,764	34	8, 86
Colombia	94	31, 450	176	3, 290 76, 478	198	62, 120	5 136	1,850 50,570
Ecuador	27	5, 328	1 175	1,717	3	795	7	2, 23
Peru	32	9, 507	15	5, 196	95	21, 470	41	8, 23
Uruguay Venezuela			j	528	4	9, 365	(1)	180
Venezuela	137	35, 489	210	38, 943	105	38, 044	115	66, 686
Total	340	91, 962	497	148, 328	513	177, 048	379	153, 898
Europe:								
Belgium-Luxembourg	15	4, 504	40	11,824	22	18,300	18	7, 36
France	47	13,864	5	9, 212	61	12, 974	37	26, 89
Iceland			7	9, 212 7, 347		,	7	2, 27
Italy Netherlands	13	6, 520	14	11,007	7	9, 785	22	7, 640
Netherlands	75	3,006	104	5, 918	175	18, 675	134	5, 580
Norway Portugal					30	1, 932		
Portugal	7	1,740	11	3,068	11	3, 075		
Spain Sweden	10	0 020	1 7	564		700	70	14, 14
Switzerland	4	2, 230 3, 746	45	1,902	3	796		19 49
United Kingdon	i	252	40	9, 948	12 2	5, 636 . 1, 130	42 12	13, 434 4, 010
Other Europe	(1)	112	3	695	8	5, 058	12	2, 63
Total	172	35, 974	237	61, 485	331	77, 361	343	83, 96
Asia:								
Indonesia		4.5			10	3,061	40	6, 38
Japan	14	4, 327	13	7,074	25	7, 408	13	12, 60
Philippines	27	8, 219	69	33, 656	119	34, 955	173	43, 78
Turkey Other Asia					33	8, 041	3	52
Other Asia	9	5, 588	18	6, 422	31	6, 330	6	4, 71
Total	50	18, 134	100	47, 152	218	59, 795	235	68, 014
Africa:								
Union of South Africa	94	25, 726	51	16, 100	101	36, 472	. 67	20, 33
Other Africa	6	2, 569	1	- 576	8	4, 125	(1)	30
Total	100	98 90#	52	16 679	109	40 507	67	00.04
Oceania	100	28, 295 235	2	16, 676 542	109	40, 597 13, 785	11	20, 643 6, 283
Grand total	4, 173	688, 331	3, 554	682, 329	4, 744	893, 856	5,071	909, 22
	2, 2,0	000,001	0,001	302,020	29 122	300,000	0,011	000, 44

¹ Less than 1 ton.

TECHNOLOGY

Several patents for producing iron oxide pigments were issued in One method produced a red iron oxide pigment having substantially less water of hydration than precipated yellow and brown ferric hydrates. Metallic iron seeding is used, and the degree of oxidation controls the final shade.4 A patent was granted for producing finely divided iron oxide involving a reaction of metallic iron with dilute hydrochloric acid and ultimately producing iron oxide particles in a gaseous medium containing byproduct hydrogen chloride.5 improved pigment of soft texture and free of grit and deleterious salts is made by wet precipitation at less than 212° F. in the presence of oxygen-containing gases.⁶ An especially black iron oxide pigment was produced in Sweden.⁷ A patent was issued on a British invention for producing neutral inorganic oxide pigments.8 A Japanese patent was issued for a method of precipitating yellow pigments from scrap-

The preparation, composition, and color of oxides and hydrous oxides of iron obtained by different degrees of oxidation were described.10

The American Society for Testing Materials adopted or revised standards or tentative standards for tests for mass color and tinting strength of color pigments, including raw and burnt umber and siennas, Venetian red, hydrated yellow iron oxide, and black synthetic iron oxide.¹¹

An article described the use of pigments in coloring concrete blocks. Iron oxides—either natural or synthetic—are used to obtain shades of red, yellow, black, brown, buff, or tan. These oxides are relatively unaffected by sunlight or by alkali and are reasonably low in cost. Tests for fading, light resistance, and fineness and impurity were described.12

Research work was conducted in Japan on precipating ferromagnetic iron oxide and mixtures of iron oxide hydrates by solutions of ammonia and methyl hydroxide. The precipitates were identified by electron diffraction.¹³

Ocher and ground cinders were used in quantities up to 3 percent of the weight of the batch for coloring silicate brick, resulting in higher

conductivity but lower strength.14

Mar. 27, 1956.

Mar. 27, 1956.

Matsuo, Yoshiro, and Tanaka, Hajume (assigned to Sumitomo Chemical Industries Co.), Yellow Pigments From Iron Compounds: Japanese Patent 8,018, Dec. 7, 1954; Chem. Abs., vol. 50, No. 11, June

Pigments From Iron Compounds. spanies: I across spanies. I across spanies is the configuration of the Oxides and Hydrous Oxides of Iron With Reference to Pigments and In 10, 1956, p. 8227e.

10 Kröner [Manufacture of the Oxides and Hydrous Oxides of Iron With Reference to Pigments and Their Principles]: Compt. Rend. 27e Congr. intern., Chin. Ind., Brussels, 1954, 2; Industrie chim. belge 20, Spec. No. 595-9, 1955: Chem. Abs., vol. 50, No. 19, Oct. 10, 1956, p. 1237e.

11 American Society for Testing Materials, Standards, 1955: Sec. IV; Chem. Abs., vol. 47, No. 17, Sept. 10, 1953, p. 8933g; Chem. Abs., vol. 50, No. 17, Sept. 10, 1956, p. 12357e.

12 Grant, William, Notes on Coloring Concrete Block: Concrete, vol. 64, No. 4, April 1956, pp. 39-41.

12 Yamaguchi, S., [Conditions for the Formation of Different Iron Oxides] Sci. Research Inst., Hongo, Tokyo, Ztschr. Anorg. u. Allgem. Chem., vol. 285, 1956, pp. 100-102; Chem. Abs., vol. 50, No. 18, Sept. 1956, p. 12721d. Tokyo, Zischr. Anorg. u. Allgem. Chem., vol. 285, 1956, pp. 100-102; Chem. Abs., vol. 50, No. 18, Sept. 25, 1956, p. 12721d.

14 Furman, R. V., and Kharkin, L. M., Effect of Various Additions and Local Pigments on Quality of Silicate Brick: Chem. Abs., vol. 50, No. 2, Jan. 10, 1956, p. 1278e.

⁴ Marsh, D. W. (assigned to C. K. Williams & Co.), Process for Producing Red Iron Oxide Pigments: U. S. Patent 24,173, July 3, 1956 (reissue of original U. S. Patent 2,633,407, Mar. 31, 1953).

⁵ Michel, L. P., and Goodgame, T. H. (assigned to Godfrey L. Cabot, Inc.), Manufacture of Iron Oxide Pigment: U. S. Patent 2,771,344, Nov. 20, 1956.

⁶ Marsh, B. H. (assigned to C. K. Williams & Co.), Process for Producing Hydrous Ferric Oxide: U. S. Patent 2,716,595, Aug. 30, 1955; Paint Industry, vol. 77, No. 2, February 1956, p. 42.

⁷ Holst, T. G., and Björnled, K. A. H. (assigned to Reymersholms Gamla Industri Aktiebolag), Swedish Patent 152,566, Dec. 6, 1955; Chem. Abs., vol. 50, No. 10, May 25, 1956, p. 7478f.

Frey, Walter (assigned to Saeurefobrick Schweizerhall), Neutral Inorganic Oxide Pigments: British Patent 684,016, Dec. 10, 1952 (Chem. Abs., vol. 47, No. 11, June 10, 1953, p. 5697f); U. S. Patent 2,739,904, May 27, 1955

A revolving colorimeter was used to demonstrate that the color and yield of pigments produced from FeSO_{4.7}H₂O_(copperas) vary at different temperatures and rates of heating. Pigments nearest to red were obtained in the 750°-800° F. interval. The duration of heating did not affect color but increased yield.15

A review of the Paint and Varnish Research Institute in Germany included physical studies of pigments. References to published

papers were given.16

WORLD REVIEW

Argentina.—Natural-ocher production in 1956 amounted to 276 short tons.17

Australia.—Production of iron oxide pigments in 1956 totaled 3,950

short tons.18

Cyprus.—Umber exports in 1956 amounted to 5,318 short tons valued at £54,188 (US\$152,726.40) and yellow other exports were 454 short tons valued at £7,223 (US\$20,224.40).19

Ecuador.—In 1956, 6 short tons of ocher valued at \$160 was pro-

duced.20

France.—A total of 13,779 short tons of ocher was produced during 1956, with a value of 170 million francs (US\$485,350).21

French Morocco.—A total of 1,173 tons of natural iron oxide pigments was produced during 1956, valued at 23,460,000 francs (US\$67,028).22

Germany, West.—West Germany produced 60,550 short tons of natural iron oxide pigments during 1956, valued at DM36,383,000 (US\$8,659,000). Figures for manufactured iron oxide pigments were not available.23

India.—The total production of ocher in 1956 was reported to be 12,316 short tons valued at 252,000 rupees (US\$52,920), a decrease of 32 percent in tonnage and 7 percent in value from 1955.24

Pakistan.—Ocher production in 1956 was 43 short tons.25

¹⁸ Uspenskaya, I. L. M., and Gurenko, A. Kh., [The Application of Quantitative Methods of Color Measurement to the Study of the Effect of Temperature on Pigments, "Red Iron Oxide" Obtained From Copperas]: Zhur. Priklad., Khim., vol. 29, 1956, pp. 1040–1044; Chem. Abs., vol. 50, No. 8, Apr. 25, 1956, p. 6067c; No. 21, Nov. 25, 1956, p. 17470b.

16 Mukherjea, R. N., Paint Research in Germany: Paint, India, No. 4, 1956, pp. 26–28; Chem. Abs., vol. 51, No. 1, Jan. 10, 1957, p. 737b.

17 U. S. Embassy, Buenos Aires, Argentina, State Department Dispatch 1393: May 16, 1957, p. 3.

18 U. S. Consulate, Melbourne, Australia, State Department Dispatch 163: May 22, 1957, p. 3.

19 U. S. Consulate, Nicosia, Cyprus, State Department Dispatch 109: Mar. 30, 1957, p. 1.

20 U. S. Embassy, Quito, Ecuador, State Department Dispatch 591: Apr. 4, 1957, enclosure 1, p. 1.

21 U. S. Embassy, Paris, France, State Department Dispatch 2418: June 25, 1957, p. 2.

22 U. S. Embassy, Rabst, Morocco, State Department Dispatch 231: May 9, 1957, p. 2.

23 U. S. Embassy, Bonn, Germany, State Department Dispatch 213: May 24, 1957, p. 3.

24 U. S. Embassy, New Delhi, India, State Department Dispatch 1399: May 27, 1957, p. 2.

25 U. S. Embassy, Karachi, Pakistan, State Department Dispatch 771: May 15, 1957, p. 2.

Jewel Bearings

By Henry P. Chandler and Eleanor B. Waters 2

LTHOUGH imports and consumption of jewel bearings declined from the previous year, the production of finished jewel bearings increased slightly. The annual jewel-bearings industry survey is conducted by the Federal Bureau of Mines in cooperation with the Business and Defense Services Administration, United States Department of Commerce. In 1956 the survey included data from 100 respondents in 16 States and Puerto Rico.

DOMESTIC PRODUCTION

Output of finished jewel bearings increased 18 percent, and that of blanks increased 65 percent, over 1955. Firms in Santa Barbara (Calif.), North Falmouth, Waltham, and West Lynn (Mass.), Newark, Perth Amboy, and Trenton (N. J.), Rochester (N. Y.), Rolla (N. Dak.3), and Morrisville (Pa.) reported production of finished jewel bearings.

TABLE 1 .- Salient statistics of the jewel-bearings industry in the United States, 1947-51 (average) and 1952-56

	(Million	jewel	bear	ings)
--	----------	-------	------	-------

	1947-51 (average)	1952	1953	1954	1955	1956
Production: Blanks	0.7	1. 9	6.0	0.8	2.9	4.5
Finished jewels 1	4.2	10.6	15.7	10. 5	2 15. 3	4. 8 18. 0
Consumption: Blanks	7.5	9.1	7.9	2.8	4.9	5. (
Semifabricated jewels	3.4	1.9	1.9	(3).	(3)	(3)
Finished jewels 1Shipments:	71.2	77.3	70. 9	66. 2	74.8	74. (
Blanks	.1	(4)	8.2	(4) (3) 29. 4	2.2	4.3
Semifabricated jewels Finished jewels 1	16.7	(4) (4) 28. 8	(4) 36, 8	(3) 20. 4	(3) 40. 1	(³) 42.1
Stocks on hand Dec. 31:	10.7					
Blanks	5.8	4.3 1.0	1. 4 2. 1	.7	1.5	(a) 1. i
Semifabricated jewels Finished jewels 1	. 5 85.8	104.2	97. 5	(3) 95. 4	(3) 103. 6	96.

Includes finished jewels made from glass.

³ Includes phonograph needles.

Canvass discontinued. 4 Less than 0.1 million.

¹ Commodity specialist.

Research assistant.
 Business Week, Precision Bearings Take Root in the U. S.: No. 1400, Jan. 30 ,1956, pp. 130-132, 134.

CONSUMPTION AND USES

The consumption of finished jewels decreased less than 1 percent

from 1955, but the consumption of blanks increased slightly.

Synthetic sapphire and ruby bearings constituted 89 percent of the total consumption and glass bearings nearly 11 percent; the remainder were made of various other materials.

The more widely used types of jewel bearings were illustrated in the Jewel Bearings chapter of Minerals Yearbook, 1955.

An illustrated article describing the jewel-bearings plant at Rolla, N. Dak., and the various applications of jewel bearings in industry as well as in watches and clocks appeared in the June 30, 1956, issue of Business Week.

In 1956, 14 firms in New York consumed 29 percent of the national

total; 10 firms in Illinois consumed 33 percent.

The following firms used 87 percent of the jewel bearings consumed in the United States during 1956:

New Haven Clock & Watch Co., New Haven, Conn.

New Haven Clock & Water Co., New Haven, Conn.
Simpson Electric Co., Div. of American Gage & Machine Co., Chicago, Ill.
Elgin National Watch Co., Elgin, Ill.
Westclox Div., General Time Corp., La Salle, Ill.
Sangamo Electric Co., Springfield, Ill.
Duncan Electric Mfg. Co., Lafayette, Ind.
General Electric Co., West Lynn, Mass. and Somersworth, N. H.
Westinghouse Electric Corp. November N. L.

Westinghouse Electric Corp., Newark, N. J.

Weston Electrical Instrument Corp., Newark, N. J. Bulova Watch Co., Flushing, N. Y. Hamilton Watch Co., Lancaster, Pa. The George W. Borg Corp., Delavan, Wis.

TABLE 2.—Consumption and sales of finished jewels in the United States, 1956, by uses

(Million jewel bearings)

Use	Con- sumption	Sales	Use	Con- sumption	Sales
Synthetic sapphire and ruby: Watch holes: Olive	5.3 1.2 6.7	(1) (2) .1 3.2 4.8 6.9 8.6 5.0 .2 (2) 6.6	Glass: Vees	7.9 .1 8.0 .1 74.6	6.6
Total number of finished synthetic saphire and ruby jewel bearings	66. 5	36. 3			

Less than 0.1 million.Included with "Other."

Includes cups, double cups, and special cupped disks for piezoelectric cells.

TABLE 3.—Consumption of finished jewel bearings in the United States, 1956, by States

State	Number of con- sumers	Jewel bearings (millions)	State	Number of con- sumers	Jewel bearings (millions)
California Connecticut Illinois Indiana Maryland Massachusetts Michigan and Minnesota Missouri New Hampshire	4 8 10 1 1 9 3 2 4	0. 2 1. 9 24. 7 1. 4 .1 2. 3 .1 (2)	New Jersey New York Ohio Pennsylvania Puerto Rico Rhode Island Wisconsin Total	8 14 4 4 1 1 3 77	6. 3 21. 9 1. 1 6. 5 . 2 . 6 4. 3

¹ Includes Commonwealth of Puerto Rico.

² Less than 0.1 million.

FOREIGN TRADE 4

Imports of jewel bearings into the United States in 1956 decreased both in quantity and value compared with 1955. Jewel bearings in loose form (not assembled in units) were dutiable at 10 percent ad valorem.

TABLE 4.—Jewel bearings imported for consumption in the United States, 1947-51 (average) and 1952-56

Bureau	

Year	Jewel bearings (million)	Value (thousand dollars)	Year	Jewel bearings (million)	Value (thousand dollars)
1947-51 (average)	114. 7	4, 490	1954	49. 3	1 2, 219
1952	98. 0	4, 227	1955	66. 1	1 2, 875
1953	86. 9	3, 708	1956	54. 8	1 2, 456

 $^{^{1}\,\}mathrm{Owing}$ to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TABLE 5.—Imports 1 of jewel bearings in 1956, by uses

Use	Jewel bearings (millions)	Use	Jewel bearings (millions)
Watch holes: Olive	12. 3 13. 5 3. 9 1. 3 9. 4 3. 8	Vees Instrument rings. Cups or double cups. Orifice jewel. Other 3. Total	7. 4 5. 9 4. 9 2 1. 3

As reported to the Bureau of Mines.
 Includes glass vees, stylii, rough and finished pins, small spacer jewel for electrical insulation, phonograph points and blanks, jewel tips, and guide jewels.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TECHNOLOGY

An automatic gage for measuring the holes in jewel bearings was developed.5

Ultrasonic cleaning of watch parts, including watch jewels, was

described.6

Because of the congealing of lubricants at low temperatures, materials to replace jewel bearings in aircraft timepieces were being investigated.7

A new type of synthetic sapphire crystal was described.8

WORLD REVIEW

The quantity of jewel bearings manufactured and used annually in the U.S.S.R. was discussed in a report on the Russian horological The report covers general impressions and observations, visits to watch factories in Moscow and Penza, and a visit to the Moscow Research Institute. Neither of the two jewel-bearings factories was visited, but the visitors were told that U.S.S.R. was producing at a rate of 4 million bearings per week by conventional methods, probably based on Italian techniques.

Swiss technicians arrived during 1956 to assist in assembling and operating a synthetic jewel plant at Mattupalayam in South India.10

Machinery, Automatic Gage for Measuring and Sorting Jewel Bearings: Vol. 63, No. 2, October 1956,

Machinery, Automatic Gage for Measuring and Softing Soft Sciences 2018.
 Horological Journal, Cleaning Watch Parts by Untrasonics: Vol. 96, No. 1169, February 1956, pp. 82-86.
 White, H. S., Small Oil-Free Bearings: Jour. Res., Nat. Bureau Standards, vol. 57, No. 4, October 1956, pp. 185-204.
 Electrical Manufacturer, Synthetic Industrial Sapphire Crystals: Vol. 58, No. 3, September 1956, p. 10.
 British Delegation, The Russian Horological Industry: Rept. on Visit to Russia, Aug. 25-Sept. 5, 1956, as Official Guests of Ministry of Instrument Production and Means of Automation of U. S. S. R., London, October 1956, 23 pp.

10 U. S. Embassy, Madras, India, State Department Dispatch 500, Dec. 6, 1956, p. 1.

Kyanite and Related Minerals

By Brooke L. Gunsallus¹ and Gertrude E. Tucker²

▶YANITE, sillimanite, and alusite, dumortierite, topaz, and synthetic mullite are discussed under the heading "Kyanite and Related Minerals," because of similarities in properties and end These minerals are aluminum silicates that may be used to pro-

duce mullite-containing refractories.

Domestic production of crude kyanite increased 18 percent from 1955 in 1956. For several years no domestic production of other minerals of this group was reported. Kyanite imported for consumption in 1956 decreased 8 percent compared with 1955. The decrease was caused, for the most part, by the availability of synthetic mullite comparable in quality and price with that made from high-quality imported kyanite.

DOMESTIC PRODUCTION

Kyanite was the only natural mullite-forming mineral produced in the United States in 1956. All kyanite produced was recovered as flotation concentrate. Demand for kyanite concentrate was limited, largely because mullite produced from it is of such small grain size and low strength that it is not suitable for the highest grades of refractories.

For many years only two companies have produced kyanite in the United States: Commercialores, Inc., 39 Cortlandt St., New York, -N. Y., from deposits near Clover, S. C.; and Kyanite Mining Corp., Cullen, Va., from a property near Farmville, Prince Edward County,

Va.

The following companies produced synthetic mullite in 1956:

Babcock & Wilcox Co., Refractories Division, New York, N. Y. (plant at Augusta,

Carborundum Co., Niagara Falls, N. Y. (plant at Keasbey, N. J.). Harbison-Walker Refractories Co., Pittsburgh, Pa. (plant at Vandalia, Mo.). Laclede-Christy Co., Division of H. K. Porter Co., St. Louis, Mo. (plant at Shelton, Conn.).

Richard C. Remmey Son Co. (a subsidiary of A. P. Green Fire Brick Co.), Phila-

delphia, Pa. (plant at same address). Chas. Taylor Sons Co. (a subsidiary of National Lead Co.), Cincinnati, Ohio (plant at Taylor, Ky.).

CONSUMPTION AND USES

Domestic consumption of foreign and domestic kyanite and synthetic mullite during 1952-56 ranged from about 40,000 to 60,000 tons.

¹ Commodity specialist.
² Statistical assistant.

Mullite was produced in 1956, as in 1955, either by calcining natural ores or by synthesis. The output was used almost entirely in manufacturing superduty refractories. Mullite refractories represented only a small percentage of the total tonnage of refractories used in the United States; but they occupied an important position in that field, because of their relatively high softening points, low coefficients of expansion, and resistance to loads at high temperatures, thermal shock, and corrosive action of certain fluxing agents. Although mullite refractories were relatively expensive, industry found it profitable to use them for some superduty refractories applications.

Mullite refractories have been used in the form of brick and shapes or in the form of cements, mortars, plastics, and ramming mixtures. In some instances the relatively fine-grained domestic mullite has been blended with the coarse-grained mullite obtained from imported kyanite or synthetic mullite in the production of refractory brick and shapes. Domestic kyanite has been satisfactory for use in refractory cement and for other uses that do not require a coarse-grained material; such uses composed the major part of United States consumption of domestic kyanite in 1956.

For a number of years about 90 percent of all mullite refractories have been used to line furnaces operated by the metallurgical and glass industries. In 1956 about 50 percent of the mullite refractories were used by the metallurgical industry and 40 percent by the glass industry. The remaining 10 percent were used for miscellaneous applications, chiefly in the ceramic industry.

In the metallurgical industry the principal use of mullite refractories in 1956 was in electric furnaces (largely the induction type) for melting brass, bronze, copper-nickel alloys, certain steels, and ferrous alloys. Other metallurgical applications were in zinc-smelting and gold-refining furnaces.

In the glass industry mullite refractories were used mainly in constructing continuous tanks, especially in the superstructure, and in plungers, rings, and tubes for feeding molten glass to the forming machines.

In the ceramic industry small quantities of mullite refractories were used for manufacturing kiln furniture (for placing ceramic ware in kilns), in saggers (open-topped refractory boxes for protecting ware during firing), and in kiln construction. Small quantities of kyanite without calcination were used as a source of alumina in glass and as an ingredient of electrical and chemical porcelain and pyrometer tubes.

FOREIGN TRADE³

India continued to be the principal supplier to the United States in 1956, with 75 percent of the total, compared with 91 percent in 1955, 69 percent in 1954, and 63 percent in 1953. Union of South Africa supplied 25 percent in 1956, compared with 7 percent in 1955, 20 percent in 1954, and 24 percent in 1953. Total imports in 1956 decreased 8 percent compared with 1955. The availability of synthetic mullite comparable in quality and price with that produced from imported kyanite was partly the cause of decreased imports.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

1, 158

143

173

1,331

53,067

8, 126 2, 000

10, 126

63, 193

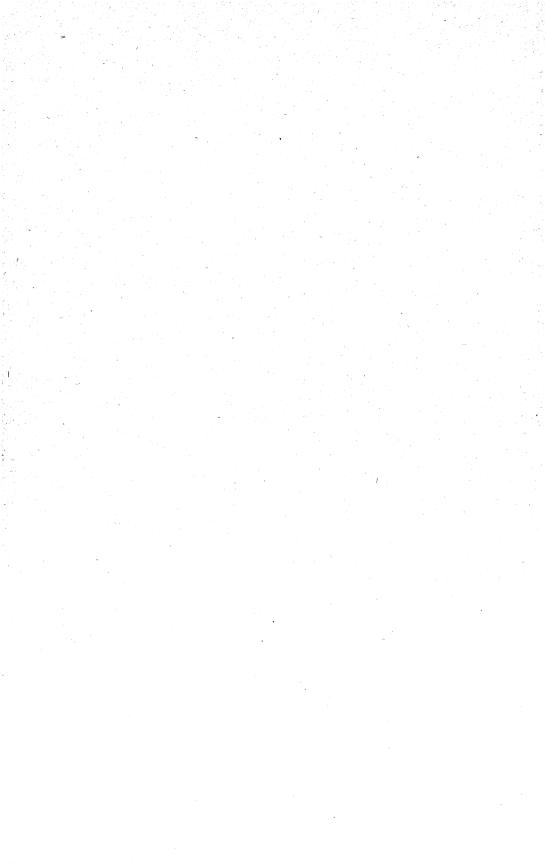
TABLE 1.—Kyanite and allied minerals imported for consumption into and exported from the United States, 1947-51 (average) and 1952-56
[Bureau of the Census]

Exports Imports Short Value Year and destination Value Year and origin Short tons tons \$33, 721 44, 497 41, 401 57, 952 \$426, 968 390, 557 287, 689 1947-51 (average) _. 740 15,676 1947-51 (average) ... 1, 129 1, 032 1, 147 9, 057 6, 620 4, 826 1952... 1 196, 609 North America: Europe: United Kingdom 41, 931 19, 890 996 6, 931 319, 740 Canada..... Mexico.... Asia: India.... 483 61,821 1,479 3, 393 15, 511 Southern British Africa.... Union of South Africa.... Europe: Italy__ 5, 271 661 18,904 648 Total Portugal United Kingdom.... 15, 301 119 338, 993 Grand total, 1955..... 7,581 21, 233 4, 261 205 1956 255, 376 50, 805 Asia: Japan.... 5, 242 1, 709 Asia: India_____Africa: Union of South Africa_ 1,716 87, 315 Grand total, 1955. 6,951 306, 181 Grand total, 1956.... 1956 North America: 34, 530 18, 537 Canada..... 826 Mexico.... 332

Europe:

Total....

Italy_____ United Kingdom___


Total_____Grand total, 1956_____

TECHNOLOGY

A report on the recovery of kyanite and sillimanite from Florida beach sands was published by the Federal Bureau of Mines.⁴ The purpose of the investigation was to develop a method for recovering kyanite and sillimanite from the zircon-mill tailings of the Jackson-ville and Starke, Fla., plants of the Humphreys Gold Corp. The zircon-mill tailings of these plants contained 15 to 20 percent of a mixture of kyanite and sillimanite. Laboratory and pilot-plant data demonstrated that economic recovery of mixed kyanite-sillimanite product from the mill tailing was possible. The pyrometric cone equivalent (P. C. E.) of the concentrate was cone 38 (about 1,835° C.), compared with a P. C. E. of 36 to 37 (about 1,815° C.) for commercial kyanite concentrate. The concentrate was too fine-grained for manufacturing brick, which requires at least 4-mesh material.

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with earlier years.

⁴ Browning, J. S., Clemmons, B. H., and McVay, T. L., Recovery of Kyanite and Sillimanite From Florida Beach Sands: Bureau of Mines Rept. of Investigations 5274, 1956, 12 pp.

Lead

By O. M. Bishop, A. J. Martin, and Edith E. den Hartog²

. The second of the second $m{I}$	Page		Page
Mine production	688 689 690 690	tion—Cont. Antimonial lead	698
tion	100	Stocks	701 703
Active lead smelters and re-		Foreign trade Technology	704
Refined lead	697	World review	709

STABILITY of the lead price, the largest refinery production since 1942, and good overall commercial demand for lead, supplemented by Government purchases for the national stockpile, featured the domestic lead industry in 1956. The steel strike and cutback in automobile production resulted in some decline in the use of lead, but total consumption during the year was only 0.3 percent less than in 1955 and exceeded the average of the 5 years, 1951–55 by 4 percent. The conflict in Egypt and blocking of the Suez Canal had little effect on the supply of lead in the United States and caused no fluctuation in the New York price, which held at 16.00 cents a pound from January 13 through December. In Europe, however, there was a delay in arrivals of lead, which was reflected in higher average monthly quotations for spot lead on the London Metal Exchange from August through December than in the early summer.

Supplies of lead in the United States from all sources totaled 1,318,700 short tons in 1956—a 2-percent increase over 1955. Of the total, 27 percent was derived from domestic mine production, 38 percent from secondary lead recovered, and 35 percent from imports—pigs and bars and lead in ores and concentrates. There were small increases over 1955 in mine production and imports, and output of secondary lead was nearly the same in both years. Although total supplies exceeded consumption by 109,000 tons, combined producers' and consumers stocks increased only 17,000 tons, owing to continued Government purchases for the national long-term stockpile. Exports of pig lead were only 4,600 tons in 1956 and 400 tons in 1955.

¹ Commodity specialist.
2 Statistical assistant.

Except for the usual July decline, which was accentuated by the steel strike, variations in the monthly consumption rates were small or moderate. Loss of time at the mines caused by strikes was con-

siderably less than in 1955.

Total mine and smelter production of lead outside the United States increased, but the rate of gain was lower than in the United States. In mine production Canada, Mexico, and Yugoslavia were the only large producing countries that reported declines. Smelter output increased in all important producing countries except Mexico.

GOVERNMENT PROGRAMS AND REGULATIONS

The Export Control Act of 1949 and the Defense Production Act of 1950, as amended, were extended to June 30, 1958 (Public Laws

631 and 632—84th Congress). In May 1956 the office of Defense Mobilization established the eligibility of lead and zinc for acquisition to the supplemental (barter program) stockpile during the fiscal year 1957. The supplemental stockpile was authorized under the Agricultural Trade Development and Assistance Act of 1954 (Public Law 480). In June 1956 the Commodity Credit Corporation began to acquire these metals under section 303 of the act, and actual deliveries began about August. Procurement was limited to lead and zinc of foreign origin but included metal smelted in the United States from foreign ores.

TABLE 1.—Salient statistics of the lead industry in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Production of refined primary lead: From domestic ores and base bullion From foreign ores and base bullion	377, 285 72, 925	383, 358 89, 494	328, 012 139, 879	322, 271 164, 441	321, 132 158, 025	349, 188 193, 120
Total	450, 210	472, 852	467, 891	486, 712	479, 157	542, 308
Recovery of secondary lead	484, 921	471, 294	486, 737	480, 925	502, 051	506, 755
Imports (general): Lead in pigs, bars, and old Lead in base bullion Lead in ores and matte Exports of refined hig lead	278, 289 3, 382 73, 188 1, 384	523, 059 389 104, 661 1, 762	390, 510 869 160, 899 803	281, 941 41 161, 261 596	284, 729 177, 479 403	283, 392 31 196, 452 4, 628
Consumption of primary and secondary lead. Prices (cents per pound):	1, 137, 269	1, 130, 795	1, 201, 604	1, 094, 871	1, 212, 644	1, 209, 717
New York: Average for period Quotation at end of period London average for period Mine production of recoverable lead ¹ World smelter production of lead	15.77 16.90 16.58 400,719 1,680,000	16. 47 14. 12 16. 82 390, 162 1, 990, 000	13. 48 13. 50 11. 48 342, 644 2, 060, 000	14. 05 15. 00 12. 08 325, 419 2, 190, 000	15. 14 15. 54 13. 19 338, 025 2, 220, 000	16. 01 16. 00 14. 52 352, 826 2, 370, 000

¹ Includes Alaska.

DEFENSE MINERALS EXPLORATION ADMINISTRATION

The DMEA program to encourage exploration and increase domestic reserves of strategic and critical minerals and metals was continued throughout 1956. On exploration contracts for lead and zinc the Government provided 50 percent of the approved cost of the project. Twenty-two such contracts were made in 1956, authorizing a maximum Government participation of \$1,162,896, which was matched by an

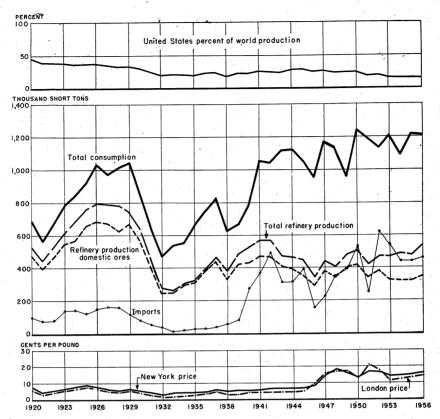


FIGURE 1.—Trends in the lead industry in the United States, 1920-56. Consumption includes primary refined, antimonial, and secondary lead and lead in pigments made directly from ore. Imports are factored to include 95 percent of the lead content of ores, mattes, and concentrates and 100 percent of pigs, bars, base bullion, and scrap.

equal amount of private capital for an anticipated total expenditure of \$2,325,791, an average of \$105,718 per project. From the beginning of the program in 1951 through December 1956, 242 contracts involving lead and zinc were executed, which authorized Government participation of \$11,006,089 3 and total expenditures (combined Government and private capital) of \$22,018,886. Additional information, including a list of DMEA contracts for lead and zinc exploration executed in 1956, is given in the Zinc chapter of this volume.

GENERAL SERVICES ADMINISTRATION

The General Services Administration (GSA) continued to be responsible for stockpile procurement and administration, procurement under foreign aid programs as agent of the International Cooperation Administration, and administration of Defense Production Act programs including domestic purchase programs. Purchases of lead

Includes sums provided through amendments to contracts and also funds for participation in exploration contracts which were subsequently canceled or terminated upon completion.

produced from domestically mined ores were made against the long-

term stockpile objective for this metal.

No new contracts with foreign producers for obtaining lead under the Defense Production Act of 1950 were executed in 1956; some lead produced under contracts negotiated in preceding years was delivered.

DOMESTIC PRODUCTION

Statistics on lead output are compiled on a mine and smelter and refinery basis. Mine-production data are compiled on the basis of lead content in ore and concentrate, adjusted to account for average losses in smelting. Pig-lead output, as reported by smelters and refiners, represents actual lead recovered. Smelter and refinery output usually differs from the mine-production figure owing to the lag between mine shipments and smelter treatment of ore and concentrate.

MINE PRODUCTION

Domestic mines produced 352,826 tons of recoverable lead in 1956, or 4 percent more than in 1955. The 5-month strike that affected 15 operations in Idaho and 1 in Montana was settled on January 31, 1956, and no other prolonged work stoppages at lead-producing mines occurred during the remainder of the year. Considerable exploratory work was carried on, as good commercial demand for lead, supplemented by continued Government purchases for the national stockpile, resulted in a stable lead price from January 13 through December. Although the quoted price averaged about 6 percent higher than in 1955, some of the gain in income from this source was offset by increases in wages and in the prices of many items of equipment and supplies.

Missouri maintained its position as the Nation's largest lead-producing State for the past 50 (revised figure) years. For the same years Idaho ranked second and Utah third, except from 1925–27, when their standings were reversed. These three States supplied 67 percent of the total domestic mine production of lead in 1956 and 71 percent in 1955. Other important producing States in 1956, in order of rank in output, were Colorado, Montana, Oklahoma, Arizona, Washington, and California. A brief review of mine production by

areas and major producing States and mines follows.

Western States.—Ten Western States produced 56 percent of the United States total mine output of lead in 1956 compared with 54 percent in 1955. Production in Idaho—the largest lead producer in this group—was almost the same as in 1955, and that in Utah decreased slightly; but increases in other States raised the 10-State

total output 8 percent above that in 1955.

Except for 1946 and 1955, Idaho's mine production of lead in 1956 (64,321 tons), was the lowest since 1899. The strike that closed a number of mines in the Coeur d'Alene region on August 23, 1955, was settled on January 31, 1956, and the mines resumed operations. The Bunker Hill Co. Bunker Hill and Star lead-zinc mines, the State's principal lead producers, were not directly affected by the long strike, but their output of lead was less than in 1955. Other important producers included the American Smelting & Refining

TABLE 2.—Mine production of recoverable lead in the United States, 1947-51 (average) and 1952-56, by States, in short tons

State	1947–51 (average)	1952	1953	1954	1955	1956
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas	110	1 16, 520 11, 199 30, 066 73, 719 21, 279 6, 790 7, 021 1 2 56	9 9, 428 8, 664 21, 754 74, 610 19, 949 4, 371 2, 943 5 10	8, 385 2, 671 17, 823 69, 302 14, 820 3, 041 887 5	9, 817 8, 265 15, 805 64, 163 17, 028 3, 291 3, 296 3	11, 999 9, 296 19, 856 64, 321 18, 642 6, 384 6, 042
Utah Washington Wyoming	50,784	50, 210 11, 744	41, 522 11, 064	44, 972 9, 938	50, 452 10, 340	49, 555 11, 657
Total	241, 108	228, 608	194, 329	171, 844	182, 461	197, 758
West Central States: Arkansas Kansas MissouriOklahoma Total	124, 077	5, 916 129, 245 15, 137 150, 302	3, 347 125, 895 9, 304 138, 546	4, 033 125, 250 14, 204 143, 487	5, 498 125, 412 14, 126 145, 036	7, 635 123, 783 12, 350 143, 768
States east of the Mississippi River: Illinois	3,316	4, 262 60 1, 120 18 3, 792 2, 000	3, 391 52 1, 435 9 2, 788 2, 094	3, 232 80 1, 187 	4, 544 1, 037 2, 999 1, 948	3, 833 222 1, 603 3, 04 2, 583
Total	9,069	11, 252	9, 769	10, 088	10, 528	11,30
Grand total	400, 719	390, 162	342, 644	325, 419	338, 025	352, 82

 $^{^{\}rm 1}$ Includes 4 tons from North Carolina in 1954, 2 tons in 1955, and 10 tons in 1956. $^{\rm 2}$ Includes 4 tons from Iowa.

Co. (Page and Frisco mines); Day Mines, Inc. (Dayrock, Tamarack, and Hercules); Sidney Mining Co.; and Lucky Friday mine, all in the Coeur d'Alene region, Shoshone County; and the Triumph mine

in Blaine County and Clayton in Custer County.

In Utah mine production of lead declined 2 percent from 1955. The United States and Lark lead-zinc mine (United States Smelting, Refining & Mining Co.) in Bingham district, Salt Lake County, was the State's chief lead producer by a wide margin. Other important producers included the United Park City Mines Co. and New Park Mining Co. mines in the Park City region (Summit and Wasatch Counties) and the Eagle-Blue Bell (Chief Consolidated Mining Co.) group in the Tintic district, Juab County.

Colorado's output of recoverable lead increased 26 percent in 1956 over the 13-year low recorded in 1955. The Idarado Mining Co., the State's largest lead producer in both years, expanded its mining and milling operations in San Miguel County. The company 1,400-ton Pandora mill at Telluride (rebuilt in 1955) resumed work early in 1956. On November 30 the company closed its Red Mountain mill in Ouray County and centered its milling at the Pandora mill. The Rico Argentine mine (Dolores County), the Eagle mine of the New Jersey Zinc Co. (Eagle County); the Keystone mine of the American Smelting & Refining Co. (Gunnison County), the Camp Bird mine

(Ouray County), the Emperius group (Mineral County) and the Resurrection Mining Co. group (Lake County) were other substantial

lead producers.

Montana mines yielded 9 percent more lead than in 1955. Anaconda Co. mines at Butte, Silver Bow County, produced 80 percent of the State total in 1956; the ore came from the Anselmo, Lexington, and Orphan Girl mines (lead-zinc ore), the Emma mine (manganese ore), and the Greater Butte project (development ore). Smaller producers included the Jack Waite mine in Sanders County (idled by a strike from August 23, 1955, through January 1956) and the Maulden mine in Beaverhead County.

Lead output in Washington increased 13 percent. The principal lead producer was the Pend Oreille Mines & Metals Co. lead-zinc mine in Pend Oreille County. Other mines that produced considerable lead but were predominantly zinc producers were the Grandview (American Zinc, Lead & Smelting Co.) in Pend Oreille County and the Van Stone (American Smelting & Refining Co.) and Deep Creek (Goldfield Consolidated Mines Co.) in Stevens County. The Deep

Creek mine suspended operations on November 21, 1956.

Increased output from several mines raised Arizona's lead production 22 percent over 1955. The principal producers were the Iron King mine (Shattuck Denn Mining Corp.), Yavapai County; the Flux mine (American Smelting & Refining Co.), Santa Cruz County; the San Xavier mine (Eagle-Picher Co.), Pima County; and the

Athletic mine, Graham County.

Lead production in California, Nevada, and New Mexico also increased sharply. The Anaconda Co. Darwin and Shoshone groups of lead-zinc mines in Inyo County again produced the bulk of the California lead output. The gain in Nevada was due mainly to expanded operations at the Combined Metals Reduction Co. and Bristol Silver Mines Co. mines in the Pioche district, Lincoln County; to shipments of ore from the former Metals Reserve Company stockpile at Jean and of lead residues derived from manganese ores treated by Manganese, Inc., in Clark County; and to shipments of lead and lead-silver ores from small-scale operators in other counties. Most of New Mexico's lead output came from four groups of mines in the Central district, Grant County, that were predominantly zinc producers and were operated by the American Smelting & Refining Co., New Jersey Zinc Co., Peru Mining Co., and United States Smelting, Refining & Mining Co.

West Central States.—The mine output of lead in the West Central States in 1956, as in 1955, came from the Southeastern Missouri lead belt and the Tri-State zinc-lead district (Kansas, Missouri, and Oklahoma). Arkansas mines have produced no recoverable lead

Mines in the Southeastern Missouri lead belt produced 35 percent of the United States total mine output of lead in 1956 and 37 percent The lead-belt output of 123,400 tons in 1956 was 2 percent less than in 1955. The St. Joseph Lead Co.—much the largest leadproducing company in the Nation on a mine basis-operated continuously its Bonne Terre, Desloge, Federal and Leadwood groups of

LEAD 693

mines (each equipped with a mill) in St. Francois County and the Indian Creek mine and mill in Washington County. The combined daily capacity of the 5 mills was around 28,000 tons of ore. Some mills recover zinc concentrate as a byproduct. In Madison County the Mine La Motte Corp. and the National Lead Co. each operated a mine group and mill. Ore mined by the National Lead Co. contained commercial quantities of copper, cobalt, and nickel, in addition to lead.

In the Tri-State (Joplin) district, production of recoverable lead was 20,400 tons in 1956—a small increase over 1955. Output of zinc, however, declined 18 percent to 57,200 tons. The Lawyers mill of the American Zinc, Lead & Smelting Co., active in 1955, was idle throughout 1956, but the company 1,500-ton Barbara J mill and several mines were in production. The 15,000-ton Central mill of the Eagle-Picher Co. operated continuously but at less than rated capacity, handling both company and custom ores. Eagle-Picher also operated its smaller Bird Dog mill and several large groups of mines in Oklahoma and Kansas and was the principal producer of lead and zinc in the Tri-State district. The National Lead Co. continued to operate its Ballard group of mines and 2,100-ton concentrator in Kansas. A number of other companies in Oklahoma and Kansas shipped crude ore to the Central mill.

States East of the Mississippi River.—In 1956 lead and zinc-lead ores were mined in four States east of the Mississippi River—Illinois, New York, Virginia, and Wisconsin. In addition, ores containing recoverable lead but mined chiefly for fluorspar were produced in the Southern Illinois-Kentucy fluorspar region, and gold ore containing

some recoverable lead was mined in North Carolina.

The total Illinois lead output was 3,800 tons, or 16 percent less than in 1955. The principal producers were the Tri-State Zinc, Inc., zinc-lead mine in Jo Daviess County, Northern Illinois; and the Ozark-Mahoning Co. and Aluminum Co. of America mines (producing mainly fluorspar) in Hardin County, Southern Illinois.

Wisconsin's output of lead—all from Grant, Iowa, and Lafayette Counties—increased sharply, along with that of zinc. The larger producers were the Eagle-Picher Co., American Zinc, Lead & Smelting Co., and Piquette Mining & Milling Co. mines, all mainly zinc

producers.

Lead production in Virginia was about the same as in 1955. The Austinville zinc-lead mine and 2,400-ton mill of the New Jersey Zinc Co. in Wythe County operated steadily. The company continued its underground development program at the Ivanhoe mine, the workings of which will be connected with the Austinville mine workings by a 13,000-foot tunnel that was being driven during the year.

In New York lead output, at 1,600 tons, was the largest since 1944. The lead was recovered from predominantly zinc ore produced by the Balmat mine of the St. Joseph Lead Co. in St. Lawrence County.

The 25 leading lead-producing mines in the United States in 1956, listed in table 4, yielded 76 percent of the total domestic output; the 10 leading mines produced 57 percent and the 4 leading mines 40 percent.

TABLE 3.—Mine production of recoverable lead in the United States, 1947-51 (average) and 1952-56, by districts or regions that produced 1,000 tons or more during any year, 1952-56, in short tons

District or region	State	1947–51 (aver- age)	1952	1953	1954	1955	1956
Southeastern Missouri region.	Missouri	122, 487	122, 942	125, 273	125, 173	125, 357	123, 395
Coeur d'Alene region West Mountain (Bingham).	IdahoUtah		67, 330 34, 328	69, 885 29, 311	64, 812 29, 671		60, 221 32, 891
Tri-State (Joplin region)	Kansas, south- western Mis- souri, Okla- homa.	28, 017	27, 356	13, 273	18, 314	19, 679	20, 373
Summit Valley (Butte) Metaline Park City region Upper San Miguel Coso (Darwin) Big Bug Central Upper Mississippi Valley	Montana. Washington Utah. Colorado. California Arizona New Mexico Iowa, northern Illinois, Wiscon-	4, 891 10, 299 5, 487 6, 645 3, 344	16, 153 (1) 7, 494 7, 657 (1) 4, 135 4, 486 3, 532	16, 767 8, 694 4, 735 7, 440 8, 269 4, 339 1, 460 3, 688	11, 516 (1) 5, 432 5, 574 (1) 4, 336 5, 229	9, 954	14, 989 9, 440 9, 147 (1) 5, 776 4, 682 4, 306
Red Cliff	sin. Colorado Utah Virginia Nevada Arizona Utah	6, 177 3, 316 1, 707	3, 980 4, 279 3, 792 1, 921 2, 595	2,500 3,590 2,788 	2, 588 5, 926 4, 320 	3, 171 5, 017 2, 997 956 (1) 1, 607	(1) 3, 061 3, 035 2, 698 (1) 2, 529
Kentucky-Southern Illi- nois.	Kentucky-south- ern Illinois.	2, 344	2, 790	1, 849	1, 348	2, 683	2, 336
Northport (Aladdin) Pioneer (Rico) Resting Springs Pima (Sierritas, Papago, Twin Buttes).	Washington Colorado California Arizona	1,846	(1) 2, 230 (1) 1, 864	2, 165 1, 871	1, 275 2, 177	2, 212 (1) 22 1, 105	2, 085 (1) (1) 1, 810
Warm Springs Pioche California (Leadville) St. Lawrence County Bayhorse Elk Mountain	Idaho Nevada Colorado New York Idaho Colorado	5, 448 5, 302 1, 405 1 681	3, 455 4, 632 5, 624 1, 120 1, 091	2, 583 3, 306 3, 072 1, 435 1, 484	2, 415 (1) 1, 935 1, 187 1, 372	2, 388 (1) 1, 404 1, 037 1, 367	1, 804 (1) 1, 660 1, 608 1, 607
Creede Eagle Ophir Magdalena Breckenridge	Montana Utah New Mexico Colorado	906 751 866 1,581 230	1, 513 733 999 1, 046 499	1, 696 1, 179 1, 157	2, 178 1, 159 47 1, 000	(1) 1,192 706 (1) 95 474	(1) 1, 266 1, 207 (1) 688 553
Sneffels Hansonberg	New Mexico	756 291 1, 739	1, 044 847 1, 251	1, 307 1, 031	1, 113 800	634 517 78	525 413 158

 $^{{}^{1}}$ Figure not shown to avoid disclosure of individual company operations.

TABLE 4.-Twenty-five leading lead-producing mines in the United States in 1956, in order of output

Type of Ore	Lead.i. Lead-zine. Lead-zine. Lead-zine. Lead.i. Lead.i. Lead-zine.
Tyr	Lead, Lead-zino. Lead-zino. Lead-zino. Lead-zino. Lead-zino. Lead-zino. Lead-zino. Do. Lead-zino. Do. Lead-zino. Do. Copper, lead-zino. Do. Copper, lead-zino. Lead-zino.
Operator	St. Joseph Lead Co U. S. Smelting, Refining & Mining Co U. S. Smelting, Refining & Mining Co St. Joseph Lead Co Lead Co Lead Co Lead Co Lead Co Lead Co Lead Co Lead Lead Co Lead Lead Co Lead St. Joseph Lead Co St. Joseph Lead Co St. Joseph Lead Co Copper-lead Co St. Joseph Lead Co Copper-lead Co
State	Missouri Utah. Missouri Montana. Montana. Go. Missouri Go. Missouri Golorado. Colorado. Arizona Arizona Utaho. Colorado Utaho. Colorado Utaho. Colorado Utaho Utaho Utaho Utaho Utaho Utaho Utahia
District or region	Southeastern Missouri West Mountain (Bingham) Gootheasten Missouri Summit Valley Southeastern Missouri do Metaline Southeastern Missouri Upper San Miguel Coeur d'Alene Untah Coeur d'Alene Coeur d'Alene Bedoiff (Battle Mountain) Coeur d'Alene Bulle Ledge Coeur d'Alene Bulle Ledge Les Vegas Harshaw
Mine	Federal United States & Lark Bunker Hill Leadwood Butto Mines Indian Creek Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Bonner Terre Berner Terre Berner Berner Berner Berner Berner Bergie Lucky Friday Austhville Lucky Friday Austhover, Park Galena Ground Hog Three Kids Filux Group Burk Group
Rank	14284700 C80 311 / 384737783838383838

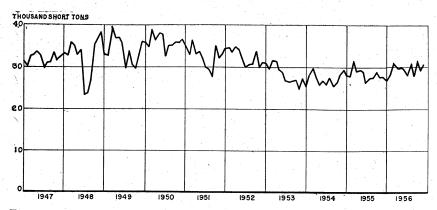


FIGURE 2.—Mine production of recoverable lead in the United States, 1947-56, by months.

TABLE 5.—Mine production of recoverable lead in the United States, 1955-56, by months, in short tons

Month	1955	1956	Month	1955	1956
January	27, 936 27, 600 31, 535 28, 916 29, 136 28, 625 26, 026	26, 813 28, 221 30, 855 29, 549 29, 892 29, 480 28, 242	August September October November December Total	27, 390 27, 390 28, 649 27, 379 27, 443 338, 025	30, 727 27, 781 31, 503 29, 277 30, 486

Includes Alaska.

SMELTER AND REFINERY PRODUCTION

Refined lead produced in the United States was derived from three sources—domestic mine production, imports of foreign ore and base bullion, and scrap material (treated largely at secondary smelters)—and was recovered at primary refineries that treat ore, base bullion, and small quantities of scrap and at secondary plants that process scrap exclusively. Refined lead and antimonial or "hard" lead was produced by both primary and secondary plants. Because of the large quantity of hard lead (such as battery scrap) melted at secondary smelters, the output from this type of operation was principally antimonial lead. Statistics on the production of refined lead and alloys at secondary plants are given in the Secondary Lead section of this chapter.

ACTIVE LEAD SMELTERS AND REFINERIES

Primary lead smelters and refineries operating in the United States in 1956:

California: Selby—Selby plant, American Smelting & Refining Co. (smelter and refinery).

Colorado: Leadville—Arkansas Valley plant, American Smelting & Refining Co. (smelter).

Idaho: Bradley—Bunker Hill smelter, Bunker Hill Co. (smelter and refinery). Illinois: Alton—Federal plant, American Smelting & Refining Co. (smelter and refinery).

Indiana: East Chicago—U. S. S. Lead Refinery, Inc. (refinery).

Kansas: Galena—Galena plant, Eagle-Picher Co. (smelter and refinery). Missouri: Herculaneum—Herculaneum plant, St. Joseph Lead Co. (smelter and

Montana: East Helena—East Helena plant, American Smelting & Refining Co.

(smelter). Nebraska: Omaha—Omaha plant, American Smelting & Refining Co. (refinery). New Jersey: Barber—Perth Amboy plant, American Smelting & Refining Co. (smelter and refinery).

Texas: El Paso-El Paso plant, American Smelting & Refining Co. (smelter).

Utah:

Midvale-Midvale plant, United States Smelting, Refining & Mining Co. Tooele—Tooele plant, International Smelting & Refining Co. (smelter).

REFINED LEAD

Primary refineries in the United States produced 546,400 tons of refined lead in 1956, or 13 percent more than in 1955.

Of the total refined lead produced, 542,300 tons came from primary sources (64 percent domestic and 36 percent foreign) and 4,100 tons

TABLE 6.—Chemical requirements for pig lead, in percent 1

	Corroding lead 2	Chemical lead ³	Acid- copper lead 4	Common desilver- ized lead ⁵
Silver:				
Maximum Minimum	0.0015	0.020 .002	0.002	0.002
Copper: Maximum Minimum	. 0015	.080 .040	.080 .040	. 0025
Silver and copper together, maximumArsenic, antimony, and tin together, maximum	.0025 .002 .001	.002	.002	.005
Zine, maximum. Iron, maximum Bismuth, maximum.	.002	.002	. 002 . 025	.002 .150
Lead (by difference), minimum	99. 94	99. 90	99. 90	99. 85

TABLE 7.—Refined lead produced at primary refineries in the United States, 1947-51 (average) and 1952-56, by source material, in short tons

	<u> </u>					
Source	1947-51 (average)	1952	1953	1954	1955	1956
Refined lead: From domestic ores and base bullion From foreign ores. From foreign base bullion	377, 285 70, 061 2, 864	383, 358 89, 092 402	328, 012 139, 711 168	164, 353		349, 188 193, 084 36
Total from primary sourcesFrom scrap	450, 210 10, 638	472, 852 3, 070				542, 308 4, 069
Total refined lead A verage sales price per pound. Total calculated value of primary refined lead 1	460, 848 \$0. 158 \$142, 266, 000	\$0. 161	\$0. 131	\$0. 137	\$0.149	\$0. 157

¹ Excludes value of refined lead produced from scrap at primary refineries.

From ASTM Standard Specification B29-55.
 Corroding lead is used to describe lead that has been refined to a high degree of purity.
 Chemical lead is used to describe the undesilverized lead produced from Southeastern Missouri ores.
 Acid-copper lead is made by adding copper to fully refined lead.
 Common desilverized lead is used to describe fully refined desilverized lead.

was from secondary sources (scrap). Table 8 gives the production

of refined lead by source material and by country of origin.

Of basic interest both to lead producers and consumers was final adoption of revisions by the American Society for Testing Materials of the ASTM Standard Specification for Pig Lead (B29-55⁴). The revisions were brought about by the fact that some grades that had been listed had not been commercially available for some time.

TABLE 8.—Refined primary lead produced in the United States, 1947-51 (average) and 1952-56, by source material and country of origin, in short tons

Source	1947–51 (average)	1952	1953	1954	1955	1956
Domestic ore and base bullion	377, 285	383, 358	328, 012	322, 271	321, 132	349, 18
Foreign ore: Australia. Canada. Europe. Mexico. South America. Other foreign.	7, 037 5, 270 18 5, 608 29, 294 22, 834	5, 888 7, 113 454 F 2, 344 F 48, 625 24, 668	19, 886 26, 673 199 5, 876 50, 828 36, 249	17, 311 47, 150 865 16, 790 58, 341 23, 896	26, 701 39, 919 109 10, 123 44, 855 36, 156	23, 81 26, 558 11, 183 76, 073 55, 450
Total	70,061	89, 092	139, 711	164, 353	157, 863	193, 08
Foreign base bullion; Australia Mexico South America Other foreign	1, 418 1, 233 124 89	70 177 155	42 126	88	162	3(
Total	2, 864	402	168	88	162	36
Total foreign	72, 925	89, 494	139, 879	164, 441	158, 025	193, 120
Grand total	450, 210	472, 852	467, 891	486, 712	479, 157	542, 308

ANTIMONIAL LEAD

Primary lead refineries produced 66,800 tons of antimonial lead in 1956, a 4-percent increase over 1955. Three of the 5 producing plants increased their output in 1956. Distribution of antimonial lead production at primary refineries in 1952–56, by source material, is shown in table 9, as is also the average antimony content.

Antimonial lead was an important byproduct of the refining of base bullion, although the quantity derived was only a small part of the total domestic output. The major production was recovered from smalling antimonial lead.

smelting antimonial lead scrap at secondary smelters.

TABLE 9.—Antimonial lead produced at primary lead refineries in the United States, 1947-51 (average) and 1952-56

***	Produc-	Produc-		Lead content by difference (short tons)			
Year	tion (short tons)	Short tons	Percent	From do- mestic ore	From for- eign ore	From scrap	Total
1947-51 (average)	70, 302 58, 203 62, 373 59, 873 64, 044 66, 826	4, 600 4, 392 4, 537 3, 521 3, 555 3, 348	6. 8 7. 5 7. 3 5. 9 5. 6 5. 0	14, 638 12, 993 10, 366 5, 136 5, 259 6, 739	8, 790 5, 673 10, 721 7, 661 9, 327 6, 918	42, 274 35, 145 36, 749 43, 555 45, 903 49, 821	65, 702 53, 811 57, 836 56, 352 60, 489 63, 478

⁴ Industrial and Engineering Chemistry, Lead and Its Alloys: Vol. 48, No. 9, pt. II, September 1956, pp. 1731-1734.

699

SECONDARY LEAD

Some scrap lead was treated at primary smelters, but the greater part was processed at many plants that specialize in treating secondary materials. Secondary lead was recovered as refined lead, anti-

monial lead, and other lead and tin alloys.

Recovery of lead totaled 506,800 tons in 1956, or about 1 percent more than in 1955. Lead recovered, as metal and in alloys, exceeded domestic mine production for the 11th successive year and furnished 38 percent of the total supply. Detailed information on secondary lead appears in the Secondary Metals—Nonferrous chapter of this volume.

TABLE 10.—Secondary lead recovered in the United States, 1947-51 (average) and 1952-56, in short tons

	1947–51 (average)	1952	1953	1954	1955	1956
As refined metal:					4.000	4.00
At primary plantsAt other plants	10, 638 128, 214	3, 070 137, 032	4, 211 122, 363	5, 066 114, 941	4, 079 124, 241	4, 069 129, 323
Total	138, 852	140, 102	126, 574	120, 007	128, 320	133, 392
In antimonial lead: At primary plants At other plants	42, 274 185, 292	35, 145 187, 806	36, 749 199, 806	43, 555 195, 284	45, 903 201, 800	49, 82 202, 76
TotalIn other alloys	227, 566 118, 503	222, 951 108, 241	236, 555 123, 608	238, 839 122, 079	247, 703 126, 028	252, 582 120, 783
Grand total: Short tons Value	484, 921 \$153,035,795	471, 294 \$151,756,668	486, 737 \$127,525,094	480, 925 \$131,773,450	502, 051 \$149,611,198	506, 75 \$159, 121, 07

LEAD PIGMENTS

The principal lead pigments marketed were litharge, white lead, red lead, basic lead sulfate, and leaded zinc oxide. These products were manufactured chiefly from metal, but some ore and concentrate were converted directly into pigments. Details of lead-pigments production are given in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

CONSUMPTION AND USES

Domestic lead consumption (including lead in lead ore consumed directly in manufacturing lead pigments and salts) totaled 1.21 million tons in 1956, less than 1-percent decrease from that used in 1955. Of the total consumed, 767,100 tons was soft lead (including both primary and secondary soft lead); 316,600 tons was contained in antimonial lead (the greater part of which was secondary); 51,700 tons was in alloys; 20,800 tons in copper-base scrap; 10,200 tons was recovered from ore in producing leaded zinc oxide and other nonspecified pigments; and 43,300 tons went directly from scrap to finished products, such as caulking lead, weights, etc. Of all lead consumed during the year, about 71 percent went to metal products (including storage batteries), 10 percent to pigments, 16 percent to chemicals (including tetraethyl fluid), and 3 percent to miscellaneous and un-

classified uses. Production of the 3 principal lead-consuming items—batteries, tetraethyl lead, and cable covering—took 31 percent (the same as in 1954 and 1955), 16 percent (14 percent in 1955), and 11 percent (10 percent in 1955), respectively, for a total of 58 percent, or 697,100 tons.

Shipments of automotive replacement batteries declined 3 percent from 25.4 million units in 1955 to 24.7 million in 1956, according to

the Association of American Battery Manufacturers, Inc.5

Of the total lead consumption (excluding lead contained in leaded zinc oxide and some other pigments and the lead scrap that went directly to end products), New Jersey took 17 percent; Illinois, 11 percent; Indiana, 8 percent; California, 7 percent; Pennsylvania and New York, each 6 percent; and Missouri 5 percent—a total of 60 percent in 7 of the leading lead-consuming States. With the addition of Louisiana and Texas, 9 States accounted for 74 percent of the lead consumed.

TABLE 11.—Consumption of lead in the United States in 1955-56, by products, in short tons

	1955	1956		1955	1956
Metal products: Ammunition Bearing metals Brass and bronze Cable covering Calking lead. Casting metals Collapsible tubes Foll.	46, 816 34, 567 24, 043 121, 165 59, 406 15, 141 11, 136 5, 185	44, 438 28, 321 27, 063 134, 339 64, 970 12, 932 10, 945 4, 593	Pigments: White lead. Red lead and litharge. Pigment colors. Other '. Total	18, 549 87, 503 15, 000 10, 383 131, 435	16, 95 79, 19 13, 86 10, 35
Pipes, traps, and bends— Sheet lead Solder— Terne metal Type metal	29, 757 30, 466 88, 749 2, 382 26, 507	28, 028 30, 249 75, 290 1, 709 26, 709	Tetraethyl lead Miscellaneous chemicals Total	165, 133 5, 492 170, 625	191, 99 3, 14 195, 13
Totaltorage batteries: Antimonial lead Lead oxides Total	195, 787 184, 246 380, 033	191, 568 179, 203 370, 771	Miscellaneous uses: Annealing Galvanizing Lead plating Weights and ballast Total Other, Junclassified uses	6, 059 2, 313 848 7, 673 16, 893 18, 338	5, 89 1, 65 91 7, 25 15, 72 18, 13
	,	,	Grand total	1, 212, 644	

Includes lead content of leaded zinc oxide and other nonspecified pigments.
 Includes lead which went directly from scrap to fabricated products.

TABLE 12.—Consumption of lead in the United States, 1955-56, by months, in short tons ¹

Month	1955	1956	Month	1955	1956
January February March April May June July	93, 301 86, 290 99, 677 96, 700 101, 029 103, 451 84, 394	110, 562 100, 201 97, 755 97, 836 104, 418 100, 571 88, 325	August	107, 158 112, 091 115, 289 108, 649 104, 615 1, 212, 644	107, 711 96, 576 112, 179 102, 408 91, 175 1, 209, 717

 $^{^{\}rm I}$ Includes lead content of leaded zinc oxide and other nonspecified pigments and lead which went directly from scrap to fabricated products.

American Metal Market, vol. 64, No. 28, Feb. 8, 1957, p. 6.

701 LEAD

TABLE 13.—Consumption of lead in the United States in 1956, by classes of product and types of material, in short tons

	Soft lead	Antimonial lead	Lead in alloys	Lead in copper- base scrap	Total
Metal products Storage batteries Pigments	257, 454 179, 203 110, 057	118, 764 191, 568 128	51, 205	20, 766	448, 189 370, 771 110, 185
Chemicals Miscellaneous Unclassified	195, 067 10, 830 14, 462	3, 956 2, 157	19 4 52		195, 136 14, 805 17, 071
Total	767, 073	316, 642	51, 676	20, 766	1 1, 156, 157

¹ Excludes 43,375 tons of lead that went directly from scrap to fabricated products and 10,185 tons of lead contained in leaded zinc oxide and other nonspecified pigments.

TABLE 14.—Lead consumption by States in 1956, in short tons 1

State	Refined soft lead	Antimonial lead	Lead in alloys	Copper- base scrap	Total
California	52, 550	28, 889	1, 924	1, 383	84, 746
Colorado	1,419	1,739	224	328	3,710
		11, 453	26	1,002	30, 732
Connecticut District of Columbia	93	91			184
Florida	1,562	3,046			4,608
Illinois	76, 091	37,682	11,002	2, 211	126, 986
Indiana	50, 380	37,668	2,051	717	90, 816
Kansas	2, 270	6,948	248	485	9, 951
Kentucky	121	465	3		589
Maryland	21,673	14,719	1, 207	88	37, 687
Massachusetts	8,809	4,154	630	477	14,070
Michigan	10, 509	9,911	917	566	21, 903
Missouri	51, 175	5,032	828	1,756	58, 791
Nebraska	11, 518	2,680	7	1	14, 206
New Jersey	131, 943	53, 085	10,634	885	196, 547
New York	50, 293	10,770	7,872	980	69, 915
Ohio	21,625	16,737	3, 738	1,820	43, 920
Pennsylvania Rhode Island	39, 638	23, 439	1, 230	2,837	67, 144
Rhode Island	7, 155	392	92		7, 639
Tennessee	530	5, 230	377	597	6, 734
Virginia	1,855	1,515	1,399	2,047	6, 816
Washington	7,009	425			7, 434
West Virginia	16, 203	2,753	22		18, 978
Wisconsin	996	3, 182	239	362	4, 779
WisconsinAlabama and Georgia ²	22,022	8,013	1, 209	570	31, 814
Iowa and Minnesota	2,193	5,928	555	344	9, 020
Montana and Idaho	7, 976	18			7, 994
New Hampshire, Maine, and Delaware	1, 287	5	2, 523	285	4, 100
Arkansas and Oklahoma	2,365	1,894	27		4, 286
Hawaii and Oregon	1,100	2, 351	25	275	3, 7 51
North and South Carolina	426	2, 318	6		2, 750
Louisiana and Texas	144, 544	12, 259	1, 503	407	158, 713
Utah, Nevada, and Arizona	103	566			669
Undistributed	1,389	1, 285	1,158	343	4, 178
Total	767, 073	316, 642	51, 676	20,766	1, 156, 157

Excludes 43,375 tons of lead which went directly from scrap to fabricated products and 10,185 tons of lead contained in leaded zinc oxide and other nonspecified pigments.
 The following States are grouped to avoid disclosing individual company confidential data.

STOCKS

National Stockpiles.—The General Services Administration continued throughout 1956 to purchase undisclosed quantities of lead and zinc monthly from domestic producers for the long-term stockpile authorized by the President in March 1954, in accordance with purchase directives from the Office of Defense Mobilization. Also, lead and zinc of foreign origin were acquired in the latter half of the year for the supplemental (barter-program) stockpile. No data on the quantities obtained were released, but it was generally understood that the totals acquired during the period July-December were in excess of 100,000 tons of zinc and 50,000 tons of lead. Information released by the Department of Agriculture showed that during the period July through December 1956 supplemental-type strategic material purchases included contracts for \$23.8 million worth of lead and \$41.5 million worth of zinc.

Producers' Stocks.—Lead stocks, as reported by the American Bureau of Metal Statistics, are shown in table 15. Stocks of refined and antimonial lead include metal held by all primary refiners and by some refiners of secondary metal who produced soft lead. Smelters' stocks of ore in process increased during the year, as did refiners' stocks of pig lead and antimonial lead. Supply of lead in 1956 (1,318,700 tons) exceeded consumption (1,209,700 tons) by 109,000 tons.

TABLE 15.—Stocks of lead at smelters and refineries in the United States at end of year, 1947-51 (average) and 1952-56, in short tons

[Americ	an Bureau	oi Metal S	tatistics			
	1947-51 (average)	1952	1953	1954	1955	1956
Refined pig lead	30, 285 7, 986	31, 405 12, 155	65, 036 16, 116	77, 930 14, 789	21, 196 9, 893	29, 435 11, 746
Total	38, 271	43, 560	81, 152	92, 719	31, 089	41, 181
Lead in base bullion: At smelters and refineries In transit to refineries In process at refineries	11, 404 4, 422 16, 174	17, 583 3, 105 19, 759	17, 920 2, 867 26, 713	18, 170 1, 723 27, 164	16, 532 3, 764 27, 625	12, 222 2, 846 25, 092
TotalLead in ore and matte and in process at	32,000	40, 447	47, 500	47, 057	47, 921	40, 160
smelters	77, 325	65, 771	67, 688	62,074	71, 812	77, 918
Grand total	147, 596	149, 778	196, 340	201, 850	150, 822	159, 259

[American Bureau of Metal Statistics]

On December 7, 1956, the British Board of Trade announced in London 6 that it would shortly start discussions with trade officials looking to curtailment of Government-owned stocks of lead and zinc. It was announced officially that sales of lead and zinc from the Government stockpile would not begin until around the middle of January 1957 and that sales would be made in an orderly manner to avoid "unduly disturbing" the market. No details were given as to the actual quantities of the metals to be released.

Primary refiners' reports to the Bureau of Mines indicated stocks of 30,200 tons of refined lead at the end of 1956 compared with 21,900 tons on January 1; stocks of antimonial lead increased slightly from 9,100 tons to 10,700. Stocks of lead in ores and concentrates increased from 42,900 to 44,900 tons during the year, but stocks of base bullion at refineries that receive bullion and smelters that produce bullion dropped from 15,600 tons to 11,100. These data represent physical inventory at the plants, irrespective of ownership, and do not include material in process or in transit; they are therefore not directly comparable to the data in table 15.

American Metal Market, vol. 63, No. 234, Dec. 8, 1956, p. 1.

703 T.RAD

Consumers' Stocks.—Stocks of metal at consumer plants (including secondary smelters which are also consumers of lead) increased 6 percent during the year. Stocks of soft lead remained virtually the same, with most of the increase in antimonial lead and a small decrease in the alloys.

TABLE 16.—Consumers' stocks of lead in the United States at end of year, 1952-56, by type of material, in short tons, lead content

Year	Refined soft lead	Antimonial lead	Unmelted white scrap	Lead in alloys	Lead in Copper- base scrap	Drosses, residues, etc.	Total
1952	80, 888 75, 801 82, 039 73, 480 73, 673	20, 309 14, 867 17, 573 23, 081 40, 226	3, 877 3, 607 3, 199 2, 914	6, 191 7, 921 9, 367 8, 146 8, 007	2, 282 2, 083 2, 005 1, 618 2, 089	8, 983 9, 484 10, 458 8, 219	122, 530 113, 763 124, 641 117, 458 123, 995

¹ Beginning 1956, consumer stocks of scrap were added to secondary smelter stocks of scrap, and secondary smelter metal stocks were included with consumer metal stocks.

PRICES

The New York quoted price for common lead was 16.00 cents per pound at the beginning of 1956; it rose to 16.50 cents on January 4 but dropped back to 16.00 cents on January 13 and did not change during the remainder of the year. The average weighted price of all grades of lead sold in 1956 was 15.70 cents a pound compared with 14.90 cents in 1955 and 13.70 cents in 1954. The differential between St. Louis and the slightly higher New York prices was about 0.2 cent Government purchases for the national stockpile were an important factor in sustaining the lead price both in the United States and abroad.

Quotations on the London Metal Exchange in 1956 ranged from a high of £126¼ per long ton on January 4 (equivalent to 15.8 cents per pound United States currency, computed on average rate of ex-

TABLE 17.—Average monthly and yearly quoted prices of lead at St. Louis, New York, and London, 1954-56, in cents per pound 1

	**	1954			1955		1956		
Month	St. Louis	New York	Lon- don ²	St. Louis	New York	Lon- don ²	St. Louis	New York	Lon- don 3
January	13. 05 12. 62 12. 73 13. 71 13. 80 13. 80 13. 86 14. 40 14. 77 14. 80 14. 80	13. 25 12. 82 12. 93 13. 91 14. 00 14. 11 14. 00 14. 60 14. 97 15. 00	10. 85 10. 39 10. 85 11. 77 11. 88 12. 26 12. 04 12. 17 12. 67 13. 57 13. 48 12. 97	14. 80 14. 80 14. 80 14. 80 14. 80 14. 80 14. 80 14. 80 15. 30 15. 30	15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.12 15.50 15.50	12. 94 12. 88 12. 96 13. 04 12. 88 12. 80 13. 17 13. 25 13. 38 13. 32 13. 53 14. 18	15. 96 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80 15. 80	16. 16 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00 16. 00	14. 86 14. 96 15. 17 14. 50 13. 98 14. 16 14. 17 14. 42 14. 35 14. 70 14. 38
Average	13.85	14.05	12.08	14.94	15. 14	13. 19	15. 81	16. 01	14. 52

St. Louis: Metal Statistics, 1957, p. 517. New York: Metal Statistics, 1957, p. 511. London: E&MJ Metal and Mineral Markets.
 Conversion of English quotations into American money based on average rates of exchange recorded by Federal Reserve Board.

change for the month) to a low of £109% on May 31 (equivalent to 13.7 cents per pound). The bid price on December 31 was £116½ (equivalent to 14.5 cents per pound), and the average for the year was £116.33 or 14.5 cents.

FOREIGN TRADE 7

Imports.—General imports of primary lead in all forms totaled 459,100 tons in 1956, an increase of 17,700 tons or 4 percent over 1955. The imports comprised 196,500 tons contained in ore, flue dust, and matte (an 11-percent increase from 1955) and 262,700 tons of pigs and bars (a 1-percent decrease). Of the lead contained in ore, flue dust, and matte, Peru supplied 28 percent, Union of South Africa 23, Canada and Australia each 16, Bolivia 9, Guatemala 4, and other countries 4 percent. Of the pigs and bars, Australia furnished 31 percent, Mexico 30, Yugoslavia 15, Peru 13, Canada 6, and other countries 5 percent.

Exports.—Exports of lead in 1956 amounted to 7,800 tons, of which 1,100 tons was contained in ore and bullion, 4,600 tons was in pigs and bars, and 2,100 tons was in scrap.

TABLE 18.—Total lead imported into the United States in ore, matte, base bullion. pigs, bars, and reclaimed, by countries, 1947-51 (average) and 1952-56, in short tons, in terms of lead content 1

[Bureau of the Census]

Country	1947-51 (average)	1952	1953	1954	1955	1956
Ore, flue dust, and matte: North America: Canada-Newfoundland and Lab-						
rador. Guatemala Honduras Mexico Other North America	10, 030 1, 269 264 3, 905 345	12, 048 4, 721 595 2, 497 126	39, 242 5, 391 1, 090 3, 443	40, 593 2, 686 1, 636 2, 167 (2)	33, 090 5, 208 2, 757 2, 201 3	30, 692 6, 904 2, 969 3, 866
Total.	15, 813	19, 987	49, 166	47, 082	43, 259	44, 439
South America: Bolivia. Chile. Colombia. Peru. Other South America.	15, 757 3, 132 24 13, 390 331	18, 473 3, 197 7 28, 213 85	18, 984 3, 341 255 32, 842 90	14, 946 173 356 38, 734 110	13, 812 409 546 44, 223 82	17, 177 118 1, 440 55, 174
TotalEurope	32, 634 46	49, 975 425	55, 512	54, 319 696	59, 072	74, 093 24
Asia: Korea Philippines Other Asia	154 411 140	3 58 2, 446 160	2, 980 92	2, 160	2, 635	³ 422 2, 222
Total	705	2, 664	3, 072	2, 160	2, 635	2, 644
Africa: French Morocco Union of South Africa Other Africa	1, 837 13, 575 91	22, 543 113	2, 633 29, 777 63	35, 507 19	41, 575	44, 208
Total	15, 503	22, 656	32, 473	35, 526	41, 575	44, 208

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 18.—Total lead imported into the United States in ore, matte, base bullion, pigs, bars, and reclaimed, by countries, 1947-51 (average) and 1952-56, in short tons, in terms of lead content 1—Continued

BHOTO tomb, in torms of female						
Country	1947–51 (average)	1952	1953	1954	1955	1956
o d data and mette Continued						
Ore, flue dust, and matte—Continued Oceania:	S - 1				90 000	91.04
Australia	8, 454	8, 954	20, 676	21, 478	30, 938	31, 04
Other Oceania	33					
Total	8, 487	8,954	20, 676	21, 478	30, 938	31, 04
				101 001	177 470	196, 45
Total ore, flue dust, and matte	73, 188	104, 661	160, 899	161, 261	177, 479	190, 40.
Base bullion: North America: Canada						3
Guatemala	46	266	736			
Mexico	1, 547					
Total	1, 593	266	736			3
South Amorica	176	123	133	41		
Europe		(2)				
Asia	258					
Africa	1,349					
Oceania: Australia	1,010					
Total base bullion	3, 382	389	869	41		3
Pigs and bars:						
North America:						
Canada-Newfoundland and Lab-	00 004	104, 531	49,000	59, 887	34, 453	16, 22
rador	66, 824 113, 679	198, 872	140, 751	68, 695	34, 453 93, 369	77, 54
MexicoOther North America	115, 079	180, 812	209	20		
Other North America						
Total	180, 517	303, 421	189, 960	128, 602	127, 822	93, 76
Careth Amonicos						
South America: Bolivia		635	220			
Peru	24, 571	42, 169	52, 216	20,047	24, 509	33, 54
Other South America	(2)	2	9			
Total	24, 571	42, 806	52, 445	20, 047	24, 509	33, 54
Total						
Europe:	1,924	1, 785	2,017	339	231	1, 20 4 16
Belgium-Luxembourg	3, 543	4 6, 052	4 4, 006	4 799	4 496	4 10
Italy	4,954					
Netherlands	506	2, 747	1,981	156		6, 70
Spain	419	5, 509		5, 580	10, 649 47	0, 7
United Kingdom	223	4, 216	1, 140	2, 386 38, 465	35, 659	38, 9
Y11g0slavia	21, 522	53, 997	1, 148 51, 826 1, 496	3, 902	2, 351	2, 1
Other Europe	`				49, 433	49, 2
Total	33, 150	75, 023	62, 474	51, 627	49, 400	=====
Asia:			1		1	
Burma	751			10		-
Japan	1,564		138	10	55	
Other Asia	631		100			
Total	2,946		138	10	55	
Africa:	456	6, 670	9, 258	17, 555	7,800	5, 4
French Morocco	117	0,010	448			
Other Africa	·	-		l		F 4
Total	573	6, 670	9, 706 70, 348	17, 555	7,800	5, 4
Oceania: Australia	18, 781	82, 800	70,348	58, 445	54, 530	80, 6
			-			
Total pigs and bars	260, 538	510, 720	385,071	276, 286	264, 149	262, 6

See footnotes at end of table.

TABLE 18.—Total lead imported into the United States in ore, matte, base bullion, pigs, bars, and reclaimed, by countries, 1947-51 (average) and 1952-56, in short tons, in terms of lead content 1—Continued

- Country	1947-51 (average)	1952	1953	1954	1955	1956
Reclaimed, scrap, etc.:			1	 	 	
North America:		1	1	1	1.	
Conodo Norreform diam dan da Tal		1			1	
Canada-Newfoundland and Lab- rador		l	Į.	1		1
Canal Zone		6,047	371	3,023	7, 598	5, 89
Cuba	- 316	858	205	35	37	2
Tomojoo	120		147	319	815	85
Jamaica	- 85	101	28		1	
Mexico	- 1, 110	872	98	1, 298	6, 120	9,70
PanamaOther North America	134	300	138	180	331	32
Other North America	243	622	329	298	195	34
Total	6, 940	8, 800	1, 316	5, 153	15,096	17, 148
South America:						
Peru	200	007	-	1 111		1
Venezuela	32	297	59	173	166	299
Other South America	157 52	196			1,653	230
	. 52	20				
Total	241	513	59	173	1, 819	529
Europe:						
Belgium-Luxembourg	266					
Denmark	200		202		576	117
Germany		47	14		282	1,000
Italy	191			4 56	4 3	4 348
Netherlands						
Spain	616	454	502		112	157
Yugoslavia	191				431	
Other Europe		345	103	110		
	386	229	442	103	136	179
Total	2, 145	1,075	1, 263	269	1, 540	1, 801
Asia:						
Burma				İ	i	
Japan	41	203				l
Other Asia	4,668	345	21	13		4
Other Asia	1, 235	141		47	26	1
Total	5, 944	689	21	60		
frica	260		17		26	5
ceania:						
Austrialia	0 000					
Other Oceania	2, 202	924	2,666		2,099	1, 255
Controceania	19	338	97			
Total	2, 221	1, 262	2, 763		2,099	1, 255
Total reclaimed, scrap, etc	17.75	10.000				
	17, 751	12, 339	5, 439	5, 655	20, 580	20, 738
Grand total	354, 859	628, 109	552, 278	443, 243	462, 208	479, 875

Data are "general imports", that is, include lead imported for immediate consumption plus material entering the country under bond.
 Less than 1 ton.
 Republic of Korea.
 West Germany.

TABLE 19.—Lead imported for consumption in the United States, 1947-51 (average) and 1952-56, by classes ¹

[Bureau of the Census]

Year	dust or	n ores, flue fume, and s, n. s. p. f.		l in base ullion			Sheets, pipe, and shot		Not other- wise speci-	Total value
10	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	fied (value)	
1947-51 (average) 1952 1953 1954 1956	107, 621 67, 030 196, 054	15, 214, 084 247, 967, 269 238, 142, 741	41	1, 137, 813 294, 068 10, 149	510, 718 379, 119 274, 286 263, 977	\$73, 420, 410 165, 018, 991 95, 285, 223 268, 419, 607 73, 032, 055 277, 718, 626	11 178 397 2,048	8, 446 58, 291 128, 812 534, 931	221, 779 242, 925 2149, 208 2163, 610	

¹ In addition to quantities shown (value included in total value), "reclaimed, scrap, etc.," imported as follows—1947-51 (average): 17,896 tons, \$4,291,358; 1952: 11,358 tons, \$3,198,844; 1953: 3,660 tons; \$824,997; 1954: 7,217 tons, ² \$1,450,036; 1955: 18,944 tons, ² \$3,930,668; 1956: 20,464 tons, ² \$5,268,423.

² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

TABLE 20.—Miscellaneous products containing lead, imported for consumption in the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

and the second s	100					
			older, white combinations	Туре те	tal and ant	imonial lead
Year 1947-51 (average)	Gross weight (short tons) 1, 336 1, 540 2, 375 2, 309 2 2, 286 4, 106	Lead content (short tons) 843 999 1, 343 1, 572 2 1, 283 2, 526	\$1, 038, 018 1, 348, 288 1, 869, 312 1 1, 945, 992 1 2 1, 910, 998 1 3, 381, 310	Gross weight (short tons) 8, 929 10, 909 6, 366 4, 138 14, 579 9, 544	Lead content (short tons) 7, 967 9, 415 5, 016 3, 367 13, 213 8, 500	Value \$3, 113, 195 4, 153, 960 1, 921, 453 1, 250, 938 4, 378, 769 2, 762, 814

 ¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.
 2 Revised figure.

TABLE 21.—Total lead exported from the United States in ore, matte, base bullion, pigs, bars, anodes and scrap, by destination, 1947-51 (average) and 1952-56, in short tons 1

Destination	1947-51 (average)	1952	1953	1954	1955	1956
Ore, matte, base bullion (lead content): North America: Canada	463	836	1 000			
Mexico	(2)	830	1,038	18	3 1, 322	
Total	463	836	1, 038	18	-	-
Europe: Belgium-Luxembourg Asia: Japan	(2)			84	-	1, 055
Total ore, matte, base bullion	463	836	1, 038	102		1, 055
Pigs, bars, anodes: North America:					= = = = = = = = = = = = = = = = = = = =	= 1,000
Canada	95	40	20	1,0		
Canal Zone	22	18	32	18	13	38
Cuba	51	52	28	23	36	44
El Salvador Guatemala	35	23	2	5	5	
Honduras	3 13	1	29	33		-
Mexico	8	10 7	3 8	5 34		- 10
Other North America	15	26	100	46	16 20	2 43
Total	242	177	203	164	90	137
South America: Argentina	191					
Brazil	60	433	76	44		- 1
Chile	55	193	18	98	5 74	44
Colombia	51	10	21	20	27	85 8 77 23
Ecuador Paraguay	6	84			2	8
Peru						. 77
Uruguay	(2) 251	231	4	11	16	23
Venezuela	82	67	41	27	42	63
Other South America	82 3	15	î	2	1	1
Total	699	1, 033	161	202	167	306
Europe: Belgium-Luxembourg	00					
Greece	23 4					2, 128
United Kingdom	14				10	
Other Europe	51	22	2	2	2	
Total	92	22	2	2	13	2, 128
Asia:						
India	31	4			5	644
Japan Nansei and Nanpo]	16		{	5	1, 176 5
Pakistan Philippines	114 80	78		100		
Turkey	14	280	405	192	96 11	180
Other Asia	95	149	25	34	16	3 43
Total	335	527	430	226	133	2, 051
Africa Oceania	16	2	6	2		2,001
		1	1			
Total pigs, bars, anodes Scrap: North America: Canada	1, 384	1, 762	803	596	403	4, 628
North America:						
Mexico	(4) (4)	20	27	370	1	11
Total.		20	0=			
South America	(4) (4)	20	27	370 (2)	1	11
Europe:						
Belgium-Luxembourg	(4)			103	754	20
Denmark	(4)			318	219	20 8
Germany	(2) -		5 39	8 29	5 495	⁵ 563
Netherlands						6
United Kingdom	- K	55	2,000	1,060	148	788
omitta itimgaom			2,000	1,000 j	880	554

TABLE 21.—Total lead exported from the United States in ore, matte, base bullion, pigs, bars, anodes and scrap, by destination, 1947-51 (average) and 1952-56, in short tons 1-Continued

Destination	1947-51 (average)	1952	1953	1954	1955	1956
Scrap—Continued						
Asia: Japan Lebanon	(4)		640	2, 014	486	186
Total	(4)		640	2, 014	486	180
Total scrap	(4)	75	2, 706	3, 894	2, 983	2, 136
Grand total		2, 673	4, 547	4, 592	3 4, 720	7, 819

¹ In addition, foreign lead was reexported as follows: Ore, matte, base bullion, 1947-51 (average), 2 tons; 1952-54, none; 1955, 3 tons; 1956, 6 tons.

2 Less than 1 ton.

3 Revised figure.

Tariff.—The duties on pig lead and lead in ores and concentrates remained at 11/16 cents and 3/4 cent per pound, respectively, throughout 1956. The rates of duty imposed on lead articles under the Tariff Act of 1930, in specified years, and changes made under various trade agreements 1930-54 are given in the chapter of this series for 1953. The rates were not changed during 1955 or 1956.

TECHNOLOGY

With further increases in wages and the prices of supplies and equipment in 1956, emphasis continued to be placed on technologic improvements in methods of exploration, mining, and ore treatment as a means of keeping production costs down. Research also continued on utilization of lead in new alloys and other industrial forms that would broaden the market for lead. Much valuable technologic information was provided in articles contributed by the staffs of individual companies, trade journals, Federal and State agencies, and others engaged on research.

The Federal Bureau of Mines 8 and the Federal Geological Survey 9 published the results of several investigations during 1956.

^{*} Revised figure.

4 1947-48 not separately classified—1949—Belgium-Luxembourg, 362 tons; Canada, 95 tons; Lebanon, 11 tons; United Kingdom, 279 tons; total scrap, 747 tons. 1950—Canada, 41 tons; United Kingdom, 1,271 tons; Germany, 264 tons; total scrap, 1,576 tons. 1951—Canada, 203 tons; Belgium-Luxembourg, 31 tons; Germany, 145 tons; United Kingdom, 20 tons; Japan, 195 tons; total scrap, 594 tons.

5 West Germany.

⁸ Campbell, T. T., Block, F. E., and Fugate, A. D., Recovering Lead and Tin From Wet Solder Drosses: Bureau of Mines Rept. of Investigations 5210, 1956, 15 pp.
Hazen, Scott W., Jr., Exploration for Lead and Zine at the Madonna Mine, Monarch Mining District, Chaffee County, Colo.: Bureau of Mines Rept. of Investigations 5218, 1956, 38 pp.
Reynolds, John R., Mining Methods and Costs at the Morning Mine, American Smelting & Refining Co., Shoshone County, Idaho, Bureau of Mines Inf. Circ. 7743, 1956, 40 pp.
Co., Shoshone County, Idaho, Bureau of Mines Inf. Circ. 7743, 1956, 40 pp.
Hosterman, J. W., Geology of the Murray Area, Shoshone County, Idaho: Geol. Survey Bull. 1027-P, 1956, pp. 725-748. (Contributions to Economic Geology.)
Hosterman, J. W., and Wallace R. E., Reconnaissance Geology of Western Mineral County, Mont.:
Geol. Survey Bull. 1027-M, 1956, pp. 575-612. (Contributions to Economic Geology.)
Simons, F. S., and Mapes, V. E., Geology and Ore Deposits of the Zimapan Mining District, State of Hidalgo, Mexico: Geol. Survey Prof. Paper 284, 1956, 128 pp.
Harrison, J. E., and Wells, J. D., Geology and Ore Deposits of the Freeland-Lamartine District, Clear Creek County, Colo.: Geol. Survey Bull. 1032-B, 1956, pp. 33-127. (Geology and Ore Deposits of Clear Creek, Gilpin, and Larimer Counties, Colo.)
Gilluly, James, General Geology of Central Cochise County, Ariz.: Geol. Survey Prof. Paper 281, 1956, 169 pp. 169 pp.

A paper 10 dealt with ore-body evaluation and the application of geology to development and mining problems in the Southeastern Missouri lead belt. The paper included sections on history of the application of geology to mining operations; on the geology of the lead belt and of the ore bodies; evaluation of ore bodies; recommended development, by type of ore bodies; and geologic aids to mining.

A marked increase in smelting capacity was obtained through modernization of presintering practices at a lead smelter. The charge uniformity and control provided by the new preparation plant that was constructed permitted consistent maintenance of all subse-

quent operations at their highest capacity levels.

Results of a study of diffusion in liquid lead and experiments undertaken to aid in evaluating existing theories on diffusion in liquid metals were published.12 The following statement summarized certain data contained in the article:

The diffusion of lead and of trace amounts of bismuth in liquid lead have been investigated by the capillary method, using RaD and RaE as tracers. The results are compared with existing theories of diffusion in liquids, the agreement with theory being fair. The heat of activation for self-diffusion in lead is found experimentally to be close to the corresponding activation energy obtained from viscosity data. The pioneer data of Groh and von Hevesi for the self-diffusion of liquid lead, using ThB as a tracer, fit in with the present results.

A manufacturer reported 13 development of a new, activated, rosincore, lead-tin solder with outstanding noncorrosive characteristics and The solder spread was said to be 30 percent greater minimum odor. than with most conventional rosin-core solders. The activating chemicals used in the solder are not toxic to the touch or to the respiratory tract. The solder fluxes quickly and pierces oxide film and corrosion products on the parts to be soldered in less time than conventional solders.

A new process for making tetraethyl lead was being tested in a research laboratory. According to a report,14 the new process differs radically from any heretofore used or proposed for manufacturing tetraethyl lead. The chemistry of the process involves a reaction between a metal alkyl and a lead compound. It was stated that while the development work was still in its early stages the process showed considerable promise because it eliminates certain intermediate materials and steps involved in the present manufacturing operation and has proved superior to processes now known.

An article 15 on lead and its alloys supplied data (including a bibliography) on engineering advances in lead alloys and in smelting and refining, research progress, corrosion studies, testing and inspection,

new publications, and radiation shielding.

Pilot production of limited quantities of lead metaniobate, an unusual new high-temperature material with numerous possible defense applications in guided missiles and jet engines, was announced by a manufacturer of electric equipment and appliances. 16 The lead

16 American Metal Market, G. E. Starts Pilot Output of New Lead Material: Vol. 63, No. 175, Sept. 12, 1956, p. 12.

Belt: Min. Eng., vol. 8, No. 12, December 1956, pp. 1216–1224.

11 Lee, Harold E., and Ingvoldstad, Donald, Modernization of Bunker Hill Presintering Practices: Min. Eng., vol. 8, No. 10, October 1956, pp. 1001–1005.

12 Rothman, S. J., and Hall, L. D., Diffusion in Liquid Lead: Jour. Metals, vol. 8, No. 2, February 1956, pp. 100 202

¹² Rothman, S. J., and Lien, Z. — pp. 199-203.

13 American Metal Market, vol. 63, No. 197, Oct. 12, 1956, p. 6.

14 American Metal Market, vol. 63, No. 235, Dec. 11, 1956, p. 1.

15 Roll, Kempton H., Lead and Its Alloys: Ind. Eng. Chem., vol. 48, No. 9, pt. II, September 1956, pp. 1731-1734.

LEAD 711

metaniobate is a piezoelectric material, which gives off small voltages when acted upon by outside physical forces such as vibration. It retains most of its properties up to 500° C. Earlier piezoelectric materials, such as barium titanate and lead zirconate, lost their properties at lower temperatures. The lead metaniobate is produced in the form of small, aspirin-size disks.

WORLD REVIEW

World mine production of lead increased in 1956 for the tenth consecutive year, reaching an estimated 2.4 million short tons, or 2 percent more than in 1955. Small or moderate gains over 1955 were made in the United States, Peru, U. S. S. R., South-West Africa, and Australia; and decreases in Canada, Mexico, West Germany, Italy, Spain, Yugoslavia, and Morocco (southern zone). Lead ores were mined in nearly 60 countries in 1956, but 7 (each producing more than 100,000 tons) furnished 67 percent of the total mine output; these countries, in order of size of lead production, were United States, Australia, U. S. S. R., Mexico, Canada, Peru, and South-West Africa.

Smelter production increased for the fifth year in succession; the world total in 1956 was estimated to be 2.4 million short tons, a 7-percent gain over 1955 and a new record high. Among the principal producing countries, output increased in the United States, U. S. S. R., Australia, West Germany, and Belgium; decreased in Mexico and France; and was almost unchanged in Canada, Peru, and Yugoslavia. Six countries that were the principal producers on a mine basis supplied 64 percent of the total world smelter output; South-West Africa, which produced 109,000 tons of lead on a mine basis, had no lead smelter. World smelting and refining facilities outside the United States were listed in the 1953 chapter of this series (table 23). No new primary lead smelter of significant capacity was constructed from 1954 through 1956.

TABLE 22.—World mine production of lead, by countries, 1947–51 (average) and 1952–56, in short tons ¹

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

[Compiled by Augus	ta W. Jami	and Boros	100 31 1111	1		
Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: CanadaCuba	167, 181 26	168, 842	193, 706 	218, 495	202, 762 88	188, 971 120 3, 500
Greenland Guatemala Honduras Mexico	2, 484 ² 298 242, 676 ² 470	4, 630 593 271, 198 110	7, 789 851 244, 216	2,607 1,286 238,788	5, 084 1, 961 232, 383	3, 500 8, 967 2, 315 220, 029
Salvador ³ United States ⁴	400, 719	390, 162	342, 644	325, 419	338, 025	352, 826
Total	813, 854	835, 535	789, 206	786, 595	780, 303	776, 728
South America: Argentina. Bolivia (exports) 4. Brazil Chile. Ecuador. Peru.	22, 306 27, 550 2, 623 5, 227 238 69, 043	21,000 33,083 3,100 3 4,400 126 105,572	17, 600 26, 222 3, 300 3, 500 126, 303	32,000 20,092 3,200 3,500 121 121,327	26, 500 21, 070 4, 400 3 3, 500 929 130, 900	31, 700 22, 687 5, 500 3 3, 500 133, 492
Total	126, 987	⁸ 167, 300	³ 177, 100	³ 180, 200	3 187, 300	⁸ 196, 90

See footnotes at end of table.

TABLE 22.—World mine production of lead, by countries, 1947–51 (average) and 1952–56 in short tons 1 —Continued

Country	1947-51 (average)	1952	1953	1954	1955	1956
Europe:						
Austria	4, 125	5, 763	5,677	5, 432	5, 286	4,850
Bulgaria 3 Czechoslovakia 3	9,300	11,000		(5)	(5)	(5)
Czechoslovakia 3	1,100	1, 100		ì, 100	ì, 100	1.100
finiand	163	238	239	291	853	1,554
France	10, 720	13, 588	13, 681	12, 300	9,900	
Germany:						, ,,,,,,
East 3	2,450	2,900	3, 300	5,500	6,600	6,600
West	38, 597	56, 510		74, 171	74, 334	72, 101
Greece 6	2,869	6,600		5,900		11,400
Hungary	287	(5)	(5)	(5)	(5)	(5)
Ireland	7 565	2,097	1,005	1,511		2,912
Italy	37, 192	44, 200	44,600	47, 400	56, 100	53, 200
Norway		455	579	778	783	882
Poland 8		22,000	23, 500	24,000	24, 300	8 24, 700
Portugal Rumania ^{3 8}	1,038	2, 118	1,900	1,931	1,614	3 1,700
Rumania 8 8	7, 100	10,500	11,000	11,600	12, 200	8 12, 100
Spain	36, 784	46, 720	59, 750	61,002	68, 994	66, 765
Sweden	24, 406	22,700	28, 146	32, 731	35, 459	36, 081
U. S. S. R. ³⁸	103, 200	170,000	202,000	228, 500	255, 000	290,000
United Kingdom	3,621	6, 369	8,951	9, 736	8, 303	7, 204
Yugoslavia	78, 171	87,047	93, 864	9, 736 92, 735	99, 297	96, 257
Total 3	380, 400	512, 500	586, 200	639, 200	706, 700	736, 200
A ota-	=	=====			=====	
Asia:				1	1	
Burma	3 740	3 3, 300	8,800	13, 200	17, 600 13, 200	17, 100
China 3	800	2, 200	6,600	11,000	13, 200	16,500
Hong Kong	40	330	330	220	220	110
India	876	1,722	2, 327	2, 391	3,024	3, 183
Iran 9	¹⁰ 10, 748	18,000	8,800	3 13, 300	3 19, 900	3 18, 700
Japan	9,872	19, 271	20, 562	25, 176	28, 852	32, 545
Korea:						
North 3	3, 100	(5)	(5)	(5)	(5)	(5)
Republic of	283	157	164	91	753	1, 279
Philippines	459	2, 535	2, 683	2,014	2,555	(5) 1, 279 2, 360
Thailand (Siam)	7 807	1, 155	4,000	5, 500	6,000	4, 400
Turkey	1,086	8 1, 100	³ 1, 500	2, 200	3,000	2, 535
Total 3	28, 800	50, 900	56, 900	76, 200	97, 300	101, 000
Africa:						
Algeria	1,723	5, 225	0.004	11 504		
Belgian Congo	276	0, 440	8,804	11,564	11, 482	11, 281
Egypt	34		72	184	91	s 110
French Equatorial Africa	2, 202	21	276	143	143	132
French Morocco	45, 374	3, 914	4,877	3, 833	3,673	3, 316
Nigeria	40, 574	92, 162	86, 928	91,084	97, 753	95, 458
Rhodesia and Nyasaland, Federation	90	30	39	10	18	49
of: Northern Rhodesia 8	15, 739	14 110	10.000			
South-West Africa	34, 835	14, 112	12,890	16,800	17, 975	17, 024
Spanish Morocco		4 58, 248	4 65, 287	4 77, 146	100, 707	109, 367
Tongonyilro (ornorta)	217	807	739	515	900	670
Tanganyika (exports)	488	2,655	3, 085	2, 372	4,828	7, 804
Uganda (exports)	18, 394	25, 650	26, 514	28, 976	29, 306	25, 848
Union of Courth Africa	24	9	18	61	90	128
Union of South Africa	431	634	551	181	564	911
Total	119, 827	203, 467	210, 080	232, 869	267, 530	272, 098
Oceania: Australia	239, 787	260, 693	274, 303	319, 046	331, 458	333, 658
World total (estimate)	1, 710, 000	2, 030, 000	2,090,000	2, 230, 000	2, 370, 000	2, 420, 000

¹ This table incorporates a number of revisions of data published in previous Lead chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

2 Average for 1948-51.

3 Estimate.

4 Tonnage recoverable from ore.

5 Data not available; estimate by senior author of chapter included in total.

6 Includes lead content of zinc-lead concentrates.

7 Average for 1949-51.

8 Smelter production.

9 Year ended March 21 of year following that stated.

10 Average for 1950-51.

TABLE 23.—World smelter production of lead, by countries where smelted, 1947-51 (average) and 1952-56, in short tons 12

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Grate Company Compan	Country	1947-51 (average)	1952	1953	1954	1955	1956
Mexico	North America:	160 202	192 390	166 356	166 379	149, 795	149, 262
Mexico	Canada			725	\$ 110		147
Total	Mexico	235, 197	261, 736	236, 966	230, 567	224, 474	213, 947
South America:	United States (refined) 4	447, 346	472, 450	467, 723	486, 624		
Argentina 22, 008 21, 815 3, 250 26, 802 4, 806 Chile	Total	842, 983	917, 923	871, 770	883, 680	853, 264	905, 628
Company Comp	South America:	00,000	01 015	14 990	06 000	10 900	96 800
Total	Argentina				3,026	4,028	4,896
Total	Chile	39 477	53, 597	65, 041			65, 892
Burope:							97, 588
Austria 3	Total	04, 152	77,007	02,021			
Czechoslovakia 5, 100 6, 600 33, 000 30, 000	A atuio B	9, 880	11, 445	13, 113	13, 294	12, 673	10, 772
Czechoslovakia 5, 100 6, 600 33, 000 30, 000	Belgium 5	70, 719	87, 640	84, 162	79, 208	89, 807	111, 477
Total Seminary Property P	Bulgaria	5 100	6 600	3,000 6,600	6,600	8,750 6,600	6,600
Total Seminary Property P	France	51, 828		60, 390	68, 877	73, 414	69, 776
Netherlands Netherlands	(termany:	75 070	19, 800	24, 200	33, 000	33, 000	33, 000
Netherlands Netherlands	West	13,910	102, 164	118, 801	121, 504	118, 593	
Netherlands Netherlands	Greece	2,319	(6)	(6)	(6)	(6)	(6)
Netherlands Netherlands	Hungary	31, 907	37, 810	41,881	41, 150	46 086	43, 118
Portugal Rumania	Netherlands 3	3,000	1,600	1, 100	4,000	5, 700	8,700
Portugal Rumania	Poland	18, 400	22,000	23,500	24,000	24, 500	* 24, 700 * 2 200
Spain	Portugal		10,174		11, 600	12, 200	12, 100
No. North North North North North North North North North North North North North North North North North North Northern Rhodesia and Nyassaland, Federation of: Northern Rhodesia North Northern Rhodesia North	Rumania	39, 241	51, 305	56, 492	64 617	68, 132	64, 829
Yugoslavia 55, 133 74, 003 76, 099 76, 509 76, 509 867, 900 932, 500 Asla: 2, 816 2, 949 9, 641 12, 722 15, 568 21, 888 Burma 2, 800 6, 600 10, 000 16, 500 19, 300 22, 000 India 639 1, 268 1, 897 2, 005 2, 838 2, 797 Iran 7 9, 180 16, 707 19, 537 28, 916 31, 918 41, 151 Korea: North 3, 3400 3, 280 139 55 30 53 Total 3 19, 100 28, 200 43, 800 66, 700 79, 800 97, 500 Africa: 9, 769 33, 166 30, 240 29, 418 29, 421 30, 991 Rhodesia and Nyassaland, Federation of: Northern Rhodesia 15, 739 14, 112 12, 890 16, 800 17, 975 17, 02 South-West Africa 20, 677 28, 116 30, 071 29, 972 30, 123 27, 357 Total	O—o dom	1 11 508	12, 555	17,806	22, 147	23, 397	25, 552
Yugoslavia 55, 133 74, 003 76, 099 76, 509 76, 509 867, 900 932, 500 Asla: 2, 816 2, 949 9, 641 12, 722 15, 568 21, 888 Burma 2, 800 6, 600 10, 000 16, 500 19, 300 22, 000 India 639 1, 268 1, 897 2, 005 2, 838 2, 797 Iran 7 9, 180 16, 707 19, 537 28, 916 31, 918 41, 151 Korea: North 3, 3400 3, 280 139 55 30 53 Total 3 19, 100 28, 200 43, 800 66, 700 79, 800 97, 500 Africa: 9, 769 33, 166 30, 240 29, 418 29, 421 30, 991 Rhodesia and Nyassaland, Federation of: Northern Rhodesia 15, 739 14, 112 12, 890 16, 800 17, 975 17, 02 South-West Africa 20, 677 28, 116 30, 071 29, 972 30, 123 27, 357 Total	U. S. S. R. ³	103, 200	170,000	202, 000	228, 500	255, 000	290,000
Yugoslavia 55, 133 74, 003 76, 099 76, 509 76, 509 867, 900 932, 500 Asla: 2, 816 2, 949 9, 641 12, 722 15, 568 21, 888 Burma 2, 800 6, 600 10, 000 16, 500 19, 300 22, 000 India 639 1, 268 1, 897 2, 005 2, 838 2, 797 Iran 7 9, 180 16, 707 19, 537 28, 916 31, 918 41, 151 Korea: North 3, 3400 3, 280 139 55 30 53 Total 3 19, 100 28, 200 43, 800 66, 700 79, 800 97, 500 Africa: 9, 769 33, 166 30, 240 29, 418 29, 421 30, 991 Rhodesia and Nyassaland, Federation of: Northern Rhodesia 15, 739 14, 112 12, 890 16, 800 17, 975 17, 02 South-West Africa 20, 677 28, 116 30, 071 29, 972 30, 123 27, 357 Total	United Kingdom 5	3, 200	5, 295	7,446	7,708	6,798	7, 212
Asia: Burma.				18,009			
Burma. 2, 816 2, 949 10, 000 12, 722 15.00 22, 805 110 10, 10 10,	Total 3	492,000	673, 500	753, 200	807, 300	867, 900	932, 500
Sapan	Asia:	0.016	0.040	0.641	19 799	15 569	21 880
Sapan	Burma	2,810	6,600	10,000	16,500	19, 300	22, 000
Sapan	India	639	1, 268	1, 897	2,005	2, 838	2, 797
Sapan	Tran 7		550	500	1,000	1, 366	
North Republic of 3 ,400 3 ,280 139 2,200 3 ,300 97,500	Japan	9, 180	16, 707	19, 537		31, 918	41, 151
Total 3	North	3 3, 400			(6)	(6)	(6)
Africa: French Morocco	Republic of	3 280	139	55	3 30		
French Morocco 9,769 33, 166 30, 240 29, 418 29, 421 30, 99 Rhodesia and Nyassaland, Federation of: Northern Rhodesia. 15, 739 14, 112 12, 890 16, 800 17, 975 17, 02 South-West Africa. 20, 677 28, 116 30, 071 29, 972 30, 123 27, 35 Total. 46, 217 75, 394 73, 201 76, 190 77, 519 75, 372 Oceania: Australia: Refined lead.	Total 3	19, 100	28, 200	43, 800	66, 700	79, 800	97, 500
Rhodesia and Nyassaland, Federation of: Northern Rhodesia.	Africa:					00 401	90 001
South-West Africa. 32 (20, 677) 28, 116 30, 071 29, 972 30, 123 27, 357 Total. 46, 217 75, 394 73, 201 76, 190 77, 519 75, 377 Oceania: Australia: 177, 496 175, 436 193, 164 224, 459 209, 591 218, 506 Pb content of lead bullion 36, 090 42, 234 38, 137 42, 723 41, 879 46, 657 Total 213, 586 217, 670 231, 301 267, 182 251, 470 265, 157	French Morocco	9, 769	33, 166	30, 240			•
Tunisla 20, 677 28, 116 30, 071 29, 972 30, 123 27, 35. Total 46, 217 75, 394 73, 201 76, 190 77, 519 75, 373 Oceania: Australia: Refined lead Pb content of lead bullion 213, 586 217, 670 231, 301 267, 182 251, 470 265, 153	of: Northern Rhodesia		14, 112	12, 890	16, 800	17, 975	17,024
Oceania: Refined lead Pb content of lead bullion 177, 496 36,090 175, 436 42,234 38, 137 193, 164 42,723 41,879 224,459 46,657 209,591 41,879 46,657 Total 213,586 217,670 231,301 267,182 251,470 265,157	Tunisia		28, 116	30, 071	29, 972	30, 123	27, 357
Refined lead. 177, 496 170, 436 193, 104 224, 439 240, 981 241, 879 265, 152 271, 470 265, 152 272 273 274, 470 265, 152 273 274, 470 265, 152 274, 470 275, 152 275,	Total	46, 217	75, 394	73, 201	76, 190	77, 519	75, 372
Refined lead. 177, 496 170, 436 193, 104 224, 439 240, 981 241, 879 265, 152 271, 470 265, 152 272 273 274, 470 265, 152 273 274, 470 265, 152 274, 470 275, 152 275,							
Pb content of lead bullion 36, 090 42, 234 38, 137 42, 723 41, 879 46, 657 Total 213, 586 217, 670 231, 301 267, 182 251, 470 265, 157	Defined lead	177, 496	175, 436	193, 164	224, 459		218, 500
1004	Pb content of lead bullion	36, 090	42, 234	38, 137	42, 723	41,879	
World total (estimate)	Total	213, 586	217, 670	231, 301	267, 182	251, 470	265, 157
	World total (estimate)	1, 680, 000	1, 990, 000	2,060,000	2, 190, 000	2, 220, 000	2, 370, 000

¹ Data derived in part from Monthly Bulletin of the United Nations, Statistical Summary of the Mineral Industry (Colonial Geological Surveys, London), and the Yearbook of the American Bureau of Metal Statistics.

2 This table incorporates a number of revisions of data published in previous Lead chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

3 Estimate.

4 Figures cover lead refined from domestic and foreign ores; refined lead produced from foreign base bullion not included.

of included.

Includes scrap; but excludes refined lead produced from foreign base bullion.

Data not available; estimate by senior author of chapter included in total.

Year ended March 21 of year following that stated.

NORTH AMERICA

Canada.—Mine production of recoverable lead in Canada in 1956 was 189,000 short tons, 7 percent less than in 1955 and the lowest since 1952. Smelter output of refined lead at 149,300 tons was nearly the same as in 1955. A substantial part of the lead concentrate produced was exported, as Canada had only one primary lead smelter, a unit of the smelting and refining works of the Consolidated Mining & Smelting Co. of Canada, Ltd., at Trail, British Columbia. This company also operated the famous Sullivan zinclead-silver mine at Kimberley, British Columbia—the largest producer of lead in Canada. The second largest lead producer was the Buchans Mining Co., Ltd., zinc-lead-copper mine in Newfoundland. The lead-producing Provinces included British Columbia, New-

foundland, Yukon, Quebec, Ontario, Nova Scotia, and New Brunswick. Exports of lead contained in concentrates amounted to 50,000 short tons and of refined lead 79,600 tons. Consumption of refined

lead (primary and secondary) totaled 64,500 short tons. 17

Most of British Columbia's output of lead came from the mines of the Consolidated Mining & Smelting Co. In 1956 the Sullivan mine yielded 2,769,200 short tons of ore, 18 which was treated in the 11,000-ton concentrator at Kimberley near the mine. The company also operated the H. B. mine (zinc-lead) near Salmo, the Bluebell (zinc-lead) at Riondell, and the Tulsequah (zinc-copper-lead) in northwest British Columbia, which together produced 891,500 tons of ore during the year. A total of 71,400 tons of custom ores and concentrates was purchased, mostly from domestic sources. Metal output was 149,300 tons of lead, 193,000 tons of zinc, 97,400 ounces of gold, 11,583,500 ounces of silver, 884 tons of cadmium, 78 tons of bismuth, 1,131 tons of antimony, 328 tons of tin, and 363,192 ounces of indium.

Other companies operating lead-producing mines in British Columbia were the Giant Mascot Mines, Ltd., near Spillimacheen; Canadian Exploration, Ltd., near Salmo; Reeves MacDonald Mines, Ltd., near Nelway; Sheep Creek Mines, Ltd., Lake Windermere district; Yale Lead and Zinc Mines, Ltd., at Ainsworth; Violamac Mines, Ltd., near Sandon; Sunshine Lardeau Mines, Ltd., near Camborne; and Silver Standard Mines, Ltd., near Hazelton.

In Newfoundland the Buchans Mining Co., Ltd. (subsidiary of American Smelting & Refining Co.), continued to operate its mine 5 miles north of Red Indian Lake. The company mill has a capacity of 1,300 tons daily and produces lead, zinc, and copper concentrates. Preparations were being made for mining a new deep ore body northwest of the one being worked in 1956. A new shaft will be sunk to a minimum depth of 3,400 feet and possibly to 4,000 feet.¹⁹

The principal lead producer in Yukon was United Keno Hill Mines, Ltd., operating the Hector and Calumet mines in the Mayo district. Quebec producers of lead concentrate included New Calumet Mines, Ltd., on Calumet Island; Golden Manitou Mines, Ltd.,

British Bureau of Non-Ferrous Metal Statistics, World Non-Ferrous Metal Statistics: Vol. 10, No. 9,
 Bull., September 1957, p. 34.
 Consolidated Mining & Smelting Co. of Canada, Ltd., Fifty-first Annual Report, for the Year Ended December 31, 1956: 8 pp.
 American Smelting & Refining Co., Fifty-eighth Annual Report for the year ended Dec. 31, 1956: 18 pp.

715 LEAD

Abitibi East County; and Anacon Lead Mines, Ltd., Portnuef County. In Ontario, Jardun Mines, Ltd., northeast of Sault Ste. Marie, continued to produce both lead and zinc concentrates. Exploration and development were continued at the zinc-lead-copper properties of the Consolidated Sudbury Basin Mines, Ltd., northwest of Sudbury. In Nova Scotia, Mindamar Metals Corp., Ltd., at Sterling, Cape Breton Island, produced lead-copper concentrate and zinc concentrate.

In New Brunswick, Heath Steele Mines, Ltd. (subsidiary of American Metal Co., Ltd.), continued to develop its ore bodies near Newcastle and completed constructing a mill and related facilities to permit operation at a rate of 1,500 tons of ore daily.²⁰ Full production was expected by mid-1957. The ore produced will be of two types—copper ore and lead-zinc-copper ore—which will be treated in separate sections of the mill. The company expenditures on this

property to the end of 1956 had reached \$10.8 million.

The Brunswick Mining & Smelting Corp., in which the St. Joseph Lead Co. had a 40-percent financial interest and responsibility for management, continued to develop its extensive copper-lead-zinc ore bodies near Bathurst and to carry on metallurgical research work on methods for handling New Brunswick ores. Total expenditure on the Brunswick project ²¹ by the end of 1956 had reached \$5,560,000, and production was still at least two years away.

Kennco Exploration (Canada), Ltd., and Middle River Mines,

Ltd. (subsidiary of Texas Gulf Sulphur Co.), continued exploratory drilling and development on their properties in New Brunswick.

Greenland.—Lead and zinc were mined on a commercial scale in Greenland in 1956 for the first time. The Nordic Mining Co. mine at Mestersvig, discovered in 1948 and under development for several years, was put in operation. The mill, built in an underground excavation, has an annual capacity of some 8,800 short tons of zinc concentrate and 11,000 tons of lead concentrate. It was reported 22 that during the 6 months to September 30, 1956, some 49,600 short tons of ore was crushed at Mestersvig, yielding 6,900 tons of 63percent zinc concentrate and 4,400 short tons of 82-percent lead concentrate. About 9,900 tons of concentrates was sent to Belgium for treatment. Further development work was in progress at the mine. Because of ice conditions, it is usually possible for ships to go into Mestersvig only 4 or 5 weeks a year—during the August-September season.

Members of a Danish geological investigation group reported a new lead discovery in northeast Greenland about 50 kilometers

from the Mestersvig mine.23

Guatemala.—Compania Minera de Huehuetenango, S. A., in northern Guatemala, completed construction of its new concentration mill and began operating it early in 1956.24 Anticipated production was 1,200 short tons of 60- to 66-percent lead carbonate concentrate monthly, to be exported to the Penoles smelter at Torreon, Mexico. Compania Minera de Guatemala, S. A., near

American Metal Co., Ltd. Annual Report for the 69th Year: 1956, 48 pp.
 St. Joseph Lead Co., President's Report to Employees: 1956, 23 pp.
 Metal Bulletin (London), No. 4146, Nov. 20, 1956, p. 24.
 Mining World, vol. 18, No. 12, November 1956, p. 37.
 Mining World, vol. 18, No. 5, Apr. 16, 1956, p. 109.

Coban, expanded concentrator capacity, installed a new air-compressor

plant, and built a new diesel-electric powerplant at Caquipec.

Mexico.—Although some new activity in development and mining was stimulated by the new Law of Taxes and Promotion of Mining that became effective January 1, 1956, mine output of lead in Mexico during the year declined 5 percent from 1955 to 220,000 short tons. Zinc output, most of which was obtained from lead-zinc ore, increased moderately.

The mines and smelting and refining plants of the American Smelting & Refining Co. in Mexico operated on a normal basis throughout 1956. Its producing lead-zinc mines were the Charcas unit at Charcas, San Luis Potosi; Nuestra Senora at Cosala, Sinaloa; the Parral, Santa Barbara, and Santa Eulalia units, Chihuahua; and Taxco, Guerrero. Operating mines leased or owned in part and managed by American Smelting were the Aurora-Xichu unit, Guana-juato; Cia Metalurgica Mexicana mines; and Montezuma Lead Co. mines at Santa Barbara and Polmosas unit at Picachos, in Chihuahua. Smelting and refining plants operated were the Chihuahua plant (lead smelting and zinc fuming); Monterrey (lead refining); San Luis Potosi (copper smelting and converting, arsenic refining, and

lead smelting); and Rosita, Coahuila (zinc-retort smelting).

The American Metal Co., through its Mexican subsidiary, Cia. Minera de Penoles, S. A., produced lead and zinc concentrates at its Avalos unit, at Avalos, Zacatecas; Calabaza unit, Etzatlan, Jalisco; and Topia unit, Topia, Durango. Lead concentrate was produced at the company Ocampo unit, Boquillas, Coahuila. The company operated a lead smelter at Torreon, Coahuila, and a lead refinery at Monterrey, Nuevo Leon. Zinc concentrate produced was shipped to the Blackwell, Okla., smelter of the Blackwell Zinc Co. (subsidiary of American Metal Co.). According to the company annual report,²⁶ an agreement was reached with the Mexican Government under its revised mining legislation enacted in 1955, which will permit long-range development of the Avalos mine, largest of the company Mexican mines. The report stated that any profits resulting from this venture will, in effect, be shared with the Mexican Government through the payment of heavy production and export taxes and that healthy expansion of the Mexican mining industry will require further amelioration in the tax treatment accorded it.

According to the annual report of the Fresnillo Co. for the fiscal year ended June 30, 1956,²⁷ the Fresnillo mill treated 695,800 short tons of ore, yielding 31,800 tons of lead concentrate, 57,400 tons of zinc concentrate, 4,700 tons of copper concentrate, and 12,600 tons of iron concentrate, and the Naica mill treated 245,300 tons of ore yielding 25,700 tons of lead concentrate and 13,200 tons of zinc concentrate; in addition, 1,300 tons of lead carbonate ore was shipped. The company enlarged its Naica operations by purchasing the adjacent Gibraltar mine from the Eagle Picher Co. and increasing the capacity of Naica mill 50 percent. As of June 30, 1956, estimated ore reserves of the Fresnillo mine and the Naica-Gibraltar mines

totaled 6.3 million short tons.

American Smelting & Refining Co. Fifty-eighth Annual Report, for the year ended Dec. 31, 1956: 18 pp.
 American Metal Co., Ltd., Annual Report for the 69th Year: 1956, 48 pp.
 Metal Bulletin (London), No. 4154, Dec. 18, 1956, p. 23.

TEAD 717

Other large producers of lead and zinc concentrates were San Francisco Mines of Mexico, Ltd. (in which the American Metal Co. has an interest), at San Francisco del Oro; El Potosi Mining Co. (subsidiary of Howe Sound Co.) at Chihuahua and Batophilas; and Minas de Iquala, S. A. (subsidiary of Eagle Picher Co.), at Parral, all in Chihuahua.

SOUTH AMERICA

Argentina.—The Aguilar mine of Compania Minera Aguilar, S. A. (subsidiary of St. Joseph Lead Co.), continued in 1956 to be the source of most of Argentina's output of lead and zinc. The mine produced 33,400 short tons of lead concentrate and 46,700 tons of zinc concentrate compared with 30,700 and 46,500 tons, respectively, in 1955.²⁸ The rehabilitation program for the mine and mill, which was begun in 1954, was completed in 1956. At the electrothermic zinc smelter at Austral, operating conditions and metallurgical results continued to improve.

The recently developed Mina Castano lead-zinc-silver mine and new mill of the National Lead Co. in San Juan Province were put in operation on schedule in 1956. The mill was expected to produce around 6,000 tons of lead concentrate annually, as well as a substantial tonnage of zinc concentrate. Lead concentrate was to be sent to the company smelter at Puerto Villelas, which ships pig lead to the

metal-fabricating plant in Buenos Aires.

Bolivia.—The report on the Bolivian mining industry prepared by the United States consulting firm of Ford, Bacon & Davis was completed in 1956. The report covered a study that was undertaken at the request of the Bolivian Government with funds provided by the International Cooperation Administration to evaluate all factors and recommend measures to improve production. It was stated in the report ²⁹ that a critical point had been reached in the economic existence of the Mining Corporation of Bolivia, which operated the nationalized mines for the Government. Lack of management, technical staff, economic planning, and ore reserves was listed as adversely affecting the mining industry. The report recommended that the corporation be revamped, that a well-qualified general manager be hired, and that the Government make a final settlement with the owners of nationalized mines so that foreign investment capital would again be attracted to Bolivia.

Bolivia's production of lead increased 8 percent over 1955 to 22,700 tons in 1956 but was still 33 percent less than in 1951, before national-

ization of the principal mines.

Brazil.—Lead was produced by a number of small mines in the States of São Paulo and Parana.

Chile.—Compania Minera Aysen continued to work its mine and

operate a small lead smelter in the southern part of Chile.

Peru.—Mine output of lead, at 133,500 short tons in 1956, was 2 percent above the previous record high in 1955. The Cerro de Pasco Corp., largest individual producer of lead in Peru, continued to operate its several copper-silver and copper-lead-zinc-silver mines and mills in the Departments of Pasco, Junin, and Lima and a lead

St. Joseph Lead Co., Ninety-Third Annual Report to the Steckholders: 1956, 23 pp.
 Mining World, vol. 18, No. 13, December 1956, p. 41.

smelter and refinery, copper smelter and refinery, and electrothermic zinc smelter and electrolytic zinc refinery at La Oroya. The company output of refined lead 30 (comprising 25,500 short tons from company and leased mines and 39,800 tons from purchased ores) totaled 65,300 tons compared with 65,200 tons in 1955. A 4-week strike of metallurgical and construction workers beginning late in October prevented an increase in smelter output of lead.

The Mining Bank of Peru operated custom concentration mills at Huarochiri, Department of Lima; La Virreyna, Province of Castrovirreyna; Huachocolpa, Province of Huancavelica; Sacracancha, near

Morococha; and Hualgayoc, Province of Cajamarca.

The American Smelting & Refining Co. continued to operate the Chilete mine at Chilete, which produces silver, lead, and zinc.

EUROPE

Austria.—The Bleiberger Bergwerks Union, a nationalized company operated lead-zinc mines and a flotation mill at Bleiberg-Dreuth and a lead smelter and an electrolytic zinc plant at Gailitz, all in the Province of Carinthia. Besides lead concentrate from the company mill, the lead smelter (capacity, 12,000 short tons of pig lead annually) handled some concentrates of Italian origin.

Bulgaria.—A report 31 stated that Bulgaria probably would soon be a major lead-zinc producer. New ore-dressing plants were constructed at Madan and Rudsem, and another plant was being constructed at Tshiprovtsi. Plans were also made to increase the output of lead-

zinc ore, which was 1.5 million tons in 1955.

Finland.—Lead concentrate was recovered from ores mined chiefly

for zinc by the Outokumpu Co. in Ostrobotnia.

France.—Several lead-zinc mines continued to operate in France. but the bulk of the supply of lead concentrate for French smelters came from North Africa. Smelters in France produced 69,800 short tons 32 of primary and 24,600 tons of secondary pig lead. Imports of pig lead and lead bullion amounted to 62,000 short tons, mostly from French Africa. Imports of scrap and antimonial lead totaled 8,800

tons. Exports of pig lead were 7,600 tons.

Germany, West.—Mine production of lead in 1956 was slightly less than in 1955; but smelter output, including metal derived from treating imported concentrates, rose 8 percent. In addition to the 128,400 short tons of lead recovered from smelting domestic and foreign ores, 49,900 short tons of secondary lead was recovered from The major lead-producing mines were in the Harz Mountains and the Rhineland. There were eight active smelters and refineriesat Brauback, Binsfeldhammer, Clausthal, Lautenthal (refinery), Oker, Mechernich, Post Nordenham (Unterweser), and Hamburg. Imports of lead contained in ores and concentrates, over half from Canada, Peru, Morocco, and Sweden, totaled 51,400 short tons. Imports of foreign metal, mostly from Mexico, Peru, and Belgium, totaled 54,500 short tons. West Germany's consumption of primary and secondary lead decreased from 234,000 short tons in 1955 to 216,000 tons in 1956.

<sup>Oerro de Pasco Corp., Annual Report: 1956, 24 pp.
Metal Bulletin (London), No. 4144, Nov. 13, 1956, p. 29.
Work cited in footnote 17.</sup>

719 LEAD

Ireland.—Lead-producing mines in 1956 included the Abbeytown Mining Co. mine in County Sligo; Silvermines Lead & Zinc Co. Shalle mine in County Tipperary; and the Wicklow Mining Co. mine in County Wicklow. All three mines were equipped with

flotation mills.

Italy.—The bulk of Italy's lead production continued to come from mines in the southwestern part of the island of Sardinia. The principal lead-zinc-producing companies operating on Sardinia included Montevecchio Societa Italiana del Piombo e dello Zinco, and Societa di Monteponi, both of which operated mines, mills, and a lead smelter (as well as electrolytic zinc plants). On the mainland the Raibl mine near the Austrian border north of Trieste was a substantial producer of lead concentrate. The Pertusola lead smelter

at La Spezzia continued to operate.

Spain.—Mine and smelter production of lead in Spain showed small decreases in 1956. The lead-producing mines were in the Jaen, Murcia, Santander, Badajoz, and some other districts. The Penarroya smelter of the Sociedad Minera y Metalurgica de Penarroya continued to be the country's largest producer of pig lead. Other companies operating smelters were the Real Compania Asturiana de Minas, Compania "La Cruz," Compania Minero-Metalurgica "Los Guindos," Minera Industrial Pirenaica, S. A., Minas del Priorato, S. A., Industries Reunidas Minero-Metalurgica, S. A., and Cia Sopwith (Penarroya).

Sweden.—Production of lead contained in concentrate increased slightly to 36,100 short tons in 1956. There are two lead smelters in Sweden; the largest, operated by Bolidens Gruv A. B., is at Ronnskar, and the other, operated by Svenska Ackumulator A. B. Jungner, is at Fliseryd. Output of pig lead was 25,600 tons, a 9-per-

cent increase over 1955.

U. S. S. R.—Official data on lead production in the U. S. S. R. in 1956 are not available, but estimates are given in table 22. U. S. S. R. has made large gains in production in recent years and ranked second among the countries of the world in smelter production of lead in 1955 and 1956; in mine production, however, the U.S.S.R. ranked third, following the United States and Australia.

United Kingdom. 33—Concentrates made from ores mined in the United Kingdom in 1956 contained 7,200 short tons of recoverable Mines producing lead or lead-zinc ores included the Greenside in northern England and the Halkyn district United Mine properties

in north Wales.

Output of English refined lead (including soft lead refined from secondary and scrap material and from domestic ores and that refined by consumers for their own use) increased 13,000 short tons over 1955 to 105,800 tons in 1956, but total imports of pig lead and lead bullion decreased 55,900 short tons to 188,000. The total of exports and re-exports of pig lead was 8,600 short tons in 1956, or 3,300 tons more than in 1955.

Consumption of lead decreased 18,600 short tons from 1955 to 396,700 tons in 1956, and stocks at the end of the year decreased 1,800 short tons to 44,200 tons (excluding Government strategic

stocks).

³⁸ Work cited in footnote 17, p. 30.

The Board of Trade announced on December 7 34 that it was about to arrange for reducing the United Kingdom's strategic stocks of lead and zinc but that no sale would be made before mid-January 1957.

Yugoslavia.—The most important lead- (and zinc-) producing regions in Yugoslavia are in adjoining parts of Serbia and Macedonia and in Slovenia. Lead-zinc ore mined in 1956 totaled 1,903,000 short tons compared with 1,819,000 tons in 1955.35 The average lead content of the ore mined was lower in 1956, and the output of recoverable lead was slightly less than in 1955. The Trepca group of mines in Serbia continued to be the largest lead producer and was also one of the major zinc producers. The lead concentrates produced in Yugoslavia were sent to smelters at Zvecan near the Trepca mines in Serbia and at Mezica in Slovenia. According to a report, 36 the Trepca-mine ore reserve was nearing exhaustion and it had been decided to move mining operations to the Kiznica lead-zinc ore deposit nearby. Plans call for production of 150,000 tons of ore in the first phase of operations, to be stepped up to 500,000 tons annually later. A new flotation plant was to be established at Kiznica with an annual capacity of 12,000 tons of lead-zinc concentrate. Completion of the projects was scheduled for mid-1958. Trepca reduction plants included a flotation mill and a large lead smelter and refinery at Zvecan, a few miles north of Kosovska. A smaller lead smelting and refining plant was operated at Mezica in Slovenia. Besides the Trepca mines the smelters serve many other mines in Serbia, Macedonia, and Slovenia.

ASIA

Burma.—The Burma Corp., Ltd., continued to operate the Bawdwin lead-zinc-silver mine in the Shan States of northern Burma. Ore mined during the year ended June 30, 1956, was 124,500 short tons.³⁷ The company mill and smelting and refining works are at Namtu, 13 miles from the mine. Metals and mineral marketed during the fiscal year comprised 16,700 short tons of refined lead, 1,358,500 fine ounces of silver, 400 tons of copper matte, 600 tons of nickel speiss, 600 tons of antimonial lead, and 15,600 dry short tons of zinc concentrate. Most of the lead produced was exported to India.

India.—The only lead-producing mines worked in India in 1956 were the Zawar lead-zinc mines of the Metal Corp. of India, Ltd., near Udaipur in Rajasthan. Lead concentrate was shipped to the corporation smelter at Tundoo, and zinc concentrate to Japan for Output of pig lead at the Tundoo smelter averaged about 2,200 short tons annually from 1954-56. Consumption of lead in India during the fiscal year ended March 31, 1956, was approximately

17,000 tons.

Japan.—Output of lead concentrate in 1956 totaled 51,300 short tons, averaging 63.5 percent lead, mostly recovered from predominantly zinc ores, of which there are large deposits in Japan. principal producer of both lead and zinc concentrates continued to be the Kamioaka mine of the Mitsui Metal Mining Co., Ltd. Primary smelter production of lead was 41,200 short tons (31,900 tons in 1955).

<sup>Metal Bulletin (London) No. 4152, Dec. 11, 1956, p. 23.
Metal Bulletin (London) No. 4194, May 14, 1957, p. 12.
Airgram, National Cooperation Administration, Yugoslav Industry: November 1956, 42 pp.
Mining World and Engineering Record (London), vol. 171, No. 4470, Dec. 1, 1956, p. 297.</sup>

721 LEAD

Imports of lead concentrate totaled 27,900 tons, about half of which came from Australia. Domestic consumption of refined lead, remelt lead, and scrap totaled 245,500 short tons.

AFRICA

Algeria.—Mine production of lead declined slightly to 11,300 short The Bou Beker lead and zinc deposits in Morocco extend across the border into Algeria. The deposits on the Algerian side were worked by the Société Nord-Africaine du Plomb and the Société Algerienne du Zinc, both of which were affiliates of the Société des Mines de Zellidja. Ore mined on the Algerian side was treated in one of the Zellidja mills on the Moroccan side of the border. Incidents stemming from political unrest hampered operations somewhat during the year (see chapter on Zinc in this volume). Lead was also produced by several other mines in Algeria.

French Equatorial Africa.—Compagnie Minière du Congo Français continued to operate the M'Fouati mine and mill, producing 6,300 short tons of lead concentrate (averaging 54 percent lead) in 1956 compared with 7,200 tons in 1955. The company planned to work another lead mine at Hapilo, about 4 miles from M'Fouati. Output from Hapilo will gradually replace that of M'Fouati, which is near

depletion.38

French Morocco.—Lead concentrate production totaled 132,300 short tons in 1956, a 2-percent decline from 1955; this concentrate averaged 72.14 percent lead. Part of the concentrate was exported, mostly to France, and part was treated in the Zellidja-Penarroya lead smelter at Oued-El-Heimer; the smelter output of pig lead was 31,000 short tons. In addition to lead concentrate, the mines produced Most of the lead and zinc 78,200 short tons of zinc concentrate. output came from the Oudja area in eastern Morocco on the Algerian The large producing companies included the Société des Mines de Zellidja (Bou Beker Mines), Société des Mines d'Aouli (Aouli and Mibladen), and Companie Royale Asturienne des Mines (Touissit mine). Morocco became an independent country in March 1956.

Nigeria.—It was reported 39 that the Kwahu Mining Co. provided funds to the Nigerian Lead-Zinc Mining Co., Ltd., to complete a supplementary development program centered on the Ameri ore body; the results of the program were eminently satisfactory. It was intended at the proper time to finance development to place the mine

on a production basis.

Rhodesia and Nyasaland, Federation of.—The Rhodesia Broken Hill Development Co., Ltd., at New Broken Hill continued to operate its mine, mill, lead smelter and refinery, and electrolytic zinc plant. Output of refined lead 40 during 1956 was 17,000 short tons—1,000 tons less than in 1955. Zinc production, however, increased to a new record high of 32,400 short tons from 31,200 tons in 1955. Ore treated during 1956 totaled 135,700 tons—7,400 tons more than in 1955.

South-West Africa.—The Tsumeb Corp., Ltd., controlled by Newmont Mining Corp. and the American Metal Co., Ltd., continued

<sup>Mining World, Catalogue and Directory Number, vol. 19, No. 5, Apr. 15, 1957, p. 118.
Metal Bulletin (London), No. 4152, Dec. 11, 1956, p. 13.
Annual Report, The Rhodesia Broken Hill Development Company, Ltd.: Dec. 31, 1956, 24 pp.</sup>

operations at its Tsumeb lead-copper-zinc mine. During the fiscal year ended June 30, 1956,41 the combined salable copper, lead, and zinc contained in concentrates produced was 139,000 short tons, compared with 107,000 short tons in the fiscal year 1955. Within the last 4 years Tsumeb's metal production has more than doubled. While there was improvement in the movement of Tsumeb's concentrates to seaport by rail, there was a further large increase in the stocks of zinc concentrate. Sales of metals (refined or in concentrates) in the fiscal year ended June 30, 1956, were 90,200 short tons of lead, 25,800 short tons of copper, 4,200 tons of zinc, 122,900 pounds of cadmium, 1,404,800 ounces of silver, and 3,700 kg. of Electronic-grade germanium dioxide.

The Southwest Africa Co. at Abenab continued to produce leadvanadium ore from its mine. According to a news item, 42 the company countered declining lead-vanadium concentrate output with stepped-up production from the massive lead-zinc sulfide ore body. During the June quarter 1,000 tons of lead and 1,700 tons of zinc were recovered. Drilling indicated a 50-foot-thick ore body below

the 1,000-foot level.

Tanganyika.—Uruwira Minerals, Ltd., only producer of lead concentrate in Tanganyika, continued to operate its Mpanda lead-copper mine and 1,200-ton dense-medium-separation plant at Mukwamba. During the fiscal year ended September 30, 1956,43 the plant treated 187,200 short tons of ore, yielding 7,700 short tons of concentrate averaging 42.7 percent lead and 11.45 percent copper and containing also some gold and silver.

Tunisia.—Mine and smelter output of lead concentrate declined 12 and 9 percent, respectively, from 1955. Lead concentrate production was 43,000 short tons in 1956,44 mostly from the Sidi-Bou-Aouane. El-Grefa, Djebel Semene, Djebel-Hallouf, Sidi-Amor, Djebel-Touireuf,

Djebel-Ressas, and Fedj-El-Adoum mines.

Of the 27,400 tons of pig lead produced, the Megrine smelter supplied 88 percent and the Djebel-Hallouf smelter 12 percent. Exports of pig lead were 25,300 tons to France and 1,300 tons to Algeria.

Union of South Africa.—The old Argent mine 45 at Argent some 50 miles east of Johannesburg in the Transvaal was reopened by the Argent Lead & Zinc Co. The mill had a capacity of 5,000 tons of ore per month and will produce lead and zinc concentrates.

OCEANIA

Australia.—In 1956 Australia was again ranked second in the world as a lead-producing country; its mine output of 333,700 short tons of recoverable lead, although less than 1 percent larger than in 1955, showed a gain for the seventh year in succession. Broken Hill in New South Wales continued to be by far the leading Australian leadproducing district, but the Captain's Flat, also in New South Wales, the Cloncurry (Mount Isa field) in Queensland, and Read-Rosebery in Tasmania were also important producers. Besides lead, the mines

⁴¹ American Metal Co., Ltd., Annual Report for the 69th Year: 1956, 48 pp.
42 Engineering and Mining Journal, vol. 157, No. 9, September 1956, p. 234.
43 Mining World, vol. 19, No. 2, February 1957, p. 117.
44 Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 5, May 1957, p. 16.
44 Speight, W. L., Lead Mining in South Africa: South African Min. Eng. Jour., vol. 67, pt. 2, No. 3310, July 20, 1956, pp. 87-89.

723LEAD

produced zinc and silver, and some of them yielded important quantities of copper. Smelters at Port Pirie in South Australia and Mount Isa in North Queensland treated most of the output of lead concentrate, but a considerable tonnage was exported for smelting in the United States, Japan, and other countries. Consumption of pig lead in Australia amounted to 44,300 tons in 1956, or only 13 percent of the country's total mine production, leaving 87 percent available for

Operations at Broken Hill included 4 large producing mines or groups of mines, all equipped with mills. Output from the New Broken Hill Consolidated, Ltd., mines was 679,100 short tons of ore assaying 8.7 percent lead, 12.8 percent zinc, and 2.2 ounces of silver per ton.46 The ore yielded 73,300 short tons of lead concentrate containing 53,700 tons of recoverable lead and 1,206,300 ounces of silver.

Zinc concentrate production was 154,500 tons averaging 52.2 percent

The mines of Zinc Corp., Ltd., produced 802,600 short tons of ore assaying 12.2 percent lead and 10.8 percent zinc and carrying 3.0 ounces of silver to the ton. Lead concentrate output totaled 123,000 tons containing 90,300 tons of recoverable lead and 2,000,300 ounces Zinc concentrate produced totaled 149,700 tons assaying of silver. 52.0 percent zinc.

The Broken Hill South, Ltd. (including Barrier Central), mines produced 57,000 short tons of lead-silver concentrate and 73,700 short tons of zinc concentrate during the fiscal year ended June 30, 1956.

North Broken Hill, Ltd., treated 378,300 short tons of ore during the fiscal year ended June 30, 1956, 47 yielding 85,900 short tons of lead concentrate and 78,200 tons of zinc concentrate.

In the Captain Flats district the Lake George Mines (Pty.), Ltd., in its fiscal year ended June 30, 1956, produced 187,000 short tons of zinc-lead-copper ore.48 The ore was milled in the selective flotation mill at the mine, yielding zinc, lead, and copper concentrates.

Mount Isa Mines, Ltd., operated its mine, mill, and lead and copper smelters in the Cloncurry district, North Queensland. According to the annual report of the American Smelting & Refining Co., major stockholder in Mount Isa Mines, Ltd., production of metals by Mount Isa Mines in the fiscal year ended June 30, 1956, was 40,900 short tons of lead bullion (containing 3,289,600 ounces of silver), 34,400 tons of zinc concentrate, and 27,300 tons of blister copper, which were extracted from a total of 1,158,400 short tons of ore. Net profit for the fiscal year amounted to Af4,301,900 compared with Af3,307,300 in 1955 fiscal year. Exploration and development results, both for leadzinc ores and for copper ores, continued to be favorable. A 5-year expansion program was under way to triple the ore production rate Ore reserves at June 30, 1956 49 were 15.9 million short by late 1961. tons of silver-lead-zinc ore and 8.7 million tons of copper ore.

In the Read-Rosebery districts the Electrolytic Zinc Co. of Australasia, Ltd., continued to operate its mines and concentration mill. In the fiscal year ended June 30, 1956,50 the mines produced 220,400

<sup>Metal Bulletin (London) No. 4201, June 7, 1957, p. 24.
Metal Bulletin (London), No. 4141, Nov. 2, 1956, p. 23.
Metal Bulletin (London), No. 4169, Feb. 12, 1957, p. 23.
Metal Bulletin (London), No. 4169, Nov. 30, 1956, p. 23.
Engineering and Mining Journal, vol. 158, No. 1, January 1957, p. 183.</sup>

short tons of ore yielding 61,800 short tons of zinc concentrate, 10,300 short tons of lead concentrate, and 6,800 tons of copper concentrate. Ore reserves at the end of the fiscal year were 2.6 million short tons. The lead and copper concentrates produced were exported, and the zinc concentrate was shipped to the company Risdon electrolytic-zinc plant.

Lead and Zinc Pigments and Zinc Salts

By Arnold M. Lansche 1 and Esther B. Miller 2

CHIPMENTS of lead and zinc pigments and zinc salts in 1956 totaled 491,000 tons or 7 percent less than in 1955. Shipments of white lead in oil and zinc sulfate increased somewhat as compared with 1955, but those of red lead, litharge, zinc oxide, leaded zinc oxide, lithopone, dry white lead, and zinc chloride declined.

TABLE 1.—Salient statistics of the lead 1 and zinc pigments industry of the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Shipments of principal pig- ments:						
White lead (dry and in oil)short tons. Red leaddo Lithargedo Black oxide 2do	44, 561 32, 428 155, 058 69, 953	26, 663 30, 926 140, 798 75, 893	26, 217 31, 333 154, 518 81, 831	25, 571 27, 163 139, 877 79, 233	25, 575 29, 272 148, 511 113, 874	25, 698 27, 975 131, 525 106, 956
Zinc oxidedo Leaded zinc oxide short tons Lithoponedo	146, 081 58, 787 118, 376	142, 210 37, 892 61, 832	148, 627 39, 712 52, 439	140, 285 33, 972 44, 011	168, 541 32, 661 42, 845	154, 955 27, 164 38, 434
Value of products: All lead pigmentsAll zinc pigments		\$72, 230, 000 63, 950, 000	\$64, 303, 000 56, 475, 000	\$61, 756, 000 50, 438, 000	\$69, 133, 000 58, 031, 000	\$67, 106, 000 55, 245, 000
Total	145, 464, 000	136, 180, 000	120, 778, 000	112, 194, 000	127, 164, 000	122, 351, 000
Value per ton received by producers: White lead (dry)	351 355 339 240 248 118	403 376 348 307 313 137	378 312 285 264 259 132	383 323 303 255 258 135	392 342 326 258 259 140	413 364 346 271 282 147
Foreign trade: Lead pigments: Value of exports Value of imports Zinc pigments: Value of exports Value of imports	1, 020, 400 613, 400 4, 837, 600 459, 000	933, 000 451, 000 4, 352, 000 90, 000	799, 000 16, 000 1, 468, 000 287, 000	872, 000 149, 000 1, 351, 000 515, 000	976, 000 195, 000 1, 073, 000 773, 000	1, 092, 000 1, 465, 000 1, 087, 000 947, 000
Export balance	4, 785, 600	4, 744, 000	1, 964, 000	1, 559, 000	1,081,000	-233, 000

¹ Excludes basic lead sulfate, data withheld to avoid disclosing individual company confidential

operations.
Production by battery manufacturers.

Throughout 1956 the production of lead and zinc pigments and zinc salts was adequate for all demands, and the raw materialslead and zinc, their ores, and scrap—were in surplus supply. Lead and zinc prices fluctuated slightly in early January but were stable

¹ Commodity specialist. ² Statistical assistant.

at 16 and 13.5 cents a pound, respectively, from mid-January throughout the rest of the year. Slight price increases were noted in most of the pigments and salts during the year.

DOMESTIC PRODUCTION

The value of shipments of lead and zinc pigments in 1956 (except for basic lead sulfate and zinc sulfide, which cannot be shown) was \$122 million, a 4-percent decrease below the 1955 value. Lead pigments comprised 55 percent of the total value and zinc pigments 45 percent, compared with 54 and 46 percent, respectively, in 1955.

Lead and zinc pigments and zinc salts manufacturers, their plants and products, were listed in Minerals Yearbook, volume 1, 1953, and subsequent changes have been noted annually in the yearbooks. In 1956 the New Jersey Zinc Co. discontinued producing lithopone because of decreasing demand. Pacific Smelting Co. began producing lead-free zinc oxide at Torrance, Calif., during the year.

LEAD PIGMENTS

Combined shipments of the lead pigments declined 9 percent in

quantity and 3 percent in value in 1956.

White lead (dry) shipments were down 2 percent from those of 1955, but the "in oil" variety increased 7 percent. Total 1956 whitelead shipments were slightly higher than those in 1955 and composed 14 percent of all lead pigments shipped in 1956, whereas in 1955 shipments were 13 percent of the total.

In addition to these lead pigments, production and shipments of which are given in table 2, 107,000 tons of black or gray suboxide of lead was manufactured by battery-makers for their own use in 1956. This suboxide, which is sometimes called a leady litharge, is used in place of litharge. Comparable quantities in 1954 and 1955 were 79,000 and 113,000 tons, respectively. Suboxide production required 102,500 tons of pig lead in 1956, 109,000 in 1955, and 76,000 in 1954.

TABLE 2.—Production and shipments of lead pigments 1 in the United States, 1955-56

		1	955			1	956		
Pigment	Produc-		Shipments		Produc-		Shipments		
·	tion (short tons)	Short	Valu	e 2	tion (short tons)	Short	Valu	1e ²	
	tons	Total	Average	•	tons	Total	Average		
White lead: Dry In oil 3 Red lead Litharge Black oxide	18, 249 7, 861 29, 017 148, 345 113, 874	17, 858 7, 717 29, 272 148, 511	\$7,005,318 3,638,660 10,018,471 48,470,892	\$392 472 342 326	17, 248 7, 203 28, 612 132, 659 106, 956	17, 448 8, 250 27, 975 131, 525	\$7, 206, 668 4, 133, 509 10, 185, 102 45, 571, 080	\$413 501 364 346	

Except for basic lead sulfate and orange mineral; data withheld to avoid disclosing individual company confidential operations.
 At plant, exclusive of container.
 Weight of white lead only, but value of paste.

TABLE 3.—Lead pigments ¹ shipped by manufacturers in the United States, 1947-51 (average) and 1952-56, in short tons

Year		White	e lead	Red lead	Litharge	Black
	Dry	In oil	Total			oxide 2
1947–51 (average)	26, 642	17, 919	44, 561	32, 428	155, 058	69, 953
1952	15, 779	10, 884	26, 663	30, 926	140, 798	75, 893
1953	16, 784	9, 433	26, 217	31, 333	154, 518	81, 83
	17, 235	8, 336	25, 571	27, 163	139, 877	79, 23
	17, 858	7, 717	25, 575	29, 272	148, 511	113, 87
	17, 448	8, 250	25, 698	27, 975	131, 525	106, 95

¹ Excludes basic lead sulfate and orange mineral; data withheld to avoid disclosing individual company confidential operations.

2 Production by battery manufacturers.

TABLE 4.—Lead content of lead and zinc pigments 1 produced by domestic manufacturers, by sources, 1955-56, in short tons

		19	55			1956			
Pigment	Lead in	pigments p	oroduced	Total	Lead in	produced	Total		
	О	re	Pig	lead in pig- ments	0	re	Pig	lead in pig- ments	
	Domestic	Foreign	lead		Domestic	Foreign	lead		
White lead	4,616	1,930	20, 888 26, 304 133, 511 109, 023	20, 888 26, 304 133, 511 109, 023 6, 546	4,332	2,063	19, 560 25, 937 123, 373 102, 494	19, 560 25, 937 123, 373 102, 494 6, 395	
Total	4, 616	1,930	289, 726	296, 272	4, 332	2,063	271, 364	277, 759	

¹ Excludes lead in basic lead sulfate and orange mineral; data withheld to avoid disclosing individual company confidential operations.

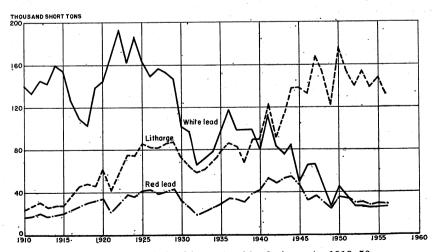


FIGURE 1.—Trends in shipments of lead pigments, 1910-56.

White lead, red lead, litharge, and the gray and black suboxide were made directly or indirectly from refined lead and constituted 98 percent of all lead used in pigments. The lead content of leaded zinc oxide made up the remaining 2 percent of the lead used in pigments. Basic lead sulfate is not reported herein, except to the degree that it enters leaded zinc oxide; lead silicate is included with white lead.

ZINC PIGMENTS AND SALTS

Combined shipments of the major zinc pigments declined 10 percent in quantity and 5 percent in value in 1956. Shipments of lead-free zinc oxide decreased 8 percent. Shipments of leaded zinc oxide were down 17 percent and those of lithopone 10 percent.

Average values of zinc pigments, as reported by producers, were above prices in 1955. The average price for zinc oxide in 1956 increased \$13 per ton to \$271; leaded zinc oxide was up \$23 to \$282

per ton and lithopone up \$7 per ton to \$147.

Zinc sulfate shipments were above those in 1955 by 35 percent, but declined 2 percent for zinc chloride (50° B). The average value of zinc sulfate increased \$6 to \$153 per ton, and that of zinc chloride was up \$32 to \$124 per ton.

Zinc ore, refined metal, and such secondary materials as scrap metal, residues, drosses, skimmings, and zinc ashes serve as source

materials for manufacturing zinc pigments and salts.

As in preceding years, zinc oxide was made from ores, metal, and scrap. Of the lead-free zinc oxide, 21 percent was made by the French process from metal, 69 percent by the American process from ores and residues, and 10 percent by "other" processes from scrap residues and scrap materials. Lithopone and zinc sulfate were made from ores and scrap and leaded zinc oxide from ores only. The proportion of zinc oxide production derived from metal and scrap was 31 percent in 1956 compared with 32 percent in 1955.

Zinc Oxide.—Lead-free zinc oxide shipments declined 8 percent

from the 1955 total.

Leaded Zinc Oxide.—Four grades of leaded zinc oxide classified according to lead content were produced in the United States. The 5- to 35-percent grade constituted the bulk of production; smaller quantities were produced as less than 5-percent grade, over 35- to 50-percent grade, and over 50-percent grade. Output in 1956 (comparison with 1955 in parentheses) for the 35-percent lead and under grade was 24,100 (27,900) tons and 2,100 (1,900) tons of over 35-percent lead.

Lithopone.—Lithopone shipments were down 10 percent from

those in 1955.

The lithopone statistics in this report are given on the basis of ordinary lithopone sold as such, plus the ordinary lithopone content

of the high-strength product.

An insignificant quantity of titanated lithopone was produced in the United States in 1956. The trend has been downward almost continuously since 1937, when 19,400 tons of ordinary lithopone was used in making the titanated pigment.

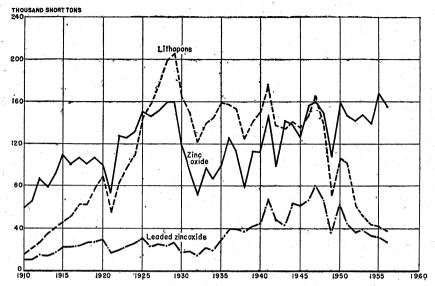


FIGURE 2.—Trends in shipments of zinc pigments, 1910-56.

TABLE 5.—Production and shipments of zinc pigments and salts in the United States, 1955-56

		19	955		1956				
Pigment or salt Production (short tons)	Produc-		Shipments		Produc-	Shipments			
	Short Value 1			tion (short tons)	Short	Valu	e 1		
		tons	Total	Average		tons	Total	Average	
Zinc oxide ² Leaded zinc oxide ² Lithopone Zinc chloride, 50° B Zinc sulfate	43, 819	168, 541 32, 661 42, 845 54, 161 23, 864	\$43, 561, 776 8, 466, 456 6, 002, 832 4, 957, 869 3, 497, 445	\$258 259 140 92 147	158, 982 26, 219 36, 639 54, 503 32, 861	154, 955 27, 164 38, 434 53, 201 32, 200	\$41, 966, 858 7, 647, 169 5, 630, 991 6, 590, 815 4, 917, 073	\$271 282 147 124 153	

TABLE 6.—Zinc pigments and salts ¹ shipped by manufacturers in the United States, 1947-51 (average) and 1952-56, in short tons

Year	Zinc oxide	Leaded zinc oxide	Lithopone	Zinc chloride (50° B.)	Zine sulfate
1947-51 (average)	146, 081	58, 787	118, 376	62, 945	22, 112
	142, 210	37, 892	61, 832	51, 966	19, 587
	148, 627	39, 712	52, 439	57, 537	22, 220
	140, 285	33, 972	44, 011	48, 252	19, 027
	168, 541	32, 661	42, 845	54, 161	23, 864
	154, 955	27, 164	38, 434	53, 201	32, 200

¹ Excludes zinc sulfide, data withheld to avoid disclosing individual company operations.

Value at plant, exclusive of container.
 Zinc oxide containing 5 percent or more lead is classed as leaded zinc oxide. In this table data for leaded zinc oxide include a small quantity containing less than 5 percent lead.

⁴⁶⁶⁸¹⁸⁻⁵⁸⁻

TABLE 7.—Zinc content of zinc pigments 1 and salts produced by domestic manufacturers, by sources, 1955-56, in short tons

			1955	* 1 . - 1				1956		
Pigment or salt	Zinc		ents and d from—		Total zinc in	Zinc	in pigm produce	ents and d from	salts	Total
3	€	re	Slab	Second-	pig- ments and	0:	re	Slab	Second-	pig- ments and
	Do- mestic eign		zine	zine ary ma- terial ²	salts	Do- mestic	For- eign	zinc	ary ma- terial ²	salts
Zinc oxide Leaded zinc oxide Lithopone	58, 260 10, 822 (³)	34, 421 4, 892 (3)	22, 139	22, 473	137, 293 15, 714 416, 839	57, 320 9, 535 (³)	29,831 5,362 (³)	18, 894	21,083	127, 128 14, 897 4 18, 839
Total pigments Zinc chloride Zinc sulfate	(3)	(3)	22, 139	12, 871 (³)	169, 846 12, 871 (5)	(3)	(3)	18, 894	12, 133 (3)	160, 864 12, 133 (⁵)

Excludes zinc sulfide; data are withheld to avoid disclosing individual company confidential operations.
 These figures are higher than those shown in the report on Secondary Metals—Nonferrous because they include zinc recovered from byproduct sludges, residues, etc., not classified as purchased scrap material.
 Data withheld to avoid disclosing individual company confidential data.

4 Includes zinc sulfate production.
5 Included with lithopone.

CONSUMPTION AND USES

The general decline in consumption, as measured by shipments, was attributed to decreases in the volume of business in industries that consume large quantities of the pigments and salts. Production of passenger automobiles at 5.8 million units, was less than threefourths of 1955 output and trucks, at 1.1 million units, were down 12 The value of public and private construction increased 5 percent to \$44 billion in 1956, but the \$16-million increase in the \$1.6-billion paint industry resulted from higher prices, as the total production of paints, varnish, and lacquer at 503 million gallons was 2 percent less than in 1955.

The paint industry was the principal user of white lead and red lead but only a minor user of litharge (chrome pigments and varnish), receiving 79, 51, and 5 percent, respectively, of the total shipments of these products. The paint industry was the principal user of leaded zinc oxide and lithopone and second in importance for zinc oxide, receiving 99, 73, and 21 percent, respectively, of the total shipments of these products. Of the total quantity of lead and zinc pigments shipped, the paint industry received 129,000 tons in 1956 compared with 142,000 tons in 1955, a 9-percent decline.

Titanium pigments continued to furnish the chief competition to lead and zinc pigments in paintmaking. Production and shipments of titanium pigments, based on the titanium dioxide content, established new records, increasing about 18 and 6 percent, respectively, over the previous highs established in 1955. The use of titanium The use of titanium pigments has doubled over the past 12 years, displacing lead and zinc pigments, especially white lead and lithopone, in paint formulations.

Shipments of replacement automotive batteries declined 2 percent to 24.8 million units. The storage-battery industry received 36 and 62 percent, respectively, of the red lead and litharge shipped in 1956,

a net decline from that received in 1955.

The tonnage of natural and synthetic rubber consumed for all purposes declined 5 percent, and the output of tires and tubes at 100 million and 34 million units, respectively, was 11 and 4 percent less than in 1955. The rubber industry was in first place for shipments of lead-free zinc oxide, taking over half of the total. The rubber industry also used small quantities of litharge, leaded zinc oxide, and lithopone.

The ceramics industry received 2 percent of the white lead, 5 percent of the red lead, 15 percent of the litharge, and 7 percent of the lead-free zinc oxide shipped in the United States during the year.

LEAD PIGMENTS

White Lead.—Paintmaking was the principal use for white lead in 1956; shipments reported to the paint industry represented 79 percent of the total. During the past 8 years an increasing quantity of white lead has gone to other uses. In 1950 it was 10 percent; in 1955 21 percent; and in 1956, 19 percent. Shipments to ceramic makers accounted for 2 percent of the total distribution in 1956. Other uses for the pigment were as plasticizers, stabilizers, bases for dry colors, and unspecified purposes. A substantial part of the "unspecified" category doubtless belongs properly under paint.

TABLE 8.—Distribution of white lead (dry and in oil) shipments, by industries, 1947-51 (average) and 1952-56, in short tons

Industry	1947-51 (average)	1952	1953	1954	1955	1956
PaintsOther	38, 816 1, 458 4, 287	21, 223 1, 079 2 4, 361	21, 030 785 2 4, 402	20, 929 487 2 4, 155	19, 825 484 2 5, 266	20, 288 633 8 4, 777
Total	44, 561	26, 663	26, 217	25, 571	25, 575	25, 698

Excludes basic lead sulfate, data withheld to avoid disclosing individual company confidential operations.
 Includes the following tonnages for plasticizers and stabilizers: 1952—986; 1953—1,089; 1954—1,133; 1955—

Basic Lead Sulfate.—Substantial quantities of lead sulfate were used as an intermediate product in manufacturing leaded zinc oxide. Such quantities have always been shown in this chapter under leaded zinc oxide to avoid disclosing individual company operations in basic lead sulfate.

Red Lead.—The paint industry was the principal consumer of red lead in 1956, receiving 51 percent of the shipments. Storage-battery makers received 36 percent of total shipments in 1956 against 41 percent in 1955. The ceramics industry received 5 percent of the shipments. The "Other" classification composed the remainder.

<sup>1,355.

3</sup> Data for plasticizers and stabilizers withheld to avoid disclosing individual company confidential operations.

TABLE 9.—Distribution of red-lead shipments, by industries, 1947-51 (average) and 1952-56, in short tons

Industry	1947-51 (average)	1952	1953	1954	1955	1956
PaintsStorage batteriesCeramicsOther	12, 140 16, 420 934 2, 934	13, 149 13, 796 388 3, 593	14, 570 13, 975 1, 188 1, 600	12, 568 12, 062 1, 207 1, 326	14, 308 11, 998 667 2, 299	14, 331 9, 953 1, 483 2, 208
Total	32, 428	30, 926	31, 333	27, 163	29, 272	27, 975

Orange Mineral.—This pigment was reported used in the manufacture of ink.

Litharge.—In 1956 the proportion of litharge shipments going to storage-battery makers was 62 percent, to the ceramics industry 15 percent, to chrome-pigment manufacturers 3 percent, and the other receiving industries (varnish, oil refining, and rubber) obtained 3, 3, and 2 percent, respectively. The "Other" classification, composed of insecticides, floor coverings, driers, friction materials, lead chemicals, and unspecified uses, received 12 percent. Total shipments for all purposes decreased 11 percent.

In addition to the litharge reported above, battery makers produced 107,000 tons of leady litharge, commonly termed black or gray suboxide, for use in making the paste for filling the interstices of the battery plates.

TABLE 10.—Distribution of litharge shipments, by industries, 1947-51 (average) and 1952-56, in short tons

Industry	1947-51 (average)	1952	1953	1954	1955	1956
Storage batteries	97, 854 20, 445 4, 580 9, 275 6, 643 7, 003 2, 425 469 6, 364	97, 656 15, 906 5, 572 8, 376 4, 080 2, 724 2, 109 791 3, 584	103, 849 20, 924 3, 915 8, 821 4, 342 2, 305 2, 230 603 7, 529	94, 656 17, 118 4, 162 4, 335 3, 775 2, 501 1, 768 596 10, 966	90, 200 24, 173 5, 206 6, 025 3, 853 3, 521 1, 947 803 12, 783	82, 041 19, 802 3, 571 3, 558 3, 523 (1) 2, 266 (1) 16, 76
Total	155, 058	140, 798	154, 518	139, 877	148, 511	131, 52

¹ Included under "Other."

ZINC PIGMENTS AND SALTS

Zinc Oxide.—The rubber industry was the largest consumer of this pigment, receiving 52 percent of the total shipments. Zinc oxide shipments to the rubber industry in 1956 were 7 percent below those in 1955. Paint manufacturers were the second largest users of zinc oxide; 21 percent of the total shipments went to them, or 4 percent less than in the preceding year. Shipments to the coated-fabrics and textile, ceramics, and floor-covering industries were 25, 4, and 37 percent, respectively, below those in 1955. Other industries (including petroleum, agriculture, chemical, and printing) and dealers who resell and export received 14 percent of the zinc oxide shipped.

Shipments to all consuming industries in 1956 were 8 percent below those in 1955.

TABLE 11.—Distribution of zinc oxide shipments, by industries, 1947-51 (average) and 1952-56, in short tons

Industry	1947-51 (average)	1952	1953	1954	1955	1956
Rubber	75, 618 31, 697 10, 733 7, 468 3, 824 16, 741	72, 774 31, 424 7, 760 6, 262 2, 413 21, 577	78, 439 31, 920 8, 862 8, 718 2, 234 18, 454	71, 058 31, 157 8, 990 6, 322 1, 749 21, 009	86, 677 33, 932 10, 617 11, 263 2, 281 23, 771	80, 459 32, 485 10, 160 8, 447 1, 436 21, 968
Total	146, 081	142, 210	148, 627	140, 285	168, 541	154, 955

¹ Includes the following tonnages for rayon: 1952-5,852; 1953-7,388; 1954-5,603; 1955-4,584; 1956-7,721.

Leaded Zinc Oxide.—Paint manufacturing used 99 percent of the leaded zinc oxide. Rubber and miscellaneous minor uses required the remainder.

TABLE 12.—Distribution of leaded zinc oxide shipments, by industries, 1947-51 (average) and 1952-56, in short tons

Industry	1947-51 (average)	1952	1953	1954	1955	1956
Paints Rubber Other	57, 105 159 1, 523	37, 607 9 276	39, 276 41 395	33, 690 7 275	32, 178 483	26, 825 339
Total	58, 787	37, 892	39, 712	33, 972	32, 661	27, 164

Lithopone.—Seventy-three percent of lithopone shipments were to the paint, varnish, and lacquer industry. Shipments to floor coverings were 4 percent of the total quantity of lithopone shipped. Shipments of lithopone for use in coated fabrics and textiles, rubber, paper, printing ink, and "Other" were 14 percent below that of 1955 and 59 percent below their 1947–51 average.

TABLE 13.—Distribution of lithopone shipments, by industries, 1947-51 (average) and 1952-56, in short tons

Industry	1947-51 (aver- age)	1952	1953	1954	1955	1956
Paint, varnish, and lacquers 1. Coated fabrics and textiles	90, 042 7, 243 7, 554 3, 582 4, 308 } 5, 647	45, 267 5, 698 3, 009 1, 523 3, 089 657 2, 589 61, 832	37, 452 5, 806 2, 575 1, 723 2, 096 716 2, 071	32, 177 3, 995 2, 351 1, 701 1, 841 195 1, 751	30, 522 4, 242 2, 378 2, 163 1, 970 } 1, 570	28, 238 (3) 1, 600 (2) (3) 8, 596

¹ Includes a small quantity, not separable, used for printing ink, except in 1950, 1951, and 1952.
² Included under "Other."

Zinc Chloride.—Statistics on end-use distribution of zinc chloride are not available. The principal uses of the salt were for soldering and tinning fluxes, batterymaking, galvanizing, vulcanized fiber,

wood preserving, oil refining, and fungicides.

Zinc Sulfate.—Rayon and agriculture were the chief consumers of the salt in 1956, receiving 67 and 22 percent of the shipments (dry basis), respectively. The remainder was consumed in electrogalvanizing, dyeing and printing, paint manufacture, and other miscellaneous uses.

TABLE 14.—Distribution of zinc sulfate shipments, by industries, 1947-51 (average) and 1952-56, in short tons

Industry	1947-51 (aver- age)		052	19)53	19)54	19	955	19	56
· · · · · · · · · · · · · · · · · · ·	Gross weight	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis
Rayon	9, 998 5, 779 1, 960 523 257 1, 095	8, 181 5, 111 1, 675 391 342 1, 070	6, 812 4, 446 1, 489 329 243 950	9, 008 6, 773 2, 539 601 337 736	7, 612 5, 894 2, 105 501 225 648	6, 615 7, 067 2, 300 648 454 357	5, 740 6, 139 1, 973 545 301 317	10, 732 8, 187 (1) (1) 258 226	9, 537 7, 089 (1) (1) 177 202	21, 083 7, 051 (1) (1) (1)	18, 825 6, 291 (1) (1) (1)
processing Textile dyeing and printing Other	347 1, 940	350 2, 295	301 1, 422	106 155 1, 965	70 138 1, 219	130 4 1,452	114 4 1,024	(1) 4, 461	(1) 3, 343	(1) (1) 4,066	(1) (1) 3, 190
Total	22, 112	19, 587	16, 122	22, 220	18, 412	19, 027	16, 157	23, 864	20, 348	32, 200	28, 306

¹ Included under "Other."

PRICES

Total and average values received by producers for lead and zinc pigments and zinc salts are given in tables 1, 2, and 4. Average values of white lead, red lead, and litharge increased in 1956, \$21, \$22, and \$20 per ton, respectively, above 1955. The average prices of lead pigments declined from 1951 to 1954 and then increased to that in 1956, when they were within 3, 8, and 10 percent, respectively, of the 1951 high. The average quoted price for common lead at New York was 16.0 cents compared with 15.1 cents in 1955. The average weighted sale price of lead was 15.7 cents a pound, compared with 14.9 cents in 1955.

Average values of zinc oxide, leaded zinc oxide, and lithopone increased \$13, \$23, \$7 per ton, respectively, in 1956. The average quoted price of Prime Western zinc was 13.5 cents per pound, compared with 12.3 cents in 1955; the average weighted sale price for all grades was 13.7 cents a pound compared with 12.3 cents last year.

TABLE 15.—Range of quotations on lead pigments, and zinc pigments and salts at New York (or delivered in the East), 1952-56, in cents per pound

[Oil, Paint and Drug Reporter]

Product	1952	1953	1954	1955	1956
White lead (basic lead carbonate), dry,					
carlots, bags	16. 25–20. 10	16. 25-17. 25	16.00-17.50	17. 50–18. 00	18.00-19.00
than carlots, bags Red lead, dry, 95 percent or less, less	15. 75–20. 19	15. 00–15. 75	15. 75-16. 75	16. 75–17. 25	17. 25–18. 50
than carlots, barrels Orange mineral, American, less than	17. 25-22. 57	15. 75-18. 50	15. 50-18. 00	18. 00-18. 50	18. 50-20. 00
carlots, barrels	19. 60-24. 92	18. 10-20. 85	17. 85-20. 60	20. 35-21. 10	21. 10-22. 35
Litharge, commercial, powdered, less than carlots, barrelsZinc oxide:	16. 25-21. 65	14. 75–17. 50	14. 50-17. 00	17. 00-17. 50	17. 50–19. 00
American process, lead-free, bags,					
American process, 5 to 35 percent	14. 25–17. 60	13. 50–14. 25	13. 50	13. 50-14. 00	14.00-14.50
lead, bags, carlots French process, red seal, bags,	14. 40–18. 35	14. 00–14. 40	14. 00–14. 25	14. 25-14. 63	14. 63-15. 50
French process, green seal, bags,	15. 25-18. 85	14. 75–15. 50	14.75	14. 75–15. 25	15. 25
French process, white seal, bags,	16. 00-19. 35	15-25-16.00	15. 25	15. 25–15. 75	15.75
carlotsLithopone, ordinary, less than carlots.	16. 50-19. 85	15. 75–16. 50	15.75	15. 75-16. 25	16. 25
bagsZinc sulfide, less than carlots, bags.	8. 25- 8. 90	8. 25- 8. 50	8. 25- 8. 50	8. 25- 8. 50	8. 50- 8. 75
barrels	26. 30	25. 30-26. 30	25. 30	25. 30	25.30
Zinc chloride, works: Solution, tanks	4. 10- 5. 35	4. 10- 4. 85	4.85	4.85	4. 85- 5. 15
Fused, drumsZinc sulfate, crystals, less than carlots,	9.60- 9.85	9. 85–10. 85	10. 10–10. 85	10. 10	10. 10–10. 70
barrels	18. 10–11. 20	8. 10–10. 30	7. 90- 8. 60	8. 60–10. 60	8.60- 9.75

¹ Includes granulated.

FOREIGN TRADE 3

The tonnage and value of imports of lead and zinc pigments in 1956 about doubled those in 1955. On the basis of the data available on lead and zinc pigments and salts the tonnage and value of exports increased 7 and 22 percent, respectively, compared with those of 1955. The value of imports was \$2.7 million compared with \$1.2 million in 1955. The value of major classes of exports was \$2.8 million compared with \$2.3 million in 1955.

Imports of litharge were exceptionally large (5,400 tons) in 1956 compared with those in any of the preceding 4 years. In 1956 it composed 92 percent of the lead pigments and salts received. Total lead products imported in 1956 were more than 400 percent above

those for 1955.

Imports of most zinc products have increased from year to year since 1952. Imports of zinc oxide were 10 percent above those of last year, 56 percent above those of 1954, and 217 percent above those of 1953. In 1956, 63 percent of the zinc pigments and salts imported was attributable to zinc oxide. Other zinc products imported were 143 tons of lithopone, 510 tons of zinc sulfide, 632 tons of zinc chloride, 17 tons of zinc arsenate, and 824 tons of zinc sulfate. Total zinc products imported in 1956 were 22 percent above those in 1955.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines from records of the Bureau of the Census.

Litharge exports (2,000 tons) in 1956 were the highest since 1946, when 2,200 tons was shipped out of the country. Lead arsenate showed the largest percentage increase of the lead products exported, amounting to 137 percent above 1955.

Total zinc pigments exported were down 9 percent from 1955. Zinc oxide exports were up 4 percent to 2,700 tons. Lithopone exports continued the decline in progress since the 1951 high of 20,500 tons. They were 27 percent below exports of the material in 1955.

TABLE 16.—Value of foreign trade of the United States in lead and zinc pigments and salts, 1954-56

Bureau	of	the	Censusl

	Import	s for consu	mption	Exports			
	1954	1955	1956	1954	1955	1956	
Lead pigments: White lead Red Lead Litharge Other lead pigments Total Zinc pigments: Zinc oxide Zinc sulfide Lithopone	\$508 134, 413 14, 219 149, 140 2 475, 913 31, 858 7, 029	\$923 174, 895 18, 708 194, 526 685, 186 83, 732 4, 355	\$5, 980 30, 706 1, 388, 733 39, 241 1, 464, 660 770, 156 156, 675 19, 931	\$289, 901 124, 613 457, 078 (1) (1) 897, 065 (1) 454, 461	\$284, 735 133, 580 558, 029 (1) (1) 771, 621 (1) 300, 960	\$199, 528 147, 617 744, 528 (1) (1) 846, 883 (1) 239, 892	
Total	² 514, 800	773, 273		1, 351, 526	1, 072, 581	1, 086, 775	
Lead and zinc salts: Lead arsenate. Other lead compounds. Zinc arsenate Zinc chloride.	² 20, 337 34, 075	72, 089 1, 760 72, 369	65, 610 2, 570 112, 702	161, 607 23, 555 (1) (1)	215, 206 21, 181 (1) (1)	575, 745 22, 874 (1)	
Zinc sulfate Total	32, 957 2 87, 369	56, 301 202, 519	84, 058 264, 940	(1) (1)	(1) (1)	(1) (1)	
Grand total	² 751, 309	1, 170, 318	2, 676, 362	(1)	(1)	(1)	

Data not available.

TABLE 17.—Lead pigments and salts imported for consumption in the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	White lead (basic carbon-ate)	Red lead	Lith- arge	Lead sub- oxide	Lead pigments n. s. p. f.	Lead arsenate	Other lead com- pounds	Total value
1947-51 (average) 1952 1953 1954 1955 1956	777 390 (1)	115 2 (1) 2 3 113	689 621 60 596 751 5, 371	40 53 1 28 34 78	(1) 4 ————————————————————————————————————	13 81	37 32 18 86 352 269	\$632, 006 499, 986 22, 507 2 169, 477 266, 615 1, 530, 270

¹ Less than 1 ton.

² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with earlier years.

² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with earlier years.

TABLE 18.—Zinc pigments and salts imported for consumption in the United States, 1947-51 (average) and 1952-56

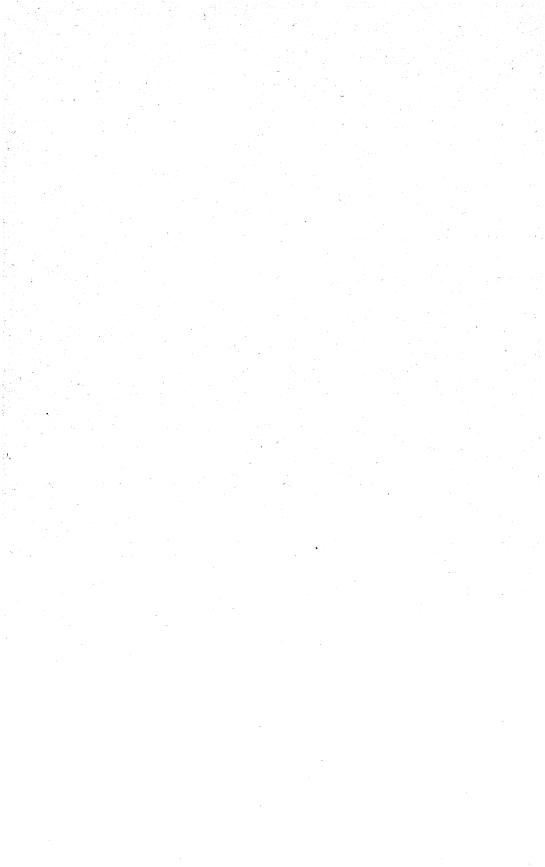
[Bureau of the Census]

	Short tons								
Year	Zine	xide	Litho-	Zinc	Zinc	Zinc arse-	Zinc sul-	Total value	
	Dry	In oil	pone	sulfide	chloride	nate	fate		
1947–51 (average) 1952 1953 1954 1955	1, 450 173 1, 157 2, 348 3, 320 3, 667	3 (¹) 29	401 11 30 65 30 143	23 106 265 510	188 275 179 260 500 632	(1) (1) (1) (1) 17	191 66 46 399 634 824	\$516, 798 180, 798 316, 604 2 581, 832 903, 703 1, 146, 092	

TABLE 19.—Lead pigments and salts exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

			Short ton	s		
Year	White lead	Red lead	Litharge	Lead arsenate	Other lead com- pounds	Total value
1947–51 (average)	761 675 818 951 957 654	783 435 417 335 325 352	1, 173 1, 233 1, 238 1, 284 1, 459 1, 966	767 128 152 355 540 1, 282	(1) 36 12 31 33 28	2 \$1, 348, 263 1, 028, 266 892, 904 1, 056, 754 1, 212, 731 1, 690, 292


TABLE 20.—Zinc pigments exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

	Short tons		Total		Short	Total		
Year	Zine oxide	Litho- pone	value	Year	Zinc oxide	Litho- pone	value	
1947-51 (average) 1952 1953	8, 951 7, 615 2, 971	15, 791 9, 985 3, 927	\$4, 837, 659 4, 352, 309 1, 468, 100	1954 1955 1956	3, 111 2, 649 2, 748	3, 013 1, 892 1, 387	\$1, 351, 526 1, 072, 581 1, 086, 775	

¹ Less than 1 ton.
² Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with earlier years.

Classification established 1949; quantity and value not included in averages.
 In addition, lead acetate and sugar of lead exported as follows: 1949, 108,533 pounds, \$39,565; 1950, 64,135 pounds, \$19,973; 1951, 140,427 pounds, \$46,191.

Lime

By Oliver Bowles, 1 James M. Foley, 2 and Annie L. Mattila 2

OMESTIC output of lime in 1956, which increased 1 percent over 1955, reached an alltime high of over 10.5 million tons; however, the gain was entirely in the refractory (dead-burned dolomite) category, as losses were registered in all of the other major classifications.

Lime for agriculture declined 17 percent; building lime, 8 percent; and chemical and industrial lime, I percent. Open-market sales of about 9 million tons gained 1 percent over 1955. Of the total sold or used, 56 percent was in the form of quicklime, 21 percent hydrated lime, and 23 percent dead-burned dolomite.

TABLE 1.—Salient statistics of lime sold or used in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Active plants	172	160	156	154	150	153
Sold or used by producers: By types: Quicklimeshort tons Hydrated limedo Dead-burned dolomitedo	3, 806, 260 1, 815, 863 1, 596, 914	1, 882, 824	2, 042, 100	1, 979, 895		5, 967, 140 2, 186, 247 2, 423, 909
Per ton	7, 219, 037 \$77, 698, 248 \$10. 76	\$95, 231, 221	\$112,158,060	\$101,723,102	10, 479, 928 \$127,144,035 \$12. 13	10, 577, 296 \$135,727,133 \$12. 83
Total open-market lime short tons Total captive tonnage lime short tons	6, 798, 771 2 420, 266					
By uses: Agriculturalshort tons Buildingdo Chemical and industrial _do	333, 699 1, 136, 790 4, 151, 634	1, 191, 263	1, 166, 240	1, 130, 032	1, 309, 774	1, 203, 00
Refractory (dead-burned dolo- mite)short tons_ Imports for consumptiondo Exportsdo	1, 596, 914 33, 135 57, 517	24,008	37, 202	36, 298	39, 616	41, 69

Selling value, f. o. b. plant, excluding cost of containers.
 Incomplete figures; before 1953 there was only a partial coverage of captive plants.

DOMESTIC PRODUCTION

The total tonnage of lime sold or used in 1956 was 1 percent greater than the previous alltime high in 1955. As in 1955, 15 percent of the total was captive. Since 1952 the coverage on captive lime has been more complete than previously.

¹ Commodity specialist.
2 Statistical assistant.

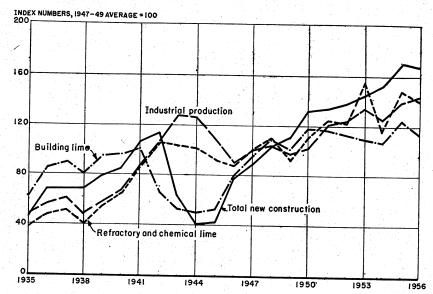


FIGURE 1.—Production of building lime compared with physical volume of total new construction, and output of refractory and chemical lime compared with industrial production, 1935–56. Units are reduced to percentages of the 1947–49 average. Statistics of new construction from U. S. Department of Commerce and on industrial production from Federal Reserve Board.

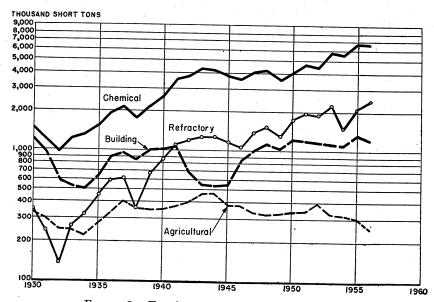


FIGURE 2.—Trends in major uses of lime, 1930-56.

741 LIME

Lime was produced in 33 States and 2 Territories. Ohio, Missouri and Pennsylvania, the leading producers, furnished 56 percent of the entire output; Illinois, Texas, Virginia, Alabama, and California were

next in order of production.

Figure 1 shows graphically that building-lime sales were far below total new-building construction; these sales have failed to keep pace with the strong upward movement of construction during the years since 1950. Sales of refractory and chemical lime increased in consonance with the upward trend of industrial production.

The Bell mine of the Warner Co., Bellefonte, Pa., described in detail in an article,3 produced high-calcium stone for lime burning from extensive underground workings. Drifts extend along the strike

11,500 feet west of the main shaft and 4,000 feet east.

Modernization of the pioneer plant of Mayville White Lime Works, Mayville, Wis., was discussed in an article.4

TABLE 2.—Lime (quick, hydrated, and dead-burned dolomite) sold or used by producers in the United States, 1955-56, by States

		1955	. V		1956	
State or Territory	Active plants	Short tons	Value	Active plants	Short tons	Value
Alabama. Arizona Arkansas. California. Connecticut. Florida. Hawaii Illinois. Indiana. Louisiana Maine Maryland Massachusetts. Michigan. Minnesota. Minnesota. Missouri. Montana. New Jersey. New Mexico. New York. Ohio. Oklahoma. Pennsylvania. Pennsylvania. Pennessee. Texas. Utah. Vermont. Virginia. Washington. Washington. Washington. West Virginia.	85 26 61 21 61 11 15 33 31 16 22 22 11 22 21 39 32 11 68	462, 194 112, 028 (1) 268, 009 (1) 6, 453 644, 181 (1) (1) 74, 497 134, 952 (1) 1, 464, 828 (1) (1) 1, 464, 828 (1) (1) 1, 424, 051 10, 392 (1) 10, 39	\$5, 185, 706 1, 437, 632 1, 437, 632 (1) 202, 005 9, 416, 136 (1) (1) 669, 228 1, 957, 346 (1) 14, 408, 279 (1) (1) 17, 234, 121 (1) 1, 102, 005 5, 443, 309 582, 760 (1) 5, 048, 697	9 4 2 5 1 1 1 1 5 3 3 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	466, 399 126, 876 (1) 302, 479 39, 748 39, 542 9, 555 (1) 80 (1) (1) 11, 997 52, 604 134, 248 (1) 1, 481, 611 (1) (1) (1) (1) 30, 771 86, 737 2, 995, 320 1, 443, 430 (1) 124, 592 592, 136 55, 110 (1) 512, 346 (1) (1)	\$5, 088, 695 1, 755, 774 1, 755, 777 1, 755, 777 1, 755, 777 1, 777, 951 609, 202 490, 088 305, 709 (1) 2 960 (1) (1) 179, 162 580, 928 2, 093, 195 (1) (1) 15, 813, 573 (1) (1) (1) 372, 641 1, 029, 996 40, 804, 580 (1) 18, 282, 135 (1) 1, 436, 200 6, 937, 951 829, 772 (1) 5, 925, 915 (1) (1)
Wisconsin Undistributed ¹		134, 635 3 1, 400, 754	1, 767, 563 316, 799, 549		2, 071, 715	28, 112, 708
Total	150	10, 479, 928	127, 144, 035	153	10, 577, 296	135, 727, 133

Figures withheld to avoid disclosing individual company confidential data.
 Estimated by Bureau of Mines.

3 Revised figure.

³ Carre, H. A., Drilling and Blasting at the Bell Mine: Min. Cong. Jour., vol. 42, No. 1, January 1956, pp. 18-23.

⁴ Pit and Quarry, Mayville White Lime Works—a Progressive Historic Operation: Vol. 48, No. 12, June 1956, pp. 120-123.

Modernization of the Rockwell Lime Co. plant at Rockwood, Wis., included adding a 150-foot natural-gas-fired rotary kiln, a nonpressure hydrator, and a rodmill-type unit to generate plastic properties in the lime.5

The U.S. Lime Products Corp. operated a new lime plant at Arrolime, Nev. This company became a subsidiary of Flintkote Co.

in September 1956.6

The Chemical Lime Co. 75,000-ton-per-year-capacity lime plant near Baker, Oreg., was near completion about 8 miles from a large, high-purity limestone deposit. A dry-ice plant included in the project will utilize CO₂ from the kilns.

TABLE 3.—Lime sold or used by producers in the United States, 1955-56, by types and major uses

		195	5			1956			Change
	Sold	Used	Total	Percent of total	Sold	Used	Total	Percent of total	from 1955, percent
	6, 916, 688 2, 013, 115		8, 242, 175 2, 237, 753		7, 047, 079 1, 957, 060			79 21	+2 -2
Total lime	8, 929, 803	1, 550, 125	10,479,928	100	9, 004, 139	1, 573, 157	10,577,296	100	+1
By use: Agricultural: Quicklime Hydrated lime	116, 428 187, 826	1, 125 38			96, 049 155, 857		96, 129 155, 906	1 1	-8 -7
Total	304, 254	1, 163	305, 417	3	251, 906	129	252, 035	2	-7
Building: Quicklime Hydrated lime	176, 612 1, 056, 052		231, 585 1, 078, 189	2 10	123, 918 1, 009, 465		178, 808 1, 024, 197	2 10	-3 -5
Total	1, 232, 664	77, 110	1, 309, 774	12	1, 133 383	69, 622	1, 203, 005	12	-8
Chemical and other industrial: Quicklime Hydrated lime	4, 558, 612 769, 237			55 10	4, 425, 146 791 738		5, 692, 203 1, 006, 144	54 9	-1 +4
Total	5, 327, 849	1, 407, 928	6, 735, 777	65	5, 216, 884	1, 481, 463	6, 698, 347	63	-1
Refractory (dead- burned dolomite)	2, 065, 036	63, 924	2, 128, 960	20	2, 401, 966	21, 943	2, 423, 909	23	+14

¹ Includes Hawaii and Puerto Rico.

Size of Plants.—The trend toward producing lime in fewer but larger plants appeared stabilized; the smaller plants were relatively unimportant factors in total production. Eighty-seven plants comprising the largest groups each, producing from 25,000 to more than 100,000 tons per year, furnished 95 percent of production; 66 smaller plants produced the remaining 5 percent. The average output per plant was about 69,000 tons, compared with 70,000 tons in 1955.

<sup>B Pit and Quarry, Rockwell Lime Co. Operating Nonpressure Hydrator, vol. 48, No. 11, May 1956, pp. 136-138, 144.
Asbestos, vol. 39, No. 1, July 1957, p. 26.
Rock Products, Chemical Lime Builds Plant: Vol. 59, No. 11, November 1956, p. 37.</sup>

TABLE 4.—Distribution of lime (including refractory) plants, 1954-56, according to size of production ¹

	1954			-	1955		1956			
Size group (short tons)		Produ	Production		Produ	ction		Produ	Production	
	Plants	Short tons	Percent of total	Plants	Short tons	Percent of total	Plants	Short tons	Percent of total	
Less than 1,000 1,000 to less than 5,000 5,000 to less than 10,000 10,000 to less than 25,000 25,000 to less than 50,000 50,000 to less than 100,000 100,000 and over	10 28 16 22 30 22 26	4, 656 83, 319 108, 563 386, 135 1, 043, 448 1, 427, 969 5, 575, 029	1 1 4 12 17	10 20 14 22 33 22 29	4, 855 53, 585 95, 335 386, 119 1, 285, 061 1, 641, 229 7, 013, 744	(2) 1 4 12 16	12 19 12 23 30 29 28	48, 401 86, 652 405, 379 1, 109, 215 2, 004, 186	11 19	
Total	154				10, 479, 928	ļ		10, 577, 296		

¹ Includes captive tonnage.

Hydrated Lime.—When water is added to quicklime, CaO, hydrated lime, Ca(OH)₂, is formed. Because the latter more stabilized form is more easily transported than quicklime and is preferred by some consuming industries, most plants have hydrating equipment. As in 1955, 21 percent of the total lime was hydrated.

TABLE 5.—Hydrated lime sold or used by producers in the United States, 1955-56, by States, in short tons

		1	955		1956				
State of Territory	Active plants	Open- market	Captive	Total	Active plants	Open- market	Captive	Total	
Alabama	6 5 1 4 3 3 5 14 14 3 7 7 32	(1) 6, 437 72, 702 17, 572 (1) 223, 777 732, 789 316, 269 22, 845 76, 106 55, 577 325, 115 163, 926	(1) (1) (1) 10, 708 201, 427 6, 263 6, 240	76, 313 35, 599 6, 437 72, 702 17, 572 58, 254 223, 777 743, 497 316, 269 22, 845 277, 553 55, 577 331, 378	5 5 1 4 3 3 3 5 14 16 3 6 8 3 3 2	(1) (2) (3) (12, 798 (1) 227, 164 (1) 294, 404 29, 057 (1) (1) 399, 937 984, 190	(1) (1) (1) (1) (1) (1) (64, 830 164, 357	73, 073 35, 522 9, 510 (2) 12, 799 64, 07: 227, 16: 680, 01: 294, 05: 242, 44: 53, 41: 464, 76:	
Total	104	2, 013, 115	224, 638	2, 237, 753	105	1, 957, 060	229, 187	2, 186, 24	

 $^{^{\}rm I}$ Figure withheld to avoid disclosing individual company confidential data; included with "Undistributed."

CONSUMPTION AND USES

Sixty-four percent of the entire lime production was applied to chemical and other industrial uses; 23 percent was employed as a refractory in metallurgical plants; 11 percent was used in the building trades; and 2 percent for liming land. The principal uses of quick-lime and hydrated lime (excluding dead-burned dolomite) were in

² Less than 1 percent.

² Includes the following States and number of plants in 1956 (1955 same as 1956 unless shown differently in parentheses): Arizona 2 (3), Arkansas 1, Connecticut 1, Florida 1, Illinois 4 (1956 only), Iowa 1, Maine 1, Michigan 1, Minnesota 1, Montana 1, Nevada 3 (2), New Jersey 1 (2), New Mexico 1 (1956 only), New York 2, Oklahoma 1, Puerto Rico 1, Utah 2, Vermont 1, Washington 1, West Virginia 4, and Wisconsin 5.

TABLE 6.—Lime (quick, hydrated, and dead-burned dolomite) sold or used by producers in the United States in 1956, by districts and by types

Total	tons Value	(3)	5, 762 \$24, 882, 484 2, 346 5, 925, 915 5, 320 40, 804, 580	397 23, 773,	9, 678 4, 802, 977 0, 533 7, 014, 981	6, 927 6, 383, 641	136 6, 937, 917 11, 625,		208, 225 3, 270, 434	7, 296 135, 727, 133
	Short tons		1, 955, 512, 995,		- 859, 630,	- 596,	- 092,		T	10, 577, 296
Refractory	Value		\$6, 260, 163	7, 783, 842	(2)		(3)		1, 625, 054	37, 745, 348
Refr	Short tons	•	416, 328	505, 310	(2)		(2)		88, 961	2, 423, 909
and other trial	Value	8	\$14, 951, 601 5, 561, 357 8, 612, 008	14, 877, 697	4, 071, 008 5, 937, 539	© 3	7, 611, 549	244, 551	7, 690, 729	75, 942, 536
Chemical and other industrial	Short tons	6	1, 238, 587 483, 649 967, 767	1, 400, 779	314, 512 530, 813	(8)	535, 125	2, 796	673, 299	6, 698, 347
Building	Value	(3)	\$1, 707, 152 (2) 9, 574, 331	1, 110, 728	66	8)	2, 386, 347	61,158	3, 567, 045	18, 956, 740
Buil	Short tons	(3)	129, 213 (2) 577, 592	72, 728	වව	(3)	45, 766 114, 391	1,759	261, 556	1, 203, 005
Agricultural	Value	(3)	\$1, 963, 568 (2) 541, 952	096	(3) 28, 356		6,470		544, 198	3, 082, 509
Agrica	Short tons	(2)	171, 634 (2) 36, 651	8	(3) 2, 082		(s)		41, 238	252, 035
State or Territory		District 1: Connecticut, Maine, Massachusetts, and Vermont. Districts 2 and 3: Marviand New Jorgen New	York, Pennsylvania, and West Virginia. District 4: Virginia. District 5: Ohio.	District 7: Illinois, Indiana, and that portion of Missouri east of the 93 meridian.	Districts 0, 8 and 9: 10% a, rittingan, minnesoua, South Dakota, and Wisconsin Districts 10-11: Alabama, Florida, and Tennessee. District 19: Anteness Obloheme, Lonisiane, and	that portion of Missouri west of the 93d mercial on many and missouri west of the 93d	Districts 14 and 15: Arizona, California, Montana,	Hawaii	Undistributed 2	Total

1 The districting is the same as that used by the National Lime Association. Non-lime-producing States are omitted. Figures withheld to avoid disclosing individual company confidential data.

TABLE 7.—Lime (quick, hydrated, and dead-burned dolomite) sold or used by producers in the United States, 1955-56, by uses, in short tons

		1955			1956	
Use	Open- market	Captive	Total	Open- market	Captive	Total
Agriculture	304, 254	1, 163	305, 417	251, 906	129	252, 035
Building: Finishing lime Mason's lime Other (including masonry mortars)	607, 579 529, 927 95, 158	9, 328 2, 041 65, 741	616, 907 531, 968 160, 899	660, 422 441, 224 31, 737	5, 285 5, 980 58, 357	665, 707 447, 204 90, 094
Total	1, 232, 664	77, 110	1, 309, 774	1 , 133 , 383	69, 622	1, 203, 005
Chemical and other industrial: Alkalies (ammonium, potassium and sodium compounds)	32,870	868, 014	871, 613 (1) 4, 682 12, 732 29, 497 692, 766 32, 870 34, 800	3, 151 16, 789 22, 548 781, 626 32, 763 31, 500	894, 228	897, 379 16, 889 22, 548 781, 626 32, 763 31, 500
Explosives. Food and food byproducts. Glassworks. Glue. Grease, lubricating. Insecticides. and disin-	2, 551 2, 897		8, 569 21, 246 276, 399 2, 551 2, 897	5, 314 28, 231 287, 924 2, 808 11, 071	· · · · · · · · · · · · · · · · · · ·	5, 314 28, 231 287, 924 2, 808 11, 071
Medicines and drugs Metallurgy:	74, 983 (1)		74, 983 (1)	70, 069 (¹)		70, 069 (¹)
Nonferrous smelter flux Steel (open-hearth and electric- furnace flux) Ore concentration 3 Wire drawing Other 4 Oil drilling	1, 622, 539 170, 048 1, 566 123, 467 20, 830	134, 011 274, 189	1, 756, 550 444, 237 1, 566 123, 467 20, 830	1, 349, 521 200, 715 1, 237 130, 504 18, 248	147, 346 342, 178	1, 496, 867 542, 893 1, 237 130, 504 18, 248
Paints. Paper mills. Petrochemicals (glycol). Petroleum refining Pubber manufacture	(1) 101, 817 (1) 1, 465	(1) (1) (1)	36, 628 773, 979 101, 817 47, 016 1, 465 1, 544	(1) (1) 110, 945 35, 841 2, 487 (1)	(1) (1)	22, 555 857, 254 110, 945 35, 841 2, 487
Salt refining Sewage and trade-wastes treatment Soap and fat Sugar refining Tanneries Varnish	(1) (1) 76, 396	2,775 (¹)	143, 435 (1) 36, 711 76, 396	106, 164 (1) (1) 74, 905	2, 524 (¹)	108, 688 (1) 36, 433 74, 905
Water purification Wood distillation Undistributed ⁵ Unspecified	1 709 681	20, 258 108, 681	729, 939 145, 633 228, 959	638, 456 1, 062, 220 191, 847	23, 904 70, 804 379	662, 360 216, 782 192, 226
Total		1, 407, 928	6, 735, 777	5, 216, 884	1, 481, 463	6, 698, 347
Refractory lime (dead-burned dolomite)		63, 924	2, 128, 960	2, 401, 966	21, 943	2, 423, 909
Grand total lime Hydrated lime included in above distribu-	8, 929, 803	1, 550, 125	10, 479, 928	9, 004, 139	1, 573, 157	10, 577, 296
Hydrated lime included in above distribu-	2, 013, 115	224, 638	2, 237, 753	1, 957, 060	229, 187	2, 186, 247

Included with "Undistributed" and "Total" columns to avoid disclosing individual company confidential data.
 Bleach used in paper mills excluded from "Bleach" and included with "Paper mills."
 Includes flotation, cyanidation, bauxite purification, and magnesium manufacture.
 Includes barium and vanadium processing, cupola, gold recovery, and unspecified metallurgical uses.
 Includes alcohol, asphalt, medicine and drugs, magnesium products, paints, paper mills, polishing compounds, retarder, salt, soap and fat, sugar, sulfur, varnish, and miscellaneous industrial uses.

chemical and industrial plants, in the building trades, and for agri-The percentages falling in each of these categories in 1956 were, respectively, 82, 15, and 3, compared with 81, 16, and 3 in 1955.

Most captive tonnage was consumed in chemical and industrial plants. Seventy-nine percent of open-market lime (not including refractory) was applied to chemical and metallurgical uses, 17 percent

TABLE 8.—Lime (quick, hydrated, and dead-burned dolomite) sold or used by producers in the United States, 1 1955-56, by major uses

		1955			1956			
Use	Short	Valu	1e ²	Short	Value 2			
	tons	Total	Average	tons	Total	Average		
Agricultural	305, 417	3 \$3, 436, 859	3 \$11. 25	252, 035	\$3, 082, 509	\$12.23		
Building: Finishing lime Mas n's lime Other (including masonry mor-	616, 907 531, 968	10, 288, 502 6, 976, 726	16. 68 13. 11	665, 707 447, 204	11, 634, 025 6, 296, 199	17. 48 14. 08		
tars)	160, 899	2, 294, 182	14. 26	90,094	1, 026, 516	11.39		
Total building	1, 309, 774	19, 559, 410	14. 93	1, 203, 005	18, 956, 740	15. 76		
Chemical and industrial uses Refractory (dead-burned dolomite)_	6, 735, 777 2, 128, 960	³ 72, 723, 179 31, 424, 587	⁸ 10. 80 14. 76	6, 698, 347 2, 423, 909	75, 942, 536 37, 745, 348	11.34 15.57		
Grand total lime	10, 479, 928	127, 144, 035	12. 13	10, 577, 296	135, 727, 133	12. 83		

¹ Includes Hawaii and Puerto Rico

Selling value, f. o. b. plant, excluding cost of container.
 Revised figure.

TABLE 9.—Hydrated lime sold or used by producers, in the United States, 1955-56, by uses, in short tons

		1955			1956	
Use	Open- market	Captive	Total	Open- market	Captive	Total
Agricultural Building	187, 826 1, 056, 052	38 22, 137	187, 864 1, 078, 189	155, 857 1, 009, 465	49 14, 732	155, 906 1, 024, 197
Chemical and industrial: Bleach, liquid and powder Brick, sand-lime, and slag Brick, silica Coke and gas Food products Insecticides, fungicides, and disinfectants Metallurgy Paints Paper mills Petroleum Sewage and trade-waste treatment Sugar refining Tanneries Water purification Undistributed 2 Unspecified Total Grand total, hydrated lime	6, 351 25, 539 6, 154 9, 524 57, 495 (1) (1) (1) 52, 359 20, 610 44, 740 261, 381 199, 619	(i) (i) (i) (i) (i) 202, 463 202, 463 224, 638	6, 351	10, 110 20, 094 (1) 17, 327 52, 160 56, 109 (1) 23, 168 44, 219 21, 179 46, 047 235, 086 266, 239 (1) 791, 738	61, 047 (1) (1) (1) (1) 662 152, 697 (1) 214, 406	10, 110 20, 094 (1) 17, 327 52, 160 117, 156 15, 514 51, 884 23, 168 44, 219 21, 179 46, 047 235, 748 291, 402 60, 136 1, 006, 144 2, 186, 247

Included with "Undistributed" to avoid disclosing individual company confidential data.
 Includes alkalies, calcium carbide, cement products, coke and gas, glass, glue, grease (lubricating), medicines and drugs, oil-well drilling, petrochemicals, rubber, and miscellaneous industrial uses.

747LIME

was used in the building trades, and 4 percent was consumed in agriculture. Dead-burned dolomite, which constituted 23 percent of the overall lime production, was used for refractory linings in metallurgical furnaces.

Total open-market sales to chemical and other industrial consumers was 2 percent lower than in 1955; captive tonnage gained 5 percent. Total chemical- and industrial-lime consumption declined slightly.

Moderate to substantial gains were made for the quantities of lime used in alkali, calcium carbide and paper manufacture, and ore concentration. Lime used as steel flux, in sewage disposal, and in water purification declined substantially. No significant changes were noted for other uses.

To furnish comprehensive data on agricultural use of liming materials, table 10 comprises lime, oystershell, pulverized limestone, and

calcareous marl for soil improvement in 1955 and 1956.

TABLE 10.—Agricultural lime and other liming materials sold or used by producers in the United States, 1955-56, by kinds

		195	5	1956				
Kind	Short	tons	Value)	Short	tons	Value	
	Gross weight	Effective lime content 1	Total	Aver- age	Gross weight	Effective lime content 1	Total	Aver- age
Lime: Quicklime Hydrated lime Oystershells (crushed) ³ Limestone Calcareous marl	117, 553 187, 864 2 92, 833 18, 360, 040 183, 044	131, 505 2 43, 632	² 596, 860 29, 455, 066	26,43 1.60	72, 713 19, 864, 045	34, 175 9, 336, 101	32, 087, 185	7. 47 1. 62
Total		8, 971, 402	33, 324, 521			9, 681, 094	35, 927, 656	

¹ Calculated upon basis of average percentages used by the National Lime Association, as follows: Quick-lime (including lime from oystershell), 85 percent; hydrated lime, 70 percent; pulverized uncalcined lime-stone and oystershells, 47 percent; calcareous marl, 42 percent.

2 Revised figure.

3 Revised figure.

Figures compiled by Fish and Wildlife Service.

Some States produce far more lime than they consume and others produce little or none. Deficiencies in many States are offset by shipments of surplus lime from the more productive areas. Furthermore, because limes vary considerably from plant to plant in chemical and physical properties, shipments from distant points sometimes are required to meet the specialized needs of consumers. Accordingly, as indicated in table 4, large quantities of lime enter interstate com-The principal States shipping lime were Ohio, Missouri, Pennsylvania, and Virginia.

TABLE 11.—Apparent consumption of lime sold and used in continental United States in 1956, by States, in short tons

	Sales by	Shipments	Shipments	Apparent c	onsumption	
State	producers	from State 1	into State	Quicklime	Hydrated lime	Total
Alabama	466, 399	204, 465	17, 511	253, 805	25, 640	970 441
Arizona	126, 876	19, 509	11, 953	108, 869	10, 451	279, 448
Arkansas	(2)	(2)	(2)	76, 341		119, 320
California		10, 554	113, 279	311, 579	10,093	86, 434
Colorado		10,004	22, 531	15, 800	93, 625	405, 204
Connecticut	39, 748	11, 611	37, 690	37, 019	6, 731	22, 531
Delaware	00, 140	11, 011	64, 919	57, 893	28, 808 7, 026	65, 827 64, 919
Delaware District of Columbia			6, 832	220	6,612	6, 832
Florida	30 5/9		134, 201	101, 776		173, 743
FloridaGeorgia	00, 042		109, 282	84. 218	71, 967 25, 064	
Ideho			30, 997	29, 384		109, 282 30, 997
Georgia Idaho Illinois	(2)	(2)	(2)	473, 498	1,613	
Indiana	80	[(2)	522, 538	477, 954	179, 218 44, 664	652, 716 522, 618
Iowa	(2)	(2)	(2)	92, 291	18,001	110, 292
Kansas	(-)		59, 300	42, 172	17, 128	59, 300
Kentucky			604, 456	580, 511	23, 945	604, 456
Louisiana	(2)	(2)	(2)	342, 230	69, 711	411, 941
Maine	11,997		71,949	71, 318	12.628	83, 946
Maryland	52, 604	8,080	145, 811	151, 589	38, 746	190, 335
Massachusetts	134, 248	89, 187	50, 610	39, 459	56, 212	
Michigan	(2)	(2)	(2)	265, 642	74, 751	95, 671
Minnesota	(2)	(2)	(3)	97, 516	21, 579	340, 393 119, 095
Mississippi		(-)	50, 120	45,076	5,044	50, 120
Missouri	1, 481, 611	1, 261, 491	20, 125	178, 349	61, 896	240, 245
Montana	(2)	(2)	(2), 120	51, 844	3, 683	55, 527
Nebraska	• • • •		14, 958	3, 058	11, 900	14, 958
Nevada	(2)	(2)	(2)	2,845	32,061	34, 906
New Hampshire			11.376	5, 320	6,056	11, 376
New Jersey	(2)	(2)	(2)	50, 820	109, 541	160, 361
New Mexico	30, 771		7, 951	530	38, 192	38, 722
New York	86 737	18, 254	351, 424	276, 483	143, 424	419, 907
North Carolina		-0,-01	93, 325	62, 250	31, 075	93, 325
North Dakota			4, 544	2, 263	2, 281	4, 544
Ohio	2, 995, 320	1, 650, 117	323, 464	1, 512, 805	155, 862	1, 668, 667
Oklahoma	(2)	(2)	(2)	40, 625	13, 496	54, 121
Oregon			52, 337	40, 988	11, 349	52, 337
Oregon Pennsylvania Rhode Island	1, 443, 430	589, 862	719, 382	1, 343, 458	229, 492	1, 572, 950
Rhode Island		000,002	15, 608	7, 509	8, 099	15, 608
South Carolina			17, 444	8, 855	8, 589	17, 444
South Dakota	(2)		(2)	5, 807	3, 652	9, 459
Tennessee	124, 592	102, 382	29, 330	24, 321	27, 219	51, 540
Texas	592, 136	97, 871	51, 728	319, 314	226, 679	545, 993
Utah	55, 110	30, 623	33, 904	30, 075	28, 316	58, 391
Vermont	(2)	(2)	(2), 551	27, 245	3, 912	31, 157
Virginia	5 ì 2, 346	402, 476	44, 639	113, 409	41, 100	154, 509
Washington	(2)	(2)	(2)	34, 557	12, 204	46, 761
West Virginia	(2) (2)	(2)	(2)	230, 765	28, 944	259, 709
Wisconsin	(2)	(2)	(2)	99, 322	49, 959	149, 281
Wyoming Undistributed 2			2, 371	233	2, 138	2, 371
Undistributed 2	2,061,671	1,059,927	1, 520, 409			-, 5/1
Total	10, 557, 697	5, 556, 409	5, 368, 298	8, 229, 210	2, 140, 376	10, 369, 586

¹ Includes 187,321 tons exported or unclassified as to destination.

² Figures withheld to avoid disclosing individual company confidential data; included with "Undistributed."

PRICES

Lime was sold f. o. b. plant excluding cost of containers at the average price of \$12.83 compared with \$12.13 in 1955. The trend in prices since 1930 is shown in figure 3.

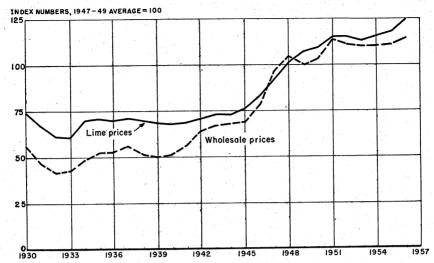


FIGURE 3.—Average price of lime per ton compared with wholesale prices of all commodities, 1930–56. Units are reduced to percentages of the 1947–49 average. Wholesale prices from U. S. Department of Labor.

FOREIGN TRADE 8

Imports.—Imports of lime into the United States were relatively small and, except for small quantities from Mexico, were confined to movements from Canada. Imports from Canada into Eastern United States declined progressively; as during recent years, those into the State of Washington, the principal destination, increased.

State of Washington, the principal destination, increased.

Exports.—Although relatively small, exports were 2½ times as large as imports. Canada, Costa Rica, Honduras, Mexico, Panama, and Colombia together received more than 98 percent of total exports.

TABLE 12.—Lime imported for consumption in the United States, 1947-51 (average) and 1952-56

		[]	Bureau of t	he Census]				
Year	Hydrat	ed lime	Other	r lime	Dead-l dolor		Total	
Year	Short tons 2	Value	Short tons 2	Value	Short tons 2	Value	Short tons 3	Value
1947-51 (average)	1, 764 109 2, 177 1, 259 1, 359 757	\$30, 898 2, 940 30, 944 3 17, 326 3 17, 983 12, 312	29, 470 21, 557 31, 149 30, 613 30, 264 31, 903	\$459, 402 377, 926 506, 704 537, 676 559, 216 549, 290	1, 901 2, 342 3, 876 4, 426 7, 993 9, 031	\$76, 224 123, 596 259, 427 344, 665 \$ 557, 554 586, 754	33, 135 24, 008 37, 202 36, 298 39, 616 41, 691	\$566, 524 504, 462 797, 075 3 899, 667 31, 134, 753 1, 148, 356

^{1 &}quot;Dead-burned basic refractory material consisting chiefly of magnesia and lime."

Includes weight of immediate container.

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

⁸ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 13.—Lime imported for consumption in the United States, 1954-56, by countries and customs districts ¹

[Bureau of the Census]

Country and customs district	14	954	19	955	1956		
	Short tons 2	Value	Short tons 2	Value	Short tons 2	Value	
Vorth America: Canada:							
Buffalo Duluth and Superior	4, 531	\$53, 880	1, 880 108	\$23, 063 1, 874	153	\$2, 07	
Maine and New Hampshire St. Lawrence	172	1, 518	166	2,062	270	3, 70	
Vermont Washington	1, 559 25, 524	20, 034 478, 802	31 28, 676	468 542, 925	1, 120 31, 053	15, 330 539, 920	
Total Canada Mexico: El Paso	31, 786 86	554, 234 768	3 0, 862 761	570, 395 6, 804	32, 596 64	561, 029 573	
Total North America	31, 872	555, 002	3 1, 623	577, 199	32, 660	561, 602	
Grand total	31, 872	³ 555, 002	3 1, 623	3 577, 199	32, 660	561, 602	

TABLE 14.—Lime exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average) 1952 1953	57, 517 64, 952 79, 934	\$899, 977 1, 156, 991 1, 422, 238	1954 1955 1956	73, 246 82, 461 82, 737	\$1, 299, 681 1, 464 036 1, 546, 127

^{1 &}quot;Dead-burned basic refractory material consisting chiefly of magnesia and lime."
2 Includes weight of immediate container.
3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TABLE 15.—Lime exported from the United States, 1954-56, by countries of destination

[Bureau of the Census]

	19	954	19	955	19	56
Destination	Short	Value	Short tons	Value	Short tons	Value
North America: Bahamas Canada Costa Rica Cuba	37, 691 12, 241	\$500 588, 753 224, 016	45, 542 11, 588 295	\$730, 837 218, 814 6, 310	71 55, 031 7, 410 61	\$2, 535 945, 686 148, 234 2, 450
Dominican RepublicEl Salvador	10, 137 2, 315	1, 050 190, 738 60, 046	406 118 10, 648 2, 502 150 300	11, 090 2, 990 201, 068 54, 641 2, 920 5, 680	9, 144 2, 074 240 267	10, 552 194, 487 50, 055 7, 132 4, 081
Other North America	4, 817 55 67, 831	96, 928 1, 196 1, 174, 750	7, 029 121 78, 699	140, 684 2, 973 1, 378, 007	78, 201	70, 632 1, 435, 844
South America: Colombia Venezuela Other South America	4, 274 619 84	94, 276 13, 488 2, 862	2, 926 505 50	59, 639 11, 140 2, 265	4,060 92 58	91, 860 2, 445 3, 521
Total Europe	4, 977 (¹)	110, 626 774	3, 481 13	73, 044 1, 236	4, 210 25	97, 826 743
Asia: Japan Nansei and Nanpo Islands Pakistan	} 31	2, 850	$\left\{ \begin{array}{c} 16 \\ 123 \end{array} \right.$	2, 000 3, 810	8 88 125	1, 186 2, 412 4, 025
PhilippinesOther Asia	342 20	8, 644 564	94 5	2, 204 212	50 15	1, 160 2, 380
TotalAfricaOceania	393 45	12, 058 1, 473	238 21 9	8, 226 2, 083 1, 440	286 15	11, 163 551
Grand total	73, 246	1, 299, 681	82, 461	1, 464, 036	82, 737	1, 546, 127

¹ Less than 1 ton.

TECHNOLOGY

The most significant trend was the increasing use of lime in attaining stability and endurance in secondary-road construction. Experimen-

tal projects were under way in widely separated places.

A cooperative road-stabilization project involving the National Lime Association, Clarkson College, and the New York State Highway Department was conducted near Potsdam, N. Y. A mixture of 80 percent soil, 15 percent fly ash, and 5 percent high-calcium hydrated lime was compacted for shoulder stabilization in a strip 4 feet wide and 4 inches thick. Its service under traffic was observed and studied.⁹

A 5-mile section of highway in Mitchell County, Kans., was provided with a stabilized gravel base during the fall of 1955 by compacting a mixture of 3 percent of lime and gravel that had been thoroughly mixed. The road, subject to moderate traffic of about 150 vehicles per day, showed no evidence of base failure through the following winter.¹⁰

⁹ Limeographs, National Lime Association: Vol. 22, February 1956, p. 77.
19 Williamson, Ferd, County Builds Lime Stabilized Road: Better Roads, vol. 26, No. 6, June 1956, pp. 34–35, 50.

Since 1951, 30 miles of roads at the Wingate Ordnance Depot. Gallup, N. Mex., has been reconstructed by stabilizing the base with 3 percent by weight of commercial hydrated lime. Even under the severe weather conditions of this area the roads were said to be

in good condition.11

Interesting results were obtained from work on recarbonation of lime putties. When lime-putty surfaces are exposed to concentrated Co₂ carbonation takes place rapidly, and the resulting product may be used with aggregates to make structural units comparable in mechanical strength with those made of portland-cement concrete.12

Calcium silicate, increasingly used for high-temperature insulation, as an extender in paints, and in various other ways, was manufactured

from diatomite and lime in a modern plant.¹³

Marblehead Lime Co. has established a laboratory at its Thornton, Ill., plant for chemical analysis and physical testing for quality control

of its lime products.14

United States Gypsum Co. installed a rotary kiln, that added 60 percent to the capacity of its New Braunfels, Tex., lime plant. can also utilize 25 percent more of the stone quarried—the minus-4½-inch stone unsuited for the shaft kilns. Formerly most of the finer sizes were wasted. Kiln discharge gases were used to heat stone entering the kiln; combustion air was employed to cool lime leaving the kiln. Details of the equipment and methods were published.¹⁵

The U.S. Lime Products Corp. new plant at Arrolime, Nev. introduced a 42- by 48-inch jaw crusher, which gives added motion to the jaw and is known as eccentric in the head. Other features of this

operation were described.16

At its plant near Springfield, Mo., Ash Grove Lime & Portland Cement Co. erected two large-size shaft kilns of the type commonly used in Great Britain for lime burning but an innovation in the United States. A detailed description of these 100-ton-per-day-capacity kilns

and the plant was published.17

The U. S. S. R. was reported to be progressing rapidly in developing lightweight structural units consisting of autoclaved cellular concrete with a lime base. Crushed quicklime added to sand was claimed to be a more active binding agent than cement in the autoclave curing process; when this material was used, building units had high compressive Details of the process and the qualities of the products strength. were published.18

Calcination.—The Fluo Solids process for calcining limestone into lime, pioneered by the New England Lime Co. at Adams, Mass., was discussed in detail. 19 Fuel economy was equal to that of the best shaft

¹¹ Sipe, John, New Mexico Road Reconstruction Project Eliminates Frost-Heaving Damage: Better Roads, vol. 26, No. 11, November 1956, pp. 27-28.

12 Talmanoff, Nissan, Carbonation of Lime Putties to Produce High-Grade Building Units: Rock Products, vol. 59, No. 8, August 1956, pp. 182, 184, 186; No. 9, September 1956, pp. 84, 86, 90.

13 Rock Products, Synthetic Silicates from Diatomite and Lime: Vol. 59, November 1956, pp. 88, 90, 92.

14 Rock Products, Builds Lime-Plant Laboratory: Vol. 59, No. 6, June 1956, pp. 89, 99, 92.

15 Trauffer, Walter E., Rotary Kiln Increases Capacity of Texas Lime Plant by 60 Percent Cuts Waste: Pit and Quarry, vol. 48, No. 11, May 1956, pp. 107-113.

16 Lenhart, Walter B., Boost Quarry Production to Meet Increasing Demand for Lime: Rock Products, vol. 59, No. 6, June 1956, pp. 101-102.

17 Herod, Buren, C., Ash Grove Lime Installs First Shaft Kilns of Their Type in America: Pit and Quarry, vol. 49, No. 6, December 1956, pp. 192-95, 104.

18 Kudryashov, I. T., Russia's Experiments With Autoclaved Foamed Silicate Products: Rock Products, vol. 59, September 1956, pp. 147-149, 173.

19 Herod, Buren C., New England Lime Co. Obtains Efficient Results With Fluidizing Calciner: Pit and Quarry, vol. 48, No. 11, May 1956, pp. 122-124, 146.

753 - LIME

kiln operations and better than that obtained in rotary kilns. New England Lime Co. installed a second Fluo Solids kiln to replace two old rotary kilns.20

The various factors that must be considered in determining the capacity of a rotary kiln, and the methods of increasing its capacity

were discussed in detail.21

A German lime technologist devised a method of determining the heat expenditure per ton of lime produced in a rotary kiln.22

Wet-process lime was made in Germany from a high-calcium chalk

slurry calcined in a rotary kiln.23

After making a world tour inspecting lime plants in Africa, Australia, New Zealand, the United States, and Great Britain, a lime specialist presented comments on comparative lime-burning methods and equipment.24

Patents.—A process was patented for calcining calcium carbonate sludge with minimum loss of fine dust in the furnace. The equipment consists of a fluidized solids reactor fed at the bottom with a dry sludge

dust. Soda ash is added to promote nodulization.25

A paint formulation for application to animal hides and skins to remove hair and wool was patented. It consists of calcium hydrosulphide and lime. Kaolin may be added to regulate the composi-

Hydrated lime and portland cement were used in a new type of

paint for concrete surfaces.27

A patent was issued for a new type of clay brick containing common

salt, portland cement, and lime.28

New types of lightweight artificial stones and building blocks consist of slate, ashes, and lime. A porous consistency is produced by hydrogen gas generated by aluminum added to the slurry. 29

An improved calcining apparatus for producing lime consists of an

integrated kiln and gas producer.30

A patent was issued for a new type of rotary kiln to be used for calcining limestone, the raw materials of portland cement, and similar products.31

A process was patented for obtaining hydrogen sulfide and lime by

treating gypsum with a hydrocarbon gas and steam.32

Azbe, Y. J. (assigned to Azbe Corp., Clayton, Mo.), Calcining Apparatus for Producing Lime or the Like: U. S. Patent 2,742,276, Apr. 17, 1956.
 Tyler, D. M., Rotary Kiln Apparatus: U. S. Patent 2,742,277, Apr. 17, 1956.
 Burwell, A. L. (assigned to University of Oklahoma Research Institute, Norman, Okla.), Process for the Recover, of Lime and Hydrogen Sulfide From Calcium Sulfate: U. S. Patent 2,740,691, Apr. 3, 1956.

²⁰ Rock Products, Install Fluo Solids System: Vol. 59, No. 12, December 1956, p. 62.
21 Tonry, J. R., You Can Improve Rotary Limekiln Capacity by Taking Advantage of Local Improved Technique: Rock Products, vol. 59, No. 10, October 1956, pp. 84-86, 172, 174, 176, 180.
22 Eigen, Ing. H., Finding Heat Expenditure per Ton Rotary Kiln Lime: Rock Products, vol. 59, No. 2, February 1956, pp. 57, 85.
23 Limeographs, National Lime Association: Vol. 22, March 1956, p. 82.
24 Knibbs, N. V. S., Contrasts as Observed on a Tour of Lime Installations in Many Parts of the World: Pit and Quarry, vol. 49, No. 6, December 1956, pp. 78-84.
25 Thompson, Robert T. (assigned to Dorr-Oliver Inc.), Method of Calcining Lime-Bearing Sludges: U. S. Patent 2,738,182, Mar. 15, 1956.
26 Taloman, H., Method of Removing Hair and Wool From Animals' Hides and Skins: U. S. Patent 2,775,371, Dec. 25, 1956.
27 Robinson, W. D. (assigned to E. I. duPont de Nemours and Co., Wilmington, Del.), Polyvinyl Acetate Cement Compositions: U. S. Patent 2,733,995, Feb. 7, 1956.
28 Lent, A. (20 percent assigned to Mrs. A. Ennok, New York, N. Y., and H. Bjornwald, Weehawken, N. J.), Process of Making Bricks: U. S. Patent 2,733,996, Feb. 7, 1956.
28 Carlen, B. (assigned to International Ytong Co., Aktiebog, Stockholm, Sweden, a corporation of Sweden), Method of Producing Artificial Stones From Slate, Ashes, and Lime: U. S. Patent 2,741,798, Apr. 17, 1956.

Boron is added to ferrous metal melts according to a new process by placing in the ladle a highly basic flux consisting of lime, alumina,

titanium-zirconium, oxide, borax, and fluorspar.33

A new method was devised for producing lime whereby, according to the inventor, maximum fuel efficiency is realized. The raw material is preheated in a rotary drier that utilizes hot kiln gases and is then fed to a relatively short rotary kiln for calcining.34

A patent was granted for a waterproof coating composition to be applied to cement and plaster surfaces. It consists of hydrated lime, white portland cement, a pigment, calcium chloride, sodium silicate, and bentonite. The mixture can be stored and transported in dry powder form, requiring only addition of water at the time of use.35

A patented fungus prevention compound employs as a carrier lime,

pumice, bentonite, fuller's earth, talc, or clay.36

A new moisture-proofing composition for application to porous masonry consists of lime, portland cement, titanium dioxide, calcium chloride, and suitable resin.37

Lime and diatomite are constituents of a new type of calciumsilicate heat insulation containing both amosite and chrysotile-asbestos

An apparatus has been invented for proportioning correctly viscous masses carrying granular materials, for example, slurries containing lime, sand, etc.36

Research indicates that hydraulic lime is complex in composition and its cementitious properties result from light burning. temperature calcination results in an inert product.40

WORLD REVIEW

NORTH AMERICA

Canada.—Dominion Lime, Ltd., modernized its five vertical kilns at Lime Ridge, Quebec, and added a new gas-producing system. The 8-ton-per-day production from each original kiln was increased to 70 tons per day, and with further operating adjustments it may reach 100 tons per day.41

^{**} Spire, E. (assigned to L'Aire Liquide, Société Anonyme pour L'Etude de L'Exploitation des Procédés Georges Claude, Paris, France), Process of Introducing Boron Into Ferrous Metal: U. S. Patent 2,755,181, July 17, 1956.

** Kennedy, J. F., Caustic Lime Producing Plant and Process: U. S. Patent 2,760,768, Aug. 28, 1956.

** Schulman, S. S. (assigned to Sillphane Corp. of America, New York), Water-Resistant Coating Compositions: U. S. Patent 2,760,876, Aug. 28, 1956.

** Bennett, G. E., and Schlesinger, A. H. (assigned to Monsanto Chemical Co., St. Louis, Mo.), Bis-(2-Chloroethyl) Chlorofumarate Fungicidal Composition of Said Compound and Method of Applying Same: U. S. Patent 2,757,119, July 31, 1956.

** Hormats, A. I. (assigned to Sta-Dri Inc., Odenton, Md.), Moisture-Proofing of Porous Masonry: U. S. Patent 2,757,159, July 31, 1956.

** Seipt, W. R. (assigned to Keasbey & Mattison Co., Ambler, Pa.), Method for the Manufacture of Calcium Silicate Type Insulation: U. S. Patent 2,766,131, Oct. 9, 1956.

** Sebardt, W. (assigned to International Ytong Stabalite Co., Ltd., London, England), Proportioning Device for Viscous Masses: U. S. Patent 2,770,395, Nov. 13, 1956.

** Roberts, M. H., Constitution of Hydraulic Lime: Jour. Am. Ceram. Soc., vol. 39, No. 9, Sept. 1, 1956, pp. 182-183.

pp. 182-183.

41 Herod, Buren C., Dominion Lime, Ltd., Obtains Remarkable Gains in Capacity, Efficiency of Modernized Vertical Kilns: Pit and Quarry, vol. 48, No. 8, February 1956, pp. 108-112.

Lithium

By Albert E. Schreck 1 and Annie L. Mattila 2

ITHIUM continued to attract wide attention in 1956. tion and consumption of the minerals and compounds again increased, and three domestic lithium producers joined to form a research institute.

DOMESTIC PRODUCTION

Shipments of lithium ores and compounds from mines increased in 1956 over previous years. Increases in demand for this mineral commodity were met by plant expansions and the first full year's production from the American Lithium Chemicals plant at San Antonio, Tex. This plant processed lepidolite imported from Southern Rhodesia.

TABLE 1.—Shipments of lithium ores and compounds from mines in the United States, 1935-39 (average), 1947-51 (average), and 1952-56

Year	Ore (short tons)	Value	Li ₂ O (short tons)	Year	Ore (short tons)	Value	Li ₂ O (short tons)
1935-39 (average)	1, 327	\$48, 280	88	1953	27, 240	1\$2, 134, 000	1, 767
1947-51 (average)	6, 673	1 436, 759	534	1954	37, 830	1 3, 126, 000	2, 459
1952	15, 611	1 1, 052, 000	1,088	1955-56	(²)	(2)	(²)

¹ Partly estimated ² Data not available.

The American Lithium Institute, Inc., with headquarters at Princeton, N. J., was formed in the latter part of 1956 by American Potash & Chemical Corp., Foote Mineral Co., and Lithium Corp. of America. The purpose of the institute is to conduct research on lithium and its compounds and to disseminate technical information.

American Potash & Chemical Corp. continued to produce dilithiumsodium phosphate from Searles Lake brines. Research was conducted on new processes for manufacturing various lithium salts and lithium metal. Market-development activities for these potential lithium products were conducted. At the Henderson plant, pilot-plant production of anhydrous lithium chloride and lithium metal was continued.

Foote Mineral Co. invested \$600,000 on improvements of its Kings Mountain, N. C., operations. Over half of this sum was to be used for additional processing equipment, and the remainder for enlargement of the office, shop, and laboratory facilities.3 This firm also

¹ Commodity specialist.
2 Statistical assistant.
3 Chemical and Engineering News, vol. 34, No. 43, Oct. 22, 1956, p. 5134.

purchased a ceramic grinding plant in Cold River, N. H., to provide additional facilities for producing whiteware grade petalite, a lithium mineral used in the ceramic and glass industries.4 The plant was to be modernized and production expected to begin by the close of the

Foote also announced that commercial quantities of lithium metal were available from a new cell installed at its Exton, Pa., plant. Analysis of the metal was reported to be 99.8 percent lithium, and it was offered in 1-pound ingots packed under oil in sealed steel containers. Although production of commercial quantities of lithium metal derivatives was not started, development size quantities of

some derivatives were expected to become available soon.5

Lithium Corp. of America placed its operations in the Black Hills, S. Dak., on a standby basis, in midyear. The decrepitation plant and the lithium carbonate production facilities at Minneapolis, Minn., also were closed down, and these activities expanded at the Bessemer City, N. C., plant. Spodumene concentrate from Canada was converted to lithium compounds at this plant. Lithium metal, hydride, and other compounds were to be produced at Minneapolis from carbonate produced at Bessemer City. Completion of the first portion of the expansion program for production of lithium metal and derivatives was announced in late July.6

Production at Maywood Chemical Works New Jersey plant increased. Plans were considered to move the processing plant nearer

the company's Etta mine, Black Hills, S. Dak.7

United States Lithium Corp., Salt Lake City, Utah, was developing a new lithium deposit near Ohio City, Gunnison County, Colo. deposit, which contains lepidolite and spodumene intermingled in a series of dikes, lies east of this firm's Brown Derby mine.8

Basic Atomics was reported building a pilot plant for recovering lithium from spodueme in Lincoln County, N. C.

Whitehall Co., Inc., produced spodumene and some amblygonite

from its mine near Newry, Oxford County, Maine.

The firms listed below recorded production of lithium minerals in the Black Hills, S. Dak., during 1956. All operations were in Pennington County. The minerals mined by each firm are shown in parentheses: Maywood Chemical Works, from the Etta mine (spodumene); Consolidated Feldspar Department, International Minerals & Chemical Corp., from the Hugo mine (amblygonite); Uranium & Allied Minerals, Inc., from the Dyke lode (spodumene); and Black Hills-Keystone Corp., from the Ingersoll mine (lepidolite and amblygonite).

CONSUMPTION AND USES

Demand for lithium minerals and compounds in their various fields of application continued to increase. Ceramics and all-purpose greases remained the largest commercial consumers of lithium.

Oil, Paint and Drug Reporter, vol. 170, No. 23, Dec. 3, 1956, p. 3.
 Chemical and Engineering News, vol. 34, No. 19, May 7, 1956, p. 2239.
 Oil, Paint and Drug Reporter, vol. 170, No. 5, July 30, 1956, p. 3.
 Chemical and Engineering News, Its Name Comes From Lithos: Vol. 34, No. 24, June 11, 1956, p. 2851.
 Mining Record, vol. 67, No. 10, Mar. 8, 1956, p. 9.
 Rock Products, vol. 59, No. 6, June 1956, p. 41.

Numerous articles on lithium compounds and their uses appeared in trade journals throughout the year. Estimates of consumption ranged from 7 million pounds (expressed as the lithium carbonate equivalent) to 46 million. The following table presents four of the consumption estimates published.

TABLE 2.—Estimates of consumption of lithium compounds, by uses (Thousand pounds lithium carbonate equivalent)

End use	Canadian Mining Journal ¹	Chemical and Engi- neering News ²	Business Week ³	Mining Engineer- ing 4
Lithium greases	3, 000 2, 300 1, 200	3, 000 3, 000 250 to 500	3, 500 3, 500 800	3, 500 5, 000 1, 520
Air conditioning Alkaline batteries. Military and A. E. C. Miscellaneous.	1,500 650 8 1,730 300	400 250	800 600 36, 500	1, 100 600 20, 000
Miscentineous Pharmaceuticals Metallurgical			500	250 30

¹ Hyde, R. W., Lithium Markets and Technology: Canadian Min. Jour., vol. 77, No. 5, May 1956, pp.

Increases in the use of lithium in brazing compounds were noted. An article 10 appearing in one magazine indicated that self-fluxing lithium brazing alloys could join stainless steel, nickel, titanium, and cobalt-base alloys, with high joint strength and without voids or tendency to corrode.

Lithium metal was used as a catalyst in manufacturing "natural" synthetic rubber, synthetic vitamins, antihistamines, and other organic synthesis. Experimentation on the use of lithium metal in combination with boron and hydrogen in manufacturing high-energy

fuels continued.

Lithium chloride and bromide were used in industrial air-conditioning systems—lithium hydroxide monohydrate as a catalytic agent in alkaline storage batteries and also to increase the life and capacity of the cell. Other lithium compounds in small quantities were used in medicines, paints, waxes, cosmetics, and other applications.

PRICES

Prices of most lithium compounds remained relatively stable throughout 1956. The price of lithium hydride decreased about 1 dollar per pound. Prices of selected lithium compounds can be found in the following table.

Lithium metal, 98 percent pure, was quoted in E&MJ Metal and

Mineral Markets at \$11 to \$14 per pound.

Lithium mineral prices were not quoted in the trade journals.

^{67-69.}Chemical and Engineering News, Its Name Comes From Lithos: Vol. 34, No. 24, June 11, 1956, pp. 2850-2853.
Business Week, A Metal's Bid for Acceptance: No. 1424, Dec. 15, 1956, pp. 80-82 and 90.
Landolt, P. E., New Horizons for Lithium: Min. Eng., April 1957, pp. 460-464.
Not exceeding approximately 20 percent of civilian requirements.

¹⁸ Canonico, D. A., Bredzs, N., and Schwartzbart, H., Braze Strong Joints With Self-Fluxing Alloys: Iron Age, vol. 177, No. 24, June 14, 1956, pp. 98-99.

FOREIGN TRADE

Imports of lithium minerals in 1956 increased over 1955. Canada, the Federation of Rhodesia and Nyasaland, and South-West Africa remained the principal sources for imported lithium minerals.

Figures on imports and exports of lithium minerals and compounds are not separately classified by the United States Department of Commerce on import and export schedules.

TABLE 3.—Range of prices per pound on selected lithium compounds 1956

[Oil, Paint and Drug Reporter]

Name of compound	Price, January 1956	Price, December 1956
Lithium benzoate, drums Lithium carbonate, NF, drums, works, freight equalized Lithium carbonate, technical, drums, car lots, ton lots, delivered, freight allowed, works. Less than car lots, same basis. NF, drums, car lots, ton lots, delivered Ton lots to ton lots, delivered Lithium chloride, technical, anhydrous, drums, car lots, ton lots, de- ivered or works, freight allowed Less than car lots, same basis. Lithium hydroxide monohydrate, drums, car lots, ton lots, delivered or works, freight allowed Less than car lots, same basis Lithium nitrate, technical, drums, 100-pound lots Lithium stearate, drums, car lots, works Ton lots, works Less than ton lots, works Less than ton lots, works	1. 29½ 1. 30 1. 00–1. 05 1. 05–1. 05½ 12. 00 .80–.80½ .81–.81½ 1. 25 .47½	\$1. 65-\$1. 67 2. 45 82 . 85-1. 11½ 1. 29½ 1. 30 1. 00-1. 05 1. 05-1. 05½ 10. 50-12. 50 . 80 80½ . 81 81½ 1. 25 . 47½ . 48½ . 53½

TECHNOLOGY

Methods for determining the grade and reserves of minerals in pegmatites were described in an article.¹¹ For lithium, the number of lithium minerals present must be determined, and also the Li₂O content, before estimates can be made.

An article ¹² described Lithium Corp. of America's Indian Creek and the Murphy-Houser mines in the Kings Mountain, N. C., district. The Indian Creek deposit consists of many small dikes that coalesce to form an ore body, semicircular in plan, about 900 feet long, and with a maximum width of 365 feet. Mining was by open pit, with perimeter benches advancing toward the center. Ore was hauled 16 miles by truck to the company plant stockpile.

The major dike at the Murphy-Houser deposit is 1,800 feet long and 23 to 38 feet wide. From 15 to 35 feet of overburden was being stripped on either side of the dike to reach bedrock. Dikes were mined in benches, and the maximum depth to which surface mining was anticipated was 80 feet. Drilling practices and loading and hauling of ore were also discussed.

In laboratory tests on the flotation of spodumene, by the Industrial Minerals Division of the Department of Mines and Technical Surveys, Ottawa, Canada, it was determined that a high-grade concentrate

Norton, J. J., and Page, L. R., Methods Used to Determine Grade and Reserves of Pegmatites: Min. Eng., vol. 8, No. 4, April 1956, pp. 401-414.
 Roberts, A. E., Lithium Corporation Opens Two New Mines: Min. World, vol. 18, No. 1, January 1956, pp. 40-42, and 76.

LITHIUM 759

could be obtained.¹³ Results indicated that ore should be ground to 28- or 35-mesh; that flotation of gangue from spodumene was more practical than the reverse; that the most effective gangue collector was Armac-T (mixed amines), used along with NaOH, dextrine, and pine oil; and that the selection of middlings and the amount of collector used are important factors in control.

Descriptions of the acid process used by Lithium Corp. of America at its Bessemer City, N. C., plant were published.¹⁴ A flowsheet of the operation from the decrepitation of the raw crushed ore to the finished lithium carbonate and lithium hydroxide accompanied these

articles.

American Lithium Chemicals, Inc.'s new \$6.6 million plant at San Antonio, Tex., was the subject of an article. ¹⁵ South Rhodesian lepidolite is converted by the alkaline process to lithium hydroxide.

A patent was issued on a process for making calcium-lithium hydride. 16 An alloy of lithium and calcium containing about 5 percent lithium is hydrogenated to form a solid solution of the hydrides containing about 1.5 percent elemental calcium and about 0.5 percent elemental lithium. This solid solution of calcium and lithium hydrides yields a steady evolution of hydrogen when brought into contact with water.17

A method for manufacturing lithium grease was patented.¹⁸ slurry is made containing all the lithium stearate and half the mineral oil needed in the finished grease. The temperature of the slurry is raised to above about 400° F. to dissolve completely the stearate in the oil and form a homogeneous solution. The slurry is passed, under agitation, in a thin layer in contact with a heat-transfer wall and mixing the remainder of the mineral oil desired in the finished product under conditions favorable for mixing with a minimum of shear. The oil being added should have a temperature such as to produce a resultant temperature of 230° to 310° F. in the resulting mixture. It is then passed through a cooling zone under agitation to reduce the temperature below 160° F. and finally milling the grease below that temperature long enough to produce stability in the finished product.

An article on a new chloride-volatilization process was published.19 Ore containing 12 to 30 percent spodumene, with a lithia content of 1.8-2 percent, is beneficiated to 4.5-7 percent lithia by heavy-medium separation. Alpha spodumene is converted at 1,100° C. to beta spodumene in a decrepitation kiln. After cooling, it is crushed; and to 100 parts of beta spodumene are added 64 parts sand, 590 parts ground limestone, and 29.5 parts 40 percent aqueous solution of calcium chloride. The mixture is heated to 1,100°-1,200° C. in a rotary cement kiln to volatalize the lithium and produce cement

Wyman, R. A., Laboratory Investigation of Spodumene Flotation: Canadian Min. and Met. Bull., vol. 49, No. 532, August 1956, pp. 562-565.

Mining World, How Lithium Corporation Converts Spodumene to Lithium Chemicals: Vol. 18, No. 2, February 1956, pp. 57-60 and 91.
Chemical Engineering, Into the Big Time; Lithium Chemicals (pictured flowsheet edited by R. B. Norden): Vol. 63, No. 2, February 1956, pp. 294-297.

Chemical Engineering, New Entry in LiOH Race (pictured flowsheet edited by R. B. Norden): Vol. 63, No. 3, March 1956, pp. 288-291.

Steiger, Leonard W., Hackensack, N. J. (assigned to Maywood Chemical Works, Maywood, N. J.), Calcium-Lithium Hydride and Process of Making It: U. S. Patent 2,735,820, Feb. 21, 1956.

Chemical Abstracts, Calcium Hydride Lithium Hydride Solid Solution for Hydrogen Production Vol. 50, No. 11, June 10, 1956, pp. 8150-a.

Baker, Peter J., Louisville, Ky. (assigned, by mesne assignments, to National Cylinder Gas Co. Chicago, Ill.), Manufacture of Lithium Grease: U. S. Patent 2,760,936, Aug. 28, 1956.

Chemical Week, New Moves on the Lithium Chessboard: Vol. 78, No. 3, Feb. 11, 1956, pp. 60, 62.

Temperatures must be carefully maintained to assure maximum efficiency. The gas, containing lithium chloride and some sodium and potassium chloride which comes off the discharge end of the kiln, is passed through a heat-recovery system, and the alkali chlorides settle out of the gas stream with the dust. A slurry of the solids is made, filtered, and centrifuged to recover the dissolved salts. The crude lithium chloride is concentrated to 40-44 percent LiCl by evaporation with sodium and potassium removed from the slurry by precipitation and filtration at 25°-50° C. The firm reports that from this step there are several ways to recover high-purity lithium chloride but only discusses the method of solvent extraction outlined in its patent.

Owing to the increased interest in alkali metals including lithium, an article on safety practices was published.²⁰ The hazards encountered in handling lithium metal, storage problems, protective equipment, first-aid measures, equipment cleaning, waste disposal, and fire-

extinguishing methods were discussed briefly.

WORLD REVIEW

Two articles that discussed the world's lithium resources were published.21 The first article described briefly locations of lithium deposits in various countries and also a world production total giving figures, where available, for 1927, 1949, and 1950-55. The second article was limited mainly to deposits in Canada and the United States, with some mention of South American occurrences.

NORTH AMERICA

Canada.—Lithium interest in Canada remained high. Petrochemicals, Ltd., at Scarboro, near Toronto, in late 1956 became the first Canadian producer of lithium greases. Annual capacity, based on continuous operation, was 26 million pounds of grease, enough to meet Canada's requirements.²²

Dominion Magnesium of Canada planned to produce lithium metal

on a commercial scale at its Haley, Ontario, plant.23

Manitoba—Manitoba gained importance as a potential lithiumproducing area. Spodumene deposits in the Cat Lake-Winnipeg River area were estimated to contain reserves of 8½ million tons aver-

aging 1.25 percent Li₂O.²⁴

Montgary Explorations, Ltd., developed its lithium holding near Bernic Lake. Plans were formulated for shaft sinking.²⁵ By mid-November a three-compartment shaft had been collared, and a headframe was being erected.26 In April some 4 million tons of ore averaging 1.665 percent lithia had been outlined.27 Additional drilling was

²⁰ Sittig, Marshall, Safe Handling of Alkali Metals: Ind. Eng. Chem., vol. 48, No. 2, February 1956, pp.

<sup>227—229.

22</sup> Lamming, C. K. G., World Lithium Resources: Min. Jour., vol. 247, No. 6318, Sept. 21, 1956, pp. 334–335. Lithium Resources of the Western Hemisphere: Min. Jour., vol. 247, No. 6319, Sept. 28, 1956, pp. 380–361.

22 Chemical and Engineering News, vol. 34, No. 32, Aug. 6, 1956, pp. 3784, 3786.

23 Metal Bulletin (London), No. 4121, Aug. 24, 1956, p. 22.

24 Davies, J. F., Lithium Deposits of the Cat Lake-Winnipeg River Area: Precambrian, vol. 29, No. 6, June 1, 1956, pp. 46–50.

25 Precambrian, vol. 29, No. 8, August 1956, p. 12.

26 Northern Miner, vol. 42, No. 34, Nov. 15, 1956, pp. 17, 25.

27 Northern Miner, vol. 42, No. 3, Apr. 12, 1956, pp. 1, 9.

761LITHIUM

expected to increase this estimate by some 2 million tons. States chemical engineering firm was testing a new process for extracting lithium salts from the ore. If the process proves commercially workable, the firm planned to build a \$10-\$15 million plant. using this process.

Lithium Corp. of Canada, Ltd., began constructing a shaft at its Irgon property near Cat Lake. This shaft will extend to a depth of 640 feet.²⁸ Roads and powerlines to the property have been built. This firm also has a lithium claim on Bernic Lake, where some 750,000

tons of high-grade ore has been outlined.29

Green Bay Mining & Exploration was considering plans for constructing a 1,000-ton-per-day concentrator for its lithium property

in the Herb Lake area.30

Northwest Territories.—North American Lithium, Ltd.'s spodumene property 88 miles east of Yellowknife, on Tanco Lake, was acquired by United States interest. It was reported that 2 million tons of ore averaging 1.826 percent Li₂O would be recoverable by open-

pit methods to a depth of 100 feet.31

Giant Lithium Corp. expected to begin drilling operations on its lithium holdings 30 miles east of Yellowknife. Of the 12 dikes containing lithium minerals discovered, 1 dike reportedly extends over 3,000 feet, with an average width of 25 feet, and in which lithium minerals constitute 40 percent of the dike material.32 Toward the end of 1956, this firm was acquired by Affiliated Lithium Mines, Ltd.33

Ontario.—An article describing lithium deposits of northwest Ontario was published.³⁴ Three localities contain important lithium occurrences: (1) Lac la Croix area, 70 miles southeast of Fort Frances; (2) Root Lake area, 65 miles northeast of Sioux Lookout; and (3) Georgia Lake area, southeast of Lake Nipigon. The spodumene occurs in albite granite pegmatites in highly metamorphosed sediments or volcanics near or in granitic rocks. The deposits are situated close to transportation and power facilities.

Capital Lithium Mines continued drilling on its Root Lake prop-Two drilling rigs were in operation; one was drilling exploratory holes, and the second was used to determine the depth of the dike. The 14 holes drilled over a length of 1,400 feet indicated an average width of 26.5 feet with an average lithia content of 1.36 percent.35

Drilling by Dunvegan Mines on its lithium claims in the Beardmore area outlined a deposit 1,350 feet long, with an estimated 750,000

tons of ore averaging 1.38 percent Li₂O.36

Quebec.—Quebec Lithium Corp. increased its mill capacity to 1,000-1,200 tons of ore per day, with an average concentrate output of 200 tons. A circuit was being installed during this expansion to recover, as a byproduct, about 250 tons per day of feldspar concentrate.37 The feldspar circuit had not gone into production by the

Western Miner and Oil Review, vol. 29, No. 6, June 1956, p. 79.
 Engineering and Mining Journal, vol. 157, No. 9, September 1956, pp. 192, 196.
 Northern Miner, vol. 42, No. 12, June 14, 1956, p. 37.
 Mining Magazine, vol. 94, No. 1, January 1956, p. 32.
 Northern Miner, vol. 42, No. 3, Apr. 12, 1956, p. 13.
 Northern Miner, vol. 42, No. 30, Oct. 18, 1956, p. 5.
 Pye, E. G., Lithium in Northwest Ontario: Canadian Min. Jour., vol. 77, No. 4, April 1956, pp. 73-75, 60.

<sup>100.

85</sup> Western Miner and Oil Review, vol. 29, No. 5, May 1956, p. 65.
86 Northern Miner, vol. 42, No. 5, Apr. 26, 1956, p. 19.
87 Northern Miner, vol. 42, No. 35, Nov. 22, 1956, pp. 1-4.

close of the year. It was reported that the recovery rate was averaging about 85 percent, and the concentrate was averaging approximately 5-5.5 percent Li₂O. Feed material for the concentrator was averaging

about 1.2 percent Li₂O.

The mine had a 3-compartment shaft extending down 560 feet and A crusher room was built on the third level, and a 32-by 40-inch jaw crusher installed.³⁸ The 150- and 275-foot levels were being mined, the ore was crushed before hoisting, and the spodumene was concentrated on the surface by froth flotation. Indicated ore reserves were reported to be around 15 million tons to a depth of 850 feet in a 600-foot radius around the shaft. The mine employed. by the latter part of 1956, 280 persons, of whom 120 worked underground.39

SOUTH AMERICA

Argentina.—Lithium minerals were discovered in the Province of San Luis as a result of a search for beryllium in 1936. A few tons of amblygonite, lepidolite, and spodumene was produced in 1936-38; then mining ceased. Mining was resumed and shipments were made in 1955 and 1956 to England, the Netherlands, and the United States. Exports in 1956 (January-August) totaled 60,000

kilograms valued at 133,064 pesos.40

Brazil.—It was reported that Orquima S. A. of Sao Paulo was scheduled to begin production of lithium carbonate in January 1956.41 Amblygonite, at the rate of 165 tons per month, was to be consumed at the plant, and it was estimated production of the carbonate would total 29 tons monthly. Exports of lithium minerals totaled 2,860 short tons valued at \$119,160 in 1954. In 1955 Brazil exported 1,836 tons of lithium ores.42

EUROPE

France.—The manufacture of lithium compounds on a commercial scale was started by Société des Produits Chimiques de la Mediterranée (PROSIM) at its Chauny plant.⁴³ Production was reported to be around 200 tons per year of lithium carbonate, 150 tons of hydroxide monohydrate, and 300 tons of lithium stearate.

Spain.—Lithium Corp. of America was authorized 40-percent participation in a new Spanish company to be formed jointly with Spanish Titania, S. A., by the Spanish Ministry of Industry. The new firm was formed to explore and develop lithium-ore reserves at

Lalin near Pontevedra.44

United Kingdom.—The Board of Trade announced, effective May 4, that licenses would be required for exporting lithium metals and ores to all destinations. Licenses would also be required for the export of lithium compounds to all destinations other than the British Commonwealth, Republic of Ireland, and the United States.⁴⁵

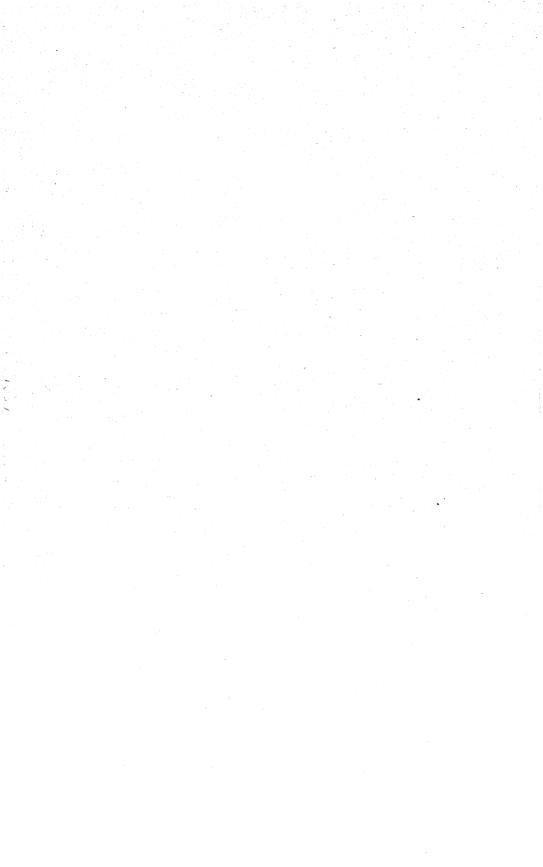
<sup>Northern Miner, vol. 42, No. 10, Mar. 31, 1956, p. 20.
Northern Miner, vol. 42, No. 35, Nov. 22, 1956, pp. 1 and 4.
Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 6, December 1956, p. 37.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 2, February 1956, p. 31.
Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 4, October 1956, p. 30.
Chemistry and Industry, No. 15, Apr. 21, 1956, p. 269.
American Metal Market, vol. 63, No. 171, Sept. 6, 1956, p. 1.
Metal Bulletin (London), No. 4090, May 1, 1956, p. 27.</sup>

LITHIUM 763

The lithium carbonate plant of Associated Lead Manufacturers at Liverpool, England, began production in June. Output was expected to meet requirements for the United Kingdom and provide A plant was being constructed for manufacturing material for export. lithium hydroxide.46

AFRICA

Belgian Congo.—Geomines started producing lithium at its pilot Tailings from the firm's tin-crushing plant at plant in Belgium. Manono served as the raw material. Construction of a lithium-


processing plant in the Congo was considered.47

Rhodesia and Nyasaland, Federation of.—Africa's only lithium carbonate plant, situated at Gwelo, closed for reorganization and expansion at the end of March. The new plant, which represented an investment of \$280,000, reopened on May 1 with triple its original capacity. Before the shutdown this plant had been in operation 2 years and shipped the lithium salts to Britain but was unable to meet the growing demand. Raw material for this plant came from mines in the Fort Victoria region.48

Production of lithium ore from Bikita Minerals mine, in the Fort Victoria area, increased as the result of a \$2.8 million development program.49 Production was approaching 80,000 tons, almost double

1955 output.

<sup>Metal Bulletin (London), No. 4162, Jan. 18, 1957, p. 22.
South African Mining and Engineering Journal, vol. 67, part 1, No. 3284, Jan. 20, 1956, p. 9.
Mining Journal (London), vol. 246, No. 6299, May 11, 1956, p. 582.
Chemical and Engineering News, vol. 34, No. 40, Oct. 1, 1956, p. 4799.</sup>

Magnesium

By H. B. Comstock¹

NITED STATES production of magnesium in 1956 was 43 percent of world output. Consumption of magnesium in the United States increased 15 percent, although defense requirements fell below those of 1955. Research continued to develop magnesium alloys with improved physical properties. By the close of 1956 the new

TABLE 1 .- Salient statistics of the magnesium-metal industry in the United States, 1947-51 (average) and 1952-56

· ·						
	1947-51 (average)	1952	1953	1954	1955	1956
Production: Primary magnesium 1short tons_ Secondary magnesium 1do	18, 110	105, 821	93, 075	69, 729	61, 135	68, 346
	8, 804	11, 477	11, 930	8, 250	10, 246	10, 500
Average quoted price per pound-primary 2 cents. Domestic consumptionshort tons.	21. 6	24. 5	26. 6	27. 0	29. 5	33. 9
	16, 064	42. 387	46, 843	39, 218	46, 463	53, 610
Imports 3do	1,631	252	2, 443	733	1,844	630
Exports 4do	436	1,066	2, 722	3,096	5 8,230	3,388
World primary productiondo	47,000	165,000	168, 000	136,000	143,000	158,000

Ingot equivalent.
 Magnesium ingots (99.8 percent) in carlots, f. o. b. Freeport, Tex. (Source: Metal Statistics, 1957.)
 Metallic and scrap.

4 Primary magnesium and alloys. 5 Revised figure.

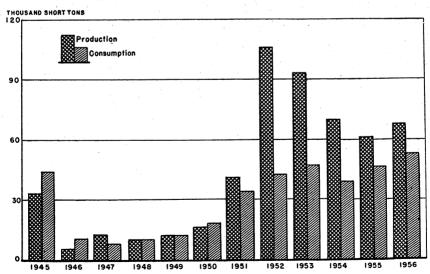


FIGURE 1. Trends in domestic production and consumption of primary magnesium, 1945–56.

¹ Commodity specialist.

alloys were in structural service in areas where temperatures reached 800° F. Design engineers showed their confidence in these alloys to withstand high temperatures and intense vibrational stresses when they announced in October 1956 that magnesium was chosen for the outer shell of the earth satellite. Marked decreases were noted in both imports and exports of magnesium.

DOMESTIC PRODUCTION

Primary.—In 1956 Dow Chemical Co. continued to be the sole commercial producer of primary magnesium at its Freeport, Tex., plant and at the Government-owned plant at Velasco, Tex. Production rose to 68,346 tons, a gain of 7,211 tons above 1955, although a labor strike closed the 2 plants from July 6 to August 8, 1956.

Nelco Metals, Inc., continued to operate the 5,000-ton Governmentowned silicothermic plant at Canaan, Conn., to produce magnesium

and calcium.

Titanium Metals Corp. of America reported an increase above 1955 of the magnesium it recycled as an integrated operation with its pro-

duction of titanium at Henderson, Nev.

In July 1956 Alabama Metallurgical Corp. announced that it had obtained a site at Selma, Ala., for building a new 10,000-ton magnesium plant, which would employ the silicothermic method of producing the metal from dolomite. The company based its choice of the plant location upon the availability of plentiful supplies of ores. fuel, electric power, and labor.2

TABLE 2.—Production of primary magnesium in the United States, 1947-51 (average) and 1952-56, by months, in short tons

Month	1947-51 (average)	1952	1953	1954	1955	1956
January February March April May June July August September October November	1, 229 1, 114 1, 236 1, 182 1, 175 1, 250 1, 402 1, 489 1, 696 1, 913 2, 085 2, 339	7, 425 7, 794 8, 893 8, 800 9, 093 8, 670 9, 529 9, 771 8, 422 8, 990 9, 122 9, 312	9, 908 9, 078 10, 352 9, 751 9, 116 7, 286 6, 207 6, 266 6, 076 6, 341 6, 227 6, 467	6, 447 5, 856 6, 545 6, 204 6, 460 6, 191 6, 049 5, 772 5, 325 5, 149 4, 942 4, 789	5, 090 4, 647 4, 942 1, 859 4, 277 4, 757 5, 112 5, 881 5, 923 6, 287 6, 130 6, 230	6, 337 5, 908 6, 347 6, 081 6, 359 6, 098 1, 136 6, 128 6, 735 6, 818 7, 085
Total	18, 110	105, 821	93, 075	69, 729	61, 135	68, 346

Secondary.—Total recovery of secondary magnesium in 1956 was 10,500 tons compared with 10,246 in 1955. Consumption of magnesium-base scrap was 5 percent above 1955. The use of scrap to produce magnesium anodes for cathodic protection decreased 13 percent below 1955.

(See Secondary Metals-Nonferrous chapter for tables listing magneisum recovered from scrap and consumption of magnesium scrap.)

² Carr, G. G., Magnesium-Why New Capacity Is Needed: Iron Age, vol. 178, No. 4, July 1956, pp. 24-25.
Chemical Engineering Progress, New Magnesium Plant Will Add 15% to U. S. Production: Vol. 52, No. 8, August 1958, p. 58.

CONSUMPTION AND USES

Consumption of magnesium in 1956 rose 7,147 tons above 1955. Although the increase for structural products was small, new applications for the metal showed progress. Airplane manufacturers increased the use of magnesium castings in some highly stressed areas. Magnesium die castings replaced die castings from other metals in a number of applications in automotive equipment and trucks. The use of the metal was increased in 1956 in such items as portable sewing machines, dictating and recording equipment, and high-speed portable teletype machines.³

The use of primary magnesium as a reducing agent to produce other

metals increased 65 percent above that in 1955.

TABLE 3.—Domestic consumption of primary magnesium (ingot equivalent and magnesium content of magnesium-base alloys), by uses, 1947-51 (average) and 1952-56, in short tons

Product	1947–51 (average)	1952	1953	1954	1955	1956
For structural products:						
Castings:	- N					
Sand Die	3, 836	14, 513	14, 306	9, 545	6,872	6, 478
Die	352	2,777	2, 401	1,743	2, 619	1, 875 1, 034
Permanent mold	257	1, 115	1, 106	785	876	1,034
Wrought products:				0.000	404	F 400
Sheet and plate	2, 563	5, 150	5, 443	3, 033	6, 424	5, 496
Extrusions (structural shapes, tubing)	2, 994 249	2, 715 12	4, 744 24	2, 461 110	4, 106 307	6, 223 473
Forgings	249	12	24	110	307	410
Total for structural products	10, 251	26, 282	28, 024	17, 677	21, 204	21, 579
T						
For distributive or sacrificial purposes:	109	1,553	1, 219	582	681	918
PowderAluminum alloys	3, 116	8, 598	10, 347	8,061	11, 104	13, 323
Other allows	156	960	418	103	364	98
Other alloys Scavenger and deoxidizer	611	1, 229	423	80	654	865
Chemical	343	566	363	63	124	63
Cathodic protection (anodes)	1,003	2, 100	2, 539	5, 479	3,941	3,036
Reducing agent for titanium, zirconium, and					1 0	
hafnium	(1)	(1)	(1)	6, 386	8,056	13, 303
Other 2	475	1,099	3, 510	787	335	425
Total for distributive or sacrificial purposes	5, 813	16, 105	18, 819	21, 541	25, 259	32, 031
					10 100	
Grand total	16,064	42, 387	46, 843	39, 218	46, 463	53, 610

¹ This use, which was very small before 1954, was included in the figure for other distributive purposes. ² Included primary metal consumed for experimental purposes, debismuthizing lead, producing nodular iron, and secondary magnesium alloys.

A decrease below 1955 in defense requirements for magnesium castings explained the slight drop in their use; however, design engineers began work on several new applications.⁴

The use of magnesium in forgings increased 54 percent above 1955. Magnesium die forgings for use as rotor hub plates in helicopters

^{*} Steel, More Work for Magnesium: Vol. 140, No. 4, Jan. 28, 1957, pp. 105–108.

Materials and Methods, New Uses of Magnesium: Vol. 45, No. 1, January 1957, pp. 112–115.

Automotive Industries, New Uses for Magnesium Die Castings: Vol. 115, No. 2, July 15, 1956, pp. 62–63.

4 Steel, Boost for Magnesium Diecasting: Vol. 139, No. 7, Aug. 13, 1956, pp. 102–103.

Light Metals, Magnesium Pressure Die Castings: Vol. 19, No. 219, June 1956, pp. 169–170.

Metal Industry, Pressure Die-Casting Review: Vol. 89, No. 3, July 20, 1956, p. 47.

E&MJ Metal and Mineral Markets, Die-Casting Industry in U. S.: Vol. 28, No. 21, May 28, 1957, p. 7.

were developed. The consumption of magnesium to produce extru-

sions increased 50 percent in 1956.

In 1956 the use of magnesium alloys became standard in areas where temperatures reached 700° F., replacing heavier metals in many instances.⁶ Increased use was reported for new magnesium alloys with service temperature range to 800° F.⁷ A highlight of the year in the magnesium industry was the announcement by the Department of Defense that these high-temperature magnesium alloys had been chosen for the outer shell and framework of the first earth satellite.8

Improved machining and joining techniques encouraged wider use

of magnesium as a structural metal.9

Reports published in 1956 described proper precautions to be observed when fabricating magnesium under various conditions. stressed the importance of proper handling and disposal of magnesium dust and chips. 10

STOCKS

Producers' and consumers' stocks at the close of 1956 were 28,700 tons of primary magnesium and 4,600 tons of primary magnesiumalloy ingot. This quantity was equivalent to approximately 6 months' total supply of the primary metal at the rate of consumption at the close of the year. Government agencies continued to hold quantities of primary magnesium as provided by the Strategic and Critical Materials Stockpiling Act.

PRICES

The price of domestic primary magnesium increased twice in 1956. On April 16 the price rose from 32.5 to 33.75 cents per pound, f. o. b. Velasco, Tex.; 11 and on August 13, to 35.25 cents. 12 These increases resulted from rising costs of fuel, raw materials, transportation, and labor.

^{*} Light Metals, Large Magnesium Die Forgings: Vol. 19, No. 219, June 1956, p. 169.

* Pearson, W. E., and Leontis, T. E., New Magnesium Alloy for Sounder Castings: Iron Age, vol. 178, No. 24, Dec. 13, 1956, pp. 127-129.

Light Metal Age, New Magnesium Alloy: Vol. 14, Nos. 9, 10, October 1956, p. 37.

Product Engineering, Magnesium-Thorium Alloy: Vol. 27, No. 12, November 1956, pp. 200-204.

* Light Metal Age, Heat Performance of Magnesium Alloys: Vol. 14, Nos. 11, 12, December 1956, pp. 14, 15.

* Light Metal Age, Magnesium Moon: Vol. 14, Nos. 9, 10, October 1956, p. 23.

* Kirkpatrick, James S., Earth Satellite Has Magnesium Shell: Civil Eng., vol. 27, No. 1, January 1957, pp. 58-62.

* Schirmer, E. V., Design Principles in Magnesium: Modern Metals, vol. 11, No. 12, January 1956, pp. 46-54.

Schertel, Harold, Get Faster Machining From Magnesium Parts: Iron Age, vol. 178, No. 15, Oct. 11, 1956,

Schertel, Harold, Get Faster Machining From Magnesium Faris: Iron Age, vol. 116, No. 130, Oct. 11, 1860, pp. 100-101.

Dow Magnesium Topics, Commercially Successful Electrode Welding: Vol. 7, No. 1, February 1957, p. 9.

McGulire, T. Kenneth, How to Collect and Dispose of Magnesium Dust and Chips: Modern Metals, vol. 13, No. 11, December 1956, pp. 38, 40, 41.

Isaacson, William A., Machining Metal with Safety: Am. Metal Market, vol. 63, No. 245, Dec. 25, 1956, pp. 8, 14-15.

11 American Metal Market, Dow Announced Price Increase For Magnesium: Vol. 63, No. 71, April 14, 1652 pp. 1 5.

^{1956,} pp. 1, 5.

Modern Metals, Magnesium Followed Aluminum by Increasing Prices: Vol. 12, No. 4, May 1956, p. 109.

B&MJ Metal and Mineral Markets, Magnesium: Vol. 27, No. 33, Aug. 16, 1956, p. 1.

FOREIGN TRADE 13

Imports.—During 1956 imports of magnesium fell 1,214 tons below 1955 and were the lowest since 1952. The metal came from 8 countries in 1956 compared with 4 in 1955. Of the total 656 tons imported, 330 tons came from West Germany, 191 from the United Kingdom, 114 from Canada, 11 from the Philippines, 6 from French Morocco, 2 from the Canal Zone, and 1 each from Bermuda and the Dominican Republic. Changes in tariff rates under the agreement reached in 1956 at the Geneva Trade Conference lowered duty on imports of magnesium to the United States, as follows:

For magnesium metal:

For magnesium metal:

On June 30, 1956, drop from 20 cents per pound to 17.2 cents per pound.

On June 30, 1957, drop to 14.3 cents per pound.

On June 30, 1958, 50 percent ad valorem.

For magnesium, powder, sheets, tubing manufactures, etc.:

On June 30, 1956, drop from 20 cents per pound on magnesium content plus 10 percent ad valorem, to 19 cents per pound plus 10 percent ad

On June 30, 1957, drop to 18 cents per pound plus 9.5 percent ad valorem. On June 30, 1958, drop to 17 cents per pound plus 8.5 percent ad valorem.

Suspension of duty on magnesium scrap was extended on June 30, 1956, to June 30, 1957.

TABLE 4.—Magnesium imported for consumption and exported from the United States, 1947-51 (average) and 1952-56

				լոս	16au OI	тие се.	ususj					
Impo			orts		Exports				orts			
Year	Metallic and scrap		(magr	Alloys ing, ribbon wire, and other form (magnesium content)		bbons, , and forms nesium	Metal and alloys in crude form, and		Semifabricated forms,		Powder	
	Short tons	Value	Short	Value	Short tons	Value	Short	Value	Short	Value	Short tons	Value
1947-51 (average)	1, 631 252 2, 443 733 1, 844 630	81, 635 877, 130 337, 773 1, 034, 241	1 3 6 9	\$6, 944 1, 940 15, 537 29, 767 52, 254 202, 675	47 5 3 4	19, 983 14, 159	21,066 22,722 23,096 48,230	2 618, 005 21, 718, 232 21, 766, 650 44, 556, 229	² 97 ² 227 ² 161 ² 236	\$177, 380 ² 245, 211 ² 771, 032 ² 605, 251 ² 514, 986 ² 901, 924	43 21 34 14	44, 605 33, 911

[[]Bureau of the Canquel

Data not separately classified.
 Owing to changes in items included in each classification, data are not strictly comparable with earlier

years.
3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.
4 Revised figure.

¹³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

Exports.—In 1956, exports of magnesium fell 4,842 tons below The following countries received the metal:

Country	Primary metal alloys and scrap (tons)	Semi- fabri- cated forms (tons)	Powder (tons)	Country	Pri- mary metal alloys and scrap (tons)	Semi- fabri- cated forms (tons)	Powder (tons)
Argentina Australia Belgium-Luxembourg Bernuda Beritish Malaya Canada Ceylon Colombia Cuba Denmark Dominican Republic Egypt France Jermany (West) Greece India Iran Israel Italy Japan Kuwait	3 13 27 5 43 20 19 13 13 36 8	13 329 16 6 2 13	2 4 12	Lebanon Liberia Mexico Netherlands Netherlands Antilles Norway Philippines Saudi Arabia Sweden Switzerland State of Bahrein Trinidad-Tobago Turkey Union of South Africa United Kingdom Venezuela (5 other countries, less than 1 ton each)	140 1, 555 22 8 29 143 4 15	10 13 10 14 8 12 18 29 4 487	56

TECHNOLOGY

Reports published during 1956 described continued programs of research by Government agencies, industry, and private foundations to develop improvements in producing and using magnesium. Bureau of Mines published a report that related the progress of research in magnesium production at the Northwest Electrodevelopment Experiment Station, Albany, Oreg. 14 The report described a furnace that was constructed at the station to study the reaction involved in continuous reduction of dolomite with ferrosilicon at elevated temperature but at atmospheric pressure.

The Bureau's report covering work at the Mississippi Valley Experiment Station, Rolla, Mo., in developing improved magnesium alloys described initial results; definite possibilities were revealed for developing highly valuable series of alloys by the use of lithium. 15 This program of research was continued throughout 1956. before the close of the year a report was published, describing a similar program of research at Case Institute of Technology in cooperation with the Pitman-Dunn Laboratory at Frankford Arsenal. 16 This report also pointed out that the work thus far completed indicated promise of future development of series of unusually light structural

¹⁴ Block, F. E., and Campbell, T. T., Producing Magnesium by Silicothermic Reduction: Bureau of Mines Rept. of Investigations 5275, 1956, 29 pp.
18 Rowland, J. A., Armantrout, C. E., and Walsh, D. F., Experimental Magnesium Alloys Containing Nickel, Manganese, Lithium, and Aluminum: Bureau of Mines Rept. of Investigations 5250, 1956, 21 pp.
16 Toaz, M. W., and Ripling, E. J., Flow and Fracture Characteristics of Binary Wrought Magnesium. Lithium Alloys: Jour. Inst. Metals, vol. 85, pt. 4, December 1956, pp. 137-144.

Other publications described tests to show the changes in the physical properties of the various magnesium alloys when subjected to elevated temperatures and extremely low temperatures.¹⁷

Published articles related the development of improvements in foundry practices, covering melting and casting techniques, heat

treatment, and nondestructive test procedures. 18

Published reports revealed development in improving fabrication techniques that encouraged new uses of magnesium extrusions and A process was described whereby magnesium was extruded from 0.016-inch spherical pellets rather than from the solid billets ordinarily used. This method was said to result in a large increase in compressive yield strength.20

Reports were published in 1956 describing improvements in methods

of joining magnesium alloys.21

Research in 1956 developed coatings for magnesium alloys that

provided increased resistance to corrosion and abrasion.²²

Improved techniques for producing and using magnesium anodes for cathodic protection of iron and steel were discussed.23

WORLD REVIEW

In 1956 estimated world production of magnesium was 10 percent above 1955. Increases were reported in all producing countries but The United States led by reporting 43 perthe United Kingdom. Increased interest in using magnesium cent of the estimated total.

17 Light Metal Age, Performance of Light Metals at Elevated Temperatures—Magnesium: Vol. 14, No. 11, 12, December 1956, pp. 12-15.

Automotive Industries, High-Temperature Magnesium for Supersonic Aircraft: Vol. 116, No. 4, Feb. 15, 167.

Automotive Industries, High-Temperature Magnesium for Supersonic Aircraft: Vol. 116, No. 4, Feb. 15, 1957, pp. 66-69.

Hauser, Frank E., London, Philip R., and Dorn, John E., Fracture of Magnesium Alloys at Low Temperature: Jour. Metals (Transactions, AIME), vol. 8, No. 5, May 1956, pp. 589-593.

18 Millward, H. J., and Partridge, G. B., Melting and Handling Light Alloys: Light Metals, vol. 19, No. 221, August 1966, pp. 247-251.

Willis, E. J., Magnesium Plaster Mold Castings: Modern Metals, vol. 12, No. 8, September 1956, pp. 46-48.

Warga, Joseph J., Quality Control Through Heat Treatment: Metal Progress, vol. 70, No. 5, November 1956, pp. 78-90.

Van Duzee, G. R., New Nondestructive Test for Magnesium Alloy Castings: Materials and Methods, vol. 43, No. 1, January 1956, pp. 98-99.

10 Alice, John, Producing Magnesium Impact Extrusions: Light Metal Age, vol. 14, No. 7, 8, August 1956, pp. 20-23.

Wilkinson, R. G., Magnesium Forming: Metal Industry (Birmingham), vol. 90, No. 5, February 1957, pp. 83-86.

pp. 83-86.
Tyrell, John F., Forming Sheet-Metal Components for Aircraft: MetalProgress, vol. 70, No. 3, September

1961, join F., Forming Sheet-Metal Components to Michael Action 1965, pp. 110-112.

20 Cherrical Week, A New Process That Increases the Strength of Magnesium Alloy: Vol. 80, No. 6, Feb. 9, 1957, p. 86.

Metal Industry, Extruding Magnesium: Vol. 90, No. 13, Mar. 29, 1957, p. 253.

18 Beck, W. A., Welding Magnesium-Alloy Castings: Metal Industry (Birmingham), vol. 89, No. 8, pp. 146 150.

143-150.
Klain, Paul, Consumable Electrode Inert Arc Welding of Magnesium: Industry and Welding, vol. 29, No. 4, April 1956, pp. 50-54, 57, 80, 81, and vol. 29, No. 6, June 1956, pp. 106-113.
Long, Roger A., Selecting Brazing Allcys: Product Eng.: Vol. 27, No. 9, September 1956, pp. 191-196.
Materials and Methods, Hard Coatings for Magnesium: Vol. 45, No. 1, January 1957, p. 137.
Steel, Finish for Magnesium: Vol. 140, No. 7, Feb. 18, 1957, p. 149.
American M. et al Market, Magnesium Tests are Described in Air Force Report: Vol. 63, No. 143, July 27, 1958 p. 0

27, 1956, p. 9 Electronic News, Some Refractory, Light Metals Alloys are Electrodeposited: Vol. 3, No. 19, Mar. 11,

1857, p. 12.
Light Metal Age, Plastic-Clad Magnesium: Vol. 14, No. 1, 2, February 1956, pp. 14-15.
Metal Progress, Chromate Coatings for Magnesium Alloys: Vol. 69, No. 6, June 1956, p. 142.
Modern Metals, First Production Job—Electroplating a Magnesium Rule Case: Vol. 12, No. 1, February

1956, p. 64. 28 Brady, Hugh A., How Magnesium Anodes Retard Casing Corrosion: World Oil, vol. 144, No. 1, January 1957, pp. 160-162.

in European countries was noted throughout 1956.24 In February 1956 Technical Assistance Mission 104 of the Organization for European Economic Cooperation, issued a report entitled "Magnesium Fabricating and Casting." This 86-page booklet explained in detail the development of magnesium alloys and the fabricating techniques employed in the United States and Europe, pointing out the physical properties of the metal that should encourage its use in many new structural applications. Early in 1956 the Netherlands Central Institute for Industrial Development published a report of the production of magnesium and its increased use in 1955.25

TABLE 5.—World production of magnesium metal, by countries, 1947-51 (average) and 1952-56, in short tons 1

(Compiled b	T Doord T	Thomason and	Donomico D	3 #24 - 7 121
Compuer o	у геан э.	Thompson and	Derenice B.	MITCHELL

Country	1947–51 (average)	1952	1953	1954	1955	1956
Canada ²	1,300 2 44 742	5, 500 (³) 1, 166	6, 600 (³) 1, 098	6, 600 (³) 1, 268	7, 700 (3) 1, 670	10, 000 (³) 1, 676
Japan	54	1,079	1, 595	154 1,836 23	3, 161 148	194 4, 097 1, 400
Nôrway Switzerland	8 338 110	338 331	3, 853 2 275	5, 183	7, 441	7, 700
U. S. S. R. ² United Kingdom ⁴ United States	22, 900 3, 351 18, 110	45, 000 5, 071 105, 821	55, 000 5, 936 93, 075	45, 000 5, 577 69, 729	55, 000 6, 054 61, 135	60, 000 4, 064 68, 346
World total (estimate)	47, 000	165, 000	168,000	136,000	143, 000	158, 000

¹ This table incorporates revisions of data published in previous magnesium chapters. Data do not no add to totals shown owing to rounding where estimated figures are included in the detail.

Canada.—Although statistics on production, consumption, exports. and imports of magnesium were not published by Canada in 1956, progress was reported both in production and consumption of the Technical improvements in the silicothermic plant at Toronto were said to have increased its metallurgical efficiency to an annual production capacity of 8,000 tons, or 60 percent above its originally designed capacity.²⁶ In 1956 Dominion Magnesium, Ltd., Toronto, Canada, and Brooks & Perkins, Inc., Detroit, Mich., agreed to joint construction of a plant at Selma, Ala., to produce magnesium by the silicothermic process employed in the Dominion Magnesium plant in Canada.

France.—A slight increase over 1955 was noted in production of magnesium in France in 1956. Some improvements were noted in operating the electrolytic plant at Jerrie (Isere), near Grenoble.27 The sixth International Engineering Congress was held in Paris,

² Estimate.
2 Data not available; estimate by author of chapter included in total.
3 Primary metal and remelt alloys.
3 Average for 1 year only, as 1951 was the first year of commercial production.

Light Metals (London), The Industry in the World Today: Vol. 20, No. 227, February 1957, pp. 45-46.
 American Metal Market, Magnesium Use to Grow, Dutch Group Forecasts: Vol. 63, No. 26, Feb. 8,

^{1956,} pp. 2, 9.

American Market, Dominion Magnesium Sales Last Year Reached Peak: Vol. 64, No. 54, Mar. 20, 1957, pp. 1, 9.

Work cited in footnote 24.

June 4-9, 1956; papers were read and discussions held on surface

treatment of magnesium alloys.28

Germany.—During 1956 work continued on the commercial magnesium-production facilities at the electrothermic plant near Cologne in West Germany. No production of the primary metal was reported in East Germany. Estimates of primary-magnesium production in East Germany published after World War II were based on persistent reports that 1 of the 2 magnesium plants, at Stassfurt or Aken, continued small-scale production during that period. In 1956 West German sources confirmed the reports that both plants had been dismantled immediately after the war. The formerly published data on magnesium production in East Germany after World War II may have referred to secondary recovery of magnesium from scrap in that area. From the same West German sources reports were issued in 1956 that plans were under way in East Germany to erect new facilities at Bitterfeld to produce 15,000 tons of primary magnesium annually by 1960. At the International Foundry Exposition at Dusseldorf in 1956, the manufacturers from West Germany exhibited magnesium pressure die castings that revealed recent advances in castings techniques.29

Italy.—Production of magnesium in Italy increased 29 percent More of the metal was exported than was used by above 1955.

domestic consumers.

Japan.—Japan reported a considerable increase in production of magnesium over 1955. Four Japanese companies—Asohi, the Sumitumo Metal Industrial Co., the Sumitomo Chemical Co., and the Shin Nippon Chemical Co.—sought Government aid to establish an electrolytic production capacity of 5,000 tons of primary magnesium The magnesium reported produced in Japan during 1954, was recovery of secondary magnesium. For the first half of 1956 imports of primary magnesium reached 3,500 tons, which was used, mostly for producing structural items for the transportation industries and as a reducing agent for producing titanium.30

Norway.—In 1956, production of primary magnesium in Norway increased 3 percent above 1955. However, the 10,000-ton electrolytic plant at Herøya, sole producer in Norway, which was built in 1951,

had not reached capacity production by the close of 1956.

U. S. S. R.—As in 1955, no direct information was available on production of magnesium in the Union of Soviet Socialist Republics Reports received from Europe during the year estimated

a 9-percent increase above 1955.

United Kingdom.—The electrolytic plant at Clifton Junction near Manchester was the only producer of magnesium in the United Kingdom in 1956. Magnesium Elektron Limited reported that a thermic process of producing magnesium from dolomite had been developed to pilot-plant capacity at this place.³¹ The furnaces were

²⁸ Light Metals (London), The HAE Treatment of Magnesium-Alloy Castings—Some Preliminary Results: Magnesium-Alloy Protection by Anodic Treatment (Galvanic): Vol. 19, No. 222, September 1956, p. 276.

2 Light Metals (London), Magnesium Speeds Mass-Production: Vol. 19, No. 223, October 1956, pp. 320—321.

2 Work cited in footnote 24.

³¹ Work cited in footnote 24.

heated by burning low-grade oil and promised a supply of the primary metal at lower cost than that produced by the electrolytic process, which required large quantities of scarce and costly power. During 1956 published reports indicated developments in fabrication and use techniques in Britain, leading to expanded fields of application.³²

³² Metallurgia (Manchester, England), Magnesium and Its Industrial Applications: Vol. 55, No. 327, January 1957, pp. 31-36.

Magnesium Compounds

By H. B. Comstock 1 and Jeannette I. Baker 2

ISING demands for magnesium ores and compounds in 1956 resulted in marked increases in domestic production over 1955. A broad expansion program began in the basic refractories industry. Progress was reported in developing more economic methods of production and use of magnesia from sea water and well brines. Recovery from these sources, which amounted to less than 40 percent of total production of magnesia in 1947, had risen to 53 percent in 1956. The paper and chemical industries used more than twice the quantity of technical and U.S. P. magnesias compared with 1955. The consumption of magnesium trisilicate in antacid and other pharmaceutical products was seven times greater than in 1955.

TABLE 1.—Salient statistics of magnesite, magnesia, and dead-burned dolomite in the United States, 1947-51 (average) and 1952-56

	1947–1951 (average)	1952	1953	1954	1955	1956
Crude magnesite produced: Short tons. Value ³ Average per ton. Caustic-calcined magnesia sold or	1 426, 069 \$2, 937, 126 \$6. 89		\$3, 223, 759	\$1, 391, 392	1 486, 088 \$2, 712, 942 \$5. 58	\$2, 502, 218
used by producers: Short tons	36, 794 \$3, 589, 162 \$97. 55	\$3, 769, 466	\$3, 991, 309	\$2, 154, 652	\$2, 240, 612	\$2, 426, 424
producers: Short tons	332, 603 \$13, 473, 203 \$40. 51	\$17, 255, 837	\$19,060,796	\$19, 850, 712	\$20, 304, 639	\$22, 663, 353
by producers: Short tons	1, 596, 914 \$19, 234, 728 \$12. 04	\$26, 098, 455	\$31, 455, 384	\$21,960,684	2, 128, 960 \$31, 424, 587 \$14. 76	\$35, 761, 630

¹ Includes crude ore, heavy-medium concentrate and flotation concentrate.
2 All rum-of-mine material. (1955, rum-of-mine—656,874 tons; value—\$2,323,640.)
3 Partly estimated: most of crude is processed by mining companies, and very little enters open market.
4 Includes specialty magnesias of high unit value.
5 Average receipts f. o. b. mine shipping point.

¹Commodity specialist. ²Research assistant.

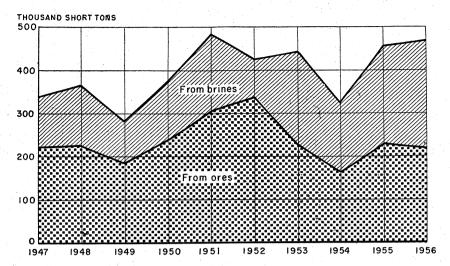


FIGURE 1.—Domestic production of magnesia from ores and brines, 1947-56.

DOMESTIC PRODUCTION

Magnesite.—Crude magnesite was mined in Washington, California, and Nevada by the same four producers listed in 1955. west Magnesite Co. continued to be the largest producer. output increased 5 percent in quantity and 8 percent in value compared with 1955.

Magnesia.—Of the entire output of magnesia in 1956, 47 percent was derived from magnesite, brucite, and dolomite; 53 percent came from sea water, well brines, and bitterns. Production from sea water and well brines increased 10 percent above 1955; the total recovery from brucite, magnesite, and dolomite decreased 5 percent.

In 1956 the basic refractories industry reported a broad expansion In April, Dow Chemical Co. and Harbison-Walker Refractories Co. began constructing a rotary-kiln plant near Ludington, Mich., to produce 85,000 tons of magnesia annually from magnesium hydrate furnished by Dow from its nearby magnesium-compounds plant.3

During 1956 Kaiser Aluminum & Chemical Corp. began a \$3 million expansion program that would include a rotary kiln at its Moss Landing, Calif., plant to double its periclase-production capacity; additional facilities were to increase the annual production capacity of its Columbiana, Ohio, refractories plant from the approximately 80,000 tons originally planned to more than 110,000 tons.4 The Columbiana plant, which began operation in September 1956, produced ramming mix, used chiefly for the bottoms of steel furnaces and refractory brick for high-temperature applications in the steel, copper, glass, and cement industries.5

Brick and Clay Record, H-W Plans \$1 Million Rotary-Kiln Plant: Vol. 128, No. 4, April 1956, p. 85.
 Rock Products, Expands Refractory Production: Vol. 59, No. 4, April 1956, p. 41.
 Brick and Clay Record, Kaiser's New \$5 Million Refractory Plant: Vol. 129, No. 5, November 1956,

TABLE 2.—Magnesia sold or used by producers in the United States, 1955-56, by kinds and sources

Magnesia	From mag	From magnesite, brucite, and dolomite		l brines, raw er, and sea- itterns ¹	T	otal
Mognosio	Short tons	Value	Short tons	Value	Short tons	Value
1955						
Caustic-calcinedRefractory	3, 881 225, 448	\$132, 275 9, 307, 085	31, 870 193, 313	\$2, 108, 337 10, 997, 554	35, 751 418, 761	\$2, 240, 612 20, 304, 639
Total	229, 329	9, 439, 360	225, 183	13, 105, 891	454, 512	22, 545, 251
1956						
Caustic-calcinedRefractory	2, 570 214, 961	91, 925 9, 579, 067	32, 938 215, 658	2, 334, 499 13, 084, 286	35, 508 430, 619	2, 426, 424 22, 663, 353
Total	217, 531	9, 670, 992	248, 596	15, 418, 785	466, 127	25, 089, 777

¹ Magnesia made from a combination of dolomite and sea water is included with that from sea water.

Standard Lime & Cement Co. began the expansion in August of its magnesia plant at Manistee, Mich., to double its production

capacity.6

In December H. K. Porter Co. announced plants to build an \$8 million chemical plant at Pascagoula, Miss., to produce magnesia and basic refractory products. Also in December, Norton Co. started an electric furnace plant at Huntsville, Ala., to manufacture various refractory materials, including fused magnesium oxide.8

Dolomite.—Production of dead-burned dolomite increased 8 percent in quantity and 14 percent in total value above 1955. In August, Basic, Inc., opened a new distribution center at Hammond, Ind., to provide the Chicago steelmaking district with a third source of deadburned dolomite.9

TABLE 3.—Dead-burned dolomite sold in and imported into the United States, 1947-51 (average) and 1952-56

Year	Sales of dome	estic product	Impo	rts 1
1 coa	Short tons	Value	Short tons 2	Value
1947-51 (average)	1, 596, 914 1, 928, 025 2, 294, 815 1, 520, 854 2, 128, 960 2, 292, 539	\$19, 234, 728 26, 098, 455 31, 455, 384 21, 960, 684 31, 424, 587 35, 761, 630	1, 835 2, 342 3, 876 4, 426 7, 993 9, 031	\$76, 224 123, 596 259, 427 344, 665 3 557, 554 3 586, 754

Brucite.—In 1956, Basic, Inc., the only producer of brucite in the United States, reopened its mine at Gabbs, Nev., which had been

Dead-burned basic refractory material consisting chiefly of magnesia and lime.
 Includes weight of immediate container.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to years before 1954.

⁶ Rock Products, Expands Magnesite Plant: Vol. 59, No. 8, August 1956, p. 43.
7 American Metal Market, H. K. Porter Will Build Refractory Unit in South: Vol. 63, No. 237, Dec. 13,

^{1956,} pp. 1-2.
Brick and Clay Record, Norton Opens New Electric Furnace Plant: Vol. 130, No. 1, January 1957, p. 50.
American Metal Market, Basic Refractories, Inc., Plans Distribution Center at Hammond: Vol. 63, No. 168, Aug. 31, 1956, p. 2.

closed since 1954. The output was considerably more than in 1954; average value rose from \$2.17 per ton in 1954 to \$4 in 1956.

Olivine.—The mined quantity of olivine was 34 percent above 1955; production came mostly from the Harbison-Walker mine near Addie,

Other Magnesium Compounds.—Total production of specified magnesias U. S. P. and technical grades both light and heavy increased 114 percent above 1955. Output of magnesium hydroxide increased 18 percent and precipitated magnesium carbonate decreased 4 percent. Magnesium chloride and magnesium trisilicate production increased Magnesium sulfate production decreased slightly.

Mines and plants producing magnesium compounds in the United States throughout 1956 were the same as those listed in table 5 of the

Magnesium Compounds chapter, Minerals Yearbook, 1955.

TABLE 4.—Specified magnesium compounds produced, sold, and used by producers in the United States, 1955-56

		Pro-		Sold	Used
Products 1	Plants	(short tons)	Short tons	Value	(short tons)
1955					-
Specified magnesias (basis, 100 percent MgO) U. S. P. and technical:					
Extra-light and light Heavy	6 4	3, 126 16, 437	3, 602 15, 517	1, 445, 307 1, 973, 244	161
Total	² 7	19, 563 34, 762	19, 119 14, 541	3, 418, 551 2, 940, 924	161 21, 521
percent Mg(OH) ₂)	4	874, 290	5, 919	³ 433, 489	71, 563
1956			-		
Specified magnesias (basis, 100 percent MgO) U. S. P. and technical:					
Extra-light and light Heavy	6 4	4, 973 36, 865	4, 821 26, 463	1, 436, 986 2, 694, 701	10, 701
Total	² 8 8	41, 838 33, 544	31, 284 4, 495	4, 131, 687 884, 000	10, 701 28, 551
percent Mg(OH)2)	4	87, 537	7, 562	3 494, 656	82, 716

CONSUMPTION AND USES

Demand for magnesium ores and compounds in 1956 increased markedly above 1955. The quantity of magnesite sold and used in 1956 was 9 percent above 1955; brucite consumption rose 140 percent and olivine, 27 percent. Consumption of dead-burned dolomite increased 8 percent above 1955; the use of refractory magnesia in-This increase resulted from the steady rise in the creased 3 percent. ratio of use of basic material to steel production. During the period 1946-56, the ratio rose from 4 to 6 pounds of basic material for every

In addition, magnesium chloride, nitrate, phosphate, acetate, silicate, and trisilicate were produced.
 A plant producing more than 1 grade is counted but once in arriving at total.
 Magnesium hydroxide produced as an intermediate compound in manufacturing magnesia or magnesium not included.

ton of steel produced in 1946 to 9 pounds for each ton of steel pro-

duced in 1956.10

The rapidly expanding pulp and paper industry created a rising demand for both magnesium hydroxide and caustic-calcined magnesia. Consumption of technical and U. S. P. magnesias increased 118 percent above 1955. The consumption of magnesium trisilicate rose 730 percent, owing principally to its increased use in antacid

Total consumption of magnesium chloride in 1956 was higher than Its use in the production of magnesium rose 12 percent in 1955.

above 1955.

The following percentages show the use for caustic-calcined magnesia in the United States for 1951-56:

Use	1951	1952	1953	1954	1955	1956
Oxychloride and oxysulfate cement Rayon Fertilizer 85 percent MgO insulation Rubber (filler and catalyst) Fluxes Refractories Miscellaneous (including chemicals and paper industry)	24 24 13 6 6	29 17 5 11 4 1 8	41 8 2 13 1 1 1	33 3 2 14 1 1	34 4 1 11 3 (1) 4	32 3 2 10 8 (1)
Total	100	100	100	100	100	100

¹ Less than 1 percent.

Technical and U. S. P. magnesia uses and percentages 1951-56 were as follows:

Use	1951	1952	1953	1954	1955	1956
Rayon	41	65	45 29 13	24 47 10 3	-16 27 15 7	8 9 42 1
Mcdicinal Uranium processing Miscellaneous industrial and chemical (including neoprene compounds)	 50	27	10	16	33	3 37
Total	100	100	100	100	100	100

PRICES

Comparison of 1955 and 1956 quoted prices and net sales values for various magnesium compounds shows that most prices remained steady in 1956 although wide variations were noted in the prices of some grades. Early in July, the price of powdered or flaked magnesium chloride increased \$5 a ton. The average price of powdered caustic-calcined magnesia, Oxychloride-cement grade, increased \$2.15 per ton during 1956, and dead-burned dolomite price increases ranged from \$1.00 to \$1.25 per ton.12

<sup>Iron Age, Refractories: Odds Are on Basic Brick: Vol. 178, No. 14, Oct. 4, 1956, p. 54.
Oil, Paint and Drug Reporter, vol. 170, No. 26, Dec. 24, 1956, p. 43.
Steel, vol. 137, No. 26, Dec. 26, 1955, p. 98: vol. 139, No. 27, Dec. 31, 1956, p. 90.</sup>

TABLE 5.—Prices quoted on selected magnesium compounds, carlots, 1955-56

			On The second with the second	2001	2		
Commodity	Unit	Container	F. o. b.	Source	January 1955	January 1956	December 1956
Magnesite: Caustic-calcined, Oxychloride-cement grade, powdered. Dead-burned, grain. Do Periclase: Kilin-run, 90 percent. Epsom salt: Tech, grade. Magnesis, calcined: Tech, grade.	Short tondododo	Bags Bulk Bags Bulk Bags Cartons	Newark, Calif. Chewelah, Wash do Newark, Calif do	€€€€€	2 \$74, 46 38, 00 43, 75 59, 73 2, 15	2 \$79.64 40.00 45.76 57.50 2.15	2 \$82.79 40.00 47.75 57.50 2.15
Synthetic, Kubber grade. U. S. P.: U. Light. Magnesium Carbonate:		, ,	op	E 99	. 35-36 . 36-38	. 2925 30 . 35 36 . 45 52	. 35 36 . 45 52
1 1 1 1	do Short ton Pound	Bagsdo Barrels or bags	(b) (b) Works	EEEE	. 105 . 125 50.00 . 265 30	. 105 . 125 50.00 . 265 30	. 105 . 125 6 55.00 . 265 30

Westvaco Chemical Division, Food Machinery & Chemical Corp.
 Average net states value.
 Be E&MJ Metal and Mineral Markets.
 Oil, Paint, and Drug Reporter.
 Woll, Paint, and Drug Reporter.
 Effective July 30, 1996.
 Effective July 30, 1996.

FOREIGN TRADE 13

Imports.—Dead-burned and grain magnesia (refractory) and periclase imported in 1956 decreased 8 percent in quantity and 9 percent in total value below 1955. Austria supplied 70 percent of the total, compared with 60 percent in 1955. Yugoslavia furnished 19 percent of the 1956 total; Italy, 8 percent; Canada, 3 percent; and Switzerland, a small fraction of 1 percent.

The imports of lump or ground caustic-calcined magnesia in 1956 increased 118 percent in quantity and 143 percent in total value above 1955. India supplied 64 percent of the total imports in 1956, and

Yugoslavia 31 percent.

Total imports of other magnesium compounds during 1956 increased 8 percent above 1955.

TABLE 6.—Magnesite imported for consumption in the United States, 1954-56, by countries

[Bureau of the Census]

Country	19	54	19	55	195	6
	Short tons	Value	Short tons	Value	Short tons	Value
	CR	UDE MAG	NESITE			
North America: Canada			11	\$531		
Europe: Greece Netherlands					110 30	\$1,500 1,606
Total					140	3, 106
Grand total			11	531	140	3, 106
LUMP O	R GROUN	D CAUSTIC	C-CALCINE	D MAGNI	ESIA	
North America: Canada			30	\$2, 375	32	\$2, 459
Europe: Austria France	83 27	\$2, 636 950	88 33	2, 815 1, 440	126	6, 791
Netherlands Switzerland		808	16	866	165 33	9, 095 1, 776 14, 353
United Kingdom Yugoslavia	7 1, 235	1, 299 44, 556	50 1, 378	9, 817 51, 240	2, 370	86, 527
Total Asia: India	1, 368 1, 070	50, 249 41, 570	1, 565 1, 955	66, 178 75, 179	2, 764 4, 945	118, 542 228, 961
Grand total	2, 438	91, 819	3, 550	143, 732	7. 741	349, 965
DEAD-BUR	NED AND	GRAIN M	AGNESIA .	AND PER	CLASE	
North America: Canada	3, 584	\$831, 949	4, 095	\$945, 995	3, 002	\$697, 320
Europe: AustriaItaly	l	2, 466, 428	61, 460 1, 653	3, 672, 000 87, 000	66, 281 7, 115	4, 091, 056 423, 946
Switzerland Yugoslavia		859, 661	19, 933 15, 551	1, 265, 796 757, 723	18, 431	3, 500 877, 479
Total	64, 628	3, 326, 089	98, 597	5, 782, 519	91, 882	5, 395, 98
Grand total	68, 212	4, 158, 038	102, 692	6, 728, 514	94, 884	6, 093, 30

¹³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 7.—Magnesium compounds imported for consumption in the United States. 1947-51 (average) and 1952-56

Bureau	Λf	tha	Canonal
Dureau	υı	orre	Consusi

Year	Oxide or calcined magnesia		Magnesium carbonate, precipitated		Magnesium chloride (anhydrous and n. s. p. f.)		Magnesium sulfate (epsom salt)		Magnesium salts and compounds, n. s. p. f. ¹		Manufac- tures of carbonate of magnesia	
	Short	Value	Short tons	Value	Short	Value	Short	Value	Short	Value	Short	Value
1947-51 (average) 1952 1953	(2) 7	\$4 496	208 182 253		5 2 319	\$619 172 9, 878				\$27, 084 139, 977 66, 479	1	\$6, 688 437 1, 500
1954 1955 1956		336 348, 598 358, 507	199	60, 133 3 58, 763		8, 082 5, 999	9, 605 11, 613	³ 226, 691 260, 275 ³ 256, 455	33 108		21	5, 135 1, 730

1 Includes magnesium silicofluoride or fluosilicate and calcined magnesium.

² 50 pounds. 3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to years before 1954.

Exports.—Magnesite, magnesia, and manufactures (except refractories) exported in 1956 were valued at \$1,951,885 compared with

\$1,883,863 in 1955, an increase of 4 percent.

The duty on crude magnesite in 1956, based on the Geneva Agreement of 1947, was 15/64 cent per pound, with a 21.1 percent ad valorem. Duty on dead-burned and grain magnesite and periclase was 23/60 cent per pound, with an ad valorem of 11.9 percent, and on caustic-calcined magnesia, 15/32 cent a pound, with an ad valorem of 20.7 percent. Duty on magnesium oxide in 1956 was 2½ cents per pound, with an ad valorem of 16.8 percent.

TECHNOLOGY

In 1956, reports published by both producers and consumers of magnesium ores and compounds indicated increasing interest in research to develop stronger basic refractories, a wider range of compounds, and more efficient mining, production, and use techniques. In October, Basic, Inc., reported that it has begun constructing a

new experiment station at the works near Maple Grove, Ohio, for use in developing an economic method for separating magnesia from

dolomite.14

In October 1956 J. T. Baker Chemical Co., Phillipsburg, N. J., opened a new laboratory designed for further research to improve the quality of reagents and chemicals, including Chemical-grade magnesium compounds.15

A report on improved drilling and blasting practice in a magnesite mine appeared in August.¹⁶ A description of a process for treating granulated olivine with chlorine gas was published; this process might lead to using this plentiful ore to produce magnesium.¹⁷

¹⁴ Brick and Clay Record, Basic, Inc., Building New Plant at Maple Grove: Vol. 129, No. 4, October

^{1986,} p. 41.

1986, p. 41.

1986, p. 41.

1996, p. 41.

1996, p. 41.

1011, Paint and Drug Reporter, Baker Research Lab Building Dedication Ceremony October 26: Vol. 170, No. 16, Oct. 15, 1956, pp. 5, 61.

19 Brammer, J. R., Drilling and Blasting Practice at Northwest Magnesite Co.: Min. Cong. Jour., vol. 42, No. 8, August 1956, pp. 76-78.

19 Bengston, Kermit B., Magnestum From Olivine via Chlorination: A Possibility: Trend in Engineering (Univ. of Washington), vol. 8, No. 1, January 1956, pp. 23-26, 35-36.

Work on the sintering or firing of high-purity magnesia to develop stronger basic refractories was discussed, and the effect upon the material of various calcining temperatures was described. ¹⁸ Several articles relating to investigations for improving the use of basic refractories in the various types of iron and steel furnaces appeared. 19 A number of articles discussed research to develop mechanical strength and elasticity of basic refractories.²⁰ Research studies on chrome-magnesite and magnesite bricks, which compared the strength and defects of the various bricks and recommended further studies of service in standard furnaces, were published.²¹

WORLD REVIEW

In 1956, estimated world production of crude magnesite increased approximately 11 percent above 1955.

NORTH AMERICA

The United States, sole producer of magnesite in North America

in 1956, reported 13 percent of world output.

Canada.—An article described the new Canadian Refractories, Ltd., plant at Marelan, Quebec. The plant capacity was said to be enough to meet the expected immediate expansion of the Canadian smelting and refining industry for several years. Plans were completed to obtain dolomitic magnesite from the nearby Kilmar mine.2

SOUTH AMERICA

Brazil.—Continued in 1956 as the only source of magnesite in South America. Harbison-Walker do Brazil, subsidiary of Harbison-Walker Refractories Co., Pittsburgh, Pa., made a technical and economic study of the extensive deposits of high-grade magnesite in the State of Ceará, with a view toward establishing a refractory industry there.²³

¹⁸ Allison, A. G., Sesler, E. C., Jr., Haldy, N. L., and Duckworth, W. H., Sintering of High-Purity Magnesia: Jour. Am. Ceram. Soc., vol. 39, No. 4, April 1956, pp. 151-154.

19 Engineering and Mining Journal, Refresher on Refractories: Vol. 157, No. 6a, Mid-June 1956, pp. 136-137. Somer, A. H., General Use of Basic Refractories in European Open-Hearth Practice: Proc. Open Hearth Conf., 1956, Cincinnati, vol. 39, pp. 57-66. Progress in the Use of Basic Checkers: Proc. Open Hearth Conf., 1956, Cincinnati, vol. 39, pp. 72-77.

Benton, O. C., Basic Refractories for Checker Service: Proc. Open Hearth Conf., 1956, Cincinnati, vol. 39, pp. 66-72.

Moore, L. S., Developments in Open-Hearth Operations: Blast Furnace and Steel Plant, vol. 45, No. 1, January 1957, pp. 48-49.

St. Pierre, P. D. S., The Fluxing of Iron-Ore Gangue by Dolomitic Limestone: Canadian Min. and Met. Bull. (Montreal), vol. 49, No. 529, May 1956, pp. 360-367.

Willbanks, Z. E., Current Electric Furnace Practices at Atlantic Steel Co.: Blast Furnace and Steel Plant, vol. 45, No. 1, January 1957, pp. 50-52.

Mackenzie, J., Basic Checkers: Refractories Jour. (London), No. 3, March 1957, pp. 100-101.

Refractories Institute Bulletin, The Slagging of Refractories and More Information on Castables: No. 7, Aug. 8, 1956, pp. 14.

Refractories Institute Bulletin, The Slagging of Refractories and More Information on Castables: No. 7, Aug. 8, 1956, p. 14.

²⁰ Rigby, G. R., and Davis, W. R., The Mechanical Strength of Silica and Basic Bricks: Refractories Jour. (London), No. 10, October 1956, pp. 482-492.

Ford, W. F., and Write, J., The Mechanical Properties of Basic Refractories at High Temperatures: Refractories Jour. (London), No. 1, January 1957, pp. 14-17.

Lakin, J. R., The Determination of the Elastic Constants of Refractories by a Dynamic Method: Refractories Jour. (London), No. 9, September 1956, pp. 447-453.

Zimmerman, William F., and Allen, Alfred W., X-Ray Thermal Expansion Measurements of Refractory Crystals: Am. Ceram. Soc. Bull, vol. 35, No. 7, July 1956, pp. 271-274.

²¹ Ford, W. F., Some Technological Implications of Fundamental Research: Refractories Jour. (London, No. 2, February 1957, pp. 80, 87.

²² Brick and Clay Record, vol. 128, No. 5, May 1956, pp. 102-103.

²³ Mining World, vol. 18, No. 8, July 1956, pp. 81-82.

TABLE 8.—World production of magnesite, by countries, 1947-51 (average) and 1952-56 in short tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America: United States	426, 083	510, 750	553, 147	284, 015	486, 088	686, 569
Total 1 3	620, 000	840, 000	880, 000	760, 000	900, 000	1, 160, 000
South America: Brazil ³ Venezuela	5, 500 2, 134	11, 000	11,000	11, 000	11,000	11,000
Total 3	7, 634	11,000	11,000	11,000	11,000	11,000
Europe: Austria Czechoslovakia Germany, West	519, 720 3 186, 600 3 7, 200	818, 200 (⁴)	895, 971 (4)	925, 007 (⁴)	1, 094, 412 (⁴)	1, 194, 502 (⁴)
Greece. Italy. Norway. Spain. Yugoslavia.	29, 338 1, 044 1, 733	87, 513 1, 130 1, 630 13, 917 41, 647	117, 879 2, 269 2, 049 16, 653 168, 121	114, 410 3, 348 915 32, 399 153, 572	66, 980 4, 527 874 29, 973 129, 114	71, 650 5, 448 3 880 32, 936 214, 260
Total 1 3	2, 200, 000	2, 800, 000	3, 100, 000	3, 100, 000	3, 200, 000	3, 400, 000
Asia: Cyprus (exports) India Korea, Republic of. Turkey Total ¹³		99, 726 362 982 330, 000	22 103, 878 386 340, 000	78, 968 1, 174 420, 000	64, 410 	94, 629 1, 102 560, 000
Africa: EgyptKenyaRhodesia and Nyasaland, Fed-	255 51					
eration of: Southern Rhodesia Tanganyika (exports) Union of South Africa	9, 284 617 13, 253	12, 072 26, 906	10, 824 64 25, 229	7, 792 87 26, 874	11, 610 367 19, 753	8, 611 272 33, 485
Total	23, 460	38, 978	36, 117	34, 753	31, 730	42, 368
Oceania: Australia New Zealand	39, 731 534	47, 193 648	51, 965 579	48, 331 807	64, 595 434	71, 248 818
Total	40, 265	47, 841	52, 544	49, 138	65, 029	72, 066
World total (estimate)1	3, 100, 000	4, 100, 000	4, 400, 000	4, 400, 000	4, 700, 000	5, 200, 000

¹ Quantities in this table represent crude magnesite mined. In addition to countries listed, magnesite is also produced in Canada, China, Mexico, North Korea, Poland, and U. S. S. R., but data on tonnage of output are not available; estimates by senior author of chapter included in total.
² This table incorporates a number of revisions of data published in previous Magnesium Compounds chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
² Estimate.
⁴ Data not available; estimate by senior author of chapter included in total.

EUROPE

More than half of the world's output of magnesite came from Austria continued as the world's leading European countries.

producer of the ore.

Austria.—The Magnesite A. G. of Radenthein completed exploring a new magnesite deposit in the area of Hochfilen/Leoben.24 describing the deposits and operations of the Austro-American Magnesite Co. at Radenthein, Carinthia, and the Veitscher Magnesite works at Trieben, Styria, were published during 1956.²⁵

Czechoslovakia.—Construction of a large magnesite-brick plant began in 1956 at Lubenik, and the first of its tunnel kilns went into operation in June. Factories were planned in 1956 for Podrecany

and Tahanovce.26

TABLE 9.—Exports of caustic-calcined magnesia from Austria, by countries of destination, 1952-56, in short tons 1 [Compiled by Corra A. Barry]

	[Comp.			•
Country		1952	1953	

Country	1952	1953	1954	1955	1956
North America: United States	300 33	82 5	98 160	64 214	185 126
Europe: Belgium-LuxembourgBulgaria	265 65	181 147	197 44	148 71	166
Ozechoslovakia Denmark France	3, 502 77 2, 946	3, 067 18 3, 090	3, 275 82 3, 297	4, 359 142 3, 785	4, 360 126 3, 595
Germany: East West.	5, 299 48, 605	3, 421 64, 440	424 70, 202	364 67, 142	327 72, 060
Hungary Italy	1, 520 2, 079 153	63 2, 441 50	437 2, 851 98	781 3, 766 33	844 3, 059 77
Netherlands Norway Poland	50	44	55	20	546
Rumania Sweden Switzerland	17 1, 339	109 55 1, 341	83 1, 436	127 2, 022	66 2, 280
Trieste United Kingdom	17 260	776 8	1, 384	1, 391	854
Oceania: Australia Other countries		39	79	23	57
Total	66, 527	79, 377	84, 202	84, 452	88, 728

¹ Compiled from Customs Returns of Austria.

²⁴ Metal Bulletin (London), No. 4135, Oct. 12, 1956, p. 21.
²⁵ Refractories Journal (London), Visit to the Austro-American Magnesite Company (Die österreichischamerikanische Magnesit Aktiengesellschaft) Radenthein, Carinthia; Visit to the Works of the Veitscher Magnesitwerke Aktiengesellschaft, Trieben, Styria: No. 11, November 1956, pp. 570-572, 574-575, 584.
²⁶ E&MJ Metal and Mineral Markets, vol. 27, No. 49, Dec. 6, 1956, p. 3.

TABLE 10.—Exports of refractory magnesia from Austria, by countries of destination, 1952-56, in short tons 12

			Barryl

Country	1952	1953	1954	1955	1956
North America:					
Canada		3, 300	1,098	PP4	00
United States	9, 005	7, 335	28, 741	551	88
South America:	0,000	1,000	20, 741	63, 477	46, 918
Argentina	728	987	1, 439	3, 264	1 040
Brazil	120	196	1, 409	3, 204	1, 342
Chile	1, 586	19	175	239	136
Peru	1,000	45	1,033	1, 305	190
Europe:		10	1,000	1, 505	
Belgium-Luxembourg	3, 132	1, 628	779	1.041	1, 255
Bulgaria	0, 102	1,020	2	1,041	1, 200
Czechoslovakia	56	429	348	463	338
Denmark	481	331	236	618	551
Finland	843	475	512	475	819
France	14, 795	12, 368	9, 065	11, 671	12, 519
Germany:	,	, 555	0,000	11,011	12,010
East	5, 364	3, 537	52	29	64
West	23, 752	21, 854	18, 409	44, 874	47, 852
Greece	106	37	83	77	128
Hungary	127	32	7.748	4,378	9, 967
Italy	13. 095	10, 993	4, 986	6, 640	9, 857
Netherlands	316	245	138	109	123
Norway	52	192	132	324	336
Poland	3,043	5, 035	5, 460		54
Rumania	1, 145	5, 917	438		
Spain		14	8	21	26
Sweden	1,682	783	832	801	1, 074
Switzerland	3, 495	559	688	1, 457	1, 555
Trieste			6		
United Kingdom	545	1, 283	2, 227	22, 508	25, 304
Yugoslavia	5, 868	709	134	138	10
Asia:					
India		742	1, 310	571	152
Japan		176		1, 126	3, 574
Turkey	77	41	19	60	63
Oceania: Australia		1	21	636	1, 196
Other countries	661	630	785	738	840
Total	90.054	70.004	00.010		
10641	89, 954	79, 894	86, 918	167, 608	166, 288

Compiled from Customs Returns of Austria.
 This table incorporates a number of revisions of data published in the previous Magnesium Compounds

Poland.—Early in 1956 the Lenin Iron & Steel Works at Nowa Huta, in the Cracow district of Poland, began operating its first dolomite kiln. When it reached full capacity, it was expected to produce more than the Lenin steel plant requirements for calcined dolomite.27

United Kingdom.—Steetley Magnesite Co. began a 40-percent expansion of facilities at Hartlepool to increase production of refractory materials to meet the growing demands of the steel industry.28

Yugoslavia.—Crude magnesite mined from the large deposits in Yugoslavia in 1956 increased 66 percent above 1955, and production of dead-burned magnesia increased 39 percent.²⁹

<sup>Refractories Journal (London), No. 3, March 1956, p. 146.
Refractories Journal (London), No. 9, September 1956, p. 464.
Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 3, September 1957, p. 30.</sup>

TABLE 11.—Exports of magnesite brick from Austria, by countries of destination, 1952–56, in short tons $^{1\ 2}$

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
South America:					
Argentina	691	801	3, 430	8, 892	3, 433
Argentina	75	229	60	639	441
Mexico		101	52	293	429
Europe:					1.5
Belgium-Luxembourg	9, 946	11, 361	7,715	9, 636	10, 377
Bulgaria	154	288		151	874
Czechoslovakia	1, 513	510	550	22	550
Denmark	2, 451	4, 347	3, 641	3, 516	4, 367
Finland	2, 039	4, 153	3, 180	3, 157	2, 369
France	30, 359	37, 947	26, 346	36, 562	49, 680
	30, 308	01, 511	20,010	00,002	20,00
Germany: East	2, 661	2,712	1, 661	815	1, 248
West	31, 211	31, 095	38, 742	46, 843	54, 015
	692	714	786	1, 218	916
Greece	5, 320	4. 405	245	137	270
Hungary	0, 320	4,400	240	iii	503
Ireland			11, 896	21, 248	27, 994
Italy Netherlands	19, 134	18, 231		3, 610	3, 782
	3, 398	3, 787	2, 987 921	1, 404	1, 430
Norway	643	1,096			1, 921
Poland	7,786	15, 558	11,662	3, 573	3, 104
Rumania	4,405	4, 974	5, 860		3, 104
Spain		563	515	302	
Sweden	10, 839	12,785	10, 899	13, 049	11, 299
Switzerland	2,077	1,595	1, 197	1,933	2,036
United Kingdom	1,645	1, 195	848	2, 344	4,608
Yngoslavia	8, 324	8, 643	5 , 3 86	1, 484	121
A cia.					100
India			517	330	700
Turkev	1, 828	2, 355	602	1,597	3, 521
Africa:	-7				
Belgium-Congo	21	132	410	329	423
British South Africa	1, 499	2, 515	1, 101		
Egypt	654	398	669	1, 123	883
Oceania: Australia	~~-	20	115	4,110	4,059
Other countries	1, 826	1,972	2,794	6, 352	4, 961
Other countries	1, 020	1,012		3,002	
m-4-1	151, 191	174, 482	144, 787	174, 780	200, 495
Total	191, 191	117, 104	133, 101	1.2,.00	

Compiled from Customs Returns of Austria.
 This table incorporates a number of revisions of data published in the previous Magnesium Compounds chapter.

TABLE 12.—Exports of magnesite, from Greece, by countries of destination, 1952-56, in short tons 12

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
FranceGermany:	2,362	1, 323	4, 850	5, 098	4, 387
East West Italy	13, 272 2, 315	11, 401 551	3, 847 2, 320	298 982 1, 654 1, 543	1, 907 2, 927 1, 325
Netherlands United Kingdom Other countries	579 82	1, 880 1, 323	2, 315 827	1, 598 882	888 10, 830
Total	18, 610	16, 478	14, 159	12, 055	22, 264

Compiled from Customs Returns of Greece.
 This table incorporates a number of revisions of data published in the previous Magnesium Compounds chapter.

TABLE 13.—Exports of calcined magnesia from Greece, by countries of destination, 1952-56, in short tons ¹

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
FranceGermany, West	8, 953	14, 370	1, 039 23, 679	1, 064 15, 710	1, 211 16, 721
Italy	11, 990	1, 687 661	24 13, 027 2, 389	20, 771 3, 146	19, 142 2, 589
Other countries	283	506	38	111	701
Total	25, 305	17, 224	40, 196	40, 802	40, 364

¹ Compiled from Customs Returns of Greece.

TABLE 14.—Exports of refractory magnesia from the Netherlands, by countries of destination, 1952-56, in short tons ¹

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Belgium-LuxembourgCzechoslovakia	507 64	444	503	386	602
Denmark Egypt	1, 293 65	995 57	825	695	670
Finland France	728 96	713 71	540 190	784 131	787 119
Germany, West_ Netherlands Antilles	10, 551 136	9, 177	9, 197	10, 546	8, 926
New Zealand Norway Postrocal	62 499	424	470	333	331
Portugal Saar Sweden	108	65	99 202	84 142	112 229
Union of South Africa.	1, 160 217	990 136	975 127	960 177	826 69
United Kingdom United States	2, 232	3, 211	3, 746	3, 727	3, 788 290
Other countries.	109	126	140	233	346
Total	17, 827	16, 409	17, 014	18, 198	17, 095

¹ Compiled from Customs Returns of the Netherlands.

ASIA

Production of magnesite was reported by two countries in Asia in 1956. Mining from India's large deposits was increased almost 50 percent above 1955.

The Union of South Africa produced 79 percent of magnesite in that continent in 1956. In September the first rotary kiln to calcine magnesite in Africa went into full production at the Olifantsfontein plant at Cullinan Refractories, Ltd.³⁰

OCEANIA

Australia reported 98 percent of the output of magnesite in this area in 1956. Both refractories and chemicals are manufactured from the ore in Australia.

^{3 (}Refractories Journal (London), No. 9, September 1956, p. 464.

Manganese

By Gilbert L. DeHuff 1 and Teresa Fratta 2

OMESTIC production of manganese ore containing 35 percent or more manganese reached 345,000 short tons in 1956, exceeding by a wide margin output in any previous year except 1918, when 343,000 tons was produced. Record prices were in effect for imported ore, a high of \$1.64 to \$1.69 nominal per long-ton unit being quoted in early December for Indian ore containing 46 to 48 percent manganese. Demand, although high with a record consumption of 2.26 million short tons, was not the prime factor in either instance. Continuation of Government purchases was largely responsible for the high production rate; higher ocean-shipping costs resulting from closing the Suez Canal were a major factor in the high price structure.

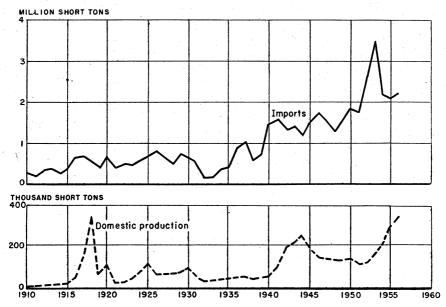


FIGURE 1.—General imports and domestic production (shipments) of manganese ore, 1910-56.

¹ Commodity specialist.
2 Statistical clerk.

TABLE 1.—Salient statistics of manganese in the United States, 1947-51 (average) and 1952-56, gross weight in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Manganese ore (35 percent or more Mn):						
Production (shipments): Metallurgical ore Battery ore Miscellaneous ore	114, 876 10, 655 132	100, 999 14, 380	139, 960 17, 576	191, 376 14, 694 58	275, 544 11, 711	341, 291 3, 444
Total shipments 1General importsConsumption	125, 663 1, 589, 101 1, 572, 122	115, 379 2, 668, 780 1, 809, 189	157, 536 3, 500, 986 2, 195, 742	206, 128 2, 165, 694 1, 740, 648	287, 255 2 2, 078, 205 2, 109, 623	344, 735 2, 238, 568 2, 264, 159
Ferromanganese: Domestic production Imports for consumption Exports	670, 106 94, 851 9, 541	758, 721 64, 095 1, 453	907, 533 126, 518 1, 112	718, 721 56, 772 1, 732	869, 977 2 65, 121 1, 789	923, 012 160, 203 2, 248
ConsumptionSpiegeleisen: Domestic productionImports for consumption	721, 885 88, 899 2, 066	796, 826 58, 666 44	931, 401 97, 729 785	716, 910 (³)	934, 451	945, 663 (3) 234
Exports Consumption Consumption	161 91, 018	69, 029	73, 512	52, 082	69, 564	62, 398

¹ Shipments are used as the measure of manganese production for compiling United States mineral production value. They are taken at the point that the material is considered to be in marketable form from the consumer's standpoint. Besides direct-shipping ore, they include without duplication the following beneficiated products made from domestic ores: Concentrates, nodules, synthetic battery ore, and synthetic miscellaneous ore.

Bureau of Mines not at liberty to publish.

DOMESTIC PRODUCTION

The Defense Minerals Exploration Administration (DMEA) continued to provide financial assistance for the exploration of domestic manganese deposits to the extent of 75 percent of approved exploration costs, the funds advanced were to be repaid from proceeds of future production.

The Government purchases on the "carlot" program for domestic Metallurgical-grade material, and under special contracts for Nevada nodules, furnished approximately three-quarters of the year's record production of domestic manganese ore containing 35 percent or more manganese.

TABLE 2.—Manganiferous raw materials shipped by producers in the United States, 1947-51 (average) and 1952-56, in short tons

		Metallu	rgical ore	٠.		Miscella	neous ore
Year	Manganese ore (35 per- cent or more Mn)	Ferrugi- nous man- ganese ore (10 to 35 percent Mn)	Manganif- erous iron ore (5 to 10 percent Mn)	Manganif- erous zinc residuum	Battery ore (35 per- cent or more Mn)	35 percent or more Mn	10 to 35 percent Mn
1947-51 (average) 1952 1953	114, 876 100, 999 139, 960	102, 900 106, 307 272, 738	1, 066, 766 902, 711 966, 652	225, 885 215, 255 293, 758	10, 655 14, 380 17, 576	132	915
1955 1955 1956	191, 376 1 275, 544 1 341, 291	61, 692 161, 946 1 140, 871	496, 505 749, 343 539, 780	214, 931 213, 370 130, 129	14, 694 111, 711 13, 444	(1) (1)	135 347 (¹)

Small tonnages of synthetic miscellaneous and/or synthetic battery ore included with metallurgical.

Shipments under the "carlot" program from Western States, in large quantity for the first time, were: 73,000 short tons, compared with only 8,100 in 1955 and 1,300 in 1954. This was a result of the close of the Wenden, Ariz., and Deming, N. Mex., Purchase Depots for low-grade ores in 1955. The "carlot" program continued to receive ore in appreciable quantities from Arkansas, Tennessee, and Virginia;

a smaller tonnage came from Georgia.

In Nevada, the leading producer among the States, Manganese, Inc., produced metallurgical nodules containing approximately 48 percent manganese from the Three Kids mine oxide ore. The Anaconda Co. produced 57-percent metallurgical nodules from Butte carbonate ore, resulting in Montana ranking second in output. Trout Mining Division, American Machine & Metals, Inc., Philipsburg, Mont., was the country's only producer of natural Battery-grade ore or concentrate. Manganese Chemicals Corp. at Riverton, Minn., using the

TABLE 3.—Metallurgical manganese ore shipped in the United States, 1947-51 (average) and 1952-56, by States, in short tons

State	1947-51 (average)	1952	1953	1954	1955	1956
Alabama Arizona Arkansas	28 198 1,769	203 2, 246	(1) 6, 123	13, 728	1, 396 23, 744	42, 00 29, 48
California Montana Nevada New Mexico	63 112, 200 25 481	3, 589 90, 772 105 2, 360	720 102, 878 18, 368	393 44, 735 (¹)	3, 136 94, 762 101, 070 1, 390	6, 59 77, 57 121, 01 22, 01
Oregon Fennessee Fexas	77	126 56	46 2, 625	11, 823	15, 895	17, 82
Jtah Virginia Washington Jndistributed ²	24 11	95 1, 011 436	8, 454 (¹) 746	22, 678 98, 019	32, 654	20, 23
Total	114, 876	100, 999	139, 960	191, 376	1, 497 275, 544	4, 55 341, 29

¹ Included with "Undistributed."

TABLE 4.—Ferruginous manganese ore shipped in the United States, 1947-51 (average) and 1952-56, by States, in short tons

State	1947-51 (average)	1952	1953	1954	1955	1956
Arizona Arkansas California Colorado	57 3, 320 205 7	896 56 76	534	(1)		
Georgia Michigan				15, 361	347	(1)
Minnesota Montana Nevada	6, 883 5, 546 7, 396	31, 502 9, 357 7, 947	201, 090 5, 598 25, 064	7, 552 5, 266 12, 870	115, 285 6, 341	94, 139 4, 752
New Mexico Oregon	74, 768	52, 934	(¹) 271	20, 546	40, 320	38, 782
UtahVirginia	3, 641 1, 990	3, 397	5, 155	97		(1)
Washington Undistributed 2		142	35, 026	135		3, 198
Total	103, 813	106, 307	272, 738	61, 827	162, 293	140, 871

Included with "Undistributed."

² Includes shipments from Missouri in 1953; from Georgia and Missouri in 1954; and from Georgia and Minnesota in 1955 and 1956.

² Includes shipments from North Carolina and Wyoming in 1953 and from Tennessee in 1954.

ammonium carbamate leach process on low-grade Cuyuna-range material, produced synthetic battery ore and synthetic miscellaneous ore in the form of high-purity manganese carbonate. Some low-grade Nevada ores were among the manganese ores used by American Potash and Chemical Corp. to produce synthetic battery ore at its Henderson. Nev., plant.

TABLE 5.—Manganiferous iron ore shipped in the United States, 1947-51 (average) and 1952-56, by States, in short tons

State	1947-51 (average)	1952	1953	1954	1955	1956
MichiganMinnesota	37, 449 1, 015, 952 13, 150	22, 095 880, 616	76, 251 890, 401	496, 505	749, 343	539, 780
Utah	1,066,766	902, 711	966, 652	496, 505	749, 343	539, 780

TABLE 6.—Manganese and manganiferous ores shipped 1 in the United States in 1956, by States

	Metall	urgical	Bat	tery		Total	
	Short	tons	Short	tons		Short ton	S
	Gross weight	Manga- nese con- tent	Gross weight	Manga- nese con- tent	Gross weight	Manga- nese con- tent	Value
Manganese ore: ² Arizona. Arkansas. California Montana Nevada. New Mexico. Tennessee. Virginia.	42,008 29,485 6,595 77,573 121,017 22,011 17,821 20,231	17, 425 12, 525 2, 947 44, 308 57, 924 9, 196 7, 246 9, 063	2, 979 4 465	1, 242 4 261	42, 008 29, 485 6, 595 80, 552 121, 482 22, 011 17, 821 20, 231	17, 425 12, 525 2, 947 45, 550 58, 185 9, 196 7, 246 9, 063	\$3, 468, 299 2, 066, 116 595, 001 (3) (4) 1, 834, 529 1, 417, 096 1, 901, 983
Total	5 341, 291	5 163, 146	5 3, 444	⁸ 1, 503	§ 344, 735	⁸ 164, 649	⁵ 26, 989, 530
Ferruginous manganese ore: 6_ Minnesota Montana New Mexico	94, 139 4, 752 38, 782	11, 232 1, 016 4, 072			94, 139 4, 752 38, 782	11, 232 1, 016 4, 072	(3) (3)
Total	7 140, 871	7 16, 908			7 140, 871	7 16, 908	(7 8)
Manganiferous iron ore: 9 Minnesota	539, 780	35, 492			539, 780	35, 492	(8)
Total	539, 780	35, 492			539, 780	35, 492	(8)

¹ Shipments are used as the measure of manganese production for compiling United States mineral-production value. They are taken at the point that the material is considered to be in marketable form from the consumer's standpoint. Besides direct shipping ore, they include without duplication the following beneficiated products made from domestic ores: Concentrates, nodules, synthetic battery ore, and synthetic miscellaneous ore.

Containing 35 percent or more manganese (natural).
 Included in total.

Included in total.
 Prorated portion of synthetic battery ore produced in Nevada from low-grade Nevada ore.
 Metallurgical ore from Georgia plus synthetic battery ore and synthetic miscellaneous ore produced in Minnesota from low-grade Minnesota ore are included in metallurgical and grand totals.
 Containing 10 to 35 percent manganese (natural).
 Includes metallurgical ore from Virginia and miscellaneous ore from Georgia.
 Combined realize for formignous manganese or plus manganiferous iron ore equals \$2,083,688.

^{**} Combined value for ferruginous manganese ore plus manganiferous iron ore equals \$3,983,688.

Containing 5 to 10 percent manganese (natural).

Low-grade manganese ores containing 10 to 35 percent manganese were shipped commercially from Georgia, Minnesota, Montana, New Mexico, and Virginia. Manganiferous iron ore, containing 5 to 10 percent manganese, was shipped only from Minnesota. Manganiferous zinc residuum continued to be produced from New Jersey zinc ores.

In addition to the above shipments that are recorded in tables 1-6 and 18 as the measure of domestic production the Government received both high- and low-grade ores and concentrates under its Butte-Philipsburg purchase program. The bulk of both high- and low-grade shipments of this category came from Montana, but Utah, Nevada, and Oregon shipped low-grade ores in that order; Nevada. California, Utah, Arizona, and Colorado shipped ore containing 35 percent or more manganese, also arranged in decreasing order. These shipments are not included in the tables and will not appear in them until shipment is made from the depots as usable ore or concentrate. As of December 31, 1956, deliveries at the different GSA depots since their opening, expressed in long-ton units of recoverable manganese. were reported by GSA as follows: Butte and Philipsburg, 3,216,657; Deming, 6,215,258 (completed figure revised); and Wenden, 6,108,316 (completed). The quota for each of these 3 programs was 6 million recoverable long-ton units. Total deliveries on the "carlot" program since its inception in 1952 were 10,538,173 long-ton units of contained manganese or almost double that accrued at the beginning of the year. In July, Revision 1, Amendment 6, to the regulations for the "carlot" program increased its quota from 19 million to 28 million long-ton units of contained manganese, advanced its terminal date to January 1, 1961, and extended the final registration date for participating in the program to June 30, 1958. In October, the regulations were made more specific by Revision 1, Amendment 7, chiefly about participating in the program, deliveries, and acceptance as they concerned the 10,000-ton annual limitation and identification of the source of ore or concentrate.

CONSUMPTION AND STOCKS

In spite of a steel strike lasting all of July and into August, consumption of manganese ore was the highest on record. Domestic sources supplied 3 percent and foreign sources supplied 97 percent of total manganese ore consumed, compared with 2 and 98 percent, respectively, in 1955 and 1954; 4 and 96 percent in 1953. Of the total, 1 percent was consumed in manufacturing dry-cell batteries, 1 percent in manufacturing chemicals, and the remaining 98 percent by the metal industries. Industrial stocks of ore, at 1.27 million short tons, again decreased.

The consumption of manganese as ferroalloys and directly charged ore per short ton of open-hearth, bessemer, and electric steel produced was 13.2 pounds compared with 12.8 pounds in 1955. Of the 13.2 pounds, 11.8 pounds was in the form of ferroman anese, 1.1 pound silicomanganese, 0.2 pound spiegeleisen, and 0.1 pound ore and manganese metal. These data apply to the consumption of manganese in producing steel ingots and that part of steel castings made by companies that also produce steel ingots. The companies reporting in this part of the survey approximate those reporting steel production

TABLE 7.—Manganiferous raw materials available for consumption in the United States in 1956

	Ore conta percent M	or more	contain	residuum ing 10 to ent Mn	Ore containing 5 10 percent Mn		
	Short tons	Mn content (percent)	Short tons	Mn content (percent)	Short tons	Mn content (percent)	
Domestic mine shipments Imports for consumption	344, 735 2, 219, 326	47. 76 45. 33	271, 000 159, 943	12. 64 20. 97	539, 780	6. 58	
Total available for consumption	2, 564, 061	45. 66	430, 943	15. 73	539, 780	6. 58	

TABLE 8.—Consumption of manganese ore and manganese alloys in the United States, 1955–56, and stocks Dec. 31, 1956, gross weight in short tons

	Quantity	consumed	Stocks Dec. 31, 1956 ¹ (in-
Category of use and form in which consumed	1955	1956	cluding bonded warehouses)
Manganese alloys and manganese metal:			•
Manganese ore: DomesticForeign	42, 469 1, 975, 130	63, 561 2, 111, 064	5, 228 1, 229, 422
Total manganese oreFerromanganese, silicomanganese and manganese metal	2, 017, 599	2, 174, 625	1, 234, 650
Ferromanganese, silicomanganese and manganese metal			72, 996 6, 607
Manganese ore: Domestic	11		6
Foreign	10	550	153
Total manganese oreFerromanganese:	L .	550	159
High-carbon Medium-carbon Low-carbon	70 070	816, 591 64, 773	123, 175 16, 104
Total ferromanganese	<u>`</u>	881, 364 52, 166	139, 279 19, 245
Spiegeleisen		98, 383	17, 629
Manganese metal Steel castings: 8	3, 341	6, 706	1, 307
Manganese ore: Domestic Foreign	114 88	171	197
Total manganese oreFerromanganese:	202	171	197
High-carbon Medium-carbon	23, 516 3, 414	27, 688 3, 743	7, 447 1, 242
Low-carbon	. J		
Total ferromanganese	2, 936	31, 431 3, 522 11, 573	8, 689 1, 133 3, 096
Manganese briquets	1,426	1, 050 377	241 303
Manganese ore: Domestic Foreign		3, 763 19, 504	2, 662 9, 680
Total manganese ore	28, 358	23, 267	12, 342
Manganese ore: DomesticForeign	1, 628 32, 705	1, 510 30, 853	125 17, 407
Total manganese ore	34, 333	32, 363	17, 532
See footnotes at end of table.			

TABLE 8.—Consumption of manganese ore and manganese alloys in the United States, 1955-56, and stocks Dec. 31, 1956, gross weight in short tons—Continued

	Quantity	consumed	Stocks Dec. 31, 1956 1 (in-
Category of use and form in which consumed	1955	1956	cluding bonded warehouses)
Chemicals:			
Manganese ore:		-	
Domestic.	27	731	
Foreign	29, 083	32, 452	9, 170
Total manganese ore	29, 110	33, 183	9, 170
Miscellaneous products:			
Forromengeness.	F		
High-carbon	4 31, 849	25, 822	4,979
Medium-carbon	4 4, 933	7,046	1, 579
Low-carbon	} -4,500	7,020	1,000
Total ferromanganese	4 36, 782	32, 868	6, 558
Spiegeleisen	6, 147	6,710	2, 410
Silicomanganese	4 7, 403	15, 865	2,090
Manganese briquets	⁴ 12, 204	14,000	3, 533
Manganese metal	4 922	1,810	840
Grand total:			
Manganese ore:			1 4
Domestic	46, 213	69, 565	8,02
Foreign	2, 063, 410	2, 194, 594	1, 266, 035
Total manganese ore	5 2, 109, 623	5 2, 264, 159	6 1, 274, 056
Ferromanganese:			
High-carbon	854, 025	870, 101	135, 601
Medium-carbon	80, 426	75, 562	18, 925
Low-carbon) 00, 20		10,020
Total ferromanganese	934, 451	945, 663	7 154, 526
Spiegeleisen	69, 564	62, 398	29, 398
Silicomanganese	111, 983	125, 821	7 22, 818
Manganese briquets	13, 694	15,050	7 3, 774
Manganese metal Producers stocks ferromanganese, silicomanganese, and manga-	4, 497	8, 893	7 2, 450
Producers stocks ferromanganese, silicomanganese, and manga-			
nese metal			72, 996

1 Excluding Government stocks.

Excludes small tonnages of dealers' stocks.
 Excludes producers' stocks.

to the American Iron and Steel Institute. If the manganese consumed by companies that produce only steel castings is also included, the manganese consumed in manufacturing steel in 1956 becomes 13.9 pounds per short ton of steel produced, of which 12.2 represents ferromanganese, 1.3 silicomanganese, 0.2 spiegeleisen, and 0.2 ore,

metal, and briquets.

Electrolytic Manganese and Manganese Metal.—Largely because of increased use in producing stainless steels, electrolytic manganese metal again doubled in consumption over the previous year. March, Electro Manganese Corp. became a division of Foote Mineral Co. Electrolytic manganese continued to be produced in its two plants at Knoxville, Tenn., and by Electro Metallurgical Co., Division of Union Carbide & Carbon Corp., at Marietta, Ohio. The latter company also produced electric-furnace metal. In July, Foote Mineral Co. announced a \$2-million expansion of its production facilities at Knoxville to be started at that time for completion in early 1958. This increase of 7 million pounds per year will bring Foote's total

Excluding covernment stocks.
 Includes only that part of eastings made by companies that also produce steel ingots.
 Excludes companies that produce both steel castings and steel ingots.
 Obtained by sampling.
 The greater part of ore consumption was used in manufacturing ferromanganese and silicomanganese. Combining consumption of ore with that of ferromanganese and silicomanganese would result in duplication.

annual electrolytic-manganese capacity to 22 million pounds and that of the Nation to approximately 34 million.

Most electrolytic manganese used outside the steel industry was consumed by the nonferrous metal industry and in manufacturing chemicals, pharmaceuticals, welding rods, and welding-rod coatings. Ferromanganese.—Production of ferromanganese in the United

Ferromanganese.—Production of ferromanganese in the United States was 923,000 short tons in 1956, compared with 870,000 short tons in 1955. The following plants were active producers during the year: The Anaconda Co., Anaconda and Black Eagle, Mont.; Bethlehem Steel Co., Johnstown, Pa.; Electro Metallurgical Co., Division of Union Carbide & Carbon Corp., Alloy, W. Va., Ashtabula, Ohio, Marietta, Ohio, Niagara Falls, N. Y., Portland, Oreg., and Sheffield, Ala.; E. J. Lavino & Co., Reusens, Va., and Sheridan, Pa.; Ohio Ferro-Alloys Corp., Philo, Ohio; Tennessee Products & Chemical Corp., Chattanooga, Tenn., and Rockwood, Tenn. (a midyear change in location of ferromanganese operations); Tenn-Tex Alloy & Chemical Corp., Houston, Texas; and United States Steel Corp., Ensley, Ala., and Clairton and Duquesne, Pa. The quantity made in blast fur-

TABLE 9.—Ferromangansee imported into and made from domestic and imported ores in the United States, 1955-56

	195	5	195	6
	Gross weight (short tons)	Mn con- tent (short tons)	Gross weight (short tons)	Mn con- tent (short tons)
Ferromanganese: ¹ Made in United States: From domestic ore ² From imported ore ²	27, 583 842, 394	22, 016 648, 149	40, 125 882, 887	32, 166 677, 729
Total domestic productionImported	869, 977 3 65, 121	670, 165 3 52, 236	923, 012 160, 203	709, 898 123, 958
Total ferromanganese	3 935, 098	³ 722, 401	1, 083, 215	833, 848
Open-hearth, bessemer, and electric 4 furnace steel produced	117, 036, 085		115, 216, 149	

¹ Number of domestic plants making ferromanganese: 1955, 18; 1956, 18.

TABLE 10.—Ferromanganese produced in the United States and metalliferous materials consumed in its manufacture, 1947-51 (average) and 1952-56

	Ferron	nanganese j	produced	Materials	consumed (s	short tons)	Manganese
Year	Short tons	Mangane	se contained	Manganese percent o natural)	ore (35 r more Mn	Iron and manganif- erous iron	ore used per ton of ferroman- ganese 1 made
		Percent	Short tons	Foreign	Domestic	ores	(short tons)
1947-51 (average) 1952 1953 1954 1955	670, 106 758, 721 907, 533 718, 721 869, 977 923, 012	77. 58 76. 94 76. 74 75. 04 77. 03 76. 91	519, 839 583, 731 696, 436 539, 364 670, 165 709, 895	1, 213, 394 1, 364, 618 1, 829, 382 1, 412, 030 1, 924, 643 2, 025, 678	103, 920 83, 614 75, 594 31, 351 1 46, 936 63, 561	4, 295 18, 227 31, 562 8, 404 1, 594 283	1. 966 1. 909 2. 099 2. 008 1 2. 022 2. 264

¹ For 1955, includes ore used manufacturing silicomanganese and manganese briquets.

² Estimated.

<sup>Revised.
Includes crucible.</sup>

naces was 1% times that of electric furnaces. Shipments of ferromanganese from producing furnaces increased 4 percent in quantity and 21 percent in value from 1955. Manganese ore consumed in manufacturing ferromanganese totaled 2,089,000 short tons in 1956, 3 percent was of domestic origin and 97 percent foreign.

TABLE 11.—Manganese ore used in manufacture of ferromanganese ¹ in the United States, 1952-56, by source of ore

	195	2	195	3	195	4	195	5 1	195	6
	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)
Domestic Foreign: Africa Africa Brazil Chile Cuba India Indonesia Mexico New Caledonia Philippines Turkey U.S. S. R. Other	83, 614 510, 452 118, 842 12, 586 136, 436 477, 428 8, 291 51, 571 12, 092 7, 064 16, 053	45. 59 40. 03 47. 21 39. 82 46. 03 43. 77 40. 84 46. 35 41. 19 39. 90	637, 934 192, 280 36, 456 172, 700 716, 568 6, 763 42, 675 40 8, 586 8, 586 8, 382	45. 85 40. 20 43. 95 39. 89 44. 51 44. 48 41. 99 47. 50 41. 52 45. 76 45. 87 47. 63	397, 153 123, 234 10, 516 144, 870 637, 475 6, 988 54, 969 4, 943 591 8, 200	40. 23 43. 44 39. 85 46. 10 44. 86 42. 00 46. 83 44. 50 45. 73	586, 602 138, 276 24, 707 253, 271 817, 710 9, 198 60, 889 2, 179 105 11, 176	47. 21 41. 07 44. 12 40. 25 45. 31 45. 34 44. 00 45. 57 39. 05 46. 41	668, 826 219, 712 10, 663 291, 498 679, 306 	46. 26 39. 76 45. 31 39. 34 44. 38 44. 94 47. 00 43. 66 42. 99 45. 16

¹ For 1955, includes silicomanganese and manganese briquets.

TABLE 12.—Ferromanganese shipped from furnaces in the United States, 1947-51 (average) and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947–51 (average)	672, 237 738, 088 900, 110	\$ 98, 990, 458 133, 996, 006 185, 192, 588	1954	707, 415 886, 886 925, 450	\$139, 157, 801 172, 863, 154 209, 412, 426

Silicomanganese.—Eleven plants compared with 13 in 1955 produced silicomanganese in 1956, namely: Electro Metallurgical Co., Division of Union Carbide & Carbon Corp., Alloy, W. Va., Ashtabula, Ohio, Marietta, Ohio, Niagara Falls, N. Y., Portland, Oreg., and Sheffield, Ala.; Globe Metallurgical Corp., Beverly, Ohio; Ohio Ferro-Alloys Corp., Philo, Ohio; Pittsburgh Metallurgical Co., Calvert City, Ky., and Charleston, S. C.; and Vanadium Corp. of America, Niagara Falls, N. Y. Consumption of silicomanganese was 13.3 percent that of ferromanganese, compared with 12.0 percent in 1955, 11.2 percent in 1954, and 12.2 percent in 1953.

Spiegeleisen.—Spiegeleisen was produced at only two plants in 1956: New Jersey Zinc Co., Palmerton, Pa., and United States Steel Corp., Ensley, Ala.

Manganiferous Pig Iron.—Pig-iron furnaces used 1,304,000 short tons of manganese-bearing ores containing (natural) over 5 percent

manganese in 1956. Of this total, 553,000 tons was of domestic origin, and 751,000 tons, foreign. Of the domestic ore used, 518,000 tons contained (natural) 5 to 10 percent manganese; 31,000 tons contained 10 to 35 percent manganese, and 4,000 tons contained more than 35 percent manganese. Of the foreign ore used, 619,000 tons contained (natural) 5 to 10 percent manganese, 113,000 tons contained (natural) 10 to 35 percent manganese, and 19,000 tons contained 35 percent or more manganese.

Battery and Miscellaneous Industries.—Manufacturers of dry-cell batteries during 1956 used 32,000 short tons of manganese ore; 1,500 tons was of domestic origin. Chemical plants used 33,000 tons, 2 percent of which was from domestic sources. All of the above ore

contained (natural) over 35 percent manganese.

TABLE 13.—Foreign ferruginous manganese ore and manganiferous iron ore consumed in the United States, 1953-56, in short tons

Source of ore	Fe	rruginous	manganese	ore	N	Ianganifer	ous iron or	е
bourse of ore	1953	1954	1955	1956	1953	1954	1955	1956
Canada Egypt	1 130, 116	128, 102 1, 033	102, 070	1 113, 062		408, 467	408, 292	618, 998
GreeceIndia	130, 116	129, 191	102, 070	113, 062		408, 467	408, 292	618, 998

¹ Includes 626 short tons in 1953 and 129 short tons in 1956 from unidentified sources in Africa.

PRICES

Manganese Ore.—Government prices for domestically mined manganese ore meeting specifications and regulations remained on the basis of \$2.30 per long-dry-ton unit for 48 percent of either con-Commercial prices for Indian tained or recoverable manganese. manganese ore of 46- to 48-percent manganese content as quoted by E&MJ Metal and Mineral Markets opened the year at $\$1.1\overline{2}$ to $\$1.1\overline{7}$ per long-ton unit of manganese, c. i. f. United States ports, duty extra, and in early December after much confusion reached a high of \$1.555 to \$1.605 nominal, exclusive of Indian export duty, or \$1.64 to \$1.69 nominal including that duty. The latter quotes were stated to have continuity with previous quotations and remained to the close of the year. The double basis first appeared in late October. High ocean-freight rates resulting from closing of the Suez Canal, imposition of an Indian export tax effective September 1, entry of the State Trading Corp. into the Indian manganese-ore business, and high demand all contributed to the high prices. The weighted average price for the year of \$1.34 @ \$1.38 (including Indian export duty) was the highest yearly average of record. Long-term contracts for ore from various sources were given for the first half of January as 94 to 96 cents, nominal, c. i. f. United States ports, duty extra; and quoted only as nominal for the remainder of the year. Chemical-grade ore, f. o. b. Philadelphia, as quoted by E&MJ Metal and Mineral Markets, opened the year at \$96 per ton, minimum 84 percent manganese dioxide, in carlots, in drums; \$90.50 in burlap bags. These quotes increased in September to end the year at \$113.00 and \$108.50, respectively. Duty on manganese ore remained at ½ cent per pound of contained manganese. Continuing exceptions were that ore from Cuba and the Republic of the Philippines was exempt from duty and that ore from the U. S. S. R. and certain neighboring countries was dutiable at 1 cent per pound of contained manganese.

Manganese Alloys.—The average value, f. o. b. producers' furnaces for ferromanganese shipped during 1956 was \$226.88 per short ton, compared with \$194.91 in 1955. The price of ferromanganese at eastern furnaces, carlots, was 10.25 cents per pound of alloy at the beginning of the year, rising 3 times in the year to close at 12.75 cents per pound. According to Iron Age, the selling price of ferromanganese in carlots at eastern centers averaged 10.95 cents per pound for the year; spiegeleisen of 19- to 21-percent manganese content, averaged \$95.08 per long ton, beginning at \$91.50 and closing at

\$99.50.

Manganese Metal.—Electrolytic-manganese metal was quoted at the end of the year by E&MJ Metal and Mineral Markets at 33 cents per pound in carlots, 35 cents per pound in ton lots. This price reflected 2 increases after first-quarter prices of 30 and 32 cents, respectively. A premium of 0.75 cents per pound applied to hydrogen-removed metal throughout the year.

FOREIGN TRADE 3

Imports of manganese ore in 1956 increased over those of 1955 but the average grade, 45.4 percent manganese, was lower than the 46.3-percent (revised figure) manganese of 1955. India continued to be the leading supplier, providing 29 percent of the total ore received in 1956. India, Gold Coast, Union of South Africa, Cuba, and Brazil, in that order supplied three-fourths of total United States imports for the year; Mexico, 8 percent; and Belgian Congo, 7 percent.

Imports for consumption of ferromanganese in 1956 increased 146 percent over those in 1955; value increased 140 percent. Exports of ferromanganese increased 26 percent to 2,248 short tons. Exports of manganese ore and concentrate (10 percent or more manganese)

totaled 6,133 short tons valued at \$664,276.

Both ferromanganese and manganese ore were among the commodities for which the Commodity Credit Corporation had contracts for barter of surplus United States agricultural products.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 14.—Manganese ore (35 percent or more Mn) imported into the United States, 1955-56, by countries

[Bureau of the Census]

	2	neral import	General imports 1 (short tons)	(81			Imports for 6	Imports for consumption	8	
Constitution	·			ì		Short tons	tons		Value	110
Country	Gross weight	weight	Mn ec	Mn content	Gross weight	veight	Mn c	Mn content		
	1955	1956	1955	1956	1955	1956	1955	1956	1955	1956
North America: Canada. Ouba. Mexico	271, 733	242, 036 171, 201	117, 312	58 104, 356 78, 131	271, 733 \$ 113, 589	237, 189 182, 632	117, 312	102, 126 83, 087	\$7, 217, 124 2, 949, 369	\$6, 290, 743 5, 846, 807
Total	343, 247	413, 366	149, 249	182, 545	\$ 385, 322	419, 821	166, 548	185, 213	10, 166, 493	12, 137, 550
South America: Argentina Brazil Chilo. Peru	4, 725 164, 049 8, 311 5, 559	237, 219 13, 353 8, 284	2, 079 69, 869 3, 750 2, 438	99, 624 6, 014 3, 634	4, 725 138, 120 35, 632 6, 734	236, 515 19, 550 10, 332	2, 079 60, 061 16, 621 2, 985	99. 296 8, 959 4, 548	142, 200 4, 365, 605 1, 429, 923 142, 223	7, 249, 508 712, 306 231, 189
Total	182, 644	258, 856	78, 136	109, 272	185, 211	266, 397	81, 746	112, 803	6, 079, 951	8, 193, 003
Europe: Greece Portugal	2, 969	5, 818	1, 425	2, 722	1, 997 6, 590	6, 714 3, 335	960 3, 192	3,177 1,600	70, 658 308, 917	255, 139 130, 875
Total	2,969	5,818	1, 425	2,722	8, 587	10,049	4, 152	4,777	379, 575	386,014
Asia: Burma. India. Indonesia. Portuguese Asia, n. e. c. Turkey.	\$ 689, 423 4, 389 1, 120 10, 051 17, 791	648, 558 7, 201 21, 308 4, 290	\$ 323, 252 2, 097 538 4, 185 8, 446	289, 551 3, 571 9, 280 1, 927	821, 030 4, 411 1, 120 27, 107	650, 528 7, 201 2, 910 4, 290	382, 271 2, 084 538 12, 721	293, 930 3, 571 1, 432 1, 927	46, 025 22, 335, 249 91, 192 37, 000 947, 203	17, 339, 742 210, 252 102, 600 126, 231
Total	\$ 722, 774	681, 357	\$338, 518	304, 329	854, 196	664, 929	397, 911	300, 860	23, 456, 669	17, 778, 825

, 188, 593 463, 562 , 664, 142 7, 156, 428	299, 778 967, 280 226, 624 9646, 432 6, 951, 501	392, 849 31, 230, 958	322, 885 22, 672	345, 557	69, 821, 094 69, 726, 350
	14, 629 4, 148, 552 13, 4, 875 121, 682 5, 6	403, 587 29,			1,007,240 69,8
19, 239 66, 655	\$ 146, 576 2, 729 96, 459	\$ 391, 081	5, 298 416	5, 714	1,047,152
11, 487 160, 867 1, 793	34 87, 387 308, 831 10, 227 280, 638	861, 264			2, 222, 460
41, 926 131, 981	114, 999 301, 182 5, 427 223, 613	819, 128	10, 395 1, 008	11, 403	\$ 2, 263, 847
7, 258 103, 440 860	14 46, 666 140, 525 4, 875 111, 125	414, 763	3, 232	3, 232	1,016,863
4 29, 553 83, 008	49,815 115,286 2,729 109,536	\$ 389, 927	5, 298	5, 298	\$ 962, 553
15, 295 206, 850 1, 793	95, 210 288, 062 10, 227 255, 738	873, 209	5, 962	5, 962	2, 238, 568
4 62, 621 164, 355	99, 193 232, 488 5, 427 252, 092	816, 176	10, 395	10, 395	\$ 2,078,205
Africa: Angola. Begian Congo. British Bast Africa.	Egypt. Prench Morocco Gold Coast. Rhodesia, Federation of and Nyasaland Union of South Africa	Total	Oceania: British Western Pacific Islands French Pacific Islands	Total	Grand total 8

Comprises ore received in the United States during year; part went into consumption, and remainder entered bonded warehouses.
 Comprises receipts during year for consumption and ore withdrawn from bonded warehouses during year; excludes imports for manufacture in bond and export.

* Revised.

* Appreciable part believed to have originated in Belgian Congo.

* In 1956, receipts of ore classified as Battery and Chemical grades totaled 116,760

short tons, averaging 54.2 percent manganese, or 85.7 percent manganese dioxide. Of this quantity, 7690 short tons eame from the Gold Coast, 25.1.7 from French Morveco, 14,538 from Chuba, 2,738 from Greece, 998 from Beglam Congo and 428 from Peru. Imports for consumption of Battery and Chemical grede in 1956 totaled 81,068 short tons valued at \$4,234,596 or \$22,48 per short ton f. o. b. foreign ports. Of the total, Gold Coast supplied 41,168 short tons valued at \$2,385,501; French Morocco, 17,927 tons at \$605,755; Chuba, 14,538 tons at \$609,277; Greece, 5,706 tons at \$224,389; Belgian Congo, 998 tons at \$51,537; and Peru, 428 tons at \$20,557.

TABLE 15.—Ferromanganese imported for consumption in the United States, 1954-56, by countries

[Bureau of the Census]

		1954			1955			1956	
Country	Gross weight (short tons)	Mn con- tent (short tons)	Value	Gross weight (short tons)	Mn con- tent (short tons)	Value	Gross weight (short tons)	Mn con- tent (short tons)	Value
North America: Canada Mexico	1, 737	1, 315	\$339, 226	1, 142 160	926 122	\$311, 889 21, 533	3, 761 4, 996	2, 897 3, 832	\$694, 371 702, 722
TotalSouth America: Chile	1, 737 336	1, 315 264		1, 302 4, 959				6, 729 1, 861	1, 397, 093 392, 310
Europe: Belgium-Luxem- bourg France Germany, West Norway Yugoslavia	18, 194 15, 726 17, 180 524	11, 794 14, 078	2, 808, 175	128 1 23, 511	119, 357	57, 041 1 5, 031, 651	77, 095 11, 597	17, 149 58, 672 9, 901	3, 831, 150 12, 920, 697 2, 596, 373
TotalAsia: Japan	51, 624 3, 075		9, 937, 637 585, 467						20, 111, 470 6, 610, 817
Grand total	56, 772	44, 744	10, 902, 830	¹ 65, 121	¹ 52, 236	¹ 11, 898, 383	160, 203	123, 953	28, 511, 690

¹ Revised figure.

TABLE 16.—Spiegeleisen ¹ imported for consumption in the United States, 1947–51 (average) and 1952–56

[Bureau of the Census]

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average) 1952 1953	2,066 44 785	\$112, 095 3, 658 63, 149	1954–55 1956	234	\$18, 085

¹ Exclusive of spiegeleisen containing not more than 1 percent carbon.

TABLE 17.—Ferromanganese exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Gross weight (short tons)	Value	Year	Gross weight (short tons)	Value
1947–51 (average)	9, 541 1, 453 1, 112	\$1, 501, 813 474, 686 389, 064	1954	1, 732 1, 789 2, 248	\$614, 544 642, 806 682, 257

TECHNOLOGY

The Symposium on Manganese Deposits, 20th Session, International Geological Congress, held in Mexico City in September, provided approximately 90 papers on the geology of the world's manganese deposits.⁴

⁴ XX Congreso Geologico Internacional, Symposium Sobre Yacimientos de Manganeso, 1956, 5 vols.

At a meeting in August in Leningrad, U. S. S. R., the International Organization for Standardization (ISO) Technical Committee 65— Manganese Ores considered recommendations for standardizing the sampling of manganese ore loaded in freight cars, and for standard-

izing the chemical analysis of manganese ores.

Manganese oxide pellets having excellent physical structure, analyzing 54 percent manganese, 1.9 percent iron, and 0.01 percent sulfur, were produced in a 6-inch-diameter shaft furnace by the Bureau of Mines at the North Central Experiment Station, Minneapolis, Minn., using the differential high-temperature sulfatization (sulfur dioxide-air roast) process developed there in a continuing pilot-plant study. Manganiferous carbonate slate analyzing approximately 7 percent manganese and 28 percent iron, obtained from the Cuyuna range of Minnesota, was the raw material used in this work.

The Bureau's Eastern Experiment Station, College Park, Md., continued experimenting with the chloride-volatilization process for extracting manganese from Aroostook County, Maine, siliceous manganiferous material, which analyzed approximately 11 percent manganese and 27 percent iron. The process as developed in its most promising form consisted essentially of two steps: (1) roasting with hydrochloric acid gas, followed by condensation of the chlorides formed; and (2) conversion of the condensed chlorides to oxides, with regeneration of the reagent. A report 5 described progress of this work using a modified 1-pound-per-hour shaft furnace to produce the chlorides. Another report 6 describing preliminary batch-fluidization tests concluded that chloridization in a fluidized bed appeared possible

provided conditions are carefully controlled.

From reconnaissance of 25 percent of the Batesville district of Arkansas, the Bureau estimated, for the area covered, an indicated and inferred reserve of 59 million long tons of manganiferous limestone and shale averaging 4.9 percent manganese, and 12 million long tons of manganiferous clays and placer averaging 6.8 percent manganese.7 As the survey continued through the year substantial additional reserves were found, suggesting that this Arkansas manganiferous limestone is 1 of the 5 most important potential domestic manganese resources.8 Mineral-dressing studies of the Bureau's Mississippi Valley Experiment Station, Kolla, Mo., obtained concentrate meeting national stockpile specifications for Metallurgical-grade ore from manganiferous limestone having an average manganese content of approximately 5 percent. Recoveries were low, however, owing largely to the intimate association of the manganese minerals with the gangue.

Results of mineral-dressing studies of manganese deposits of the Mena district of West Central Arkansas were not encouraging, although concentrate meeting national stockpile specifications was obtained in certain instances. Manganese ore occurs in the Mena

^{**} MacMillan, R. T., and Turner, T. L., Development of a Chloride Volatilization Process for Manganese Ores From Aroostook County, Maine—Progress Report: Bureau of Mines Rept. of Investigations 5281, 1956, 31 pp.

** Skow, M. L., Kirby, R. C., and Conley, J. E., Chloridization of Maine Manganese Ore, Preliminary Batch-Fluidisation Tests on Maple Mountain-Hovey Mountain Samples: Bureau of Mines Rept. of Investigation 5271, 1956, 29 pp.

** Kline, H. D., and Ryan, J. P., Manganese Resources of the Batesville District, Arkansas—Interim Report 1: Bureau of Mines Rept. of Investigations 5206, 1956, 33 pp.

**DeHuff, Gilbert L., Manganese: Mineral Facts and Problems: Bureau of Mines Bull. 556, 1956, p. 496.

district as nodules, pockets, and fracture fillings of oxide minerals. chiefly pyrolusite and psilomelane, scattered through novaculite, a hard fine-grained quartzose rock. Iron oxides frequently accompany the manganese.9

Investigation of manganiferous quartzite and jasperoid breccia formations in Johnson County, Tenn., was reported. The manganiferous material, where examined, was low grade, with little vertical extent.10

Reports also were published of investigations of the manganese deposits of the Tombstone district of Arizona 11 and the Black Wonder manganese deposits of California.¹²

Manganese, Inc., Henderson, Nev., continued processing oxide manganese ore from the Three Kids deposit by means of oil-emulsion flotation followed by nodulizing. The ore was mined at a 15-percentmanganese cutoff and blended to maintain a grade of 21.5 to 22.5 percent manganese and to control the content of sulfates, lead, and This was fed to the mill at a rate of about 1,200 tons per day, and ratio of ore to concentrate was 21/2:1. Reagent consumptions were high. As an example those for January 1955 in pounds per ton of ore were as follows: Diesel fuel, 163.55; soap skimmings, 77.51; oronite slurry, 10.11; and sulfur dioxide, 9.18. After addition of petroleum coke and soda ash, the flotation concentrate was fed to 2 oil-fired 8- by 150-foot calcine kilns in which the flotation reagents and combustible material were burned or driven off. The hot calcine was dropped to the 10- by 150-foot nodulizing kiln, having an enlarged zone near its discharge end. Lead was fumed off as an oxide; some combined with the sulfur dioxide, freed from contained gypsum, to form lead sulfates. The nodule product met the following specifications: Minimum manganese, 45 percent; maximum copper, lead, and zinc, 1 percent; maximum minus-20-mesh material, 5 percent; and maximum combined silica plus alumina, 15 percent. 13

New and improved methods, employing helium gas, were announced ¹⁴ for preparing virtually 100 percent pure manganese-bismuth in powder form for compacting with a plastic binder into highly magnetic permanent magnets. The magnets could be readily formed into any shape desired, had high coercive force, and were not Their resistance to affected adversely by external magnetic fields. demagnetization was 10 times greater than most commercial magnets and they were nonconductors of electricity. It was stated that although the use of manganese-bismuth for permanent magnets was not new, 15 earlier work did not attain sufficient purity to realize the full potential of the application.

⁹ Fine, M. M., and Frommer, D. W., A Mineral-Dressing Study of Manganese Deposits of West-Central Arkansas: Bureau of Mines Rept. of Investigations 5262, 1956, 21 pp.

¹⁰ Hickman, R. C., Brecciated Manganese Deposits in Johnson County, Tenn.: Bureau of Mines Rept. of Investigations 52640, 1956, 14 pp.

¹¹ Needham, A. B., and Storms, W. R., Investigation of Tombstone District Manganese Deposits, Cochise County, Ariz.: Bureau of Mines Rept. of Investigations 5188, 1956, 34 pp.

¹² Volin, M. E., Matson, E. J., and Trengove, R. R., Investigation of the Black Wonder Manganese Deposits, Santa Clara and Stanislaus Counties, Calif.: Bureau of Mines Rept. of Investigations 5254, 1956, 18 pp.

Deposits, Santa Ciara and Stanishaus Counties, Caim. States of Technology, Physics 1956, 18 pp.

18 Johnson, A. C., and Trengove, Russell, R., The Three Kids Manganese Deposit, Clark County, Nev.: Exploration, Mining, and Processing: Bureau of Mines Rept. of Investigations 5209, 1956, 31 pp.

McCarroll, S. J., Cyclone Classification and Thickening at Manganese, Inc.: Min. Cong. Jour., vol. 42,
No. 7, July 1956, pp. 50-51.

Kendrick, W. L., Nodulizing Practice at Manganese, Inc.: Min. Eng., vol. 8, No. 11, November 1956, pp. 1103-1109.

14 American Metal Market, vol. 63, No. 116, June 19, 1956, pp. 1, 13.

18 Renick, Abbott, Bismuth; Minerals Yearbook, vol. 1, 1952, p. 217.

A process under study by Armour Research Foundation for recovering manganous chloride from open-hearth steel slags by fusing the slag with coke and calcium chloride in an arc furnace was reported to

be technically successful but not attractive economically.16

After 2 years of continuous use, special aluminum-manganese-alloy buckets used in conveying coal and coke at an English gasworks were in excellent condition, where as the effective life of steel buckets has been less than 3 years. These alloy buckets showed no corrosion, little denting, and apparently little abrasion. They were also lightweight, an advantage suggesting economy in power consumption. Electrochemical action between the alloy of the bucket and the malleable iron of the supporting frame was prevented by a coating of zinc chromate.¹⁷

Acceptance of 201-type manganese-bearing stainless steel for use in manufacturing automotive piston rings suggests a possible important new market for this type of alloy steel. Rings made of 201 steel were said to be better than those made of high-nickel 301 steel because they retained tensile strength over a longer period and had a harder surface. They can be made to precise specifications, require only a low-temperature stress-relieving operation, hold up well under operating conditions, and give better oil mileage than conventional rings made of carbon steel. The American Iron and Steel Institute reported production of 19,000 short tons of the manganese-bearing type 201–202 stainless steels in 1956, compared with 1,900 short tons in 1955, the first year reported. The compared with 1,900 short tons in 1955, the first year reported.

WORLD REVIEW

A brief review of the development of the world's principal sources and trade patterns for manganese ore was published.²⁰ Except for U. S. S. R., the principal centers of consumption historically have not had good deposits of manganese ore. The U. S. S. R., India, and Brazil, long important producers, are still among the foremost suppliers and potential suppliers of the world market, but other countries, notably in Africa, have become strong competitors. Discoveries of new deposits of high-grade ore and growing use of concentrating and sintering equipment have bolstered an otherwise declining trend in grade. A trend toward increased home consumption by certain producing nations was also noted.

NORTH AMERICA

Costa Rica.—M. W. Hardy & Co., Inc., New York, prepared to ship upgraded manganese ore from claims held by Pacific Manganese

Co., Ltd., near Zapotillal, Guanacaste Province.

Cuba.—Exports of manganese ore in 1956 totaled 258,000 short tons. Of this quantity 247,000 tons were of Metallurgical grade, averaging 44 percent manganese; 11,000 tons was of Chemical grade, averaging 83 percent manganese dioxide.²¹

¹⁶ Chemical Engineering, vol. 63, No. 13, Mid-September 1956, p. 55.
17 Metallurgia (Manchester), Light Alloy Conveyor Buckets for Coal and Coke: Vol. 54, No. 321, July 1956, p. 35.

^{1956,} p. 35.

19 Iron Age, Pistons—201 Makes the Grade: Vol. 178, No. 6, Aug. 9, 1956, p. 43.

19 American Iron and Steel Institute, Annual Statistical Report—1956, p. 60.

20 DeHuff, Gibert L., Global Aspects of Manganese-Ore Supply: XX Congreso Geologico Internacional,
Symposium Sobre Yacimientos de Manganeso, vol. 1, 1956, pp. 147-154.

21 U. S. Embassy, Habana, Cuba, May 24, 1957, pp. 2-3 of encl. 1. State Department Dispatch 798.

TABLE 18.—World production of manganese ore, by countries, 1947-51 (average) and 1952-56, in short tons 2

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

				·cremice B.	minonon		
Country 1	Percen Mn	1947-51 (average	1952	1953	1954	1955	1956
North America:							
Cuba	36-50+	82, 734	977 496	389, 356	296, 80	346, 680	
Mexico				269, 863	277, 99	2 07 200	
United States (shipments)	35-		115, 379				
omica coates (simplifients)	307	120,00	110,078	157, 536	206, 128	287, 25	344, 735
Total		264, 301	550, 208	816, 755	780, 92	731, 261	4 773, 600
South America:							
South America: Argentina	30-40	1 976	2, 535	5, 512	1,32	E 510	0.00
Brazil	38-50		274, 732	255, 058			
Chile	40-50	20,000	214, 104				
Peru				60, 207	58, 400		51,878
Venezuela	40+		1, 221	4 3, 500	3, 123	3,801	
venezuera	46-48	Y					10, 320
Total		247, 587	337, 844	324, 277	242, 003	4 302, 000	339, 391
Europe:							
Bulgaria	30+	(5)	14 990	00.440	00.000		
Greece			14, 330	23, 149	36, 376	69, 446	84, 878
Hungary (concentrates) 4	35+			15, 577			
Ttol	35-48					55,000	44,000
Italy Portugal	30				54, 992	62, 371 4, 388	50, 723
Portugal	35+	2, 567			10,627	4,388	3, 501
Rumania	35			200,000		430,000	4 440, 000
Spain	30+		31, 408	36,044	39, 511		
U. S. S. R.		3, 238, 600	4, 853, 500	5, 115, 800	5, 058, 500		4 5,235,000
U. S. S. R. ⁶ Yugoslavia	30+	12,600	4,600		5,000	4, 900	4 5, 500
Total 1 4		3, 410, 000	5, 220, 000	5, 500, 000	5, 570, 000	5, 930, 000	5, 930, 000
Asia:							
Burma							İ
	35+	441	7, 280 1, 637, 738	9, 610	4, 160	342	1, 268
India	40+		1, 637, 738	2, 130, 511		1, 773, 566	1, 824, 483
Indonesia	35-49		11,015	20, 310	16, 442	43,061	90, 568
Iran ?	36-46		3, 583	4 4, 400	8, 799	5, 484	2, 860 297, 436
Japan Korea, Republic of	32-40		228, 593	214, 286	180, 155	222, 350	297, 436
Korea, Republic of	30-48		8, 175	3, 371	1,744	3,838	2, 158
Philippines	35-51	23, 686	8, 175 22, 737	23, 708	10, 354	13, 131	4,866
Portuguese India	32-50+	30, 446	122, 429	166, 227	116, 756		
Portuguese India Thailand	52						450
Turkey	30-50	26, 330	88, 745	99, 038	54, 925	55, 228	64, 383
Total 14		1, 056, 000	2, 163, 000	2, 721, 000	2, 042, 000	2, 356, 000	2, 554, 000
Africa:							
	38-48	18, 541	60 721	70 602	94 005	04.050	00 045
Angola Belgian Congo	50	28, 791	60, 731 141, 071	72, 603	34, 865	34, 853	29, 647
Egypt 8		20, 191	141,071	238, 831	424, 320	508, 972	363, 250
French Morocco	57	8, 242	1, 453	3, 578	6, 991	7, 994	21, 195
Gold Coast (exports)	35-50	271, 013	469, 932	473, 304	441, 203	453, 396	464, 523
Rhodesia and Nyasaland.	48	779, 005	889, 491	835, 510	515, 475	604, 330	700, 905
Federation of:							
Northern Rhodesia	30+	¹⁰ 1, 411	4, 397	7, 984	18, 951	19, 411	44, 171
Southern Rhodesia		39	1, 580	.,	18	1, 330	816
South-West Africa		11 4, 163	29, 219	40, 654	34, 066	41, 880	57, 262
Spanish Morocco	50	402	4,007	1, 181	856	1, 262	953
Spanish Morocco Union of South Africa	40+	610, 589	964, 121	912, 333	772, 862	649, 471	768, 395
		<u>-</u>					
Total		1, 722, 196	2, 566, 002	2, 585, 978	2, 249, 607	2, 322, 899	2, 451, 117
· ·	1						

See footnotes at end of table.

TABLE 18.—World production of manganese ore, by countries, 1947-51 (average) and 1952-56, in short tons 2-Continued

Country 1	Percent Mn	1947–51 (average)	1952	1953	1954	1955	1956
Oceania: Australia	45-48 40+ 45+	9, 219 12 292 6, 163	2, 251	2,448	31, 587 10, 773	53, 039 19, 823	
New Zealand Papua	48+	429 68		324 47	268	179 17	175
Total		16, 171	28, 975	45, 879	42, 628	73, 058	4 94, 600
World total (estimate) 1		6, 716, 000	10, 865, 000	11, 995, 000	10, 930, 000	11, 715, 000	12, 145, 000

¹ In addition to countries listed, China and North Korea have produced manganese ore; data are not available, but estimates output are included in the totals. Czechoslovakia and Sweden report production of manganese ore, which is not included in this table because manganese content averages less than 30 percent. Sweden averages annually 16,000 tons of approximately 15-percent manganese content.

² This table incorporates revisions of data published in previous Manganese chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

4 Estimate

b Data not yet available; estimate by author of chapter included in total.
Grade unstated. Source: The Industry of the U. S. S. R., Central Statistical Administration, 1957

(Moscow).

7 Year ending March 20 of year following that stated.

8 In addition to high-grade ore shown in the table, Egypt produced the following tonnages of less than
30 percent manganese content: 1947-51 (average), 110,340; 1952, 209,097; 1953, 309,571; 1954, 188,703; 1955. 30 percent maganese content: 1947-31 (average), 110,340, 1302, 208,031, 1303, 303,312 § Dry weight.

§ Average for 1 year only because 1951 was the first year of commercial production.

§ Average for 1948-51.

Mexico.—All exports of manganese ore in 1956 went to the United They contained 68,000 short tons of elemental manganese.²² New export-duty classifications and rates for manganese ores and concentrates became effective February 3, as follows:

31-42. Ores with any manganese content, 25 percent ad valorem. under classifications Nos. 31-40 and 31-41 covering ores with manganese content up to and over 45 percent, respectively, dutiable at 25 percent ad valorem and

30 percent ad valorem, respectively.)

32-42. Crushed concentrates under 2 centimeters with any manganese content, 20 percent ad valorem. (Manganese concentrates formerly were under classifications 32-40 and 32-41 covering concentrates with up to and over 50 percent manganese, respectively, dutiable at 25 percent and 30 percent ad valorem, respectively.) 28

The 1,200-ton-per-day heavy-medium mill at the San Francisco mine of Cia Minera Autlan was formally inauguarted in February. Bethlehem Steel Corp. had an important interest in this underground mine which was approximately 7 miles by road north of Autlan in southwestern Jalisco. Concentrate of 42-48 percent manganese

²² U. S. Embassy, Mexico, D. F., Mexico, May 3, 1957, p. 2, encl. 2. State Department Dispatch 1085. ²³ Foreign Commerce Weekly, vol. 55, No. 11, Mar. 12, 1956, p. 10. Diario Oficial (Mexico City), vol. 214, No. 28, Feb. 2, 1956, p. 3, sec. I.

content was trucked under contract in 7-ton loads 100 miles to Manzanillo for shipment to Eastern United States ports. Small operators in the area trucked ore either 120 miles to Guadalajara or 90 miles over the same graded highway to the railroad. Exploratory drilling in the area was reported.

All mining in Mexico continued to be hampered by restrictive labor laws, high taxes, and insufficient railway motive power. Some relief from taxation was offered submarginal operations by a new law, effective the first of 1956, which allowed tax rebates for an extended

period on an individual-case basis.

Part of Mexico's output of manganese ore was consumed domestically in producing pig iron and ferromanganese; Cia. Fundidora de Fiero y Acero de Monterrey, S. A., made blast-furnace ferromanganese at Monterrey, Nuevo Léon, and Teziutlan Copper Co., made electricfurnace ferromanganese near Teziutlán, Puebla. Company-controlled mines in the Parral district of Chihuahua and the Dinamita district of Durango supplied most of Fundidora's manganese-ore requirements; small independent mines provided the remainder. The ores were direct shipping ores analyzing approximately 42-44 percent manganese and low in iron; some fines were sintered before shipment from Parral to the furnace.

Panama.—Rosario Exploration Co. was constructing an access road through isolated country to the manganese deposits of the Rio Boquerón area of Colón Province in order to mine the ore.²⁴ A geological survey by Utah Construction Co. of manganese deposits in the Bahía Honda area of Veraguas was reported to have favored additional

exploration.25

SOUTH AMERICA

Brazil.—The railroad was completed from the Amapá manganese deposits of Industria e Comercio de Minerios S. A. (Icomi) to the port on the Amazon River, where ore was stockpiled and facilities were prepared for beginning shipments to the United States in January,

1957. A production rate of 600,000 tons per year was planned.

Chile.—The new ferromanganese plant of Manganesos de Atacama at Guayacan began production April 4. Its initial capacity was 5,000 tons a year.²⁶ Total Chilean exports of manganese ore during 1956 were 20,000 short tons containing 8,800 short tons of manganese. United States received 17,000 tons; Belgium, Germany, and Norway each 1,000 tons. Of 3,400 short tons of total ferromanganese exports, Colombia took 1,700, United States 950, United Kingdom 550, Uruguay 140, and Peru 60; total silico-manganese exported was 2,800 short tons, all of which went to the United States except for 50 tons to Belgium.27

Paraguay.—Late in the year a Canadian company, International Mining & Development Corp., through a Paraguayan subsidiary, Compania Minera del Paraguay, was investigating a flat-lying deposit of manganese ore under a thin soil cover approximately 25 miles northeast of Asunción close to and east of the Paraguay River. Samples from an exploration pit were reported to be very hard ore,

<sup>Foreign Commerce Weekly, vol. 57, No. 23, June 10, 1957, p. 5.
U. S. Embassy, Panama, Panama, Apr. 6, 1956, pp. 3-4. State Department Dispatch 332.
U. S. Embassy, Santiago, Chile, Apr. 6, 1956, p. 4. State Department Dispatch 743.
U. S. Embassy, Santiago, Chile, June 28, 1957, encl. 5, 6, and 7. State Department Dispatch 1355.</sup>

running 47 to 57 percent manganese and low in impurities. exploratory work was contemplated, including diamond drilling. Venezuela.—Upata-Mines, S. A., was formed with Venezuelan and Belgian capital amounting to \$1,350,000 for exploiting manganese-ore concessions near Upata, District of Piar, Bolivar, which were purchased or leased from the Borges Rodriquez family. Trucks hauled the ore approximately 70 miles to the Orinoco River at San Felix, where a floating loading dock was under construction to facilitate export to Europe. This was believed to be the first commercial manganese-ore mining in Venezuela.

EUROPE

Austria.—After being granted a prospecting license in 1955, German steel interests (Flick) applied for a license to mine ore in the Weissbach Valley halfway between Lofer and Saalfelden.28 The ore averaged 20-percent manganese.

France.—The Ferro-Alloys Department, Compagnie de Produits Chimiques et Electro-Metallurgiques, produced both electrolytic and

aluminothermic manganese metal.29

Greece.-Manganese deposits of various grades were worked at Drama. Macedonia: Messinia, Peloponnesus; and on the island of Paros, Cyclades. Concentrate containing 53 percent manganese was obtained from the Drama ore at the rate of 20,000 tons per year; part went to local industry and part for export.30

Hungary.—The Urkut mine in the western part of the Bakony Hills was completely mechanized and a third shaft sunk with the result that Hungary's manganese-ore requirements were met and a small quantity was exported from production of this mine and that at Epleny.31

Portugal.—In the first quarter of 1956 Portugal exported 1,100 short tons of manganese ore to the Netherlands, 500 to Italy, and a small tonnage to the United States; in the first quarter of 1955, Spain received 5,900 short tons and Sweden 50.32 Manganese ore was included in the items for exporting to Poland in exchange for manufactured goods, according to terms of a trade agreement concluded in

February between the central banks of the two countries.33

U. S. Š. R.—According to official Soviet sources, production in 1955 totaled 5,228,000 short tons of manganese ore of unstated grade, 476,000 short tons of ferromanganese produced in blast furnaces, and 91,000 short tons of spiegeleisen produced in blast furnaces.34 producing 29,740,000 short tons of pig iron for use in manufacturing steel, 2,498,000 short tons of manganese ore was consumed; the production of 5,941,000 short tons of foundry pig iron took 184,000 short tons of manganese ore. In addition to the manganese ore used in making pig iron and ferroalloys, and that exported, reliable sources indicated that appreciable quantities were used in the production of Hadfield steel. From the ore deposits, 3 grades of shipping product-

U. S. Consulate, Salzburg, Austria, Jan. 17, 1956, 2 pp. State Department Dispatch 55.
 Metal Bulletin (London), No. 4067, Feb. 7, 1956, p. 12.
 Metal Bulletin (London), No. 4081, Mar. 27, 1956, p. 12.
 Mining World, vol. 18, No. 3, March 1956, p. 74.
 U. S. Embassy, Lisbon, Portugal, May 23, 1956, p. 2 of encl. 1. State Department Dispatch 633.
 U. S. Embassy, Lisbon, Portugal, June 22, 1956, 1 p. State Department Dispatch 713.
 The Industry of the U. S. S. R.: Central Statistical Administration (Moscow), 1957, pp. 109, 115, 117.

more than 50 percent manganese, 40-45 percent manganese, and 35-40 percent manganese—were obtained in quantity by washing or other concentration of run-of-mine ores containing roughly 20-35 percent manganese. The shipping product at Chiatura and Nikopol was said to represent approximately 40 or 50 percent of the raw material mined, suggesting an overall concentration ratio of roughly 2:1 for these deposits. Underground hydraulic mining methods were in use at Nikopol, and large new deposits of manganese ore were discovered in Siberia.

United Kingdom.—Preliminary figures show that a total of 497,000 short tons of manganese ore were imported, compared with 454,000 The 1956 breakdown by country of origin follows (1955) tonnages in parentheses): U. S. S. R., 164,000 (132,400); British West Africa, 152,500 (136,300); India, 98,600 (138,700); South Africa, 64,600 (41,400); Egypt, 1,200 (1,700); other 16,400 (3,200). Only 100 short tons of manganiferous ore were imported, compared with 1,600 in 1955. Average manganese and iron contents, expressed as percentages, for the manganese ores imported in 1956 were, respectively: U. S. S. R., 50 and 2; West Africa, 50 and 5; India, 49 and 7; and South Africa, 39 and 16. The following quantities of manganese ferroalloys were consumed in 1956 in manufacturing iron and steel: Ordinary ferromanganese (76-80 percent manganese), 193,000 short tons; refined ferromanganese (up to 3 percent carbon), 8,800; spiegeleisen, 32,600; silicospiegel, 700, and silicomanganese, 13,200. Spiegeleisen and ferromanganese exported in 1956 totaled 1,100 short tons. 35 Electrolytic manganese in the United Kingdom at the beginning of the year was used principally in producing manganese-bronze alloys. There were no Commonwealth sources and it was imported subject to a 10-percent ad valorem duty. The United States, France, and Japan were sources of supply. Although the tonnage of manganese-bronze alloys produced with electrolytic manganese metal was substantial and growing, a greater tonnage continued to be made with manganese metal of 96-98 percent manganese content produced by the aluminothermic or silicothermic process. Producers of aluminum alloys were interested in the electrolytic metal.36

Burma.—Diamond drilling of Burma's only manganese mine failed to prove substantial reserves, and all work was suspended. The mine, approximately 3½ miles south of Hopong, had produced pyrolusite by opencut methods.37

India.—Exports of manganese ore in 1956 were 785,000 short tons compared with 938,000 in 1955. The distribution for the 2 years follows (1955 figures in parentheses): United States, 235,000 (388,000), Japan, 166,000 (63,000); France, 74,000 (133,000); United Kingdom, 66,000 (96,000); West Germany, 34,000 (39,000); Italy, 32,000 (36,000); Norway, 4,500 (13,000); Canada, (10,000); Swefen, 3,700 (1,600); other, 170,000 (158,000). Confusion resulting from entry of the State Trading Corp. into the ore business, imposition September

<sup>Iron and Steel Board and the British Iron and Steel Federation, Annual Statistics—1956: London, 1957, pp. 6, 11, 91, 122.
Metal Bulletin (London), No. 4062, Jan. 20, 1956, p. 19.
Mining Magazine (London), The Mineral Resources of Burma: vol. 95, No. 1, July 1956, p. 12.</sup>

1 of a graded export duty on ores containing more than 38 percent manganese, introduction of movement and export quotas, continued lack of adequate rail facilities, and increased competition from other countries all contributed to the decline in exports. The State Trading Corp. reserved 25 percent of the manganese and iron-ore export market for itself. Its stated policy was to obtain entire control of these exports and eventually of all mineral exports.³⁸ Exportduty rates per long ton of ore were established as follows: 10 rupees for over 38 percent but not over 40 percent manganese, 20 rupees for over 40 but not over 44 percent, and 30 rupees over 44 percent.

rupee equals US\$0.21).39

Consumption of manganese ore in 1955 was estimated at 224,000 short tons, mostly by the steel industry. Accumulated stocks of manganese at the end of 1956 were estimated by trade sources to be approximately 500,000 tons held at mines, railheads, and ports. 40 Plans called for ferromanganese production of 180,000 short tons per year by the end of 1960. Of this quantity, approximately 112,000 short tons was expected to be available for export.41 Production of ferromanganese in 1955 was approximately 13,000 short tons and retained imports were 1,500 short tons making an apparent consumption of 14,500 short tons. In 1955 Madhya Pradesh supplied 44 percent of India's production of manganese ore, Orissa 25 percent, Bombay 12 percent, Mysore 8 percent, Andhra 7 percent, Bihar 3 percent, and Madhya Bharat and Rajasthan the remainder.42 The Indian National Metallurgical Laboratory engaged in pilotplant tests to determine the feasibility of producing electrolytic manganese from low-grade Indian ores. Results were reported to have indicated that good costs could be expected for a 10-ton per day commercial plant.43

Indonesia.—Exports of manganese ore for the first half of 1956 totaled 49,000 short tons. Japan, Netherlands, and United Kingdom each received about 22 percent, and smaller quantities went to France, Belgium-Luxembourg, and Italy. Two companies, the Netherland-owned Erdmann and Siolckon and the national firm of Gamelan & Co., furnished the entire production during the first half of the year.44 Japan.—Production of ferromanganese in 1956 was 145,000 short

tons.45

Portuguese India.—Exports of manganese ore from Goa in 1956 totaled 180,000 short tons. West Germany received 46,000; the United States, 44,000; Italy, 29,000; France, 28,000; Belgium, 9,200; Norway, 8,000; Netherlands, 7,800; Austria, 5,600; and Japan, 3,100.46

AFRICA

Belgian Congo.—Statistics for the first half of 1956 indicate production of approximately 150 tons of ferromanganese.47

³⁸ U. S. Embassy, New Delhi, India, May 15, 1957, pp. 11, 16, 17, 20. State Department Dispatch 1359.
39 Foreign Commerce Weekly, vol. 56, No. 16, Oct. 15, 1956, p. 7.
40 U. S. Consulate, Bombay, India, May 28, 1957, 8 pp. State Department Dispatch 774.
41 Sondhi, V. P., Manganese Ores in India: XX Congreso Geologico Internacional, Symposium Sobre Yacimientos de Manganeso; vol. 4, 1956, pp. 9-23.
42 Dewan, H. R., Mineral Production in India—1955: India Bureau of Mines (New Delhi), 1956, 85 pp. 42 Dewan, H. R., Mineral Production in India—1955: India Bureau of Mines (New Delhi), 1956, 85 pp. 42 Dewan, H. R., Mineral Production in India—1955: India Bureau of Mines (New Delhi), 1956, 85 pp. 42 Dewan, H. R., Mineral Production in India—1955: India Bureau of Mines (New Delhi), 1956, 85 pp. 42 Dewander Mines (New Delhi), 1956, 85 pp. 44 Department Dispatch 1922.
46 U. S. Embassy, Tokyo, Japan, May 6, 1957, p. 4. State Department Dispatch 488.
46 U. S. Consulate, Bombay, India, Feb. 1, 1957, 5 pp. State Department Dispatch 488.
47 U. S. Consulate, Elisabethville, Belgian Congo, Dec. 31, 1956, pp. 9-11. State Department Dispatch 22.

French West Africa.—Deposits estimated to contain 10 million tons of manganese ore were reported as known to occur about 1,000 miles

inland near Ansongo, French Sudan. 48

Gold Coast.—Preliminary manganese ore export figures for 1956 indicate the following distribution expressed as percent of the total: United States, 56 percent; Norway, 22 percent; United Kingdom, 21 percent; India and Australia the remainder.49

South-West Africa.—Control of South African Minerals Corp. passed into the hands of one of the leading Johannesburg mining houses, and steps were taken to increase output of manganese ore to

150,000 tons per year by the end of 1957.

Sudan.—Manganese ore was exported from Sudan for the first time

when 6,000 tons was sent to Netherlands in 1956.50

Union of South Africa.—Local sales of ore from Cape Province totaled 109,000 short tons averaging 39-40 percent manganese, and exports totaled 468,000 short tons of slightly higher grade. In addition, ore containing 20 to 25 percent manganese, produced in Transvaal near Johannesburg, was sold to uranium plants for use as the oxidant in the sulfuric acid leaching process. From monthly figures, total local sales of this grade of ore amounted to 215,000 short tons for the year; exports of Transvaal ore totaled 18,000 short tons of variable grade ranging from 25 to 46 percent manganese. Mining by the Union's two large producers, Associated Manganese Mines of South Africa and South African Manganese Limited, was on a reduced scale because of the continued shortage of railway trucks. Arrangements made in 1955 for diversion of some export traffic from Durban to Lourenco Marques were cancelled, and ore continued to be exported through Durban and Port Elizabeth. African Metals Corp. Ltd., having both electric-furnace and blast-furnace facilities, was the Union's only producer of ferromanganese.

OCEANIA

Australia.—In 1955, Australia imported 3,500 short tons of Batterygrade manganese dioxide ore and 30 tons of Metallurigical ore, compared with 1,200 and 100 short tons, respectively, in 1954. Exports of all types of manganese ore in 1955 were only 2 short tons compared with 4,700 in 1954.51 Production of manganese ore in 1955 was largely from the Horseshoe and Ragged Hills districts of Western Australia. Virtually the entire output of Metallurgical ore went to to the Broken Hill Pty. Co., Ltd.52

Fiji.—All manganese ore produced during 1956 was purchased by 2 buyers—1 American and 1 Japanese. Of the total production, ¾ was estimated to be Metallurgical ore, % Chemical, and % low-grade. Exports for 1956 were expected to approximate 25,000 short tons with the bulk of the high grade ore going to the United States and most

of the low-grade to Japan.53

⁴⁸ U. S. Consulate General, Dakar, French West Africa, Apr. 25, 1956, p. 12. State Department Dis-

atch 232.

49 U. S. Consulate General, Accra, Gold Coast, Jan. 10, 1957, 1 p. State Department Dispatch 181.

50 U. S. Embassy, Khartourn, Sudan, June 10, 1957, p. 13. State Department Dispatch 345.

51 U. S. Consulate, Melbourne, Australia, Aug. 31, 1956, 1 p. State Department Dispatch 29.

52 U. S. Consulate, Melbourne, Australia, Jan. 31, 1957, p. 3. State Department Dispatch 102.

53 U. S. Consulate, Noumea, New Caledonia, Mar. 13, 1957, p. 8. State Department Dispatch 60.

Mercury

By J. W. Pennington 1 and Gertrude N. Greenspoon 2

HE HIGHEST annual rate of mercury production in the United States in 10 years was attained in 1956 as a result of more operations processing greater quantities of ore. Consumption of metal in most of the principal uses also rose, but because smaller quantities were required in new chlorine and caustic soda installations, total consumption declined slightly from 1955.

Strong demands for mercury brought on by sustained high industrial activity, coupled with rebuilding of industrial stocks, stimulated imports to more than double the 1955 receipts. Upon removal of quantitative export restrictions on mercury in the last quarter of 1955, exports and reexports of metal increased substantially in 1956.

Despite a constant price in the latter half of the year, the price decline in the first 6 months was enough to lower the annual price 10 percent below the alltime peak of 1955. Government assistance under provisions of the Defense Production Act of 1950, as amended, and the guaranteed-price program of General Services Administration (GSA) continued in effect during 1956.

World output of mercury topped all annual rates since 1943, as gains in Italy, Japan, the Philippines, Spain, and the United States more than offset losses in Mexico and Yugoslavia.

TABLE 1.—Salient statistics of the mercury industry in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Production. Number of producing mines. Average price per flask: New York. Imports for consumption. Exports. Consumption.	11, 878 29 \$106. 22 50, 408 535 45, 551	12, 547 39 \$199, 10 71, 855 400 42, 556	14, 337 49 \$193. 03 83, 393 546 52, 259	18, 543 71 \$264, 39 64, 957 890 42, 796	18, 955 98 \$290, 35 20, 354 451 57, 185	24, 177 147 \$259. 92 47, 316 1, 080 54, 143

DEFENSE MINERALS EXPLORATION ADMINISTRATION

Under the provisions of the Defense Production Act of 1950, as amended, DMEA entered into contracts for exploring mercury de-Mercury chapters in the 1952-55 Minerals Yearbooks list contracts from the beginning of the program until the end of 1955. Some contracts have been completed and others terminated; those executed during 1956 are shown in table 2.

Assistant chief, Branch of Base Metals. Statistical assistant.

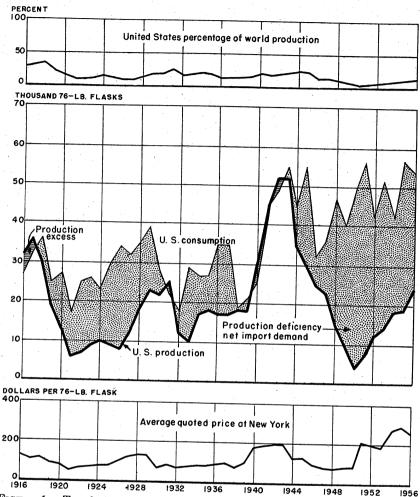


FIGURE 1.—Trends in production, consumption, and price of mercury, 1916-56.

TABLE 2.—DMEA contracts involving mercury executed during 1956, by States

State and contractor	70		Contract		
•	Property	County	Date	Total amount 1	
CALIFORNIA					
California Quicksilver Mines, Inc	Abbott	LakeYolo and Napa San Luis Obispo Sonoma Napa	Sept. 15, 1951 ² Aug. 2, 1956 Oct. 18, 1956 May 29, 1956 Aug. 23, 1956	² \$74, 600 28, 540 11, 060 77, 900 16, 120	
Mercury & Chemicals Corp	Black Butte Jordan	Lane Malheur	Aug. 22, 1956 May 28, 1956	62, 340 31, 000	

Government participation was 75 percent in exploration projects in 1956.
 Original contract for \$88,940 increased in May 1956.

DOMESTIC PRODUCTION

Mercury was produced at domestic mines in 1956 at the highest annual rate since 1946 and exceeded that in 1955 by 28 percent. The average grade of ore treated rose 1 pound of mercury per ton, and the quantity of ore processed exceeded 1955 by 10 percent. Mercury production was up in Alaska, Idaho, and Oregon; output in Nevada and Texas showed little change; and production was down in Arizona and California. Secondary-mercury production declined 4,000 flasks from an abnormal high in 1955.

California continued as the leading mercury-producing State in 1956 despite a drop in metal output. During 1956 the quantity of ore processed was less than in 1955, although the number of mercury operations increased. Because California output declined and total domestic production increased, California furnished only 37 percent of United States primary mercury production in 1956 compared with

52 percent in 1955.

Production of mercury in Nevada in 1956 was virtually unchanged from 1955, but owing to the increase in United States output, Nevada's share of the total dropped from 30 percent in 1955 to 24 percent in 1956.

Output of mercury in Idaho tripled in 1956 with the first full year's operation of the Idaho-Almaden mine. Idaho's output would have been greater if a fire had not forced the closing of the only other mercury producer, the Cinnabar mine (formerly Hermes), in August.

TABLE 3.—Mercury produced in the United States, 1953-56, by States

Year and State	Pro- ducing mines	76- pound flasks	Value ¹	Year and State	Pro- ducing mines	76- pound flasks	Value
953: Alaska California. Idaho and Texas Nevada. Oregon Total	2 28 2 12 5 49	9, 290 1, 105 3, 254 618 14, 337	\$7, 721 1, 793, 249 213, 298 628, 120 125, 083 2, 767, 471	1955: Alaska and Texas. Arizona. California. Idaho. Nevada. Oregon. Total.	4 4 48 2 33 7	690 477 9,875 1,107 5,750 1,056	\$200, 138, 2, 867, 321, 1, 669, 306, 5, 503,
954: Alaska	2 3 35 1 21 9	1,046 163 11,262 609 4,974 489	276, 552 43, 096 2, 977, 560 161, 013 1, 315, 076 129, 287 4, 902, 584	1956: Alaska Arizona and Texas California Idaho Nevada Oregon Total	2 8 71 2 51 13	3, 280 734 9, 017 3, 394 5, 859 1, 893 24, 177	852, 190, 2,343, 882, 1,522, 492, 6,284,

¹ Value calculated at average price at New York.

Work at the Red Devil mine in Alaska was resumed in March after an idleness of 18 months caused by a fire. Mercury production at the Red Devil mine furnished 13 percent of total domestic production and enabled Alaska to attain the largest output ever reported.

Oregon's 79-percent rise in mercury output in 1956 stemmed chiefly from the increased number of mercury operations. Although the gain raised Oregon's contribution of the Nation's output from 6 percent in

 $1955\ {\rm to}\ 8$ percent in 1956, Oregon was displaced by Alaska and dropped to fifth position.

The combined production of Arizona and Texas fell as less mercury

ore was processed in 1956.

The number of mines (147) that contributed production was the largest since 1942. Fourteen properties supplied 89 percent of the total output; each produced 500 flasks or more. The leading producers were as follows:

State	County	Mine
Alaska	Aniak District	Red Devil.
	Lake	Abbott.
		Sulphur Bank.
	San Benito	New Idria.
		San Carlos.
	San Mateo	Challenge (formerly Farm Hill
		No. 2).
	Santa Clara	
		New Almaden mine and dumps.
Idaho	Valley	Cinnabar (formerly Hermes).
	Washington	Idaho-Almaden.
Nevada	Humboldt	Cordero.
Oregon	Douglas	Bonanza.
	Jefferson	Horse Heaven.
	Brewster	
In addition to	the foregoing mines	s, the following produced 100
flasks or more du	ring 1956:	, see rome wing produced 100
State	County	Mine
California	Santa Barbara	Gibraltar Group.
	Sonoma	Buckman Group.
		Mount Jackson (including Great Eastern).
Nevada	Pershing	Miller Basin (Eureka).
Texas	Presidio	Fresno.
The entire 19 min	nes produced 93 perce	ent of the total output.

TABLE 4.—Mercury produced in the United States, 1947-51 (average) and 1952-56, by quarters, in 76-pound flasks

Quarter	1947-51 (a verage)	1952	1953	1954	1955	1956
First	3, 084 2, 634 6, 036	3, 050 3, 000 3, 320 3, 130	3, 530 3, 790 3, 040 3, 970	4, 170 4, 700 5, 160 4, 470	4, 050 4, 860 4, 720 5, 200	4, 910 5, 980 6, 300 6, 750
Total: Preliminary Final	11, 754 11, 878	12, 500 12, 547	14, 330 14, 337	18, 500 18, 543	18, 830 18, 955	23, 940 24, 177

TABLE 5.—Mercury ore treated and mercury produced in the United States, 1952-56 ¹

(Until 1954 excludes some material from old dumps)

***	Ore Mercury pro		produced	produced		Mercury produced	
Year	(short 7 tons) por	76- pound fiasks	Pounds per ton of ore	Year	treated (short tons)	76- pound fiasks	Pounds per ton of ore
1952	135, 197 138, 090 174, 083	12, 500 14, 262 18, 524	7. 0 7. 8 8. 1	1955 1956	222, 740 244, 148	18, 819 24, 109	6. 4 7. 5

 $^{^{1}}$ Excludes mercury produced from placer operations and from cleanup activity at furnaces and other plants.

Secondary.—Production of secondary mercury decreased in 1956 as virtually all the secondary metal reclaimed came from dental amalgam, oxide and acetate sludges, and battery scrap, as contrasted with 1955 when a substantial quantity was recovered from dismantling a plant that used mercury.

TABLE 6.—Production of secondary mercury 1 in the United States, 1952-56, in 76-pound flasks

	III 10 POUL	THOOMS	
Year:			Quantity
1952	 		 2, 500
1953	 		 2,800
1954			 6, 100
1955	 		 10, 030
1956	 		 5, 850

¹ Until 1954 covers only that metal produced from scrap that could not be excluded because its identity as such was lost following sale.

CONSUMPTION AND USES

The use of mercury for industrial purposes declined 5 percent from 1955 and also was less than in 1951, but otherwise, consumption was higher than any year since 1945. Three new chlorine and caustic soda plants using mercury cells began producing at Linden, N. J., Brunswick, Ga., and Longview, Wash., and capacity was expanded at another plant at Anniston, Ala., during the year.

Most mercury uses advanced in 1956 but not enough to offset the smaller quantities required for installing new plants and expanding existing plants. In 1955 and other years similar operations took

considerably more mercury.

TABLE 7.—Mercury consumed 1 in the United States, 1947-51 (average) and 1952-56, in 76-pound flasks

				·		
Use	1947-51 (average)	1952	1953	1954	1955	1956
Pharmaceuticals Dental preparations Fulminate for munitions and blasting caps. Agriculture (includes insecticides, fungi-	3, 726 2 1, 001 379	1, 395 2 1, 027 337	1, 858 2 1, 117 39	1, 846 2 1, 409 106	1, 578 2 1, 177 90	1, 600 2 1, 328
cides, and bactericides for industrial purposes) Antifouling paint Electrolytic preparation of chlorine and	5, 915 1, 815	5, 886 1, 178	6, 936 655	7, 651 512	7,399 724	9, 93 51
caustic soda	1,021 3,248	2, 507 1, 048	2, 380 826	2, 137 594	3, 108 729	3, 35 87
Electrical apparatus	2 8, 571	28,018	2 9, 630	² 10, 833	2 9, 268	3 9, 76
Industrial and control instruments	² 5, 521 158	² 6, 412 151	² 5, 546 200	² 5, 185 203	2 5, 628 217	² 6, 114 239
General laboratoryRedistilled	458 26,841	629 2 7, 547	1, 241 27, 784	1, 129 2 9, 281	976 9,583	984 2 9, 48
Other	6, 897	6, 421	14,047	1, 910	16, 708	9, 95
Total	45, 551	42, 556	52, 259	42, 796	57, 185	54, 14

¹ Until 1954 included only such small quantities of secondary metal as were not separately identifiable.

² A breakdown of the "redistilled" classification showed ranges of 53 to 43 percent for instruments, 16 to 5 percent for dental preparations, 37 to 16 percent for electrical apparatus, and 17 to 9 percent for miscellaneous uses during 1947-55, compared with 44 percent for instruments, 9 percent for dental preparations, 39 percent for electrical apparatus, and 8 percent for miscellaneous uses in 1956.

The use of mercury for agricultural purposes, which includes insecticides, fungicides, and bactericides, advanced 34 percent; catalysts rose 19 percent; and dental preparations, 13 percent. Consumption of mercury for manufacturing industrial and control instruments

TABLE 8.—Mercury consumed 1 in the United States, 1947-51 (average) and 1952-56, by quarters, in 76-pound flasks

Quarter	1947-51 (average)	1952	1953	1954	1955	1956
First. Second. Third. Fourth.	11, 200	10, 100	12, 700	11, 500	19, 500	12, 400
	10, 940	9, 500	13, 290	11, 300	17, 900	11, 700
	8, 980	13, 200	11, 000	9, 000	8, 300	12, 300
	14, 200	10, 200	15, 500	9, 500	11, 600	17, 500
Total: PreliminaryFinal	45, 320	43, 000	52, 400	41, 300	57, 300	53, 900
	45, 551	42, 556	52, 259	42, 796	57, 185	54, 143

¹ Until 1954 included only such small quantities of secondary metal as were not separately identifiable.

gained 9 percent; 5 percent more metal was required for electrical

apparatus.

In 1956 mercury was used for making methyl styrene and seleniumfree pigments called mercadium reds. These uses are described in the Technology section of this chapter.

STOCKS

Stocks of mercury held by consumers and dealers rose substantially in 1956. Inventories were below normal at the beginning of the year but increased 12,000 flasks during 1956. The increase reflected in large part metal accumulated for chlorine and caustic soda installations in prospect for the near future.

TABLE 9.—Stocks of mercury in hands of producers and of consumers and dealers, 1952-56, in 76-pound flasks

End of year	Producers	Consumers and dealers	Total
1952 1953 1964 1955 1956	685 1, 121 186 928 1, 210	33, 700 25, 900 22, 300 9, 100 21, 100	34, 385 27, 021 22, 486 10, 028 22, 310

Stocks held by producers were usually small in relation to total industry inventories and in 1956 furnished only 5 percent of the total. They were, however, 30 percent greater than those at the end of 1955.

In addition to the metal shown in table 9, noteworthy quantities of mercury were held in the national stockpile.

PRICES

The average mercury quotation in 1956 was 10 percent less than the alltime peak in 1955 and the lowest since 1953. Prices trended downward from January to July and except for a slight dip in October were the same as in July for the remainder of the year.

The guaranteed-purchase price program announced by GSA in July 1954 was in force in 1955 and was continued in 1956. The program, which provided for the purchase of 125,000 flasks of domestic mercury and 75,000 flasks of Mexican metal at \$225 a flask, was

scheduled to end December 31, 1957. The import duty of \$19 a flask is included in the price for Mexican mercury.

TABLE 10.—Average monthly prices per 76-pound flask of mercury at New York and London, and excess of New York price over London price, 1954-56

	1954			1955			1956		
Month	New York ¹	Lon- don 3	Excess of Ne w York over London	New York ¹	Lon- don 2	Excess of New York over London	New York ¹	Lon- don ²	Excess of New York over London
January February March April May June July August September October November December September	\$187. 36 188. 00 200. 44 220. 23 248. 80 275. 00 286. 92 290. 00 311. 00 325. 00 320. 33 319. 54	\$175. 19 180. 38 193. 25 222. 63 244. 86 258. 57 279. 65 281. 29 289. 88 304. 20 307. 74 306. 61	\$12. 17 7. 62 7. 19 2. 40 3. 94 16. 43 7. 27 8. 71 21. 12 20. 80 12. 59	\$322. 00 322. 00 321. 56 315. 85 302. 92 283. 27 264. 92 253. 89 263. 40 275. 56 279. 39 279. 42	\$304. 63 304. 63 305. 24 304. 12 301. 96 301. 30 300. 77 280. 75 259. 15 258. 61 253. 79 200. 81	\$17. 37 17. 37 16. 32 11. 73 96 3 18. 03 3 35. 85 3 26. 86 4. 25 16. 95 25. 60 78. 61	\$273. 04 267. 58 258. 78 266. 56 265. 23 258. 12 255. 00 255. 00 254. 77 255. 00 255. 00	\$248. 38 245. 03 242. 90 240. 41 240. 61 243. 27 238. 30 233. 50 232. 38 232. 51 233. 73 234. 11	\$24. 66 22. 55 15. 88 26. 15 24. 62 14. 85 16. 70 21. 50 22. 62 22. 26 21. 27 20. 89
Average	264.39	255, 33	9.06	290.35	280, 22	10. 13	259, 92	238.68	21, 24

Engineering and Mining Journal, New York.
 Mining Journal (London) prices in terms of pounds sterling are converted to American dollars by using average rates of exchange recorded by Federal Reserve Board.

3 London excess.

Mercury was quoted in London at a range of £88 10s. to £89 (equivalent to \$247.80 to \$249.20) in early January; the price dropped to £87 to £88 10s. (\$243.60 to \$247.80) in the last week of the month and fluctuated between that range and £84 (\$235.20) through mid-August. In the week ended August 23, mercury was quoted at £83 10s. (\$233.80), which held through October.

Variations in dollar values were due to fluctuations in the rate of exchange. In early November the price rose slightly to a range of £83 10s. to £84 10s. (\$236.60), declined to £83 10s. in the first week of December and rose to £84 to £84 10s. the following week where it remained through the month. The annual average price in dollars

was 15 percent lower than the high established in 1955.

FOREIGN TRADE⁸

Although receipts of mercury for consumption in the United States in 1956 were more than twice the small quantity imported in 1955, they were substantially below receipts in other recent years. As usual the chief suppliers were Italy, Spain, Mexico, and Yugoslavia. Italy, normally in first place, regained this position in 1956 from fourth place in 1955. Of the mercury-producing countries, only Yugoslavia shipped less metal to the United States in 1956 than in 1955. Mercury also came to the United States in 1956 from countries that are normally importers; and the metal, no doubt, represented reexported mercury.

³ Figures on United States imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 11.-Mercury imported for consumption in the United States, 1947-51 (average) and 1952-56, in flasks

[Bureau of the Census]

					- mara or and company	[cncm						
	1947–51	1947-51 (average)		1952		1953		1954		1955		1956
Country	76-pound flasks	Value	76-pound flasks	Value	76-pound flasks	Value	76-pound flasks	Value	76-pound flasks	Value	76-pound flasks	Value
North America: Canada. Honduras	165	\$27,684	ଷ	\$7, 398	171	\$33, 217	115	\$31, 221	114	\$36,500	08	\$20,876
Mexico	3,390	297, 086	7,941	1, 302, 837	13, 298	2, 079, 096	8,887	1,729,601	10, 250	2, 545, 925	11,536	2, 617, 553
Total	3, 557	325, 198	7, 961	1, 310, 235	13, 469	2, 112, 313	9,002	1, 760, 822	10, 364	2, 582, 425	11,616	2, 638, 429
south America: Bolivia Chile	4 40	349										
Peru					9	875			95	26, 276	372	5,837 88,880
Total	28	3,850		-	9	875			95	26, 276	397	94.717
Europe: Czechoslovakia Denmark	9.6	1,984										
Germany.		7,981										
Netherlands	25, 717	1, 966, 076 10, 798	26, 276 100	5, 033, 235 18, 979	36, 120	5, 938, 004	22, 180	3, 393, 759	629	178, 487	16,810	3, 933, 934
Sweden Switzerland	14, 512 348	884, 252 34, 362	27, 102	4, 404, 675	28,049	4, 549, 115	29,884	4,875,352	5, 458	1, 302, 234	15, 713	4, 976 3, 667, 215
United Kingdom Yugoslavia	3, 564	10, 577	10,365	1, 771, 052	(1) 5, 649	36 951,008	3.891	763 794	3 807	314	350	77,840
Total	44, 686	3, 234, 557	63,844	11, 228, 202	69, 868	11, 447, 122	55, 955	9, 022, 835	9,895	2, 540, 295	35, 243	8 263 411
Asia: India. Japan Turkey	2,107	124,066			25	3, 666 4, 600						
Total.	2, 107	124, 066			9	0000					09	13, 388
Africa: French Morocco			50	8, 250	99	8, 200					09	13, 388
Grand total	50, 408	3, 687, 671	71,855	12, 546, 687	83, 393	13, 568, 576	64, 957	210, 783, 657	20,354	5, 148, 996	47,316	11, 009, 945

¹ Less than 1 flask.
² Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with earlier years.

General imports (imports for immediate consumption plus entries into bonded warehouses) afford a better measure of material actually entering the country during a calendar period than do imports for consumption (imports for immediate consumption plus withdrawals from bonded warehouses for consumption).

Imports of various mercury compounds, usually insignificant, rose 38 percent in 1956. Of the 27,985 pounds (20,298 in 1955) of mercuric chloride, mercurous chloride, oxide (red precipitate), and other mercury preparations received in 1956, 20,800 came from Canada, 3,136 from the United Kingdom, 3,086 from Yugoslavia, 500 from India, 441 from Spain, and 22 from France.

Exports of mercury, of little consequence for many years with 1 or 2 exceptions, were more than double those in 1955 and the largest since 1941. Exports to all destinations except Canada continued to require licenses throughout 1956 but were not subject to quantity control. Of the total of 1,080 flasks exported in 1956 (451 in 1955), 400 (66) went to Japan, 150 (none) to Nansei and Nanpo Islands, 134 (17) to Taiwan, 100 (106) to Canada, 86 (29) to Korea, 47 (54) to Colombia, 29 (56) to Venezuela, 27 (35) to Cuba, 23 (14) to Peru, 16 (30) to Brazil, and the remainder in lots of less than 15 flasks to 10 other countries.

Reexports of mercury, also regularly small, were 2,025 flasks in 1956 compared with 267 flasks in 1955 and were the largest since 1947. Of the total, 1,164 (256 in 1955) went to Canada, 823 (none) to Japan, 18 (11) to Venezuela, and 10 each (none) to Cuba and Argentina.

TABLE 12.—Mercury imported (general imports) into the United States, in 1956. by months 1 Rureau of the Census!

	[Daroad or	the contrast	
Month	76-pound flasks	Month	76-pound flasks
January February March April May	8, 317 1, 675 4, 304 3, 712 3, 751	August	5, 219 3, 605 7, 738 2, 574 1, 819
June	4, 181 5, 114	Total	52,009

¹ Changes in Minerals Yearbook, 1955, should read as follows: January, 1,273; total, 20,948.

TABLE 13.—Mercury imported (general imports) into the United States, 1947-51 (average) and 1952-56, in 76-pound flasks

[Bureau of the Census]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada Honduras	169	20	171	115	114	8
Mexico	3, 673	7, 971	13, 637	9, 374	10, 310	12, 50
Total	3, 844	7, 991	13, 808	9, 489	10, 424	12, 582
South America: Bolivia	4 24		6			12/
Total	28		6		95	372
Europe: Denmark Germany	70					
Italy Netherlands	165	26, 025 100	37, 827 50	21, 858	579	17, 592 20
Spain Sweden Switzerland	14, 929 363 41	24, 333	28, 303	29, 859	5, 524	18, 104
Yugoslavia	3, 890	10, 186	(1) 5, 765	4, 057	2 4, 325	564 2, 590
Total	44, 877	60, 645	71, 945	55, 774	2 10, 429	38, 870
Asia: Japan Turkey	2, 135		25	54		60
Totalfrica: French Morocco	2, 135	50	25	54		60
Grand total	50, 884	68, 686	85, 784	65, 317	2 20, 948	52,009

Less than 1 flask.
 Revised figure.

TABLE 14.—Mercury exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Pounds	76-pound flasks	Value	Year	Pounds	76-pound flasks	Value
1947–51 (average) 1952 1953	40, 662 30, 369 41, 497	535 400 546	\$56, 636 85, 974 105, 975	1954 1955 1956	67, 628 34, 301 82, 044	890 451 1,080	\$183, 417 155, 433 284, 418

TABLE 15.—Mercury reexported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Pounds	76-pound flasks	Value	Year	Pounds	76-pound flasks	Value
1947-51 (average) 1952	97, 360 19, 689 69, 640	1, 281 259 916	\$96, 247 46, 721 157, 880	1954 1955 1956	109, 147 20, 274 153, 896	1, 436 267 2, 025	\$257, 342 77, 664 475, 667

TARIFF

The duty of 25 cents a pound (\$19 a flask) on imports of mercury in effect since 1922 was continued.

823MERCURY

TECHNOLOGY

During 1956 the Bureau of Mines and the Geological Survey published articles,4 which contained information on mercury deposits in Idaho, Nevada, and Oregon. The Bureau of Mines described 5 results of laboratory studies on the flotation, roasting, and leaching

of an Alaskan cinnabar-stibnite ore.

A method was reported 6 for determining traces of mercury in burned mercury ore on the basis of the catalytic action of mercuric ions on the reaction between potassium ferrocyanide and nitrosobenzene, in which a violet complex [Fe(CN)₅(C₆H₅NO)] was formed. the range where the mercury in the ash amounted to 0.0024 to 0.0097 percent, the relative error of the analyses varied between 6 and 2 percent, and the standard deviation was approximately 0.00015.

Mercury in the presence of chloride, bromide, and numerous metal ions was determined by titration with a standard dithiocarbamate solution in the presence of ethylenebromine tetraacetate and copper. Although most mercury dithiocarbamates are insoluble, formation of a precipitate was avoided by using bis (2-hydroxyethyl) dithiocarbamate as the titrant and acetone water as the solvent for the mercury. The end point of the titration was indicated by the appearance of a yellow color caused by reaction of the first excess dithiocarbamate with copper. The titration may also be followed potentiometrically, using a silver-dithiocarbamate indicator electrode.

Mercury in certain organic compounds was determined by refluxing the compound with hydriodic acid containing iodine. Mercury formed the HgI4--- ion, which was then precipitated and weighed as cupric propylenediamine mercuriiodide, Cupn₂HgI₄. Methyl mercuric hydroxide, bromide, and iodide and diphenylmercury gave

precise but low results because of incomplete precipitation.

A device was developed for pouring mercury from the heavy flasks in which it is supplied. The apparatus, which may be constructed in a machine shop, is extremely valuable for companies using large

quantities of mercury.

An apparatus was developed 10 for cleaning highly contaminated mercury. The mercury was forced to spray through a 10-percent nitric acid solution with turbulence created by bubbling of air. The mercury was washed in the same apparatus by a continuous stream of water replacing the air.

The construction and operation of an apparatus for the triple distillation of mercury was reported. The apparatus can be constructed from materials readily available in a laboratory and requires very little attention. The article also contained references on other types of distillation units.

⁴ Ross, C. P., Quicksilver Deposits Near Weiser, Washington County, Idaho: Geol. Survey Bull. 1042-D, 1956 (1957), pp. 79-104.

Benson, W. T., Investigation of Mercury Deposits in Nevada and in Malheur County, Oreg.: Bureau of Mines Rept. of Investigations 5285, 1956, 54 pp.

of Mines Rept. of Investigations 5285, 1956, 54 pp.

of Mines Rept. G. G., and Wells, R. R., Selective Extraction of Mercury and Antimony From Cinnabar
berspamer, E. G., and Wells, R. R., Selective Extraction of Traces of Mercury in Mercury-Ore Ash

of Asperger, Smiligho, and Paulović, Dušanka, Determination of Traces of Mercury in Mercury-Ore Ash

of Asperger, Smiligho, and Paulović, Dušanka, Determination of Traces of Mercury in Mercury-Ore Ash

of Asperger, Smiligho, and Paulović, Pušanka, Determination of Mercury With Bis (2-Hydroxyethyl) Dithiocar
reptitz, James S., and Sutton, Sally Ann, Titration of Mercury With Bis (2-Hydroxyethyl) Dithiocar
bamate: Anal. Chem., vol. 28, No. 8, August 1956, pp. 1300-1303.

was Walton, Harold F., and Smith, Howard A., Rapid Gravimetric Determination of Mercury in Organic

was Walton, Harold F., and Smith, Howard A., Rapid Gravimetric Determination of Mercury in Organic

Gas Age, New Device for Pouring Mercury: Vol. 118, No. 7, Oct. 4, 1956, pp. 44-45.

Gas Age, New Device for Pouring Mercury: Vol. 118, No. 7, Oct. 4, 1956, pp. 44-45.

Gas Age, New Device for Pouring Mercury: Vol. 118, No. 7, Oct. 4, 1956, pp. 410-411.

Joncich, M. J., Alley, C. A., and Kowaka, M., Apparatus for the Triple Distillation of Mercury: Jour. Chem. Ed., vol. 33, No. 12, December 1956, pp. 607-608.

Various changes in peripheral blood have been observed in patients suffering from chronic mercurialism or in those exposed to mercury vapor for a long time. 12 In experiments with animals exposed to mercury vapors, comparison of blood-element counts, including bone marrow and hemoglobin levels, of the experimental group with those of the control group did not reveal any statistically significant differ-The investigation also revealed no pathologic alterations in the white or red blood element or in the bone marrow of guinea pigs chronically exposed to mercury vapor.

In research and analytical laboratories potential health hazards due to mercury vapor often exist. 13 A case of mercury poisoning in a university laboratory was reported, and the simple control measures

to remove the sources of danger were described.

A method of analysis was developed 14 for determining aldehydes, which was based on the oxidation of aldehyde to acid by mercuric ion which, in turn, was reduced to free mercury. The analysis was concluded by an iodometric measurement of the mercury. The method is applicable to determining virtually any concentration of aldehyde in the presence of most alcohols, acids, esters, acetals, ketones, ethers, organic chlorides, and epoxides.

Mercurous ion that was generated with 100-percent current efficiency at large mercury pool anodes was used 15 for accurate and precise titrations of macro quantities of chloride, bromide, and iodide. The use of mercurous ion in the coulometric titration of halides offers some advantages over the use of silver ion, particularly for

the titration of macro quantities.

In American Cyanamid's process for making methyl styrene two unit processes are involved 16—alkylation of toluene with acetylene to produce ditolyl ethane, and cracking of DTE to give methyl styrene and simultaneously regenerate half the toluene for recycling to the alkylation step. Catalyst for alkylation is mercuric sulfate in 95 percent sulfuric acid. Recovery of the mercury, which is necessary for health and safety and essential economically, was described.

New selenium-free pigments called mercadium reds were allegedly proving equal to selenium-containing cadmium sulfoselenides that had been the only satisfactory heat-fast, light-fast, red pigments available. Mercadiums were reported to be a solid solution of cad-

mium and mercury sulfide.17

International Electrolytic Plant Co., Sandycroft, Chester, England, developed ¹⁸ a new "packaged" low-amperage cell tailored for the small chlorine-caustic user. Advantages of the small cell are low initial cost, simplicity of operation, and minimum maintenance.

¹² Kesié, Branko, Häusler, Vera, Purec, Ljerka, and Vandekar, Milutin, The Influence of Mercury Vapor on Blood Elements and Hemoglobin: AMA Archives Ind. Health, vol. 13, No. 6, June 1956, pp. 602-605.

13 Goldwater, Leonard J., Kleinfeld, Morris, and Berger, Adolph R., Mercury Exposure in a University Laboratory: AMA Archives Ind. Health, vol. 13, No. 3, March 1956, pp. 245-249.

14 Ruch, James E., and Johnson, James B., Determination of Aldehydes by Mercurimetric Oxidation: 13 De Ford, Donald D., and Horn, Hans, Titrations of Halides With Electrolytically Generated Mercurous Ion: Anal. Chem., vol. 28, No. 5, May 1956, pp. 69-71.

15 De Ford, Donald D., and Horn, Hans, Titrations of Halides With Electrolytically Generated Mercurous Ion: Anal. Chem., vol. 28, No. 5, May 1956, pp. 797-798.

Przybylowicz, Edwin P., and Rogers, L. B., Coulometric Titrations With Electrolytically Generated Mercury (1 and II): Anal. Chem., vol. 28, No. 5, May 1956, pp. 799-802.

16 Chemical Engineering, No. 1 Problem in Making Methyl Styrene; Don't Let Mercury Get Away: Vol. 63, No. 9, September 1956, pp. 118-119.

17 Chemical Week, You'll Be Seeing Them in a New Red: Vol. 78, No. 8, Feb. 25, 1956, pp. 59, 61-62.

18 Chemical Engineering, Do It Yourself in Small Mercury Cells: Vol. 63, No. 5, May 1956, pp. 118-120.

A feature of the cell is the unique cathode-box arrangement that eliminates the corrosion problem of other designs. Six of the new cells have an output of 70 pounds per hour of chlorine plus its equiv-

alent NaOH.

Two new lamps—the silver-white mercury lamp and the golden mercury lamp—were announced 19 as providing better illumination for certain industrial applications and for streets and highways. The silver-white lamp was said to provide 10 to 20 percent more light output, depending upon lamp size, than standard mercury-vapor lamps. Its high light output, together with color characteristics, make it suitable for industrial illumination and for residential-street The golden lamp has been designed for public streets, highways, and other danger zones. Its attention-getting color warns the driver that caution is required. Recommended uses were at intersections, dead ends, curves, railroad crossings, turnouts, and similar slowdown spots. In such a planned lighting system, areas between the danger points could be lighted with white-mercury lamps.

A guide was prepared 20 by the Committee on Testing Procedures for Illuminating Characteristics of the Illuminating Engineering Society on the procedure to be followed and the cautions to be observed in measuring electrical characteristics of mercury-vapor lamps

on alternating-current circuits.

Radioactive mercury was used to determine whether there is any relationship between the depreciation of fluorescent lamps and the quantity of mercury picked up on the lamp walls during lamp operation.21 It was found that early in lamp life there is no such relationship. However, after 1,000-2,000 hours, depending on the phosphor type, a relationship was established.

Several other articles that described the installation and operation of mercury lamps 22 and publications containing theoretical subject

matter 23 were released in 1956.

National Safety News, New Lamps for Plant and Highway: Vol. 73, No. 4, April 1956, p. 96.
 Illuminating Engineering, Electrical Measurements of Mercury Vapor Lamps: Vol. 51, No. 8, August 1956, pp. 597-599.

18 Burns, George, and Kastner, Jacob, Use of Radioactive Mercury To Study the Relation of Mercury to Depreciation of Fluorescent Lamps: Jour. Electrochem. Soc., vol. 103, No. 8, August 1956, pp. 447-451.

18 Till, W. S., and Haskins, J. E., Jr., Relamping Programs: Illum. Eng., vol. 51, No. 3, March 1956, pp. 277-288.

Browder, J. B., and Sweatte, J. E., Luminous Ceiling—With Mercury: Illum. Eng., vol. 51, No. 6, June 1956, 457-458. O'Connor, James J., and Peach, Norman, Industrial Lighting: Power, vol. 100, No. 6, June 1956, pp. Statham, Donald C., Mercury Vapor Dock Lights Cut Costs: Elec. World, vol. 146, No. 4, July 23, 1956, Statham, Donald C., Mercury Vapor Dock Lights Cut Costs: Elec. World, vol. 146, No. 4, July 23, 1956, p. 128.

Noel, E. B., and Martt, E. C., Effect of Operating Variables on Mercury Lamp Performance: Illum. Eng., vol. 51, No. 7, July 1956, pp. 513-531.

Bale, James R., Mercury Floodlighting—Its Advantages and Limitations: Illum. Eng., vol 51, No. 9, September 1956, pp. 627-629.

Wilson, W. F., and LaFleur, Robert, Floods Boost Outdoor Lighting 300%: Elec. World, vol. 146, No. 20, Nov. 12, 1956, p. 164.

*** Kutschke, K. O., and McElcheran, D. E., Photolysis of Acetone in the Absence of Mercury: Jour. Chem. Phys., vol. 24, No. 3, March 1956, pp. 618-619.

Sears, Gerald W., Growth of Mercury Platelets From the Vapor: Jour. Chem. Phys., vol. 25, No. 4, October 1956, pp. 637-642.

Hernquist, Karl G., Discharge Mechanism of Mercury Pool Arcs: Jour. Appl. Phys., vol. 27, No. 10, October 1956, pp. 1226-1236.

Volpe, John and Hinman, George, Internal Conversion in Hg¹⁹⁸: Phys. Rev., vol. 104, No. 3, Nov. 1, 1956, pp. 753-756.

Weaver, J. R., and Parry R. W., Reduction at the Streaming Mercury Electrode. II. Current-Voltage Curves: Jour. Am. Chem. Soc., vol. 78, No. 21, Nov. 5, 1956, pp. 5542-5550.

Engley, Frank B., Jr., Mercurials as Disinfectants: Soap and Chem. Spec., vol. 32, No. 12, December 1956, pp. 199, 201, 203, 205, 223-225.

WORLD REVIEW

World production of 197,000 flasks of mercury in 1956 was at the highest annual rate since 1943 and exceeded that in 1955 by 12,000 New and expanded facilities permitted, Italy, Spain, Japan, the Philippines, and the United States to significantly increase output, which more than offset declining production in Mexico and Yugoslavia. In the small mercury-producing countries, output remained virtually unchanged with minor fluctuations.

TABLE 16.—World production of mercury, by countries, 1947-51 (average) and 1952-56, in 34.5 kg. (76-pound) flasks 2

	W. Jann and	

Country 1	1947–51 (average)	1952	1953	1954	1955	1956
North America:						
North America: Honduras	2				1	
Mexico	6, 311	8, 732	11 649	14 855		
United States	11, 878	12, 547	11,643	14, 755	29, 881	19, 532
Courth Amorione	, .	12, 041	14, 337	18, 543	18, 955	24, 177
Bolivia (exports)	4					
Chile	419	173	100	040		
Colombia.	710	110	100	243	526	3 500
Peru				77	36	
Europe:				11	148	335
A	14	15	22	27	16	* 00
Czechoslovakia 3 5	766	725	725	725		³ 20
Italy	48, 768	55, 869	51, 373	54, 477	725	725
Spain	41, 374	39, 135	43, 541	43, 135	53, 520	61, 932
SpainU. S. S. R. ^{3 §}	11,600	11,600	12, 300	12, 300	36, 231	3 40,000
Yugoslavia	12, 441	14,620	14, 272		12, 300	12, 300
Asia:	12, 111	14,020	14, 2/2	14, 446	14, 591	13, 228
China	1, 264	3 4,000	3 5,000	(4)	45	<i>(</i> ()
Japan	1, 786	3,083	6, 406	10, 264	(1)	(4)
Philippines	1,100	0,000	0, 400	10, 204	4, 990 635	8, 383
Taiwan				44	58	3,015
Turkey	25			261	841	rco
Africa:	20			. 201	041	562
Algeria	168					
Tunisia	100				166	22
					100	22
World total (estimate)	137,000	151,000	160,000	180,000	185, 000	197, 000

Italy.—Italy, the world's leading mercury-producing country, produced 62,000 flasks of mercury in 1956, 8,400 more than 1955. Except for 1947, Italy has led in mercury output since World War II, despite the loss of the Idria mine in 1945.

The increased output was due chiefly to the first full year's operation of the two Gould rotary furnaces installed in 1955 at Monte Amiata's mine in Siena Province. Data on ore and metal production indicated that the average grade of ore treated contained 0.72 percent mercury in 1956 compared with 0.80 percent in 1955.

Japan.—Mercury production in 1956, as in previous years, came from domestic ores and secondary and imported materials. total output exceeded by almost 70 percent the output in 1955, which was low because of decreased imports of mercury-bearing ores. Since 1953 the domestic component has been increasing owing to

¹ Rumania and other countries may also produce a negligible quantity of mercury, but production data are not available.
³ This table incorporates a number of revisions of data published in previous Mercury chapters. Data do not add to totals shown owing to rounding where estimates are included in the detail. Estimate.

⁴ Data not available; estimate by authors of chapter included in total.
5 According to the 43d annual issue of Metal Statistics (Metallgesellschaft), except 1956.

TABLE 17.—Exports of mercury from Italy, 1952-56, by countries of destination, in 76-pound flasks 12

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Argentina					470
Australia	128	76	98	165	215
Austria	70	43	471	368	629
Belgium-Luxembourg		400	288	299	690
Brazil		11	141	310	000
Canada			400	473	1, 125
Colombia		9			2, 100
Czechoslovakia	173	1,389	177	1, 433	1,848
Finland		599	512	232	232
France	325	3, 351	5,629	3,014	6, 846
Germany:	1 1	,	,	-,	0,010
East.				348	
West	156	3, 881	15, 234	12,473	9, 796
Hungary		583	,	270	335
India			3	-,-	2, 260
Indonesia	15			339	2, 200
Japan				641	6, 353
Netherlands	341	496	820	595	316
Norway	10	466	145		010
NorwayPoland	581	2,817	751	1, 738	2, 039
Rumania		_,		325	2,000
Sweden			304	177	806
Switzerland		100	250	67	339
Union of South Africa	92	181		•	299
United Kingdom		8, 506	16, 210	3, 951	13, 735
United States		32, 025	20, 230	5,001	24, 242
Other countries	45	235	257	705	328
Total	33, 751	55, 168	61, 920	27, 923	75, 003

stimulation by the Government. Although other mines have been brought into operation by the Government development program the Itomuka continued to be the leading mercury mine.

Mexico.—Despite new and expanded mercury operations in 1956, Mexican mercury production dropped nearly 35 percent to 20,000

flasks.

Santa Rosa,²⁴ a mercury mine 35 miles southwest of Cuernavaca, began production in April at a rate of 45 flasks a month. Ore was treated in a 20-ton-per-day retort. Estimated reserves were adequate for a 2-year supply.

During the year 6 retort furnaces,²⁵ bringing the total retorts in operation to 72, were installed at the La Sorpresa mercury mine at Huahuaxtla, State of Guerrero.

Effective 26 January 1, 1956, the Mexican Congress established a new set of taxes covering concessions and production, provision of fiscal contracts for the stimulation of mining, and a new system of subsidies applicable to small and medium mining producers. Compared with superseded legislation, the new decree lowered the production tax on mercury. The new tax on mercury was:

		Percent
Metallic		3. 13
Concentrates and	ores	3. 34

These charges were based upon a New York quotation of \$150 (U.S.) per flask of 76 pounds and were to increase or decrease accord-

Compiled from Customs Returns of Italy.
 This table incorporates a number of revisions of data published in the previous Mercury chapter.

<sup>Engineering and Mining Journal, vol. 157, No. 4, April 1956, p. 196.
Mining World, vol. 19, No. 1, January 1957, pp. 96-97.
Bureau of Mines, Mineral Trade Notes: Special Suppl. 48, vol. 42, No. 1, January 1956, 21 pp.</sup>

ing to the increase or decrease of the market quotation; the amount of the increase or decrease is calculated by multiplying the difference between the market quotation and the base, expressed in dollars and fractions (U. S.), by the factor 0.0207.

TABLE 18.—Exports of mercury from Mexico, 1952–56, by countries of destination, in 76-pound flasks ¹

Compiled	h	Corre	٨	Down.
Оощриса	· vy	CULIA	л.	Dontal

	Country	1952	1953	1954	1955	1956
ArgentinaCanadaGermany		22	100 110	193 294	2, 060 460	271 978 711
Japan		151	236 50	605 517 4, 790	1, 575 339 5, 284	1, 626 11 1, 388
United States Other countries		8, 653 676	15, 629 234	11, 469 596	14, 251 267	17, 821 271
Total		9, 502	16, 359	18, 464	24, 236	23, 077

¹ Compiled from Customs Returns of Mexico.

Philippines.—The first full year's operation of the Palawan Quick-silver Mines, Inc., the first and only mercury producer in the Philippines, raised 1956 output to nearly five times that of 1955. In mid-year a second 100-ton-per-day Gould rotary furnace was installed which raised the output about 50 percent to 300 flasks a month. According to press reports, the entire output has been sold to Japan under a long-term sales contract.

Based on the ore treated and the mercury produced the grade of ore decreased slightly during the year and averaged about 6 pounds

of mercury per ton.

Spain.—Mercury output in 1956 rose 3,800 flasks from 1955; as in previous years, virtually all came from the nationalized Almaden mine in the Province of Ciudad Real. Average grade of ore treated was about 2.5 percent mercury. Completion of a new hoisting shaft at the Almaden mine in 1956 increased hoisting capacity to 315 tons daily.

Installation of a third distillation furnace at the quicksilver plant in Castaras, Granada Province, was reportedly authorized by the Direction General de Mines. The plant has been set up to exploit the deposits at the San Manuel concession near Castaras.²⁷

The discovery of mercury deposits in the vicinity of Alcaraz in the Province of Albacete was reported,²⁸ but their significance has not been evaluated.

Metal Industry (London), vol. 88, No. 21, May 25, 1956, p. 444.
 Metal Bulletin (London), No. 4122, Aug. 28, 1956, p. 23.

TABLE 19.—Exports of mercury from Spain, 1952–56, by countries of destination, in 76-pound flasks ¹

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Australia		105	1, 392	195 64	220
Belgium-Luxembourg	6	38		123	19
Brazil Canada		367	777	1, 437 1, 501	2, 35 60
Denmark					45
Finland France	3, 765	3, 415	1,001 4,226	297 7, 629	31 3, 99
Germany	1,804	2, 606	1, 460	4, 214	2, 43
ndia apan		1.761	901	927	1, 68 1, 78
Vetherlands	1, 308	441	1,016	896	1, 96
Vorway Portugal		290 96	145 345	150 159	14 9
Sweden	203	320	640	1, 236	2, 59
Switzerland United Kingdom		2, 451 6, 701	751	1, 159	15 3, 85
United States	4, 566 27, 160	24, 972	6, 315 24, 217	4, 203 7, 835	16, 58
/enezuela					1, 28
Other countries	57	105	348	220	10
Total	44, 253	43,668	43, 534	32, 245	40, 73

¹ Compiled from Customs Returns of Spain.

Turkey.—Output of mercury in 1956 declined 33 percent from the 1955 rate and came chiefly from an old mine in Sille County, north of Konya. Facilities for recovery of the mercury were rather primitive; reserves and grade of ore were unknown.

It was reported ²⁹ that principal mercury occurrences are in the western part of Turkey at Halikoy, Baltali, Golbasi, and Karaburun. A deposit near Manastir was estimated to contain 23,000 tons of 2-percent mercury; 1 at Kutahya 140,000 tons of unknown grade; and another near Baltah 50,000 tons assaying 1.7 percent mercury.

United Kingdom.—The United Kingdom was the world's second highest consumer of mercury. A rough guide to consumption may be obtained by imports minus reexports. This calculation, however, makes no allowance for industry and Government stocks that are not available.

	1952	1953	1954	1955	1956
ImportsReexports	9, 200 3, 600	21, 300 2, 500	29, 500 6, 600	12, 900 3, 300	19, 600 4, 000
Apparent consumption	5, 600	18, 800	22, 900	9, 600	15, 600

²⁹ Kromer, H. Ferid, Turkey's Mineral Potential Expands: Eng. and Min. Jour., vol. 157, No. 1, January 1956, p. 90.

Reexports of mercury in 1955 and 1956, in 76-pound flasks, were as follows:

estination	1955	19
United States		. (
India		į
IndiaAustralia	214	4
Denmark		
Sweden		
Finland.	193	
Hong Kong		
Korea		
Japan		
Japan Belgium		
Indonesia		
Rhodesia and Nyasaland, Federation of	133	
Canada	775	·
Poland		
Other countries	485	
	2 250	4

Yugoslavia.—Mercury production dropped about 1,400 flasks in 1956 owing principally to a decrease in grade of ore treated. The mercury content of ore has been decreasing, but since 1950 improved mining technology had increased ore production sufficiently to offset the decrease in metal content. As usual, most of the mercury production in Yugoslavia came from the Idria mine in the Province of Slovenia (formerly Gorizia).

TABLE 20.—Exports of mercury from Yugoslavia, 1952–56, by countries of destination, in 76-pound flasks ¹

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Austria Belgium-LuxembourgBrazil	356 791	360 347	366 330 95	577 90	1, 82
Canada Denmark		10 35		200	
FranceGermany, West	971	300 2, 289	585 3, 874	510 1,662	613 810
Greece	10 450 485	300 336	260	236 40	37 16
Switzerland United Kingdom United States	565 697 8, 906	195 2, 666 5, 972	977 1,001 4,353	4, 967 175 4, 753	2, 40 47 1, 82
Other countries	13. 963	12, 816	11, 841	13, 210	8, 60

¹ Compiled from Customs Returns of Yugoslavia.

Mica

By Milford L. Skow¹ and Gertrude E. Tucker ²

RODUCERS of domestic sheet mica in the United States in 1956 reported the largest supply since 1946 as the quantity sold or used increased 38 percent over 1955. The value, however, was 18 percent lower, principally because of the larger proportion of hand-cobbed mica in the smaller total quantity purchased by the Government. With sales of scrap and flake mica dropping 10 percent in quantity and value, total crude domestic mica sales decreased 9 percent in quantity and 15 percent in value below those of 1955, the peak year, but were the second highest on record. Consumption of sheet mica decreased slightly to about 12.5 million pounds, and consumption of scrap mica (as indicated by the tonnage of ground mica sold) was 14 percent lower than in 1955. Total imports were down 17 percent, but total exports increased 48 percent to a new record.

TABLE 1.—Salient statistics of the mica industry in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Domestic mica sold or used by			2.5			
producers:					100	1.44
Total sheet mica: 1						
Pounds Value	474, 665	697, 989	849, 394	668, 788	642, 113	887, 871
	\$116,080	\$908, 135	\$2, 153, 584	\$2, 393, 041	\$3, 370, 397	\$2,747,073
Average per pound Scrap and flake mica:	\$0. 24	\$1.30	\$2.54	\$3.58	\$5. 25	\$3.09
Short tons	55, 208	75, 236	73, 259	01 070	07 490	00 000
Value	\$1, 321, 952	\$1, 954, 286	\$1, 823, 840	81, 073 \$1, 733, 772	95, 432	86, 309
Average per ton	\$23.94	\$25.97	\$24.90	\$21.39	\$2, 058, 035	\$1,849,573
Average per ton	φ20. στ	420. 81	\$24.80	\$21.09	\$21. 57	\$21.43
Total sheet, scrap, and flake mica:			:			
Short tons	55, 446	75, 585	73, 684	81, 407	95, 754	86, 753
Value	\$1, 438, 032	\$2, 862, 421	\$3, 977, 424	\$4, 126, 813	\$5, 428, 432	\$4, 596, 646
Ground mica:					, , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Short tons	65, 589	74, 806	73, 072	80, 072	106, 185	91, 270
Value	\$3, 3 67, 92 5	\$4, 278, 103	\$4, 192, 420	\$4,889,122	\$6, 557, 639	\$6, 228, 058
Consumption of splittings:				, ,		.,
Pounds	9, 900, 929	10, 220, 671	10, 346, 159	6, 732, 719	8, 997, 674	8, 661, 583
Value	\$8, 093, 947	\$9, 729, 099	\$7, 902, 232	\$4, 132, 418	\$4, 388, 416	\$4, 435, 377
Imports for consumption						
short tons	15, 949	13, 048	10, 989	8, 924	16, 490	13, 608
Exportsdo	1, 489	2, 472	2, 402	3, 328	3, 314	4,896

¹ Includes small quantities of splittings in certain years.

GOVERNMENT MICA PROGRAMS

DEFENSE MINERALS EXPLORATION ADMINISTRATION

From the beginning of the exploration program in 1951 through December 31, 1956, 259 exploration contracts for strategic mica were executed. Of these, 231 were canceled or terminated, and 28 were still

Commodity specialist.
 Statistical assistant.

in force on December 31, 1956. Total value of the 226 terminated contracts was \$1,274,302, of which the Government advanced \$781,340. Certificates of discovery or development were issued on 58 of these contracts, which had a total value of \$420,496.

TABLE 2.—Defense Minerals Exploration Administration mica contracts in force during 1956, by States, counties, and mines

			•	Contract	
State and operator	Property	County	Date	Total value 1	Status, Dec. 31, 1956
ALABAMA					
Dixie Mines, Inc	Liberty	Randolph	March 1955	\$3, 6 16	Terminated.
GEORGIA					
Beam, J. RPhillips, John	Bennett Bray Prospects 1 & 2.	Cherokee Hart	July 1955 September 1956_	8, 316 6, 276	Do. In force.
Vood, E. Bchwab, E. H	Wood Duke	Upson	August 1956 October 1955	6, 348 5, 524	Do. Terminated.
MONTANA					
Barham, Daniel T	Thumper Lode & Thumper Lode No. 2.	Gallatin	do	14, 000	In force.
NORTH CAROLINA		$(x,y) \in \mathbb{R}^{n \times n}$			
Garland, A. T., et al Shaffer Mining Co., Inc. Branch Mining Co C & D Mining Co Phillips, John	Johnson Shaffer Branch C & D Ed Burleson Pros-	Ashedo Averydododo	March 1956 October 1955 do December 1955_ November 1956_	6, 816 7, 100 3, 240 4, 624 4, 580	Terminated. Do. Do. Do. In force.
Do	pect. John Prospect. Howard Smith. Doe Hill Doe Hill No. 2. Leaning Locust. Shuffle Vance Back Prospect. Cliff Blanton 2 Dream Clark. Hall Upper Clark. Wilson Prospect. Holland Prospects 1 & 2.	do do do	September 1956_ October 1955 December 1955 July 1956 May 1956 July 1955 November 1956_	6, 940 8, 064 5, 776 5, 164 2, 948 5, 310	Do. Terminated. Do. In force. Terminated. Do.
Do Cance, Joe C C C C C C C C C C C C C C C C C C C	Back Prospect Cliff Blanton 2 Dream	Clevelanddo Jacksondo	November 1956_ January 1952 November 1955_ June 1956	4, 840 5, 650 7, 200 3, 828	In force. Terminated. Do. Do.
Do Do Do Holland, B. M	HallUpper ClarkWilson ProspectHolland Prospects	do do do	May 1956 November 1956. December 1956 May 1956	2, 776 5, 240 5, 068 6, 576	Do. In force. Do. Terminated.
Vhite, Alvin, et al	1 & 2. Coward. Leatherman. Zeb Angel. Setzer. Ferguson.	Lincoln Macon do	June 1955 May 1956 May 1955 November 1956.	4, 940 4, 440 5, 276 5, 484	Do. Do. Do. In force.
Ferguson Mining Co Higdon, Ted Do Knob Mining Co Mica Industries, Inc	Ferguson Dalton Wild Cove Lyle Knob	do do do	February 1956 July 1956 August 1956 March 1956	4, 832 3, 996 3, 148 4, 616	Terminated. Do. Do. Do.
vard, A.	Ferguson. Dalton Wild Cove. Lyle Knob. Baird Cove 2 Harris. Black Jack. Howard Prospect.	dodo Mitchelldo	December 1952 September 1955 February 1956 January 1956	9, 100 6, 500 4, 416 3, 288	Do. Do. In force. Terminated.
siack Jack Mining Co- Joone, Howard. Buchanan, C. D. Freeman, Paul Jouge, M., et al Freene, W. A. Frindstaff, G. Frindstaff, Roy, et al Juskins, Ed.	Howard Prospect. Boone Hesby Edwards Turbyfill Prospect. Branch Grover John Conley Bill Prospects 1 &	do do do	December 1956 August 1955 November 1956. November 1955. October 1956	5, 552 4, 464 5, 500	In force. Terminated. In force. Terminated.
Frindstaff, GFrindstaff, Roy, et al Luskins, Ed	Grover John Conley Bill Prospects 1 & 2.	do do	October 1956 June 1955 December 1956	4, 116 3, 388 4, 488 4, 936	In force. Terminated. In force.
Iuskins, Ed & Gage,	Briggs		October 1956	2, 696	Do.
Huskins, Ed Do Luskins, Ed, et al Huskins, P., et al	George Hesby Edwards Randolph J W Boone	do do	July 1956 June 1956 June 1955 October 1955	4, 104 3, 553 5, 616 4, 016	Do. Terminated. Do. Do.

See footnotes at end of table.

TABLE 2.—Defense Minerals Exploration Administration mica contracts in force during 1956, by States, counties, and mines-Continued

			(Contract	
State and operator	Property	County	Date	Total value 1	Status, Dec. 31, 1956
NORTH CAROLINA-con.					
Jarrett, J. & Grindstaff F. Jarrett, John, et al. McKinney, B. Phillips, C. R. Do. Phillips, John, et al	McBee Prospect Fred Robinson S. K. Kirby Ed Prospect Willis Hawk	do do	April 1956 June 1956	4, 220 5, 080 5, 488	In force. Terminated. Do. Do. Do. In force.
(Hawk Mining Co.). Phillips, John. Do. Phillips, John, et al. Phillips, S. L. Do. Richmond, Thomas, et	Roby Bob Wise	do do dodo	August 1956	5, 744 6, 612 10, 636 4, 552 4, 016	Terminated. Do. In force. Terminated. Do. Do. Do.
al. Sparks, B., et al	Burleson & Gouge Prospect.	do	May 1956	5, 192	Do.
Stevenson, Ted, et al				9, 288 5, 412 5, 136 12, 735 5, 824 10, 940	In force. Terminated. In force. Do. Terminated. Do. Do. In force.
Brown, C. L. & Rathburn, G. C.	1, 2, & 3.	do	August 1954		Do.
burn, G. C. Buchanan & Snyder McMurry, G., et al Murphy Mining Co Phillips, John Young & Burleson	Jim Riddle Mitchell Branch Murphy Laws Ruby	do do	November 1956_ December 1956_ September 1955_	5, 876 4, 236 5, 096	Terminated. In force. Do. Terminated. Do.
SOUTH CAROLINA					
King, H. B., Sr	Clinkscales No. 2	Abbeville	May 1956	5, 948	In force.

 ¹ Government participation 75 percent except where noted. Total actual expenditures by the Government on terminated and certified contracts often were less than the obligated funds.
 2 Government participation—90 percent.

DEFENSE MATERIALS SERVICE

In September, the unit of General Services Administration (GSA) responsible for administering the domestic mica-purchasing program, formerly known as the Emergency Procurement Service, was reor-

ganized and renamed the Defense Materials Service.

Mica purchased at 3 mica-purchasing GSA depots yielded 218,775 pounds of full-trimmed muscovite block mica (over 0.007 inch thick), comprising 146,711 pounds of ruby and 72,064 pounds of nonruby. Good Stained or Better qualities constituted about 30 percent of the ruby and 47 percent of the nonruby; Stained quality made up about 46 percent of the ruby and 36 percent of the nonruby. The Spruce Pine, N. C., depot furnished 76 percent of the total yield of ruby block mica and 91 percent of the nonruby.

The total quantity of Stained or Better qualities of full-trimmed muscovite block obtained from Government purchases of domestic mica in 1956 was equivalent to 8.5 percent of the total fabrication in

1956 of block and film of these qualities, irrespective of grades.

Domestically produced mica purchased by the Government since the program began in July 1952 has yielded 874,405 pounds of fulltrimmed mica, 77 percent of which was the ruby variety.

TABLE 3.—Yield of full-trimmed muscovite ruby and nonruby block mica from domestic purchases by GSA, 1956, by quality, grade, and depot, in pounds

		Rul	by			Nonr	ub y	
Depot and grade	Good Stained or Better	Stained	Heavy Stained	Total	Good Stained or Better	Stained	Heavy Stained	Total
Spruce Pine, N. C.: 2 and larger 3 4 5 51/2 6	510 770 1, 679 7, 524 5, 310 24, 906	352 719 1, 451 6, 607 5, 027 30, 423	277 503 822 3, 453 2, 699 18, 095	1, 139 1, 992 3, 952 17, 584 13, 036 73, 424	203 456 1, 259 5, 467 4, 403 20, 458	74 194 614 2, 880 2, 722 16, 564	11 35 149 904 1, 233 8, 189	288 685 2, 022 9, 251 8, 358 45, 211
Total	40, 699	44, 579	25, 849	111, 127	32, 246	23, 048	10, 521	65, 815
Franklin, N. H.: 2 and larger 3 4 5 5½ 6	4 13 37 289 306 1,711	94 128 347 1,847 1,917 10,518	29 46 142 704 789 4,082	127 187 526 2, 840 3, 012 16, 311				
Total	2, 360	14, 851	5, 792	23, 003				
Custer, S. Dak.: 2 and larger	(1) (1) 6 39 44 209	13 36 182 1, 196 1, 269 4, 890	3 25 138 765 840 2, 926	16 61 326 2,000 2,153 8,025	11 19 41 229 223 814	11 27 90 513 511 1,744	13 30 102 433 366 1,072	35 76 233 1, 175 1, 100 3, 630
Total	298	7, 586	4, 697	12, 581	1, 337	2, 896	2,016	6, 249
Grand total	43, 357	67, 016	36, 338	146, 711	33, 583	25, 944	12, 537	72,064

¹ Less than 1 pound.

TABLE 4.—Yield of byproducts from domestic purchases of ruby and nonruby mica by GSA, 1956, by depots, in pounds

		Ruby	•	ı	Nonruby	
Depot	Miscella- neous ¹	Punch	Scrap	Miscella- neous ¹	Punch	Scrap
Spruce Pine, N. C	8, 018 36, 914	53, 063 28, 878	519, 069 466, 078	4, 721	44, 681	415 , 6 03
Custer, S. Dak	1, 464	13, 383	187, 847	914	4,880	162,008
Total	46, 396	95, 324	1, 172, 994	5, 63 5	49, 561	577, 611

¹ Includes some full-trimmed thins and block of lower than Heavy Stained qualities.

In May, revisions by GSA in the price schedule of the domestic-mica-purchase regulation increased the prices offered for certain sizes and qualities of full-trimmed mica. Supposedly, the increased prices for certain grades of Stained and Heavy Stained qualities of mica would result in more larger size mica being offered to the Government. After a brief trial period under the revised price schedule, however, the producers still found that trimming to the highest quality, rather than to the largest grade (size), was more profitable.

835

TABLE 5.—Yield of full-trimmed muscovite ruby and nonruby mica and byproducts from domestic purchases by GSA, 1952-56, by depots, in pounds

MICA

Category and depot	1952 1	1953	1954	1955	1956	Total
Full-trimmed:						
Spruce Pine, N. C	36, 831	113, 270	139, 872	188, 915	176, 942	655, 830
Franklin, N. H.	4, 289	25, 303	35, 046	29, 257	23, 003	116, 898 101, 677
Custer, S. Dak	14, 395	26, 125	23, 894	18, 433	18, 830	101, 077
Total.	55, 515	164, 698	198, 812	236, 605	218, 775	874, 405
Other:			,			
Spruce Pine, N. C	196			16, 069	12, 739	29, 004
Franklin, N. H.	1,765	1, 821	12, 566	19, 785	36, 914	72, 851
Custer, S. Dak		7, 995	1, 623	27, 081	2, 378	39, 077
Total	1, 961	9, 816	14, 189	62, 935	52, 031	140, 932
Punch:	296	16	8,940	119, 333	97, 744	226, 329
Spruce Pine, N. CFranklin, N. H	933	23, 052	93, 229	69, 786	28, 878	215, 878
Custer, S. Dak	30, 354	193, 505	44, 388	8, 149	18, 263	294, 659
Total.	31, 583	216, 573	146, 557	197, 268	144, 885	736, 866
Scrap:	43	47	15, 255	1, 607, 165	934, 672	2, 557, 182
Spruce Pine, N. C	1, 581	21, 708	193, 363	367, 208	466, 078	1, 049, 938
Franklin, N. H Custer, S. Dak		157, 505	363, 174	270, 622	349, 855	1, 192, 062
Oublet, N. Dubt					- FF0 COF	4 700 199
Total	52, 530	179, 260	571, 792	2, 244, 995	1, 750, 605	4, 799, 182

¹ Figures for July-December.

The Government also increased the charges for processing hand-cobbed mica offered under the procedure, which pays for the actual yield of full-trimmed mica at the regular prices of the program for full-trimmed mica.

In July the domestic mica-purchasing program, scheduled to expire on June 30, 1957, was extended to June 30, 1962, or until total purchases under the program are equivalent to 25,000 short tons of hand-cobbed mica, whichever occurs first. This amendment to the domestic-mica-purchase regulation also extended to June 30, 1958, the period for notifying the Government of intention to participate in the programs.

DOMESTIC PRODUCTION

Sheet Mica.—Crude sheet mica sold or used by producers increased 38 percent in quantity but decreased 18 percent in value compared with 1955. A moderate decrease in total sheet mica purchased by the Government, coupled with the larger proportion of hand-cobbed mica in these purchases, caused much of this reported decline in value. North Carolina continued to be the principal producing State and supplied 87 percent of the total domestic output of sheet mica—about the same proportion as in 1955. Other leading producing States were New Hampshire, Georgia, Maine, South Dakota, New Mexico, South Carolina, and Alabama.

Scrap and Flake Mica.—Both tonnage and value of scrap and flake mica sold or used by grinders decreased 10 percent from 1955. Over half of the tonnage was produced in North Carolina; considerable quantities were reported for South Carolina, Georgia, and Alabama.

TABLE 6.-Mica sold or used by producers in the United States, 1947-51 (average) and 1952-56

							(aB			
			Sheet	Sheet mica						
Year	Uncut pr circle	Uncut punch and circle mica	Uncut mics punch ar	Uncut mica larger than punch and circle ¹	Total sheet mics	et mics 2	Scrap and	Scrap and flake mica a	Ř	Total
	Pounds	Value	Pounds	Value	Pounds	Value	Short tons	Value	Short tons	Value
1947-51 (average) 1952 1953 1964	420, 388 625, 300 667, 241 450, 105	\$67, 742 117, 868 98, 010 51, 947	54, 277 72, 689 182, 153 218, 683	\$48, 338 790, 267 2, 055, 574 2, 341, 094	474, 665 697, 989 849, 394 668, 788	\$116, 080 908, 135 2, 153, 584 2, 393, 041	55, 208 75, 236 73, 259 81, 073	\$1, 321, 952 1, 954, 286 1, 823, 840 1, 733, 772	55, 446 75, 585 73, 684 81, 407	\$1, 438, 032 2, 862, 421 3, 977, 424 4, 126, 813
Odinado Comecticut Maine New Hampshre New Mexico Noriw Mexico Noriw Dakota Undistributed i Total 1966: Alabama Colorado Comecticut Georgia Maine Mane Now Mexico Noriw Mexico Noriw Carolina South Carolina	(4) (9) (9) (16, 886, 505 116, 886 883, 401 (4) (4) (5) (5) (4) (5) (6) (5) (6) (6) (7)	(4) (5) (6) (7) (7) (9) (9) (9) (9) (9) (9) (9) (9) (9)	(*) 56 (*) 56 (*) 57 (*) 58 (*	12, 904 20, 504 20, 504 30,	2, 088 2, 121 2, 083 444 6, 481 642, 113 8 8, 1122 8, 1180 12, 118	12, 904 128, 721 (6, 930 2, 74, 234 3, 37, 235 3, 37, 235 6, 812 2, 004 146, 437 17, 376 18, 466 118,	1,383 609 2 10,000 1,000	8, 742 12, 596 1, 1922 (1, 1922 2, 477 13, 383 628, 383 628, 383 2, 058, 036 (4) 7, 596 (3) 3, 213 1, 024, 531	1,358 699 82 82 83 83 84,104 1,324 95,754 (c) 517 (d) 124 (e) 224 (e) 330 44,510	8, 742 112, 586 113, 683 130, 683 67, 683 67, 122, 286 841, 880 64, 122, 286 841, 880 (9) 7,772 7,772 7,772 7,772 1,6,650 146,650 187, 670 187, 670
Virginis Undistributed f. Total	25,011	5,351	12, 494 396 67, 046 294, 251	2, 693, 159		2, 747, 073	(*) 1, 268 36, 213 86, 309	(*) 31, 224 710, 453 1, 849, 573	(*) 1, 274 (*) 36, 228 86, 763	(4) 88, 277 5, 814 880, 508 4, 596, 646
										awa taaa te

Figures include Alabama (1965), California, Georgia (1965), Idaho (1965), Pennsylvania, South Carolina (1965), Tennessee (1966), Virginia (1965), and States indicated by footnote 4.

¹ Includes the full-trimmed mice equivalent of hand-cobbed mice, 1962-56.

² Includes small quantities of splittings in certain years.

³ Includes finely divided mice recovered from mice and sericite schist, and as a byproduct of feldspar and kaolin beneficiation.

⁴ Included under "Undistributed" to avoid disclosing individual company operations.

MICA 837

Ground Mica.—Sales of ground mica declined 14 percent in tonnage and 5 percent in value from the record level of 1955. Of the total tonnage of ground mica reported, 85 percent was the dry-ground variety, about three-fourths of which was used in roofing, joint cement, and paint. Wet-ground mica was sold principally to the paint (51 percent) and rubber (30 percent) industries. Twenty-six grinders produced from 22 dry-grinding and 8 wet-grinding plants.

The following companies dry-ground mica in 1955 but reported no production in 1956: Ellis Inlow, Clanton, Ala.; Buckeye Mica Co., Buckeye, Ariz.; and International Minerals & Chemical Corp., Kona, N. C. Additions to the 1955 list were (1) John Humer (wet-ground mica at Winterhaven, Calif.), (2) Western Non-Metallics (mica schist at Ogilby, Calif.), and (3) Petaca Mining Corp. (new dry-grinding

mill at Petaca, N. Mex.).

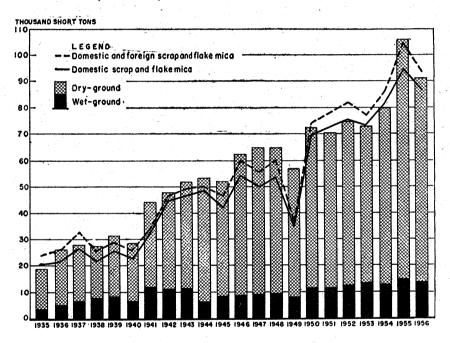


FIGURE 1.—Scrap, flake, and ground mica sold in the United States, 1935-56.

TABLE 7.—Ground mica sold by producers in the United States, 1947-51 (average) and 1952-56, by methods of grinding

Year	Dry g	round	Wet g	round	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1947-51 (average) 1952 1953 1954 1955	56, 139 62, 465 60, 127 67, 618 91, 695 77, 665	\$2,081,499 2,526,407 2,438,628 3,134,277 4,541,482 4,150,996	9, 450 12, 341 12, 945 12, 454 14, 490 13, 605	\$1, 286, 426 1, 751, 696 1, 753, 792 1, 754, 845 2, 016, 157 2, 077, 062	65, 589 74, 806 73, 072 80, 072 106, 185 91, 270	\$3, 367, 925 4, 278, 103 4, 192, 420 4, 889, 122 6, 557, 639 6, 228, 058	

CONSUMPTION

Sheet Mica.—Consumption of sheet mica (block, film, and splittings) in the United States in 1956 decreased 5 percent from 13 million

pounds in 1955.

Domestic fabricators consumed more than 3.8 million pounds of muscovite block and film mica—7 percent below the 1955 consumption. Lower than Stained qualities furnished 48 percent of the total; Stained quality, 47 percent; and Good Stained or Better, 5 percent. Electronic applications used 61 percent of the total muscovite block and film mica fabricated, distributed by qualities as follows: 7 percent Good Stained or Better; 75 percent Stained; and 18 percent lower than Stained. Of the mica fabricated for electronic uses, tubes consumed 91 percent; capacitors, 6 percent; and other uses, 3 percent.

In 1956 fabrication of muscovite block and film mica was reported by 24 companies in 9 States. Over half (2 million pounds) of the total was reported by 13 companies operating in 3 States—New Jersey

(5), New York (4), and North Carolina (4).

Mica Insulator Co., Schenectady, N. Y., had discontinued fabricating block and film mica, and Vulcan Electric Co., Danvers, Mass.,

reported no fabrication for the last half of 1956.

The quantity of mica splittings consumed in 1956 was 4 percent less than in 1955. India was the major source of supply (92 percent by weight), and Madagascar furnished the remainder, principally phlogopite. Consumption of splittings for producing built-up mica was reported for 14 operations in 10 States.

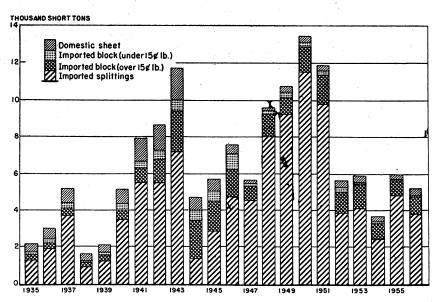


FIGURE 2.—Block mica and splittings imported for consumption in the United States and sales of domestic sheet mica, 1935-56.

TABLE 8.—Fabrication of muscovite ruby and nonruby block and film mica and phlogopite block mica, by qualities and end-product uses in the United States, 1956, in pounds

		Electron	ic uses		Nor	nelectronic	uses	
Variety, form, and quality	Capac- itors	Tubes	Other	Total	Gage glass and dia- phragms	Other	Total	Grand total
Muscovite: Block:								
Good Stained or Better Stained Lower than Stained	297 5, 722 5, 868	27, 587 1, 727, 557 371, 914	29, 837	1, 763, 116	7, 582	7, 215 37, 562 1 1,405, 763	15, 945 45, 144 1, 405, 777	1, 808, 260
Total	11, 887	2, 127, 058	67, 259	2, 206, 204	16, 326	1 1,450, 540	1, 466, 866	3, 673, 070
Film: First quality Second quality Other quality	30, 783 102, 820 2, 950			30, 783 102, 820 2, 950		175 250		
Total	136, 553			136, 553		425	425	136, 978
Block and film: Good Stained or Better 2_ Stained 3 Lower than Stained	133, 900 8, 672 5, 868	1, 727, 557	29, 837	1, 766, 066	7, 582	37, 562	16, 370 45, 144 1, 405, 777	1, 811, 210
Total Phlogopite Block: (all quali- ties)	148, 440	2, 127, 058	67, 259	2, 342, 757	16, 326	1, 450, 965 11, 496	1, 467, 291 11, 496	

¹ Includes punch mica. ² Includes first- and second-quality film. ³ Includes other-quality film.

TABLE 9.—Fabrication of muscovite ruby and nonruby block and film mica in the United States, 1956, by qualities and grades, in pounds

			Gr	ade		
Form, variety, and quality	No. 4 and larger	No. 5	No. 5½	No. 6	Other 1	Total
Block: Ruby: Good Stained or Better Stained Lower than Stained	12, 449 15, 606 130, 431	3, 928 136, 777 213, 025	5, 970 115, 067 58, 840	22, 192 1, 311, 827 275, 698	100 98, 932 676, 325	44, 639 1, 678, 209 1, 354, 319
Total	158, 486	353, 730	179, 877	1, 609, 717	775, 357	3, 077, 167
Nonruby: Good Stained or Better Stained Lower than Stained Total		210 2, 400 19, 996 22, 606	1, 416 5, 401 6, 817	765 124, 945 9, 481 135, 191	1, 200 355, 160 356, 360	1, 964 130, 051 463, 888 595, 903
Film: Ruby: Rist quality Second quality Other quality Total	6, 084 26, 154 	14, 432 25, 609 40, 041	3, 010 13, 922 	6, 633 34, 372 	2, 950 2, 950	30, 159 100, 057 2, 950 133, 166
Nonruby: First quality	808	30 665	455 671	254 869		799 3, 013
Total	868	695	1, 126	1, 123		3, 812

¹ Figures for block mica include "all smaller than No. 6" grade and "punch" mica.

TABLE 10.—Consumption and stocks of mica splittings in the United States, 1947-51 (average) and 1952-56, by sources

	1947-51 ((average)	19	052	19	53
	Pounds	Value	Pounds	Value	Pounds	Value
Consumption:		- 1				
Domestic	1 2 31, 439	1 2 \$19, 825		er ser je		
Canadian	2 3 4 187, 486	2 3 4 109, 269	184, 541	\$74, 197	158, 343	\$98, 73
Indian	9, 053, 966	7, 518, 778	9, 356, 561	9, 091, 784	9, 443, 645	7, 225, 899
Madagascan	628, 038	446, 075	679, 569	563, 118	744, 171	577, 59
Mexican	(1) (3) (4)	(1) (3) (4)				
Total	9, 900, 929	8, 093, 947	10, 220, 671	9, 729, 099	10, 346, 159	7, 902, 232
Stock (Dec. 31):						
Domestic	⁵ 10, 140	5 4, 763				1000
Canadian	4 5 6 125, 943	4 5 6 77, 036	63, 588	23, 352	39, 354	20, 423
Indian	5, 618, 978	5, 225, 727	8, 218, 683	8, 356, 888	6, 688, 997	6, 110, 975
Madagascan	425, 512	360, 683	512, 158	460, 015	387, 905	316, 610
Mexican	(4) (6)	(4) (6)				
Total	6, 180, 573	5, 668, 209	8, 794, 429	8, 840, 255	7, 116, 256	6, 448, 008
	19	1954		55	1956	
	Pounds	Value	Pounds	Value	Pounds	Value
Consumption: Domestic						
Canadian	67. 311	\$37, 505	(7)	(7)		
Indian	6, 158, 769	3, 727, 441	8, 204, 210	\$3, 844, 745	7, 995, 956	\$3, 945, 461
Madagascan	506, 639	367, 472	7 793, 464	7 543, 671	665, 627	489, 916
Mexican						
Total	6, 732, 719	4, 132, 418	8, 997, 674	4, 388, 416	8, 661, 583	4, 435, 377
Stocks (Dec. 31):						
Domestic						
Canadian	(7)	(7)	(7)	(7)	(7)	(7)
Indian	5, 206, 178	3, 901, 194	6, 191, 472	3, 622, 764	5, 076, 672	2, 814, 261
Madagascan	7 330, 900	7 256, 767	7 400, 710	7 302, 405	7 374, 024	7 303, 918
Mexican					0.2,021	
Total	5, 537, 078	4, 157, 961	6, 592, 182	3, 925, 169	5, 450, 696	3, 118, 179

1 Mexican included with domestic in 1948.
2 Domestic included with Canadian in 1949-51.
3 Mexican included with domestic and Canadian, 1950-51.
4 Mexican included with Canadian in 1947.
5 Domestic included with Canadian, 1948-50.
6 Mexican included with domestic and Canadian, 1949-50.
7 Canadian included with Madagasean

7 Canadian included with Madagascan.

TABLE 11.—Consumption of mica splittings in the United States, 1956, by States

State	Number of consumers	Quantity (pounds)
Indiana, Michigan, Ohio, and Wisconsin Massachusetts New Hampshire and New York North Carolina, Pennsylvania, and Virginia	5 2 3 4	1, 626, 359 1, 142, 898 4, 086, 591 1, 805, 735
Total	14	8, 661, 583

Built-Up Mica.—Consumption of domestically produced built-up mica was 5 percent greater in quantity and 15 percent greater in value in 1955 than in 1955. The principal use was for electrical insulation. In all, 12 companies operating 14 plants reported domestic production of built-up mica in 1956.

TABLE 12.—Built-up mica 1 sold or used in the United States, 1954-56, by kinds of product

	19	54	19	55	1956		
Product	Pounds	Value	Pounds	Value	Pounds	Value	
Molding plate	1, 184, 965 1, 504, 028 580, 846 355, 608 2, 130, 759 149, 582	\$2, 213, 392 2, 778, 582 1, 681, 071 946, 862 7, 672, 310 537, 433	1, 664, 239 2, 151, 471 639, 127 564, 007 1, 595, 129 310, 433	\$3, 337, 871 4, 278, 900 1, 730, 629 1, 689, 908 6, 759, 207 1, 088, 274	1, 776, 361 1, 933, 896 718, 537 622, 172 2, 021, 815 228, 826	\$3, 909, 668 4, 237, 062 2, 018, 061 1, 869, 837 8, 373, 568 1, 300, 131	
Total	5, 905, 788	15, 829, 650	6, 924, 406	18, 884, 789	7, 301, 607	21, 708, 32	

Consists of a composite of alternate layers of a binder and irregularly arranged and partly overlapped splittings.
 Includes a small quantity of built-up mica for "Other combination materials."

Reconstituted Mica.—Natural mica scrap is specially delaminated and formed into a paperlike material, which can substitute for built-up mica in many applications. Two companies continued to produce reconstituted mica commercially in 1956: General Electric Co. at Coshocton, Ohio, and Samica Corp. (subsidiary of Minnesota Mining & Manufacturing Co.) at Rutland, Vt. Total production in 1956 was down slightly from 1955.

Ground Mica.—Decreased sales of ground mica to the principal consuming industries resulted in a 14-percent decrease in total sales in 1956. Oil-well drilling and welding rods were the only uses to show substantial increases, 47 and 49 percent, respectively. Roofing materials and paint continued as the leading consumers of ground

mica.

TABLE 13.—Ground mica sold by producers in the United States, 1955-56, by uses

		1955			1956	
Use	Short tons	Percent of total	Value	Short tons	Percent of total	Value
Roofing	31, 518 866 7, 339 30, 922 2, 232 1, 970 20, 128 2 11, 210 106, 185	30 1 7 29 2 2 2 19 10	\$1, 051, 874 87, 532 687, 216 2, 491, 228 179, 165 150, 003 1, 254, 714 2 655, 907	25, 487 728 7, 021 20, 756 1, 968 2, 944 17, 681 14, 685	28 1 8 23 2 3 19 16	\$955, 628 107, 428 669, 974 1, 910, 084 167, 400 203, 972 1, 254, 776 958, 796

¹ Includes mica used for molded electric insulation, house insulation, Christmas-tree snow, manufacturing axle greases and oil, annealing, well drilling, and other purposes.

2 Revised figure.

PRICES

During most of the year mica fabricators offered to purchase domestic sheet mica at the prices shown in table 14. These prices were unchanged from 1955, except that before March 8 punch mica was quoted at \$0.10 to \$0.16 per pound, 1½- by 2-inch sheet at \$0.70 to \$1.60, and stained or electric mica at 10 to 15 percent lower than clear.

On May 15 prices offered by the Government for certain qualities and grades of domestically produced full-trimmed mica meeting specifications were increased as shown in table 15. In this first revision of the price schedule for trimmed mica since May 1954, no change was made in the prices for half-trimmed mica. Charges for processing hand-cobbed mica offered under the procedure requiring payment of scheduled prices for actual yields of full-trimmed mica were increased from \$1.45 to \$4 per pound of full-trimmed mica obtained.

North Carolina scrap mica was quoted throughout the year at

\$25 to \$30 per short ton, depending on quality.

Dry- and wet-ground mica prices fluctuated somewhat during the year, as shown in table 16.

TABLE 14.—Prices for various grades of clear sheet mica in North Carolina district, December 1956 1

		Marketsl

	× 1	Grade (size)		Price per pound
Punch				
1/2- x 2-inch			 	\$0.07 to \$0.
x 2-inch			 	.70 to 1.
- x 3-inch			 	1.10 to 1.
- x 3-inch			 	1.60 to 2.
- x 4-inch			 	1.80 to 2.
- x 5-inch			 	2.00 to 2.
- x 6-inch			 	2.60 to 3.0
- x 8-inch			 	2.75 to 4.0
			 	4.00 to 8.0

¹ Stained or electric—sold at approximately 10 to 20 percent lower than clear sheet.

TABLE 15.—Prices for muscovite ruby and nonruby full-trimmed and half-trimmed block and film mica and hand-cobbed mica purchased by the Government, 1956, by grade and quality

		Price per pound										
				Walf twin-								
	В	Before May 15			Effective May 15			Half-trimmed				
	Good Stained or Better	Stained	Heavy Stained	Good Stained or Better	Stained	Heavy Stained	Stained	Heavy Stained				
Block and film mica: Ruby: No. 3 and larger No. 4 and No. 5 No. 5½ and No. 6 Nonruby: No. 3 and larger No. 4 and No. 5 No. 4 and No. 5 No. 5½ and No. 6	\$70.00 40.00 15.00 70.00 40.00 15.00	\$18.00 8.00 5.00 14.40 6.40 4.00	\$13.00 6.00 3.00 10.40 4.80 2.40	\$70.00 40.00 17.70 70.00 40.00 17.70	\$31. 90 18. 25 7. 55 25. 55 14. 60 6. 55	\$14.80 6.85 4.00 11.85 5.45 4.00	\$12.00 5.00 3.00 9.60 4.00 2.40	\$8. 00 4. 00 2. 00 6. 40 3. 20 1. 60				

Hand-cobbed mica:	
Ruby	Per short ton
Nonruby	\$600
	\$540

TABLE 16.—Price of dry- and wet-ground mica in the United States, 1956, in cents per pound 1

[Oil, Paint and	Drug	Reporter]
-----------------	------	-----------

	Jan. 2	Mar. 19	Dec. 24		Jan. 2	Mar. 19	Dec.24
Dry ground: Paint, 100-mesh Plastic, 100-mesh Roofing, 20- to 80-mesh Wet-ground: ² Biotite. Biotite, less than carlots ³ Paint or lacquer	41/4 41/4 3-4 61/4 7 73/4	41/4 41/4 3-4 63/4 71/4 81/4	3	Wet-ground: 2—Continued Paint or lacquer, less than carlots 3————————————————————————————————————	73/4 81/4 73/4	9 8½ 8¾ 8¼ 8¼	9 8 834 834 814 9

FOREIGN TRADE³

Imports.—Total imports of mica were 17 percent lower than in 1955, but their value was 4 percent higher. The quantity decreased because of declines in imports of muscovite scrap (25 percent) and uncut films and splittings (14 percent).

Imports of muscovite block and film were 14 percent greater than in 1955, according to compilations of general imports by the Tariff Com-India and Brazil furnished 51 percent and 46 percent, respectively, of the total block and film imports. Of the Stained and better qualities of these imports, 62 percent came from India and 34 percent from Brazil.

Exports.—Total exports of mica and mica products increased 48 percent compared with 1955. Exports of ground mica again constituted most of the mica exported and increased 53 percent. Exports of other manufactured mica decreased 8 percent; exports of unmanufactured mica increased 22 percent.

TABLE 17.-Mica imported into and exported from the United States, 1947-51 (average) and 1952-56 [Bureau of the Census]

									1			
		Exports										
Year		sheet and inch	Scrap		Scrap		p Manufactured		Total		All classes	
Poun	Pounds	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value		
1947-51 (average) _ 1952 1953 1954 1955 1956 1956 1956	2, 481, 669 2, 599, 007 1, 829, 457 1, 747, 106	3, 520, 922 4, 279, 273 13, 197, 918	6, 531 3, 927 4, 647 9, 461	163, 341 121, 343	5, 276 5, 763 3, 363 6, 156	11, 053, 579 10, 910, 292 1 5, 448, 706 1 7, 814, 400	13, 048 10, 990 8, 924 16, 490	\$17, 707, 452 14, 680, 976 15, 261, 665 18, 709, 965 111, 269, 464 111, 752, 381	2, 472 2, 402 3, 328 3, 314			

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

In bags at works, carlots, unless otherwise noted.
 Freight allowed east of the Mississippi River, ½ cent higher west of the Mississippi River, 1 cent higher west of the Rockies ⁸ Exwarehouse or freight allowed east of the Mississippi River.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 18.—Mica imported for consumption in the United States, 1947-51 (average), 1952-55 ¹ (totals), and 1956, by kinds and by countries of origin

[Bureau of the Census]

					Unman	Unmanufactured				
	Waste and	Waste and scrap, valued not more than 5 cents per pound	ralued not more t per pound	than 5 cents	-	Untrimmed phiogopite		ot	Other	
Ооппату	Phlo	Phlogopite	0	Other	tangular pi in size 1 by be	tangular piece exceeding in size 1 by 2 inches may be cut	1	Valued not above 16 cents per pound n.e.s.	Valued abo	Valued above 15 cents per pound
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1947-51 (average) 1952 1953 1954 1956	2, 087, 268 579, 008 1, 205, 633 549, 476 270, 200	\$15, 666 3, 831 13, 793 7, 521 2, 822	7, 624, 287, 12, 482, 160 6, 647, 233 8, 744, 446 18, 651, 490	\$53, 946 102, 644 58, 307 155, 820 118, 521	213, 481 116, 142 251, 811 40, 050	\$37, 811 20, 187 46, 727 9, 448	389, 232 355, 803 128, 401 132, 530 139, 843	\$45,089 28,025 11,404 11,194	2, 186, 926 2, 009, 724 2, 218, 795 1, 656, 877	\$2, 454, 967 3, 472, 710 4, 221, 142 1 3, 177, 276
1956: North America: Canada. Mexico.	30, 805	650	254, 786	2, 407			4,000	1, 462	11	1, 240 2, 141
Total	30, 805	650	254, 786	2, 407		-	17, 294	1,962	2, 918	3,381
South America: Argentina. Bradi.							189, 595	14, 583	59, 512 948, 358	75, 697 1, 953, 144
Tuest							189, 595	14, 583	1,007,870	2, 028, 841
Belgium-Luxembourg France. United Kingdom.									1, 467 363 543	2, 776 155 3, 392
A cfo.									2,373	6, 323
Indis. Japan			11, 916, 353	58, 291			2, 385	313	680, 869 6, 564	1, 525, 870 14, 113
T.00al			11, 916, 353	58, 291			2,385	313	687, 433	1, 539, 983

84, 422 12, 951	29, 588	23, 623			152, 296	1 3, 730, 824
	9, 275	11,	225		49, 039	1, 749, 633
			1			16,858
997 288 3,506			nd 1 100 117 10 037			209, 274
3, 505	707		10 937	100 604	15, 149	75,847
617, 288	89, 600		1 109 117	19 TO 10 THE	1, 899, 005	14, 070, 144
2,400					2, 400	3, 050
334, 989					334, 989	365, 794
Africa: Angola Angle Angle-Revoltion Sindan		Madagascar	Rhodests, Pederation of and Nyasaland Thrive Sauth Africa		Total	Total unmanufactured

See footnote at end of table.

TABLE 18.—Mica imported for consumption in the United States, 1947-51 (average), 1952-55 1 (totals), and 1956, by kinds and by countries of origin—Continued

	Coan	countries of origin	na—Continued	nen				
			Maı	nufactured—fil	Manufactured—films and splittings	Sä		
	Ne	ot cut or stamp	Not cut or stamped to dimensions	suc	Cut or stamp	ed to dimen-		
Country	Not above 12/10,000 of inch in thickness	2/10,000 of an itckness	Over 12/10,000 of an inch in thickness	of an inch in ness	sio	sions	Total films and splittings	nd splittings
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1947-51 (average). 1963. 1968. 1964. 1966.	17, 275, 479 7, 986, 592 8, 377, 873 4, 807, 338 9, 622, 464	\$13, 164, 339 6, 426, 616 4, 041, 972 11, 657, 784 12, 620, 989	839, 300 1, 908, 735 2, 645, 230 1, 592, 224 2, 520, 390	\$1, 417, 156 3, 220, 506 5, 069, 044 1, 2, 743, 725 3, 821, 161	25, 992 59, 560 69, 349 30, 277 51, 558	\$269, 946 971, 756 1, 218, 721 1 660, 035 1 964, 543	18, 140, 771 9, 954, 887 11, 092, 452 6, 429, 839 12, 194, 412	\$14, 851, 440 10, 618, 877 10, 329, 737 1 5, 061, 544 1 7, 406, 693
1966: North America: Cuba Mexico	765	1, 765	100 28, 100	6,865	800'6	173, 202	37,873	695
Total	765	1, 765	28, 200	7, 560	800 '6	173, 202	37, 973	182, 527
South America: Argentina. Brazil	1, 208	1, 032	1, 092, 809	1, 066, 681			1, 094, 017	472
Total	1, 208	1,032	1, 092, 941	1, 067, 153			1, 094, 149	1, 068, 185
Europe: France. Germany West. Italy. Spalin. Sweden	4,960	1, 100			3, 762 597 2, 204	105, 201 15, 407 23, 392	8, 722 8, 722 597 2, 204	1, 100 107, 863 15, 407 28, 392
Switzerland. United Kingdom.	24, 334	17, 733	776	6, 332	9,363	249, 776	34, 674	272, 841
Asia:	44, 040	04, 104	FIR	0, 002	10, 920	393, 776	59, 748	431, 840
India Japan Pakistan	6, 946, 423	2, 219, 977	1, 588, 473 5, 187 100	2, 533, 358 6, 441 283	23, 068 14, 916	173, 376 323, 934	8, 557, 964 20, 103 100	4, 926, 711 330, 375 283
Total.	6, 946, 423	2, 219, 977	1, 593, 760	2, 540, 082	37, 984	497, 310	8, 578, 167	5, 257, 369

2, 381 1, 681 2, 060 1, 681 332 328 329 729 754, 181 754,	768,997	8, 651, 949 62, 918 11, 064, 288 10, 529, 034 17, 401, 011	Manufactured	and built-up which mies manufactures of which mies is the component material of chief	Value Pounds Value Pounds Value	\$23,863 22,815 \$71,872 1,112,559 \$33,646 141,344 26,542 104,608 20,000 12,166 141,523 43,401 181,719 20,000 12,106 1 141,523 48,020 1 168,362 12,000 12,000	20 1, 154 69, 000 4, 140 58, 794 5, 640 16, 680	68,794 6,660 17,704 68,000 4,140 88,138 114,160 4,140	11, 878 11, 662 28, 060 2, 276 3, 276 2, 276 3, 276 5, 276 5, 276 5, 276 5, 276		11, 520 2, 325 4, 078 11, 236 81, 800		
2, 425	41.601	2, 757, 479		Mics plates and built-up mics	Pounds	8, 536 28, 174 42, 635 23, 593 32, 005	86,843	86, 843	8,080 318 828 838	7,057	7, 506	7, 506	
328	428, 939	2, 684, 774		ed—cut or dimensions, r form	Value	\$119, 652 87, 935 82, 679 51, 920 1 46, 896	3, 586 1, 058	4, 644		687	73, 943	73,942	
331	717, 065	7, 708, 687		Manufactured—cut or stamped to dimensions, shape, or form	Pounds	112, 879 53, 612 45, 186 27, 776 37, 492	535 612	1,147		79	58, 314	58, 314	
Africa: Angola. Bast Africa. British Bast Africa. French West Africa.	Madagascar	Total films and splittings		Country		1947-51 (average) 1962 1968 1964 1964 1966	1956: North America: Canada. Marion	Total Total South America: Brazil	Europe: Belgium-Luxembourg Germany, West.	Switzerland United Kingdom Total	Asia: India Jopon	Total	

1 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TABLE 19.—Muscovite block and film mica, United States general imports, 1955-56, by qualities and principal sources, 12 in pounds

			Coun	tries			т.	otal
Quality	In	ıdia	Bı	razil	0	ther		, tai
	1955	1956	1955	1956	1955	1956	1955	1956
Block: Good Stained and Bet-								
ter	141, 685 1, 322, 261 205, 898 145, 050	68, 541 1, 646, 599 220, 264 96, 872	133, 661 753, 721 545, 145 341, 714	167, 748 913, 192 641, 882 316, 266	15, 595 74, 287 9, 933 6, 776	33, 352 101, 229 3, 462	290, 941 2, 150, 269 760, 976 493, 540	269, 64 2, 661, 020 865, 608 413, 138
Total	1, 814, 894	2, 032, 276	1, 774, 241	2, 039, 088	106, 591	138, 043	3, 695, 726	4, 209, 407
Film: First quality Second quality Other quality	63, 926 140, 395 4, 053	91, 276 141, 126 2, 962			130	1, 390	63, 926 140, 525 4, 053	91, 276 142, 516 2, 962
Total	208, 374	235, 364			130	1, 390	208, 504	236, 754
Block and film: Good Stained and Bet- ter 3 Stained 4 Heavy Stained Lower	346, 006 1, 326, 314 205, 898 145, 050	300, 943 1, 649, 561 220, 264 96, 872	133, 661 753, 721 545, 145 341, 714	167, 748 913, 192 641, 882 316, 266	15, 725 74, 287 9, 933 6, 776	34, 742 101, 229 3, 462	495, 392 2, 154, 322 760, 976 493, 540	503, 433 2, 663, 982 865, 608 413, 138
Total	2, 023, 268	2, 267, 640	1, 774, 241	2, 039, 088	106, 721	139, 433	3, 904, 230	4, 446, 161

¹ Compiled by U. S. Tariff Commission from official documents of the U. S. Bureau of Customs.

² Does not include imports of mixed grades and qualities: In 1955, from Angola, Argentina, Brazil, Eritrea, and India—total 15,151 pounds; in 1956, from Belgium, Ethiopia, Federation of Rhodesia, Japan, Mozambique, and United Kingdom—total 10,651 pounds.

³ Includes first- and second-quality film.

⁴ Includes other-quality film.

TABLE 20.-Mica block and film imported into the United States, 1955-56, by variety and principal sources, in pounds

		. •	•	
		Tariff ssion data		the Census
	1955	1956	1955	1956
Muscovite block: India. Brazil. Other. Total.	1, 814, 894 1, 774, 241 106, 591 3, 695, 726	2, 032, 276 2, 039, 088 138, 043 4, 209, 407	547, 987 1 1, 858, 981 1 130, 553 2 2, 537, 521	679, 169 2, 041, 167 120, 406 22, 840, 742
Muscovite film: India	208, 374	235, 364	⁸ 1, 551, 637	³ 1, 588, 473
Total	208, 504	1, 390 236, 754	1, 551, 637	1, 588, 473

1 Revised figure.

Revised figure.
 Includes imports of unmanufactured mica valued above 15 cents per pound, minus phlogopite valued above 15 cents per pound, plus imports from Brazil of manufactured films and splittings, not cut or stamped to dimension, over 12/10,000 inch thick.
 Manufactured films and splittings, not cut or stamped to dimensions, over 12/10,000 inch thick, from India

TABLE 21.—Mica and manufactures of mica exported from the United States, 1947-51 (average), 1952-55 (totals), and 1956, by countries of destination

[Bureau of the Census]

	Unmanu	factured		Manufac	tured	
Country	Omnana	iscource	Ground or p	ulverized	Otl	ner
	Pounds	Value	Pounds	Value	Pounds	Value
1947-51 (average)	303, 609 592, 901 45, 046 318, 518 447, 491	\$76, 131 40, 700 27, 978 79, 310 35, 241	2, 447, 719 4, 172, 951 4, 560, 883 6, 058, 118 5, 808, 347	\$140, 989 234, 082 240, 356 342, 860 332, 293	226, 714 180, 482 197, 370 280, 415 372, 548	\$648, 710 636, 294 841, 531 1, 092, 568 1, 340, 095
1956: North America: Canada	60, 250 	4, 522 	3, 145, 000 366, 000 11, 000 237, 750 3, 759, 750	136, 978 19, 998 880 13, 408 171, 264	244, 344 800 556 580 100 2, 436	832, 623 1, 530 3, 960 1, 012 635 7, 860
South America: Brazil British Guiana Chile Colombia Peru Venezuela	900 19, 331 3, 230	1,810 4,771 3,050	101, 300	8, 312	2, 368 100 3, 927 12, 427 776 1, 111	9, 581 1, 100 12, 436 22, 381 5, 066 2, 953
Total	23, 461	9, 631	1, 856, 506	88, 695	20, 709	53, 517
Europe: Belgium-Luxembourg France Germany, West Iceland Italy Netherlands	17, 928 2, 175 1, 200	10, 196 5, 657 1, 375	658, 350 478, 756 493, 000 20, 000 317, 200 22, 000	50, 736 38, 047 43, 236 1, 350 21, 068 1, 100	4, 662 40, 229 10, 917 2, 320	15, 427 116, 600 37, 421 9, 674
PortugalSpainSwedenSwitzerland	1,100	1,400	74, 200 30, 000	4, 250 2, 280 4, 196	1, 102 3, 510	8, 102 16, 841 1, 775
United Kingdom Total	21, 491 43, 894	29, 107 47, 735	2, 140, 206	166, 263	62, 826	206, 401
Asia: BahreinIndiaIndonesia			163, 460 54, 000 38, 000	2, 823 4, 055 3, 620	47	758 1,076
Iraq Israel Japan Kuwait	350, 000	4, 360	8,000 165,000 150,000	720 9, 905	65	1,085
Pakistan			150, 000 68, 575 5, 000 40, 000	7, 875 5, 376 820 2, 453	3, 840 3, 045 120	1, 233 4, 610 1, 509
Total	350, 000	4, 360	692, 035	37, 647	8, 018	10, 271
Africa: Belgian CongoEgypt	10,000	925	60,000	3, 450	166	818
Somaliland Tunisia Union of South Africa	25, 430	6, 510	7, 000 386, 000	17, 930	969	8, 242
TotalOceania; Australia	35, 430	7, 435	453, 000	22, 010	1, 135 1, 655	9, 060 11, 992
Grand total	546, 673	91, 991	8, 901, 497	485, 879	343, 159	1, 138, 861

TECHNOLOGY

Natural Mica.—Recent work, especially in the Black Hills, S. Dak., indicated satisfactory methods of determining the reserves and grade of pegmatite deposits.4 Pegmatites were also the subject of a review that included discussion of age, source, mode of emplacement, processes of formation, and replacement processes.5 The formation occurrence, and mineral associations of mica were interpreted in terms of surface chemistry.6

In articles of general interest concerning natural mica, the sheetmica industry was surveyed briefly,7 the selection, qualification, fabrication, and usage of sheet mica were described,8 and general information on the processing and marketing of block and film mica was published.9

A method of coating mica insulators with inorganic compounds to reduce leakage paths was patented. 10 A study using samples of various quality classes of Indian ruby mica disclosed little correlation between physical characteristics and power factor measured perpendicular to the cleavage plane. 11 Power factor measured parallel to the cleavage plane of these samples likewise could not be corrleated with the visual classification but showed a greater variation in the lower than in the higher qualities. 12 Sheet mica that had become cloudy after use in gage glasses of steam boilers was found to contain hydrothermal-reaction products consisting principally of diaspore. 13 In an investigation of the thermal stability of muscovite mica, weight loss and physical properties were determined for samples that were heated for 1 hour at temperatures from 200° to 1,100° C.14 Other data were reported on the effects of heating muscovite and biotite micas,15 and a published article included data on the thermal expansion of mica. 16 Some evidence was presented to indicate the important role of electrostatic forces in the cohesion of mica surfaces.17

Interpretation of the compositions of dioctahedral potassium micas containing various divalent and trivalent cations other than aluminum and magnesium suggested the classification and correlation of

⁴ Norton, J. J., and Page, L. R., Methods Used to Determine Grade and Reserves of Pegmatites: Min. Eng., vol. 8, No. 4, April 1956, pp. 404-414.

⁵ Jahns, R. H., The Study of Pegmatites: Econ. Geol., 50th Anniversary vol., 1905-55: P. II, 1955,

Eng., vol. 8, No. 4, April 1956, pp. 404-414.

§ Jahns, R. H., The Study of Pegmatites: Econ. Geol., 50th Anniversary vol., 1905-55: P. II, 1955, pp. 1025-1130.

© DeVore, G. W., Surface Chemistry as a Chemical Control on Mineral Association: Jour. Geol., vol. 64, No. 1, January 1956, pp. 31-55.

© Dietrich, W. F., Waggaman, W. H., and Chandler, H. P., The Diamond and Sheet-Mica Industries: Min. Cong. Jour., vol. 42, No. 9, September 1956, pp. 111-116.

© Bufalino, J. F., Natural Mica: Selection, Considerations, Grades, and Fabrication: Insulation, vol. 2, No. 3, March 1956, pp. 10-17.

© Thomson, R. D., Processing and Marketing Muscovite Block and Film Mica: Min. Eng., vol. 8, No. 5, May 1956, pp. 528-530.

Dawrence, W. F., Jr. (assigned to Radio Corp. of America), Method of Coating a Mica Base With Magnesium Hydroxide: U. S. Patent 2,715,586, Aug. 16, 1955.

Mandal, S. S., and Roy, S. B., Classification of Indian Mica on the Basis of Power Factor: Central Glass & Ceramic Research Institute Bulletin (Calcutta): Vol. 3, No. 1, January-March 1956, pp. 5-10.

Mandal, S. S., and Roy, S. B., Electrical Properties of Indian Mica—Parallel Loss: Central Glass & Ceramic Research Institute Bulletin (Calcutta): Vol. 3, No. 1, January-March 1956, pp. 167-173.

Holser, W. T., Hydrothermal Alteration of Muscovite in Steam-Gauge Glasses: Am. Mineral., vol. 41, No. 9-10, September-October 1956, pp. 799-804.

Misra, M. L., Ansari, F. A., and Pusalker, K. N., Note on the Thermal Study of Muscovite Mica: Refractories Jour. (London), vol. 32, No. 8, August 1956, pp. 372-374.

Tyvetkov, A. I., and Val'yashikhina, E. P., [Hydration and Oxidation of Micas]: Izvest. Akad. Nauk S. S. S. R., Ser. Geol., No. 5, 1956, pp. 74-83; Chem. Abs., vol. 50, No. 19, Oct. 10, 1956, p. 14146h.

Zwetsch, Artur, Thermal Expansion of Sericite: Ber. deut. keram. Gesell, vol. 32, No. 8, 1955, pp. 236-238; Ceram. Abs., vol. 39, No. 2, February 1956, p. 45f.

Gaines, G. L., Jr., and Tabor, David, Surface Adhesion and Elastic Properties of Mica: Nature, vo

851 MICA

these micas on the basis of their charge relations. 18 Optical properties were measured for muscovite micas with varying contents of titanium, magnesium, ferrous iron, and ferric iron. 19 X-ray data were reported for a number of samples of Indian mica, 20 for manganese-containing muscovite mica,21 and for specimens of hydrous micas.22

A number of formulations, which manufacturers recommend for using wet-ground mica as an extender in latex paints for outdoor application, were reported.²³ Studies of outdoor latex paints formulated with varying proportions of wet-ground mica indicated that wet-ground mica is suitable for inclusion in either latex paints or latex alkyd paints, that these formulations are highly resistant to ultraviolet exposure and weathering, and that under certain conditions wet-ground mica increased the adherence of these paints.24 Observations of sedimentation and changes in viscosity during a 10-week period indicated good storage stability for an opaque window paint based on the light-scattering properties of wet-ground mica.²⁵
Studies on the compounding and properties of a synthetic rubber

indicated that wet-ground mica confers improved elongation properties.26 Finely divided mica was proposed for use as a parting compound in heating and bending glass sheets 27 and as an ingredient of a temperature-resistant coating for metal articles.28

The bulk density of ground mica was found to be related to the thickness and surface area of particles passing a given mesh.29 Patents were issued for a process of disintegrating natural mica by freezing 30 and for separating mica from spodumene and quartz by flotation. 31

Synthetic Mica.—The process for manufacturing synthetic mica flake by internal electric-resistance melting was described in detail from its initial development through advanced pilot-plant testing. 82 These studies were made by the Bureau of Mines at the Electrotechnical Laboratory, Norris, Tenn., from 1950 to 1954.

¹⁸ Foster, M. D., Correlation of Dioctahedral Potassium Micas on the Basis of Their Charge Relations: Geol. Survey Bull. 1036-D, 1956, pp. 57-67.

19 Emiliani, Francesco, [Relations Between the Chemical Composition and the Optical Properties of Muscovite]: Rend. Soc. mineralog. ital., vol. 12, 1956, pp. 118-127; Chem. Abs., vol. 50, No. 22, Nov. 25, 1956, p. 16578h.

20 Nompoothiry, N. S., and Sundara Rao, R. V. G., X-Ray Diffraction Studies of Some Mica Species of India: Jour. Indian Inst. Sci., vol. 38, sec. A, April 1966, pp. 100-107.

11 Heinrich, E. W., and Levinson, A. A., Studies in the Mica Group: Mangan-Muscovite From Mattkarr, Finland: Am. Mineral., vol. 40, No. 11-12, November-December 1955, pp. 1132-1135.

21 Levinson, A. A., Studies in the Mica Group-Polymorphism Among Illites and Hydrous Micas: Am. Mineral., vol. 40, No. 1-2, January-February 1955, pp. 41-49.

22 Levinson, A. A., Studies in the Mica Group-Polymorphism Among Illites and Hydrous Micas: Am. Mineral., vol. 40, No. 1-2, January-February 1955, pp. 41-49.

23 Wet-Ground Mica Assoc., Inc., The Present Use of Wet-Ground Mica as an Extender in Outdoor Latex Paints: Tech. Bull 24, May 1956, 4 pp.

24 Wet-Ground Mica Association, Inc., Studies on the Influence of the Amount of Wet-Ground Mica Used in Outdoor Polyvinyl Acetate Latex Paints: Tech. Bull. 23, March 1956, 4 pp.; pt. II, Tech. Bull. 26, July 1956, 4 pp.; pt. III, Tech. Bull. 27, October 1956, 4 pp.; Studies on the Influence of Wet-Ground Mica on the Adhesion Characteristics of Latex Paint: Tech. Bull. 28, November 1956, 6 pp.

25 Wet-Ground Mica Assoc., Inc., Supplementary Report on Opaque Window Paint Based on the Light Scattering Effect of Wet-Ground Mica: Tech. Bull. 23, March 1956, 4 pp.

26 Gaitan, A., and others, Reinforcement of Synthetic Elastomers; Mica Fillers in GR-S Rubber: Ind. 1899. Chem., vol. 48, No. 11, November 1956, pp. 2080-2082.

27 Atkeson, F. V., and Golightly, J. S. (assigned to General Ceramics Corp.), Process of Coating Metal With Mica and Article: U. S. P

^{1900.} ³³ Hatch, R. A., Humphrey, R. A., and Worden, E. C., Synthetic Mica Investigations VIII: The Manufacture of Fluor-phlogopite by the Internal Electric-Resistance Melting Process: Bureau of Mines Rept. of Investigations 6283, 1956, 48 pp.

and results were reported for a shorter, more accurate method of

analyzing silicates containing fluoride.33

The first two contracts were executed for the industry-Government program certified by the Office of Defense Mobilization for research and development of substitutes for strategic natural mica. Defense Materials Service, General Services Administration, signed a contract with the Bureau of Mines in August, principally for additional research at Norris, Tenn., on synethetic mica and its reconstitution and with the Frankford Arsenal in November for exploratory re-

search on reconstituting synethetic mica.

The preparation of synthetic micas by slowly cooling melts was described, and the various properties of these micas were reported.34 Information was published on the corrosion of various refractories in contact with melts of synthetic fluorine micas.35 Patents were issued on a process for producing synthetic mica,36 on the proportioning of constituents to make synthetic mica by fusion and slow cooling, 37 and on treatment of synthetic mica with sodium hydroxide and sodium fluoride to facilitate separation of the crystals.38 Hydrothermal treatment of a synthetic fluorine phlogopite with potassium hydroxide solutions at temperatures as low as 275° C. produced some hydroxyl phlogopite by an exchange reaction.³⁹ An article about synthetic minerals included a brief discussion of synthetic mica.40

Built-Up and Reconstituted Products From Natural and Synthetic Mica.—Methods of producing built-up mica were described, and the importance of the material to the electrical industry was indicated by the uses discussed.41 The standard methods of testing built-up mica, which were reverted to tentative and revised in 1955, again were revised in 1956 by the American Society for Testing Materials. 42 insulating tape from highly flexible Mica-Mat was developed for use in direct-current and low-voltage-alternating-current armature and field Mica splittings, in a layer between two sheets of pliable material such as paper, glass cloth, or synthetic fiber, were bonded to each other and to the outer sheets with certain liquid resinous polymers to form a flexible electrical insulation.44 Mica splittings and partly cured, thermosetting resin binders formed flexible insulating members having excellent dielectric properties. 45 Finely divided delaminated natural

Shell, H. R., and Craig, R. L., Synthetic Mica Investigations: VII, Chemical Analysis and Calculation to Unit Formula of Fluorsilicates: Bureau of Mines Rept. of Investigations 5158, 1956, 30 pp.
 Yamzin, I. I., Timofeeva, V. A., Shashkina, T. I., Belove, E. N., and Gliki, N. V., [Structure and Morphological Peculiarities of Fluorphlogopite and Teniolite]: Zapiski Vsesoyuz, Mineralog. Obshchestva, vol. 84, No. 4, 1955, pp. 415—424; Ceram. Abs., vol. 39, No. 4, April 1956, p. 85f.
 Elitel, Wilhelm, [Comparative Microscopic Investigations on the Corrosion of Different Refractories by Fluoride-Silicate Melts]: Radex Rundschau, No. 3-4, 1955, pp. 440-459; Ceram. Abs., vol. 39, No. 1, January 1956, p. 9i.

Eilei, Wilnelm, [Comparative microscopic invesogration of the Silicate Melts]: Radex Rundschau, No. 3-4, 1955, pp. 440-459; Ceram. Abs., vol. 39, No. 1, January 1956, p. 9].

**B Dobrovolny, F. J. (assigned to E. I. du Pont de Nemours & Co.), Method of Producing Synthetic Mica: U. S. Patent 2,741,877, Apr. 17, 1956.

**Matsushita, T., and Ishikawa, T. (assigned to Tokyo Shibaura Electric Co.), Synthetic Mica: Japanese Patents 1085 and 1086, Feb. 19, 1955.

**B Noda, Inakichi, and Saito, Hajime, Separation of Crystals From Synthetic Mica: Japanese Patent 418, 191. 27, 1955.

**B Noda, Tokiti, and Roy, Rustum, OH-F Exchange in Fluorine Phlogopite: Am. Mineral., vol. 41, No. 11-12, November-December 1956, pp. 929-932.

**B Westinghouse Engineer, Mica: Vol. 16, No. 5, September 1956, pp. 143-145.

**A American Society for Testing Materials. Tentative Methods of Testing Pasted Mica Used in Electrical Insulation: D 352-56T, Supplement to Book of Standards, Including Tentative, Pt. VI, 1956, pp. 152-161.

**G General Electric Review, Research and Engineering Progress, 1956: Vol. 60, No. 1, January 1957, p. 50.

**Berberich, L. J., and Philoisky, H. M. (assigned to Westinghouse Electric Corp.), Flexible Bonded-Mica Insulation: U. S. Patent 2,763,315, Sept. 18, 1956.

**Schneider, William, and Worthington, A. W. (assigned to Westinghouse Electric Corp.), Flexible, Resin-Bonded Mica Articles: U. S. Patent 2,772,696, Dec. 4, 1956.

mica was bonded with water-soluble aluminum phosphate to give a heat-resistant electrical insulation in the form of sheet and various shapes. The use of synthetic mica in making precision ceramics was described, and various properties of phosphate-bonded synthetic mica were given. 47

WORLD REVIEW

The estimated world production of mica in 1956, the second highest on record, was 6 percent lower than in 1955. Most of the decrease resulted from the smaller production of scrap mica in the United States and the Union of South Africa. Important increases over 1955 production were noted for Indian block mica (26 percent), Madagascan splittings (66 percent), and United States total sheet mica (38 percent).

Angola.—Production of block mica totaled 53,563 pounds valued at US\$127,036 and 484 short tons of scrap valued at US\$768.48

TABLE 22.—World production of mica, by countries, 1 1947-51 (average) and 1952-56, in thousand pounds 2

[Comp	iled by He	len L. Hun	t]			
Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada (sales): Block	5, 710 475 110, 416 116, 601	{ 182 7 988 838 150,472 153,185	282 8 665 1,310 849 146,518 149,632	71 2 937 697 669 162,146 164,522	58 943 640 642 190, 864 193, 147	888 172, 618 174, 691
South America: Argentina: Sheet. Scrap. Brazil. Uruguay. Total.	} 622 3,616 8 4,246	485 4, 676 2 5, 163	540 4, 347 2 4, 889	529 3, 962 	{ 99 139 3, 051 3, 289	309 110 3 3, 100 3 3, 519
Europe: Austria	483 18 974 24 }	1, 171 18 18 46	2, 185 29 7 379	3, 968 18 4 331	3, 086 20 368	2, 646 26 392
Total 1 3	40, 800	57, 000	59, 000	60,000	60,000	60,000

See footnotes at end of table.

⁴⁸ McDaniel, W. T., Jr., and Sales, P. N. (assigned to Farnam Manufacturing Co., Inc.), Reconstituted Mica Sheet: U. S. Patent 2,760,879, Aug. 28, 1956.
47 Comeforo, J. E., and Stanislaw, T. S., How Ceramics Can Be Shaped to Precision Tolerances; I: Ceram. Ind., vol. 67, No. 4, 1956, pp. 121–123.
48 U. S. Consulate, Luanda, Angola, State Department Dispatch 130: Mar. 11, 1957, p. 1.

TABLE 22.—World production of mica, by countries, 1947-51 (average) and 1952-56, in thousand pounds 2—Continued

County 1	1947-51 (average)	1952	1953	1954	1955	1956
Asia:					·	
Ceylon		20		1		
India (exports)		- 20	13		(4)	
Block	b	3, 261	3, 840	0.000		1 2 2 2
Splittings	36, 782	12,650	12, 211	3, 609 10, 855	4, 802	6, 06
Seran	00,102	18, 516	11, 444	23, 031	16, 479	14, 66
Taiwan (Formosa):	1	10,010	11, 111	20,031	25, 699	27, 28
Sheet	1 014	ſ 2	h	1		-
Scrap	214	1 29	} 51	44		- 29
] -
Total 1 8	37, 300	36, 700	32,000	48, 600	62, 400	63, 500
Africa:						
Angola:			1		1	1
Sheet.	h					
Scrap and splittings	247	64	42	24	33	54
French Morocco:	P	441	22	362	518	968
Sheet	h		//			ł
Scrap	201	13	(4)	11		
Kenya	7	13	29	18		
Madagascar (phlogopite):	•	-			2	
Block	h	f 90	115	101		
Splittings	1,629	2, 266	1.684	1,056	62	62
Mozambique, including scrap Rhodesia and Nyasaland, Federation of:	68	2,204	1,001	1,000	534 29	884
Rhodesia and Nyasaland, Federation of:		_	•	- 4	29	26
Northern Rhodesia, sheet Southern Rhodesia:	4	35	18	7	4	
Southern Rhodesia:			10		*	7
Block	725	f 209	148	183	141	123
Scrap	1	1,464	201	100	111	120
South-West Africa, scrap	77					
Tanganyika (exports):						
Block	1	f . 238	165	174	146	128
Ground	194	{ 33				1
Scrap	J .	(2	115	62	613	280
Uganda Union of South Africa:	2	(4)		(4)		
Choot Of South Africa:	.			``		
SheetScrap	3, 344	∫ 11	11	4	11	1
ocrap	, ,,,,,	5,871	4, 284	4, 107	7, 818	5, 038
Total	6, 498	10, 745	6, 841	0 111	0.011	
		10, 110	0, 041	6, 111	9, 911	7, 571
ceania: Australia 5	1, 239	1, 105	1, 069	1, 316	1,054	8 910
World total (estimate) 1	207, 000	265, 000	255, 000	285, 000	330, 000	310, 000

¹ In addition to countries listed, mica is also produced in China, Korea, Rumania, and U. S. S. R., but data on production are not available; estimates for these countries are included in the total.

² This table incorporates a number of revisions of data published in previous mica chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

Argentina.—Exports of mica in 1956 were greater than in 1955 according to data reported by the National Statistical Office. Quantities in short tons shipped to each country were as follows:

~	1955	1956
Germany, West	3. 3	0
italy	45 2	71. 1
Wexico	38. 6	17. 6
United States	84. 9	204. 5
Total	172 0	203 2

The value of the total exports in 1955 was US\$56,667 and in 1956, US\$216,707." 49

Less than 0.5 ton.

Less than 0.5 ton.

These figures include the following tonnages of damourite produced in South Australia, in thousand pounds: 1947-51 (average): 1,151; 1952: 1,032; 1953: 996; 1954: 1,151; 1955: 977; 1956: 881 (estimate).

⁴⁹ U. S. Embassy, Buenos Aires, Argentina, State Department Dispatch 207: Aug. 9, 1957, p. 6. Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 3, March 1957, pp. 25–26.

855 MICA

Australia.—Preliminary figures from the Commonwealth Bureau of Mineral Resources indicate production of 29,000 pounds of block

mica, slightly more than half that in 1955.50

A report on the Hart's Range mica field described in detail the geology of the district and the problems and future prospects for producing mica from this region.⁵¹ Another report about the same district gave locations of the mica mines and a summary of the geology and mineralogy of the area.52

Bolivia.—Exports of 2,000 pounds of mica valued at US\$11,000

were reported by the Bolivian Ministry of Mines.53

Brazil.—Total exports of mica in 1956 were reported to be 1,081

short tons valued at US\$953,000.54

Canada.—Preliminary estimates of quantity and value of mica production in 1956, by Provinces, were reported as follows: 55

	Quebec	Ontario	British Columbia	Total
Thousand pounds Thousand U. S. dollars	949	36	200	1, 185
	63. 2	9. 3	1. 1	73. 6

India.—A council of Government officials was established to maintain and increase exports of all products and byproducts of the mica To accomplish this, the group was to undertake market industry. studies in foreign countries, send out trade missions, appoint representatives, agents, or correspondents in foreign markets, collect and disseminate information concerning mica exports, and try to maintain standards of quality and packing of mica exports.56

Production as measured by exports totaled 6.06 million pounds of block, 14.7 million pounds of splittings, and 13,600 short tons of scrap mica in 1956. Approximate values in United States dollars were, respectively, 10,285,000, 7,818,000, and 263,000. Exports of 2.43 million pounds of block and 7.20 million pounds of splittings

went to the United States.57

U. S. Embassy, Melbourne, Australia, State Department Dispatch 163: May 22, 1957, enclosure 1, p. 2.
 I Joklik, G. F., The Geology and Mica Fields of the Hart's Range, Central Australia: Commonwealth of Australia, Bureau of Mineral Resources, Bull. 26, 1955.
 Daly, J., and Dyson, J. F., Geophysical Investigations for Radioactivity in the Hart's Range Area, Northern Territory: Commonwealth of Australia, Bureau of Mineral Resources, Rept. 32, 1956.
 U. S. Embassy, La Paz, Bolivia, State Department Dispatch 500: Mar. 11, 1957, p. 1.
 U. S. Embassy, Rio de Janeiro, Brazil, State Department Dispatch 186: Aug. 13, 1957, enclosure 1, p. 4.
 Dominion Bureau of Statistics, Canadian Mineral Statistics, 1886-1956, Mining Events, 1604-1956:
 Mining Journal (London), Council for Indian Mica: Vol. 247, No. 6326, Nov. 16, 1956, p. 597.
 U. S. Embassy, New Delhi, India, State Department Dispatch 1359: May 15, 1957, p. 12.

Madagascar.—Recent statistics on the production and export of phlogopite mica are shown in table 23.

TABLE 23.—Production and exports of phlogopite mica, Madagascar, 1954-56

		Bl	ock	Split	tings
	Year	Thousand pounds	Value, thousand U. S. dollars	Thousand pounds	Value, thousand U.S. dollars
Production: 1954		² 101 62 ² 62	102. 9 64. 2 63. 5	² 1, 056 534 ² 884	273. 8 146. 8 243. 1
1954 1955 1956		224 106 106	282. 5 160. 0 196. 1	869 1, 366 1, 207	468. 9 581. 3 730. 8

Bureau of Mines, Mineral Trade Notes: Vol. 44, 3, March 1957, p. 26.
 Revised figure.

Tanganyika.—Mica production (exports) continued to decline in 1956, with 127,700 pounds of sheet mica valued at US\$164,455 reported. However, the Uluguru Mica Mining Cooperative Society, Ltd., the members of which are Africans working small holdings scattered over 150 square miles in the Uluguru Mountains, almost doubled its 1955 production and sold 57,947 pounds of sheet mica valued at US\$66,640.59

Union of South Africa.—Production of 1,092 pounds of sheet mica was reported; local sales of 1,028 pounds were valued at US\$2,890. Of 2,519 short tons of waste mica produced, 755 tons valued at US\$11,855 was sold locally, and 1,648 tons valued at US\$41,306 was exported.⁶⁰

<sup>U. S. Consulate, Nairobi, British East Africa, State Department Dispatch 294: Apr. 12, 1957, p. 4.
South African Mining and Engineering Journal (Johannesburg), Mica: Vol. 68, No. 3347, Pt. I, Apr. 5, 1957, p. 607.
U. S. Consulate, Johannesburg, South Africa, State Department Dispatch 292: June 14, 1957, p. 1.</sup>

Molybdenum

By Wilmer McInnis 1 and Mary I. Burke 2

LTHOUGH domestic molybdenum mining and milling capacity was increased during 1956, production reversed an upward trend that had persisted for 6 years, mainly because lower World demand continued upward, average grade ore was treated. however; both United States consumption and exports made substantial gains over the previous year. Domestic production and shipments of molybdenum products were the highest since 1943.

Tariff on molybdenum ore and concentrate was reduced as a result of the Geneva agreements, but there were no imports during the year.

TABLE 1.—Salient statistics of molybdenum in the United States, 1947-51 (average) and 1952-56

(Thousand pounds of contained molybdenum)

	1947-51 (average)	1952	1953	1954	1955	1956
Concentrate: Production of concentrate Shipments of concentrate Value of shipments, thousand dollars '- Shipments for export. Consumption of concentrate Imports for consumption. Stocks of concentrate end of year '- Primary products: 's Production of products Shipments for domestic destinations. Shipments for export 's Total shipments of primary products. Consumption of products. Stocks of primary products '1.	28, 724 31, 528 25, 767 4, 013 25, 011 11, 682 24, 570 24, 257 1, 348 25, 605 (10) 6, 209	43, 259 42, 717 40, 845 5, 290 32, 715 6, 856 32, 383 30, 211 1, 844 32, 055 (10) 3, 373	57, 243 53, 823 52, 362 5, 893 31, 193 11, 326 30, 283 29, 595 1, 107 30, 702 (10) 3, 894	58, 668 64, 021 64, 070 12, 974 24, 710 154 5, 317 24, 328 23, 717 1, 640 25, 357 (10) 3, 430	1 61, 781 1 3 64, 709 3 5 66, 919 13 12, 046 38, 799 134 2, 730 37, 774 35, 935 2, 671 38, 606 (10) 3, 156	1 57, 462 1 57, 126 5 72, 012 1 14, 736 42, 652 2, 920 41, 208 39, 082 3, 738 42, 820 33, 497 2, 812

¹ Includes a small quantity of molybdic oxide recovered directly from ore.

DOMESTIC PRODUCTION

Domestic production of 57.5 million pounds of molybdenum in 1956-7 percent below 1955 output—was less than demand, and to help alleviate the shortage scheduled deliveries to the Government were diverted to industry. Output from byproduct sources, aided by

² Including exports.

Revised.

<sup>Revised.
Largely estimated by Bureau of Mines.
Includes value of a small quantity of molybdic oxide recovered directly from ore.
Actual exports; includes roasted concentrate except for 1949, 1950 and 1951.
At mines and at plants making molybdenum products.
Comprises ferromolybdenum, molybdic oxide, and molybdenum salts and metal.
Reported by producers to the Bureau of Mines.
Data act applicable.</sup>

¹⁰ Data not available.

¹¹ Producers' stocks, end of year.

¹ Commodity specialist.

³ Statistical clerk.

2 new producers, was higher than in any previous year, but production from mines operated chiefly for molybdenum decreased 13 percent compared with 1955 output, mainly because of lower average

grade ore treated at the Climax mill in Colorado.

Except for a small quantity of powellite [Ca(Mo,W)O₄] contained in the tungsten ores of the Pine Creek deposit in California, all production was derived from the mineral molybdenite (MoS₂). The molybdenite content of ores mined chiefly for molybdenum ranged from about 0.3 to 2.0 percent; and the molybdenite content of copper and tungsten ore, in which molybdenum was recovered as a byproduct, ranged from about 0.01 to 0.08 percent. All production was from mines in six States. Colorado led, followed by Utah, Arizona, New Mexico, California, and Nevada. Production data in the statistical tables do not include molybdenum contained in tungsten concentrate recovered in steel plants.

Molybdenum Mines.—The Climax mine, Lake County, Colo., and the Questa mine, Taos County, N. Mex., were the only domestic mines operated chiefly for molybdenum in 1956. Production from these 2 mines comprised about 65 percent of the total domestic output of molybdenum during the year compared with about 70 percent in

1955.

A new milling unit placed in operation at the Climax mill during the latter half of the year increased ore capacity of the mill about 4,000 tons a day and another unit of the same size being installed for finer grinding of the ore to improve overall recovery further was expected to be in operation early in 1957. Despite the increased mill capacity, which enabled the company to treat over 700,000 tons more of ore than during the previous year, production was lower than in any year since 1953 because the two-level caving method necessitated the drawing of lower average grade ore.

Production from the Questa mine in 1956 decreased sharply compared with output during the previous year; no production was re-

ported for the last 2 months of 1956.

It was reported that the Anaconda Co. leased the Hall molybdenum mine in Nye County, Nev., and was drilling the prospect.³ Molybdenum Corp. of America was reported to have optioned several molybdenum-mining claims in the Bluenose mining district of Ravalli County, Mont., that extended into Lemhi County, Idaho.⁴

Byproduct Sources.—During 1956 molybdenum was recovered as a byproduct from copper ores at 9 plants and from tungsten ores at 1 plant. Output from these sources comprised 35 percent of total production during the year compared with 30 percent in the previous

year.

San Manuel Copper Corp. reported first recovery of molybdenite concentrate from the copper ore of the San Manuel mine in Pinal County, Ariz., in April 1956, and, in the following month, American Smelting and Refining Co. reported the first recovery from the ore of its Silver Bell Copper mine in Pima County, Ariz. Other plants where molybdenite concentrate was recovered as a byproduct from copper ores were: Bagdad Copper Corp., Bagdad, Ariz.; Kennecott

Mining Record, Anaconda Leases Molybdenum Mine: Vol. 67, No. 37, Sept. 13, 1956, p. 6.
 Mining World, vol. 19, No. 2, February 1957, p. 97.

Copper Corp. Chino Mines Division (Hurley, N. Mex.), Nevada Mines Division (McGill, Nev.), and Utah Copper Division Arthur and Magna mills (near Salt Lake City, Utah); Miami Copper Co., Miami, Ariz.; and Phelps Dodge Corp., Morenci, Ariz.

Molybdenite concentrate and precipitated molybdenum disulfide, which was roasted to molybdic oxide before shipment, were recovered from the tungsten ore of Union Carbide Nuclear Co. Pine Creek mine near Bishop, Calif. Output from this source during 1956 was 48 percent higher than in the preceding year.

Production of molybdenum products in 1956 increased 9 percent over production in the preceding year and the highest since the war

year 1943.

TABLE 2.—Production, shipments and stocks of molybdenum products in the United States, 1955-56 (Thousand pounds of contained molybdenum)

 	1955	 	 19	56
	Shipments		Shipr	ne

			1955	•				1956		
Material	Pro-	s	hipmen	ts	Stocks	Pro-	s	hipmen	ts	Stocks
	duc- tion 1	Do- mestic	Ex- port	Total	end of year	duc- tion 1	Do- mestic	Ex- port	Total	end of year
Molybdic oxide 2 Molybdenum metal powder Ammonium molybdate Sodium molybdate	27, 700 331 215 213 9, 315	26, 009 345 165 219 9, 197	2, 401 3 267	28, 410 348 165 219 9, 464	1, 963 68 109 34 982	29, 539 879 39 282 10, 469	27, 614 844 185 280 10, 159	3, 082 656	30, 696 844 185 280 10, 815	1, 891 148 67 35 671
	37, 774	35, 935	2, 671	38, 606	3, 156	41, 208	39, 082	3, 738	42, 820	2, 812

¹ Comprises total production of all products less quantities of oxide and ammonium molybdate used to

produce other products.

2 Includes molybdic oxide briquets, molybdic acid, and molybdenum trioxide.

3 Includes ferromolybdenum, calcium molybdate, cobalt molybdenum, nickel molybdenum, phosphomolybdic acid, and molybdenum disulfide.

Defense Minerals Exploration Administration (DMEA) continued in 1956 to grant assistance to legal entities on approved projects for the exploration of molybdenum within the United States, its Territories or possessions, on a participating basis to the extent of 50 percent of the approved exploration cost, with repayment to the Government from income on future production, but only 2 applications for assistance were received during the year.

CONSUMPTION AND USES

Domestic consumption of molybdenum concentrate in 1956 was higher than in any year since 1943, exceeding consumption during the preceding year by 10 percent. Virtually all of the concentrate consumed was converted to molybdic oxide at plants at Miami, Ariz.; Pine Creek (near Bishop), Calif.; Denver, Colo.; Canton, Ohio; and Langeloth and Washington, Pa.

For the first time since 1946 the Bureau of Mines collected data on the consumption and uses of molybdenum products; but many small consumers were not canvassed, and the data in tables 3 and 4 are therefore believed to be only about 90 percent of the total molybdenum, excluding scrap, used during 1956. Of the 33.5 million pounds reported consumed, 92 percent was used in alloys, 3 percent as metal.

and 5 percent in nonmetallic applications.

Over half of the total molybdenum consumed during the year was used in iron and steel alloys, to which it was added in the forms of molybdic oxide, ferromolybdenum, and, to a minor extent, calcium molybdate. A small quantity of molybdenite was also added to some types of steel when the addition of both molybdenum and sulfur was desired.

TABLE 3.—Consumption of molybdenum products in the United States and stocks at plants of consumers in 1956

(Thousand pounds of contained molybdenum)

Product	Con- sumption	Stocks Dec. 31	Product	Con- sumption	Stocks Dec. 31
Molybdic oxide ¹	23, 434 205 7, 785 988 48	2, 549 51 1, 421 46 7	Sodium molybdate Other 3 Undistributed 4 Total	196 743 98 33, 497	34 250 19 4,377

Includes molybdic oxide briquets, molybdic acid, and molybdenum trioxide.
 Includes molybdenum silicide.
 Includes molybdenum disulfide, thermite molybdenum, molybdenite concentrate added direct to steel,

Consumption and stock data obtained from annual canvass where type of product was not given.

TABLE 4.—Consumption of molybdenum by class of manufacture in 1956 (Thousand pounds of contained molybdenum)

Welding rods	Other alloy including stainless 19, 674 Castings 2, 340 Gray and malleable castings 2, 836 Rolls (steel mill) 980 Welding rods 257 High-temperature alloys 1864	
--------------	---	--

¹ Includes fertilizers, research, magnetic alloys, etc.

Except for manganese and silicon consumed in the manufacture of both carbon and alloy steels, the use of molybdenum as an alloying element in steel was exceeded only by that of chromium and nickel. It was added to the alloy steels in amounts ranging from 0.10 to 0.50 percent in most of the lower alloy types to as much as 5.5 to 9.25 percent in the high-speed types for its effect on hardenability improved strength at elevated temperatures, corrosion resistance, or other properties. The effect of molybdenum in iron and steel was described.5

Purified molybdic oxide was used principally for producing metal, alloys, and catalysts and because of the fast-growing demand Climax Molybdenum Co. was reported to have doubled its capacity to produce the high-grade material. Metal powder and other forms, including scrap, were used in alloys for jet engines and other hightemperature alloys, and the powder was also used to produce wire, rod,

⁵ Herzig, Alvin J., Effect of Molybdenum in Iron and Steel: Metal Progress, vol. 69, No. 6, June 1956, pp. 72-75. ⁶ Mining Congress Journal, To Install New Furnace: Vol. 42, No. 5, May 1956, p. 88.

and sheet that were employed in such applications as grids for vacuum tubes, supports for holding filaments in lamps and some vacuum tubes, heating coils, glass-to-metal seals, welding electrodes, electrical con-

tact points, and electrodes for glass melting furnaces.

Because molybdenum melts at over 4,700° F. and oxidizes rapidly in air and other oxidizing atmospheres at temperatures over about 1,000° F., problems encountered in fabricating large ingots and finished shapes continued to be a restricting factor in the use of the metal and its alloys. However, the Universal Cyclops Steel Corp. was reported to have begun constructing a pilot plant designed for the fabrication of molybdenum and its alloys in an inert atmosphere at temperatures ranging between 3,500° to 4,000° F.⁷

Major nonmetallic uses of molybdenum in 1956 included the manufacture of catalysts, pigments and other color compounds, lubricants. fertilizer, friction materials, and chemical reagents. It was believed that the quantity of molybdenum consumed in these products during 1956 was considerably higher than in the previous year, and it was estimated that it would increase fourfold in the next decade.8 Molybdenum carbides and nitrides were reported to have been used in hardsurfacing applications such as bearing surfaces and die facings and other applications like contacts in circuit breakers.9

STOCKS

Stocks of molybdenum contained in concentrate increased slightly during 1956. Stocks of molybdenum products at producers' plants decreased 11 percent during the year, and those held by consumers totaled 4,377,000 pounds at the year's end.

PRICES AND SPECIFICATIONS

According to E&MJ Metal and Mineral Markets prices of molybdenum concentrate and products were increased about 7 percent on The price of hydrogen-reduced powder was not quoted by August 25.

TABLE	5.—Prices	of	molybdenum ir	n the	United	States	in	1956
-------	-----------	----	---------------	-------	--------	--------	----	------

	contained num, f. c	pound of molybde- b. b. ship- point		Price per contained num, f. o ping	molybde- . b. ship-
	Jan. 1	Dec. 31		Jan. 1	Dec. 31
Molybdenite concentrate (90- 95 percent MoS2)	1.66 1.54 1.34	1 \$1. 18 2 1. 23 1. 74 1. 68 1. 42	Technical molybdic oxide (MoO ₃): Bagged Canned Briquets packed Metallic powder, carbon-reduced	\$1.30 1.31 1.33 23.20	\$1. 38 1. 39 1. 41 2 3. 35

Climax, Colo., plus cost of container.
 Washington, Pa.

^{*}Materials and Methods, Molybdenum to Be Fabricated in Inert-Gas Atmosphere: Vol. 44, No. 6, December 1956, p. 11.

Chemical Week, Molybdenum Chemicals Consumption: Vol. 79, No. 18, November 1956, pp. 116-120.

American Metal Market, Bull., Molybdenum Carbides: Vol. 63 No. 106, June 5, 1956, p. 12.

E&MJ, but the price of carbon-reduced powder was reported to have

been increased 15 cents a pound on August 27.

Chemical requirements of National Stockpile Purchase Specification P-74-R covering molybdenite concentrate, molybdic oxide, and ferromolybdenum are given in table 6.

TABLE 6.—National stockpile purchase specifications

			Allowal	ole per	cent by we	ight, dry	basis		
Material	Minin	num			1	Maximur	n.		
	Molybde- num disulfide, MoS ₂	Mo- lybde- num	Copper	Lead	Phosphorus, plus tin and arsenic	Sulfur	Phos- phorus	Silicon	Carbon
Molybdenum disulfide Molybdic oxide Ferromolybdenum; Grade A Grade B	80.00	55. 00 55. 00 55. 00	1. 00 1. 00 1. 00 1. 00	0.30	0. 20	0. 25 . 25 . 25	0. 05 . 10 . 10	1. 50 1. 50	2. 50 . 25

FOREIGN TRADE 10

Owing to the rapidly growing demand for molybdenum by foreign consumers, United States exports of 18 million pounds in 1956, although 23 percent higher than in 1955, were insufficient to meet all consumers' needs; toward the end of the year it was in critical short supply in some countries. France curtailed the use of molybdenum in high-speed steel, and the short supply caused a sharp increase in the price of molybdenum in Japan. The major importing countries were: West Germany, 31 percent; United Kingdom, 21 percent; France, 19 percent; Japan, 10 percent and Sweeden, 9 percent.

Exports of ferromolybdenum in 1956 totaled 945,000 pounds valued at \$1,052,000. Of the total exports, 52 percent was shipped to Canada, 28 percent to Japan, and the remainder to 13 other

countries.

No imports of molybdenum ore and concentrate were reported in 1956. Imports of ferromolybdenum, molybdenum metal and powder, calcium molybdate and other compounds, and alloys of molybdenum totaled 9,985 pounds of contained molybdenum valued at \$23,058; molybdenum ingots, shot, bars, or scrap totaled 15,399 pounds (gross weight), valued at \$30,515; and molybdenum sheets, wire, or other forms totaled 35,622 pounds valued at \$465,401.

Tariff.—As a result of the Geneva General Agreement on Tariffs and Trade, Treasury Department decision TB 54108, effective June 30, 1956, reduced the tariff on molybdenum ore and concentrate from 35 cents to 33 cents a pound of contained molybdenum and provided for further decrease to 31½ cents a pound from June 30, 1957, to

June 30, 1958 and 30 cents a pound thereafter.

The duty on ferromolybdenum, molybdenum metal and powder, calcium molybdate, and other compounds and alloys of molybdenum remained at 25 cents a pound of contained molybdenum plus 7.5 percent ad valorem.

¹⁰ Figures on United States imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TECHNOLOGY

A report on the geology of the Questa molybdenum-mine area, with

sections on mining and milling methods, was published.11

Research at the Climax mill indicated that better recovery could be obtained by finer grinding of the ore. A milling unit that could be used for either finer grinding or increased milling capacity was placed in operation at this mill about midyear, and another was expected to be in operation early in 1957. When completed, this new unit, of about 4,000-ton capacity, will increase the mill's daily overall capacity of ore to about 36,000 tons.

Products.—Although roasting was the standard commercial process for conversion of molybdenite, it was reported that autoclave leaching of molybdenite in potassium hydroxide solutions at moderate oxygen pressure and temperature is technically feasible and that adaptation of the process to commercial scale production of molybdenum products

was promising.12

Bureau of Mines work on production of high-purity molybdenum in massive form was directed toward further refinement of the process

and evaluation of the metal produced.

Nominally pure molybdenum of differing metallurgical history with comparable annealed conditions was reported to have only minor

differences in tensile properties.13

Research on molybdenum-base alloys, sponsored by the Government, resulted in four alloys emerging from the laboratory stage that were reported superior to unalloyed molybdenum in applications where high-temperature hardness and strength or resistance to softening by recrystallization is required.14 Research at Battelle Memorial Institute on alloys of molybdenum was reported to have shown little chance of developing a molybdenum-base alloy with high oxidation resistance at 1,800° to 2,000° F. that would also maintain the good physical properties of unalloyed molybdenum. ¹⁵ Electrodeposited chromium and nickel layers on molybdenum turbine blades were reported to have greatly increased the life of the blades at temperatures up to 2,000° F.16

A process consisting of 6 rolling and 2 annealing operations for reducing the cross-sectional area of molybdenum and molybdenum cobalt alloy ingots was patented.¹⁷ Another patent covered the surface hardening of molybdenum-cobalt alloys by holding the alloy within the temperature range of 1,400° to 1,600° C. in a carburizing atmosphere to cause formation of molybdenum carbide at the surface

for a depth of about 0.25 inch.18

¹¹ Schilling, John H., Geology of the Questa Molybdenum (Moly.) Mine Area, Taos County, N. Mex.: State Bureau of Mines and Mineral Resources, New Mexico Inst. Min. and Tech., Socorro, N. Mex., 1956,

State Bureau of Mines and Mineral Resources, New Mexico Inst. Min. and Tech., Socorro, N. Mex., 1956, 87 pp.

12 Dresher, William H., Wadsworth, Milton E., and Fassell, W. Martin, Jr., A Kinetic Study of the Leaching of Molybdenite: Jour. Metals, vol. 8, No. 6, June 1956, pp. 794-800.

13 Carreker, R. P. Jr., and Guard, R. W., Tensile Deformation of Molybdenum as a Function of Temperature and Strain Rate: Jour. Metals, vol. 8, No. 2, February 1956, pp. 178-184.

14 Freeman, R. R., and Briggs, J. Z., Molybdenum Alloys: Materials and Methods, vol. 44, No. 5, November 1956, pp. 114-117.

14 Rengstorff, G. W. P., Search for Oxidation-Resistant Alloys of Molybdenum: Jour. Metals, vol. 8, No. 2, February 1956, pp. 171-176.

15 Harwood, Julius J., Protecting Molybdenum at High Temperatures: Materials and Methods, vol. 44, No. 6, Deember 1956, pp. 84-89.

16 Byron, Edgar S., and Baker, Robert F. (assigned to United States of America), Method for Rolling Molybdenum and Molybdenum Alloys: U. S. Patent 2,767,112, Oct. 16, 1956.

18 Caterson, Alan G. (assigned to Westinghouse Electric Corp.), Surface Hardening of Molybdenum-Colbalt Alloys: U. S. Patent 2,757,108, July 31, 1956.

TABLE 7.—Molybdenum ore and concentrate (including roasted concentrate) exported from the United States, 1947-51 (average) and 1952-56, by countries of destination

[Bureau of the Census]

	1947–51 (1947-51 (average)	19	1952	1953	23	61	1954	19	1955	1956	99
Country	Molybde- num content (pounds)	Value	Molybed- num content (pounds)	Value	Molybde- num content (pounds)	Value	Molybde- num content (pounds)	Value	Molybde- num content (pounds)	Value	Molybde- num content (pounds)	Value
North America: Ganada Canal Zone Mexico	168, 832 233 1, 143	\$148, 827 234 699	535, 800 450 12, 622	\$609, 414 352 13, 082	404, 626 590 3, 119	\$454, 294 881 3, 050	232, 287	\$248, 305 3, 096	529, 359 1, 000	\$599, 082 1, 250	636, 312	\$783, 384
Total	170, 208	149, 760	548, 872	622, 848	408, 335	458, 225	235, 003	251, 401	530, 359	600, 332	636, 312	783, 384
South America: Argentina Brazil	410	362									4, 136	5, 736
Total	410	362							-		4, 136	5, 736
Europe: Austria. Belgium-Luxembourg. Czechoslovakia. Demaark.	10, 567	9,867	34, 965 23, 154 3, 000	39, 859 27, 971 3, 900	80, 020 13, 400	91, 823	305, 588 15, 480	351, 833 18, 392	585, 405 1, 998	724, 297 2, 650	863, 280	1, 206, 601
Finland France Germany Italy Notherlands	953, 414 453, 131 139, 923 26, 162 12, 100	1, 568 770, 346 412, 951 118, 137 27, 849	1, 735, 176 11, 986, 670 192, 994	5, 720 1, 958, 951 12, 121, 494 225, 967	1, 368, 112 11, 028, 275 7, 056 4, 410	1, 386, 909 1, 087, 912 8, 700 5, 027	2, 306, 383 13, 725, 351 145, 860 710, 945	2, 321, 539 13, 872, 874 164, 835 774, 619	2, 368, 726 13, 621, 486 1157, 324 217, 900	2, 470, 469 13, 953, 999 174, 445 327, 442	3, 383, 634 15, 562, 604 204, 949 272, 543	3, 870, 034 16, 399, 830 241, 134 381, 661
Spain Sweden Switzerland Triteste	286,000	241, 628	9,990 479,680 2,476	13, 447 546, 475 3, 120	339, 208 595	379, 062 1, 050	806, 247 33, 919 4717, 073	847, 576 38, 390	1, 465, 222	1,647,137	1, 569, 844	1,811,866 5,400
Total.	4, 289, 811	3, 641, 573	5, 354, 860	5, 839, 597	261, 104	. 1		160,	772, 403	- 1 1	15, 580, 202	18, 157, 679

, 486 2, 338, 216		, 486 2, 338, 216		7, 871 10, 547	7,871 10,547	, 007 21, 295, 562
1, 752, 486		1, 752, 486				0 17,981
339, 171		340, 391				15, 783, 200 17, 981, 007
277, 196		277, 596				14, 580, 358
		572, 701	4, 700			13, 546, 510 13, 988, 886 14, 580, 358
540, 661		540, 661	4,000	1, 264		13, 546, 510
406, 368	878	406, 946		1, 254	1,254	7, 307, 789
366, 547	350	366, 897		1, 100	1, 100	7, 037, 436
250, 192		250, 192		67, 567 11, 491	79,058	6, 791, 695
199, 035		199, 035		59, 085 10, 080	69, 165	6, 171, 932
17, 135		17, 135				3, 808, 830
20, 603		20,603				4, 481, 032
Asia: Japan	Talwan	Total	Africa: Rhodesia and Nyasaland, Federation of	Oceania: Australia New Zealand	Total	Grand total

1 West Germany.

TABLE 8.—Molybdenum reported by producers as shipments for export from the United States, 1954-56, in thousand pounds of contained molybdenum

	1954	1955	1956
Concentrate (not roasted) Roasted concentrate (oxide). All other primary products.	 12, 974 1, 427 213	11, 805 2, 401 270	14, 575 3, 082 656
Total	 14, 614	14, 476	18, 313

TABLE 9.- Exports of specified molybdenum products, 1953-56, gross weight in pounds

	1953	1954	1955	1956
Ferromolybdenum ¹ Metal and alloys in crude form and scrap Wire Powder Semifabricated forms (mainly rods, sheets, and tubes)	646, 411	247, 763	349, 193	944, 671
	21, 826	34, 358	22, 564	35, 240
	15, 980	10, 563	11, 482	11, 440
	17, 290	15, 423	21, 173	20, 735
	13, 078	26, 001	3, 952	4, 853

¹ Ferromolybdenum contains about 60-65 percent molybdenum.

Structural changes in single crystals of molybdenum caused by cold rolling at very low rates of reduction were studied. 19 to determine how molybdenum disulfide functions in grease was described.20

WORLD REVIEW

United States produced 91 percent of the total estimated world molybdenum output in 1956. Chile, Canada, Japan, and Norway were other important Free World producers, and their combined output was 7 percent of the total estimate. Although no data were available on molybdenum production in the U.S.S.R. and countries in the Soviet orbit, estimates for those countries are included in table

Canada. - Molybdenite Corp. of Canada, Ltd., was the only producer of molybdenum in Canada during 1956. All production was from the firm's La Corne mine in Quebec. Molybdenite Corp. continued its expansion program by increasing developed ore reserves and mill capacity. A roasting plant, started in 1955 for converting molybdenite concentrate to molybdic oxide, was completed and placed in operation in December 1956.

According to Molybdenite Corp. 1956 Annual Report to Stockholders, a financial interest was acquired in the Preissac Molybdenite Mines, Ltd., molybdenum-bismuth property, where diamond drilling to a depth of about 500 feet had indicated a 1-million-ton ore reserve by the end of November. It was reported 21 that the property, about 25 miles north of the La Corne mine, consisted of 2,300 acres and that a concentrating mill of an initial 600-ton-a-day capacity would be installed. Another Canadian firm was reported to have been ex-

Ujiiye, N., and Maddin, R., Structural Changes in Molybdenum Single Crystals Due to Cold Rolling: Jour. Metals, vol. 8, No. 10, Trans. sec., October 1956, pp. 1298–1304.
 Smith, E. E., Molybdenum Disulfide As A Grease Additive: N. L. G. I. Spokesman, vol. 20, No. 9, December 1956, pp. 20–36.
 Mining Congress Journal, Canadian Molybdenum: Vol. 42, No. 10, October 1956, p. 78.

TABLE 10.—World production of molybdenum in ore and concentrate by countries. 1947-51 (average) and 1952-56, in thousand pounds 2

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
AustraliaAustriaCanada	4 22 185	(3) 40 304	2 194	(³) 452	2 18 774	(4) 871
ChileFinlandFrench Morocco	1,856 33 13 (3)	3, 624	3, 031	2, 663	2,817	3, 121
Japan Korea, Republic of Mexico		196 15	397 20 (3)	450 22 159	439 24 55	534 31 33
Norway Peru Sweden	194 4 4	282 7	317 11	335 2	379 2	366
United StatesYugoslavia	28, 724	43, 259 1, 453	57, 243 1, 920	58, 668 441	61, 781 948	57, 462
World total (estimate) 1	32, 500	49, 800	63, 800	63, 900	67, 900	63, 200

¹ Molybdenum is also produced in China, North Korea, Rumania, Spain, and U. S. S. R., but production data are not available. Estimates by senior author of chapter are included in total.
² This table incorporates a number of revisions of data published in previous Molybdenum chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

Data not yet available; estimate by senior author of chapter included in total.

ploring a large molybdenite prospect in British Columbia, where surface trenching had indicated interesting possibilities.22 The Climax Molybdenum Co. acquired an option on a molybdenum prospect on Boss Mountain, British Columbia, in 1956. According to the com pany's 1956 Annual Report to the Stockholders, drilling of the property was to be continued in 1957.

Chile.—Molybdenum production in Chile during 1956 was 11 percent higher than during the previous year. All output was recovered as a byproduct from the Braden Copper Co. El Teniente copper mine

near Sewell.

Anaconda Co. announced plans to recover molybdenum from its Chuquicamata and El Salvador copper deposits. Byproduct recovery of molybdenum from the sulfide ores of the Chuquicamata deposit was expected to begin in 1957.

TABLE 11.—Exports of molybdenum ore and concentrates 1 from Chile, 1952-56, by countries of destination, in thousand pounds 2

[Compiled by Corra A. Barry and Berenice B. Mitchell]

Country	1952	1953	1954	1955	1956
FranceGermany	1,339	462 771	368 392	458 400	52 330
Italy	295 5, 800	676 147 3, 581	438 156 3, 192	516 330 3, 964	156 358 4,062
Total	7, 500	5, 637	4, 546	5, 668	4, 958

¹ Dry concentrates containing approximately 96 percent MoS₂ with 58 percent contained molybdenum. ² Compiled from Customs Returns of Chile.

²² Northern Miner, Acme Molybdenite Plans to Drive Adit: Vol. 42, No. 45, Jan. 31, 1957, p. 19.

Japan.—Molybdenum was produced from several small mines in Japan in 1956. Although output was about 22 percent higher than in the previous year, it was adequate to meet the country's rapidly growing needs, which were supplemented with imports, mostly from the United States. Kurimura Mining Co. completed constructing a molybdenum-refining plant that increased its capacity to about 100 tons a month. Four other firms (Japan-Nihon Kohan, Showa Denki, Nihon Danko, and Taiyo Koko) were also reported to have processed molybdenum in 1956. The Nippon Mining Co. was reported to be exploring an indicated important copper-molybdenum ore deposit in the Fujiwata area, Ninakomi-Cho, Gumma Prefecture.²³

Norway.—All molybdenum production in Norway in 1956 was derived from the Knaben molybdenum mine near Egersund on the

southwestern coast.

Turkey.—A molybdenum deposit near the village of Gelemic, district of Bursa, on the southern side of Uludag Mountains, was reported under development in 1956.²⁴

Mining World, Asia: Vol. 18, No. 12, November 1956, p. 84.
 Mining World, Asia: Vol. 18, No. 3, March 1956, p. 71.

Nickel

By Hubert W. Davis 1

THE SUPPLY of nickel continued to be inadequate to satisfy both civilian and defense needs in 1956. As a result, intensive activity continued in exploring for new sources, developing new mines, expanding and increasing the efficiency of smelting and refining facilities, developing new and larger uses that will eventually provide a market for the increased quantities that will become available, searching for substitute materials to compensate for the present shortage, and developing nickel-base alloys capable of withstanding extremely high temperatures. A number of processes for treating nickel-bearing iron ore, producing ferronickel from low-grade ores, and separating nickel and cobalt from ores and solutions were patented.

The problem of nickel shortages and their effect on small business was the subject of extensive inquiries and public hearings in 1956.

The Select Committee on Small Business, United States Senate, conducted hearings "to determine whether the present system of distribution of nondefense nickel was equitable" and "to determine whether there were adequate checks and safeguards in the distribution system to insure equitable adjustments as the available supply of nondefense nickel fluctuated." The results of the hearings were summarized in a report.2 Two conclusions stated that the "available data as to the structure of the nickel-consuming industry and the distribution of nondefense nickel are woefully inadequate" and that "the Congress should give consideration to authorizing and directing the Small Business Administration to develop, gather, and correlate data which would provide a dependable yardstick as to the nickel industry * * *." In accordance with the recommendation of the committee, the Department of Commerce made a detailed study of all aspects of the nickel industry and submitted a report 3 to the Congress. The report discussed the supply of primary nickel and nickel-containing scrap, distribution of primary nickel, uses and consumption, the defense program and its effect upon consumption, and distribution by plating supply houses, and gave results of a survey of the plating industry.

Commodity specialist.
 Select Committee on Small Business, United States Senate, Supply and Distribution of Nickel: Rept. 2826, 84th Cong., 2d sess., Aug. 1, 1956, 33 pp.
 Joint Committee on Defense Production, Study of Supply and Distribution of Nickel: Progress Rept. 36, 85th Cong., 1st sess., Jan. 8, 1967, 109 pp.

World production (exclusive of U. S. S. R.) of nickel advanced for the sixth consecutive year to establish a new high of 231,000 short tons in 1956—a 7-percent increase over 1955. Of the 1956 output, Canada furnished 77 percent, producing at a rate 2 percent greater than in 1955. Outputs in New Caledonia and Cuba, producers of the second and third largest quantities of nickel, were greater by 39 and 6 percent, respectively. All three countries established new production records. Although domestic production, which also made a new record, increased 76 percent, it was equivalent to only 5.3 percent of consumption in the United States in 1956, compared with 3.5 percent

The Office of Defense Mobilization on May 17, 1956, announced a revised expansion goal aimed at providing the United States with an annual supply of 440 million pounds of nickel by 1961. Incentives to achieve the goal were rapid tax amortization and Government purchase contracts. Chiefly as a consequence, expansion and development programs underway or planned, mainly in Canada and Cuba. were scheduled to raise the free-world nickel production capacity to at least 650 million pounds and possibly to 680 million pounds annually by the end of 1961.

TABLE 1.—Salient statistics for nickel, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
United States: Mine productionshort tons Plant production: Primary: Byproduct of copper refining			11	2, 006	4, 411	7, 392
short tons Metal from domestic ore refined	798	633	591	639	451	623
Secondary	8, 294 1 90, 474 6, 592 86, 124 33¾-56½	7, 479 108, 850 6, 941 101, 397 561/2	11 8, 352 118, 737 15, 168 105, 681 56½-60	192 8, 605 131, 784 14, 245 94, 733 60-64}2	3, 356 11, 540 2 142, 117 20, 601 2 110, 100 64½	6, 099 14, 860 142, 642 44, 526 127, 578 64½-74
Productionshort tons _ Exportsdo World production (excludes U. S. S. R.)	128, 124 125, 252	140, 559 142, 022	143, 693 143, 818	161, 279 158, 719	² 174, 928 173, 880	178, 767 176, 837
short tons	135, 000	² 161, 000	174, 000	192, 000	2 215, 000	231, 000

¹ Figure for 1947 includes nickel content of nickel scrap and excludes nickel content of "Refinery residues."

Consumption of nickel in the United States rose to an alltime high of 127,600 short tons in 1956—a 16-percent increase over 1955 chiefly because of diversion to industry of 77.5 million pounds from scheduled shipments to the Government stockpile.

Imports of nickel into the United States increased for the seventh consecutive year and continued at a record pace. Canada and Norway supplied 87 percent of the 1956 total; the nickel imported from Norway was produced chiefly from Canadian ore.

The price of nickel metal and nickel oxide sinter was increased 9½ cents a pound on December 6, 1956—the first advance in price

Revised figure.

Revised figure.

Excludes "Manufactures" for 1947-52, weight not recorded.

Excludes "Manufactures" for 1947-52, weight not recorded.

Price quoted to United States buyers by International Nickel Co., Inc., for electrolytic nickel in carlots, f. o. b. Port Colborne, Ontario; price includes duty of 2½ cents a pound in 1947 and 1½ cents, 1948-56.

since November 24, 1954. According to International Nickel Co., the price rise was to meet the higher costs and to facilitate maximum production.

DOMESTIC PRODUCTION

Domestic production of nickel (other than from imported matte and oxide) continued to be small; it comprised nickel contained in ore produced at Riddle (Oreg.), Fredericktown (Mo.), and Cobalt (Idaho), primary nickel recovered from copper refining, and nickel recovered from scrap (nickel anodes and nickel-silver and coppernickel alloys, including Monel metal).

MINE PRODUCTION

Domestic mine output of nickel contained in ore was 68 percent more in 1956 than in 1955. In 1956 Hanna Coal & Ore Corp. mined 437,316 dry short tons of ore averaging 1.57 percent nickel from its deposit near Riddle, Oreg.; the ore was moved over the 1½-mile tramway from the top of the mountain to the smelter at Riddle. A relatively small quantity of the ore was shipped to Santa Rosalia, Mexico, for experimental purposes. National Lead Co. produced a pyrite concentrate containing 4.3 percent nickel near Fredericktown, Mo., in 1956. Calera Mining Co. recovered nickel as a byproduct of cobalt ore at its Blackbird mine in Lemhi County, Idaho.

PLANT PRODUCTION

Hanna Nickel Smelting Co. placed two additional furnaces in commercial operation in 1956 to treat ore from the deposit near Riddle, Oreg. In 1956, 494,212 dry short tons of ore averaging 1.47 percent nickel was used at the smelter, and 12,378 short tons of ferronickel averaging 46 percent nickel was produced. Production of ferronickel was 63 percent more than in 1955. More efficient recovery of nickel and an increase in productive operating time were reported. The smelter did not operate in August because of a strike. The refinery of National Lead Co. at Fredericktown, Mo., produced four times more nickel metal in 1956 than in 1955; however, the refinery did not attain capacity production. In June National Lead Co. began producing nickel metal in 50-pound pigs from Cuban nickel oxide sinter at its new refinery at Crum Lynne, Pa. The metal was produced under contract with the General Services Administration (GSA).

Substantial quantities of nickel-bearing ferrous scrap were recovered and used chiefly in producing engineering alloy steels and stainless steels in 1956, but no figures on the quantity are available.

A total of 623 short tons of nickel, in the form of sulfate, was recovered in 1956 as a byproduct of copper refining at Carteret and Perth Amboy, N. J., and Laurel Hill, N. Y. Shipments contained 642 tons of nickel. Although all the nickel recovered as a byproduct of copper refining is credited to domestic production, some was actually recovered from imported raw materials, largely blister copper.

In addition to the nickel sulfate recovered as a byproduct of copper refining in 1956, refined nickel salts (chiefly sulfate) containing

2,373 short tons of nickel was produced in the United States from imported nickel residues and from nickel shot, nickel powder, nickel oxide, and nickel scrap. Thus the total production of nickel contained in refined nickel salts in the United States was 2,996 tons in 1956; shipments to consumers for electroplating, catalysts, and ceramics were 2,990 tons.

TABLE 2.—Nickel produced in the United States, 1947-51 (average) and 1952-56

	Primary (nickel content, in short tons)		Secondary		
	Byproduct of copper refining	Domestic ore	Nickel con- tent, in short tons	Value	
1947–51 (average)	798 633 591 639 451 623	11 2, 006 4, 411 7, 392	8, 294 7, 479 8, 352 8, 605 11, 540 14, 860	\$7, 440, 148 8, 799, 791 10, 399, 910 10, 821, 648 15, 445, 000 20, 132, 000	

¹ Value withheld to avoid disclosing individual company confidential data.

CONSUMPTION AND CONSUMERS' STOCKS

Total consumption of nickel in 1956 exceeded that in 1955 by 16 percent and was the largest of record. Of the 1956 total consumption, 39 percent was utilized in stainless and engineering alloy steels. Usage of nickel in stainless steel was 24 percent larger than in 1955, but that of engineering alloy steels was 8 percent smaller. Consumption of nickel in all other principal uses was greater than in 1955; but the gains, ranging from 22 to 31 percent, were most pronounced for high-temperature and electrical resistance alloys, nonferrous alloys, and catalysts. Smaller increases, ranging from 2 to 7 percent, were noted for cast irons, electroplating, ceramics, and magnets.

TABLE 3.—Nickel (exclusive of scrap) consumed and in stock in the United States, 1955-56, by forms, in short tons of nickel

		1955		1956			
Form	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to con- sumers' plants Dec. 31	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to con- sumers' plants Dec. 31	
Metal 1 Oxide powder and oxide sinter Matte Salts 3	² 83, 357 18, 785 6, 219 1, 739	2 6, 904 1, 447 181 469	113 165	96, 403 20, 742 8, 875 1, 558	9, 684 1, 976 424 588	15	
Total	² 110, 100	2 9, 001	278	127, 578	12, 672	2	

Includes a relatively small but undetermined quantity of secondary nickel (ingot or shot remelted from serap-nickel alloys).
2 Revised figure.

³ Figures for consumption estimated to represent about 60 percent of total in 1955 and 62 percent in 1956.

TABLE 4.—Nickel (exclusive of scrap) consumed in the United States, 1952-56, by forms, in short tons of nickel

Form	1952	1953	1954	1955	1956
Metal. Oxide powder and oxide sinter	75, 007 15, 472 9, 766 1, 152	73, 773 19, 997 10, 470 1, 441	67, 241 16, 191 9, 710 1, 591	1 83, 357 18, 785 6, 219 1, 739	96, 403 20, 742 8, 875 1, 558
Total	101, 397	105, 681	94, 733	1 110, 100	127, 578

1 Revised figure.

² Figures estimated to represent about 60 percent of total in 1952-55 and 62 percent in 1956.

TABLE 5.—Nickel (exclusive of scrap) consumed in the United States, 1952-56, by uses, in short tons of nickel

Use	1952	1953	1954	1955	1956
Ferrous:					
Stainless	27, 343	22, 274	20, 399	26, 520	32, 883
Other steels	17, 978	18, 959	13, 637	1 18, 977	17, 413
Cast iron	3, 639	4, 214	4, 115	5, 431	5, 819
Nonferrous ² High-temperature and electrical resistance	33, 736	33, 657	31, 197	29, 361	35, 840
alloysElectroplating:	8, 020	8, 221	6, 597	8, 669	11, 373
Anodes 3	6. 139	13, 274	13, 460	14, 627	15, 952
Solutions 4	484	972	1, 323	1, 357	1, 074
Catalysts	1, 460	1, 435	1, 344	1, 525	2,001
Ceramics	199	251	304	417	425
Magnets	595	798	681	882	933
Other	1, 804	1, 626	1, 676	2, 334	3, 865
Total	101, 397	105, 681	94, 733	1 110, 100	127, 578

1 Revised figure

¹ Revised figure.

² Comprises copper-nickel alloys, nickel-silver, brass, bronze, beryllium alloys, magnesium and aluminum alloys, Monei, Inconei, and malleable nickel.

³ Figures represent quantity of nickel put into process for producing rolled anode bars, plus nickel used in casting anodes and nickel cathodes used as anodes in plating operations. Therefore figures do not represent quantity of nickel anodes consumed by platers.

⁴ Figures estimated to represent about 50 percent of total in 1952-55 and 60 percent in 1956.

SUBSTITUTES

The continuing shortage of nickel spurred further interest in the use of stainless steels containing less nickel and nickel-free stainless steels and in the search for substitute materials. In this connection, the production of chromium-manganese-nickel (1 to 5 percent nickel) stainless steels increased from 1,914 short tons in 1955 to 19,454 in The demand for electronickel-clad products was increasing. By this method, in which pure nickel is applied in tailored thicknesses, the advantages of pure nickel are given to many products, including pipe and vessels.⁴ Platers continued to try various substitute materials, such as an alloy containing 65 percent tin and 35 percent nickel which plates directly onto most basis metals.⁵ Two new magnets without nickel and cobalt were developed. Working with iron "dust," researchers of General Electric Co. created a revolutionary and potentially superstrong magnet that can be made 10 times stronger than the best available magnets. Scientists of Westinghouse Electric

⁴ American Metal Market, vol. 63, No. 177, Sept. 14, 1956, p. 1. ⁵ Iron Age, vol. 177, No. 22, May 31, 1956, pp. 59-61. ⁶ American Metal Market, Superstrong Magnet Without Nickel and Cobalt Developed: Vol. 63, No. 246, Dec. 27, 1956, p. 1.

Corp. perfected a virtually 100-percent-pure manganese-bismuth magnetic material that was reported to yield powerful new permanent magnets with unusual resistance to demagnetization and to be at least 10 times better in this respect than most commercial magnets available.7

PRICES AND SPECIFICATIONS

Prices.—Effective December 6, 1956, the contract price to United States buyers of electrolytic nickel in carlots, f. o. b. Port Colborne, Ontario, was advanced to 74 cents a pound, including duty of 11/4 For nickel oxide sinter (no duty) the price was increased to 70% cents a pound (nickel content), f. o. b. Copper Cliff, Ontario. Former prices, which had been in effect since November 24, 1954, were 64½ and 60¾ cents. Cuban nickel oxide powder and nickel oxide sinter were likewise advanced 9½ cents a pound to 69 and 70½ cents a pound (nickel content) in bags f. o. b. Philadelphia, Pa.

Specifications.—Specifications listed in table 6 also were those

commonly used by industry.

TABLE 6.—Nickel purchase specifications for National Stockpile, in percent by weight

[General Services	Administration,	Emergency	Procurement Service] 1

Constituent	Electro- lytic	Ingots	Briquets	Shot	Oxide powder	Sintered oxide
Nickel plus cobalt, minimum Cobalt, maximum Iron, maximum Sulfur, maximum Carbon, maximum Copper, maximum	99. 50 1. 00 . 25 . 02 . 10	98. 50 1. 00 . 90 . 07 . 30	99. 50 1. 00 . 25 . 02 . 10	98. 90 1. 00 . 60 . 05 . 25	76. 50 1. 00 . 50 . 05 . 10 . 30	2 76. 50 1. 10 3. 00 .08 .10 .30

National stockpile specification P-36-R, Oct. 11, 1956.
 When the nickel plus cobalt content of sintered nickel oxide exceeds the minimum requirement thε cobalt, iron, sulfur, carbon, and copper may increase proportionately.

FOREIGN TRADE 8

The uptrend in imports of nickel into the United States continued in 1956, for the seventh consecutive year, to establish a new high; however, the increase in 1956 was only 0.3 percent more than in 1955. Imports comprised chiefly metal, oxide powder, oxide sinter, and roasted and sintered matte. As heretofore, Canada was the chief The roasted and sintered matte was refined to source of imports. Monel metal and other products at the plant of International Nickel Co., Inc., at Huntington, W. Va. Some Cuban nickel oxide sinter was reduced to metal at Crum Lynne, Pa.

⁷ American Metal Market, Westinghouse Develops Manganese-Bismuth Superpermanent Magnets: Vol. 63, No. 116, June 19, 1956, pp. 1, 13.

8 Figures on United States imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the

The nickel content of refined nickel, oxide powder, oxide sinter, matte, slurry, and refinery residues imported into the United States was estimated at 142,600 short tons in 1956, compared with 142,100 tons (revised figure) in 1955.

Since January 1, 1948, the rate of duty on refined nickel imported into the United States has been 11/4 cents a pound. Nickel ore, oxide powder, oxide sinter, slurry, and matte entered the United States duty free.

TABLE 7.—Nickel products (excluding residues) imported for consumption in the United States, 1954-56, by classes

	[]	Bureau of the C	census			i ja ja 🗼 📩	
		1954		1955	1956 ¹		
Class	Short tons (gross weight)	Value	Short tons (gross weight)	Value	Short tons (gross weight)	Value	
Nickel ore and matte. Nickel pigs, ingots, shot, eath- odes, etc. ² Nickel scrap ² Nickel syde powder and oxide	97, 263 444	\$5, 357, 824 124, 178, 843 275, 587	9, 088 109, 404 3 464	\$3, 264, 015 148, 925, 269 3 692, 733	12, 820 106, 534 1, 078	\$4, 591, 578 152, 408, 971 1, 479, 117	
sinter	32, 264	25, 234, 419	32, 896	3 29, 893, 660	4 32, 955	4 31, 776, 346	
Total		155 046 673		8 182 775 677		190 256 012	

¹ Nickel containing material in powder, slurry or any other form, derived from ore by chemical, physical, or any other means, and requiring further processing for the recovery therefrom of nickel or other metals, was imported as follows: 37 tons valued at \$45,961 from Japan. Not provided for in import schedule before July 1, 1956.

² Separation of metal from scrap is on basis of unpublished tabulations.

TABLE 8.—New nickel products imported for consumption in the United States, 1955-56, by countries, in short tons

	Bureau oi	tne Census	ij				
	М	etal	Oxide powder and oxide sinter				
Country	1955	1956	1955		1956		
	Gross weight	Gross weight	Gross weight	Nickel content	Gross weight	Nickel content	
North America: Canada	96, 733	92, 601	16, 213 16, 683	12, 212 14, 367	14, 163 1 18, 791	10, 569 1 16, 434	
Total	96, 733	92, 602	32, 896	26, 579	1 32, 954	1 27, 003	
Europe: France Germany, West Netherlands Norway United Kingdom	948 180 44 11, 311 128	66 516 66 12, 208 317			1	1	
TotalAsia: Japan	12, 611 60	13, 173 759			1	1	
Total	109, 404	106, 534	32, 896	26, 579	1 32, 955	1 27, 004	

See footnotes at end of table.

<sup>Revised figure.
Includes 1,524 tons valued at \$1,905,354 received from Cuba in December but not included in figures of Bureau of the Census until 1957.</sup>

TABLE 8.—New nickel products imported for consumption in the United States, 1955-56, by countries, in short tons-Continued

	Ore and matte				j	Refinery	Nickel slurry 3				
	19	1955)56	19	1955		1956		1956	
	Gross weight	Nickel content	Gross weight	Nickel content	Gross weight	Nickel content	Gross weight	Nickel content	Gross weight	Nickel content	
North America: Canada Asia: Japan	9, 088	6, 191	12, 820	8, 647	89	26	1, 946	572	37	25	
Total	9, 088	6, 191	12, 820	8, 647	89	26	1, 946	572	37	25	

Includes 1,524 tons of oxide sinter containing 1,359 tons of nickel received in December but not included in figures of Bureau of the Census until 1957.
 Reported to Bureau of Mines by importers.

8 See footnote 1, table 7.

TABLE 9.—New nickel products imported for consumption in the United States, 1947-51 (average) and 1952-56, in short tons 1

[Bureau of the Census]

		G	Total				
Year	Metal	Ore and matte	Oxide powder and oxide sinter	Refinery residues ²	Slurry 3	Gross weight	Nickel content (esti- mated)
1947-51 (average) 1952 1953 1954 1955	4 69, 463 79, 538 84, 714 97, 263 109, 404 106, 534	12, 716 14, 430 14, 605 14, 135 9, 088 12, 820	15, 424 24, 404 31, 850 32, 264 32, 896 10 32, 955	(5) 674 516 211 89 1,946	(6) (6) (6) (6) (6) (7)	⁷ 97, 603 119, 046 131, 685 143, 873 151, 477 154, 292	\$ 90, 474 108, 850 118, 737 131, 784 142, 117 142, 642

Revised figure.
 Includes 1,524 tons received in December but not included in figures of Bureau of the Census until 1957.

Exports of nickel were principally products manufactured from imported raw materials. Nickel and nickel-alloy metals in ingots, bars, rods, and other crude forms and scrap and nickel and nickelalloy metal sheets, plates, and strips comprised the bulk of the foreign shipments of manufactured products. Canada (4,428 tons), United Kingdom (2,832 tons), and West Germany (7,094 tons) were the chief foreign markets in 1956.

¹ Figures, by years, for 1926-48 in Minerals Yearbook, 1948, p. 885.
2 Reported to Bureau of Mines by importers.
3 See footnote 1, table 7.
4 Figure for 1947 includes nickel scrap.
5 Not available.
6 Not provided for in import schedule prior to July 1, 1956.
7 Excludes "Refinery residues."
8 Figure for 1947 includes nickel content of nickel scrap and figures for 1948-51 include nickel content of Refinery residues." "Refinery residues."

TABLE 10.—Nickel products exported from the United States, 1954-56, by classes

	Census

	1954		1955		1956	
Class	Short tons	Value	Short tons	Value	Short tons	Value
Ore, concentrates, and matte Nickel and nickel-alloy metals in ingots,					27, 331	\$555, 660
bars, rods, and other crude forms, and	12, 818	\$8, 939, 332	19, 317	\$14, 098, 863	15, 116	15, 262, 575
Nickel and nickel-alloy metal sheets, plates, and strips	941	1, 925, 327	647	1, 511, 441	1, 245	2, 756, 171
Nickel and nickel-alloy semifabricated forms, not elsewhere classified	336	1, 068, 818	429	1, 480, 935	626	1, 877, 708
Nickel-chrome electric resistance wire, except insulated.	150	522, 457	208	773, 180	208	836, 036
		12, 455, 934		17, 864, 419		21, 288, 147

TECHNOLOGY

Defense requirements continued to spur Government research. At the Northwest Electrodevelopment Experiment Station, Albany, Oreg., the Bureau of Mines, in cooperation with the General Services Administration, made continuous electric smelting tests on samples of weathered nickeliferous serpentine from the Ocujal-San Juan and Ramona-Loma Mulo deposits in Oriente Province, Cuba. One continuous smelting test of 4 periods was made on 47,643 pounds of calcined ore containing 834 pounds of nickel from the Ocujal-San Juan deposit. Ferronickel produced totaled 3,844 pounds, containing 782 pounds of nickel, a recovery of 93.8 percent. The nickel content in the alloy ranged from 15.7 to 26.9 percent, the iron from 71.0 to 82.5 percent, and the cobalt from 0.40 to 0.80 percent.

Two continuous smelting tests, each divided into 4 periods, were made on 41,400 pounds of calcined ore containing 745 pounds of nickel and on 46,300 pounds of partly dried ore containing 736 pounds of nickel from the Ramona-Loma Mulo deposits. Ferronickel produced from the calcined ore totaled 2,880 pounds containing 605 pounds of nickel, a recovery of 81.2 percent. The nickel content of the alloy produced during 3 of the periods ranged from 28.4 to 31.4 percent, the iron from 67.6 to 70.7 percent, and the cobalt from 0.72 to 0.80 percent. Ferronickel produced from the partly dried ore totaled 2,779 pounds containing 699 pounds of nickel, a recovery of 95 percent. The nickel content of the alloy ranged from 24.3 to 28.2 percent, the iron from 70.7 to 74.4 percent, and the cobalt from 0.72 to 0.88 percent.

The results of flotation research at the Albany station on samples of low-grade nickeliferous ores were published. Selective flotation tests of millerite from pyrite and pentlandite from chalcopyrite and pyrrhotite produced nickel concentrate containing as much as 21.8 percent nickel, but it was difficult to recover more than 50 percent of the nickel.

⁹ Shelton, J. E., Beneficiation Studies of Nickeliferous Ores from the Shamrock Mine, Jackson County, Oreg., and the Congress Mine, Ferry County, Wash.: Bureau of Mines Rept. of Investigations 5261, 1956, 8 pp.

At the Intermountain Experiment Station, Salt Lake City, the Bureau of Mines, in cooperation with General Services Administration, continued roasting and leaching studies on nickeliferous laterite and serpentine ores from deposits in Oriente Province, Cuba, to determine the effect of lower roasting temperature. It also continued research on liquid-liquid separation of nickel and cobalt from ammonia leach solutions to delineate the problems involved in applying the process to the nickel plant at Nicaro, Cuba.

The Bureau of Mines Mississippi Valley Experiment Station, Rolla, Mo., also in cooperation with General Services Administration, continued mineralogical examinations, X-ray studies, and differential thermal analyses on Cuban laterite, serpentine, and special

samples.

Industry research also proceeded at a high rate because of the short supply position of nickel. Paralleling its activities in exploring for and developing new sources of nickel, International Nickel Co. of Canada, Ltd., continued its efforts to develop new and larger uses for the increased quantities of nickel that will become available. Product and market development activities were aimed particularly at those fields of use, now in an early stage of growth, that can eventually provide market opportunities for the increased quantities of nickel. These fields include atomic energy, jet engines, gas turbines, and new steam powerplants.

Despite mechanical difficulties attending initial operation of the high-capacity equipment in the Inco-developed process for recovering nickel and iron from nickeliferous pyrrhotite, the new plant at Copper Cliff, Ontario, contributed substantially in making possible the record company output of nickel in 1956. The plant was de-

scribed in detail in an article.10

Two new high-temperature alloys—Inconel "700" and Incoloy "901" — were announced by Inco in 1956. Inconel "700", an age-hardenable nickel-cobalt-chromium alloy, containing about 50 percent nickel and 30 percent cobalt, was developed for use in forged aircraft gas turbine blades at temperatures up to 1,650° F. Incoloy "901", a nickel-iron-chromium alloy containing about 40 percent nickel, was developed for use in aircraft and industrial gas turbines for those components requiring high creep and rupture strength in the temperature range of 1,000° to 1,400° F.

Falconbridge Nickel Mines, Ltd., continued research at Falconbridge and Richvale, Ontario, and Kristiansand, Norway. The pyrrhotite pilot plant at Falconbridge was operated throughout 1956, and modifications improved results markedly. The broad investigation of lateritic nickel-ore metallurgy was continued throughout 1956. Further investigations on a small pilot-scale basis were

planned.

Sherritt Gordon Mines, Ltd., at Fort Saskatchewan, Alberta, and in laboratories at the University of British Columbia, searched for methods to increase the company refinery capacity and efficiency. Several process improvements resulted. Considerable research was

¹⁰ Canadian Mining and Metallurgical Bulletin, Development of the Inco Iron-Ore Recovery Process: 11 Iron Age, Nickel Alloys of Two Types for Turbine Application: Vol. 177, No. 24, June 14, 1956, pp. 125-126.

devoted to utilization of nickel powder in fabricating finished and

semifinished products.

Patents were issued for processes for treating nickel-bearing iron ores and for methods of separating nickel and cobalt from ores and solutions.12

Patents were also issued for processes for producing ferronickel

from low-grade ores.13

A new development in nickel plating was the application of "leveling type" bright nickel deposits to critical items of textile-mill equipment requiring hard, smooth, corrosion-resisting surfaces.¹⁴ Some techniques for improving the uniformity in applying deposits of nickel of even thickness in electroplating were described. An alloy containing about 65 percent tin and 35 percent nickel, which plates directly onto most basis metals, can be deposited in virtually any thickness and was suggested for automotive and appliance parts because of its hardness, corrosion, and tarnish resistance, and attractive finish was described.16

Patents pertaining to plating included the following: 17

A patent was issued for a process of removing free iron from nickel

powder.18

A new and distinctively different high temperature alloy—Nivco composed principally of nickel and cobalt and with some chromium and iron, was developed specifically for steam-turbine blades.¹⁹ alloy was reported to have high strength and excellent damping capacity, even at 1,200° F. Udimet 500, a nickel-chromium-cobalt alloy with 3 percent each of titanium and aluminum, was developed for use as turbine bucket forgings in advanced-design jet engines.²⁰ It was reported that at 1,600° F. this alloy has an ultimate tensile strength of 100,000 p. s. i. and will withstand a constant stress of 28,000 p. s. i. for over 100 hours.

12 Mancke, E. B. (assigned to Bethlehem Steel Co.), Processes for Treating Materials Containing Nickel and Iron: U. S. Patent 2,746,856, May 22, 1956.

Mancke, E. B. (assigned to Bethlehem Steel Co.), Processes for Treating Materials Containing Nickel and Iron: U. S. Patent 2,762,703, Sept. 11, 1956. Processes for Treating Nickel-Bearing Iron Ores: U. S. Patent 2,775,517, Dec. 25, 1956.

Daubenspeck, J. M. (assigned to National Lead Co.), Method of Recovering Nickel and Cobalt From Nickeliferous Ores: U. S. Patent 2,733,983, Feb. 6, 1956.

Caron, M. H., Process of Separating Nickel and Cobalt: U. S. Patent 2,738,266, Mar. 13, 1956.

De Merre, Marcel (assigned to Societé générale Métallurgique de Hoboken), Separation of Nickel From Solutions Containing Nickel and Cobalt: U. S. Patent 2,757,080, July 31, 1956.

Graham, M. E., Reed, W. A., and Cameron, J. R. (assigned to Republic Steel Corp.), Process of Recovering Metal Values From Complex Ores Containing Iron, Nickel, and Cobalt: U. S. Patent 2,766,115, Oct. 9, 1956.

covering Metal Values From Complex Ores Containing Iron, Nickel, and Cobalt: U. S. Patent 2,766,115, Oct. 9, 1956.

12 Perrin, Rene (assigned to Société d'electrochimie d'electrométallurgie et des acieries electriques d'Ugine), Process for Extracting Nickel From Low Grade Ores: U. S. Patent 2,750,285, June 12, 1956. Production of Iron-Nickel Alloys From Low-Grade Ores: U. S. Patent 2,750,286, June 12, 1956. In Inco Nickel Topics, vol. 10, No. 3, 1957, p. 8.

13 McEnally, Jr., V. L., and Brune, F. G., Conservation of Nickel in Electroplating: Metal Progress, vol. 70, No. 6, December 1966, pp. 80-92.

14 Gore, R. T., and Lowenheim, F. A., Is Tin-Nickel the New Plating Finish You Need?: Iron Age, vol. 177, No. 22, May 31, 1956, pp. 59-61.

15 Moline, W. E., and Clinchens, R. M. (assigned to National Cash Register Co.), Method of Electroplating Cobalt-Nickel Composition: U. S. Patent 2,730,491, Jan. 10, 1956.

Passal, Frank (assigned to United Chromium, Inc.) Bright Nickel Plating: U. S. Patent 2,737,484, Mar. 6, 1956.

Passal, Frank (assigned to United Chromium, Inc.) Bright Nickel Plating: U. S. Patent 2,737,484, Mar. 6, 1956.

Shenk, Jr., W. J. (assigned to Harshaw Chemical Co.), Electrodeposition of Nickel: U. S. Patent 2,757,-133, July 31, 1956.

Talmey, Paul, and Gutzeit, Gregoire (assigned to General American Transportation Corp.), Processes of Chemical Nickel Plating and Baths Therefor: U. S. Patent 2,762,723, Sept. 11, 1956.

Talmey, Paul, Metheny, D. E., and Lee, W. G. (assigned to General American Transportation Corp.), Chemical Nickel-Plating Processes: U. S. Patent 2,772,183, Nov. 27, 1956.

Glemn, J. W. (assigned to United States of America), Purification of Nickel Powder: U. S. Patent 2,733,142, Jan. 31, 1956.

Toron Age, New Blading Alloy Improves Turbine Performance: Vol. 178, No. 10, Sept. 6, 1956, pp. 100-101.

101.

**Iron Age, New Alloy Incorporates High Tensile Strength: Vol. 177, No. 14, Apr. 5, 1956, pp. 142-143.

A new high-strength, corrosion-resistant stainless steel containing about 5 percent nickel was developed for the Alloy Casting Institute by the Corrosion Research Laboratories, Ohio State University.²¹

WORLD REVIEW

World output of nickel continued its uptrend for the sixth consecutive year to establish a new high of 231,000 short tons in 1956, a 7-percent increase over 1955. Record outputs were made in all of the principal producing countries. Canada supplied 77 percent of the 1956 total and has supplied 82 percent of the total since 1952.

TABLE 11.—World mine production (exclusive of U. S. S. R.) of nickel, by countries, 1947-51 (average) and 1952-56, in short tons of contained nickel 1

[Compiled by Berenice B. Mitchell]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada 2 Cuba (content of oxide) United States:	128, 124 444	140, 559 8, 924	143, 693 13, 844	161, 279 14, 545	174, 928 15, 138	178, 767 16, 062
Byproduct of copper refining Recovered nickel in domestic ore refined	798	633	591 11	639 192	451 3, 356	623 6, 099
Total	129, 366	150, 116	158, 139	176, 655	193, 873	201, 551
South America: Bolivia (content of ore) Brazil (content of ferronickel)	(8)	29	55	(3)	57	4 70
Total Europe: Finland (content of nickel sulfate) Greece (content of ore)	(3)	65	4 309	(3)	134	74 164 386
Total	(3)	65	309	89	134	550
Asia: Burma (content of speiss) Iran (content of speiss) * New Caledonia 6		70 9, 500	16	116 1 13,000	72 1 18, 000	115 1 25, 000
Total	4, 840	9, 570	13, 016	13, 117	18, 073	25, 116
Africa: French Morocco (content of cobalt ore)		201	132	162	167	142
Ore) Union of South Africa (content of matte			(7)	(7)	(7)	(7)
and refined nickel)	779	1, 444	1,891	2, 112	2, 598	3, 624
	779	1,645	2, 023	2, 274	2, 765	3, 766
World total (estimate)	135, 000	161,000	174, 000	192,000	215,000	231, 000

¹ This table incorporates a number of revisions of data published in previous Nickel chapters.

2 Comprises refined nickel and nickel in oxide produced and recoverable nickel in matte exported.

3 Data not available; estimate by author included in the total.

4 Includes 233 tons in matte.

5 Year ending Mar. 21 of year following that stated.

6 Comprises nickel content of matte and ferronickel produced in New Caledonia and estimate (by author) of recoverable nickel in ore exported. Mine production (nickel content) was as follows: 1947-51 (average) 4,461 tons; 1952, 11,750 tons; 1953, 18,800 tons; 1954, 15,100 tons; 1955, 27,200 tons; and 1956, 32,500 tons.

7 Data not available. Production of ore was in 1953, 63 tons; 1954, 62 tons; 1955, 18 tons; and 1956, 200 tons

²¹ Industrial and Engineering Chemistry, New High-Strength Stainless Steel: Vol. 48, December 1956, p. 53A.

NORTH AMERICA

Canada.—Virtually all the Canadian output was again derived from copper-nickel ores of the Sudbury district, Ontario, and Lynn Lake Area, Manitoba. Some nickel was also recovered as a byproduct from silver-cobalt ore of Cobalt, Ontario. Five companies—International Nickel Co. of Canada, Ltd., Falconbridge Nickel Mines, Ltd., Nickel Rim Mines, Ltd., and Nickel Offsets Ltd., all in the Sudbury district, and Sherritt Gordon Mines, Ltd., in the Lynn Lake area—again accounted for virtually all production in 1956. Nickel production in Canada was 178,800 short tons in 1956, a 2-percent gain over 1955 and the highest of record. Exports of nickel from Canada also established a new high of 176,800 short tons in 1956, also a 2-percent gain over 1955.

Deliveries of nickel in all forms by the International Nickel Co. of Canada, Ltd., were the second highest for any year and totaled 143,071 short tons in 1956, compared with 145,232 tons in the record year

1955, when deliveries were greater than production.22

Reflecting the progress of the underground mine expansion and improvement program launched by Inco during World War II, ore mined from underground established a new high of 14.4 million short tons in 1956, compared with 12.7 million tons in 1955; and open-pit ore mined was 1.1 million tons, compared with 1.5 million tons in Total ore mined also established a new high of 15.5 million tons in 1956, compared with 14.2 million tons in 1955. The major proportion of underground ore mined was by block-caving and blasthole methods. According to the company, proved ore reserves in its Sudbury-district holdings at the end of 1956 were 264 million tons containing 7.95 million tons of nickel-copper, compared with 262 million tons containing 7.9 million tons of nickel-copper at the end of 1955. In 70 consecutive years of mining in the Sudbury district by Inco and its predecessors, some 250 million tons of ore has been mined, yet its proved ore reserves at Sudbury and their nickelcopper content stand at the highest in the history of the company. The ore bodies in the Mystery-Moak Lakes area of northern Manitoba have not yet been blocked out with the completeness that has always been the company standard for inclusion in its proved ore reserves; consequently, no figures on reserves have been included. By the end of 1956 underground development in the operating mines in the Sudbury district was brought to a cumulative total of 410 miles, compared with 396 miles in 1955.

The following information concerning exploration, developments, and expansions was abstracted from the Annual Report of Interna-

tional Nickel Co. of Canada, Ltd., for 1956.

Major development continued in the five operating mines—Frood-Stobie, Creighton, Murray, Garson, and Levack. At Creighton work was advanced preparatory to mining below the 68 level, which is 5,425 feet below the surface. At Levack a new 6,000-ton-a-day concentrator was under construction; the concentrate will be transported to existing smelters for further treatment. Further progress was made toward bringing the new Crean Hill mine into production. A

²² International Nickel Co. of Canada, Ltd., Annual Report: 1956, p. 11.

10-year search by Inco in northern Manitoba for new sources of nickel reached a climax in December 1956, with the announcement that a new mining center would be developed in the Mystery-Moak Lakes region of the Province. The project will include two mines—Thompson and Moak Lake—a concentrator, a smelter, and a refinery. Work was being scheduled to bring the mines and surface plants into production in 1960. Full-capacity production was expected to be attained in 1961, making this the world's second largest nickel-mining operation. This development, with expansions in the Sudbury district, will give Inco a total nickel production capacity of 385 million pounds. Exploration programs were also conducted in the Northwest Territories, in Saskatchewan, and Quebec in Canada, and in Australia and elsewhere. Additional property examinations were made in Africa. During 1956 the company spent \$8,247,000 in search for new nickel ore, of which Manitoba supplied \$4,374,000.

For the seventh consecutive year Falconbridge Nickel Mines, Ltd., attained record levels in mining and smelting, despite some bottlenecks in the treatment plants, particularly at the stage between concentration and smelting. Production was hampered further by abnormally heavy smelter repairs during the latter half of 1956. Six mines—Falconbridge, McKim, Mount Nickel, Hardy, East, and Longvack—in the Sudbury district were in production. The Longvack mine joined the production ranks in 1956. Ore and concentrate delivered to treatment plants totaled 1,890,676 short tons (including 40,361 tons from independent mines) in 1956, compared with 1,745,177

tons (revised figure) in 1955.

The following information concerning developments, exploration, expansions, and reserves was abstracted from the 28th Annual Report

of Falconbridge Nickel Mines, Ltd., for 1956.

At the Falconbridge mine production decreased slightly. A deep shaft was begun in November to develop indicated ore between the 4,000- and 6,000-foot horizons. At the East mine production was increased 39 percent over 1955, and shaft deepening was started in June. At McKim mine production was down 31 percent, due largely to the preparation for and the sinking of a winze. At the Mount Nickel mine production was about the same as in 1955; this operation will be depleted of ore in 1957 unless more is found. At the Hardy mine production increased 33 percent over 1955 and accounted for about 30 percent of the total output. The Longvack mine delivered 120.575 tons for treatment.

Important highlights of progress at the three mines under development in the Sudbury district were as follows: At the Boundary mine, where access was through the Hardy mine shaft, lateral development proceeded at a reduced rate to avoid interference with the hoisting of Hardy ore. At the Onaping mine the large production shaft was deepened 1,482 feet during 1956, and the permanent mining plant was completed. At the Fecunis Lake mine sinking of the production and service shafts was completed to 3,993 and 3,243 feet, respectively. Lateral developments on 4 levels advanced 9,664 feet, and at the year end all levels were in the ore zone. About 29,000 feet of test diamond drilling was completed from these underground headings in 1956. Although this mine will contribute increasing quantities of ore from

development during 1957, it will not be ready for production until

about the latter half of 1958.

Exploration at Populus Lake, Kenora district, Ontario, continued at an active rate by Kenbridge Nickel Mines, Ltd., a majority-owned subsidiary of Falconbridge Nickel Mines, Ltd. During 1956 the shaft there was sunk 990 feet farther to 1,525 feet below collar, and development was carried out on the 350- and 500-foot levels by means of 2,516 feet of drifting and 31,533 feet of diamond drilling. Results were inconclusive but warranted deeper exploration; consequently, the shaft was being deepened to 2,000 feet. Falconbridge Nickel Mines, Ltd., continued surface exploration, mapping, and drilling on its extensive holdings of claims in the Populus Lake area.

Ore reserves in the Sudbury area reached the highest level in company history, primarily as a result of work at Fecunis Lake. Total ore reserves were 45.3 million short tons on December 31, 1956, and comprised 21.8 million tons of developed ore averaging 1.53 percent nickel and 0.85 percent copper in the Falconbridge, East, McKim, Mount Nickel, Hardy, Longvack, and Fecunis Lake mines and 23.5 million tons of indicated ore averaging 1.33 percent nickel and 0.66 percent copper in Sudbury-district holdings. Combined reserves showed an increase over 1955 of 5.4 million tons of essentially the

same grade.

Sherritt Gordon Mines, Ltd., established a new high of 19,239,600 pounds of nickel metal in 1956, compared with 16,666,600 pounds in 1955.²³ The capacity of its refinery at Fort Saskatchewan, Alberta, was increased to 20 million pounds of nickel a year. With cessation of shipments of concentrate to Inco at the end of March, the scale of production at the mines and mill at Lynn Lake, Manitoba, was reduced to bring them into line with the refinery production. Consequently, 752,800 short tons of ore was hoisted at the "A" and "EL" mines in 1956, compared with 761,300 tons in 1955. Ore milled totaled 749,500 tons in 1956 (761,600 tons in 1955), from which 84,700 tons of nickel concentrate was produced (89,700 tons in 1955). Sales of nickel concentrate were only 13,100 tons in 1956, compared with 42,100 tons in 1955. Shaft sinking was started at the Farley property at Lynn Lake in July. Exploration, chiefly geophysical work and diamond drilling, was done on properties in northern Manitoba and in the Northwest Territories.

Ore reserves of Sherritt Gordon Mines, Ltd., totaled 13 million tons averaging 1.108 percent nickel and 0.58 percent copper as of Decem-

ber 31, 1956.

Among the other companies, Nickel Rim Mines, Ltd., and Nickel Offsets, Ltd., both in the Sudbury district, continued to make shipments to Falconbridge Nickel Mines, Ltd., and Nickel Rim also made shipments to the Sherritt Gordon refinery. Nickel Rim Mines, Ltd., began a mine and mill expansion program to double its daily rate to produce 300 tons of 6-percent nickel concentrate. It was reported that the company had entered into a 2-year contract with Sherritt Gordon Mines, Ltd., for refining some two-thirds of its concentrate on a toll-charge basis. Eastern Mining & Smelting Corp., Ltd., completed plans to build a nickel-copper smelter and powerplant at Chi-

²⁸ Sherritt Gordon Mines, Ltd., Annual Report: 1956, p. 2. ²⁴ American Metal Market, vol. 64, No. 6, Jan. 10, 1957, p.

coutimi, Quebec.25 Ore for the smelter will come from mines near Chibougamau, Quebec, and Gordon Lake, Ont. Initial production plans being considered were for 15 million pounds of nickel metal annually.26 North Rankin Nickel Mines, Ltd., resumed mining operations at its property on the west coast of Hudson Bay, Northwest Territories.²⁷ The company, which had a 250-ton concentrator under construction, will ship the concentrate to the refinery of Sherritt Gordon Mines, Ltd., for refining.²⁸

American Smelting & Refining Co. was reported to have signed an agreement with Lac de Renzy Nickel, Ltd., for exploration and developing 24 claims in the new Delahey Lake copper-nickel district of Pontiac County, Ontario.²⁹ Hudson Bay Mining Co., a subsidiary of Hudson Bay Mining & Smelting Co., Ltd., increased its reserves of nickel-bearing ore at its Wellgreen property in the Kluane Lake district, Yukon Territory.³⁰ Holannah Mines, Ltd., owned jointly by Hollinger Consolidated Gold Mines, Ltd., and Hanna Coal & Ore Corp., continued drilling iron, copper, and nickel sulfide deposits in the Ungava Peninsula, Quebec.³¹

Cuba.—Production of nickel in Cuba established a new high in 1956 and was 6 percent greater than in 1955, itself a record year. Output of oxide powder and oxide sinter was 18,285 short tons (16,062 tons of nickel plus cobalt content) in 1956, compared with 17,486 tons (15,138 tons nickel plus cobalt content) in 1955. The 1956 output consisted of 2,142 tons of oxide powder averaging 77.44 percent nickel plus cobalt and 16,143 tons of oxide sinter averaging 89.22 percent

nickel plus cobalt.

Exports of nickel from Cuba in 1956 were 18,278 short tons (16,018 tons nickel plus cobalt content) and consisted of 2,197 tons of oxide powder averaging 77.46 percent nickel plus cobalt and 16,081 tons of oxide sinter averaging 89.03 percent nickel plus cobalt.

Production of ore was 1.5 million dry short tons in 1956, compared with 1.4 million tons in 1955. Ore fed to the driers was 1.5 million dry short tons averaging 1.40 percent nickel in 1956, compared with

1.4 million tons averaging 1.39 percent nickel in 1955.

The 75-percent expansion of the nickel-producing facilities at the United States Government-owned plant at Nicaro, Cuba,

scheduled for completion in March 1957.

Freeport Sulphur Co., near New Orleans, La., completed favorable pilot-plant tests on a new process for producing nickel and cobalt from laterite deposits containing about 1.35 percent nickel and 0.14 percent cobalt at Moa Bay, Cuba. In Cuba the Cuban American Nickel Co., a Freeport subsidiary, will produce by an acid-pressure leach process a high-grade bulk nickel-cobalt concentrate, which will be shipped to Braithwaite, La., where it will be reduced by a hydrogen process to yield separate products of high-purity nickel and cobalt An annual production of 50 million pounds of nickel was anticipated At the property in Cuba a construction camp, a reservoir, an airstrip,

<sup>Mining Congress Journal, vol. 42, No. 11, November 1956, p. 130.
Mining World, vol. 18, No. 8, July 1956, p. 85.
Western Miner and Oil Review, vol. 29, No. 6, June 1956, p. 79.
American Metal Market, vol. 63, No. 241, Dec. 19, 1956, p. 1.
Mining World, vol. 18, No. 4, April 1956, p. 66.
Skillings' Mining Review, vol. 45, No. 18, Aug. 4, 1956, p. 14.
M. A. Hanna Co., Annual Rept.: 1956, pp. 9-10.</sup>

and other facilities were completed, and considerable work was done

in preparation for construction of the concentrator.

Dominican Republic.—Falconbridge Nickel Mines, Ltd., with others, formed a subsidiary, Minera y Beneficiadora Falconbridge Dominicana C. por A. to explore and develop a concession area in the Dominican Republic containing nickeliferous lateritic ores. During 1956 test pitting established the existence of substantial deposits of nickel-bearing material. The geological work was continuing, and metallurgical and other investigations were underway at year end.

SOUTH AMERICA

Brazil.—Production of nickel in Brazil during 1952-56 was limited to the mining of ore at Lavramento, Minas Gerais, for the annual production of 150 to 300 short tons of ferronickel.

EUROPE

Finland.—The nickel content of ores of the Outokumpu copper mine and the Nivala nickel-copper mine was recovered as nickel sulfate at the Pori metals works of Outokumpu Oy. Nickel sulfate production was 744 short tons containing 164 tons of nickel in 1956 compared with 606 tons containing about 134 tons of nickel in 1955.

France.—The only nickel refinery in France was that of Société le Nickel at Le Havre, which refined matte imported from New Caledonia. Production of nickel metal was 5,677 short tons in 1956 compared

with 6,338 tons (revised figure) in 1955.

Greece.—The nickel plant at Larymna of the Greek Chemical Product & Fertilizer Co. was expected to begin operating sometime in 1956.³² Ferronickel was to be produced from ore obtained from

the Karditsa mine.

Norway.—Output of nickel at the refinery of Falconbridge Nickel Mines, Ltd., at Kristiansand established a new high of 21,800 short tons in 1956—a 7-percent increase over 1955. The metal was produced chiefly from matte from Canada. Deliveries of nickel to customers were 21,692 short tons in 1956, compared with 20,568 tons in 1955. Refining capacity exceeded 25,000 tons at the end of 1956 and temporarily was more than the company Canadian treatment facilities. The extra refining capacity was utilized in part in 1956 to treat some high nickel-alloy scrap and convert the nickel and copper therein to refined electrolytic metals. Commencing in 1958 production was expected to advance toward the planned level of 27,500 tons.

ASIA

Burma.—Nickel in the form of speiss was produced in Burma as a byproduct of lead-zinc mining at the Bawdwin mine of the Burma Corp., Ltd. Output of speiss was 570 short tons containing about 115 tons of nickel in 1956, compared with 356 tons containing about 72 tons of nickel in 1955.

Japan.—Production of nickel in Japan consisted of 6,243 short tons of pure nickel and 23,045 tons of ferronickel in 1956 compared with

²² Mining World, vol. 18, No. 4, April 1956, p. 63.

3,832 tons of pure nickel and 13,311 tons of ferronickel in 1955. New Caledonia was the main source of nickel ore.

Philippines.—Test pitting by the Philippines Bureau of Mines revealed the existence of a 32-million short-ton ore body of ferruginous laterite containing 1.38 percent nickel on the island of Nonoc on the

Surigao Mineral Reservation.³³

With funds supplied by the International Cooperation Administration, the Bureau of Mines Northwest Electrodevelopment Experiment Station, Albany, Oreg., started pilot-plant tests to obtain design and cost information for a commercial installation that would produce high-grade ferronickel from nickel-bearing ores of the Philippines.

New Caledonia.—Production of nickel ore (containing about 26 percent moisture) in New Caledonia established an alltime high of 1,367,000 short tons containing 32,500 tons of nickel in 1956, compared with 1,098,000 tons containing 27,200 tons (revised figure) of nickel

in 1955.

Production of nickel in matte and ferronickel by Société le Nickel

in 1956 was 4 percent less than in 1955.

Work on expansion of the nickel producing facilities of Société le Nickel at Doniambo was progressing steadily, and building for the new refinery was under construction, while the four new furnaces were being assembled.³⁴ When in full operation the plant will have an annual capacity of 11,000 to 12,000 short tons of nickel.

TABLE 12.—Production of nickel matte and ferronickel by Société le Nickel 1955-56, in short tons

[New Caledonia Mines Service]

	19	55	1956		
Product	Gross	Nickel	Gross	Nickel	
	weight	content	weight	content	
Matte	9, 219	7, 066	8, 639	6, 669	
Ferronickel	15, 151	4, 032	15, 347	3, 973	
Total	24, 370	11,098	23, 986	10, 642	

TABLE 13.—Nickel ore and nickel products exported from New Caledonia, 1955-56, in short tons

[New Caledonia Mines Service]

	19	55	19	1956		
	Gross	Nickel	Gross	Nickel		
	weight	content	weight	content		
Ore	370, 762	9, 156	848, 988	19, 600		
	9, 838	7, 533	7, 628	5, 892		
	15, 925	4, 243	14, 193	3, 691		

^{**} Mining World, vol. 18, No. 3, March 1956, p. 65.
** Metal Bulletin (London), No. 4111, July 17, 1956, p. 26.

Exports of nickel ore also established an alltime high in 1956 and were 2.3 times greater than in 1955; but those of matte and ferronickel were less by 22 and 11 percent, respectively. Of the 1956 exports of ore, 773,177 short tons was shipped to Japan, 27,557 tons to Australia, 25,852 tons to France, and 22,402 tons to West Germany. All of the matte and ferronickel was shipped to France.

AFRICA

Rhodesia and Nyasaland, Federation of.—A nickel deposit discovered in the Gatooma area of Southern Rhodesia was claimed to be very large.³⁵ A new nickel deposit, thought to be extensive, was discovered at Lalapanzi, near Gwelo, Southern Rhodesia, close to the highly mineralized geological formation known as the Great Dyke running the length of Rhodesia.³⁶ Rio Tinto (Southern Rhodesia), Ltd., holds option on the Empress nickel claims near Gatooma, where investigations were proceeding, and has applied for two more exclusive prospecting orders covering possible nickel deposits in the Gwelo-Umvuma area.³⁷

Union of South Africa.—From 1938-56 there was a small annual output of nickel from the sulfide ore in the Rustenburg district by Rustenburg Platinum Mines, Ltd. Production comprised 2,773 short tons of matte and 851 tons of electrolytic nickel in 1956, compared with 2,223 tons of matte and 375 tons of electrolytic nickel in 1955. Electrolytic nickel was produced for the first time in 1955. In 1956, 2,067 tons of matte was exported to England for refining.

OCEANIA

Australia.—South West Mining, Ltd., in which International Nickel Co. of Canada, Ltd., was reported to have a 51-percent interest, was exploring its leases, which cover 2,000 square miles in northwestern South Australia and 7,000 square miles in Western Australia; the area is known as the Mount Davies nickel deposit.³⁸

Metal Bulletin (London), No. 4069, Feb. 14, 1956, p. 26.
 South African Mining and Engineering Journal, vol. 67, No. 3316, Aug. 31, 1956, p. 337.
 Rhodesian Mining and Engineering Review (London), vol. 21, No. 10, October 1956, p. 38.
 Mining World, vol. 18, No. 12, November 1956, p. 81.

Nitrogen Compounds

By E. Robert Ruhlman 1

THE RATED CAPACITY of the atmospheric nitrogen industry in the United States increased to 3.9 million long tons of equivalent nitrogen by the end of 1956, compared with 3.4 million for 1955. Demand did not keep pace with expanded capacity, and industry operated at 80 to 85 percent of capacity during the year.

DOMESTIC PRODUCTION

The production of anhydrous ammonia from both synthetic and coking plants was 2 percent higher in 1956 than in 1955 and totaled nearly 3.6 million tons—a new high. Ammonium sulfate output decreased 9 percent. The production of ammonium nitrate increased in 1956, and total output exceeded 1955 by 8 percent. Synthetic sodium nitrate continued to be produced only by Allied Chemical & Dye Corp., Hopewell, Va.; and Olin Mathieson Chemical Corp., Lake Charles, La.

TABLE 1.—Principal nitrogen compounds produced in the United States, 1947-51 (average) and 1952-56, in short tons

Commodity	1947-51 (average)	1952	1953	1954	1955	1956
Ammonia (NH ₁): Synthetic plants ¹	1, 368, 097 230, 608		2, 287, 785 261, 379	2, 736, 478 221, 809	3, 251, 599 269, 607	256, 292
Total anhydrous ammonia Total N equivalent	1, 598, 705 1, 314, 551	2, 274, 777 1, 870, 458			3, 521, 206 2, 895, 347	3, 593, 149 2, 954, 503
Principal ammonium compounds: Aqua ammonia, 100 percent NH ₄ : Synthetic plants ¹ Coking plants	(3) 24, 297	33, 535 22, 060				(³) 17, 681
Total aqua ammonia	(3)	55, 595	58, 522	70, 047	55, 962	(8)
Ammonium sulfate, 100 percent (NH ₄)sS04: Synthetic plants ¹	613, 265 825, 242			943, 825 822, 818		² 1, 086, 836 882, 700
Total ammonium sulfate	1, 438, 507	1, 615, 207	1, 522, 365	1, 768, 643	2, 154, 105	1, 969, 536
Ammonium nitrate, 100 percent NH ₄ NO ₃ solution 1	1, 130, 854	1, 467, 341	1, 558, 457	1, 885, 463	2, 078, 902	2 2, 237, 67
Ammonium chloride, 100 percent NH ₄ Cl, gray and white 1	(3)	28, 588	33, 341	28, 443	30, 192	(3)
Ammoniating solutions, 100 per-	(3)	363, 320	360, 720	444, 705	454, 914	(3)
Diammonium phosphate, NH ₃ content					(3)	6,06

¹ Data from Bureau of Census Facts for Industry series.

² Preliminary figure.3 Figure not available.

¹ Commodity specialist.

TABLE 2.—Atmospheric nitrogen (anhydrous ammonia) plants in the United States, December 1956 (excluding byproduct plants)

¹ Under construction.

The Nitrogen Division of Allied Chemical & Dye Corp. was installing facilities at Hopewell, Va., to produce solid ammonium Products already manufactured at the Hopewell plant included ammonia, ammonium nitrate and urea solutions, nitrate of soda, sulfate of ammonia, and ammonium nitrate-lime-stone.² The Ammonia Chemical Corp. was planning a new an-hydrous ammonia plant at Huron, Calif.³ The new nitrogen plant of Escambia Bay Chemical Corp. began operations at the beginning of 1956. This plant (at Milton, Fla., 20 miles east of Pensacola) produced ammonia and ammonium nitrate solutions.4 The Northwest Refining & Chemical Co. was constructing a plant for the production of ammonium sulfate near Spokane, Wash.⁵

Petroleum Chemicals, Inc., owned jointly by Continental Oil Co. and Cities Service Co., announced plans for a 300-ton-per-day anhydrous ammonia plant at Lake Charles, La. Byproduct hydrogen will be

Oil, Paint and Drug Reporter, Nitrogen Division to Build Ammonium Nitrate Unit: Vol. 169, No. 7, Feb. 20, 1956, p. 4.
 Chemical Week, vol. 79, No. 23, Dec. 8, 1956, p. 24.
 Manufacturers Record, New Ammonia Plant Opens in Pensacola: Vol. 125, No. 3, March 1956, p. 48.
 Mining World, vol. 18, No. 4, April 1956, p. 85.

obtained from the parent companies' nearby oil refineries. The output is to be sold by Mid-South Chemical Corp., also owned by Continental Oil Co. and Cities Service Co. The ammonia plant of Phillips Pacific Chemical Co. at Kennewick, Wash., was nearly completed by the end of 1956. This plant, with a daily capacity of 200 tons per day of anhydrous ammonia, will be operated by Phillips Chemical Co. Phillips Chemical and Pacific Northwest Pipeline Co. are joint owners of the Phillips Pacific Chemical Co. The nitrogen plant of the Sohio Chemical Co. (Standard Oil of Ohio), at Lima, Ohio, began operation late in 1956. Products will include ammonia, nitric acid, urea, nitrogen solutions, and carbon dioxide. Southwestern Agrochemical Corp. reported plans for a 60-ton-per-day anhydrous ammonia plant near Chandler, Ariz. The Marcus Hook (Pa.) 300 ton-per-day ammonia plant of the Sun Oil Co. began operation in February and was closed in mid-April by an explosion. It was estimated that repairs would take 6 months.

CONSUMPTION AND USES

Agriculture continued to be the leading consumer of nitrogen compounds. Over 1.9 million short tons of contained nitrogen was consumed by agriculture during the year ended June 30, 1956, a decrease of about 1 percent from the previous year. The principal nitrogen materials, in order of importance as fertilizers, were: (1) Ammonium nitrate and ammonium nitrate-limestone mixtures, (2) anhydrous and aqua ammonia, (3) sodium nitrate, (4) ammonium sulfate, (5) nitrogen solutions, (6) urea, (7) calcium cyanamide, and (8) calcium nitrate.

According to the United States Department of Agriculture, for the year ended June 30, 1956, consumption of urea, aqua ammonia, and anhydrous ammonia as fertilizers increased 35, 34, and 18 percent, respectively, whereas consumption of ammonium sulfate, ammonium nitrate, ammonium nitrate-limestone mixtures, and sodium nitrate was 20, 16, 12, and 12 percent less, respectively, than in 1954-55.

The chemical industry, while using a small quantity of elemental nitrogen, requires most of its nitrogen in various compounds. The major industrial uses included the manufacture of explosives, chemicals, dyes, resins, and paper; processing of rubber, metal ores, and metals; in water treatment; and as a refrigerant.

PRICES

Prices of several nitrogen compounds decreased during 1956. Cokeoven ammonium sulfate prices dropped about 25 percent early in the year. Synthetic sodium nitrate, fertilizer-grade cyanamide, and ammonium nitrate-dolomite all remained steady.

Oil and Gas Journal, New Plant Planned: Vol. 54, No. 45, Mar. 12, 1956, p. 79.
 Chemical and Engineering News, Symbolic Shipments From Sohio: Vol. 34, No. 1, Jan. 2, 1956, pp.

^{18-19.} Western Industry, Agrochemical to Build \$5,000,000 Ammonia Plant: Vol. 21, No. 7, July 1956, p. 95. Western Industry, Agrochemical to Build \$5,000,000 Ammonia Plant: Vol. 21, No. 7, July 1956, p. 95. Oil, Paint and Drug Reporter, Anhydrous Ammonia Unit Explodes at Marcus Hook: Vol. 169, No. 17, Apr. 23, 1956, p. 5.

TABLE 3.—Prices of major nitrogen compounds in 1956, per short ton [Oil. Paint and Drug Reporter of the dates listed]

Commodity	Jan. 2, 1956	Dec. 31, 1956	Effective date of change
Chilean nitrate, port, warehouse, bulk	\$47. 75 43. 50 42. 00–45. 00	\$46.00 43.50 32.00	Oct. 15. May 14.
Niagara Falls, Ontario, bagged	55.00	55.00	
Canadian, eastern 33.5 percent N, c. l., shipping point, bags—Western, domestic, works, bags————————————————————————————————————	70.00	64.00	July 9.
Anhydrous ammonia, fertilizer, tanks, works Ammonium-nitrate-dolomite compound, 20.5 percent N. Hope	68. 00 85. 00	64.00 1 75.00	July 9. Oct. 15.
well, Va., bags	51.00	51.00	

¹ Quoted at \$80 per ton from July 9 to Aug. 27 and \$72 from Aug. 27 to Oct. 15.

FOREIGN TRADE 10

Total imports of nitrogen compounds in 1956 continued their downward trend and were 7 percent less than in 1955; 18 percent less Chilean nitrate was imported.

Exports of nitrogen compounds continued to increase and were 25 percent above 1955 exports.

TABLE 4.—Major nitrogen compounds imported for consumption into and exported from the United States, 1953-56, in short tons [Bureau of the Census]

	1953	1954	1955	1956
	-	ļ	ļ	
Imports:	i	1		
Industrial chemicals: Anhydrous ammonia				26
Fertilizer materials:			1	" 20
Ammonium nitrate mixtures:		İ	l .	
Containing less than 20 percent nitrogen	8, 294	(1)	(1)	(1)
Containing 20 percent or more nitrogen	755, 087	524, 938	405, 246	437, 580
Ammonium phosphates	166 407	164, 133	234, 523	190, 574
Ammonium siliate	1 500 QEQ	305, 012	173, 118	197, 650
Calcium cyanamide	82, 218	84, 211	81, 708	67, 185
Calcium nitrate	67, 794	68, 637	56, 362	65, 291
Nitrogenous materials, n. e. s.:	1	10, 10.	00,002	00, 201
Organic	17, 104	2 17, 748	2 11, 194	2 6, 011
Inorganic and synthetic, n. e. s	(3)	16, 991	4 8, 494	8, 931
Potassium nitrate, crude	15 941	732	1, 118	924
Potassium-sodium nitrate mixtures, crude	12, 516	13, 228	19, 300	19, 451
Sodium nitrate	568, 873	731, 530	4 614, 186	500, 012
Exports:	1	,	1,	000,012
Industrial chemicals:				
Anhydrous ammonia	15, 119	39, 257	44, 054	53, 324
Ammonium nitrate	6,013	7, 560	5, 996	6, 991
Fertilizer materials:	1 '	.,	5, 555	0,001
Ammonium nitrate	2, 172	9, 402	71, 919	126, 054
Ammonium sulfate	39, 440	202, 249	612, 407	762, 751
Nitrogenous chemical materials, n. e. s	46, 585	48, 871	82, 116	85, 109
Sodium nitrate	24, 209	25, 316	11, 625	4,078

Effective Jan. 1, 1954 not separately classified; included in "Inorganic and synthetic materials n. e. s."
 Owing to changes in classification data not strictly comparable with earlier years.
 Not separately classified.
 Revised figure.

¹⁰ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 5.—Sodium nitrate and potassium-sodium nitrate imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries

[Bureau of the Census]

				pareal	Dureau or the Census	lanen						
	194 (ave	1947-51 (average)	Ħ	1952	, a	1953	a	1954	7	1955	88	1956
	Short	Value	Short	Value	Short tons	Value	Short	Value	Short	Value	Short	Value
Sodium nitrate: North America: Canada South America: Chile	68 659, 316	\$3,955 22,718,241	50 675, 279	\$4, 138 27, 626, 811	1 568,872	\$45 23, 268, 068	731, 530	\$26, 817, 842	50 1 614, 136	\$2, 306 121, 925, 596	101	\$5, 983 16, 330, 892
Europe: Franco. Germany- Poland.	2000	643 381 193										
Total	13	1, 217									- E	
Grand total	659, 397	22, 723, 413	675, 329	27, 630, 949	568, 873	23, 268, 113	731, 530	26, 817, 842	1 614, 186	121,927,902	500,012	16, 336, 875
Potassium-sodium nifrate, mix- tures: North America: Canada	(*) 7,673	329, 528	16,460	830, 693	12, 516	626, 149	13, 228	599, 230	19, 252	789, 799	19, 437	713,879
Europe: France Germany, West									13 35	1, 324 3, 779	14	1,324
Total									48	5, 103	14	1, 324
Grand total	7, 673	329, 558	16, 460	830, 693	12, 516	626, 149	13, 228	599, 230	19,300	794, 902	19, 451	715, 203

1 Revised figure.

TECHNOLOGY

Changes in equipment design and modification of processes have reduced the cost and space requirements of ammonia plants.11 Research by industry was seeking new uses to consume ammonia from unused plant capacity.12 Increased fertilization of highways, forests, lakes, and grazing lands was being investigated. A new portable unit to convert anhydrous ammonia to aqua ammonia was reported during 1956.13 The converter handles 50,000 pounds of anhydrous ammonia (1 tank car) in about 5½ hours.

Fixation of atmospheric nitrogen by exposure to fission-recoil energy of uranium-235 was reported by Rensselaer Polytechnic

Institute.14

A new ammonium nitrate prilling process produced spherical particles, preferred for fertilizer and at less cost.¹⁵ The advantages of using ammonium nitrate as an explosive included greater safety and improved economies.¹⁶

A newly developed method for analysis of nitrate nitrogen in the

presence of ammonia or urea gave rapid, accurate results. 17

A recent article 18 discussed processes for producing nitric acid,

giving advantages and disadvantages of the various processes.

Nitrogen compounds in the atmosphere were found to be a contributing factor to the formation of smog around highly industrial areas. 19 Several methods were suggested for reduction of the nitrogen oxides in the atmosphere.20

Ammoniation and granulation in the manufacture of high-analysis mixed fertilizer not only lowered costs but provided better control of composition and physical form of the product.²¹ Cost comparison of dry and liquid nitrogenous fertilizer materials and direct application nitrogenous fertilizers were the subject of recent articles.22

Chemical Engineering, New Plant Is Shrunk to Fit: Vol. 63, No. 7, July 1956, p. 119.
 Chemical and Engineering News, Nitrogen Problem; Allied's Answer: Vol. 34, No. 41, Oct. 8, 1956, pp.

¹³ Chemical and Engineering News, Portable Ammonia Converter: Vol. 34, No. 25, June 18, 1956, p. 3052.
14 Chemical and Engineering News, vol. 34, No. 42, Oct. 15, 1956, p. 4981.
15 Chemical and Engineering News, Short-Cut to Prilled Fertilizer: Vol. 34, No. 35, Aug. 27, 1956, pp.

^{**}Ottement and Engineering News, Short-Cut to Frined Fethilzer. Vol. 52, No. 53, Aug. 21, 1950, pp. 4192-4193.

10 Mining World, How Fertilizer Cuts Anaconda's Blasting Cost at Weed Heights: Vol. 18, No. 9, August 1956, pp. 56-57, 88.

11 Chemical and Engineering News, Troublesome Nitrogen: Vol. 34, No. 3, Jan. 16, 1956, pp. 228.

12 Streizoff, S., Today's Commercial HNO3 Processes; A Critical Comparison: Chem. Eng., vol. 63, No. 5, May 1956, pp. 1956, pp. 1956, pp. 1956, pp. 1956, pp. 1956, pp. 1956, pp. 1956, pp. 1956, pp. 1484-1487.

12 Haagen-Smit, A. J., and Fox, M. M., Ozone Formation in Photochemical Oxidation of Organic Substances: Ind. Eng. Chem., vol. 48, No. 9, pt. I, September 1956, pp. 1484-1487.

13 Littman, F. E., Ford, H. W., and Endow, N., Formation of Ozone in the Los Angeles Atmosphere: Ind. Eng. Chem., vol. 48, No. 9, pt. I, September 1956, pp. 1492-1497.

13 Stephens, E. R., Hanst, P. L., Doerr, R. C., and Scott, W. E., Reactions of Nitrogen Dioxide and Organic Compounds in Air: Ind. Eng. Chem., vol. 48, No. 9, pt. I, September 1956, pp. 1498-1504.

13 Haines, H. W., Jr., and Lange. Fremont, Granulated Fertilizers by Continuous Ammoniation: Ind. Eng. Chem., vol. 48, No. 6, June 1956, pp. 966-976.

12 Adams, J. R., and Scholl, Walter, Nitrogen Fertilizer Materials for Direct Application: Commercial Fert., vol. 94, No. 1, January 1956, pp. 27, 30, 32-34, 36.

Heady, E. O., and Baum, E. L., Economic Comparison of Farm Application of Dry and Liquid Types of Nitrogen in Iowa: Commercial Fert., vol. 94, No. 1, January 1956, pp. 39-43, 46-48, 50-52, 54.

WORLD REVIEW

According to the report of Aikman (London,) Ltd., world production and consumption of nitrogen (excluding U. S. S. R.) in 1956-57 increased 9 and 6 percent, respectively, compared with 1955-56. Detailed data in table 7 show that United States supplied 29 percent of the world production and consumed 33 percent of the world total of fertilizer nitrogen.

Austria.—Osterreichische Stickstoffwerke of Linz continued to be the only nitrogen fertilizer producer. About four-fifths of the output

was for export.

Canada.—The nitrogen plant of Northwest Nitro-Chemicals, Ltd., at Medicine Hat, Alberta, began operation during the latter part of 1956. The company was owned by Commercial Solvents Corp. and New British Dominion Oil Co., Ltd. The nitrophosphate section of the plant was nearly completed at the end of the year.

Other plants under construction, expansion, or planned included a 200 ton-per-day anhydrous ammonia plant of Canadian Industries, Ltd., at Millhaven, Ontario; the Welland anhydrous ammonia plant (expansion) of North American Cyanamid, Ltd., at Welland, Ontario; and a 125-ton-per-day anhydrous ammonia plant of Quebec Ammonia Co. at Varennes, Quebec.

TABLE 6.—Revised estimates of world production and consumption of nitrogen, years ended June 30, 1953-57, in thousand short tons ¹

[Aikman	(Londo	on),	Ltd.	J

	Estimated	production	Estimated co	onsumption
Year	For agri- culture	For in- dustry	In agri- culture	In in- du st ry
952-53953-54	4, 920 5, 450	920 1,040 1,150	4, 935 5, 340 6, 020	92 1, 04 1, 15
954-55. 955-56. 956-57.	6, 270 6, 790 7, 435	1, 230 1, 285	6, 420 6, 795	1, 23 1, 28

¹ Exclusive of U.S.S.R.

TABLE 7.—World production and consumption of fertilizer nitrogen compounds, years ended June 30, 1954-57, by principal countries, in thousand short tons of contained nitrogen

TO		
[Converted and rounded from	United Nations Food o	nd Amioritana Onesat-att-u.T
[- ozz oz oca ana roundoù nom	CIMICA INGLIGITS I OUG A	mu Agriculture Organizationi

Country		Production	1	(Consumpti	on
	1954-55	1955-56 1	1956-57 2	1954-55	1955-56 1	1956-57 2
Australia	18	17	19	27	24	25
Austria	125	142	132	33	33	36
Belgium	265	249	331	103	90	101
Canada	207	207	207	55	55	55
	257	275	293	16	19	20
Czechoslovakia Denmark	39	39	39	85	88	88
Egypt	27	27	28	84 124	99 124	99 123
Finland	18	17	26	39	41	43
FranceGermany:	397	441	496	383	420	457
East	320	320	320	004	004	
West	821	829	992	264	264	264
Greece	021	029	992	499	518	551
Hungary	13	60		48	63	61
India	92	97	60	17	55	55
Italy			97	129	152	152
Japan	345 697	363	391	262	270	276
Korea (South)	097	761	825	574 30	616 44	672
Mexico	16	18	18	34	38	46 39
Netherlands	323	333	391	206	202	
Norway	212	196	237	39	39	203
Peru	49	52	52	59 52	59 59	43
Poland	140	253	253	165		59
Portugal	16	200	23	52	220	220
Spain	36	36	36	135	55	61
Sweden	31	29	46		135	135
Taiwan (Formosa)	15	29	36	85	89	94
United Kindgom	336	343	356	91	82	86
United States	1,998	2, 239		279	327	338
Yugoslavia	5	2, 239	2, 364 14	2, 236 25	2, 284 42	2, 406 74
World total 3	6, 860	7, 449	8, 179	6, 555	6, 966	7,346

Preliminary figures.

² Forecast. ³ Exclusive of U. S. S. R. ncludes quantities for minor producing and consuming countries not listed above.

Chile.—The total production of 1,277,000 short tons of nitrates, about two-thirds by the Guggenheim process and one-third by the Shanks process, was 25 percent less than in 1955. Exports of nitrates

were 2 percent more than in 1955.

The large decrease in production resulted mainly from several strikes and closing of small Shanks-process plants. The Marie Elena and Pedro de Valdivia plants of the Anglo-Lautaro Nitrate Co. and plants of the Cia Salitrera de Tarapacay Antofagasta were closed by 3-month and 1-month strikes, respectively. It was reported that the San Enrique, Santa Rosa de Huara, and Aguada plants were shut down.

The Nitrate Referendum, referred to in the 1954 Nitrogen Compounds chapter, was passed by the Chilean Congress and became effective on April 23, 1956.

TABLE 8.—Exports of nitrate from Chile, year ended June 30, 1956, by countries of destination

Country of destination	Thousand short tons	Country of destination	Thousand short tons
Argentina Australia and New Zealand Belgium Brazil Cuba Denmark Egypt France Germany India	29 32 18 61 17 31 110 116 46 9 54	Japan. Netherlands	

Source: Bureau of Mines, Mineral Trade Notes: Vol. 45, No. 1, July 1957, p. 38.

Egypt.—The Egyptian Government completed contracts with French and German companies for a nitrogenous fertilizer plant at Assouan, with a capacity of over 400,000 tons of ammonium nitrate yearly.23

France.—The Société Potasse et Engrais Chimiques was constructing an ammonia plant at Grand Couronne near Le Havre, scheduled

for completion in 1957.

Germany, East.—The production of nitrogenous fertilizers in 1956 totaled 330,000 short tons of nitrogen equivalent compared with 323,000 short tons of nitrogen equivalent in 1953 and was 30 percent above the production in 1949.24

Greece.—Plans were announced during the year for construction of a plant at Ptolemais to produce over 75,000 tons of nitrogenous

Hungary.—The 5-year plan, announced in early 1956, included a sevenfold increase in the nitrogen industry. The most important plant, at Tiszapalkonya, will utilize natural gas from Rumania.26 The Pét nitrogen works produced a nitrophosphate fertilizer-"Nifosz"from phosphate rock and nitric acid and contained over 40 percent plant food.27

India.—The Indian Government announced plans for four new fertilizer plants: At Nangal to produce ammonium nitrate-limestone mixtures, at Neiveli to produce urea and sulfate-nitrate, at Rourkela to produce ammonium nitrate, and at Bombay to produce urea and

sulfate-nitrate.28

Israel.—The new nitrogen plant of Fertilizers & Chemicals Co. at Haifa Bay began operation early in the year to produce anhydrous ammonia and ammonium sulfate.

<sup>Chemistry and Industry, New Fertilizer Factory in Egypt: No. 15, Apr. 21, 1956, p. 269.
United States Mission, Berlin, Germany, State Department Dispatch 911: Apr. 9, 1957, Appendix 1, p. 2.
Chemical Age (London), Greek Fertiliser Plant: Vol. 75, No. 1937, Aug. 25, 1956, p. 345.
Chemical Age (London), Chemical Investment Plan: Vol. 74, No. 1921, May 5, 1956, p. 1014.
Chemical Age (London), Fertiliser Shortage: Vol. 76, No. 1945, Oct. 20, 1956, p. 142.
Foreign Commerce Weekly, Indian Fertilizer Plants Planned: Vol. 56, No. 21, Nov. 19, 1956, p. 9.</sup>

Italy.—Early in 1956 Montecatini announced a 10-percent planned expansion of the nitrogen-from-methane facilities.

A new 35,000 ton-per-year ammonia plant was planned at Valdarno

by the Societa toscanna azoto.

Japan.—The nitrogen industry in Japan has increased capacity more than 70 percent during the past 15 years.²⁹ Ammonium sulfate continued to be the major nitrogen compound produced.

New nitrogen-fixation facilities were planned by Toyo Koatsu Industries in Biigata Prefecture, in northwest Japan, and by Nihon

Gas Kagaku Kogyo K. K., near Tokio.30

Mexico.—St. Gobain of France was constructing a nitrogenous fertilizer plant at Monclova, Coahuila. This plant will utilize cokeoven gases and produce some 100 tons of anhydrous ammonia daily. Investigations were under way for possible additional plants at Guaymas, Sonora, and near Coatzacoalcos, Veracruz.

Netherlands.—Expansion of the nitrogen compounds industry underway or planned at the end of 1956 totaled about 35,000 tons of nitrogen per year. A large part of the expansion was for fertilizer-grade urea.³¹

Peru.—Fertilizantes Sinteticos announced plans to construct a nitrogenous fertilizer plant for producing 18,000 tons of anhydrous ammonia per year. Other products will include nitric acid, ammon-

ium nitrate, and calcium-ammonium nitrate.32

Poland.—Production of nitrogenous fertilizers (N content) in 1956 was 193,000 short tons, a 14-percent increase from 170,000 short tons Consumption of nitrogen fertilizers (N content) in 1955-56 was 170,000 short tons, 12 percent more than the 152,000 short tons reported in 1954-55.33

The fertilizer nitrogen plant at Kedzierzyn, in southwest Poland, was being enlarged to a new annual capacity of over 180,000 tons of nitrogen equivalent. This plant, formerly a military chemical plant,

began producing fertilizers in 1954.34

U. S. S. R.—Nitrogenous fertilizer production totaled 697,000 short tons of N equivalent in 1955 compared with 619,000 tons of N equivalent in 1954 and 550,000 short tons of N equivalent in 1953.35

Venezuela.—The Venezuelan Government contracted with the Montecatini Co. of Italy to construct a nitrogen and phosphate ferti-The nitrogen facilities will have an annual capacity of lizer plant. 30,000 tons of nitrogen equivalent.36

Yugoslavia.—It was reported that the U.S.S.R. was building a nitrogen-fertilizer plant at Pancevo, near Belgrade, to produce 360,000

tons of fertilizer per year.37

²⁹ Fertiliser and Feeding Stuffs Journal (London), Japan's Chemical Fertiliser Industry: Vol. 44, No. 2, Jan. 18, 1956, pp. 75-77.

30 Chemical Engineering Progress, vol. 52, No. 3, March 1956, p. 79.

Chemical Week, vol. 78, No. 14, Apr. 7, 1956, p. 22.

31 Chemical and Engineering News, vol. 34, No. 37, Sept. 16, 1956, p. 4392.

32 Chemical And Engineering News, vol. 34, No. 27, 1956, p. 25.

33 Chief, Statistical Administration, Statistical Bulletin: No. 1, Warsaw, Poland, January 1957, pp. 9, 17.

34 Fertiliser and Feeding Stuffs Journal (London), Poland's Fertiliser Industry: Vol. 44, No. 7, Mar. 28, 1956, p. 39.

35 Statistical Almanac, Central Statistical Administration of the Council of Ministers of the U. S. S. R., The Industry of the U. S. S. R.: Moscow, 1957, pp. 192, 427.

36 Mining World, vol. 18, No. 6, May 1956, p. 69.

37 Chemical Age (London), Yugoslavian Projects: Vol. 75, No. 1936, Aug. 18, 1956, p. 298.

Perlite

By L. M. Otis 1 and Annie L. Mattila 2

THE DOMESTIC production of both crude and expanded perlite continued to show an annual increase, as it has over the past ten years; however, there was marked retardation in the rate of increase in 1956.

DOMESTIC PRODUCTION

Crude Perlite.—During 1956, 12 companies operated 14 crude perlite mines in 6 States. In 1955, 11 companies conducted 14 min-

ing operations in the same States.

The total crude perlite mined in 1956 was 350,200 short tons, and the quantity sold or used by producers was 310,800 tons, valued at \$2.6 million. Although the difference between the production and quantity sold or used was influenced to some extent by changes in stocks at producers' plants, there is always a substantial shrinkage in processing caused by dust, losses of fines, and rejection of unexpandible material, such as phenocrysts or alteration products. The quantity sold or used in 1956 increased 9 percent over 1955.

TABLE 1.—Crude and expanded perlite produced and sold or used by producers in the United States, 1952-56

			Orude perlite)		Ex	panded pe	rlite
Year	Produced (short	s	o ld	to make	wn plant expanded erial	Produced (short	s	o ld
	tons)	Short tons	Value	Short tons	Value	tons)	Short tons	Value
1952	190, 442 213, 532 261, 024 335, 187 350, 224	135, 070 141, 282 154, 531 198, 446 207, 436	\$873, 054 1, 072, 065 1, 375, 706 1, 778, 894 1, 940, 162	29, 775 57, 469 65, 172 87, 711 103, 364	\$129, 866 367, 593 386, 394 502, 738 609, 894	155. 955 175. 234 196. 447 246. 730 262, 815	154. 563 174. 461 195. 499 246. 343 263, 627	\$7, 997, 731 9, 254, 374 10, 278, 745 12, 585, 297 13, 122, 473

Expanded Perlite.—Eighty-four plants, operated by 62 companies, produced expanded perlite in 1956 compared with 81 plants operated by 64 companies in 1955. The quantity sold or used in 1956 was 263,600 short tons valued at \$13,122,500—an increase of 7 percent in tonnage and 4 percent in value compared with the previous year.

¹ Commodity specialist.
2 Statistical assistant.

Figure 1 shows the consumption of expanded perlite in short tons and the annual average unit value for 1946-56.

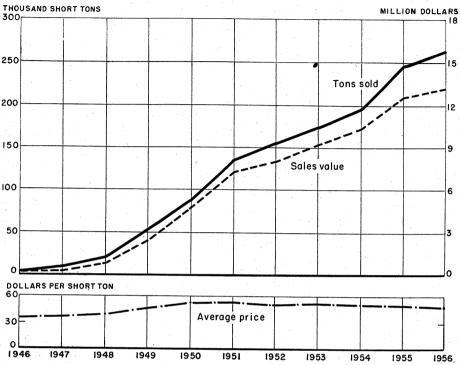


FIGURE 1.—Sales and value of expanded perlite and average price per ton, 1946-56.

Operating statistics of the perlite industry in 1954 are contained in a preliminary report published by the Bureau of the Census.³ Some of these statistics for the perlite industry, including certain contingent businesses, were: Number of employees, 123; principal expenses, \$1,151,000; wages of production and development workers, \$369,000; salaries of all other employees, \$117,000; fuel, \$106,000; purchased electric energy, \$42,000; purchased machinery installed, \$69,000; capital expenditures (development work, construction, machinery and equipment), \$96,000; horsepower rating of power equipment, 7,000.

Mine and Plant Developments.—International Minerals & Chemical Corp., one of the larger producers of perlite, was constructing new headquarters offices at Skokie, Ill.⁴ Its perlite department added 15,000 square feet of building space to its Los Angeles, Calif., perlite plant.

Announcement was made that a new perlite-mining operation would start near Lovelock, Pershing County, Nev.

Bureau of the Census, 1954 Census of Mineral Industries, Preliminary Report: Series MI-14-9-2, pp. 3-5.
 Rock Products, International Minerals to Build General Offices: Vol. 59, No. 11, November 1956, p. 46.
 Western Mining and Industrial News, New Yorkers Lease Perlite Mine: Vol. 24, No. 2, February 1956, p. 15.

TABLE 2.—Expanded perlite produced and sold by producers in the United States, 1955-56, by States

Pro- uced short ons) Short tons 25, 764 25, 611 5, 667 5, 617	Sold Value \$1,349,947 379,618	Average value per ton	Produced (short tons)	Short tons	Sold Value \$1,308,381	Average value per ton
uced short ons Short tons 5, 764 25, 611 5, 667 5, 617	\$1,349,947	age value per ton \$52,71	duced (short tons)	tons		age value per ton
5, 667 5, 617			24, 556	94 159	¢1 200 201	\$54.16
6, 662 (1) (1) 9, 741 (2) (2) (2) (3) (6, 850 (6, 850 (1) (1) (1) (1) (2, 542 (8, 935 (78, 875 (1) 1) (1) (1) (1) (1) (1) (1) (1) (1)	951, 871 (1) 532, 726 (2) 791, 365 1, 057, 077 (1) 3, 666, 942 3, 855, 751	67. 58 57. 21 (1) 54. 69 (2) 74. 61 62. 47 (1) (1) 44. 54 48. 88	7, 083 22, 424 10, 721 7, 395 22, 024 10, 044 18, 178 9, 927 3, 468 54, 868 72, 127	7, 137 22, 399 10, 721 7, 395 22, 006 10, 779 18, 113 9, 941 3, 468 55, 512 71, 998	379, 058 1, 209, 014 510, 553 367, 732 955, 063 712, 534 988, 509 537, 577 158, 981 2, 227, 647 3, 767, 424	53. 11 53. 98 47. 62 49. 73 43. 40 66. 10 54. 57 54. 08 45. 84 40. 13 52. 33
06 (28	(2) , 569 , 850 10, 606 16, 921 11) 11) 11) 11) 11) 11) 11) 1	[2] (2) (3) (4) (5) (6) (6) (7) (8) (7) (7) (7) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(a) (b) (c) (c) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	3) (2) (3) (2) 22, 024 3, 569 10, 606 791, 365 74, 61 10, 044 8, 850 16, 921 1, 1057, 077 62, 47 18, 178 1) (1) (1) (1) (1) 9, 927 1) (1) (1) (1) 3, 465 44, 54 54, 868 6, 935 78, 875 3, 855, 751 48, 88 72, 127	3) (2) (3) (2) (22, 024 22, 006 7, 569 10, 606 791, 365 74, 61 10, 044 10, 779 8, 850 16, 921 1, 057, 077 62, 47 18, 178 18, 113 1) (1) (1) (1) 9, 927 9, 941 1) (1) (1) (1) 3, 468 3, 468 3, 468 5, 542 82, 335 3, 666, 942 44, 54 54, 868 55, 512 935 78, 875 3, 855, 751 48, 88 72, 127 71, 998	3) (2) (3) (2) 22,024 22,006 955,063 7,569 10,606 791,365 74.61 10,044 10,779 712,534 8,850 16,921 1,057,077 62,47 18,178 18,113 988,509 1) (1) (1) (1) 9,927 9,941 537,577 1) (1) (1) (1) 3,468 3,468 158,981 4,542 82,335 3,666,942 44,54 54,868 55,512 2,227,647

¹ Included under "Other Western States" to avoid disclosing individual company confidential data.

² Included under "Other Eastern States" to avoid disclosing individual company confidential data.

³ Includes Arizona, Arkansas, Colorado, Iowa (1955 only), Kansas, Louisiana, Minnesota, Missouri, Nebraska, Newada, New Mexico, Oklahoma, Oregon, Texas (1955 only), and Utah (1955 only).

⁴ Includes Indiana, Maryland, Massachusetts, Michigan, New York (1955 only), North Carolina, Tennessee, Virginia, and Wisconsin.

Reserves.—An article listed some proved United States reserves of perlite in California, Colorado, Nevada, New Mexico, and Utah. Reserves are extensive and measurable in many million tons. Other perlite information included was petrology and geology; annotated list of occurrences in western United States, with index map; mining, milling, and processing; economic aspects; list of literature cited; and chemical analyses of volcanic glasses.6

CONSUMPTION AND USES

Crude Perlite.—The total consumption of crude perlite is the quantity expanded by crude producers in addition to that sold by

them to others for expanding purposes.

Expanded Perlite.—Eighty-six percent of all expanded perlite consumption was used in the construction industries. Plaster aggregates comprised 76 percent of total sales and concrete aggregates 10 percent, compared with 77 and 13 percent, respectively, during 1955. Oil-well drilling muds and oil-well concrete used 6 percent—1 percent more of the total consumption than in the preceding year. Filter aids increased from 1 percent of total consumption in 1955 to 2 percent in 1956. Miscellaneous uses increased from 4 percent in 1955 to 6 percent in 1956 and included loose-fill insulation, horticulture, paint filler, refractory brick, and absorbents for oils.

PRICES

The average price of crude perlite, after crushing and sizing by screening, and sold to expanders who were not prime producers of

⁶ Jaster, Marian C., Perlite Resources of the United States: Geol. Survey Bull. 1027-I, 1956, pp. 376-403.

crude, was \$9.35 per short ton in 1956 compared with \$8.96 in 1955 and \$8.90 in 1954. Crude perlite, similarly prepared but expanded by the prime producers, had a reported average mill value of \$5.90 in 1956, while in 1955 and 1954 average mill values were \$5.73 and \$5.93, respectively. Combining these two classifications gave a weighted annual average of all crude perlite sold or used by those who also mined the material of \$8.20 per short ton in 1956 compared with \$7.97 in 1955 and \$8.02 in 1954.

The average unit price of expanded perlite sold has been declining slowly but consistently since 1953, when the average price, packed in bags, f. o. b. processors' plants, was \$53.05 per short ton. Prices have since been \$52.32 in 1954, \$51.01 in 1955, and \$49.93 in 1956. proved technology and increased processing capacity, with its corresponding lower overhead costs, probably are responsible for lower operating costs, permitting a reduction in the selling price.

TECHNOLOGY

Patents.—An apparatus and method for machine applications of mortars composed of portland cement or gypsum and perlite were described in a patent.

A method of providing for conduits in concrete was patented. Concrete is poured around soluble pipes made of expanded perlite and a fully soluble binder. After setting, the soluble pipes are flushed awav.8

A method of insulating hollow-metal panels with expanded perlite These specially designed panels are intended for was patented. walls, floors, and roofs and are made of bent sheet into a honeycomb structure; the spaces are filled with perlite or mineral wool to deaden sound and insulate against temperature change.9

Expanded perlite was claimed to be an especially useful abrasive grit in a patent covering bonded abrasive articles. Grinding wheels, disks, and other elements were made with a low-temperature bond (sodium silicate, magnesium oxychloride, etc.) a rigid, spongelike material such as expanded plastics, foamglass, etc., and a suitable abrasive grit.10

An improved, acoustical, fireproof composition adapted to application of sheet-metal panels, was made of expanded perlite, sodium hydroxide, and water glass. Acoustical properties were maintained by regulating the water content of the composition so that the surface of the finished product remained relatively soft. 11

Perlite was used in a patented method for installing a system of waterproof underground heating pipes. The pipe was wrapped in corrugated or asbestos paper and positioned in the trench on insulating bearing blocks. Then a liner of asphaltic material was placed, a membrane of tarred felt was applied to the concrete base and liner,

^{&#}x27; Hobson, L. H. (assigned to E-Z-ON Corp., Chicago, Ill.), Method of Emplacing Mortar: U. S. Patent 2,770,560, Nov. 13, 1956.

§ Greene, C., Method of Forming Radiant Heat Conduits in Concrete Buildings: U. S. Patent 2,765,511,

Jackson, J. O. (assigned to Pittsburgh-Des Moines Co., Pittsburgh, Pa.): U. S. Patent 2,762,472, Sept.

<sup>11, 1956.

10</sup> Roble, N. P. (assigned to Electro Refractories & Abrasives Corp., Buffalo, N. Y.), Abrasive Bodies:
U. S. Patent 2,734,812, Feb. 14, 1956.

11 Kendall, F. E., Golar, P. (assigned to E. F. Hauserman Co., Cleveland, Ohio), Sound-Deadening Composition: U. S. Patent 2,756,159, July 24, 1956.

903 PERLITE

and insulating concrete was poured around the assembly. perlite or other suitable lightweight aggregate should be used in the

insulating concrete.12

Expanded perlite was used in a patented method of insulating underground conduits. A mixture of coated expanded perlite particles and a high-softening-point hydrocarbon was poured around the underground pipes. Upon heating, a portion of the mixture nearest the pipe was sintered, while further out the coating remained essentially unchanged. This produced an effective, economical insulating coating.13

Specifications of precast lightweight-concrete products were outlined in an article describing a new plant using perlite aggregate.14 The principal product was a roof tile or slab, reinforced with galvanized-wire mesh made in three lengths. It sustained an ultimate load of 250 pounds per square foot. Perlite-concrete slabs were

steam-cured at 120° for 12 hours at atmospheric pressure.

An article described construction details of recent large-scale building projects, including fairground buildings, which used 17

acres of perlite-concrete roofdeck.15

An article described, in some detail, the design and operation of a modern perlite-expanding plant. It also gave basic information on the growth of the perlite-plaster market, the strength of perlite concrete, the use pattern of expanded perlite, and other general information on perlite as a light-weight aggregate and fire retardant.16

A new plant was established for manufacturing a lightweight masonry panel consisting of a corrugated-steel core embedded in precast perlite concrete. It may be used for complete wall, interior partition, floor, and roof systems. The exterior face of the panel usually features exposed aggregate in various colors and textures. 17

A circular published by the Perlite Institute showed details of 38 fire-retardant construction units using lightweight plaster or concrete made with perlite aggregate.18 Also included were the thickness of the perlite admixture to be applied and the recommended furring and other basic elements to obtain the listed fire rating for columns,

floors, roofs, ceilings, and partitions.

Research at the University of Toledo, sponsored by the Perlite Institute, included a comprehensive study of perlite and its basic The institute also announced that research on further horticultural uses would be started. Funds were allocated by the institute covering research grants at universities in the South, Midwest, and East to study the value of perlite as a soil conditioner, for a seedstarting and root medium, and as a packaging material for shipping potted plants and nursery stock.

The use of perlite-concrete curtain walls in conjunction with an independent aluminum panel for the walls of building structures was

¹³ Burk, M. S., Method of Installing Underground Heating Pipe System: U. S. Patent 2,773,512, Dec.

Burk, M. S., Method of Installing Cooking Cooking Cooking Method of Products of Installing Cooking the Same: U. S. Fatent 2,774,383, Dec. 18, 1956.

14 Persons, Hubert C., Precast Lightweight-Concrete Products: Concrete Products, vol. 59, No. 11, November 1956, pp. 165-166.

14 Perlite Institute, The Perlite Torch: New York, N. Y.; vol. 6, No. 1, Spring 1956, p. 1.

15 Rock Products, Perlite Comes of Age: Vol. 59, No. 7, July 1956, pp. 67-71.

17 Rock Products, Opens Tecfab Plant: Vol. 59, No. 12, December 1956, p. 185.

18 Perlite Institute, Lightweight Fireproofing With Perlite: Fire-Retardant Data, 5B, 7th ed., 1957, 8 pp.

being pioneered by the institute as well as certain architects and builders.

WORLD REVIEW

Canada.—Perlite Industries, Ltd., South Westminster, B. C., started operations at a lightweight aggregate plant processing perlite

from local volcanic rock at Surrey, B. C.

Ireland.—A prospecting license was granted to Gotham, Ltd., a subsidiary of British Plaster Board Holdings, Ltd., to develop perlite deposits reported in the Doagh-Ballyclare district of County Antrim. Northern Ireland.

Phosphate Rock

By E. Robert Ruhlman¹ and Gertrude E. Tucker²

URING 1956 the phosphate-rock industry was characterized by increased production and sales. Marketable production of phosphate rock in the United States was 28 percent more than in the previous year. The world output in 1956 reached a new high, 12 percent above 1955.

Details of the phosphate-rock industry in the United States including its problems and outlook for the future were described.3

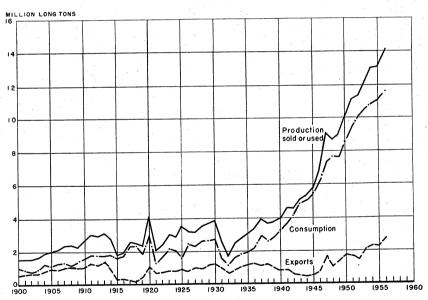


FIGURE 1.—Marketed production, apparent consumption, and exports of phosphate rock, 1900-56.

Commodity specialist.
 Statistical assistant.
 Ruhlman, E. R., Phosphate Rock (chap. in Mineral Facts and Problems): Bureau of Mines Bull. 556, 1956, pp. 681-693.

TABLE 1.—Salient statistics of the phosphate-rock industry in the United States, 1955-56

		19	55			19	956	
	Long	tons	Value at 1	nines	Long	tons	Value at 1	nines
	Rock	P ₂ O ₅ content	Total	Aver- age	Rock	P2Os content	Total	Aver- age
Mine production Marketable production 2	39, 670, 598 12, 265, 248	4, 983, 735 3, 886, 732	(1) 3 \$75, 379, 250	(1) 2 \$6. 15	52, 198, 375 15, 746, 781	5, 752, 061 4, 959, 978	(¹) 3\$97, 921, 916	⁽¹⁾ 3 \$6. 22
Sold or used by pro- ducers: Florida:								
Land pebbleSoft rockHard rock	9, 401, 168 72, 070 91, 907	3, 148, 810 14, 861 32, 386	466, 168	6.47		12,060	376, 082	6, 21 6, 40 8, 45
Total Florida Tennessee	9, 565, 145 1, 699, 395	3, 196, 057 447, 716		6. 19 7. 40	10, 527, 770 1, 662, 888	3, 472, 930 433, 943		6. 23 7. 69
Western States: Idaho Montana and Wyo-	1, 122, 012	1		,	1, 206, 526	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5. 01
ming Total Western States	4 799, 482 1, 921, 494				713, 891 1, 920, 417		4, 794, 067 10, 838, 325	6. 72 5. 64
Total United States	13, 186, 034				14, 111, 075		89, 232, 180	6. 32
Imports Exports 6	117, 256 2, 183, 084	719, 695	⁸ 2, 702, 955 14, 269, 300	⁵ 23, 05 6, 54	109, 891 2, 685, 116	875, 644	⁵ 2, 626, 226 15, 648, 691	5 23. 90 5. 83
Apparent consumption 7. Stocks in producers' hands Dec. 31: 6	11, 120, 206	(1)			11, 535, 850	(1)		
Florida Tennessee 8	1, 491, 000 229, 000 1, 077, 000	65, 000	(1) (1) (1)	(1) (1)	2, 785, 000 251, 000 1, 396, 000	69,000		(1) (1) (1)
Total stocks	2, 797, 000	9 829, 000	(1)	(1)	4, 432, 000	1, 357, 000	(1)	(1)

Data not available.

See table 2 for kind of material produced.

Derived from reported value of "sold or used."

Includes a quantity from Utah.

Market value (price) at port of shipment and time of exportation to the United States.

As reported to the Bureau of Mines by domestic producers.

Quantity sold or used by producers plus imports minus exports.

Includes a quantity of washer-grade ore (matrix).

Revised figure.

DOMESTIC PRODUCTION

Production of phosphate-rock ore in the United States totaled more than 52 million long tons in 1956, 32 percent more than in 1955 and 15 percent above 1954, the previous record year. Marketable production rose 28 percent; Florida continued to be the leading producer, followed by the Western States.

The Davison Chemical Co., a division of W. R. Grace & Co., used 3½-cubic-yard draglines and belt conveyors to strip the overburden from its Florida land-pebble deposits near Bartow, Fla. Overburden ranged from 50 to 65 feet in thickness, underlain by phosphate-rock ore up to 15 feet thick. This company mines about 110 acres per year. The triple superphosphate plant of the Davison Chemical Co. also near Bartow, Fla., produced both regular triple superphosphate and granular triple superphosphate.5

⁴ Excavating Engineer, Florida's Deepest Phosphate: Vol. 50, No. 5, May 1956, pp. 24-29.
⁵ Inskeep, G. C., Fort, W. R., and Weber, W. C., Granulated Triple Superphosphate: Ind. Eng. Chem., vol. 48, No. 10, October 1956, pp. 1804-1816.

TABLE 2.—Marketable production of phosphate rock in the United States, 1947-51 (average) and 1952-56, by States, in long tons

Year	Florida ¹	Tennessee 2	Western States ³	United States
1947–51 (average)	7, 414, 007	1, 457, 906	981, 250	9, 853, 16
	9, 205, 138	1, 444, 737	1, 415, 017	12, 064, 89
	9, 331, 002	1, 518, 912	1, 653, 916	12, 503, 83
	10, 437, 197	1, 633, 226	1, 750, 677	13, 821, 10
	8, 747, 282	1, 465, 902	2, 052, 064	12, 265, 24
	11, 822, 145	1, 685, 003	2, 239, 633	15, 746, 78

¹ Salable products from washers and concentrators of land pebble and hard rock and drier production of

Salable products from washers and concentrators of brown rock, brown-rock ore (matrix) used directly,
Salable products from washers and concentrators of brown rock, brown-rock ore (matrix) used directly,
Blue rock in 1954-56, white rock in 1953-56, and a small quantity of apatite from Virginia in 1947.
Mine production of ore (rock), plus a quantity of washer and drier production.

International Minerals & Chemical Corp. completed expansion of its Bonnie plant near Bartow, Fla., to double its capacity for producing triple superphosphate and dicalcium phosphate.

The Kaiser Aluminum & Chemical Corp. was constructing a pilot plant at Nichols, Fla., to use the fluorine byproducts formerly dis-

carded from phosphate-rock-processing plants.

A new elemental phosphorus electric furnace was being constructed by the Victor Chemical Works at Mount Pleasant, Tenn., and was scheduled for completion in the latter part of 1957. Victor Chemical Works also was considering a new phosphate-chemicals plant in the Chicago, Ill., area.

The elemental phosphorus industry of the United States comprised 7 companies and the Tennessee Valley Authority and produced nearly 268,000 tons per year in 32 electric furnaces in 7 States. materials handling, electric-furnace operation, and the recovery of

phosphorus were described.

The Tennessee Valley Authority reduced production of concentrated superphosphate and other fertilizer materials as a result of policy changes during the year ended June 30, 1956. Production of calcium metaphosphate increased in the same period.7

The Federal Geological Survey was investigating phosphate-rock occurrences in the northeast corner of Nevada. No results had been

published.

The phosphate-rock industry in southern Idaho and the factors that affected its development, including geology, transportation, markets, power, Government regulations and policies, and geographic

features, were discussed.8

The Stauffer Chemical Co. of California acquired a 50-percent ownership of the San Francisco Chemical Co. during the year from the Mountain Copper Co., Ltd., of England, which retained half the ownership. San Francisco Chemical Co. was constructing a new beneficiation plant at Leefe, Wyo. Development of phosphate-rock deposits by San Francisco Chemical Co. near Bear Lake, Idaho, was under way, and reserves were estimated in excess of 5 million tons of direct-shipping ore. This deposit was owned by the Stauffer Chemical

Bixler, G. H., Work, Josiah, and Lattig, R. M., Elemental Phosphorus-Electric Furnace Production:
 Ind. Eng. Chem., vol. 48, No. 1, pp. 1-16.
 Tennessee Valley Authority, 1956 Annual Report: 1957, pp. 40-58.
 McDivitt, J. F., Economic Evaluation of Phosphate and Other Minerals in Southern Idaho: Idaho Bureau of Mines and Geology, Pamph. 111, Moscow, Idaho, December 1956, 48 pp.

TABLE 3.—List of major phosphate rock producers in the United States, by States, in 1956

Florida: Land Pebble: The American Agricultural Chemical Co Do		
The American Agricultural Chemical Co		
The American Agricultural Chemical Co		I to the second second second
Do	Hillsborough.	Boyette.
	Dall	
American Cyanamid Co	Hillsborough	Sydney.
D0	Pole	Danwatan
Armour Fertilizer Works, Inc.	do	Bartow.
Armour Fertilizer Works, Inc. Coronet Phosphate Co., A Division of Smith- Douglass Co., Inc.	do	Coronet (Plant City).
Davison Chemical Co., A Division of W. R. Grace & Co.	do	Ridgewood.
Tricompational Minus I. C. C. C. C.		
International Minerals & Chemical Corp	do	Mulberry.
Swift & Co	do	Agricola (Fort Meade).
Hard Rock:	do	Nichols.
Kibler-Camp Phosphate Enterprise Soft Rock (Colloidal Clay): The Camp Phosphate Co The Kellogy Co	Citrus	Hernando.
The Camp Phosphate Co	do	Do.
The Kellogg Co	do	Do.
The Loncala Phosphate Co	Columbia	Fort White.
Do	Alachua	High Springs.
Soil Builders, Inc	Citrus	Hernando.
The Sun Phosphate Co	do	Dunnellon.
The Camp Phosphate Co The Kellogg Co The Loncala Phosphate Co Do Soil Builders, Inc The Sun Phosphate Co The Superior Phosphate Co	do	Do.
Armour Fertilizer Works. International Minerals & Chemical Corp. Do	Manne	
International Minerals & Chamical Corn	MauryGiles	Columbia.
Do	Maury	Pulaski.
Monsanto Chemical Co	Gilos	Mount Pleasant.
Do	Giles Maury	Columbia
Do	Williamson	Columbia.
Do. Presnell Phosphate Co. Tennessee Valley Authority. Victor Chemical Works.	Monra	l' Do
Tennessee Valley Authority	do	Do.
Victor Chemical Works	do	Do. Mount Pleasant.
Victor Chemical Works Virginia-Carolina Chemical Corp	do	Do.
laho:		Mine location (nearest town
The Anaconda Co., Fertilizer Dept	Caribon	Conda.
Monsanto Chemical Co.	do	Soda Springs.
San Francisco Chemical Co	Rear Lake	Montpelier.
J. R. Shiplot Co., Fertilizer Division	Bingham	Fort Hall.
120	Clark	Lakeview, Mont.
Westvaco Mineral Products Division Food Machin-	Bingham	Fort Hall.
ery & Chemical Corp. J. A. Terteling & Sons		
iontana:	Caribou	Conda.
Montana Phosphate Products Co	Powell	11 miles NW of Garrison.
LIBOTOR RELVAG		
J. R. Simplot Co.	Reaverhead	Lakeview.
J. R. Simplot Co. Victor Chemical Works. Do. tah: San Francisco Chemical Co.	do Toaverneau	Lakeview.
Do	Silver Row	Melrose.
tah: San Francisco Chemical Co	Rich	Bradley.
yoming: San Francisco Chemical Co	Lincoln	Sage.

TABLE 4.—Manufacturers of elemental phosphorus in the United States in 1956

Company	Location of plants	Number of furnaces
American Agricultural Chemical Co	Soda Springs, Idaho. Niagara Falls, N. Y. Columbia, Tenn. Wilson Dam, Ala Tarpon Springs, Fla. Mount Pleasant, Tenn.	6 2 1 2 6 1 4 2 2

Co. The San Francisco Chemical Co. also was conducting mining and beneficiation tests on phosphate-rock deposits near Vernal, Utah.

The Potash Company of America explored phosphate-rock deposits west of Paris, Idaho, and also conducted some experimental mining.

Construction of the plant and development of the mine of the Central Farmers Fertilizer Co. at Georgetown, Idaho, began at the end of 1956. Products were to include acid-grade rock, phosphoric acid, and calcium metaphosphate.

Following 10 years of exploration in the Centennial Mountains, the J. R. Simplot Co. produced from its new Centennial open-pit mine, on the Montana-Idaho border, 32 miles east of Monida, Mont. Announced reserves totaled 30 million tons, of which only one-sixth

was minable by surface methods.9

Improved mining economies were reported at the Anderson, Gravely, and Luke mines of the Montana Phosphate Products Co. near

Garrison, Mont.¹⁰

The Anaconda Co. was constructing an ammonium phosphate plant at Anaconda, Mont., and had contracted with the United States Steel Corp. for purchasing anhydrous ammonia from U. S. Steel's new plant near Provo, Utah.

CONSUMPTION AND USES

Apparent consumption of phosphate rock again set a new record,

rising 4 percent above 1955 and 85 percent over 1946.

Phosphate rock was sold or used primarily for ordinary superphosphate (36 percent in 1956 and 38 percent in 1955), elemental phosphorus (23 percent in 1956 and 22 percent in 1955), exports (19 percent in 1956 and 17 percent in 1955), triple superphosphate, including wet-process phosphoric acid (14 percent in 1956 and 15 percent in 1955), and direct application to the soil (5 percent in 1956 and 6 percent in 1955).

TABLE 5.—Apparent consumption 1 of phosphate rock in the United States, 1947-51 (average) and 1952-56, in long tons

Year	Long tons	Year	Long tons
1947-51 (average)	8, 190, 668	1954	10, 887, 268
	10, 032, 406	1955	11, 120, 206
	10, 557, 765	1956	11, 535, 850

¹ Quantity sold or used by producers, plus imports minus exports.

Mining World, "Centennial," a New Phosphate Mine by Simplot: Vol. 18, No. 13, December 1956, p. 56,
 Mining World, How Montana Phosphate Products Cuts Cost: Vol. 18, No. 2, February 1956, pp. 52-56.

TABLE 6.—Phosphate rock sold or used by producers in the United States, 1947-51 (average) and 1952-56

	Year		Long tons	Value at	mines
				Total	Average
1947-51 (average) 1952			9, 606, 298 11, 324, 158	\$54. 748, 278 68, 120. 918	\$5.70 6.02
1953 1954			12, 517, 923 13, 043, 824	76, 597, 075 81, 510, 056	6. 12 6. 25
1955 1956			13, 186, 034 14, 111, 075	82, 903, 984 89, 232, 180	6. 29 6. 32

TABLE 7.—Florida phosphate rock sold or used by producers, 1947-51 (average) and 1952-56, by kinds

		Hard rock		Soft rock 1			
Year	Long tons Value at mines			Long tons	Value at	mines	
		Total	Average	1 T 1 W	Total	Average	
1947-51 (average)	81, 086 81, 725 74, 303	\$456, 195 625, 175 643, 993 585, 363 739, 289 871, 632	\$7 65 7.71 7.88 7.88 8 04 8.45	81, 754 75, 853 75, 910 90, 519 72, 070 58, 754	\$373, 723 433, 203 470, 062 554, 234 466, 168 376, 082	\$4. 57 5. 71 6. 19 6. 12 6. 47 6. 40	
	Land pebble						
	1	Land pebble			Total		
Year	Long tons	Value at	mines	Long tons	Total Value at	mines	
Year		<u> </u>	mines Average	Long tons	T	mines Average	

¹ Includes material from waste-pond operations.

TABLE 8.—Tennessee phosphate rock 1 sold or used by producers, 1947-51 (average) and 1952-56

Year	Long tons	Value at mines		
2 00.		Total	Average	
1947-51 (average)	1, 373, 645 1, 452, 508 1, 622, 170 1, 700, 572 1, 699, 395 1, 662, 888	\$9, 142, 196 10, 874, 760 12, 251, 117 12, 012, 314 12, 579, 056 12, 791, 558	\$6, 66 7. 49 7. 55 7. 06 7. 40 7. 69	

¹ Includes small quantity of Tennessee blue rock in 1947 and 1954–56, white rock in 1952–56, and Virginia apatite in 1947 and 1949.

TABLE 9.—Western States phosphate rock sold or used by producers, 1947-51 (average) and 1952-56

		Idaho 1			Montana 2			
Year	Long tons Value at mines			Long tons	Value at mines			
		Total	Average		Total	Average		
1947-51 (average)			270, 950 332, 299 658, 125 733, 981 799, 482 713, 891	\$1, 943, 124 2, 620, 764 4, 643, 087 5, 167, 756 5, 595, 075 4, 794, 067	\$7. 17 7. 89 7. 06 7. 04 7. 00 6. 72			
		Wyoming			Total			
Year	Long tons	Value at	mines	Long tons	Value at mines			
		Total	Average		Total	Áverage		
1947-51 (average) ³	137, 075	\$434, 423 919, 987 (2) (2) (2) (2)	\$5. 87 6. 68 (2) (2) (2) (2)	948, 657 1, 090, 525 1, 728, 898 1, 612, 901 1, 921, 494	\$4, 775, 775 5, 704, 359 8, 733, 686 9, 467, 580 11, 145, 820	\$5. 03 5. 23 5. 05 5. 87 5. 80		

Idaho includes Utah in 1947-48 and 1950-52 and Wyoming in 1949-50.
 Montana includes Utah in 1953-55 and Wyoming in 1953-56.
 Includes Wyoming data for 1947-48 and 1951 only.

TABLE 10.—Phosphate rock sold or used by producers in the United States in 1955-56, by grades and States

	Florid	a	Tennes	see	Western S	tates	Total Un States	
Grades—B. P. L.¹ content (percent)	Long tons	Per- cent of total	Long tons	Per- cent of total	Long tons	Per- cent of total	Long tons	Per- cent of total
1955 Below 60	146, 860 } 1, 784, 471 859, 014 1, 658, 896 3, 716, 211 4 1, 399, 693 9, 565, 145	1 19 9 17 39 15 100	1, 172, 312 374, 048 } 153, 035 (2) 1, 699, 395	69 22 9 (²) 100	999, 670 } 414, 635 353, 601 153, 252 336 1, 921, 494	52 22 18 8 (3) 	2, 318, 842 630, 623 } 3, 308, 181 1, 812, 148 3, 716, 547 4 1, 399, 693 13, 186, 034	17 5 25 14 28 11
1956 Below 60	191, 527 } 2, 546, 334 1, 235, 574 1, 124, 119 4, 087, 881 1, 342, 335	2 24 12 10 39 13	1, 310, 829 174, 094 } 173, 948 	79 11 10 (*)	1, 138, 904 334, 134 447, 379 	59 18 23 	2, 641, 260 689, 507 } 4, 221, 956 1, 124, 119 4, 091, 898 1, 342, 335 14, 111, 075	19 5 30 8 29 9

Bone phosphate of lime, Ca₃(PO₄)₂.
 Included with 70 minimum grade.
 Less than 1 percent.
 Includes a small quantity of higher grade rock.

TABLE 11.—Phosphate rock sold or used by producers in the United States, 1955-56, by uses and States

	Flor	ida	Tenne	ssee	Western	States	Total Unit	ed States
Uses	Long tons		ng tons Long tons Long to		Long tons Long tons Lor		tons	
Uses	Rock	P ₂ O ₅ content	Rock	P ₂ O ₈ con- tent	Rock	P ₂ O ₅ con- tent	Rock	P ₂ O ₈ content
1955 Domestic: Agricultural:	4, 618, 100	1 597 070	1 209, 628	158 557	126, 097	39, 696	4, 953, 825	1, 685, 323
Ordinary superphosphate. Triple superphosphate Nitraphosphate	² 1, 598, 910	² 517, 980	(1)	(1)	² 378, 183	2119, 140	1, 977, 093	637, 120 (8)
Direct application to soil Stock and poultry feed	661,702 } 189,309	203, 886 56, 685	144, 076 21, 028		1 1 071		825, 547 } 211, 408	253, 161 61, 987
Fertilizer fillerOther	11,556				11		110, 556	28, 900
Total agricultural	7, 079, 577	2, 369, 521	473, 732	1 31, 4 68	525, 120	165, 502	8, 078, 429	2, 666, 491
Industrial: Elemental phosphorus, ferrophosphorus, phos- phoric acid Other 5	604, 911 1, 500	202, 156 450	1, 220, 473 5, 190	314, 730 1, 518	1, 092, 447	274, 492	2, 917, 831 6, 690	791, 378 1, 968
Total industrial	606, 411 1, 879, 157	202, 606 623, 930	1, 225, 663	316, 248	1, 092, 447 303, 927	274, 492 95, 765		793, 346 719, 695
Grand total	9, 565, 145	3, 196, 057	1, 699, 395	447, 716	1, 921, 494	535, 759	13, 186, 034	4, 179, 532
1956 Domestic: Agricultural:								
Ordinary superphosphate 2	5, 024, 144 1, 534, 209	1, 682, 680 502, 910 (3)	¹ 163, 577	¹ 41, 380	115, 021 273, 465		1, 971, 251	631, 334
Nitraphosphate Direct application to soil Stock and poultry feed	637, 400	197, 878		41, 108	6, 767 661	2, 166 211	775, 594	241, 152
Fertilizer filler Other 4	7,740	2,600	101, 319	20, 555	{		109,059	2 3, 155
Total agricultural	7, 432, 238	2, 459, 300	396, 323	103, 043	395, 914	126, 235	8, 224, 475	2, 688, 578
Industrial: Elemental phosphorus, ferrophosphorus, phos- phoric acid Other *	700, 871	229, 400	1, 261, 784 4, 781	329, 630 1, 270	1, 234, 048	307, 845	3, 196, 703 4, 781	866, 878 1, 270
Total industrial	700, 871 2, 394, 661	229, 400 784, 230	1, 266, 565	330, 900	1, 234, 048 290, 455	307, 845 91, 414	3, 201, 484 2, 685, 116	868, 145 875, 644
Grand total		3, 472, 930	1, 662, 888	433, 943	1, 920, 417	525, 494	14, 111, 075	4, 432, 367

Rock for ordinary superphosphate and triple superphosphate are combined.
 Rock for phosphoric acid (wet process) included with triple superphosphate.
 Included with "Other" agricultural.
 Includes phosphate rock used in calcium metaphosphate, fused tricalcium phosphate, nitraphosphate, and other applications.
 Includes phosphate rock used in pig-iron blast furnaces, parting compounds, research, defluorinated phosphate rock, refractories, and other applications.
 As reported to the Bureau of Mines by domestic producers.

STOCKS

Producers' stocks on hand at the end of 1956 were 58 percent more than in 1955; they do not include quantities of matrix reported by Florida and Tennessee producers, except as noted.

PRICES

The prices of Florida land-pebble phosphate rock as quoted by the Oil, Paint and Drug Reporter continued to increase and were 2 to 5 percent higher at the end of the year than at the close of 1955. Prices for Tennessee and Western States phosphate rock were not quoted in the trade journals.

TABLE 12.—Prices per long ton of Florida land pebble unground, washed, and dried phosphate rock, in bulk, carlots, at mine, in 1956, by grades

[Oil, Paint and Drug Reporter of	dates	listed]
----------------------------------	-------	---------

Grades (percent B. P. L.) 1		Mar. 19	Dec. 24
68/66	\$4. 75	\$4. 81-4. 82	\$4. 94-4. 9
	5. 15–5. 16	5. 21-5. 22	5. 34-5. 3
	5. 81	5. 87	5. 9
	6. 81	6. 87	6. 9
	7. 81	7. 87	7. 9

¹ B. P. L. signifies bone phosphate of lime, Ca₃(PO₄₎₂.

FOREIGN TRADE 11

Imports.—Crude-phosphate-rock imports into the United States continued their downward trend and were 6 percent below 1955 imports. Curaçao (Netherland Antilles) supplied over 99 percent of the imports into the continental United States. French Pacific Islands continued to furnish phosphate rock to Hawaii. Imports of normal, concentrated, and ammoniated superphosphates, mainly from Canada, decreased 43 percent from 1955. A small quantity was imported from Brazil. Imports of fertilizer-grade ammonium phosphate originating mostly in Canada, decreased 19 percent. Other phosphatic fertilizer materials were imported from Belgium, Luxembourg, Peru, and Japan.

Exports.—Total exports of phosphate rock in 1956 were 27 percent more than in 1955. Florida land-pebble exports increased 34 percent

TABLE 13.—Phosphate rock and phosphatic fertilizers imported for consumption in the United States, 1955-56

[Bureau of the Census]

Fertilizer	19	955	1956		
	Long tons	Value	Long tons	Value	
Phosphates, crude, not elsewhere specified	117, 256	\$2, 702, 955	109, 891	\$2, 626, 226	
Normal (standard), not over 25 percent P ₂ O ₅ content. Concentrated (treble), over 25 percent P ₂ O ₅ content. Ammoniated.	456 812 416	1 24, 786 52, 027 29, 162	272 39 642	1 17, 457 3, 218 41, 394	
Total superphosphates Ammonium phosphates, used as fertilizer. Bone dust, or animal carbon and bone ash, fit only for	1, 684 209, 396	1 105, 975 1 15, 948, 650	953 170, 155	62, 069 13, 034, 579	
fertilizer	16, 477 7, 625 2, 281	928, 885 673, 554 11, 676	11, 536 11, 157 5, 049	1 656, 576 949, 180 16, 109	
Dicalcium phosphate (precipitated bone phosphate) all grades.	1, 172	68, 166	3, 556	222, 492	

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with earlier years.

II Figures on imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

and went mainly to Japan (46 percent), United Kingdom (11 percent), Canada (9 percent), Netherlands (7 percent), Spain (6 percent), and Italy (5 percent). Shipments of "Other phosphate rock," mainly to Canada, decreased 11 percent in 1956 compared with 1955. Superphosphates exported mostly to Canada, Republic of Korea, Brazil, and Cuba, increased 31 percent compared with 1955.

TABLE 14.—Phosphate rock exported from the United States, 1955-56, by grades and countries of destination

[Bureau of the Census]

Grade and country		955	1956		
	Long tons	Value	Long tons	Value	
`lorida:					
High-grade hard rock:]	j .			
North America:					
Canada	53	\$982	45	\$75	
El Salvador	45	672		Ψ.υ	
Mexico			1, 205	12, 24	
Total	98	1, 654	1, 250	13, 00	
South America:					
Brazil	0 545	20.000	0.007	40.45	
Chile	2, 545	36, 966	3, 237 1, 969	49, 15 30, 86	
			1,000	00, 00	
Total.	2, 545	36, 966	5, 206	80, 01	
Total high-grade hard rock	2, 643	38, 620	6, 456	93, 01	
Land pebble:					
North America:	S. 17		1		
Canada	167, 102	1, 324, 049	234, 479	2, 452, 20	
Costa Rica	45	965			
Cuba	18, 962	141, 709	18, 431	123, 21	
Mexico Nicaragua	40, 956 22	278, 048 842	58, 632	404, 70	
1110010800		842			
Total	227, 087	1, 745, 613	311, 542	2, 980, 12	
South America:					
Brazil	29, 253	297, 020	61, 598	740, 72	
Chile	20,200	201,020	4,908	76, 95	
Colombia	500	7, 520	1,003	15, 29	
Uruguay	16, 547	177, 410	19, 595	214, 22	
Venezuela	312	6, 538	91	1, 60	
Total	46, 612	488, 488	87, 195	1, 048, 80	
Europe:					
Austria	9, 294	70, 078	3, 578	27, 55	
Denmark	19, 984	175, 850	24, 834	218, 15	
Germany:	,	1.0,000	21,001	210, 10	
East			36, 474	222, 36	
West	1 90, 193	1 685, 578	96, 921	750, 67	
Italy	1 123, 144	1 1, 149, 574	118, 724	1, 171, 14	
NetherlandsPoland and Danzig	175,004	1, 531, 184	189, 777	1, 697, 76	
Spain	16, 552 65, 963	171, 536	145 040	1 000 40	
Sweden	34, 789	580, 505 317, 877	145, 846 38, 335	1, 283, 42 383, 37	
Trieste	3, 303	25, 433	90, 999	000, 01	
United Kingdom	151, 034	1, 191, 288	269, 342	2, 339, 77	
Total	1 689, 260	1 5, 898, 903	923, 831	8, 094, 22	
Asia:			=====		
Japan	914, 322	7, 036, 407	1, 168, 131	Q 600 0F	
Korea, Republic of	5, 996	59, 950	1, 103, 131	8, 688, 85 12, 32	
Philippines	451	6,025	2,000	12,02	
Taiwan	14, 043	123, 579	50, 056	458, 79	
Total	934, 812	7, 225, 961	1, 219, 787	9, 159, 96	
Africa: Union of South Africa	17, 481	174, 800	19, 980	199, 78	
Total land pebble	1 1, 915, 252	115, 533, 765	2, 562, 335	21, 482, 90	

TABLE 14.—Phosphate rock exported from the United States, 1955-56, by grades and countries of destination—Continued

	19	955	1956		
Grade and country	Long tons	Value	Long tons	Value	
Other phosphate rock: 3 North America:					
Canada Cuba El Salvador Mexico	346, 800 134 312 45	\$4, 685, 895 1, 650 4, 032 974	304, 201 89 223	\$4, 002, 839 1, 27 3, 633	
Total	347, 291	4, 692, 551	304, 513	4, 007, 74	
South America: Brazil Colombia	492 1,033	8, 844 21, 313	7, 162	119, 33	
TotalAsia: JapanAfrica: Liberia	1, 525 937	30, 157 5, 800	7, 162	119, 33	
Total other phosphate rock	349, 753	4, 728, 508	311, 693	4, 128, 12	
Grand total	1 2, 267, 648	120, 300, 893	2, 880, 484	25, 704, 04	

TABLE 15.—Superphosphates (acid phosphates) exported from the United States, 1955-56, by countries of destination

[Bureau of the Census]

		19	955	1956		
Destination		Long tons	Value	Long tons	Value	
North America:						
Canada		1 226, 228	1\$5, 203, 132	190, 903	\$5, 452, 288	
Costa Rica		2, 916	161, 569	2, 328	129, 303	
Cuba		1 25, 874	1,755, 566	63, 670	1, 424, 932	
Dominican Republic		3, 428	209, 532	3, 339	193, 108	
El Salvador		395	29, 565	585	36, 013	
Guatemala		135	10, 409	263	16, 197	
Mexico		5, 057	309, 670	8, 277	524, 456	
Nicaragua		54	3,700	421	31, 142	
Panama		54	4,074			
Trinidad and Tobago				120	7, 526	
Other		53	3, 279	30	1, 108	
Total		1 264, 194	1 6, 690, 496	269, 936	7, 816, 073	
~	ŀ					
South America:	1	4 =0 000			0 222 401	
Brazil		1 72, 630	1 2, 668, 134	94, 457	3, 771, 401	
Chile		29	2, 789	2, 968	170, 600	
Colombia		15, 112	892, 586	9, 325	558, 043	
Ecuador		208	13, 351	318	20, 135	
Peru		3, 136	103, 678	979	41, 059	
Uruguay		1,604	94, 622			
Venezuela		3, 300	126, 528	8, 539	387, 052	
Total		1 96, 019	1 3, 901, 688	116, 586	4, 948, 290	
Asia:	ľ					
	l	125	7, 665	596	40, 205	
Indonesia		13, 433	826, 644	102, 657	3, 972, 874	
Philippines		278	18, 576	1, 071	50, 434	
Saudi Arabia		45	2, 610	1,071	18, 360	
Vietnam, Laos, and Cambodia		20	2,010	708	44, 554	
Other		27	1, 793			
Total	ľ	13, 908	857, 288	105, 182	4, 126, 427	
Africa: Union of South Africa		2, 493	133, 750	2, 321	39, 780	
	=					
Grand total		1 376, 614	111, 583, 222	494, 025	16, 930, 570	

¹ Revised figure.

Revised figure.
 Includes colloidal matrix, sintered matrix, soft phosphate rock, and Tennessee, Idaho, and Montana

TABLE 16.—"Other phosphate material" exported from the United States, 1947-51 (average) and 1952-56

[Bureau	of	the	Census]
---------	----	-----	---------

Year	Long tons	Value	Year	Long tons	Value
1947–51 (average)	1, 804	\$250, 802	1954	5, 243	\$456, 330
1952	1, 144	187, 605	1955	4, 923	556, 779
1953	8, 477	178, 168	1956	10, 587	954, 110

¹ Class includes animal carbon, apatite, basic slag, bone-ash dust, bone meal, char dust, defluorinated phosphate rock, duplex basic phosphate, permanente thermosphos (granulas), and tricalcium phosphate (fused).

TECHNOLOGY

A brief historical sketch described early developments of phosphate operations in Florida, the introduction of flotation, and present-day activities.12 The origin of the Florida phosphate-rock industry was the discovery of river pebble in the Peace River in 1881 and hard rock in 1889.

Further geological data on the western phosphate-rock deposits were published.13

Despite improved phosphate-rock mining, beneficiation, and processing methods, many problems confronted the industry to conserve and extend reserves.14

The mineralogic properties of apatite were published. 15

The phosphate planer developed by the Federal Bureau of Mines was tested in an underground phosphate-rock mine in cooperation with the Montana Phosphate Products Co. during 1954 and 1955. Results of the test operations were encouraging, and design and construction of an improved model were planned. 18

An improved car-loading device speeded up the driving of headings in western phosphate-rock mines by enabling loading of trains without special switching equipment.17

A review of 5 years' experience with 2-way radio communication in

phosphate mining and processing operations was published.¹⁸

Improved techniques of grinding phosphate rock and the maintenance of grinding equipment in the Florida phosphate-rock field resulted in increased grinding capacity.¹⁹

Results of experimental flotation of leached zone phosphate rock indicated that this material was unamenable to anionic flotation.

Proctor, Samuel, Florida's Phosphate Industry Origins and Developments: Canadian Min. Jour., vol. 77, No. 1, January 1956, p. 53.
 Swanson, R. W., Carswell, L. D., Sheldon, R. P., and Cheney, T. M., Stratigraphic Sections of the Phosphoria Formation, 1953: Geol. Survey Circ. 375, 1956, 30 pp.
 Waggaman, W. H., and Ruhlman, E. R., Conservation Problems of the Phosphate-Rock Industry: Ind. Eng. Chem., vol. 48, No. 3, March 1956, pp. 360-369.
 Mine and Quarry Engineering, Apatite: Vol. 22, No. 3, March 1956, pp. 102-103.
 Engineering and Mining Journal, Phosphate Planer Tested in Montana: Vol. 157, No. 7, July 1956, p. 106.

p. 106.

Howard, T. E., Design and Development of A Pneumatic Vibrating-Blade Planer for Mining Phosphate
Rock; A Progress Report: Bureau of Mines Rept. of Investigations 5219, 1956, 30 pp.

Howard, T. E., and Burnet, F. E., An Experiment in Continuous Mining of Phosphate Rock: Min.
Cong. Jour., vol. 42, No. 10, October 1956, pp. 31-33, 40.

Wright, J. S., and Pierce, R. V., For Faster Tunnel Driving—Meet the Whup d'Whup: Eng. Min.
Jour., vol. 157, No. 6, June 1956, pp. 88-39.

18 Ivy, J. G., Planning A Radio System for Profits: Min. Cong. Jour., vol. 42, No. 1, January 1956, pp.

<sup>45-48.

19</sup> Hughes, C. V. O., Virginia-Carolina Steps Up Phosphate-Mill Capacity: Rock Products, vol. 59, No. 8, August 1956, pp. 188, 190, 193, 196.

Cationic flotation was technically successful, but costs were excessive.20

A newly developed flotation method produced, on a laboratory scale, high-grade glass sand from tailings of Florida phosphate beneficiation.21

Technical processes for producing elemental phosphorus were part of a recent brief historical sketch of English elemental phosphorus production.22

The role of the Tennessee Valley Authority in the technologic development of phosphates and other fertilizer and chemical materials was the subject of an article.23

Production of triple superphosphates in the western United States and the manufacturing practices of Western Phosphates, Inc., were reviewed in an article.24

Data on the vapor pressure of phosphoric acid at high temperatures

and pressure were published.25

Soil condition and its influence on the availability of P2O5 to crops was discussed.26

WORLD REVIEW

NORTH AMERICA

Canada.—A new elemental phosphorus plant at Hamilton, Ontario, was planned by the Electric Reduction Sales Co., Ltd., subsidiary of Albright & Wilson, Ltd., of the United Kingdom.²⁷ It was reported that this plant would produce phosphoric acid from elemental phosphorus and by the wet process.

Mexico.—Discovery of phosphate-rock deposits containing 16 to 20 percent P2Os in the Concepcion del Oro and Mazapil areas was reported by the Mexican Mining Development Commission.28 Development was planned for some time after 1957 pending solution of

ore-dressing problems.

Large low-grade (4 percent P₂O₅) phosphatic sand deposits on the western coast of Baja California were reported amenable to standard beneficiation processes.29

EUROPE

Germany, East.—No phosphate-rock production was reported in East Germany. The phosphate fertilizer production (P2O5) totaled 109,500 long tons in 1956, compared with 82,900 tons in 1955, and was more than 3 times production in 1950.30

Sun, S. C., Snow, R. E., and Purcell, V. I., Flotation Characteristics of a Florida Leached Zone Phosphate Ore With Fatty Acids: Min. Eng., vol. 9, No. 1, January 1957, pp. 70-75.
 Carpenter, J. E., Glass Sand as a Byproduct From the Concentration of Florida Phosphate Rock: Bull. Am. Ceram. Soc., vol. 35, No. 4, Apr. 15, 1956, pp. 155-156.
 Shepherd, F. D., The Manufacture of Phosphorus: Chem. and Ind. (London), No. 45, Nov. 17, 1956, pp. 150-1200.

²² Shepherd, F. D., The Manufacture of Phosphorus: Chem. and Ind. (London), No. 45, Nov. 17, 1909, pp. 1324-1330.

32 Grindrod, John, TVA Fertilisers—Present Position of Production and Consumption: Fertiliser and Feeding Stuffs Jour. (London), vol. 44, No. 8, Apr. 11, 1956, pp. 337-340.

24 McNally, R. J., Acid and High-Analysis Fertilizer Production From Western Phosphate Rock: Min. Eng., vol. 8, No. 10, October 1956, pp. 1017-1020.

25 Handlos, A. E., and Nixon, A. C., Vapor Pressure of Phosphoric Acid at High Temperature and Pressure: Ind. Eng. Chem., vol. 48, No. 10, October 1956, pp. 1060-1062.

26 Barbier, G., and Chabannes, J., Equilibrium of Retention of Phosphates in the Soil: Agr. Chem., vol. 11, No. 9, September 1956, pp. 134-45.

27 Chemical Age (London), vol. 74, No. 1911, Feb. 25, 1956, p. 486.

28 Zubryn, Emil, Mexico's Growing Industry: Farm Chemicals, vol. 119, No. 5, May 1956, pp. 42-44.

28 Fertiliser and Feeding Stuffs Journal (London), Phosphate Beneficiation: Vol. 45, No. 5, Aug. 29, 1956, p. 215.

p. 215.

Department Dispatch 911: Apr. 9, 1957, Appendix 1, p. 2.

U. S. Mission, Berlin, Germany, State Department Dispatch 911: Apr. 9, 1957, Appendix 1, p. 2.

Germany, West.—Knapsack-Griesheim A. G., subsidiary of Farbwerke Hoechst, expanded capacity of its elemental phosphorus plant in Knapsack to 34,300 tons a year by constructing a new electric furnace rated at more than 25,000 tons of elemental phosphorus per year.³¹

TABLE 17.—World production of phosphate rock by countries, 1947-51 (average) and 1952-56, in thousand long tons 2

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

	<u>, </u>					
Country ¹	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada United States United States	(³) 9, 853	12,065	12, 504	13, 821	12, 265	15, 747
West Indies:	41	1	1	1	(1)	(3)
Jamaica (guano) Netherlands Antilles (exports)	87	105	95	124	(8) 109	(³) 104
Total	9, 941	12, 171	12, 600	13, 946	12, 374	15, 851
South America:				• • • •		. 100
Brazil	9	18	8 12	64	§ 123	§ 12
A notite	32	45	- 58	8 54	▶ 54	8 5¢
ApatiteGuano	32	3 0	\$ 30	₹ 30	▶ 30	§ 30
Peru (guano)	₹ 295	₹ 295	§ 295	289	285	32
Total *	368	388	395	437	492	534
Europe: Austria	5					1
Belgium	69	58	35 86	26 117	19 80	6
France	89	100	80	- 117	∾	Ų
Ireland	22	(6)	22	22	23	1
SpainSweden (apatite)	4	21	9	22		
U. S. S. R.:						
U. D. D. R.,	1,750	2,460	2,760	3, 100	3, 445	3, 69
Apatite Sedimentary rock	800	1, 130	1, 205	1, 330	1,425	1, 57
Dodiniontary room						
Total 5	2,800	3, 820	4, 120	4,600	5,000	5, 36
Asia:					(2)	(8) 24 34
British Borneo (guano)	(3)	98	1 148	197	(3)	(9)
Christmas Island (Indian Ocean) (exports)	28 222	349	280	351	390	34
Christmas Island (Indian Ocean) (exports)	1	(8)	4	2	6	•
India (apatite) Indonesia	1 12	(9)	l i	6	86	8
Israel		17	23	54	84	- 11
Japan	2					
Iordan	. 1 1 1 3	23	39	74	161	20
Philippines (guano)	. 10	4	1	2	(3)	
Total •	270	490	510	710	910	95
Africa:		691	609	761	746	59
Angola (guano)	, ⁵¹			(3 5)	(3)	(3 8)
British Somaliland (guano) (exports)	(3)	514	(3)	526	636	60
Egypt		3, 891	4,090	4,940	5, 245	5, 43
French MoroccoFrench West Africa (aluminum phosphate)	3,033	8 64	8 93	8 77	8 111	8
Mederaces	·	1	2	i	2	
Madagascar Rhodesia and Nyasaland, Federation of:		1	_	-	1 -	
Southern Rhodesia	(8)		.l. 			
Seychelles Islands (exports)		11	. 9	12	4	Ι.
South-West Africa (guano)	1	2	2	_ 1	2	
Tanganyika Territory	_ (3)	(3)	(3)	(8)	(3)	(3.5)
Tunisia	1,627	2, 229	1,691	1,795	2, 067	2,0
Ugondo	1 2	5	5	3	124	•1
Union of South Africa.	_ 53	95	79	93	134	
Total	6, 422	7, 504	7, 057	8, 209	8, 950	\$ 8, 9
		2 	-1		-1	1

See footnotes at end of table.

Chemical Week, vol. 80, No. 1, Jan. 5, 1957, p. 24.
 U. S. Embassy, Bonn, Germany, State Department Dispatch 2009: May 10, 1957, p. 1.

TABLE 17.—World production of phosphate rock by countries, 1947-51 (average) and 1952-56, in thousand long tons 2-Continued

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
Oceania: Angaur Island (exports) Australia Makatea Island (French Oceania) (exports) Nauru Island (exports) New Zealand.	(3)	83 6 210 1, 146	\$ 111 3 247 1, 160	122 6 225 1,178	137 6 216 1,401	250 1, 333
Ocean Island (exports) Total World total (estimate) 1	219 1, 270 21, 071	246 1, 691 26, 000	282 5 1, 803 26, 500	1,823 29,700	2, 069 29, 800	297 1,886 33,500

¹ In addition to countries listed, North Korea and Poland produce phosphate rock; but data of output are not available; an estimate by the author of the chapter for North Korea has been included in the total.

² This table incorporates a number of revisions of data published in previous Phosphate Rock chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail. 3 Less than 500 tons.

4 Average for 1 year only as 1951 was first year of production.

Data not available; estimate by author of chapter included in total.

Poland.—Development of newly discovered phosphate-rock deposits near Lublin would make Poland independent of imported material by 1960.32

Production of phosphate fertilizers in 1956 (P₂O₅ content) was 121,000 long tons, a 6-percent decrease from 129,000 long tons in 1955. Consumption of phosphate fertilizers (P₂O₅ content) in 1955-56 was 147,600 long tons, 3 percent more than the 142,800 long tons reported in 1954-55.33

U. S. S. R.—The principal phosphate raw material of the Russian superphosphate industry was apatite concentrate from the Kola Peninsula.34 Phosphate rock from the Kara-Tau area was not satisfactory for superphosphate manufacture because of its high magnesium and carbonate content. Continuous and semicontinuous acidulation were used, in addition to the batch process. Fluorine was recovered at some plants and marketed as sodium silicofluoride. Granulation and ammoniation were used to a limited extent.

The P₂O₅ content of prepared fertilizers produced and of material produced for direct application in 1955, as shown in table 18, increased

31 and 43 percent, respectively, compared with 1953.
United Kingdom.—The growth of the elemental phosphorus industry from 1851 to 1956 reflected development of new uses for phosphate chemicals in the United Kingdom. 35 Albright & Wilson, Ltd., continued to be the major producer, with plants at Widnes, Lancashire. and Portishead, Somerset.

⁷ Exports.
⁸ Includes calcium phosphate, production of which is reported in thousand long tons as follows: 1952, 21; 1953, 41; 1954, 5; 1955, 8; 1956, 5.

³² Fertiliser and Feeding Stuffs Journal (London), Poland's Fertiliser Industry: Vol. 44, No. 7, Mar. 28,

^{1956,} p. 309.

3 Chief, Statistical Administration, Statistical Bulletin: No. 1, Warsaw, Poland, January 1957, pp. 9, 17.

3 Fertilisers and Feeding Stuffs Journal (London), Superphosphate Manufacture in the Soviet Union:

Vol. 44, No. 5, Feb. 29, 1956, pp. 203-205.

3 Chemical Age (London), vol. 74, No. 1915, Mar. 24, 1956, pp. 692-693.

TABLE 18.—Fertilizer production and P2O5 content in the U.S. S. R., 1953-55, in thousand short tons 1

Year	Total fertilize r, gross weight	P ₂ O ₅ content of prepared fertilizer	P ₂ O ₅ content of direct application material
1953	7, 678. 5	601. 5	135. 1
	8, 882. 0	690. 4	160. 5
	10, 623. 2	790. 0	193. 5

¹ Central Statistical Administration of the Council of Ministers of the U. S. S. R., The Industry of the U. S. S. R.—Statistical Almanae: Moscow, 1957, pp. 192, 427.

ASIA

China.—Phosphate-rock deposits averaging 30 percent P₂O₅ were reported in southwest China, and investigations were continuing.36

Iraq.—Discovery of an extensive phosphate-rock deposit between

Rutbah and Ramadi was reported.37

Israel.—Production of phosphate rock from the Negev Desert continued to expand. In addition to supplying Fertilisers & Chemicals, Ltd., in Haifa, the Negev Phosphate Co., Ltd., exported phosphate

rock to Japan.38

Jordan.—The Jordan Phosphate Co., Ltd., continued to expand production. Reserves at the Roseifa mine were estimated at 3 to 5 million tons. Investigation of the Al Hasa deposits continued, but no plans for development were announced. New 30-ton railroad cars were obtained from Belgium to haul the phosphate rock from the mine Diesel trucks with 25-ton-capacity trailers hauled to Ros-al-Naqb. the rock 50 miles to the port of Aqaba.

Jordan phosphate rock was quoted at \$9 per ton for unscreened

material and \$11 per ton for 20- to 40-mesh material.

AFRICA

French Equatorial Africa.—The Société des Phosphates du Congo was investigating the production of elemental phosphorus in connection with a proposed power project on the Kovilou River to utilize the phosphate-rock deposits of the Holle region of French Equatorial Africa.39

French Morocco.—The Office Cherifien des Phosphates reported that recovery of uranium from phosphate rock was being considered in connection with a 50,000-ton-per-year triple superphosphate plant

under construction at Safi.40

French West Africa.—The Société Pechiney expanded mining at its aluminum phosphate deposit near Pallo. The thin overburden was stripped by bulldozers, usually in the rainy season when mining was stopped.41 After drilling and blasting, the ore was loaded with a diesel-powered shovel. After a preliminary screening at the mine to remove the oversize and fines, the ore was hauled about 6 miles to the processing plant at Lam-Lam. About 75 percent of the alu-

<sup>Mining World, vol. 18, No. 12, November 1956, p. 84.
Mining World, Iraq Desert Yields Phosphate Deposits: Vol. 18, No. 2, February 1956, p. 75.
Fertiliser and Feeding Stuffs Journal (London), Israel Phosphates: Vol. 45, No. 12, Dec. 12, 1956, p. 535.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, pp. 34-35.
Mining World, vol. 18, No. 9, August 1956, p. 86; No. 13, December 1956, p. 74.
U. S. Consulate, Dakar, French West Africa, State Department Dispatch 166: Feb. 15, 1956, 4 pp.</sup>

minum phosphate was crushed and shipped crude. The remainder

was calcined in an oil-fired rotary kiln at about 1,000° C.

Following either crushing or calcining, the product was hauled by train some 50 miles to Dakar, where the company had its own storage and loading facilities.

TABLE 19.—Exports of phosphate rock from Egypt, 1951-55, by countries of destination, in long tons 1

[Compiled	h	Clarent	Dawwol

Country	1951	1952	1953	1954 2	1955
Belgium-Luxembourg			1, 500	(3)	(8)
CeylonCzechoslovakia	33, 939	33, 909	31, 749 12, 500	43, 625 (3)	38, 299 62, 164
Finland	36, 985	23, 325	10, 137	(3)	
Germany, WestGreece	8, 986 9, 183	37, 156 11 732		3, 942	(3) (3) (3)
India	12, 199	28, 498	5, 100	(8) (3)	18, 199
Italy Japan	57, 523 179, 759	38, 976 173, 593	39, 894 202, 585	14, 192 207, 338	32, 912 231, 534
Netherlands			49, 030	16, 584	
New Zealand Sweden	337			(3)	(3)
Union of South Africa	16, 352	60, 265	16, 648	(3)	(3)
YugoslaviaOther countries	9, 845 4, 153	8, 675	3, 986	103, 160	31, 197
Total	369, 261	416, 129	373, 129	388, 841	414, 305

Compiled from Custems Returns.
 Exports by country not available; detail shown by country of importation.
 Data not available.

Rhodesia and Nyasaland, Federation of.—The Anglo-American Rhodesian Mineral Exploration, Ltd., acquired the rights to the phosphate-rock deposits in the Lake Chiliva region of Southern Nyasaland. 42 Exploration and market studies were under way at the end of the year.

African Explosives and Chemical Industries (Rhodesia), Ltd., acquired the apatite deposits near Dorowa, Sabi Valley, Southern

Rhodesia.43

Tunisia.—Production of marketable phosphate rock exceeded 2 million long tons in 1956. This figure was not comparable with 1955 statistics, which reported total mine production.44 The Gafsa continued to be the leading producing mine, followed by the M'Dilla, Kalaa-Djerda, and Ain-Kerma mines. Approximately 89 percent of the output was 65 percent B. P. L., the highest grade produced.

Uganda.—The Sukulu apatite deposits near Tororo, referred to in the 1954 Phosphate Rock chapter, were estimated to contain reserves of 202 million tons averaging 13.1 percent P2O5.45 However, approximately 40 percent of the material was minus-350-mesh, making the ore difficult to beneficiate. As a result of several years' exploration by the Tororo Exploration Co., jointly owned by Frobisher, Ltd., Uganda Development Corp., Ltd., Rio Tinto Co., and Monsanto Chemical Co., the Sukulu Mines, Ltd., was organized by Uganda Development

⁴ South African Mining and Engineering Journal, Examining Phosphate Deposits: Vol. 67, part 1, No.

⁻could arican Mining and Engineering Journal, Examining Phosphate Deposits: Vol. 67, part 1, No. 3305, June 15, 1956, p. 931.

Mining Journal (London), vol. 247, No. 6327, Nov. 30, 1956, p. 630.

U. S. Embassy, Tunis, Tunisia, State Department Dispatch 231: Feb. 6, 1957, 5 pp. 4 Davies, K. A., The Geology of Part of South-East Uganda: Uganda Geol. Survey, Entebbe, Mem. 1956, pp. 63-67.

TABLE 20.—Exports of phosphate rock from North Africa, 1954-56, by countries of destination, in long tons 1

[Compiled by Corra A. Barry]

Country	1954	1955	1956
North America:			
Canada	9,805	6, 457	4, 921
French West Indies	0,000	738	4, 921
South America:		100	
Argentina		3, 475	000
Brazil		61, 881	888
Chile	19, 322	22, 250	68, 098
Uruguay		16, 840	7,642
Europe:	12,111	10,010	17, 616
Austria	49	25, 901	0 154
Belgium		342, 598	6, 154 416, 132
Czechoslovakia	106, 164	67, 614	21, 993
Denmark	227, 357	205, 483	
Finland	81, 752	40, 963	228, 591
France		1, 435, 376	99, 636
Germany.	1, 360, 235 527, 285	632, 858	1, 460, 763
Greece	125, 504	141, 500	631, 174
Hungary	14, 832		139, 581
Ireland		5, 904	14,019
Italy	1, 094, 467	111,836	118, 180
Netherlands	392, 013	1, 211, 007	1, 195, 711
Norway	76, 484	363, 007	351, 642
Poland	001 000	62, 573	53, 606
Portugal		280, 503	305, 135
Rumania		223, 693	257, 052
Spain			
Sweden		694, 225	727, 270
Switzerland		252, 528	289, 550
United Kingdom	26, 961	21, 719	24, 318
Yugoslavia		859, 601	792, 961
Asia:	36, 463	65, 950	34, 182
Ceylon		1 000	
India		1,000	
Indonesia	12, 797 4, 459	9, 590	8, 308
Japan		13, 730	17, 416
Malaya	706	138, 849	97,767
Philippines	700	3	
Taiwan	0.000	115	
Thailand	9, 963	38, 997	25
Turkey	20 500	2, 116	
Vietnam, Laos, and Cambodia		48, 301	26, 687
Africa:	7,874	25, 836	10, 150
Canary Telande	6 000		
Canary Islands French Equatorial and French West Africa Madagage	6, 338		3, 223
Madagascar	463		
Madagascar South Africa (including Rhodesia)		408	
Spanish Morocco.		341, 698	343, 854
Oceania:	1,759	3, 130	
Australia			
Now Zooland		11, 108	
New Zealand Local shipments ²		5, 950	
Docar surpments	371, 805	(3)	357, 245
Total	7, 748, 570	7, 797, 311	8, 131, 490
Algeria		711, 709	621, 560
French Morocco	4 935 824	5, 165, 172	5, 481, 576
Tunisia	2,071,425	1, 920, 430	2, 028, 354
	1 , , 1	,,	-, o-o, oo i

Compiled from Customs Returns of Algeria, Morocco, and Tunisia.
 Trade between Algeria, Morocco, and Tunisia.
 Data not available.

Corp., Ltd., Frobisher, Ltd., and Olin Mathieson Chemical Corp. 46 Plans called for the expenditure of about \$3 million for mining and milling facilities and production of 100,000 tons of apatite in 1958.

Union of South Africa.—A company, FOSKOR, was formed in 1952 to develop the apatite deposits at Phalaborwa to supply the Union with most of its phosphate needs. It proved uneconomic, but the deposit was being examined as a source of copper.47

⁴⁶ Mining World, vol. 18, No. 8, July 1956, p. 73. 47 Davies, K. A., Letter to Bureau of Mines: British Commonwealth Geological Liaison Office, London, Mar. 12, 1957.

Platinum-Group Metals

By J. P. Ryan ¹ and Kathleen M. McBreen ²

ORLD production and United States imports and consumption of platinum-group metals reached new highs in 1956. Net imports of platinum-group metals rose 1 percent, and consumption also was 1 percent higher than in 1955. The increased domestic consumption reflected higher demand for palladium for electrical contacts, particularly in the expansion of dial-telephone systems, which more than offset lower requirements of platinum for catalytic use in petroleum refining and the lower demand for jewelry and decorative purposes.

Imports included platinum and palladium acquired for the Government stockpile through exchange of agricultural products to friendly countries by the Commodity Credit Corporation of the United States

Department of Agriculture.

Platinum-group metals (new and secondary) recovered by domestic refineries were 35 percent higher in 1956 than in 1955. Domestic mine production was only about 2 percent of the world output of platinum-group metals.

Prices of platinum-group metals, which historically have been subject to wide fluctuations, remained remarkably stable during 1956.

Domestic refinery production of platinum (new and secondary) increased 31 percent, but imports of refined platinum decreased 4 percent compared with 1955. Consumption of platinum in the United States as measured by sales was 8 percent below the alltime record set in 1955. The chemical industry including petroleum refining furnished 72 percent of platinum sales; the quantity was about 11 percent less than in 1955. Sales of platinum for jewelry and decorative uses were 26 percent lower, but sales to the electrical industry were 10 percent higher than in the preceding year.

Palladium (new and secondary) produced by domestic refineries was 31 percent higher than in 1955, and imports of refined palladium were 9 percent greater. Consumption of palladium in the United States as measured by sales rose 14 percent to an alltime high; stocks of refiners and dealers declined 1 percent. The electrical industry continued to provide the principal market, supplying 76 percent of

the total sales compared with 71 percent in 1955.

Refinery production of iridium, osmium, rhodium, and ruthenium (new and secondary) in the United States in 1956 was 19, 3, 73, and 21 percent greater, respectively, than in 1955. Imports of refined iridium and rhodium rose 757 and 14 percent, respectively; imports of osmium and ruthenium declined 34 and 25 percent, respectively.

¹ Commodity specialist. ² Statistical assistant.

TABLE 1.—Salient statistics of platinum-group metals in the United States, 1947-51 (average) and 1952-56, in troy ounces

	1947-51 (average)	1952	1953	1954	1955	1956
Production:						
Crude platinum from placers and by- product platinum-group metals 1	27, 454	34, 409	26, 072	24, 235	23, 170	21, 398
Refinery production:						
New metal:				1		1
Platinum		41,810	46, 963	47, 421	52, 011	50, 516
Palladium	6, 582	6, 746	6, 347	4,605	6, 123	4, 389
Other	4, 626	3, 919	6, 957	4,740	3, 347	3, 745
Total	55, 713	52, 475	60, 267	56, 766	61, 481	58, 650
Secondary metal:						
Platinum	42, 163	28, 628	29, 547	01 000	00.004	
Palladium	28, 457	25, 540	30, 494	31, 330	32, 901	60, 916
Other	4, 561	4, 433		31, 190	26, 124	37, 774
	4, 001	4, 400	4, 816	3, 179	5, 311	7, 579
Total	75, 181	58, 601	64, 857	65, 699	64, 336	106, 269
Consumption:						
Platinum	214, 448	228, 698	070 700	900 01 =	405 005	l
Platinum Palladium	159, 023		276, 580	320, 215	467, 065	430, 644
Other	26, 810	204, 578 20, 945	231, 525	234, 537	351, 663	399, 991
	20, 810	20, 840	25, 193	27, 194	32, 083	28, 277
Total	400, 281	454, 221	533, 298	581, 946	850, 811	858, 912
Stocks in hands of refiners, importers, and dealers, Dec. 31:						
Platinum	136, 477	130, 136	138, 846	135, 631	146, 215	146, 520
Palladium	135, 587	116, 786	110, 211	86, 770	111, 559	110, 044
Other	35, 455	35, 451	31, 991	34, 194	36, 097	34, 644
Total	307, 519	282, 373	281, 048	256, 595	293, 871	291, 208
Imports for consumption:						
Unrefined materials				100		
Refined metals	46, 154	35, 353	48, 525	52, 528	50, 953	43, 191
remied metals	319, 616	417, 465	585, 563	553, 916	958, 987	989, 771
Total	365, 770	452, 818	634, 088	606, 444	1, 009, 940	1, 032, 962
Exports:						
Ore and concentrates Refined metals and alloys, including	205		30	29		
scrap	40, 268	23, 723	25, 728	28, 423	2 28, 968	² 42, 072
Manufactures (except jewelry)	12, 378	(8)	(3)	(3)	(3)	(3)

Owing to changes in classifications, data not strictly comparable to years before 1955.
 Beginning January 1, 1952, quantity not recorded.

Following several years of extensive exploration, development of large platinum-bearing nickel deposits in northern Manitoba, Canada, was begun by The International Nickel Co. of Canada, Ltd., near the end of 1956. Completion of mine and plant facilities scheduled for 1960 will add substantially to the company's productive capacity for platinum-group metals.

Production facilities of Rustenburg Platinum Mines, Ltd., in the Union of South Africa were increased about 50 percent in 1956 and further expansion of facilities was begun to bring the milling rate to about 2.5 million tons of ore a year by the end of 1957, an increase of 80 percent over the 1955 rate.

In December trading in platinum futures began on the American Mercantile exchange in units of 50 ounces for delivery up to 18 months from the date of sale.

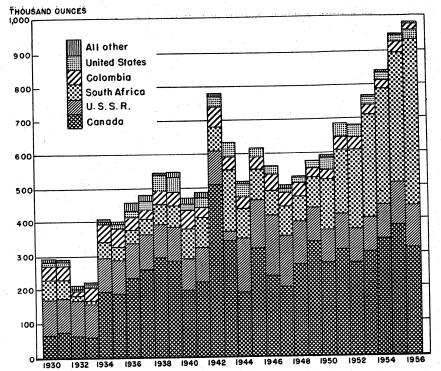


FIGURE 1.—World production of platinum-group metals, 1930-56.

GOVERNMENT REGULATIONS

The regulations established on March 23, 1953, by the Defense Materials System of the United States Department of Commerce included platinum-group metals and remained in effect throughout 1956. Orders for military or atomic energy uses had priority ratings and took precedence over unrated orders.

All platinum-group metals and their manufactures required a validated license for export to Soviet Bloc countries—Communist China, Hong Kong, Macao, and Communist-controlled areas of Viet Nam

Platinum-group metals were eligible for 75-percent financial assistance under the Defense Minerals Exploration Administration program; no projects were active in 1956.

DOMESTIC PRODUCTION CRUDE-PLATINUM PRODUCTION

Domestic mines and refineries reported recovery of 21,400 troy ounces of crude platinum, compared with 23,200 ounces in 1955. This metal comprised crude platinum mined at placer-platinum deposits in the Goodnews Bay district in southwestern Alaska, byproduct crude platinum recovered from gold placers in California, and platinum-group

metals present in small quantities in some gold and copper ores and

recovered as a byproduct in smelting and refining operations.

Purchases.—Buyers in the United States purchased 51,500 ounces of crude platinum from Alaska, California, Colombia, and the Union of South Africa, compared with 60,900 ounces in 1955.

REFINED PLATINUM-GROUP METALS

New Metals Recovered.—Domestic refiners reported a recovery of 58,650 ounces of new platinum-group metals, compared with 61,500 ounces in 1955, a drop of 5 percent. Of the total new metals refined in 1956, 90 percent was recovered from crude platinum, both domestic and foreign, and 10 percent as a byproduct of gold and copper ores; the corresponding figures for 1955 were 87 and 13 percent, respectively.

Secondary Metals Recovered.—Domestic refiners recovered 106,300 ounces of platinum-group metals mostly from scrap, sweeps, and outmoded jewelry, compared with 64,300 ounces in the preceding year. In addition over 400,000 ounces of platinum-group metals in various

TABLE 2.—New platinum-group metals recovered by refiners in the United States, 1947-51 (average), 1952-54, and 1955-56, by sources, in troy ounces

	Plati- num	Palla- dium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
1947-51 (average) 1952 1953 1954	44, 505 41, 810 46, 963 47, 421	6, 582 6, 746 6, 347 4, 605	2, 302 2, 426 3, 857 2, 273	952 879 1, 192 1, 214	848 397 891 655	524 217 1,017 598	55, 713 52, 475 60, 267 56, 766
1955							
From domestic— Crude platinum Gold and copper refining	13, 149 1, 810	57 5, 879	1, 618	230	312	11	15, 3 77 7, 689
TotalFrom foreign—	14, 959	5, 936	1, 618	230	312	11	23, 066
Crude platinum	37, 052	187	438	459	12	267	38, 415
Total	52, 011	6, 123	2, 056	689	324	278	61, 481
1956							
From domestic— Crude platinum Gold and copper refining	13, 942 1, 466	92 4, 163	1, 780	282	19	32	16, 147 5, 629
TotalFrom foreign—	15, 408	4, 255	1, 780	282	19	32	21, 776
Crude platinum	35, 108	134	696	218	344	374	36, 874
Total	50, 516	4, 389	2, 476	500	363	406	58, 650

TABLE 3.—Secondary platinum-group metals recovered in the United States, 1947-51 (average) and 1952-56, in troy ounces

	Platinum	Palladium	Iridium	Others	Total
1947-51 (average)	42, 163	28, 457	1, 496	3, 065	75, 181
	28, 628	25, 540	1, 030	3, 403	58, 601
	29, 547	30, 494	853	3, 963	64, 857
	31, 330	31, 190	734	2, 445	65, 699
	32, 901	26, 124	1, 499	3, 812	64, 336
	60, 916	37, 774	1, 751	5, 828	106, 269

forms of equipment were turned in for refining on toll; the metals thus recovered were returned to consumers for reuse. These metals are not included in the total for secondary metals.

CONSUMPTION AND USES

Platinum-group metals in recent years have been used chiefly in the chemical and electrical industries and for 5 years (1952-56) average United States consumption was over three-quarters of the world production of these metals. Substantial quantities also were used for jewelry and various decorative purposes and in dentistry. Platinum was the most widely used; palladium was next in quantity used; the other four—iridium, osmium, rhodium, and ruthenium—were employed mostly for alloying with platinum and palladium.

The principal market for platinum continued to be the petroleum-refining industry, where re-forming processes using platinum catalysts to upgrade low-octane petroleum napthas to high-quality products have become of major importance since 1952. Other catalytic uses for platinum-group metals included the production of nitric acid, hydrogenation and dehydrogenation, synthesis of hydrocarbons and

hydroxylation.

Platinum-group metals had many electrical applications. Palladium was used chiefly in the contacts of telephone relays and other electrical regulating equipment. Platinum, both pure and hardened with iridium or ruthenium was used for contacts in voltage regulators, thermostats, relays and contacts in high-tension magnetos, and spark plugs. Platinum and platinum alloys were used in electrical and laboratory instruments and in electronic tubes. Platinum thermocouples were used extensively for measuring high temperature.

Platinum-gold and platinum-rhodium alloys were used extensively in spinnerets or nozzles for making rayon fiber from viscose and for extruding fiber glass. Platinum and platinum-iridium alloys were used as anodes in electroplating processes; platinum utensils continued to be used in chemical laboratories. In the glass industry, platinum and platinum-rhodium alloys were used for melting crucibles

and other glass-handling equipment.

Platinum hardened with iridium or ruthenium was widely accepted in jewelry and the decorative arts. Palladium alloyed with ruthenium gained wider use in jewelry. Both platinum and palladium in the

form of leaf were used for signs and decorations.

Alloys of platinum and palladium were employed extensively in dentistry for dentures, pins, and anchorages. Rhodium electroplate was used for jewelry, reflectors, and corrosion-resistant and wear-resistant surfaces in industrial applications. Ruthenium and osmium were used principally in hard alloys for tips of fountain pens and phonograph needles.

Sales of platinum-group metals to consuming industries totaled

858,900 troy ounces, compared with 850,800 in 1955.

Sales of platinum to domestic consumers were 430,600 ounces and represented 50 percent of the total sales of platinum-group metals; the corresponding figures for 1955 were 467,100 ounces and 55 percent. The chemical industry, including petroleum refining, was the leading consumer, furnishing 71 percent of total platinum sales; the electrical

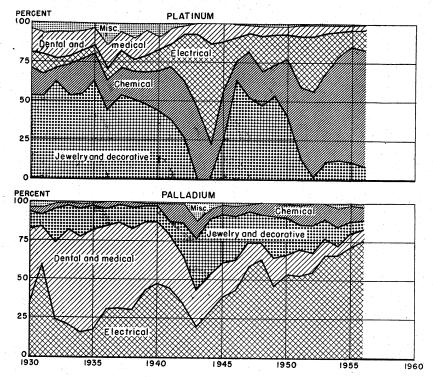


FIGURE 2.—Sales of platinum and palladium to various consuming industries in the United States, 1930-56, as percent of total.

industry was second with 13 percent of sales; jewelry and decorative purposes followed with 9 percent; dental and medical uses, 3; and

miscellaneous uses, 4 percent.

Sales of palladium to domestic consumers in 1956 were 400,000 ounces or 47 percent of the total sales of platinum-group metals; corresponding figures in 1955 were 351,700 ounces and 41 percent. Industrial sales distribution was: Chemical, 8 percent; electrical, 76; dental and medical, 8; jewelry and decorative, 6; and miscellaneous, 2 percent. The increased demand for palladium resulted chiefly from continued expansion of dial-telephone systems, which utilized the metal in electrical contacts for control equipment.

Sales of iridium, osmium, rhodium, and ruthenium totaled 28,300 ounces—3 percent of the total sales of platiunum-group metals. This represents a drop of 12 percent from the 32,100 ounces sold in 1955. Sales of each of these metals were: Iridium, 4,365 ounces; osmium, 882 ounces; rhodium, 17,564 ounces; and ruthenium, 5,466 ounces.

TABLE 4.—Platinum-group metals sold to consuming industries in the United States, 1955-56, in troy ounces

Industry	Platinum	Palladium	Iridium, osmium, rhodium, and ruthe- nium	Total
Chemical 1955 Chemical Dental and medical Dental and decorative Miscellaneous and undistributed	348, 088 48, 683 12, 304 52, 693 5, 297	36, 246 250, 714 28, 809 28, 673 7, 221	16, 312 4, 407 402 7, 571 3, 391	400, 646 303, 804 41, 515 88, 937 15, 909
Total	467, 065	351, 663	32, 083	850, 811
Chemical 1956 Chemical Electrical 1960 Dental and medical 1960 Jewelry and decorative 1960 Miscellaneous and undistributed 1960 Total 1956	320, 476 53, 872 12, 436 38, 745 5, 115 430, 644	31, 449 304, 990 30, 344 25, 447 7, 761 399, 991	14, 882 3, 704 610 6, 402 2, 679 28, 277	366, 807 362, 566 43, 390 70, 594 15, 555 858, 912

STOCKS

Platinum-group metals held by refiners, dealers, and importers at the end of 1956 were 291,200 ounces, a 1-percent decrease from the preceding year. Data on quantities of platinum-group metals in Government stockpiles are not available for publication.

TABLE 5.—Stocks of platinum-group metals held by refiners, importers, and dealers in the United States, December 31, 1952-56, in troy ounces

Year	Platinum	Palladium	Iridium, osmium, rhodium, and ruthe- nium	Total
1952	130, 136 138, 846 135, 631 146, 215 146, 520	116, 786 110, 211 86, 770 111, 559 110, 044	35, 451 31, 991 34, 194 36, 097 34, 644	282, 373 281, 048 256, 595 293, 871 291, 208

PRICES

The platinum market during 1956 was characterized by continued high demand, generally ample supply, and relatively stable prices. The conspicuous competition for open-market supplies as in 1955 was generally lacking in 1956 principally because purchases for the Government stockpile stopped. Expanding South African production and prospects for increased future supply also helped to stabilize prices of platinum despite strong demand for catalytic use in oil refining. Similarly, adequate supplies were available, and the market price of palladium remained stable, notwithstanding heavy demand from the electrical industry and record sales. Palladium was also acquired in substantial quantity for the Government stockpile.

Domestic prices of the platinum-group metals in 1956 as published in the Engineering and Mining Journal were as follows per fine troy ounce: Platinum declined from \$97-\$117 at the beginning of the year to \$97-\$112 in the last week in January, then to \$97-\$111 in the early part of February and again to \$97-\$110 in the last week of March after which the price remained stable until the middle of May when it rose slightly to \$103-\$110, but declined again in August to \$103-\$108 and finally to \$103-\$107 in the latter part of September where it remained to the end of the year. Prices for palladium, iridium, osmium, rhodium, and ruthenium remained unchanged throughout the year at \$23-\$24, \$100-\$110, \$80-\$100, \$118-\$125, and \$45-\$55, respectively.

Estimated prices of domestic and foreign crude platinum sold to United States buyers ranged from \$80 to \$99 per ounce depending upon the quotations for refined metals and the content of platinum-group

metals other than platinum.

TECHNOLOGY

Modern processes of refining high-octane gasoline by catalytic re-forming methods have been growing rapidly since 1952. Estimated future growth in the use of platinum catalysts and their advantages in re-forming petroleum products were described in a publication of The International Nickel Company of Canada, Ltd.3

The operations of United States major platinum producer, Goodnews Bay Mining Company in western Alaska, are essentially bucketline dredging. Recovery methods and some of the unique problems

of exploration were described.4

Expanding industrial uses of platinum-group metals in recent years have brought about new developments in extracting these metals. An outline of the techniques of refining and methods of processing and fabricating platinum-group metals and a description of industrial applications were included in a comprehensive article prepared by the research staff of Mond Nickel.⁵

Platinum in association with gold in the placer deposits of the Chocó Department in Colombia was recognized as early as the middle 16th century, but it was not until 200 years later that a commercial process for working platinum was discovered. Early history of placer mining, particularly that of South American Gold & Platinum Co., was described.6

Patents were issued on methods of preparing and using platinum and palladium catalysts for reforming hydrocarbons 78 and for other catalyzed reactions.9

³ Inco Magazine, Platinum Catalysts—the Heart of Modern Oil Technology: Vol. 26, No. 9, October

^{1956,} pp. 1-6.

4 Grundstedt, Henry G., Goodnews Bay Continues to Rank As America's Leading Platinum Supplier:
Min. World, vol. 18, No. 12, Noveraber 1956, pp. 52-55.

5 South African Mining and Engineering Journal, The Platinum Metals: Vol. 67, Part 1, No. 3307, June

South African winning and Engineering Journal, The Flathium Metals. Vol. 01, 1 at 1, No. 6601, Sale 29, 1956, pp. 1035-1045.
 O'Neill, Patrick H., Platinum Mining in Colombia, South America: Min. Eng., vol. 8, No. 5, May 1956, pp. 496-500.
 Schwarzenbek, Eugene F. (assigned to M. W. Kellogg Co.), Platinum and Palladium Catalysts in Catalyzed Reactions: U. S. Patent 2,760,912; Official Gazette, U. S. Patent Office, vol. 709, No. 4, Aug. 28,

The physical properties, methods of separation, characteristics, and uses of iridium were described, and some of the problems in recovering the metal from other metals of the platinum group were discussed in a technical journal.¹⁰

FOREIGN TRADE 11

Imports.—Imports of platinum-group metals reached a new high in 1956 for the second consecutive year, with an increase of 2 percent over 1955. The principal sources were: Canada (287,500 ounces), Colombia (35,000 ounces), France (79,785 ounces), Netherlands (169,900 ounces), Soviet Union (42,400 ounces), Switzerland (170,257 ounces), and United Kingdom (229,100 ounces). The metals imported from continental countries were reported to be largely of Soviet origin.

Imports of refined metals aggregated 989,800 troy ounces compared with 959,000 ounces in 1955, and imports of unrefined metals totaled 43,200 ounces compared with 51,000 ounces in 1955. Imports of refined palladium, iridium, and rhodium in 1956 were up 9, 757, and 14 percent, respectively, but imports of refined platinum, osmium, and ruthenium were down 4, 34, and 25 percent, respectively, com-

pared with 1955.

TABLE 6.—Platinum-group metals imported for consumption in the United States, 1947-51 (average) and 1952-56

Year	Troy ounces	Value	Year	Troy ounces	Value
1947-51 (average) 1952 1953	365, 770 452, 818 634, 088	\$19, 629, 851 25, 533, 898 39, 447, 072	1954 1955 1956	1, 009, 940	1 \$35, 284, 842 1 48, 162, 664 1 57, 614, 866

[Bureau of the Census]

Exports.—Exports of refined platinum (including scrap) increased to 23,800 ounces valued at \$2,383,000 in 1956 from 17,100 ounces valued at \$1,306,000 in 1955. Exports of other platinum-group metals (including scrap) also rose in 1956 to 18,200 ounces valued at \$634,300 from 11,900 ounces valued at \$469,800 ounces in 1955. The United Kingdom was the leading buyer of platinum, taking 5,040 ounces, followed by the Netherlands with 4,850 ounces and West Germany with 2,980 ounces. The principal export market for the other platinum-group metals was Canada, which purchased 9,560 ounces, and the United Kingdom, which bought 5,050 ounces.

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

Sanderson, L., Iridium: Canadian Min. Jour., vol. 77, No. 3, March 1956, pp. 61-62.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 7.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1955-56 by countries, in troy ounces 1

		Unrefined material 2	aterial 2				Ä	Refined metal	a 1		
Country	Ores and concentrates of platinum metals	Platinum grain and nuggets (including crude, dust, and residues)	Platinum sponge and scrap	Osmi- ridium	Platinum	Palla- dium	Iridium	Osmium	Osmium Rhodium	Ruthe- nium	Total
North America: 1955 Canada Marida		ć	3, 839		107, 719	231, 324			14, 298	1,300	358, 480
Total		39	3,839		107, 719	231, 396			14, 298	1,300	358, 591
South America: Bradi Olombia. Peru	407	40,674	10 434 5								10 41, 515 5
Total	404	40,674	449								41, 530
Europe: France. Germany, West. Netherlands. Norway. Switzerland U. S. S. R. United Kingdom.			2,009		22, 629 48, 887 2, 316 78, 956 12, 992 176, 610	58, 173 9, 693 42, 338 3, 859 3, 558 3, 558 9, 322	271	528	3, 486	1, 661	82, 811 11, 013 91, 226 6, 174 117, 513 16, 802 281, 877
Total			3, 329		342, 388	255, 753	27.1	528	3,485	1,661	607, 415
Asia: India Japan Lebanon			504		150						1 504 150
Total			205		150						655

Africa: Union of South Africa. Oceania: Australia			240	1,471	13	25					1,484
Grand total	404	40,713	8, 362	1, 471	450, 270	487, 174	271	628	17, 783	2, 961	1,009,940
North America: Canada. Mexico.		8	1, 970		126, 457	141, 645	200		15, 644	1, 620	287, 544 153
Total		8	1,970		126, 506	141, 746	203		15,644	1,620	287, 697
South America: Argentina Bradila Colombia. Surinam		32, 947	1, 936 3		20	83	12		15	1	28 95 34, 953 3
Total		32, 947	2,001		70	33	12		15	1	35,079
Europe: France. Germany, West. Aermany, West. Norway. Switzerland U. S. S. R. United Kingdom.		950	2, 606	126	4, 033 1, 524 87, 610 30, 767 141, 660	75, 752 6, 375 128, 431 5, 393 82, 647 11, 614 78, 689	2, 108	247	4,664	669	79, 786 8, 981 169, 930 7, 867 170, 267 42, 381 229, 149
Total		1,061	2, 606	971	307, 093	388, 901	2, 108	347	4,664	289	708, 350
Asia: Japan Lebanon			1, 374		203					1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 374
Total Oœania: Australia			1,374		203	9					1, 577
Grand total		34, 016	8, 204	971	433, 872	530, 686	2, 323	347	20, 323	2, 220	1, 032, 962

1 On the basis of detailed information received by the Bureau of Mines from importers, certain items recorded by the Bureau of the Census as "sponge and scrap" have been reclassified and included with "Platinum refined meets" in this table.

Figure of the Census are the forms of metal content. It is believed, however, that in many instances gross weights are actually reported.

TABLE 8.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1955-56 1

Material	19	55	19	56
	Troy ounces	Value	Troy ounces	Value
Unrefined materials * Ores and concentrates of platinum metals Platinum grains and nuggets (including	407	\$29,000		
crude, dust, and residues Platinum sponge and scrap Osmiridium	40, 713 8, 362 1, 471	2, 786, 644 ⁸ 653, 386 115, 391	34, 016 8, 204 971	\$2, 854, 382 764, 443 55, 614
Total	50, 953	3 3, 584, 421	43, 191	3, 674, 439
Refined metals; Platinum Palladium Iridium Osmium Rhodium Ruthenium	450, 270 487, 174 271 528 17, 783 2, 961	⁸ 34, 419, 178 8, 185, 243 24, 138 38, 096 1, 787, 418 124, 170	433, 872 530, 686 2, 323 347 20, 323 2, 220	40, 628, 393 3 10, 957, 570 203, 126 25, 228 2, 039, 310 86, 800
Total	958, 987	⁸ 44, 578, 243	989, 771	³ 53, 940, 427
Grand total	1,009,940	³ 48, 162, 664	1, 032, 962	³ 57, 614, 866

On the basis of detailed information received by the Bureau of Mines from importers, certain items recorded by the Bureau of the Census as "sponge and scrap" have been reclassified and included with "platinum refined metal" in this table.
Bureau of the Census categories are in terms of metal content. It is believed, however, that in many instances, gross weight are actually reported.
3 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TABLE 9.—Platinum-group metals exported from the United States, 1947-51 (average) and 1952-56 1

[Bureau of the Census]

Year		nd con- rates	ingots, sl sponge, forms,	im (bars, neets, wire, and other including rap)	dium, i osmiridi enium, ar (metals a	um, rho- ridium, um, ruth- id osmium and alloys ng scrap)	manu	ım-group factures, t jewelry
	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value
1947–51 (average) 1952. 1953. 1954. 1955. 1956.	205 30 29	\$24, 314 580 2, 367	14, 580 6, 026 2, 522 16, 980 3 17, 073 3 23, 823	\$1,077,157 567,623 237,853 1,218,250 31,306,011 22,383,443	25, 488 17, 697 23, 206 11, 443 3 11, 895 3 18, 249	\$731, 129 512, 608 591, 439 287, 400 3 469, 774 3 634, 293	12, 378 (2) (2) (2) (2) (2) (2) (2)	\$492, 337 1, 186, 775 1, 555, 046 1, 730, 626 34 1, 208, 784 3 2, 489, 260

Quantities are gross weight.
 Beginning January 1, 1952, quantity not recorded.
 Owing to changes in classifications, data not strictly comparable with years before 1955.
 Revised figure.

TABLE 10.—Platinum-group metals exported from the United States, 1955-56, by countries of destination ¹

L.	Bureau of the	census			
Destination	Platinum (sheets, w and othe cluding s	bars, ingots, ire, sponge, or forms, in- crap)	iridium, rutheniu mium (n	, rhodium, osmiridium, m, and os- netal and al- nding scrap)	Platinum group man- ufactures, except jewelry ²
	Troy ounces	Value	Troy ounces	Value	Value
1955					
North America:	4.5	1.5		1	
Canada	2,003	\$177, 175	4, 592	\$108,952	\$1,044,477
Cuba Dominican Republic	70	3, 709	234	7,034	3, 061 6, 025
Mexico Netherlands Antilles	517	40,608	950	21,907	6,789
Netherlands Antilles					35, 170
Total	2, 590	221, 492	5, 776	137, 893	1, 095, 522
South America:					
Brazil	110	6,099	192	3, 765	804
Colombia	632	29, 335	200	3, 500	21, 468
VenezuelaOther South America	63 15	2, 577 1, 488	203 80	6, 220 1, 480	3,018 4,278
Total	820	39, 499	675	14, 965	29, 568
Europe:				1 000	
France Germany, West	101 1, 394	11, 511 140, 651	41 1,758	1, 693 68, 000	(3)
Italy	1,001				43, 351
Netherlands	598	58, 331	2 000	777	
Haly Netherlands United Kingdom Other Europe	11, 177	804, 415 553	2,998	232, 025	7,910
Total	13, 274	1, 015, 461	4,799	302, 495	4 51, 261
Asia:			100		
Japan Other Asia	389	29, 559	641	13, 920 501	19, 261 10, 070
Total	389	29, 559	645	14, 421	29, 331 3, 102
Grand total	17,073	1, 306, 011	11, 895	469, 774	41, 208, 784
1956					
North America: Canada	1 000	170 000	0.504	104 966	1 504 504
Cuba	1,920 60	172, 822 6, 538	9, 564 100	184, 366 2, 400 22, 906	1,584,504 17,457
Mexico	1,272	6, 538 45, 960	986	22, 906	17, 457 17, 350 5, 385
Other North America	16	1,670			5, 385
Total	3, 268	226, 990	10, 650	209, 672	1, 624, 696
South America:					
Brazil	547	57,036	38	800	3,057
Chile	1 42	5, 585	48	1,170	11,816
Colombia	964 128	96, 366 14, 054	600	13, 500	
Colombia Uruguay. Venezuela Other South America.	59	2, 585	373	8,652	2, 564
Other South America			16	525	13, 640
Total	1,746	175, 626	1,075	24, 647	31,077
T					
Europe: France	2 144	249 036	10	1, 621	44 401
France Germany, West Netherlands	2, 144 2, 972	282, 023	867	24, 168	44, 491 28, 800
Netherlands	4,846	249, 036 282, 023 561, 793 87, 948			
Switzerland United Kingdom	816 5,036	87, 948 482, 657	5,050	346, 806	25, 160 353, 058
Other Europe			12	1,710	305, 427
Total	15, 814	1, 663, 457	5, 939	374, 305	756, 936
+ VVAI	10, 514	1,000, 207	0, 809	017,000	100, 300

See footnotes at end of table,

TABLE 10.—Platinum-group metals exported from the United States, 1955-56, by countries of destination 1-Continued

				and the second of the second	
Destination	sheets, w	bars, ingots, ire, sponge, r forms, in- crap)	iridium, ruthenium mium (m	rhodium, osmiridium, m, and os- etal and al- iding scrap)	Platinum- group man- ufactures, except jewelry 2
	Troy ounces	Value	Troy ounces	Value	Value
Asia: 1956 Asia: India Japan Other Asia.	150 2,769 76	\$15, 300 293, 093 8, 977	585	\$25, 669	\$660 40, 521 24, 335
TotalAfrica	2, 995	317, 370	585	25, 669	65, 516 11, 035
Grand total	23, 823	2, 383, 443	18, 249	634, 293	2, 489, 260

1 Quantities are in gross weight.
2 Beginning January 1, 1952, quantity not recorded.

Revised to none. 4 Revised figure.

WORLD REVIEW

Canada.—Canada's output of platinum-group metals was 19 percent lower than in 1955 and comprised 32 percent of the world output of platinum-group metals compared with about 40 percent in 1955. Virtually all of the platinum-group metals produced in Canada were obtained as byproducts of treating nickel-copper ores

of the Sudbury district, Ontario.

The International Nickel Co. of Canada, Ltd., Canada's principal producer, delivered 371,155 ounces of platinum-group metals in 1956 about 17 percent less than the record high established in 1955. In 1956 the company announced plans for large-scale development of the platinum-bearing nickel deposits in Manitoba, designed to bring them into production by 1960.

Continued favorable results were reported by Eastern Mining & Smelting Corp., Ltd., from exploring its platinum-bearing nickel-

copper deposits in the Kenora district of Ontario.

Development of its platinum-bearing nickel-copper property at Rankin Inlet on Hudson Bay was reactivated by North Rankin Nickel Mines, Ltd., and construction of a concentrator was begun.

Exploration of the nickel-copper deposits containing appreciable quantities of platinum-group metals in the Kluane Lake district, Yukon Territory, was suspended in October 1956 by Hudson-Yukon Mining Co., Ltd. Reserves were estimated to be 737,600 tons averaging 2.04 percent nickel, 1.42 percent copper, 0.038 ounce per

ton of platinum, and 0.027 ounce per ton of palladium.

Colombia.—Output of platinum-group metals in Colombia declined slightly for the fourth consecutive year and was the lowest since 1916, the year the major producer (The South American Gold & Platinum Co.) was organized. The platinum-group metals were recovered from placer deposits in the Choco district principally by bucketline dredging operations of the South American Gold & Plati-The concentrate shipped averaged about 85 percent platinum-group metals, principally platinum.

Union of South Africa.—Union of South Africa was the leading producer of platinum-group metals in the world for the third consecutive year. According to the Department of Mines, output in 1956 was 491,300 ounces—about 50 percent of the world production of platinum-group metals; the corresponding figures in 1955 were 389,000 ounces and 41 percent. Average analysis of the platinum-group metals exported from the Union in 1956 was reported as

TABLE 11.—World Production of platinum-group metals, 1947-51 (average) and 1952-56, in troy ounces 1

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada:						
Platinum: Placer platinum and from refining nickel-copper matte. Other platinum-group metals: From refining nickel-copper	129, 562	122, 317	137, 545	154, 3 56	170, 494	150, 000
matte United States: Placer platinum and from domestic gold and copper re-	150, 911	157, 407	166, 018	189, 350	214, 252	161, 600
fining	27, 454	34, 409	26, 072	24, 235	23, 170	21, 398
Total	307, 927	314, 133	329, 635	367, 941	407, 916	332, 998
South America: Colombia: Placer platinum	32, 141	² 33, 700	29, 201	28, 465	27, 526	26, 215
Europe: U. S. S. R: Placer platinum and from refining nickel-copper ores (esti-		a constant				
mate)	115, 000	100, 000	100, 000	100, 000	125, 000	125, 000
Asia: Japan: Palladium from refineries Platinum from refineries	129	85 484	71 987	248 1, 347	221 628	² 200 483
Total	129	569	1, 058	1, 595	849	683
Africa: Belgian Congo: Palladium from refineries. Ethiopia: Placer platinum Sierra Leone: Placer platinum Union of South Africa:	63 737 116	100	566	³ 176 230	2 350	² 300
Platinum-group metals from plat- inum ores Concentrates (platinum-group metal content from platinum	37, 985	72, 701	90, 292	101, 921	381, 732	484, 574
ores) Osmiridium from gold ores	76, 066 6, 395	159, 820 6, 141	208, 885 6, 966	236, 241 6, 266	7,095	6, 696
Total	121, 362	238, 762	306, 709	344, 834	389, 177	491, 570
Oceania: Australia: Placer platinum	5			23	7	
Placer osmiridium New Guinea New Zealand: Placer platinum Papua; Placer platinum	42	51 2 4 5	59 6 2	16 5 1 4	21 10 (5)	26 9
Total		62	67	49	38	47
World total (estimate)	575, 000	700, 000	775, 000	850, 000	950, 000	975, 000

¹ This table incorporates a number of revisions of data published in previous Platinum chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

Estimate.

<sup>Estimate.
Includes platinum.
Average for three years only as 1949 was the first year of commercial production.
Less than 0.5 ounce.
Year ended June 30 of year stated.</sup>

follows: 12 Platinum 69.5 percent, palladium 24.3, rhodium 2.3,

ruthenium 0.5, and gold 3.4 percent.

Platinum-group metals were recovered chiefly from platinum mines in the Transvaal by Rustenburg Platinum Mines, Ltd. A comparatively small part of the entire quantity of platinum-group metals was recovered as an osmiridium byproduct of gold mining on the Rand.

During the 10 years 1947-56, output of osmiridium has averaged about 6,500 ounces annually. The composition of the osmiridium is variable; the contained metals ranged within the following limits:

Metal:	Range (percent)
Osmium	44. 5-24. 0
Iridium	40, 5-21, 5
Ruthenium	17. 0- 9. 0
Platinum	19.0- 4.0
Rhodium	1. 0= 0. 5
Gold	 15. 0- 0. 0

A most significant feature of the platinum industry during 1956 was the announcement of continued expansion of productive capacity by Rustenburg Platinum Mines, which will result in an overall increase of 80 percent over the 1955 rate of production by the end of 1957. The additional ore will be drawn from the Rustenburg section of the mine, where a new reduction plant is being erected. This will balance operations between the eastern and western sections of the mine.

With completion of production facilities at Rustenburg in 1957, it is expected that annual milling capacity will be about 2.5 million tons making Rustenburg one of the largest mines in South Africa, in terms of tons milled. In terms of metal production, it is estimated that Rustenburg's capacity will be nearly 600,000 ounces of platinum-group

metals, of which about 400,000 ounces represents platinum.

The platinum deposits controlled by Rustenburg Platinum Mines, Ltd., and methods of recovering the platinum-group metals in the forms of concentrates and matte for subsequent treatment in England were described in the 1954 and 1955 Platinum-Group Metals chapters.

U. S. S. R.—Although precise information on production is lacking, the Soviet Union ranks third in the output of platinum-group metals; current annual output is estimated to be about 125,000 ounces.

The production of platinum-group metals from placer deposits in the Urals has declined steadily since World War I, but this decline has been offset since 1941 by increasing production of byproduct platinum-group metals, principally palladium, from the Noril'sk cop-

per-nickel mine in Siberia.

In 1956 substantial quantities of platinum and palladium of Soviet origin appeared on the world market, a large part of which was shipped to the United States. Because of the lack of reliable information on production, stocks, and reserves of platinum-group metals in the Soviet Union, it was difficult to determine how much of the Russian sales came from current mine output and how much came from accumulated stocks and whether the high level of sales will be maintained. Soviet resources of platinum-group metals are probably adequate to insure self-sufficiency for several years.

¹² Pretoria, Union of South Africa, Minerals, A Quarterly Report. January to March 1957, p. 19.

Potash

By E. Robert Ruhlman 1 and Gertrude E. Tucker 2

NITED STATES and world production of potash was about 4 percent greater in 1956 than in 1955. United States exports increased to nearly 400,000 tons; imports remained about the same as in 1955. The total supply of potash (K₂O equivalent), including stocks available in the United States in 1956 was 2.5 million short

TABLE 1.—Salient statistics of the potash industry in the United States, 1947-51 (average) and 1952-56

				1954	1955	1956
Production of potassium salts	Haranan .					
(marketable)short tons_ Approximate equivalent	2, 163, 679	2, 866, 462	3, 266, 429	3, 322, 395	1 3, 540, 141	3, 678, 834
K ₂ Oshort tons Sales of potassium salts by	1, 199, 240	1, 665, 113	1, 911, 891	1, 948, 721	1 2, 080, 311	2, 171, 584
producersshort tons Approximate equivalent	2, 167, 747	2, 757, 252	2, 965, 986	3, 270, 006	1 3, 429, 996	3, 571, 405
K2Qshort tons	1, 200, 366	1, 598, 354 \$59, 852, 000	1, 731, 607	1, 918, 157	1 2, 018, 807	2, 103, 347 \$79, 751, 000
Value at plant Average per ton	\$43, 065, 000 \$19. 87	\$21.71	\$65, 403, 000 \$22. 05	\$71, 819, 000 \$21. 96	\$77, 217, 000 \$22. 51	\$22.33
Imports of potash materials short tons	220, 701	357, 437	250, 557	225, 230	1 330, 563	333, 952
Approximate equivalent K ₂ Oshort tons	117, 304	188, 441	133, 587	119, 220	1 177, 639	181, 263
ValueExports of potash materials		\$12, 714, 434	\$9, 952, 663	\$8, 387, 265		\$12,017,632
short tons Approximate equivalent	124, 216	101, 200	88, 208	117, 386	229, 303	397, 555
K ₂ O 2short tons Valueshort tons	68, 219 \$7, 442, 744	56, 281 \$4, 836, 659	49, 109 \$3, 936, 415	66, 476 \$5, 463, 452	130, 226 \$9, 202, 965	226, 128 \$14, 936, 890
Apparent consumption of potassium salts 3 short tons	2, 264, 231	3, 013, 489	3, 128, 335	3, 377, 850	1 3, 531, 256	3, 507, 802
Approximate equivalent K ₂ Oshort tons	1, 249, 451	1, 730, 514	1, 816, 085	1, 970, 901	1 2, 066, 220	2, 058, 482

Revised figure.

Estimate by Bureau of Mines.
 Quantity sold by producers, plus imports, minus exports.

DOMESTIC PRODUCTION

Marketable potassium-salts production in the United States continued its upward trend and reached a new high in 1956 of more than 3.6 million short tons, a 4-percent increase above 1955 and more than double 1946 production.

Publication of the production detail on the various grades and types of potassium salts has been discontinued beginning with the 1956 chapter to avoid disclosing individual company figures. The 60-62 percent muriate continued to be the major potash material produced.

New Mexico, California, and Utah were the principal States producing domestic marketable potassium salts. New Mexico supplied 92 percent of domestic production; small quantities were produced in Maryland and Michigan.

¹ Commodity specialist. ² Statistical assistant.

TABLE 2.—Potassium salts produced, sold, and in producers' stocks in the United States, 1947-51 (average) and 1952-56

		Producti	on.			Sales		Producer Dec	
Year	Oper- ators	Potassium salts (short tons)	Equiva- lent potash (K ₂ O) (short tons)	Oper- ators	Potassium salts (short tons)		Value f. o. b. plant	Potas- sium salts (short tons)	Equivalent potash (K ₂ O) (short tons)
1947-51 (average) 1952 1953 1954 1955 1956	8 10 10 10 10 111 10	2, 163, 679 2, 866, 462 3, 266, 429 3, 322, 395 13, 540, 141 3, 678, 834	1, 199, 240 1, 665, 113 1, 911, 891 1, 948, 721 12, 080, 311 2, 171, 584	8 10 10 10 11 11	2, 167, 747 2, 757, 252 2, 965, 986 3, 270, 006 13, 429, 996 3, 571, 405	1, 200, 366 1, 598, 354 1, 731, 607 1, 918, 157 12, 018, 807 2, 103, 347	\$43, 065, 000 59, 852, 000 65, 403, 000 71, 819, 000 177, 217, 000 79, 751, 000	36, 334 170, 608 471, 939 526, 398 2 628, 938 3 736, 228	17, 579 98, 244 279, 169 312, 020 2371, 549 3439, 709

1 Revised figure.

Revised figure as reported by producers.
Figure reflects losses in handling.

The plant locations of potash-producing companies in the United States in 1956 follow:

California:

The American Potash & Chemical Corp., Trona, San Bernardino County.
A. M. Blumer, Davenport, Santa Cruz County.
Maryland: North American Cement Corp., Security, Washington County.
Michigan: The Dow Chemical Co., Midland, Midland County.

New Mexico (all mines and plants are in Eddy County near Carlsbad):
Duval Sulphur & Potash Co.

International Minerals & Chemical Corp.

Potash Company of America. The Southwest Potash Corp.

United States Potash Co., Inc., Division of United States Borax & Chemical

Mines production of potash ores in New Mexico (over 11.9 million short tons, a new high) was 9 percent more than in 1955. The calculated grade (K2O equivalent) of the crude salts mined decreased to 19.30 percent compared with 19.71 in 1955 and 19.91 in 1954.

TABLE 3.—Production and sales of potassium salts in New Mexico, 1947-51 (average) and 1952-56, in short tons

	Crude	salts 1		Market	able potassi	um salts	
Year	Mine pr	oduction	Prod	uction		Sales	
	Gross weight	K ₂ O equiv- alent	Gross weight	K:0 equiv- alent	Gross weight	K₂O equiv- alent	Value
1947-51 (average)	5, 406, 980 7, 852, 732 9, 100, 671 9, 975, 460 10, 956, 466 11, 941, 474	1, 120, 347 1, 644, 034 1, 908, 280 1, 985, 626 2, 159, 010 2, 304, 572	1, 848, 733 2, 530, 596 2, 937, 960 3, 007, 724 23, 221, 460 3, 383, 882	1, 013, 753 1, 468, 029 1, 721, 435 1, 763, 378 1, 898, 770 1, 996, 693	1, 851, 831 2, 439, 042 2, 661, 587 2, 954, 043 23, 122, 432 3, 278, 977	1, 014, 287 1, 411, 125 1, 552, 831 1, 732, 240 21, 841, 122 1, 930, 754	\$35, 851, 000 52, 483, 000 58, 076, 000 64, 367, 000 269, 641, 000 72, 802, 000

Sylvite and langbeinite.
Revised figure.

POTASH 941

All 5 companies producing in the Carlsbad region—Duval Sulphur & Potash Co., International Minerals & Chemical Corp., Potash Company of America, Southwest Potash Corp., and United States Potash Co. Division—mined sylvinite (potassium and sodium chlorides); and 1, International Minerals & Chemical Corp., also mined langbeinite (potassium-magnesium sulfate). All 5 companies processed sylvinite, to yield 60-percent or higher grade muriate. Potassium sulfate and potassium-magnesium sulfate were produced from langbeinite by the International Minerals & Chemical Corp. in its refinery near Carlsbad.

The United States Potash Co., Inc., and the Pacific Coast Borax Co. merged to form the United States Borax & Chemical Corp. on July 2, 1956. Potash operations were to be conducted by the United States Potash Co. Division of the new company. The USPC Division completed a \$3 million expansion program to increase the mine and refinery capacity 20 percent.3 Facilities were under construction for producing granular and high-grade chemical potassium chloride.

Expansion of the New Mexico potash industry in 1956 included installation of additional belt conveyors; purchase or construction of more continuous mining machines, jumbos, undercutters, and other mechanized equipment; increased hoisting and refinery capacity; and

construction of additional storage buildings.4

Shaft sinking at the National Potash Co. mine in Lea County, N. Mex., and the 21-mile water pipeline were completed in 1956. Refinery construction progressed on schedule, and potash production was scheduled for early 1957.5 The announced capacity of the plant was 400,000 tons of potassium chloride (KCl) per year.

The Farm Chemical Resources Development Corp. announced late in the year that exploration had been completed, and the contract for one 15-foot diameter shaft in Lea County, N. Mex., had been awarded.

Bonneville, Ltd., completed a new plant adjacent to the evaporation facilities at Wendover, Utah, to produce granular muriate of potash by the fusion method.6

Delhi-Taylor Oil Co. completed exploring northwest of Moab, Grand County, Utah, and reported substantial potash reserves. No

plans for development were announced by the end of 1956.

The American Potash & Chemical Corp. acquired complete ownership of Western Electrochemical Co. at Henderson, Nev., and changed the company name to American Potash & Chemical Corp. (Nevada).8

International Minerals & Chemical Corp. announced plans to move the main offices from Chicago to Skokie, Ill., the site of the research laboratories.9

³ Albright, H. M., A New Look at United States Borax & Chemical Corp.: Min. Cong. Jour., vol. 42, No. 9, September 1956, pp. 54-56.

4 Engineering and Mining Journal, vol. 158, No. 2, February 1957, pp. 120-121.

Miller, E. H., Carlsbad Potash Basin Activities: Min. Cong. Jour., vol. 42, No. 6, June 1956, pp. 56-57.

Mining Engineering, vol. 9, No. 2, February 1957, p. 178.

Western Mining & Industrial News, vol. 24, No. 1, January 1956, pp. 16-17.

4 Chemical Week, vol. 79, No. 16, Oct. 20, 1956, p. 92.

Mining Congress Journal, vol. 42, No. 11, November 1956, p. 138

6 Mining Congress Journal, vol. 42, No. 8, August 1956, p. 102.

7 Engineering and Mining Journal, vol. 157, No. 9, September 1956, pp. 175-176.

6 Chemical and Engineering News, vol. 34, No. 3, Jan. 16, 1956, p. 218.

9 Rock Products, vol. 59, No. 11, November 1956, p. 46.

CONSUMPTION AND USES

The domestic apparent consumption of K_2O in 1956 (producers' sales plus imports minus exports) was about the same as in 1955 and was 2 percent less than sales, as a result of the 73-percent increase in exports.

TABLE 4.—Apparent consumption 1 of potassium salts in the United States, 1947-51 (average) and 1952-56, in short tons

Year	Potassium salts	Approxi- mate equiv- alent K ₂ O	Year	Potassium salts	Approxi- mate equiv- alent K ₂ O
1947-51 (average)	2, 264, 231	1, 249, 451	1954	3, 377, 850	1, 970, 901
1952	3, 013, 489	1, 730, 514		2 3, 531, 256	2, 066, 229
1953	3, 128, 335	1, 816, 085		3, 507, 802	2, 058, 482

¹ Quantity sold by producers, plus imports, minus exports.

² Revised figure.

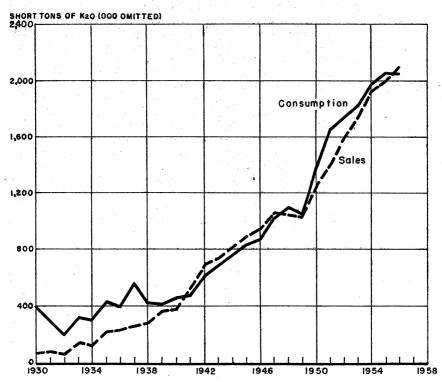


FIGURE 1.—Comparison of apparent domestic consumption of potash (K₂O) and sales of domestic producers of potash in the United States, 1930-56.

The American Potash Institute stated: 10

Deliveries of potash in North America by the seven leading American potash producers and the importers during 1956 amounted to 3,932,527 tons of salts containing an equivalent of 2,307,961 tons K_2O , according to the American Potash Institute. This was an increase of 103,370 tons K_2O or less than 5% over 1955.

Deliveries for agricultural purposes in the continental United States for 1956 were 1,872,704 tons K₂O, a decrease of 5,885 tons under 1955. Canada received 89,280 tons K₂O, Cuba 14,647 tons, Puerto Rico 20,192 tons, and Hawaii 23,358

of Columbia. Illinois with nearly 200,000 tons K₂O was the leading state followed in order by Ohio, Indiana, Georgia, Florida, and Virginia, each taking more than 100,000 tons K₂O during the year. Due to shipments across state lines, consumption does not necessarily correspond to deliveries within a state.

Agricultural potash accounted for nearly 95% of deliveries. Muriate of potash

continued to be by far the most popular material, comprising over 92% of the total K_2O delivered for agricultural purposes, and sulphate of potash and sulphate

of potash magnesia nearly 8%.

Deliveries for chemical purposes in 1956 were 189,047 tons of muriate of potash containing an equivalent of 118,915 tons K_2O and 11,874 tons of sulphate of potash containing 5,994 tons K_2O . The total chemical deliveries of 124,909 tons K_2O were over 5% of all potash deliveries, and 10,694 tons or 9% more than in

TABLE 5.—Deliveries of petash salts in 1956, by States of destination, in short tons of K2O

[American	Potash	Institute]
-----------	--------	------------

State	Agricultural potash	Chemical potash	State	Agricultural potash	Chemical potash
Alabama. Arizona Arkansas. California Colorado. Connecticut. Delaware. District of Columbia. Florida. Georgia. Idaho. Illinois. Indiana. Iowa. Kansas. Kentucky. Louisiana Maine. Maryland. Massachusetts. Michigan Minnesota. Missouri	18, 930 ; 758 3, 487 7, 364 478 109, 681 130, 228 151, 530 41, 766 3, 008 38, 759 24, 617 11, 533 71, 538 76, 796 48, 134 4300 444, 153	1, 662 1 5, 799 77 161 650 534 192 1, 588 1, 493 340 546 2, 771 100 1, 089 1, 75 1, 074	Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Carolina South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Washington West Virginia Wisconsin	32, 834, 129 94, 262 4, 106 163, 848, 2, 451 2, 308, 65, 412 52, 308, 65, 412 49, 342 1, 323, 105, 759 7, 660 1, 011 54, 403	1, 409 40 2, 385 23 77, 259 3, 578 517 190 1, 626 7, 573 81 680 9 6, 566 169
Montana Nebraska	92 1, 401	25 19	Total	1, 872, 704	122, 014

¹⁰ American Potash Institute, North American Deliveries of Potash Salts—Calendar Year and Fourth Quarter 1956: Press Notice E-137, Washington, D. C., Mar. 25, 1957, 9 pp.

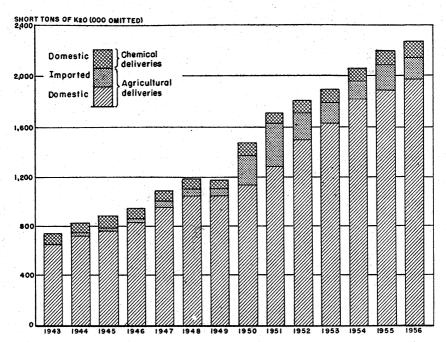


FIGURE 2.—Potash deliveries by use groups in North America, 1943–56 (American Potash Institute).

STOCKS

Stocks (K₂O equivalent) reported by producers at the end of 1956 were 18 percent more than in 1955. Year-end stocks in the potash industry are not entirely unsold output but include large inventories in anticipation of orders for the spring planting season that begins in February. Producers' stocks data are shown in table 2.

PRICES

The prices of domestic petash remained about the same during 1956-57 as in 1955-56. Quoted prices varied with date of order.

The American Potash & Chemical Corp. issued its price schedule for agricultural-grade Trona potash for the 1956–57 season on June 4, 1956. The price for muriate of potash, 60 percent K_2O minimum, f. o. b. Trona, Calif., in bulk, in carlots of not less than 40 tons, were as follows: 44.5 and 46.5 cents per unit of K_2O for contracts made prior to July 1, 1956, and for July 1, 1956, through May 31, 1957, respectively; and granular, 46 and 48 cents per unit for the same periods. The price for Trona sulfate of potash, f. o. b. Trona, Calif., in bulk, in carlots of not less than 40 tons, was quoted for the 2 periods as 75.5 and 78.5 cents per unit K_2O .

Prices, in addition to those in table 6, were quoted by the United States Potash Co., Division, f. o. b. Carlsbad, N. Mex., in bulk, minimum carlots of 40 tons, per unit of K_2O , as follows: Muriate of potash (62-63 percent K_2O) 40 cents; granular muriate of potash

(59-61 percent K₂O) 40 cents; manure salts, run-of-mine (20 percent K₂O minimum) 17.65 cents. Also granular muriate of potash (60 percent K₂O minimum) in 100 pound, 5-ply paper bags was listed at \$29 per short ton.

TABLE 6.—Prices of agricultural potash quoted by producers, f. o. b. Carlsbad, N. Mex., for 1956-57 season, in bulk, minimum carlots of 40 tons

Salt	Grade	Brand	Producer	Cents per	unit K ₂ O
				Period 1 1	Period 2
Muriate of potash. Do.2	62-63 percent K ₂ O	Sunshine State Red Muriate	U. S. P P. C. A	36 36	38 38
Do.4 Do.6	do do 60 percent K ₂ O minimum	International High-K Duval Muriate of Potash.	I. M. & C. C S. W. P. C D. S. & P. C	36	38 38 38
Do. ⁶ Do. ⁷	60 percent K ₂ O granular 59-61 percent K ₂ O granu- lar.	Red Muriate Sunshine State	P. C. A U. S. P	36 36	38 38
Do.8	60 percent K ₂ O minimum, granular.	International	I. M. & C. C	36	38
Do.9	do	Duval granular muriate.	D. S. & P. C.	36	38
Do	Run-of-mine 22 percent K ₂ O minimum.	High-K	S. W. P. C	17.65	17.65
Do	do	Duval Manure Salts.	D. S. & P. C	17.65	17.65
Do	Run-of-mine 22 percent K ₂ O minimum.	International	I. M. & C. C	17.65	17.65
Sulfate of potash Sulfate of potash- magnesia.	50 percent K ₂ O minimum 22 percent K ₂ O, 18 percent MgO.		do	64 10 \$13. 45	67 10 \$14.00

1 Prices under period 1 applied to contracts made before July 1, 1956; period 2, orders accepted between July 1, 1956 through May 1957.

2 Potash Company of America quoted muriate of potash, 60 percent K20 minimum, standard, in new multiwall paper bags, 100 lb. each, at \$26.25 and \$27.45 per ton for the 2 periods, respectively.

3 International Minerals & Chemical Corp. quoted muriate of potash, 60 percent K30 minimum, in 5-ply bags, 100 lb. each, at \$26.00 and \$27.20 per ton for the 2 periods, respectively.

4 Southwest Potash Corp. quoted muriate of potash, 60 percent K30 minimum, in new multiwall bags, 100 lb. each, at \$26.00 and \$27.35 per ton, respectively.

5 Duval Sulphur & Potash Co. quoted muriate of potash, 60 percent K30 minimum, in new multiwall bags, 100 lb. each, at \$26.00 and \$27.20 per ton, respectively.

6 Potash Company of America quoted muriate of potash, 60 percent K20 granular, in new multiwall bags, 100 lb. each, at \$26.05 and \$27.45 per ton for the 2 periods, respectively.

7 United States Potash Co. quoted muriate of potash, granular, 60 percent K20 minimum, in 5-ply bags, 100 lb. each, at \$26.05 and \$27.45, respectively.

8 International Minerals & Chemical Corp. quoted muriate of potash 60 percent K20, granular, in 5-ply bags, 100 lb. each, at \$26.25 and \$27.45, respectively.

9 Duval Sulphur & Potash Co. quoted muriate of potash, 60 percent K20 minimum, granular, in new multiwall paper bags, 100 lb. each, at \$26.00 and \$27.45, respectively.

9 Duval Sulphur & Potash Co. quoted muriate of potash, 60 percent K20 minimum, granular, in new multiwall paper bags, 100 lb. each, at \$26.00 and \$27.45, respectively.

FOREIGN TRADE 11

Imports.—Fertilizer and chemical-materials imports into the United States in 1956 remained about the same as in the previous year. West Germany, East Germany, France, Spain, and Chile continued to be the principal supplying countries. The average declared value per ton of imports of fertilizer-grade potash material at the port of origin was \$28.96, eight cents more than in 1955.

Exports.—Exports of potash materials in 1956 continued the upward trend and were 73 percent more than in 1955. ceived 49 percent of the exports, and countries in the Western Hemisphere, 41 percent.

¹¹ Figures on United States imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 7.—Potash materials imported for consumption in the United States, 1955-56

	Ap-		195	5			198	6	
Material	proxi- mate equiv- alent as potash	Short	Approxi equiva as pot (K ₁ C	lent ash	Value	Short	Approxi equiva as pot (K ₂ C	lent ash	Value
	(K ₂ O) (per- cent)	tons	Short tons	Percent of total		tons	Short tons	Percent of total	
Used chiefly in fertilizers:			140,400	1 00 0	\$6, 277, 161	250, 638	147, 876	81.6	\$6, 651, 7 6
Muriate (chloride) Potassium nitrate,	59.0	241, 401	142, 402	- 00. 2	1		. '	1	
crude	40.0	1, 118	447	2	118, 681	924	370	.2	99, 68
Potassium-sodium ni- trate mixtures, crude	14.0	19, 300	2, 702	1.5	794, 902	19, 451	2, 723	1.5	715, 20
Potassium sulfate,			. 1			i i	00 771	14.0	1 000 71
crude	50.0	1 55, 701	1 27, 851	1 15.7	1, 981, 483	53, 142	26, 571	14. 0	1, 920, 71
Other potash fertilizer materials	6.0					10	1	.0	25
Total fertilizer		1317, 580	¹ 173, 4 62	97.6	9, 172, 227	324, 165	177, 541	97. 9	9, 387, 61
Used chiefly in chemical in-	====								
dustries:		1.7							
Bicarbonate	46.0	16	7)	3, 949	30	14		7,54
Bitartrate:	20.0	7, 640	1, 528	1	967, 156	3,085	617		479, 77
Argols Cream of tartar					135, 289	819	205		364, 83
Caustic	80.0			1	77, 129		214		94, 74
Chlorate and perchlo-								l I	07 90
rate	36.0	342	123		80, 352	347	125		87, 39
Chromate and dichro-		١.	2	2,4	1, 186			2.1	1
mate	40.0				552, 778		648	H	558.99
Cyanide Ferricyanide	70.0			1	176, 941				225, 9
Ferricyanide	42.0				259, 437				221, 1
Ferrocyanide					140, 459			11	150, 30
Nitrate	29.0			H	894			ll i	240, 2
Permanganate Rochelle salts			(2)	11	486	10			4,8
All other			725)	200, 788	1, 389	695	Į)	194, 2
Total chemical		12, 983		2. 4	2, 596, 844	9, 787	3, 722	2. 1	2, 630, 01
			:	100 0	11, 769, 071	333, 952	181, 263	100.0	12, 017, 6
Grand total	-	220, 200	, 177,008	100.0	12, 100, 011	300, 302	1, 500	1	1. ' ' '

¹ Revised figure.
2 Less than 1 ton.

TABLE 8.—Potash materials imported for consumption in the United States, 1955-56, by countries, in short tons (Figures in parentheses in column headings indicate, in percent, approximate equivalent as potash (KrO))

Marin													
	Bitartrate	trate					Potas.	Potas-	Potas-	Potes		Z.	Total
Country	Argols or wine lees	Oream of tartar	Caustic (hydrox- ide)	Ohlorate and per- chlorate	Cyanide	Muriate (chlo- ride)	stum nitrate, crude	sodium nitrate, mixtures, crude	(salt- peter),	sulfate, orude	All other 1	Short	Value
	(20)	(22)	(80)	(36)	(20)	(69)	(40)	(14)	(48)	(20)			À
1956													
North America: Ganada South America: Chile				83	22			19, 252		1 1		24 19, 285	\$16,717
Europe: Beigium-Luxembourg Czechoslovakia.					48				88		145	208	94, 287
Denmark France Germany:	1,477			45	e 8	60, 155	1,008	13	11	13,007	62	75,838	2, 564, 536
East West	186 6	5	13		641	2 84, 227 2 76, 291	110	35	1,093	5, 648 2 37, 046	75 234	2 115, 363	2, 374, 463 23, 800, 247
Netherlands. Portugal	600	5			15.	725			55		1,871	2, 2, 2, 2, 4, 6, 6, 6, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	289, 453, 413
Spain Sweden		254	204	106		20,063						20,317	578, 915 90, 363
Switzerland				158	102						88	135	38,750 92,568
Total Asia: Japan	4, 658	345	217	309	171	241, 461	1,118	84	1, 222	\$ 55, 701	2, 420	* 308, 270 2	10, 555, 738
Africa: Algeria Afrench Morocco Tunista	2, 310 336 336											2, 310 336 336	311, 035 50, 463 34, 659
Total	2, 982											2,982	396, 157
Grand total	7,640	345	217	342	795	241, 461	1,118	19,300	1, 222	\$ 55, 701	2, 422	1330, 563	11, 769, 071
See footnotes at end of table.					Ī		Ī						

TABLE 8.-Potash materials imported for consumption in the United States, 1955-56, by countries, in short tons-Continued

(Figures in parentheses in column headings indicate, in percent, approximate equivalent as potash (KgO))

						•.							
	Bitartrate	trate					Potas-	Potas-	Potas-	Potas-		Total	al
Country	Argols or wine lees	Cream of tartar	Caustic (hydrox- ide)	Chlorate and per- chlorate	Cyanide	Muriate (chlo- ride)	stum nitrate, crude	sodium nitrate, mixtures, crude	nitrate (salt- peter), refined	slum sulfate, crude	All other 1	Short	Value
	88	(22)	(88)	(36)	(20)	(29)	(40)	(14)	(46)	(20)		-	
1956								-					2
North America: Canada					94	42					es	139	\$44,648
South America: Argentina Chile	378			88				19, 437				378 19, 465	59, 453 723, 799
Total	378			87				19, 437				19,843	783, 252
Europe: Belgium-Luxembourg. Czechoslovakia					46	4, 766	09	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,605	193 16	6,624	331, 193 36, 859
Denmark France	511			9 11	1601	43, 203	752	14		10,613	99	40 55, 270	27, 845 1, 953, 020
Germany: East West			70		433	50, 304 123, 476	112		1, 277	5, 512 35, 412	210	55, 943 160, 990	1, 478, 701
Italy Netherlands	568	455				1,509					2,380	., 8, 889 889 889 889	286, 151 657, 709 38, 867
Spain Sweden	Q#//	336	198	134		27, 338						27,674	918, 440 114, 815
Switzerland United Kingdom		28		165	221						п	320	41, 412
Total	1,322	819	268	319	831	250, 596	924	14	1,332	53, 142	3,018	312, 585 1, 385	10, 977, 161 212, 571
Grand total	3,085	818	268	347	925	250, 638	924	19, 451	1, 332	53, 142	3,021	333, 952	12, 017, 632

1 Approximate equivalent as potash (K₂O)—1955: 39 percent; 1956: 34 percent. 2 Revised figure.

TABLE 9.—Potash materials exported from the United States, 1947-51 (average) and 1952-56

Year	Fert	ilizer	Cher	mical	To	tal
	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average)	107, 076 94, 678 83, 412 111, 184 222, 499 390, 716	\$3, 680, 865 3, 320, 689 2, 893, 946 4, 133, 527 7, 958, 862 13, 705, 131	17, 139 6, 522 4, 796 6, 202 6, 804 6, 839	\$3, 761, 879 1, 515, 970 1, 042, 469 1, 329, 925 1, 244, 103 1, 231, 759	124, 215 101, 200 88, 208 117, 386 229, 303 397, 555	\$7, 442, 744 4, 836, 659 3, 936, 415 5, 463, 452 9, 202, 965 14, 936, 890

TABLE 10.—Potash materials exported from the United States, 1955-56, by countries of destination

[Bureau of the Census]

Cuba			Fert	ilizer			Che	mical	
North America: Canada	Country	1	1955		1956	1	955	1	956
Canada			Value		Value		Value		Value
Guatemala 10 631 133 5,565 21 4,680 103 21,831 Mexico 7,650 178,749 8,358 203,792 310 85,357 323 101,835	CanadaCosta RicaCubaDominican Republic	20, 960 300	21,748 701,081 10,984	545 26, 175 249	24, 600 902, 467 9, 125	19	5, 135	8	\$649, 873 2, 025 22, 267
South America: Argentina.	Guatemala Honduras Mexico	10 12 7, 650	631 678 178, 749	133 80 8, 358	5, 565 4, 240 203, 792	21 4 310	4, 680 1, 735 85, 357	103 8 323	1, 440 21, 835 3, 470 101, 882 6, 300
Argentina	Total	112, 299	3, 850, 908	132, 336	4, 592, 308	4, 194	760, 696	4, 701	809, 092
Burope: Belgium-Luxembourg 16 7, 962	Argentina Brazil Chile Colombia	26, 761 3, 375	1, 123, 038 180, 966	552 110 89 1, 580	23, 626 5, 862 4, 265 54, 284	409 22 101 22 27 178 81	80, 461 4, 865 28, 145 7, 345 10, 544 20, 316 31, 484	801 38 118 67 3 154 101	6, 151 124, 256 8, 342 38, 172 14, 890 5, 713 19, 281 26, 369
Belgium-Luxembourg	Total	31, 131	1, 351, 264	24, 669	1, 054, 461	897	197, 475	1, 287	243, 350
Asia: India	Belgium-Luxembourg France Italy Netherlands					27 2 41 1, 156 8	9, 581 1, 942 10, 296 50, 940 31, 519	(1) 440 136	5, 766 240 20, 720 34, 507 632
India	Total			56	2, 327	1, 263	117, 075	597	61, 865
Other Asia	Philippines Taiwan Turkey Vietnam, Laos and Cam-	50	2, 855	2, 523 13, 756	265, 610 97, 349 448, 540	5 82 2 99 24	1, 000 24, 973 664 28, 622 8, 549	1 20 5 122 6	30, 544 1, 880 4, 617 5, 310 37, 780 2, 740 807
	Other Asia	15		240		27 321	7, 842 93, 589	12 212	4, 849 88, 527

See footnote at end of table.

TABLE 10.—Potash materials exported from the United States, 1955-56 by countries of destination—Continued

		Fert	lizer			Cher	nical	
Country	1	955	1	956	1	955	1	956
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Africa: Belgian Congo Union of South Africa Other Africa			30	\$2, 970	52 66 4	\$26, 677 39, 569 2, 297	(¹) 35	\$675 24, 896
Total			30	2, 970	122	68, 543	35	25, 571
Oceania: Australia New Zealand	18, 827	\$566, 058	14, 056	457, 407	7	6, 725	7	3, 354
Total	18, 827	566, 058	14, 056	457, 407	7	6, 725	7	3, 354
Grand total	222, 499	7, 958, 862	390, 716	13, 705, 131	6, 804	1, 244, 103	6, 839	1, 231, 759

¹ Less than 1 ton.

TECHNOLOGY

Mechanization in potash mining was the subject of a recent article.¹² The role of undercutters, mobile jumbos, loaders, shuttle cars, and tramming and hoisting equipment was described. About 55 percent of the ore was recovered in primary mining. In mines where pillar robbing was practiced, recoveries up to nearly 90 percent were reported.

New shaft-sinking techniques, developed at the mine site of the National Potash Co., set new sinking records of more than 200 feet per month in the Carlsbad potash basin.13 The mining cycle consisted of drilling, blasting, and mucking two 10-foot rounds, followed by pouring 20 feet of concrete shaft lining.

A generalized flowsheet for flotation of an ore containing KCl, NaCl, and clay slime to yield a 60-percent K₂O muriate was published.14

The development and present practices of soluble mineral flotation were reviewed, including techniques and reagents utilized in potash beneficiation.¹⁵ It was suggested that recovery might be improved by classifying flotation feed into several sizes for separate flotation.¹⁶

Changing the reporting basis of the potassium content of fertilizers from the oxide (K₂O) to the elemental form (K) received the support of several agricultural organizations.17

¹² Mining World, Southwest Potash Schedules Continuous Production and Haulage From Face to Surface: Vol. 18, No. 9, August 1956, pp. 58-61, 87.

13 Lilly, J. A., How a Seven Cycle System Sinks Potash Shafts at Record Speed: Min. World, vol. 18, No. 6, May 1956, pp. 42-47.

14 Denver Equipment Co., Flowsheet Study, Bulletin No. M7-F50, Flotation of Potash: Deco Trefoil, July-August 1956.

15 Gaudin, A. M., Saline Flotation—Progress and Problems Present a Challenge: Eng. Min. Jour., vol. 157, No. 5, May 1956, pp. 89-91.

16 Horst, W. R., and Morris, T. M., Can Flotation Rates Be Improved? Eng. Min. Jour., vol. 157, No. 10, October 1956, pp. 81-83.

17 Commercial Fertilizer, vol. 93, No. 3, September[1956,pp./21-22.

The processes for producing elemental potassium were described and it was stated that increased future demand would depend largely on the use of sodium-potassium alloys as a heat-transfer medium. 18

WORLD REVIEW

Canada.—Following the growing interest in Saskatchewan potash deposits, the Resources Department conferred with potash-industry representatives regarding regulations governing Crown potash rights. During 1956, 8 companies had under withdrawal or prospecting permits about 3.3 million acres of Crown land.19

The Potash Company of America, Ltd., continued sinking its 20foot-diameter shaft near Floral, Saskatchewan, and had reached a depth of 900 feet by the end of the year. The 28 refrigeration holes continued to keep the ground frozen to 3,000 feet beneath the surface. The finished shaft, lined with reinforced concrete, will be 16 feet in diameter and 3,400 feet in depth. Design of the refinery was also underway.20

The Continental Potash Corp. had not completed its financing arrangements, and development of the deposits at Unity, Saskatchewan, was not yet resumed by the end of 1956. Winnipeg Natural Gas

TABLE 11.—World production of potash (marketable, unless otherwise stated) in equivalent K₂O, by countries, 1947-51 (average) and 1952-56, in short

 Compiled by Helen L. Hunt and Berenice B. Mitchell]	

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America: United States Crude (including	1, 199, 240	1, 665, 113	1, 911, 891	1, 948, 721	2, 080, 311	2, 171, 584
brines) ³ South America: Chile	1, 305 , 834 1, 562	1, 841, 118 13, 200	2, 098, 736 330	2, 170, 969 550	2, 340, 551 11, 000	2, 479, 463 12, 000
Europe: France (Alsace) Crude *	857, 325 966, 490	1, 022, 539 1, 162, 750	996, 575 1, 135, 657	1, 192, 087 1, 361, 734	1, 307, 042 1, 490, 764	4 1, 455, 000 1, 653, 465
Germany: East 4 Crude \$ 4	1, 142, 200 1, 315, 500	1, 440, 000 1, 670, 000	1, 488, 000 1, 720, 000	1, 488, 000 1, 720, 000	1, 522, 000 1, 820, 000	1, 598, 000 1, 840 , 000
WestCrude 3	774, 101 923, 777	1, 445, 128 1, 712 659	1, 459, 309 1, 742, 752	1, 783, 394 2, 134, 072	1, 870, 848 2, 226, 666	1, 823, 221 2, 166, 039
Spain Sweden ⁵ U. S. S. R. ⁴	183, 669 274, 000	199, 613 772 414, 900	202, 764 551 480, 700	243, 166 1, 213 593, 700	242, 539 661 870, 500	256, 525 1, 814 983, 600
Asia: Israel	14, 697		3, 415	4 12, 000	4 12, 000	4 29, 000
Japan	198 547 653	173 1, 323 26	283	454	461	435
World total (marketable) (estimate)	4, 400, 000	6, 200, 000	6, 500, 000	7, 300, 000	7, 900, 000	8, 300, 000

In addition to countries listed, China, Ethiopia, Italy, and Korea are reported to produce potash salts, but statistics of production are not available; estimates by senior author of chapter included in totals.
 This table incorporates a number of revisions of data published in previous Potash chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.
 To avoid duplicating figures, data on crude potash are not included in the total.

Year ended June 30 of year stated.

Sittig, Marshall, Manufacture and Availability of the Alkali Metals: Chem. Eng. Prog., vol. 52, No. 8, August 1956, pp. 337-341.
 Canadian Mining Journal (Gardenvale, Quebec), vol. 77, No. 3, March 1956, p. 79.
 American Metal Market, vol. 64, No. 12, Jan. 17, 1957, p. 10.
 Canadian Mining Journal (Gardenvale, Quebec), vol. 77, No. 11, November 1956, p. 160.
 Mining World, vol. 18, No. 12, November 1956, p. 85.

Co., Canadian Hydro-Carbons Ltd., and F. H. McGraw & Co. were assisting in the financial arrangements.21

Potash withdrawal rights for 300,000 acres in the Melville area

were obtained by an industrial group of Vancouver.²²

France.—As a result of increased demand for chemical potash, the Société Carbo-Potasse was formed to manufacture potassium carbonate and other potassium chemicals at Mulhouse.²³

Exports of potash materials in 1955—the latest data available were 2 percent less than in 1954. European countries received over 50 percent of French potash exports.

TABLE 12.—Exports of potash materials from France, 1951-55, by countries of destination, in short tons 12

١	Compiled	h	Corre	A	Rommil	

Country	1951	1952	1953	1954	1955
North America:					
Canada	21, 911	20, 975	34, 167	11, 514	31,750
Cuba	6, 232	9, 019	02,20	3, 215	01,100
United States	74, 219	70, 363	54, 789	28, 606	66, 580
South America:	1	,000	02,100	20,000	00,000
Argentina	380	147		100	123
Brazil		16.892	45, 897	24, 245	12, 302
Colombia		3, 142	10,00	5, 219	12,002
Europe.		0,112		0, 210	
Austria	18, 632	14, 323	6, 618	8, 706	12, 831
Belgium-Luxembourg	105, 769	185, 555	144, 394	164, 451	127, 407
Denmark	27, 788	16, 905	12, 603	13, 979	7, 061
Finland	9,796	10, 196	3, 674	4, 277	7, 865
Ireland		3, 619	33, 304	28, 192	30, 072
Italy	33, 367	19, 441	24, 707	38, 798	48, 155
Netherlands	195, 322	227, 490			
Norway	195, 522	17, 653	208, 256 11, 344	153, 589	150, 286
				12, 494	15,748
Sweden Switzerland	21,677	26, 731	76, 245	15, 043	37, 659
United Kingdom	29, 883	27, 570	32, 367	33, 827	40, 648
United Kingdom	170, 904	131, 832	172, 374	258, 787	208, 840
Yugoslavia	7, 186	5, 022	9, 480	89	
Asia;	01 150	0 =00		04 400	
Ceylon	21, 158	9, 762	23, 626	31, 139	23, 687
China.	7,379			10, 913	10, 050
India	7, 203	31	5, 075	10, 360	10, 873
Japan	50,007	60, 130	155, 649	178, 742	159, 360
Philippines	3, 178				
Turkey				8,083	
Africa:			l		
Algeria	25, 224	16, 359	17, 186	21,059	16, 409
French Morocco	11,069	8, 971	7,624		12,002
Oceania:	į.	1			· ·
Australia	. 11, 141	15, 665	9, 558	11,747	11, 420
New Zealand	9,442	17, 153	9,375	10, 919	18, 220
Other countries	56, 214	46, 580	51, 211	69, 300	73, 966
Total	967, 726	981, 526	1, 149, 523	1, 157, 293	1, 133, 314

¹ Compiled from Customs Returns of France. Figures include salts, carbonate, chloride, and nitrate of potash. *

This table incorporates a number of revisions of data published in the preceding Potash chapter.

Germany, East.—Bergbau-Handel, the marketing agency for all East German potash, published a booklet 24 listing and describing the following available potash products: 40 percent muriate (38-42) percent K₂O), 50 percent muriate (48-52 percent K₂O), 60 percent muriate (58-60 percent K₂O), potassium sulfate (48-52 percent

<sup>Work cited in footnote 19, p. 80.
Pit and Quarry, vol. 49, No. 1, July 1956, p. 33.
Chemistry and Industry (London), No. 15, Apr. 21, 1956, p. 269.
Bergbau-Handel, Potash and Magnesium for Agricultural Production—a short Review of Some of the Products of the German Democratic Republic's Potash Production; Berlin, East Germany, 1956, 32 pp.</sup>

K₂O), kainite (chloride) (12-15 percent K₂O), sylvinite (chloride) (15.1-20 percent K₂O), hederich-kainite (chloride) (12-15 percent K₂O), magnesia-kainite (chloride) (12-15 percent K₂O, 15 percent K₂O), 15 percent K₂O), magnesia-kainite (chloride) (12-15 percent K₂O), 15 percent K₂O), 15 percent K₂O) MgSO₄ minimum), and magnesia-sylvinite-kainite (chloride) (16-20 percent K₂O, 15 percent MgSO₄ minimum).

The estimated consumption of potash in East Germany was about 32 percent of total sales. Exports totaled over 1 million tons of K₂O equivalent, of which 64 percent went to Communist-dominated coun-

tries.

Germany, West.—Owing to increased domestic and foreign demand for potash, West German producers were expanding their output further.25 Agreements were signed during 1956 to deliver 77,000 short tons of potash to Japan.26

Consumption in West Germany was 55 percent of total sales of potash (K2O). Exports of West Germany potash increased 25 percent above 1955; over 60 percent went to other European countries.

The Neuhof-Ellers mine, between Frankfurt and Fulda, was

TABLE 13.—Exports of potash materials from West Germany, 1952-56, by countries of destination, in short tons 12

[Compiled by Corra A. Barry]									
Country	1952	1953	1954	1955	1956				
North America:									
Canada	6, 425	21, 643	24, 465	36, 695	27, 091				
Puerto Rico	11, 657	1,654	3, 031	2, 353	2, 205				
United States	85, 224	51, 445	91, 057	104, 350	114, 957				
South America:				48 000	00.450				
Brazil	1,929	8, 295	25, 874	45, 290	33, 452				
Colombia		1, 653	10,047	4, 960	3, 307				
Europe:		100 11 11 1			00 110				
Austria	11,910	38, 832	48, 345	42, 077	33, 118				
Belgium-Luxembourg	145, 505	162, 527	148, 544	100, 216	168, 582				
Denmark	150, 733	218, 357	251, 995	162, 202	276, 414				
Greece			3, 318	2, 205	8, 030				
Ireland	11, 947	19, 130	36, 079	43, 930	32, 135				
Italy	8,406	28, 417	21,763	33, 274	41, 161				
Netherlands	211, 586	216, 998	236, 468	168,070	214, 476				
Portugal	2,204				728				
Sweden.	11,791	62, 543	56, 082	43, 811	72, 395				
Switzerland	18, 221	20, 947	19, 287	20, 285	25, 999				
United Kingdom	126, 588	259, 961	193, 729	220, 352	244, 714				
Yugoslavia		8,965	19, 931	33,069	48, 315				
Asia:			_ ::_		40.000				
Ceylon	831	1,036	3, 416	6, 882	13, 339				
Formosa	1		1, 323	11, 464					
India	685	2, 174	5, 322	8,656	13, 533				
Indonesia		2,016	1,542	3,844	2, 682				
Japan	54, 758	200, 862	210, 706	206, 121	258. 189				
Korea.	7, 167		9, 331	16, 610	6, 614				
Turkey	3, 582	9, 733	9, 370		14, 612				
A frica:	1								
Rhodesia and Nyasaland, Federation of.	5, 418	11,047	15, 987	20, 212	15, 349				
Union of South Africa	5, 861	7,603		26, 744	28, 118				
Oceania:	1			1					
Australia	2, 464	6, 181	10, 447	9, 238	21, 926				
New Zealand	2, 923	2,022	16, 583	7, 591	5, 622				
Other countries	27, 277	42, 878	50,041	30, 889	39, 435				
					1 700 400				
Total	915, 092	1, 406, 919	1, 524, 083	1, 411, 390	1, 766, 498				
	1 ,	1 ' '		1	I				

¹ Compiled from Customs Returns of West Germany. 1952 through 1956 include crude salts, chloride sulfate, magnesium sulfate, and beet ash.

This table incorporates a number of revisions of data published in the preceding Potash chapter.

Chemical Age (London), vol. 76, No. 1949, Nov. 17, 1956, p. 294.
 Chemical Age (London), vol. 74, No. 1907, Jan. 28, 1956, p. 298.

reopened by Wintershall A. G. New hoisting equipment was installed

to permit automatic hoisting of up to 600 tons per hour.27

Israel.—The Dead Sea Works, Ltd., reported operating difficulties, and output was not up to planned goals.28 Fertilizers & Chemicals, Ltd., manufacturers of potassium sulfate and other fertilizers in Haifa agreed to assume management of the potash plant on the Dead Sea.29

Italy.—A potash deposit reported to contain over 27.5 million short tons of potassium salts was discovered near Serra di Falco. Sicily, during 1956.30 The major potash mineral was kainite interbedded with halite.

Jordan.—An agreement was reached about midyear between Jordan, Lebanon, Syria, Iraq, Saudi Arabia, and Egypt to establish a company to recover potash from the Dead Sea.31 The northern plant of the former Palestine Potash, Ltd., now in Jordan territory, was destroyed during the 1948 hostilities. Estimated cost of the new facilities totaled nearly \$10 million.32

Poland.—Consumption of potash fertilizers increased from 287,000

short tons in 1954-55 to 302,000 short tons in 1955-56.33

Spain.—A trade agreement called for the export of 30,000 tons of

K₂O equivalent to Norway.³⁴

Total exports of potash materials from Spain remained about the same in 1955 as compared with 1954.

TABLE 14.—Exports of potash materials from Spain, 1951-55, by countries of destination, in short tons 1

[Compiled	h	C.		Da1
Compaca	υy	Culta	л.	Daily

Country	1951	1952	1953	1954	1955
North America: United States	88, 274	43, 497	40, 220	10 700	00.05
Europe:	1	40, 491	40, 339	19, 786	26, 67
Belgium-Luxembourg Ireland	48,064 5,368	54, 456 5, 557	74, 689 5, 243	58, 081	37, 69
Italy	14 046	10, 367	14, 545	15,041	4, 54 18, 60
Netherlands Norway	4, 189 13, 297	10,086 9,190	9, 199 8, 047	21, 924 23, 115	16, 46 25, 53
Norway Portugal United Kingdom		8, 736	7,021	8,662	10, 41
Asia:	39, 222	46, 878	59,800	24, 605	31, 44
China Japan	5, 115	10,023	2, 645		
Korea.		21, 253 5, 376	55, 191	98, 337	89, 39
Other countries	2,954	13, 149			5, 55
Total	275, 624	238, 568	276, 719	269, 551	266, 30

¹ Compiled from Customs Returns of Spain.

United Kingdom.—The fourth congress of the International Potash Institute was held at London, England, from August 1-3, 1956.35

²⁷ Grindrod, John, Automatic Skip-Winding Gear Installed in German Potash Mine: Pit and Quarry, vol. 48, No. 9, March 1956, pp. 120-121.
28 Chemical Week, vol. 78, No. 9, Mar. 3, 1956, p. 17.
29 Chemical Week, vol. 78, No. 9, Mar. 3, 1956, p. 17.
29 Fertiliser and Feeding Stuffs Journal (London), vol. 45, No. 6, Sept. 12, 1956, p. 248.
20 Mining World, vol. 18, No. 12, November 1956, p. 83.
21 Foreign Commerce Weekly, vol. 56, No. 5, July 30, 1956, p. 6.
21 Mining World, vol. 18, No. 10, September 1956, p. 116.
21 Chief, Statistical Administration, Statistical Bulletin: No. 1, Warsaw, Poland, January 1957, p. 17.
22 Fertiliser and Feeding Stuffs Journal (London), vol. 45, No. 12, Dec. 12, 1956, p. 535.
23 Chemical Age (London), vol. 75, No. 1939, Sept. 8, 1956, p. 450.

The Institute published "Potash Symposium, 1955," containing all the papers presented at the 3d Congress in 1955. This book was available from the Institute in Berne, Switzerland 36

available from the Institute in Berne, Switzerland.³⁶
U. S. S. R.—The equivalent potash (K₂O) content of total fertilizer produced in the U. S. S. R. increased from 480,600 short tons in 1953

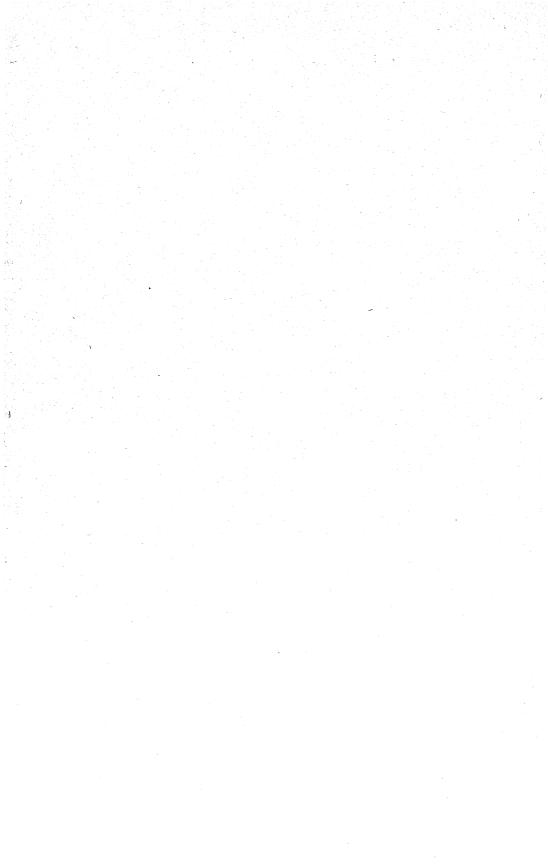

to 870,200 short tons in 1955.

TABLE 15.—All fertilizers produced in the U.S.S.R. 1953-55 1

			Year			Short tons (K ₂ O equivalent)
1953				1.5		480, 600
1954 1955		 			 	480, 600 593, 500 870, 200

¹ Central Statistical Administration of the Council of Ministers of the U. S. S. R., the Industry of the U. S. S. R.—Statistical Almanac: Moscow, 1957, pp. 192, 427.

³⁶ Fertiliser and Feeding Stuffs Journal (London), vol. 45, No. 10, Nov. 7, 1956, p. 443.

Pumice

By L. M. Otis 1 and Annie L. Mattila 2

HE TERM "pumice" as used in this chapter also includes pumicite, volcanic cinder, scoria, tuff, lapilli, cinder, and similar materials covered by terminology used locally in producing areas. Production of these pumiceous materials was less in 1956 than in 1955; 1956 was the first year since 1952 that output decreased, when production was only 40 percent of the 1956 total.

DOMESTIC PRODUCTION

The number of States reporting pumice production in 1956 rose to 16 compared with 15 in the previous year (Oklahoma being added to the list of producing States); the Territory of Hawaii also produced pumice. A total of 73 companies, individuals, or Government agencies produced pumice commercially in 1956 from 79 separate operations. In 1955 production came from 73 deposits worked by 64 operating entities.

Production of pumice and related materials in 1956 was 18 percent less than in 1955, although the value was 41 percent greater. large value increase was due to a higher average value for volcanic cinder—96 cents in 1955 and \$2.57 in 1956. Volcanic cinder constituted 53 percent of the total quantity of pumice produced in 1955 and 40 percent in 1956; therefore its average price materially affected the total values shown in the table.

As in 1955, California, with 33 operations, produced more pumice than any other State. New Mexico was the next largest producer and had 9 active mines, followed by Arizona and Idaho with 3 each.

The Bureau of Mines examined a pumice deposit in the Millerton Lake National Recreation area, Fresno and Madera Counties, Calif., for the National Park Service to assist in establishing a basis by which pumice deposits within the Millerton Lake area might be worked without interfering with recreational activities.

TABLE 1.—Pumice 1 sold or used by producers in the United States, 2 1947-51 (average) and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	647, 268 597, 044 1, 348, 136	\$2, 461, 365 2, 266, 981 2, 526, 040	1954	1, 647, 397 1, 804, 488 1, 482, 214	\$2, 974, 318 3, 369, 006 4, 749, 757

Includes volcanic cinder as follows—1953: 699,831 short tons valued at \$565,846; 1954: 690,056 tons, \$475,424;
 1955: 961,526 tons, \$926,816; 1956: 594,661 tons, \$1,627,053.
 Includes Alaska (1951 only) and Hawaii (1953-56).

Commodity specialist.
 Statistical assistant.

TABLE 2.—Pumice sold or used by producers in the United States, 1954-56, by States

States	19)54	19	55	1956	
	Short tons	Value	Short tons	Value	Short tons	Value
Arizona	80, 883	\$125, 927	92, 136	\$372, 735	114, 609	\$366, 09
California	566, 664	651, 638	797, 306	1,099,459	634, 356	2, 333, 80
Colorado	(1)	(1)	(1)	(1)	50,015	109, 20
Hawaii, Territory		(1)	130, 306	75, 906	58, 851	91, 69
[daho	94, 434	183, 924	(1)	(1)	101, 913	206, 06
Kansas	23, 433	92, 899	2, 320	59, 710	(1)	(1)
Montana	175	920	(1)	(1)	(1)	(1)
Nevada		(1)	(1)	(1)	ìi, 534	34, 51
New Mexico	363, 926	1,060,096	393, 597	780, 339	292, 330	667, 14
North Dakota		l	(1)	(1)	4,840	4,8
Oregon	67, 852	177, 515	(1)	(1)	(1)	(1)
Jtah	3, 588	3, 788	2,041	2 0, 011	44, 769	329, 60
Vashington	(1)	(1)	(1)	(1)	5, 291	14, 78
Vyoming	- K	115	l is	Ж	45, 517	37, 8
Other States 2	446, 442	677, 611	386, 782	960, 846	118, 189	554, 10
Total	3 1, 647, 397	3 2, 974, 318	4 1, 804, 488	4 3, 369, 006	5 1, 482, 214	5 4, 749, 78

¹ Included with "Other States" to avoid disclosing individual company confidential data.

² Includes States indicated by footnote 1, and Nebraska, Oklahoma (1954 and 1956), and Texas.

³ Includes 690,056 short tons of volcanic cinder, valued at \$475,424, from Arizona, California, Hawaii, Nevada, and New Mexico.

⁴ Includes 961,526 short tons of volcanic cinder, valued at \$926,816 from California, Hawaii, New Mexico, Nevada, and Texas.

⁵ Includes 594,661 short tons of volcanic cinder valued at \$1,527,053 from California, Hawaii, and Nevada.

The preliminary report by the Bureau of the Census on its 1954 census of the mineral industries summarized statistical information on the pumice industry for 1954. Totals for the United States in 1954 were: Value of shipments, \$3,158,000; number of production and development workers, 211; all other employees, 33; principal expenses, \$1,524,000; wages of production and development workers, \$688,000; salaries of all other employees, \$168,000; fuel, \$109,000; purchased electrical energy, \$40,000; supplies and minerals received for preparation, \$312,000; contract work, \$104,000; horsepower rating of power equipment, 24,000; water intake for processing, 27 million gallons.

The Census of Mineral Industries reported the 1954 value of pumice shipments by producers, while the Bureau of Mines shows the value of pumice sold or used in table 2. The value of shipments was 6 percent greater in 1954 than the value of pumice sold or used.

CONSUMPTION AND USES

Before 1945 the chief use of pumice was as an abrasive. By 1956, however, abrasives constituted less than 3 percent of the total market. Growth in the use of porous mineral materials as lightweight aggregates in acoustic and insulating plasters and concrete has made these latter markets far more important than the abrasive field. Pumice was also used as loose-fill insulation between building walls, floors, and ceilings and for brick manufacture.

Lightweight pumice concrete permits a reduction in the quantity of steel framework required in structures. Transportation costs of precast building units are lower and the units are easier to handle, saw, screw, or nail than ordinary concrete.

959 PUMICE

Outside the building industry other requirements were for insecticide carriers, insulation for furnaces, and household appliances, filtration, railroad ballast, soil conditioning, and road construction.

Abrasive uses are divided into cleaning and scouring compounds and hand soap as 1 category, "other abrasive uses" constituting an additional class. This latter class increased in 1956 from the previous year, while all other requirements for pumice decreased.

The principal use of pumice mined in 1956 was as concrete admixture and concrete aggregate, which totaled 745,684 short tons, 7 per-

cent less than in 1955.

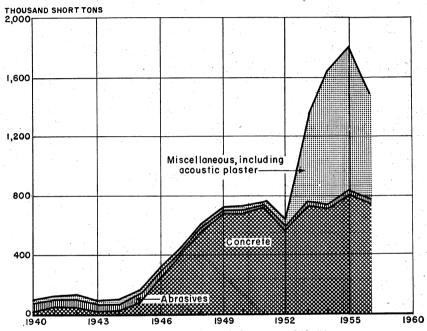


FIGURE 1.—Pumice trends by uses, 1940-56.

TABLE 3.—Pumice 1 sold or used by producers in the United States, 1954-56, by uses

Use	1954		19	55	1956	
	Short tons	Value	Short tons	Value	Short tons	Value
Abrasive: Cleansing and scouring compounds and hand soaps. Other abrasive uses. Concrete admixture and concrete aggregate. Other uses 1.	9, 641 6, 681 4, 712 705, 951 920, 412	\$322, 220 99, 995 158, 505 1, 709, 892 683, 706 2, 974, 318	19, 979 12, 474 3, 313 799, 360 969, 362 1, 804, 488	\$418, 637 131, 181 71, 726 2, 007, 987 739, 475 3, 369, 006	10, 727 27, 341 2, 434 745, 684 696, 028	\$353, 452 529, 176 79, 197 2, 229, 285 1, 558, 647

¹ Includes volcanic cinder as follows—1954: 690,056 short tons, valued at \$475,424; 1955: 961,526 tons, \$926,816; 1956: 594,661 tons, \$1,527,053.

² Insecticide, insulation, brick manufacture, filtration, railroad ballast, roads (surfacing and ice control), absorbents, soil conditioner, and miscellaneous uses.

TABLE 4.—Crude and prepared pumice 1 sold or used by producers in the United States in 1956

필요하다 하는데 시간에 교육한 요한		Valu	ıe
	Short tons	Total	Average per ton
CrudePrepared	489, 023 993, 191	\$921, 640 3, 826, 867	\$1.88 3.85
Total	1, 482, 214	4, 748, 507	3. 20

¹ Includes 594,661 short tons of volcanic cinder valued at \$1,527,053.

PRICES

The average value per ton for pumice production reported to the Bureau of Mines in 1956 was \$3.20. This average included much low-priced material used locally for road construction, railroad ballast, and similar uses.

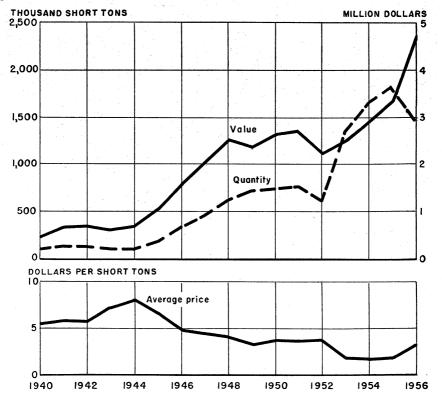


FIGURE 2.—Total value, quantity and price per ton of pumice, 1940-56.

961 PUMICE

Prices of higher qualities of pumice, requiring processing and bagging and used for such purposes as abrasives, filtration, insecticide carriers, etc., were reported in trade publications during the year. The Oil, Paint and Drug Reporter quoted the following 1956 year-end prices: Domestic, ground, coarse to fine, 0, ½, 1, 1½, 2, 3, bags, ton lots, per pound, \$0.03625; imported, Italian, silk-screened, bags, ton lots, per lb., coarse, \$0.0650, fine \$0.04, sun-dried coarse, \$0.0250, sun-dried fine, \$0.0350.

The E&MJ Metal and Mineral Markets quoted the nominal monthly prices throughout the year, for pumice, f. o. b. New York or Chicago, in barrels, powdered, at 3 to 5 cents per pound and lump, 6 to 8 cents.

FOREIGN TRADE³

At international trade agreement negotiations at Geneva during January to May 1956 concerned with granting reciprocal concessions on tariffs, an agreement was reached that the tariff was to be reduced, on certain grades of pumice, a total of 15 percent, 5 percent on each of the following 3 dates: June 30, 1956, June 30, 1957, and June 30. The new rates are summarized as follows: 1958.

	1950-56	1956	1957	1958
Crude, \$15 per ton and under	\$0.0500	\$0.0475	\$0.0450	\$0.0425
	.125	.120	.120	.110
	.500	.475	.450	.425

Ninety-two percent by weight of the crude-pumice imports into the United States in 1956 was valued at less than \$15 per ton; 32 percent coming from Italy had a value of \$9.68 per ton, and the balance (68 percent) came from Greece and was valued at \$3.42 per ton. imported crude pumice valued above \$15 per ton came from Italy, and the per ton value was \$19.29. It constituted only 2 percent by weight of the total crude-pumice imports.

Italy furnished 96 percent of the total value of imported, manufactured pumice in 1956; the unit value of the Italian material was \$37.59 per ton. West Germany became an exporter to the United States for the first time and furnished 4 percent of the value of imported manufactured pumice. Ecuador, which exported to the United

States in 1955 was not a source in 1956.

As reported by the Bureau of the Census, the average values per ton of imported pumice, f. o. b. foreign port of debarkation were: Crude, valued at less than \$15 per ton, \$5.40; valued at over \$15 per ton, \$19.29.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 5.—Pumice 1 imported for consumption in the United States, 1955-56, by countries

201		1956	Value		000	\$2,023 49,320		51, 343	51, 343
Wholler or nearly was and	y manuach	19	Short		c	1,312		1,315	1,315
ltr or nout	is of the	92	Value			\$38, 971		38, 971	2 38, 971
Who		1955	Short			1, 497		1, 497	1, 497
		98	Value			\$8,139		8, 139	8, 139
	Valued over \$15 per ton	1956	Short			422		422	422
	alued over	29	Value	\$954		5, 118	1,027	6, 554	3 7, 508
Crude or unmanufactured		1956	Short	21			° 75	208	229
de or unme	g	99	Value			\$44, 524 58, 394		102, 918	102, 918
Oru	Valued at \$15 or less per ton	1956	Short tons	-		13, 025 6, 040		19,065	19, 065
	lued at \$15	35	Value			\$68, 518 88, 513		157, 031	2 157, 031
	Va	1955	Short			19, 895 9, 814		29, 709	29, 709
	i	Country		South America: Ecuador	Europe: Germany, West	Greece Italy Portural	Triesto	Total	Grand total

1 Exclusive of "manufactures, n. s. p. f."

Owing to changes in tabulating procedures by the Bureau of the Census, data known not to be comparable with years prior to 1954.

TABLE 6.—Pumice imported for consumption in the United States, 1947-51 (average) and 1952-56

900[]	1947-51 (average)	51 ge)	1952	69	1953		1954	4	1955	35	1956	99
07000	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value
Crude or unmanufactured. Wholly or partly manufactured Manufactures, n. s. p. f.	12, 029 813 (3)	\$108, 763 18, 305 877	21, 986 478 (3)	\$135, 305 9, 792 6, 301	32, 712 943 (³)	\$166,079 19,975 5,415	20, 951 950 (³)	\$117, 136 1 20, 541 1 6, 720	29, 938 1, 497 (²)	1\$164, 539 1 38, 971 1 4, 371	19, 487 1, 315 (²)	\$111,057 51,343 17,674
Total		127, 945		151, 398		191, 469		1 144, 397		1 207, 881		1 170, 074

1 Owing to changes in tabulating procedures by the Bureau of the Census data known not to be comparable with years before 1964.

TECHNOLOGY

Patents.—A patent described a cement suitable for rigid porous surfaces such as tile, composed of portland cement, common salt, powdered kaolin, and pumice.4

An apparatus and method for machine application of mortars composed of portland cement or gypsum and pumice was described in a

patent.5

Pumice was used in a patented method of producing hardenable hollow articles such as artificial limbs. The composition uses gypsum plaster, asbestos fiber or ground pumice, wood flour, powdered cork, castor oil, and a solution of nitrocellulose or ethyl acetate.

Pumice was suggested in a patent as an extender in commercialized soil conditioning. A more uniform distribution of the conditioning

agent is said to result.7

An improved acoustical, fireproof composition adapted to application of sheet-metal panels is made of pumice, sodium hydroxide, and waterglass according to a patent. Acoustical properties are maintained by regulating the water content of the composition so that the surface of the finished product remains relatively soft when in use.8

Pumice and pumicite (volcanic ash) are preferred carriers for a dust-

free herbicidal composition, according to a patent.9

Among the granular materials used in manufacturing a glassfiber-reinforced, molded-resin pipe, pumice is suggested, with sand and ground limestone. 10

A patented liquid honing composition employs fine pumice or silica sand as the abrasive agent. The liquid is used to treat surfaces

of films of cellulose acetate. In

A patent described the use of pumice powder as the absorbent material in manufacturing microporous screens suitable for batteries

and filter presses. 12

An improved masonry mortar sand mixture was patented, composed of about 59 percent sand, 70 percent diatomite or bentonite, 20 percent volcanic pozzolanic material such as pumicite, rhyolite, or calcined tuff, and small percentages of certain sodium salts. 13

Pumice was specified among various other carriers for use in a

fungus-prevention compound.14

Pumice is one of the suggested carriers for a new patented pesticide.15 Depending on product specifications, various fibrous or granular minerals or materials may be used in a patented furane-resin composi-

⁴ Talone, A. L., Formula for Cementitious Composition: U. S. Patent 2,769,720, Nov. 6, 1956.

5 Hobson, L. H. (assigned to E-Z-ON Corp., Chicago, Ill.), Method of Emplacing Mortar: U. S. Patent 2,770,560, Nov. 13, 1956.

6 Petersille, H. H., and Zimmerman, E. O. (assigned to Franz R. Lushas, New York, N. Y.), Hardened Molded Articles and Method of Forming Same: U. S. Patent 2,770,026, Nov. 13, 1956.

7 Horne, F. F., Pumice-Containing Composition for Treating Soil: U. S. Patent 2,765,291, Oct. 2, 1956.

8 Kendall, F. E., and Golar P. (assigned to the E. F. Hauserman Co., Cleveland, Ohio), Sound-Deadening Composition: U. S. Patent 2,755,195, July 24, 1956.

9 Morrill, H. L. (assigned to Monsanto Chemical Co., St. Louis, Mo.), Dust-Free Herbicidal Composition and Method of Making Same: U. S. Patent 2,739,053, March 20, 1956.

10 Stout, W. H., Method of Manufacturing Plastic Pipe: U. S. Patent 2,773,287, Dec. 11, 1956.

11 Reiner, R. K. (assigned to the Strathmore Co., Aurora, Ill.), Treating of Plastic Surfaces: U. S. Patent 2,774,679, Dec. 18, 1956.

12 Jevelot, R., and Ahrweiler, J. (assigned to Compagnie de caoutchouc manufacture "Dynamic", Paris, France), Manufacture of Microporous Screens: U. S. Patent 2,766,485, Oct. 16, 1956.

13 Tiersten, D., Sand Mixture Useful for Making Masonry Mortar: U. S. Patent 2,757,096, July 31, 1956.

14 Bennett, G. E., and Soblesinger, A. H. (assigned to Monsanto Chemical Co., St. Louis, Mo.), Bis-(2-Chloroethyl) Chlorofumerate, Fungicidal Composition of Said Compound and Method of Applying Same: U. S. Patent 2,757,119, July 31, 1956.

18 Glenn, H. D., and Dowling, R. J. (assigned to United States Rubber Co., New York, N. Y.), Stabilized Chlorinated Pesticidal Compositions: U. S. Patent 2,760,900, Aug. 28,,1966.

tion for manufacturing pipes, tubes, rods, and other shapes. Pumice is one of the minerals specified. 16

WORLD REVIEW NORTH AMERICA

Mexico.—A large deposit of pumice was reported south of Ensenada, and a shipment was made into California during 1955.17

EUROPE

Greece.—Output of pumice in Greece for 1955 was 73,304 short tons including 40,234 tons of Santorini earth—a fine-grained pumice mined on Santorini Island and used principally in manufacturing The following firms were producers on Santorini Island: Atlas Building Materials Mfg. Co. (S. A.), Hephestos Mining & Industrial Co. (S. A.), and Joseph Trakoronias, all with headquarters in Athens; and Laba Trading & Industrial Co. (S. A.), with offices in Piraeus, Greece.

Exports from Greece classified as pumice stone in 1955 were 20,130 short tons, valued at \$47,350; 93 percent came to the United States. This was an increase of 8 percent in imports from Greece and 4 percent over 1954 in their value.

OCEANIA

New Zealand.—The value of New Zealand pumice production in 1954 was \$26,620, or \$2.73 per short ton. In 1953 the value was \$2,525, equivalent to \$1.14 per ton.

TABLE 7.-World production of pumice, by countries,1 1947-51 (average) and 1952-56, in short tons 2

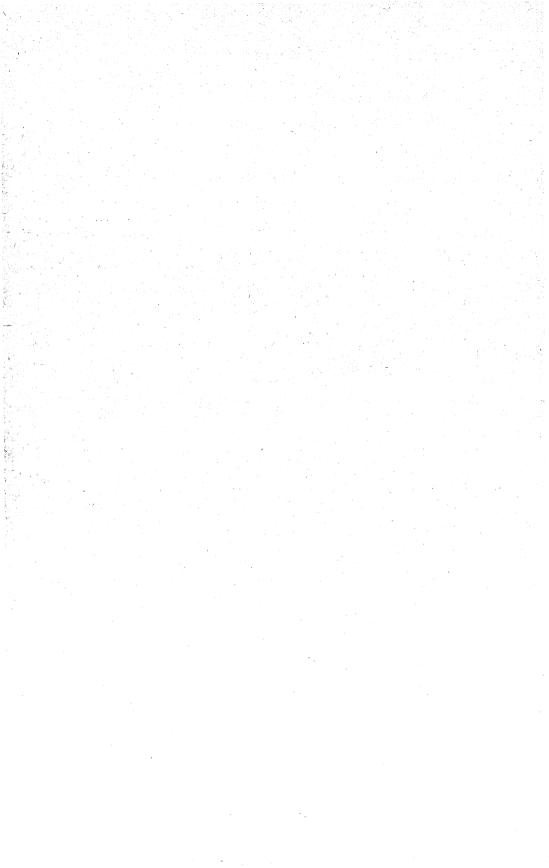
[Compiled]	by Helen	T.	Hunt and	Berenice 1	B. Mitchelll

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
Egypt France:	994	441	761	441	181	(3)
Pumice Pozzolan Greece 4	18, 982 67, 658 51, 801	12, 621 172, 560 34, 133	11, 464 232, 903 91, 271	11, 133 296, 207 72, 989	9, 921 242, 508 73, 304	14, 330 243, 611 § 72, 000
Italy: Pumice	54, 917 25, 582 808, 081 9, 378	95, 017 53, 517 1, 379, 936 10, 765	192, 132 37, 148 1, 392, 703 2, 254	141, 039 1, 399, 650 9, 916	198, 614 1, 452, 282 8, 670	} 1, 700, 000 8, 527
Spain	6 603 647, 268	732 597, 044	7 1, 348, 136	7 1, 647, 397	7 1, 804, 488	7 1, 482, 214
World total (estimate) 1	1, 700, 000	2, 400, 000	3, 400, 000	3, 600, 000	3, 800, 000	3, 600, 000

¹ Pumice is also produced in Argentina, Canada, Germany, Japan, Mexico, U. S. S. R., and a few other countries, but data on production are not available; estimates by senior author of chapter included in total.

2 This table incorporates a number of revisions of data published in previous Pumice chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

3 Data not available; estimate by senior author of chapter included in total.


4 These figures include the following tonnages of Santorini earth: 1947-51 (average), 38,519 tons; 1952, 20,424 tons; 1953, 4,092 tons; 1954, 38,581 tons; 1955, 40,234 tons; 1956, 44,000 tons.

5 Estimate.

6 Average 1948-51

Average, 1948-51.
 Includes in 1953, 560,502 tons; 1954, 690,056 tons; 1955, 961,526 tons; and in 1956, 594,661 tons of volcanic cinder and scoria, used for railroad ballast or similar purposes.

Walters, J. M. (assigned to Electro Chemical Engineering & Manufacturing Co., Emmaus, Pa.),
 Method of Extrusion of Furane Resins: U. S. Patent 2,774,110, Dec. 18, 1956.
 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 2, February 1956, p. 34.

Quartz Crystal (Electronic Grade)

By Waldemar F. Dietrich and Gertrude E. Tucker²

OMESTIC consumption of raw Electronic-grade quartz crystal increased 12 percent in 1956. The number of piezoelectric units produced was 23 percent greater owing, in part, to increased production of smaller units. No domestic production of Electronicgrade quartz was reported to the Bureau of Mines. Imports for consumption, principally from Brazil, declined in 1956 but continued adequate for United States requirements.

CONSUMPTION AND PRODUCTION

Raw quartz crystal consumed in the United States in 1956, for the production of piezoelectric units, recorded the only notable increase in consumption since 1952. Quartz-crystal cutters reported using 16.100 pounds more in 1956, although only 42 consumers reported to the Bureau of Mines in 1956 compared with 46 in 1955. Most of the crystals consumed ranged from 100 to 500 grams in weight. chases continued about the same as in 1955 in the following weight groups: 80-100 grams; 500-700 grams; 700-1,000 grams; 1,000-2,000 grams; and 2,000-10,000 grams and up.

In 1956 production of piezoelectric units increased 23 percent, and the yield of crystal units per pound of raw quartz consumed increased 10 percent to 33.6 from 30.5 units in 1955. This was the highest yield ever reported by producing companies and reflected the increased production of smaller units and improvements in crystal-cutting

Consumers of quartz crystal and producers of piezoelectric units were distributed among 17 States; there were producers of units only in 3 additional States, as shown in table 1. Pennsylvania continued to lead in operations and reported 28 percent of both consumption of quartz and production of units. Illinois, Kansas, Missouri, and New Jersey also were important consumers. About 90 percent of the total raw quartz was consumed in 8 States. Thirty-nine of the 42 quartz consumers also produced piezoelectric units, and 14 of the 53 producers of units did not consume quartz crystal.

Piezoelectric units were produced for oscillator, filter, and telephoneresonator plates, and a small quantity was produced for miscellaneous Production for oscillator plates comprised 89 percent of the

¹ Chief, Branch of Ceramic and Fertilizer Materials.
² Statistical assistant.

TABLE 1.—Consumption of Electronic-grade quartz and production of piezoelectric units in the United States in 1956, by States

State		otion of Elec- ade quartz 1	Production electric	on of piezo- ic units ²
	Con- sumers	Pounds consumed	Pro- ducers	Units produced
California Connecticut and Massachusetts Illinois and Iowa Kansas, Nebraska, and Wisconsin Missouri New Jersey New York Ohio Pennsylvania Texas Other States	3 3 4	6, 100 11, 800 19, 700 20, 600 11, 600 29, 700 (3) (42, 000 3, 000 4 5, 800	} 7 7 4 10 7 3 56	125, 100 301, 400 1, 441, 100 694, 500 916, 900 1, 411, 500 32, 400 8 122, 000
Total	- 42	150, 300	53	5, 044, 90

Includes a small quantity of reworked scrap previously reported as consumption.
 For radio oscillators, telephone resonators, filters, and miscellaneous purposes,
 Included with "Other States" to avoid disclosing individual company operations,
 Includes Florida, Maryland, New York, Ohio, and Virginia,
 Includes Florida, Georgia, Maryland, Oklahoma, Virginia, and Washington,

total crystal units and was reported from all 20 States. Oscillator plates increased 23 percent in 1956.

PRICES

There were no important changes in the resale prices of quartz crystal sold domestically in 1956. Best quality crystals weighing 201 to 300 grams sold for about \$12 a pound. The prices of selected 301 to 500-gram, class 1 crystals ranged from \$17 to \$18 per pound.

Larger crystals brought higher prices, some as high as \$90 per pound.

The latest available Brazilian Government "Tabela" or schedule of the minimum allowable declared value of Electronic-grade quartz crystal for export from Brazil was published in the Radio-Grade Quartz chapter of the 1952 Minerals Yearbook. In May 1956 the Brazilian Superintendent of Money and Credit placed all forms of quartz crystal in category 3, eligible for export to Area of Limited Convertibility (ACL) countries ³ at 36.64 cruzeiros per U. S. dollar bonus and to other countries at 34.41 cruzeiros per U. S. dollar bonus, in addition to the official rate that averaged about 18 cruzeiros per U. S. dollar in 1956. This superseded the previous rates of 31.70 cruzeiros per U. S. dollar to ACL countries and 29.67 cruzeiros per U. S. dollar to others.

FOREIGN TRADE 4

Imports of Electronic- and Optical-grade quartz crystal in 1956, valued at 35 cents or more per pound, decreased 26 percent in quantity and 18 percent in value compared with 1955, and were the lowest since 1950. Brazil continued to be the principal source of supply and furnished 95 percent of total imports, with France and Japan

³ ACL countries included the United States, Canada, Cuba, Guatemala, Venezuela, France, West Germany, Italy, United Kingdom, and the Benelux countries.
⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

supplying 3 and 2 percent, respectively. Of the total imports (521,400 pounds valued at \$1 million), Brazil furnished 494,100 pounds, France 14,300 pounds, and Japan 11,800 pounds. Surinam, United Kingdom, West Germany, and Union of South Africa accounted for the remainder, less than 0.5 percent. The average declared value of total imports, port of export, increased to \$2.19 from \$1.98 per pound in 1955.

TABLE 2.—Estimated imports for consumption of Electronic- and Optical-grade quartz crystal, consumption of raw Electronic-grade quartz, and production of piezoelectric units in the United States, 1947-51 (average) and 1952-56

	Estimated and Optica	i imports of l al-grade quar	Electronic- tz crystal ¹	Consump- tion of raw Electronic-	Piezoelectric units			
Year	Pounds	Value	Value per pound	grade quartz (pounds)	Production (number)	Number per pound of raw quartz		
1947-51 (average) 1952 1953 1954 1955 1956	576, 200 1, 049, 300 21, 119, 200 2613, 100 2704, 500 2521, 400	\$2, 055, 800 2, 881, 600 2 2, 240, 200 2 1, 562, 800 2 1, 393, 500 2 1, 142, 200	\$3. 57 2. 75 2. 00 2. 55 1. 98 2. 19	114, 500 502, 500 399, 200 133, 900 134, 200 150, 300	1, 623, 800 6, 181, 500 7, 217, 700 3, 653, 800 4, 089, 500 5, 044, 900	14. 2 12. 3 18. 1 27. 3 30. 5 33. 6		

¹ Figures for 1947-51 (average) and 1952 derived from Bureau of the Census reports of total Brazilian pebble imports, corrected by deducting the imports of fusing-grade quartz from Brazil as estimated from industry advices and Brazilian Government statistics.

² Imports of Brazilian pebble, valued at 35 cents or more per pound.

In 1956, imports of quartz crystal or "lasca" valued at less than 35 cents per pound totaled 645,100 pounds valued at \$106,600. Brazil was the only supplier of lasca, obtained from the rejects of Electronicgrade crystal mining and preparation and imported mainly for fusinggrade quartz. Imports of lasca were almost three times the quantity received from Brazil in 1955.

Exports of quartz crystal in 1956 were valued at \$64,600 and decreased 2 percent in value below 1955. The value of reexports, totaling \$613,700, declined 7 percent in 1956. The terms "exports" and "reexports" were defined in the Quartz Crystal (Electronic

Grade) chapter of the 1955 Minerals Yearbook.

TECHNOLOGY

Research on quartz-crystal synthesis at Clevite Research Center, Cleveland, Ohio, was continued under contract with the United States Army Signal Corps. Results indicated that vertical stationary autoclaves, operated at medium pressure (8,000-9,000 p. s. i.) and furnished with suitable internal fittings to control circulation, were more satisfactory for further research and pilot-plant production than twochamber rocking autoclaves. Further investigations of the low-pressure process (at about 1,500 p. s. i. and 300° C. in vertical autoclaves) resulted in improved growing rates and crystal quality. Growth rate was only about 0.15 mm. per day on Y-bar seeds compared with 0.6 to 0.8 mm. per day in autoclaves operated at medium pressure, but lower equipment and operating costs of the low-pressure process may offset the slower growth rate.

Under a separate Industrial Preparedness Contract with the United States Army Signal Corps, the Clevite Research Center continued at its Bedford pilot plant, the production of Y-bar crystals with twochamber rocking autoclaves. Many difficult production problems were completely or partly solved, and over 1,200 pounds of Electronicgrade Y-bar crystal was delivered before the plant was shut down in March 1956.⁵

According to a verbal communication to the Bureau of Mines by Louis Goldberg (United States Army Signal Corps Supply Agency), pilot-plant development of synthetic Y-bar quartz crystals in single stationary vertical autoclaves at medium pressures was conducted by Sawyer Research Products, East Lake, Ohio, under an Industrial Preparedness Contract with the Signal Corps Supply Agency. The autoclaves used in this plant were 8 inches in inside diameter and 8 feet in length. By the end of 1956 considerable progress had been made toward lower production costs compared with medium pressure growth in two-chamber rocking autoclaves.

Extensive experimental data were discussed on the hydrothermal synthesis of quartz in U. S. S. R. from various forms of seed and at

variable pressures and temperature-gradient conditions.6

Progress on quartz-crystal synthesis in the United Kingdom was reported. The process employed Z-cut seeds in small steel autoclaves at pressures exceeding 15,000 p. s. i. at about 340° C. Fusing-grade quartz was used as a nutrient. Emphasis was placed on a full comparison of the performance of oscillator units of synthetic versus

natural quartz.

Search for nutrient materials native to the United Kingdom, to substitute for Brazilian Fusing-grade quartz, established that modified growing methods may be used to obtain satisfactory results with a variety of flints and quartzites occurring in the United Kingdom. Aluminum appeared to be potentially the most harmful of the common impurities. Aluminum in the low-temperature forms of feldspar, such as microcline, albite, plagioclase series, and anorthite, which have an ordered structure, was not harmful in the standard growing process, but aluminum occurring in the high-temperature structuredisordered feldspars, including orthoclase, sanidine, and high-temperature albite, slowed the growth and worsened the texture of the crystals unless counteracted by modification of the growing solution.⁷

An article discussed the incorporation of controlled quantities of selected impurities during growth to determine their effect on growth rate, quality, and properties of synthetic quartz.8 Optical absorption data were given on the effects of aluminum, germanium, boron, titanium, chromium, and lead when present in the space lattice of

synthetic quartz.9

^{**} Hale, D. R., Optimum Methods for Quartz Synthesis: Proc. 10th Ann. Symposium on Frequency Control, Signal Corps Engineering Laboratories, Fort Monmouth, N. J., June 26, 1956, pp. 94-99.

** Butuzov, V. P., and Ikornikova, N. Yu. [Liquid Inclusions in Synthetic Quartz]: Doklady Akad. Nauk, S. S. R., vol. 104, No. 1, 1955, pp. 76-77; Chem. Abs., vol. 50, No. 9, May 10, 1956, p. 6126c. [Stable Crystal Form of Synthetic Quartz]: Zapiski Vsesoyus. Mineralog. Obshchestva, vol. 85, No. 3, 1956, pp. 395-397; Chem. Abs., vol. 51, No. 5, Mar. 10, 1957, p. 3224f.

Ikornikova, N. Yu., and Butuzov, V. P. [Some Data on the Growth of Crystals of Artificial Quartz]: Zapiski Vsesoyus. Mineralog. Obshchestva, vol. 84, No. 4, 1955, pp. 425-433; Ceram. Abs. in Jour. Am. Ceram. Soc., vol. 39, No. 4, April 1956, p. 84j.

** Thomas, I. A., Growth of Quartz at High Temperature and Pressure in the United Kingdom: Proc. 10th Ann. Symposium on Frequency Control, Signal Corps Engineering Laboratory, Fort Monmouth, N. J., June 26, 1956, pp. 75-93.

** Stanley, J. M., and Theokritoff, S., Incorporation of Impurities in Synthetic Quartz Crystals: Am. Mineral., vol. 41, No. 56, May-June 1956, pp. 527-529.

** Arnold, G. W., Jr., Defects in Quartz Crystals: Proc. 10th Ann. Symposium on Frequency Control Signal Corps Engineering Laboratory, Fort Monmouth, N. J., June 26, 1956, pp. 60-65.

The elastic constants of quartz were measured between 20° and 573° C. and partial changes in the elastic and piezoelectric properties

were noted at 370° and 510°-530° C.10

The frequency-temperature-angle characteristics of AT-cut natural and synthetic quartz resonators were presented. It was shown that the principal differences were a shift of the optimum angle of orientation and a slight change of the frequency-temperature relationship itself.11

An apparatus for ultrasonic cutting of 20 or more quartz crystal (piezoelectric) wafers simultaneously was described, and the possi-

bilities and limitations of the equipment were discussed.12

An automatic quartz crystal X-ray sorter was developed by Bulova Research and Development Laboratories in cooperation with the Signal Corps Engineering Laboratories. The device measures and sorts crystal blanks according to orientation of cut with unskilled labor at a rate 10 times faster (43 per minute) and an accuracy 5 times greater (20 seconds of arc) than a skilled operator using standard industry methods. 13 The sorter is one item in a mechanized pilot plant that was being built in 1956 by Bulova Research and Development Laboratories to produce 200,000 finished crystal units per month with an 85-percent saving in manpower.14

WORLD REVIEW

Brazil.—Revised figures for exports of raw quartz crystal from Brazil in 1955 totaled 1,927,000 pounds of Piezoelectric (Electronic)grade crystal valued at US\$1,507,000 and 1,113,000 pounds of lasca (principally classed as Fusing grade), valued at ÚS\$128,000.15

Madagascar.—The production and exports of quartz crystal in

Madagascar in 1956 are shown in table 3.

TABLE 3.—Production and exports of quartz crystal in Madagascar in 19561

Class	Produ	etion	Exports		
Crass	Pounds	Value 2	Pounds	Value 2	
Piezoelectric Ornamental and waste Fusing	22, 300 28, 000 6, 800	\$86, 300 3, 600 500	38, 400 24, 500 15, 600	\$397, 900 6, 300 2, 000	
Total	57, 100	90, 400	78, 500	406, 200	

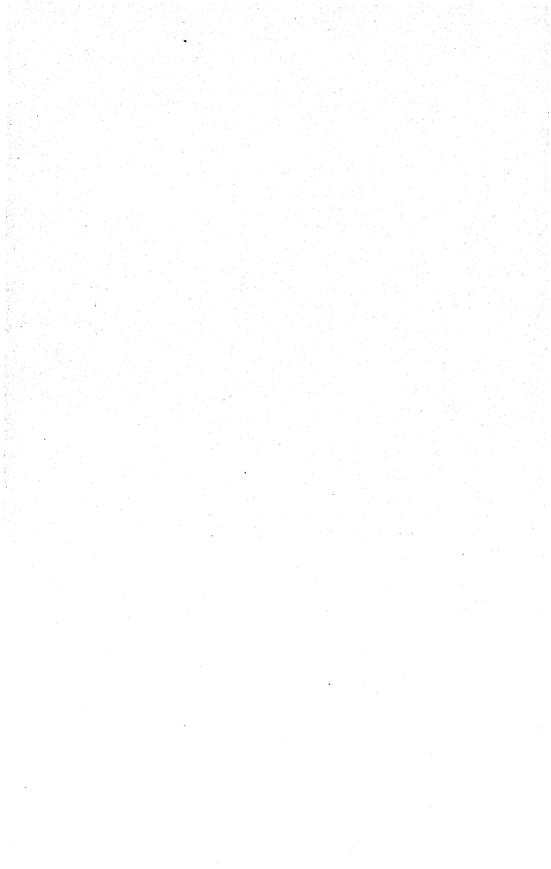
U. S. Embassy, Johannesburg, Union of South Africa, State Department Dispatches 10, July 17, 1956;
 Oct. 11, 1956; 164, Jan. 3, 1957; 224, Mar. 11, 1957.
 Converted from African Colonial Francs (CFA) at 175 CFA=US\$1.

Nauk, S. S. S. R., vol. 107, 1956, pp. 392-393; Chem. Abs., vol. 51, No. 2, Jan. 25, 1957, p. 794e.

Il Chi, A. R., Frequency-Temperature Behavior of AT-Cut Quartz Resonators: Proc. 10th Ann. Symposium on Frequency Control, Signal Corps Engineering Laboratory, Fort Monmouth, N. J., June 26, 1056, pp. 46, 50

posium on Frequency Control, Signal Corps Engineering Laboratory, Fore Modelland, 1966, pp. 46-59.

1966, pp. 46-59.


Bechmann, Rudolf, Frequency-Temperature-Angle Characteristics of AT-Type Resonators Made of Natural and Synthetic Quartz: Proc. Inst. Radio Eng., vol. 44, No. 11, November 1956, pp. 1600-1607.

12 Gibbs, N. E., Ultrasonic Cutting of Quartz Wafers: Jour. Acoustical Soc. America, vol. 27, No. 5, May 1955, p. 1017; Ceram. Abs. in Jour. Am. Ceram. Soc., vol. 39, No. 6, June 1956, pp. 120i.

12 Wise, L. V., An Automatic Quartz-Crystal X-ray Sorter: Proc. 10th Ann. Symposium on Frequency Control, Signal Corps Engineering Laboratories, Fort Monmouth, N. I., June 26, 1956, pp. 578-585.

14 Hawkes, R., Bulova Streamlines Crystal Production: Aviation Week, vol. 65, Doc. 31, 1956, pp. 56-60.

15 U. S. Embassy, Rio de Janeiro, Brazil, State Department Dispatch 51: July 11, 1956.

Salt

By R. T. MacMillan and Annie L. Mattila 2

SALT OUTPUT of over 24.2 million tons in 1956 established a new production mark for the United States, exceeding the previous record of 1955 by 1.5 million tons.

For the second consecutive year substantial increases in total salt production were noted, amounting to 10 percent in 1955 and 6.7 percent in 1956. Although salt production of all types increased, the greatest gain was for salt in brine, followed by rock salt. The largest increases were in Michigan and Texas.

TABLE 1.—Salient statistics of the salt industry in the United States, 1947-51 (average) and 1952-56 1

		947- vera			1952	}		1953	; .]	1954			1955			1956	,
Sold or used by producers: Dry salt: Evaporated (manufactured) short tons Rock saltdo		326, 927,			641, 567,				305			087 708		986, 293,				, 953 , 897
Totaldo Value Average per ton In brine;	7, \$49,	128,	916 104 6. 76	\$59,	757,	416 322 7. 28	8, \$65,	407,	960 021 7. 99	\$73,	405	795 616 8. 58	\$80,	280, 952, \$8		9 \$88	650 512	, 850 , 866 9. 17
Short tons Value Total salt:	9, \$8,	719, 831,	350 106	11, \$11,	335, 252,	798 767	12, \$12,	608, 869,	043 646	12, \$32,		608 276		423, 436,				, 773 , 757
Short tons Value 2 Imports for consumption:	16, \$57,	973, 959,	266 210	19, \$71,	545, 010,	214 089	20, \$78,	789, 276,	003 667	20, \$105,	669, 585,	403 892	22, \$123,	704, 388,	143 847	24, \$136,	215 239	, 623 , 623
Short tonsValueExports:		5, \$4 5,	207 979		7, \$44,	056 23 0			308 472			770 961	8 4 \$1,	185, 160,	653 519	3 \$2,		, 212 , 728
Short tons ValueApparent consumption: 5		332, 699,			349, 458,				521 656			259 652		407, 023,		\$2,		, 32 0 , 766
short tons	16,	646,	142	19,	202,	299	20,	676,	790	20,	444,	914	22,	482,	665	24,	247	51 5

⁵ Quantity sold or used by producers, plus imports, minus exports.

DOMESTIC PRODUCTION

Among the salt-producing States, Michigan easily maintained first place with 23 percent of the total United States production. Texas, continuing its rapid increase in output, became the second largest producer with 17 percent of the total. New York, displaced from second place, became third, with approximately 16 percent of the

Includes Hawaii (1952-56 only) and Puerto Rico.
 Values are f. o. b. mine or refinery and do not include cost of cooperage or containers.
 Due to changes in tabulating procedures by the U. S. Department of Commerce data known not to be comparable to earlier years.
 Revised figure.

¹ Commodity specialist.
2 Statistical assistant.

total, while Louisiana, Ohio, and California ranked fourth, fifth, and sixth, with 15, 12, and 6 percent, respectively, of the total output. Together these 6 States furnished nearly 90 percent of the salt pro-

duced in the United States.

In 1956 salt was produced at 88 facilities in the United States, Hawaii, and Puerto Rico; 8 had an annual production of over 1 million tons each and a combined production of slightly over half the United States total, 6 produced between 500,000 and 1 million tons, and 30 produced 100,000 to 500,000 tons. Of the 44 facilities producing less than 100,000 tons, the output of 27 was less than 10,000 tons each. Approximately 60 percent of the total salt was produced as salt in brine.

Output from a new producer in Montrose County, Colo., was reported as salt in brine derived from wells and used in metallurgy.

TABLE 2.—Salt sold or used by producers in the United States, 1954-56, by States

		1954			1955			1956	
State	Quant	ity		Quantity			Quant	ity	
	Short tons	Percent of total		Short tons	Percent of total		Short tons Percent of total		Value
California Hawaii Kansas Louisiana Michigan New Mexico New York Ohio Oklahoma Puerto Rico Texas Utah West Virginia Other States 3 Total	1, 185, 844 (1) 876, 667 3, 088, 686 5, 063, 633 5, 1412, 669 2, 748, 993 (1) (8) 758 2, 864, 312 166, 506 471, 516 731, 183	(1) 4 15 24 (2) 17 13 (1) (2) 14 1 2 4	\$6, 126, 194 (1) 7, 778, 406 11, 101, 456 29, 396, 812 333, 255 22, 754, 118 12, 358, 521 (1) 98, 110 9, 310, 339 1, 020, 061 1, 025, 696 2, 422, 924	(1) 910, 866 3, 562, 636 4, 975, 442 49, 738 3, 779, 547 2, 905, 028 (1) 10, 496 3, 583, 242 195, 726 638, 390 778, 497	(1) 16 22 (2) 16 13 (1) (2) 16 1 13 3	\$6, 751, 420 (1) 8, 432, 325 15, 406, 993 31, 668, 351 596, 780 14, 768, 761 (1) 112, 399 12, 867, 094 1, 339, 085 3, 476, 352 2, 755, 096	270 1, 004, 042 3, 703, 500 5, 548, 178 57, 156 3, 872, 777 2, 971, 702 9, 980 9, 936 3, 962, 778 183, 701 680, 964 766, 428	(2) (16 12 (2) (2) (2) (17 1 3 3	\$7, 605, 764 18, 119 9, 167, 364 17, 695, 270, 501, 948 27, 544, 908 15, 922, 765 89, 764 101, 23 14, 369, 558 1, 471, 980 2, 655, 583 2, 655, 583

¹ Included with "Other States" to avoid disclosing individual company confidential data.

² Less than 1 percent.

³ Includes States indicated by footnote 1 and Alabama, Colorado, Nevada, and Virginia.

TABLE 3.—Salt sold or used by producers in the United States, 1955-56, by methods of recovery

Method of recovery	19	55	1956			
	Short tons	Value	Short tons	Value		
Evaporated: Bulk: Open pans or grainers Vacuum pans Solar Pressed blocks Rock: Bulk	399, 316 2, 134, 209 1, 167, 772 285, 670 5, 235, 743	\$9, 460, 720 29, 224, 014 5, 218, 943 5, 069, 998 30, 940, 880	379, 746 2, 147, 078 1, 232, 161 268, 968 5, 571, 114	\$9, 210, 091 32, 610, 436 5, 685, 437 4, 967, 529 35, 045, 478		
Pressed blocks	57, 539 13, 423 , 894	1, 037, 523 42, 436, 769	51, 783 14, 564, 773	993, 895 47, 726, 757		
Total	22, 704, 143	123, 388, 847	24, 215, 623	136, 239, 62		

¹ Includes production in Hawaii and Puerto Rico.

CONSUMPTION AND USES

The apparent consumption of salt was nearly 24.3 million tons in 1956—the highest ever recorded. With a few exceptions, the pattern of consumption was much the same as that of the previous year. For the second consecutive year, chlorine manufacture continued to be the largest use of salt, outranking soda ash, formerly the main consumer.

These 2 categories, with all other chemical uses, accounted for over 71 percent of the salt consumed in 1956. Other important consumers were State and local governments, meatpackers, feed dealers, and

grocery stores.

Notable increases in consumption were reported by State and local governments (largely for highway ice control) and by the soda-ash industry. On the other hand, decreases were noted in salt consumed by railroads, meatpackers, and manufacturers of rubber, textiles, and dyes.

TABLE 4.—Evaporated salt sold or used by producers in the United States, 1954-56, by States

State	19	54	19	55	1956		
	Short tons	Value	Short tons	Value	Short tons	Value	
California Hawaii Kansas Louisiana Michigan New York Ohio Oklahoma Puerto Rico Texas Utah Other States 1	(1) (1) (1) 356, 045 124, 556 816, 736 529, 602 482, 906 (1) 8, 758 107, 946 (1) 1, 304, 536	(1) (1) \$5, 474, 151 1, 831, 480 13, 449, 985 8, 734, 524 5, 361, 838 (1) 98, 110 1, 799, 139 8, 337, 659	1, 105, 772 (1) 361, 612 110, 218 857, 265 568, 497 509, 905 (1) 10, 496 117, 237 (345, 965	\$6, 120, 822 (1) 5, 819, 536 1, 743, 445 14, 234, 709 9, 655, 884 6, 113, 567 (1) 112, 399 2, 016, 600 3, 156, 713	(1) 270 350, 208 121, 900 854, 335 560, 693 (1) 9, 980 9, 936 112, 984 176, 057 1, 831, 590	(1) \$18, 11! 5, 963, 05: 1, 995, 18! 15, 150, 07: 10, 116, 14: (1) 89, 76: 101, 24: 2, 214, 48! 1, 421, 39: 15, 404, 03:	
Total	3, 731, 087	45, 085, 986	3, 986, 967	48, 973, 675	4, 027, 953	52, 473, 49	

¹ Included with "Other States" to avoid disclosing individual company confidential data.
2 Includes States indicated by footnote 1 and Nevada, New Mexico, and West Virginia.

TABLE 5.—Rock salt sold by producers in the United States, 1947-51 (average) and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	3, 927, 000	\$18, 443, 577	1954	4, 824, 708	\$28, 319, 630
	4, 567, 531	24, 121, 865	1955	5, 293, 282	31, 978, 403
	4, 478, 655	23, 777, 527	1956	5, 622, 897	36, 039, 373

TABLE 6.—Pressed-salt blocks sold by original producers of the salt in the United States, 1947–51 (average) and 1952–56

	From evar	orated salt	From r	ock salt	Total		
Year	Short tons	Value	Short tons	Value	Short tons	Value	
1947-51 (average)	270, 769 278, 455 293, 014 284, 276 285, 670 268, 968	\$3, 263, 101 3, 862, 723 4, 603, 864 4, 929, 057 5, 069, 998 4, 967, 529	62, 884 67, 822 62, 247 59, 615 57, 539 51, 783	\$638, 868 836, 593 853, 521 1, 011, 607 1, 037, 523 993, 895	333, 653 346, 277 355, 261 343, 891 343, 209 320, 751	\$3, 901, 969 4, 699, 316 5, 457, 385 5, 940, 664 6, 107, 521 5, 961, 424	

TABLE 7.—Salt sold or used by producers in the United States, 1955-56, by classes and consumers or uses, in thousand short tons

				·				
		19	955			19	956	
Consumer or use	Evap- orated	Rock	Brine	Total	Evap- orated	Rock	Brine	Total
Chlorine. Soda ash. Textile and dyeing. Soap (including detergents). All other chemicals. Meatpackers, tanners, and casing manufacturers. Fishing. Dairy. Canning. Baking. Flour processors (including cereal). Other food processing. Ice manufacturers and cold-storage companies. Feed dealers. Feed mixers. Metals. Ceramics (including glass). Rubber. Oil Paper and pulp. Water-softener manufacturers and service companies. Grocery stores. Railroads. Bus and transit companies. State, counties, and other political subdivisions (except Federal). U. S. Government.	(¹) 27 58	1, 285 (1) 155 8 446 559 13 17 34 4 (1) 31 50 2777 52 94 (1) (1) 68 74 228 144 90 (1) 1, 274 24 210	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	8, 171 6, 707 212 45 1, 072 998 40 75 56 61 112 96 851 1220 173 16 138 138 139 109 342 686 114 32 1, 341 42 608	716 (1) 55 35 174 (2) 23 555 5173 105 558 4 (1) 558 (1) (1) (1) (1) (1) (2) (2) (2) (2) (1) (2) (3)	1, 402 (1) 137 (1) 470 510 13 13 19 35 3 3 32 46 319 54 78 111 822 777 88 256 150 66 (1) 1, 494 18 218	6, 190 7, 797 (¹) 516 (¹) (¹) (¹) (¹) (¹) (¹)	8, 308 7, 805 1, 192 43 1, 160 934 36 74 208 108 108 58 116 83 877 222 158 15 100 135 126 370 718 86 64 34
Undistributed ² Total	3, 987	5, 293	13, 424	22, 704	1, 133 4, 028	5, 623	14, 565	24, 216

 $^{^{\}rm I}$ Included with "Undistributed" to avoid disclosing individual company confidential data. $^{\rm I}$ Includes some exports and consumption in Territories and possessions.

TABLE 8.—Distribution (shipments) of evaporated and rock salt in the United States, 1955-56, by States of destination, in short tons

Destination	195	5	1956	3
Destination	Evaporated	Rock	Evaporated	Rock
				
labama	20,835	196, 659	19, 684	256, 06
rizona	17,071	15, 366	15, 274	19, 36
rkansas	11, 569	62, 744	9, 293	65, 64
alifornia	526, 195	83, 242	554, 168	107, 3
olorado	71, 927	23, 408	73, 404	24, 6
onnecticut	12, 179	27, 165	12,758	36, 6
Delaware	6, 156	6,614	6, 619	6, 20
District of Columbia	5, 460	2, 436	5, 454	2, 80
lorida	13, 226	45, 706	13, 558	47, 8
looned a	24, 556	67, 161	29, 851	65, 2
	25, 137	2,056	24, 621	2,0
linois	228, 013	319, 945	226, 215	286, 9
ndiana	128,002	112, 350	132, 097	98, 8
)W8	126, 477	123, 777	129, 689	111, 9
angag	49, 950	210, 393	45, 890	194, 8
entucky	32, 780	137, 594	33, 489	117, 7
ouisiana	17, 844	138, 525	20, 950	157, 4
laine	9, 813	102, 459	9, 527	128, 7
Iaryland	42, 860	87, 156	43, 436	94, 5
[assachusetts	53, 363	105, 749	43, 380	143.0
lichigan	136, 607	267, 250	135, 749	338, 4
Innesota	133, 468	58, 625	133, 580	62, 0
Iississippi	10, 093	39, 930	12, 309	42, 4
11881881pp1 fissouri		75,003	78, 788	79, 4
InsouriInsouriInstantantantantantantantantantantantantant	26, 430	2, 657	25, 207	4, 7
ebraskaebraska	61, 107	62, 296	56, 931	65, 5
epraska	7, 649	122, 262	6, 423	141, 6
evada	4, 559	106, 259	4, 567	135, 8
ew Hampshire	116, 221	139, 397	115,017	182. 7
ew Jersey	12, 701	27, 730	14, 299	32, 9
ew Mexico	197, 546	920, 557	195, 379	960. 1
ew York	64, 957	94, 571	65, 120	102, 8
orth Carolina	21, 266	12, 593	18, 789	15, 7
orth Dakota	233, 022	312, 626	236, 758	344. 5
hio		32, 518	30, 533	34.7
klahoma	31, 482	295	134, 862	31,1
regon	109, 234	148, 722	141, 898	141. 7
ennsylvania	141, 150	11, 955	10, 975	13. 9
hode Island	11,097		13, 782	23. 4
outh Carolina	14, 294	24, 918	24, 089	17. 2
outh Dakota	24, 162	18,040		89. 9
ennessee	38, 536	90, 162	38, 579	265, 7
exas	101, 403	274, 211	96, 740 33, 726	(1)
tah	44, 338	(1)	5, 984	53. 1
ermont	6, 408	51,073		72, 8
irginia	99, 194	69, 964	100, 685	(1)
Ashington	369, 720		407, 486	
Vest Virginia	171, 874	92, 258	148, 530	106, 5 74, 8
Visconsin	137, 546	67, 466	137. 038	
Voming	15, 682	912	14, 166	1,0
ther 2	144, 727	298, 527	140, 607	249. 9
Total	3, 986, 967	5, 293, 282	4, 027, 953	5, 622, 8

¹ Included with "Other" to avoid disclosing individual company operations.
² Includes shipments to Territories and possessions of the United States, exports, and some shipments to unspecified destinations.

PRICES

The prices of both rock and table salt, vacuum common fine, increased slightly in March and again in November. January 1956 prices quoted in Oil, Paint and Drug Reporter for rock salt and table salt, paper bags, carlots, works, were \$1.01 and \$1.19 per 100 pounds, respectively. In March these grades were quoted at \$1.03 and \$1.23, respectively. After holding steady through the summer, another slight advance was noted in November, when quotations were \$1.03\% and \$1.27\% on the same basis.

The average value of dry salt continued its steady advance to \$9.17 per ton in 1956, a 5-percent increase over 1955. The average value of salt in brine showed only a 4-percent gain—from \$3.16 per ton in 1955 to \$3.28 in 1956. This indicated a leveling off of the 3-year period of upward adjustment of values for salt in this form, brought about by more realistic reporting of the value of salt produced from captive wells.

FOREIGN TRADE 3

Total imports of salt into the United States in 1956 were twice those in 1955. Most of the increase was from Canada, which (in doubling its shipments to the United States) provided over 83 percent of the total salt imports of the Nation. Other important suppliers of salt to the United States were the Bahamas and the Dominican Republic. Small tonnages were received from Jamaica, Leeward Islands, and Mexico. Imports approximated 2 percent of the total United States production.

Exports of salt from the United States decreased about 17 percent in 1956 compared with 1955. This was due mainly to decreased shipments to Canada, where new salt-producing facilities were placed in operation. Still our best customer, Canada received over 72 percent of our total salt exports.

Exports to Japan constituted over 21 percent of the total. Smaller tonnages were shipped to Central America and the West Indies. Exports of salt were about 2 percent of the total United States production and therefore approximately equaled imports.

TABLE 9.—Salt imported for consumption in the United States, 1955-56, by countries

Country	1	955	1956		
	Short tons	Value	Short tons	Value	
North America: Bahamas Canada Dominican Republic Jamaica Leeward and Windward Islands	21, 078 143, 093 16, 637 4, 816	\$67, 936 1 978, 585 98, 232 15, 480	19, 477 306, 166 32, 757 3, 501 6, 048 263	\$50, 531 2, 146, 297 124, 297 7, 940 21, 773 2, 890	
Total	185, 653	1 1, 160, 519	368, 212	2, 353, 728	
Grand total	185, 653	1 2 1, 160, 519	368, 212	² 2, 353, 728	

Revised figure.
 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 10.—Salt imported for consumption in the United States, 1947-51 (average) and 1952-56, by classes

[Bureau of the Census]

							
	In bags	s, sacks, or other	Bulk				
Year	packages (duti- able)		Dt	utiable	Free (used in curing fish)		
	Short	Value	Short tons	Value	Short tons	Value	
1947-51 (average) 1952	2, 241 2, 488	\$30, 132 29, 538	2, 813 4, 568	\$15, 298 14, 692	154	\$549	
1953 1954	2, 550 946	26, 428 1 13, 672	134, 758 159, 824	447, 044 865, 289			
1955 1956	8, 109 25, 255	1 116, 409 1 360, 864	177, 544 342, 957	1 2 1, 044, 110 1, 992, 864			
	1.						

¹ Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

2 Revised figure.

TABLE 11.—Salt exported from the United States, 1955-56, by countries
[Bureau of the Census]

Country	19	55	198	56
Out of the second secon	Short tons	Value	Short tons	Value
North America:				
Bermuda Canada	304, 057	\$1,981,164	27 244, 292	\$1, 930 1, 459, 201
Central America: Canal Zone.	196 359 7,375 10,244 329 6	31, 250 10, 030 7, 218 2, 944 12, 048 7, 075 11, 010 196, 069 285, 113 25, 278 1, 192	487 127 155 179 528 249 92 6, 842 29 8, 584 222 39	30, 605 3, 529 5, 889 5, 649 14, 091 7, 033 10, 794 209, 673 3, 990 255, 675 15, 983 3, 600
Netherlands AntillesOther West Indies		23, 515 2, 660	597	38, 017 1, 270
TotalSouth AmericaEurope	324, 287 41 4	2, 596, 566 8, 665 5, 040	262, 450 115 2	2, 066, 929 11, 280 3, 150
Asia: Japan Philippines Saudi Arabia Other Asia	82, 392 137 51 53	375, 797 11, 643 6, 393 4, 911	72, 852 431 183 9	319, 223 29, 396 18, 453 1, 200
AfricaOceania	82, 633 41 125	398, 744 4, 309 9, 701	73, 475 138 140	368, 272 3, 050 11, 085
Grand total	407, 131	3, 023, 025	336, 320	2, 463, 766

TABLE 12.—Salt shipped to possessions and other areas administered by the United States. 1 1954-56

[Bureau of the Census]

Territory	1954		1955		1956	
	Short tons	Value	Short tons	Value	Short tons	Value
American Samoa	31 55 9, 489 75	\$1, 406 4, 964 768, 551 7, 565	52 99 9, 784 84 (2)	\$2, 171 7, 772 703, 222 7, 128 412	58 71 11, 448 72 (2)	\$2, 558 6, 836 863, 175 7, 126 1, 464
Total	9, 650	782, 486	10, 019	720, 705	11, 649	881, 159

¹ Salt is also shipped to the Territories of Alaska and Hawaii, but no record has been kept of these shipments since March 1948.

2 Less than 1 ton.

TARIFF

The duty on bulk salt imported into the United States was reduced from \$0.02 to \$0.019 per 100 pounds effective July 1, 1956. Two further reductions to \$0.018 and \$0.017, effective July 1, 1957, and July 1, 1958, respectively, were agreed upon at the 11th meeting of the Contracting Parties of the General Agreement on Tariffs and Trade at Geneva in October 1956. Duty on package salt remained unchanged at \$0.035 per 100 pounds.

TECHNOLOGY

A patent was issued describing a solution method for mining underground salt formations, which excluded from the brine certain salts usually present, principally anhydrite.4 As a result of other research in the same field, it was reported that the addition of certain phosphates and carbonates to water used for dissolving underground salt was beneficial in suppressing calcium sulfate solubility. resulting purer sodium chloride brine, suitable for textile and dyeing applications, was produced at much lower cost than by chemical precipitation.5

The operation of the largest salt mine in the Western Hemisphere was described in an article. Begun in 1884, the Retsof mine near Rochester, N. Y., has expanded its underground workings to cover an area of more than 1,500 acres. Daily production was reported to exceed 5,000 tons. The exceptionally high grade salt seam is mined at a depth of 1,000 feet by a panel room-and-pillar system similar to that used in coal mining. About 30 percent of the salt is left as pillars for roof support. No other support is necessary. After being blasted from the face, the salt is mechanically loaded and hauled to the crusher, then raised to the surface, where it is further crushed and screened.6

Difficulties in drilling through certain salt formations were described together with techniques developed to solve drilling problems. It was claimed that salt is plastic enough under high temperatures

⁴ Courthope, T. F., Martin, S., and Sickly, R. G. (assigned to International Salt Co., Scranton, Pa.), Salt-Dissolving Apparatus: U. S. Patent 2,734,804, Feb. 14, 1956.

5 Chemical Engineering, Three Ways To Make Low-Calcium Brine: Vol. 64, No. 4, April 1956, p. 110.

6 Rubey, Robert G., Worth Your Salt: Compressed Air Mag., vol. 61, No. 9, September 1956, pp. 258-263.

981 SALT

and pressures to permit flowage, with resultant pinching of drill pipe. Success in drilling deep salt formations was attained by using drilling muds of the salt-emulsion type, combined with a periodic circulation of water through the bit.⁷ The use of water exclusively to dissolve cuttings during drilling creates a disposal problem for the large

quantities of brine produced.

Separating soluble salines by froth-flotation procedures, using saturated solutions as vehicles, was the subject of a review. Although more commonly applied to separating insoluble minerals, flotation has been used successfully in separating sylvite from halite. Other applications of salt-flotation procedures involved separating borax, boric acid, and sodium sulfate and separating sodium sulfate from sodium chloride. Many special problems that may develop in this type of operation were recognized and discussed.8

An additive that prevents rock salt from caking has helped to eliminate problems attending the storage and distribution of rock salt for highway use. Two pounds of the material, distributed in 1 ton of salt, eliminates caking by weakening the bonds between the Large outdoor piles of salt need only have the surface layers The additive was said to be a nontoxic inorganic compound

containing sodium ferrocyanide.9

The sodium chloride content of food was found to be slightly radioactive after exposure to radiation from a fission-type bomb detonated at a distance of approximately one-fourth mile. Federal Food and Drug Administration tests indicated that the radioactivity of sodium chloride in foods tested had decayed to a relatively harmless level within a period of several weeks.

WORLD REVIEW

NORTH AMERICA

Canada.—Production of salt in Canada was estimated at nearly 1.6 million tons in 1956, an increase of about 27 percent over that in the previous year. This substantial increase resulted from the first full year's operation of the Canadian Salt Co. rock-salt mine at

Ojibway, Ontario.

A comprehensive description of the design and operation of the Ojibway mine appeared in a journal.10 The room-and-pillar method of mining was used to obtain salt from a 27-foot seam at a depth of Rooms were 50 feet wide and 18 feet high, and one-half of the available salt was left in pillars measuring 50 by 75 feet. entire operation was highly mechanized and was geared for a production of 4,000 tons per day.

Dominican Republic.—One of the largest salt and gypsum deposits in the world was being mined by the Dominican Government. deposit was estimated to contain 150 million tons of almost pure salt.11

⁷ Lawhon, C. P., and Simpson, J. P., Deep Salt Headaches in East Texas: Oil and Gas Jour., vol. 54, No. 40, Feb. 6, 1956, pp. 114-120.

8 Gaudin, O. M., Saline Flotation; Progress and Problems Present a Challenge: Eng. and Min. Jour., vol. 157, No. 5, May 1956, pp. 89-91.

9 Chemical Engineering, vol. 65, No. 10, October 1956, p. 148.

10 Mamen, C., Trackless Rock Salt Mining at Ojibway: Canadian Min. Jour., vol. 77, No. 1, January 1966, pp. 37-43.

^{1956,} pp. 37-43. 11 Pit and Quarry, vol. 49, No. 6, December 1956, p. 84.

EUROPE

Portugal.—Inadequate production of salt due to wet atmospheric conditions at the saltpans led to placing all salt production under Government control. 12

United Kingdom.—The operation of the Meadowbank mine in Cheshire, the only rock-salt mine in Britain, was described in an article. The salt is mined at a depth of 470 feet by room-and-pillar methods, using electric haulage. The product, which is 95 percent sodium chloride, varies in color from amber to dark red due to inclusions of marl. Highly mechanized mining methods have made it possible to mine the salt at lower cost than would result from removing it as brine.13

OCEANIA

Australia.—First trial harvest from facilities of Solar Salt, Ltd., at Port Augusta, South Australia, was about 10,000 tons. Full development of the area of about 17,000 acres was expected to yield more than 1 million tons of salt annually.14

TABLE 13.—World production of salt by countries, 1947-51 (average) and 1952-56, in short tons 2 [Compiled by Helen L. Hunt and Baranica B. Mitchell]

[Compiled	by Helen L	. Hunt and	Berenice B.	Mitchell]	4. 4. 4	
Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	810, 316	072 007	070.000			12
Costa Rica	7, 671	973, 207 2, 500	959, 898	963, 357	1, 253, 870	1, 598, 549
Guatemala	11, 905	13, 199	4, 289 16, 736	4,519	4,960	⁸ 5, 500
Honduras	4, 931	5, 291	3 11, 500	12,804 3 11,000	17, 313	15, 950
Mexico	157, 767	189, 597	246, 763	246, 917	³ 11,000 ³ 248,000	15,018
Nicaragua	11, 485	14, 568	15, 400	16, 035	11, 250	\$ 265,000
Panama	4.877	7, 155	4,764	7,692	11, 200	11, 460
Salvador	21, 362	20, 160	38, 304	41, 104	3 42, 000	8, 471 55, 001
United States:	1	1	30,001	11,101	1 12,000	00,001
Rock salt	3, 927, 000	4, 567, 531	4, 458, 393	4, 824, 708	5, 293, 282	5, 622, 897
Other salt	13, 046, 266	14, 977, 421	16, 330, 610	15, 844, 695	17, 410, 861	18, 592, 726
West Indies:		1		, , , , , , , , ,	,,	10,002,120
British:		[·			1	1
Bahamas Leeward Islands (ex-	65, 627	89, 618	165, 347	149, 357	59, 149	154, 560
				1		1
ports) Turks and Caicos Is-	6, 318	6, 553	5, 934	4,664	5, 104	3 4, 400
lands)	40, 272	10 200	11.040			
Cuba	58, 949	18, 368 62, 788	11,046	10,740	7, 033	4 17, 634
Dominican Republic:	00, 010	02,100	57,027	60, 305	70, 649	70, 989
Rock salt	2, 521	2, 869	4, 183	47, 573	10 700	
Other salt	12, 780	18, 457	15, 064	15, 948	19, 763 20, 242	3 16, 500 36, 533
Haiti	8 16 200	33, 510	33, 510	33, 510	33, 510	5, 735
Netherlands Antilles	1,559	2, 920	3 3, 300	3 3, 300	3 3, 300	3 3, 300
				0,000	- 0, 500	3,300
Total 3	18, 208, 000	21, 006, 000	22, 382, 000	22, 298, 000	24, 523, 000	26, 500, 000
South America:						
Argentina	421, 155	540, 132	498, 775	578, 713	606, 271	FF0 F00
Brazil	923, 330	860, 483	839, 192	744, 416	640, 241	552, 588 3 661, 400
Chile:	1 '	000, 200	000, 102	111, 110	040, 241	* 001, 400
Rock salt	51, 185	56, 262	39, 129	h	1	İ
Other salt	14, 229	1,076	1, 345	\$ 50,000	³ 50, 000	* 55,000
Colombia:		· ·	-, 00	'		1
Rock salt		183, 896	163, 305	190, 117	193, 052	214, 395
Other salt		42, 561	53, 191	39, 943	37, 599	40, 982
Ecuador		44, 553	15, 831	38, 443	55, 077	30, 368
Peru Venezuela		87, 758	84, 860	92, 494	98, 723	96, 509
v enezuera	52, 604	127, 923	80,012	91, 948	68, 504	41, 434
Total 1 3	1, 720, 000	1, 961, 000	1, 792, 000	1, 843, 000	1, 766, 000	1, 709, 000
See footnotes at end of table.						
and the state of t						

Chemical Age (London), vol. 76, No. 1949, Nov. 17, 1956, p. 294.
 Mine and Quarry Engineering, vol. 22, No. 5, May 1956, pp. 167-173.
 Chemical Age (London), vol. 75, No. 1937, Aug. 25, 1956, p. 358.

TABLE 13.—World production of salt, by countries, 1 1947-51 (average) and 1952-56, in short tons 2 —Continued

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
Europe:						
Austria:	1 005	1 001	1 240	1 400	893	692
Rock saltOther salt	1, 895 339, 800	1, 261 368, 255	1, 349 365, 485	1, 409 394, 661	438, 110	\$ 481,000
Bulgaria	\$ 66,000	\$ 77,000	97,003	91, 492	91, 492	\$ 92,000
France:	00,000	.,,	,			
Rock salt and salt from					0 0 0 0 0 0 0 0	
springs Other salt	2, 532, 683	2, 408, 584 745, 164	2, 670, 988 622, 677	2, 715, 835 564, 332	2, 374, 376 780, 435	2, 987, 701 606, 271
Other salt	620,016	745, 164	622, 677	504, 332	180, 455	000, 2/1
Germany, West: Rock salt. Brine salt. Greece.	2 018 777	2 674 205	3, 522, 953	3, 305, 217	3, 361, 434	3, 591, 326
Brine salt	2, 018, 777 267, 649 82, 617	2, 674, 205 305, 654 109, 847	327, 607	393, 423	369, 023	356, 046
Greece	82, 617	109, 847	86, 796	393, 423 86, 746	79, 511	82,700
Italy:						
Rock salt and brine salt	906, 906	835,005	983, 621	1, 133, 965 803, 938	1, 123, 789 947, 917 1, 262 644, 851 653, 670	1, 082, 769
Other salt Malta Netherlands Poland	1,074,042	1,009,736	818, 596	803, 938	947, 917	655, 607
Malta	2, 420 382, 791 693, 749	1, 679 457, 250 - 582, 020	4, 103 503, 664 616, 191	3, 618 563, 835	644 851	1,724 689,973
Polond	603 740	- 582 020	616, 191	625, 010	653, 670	* 661, 400
Portugal:	000, 120	002,020	,	, 525, 510		
Rock salt	53	50	54	60	53	* 60
Rock salt Other salt (exports)	24, 863	25, 301	3, 325	2, 513 (5)	1, 383	3, 948
Rumania	3 372, 600	(5)	(5)	(5)	(5)	(5)
Spain:	005 555	410 050	494 000	447 010	478 900	594 510
Spam: Rock salt. Other salt. Switzerland. U. S. S. R.* United Kingdom:	335, 777	413, 650	434, 098 1, 074, 363	447, 210 957, 580 128, 405	476, 209 671, 075 134, 977 7, 200, 000	534, 519 1, 247, 815
Other salt	784, 802 121, 227	702, 487 120, 530	121, 544	128 405	134 977	131 405
TI C C D 1	5, 600, 000	6, 600, 000	6, 800, 000	7, 200, 000	7 200 000	131, 405 7, 200, 000
United Kingdom	0,000,000	0, 000, 000	0,000,000	1,200,000	1,200,000	1,200,000
Great Britain:			ŀ			
Rock salt	48,604	50, 400	48, 160 4, 495, 689 8 11, 000	48, 366 4, 952, 650	76, 908 5, 296, 264 13, 879 149, 221	111, 145
Other salt Northern Ireland	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4, 363, 529	4, 495, 689	4, 952, 650	5, 296, 264	5, 475, 200
Northern Ireland	14, 298	12, 321	* 11,000	12, 143	13,879	10,065
Yugoslavia	120, 955	163, 559	136, 045	152, 119	149, 221	* 160,000
Total 1 3	20, 910, 000	22, 800, 000	24, 600, 000	25, 500, 000	25, 800, 000	27, 000, 000
Antos						
Asia: Aden	297, 743	421, 209	269, 274	235, 201	307, 544	239, 052
Afghanistan	33, 672	26, 125	30,016	31, 360	20,944	\$ 22,000
Burma	47, 524	65, 385	69, 909	107, 456	117, 297	96, 428
Ceylon	51, 455	54, 250	65, 970	57, 500	40,684	120, 783
China	3, 100, 000	5, 450, 923	\$5,500,000	4 b, 100, 000	8 6,600,000	\$ 6,600,000 \$ 5,025
Cyprus	0,824		2, 196	5, 249		1
India:	5 222	6.711	6, 465	4, 488 3, 038, 867 116, 899	10 005 000	4, 480 3, 550, 407 97, 332
Other salt	5, 222 2, 492, 578 85, 712	3, 158, 592	6, 465 3, 538, 383 117, 947	3, 038, 867	3, 335, 366	3, 550, 407
Indochina (Vietnam)	85, 712	146, 530	117, 947	116,899	71, 030	97, 332
Indonesia	341, 185 3 92, 800	356,046	293, 214	140,000	50, 846 294, 317	
Rock salt	\$ 92,800	6, 711 3, 158, 592 146, 530 356, 046 3 242, 500	241, 400	\$ 275,600	294, 317	154, 323
iraq	14, 048	1 41.4(4	20, 612	22, 408 26, 511	21, 121 30, 865	21, 456 33, 000
Israel	11, 116	13, 816	23, 141 507, 944	473, 552	619, 328	690, 487
Japan	393, 219 7 1, 920	477, 521 8, 003	7 778	11 472	8, 493	12 125
Jordan Korea, Republic of Lebanon ³	147 540	224, 722	7, 778 212, 400	11, 472 198, 547 4, 400	390, 128	12, 125 216, 775 5, 300
Lebanon \$	147, 540 5, 700	3,900	4,400	4, 400	5,000	5, 300
Pakistan:	, ,,,,,	١ ،	1	4		!
Rock salt	180, 923 212, 447	140, 392 190, 618	163, 716	164, 654	156, 559	180, 261
Pakistan: Rock salt. Other salt. Philippines. Portuguese India Ryukyu Islands. Syria. Taiwan (Formosa) Thailand (Siam) *	212, 447	190, 618	163, 716 189, 097	280, 539	289, 877	210, 176
Philippines	75, 148	18, 486	52,690	52, 990	88, 180 16, 500	70, 107 8 16, 500
Portuguese India	21,684	21, 999	17, 606 3, 545	14, 858 3, 771	5, 650	5, 215
Syria	1, 731 18, 923	2,811 17,653	21, 479	3, 771 14, 330 406, 232	1 10.447	33, 620
Taiwan (Formosa)	271, 867	343, 602	178, 536	406. 232	464, 127	336, 345
Thailand (Siam)	209,000	343, 602 275, 000	178, 536 275, 000	330,000	464, 127 330, 000	330,000
			1		1	
Rock salt	27, 333	34, 759 321, 423	29, 962	28,660	31, 355	33, 069
Rock salt Other salt Yemen	291, 059	321, 423	354, 020	28, 660 458, 561 110, 231	529, 109	385, 809
	1		110, 231	110, 231	110, 231	27, 575
remen						
Total 3	8, 438, 000	12, 050, 000	12, 300, 000	12, 700, 000	13, 950, 000	13, 600, 000

See footnotes at end of table.

TABLE 13.—World production of salt by countries, 1947-51 (average) and 1952-56, in short tons 2—Continued

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
Africa:						
Algeria	93, 328	90, 768	66, 409	108, 798	114, 640	117, 271
Algeria Angola	49, 206	63, 394	63, 723	60, 810		
Belgian Congo Canary Islands	819	683	893	928		8 63,000
Canary Islands	10, 559	16,800			505	\$ 500
Cape Verde Islands	18, 972	19, 941			21, 466	3 22, 000
Formt	10, 874		11,715	23, 326	24, 057	24, 221
Egypt Eritrea	512, 574	549, 384	418, 878	496, 552	442, 797	\$ 441,000
Ethiopia: Rock salt		170,858	212, 746	201, 723	202, 825	\$ 165,000
		8 11,000	16, 211	15, 432	16, 535	\$ 17,000
French Equatorial Africa French Morocco: Rock salt		4, 740	4, 519	6, 834	5, 291	\$ 5, 000
Rock salt	10, 980	10, 159	8, 317	3,648	14 000	90
Other salt	41, 462	33, 654	42, 113	38, 320	44, 252	30, 773
French Somaliland French West Africa	68,608	70, 989	67, 202	63, 389	20, 082	\$ 22,000
French West Africa	62, 200	55,000	40,000	24,000	24,000	24,000
Italian Somaliland \$	2,000	5, 500	5,000	5, 500	5, 500	5, 500
Kenya	19, 358	18, 760	23, 392	21,051	28, 421	24, 511
Libya	8 673	13, 228	13, 228	16, 535	16, 535	18, 894
Mauritius	4,099	2, 425	2, 646	3, 417	3, 858	
Mozambique		2, 120	2,010	0, 417	0,000	3,858
Rock salt	84	114	121	109	1 170	
Other salt	13, 444	11, 466	11, 891		153	79
South-West Africa: Rock salt	10, 111			13, 834	12, 421	³ 13, 000
ROCK Salt	4,038	7, 592	5, 176	5, 404	7,004	5,010
Other salt	19, 134	36, 661	40, 262	46, 792	58, 527	82, 253
Spanish Morocco	275	\$ 275	275	9, 389	19, 297	\$ 20,000
Sudan, Republic of the Tanganyika	44,804	58, 765	60, 473	61, 330	\$ 61,000	8 61,000
Tanganyika	14, 422	21, 225	22, 159	23, 961	26, 343	8 28,000
Tunisia	127, 182	118, 498	169, 108	181, 881	145, 505	* 143, 000
Uganda	7, 215	4, 528	8, 419	8,052	10, 091	9, 915
Uganda Union of South Africa		154, 957	140, 610	172, 186	154, 318	189, 249
Total 18	1, 438, 000	1, 565, 000	1, 490, 000	1,650,000	1, 540, 000	1, 550, 000
Oceania:			-			
Australia	281, 031	910 941	247 001	407 400	407.055	
New Zealand	201,001	310, 241	347, 201	425, 492	407, 855	371,000
New Zealand		784		1,680	3, 360	12, 768
Total	281, 031	311, 025	347, 201	427, 172	411, 215	* 383, 768
Wante 4.4.1 ()						
World total (esti- mate) 1	51, 000, 000	59, 700, 000	62, 900, 000	64, 400, 000	68, 000, 000	70, 700, 000

¹ In addition to the countries listed, salt is produced in Albania, Bolivia, Czechoslovakia, Gold Coast, Hungary, Madagascar, and Nigeria, but figures of production are not available. Estimates by senior author of chapter included in total.

² This table incorporates a number of revisions of data published in previous Salt chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

³ Estimate.

⁵ Data not available; estimate by senior author of chapter included in total.
6 Year ended Mar. 31 of year following that stated.
7 Average 1948-51.

Sand and Gravel

By Wallace W. Key 1 and Dorothy T. Shupp 2

SAND and gravel as a leading mineral commodity in 1956 played a prominent part in the economy of the United States. Enactment of the Federal Aid Highway Act of 1956 was expected to create a substantial increase in production of sand and gravel in the future.

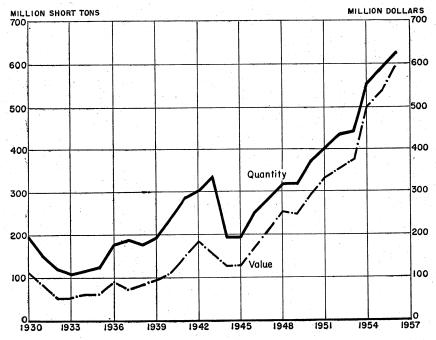


FIGURE 1.—Production of sand and gravel in the United States, 1930-56.

DOMESTIC PRODUCTION

An output of 625 million short tons valued at \$596 million in 1956 established a record by the sand and gravel industry for the 7th consecutive year.

The enormous new Federal Highway Program that was initiated in midyear appeared likely to have a major effect on sand and gravel production as it gains momentum, but it contributed little in 1956. The increased production was due mainly to the requirements of major projects such as the Kansas Turnpike that were already under construction. Close parallelism exists between sand and gravel

Commodity specialist.
Statistical assistant.

⁴⁶⁶⁸¹⁸⁻⁻⁵⁸⁻⁻⁻⁶³

output and construction activity; in 1956 over 90 percent went into construction.

As in previous years, California was the leading producing State; Michigan, Illinois, Ohio, Texas, Minnesota, New York, Wisconsin,

TABLE 1.—Sand and gravel sold or used by producers in the United States,1 1955-56, by classes of operations and uses

		1955			1956	•		ent of e in—
		Value)		Value	V* .	Ton-	Av-
	Short tons	Total	Av- erage	Short tons	Total	Av- erage	nage	erage value
COMMERCIAL OPERATIONS								
Sand: 2								
Glass Molding Building Paving Grinding and polishing 4	8, 254, 732 107, 832, 777 60, 773, 566	3\$16, 998, 701 15, 761, 767 99, 037, 911 52, 973, 958 3 4, 637, 959	1.91 .92	6, 837, 237 7, 961, 849 114, 828, 377 66, 336, 664 1, 668, 502	\$19, 575, 063 16, 639, 515 108, 552, 991 58, 517, 883 5, 250, 606	\$2. 86 2. 09 . 95 . 88 3. 15	+10 -4 +6 +9 -4	$^{+4}_{+9}_{+3}_{+1}$
Fire or furnace	544, 561 1, 470, 280 458, 829 718, 339 8, 544, 248	3 4, 637, 959 1, 104, 549 1, 713, 692 684, 564 404, 464 15, 848, 694	2.03 1.17 1.49 .56 1.85	686, 647 1, 356, 386 548, 557 917, 491 11, 539, 523	1, 395, 552 1, 825, 532 848, 820 551, 718 21, 312, 882	2. 03 1. 35 1. 55 . 60 1. 85	+26 -8 +20 +28 +35	+15 +4 +7
Total commercial sand			1.06		234, 470, 562	1. 10		+4
Gravel: 6 Building Paving Railroad ballast	89, 076, 641 111, 927, 874 9, 397, 672	103, 263, 780 108, 873, 370 5, 957, 003	1. 16 . 97 . 63	96, 743, 994 130, 030, 843 8, 392, 473	115, 080, 659 128, 137, 990	1. 19 . 99	+9 +16	$+3 \\ +2$
Other	13, 145, 954	10, 291, 411	.78	22, 050, 703	5, 905, 085 18, 698, 282	. 70 . 85	$^{-11}_{+68}$	+11 +9
Total commercial gravel	223, 548, 141	228, 385, 564	1.02	257, 218, 013	267, 822, 016	1.04	+15	+2
Total commercial sand and gravel	³ 42 0, 075, 930	³ 437, 551, 823	1.04	469, 899, 246	502, 292, 578	1. 07	+12	+3
GOVERNMENT-AND-CON- TRACTOR OPERATIONS 7								
Sand: Building Paving	1, 757, 760 22, 833, 251	1, 975, 512 11, 099, 094	1.12 .49	2, 321, 352 19, 567, 535	2, 057, 705 9, 586, 512	. 89 . 4 9	+32 -14	-21
Total Government-and- contractor sand	24, 591, 011	13, 074, 606	. 53	21, 888, 887	11, 644, 217	. 53	-11	
Gravel: Building Paving	15, 045, 125 132, 440, 934	7, 993, 634 77, 616, 137	. 53 . 59	5, 433, 527 128, 160, 814	3, 689, 348 77, 894, 753	. 68 . 61	-64 -3	+28 +3
Total Government-and- contractor gravel	147, 486, 059	85, 609, 771	. 58	133, 594, 341	81, 584, 101	. 61	-9	+5
Total Government-and- contractor sand and gravel	172, 077, 070	98, 684, 377	. 57	155, 483, 228	93, 228, 318	. 60	-10	+5
ALL OPERATIONS								
Sand Gravel	³ 221, 118, 800 371, 034, 200	³ 222, 240, 865 313, 995, 335	1. 01 . 85	234, 570, 120 390, 812, 354	246, 114, 779 349, 406, 117	1. 05 . 89	+6 +5	+4 +5
Grand total	⁸ 592, 153, 000	³ 536, 236, 200	. 91	625, 382, 474	595, 520, 896	. 95	+6	+4

Includes United States Territories and possessions and other areas administered by the United States.
 Includes sand produced by railroads for their own use—1955: 338,867 tons valued at \$68,234; 1956: 229,045 tons, \$98,254.

Revised figure.

[•] Revised ngure.

Includes blast sand as follows—1955: 803,962 tons valued at \$3,253,098; 1956: 776,961 tons, \$3,611,085.

Includes ground sand as follows—1955: 1,210,063 tons valued at \$3,389,996; 1956: 1,422,116 tons, \$10,208,266.

Includes gravel produced by railroads for their own use—1955: 5,204,389 tons valued at \$2,376,623; 1956: 3,651,198 tons, \$1,774,978.

Approximate figures for States, counties, municipalities, and other Government agencies directly or under lease.

Washington, and Indiana followed in that order. These 10 States produced 337 million tons, half of the total production.

A significant trend in the industry has been the consistent increase

over the last decade in output in tons per man-shift.

Commercial Production.—In 1956 the commercial plant was the preferred source of sand and gravel. It usually was better equipped to produce, process, stockpile, and blend the various sizes and grades required to meet the many and increasingly complex specifications. Also, many commercial producers began to operate additional portable plants to exploit deposits where construction of a permanent plant was not justified. This enabled the producer to assume job-site production, relieving the contractor of this responsibility. The material produced was thereby diverted to the commercial classification.

TABLE 2.—Sand and gravel sold or used by producers in the United States,¹ 1947-51 (average) and 1952-56

	Sand		Gravel (i railroad	ncluding ballast)	Total	
Year	Quantity (thousand short tons)	Value (thousand dollars)	Quantity (thousand short tons)	Value (thousand dollars)	Quantity (thousand short tons)	Value (thousand dollars)
1947-51 (average) 1952 1953 1954 1955	126, 581 156, 203 160, 581 194, 964 2 221, 119 234, 570	115, 803 148, 855 160, 336 199, 554 2 222, 241 246, 115	212, 843 279, 419 279, 818 361, 573 371, 034 390, 812	153, 510 204, 672 214, 459 304, 573 313, 995 349, 406	339, 424 435, 622 440, 399 556, 537 2 592, 153 625, 382	269, 313 353, 527 374, 795 504, 127 2 536, 236 595, 521

¹ Includes United States Territories and possessions and other areas administered by the United States. ² Revised figure.

TABLE 3.—Sand and gravel sold or used by producers in the United States in 1956, by States

State	Quantity (thousand short tons)	Value (thousand dollars)	State	Quantity (thousand short tons)	Value (thousand dollars)
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Mississippi Missouri Missouri	5, 955 7, 932 10, 200 86, 526 4, 369 1, 152 4, 369 1, 169 193 7, 874 31, 239 16, 667 12, 895 12, 515 5, 684 7, 196 9, 832 7, 196 9, 832 7, 196 10, 590 10, 590 10, 590 10, 590 10, 591 12, 150	4, 621 5, 880 6, 167 8, 729 96, 776 11, 082 4, 101 5, 034 2, 183 2, 4 503 12, 503 14, 353 8, 022 5, 974 12, 158 3, 085 12, 550 9, 520 9, 520 9, 520 12, 550 12, 550 12, 570 12, 177 17, 174 18, 254 18, Nevada New Hampshire New Jersey New Moxico New York North Carolina North Dakota Ohio Oklahoma Oregon Panama Canal Zone Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tonnessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming	11, 194 6, 054 27, 815 7, 581 5, 946 30, 200 5, 947 11, 637 40 14, 047 183 3, 229 12, 539 5, 629 29, 336 5, 836 1, 910 7, 783 16, 842 5, 110 27, 715	4, 569 1, 822 18, 239 18, 239 6, 776 28, 722 6, 204 4, 259 36, 146 4, 483 11, 646 21, 321 1, 203 2, 926 8, 423 6, 481 27, 213 4, 476 9, 954 15, 037 10, 711 19, 097 2, 936	

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1956, by States, uses, and class of operations

(Commercial unless otherwise indicated)

				8	land					
						Building				
State	G	lass	Mo	lding		·	T			
						nercial ¹	Government-and- contractor			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
AlabamaAlaska			(2)	(2)	872, 338 77, 448	\$761, 940 199, 023	26, 670	\$99, 35		
Arizona	234 086	\$611.75	7,000		77, 445	764, 250				
Arkansas California Colorado Connecticut	692, 998	2, 040, 420	(2)	(2)	16 012 033	1, 122, 097	53, 151 810, 971	10, 63 951, 81 173, 50		
Colorado			(2) 1,600	(2)	1, 452, 000	1. 261. 250	288, 000	173 50		
			1,600	1, 28	0 1, 117, 975	1, 043, 143				
Florida			(2)	(2)	281,610	764, 250 2 1, 122, 097 7 19, 088, 591 0 1, 261, 250 5 1, 043, 143 243, 625 3, 011, 061 1, 122, 671 14 557				
Florida	(2)	(2)	(2) (2)	(2) (2)	1, 617, 396	1, 122, 671				
						14, 557				
Hawaii Idaho Illinois Indiana					. (2)	(2)	4, 938	15, 713 13, 582 278		
Illinois	1, 316, 721	3, 175, 237	1 030 850	2, 583, 22	259, 170	331, 377	18, 407 1, 112	13, 582		
Indiana		0, 110, 20,	410, 338	569, 589	3, 097, 941	6, 553, 423 2, 308, 873	1,112	2/8		
			(2)	(2)	2 8, 224, 086 3, 097, 941 2, 514, 501 3, 636, 449 2, 024, 359 1, 100, 110 220, 749 2, 564, 383 2, 427, 389 6, 145, 545 3, 335, 880 12, 991, 436 344, 923 3, 295, 085 310, 486 3, 295, 086 3, 08, 873 2, 049, 568					
Kansas Kentucky	(2)	(2)	(2)	(2)	3, 636, 449	2, 647, 231 2, 189, 029	4, 497	4,003		
Louisiana			37, 579	37, 511	. 2,024,359	2, 189, 029	170 079			
Maine				07,01	220, 749	1, 317, 124 165, 900	179, 673	70, 422		
Maryland Massachusetts	(2)	(2)			2, 564, 383	2, 869, 436				
Michigan	(2)		2 (2)	1, 875, 766	2, 427, 389	2, 415, 922	581	215		
Minnesota	(2) 20, 332	(2) 83, 026	1, 703, 195	1,875,766	0, 145, 545	4, 710, 610	1,620	405		
Mississippi			(2)	(2) (2)	310, 481	2, 771, 103	4, 050 34, 763	1, 215 27, 810		
Missouri	457, 795	1, 113, 421	(2) (2) 77, 043	165, 495	2, 991, 436	2, 425, 494	6			
Montana Nebraska					344, 923	2,771,103 225,919 2,425,494 577,392 2,311,100	328, 925	134, 732		
Nevada	(2)	(2)	46, 409	87, 142	3, 295, 000	2,311,100	10, 015	10 140		
New Hampshire	1 1		l	1	(2)	299, 854 (2)	10,015	18, 143		
New Jersey New Mexico	(2)	(2)	1, 766, 525	4, 464, 229	3, 784, 795	(2) 3, 726, 538				
New York	(2)	(2)	(2)		516,000	599, 500 8, 417, 239 1, 250, 820 291, 750 6, 736, 928	84, 000	88,000		
North Carolina		(-)	(9)	(²)	1 767 310	8,417,239	20, 877 58, 073	28, 708 50, 026		
North Dakota					301, 500	291, 750	3,000	2,000		
Ohio Oklahoma	(2) (2)	(2) (2)	(2) 55, 727	(2) 50, 640	6, 182, 261	6, 736, 928				
Oregon	(2)	(2)	55, 727	50, 640 (2)	1, 235, 356	943, 167	65, 000	26,000		
Panama Canal Zone Pennsylvania			(-)		(2) 3, 784, 795 516, 000 8, 370, 927 1, 767, 319 301, 500 6, 182, 261 1, 235, 356 1, 060, 524 20, 047 3, 817, 152 71, 220 252, 227 1, 018, 419 465, 000 1, 248, 234 5, 404, 531	943, 167 1, 213, 976 24, 336 4, 660, 060	3, 523	6, 095		
Pennsylvania	(2) 1,600	(2) 2, 250	(2) 32, 245	(2) 21, 731	3, 817, 152	4,660,060				
Puerto Rico Rhode Island South Carolina	1,600	2, 250	32, 245	21,731	71, 220	50, 282 243, 120				
South Carolina	(2)	(2)	(2)	(2)°	252, 227	243, 120				
South Dakota					465, 000	529, 997 381, 650				
Tennessee	(2) 217, 267	(2) 533, 501	(2)	(2) 147, 286	1, 248, 234	1, 519, 524		- 		
TexasUtah	217, 267	533, 501	88, 249	147, 286	5, 404, 531	5, 065, 266				
Vermont			(2) 88, 249 (2) (2)	(2) (2)	878, 000 90, 578	1, 519, 524 5, 065, 266 650, 500 78, 325	71,000	116,000		
Virginia Washington West Virginia Wisconsin	(2) (2) (2) 17, 286	(2) (2)			(2)	(2)	10, 800 30, 056 152, 751	1,350 15,281		
Washington	(2)	(2)	(2)	(2)	1, 897, 682	1, 931, 573	152, 751	169, 643		
west virginia	(2) 17 00e	(2) 10, 215	(2)	(2)	1, 897, 682 (2) 2, 489, 064	(2)		· 		
Wyoming	17, 280	10, 215	813,030	1, 758, 440	2, 489, 064	2,051,064	53, 393 1, 500	31, 288		
Wyoming Undistributed 2	3, 879, 152	12, 005, 239	1, 742, 050	4, 870, 884	2, 834, 234	125, 000 3, 260, 868	1,500	1,500		
Total	6, 837, 237				114,828,377		2, 321, 352	2, 057, 705		

¹ Includes 4,423 tons of building sand valued at \$8,576 produced by railroads for their own use.
² Figures that may not be shown separately are combined as "Undistributed."

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1956, by States, uses, and class of operations—Continued

	Sand—Continued										
		Pav	ning .		Grindi	ng and					
State	Comn	nercial	Governm	nent-and-		ning 3	Fire or furnace				
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value			
AlabamaAlaska	836, 200 26, 900 227, 000	\$682, 202 64, 840 251, 000	447, 631 160, 667	\$278, 599 280, 003	(2)	(2)					
Arizona	227,000	251,000	2, 629, 000	1, 469, 500							
Arkansas	1, 205, 4 3 5 7, 247, 940	881, 866 7, 614, 506		1							
California	7, 247, 940	7,614,506	1, 260, 176 72, 500	995, 743 48, 000 81, 593	145, 197	\$480, 279	(2)	(2)			
Colorado Connecticut	170, 500 1, 188, 715	158, 875 1, 077, 728	240, 993	48,000 91 503	(2) 7, 100	⁽²⁾ 5, 680					
Delaware	(2)	1,011,120	7,860	14, 148	1, 100						
Florida	(2) 881, 445	(2) 651, 712 176, 223	*,000		(2)	(2)					
Georgia	273, 635	176, 223		7,700	(2) (2)	(2) (2)					
Guam			14,820	9,880							
Hawaii		05.000	40	60							
Idaho Illinois	66,063	95, 398	11, 592 161, 354	2, 718 57, 417	(2) 364, 833	1, 622, 429	7, 620	\$23, 413			
Indiana	2, 664, 363 3, 120, 180	2,080,129 2,649,660	25, 102	10, 650	00±,000	1, 022, 420	(2)	(2)			
Iowa	1, 734, 050	1, 193, 696	172, 966	51, 951	(2)	(2)					
Kansas	4, 223, 134	2, 662, 986	686, 294	266, 804	(2) (2)	(2) (2)					
Kentucky	804, 730	804, 379	1, 120	700							
Louisiana	1, 910, 325	1,841,690			(2)	(2)					
Maine Maryland Massachusetts	326, 907	143, 529	331, 436	189, 500							
Maryland	2, 794, 929	3, 171, 984	74, 271 85, 284	43, 514			(2) (2)	(2)			
Massachusetts	1, 582, 281	1, 288, 516	85, 284 809, 456	55,000	(3)	(2)	(9)	(9)			
Michigan	5, 157, 927 1, 228, 132	4, 044, 540 746, 262	344, 125	310, 066 112, 883	(2)						
Minnesota Mississippi	896, 493	699, 200	39, 150	7,830							
Missouri	677, 138	609, 495	324, 450	502,700	(2)	(2)	14, 575	31, 31			
Montana	116, 105	131, 596	12 825	1,900							
Nebraska	1, 948, 000	1, 373, 075	137, 500	76,000							
Nevada	(2)	(2)	28, 347	42,009	7	182					
New Hampshire	309, 720	225, 305	325, 161	80, 384	00 550	202 007	13, 449				
New Jersey	1, 235, 148	1,069,432	13, 410	24, 138 11, 450	96, 558	393,037	15, 449	24, 552			
New Mexico New York	4, 897, 649	4, 636, 483	8,000 166,452	89, 723	3, 470	1 215					
North Carolina	310, 153	188 580	2, 190, 367	1, 030, 310	0, 110	1,210					
North Dakota	110,000	188, 580 87, 750	1, 500, 000	750,000							
Ohio	4, 530, 468	4.604.291	98, 931	29, 266	(2) (2)	(2) (2)	(2)	(2)			
Oklahoma	964, 603	793, 457 297, 722	771, 362	274, 178	(2)	(2)					
Oregon Panama Canal Zone.	262, 839	297, 722	22, 565	15, 049	260	500					
Panama Canal Zone.	20,048	24, 337	9,300	16, 740	(2)	(2)	(2)	(2)			
Pennsylvania	2, 245, 280 5, 940	2, 990, 176 11, 000	8, 500	10,740	(7)	(7)	(7)	(2)			
Rhode Island	305, 115	246, 950	1,041	424			15, 274	12, 200			
South Carolina	(2)	(2)	37, 547	14, 848	(2)	(2)	(2)	(2)			
South Dakota	159, 500	115, 500	3, 500	2, 250							
Tennessee					(2) (2) (2)	(2) (2) (2)					
Texas	3, 182, 057	2,806,609	1, 395, 905	328, 581	(2)	(2)		10.000			
Utah	298,000	304,000	182, 500	125, 500	(4)	(4)	20,000	10,000			
Vermont	1 456 950	51, 203 1, 094, 523 479, 959	13, 028 22, 393	1, 475 8, 553							
Washington	541 941	479 050	325 540	294, 675							
Virginia Washington West Virginia Wisconsin	965. 367	1, 013, 051	42	294, 675 224	(2)	(2)	36, 993	46, 41			
Wisconsin	1. 515, 207	1. 144, 674	4, 371, 022	1, 535, 876	(2) (2)	(2) (2)					
Wyoming	32, 500	34,000	24,000	36,000							
Undistributed 2	711, 086 3, 182, 057 298, 000 89, 340 1, 456, 852 541, 241 965, 367 1, 515, 207 32, 500 880, 024	1, 013, 051 1, 144, 674 34, 000 497, 247			1, 051, 077	2, 747, 234	578, 736	1, 247, 659			
Total			19, 567, 535	9, 586, 512	1, 668, 502	5, 250, 606	686, 647	1, 395, 552			

Figures that may not be shown separately are combined as "Undistributed."
 Includes 776,961 tons of blast sand valued at \$3,611,085.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1956, by States, uses, and class of operations—Continued

				Sand—Co	ontinued			
State	Eng	ine 4	Fil	ter	Railroad	ballast ⁵	Oth	ner 6
	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value
AlabamaAlaska	(2)	(²)			77, 154	\$65, 581	4,800	\$44, 150
Arizona	(²)	(2)			(2) (2) 27, 338	(2)	(2)	(2)
Arkansas		400.000	(2)	(2)	(2)	(2) 20, 715	(2)	(2)
California Colorado	50, 575	\$98, 838	69, 496	\$105, 315	27, 338	20, 715	3, 354, 513	4, 132, 014
Connecticut	(2) 417	(²) 337	(2) 500	(2) 750			20, 000 (2)	19,000
Delaware	(2)	(2)	(-)		(2)	(2)	(2)	(2)
Florida	ìó, 825	(2) 5, 600	(2)	(2)	(2) 23, 314	(2) 20, 257	248, 951	155, 431
Georgia	12, 564	5, 902	(2)	(2) (2)	10,742	5, 370	77, 319	101, 010
Guam								
Hawaii Idaho							(2) 27, 034	(2)
Illinois	86, 347	114, 584	(2) 24, 790	(2) 22, 584	35, 969 63, 548	13, 322 43, 332	27, 034 761, 836	2,814
Indiana	95, 497	71, 551	(2)	(2)	(2)	(2)	128, 740	3, 977, 140 87, 989
Iowa	37, 828	48, 737	(2) (2)	(2)	22, 300	4,000	89, 691	49,043
Kansas	62, 308	50, 914	21,771	(2) 34, 061	51, 738	30, 523	279, 698	163, 814
Kentucky	(2) 2, 927	(2) 1, 592			(2)	(2) 39, 307	48,025	54, 035
Louisiana		1,592	(2)	(2)	41, 994	39, 307	(2) (2) (2)	(2)
Maine Maryland	(2) (2)	(2) (2)			383	273	(2)	(2) (2)
Massachusetts	(2)	(4)	(2) 8,000	(2) 10,000		(%)	303, 342	024 500
Michigan	80, 782	62, 597	(2)	(2)	(2) 72, 928	(2) 36, 464	303, 342 441, 058	264, 533 416, 399
Minnesota	(2)	(2)		(-)	6, 300	3, 568	220, 132	464, 601
Mississippi	(2) (2)	(2) (2) 34, 394			0,000		73, 870	29, 960
Missouri	49, 770	34, 394	14, 876	30, 496	9, 971	3, 789	108, 021	484, 972
Montana	(2) 6, 500	(2) 4, 875 200					(2) 7,000	(2) 5, 250
Nebraska Nevada	6, 500 115	4,875	1,000	750	96,000	72,000	7,000	5, 250
New Hampshire	(2)	(2)	3,000	4, 480	(2)	(2)	80, 850 (2)	150, 196
New Jersey	(2) (2)	(2) (2)	(2)	(2)	(2) (2) (2)	(2) (2) (2)	568, 031	(2) 1, 753, 728
New Mexico						(-)	000, 001	1, 100, 120
New York	28, 636	32,017	40, 823	59, 403			294, 821	181, 787
North Carolina			6,000	4,000	(2)	(2)	(2)	(2)
North Dakota								-=-==
Ohio Oklahoma	(2)	(2)	90, 430 68	133, 422 50	18, 360	15, 606	924, 838	
Oregon.	(2) (2) (2)	(2) (2) (2)	964	357	(2)	(2)	(2) 74, 453	(2) 39, 367
Panama Canal Zone_						(-)	11, 100	00, 001
Pennsylvania	(2)	(2)					(2)	(2)
Puerto Rico							(2) 2,650	(2) 1,500
Rhode Island							(2)	(2)
South Carolina South Dakota	(2)	(2)	(2)	(2)		(0)	35, 031	41,040
Tennessee	4, 756	6, 446	(2) (2) (2)	(2)	⁽²⁾ 2, 676	2 245	100, 976	(2) 131, 402
Texas	16, 146	12, 406	(2)	(2) (2) (2) (2)	73, 140	(2) 3, 345 25, 514	982, 083	776, 460
Utah	(2)	(2)			10,110	20,011	(2)	(2)
Vermont	525	(2) 1,008					(2) (2)	(2) 29, 592
Virginia	81,089	81, 510					26 294	29, 592
Washington West Virginia	(2) (2) (2)	(2) (2) (2)			(2)	(2)	(2) (2) 688, 757	(2) (2)
Wisconsin		(2)	(2)	(2)	(2)	(2)	(2)	
Wyoming	(7)	(7)	(4)	(*)	(4)	(4)	688, 757 7, 000	413, 854 1, 000
Undistributed 2	728, 779	1, 192, 024	266, 839	443, 152	283, 636	148, 752	1,559,709	
						110, 102		-, 002, 001
Total	1, 356, 386	1,825,532	548, 557	848, 820	917, 491	551 719	11 520 522	21, 312, 882

² Figures that may not be shown separately are combined as "Undistributed."
4 Includes 28,653 tons of engine sand valued at \$14,935, produced by railroads for their own use.
5 Includes 155,294 tons of ballast sand valued at \$63,292, produced by railroads for their own use.
6 Includes 40,675 tons of sand valued at \$11,451, used by railroads for fills and similar purposes. Also includes 1,422,116 tons of ground sand valued at \$10,208,266. See table 11 for ground sand.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1956, by States, uses, and class of operations—Continued

	Gravel									
-	•	Build	ling			Pav	ing			
State	Comm	ercial 7	Governm		Commo	ercial 8	Governm			
	·				T		and it.	YY-1		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
Alabama	1, 312, 203	\$1, 414, 966 261, 667 1, 167, 500 1, 507, 585 21, 337, 879 1, 955, 750 1, 254, 872 167, 413			680, 139	\$750, 988 151, 051	90, 810 4, 926, 995	\$49, 68 4, 117, 46 1, 205, 56 1, 865, 29 7, 864, 78 5, 449, 68		
laska	96, 067	261, 667	52, 526	\$145, 087	85, 344 911, 500	841, 500	1, 664, 000	1, 205, 50		
Arizona	1, 242, 000 1, 453, 913	1, 107, 500	224,000	120,000	2 575 178	2, 308, 671	2, 709, 326 9, 661, 732 9, 427, 500	1, 865, 2		
Arkańsas Dalifornia	1, 400, 910	21 337 879	824 508	1 332 287	2, 575, 178 18, 633, 827 1, 872, 500 471, 335	99 543 075	9, 661, 732	7, 864, 7		
Jainorma	1 751 500	1 955, 750	824, 508 5, 000	7, 000	1, 872, 500	1, 894, 500	9, 427, 500	5, 449, 6		
ColoradoConnecticut	1, 033, 939	1, 254, 872	2, 025	709	471, 335	441, 892	00. 1001	22,0		
Delaware	87, 516	167, 413			560, 7 44]	357, 281	11, 790	23, 5		
Florida	(2) (2)	(2) (2)			148, 350	250, 600	8, 200	8, 4		
Delaware. Florida. Jeorgia. Juam. Hawaii. daho. Illinois. Indiana. owa. Kansas. Kentucky. Louisiana	(2)	(²)			(2)	(2)	6, 200			
Juam	2 140	19 565			64, 995 1, 394, 235 6, 249, 004 5, 289, 760	172, 538	100	1		
dawall	3, 140 381, 550	434 124	1, 731, 974	150, 576	1, 394, 235	1, 212, 143	3 587 500	3, 098, 5		
Ilinois	7 721 934	6. 711, 023	79, 455	29, 015	6, 249, 004	4, 673, 035	1, 350, 622 379, 700 2, 907, 337 1, 141, 989	651, 6 180, 9 1, 117, 8 317, 4 68, 2		
ndiana	3, 262, 212	2, 989, 025	43, 056	17, 222	5, 289, 760	4, 762, 624	379, 700	180, 9		
0W8	1, 372, 847	1, 882, 572			3, 793, 191 2, 113, 019	2, 652, 141	2, 907, 337	1, 117, 8		
Xansas	193, 002	168, 118	25, 920	5, 184	2, 113, 019	1, 532, 922 1, 163, 001	1, 141, 989	68 9		
Kentucky	1, 430, 238	1, 615, 376			2 760 408	5, 305, 395	74 250	14, 8		
Louisiana	381, 550 7, 721, 934 3, 262, 212 1, 372, 847 193, 002 1, 430, 238 2, 374, 322 406, 825 2, 013, 973	12, 565 434, 124 6, 711, 023 2, 989, 025 1, 882, 572 168, 118 1, 615, 376 3, 022, 430 438, 108 3, 532, 198 2, 890, 757 5, 391, 239 3, 558, 361 676, 301 2, 166, 852 720, 493	16, 835	5, 892	1, 121, 765 3, 760, 408 601, 938	345, 380	136, 751 74, 250 5, 156, 273	1, 743, 3		
Maine	2 012 073	3 532 108	10, 650	0,002	2, 046, 593	2, 296, 380		307, 4 235, 2		
Maine Maryland Massachusetts	2, 013, 973 2, 274, 967 5, 218, 563	2, 890, 757				1 494 077	516, 770 6, 101, 901 14, 455, 533 250, 264 1, 079, 770 6, 693, 763	235, 2		
		5, 391, 239	8, 897	2, 669	15, 185, 556	13, 552, 530	6, 101, 901	3, 322, 2 6, 779, 8		
Minnesota Mississippi Missouri	2, 430, 843 607, 071 2, 042, 191 597, 291	3, 558, 361	70,000	21,000	4, 292, 588	2, 822, 249	14, 455, 533	6, 779, 8		
Mississippi	607, 071	676, 301			2, 172, 040	2, 438, 368 1, 164, 439	200, 204	111, 8 730, 4		
Missouri	2, 042, 191	2, 166, 852	20, 250	11, 250 46, 143	1, 304, 009	1, 065, 104	6 693 763	3. 828.		
Montana	597, 291	720, 493	18, 660	40, 140	3 524 000	2, 591, 375		3, 828, 2 385, 0		
Nebraska	226 004	312 264	144, 162	78, 537	709, 761	415, 846	2, 753, 520	2 430 7		
Nevada New Hampshire	714, 500 226, 004 176, 971	243, 088	111, 102		578, 384	738, 705	2, 753, 520 2, 102, 503 52, 950 4, 179, 000	247, 51, 51, 758, 449, 5		
Now Iorsey	1 1 569 084	2, 886, 765	5, 604 263, 000	1,001			52, 950	51,		
New Jersey New Mexico	629,000	767, 500	263, 000	157, 500	i 334,000	362, 650	4, 179, 000	3, 758,		
New York	5, 885, 760	8, 513, 814	90, 896	39, 444	3, 917, 430 1, 545, 957	4, 118, 184	2,091,100	914		
New York North Carolina North Dakota	629, 000 5, 885, 760 881, 246	1, 309, 121	76, 161	152, 322	623, 000	1, 661, 208 429, 000	2, 091, 188 387, 629 2, 495, 000	1. 718.		
North Dakota	1 314 (88	JI 390, 200	227, 000	272, 000	9, 738, 650	10, 788, 430	1 108, 719	214, 1, 718, 48,		
OhioOklahomaOregon	5, 413, 689 186, 268	990 145	18 750	7,500	495, 088	500, 774	1, 674, 922 3, 296, 906	648, 3, 085,		
Orogon	2, 196, 358	2, 204, 646	18, 750 135, 190	7, 500 113, 352	3, 846, 876	4, 054, 116	3, 296, 906	3, 085,		
Panama Canal Zone.	2, 100, 000	1			l			27,		
Pennsylvania	4, 039, 259	5, 471, 500 80, 343 325, 488			1, 934, 265	2, 413, 949	13, 950	21,		
Puerto Rico	56, 046	80, 343			7, 195 251, 927	12, 129 260, 651	56, 424	32,		
Rhode Island	252,609	325, 488			(2)	(2)	00, 121			
South Carolina	496 004	397 250	118 000	83, 500	1, 174, 500	818, 150	10, 029, 000	6, 543,		
South Dakota	486, 000 1, 067, 34	8 1 214 237	118, 000 94, 900	36, 500			484, 099	6, 543, 136, 1, 369,		
Tennessee Texas Utah	5, 625, 10	6, 988, 421	13, 411	2, 682	6, 454, 753	7, 072, 892	4, 615, 263	1, 369,		
IItah	811,00	613, 500	298, 000	256, 000	1, 221, 500	976, 000	1, 655, 500	1, 155, 225,		
Vermont	145, 12	325, 488 (2) 387, 250 8 1, 214, 237 0 6, 988, 421 0 6, 13, 500 2 159, 798 3 2, 840, 894 4 2, 526, 690 815, 899 9 2, 635, 983 0 185, 000 9 1, 844, 552	109, 890	38, 850	1, 178, 765 6, 454, 753 1, 221, 500 289, 320 2, 475, 759 2, 725, 341 820, 870 5, 580, 000	234, 999	1, 655, 500 1, 047, 397 98, 205	85,		
Virginia	145, 12 1, 788, 65	3 2, 840, 894			2,4/0,759	2, 689, 551	7, 180, 397	5, 932,		
Washington	2, 579, 66	4 2, 526, 690	347, 800	383, 211	820 870	2, 491, 801 1, 067, 090	,, 100, 007	0, 002,		
West Virginia	726, 11	0 9 625 002	342, 657	145, 955	5, 483, 759	4, 173, 792	6, 949, 625	4, 082,		
W isconsin	3, 166, 76 142, 00	185 000	25, 000	26, 000			3, 052, 000			
Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Undistributed 2	1, 326, 94	9 1. 844. 552	20,000		675, 707	942, 867				
Olidistributed	1,020,01	1, 511, 601					128,160,814	77 004		
	96, 743, 99	4 115,080,659	1 = 100 FOR	1 9 600 946	いてらい いらい ピオコ	::::::::::::::::::::::::::::::::::::::	11.12X 160 X14	1//. 094.		

Figures that may not be shown separately are combined as "Undistributed."
 Includes 70,662 tons of building gravel valued at \$29,480, produced by railroads for their own use.
 Includes 137,583 tons of paving gravel valued at \$10,933, produced by railroads for their own use.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1956, by States, uses, and class of operations—Continued

Alabama			Gravel-	-Continued			Sand a	nd gravel	
Alabama	State	Railroa	d ballast 9	Ot	her 10	Total c	ommercial	Total G	overnment- ontractor
Alaska			Value		Value		Value		Value
Arkansas. 31,532 14,509 193,875 106,880 7 308,360 6,734,779 1,295, Colorado. 343,495 304,369 9,388,547 7,651,486 73,988,568 86,31,588 12,587,871,1,140 10,10	Alabama	171, 91	\$102, 43			9 4, 460, 44	7 \$4, 293, 181	538, 44	1 \$328, 288
Arkansas. 31,522 14,599 198,875 106,890 7,000,000 7,00	Arizona	131, 33	117, 57			8 788, 24	7 1, 237, 891	5, 166, 85	8 4, 641, 908
Osalifornia 343, 495 304, 369 9, 388, 547 7, 651, 488 73, 686, 568 53, 530, 600 55, 631, 589 12, 573, 300 55, 186 53, 530, 600 54, 03, 475 973, 300 5, 736, 600 5, 736, 600 5, 736, 600 5, 736, 600 5, 736, 600 5, 736, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 5, 738, 600 738, 730 19, 650 377, 738, 600 5, 738, 600 738, 730 19, 650 377, 738, 600 5, 738, 600 19, 650 378, 730 19, 650 378, 731, 19, 19, 600 19, 650 378, 711 19, 650 378, 731, 19, 600 19, 650 378, 711 19, 650 378, 731, 19, 600 48, 200 9, 11, 114, 111 48, 200 9, 11, 114, 111 48, 200 9, 11, 114, 111 48, 200 9, 11, 114, 111 48, 200 9, 11, 114, 111 48, 200 9, 11, 114, 114, 111 48, 200 19, 21, 21, 214 11, 114, 114, 111 48, 200 <td>Arkansas</td> <td>21 529</td> <td>14 500</td> <td></td> <td>(2)</td> <td></td> <td></td> <td></td> <td></td>	Arkansas	21 529	14 500		(2)				
Connecticut	California	343 40	304 366	193, 876	196, 88	0 7, 213, 03	8 6, 733, 479	2, 986, 47	7 1, 995, 923
Illinois	Colorado	010, 100	001,00	9, 300, 347	7, 051, 48	0 73, 968, 56	8 85, 631, 589	12, 557, 38	7 11, 144, 623
Illinois	Connecticut	20,000	24.000	150 604	1 (~)	5, 559, 00	J 0, 403, 475	1 9, 793, 00	0 5, 678 , 150
Illinois	Delaware			(2)				303, 76	
Illinois	Florida			25	1 %	5 814 68	3 5 022 475	19, 65	0 37, 728
Illinois	Georgia			(2)	(2)	2 411 12	2 167 160		16, 100
Illinois	Guam			.		3, 848	14, 557	14, 71	9, 880
Illinois	Hawaii					1 122 071	1 496 770	F 05	15, 922
Kentncky	Illinois	(2)	(2)	11, 135	13, 420	3 2, 524, 987	2, 395, 967	5, 349, 47	3, 265, 450
Kentncky	Indiana	616, 909	404, 977	513, 190	531, 488	3 29, 646, 040	32, 516, 016	1, 592, 54	738, 363
Kentncky	Towa	412, 335		232, 124	155, 358	16, 219, 127	14, 144, 227	447, 85	208, 861
Kentricky	Kansas	30,870	15, 139	86, 387				1 3 080 30	21 1 160 914
Maryland	Kentucky	(2)	(2)	41, 119	107, 588	10, 656, 464	7, 428, 877	1, 858, 700	593, 435
Maryland	Lonisiana	100 220		2		5, 546, 258		137, 87	68, 903
Minesota 1,366,553 604,865 379,094 212,364 1,323,184 1,339,684 1,877,708 6,914, Missouri (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Maine	32, 967						253, 923	85, 272
Minesota 1,366,553 604,865 379,094 212,364 1,323,184 1,339,684 1,877,708 6,914, Missouri (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Maryland	02,000	0,000		(2)	0 664 524	1, 140, 075	5, 504, 544	1, 938, 742
Minesota 1,366,553 604,865 379,094 212,364 1,323,184 1,339,684 1,877,708 6,914, Missouri (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Massachusetts	13, 878	5, 138		575 198	9 586 700	0 220 282		
Mississippi 128, 525 58, 391 778, 482 305, 949 4, 990, 499, 4, 554, 103 324, 177 147, 47, 47, 47, 47, 47, 47, 47, 47, 47,	Wilchigan	1 222 791	226, 509	355, 417	230, 993	35 228 072	1121 510 510	6 021 97	290, 448
Missouri	Minnesota	1, 366, 553	604, 865	379, 094	212, 364	13, 323, 184	11, 339, 684	14 873 709	6 014 617
Mohrana 598,032 523,895 263,318 136,548 2 977,197 3,162,755 7,064,173 4,011, Nebraska 29,000 22,875 9,621,000 6,942,925 729,000 42,569 1,999,213 729,000 42,569 1,010 1,010 1,750,448 18,160,849 71,944 1,011, New Hampshire (2) (2) (2) (3) (4) (4) (7,50,469 1,999,213 729,000 42,569 1,010 1,	M ississippi	128, 525		778, 482	395, 949	4, 990, 499	4, 554, 103	324 177	147 102
Nevada (2) (2) (2) (3) (40, 40, 40, 40, 40, 40, 40, 40, 40, 40,	Montone	(2)	(2)	41, 142	34,065	1 8, 160, 792	8 872 944	1, 424, 476	1 244 407
New Hampshire. (2) (2) (3) (49, 992) (25, 969) (1, 434, 815) (1, 494, 339) (2, 427, 664) (377, 788) (41, 499) (41, 450) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (42, 456) (41, 450) (41, 450) (42, 456) (41, 450) (41, 4	Nahraska	598, 032	523, 895	263, 318	136, 548	2, 970, 197	3, 162, 758	7, 054, 173	1 4, 011, 052
New Mexico (2) (3) 34, 469 82, 506 11, 122, 481 81, 810, 849 71, 964 77. New Mexico (2) (3) 1, 600, 058 1, 098, 761 52, 445, 454, 528 114, 459, 2, 369, 413, 607, 707 the Carolina (2) (2) (3) (4) 1, 868, 363 4, 816, 849 2, 712, 230 1, 447, 707 1, 721, 001 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 1,	Marrada	(9)	/2\		22, 875		6, 942, 925	729,000	461,000
New Mexico (2) (3) 34, 469 82, 506 11, 122, 481 81, 810, 849 71, 964 77. New Mexico (2) (3) 1, 600, 058 1, 098, 761 52, 445, 454, 528 114, 459, 2, 369, 413, 607, 707 the Carolina (2) (2) (3) (4) 1, 868, 363 4, 816, 849 2, 712, 230 1, 447, 707 1, 721, 001 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 4, 225, 000 1, 721, 000 1, 517, 000 1,	New Hampshire	2	(2)		103, 040		1, 999, 213	2, 936, 044	2, 569, 480
North Carolina (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	New Jersey		1		20, 909	1, 434, 815	1, 494, 339	2, 427, 664	327, 891
North Carolina (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	New Mexico	(2)	(2)	04, 005	02, 000	1 520 500	18, 160, 849	71, 964	77, 896
(2)	IVEW IOIK	34.47/11	35, 795	1, 600, 058	1, 098, 767	25 445 545	28 114 450	2 260 412	4, 015, 700
Oldon 463, 133 461, 341 1, 980, 195, 21, 2407, 288 20, 992, 172, 36, 688, 669 207, 550 78, 78, 78, 78, 78, 78, 78, 78, 78, 78,	North Carolina	(2)	(2)	(2)	(2)	4, 868, 363	4 816 840	2, 008, 410	1 447 996
Oldon 463, 133 461, 341 1, 980, 195, 21, 2407, 288 20, 992, 172, 36, 688, 669 207, 550 78, 78, 78, 78, 78, 78, 78, 78, 78, 78,	North Dakota		269, 250	69, 500	à 9, 000	1 721 000	1 517 000	4 225 000	2 742 250
Oregon. 177, 284 194, 504 525, 737 21, 377 3, 416, 659 3, 885, 886 2, 530, 034 956, 727 401, 899 8, 478, 999 8, 426, 599 3, 485, 886 2, 530, 034 9, 56, 727 401, 899 8, 478, 999 8, 426, 599 3, 485, 886 2, 530, 034 9, 56, 729 40, 095 48, 673 48, 673 40, 095 48, 673 44, 673 40, 095 48, 673 44, 673 41, 220 40, 095 48, 673 44, 673 41, 220 40, 095 48, 673 44, 673 41, 220 41, 220, 996 1, 230, 904 191, 485 27, 665 35, 228 14, 220, 996 1, 230, 909 7, 7, 665 35, 228 1, 230, 906 1, 220, 996 1, 230, 909 7, 7, 665 30, 701 41, 220, 996 1, 230, 906 1, 230, 906 1, 230, 909 7, 7, 665 30, 761 1, 230, 906 1, 230, 906 1, 230, 906 1, 230, 906 1, 230, 906 1, 230, 906 1, 230, 909 1, 77, 665 31, 230, 90 2, 971, 654 37, 477 14, 24, 24, 24, 24, 24, 24, 24, 24, 24, 2	Ohlohomo	463, 133	461, 341	1, 980, 195	2, 407, 288	29, 992, 172	36, 068, 069	207, 650	78, 106
Panama Canal Zone 171, 22 133, 004 225, 727 341, 899 178, 999 8, 285, 590 3, 488, 184 3, 219, 744, 223, 181 218, 590 3, 488, 184 3, 219, 744 40, 009 4, 003 818, 212, 226 283, 046 91, 243, 250 444, 023, 818 21, 276, 341 23, 250 444, 023, 818 21, 276, 341 23, 250 444, 023, 818 21, 276, 341 23, 250 444, 023, 818 21, 276, 341 23, 250 444, 023, 818 21, 276, 341 23, 250 444, 023, 818 21, 276, 341 23, 250 444, 023, 818 21, 270, 341 23, 250 444, 023, 818 21, 270, 341 23, 250 444, 023, 818 21, 270, 341 23, 250 444, 023, 818 21, 270, 341 23, 250 444, 023, 818 21, 270, 341 21, 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270 270, 270, 270 270, 270, 270 270, 270, 270 270, 270, 270 270, 270, 270 270, 270, 270 270, 270, 270, 270 270, 270, 270, 270, 270	Orogon	177 004						2, 530, 034	956, 620
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panama Canal Zone		194, 504	525, 727	401, 899	8, 178, 999	8, 426, 590	3, 458, 184	3, 219, 777
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pennsylvania	103 163	76 570			40, 095	48, 673		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Puerto Rico	100, 100	10, 519		35, 228	14, 023, 818	21, 276, 341	23, 250	44, 640
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rhode Island			107 359	12, 200 30 706	1 250 006	191,480		
South Dakota 77,000 65,000 4,000 2,250 2,388,500 1,794,050 10,150,500 6,629,0 Tennessee 123,556 123,064 260,016 260,016 200,175 5,090,342 6,307,817 578,999 172,70 Utah 69,000 41,000 270,500 146,200 3,685,500 23,311,118 25,511,901 6,024,579 1,700,6 Vermont. 20,600 49,062 66,222 728,663 63,744 1,811,15 267,6 Washington 574,438 391,064 422,886 293,208 8,835,304 8,270,703 8,006,488 6,780,0 Wisconsin 821,067 413,587 761,901 498,689 15,998,474 13,301,324 11,716,697 5,758,8 Wyoming 34,000 9,000 481,587 841,537 841,537 721,500 3,102,500 22,214,0 Undistributed 2 1,122,244 781,509 821,125 841,537 841,537 721,500 3,102,500 2,214,0	South Carolina	(2)	(2)	101,000	00, 100			97, 400	32, 549
Tennessee	South Dakota	77, 000	65, 000	4,000	2, 250	2 388 500	1 704 050	07,047 10 150 500	6 690 000
160, 107 160, 107	Tennessee	123, 556	123, 064	260, 016	260, 175	5, 050, 342	6 307 817	578 QQQ	179 756
Washington 574, 438 391, 064 422, 886 293, 208 8, 835, 304 8, 27, 073 8, 06, 488 16, 500 20, 20, 27 5, 110, 014 10, 710, 619 42 42 8, 835, 304 8, 27, 073 8, 006, 488 6, 780, 0 42<	Texas		165, 057	906, 487	1,004,364	23, 311, 118	25 511 001	6.024.579	1 700 653
Washington 574, 438 391, 064 422, 886 293, 208 8, 835, 304 8, 27, 073 8, 06, 488 16, 500 20, 20, 27 5, 110, 014 10, 710, 619 42 42 8, 835, 304 8, 27, 073 8, 006, 488 6, 780, 0 42<	Vormont	· · ·	41,000		146, 200	3, 628, 500	2, 823, 200	2, 207, 000	1, 652, 500
Washington 574, 438 391, 064 422, 886 293, 208 8, 835, 304 8, 27, 073 8, 06, 488 109, 654 109, 654 109, 654 109, 654 109, 654 109, 654 109, 67 109, 674	Virginia			49, 062		728, 663	637, 744	1, 181, 115	267, 653
Wisconsin 821, 067 413, 587 761, 901 498, 689 15, 998, 474 13, 301, 324 11, 716, 697 5, 795, 801, 500 721, 500 3, 102, 500 2, 214, 0	Washington	574 420	201 064			7, 632, 449	9, 131, 334	150, 654	109, 073
Wisconsin 821, 067 413, 587 761, 901 498, 689 15, 998, 474 13, 301, 324 11, 716, 697 5, 795, 801, 500 721, 500 3, 102, 500 2, 214, 0	West Virginia	(2)				8, 835, 304	8, 257, 073	8, 006, 488	6, 780, 055
Undistributed 2 1, 122, 244	Wisconsin	821, 067	413 597	761 001	408 600	0, 110, 014			224
	Wyoming	34, 0001	9, 000	101, 801	200, 009	201 500	10, 501, 324	11, 716, 697	5, 795, 831
	Undistributed 2	1, 122, 244	781, 509	821, 125	841, 537	001, 000	121, 000	o, 102, 500	2, 214, 000
Total	.1.ota1	8, 392, 473	5, 905, 085	22, 050, 703	18, 698, 282	469,899,246	502,292,578	155,483,228	93, 228, 318

<sup>Figures that may not be shown separately are combined as "Undistributed."
Includes 2,540,019 tons of ballast gravel valued at \$1,231,531, produced by railroads for their own use.
Includes 902,934 tons of gravel valued at \$503,034, used by railroads for fills and similar purposes.</sup>

Government-and-Contractor Production.-One-fourth of the sand and gravel produced was classified as Government-and-contractor and went into Government construction projects, including Federal, State, and local public construction programs. Some of this was direct output by Government agencies and some by private producers who sold exclusively for use on Government projects. Details of production are given in table 6.

To be classified as Government-and-contractor, the entire output of a private producer must have been used on contract work for a Government agency. If any part of the production was sold commercially, the entire output reverted to commercial classification. Quantities reported under commercial and Government-and-con-

tractor are shown in figure 2.

The 1956 figures show that Government-and-contractor production of sand and gravel decreased about 10 percent. This decline indi-

cated that more producers served both markets.

The Bureau of Public Roads estimated that, of the 10 million tons of aggregates needed for the 13-year highway program, over half will be produced by highway contractors.3

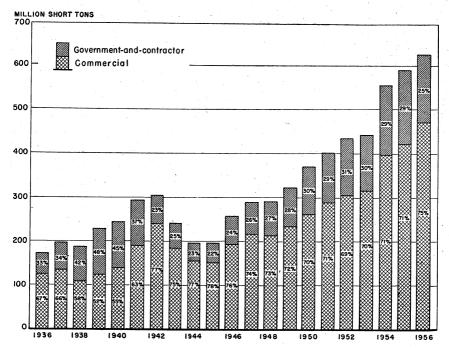


FIGURE 2.—Sand and gravel sold or used in the United States by producers,

³ Knowlton, Ezra C., Growing Pains for Sand and Gravel Ready-Mix Industries: Rock Products, vol. 59, No. 11, November 1956, pp. 58-61.

TABLE 5.—Sand and gravel sold or used by Government-and-contractor producers in the United States, 1947-51 (average) and 1952-56, by uses

		Sa	nd			Gra	vel		Total Govern- ment-and-con-		
	Buil	ding	Pav	ing	Buil	ding Pav		ing	tractor sand and gravel		
Year	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	
1947-51 (aver- age) 1952 1953 1954 1955	1, 863 1, 184 1, 078 1, 202 1, 758 2, 321	1, 233 1, 140 1, 197 1, 299 1, 975 2, 058	8, 906 15, 402 13, 925 16, 447 22, 833 19, 568	3, 530 6, 230 5, 926 8, 826 11, 099 9, 586	4, 742 3, 562 9, 044 10, 966 15, 045 5, 433	3, 719 2, 858 5, 937 6, 418 7, 994 3, 689	79, 784 113, 635 107, 456 130, 989 132, 441 128, 161	35, 525 48, 017 49, 575 71, 225 77, 616 77, 895	95, 295 133, 783 131, 503 159, 604 172, 077 155, 483	44, 007 58, 245 62, 635 87, 768 98, 684 93, 228	

¹ Includes United States Territories and possessions, and other areas administered by the United States

TABLE 6.—Sand and gravel sold or used by Government-and-contractor producers in the United States, 1947-51 (average) and 1952-56 by types of producer

	1947-51 (av	erage)	1952		1953		
Type of producer	Thousand short tons	Average value per ton	Thousand short tons	Aver- age value per ton	Thousand short tons	Aver- age value per ton	
Construction and maintenance crews	43, 032 52, 263	\$0.34 .57	46, 901 86, 882	\$0.35 .48	46, 250 85, 253	\$0. 38 . 53	
Total	95, 295	. 46	133, 783	. 44	131, 503	. 48	
States	1,971	. 48 . 33 . 46 . 80	68, 928 39, 107 2, 068 23, 680	. 44 . 37 . 52 . 53	71, 199 39, 954 2, 720 17, 630	. 49 . 38 . 46 . 64	
Total	95, 295	. 46	133, 783	. 44	131, 503	. 48	
	1954		1955		1956		
Type of producer	Thousand short tons	Average value per ton	Thousand short tons	Aver- age value per ton	Thousand short tons	Aver- age value per ton	
Construction and maintenance crews	49. 232 110, 372	\$0. 37 . 63	46, 483 125, 594	\$0.40 .64	48, 035 107, 448	\$0.48 .65	
	110, 372					. 65	
Contractors	110, 372 159, 604 95, 420 43, 378 3, 920	. 63	125, 594	. 64	107, 448	. 60	

¹ Includes United States Territories and possessions and other areas administered by the United States.

Degree of Preparation.—Washed, screened, or otherwise prepared sand and gravel comprised 87 percent of commercial output in 1956. On the other hand, only 52 percent of the Government-and-contractor production was prepared. The unprepared or "bank-run" material was used principally for base courses, secondary roads, and for subgrade treatment to increase stability or drainage. In many instances, bank-run material was definitely valuable for use in road construction; the stability of compacted unwashed material was desirable.

Preparation of the materials for market became increasingly complex, requiring ore-dressing tools on a large scale. More rigid specifications, use of material from inferior deposits, higher royalties, longer hauls, rehabilitation of the land, and relatively low prices were

problems reported by the industry.

As processing adds materially to the cost of the product, the average value of commercial output is higher than that from Government-

and-contractor operations.

Size of Plants.—The widespread occurrence of sand and gravel deposits and the high costs of transportation were principally responsible for increased use of semiportable and portable plants to supply local markets. The bulk of the output was contributed by large, permanent plants; however, table 8 shows that most plants were relatively small.

Large-scale production usually resulted in a pronounced saving in cost of labor, supplies, and purchased energy per ton of output. The output per man-hour increased with the size of the enterprise. A growing disadvantage of the larger plant is that the wider marketing radius increases transportation charges per ton of delivered material.

The great advantage of the small portable plant is its mobility, but it often lacks the capacity to meet a variety of specifications. In 1956 there were indications that designers were trying to overcome this limitation. A manufacturer in Minnesota, in view of the rapidly expanding State and Federal highway building programs, designed a new duplex-type portable gravel plant that was reported to be more flexible and to have higher operating capacities than existing portable plants.⁴

The capacity of over 56 percent of all sand and gravel plants was less than 50,000 tons a year; 72 percent produced less than 100,000 tons. However, high-tonnage producers expanded still more in 1956, and the number producing over 1 million tons increased from 33 in

1955 to 43 in 1956.

Transportation Methods.—Truck shipments supplied 80 percent of the sand and gravel moved in 1956. Railroads hauled most of the remainder. Although the percentage shipped by water was relatively small nationally, it dominated in some areas. Truck shipments were advantageous in many instances, both because of flexibility and actual economy of transportation. The trend toward increased truck transportation in evidence for several years continued in 1956 (table 9). More small, localized deposits were exploited by using portable equipment near the jobsite, thus reducing transportation costs.

⁴ Business Week, Gravel Plants With Flexibility: No. 1430, Jan. 26, 1957, pp. 192-193.

TABLE 7.—Sand and gravel sold or used by producers in the United States,¹
1955–56, by classes of operation and degrees of preparation

		1955		1956			
	Quanti	ty	Average value	Quant	A verage value		
	Short tons	Percent	per ton	Short tons	Percent	per ton	
Commercial operations: Prepared	² 370, 262, 641 49, 813, 289	88 12	\$1.11 .57	410, 504, 548 59, 394, 698	87 13	\$1.13 .61	
Total	2 420, 075, 930	100	1.04	469, 899, 246	100	1.07	
Government-and-contractor operations: Prepared Unprepared	81, 664, 919 90, 412, 151	47 53	.81	80, 103, 893 75, 379, 335	52 48	.76 .43	
Total	172, 077, 070	100	. 57	155, 483, 228	100	. 60	
Grand total	² 592, 153, 000		. 91	625, 382, 474		. 95	

¹ Includes United States Territories and possessions and other areas administered by the United States.

² Revised figure.

TABLE 8.—Comparison of number and production of commercial sand and gravel plants in the United States, 1955-56, by size groups 1

		1	955			1	956	
Sizegroup, in short tons annual production	Plants 2		Produ	ction	Pla	nts 3	Produ	ction
	Num- ber		Thousand short tons		Num- ber		Thousand short tons	
Less than 25,000	1,749 697 707 529 3 200 2 108 69 46 33 18 10 7	41.6 16.6 16.8 12.6 3 4.7 2 2.6 1.6 1.1 .8 .4 .2	17, 572 25, 225 50, 278 75, 351 3 49, 073 3 36, 958 31, 561 25, 274 21, 337 13, 415 8, 544 6, 560 53, 385	4.2 6.1 12.1 18.2 3 11.8 3 8.9 7.6 6.1 5.2 3.2 2.1 1.6 12.9	1, 679 730 682 589 237 117 76 46 32 16 14 15	39. 3 17. 1 15. 9 13. 8 5. 5 2. 7 1. 8 1. 1 . 7 . 4 . 3 1. 0	15, 351 26, 253 48, 915 83, 703 57, 238 40, 562 34, 130 24, 919 20, 454 12, 076 11, 508 14, 138 76, 772	3. 5. 6. 10. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
Total	4, 206	100.0	³ 414, 533	100.0	4, 276	100.0	466, 019	100.

¹ Excludes operations by or for States, counties, municipalities, and Federal Government agencies as follows—1955: 1,440 operations with an output of 172,077,070 tons of sand and gravel; 1956: 1,683 operations, 155,483,228 tons. Excludes operations by or for railroads as follows—1955: 107 operations with an output of 5,543,256 tons of sand and gravel; 1956: 94 operations, 3,889,243 tons. Includes United States Territories and possessions and other areas administered by the United States.

2 Includes a few companies operating more than 1 plant but not submitting separate returns for individual related.

plants.

8 Revised figure.

A company in New York reported that the costs of hauling sand and gravel to repair jobs in large buildings were reduced substantially by packing such materials in corrugated containers. In addition, packaging allowed contractor customers to do a faster, cleaner job and avoided the inconvenience of blocked thoroughfares and littered premises.⁵

TABLE 9.—Sand and gravel sold or used in the United States, 1 1954-56, by method of transportation

	1954		1955		1956	r i e
	Thousand short tons	Per- cent of total	Thousand short tons	Per- cent of total	Thousand short tons	Per- cent of total
Commercial: Truck Rail Waterway Unspecified	269, 888 77, 845 25, 437 23, 763	48 14 5 4	284, 825 85, 001 23, 679 2 26, 571	48 14 4 5	341, 029 83, 816 26, 991 18, 063	55 13 4 3
Total commercialGovernment-and-contractor: Truck 3	396, 933 159, 604	71 29	2 420, 076 172, 077	71 29	469, 899 155, 483	75 25
Grand total	556, 537	100	² 592, 153	100	625, 382	100

¹ Includes United States Territories and possessions and other areas administered by the United States.

Revised figure.
 Entire output of Government-and-contractor operations assumed to be moved by truck.

Employment and Productivity.—Centrally controlled plants increased productivity in the sand and gravel industry. The industry hired over 1,800 new men bringing the total to nearly 33,000 men employed in 1956, a recovery from the drop in manpower in 1955. Employment prospects were high in all sections of the country; the road program loomed large in planning and the activities of 1956.

Table 10 shows data on the number of employees and the output. The greatest average production per hour was reported from the Michigan-Wisconsin area in 1956; the California-Nevada area employed the most men.

³ Constantine, I., Deliver Building Materials in Cardboard Boxes: Rock Products, vol. 59, No. 12, December 1956, pp. 96-98, 101.

TABLE 10.—Employment in the commercial sand and gravel industry and average output per man in the United States, 1947-51 (average) and 1952-56, by regions ¹

			Employn	nent				erage	
			Time e	mploy	ed			ut per an	Percent of com-
	Aver- age num-	Aver		М	an-hours	Production (short tons)			mercial indus- try
	ber of men	age num- ber of days	Total man shifts	Average man per day	Total		Per shift	Per hour	repre- sented
1947-51 (average) 1952 1953 1954	22, 951 25, 755 24, 663 31, 891	241 239 240 251	5, 519, 878 6, 144, 421 5, 907, 199 8, 003, 743	8. 7 8. 7 8. 6 8. 6	47, 876, 845 53, 645, 827 51, 004, 252 69, 047, 194	214, 956, 653 280, 506, 731 278, 744, 705 364, 647, 149	38. 9 45. 7 47. 2 45. 6	4. 5 5. 2 5. 5 5. 3	88, 1 93, 0 90, 3 91, 9
1955									
Maine, N. H., Vt., R. I., Mass., and Conn. N. Y. Pa., N. J., and Del. W. Va., Va., and Md. S. C., Ga., Ala., Fla., and	1, 385 1, 268 2, 065 1, 572	209 210 251 262	289, 962 265, 827 518, 949 412, 480	8.7 9.4 8.5 9.1	2, 531, 997 2, 495, 828 4, 402, 903 3, 749, 464	13, 606, 298 19, 426, 970 22, 821, 338 16, 303, 537	46. 9 73. 1 44. 0 39. 5	5. 4 7. 8 5. 2 4. 3	78. 5 81. 0 91. 1 78. 5
Miss N. C., Ky., and Tenn Ark., La., and Texas Ohlo III. and Ind Mich. and Wis N. Dak., S. Dak., and Minn Nebr. and Lowa	1, 423	260 252 271 233 252 196	416, 218 358, 318 995, 950 477, 540 564, 550 441, 999	9. 2 9. 3 9. 2 9. 2 8. 4 9. 2	3, 815, 745 3, 328, 190 9, 130, 545 4, 403, 708 4, 753, 384 4, 065, 688	18, 963, 614 13, 865, 781 37, 300, 468 26, 032, 807 32, 727, 800 35, 336, 296	45. 6 38. 7 37. 5 54. 5 58. 0 79. 9	5.0 4.2 4.1 5.9 6.9 8.7	99. 4 96. 9 93. 2 93. 9 79. 3 76. 5
N. Dak., S. Dak., and Minn. Nebr. and Iowa Kans., Mo., and Okla. Wyo., Colo., N. Mex., Utah, and Ariz.	1,806	153 212 252	174, 375 221, 175 455, 337	9. 1 9. 4 8. 7	1, 583, 374 2, 076, 670 3, 950, 542	10, 948, 861 12, 059, 357 220, 594, 453	62. 8 54. 5 2 45. 2	6. 9 5. 8 5. 2	68. 6 74. 3 98. 0
Mont., Wash., Oreg., and	1, 141	242 219	276, 205 927, 811	8.3	2, 296, 243 7, 691, 462	11, 376, 837 53, 644, 041	41. 2 57. 8	5. 0 7. 0	81. 7 97. 9
Idaho	1,823	177 130	321, 969 25, 070	8.1	2, 622, 866 204, 011	16, 930, 586 840, 529	52. 6 33. 5	6. 5 4. 1	82. 3 46. 6
Total	30, 913	231	7, 143, 735	8.8	63, 102, 620	2 362,779,573	50.8	5.7	86. 4
1956	-								
Maine, N. H., Vt., R. I., Mass., and Conn. N. Y Pa., N. J., and Del. W. Va., Va., and Md S. C., Ga., Ala., Fla., and Miss.	1, 642 1, 450 2, 461 1, 782	212 234 262 252	348, 183 339, 435 644, 364 449, 702	8. 8 8. 2 8. 4 8. 7	3, 066, 396 2, 769, 417 5, 443, 441 3, 906, 463	17, 294, 626 21, 305, 409 25, 462, 315 18, 591, 262	49. 7 62. 8 39. 5 41. 3	5.6 7.7 4.7 4.8	92. 2 83. 7 96. 9 83. 0
N. C., Ky., and Tenn. Ark., La., and Texas. Ohio. III. and Ind Mich. and Wis. N. Dak., S. Dak., and Minn.	1, 386 3, 614 2, 256 2, 239 2, 673 933	263 240 270 251 261 180 168	454, 603 332, 411 973, 990 566, 657 584, 799 480, 127 156, 517 235, 732 442, 784	10. 4 9. 2 9. 0 8. 6 8. 6 8. 7 8. 9	4, 735, 877 3, 046, 548 8, 805, 745 4, 898, 286 5, 011, 262 4, 182, 488 1, 399, 193	20. 853, 272 14. 793, 591 39. 310, 238 28, 690, 505 36, 118, 656 39. 561, 374 9, 756, 767	45. 9 44. 5 40. 4 50. 6 61. 8 82. 4 62. 3	4. 4 4. 9 4. 5 5. 9 7. 2 9. 5 7. 0	99. 9 95. 7 98. 0 95. 7 78. 7 77. 2 56. 0
Wyo., Colo., N. Mex., Utah, and Ariz.	1, 736 1, 210	215 255 225	271, 977	9.3 8.6 8.3	2, 195, 970 3, 787, 958 2, 248, 904	14, 035, 467 22, 012, 132 13, 512, 000	59. 5 49. 7	6. 4 5. 8 6. 0	72. 2 99. 0 90. 4
Mont., Wash., Oreg., and Idaho	4, 214 2, 228	229 153	962, 911 340, 424	8. 4 8. 1	8, 090, 615 2, 762, 745	69, 481, 080 19, 476, 856	72. 2 57. 2	8. 6 7. 0	91. 8 86. 5
Rico, and Panama Canal Zone	125	170	21, 191	8. 2	173, 603	598, 139	28. 2	3. 4	49. 7
Total	32, 773	232	7, 605, 807	8.7	66, 524, 911	410, 853, 631	54.0	6. 2	87.4

¹ Incomplete totals. Includes only those companies reporting employment figures and does not include plants operated by or directly for States, counties, municipalities, and Federal Government agencies.
² Revised figure.

CONSUMPTION AND USES

The construction industry was by far the leading consumer of sand and gravel in 1956. Applications increased, principally in concrete for constructing buildings, in paving, and in related highway construction. Consequently, consumption of these aggregates has paralleled the construction boom. In 10 years, the industry has more than doubled in both tonnage and dollar volume.

Industrial Sands.—Sand has many important uses in the manufacturing industries, and the quantity utilized in 1956 was in consonance with industrial activity. The production of grinding and polishing, molding, and engine sands decreased slightly, but output of other industrial sands continued to increase. Unit value increased for all uses.

Ground Sands.—Sales of ground sand increased for virtually all uses, and wider applications were being developed. A breakdown of

the various uses is shown in table 11.

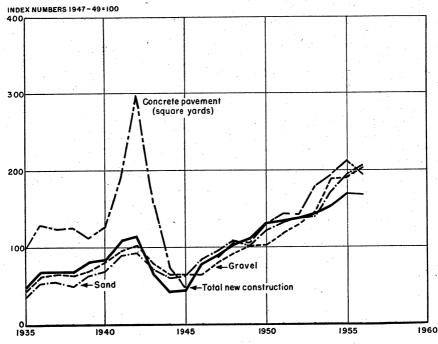


FIGURE 3.—Quantity of sand and gravel produced compared with value of total new construction, adjusted to 1947-49 prices, and total square yards of concrete pavements contracted for in the United States, 1935-56. Data on construction from Construction Review and on pavements from Survey of Current Business.

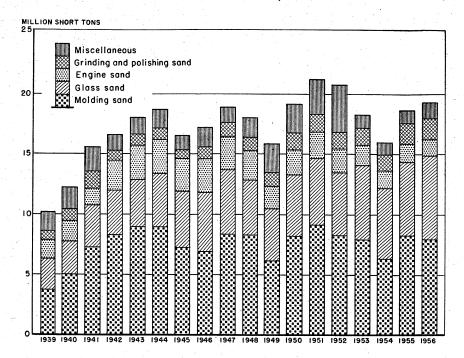


FIGURE 4.—Production of industrial sands in the United States, 1939-56.

TABLE 11.—Ground sand sold or used by producers in the United States, 1955–56, by uses

		1955		1956			
Use		Val	ue		Value		
	Short tons	Total	Average per ton	Short tons	Total	Average per ton	
A brasives Enamel Ferrosilicon	209, 729 33, 284	\$1, 692, 064 295, 571	\$8. 07 8. 88	257, 656 38, 261 (¹)	\$1, 939, 524 365, 748	\$7. 53 9. 56	
Filler Filter purposes Foundry uses	100, 444 344, 316	861, 826 1, 873, 250	8. 58 5. 44	153, 347 (1) 314, 063	1, 186, 976 (1) 2, 009, 693	7. 74 (¹) 6. 40	
Glass_ Pottery, porcelain, and tile Unspecified_ Undistributed ¹	221, 299 209, 299 91, 692	1, 140, 542 1, 975, 873 550, 870	5. 15 9. 44 6. 01	(1) 214, 953 136, 925 306, 911	2, 009, 093 (1) 2, 042, 704 1, 090, 906 1, 572, 715	(1) 9. 50 7. 97 5. 12	
Total	1, 210, 063	8, 389, 996	6. 93	1, 422, 116	10, 208, 266	7.18	

¹ Figures that may not be shown separately are combined as "Undistributed."

PRICES

Sand and gravel had an average value of 95 cents per ton in 1956—4 cents more than in 1955. This figure constitutes the average value of combined commercial and Government-and-contractor production. The commercial value alone was about 3 cents per ton higher or an average value of \$1.07 at the source. Although a higher percentage

of Government-and-contractor output was processed than in 1955, almost half the output in 1956 was used in the unprepared state. Its unit value was slightly higher than in previous years but considerably lower than for processed material. Value fluctuated The percentage of change for each class slightly for various uses. and average value per ton at the source are shown in table 1.

Rural zoning requirements were reported to have an increasing

influence on sand and gravel costs.6

FOREIGN TRADE 7

In 1956 foreign trade in sand and gravel was a small factor in the industry. Shipments were made mostly to satisfy requirements along the borders and to provide material for specialized uses. amples of the latter are imports of special European sands for use in glassmaking and exports of special sands for use in secondary-oil recovery to areas as far away as Arabia.

TABLE 12.—Sand and gravel imported for consumption in the United States, 1947-51 (average) and 1952-56, by classes

		Į,	sureau or	tne Census	l e e				
		Sa	nd				Total		
Year	Glass	sand 1	Other	sand 2	Gra	vel			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1947–51 (average)	\$ 10, 332 \$ 4, 016 \$ 5, 690 \$ 10, 329 \$ 170 \$ 478	\$34, 745 \$ 23, 998 \$ 114, 000 \$ 93, 441 \$ 171, 973 \$ 393, 476	306, 288 300, 182 313, 176 271, 364 317, 947 332, 031	\$289, 367 344, 674 329, 612 4 298, 427 4 384, 637 4 454, 477	139, 498 104, 332 87, 028 2, 387 1, 680 179	\$42, 094 13, 771 9, 699 4 1, 685 4 100 4 405	456, 118 408, 530 405, 894 284, 080 319, 797 332, 688	\$366, 206 382, 443 453, 311 4 393, 553 4 556, 710 4 848, 358	

[Purson of the Conquel

Classification reads: "Sand containing 95 percent or more silica and not more than 0.6 percent oxide of iron and suitable for manufacturing glass."
 Classification reads: 1947: "Sand, n. s. p. f.": 1948-56: "Sand, n. s. p. f., crude or manufactured."
 Consists mainly of synthetically prepared silica from West Germany for specialized applications and is not comparable in value to ordinary glass sand.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954.

TECHNOLOGY

Plants for producing sand and gravel ranged from simple frameworks supporting 1 or 2 screens to elaborate structures housing complicated arrangements of processing equipment. Utilization of lowgrade deposits required processing by many ore-dressing techniques.

Dense-Medium Separation.—One such method was the application of dense-medium separation to remove soft and porous materials or to recover heavy-mineral byproducts. The process was fairly well established in the East, but the first plant of this type west of the Mississippi River reportedly began operating in 1956. was fed directly into a 7-foot-diameter, cone-type separator vessel

[•] Hole, R. E., Applying Rural Zoning Principles to the Sand and Gravel Industry: Pit and Quarry, vol. 49. No. 3, September 1956, pp. 128, 130-132.

7 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

containing a dense medium with a specific gravity of 2.4. High-grade natural and crushed gravel sank to the bottom; the lighter shale The dense medium was a mixture of about 75 percent of finely ground magnetite and 25 percent of ferrosilicon in water.8

In many areas, gravels of glacial origin exist in abundant quantities, but only through application of advanced processing methods can the impurities be removed so that the product will meet specified require-A marginal quality Michigan deposit of this type was upgraded by using a log washer and dense-medium separation to an output of 4,000 tons per day of high-quality products.

Another dense-medium plant was installed in Michigan as part of an expansion program that required several changes in processing

methods.10

Objectionable material was reduced from 10 to 2 percent by a heavymineral separation at still another Michigan plant that was report-

edly capable of cleaning 1,200 tons in an 8-hour day.11

Clay Removal.—Specifications for aggregates rigidly limit the clay content but require fine sand within the gradation. It is sometimes exceedingly difficult to remove clay and retain the fine sand. new sand processing and blending system recently installed in North Carolina where clay is an ever-present problem proved to be versatile The flowsheet included a rotary scrubber screen, viand efficient. brating screens, extensive washers, and classifiers. 12

Another operation in North Carolina, plagued by a high clay content, used primary and secondary scrubbers to break up the clay; sand

screws and liquid cyclones recovered the fines.¹³

Dredging.—Costs were held down and production was increased by a Colorado company that used a compact and mobile floating plant, which incorporated such features as a 54-inch gyratory crusher, heated screens, and a newly designed underwater screening system.14

At one Oregon operation where peak demands and changing dredging conditions resulted in serious shortages of sand, excess pea

gravel was reduced to sand by using a rod mill. 15

Portable Plants.—Although the permanent plant was favored for meeting many rigid and complex specifications, many advancements were made toward developing portable plants that could process an increasing variety of products. Portability was retained by one Michigan sand and gravel plant, despite rigid specifications that required scrubbing units to be installed. 16

Rain failed to stop 1 continuously operating portable plant that consistently produced 450 tons per hour or about 25 percent above the

⁸ Utley, H. F., South Pacific Milling's H. M. S. Plant: Pit and Quarry, vol. 49, No. 3, September 1956,

⁸ Utley, H. F., South Pacific Milling's H. M. S. Plant: Pit and Quarry, vol. 49, No. 6, September 1500, pp. 88-91.

⁹ Lindsay, G. C., How Bunday Hill Gravel Keeps Pace: Rock Products, vol. 59, No. 8, August 1956, pp. 174, 176, 179, 180.

¹⁰ Herad, B. C., Major Plant, Processing Revisions at Green Oak, Mich., Operation of American Aggregates Corp.: Pit and Quarry, vol. 48, No. 8, February 1956, pp. 82-84, 86, 88, 91.

¹¹ Schenck, Gerrge, This Plant Cut Non-Spec Gravel to 2% in Products: Rock Products, vol. 59, No. 11, November 1956, pp. 74-77, 118.

¹² Lenhart, W. B., Sand Pecovery and Blending System Meets Any Specification Requirements: Rock Products, vol. 59, No. 5, May 1956, pp. 72-77.

¹³ Lenhart, W. B., Quality Products From a Clay Swamp: Rock Products, vol. 59, No. 6, June 1956, pp. 82-86.

<sup>82-86.

14</sup> Lenhart, Walter B., Unusual Sand Preparation Equipment and Heated Screens on Floating Plant:
Rock Products, vol. 59, No. 2, February 1956, pp. 52-56, 72.

15 Lenhart, W. B., They Convert Waste to Useful Material: Rock Products, vol. 59, No. 12, December 1956, pp. 86-89, 120.

16 Pit and Quarry, Portable Gravel Plant Complete With Washing Units: Vol. 49, No. 5, November 1956, pp. 106-107, 110.

equipment-capacity rating.17 This exemplifies the dependability of the modern portable plant.

Centrally Operated Control.—Pushbutton control from a centrally located switchhouse became increasingly popular in designing new and

improved older units.18

A new pushbutton plant was installed in Indiana by a corporation when it became evident that the older plant, which has been supplying the area since 1928, could no longer meet the growing demand. new plant was designed to produce a large tonnage of 18 separate sizes, with a compact setup that was flexible in operation.¹⁹

Another centrally operated plant in Washington, which serves an atomic project and the surrounding area, used a drag scraper for

excavation.20

The first stage in an extensive expansion program for producing crushed stone, gravel, and sand from a pushbutton-controlled central station was completed. The plant will require more than 2,000 feet of conveyors.21

Plant Equipment.—A well-designed, flexible, and compact New York plant produced 300 tons per hour of several sizes of washed sand and gravel and unwashed road gravel. The plant incorporated

three separate screening stations.22

More rigid specifications for foundry sands forced a New Jersey plant to alter its setup and include a 25-ton per hour ball mill, which reduced AFS-30 grade to approximately AFS-140 grade sand. liquid cone-classifier to collect additional short-supply sands also was added.23

A sand-and-gravel operation originally built to supply aggregates for construction of a dam was reactivated using prefabricated sections

of equipment.24

A new all-steel plant was designed so that the field hopper, conveyor, and primary crusher could be moved to accommodate excavating operations on a relatively thin deposit. The plant had a capacity of 300 tons per hour and produced and stored 9 separate products; it utilized stockpiling conveyors that radiated from the processing equipment in the center.25

One Minnesota operator used a hydraulic recovery method in the pit to flush material to three separate siphons, which transferred the pit-run materials to a centrally located scalping screen. The plant

produced 750 tons per hour of high-grade silica sand.26

Sand and gravel recovered from an Ohio conglomerate occurring Also of interest beneath 30 feet of clay overburden required blasting.

¹⁷ Roads and Streets, High Gravel Production in a Wet Pit: Vol. 99, No. 1, January 1956, pp. 62-64.

18 Gutschick, K. A., Centrally Controlled Sand and Gravel Plant Has Three Crushing Stations: Rock Products, vol. 59, No. 3, March 1956, pp. 60-63.

19 Herod, Buren C., American Aggregates Corp. Opens Pushbutton Plant; Pit and Quarry, vol. 48, No. 7, January 1956, pp. 128, 129, 132, 190.

20 Lenhart, W. B., Pushbutton-Controlled Gravel Plant: Rock Products, vol. 59, No. 6, June 1956, pp. 108, 10. 124, 126.

Lenhart, W. B., Pushbutton-Controlled Gravel Plant: Rock Products, vol. 59, No. 6, June 1856, pp. 180, 110, 174, 176.

10, 174, 176.

10, 174, 176.

11, Utley, H. F., Owl Rock Products Completes First Stage of Extensive Expansion: Pit and Quarry, vol. 48, No. 12, June 1956, pp. 136, 138.

12, Gutschick, K. A., New York Coal Co's. Gravel Plant Is Flexible Compact, Well-Designed: Rock Products, vol. 59, No. 10, October 1956, pp. 78-79, 90, 92, 126.

12 Lindsay, G. C., Plant Expansion Tuned to Changing Market Demands: Rock Products, vol. 59, No. 7, July 1956, pp. 84, 86, 88, 90.

14 Utley, H. F., Shasta Dam Deposit Now Being Worked Commercially: Pit and Quarry, vol. 48, No. 11, May 1956, pp. 92-93, 98.

12 Utley, H. F., California Plant Designed for Shallow River Deposit: Pit and Quarry, vol. 49, No. 2, August 1956, pp. 80-82.

13 Herod, B. C., Minnesota Sands Aid Oil Recovery; Silica Sand Corporation—a Versatile New Producer; Pit and Quarry, vol. 48, No. 12, June 1956, pp. 129-131.

at this operation was the application of a variety of sand-treatment units, including a hydraulic classifier, dewatering screws, and a cyclone separator to produce sand conforming to various specifications for in-

dustrial and construction aggregate use.27

A Michigan sand and gravel plant that meets up to 150 separate specifications has achieved a high degree of flexibility. Combinations of dune sand and pit sand and gravel were processed to meet the requirements of States, counties, cities, park and sanitary districts, architectural and contracting firms, foundries, and steel companies in the Great Lakes Region. Construction sands were shipped 650 miles because water transportation was low in cost; sand for special applications was shipped even farther.28

Uninterrupted operations were insured at one Texas plant by installing scalper screens at each end of an 85-foot cut; 4 draglines re-

moved overburden and supplied gravel.29

Radio communications between two sand and gravel plants, the main office, the general manager, and the superintendent were maintained to promote a high degree of coordination and efficiency in one Texas operation.30

By using a log washer and rotary scrubber suitable concrete aggregate was produced from a deposit in an area in Florida where aggre-

gate material was scarce.31

Equipment installed at a sand and gravel plant in South Carolina was so effective that monazite and other heavy minerals became the

chief product and aggregates the byproduct.³²

Sutter's Creek, used by thousands of fortune seekers in 1849 to wash away silica sand in panning gold, was the source of water in 1956 to clean the same silica for use in the glass industry. Facilities included cyclone separators, classifiers, flotation cells for removing clay and iron-bearing materials, and filtering and drying equipment. 33

A sand and gravel operation in the California desert set up a 200,000-gallon reservoir for water storage. The source of this precious

commodity was an abandoned oil well, 2,000 feet deep.34

An unusual aggregate operation in Indiana produced both sand and gravel and crushed stone from the same property. The sand and gravel overlies a limestone deposit, and the plant was alternately fed rock or sand and gravel, as the demand required.35

Patents.—A centrifugal apparatus for beneficiating bank gravel for use as road material or concrete aggregate was patented. Soft or friable components were broken, but the desirable harder particles

²⁷ Peck, Roy L., Brunswick Sand and Gravel Company: Pit and Quarry, vol. 49, No. 6, December 1956, pp. 124-128.

28 Gutschick, K. A., Blend Six Basic Sizes to Meet 150 Specifications: Rock Products, vol. 59, No. 2, February 1956, pp. 60-64, 66.

29 Persons, H. C., Use Open-Cut Excavation for Reclaiming Sand and Gravel Deposit: Rock Products, vol. 59, No. 3, March 1956, pp. 56-58.

30 Persons, Hubert C., Two-Way Radio Ties in Two Plants With Central Office: Rock Products, vol. 59, No. 12, December 1956, pp. 122, 124, 126.

31 Trauffer, W. E., Scarce Concrete Aggregates: Pit and Quarry, vol. 49, No. 3, September 1956, pp. 124-126.

at Trailler, W. E., Scarce Concrete Representations of the Main Business: Rock Products, vol. 59, No. 9, September 1956, pp. 62-66, 69.

32 Pit and Quarry, Historic California Area Site of New Silica Plant of Owens-Illinois: Vol. 49, No. 5, November 1956, pp. 130-132.

34 Ulley, H. F., New 300-T. P. H. Desert Operation Replaces Old Hartman Plant: Pit and Quarry, vol. 49, No. 5, November 1956, pp. 111-113.

35 Trainfer, W. E., Indiana Firm Produces Sand and Gravel and Crushed Stone From Same Property: Pit and Quarry, vol. 48, No. 12, June 1956, pp. 108, 111, 128.


retained their natural bank-run size. The latter are retained on the screen, and the softer particles pass through and are removed.³⁶

Another centrifuge was patented for recovering clean sand from gravel-plant tailings. An inlet pipe discharges clean water tangen-

tially into the head of the apparatus.37

A process for purifying and conditioning industrial sand, especially glass sand, by froth flotation was invented. The process reportedly may be varied to produce a quartz concentrate, a feldspar concentrate, or any mixture of the two.38

38 Harris, H. L., Means for Treating Bank Gravel: U. S. Patent 2,780,417, Feb. 5, 1957.
37 Harris, B. G., Apparatus for Recovering and Cleaning the Residual Sand Content From the Tailings of Gravel-Washing Plants: U. S. Patent 2,779,469, Jan. 29, 1957.
38 Brown, O. R. (assigned to American Cyanamid Co., N. Y.), Method of Beneficiating Sand: U. S. Patent 2,769,540, Nov. 6, 1956.

Secondary Metals—Nonferrous

By Archie J. McDermid 12

	Page	Page
Secondary aluminum	1009 Secondary magnesium	1027
Secondary antimony	1013 Secondary nickel	10_8
Secondary copper and brass	1014 Secondary tin	1031
Secondary lead	1024 Secondary zinc	1033

THE DECLINE in general business activity in the latter half of 1956, which was due in part to the steel strike and declining production of automobiles and which affected most industries, was probably the chief reason for lowered output of nonferrous secondary metals in that period.

Another development during the year, which affected copper more than other secondary metals, was the change from scarcity to plenty caused by the increased production of primary refined copper. Primary aluminum also became more plentiful, but the price was higher

at the end of 1956 than at the beginning.

Secondary recovery of the four major nonferrous metals—aluminum, copper, lead, and zinc—in the first half of 1956 was maintained at the high level reached during the increasing trend in activity, which began in 1954 and continued through 1955. The decline in aluminum and lead in the second half of 1956 was so small that total recovery for the year was a little greater than in 1955. The decline in secondary copper and zinc was such that annual recovery was considerably less than in 1955. The increased availability of refined copper lowered the price and induced consumers to change from scrap to refined metal to some extent.

Another reason for loss of business was foreign competition, especially in brass-mill products. The decrease in zinc was due to lowered

zinc content of total copper scrap consumed.

In 1956, there were fairly sharp declines in secondary recovery of copper and zinc and minor increases in the recovery of the other six

metals considered.

The number of plants reporting consumption of nonferrous scrap and copper materials in 1956 decreased in 9 categories, increased in 5, and was the same in 3. Increases or decreases in the number of smelters, mills, and distillers reporting, as shown in table 3, indicate the opening or closing of plants. Changes in the number of foundries

¹ Commoits specialist, 2 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

reporting indicate the opening or closing of plants or failure of plants

Of the 118 secondary smelters reporting the use of aluminum scrap, 115 were aluminum-alloy ingotmakers and 3 were military aluminum smelters, compared with 134 secondary smelters in 1955, comprising 129 aluminum-alloy ingotmakers and 5 military aluminum smelters.

Explanation of classifications of secondary metal operations and definitions of terms used in this chapter were presented in Minerals Yearbook, volume I, 1954, Secondary Metals—Nonferrous chapter.

TABLE 1.—Salient statistics of nonferrous secondary metals recovered from scrap processed in continental United States, 1955-56, in short tons

Metal	From r	new scrap	From	old scrap	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1955							
Aluminum Antimony Copper Lead Magnesium Nickel Tin Zinc Total 1956	52, 865 5, 693 4, 020 9, 946 221, 226	\$113, 402, 890 2, 093, 608 353, 916, 574 15, 753, 770 3, 404, 414 5, 380, 368 18, 843, 692 54, 421, 596 567, 216, 912	76, 372 20, 446 514, 585 449, 186 4, 553 7, 520 21, 797 83, 549	\$33, 359, 289 13, 146, 778 283, 880, 410 133, 857, 428 2, 722, 694 10, 064, 768 41, 296, 596 20, 553, 054 638, 881, 017	335, 994 23, 702 989, 004 502, 051 10, 246 11, 540 31, 743 304, 775	\$146, 762, 179 15, 240, 386 737, 796, 984 149, 611, 198 6, 127, 108 15, 445, 136 60, 140, 288 74, 974, 650 1, 206, 097, 929	
Aluminum Antimony Copper Lead Magnesium Nickel Tin Zinc Total	3, 119 462, 175 61, 239 5, 170 6, 344 13, 226 207, 609	128, 685, 600 2, 181, 428 392, 848, 750 19, 229, 046 3, 505, 260 8, 594, 951 26, 785, 295 56, 884, 866	71, 673 20, 987 468, 489 445, 516 5, 359 8, 516 19, 747 73, 746	34, 403, 040 14, 678, 308 398, 215, 650 139, 892, 024 3, 633, 402 11, 537, 477 39, 991, 625 20, 206, 404	339, 768 24, 106 930, 664 506, 755 10, 529 14, 860 32, 973 281, 355	163, 088, 640 16, 859, 736 791, 064, 400 159, 121, 070 7, 138, 662 20, 132, 328 66, 776, 920 77, 091, 270	

TABLE 2.—Secondary metals recovered as unalloyed metal, in alloys, and in chemical compounds in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (average)	1952	1953	1954	1955	1956
Aluminum Antimony Copper Lead Magnesium Nickel Trin Zine	269, 730 21, 688 911, 439 484, 922 8, 804 8, 294 30, 999 302, 730	304, 522 23, 089 903, 197 471, 294 11, 477 7, 479 32, 261 310, 423	368, 566 22, 360 958, 464 486, 737 11, 930 8, 352 30, 914 294, 678	292, 041 22, 358 839, 907 480, 925 8, 250 8, 605 29, 334 271, 774	335, 994 23, 702 989, 004 502, 051 10, 246 11, 540 31, 743 304, 775	339, 768 24, 106 930, 664 506, 755 10, 529 14, 860 32, 973 281, 355

The only change in definitions in 1956 from those previously pub-

lished was in that for purchased scrap, which now reads as follows:

Purchased scrap, as used in Bureau of Mines statistics, includes a number of scrap classifications that usually but not always involve financial transactions. They are: New scrap; old scrap, whether

consumed by the owner or a purchaser; toll scrap, which involves a service charge; and interplant transfers, which involve transportation costs, whether or not there is a change of ownership.

TABLE 3.—Number and classification of plants in the United States reporting consumption of nonferrous scrap metals, refined copper, and copper-alloy ingots in 1956

Kind of plant	Aluminum	Copper	Lead and tin	Zine	All nonfer- rous types
Primary plants Secondary smelters, other than copper Secondary copper smelters	(1)	12 27 71	5 260	81	
Secondary distillers Primary distillers Chemical plants Brass mills	12	50 61		9 11 18	
Wire millsFoundries and miscellaneous manufac- turers	145	17 1, 857	32	50	15:
Total	275	2, 095	297	169	155

¹ Data not available.

The opinion was held in some quarters that own-generated scrap. that is, scrap generated in a fabricating plant on the same premises as a mill and remelted by the mill, should be recorded as purchased scrap. The Bureau of Mines considers own-generated scrap to be home (runaround) scrap, first, because it has not been purchased and has not been transferred far enough to warrant separate transportation charges; and second, because in may instances it is difficult to keep a separate record of it. The Bureau was required to devise such reporting forms that respondents could complete reports from records regularly kept in the ordinary course of business. At best it was difficult to keep separate records of home scrap and purchased scrap. As regards brass mills, it was impossible to report stocks of home scrap separately from stocks of purchased scrap. Operations of some companies were such that interplant transfer data could not be kept separate from home-scrap data. Some companies did not agree that interplant transfers should be included with purchased scrap and did not report them.

On all nonferrous scrap reports, the most precise and accurate figures were those for purchased receipts, because they represented definite expenditures. With inventories also known, consumption of purchased scrap and recovery of secondary metal could be calculated.

SECONDARY ALUMINUM³

Domestic recovery of aluminum from all types of nonferrous scrap in 1956 totaled 340,000 short tons valued at \$163 million, a 1-percent increase in quantity over 1955.

³ The assistance of Clarke I. Wampler is acknowledged.

-Aluminum recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1955-56, in short tons

Kind of scrap	1955	1956	Form of recovery	1955	1956
New scrap: Aluminum-base ¹ Copper-base Zinc-base Magnesium-base	258, 872 93 367 290	267, 454 104 306 231	As metal Aluminum alloys In brass and bronze In zinc-base alloys In magnesium alloys	9, 023 323, 468 231 762	9, 471 325, 713 292 1, 820
Total	259, 622	268, 095	In chemical compounds	484 2, 026	362 2, 110
Old scrap: Aluminum-base 2 Copper-base Zinc-base Magnesium-base	75, 474 117 428 353	70, 633 147 474 419	Grand total	335, 994	339, 768
Total	76, 372	71, 673			
Grand total	335, 994	339, 768			

¹ Aluminum alloys recovered from new aluminum-base scrap, including all constituents, totaled 277,787 tons in 1955, and 284,409 tons in 1956.

2 Aluminum alloys recovered from old aluminum-base scrap, including all constituents, totaled 83,764 tons in 1955, and 79,571 tons in 1956.

Production of aluminum-alloy ingot by secondary smelters in 1956 was virtually the same as in 1955—almost 300,000 tons—compared with 219,000 tons in 1954 and 252,000 in 1953. These figures do not include aluminum-alloy ingot produced from scrap and primary aluminum by primary plants. A sharp decline in the 1956 output of No. 12 ingot indicated that this general-purpose alloy had been superseded in many instances by alloys of compositions devised for specific Primary plants, plus independent fabricators, recovered 7 percent more aluminum from scrap in 1956 than in 1955. Recovery of secondary aluminum in castings by foundries declined 29 percent

TABLE 5.—Production of secondary aluminum and aluminum alloys in the United States, 1953-56, gross weight in short tons

Product	1953	1954	1955	1956
Secondary aluminum ingot: Pure (Al min., 97.0 percent). Aluminum-silicon (Cu max., 0.6 percent). Aluminum-silicon (Cu, 0.6 to 2 percent). No. 12 and variations. Aluminum-copper (Si max., 1.5 percent). No. 319 and variations. AXS 679 and variations. AXS 679 and variations. Aluminum-silicon-copper-nickel. Deoxidizing and other dissipative uses. Aluminum-base hardeners. Aluminum-base hardeners. Aluminum-silicon-miscellen.	8, 012 17, 963 2 4, 448 34, 369 74, 646 17, 316 43, 682 8, 387 675	5, 752 16, 714 5, 129 16, 454 2, 7, 598 27, 427 67, 330 20, 466 27, 487 7, 374 849 3, 377 13, 402	9, 023 22, 826 6, 552 19, 582 2, 166 33, 517 106, 465 29, 574 36, 596 10, 045 1, 295 6, 033 215, 937	9, 471 24, 067 6, 633 8, 221 2, 625 40, 137 102, 058 27, 492 37, 805 9, 384 2, 564 5, 960 2 22, 956
Total	251, 745	219, 359	299, 611	299, 373
Secondary aluminum recovered by primary producers and independent fabricators	111, 106 12, 907 4, 676	83, 973 12, 094 3, 595	79, 119 17, 481 2, 026	84, 851 12, 438 2, 110

¹ Gross weight, including copper, silicon, and other alloying elements, at independent secondary smelters; total secondary aluminum and aluminum-alloy ingot contained 19,528 tons primary aluminum in 1953, 12,139 tons in 1954, 20,002 tons in 1955, and 21,775 tons in 1956.

² Of the totals, 883 tons was produced in 1953, 5,434 tons in 1954, 4,192 tons in 1955, and 2,207 tons in 1956 at Naval air stations and United States Air Force bases.

in 1956; but, according to data issued by the Bureau of the Census, shipments of aluminum castings decreased only 3 percent, indicating increased ratio of primary to secondary metal consumption by this

group.

Consumption of aluminum scrap was less than that of both copper and lead scrap, whereas use of primary aluminum was greater than of any other nonferrous metal. One reason for the relatively low consumption of aluminum scrap was its scarcity. Demand for this scrap was stronger and steadier in 1955 than in 1956, but consumption was lower in 1955. Aluminum scrap is chiefly process scrap, of which there was insufficient generation to satisfy demand in all of 1955 and most of 1956. Secondary smelters and primary producers, including rolling mills and fabricators, increased their consumption of scrap 6 and 2 percent, respectively, whereas foundries and miscellaneous manufacturers reduced theirs 38 percent.

TABLE 6.—Stocks and consumption of new and old aluminum scrap in the United States in 1956, gross weight in short tons

	Stocks.		C	onsumptio	n	Stocks.
Class of consumer and type of scrap	beginning of year	Receipts	New scrap	Old scrap	Total	end of year
Secondary smelters: 1						-
Segregated 2S and 3S sheet and clips less than 1.0 percent Cu	786	14, 233	14, 396		14, 396	623
and clips, less than 1.0 percent		13, 372	12, 871		12, 871	501
etc.) Mixed alloy sheet and clips		16, 812 53, 048 5, 468	15, 698 47, 125 5, 279	6, 790	15, 698 53, 915 5, 279	1, 114 2, 773 358
Cast scrap Borings and turnings Dross and skimmings	2, 263 1, 762	84, 390 43, 864	82, 923 41, 784		82, 923 41, 784	3, 730 3, 842
Foil Wire and cable Pots and pans	198	3, 545 1, 156 15, 071	3, 604	1, 229 15, 104	3, 604 1, 229 15, 104	181 125 626
AircraftCastings and forgingsPistons.	304 918	13, 512 23, 942 4, 352		13, 335 23, 513 4, 304	13, 335 23, 513 4, 304	481 1, 347 128
Irony aluminum Imported scrap	791	9, 163 859		9, 443 829	9, 443 829	511 30
Miscellaneous		35, 968	8, 547	25, 037 99, 584	33, 584 331, 811	2, 805 19, 175
Total	13, 131	337, 855	232, 227	99, 364	331, 611	15, 170
Primary producers and fabricators: Segregated 2S and 3S sheet and clips less than 1.0 percent Cu Segregated 51S, 52S, 61S, etc., sheet	598	12, 992	12, 835		12, 835	75
and clips, less than 1.0 percent Segregated sheet and clips, more than 1.0 percent Cu (14S, 17S, 24S, 25S,	73	23, 389	22, 421		22, 421	1,04
etc.)	1, 183 10	14, 803 11, 656 1, 678	14, 279 12, 127	43	14, 279 12, 170 1, 622	524 669 66
Borings and turnings Dross and skimmings	423 11	2, 251 605	2, 595 612		2, 595 612	79
Foil Wire and cable Pots and pans	1	5, 112 363 67	5, 365	251 49	5, 365 251 49	278 113 18
Castings and forgingsImported scrap	11	303 338 15, 370	15, 436	284 338 497	284 338 15, 933	29
Total	3, 701	88, 927	87, 292	1, 462	88, 754	3, 87

See footnotes at end of table.

⁴ Bureau of the Census, Facts for Industry, Nonferrous Castings: Summary for 1956, ser. M24E-06, June 28, 1957, pp. 2, 3.

TABLE 6.—Stocks and consumption of new and old aluminum scrap in the United States in 1956, gross weight in short tons—Continued

Class of consumer and type of scrap	Stocks.			Stocks.		
outside of community and the community of the community o	beginning of year	Receipts	New scrap	Old scrap	Total	end of year
oundries and miscellaneous manufac-						
turers:		14.			l	
Segregated 28 and 38 sheet and clips						
less than 1.0 percent Cu	1,097	7, 158	7, 943		7, 943	31
Segregated sheet and clips, more than 1.0 percent Cu (14S, 17S, 24S, 25S,						
etc.) Mixed alloy sheet and clips		1 000	3		3	
Cast scrap	- 80	1, 333 1, 016	1, 255 897	35	1, 290 897	12 11
Borings and turnings	325	1, 299	1,466		1, 466	15
Borings and turnings Dross and skimmings	69	199	184		1,400	8
Foil	00	55	48		48	°
Wire and cable		5	10	5	5	
Pots and pans	. 5	34		38	38	
A iroraft	1 1	3		3	3	
Castings and forgings	231	691	2	811	813	10
Pistons	1 97 1	61		156	156	
Imported scrap		17		16	16	
Miscellaneous	. 66	250	170	126	296	2
Total	1, 971	12, 124	11, 968	1, 190	13, 158	93
hemical plants:						
Dross and skimmings	1,060	5, 111	5, 414		F 414	me
FOIL .	1 451	95	37		5, 414 37	75 10
Miscellaneous	52	171	153	16	169	5
Total	2 1, 157	5, 377	5, 604	16	5, 620	91
rand total:						
Segregated 2S and 3S sheet and clips	1					
less than 1.0 percent Cu	2, 481	34, 383	35, 174		35, 174	1, 69
Segregated 51S, 52S, 61S, etc., sheet	1					, ,
and clips, less than 1.0 percent	73	36, 761	35, 292		35, 292	1, 54
1.0 percent Cu (148, 178, 248, 258,	1					
etc.)		31, 618	29, 980		29, 980	1, 63
Mixed alloy sheet and clips	4, 903	66, 037	60, 507	6, 868	67, 375	3, 56
Cast scrap	179	8, 162	7,798		7, 798	543
Borings and turnings Dross and skimmings		87, 940	86, 984		86, 984	3, 96
Dross and skimmings	2,902	49, 779	47, 994		47, 994	4, 687
Foil	816	8, 807	9,054		9,054	569
Wire and cable		1, 524		1, 485	1,485	238
Pots and pans				15, 191	15, 191	648
Aircraft Costings on forgings	305	13, 515	2	13, 338	13, 338	482
Castings anf forgings Pistons	³ 1, 160	24, 936		24, 608	24, 610	1, 486
Irony aluminum	177 791	4, 413		4, 460	4, 460	130
Imported scrap	(AT	9, 163		9, 443	9, 443	511
Miscellaneous	2, 299	1, 214 50, 859	24, 306	1, 183 25, 676	1, 183 49, 982	3; 3, 176
Total		444, 283	337, 091	102, 252	439, 343	24, 900

¹ Excludes secondary smelters owned by primary aluminum companies.

Revised figures.

Prices.—Prices of secondary alloys and aluminum scrap were unstable throughout the year. The shortage of virgin aluminum during the first half of 1956 increased demand for scrap and resulted in price increases for both scrap and secondary ingot in March and the summer months. Smelters reported difficulty in obtaining scrap at prices at which they could profitably produce ingot. After August, however, as supplies of primary aluminum became more plentiful, the price of scrap dropped, and secondary smelters were able to compete with primary producers. Alloy No. 12, for example, quoted at 32

cents per pound in early January, was down to 24 cents at the close of the year. Other popular casting alloys, AXS-679 and variations, Nos. 108 and 319, were reduced to 24 cents, 1 cent below the price of primary pig. While secondary metal was selling for more than primary metal, it was reported that many foundries signed contracts with primary producers for their supplies.

TABLE 7.—Dealers' average monthly aluminum-scrap buying prices and consumers' alloy-ingot prices at New York in 1956, in cents per pound

[Metal Statistics, 1957]													
	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age
New aluminum clippings Cast aluminum		-							i .		1 1		16, 99
Scrap No. 12 aluminum- alloy ingot													13, 99 26, 96

Foreign Trade.—Monthly output of ingot trended downward in the second half of 1956. To bolster declining business the Secondary Smelters Industry Advisory Committee requested that the United States Department of Commerce exercise greater restriction of aluminum-scrap exports in the second and third quarters of 1956 and place an embargo on the fourth quarter. The export quota for aluminum scrap for the first quarter of 1956 was 6,000 tons and for each of the other quarters 4,000 tons. Exports for 1956 totaled 19,000 tons, including 8,000 tons to West Germany, 6,000 to Italy, 3,000 to Japan, and 1,000 to Canada. Exports in 1955 were 18,000 tons. Imports for consumption were 26,000 tons in 1956, compared with 41,000 in 1955.

Technology.—Discussions with secondary aluminum-smelter operators indicate that one of their major problems in 1956 was contamination of aluminum scrap with zinc die-cast scrap, which is difficult to separate by sorting. No commercially applicable method has yet been developed for removing zinc from a molten-aluminum-scrap furnace charge.

SECONDARY ANTIMONY 5

Antimony recovered in the United States in 1956 from lead- and tin-base scrap, the only scrap containing recoverable antimony, totaled 24,100 short tons valued at \$16.9 million, an increase of 2 percent in quantity and 11 percent in value over 1955. A small quantity of antimony was present as an impurity in a few types of copper scrap but was not recovered. Primary refiners, who use some lead scrap, recovered 5 percent of the antimony reclaimed, manufacturers and foundries 5 percent, and secondary lead smelters 90 percent.

⁵ The assistance of Edith E. den Hartog is acknowledged.

TABLE 8.—Antimony recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1955-56, in short tons

Kind of scrap	1955	1956	Form of recovery	1955	1956
New scrap: Lead-base Tin-base	3, 256	3, 044 75	In antimonial lead ¹ In other lead alloys In tin-base alloys	15, 946 7, 631 125	16, 462 7, 599 45
Total	3, 256	3, 119	Grand total	23, 702	24, 106
Old scrap: Lead-base Tin-base	20, 362 84	20, 931 56			
Total	20, 446	20, 987			
Grand total	23, 702	24, 106			

¹ Includes 1,523 tons of antimony recovered in antimonial lead from secondary sources at primary plants in 1955 and 1,283 tons in 1956.

Primary and secondary smelters consumed 394,000 tons of wornout battery plates—virtually all that was reported consumed in 1956. Battery-plate scrap as purchased and used by consumers contained the separators, lead oxide, lead sulfate, rubber topseals, terminals, etc., which adhered to the plates when they were removed from the Recovery of antimony from battery plates totaled 13,900 tons, or 58 percent of the total antimony recovered. The remainder came from type-metal scrap (4,800 tons), lead-base babbitt (2,300 tons), and other lead- and tin-base scrap, most types of which contained antimony. All secondary antimony was recovered in lead and tin alloys; in addition, 5,400 tons of primary antimony was added in making these alloys, compared with 4,600 tons in 1955. Virtually all of the antimony consumed in metal products was recoverable, but the antimony used in nonmetal products in 1956 (7,500 tons) was, as in previous years, not reclaimable.

Data on consumption of lead and tin scrap (from which antimony was recovered) and lead and tin products (in which secondary antimony was used) and on primary antimony, may be found in chapters of Minerals Yearbook, volume I, devoted to those metals.

SECONDARY COPPER AND BRASS 6

Domestic recovery of copper in unalloyed and alloyed form from all classes of nonferrous scrap metal totaled 931,000 short tons, valued at approximately \$791 million, in 1956. Although there was a 6-percent decrease in quantity from 1955, value increased 7 percent.

All but 10,000 of the 931,000 tons of secondary copper recovered in 1956 came from copper scrap, and the 6-percent decrease was due

chiefly to smaller brass-mill production.

Recovery of secondary copper was maintained at that in 1955 until the middle of 1956, when a decline began, partly because of lowered production of automobiles and other products in which copper was used and partly because the supply of refined copper caught up with demand, causing the price to weaken and inducing consumers especially brass mills integrated with primary copper producers—

⁶ The assistance of Gertrude N. Greenspoon and Ivy C. Roberts is acknowledged.

to reduce scrap consumption more than refined-copper consumption. At brass mills use of refined copper decreased 6 percent in 1956, whereas scrap consumption decreased 19 percent. One reason for the decreased output of brass mills was foreign competition; it was stated at a Brass Mill Industry Advisory Committee meeting early in 1957 that foreign mills were exporting to the United States the greater part of the brass tubing and a large part of the copper tubing used here.

TABLE 9.—Copper recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1955-56, in short tons

Kind of scrap	1955	1956	Form of recovery	1955	1956
New scrap:			As unalloyed copper:		
Copper-base	467,730	456, 099	At primary plants	206, 555	233, 817
Aluminum-base	6, 190	5, 727	At other plants	40, 373	39, 243
Nickel-base Zinc-base	453 46	311 38	Total	246, 928	273, 060
Total	474, 419	462, 175	In brass and bronze In alloy iron and steel	696, 543 2, 301	620, 779 2, 917
Old scrap:			In aluminum alloys	26, 934	18, 784
Copper-base	510, 775	464, 623	In other alloys	400	385
Aluminum-base	2,500	2,744	In chemical compounds	15, 898	14, 739
Nickel-base	1, 236	1,038		F40.050	077 004
Lead-base	6	5	Total	742, 076	657, 604
Tin-baseZinc-base	48 20	33 46	Grand total	989, 004	930, 664
ZIIIC-Dase	20	40	Grand Colors	303,001	200,002
Total	514, 585	468, 489			
Grand total	989, 004	930, 664			

TABLE 10.—Copper recovered as refined copper, in alloys and in other forms, from copper-base scrap processed in the United States, 1955-56, in short tons

	From n	ew scrap	From o	ld scrap	To	tal
	1955	1956	1955	1956	1955	1956
By secondary smelters. By primary copper producers. By brass mills. By foundries and manufacturers. By chemical plants.	65, 626 73, 836 307, 284 19, 171 1, 813	62, 493 105, 570 264, 446 21, 754 1, 836	233, 323 139, 789 49, 162 82, 760 5, 741	214, 703 135, 345 26, 090 83, 654 4, 831	298, 949 213, 625 356, 446 101, 931 7, 554	277, 196 240, 915 290, 536 105, 408 6, 667
Total	467, 730	456, 099	510, 775	464, 623	978, 505	920, 722

Total secondary copper production of all plants except brass mills and secondary smelters increased. Primary producers recovered 27,000 tons more secondary copper in 1956 than in 1955, foundries and other manufacturers 3,000 tons more, secondary smelters 22,000 tons less, and brass mills 66,000 tons less. The percentage of recoverable metal in copper scrap consumed in 1956 was 98 at brass mills and 95 at foundries—in each instance the same as in 1955; 86 percept at secondary smelters—1 percent less than in 1955; and 65 percent at primary producers—2 percent less than in 1955. Recovery of copper from old scrap was 50 percent of the total secondary copper recovery in 1956, compared with 52 percent in 1955, due chiefly to reduction in recovery from fired-cartridge cases, by brass mills, and from old yellow brass scrap, old composition scrap, and old bronze scrap by secondary smelters.

TABLE 11.—Production of secondary copper and copper-alloy products in the United States, 1954-56, in short tons

Item produce	ed from	scrap				Gros	s weight prod	luced
			<u> </u>			1954	1955	1956
nalloyed copper products: Refined copper by primary pr Refined copper by secondary s Copper powder 1 Copper castings Total	melters					26, 482 4, 779 1, 037	206, 555 29, 762 9, 138 1, 473 246, 928	233, 817 27, 382 9, 337 2, 524 273, 060
Item produced from scrap	Nom	inal co	mposit	ion (pe	ercent)			
	Cu	Sn	Pb	Zn	Ni			
rass and bronze ingots: Tin bronze	88 85 81 80 84 75 66 65 89 90 Cu 90 Cu ocial allocation	2 1, 40 Zi 1, 10 Al 1, +Si, 0ys	, ±Mr , ±Zn,	5 9 -2 -30 18 5 20 2 n, Al, 6 1, Zn, F		9, 248	14, 911 20, 129 115, 888 69, 844 21, 446 16, 928 6, 889 25, 062 3, 230 4, 012 1, 031 13, 840 5, 137 4, 677 12, 884	17, 803 20, 816 104, 698 58, 054 52, 915 20, 311 5, 742 18, 834 4, 107 3, 272 760 15, 483 6, 421 4, 888 12, 896
Brass-mill products			· ×			202 201	335, 908 470, 780	317, 000 383, 057
Brass and bronze castings Brass powder. Copper in chemical products						84, 222	105, 670 1, 715 15, 898	102, 806 1, 027 14, 739
Grand total						1, 000, 743	1, 176, 899	1, 091, 689

¹ Includes black-copper shipments.

TABLE 12.—Composition of secondary copper-alloy production, 1954-56, gross weight in short tons

			-8-10 111 511				
Year	Copper	Tin	Lead	Zinc	Nickel	Aluminum	Total
	BRAS	SS- AND B	RONZE-IN	GOT PROD	UCTION 1	•	
1954 1955 1956	224, 664 259, 384 248, 828	10, 387 16, 670 14, 703	14, 448 21, 481 20, 240	41, 864 37, 896 32, 639	366 411 526	70 66 64	291, 799 335, 908 317, 000
SEC	CONDARY	METAL C	ONTENT	OF BRASS	MILL PR	ODUCTS	
1954 1955 1956	294, 493 356, 489 290, 552	125 119 94	3, 105 4, 059 3, 359	93, 947 108, 095 87, 349	1, 576 1, 948 1, 627	55 70 76	393, 301 470, 780 383, 057
SECON	DARY ME	TAL CON	PENT OF	BRASS AN	D BRONZI	E CASTINGS	3
1954 1955 1956	62, 879 81, 168 80, 540	3, 748 4, 857 4, 666	12, 371 13, 005 11, 602	5, 093 6, 413 5, 795	63 62 51	68 165 152	84, 222 105, 670 102, 806

¹ About 95 percent secondary metal and 5 percent primary metal.

The secondary content of refined copper produced by primary refiners rose 13 percent, and that produced by secondary smelters declined 8 percent. The total production of copper-alloy ingot declined 6 percent in 1956, the principal losses being 11,000 tons in leaded red brass (also known as No. 1 composition), 12,000 tons in leaded semired brass (also known as valve metal), and 6,000 tons in yellow brass. These losses were partly offset by a net gain of 7,000 tons in tin bronzes. The greatest secondary production loss in 1956 was 19 percent in brass-mill products.

TABLE 13.—Stocks and consumption of new and old copper scrap in the United States in 1956, gross weight in short tons

	Stocks,	Rec	eipts		Cons	umption		
Class of consumer and type of scrap	begin- ning of year	Pur- chased	Machine- shop	P	urchased s	crap	Machine- shop	Stocks, end of year
		scrap	scrap	New	Old	Total	scrap	
Secondary smelters: No. 1 wire and heavy								
copperNo. 2 wire, mixed heavy, and light cop-	3, 014	38, 777	9 	4, 328	34, 863	39, 191		2, 600
perComposition or red	3, 951	41, 670		2, 439	40, 181	42, 620		3,001
brass Railroad-car boxes	4, 133 165	100, 938 271		37, 736	63, 326 395	101, 062 395		4,009 41
Yellow brass Cartridge cases Auto radiators (un-	6, 271 83	67, 802 901		10, 452	58, 278 908	68, 730 908		5, 343 76
sweated) Bronze Nickel silver Low brass Aluminum bronze	3, 174 1, 964 656 292 88	52, 039 32, 395 3, 450 3, 227 479		12, 685 394 2, 253 44	52, 172 20, 100 3, 259 927 342	52, 172 32, 785 3, 653 3, 180 386		3, 041 1, 574 453 339 181
Low-grade scrap and residues.	7, 148	38, 267		25, 219	14, 479	39, 698		5, 717
Total	30, 939	380, 216		95, 550	289, 230	384, 780		26, 375
Primary producers: No. 1 wire and heavy copper. No. 2 wire, mixed heavy, and light cop-	572	49, 563		22, 472	26, 262	48, 734		1, 401
per Refinery brass	3, 431 11, 908	121, 674 33, 698		56, 687 11, 227	63, 497 31, 362	120, 184 42, 589		4, 921 3, 017
Low-grade scrap and residues	40, 263	173, 057		68, 198	91, 241	159, 439		53, 881
Total	56, 174	377, 992		158, 584	212, 362	370, 946		63, 220
Brass mills; ¹ No. 1 wire and heavy copper	6, 080	73, 771		62, 555	11, 216	73, 771		3,857
yellow brass	3, 002 24, 243	31, 386 193, 353		29, 152 191, 392	2, 234 1, 961	31, 386 193, 353		4, 290 24, 452
brass	5, 375 700 1, 821	45, 412 1, 582 7, 317		29, 721 1, 451 7, 214	15, 691 131 103	45, 412 1, 582 7, 317		3, 505 1, 272 2, 202
Low brass Aluminum bronze Mixed alloy scrap	3, 514 194 2, 945	22, 317 723		21, 769 723 12, 877	548	22, 317 723 12, 877		2, 722 355 3, 206
Total 1	47, 874	388, 738		356, 854	31, 884	388, 738		45, 861

See footnotes at end of table.

466818---58-----65

TABLE 13.—Stocks and consumption of new and old copper scrap in the United States in 1956, gross weight in short tons—Continued

	Stocks.	Rec	eipts		Cons	sumption		
Class of consumer and type of scrap	begin- ning of year	Pur- chased scrap	Machine- shop scrap	P	urchased	scrap	Machine- shop	Stocks end of year
		Scrap	scrap	New	Old	Total	scrap	
Foundries, chemical plants, and other manufacturers:								
No. 1 wire and heavy copper	1,758	23, 934	261	8,854	14, 348	23, 202	204	2, 547
heavy, and light cop- perComposition or red	1,716	14, 462	1,639	6, 273	8, 246	14, 519	1, 404	1,894
brass Railroad-car boxes	3, 882 3, 308	10, 048 62, 539	15, 527 2, 216	3, 268	8, 123 62, 779	11, 391 62, 779	14, 914 2, 167 4, 323	3, 152 3, 117
Yellow brassCartridge casesAuto radiators (un-	1,720	13, 555 8	5, 467	6, 002	8, 674 8	14, 676	4, 323	1,743
sweated)		5, 647 5, 796	3, 453	1, 285	5, 643 4, 527	5, 643 5, 812	3, 585	110 1, 014
Nickel silver Low brass Aluminum bronze	14 330 280	45 666 1,079	80 515 589	8 52 178	33 767	41 819	56 539	42 153
Low-grade scrap and residues	2, 258	5, 671	258	1,444	898 5, 805	1,076 7,249	624 214	248 724
Total	16, 534	143, 450	30,005		² 119, 851	2 147, 215	28, 030	14, 744
Grand total: 3 No. 1 wire and heavy								
No. 2 wire, mixed heavy, and light cop-	11, 424	186, 045	261	98, 209	86, 689	184, 898	204	10, 405
per Composition or red	12, 100	209, 192	1,639	94, 551	114, 158	208, 709	1, 404	14, 106
brass Railroad-car boxes Yellow brass Cartridge cases and	8, 015 3, 473 32, 234	110, 986 62, 810 274, 710	15, 527 2, 216 5, 467	41, 004 207, 846	71, 449 63, 174 68, 913	112, 453 63, 174 276, 759	14, 914 2, 167 4, 323	7, 161 3, 158 31, 538
brass Auto radiators (un-	5, 458	46, 321		29, 721	16, 607	46, 328		3, 581
sweated) Bronze Nickel silver	3, 280 3, 826 2, 491	57, 686 39, 773 10, 812	3, 453 80	15, 421 7, 616	57, 815 24, 758 3, 395	57, 815 40, 179 11, 011	3, 585 56	3, 151 3, 860 2, 697
Low brass Aluminum bronze Low-grade scrap and	4, 136 562	26, 210 2, 281	515 589	24, 074 945	2, 242 1, 240	26, 316 2, 185	539 624	3, 214 784
residues 4	61, 577 2, 945	250, 693 12, 877	258	106, 088 12, 877	142, 887	248, 975 12, 877	214	63, 339 3, 206
Total 3	151, 521	1, 290, 396	30, 005	638, 352	653, 327	1, 291, 679	28, 030	150, 200

manufacturers.

4 Includes refinery brass.

¹ Brass-mill stocks include home scrap; purchased-scrap consumption assumed equal to receipts, so lines in brass mill and grand total sections do not balance.

² Of the total shown, chemical plants reported the following: Unalloyed copper scrap, 1,789 tons of new and 3,697 old; copper-base alloy scrap, 175 tons of new and 5,621 old.

³ Includes machine-shop scrap receipts and consumption for foundries, chemical plants, and other manufacturers

Consumption of auto radiators, low-grade scrap and residues, and No. 2 unalloyed copper scrap by secondary smelters increased moderately in 1956, but use of composition and yellow brass (the two largest items) decreased 10 and 16 percent, respectively. Total consumption of scrap by primary producers increased 17 percent or 53,000 tons. Their only decrease in consumption of items was 1,000 tons in No. 2 unalloyed copper scrap. Consumption of all scrap items by brass mills declined, except No. 2 unalloyed copper scrap and aluminum bronze—the latter a minor item. Total consumption of copper scrap by foundries and miscellaneous manufacturers was virtually the same in 1956 as in 1955. Their use of No. 1 unalloyed copper scrap increased 4,000 tons, counterbalancing a decline of 4,000 tons in railroad-car-box consumption. Consumption of refined copper in 1956 by brass mills decreased 36,000 tons to 611,000, whereas that of wire mills, which use no scrap, rose 52,000 tons to 865,000.

TABLE 14.—Consumption of copper and brass materials in the United States, 1955-56, by principal consuming groups, in short tons

Item consumed	Primary producers	Brass mills	Wire mills	Foundries and other manufac- turers ¹	Secondary smelters
1955 Copper scrap	318, 269 21, 342, 459	477, 180 647, 044 6, 864 134, 016 1, 119	812, 663 876	133, 055 33, 726 4 329, 184 6, 064 418	412, 944 6, 827 6, 163 17, 627
Copper scrap Primary material Refined copper ³ Brass Ingot Slab zinc Miscellaneous	370, 946 2 1, 442, 633	388, 738 611, 098 7, 670 111, 778 348	864, 585 731	135, 933 36, 294 4 305, 049 5, 304 302	384, 780 7, 654 6, 922 15, 267

4 Shipments to foundries by smelters.

Consumption of ingot in 1956 was reported by 1,412 foundries to be an average of 191 tons, virtually all of which (except 9,000 tons accounted for by mills, chemical plants, and exports) was shipped to foundries. Reported stocks of ingot at foundries decreased 5,000 tons, so that their actual total consumption was at least 310,000 tons. On this basis, coverage of the foundry survey was 87 percent in quantity in 1956—1 percent less than in 1955.

Excludes chemical plants.
 Recoverable copper content; gross weight not available.
 Detailed information on consumption of refined copper will be found in the Copper chapter of this

TABLE 15.—Foundry consumption of brass	of brass	ingot by graphic c		types, refined livisions and S	d copper, States, in	and copper	٠.	ap, in th	scrap, in the United States in 1956,	States	in 1956,	by geo-
Geographic division and State	Tin bronze	Leaded tin bronze	Leaded red brass	High- leaded tin bronze	Leaded yellow brass	Man- ganese bronze	Hard- eners	Nickel silver	Low	Total brass ingot	Refined copper consumed	Copper scrap consumed
New England: Connecticut Maine. Massachusetts. New Hampshire. Rhode Island and Vermont.	406 21 736 5 35	1,836 32 2,019 5	5, 673 172 5, 630 960 933	224 27 430 12 38	2, 355 304 380 7	138 41 503 76 76	7 4 4 17 210 210 8	498 128 162	12 10 411 134 497	11, 149 10, 078 10, 944 1, 944 1, 641	1,310 889 153	1, 564 4, 123 173
Total	1, 203	3,992	13, 368	731	2,949	781	246	788	1,064	25, 122	2,352	5,860
Middle Atlantic: New Jersey. New York. Pennsylvania.	1, 061 1, 990 2, 645	587 3, 231 3, 413	6, 488 12, 053 18, 120	393 728 4,728	782 406 1,612	723 1,061 3,024	25 147 1, 297	168 214 226	44 796 1,695	10, 271 20, 626 36, 760	2, 461 2, 955 9, 334	4, 930 8, 296 18, 344
Total	5, 696	7, 231	36, 661	5,849	2,800	4,808	1,469	809	2, 535	67, 657	14, 750	31, 570
Bast North Central: Illinois Illindian Michigan Ohlo. Wisconsin.	1, 299 339 543 2, 132 975	2, 523 269 1, 503 8, 553 909	18, 901 10, 408 11, 305 20, 048 7, 211	2, 122 1, 320 691 9, 401 3, 181	276 115 956 207 1, 486	889 164 2,010 1,010	86 72 91 285 120	491 37 17 228 1,619	1,096 35 245 907 143	27, 683 12, 759 17, 361 42, 771 16, 066	488 1, 170 4, 848 4, 347 2, 979	8, 963 13, 9616 13, 961 2, 967
Total	5,288	13, 757	67, 873	16, 715	3,040	4, 495	654	2,392	2, 426	116,640	13,832	34, 479
West North Central: Lowa. Lowa. Manssota Missouri. Nebraska and South Dakota.	21 60 486 373 779	89 5 341 299 2	2, 699 412 1, 857 2, 047 92	76 10 310 785 1	101 40 698 698 55	133 148 100 100	6 14 52	04000	2 222 764	3, 071 684 3, 324 5, 120 293	522 10 562 12	3,059 3,376 12,008
Total	1,019	736	7,107	1, 182	899	360	72	50	1,067	12, 492	1, 106	18, 509
South Atlantic: Delaware Delaware Florida Georgia Maryland and District of Columbia North and South Carolina Virginia West Virginia	13 26 8 140 25 334 55	18 9 508 301 677 312	652 60 126 182 82 103 3, 783	13 7 4 146 785 204	6 1 27 4 125 222 721	16 125 8 123 123 70 64	10 10 17	199	50 10 16 16	718 278 278 692 1, 121 922 1, 858 4, 849	285 485 1, 207	267 1,383 956 87 13,033
Total	601	1,832	4,988	1,159	1, 106	418	88	214	92	10, 438	1, 980	16,016

Bast South Central: Alabama. Kentucky. Missispi.	112	514 51 4 4	5, 563 226 1 898	186 166 106	880 4, 905	416 10 4 36	1 1 2	27	364	8, 109 5, 368 2, 326	294	443 249 5, 139
Total	186	919	6,688	1,460	5,945	466	53	27	376	15,817	324	5, 831
West South Central: Arkansas and Louisiana Okalahoma	65 166 96	48 716 159	101 118 3,851	16 111 261	1 81	38	420	17	6 131 156	276 1, 247 5, 143	391	641 58 1 3,090
Total	327	923	4,070	388	82	551	15	17	293	6,666	391	3, 789
Mountain: Arizona, Colorado, and New Mexico Montana, Neyada, and Utah.	114	82.5	158 62	1	1233	25.23		15		365	28	2,110
	114	83	220	3	5	29		15		457	257	2, 574
Pacific: California Oregon. Washington.	511 20 47	770 354 28	9, 454 28 75	922	1,042	595 23 184	37 19	222	62 17 7	13, 615 499 342	302 37 963	12, 695 1, 865 2, 745
Total	873	1,152	9, 557	941	1,061	802	57	222	98	14, 456	1,302	17, 305
Grand total	15,012	30, 272	150, 532	28, 428	17,887	12,748	2, 594	4, 333	7, 939	269, 745	36, 294	135, 933

TABLE 16.—Foundry consumption of brass ingot in the United States, percent by types of ingot, 1951-56

(Percent of total)

Year	Tin bronze	Leaded tin bronze	Leaded red brass	High- leaded tin bronze	Leaded yellow brass	Man- ganese bronze	Hard- eners	Nickel silver	Low brass	Total consump- tion, tons
1951	6. 1	15.8	54. 2	7. 5	7. 5	4. 9	1.2	.6	2. 2	325, 786
1952	7. 2	12.5	54. 5	8. 1	6. 7	6. 6	.8	1.3	2. 3	268, 651
1953	6. 5	10.4	54. 5	9. 4	7. 8	6. 3	1.0	1.2	2. 9	255, 770
1954	5. 3	10.0	59. 1	8. 0	7. 4	5. 4	.6	1.2	3. 0	242, 497
1955	4. 8	9.5	60. 0	9. 7	7. 3	3. 9	.8	1.2	2. 8	287, 657
1956	5. 6	11.2	55. 8	10. 5	6. 6	4. 7	1.0	1.6	3. 0	269, 745

TABLE 17.—Dealers' average monthly buying prices for copper scrap and consumers' alloy-ingot prices at New York in 1956, in cents per pound

[Metal Statistics, 1957]

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age
No. 1 heavy copper scrap	3 7. 85	38. 51	40. 76	37. 27	31. 55	28. 13	27. 46	29. 57	28. 79	26. 57	26. 28	26.06	31. 57
No. 1 composition ingot													27. 14 38. 72

Foreign Trade.—When domestic demand for copper scrap declined. the Bureau of Foreign Commerce liberalized export quotas progressively until, in the fourth quarter, the quota for unalloyed scrap was 9,000 tons a quarter and for copper-base alloy scrap 21,400 tons, except copper-nickel alloy scrap containing 5 percent or more nickel. However, total exports of unalloyed copper and copper-alloy scrap were approximately the same in 1956 as in 1955. The export demand was good, but sales also depended on barter agreements and dollar exchange available to foreign consumers.

TABLE 18.—Brass and copper scrap imported into and exported from the United States, 1947-51 (average) and 1952-56, in short tons

[Bureau of the Census]

	1947-51 (average)	1952	1953	1954	1955	1956
Imports for consumption: Brass scrap (gross weight) Copper scrap (copper content) Exports: Brass scrap Copper scrap	47, 992 12, 618 7, 523 5, 733	10, 321 5, 125 ² 6, 261 8, 941	9, 679 7, 827 2 33, 680 34, 568	5, 272 4, 752 2 93, 972 75, 749	1 11, 758 1 12, 577 2 45, 260 31, 137	6, 519 5, 410 ² 50, 485 25, 681

 $^{^{\}rm I}$ Revised figure. $^{\rm 2}$ Copper-base alloy scrap (new and old); not strictly comparable with earlier years.

TABLE 19.—Exports of copper scrap from the United States by country of destination and imports by country of origin

[Bureau of the Census]

		Exports		Imports for consumption			
Country	Unalloyed copper scrap, copper content	Copper- alloy scrap, gross weight	Total copper scrap	Unalloyed copper scrap, copper content	Copper- alloy scrap, gross weight	Total copper scrap	
ustralia	5, 243	533	5, 776	991 1, 196 927	3, 532 290	99 4, 72 1, 21	
uba rance termany, Westndia	142 5, 736 109	232 18, 028 2, 166	374 23, 764 2, 275	991 6	1, 304	2, 29	
hdia alyapan .ll other	13, 727 675	4, 533 22, 148 2, 845	4, 582 35, 875 3, 520	1, 299	1, 393	2, 69	
Total	25, 681	50, 485	76, 166	5, 410	6, 519	11, 9	

Technology.—In 1956, I. Schumann & Co. of Cleveland, Ohio, introduced changes in conventional production of brass and bronze ingot and named the revised method, "The Kaufman Controlled Process." The process consists of removing solid and gaseous impurities from the molten charge of copper scrap metal in the reverberatory furnace, followed by special procedures for preventing contamination of the melt in the furnace and during pouring and cooling of the product. After furnace treatment the molten metal is drawn into ingot molds from the bottom of a reservoir, in a nitrogen atmosphere, and without use of charcoal. The ingot as cast, has a lustrous surface and is said to contain no gaseous inclusions.

As a means of combatting atmospheric pollution, Roth Brothers Metal Co. of Syracuse, N. Y., nonferrous metal dealers and smelters, built a brick incinerator in 1956 with an afterburning chamber in which four high-powered gas burners were used to improve combustion and reduce the smoke generated in burning insulation from copper wire in the incinerator. Several other incinerators were reported under construction or planned, for the same purpose.

The American Smelting & Refining Co. announced in September that it would spend \$1,250,000 to expand its Perth Amboy, N. J., facilities for continuously casting bronze alloys. Operation of this process, now patented, was first started in 1937 for production of continuous-cast copper billets and was later expanded to include casting alloys as rods, tubing, and other shapes. As far as known, it was (at least through 1956) the only installation for continuously casting copper-base foundry alloys. Articles describing the process were published in 1948 and 1949.

A new high-strength aluminum-bronze alloy, called Superston 40, developed in England, was described. Superston 40 is a 2-phase

American Metal Market, vol. 63, No. 175, Sept. 12, 1956, p. 1.
 Smart, J. S. Jr., and Smith, A. A. Jr., Continuous Casting—the Asarco Process: Iron Age, vol. 162, No. 9, Aug. 26, 1948, pp. 72-80; vol. 164, No. 12, Sept. 22, 1949, pp. 67-72.
 Klement, J. F., and Birch, N. A., New High-Strength Copper Alloy: Metal Progress, vol. 70, No. 5, November 1956, pp. 106-109.

alloy containing 12 percent manganese, 8 percent aluminum, 3 percent iron, 2 percent nickel, and 75 percent copper and is said to have better castability and more attractive mechanical properties than older alloys of this type. Aluminum bronzes are characterized by high strength, freedom from galling, and resistance to fatigue but are difficult to cast.

Research by the Federal Bureau of Mines at its Eastern Experiment Station, College Park, Md., resulted in development of a method for recovering zinc as refined metal electrolytically from galvanizers' sal

skimmings. 10

SECONDARY LEAD 11

Secondary lead recovered in the United States in 1956 totaled 507,000 short tons valued at \$159 million compared with 502,000 tons valued at \$150 million in 1955. Secondary lead recovery exceeded domestic mine production (353,000 tons) for the 11th successive year; however, domestic primary refinery production (610,000 tons) was greater than either domestic mine or secondary metal output.

Recovery of secondary lead, like that of secondary aluminum, copper, and zinc, was lower in the latter half of 1956 than in the first half; but the price of lead scrap, unlike prices of the other three scrap metals, was steady throughout the year, except for small changes in January. Activity in the secondary lead industry probably depends more on the number of automobiles in service than on general business conditions. Of 1,190,000 tons of lead reported consumed in 1956, 558,000 tons—47 percent—was used in storage batteries and the manufacture of tetraethyl lead. Comparable figures for 1955 were 545,000 tons and 45 percent. Much of this lead was in antimonial lead recovered by smelting battery-plates. Refined lead recovered from battery-plate scrap was reused in making battery plates and in tetraethyl lead but not in storage-battery oxides because of its silver and copper content.

Recovery of lead from new lead-base scrap, chiefly drosses and residues from treatment of old scrap, increased 19 percent in 1956, more than counterbalancing the decline from old scrap, which was due chiefly to a drop in recovery from battery-plate scrap. In terms of products, gains in secondary recovery were chiefly in refined lead at secondary smelters, in bronze, and in antimonial lead. There was a 15,000-ton decrease in lead alloys other than antimonial lead, resulting from a 24,000-ton drop in secondary lead content of solder, partly counterbalanced by gains in type metals, babbitt and cable lead. Those of the primary producers that use scrap reclaimed 49,800 tons of secondary lead in antimonial lead and 4,100 tons in refined lead—

in total, 11 percent of all the secondary lead recovered.

Beginning with 1956, industry reported actual recovery of metal from scrap consumed rather than the secondary metal content of shipments. The data are directly comparable, however, with preceding data, since production and shipments are so closely related. The

¹⁰ Sullivan, P. M., Electrolytic Recovery of Zinc From Galvanizers' Sal Skimmings: Bureau of Mines Rept. of Investigations 5205, 1956, 21 pp.
¹¹ The assistance of Edith E. den Hartog is acknowledged.

TABLE 20.—Lead recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1955-56, in short tons

Kind of scrap	1955	1956	Form of recovery	1955	1956
New scrap: Lead-baseCopper-baseTin-base	45, 828 7, 037	54, 435 6, 205 599	As soft lead: At primary plants At other plants	4, 079 124, 241	4, 069 129, 323
Total	52, 865	61, 239	Total	128, 320	133, 392
Old scrap: Battery-lead platesAll other lead-baseCopper-baseTin-base	264, 126 160, 379 24, 670 11	260, 757 161, 439 23, 313 7	In antimonial lead ¹	247, 703 107, 016 18, 627 385	252, 582 92, 448 28, 205 128
Total	449, 186	445, 516	Total	373, 731	373, 363
Grand total	502, 051	506, 755	Grand total	502, 051	506, 755

¹ Includes 45,903 tons of lead recovered in antimonial lead from secondary sources at primary plants in 1955 and 49,821 tons in 1956.

total lead recoverable from lead- and tin-base scrap in 1956, as calculated from data in table 20, is 477,237 tons. This should be the same as the total lead reported recovered in lead and tin products if the factors used in calculating the recoverable lead and the recovered-metal figures from the company reports were precisely correct. The reported total, as shown in table 22, was 478,550 tons; the recoverable total was 1,313 tons or 0.27 percent lower. The comparable data for secondary copper recoverable from copper-base scrap by secondary smelters was 5,172 tons (1.90 percent higher) and for total recoverable secondary zinc 3,821 tons (1.34 percent lower).

TABLE 21.—Secondary metal recovered 1 in lead and tin products in the United States in 1956, gross weight in short tons

Products	Lead	Tin	Antimony	Copper	Total
Refined pig lead	119, 208 13, 978 206				119, 208 13, 978 206
Total	133, 392				133, 392
Refined pig tinRemelt tin		3, 392 261			3, 392 261
Total		3, 653			3, 653
Lead and tin alloys: Antimonial lead. Common babbitt. Genuine babbitt. Solder. Type metals. Cable lead. Miscellaneous lead-tin alloys.		604 1, 867 700 7, 015 2, 668 5 142	16, 462 2, 279 45 307 4, 811 167	35 39 21 20 21 1 9	269, 683 24, 788 894 33, 328 33, 983 18, 529 746
Total	344, 726	13, 001	24, 078	146	381, 951
Composition foilTin content of chemical products	432	164 833	28		624 833
Grand total	478, 550	17, 651	24, 106	146	520, 453

¹ Beginning with 1956 data, most of the figures herein represent actual reported recovery of metal from scrap rather than the secondary metal content of shipments, as in preceding years.

TABLE 22.—Secondary metals recovered in lead and tin products in the United States in 1956, by type of plant, gross weight in short tons

Plant	Lead	Tin	Antimony	Copper	Total					
Secondary smeltersPrimary producers	395, 320 53, 890	12, 190	21, 676 1, 283	140	429, 326 55, 173					
Manufacturers and foundries	29, 340	5, 461	1, 147	6	35, 954					
Total	478, 550	17, 651	24, 106	146	520, 453					
Total	478, 550	17, 651	24, 106	146	520, 45					

Although the total lead-scrap consumption was virtually the same in 1956 as in 1955, there was considerable change in use of individual items. Consumption of hard lead, drosses and residues, and type-metal scrap by primary and secondary smelters rose 9,000, 4,000, and 2,000 tons, respectively, and treatment of soft lead, battery plates and solder decreased 7,000, 5,000, and 3,000 tons, respectively. Other changes were minor. Consumption of babbitt, chiefly by bearing manufacturers, was the most significant feature of the scrap consumption by foundries and manufacturers.

TABLE 23.—Stocks and consumption of new and old lead scrap in the United States in 1956, gross weight in short tons

Class of consumer and type	Stocks, beginning	Receipts		Consumption	1	Stocks, end
of scrap	of year 1		New scrap	Old scrap	Total	of year
Smelters and refiners:		*				
Soft lead	4,077	62, 552		63, 181	63, 181	3, 448
Hard lead	2, 533	28, 634		28, 823	28, 823	2, 344
Cable lead	2, 640	27, 560		26, 419	26, 419	3, 781
Battery-lead plates	16 616	403, 007		393, 481	393, 481	26, 142
Mixed common babbitt	689	7, 562		7, 068	7, 068	
Solder and tinny lead		14, 348		14, 635	14, 635	
Type metals	1,678	22 700		23, 489	23, 489	898
Dross and residues	23, 309	79, 232	80 716	20, 100	80, 716	
	20,000	15, 252	30, 710		80,710	21, 828
Total	52, 225	645, 604	80, 716	557, 096	637, 812	60, 017
Foundries and other manufacturers:					,	
Soft lead	173	1, 758	19	1,634	1, 653	278
Hard lead	71	390	4	448	452	
Cable lead	18	105		98	98	9
Battery-lead plates	155	2-15		44	98	15 96
Mixed common babbitt	396	12, 715				
Solder and tinny lead	313	12,710	1 101	12, 585		
Type metals	919 1	1, 240	1, 381		1, 455	98
Dross and residues	441	20 6	63	20	20 63	1 384
Total	1, 558	16, 219	1 600	14 002		
100012	1, 556	10, 219	1, 628	14, 903	16, 531	1, 246
Grand total:						
Soft lead	4, 250	64, 310	19	64, 815	64, 834	3, 726
Hard lead	2, 604	29, 024	4	29, 271	29, 275	2, 353
Cable lead	2, 648			26, 517	26, 517	3, 796
Battery-lead plates	16, 771	402 992		393, 525	393, 525	
Mixed common babbitt	1, 085	20, 277	161	19, 653	19, 814	
Solder and tinny lead	996	15, 588	1, 381	14, 709	16, 090	
Type metals	1, 679	22, 729	1,001	23, 509	23, 509	
Dross and residues	23, 750	79, 238	80, 779	23, 509	80, 779	
Total	53, 783	661, 823		571, 999	654, 343	61, 263

¹ Revised figure.

² Negative receipts represent consumption from stock.

TABLE 24.—Dealers' monthly average buying prices for lead scrap and prices of refined lead at New York and average battery-plate smelting charges in 1956

				(Ameri	ican M	etal M	arket]						
	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	A ver-
CENTS PER POUND													
No. 1 heavy scrap lead Refined lead	12. 92 16. 16			12. 75 16. 00	12. 75 16. 00	12. 75 16. 00	12, 75 16, 00	12.75 16.00	12. 75 16. 00	12. 75 16. 00	12. 75 16. 00		
				DOL	LARS	PER	TON						
Battery-plate smelting charge	56	56	53	53	55	55	55	55	54	53	56	59	55

Foreign Trade.—General imports of lead scrap in 1956 totaled 20,700 tons and were chiefly from Mexico and Canada.

Technology.—Information from 6 smelters regarding battery-plate scrap smelting practice revealed that in 1956 4 of them were smelting all battery-plate scrap in blast furnaces and 2 in both blast furnaces and reverberatory furnaces. Five were using reverberatories to produce refined lead from the antimonial lead produced in the blast furnaces, and one was using kettles for this purpose. One was charging flue dust back into the blast furnace in tin cans of about 1 cubic foot capacity. The flue dust was said to become sintered by the time the receptacles were melted. One operator believed that research should be conducted on removing bismuth from furnace charges of battery-plate scrap.

SECONDARY MAGNESIUM 12

Secondary magnesium recovered from scrap in the United States in 1956, including that treated on toll, totaled 10,500 short tons valued at \$7.1 million, compared with 10,200 tons valued at \$6.1 million in 1955.

Secondary magnesium recovered in 1956 equaled 20 percent of primary magnesium consumption, which totaled 54,000 tons. The corresponding percentage in 1955 was 22. Of the total 1956 secondary recovery of magnesium, 74 percent was obtained from magnesium scrap, compared with 75 percent in 1955. Recovery of magnesium from old scrap rose 18 percent in 1956, whereas magnesium from new scrap declined 9 percent. In comparison, the total recovery of all nonferrous metals from old scrap decreased 5 percent and from new scrap 1 percent. Recovery of secondary magnesium in magnesium-alloy ingot reached 4,000 tons in 1956—an increase of 700 tons above 1955. This was a greater rise in recovery than in any other magnesium product. In 1955 the greatest secondary recovery of magnesium was in anodes for cathodic protection. The quantity so recovered dropped to third place in 1956. Secondary magnesium recovered in aluminum alloys was less than one-fourth as much as primary magnesium (13,300 tons) used in the same product.

¹² The assistance of Hazel B. Comstock is acknowledged.

TABLE 25.—Magnesium recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1955–56, in short tons

Kind of scrap	1955	1956	Form of recovery	1955	1956
New scrap: Magnesium-base	3, 712	3, 099	In magnesium-alloy ingot 1	3, 342	4, 072
Aluminum-base	1, 981	2, 071	In magnesium-alloy castings In magnesium-alloy shapes	256 5	206
Total	5, 693	5, 170	In aluminum alloysIn zinc and other alloys	2, 976 47	3, 188 85
Old scrap: Magnesium-base Aluminum-base	3, 926 627	4, 662 697	In chemical and other dissipative uses In cathodic protection	1 3, 619	11 2, 962
Total	4, 553	5, 359	Grand total	10, 246	10, 529
Grand total	10, 246	10, 529			

¹ Figures include secondary magnesium incorporated in primary magnesium ingot.

Total consumption of magnesium scrap was 200 tons larger in 1956 than in 1955 because of increases in the use of borings and turnings and wrought scrap that were partly offset by a small decline in cast scrap. In 1956, 84 percent of the cast scrap used was old scrap, compared with 69 percent in 1955.

TABLE 26.—Stocks and consumption of new and old magnesium scrap in the United States in 1956, gross weight in short tons

	Stocks, begin-		C	Stocks.		
Scrap item_	ning of year	Receipts	New scrap	Old scrap	Total	end of year
Cast scrap_ Solid wrought scrap_ Borings, turnings, drosses, etc	534 68 111	6, 729 1, 062 2, 079	1,085 954 1,912	5, 693	6, 778 954 1, 912	485 176 278
Total	713	9, 870	3, 951	5, 693	1 9, 644	939

¹ Includes 251 tons consumed in making magnesium eastings, 6 tons in wrought products, 511 tons in aluminum alloys, 103 tons in other alloys, 5,113 tons in magnesium-alloy ingot, and 3,660 tons in eathodic protection. Detailed information on consumption of primary magnesium will be found in the Magnesium chapter.

SECONDARY NICKEL

The domestic recovery of nickel from nonferrous scrap totaled 14,900 short tons valued at \$20.1 million in 1956, an increase of 29 percent in quantity over the 11,500 tons valued at \$15.4 million recovered in 1955. In comparison, domestic mine production totaled about 7,400 tons in 1956 and 4,400 tons in 1955. The increase in reported secondary nickel recovery was due chiefly to secondary production by a plant that had not previously reported handling nickel scrap.

TABLE 27.—Nickel recovered from nonferrous scrap processed in the United States, by kind of scrap and form of recovery, 1955-56, in short tons

Kind of scrap	Kind of scrap 1955 1956 Form of recover				1956
New scrap: Nickel-base Copper-base Aluminum-base	1, 787 1, 844 389	4, 568 1, 466 310	As metal. In nickel-base alloys In copper-base alloys In aluminum-base alloys	2, 301 2, 210 3, 137 509	3, 762 3, 122 2, 399 424
TotalOld scrap:	4, 020. 7, 005	7, 900	In lead-base alloys In ferrous and high-temperature alloys ' In chemical compounds	2, 422 961	4, 153 997
Copper-baseAluminum-base	382 133	486 130	Grand total	11, 540	14, 860
Total	7, 520	8, 516			
Grand total	11, 540	14, 860		7	

¹ Includes only nonferrous nickel scrap added to ferrous and high-temperature alloys.

Of the total secondary nickel reported recovered in 1956, 84 percent was from nickel scrap (compared with 76 percent in 1955) and 13 percent from copper scrap (compared with 19 percent in 1955). There were considerable increases in the recovery of secondary metal in ferrous and nickel-base alloys and as nickel metal, and a sizable decrease in copper-base alloys. The distribution of nickel recovered from nickel scrap in ferrous items, such as stainless steel, high-temperature alloys, etc., was not determined in 1956, but was probably about the same as that reported on primary forms for primary nickel consumption, or about five-sixths in iron and steel alloys and one-sixth in high-temperature and electrical resistance alloys.

Consumption of unalloyed nickel scrap—the largest nickel item—rose 93 percent in 1956. In 1955 the largest item was Monel scrap. Usage of nickel silver (a copper-base item) by secondary smelters, increased 26 percent, but that by manufacturers—chiefly brass mills—declined 18 percent to 7,400 tons. The total consumption of nickel residues increased 64 percent, and that of Monel scrap decreased 19 percent. About 45 percent of the nickel residues reported consumed was recovered as nickel or in alloys or compounds. The high percentage resulted because much of the residue was reported on a

nickel-content basis.

TABLE 28.—Stocks and consumption of new and old nickel scrap in the United States in 1956, gross weight in short tons

	,					
	Stocks, begin-			Consump	tion	Stocks.
Class of consumer and type of scrap	ning of year	Receipts	New scrap	Old scrap	Total	end of year
Smelters and refiners:						
Unalloyed nickel Monel metal Nickel silver Miscellaneous nickel alloys Nickel residues	139 219 1 656 2 142	5, 407 2, 412 1 3, 450 17 1, 490	2, 776 529 1 394 4 7	1, 878 1, 828 1 3, 259 11 1, 618	4, 654 2, 357 1 3, 653 15 1, 625	892 274 1 453 4 7
Total	502	9, 326	3, 316	5, 335	8, 651	1, 177
Foundries and plants of other manufac- turers:						
Unalloyed nickel	360 296	3, 724 1, 557	379 368	2, 389 1, 199	2, 768 1, 567	1, 316 286
Nickel silver Miscellaneous nickel alloys	55	1 7, 767 704	¹ 7, 222 49	1 136 677	1 7, 358 726	1 2, 244 33
Nickel residues	191	2, 886	2,067	680	2,747	330
Total	902	8,871	2,863	4, 945	7,808	1, 965
Grand total:						
Unalloyed nickel Monel metal	499 515	9, 131 3, 969	3, 155 897	4, 267 3, 027	7, 422 3, 924	2, 208 560
Nickel silver Miscellaneous nickel alloys	¹ 2, 491 57	1 11, 217 721	¹ 7, 616 53	1 3, 395 688	1 11, 011 741	1 2, 697 37
Nickel residues	333	4, 376	2,074	2, 298	4, 372	337
Total	1, 404	18, 197	6, 179	10, 280	16, 459	3, 142

¹ Excluded from totals because it is copper-base scrap, although containing considerable nickel.

Foreign Trade.—There was no letup in the demand for nickel scrap in 1956. Because of the continued short supply, the Bureau of Foreign Commerce adopted new export restrictions, effective April 17, under which export licenses for copper-nickel-alloy scrap, including Monel, and copper-nickel-alloy scrap containing 5 percent or more nickel were generally not approved. Previously, licensing of nickel-bearing scrap was based on unsalability in the domestic market. On June 21 the restrictions were changed to a total embargo, and on September 17 the embargo was modified to allow exports of nickel-copper alloy sent abroad for conversion into nickel metal for return to the United States. Imports of nickel scrap for consumption were 1,000 tons in 1956 compared with 400 tons in 1955. Exports of nickel and nickel alloys in ingots, bars, rods and other crude forms, and scrap totaled 15,000 tons in 1956, compared with 19,000 tons in 1955.

SECONDARY TIN 13

Domestic recovery of secondary tin in 1956 increased 4 percent in quantity over 1955 and totaled 33,000 short tons valued at \$67 million. The increase included gains of 99, 87, and 6 percent in tin recoverable from new lead-base, tin-base, and tinplate scrap, respectively. These gains were partly offset by declines in recovery from old copper-base, lead-base, and tin-base scrap. As in the case of secondary lead, the greatest increase in recovery of secondary tin was from new lead-base scrap, chiefly drosses. In terms of secondary production, tin recovered in lead-base alloys rose 39 percent, in unalloyed tin 10 percent, and in brass and bronze 8 percent. Secondary tin recovered by detinning plants as metal and in chemical compounds increased 8 percent in 1956.

TABLE 29.—Tin recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1955-56, in short tons

Kind of scrap	1955	1956	Form of recovery	1955	1956
New scrap: Tinplate Tin-base Lead-base Copper-base	3, 536 977 2, 319 3, 114	3, 753 1, 823 4, 624 3, 026	As metal: At detinning plants. At other plants.	3, 102 225	3, 333 320
Total	9,946	13, 226	Total	3, 327	3, 653
Old scrap: Tin-base Lead-base Copper-base	2,050 7,890 11,810	47 1,779 7,103 10,818	In solder In tin babbitt In chemical compounds In lead-base alloys In brass and bronze	8, 707 856 768 3, 915 14, 170	7, 015 700 833 5, 450 15, 322
Total	21, 797	19, 747	Total	28, 416	29, 320
Grand total	31,743	32, 973	Grand total	31, 743	32, 973

Total tin-scrap consumption increased 40 percent in 1956, but the rise was chiefly in drosses and residues, which were lower in tin than metallic items, so that the total recoverable tin content of all tin scrap used rose only 19 percent. Detinners' use of tinplate scrap, which is not included in the tin-scrap consumption table, increased 10 percent.

The tonnage of tinplate clippings treated in 1956 was the largest on record and 57,000 tons more than the previous peak in 1955. One product of the detinning industry was steel scrap, which was sold to open-hearth mills. The average quoted composite price of steel scrap increased from \$40.19 per gross ton in 1955 to \$53.70 in 1956, with the price soaring to record highs in the early part of December. Old cans processed increased in 1956, but the total used was small compared with the record use of 176,000 tons in 1943. Tin recovered from tinplate clippings in 1956 was 6 percent more than 1955, while that from old cans was about the same as in 1954 and 1955. The lower recovery of tin recovered per long ton of tinplate scrap treated in 1956 continued to reflect treatment of a larger proportion of electrolytic tinplate carrying a thinner coating of tin.

¹³ The assistance of John B. Umhau and Edith E. den Hartog is acknowledged.

TABLE 30.—Stocks and consumption of new and old tin scrap in the United States in 1956, gross weight in short tons

	Stocks,	Receipts		Consumptio	on	Stocks.
Class of consumer and type of scrap	beginning of year 1		New scrap	Old scrap	Total	end of year
Smelters and refiners: Block-tin pipe, scrap, and foil. No. 1 pewter. High-tin babbitt. Dross and residues.	48 21 60 888	672 71 759 3, 207	3, 561	696 72 748	696 72 748 3, 561	24 20 71 534
Total	1,017	4, 709	3, 561	1, 516	5,077	649
Foundries and other manufacturers: Block-tin pipe, scrap, and foil High-tin babbitt Dross and residues	2 1 5	24 17 2	6	23 16	23 16 6	3 2 1
Total	8	43	6	39	45	6
Grand total: Block-tin pipe, scrap, and foil	50 21 61 893	696 71 776 3, 209	3, 567	719 72 764	719 72 764 3, 567	27 20 73 535
Total	1,025	4, 752	3, 567	1, 555	5, 122	655

¹ Revised figures.

TABLE 31.—Secondary tin recovered from scrap processed at detinning plants in the United States, 1955-56

			1955	1956
Scrap treated:				
Člean tinplate clippingsOld tin-coated containers		long tons do	572, 419 5, 905	629, 097 6, 045
Total		do	578, 324	635, 142
Tin recovered:				
From new tinplate clippings From old tin-coated containers		_short tons	3, 536 47	3, 753 47
Total		do	3, 583	3,800
Form of recovery:		,		
As metal In compounds		do	2, 887 696	3, 024 776
Total 1		do	3, 583	3, 800
Weight of tin compounds producedAverage quantity of tin recovered per local per l	ng ton of clean tinnlate coren read	do	1, 274 12. 35	1, 260 11. 93
Average quantity of tin recovered per lo Average delivered cost of clean tinplate Average delivered cost of old tin-coated	g geran n	ow lower to-	16. 01 \$29. 09 \$33. 65	15. 47 \$44. 20 \$44. 37

¹ Recovery from tinplate clippings and old containers only. In addition, detinners recovered 287 tons from these sources in 1955, and 366 tons of tin as metal and in compounds from tin-base scrap and residues

Prices.—The average New York price of scrap block-tin pipe for the year was 82.06 cents a pound. The highest monthly average was 84.50 cents in March and April; the lowest was in the last 6 months of the year, when the average remained consistently 80.50 cents.

Foreign Trade.—Imports of tinplate scrap, chiefly from Canada,

were 29,200 long tons in 1956, compared with 28,700 in 1955. Exports

of tinplate scrap in 1956 were 3,380 long tons (140 in 1955, revised), mostly to Japan.

Exports of tin-alloy scrap were 4,100 tons in 1956 and 6,000 tons

in 1955.

TABLE 32.—Tinplate scrap imported for consumption in the United States, 1955-56, by countries, in long tons [Bureau of the Census]

Country	1955	1956	Country	1955	1956
North America: Canada	27, 370 237	28, 183 389	Africa: AlgeriaFrench Morocco	175	198 97
Mexico	27, 607	28, 623	Madagascar Tunisia Union of South Africa	103 711	41 50 128
Europe:	36		Total	989	514
Germany, West Iceland Italy	43 46		Grand total	28, 721	29, 137
Total	125			3.3	

Technology.—Research by the Bureau of Mines at its Northwest Electrodevelopment Laboratory, Albany, Oreg., resulted in development of a method for recovering lead and tin from solder dross generated in canning.14

SECONDARY ZINC 15

Secondary zinc recovered from purchased zinc scrap and residues in the United States in 1956 totaled 281,000 short tons valued at \$77 million compared with 305,000 tons valued at \$75 million in 1955.

TABLE 33.—Zinc recovered from scrap processed in the United States, by kind of scrap and form of recovery, 1955-56, in short tons

		10 miles			
Kind of scrap	1955	1956	Form of recovery	1955	1956
New scrap: Zinc-base Copper-base Aluminum-base	4,948	116, 198 88, 623 2, 728 60	As metal: By distillation: Slab zinc 1 Zinc dust	65, 477 25, 112 8, 165	71, 420 2 27, 415 9, 091
Magnesium-base Total	221, 226	207, 609	By remelting	98, 754	107, 926
Old scrap: Zinc-base Copper-base Aluminum-base Magnesium-base	33, 974 47, 642 1, 845 88	35, 184 36, 912 1, 545 105	In zinc-base alloys	17, 772 152, 252 6, 888 192	15, 972 122, 204 4, 413 165
Total	83, 549	73, 746	Zinc oxide (lead-free) Zinc sulfate Zinc chloride	9, 055 4, 944 11, 515	10, 076 4, 780 11, 139
Grand total	304, 775	281, 355	Lithopone	2, 773 630 206, 021	4, 034 646 173, 429
			Grand total	304,775	281, 355

Includes zinc content of redistilled slab made from remelt die-cast slab.

² Includes zinc content of dust made from other than scrap.

Campbell, T. T., Block, F. E., and Fugate, A. D., Recovering Lead and Tin From Wet Solder Drosses;
 Bureau of Mines, Rept. of Investigations 5210, 16 pp.
 The assistance of Esther B. Miller is acknowledged.

The decreased output was caused chiefly by a decline in the quantity of zinc contained in copper scrap consumed, which was the smallest since 1949. Zinc-scrap prices, like those for aluminum and copper scrap, declined considerably in 1956, whereas the price of slab zinc, steadied by Government purchases for the national stockpile, was virtually stationary. Under these conditions zinc recovery from zinc scrap was 2 percent greater in 1956 than in 1955. In terms of products the total net decrease was chiefly in secondary zinc recovered in brass and bronze. There were moderate decreases in secondary zinc recovered in aluminum- and zinc-base alloys and moderate increases in redistilled slab zinc, remelt zinc, and total secondary recovery in zinc chemicals.

TABLE 34.—Production of secondary zinc and zinc-alloy products in the United States, 1947-51 (average) and 1952-56, gross weight in short tons

Products	1947-51 (average)	1952	1953	1954	1955	1956
Redistilled slab zinc Zinc dust 2 Remelt spelter 3 Remelt die-cast slab Zinc die and die-casting alloys Galvanizing stocks Rolled zinc Secondary zinc in chemical products	58, 506	55, 111	52, 875	1 68, 013	1 66, 042	1 72, 127
	29, 242	25, 113	25, 297	26, 714	30, 118	28, 048
	6, 596	3, 197	2, 938	4, 456	5, 019	7, 900
	9, 129	7, 098	5, 695	9, 418	12, 729	12, 900
	4, 020	3, 400	3, 411	4, 037	6, 377	4, 306
	462	203	107	186	325	369
	2, 991	2, 948	3, 132	2, 701	2, 915	2, 179
	45, 279	31, 205	34, 680	26, 078	28, 917	30, 637

¹ Includes redistilled slab made from remelt die-cast slab.

² Includes zinc dust produced from other than scrap.
³ Includes small tonnages of bars, anodes, etc.

Zinc smelters and distillers increased their total consumption of zinc scrap 4 percent in 1956, chiefly from rises of 20 percent in skimmings and ashes and 5 percent in galvanizers' dross. Distillers used most of the skimmings and ashes, whereas chemical plants used virtually all of the sal skimmings reported consumed. Consumption of zinc skimmings by chemical plants increased 108 percent in 1956, but their use of other zinc-byproduct residues declined. A total of 40,000 tons of metallic zinc scrap and residues was treated by chemical plants and foundries, rolling mills, etc., to yield 19,000 tons of zinc in chemicals and 3,000 tons in rolled zinc, brass and bronze, galvanizing, and battery zinc.

Consumption of galvanizing residues, as shown in figure 1, includes zinc skimmings and ashes, sal skimmings, and galvanizers' dross. Most of the zinc skimmings and all of the other two items were generated in galvanizing operations. The zinc skimmings include skimmings from die-cast metal that contain 4 or 5 percent aluminum; they also include skimmings from continuous galvanizing lines containing aluminum, which was added as a brightener. The increase in continuous galvanizing may be causing the rising trend in reported

consumption of zinc skimmings; this trend is greater than that indicated in total galvanizing residues. Demand for residues generated in continuous galvanizing was not as strong as for those from the conventional hot-dip process, because of the higher aluminum content in the former material. There were 34 continuous galvanizing lines operating, 1 under construction, and 5 in the planning stage at the end of 1956.¹⁶

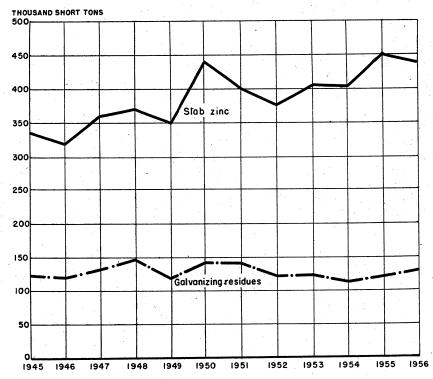


FIGURE 1.—Consumption of slab zinc in galvanizing and of galvanizing residues, 1945-56.

Prices.—The approximate price paid for sal skimmings by consumers in the Chicago area in 1956 was \$25 per ton, with the buyer paying transportation costs in addition, but in some instances prices were determined on a delivered basis. The approximate maximum distance from Chicago for economical shipment of sal skimmings was given by 1 consumer as 600 miles.

¹⁶ American Metal Market, American Zinc Institute Head Expects Peak Year for Industry: Vol. 64, No. 3, Jan. 4, 1957, pp. 1, 7.

TABLE 35.—Stocks and consumption of new and old zinc scrap in the United States in 1956, gross weight in short tons

	Stocks, begin-		C	onsumptio	n	Stocks,
Class of consumer and type of scrap	ning of year	Receipts	New scrap	Old scrap	Total	end of year
Smelters and distillers:			9			
New clippings	253	2, 582	2,616		2,616	219
Old zinc	850	4, 431		4, 762	4,762	519
Engravers' plates	1,030	2,746		2, 906	2,906	870
Skimmings and ashes	5, 294	47, 325	46, 125		46, 125	6, 494
Sal skimmings	535	331	369		369	497
Die-cast skimmings	1, 353	10,684	10, 228		10, 228	1,809
Galvanizers' dross	6, 839	60, 290	58, 374		58, 374	8, 755
Die castings	2, 721	35, 195		33, 174	33, 174	4,742
Rod and die scrap	310	2, 891		2, 247	2, 247	954
Flue dust	141	4,902	4,888		4,888	155
Chemical residues	1, 831	8, 480	8, 985		8, 985	1, 326
Total	21, 157	179, 857	131, 585	43, 089	174, 674	26, 340
Chemical plants, foundries and other						
manufacturers:	00	0.014	0.004		0.004	00
New clippingsOld zine	86 4	2, 614 137	2, 664	125	2, 664 125	36 16
Engravers' plates	4	284		284	284	10
Skimmings and ashes	874	5, 052	3, 856	204	3, 856	2,070
Sal skimmings	10, 401	22, 151	21, 570		21, 570	10, 982
Galvanizers' dross	10,401	22, 101	21,010		21,010	10, 382
Die castings	62	1.145	1, 101	58	1, 159	48
Rod and die scrap	6	80	1,101	50	50	36
Flue dust	131	2, 570	2, 431		2. 431	270
Chemical residues	1, 398	7, 855	7, 907		7, 907	1, 346
						
Total	1 12, 980	41, 888	39, 529	517	40,046	14, 822
Grand total:						10.00
New clippings	339	5, 196	5, 280		5, 280	255
Old zinc	854	4, 568		4, 887	4.887	535
Engravers' plates	1,030	3,030		3, 190	3, 190	870
Skimmings and ashes	6, 168	52, 377	49, 981		49, 981	8, 564
Sal skimmings	10, 936	22, 482	21, 939		21, 939	11, 479
Die-cast skimmings	1, 353	10,684	10, 228		10, 228	1,809
Galvanizers' dross	1 6, 857	60, 290	58, 374		58, 374	8, 773
Die castings	2, 783	36, 340	1, 101	33, 232	34, 333	4, 790
Rod and die scrap	316	2, 971		2, 297	2, 297	990
Flue dust	272	7, 472	7, 319		7, 319	425
Chemical residues	3, 229	16, 335	16, 892		16, 892	2, 672
Total	1 34, 137	221, 745	171, 114	43, 606	214, 720	41, 162

¹ Revised figure.

TABLE 36.—Dealers' monthly average buying prices for zinc scrap at New York and prices of Prime Western zinc at East St. Louis in 1956, in cents per pound

[Metal Statistics, 1957]													
	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age
New zinc clips Old zinc Prime Western zinc	8. 63 6. 13 13. 44	6. 25	6. 25	6. 25	5. 25		4.75	7. 75 4. 75 13. 50	4.75	4.75	7. 25 4. 75 13. 50	4. 75	5.32

Foreign Trade.—Imports of zinc scrap consisted of 400 tons of dross and skimmings from Canada. Exports totaled 14,900 tons (zinc content), of which Belgium-Luxembourg received 11,900 tons and the Netherlands 2,400.

Silver

By J. P. Ryan 1 and Kathleen M. McBreen 2

NCREASED mine production and a sharp rise in imports were features of the domestic silver industry in 1956. Mine output rose 5 percent to 39 million ounces, and imports valued at \$129 million gained 77 percent over 1955. Domestic consumption in the arts and industry was about 100 million ounces—a slight decline from the preceding year.

The gain in domestic silver output in 1956 again reflected expanded production of base-metal ores, particularly copper ore yielding byproduct silver. The rise in imports resulted from the return of large quantities of lend-lease silver. Free silver stocks in the United States Treasury increased to 87.4 million ounces, and total Treasury stocks at the end of the year were 1,981 million ounces.

TABLE 1.—Salient statistics of silver in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
No.						* * 4
Mine production fine ounces Ore (dry and siliceous)	38, 163, 698	39, 452, 330	37, 570, 838	36, 941, 383	37, 197, 742	38, 948, 121
produced (short tons): Gold ore	3, 270, 322	2, 339, 160	2, 198, 688	2, 248, 604	2, 233, 953	2, 255, 096
Gold-silver ore	430, 047 462, 350	237, 211	81, 658	46, 345	120, 303 570, 303	244, 808
Percentage derived from— Dry and siliceous ores		31	•		30	100
Base-metal ores	72	(2)	29 71 (2)	(2)	(2) 70	(2) 71
Placers Net consumption in in- dustry and the arts	(2)	(4)	(-)	(-)	()	
fine ounces	101, 357, 800	96, 500, 000	106, 000, 000			
Imports 3fine ounces Exports 3do	90, 727, 662 8, 715, 523		81, 510, 135 1, 022, 773			162, 831, 781 5, 500, 880
Monetary stocks (end of year)fine ounces 4		1, 938, 000, 000	1, 926, 000, 000	1, 935, 000, 000	1, 930, 000, 000	1, 981, 000, 000
Price, average, per fine ounce	\$0.905+	\$0.905+	\$0.905+	\$0.905+	\$ 0. 905+	\$0.905+
World production fine ounces (estimated)	176, 700, 000	6 215, 500, 000	6 221, 700, 000	6 214, 200, 000	6 223, 400, 000	222, 400, 000

Includes Alaska.

Less than 0.5 percent.

Excludes coinage.

Owned by Treasury Department; privately held coinage not included.

Treasury buying price for newly mined silver.

Revised figure.

¹ Commodity specialist. ² Statistical assistant.

World silver production in 1956 declined slightly to about 222.4 million ounces, whereas world consumption of silver in the arts and industries in 1956 rose 17 percent to a postwar high of about 204.3 million ounces.³ In addition, it was estimated that 56.1 million ounces were used for world coinage in 1956, nearly 30 percent more than in 1955.

Net inflow of silver into the United States in 1956 was valued at \$122 million—a gain of 89 percent over 1955.

DOMESTIC PRODUCTION

Domestic mine production of recoverable silver increased in 1956 for the second consecutive year. The yield in 1956 was 5 percent higher than in 1955 due principally to the increased output of base-metal ores from which silver was obtained as a byproduct.

Idaho maintained its position as the leading silver-producing State by a wide margin, Montana was second (having displaced Utah, which had ranked second since 1943 but dropped to third in 1956),

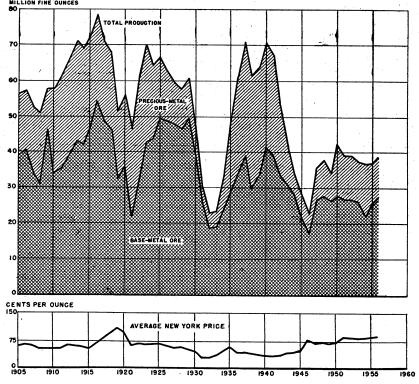


FIGURE 1.—Silver production in the United States and average price per ounce, 1905-56.

⁸ Handy & Harman, The Silver Market in 1956: 41st Ann. Review, p. 22.

and Arizona was fourth. These 4 States supplied 84 percent of the domestic silver output in 1956. About two-thirds of Idaho's production was recovered from dry ores where silver was the principal product. Most of the remaining domestic silver production was recovered as a byproduct of ores mined principally for base metals or gold. Approximately 99 percent of the domestic silver production was recovered in smelting ores or concentrates.

A detailed description of the units of measurement, methods of calculating production, ore classification, and methods of recovery is

given in the Gold chapter of the 1954 Minerals Yearbook.

TABLE 2.—Silver produced in the United States, ¹ 1947-51 (average) and 1952-56, according to mine and mint returns, in fine ounces of recoverable metal

	1947-51 (average)	1952	1953	1954	1955	1956
MineMint	38, 163, 698	39, 452, 330	37, 570, 838	36, 941, 383	37, 197, 742	38, 948, 121
	38, 995, 217	39, 840, 300	37, 735, 500	35, 584, 800	36, 469, 610	38, 739, 400

¹ Includes Alaska.

TABLE 3.—Mine production of silver in the United States 1 in 1956, by months

Month	Fine ounces	Month	Fine ounces
January February March April May	2, 964, 268 3, 139, 185 3, 263, 342 3, 357, 329 3, 235, 170	August	3, 415, 291 3, 102, 406 3, 509, 493 3, 405, 292 3, 421, 625
July July	3, 267, 032 2, 867, 688	Total	38, 948, 12

¹ Includes Alaska.

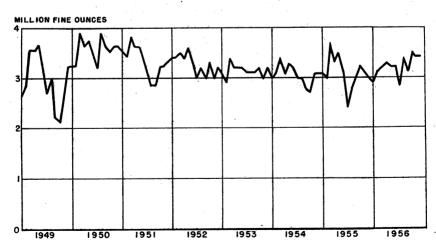


FIGURE 2.—Mine production of silver in the United States, 1949-56, by months, in terms of recoverable silver.

The Coeur d'Alene region in Idaho was again the leading silver-producing area, followed by the Summit Valley (Butte) district in Montana and the West Mountain (Bingham) district in Utah—an order unchanged since 1932.

These 3 districts supplied nearly 62 percent of the domestic mine

output of silver in 1956.

Only 4 of the 25 leading domestic silver-producing mines in 1956 depended on ore whose value was chiefly in silver; ores valuable chiefly for copper, lead, zinc, and gold again supplied most of the silver The 10 leading mines—each producing over 1 million ounces of silver in 1956—contributed 57 percent of the United States output; the 25 leading mines together contributed 78 percent.

TABLE 4.—Mine production of recoverable silver in the United States. 1947-51 (average) and 1952-56, by districts and regions that produced 200,000 fine ounces or more during any year (1952-56), in thousand fine ounces

District or region	State	1947-51 (aver- age)	1952	1953	1954	1955	1956
Coeur d'Alene Region Summit Valley (Butte) West Mountain (Bingham) Warren Park City region Copper Mountain Big Bug Upper San Miguel Darwin (Coso) Red Cliff (Battle Mountain) Ajo Tintic Pioneer Flint Creek Elk Mountain Republic Upper Peninsula Robinson Warm Springs Southeastern Mineral Creek Central Pima Jack Rabbit (Bristol) Rush Valley Pioche California (Leadville) Creede Silver Peak Animas Verde Grand Island	Missouri Arizona New Mexico Arizona Nevada Utah Nevada	5, 812 4, 743 1, 299 1, 241 624 546 570 602 390	13, 752 5, 514 5, 338 1, 243 862 403 582 764 (1) 234 450 666 607 234 13 3 242 174 631 517 214 306 129 (1) 179 425 322 174 (1)	13, 637 6, 289 5, 027 1, 266 5, 027 1, 266 5, 027 718 (2) 581 436 563 628 2 225 3 251 185 566 360 266 79 97 97 97 97 97 100 31 (1)	14, 899 4, 663 4, 109 1, 379 826 403 579 577 (1) 2, 112 390 933 634 332 3 273 107 554 3532 208 30 07 159 138 229 (1) 12 7	12, 984 5, 578 4, 409 1, 209 634 696 6454 (1) 1, 613 488 6387 (1) 3 363 478 113 427 269 351 129 146 (1) 128 48 98 136 353 32 18 40	12, 663 6, 772 4, 541 1, 267 1, 198 800 (1) (1) 581 581 583 497 492 413 (1) 3 383 3 80 365 345 295 261 260 226 (1) 198 180 112 87 112

Figure withheld to avoid disclosing individual company confidential data.
 Combined with First Chance and Henderson districts in 1953 to avoid disclosure of individual company confidential data ³ Chelan and Ferry Counties combined in 1952-56 to avoid disclosing individual company confidential

TABLE 5.-Twenty-five leading silver-producing mines in the United States in 1956, in order of output

l		, silver
	Source of silver	Silver ore. Lead-zinc ore. Silver ore. Silver ore. Silver ore. Silver ore. Copper ore. Silver, lead, lead-zinc ores. Copper ore. Do. Silver ore. Lead-zinc ore. Silver copper ore. Copper ore. Lead-zinc ore. Copper, lead-zinc ore. Copper, lead-zinc ore. Copper, lead-zinc ore. Copper, lead-zinc ores. Copper, lead-zinc ores. Copper ore.
	Operator	Sumshine Mining Co. The Anaconda Co. Anenteodra Co. Amenteodra Smelting & Refining Co. The Bunker Hill Co. The Bunker Hill Co. U. S. Smelting, Refining & Mining Co. U. S. Smelting, Refining & Mining Co. U. S. Smelting, Refining & Mining Co. Delaris Mining Co. Polaris Mining Co. Polaris Mining Co. Polaris Mining Co. The Anaconda Co. The Anaconda Co. The Anaconda Co. The Anaconda Co. The Anaconda Co. The Anaconda Co. The Anaconda Co. The New Jersey Zine Co. The New Jersey Zine Co. The New Jersey Zine Co. The New Jersey Zine Co. The New Jersey Zine Co. The Magma Copper Co. Magma Copper Co. American Smelting & Refining Co. Triumph Mining Co. Treut Mining Division.
	State	Idaho
	District or region	Coeur d'Alene. Summit Valley (Butte). West Mountain (Bingham). Coeur d'Alene. Summit Valley (Butte). West Mountain (Bingham). Waren. Waren. Waren. Big Bug. Byolution. Big Bug. Copper Mountain. Byolution.
	Mine	Sunshine. Butte Hill Lead-Zinc Mines. Clain Copper Bunker Hill Butte Hill Copper Mines. United States & Lark. Pit. Fit. Fit. Fit. Copper Queen-Lavender Open Pit. F
-	Rank	1004c0c0 05115545 5155 848888

TABLE 6.—Mine production of recoverable silver in the United States, 1947-51 (average) and 1952-56, by States, in fine ounces

State	1947-51 (average)	1952	1953	1954	1955	1956
Western States and Alaska:						
Alaska	50, 641	32, 986	35, 387	33, 697	33, 693	28, 360
Arizona	4, 964, 797	4, 701, 330	4, 351, 429	4, 298, 811	4, 634, 179	
California	1, 064, 646	1, 099, 658	1, 036, 372	309, 575	954, 181	5, 179, 185
Colorado	2, 948, 742	2, 813, 643	2, 200, 317	3, 417, 072		938, 139
Idaho	12, 538, 390	14, 923, 165	14, 639, 740		2, 772, 073	2, 284, 701
		14, 925, 105 C 190 107		15, 867, 414	13, 831, 458	13, 471, 916
Montana		6, 138, 185	6, 689, 556	5, 177, 942	6, 080, 390	7, 385, 908
Nevada New Mexico	1, 497, 339	941, 195	697, 086	560, 182	845, 397	1, 220, 473
New Mexico		479, 318	205, 309	109, 132	251, 072	392, 967
Oregon		4, 037	12, 259	14, 335		13, 542
South Dakota		132, 102	138, 642	151, 407	154, 092	136, 118
Texas		4,672		100	126	
Utah	7, 388, 943	7, 194, 109	6, 725, 807	6, 179, 243	6, 250, 565	6, 572, 041
Washington	345, 205	315, 645	321, 202	313, 735	436, 348	448, 442
Wyoming	26		11	74	20	154
Total	37, 896, 362	38, 780, 045	37, 053, 117	36, 432, 719	36, 252, 409	38, 071, 946
West Central States: Missouri_	150, 379	517, 432	359, 781	352, 971	268, 620	295, 111
States east of the Mississippi:						
Georgia	3				l	
Illinois Kentucky	2,886	3, 781	2, 338	1, 160	3,075	1, 580
Kentucky				_,	0,000	2,000
Michigan	r 618				478, 000	379, 990
New York	27, 954	38, 895	35, 398	34, 576		84, 158
North Carolina		00,000		438	181	753
Pennsylvania	11, 712	9, 247	6, 972	8, 415	10. 379	(1)
Tennessee	45, 118	57, 569	68, 935	60, 759	66, 619	64, 878
Vermont	28, 666	45, 361	43, 128	48, 572	50, 447	² 47, 800
Virginia	20,000	20,001	1, 169	1,773	1,850	1,874
Total	116, 957	154, 853	157, 940	155, 693	676, 713	581, 064
Grand total	38, 163, 698	39, 452, 330	37, 570, 838	36, 941, 383	37, 197, 742	38, 948, 121

TABLE 7.—Ore, old tailings, etc., yielding silver, produced in the United States and average recoverable content, in fine ounces, of silver per ton in 1956 ¹

	Gold	ore	Gold-sil	ver ore	Silver ore	
State	Short tons	Average ounces of silver per ton	Short tons	Average ounces of silver per ton	Short tons	A verage ounces of silver per ton
Western States and Alaska: Alaska	1, 459 90, 190 124, 149 837 16, 465 147, 476 200 1, 923 1, 743, 173 8 124, 748 3, 172 2, 254, 046 1, 050	1. 805 . 328 . 665 . 058 . 253 . 300 . 056 . 365 . 6 934 . 078 . 625 . 2 662 . 038 249 . 717	88, 709 737 5, 635 9, 634 16, 245 6, 514 3, 957 113, 350 27 244, 808	0. 172 7. 821 1. 235 4. 196 4. 747 8. 373 4. 864 	40, 528 168 8, 091 342, 753 152, 955 18, 068 13, 556 111, 334 8	0. 548 1. 994 3. 504 25. 637 5. 138 7. 032 . 677
Total	2, 255, 096	. 250	244, 808	2. 499	687, 461	14. 839

¹ Included with Vermont.
² Includes silver recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.

. 270

142, 415, 260

1.481

TABLE 7.—Ore, old tailings, etc., yielding silver, produced in the United States and average recoverable content, in fine ounces, of silver per ton in 1956 —Con.

	Coppe	r ore	Lea	d ore	Zine	ore
State	Short tons	Average ounces of silver per ton	Short ton	A verage ounces of silver per ton	Short tons	Average ounces of silver per ton
Vestern States and Alaska: Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Utah Washington Wysming Total tates east of the Mississippi	15, 049 21, 788 279, 687 7, 782, 458 12, 014, 339 8, 270, 314 68 32, 329, 852 318, 306	0. 698 6. 206 15. 803 .033 .399 .051 .010 2. 306 .167 1. 062	5, 97 5, 296 3 30, 544 3 62, 834 10, 694 1 19, 377 29, 484 7 7 444 4 187, 634	17. 816 3 3. 526 3 3. 061 5 5. 118 5 10. 171 5 . 177 6 8. 022 7 . 578	2, 132 76 15 2 71, 810 55, 297 9, 787 246, 942	0. 24 12. 93 1. 33 1. 55 2. 27 2. 21
Total		. 091	1 188, 130	4. 592	2, 252, 668	. 09
State			Zinc-lead, per, and z copper	inc-lead-	Total	ore
			Short tons	Average ounces of silver per ton	Short tons	A verag ounces of silve per ton
Vestern States and Alaska:			436, 549	2. 632 3. 991	247 57, 617, 135 281, 102	2. 29 . 09
Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Utah Washington Wyoming			169, 583 965, 795 8 1, 303, 894 1, 501, 670 84, 925 206, 929 	1. 853 3. 277 2. 227 2. 342 1. 049	1, 156, 019 2 * 2, 071, 451 9, 535, 789 12, 300, 484 8, 771, 383 1, 991 1, 743, 173 4 33, 238, 772 1, 697, 099 3, 202	3.3 1.9 6.4 .(6.7

9, 784, 421

Missouri excluded.
 Includes 71,774 tons of zinc slag.
 Excludes tungsten ore concentrate yielding copper-lead and silver.
 Includes 48,804 tons of zinc slag.
 Excludes magnetite-pyrite-chalcopyrite ore and silver therefrom.
 Includes material classified as fluorspar ore mined in Illinois and Kentucky.

TABLE 8.—Mine production of silver in the United States, 1947-51 (average) and 1952-56, by percent from sources and in total fine ounces

Year	Placers	Dry ore	Copper ore	Lead ore	Zinc ore	Zinc-lead, zinc-cop- per, lead- copper, and zinc-lead- copper ores	Total fine ounces
1947-51 (average) 1952 1953 1954 1955	.2 .1 .1 .1 .1 .1	28. 3 31. 3 29. 2 39. 5 30. 4 29. 2	20. 8 20. 6 24. 5 22. 0 30. 8 29. 6	6. 1 4. 4 5. 2 3. 4 2. 7 3. 0	1.6 2.0 .9 1.1 1.2	43. 0 41. 6 40. 1 33. 9 34. 8 37. 5	38, 163, 698 39, 452, 330 37, 570, 838 36, 941, 383 37, 197, 742 38, 948, 121

¹ Includes Alaska.

-Mine and refinery production of silver in the United States in 1956, by States and sources, in fine ounces of recoverable metal TABLE 9.-

			Mir	e product	tion			
State	Placers	Dry ore	Copper ore	Lead ore	Zinc ore	Zinc- lead, zinc- copper, and zinc- lead- copper ores	Total	Refinery produc- tion 1
Alaska. Arizona Californis Colorado Idaho Illinois Kentucky Michigan Missouri Montana New Moxico New York	7, 320 283 552 	37, 939 65, 201 42, 493 8, 827, 863 	93, 445 344, 320 9, 097 	94, 409 107, 808 192, 361 	983 20 35, 414 85, 748 22, 252 62, 875	1, 789, 777 2 4, 406, 629 1, 580 31 (3) 3, 344, 081 198, 920 217, 039	938, 139 2, 284, 701 2 13, 471, 916 1, 580 31 379, 990 295, 111 7, 385, 908 1, 220, 473 392, 967	5, 139, 400 1, 010, 200 2, 300, 000 13, 500, 000 1, 600 494, 600 350, 000 7, 400, 000 1, 000, 000 365, 100
North Carolina Oregon Pennsylvania South Dakota Tennessee Texas	51	13, 334 136, 118	(4) 157				753 13, 542 (4) 136, 118	900 19, 200 11, 400 138, 600 66, 800
Utah. Vermont. Virginia. Washington. Wyoming.	1	833, 531	5 47, 800 53, 100	259	4, 496	1, 874	5 47, 800 1, 874	45, 100 400 486, 300
Total	36, 135	11, 376, 364	11, 542, 960	1, 158, 976	212, 311	14, 621, 375	38, 948, 121	38, 739, 400

U. S. Bureau of the Mint.
 Includes gold recovered from tungsten ores.
 A little silver recovered from lead-copper ore from 1 mine included with that from lead ore.
 Included with Vermont.
 Includes silver recovered from magnetite-pyrite-chalcopyrite ores in Pennsylvania.

TABLE 10.—Silver produced in the United States from ore and old tailing in 1956, by States and methods of recovery, in terms of recoverable metal 1

			Ore and	old tailin	g to mills	*			
State	Total ore, old tailing etc.			rable in lion	smelted	entrates l and re- ole metal		ore to lters	
	(short tons)	Short tons	Amal- gama- tion (fine ounces)	Cyanidation (fine ounces)	trates (short	Fine ounces	Short tons	Fine ounces	
Western States and Alaska: Alaska. Arizona. California. Colorado Idaho Montana Newada. Newada. New Mexico Oregon South Dakota Utah Washington Wyoming	281, 102 1,156,019 2 \$ 2,071,451 9, 535, 789 12, 300, 484 8, 771, 383 1, 991 1, 743, 173 4 33, 238, 772 1, 697, 099 3, 202	56, 760, 218 261, 029 1, 120, 685 1, 983, 117 9, 311, 334 12, 132, 302 8, 651, 707 1, 897 1, 743, 173 32, 935, 780 1, 632, 920 3, 161	4, 333 2, 316 566 137 207 8 43 80, 044	46, 490 45, 210 6, 513 69, 915 56, 074 	33, 304 133, 901 198, 592 653, 734 302, 396 310, 917 175 	3, 978, 131 713, 182 1, 872, 599 13, 380, 234 6, 445, 968 362, 454 360, 033 12, 313 5, 549, 122 334, 116	20, 073 35, 334 88, 334 224, 455 168, 182 119, 676 94 	1, 154, 55- 168, 09- 402, 990, 90, 56- 939, 731 787, 84: 32, 920 1, 13: 1, 022, 910 29, 32: 30	
Total States east of the Missis- sippi	128, 417, 847 5 13, 997, 413			1		1 .			
Total	142, 415, 260	140, 534, 236	87, 879	309, 158	5, 101, 3 48	33, 589, 379	1, 881, 024	4, 630, 45	

¹ Missouri excluded.

TABLE 11.—Silver produced at amalgamation and cyanidation mills in the United States and percentage of silver recoverable from all sources, 1947–51 (average) and 1952–56 $^{\rm 1}$

Year	cipitate	e (fine	Silve	r from all s	ources (per	cent)
	Amal- gama- tion	Cyani- dation	Amal- gama- tion	Cyani- dation	Smelting ²	Placers
1947–51 (average)	110, 512 87, 589 98, 399 95, 941 90, 647 87, 879	407, 117 140, 943 129, 538 208, 581 643, 983 309, 158	0.3 .2 .3 .3 .3	1.1 .4 .3 .6 1.7	98. 4 99. 3 99. 3 99. 0 97. 9 98. 9	0.2 .1 .1 .1 .1

¹ Includes Alaska; Missouri excluded. 2 Both crude ores and concentrates.

Missouri excuracea.
 Excludes tungsten ore concentrate yielding copper-lead.
 Includes 71,774 tons of zinc slag.
 Includes 48,804 tons of zinc slag.
 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania. Includes material classified as fluorspar ore mined in Illinois and Kentucky.

TABLE 12.—Net industrial ¹ consumption of silver in the United States, 1947-51 (average) and 1952-56, in fine ounces

[U.S.	Bureau	of the	Mint]
-------	--------	--------	-------

Year	Issued for in- dustrial use	Returned from industrial use	Net industrial consumption
1947–51 (average)	134, 624, 247	33, 266, 447	101, 357, 800
	121, 538, 076	25, 038, 076	96, 500, 000
	125, 389, 200	19, 389, 200	106, 000, 000
	104, 628, 698	18, 628, 698	86, 000, 000
	123, 535, 180	22, 135, 180	101, 400, 000
	130, 000, 000	30, 000, 000	100, 000, 000

¹ Including the arts.

CONSUMPTION AND USES

Industry and the Arts.—Domestic silver consumption in the arts and industry declined 1 percent in 1956 to 100 million ounces, according to statistics compiled by the United States Bureau of the Mint. Thus, consumption was more than twice domestic production. mestic consumption is measured by the net amount of material issued by Government mints and assay offices and private refiners and dealers for industrial, professional, and artistic use after deduction of secondarv materials returned to monetary use and old jewelry, plate, film, and other scrap. Gains in industrial uses, particularly in the electrical and electronics fields, were offset by lower consumption for sterling It is estimated that industrial uses absorbed more and plated ware. than 50 percent of the domestic silver consumption. No breakdown of industrial uses in 1956 is available, but the silverware, photographic, and electroplating industries continued to be the leading consumers. The manufacture of silver-clad chemical equipment, silver solders and brazing alloys, and silver-alloy wire and electrical contacts also consumed large quantities of silver.

Silver compounds were used for many medicinal purposes, and silver continued to be used extensively in dentistry and for many surgical

appliances.

World consumption of silver in the arts and industries, estimated at 204.3 4 million ounces, was about 13 million ounces less than world

production.

Monetary.—Silver stocks in the United States Treasury, comprising bullion and coin, increased about 51 million ounces in 1956 to 1,980 million ounces. Increases in bullion securing silver certificates and free-silver bullion more than offset decreases in silver dollars and in subsidiary coin. Free-silver stocks rose sharply to 87 million ounces owing to returns of lend-lease silver.

World-coinage requirements in 1956 between about 56 million ounces compared with 43 million ounces in 1955. Of the total consumption, United States used 31 million ounces; Mexico, 5 million; Canada, 3 million; West Germany, 2 million; and other countries, 15 million

ounces.

Work cited in footnote 3. Work cited in footnote 3.

TABLE 13.—United States monetary silver, in million ounces 1

	1952	1953	1954	1955	1956
In Treasury:					
Securing silver certificates: Silver bullion Silver dollars Subsidiary coin Free silver bullion	1, 631. 7 223. 8 2. 8 81. 7	1, 655. 7 215. 2 4. 6 49. 6	1, 679. 2 207. 0 34. 5 13. 6	1, 697. 2 196. 1 11. 3 24. 9	1, 708. 4 182. 8 2. 0 87. 4
Total	1, 940. 0	1, 925. 1	1, 934. 3	1, 929. 5	1, 980. €
Coinage in circulation; Silver dollars Subsidiary coin	156. 6 837. 7	164. 9 877. 5	172. 5 898. 9	182. 0 928. 2	195. 1 968. 0
Total	994. 3	1, 042. 4	1, 071. 4	1, 110. 2	1, 163. 1

¹ Compiled from circulation statements issued by the Treasury Department.

PRICES

The Treasury buying price for domestically mined silver, established by act of Congress, July 31, 1946, at 90½+ cents per fine troy ounce, remained unchanged through 1956. Under authority of the same act the Treasury selling price for nonmonetary silver was fixed at 91 cents per fine ounce for delivery at United States mints or assay offices; this price at the San Francisco Mint, equivalent to 91% cents at New York, also remained unchanged during 1956.

The range of prices on the New York market was small, with a spread of only 1% cents between the low of 90 cents and the high of 91% cents per troy ounce, 0.999 fine. The New York price quotations represent the prices paid by Handy & Harman in settlement for silver in unrefined silver-bearing materials and are ¼ cent below the selling price of refined bullion. The London price of silver per troy ounce, 0.999 fine, generally followed the New York price; in 1956 prices ranged from 76%d. to 81%d., equivalent to about 89% and 94% cents, respectively, in United States currency, a greater spread than the corresponding New York prices. The wider price range at London reflected dollar/sterling exchange fluctuations and temporary shortages of silver in the world market resulting from the closure of the Suez Canal, and to the east coast dock strike in the United States.

The Senate Banking and Currency Committee in 1956 again considered S. 1427, a bill to repeal the Silver Purchase Act that had been introduced in 1955; again the bill was tabled without further action.

FOREIGN TRADE®

United States imports of silver, both refined and unrefined, in 1956, including the return of lend-lease silver, which accounted for over half of total imports, rose sharply to a 16-year high of 162.8 million ounces valued at \$128.1 million. In addition, United States and foreign coin valued at \$959,000 was imported in 1956. Excluding 94.9 million ounces of lend-lease silver returned, imports for market use of 67.9

[•] Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

million ounces were 6 percent lower in 1956 than in 1955. Imports from Western Hemisphere countries, principally Canada, Mexico, Peru, and Bolivia, comprised 89 percent of the total imports outside of lend-lease returns.

Exports of silver in 1956 were 5.5 million ounces valued at \$5 million, a 12-percent increase over 1955. In addition, foreign and United States coin valued at \$2 million also was exported, chiefly to countries in North America.

TABLE 14.—Value of silver imported into and exported from the United States, 1947-51 (average) and 1952-56, in thousand dollars

Bureau	of the	Census

	Year		Imports	Exports	Excess of imports over exports
947-51 (average)			\$85, 213	\$16, 224	\$68, 98
952	 	 	67, 296	1 5, 200	1 62, 09
952 953	 	 	67, 296 95, 104	1 5, 200 1 8, 680	1 62, 09 1 86, 42
952			67, 296	1 5, 200	1 62, 09

¹ Revised figure.

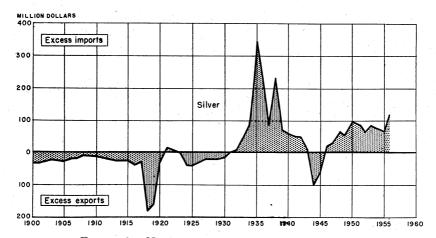


FIGURE 3.—Net imports or exports of silver, 1900-56.

TABLE 15.—Silver imported into the United States in 1956, by countries of origin [Bureau of the Census]

	Ore and ba	se bullion	Bullion,	refined	United States	Foreign
Country of origin	Troy ounces	Value	Troy ounces	Value	coin (value)	coin (value)
North America:					ent 140	
Bahamas		67 7CO 505	11, 293, 728	\$10, 231, 142	\$25, 140 561, 506	\$41
Canada	8, 683, 016 80	\$7, 760, 585 73	11, 200, 120			
Costa Rica	216, 489	193, 225			252, 250	
El Salvador	154, 469	132, 126			112, 000	
Guatemala	358, 353	286, 984				
Honduras	2, 042, 945	1, 852, 106 7, 474, 729	10, 504, 354	9, 531, 517		260
Mexico	8, 381, 549	184, 083	10, 504, 554	0, 001, 011		
Nicaragua	215, 301 963	862				
Panama						901
Total	20, 053, 165	17, 884, 773	21, 798, 082	19, 762, 659	950, 896	301
South America:						
Argentina	63, 449	53, 492				
Bolivia	5, 499, 910	4, 929, 968 859				
Brazil	955 1, 301, 888	1 161 851				
Chile	130, 627	1, 161, 851 117, 190 44, 338	7, 133	6, 420		
Colombia Ecuador	49, 689	44, 338				
Peru	11, 181, 524	10, 014, 108	226, 806	205, 389		
Venezuela	392	345				
Total	18, 228, 434	16, 322, 151	233, 939	211, 809		
100012						
Europe:	556	500				
France	20, 675	18, 271				
Malta, Gozo, and Cyprus Netherlands	19, 322, 582	13, 740, 378				
Portugal	56, 599	50, 464			765	
Sweden					700	75
Switzerland	1, 078 22, 384	970	67, 658, 612	48, 111, 895	5, 937	
United Kingdom	22, 384	20, 183	07, 000, 012			
Total	19, 423, 874	13, 830, 766	67, 658, 612	48, 111, 895	6, 702	75
Asia:					220	1.0
Rahrein					. 220	
India	569	512				
Tonon	1, 303	1, 173 6, 426				
Vores Rentiblic of	7, 191 1, 566, 044	1, 395, 984				
Lebanon Philippines	249, 437	221, 098			.	
Saudi Arabia	887, 819	793, 152				
Turkey	13, 987	12,715				
Total	2, 726, 350	2, 431, 060			220	
1 Otal						
Africa:	15 500	13, 911				.
Angola	15, 500 77, 804	69, 814				
Belgian Congo	1	j .			İ	
Federation of	127, 944	112, 555			-	
Tinion of South Africa	981, 504	891, 148			-	
Western Portuguese Africa,	00 700	90 100	1	1		
n. e. c	32, 500	29, 169			-	
metal .	1, 235, 252	1, 116, 597			-	.
TotalOceania: Australia			10, 016, 083	7, 122, 437		
•		52, 899, 967	99, 706, 716	75, 208, 800	957, 818	1,08
Grand total	_ 63, 125, 065	104,000,001	100, 100, 110	1, 200, 500	1	1

TABLE 16.—Silver exported from the United States in 1956, by countries of destination

[Bureau of the Census]

	Ore and 1	oase bullion	Bullion	, refined	United States	Foreign
Country of destination	Troy ounces	Value	Troy ounces	Value	coin (value)	coin (value)
North America: Bahamas Canada	1	1	1, 017, 227	\$933, 240	\$32, 650	
Guatemala	-	1 .	15, 390	14, 946	100	\$1, 783, 85 3, 28
Haiti Mexico Panama	1. 721. 376	\$1, 564, 008			45,000	28, 20
Total	1, 721, 376	1, 564, 008	1, 032, 617	948, 186	77, 750	1, 89
South America: Brazil	1	359	1, 253 809, 996 18, 812	1, 142 745, 074 17, 831		
Total	400	359	830, 061	764, 047		
Europe: Germany, West Ireland Netherlands			300, 316	273, 800	15, 000	
United Kingdom	336, 625	303, 317	1, 244, 570	1, 135, 745	200	
Total	336, 625	3 03, 317	1, 544, 886	1, 409, 545	15, 200	
Asia: Israel Thailand Turkey			705 26, 571 7, 639	659 24, 214 6, 982		
Total			34, 915	31, 855		
Africa: Egypt Liberia					112, 600	2, 880
Total Oceania: Australia					112, 600 100	2, 880 1, 460
Grand total	2, 058, 401	1, 867, 684	3, 442, 479	3, 153, 633	205, 650	1, 821, 574

LEND-LEASE SILVER

Return of silver supplied to several foreign countries by the United States under terms of lend-lease agreements rose sharply in 1956 as

the end of the 5-year repayment period approached.

Of the total obligation of 410.8 million ounces, about 124.7 million ounces had been repaid at the end of the year. The following table shows, in million ounces, the original amounts, returns, and balances of the various countries that received lend-lease silver.

Country	Original amount	Amount returned as of Dec. 31, 1956	Balance due on Dec. 31, 1956
India and Pakistan United Kingdom Netherlands Saudi Arabia Australia Ethiopia.	226 1 88. 3 56. 7 22. 3 11. 8 5. 4 . 3	0 65.7 48.7 0 10.0 0	226 22. 6 8 22. 3 1. 8 5. 4
Belgium	410.8	124.7	286.

¹ Includes 0.2 million ounces to Fiji.

TECHNOLOGY

The strategic significance of silver in two world wars and its economic and political aspects were discussed by an official of The Anaconda Co.

A new electrolytic process for silver plating copper wire, using a low-current-density method, was developed by International Silver Co.8 The method provides copper wire with silver plating of an extraordinary degree of uniformity and adhesiveness, long sought by the electrical and electronic industries for use in home appliances, guided missiles, and nuclear applications where high resistance to oxidation and heat is required.

A new oxidation-hardenable, high-silver alloy having excellent electrical and mechanical properties was developed by Handy & Harman.9 The alloy, a silver-magnesium-nickel composition containing about 99.5 percent silver, 0.27 percent magnesium, and 0.20 percent nickel, is easily worked when soft and irreversibly hardened by heating in air.

The geology and ore deposits of silver-mining areas in Colorado and Nevada were described in publications of the Federal Geological Survey.10

A patent was issued for a high-silver alloy 11 having improved tensile strength, hardness, and elasticity and more resistant to corrosion and tarnishing than pure silver. The composition ranges from 91.8-93.3 percent silver; 3.6-4.4 percent manganese; 2.4-2.9 percent copper; 0.4-0.5 percent tin; 0.1-0.2 zinc; and 0.1-0.2 nickel. sterling-silver alloy containing 92.7 percent silver and 7.3 percent of an alloy consisting of 5 percent nickel, 25 percent copper, and 70 percent zinc also was patented. A silver brazing alloy especially suited for uniting base metals for producing a joint capable of withstanding high stresses and temperatures was patented.13 The alloy contains 40-50 percent silver, 25-35 percent copper, a minimum of 10 percent zinc, and 10-17 percent manganese.

⁷ Sowerwine, E. D., Silver Developments: Mines Mag., vol. 46, No. 3, March 1956, pp. 95-97.
8 American Metal Market, vol. 63, No. 194, Oct. 9, 1956, p. 14.
9 American Metal Market, vol. 63, No. 149, Aug. 4, 1956, p. 8.
10 Harrison, J. E., and Wells, J. D., Geology and Ore Deposits of the Freeland-Lamartine District, Clear Creek County, Colo.: Geol. Survey Bull. 1032-B., 1956, pp. 33-127.
Thompson, G. A., Geology of the Virginia City Quadrangle, Nev.: Geol. Survey Bull. 1042-3, 1956, pp. 45-77.

Thombson, C. A., Geology of State Property of States and Auly, Henry (assigned to The Venture Corp.), Silver Alloys: U. S. Patent 2,772,156; Official Gazette, U. S. Patent Office, vol. 712, No. 4, Nov. 27, 1956, p. 783.

12 Sheff, Jacob S., Sterling Silver Alloy: U. S. Patent 2,734,823; Official Gazette, U. S. Patent Office, vol. 703, No. 2, Feb. 14, 1956, p. 363.

1 Bayes, Ross, and Aull, Henry (assigned to The American Platinum Works), Silver Brazing Alloys: U. S. Patent 2,729,558; Official Gazette, U. S. Patent Office, vol. 792, No. 1, Jan. 3, 1956, p. 170.

WORLD REVIEW

World production of silver in 1956 decreased slightly from that in 1955 to about 222.4 million ounces. Lower output from Mexico and Peru more than offset production gains in the United States and Bolivia. World production of silver in 1956 was the second highest since 1942 but was 16 percent below the average of the period 1938–42.

World consumption of silver in the arts and industry and for coinage in 1956 continued to exceed production, reaching a total of about 260.4 million ounces, a 17-percent gain over 1955. Increases in industrial consumption by West Germany and coinage requirements

of the United States explained most of the world gain.

Australia.—Silver production in Australia, after rising for 6 successive years (1950-55), was slightly lower in 1956. Mount Isa Mines, one of the leading mining enterprises, reported reserves of lead-silverzinc ore of 14.2 million tons assaying 6.0 ounces of silver per ton. Large additional tonnages were indicated by drilling exploration, and it was proposed to increase the 1956 milling rate of 4,000 tons a day to 13,000 tons a day within the next 5 years.

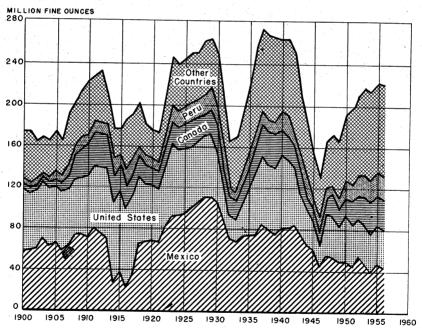


FIGURE 4.—World production of silver, 1900-56.

TABLE 17.—World production of silver, 1947-51 (average) and 1952-56, by countries, 1 in fine ounces 2

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: United States Canada Central America and West	38, 995, 217 14, 531, 903	39, 840, 300 25, 222, 227	37, 735, 500 28, 299, 335	35, 584, 800 31, 117, 949	36, 469, 610 27, 984, 204	38, 739, 400 27, 655, 141
Indies: Costa Rica 3 Cuba 3 Cuba 3	1, 203 176, 731 146, 144 3, 142, 539 4 192, 293	163, 211 371, 679 3, 703, 975 238, 389	167, 895 458, 481 5, 640, 251	179, 479 283, 811 3, 432, 023	366, 673 343, 111 1, 797, 394	80 216, 489 533, 179 2, 030, 008 258, 521
Honduras	1, 626 4 315, 366 51, 751, 525	368, 448 50, 353, 560	252, 697 353, 169 47, 873, 677	218, 148 256, 778 39, 896, 467	268, 316 230, 054 47, 957, 654	161, 476 43, 078, 040
Total	109, 254, 500	120, 261, 800	120, 781, 000	110, 969, 500	115, 417, 000	112, 672, 300
South America: Argentina. Bolivia (exports). Brazil. Chile. Colombia. Ecuador. Peru.	1, 478, 004 6, 828, 040 21, 177 909, 197 114, 323 182, 340 11, 801, 635	962, 948 7, 073, 163 17, 301 1, 415, 533 123, 165 82, 297 18, 386, 141	895, 474 6, 113, 013 211, 938 1, 497, 839 117, 385 86, 600 19, 650, 694	1, 639, 698 5, 047, 666 126, 449 1, 489, 029 112, 534 35, 126 20, 405, 883	1, 414, 633 5, 851, 107 140, 113 1, 714, 535 112, 036 47, 732 22, 947, 624	1, 671, 838 7, 547, 304 124, 005 1, 821, 844 110, 728 29, 479 21, 836, 880
Total	21, 334, 700	28, 060, 500	28, 572, 900	28, 856, 400	32, 227, 800	33, 142, 100
Europe: Austria. Czechoslovakia ⁵ . Finland France Germany:	5, 415 1, 564, 800 160, 160 195, 020	3, 215 1, 608, 000 150, 083 712, 171	5, 144 1, 608, 000 235, 794 675, 519	5, 787 1, 608, 000 239, 459 555, 951	3, 537 1, 608, 000 224, 573 353, 658	1, 190 1, 608, 000 318, 466 234, 695
East ⁵ West	1, 320, 771 25, 660 35, 120	3, 536, 600 1, 877, 700 71, 760 64, 300 838, 041 147, 893	4, 501, 100 2, 314, 435 73, 272 64, 300 832, 383 115, 743	4, 500, 000 2, 400, 246 85, 360 64, 300 884, 917	4, 500, 000 2, 226, 117 77, 869 64, 300 859, 904	4, 500, 000 2, 195, 896 83, 592 64, 300 1, 034, 129
Italy	189, 046 80, 480 41, 693 537, 053 567, 608	96, 500 77, 740 643, 000 827, 946	96, 500 59, 447 643, 000 1, 209, 125	131, 818 96, 500 55, 299 643, 000 1, 312, 522	71, 375 96, 500 58, 900 643, 000 1, 473, 404	64, 301 96, 500 64, 300 643, 000 1, 425, 950 2, 956, 068
U. S. S. R. United Kingdom Yugoslavia	17, 800, 000 19, 678 1, 999, 345	2, 196, 281 24, 000, 000 30, 734 2, 577, 043	1, 571, 464 25, 000, 000 28, 914 3, 048, 019	26, 497 2, 829, 394	29, 706 2, 983, 589	25, 000, 000 ⁵ 30, 000 2, 760, 013
Total 5	26, 800, 000	39, 500, 000	42, 100, 000	42, 700, 000	42, 700, 000	43, 100, 000
Asia: Burma. China ⁵ India. Japan	154, 473 160, 749 13, 356 1, 087, 911	154, 783 400, 000 17, 675 5, 177, 909	672, 403 320, 000 14, 624 6, 028, 489	1, 278, 289 320, 000 17, 199 6, 162, 815	15, 425	1, 589, 845 320, 000 5 10, 000 6, 166, 962
Korea: North ⁵ Republic of Philippines Saudi Arabia. Taiwan (Formosa).		693, 751 111, 945	(6) 52, 213 572, 046 150, 626 40, 639	(6) 50, 252 527, 160 63, 681 39, 160		(6) 196, 409 541, 168 53, 894
Talwan (Formosa)						

See footnotes at end of table.

TABLE 17.—World production of silver, 1947-51 (average) and 1952-56, by countries,1 in fine ounces 2—Continued

Country	1947-51 (average)	1952	1953	1954	1955	1956
Africa:						
Algeria	25, 418	8, 648	48, 200	57, 900	61 100	5 00 000
Bechuanaland	291		463			
Belgian Congo	4, 133, 511					
French Morocco	796, 073					2, 250, 000
Gold Coast (exports)	44, 605			48, 214		
Kenya	2, 812		21, 758		1,770	
Mozambique	345	102	209			01,000
Nigeria	1,482					
Rhodesia and Nyasaland, Federation of:			77			
Northern Rhodesia 7	125, 614	348, 954	492, 813	403, 661	402, 466	613, 115
Southern Rhodesia	84, 616					
South-West Africa	645, 990	1,064,335				
Swaziland	107	1			2,2.0,210	14
Tanganyika (exports)	28,029		41, 234	42, 156	43, 292	
Tunisia	54, 386	69, 413				
Uganda (exports)	47	14	55			55,000
Union of South Africa	1, 151, 949	1, 176, 433	1, 193, 152			1, 598, 278
Total	7, 095, 300	9, 489, 000	9, 780, 000	9, 213, 000	9, 858, 000	10, 106, 000
Oceania:						
Australia:		1		1.1		
Commonwealth	10, 180, 672	11 495 079	10 400 000	10 007 000		
New Guinea.	8 35, 865			13, 827, 038	14, 555, 412	
Fiji.	30, 957			48, 977 17, 794	44, 459	42, 457
New Zealand	204, 028			17,794	20, 421	
	201,020	31,010	75, 888	33, 049	27, 930	1,000
Total	10, 451, 500	11, 566, 000	12, 557, 000	13, 927, 000	14, 648, 000	14, 456, 000
World total (estimate)	176 700 000	015 500 000	001 700 000	214, 200, 000	200 111	

1 Silver is also produced in Bulgaria, Cyprus, Hong Kong, Malaya, Indonesia, Sarawak, and Sierra Leone, but production data are not available; estimates are included in total.

2 This table incorporates a number of revisions of data published in previous Silver chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

3 Imports into the United States. Scrap is included in this figure in many instances, most notable in

the case of Cuba.

Exports.

Estimate.

6 Data not available; estimate included in total.

Recovered from an accumulation of refinery slimes.
 Years ended May 31, 1947 to 1951.

Bolivia.—Shipments of silver from Bolivia rose 29 percent over 1955 to 7.5 million ounces—the highest output since 1948. About 73 percent of the 1956 output was exported to the United States.

A survey of the mining industry of Bolivia by the engineering firm of Ford, Bacon & Davis, Inc., for the Bolivian Government disclosed that substantial reserves of silver-bearing lead-zinc ore have been partly explored and developed and that output of these metals could be expanded if favorable investment conditions were assured.

Canada.—Canada continued to rank third in silver production in 1956, with an output of 27.7 million ounces, only slightly below the Most of Canada's silver output (72 percent) was exported to the United States. More than 80 percent of Canada's silver production was recovered as a byproduct from base-metal ores, and the remainder came from ores mined principally for silver or gold. British Columbia was the leading silver-producing Province, supplying about 9.3 million ounces-34 percent of the total output in 1956;

SILVER 1055

Ontario ranked second, with an output of 6.5 million ounces—23 percent of the total; and the Yukon was third with 6.2 million ounces—22 percent of the total.

Mexico.—Production and exports of silver from Mexico, the world's leading producer, declined 10 percent in 1956 compared with 1955. Most of the silver output was shipped to the United States (41 percent)

and West Germany (31 percent).

The history, production, and economic importance of the silver mining industry in Mexico was described in a technical journal. Like in the United States, more than two-thirds of Mexico's silver output is recovered from base-metal ores. The important influence of the silver policy of the Bank of Mexico on the world silver market was particularly noteworthy.

Peru.—Silver output from Peru (the leading producer in South America) declined about 5 percent in 1956 after rising for 6 successive years from 1949 to 1955. Peru's silver production was recovered chiefly as a byproduct or coproduct in the treatment of base-metal ores. About half of the silver produced in 1956 was exported to the

United States.

¹⁴ Serrano, Gustavo P.: The Silver-Mining Industry in Mexico: Min. Cong. Jour. vol. 42, No. 5, May 1956, pp. 71-74.

Slag—Iron Blast-Furnace

By Wallace W. Key 1

ESPITE a 5-week steel strike during the year, output of blast-furnace slag in 1956 maintained an upward trend that resulted in the largest production in the history of the industry. The demands of the construction industry remained strong; and, although the steel strike cut sharply into slag production in 1956, sales of its products exceeded the high level achieved in 1955. All indications were that increased uses and wider markets for iron blast-furnace slag were not limited objectives but a part of a continuing activity in an expanding economy. Consumption for road building, cement, and structural lightweight aggregate increased, and other applications became more widespread. Secondary recovery of iron continued as an important operation.

The total output of all types of processed iron blast-furnace slag increased more than 2 million tons over 1955. Output and values of processed slag, with the exception of the unscreened, air-cooled variety, advanced at a uniformly high rate. The unscreened, air-cooled variety more than doubled the 1955 output and declined appreciably in unit value. Value received per ton for all other types (excluding granulated slag used for hydraulic cement, for which no value was given) had a higher average in 1956 than in any previous year. Screened, air-cooled slag was the major product, followed in order by granulated, expanded, and unscreened, air-cooled slag. Highway and airport construction combined occupied first place in

TABLE 1.—Iron blast-furnace slag processed in the United States, 1947-51 (average) and 1952-56, by types

				[Natio	nal Slag	Associa	ation]				
		Air-cooled					Gran	ulated	Expanded		
	Screened			Un	Unscreened					Value	
Year		Valu	e		Val	ue	Short	Value 1	Short		Aver-
	Short tons	Total	Average per ton	Short tons	ort tons		tons	Total	age per ton		
1947-51 (average) 1952 1953 1954 1955 1956	24, 021, 624 22, 372, 477 24, 900, 883	\$22,273,316 27,501,892 32,677,948 31,228,295 36,131,615 38,476,208	1,31 1.36 1.40 1.45	1, 364, 463 845, 311 808, 548	581,083 537,207 596,540	. 55 . 69 . 66 . 74	2, 507, 604 3, 358, 910 3, 455, 005 3, 835, 829	\$446, 546 1, 041, 835 1, 250, 450 1, 512, 084 1, 618, 277 1, 642, 109	1, 970, 463 2, 285, 758 2, 599, 112 2, 891, 844	4, 581, 107 5, 557, 813 6, 198, 822 7, 961, 466	2.32 2.43 2.38 2.75

¹ Excludes value of slag used for hydraulic cement manufacture.

¹ Commodity specialist.

market outlets. The tonnage consumed in agricultural uses was

slightly less than in the previous year.

Stocks of processed slag change very little from year to year. As production virtually equals consumption, these terms are used interchangeably in this chapter.

DOMESTIC PRODUCTION

Production of slag from iron blast furnaces in 1956 was 39,319,776 short tons, compared with 43 million short tons in 1955. Slag processed for commercial use, as reported by the processing companies to the National Slag Association, increased to 35 million short tons—90 percent of the total produced in 1956. The percentage of the total processed for consumption was higher than in any previous year. Production of raw slag was reduced in 1956 by a steel strike, but the output of processed slag utilized 16 percent more of the slag produced than in 1955. About 1 ton of slag was produced for every 2 tons of iron. Forty-five companies, operating 65 air-cooled plants, 19 granulating plants and 21 expanded slag plants, operated in the United States in 1956.

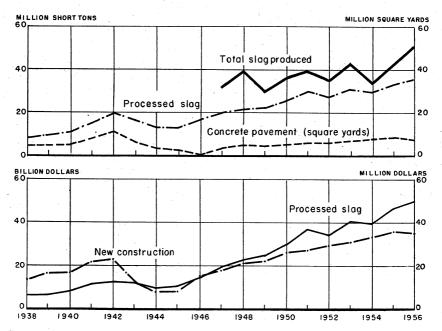


FIGURE 1.—Production of iron blast-furnace slag compared with yards of concrete pavement (contract awards), and value of new construction compared with value of processed slag, 1938-56.

Screened, air-cooled slag comprised 72 percent, unscreened 6 percent, granulated 13 percent, and expanded 9 percent of the total processed. Production of slag, unlike other aggregate materials, is limited not only by the geographic location of its components but also by the location of the blast furnaces. The 35 million tons of processed slag

was produced in 15 States, and 3 of these States (Ohio, Pennsylvania, and Alabama) produced nearly two-thirds of the total. Ohio led the other States, with 23 percent of the total output—about the same as in 1955. Slightly more than one-third was produced in the following States: California, Colorado, Illinois, Indiana, Kentucky, Maryland, Michigan, Minnesota, New York, Tennessee, Texas, and West Virginia.

TABLE 2.—Iron blast-furnace slag processed in the United States, 1955-56, by States

[National	Slag	Association	
плацина	2195	ASSOCIATION	

	Scre	ened air-co	oled	All types			
	Quant	ity		Quanti	Value		
	Short tons	Percent of total					Percent of total
1955							
AlabamaOhio PennsylvaniaOther States ¹	4, 676, 829 6, 366, 284 5, 004, 194 8, 853, 576	19 26 20 35	\$6, 220, 101 10, 279, 820 7, 928, 908 11, 702, 786	5, 430, 423 7, 878, 302 7, 072, 385 12, 056, 907	17 24 22 37	\$7, 557, 113 13, 582, 986 9, 639, 106 15, 528, 693	
Total	24, 900, 883	100	36, 131, 615	32, 438, 017	100	46, 307, 898	
1956 AlabamaOhioOhioOther States ¹	4, 884, 371 6, 276, 941 5, 667, 320 8, 743, 756 25, 572, 388	19 25 22 34 100	6, 535, 053 10, 338, 396 8, 965, 090 12, 637, 669 38, 476, 208	5, 772, 135 8, 059, 041 8, 010, 187 13, 452, 384 35, 293, 747	16 23 23 23 38	8, 099, 533 13, 957, 713 11, 022, 324 16, 814, 602 49, 894, 172	

¹ California, Colorado, Illinois, Indiana, Kentucky, Maryland, Michigan, Minnesota, New York, Tennessee, Texas, and West Virginia.

Recovery of Iron.—Recovery of iron for reuse in blast furnaces continued to be an important function of the slag industry. Iron was recovered both by magnetic and hand-picking methods. In 1956, 410,000 tons of iron slag (about 60 percent iron), representing more than 1 percent of the slag processed, was returned to the furnaces.

Employment.—Plant and yard personnel of the industry totaled 2,072 in 1956 and the number of man-hours in production 4,775,000—equivalent to 19,739 eight-hour days of operation. This compares

with 4,897,804 man-hours and 1,964 men in 1955.

Methods of Transportation.—As in previous years, truck transportation predominated as the method used for shipping slag in 1956. Shipment by rail accounted for about a third of the total tonnage. Waterway transportation continued as a minor but locally important mode of transport. The shipping range of air-cooled slag, according to the association, in most instances did not exceed 25 miles by truck, 400 miles by rail, and 165 miles by waterway.

In the economic utilization of slag, the proper solution of transportation problems within the plant area is also of the utmost importance; this includes transportation from the blast furnace to the transporta-

tion bunkers of the processed slag ready for shipment.

It can be readily seen that transportation was the controlling factor in limiting utilization of slag products throughout the country. Most

of the United States was competitively inaccessible to slag and probably will remain so until iron blast furnaces have been established in new areas, or transportation costs lessened.

TABLE 3.—Shipments of iron blast-furnace slag in the United States, 1955-56, by method of transportation

[National Slag Association]

	195	5	195	6
Method of transportation	Short tons	Percent of total	Short tons	Percent of total
Rail	12, 100, 659 19, 421, 684 915, 674	37 60 3	11, 930, 598 22, 494, 740 868, 409	34 64
Total	32, 438, 017	100	35, 293, 747	100

CONSUMPTION AND USES

Roadbuilding again ranked first in 1956 as a market for slag. The National Highway System absorbed large quantities of slag for macadam and concrete bases, subsoil stabilization, bituminous binder courses, and concrete pavements, bridges, viaducts, and underpasses. Demands were so strong during the year that shortages existed in some areas.

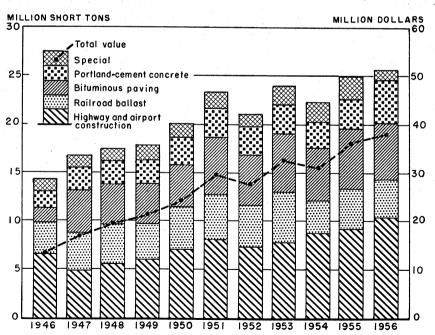


FIGURE 2.—Consumption and value of lair-cooled iron blast-furnace slag sold or used in the United States, 1946-56.

In the expansion program of the slag industry, emphasis was placed on producing better slag at lower costs. Slag processors broadened their activities and markets and improved their products through exhaustive laboratory and field tests. During the year, the National Slag Association completed a report on the characteristics of openhearth slag and began an intensive investigation of its reactive properties. Evidence was that open-hearth slag is not suitable for concrete and base courses. As a number of failures resulted from open-hearth and other slags that are reactive, specifications were being revised to

require blast-furnace slag only.

Screened, Air-Cooled Slag.—Screened, air-cooled slag, the major product, was used mainly as an aggregate in macadam, bituminous mixtures, and concrete for highways and airports, for which the quantity produced and the value received were higher in 1956 than in any preceding year. The use of slag in railroad ballast—one of the first applications in the history of the industry—continued to be large in 1956 owing mainly to the good drainage afforded by it. The screened, air-cooled type constituted nearly three-fourths of the total production. Highway, airport, bituminous construction, railroad ballast, and portland-cement concrete construction consumed 92 percent of the 25.6 million short tons processed. The output increased more than a half million tons over 1955. Usage in concrete block decreased slightly; and use as a filter trickling medium also decreased compared with 1955. Consumption of slag in built-up roofing and in mineral-

TABLE 4.—Air-cooled iron blast-furnace slag sold or used by processors in the United States, 1955-56, by uses

[National Slag Association]

	Scree	ened	Unser	eened
Use	Short tons	Value	Short tons	Value
1955				
Aggregate in— Portland-cement concrete construction Bituminous construction (all types)	2, 984, 249 6, 120, 369	\$4, 796, 019 9, 512, 590		
Highway and airport construction 1 Manufacture of concrete block Railroad ballast	9, 171, 796 816, 009 4, 159, 642	13, 658, 458 1, 128, 525 4, 445, 428	736, 405	
Mineral wool	64,118	783, 977 1, 036, 451 110, 330 11, 662		
Agricultural slag, liming Other uses	7, 435 584, 829	648, 175	73, 056	
Total	24, 900, 883	36, 131, 615	809, 461	596, 540
Aggregate in—	3, 445, 351	5, 572, 435		
Portland-cement concrete construction Bituminous construction (all types) Highway and airport construction 1 Manufacture of concrete block	5, 922, 811 10, 283, 258	9, 451, 914 15, 557, 619 1, 033, 091	1, 261, 151	1, 013, 755
Mailmacture of concrete blook Mailroad ballast Mineral wool Roofing (cover material and granules)	3, 871, 258 523, 822	4, 484, 346 795, 431 891, 333		
Sewage trickling filter medium	39, 383	79, 176 10, 429 600, 434	835, 328	
Total	25, 572, 388	38, 476, 208	2, 096, 479	1, 280, 037

¹ Other than in portland-cement concrete and bituminous construction.

wool manufacture dropped slightly compared with 1955. A continuation of the decline in volume of air-cooled slag for agricultural use Other uses for screened, air-cooled slag was noted for this period. included construction of parking lots and driveways, aggregate in the manufacture of concrete pipe, glass, and various types of fill.

Unscreened, Air-Cooled Slag.—The quantity of unscreened, aircooled slag consumed in 1956 was more than twice as great as in 1955. The increase was attributed mainly to accelerated highway and airport construction. Unscreened, air-cooled slag was a relatively small

part of the total output.

MILLION BARRELS

Finely crushed slag mixed with salt was used as a surfacing material on some roads in Ohio. The material was said to stay on the road

better than cinders and proved effective on icy highways.2

Granulated Slag.—An outstanding development in 1956 was the increased application of granulated slag for use as a raw material in producing portland cement. It is also valued as an aggregate in road Total consumption increased 21 percent over 1955 to reach a record of 4.6 million short tons in 1956. Forty-four percent was used as a raw material in manufacturing cement, 41 percent as highway construction and fill material, 8 percent for concrete-block manufacture, and the balance for agricultural and miscellaneous uses. Base and subgrade material continued to be shown separately from fill in

MILLION SHORT TONS

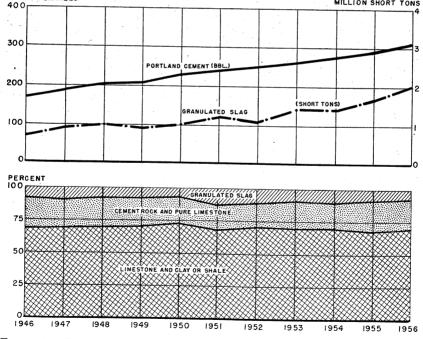


FIGURE 3.—Granulated slag used in manufacturing cement compared with barrels of portland-cement shipments and percentages of raw materials used in manufacturing portland cement, 1946-56.

² Rock Products, What's Happening: Vol. 59, No. 4, April 1956, p. 11.

Granulated slag the 1956 report because these uses are increasing. for agricultural purposes decreased slightly in quantity and value. The concrete-block industry used appreciably more granulated and less expanded slag in 1956.

Expanded Slag.—Production of expanded slag in 1956 achieved a record of nearly 3 million short tons valued at \$8.5 million. major quantity continued to be used in producing lightweight concrete block. Expanded slag continued to lead other lightweight ma-

terials in tonnage used for this purpose.

Expanded slag, the smallest of the four distinct types produced, is formed by foaming molten slag with a controlled amount of water. The rapid generation of steam expands the slag into light, vesicular The air bulk density in 1956 ranged from 40-60 pounds material. per cubic foot. This slag type was sold under such trade names as Amlite, Celocrete, Expanslag, Superock, Enslite, Waylite, Garylite, etc., but the simple designation "expanded slag" was growing in favor.

TABLE 5.—Granulated and expanded iron blast-furnace slag sold or used by processors in the United States, 1955-56, by uses

[National	Slag	Associa	tion
-----------	------	---------	------

Use	Gran	ulated	Expanded		
	Short tons	Value	Short tons	Value	
1955					
Highway construction (base and subgrade)	615, 869	\$694,653			
fill (road, etc.)	997, 869	440,078			
grioultural clag liming	72, 160	107, 228			
Annifacture of hydraulic cement	1, 675, 643	(1)			
Aggregate for concrete-block manufacture	307, 288	295, 988	2, 728, 747	\$7, 398, 14	
Aggregate in lightweight concrete			105, 113	351,75	
Other uses	167,000	80, 330	57,984	211, 563	
Total	3, 835, 829	2 1, 618, 277	2,891,844	7, 961, 466	
1956					
Highway construction (base and subgrade)	1,004,793	763, 090	l		
Fill (road, etc.)	886, 197	313, 207			
Agricultural slag, liming		102, 313			
Manufacture of hydraulic cement	_ 2, 030, 607	(1)			
Aggregate for concrete-block manufacture	372, 102	287, 532	2, 672, 189	7, 601, 94	
Aggregate in lightweight concrete	_ 63, 460	107, 882	95, 997	280, 75	
Other uses	206, 860	68,085	221, 991	613, 11	
Total	4, 634, 703	2 1, 642, 109	2, 990, 177	8, 495, 81	

During the annual meeting of the National Slag Association emphasis was given to various projects and laboratory investigations aimed at expanding the uses of blast-furnace slag. The anticipated highway program received considerable attention as a potentially enormous outlet for slag. It was pointed out that wide use was being made of slag for resurfacing where it was specified because of its nonskid properties.3 Also the possibility of reduction in slag volume through use of high-grade iron ores from Labrador and South America was discussed.

Data not available.
 Excludes value of slag used for hydraulic cement manufacture.

³ Rock Products, Slag Producers Discuss Research Program: Vol. 59, No. 2, February 1956, pp. 68 and 72.

PRICES

Increases in average value were reported for most uses. Producers indicated that those changes were related to wage increases, additional costs of equipment and supplies, and general market conditions. decrease continued in the 1956 value for granulated slag used in concrete-block manufacture. Values for screened, air-cooled slag ranged from \$1.16 for railroad ballast to \$2.26 for built-up roofing. Screened, air-cooled slag increased 5 cents per ton in price compared with the 1955 figure. Sewage trickling filter medium had the highest increase—an average rise in value of 29 cents per ton over 1955. Values for unscreened, air-cooled slag ranged from \$0.32 to \$0.80; the average value, which decreased 13 cents, was \$0.61 per ton. Expanded slag averaged \$2.84 per short ton—an increase of 9 cents over 1955. while expanded slag for concrete block increased 13 cents per ton.

TABLE 6.—Average value per short ton of iron blast-furnace slag sold or used by processors in the United States, 1955-56, by uses

FA	~-		
INational	Slag	Association	ı

Use	Air-	cooled	Granulated	Expanded	
	Screened Unscreened				
Aggregate in—					
Portland-cement concrete construction Bituminous construction (all types)	\$1. 61 1. 55			1 \$3. 3	
Highway and airport construction 2	1.49 1.38			2. 7	
Railroad ballast Mineral wool Roofing (cover material and granules)	1 45				
Sewage trickling filter mediumAgricultural slag, liming	1.72 1.57		1.49		
Road fill, etc	1. 11	. 53	. 45 . 48	3. 6	
Aggregate in—					
Portland-cement concrete construction Bituminous construction (all types)	1.62 1.60		1 1. 70	1 2. 92	
Highway and airport construction ² Manufacture of concrete block Railroad ballast	1. 51	. 80	³. 76 . 77	2. 84	
Mineral wool Roofing (cover material and granules)	1 59				
Sewage trickling filter medium	2. 01 1. 64				
Road fill, etc	1. 57	. 32	. 35 . 33	2. 76	

Lightweight concrete.
 Other than in portland-cement and bituminous construction.
 Highway construction for base and subgrade material.

TECHNOLOGY

Expanded Slag.—Attention was focused on the availability of expanded slag in the construction industry as the trend toward utilization of lightweight concrete in construction gained momentum. Recognizing this, the Bureau of Mines started a survey of lightweight aggregates and their raw materials in the East, which will eventually be expanded to other areas of the country.

An improved method was patented for producing foamed blastfurnace slag in which molten slag is poured onto a level surface and water forced upwardly so as to bring about maximum foaming. Additional water is then injected as a chilling medium. The method reportedly produces a new type of foamed slag having the physical characteristics of plaster aggregates.4

Lightweight slag in a moist condition was rendered usable by install-

ing a dryer and multiple cyclone dust collector.5

The effect of temperature, quenching foaming conditions and sulfur content of the slag, and the mechanics of various machines used in the bed foaming system were discussed. Properties of various lightweight aggregates and of the finished products in which they are used were shown.6

A German method of producing foamed slag from foundry slag was The foaming agent is added to the fluid slag under pres-The behavior of the slag and the structure of the product are affected by the temperature, viscosity, and surface tension of the melt. The final product is reported to be suitable for structural concrete.7

Slag Cement.—A series of articles considered the methods of manufacturing slag products, especially in Europe. In the processing of German blast-furnace slags, there is reportedly an enormous waste of heat and materials. Data were given on the properties and costs of cement made with various combinations of slag and portland-cement clinker. Differences in the cost of preparing the various slag types are considered important.8

A high proportion of MgO in slag used for the manufacture of cement has usually been considered undesirable. However, it is claimed that when periclase formation is avoided, a high MgO content can be permitted. This was the conclusion based on tests of South African slags with 20 percent MgO. Therefore, the maximum MgO limits of ASTM

and European specifications possibly may be revised.9

The properties of blast-furnace cements containing varying proportions of three constituents (slag-clinker-gypsum) were determined by various crushing and flexural strength tests.10

An apparatus and method for the uniform fine grinding of granulated

blast-furnace slag in a liquid environment was patented.11

An indirect method was devised for determining the heat of hydration of cement-containing materials, such as pozzolans or blast-furnace slags, which are partly or slowly acid soluble.12

A French publication, in reviewing various types of cement, indicated that, in many applications, slag cements replace portland cements.13

⁴ Gallai-Hatchard, M., Production of Foamed Slag and Like Material of Lightweight: U. S. Patent 2,778,160, Jan. 22, 1957.

5 Rock Products, Boost Bituminous Mix Production in Lightweight Slag Aggregate Plants: Vol. 59, No. 3, March 1956, pp. 100-102.

6 Pierson, B. M., Processing Slag Products: Rock Products, vol. 59, No. 6, June 1956, pp. 142-152, 159-160.

7 Ruopp, W., IProduction and Use of Foamed Blast-Furnace Slag]: Tech. Mitt., vol. 4, No. 12, December 1955, pp. 225-236.

8 Pierson, B. M., Processing Slag Products: Rock Products, vol. 59, No. 2, February 1956, pp. 112-116, 121; vol. 59, No. 3, March 1956, pp. 78, 80, 98.

9 De Langavent, Cleret J., [Use of Magnesia Slags in Cement]: Silicates Industriels, vol. 20, No. 12, December 1955, pp. 468-469.

10 Kramer, W., [The Properties of Blast-Furnace Cements Interpreted by Means of the "Ternart Equilibrium Diagram" Slag Sand-Clinker-Gypsum]: Silicates Industriels, vol. 21, No. 1, January 1956, pp. 20-28.

11 Trief, L., and Trief, M., Method and Apparatus for Automatically Proportioning Granulated Material To Be Fed to a Grinding Mill: U. S. Patent 2,767,926, Oct. 23, 1956.

11 Nurse, R. W., and Pai, V. N., Determination of the Heat of Hydration of Cements Containing Slag or Pozzolans: Magazine of Concrete Res. (London), No. 22, 1956, pp. 3-6.

13 Dournals, P., [Improvements in the Quality of Slag Cements Containing Clinker, and Some Prospectives for Its Future]: Silicates Industriels, vol. 21, No. 3, March 1956, pp. 123-125.

Polish Standards generally do not favor the use of acidic slags in This is contrary to Russian Standards as revealed in the evaluation of blast-furnace slags.14

Miscellaneous.—The strength of flue-dust sinter is improved, according to a patent, by adding 1 to 15 percent iron blast-furnace

slag.15

Conditions of the slag industry in France and the United States were compared, first geographically and then with reference to the transport and handling of raw materials. Plant layout and details of plant construction were also reviewed. Operating practices in France indicate that the higher coke rate required is due to the higher slag volume produced. 16

An abstract of a Swedish publication reported two new methods for

the spectrographic analyses of slag. 17

Another foreign article describes a test where various types of concrete were repeatedly heated to 900°. It was stated that concrete made with blast-furnace slag aggregate was equivalent to concrete

made with firebrick aggregate. 18

A British symposium paper attributed much of the rise in slag consumption to its use in mass structures or in construction exposed to sulfate-bearing waters. Slag cements have lower early strengths than portland cements and correspondingly slower development of the heat of hydration. This makes slag cement of more advantageous value in mass structures but also more sensitive to low temperatures. Various methods of testing slags to determine their suitability and content for use as components of cements were described.¹⁹

Investigations of the properties and applications of granulated blast-furnace slag in Europe have been extended to the Orient. Recently, a Japanese cement company became engaged in research studies of the thermal properties of slags. Results of the studies revealed new data for cement manufacturers on the use of glassy slags.20

A flame photometer method was developed for rapid determination of calcium in slags in the range of 30 percent by weight. The method reportedly gives results comparable with rapid chemical methods previously employed. The total elapsed time is 2 hours compared with

24 for a chemical determination.²¹

Methods other than chemical analyses for slag control are in general These methods utilize the physical properties of the slag. An estimation of slag basicity at blast-furnace operations has been derived from mixing water with the powdered slag and then determining the Ph of the aqueous extract.21

¹⁴ Malinowski, Roman, [Activity of Acidic Slag in Cement]: Zement Wapno-Gips, vol. 21, No. 12, December 1956, pp. 90-95.

15 Carney, D. J. (assigned to U. S. Steel of New Jersey), Flue-Dust Sinter and Method of Manufacture:

16 Thierry, P., [Conditions of the Slag Industry in France and the United States]: Méchanique Constructions méchaniques ed., vol. 87, No. 3, March 1955, pp. 167-171.

17 Iron and Steel Institute Journal, vol. 184, pt. 2, October 1956, p. 217.

18 Tseluiko, T. M., and Lavrent'ev, S., [Blast-Furnace Slag in Fire-Resistant Concrete]: Chem. Abs., vol. 50, No. 20, Oct. 25, 1956, p. 15044.

19 Keil, F., International Symposium on the Chemistry of Cement: 3d symposium, London, 1952, Proc., 1954, pp. 530-580.

20 Tanaka, Taro, Research on the Hydraulic Properties of Granulated Blast-Furnace Slag: Rock Products, vol. 59, No. 7, July 1956, pp. 106, 108, 110.

21 Standen, G. W., and Tennant, C. B., Flame Photometric Determination of Calcium in Furnace Slag: Anal. Chem., vol. 28. No. 5, May 1956, pp. 858-860.

22 Clarke, W. E., A Survey of Methods for Slag Control: Jour. of Res. and Development, British Cast Iron Res. Assoc., vol. 6, No. 4, April 1956, pp. 195-212.

Slate

By D. O. Kennedy 1 and Nan C. Jensen 2

LATE production in the United States in 1956 decreased for the second successive year, and the total value of sales was less than that in any year since 1946. Sales of blackboards and bulletin boards increased about 50 percent compared with 1955, but sales of all other slate products decreased.

As in the previous 8 years 80 percent of the slate sold consisted of crushed slate, valued at about 40 percent of the total slate production, instead of 50 percent, as in 1955.

TABLE 1.—Salient statistics of the slate industry in the United States, 1955-56

		1955				1956		
Domestic production (sales	Quar	ntity		Quar	ntity		Percer	
by producers)	Unit of measure- ment	Approxi- mate short tons	Value	Unit of measure- ment	Approxi- mate short tons	Value	Quan- tity (unit as re- ported)	Value
Roofing slate	Squares 121, 480	45, 611	\$2, 568, 213	Squares 107, 054	40, 337	\$2, 588, 971	-12	+1
Millstock: Electrical, structural, and sanitary slate! Blackboards and bulle- tin boards?	Sq. ft. 2, 304, 631 970, 716			Sq. ft. 2, 024, 759 1, 393, 240			-12 +44	-1 +63
Billiard-table tops Total millstock Flagstones, etc.3	3, 376, 286 12, 774, 370	741	64, 406 2, 747, 215		20, 151	3, 114, 155	+4	+9 +13 -13
Total slate as dimension stone		140, 821 619, 619			119, 030 526, 449		—15 —15	
Grand total		760, 440	12, 913, 777		645, 479	11, 665, 524	-15	-10

Includes a small quantity of slate used for grave vaults and covers.
 Includes a small quantity of school slates.
 Includes slate used for walkways, stepping stones, and miscellaneous uses.
 Includes crushed slate used for lightweight aggregate.

Assistant chief, Branch of Construction and Chemical Materials.
 Statistical assistant.

DOMESTIC PRODUCTION

Eight States produced during 1956, and, as in the previous 5 years, 4 States—Pennsylvania, Vermont, Virginia, and New York—furnished over 60 percent of the total quantity and 85 percent of the total value of slate in the United States.

Maine's only operator produced electrical slate and flagging; production increased 5 percent in quantity and 18 percent in value compared with 1955.

Slate production in New York State, which consisted almost entirely of flagging, granules, and flour decreased 30 percent in quantity and value compared with 1955. The number of operators decreased from 13 to 10.

TABLE 2.—Slate sold by producers in the United States, 1947-51 (average) and 1952-56, by States and uses

	Opera-	Roo	Roofing		stock	Other uses	Total	
		Squares (100 square feet)	Value	Square feet	Value	(value) 1	value	
1947–51 (average) 1952 1953 1954 1955	82 70 68 57 55	194, 684 145, 640 142, 292 117, 729 121, 480	\$3, 975, 331 3, 067, 513 3, 005, 649 2, 401, 087 2, 568, 213	2, 836, 102 2, 725, 660 2, 940, 527 3, 195, 737 3, 376, 286	\$1, 806, 064 2, 049, 895 2, 220, 504 2, 378, 323 2, 747, 215	\$7, 481, 119 7, 589, 243 7, 412, 312 8, 181, 204 7, 598, 349	\$13, 262, 514 12, 706, 651 12, 638, 465 12, 960, 614 12, 913, 777	
1956								
New York Pennsylvania Vermont Virginia Other States 3	10 16 17 4 8	171 56, 924 24, 872 25, 087	7, 995 1, 217, 404 568, 989 794, 583	68, 438 2, 507, 019 (2) 4 941, 053	1, 227 2, 000, 863 (2) 4 1, 112, 065	934, 322 975, 292 (2) 240, 275 3, 812, 509	943, 544 4, 193, 559 3, 721, 545 1, 034, 858 1, 772, 018	
Total	55	107, 054	2, 588, 971	3, 516, 510	3, 114, 155	5, 962, 398	11, 665, 524	

One less operator reported production in Northampton County, Pa., in 1956 than in 1955. Production in Pennsylvania decreased 17 percent in quantity and 5 percent in value compared with 1955. Output consisted of roofing, flagging, and various types of dimension slates; one producer shipped only granules and flour. Sales of blackboards and bulletin boards increased 44 percent in quantity and 63 percent in value, but these increases were not large enough to offset the decrease in sales of roofing slates and other products. An expanded aggregate plant was under construction near an abandoned quarry to use slate refuse for making concrete blocks in which expanded slate would be used in place of cinders.

Production in Vermont decreased 24 percent in quantity and 16 percent in value, compared with 1955. Sales of roofing slate and flagging increased, but sales of granules decreased approximately 30 percent in quantity and value compared with 1955. Although the number of producers increased from 13 in 1955 to 17 in 1956, the

Flagging and similar products, granules, flour, and aggregates.
 Included with "Other States" for this use.
 Includes the following States to avoid disclosing individual company confidential data: Maine,
 1 operator; Arkansas and Georgia, 2 operators each; and California, 3 operators.
 4 Maine and Vermont only.

TABLE 3.—Slate sold by producers in Pennsylvania, 1947-51 (average) and 1952-56, by uses

		Roo	fing slate			Mi	llstock	
Year	Oper-	Squares			Electrical	l	Structural and sanitary 1	
	ators	(100 squar feet)		Squa		alue	Square feet	Value
1947–51 (average) 1952 1953 1954 1955 1956	1 1 1	5 127, 93 8 93, 20 8 86, 11 7 77, 81 7 72, 63 6 56, 92	0 1,866,4 6 1,688, 9 1,487,8 8 1,458,	479 2, 167 7, 870 (2) 594 (2)	630 425	0, 501 3, 518 7, 751 (2) (2) (2) (2)	713, 918 1, 031, 280 1, 203, 956 21, 093, 590 21, 423, 812 21, 019, 678	\$471, 477 596, 873 702, 155 2 735, 172 2 1, 055, 195 2 950, 456
			Millstock—	-Continue	đ			
Year	1	Blackboards tin boa	and bulle- rds ³	Billar	d-table to	ps	Other uses (value)	Total value
	1	Square feet	Value	Square fe	et Va	lue		
1947–51 (average)		1, 394, 778 922, 860 1, 080, 034 1, 295, 911 970, 716 1, 393, 240	\$622, 270 553, 509 699, 098 808, 872 603, 288 985, 602	230, 10 121, 21 71, 8 116, 3 100, 9 94, 1	50 7 51 4 38 39 6	37, 778 73, 571 13, 316 72, 937 34, 406 54, 805	\$1, 438, 269 1, 393, 698 1, 279, 125 1, 314, 588 1, 239, 815 975, 292	\$5, 096, 575 4, 487, 648 4, 419, 612 4, 419, 430 4, 421, 298 4, 193, 550

Includes a small quantity of slate for vaults and covers.
 Electrical included with structural and sanitary to avoid disclosing individual company confidential

3 Includes a small quantity of school slates.

increase in dimension-slate products represented only a small propor-

tion of the total production of the State.

As in former years, the principal slate product of Virginia was roofing, which increased over 30 percent in value compared with 1955, resulting in a rise of 26 percent for value of slate production in the

Production in California consisted of flagging, granules, and flour. Only granules and flour were produced in Arkansas and Georgia. total production of slate in these 3 States increased 6 percent in quantity but decreased 4 percent in value.

CONSUMPTION AND USES

Consumption of all types of slate products except blackboards and bulletin boards decreased. As indicated in figure 1, the decline in sales of roofing slate in recent years was accelerated by the recession in new residential building in 1956. This downtrend in the consumption of roofing slate was due largely to substitution of alternate roofing materials. Although nonresidential building, which uses millstock slate most widely, increased, consumption of total millstock This is shown graphically in figure 1. slate decreased.

Because unit prices of roofing slate and every type of millstock increased, value for dimension slate consumed rose; however, quantity

decreased 15 percent.

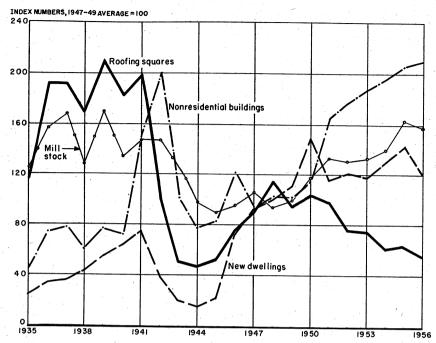


Figure 1.—Sales of roofing slate and millstock compared with number of new dwelling units and value of certain new nonresidential construction, adjusted to 1947-49 prices, 1935-56. Data on number of new dwelling units in nonfarm areas from U. S. Department of Labor; data on nonresidential construction from U. S. Department of Commerce and U. S. Department of Labor.

TABLE 4.—Dimension slate sold by producers in the United States, 1947-51 (average) and 1952-56

Year	Roofing			Millstock		Other 1		Total	
	Squares	Approxi- mate short tons	Value	Approxi- mate short tons	Value	Approxi- mate short tons	Value	Approxi- mate short tons	Value
1947–51 (average) 1952 1953 1954 1955 1956	194, 684 145, 640 142, 292 117, 729 121, 480 107, 054	73, 252 54, 050 53, 470 43, 549 45, 611 40, 337	\$3, 975, 331 3, 067, 513 3, 005, 649 2, 401, 087 2, 568, 213 2, 588, 971	14, 052 16, 720 16, 995 17, 796 20, 732 20, 151	\$1, 806, 064 2, 049, 895 2, 220, 504 2, 378, 323 2, 747, 215 3, 114, 155	57, 660 75, 480 82, 438 90, 281 74, 478 58, 542	\$1, 003, 130 1, 469, 396 1, 458, 651 1, 569, 409 1, 266, 937 1, 098, 910	144, 964 146, 250 152, 903 151, 626 140, 821 119, 030	\$6, 784, 525 6, 586, 804 6, 684, 804 6, 348, 819 6, 582, 365 6, 802, 036

 $^{^{\}rm 1}$ Includes flagstones, walkways, stepping stones, and miscellaneous slate.

The consumption of granules decreased both in quantity and value in 1956 compared with 1955. Figure 2 indicates that roofing slate accounted for only about 22 percent of the total value of sales of slate in 1956.

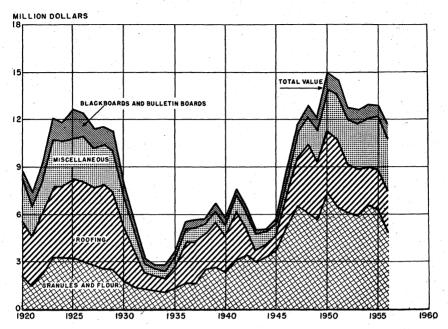


FIGURE 2.—Value of slate sold in the United States, 1920-56, by principal uses.

TABLE 5.—Crushed slate (granules and flour) sold by producers in the United States, 1947-51 (average) and 1952-56

Year	Gran	ules ¹	Flo	ur	Total	
1947–51 (average)	530, 362 451, 870 395, 881 474, 336 466, 604 397, 534	Value \$5, 774, 802 5, 390, 202 5, 105, 429 5, 889, 062 5, 539, 315 4, 102, 505	157, 754 141, 520 149, 805 134, 959 153, 015 128, 915	\$703, 187 729, 645 848, 232 722, 733 792, 097 760, 983	888, 116 593, 390 545, 686 609, 295 619, 619 526, 449	\$6, 477, 989 6, 119, 847 5, 953, 661 6, 611, 795 6, 331, 412 4, 863, 488

^{1 1954-56} includes crushed slate used for lightweight aggregate.

PRICES

The average price per ton of all slate products at the quarries increased from \$16.98 per ton in 1955 to \$18.07 per ton in 1956.

creased from \$16.98 per ton in 1955 to \$18.07 per ton in 1956.

Roofing Slates.—The average value of roofing slates increased 14 percent compared with 1955—from \$21.14 to \$24.18 per square. Roofing slate increased in value in Pennsylvania and Vermont, but the large increase to \$31.67 per square in Virginia mainly furnished the 14-percent increase in average value for total United States production.

Millstock.—The average value of millstock increased from 81 cents per square foot in 1955 to 89 cents in 1956. Electrical slate increased in value per square foot from \$1.32 in 1955 to \$2.07 in 1956; structural and sanitary slates increased from 80 cents per square foot to 84 cents;

blackboards and bulletin boards increased from 62 cents to 71 cents per square foot; and billiard-table tops increased from 64 cents per square foot in 1955 to 71 cents in 1956.

Flagstones.—The average value of flagstones increased from 10

cents per square foot in 1955 to 11 cents in 1956.

Granules and Flour.—Granules decreased in price from \$11.87 per ton in 1955 to \$10.32 per ton in 1956; and flour increased from \$5.18 per ton in 1955 to \$5.90 in 1956.

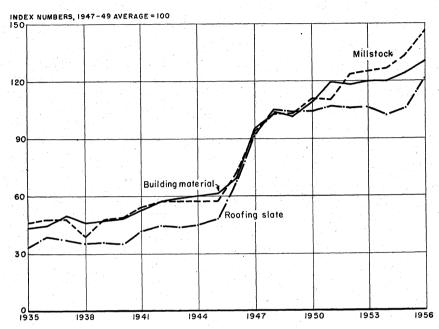


Figure 3.—Average selling price of slate compared with wholesale prices of building materials in general, 1935-56. Wholesale prices from U. S. Department of Labor.

FOREIGN TRADE³

Imports.—The value of slate imported into the United States increased 66 percent—from \$148,800 in 1955 to \$247,600 in 1956. Italy and Portugal furnished 91 percent of imports in 1956; West Germany supplied most of the remainder; a small quantity came from the Union of South Africa.

Exports.—The value of slate exported from the United States decreased 15 percent from \$391,600 in 1955 to \$331,300 in 1956. The large decrease in the quantity of granules exported in 1956 was mainly responsible for the decline in total slate exports. Slate was exported mostly to Canada; a small quantity went to the Latin American countries.

³ Figures on imports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 6.—Slate imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries

[Bureau of the Census]

Country	1947-51 (average)	1952	1953	1954	1955 1	1956 1
North America: Canada Mexico	\$2, 459 37	\$4, 117	\$2,790		\$323	
TotalSouth America: Brazil	2, 496	4, 117 1, 201	2, 790		323	
Europe: Germany Italy Netherlands	57, 822	2 26, 623 121, 366 219	² 35, 299 127, 076	² \$23, 013 74, 480	² 10, 886 75, 314	² \$21, 748 126, 266
Norway Portugal Spain Switzerland	14, 949	79, 743 846 63	57, 481	1, 996 45, 262	61, 675	98, 913
United Kingdom	453	1, 993	1, 403		24	
Total	75, 318	230, 853	221, 259	144, 751	147, 899	246, 927
Asia: China Japan	47 145	98	96		23	
TotalAfrica: Union of South Africa	192	98	96		23 600	694
Oceania: Australia	14					
Grand total	78, 020	236, 269	224, 145	144, 751	148, 845	247, 621

Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable to years before 1954.

² West Germany.

TABLE 7.—Slate exported from the United States, 1947-51 (average) and 1952–56, by uses 1

Use	1947-51 (average)	1952	1953	1954	1955	1956
Roofing School slate 2	\$10, 338 16, 982	\$15, 110 2, 355	\$9, 132 1, 796	\$17, 129 (3)	\$12,801	\$6, 747
ElectricalBlackboards	9, 203 67, 357 63, 442	10, 041 62, 992 85, 657	23, 225 89, 346 65, 129	9, 085 3 91, 257 71, 961	107, 566	135, 516
ways) and granules and flour	404, 135	201, 748	175, 770	231, 312	271, 268	189, 050
Total	571, 457	377, 903	364, 398	420, 744	391, 635	331, 313

Figures collected by the Bureau of Mines from shippers of products named.
 Includes slate used for pencils and educational toys.
 School slates included with blackboards.

TECHNOLOGY

In North Wales, as in the United States, the piles of waste slate are enormous; many proposals have been advanced for their profitable The Department of Scientific and Industrial Research in England conducted tests to find advantageous uses, but some of the results were disappointing. Research on the application of waste slate as a raw material for mineral-wool manufacture was abandoned because, although technically suitable, slate would be uneconomic in

competition with raw materials already in use. Work was continued on making brick and lightweight aggregate from waste slate. Dinorwic Slate Quarries were using their waste to manufacture brick, but the operation was not large because transport costs restricted the market area.4

Waste slate was also proposed for use in seawalls and other shore protection. It had already been so used to some extent, and the Department of Scientific and Industrial Research was beginning to test the qualities of slate for such an application.⁵

WORLD REVIEW

United Kingdom.—The origin, physical properties, endurance, and history of development of the Cornish and Welsh slate deposits, quarried for more than 800 years, were described. Examples were shown of carvings on slate memorials that were still clear and sharp after 170 years of exposure.⁶

Sales of Welsh slate reached 222,807 squares in 1955. The industry employed 3,225 workers.

⁴ Quarry Managers Journal (London), vol. 39, No. 12, June 1956, p. 678; vol. 40, No. 2, August 1956, p. 113; vol. 40, No. 3, September 1956, p. 145.

5 Quarry Managers Journal (London), vol. 39, No. 9, March 1956, p. 496; No. 12, June 1956, p. 669.

6 Quarry Managers Journal (London), Slate, the Material of All Time: Vol. 40, No. 3, September 1956, pp. 176-178.

Sodium and Sodium Compounds

By Robert T. MacMillan and Annie L. Mattila 2

ODA-ASH production from both natural and manufactured sources exceeded previous records for the second consecutive year. duction of salt cake from natural sources also surpassed former records, although total production decreased slightly because of lessened demand for the manufactured variety. Although most soda ash and salt cake consumed by industry was manufactured, the production from natural sources continued to show important gains.

DOMESTIC PRODUCTION

In 1956 the production of soda ash from natural deposits in Wyoming and California increased 6 percent over the previous year; output of soda ash from salt by the ammonia-soda process gained less than 2 percent. Of the total United States soda-ash production, the proportion derived from natural sources was approximately 11 percent in 1955 and 12 percent in 1956.

In California, American Potash & Chemical Corp. and West End Chemical Co. produced natural soda ash from the brine of Searles Lake at their respective plants at Trona and Westend; Columbia Southern Chemical Corp., subsidiary of Pittsburgh Plate Glass Co., produced from the brines of Owens Lake at its plant near Bartlett.

In Wyoming, The Intermountain Chemical Co., subsidiary of Food Machinery & Chemical Corp. produced soda ash from the large trona

deposit at Westvaco in Sweetwater County.

Two descriptions of mining at Westvaco appeared in the press.3 A third shaft was completed to the ore body, which is at a depth of approximately 1,500 feet. The ore, nearly pure trona (Na₂HCO₃·-Na₂CO₃·2H₂O), was mined by the room-and-pillar method, using coal-mining machinery modified to withstand the heavier and more abrasive trona. The rooms were normally 8 feet high, 20 feet wide, and 250 feet long on 65-foot centers. Pillars were extracted on the retreat by a system of split pillars and a protective fender between the cave and the mining face.

The operation was developed as a trackless mine to take advantage of the saving in haulage costs by using belt conveyors for main-line haulage. By using advanced mining techniques the daily production

Commodity specialist.
Statistical assistant.
Romano, C. A., Trackless Mining of Trona: Min. Cong. Jour., vol. 42, No. 7, July 1956, pp. 34-36,
Love, R., F., Trona Mine of Intermountain Chemical Co.: Min. Eng., vol. 8, No. 12. December 1958.

TABLE 1.—Manufactured sodium carbonate produced 1 and natural sodium carbonates sold or used by producers in the United States, 1947-51 (average) and 1952-56

	Manufac- tured soda ash (ammonia- soda process) ²	Natural sodiu	m carbonates
	Short tons	Short tons	Value
1947-51 (average)	4, 420, 252 4, 442, 450 4, 879, 396 4, 701, 364 4, 906, 971 8 4, 997, 579	4 296, 816 323, 479 419, 206 527, 282 613, 594 652, 891	4 \$6, 512, 196 7, 828, 033 10, 627, 460 13, 536, 345 15, 000, 966 17, 400, 347

¹ U. S. Bureau of the Census.

• 0.5. Bureau of the Census.

In 1956 reported as total crude bicarbonate. Before January 1953 reported as total wet and dry (98-100 percent Na₂CO₃). Includes quantities consumed in manufacturing finished light and finished dense soda ash, caustic soda as well as quantities consumed in manufacturing refined sodium bicarbonate.

3 Soda ash and trona (sesquicarbonate).

4 Exclusive of Wyoming in 1948-49.

4 Preliminary feure.

5 Preliminary figure.

increased in the past 3 years from 500 to 2,500 tons, and efficiency increased from 8 to 21 tons per man-shift.

A. M. Matlock began producing soda ash on a small scale from

deposits of Alkali Lake, Lake County, Oreg.4

United States production of sodium sulfate (crude salt cake), including both the natural and manufactured varieties, decreased about 2 percent in 1956 compared with 1955. A new producer, United States Borax & Chemical Corp. at Boron, Calif., helped bolster output from natural sources, which increased nearly 16 percent over the previous year.

The following firms and individuals continued producing natural sodium sulfates: American Potash & Chemical Corp. and West End Chemical Co., both from Searles Lake brines; Ozark-Mahoning Co. from subterranean brines at Monahans, Tex.; and Wm. E. Pratt

and Iowa Soda Products Co. from deposits in Wyoming.

About 30 percent of the market in 1956 was supplied from natural sources, but most sodium sulfate was a byproduct or coproduct of various important industries. Among these producers were the Mannheim hydrochloric acid plants, rayon and cellophane factories and plants producing sodium dichromate, phenol, boric acid, formic acid, and lithium salts.

Metallic sodium production rose to a new high of 136,017 short tons in 1956, according to the Bureau of the Census, United States Department of Commerce. This increase represented 19 percent more than the 114,700 tons produced in 1955 and 7 percent over

the previous record production in 1954.

Metallic sodium was produced by the electrolysis of mixtures of molten salt and calcium chloride in Down's cells and from caustic soda by the Castner process. The metal was produced at 4 plants by the following 3 companies: National Distillers Chemical Co., Ashtabula, Ohio; E. I. du Pont de Nemours & Co., Inc., Niagara Falls, N. Y.; and Ethyl Corp., with plants at Baton Rouge, La., and Houston, Tex.

⁴ Western Mining and Industry News, Oregon Man Mining Lake Sodium Deposit: Vol. 24, No. 1. January 1956, p. 20.

TABLE 2.—Sodium sulfate produced and sold or used, by producers in the United States, 1947-51 (average) and 1952-56

	Productio	n (manufact	ured 1 and	Sold or used	by produc-
		uràl), short i	ers (natu	ral only)	
Year	Salt cake (crude)	Glauber's salt (100 percent Na ₂ SO ₄ . 10H ₂ O)	Anhydrous refined (100 percent Na ₂ SO ₄)	Short tons 2	Value
1947-51 (average)	633, 678 662, 373 3 737, 146 3 658, 658 3 737, 599 4 725, 723	189, 846 177, 929 204, 159 3 146, 992 3 149, 177 4 128, 543	171, 637 202, 813 219, 751 3 204, 668 3 256, 549 4 298, 878	231, 943 236, 825 248, 230 249, 701 284, 549 329, 607	\$3, 166, 868 3, 217, 000 3, 340, 760 3, 890, 303 5, 381, 313 6, 327, 551

4 Preliminary figure.

CONSUMPTION AND USES

A new record of more than 5 million short tons of soda ash was consumed in 1956. As one of the basic heavy chemicals, soda ash was used in many industries including glass, caustic and bicarbonate, nonferrous metals, pulp and paper, soap, detergents, water softeners, cleansers, textiles, petroleum products, phosphates and other chemi-The glass industry, a leading consumer of soda ash, preferred dense ash; aluminum, paper, and phosphate manufacturing consumed light ash. As their output expanded, the aluminum and paper industries consumed more soda ash, but in other instances, consumption was mostly about the same as in 1955.

Salt cake was used chiefly by the kraft-pulp industry in digesting woodpulp to produce fiber for manufacturing paper. The high output of paper was an important factor in the continued demand for salt cake in 1956. A forecast of continued expansion of the kraft-pulp industry through 1958 indicated a growing demand for salt cake, despite efforts of the industry to lower the cake requirements per ton Some companies estimated that salt-cake requirements could be reduced as low as 80 to 125 pounds per ton of pulp compared with an estimated 174 pounds in 1954. Sodium sulfate requirements vary according to the type of wood being pulped, bleaching needs. and recovery procedures.

Increasing quantities of salt cake were used in manufacturing flat glass.⁵ Other uses of salt cake included detergents, ceramics, mineral stock feeds, pharmaceuticals, and chemicals.

It was estimated that 60 percent of the metallic sodium production was consumed in processing tetraethyl lead (TEL), a gasoline-anti-knock compound.⁶ A new TEL process that requires no sodium was being developed.7 This process, if it proves practical, would have a depressing effect upon the sodium market.

The expanding uses of sodium were in producing sodium peroxide and in reducing vegetable and animal oils and glycerides to fatty

U. S. Bureau of the Census.
 Includes Glauber's salt converted to 100-percent Na₂SO₄ basis.
 Revised figure.

<sup>Oil, Paint and Drug Reporter, vol. 169, No. 20, May 14, 1956, p. 36.
Chemical and Engineering News, Sodium: 1955 Production Puzzle: Vol. 34, No. 2, Jan. 9, 1956, p. 166.
Chemical Week, Storms Brewing for Sodium: Vol. 78, No. 22, June 2, 1956, pp. 92-94.</sup>

alcohols and TiCl₄ to titanium metal. The first United States titanium plant to use sodium reduction began producing in Ohio in April 1956. Consumption was estimated at 2 pounds of sodium per pound of titanium. At full capacity the plant was expected to use 15,000 tons of sodium annually.

Metallic sodium was also used in producing sodium hydride, sodium

amide, and sodium cyanide.

Other newly developed outlets for sodium include producing zirconium, hafnium, beryllium, thorium, and rocket fuels 8 and as a heat-transfer medium.9

PRICES

Prices of salt cake were stable; soda ash and metallic sodium in-

creased slightly in the last quarter.

According to Oil, Paint and Drug Reporter, soda ash, dense, 58 percent, carlots, works was quoted per 100 pounds at \$1.50 in bulk and \$1.80 in paper bags from January through September. From October to the year end the quotations increased to \$1.60 and \$1.90, respectively. During the same periods and on the same basis, quotations per 100 pounds of light soda ash were \$1.45 and \$1.75 for the bulk and packaged varieties, respectively. These increased in October to \$1.55 and \$1.85.

Bulk salt cake, works, 100-percent-Na₂SO₄ basis was quoted in Oil, Paint and Drug Reporter at \$28 per ton throughout the year. Sodium sulfate technical, anhydrous, bags, carlots, delivered, was quoted at \$52 per ton for the same period. Quotations for detergent and rayon grades of sodium sulfate were steady at \$34 and \$31 per ton,

espectively.

Sodium metal in tank cars, works, was quoted at \$0.16 per pound throughout the year. In bricks, in greater than 14,000-pound lots, the price was \$0.17 per pound through September and \$0.19\% from October to the year end.

FOREIGN TRADE 10

Imports of sodium sulfate in 1956 decreased 17 percent from the high record of the previous year. As in the past, over half was supplied by Canada; Belgium and Luxembourg supplied more than one-quarter; and West Germany, United Kingdom, the Netherlands and Mexico furnished the remainder. Imports of sodium sulfates were approximately 14 percent of the total crude salt cake produced in the United States.

Exports of soda ash in 1956 increased over 50 percent compared with the previous year. A 20-percent increase in exports of sodium sulfate was also noted. Exports represented only about 5 percent of

the total domestic production of either commodity.

⁸ Chemical and Engineering News, Dispersed Sodium Is Key to New Process for Rocket Fuels: Vol. 34, No. 51, Dec. 17, 1956, p. 6189.
9 Industrial and Engineering Chemistry, Hot Sodium Handles Simply: Vol. 34, No. 17, Apr. 23, 1956, 1862.

p. 1991.

10 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 3.—Sodium sulfate imported for consumption in the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Crude (salt cake)			allized er's salt)	Anhy	drous	To	otal	
1001	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average) 1952 1953	47, 806 50, 822 53, 468	\$604, 725 803, 054 875, 599	29	\$582	1, 943 5, 105 7, 730	\$42, 684 141, 254 206, 645	49, 778 55, 927 61, 198	\$647, 991 944, 308 1, 082, 244
1954 1955 1956	116, 403 120, 795 98, 828	2, 062, 172 2, 412, 372 2, 046, 522			2, 109 3, 679 4, 421	78, 768 117, 411 127, 486	118, 512 124, 474 103, 249	2, 140, 940 2, 529, 783 2, 174, 008

TABLE 4.—Sodium carbonate and sodium sulfate exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

	Sodium	carbonate	Sodium sulfate	
Year	Short tons	Value	Short tons	Value
1947-51 (average)	121, 674	\$6,026,022	(1)	(¹)
	105, 933	4,031,110	27, 909	\$781, 582
1953	165, 405	5, 819, 304	28, 192	804, 887
1954	163, 548	5, 527, 442	24, 965	822, 684
1955	2 153, 257	2 4, 933, 040	24, 561	870, 183
1956	239, 743	8, 150, 955	29, 784	1, 032, 603

¹ Data not separately classified before 1949. 1949: 14,440 short tons (\$510,000); 1950: 16,834 short tons (\$422,263); 1951: 25,634 short tons (\$797,360).

2 Revised figure.

TECHNOLOGY

The Intermountain Chemical Co. was investigating fluid mining of trona at its Westvaco, Wyo., mine. 11 The mineral is dissolved by a hot "solvent," injected under pressure through a well into the deposit, and the resulting brine is removed from another well and piped to the reduction plant.

A patent was issued on a process for recovering pure sodium carbonate from Wyoming trona.12 The process involves various steps, including calcination, dissolution, and evaporation, under temperature

and pressure control.

Storage economy was claimed for soda ash stored in the form of a slurry (crystals immersed in a saturated solution).13 For users of soda ash in solution, the advantage of the method is that it requires less space; 56 pounds per cubic foot may be stored in slurry form, compared with 35 pounds per cubic foot as light, dry ash or 25 pounds in solution. Separate conveyors and dissolvers are also

New uses for metallic sodium have stimulated interest in research on production methods. A modified electrolytic method, using molten salt as raw material and a molten lead cathode, was described

[&]quot;I Mining Congress Journal, vol. 42, No. 11, November 1956, p. 138.

12 Seaton, Max Y., and executors of Pike, Robert D. (deceased), Ray, Kenneth B., and the Stamford Trust Co. (assigned to Food, Machinery & Chemical Corp.), Froduction of Pure Sodium Carbonate From Wyoming Trons: U. S. Patent 2,770,524, Nov. 13, 1956.

13 Chemical Engineering, vol. 64, No. 6, June 1956, p. 122.

in an article.¹⁴ This new cell is being developed and is designed to have about 10 times the capacity of the same-size mercury cell. costs of producing sodium in the new cell are expected to be lower.

An improved process for producing metallic sodium by the thermal method was described in a patent.¹⁵ The process comprises reducing sodium carbonate with carbon in a high-temperature reactor, condensing the resulting sodium vapor mixed with dross, and removing the dross by fluxing with sodium hydroxide. Sodium is then recovered from the flux by reacting it with NaOH and carbon at a lower temperature.

A monograph on sodium manufacture and properties was pub-

lished.16

WORLD REVIEW NORTH AMERICA

Canada.—Production of natural sodium sulfate from the Province of Saskatchewan totaled 179,438 short tons in 1956. Four companies produced the mineral from lake beds: Ormiston Mining & Smelting Co., Ltd., at Ormiston; Midwest Chemicals, Ltd., at Palo; Sybouts Sodium Sulfate Co., Ltd., at Gladmar; and Saskatchewan Minerals at Chaplin and Bishopric.¹⁷

EUROPE

Italy.—Production of soda ash and caustic soda in 1955 was 520,000 and 260,000 short tons, respectively.18

Japan.—Two Japanese firms were reported to be forming a jointly owned company for manufacturing TEL (tetraethyl lead), a gasoline antiknock compound. Japan has been importing TEL, amounting to \$2.8 million, from the United States annually. 19

Taiwan (Formosa).—Preliminary production figures for caustic soda for Taiwan were 16,300 short tons in 1955, compared with 15,900

tons in 1954.20

AFRICA

Kenya.—Output of soda ash in Kenya totaled 137,000 short tons in 1955 compared with 105,500 tons in 1954.

OCEANIA

Australia.—Most of the local demand for soda ash has been met by increased production capacity of Imperial Chemical Industries of Australia and New Zealand, as shown by the sharp drop in imports since 1953.21 The first batch of solid flake caustic was produced by the company at its Botany works, using a modern "Dowtherm" heated nickel evaporator.22

¹⁴ Chemical Week, Now: Sodium Cell in an I-Beam: Vol. 79, No. 6, Aug. 11, 1956, pp. 86, 88.

15 Kirk, Roy C. (assigned to the Dow Chemical Co., Midland, Mich.), Production of Sodium: U. S. Patent 2,774,663, Dec. 18, 1956.

16 Sittig, Marshall, Sodium—Its Manufacture, Properties, and Uses: Reinhold Publishing Corp., New York, N. Y., Chapman & Hall, Ltd., London, 1956, 529 pp.

17 U. S. Embassy, Toronto, Canada, State Department Dispatch 161: 1956, p. 37.

18 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 5, May 1956, p. 37.

19 Chemical Week, vol. 79, No. 20, Nov. 17, 1956, p. 25.

20 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 5, May 1956, p. 38.

21 Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 3, September 1956, p. 38.

22 Chemical Engineering and Mining Review, vol. 49, No. 3, Dec. 15, 1956, p. 101.

Stone

By Wallace W. Key 1 and Nan C. Jensen2

	Page	· · · · · · · · · · · · · · · · · · ·	Page
Dimension stone	1084	Crushed and broken stone	1097
Granite	1088	Granite	1109
Basalt and related rocks	(trap-	Basalt and related rocks (trap-
rock)	`1088	rock)	1106
Marble	1090	Marble	1106
Limestone	1091	Limestone	1106
Sandstone	1093	Sandstone, quartz, and quar	$tzite_1112$
Miscellaneous stone	1095	Miscellaneous stone	1112
Technology	1095	Technology	1114
World review	1097	Foreign trade	1117
MOUR TEALER		World review	1119

ONTINUED expansion of the stone industry, beyond the unprecedented record established in recent years, was assured in 1956 by enactment of the Federal Highway Program, requiring an estimated additional 10 billion tons of aggregates over a 13-year period.

The stone industry has two main branches—dimension stone and crushed and broken stone. They are so diverse in character that each is considered a separate industry. The mining of dimension stone requires great care to avoid damage to the blocks; on the other hand, the crushed-stone industry employs the most effective methods of breaking the rock into fragments.

TABLE 1.—Salient statistics of the stone industry in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Total sold or used by pro- ducers:	\$305, 604, 423 238, 952, 930 \$357, 107, 680	\$56, 072, 268 299, 699, 938 \$408, 765, 838 301, 586, 427 \$464, 838, 106 \$3, 855, 059	\$59, 311, 184 304, 893, 200 \$424, 017, 532 306, 841, 643 \$483, 328, 716 \$5, 073, 248	\$67,097,301 2 409,677,885 2 \$547,437,004 2 412,060,168 2 \$614,534,305 4 \$5,216,070	2 \$75, 993, 361 2 467, 957, 618 2 \$632, 301, 403 2 470, 490, 892 2 \$708, 294, 764 4 \$5, 578, 744	\$76, 122, 878 503, 714, 641 \$689, 219, 353 506, 231, 405 \$765, 342, 231 4 \$7, 609, 137

¹ Includes Territories of the United States, possessions, and other areas administered by the United States. Excludes slate. 1954-56 includes ground sandstone, quartz, and quartzite used for abrasives and other uses; and limestone, cement rock, and dolomite used in making cement, lime, and dead-burned dolomite.

2 Revised figure.

3 Includes whiting

Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.
 Excludes crushed, ground, or broken stone not separately classified before Jan. 1, 1952.

¹ Commodity specialist. ² Statistical assistant.

TABLE 2.—Stone sold or used by producers in the United States, 1947-51 (average) and 1952-56, by kinds

Year	Gra	anite	Basalt and related rocks (traprock)		M	Marble		estone
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average)_ 1952	22, 279, 002 23, 485, 156 23, 450, 347	51, 531, 884 55, 110, 162 56, 704, 986 2 59,581, 230	29, 760, 760 30, 097, 694 30, 807, 781 35, 850, 613	46, 479, 615 49, 593, 585 2 56,141, 436	238, 048 453, 800 538, 384 1, 092, 179	3 10, 888, 353 12, 190, 552 13, 794, 048 19, 786, 276	217, 105, 542 225, 126, 119 2 316,499, 537 2 361,523, 753	317, 971, 834 2 423,621, 621 2 489,001, 740
	Sand	stone	Other	stone 3	S	hell	To	otal
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average) _ 1952 1953 1954 1955 1956	8, 655, 161 12, 118, 698	25, 004, 372 28, 270, 960	23, 553, 491 19, 023, 713 16, 287, 499 17, 706, 414	\$16, 588, 203 22, 730, 718 23, 305, 593 20, 178, 596 22, 531, 119 27, 939, 048	(4) (4) (4) (4) 2 12,357, 922 3 15,130, 443 19, 852, 007	(4) (4) (4) (2) 2 \$15,320, 440 2 22, 629, 487 28, 367, 836	301, 586, 427 306, 841, 643	² 708,294, 764

¹ Includes Territories of the United States, possessions, and other areas administered by the United States. 1954-56 includes ground sandstone, quartz, and quartzite used for abrasives and other uses; and limestone, cement rock, and dolomite used in making cement, lime, and dead-burned dolomite.

2 Revised figure.

3 Includes mica schist, conglomerate, argillite, various light-color volcanic rocks, serpentine not used as marble, soapstone sold as dimension stone, etc.

4 Data not available.

TABLE 3.—Stone sold or used by producers in the United States, 1955-56, by uses

Use	1	955	19	056
	Quantity	Value	Quantity	Value
Dimension stone: Building stone: Rough constructionshort tons Cut stone, slabs, and mill blocks?cubic feet. Approximate equivalent in short tons Rubbleshort tons. Monumental stonecubic feet. Approximate equivalent in short tons. Paving blocksnumber Approximate equivalent in short tons Curbingcubic feet. Approximate equivalent in short tons. Flaggingcubic feet Approximate equivalent in short tons.	3 17, 572, 719 3 1, 321, 895 374, 559 3 2, 830, 974 3 234, 520 1, 053, 775 5, 950	3 49, 490, 268 1, 372, 171 3 16, 842, 762 127, 328 3, 915, 898 2, 049, 927	16, 499, 633 1, 256, 831 469, 711 2, 832, 989 234, 748 988, 309 6, 004 1, 462, 437	47, 557, 383 1, 587, 588 18, 016, 136 88, 361 3, 550, 481 2, 095, 084
Total dimension stone (quantities approximate, in short tons)	3 2, 533, 274 10, 285, 771 3 254, 587, 585	13, 680, 155	2, 516, 764	76, 122, 878
Furnace flux (limestone) do. Refractory stone 4 do. Agriculture (limestone) do. Portland and natural cement (limestone, cement rock, and shell) short tons.	15, 870, 781 40, 068, 165 1, 169, 330 18, 360, 040 84, 209, 324 16, 409, 221	16, 757, 595 52, 905, 898 5, 777, 984 29, 455, 066 89, 664, 629 3 21, 739, 771	15, 481, 250 37, 789, 063 1, 435, 950	16, 545, 084 52, 486, 524 11, 054, 440 32, 087, 185 91, 603, 819
Other usesdo Total crushed and broken stonedo	⁸ 26, 997, 401 ⁸ 467, 957, 618	³ 66, 060, 483	35, 794, 431	75, 966, 797
Grand total (quantities approximate, in short tons)	³ 470, 490, 892	³ 708, 294, 764	506, 231, 405	765, 342, 231

Includes Territories of the United States, possessions, and other areas administered by the United States.
 To avoid disclosing individual outputs, dimension stone for refractory use is included with building tone.
 Revised figure.
 Ganister (sandstone and quartzite) and dolomite. stone.

TABLE 4.—Stone sold or used by noncommercial producers in the United States, 1 1955-56, by uses

(Included in total production)

Use	1955		1956	
	Short tons	Value	Short tons	Value
Building stone	315, 209 985, 885	\$69, 333 29, 963 3, 548, 185 235, 604, 241 449, 334 1, 103, 837 240, 804, 893	16, 548 91, 408 5, 434, 961 24, 633, 491 389, 554 2, 509, 637 33, 075, 599	\$112, 385 77, 543 5, 908, 259 27, 040, 419 550, 961 1, 415, 868 35, 105, 435

¹ Includes Territories of the United States, possessions, and other areas administered by the United States.
² Revised figure.

TABLE 5.—Stone sold or used by producers in the United States, 1955-56, by States

	19	55	1956		
State	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	
AlabamaArizona	8, 269 1, 601	11, 867 2, 329	1 12, 343 1, 623	1 14, 702 2, 474	
Arkansas	6, 176	8,026	6, 325	8, 113	
California	2 24, 708	2 37, 164	32, 583	46, 109	
Connecticut	2, 149 1 3, 642	3, 508 1 5, 452	2, 250 1 4, 428	5, 217 1 6, 590	
Delaware	79	227	83	232	
Florida	1 17, 028	1 22, 966	18, 779	25, 183	
Georgia	1 7, 488 1, 525	1 14, 250 1, 866	1 9, 196 1, 791	1 20, 714 2, 752	
IdahōIllinois	28, 866	35, 621	31, 855	40, 859	
Indiana	14, 124	34, 680	14, 700	31, 575	
Iowa	15, 705	18, 555	14, 035	17, 256	
Kansas	1 2 12, 482	1 2 15, 925	1 13, 433	1 15, 682	
Kentucky Louisiana	11, 934 2 3, 253	15, 579 2 4, 962	11, 553 4, 405	15, 324 6, 674	
Maine	1, 192	2, 542	942	2, 238	
Maryland	1 5, 343	1 8, 800	6, 229	13, 305	
Massachusetts	4, 128	11, 381	5, 442	13,753	
Michigan Minnesota	33, 636 1 3, 005	28, 909 1 7, 043	33, 999 1 3, 084	31,010 17,552	
Mississippi	573	573	656	656	
Missouri	1 2 22, 369	1 2 29, 580	24, 578	33, 577	
Montana	1,274	1,200	1,247	1,816	
Nebraska	3, 081 1, 612	4, 177	3, 063 1, 401	4, 142 2, 281	
New Hampshire	(3), 012	2,609	(3)	(3)2, 201	
New Jersey	1 8, 358	1 17, 528	9,012	20,825	
New Mexico	1, 573	1,547	1, 268	1,272	
New York	22,812	37, 919	22,805	36, 135	
North Carolina	10,903	16, 533 81	1 8, 352 83	1 11, 472 87	
Ohio	33, 273	49.841	1 33, 418	1 50, 947	
Oklahoma	10, 933	12, 295	10, 547	12, 417	
Oregon	7,742	9,418	6,098	7,890	
PennsylvaniaRhode Island	44, 438	² 68, 918 (³)	1 44, 913 1 42	1 73, 831 1 221	
South Carolina	3, 455	4, 921	1 3, 304	1 4, 285	
South Dakota	2, 262	5, 679	2, 200	5, 725	
Tennessee	1 2 14, 381	1 2 22, 276	1 15, 556	1 23, 796	
Texas	27, 321 1, 926	33, 544 2, 650	32, 773 2, 322	36, 350 3, 29 8	
Utah Vermont	582	11.061	621	11,622	
Virginia	11,966	19,870	14,082	23, 076	
Washington	6, 593	10, 580	8,057	11,660	
West Virginia.	5,899	9,714	6, 579 11, 126	10, 766 20, 402	
Wisconsin	1 12, 180 1, 303	2.034	1,333	20,402	
Undistributed	2,374	13, 925	5, 193	17, 266	
Total	³ 46 5, 593	² 698, 968	499, 707	755, 205	

See footnotes at end of table.

TABLE 5.—Stone sold or used by producers in the United States, 1955-56, by States—Continued

	19	155	1956		
State	Thousand short tons	Value (thousand dollars)	Thousand short tons	Value (thousand dollars)	
Alaska. American Samos. Canton Island Guam. Hawaii. Johnston Island.	266 9 1 1,241 1,414 12	290 4 2 3,352 2,884 32	195 2 2 341 3,494	595 6 5 311 6, 076	
Midway Island Panama Canal Zone Puerto Rico. Virgin Islands. Wake Island.	169 1,784 1	239 2, 516 5 3	203 177 2, 076 12 22	304 230 2, 556 32 22	
Total	4, 898	9, 327	6, 524	10, 137	
Grand total	² 470, 491	2 708, 295	506, 231	765, 342	

¹ To avoid disclosing individual company confidential data, certain State totals are incomplete, the portion not included being combined with "Undistributed." The class of stone omitted from such State totals is noted in the State tables in the Statistical Summary chapter of this volume.

² Revised figure.

- nevised figure.

3 Figure withheld to avoid disclosing individual company confidential data; included with "Undistributed."

DIMENSION STONE

Preparation of dimension stone in 1956 involved the ordinary processes of sawing, splitting, surface dressing, carving, and polishing. Dimension stone was used principally for constructing masonry walls and memorials.

Total sales of dimension stone (including slate) decreased 1 percent in tonnage and increased slightly in value in 1956. The total

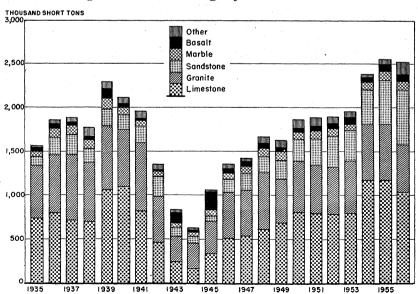


FIGURE 1.—Sales of dimension stone in the United States, by kinds, 1935-56.

figures in table 6 include slate, but detailed statistics of that branch

of the industry appear in the Slate chapter.

Quarries producing dimension stone other than slate were operated in 41 States and Guam, Hawaii, and Puerto Rico in 1956. The leading States, in order of value, were Indiana, Vermont, Ohio, Georgia, Massachusetts, Tennessee, Minnesota, and Wisconsin. Dimension slate was quarried in six States, with Pennsylvania, Vermont, and Virginia leading in value of production.

The diverging trend from stone in nonresidential construction shown in figure 2 indicates the rapidly growing role of alternative construction materials. Application of stone veneer has steadily

increased.

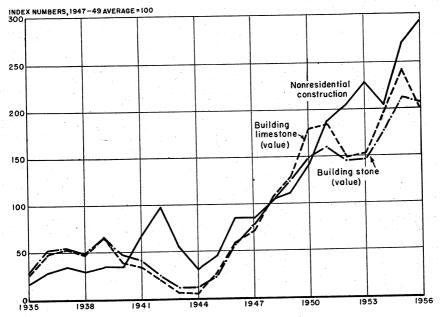


Figure 2.—Sales of all building stone, compared with sales of building limestone and value of all nonresidential construction, 1935-56.

(Data on nonresidential-building construction from Survey of Current Business, \mathbf{U} . S. Department of Commerce.)

As stone was usually more costly than substitutes, it was used chiefly for high-class buildings where permanence and architectural dignity are important attributes.

Dimension stone is well adapted to ornamental uses, but again

substitutes offered considerable competition.3

³ Gillson, J. C., Industrial Minerals: Min. Eng., vol. 43, No. 2, February 1956, pp. 141-149.

TABLE 6.—Dimension stone sold or used by producers in the United States, 1 1955-56, by kinds and uses

Kind and use	1955	1956	Change from 1955, percent
Granite: Building stone:			
Rough constructionshort tons	80, 117	50, 711	-37
Value	80, 117 \$587, 496	\$481, 172	-18
Average per toncubic feetcubic feet	\$7.33 2 836, 201	\$9, 49 901, 025	+29 +8
Average per cubic foot	² \$5, 506, 667 ² \$6, 59	\$6, 375, 753 \$7. 08	+16
KIIDDIE short tone	140, 930	77, 683	+7 -45
Valuecubic feet	\$285, 339 2 2, 471, 043	\$228, 691 2, 575, 064	-20 +4
	2 \$13, 521, 063 2 \$5, 47	\$14, 755, 609	+4 +9
Average per cubic footnumber	1, 053, 775	\$5. 73 988, 309	+5 -6
Valuecubic feet	\$127, 328 1, 410, 612	\$88, 361 1, 433, 223	-31 +2
Value	\$3, 743, 861	\$3, 464, 905	-7
Total: Quantityapproximate short tons-		540.000	
Value	³ 616, 550 ² \$23, 771, 754	540, 238 \$25, 394, 491	-12 +7
Basalt and related rocks (traprock):			
Building stoneshort tons_	57, 632 \$209, 300	60, 757 \$322, 092	+5
Average per ton	\$3.63	\$5.30	+54 +46
Rubbleshort tonsshort tons	2,060 \$6,420	11, 542 \$8, 479	+460 +32
Total:			
Quantityshort tons_ Value	59, 692	72, 299	+21 +53
	\$215, 720	\$330, 571	+53
Marble: Building stone (cut stone, slabs, and mill blocks)cubic feet	1, 005, 127	981, 887	_0
Value	\$9, 213, 268	\$8, 837, 470	-4
Monumental stonecubic feet	\$9. 17 359, 931	\$9.00 257,925	-2 -28
Value A verage per cubic foot	\$3, 321, 699 \$9, 23	\$3, 260, 527 \$12. 64	$-\frac{2}{+37}$
Total:	ψσ. 20	φ12. U1	+37
Quantityapproximate short tons_ Value	116, 029	105, 431	-9
	\$12, 534, 967	\$12, 097, 997	-3
Limestone: Building stone:			
Rough constructionshort tons	153, 483	43, 708	-72
Value Average per ton	\$521, 068 \$3. 39	\$164, 976 \$3. 77	-68
Average per tonCut stone, slabs, and mill blockscubic feet	11, 151, 186	9, 621, 070	$^{+11}_{-14}$
Value	\$23, 296, 714 \$2. 09	\$19, 608, 249 \$2. 04	$-16 \\ -2$
Rubble short tons Value	186, 886	236, 599	+27
Flagging cubic feet	\$605, 426 284, 498	\$612, 191 389, 577	$^{+1}_{+37}$
Value	\$176, 116	\$310, 759	+ 76
Total: Quantityapproximate short tons	1 100 450	1 000 770	
Value	1, 182, 459 \$24, 599, 324	1, 028, 759 \$20, 696, 175	-13 -16
Sandstone:	-		
Building stone: Rough constructionshort tons	74 991	100 000	
value	74, 331 \$877, 146	\$2, 259, 605	$^{+124}_{+158}$
Average per ton Cut stone, slabs, and mill blockscubic feet	\$11.80 4,230,727	\$13. 56 4, 559, 620	+15 +8
ValueA verage per cubic foot	\$9, 237, 203	\$10, 130, 903	+10
KilDDie short tons	\$2. 18 25, 398	\$2. 22 41, 008	$^{+2}_{+61}$
Value Curbing cubic feet	\$190, 751 58, 277	\$218, 932 29, 214	$^{+15}_{-50}$
Valuecubic feet	\$172,037	\$85, 576	-50
Valuecubic ieet	1, 043, 191 \$1, 761, 491	886, 041 \$1, 711, 353	-15 -3
Total:			
Total: Quantityapproximate short tons Value	503, 757 \$12, 238, 628	623, 826 \$14, 406, 369	+24 +18

TABLE 6.—Dimension stone sold or used by producers in the United States,1 1955-56, by kinds and uses-Continued

Kind and use	1955	1956	Change from 1955, percent
Miscellaneous stone: 3 Building stone	349, 478 \$2, 236, 413 \$6, 40 19, 285 \$284, 235 77, 642 \$112, 320	436, 031 \$2, 605, 008 \$5, 97 102, 879 \$519, 295 78, 072 \$72, 972	+25 +16 -7 +433 +83 +1 -35
Total: Quantityapproximate short tons Value	54, 787 \$2, 632, 968	146, 211 \$3, 197, 275	+167 +21
Total dimension stone, excluding slate: Quantityapproximate short tons Valueapproximate short tons Value Value	² 2, 533, 274 ² \$75, 993, 361 140, 821 \$6, 582, 365	2, 516, 764 \$76, 122, 878 119, 030 \$6, 802, 036	-1 -15 +3
Total dimension stone, including slate: Quantityapproximate short tons Value	² 2, 674, 095 ² \$82, 575, 726	2, 635, 794 \$82, 924, 914	-1

¹ Includes Guam, Hawaii, and Puerto Rico.

Revised figure.
Includes soapstone, mica schist, volcanic rocks, argillite, and other varieties that cannot be classified in the principal groups.
Details of production, by uses, are given in the Slate chapter of this volume.

Building stone in 1956 remained the principal form in which dimension stone was sold, although concrete and steel had replaced it to a considerable extent. In 1956 prefabricated, factory-assembled units, wall sections, and veneers were available. The stone could be waterproofed to prevent staining, and a variety of color hues was available, which penetrate into the stone.4 The building-stone industry, nevertheless, continued to face difficult problems. Whereas the raw materials for various synthetic products were assembled and manufactured close to centers of consumption, many stone-producing centers were remote from markets. Thus transportation costs, in addition to mass-production methods, favored the substitute materials.

TABLE 7.—Building stone sold or used by producers in the United States 1 in 1956, by kinds

	Rough							
Kind	Const	Architectural						
	Cubic feet	Value	Cubic feet	Value				
GraniteBasalt.	479, 598 2 705, 108	\$481, 172 2 322, 092	135, 491	\$538, 742				
MarbleLimestoneSandstone	522, 430 2, 138, 421	164, 976 2, 259, 605	204, 851 4, 147, 018 1, 874, 095	735, 571 4, 140, 269 2, 620, 339				
Total	2 3, 845, 557	2 3, 227, 845	6, 361, 455	8, 034, 921				

See footnotes at end of table.

⁴ Architectural Record, Masonry Is Meeting the Demands of Modern Construction: Vol. 120, No. 4, October 1956, pp. 262-264.

TABLE 7.—Building stone sold or used by producers in the United States 1 in 1956, by kinds—Continued

	1	Fin	Total				
Kind	Sa	wed	o	ut	Cubic feet	Value	
	Cubic feet	Value	Cubic feet	Value	0 4030 3000		
Granite 3	397, 206 284, 875 4, 093, 942 2, 062, 446 4 436, 031	\$1,690,071 1,422,389 7,997,909 5,893,137 42,605,008	368, 328 492, 161 1, 380, 110 623, 079	\$4, 146, 940 6, 679, 510 7, 470, 071 1, 617, 427	1, 380, 623 705, 108 981, 887 10, 143, 500 6, 698, 041 436, 031	\$6, 856, 925 322, 092 8, 837, 470 19, 773, 225 12, 390, 508 2, 605, 008	
Total	4 7, 274, 500	4 19, 608, 514	2, 863, 678	19, 913, 948	20, 345, 190	50, 785, 228	

¹ Includes Puerto Rico.

Includes Fuerto Kico.
 Dressed basalt is included with rough stone.
 Sawed stone corresponds to dressed stone for construction work (walls, foundations, bridges) and cut stone to architectural stone for high-class buildings.
 Rough and cut miscellaneous stone included with sawed stone.

GRANITE

Sales of granite in the form of dimension stone decreased in tonnage and increased in value compared with 1955. The average unit value increased considerably. Although more plants were operating in 1956 than in 1955, only dressed building granite, rough monumental granite, paving blocks, and curbing increased in tonnage. Dimension granite for all uses increased in unit value compared with 1955, except that used for paving blocks and curbing.

To increase sales of stone, the monument industry began full-scale advertising in 1956, including the use of giant billboards and major

television-network programs.

Granite was quarried in 21 States, with Vermont, Massachusetts, Georgia, and Minnesota among the highest in tonnage and value.

BASALT AND RELATED ROCKS (TRAPROCK)

Basalt and related rocks were not used extensively as building stone, because of their dark color. Tonnage and value of construction stone and rubble increased over 1955, as the number of plants reporting increased from 5 to 8, but the producing States have only 1 or 2 plants each; therefore, the production of most States cannot be shown.

Basalt and related dark rocks were used to some extent for memorials but are classed in the trade as "black granite" and for that reason are included with the figures for monumental granite. Two Pennsylvania companies produced "black granite" surface plates used as bases for precision instruments, with parallel and angle plates reportedly accurate to 0.00005 inch. One surface plate 20 x 6 x 3 feet weighing 60,000 pounds had an overall accuracy of 0.0015 inch.

TABLE 8.—Granite (dimension stone) sold or used by producers in the United States in 1956, by States and uses

Total	hort	tons (ap- proxi-	1976)	11, 344 8897, 922 1, 385 5, 5960 21, 014 3, 388, 720 34, 004 138, 870 27, 776 4, 823, 548 53, 581 2, 926, 810 2, 450 6, 238 2, 450 6, 238 2, 450 6, 238 2, 450 6, 238 2, 450 6, 238 2, 450 6, 238 2, 450 6, 238 2, 25, 394, 491 3, 450 7, 68, 909 3, 6, 738 2, 5, 394, 491 3, 6, 738 2, 5, 394, 491
lng	ω.	Value t	H	321 \$2,891 11,344 (1) 22,234 (1) 21,014 (1) 23,014 (1) 21,014 (1)
Curbing		Cubic feet		821 (1) 234 (2) 427 (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
Paving blocks		Value		(1) (1) (1) (1) (2) 767 88, 361 \$0.09
Paving		Num- ber	, ·	(1) (7) (7) (1) (1) (1) (1) (1) (1) (1) (2) (3) (4) (6) (6) (6)
	Dressed	Value		(i) (i) (i) (i) (i) (i) (i) (i) (i) (i)
ental	Dre	Cubic	feet	(1) (1) (200 (1) (200 (1) (200 (1) (200 (1) (200 (1) (200 (200 (200 (200 (200 (200 (200 (20
Monumental	gh	Value		(1) 88, 516 11, 502, 516 (1) 277, 015 288, 706 106, 083 8, 100, 718 84, 111 84, 111
	Rough	Cubic	feet	(1) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
	Rubble	Short Value		83.100 14, 559 13, 792 13, 792 21, 742 41, 610 (i) (i) (i) 81, 006 \$2.94
	Rul	Short	tons	(1) (1) (2) (2) (308
	Dressed	Value		13,005 \$62,400
Building	Dre	Cubic	feet	13,005 10,976
Buill		etural	Value	(1) 2,000 2,000 9,527 (1) 3,95 29,22 29,22 318,54 \$3.9
	Rough	Architectural	Cubic feet	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
	Rot	uction	Value	(1) (1) (1) (1) (1) (1) (1) (25 \$97,440 8, 067 220, 651 1, 946 20, 866 (1) (1) 946 20, 866 (1) (1) (1) (1) (24,607 85,955 50,711 481,172 (8) (8)
		Construction	Short	
	Active	plants		25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	State			California Colorado Colorado Colorado Connecticut. Connecticut. Connecticut. Masyland. Minnesotta Minnesotta Minnesotta Minnesotta Montana North Carolina. Pennsylvania South Dakota. Wisconsin. Undistributed 2. A vera ge unit Spalue. South Carolina. Ordistributed 2.

Included with "Undistributed" to avoid disclosing individual company confidential data.
Included data indicated by footnote I and New Hampshire, Oregon, and South Carolina, I plant each; Washington ,2 plants :Maine and Vermont, 6 plants each 3 479,598 cubic feet (approximate).

TABLE 9.—Basalt and related rocks (traprock) (dimension stone) sold or used by producers in the United States, 1955-56, by States and uses

State	Active	195	5	1956		
	plants	Short tons	Value	Short tons	Value	
California Hawaii Massachusetts	1 1 2	1, 150 460	\$1,500 920	(1) (1) 10, 100	(1) (1) \$6, 100	
Oregon. Pennsylvania. Undistributed ² .	1 2 1	1, 032 57, 050	10, 320 202, 980	(1) (1) (2), 199	(1) (1) 324, 471	
Total 8	8	59, 692	215, 720	72, 299	330, 571	
Average unit value			\$3.61		\$4. 57	

¹ Included with "Undistributed" to avoid disclosing individual company confidential data.
² Includes data indicated by footnote ¹ and Wisconsin (1956).
² Includes construction stone (1955—57,632 tons (685,951 cubic feet), valued at \$209,300; 1956—60,757 tons (705,108 cubic feet), \$322,092) and rubble.

MARBLE

Dimension marble used for construction and memorial work decreased in quantity and value compared with 1955. The average value per cubic foot increased 58 cents. The average value of marble sold for memorial purposes in 1956 was \$12.64 compared with \$9.23 per cubic foot in 1955; for building construction its value decreased \$0.17, selling for \$9.00 per cubic foot in 1956.

TABLE 10.-Marble (dimension stone) sold by producers in the United States, 1955-56, by uses

Use	19	055	19	1956		
	Cubic feet	Value	Cubic feet	Value		
Building stone: Rough:						
Exterior	185, 968	\$618, 970	134, 745	\$525, 63		
	97, 304	385, 869	70, 106	209, 93		
Exterior	297, 705	2, 974, 787	444, 244	3, 173, 80		
	424, 150	5, 233, 642	332, 792	4, 928, 09		
Total exterior	483, 673	3, 593, 757	578, 989	3, 699, 44		
Total interior	521, 454	5, 619, 511	402, 898	5, 138, 029		
Total building stone	1, 005, 127	9, 213, 268	981, 887	8, 837, 470		
	359, 931	3, 321, 699	257, 925	3, 260, 527		
Total building and monumental Approximate short tons	1, 365, 058 116, 029	12, 534, 967	1, 239, 812 105, 431	12, 097, 99		

TABLE 11.—Marble (dimension stone) sold by producers in the United States in 1956, by States and uses

		Bu	ilding	Monumental				
State	Active					Quan	tity	
	plants	Cubic feet	Value	Cubic feet	Value	Cubic feet	Short tons (ap proxi- mate)	Value
Colorado Georgia Tennessee Undistributed ²	2 2 13 14	(1)	\$11, 252 1, 069, 350 (1) 7, 756, 868	27 136, 078 (1) 121, 820	\$60 1, 525, 016 (1) 1, 735, 451	1, 902 190, 297 571, 492 476, 121	160 16, 175 48, 577 40, 519	\$11, 312 2, 594, 366 3, 508, 648 5, 983, 671
Total	31	981, 887	8, 837, 470	257, 925	3, 260, 527	1, 239, 812	105, 431	12, 097, 997
Average unit value Short tons (approximate)		83, 509	\$9.00	21, 922	\$12.64			* \$9. 76

¹ Included with "Undistributed" to avoid disclosing individual company confidential data.
² Includes data indicated by footnote ¹ and Maryland and North Carolina, 1 plant each; Alabama, 2 plants; Missouri, 4 plants; and Vermont, 6 plants.

3 Average value per cubic foot.

LIMESTONE

Limestone blocks cut to definite shapes and sizes were used mainly for building purposes. Small quantities were used for curbing and flagging and a negligible quantity for memorials. The number of plants producing dimension limestone in 1956 increased slightly, but the sales decreased nearly \$4 million compared with 1955. There was a slight decline in unit value from the previous year, but the most pronounced drop was in the quantity and value of finished building stone.

The Bedford-Bloomington (Ind.) area continued to produce most of the rough blocks and finished dimension limestone in the United States, its output contributing 68 percent of the total. Sales by firms operating quarries in the district, as shown in table 13, include also a minor quantity of crushed stone byproducts. Many of the dimension-limestone producers utilized the scrap resulting from the block and slab production to supply local crushed-stone markets. Sales, by mill operators in the area, of finished limestone processed from purchased stone are shown in table 14. Table 15 shows sales by operating quarries in the Carthage district, Mo.

Dimension limestone producers became increasingly aware of the crushed-stone potential, and some ventured more into that field. The sale of ground limestone in bags for use by homeowners might be a profitable outlet for the byproduct scrap at limestone mines.⁵

⁵ Eckhart, J. J., A Versatile Small Plant Produces Flour to Fluxstone: Rock Products, vol. 59, No. 12, December 1956, pp. 118, 142.

TABLE 12.-Limestone (dimension stone) sold or used by producers in the United States in 1956, by States and uses

	Total		Value	\$153, 293	23,680	25, 683 683, 695	1, 662 110, 159	973, 193 103, 514	4, 790	(3, 223	159, 772 142, 626	1, 509	1, 704, 502	1,341,142	20, 696, 175	\$20.12
	Tc Short tons (approximate)		4,752	3,152	10,023 28,375	331 35,017	27, 228 33, 150			64, 294 75, 168	26, 450	94, 628	35, 239	1, 028, 759		
	Ourbing and flagging Cubic Value		Value	\$140	5,351	2, 335	(i)	(1) 4, 750		3,920	17,015	4,000	127, 579	121, 472	310, 759	90. oo
			Cubic feet	483	7, 180	5,882 6,392	(1)	(1) 4, 939		4, 705	10, 209	006	108, 595	75,340	389, 577	30, 192
	Bubble		Value	\$714	9,770	18,933 6,070	1, 662 (1)	(1) 67,816	512	10,410	19, 850		29, 713	84, 167	612, 191	97.00
	B.,		Short	3 300	2, 018 64, 825	9, 023 2, 559	(E)	28,881 28,881	341	2)#16	8, 810		9, 311	37, 343	236, 599	
	Finished (cut and	sawed)	Value	\$100,843	5,670	662, 732	(i)	(1) 25, 500		(1)	244	710, 130	1, 444, 120	1, 971, 381	15, 467, 980	
Building	Finished	Saw	Cubic feet	10, 229	2, 224 3, 612, 995	269, 823	(i)	(1) 28, 082		(E)	1,059	215, 362	844, 731	488, 371	5, 474, 052	409, 489
Buil		Architectural	Value	\$51, 596	(¹) 3, 592, 069	12, 358		2,000			81,667	160, 653	27, 936	211, 990	4, 140, 269	
	Rough	Archit	Cubic feet	53, 422	(¹) 3, 185, 090	22, 797		9,412			564, 706	148, 562	38,083	124, 946	4, 147, 018	308, 771
	F	Construction	Value	\$2,650	Œ	200	24, 211	3,448	16 807	(1)	23,850		75, I54 500	10, 242	164, 976 \$3. 77	
		Const	Short		\mathfrak{S}	400 400	5, 223	662 300	7, 929	(i) 845	17,400		o, 004	1, 414	43, 708	€
		Active plants		20 60	88 8	40-	120 7	* 01 *	1 2	1414	100	∞ 8	82	22	137	
		State		Florida Georgia	Illinois	Kansas Maryland	Michigan	Missouri	New York	Oklahoma. Pennsylvania	Puerto Rico.	Texas	Wyoming	Undistributed 2	Average unit value	Short tons (approximate).

¹ Included with "Undistributed" to avoid disclosing individual company confidential data. Includes data indicated by footnote ¹ and Alabama, Connecticut, and Hawali, 1 plant each; California, 2 plants. ¹622,430 cubic feet (approximate).

STONE 1093

TABLE 13.—Limestone sold by producers in the Indiana colitic limestone district, 1947-51 (average) and 1952-56, by classes

		Construction								
Year		Rough	ı blo c k	Sawed and	semifinished	Cut				
		Cubic feet Value		Cubic feet Value		Cubic feet	Value			
1947-51 (average) - 1962 1953 1954 1955 1956		2, 203, 429 2, 220, 698 2, 154, 832 2, 494, 128 3, 259, 736 2, 968, 777	\$2,010,068 2,417,319 2,380,991 3,140,464 3,877,770 3,377,799	2, 392, 439 2, 736, 654 3, 212, 325 4, 058, 697 4, 405, 165 2, 801, 063	\$3, 268, 316 4, 322, 803 4, 813, 448 6, 381, 376 7, 776, 581 5, 625, 870	824, 808 660, 382 682, 185 995, 585 1, 142, 213 811, 932	\$4,000,352 3,915,947 3,739,549 5,045,986 6,512,556 4,920,990			
Year	Const	ruction—con Total	tinued	Othe	r uses	Total				
	Cubic feet	Short tons (approxi- mate)	Value	Short tons	Value	Short tons (approxi- mate)	Value			
1947-51 (average) 1952	5, 420, 676 5, 617, 734 6, 049, 342 7, 548, 410 8, 807, 114 6, 581, 772	393, 000 407, 286 438, 577 547, 260 638, 516 477, 178	\$9, 278, 736 10, 656, 069 10, 933, 988 14, 567, 826 18, 166, 907 13, 924, 659	147, 373 176, 688 154, 556 135, 842 201, 059 163, 417	\$301, 618 327, 255 284, 068 408, 273 575, 068 452, 134	540, 373 583, 974 593, 133 683, 102 839, 575 640, 595	\$9, 580, 354 10, 983, 324 11, 218, 056 14, 976, 099 18, 741, 975 14, 376, 793			

TABLE 14.—Purchased Indiana limestone sold by mills in the Indiana collicic limestone district, 1947-51 (average) and 1952-56, by classes

Year	Sawed and s	semifinished	С	ut	Total		
	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	
1947-51 (average)	162, 208 156, 935 173, 991 881, 588 786, 476 758, 876	\$222, 021 229, 940 308, 338 1, 567, 847 1, 593, 709 1, 761, 303	904, 211 661, 844 605, 824 1, 028, 713 970, 737 1, 005, 960	\$4, 352, 511 3, 687, 401 3, 168, 816 5, 244, 156 5, 590, 072 6, 308, 955	1, 066, 419 818, 779 779, 815 1, 910, 301 1, 757, 213 1, 764, 836	\$4, 574, 532 3, 917, 341 3, 477, 154 6, 812, 003 7, 183, 781 8, 070, 258	

TABLE 15.—Limestone and marble sold by producers in the Carthage district, Jasper County, Mo., 1947-51 (average) and 1952-56, by classes

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	263, 420	\$1, 196, 306	1954	252, 574	\$1, 265, 463
	235, 632	1, 238, 443	1955	244, 996	1, 533, 444
	246, 071	1, 169, 464	1956	1 267, 428	11, 495, 451

¹ Includes dimension marble and crushed limestone only.

SANDSTONE

Sandstone used as dimension stone increased 24 percent in quantity and 18 percent in value over 1955. Increases in sales were reported for all uses except sawed building stone, curbing, and flagging. The total unit value was slightly less in 1956 than in the preceding year.

TABLE 16.—Sandstone (dimension stone) sold or used by producers in the United States in 1956, by States and uses

						Building	56 0		ř			Curbing	ing	Flagging	ging	Ţ	Total
	Active	-	- 60	Ronob archt.	archi-		Dressed	sed		Rubble	ple					Short	
State	plants		struction	tectural	ıral	Sawed	red	Ö 	Cut	Short		Cubic	Value	Cubic	Value	tons (ap- proxi-	Value
		Short	Value	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	tons	Value					mate)	
Alabama	es	200	1	25, 641	\$40,000									8, 333	\$9,090	3,150	\$53, 340
Arkansas	==,	1, 195 16, 863	11,812	29	26			29, 453 142, 760	\$49,925 152,000	3,808	\$17,820 20,362			1, 528	177, 465	29, 273	361, 738
Colorado	4 E2 c	103, 323	1, 592, 864	63, 898	100,011			81, 425	126, 179	1,286	10,993			75, 648	75, 378	121,898	1,905,425
Judiana Kentucky	40100	50	380	10,711	13,300	ε	ε	123, 487	252, 708	675				2,349	3,000	(i) 1,809	(E) 83,310
Massachusetts Michigan Missouri	H 4 4	5, 120	41, 200	64, 600	100,600	(E)	(i)		140, 400	4, 730 (r)	28,520			16, 750	21,100	1, 456 11, 190 (1)	140, 400 90, 820
Nevada New Hampshire	10 m	1 10	1 1	2, 575	2,060	976	2,281	24	35, 139		8			11, 487	20, 025	208	57, 44 5 2, 060
New Mexico New York (Bluestone)	. II.	5, 626	102, 848	43, 186	23, 579	(i)	(i)	(E)	(r)	114	216	1,360	\$2,452	\$2, 452 233, 723 4, 013	2, 880 518, 745 3, 523	39,666	3,410 1,197,830 3,523
Ohio Oklahoma Pennsylvania 2	× 4.5	585	7,020	472, 306	1	953, 663 1, 772, 405 5, 186, 74; 234, 423	5, 186, 747	112, 916 2, 700 5, 041	491, 385 2, 500 10, 947	24.641	25 250 250 24. 641 116. 473	26, 671	81, 624 109, 4, 1, 500 122.	109, 207 22, 000 709	278, 161 2, 400 249, 412	180, 779 1, 113 98, 966	6, 991, 580 12, 170 835, 324
Tennessee Texas Utah	0024		' i	665, 851	925, 042			εε	εε	1,463	1,125			ε ε	E E	2, 288 2, 183 2, 706	1, 254, 393 6, 125 54, 268
Virginia Wisconsin Undistributed 3	3011	<u> </u>	- 00	64, 288	227, 564	289, 066	704, 109	1912	33, 646 322, 348	(i) 1,807	(1)			3, 217 (1) 82, 391	2, 895 (1) 318, 542	5, 018 38, 537	4, 895 38, 414 1, 062, 289
Total Average unit value	150	166, 690	150 166, 690 2, 259, 605 1, 874, 095 2, 620, 339 2, 062, 446 5, 893, 137 81, 40	1,874,095	2, 620, 339	2, 062, 446	5, 893, 137	623, 079	623, 079 1, 617, 427	41,008	41,008 218,932	29, 214	85, 576 \$2, 93	386, 041 1	\$5, 576 886, 041 1, 711, 353 \$2, 93	623, 826	623, 826 14, 406, 369
Short fons (approximate)		€		144, 255		151, 632		47,883				2, 149		70, 209			

Included with "Undistributed" to avoid disclosing individual company confidential data.
 Includes 196,088 cubic feet of bluestone (approximately 16,569 tons) valued at \$213,764 sold for rubble and flagging.
 Includes data indicated by footnote 1 and Kansas, New Jersey, and Washington, 1 plant each.
 1,188,421 cubic feet (approximate).

1095 STONE

Twenty-seven new dimension-sandstone producers reported in 1956. Ohio continued to produce the most, contributing over one-fourth of the total tonnage produced and nearly half of the total value. leading quarry was in the Amherst area in the northern part of the For the first time, Colorado moved into second place in sales of dimension sandstone, followed in value by Tennessee and New York bluestones, the sales of which continued to increase in 1956. Table 17 presents salient statistics of thin-splitting sandstones of New York and Pennsylvania, known as bluestones.

TABLE 17.—Bluestone (dimension stone) sold or used in the United States, 1947-51 (average) and 1952-56 1

Year	Cubic feet	Value	Year	Cubic feet	Value
1947-51 (average)	328, 103	\$478, 190	1954	313, 898	\$935, 968
1952	318, 198	583, 970	1955	583, 135	1, 243, 532
1953	322, 156	602, 248	1956	665, 504	1, 411, 594

¹ New York and Pennsylvania were the only producing States.

MISCELLANEOUS STONE

The types of stone not included in the major groups already discussed are covered in table 18. The principal types in this classification are mica schist, argillite, light-color volcanic rocks (such as rhyolite), soapstone, and greenstone. The quantity sold in 1956 increased, but unit value decreased substantially compared with 1955.

TABLE 18.—Miscellaneous varieties of stone (dimension stone) sold or used by producers in the United States in 1956, by States and uses

			Buildi	ng					
State	Active plants	Rough an	d dressed	Ru	bble	Flag	ging	Т	otal
					Short tons	Value	Short tons	Value	
California	22 1 3 1 2 5 1 4	5, 705 400 1, 400 (1) 10, 335 8, 592	\$243, 603 31, 113 7, 200 43, 000 (1) 7, 950 2, 272, 142	(1) 75, 000 3, 742 	(1) \$25,000 40,199 	(¹) 298 (¹) 6,328	(¹) \$4, 470 (¹) 68, 502	34, 087 75, 000 9, 745 400 1, 400 6, 871 10, 335 8, 373	\$689, 498 25, 000 75, 782 7, 200 43, 000 50, 650 7, 950 2, 298, 195
Total	39	8 36, 706	2, 605, 008	102, 879	519, 295	4 6, 626	72, 972	146, 211	3, 197, 275
Average unit value			\$70.97		\$5.05		\$11.01		\$21.87

Included with "Undistributed" to avoid disclosing individual company confidential data.
 Includes data indicated by footnote 1 and New York, 1 plant, and Virginia, 3 plants.
 Approximately 436,031 cubic feet.
 Approximately 78,072 cubic feet.

TECHNOLOGY

The dimension-stone industry made notable progress in developing improved methods of sawing, surfacing, sandblasting, and other mechanical processes.

Saws.—The use of a new circular saw with integrated diamond sockets for sawing limestone greatly increases the production capacity of this building stone.6

A standard-type masonry saw adapted to operate in a vertical plane successfully cut 210 tons of granite facing from a building in half the time it would have taken with air hammers or flame cutters.

A novel lightweight machine for cutting dimension stone in quarries

was patented.8

The 12th article in a series on geology for quarrymen was published

at the end of the year in a British publication.9

A patented dimension-stone cutting machine utilized spring-loaded cams for operating each of the breaker knives independently. lubricant is fed under pressure to the knives, to prevent accumulation of cuttings.10

A new wire-sawing compound had been developed for promoting the flow of abrasive froth. It is reported to save a firm doing 10 setups per day—about 2½ man-hours per day over the plaster method.

The compound can be used 4 to 6 times.¹¹

Manufacture of Artificial Stone.—An artificial structural-stonemasonry building unit was made by mixing with water, limestone fines, portland cement, and limited quantities of siliceous sand. product was sold under the name "Holiday Hill" stone. 12

Synthetic granite was made the first time in France by applying heat and high pressures to fragments of volcanic glass, carbonates, water, and "other chemicals." The French method resembles the General Electric Corp. technique for making synthetic diamonds but the pressure is lower.¹³

Synthetic stone reported from Germany consists mainly of quartz from waste materials. It was said that it had value as a building stone and also that the porosity could be varied so that it might be

used for filtering.¹⁴

Manufacture of cast, marble-faced concrete sandwich panels using marble chips is complex, but the product reportedly is a low-priced (8 cents per square foot), and durable stone substitute for use in the

National Security Agency's \$20 million Operations Building. 15

Other Technologic Developments.—The Marble Institute of America sponsored specifications for support, anchorage, and protection of exterior marble veneer two inches and less in thickness, and interior marble used in curtain or panel walls, with recommendations which included finishes, measurements, cutting, jointing, and maintenance.¹⁶

⁶ Mine and Quarry Engineering, Diamond Sawing of Portland Stone; Vol. 21, No. 12, December 1955,

pp. 510-514.

7 Construction Methods and Equipment, Saws on Tracks Strip Facing: Vol. 38, No. 8, August 1956,

pp. 56-58.

Marcerou, P., Rock-Cutting Machine Having Slot-Cutting and Slot-Engaging Guide Means: U. S. Patent 2,780,452, Feb. 5, 1957.

Anderson, J. G. C., Geology for Quarrymen: The Quarry Manager's Jour., vol. 40, No. 6, December 1956,

Anderson, J. G. C., Geology for Quarrymen: The Quarry Manager 8 Jour., vol. 40, No. 0, December 1200, pp. 361–369.
 Crowl, P. S., Stone-Cutting Machine: U. S. Patent 2,778,354, Jan. 22, 1957.
 Art in Stone, News and Views for Producers and Suppliers: Vol. 59, No. 11, January 1957, p. 9.
 Burney, H. P., Jr., and Felder, J. L., Artificial Limestone: U. S. Patent 2,758,033, Aug. 7, 1956.
 Financial Times (London), Jan. 3, 1957, p. 9.
 Rock Products, vol. 59, No. 11, November 1956, p. 14.
 Construction Methods and Equipment, Marble Chips Face Precast: Vol. 38, No. 8, August 1956, pp. 170-109.

¹⁶ American Standards Association, American Standard A-94: February 1955, 14 pp.

1097 STONE

Operations of a British quarry that had produced monumental and building granite for over 100 years were detailed in an article.17

A Bureau of Mines information circular on dimension granite was

published.18

WORLD REVIEW

Australia.—The Silurian sandstone occurring in the Warrandyte area of Australia was reported to be the most important type of building stone available. In Victoria the main usage of natural stone was in house veneer.19

Canada.—The granite industry of Canada was described in the

first complete report in 40 years.20

Finland.—Annual output of marble has been 2,000 to 3,000 short tons, but no high-grade deposits were worked in 1955. Small quantities were imported from Italy. It was reported that a high-grade deposit was being opened near Tervola.²¹

Export of dimension granite in 1954 increased slightly to 104 million

Finmarks (231 Fmks. equals US\$1).22

Italy.—Marble sales in 1955 totaled 559,000 tons. There has been a consistent increase in production for several years.23

CRUSHED AND BROKEN STONE

Crushed and broken stone continued to play a major role in con-The principal use was for producing concrete, struction in 1956. where it is employed as an aggregate, for roadstone, and as a raw material for cement. The widespread use of concrete in road construction continued to grow, and the Federal Aid Highway Act of 1956 was expected to increase enormously the usage of crushed stone for at least 13 years. The optimism of the industry was reflected in ambitious expansion plans aimed toward production increases of 30 percent in 4 years.²⁴

The output of crushed and broken stone totaled 504 million tons valued at \$689 million in 1956. The average value was \$1.37 a ton. Production increased about 8 percent in tonnage and 9 percent in value compared with 1955. Tables 20 and 21 give the tonnage and value of crushed stone used for concrete and roadstone and for rail-

road ballast for a series of years and by States in 1956.

New construction in 1956 cost an unprecedented \$44.3 billion, and maintenance and repair operations amounted to another \$16.5 billion. Although the value of new private building increased and there was a marked decline in the market for private housing, nonresidential building increased 15 percent. Public utilities increased 10 percent to \$5.1 billion compared with 1955. Highway construction, as the Nation's largest single production activity, comprised nearly 15 per-

¹⁷ Lamming, C. K. G., Monumenta Granite From Penryn: Mine and Quarry Eng., vol. 22, No. 10, October 1956, pp. 428-433.

18 Bowles, Oliver, Granite as Dimension Stone: Bureau of Mines Inf. Circ. 7756, 1956, 18 pp.

19 Bain, A. D., Building Trends and Building Materials: Min. and Geol. Jour., vol. 6, No. 1, March 1956, pp. 22-26.

20 Carr, G. F., Granite Industry in Canada: Canadian Department of Mines and Tech. Survey, Ottawa, 1955, 191 np.

²⁰ Car, Gr. J., Glamber Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, p. 33.

32 Work cited in footnote 21, p. 30.

32 Work cited in footnote 21, p. 33.

34 Bell, Joseph N., More Prosperity With Reservations: Rock Products, vol. 60, No. 1, January 1957.

cent of the gross national product and continued strong throughout the year.25

TABLE 19.—Crushed and broken stone sold or used by producers in the United States, 1955-56, by principal uses

		1955			1956	
Use	Short tons	Valu	10	Short tons	Vali	пе
		Total	Average		Total	Average
Concrete and roadstone	2254, 587, 585 15, 870, 781	2\$336, 259, 822 16, 757, 595	1.06	276, 268, 932 15, 481, 250	\$369, 882, 572 16, 545, 084	\$1, 34 1, 07
Furnace flux (limestone) Agricultural limestone Lime and dead-burned dolo-	84, 209, 324 40, 068, 165 18, 360, 040	89, 664, 629 52, 905, 898 29, 455, 066	1. 06 1. 32 1. 60	86, 452, 410 37, 789, 063 19, 864, 045	91, 603, 819 52, 486, 524 32, 087, 185	1. 06 1. 39 1. 62
mite 4	16, 409, 221 10, 285, 771 5, 753, 468	2 21, 739, 771 13, 680, 155 6, 280, 552	2 1. 32 1. 33 1. 09	17, 494, 949 13, 133, 611 5, 722, 924	24, 028, 136 15, 564, 796 5, 965, 040	1. 37 1. 19 1. 04
Asphalt filler Glass factories	1, 169, 330 1, 405, 477 904, 491	5, 777, 984 4, 366, 991 2, 626, 962	4. 94 3. 11 2. 90	1, 435, 950 1, 612, 940 987, 039	11, 054, 440 3, 592, 287 2, 927, 888	7. 70 2. 23 2. 97
Calcium carbide works Sugar factories Paper mills	719, 428 661, 004 518, 381	621, 536 1, 624, 636 1, 208, 742	. 86 2. 46 2. 33	1, 245, 302 724, 923 518, 356	1, 059, 660 1, 750, 152 1, 453, 778	2. 97 . 85 2. 41 2. 80
Other uses	2 17, 035, 152 2 467, 957, 618	² 49, 331, 064 ² 632, 301, 403	2 2. 90	24, 982, 947 503, 714, 641	59, 217, 992	2. 37
Asphaltic stoneSlate granules and flour 6	1, 427, 207 619, 619	4, 110, 719 6, 331, 412	2. 88 10. 22	1, 458, 533 526, 449	4, 113, 835 4, 863, 488	2. 82 9. 24

¹ Includes Territories of the United States, possessions, and other areas administered by the United States. ² Revised figure.

Noncommercial operators during 1956 indicated that crushed stone used for concrete aggregate and roadstone had decreased 21 percent in tonnage and dropped from 12 to 9 percent of the total crushed stone produced for this purpose. Commercial crushed-stone output for concrete and roadstone increased 13 percent in tonnage and 1 cent per ton in unit value over 1955.

TABLE 20.—Crushed stone for concrete and roadstone and railroad ballast sold or used by producers in the United States, 1947-51 (average) and 1952-56

Year	Concrete a	nd roadstone	Railroa	d ballast	To	tal
	Short tons	Value	Short tons	Value	Short tons	Value
1947–51 (average) 1952	133, 772, 146 187, 114, 163 189, 158, 785 216, 614, 445 ² 254, 587, 585 276, 268, 932	\$168, 540, 711 245, 976, 919 251, 514, 832 289, 441, 803 2336, 259, 822 369, 882, 572	18, 313, 604 21, 383, 068 20, 778, 410 15, 172, 606 15, 870, 781 15, 481, 250	\$16, 623, 197 20, 019, 095 20, 533, 252 14, 871, 002 16, 757, 595 16, 545, 084	152, 085, 750 208, 497, 231 209, 937, 195 231, 787, 051 2270, 458, 366 291, 750, 182	\$185, 163, 908 265, 996, 014 272, 048, 084 304, 312, 805 2353, 017, 417 386, 427, 656

¹ Includes Territories of the United States, possessions, and other areas administered by the United States ² Revised figure.

Limestone, cement rock, and shell.
Limestone, dolomite, and shell.
Ganister and dolomite.

⁶ Includes a small quantity of crushed slate used for lightweight aggregate.

²⁵ Dooly, William G., Construction Volume Moves Into \$60 Billion Plateau, With Potential of Increasing Rate Indicated for 1957: The Constructor, vol. 39, No. 1, January 1957, pp. 27-31.

TABLE 21.—Crushed stone for concrete and roadstone and railroad ballast sold or used by producers in the United States in 1956, by States

State	Concrete an	d roadstone	Railroad	i ballast	То	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
Alabama	1 2, 981, 254	1 \$3,669,902	16, 662	\$18,993	1 2, 997, 916	1 \$3, 688, 895
Alaska	36, 457	215, 525			36, 457	215, 525
American Samoa	2, 493	6, 505			2, 493	6, 505
Arizona	1 181, 244	1 179, 747	1 90 000	1 38, 386	1 181, 244	1 179, 747 1 1, 300, 571
Arkansas	11, 144, 793	1 1, 262, 185	1 30, 200	1 7, 703	¹ 1, 174, 993 ¹ 11, 834, 783	1 15, 473, 751
California Canton Island	11, 829, 859 1, 620	15, 466, 048 4, 860	1 4, 924	1 7, 703	1,620	4, 860
Colorado	89, 856	181, 803			89,856	181, 803
Connecticut	1 4, 104, 897	1 5, 588, 280	76, 482	105, 584	1 4, 181, 379	1 5, 693, 864
Delaware	57, 491	172, 473	10, 104	100,001	57, 491	172, 473
Florida	14, 308, 602	19, 373, 986	35,030	34, 868	14, 343, 632	19, 408, 854
Georgia	1 6, 577, 195	1 8, 657, 787	767, 970	946, 561	17, 345, 165	1 9, 604, 348
Guam	221,779	257, 398			221,779	257, 398
Hawaii	1 1, 695, 863	1 3, 585, 175			1 1, 695, 863	1 3, 585, 175
Idaho	1 1,049,949	1 1,610,175	241, 475	257, 573	1 1, 291, 424	1 1, 867, 748
Illinois	23, 175, 590	30, 709, 970	982, 979	1, 258, 465	24, 158, 569	31, 968, 435
Indiana	8, 677, 549	10,721,535	158, 140	191,663	8, 835, 689	10, 913, 198
Iowa	9, 560, 256	11,706,098	39,055	55,082	9, 599, 311	11, 761, 180
Kansas	8, 207, 210	9, 742, 109 12, 136, 989	213, 114	293, 905	8, 420, 324	10, 036, 014
Kentucky	8, 966, 029	12, 136, 989	513, 556	460, 652	9, 479, 585	12, 597, 641 2, 294, 793
Louisiana	1, 298, 611	2, 294, 793			1, 298, 611	2, 294, 793
Maine	289, 158	666, 557	(2)	(2)	1 289, 158	1 666, 557
Maryland Massachusetts	1 4, 507, 535 1 4, 211, 289	1 7, 192, 735 1 6, 525, 364	1 149, 800 111, 814	1 228, 178	1 4, 657, 335 1 4, 323, 103	1 7, 420, 913 1 6, 670, 177
Massachusetts	5, 583, 887	6,083,635	204, 210	144, 813 241, 157	5, 788, 097	6, 324, 792
Michigan Midway Island	203, 049	304, 574	204, 210	241, 101	203, 049	304, 574
Minnesota	1 2, 004, 584	1 2, 204, 589	1 5, 530	1 8, 140	1 2,010,114	1 2, 212, 729
Missouri	11, 796, 682	14,990,882	687 667	260, 610	12, 484, 349	15, 251, 492
Montana	157, 525	139, 495	687, 667 214, 612	250, 512	372, 137	390,007
Nebraska	1, 136, 531	1,722,674			1, 136, 531	1, 722, 674
Nevada	34, 655	37, 726	(2)	(2)	1 34, 655	1 37, 726
New Jersey	8, 129, 176	17,844,777	(2)	(2)	1 8, 129, 176	1 17, 844, 777
New Mexico	1,079,115	990, 894 1 20, 844, 702	108, 503	143, 826	1, 187, 618 1 13, 799, 635	1, 134, 720
New York	1 13, 234, 834	1 20,844,702	1 564, 801	1 780, 850	1 13, 799, 635	1 21, 625, 552
North Carolina	1 7, 811, 282	1 10,790,843	(2)	(2)	1 7, 811, 282	1 10, 790, 843
North Dakota	39 , 621	40,000			39, 621	40,000
Ohio	15, 106, 949	18, 793, 581	1, 261, 837	1, 470, 490	16, 368, 786	20, 264, 071 1 9, 880, 295
Oklahoma	1 8, 103, 279	1 9, 229, 809	1, 173, 982	650, 486	1 9, 277, 261 1 4, 204, 931	1 5, 193, 805
Oregon	1 4, 204, 931 163, 750	1 5, 193, 805 216, 250	(2)	(2)	163, 750	216, 250
Panama Canal Zone Pennsylvania	16, 746, 444	25, 419, 908	756, 014	1, 248, 772	17, 502, 458	26, 668, 680
Puerto Rico	727, 649	1,613,518	18	33	727, 667	1, 613, 551
Rhode Island	1 6, 900	1 23, 320	1		1 6, 900	1 23, 320
South Carolina	1 2, 704, 589	1 3, 819, 944	(2)	(2)	3, 231, 627	4, 301, 146
South Dakota	1, 194, 057	1,817,716	(2)	(2)	1 1, 194, 057	1 1, 817, 716
Tennessee	11,076,216	13 346 425	461, 182	4 4 1, 112	11, 537, 398	13, 787, 537
Texas	18, 005, 641	18, 214, 561	1 986, 081	1 872, 860	1 18, 991, 722	1 19, 087, 421
Vermont	1 19, 500	1 33, 150	1 2,000	1 2,000	1 21, 500 8, 507, 173	1 35, 150
Virginia	1.7,601,665	1 10, 816, 829	1 483, 202	1 560, 856	8, 507, 173	11, 930, 043
Virgin Islands	11, 591	31, 983			11, 591	31, 983
Wake Island	21, 500	21, 500			21, 500	21, 500
Washington	4, 609, 482	5,601,685	535, 991	564, 388	5, 145, 473 1, 761, 751	6, 166, 073
West Virginia	1, 198, 804	2,038,075	562, 947	538, 156	1, 761, 751	2, 576, 231 1 8, 585, 778
Wisconsin	1 8, 235, 535	1 8, 316, 362	1 225, 918	1 269, 416	1 8, 461, 453	8, 585, 778
Wyoming Undistributed \$	1 328, 037	1217, 715	1 445, 633	1 568, 874	829, 412	828, 473
Undistributed	11, 814, 893	17, 193, 646	3, 459, 921	3, 630, 120	14, 269, 728	19, 748, 322
Grand total	276, 268, 932	369, 882, 572	15, 481, 250	16, 545, 084	291, 750, 182	386, 427, 656

¹ To avoid disclosing confidential information, total is somewhat incomplete, the portion not included being combined as "Undistributed."

2 Included with "Undistributed."

3 Includes data indicated by footnote 2 and New Hampshire and Utah.

The noncommercial production is that reported by States, counties, municipalities, and other Government agencies as being produced by themselves or by contractors for consumption by these agencies.

TABLE 22.—Crushed stone for concrete and roadstone sold or used by commercial and noncommercial operators in the United States. 1947-51 (average) and 1952-56

(Figures for "noncommercial operations" represent tonnages reported by States, counties, municipalities, and other Government agencies, produced either by themselves or by contractors expressly for their consumption, often with publicly owned equipment; they do not include purchases from commercial producers. Figures for "commercial operations" represent tonnages reported by all other producers.)

	Com	mercial	operatio	ns	Nonco	mmercia	al operati	ons	Tota	ıl
Year	Short tons	Average value per ton	in quan- tity	Per- cent of total quan- tity	Short tons	Aver- age value per ton	in quan- tity	Per- cent of total quan- tity	Short tons	Percent of change in quan- tity from preced- ing year
1947-51 (av- erage) 1952 1953 1964 1955	119, 055, 007 168, 385, 083 169, 352, 364 199, 157, 315 223, 254, 258 251, 635, 441	1. 32 1. 33 1. 35 1. 35	+12 +1 +18 +12	90 92 2 88	18, 729, 080 19, 806, 421 17, 457, 130 231, 333, 327	1. 26 1. 29 1. 22 1. 14	+6 -12 2+79	11 10 10 8 2 12 9		+11 +1 +15 +18

Includes Territories of the United States, possessions, and other areas administered by the United States. 2 Revised figure.

SIZE OF PLANTS

One hundred and forty-eight more crushed-stone plants reported in 1956 than in 1955, bringing the total number of commercially producing plants to 2,336, with a total output of over 470 million The average production per plant increased 2 percent. During the year 1,000 of the smaller plants produced less than 5 percent of the total output. On the other hand, the 74 plants that produced over 900,000 tons each contributed 29 percent of the total. shows additional details for 1956.

TABLE 23.—Number and production of commercial crushed-stone plants in the United States, 1955-56, by size of output

		19	955			19) 56	
Size of output	Num- ber of plants	Total pro- duction of plants (short tons)	Per- cent of total	Cumula- tive total (short tons) ²	Num- ber of plants	Total production of plants (short tons)	Per- cent of total	Cumula- tive total (short tons)
Less than 1,000 tons 1,000 to 25,000 25,000 to 50,000 50,000 to 75,000 75,000 to 100,000 100,000 to 200,000 200,000 to 300,000 300,000 to 400,000 400,000 to 500,000 500,000 to 600,000 600,000 to 700,000 800,000 to 800,000 800,000 to 900,000 800,000 to 900,000 900,000 to son,000	72 2 502 2 279 2 214 172 2 351 2 176 2 126 2 93 54 42 23 19 65	27, 028 2 5, 343, 349 2 9, 756, 077 2 13, 200, 776 14, 874, 663 2 49, 678, 343 2 42, 526, 071 2 43, 599, 464 2 42, 006, 137 29, 242, 462 20, 897, 286 17, 283, 082 16, 106, 969 121, 320, 170	2 10. 09 2 9. 73 2 6. 78 2 6. 22 2 4. 00 2 3. 73	27, 028 2 5, 370, 377 2 15, 126, 454 2 28, 327, 230 2 43, 201, 893 2 92, 880, 236 2 179, 005, 771 2 221, 011, 908 2 250, 254, 370 2 277, 454, 656 2 294, 434, 738 2 310, 541, 707 2 431, 861, 877	76 564 284 220 163 386 201 116 91 71 39 25 26 74	32, 497 5, 377, 551 10, 267, 177 13, 488, 691 15, 261, 324 55, 231, 384 48, 595, 948 40, 554, 238 40, 899, 194 39, 025, 910 25, 161, 822 19, 421, 065 22, 014, 523 135, 415, 674	0. 01 1. 14 2. 18 2. 88 3. 24 11. 73 10. 32 8. 61 8. 69 8. 29 5. 34 4. 12 4. 68 28. 77	32, 497 5, 410, 048 15, 677, 225 29, 165, 916 44, 427, 244 99, 658, 624 148, 254, 572 129, 708, 004 268, 733, 914 268, 733, 914 313, 316, 801 335, 331, 324 470, 746, 988
Total	² 2, 188	² 431, 861, 877	100.00	² 431, 861, 877	2, 336	470, 746, 998	100.00	470, 746, 99

¹ Includes Territories of the United States, possessions, and other areas administered by the United States.

Revised figure.

STONE 1101

Unlike the producers of sand and gravel, many stone plants were operated by multi-million-dollar companies, and many were units of

cement or steel companies.

There was a continued trend, however, toward utilization of the portable plant. In some instances, larger plants elected to operate them in order to reduce transportation costs by operating closer to the job sites. In other instances, fixed plants were forced to operate portable plants in self-defense.

Some highway contractors reduced construction costs by operating their own crushers, and in some cases maintained small units to pro-

duce aggregates from road cuts.

TRANSPORTATION

Truck haulage was the major mode of transportation. Rail haulage continued to decline in 1956, reaching a new low of 18 percent. Waterways provided relatively minor but locally important transportation facilities.

Large trucks continued to gain favor over smaller ones. The rocker-type unit with a short turning radius replaced many of the rigid frame types. More attention was directed by the trucking industry toward road building and maintenance in 1956, as the result of the new highway program. Enlarged road-building programs increased the demand for trucks; and the new roads, which in some instances provided more direct routes, gave the trucks a further competitive advantage over rail haulage. On the other hand, greater utilization of portable plants near the job site shortened the haul and thus tended to decrease the number of trucks required.

TABLE 24.—Crushed stone sold or used in the United States ¹ in 1956, by methods of transportation

Method of transportation	Commercial	perations	Commercial commercial 2 (
	Short tons	Percent of total	Short tons	Percent of total
Truck	237, 246, 246 90, 155, 041 50, 985, 019 92, 360, 692	50 19 11 20	270, 213, 889 90, 155, 041 50, 985, 019 92, 360, 692	54 18 10 18
Total	470, 746, 998	100	503, 714, 641	10

¹ Includes Territories of the United States, possessions, and other areas administered by the United States. Includes transportation of 117,709,902 tons of stone used in making cement and lime, and shell for various uses, as follows: By truck, 26,564,955 tons; rail, 5,788,530; waterway, 14,938,892; and unspecified methods, 70,417,525.

² Entire output of noncommercial operations assumed to be moved by truck.

Trends in Consumption.—The continued increase in population with resulting demands for homes, schools, industrial buildings, highways, and public works, together with growing requirements for industrial plants and national defense, continued to give impetus to the stone industry. The national road-building program offered further opportunities for utilization of stone products.

As concrete aggregate was a major use for crushed stone, a relationship existed between crushed stone output, cement shipments, and construction contract awards, as shown graphically in figure 3.

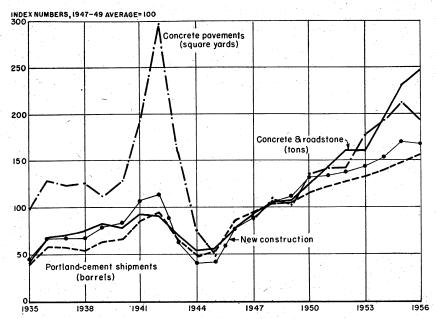


FIGURE 3.—Crushed-stone aggregates (concrete and roadstone) sold or used in the United States compared with shipments of portland cement, total new construction (value), and concrete pavements (contract awards, square yards), 1935-56.

(Data on construction from Construction Volume and Costs and on pavements from Survey of Current Business, U. S. Department of Commerce. Construction value adjusted to 1947–49 prices.)

The American Association of State Highway officials continued to compile design data on highway improvements at the multi-million-dollar test road at Ottawa, Ill., which may have a great impact upon crushed-stone consumption in highway construction. For instance, the trend in road building and airfield construction required thicker base courses and wider pavements, resulting in the use of more crushed stone.

As indicated in figure 4, sales of fluxing stone in 1956 declined in consonance with the drop in iron production brought about by a steel strike during the year. Every ton of steel produced required about a half ton of limestone or dolomite as flux. The 75 million tons of pig iron produced in 1956 was slightly less than the alltime high for 1955, and the limestone furnace flux required dropped accordingly.

To replace burned-out furnace linings and to keep them in repair required increasingly larger quantities of dolomite for refractory use and ganister for manufacture of silica brick. The relations of fluxingstone output to pig-iron production and of refractory stone to steelingot manufacture over a number of years are indicated in figure 4.

Stone sand was being used more and more in areas where natural deposits were in short supply. One operator in Tennessee produced stone sands for concrete block and bituminous mix plants by crushing, screening, and air separation of limestone.²⁶

²⁶ Lenhart, W. B., Agstone and Stone Sands for Expanding Market: Rock Products, vol. 59, No. 5, May 1956, pp. 80-83.

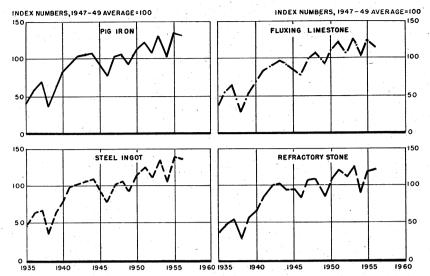


FIGURE 4.—Sales (tons) of fluxing limestone and refractory stone (including that used in making dead-burned dolomite) compared with production of steel ingot and pig iron, 1935-56.

(Statistics of steel-ingot production compiled by American Iron and Steel Institute.)

Granules Production.—Crushed-stone aggregates entered the field of roofing materials both for prefabricated products and for built-up roofing in the natural and artificially colored states. Output and value of roofing granules are shown for recent years in table 25. Slate chapter of this volume gives additional data on slate granules.

A new method was patented in 1956 for artificially coloring roofing

granules.27

TABLE 25.—Roofing granules 1 sold or used in the United States, 1947–51 (average) and 1952-56, by kinds

Year	Nat	ural	Artificiall	y colored 2	To	tal .
- 	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average)	443, 748 368, 454 336, 506 343, 824 365, 870 323, 323	\$3, 822, 137 3, 350, 290 3, 186, 653 3, 208, 170 3, 406, 445 2, 872, 626	1, 144, 364 1, 250, 741 1, 282, 325 1, 362, 504 1, 470, 517 1, 360, 877	\$19, 189, 485 22, 772, 567 24, 632, 971 26, 876, 999 30, 451, 516 30, 854, 657	1, 588, 112 1, 619, 195 1, 618, 831 1, 706, 328 1, 836, 387 1, 684, 200	\$23, 011, 622 26, 122, 857 27, 819, 624 30, 085, 169 33, 857, 961 33, 727, 283

GRANITE

Both the quantity and value of crushed granite production increased Tonnages were higher for all uses except railroad ballast. The unit value decreased slightly compared with 1955. North Carolina continued to be the principal producer, followed by Georgia, California, and South Carolina.

Manufactured from stone, slate, slag, and brick.
 A small quantity of brick granules is included with artificially colored granules.

²⁷ Lantz, A. P., Rudish, S. T., and Szabo A. (assigned to the Patent and Licensing Corp., New York, N. Y.), Process for Artificially Colored Roofing Granules: U. S. Patent 2,758,038, Aug. 7, 1956.

TABLE 26.—Granite (crushed and broken stone) sold or used by producers in the United States in 1956, by States and uses

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Trommore for			4 111 20000	£ .	non man man de locat	202
State	Rij	Riprap	Concrete ar	Ooncrete and roadstone	Railroad	Railroad ballast	Other uses	uses 1	Ţ	Total
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alaska. Arizona	93, 847 5, 295	\$233, 804 3, 495	85,604	\$131, 607						\$233, 804 135, 102
Arkansas Oalifornia Oolorado t	481,044 21,903	545, 365 84, 177 5, 905	11, 964 2, 096, 817 12, 847	15, 952 2, 743, 281 15, 032	(2)	(e)	(3)	(6)	3, 888, 006 34, 750	15, 952 4, 257, 370 99, 209
Delaware. Georgia Idaho	100, 578	159, 967	6, 164, 024	8,059,886	616, 646	\$727, 141	25, 012 467, 653	\$60,030 1,549,773		232, 503 232, 503 10, 496, 767
Maine. Maryland Maryland	22,000	(3) 55,000	54,300	112,350						58, 550 56, 870 167, 350
Arassachuseus Minneseta Missouri	33, 499 13, 884 713	52,719 10,988 3,624			4, 550 (2)	6, 370 (2)	(3), 144	(3) 863		1, 875, 448 817, 749 3, 694
Nevada. New Hampshire	9,749	6,824	8, 100 (2)	(3)			(2)	(3)		
New Jersey North Carolina North Jakota	©©\$	©©4 15	(²) 7, 811, 282	(ž) 10, 790, 843	(2)	(2)	වව	<u>ee</u>	520, 005 8, 351, 953	1,051,801
Oregon Oregon Senth Carolina Forth Carolina	(z)	(2)	51, 194 2, 704, 589	3, 819, 944	(2)	(3)	E E	වව	3, 304, 484	(2) 4, 285, 383
Virginia. Washington. Wisconsin	135, 798 90, 493	225, 947 145, 225	1, 425, 662 535, 878	2, 268, 458 583, 954	(2) 124	(3)	(3) 44, 206	154, 464	1, 961, 250 670, 701	2, 948, 285 883, 766
Wyoming Undistributed 8	8, 027 75, 985	14, 768 118, 520	879, 895	1, 545, 163	1, 397, 890	225, 276 1, 368, 653	25, 219 2, 001, 372	19, 508 19, 508 1, 833, 551	216, 037 541, 448	(*) 259, 552 572, 743
Total Average unit value.	1, 137, 893	1, 712, 818 \$1. 51	.22, 932, 395	32, 060, 889 \$1. 40	2, 202, 001	2, 327, 563	2, 823, 606	3, 950, 839	29, 095, 895	40, 052, 109 \$1. 38
								•		

Includes stone used for fill material, poultry grit, roofing granules, stone sand, and unspecified uses.

Included with "Undistributed" to avoid disclosing individual company confidential data.

Includes data indicated by footnote 2 and Montana, Oklahoma, Rhode Island, Texas, and Vermont.

\$1.65

TABLE 27.—Basalt and related rocks (traprock) (crushed and broken stone) sold or used by producers in the United States in 1956, by States and uses

2, 386, 943
5, 772, 033
11, 507, 203
11, 507, 204
10, 000
10, 000
11, 428, 548
9, 100
15, 966, 589
16, 969
17, 966, 589
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968
18, 968 62, 690, 293 5,502,5 115,0 5,966,5 1,249,7 31,9 6,616,2 Value \$133, Total 16,339 1,918 1,916,776 4,240,456 (3),011 7,907,703 3,388,939 10,916 4,673,446 673,446 673,446 673,446 673,446 673,446 673,446 673,847 10,916 10,916 7,917 11,917 Short tons 2446 228 884 884 591 313 37, 979, 444 \$2.76 150, 916 3, 311, 886 3,809,908 \$23, 730 323, 376 Value :ଚ୍ଚ 3 (a) 18 ાંજ Other uses 1 94, 295 671, 582 Short tons 5, 339 1, 381, 951 510, 735 ଚ୍ଚ 1 1 10 \$1.38 564, 265 1, 386, 854 2, 423, 324 178 443 584 Value 868 Railroad ballast 8 10 3 867 758 482 1, 752, 171 Short tons ව<u>ද</u> 49, 23,33 3 10 \$110,000 6,005 1,0 54, 289, 306 65 Concrete and roadstone Value <u>;</u> 16, 506, 11,000 1,918 1,918 10,918 10,918 10,918 11,9 32, 864, 326 Short tons 1, 275, 1 4, 104, 8 1, 434, 9 897, 8 202, 7 7, 485, (2, 167, 755 \$1.09 883, 892 183, 193 \$78, 169 (2) 2, 283 22, 490 491, 447 6, 380 499, 901 Value Riprap 248, 362 7, 796 615, 702 14,807 885, 881 147, 944 Short tons 427 1,980,996 077 -j⊚ State A vorage unit value..... Virginia. Virgin Islands...... Washington..... Undistributed 3...... Idaho..... Nevada_____ New Jersey..... Oregon. Panama Canal Zone. ennsylvania Minnesota Iawaii..... Massachusetts Jonnecticut merican Samoa Arizona-----Jalifornia.

1 Includes stone sold for fill material, roofing granules, and unspecified uses.
2 Includes with "Undistributed" to avoid disclosing individual company confidential data.
3 Includes data indicated by footnote 2 and Montana, New York, North Carolina, Texas, and Wisconsin.

BASALT AND RELATED ROCKS (TRAPROCK)

Commercial traprock includes basalt, gabbro, diorite, and other dark igneous rocks widely used for concrete and roadstone and railroad ballast. It is also used for riprap and such other uses as fill material, roofing granules, etc. The sales of crushed and broken traprock in 1956 were slightly greater in quantity and value than in 1955. Sales increased for all uses except railroad ballast, and the average unit value was from \$1.56 in 1955 to \$1.65 per ton in 1956. New Jersey was the leading producer, followed by Washington, Oregon, Connecticut, and Massachusetts.

MARBLE

Substantial quantities of waste material, consisting of defective blocks or cuttings and spalls from marble-dressing operations, accumulate in the quarrying and processing of marble blocks. This byproduct material was marketed for a variety of uses listed in the footnote of table 28. Also several plants produce marble exclusively for industrial application, as marble consists of relatively pure calcium carbonate and therefore is interchangeable with high-calcium limestone for various uses. The average value varies from one area to another owing to the diversity in use. In some States marble, as terrazzo or marble flooring, was marketed as a high-priced product while in other States, as roadstone or concrete aggregate, it was sold at a relatively low price. The average unit value for crushed and broken marble increased from \$7.43 to \$7.46 per ton.

TABLE 28.—Marble (crushed and broken stone) sold by producers in the United States in 1956, by States ¹

	1						
State	Active plants	Short tons	Value	State	Active plants	Short	Value
Arizona Missouri New Mexico Tennessee	2 1 1 7	1, 810 5, 000 350 17, 663	\$30, 605 25, 000 4, 900 37, 823	Other States 2 Total Average unit value		816, 888 841, 711	\$5, 984, 012 6, 282, 340 87, 46

¹ Includes stone used for agriculture, asphalt filler, concrete and roadstone, poultry grit, roofing, spalls, stucco, terrazzo, whiting (excluding marble whiting made by companies that purchase their marble), and unspecified uses.

states, terrages, whitehed uses.

Includes California, Maryland, Nevada, New Jersey, New York, North Carolina, and Virginia, 1 plant each; Colorado, Texas, and Vermont, 2 plants each; Alabama, 3 plants; and Georgia and Washington, 4 plants each.

LIMESTONE

Limestone was by far the most widely used type of stone in the United States in 1956. It constituted 75 percent of all crushed and broken stone sold. Fortunately, limestone occurs in every State in some form, and sales were reported to the Bureau of Mines from 44 States and 2 Territories. Because of its wide occurrence it is, in many areas, the most convenient stone for highway or building construction and railroad ballast. Limestone is an essential raw material for many metallurgical, chemical, and processing laboratories for which no other kind of stone can be substituted. The overall cost of quarrying and crushing limestone was usually lower than that of the harder rocks.

TABLE 29.-Limestone (crushed and broken stone) sold or used by producers in the United States in 1956, by States and uses

o para	Riprap	<u></u>	Fluxing stone	stone	Concrete and road- stone	nd road-	Railroad ballast	ballast	Agriculture	lture	Miscellaneous	neous	Total	a
	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value	Short	Value
Alabama	0, 138	\$130,088	590	\$2, 228, 118			16, 662	\$18,993	409, 255		4, 521, 280	\$3, 863, 745 (¹)	88	\$10, 213, 821 1, 326, 602
			ŒΞ	Œ	1, 132, 829	1, 246, 233	30, 200 301	38,386 1,052	(1)	195, 677	(1) 13, 088, 107 1, 503, 918	(1) 20, 905, 099 2, 029, 105	(t) 14, 113, 114 2, 036, 486	(1) 22, 110, 273 2, 951, 737
Colorado	25,000	90,000	(1)	(3), 301			35,030	34,868	(1) 594, 198	1, 721, 388	£4.	⊕	(3) (3) (3)	365
			186	120	413, 171	597, 901 420, 264	151, 324	219, 420	372, 515 403	648, 201 3, 629	(1)	E	1, 704, 412	4, 187, 368 (1)
	1,600	1,000		(1) 500, 104	£	£				4, 014,		⊕ <u>7</u>	£.	€88
	359, 329 606, 495	171, 256 596, 933	135, 210 47, 505	169, 267 67, 493	677, 560,		158, 140 39, 055	191,663 55,082		2, 143, 153, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	2, 277, 993	2,009,320 2,651,563 367,806	14, 024, 782 14, 024, 818 11, 625, 979	58,8 6,0,8
Kentucky	372, 540 (1)	853, 133 373, 287 (1)	EΞ	εε	8, 959, 779 3, 894, 759	9, 204, 339 12, 121, 944 6, 110, 568	513, 556 (1)	£60, 652 (3)	967, 342	1, 276, 722		: : : : :	276,	888
Massachusetts Michigan	.4°E	13, 657	(1)	(1) (2, 954, 583	£3.		204, 210	241,157		430, 657,			762, 018 33, 913, 123	1, 702, 765 30, 720, 314
Minnesota	83, 511	94, 353	250	883		104,	5, 530	8, 140		140, 140,		196,712	655,	65,
80	3,045,4863	3, 250, 556 4, 218	169, 342	1, 999, 599			44,882	.5,60g	2, 315, 098	3,067,	6, 499, 608 647, 773	8, 149, 186 1, 135, 186	119, 764,	301,
	239, 124	£04,038	124, 339	239, 990	1, 136, 531 13, 234, 834	1, 722, 674 20, 844, 702	564, 801	780,850	192, 237 419, 986	315, 344 1, 342, 430	(1) 5, 444, 605	6, 570, 759	20, 027, 689	30, 182, 9
	50, 767	77, 541	5, 469, 616	7, 546, 968	(1) 15, 087, 381	18, 776, 155	1, 261, 837	, 470, 490	2, 353 2, 014, 336	3, 163,		887,	33, 223, 23, 233,	
Oklahoma		(3, 527	Θ	Ξ	ž Š	Ξξ	102, 201	190, 480	5,374	22.0	946,	1, 598, 757	, 88 8,88 8,88	33,
8	244, 529 12, 495	356, 256 32, 848	9, 365, 869 16,	314,	13, 157, 699 727, 649	19, 407, 998 1, 613, 518	209, 875	338,872	759, 365 10, 954	, 9,8,6 9,8,6	1,250,169	733, 697	2, 102, 2, 001,	
Rhode Island	Ξ	Ξ	1,000	2,000		059,			33, 380	186,	Ξ,		1, 175,	88
Pennessee	7, 595	7,813	89,770	121, 736 234, 322	11, 036, 216 10, 340, 047	13, 296, 425 9, 080, 663	461, 182 986, 081	441, 112 872, 860	815, 589 176, 325	1, 112, 065 190, 953			28-	£84.8
Utah. Vermont Virginia	€€% 8	EE%,	730, 650 (1) 578, 099	989, 141	(1) 5, 432, 119	7, 298, 612	(1) 472, 758	(1)	(1) 593, 481	1, 132, 630	4, 033, 076	1, 469, 215 5, 887, 215	11, 382,	1, 994, 294 15, 834, 864
ıla			(1) 2, 864, 147	5.001.336	1, 152, 488	1, 938, 386	562, 947	538, 156	61, 487	136, 192			19	62,
	112, 254	110,642		Ξ					1,090,045		ε	€	9, 999, 604	586

See footnotes at end of table.

TABLE 29.—Limestone (crushed and broken stone) sold or used by producers in the United States in 1956, by States and uses—Con. 7, 502, 708 8, 153, 437, 738, 063 52, 486, 524 189, 081, 324, 955, 505 7, 478, 973 8, 568, 545 19, 864, 045 32, 087, 185 311, 626, 130 3150, 851, 385 379, 342, 248 465, 105 841, 25 81. 28 81. 21, 408, 743 25, 514, 411 34, 910, 446 Value Total Short Value Miscellaneous (¹) 20, 196, 134 Short 426, 145 1, 424, 869 Value Agriculture Short (I) 463, 818 Railroad ballast Value 345, 965 Short $\begin{vmatrix} (1) & (1) \\ 1, 131, 696 \end{vmatrix} 1, 350, 696 \begin{vmatrix} (1) & (1) \\ 1, 435, 431 \end{vmatrix} 2, 298, 593 \begin{vmatrix} (1) & 328, 697 \\ 2, 298, 593 \end{vmatrix} 15, 726, 347 \begin{vmatrix} (2) & 217, 715 \\ 2, 298, 593 \end{vmatrix}$ Concrete and road-stone Value Short Value Fluxing stone Short Value Riprap Short Wyoming..... Average unit value.... State Total.

¹ Included with "Undistributed" to avoid disclosing individual company confidential data.

² Includes data indicated by footnote 1 and Maine, Nevada, New Jersey, New Mexico, and South Carolina.

³ Includes limestone, dolomite, and cement rock used in making cement, lime, and dead-burned dolomite; does not include shell.

1109STONE

Sales in 1956 were 5 percent higher in quantity and 7 percent in value than in 1955. The rise in limestone output for 1956 parallels the increase in concrete pavement construction (fig. 3) where much limestone is used. Sales for all major uses increased except fluxing The unit value increased slightly compared with 1955.

Details by States and uses are shown in table 29. A further breakdown of the miscellaneous uses for crushed limestone is given in

table 30.

TABLE 30.—Limestone (crushed and broken stone) sold or used by producers in the United States 1 for miscellaneous uses, 1955-56

Use	19	55	19	956	
0.00	Short tons	Value	Short tons	Value	
Alkali works Calcium carbide works Cement—portland and natural Coal-mine dusting Filler (not whiting substitute): Asphalt Fertilizer Other Filter beds Glass factories Lime and dead-burned dolomite Limestone sand Limestone whiting 2 Magnesia works (dolomite) 4 Mineral food Mineral food Mineral food Mineral food Mineral food Mineral food Refractory (dolomite) Refractory (dolomite) Refractory (dolomite) Road base Sugar factories Other uses 2	79, 997, 834 499, 398 1, 405, 477 449, 902 762, 076 136, 050 848, 799 15, 596, 017 741, 854 \$ 510, 084 103, 951 1473, 689 19, 386 518, 381 119, 303 287, 960 889, 308 661, 044 648, 297	\$6, 280, 552 621, 536 84, 350, 238 2, 206, 222 4, 366, 991 850, 645 2, 605, 952 204, 472 2, 304, 530 20, 821, 903 924, 377 311, 853 2, 751, 042 461, 180 1, 208, 742 461, 460 1, 271, 684 1, 624, 636 1, 910, 185	5, 722, 924 1, 245, 302 81, 007, 596 497, 222 1, 612, 940 405, 731 505, 547 95, 042 95, 042 95, 299 2, 559, 888 711, 707 518, 356 124, 317 296, 055 296, 577 724, 923 1, 605, 869 1, 208, 893	\$5, 965, 040 1, 059, 660 85, 229, 606 1, 954, 688 3, 592, 287 817, 511 1, 884, 062 2, 763, 376 3, 432, 402 6, 128, 938 751, 293 2, 651, 376 965, 277 446, 421 1, 756, 152 4, 566, 936 1, 704, 033	
Use unspecified Total	\$ 112, 612, 896		117, 626, 130	150, 851, 388	

¹ Includes Hawaii and Puerto Rico.

Dolomite had a variety of uses, some quite distinct from those of high-calcium limestone. Dead-burned dolomite was used as refractory lining for metallurgical furnaces; statistical data on this product (which is closely allied to lime) are given in the Lime and Magnesium Compounds chapters of this volume. Raw dolomite was used as a refractory, particularly for patching furnace floors, and also as a source of magnesium metal. Sales of dolomite and its primary calcined product-dolomitic lime-are listed by consuming industries

Table 32 shows the tonnages and values for fluxing stone used in The steel strike in 1956 contributed to metallurgical operations.

the decline in fluxing stone sales.

Data on shell, which has virtually the same composition and applications as limestone, were first presented by the Bureau of Mines for

¹ Includes Hawaii and Puerto Rico.
2 Includes stone for filler for calcimine, caulking compounds, ceramics, chewing gum, explosives, floor coverings, foundry compounds, glue, grease, insecticides, leather goods, paint, paper, phonograph records, picture-frame moldings, plastics, pottery, putty, roofing, rubber, toothpaste, wire coating, and unspecified uses. Excludes limestone whiting made by companies from purchased stone.
3 Revised figure.
4 Includes stone for refractory magnesia.
5 Includes stone for acid neutralization, carbon dioxide, chemicals (unspecified), concrete blocks and pipes, dyes, electric products, fill material, litter and barn snow, oil-well drilling, patching plaster, rayons, rice milling, roofing granules, silicones, spalls, stucco, terrazzo, artificial stone, target sheets, and water treatment.

1954. Over \$28 million was received from shell sales in 1956 compared to \$23 million in the previous year, thus establishing shell production as a supplementary source of considerable importance in the field of natural calcium carbonate products. Texas produced the major quantity as shown in table 33. Table 34 shows the breakdown of shell sales by uses.

TABLE 31.—Dolomite and dolomitic lime sold or used by producers in the United States for specified purposes, 1955-56

	19	055	19	956
	Short tons	Value	Short tons	Value
Dolomite for— Basic magnesium carbonate ¹ ————————————————————————————————————	103, 951 287, 960 2, 128, 960 79, 767	\$311, 853 461, 460 31, 424, 587 957, 000	248, 114 266, 055 2, 423, 909 86, 828	\$751, 29 446, 42 37, 740, 26 1, 042, 00
Total (calculated as raw stone) 2	4, 809, 000		5, 536, 000	

Includes dolomite for refractory magnesia.
 ton of dolomitic lime is equivalent to 2 tons of raw stone.

TABLE 32.—Sales of fluxing limestone, 1947-51 (average) and 1952-56, by uses

	-	
Total	Value	\$35, 752, 023 \$35, 119, 351 53, 040, 515 40, 933, 952 52, 905, 898 52, 486, 524
To	Short tons	34, 824, 861 34, 908, 815 33, 161, 736 40, 063, 165 37, 789, 063
llurgical 2	Value	\$282, 652 239, 860 293, 006 219, 499 575, 371 729, 880
Other metallurgical	Short tons	234, 315 195, 249 225, 225 175, 982 393, 323 375, 019
nelters 1	Value	\$723, 884 1, 142, 894 1, 216, 240 1, 288, 560 2, 018, 230 1, 329, 030
Other smelters	Short tons	609, 167 926, 063 944, 656 1, 096, 080 1, 423, 086 1, 006, 019
Open-hearth plants	Value	\$7, 542, 725 6, 879, 035 10, 976, 971 7, 031, 010 9, 932, 486 11, 488, 365
Open-hear	Short tons	6, 715, 174 5, 629, 204 7, 061, 676 5, 411, 625 6, 577, 661 7, 494, 266
Blast furnaces	Value	\$27, 202, 762 32, 857, 562 40, 554, 295 32, 394, 888 40, 379, 811 38, 939, 249
Blast fu	Short tons	27, 266, 205 28, 158, 299 32, 649, 747 26, 478, 048 31, 674, 095 28, 913, 759
Year		1947-51 (average). 1932 1933 1934 1934 1956

¹ Includes flux for copper, gold, lead, zinc, and unspecified smelters.
² Includes flux for foundries and for cupola and electric furnaces.

TABLE 33.—Shell sold or used by producers in the United States, 1955-56

State	19)55	19	56
	Short tons	Value	Short tons	Value
Florida	 724, 342 2 3, 220, 928 11, 084, 797 100, 376	\$1, 653, 669 2 4, 930, 000 14, 763, 238 1, 282, 580	(1) 4, 364, 067 12, 017, 878 3, 470, 062	(1) \$6, 633, 385 15, 483, 005 6, 251, 446
Total	 	² 22, 629, 487	19, 852, 007	28, 367, 836

1 Included with "Other States" to avoid disclosing individual company confidential data.

3 Includes the following States: Alabama (1956), Florida (1956), Maryland, New Jersey, Pennsylvania, and Virginia.

TABLE 34.—Shell sold or used by producers in the United States, 1955-56, by uses

Use	1	955	19)56
	Short tons	Value	Short tons	Value
Concrete and roadstone	5, 750, 728 4, 211, 490 813, 204 604, 567		9, 247, 652 5, 444, 814 644, 650 376, 281 4, 138, 610	\$12, 733, 273 6, 374, 213 690, 446 2, 110, 845 6, 459, 059
Total	· 15, 130, 443	122, 629, 487	19, 852, 007	28, 367, 836

Revised figure.
 Includes agriculture, alkali, asphalt filler, chemicals, filter beds, magnesium metal, mineral food, paper, railroad ballast, road base, road fill, and unspecified uses.

SANDSTONE, QUARTZ, AND QUARTZITE

The sales of crushed and broken sandstone, quartz, and quartzite in 1956 increased both in quantity and value. Tonnage decreases occurred in the production of riprap and concrete and roadstone. Refractory stone, railroad ballast, and stone for miscellaneous uses increased in production. The average unit value increased 40 cents a ton to \$2.49.

MISCELLANEOUS STONE

Stone types that do not conform to the five principal varieties already discussed are grouped statistically as miscellaneous stone. These include light-color volcanic rocks, schists, boulders from riverbeds, serpentine, chats, and flint. Table 37 shows the sales of these stone types in 1956, by uses. The output of miscellaneous stone increased 35 percent in quantity and 24 percent in value compared with 1955. California was the largest producer in 1956, followed by Arkansas, Oklahoma, Hawaii, and Kansas. The average unit value decreased 9 cents to \$1.04 a ton.

TABLE 35.—Sandstone, quartz, and quartzite (crushed and broken stone) sold or used by producers in the United States in 1956, by States and uses

	Refractory stone (ganister)	ry stone	Riprap	da	Concrete and road- stone	ind road-	Railroad ballast	ballast	Miscellaneous	neous	Total	al
State												
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama	6,000	\$15,000			163, 241	\$228, 612			18, 578	\$31, 468	187, 819	\$275,080
Arizona.	£ £33	(E)	(1)	(1)	2,001,455	2, 970, 984	4,623	\$6,651	Œ	E	2, 916, 662	4, 812, 666
Connecticut	20, 400	81, 301	0,000	91, 010			117	644	15, 500	112,750	15, 500	112, 750
Illinois.	747	7.470			2, 100	4.20	241, 410	610, 007	Đ.	9	747	7, 470
Kansas	į		95, 104	133, 979	34, 569	78, 487	165, 253	231, 025	18,887	51,851	313, 813 6, 750	495, 342 15, 045
Michigan					0) (0	20,000		(1,080	540	1,080	106 489
Montana			16,250	12, 255			Đ	Θ	D.	0	2,300	4,025
New Mexico.			î	206	Ξ	ε	108, 503	143, 826	1		Ξ	Đ
Ohio	Θ	Θ	ε	ε	19, 568	17, 426			29, 541	39, 128	(1)	(1) 215, 294
Oregon	(1)	Ξ	16,833	8, 417	707	102 (012			Ξ	Đ		Ξ
Pennsylvania	367, 700	4, 122, 215	Œ€	€€	1, 238, 154	2, 115, 441	Œ	ĐĐ	ΞE	ee	1,807,190	6, 644, 548 1, 365, 914
Texas.	88	280	488	563		1, 223, 729			, é, 630 ,	13, 737		1, 238, 289
Utah	Ξ	e E	107, 127	82, 500	1		10 444	9.462	(1)	338.020		347, 482
West Virginia			3,000	3,375	46,316	99, 689			, , , , , , , , , , , , , , , , , , , ,			103, 064
Wisconsin	€.	Đ	Ē,	(1)	10, 948	10,948			ε	ε		5, 158, 371 13, 280
Undistributed 2	769, 899	6, 375, 713	979, 191	1, 926, 174	2, 359, 189	3, 212, 166	329, 618	452, 094	1, 786, 399	6, 788, 999		9, 834, 518
Total	1, 169, 895	10, 608, 019	1, 233, 540	2, 189, 381	7, 571, 505	10, 707, 594	859, 916	1, 100, 631	1, 987, 839	7, 376, 493	12, 822, 695	31, 982, 118
Average unit value		90.00		φ.τ. η	1	41. II		OF 170				

1 Included with "Undistributed" to avoid disclosing individual company confidential data.

Includes data indicated by footnote 1 and Arkansas, Georgia, Indiana, Maine, Maryland, Minnesota, Nevada, New York, North Carolina, Tennessee, and Washington.

TABLE 36.—Sandstone, quartz, and quartzite (crushed and broken stone)1 sold or used by producers in the United States, 1955-56, for miscellaneous uses

Use	19	955	198	56
	Short tons	Value	Short tons	Value
A brasives_ Ferrosilicon Filter Flux Foundry Glass. Other uses ²	29, 301 223, 088 23, 435 392, 765 128, 669 55, 692 3 1, 012, 634	\$152, 307 668, 052 46, 870 751, 178 407, 355 322, 432 3 5, 225, 394	24, 238 247, 165 10, 401 464, 082 115, 503 32, 748 1, 093, 702	\$127, 714 826, 203 41, 563 851, 563 350, 468 164, 512 5, 014, 470
Total	1, 865, 584	³ 7, 573, 588	1, 987, 839	7, 376, 493

¹ Includes ground sandstone, quartz, and quartzite. Friable sandstone is reported in the chapter on Sand and Gravel.

² Includes cement, filler, fill material, pottery, porcelain, tile, road base, roofing granules, spalls, stone sand, and unspecified uses.

3 Revised figure.

TECHNOLOGY

Ineffective blasting methods may result in high indirect costs owing to the need for excessive secondary blasting. Oversize rocks cause costly plant delays when they block the crusher. Based on these facts, a Maryland limestone producer established an effective blasting program comprising a variation of the alternate velocity loading method, by which cartridges of different explosive velocity and force are loaded alternately in the blastholes. This system was used in combination with millisecond-delay electric blasting caps.28

A study of rock breaking by explosives conducted by Bureau of Mines personnel included slow-motion photography that aptly demonstrated quarry blasting and dispelled old theories of rock breakage.29

Unfavorable outlooks in regard to availability of aggregates and the ability to produce them in quantity proved unwarranted in many For example, the new Kansas Turnpike required over 12 instances. million tons of aggregate. Over 75 percent of this was supplied from plants, predominantly portable, operated by paving contractors and subcontractors from areas previously considered deficient in quality materials.30

Many plants required establishment of new facilities to provide greater production of materials to meet the expanding market. example of this was a 300-ton-per-hour crushed-stone plant constructed to supplement the original 3,000-ton-per-day plant erected in 1937.31

A well-established southern crushed-stone producer opened a new, all-steel, centrally controlled establishment to make two sizes of highcalcium limestone for metallurgical and chemical purposes, as well as commercial aggregates. The overburden presented a problem as it varied from 0 to 30 feet in very irregular fashion and had clay-filled crevices extending down into the limestone. This required washing the crushed stone three times to insure a clean product.32

²⁸ Lindsay, G. C., Effective Blasting Reduces Plant Down Time: Rock Products, vol. 59, No. 9, September 1956, pp. 92-94.

29 Atchison, T. C., Duvall, W. I., and Obert, Leonard, Mobile Laboratory for Recording Blasting and Other Transient Phenomena, Rept. of Investigations 5197, 1956, 22 pages.

30 Herod, B. C., Producers Meet Specifications With Impressive Tonnage for the New Kansas Turnpike: Pit and Quarry, vol. 49, No. 3, September 1956, pp. 70-75, 77, 116-120.

31 Herod, B. C., Expansion—Texas Style: Pit and Quarry, vol. 49, No. 4, October 1956, pp. 100-101, 106-108.

^{106-108.}Lenhart, W. B., Produce High-Calcium Limestone and Dolomite Products From Same Quarry: Rock Products, vol. 59, No. 4, April 1956, pp. 86-89, 94, 206.

TABLE 37.—Miscellaneous varieties of stone (crushed and broken stone) sold or used by producers in the United States in 1956, by States and uses

			2022	and usos						
State	Rip	Riprap	Concrete and roadstone	d roadstone	Railroad ballast	l ballast	Other uses	uses 1	Total	tal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama American Samos	54, 256	\$116,787	25, 457	\$105, 525			4,965	\$5,048	84, 678	\$227,360
Artzona Galifornia	(2)	(3)		47, 500 6, 791, 789	(2)	(2)	3, 892, 974	3, 505, 769	95, 000 9, 645, 366	47, 500 10, 857, 562
Coltron Island Coltrodo Gusm	(a) 14, 040	(2)	1, 620 9, 898 221, 779	4, 860 49, 490 257, 398			(2)	(2) 15,850	1, 620 (2) 266, 072	(2) (2) 286, 248
Hawaii Idabo Vonces	126, 547	79,092	(2) 72, 407					194		(2) 94, 330
Louisiana Mono	**************************************		40, 662	40,662						40, 662
Massachusetts Michigan	830	1, 223	93,368							134,090
Midway Island			203, 049		100000	100000				304, 574
Montana	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	401, 004		042, 780	\$200,004	30,800	60, 000		820, 022 60, 000
Novada New Jersev	②	€		10, 500	(2)	(2)	132, 533			271, 922
New Mexico North Dakota	1, 508	1,508		590, 921	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			592, 429
Oklahoma Oregon	48 645	63 242		562, 745	1,016,121	460,006				1, 022, 751
Panama Canal Zone Pennsylyania	13, 500	13, 500	101,250	101, 250		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				114, 750
Rhode Island South Dakota	! ! ! ! ! ! ! ! ! ! ! !			23,320						23, 320
Texas Utah	(3) 2.956	(2) 1, 289		<u></u>	6	(a)	(3)	(2)		627, 937
Vermont Wake Island			19, 500	33, 150 21, 500	2,000	2,000	200	200		35, 650 21, 500
Washington Wisconsin	124, 620 3, 046	106, 594	8, 400				290, 500	15,600		122, 794
Wyoming Undistributed 8	460, 275	1,000 765,175	4, 185, 017	(*) 5, 796, 267	(2) 1, 527, 283	1, 462, 711	55, 151	113,844	56, 242 5, 041, 759	42, 884 6, 767, 270
Total Average unit value	1, 278, 474	1, 341, 405 \$1.05	14, 571, 730	17, 136, 005 \$1. 18	3, 188, 189	2, 124, 721 \$0.67	4, 742, 253	4, 139, 642	23, 780, 646	24, 741, 773 \$1.04

Includes stone for fill material, flux, rock dust, roofing granules, and unspecified uses. Included with "Undistributed" to avoid disclosing individual company confidential data. Includes data indicated by footnote? and Arkansas, Maryland, New Hampshire, New York, and Virginia.

A Wisconsin producer expanded and reconditioned operations 3 times in the past 8 years and was giving serious consideration to further expansion. The diversified output included aggregates, agricultural limestone, and dimension building stone.33

Flexibility of operation was achieved by a Virginia quarry in producing a wide range of graded aggregates in spite of difficult quarrying conditions. Good primary breakage was reportedly attained by

altering slow and fast dynamite with delays.34

Another plant featured a simplified flowsheet that incorporated a primary crushing station, screening tower, and secondary crusher in closed circuit with 1 of 3 vibrating screens. The finished product ranged from 3 inches in size down to and including material ground for agricultural limestone. The recovery of fine sizes was facilitated by equipping one screen with an electric heater.35

An Illinois limestone mine operator established a unique underground storage system for aggregates. The mined-out area had room for 35,000 tons. Storage areas were separated by concrete and steel

partitions to prevent contamination and mixing of products.³⁶

A number of television systems were in use in the rock-products industries, and there were additional potential applications of this new medium. At an Ohio plant one man with the aid of television easily did the work formerly accomplished with less certainty by two.37

An additional plant acquired by a large California corporation currently operating nearly 40 plants was redesigned, rebuilt, and enlarged to satisfy the needs of an inadequately supplied market

area in California.38

A Wisconsin operator producing a diversity of limestone products ranging from flux stone to filler, as well as dimension stone, introduced plant improvements involving the installation of a large, doubleimpeller, impact breaker as a primary crusher, a heated screen for production of chips, a rotary blasthole drill, and new handling equipment.39

Portable Plants.—A portable agricultural limestone unit was used in conjunction with a permanent plant; it doubled the total output

and improved the quality of the product. 40

A portable operation consisting of 3 units in series produced 400 tons per hour of satisfactory road material from a soft, damp limestone that presented processing problems. The material was hauled 25 miles for use on the Kansas Turnpike.41

One company operated 10 quarries, utilizing both fixed and portable plants, all within a 10-mile radius of a small Iowa town. Although

³³ Herod, B. C., Quality Limestone Products Maintain Steady Growth: Pit and Quarry, vol. 49, No. 5, November 1956, pp. 124-125, 128, 129.
34 Gutschick, K. A., Efficient Drilling and Blasting Overcome Tough Quarry Conditions: Rock Products, vol. 59, No. 12, December 1956, pp. 108, 110, 112.
35 Gutschick, K. A., Heated Screens Step Up Production of Fine Sizes: Rock Products, vol. 59, No. 6, June 1956, pp. 88, 90, 92, 168.
36 Pit and Quarry, Columbia Quarry Company Constructs Large Underground Storage System: Vol. 49, No. 6, December 1956, pp. 100-101.
37 Walter, Leo, Television Saves Money in the Minerals Industry: Rock Products, vol. 59, No. 12, December 1956, pp. 78-81, 126.
38 Utley, Harry F., Pacific Coast Aggregates Crushed-Stone Plant Supplies San Francisco Bay Area: Pit and Quarry, vol. 48, No. 7, January 1956, pp. 125-126.
39 Gutschick, K. A., From Dust to Flux Stone in a 200-Ton-per-Hour Plant: Rock Products, vol. 59, No. 5, May 1956, pp. 108, 110, 112.
49 Gutschick, K. A., Changes in Crushing and Haulage Double Quarry Production: Rock Products, vol. 50, No. 10, October 1956, pp. 134, 136, 146, 148.
48 Rock Products, Kansas Plant Sets Turnpike Crushing Record: Vol. 59, No. 11, November 1956, pp. 66-69, 78, 120. 69, 78, 120.

1117 STONÉ

all were in limestone, drilling patterns varied at each quarry; churn drills were used at some and wagon drills at others.42

The physical characteristics of an underground limestone operation were described. Large stopes and long blastholes were featured. 43

Illustrated details were given of a fully mechanized limestone mine serving a cement plant in California. It operated as a room-

and-pillar mine after conversion from a block-caving system.44

Conversion of open-pit quarrying to underground mining is imperative where the overburden becomes too great for profitable removal, or where public liability in congested areas discourages further stripping and quarrying. A Missouri limestone operator successfully completed the conversion, but many innovations in methods and equipment were required.45

A new plant was erected to supply 3 million tons of crushed stone and stone sand to the St. Lawrence Seaway Projects at a maximum

hourly capacity of 1,000 tons.46

A Bureau of Mines information circular on limestone and dolomite was published.47 It contains information on mining, milling, and

marketing.

The 360-page latest edition of standards on mineral aggregates and concrete was issued by the American Society for Testing Ma-It contains 98 standards, 56 methods, 33 specifications, 7 definitions of terms, and 2 recommended practices. Of the above, many were adopted as recently as 1955.48

The ASTM meeting at Los Angeles, Calif., featured many papers

of timely interest on aggregates, cement, and concrete.49

A paper on crushed-stone base courses for flexible pavements presented before the Southeastern Association of State Highway Officials, evaluated drybound or waterbound macadam and graded

Extruded limestone in the form of brick and tile was studied in Cuba and Hawaii. Results indicate that extruded products may be a means of providing low-cost permanent housing in many parts of the world.51

FOREIGN TRADE 52

The importation of stone into the United States in 1956 increased in nearly all classifications. Imports of marble slabs and paving tiles, rough and dressed granite, and quartzite increased sharply in both quantity and value.

⁴² Rock Products, Iowa Producer Employs Fixed and Portable Plants to Supply County Needs: Vol. 49, No. 6, December 1956, pp. 113, 115.
43 Corre, H. A., Drilling and Blasting at Bell Mine, Pennsylvania: Min. Cong. Jour., vol. 42, No. 1, January 1956, pp. 18-22.
44 Lenhart, W. B., Something New in Stone Mining: Rock Products, vol. 59, No. 8, August 1956, pp. 108, 112, 114, 117.

<sup>112, 114, 117.

41</sup> Houck, L. H., Mining Missouri Limestone: Explosive Eng., vol. 34, No. 6, November-December 1956,

⁴⁴ Houck, L. H., Mining Missouri Limestone: Explosive Eng., vol. 34, No. 5, November-December 1996, pp. 172-179.

46 Herod, Buren C., Four St. Lawrence Seaway Projects Supplied by New Stone Operation: Pit and Quarry, vol. 48, No. 11, May 1956, pp. 80-86.

47 Bowles, Oliver, Limestone and Dolomite: Bureau of Mines Inf. Circ. 7738, 1956, 29 pp.

48 Pit and Quarry, ASTM Issues Handbook of New Specifications for Aggregates, Concrete: Vol. 49, No. 3, September 1956, pp. 7.

48 Rock Products, New Research in Cement and Aggregates: Vol. 59, No. 11, November 1956, pp. 94-96.

50 Gray, Joseph E., Crushed-Stone Base Courses: Crushed Stone Jour., vol. 31, No. 2, June-September 1956, pp. 3-6.

51 Whitaker, L. R., Manufacture of Brick and Tile From Extruded Limestone: Jour. Am. Ceram. Soc., vol. 35, No. 7, July 1956, p. 275.

52 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

Exports of building stone decreased in both quantity and value in 1956, but crushed, ground, or broken stone increased in both tonnage and value compared with 1955. Other manufactures of stone declined slightly in value during 1956.

TABLE 38.—Stone and whiting imported for consumption in the United States, 1955-56, by classes

[Bureau of the Census]

Class	and the	1955	. (19	56
	Quantity	Value	Quantity	Value
Marble, breccia, and onyx: Sawed or dressed, over 2 inches thickcubic feet_ In blocks, rough, etcdo Slabs or paving tilessuperficial feet_ All other manufactures	222, 363 1, 183, 324	1 \$6, 639 1 1, 154, 018 1 842, 242 1 1, 289, 949	900 225, 449 1, 715, 452	1 \$10, 589 1 1, 189, 036 1 1, 232, 619 1 1, 989, 318
Total		1 3, 292, 848		1 4, 421, 562
Granite: Dressed	112, 832 42, 092	¹ 832, 577 ¹ 157, 267	169, 938 68, 028	¹ 1, 090, 126 ¹ 284, 783
number	7, 406	30, 576	5, 168	115, 946
Totalshort tons Quartziteshort tons Travertine stone (unmanufactured)cubic feet	132, 700 89, 983	1 1, 020, 420 389, 181 1 217, 556	246, 613 87, 816	1 1, 490, 855 775, 750 241, 670
Stone (other): Dressed: Travertine, sandstone, limestone, etc.	45 051	25 000		
Rough (monumental or building stone) do. Rough (other) short tons. Marble chip or granito do. Crushed or ground, n. s. p. f	47, 671 4, 983 61, 487 23, 362	27, 262 4, 712 1 193, 734 1 201, 788 1 26, 567	24, 490 3, 957 61, 589 23, 397	38, 309 9, 485 1 199, 787 1 219, 457 1 18, 869
Total		1 454, 063		1 485, 907
Whiting: Chalk or whiting, precipitatedshort tons Whiting, dry, ground, or bolteddo Whiting, ground in oil (putty)do	10, 205 1	45, 038 1 158, 485 1, 153	1, 076 9, 849 1	48, 417 1 144, 707 1 269
Total		1 204, 676		1 193, 393
Grand total		1 5, 578, 744		1 7, 609, 137

 $^{^1\,\}mathrm{Owing}$ to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

TABLE 39.—Stone exported from the United States, 1947-51 (average) and 1955-56

[Bureau of the Census]

	Buildi		c	rushed, grou	ınd, or broke	n	Other
Year	monumer	ntal stone	Lime	stone	Ot	her	manufac- tures of stone
	Cubic feet	Value	Short tons	Value	Short tons	Value	(value)
1947-51 (average) 1952 1953 1954 1955 1956	250, 048 277, 551 411, 196 466, 177 437, 644 344, 210	\$531, 038 648, 832 960, 468 1, 009, 313 1, 024, 299 975, 777	(1) 803, 029 691, 811 570, 013 936, 766 1, 060, 560	(1) \$789, 733 703, 833 702, 526 1, 148, 781 1, 358, 783	(1) 126, 123 153, 105 142, 622 169, 074 175, 364	(1) \$1, 631, 358 2, 204, 139 2, 395, 903 2, 923, 813 2, 890, 139	\$405, 365 314, 502 464, 692 406, 227 394, 228 377, 407

¹ Not separately classified before Jan. 1, 1952.

WORLD REVIEW

Australia.—Limestone production, including that used in cement, totaled over 4 million short tons in 1954, an increase over 1953 of more than one-half million tons.53

Dolomite output totaled 128,000 long tons in 1954, an increase of

28 percent over 1953.54

Canada.—Limestone production in Canada reached a new peak of 23 million tons valued at C\$30 million in 1955, an increase of 20 per-Limestone was the most widely quarried native cent over 1954. stone in 1956. On the Pacific coast it was exported to the United States for use in manufacturing pulp and paper and as metallurgical flux.55

Marble production in Canada increased during 1955 to 63,000 tons valued at C\$526,000. The unit value declined compared with 1954.56

Production of 17,000 tons of whiting substitute in 1955, valued at C\$181,000, was virtually the same in quantity and value as reported

in 1954.57

Finland.—Limestone output increased substantially in 1955 to well over 3 million tons, of which the cement industry utilized over half. Other consumers were cellulose mills, iron and steel mills, and a nitrogen mill. Small quantities of cement were shipped to the U. S. S. R. 58

France.—The output of dolomite in 1954 totaled 26,100 short tons. slightly more than in 1953. Imports totaled 155,000 tons and exports

9,000 tons in 1954.59

New Zealand.—Output of limestone in 1954 totaled 2 million long tons, a slight increase over 1953. Other types of stone totaled 5

million tons.60

Taiwan (Formosa).—In 1955 Taiwan reported an output of slightly over 3,000 metric tons of dolomite, valued at NT\$65,000; limestone produced in Taiwan totaled 987,000 metric tons valued at NT\$19,700,-000 in 1955 compared with 890,000 tons valued at NT\$13,153,000 in (NT\$15.55 equals US\$1.) 61

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 1, July 1956, p. 31.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 6, June 1956, p. 26.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 5, May 1956, p. 31.
Canadian Department of Mines and Technical Survey, Marble in Canada, 1955 (Preliminary): Ottawa,</sup>

³ pp. s' Canadian Department of Mines and Technical Survey, Whiting and Whiting Substitute in Canada,

<sup>Canadian Department of Mines and Technical Survey, which gaid white 1955 (Preliminary): Ottawa, 3 pp.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 4, April 1956, p. 33.
Work cited in footnote 55, p. 27.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 2, February 1956, p. 2.
Work cited in footnote 58, p. 27.</sup>

Strontium

By Albert E. Schreck 1 and Annie L. Mattila 2

ORE STRONTIUM minerals were produced in the United States in 1956 than in any year since 1943. Imports were substantially greater than in 1955, and total consumption of strontium minerals was the highest since 1951.

DOMESTIC PRODUCTION

Output of celestite (SrSO₄) and strontianite (SrCO₃), the two strontium minerals of commercial importance, usually has been small and sporadic; however, in 1956 domestic production rose to over 4,000 tons. The following three firms supplied the entire domestic output: Manufacturers Mineral Co., from a deposit near La Conner, Skagit County, Wash.; Pan Chemical Co., from a mine near Plaster City, San Diego County, Calif.; and Gene De Zan, from a deposit near Ludlow, San Bernardino County, Calif.

Strontium minerals were converted to various primary strontium chemicals at the following plants: Barium Products, Ltd., Modesto, Calif.; E. I. du Pont de Nemours & Co., Grasselli, N. J.; Foote Mineral Co., Philadelphia, Pa.; and Pan Chemical Co., Los Angeles, Calif.

Metal Hydrides, Inc., Beverly, Mass., produced strontium hydride. Strontium metal in small quantities was produced by King Laboratories, Inc., Syracuse, N. Y.

CONSUMPTION AND USES

Most of the domestic strontium-minerals produced were used as a flotation reagent in manganese beneficiation. The strontium-chemical industry relied on foreign sources for its raw material supplies.

Virtually all the strontium minerals imported were converted to various strontium compounds. Because of the characteristic crimson color strontium imparts to a flame, these compounds were utilized in many pyrotechnical applications. Strontium nitrate, oxalate, and peroxide were employed in manufacturing tracer bullets. In this type of bullet a strontium-compound charge in the base of the bullet ignites upon firing and burns during flight. Strontium compounds were also used in manufacturing red highway and railroad-warning fusees and marine and aviation distress-signal rockets and flares. Strontium car-

¹ Commodity specialist.
2 Statistical assistant.

bonate was used in frits and glazes in the ceramic industry and also in preparing high-purity electrolytic zinc, where it was employed to remove lead from the cathode zinc.

Small quantities of strontium compounds were used in medicines, depilatories, greases, metallurgy, plastics, stabilizers, corrosion in-

hibitors, optics, and fused-salt baths.

Strontium metal and alloys in small quantities were utilized as "getters" for extracting the last traces of gases from electronic tubes.

PRICES

According to Oil, Paint and Drug Reporter, strontium sulfate (celestite), air-floated, 90 percent, 325-mesh, bags, works, was quoted at \$56.70 to \$66.15 per ton during 1956. This price remained unchanged from previous years. Strontium carbonate, pure, drums, 5-ton lots or more, was quoted at 35 cents per pound; 1-ton lots, works, 37 cents per pound; Technical grade, drums, works, 19 cents per pound. Strontium nitrate, barrels, carlots, works, \$11 per 100 pounds; less than carlots, works, \$12 per 100 pounds.

The average unit foreign value of imported strontium minerals

during 1956 was \$20.29 per short ton.

FOREIGN TRADE³

Strontium-mineral imports increased substantially over 1955; the greatest part came from the United Kingdom and Mexico. A small

quantity was imported from Italy.

Imports of precipitated strontium carbonate and strontium oxide totaled 4,820 pounds valued at \$900. Of this, 4,000 pounds valued at \$418 originated in the United Kingdom and 820 pounds valued at \$482 came from Italy.

TABLE 1.—Strontium minerals ¹ imported for consumption in the United States 1954-56, by countries, in short tons

[Bureau of the Census]

1954 1955 1956 Country Short Value Short Value Short Value tons tons tons North America: Mexico. 1,906 \$24, 887 2,072 \$27,400 2, 313 \$28, 225 Europe: 1,646 United Kingdom... 1, 385 28, 397 4,053 100, 781 7, 119 161, 676 1,385 28, 397 4,053 100, 781 7, 126 163, 322

53, 284

6, 125

128, 181

9, 439

191, 547

3, 291

¹ Strontium or mineral strontium carbonate and celestite or mineral strontium sulfate.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TECHNOLOGY

A method for preparing a monocrystalline boule of strontium titanate was patented. Powdered strontium titanate is introduced into a stream of oxygen, which is surrounded by a stream of hydrogen to produce a flame, with an oxygen cone and a temperature of 2,080° to 2,150° C. in the cone. The strontium titanate is melted at this temperature, crystallized adjacent to the oxygen cone, and recovered as a monocrystalline mass.

A highly refractive, glasslike material is formed if about 0.005 to about 3.0 percent by weight of molybdenum oxide, tungsten oxide, or uranium oxide is mixed with the titanate and melted by this

procedure to form a monocrystalline boule.

WORLD REVIEW

Strontium-mineral production in 1956 was reported in the United Kingdom, Mexico, and Italy. Production data were not available, but based on United States imports (see table 1) output appeared to have increased substantially in the two major producing countries, United Kingdom and Mexico.

TABLE 2.—World production of strontium minerals, by countries, 1951-55, in short tons

Country	1951	1952	1953	1954	1955
Canada ¹	38 2, 034 152 474 18, 312	59 28 1, 297 482 34 9, 072	2, 441 918 3, 321 50	(2) 1, 906 391 2, 352 12	(2) 2, 072 486 5, 320 177
Total	21,010	10, 972	6, 773	4, 661	8, 055

¹ Based on United States imports.

² Data not available.

⁴ Merker, Leon, New York, N. Y. (assigned to National Lead Co., New York, N. Y., a corporation of New Jersey), Refractive Material: U. S. Patent 2,764,490, Sept. 25, 1956.

Sulfur and Pyrites

By Leonard P. Larson 1 and Annie L. Mattila 2

URING 1956 it became apparent that large enough supplies of sulfur were available to meet the high level of world demand. Domestic production, consumption, and stocks of sulfur increased during the year. Exports of sulfur from the United States continued high, despite increased competition from Mexican producers in world markets. United States producers also faced increased competition in home markets, as Mexican producers sought new outlets for their increased output.

Progress was made in developing Frasch-producing facilities in the United States and Mexico. Substantial gains were made in recovering sulfur from natural and industrial gases in the United States and

DOMESTIC PRODUCTION

Continuing the upward trend started in 1954, new highs were reached in the production and consumption of sulfur during 1956. The output of sulfur in all forms increased 11 percent over the previous year's record total of 7 million tons. Of the production of primary sulfur in 1956, approximately 83 percent was native sulfur, 6 percent recovered sulfur, 6 percent in pyrites, 4 percent in smelter acid, and 1 percent in other forms. The output of sulfur recovered from the hydrogen sulfide contained in natural and industrial gases continued to increase during the year, exceeding by 5 percent the percentage growth of Frasch sulfur.

Despite the increased competition offered by Mexican producers in domestic and foreign markets, the output of Frasch sulfur in the United States reached a record 6 million long tons, 12 percent higher

TABLE 1.—Salient statistics of the sulfur industry in the United States, 1947-51 (average) and 1952-56 (in long tons of sulfur content)

	1947-51 (average)	1952	1953	1954	1955	1956
Production (all forms) Imports (pyrites and sulfur) Producers' stocks (Frasch and recovered sulfur) Exports (sulfur) Apparent domestic consumption (all forms)	5, 639, 390 75, 858 23, 037, 463 1, 379, 294 4, 507, 930	6, 284, 191 146, 863 23, 163, 517 1, 338, 367 4, 832, 300	6, 247, 971 92, 229 3, 129, 830 1, 271, 011 5, 049, 400	135, 128 23, 337, 086 1, 675, 130	17, 026, 778 1 206, 188 23, 301, 465 11, 635, 652 15, 625, 400	7, 818, 112 378, 526 34, 055, 896 1, 675, 331 5, 735, 400

Canada.

Revised figure.
 Frasch sulfur only.
 Frasch and recovered sulfur.

¹ Commodity specialist.

Statistical assistant.

TABLE 2.—Production of sulfur and sulfur-containing raw materials by producers in the United States, 1947-51 (average) and 1952-56, in long tons

	1956	Gross Sulfur content	978 6, 423, 883 6, 423, 883 902 212, 476 60, 402	6.484	466, 848	464,	26 1, 069, 904 431, 687	30 1, 064, 406 347, 954 102, 300 89, 428	7.
	1955	Sulfur	5, 738,	5, 799, 880	398, 601	 	3 409,826	324, 580	27, 026, 778
		Gross	5, 738, 978 199, 899		400, 754		1,006,943	992, 903 106, 129	
	1954	Sulfur content	5, 514, 640 64, 333	5, 578, 973	359, 135 136	359, 271	405, 310	258, 600 73, 046	6, 675, 200
	31	Gross weight	5, 514, 640 214, 157		361, 107 284		908, 715	791, 049 85, 255	
	1953	Sulfur	5, 155, 342 38, 257	5, 193, 599	340, 827 833	341,660	379, 545	253,000 80,167	6, 247, 971
in tong toms	16	Gross weight	6, 155, 342 151, 819		342, 297 1, 723		922, 647	775, 069 92, 787	
	1952	Sulfur	5, 293, 145 2, 197	5, 295, 342	249, 388 1, 810	251, 198	418, 139	253, 000 66, 512	6, 284, 191
	19	Gross weight	5, 293, 145 8, 536		250, 428 3, 859		994, 342	774, 177	
	1947–51 (average)	Sulfur content	4, 905, 174 1, 261	4, 906, 435	91, 356 2, 857	94, 213	397, 017	204, 538 37, 187	5, 639, 390
	1947–51 (Gross weight	4, 905, 174 3, 773	1	91, 567 6, 243		941, 301	626, 054 42, 337	
			Native sulfur or sulfur ore: From Frasch-process mines From other mines 1.	Total native sulfur	Recovered elemental sulfur: Brimstone.	Total recovered elemental sulfur.	Pyrites (including coal brasses) Byproduct sulfuric acid (basis 100 percent) produced at Cu. Zn. and	Pb plants. Other byproduct sulfur compounds 2.	Total equivalent sulfur

1 Sulfur content estimated for 1947-52. 2 Revised figure.

8 Hydrogen sulfide and liquid sulfur dioxide. In addition, a quantity of acid sludge is converted to H.SO., but is excluded from the above figures.

than in 1955. According to monthly reports submitted to the Bureau of Mines, United States Department of the Interior, the production of sulfur rose from 476,313 tons in February to a high of 621,103 tons in July and then gradually declined to 514,772 tons in November.

Except for the last quarter of the year, the monthly production in 1956 exceeded that in the corresponding periods of the previous year. Of the total quantity of Frasch sulfur produced in the United States during the year, Texas contributed 62 percent and Louisiana 38

percent.

Texas Gulf Sulphur Co., the Nation's leading producer, operated three mines in Texas, at Boling, Moss Bluff, and Spindletop domes; its production exceeded that for any previous year in its history, the output from Spindletop being the highest since operations were begun in 1952. Shipments declined 8 percent in 1956 owing primarily to a decrease in export trade and, to a lesser degree, to the lowering of demand during the steel strike. A reduction in the requirements of the fertilizer industry and the longshoremen strike in the fall also contributed to the decline. Plans were completed for constructing a 2-million-gallon-per-day sulfur plant at the Fannett dome, Jefferson County, Tex. Production was scheduled to begin in 1958. Exploratory drilling of lands leased from Texas in the Gulf of Mexico disclosed the existence of sulfur but was insufficient to delineate the size of the

deposit.

Freeport Sulphur Co., the country's second-ranking producer, operated mines in Louisiana at Grande Ecaille, Bay Ste. Elaine, Chacahoula, and Garden Island Bay; and in Texas at Hoskins Mound The company produced a record tonnage of sulfur and Nash domes. in 1956 (16 percent over 1955), primarily because of full-scale operation at Grande Ecaille and expanded activities at Garden Island Bay. Nash dome—a small, high-cost producer—was closed by the company Engineering and development work was continued in November. An agreement was concluded with the Humble Oil & at Lake Pelto. Refining Co. under which Freeport obtained the rights to a major new sulfur deposit designated as Grand Isle Block 18. The rights to this deposit were originally acquired by the Humble Oil & Refining Co. under leases executed by Louisiana and later confirmed by the United Approval of the assignment of these leases to Freeport Sulphur was requested of the United States Department of the Interior.

Duval Sulphur & Potash Co. continued its operation of Orchard dome during the year. Jefferson Lake Sulphur Co. produced sulfur at Starks dome in Louisiana and Clemens and Long Point domes in Standard Sulphur continued to operate its mine at Damon Texas.

Mound dome.

Sulphur Products, Inc., increased its production of soil sulfur from its open-pit mine at Sulphur, Nev., four-fold during 1956. Production facilities were scheduled to be increased 500 percent upon completion of the new mill then under construction. Sulfur from the mine was being shipped to Arizona, Washington, Idaho, California, and Oregon.³
Sulfur Exploration Co., Houston, Tex., began constructing a new

sulfur plant with a daily capacity of 300 tons at High Island on land

³ Western Mining and Industry News, vol. 24, No. 1, January 1956, p. 31.

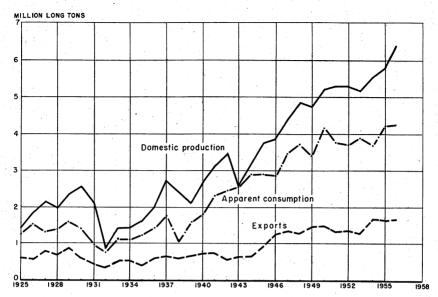


Figure 1.—Domestic production, apparent consumption, and exports of native sulfur, 1925-56.

TABLE 3.—Sulfur produced and shipped from Frasch mines in the United States, 1947-51 (average) and 1952-56

	Pro	duced (long t	Shipped		
Year	Texas	Louisiana	Total	Long tons	Approxi- mate value
1947-51 (average)	3, 791, 142 3, 784, 595 3, 514, 771 3, 505, 087 3, 657, 717 3, 994, 393	1, 114, 032 1, 508, 550 1, 640, 571 2, 009, 553 2, 081, 261 2, 429, 490	4, 905, 174 5, 293, 145 5, 155, 342 5, 514, 640 5, 738, 978 6, 423, 883	5, 017, 828 5, 141, 392 5, 224, 202 5, 328, 040 5, 839, 300 5, 675, 913	\$94, 460, 000 110, 925, 000 141, 054, 000 142, 014, 000 163, 156, 000 150, 356, 000

TABLE 4.—Sulfur ore (10-70 percent S) produced and shipped in the United States, 1947-51 (average) and 1952-56, in long tons ¹

Year	Produced	Shir	ped
	(long tons)	Long tons	Value
1947–51 (average) 1952 (estimated) 1953 1954 1955 1956	3, 773 8, 536 151, 819 214, 157 199, 899 212, 476	3, 717 4, 686 152, 473 185, 085 199, 899 185, 532	\$66, 612 91, 310 769, 140 1, 507, 429 1, 697, 052 1, 577, 857

 $^{^1}$ California, Colorado (1948–49 only), Nevada (except 1954), Texas (1948 only), Utah (1952 only), and Wyoming (except 1948 and 1953–56).

leased from the Standolind Oil Co. Initial cost of the installation has been estimated at \$1,500,000.

Wyoming Gulf Sulphur Corp. announced plans for constructing a new mill at its property near Thermopolis, Hot Springs County, Wyo.⁵

RECOVERED ELEMENTAL SULFUR

Output of recovered elemental sulfur increased steadily after the sulfur shortage, which developed in 1950-52, gave it new impetus; this trend continued in 1956, when production reached a record 464,629 tons—17 percent more than in the previous year. Production, shipments, and apparent sales were consistently higher during the year, compared with corresponding months of the previous year, reaching the apex of production in December, when 43,750 tons was

recovered from natural and oil-refinery gases.

During the year the brimstone-production capacity of plants utilizing hydrogen sulfide from oil refineries was augmented by the following new installations: Great Northern Oil Co., Pine Bend, Minn.; Montana Sulphur & Chemical Co., Billings, Mont.; and Aurora Gasolene, Detroit, Mich. In addition to the new construction, existing facilities at the following plants were expanded: Freeport Sulphur Co., Westville, N. J.; Hancock Chemical Co., Long Beach, Calif.; Sinclair Refining Co., Marcus Hook, Pa.; Gulf Oil Co., Port Arthur, Tex.; and Union Oil Co. of California, Santa Maria, Calif. New installations constructed during the year for recovering

New installations constructed during the year for recovering elemental sulfur from sour natural gas include the plants of J. L. Parker, Levelland, Tex.; Signal Oil & Gas Co., Tioga, Wyo.; and

Standolind Oil & Gas Co., Odessa, Tex.

PYRITES

Production of pyrites in the United States increased for the third consecutive year, reaching a new high of 1.1 million long tons, 5 percent above the previous high established in 1951. Only a relatively small portion of production was sold on the open market, the greater portion being consumed by the producing unit. In 1956 the producing companies consumed 932,622 long tons in acid manufacture and sold 170,099 long tons. Most of the pyrites was produced in the eastern United States, particularly in Tennessee, where the Tennessee Copper Co. produced pyrites from its mines at Copperhill. The minerals mined by the company were utilized in manufacturing sulfuric acid and a variety of other products. The General Chemical Division of Allied Chemical & Dye Corp. produced a substantial tonnage of pyrite at the Cliffview mine, Carroll County, Va., for the manufacture of sulfuric acid. In Lebanon County, Pa., Bethlehem Steel Corp. recovered pyrites at its concentration plant. Appalachian Sulfides, Inc., produced pyrites at its Elizabeth mine in Orange County, Vt. In the West a substantial tonnage was produced by the Mountain

In the West a substantial tonnage was produced by the Mountain Copper Co., Ltd., at the Hornet mine in Shasta County, Calif. In Colorado pyrites was recovered by the Rico Argentine Mining Co. at the Mountain Springs mine, Dolores County, and by Climax Molybde-

⁴ Pit and Quarry, vol. 48, No. 7, January 1956, p. 36. ⁸ Mining Record, vol. 67, No. 33, Aug. 16, 1956, p. 3.

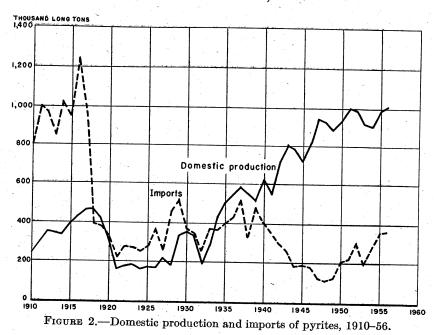


TABLE 5.—Pyrites (ores and concentrates) produced in the United States, 1947-51 (average) and 1952-56, in long tons

jun.	Quar	ntity			Quar	ntity	
Year	Gross weight	Sulfur content	Value	Year	Gross weight	Sulfur	Value
1947-51 (average) 1952 1953	941, 301 994, 342 922, 647	396, 888 418, 139 379, 545	\$4, 127, 800 4, 947, 000 5, 007, 000	1954	908, 715 11, 006, 943 1, 069, 904	1 409, 826	\$7, 159, 000 18, 391, 000 10, 062, 200

¹ Revised figure.

num Co. from its operations in Lake County. The Anaconda Co. produced pyrites at its Butte, Mont., mines.

In 1956 Tennessee was the largest producing State, followed by Virginia, California, Colorado, Montana, Vermont, and Pennsylvania.

BYPRODUCT SULFURIC ACID

Stimulated by the rise in acid consumption by local industries, the production of byproduct sulfuric acid at copper, lead, and zinc plants in the United States reached a record high of 1.2 million short tons (100 percent H₂SO₄) during 1956—7 percent greater than in 1955. Of this total, 807,477 tons or 67 percent was recovered at zinc plants and the balance at copper and lead smelters. The increase in production over 1955 apparently was due to more complete use of existing capacity. Production of acid at copper and lead plants increased 17 percent during the year.

In the last quarter of 1956 Garfield Chemical & Manufacturing Corp., a subsidiary of the American Smelting and Refining Co. and the

Kennecott Copper Corp., began production from a fifth contact sulfuric acid unit at Garfield, Utah. Addition of the new 250-tonper-day unit increased plant capacity to approximately 384,000 tons a year.

In 1956 acid was produced at 17 plants in California, Idaho, Illinois, Indiana, Kansas, Montana, Ohio, Oklahoma, Pennsylvania, Tennessee, Texas, Utah, and Washington.

TABLE 6.—Byproduct sulfuric acid ! (basis, 100 percent) produced at copper. zinc, and lead plants in the United States, 1947-51 (average) and 1952-56, in short tons

	1947-51 (a verage)	1952	1953	1954	1955	1956
Copper plants ² Zinc plants ³	131, 055 570, 126	202, 364 664, 714	231, 213 636, 864	273, 725 612, 250	329, 114 782, 938	384, 659 807, 477
Total	701, 181	867, 078	868, 077	885, 975	1, 112, 052	1, 192, 136

¹ Includes acid from foreign materials.

² Excludes acid made from native sulfur.

OTHER BYPRODUCT SULFUR COMPOUNDS

In addition to elemental sulfur, small quantities of sulfur dioxide and hydrogen sulfide were recovered from industrial gases. Almost all of the hydrogen sulfide was recovered at oil refineries, whereas the entire production of sulfur dioxide was obtained from smelter gases. In 1956 hydrogen sulfide and/or sulfur dioxide was produced in California, Tennessee, Pennsylvania, Louisiana, and New Jersey.

CONSUMPTION AND USES

Domestic consumption of sulfur in all forms, including imports of Canadian pyrites and of sulfur from Mexico, reached a record total of 5.7 million tons, a 2-percent increase over 1955. Most of the sulfur consumed was used in the production of 15.7 million short tons of acid (100 percent H_2SO_4).

TABLE 7.—Apparent consumption of native sulfur in the United States, 1947-51 (average) and 1952-56, in long tons

		 				
	1947-51 (average)	1952	1953	1954	1955	1956
Apparent sales to consumers ¹ _ Imports	5, 091, 561 497	5, 061, 722 4, 863	5, 201, 711 1, 229	2 5, 373, 439 1, 214	3 5, 846, 702 3 34, 627	¹ 5, 730, 800 203, 300
Total	5, 092, 058	5, 066, 585	5, 202, 940	5, 374, 653	3 5, 881, 329	5, 934, 100
Exports: Crude Refined	1, 344, 332 34, 962	1, 304, 154 34, 213	1, 241, 536 29, 475	1, 645, 000 30, 130	3 1, 600, 951 34, 701	1, 651, 325 24, 006
Total	1, 379, 294	1, 338, 367	1, 271, 011	1, 675, 130	³ 1, 635, 652	1, 675, 331
Apparent consumption	3, 712, 764	3, 728, 218	3, 931, 929	3, 699, 523	3 4, 245, 677	4, 258, 769

² Includes acid produced at a lead smelter. Excludes acid made from pyrites concentrate in Montana and Tennessee

Production adjusted for net change in stocks during the year.
 Includes native sulfur from mines that do not use the Frasch process. A small quantity was consumed prior to 1954, however, this tonnage was not included in the above figures.
 Revised figure.

TABLE 8.—Apparent consumption of sulfur in all forms in the United States, 1947-51 (average) and 1952-56, in long tons ¹

	1947-51 (average)	1952	1953	1954	1955	1956	
Native sulfur 2	3, 712, 770	3, 728, 200	3, 931, 900	3, 699, 500	³ 4, 245, 700	4, 258, 800	
Recovered sulfur shipments	81, 121	224, 500	313, 800	342, 300	380, 100	432, 300	
Pyrites: Domestic production Imports	397, 035	418, 100	379, 500	405, 300	³ 409, 800	431, 700	
	75, 369	142, 000	91, 000	133, 900	171, 500	175, 200	
Total pyrites	472, 404	560, 100	470, 500	539, 200	³ 581, 300	606, 900	
Smelter acid production	204, 493	253, 000	253, 000	258, 600	324, 600	348, 000	
Other production 4	37, 142	66, 500	80, 200	73, 000	93, 700	89, 400	
Total	4, 507, 930	4, 832, 300	5, 049, 400	4, 912, 600	³ 5, 625, 400	5, 735, 400	

¹ Crude sulfur or sulfur content.
² In addition a small quantity of native sulfur from mines that do not use the Frasch process was consumed, however, this tonnage was not included in the above figures before 1954.

Revised figure.
 4 1948-49, hydrogen sulfide; 1950-56, hydrogen sulfide and liquid sulfur dioxide. In addition, a quantity of acid sludge is converted to H₂SO₄ but is excluded from the above figures.

TABLE 9.—Production of new sulfuric acid (100 percent H₂SO₄) by geographic divisions and States, 1952-56, in short tons

	e Census!

Division and State	1952	1953	1954 1	1955 1	1956 1
New England 2	172, 157	190, 456	169, 880	183, 698	201, 758
Middle Atlantic: Pennsylvania New York and New Jersey		798, 484 1, 504, 408	713, 074 1, 441, 943	855, 913 1, 547, 113	815, 016 1, 577, 476
Total Middle Atlantic	2, 090, 391	2, 302, 892	2, 155, 017	2, 403, 026	2, 392, 492
North Central: Illinois Indiana. Michigan Ohio Other 3	196, 120 624, 184	1, 131, 632 487, 892 226, 254 661, 492 548, 985	1, 257, 759 440, 166 217, 888 656, 226 536, 234	1, 305, 576 562, 315 261, 493 745, 051 720, 435	1, 272, 453 519, 853 220, 604 714, 454 789, 369
Total North Central	2, 836, 019	3, 056, 255	3, 108, 273	3, 594, 870	3, 516, 733
South: Alabama Florida. Georgia. North Carolina South Carolina Virginia. Kentucky and Tennessee. Texas. Delaware and Maryland Louisiana. Other 4.	159, 469 197, 323 550, 742 841, 555 1, 086, 957 1, 221, 445 505, 768 459, 972	306, 565 900, 099 229, 104 163, 762 188, 514 532, 003 857, 874 996, 601 1, 210, 674 602, 858 437, 816	269, 576 1, 185, 883 212, 732 142, 048 163, 373 463, 897 944, 404 1, 212, 530 1, 203, 399 730, 021 467, 898	243, 024 1, 233, 281 256, 075 152, 159 160, 711 537, 095 974, 827 1, 477, 179 1, 353, 567 788, 311 459, 035	251, 314 1, 497, 155 339, 751 137, 127 146, 046 527, 257 1, 035, 739 1, 552, 202 1, 325, 004 782, 330 402, 121
Total South	6, 294, 833	6, 425, 870	6, 995, 761	7, 635, 264	7, 996, 046
West 5	951, 928	1, 051, 435	1, 127, 560	1, 502, 502	1, 630, 319
Total United States	12, 345, 328	13, 026, 908	13, 556, 491	15, 319, 360	15, 737, 348

Includes information for Government-owned and privately operated plants.
 Includes data for plants in Maine, Rhode Island, Massachusetts, and Connecticut.
 Includes data for plants in Missouri, Wisconsin, Iowa, and Kansas.
 Includes data for plants in West Virginia, Mississippi, Arkansas, and Oklahoma.
 Includes data for plants in Arizona, California, Colorado, Idaho, Nevada (1956 only), New Mexico (1956 only), Montana, Utah, Washington, and Wyoming.

TABLE 10.—Estimates of principal nonacid uses of sulfur and pyrites (sulfur equivalent) in the United States, 1954-56, in thousand long tons

[Chemical Engineering]

	Use	1954	1955	1956
Wood pulp 1 Carbon bisulfide Other chemicals, dyes Insecticides, fungicides Rubber		400 215 90 100 75	425 300 125 125 80 195	45 27 13 13 8 17
Total		1,015	1, 250	1, 24

¹ Includes an estimated 10,000 tons of S equivalent in pyrites used in making sulfite liquor.

TABLE 11.—Estimates of United States use of sulfuric acid 1 (basis, 100 percent), 1954-56, in thousand short tons

[Chemical Engineering]

Industry	1954	1955	1956 2	Industry	1954	1955	1956 2
Fertilizers: Superphosphate Ammonium sulfate Chemicals Petroleum refining Inorganic pigments Rayon and film	4, 060 1, 320 3, 880 1, 770 1, 300 620	4, 650 1, 650 4, 195 1, 800 1, 400 750	4, 650 1, 600 4, 350 1, 900 1, 450 850	Iron and steel	850 220 400 30 650 15, 100	1, 160 248 450 30 675 17, 008	1, 265 265 475 30 675 17, 510

¹ Recycled acid, including reused, concentrated, fortified, and reconstituted acid is estimated at about 1,900,000 short tons in 1954, 2,024,000 tons in 1955, and 1,822,000 tons in 1956.

3 Chemical Engineering estimate.

3 Includes estimated total acid going into military explosives. About 36 goes later into recycled acid.

STOCKS

On December 31, 1956, producers of Frasch sulfur had a total of 3,934,683 long tons of sulfur in stock. Of this, 3,583,075 tons was at the mine, and 351,608 tons was in transit or elsewhere. At the end of 1955 producers of Frasch sulfur held 3,181,198 tons; therefore, inventories were increased almost 24 percent during 1956. Stocks of recovered sulfur totaled 121,213 tons at the end of 1956 compared with 120,267 tons at the end of 1955. No pyrite inventory statistics were available.

PRICES

In 1956 sulfur was quoted in E&MJ Metal and Mineral Markets at \$26.50, f. o. b. Texas mines, and Canadian pyrites at \$9-\$11 delivered to consumer's plant. Oil, Paint and Drug Reporter quoted crude sulfur bulk, carlot, mines, contract, long tons, at \$26.50; export f. o. b. vessel, Gulf ports, \$28-\$33; domestic and Canadian f. o. b. vessel, Gulf ports, \$28; Canadian pyrites (works), \$3-\$5 per long ton.

FOREIGN TRADE 6

Near record quantities of sulfur were exported by United States sulfur producers during 1956, despite predictions that the tonnage shipped to foreign markets would decline with the expansion of Mexican sulfur output. Sulfur exports increased slightly over the previous year, reaching a total of 1,675,331 long tons, only slightly less than the record high established in 1954. Imports of elemental sulfur, as shown in table 12, rose substantially during the year as receipts from Mexico increased sharply. Except for 18 long tons mported from Spain, all of the 365,816 tons of imported pyrites was rom Canadian producers.

TABLE 12.—Sulfur imported into and exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

		In	ports			Exports			
Year	Ore			ny form, . e. s.	Cr	ude	Crushed, ground, refined, sublimed, and flowers		
	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	
1947-51 (average)	4, 829 525 110 24, 152	\$18, 917 98, 581 18, 456 2, 289 595, 485 358, 893	121 34 704 1, 104 2 10, 475 188, 550	\$18, 677 7, 545 32, 658 1 55, 958 2 264, 172 4, 975, 324	1, 344, 332 1, 304, 154 1, 241, 536 1, 645, 000 21, 600, 951 1, 651, 325	\$29, 073, 697 33, 515, 359 34, 553, 709 50, 361, 661 248, 707, 725 48, 303, 645	34, 962 34, 213 29, 475 30, 130 34, 701 24, 006	\$1, 994, 690 2, 451, 132 2, 019, 670 2, 161, 979 2, 453, 756 1, 775, 121	

Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable to years before 1954.
 Revised figure.

⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 13.—Sulfur exported from the United States, 1955-56, by countries of destination

[Bureau of the Census]

		Cru		ie Censusj	Crushed	ground,	refined, sul	blimed,
Country	19	55	1	956	198		195	
	Long	Value	Long	Value	Pounds	Value	Pounds	Value
	tons		tons				1	
North America: Canada	348, 339	\$9, 956, 607	406, 400	\$11, 938, 649	7, 337, 215	\$310. 4 61	6, 345, 661	\$278, 729
Central America			39	1, 861	440, 126 2, 804, 777	19, 079 92, 759 8, 499	566, 461 367, 076 240, 472	\$278, 729 25, 258 37, 921
Mexico West Indies	3, 646 19, 200	127, 570 572, 931	20, 703	581, 400	2, 834, 777 273, 064	92, 759 8, 499	240, 472	10, 968
Total	371, 185	10, 657, 108	427, 142	12, 521, 910		430, 798	7, 519, 670	352, 876
South America:								
Argentina Brazil Colombia	9, 842 75, 502 89	301, 352 2, 303, 390 4, 280	44, 495 87, 962	1, 359, 643 2, 540, 262	150, 300 1, 124, 997 512, 871	32, 841 102, 600 29, 711	657, 484 1, 029, 831	66, 758 48, 882
EcuadorParaguay			132	4,026	5, 007, 132	130, 462	77, 350 82, 700 2, 129, 152	4, 020 3, 883 52, 372
Peru Uruguay	6, 516	202, 993	2, 739	87, 231			44,000	2, 400 56, 068
Venezuela	1.380	49, 574	1, 483	50, 987	198, 956	20, 910	1, 292, 718	
Total Europe:	93, 329	2, 861, 589	136, 811	4. 035, 149	6, 994, 166	316, 524	5, 313, 235	234, 383
Austria Belgium-Luxem-	6, 120	216, 595	21, 216					
bourg	73, 199 127, 360 39, 048	2, 356, 967 4, 000, 510 1, 201, 788	55, 103 147, 470 43, 700	2, 038, 169 4, 274, 560	145, 650	9, 327	80,000	2, 100
France Germany, West	39, 048	1, 201, 788	43, 700	1. 239, 000	277,000	54, 860	313, 500	58, 917
Greece		332, 258			28, 372, 250 32, 350	562, 119 5 931	21, 347, 232 76, 500	409, 658 9, 950
Netherlands Norway	10, 718	332, 238			28, 372, 250 32, 350 350, 000	15, 076	313, 500 21, 347, 232 76, 500 80, 000	2,080
Portugal					72, 900	11, 993 31, 959	57, 200 36, 000	9, 235 7, 439
Sweden Switzerland	61, 822	1, 916, 482	43, 213	1. 249. 592	240, 850 266, 070	33, 096	166, 500	33, 738
United Kingdom	1 297, 715	1 9, 082, 985	323, 844	1, 249, 592 8, 989, 743				
Yugoslavia Other Europe	21, 022	671, 731	31, 344	972, 528	6, 629, 200 39, 600	198, 284 8, 255	72, 800	12, 812
Total	1 637, 004	1 19, 779, 316	665, 890	19, 548, 158	36, 425, 870	930, 900	22, 229, 732	545, 929
Asia: India	75, 215	2, 335, 515	66, 081	1, 879, 990	13, 245, 954	370, 546	12, 805, 021	348, 223
Indonesia	8, 190	253, 495	6, 380	186, 680	1 348.150	17, 224	381,000	25, 058
Israel	400	12, 400	23, 256	664. 112	179, 545 37, 950	6, 231	12, 805, 021 381, 000 118, 192 43, 000	6, 513 7, 965
Japan Korea, Republic of			393		3,64 0,316	94,097	1, 720, 303	40, 592
Lebanon				42, 318	393, 690 151, 8^6	9, 320 3, 965	109, 480	2, 481
Pakistan Philippines	1, 619 3, 600	56, 852 152, 556	1, 151 1, 128	54, 501	226, 129 850, 310	9, 210	381. 877	20, 700
Syria					850, 310	19, 205 19, 694	1.044.336	28, 123
Turkey Other Asia	4, 417	157, 219	6, 392	234, 065	362, 545 612, 565	13, 650	18, 400 307, 712	4, 315 7, 987
Total	93, 441	2, 968, 037	104, 781	3, 077, 586	20, 048, 960	570, 033	16, 929, 381	491, 957
Africa:	10,000	979 000	19, 335	559, 380				
Algeria Egypt	12, 000 787	372, 000 26, 378	3,048		1, 501, 091	29, 462	17, 100	2, 907
French Morocco Tunisia	7, 500 12, 000	232, 500 372, 000	12, 325					
Union of South		i		1	1.	100 516	098 450	67, 670
AfricaOther Africa	78, 500 2, 000	2, 363, 770 62, 000	71, 500 3, 000		971, 759	108, 516	936, 450	
Total	112, 787	3, 428, 648	109, 208	3, 197, 368	2, 472, 850	137, 978	953, 550	70, 577
Oceania:	474 107	E 969 F10	191 609	2 479 090	250, 350	35, 411	153, 600	34, 195
Australia New Zealand	174, 137 119, 068	5, 363, 519 3, 649, 508		3, 472, 039 2, 458, 435	682, 360	32, 112	674, 779	45. 204
Total	293, 205	9, 013, 027	207, 493			67. 523	828, 379	79, 399
Grand total	11, 6 00, 951	148, 707, 725	1, 651, 325	48, 303, 645	77, 729, 738	2, 453, 756	53, 773, 947	1, 775, 121

¹ Revised figure.

TABLE 14.—Pyrites, containing more than 25 percent sulfur, imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries

			[Bur	Bureau of the Census]	Census]							
Country	1947-51 (average)	average)	19	1952	1953	83	1954	54	1955	25	1956	ي ا
	Long tons Value	Value	Long tons Value	Value	Long tons	Value	Long tons	Value 1	Long tons Value Long tons Value Long tons Value	Value 1	Long tons	Value 1
North America: Canada Mexico	139, 701	\$304, 145	295, 820	\$865, 547	190, 227	\$662, 566	1	2 46, 649 2 \$292, 025		2 80, 305 2\$519, 756	\$ 73, 278	2 \$479, 590
Total	139, 701	304, 145	295, 820	865, 547	190, 474	663, 319	46, 649	292, 025	80, 305	519, 756	73, 278	479, 590
Europe: Gernany, West		,			©	182	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Portugal Spain	17, 262	533 46, 492	227	16, 267							18	360
Total Oceania: Australia	17, 326	47, 037 48	227	16, 267	(3)	182			- 1 1		18	360
Grand total	157, 031	351, 230	296, 047	881, 814	190, 474	663, 501	2 46, 649	2 46, 649 2 292, 025	2 80, 305	2 519, 756	2 73, 296	\$ 479,950

1 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable to years before 1954.

In addition to data shown an estimated 222,620 long tons (\$627,620) were imported in 1954; 277,860 long tons (\$711,740) in 1955; 292,520 long tons (\$865,020) in 1956, all from Canada.

* Less than 1 ton.

TABLE 15.—Pyrites, containing more than 25 percent sulfur, imported for consumption in the United States, 1947-51 (average) and 1952-56, by customs districts, in long tons

[Bureau of the Census]

Customs district	1947-51 (average)	1952	1953	1954	1955	1956
Buffalo	127,964	295, 626	172, 375	1 30, 594	1 38, 954	1 30, 214
ChicagoConnecticut	14					18
Oblinth and Superior	9 1 68	227	(2)	260	24, 348	25, 188
Philadelphia	28,935				682	76
RochesterSt. Lawrence	10	194	2, 656 15, 443	7, 115 8, 680	8, 973 7, 348	10, 032 7, 063
Vermont Washington						18
Total	157, 031	296, 047	190, 474	1 46, 649	1 80, 305	1 73, 296

¹ In addition to data shown an estimated 232,920 long tons was imported through Buffalo customs district in 1954; 277,020 long tons through Buffalo customs district and 840 long tons through Michigan customs district in 1955; and 292,520 long tons through Buffalo customs district in 1956. 2 Less than 1 ton.

TECHNOLOGY

The efficiency of sulfur recovery from H₂S has been increased by use of a mass spectrometer, which automatically determines the H₂S content of feed gases, permitting accurate control of the admixture

Broken Hill Associated Smelters Pty., Ltd., at Port Pirie, South Australia, reconstructed its sintering machine and exhaust system to recover the SO₂ contained in the sinter gases. By using an upward flow of air through the charge bed instead of the customary downward flow, a gas averaging 6½ percent SO2 was obtained. Sulfur from the sintered gases was recovered at the rate of 16,000-18,000 tons a year.8

A method was developed by the chemical research laboratory of the Department of Scientific and Industrial Research of La Port chemicals whereby approximately 2 tons of selenium sludge per year is recovered from the flash roasting of cu-pyrites.9

A pilot plant was constructed at Niles, Ohio, by a group of steel companies for disposing of steel-plant waste acid by the Blaw-Knox Ruthner process. Waste sulfate liquors will be converted to sulfuric acid and iron oxide.10

An amine-cured resin-based paint, used for sulfuric acid rail tank cars in Southern Australia, was reported to be in better condition after 18 months of service than ordinary paint at 6 to 9 months. 11 In tests conducted in England, dicumyl peroxide, used as a replace-

ment for sulfur in vulcanizing natural rubber, gave good aging and

nondiscoloring properties, but low-tear resistance.¹²
The adsorption of ethyl xanthate on pyrite was discussed in trade journals. Surface preparation of the mineral appeared to have some effect on the subsequent absorption process. A monolayer of xanthate

⁷ British Sulphur Corporation (London), Quarterly Bulletin 12: March 1956 p. 39.
8 Work cited in footnote 7, p. 39.
9 Mining World, vol. 18, No. 3, March 1956, p. 76.
19 Blast Furnace and Steel Plants, vol. 44, No. 10, October 1956, p. 1186.
11 South African Mining and Engineering Journal, vol. 67, No. 3333, Dec. 28, 1956, p. 1123.
12 Work cited in footnote 7, p. 37.

on the surface is exceeded only in the presence of oxygen. The effect of OH-, HS- (and S=), and CN- ions on the amount of xanthate adsorbed was investigated. Competition between OH- and X-(xanthate) ions for specific adsorption sites is indicated over a wide pH range. 13

WORLD REVIEW

NORTH AMERICA

Canada.—During 1956 a number of projects were completed or underway in Canada for recovering sulfur from sulfide ores and natural gases.

Laurentide Chemical & Sulphur Co. began constructing Canada's first plant for the recovery of elemental sulfur from refinery gases in Montreal. Built at a cost of \$1.25 million, the projected plant capacity was 33,000 tons of elemental sulfur a year. British American Oil Co. completed a plant near Pincher Creek, Alberta, for recovering sulfur from natural gas having a designed capacity of 78,000 tons annually. The new Jefferson Lake Sulphur Co. 100,000-ton-per-year plant near Fort St. John, British Columbia, was under construction; and plans were announed by Westcoast Transmission Co., Ltd., to construct a 175,000-ton plant in the Savanna Creek area of Alberta.

TABLE 16.—World production of native sulfur, by countries, 1947-51 (average) and 1952-56, in long tons 2

[Compiled	hν	Helen	Τ,	Hunt and	Rerentee	ъ	Mitchelli
Computer	IJ	Treferr	и,	типь апа	perenice	в.	Mitchelli

Country 1	1947–51 (average)	1952	1953	1954	1955	1956
North America: Mexico United States South America: Argentina Bolivia (exports) Chile Colombia Ecuador Peru Europe: France (content of ore) Greece (content of ore) Italy (crude) 6 Spain 8 Asia: Japan Philippines Taiwan (Formosa) Turkey Total (estimate) 1	4, 553 16, 027 41, 331 22 1, 472 7, 350 186, 580 4, 920 72, 294	11, 784 5, 295, 342 15, 000 5, 497 47, 821 2, 974 2, 600 5, 066 17, 692 232, 706 4, 800 176, 652 5, 001 8, 232 6, 000, 000	5, 900 5, 193, 599 16, 000 2, 458 32, 275 2, 657 100 4, 916 10, 710 1, 200 224, 161 5, 100 186, 556 1, 089 3, 423 9, 626 5, 800, 000	52, 407 5, 578, 973 17, 000 2, 565 39, 075 5, 118 64 2, 507 200, 215 5, 400 184, 745 761 5, 873 9, 862 6, 300, 000	475, 487 5, 799, 880 17, 651 3, 975 54, 132 5, 413 1, 550 3, 600 176, 917 6, 500 199, 676 8 3, 700 4, 854 11, 318 7, 000, 000	758, 415 6, 484, 285 23, 038 3, 418 (3) 4, 921 5 3, 600 170, 094 5, 900 243, 312 7, 864 3, 722 8, 000, 000

¹ Native sulfur believed to be also produced in U. S. S. R., but complete data are not available; estimate by senior author of chapter are included in the total.

2 This table incorporates a number of revisions of data published in previous Sulfur and Pyrites chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

3 Data not available; estimate by senior author of chapter included in total.

⁴ Average for 1948-51

⁵ Estimate.

⁶ In addition, the following tonnages of ground sulfur rock (30 percent S) were produced and used as an insecticide: 1947-51 (average), 18,201 tons; 1952, 21,482 tons; 1953, 16,940 tons; 1954, 22,803 tons; 1955, 21,560 tons; 1956, 22,219 tons.

¹³ Gaudin, A. M., De Bruyn, P. L., and Mellgren, Oliva, Adsorption of Ethyl Xanthate on Pyrite: Min. Eng., vol. 8, No. 1, January 1956, pp. 65-70.

TABLE 17.—World production of pyrites (including cupreous pyrites), by countries, 1947-51 (average) and 1952-56, in long tons ? [Compiled by Helen L. Hunt and Berenice B. Mitchell]

	1947-51	1952	22	1953	· ·	1954	4	1955	10	1956	80
Country 1	gross weight	Gross	Sulfur	Gross weight	Sulfur content	Gross weight	Sulfur content	Gross weight	Sulfur content	Gross	Sulfur
North America: Canada (sales) Cuba United States	244, 709	494, 630 10, 000 994, 342	235, 036 4, 540 418, 139	364, 515 8 50, 000 922, 647	166, 651 8 24, 200 379, 545	517, 856 118, 105 908, 715	277, 820 56, 690 405, 310	739, 968 127, 497 1, 006, 943	355, 185 62, 473 409, 826	483, 928 65, 230 1, 069, 904	232, 274 31, 832 431, 687
Ludye Austria Finland France Germany, West		7, 907 241, 059 295, 670 485, 431	2, 261 103, 230 117, 706 182, 163	255, 095 293, 293 506, 375	108, 263 132, 395 180, 073	248, 528 294, 612 556, 480	105, 310 135, 264 193, 868	298, 064 300, 176 579, 796	126, 963 126, 074 206, 021 8 100, 000	289, 440 299, 054 634, 241 232, 274	127, 554 125, 603 253, 405 102, 200
Greece Italy Norway Poland Potand	70, 985 815, 359 717, 418 66, 729 573, 995	1, 122, 777 701, 364 (4) 743, 961	305, 293 302, 329 (*) 334, 783	1, 215, 072 733, 095 (*) 709, 810	546, 827 332, 105 (*) 288, 385	1, 231, 193 782, 362 (4) 641, 803	258, 822	1, 296, 212 830, 453 (4) 724, 693	292, 494 361, 776 (*) 297, 071	1, 349, 384 827, 327 (4) 659, 200	634, 225 364, 158 (*) 355, 968
Spain Sweden United Kingdom Viposlavia		2, 119, 580 407, 055 9, 692 185, 158	3 1, 028, 000 201, 770 3, 838 83, 526	1, 773, 374 382, 848 10, 244 170, 271	880, 000 189, 178 4, 134 8 77, 000	1, 804, 253 392, 896 7, 011 159, 718	2, 756 193, 563 2, 756 3 71, 800	223, 103	2, 165 2, 165 116, 014	251, 906	238, 950 2, 165 130, 990
Asia: Cyprus India Japan	774, 397 6 530 1, 522, 493	1, 056, 026 2, 168 2, 586, 855	506, 893 930 1, 037, 329	994, 345 277 2, 306, 260	477, 342 3 120 963, 938	1, 103, 367 2, 635, 564	\$ 529, 500 1, 106, 281	1, 318, 363 800 2, 692, 939	8 632, 800 8 300 1, 131, 034	1, 603, 340 2, 955, 846	8 769, 700 910, 135
Korea, Republic of. Philippines. Taiwan (Formosa) Turkey	1, 392	745 29 32, 707 19, 045		1, 945 24, 892 22, 727	8, 961 8 11, 300	5, 202 23, 857 33, 935	2, 080 9, 543 16, 928	30, 296 28, 559 16, 137	13, 600 10, 700 8, 100	29, 194 18, 793	11, 122 \$ 9, 400
Africa: Afgeria French Morocco Rhodesia and Nyssaland, Federation of:	31, 578 6 727	24, 777 1, 993	11, 150				14, 668	21, 328 4, 007	9,380	5, 968 1, 524 18, 674	2,507 3,600 7,843
Southern Rhodesla. Tunisla. Union of South Africa. Oceania: Australia	17, 601 7, 2, 612 84, 594 112, 198	18, 752 30, 649 198, 714	8, 064 13, 198 93, 569	36, 086 92, 362 167, 008	15, 517 36, 259 77, 812	225, 534 206, 780	86, 809 97, 649			429, 964 187, 212	\$ 163, 400 88, 138
World total (estimate)¹	10, 600, 000 14, 100, 000	14, 100, 000	5, 900, 000	13, 400, 000	5, 640, 000	14, 400, 000	6, 000, 000	16, 000, 000	6, 700, 000	16, 300, 000	6, 800, 000

1 In addition to countries listed, Brazil, China, Ozechoslovakia, East Germany, Kenya, North Korea, Rumania, and U. S. S. R. produce or have produced pyrites, but produced user are not variable; estimates by senior author of chapter included in total.

1 Estimates are included in the detail.

2 Estimate are all are and a variable; estimate by senior author of chapter included in total.

3 Average for 1948-51.

4 Average for 1947-50.

100

Increased supplies of sulfuric acid were anticipated upon completion of the new Noranda Mines, Ltd., sulfuric acid plant at Cutler, Ontario, and the Larado Uranium Mines, Ltd., plant at Beaver Lodge. The sulfuric acid plant was being built by Noranda, using pyrites obtained at company-owned mines in Quebec to supply acid to the uranium mills of the Blind River area.

Waste gases from the International Nickel Co. smelter at Copper Cliff, Ontario, will be converted to sulfuric acid in a new \$3 million 100,000-ton-per-year, sulfuric acid plant planned by Canadian

Industries, Ltd.

Mexico.—Production of sulfur in all forms in Mexico during 1956 totaled approximately 775,000 metric tons, of which 745,000 was recovered at Frasch mines and 30,000 tons was from other sources.

A 50-percent increase in plant capacity during the year enabled Pan American Sulphur Co. to produce approximately 634,000 metric tons of Frasch sulfur at its Jaltipan dome, an increase of nearly 60 percent over the previous year. The world's largest Frasch sulfur-filtration plant was completed, making available to customers a portion of the new sulfur supply as a low-carbon-content product. Shipments by the company during the year totaled 418,328 tons, of which 385,580 tons was exported to destinations as follows: United States, 45 percent; South Africa, 11 percent; United Kingdom, 12½ percent; Europe, 25½ percent; and the balance (6 percent) to Australia, Canada, and Tunisia. The company retained as inventory slightly less than 500,000 long tons having market value of more than \$12 million.

Frasch sulfur production at the Gulf Sulphur Corp. Las Salinas dome totaled 110,800 tons for the 8 months, from May to the end of Crude sulfur recovered at this property has been reported to assay over 99.5 percent sulfur and 0.4 percent carbon, which makes it one of the highest quality sulfurs produced in Mexico. To obtain premium prices for its product in world markets, the company was constructing a \$250,000 filtration plant to reduce the carbon content to 0.25 percent.14

Texas Gulf Sulphur Co. deferred production in Mexico during 1956, despite the fact that equipment was in place and tested. It was reported that the company planned to produce 75,000 tons during 1957.15

SOUTH AMERICA

Argentina.—Sulfur production in Argentina has been intensified in recent years in keeping with growing national requirements, but nevertheless it was necessary to import large quantities in 1956.

Sulfur deposits at Salta (Cerro Tuzle), Mendoza, and Neugven are of relatively high purity. Production in 1956 totaled 22,000 tons, of which 62½ percent was produced at Mendoza and the balance at Salta.16

Production at the Valcan Overo sulfur mine at San Rafael Mendoza, was reportedly increased during 1956 as a result of the installation of a 7-mile (11,622-meter) aerial tramway. 17

<sup>British Sulphur Corp. (London), Sulfur in Mexico: Quarterly Bulletin 16, March 1957, pp. 19–22.
Work cited in footnote 14, pp. 19–21.
U. S. Embassy, Buenos Aires, Argentina, State Department Dispatch 458, Oct. 19, 1956, p. 4.
Engineering and Mining Journal, vol. 157, No. 9, September 1956, p. 138.</sup>

Chile.—Agreements were concluded between Chile, Sweden, West Germany, and several other European nations that call for the shipment of Chilean sulfur in return for specified manufactured goods and machinery.18

EUROPE

Eire.—St. Patrick's Copper Mines, Ltd., a wholly owned subsidiary of Irish Copper Mines, Ltd., announced plans to exploit the Auoca copper-lead-zinc sulfide ore deposits 40 miles south of Dublin. drilling program by the Eire Government revealed the presence of 4 ore bodies estimated to contain 14 million tons of complex sulfide ore. Additional drilling by Irish Copper Mines, Ltd., Toronto, indicated that the deposits may contain 20 million tons of ore. 19

Italy.—The Industrial Committee of the Italian Chamber of Deputies has approved a bill authorizing an increase in subsidies to be paid to Italian sulfur industries. The increase of 3,000 lire was intended to enable the industry to offer sulfur for export at com-

petitive prices.20

Norway.—Production of sulfur equivalent in Norway during 1955 totaled 359,000 long tons, of which 67½ percent was in the form of iron and copper pyrites, 27½ percent was elemental sulfur derived from pyrites, and 5 percent was from smelter gases. Domestic consumption totaled approximately 99,000 tons in 1955, of which 56 percent was consumed by the sulfide-pulp industry, and 34 percent in manufacturing sulfuric acid and CS2 used in manufacturing rayon. The balance—10 percent, in pyrites—was used as a metallurgical flux.21

Except for one firm, Bjorkaasen, all major producers of pyrite increased output in 1955. Production at Bjorkaasen was curtailed

owing to diminishing ore reserves.

Orkla Grube, Norway's leading producer of pyrite, recovered 98,000 tons of elemental sulfur and 14,000 tons of copper matte. The company produced 350,000 tons of pyrite during the year. About 740 men were employed at the company mines and 400 at the Orkla Metals A/s refining plant.

A/s Sulitjelma, producer of copper and zinc concentrates, employed 1,100 men in its 7 mines. Ore reserves at the company properties were reported to be sufficient to meet requirements for 20 years.²²

Poland.—Extensive exploration since the original discovery of sulfur in 1953 led to discovery of additional deposits of major impor-The largest of these deposits was in the Rzeszow district and was reported to contain over 50 million long tons. Additional discoveries were reported in 1955 from Szydlowo, Busko district, and Tarnobrzeg, in the northeastern part of the Sandomierz depression.23

Spain.—Sulfide ores from the Reocin mines were being processed in a new 20,000-long-ton-per-year sulfur-recovery plant in Hinojeda Province of Santander.24

<sup>Chemical Week, vol. 78, No. 1, Jan. 7, 1956, p. 34.
British Sulphur Corp. (London), Quarterly Bulletin 13: June 1956, p. 35.
Chemical Week, vol. 78, No. 6, Feb. 11, 1956, p. 26.
Engineering and Mining Journal, vol. 157, No. 9, September 1956, p. 138.
Work cited in footnote 19, pp. 6-13.
Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 1, January 1957, p. 32.
Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 2, February 1956, p. 36.
Foreign Commerce Weekly, vol. 55, No. 3, Jan. 16, 1956, p. 23.</sup>

Yugoslavia.—Trial operations were begun at the Zorka zinc smelter. Sabac, Serbia. The plant was reported to have an annual capacity of 6,000 tons of electrolytic zinc, 18 tons of cadmium, and 12,500 tons of sulfuric acid.25

ASIA

Cyprus.—Esperanza Copper & Sulphur Co. announced discovery of a new deposit containing a quarter of a million tons of ore in the Kinousa area, which can be mined by an overcast method.26

India.—Investigations by the Geological Society of India in Sikkim State disclosed the presence of pyrite and other important minerals.27

Indonesia.—Plans were announced for constructing a sulfur plant in Namora-i-langit, north Sumatra. The plant, to be managed by Japanese technicians, was expected to be in production in 1957.28

Pakistan.—A small sulfur deposit, probably originating from a sulfur spring, was found along the Arkari River opposite the village of Mujhigram. Sulfur recovered from this deposit has been used locally for manufacturing gunpowder.29

Philippines.—An agreement was signed between the Hixbar Mining Co. and the Engineering Equipment & Supply Co. for constructing a 270-ton-per-day mill on Rapu-Rapu Island, Albay, to facilitate the production of both iron sulfide and copper concentrate.30

Syria.—According to an announcement by the director of the Mineral Department of Syria, a major deposit of sulfur and asphalt was discovered in the Lake Ras-el-Ain area of northern Syria.31

Turkey.—According to Turkish press reports, an American company agreed to supply the Kure pyrite mines with 1.2 million dollars in Planned capacity of the mine is 98,437 long tons per equipment. year.32

AFRICA

Rhodesia and Nyasaland, Federation of.—According to reports, the present production rate of 2,000 tons per month at the country's only proved sulfur deposit, in Salisbury district, Southern Rhodesia, could be greatly increased.³³

South-West Africa.—Mining operations were begun by the South-West Africa Mining Co. at the massive sulfide ore body at Abenab Full capacity at the treatment plant, which opened March 12. 1956, had not been reached owing to a delay in the delivery of equipment.34

^{**} Mining World, vol. 18, No. 9, August 1956, p. 79.

** South African Mining and Engineering Journal, vol. 67, No. 3330, Dec. 7, 1956, p. 971.

** Mining World, vol. 18, No. 9, August 1956, p. 83.

** Mining World, vol. 18, No. 12, November 1956, p. 81.

** Bureau of Mines, Mineral Trade Notes: Vol. 44, No. 2, February 1957, p. 32.

** Mining World, vol. 18, No. 6, May 1956, p. 75.

** British Sulphur Corp. (London), Quarterly Bulletin 12: March 1956, p. 40.

** Metal Bulletin (London), No. 4066, Feb. 3, 1956, p. 20.

** Work cited in footnote 29, p. 30.

** Mining Magazine, vol. 94, No. 5, May 1956, p. 259.

Talc, Soapstone, and Pyrophyllite

By Donald R. Irving 1 and Eleanor B. Waters 2

INE PRODUCTION and sales of talc, soapstone,3 and pyrophyllite both reached new quantity highs in 1956, exceeding by 2 percent the previous record established in 1955. The greater demand was mainly attributable to increased use of talc in ceramic products and pyrophyllite in asphalt compounds.

TABLE 1.—Salient statistics of the talc, soapstone, and pyrophyllite industries in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Mine production: Short tons. Value. Sold by producers: \$ Short tons. Value. Imports for consumption: \$ Short tons. Value. Exports: \$ Short tons. Value. Exports: \$	1 552, 295 (2) 1 550, 711 1 \$9, 082, 979 19, 785 \$581, 321 (2) \$2, 681, 682	600, 908 (2) \$93, 147 \$11, 347, 317 20, 302 \$726, 846 (2) \$2, 002, 317	631, 538 3\$3, 524, 035 608, 874 \$11, 380, 314 22, 803 \$716, 709 (2) \$1, 993, 765	599, 998	725, 708 3 \$4, 527, 847 719, 386 \$15, 225, 359 29, 079 \$985, 975 (2) \$2, 206, 319	739, 039 3 \$4, 859, 359 734, 798 \$15, 025, 893 23, 351 \$749, 270 (3) \$2, 454, 241

Includes pinite for 1947 and 1948.

Figure not available.

Figure not available.

Figure 1 Party estimated.

Figure 2 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 3 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 4 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 5 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

Figure 6 Party estimated.

DOMESTIC PRODUCTION

The opening paragraph summarized the increased quantity and value of mine production of crude talc, soapstone, and pyrophyllite. Talc and soapstone output increased 1 percent and pyrophyllite 6 percent in quantity.

New York, California, and North Carolina ranked first, second, and third, respectively, in the quantity and value of talc, soapstone, and pyrophyllite produced in 1956. North Carolina remained the dominant pyrophyllite-producing State, followed by Pennsylvania (sericite schist) and California.

Total sales of crude, sawed and manufactured, and ground tale, soapstone, and pyrophyllite increased 2 percent in quantity and decreased 1 percent in value in 1956, compared with 1955. Decreases were recorded in the average value per ton of crude and ground

¹ Assistant chief, Branch of Ceramic and Fertilizer Materials.

³ Excludes soapstone sold in slabs or blocks, which is part of the stone industry.

The value per ton of sawed and manufactured material increased 39 percent.

A talc-grinding mill was constructed at Barratts, Mont., by Tri-State Minerals Co., and operation was begun in January 1956.

TABLE 2.—Talc, soapstone, and pyrophyllite ¹ sold by producers in the United States, 1947-51 (average) and 1952-56, by classes

		Crude		Sawe	d and manu	factured	
Year	Short tons	Value at sh	ipping point	Short tons	Value at shipping point		
		Total	Average		Total	Average	
1947–51 (average)	19, 029 18, 423 19, 052 47, 032	\$165, 193 203, 895 185, 184 190, 685 340, 243 265, 631	\$9. 45 10. 71 10. 05 10. 01 7. 23 6. 31	896 975 935 1,012 1,311 1,052	\$281, 798 309, 271 354, 847 290, 697 397, 476 441, 848	\$314. 51 316. 88 379. 52 287. 25 303. 19 420. 01	
		Ground 2			Total		
Year	Short tons	Value at shi	pping point	Short tons	Value at sh	ipping point	
		Total	Average		Total	Average	
1947-51 (average)	573, 142 589, 516 579, 934	\$8, 635, 988 10, 834, 151 10, 840, 283 12, 152, 651 14, 487, 640 14, 318, 414	\$16. 22 18. 90 18. 39 20. 96 21. 59 20. 70	550, 711 593, 147 608, 874 599, 998 719, 386 734, 798	\$9, 082, 979 11, 347, 317 11, 380, 314 12, 634, 033 15, 225, 359 15, 025, 893	\$16. 49 19. 13 18. 69 21. 06 21. 16 20. 45	

TABLE 3.—Pyrophyllite 1 produced and sold by producers in the United States, 1947-51 (average) and 1952-56

					Sales		
Year	Production (short tons)	Cr	ude	Gr	ound	т	otal
	1 24	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average) 1952 1953 ² 1954 ² 1955 ²	108, 817 125, 496 123, 457 126, 702 158, 460 167, 756	5, 488 4, 720 2, 480 3, 015 19, 830 20, 847	\$27, 730 29, 922 15, 564 18, 552 124, 904 121, 497	101, 830 119, 767 119, 057 114, 998 3 135, 506 141, 143	\$1, 337, 480 1, 569, 471 1, 581, 826 1, 644, 337 2, 005, 069 1, 808, 502	107, 318 124, 487 121, 537 118, 013 155, 336 161, 990	\$1, 365, 210 1, 599, 393 1, 597, 390 1, 662, 889 2, 129, 973 1, 929, 999

¹ Includes pinite, 1947-48. ² Includes some crushed material.

Exclusive of pinite.
 Includes sericite schist.
 Includes a small quantity of sawed material.

TABLE 4.—Crude talc, soapstone, and pyrophyllite produced in the United States, 1955-56, by States

State	1955		1956	
La company of the com	Short tons	Value 1	Short tons	Value ¹
Alabama. California Georgia Maryland and Virginia. Montana. Nevada. North Carolina. Texas. Other States ³	1, 500 166, 551 53, 828 36, 603 (2) 10, 732 125, 206 35, 064 296, 224	\$8,000 1,552,783 117,656 135,823 (2) 90,086 571,689 213,366 1,838,444	2, 200 153, 710 57, 916 26, 574 22, 197 10, 540 125, 487 41, 332 299, 083	\$4,500 1,419,227 122,166 90,107 210,133 98,506 529,206 244,368 2,141,141
Total	725, 708	4, 527, 847	739, 039	4, 859, 35

¹ Partly estimated.
2 Included with "Other States."
3 Includes States indicated by footnote 2, and Arkansas, New York, Pennsylvania, Vermont, and Wash-

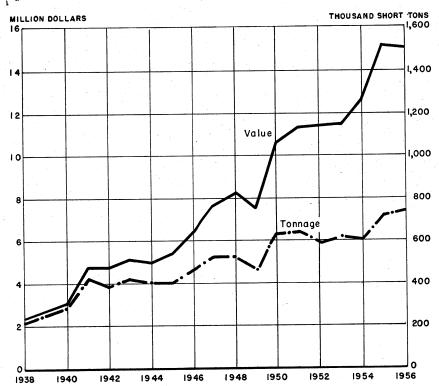


FIGURE 1.—Sales of domestic talc, soapstone, and pyrophyllite, 1938-56. 466818--58----73

TABLE 5.—Ground tale, soapstone, and pyrophyllite sold or used by grinders in the United States, 1955-56, by States

State	19	955	1956		
	Short tons	Value	Short tons	Value	
Alabama California Georgia Maryland and Virginia Montana North Carolina Texas Other States 2	1,500 152,483 53,419 33,923 (1) 100,721 19,664 309,333	\$15,000 3,732,164 538,890 317,521 (1) 1,639,112 330,035 7,914,918	2, 200 140, 571 57, 521 23, 776 15, 365 100, 637 23, 076 328, 515	\$39, 600 3, 542, 920 577, 478 234, 198 453, 681 1, 501, 467 318, 362 7, 650, 711	
Total	671, 043	14, 487, 640	691, 661	14, 318, 414	

Included with "Other States."
 Includes States indicated by footnote 1 and Arkansas (1955 only), Nebraska, New York, Oregon, Pennsylvania, Utah, Vermont, and Washington.

CONSUMPTION AND USES

Ceramics, paints, insecticides, roofing, rubber, asphalt filler, and paper consumed 88 percent of the talc and soapstone sold by producers in 1956, compared with 87 percent in 1955. Quantity increases of 17 percent for ceramics and 8 percent for paints were recorded. Decreases for specific uses were reported as follows: Roofing, 25 percent; insecticides, 14 percent; rubber, 9 percent; paper, 8 percent; and asphalt filler, 5 percent.

Insecticides, ceramics, asphalt filler, refractories, and paints consumed 90 percent of the pyrophyllite sold by producers in 1956, compared with 95 percent in 1955. The quantity used for asphalt filler increased 85 percent. Decreases were reported for the following uses: Insecticides, 21 percent; paints, 17 percent; and ceramics, 5 percent.

TABLE 6.—Talc and soapstone sold or used by producers in the United States, 1954-56, by uses

***	19	1954		1955		1956	
Use	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	
Ceramics Paints Insecticides. Roofing Rubber Asphalt filler Paper Toilet preparations Textiles Foundry facings Rice polish Crayons. Other	48, 262 52, 431 32, 536 19, 651 20, 699 9, 718 9, 315 6, 332 1, 060	26 25 10 11 7 4 4 2 2 1 (1)	174,700 118,908 63,472 60,537 33,272 22,608 17,339 9,912 8,286 9,131 1,125 766 43,994	31 21 -11 11 6 4 3 2 1 2 (1)	204, 261 128, 159 54, 793 45, 671 30, 253 21, 438 15, 931 9, 611 8, 647 8, 169 1, 676 792 43, 407	36 22 10 8 5 4 3 2 2 1 (1)	
Total	481, 985	100	564, 050	100	572, 808	100	

1 Less than 1 percent.

TABLE 7.—Pyrophyllite sold by producers in the United States, 1954-56, by uses

	1954		1955		1956	
Use	Short	Percent of total	Short tons	Percent of total	Short tons	Percent of total
Insecticides	40, 975 24, 205	35 20	54, 329 38, 460 15, 752	35 25 10	43, 132 36, 468 29, 199	27 23 18
RefractoriesPaintsRubber	13, 798 4, 204 25, 603	12 3 22 6	23, 400 14, 778 5, 037	15 10 3	23, 486 12, 200 5, 640	14 8 3
Plaster productsOther	6, 861 2, 367	2	3, 580	2	11,865	7
Total	118, 013	100	155, 336	100	161,990	100

PRICES

The price quotations in tables 8 and 9 merely indicate the range of prices; actual prices are negotiated between buyer and seller on the basis of a wide range of specifications. The quotations in table 9 had remained unchanged since August 1953.

TABLE 8.—Prices quoted on ground tale, in bags, carlots, 1955-56, per short ton [Oil, Paint and Drug Reporter]

	Grade	Jan. 3, 1955- May 2, 1955	May 2, 1955– May 7, 1956	May 7, 1956- Dec. 31, 1956
Domestic, f. o. b. w Ordinary: California Vermont Fibrous (New York Off color 325-mesh:		\$32.00-\$38.50 14.00 25.00- 30.00	\$32.00-\$38.50 18.40 27.00	\$33.00-\$39.50 19.40 28.00
99.5 percent 99.95 percen Imported (Canadia	t, micronized	27. 00 36. 00 15. 25– 35. 00	30. 00 37. 00 20. 00– 35. 00	38. 0 20. 00- 35. 0

TABLE 9.—Prices quoted on talc, carlots, 1956, per short ton, f. o. b. works [E&MJ Metal and Mineral Markets]

Gråde 1	Feb. 9, 1956	Grade 1	Feb. 9, 1956
Georgia: 98 percent minus 200-mesh: Gray, packed in paper bags White, packed in paper bags New Jersey: Mineral pulp, ground, bags extra. New York: Double air-floated, short fiber, 325-mesh Vermont: 100 percent through 200-mesh, extra white, bulk basis 2	\$10. 50-\$11. 00 12. 50- 15. 00 10. 50- 12. 50 18. 00- 20. 00	Vermont—Continued 99½ percent through 200-mesh, medium white, bulk basis 2 Virginia: 200-mesh 325-mesh Crude	\$11, 50-\$12, 50 10, 00- 12, 00 12, 00- 14, 00 5, 50

Containers included unless otherwise specified.
 Packed in paper bags, \$1.75 per ton extra.

FOREIGN TRADE 4

Imports.—The quantity and value of unmanufactured "talc, steatite or soapstone, and French chalk" imported for consumption in the United States decreased 20 and 24 percent, respectively, in 1956, compared with 1955. Imports from Italy, the chief supplier, dropped 23 percent in quantity and 29 percent in value and were 67 percent of the total imports compared with 70 percent in 1955. Canada, France, and India continued to supply most of remaining imports. Imports of manufactures n. s. p. f. (not specifically provided for), except toilet preparations, were valued at \$1,160 and came from Canada and British East Africa.

TABLE 10.—Tale, steatite or soapstone, and French chalk imported for consumption in the United States, by classes in 1947-51 (average) and 1952-54 totals, and 1955-56, by countries

[Bureau of the Census]

	~~~~							·	
Country		Crude and unground		Ground, washed, powdered, or pulverized, except toilet preparations		Cut and sawed		Total unmanu- factured	
	Short tons	Value	Short tons	Value	Short	Value	Short	Value	prepa- rations (value)
1947-51 (average) 1952 1953 1954	284	57, 991 35, 474	19, 954 22, 478	\$541, 123 649, 955 641, 332 1 653,850	64 127	18, 900 39, 903	22,803	\$581, 321 726, 846 716, 709 1 678,229	7. 974
1955 North America: Canada			2 000	64 000					
Europe:			3, 922	64,000			3, 922	64, 000	
France Italy Norway		l	3, 795 20, 256				3, 795 20, 265 12	769, 964	
Total			24, 051	847, 450	21	6, 385	24, 072	853, 835	
Asia: India Japan		20, 300	909	24, 862	51	22, 978	1, 034 51		
Total	125	20, 300	909	24, 862	51	22, 978	1,085	68, 140	
Grand total	125	20, 300	28, 882	1 936,312	72	29, 363	29, 079	1 985,975	
1956									
North America: Canada			2, 123	30, 051			2, 123	30, 051	903
Europe: France Italy			4, 527 15, 622	89, 907 542, 650	1 14	259 <b>4,</b> 936	4, 528 15, 636		
Total			20, 149	632, 557	15	5, 195	20, 164	637, 752	
Asia: India Japan	117	17, 555	856	22, 346	91	41, 566	973 91	39, 901 41, 566	
Total Africa: British East Africa	117	17, 555	856	22, 346	91	41, 566	1, 064	81, 467	257
Grand total	117	17, 555	23, 128	1 684,954	106	46, 761	23, 351	1 749,270	1, 160

Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable with years before 1954.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

Exports.—Crude and ground talc, steatite, soapstone, and pyrophyllite exports in 1956 continued their generally upward trend, increasing 20 percent in quantity and 18 percent in value over 1955, chiefly because of increased exports of ceramic-grade talc from Texas to tile plants in Mexico. Manufactures, n. e. s. (not elsewhere specified), decreased 49 percent in quantity and 27 percent in value; powders-talcum (in packages), face and compact, increased 10 percent in value.

TABLE 11.—Tale, pyrophyllite, and talcum powders exported from the United States, 1947-51 (average) and 1952-56

L.	Sureau of the	Census			
	Talc, ste	phyllite	Powders- talcum (in		
Year	Crude an	d ground	Manufactu	packages), face and compact	
	Short tons	Value	Short tons	Value	(value)
1947-51 (average)	1 18, 644 22, 958 23, 971 23, 348 35, 230 42, 333	1 \$501, 527 615, 160 602, 454 744, 828 858, 755 1, 009, 315	(2) 265 159 259 135 69	(2) \$142, 356 95, 778 110, 558 101, 571 73, 806	\$2, 162, 849 1, 244, 801 1, 295, 533 1, 075, 592 1, 245, 993 1, 371, 120

¹ Excludes shipments under the Army Civilian Supply Program during 1947. ² Beginning Jan. 1, 1949, manufactures, n. e. s., 1 ton (\$455); 1950, 51 tons (\$25,492); 1951, 106 tons (\$60,589).

## **TECHNOLOGY**

The geology of talc deposits in California, Montana, Canada, Italy,8 and Czechoslovakia 9 was described.

Results of laboratory flotation tests were reported. 10 11 A patent

was issued on a method for separating take and asbestos.12

Data indicated that reconstituted block talc made from ground talc and magnesium oxychloride binder should be satisfactory for nonelectronic uses, or where shrinkage on firing is not a critical property.13 The ceramic and dielectric properties of some Indian tales were reported to be suitable for the manufacture of high-frequency, low-loss steatite insulators. 14 The use of pyrophyllite 15 and talc-magnesite

Mineral Information Service, Tale: Vol. 9, No. 11, Nov. 1, 1956, pp. 1-6.
 James, H. L., Johnny Gulch Tale Deposit, Madison County, Mont.: Geol. Survey Open-File Rept.,

^{*} Mineral iniormation Service, Tate: Vol. 3, No. 13, No. 13, No. 13, No. 14, Tol. 13, Ph. 15.

§ James, H. L., Johnny Gulch Tale Deposit, Madison County, Mont.: Geol. Survey Open-File Rept., Feb. 1, 1956, 8 pp.

? Morgan, J. H., Talc and Soapstone Deposits, Potton Township, Quebec: Canadian Min. and Met. Bull. (Montreal), vol. 49, No. 527, March 1956, pp. 188-192.

§ Conti, Umberto, [The Talc and Steatite Industry of the Valmalenco]: Industria Mineraria (Rome), vol. 7, No. 7, July 1956, pp. 459-470.

§ Kuzvart, Milos, [Geological and Petrological Conditions of the Talc Deposits and of Their Surroundings at Hnuste in Slovakia]: Sbornik Ustred. Ustavu Geol., Oddil Geol. vol. 22, 1955, pp. 145-196 (English summary); Chem. Abs., vol. 51, No. 8, Apr. 25, 1957, p. 5651d.

10 Frommer, D. W., and Fine, M. M., Laboratory Flotation of Talc From Arkansas and Texas Sources: Bureau of Mines Rept. of Investigations 5241, 1956, 5 pp.

11 Buckenham, M. H., Rogers, J., and White, C. C., The Flotation of Talc from the Talc-Magnesite of the Cobb Valley, Nelson: New Zealand Jour. Sci., and Tech., vol. 37, sec. B., No. 4, January 1956, pp. 437-444.

12 Rescheneder, Karl (assigned to Eternit-Werke Ludwig Hatschek), Separating Talc and Asbestos: U. S. Patent 2,748,935, June 5, 1956.

13 Hamilin, H. P., and Klinefelter, T. A., Properties of Reconstituted Block Talc Bonded With Magnesium Oxychloride: Bureau of Mines Rept. of Investigations 5220, 1956, 10 pp.

14 Roy, S. B., Suitability of Indian Talcs for High-Frequency Insulators: Bull. Central Glass & Ceram. Res. Inst. (India), vol. 3, 1956, pp. 130-135; Chem. Abs., vol. 51, No. 7, Apr. 10, 1957, p. 5379e.

15 Gower, I. W., and Bell, W. C., Use of Pyrophyllite in Castable and Plastic Refractories: Bull. Am. Ceram. Soc., vol. 35, No. 7, July 1956, pp. 259-264.

schist 16 in refractories was discussed, and a patent was issued for the

use of talc in making cordierite refractories. 17

Patents were issued during 1956 suggesting the use of talc in lithographic plate surfaces, 18 insulating gaskets, 19 welding-rod coatings, 20 and a dispersant for a silver precipitating agent.²¹

## WORLD REVIEW

The world production of talc, soapstone, and pyrophyllite reached a new high in 1956, mainly because of increased production in Japan.

Australia.—The production of talc and pyrophyllite in Australia. by States and districts, 1952-54, is shown in table 13. The breakdown of 1955 and 1956 production, in short tons, was as follows: 1955, 13,807 tons of talc and 268 tons of pyrophyllite; 1956, 14,588 tons of talc and 367 tons of pyrophyllite.

Austria.—About 64 percent of the 1956 talc exports went to West Germany and Poland, compared with 71 percent in 1955. for 1952-56, by countries of destination, are given in table 14.

Brazil.—A large deposit of high-quality tale was discovered at Ponta Grossa, Parana. 22

Canada.—According to the official preliminary estimates, Canada produced 13,500 short tons of talc and pyrophyllite (value Can\$183,-750) and 15,500 tons of soapstone (value Can\$175,000) in 1956.23 Imports of talc and soapstone in 1956 were given as 16,268 tons (value Can\$496,001) and exports of talc as 2,613 tons (value Can\$34,408). In 1955, the value of the Canadian dollar ranged from US\$1.00 to US \$1.03; in 1956, the value ranged from US\$1.00 to US\$1.04.

The Canadian talc and soapstone industry in 1955 was described

as follows: 24

Producers of talc, soapstone and pyrophyllite shipped 27,160 short tons valued at \$338,967 in 1955 compared with 28,143 tons valued at \$335,353, in the preceding year. Finely-ground pyrophyllite was shipped from Newfoundland. The output from Quebec included crayons, blocks, and ground soapstone. Most of the production in Ontario was high-grade milled talc. There was no production of tale or pyrophyllite in British Columbia during 1955.

The industry employed an average of 50 persons to whom \$129,221 were distributed as salaries and wages. Fuel cost \$15,654 and 1,240,645 kwh. of electricity were purchased for \$23,035.

Imports of talc and soapstone in 1955 amounted to 11,382 tons valued at \$378,027. Exported were 4,428 tons worth \$64,974.

16 Sen, Sudhir, and Singh, Rabindar, Production of Forsterite Refractories: Jour. Sci. Ind. Research (India), vol. 14B, No. 12, December 1955, pp. 656-665.

17 Skimner, K. G. (assigned to Solicitor, U. S. Dept. of the Interior), Process of Producing a Crystalline Magnesium-Aluminum Silicate Material: U. S. Patent 2,731,355, Jan. 17, 1956.

18 Beatty, J. L. (assigned to A. B. Dick Co.), Lithographic Plates and Method of Manufacturing Same: U. S. Patent 2,760,431, Aug. 28, 1956.

19 Jelinek, V. (assigned to The M. W. Kellogg Co.), Insulating Compositions and Method of Forming Same: U. S. Patent 2,767,768, Oct. 23, 1956.

20 Wasserman, R. D., and Quass, J. (assigned to Eutectic Welding Alloys Corp.), Electrode Flux Covering for Copper and Copper-Base Alloy Core Materials: U. S. Patent 2,731,373, Jan. 17, 1956.

Wasserman, R. D. (assigned to Eutectic Welding Alloys Corp.), Electric Gouging Tool: U. S. Patent 2,761,796, Sept. 4, 1956.

21 Land, E. H. (assigned to Polaroid Corp.), Process for Forming Print-Receiving Elements: U. S. Patent 2,765,240, Oct. 2, 1956.

22 Mining World, vol. 18, No. 2, February 1956, p. 85.

23 Canada, Department of Trade and Commerce, Dominion Bureau of Statistics, Preliminary Report on Mineral Production, 1956: P. 37. (Prepared in Mineral Statistics Section of the Industry and Merchandising Division, Ottawa, Canada.)

24 Canada, Department of Trade and Commerce, Dominion Bureau of Statistics, The Tale and Soapstone Industry, 1955: Ind. Merchandising Div., Mineral Statistics Section, Ottawa, 1956, 4 pp.

TABLE 12.—World production of talc, soapstone, and pyrophyllite, by countries, 1947-51 (average) and 1952-56, in short tons ²

[Compiled by Helen L. Hunt and Berenice B. Mitchell]

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
North America:	28, 021	25,032	27, 408	28, 143	27, 160	29, 030
Canada (shipments) United States	551, 588	600, 908	631, 518	618, 994	725, 708	739, 039
Total	579, 609	625, 940	658, 926	647, 137	752, 868	768, 069
South America:	44.010	14 000	³ 16, 500	³ 16, 500	25, 353	27, 558
Argentina Brazil	14, 910 13, 470	14, 330 21, 464	23, 466	21, 967	27, 190	³ 27, 600
Chile Paraguay	359		99	132	³ 100 3, 708	³ 100 579
Peru Uruguay	4 144 1, 755	137 748	982	1, 167	1, 249	⁸ 1, 100
Total	30, 638	36, 679	³ 41, 000	3 39, 800	³ 57, 600	³ 56 <b>,</b> 900
Europe:				00.010	77 704	72, 819
Austria	57, 660 1, 275	56, 022 6, 614	56, 477 4, 065	68, 310 8, 133	77, 794 5, 265	8, 146
Finland France	99, 653	120, 864	120, 693	132, 154	148, 040	145, 064
Germany, West	28, 431	30, 412	32, 991	36, 170	55, 571	56, 476
Greece	1,780	1, 323		1, 275	2,315	\$ 2, 200
Italy	71, 819	89, 886	91,049	94, 440	110,099	102, 369 3 66, 000
Norway	67, 622	70, 629	67, 848	78, 801	76, 059 11	* 00,000 * 10
Portugal	10	00 006	20, 720	22, 896	25, 168	30, 405
Spain	21, 316 13, 422	20, 296 9, 686	9, 806	14, 689	13, 695	14, 492
Sweden	3, 144	2,897	4, 413	4, 447	5, 641	8 5, 500
United Kingdom Yugoslavia		2,001			2, 922	
Total 1 3	382, 000	430,000	430, 000	485, 000	545, 000	530, 000
Asia:						000
Afghanistan	5 224	882	800	1, 200	700	899
India	26, 637	23, 264	32, 632	47, 405 246, 197	47, 476 251, 479	35, 529 3 300, 000
Japan	302, 802	350, 960 14, 985	362, 193 26, 983	20, 965	12. 092	15, 719
Korea, Republic of	3, 139 5 1, 041	1, 205	1, 944	7, 791	5, 807	6, 758
Taiwan (Formosa)						
Total 13	413, 000	435,000	480,000	390,000	395,000	450,000
Africa: Egypt	5, 117	5, 071	2, 509	2,822	6, 878	7, 706
Kenva	414	259	173	111 7, 974	1, 581	1, 968
Union of South Africa	4, 988	9, 562	7,974			
Total	10, 519	14, 892	10, 656	10, 907	8, 459	9, 674
Oceania: Australia	9, 712	8, 518	11, 127	14, 699	14, 075	14, 955
World total (estimate) 1.	1, 425, 000	1, 550, 000	1, 630, 000	1, 590, 000	1, 770, 000	1, 830, 000

1 In addition to countries listed, tale or pyrophyllite is reported in China, Rumania, and U. S. S. R., but data are not available; estimates for these countries are included in total.

2 This table incorporates a number of revisions of data published in previous Tale, Soapstone, and Pyrophyllite chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.

3 Estimate.

4 Average for 1 year only, as 1951 was first year of commercial production.

5 Average for 1949-51.

TABLE 13.—Production of talc and pyrophyllite in Australia, 1952-54, by States and districts, in short tons 1

State	District	1952	1953	1954
Talc:				
New South WalesQueensland	Gundagai, Mudgee, Rockley	1, 105	1,004 34	1, 044
South Australia	Gumeracha, Mount Fitton, Tumby Bay.	5, 723	7, 450	10, 179
Western Australia	Mount Monger, Three Springs	1, 371	2, 495	3, 270
Total talcPyrophyllite:		8, 199	10, 983	14, 493
New South Wales	Cobargo	319	144	206
Total tale and pyrophyllite_		8, 518	11, 127	14, 699

¹ Bureau of Mines, Mineral Trade Notes: Vol. 43, No. 2, August 1956, pp. 35-36.

TABLE 14.—Talc exported from Austria, 1952-56, by countries of destination, in short tons 1

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Belgium-Luxembourg Czechoslovakia	728	1, 079	1, 258	1, 425	2, 124
Denmark France Germany:	- 736	1,002	143 1, 242	44 1, 554	126 1, 115
East. West Hungary Italy Netherlands Poland Sweden Switzerland	3, 412 53 2, 198 9, 714	2, 546 15, 385 2, 183 295 715 10, 558 11 1, 808	2, 502 16, 577 3, 508 627 666 19, 914 14 2, 228	2, 177 17, 935 5, 563 1, 275 1, 109 21, 074 58 2, 039	2, 960 18, 496 6, 389 2, 392 1, 152 16, 914 55 2, 638
Trieste. United Kingdom Yugoslavia Other countries	581 95	17 864 17 3	44 582 95 2	505 62 71	650 22 15
Total	34, 096	36, 500	49, 402	54, 891	55, 049

¹ Compiled from Customs Returns of Austria.

TABLE 15.—Consumption of ground talc and soapstone in Canada, by uses, 1952-54, in short tons  1 

			4.0
Use	1952	1953	1954
Insecticides and miscellaneous chemicals. Roofing Paints. Clay products. Coal tar distillation Rubber. Pulp and paper. Electrical apparatus Toilet preparations. Medicinal preparations. Miscellaneous nonmetallic mineral products. Soaps and cleaning preparations Polishes and dressings Tameries Asbestos products Textiles and linoleum.	8, 255 7, 264 1, 164 133 1, 617 2, 568 427 807 (2) 47 206	8, 557 8, 050 7, 838 2, 164 694 1, 620 1, 510 490 424 321 82 81 11 5 1	9, 704 7, 772 7, 240 2, 345 2, 195 1, 330 814 598 455 352 146 106 13 2 1
Total	30, 696	31, 849	33, 073

Source: Canada, Department of Trade and Commerce, Dominion Bureau of Statistics.
 Included in toilet preparations, 1952.
 Not reported separately.

France.—Exports of talc and soapstone continued to increase in 1955, rising 28 percent above 1954.

TABLE 16.—Talc and soapstone exported from France, 1951-55, by countries of destination, in short tons 1

[Compiled	bу	Corra A.	Barry]
-----------	----	----------	--------

Country	1951	1952	1953	1954	1955
Belgium-Luxembourg Finland Germany, West Netherlands Sweden Switzerland United Kingdom United States	4, 450 1, 256 3, 416 1, 706 1, 166 9, 277 9, 707 1, 775	3, 071 2, 222 1, 206 856 5, 909 6, 126 1, 579	3, 133 893 2, 020 1, 842 5, 163 2,76 6,023 2, 413	3, 206 874 4, 011 1, 643 6, 064 7, 395 2, 066	4, 145 857 5, 760 1, 269 6, 327 8, 298 4, 322
Other countries French Overseas Territories	2, 424 4, 114	4, 058 862	1, 304 4, 125	2, 124 4, 699	2, 913 7, 265
Total	39, 291	25, 889	27, 192	32, 082	41, 156

¹ Compiled from Customs Returns of France.

Italy.—In 1956 the United States, United Kingdom, and West Germany received 73 percent of the talc exported from Italy compared with 78 percent in 1955.

TABLE 17.—Talc exported from Italy, 1952-56, by countries of destination, in short tons 1 2

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Austria Belgium-Luxembourg	292	382 435	360 700	349 538	(3)
Canada France Germany:	780 416	1, 117 966	756 763	1, 130 1, 079	(3)
East West	138 3, 930	110 3, 590	147 4, 251	70 5, 507	(3) 6, 318
Netherlands Portugal Switzerland	405 175 374	988 269 627	691 284 691	988 290 473	(3) (3)
Union of South Africa United Kingdom	375 6, 172	9, 150	559 7, 486	659 9, 246	(3) 9, 237
United States Other countries	12, 932 3, 270	15, 607 3, 156	13, 686 3, 467	21, 117 4, 406	16, 329 11, 042
Total	29, 259	36, 537	33, 841	45, 852	43, 464

Korea, Republic of.—Production of pyrophyllite in 1956 was 8,778 short tons (7,963 metric tons); production of talc was 6,941 short tons (6,297 metric tons).25 Agreement was reached between the Korean Government and the United Nations Korean Reconstruction Agency (UNKRA) to erect a complete grinding plant at the Oriental mine near Chungju, Chungchong Pukdo Province.26

Norway.—Exports of talc and soapstone in 1955 increased 10 per-

cent over 1954.

Compiled from Customs Returns of Italy.
 This table incorporates a number of revisions of data published in the preceding Tale, Soapstone, and Pyrophyllite chapter.
 Data not separately recorded.

U. S. Embassy, Scoul, Korea, State Department Dispatch 339: March 1957, pp. 3-4.
 Mining World, vol. 18, No. 2, February 1956, p. 78.

TABLE 18.—Talc and soapstone exported from Norway, 1951-55, by countries of destination, in short tons ¹

[Compiled by Corra A. Barry]

Country	1951	1952	1953	1954	1955
Belgium-Luxembourg	2, 973	3,694	3, 277	3,086	5, 033
Denmark Finland	6, 216 4, 218	4, 902 2, 744	5, 733 393	7, 882 2, 432	9,091 1,729
France	699	668	423	536	651
Germany: East	4		168	83	
West	4, 489	4, 561	4, 326	6, 599	6, 063
Indonesia	2,061	2, 142 6, 099	1, 499 7, 662	1,335 7,454	2, 710 9, 085
NetherlandsPoland	8, 132	226	510	328	9,000
Sweden	9, 204	5, 342	6, 816	8,604	8, 368
Switzerland United Kingdom	204 16, 961	148 12, 263	98 12, 607	79 15, 764	17, 065
Other countries	1, 474	1, 653	1, 170	2, 021	2, 242
Total	56, 631	44, 442	44, 682	56, 203	62, 037

¹ Compiled from Customs Returns of Norway.

Union of South Africa.—Salient statistics on "Wonderstone," a massive pyrophyllite, 1953-56, are given in table 19.

TABLE 19.—Salient statistics of the pyrophyllite (wonderstone) industry in the Union of South Africa, 1953–56  $^{\rm 1}$ 

		1953	1954	1955	1956
Production Exports: Quantity (short Value (US\$) Local sales: Quantity (short Value (US\$)	 	408 272 22, 408 116 8, 260	377 174 16, 758 1, 158 10, 623	239 126 12,110 106 8,036	266 232 22, 630 81 6, 308

¹ U. S. Embassy, Johannesburg, Union of South Africa, State Department Dispatch 262: May 3, 1957, p. 3; Dispatch 292, June 14, 1957, p. 3.

# **Thorium**

By John E. Crawford 1



IGH-TEMPERATURE APPLICATIONS for magnesium-thorium alloys in aircraft and guided missiles were the key to an increased demand for thorium in 1956. The first industrial purchase of thorium for nuclear-power use was made, offering some hope for a more immediate conclusion relative to thorium's future

in the burgeoning nuclear energy industry.

In the United States, thorium-bearing monazite was recovered from black-sand mining and processing in Florida and South Carolina. Monazite, the most abundant thorium mineral, was one of several minerals recovered from the heavy black-sand placers. A dredge was placed in operation in Bear Valley, Valley County, Idaho, to mine euxenite from an extensive placer occurrence. Some thorium was recovered from the euxenite upon refining for its uranium and columbium (niobium)-tantalum content, and a small quantity of monazite was produced during dredging operations.

A new refining installation was opened at Baltimore, Md., and another at Chattanooga, Tenn., which increased the United States thorium-salts-production capacity significantly. Other monazite

processors continued operations in 1956.

Investigations expanded to improve methods of producing highpurity reactor-grade thorium metal. The Atomic Energy Commission (AEC) was the sole producer of high-purity thorium in marketable quantities.

Magnesium alloys consumed more thorium than ever before. Indications were that such alloys may become the most important nonenergy outlet for thorium, superseding the gas-mantle requirement which historically has been the greatest consumer of the heavy metal.

The first purchase of more than 10 tons of high-purity thorium was made from the Atomic Energy Commission for prototype studies of a breeder power reactor utilizing thorium, to be built at Indian Point, N. Y. This was the first sale by the AEC under its new price announcement for thorium, made in January 1956, in which it offered the metal for \$43 per kilogram.

The Union of South Africa, India, and Brazil continued to be the world's leading producers of thorium ores. Some production was recorded from other countries, and many companies and Governments explored for and investigated deposits of thorium in remote parts of

the world.

¹ Commodity specialist.

Papers presented at the International Conference on Atomic Energy, Geneva, Switzerland, August 8-20, 1955, were published in 16 volumes during 1956. Information on the geology, metallurgy, and use of thorium was contained in the publications.

## DOMESTIC PRODUCTION

Exploration and Mine Production.—Marine Minerals, Inc., a subsidiary of Heavy Minerals Co., Chattanooga, Tenn., mined and separated thorium-bearing heavy black sands near Aiken, S. C. The dredge operated by Marine Minerals was capable of removing 2 million cubic yards of raw material per year, of which about 1 percent was recovered as a heavy-minerals concentrate. The company's nearby separating unit recovered monazite, ilmenite, rutile, and zircon by a combination of electrostatic, electromagnetic, and gravity techniques.3

Humphreys Gold Corp., Jacksonville, Fla., and the Florida Ore Processing Co., Sharonville, Ohio, produced some thorium-bearing monazite from beach and dune sands in Florida as a byproduct of

titanium-minerals production.

In the Big Creek area near Cascade, Idaho, Baumhoff-Marshall, Inc., and Idaho-Canadian Dredging Co., both of Boise, Idaho, maintained equipment for dredging monazite sands. Their operations were curtailed in mid-1955, however, owing to competition from imported ores.

Other companies or individuals may have contributed small quan-

tities of thorium ore to the overall production.

D. B. Lewis Co. Los Angeles, Calif., purchased 175 thorium claims on the Continental Divide in Lemhi County, Idaho, and Beaverhead County, Mont., for \$11 million. Company officials said that mining and milling equipment would be installed and that an AEC license had been obtained to transfer and sell thorium ores within the limits of the United States.4

In Boundary County near Porthill, Idaho, Hall Mountain Thorite Co. continued to explore a thorite-bearing vein. A 30-foot drift exposed segments of a vein averaging 5 feet in width with a thorium oxide content of 8.6 percent.⁵

Cotter Corp., Santa Fe, N. Mex., and International Minerals & Chemical Corp. announced that the IMCC 1,000-ton-a-day flotation mill at Parkdale, Colo., would be utilized to beneficiate thorite ores

International Conference on the Peaceful Uses of Atomic Energy, August 8-20, 1955, The World's Requirements for Energy; The Role of Nuclear Power: Proc., vol. 1, 479 pp. Physics; Research Reactors: Vol. 2, 471 pp. Power Reactors: Vol. 3, 389 pp. Cross Sections Important to Reactor Design: Vol. 4, 375 pp. Physics of Reactor Design: Vol. 5, 545 pp. Geology of Uranium and Thorium: Vol. 6, 825 pp. Nuclear Chemistry and the Effects of Irradiation: Vol. 7, 691 pp. Production Technology of the Materials Used for Nuclear Energy: Vol. 8, 627 pp. Reactor Technology and Chemical Processing: Vol. 9, 771 pp. Radioactive Isotopes and Nuclear Radiations in Medicine: Vol. 10, 544 pp. Blological Effects of Radiation: Vol. 11, 402 pp. Radioactive Isotopes and Ionizing Radiations in Agriculture, Physiology, and Biochemistry: Vol. 12, 553 pp. Legal, Administrative, Health, and Safety Aspects of Large-Scale Use of Nuclear Energy: Vol. 13, 393 pp. General Aspects of the Use of Radioactive Isotopes; Dosimetry: Vol. 14 305 pp. Applications of Radioactive Isotopes and Fission Products in Research and Industry: Vol. 15, 327 pp. Record of the Conference: Vol. 16, 203 pp.

Spector, Norman A., What Industry Is Doing in Atomic Energy in the Southeast: Forum on Prospects for Atomic Energy in the South, Atlanta, Ga., Apr. 18, 1956, 10 pp.

4 Mining Record, Thorium Claims in Idaho Reportedly Purchased by California Interests: Vol. 67, No. 6, Feb. 9, 1956, p. 7.

Engineering and Mining Journal, vol. 157, No. 3, March 1956, p. 140.

Western Mining and Industrial News, L. A. Manufacturer to Equip Thorium Property in Idaho: Vol. 24, No. 2, February 1956, p. 2.

THORIUM 1157

mined by Cotter Corp. from properties in the Wet Mountain area

southwest of Parkdale.6

Colonial Uranium Co., Grand Junction, Colo., acquired control of Thorium Corp. of America. The company was working with the Colorado School of Mines Research Foundation to determine the best method of extracting thorium from thorite ores of Colorado. The inference was that Colonial Uranium Co. will soon build a thorium-processing plant of about 500-ton-per-day capacity near Gunnison, Salida, or Westcliffe, Colo.

In Nevada, Stanwood Oil Corp. indicated that it had purchased 181

claims containing substantial deposits of thorium.8

Tidewater Oil Co. began a drilling program to determine whether appreciable quantities of thorium and associated minerals were avail-

able on land leased from New Mexico & Arizona Land Co.9

In June 1956 Porter Bros. Corp. began operation of its 7-cubic-foot dredge in Bear Valley, Idaho, about 95 miles north of Boise, Idaho. The deposit, mined primarily for its euxenite content, contained some monazite, which was temporarily stockpiled. The separation plant was at Lowman, Idaho.

Mine shipments in 1956 were 28 percent less than shipments in 1955. Refinery Production.—Thorium compounds were produced from monazite concentrate during 1956 at the following domestic plants:

Lindsay Chemical Co. West Chicago, Ill. Rare Earths Dept. Davison Chemical Co. Pompton Plains, N. J. Maywood Chemical Works Maywood, N. J. Heavy Minerals Co. Chattanooga, Tenn.

Lindsay Chemical Co. produced thorium compounds largely from stocks of South African monazite imports. Some domestic material was probably treated. Indications were that Lindsay sales in 1956 probably would total about \$10 million, while in 1953 the company

sales were less than \$5 million.¹⁰

The Rare Earths department of Davison Chemical Co., a division of W. R. Grace & Co., opened a new \$2 million monazite-processing plant at Curtis Bay, Baltimore, Md., in June 1956. The plant, with a 15- to 25-ton-a-day raw-material capacity, was designed to produce high-quality thoria and rare-earth salts from monazite concentrate. In 1956 and 1957 the plant was scheduled to treat monazite from the National Stockpile, separate the two major constituents, supply the AEC with the thorium product, and return to the stockpile a purified, insoluble, rare-earth double salt for outside storage. Sulfuric acid for digestion of the monazite was provided by the adjacent Davison contact-acid plant, and phosphoric acid generated in the solubiliza-

⁶ Mining Record, Plan Operations on Thorium Ores: Vol. 67, No. 25, June 21, 1956, p. 8.
Mining Engineering, Thorium Operations Planned in Colorado: Vol. 8, No. 6, June 1956, p. 583.
7 Western Mining and Industrial News, Thorium Corp. Bought by Colonial Uranium: Vol. 24, No. 1,

January 1956, p. 19.
Ludwig, Robert I., Thorium . . . Its Economic Prospects: Mines Mag., vol. 46, No. 3, March 1956, pp. 55-57.

pp. 55-57.

8 Mining Record, Stanwood Oil Buys Thorium Property: Vol. 67, No. 23, June 7, 1956, p. 1.

9 Wall Street Journal, Tidewater Oil Drilling for Uranium, Thorium on Southwest Land: Vol. 147, No. 116, June 14, 1956, p. 16.

10 Business Week, Staying Afloat in a Wild Race: No. 1384, Mar. 10, 1956, pp. 106-108, 110.

tion of the rare-earth phosphates was consumed in Davison's fertilizer manufacture.¹¹

A processing plant was opened at Chattanooga, Tenn., by Heavy Minerals Co., jointly owned by Crane Co., Vitro Corp. of America, and Société de Produits Chemiques des Terres Rares. At the Chattanooga facility, monazite concentrate from the Marine Minerals Co. plant in South Carolina were chemically treated to separate and refine thorium and rare-earth products.

In New Jersey Davison Chemical Co. Rare Earths Department and Maywood Chemical Works produced thorium and rare-earth

salts from monazite.

Mallinckrodt Chemical Works, St. Louis, Mo., recovered a semirefined thorium sludge during the processing of Idaho euxenite con-

centrate for uranium.

Westinghouse Electric Corp., Lamp Division, Bloomfield, N. J., and Metal Hydrides, Inc., Beverly, Mass., produced small quantities of commercial-grade thorium metal. The AEC prepared high-purity thorium metal for nuclear applications at its Feed Materials Production Center, Fernald, Ohio. The installation was managed by National Lead Co. of Ohio.

# CONSUMPTION

Nonenergy Uses.—Because thorium was classified as a source material under the Atomic Energy Act of 1954, AEC authorization was necessary for any purchase of thorium by industry. In 1956, however, AEC discontinued statistical compilation of reports of company purchases and sales of thorium and thorium compounds. Therefore, table 1 offers data on authorizations for purchase of thorium through 1955 and estimated use in 1956.

Popularity of the HK31-series magnesium alloy, developed by Dow Chemical Co., Midland, Mich., increased substantially in 1956. An estimated 50,000 pounds of contained ThO₂ was consumed in manufacturing special magnesium alloys in the United States during 1956. Most of the alloy was in sheet and cast forms for guided-missile parts

and jet-engine components.

Indications in 1956 were that consumption of thorium in thorium nitrate for gas-mantle manufacture was nearly as large as in special magnesium alloys. Much of the thorium nitrate to be used for gas mantles was an export item. People of many remote and powerless regions of the world still found the incandescent-gas or gasoline

lantern a necessity.

Small quantities of thorium salts were consumed in other categories. Thorium oxide with a melting point of 3,220° C. was used in fabricating special refractories. Refractory characteristics of thorium oxide received careful scrutiny in 1956, and some high-temperature applications were anticipated. The oxide of thorium was also combined with lanthanum oxide, producing extremely high quality optical glass for certain aerial-camera lenses. Tungsten containing 1 to 2 percent thoria was consumed in filaments of electron tubes, and as a nonconsumable electrode for inert-gas-shielded arc welding.

¹¹ Chemical and Engineering News, Government Service—Davison Style: Vol. 34, No. 28, July 9, 1956, p. 3338.

Daily Metal Reporter, Complete Processing Plant for Production of Thorium: Vol. 56, No. 120, June 23, 1956, p. 7

TABLE 1.—Authorizations for purchase of thorium compounds to industry by Atomic Energy Commission for nonenergy purposes in the United States, 1951-56, in pounds of contained ThO2

Industry	1951	1952	1953	1954	1955	1956 1
Magnesium alloys_ Gas-mantle manufacture Refractories and polishing compounds Chemical and medical Electrical Total	31, 132 3, 382 6, 246 1, 457 42, 217	25, 427 1, 157 11, 064 277 37, 925	3, 600 8, 707 236 5, 179 1, 222	4, 647 9, 765 24 3, 738 2, 016 20, 190	23, 944 44, 566 105 3, 898 926 73, 439	50, 000 40, 000 200 4, 000 1, 000

¹ Estimate.

In the chemical industry, some thorium compounds have been useful as catalysts and in the production of certain organic reagents.

Soluble thorium salts were used in medicinal creams and lotions as

in treating parasitic infections.

The AEC issued source-material licenses to Glenn L. Martin Co. and Aerojet-General Corp. for procurement of thorium to be used in the earth satellite, Project Vanguard. Martin Co. purchased 2,010 pounds of thorium and Aerojet-General, 600 pounds.

Energy Uses.—Consolidated Edison Co. purchased from the AEC 27,500 pounds of thorium metal for \$537,000. Contractor for Consolidated Edison of New York, Babcock & Wilcox Co., was to use the thorium in conducting critical experiments with a full-size reactor core at its plant in Lynchburg, Va. The core will be a prototype of the one that Consolidated Edison of New York will place in its Indian Point, N. Y., power reactor. The AEC granted a construction permit to the firm on May 4, 1956, for building a 140,000-kilowatt, pressurized-water breeder reactor to be completed not later than October 1, 1960.

Thorium was to play a part in the proposed Pennsylvania Power & Light Co. nuclear powerplant. The reactor studied was a homogeneous fuel and breeder slurries system. Characteristics of thorium oxide slurries in concentrations and at temperatures and pressures appropriate to the suggested design were examined by project

engineers.12

The breeder-reactor-construction project at the Oak Ridge National Laboratory, Oak Ridge, Tenn., was completed in 1956. Known as Homogeneous Reactor Experiment No. 2, it was designed to determine economic feasibility where the power-reactor fuel is dissolved in a liquid moderator-coolant. The possibility of continuous onstream removal of fission products offered some hope that the reactor might be an attractive fuel breeder, using thorium in a liquid blanket surrounding the liquid core. Testing of reactor equipment was underway during the latter part of 1956. Pennsylvania Power & Light Co. reactor design was similar to the HRE No. 2.

#### **PRICES**

The AEC announced January 11, 1956, that it had established a basic price of \$43.00 per kilogram (\$19.55 per pound) for high-purity thorium metal. The price applied to licensees who planned to use

¹³ American Metal Market, Thorium to Be Used in at Least Two Nuclear Powerplants: Vol. 63, No. 226, Nov. 28, 1956, pp. 1, 5, 10.

thorium metal in nuclear reactors and in other peacetime applications of atomic energy. The AEC Fernald, Ohio, Feed Materials Produc-

tion Center, was designated the f. o. b. point.

Commercial-grade thorium metal (chief impurities—calcium, about 0.05 percent; iron, about 0.05 percent; thorium oxide, about 1.0 to 1.5 percent) was available in small lots during 1956 at the following prices per gram and in the following forms:

	Less than 200 arams	More than 200 grams
Thorium metal:		
Powder	\$0, 45	\$0.35
Unsintered bars		. 40
Sintered bars		. 50
Sheet:	00	. 00
0.005 in. or more	. 75	. 60
0.002 to 0.0049 in	. 85	. 85

Principal thorium compounds were quoted by a leading producer in 1956 for 100-pound lots or more as follows:

	percent	Price (per pound) 1
Thorium compound:	7	
Carbonate	80-85	\$7, 25-8, 80
Chloride	50	7. 00
Fluoride	80	6. 50
Nitrate (mantle grade)	46	3, 00
Oxide	97-99	8. 25-9. 35

¹ Variable depending on rare-earth content.

# FOREIGN TRADE

Import-export statistics regarding thorium, thorium compounds, and thorium ores and concentrates are not available for publication. Some monazite was imported from Union of South Africa, but the continuing Indian and Brazilian embargoes prevented exportation of source materials from those countries.

## **TECHNOLOGY**

Battelle Memorial Institute produced half-pound lots of highpurity-thorium metal by thermal decomposition of the volatile iodide of thorium. The experimental process may yield thorium of high

purity on a commercial basis. 13

Results of investigations into the effects of impurities on the mechanical properties of thorium were given. Mechanical properties of the metal in the fully annealed state were found to depend primarily on carbon content. Hardness, yield strength, and ultimate tensile strength increased with increased carbon content. Small additions of oxygen, nitrogen, beryllium, or aluminum did not appreciably affect the properties of the carbon-bearing thorium. Fabrication methods did not appear to influence the mechanical properties. Carbon additions did, however, decrease the impact strength of the thorium. Oxygen did not affect ductility of the metal, but the impact strength of as-cast bars of thorium with additions of nitrogen, aluminum, or beryllium was slightly decreased. 14

¹³ Metal Industry (London), High-Purity Thorium: Vol. 88, No. 21, May 25, 1956, p. 440.
14 Materials and Methods, Effects of Impurities on Thorium Metal: Vol. 43, No. 4, April 1956, pp. 206, 208.
Chemical Age (London), Strengthening Thorium: Vol. 73, No. 1903, Dec. 31, 1955, p. 1412.

Metal Hydrides, Inc., in conjunction with the Battelle Memorial Institute conducted a research program on methods of producing high-purity thorium-metal powder, ¹⁵ and N. R. C. Metals Corp., a subsidiary of National Research Corp., Cambridge, Mass., studied new, more economical methods of producing thorium metal.16

Because of thorium's potentialities as a nuclear-reactor component, studies of thorium-alloy systems were conducted. Because titanium and columbium (niobium) were known to have good corrosion resistance, high melting points, and reasonable nuclear characteristics,

alloys of these metals with thorium were investigated.17

Information about the fabrication of thorium powders was made available. Research disclosed that the fabrication of dense shapes from both primary and secondary thorium powders was feasible either by vacuum hot pressing or by cold pressing, vacuum sintering, and mechanical working. Indications were that briquetting, melting, refining, casting, and breakdown working could be eliminated by applying powder-metallurgy techniques directly to both powdered machining chips and virgin reduced powders. The economic possibilities of such an operation appeared favorable.¹⁸

Thorium-bearing, magnesium-alloy sheet, the HK31 alloy containing 3 percent of thorium and 0.75 percent of zirconium was evaluated for use in a supersonic ramjet engine designed for service at temperatures above 600° F. Its properties of fabrication, including heat treatment, welding, and assembly, were compared with other alumi-

num alloys often used for missile skins.19

The second in a series of high-temperature magnesium-thorium alloys being developed by Dow Chemical Co., Midland, Mich., was announced. The alloy contained 1.5-2.5 percent of thorium and 0.35 to 0.80 percent of manganese. The alloy was prepared for possible use as a structural airframe material, combining light weight and strength with an ability to withstand the intense heat generated by friction at supersonic speeds. Exposure to 700° F. temperature for 100 hours had little effect on its properties during testing. alloy offered superior resistance to creep at elevated temperatures. Bending tests proved no significant change in bend radius from room temperature to 500° F., and drawing tests indicated that the material could be drawn satisfactorily. The alloy expressed good weldability.20

The pyrophoricity of thorium was believed to have caused explosions at the thorium-fuel-element-fabricating center of Sylvania Electric Products, Inc., at Queens, N. Y., on July 2, 1956. Thorium-metal scrap was being converted to thorium oxide for storage when the

explosion occurred.21

pp. 1, 6.

¹⁵ Oil, Paint and Drug Reporter, vol. 169, No. 11, Mar. 12, 1956, p. 3.
16 American Metal Market, Seek Lower Cost Techniques to Make Thorium: Vol. 63, No. 103, May 30,

^{1956,} p. 1.

19 Carlson, O. N., Dickinson, J. M., Lunt, H. E., and Wilhelm, H. A., Thorium—Columbium and Thorium—Titanium Alloy Systems: Jour. Metals, vol. 8, No. 2, February 1956, pp. 132-136.

18 Beaver, W. W., Wikle, K. G., and Kein, J. G., Fabrication of Thorium Powders: Jour. Metals, vol. 8, No. 4, April 1956, pp. 445-454.

19 Levy, Alan V. Thorium—Magnesium Sheet, Useful for High-Temperature Service: Materials and Methods, vol. 43, No. 3, March 1956, pp. 114-117.

20 Materials and Methods, Magnesium-Thorium Alloy for High-Speed Aircraft: Vol. 44, No. 6, December 1956, np. 139-141.

^{1956,} pp. 139-141. ²¹ Daily Metal Reporter, Thorium Scrap Ignites at Sylvania, Causes Blast: Vol. 56, No. 126, July 3, 1956,

The metallurgy of thorium was described in a publication released during 1956.²²

The Bureau of Mines initiated a research program on the extraction and production of thorium from domestic deposits. Beneficiation studies of material from the Bald Mountain deposit, Big Horn Mountains William William Reposits and the studies of material from the Bald Mountain deposit, Big Horn Mountain deposits.

tains, Wyo., were underway late in 1956.

A 1-day symposium on thorium was held under the joint auspices of the AEC and the American Society for Metals, at the annual meeting of the society, October 7–12, 1956, at Cleveland, Ohio. Technical considerations in the production and use of the metal and its compounds were reviewed.²³

# WORLD REVIEW

Brazil, India, and Union of South Africa were the leading world producers of thorium ores. Australia, Ceylon, Indonesia, Korea, and Malaya may have produced small lots of monazite in 1956; and in several other countries interesting deposits of thorium-bearing minerals were investigated or developed.

# NORTH AMERICA

Canada.—Uranium deposits of the Blind River area of Ontario were considered as sources of byproduct thorium. The radioactive minerals mined from the conglomerates of the Mississagi formation were brannerite, pitchblende, thucholite, and uranothorite. The thorium was contained in the brannerite and uranothorite minerals. The cost of mining, milling, and chemically treating the ore was borne by the uranium product, and the waste liquors of the process contained as much as 0.04 percent of thorium; therefore, the thorium might be recovered from the wastes at a relatively low cost if demand for the element warranted it.

## SOUTH AMERICA

Brazil.—Thorium-ore deposits at Moro do Ferro on the Pocos de Caldas Plateau in Minas Gerais were studied by Government technologists.²⁴

²² Gurinsky, David H., and Dienes, George J., Nuclear Fuels: D. Van Nostrand Co., Inc., Princeton, N. J., 1956, 364 pp.

23 Howe, J. P., The Role of Thorium Metal in the Nuclear Field; Lilliendahl, W. C., Nonnuclear Applicacations of Thorium Metal Other Than in Magnesium Technology; Leontis, T. E., The Uses of Thorium in Magnesium Technology; Smutz, M., Barghusen, J., The Production of Thorium Compounds; Wilhelm, H. A., Development of the Thorium Tetrafluoride-Calcium Process for Thorium Metal; Roberson, A. H., Consumable-Electrode Are Melting of Thorium; Kopelman, B., Powder Metallurgy of Thorium (including reduction of thorium oxide by calcium); Fassel, V. A., and DeKalb, E., Spectrographic Analysis of Thorium Metal; Rodeton of thorium oxide by calcium); Fassel, V. A., and DeKalb, E., Spectrographic Analysis of Thorium Metal; Rodeton of Thorium; Metal; Rodeton of Thorium in Metal by the Iodide or Hot-Wire Process; Noland, R. A., The Electrolytic Refining of Thorium; Smith, J. F., Physical Constants, Crystal Structure and Thermodynamic Properties; Berlincourt, T. G., Atomic Structure of Thorium, Its Electron Energy and Other Considerations as to Solid-State Physics; Jetter, L. K., and McHargue, C. J., Preferred Orientation in Thorium; Frye, J. H., and Cunningham, J., Fabrication and Cladding of Thorium Metal; Boyle, E. J., Recrystallization and Grain Growth in Thorium Metal; Milko, J., and Adams, R. E., Mechanical Properties of Thorium Metal and High-Thorium Alloys; Pray, H. A., and Berry, W. E., Corrosion Resistance of Thorium Metal and High-Thorium Alloys; Roth, H. P., Metallography of Thorium; Foote, F. G., Irradiation Damage in Thorium Metal, H. P., A., and Rough, F. A., Thorium Alloy Systems; Voigt, A., and Voss, M., Hazards Associated With Thorium Metal-lurgy: A. E., C.-A. S. M. Conference on Thorium, Cleveland, Ohio, October 11, 1956.

In August 1956 the Brazilian Government refused to export thoriumbearing material and other atomic-energy resources, even under Government-to-Government transactions, such as had been approved with the United States Government in the past. The International News Service indicated that the action canceled a United States order for 300 tons of thorium oxide (thoria). Brazil could no longer give preferential treatment to any nation, and it could negotiate only short-term contracts with countries in future. All nuclear materials were to be under complete Government jurisdiction in the hope that a Brazilian nuclear industry would be established as soon as possible.25

Monazite-bearing beach sands of economic importance exist in the States of Espirito Santo, Rio de Janeiro, Baía, Parana, and Rio Grande do Norte. Probably the largest workable deposits were at Comaxatiba and Guaratiba in Baía, Guarapary in Espirito Santo,

and Barro do Itabopoana in Rio de Janeiro.

#### **EUROPE**

Austria.—Treibacher chemische Werke, Treibach, Austria, may have treated monazite to recover thorium and other products during 1956.

France.—The Société de produits chemiques des terres rares maintained a plant at La Rochelle for refining monazite; some thorium products were prepared.

Greenland.—Thorium deposits were discovered in Greenland by

the Danish Atomic Energy Commission.

United Kingdom.—Thorium, Ltd., facilities for thorium production were idle during 1956, while the organization specialized in rare-earth compounds. ASIA

Ceylon.—The Department of Mineralogy mined monazite-bearing sands from beach deposits at Beruivela, 35 miles south of Colombo, on the west coast. The material was stockpiled after concentration at Katurkurunda for possible use in any future nuclear-research pro-Other deposits occur at Kaikawela and Pulmoddai. tions are that monazite in Ceylon carries 8.9-9.2 percent thoria.

India.—The capacity of the Government-owned monazite processing plant at Alwaye, Travancore-Cochin, operated by Indian Rare Earths, Ltd., was to be doubled. The plant produced thorium,

hydroxide, rare-earth carbonates, and trisodium phosphate.26

Geologists from the Andhra University estimated that the tonnage of monazite sands totaled tens of thousands in black-sand deposits along the Indian coast from Kalingapatnam to Kakinada. was also discovered in ocean-floor sediments at a depth of 12 fathoms about 4 miles from the Andhra coast off Pentakota, north of

The thorium and uranium refinery at Trombay near Bombay was in operation during 1956. The plant, costing approximately 4.5 million rupees, treated material produced at the Alwaye monazite-

processing facility.

Washington Post and Times-Herald, U. S. Loses Sole Claim to Brazil's A-Material: Sept. 1, 1956. Engineering and Mining Journal, vol. 157, No. 2, February 1956, p. 240. U. S. Embassy, Madras, India, State Department Despatch 817: Apr. 17, 1956, 1 p.

Heavy black sands, containing thorium-bearing monazite, were exploited in the Travancore and Madras coastal areas. A provisional estimate of monazite reserves in India was 2 million tons, with a thorium content of something like 150,000 to 180,000 tons. 28 The history, formation of the deposits, mineralogy, mining, and treatment were described.29

Indonesia.—No reports of production of monazite-bearing black sand in Indonesia were received during 1956, although some pro-

duction may have been realized.

Monazite has been found in the alluvial tin ores of Billiton, Bangka, and Singkep. Some 1,565 tons of monazite, assaying to 3.4 percent, were recovered at Singkep from 1936 to 1940. No production has been recorded from any of the three localities since 1940.

Japan.—Revision of the Japanese mining law, effective February

1956, permitted public mining of thorium.30

Korea, South.—In previous years monazite has been recovered from residual black-sand deposits in Korea, but the amount (if any)

obtained in 1956 is unknown.

Malaya.—The quantity of thorium in placers that may have been mined in Malaya was not indicated. Thorium minerals were known to occur in tailings of tin-dredging operations, but none was recovered.

Taiwan (Formosa).—Beach and dune sands in north and northwestern Taiwan, offshore barriers of southwestern Taiwan, and fluvial deposits of northwestern and southwestern Taiwan contained black sands with an average monazite content of about 4.4 percent. of the deposits was known to have been exploited during 1956.

Thailand.—Tin tailings in some areas have been found to contain a significant percentage of monazite, the ThO2 content averaging about 4.05 percent. Because of the multiplicity of associated minerals, present separation methods were said to be ineffective, and the monazite was never recovered in marketable form.

#### AFRICA

Egypt.—It was reported that thorium deposits were discovered in Egypt in 1956. Material from the occurrences was being analyzed

to determine the economic value of the minerals present.31

Kenya.—At Mrima, there was estimated to be 42 million tons of soil, with a possible pyrochlore content of 0.7 to 2.7 percent. The samples assayed indicated that the mineral might contain up to 3 percent of thoria. Monazite was also noted in the deposit; the thoria content was less than 1 percent.

Madagascar.—Thorianite and monazite-bearing sands of relatively low concentration appeared on Madagascar beaches. Uranothorianite associated with pyroxenite continued to be investigated in the Fort Dauphin-Mandrare River area. The uranothorianite could be an important source of uranium and thorium if reserves prove signifi-

Metal Bulletin (London), India's Atomic Mineral Potentiality: No. 4146, Nov. 20, 1956, p. 12.
 Canadian Mining Journal, Black-Sand Mining . . . From the Sands of Travencore: Vol. 77, No. 7, July 1956, pp. 67-69, 76.
 Bureau of Mines, Mineral Trade Notes: Vol. 42, No. 1, January 1956, p. 17.
 Mining World, vol. 18, No. 8, July 1956, p. 83.

1165 THORIUM

cant. Some material had reportedly been mined and shipped to France

for processing.

Mozambique.—Black sands at Marracuene contained as much as 1 percent of monazite. The monazite's thorium content was about 5 percent of thoria. It was not determined if the Marracuene sands were mined. At the mouth of the Rovuma River, similar deposits were noted.

Nigeria.—Thorite and monazite were found associated with tin in Nigeria placer fields. Crude tin ore contained an average of 0.40 percent of equivalent ThO2. The minerals have not, however, been

economic to recover as a byproduct.

Rhodesia and Nyasaland, Federation of.—A pyrochlore deposit with a possible thoria content of 1 percent was investigated at Chilwa Island. Some 45 million tons of soil with a pyrochlore content of nearly 2 pounds per yard was not mined.

Sierra Leone.—Monazite in bedrock, the thoria content of which

was 9.0 percent, was not exploited in 1956.

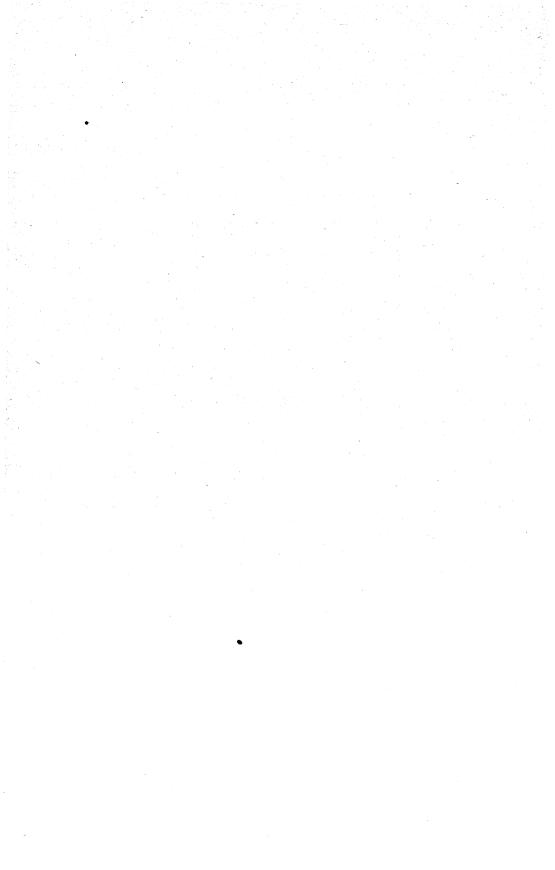
Tanganyika.—The Geological Department of Tanganyika discovered a monazite occurrence south of the Uluguru Mountains. Preliminary investigations determined that the deposit had potentialities.32

Uganda.—At Sukulu pyrochlore in soils has been determined to contain as much as 2.86 percent of thoria. Reserves of the pyrochlore-bearing soils to a depth of 20 feet have been estimated at 85,000

Union of South Africa.—Anglo-American Corp. of South Africa, Ltd., mined a monazite vein deposit at Van Rhynsdorp, Cape Province. The monazite concentrate, which carried about 55 percent of rare earths and 6 percent of thorium, was exported to United States and English processing concerns.33

The South African Atomic Energy Board examined a copper-uranium-thorium carbonatite deposit at Palaboria, North Transvaal. Analysis of uranothorite from the area showed 16 percent of UO2 and 60 percent of ThO2. No reports on the economics of the deposit

were published.


**OCEANIA** 

Australia.—At North Stradbroke Island, Queensland, beach-sand deposits of heavy minerals were mined. Titanium and Zirconium Industries Pty., Ltd., subsidiary of Consolidated Zinc, Ltd., prepared a new dredge with an attached Humphreys-spiral concentration unit to work the dune areas near the eastern beach of the island. Dredge feed was separated in the spiral units and the final concentrate pumped to an aerial tramway or conveyor which transported the material in buckets 7 miles across the island to Dunwich. At Dunwich a new separation plant produced clean concentrates of ilmenite, rutile, zircon, and monazite by electrostatic and electromagnetic means.34

²³ South African Mining and Engineering Journal, Recent Discoveries in Tanganyika: Vol. 66, part 2, No. 3283, Jan. 13, 1956, p. 827.

Baydidson, C. F., The Economic Geology of Thorium: Min. Mag. (London), vol. 94, No. 4, April 1956,

pp. 197-208. South African Mining and Engineering Journal (Johannesburg), vol. 67, part 2, No. 3312, Aug. 3, 1956, p. 155.
²⁴ Mining World, Australia's Beach Sands Important for Rutile: Vol. 18, No. 4, April 1956, p. 65.



# Tin

By Abbott Renick 1 and John B. Umhau 2



LTHOUGH world mine production of tin in 1956 remained virtually unchanged from 1955, world consumption rose to the highest point since 1941. For the most part, increased world consumption compensated for the decreased demand for strategic stockpiling by the United States Government. Procurement of tin by the United States Government ceased to be a factor in determining the world tin position, as the minimum and long-term strategic stockpile objectives for tin were achieved. Operation of the Government-owned Longhorn tin smelter was extended to January 31, 1957, and its disposal authorized. The Federal Facilities Corporation (FFC) agreed on the sale of the Texas City plant and other assets of the Government tin program. The International Tin Agreement, in process of ratification since 1954, came into force under management of the International Tin Council.

The average price of tin was the third highest in history. Straits tin for prompt delivery in New York was 101.26 cents a pound in 1956, compared with 94.73 cents in 1955. The price declined in the first half of the year, but rose in the latter half to the 1953 figure as

a result of the Suez crisis.

World mine production of tin decreased 300 long tons, but the total equaled the average annual tonnage for 1953-55. Production in Malaya and Thailand established new postwar records but output in Bolivia decreased for the third successive year to the lowest point since 1939. No tin was mined in the United States in 1956. World smelter production remained unchanged; world consumption increased 3 percent. World industrial stocks of tin increased from

62,900 tons at the beginning of 1956 to 69,000 at the end.

Tin consumption in the United States was 200 tons less than in 1955. The use of primary tin, however, increased 700 tons and was the highest since 1950. Secondary consumption decreased nearly 900 tons. Tinplate, the principal use of primary tin, took about 60 percent of the total from 1952 to 1956, inclusive. Tinplate production rose to a new peak of 5.7 million short tons—5 percent above the previous high in 1955. Domestic smelter output from the Government-owned plant at Texas City, Tex., decreased 4,700 long tons and continued on a reduced scale, pending a decision as to its continuance. Secondary tin production was less than in 1955. Detinning plants, however, treated the largest tonnage of tinplate clippings on record and increased their recovery of tin as metal and chemical compounds 8 percent.

Commodity specialist.
 Commodity-industry analyst.

Metal imports of tin, declining 3 percent, represented almost 80 percent of the total tin imported. Receipts of tin in concentrate declined 17 percent. Imports of metal and concentrate were augmented by 5,000 long tons (gross weight—chief value, tin) of tin alloys, mainly from Denmark in the form of 94-percent-tin alloys.

At the end of 1956 tin stocks held by the Government and industry—pig tin, tin in ore, raw materials in process, and other (but excluding the strategic stockpile)—totaled 39,200 long tons, a 12-percent decline compared with 44,300 tons on hand December 31, 1955. The Office of Defense Mobilization (ODM) reported to the Congress that the long-term stockpile objectives on tin were filled.

TABLE 1.—Salient statistics of tin in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Production:						
From domestic mines 1 long tons. From domestic smelters 2 do. From secondary sources. do. Consumption: Primary. do. Secondary. do. Imports for consumption: Metal do. Ore (tin content). do. Exports (domestic and foreign). do. Monthly price of Straits tin at New York: Highest. cents per pound. Lowest. do.	34, 161 27, 671 58, 853 29, 932 49, 082 32, 159 595 129, 50 83, 73	98. 7 22, 805 28, 800 45, 323 33, 095 80, 543 26, 491 380 121, 50 103, 00	56. 0 37, 562 27, 600 53, 959 31, 681 74, 570 35, 973 203 121, 50 78, 25	204. 68 27, 407 26, 190 54, 427 28, 464 65, 599 22, 140 822 101. 00 84, 25	99. 24 22, 329 28, 340 59, 828 30, 655 4 64, 815 20, 112 1, 107 110. 00 85, 75	17, 631 3 27, 500 60, 470 29, 854 62, 590 16, 688 1, 118 113, 75 92, 88
Averagedo World mine productionlong tons_ World smelter productiondo World consumptiondo	100, 07 153, 500 160, 100 131, 700	120, 44 174, 100 171, 200 132, 500	95. 77 179, 600 183, 900 135, 300	91. 81 4 179, 300 187, 000 144, 300	94. 73 4 179, 900 4 181, 400 156, 000	101. 26 179, 600 181, 400 160, 500

¹ Includes Alaska.

# **GOVERNMENT CONTROLS**

In 1956 the Government did not control the use or inventories of tin or tin alloys and did not restrict the quantity of tin and tinplate exported. However, the Export Control Act of 1949, extended to June 30, 1958, governed shipments by destinations.

# DOMESTIC PRODUCTION

## MINE OUTPUT

No tin ore or concentrate of marketable grade was produced in the United States in 1956. Production was 100 long tons of tin valued at \$210,000 in 1955.

A report ³ (to accompany S. 2648, 84th Cong., 1st sess.) was published by the United States Senate on legislation proposing a Federal tin-purchase program for Alaska.

From 1951 through 1955, the following 5 tin-exploration contracts valued at \$534,831 (Government participation was 90 percent, at a

Including tin content of alloys made directly from ores.
 Estimate.

⁴ Revised figure

² United States Senate Committee on Interior and Insular Affairs, To Encourage the Discovery, Development and Production of Tin in the United States, Its Territories and Possessions: Rept. 2535, 84th Cong., 2d sess., July 12, 1956, 7 pp.

1169TIN

total cost of \$394,060) were executed under the Defense Minerals Exploration Administration (DMEA) program: Alaska Tin Corp., Ear Mountain, Port Clarence District, Alaska; Keenan Properties, Lawrence County, S. Dak.; I. W. and S. E. Purkeypile, Fort Gibbon mining district, Alaska; United States Tin Corp., Lost River, Alaska; and Zenda Gold Mining Co., Cape Mountain, Alaska. At the end of 1956 only the contract (\$48,931) with Keenan Properties was in force. The 4 other contracts amounting to \$485,900 were listed as "canceled and terminated" as of August 31, 1956. The Government issued a certificate of discovery on 2 of these contracts valued at \$449,900.

#### SMELTER OUTPUT

Domestic tin-smelter production was 17,631 long tons, compared with 22,329 tons in 1955. The entire output came from the Government-owned Longhorn smelter at Texas City, Tex.

According to the 1957 Federal budget:5

Authority for operation of the Government-owned tin smelter at Texas City, Tex., expires on June 30, 1956. (Joint Resolution approved June 28, 1947, as amended.) In Senate Concurrent Resolution 26 the President was requested to conduct a study and investigation for the purpose of recommending the most feasible methods of maintaining a permanent domestic tin smelting industry. The President's report and recommendations on this matter are to be made to the Congress prior to March 31, 1956.

The budget provides for operation of the tin smelter by the Government only until June 30, 1956.

On March 29, a special interagency group report 6 on the smelter that the President sent to the Congress concluded among other things that Government operation of the plant should cease not later than June 30, 1956. With the report, the President transmitted a modified recommendation by the Director of the Office of Defense Mobilization

* * * the continuation of the operation of the smelter for a brief period ending not later than January 31, 1957, to provide time for the completion of any pending or imminent negotiations for its sale as a going concern. This would require the passage of legislation authorizing the Federal Facilities Corporation to dispose of the smelter.

Public Law 608, approved June 22, 1956, extended authority to operate the smelter to January 31, 1957, and permitted sale of the

plant within that time.

As required by the law a Tin Advisory Committee composed of designees of the Secretaries of State, Interior, and Treasury, the Director of the Office of Defense Mobilization, and the Administrator of General Services Administration was established. On July 19, 1956, Federal Facilities Corporation advertised for written proposals for purchasing or leasing the smelter to be filed at any time through November 1, 1956. On November 5, FFC announced that two proposals to buy the smelter were received and that no lease proposals were received. A negotiating period, terminating December 27, 1956, was established. On December 27 a sale agreement was reached with

⁴ Joint Committee on Defense Production, Sixth Annual Report of Activities, Together With Materials on National Defense Production: House Rept. 1, 85th Cong., 1st sess., Jan. 22, 1957, pp. 151, 155.

8 Bureau of the Budget, The Budget of the United States Government for the Fiscal Year Ending June 30, 1957; Jan. 16, 1956, p. 933.

8 President of the United States, message transmitting a report, "A Study on the Feasibility of Maintaining a Permanent Domestic Tin-Smelting Industry in the United States": House Doc. 371, 84th Cong. 2d sess., Apr. 9, 1956, 16 pp.

Wah Chang Corp. of New York. The other proposal, which was from Messrs. Ellis Patterson and S. Fishfader, Los Angeles, Calif., had been withdrawn on December 20, 1956. The agreement with Wah Chang Corp. for the sale of the Longhorn tin smelter was for a price of \$1,350,000. The Government will receive a 10-percent downpayment at time of transfer of title, with balance payable in annual installments over a period of 10 years with interest at 4 percent per Wah Chang Corp. also agreed to make additional contingent payments not exceeding \$2 million if it produced tin metal. tin alloys, and tungsten at Texas City.

During 1956 the smelter was operated on a schedule either to permit sale of the plant as a going concern or to clean up material on hand. Pending termination of Government tin-smelter operations, concentrate was procured on a reduced scale, and inventories were held to a minimum. Because operations were expected to be suspended June

30, 1956, tin was not produced during July 1956.

Receipts were the smallest since inception of the smelter. In 1956 the smelter received 33,000 long tons of concentrate containing 16,400 tons of tin compared with 39,100 tons containing 20,100 tons of tin Bolivia continued to be the main source of supply, but receipts therefrom (tin content) decreased from 9,390 tons in 1955 to 8,150 tons in 1956. In 1956 concentrate was also received from Indonesia, Thailand, Belgian Congo, and miscellaneous sources. Inventories of tin in concentrate and other tin-bearing material were estimated at 1,794 long tons on December 31, 1956.

The contracts for Bolivian, Indonesian, and Belgian Congo tin

concentrates ended during September 1956. Spot purchases were

made in Thailand.

TABLE 2.—Production of Longhorn tin at the Texas City, Tex., smelter, by months, 1947-51 (average) and 1952-56, in long tons

Month	1947–51 (average)	1952	1953	1954	1955	1956
January February March April May June July August September October November December Total	3, 058 2, 865 2, 887 2, 823 3, 068 2, 720 2, 730 2, 617 2, 7711 2, 735 2, 759 33, 819	1, 802 1, 800 1, 800 1, 800 1, 800 2, 450 3, 364 4, 020 3, 706	3, 960 3, 391 3, 850 3, 750 3, 060 3, 000 2, 600 2, 700 2, 751 2, 750 2, 750	2, 750 3, 009 3, 559 3, 006 2, 054 1, 205 2, 002 2, 404 2, 404 2, 205 2, 404 27, 002	2, 402 2, 505 2, 353 2, 103 1, 604 851 952 1, 749 1, 751 1, 803 1, 803 2, 453	1, 754 1, 704 1, 802 1, 803 2, 001 954 

During the fiscal year ended June 30, 1956, the Longhorn smelter treated 41,050 long tons of material comprising 40,616 long tons of concentrate and 434 tons of slimes and cleanup material. The 27,307 tons of Bolivian-type concentrate averaged 37.7 percent in grade; and 13,309 tons was alluvial and averaged 73 percent in grade. Virtually all the slimes and cleanup material derived from Bolivian concentrate, were accumulated during the early days of wartime smelting. The smelter produced 20,530 long tons of refined tin; 20,405 tons was

for Government account, and 125 tons was treated on a toll or fee basis to supply others. The tin produced for the Government cost \$44,483,799; concentrate and slimes cost \$40,623,142; and processing cost \$3,860,657. In the fiscal year 1955 the cost of producing 23,237 long tons of refined tin (23,188 tons was for the Government and 49 tons on toll or fee basis) and 105 long tons of Copan was \$47,840,921; concentrates and slimes cost \$43,609,398; and processing \$4,231,523. The fiscal year 1956 showed a net loss of \$498,778 after all costs and expenses, compared with a net loss of \$310,896 for the fiscal year 1955. Assets of property, plant, and equipment under the tin program, excluding inventories of refined tin, tin ore, byproducts, and operating and other supplies, were valued at \$13,100,000, less accumulated depreciation of \$7,614,000, or \$5,486,000 as of June 30, 1956. During the 6 months ended December 31, 1956, the smelter produced 7,582 long tons of tin metal at a cost of \$16,970,155, of which \$15,296,162 represents the cost of concentrates and \$1,673,993 processing costs.

TABLE 3.—Tin concentrate received at Longhorn smelter, 1955-56 1

		1955			1956			
Country Concentrate received (long tons)			Tin con- tent of	Concen- trate	Content		Tin con- tent of	
	Long tons	Tin (percent)	receipts (percent)	received (long tons)	Long tons	Tin (percent)	receipts (percent)	
Bolivia Indonesia Thailand Belgian Congo Mexico Miscellaneous	23, 953 9, 702 3, 012 974 403 965	9, 386 6, 996 2, 234 728 159 583	39. 19 72. 11 72. 02 74. 74 39. 45 60. 41	47 35 11 3 1	21, 561 4, 867 4, 343 1, 335 215 705	8, 152 3, 562 3, 181 990 81 438	37. 81 73. 19 73. 24 74. 16 37. 67 62. 13	50 22 19 6
Total	39, 099	20, 086	51. 37	100	33, 026	16, 404	49. 67	. 100

¹ Source—Federal Facilities Corporation.

Since its inception and before its sale the Texas City smelter was operated by Tin Processing Corp. (a Delaware corporation and a subsidiary of N. V. Billiton Maatschappij) as an independent contractor under an operating agreement with the Reconstruction Finance Corporation and the Federal Facilities Corporation. In conjunction with this arrangement, FFC purchased all concentrates, paid all operating costs, and disposed of the resulting tin.

#### SECONDARY TIN

The estimated total recovery of secondary tin decreased 3 percent in quantity but increased 4 percent in value compared with 1955. Most of the tin recovered was contained in copper-, lead-, and tin-base alloys and chemical compounds. Only 12 percent of the total was recovered in the form of unalloyed metallic tin, and most of this was accomplished at detinning plants. The tonnage of metallic tin recovered in 1956 was 8 percent more than in 1955. Secondary tin recovered in chemicals increased (8 percent) for the 4th consecutive year and was the highest since 1941.

Detinning plants treated 630,000 long tons of tinplate clippings in 1956, the largest on record, and 58,000 tons more than the previous

peak of 572,000 tons in 1955. In addition, old cans processed increased from 5,900 tons in 1955 to 6,000 in 1956; these figures were small compared with the record use of 176,000 tons in 1943. Tin recovered from tinplate clippings in 1956 was 3,350 tons—6 percent more than 1955—while that from old cans (40 tons) was virtually the same as in 1954 and 1955.

In England the 1956 annual report of the British Iron and Steel Federation states: ⁷

During the year, a special effort was made to encourage the recovery of old tins from domestic and trade refuse by local authorities and 11,000 tons more of this scrap was obtained than in 1955. Supplies of old tins are expected to increase still further as the campaign begun with local authorities throughout the country gathers force. As a result additional de-tinning plant is required, and this matter is under examination. The experimental plant which was installed at Pitsea in 1955 to segregate tins from refuse brought down the Thames has provided useful experience of this process of scrap recovery: it was, however, impracticable to extend the plant on this site and it has now been transferred to a permanent location at Sunderland.

For additional data concerning the secondary tin industry, see the Secondary Metals, Nonferrous, chapter of this volume.

TABLE 4.—Secondary tin recovered in the United States, 1947-51 (average) and 1952-56, in long tons

	Tin reco	overed at d plants	etinning	Tin recovered from all sources				
Year  1947-51 (average)	2, 990 2, 640 2, 650 2, 660 2, 580 2, 700	In chemicals  420 310 450 530 620 690	3, 410 2, 950 3, 100 3, 190 3, 200 3, 390	3, 217 2, 860 2, 850 2, 930 2, 970 1 3, 200	In alloys and chem- icals 24, 454 25, 940 24, 750 23, 260 25, 370 124, 300	27, 671 28, 800 27, 600 26, 190 28, 340 127, 500	Value \$62, 455, 596 77, 710, 297 59, 212, 676 53, 863, 091 60, 140, 288 1 62, 375, 000	

¹ Estimate.

# **CONSUMPTION BY USES**

Total tin consumption in the United States declined 200 long tons in 1956. Although the use of primary tin increased 700 tons—the greatest quantity since 1950, secondary decreased nearly 900 tons. Consumption (tin content of manufactured products) was 90,300 long tons in 1956 (60,500 primary and 29,800 secondary), compared with 90,500 long tons in 1955 (59,800 primary and 30,700 secondary). The figures on secondary tin include 2,200 tons in 1956 and 2,800 tons in 1955 contained in imported tin-base alloys. The use of tin by the tinplate industry increased 4 percent, whereas use in all other industries decreased 2 percent.

Five items—tinplate, solder, bronze and brass, babbitt, and tinning—consumed about 91 percent of the tin used in 1956 and 1955. Tinplate, the leading use of primary tin, took about 60 percent of the totals for 1952–56. Tin for tinplate increased 1,200 for the 4th con-

⁷ British Iron and Steel Federation, 1956 Annual Report: p. 17.

1173

secutive year to a record tonnage in 1956. Consumption of tin for solder, next in rank, decreased the most—1,650 tons (primary 1,510 tons and secondary 140). The total for bronze, the leading use of secondary tin, decreased 270 tons; primary increased 610 tons; and secondary decreased 880 tons. Babbitt increased 385 tons, mainly in secondary tin. Tinning declined slightly, and the total tin used was the same as in 1954. Tin for white metal increased 23 percent; going mostly into jewelers' and britannia metals. Tin consumption in chemicals increased 6 percent. Tin powder used 770 tons of tin in 1956, compared with 940 tons in 1955.

TABLE 5.—Consumption of primary and secondary tin in the United States 1947-51 (average) and 1952-56, in long tons

	1947-51 (average)	1952	1953	1954	1955	1956
Stocks on hand Jan. 1 1	27, 278	20, 764	23, 105	24, 525	23, 326	27, 757
Net receipts during year: Primary	59, 614 3, 018 632 27, 689	48, 657 2, 338 622 32, 917	57, 969 2, 582 604 29, 754	52, 673 2, 351 2 226 28, 601	64, 544 2, 191 30, 262	62, 099 2, 185 28, 999
Total receipts	90, 953	84, 534	90, 909	83, 851	96, 997	93, 283
AvailableStocks on hand Dec. 31 1	118, 231 26, 011	105, 298 23, 105	114, 014 24, 525	108, 376 23, 326	120, 323 27, 757	121, 040 28, 446
Total processed during yearIntercompany transactions in scrap		82, 193 2, 397	89, 489 2, 566	85, 050 2, 159	92, 566 2, 083	92, 594 2, 270
Total consumed in manufacturing_Plant losses	89, 910 1, 125	79, 796 1, 378	86, 923 1, 283	82, 891 (³)	90, 483 ( ³ )	90, 324 (³)
Tin content of manufactured products Primary Secondary	88, 785 58, 853 29, 932	78, 418 45, 323 33, 095	85, 640 53, 959 31, 681	82, 891 54, 427 28, 464	90, 483 59, 828 30, 655	90, 324 60, 470 29, 854

Stocks shown exclude tin in transit or in other warehouses on Jan. 1, as follows: 1952, 971 tons; 1953, 525 tons; 1954, 240 tons; 1955, 1,340 tons; 1956, 2,005 tons and 1957, 1,815 tons.
 January-June only, earlier reported as tin content of terms metal consumed in ternsplate manufacturing. Beginning July 1954 reported as tin consumed in making terms metal.
 No longer reported separately.

Tinplate production reached an alltime high of 5.7 million short tons in 1956—5 percent above the previous record in 1955. However, not all the slack resulting from the 35-day July-August steel labor strike in 1956 was taken up. Most of the gain in tinplate output was from the uninterrupted production by mills not on strike. United States, the leading producer and consumer of tinplate, required about 55 percent of the world consumption of tin for tinplate. In 1956, 62 percent of the tin was used to make tinplate by the electrolytic process and 38 percent by the hot-dipped method. Of the total output of tinplate in 1956, electrolytic supplied 81 percent (79 percent in 1955) and the hot-dipped type only 19 percent (21 percent in 1955). Production of electrolytic tinplate was 8 percent above the previous 1955 record. Hot-dipped tinplate decreased 5 percent to the smallest tonnage since 1921. Nearly 90 percent of the tinplate was used for making cans, of which about 60 percent was for packing food and 40 percent for nonfood products. The total tinplate shipped to canmakers increased 2 percent in 1956, of which sanitary cans increased about 1 percent and general line cans 5 percent. The total tonnage of

cans shipped increased 7 percent; cans for packing food increased 8 percent and for nonfood products 5 percent. Among products packed in 1956, fruits and vegetables made the largest gain; lard and shortening showed the largest decrease. Electrolytic timplate for cans rose to a peak of 3.8 million tons in 1956; sanitary cans increased each year since 1952 to the record high of 2.1 million tons, and general line cans increased for the 5th consecutive year, reaching an alltime record of 1.7 million tons. About 45 percent of the electrolytic tinplate for general line cans has been used for packaging beer. ments of metal cans for beer increased for the 5-year running and totaled 767,300 tons—the highest recorded. Cans for pet food increased for the fourth successive year and reached a peak of 168,000

TABLE 6.—Tin content of tinplate produced in the United States, 1947-51 (average) and 1952-56

		tinplate orms)	(all	Tinplate	(hot-d	ipped)	Tinplate	(electr	olytic)	Tinplat waste bles,	, strip	vaste— s, cob-
Year	Gross weight (short tons)	Tin content (long tons)	Tin per short ton of plate (pounds)	Gross weight (short tons)	Tin content (long tons)	Tin per short ton of plate (pounds)	Gross weight (short tons)	Tin content (long tons)	Tin per short ton of plate (pounds)	Gross weight (short tons)	Tin content (long tons)	Tin per short ton of plate (pounds)
1947-51 (average)	4, 173, 635 4, 249, 393 5, 067, 010 5, 017, 227 5, 422, 444 5, 689, 061	1 27,316 1 31,327 1 33,026 1 33,549	14. 4 13. 9 14. 7 13. 9	1, 754, 108 1, 308, 173 1, 375, 606 1, 339, 611 1, 062, 850 1, 006, 196	15, 012 14, 807 15, 906 13, 395	25. 7 24. 1 26. 6 28. 2	2, 241, 926 2, 712, 657 3, 331, 386 3, 526, 982 4, 002, 068 4, 305, 774	11, 022 14, 605 16, 115 20, 154	9. 1 9. 8 10. 2 11. 3	177, 601 228, 563 360, 018 2 150,634 357, 526 377, 091	1, 282 1, 915	12.6 11.9

Includes small tonnage of secondary pig tin and tin acquired in chemicals.
 Not reported during January-June 1954; figures shown are for period July-December only.
 For period January-June only; thereafter not separately reported but included in above figures on

TABLE 7.—Consumption of tin in the United States, 1954-56, by finished products. in long tons of contained tin

		1954			1955			1956			
Product	Pri- mary	Second- ary 1	Total	Pri- mary	Second- ary 1	Total	Pri- mary	Second- ary 1	Total		
Tinplate Terne metal Solder Babbitt Bronze and brass Collapsible tubes and foil Timing. Pipe and tubing. Type metal Bar tin Miscellaneous alloys. White metal Chemicals including tin oxide Miscellaneous	2, 279 3, 278 860 2, 447	10, 686 1, 997 13, 336 107 130 92 1, 325 74 198 35 820 60	233, 026 394 19, 389 4, 276 16, 614 967 2, 577 188 1, 457 898 2 849 608 1, 410 238	2 33, 549 12, 063 2, 611 4, 204 4, 204 2, 568 82 175 1, 439 254 1, 088 645 156	174 10, 167 1, 760 15, 508 78 45 74 1, 312 91 1, 047 27	233, 549 323 22, 230 4, 371 19, 712 923 2, 613 1, 487 1, 579 486 1, 179 1, 692 183	2 34, 761 175 10, 555 2, 615 4, 815 928 2, 525 129 164 1, 317 288 1, 304	114 10,027 2,141 14,627 50 52 26 1,347 115 162 141 1,012 40	2 34, 761 289 20, 582 4, 756 19, 442 978 2, 577 155 1, 511 1, 432 450 1, 445 1, 791		
Total	54, 427	28, 464	82, 891	59, 828	30, 655	90, 483	60, 470	29, 854	90, 324		

Includes 3,340 long tons of tin contained in imported tin-base alloys in 1954; 2,765 in 1955 and 2,170 in 1956.
 Includes small tonnage of secondary pig tin and tin acquired in chemicals.
 Includes 405 tons of tin in Copan produced in 1954.

1175

tons. Cans for beer and pet food required about 22 percent of the

total electrolytic timplate produced in 1956.

According to the statistics published by the American Iron and Steel Institute, 5.56 million short tons of tinplate (including short ternes and waste-waste) was shipped in 1956, a loss of about 40,000 tons, mostly shipments for export, compared with the peak year 1955. Of the total shipped in 1956, 82 percent was for cans and closures, 12 percent for export, and 6 percent for other classifications. In 1956 the portion for cans and closures was larger than in 1955, for export smaller, and for other markets unchanged. In addition, in 1956 shipments of black plate were 765,000 short tons (798,000 in 1955), of which 392,000 (398,000 in 1955) was for cans. Thus far tin-mill products have not been noticeably affected by the process of margin-plating lacquered black plate, which consists of tinplating only the narrow margins that form the sideseams of cans. Marketing of tinplate in coil form was under way. The American Can Co. announced that it will install machinery in its plants at a cost of around \$27 million to handle large coils of tinplate and black plate.

TABLE 8.—Tinplate shipments, by market classifications, 1947-51 (average) and 1952-56, in thousand short tons

[American Iron and Steel Institute Annual Report on Shipments of Steel Products, by Market Classifications, AISI 16]

	oations,					
Market classifications	1947-51 (average)	1952	1953	1954	1955	1956
Sanitary cans:						
Hot dip	1, 179	875	798	716	500	425
Electrolytic	1,007	1,362	1,446	1, 530	1, 978	2, 070
Total	2, 186	2, 237	2, 244	2, 246	2, 478	2, 495
General line cans:						
Hot dipElectrolytic	179 802	92 854	82 1, 280	118 1, 424	82 1,606	78 1, 691
Total	981	946	1, 362	1, 542	1, 688	1, 769
Total	3, 167	3, 183	3, 606	3, 788	4, 166	4, 264
Closures-crown caps, and others:						
Hot dip	23	4 250	12 297	6 298	8 326	4 301
Electrolytic	216	250	291	298	320	
Total	239	254	309	304	334	305
Total cans and closures	3, 406	3, 437	3, 915	4, 092	4, 500	4, 569
Other use:						
Hot dip	87 80	96	105 137	80 164	81 251	77 237
Electrolytic	- 80	116				
Total	167	212	242	244	332	314
Export:						
Hot dip Electrolytic	432 120	299 235	321 183	387 265	430 342	366 316
Total	552	534	504	652	772	682
Total:			4 040	4.00=		050
Hot dip		1, 366 2, 817	1, 318 3, 343	1, 307 3, 681	1, 101 4, 503	950 4, 615
Electrolytic						
Grand total	4, 125	4, 183	4, 661	4, 988	5, 604	5, 565

Studies on packaging by Aluminium, Ltd.8 (in can sizes where aluminum can compete economically with tinplate), indicate that by 1965 a growing share of the canning industry's total output will be in aluminum cans. At Göttingen, Germany, a subsidiary of Aluminium, Ltd., was setting up a fully automatic line to produce seamless aluminum cans for coffee and motor oil.

The National Research Corp. undertook a long-term research venture for Crown Cork & Seal Co. to develop a process to substitute aluminum for tin in making tinplate for food and other containers.9

Industrial receipts of tin in 1956 were 93,300 long tons (4 percent less than 1955), of which 67 percent was primary pig tin. "Straits," the principal brand of tin acquired, composed 70 percent (74 percent in 1955) of the primary receipts in 1956. Other brands received in 1956 included: Netherland, 12 percent; Belgian, 10 percent; English, 5 percent; and miscellaneous, 3 percent.

As part of its effort to maintain the supremacy in the use of "Straits" over other brands, The Malayan Tin Bureau, Washington, D. C., a public relations medium supported by the Malayan tin-mining industry, issued a brochure 10 given over mostly to reviewing the usefulness of tin and explaining its various industrial applications.

TABLE 9.—Consumer receipts of primary tin, by brands, 1947-51 (average) and 1952-56, in long tons

	Banka	Chinese	English	Katanga	Longhorn	Straits	Others	Total
1947–51 (average)	3, 333 4, 208 1, 731 1, 216 3, 268 7, 190	1, 352 (¹)	(1) 3, 279 6, 798 4, 727 3, 873 3, 373	5, 867 1, 573 2, 826 5, 112 6, 744 6, 341	20, 173 14, 694 927 255 30	22, 605 23, 010 42, 886 38, 784 47, 844 43, 468	6, 285 1, 893 2, 801 2, 579 2, 785 1, 727	59, 615 48, 657 57, 969 52, 673 64, 544 62, 099

¹ Included with "Others" not separately reported.

#### STOCKS

Tin stocks held by the Government and industry—pig tin, tin in ore, raw materials in process and other (excluding the National Strategic Stockpile)—decreased in 1956 from 44,300 long tons to 39,200. Industrial stocks of pig tin in the United States, accumulating for the 5th successive year, were 19,000 long tons, or 300 tons more at the end of 1956 than at the beginning. Tinplate mills, holding about 80 percent of plant stocks of pig tin in the United States, decreased their inventories 200 long tons. Tin in process at tin mills increased, however, to the highest quantity recorded. End-of-year pig-tin stocks at other industrial plants increased 340 long tons to 3.855 tons. Tin metal affoat to the United States on December 31, 1956, was 5,500 tons.

Tin was added to the list of filled long-term stockpile objectives.¹¹

Boavis, Nathanael V., Interview (an Atlantic Public Interest Advertisement): The Atlantic, December 1956, pp. 28, 29.
 Madsen, I. E., Developments in the Iron and Steel Industry During 1956: Iron and Steel Eng., vol. 34, No. 1, January 1957, p. 152.
 The Malayan Tin Bureau, Straits Tin From Malaya—Its New Importance to American Industry:

^{1956, 17} pp.
11 Office of Defense Mobilization, Stockpile Report to the Congress, July-December 1956: March 1957, p. 2.

TABLE 10.—Tin stocks in the United States, Dec. 31, 1952-56, in long tons 1

	1952	1953	1954	1955	1956
Industry:			10.100	10.00	10.000
Pig tin—virgln In process ²	11, 819 11, 286	13, 680 10, 845	12, 162 11, 164	16, 205 11, 552	16, 290 12, 156
Total at plants	23, 105	24, 525	23, 326	27, 757	28, 446
Other pig tin: In transit in United States Jobbers—Importers Afloat to United States	525 531 5, 300	240 260 2, 700	1, 340 1, 200 5, 200	2, 005 260 5, 340	1, 815 620 5, 500
Total—other pig tin	6, 356	3, 200	7, 740	7, 605	7, 935
Total industry	29, 461	27. 725	31, 066	35, 362	36, 381
Government (RFC-FFC): Pig tin ¹ total	13, 265	18, 467	1,352	2, 284	1,016
Concentrates—ores: In foreign ports or afloatIn United States	11, 868 13, 341	4, 600 11, 318	2, 817 5, 558	3, 600 3, 082	1, 794
Total concentrates—ores	25, 209	15, 918	8, 375	6, 682	1, 794
Total Government	38, 474	34, 385	9, 727	8, 966	2,810
Grand total	67, 935	62, 110	40, 793	44, 328	<b>39, 1</b> 91

¹ Excludes Copan (gross weight, long tons) at end of year as follows: 1952, 191; 1953, 60; and 1954, 105. ² Includes secondary pig tin (long tons) as follows: 1952, 306; 1953, 326; 1954, 277; 1955, 246; and 1956, 304

#### **PRICES**

The average price of Straits tin for prompt delivery in New York was 101.26 cents a pound in 1956 (7 percent above 1955) and the third highest in history. The price trended downward during the first half of the year. Thereafter a noteworthy upward movement began, but this was halted temporarily by the steel labor strike called at midnight June 30, and the price dropped to 92.88 cents—the low for the year—on July 2. Uncertainty developed over delivery schedules from the Far East through the Suez Canal at the time of the Anglo-French-Israeli action in Egypt. The price surged upward and reached 113.75 cents a pound—the high for 1956—on November 1. The dock strike in the United States forced the price up 3 cents a pound on November 16. In December the market opened at 110 cents and closed at 99.88 cents.

On the London market the average price for standard tin was £788.6 per long ton in 1956 compared with £740.7 in 1955. The monthly average price fluctuated from the low of £742.8 in June to the high of £853.5 in November. The price in February and March fluctuated widely. The highest price of the year was £890 on February 27 and the lowest £724 on June 1 and 4.

On the Singapore market the monthly price of Straits tin exworks was £760.2 for 1956 compared with £721 in 1955. The lowest monthly average in 1956 was £723.3 in June and the highest £806.4 in November. The lowest price for the year was £713.3 on July 3 and the highest £828.8 on November 2.

TABLE 11.—Monthly prices of Straits tin for prompt delivery in New York, 1955-56, in cents per pound 1

Month		1955		1956		
	High	Low	Average	High	Low	Average
January February March April May June July August September October November	91. 625 91. 375 92. 125 91. 750 95. 250 97. 626 97. 626 96. 625 100. 000	85, 750 89, 625 90, 625 90, 625 91, 625 95, 000 95, 625 92, 250 95, 875 96, 125 101, 250	87. 27 90. 77 91. 04 91. 39 91. 37 93. 64 96. 83 96. 46 96. 26 96. 09 97. 87 107. 76	109. 000 105. 250 102. 125 100. 375 98. 000 95. 375 100. 250 100. 000 107. 375 112. 250 113. 750 110. 000	100, 750 98, 625 98, 500 98, 000 93, 750 93, 625 92, 875 98, 250 100, 125 102, 500 108, 125 99, 875	104. 82 100. 53 100. 57 99. 17 96. 88 94. 48 96. 16 98. 96 103. 57 105. 72 110. 26
Total	110.000	85.750	94. 73	113. 750	92. 875	101. 2

¹ Compiled from quotations published in the American Metal Market.

### FOREIGN TRADE 12

The principal tin items in the foreign trade of the United States in 1956 were imports of metallic tin, concentrate, and 94-percent tin alloys and exports of tinplate and tin cans. Of less importance were the import and export trade in tin scrap, including tinplate scrap; exports of tinplate circles, strips, cobbles, etc. An appreciable quantity of miscellaneous tin manufactures and tin compounds was exported. Tin contained in babbitt, solder, type metal, and bronze imported and exported is shown in the Lead and Copper chapters of this volume.

Imports of metallic tin in 1956 were 3 percent below those in 1955. This was the fourth succeeding yearly decline and the longest period of continuous downtrend recorded in metallic tin imports. Of the total imports, Malaya, the principal source, furnished 68 percent; the quantity of tin received from Malaya in 1956 decreased 10 percent compared with 1955 and was the smallest since 1951. Other important sources of metal in 1956 include: Netherlands, 11 percent (receipts increased 21 percent); Belgium-Belgian Congo, 10 percent (receipts declined 12 percent); and United Kingdom, 8 percent (receipts increased 15 percent). Imports from Germany and Indonesia were the largest since before World War II. Imports of tin concentrate were consigned to the Government-owned tin smelter at Texas City, Tex. Receipts of concentrate, in terms of metal, were 17 percent less than in 1955 and the lowest since 1940. Government orepurchase contracts terminated in September 1956. Bolivia continued to be the main source of tin in concentrate imported, but imports therefrom were the lowest since shipments for treatment by the Texas City smelter began arriving in 1941. Imports of metal and concentrate were augmented by 5,037 long tons (6,067 in 1955) gross weight

¹² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

rin 1179

(chief value, tin) of alloys (including alloy scrap) brought into the United States in 1956, mainly from Denmark in the form of 94-percent tin alloys. Exports of tinplate scrap were 3,380 long tons in 1956 (140—revised—in 1955) mostly to Japan from Hawaii. Exports of metallic tin in 1956 were 1,120 long tons (1,100 in 1955), with Canada

the principal destination.

The principal tin-export item of the United States, as usual, was tinplate. Tinplate exports declined 13 percent in tonnage and 6 percent in value compared with 1955, the peak year. Tinplate was exported in 1956 and 1955 to Latin America, Europe, Asia, Africa, and Oceania. By country of destination, shipments to Argentina and Japan showed the largest increase; those to the United Kingdom, Italy, India, and Portugal furnished most of the loss. Hot-dippedtinplate exports totaled 238,900 long tons valued at \$55,035,120, a 19-percent decrease in quantity and 13-percent rise in value compared with 294,900 tons valued at \$62,932,000 in 1955. The principal countries of destination were Argentina, Netherlands, Union of South Africa, and Australia. Exports of electrolytic tinplate were 233,280 long tons valued at \$49,249,000, or 14 percent less in tonnage and 8 percent in value than in 1955 (271,170 tons, valued at \$53,324,700). The leading destinations were Mexico, Argentina, Union of South Africa, and Republic of the Philippines. Exports of short ternes, shipped mainly to Canada, were 2,240 long tons in 1956 (4,000 tons in 1955). Exports of tin cans totaling 30,500 long tons in 1956 (26,500 tons in 1955) were mainly to Canada, Mexico, and Venezuela.

According to the American Iron and Steel Institute, producers in 1956 shipped for export 682,000 short tons (772,600 in 1955) of tinplate, of which 365,600 tons was hot-dipped (430,000 in 1955) and

316,400 electrolytic (342,600 in 1955).

TABLE 12.—Foreign trade of the United States in tin concentrate and tin, 1947-51 (average) and 1952-56

[Bureau	of	the	Census]

		Imp	orts		Exports Ingots, pigs, bars, etc.				
-			Dore	blocks nigs					
Year		ncentrate content)	Bars, blocks, pigs, grain, or granulated		. Doi	mestic	Foreign		
	Long tons	Value	Long	Value	Long tons	Value	Long tons	Value	
1947-51 (average) - 1952	32, 159 26, 491 35, 973 22, 140 20, 112 16, 688	\$64, 638, 483 65, 286, 937 82, 713, 269 41, 724, 776 1 36, 773, 366 32, 316, 702	49, 082 80, 543 74, 570 65, 599 2 64, 815 62, 590	\$101, 444, 823 215, 603, 146 175, 950, 269 133, 185, 565 2 131, 605, 569 136, 412, 171	224 301 128 271 254 667	\$469, 527 580, 855 297, 695 467, 029 503, 892 1, 013, 416	371 79 75 551 853 451	\$1,030,362 209,539 141,901 1,125,003 1,748,367 1,018,417	

¹ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.
2 Revised figure.

TABLE 13.—Tin concentrate (tin content) imported for consumption in the United States, 1955-56, by countries

[Bureau of the Census]

Country	1	955	19	1956		
	Long tons	Value	Long tons	Value		
North America: Canada	168 254	\$341, 032 348, 572	221 156	\$430, 898 205, 975		
Total South America: Bolivia	422 9, 765	689, 604 16, 883, 721	377 8, 533	636, 873 15, 652, 803		
Europe: Portugal United Kingdom	30	64, 705	25	36, 730		
Total	30	64, 705	25	36, 730		
Asia: Indonesia. Thailand. Vietnam, Laos, Cambodia. Vietnam, Laos, Cambodia.	6, 969 2, 208	13, 466, 397 4, 176, 200	3, 548 3, 144 16	7, 451, 014 6, 351, 200 27, 488		
Total	9, 177	17, 642, 597	6, 708	13, 829, 702		
Africa: Belgian Congo Egypt	713	1, 489, 339 3, 400	969	1, 988, 234		
TotalOceania: Australia	718	1, 492, 739	969	1, 988, 234 172, 360		
Grand total	20, 112	1 36, 773, 366	16, 688	32, 316, 702		

 $^{^1}$  Owing to changes in tabulating procedures by the U. S. Department of Commerce, data known to be not comparable with other years.

TABLE 14.—Tin ¹ imported for consumption in the United States, 1955-56 by countries

[Bureau of the Census]

	T the Consus	4			
Country		1955	1956		
	Long tons	Value	Long tons	Value	
South America: BoliviaEurope:			333	\$706, 722	
Belgium-Luxembourg Denmark	1 ,,,,,,	\$14, 732, 173 10, 668	6, 275	14, 081, 583	
Germany, West	10	192, 221 21, 100	439	862, 618	
Netherlands Portugal Spain	49	2 12, 135, 393 92, 149 9, 983	7, 109 90	15, 965, 499 191, 659	
Switzerland United Kingdom	75 4, 071	151, 072 8, 433, 557	4, 700	10, 333, 014	
Total	² 17, 267	2 35, 778, 316	18, 946	42, 141, 095	
Asia: Indonesia Japan		² 20, 084 ² 41, 144	925	2, 147, 107	
Malaya	² 47, 199	² 95, 110, 661	42, 479	91, 551, 930	
Total Africa: Belgian Congo	² 47, 228 320	² 95, 171, 889 655, 364	43, 404 240	93, 699, 037 572, 039	
Grand tota	² 64, 815	² 131, 605, 569	62, 590	136, 412, 171	

Bars, blocks, pigs, grain, or granulated.
 Revised figure.

TABLE 15.—Foreign trade of the United States in tinplate, taggers tin, and terneplate in various forms, 1947-51 (average) and 1952-56, in long tons

### [Bureau of the Census]

Year	tin,	e, taggers and eplate	Tinplate circles, strips, cobbles,	Waste- waste tin- plate (exports)	Terne- plate clippings and scrap	Tinpla	te scrap
	Imports	Exports	etc. (ex- ports)	,	(exports)	Imports	Exports
1947–51 (average) 1952	3, 443 2, 277 374 127 40 586	508, 360 1 534, 964 1 459, 639 1 635, 969 1 3 747,682 1 647, 968	6, 316 9, 945 11, 445 11, 831 14, 798 21, 858	40, 354 (2), (2) (2) (2) (2) (2)	160	41, 375 42, 659 37, 582 29, 214 28, 721 29, 137	285 3, 570 5, 195 944 3 144 3, 377

Owing to changes in classifications data not strictly comparable with earlier years.
 Beginning January 1, 1952 not separately classified; included with "tin plate."
 Revised figure.

TABLE 16.—Tinplate and terneplate exported from the United States, 1955-56, by countries of destination

[Bureau of the Census]

Destination	. 1	955	1956		
	Long tons	Value	Long tons	Value	
North America:					
Canada	9, 707	\$1, 797, 169	4, 307	\$952,768	
Cuba	23, 126	4, 908, 901	25, 827	5, 806, 180	
Mexico	25, 469	5, 269, 306	34, 959	7, 706, 537	
Other	3, 195	643, 513	3, 264	7, 706, 537 727, 562	
Total	61, 497	12, 618, 889	68, 357	15, 193, 047	
South America:					
Argentina	65, 027	14, 016, 682	83, 476	19, 063, 220	
Brazil	48, 529	8, 595, 481	52, 471	9, 833, 759	
Colombia	16, 841	3, 393, 355	15, 985	3, 536, 428	
Peru	7,437	1, 547, 704	11,097	2, 491, 649	
Uruguay	3, 394	734, 629	8, 439	2, 030, 836	
Venezuela	11, 338	2, 911, 057	13, 964	3, 726, 798	
Other	1,674	326, 039	3, 777	823, 060	
Total	154, 240	31, 524, 947	189, 209	41, 505, 750	
Europe:				-	
Austria	2, 627	491, 107	2,031	405, 154	
Belgium-Luxembourg	21, 478	4, 222, 146	12, 769	2, 661, 835	
Denmark	14, 452	3, 120, 547	9, 667	2, 205, 507	
Finland	805	167, 644	737	162, 089	
Germany, West.	4, 494	776, 006	2, 798	492, 702	
Greece	4, 386	636, 873	3, 793	586, 350	
Ireland	1, 563	274, 764	567	110, 058	
Italy	57, 894	9, 523, 515	25, 330	4, 345, 592	
Netherlands	63, 954	13, 453, 909	56, 860	13, 041, 359	
Norway	24, 034	4, 921, 467	16, 946	3, 595, 572	
Portugal	14, 089	2, 804, 499	3, 858	813, 696	
Spain.	628	126, 781	441	96, 18	
Sweden	11, 788	2, 277, 603	10, 295	2, 021, 473	
Switzerland	15, 532	3, 210, 717	14, 914	3, 295, 952	
United Kingdom	53, 094	10, 758, 007	54	10, 107	
YugoslaviaOther	895   477	186, 702 91, 751	186 111	42, 224 23, 533	
Total	292, 190	57, 044, 038	161, 357	33, 909, 383	
Asia:					
Hong Kong	4, 546	548, 639	2, 572	337, 278	
India	43, 536	7, 036, 529	31, 066	5, 641, 068	
Indonesia	23, 160	3, 751, 914	14, 430	2, 584, 367	
Iran	7, 209	1, 334, 074	2,854	491, 939	
Israel	1 5, 297	1 990, 529	5, 480	1,012,679	

See footnote at end of table.

TABLE 16.—Tinplate and terneplate exported from the United States, 1955-56, by countries of destination—Continued

Destination	1	955	1956		
	Long tons	Value	Long tons	Value	
Asia—Continued					
Japan	14, 541	\$1,820,460	31, 270	\$4,756,582	
Lebanon	2, 941	473, 357	2, 499	394, 644	
Malaya		1, 174, 768	6,664	877, 748	
Pakistan		758, 137	2, 409	526, 615	
	25, 718	4, 668, 908	30, 612	6, 260, 218	
Philippines Syria	1,877	244, 076	2, 134	348, 353	
Taiwan	5, 755	975, 949	2, 386	486, 809	
Thailand	4, 717	628, 483	3, 979	652, 169	
Turkey	16, 772	3, 101, 074	17, 266	3, 554, 801	
Vietnam, Laos, Cambodia	1, 250	277, 721	3, 346	685, 210	
Other	2, 722	529, 322	1, 598	293, 982	
Other	2, 122	020, 022	1, 000	200, 002	
Total	1 172, 538	1 28, 313, 940	160, 565	28, 904, 462	
Africa:					
Belgian Congo	468	109, 551	682	160, 560	
British East Africa	550	103, 722			
Egypt	4, 158	593, 377	3, 852	608, 494	
Nigeria	884	167, 899	0,002	000, 101	
Union of South Africa	40,770	8, 342, 527	42, 549	9, 124, 656	
Other	1, 424	221, 959	573	117, 869	
Total	48, 254	9, 539, 035	47, 656	10, 011, 579	
Oceania:					
Augtrolio	17, 688	3, 898, 408	90 775	4 049 000	
Australia New Zealand			20, 775	4, 843, 000	
	1, 196 79	235, 826		10 704	
Other	79	20, 078	49	12, 734	
Total	18, 963	4, 154, 312	20, 824	4, 855, 734	
Grand total	1 747, 682	1 143, 195, 161	647, 968	134, 379, 955	

¹ Revised figure.

TABLE 17.—Foreign trade of the United States in miscellaneous tin, tin manufactures, and tin compounds, 1947-51 (average) and 1952-56

[Bureau of the Census]

					<u> </u>					
		Miscellaneous tin and manufactures								
	Imports Exports					Imports Exports				
Year	flitters, tin alloys, n. s. p. f. and other				Tin scrap and other tin-bearing	Imports (pounds)	Exports (pounds)			
i n	tin and tinplate manufac- tures, n. s. p. f. (value)	Pounds	Value	Long tons	Value	material, except tin plate scrap (value)	l, in ap			
1947-51 (average) _ 1952 1953 1954 1955 1956	\$210, 453 447, 925 605, 609 3 784, 511 3 558, 964 3 604, 531	2, 387, 319 18, 351, 019 15, 924, 059 13, 165, 707 413, 702, 355 11, 364, 288	\$1, 031, 205 17, 454, 460 11, 894, 770 9, 358, 184 34 10, 383, 046 3 9, 429, 600	31, 143 41, 624 29, 841 23, 878 26, 490 30, 502	\$10, 826, 066 16, 842, 755 12, 916, 664 11, 022, 214 11, 516, 846 13, 245, 030	\$1, 606, 353 ² 2, 086, 612 ² 2, 418, 061 ² 3, 340, 533 ² 2, 440, 829 ² 2, 130, 139	44, 139 1, 358 5, 115 2, 703 11, 350 22, 576	(1) 73, 131 183, 328 342, 146 311, 005 375, 021		

Not separately classified 1947-48; 1949: 41,004 pounds; 1950: 122,716 pounds.
 Owing to changes in classifications, data not strictly comparable with earlier years.
 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with years before 1954
 Revised figure.

# **TECHNOLOGY**

The Tin Research Institute issued a report on the activities of the International Tin Research Council.¹³

As part of the Bureau of Mines activities a report 14 was issued on recovering lead and tin from wet solder drosses. It stated:

A process was developed, on a laboratory scale, for recovering lead-tin alloys from wet solder dross skimmings. Straight water leaching, either with or without a second leaching operation carried out with a Na₂CO₃ addition for removing chloride, produced a dross that could be smelted without further treatment. Overall recoveries averaging 92 percent of the metal values in the dross were obtained in the form of lead-tin alloys, which has an average tin content of 16 percent and lead content of 84 percent. The recovered alloy contained less than 0.02 percent zinc, as determined by both chemical and spectrographic analyses.

The Bureau of Mines developed a new method, to a pilot scale, for recovering tantalum and columbium (niobium) from a high-grade tin slag. 15 The slag is a byproduct of tin smelting by the Compagnie gèologique et minière des ingènieurs et industriels belges, "Geomines," Manono, Katanga, Belgian Congo. The chemical analysis of the slag follows:

Oxide:	Percent	Oxide:	Percent
${ m Ta_2O_{5}}$	9. 2	MgO	4. 3
$\mathrm{Cb_2O_{5}}$	9. 8	$\mathrm{SnO}_{2}$	1. 9
$\mathrm{Fe_2O_3}$	11. 1	$\mathrm{TiO}_{2}$	2. 5
$\mathrm{MnO}_{2}$	3. 8	$\mathrm{SiO}_{2}$	28. 0
CaO	15. 2	$ ext{Al}_2 ext{O}_3$	6. 4

An informative item ¹⁶ published on continuous coating processes stated:

In the new building at its South Wales Laboratories, BISRA [British Iron and Steel Research Association] is studying possible alternative coatings for steel and

the problem of integrating strip-finishing processes with continuous coating lines.

The continuous hot tinning of steel strip by roller coating has been successfully operated on a laboratory scale. Work is now concentrated on building a pilot line for coating strip up to 12 in. wide at speeds up to 1,200 ft. a minute. Apart from its use in developing the roller-tinning process, this pilot line will be of wider value to the strip processing industry. For example, strip coated with lead-tin alloy has been found suitable for use in the manufacture of motor car radiators. Such strip has been produced on the experimental roller-tinning line and an agreement has been negotiated for the manufacturer's use of the BISRA patent for roller coating. * * *

An article was published 17 describing the use of electric power in Malayan tin mining stated:

* * * It is of interest to note that an average Malayan ground yields 0.3 lb. to 0.6 lb. per cu. yd. of tin ore, which is approximately 0.01 percent to 0.02 percent by weight on the basis of an average ground weight of 3,200 lb. per cu. yd. * * * The function of the gravel pump is to transport solids, the optimum percentage of solid matter depending upon the class of spoil, but a good average range for a gravel pump to handle is 10 percent to 15 percent of solids by volume.

¹³ Tin Research Institute, International Tin Research Council, Annual Report 1956; Pub. 265, 36 pp.
14 Campbell, T. T., Block, F. E., and Fugate, A. D., Recovering Lead and Tin From Wet Solder Drosses:
Bureau of Mines Rept. of Investigations 5210, 1956, 16 pp.
18 Higbie, K. B., and Werning, J. R., Separation of Tantalum-Columbium by Solvent Extraction: Bureau
of Mines Rept. of Investigations 5239, 1956, 49 pp.
18 British Iron and Steel Federation (London), 1956 Annual Report: April 1957, p. 39.
19 Mining Journal (London), Electric Power in Malayan Tin Mining: Vol. 246, No. 6284, Jan. 27, 1956,

pp. 119-120.

A technical article on ultrasonic desliming and upgrading of ores stated in the abstract:18

Experiments show that ores such as tungsten and tin, which slime excessively, can be deslimed and upgraded by ultrasonics. The method proposed depends primarily upon the stratifying and peptizing action caused when high frequency sound waves are propagated upward through ore pulp in a cylinder tube. Stratifying and peptizing are somewhat hindered by the accumulating action, which embodies additional effects of reflection and refraction.

A new process that promises to take 98 percent of the tin out of more than 10 billion tin cans was announced.19

* * * The development, known as margin plating, consists of tin plating only the narrow margins of the steel plate that forms the soldered side seams of the cans. Except for these margins, which aren't more than three-sixteenths of an inch wide, the cans are made entirely of enameled steel plate, explained Dr. Roger H. Ludeck, Canco's vice president in charge of research and development.

The tinplated margins are used only to assure hermetic seals on cans for heat-processed products, he said. The process, however, requires less than 2 percent of the tin normally used on an average-size metal container. Only about 85 onehundredth of an ounce of tin, for example, will be used for 1,000 margin plated

pet food cans. * * *

An article 20 described the more important developments related to Among other things, the following topics were discussed in the article: Modern nontarnishing pewter, soldering techniques, electro-plating, recovery of tin, and a brief review of fundamental research. During 1956 United States patents issued included the following: 21

### WORLD REVIEW

# INTERNATIONAL TIN AGREEMENT

The International Tin Agreement drafted by the United Nations Commodity Conference on Tin at Geneva, Switzerland, in 1953 became operative in 1956. On February 1, 1956, the Indonesian Parliament approved ratification of the agreement. This instrument was deposited with the United Kingdom Government on May 16, 1956, and provided the necessary quorum of voting power to bring the agreement into operation. The United Kingdom Government convened a meeting of the ratifying governments in London on June 29, 1956, which in turn fixed the date of entry into force of the agreement at July 1, 1956. The agreement established an International Tin Council to administer its provisions and to supervise operations. The officials of the council are Georges Peter, chairman; W. Fox, secretary; W. K. Davey, buffer-stock manager; J. B. M. Lochtenberg, deputy buffer-stock manager; and A. P. Makatita, and G. S. Larsen, vice chairmen.

¹⁸ Sun, S. C., and Mitchell, D. R., Ultrasonic Desliming and Upgrading of Ores: Min. Eng., vol. 8, No.

Sun. S. C., and Mitchell, D. R., Ultrasonic Desliming and Upgrading of Ores: Min. Eng., vol. 8, No. 6, June 1956, pp. 639-644.
 American Metal Market, vol. 63, No. 92, May 15, 1956, pp. 1-6.
 MacIntosh, R. M., Tin and Its Alloys: Ind. Eng. Chem., vol. 48, No. 9, September 1956, pp. 1788-1793.
 Hodge, Allen W., and Ballard, Robert L. (assigned by mesne assignments, to Reynolds Metals Co.),
 Tin-Zinc Base Alloys: U. S. Patent 2,733,168, Jan. 31, 1956.
 Eckert, George F. (assigned to E. I. du Pont de Nemours & Co.), Electrodeposition of Tin: U. S. Patent 2,736,692, Feb. 28, 1956.
 Lichty, Lyall J. (assigned to Quebec Metallurgical Industries, Ltd., Toronto, Ontario, Canada), Method of Recovering Tin from Tin-Bearing Materials: U. S. Patent 2,752,236, June 26, 1956.
 Swalhelm, Donald A. (assigned to E. I. du Pont de Nemours & Co.), Electrodeposition of Tin: U. S. Patent 2,758,075, Aug. 7, 1956.

TIN 1185

The primary objectives of the agreement are to prevent excessive fluctuations in the price of tin and to insure adequate supplies of tin at reasonable prices at all times. These objectives are to be attained by creating a buffer stock of 25,000 long tons of tin metal, together with the control of exports from producing countries when at least 10,000 tons of tin has been accumulated in the buffer stock and when the International Tin Council considers that supplies of tin are excessive. The manager of the buffer stock is required to buy and sell tin between

a floor and ceiling price.

Three meetings of the International Tin Council were held: The first, on July 2-6; the second, October 15-19; and the third, December 10-12. At the first meeting, among other things, the council declared September 15, 1956, to be the date on which the initial mandatory contributions to the buffer stock, equivalent in the aggregate to 15,000 long tons of tin metal, were due from producing countries. (There will be 2 subsequent contributions of 5,000 tons each.) participating producing countries indicated their intention of making their initial contributions mainly in cash. This would be equivalent to the quantity of tin metal which could be purchased at £640 per long ton (80 cents per pound). Under terms of the agreement, contributions are due 3 months after due date; however, apparently at the October meeting of the council, the due date was extended to December 15, which would make the final date for these contributions March 15, 1957. At the October meeting the council also agreed to undertake publishing statistics in April 1957. At the December meeting the council noted that the arrangements made at the first meeting for paying the initial contributions were working smoothly and that all contributions made so far had been in cash. Having regard to the part of the Tin Agreement stipulating 6 months' public notice, the British Board of Trade announced on December 12 the proposed future release of 2,500 long tons of tin metal from United Kingdom Government stocks. The council was assured that the United Kingdom Government would take all possible precautions to avoid market disturbance in effecting the disposal of this tin. Proposals for revising the current floor and ceiling prices of tin were made by the Bolivian delegation at the December meeting. The matter was discussed and deferred for further consideration at the next meeting of the council, fixed for March 20, 1957.

The eighth meeting of the International Tin Study Group was held in London from October 10 to 12, 1956. The future position of the group and its relationship with the International Tin Council were discussed. It was agreed that: The study group should cease employing any paid staff or publishing statistics as soon as possible and not later than June 30, 1957; the statistical archives of the group should be offered to the International Tin Council; the seat of the group should remain in The Hague, with a titular secretary; and the study group should remain a forum where its members (whether or not members of the International Tin Council) could meet to discuss

questions of common interest relating to tin.

TABLE 18.—Percentages and voting powers of producing countries

Country	Percentage 1	Votes allocated	Country	Percentage 1	Votes allocated
Belgian Congo and Ruanda-Urundi Bolivia Indonesia Malaya	8. 72 21. 50 21. 50 36. 61	90 213 213 360	Nigeria. Thailand. Total.	5. 38 6. 29 100. 00	58 66 1,000

¹ For export quotas and for contributions to the buffer stock. Percentages determined by negotiation at the November–December 1953, Geneva conference based upon an adjusted 3-year statistical average of the net exports of tin by these producing countries during the period 1950–52.

TABLE 19.—Voting power of consuming countries 1

Country	At first meeting	At second and third meetings	Country	At first meeting	At second and third meetings
Australia Belgium Canada Denmark Ecuador France India Israel	35 41 83 86 5 180 82	32 38 77 79 5 165 75	Italy Netherlands. Spain. Turkey. United Kingdom  Total.	57 15 416 1,000	56 52 14 20 380 1,000

¹ At second and third meetings Israel, Italy, and Turkey were new members by ratification. Italy deposited its instrument of ratification on August 7. The council gave consent to the accession of the Republic of Korea at the first meeting and Austria at the second meeting.

### WORLD MINE PRODUCTION

World mine production of tin decreased 300 long tons in 1956. The tinfields of Malaya supplied 34 percent of the total, Indonesia 18 percent, Bolivia 15 percent, Belgian Congo 8 percent, Thailand 7 percent, Nigeria 5 percent and all the remaining sources 13 percent. Output increased in Malaya, Thailand, and Nigeria and decreased in Indonesia, Belgian Congo, and Bolivia. Tin production in Malaya and Thailand was the highest since 1941 and in Nigeria since 1948. Bolivian production declined for the third successive year to the lowest output since 1939. Excluding United States strategic stockpile accumulations, world mine production of tin was 15,000 to 20,000 long tons over world industrial consumption in 1956, compared with 25,000 to 26,000 tons in 1955.

### WORLD SMELTER PRODUCTION

World smelter production of tin in 1956, exclusive of U. S. S. R., remained unchanged from 1955. World smelter production was 3,300 tons (3,100 in 1955) over world consumption, omitting production by the United States, which was earmarked for Government stockpiling. The tin-smelting plants in Malaya (the most important sources of pig tin in the world) increased their output 4 percent and supplied 40 percent (39 percent in 1955) of the total. Next in rank were the Netherlands, United Kingdom, United States, and Belgium. Smelters in these 5 countries supplied 86 percent of the world tin in 1956. About 43 percent of the world smelter output in 1956 was destined to the United States.

TABLE 20.—World mine production of tin (content of ore), by countries, 1947-51 (average) and 1952-56, in long tons ¹

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America:					- P	
Canada	283	95	287	149	220	273
Mexico	303	413	476	349	605	500
United States	51	99	56	205	99	
Total	637	607	819	703	924	778
the same of the first that the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the						
South America:			1	0.5		00
Argentina	313	261	154	95	89	69
Boliva (exports) Brazil	33, 812	31, 959	34, 825	28, 824	27, 921	26, 843
Brazil	232	229	209	167	146	² 180
Peru 3	58	31				
Total	34, 415	32, 480	35, 188	29, 086	28, 156	27, 092
	<del></del>					
Europe: France	73	285	493	525	483	39/
Germany, East	121	395	563	669	669	² 660
Itoly	10	000	0.00			
ItalyPortugal 4	695	1, 146	1, 168	993	1, 114	964
Spain.	525	753	991	873	678	2 54
United Kingdom	962	903	1, 103	940	1,034	1,04
				4 000		
Total 5	2, 386	3, 482	4, 318	4,000	3, 978	3, 60
Asia:						
Asia: Burma	1, 528	1,600	1,400	950	1, 130	1,05
China 2	6,000	8,600	9,600	10,000	11, 500	13,00
Indonesia	27, 706	35,003	33, 822	35, 861	33, 368	30, 03
Japan Laos (Indochina)	233	638	732	715	896	92
Laos (Indochina)	42	156	264	110	253	25
Malava	48, 291	56, 838	56, 254	60, 690	61, 244	62, 29
Thailand	6, 664	9, 479	10, 126	9, 776	11, 023	12, 48
Total 2	90, 500	112, 300	112, 200	118, 100	119, 400	120, 10
Africa:						
Belgian Congo 6	13, 760	13, 795	15, 293	15,084	15, 028	14, 53
French Cameroon	. 87	87	86	82	85	8
French Morocco		15	9	5	15	
French West Africa	. 29	110	99	72	47	5
Mozambique		3				
Nigeria	8, 796	8, 318	8, 228	7, 926	8, 158	9, 06
Rhodesia and Nyasaland, Federation						
of:				_		
Northern Rhodesia	.] ,3	11	7	1		
Southern Rhodesia		. 30	30	14	208	32
South West Africa		106	210	742	357	47
Swaziland	.] 29	36	36	34	27	2
Tanganyika (exports)	93	43	47	37	41	2 1
Uganda (exports)	156	110	92	83	58	3
Uganda (exports) Union of South Africa	563	935	1,360	1, 315	1, 283	1, 43
Total		23, 599	25, 497	25, 395	25, 307	26, 06
Angle of the contract of the first of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the cont				<del></del>		
Oceania: Australia		1,611	1, 553	1, 979	2,077	1, 98
World total (estimate)	153, 500	174, 100	179, 600	179, 300	179, 900	179, 60

¹ This table incorporates a number of revisions of data published in previous Tin chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

2 Estimated by authors of the chapter and in a few instances from the Statistical Bulletin of the International Tin Council, London, England.

3 Minor constituent of other base-metal ores.

4 Excluding mixed concentrates.

4 Excluding production of U. S. S. R.

6 Including Ruanda-Urundi.

TABLE 21.—World smelter production of tin, by countries, 1947-51 (average) and 1952-56, in long tons 1

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada	283	95				
Mexico	271	140	209	224	357	218
United States	34, 161	22, 805	37, 562	27, 407	22, 329	17, 63
Total	34, 715	23, 040	37, 771	27, 631	22, 686	17, 849
South America:		1.11				
Argentina	276	185	130	60	99	90
Bolivia (exports)	193	257	174	196	107	449
Brazil	163	116	553	1,850	1.184	2 1, 200
Peru 3	58	31				
Total	690	589	857	2, 106	1, 390	² 1, 750
Europe:						
BelgiumGermany:	9, 879	10, 585	9, 039	11, 377	10, 432	9,716
East	133	563	480	600	605	2 600
West	259	758	694	000	280	2 660
Italv	- 9				200	- 000
Netherlands	17, 327	27, 913	26, 950	28, 442	26, 566	28, 197
Portugal	279	340	471	664	1,018	1, 144
Spain	710	753	823	676	608	576
Spain United Kingdom 4	28, 724	29, 521	28, 860	27, 475	27, 241	26, 434
Total 5	57, 320	70, 433	67, 317	69, 234	66, 750	67, 327
Asia:						
China 3	5, 600	8,000	9,000	9, 400	11, 500	13, 000
Indonesia.	177	224	644	1, 351	1, 572	² 1, 500
Japan	269	637	805	813	1,030	1, 104
Laos (Indochina)	7			010	2,000	1, 101
Malaya.	55, 285	62, 829	62, 410	71, 166	70, 631	73, 263
Thailand	29	17				
Total 2	61, 400	71, 700	72, 900	82, 700	84, 700	88, 900
Africa:						
	2 000	0 707	0.717	0.450	0.004	0.004
Belgian Congo French Morocco	3, 289	2, 765	2,715	2, 459	3, 034	2, 964
Rhodesia and Nyasaland, Federa-		15		8	8	3 12
tion of: Southern Rhodesia	93	0=				
Union of South Africa		37	27	19	22	12
Onion of South Africa	659	960	828	752	779	756
Total	4, 041	3, 777	3, 570	3, 238	3, 843	3, 744
Oceania: Australia	1, 937	1,700	1, 443	2, 063	2,004	1, 850
World total (estimate) 5	160, 100	171, 200	183, 900	187,000	181, 400	181, 400

¹ This table incorporates a number of revisions of data published in previous Tin chapters. Data do not add to totals shown, owing to rounding where estimated figures are included in the detail.

² Estimated by authors of the chapter and in a few instances from Statistical Bulletin of the International Tin Council, London, England.

³ Tin content of dross.

⁴ Beginning January 1948, includes production from imported scrap and residues refined on toll.

⁵ Excluding production of U. S. S. R.

### WORLD CONSUMPTION

World consumption of tin increased 3 percent in 1956 and was the highest since 1941. In 1956 and 1955, 8 countries consumed 78 percent of the world totals; United States, United Kingdom, France and Saar, West Germany, Japan, Denmark, India, and Canada. Of these, 6 increased their consumption as follows: United States, 1 percent; France and Saar, 7 percent; West Germany, 4 percent; Japan,

23 percent; Denmark, 1 percent; and Canada, 3 percent. United Kingdom and India decreased their consumption 3 and 1 percent, respectively. The United States consumed 40 percent of the Free World total, compared with 41 percent in 1955. Tonnagewise, the largest increase in tin consumed by any country in 1956 was Japan's 1,850 tons. The United Kingdom decreased in usage more than any country—640 tons. Omitting figures on Government stocks and production by the Texas City smelter, in 1956 the Free World available supplies of metallic tin and commercial demand were virtually in balance. During the 5 years ended with 1956 the annual rate of world consumption averaged 5,000 long tons more than the prewar period 1934-38. According to the Director of the Mint, the consumption of tin in 1954 and 1953 coinage of nations of the world totaled 96 and 85 long tons, respectively.22

TABLE 22.—World consumption of tin, by countries, 1947-51 (average) and 1952-56, in long tons 1

Country	1947–51 (average)	1952	1953	1954	1955	1956
						· / / ·
North and South America:	1, 317	1,400	1, 500	1,600	1,600	1, 560
Argentina		1,700	1, 650	1,750	1,750	2, 190
Brazil	4, 250	4, 190	3, 904	3,604	4, 018	4, 150
Canada		45, 323	53, 959	54, 427	59, 828	60, 470
United States	58, 853		1, 450	1,605	1, 555	1, 560
Others	943	1, 299	1,450	1,000	1, 000	1,000
Total	66, 713	53, 912	62, 463	62, 986	68, 751	69, 930
Europe:						
Belgium and Luxembourg	1,568	1, 224	1, 164	1,807	2,022	2,460
Czechoslovakia	1,220	1,600	1,700	1,700	1,700	1,680
Denmark.	557	1, 140	2,650	4, 150	4, 950	5,000
Finland	408	375	375	375	420	420
France	7, 100	7, 550	8,000	9,000	9, 700	10,400
Germany, West	3, 836	7, 270	5,814	6, 567	8, 165	8, 45
Italy	2, 200	2, 500	2,800	3,000	3,000	3, 440
Netherlands	2,907	8, 700	4, 330	3, 450	2, 515	2, 685
Poland	1.851	1, 900	1,800	1,700	1,700	1,680
	814	900	840	840	840	840
Spain	990	850	800	800	900	850
Sweden		750	750	750	750	780
Switzerland	740				22,873	22, 23
United Kingdom	24, 119	22, 554	18,882	21, 712		
Others	2, 652	3, 869	3,809	3, 871	4,034	4, 030
Total 3	50, 962	61, 182	53, 714	59, 722	63, 569	64, 950
Africa	2,028	2, 552	2, 539	2, 431	2,452	2, 490
NII 100	2,020					
Asia:						
India	3,400	3,900	3,700	4,000	4, 200	4, 160
Japan 3	3, 565	4, 591	6, 350	7, 480	7, 963	9, 81
Turkey	624	800	800	800	800	780
Others	1,774	2, 709	3, 148	4, 155	5, 531	5, 524
Total	9, 363	12,000	13, 998	16, 435	18, 494	20, 277
Total Australia and New Zealand	2, 642	2,670	2, 560	2,720	2,800	2, 89
Transmin and them resisted	2,042	2,010	2,000	2, 120	2,000	2,000
World total	131, 700	132, 500	135, 300	144, 300	156,000	160, 500

¹ International Tin Council, Statistical Bulletin: May 1957, p. 24.
² Excludes U. S. S. R.
³ Figures for 1951-55 from Ministry of International Trade and Industry, Japanese Mining Industry 1955: P. 77.

²² Brett, Wm. H., Annual Report of the Director of the Mint, Fiscal Year Ended June 30, 1955: Jan. 3, 1956, pp, 104, 108.

# **REVIEW BY COUNTRIES**

Australia.—Australia produced 2,000 long tons of tin-in-concentrate in 1956, unchanged from 1955. Domestic smelter production declined 8 percent from 1955 to 1,850 long tons in 1956. Consumption of tin in Australia totaled 2,900 tons during 1956, compared with 2,800 in 1955. According to a report: 23

* * * Production of tin concentrate by Aberfoyle Tin Co. N. L., the largest tin producer in Tasmania, was suspended in October as the result of a strike following the reduction by the company of the prosperity bonus paid to employees; operations recommenced in mid-November. During 1955 the company produced 640 tons of concentrate.

At Port Kembla the tinplate plant now under erection is expected to commence production in mid-1957. Initial tin requirement of this plant is said to be about 1,000 tons, and will thus increase domestic consumption to approximately 3,500

tons annually.

Belgian Congo.—Production of tin-in-concentrate in the Belgian Congo, including Ruanda-Urundi, totaled 14,533 long tons, a 3-percent decrease from 1955. Domestic smelter production was 2,964 tons, virtually unchanged from 1955. In 1956 Belgian Congo, including Ruanda-Urundi, contributed 56 percent of Africa's total mine production of tin. Tin contained in exports of concentrate totaled 11,408 tons; Belgium received 9,635 tons; the United States, 767 tons: and other countries, 1,006 tons. Exports of tin metal from Belgian Congo totaled 2,690 tons; the United States received 100 tons: Belgium, 2,430 tons; and Union of South Africa, 160 tons.

Stocks of tin metal increased from 123 long tons at the beginning of the year to 212 tons at the end of the year. Stocks of tin-inconcentrate increased from 554 tons at the beginning of 1956 to 715

tons at the end of the year.

A railroad in Belgian Congo was being constructed which may

assist Belgian Congo and Ruanda-Urundi tin producers.24

Bolivia.—In 1956 declining output of tin again characterized the Bolivian tin industry. For comparison purposes, the total tonnage and value of Bolivian tin exports for 1949-55 follows: 25

Year:		Exports, long tons	Gross value
1949	 ·	 34, 115	\$72, 852, 000
1950	 	 31, 213	63, 215, 000
1951		33, 132	93, 251, 000
$1952____$		31, 959	83, 722, 000
1953		34, 825	72, 436, 000
1954		28, 825	57, 877, 000
1955	 	 27, 921	57, 273, 000

Total tin contained in exports of tin-in-concentrate and metal in 1956 was 26,845 long tons, valued at \$59,257,000.26 This represented 59 percent of the gross value of Bolivian minerals exported in 1956.

A report made for the Bolivian Government by Ford, Bacon & Davis, a New York engineering firm, covering all phases of the

<sup>Australian Mineral Industry, Quarterly Review: November 1956, p. 32.
Tin (London), April 1956, p. 81.
U. S. Embassy, La Paz, Bolivia, State Department Dispatch 173: Oct. 1956, p. 1.
U. S. Embassy, La Paz, Bolivia, State Department Dispatch 446: Feb. 21, 1957, p. 1.</sup> 

Bolivian mining industry, was completed. The following 15 points covering major conclusions were published.27

TIN

1. The mining industry in Bolivia is responsible for more than 50% of the total Therefore, a reduction in the output of ores must have a serious Bolivian income. effect on the country's economy.

2. The general economic situation of the industry has deteriorated seriously in the past 3 years due to significant falls in the yields of tin, lead, silver, antimony, and copper and only a moderate rise in the yield of tungsten.

3. Working capital has fallen and the condition of equipment and installations

in the mines has deteriorated so that a high percentage—25%—of the industry is now non-profit-making. Efficiency is low and there is a strong shortage of administrative and technical personnel. Also, there is a general lack of discipline among workers.

4. More than 1,600 mines closed between 1953 and 1954, despite the high prices

for ore at that time.

5. In the past 3 years, the private mining industry suffered further losses. 6. More important Bolivian mines will have to close down in the future due to exhaustion of their ore deposit; and unless new deposits are found, further serious

declines in output will occur.

7. Mines which are uneconomic are continuing operations and so wasting capital and labor.

8. Production will decline and costs increase as many of the important mines

make investments to develop and extend their operations.

9. Many of the larger and older mines are encountering problems such as falls in ore content, complex ores, and increases in rock pressures.

10. The system of taxation and "invisible" taxes on the net product of sales is

adversely affecting the economic life of the mines.

11. There are social and political problems to be solved. A strong effort is needed to reestablish relations between labor administration, investors, and the Government.

12. The workers can obtain greater benefits only through an increase in output

and greater efficiency.

13. Hopes of increasing the output from Bolivia's mines depend mainly on strengthening the private mining industry, and to do this a climate propitious to investment must be created.

14. The capital needed to make the mining industry self-supporting is estimated at \$71/2 million annually for the next 5 years. Capital to this extent cannot be

found in Bolivia.

15. These add up to Ford, Bacon & Davis' major conclusion: Unless the Government separates political activities from the administration of the mines, the entire mining industry will continue to suffer the consequences.

In a Supreme Decree of July 18, the Bolivian Government approved the plan for reorganizing the Corporación Minera, essentially in the form proposed by Ford, Bacon & Davis.

The President of Bolivia on December 15 announced the promulgation of a stabilization program in a nationwide radio program. The basic decree provided: a new system of exchange (exchange rate initially set at Bs. 7,700 to \$1.00 and during the first quarter of 1957 remained steady at about that figure), the freezing of all salaries for 1 year, a system of adjusting daily wages to compensate for the anticipated increased cost of living, and (where applicable) discontinuing subsidized commissary food prices, freedom to export and import, suspension of imports at subsidized prices, certain changes in regulating banks, and adjustment of social security contributions and of rent-control regulations.

On December 15, Supreme Decree 4540 was approved by the Government, establishing a new tax system for mineral exports. With the hope of attracting private investment in the Bolivian

²⁷ American Metal Market, Disintegration of Bolivian Mining Is Confirmed: Vol. 64, No. 28, Feb. 8, 1957, pp. 1, 6.

mining industry, a single royalty tax replaced the former system of

multiple taxation in effect for many years.

Based on a market price of \$1.00 per pound for tin, private miners and the Mining Corporation of Bolivia would pay on a 60 percent tin concentrate, a maximum of 14.2 percent of the gross market value. Formerly, operating companies paid the Bolivian Government approximately 35 percent (about 2½ times the new rate) of the gross market price for tin on a multiplicity of taxation. The following table presents the new scale of export taxes on the gross value of tin contained in concentrates.

Percentage of tax for tin concentrate

Cents U. S. currency per pound of	Grade of concentrate (percent)							
fine tin 1	60	40	30	25	20	17. 50		
80	3. 6 10. 0 14. 2 18. 0	2. 5 8. 8 13. 4 17. 0	1. 60 6. 10 9. 20 12. 60	1. 10 3. 70 5. 50 6. 70	0.35 1.10 1.60 2.40	0. 0 . 1 . 4 1. 4		

¹ At the free rate of exchange, official tin prices to be established at 15-day intervals.

TABLE 23.—Receipts of Bolivian ore (concentrate) at the Texas City, Tex., smelter in 1956, in long tons

Grade		Concen- trate	Ti	Total content	
		(tons)	Percent	Tons	(percent)
High Medium Low		4, 834 7, 109 9, 618	58. 15 47. 05 20. 75	2, 811 3, 345 1, 996	34 41 25
Total		21, 561	37. 81	8, 152	100

Brazil.—Production of tin-in-concentrate was about 180 long tons (146 in 1955). Output of tin metal from the Volta Redonda smelter totaled 1,200 long tons in 1956. Consumption of tin in Brazil was 2,190 tons during 1956 (1,750 in 1955). A brief published account of the plans for expanding the output of tin concentrate stated:²⁸

Brazilian production of tin is in the order of 1,500 tons annually, but the bulk of concentrates is still imported. The principal local source is Sao Joao del Rei, Minas Gerais, where a processing plant has been installed and an electrolytic separator is being mounted. When these are operating the deposits will be able to supply Brazil's present demand for pure tin. Cia Estanifera will produce 3,000 tons of metallic tin yearly.

Burma.—Mine production in Burma totaled about 1,000 long tons in 1956, compared with 1,100 tons in 1955. Since World War II mineral production in Burma has declined to between 6 and 50 percent of the prewar figures. As mining is a basic factor in the recovery of the national economy, efforts were made to restore it to its prewar level; for this purpose, Government sanction was given for the formation of the Government of Burma Mineral Resources Development Corporation, whose functions are to promote the development, exploitation, and utilization of mineral resources.

²⁸ International Tin Study Group, Notes on Tin: No. 62, March 1956, p. 1132.

At the 30th Annual General Meeting of the London Tin Corporation, Ltd., in London during October 1956, the chairman stated: 29

No active mining was possible during the year; but since the close of the year it has been possible, although difficult, to visit the mines and examine the plants in order to see which if any can be rehabilitated. It is thought that, if security can be restored in the areas concerned, 1 or 2 small dredges might be brought into production in a reasonably short time.

Canada.—Canada produced 273 long tons of tin. This represented an increase of 53 tons (24 percent) over the previous year. Canadian output was in the form of concentrate derived from lead-zinc-silver ore from the Sullivan mine of the Consolidated Mining & Smelting Co. of Canada, Ltd., Kimberley, B. C.

About 4,100 long tons of tin was consumed in 1956 compared with

4,000 tons in 1955.

India.—A State Department dispatch reported: 30

There is at present no production of tin in India, and so far no workable deposits have been located, although there are reports of occurrences of tin ore in some places in Bihar. The main consumers of tin are the tinplate and the alloy making industry. Importation of tin into India during the last 5 years was as follows:

Year:								ports j tons)
1951-5	2	 	 	 			 4	, 656
1952-5		 	 	 				, 028
1953-5	4	 	 	 			 	, 147
1954-5	5	 	 	 				, 935
1955-5	6	 	 	 	. <b></b>	<b>-</b>	 3	923

India's demand for tin by the end of the Second Plan is expected to be about 6,000 to 7,000 tons, due to increased production of tinplate and copper-tin base alloys.

Indonesia.—In 1956 Indonesia ranked second in world tin produc-Production of tin-in-concentrate was 30,000 long tons. represented a decrease of 3,300 tons or 10 percent from the previous The Indonesian output represented 18 percent of the world mine production. Tin production in Indonesia was confined to the islands of Bangka, Billiton, and Singkep, which in 1956 supplied 67, 27, and 6 percent, respectively. Exports of tin-in-concentrate from Indonesia in 1956 in long tons were as follows:

United States Netherlands	 	 1, 524 29, 635
T-4-3		31 150

At the end of 1956 tin-in-concentrate and stocks in Indonesia totaled This represented a decrease of about 1,500 tons or 2,100 long tons.

42 percent from the beginning of the year.

On May 16, the Indonesian Ambassador deposited the instrument of ratification of the International Tin Agreement with the British Government in London, thereby clearing the way for the Tin Agree-

ment to come into operation.

Japan.—Production of tin-in-concentrate in Japan totaled about 900 long tons in 1956—virtually unchanged from the previous year. Domestic smelter production increased 7 percent from the 1955 output to about 1,100 tons in 1956. Consumption of tin in Japan was about 10,000 tons during 1956.

²⁹ Mining World and Engineering Record (London), London Tin Corp., Ltd.: Vol. 171, No. 4461, Sept. 29, 1956, p. 171. 30 U. S. Embassy, New Delhi, India, State Department Dispatch 994: Feb. 7, 1957, p. 4.

A recent article on the rising tin consumption in Japan stated: 31

* * * The tin deposits are very small and are largely situated in the Hyogo Prefecture and the Oita Prefecture in Southern Japan.

Small quantities of tin have been mined in Japan for many centuries, but it was

not until the 1930's that production reached 1,000 long tons per annum, with a peak production of 2,196 long tons in 1941. Normally half the production has come from the Akenobe mine of the Mitsubishi Metal Mining Co. in Hyogo; the balance came mainly from the Mitate and

Obira mines in Oita. At the present time only two mines are working in Japan—the Akenobe mine, d the Mitate mine of the Toyo Mining Co. The output of these two mines is and the Mitate mine of the Toyo Mining Co.

now estimated to be about 100 tons of tin-in-concentrate per month. Normal consumption of tin in Japan in the mid-1930's was about 4,000-6,000 long tons a year. In the immediate prewar years the figure rose to approximately 10,000 long tons annually, and between 1941 and 1945 was as high as 8,000 tons

each vear. Consumption fell to under 2,000 tons after the war, but since that time it has been growing slowly but steadily. * * *

Malaya.—Malayan production of tin-in-concentrate reached the highest figure since 1941, totaling 62,295 long tons, an increase of 1.7 percent over 1955. The alltime record was 84,082 tons in 1940.

Eighty-nine percent of the total Malayan production of tin in 1956 was obtained by dredging (49.3 percent) and gravel pumping (39.9 The percentages from other methods of mining were: percent). Hydraulicking, 2 percent; opencast mining, 2 percent; underground mining, 4 percent; dulang washing, 2 percent; and other, 1 percent.

In 1956 an analysis of output by dredges shows that 78 dredges recovered 30,702 long tons of tin, or about 394 tons per dredge; and 635 gravel pumps recovered 24,885 tons of tin, or about 39 tons per gravel As of December 31, 1956, 39,459 laborers were employed in tin mines compared with 39,559 on December 31, 1955.

The smelting of tin in Malaya was carried on by two large companies—the Eastern Smelting Co., Ltd., smelter in Penang; and the Straits Trading Co., Ltd., smelters in Singapore and Butterworth. A small quantity of tin concentrate was processed by several Chinese "smelters" for local consumption. Malaya smelted a total of 73,263 long tons, an increase of 2,632 tons (4 percent) over the previous year. The Malayan smelting industry supplied 40 percent of the world production (excluding the U.S.S.R.) in 1956.

The tin content of concentrate available from Malaya was 62,295 tons, compared with 61,244 tons in 1955. Imports contained 10,967 tons of tin, compared with 11,032 tons in 1955. No tin-in-concentrate was exported during 1956.

In 1956 exports of tin metal totaled 73,279 long tons, compared with 71,161 tons in 1955.

Stocks of tin metal at the end of 1956 totaled about 2,200 long tons, virtually unchanged from the beginning of the year; stocks of tin-inconcentrate decreased from about 4,900 tons at the beginning to 3,800 at the end.

Nigeria.—Nigerian tin deposits are chiefly in the northern Provinces-Plateau, Kabba, Niger, and Benue. Deposits worked were alluvial or eluvial and were mined by placer methods. Lode deposits

³¹ Tin (London), January 1957, pp. 8-10.

1195

are known to occur. Production of tin-in-concentrate in Nigeria totaled 9,067 long tons in 1956, an 11-percent increase from 1955. Most of the world supply of columbium (niobium) was recovered from the large tin deposit of the plateau, although considerable quantities were also obtained from the Kano and Bauchi Provinces.

TABLE 24.—Imports of tin-in-concentrate into Malaya in 1956

ountry of origin: Burma				Long
Indochina				
Thailand				9,
Other countries				- 0,
Total				
TABLE 25.—Mala	von Avnor	te of tin motal 1	056	
estination:	yan expor	is of the metal, 1	<b>7</b> 00	Long
United States				
United States		. 7		6,
Netherlands				- 4,
India				$\bar{3}$
France				. 3,
Italy				2,
ItalyUnited Kingdom				1,
Canada				1,
South Africa				
Germany, West				_
Poland				-
Turkey				_
Australia				
New Zealand				_
All other countries				_ 3,
Total:				79
				_ /3,

The 1956 Annual Report to Stockholders of the Amalgamated Tin Mines of Nigeria stated in part:

Output of cassiterite and columbite.—The total production of cassiterite concentrates for the seventeenth year of your Company's operations was 4,435 tons.

The total yardage treated was 12,697,781 against 12,967,300 cubic yards in the previous year.

The overall value of the ground treated increased from 0.70 to 0.75 lb. of cassiterite per cubic yard.

The production of columbite concentrates amounted to 573 tons for the year.

The output (in long tons) was obtained by the following methods:

Gravel pumps2, 554. 41 242.	32
Dragline with washing plants 738.88 104.	96
Dredge150. 66 17.	53
Elevators, hand paddocks, tribute, and contract 827. 09 94.	61
Mill tailings treatment 163. 96 113.	<b>5</b> 8
4, 435, 00 573.	

Portugal.—Portugal was the leading producer of tin-in-concentrate of Europe in 1956. Output totaled 964 long tons, a 13-percent decrease from the previous year. Domestic smelter production was 1,144 tons, compared with 1,018 tons in 1955.

Developments in Portugal were reported.32

* * * The Portuguese American Tin Company with a monthly production of 30 tons continued to be the chief producer of cassiterite. This firm is dredging an alluvial bed in the Vale de Macainhas, Belmonte, Guarda, but as it has small reserves, the company studied the possibility of dredging the large alluvial basin, Nave de Haver (Villar Formoso, Almeida, Guarda).

The Minas de Ervedosa (Ervedosa, Vinhais, Braganca) and the Minas da Ribeira (Parada, Braganca), with productions of the order of 25 and 30 tons per month, respectively, are the most important miners of vein deposits.

The Minas de Panasqueira also produced cassiterite at about 15 tons per month * * * *

Rhodesia and Nyasaland, Federation of.—Mine production in Southern Rhodesia totaled 329 long tons in 1956 compared with 208 tons in 1955. Domestic smelter output was 12 tons.

A publication stated: 33

Kamativi Tin Mines, Ltd., operating in the Gwaai area of Rhodesia increased its authorised capital during January from £700,000 to £3,000,000 with the object of bringing the milling rate up from about 600 tons of ore a day to a thousand tons a day and for other items of future expansion. Last year the company, which is controlled by the Billiton Group, formed a subsidiary Kamativi Smelting & Refining Co. to operate a smelter completed last year which produced very high grade ingot tin. Solders and whitemetals are also made for local consumption.

Thailand.—Thailand ranked fifth as a tin-producing country in 1956. Production of tin-in-concentrate totaled 12,481 long tons, a 13-percent increase from 1955. In 1956 exports of tin contained in concentrate totaled 12,424 long tons.

According to a report: 84

TABLE 26.—Exports of tin-in-concentrate from Thailand, 1955-56

Country:		1955	1956
Malaya	 	7, 950	9, 883
United States	 	2, 414	1,714
Brazil	 	573	615
Japan	 	85	191
C1^11		17	21
Total	 	11. 039	12, 424

It has been reliably reported that the Mitsui Metal Mining & Smelting Company have completed a tentative contract with a large Chinese mine owner for reactivating a fin development company in Thailand. It is planned that the projected company will be formulated in September with a capital of 100,000,000 yen subsequently to be increased to 300,000,000 yen. The Mitsui interest will control 49% and the mine owner 51%.

From this mine production, it is contemplated to produce 20 tons of refined tin monthly at the Takehara Refinery. Considerable interest has been created by this new development in tin particularly by the Mitsubishi Metal Mining Company and Toyo Mining Company, who also are presently producing tin for Japanese consumption. * * *

United Kingdom.—Mine production in United Kingdom (Cornwall and Devon) in 1956 was about 1,000 long tons, unchanged from the previous year. United Kingdom ranked third among the countries of the world in smelter production. The output of metal totaled 26,434 long tons, a decline of 800 tons from the previous year. end stocks of tin-in-concentrate were 2,400 tons (2,200 at the beginning

Mining World, Annual Catalog: Vol. 19, No. 5, Apr. 15, 1957, p. 112.
 Metal Bulletin (London), No. 4075, Mar. 6, 1956, p. 23.
 American Metal Market, vol. 63, No. 140, July 24, 1956, p. 6.

of the year) and metal 3,200 tons (3,000 at the beginning). stocks, including tin metal and concentrate affoat and visible consumer stocks, were reported to be 9,500 at the end of 1956, a 25percent increase from 6,800 tons at the beginning of the year. Exports of tin metal from the United Kingdom in 1956 were about 7,300 tons compared with 8,500 tons in 1955.

TIN

Tin consumption in the United Kingdom in 1956 declined about

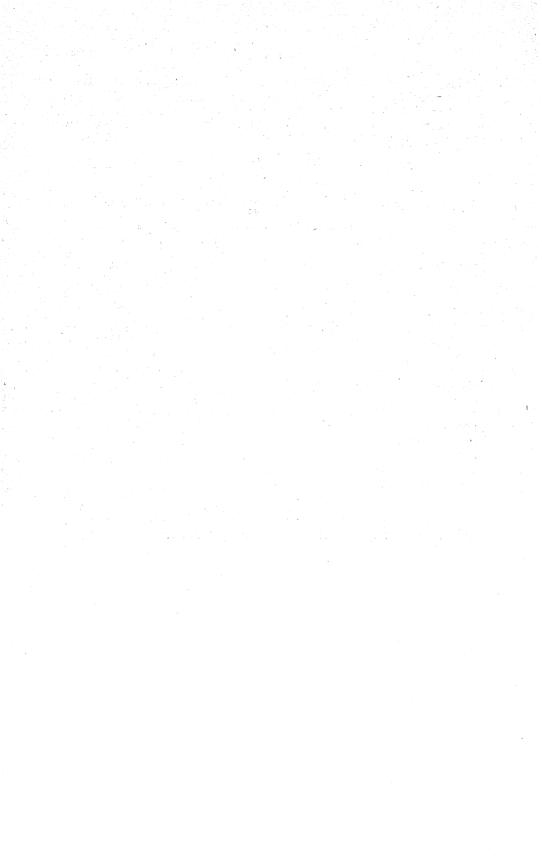

600 tons from the previous year.

TABLE 27.—United Kingdom tin consumption, 1953-56, excluding tin scrap, long tons 1

Use	1953	1954	1955	1956
Tinplate	8, 911	9, 896	9, 847	10, 100
Tinning: Copper wiresteel wire	405 78	493 113	527 112	484 100
OtherSolderAlloys:	796 1,879	856 2, 345	802 2,877	831 2, 765
White metal	2, 901 2, 001 393	3, 581 2, 076 488	3, 741 2, 508 479	2, 935 2, 721 449
Wrought tin: ² Foil and sheets		319 384	338 422	290 341
Pipes, wire, and capsules		54 959 148	1, 033 137	48 1, 048 120
Total consumption	18, 882	21, 712	22, 873	22, 232

¹ British Bureau of Non-Ferrous Metal Statistics, World Non-Ferrous Metal Statistics: Bull. for January 1957: Vol. 10, No. 1, p. 55.
2 Includes compo and "B" Metal.
3 Mainly tin oxide.
4 Mainly powder.

United Kingdom produced 12 percent of the world tinplate and ranked second as an exporter. In 1956 production of tinplate totaled 859,000 long tons. Of the total production in 1956, 67 percent was hot-dipped tinplate and 33 percent electrolytic tinplate. tinplate from the United Kingdom totaled 322,000 tons.



# Titanium

By Jasse A. Miller 1



PRODUCTION forged ahead dramatically in the major elements of the domestic titanium industry in 1956. Output of rutile increased 41 percent, ilmenite 17 percent, titanium pigments 18 percent, titanium-sponge metal 97 percent, and titanium mill products 172 percent over the previous year. Moreover, a number of producers of these products continued to expand their capacities in

anticipation of greater demand,

In the spring of the year one company began producing sponge metal at a new plant using sodium to reduce titanium tetrachloride, thus breaking away from the magnesium reduction process used by all other producers operating in the United States. Two established sponge-metal producers scheduled expansions without Government assistance, and two new companies announced plans to become commercial producers of sponge. To keep apace with increasing demands for mill products, the semifabricators of titanium metal undertook expansion programs that would almost triple the melting facilities of the industry.

The United States continued to be the world's largest user of ilmenite and rutile consuming 57 percent of the total ilmenite and 38 percent of the total rutile produced in 1956. Most of the ilmenite was used for making titanium pigments, and most of the rutile was utilized in welding-rod coatings and for titanium metal. For the first time the quantity of rutile used for titanium metal exceeded that

used for welding-rod coatings.

After having been scarce for many years, rutile at last was plentiful in 1956 and showed a downward price trend, owing to increased production both in the United States and in Australia, the world's largest producer. Ilmenite prices rose slightly as demand for its use as a raw material for titanium pigments increased. As a result of economies effected through volume production, sponge-metal prices decreased 20 percent and mill-product about 12 percent.

Titanium mill products were in tight supply during the year as a result of larger military requirements for jet aircraft. In civilian applications titanium metal gained acceptance, and standard pieces of equipment such as pumps, anodizing racks, and heat exchangers

were produced commercially.

# GOVERNMENT REGULATIONS

On September 11, 1956, the Office of Defense Mobilization closed the expansion goal for rutile.² It was disclosed that the demand for

¹ Commodity specialist. ² American Metal Market, Titanium Ore Goal Closed by ODM: Vol. 63, No. 175, Sept. 12, 1956, pp. 1, 2. 1199

rutile during a mobilization period could be met through the combined use of rutile, ilmenite, and titanium slag. The latest goal, established on September 29, 1955, was 25,000 short tons by December 31, 1955.

The expansion goals for titanium-melting facilities and titanium processing facilities were closed on December 28, 1956, by the Office of Defense Mobilization. Each of these goals had been set at 37,500 tons in 1954.

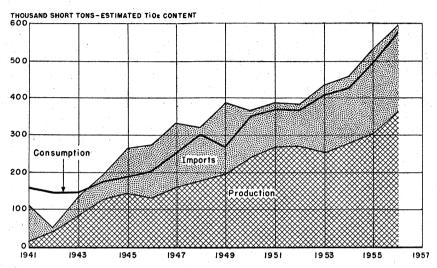



FIGURE 1.—Domestic production, imports, and consumption of ilmenite (includes titanium slag and a mixed product), 1941-56.

## DOMESTIC PRODUCTION

Concentrates.—Ilmenite production of 685,000 short tons and shipments of 735,400 short tons in 1956 represented increases of 17 and 28 percent, respectively, over 1955, exceeding all previous records. Production came from the following companies: American Cyanamid Co., Piney River, Va.; E. I. du Pont de Nemours & Co., Inc., Starke and Lawtey, Fla.; Marine Minerals, Inc., Bath, S. C.; National Lead Co., Tahawus, N. Y.; Rutile Mining Co. of Florida, Jacksonville, Fla.; and The Florida Minerals Co., Wabasso, Fla. Although Baumhoff-Marshall, Inc., Boise, Idaho, ceased mining operations in 1955, this company shipped 48,600 short tons of ilmenite in 1956 from stocks on hand.

Rutile mining in 1956 set new records with production of 12,000 short tons and shipments of 12,100 short tons, increases of 41 and 31 percent, respectively, over 1955. Output was reported from three companies: Marine Minerals, Inc., Bath, S. C.; Rutile Mining Company of Florida, Jacksonville, Fla.; and The Florida Minerals Co., Wabasso, Fla.

The Florida Minerals Co., a subsidiary of Hobart Brothers Co., took over the operations of the Florida Ore Processing Co. in 1956. Marine Minerals, Inc., shipped its first ilmenite concentrate during the year. In March it was announced that the Vitro Corp. of America

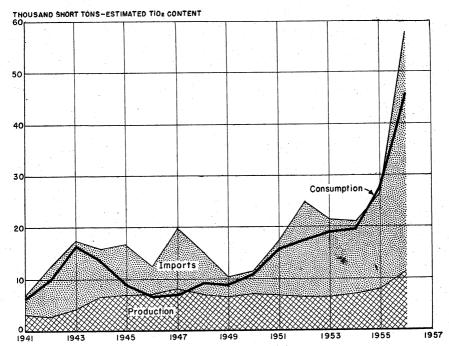



FIGURE 2.—Domestic production, imports, and consumption of rutile, 1941-56.

TABLE 1.—Production and mine shipments of titanium concentrates from domestic ores in the United States, 1947-51 (average) and 1952-56, in short tons

	Produc- tion		Shipments		
Year	(gross weight)	Gross weight	TiO2 content	Value	
ILMENITE 1 1947-51 (average)	426, 349	414, 999	203, 668	\$6, 092, 577	
	528, 588	522, 515	265, 596	8, 022, 752	
	513, 696	512, 176	258, 247	7, 222, 641	
	547, 711	531, 895	270, 651	7, 375, 344	
	583, 044	573, 192	297, 835	10, 267, 647	
	684, 956	735, 388	386, 498	14, 198, 947	
RUTILE 1947-51 (average) 1952 1953 1954 1955 1956	7, 535	7, 648	7, 022	488, 112	
	7, 125	6, 874	6, 416	715, 491	
	6, 825	6, 476	6, 043	702, 791	
	7, 411	7, 305	6, 822	869, 677	
	8, 513	9, 182	8, 617	1, 122, 000	
	11, 997	12, 065	11, 348	1, 748, 883	

¹ Includes a mixed product containing rutile, leucoxene, and altered ilmenite for 1949-56, inclusive.

had bought from the Crane Co. an interest in Heavy Minerals Co., the owner of Marine Minerals, Inc. Thereafter Heavy Minerals Co. was owned 40 percent by the Crane Co., 40 percent by Vitro Corp. of America, and 20 percent by Pechiney.³

Wall Street Journal, Crane Co., Vitro Corp. Join to Produce Rare Earths and Thorium: Vol. 147, No. 42, Mar. 1, 1956, p. 7.

Early in the year Metal & Thermit Corp. announced that it would build a \$750,000 ore mining and processing plant on an 800-acre tract 5 miles west of Montpelier, Va., to produce ilmenite and rutile. Production was scheduled to begin early in 1957.4

On February 27, 1956, the National Lead Co. made public plans to expand the capacity of its Tahawus, N. Y., ilmenite mine and beneficiating plant 25 percent by the end of 1956. The expansion was necessitated by increased demands for ilmenite for titanium pigments.5

According to one authority, about 20 percent of the island of Kauai, T. H., is covered with titanium-rich soil.6 The islands of Lanai, Maui, Molokai, Oahu, and Hawaii contain smaller titanium deposits, but the largest reserves were found on Kauai. The deposits average 3 to 4 feet in thickness and contain more than 8 percent titanium dioxide as anatase. Most of the deposits were found on land used for raising pineapple or sugarcane and beneath forests needed to conserve water resources. Concentration of the titanium values presents a technical problem, as the bulk of the anatase is less than 300-mesh.

Metal.—Domestic production and consumption of titanium-sponge metal increased markedly in 1956, and production was almost double the previous peak established in 1955. The United States continued to be the leading world producer of titanium sponge, with an output of 14,600 short tons in 1956. During the year 2,600 tons of sponge was purchased by the Government under the General Services Administration (GSA) purchase and resale program, and the total quantity held by GSA increased to 9,300 tons.

The following data represent activity in various branches of the titanium-metal industry in 1956:

	Short tons
Titanium tetrachloride consumption	¹ 66, 500
Sponge production	14,595
Sponge consumption	10. 936
Scrap consumption	2,033
Ingot production	11 688
Ingot consumption	10 860
Mill product production	5, 166
1 Estimated	•

TABLE 2.—Salient statistics on the titanium-metal industry 1948-56, in short tons

Year	Sponge produc- tion ¹	Sponge in revolving- fund stock- pile Decem- ber 31	Mill-shape production	Year	Sponge produc- tion ¹	Sponge in revolving- fund stock- pile Decem- ber 31	
1948	² 10 ² 25 ² 75 495 1,075	303	(3) (3) (3) (3) 2 75 2 250	1953 1954 1955 1956	2, 241 5, 370 7, 398 14, 595	30 2, 894 6, 647 9, 289	4 1, 114 4 1, 299 1, 898 5, 166

¹ Unconsolidated commercially pure metal in various forms.

² Estimate. 3 Data not available.

⁴ Shipments.

⁴ Oil, Paint and Drug Reporter, Titanium-Bearing Ore Plant Is Set by Metal & Thermit: Vol. 169, No. 4,

Jan. 23, 1956, p. 4.

⁸ American Metal Market, Ilmenite Output To Be Expanded by National Lead: Vol. 63, No. 38, Feb. 28,

^{1956,} p. 1.

6 Austin, C. C., Vast Titanium Deposits Seen in Hawaii: Eng. Min. Jour., vol. 157, No. 1, January 1956,

Commercial producers of titanium sponge in 1956 were: Cramet Inc., Chattanooga, Tenn.; Dow Chemical Co., Midland, Mich.; Electro Metallurgical Co., Ashtabula, Ohio; E. I. du Pont de Nemours & Co., Inc., Newport, Del.; and Titanium Metals Corp. of America, Henderson, Nev. Some metal was produced as a byproduct of research at the Federal Bureau of Mines Electrometallurgical Experiment Station, Boulder City, Nev.

The Electro Metallurgical Co., a division of Union Carbide & Carbon Corp., was the newest producer of titanium sponge and the first United States company to make titanium commercially by sodium reduction of titanium tetrachloride. All other domestic producers in 1956 used a process involving magnesium reduction of titanium tetrachloride to manufacture titanium-sponge metal. The Electro Metallurgical Co., with a designed capacity of 7,500 tons per year, produced its first titanium on April 26, 1956. Titanium tetrachloride for this operation was supplied by the Columbia-Southern Chemical Corp., which put its new 35,000-ton-per-year tetrachloride plant at Natrium, W. Va., on stream in April 1956.7

The two leading domestic producers of sponge announced plans to expand their facilities. On March 21, 1956, Titanium Metals Corp. of America publicized a scheduled increase in capacity from 3,600 tons per year to 6,000 tons, and on August 15, 1956, the company announced that it expected to enlarge its capacity to 9,000 tons by late 1957. On June 29, 1956, E. I. du Pont de Nemours & Co., Inc., stated that it had achieved a 50-percent increase over its 3,600-ton capacity and that it planned to double its original capacity by early

Two companies announced plans to become producers of titaniumsponge metal. On September 24, 1956, U. S. Industrial Chemical Co., a division of National Distillers Products Corp., disclosed that it would build a 5,000-ton plant at Ashtabula, Ohio, to be completed late in 1957. Titanium tetrachloride for this plant would be supplied by the Stauffer Chemical Co., which planned to build a tetrachloride plant at Ashtabula, Ohio.⁸ The other company, Allied-Kennecott Titanium Corp., was formed as a joint venture of Allied Chemical & Dye Corp. and Kennecott Copper Corp. Plans called for an initial investment of \$40 million to build an integrated plant at an undis-The plant would produce titanium tetrachloride, sponge metal, and mill products. Titanium slag would be used as a raw material.9 Both National Distillers and Allied-Kennecott planned to use sodium-reduction processes.

On June 7, 1956, it was announced that Republic Steel Corp. had become an equal partner with the Crane Co. in Cramet, Inc., a spongemetal producer. Republic Steel Corp. planned to supplement Cramet, Inc., in several fields, as Republic was developing a rutile deposit in Mexico and was melting sponge and producing mill products.

The five melters and mill-product producers in 1956 were: Harvey Machine Co., Torrance, Calif.; Mallory-Sharon Titanium Corp.,

⁷ Chemical and Engineering News, Titanium Operations Start: Vol. 34, No. 20, May 14, 1956, pp. 2364-

<sup>2365.

8</sup> American Metal Market, National Distillers Chemical Unit to Build Titanium Plant at Ashtabula:
Vol. 63, No. 184, Sept. 25, 1956, pp. 1, 8.

• American Metal Market, Kennecott-Allied Chemical Enter Titanium Field: Vol. 63, No. 237, Dec. 13, 1956, pp. 1, 8.

Niles, Ohio; Rem-Cru Titanium, Inc., Midland, Pa.; Republic Steel Corp., Massillon and Canton, Ohio; and Titanium Metals Corp. of

America, Henderson, Nev.

Four mill-product manufacturers announced expansion of their melting facilities during 1956. The ultimate capacity these producers expected to achieve by late 1957 follows: Mallory-Sharon Titanium Corp., 6,000 tons; Rem-Cru Titanium, Inc., 7,600 tons; Republic Steel Corp., 6,000 tons; and Titanium Metals Corporation of America, 11,000 tons. On the basis of planned expansion the total ingot capacity of these 4 companies should be about 30,600 short tons by late 1957. This figure compares with the total capacity of 36,500 tons which the sponge producers plan to have in operation by 1958.

Two significant developments in the titanium industry during 1956 were the formation of the Oregon Metallurgical Corp. and the purchase of an Ohio steel mill by Titanium Metals Corp. of America. In mid-1956 Oregon Metallurgical Corp., Albany, Oreg., began to produce small quantities of ingots and castings for other companies on a custom basis. On October 25, 1956, Titanium Metals Corp. of America stated that it was purchasing a steel mill at Toronto, Ohio, to be used exclusively for rolling and forging titanium. This plant will be the first used solely for titanium, as most of the titanium mill products in 1956 were formed on equipment used mainly for steel, brass, and other metals.

A number of companies displayed an active interest in electrolytic titanium processes. On August 3, 1956, it was stated that Horizons, Inc., had been awarded a \$200,000 contract by the United States Navy Bureau of Aeronautics to develop a commercial process for producing titanium electrolytically. Mallory-Sharon Titanium Corp. announced on December 14, 1956, that it was building a large-scale pilot plant to refine titanium scrap into a pure metal by an electrolytic process that had been tested on a laboratory scale by Chicago Develop-

ment Co.11

Pigments.—Production and shipments of titanium pigments (based on the titanium dioxide content) continued their upward trend, sur-

passing the 1955 record by 18 and 6 percent, respectively.

Titanium pigments were produced in the United States by the following companies: American Cyanamid Co., Piney River, Va., and Savannah, Ga.; Glidden Co., Baltimore and Hawkins Point, Md.; E. I. du Pont de Nemours & Co., Inc., Edge Moor, Del., and Baltimore, Md.; National Lead Co., St. Louis, Mo., and Sayreville, N. J.; and New Jersey Zinc Co., Gloucester City, N. J. New Jersey Zinc Co. was the newest titanium-pigment producer, having taken over a former plant of the American Cyanamid Co. on May 1, 1956.

Several pigment companies planned expansion of their facilities during the year. In September it was reported that the American Cyanamid Co. would double the 36,000-ton-per-year titanium dioxide capacity of its Savannah, Ga., plant by early 1958.¹² National Lead

Wall Street Journal, Titanium Metals Corp. Plans Mill to Forge, Roll the Metal: Vol. 148, No. 82,
 Oct. 25, 1956, p. 6.
 American Metal Market, Mallory-Sharon Unit Will Refine Titanium Scrap: Vol. 63, No. 238, Dec. 14,

^{1956,} pp. 1, 12.

Paint, Oil and Chemical Review, American Cyanamid Company: Vol. 119, No. 21, Oct. 18, 1956, pp. 35-36.

1205 TITANITIM

Co. announced in November that an additional 25,000 tons of titanium dioxide capacity would be added to its St. Louis, Mo., plant by mid-According to a release on July 19, 1956, the Glidden Co. will quadruple the capacity of its Hawkins Point, Md., plant by 1957.14 In 1954 the Glidden Co. disclosed that the plant would have an ultimate capacity of 12,000 tons of titanium dioxide per year.

Welding-Rod Coatings.—Production in 1956 of 284,500 short tons of welding rods containing titaniferous material in their coating represented a 22-percent increase over the tonnage of welding rods similarly coated in 1955. Of the total welding-rod coatings containing ilmenite, rutile, or manufactured titanium dioxide, 44 percent contained only rutile, 15 percent contained a mixture of rutile and titanium dioxide, 31 percent contained only ilmenite, and 10 percent contained only manufactured titanium dioxide.

# CONSUMPTION AND USES

Concentrates.—The high degree of activity in the titanium metal and pigment industries in 1956 resulted in a record demand for titaniferous raw materials. Consumption of ilmenite increased 17 percent over 1955; rutile, 69 percent; and titanium slag, 20 percent. Most of the ilmenite and titanium slag was used in producing titanium pig-A dramatic increase in the consumption of rutile was coupled with an increase in production of titanium-sponge metal in 1956. Consumption of rutile for metal was 28,400 short tons, 189 percent greater than in 1955, and more than the total consumption of rutile for all other purposes.

Metal.—The consumption of titanium mill products, as gaged by shipments, was 5,100 short tons in 1956, an increase of 167 percent over 1955. Most of these products were used in defense applications, especially aircraft. A principal use was in the Pratt & Whitney J-57 jet engine, utilized in many different types of military planes produced in 1956. A picture was published showing the all-titanium compressor in the J-57 engine. 15 It was reported that titanium blades and other jet-engine components made of titanium withstood well stresses

experienced in flight.

Civilian applications of titanium metal received considerable attention during the year as the results of prototype testing of various equipment showed the superiority of titanium metal over standard construction materials. One article summarized the use of titanium in chemical impellers, food-processing kettles, boiler-feedwater trays, and thermowells.16

A titanium impeller operating in an autoclave in a 10-percent sulfuric acid solution at 600 p. s. i. and 400° F. showed no signs of corrosion, whereas a similar impeller made of stainless steel lasted less than 3 hours.

Titanium was tested in food-processing equipment in which severe corrosion problems existed in processing such foods as sauerkraut.

¹³ Chemical and Engineering News, More Titanium Pigments: Vol. 34, No. 48, Nov. 26, 1956, p. 5818.

14 American Metal Market, Titanium Unit of the Glidden Co. to be Enlarged: Vol. 63, No. 139, July
21, 1956, p. 1.

15 American Metal Market, Titanium Jet-Compressor Rotor: Vol. 63, No. 245, Dec. 25, 1956, p. 11.

16 Barron, L. J., Nondefense Uses of Titanium: Light Metals Age, vol. 14, Nos. 3 and 4, April 1956, pp

TABLE 3.—Consumption of titanium concentrates in the United States, 1947-51 (average) 1952-54 total, and 1955-56, by produces, in short tons

	Ilme	nite 1	Titani	um slag	Rutile		
Product	Gross weight	TiO2 content	Gross weight	TiO2 content	Gross weight	TiO ₂ content	
1947-51 (average)	682, 850	309, 174 351, 553 354, 470 353, 146	24, 236 73, 528 100, 825	16, 746 52, 511 71, 102	11, 306 18, 317 20, 170 20, 663	10, 486 17, 353 19, 033 19, 431	
1955							
Pigments (mfg. TiO ₂ ) ² Titanium metal Welding-rod coatings Alloys and carbide Ceramics	1, 188 7, 291	396, 569 (3) 689 3, 617 13	134, 362 (4) (4)	94, 108 (4) (4)	10, 337 12, 614 2, 431 452	9, 821 11, 848 2, 306 423	
Fiberglass Miscellaneous 5	431	258	591	414	1, 125 1, 803	1, 090 1, 704	
Total	741, 450	401, 146	134, 953	94, 522	28, 762	27, 192	
1956	-						
Pigments (mfg. TiO ₁ ) ² Titanium metal Welding-rod coatings Alloys and carbide Ceramics Fiberglass Miscellaneous ⁸	997 9, 294 27	458, 814 (3) 589 4, 579 17	160, 228 (4) 1, 397 (4)	113, 538 (4) 1, 016 (4) 	29, 809 13, 110 1, 195 1, 046 1, 100 2, 233	28, 407 12, 303 1, 138 982 1, 065 2, 099	
Total	865, 211	464, 009	162, 434	115, 148	48, 493	45, 994	

¹ Includes a mixed product containing rutile, leucoxene, and altered ilmenite used to make pigments and Includes a mixet product metal.

2 "Pigments" include all manufactured titanium dioxide.

Included with pigments to prevent disclosing individual company confidential data.

Included in "miscellaneous" to prevent disclosing individual company confidential data.

Includes consumption for chemicals and experimental purposes.

TABLE 4.—Distribution of titanium-pigment shipments, by industries, 1947-51 (average) and 1952-56, percent of total

Industry	1947-51 (average)	1952	1953	1954	1955	1956
Distribution by gross weight: Paints, varnishes, and lacquers. Paper. Floor coverings (linoleum and felt base). Rubber. Coated fabrics and textiles (oilcloth, shade cloth, artificial leather, etc.) Printing ink. Other.	5.9 4.3 2.7 1.8 1.0	70. 9 7. 0 5. 0 2. 8 2. 1 1. 0 11. 2	67. 1 9. 7 4. 8 3. 4 2. 0 1. 2 11. 8	64.3 10.1 4.5 3.1 2.4 1.2 14.4	65. 3 10. 1 4. 6 3. 4 2. 7 1. 3 12. 6	65. 3 10. 3 4. 2 3. 4 2. 8 1. 3 12. 7
Total	100.0	100.0	100.0	100.0	100.0	100.0
Distribution by titanium dioxide content: Paints, varnishes, and lacquers Paper Floor coverings (linoleum and felt base) Rubber Coated fabrics and textiles (ollcloth, shade cloth, artificial leather, etc.) Printing ink Other	8. 5 5. 5 3. 6	62. 9 10. 4 5. 6 3. 6 2. 9 1. 6 13. 0	58. 8 14. 1 5. 4 4. 5 2. 6 1. 6 13. 0	55. 4 14. 1 5. 2 4. 0 3. 2 1. 6 16. 5	58. 4 13. 5 5. 2 4. 4 3. 4 1. 7 13. 4	58. 3 13. 6 4. 9 4. 4 3. 6 1. 8 13. 4
Total	100.0	100.0	100.0	100.0	100.0	100.0

1207 TITANIUM

tomato juice, tea, and pickles. It was found that titanium neither corroded nor imparted flavor or coloring to the food. One piece of equipment tested was a 250-gallon-capacity, jacketed processing kettle for use in cooking tomatoes or pickles.

A stress corrosion problem in handling boiler feedwater with a high chlorine content was solved by making the feedwater heater trays of

titanium.

Titanium replaced stainless steel in a thermowell installation in hot nitric-acid service. Although the steel thermowell cost only \$95 compared with \$300 for the titanium thermowell, it was reported that titanium would be more economical because it would last at least 5 years, whereas the stainless steel was good for only 6 months.

Moreover, the down time plus labor cost to replace the steel thermo-

well was \$1,250.

Late in 1956 a company started offering as standard equipment a "canned-motor" pump made of titanium for use in pumping chemical solutions. In the model offered, the pump and motor were hermetically sealed into a single unit. The pump was offered at only 1½ times the cost of a similar one made of AISI type-316 stainless steel.¹⁷

One of the largest pieces of titanium equipment made for the chemical-processing industry was a heat exchanger for cooling a 15percent solution of sodium hypochlorite. The exchanger consisted

of a bundle of 48 tubes 16 feet long.18

A chlorine dioxide mixer lined with titanium was the first major piece of titanium equipment used by the pulp and paper industry. After 5 months of service the titanium lining was unaffected by the chlorine dioxide which severely corrodes most other metals.19

Titanium wire cloth first became available commercially in 1956. Potential uses of the cloth are in filtering assemblies, catalysts, and

prosthetic applications and as sizing screens.20

The leaves of a new high-speed-camera shutter were made of tita-The Fairchild Rapidyne shutter for aerial cameras was designed to operate at speeds up to 1/5,000 second, and a light, rigid, corrosion-resistant metal was needed for the leaves. Steel leaves were unequal to the high impact and velocity of the shutter and aluminum leaves fatigued rapidly. Titanium leaves 0.0022 inch thick met the necessary specifications, and the titanium shutter was put into production.21

A surgeon reported that titanium can be used to make an excellent artificial hip to replace one that has been fractured or damaged by Very little pain has been experienced by patients who have been furnished with titanium hips, whereas extensive pain has been felt by some patients who have had hips fashioned of stainless steel

or other stainless metals.22

Titanium was used for the metal parts of the General Electric microminiature 6BY4 tube. This use of titanium proved advantageous

¹⁷ Rem-Cru Titanium Review, Chempump Corp. Anounces Standard Line of Titanium Pumps: Vol.

¹⁷ Rem-Cru Titanium Review, Chempump Corp. Anounces Standard Line of Titanium Pumps: Vol. 4, No. 4, October 1956, p. 3.

18 Rem-Cru Titanium Review, Wyandotte Chemical Heat Exchanger Demonstrates Advantage of Titanium Equipment: Vol. 4, No. 4, October 1956, p. 1.

19 Chemical and Engineering News, Titanium Takes It: Vol. 34, No. 37, Sept. 10, 1956, p. 4438.

20 Rem-Cru Titanium Review, Cambridge Wire Cloth Company in Production on Titanium Screening: Vol. 4, No. 4, October 1956, p. 3.

21 Light Metal Age, Titanium Shutter: Vol. 14, Nos. 5 and 6, June 1956, p. 32.

22 American Metal Market, Titanium Used in Surgical Work: Vol. 63, No. 109, June 8, 1956, p. 6.

because the coefficient of expansion of titanium closely matches that of the ceramic employed and because the titanium when heated absorbs the residual oxygen and nitrogen in the tube.²³

### **STOCKS**

Stocks of ilmenite declined in 1956, but the increase in stocks of titanium slag offset the loss, since slag serves as a substitute for ilmenite in producing titanium pigments. The weight of contained titanium dioxide in ilmenite stocks dropped 26,000 short tons from 1955, whereas that in titanium slag rose 33,800 tons. A large part of the drop in ilmenite inventories was due to shipments of approximately 50,000 tons of ilmenite from Idaho in 1956 that had previously been held owing to lack of a market. Rutile stocks increased 71 percent as the titanium-metal producers built up inventories to meet greater anticipated needs. At the 1956 rate of consumption year-end stocks of ilmenite and titanium slag (based on titanium dioxide content) represented an 8-month supply, and rutile stocks represented a 6½-month supply.

Year-end stocks of titanium sponge metal held by sponge producers and melters totaled 3,000 short tons compared with 900 tons at the beginning of the year. An additional 9,300 tons was held in the revolving-fund stockpile. Industry stocks were sufficient for a 3-

month supply at 1956 consumption rates.

Stocks of titanium scrap held by melters increased from 1,400 short tons at the beginning of the year to 1,700 at the end. Indications were that fabricators and scrap dealers held substantial tonnages of titanium scrap, but the melters represented the only market for this material.

TABLE 5.—Stocks of titanium concentrates in the United States at end of year, 1955-56, in short tons

	Ilmenite		Titaniı	ım slag	Rutile	
Stocks	Gross weight	TiO; content	Gross weight	TiO2 content	Gross weight	TiO2 content
Mine	114, 985 407 542, 103 657, 495 64, 553 134 534, 940 599, 627	52, 665 242 283, 872 336, 779 29, 736 79 280, 917 310, 732	64, 453 64, 453 112, 047 112, 047	45, 541 45, 541 79, 367 79, 367	93 527 15, 044 15, 664 25 1, 673 25, 048 26, 746	87 502 14, 343 14, 932 24 1, 598 23, 875 25, 497

¹ Revised figures reflect inventory revisions reported by industry.

### **PRICES**

Concentrates.—In the latter half of 1956 rutile became available more readily, as reflected by the gradual downward trend in its price. Prices of ilmenite, however, began to rise during the year. Nominal

²³ Rem-Cru Titanium Review, Titanium in Electronics, the General Electric Microminiature 6BY4 Tube: Vol. 4, No. 1, January 1956, p. 3.

prices for titanium concentrates quoted in E&MJ Metal and Mineral Markets were as follows: Ilmenite (59.5 percent TiO2, f. o. b. Atlantic seaboard), \$20 per gross ton (2,240 pounds) to January 12, 1956, \$26 to \$29 per ton to February 23, 1956, \$26.25 per ton to October 25, 1956, and \$26.25 to \$30 per ton for the remainder of the year; rutile (94 percent TiO₂, f. o. b. Atlantic seaboard), 10 to 15 cents per pound to September 27, 1956, 10 to 14½ cents per pound to October 25, 1956, 10 to 13½ cents per pound to December 6, 1956, and 09½

to 11½ cents per pound to the end of the year.

Metal.—Owing to economies resulting from volume production and technological improvements, the titanium-metal industry was able to reduce the price of titanium-sponge metal and mill products during 1956. The price of sponge declined in three steps from \$3.45 per pound at the beginning of the year to \$2.75 per pound at the end of the year. Prices per pound for titanium sponge were quoted by the metal producers in 1956 as follows:

	Jan. 1, 1956,	May 15, 1956,	July 2, 1956,	Dec. 3, 1956,
	to May 15,	to July 2,	to Dec. 3,	to Dec. 31,
	1956	1956	1956	1956
Grade A-11	\$3. 45	\$3. 25	\$3.00	\$2. 75
Grade A-22	3. 15	2. 95	2.70	2. 50

Maximum iron content of 0.20 percent, with a Brinell hardness of less than 125.
 Maximum iron content of 0.45 percent, with a Brinell hardness of less than 170.

Base prices of titanium-mill products per pound, f. o. b. mill, commercially pure grades, in lots of 10,000 pounds and over, were quoted by the producers as follows:

	Jan. 1, 1956, to	May 15, 1956, to	Dec. 3, 1956, to
	May 15, 1956	Dec. 3, 1956	Dec. 31, 1956
Sheet	\$13. 10 to \$13. 60	\$12.60 to \$13.10	\$11. 60 to \$12. 10
	13. 10 to 13. 60	12.10 to 12.60	11. 00 to 11. 50
	10. 50 to 11. 00	10.00 to 10.50	9. 25 to 9. 75
	9. 50 to 10. 00	9.00 to 9.50	8. 50 to 9. 00
	7. 90 to 8. 15	7.55 to 7.80	6. 85 to 7. 10
	7. 90 to 8. 15	7.25 to 7.50	7. 10 to 7. 35

Manufactured Titanium Dioixde.—Prices for rutile and anatase grades of manufactured titanium dioxide advanced \$0.02 per pound and prices for calcium-rutile pigments % cent per pound on January 3, 1956. The following prices quoted in the Oil, Paint and Drug Reporter prevailed throughout the remainder of the year:

	Per pound
Anatase, chalk-resistant, regular and ceramic, carlots, delivered	\$0. 24½
Less than carlots, delivered	. 25½
Rutile, nonchalking, bags, carlots, delivered East	. 26½
Less than carlots, delivered East	$27\frac{1}{2}$
Titanium pigment, calcium-rutile base, bags, carlots, delivered	. 09½
Less than carlots, delivered	. 09¾

Ferrotitanium.—The price of low-carbon ferrotitanium quoted in E&MJ Metal and Mineral Markets remained unchanged in 1956. Prices per pound of contained titanium, ton or more lots, lump (plus %-inch), f. o. b. destination, northeastern United States, were as follows:

Ti, 40 percent; C,	0.10 percent	maximum	\$1.35
Ti, 25 percent; C,	0.10 percent	maximum	1. 50

The prices of high-carbon and medium-carbon ferrotitanium were advanced on January 1, 1956, and October 1, 1956. Contract prices per net ton given by one producer, f. o. b. Niagara Falls, N. Y., freight allowed to destinations east of the Mississippi River and north of Baltimore, Md., and St. Louis, Mo., were as follows:

Ferrotitanium	Jan. 1, 1956, to Oct. 1, 1956	Oct. 1, 1956, to Dec. 31, 1956
High-carbon (Ti, 15 to 18 percent; C, 6 to 8 percent)	\$200	\$215
Medium-carbon (Ti, 17 to 21 percent; C, 2 to 4.5 percent)	225	240

# FOREIGN TRADE 24

Imports.—The quantity of ilmenite imported for consumption increased only slightly over 1955; however, imports from Canada, mainly slag, rose 18 percent because the Canadian company that produces the slag began to operate at full capacity after having solved a number of technological problems. Malaya became an important source of ilmenite for the first time in almost 10 years as increased efforts were made to separate the ilmenite in the wastes from the tin dredges. A small quantity of ilmenite was transhipped from the United Kingdom, and about 200 tons was imported from Australia to be used in making ferrotitanium.

Imports of rutile concentrates, nearly all from Australia, increased 150 percent over 1955. As no rutile is produced commercially in Mexico, the 50 tons of rutile imported from Mexico was probably brought into the United States for experimental purposes.

Crude titanium metal was imported for consumption from Canada, Japan, and the United Kingdom. Imports and their value, by country of origin, were as follows:

Country:	Short tons	Value
Canada	17	\$72, 287
United Kingdom	56	138, 791
Japan	1,975	9, 298, 230
Total	2, 048	9, 509, 308

An additional 777 short tons of sponge metal valued at \$4,299,694 was reported under general imports. The bulk of this metal was imported under a barter agreement with Japan. All of the metal from Japan was commercially pure, whereas most of the metal from Canada and the United Kingdom was nonductile.

Exports.—Exports of titanium pigments reached an alltime high in 1956, increasing 19 percent over 1955 to 64,800 short tons. Canada was again the chief customer, with receipts of 28,100 tons of pigment.

²⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 6.—Titanium concentrates 1 imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in short tons

Bureau of the Censusl

Country of origin	1947-51 (average)	1952	1953	1954	1955	1956
ILMENITE	1					
North America: CanadaSouth America: Brazil	² 3, 463 1, 743	³ 38, 451	* 139, 585	³ 107, 521	³ 166, 307	³ 196, 660
Europe: Norway United Kingdom	26, 317					40
Total	26, 317					40
Asia: India Malaya	221, 906 678	145, 562	147, 005	167, 484	187, 044	133, 520 28, 864
Total	222, 584	145, 562	147, 005	167, 484	187, 044	162, 384
Africa: EgyptOceania: Australia	144 374		54			197
Grand totalValue	254, 625 \$1, 710, 184	184, 013 \$2, 478, 077	286, 644 \$5, 463, 526	275, 005 4\$4,993,402	353, 351 \$7, 031, 060	359, 281 4 \$9,197,835
RUTILE			-			
North America: Mexico Europe: Sweden						50 11
Asia: IndiaOceania: Australia	6, 753	19, 394	16,098	14, 965	19, 526	48, 845
Total as reported.	6,776	19, 394	16, 098	14, 965	19, 526	48, 906
Australia: In "zirconium ore" In "ilmenite"	488 1,012	156	84	95		
Grand totalValue of "as reported"	8, 276 \$375, 677	19, 550 \$1, 728, 803	16, 182 \$1, 791, 494	15,060 \$1,323,183	19, 526 \$1, 984, 431	48, 906 \$7, 147, 827

• Rutile content of zirconium ore as reported to the Bureau of Mines by importers.
• Rutile content of ilmenite ore as reported to the Bureau of Mines by importers.

Other countries that received 1,000 tons or more were as follows: Australia, 1,400; Belgium-Luxembourg, 3,100; Brazil, 1,200; Colombia, 1,300; Cuba, 1,700; France, 4,600; Italy, 1,600; Japan, 1,000; Mexico, 3,700; Netherlands, 3,800; Philippines, 1,600; Union of South Africa, 1,300; Venezuela, 1,700; and West Germany, 1,200.

Of the 1,800 short tons of titanium concentrates shipped, 1,500 tons went to Canada and the remainder to Mexico, Argentina, Sweden,

Italy, Turkey, and Hong Kong.

Over 1 ton of sponge metal and scrap was shipped to Canada and The United Kingdom and Switzerland 12 tons to West Germany. also received small quantities. Canada received 550 tons of the 559 tons of titanium products shipped, chiefly in the form of ingots sent by Mallory-Sharon Titanium Corp. to a company that it partly owned in Canada—Atlas Titanium, Ltd. The United Kingdom received 7 tons of mill shapes, and the remainder went to Netherlands, France, West Germany, and Japan.

Classified as "ore" by the Bureau of the Census.
 Includes titanium slag.
 Chiefly all titanium slag averaging about 70 percent TiO₂.
 Owing to changes in tabulating procedures by the Bureau of the Census data known to be not comparable

Most of the exports of ferrotitanium went to Canada (240 tons) and Italy (100 tons). Colombia, Chile, and Sweden also received small shipments.

TABLE 7.—Exports of titanium products from the United States, 1947-51 (average) and 1952-56, by classes

[Bureau	ωf	tha	Conquel
LDurbau	O1	OTTO	Comerce

Year	centrates le					ry forms, . e. c.	Ferro	oalloys		dde and ments
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1947-51 (average) 1952 1953 1954 1955 1956	1, 094 870 1, 368 663 1, 143 1, 838	109, 878 85, 896 193, 752	² 762 2		31 171 4 35	(1) \$38, 979 798, 077 3, 587, 401 41, 211, 311 48, 304, 835	185 172 245	\$70, 968 88, 664 48, 722 39, 885 65, 091 148, 459	35, 636 39, 780 63, 802 54, 353	\$8, 505, 15; 10, 691, 696 11, 715, 796 23, 281, 030 18, 332, 996 25, 136, 981

Not separately classified.
 Believed to include material other then commercially pure titanium metal.
 Beginning January 1, 1955, classified as sponge and scrap.
 Beginning January 1, 1955, classified as intermediate mill shapes and mill products n. e. c.

### **TECHNOLOGY**

During 1956 the Federal Bureau of Mines released several publications detailing results of the Bureau's research on titanium.

Arc-Welding Titanium presents a résumé of techniques developed for that process.²⁵ Experiments began in 1948, when it was impossible to make a good weld in titanium because atmospheric contamination caused the welded zone to become very brittle. Welding titanium under a covering of inert gas proved to be the best method, and chambers that could be filled with inert gas were designed and built to enclose the welding operation.

A report by R. W. Huber outlined the methods by which prototype mortar baseplates were fabricated for Army Ordnance.²⁶ Information was given on forming, forging, machining, welding, and assembly techniques used in making the mortar baseplate. Results also were given of tests of the baseplate in actual use.

Another report presented the results of experiments in which titanium, in contact with aluminum, copper, or stainless steel, was subjected to common organic acids.27 It was found that titanium resisted corrosion in most organic acids studied, whether alone or in contact with a dissimilar metal.

One publication gave the heat-of-formation and free-energy-offormation values of four common titanates.28

Another report reported studies of corrosion of titanium in various inorganic solutions in contact with magnesium, aluminum, zinc, steel,

Barrett, J. C., Huber, R. W., and Lane, I. R., Jr., Arc-Welding Titanium: Bureau of Mines Rept. of Investigations 5178, 1956, 50 pp.
 Huber, R. W., Fabrication of Titanium Prototypes of 81-mm. Mortar Baseplate: Bureau of Mines Rept. of Investigations 5179, 1956, 32 pp.
 Schlain, David, Kenahan, Charles B., and Steele, Doris V., Galvanic Corrosion Properties of Titanium in Organic Acids: Bureau of Mines Rept. of Investigations 5189, 1956, 17 pp.
 Todd, S. S., and Kelley, K. K., Heat and Free-Energy Data for Tricalcium Dititanate, Sphene, Lithium Metatitanate, and Zinc-Titanium Spinel: Bureau of Mines Rept. of Investigations 5193, 1956, 18 pp.

1213 TITANIUM

tin, lead, copper, monel, nickel, and stainless steel.29 It was found that contact with titanium caused some metals to corrode by galvanic action. Contact with aluminum in certain solutions caused titanium to corrode, whereas contact with stainless steel in some solutions decreased the corrosion rate of titanium.

One report related how electrodes could be made from sponge metal, machine chips, and massive scrap.30 Sponge metal was compacted into briquets, machine chips were crushed, then compacted, and pieces of massive scrap were welded to form consumable elec-

trodes for the arc-melting furnace.

A summary was published of cost data accumulated in 1953 and 1954 during 15 months of sustained operation of the Bureau of Mines titanium plant at Boulder City, Nev. 31 The plant had a daily capacity of about 1,350 pounds of titanium sponge. The direct operating cost of producing I pound of sponge metal during a typical month was \$3.20.

One report told how argon was substituted for helium in Bureau of Mines pilot-plant tests at Boulder City, Nev. 32 Reduction runs using argon were slightly more troublesome than runs using helium owing to the formation of condensable chloride complexes that tended to plug feed and vent lines and to entrap deposits of lower titanium chlorides on the reactor-pot lids. These objectionable side reactions could be minimized by modifying the reactor and using different operating techniques.

M. J. Peterson outlined a spectrochemical procedure for detecting iron, manganese, and magnesium in titanium metal and a method for determining alloying constituents in several types of titanium alloys.33

A paper on production of titanium castings described the construction and operation of four casting furnaces, all of which used consumable-electrode arc heating and water-cooled copper crucibles.34 Tilt pouring was found to be more satisfactory than bottom pouring for transferring the molten titanium from the crucible to the mold. In some experiments castings were produced that weighed more than 40 pounds.

Processes for producing titanium metal electrolytically were summarized in an article that discussed electrolysis of titanium oxides and halides and soluble-anode procedures. The authors concluded that the electrolysis of the halides showed the greatest commercial

potential.35

At technical meetings Bureau of Mines personnel presented several papers that described the Bureau's electrorefining studies.36 Most of

²⁸ Schlain, David, Kenahan, C. B., and Steele, Dorfs V., Galvanic Corrosion Properties of Titanium and Zirconium in Various Inorganic Solutions: Bureau of Mines Rept. of Investigations 5201, 1956, 60 pp.
29 Beall, R. A., Wood, F. W., and P. C. Magnusson, Fabricating Consumable Electrodes of Zirconium, Titanium, and Similar Metals for Are Melting: Bureau of Mines Rept. of Investigations 5247, 1956, 25 pp.
20 Baroch, C. T., and Kaczmarek, T. B., Titanium Plant at Boulder City, Nev.; Operating Costs: Bureau of Mines Rept. of Investigations 5248, 1956, 21 pp.
21 Baroch, C. T., Kaczmarek, T. B., and Lenc, J. F., Helium and Argon as Inert Atmospheres in Producing Titanium: Bureau of Mines Rept. of Investigations 5253, 1956, 17 pp.
28 Peterson, M. J., Spectrochemical Analysis of Titanium and Titanium Alloys by a Porous Cup-Spark Method: Bureau of Mines Rept. of Investigations 5256, 1956, 15 pp.
29 Beall, R. A., Wood, F. W., Borg, J. O., and Gilbert, H. L., Production of Titanium Castings: Bureau of Mines Rept. of Investigations 5265, 1956, 42 pp.
20 Siber, M. E., and Steinberg, M. A., The Current Status of Research and Development on Electrolytic Titanium: Jour. Metals, vol. 8, No. 9, September 1956, pp. 1162-1168.
20 Baker, D. H., Jr., and Nettle, J. R., Recovery of High-Purity Titanium From Scrap and Offgrade Sponge: Pres. at AIME ann. meeting, New York, N. Y., Feb. 1, 1956.
21 Baker, D. H., Jr., Nettle, J. R., and Hill, T. E., Electrorefining of Titanium in a Fused Salt Medium: Pres. at Electrochem. Soc. ann. meeting, San Francisco, Calif., May 1, 1956.

the cells used in this work had one cathode and an anode basket. The scrap was placed in the anode basket, and the refined titanium was deposited on the cathode made of steel rods. The fused-salt electrolyte comprised a mixture of sodium chloride and divalent titanium. In one 10-day test run, offgrade sponge with a hardness of 200 Brinell was refined into a product 75 percent of which was lower than 100 Brinell. Investigation on the electrorefining of titanium binary alloys revealed that the following alloy constituents would not be transferred: Oxygen, nitrogen, iron, molybdenum, tin,

chromium, aluminum, and zirconium.

A number of United States patents were issued dealing with electrolytic processes. One patent described the electrolysis of titanium tetrachloride in a fused salt bath consisting of at least 1 chloride salt of the alkali-metal chlorides and 1 of the alkaline-earthmetal chlorides.37 In another process titanium tetrachloride was introduced into the fused salt electrolyte in the proximity of a solubilization cathode, and the resultant titanium dichloride and trichloride were transferred to a deposition cathode where titanium metal was deposited.38 Another patent covered a method for refining titanium metal in which an impure titanium metal was used as a soluble anode and the refined titanium metal was deposited at the The molten electrolyte consisted of one compound selected from the group of halide salts of alkali metals, alkaline-earth metals and magnesium, and one soluble titanium compound selected from the titanium dichloride and titanium trichloride group.39

It was revealed that Kennecott Copper Corp. operated a 200-poundper-day pilot plant at Battelle Memorial Institute in 1953-54, using the thermal dissociation of titanium tetraiodide to produce a highpurity titanium metal and that plans had been drafted for a 1.000-ton-

per-year plant.40

One article stated that induction stirring applied to the consumable arc melting of titanium resulted in ingots with a minimum of surface porosity, better homogeneity, and finer grain structure. A solenoidtype magnetic field was used to impart rotation to the pool of molten

metal and to control the electric spark.41

Melting and the production of mill products, as practiced by the Imperial Chemical Industries, Ltd., of the United Kingdom, were described in an article that appeared in 1956. Granular titanium was pelleted, and the pellets were fed into an arc furnace. company used a carbon electrode instead of the consumable electrode of titanium used in the United States. 42

Expendable molds for casting titanium were made from powdered graphite and a binder. The resultant shapes had negligible surface

contamination and no internal porosity.43

⁷ Nomore, W. M., and Scobie, A. G. (The Shawinigan Water and Power Co., Ltd.), Electrolysis of Titanium Tetrachloride to Produce Titanium: U. S. Patent 2,755,240, July 17, 1956.

3 Alpert, Marshall B., and Powell, Robert Lee (National Lead Co.), Electrolytic Production of Titanium Metal: U. S. Patent 2,741,588, Apr. 10, 1956.

3 Schultz, F. J., and Buck, Thomas M. (National Lead Co.), Electrolytic Method for Refining Titanium Metal: U. S. Patent 2,734,856, Feb. 14, 1956.

4 Chemical Week, The Missing Link: Key to the Next Commercial Titanium Process? Vol. 79, No. 7, Aug. 18, 1956, pp. 58-59.

4 American Metal Market, Titanium Quality Is Improved by Magnetic Stirring: Vol. 63, No. 82, May 1, 1956, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056, pp. 1056,

 ^{1956,} p.1.
 Engineering, Melting and Manipulating Titanium: Vol. 181, No. 4702, Apr. 20, 1956, pp. 246–247.
 Field, A. L., Jr., Expendable Molds for Titanium Castings: Metal Progress, vol. 70, No. 4, October 1956, pp. 92–96.

1215 TITANIUM

Physical property data on titanium and its alloys, gathered by a

literature survey, were presented.44

Many fabricated-titanium parts that could not meet industry specifications were reclaimed by vacuum annealing. The annealing in a vacuum restored the ductility of the parts, reduced the hydrogen level of the metal, and eliminated the possibility of atmospheric contamination.45

A method was developed for chrome plating titanium metal by removing the oxide film that coats the titanium, replacing it with titanium fluoride, then placing the metal in the plating bath. In the plating bath the fluoride film was dissolved and the chromium bonded onto the bare metal. Superior adhesion between the titanium and chromium was reported for metal plated by this method.46

The Wright Air Development Center, Air Materiel Command, announced that it had accomplished cold extrusion of titanium, thus eliminating the possibility of atmospheric contamination and increas-

ing the strength of the titanium 25 to 60 percent.47

The technique of chemical milling rather than machine milling was applied experimentally to titanium. The titanium was degreased and cleaned, masked with a rubber coating material, then etched in hydrofluoric acid. Titanium was chemically milled to depths of five-eighths inch in some tests. 48

# WORLD REVIEW

The expanded demand for raw materials used in producing titanium metal and pigments was met by a substantial increase in world production of titanium. World ilmenite production rose 27 percent and rutile production 60 percent over the record established in 1955. The United States was again the leading producer of ilmenite, supplying 38 percent of the total, and Australia was the leading rutile producer, with 89 percent of the total. Malaya became an important source of ilmenite, doubling its 1955 exports. Australia and the Union of South Africa promised to become significant producers of Plans were under way in both countries to develop large sand deposits of ilmenite.

The United States was the leading manufacturer of titanium-sponge metal, with an output of 14,600 short tons. Japan ranked second, with production of 2,800 tons, and the United Kingdom third, with an estimated output of 1,700 tons. Relatively small quantities of

metal were produced in France and Germany.

Australia.—Titanium mining in Australia reached a peak in 1956. Several new companies were formed, and established producers expanded existing plants or built plants in new areas. The entire output of 107,900 tons of rutile came from sand deposits in Queensland This output represented a 62-percent increase and New South Wales.

⁴⁴ Deem, H. W., and Lucks, C. F., Survey of Physical-Property Data for Titanium and Titanium Alloys: Battelle Memorial Inst., TML Rept. 39, 1956, 34 pp.
46 Williams, D. N., Jaffee, R. I., and Bentley, C. A., Titanium-Alloy Reclamation by Vacuum Annealing: Metal Progress, vol. 69, No. 6, June 1956, pp. 57-59.
46 Chemical and Engineering News, Stick Tight to Titanium: Vol. 34, No. 52, Dec. 24, 1956, p. 6330.
47 American Metal Market, Cold Extrusion of Titanium Effected at Air Force Center: Vol. 63, No. 58, Mar. 27, 1956, pp. 1, 16.
48 Light Metals, Chemical Milling of Titanium and Steel: Vol. 19, No. 222, September 1956, p. 297.

TABLE 8.—World production of titanium concentrates (ilmenite and rutile), by countries, 1947-51 (average) and 1952-56, in short tons 1

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1947-51 (average)	1952	1953	1954	1955	1956
ILMENITE						
Australia (sales) 2	3 725 1, 885	52		526	600	4, 787
Brazil Canada 4 Egypt	622	42, 192 2, 202	146, 614 2, 787	124, 162 2, 900	164, 185 2, 694	223, 018 551
FinlandGambia (exports)			3, 465	55, 765 1, 216	93, 668	113, 538
Japan 5	276, 707	251, 883 6 660	241, 091 3, 199	269, 375 2, 638	280, 867 5, 097	375, 201 9, 634
Malaya (exports) Norway Portugal	103, 452	24, 302 130, 370 476	29, 758 141, 220 746	50, 114 164, 448	60, 340 173, 981	136, 837 209, 990
Spain	6, 174 451	5, 095 1, 410	6, 358 1, 582	563 13, 779 1, 397	866 30, 424 7, 388	588 21, 716
Thailand. Union of South Africa			10		1,917	6,608 386 61,540
United States 7	426, 349	528, 588	513, 696	547, 711	583, 044	684, 956
World total ilmenite (estimate)	849, 800	987, 200	1, 090, 500	1, 234, 600	1, 405, 100	1, 789, 400
Australia	21, 235	42, 576	42, 604	50, 018	66, 767	107, 886
Brazil (exports) French Cameroon French Equatorial Africa	4111	19 324	58		146 110	174 168
IndiaNorway	82 25	164 47	117	117	166 10	606 26
Senegal United States	9 3 7, 535	29 7, 125	6, 825	7, 411	8, 513	650 11, 997
World total rutile (estimate)	29, 300	50, 300	49,600	57, 500	75, 700	121, 500

¹ This table incorporates a number of revisions of data published in previous Titanium chapters. Data do not add to totals shown owing to rounding where estimated figures are included in the detail.

2 Owing to high chromium content in the ore, sales are shown.

3 Average for 1950-51 only; previous years not availabel on sales basis.

4 Beginning 1950, includes Ti slag containing approximately 70 percent TiO₂.

5 Pervesors titung slag

5 Represents titanium slag.
6 Estimate.

TABLE 9.—Exports of rutile concentrate from Australia, 1952-56, by countries of destination, in short tons 1

[Compiled by Cora A. Barry]

Country	1952	1953	1954	1955	1956
Belgium France Germany, West Italy Japan Netherlands Sweden United Kingdom United States Other countries	1,001 104 1,633	521 2, 106 2, 144 1, 981 450 3, 504 2, 824 9, 701 15, 026 2, 148	1, 519 3, 852 4, 397 2, 289 1, 370 5, 190 1, 742 11, 078 16, 148 2, 162	2, 700 3, 485 4, 573 2, 154 2, 118 8, 687 3, 093 13, 702 23, 798 2, 539	4, 797 4, 599 4, 042 3, 433 2, 335 9, 968 3, 591 13, 993 51, 754 2, 161
Total	42, 172	40, 405	49, 747	66, 849	100, 673

¹ Compiled from Customs Returns of Australia.

⁷ Includes a mixed product containing ilmenite, leucoxene, and rutile for 1949-56. 
8 Average for 1950-51.

A verage for 1 year; as 1951 was the first year of commercial production.

over the previous record established in 1955. The following companies produced rutile in 1956:

parties produced russes	Concentrating plants	Mining areas
Associated Minerals Consolidated, Ltd.		Cudgen, N. S. W.; South Strad- broke Island, Q.; Broad- beach, Q.
Bellingen Titanium Pty., Ltd.	Bellingen, N. S. W	Bellingen, N. S. W.
Cudgen R. Z.	Kingscliff, N. S. W.	Cudgen, N. S. W.; Byron Bay, N. S. W.
Laurieton Rutile Co	Diamond Head, N. S. W.	Diamond Head, N. S. W.
Lennox Head Co Metal Recoveries Pty., Ltd.	Ballina, N. S. W Moobal, N. S. W	Lennox Head, N. S. W. Moobal, N. S. W.
Minerals Deposits Pty., Ltd.	Southport, Q Port Macquarie, N. S. W.	Broadbeach, Q.; Tugan, Q.; Burleigh, Q.; Port Macquarie, N. S. W.
National Minerals, Ltd	Newcastle, N. S. W. Woollongong, N. S. W.	Swansea, N. S. W.
New South Wales Rutile Mining Co. Pty, Ltd.	Cudgen, N. S. W	Cudgen, N. S. W.; Fingal, N. S. W.
Rusan Minerals Pty, Ltd_	Woodburn, N.S. W.	Woodburn, N. S. W.
Rutile Sands Pty., Ltd.	Currumbin, $Q_{}$	Currumbin, Q.; Tugan, Q. Laurieton, N. S. W.
Rye Park Scheelite, N. L.	Laurieton, N. S. W.	Laurieton, N. S. W.
Titanium Alloy Manufacturing Co.	Cudgen, N. S. W	Cudgen, N. S. W.
Titanium & Zirconium	Dunwich, Q	North Stradbroke Island, Q.
Industries, Ltd. Titanium Corporation of	Tewantin, Q	Tewantin, Q.
Australia Pty., Ltd.		T I O I N C W
Titanium Minerals Pty	Woodburn, N. S. W.	Jerusalem Creek, N. S. W. Byron Bay, N. S. W.; Ballina,
Zircon Rutile Ltd	Bayron Bay, N. S. W.	N. S. W.; Port Macquarie,
	Port Macquarie,	N. S. W.; Boggingar,
	N. S. W.	N. S. W.
	Boggingar, N. S. W.	

Other potential producers of rutile publicized their mining activities. Cresent Rutile, N. L., planned to erect three separation plants at Wide Bay, Queensland; Hat Head, New South Wales; and Kilcare, New South Wales. Tangalooma Minerals Pty., Ltd., was planning to mine deposits on Moreton Island, Queensland. 50 Australasian Oil Exploration, Ltd., expected to have a separation plant at Broadbeach, Queensland, in operation in January 1957.51 Silver Valley Uranium, N. L., let contracts for the erection of a rutile treatment plant at Evans Head, New South Wales, to be completed by the end of 1956.52

Although rutile production was reported by a large number of companies in 1956, approximately 83 percent of the total came from 6 companies. The principal producers, in order of importance, were: Titanium Alloy Manufacturing Co. Pty., Ltd., and Mineral Deposits Pty., Ltd. subsidiaries of National Lead Co.; Zircon Rutile Ltd.; Cudgen Rutile Zirconium; New South Wales Rutile Mining Co. Pty., Ltd.; and Titanium & Zirconium Industries Pty., Ltd.

Sept. 20, 1956, p. 25.

Metal Bulletin, New Australian Company: No. 4144, Nov. 13, 1956, p. 23.
 Industrial and Mining Standard, Tangalooma Minerals Begins Stockpiling: Vol. 111, No. 2825, Dec. 20, 1956, p. 24.

Industrial and Mining Standard, Mary Kathleen Uranium Prepares to Stockpile Ore: Vol. 111, No. 2821, Oct. 18, 1956, p. 24.

Industrial and Mining Standard, Silver Valley Rutile Production in December: Vol. 111, No. 2819,

Exports of rutile from Australia were seriously affected in the first quarter of the year by a dock strike which disrupted shipping. Shipments in April and May were increased to dispose of the inventories

that had accumulated during the strike.

In Western Australia two companies began producing ilmenite on a limited scale late in 1956. Perron Bros. Pty., Ltd., worked a beachdune deposit near Bunbury on the shores of Koombana Bay, and Western Titanium, N. L., produced ilmenite from an inland dune deposit at Capel, 22 miles southeast of Banbury. It was estimated that by the middle of 1957 the combined installed capacity of the 2 plants would be about 135,000 short tons of ilmenite per year.

Canada.—The Quebec Iron & Titanium Corp., at Sorel, Quebec, continued to increase its output of titanium slag reaching 218,600 short tons in 1956, a 34-percent increase over the record established Four smelting furnaces at Sorel were in operation during the first 2 months of the year, and all five company furnaces were in operation the remainder of the year. Plans were underway to construct additional furnaces if the demand for slag continued to increase. By May the new beneficiation and rotary kiln plant was completed, and new techniques were inaugurated for upgrading the feed to the furnaces. The ore, which contained slightly less than 35 percent titanium dioxide, was crushed and separated into 2 sizes, minus-4-inch to plus-14-mesh and minus-14-mesh. The coarse fraction was upgraded hydraulically in Dutch State Mines cyclones, using magnetite as the suspension medium; Humphrey spirals were used to concentrate the fine fraction. The concentrates, which assayed about 37 percent titanium dioxide and 42 percent iron, were treated in the kiln to drive off sulfur. Then the ore was smelted to make a slag containing about 70.5 percent titanium dioxide and a low phosphorus iron. The molten iron was further desulfurized in the ladle before it was poured into pigs.⁵³

TABLE 10 .- Quebec Iron & Titanium Corp. smelting operations, 1951-56, in short tons

Item	1951	1952	1953	1954	1955	1956
Ore crushed Ore smelted Titanium slag produced Titanium slag shipped Estimated TiO2 content of slag produced. Value of slag produced Desulfurized iron produced Desulfurized iron shipped	379, 931 (1) 19, 330 8, 041 13, 531 \$738, 577 14, 422 5, 701	265, 719 (1) 42, 141 38, 908 29, 499 \$1, 238, 103 32, 422 33, 630	158, 218 (1) 141, 883 145, 402 99, 318 \$4, 206, 496 106, 875 94, 587	308, 974 268, 139 122, 960 119, 292 88, 408 \$3, 841, 270 90, 562 100, 509	413, 149 348, 578 162, 784 157, 378 117, 042 \$5, 192, 810 121, 312 118, 104	636, 653 470, 745 218, 575 213, 742 150, 640 \$6, 688, 416 159, 874 157, 048

¹ Figures not available.

The Baie St. Paul Titanic Iron Co., Ltd., produced 4,400 short tons of ilmenite from its property in the St. Urbain area, Charlevoix County, Quebec. In 1955 output from this property was 1,400 short tons of ilmenite.

⁵³ Janes, T. H., Titanium in Canada, 1956 (Preliminary): Canadian Dept. of Mines and Tech. Surveys, 8 pp. Janes, T. H., A Survey of Developments in the Titanium Industry During 1956: Canadian Dept. of Mines and Tech. Surveys, Mineral Resources Inf. Cir. 26, August 1957, 40 pp.

It was announced in April 1956 that construction of Canada's first titanium-pigment plant at Varennes had begun.⁵⁴ Canadian Titanium Pigments, Ltd., a subsidiary of the National Lead Co., planned to complete the plant in the third quarter of 1957. The plant will have an annual capacity of 18,000 tons of titanium dioxide and will cost about \$15 million.

Mallory-Sharon Titanium Corp. of Ohio and Atlas Steels, Ltd. formed a joint venture early in the year to produce titanium mill The new company, called Atlas products at Welland, Ontario. Titanium, Ltd., will use ingots produced by Mallory-Sharon Titanium Corp. to make bar, wire, sheet, strip, and forged forms for the Can-

adian market.55

Ceylon.—In 1956 the Government of Ceylon rejected all tenders by foreign firms to mine beach-sand deposits containing ilmenite and rutile at Pulmoddai. Late in the year it was announced that the Government would set up a plant capable of processing 100,000 tons of sand per year upon completion of a road to Pulmoddai.⁵⁶

Finland.—Details of operations at the titaniferous iron-ore mine at Otanmäki were published during 1956.57 The mine is near the geographical center of Finland and was discovered in 1938. In 1950 the Government formed the company Otanmäki Oy and in 1951 began constructing the mill and housing facilities. Mining began in September 1953, and full-scale production was realized in the second half of 1954. In 1956, 113,500 short tons of ilmenite concentrate was produced from this deposit.

The ore occurs in steeply dipping dikes, the largest of which are about 1,000 feet long and 10 to 70 feet wide. The zone of mineralization extends to a depth of about 1,800 feet. The ore is mined underground by underhand stoping without filling, crushed to minus-

8-inch in a jaw crusher, then hauled to the surface.

The minerals ilmenite and magnetite comprise 28 and 35 percent, respectively, of the ore and appear as independent grains, thus simplifying concentration. In the separation plant the ore is crushed further, and the magnetite is separated from the ilmenite and gangue by magnetic methods. The ilmenite is concentrated in flotation cells. The final ilmenite concentrate contains 44.28 percent titanium dioxide and represents a recovery of 52 percent of the titanium dioxide contained in the original ore.

France.—The titanium sponge-metal plant of Le Titanium français began operations in a converted aluminum plant at La Praz (Savoie) in 1956 and reportedly achieved a productive capacity of about 140 short tons per year. Another small-scale sponge-metal operation was started at Clavaux (Isére) with an annual capacity of approximately

13 tons.

Imports of titanium metal into France were limited by the heavy customs duties and compensatory tax. Titanium imported from the United States is subject to duties and taxes totaling at least 35 percent

MAMERICAN Metal Market, Start Construction of Titanium Pigment Plant in Quebec: Vol. 63, No. 76, Apr. 21, 1956, pp. 1, 8.

Mar. 21, 1956, pp. 1, 8.

Tron and Steel Engineer, Form Canadian Co. to Produce Titanium: Vol. 33, No. 2, February 1956,

p. 143.

p. 143.

Metal Bulletin, Japan and Ceylon Ilmenite: No. 4141, Nov. 2, 1956, p. 26.

Metal Bulletin, Japan and Ceylon Ilmenite: No. 4141, Nov. 2, 1956, p. 26.

Marki, Ilmari, Discovery and Mining Methods at Finland's Largest Fe-Ti-V Mine: Mining World, vol. 18, No. 9, August 1956, pp. 62-68.

of the value of the metal, whereas titanium imported from Japan is subject to duties and taxes totaling at least 75 percent of its value.

Japan.—Four Japanese companies produced titanium slag by smelting titanium iron sands. Output of these companies during 1956 was as follows: Osaka Titanium Co., Ltd., 1,600 short tons; Hokuetsu Electric Chemical Industrial Co., 2,900 short tons; Nisso Steel Manufacturing Co., 3,300 short tons; and Morioka Electric Chemical Co., 1,900 short tons.

The Japanese titanium sponge-metal industry continued to increase its output in 1956 and early in the year announced plans to expand its annual capacity from about 2,000 short tons to 2,900.58 Late in the year capacities were expanded beyond this goal. Output during the year was 2,800 short tons—more than double production in 1955.

Monthly capacities of the Japanese sponge-metal producers, in

short tons, at the end of 1955 and 1956 were as follows:

Osaka Titanium Co., Ltd	1955	1956
Toho Titanium Co. Ltd	 62	143 165
Nippon Soda Co., Ltd	 20	20
Total	159	
	 199	328

Exports of titanium sponge in 1956 totaled 2,783 short tons, of which 2,667 tons went to the United States and 116 tons to various countries in Europe.

TABLE 11.—Japan's titanium-sponge production, by companies, 1952-56, in

Company	1952	1953	1954	1955	1956
Osaka Titanium Co., Ltd	9	66 5 6 (1)	338 263 37 28 7	639 608 115 9 7	1, 146 1, 439 183
Total	9	77	673	1, 378	2, 768

¹ Less than 1 ton.

Two Japanese titanium-sponge producers negotiated with the United States Commodity Credit Corporation to supply the United States Government with 6,600 short tons of titanium sponge in exchange for surplus agricultural commodities. Under a new contract, Toho Titanium Co., Ltd., was to supply approximately 3,600 tons and Osaka Titanium Co., Ltd., 3,000 tons over a 4-year period beginning October 1957. This contract is in addition to the one negotiated in 1955 for delivery of about 2,200 short tons of titanium sponge over a 2-year period.

Production of titanium dioxide pigment continued to increase to 25,300 short tons for 1956. It was announced that the Nisso Steel Manufacturing Co., Tokyo, was planning to build a titanium dioxide

³⁸ American Metal Market, Japan Plans to Lift Titanium Output and Also Quality: Vol. 63, No. 50, Mar. 15, 1956, pp. 1, 13.
³⁹ American Metal Market, Two Firms in Japan Planning to Supply Titanium to C. C. C.: Vol. 63, No. 233, Dec. 7, 1956, pp. 1, 6.

plant with a capacity of 330 short tons per month near its plant in northern Japan, where it produces titanium slag.⁶⁰ The leading producer in Japan, Ishihara Industrial Co., reportedly had a capacity of 13,000 short tons per year early in 1956.

TABLE 12.—Titanium dioxide production, exports, and stocks in Japan, 1950-56, in short tons

	Year		Production	Exports	Stocks
1950			2, 163	25	64
1951 1952			4, 456 5, 000	823 108	71- 77-
1953 1954		 	6, 793 13, 820	536 5, 218	59 88
1955		 	19,068	8, 677 10, 208	533
1956		 	25, 269	10, 208	1, 17

Malaya.—Federation mine officials in 1956 were encouraging large-scale collecting, processing, and shipping of ilmenite that was a by-product of tin-dredging operations, with the result that Malayan exports of ilmenite concentrate were 127 percent higher than in 1955—the previous peak year. Japan was the chief recipient, taking 42 percent of the total 136,800 short tons shipped. The United States and United Kingdom received 49 percent of the total.

The firms dealing in ilmenite collected the concentrate from the many mines by truck and carried it to the nearest railroad for transportation to the ports. Ocean shipments were made in bulk parcels ranging from a few hundred to a couple of thousand tons. Following is an analysis of the Malayan ilmenite concentrate: TiO₂, 52 to 54 percent; Fe, 29 percent; Fe₂O₃, 7 to 10 percent; SiO₂, 1.46 percent; Cr₂O₃, 0.07 percent; Sn, 0.10 to 0.50 percent; and moisture, 3 percent.

TABLE 13.—Exports of ilmenite from Malaya, 1952-56, by countries of destination, in short tons ¹

[Compiled by Corra A. Barry]

Country	1952	1953	1954	1955	1956
Australia					7, 31
Belgium	3, 360	)	51	112	
France (including Corsica)	8,076	2,576	8,097	3, 371	3, 388
Italy (including Sardinia)			15, 892	425 33, 799	13- 57, 89
Netherlands		1,456	1, 591 24, 427	30 22, 518	1, 23 34, 04
United Kingdom United States		11, 092	56	84	32, 68
Other countries					
Total	25, 198	29,758	50, 114	60, 339	136, 83

¹ Compiled from Customs Returns of Malaya.

Sierra Leone.—Large deposits of rutile reportedly were found near Port Loko by British Titan Products Co., Ltd. Plans were under way for this company and the Columbia-Southern Chemical Corp., Pittsburgh, Pa., to develop the area. The deposits, which are along the

⁶⁰ Paint, Oil and Color Journal, New Titanium Dioxide Plant for Japan: Vol. 130, No. 3030, Nov. 9, 1956, p. 1037.

Scarcies River below its confluence with the Mabole River, comprise a small alluvial deposit and a small eluvial deposit, each of which contain several thousand tons of rutile, also a large low-grade deposit in clay derived from ancient marine sediment that may contain several million tons of ilmenite and rutile. The clayey nature of this deposit has made beneficiation difficult.61

Spain.—The titanium dioxide-pigment industry of Spain was described in a State Department communiqué released in 1956.62 Experimental production of titanium dioxide pigments in Spain was begun in 1949 by Fabrica Espanola de Blanco de Zinc, S. A., at Barcelona, but the project was abandoned because of technical and financial difficulties. Cromogenia y Quimica Curtiente, S. A., started manufacturing a small quantity of titanium dioxide in Barcelona several years later. In 1952 Union Quimica del Norte de Espana, S. A. (Unquinesa), began producing a larger quantity of titanium dioxide pigments at a plant in Axpe-Erandio (Vizcaya).

TABLE 14.—Spanish production of titanium dioxide pigments, 1953-55, in short tons

	Year	Cromogenia	Unquinesa	Total
1953		55	1, 408	1, 463
1954	 	 165	2,012	2, 177
1955	 	 330	3, 018	2, 177 3, 348

Union of South Africa.—It was announced that British Titan Products Co., Ltd., and the African Explosives & Chemical Industries, Ltd., planned to erect a titanium dioxide pigment plant at Umbogintwini on the south coast of Natal. The plant was to have an initial annual capacity of about 9,000 short tons of pigment and to begin producing by the end of 1958.63 The pigments plant will be built a few miles north of the titanium-mineral deposit at Umgababa. fore 1956 this deposit was mined on a small scale by the Titanium Corp. of South Africa. In 1956 the mining rights of the Titanium Corp. were transferred to the Anglo American Prospecting Co. (Africa), Ltd., which planned to mine the deposit on a larger scale to produce ilmenite and rutile.

United Kingdom.—The titanium-sponge-metal plant of the Imperial Chemical Industries, Ltd., at Wilton, Yorkshire, produced at full capacity (1,700 short tons per year) during 1956. Operations of this plant and of the melting plants at Witton were described in a series of articles. Titanium tetrachloride for the sponge-metal plant was furnished by Titanium Intermediates, Ltd., jointly owned by British Titan Products and Peter Spence & Sons. The titanium tetrachloride was delivered in road tankers and was purified at the Wilton plant before it was reduced by sodium in a single stage. resultant titanium sponge, in granular form, was separated from the

⁶¹ Engineering and Mining Journal, Rutile Deposits Opened in Sierra Leone: Vol. 157, No. 10, October

^{1956,} p. 130.

1957 P. 130.

1958 P. 130.

1958 P. 130.

1958 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1959 P. 130.

1 Dispatch 296, Sept. 13, 1956, 3 pp.

63 Chemical and Engineering News, Titanium-Pigment Plant for the Union of South Africa: Vol. 34, No. 32, Aug. 6, 1956, p. 3786.

1223 TITANIUM

adhering sodium chloride by leaching. The metal had a hardness of 130 to 140 Brinell.64 At Witton the granules were compressed into either pellets or bars depending upon whether the metal was to be melted in a furnace employing consumable or nonconsumable electrodes. Most of the melting was done in nonconsumable electric-arc furnaces, using a graphite electrode. Surface blemishes were removed from the titanium ingot on a lathe, then the cleaned ingot was forged into slabs or rounds for further use.65

The melting plant at Witton was closed for a few weeks in mid-1956 after the explosion of an experimental furnace. Steps were taken subsequently to install extra safeguards in the melting operations.

McKechnie Bros., Ltd., continued to operate a pilot plant for the production of titanium-sponge metal by the magnesium-reduction process. Capacity of the plant was reported at 110 short tons of

metal per year which was to be exported.

Both British producers of titanium dioxide pigments announced expansion programs in 1956. British Titan Products Co., Ltd., planned to raise its capacity at Grimsby to 77,000 short tons per year by 1958, a sevenfold increase over the initial production of this plant in 1949.66 Laport Titanium, Ltd., was constructing an addition to its Stallingborough plant, completed in 1953, to increase its annual capacity from an original 20,000 to an ultimate 30,000 short tons.67

<sup>Metal Bulletin, Titanium Production by I. C. I.: Part I, Feb. 21, 1956, pp. 24-25.
Metal Bulletin, Titanium Production by I. C. I.: Part II, Feb. 24, 1956, pp. 17-19.
Chemical Age (London), Titanium Pigments: Vol. 76, No. 1945, Oct. 20, 1956, p. 130.
Chemical Age (London), Laporte Titanium's Expansion: Vol. 74, No. 1906, Jan. 21, 1956, p. 261.</sup> 



# Tungsten

By R. W. Holliday ¹ and Mary J. Burke ²



OMESTIC production, imports, and consumption of concentrate fluctuated widely in 1956, but totals were substantially the same as in 1955. A most significant event, for the tungsten industry, was completion of the Domestic Tungsten Purchase Program, which had assured a market at \$63 per short-ton unit since early in 1951; purchase, from domestic producers, of 3 million short-ton units of tungsten trioxide (WO₃), authorized under the Defense Production Act of 1950, and amendments, was virtually completed in June 1956. New legislation in July authorized the purchase of an additional 1,250,000 units at a base price of \$55 per unit.

Domestic production during the first half of the year reached a record rate but declined sharply thereafter, with suspension of Government purchase. From a low in July production again increased, after passage of the new legislation, to more than 75,000 units per month by the end of 1956. However, the allotment, for tungsten, of about \$15 million was exhausted early in December; and Government purchase was again suspended, pending appropriation of additional

funds.

Imports of tungsten concentrate slightly exceeded those in 1955. Curtailment of stockpile purchases, by completion or cancellation of foreign contracts, brought increased efforts by foreign producers to find a market for their product. This depressed open-market prices, which at the end of 1956 were 17 percent lower than at the beginning of the year. Another factor that may have adversely affected tungsten prices, was uncertainty regarding possible reentry of concentrate

from China to western markets.

The consuming industry, as in previous recent years, purchased concentrate primarily from foreign sources because of lower world (compared with domestic) prices. Because of surplus supply and because of the developing need for oxidation-resistant, high-temperature, engineering materials, the emphasis in research shifted toward new and expanded uses of tungsten. Outlook for the metal was unpredictable in 1956, as in earlier years, when lamp filament, high-speed tool steel, cemented tungsten carbide cutting tools, radio and television tubes, and armor-piercing projectiles were in the early stages of development.

¹ Commodity specialist.

Statistical clerk.
 A short-ton unit equals 20 pounds of tungsten trioxide (WO₃) and contains 15.862 pounds of tungsten (W). A short-ton of 60-percent WO₂ contains 951.72 pounds of tungsten.

TABLE 1.—Salient statistics of tungsten ore and concentrate in the United States, 1947-51 (average) and 1952-56, in thousand pounds of contained tungsten

	1947-51 (average)	1952	1953	1954	1955	1956
Mine production Mine shipments: Thousand pounds of contained tungsten Short tons, 60 percent WO ₂ basis General imports ² Consumption Stocks: Producers Consumers and dealers Total	3, 967	7, 233	9, 259	13, 166	15, 833	14, 761
	3, 995	7, 244	9, 128	13, 030	15, 619	14, 027
	4, 198	7, 611	9, 590	13, 691	16, 412	14, 737
	8, 396	16, 995	29, 130	23, 044	20, 789	21, 857
	7, 926	8, 634	7, 734	4, 037	8, 967	9, 061
	442	208	363	362	523	1, 477
	4, 403	2, 816	4, 335	3, 913	3, 502	2, 980
	4, 845	3, 024	4, 698	4, 275	4, 025	4, 457

¹ Includes Alaska.

² Ore and concentrate received in the United States; part went into consumption during year, and remainder entered bonded warehouses or Government stocks.

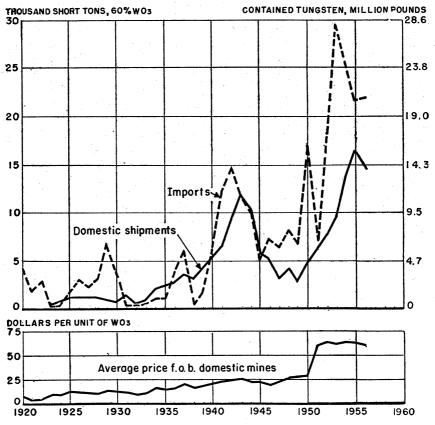



FIGURE 1.—Domestic shipments, imports, and average price of tungsten ore and concentrate, 1920–56.

TABLE 2.—Tungsten concentrate produced and shipped in the United States, 1955-56, by States 1

Tingstein content content (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tingstein (1,000 pounds)   Tin			Prod	luced			Shipped from mines				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stata	198	55	1956			55	1956			
Arizona.	State	content (1,000	ton units	content (1,000	ton units	content (1,000	ton units	content (1,000	Short- ton units (WO ₃ ) ²		
Washington     12     725     6     347     12     731     2       Wyoming     2     113	Arizona. California. Colorado. Idaho. Montana. Nevada. New Mexico. North Carolina. Oregon. Utah. Washington.	172 4, 180 1, 094 574 1, 299 5, 929 (3) 2, 511 (3) 62	10, 857 263, 517 68, 937 36, 160 81, 902 373, 812 51 158, 304 30 3, 873	208 4,066 924 592 1,041 5,192 (3) 2,719 (4) 11 6	13, 088 256, 362 58, 227 37, 321 65, 609 327, 303 28 171, 451 26 680 347	4, 172 1, 097 611 1, 152 5, 858 (3) 2, 483 (3)	263, 002 69, 145 38, 514 72, 642 369, 329 51 156, 537	3, 539 831 554 1, 171 5, 140 (3) 2, 600 (4) 11	11, 14 223, 15 52, 37 34, 94 73, 81 324, 02 2 163, 91 68 13		

Concentrate has been credited to State in which ore was mined, although subsequent beneficiation and sale may have been elsewhere.
 For conversion to short tons of 60 percent WO₃, divide by 60.
 Less than 1,000 pounds.

#### DOMESTIC PRODUCTION

Domestic production of tungsten concentrate in 1956 was second to that in the record-high year 1955, despite the July and December interruptions in Government acquisition and despite a drop in price to \$55 per unit under Public Law 733, 84th Congress. The regulation governing purchase under this law is quoted in full at the end of this section.

States leading in mine production were Nevada, California, North Carolina, Montana, Colorado, and Idaho, in the order named. These 6 States produced more than 98 percent of the Nation's output; and Arizona, Utah, Washington, Wyoming, Oregon, New Mexico, (and Alaska) supplied the remainder. Scheelite comprised 72 percent and

hübnerite 28 percent of production.

Although production was reported from nearly 600 operations, many of the smaller mines were closed during the second half of 1956. Only 34 mines produced as much as 1,000 units during the year. The 5 largest furnished 55 percent of the total domestic output; the next 5 largest produced 26 percent; and the 15 largest mines together This compares with 82 percent produced by the supplied 90 percent. same 15 mines in 1955 (the Strawberry mine, Madera County, Calif., owned by New Idria Mining & Chemical Co., was supplanted by the Brownstone mine, Inyo County, Calif., owned by the Brownstone Mining Co.).

TABLE 3.—Tungsten concentrate shipped from mines in the United States,1 1947-51 (average) and 1952-56

	Quantity		Reported	l value f. o. l	o. mines 2
Year	Short-ton units (WO ₃ )	Tungsten content (pounds)	Total	Average per unit of WO ₃	Average per pound of tungsten
1947-51 (average)	251, 853 456, 663 575, 448 821, 463 984, 711 884, 323	3, 994, 931 7, 243, 589 9, 127, 756 13, 030, 046 15, 619, 486 14, 027, 131	\$9, 245, 851 28, 970, 264 35, 943, 533 51, 433, 357 60, 841, 157 51, 200, 503	\$36. 71 63. 44 62. 46 62. 61 61. 79 57. 90	\$2. 31 4. 00 3. 94 3. 95 3. 90 3. 65

¹ Includes Alaska.

2 Values apply to finished concentrate, and in some instances are f. o. b. custom mills.

TABLE 4.—Shipments of tungsten ore and concentrate (60-percent WO₃ basis) from domestic mines, by States, 1947-51 (average) and 1952-56, shipments for maximum year, and total shipments, 1900-56, in short tons 1

		ximum oments			Ship	ments l	y years			Total ments,	ship- 1900–56
State	37		1947-51					1	956		Per-
	Year	Quan- tity	(aver- age)	1952	1953	1954	1955	Quan- tity	Per- cent of total	Quan- tity	cent of total
Alaska Arizona California Colorado Connecticut Idaho Missouri Montana Nevada New Mexico North Carolina Oregon South Dakota Texas	1916 1936 1955 1917 1916 1943 1940 1956 1955 1915 1956 1955 1915 1956	47 489 4,383 2,707 3 4,648 13 1,230 6,155 45 2,732 4 270	7 10 1, 629 206 162 1 8 1, 259 911 1	8 71 2, 980 625 333 	3 134 2,382 817 441 3,683 2,074 (2) 2	132 3, 512 927 471 678 5, 331 (2) 2, 538 (2) (2)	181 4, 383 1, 152 642 1, 211 6, 155 2, 609 1	186 3, 719 873 582 1, 230 5, 400 (2) 2, 732 (2)	1. 26 25. 24 5. 92 3. 95 8. 35 36. 64 18. 54	211 4, 629 59, 412 29, 982 11 18, 428 37 3, 679 62, 946 104 16, 426 9 1, 298	. 11 2. 33 29. 86 15. 07 . 01 9. 26 . 02 1. 85 31. 63 . 05 8. 25 (3)
Utah Washington Wyoming	1954 1938 1956	84 303 2	1 2	3 4	35 5	84 18	65 12	11 2 2	. 08 . 01 . 01	1 437 1,376 2	(3) . 22 . 69 (3)
Total	1955	16, 412	4, 197	7, 611	9, 590	13, 691	16, 412	14, 737	100.0	198, 988	100.00

Shipments are credited to the State where final concentrate was produced, except for 1953, 1954, 1955, and 1956, when shipments are credited to State where ore was mined.
 Less than 1 ton.
 Less than 0.01 percent.

Excluding byproduct and tailing operations, total crude ore treated was approximately 2.2 million short tons, and recovered concentrate contained about 886,000 units of WO₃. Thus, if an average recovery of 80 percent is assumed, the average grade of ore mined and milled in 1956 was about 0.5 percent WO₃. An estimated 80 percent of total ore production came from underground mines.

The Defense Minerals Exploration Administration reported 462 tungsten applications from inception of the program to December 31, 1956, an increase of 29 during the year. Contracts executed numbered 122, of which 24 remained in force at the year end. Certifications of discovery numbered 41. Maximum Government participation authorized to date was \$3,530,901, and the total estimated cost of the

projects was \$4,728,637.

The Tungsten Regulation governing purchase of domestic tungsten concentrate under authorization of Public Law 733, 84th Congress, is auoted below.

#### TITLE 44-PUBLIC PROPERTY AND WORKS

#### Chapter I—General Services Administration

PART 99-STOCK PILING OF STRATEGIC AND CRITICAL MATERIALS

TUNGSTEN REGULATION: DOMESTIC TUNGSTEN PURCHASE PROGRAM

Sec. 99.201 99.202 99.203 99.204 99.205 99.206 Basis and purpose. Definitions. Participation in the program. Tenders and deliveries. Packaging. Specifications and penalties. 99.207 Access to books and records. 99.208 Duration of the program.

AUTHORITY: §§ 99.201 to 99.208 issued under sec. 4, 70 Stat. 580. Interpret or apply sec. 2, 70 Stat. 579.

§ 99.201 Basis and purpose. It is the purpose of this program to provide temporary assistance to tungsten producers for an interim period to enable them to adjust production, largely related to defense programs, to normal competitive market conditions. Sections 99.201 to 99.208 interpret and implement the authority of the Administrator of General Services to purchase tungsten concentrates of domestic origin for the period beginning July 19, 1956, to December 31, 1958, pursuant to authority delegated by the Secretary of the Interior on July 31, 1956 (21 F. R. 5872), and outlines the attendant responsibilities and functions of the Administrator of General Services in purchasing such tungsten concentrates for the Government. In accordance with the program set forth in §§ 99.201 to 99.208, the Administrator will buy domestically produced tungsten concentrates, at a base price of \$55.00 per-short ton unit of contained tungsten trioxide (WO3), less penalties.

§ 99.202 Definitions. As used in §§ 99.201 to 99.208:

(a) "Administrator" means the Administrator of General Services.
(b) "Program" means the terms and conditions set forth in §§ 99.201 to 99.208

pursuant to which the Government will purchase tungsten concentrates.

(c) "Milling point" means plant where ores are processed into specification grade tungsten concentrates.

(d) "Tungsten concentrates" means tungsten concentrates produced in the United States, its Territories and possessions from ores mined in the United States, its Territories and possessions.
(e) "Short ton unit" means one percent of 2,000 pounds avoirdupois dry

(e) weight.

(f) "Ferberite" means concentrates containing tungsten primarily as FeWO4 with not more than 20 percent of the tungsten as MnWO4.

(g) "Hübnerite" means concentrates containing tungsten primarily as MnWO.

- with not more than 20 percent of the tungsten as FeWO₄.

  (h) "Wolframite" means concentrates containing tungsten as both FeWO₄ and MnWO₄ in any proportions from 80 percent FeWO₄ and 20 percent MnWO₄ to 20 percent FeWO₄ and 80 percent MnWO₄.
- (i) "Scheelite" means concentrates containing, in nature, tungsten as CaWO4. (i) "Synthetic Scheelite" means chemically precipitated scheelite produced from any natural type of ore, and shall be chemically precipitated scheelite produced from any original type of ore and shall contain not in excess of 0.50 percent free moisture by weight.

(k) "Lot" means the quantity of tungsten concentrates tendered to the Gov-

ernment at one time by a participant.
(l) "Government" means the United States of America.

(m) "Producer of ores" means any person who mines tungsten ores.
(n) "Person" means a natural person or a company.
(o) "Company" means a corporation, a partnership, an association, a joint-stock company, a trust, a fund, or any group of persons whether organized or not and whether incorporated or not.

(p) "Concentrating plant" means a tungsten mill or a tungsten processing plant.

§ 99.203 Participation in the program. (a) Any producer of ores or operator of a concentrating plant desiring to participate in the program shall apply in writing to the nearest General Services Administration regional office for a certificate of participation. If the applicant is a producer of ores, such application shall provide full information concerning the nature and extent of the applicant's interest in or control over any tungsten mining properties in the mining district or districts for which a certificate is sought by him, and shall be signed and a return address given. Each eligible applicant will promptly be sent a certificate of participation authorizing him to deliver, f. o. b. carrier's conveyance, milling point, tungsten concentrates meeting minimum specifications.

(b) Producers of ores who do not operate concentrating plants may, if they are issued certificates of participation, participate in the program to the extent

of the ore produced by them, as follows:

(1) By selling such ore to operators of concentrating plants, in which event the resulting tungsten concentrates meeting specifications may be sold by such operators to the Government under the program; or

(2) By having such ore treated on a toll basis and selling the resulting tungsten concentrates meeting specifications to the Government under the program.

(c) Any operator of a concentrating plant, by applying for a certificate of participation, agrees to purchase or process suitable tungsten contained ores offered to him by participating producers of ores to the limit of the capacity of his plant in excess of that required for his own production and on fair and equitable terms and conditions (including prices). Each operator of a concentrating plant participating in the program shall promptly establish a schedule setting forth his terms and conditions (including prices) for the purchase or processing of tungsten contained ores. Each such operator shall promptly submit a copy of such schedule to the General Services Administration regional office which issued a certificate of participation to him, and shall also submit promptly any changes made in such schedule thereafter. No such operator shall purchase or process for sale to the Government hereunder tungsten contained ores from nonpartici-

pating producers of ores. § 99.204. Tenders and deliveries. (a) Notice of any tender of tungsten concentrates under the program shall be given by the participant to the General Services Administration regional office which issued the certificate of participation. Such notice shall provide information concerning the approximate quantity proposed to be delivered, the approximate date of delivery and the milling point. Shipping instructions will be issued by the Government. Deliveries shall be made by the participant f. o. b. carrier's conveyance, milling point. A of less than one short ton of tungsten concentrates will not be accepted. lot will be weighed, sampled and analyzed by the Government, or its designee. From the representative sample three pulp samples will be prepared and sealed, one each for the Government and the seller and one for umpire purposes, the umpire sample to be retained by the Government. If there is a difference between the Government's analysis and the participant's analysis of their respective samples resulting in a dispute, the umpire sample shall, at the request of the participant, be analyzed by an analyst satisfactory to both the Government and the participant, and the umpire analysis shall be final and conclusive. The cost of the umpire analysis shall be borne by the party whose analysis is further from that of the umpire. Payment will be made in accordance with the Government. ment's analysis unless there is a dispute, in which case payment will be made in accordance with the umpire analysis.

(b) The Government will not accept oners for derivery in any one month from any one producer of ores in excess of five thousand (5,000) short ton units originating in any one mining district from properties controlled by such producer of ores. Questions concerning the mining district in which any particular property is located will be decided by the Secretary of the Interior. Tungsten (b) The Government will not accept offers for delivery in any one calendar concentrates already actually produced which were ready for delivery and offered in the calendar month of July 1956, will be accepted and applied against the July quotas of the producers of ores used in making such tungsten concentrates. Similarly, tungsten concentrates already actually produced which were ready for delivery and offered in the calendar month of August 1956, will be accepted and applied against the August quotas of such producers of ores. In each such case, however, the offeror shall certify that such tungsten concentrates had been already actually produced and that they were ready for delivery in July or

August 1956, as the case may be. Tungsten concentrates produced from ores sold a concentrating plant in accordance with this regulation shall not be considered as the production of the owner or operator of the concentrating plant but shall be considered as the production of the producer of such ores.

(c) The properties controlled by a producer of ores shall be considered to include all properties owned or otherwise controlled by such producer of ores. All such properties within a single mining district shall be considered as a single source of production hereunder, regardless of any disposition thereof by sale, lease, or otherwise. Any properties within a single mining district will be considered as a single source of production hereunder if, through relationship, affiliation, common control, or otherwise, the persons owning or otherwise controlling such properties are not in the judgment of the Administrator bona fide separate and independent producers of ores. Without in any way affecting any other rights which the Government may have, the Administrator may refuse to accept offers hereunder, may refuse to issue certificates of participation hereunder, or may revoke certificates of participation previously issued if he determines such action is necessary to enforce the 5,000 short ton unit limitation specified in paragraph (b) of this section.

(d) Tungsten concentrates not conforming to the specifications, requirements, terms and conditions set forth in §§ 99.201 to 99.208 shall be rejected, and all expenses incurred by the Government in connection with such rejection shall be

for the account of the participant tendering such tungsten concentrates.

(e) Each lot tendered the Government hereunder shall be accompanied by a certificate executed by the producer of ores, on a form to be provided by the

Administrator, disclosing the source of the tungsten concentrates.

§ 99.205 Packaging. All tungsten concentrates except Synthetic Scheelite shall be packaged in: (a) Steel drums of 20 gauge minimum thickness for 15 gallons or less capacity and 18 gauge or heavier steel drums for larger capacity, or (b) bags of 110 pound capacity made from heavy burlap cloth which has been made waterproof and sift proof by a craped bag liner inserted and laminated with a waterproof adhesive such as asphaltum. Synthetic Scheelite shall be packaged in steel drums of 18 gauge minimum thickness.
§ 99.206 Specifications and penalties. (a) The specifications for tungsten

concentrates and penalties applicable to deliveries of such concentrates appear

below:

1) Percentage of tungsten trioxide (WO₃) required with respect to each of the following:

	Ferberite	Hubnerite	Wolframite	Scheelite and/or synthetic scheelite
StandardMinimum	Percent	Percent-	Percent	Percent
	60	60	65	60
	55	55	60	55

(2) Maximum percentage allowances of the following elements without penalty:

	Ferberite	Hubnerite	Wolframite	Scheelite and/or synthetic scheelite
Tin (Sn) max	. 15 . 10 1. 00	Percent 0.25 .10 .10 .10 .10 .50 .50 .50 (1) .20 .10	Percent 1.50 .05 .25 .10 1.00 .05 .50 (1) 20 .10	Percent 0. 10 .05 .10 .25 .2.75 .05 .50 1.00 .10 .10

¹ Not specified.

(b) The minimum base price shall be subject to the following adjustments:

(1) For each short ton unit of delivered tungsten trioxide  $(WO_3)$  the sum of twenty cents (\$0.20) shall be deducted from the base price for each one percent of tungsten trioxide  $(WO_3)$  below the standard requirements set forth in paragraph (a) of this section. Tungsten concentrates will not be accepted unless they meet the minimum requirements set forth in said paragraph (a) of this section.

(2) For each short ton unit of delivered tungsten trioxide (WO₃) a deduction of twenty-five cents (\$0.25) shall be made for each of the following increments in excess of the maximum allowances (paragraph (a) of this section), as to each of the

following elements:

Copper (Cu)	 	 			
Phosphorus (P)			 		 
Arsenic (As)	 <b></b>	 	 	7	 
Bismuth (Bi)	 		 		 
Molybdenum (Mo)		 	 		 
Tin (Sn)	 	 	 		 
Support (S)					
Anumony (Sb)					
Manganese (Mn)		 	 		 -, - ,-
Lead (Pb)	 	 	 		 
Zinc (Zn)	 	 	 		 
. ,	 	 	 		 

§ 99.207 Access to books and records. By participating in the program each participant agrees to permit authorized representatives of the Government, during the duration of the program and for a period of three (3) years thereafter, to have access to and the right to examine any pertinent books, documents, papers and records of the participant involving transactions related to the program. § 99.208 Duration of the program. The program is limited to one million two hundred fifty thousand (1,250,000) short ton units of tungsten trioxide and shall terminate when the Administrator determines that approximately that amount has been delivered to and accented by the Government under the program or on

§ 99.208 Duration of the program. The program is limited to one million two hundred fifty thousand (1,250,000) short ton units of tungsten trioxide and shall terminate when the Administrator determines that approximately that amount has been delivered to and accepted by the Government under the program, or on December 31, 1958, whichever first occurs; provided, however, that until amendment to §§ 99.201 to 99.208 the quantity which the Government shall be obligated to purchase hereunder shall be limited to approximately two hundred eighty-five thousand (285,000) short ton units, which is the approximate quantity that can be purchased with funds presently available. When additional funds are available, notice thereof will be given by amendment to §§ 99.201 to 99.208.

Dated: August 31, 1956.

FRANKLIN G. FLOETE,
Administrator of General Services.

Approved: August 31, 1956. FRED G. AANDAHL,

Acting Secretary of the Interior.

(Published in the Federal Register, Sept. 6, 1956, 21 F. R. 6707.)

#### CONSUMPTION AND USES

Consumption of tungsten concentrate in 1956 slightly exceeded that in 1955, although processors encountered midyear marketing difficulties; a steel strike, lasting through July and the first week of August, brought a substantial decline in consumption of tungsten, both as a constituent of alloys and in carbides for shaping metal. Consumption for the year was 14 percent above the average for the previous 10 years.

Scheelite and ferrotungsten were used interchangeably to some extent as vehicles for the addition of tungsten to steel, but the usual practice was to employ ferrotungsten for manufacturing steels high in

tungsten and scheelite for steels containing smaller amounts.

TABLE 5.—Distribution of tungsten concentrate consumed in 1956

					Tungsten content (pounds)	Short tons (60 percent WO ₃ )	Percent of total
Manufacture	ers of steel ingots and fe ers of hydrogen-reduced	l metal powde	r		3, 178, 000 3, 912, 000	3, 339 4, 110	35 43
Manufacture cals and co	ers of carbon-reduced n nsumption by firms m	netal powder a naking several	nd tungst products	en chemi-	1, 971, 000	2,071	22
Total_					9, 061, 000	9, 520	100

TABLE 6.—Tungsten consumed for all purposes as related to steel production

	1955	1956
Tungsten consumed from concentrate	8.96 117.0 .08 9.4 1.0	9.06 115.2 .08 9.0 1.0

¹ Except stainless steel.

Much of the tungsten consumed was in manufacture of High-Speed steels; Class A (less than 6.75 percent W) consumed 897 tons of tungsten, and Class B (more than 6.75 percent W) consumed 711 tons. Corresponding figures in 1955, derived from data supplied by the American Iron and Steel Institute, were 895 tons, and 657 tons, respectively.

Manufacturers of hydrogen-reduced metal powder consumed the largest amounts of concentrate. The metal powder was not itself an end product but was divided among manufacture of carbides,

pure-metal uses (such as electric lamp filament), and alloys.

Products, intermediate between ore and end use, included highgrade concentrate and synthetic scheelite; chemicals, such as sodium tungstate, tungstic acid, ammonium paratungstate and others; tungsten-metal powder (both hydrogen-reduced and carbon-reduced); tungsten carbide powder; ferrotungsten; and scrap, which was converted to synthetic scheelite or used in various other forms. Consumers of tungsten concentrate are listed below:

#### Consumers of concentrate

(Producers and types of tungsten products)

Company and plant location:

Braeburn Alloy Steel, Continental Copper & Steel Industries, Inc., Braeburn, Pa. Columbia Tool Steel Co., Chicago Heights,

Cooper Alloy Corp., Hillside 5, N. J. Electro Metallurgical Co., Division of Union Carbide & Carbon Corp., Niagara Falls,

Fansteel Metallurgical Corp., North Chicago, Ill.

Firth Sterling, Inc., McKeesport, Pa-General Electric Co., Lamp Wire and Phosphors Dept., Euclid 17, Ohio.

Haynes Stellite Co., Division of Union Carbide & Carbon Corp., Kokomo, Ind. Jessop Steel Co., Washington, Pa..... Sylvania Electric Products, Inc., Tungsten and Chemical Division, Towanda, Pa.

Universal Cyclops Steel Corp., Bridgeville, Vanadium Alloys Steel Co., Latrobe, Pa____ Vulcan Crucible Steel Co., W. Aliquippa Station, Aliquippa, Pa.
Wah Chang Corp., Glen Cove (Long Island), N. Y.

Westinghouse Electric Corp., Bloomfield,

Products Alloy steel.

Do.

Do. Ferrotungsten, metal powder.

Tungsten metal, tungsten alloys, tungsten carbide powder, fabricated parts, intermediate products such as tungstic acid and tungsten metal powder.

Alloy steel, tungsten carbide. Electrical and electronic equipment, intermediate products such as tungsten metal powder.

Alloys.

Alloy steel. Melting base.

Ferrotungsten, metal powder, chemicals.

Ferrotungsten. Tungsten metal powder.

Electrical and electronic equipment, intermediate products such as tungsten metal powder.

Alloy steel.

Do.

Tungsten carbide powder, semifabricated tungsten metal (wire, rod, and sheet), intermediate products such as tungstic acid and tungsten metal powder.

Electrical and electronic equipment.

Consumption of tungsten concentrate, compared with total consumption of intermediate products, was 9,061,000 and 9,722,000 pounds, contained tungsten, respectively. The difference between these totals was due primarily to consumption of imported scrap, ferrotungsten and other products.

Comparison of table 5 and table 7 reveals that, although only 35 percent of concentrate went into "ferrotungsten and steel ingots," 41 percent of total tungsten consumed went into steel. The "total

TABLE 7.—Consumption of tungsten by class of manufacture in 1956

(Thousand pounds of contained tungsten)

	Uses		Total con- sumption	Percent of total
Steel: High speed			2, 893 522 531 342 56 1, 242  } 13, 426  54 93 6 557	29. 7 5. 3 5. 4 3. 5 12. 7 35. 2 . 5 . 9 . 0
		100	 9, 722	100. 0

¹ Estimated to be 60 percent cemented or sintered and 40 percent hardfacing and other.
² Includes uses (not classified by reporting firms) in diamond-drill bits, electrical contact points, welding

TABLE 8.—Consumption of tungsten products in the United States and stocks at plants of consumers in 1956

(Thousand pounds of contained tungsten)

	Product	Consump- tion	Stocks Dec. 31
Carbon reduced		1, 823 72 2, 856 323 1, 815 382 2, 111 340	12: 1: 5: 4: 11: 38: 5:
Total		9, 722	79

Includes ferrotungsten, cobalt-chromium-tungsten, melting base, and tungsten-alloy powder.
 Consumption and stock data obtained from annual canvass which did not list type of products.

tungsten consumed in steel" includes ferrotungsten, scheelite, scrap, and metal powder.

Lifting of the restriction on the use of tungsten in "military gasturbine engines" 4 was presumably a forerunner of increased consump-

tion in turbine blades and vanes.

A comprehensive index and guide 5 was published, giving data on Names of companies, trade names, applicatool steels and carbides. tions for products, AISI-SAE types, analysis, and data on heat treatment were included.

A guide to welding-rod and manufacturers' products was also

published.6

A comparison of the cost of drill rods with integral tungsten carbide tips, and rods plus detachable, carbide-tipped bits was reported.⁷

rods, etc.

⁴ Department of Defense, Utilization of Certain Materials in Military Gas Turbine Engines: Instruction 4000.16, Oct. 11, 1956, 4 pp. (See also News Release 1084-56, Oct. 15, 1956, 1 p.)

⁵ Steel, A Guide to Tool Steel and Carbides: Vol. 138, No. 11, Mar. 12, 1956, 40 pp.

⁶ Iron Age How to Get More for Your Welding Dollar: Vol. 177, No. 17, pp. 96-100.

⁷ Davis, Basil, Tungsten-Carbide-Tipped Rods and Bits at Dome Mines: Canadian Min. and Met. Bull., vol. 49, No. 526, February 1956.

#### STOCKS

Total stocks of tungsten held in the National Stockpile exceeded both the minimum and long-term objectives. As shown in table 1, stocks held by domestic producers of concentrate on December 31, 1956, were nearly three times the amount held at the end of 1955. Stocks held by consumers and dealers were slightly lower than at the end of 1955.

#### PRICES AND SPECIFICATIONS

The base price paid by the Government for concentrate produced in the United States was \$63 per short-ton unit of WO₃ until about June 1, when purchase authorized under the Defense Production Act of 1950 was virtually completed. From June 1 to August 31, the price was quoted at \$63 but only minor quantities, previously tendered, were accepted. From September 2 to about November 30, retroactive to July 1, the base price paid by the Government under authorization of Public Law 733, 84th Congress, was \$55.00 per shortton unit of WO₃. Throughout December the price was quoted at \$55 but only minor quantities previously tendered were accepted. Specifications and penalties are listed in the Tungsten Regulation quoted earlier in this chapter.

Specifications of industrial consumers varied according to use, processing facilities and price, but were, in most cases more rigid than

specifications for the National Stockpile.

Various prices were paid, by the Government, to foreign producers under previously negotiated, long term contracts. Open market prices varied little through September but declined in the last quarter as shown in the following table of price quotations from E&MJ Metal and Mineral Markets.

TABLE 9.—Prices of tungsten concentrate in 1956

Domestic Tungsten Purchase Program	Open	market	London market
Per short-ton unit of WO3, f. o. b. milling point 1		unit of WO ₃ , ts, duty extra ²	Per long-ton unit of WO ₃
	Wolfram	Scheelite	
Jan. 5.     \$63       Feb. 2.     63       Mar. 1.     63       Apr. 5.     63       May 3.     63       June 7.     63       July 5.     63       Aug. 2.     63       Sept. 6.     55       Oct. 4.     55       Nov. 1.     55       Dec. 6.     55	\$33, 50@\$34, 00 33, 00@ 33, 50 34, 00@ 34, 50 32, 75@ 33, 25 33, 00@ 33, 50 33, 00@ 33, 50 33, 00@ 33, 50 32, 00@ 32, 50 32, 00@ 32, 25 29, 75@ 30, 00 28, 00@ 28, 25 28, 25@ 28, 75	\$34. 00@\$34. 50 33. 25@ 33. 75 34. 00@ 34. 50 33. 25@ 33. 75 33. 50@ 34. 00 33. 50@ 34. 00 33. 50@ 34. 00 32. 00@ 32. 50 29. 75@ 30. 00 27. 50@ 28. 00 28. 25@ 28. 75	270s bid, 274s asked. 262½s bid, 267½s asked. 268s 6d bid, 273s 6d asked 259s bid, 264s asked. 264s bid, 269s asked. 264s bid, 269s asked. 260s bid, 269s asked. 247s 6d bid, 252s asked. 244s bid, 248s asked. 227s 6d bid, 252s asked. 227s 6d bid, 232s 6d asked. 227s 6d bid, 232s 6d asked. 228s bid, 233s asked.
A verage	32. 07 7. 93	32. 28 7. 93	
Average price duty paid	40.00	40. 21	

Specifications cited in Tungsten Regulation quoted earlier in this chapter.
 Known good analysis.

Tungsten metal powder per pound, 98.8 percent minimum, 1,000-pound lots, was quoted in January at \$4.30; from February 1 to October 30 at \$4.50; and for the remainder of 1956 at \$4.20. Hydrogen-reduced 99.9 percent plus was quoted at \$5.00 throughout the year.

Ferrotungsten—per pound contained W; 5,000-or more pound lots, lump (¼ inch), packed; f. o. b. destination continental U. S. A.—

(70-80 percent W) was quoted at \$3.45 throughout the year.

#### FOREIGN TRADE®

General imports of tungsten concentrate were nearly 22 million pounds (tungsten content)—5 percent larger than in 1955. Bolivia, Republic of Korea, Argentina, Brazil, Australia, Canada, and Portugal, in that order, each supplied more than a million pounds and accounted for 79 percent of the total. Imports from Argentina exceeded 1 million pounds for the first time since 1944. Imports from Brazil increased 58 percent compared with 1955.

Exports and reexports of tungsten concentrate were 117 and 349 tons, respectively, gross weight, in 1956, compared with 34 and 283

tons, respectively, in 1955 (tungsten content is not known).

Imports for consumption of ferrotungsten showed a 29-percent increase compared with 1955. Imports from Austria increased nearly 10 fold, while imports from Japan dropped 40 percent.

Exports of ferrotungsten were 1,493 pounds (gross weight), valued

at \$4,203; all went to Canada.

There were no reexports of ferrotungsten.

Imports of tungsten metal, tungsten carbide, and combinations containing tungsten or tungsten carbide in lumps, grains, or powder were 37,456 pounds (tungsten content), and value was listed at \$118,988.

Exports of tungsten powder were 129,042 pounds (gross weight),

valued at \$813,758.

Imports for consumption of ferrochromium tungsten, chromium tungsten, chromium-cobalt tungsten, tungsten nickel, and other alloys of tungsten, not specifically provided for, were 146,653 pounds (tungsten content) valued at \$328,154 compared with 44,861 pounds and \$152,260 in 1955. Other tungsten-bearing materials imported for consumption in 1956 were tungstic acid and other compounds of tungsten, not specifically provided for, 1,410 pounds (tungsten content), valued at \$4,920.

Exports of tungsten metal and alloys in crude form and scrap were 657,700 pounds (gross weight) valued at \$407,169; and reexports were

39,248 pounds (gross weight) valued at \$14,309.

Semifabricated forms exported were 49,062 pounds (gross weight)

valued at \$869,741, exported principally to Canada.

A 25-percent ad valorem duty on scrap tungsten, suspended by Public Law 869, 81st Congress, was reimposed by Public Law 723, 84th Congress, approved July 16, 1956. The gross weight of scrap tungsten that entered duty free in 1956, before reimposition of the duty, was 457,059 pounds valued at \$760,850. Entries after reimposition of the duty are not available for publicaton.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Census.

TABLE 10.—Tungsten ore and concentrate imported into the United States, 1955-56, by countries

[Bureau of the Census]

	Genera	l imports 1	Impo	Imports for consumption 2			
Country	Gross weight (pounds)	Tungsten content (pounds)	Gross weight (pounds)	Tungsten content (pounds)	Value		
_ 1955				-	<del> </del>		
Vorth America: Canada Mexico	3, 571, 784 1, 689, 790	1, 920, 782 855, 129	3, 571, 730 1, 670, 205	1, 920, 708 846, 138	\$6, 826, 4 2, 281, 1		
Total		2, 775, 911	5, 241, 935	2, 766, 846	9, 107, 6		
outh America		-,.,0,022	0,211,000	2, 100, 510	9, 107, 0		
Argentina Bolivia Brazil Peru	1, 669, 734 9, 363, 317 2, 381, 546 1, 679, 499	888, 255 4, 601, 357 1, 317, 237 953, 431	1, 669, 734 9, 363, 317 2, 458, 826 1, 668, 154	888, 255 4, 601, 357 1, 347, 273 947, 304	2, 548, 4 14, 875, 0 3, 226, 6 3, 107, 1		
Total	15, 094, 096	7, 760, 280	15, 160, 031	7, 784, 189	23, 757, 3		
Europe: Finland France Germany, West Netherlands Portugal Spain United Kingdom		100, 845 3 179, 312 14, 608 6, 416 1, 933, 615 1, 035, 436 19, 143	130, 401 3 527, 655 81, 725 11, 052 3, 507, 825 1, 915, 077 18, 734	69, 824 \$ 282, 090 45, 901 6, 416 2, 000, 161 1, 009, 475 14, 860	119, 5 3 541, 6 61, 5 12, 9 4, 264, 3 3, 206, 3 29, 5		
Total	³ 5, 985, 640	3 3, 289, 375	³ 6, 192, 469	3 3, 428, 727	8 8, 235, 9		
.sia: Burma. Hong Kong. Japan Korea, Republic of. Malaya Thailand	1	324, 391 161, 291 2, 413, 434 128, 268 741, 719	948, 683 21, 783 300, 951 3, 062, 038 229, 723 1, 643, 422	527, 509 11, 905 174, 407 1, 721, 799 127, 630 914, 973	813, 0 25, 1 328, 7 2, 720, 5 191, 9 1, 529, 7		
Total	6, 854, 999	3, 769, 103	6, 206, 600	3, 478, 223	5, 609, 1		
frica:  Belgian Congo		³ 1, 156, 860	⁸ 2, 051, 667 1, 067 5, 130	³ 1, 156, 649 550 2, 844	³ 3, 028, 2 1, 19 6, 7		
of Union of South Africa	19, 322 609, 034	10, 043 316, 515	15, 322 623, 832	7, 991 328, 251	14, 1 1, 268, 8		
Total	³ 2, 685, 063	3 1, 483, 418	³ 2, 697, 018	³ 1, 496, 285	³ 4, 319, 13		
ceania: Australia New Zealand	3 3, 121, 592 4, 274	³ 1, 708, 749 2, 203	3, 196, 074 4, 274	1, 742, 678 2, 580	5, 122, 12 3, 36		
Total	3 3, 125, 866	3 1, 710, 952	3, 200, 348	1, 745, 258	5, 125, 49		
Grand total	39, 007, 238	20, 789, 039	38, 698, 401	20, 699, 528	56, 154, 72		
1956							
orth America: Canada Mexico	3, 166, 125 1, 611, 302	1, 703, 941 779, 540	3, 165, 989 1, 379, 353	1, 703, 782 667, 104	6, 040, 52 1, 451, 73		
Total	4, 777, 427	2, 483, 481	4, 545, 342	2, 370, 886	7, 492, 26		
uth America: Argentina Bolivia Brazil Chile Peru	3, 807, 621 491, 930	2, 163, 714 4, 320, 349 2, 081, 089 271, 019 912, 754	4, 112, 086 8, 098, 536 3, 853, 697 491, 930 1, 570, 734	2, 163, 714 4, 146, 450 2, 106, 809 271, 019 912, 754	6, 069, 45 13, 628, 06 5, 720, 99 1, 016, 38 3, 019, 89		
Total	18, 737, 127	9, 748, 925	18, 126, 983	9, 600, 746	29, 454, 80		

See footnotes at end of table.

TABLE 10.—Tungsten ore and concentrate imported into the United States, 1955-56, by countries—Continued

[Bureau of the Census]

		<del></del>			
	General i	mports 1	Import	s for consum	ption ²
Country	Gross weight (pounds)	Tungsten content (pounds)	Gross weight (pounds)	Tungsten content (pounds)	Value
1956—Continued					
Europe: Finland France Netherlands Portugal Spain	55, 115 30, 945 77, 452 2, 437, 697 854, 357	28, 410 16, 468 42, 995 1, 395, 016 458, 617	110, 994 30, 945 56, 516 2, 356, 024 798, 184	59, 669 16, 468 32, 658 1, 341, 304 445, 612	\$106, 176 33, 873 62, 930 3, 180, 672 1, 109, 524
Total	3, 455, 566	1, 941, 506	3, 352, 663	1, 895, 711	4, 493, 175
Asia: Burma	871, 766	313, 318 51, 418 3, 632, 180 260, 968 490, 895	543, 475 44, 519 5, 477, 129 444, 236 809, 064	294, 660 25, 220 3, 081, 077 242, 964 450, 393 4, 094, 314	546, 958 46, 652 5, 493, 269 447, 476 874, 701 7, 409, 056
Total	8, 540, 809	4,748,779	7, 318, 423	4,094,014	7, 400, 000
Africa: Belgian Congo		586, 902 4, 445 443, 415	1, 045, 846 15, 665 16, 031 865, 300	573, 888 5, 895 8, 412 455, 352	1, 314, 236 16, 250 17, 435 1, 753, 339
Total	1, 906, 240	1, 034, 762	1, 942, 842	1, 043, 547	3, 101, 260
Oceania: Australia New Zealand	3, 619, 771 7, 994	1, 895, 590 4, 121	3, 540, 953 7, 994	1, 850, 407 4, 542	6, 052, 022 8, 131
Total	3, 627, 765	1, 899, 711	3, 548, 947	1, 854, 949	6, 060, 153
Grand total	41, 044, 934	21, 857, 164	38, 835, 200	20, 860, 153	4 58, 010, 711

1 Comprises ore and concentrate received in the United States; part went into consumption during year and remainder entered bonded warehouses.

2 Comprises ore and concentrate withdrawn from bonded warehouses during year and receipts during year for consumption.

3 Revised figure.

4 Owner to changes in tabulating procedures by the Russey of the Congres data known to be not consumption.

TABLE 11.—Ferrotungsten imported for consumption in the United States, 1955-56, by countries

[Bureau of the Census]

		1955		1956			
Country	Gross weight (pounds)	Tungsten content (pounds)	Value	Gross weight (pounds)	Tungsten content (pounds)	Value	
Europe: Austria	33, 069	26, 454	\$51, 505	266, 355 22, 000 42, 121 11, 020 10, 582	213, 251 17, 311 33, 558 9, 258 8, 466	\$482, 229 42, 705 77, 948 21, 065 19, 895	
Portugal Sweden United Kingdom	307, 390 77, 058 102, 203	251, 630 64, 436 84, 077	478, 409 110, 962 188, 594	315, 817 99, 218 113, 097	262, 340 84, 620 93, 837	531, 514 210, 339 221, 743	
Total	519, 720 315, 600	426, 597 250, 391	829, 470 446, 038	880, 210 193, 019	722, 641 147, 980	1, 607, 438 337, 157	
Grand total	835, 320	676, 988	1, 275, 508	1, 073, 229	870, 621	1, 944, 595	

⁴ Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not comparable with other years.

#### **TECHNOLOGY**

Mining and milling in 1956 yielded a domestic tungsten-concentrate production only 7 percent lower than the alltime high of 1955. theless, the trend was downward; interest and emphasis in research turned from production and supply to marketing and utilization.

A materials survey of tungsten was published, including sections on history, resources, mining and processing and uses, as well as a directory of United States and foreign producers, consumers, importers, and exporters.

A leasing system in California was described; 10 mill flowsheets of two Nevada operations were published; ¹¹ a review of the California tungsten industry was issued; ¹² and four Bureau of Mines publications were released.13 Geology of the area surrounding Bishop, Calif., was described.14

The exceptional properties of tungsten, including strength and hardness at high temperatures, high density, low vapor pressure, and favorable electrical properties, gave assurance that it would find continued use; but overshadowing the known applications was the urgency of the search for better and better materials. Of special interest to the tungsten industry was the need for materials capable of withstanding high temperatures, great stress, and oxidizing atmospheres for improved performance of aircraft and missiles, in chemistry and metallurgy, and in the field of nuclear power. Temperatures in the gas-turbine jet engine in 1956 were in the range of 1,200°-1,700° F.15 No immediate demand for tungsten was evident in nuclear energy; 16 but here, too, a need existed for new materials, and employment of tungsten in some form remained a possibility.

An opposite possibility was in the growing use of ceramic tooling as a substitute for cemented carbides. Undoubtedly the ceramic throwaways found receptive markets, 17 but the likelihood seemed to be that use of cemented tungsten carbides also would continue and that new uses would be developed.18

Sacharov, Paul, Lemmon, Dwight M., and Ross, Donald C., Materials Survey—Tungsten: Business and Defense Services Administration, U. S. Dept. of Commerce, December 1956, 115 pp.
 Mining World, Block Leasing—at Atolia It Pads Paychecks: Vol. 18, No. 2, February 1956, pp. 63-64.
 Mining World, Linka Mill: Vol. 18, No. 7, June 1956, pp. 52-55, 63.
 Engineering and Mining Journal, How To Boost Scheelite Recovery: Vol. 157, No. 11, November 1956,

Engineering and Mining Journal, How To Boost Scheelite Recovery: Vol. 157, No. 11, November 1956, p. 105.

12 Mineral Information Service, State of California, Div. of Minerals: Vol. 9, No. 5, May 1, 1956, 11 pp. 12 Trengove, Russell R., Tulare County Tungsten Mines, Calif.: Bureau of Mines Rept. of Investigations 5217, 1956, 12 pp. Wessel, F. W., and McClain, R. S., An Investigation of Some Variables in the Treatment of Scheelite With Soda Ash: Bureau of Mines Rept. of Investigations 5280, 1956, 21 pp. Belser, Carl, Tungsten Potential in the San Juan Area, Ouray, San Juan, and San Miguel Counties, Colo: Bureau of Mines Inf. Circ. 7731, 1956, 18 pp. Tungsten Potential in Chaffee, Fremont, Gunnison, Lake, Larimer, Park, and Summit Counties, Colo:, Bureau of Mines Inf. Circ. 7748, 1956, 31 pp. 14 Bateman, Paul C., and Wright, Lawson A., Economic Geology of the Bishop Tungsten District, California: California Div. of Mines, Spec. Rept. 47, Ferry Building, San Francisco, 87 pp. 16 Tungsten Institute Information Service, Information for the Press: June 20, 1956, 2 pp., and Oct. 25, 1956, 3 pp.

^{1956, 3} pp.

18 Warde, John M., Materials for Nuclear Power Reactors: Materials and Methods, vol. 44, No. 2, August

Warde, John M., Materials for Nuclear Power Reactors: Materials and Methods, vol. 44, No. 2, August 1956, pp. 121-144.
 If Ryshkewitch, Eugene, What a Carbide Engineer Should Know About Ceramic Tooling: Carbide Eng., Official Pub. of Soc. Carbide Eng., October and December 1956, 12 pp.
 Egan, E. J., "Throwaway" Ceramic Turns New Profits From Old Lathes: Iron Age, vol. 177, No. 18, May 3, 1956, pp. 91-94.
 Kozacka, J. S., Erickson, H. A., Highriter, H. W., and Gabriel, A. F., An Investigation of Cemented Turgsten Carbide as Bearing Material: Progress Rept. 2, Trans. ASME, vol. 78, No. 7, October 1956, pp. 1403-1421.
 Metal Powder, Uses Are Growing: Iron Age, vol. 177, No. 17, Apr. 26, 1956, p. 62.
 Product Engineering, Flame Plating for Wear Resistance: Vol. 27, No. 9, September 1956, pp. 203-205.

Studies of various cladding techniques continued in 1956. An investigation of the electrodeposition of tungsten from a fused-salt bath was reported 19 and of tungsten alloys from aqueous solution.20

TUNGSTEN

Investigations of alloy preparation and testing were carried on during the year,21 and expanding facilities for metals research were announced by various organizations interested in tungsten.22 monograph "summarizing recent developments in high-temperature technology" was published.23

#### WORLD REVIEW

Argentina.—Exports to the United States increased from none in 1954 to more than 2,000 tons (gross weight). It was announced ²⁴ that the United States had agreed to purchase \$2.75 million worth of

tungsten from Argentina.

Australia.—King Island Scheelite, Ltd., on King Island, produced a record 1,521 tons of concentrate valued at \$2,486,845 compared with 1,394 tons valued at \$2,366,950 in 1955. The firm's contract with the United Kingdom Government expired on May 11, and its contract with the United States Government was expected to be completed within 2 years. A program of mine mechanization and advance removal of overburden was underway to place the operation in better competitive position after completion of the United States contract. The mill treated 265,919 tons of ore in 1956, and 1,555,035 tons of overburden was removed; the tenor of ore was about 0.5 percent WO₃ and the grade of concentrate about 66 percent. An anticipated life, based on ore reserves, of about 11 years was reported. Exports to the United States increased 13 percent compared with 1955.

Belgian Congo.—This country was the leading African producer and provided 55 percent of the African exports to the United States.

Bolivia.—Certain purchase contracts between Bolivia and the United States expired in 1956, and those remaining were scheduled to end by June 1957.

A report on the mining industry of Bolivia by the New York firm of Ford, Bacon and Davis was made public in November. outlook for tungsten was reported as relatively favorable, because high mine-production capacity for the commodity still existed.

Announcement was made in December of a \$25 million stabilization fund obtained from the United States Treasury, International Mone-

Davis, G. L., and Gentry, C. H. R., The Electrodeposition of Tungsten: Metallurgia, vol. 53, No. 315, January 1956, pp. 3-16.
 Holt, M. L., Less Common Metals and Alloys: Metal Finishing, vol. 54, No. 9, September 1956,

pp. 52-53.

Powers, A. E., Effect of Molybdenum, Tungsten, and Vanadium on the High-Temperature Rupture Strength of Ferritic Steel: Jour. Metals, Trans. sec., vol. 8, No. 10, sec. 2, October 1956, pp. 1373-1377: The Influence of Molybdenum and Tungsten on Temper Embrittlement: Trans. Am. Soc. Metals, vol. 48,

Inflience of Molybdenum and Tungsten on Temper Embrittlement: Trans. Am. Soc. Metals, vol. 48, 1956, pp. 149–164.

The Tungsten Institute Information Service, 1757 K St., NW., Washington 6, D. C., Press releases.

2 American Metal Market, Metal Scientist at GE to Advise on Materials Study: Vol. 63, No. 184, Sept. 25, 1956, p. 17. Solar Research in High-Temperature Field Planned by A. D. Little; Vol. 63, No. 224, Nov. 24, 1956, pp. 1-2. Sylvania Plans Research Center Costing \$2,000,000. Vol. 63, No. 225, Nov. 27, 1956, p. 5. Metals Research Activities at Armour Research Foundation Are Outlined: Vol. 63, No. 230, Dec. 7, 1956, p. 8. Union Carbide Forms Institute for Research: Vol. 63, No. 237, Dec. 13, 1956, p. 1. Electromet Labs Expanding Fast at Niagara Falls: Vol. 63, No. 241, Dec. 19, 1956, p. 1.

28 Campell, I. E. (Ed.), High-Temperature Technology: Electrochem. Soc. Series, January 1956, 526 pp. Metal Bulletin (London), No. 4058, Jan. 6, 1956, p. 20.

TABLE 12.—World production of tungsten ore and concentrate (60-percent WO₃ basis), by countries, 1947-51 (average) and 1952-56, in short tons ¹

[Compiled by Pearl J. Thompson and Berenice B. Mitchell]

Country	1947-51 (aver- age)	1952	1953	1954	1955	1956
North America: Canada. Mexico. United States (shipments)	369 147 4, 197	1, 243 488 7, 611	2, 037 752 9, 591	1, 809 601 13, 691	1, 618 626 16, 412	1, 839 628 14, 737
Total	4, 713	9, 342	12, 380	16, 101	18, 656	17, 204
South America: Argentina. Bolivia (exports). Brazil (exports). Peru	144 2,836 1,153 522	474 4, 086 1, 967 644	661 4, 216 2, 146 1, 001	873 4, 900 1, 513 849	2 1, 225 5, 935 1, 410 893	1, 293 5, 255 3 1, 710 1, 177
Total	4, 655	7, 171	8, 024	8, 135	9, 463	9, 435
Europe: Finland France Italy Norway	4 22 664 7	52 1, 082 8 13	24 1, 443 30 9	139 1, 129 33	146 1, 187 26	74 1, 229 25
Portugal Spain. Sweden. U. S. S. R. ² . United Kingdom. Yugoslavia.	3, 624 1, 241 408 6, 500 78	5, 824 6, 040 371 8, 300 61	5, 581 3, 252 485 8, 300 67 132	5, 076 2, 827 504 8, 300 101 2 110	5, 122 1, 461 510 8, 300 80 2 110	5, 525 1, 584 504 8, 300 2 110 2 110
Total 2	12, 500	21, 800	19, 300	18, 200	16, 900	17, 500
Asia: Burma China ² Hong Kong India. Japan Korea:	1, 364 12, 300 5 25 3 53	2, 425 22, 000 115 11 531	2, 205 18, 700 165 17 805	1, 323 19, 800 33 1 860	2, 927 19, 800 28 990	2, 982 19, 800 29 791
North ² Republic of Malaya Thailand	1, 140 1, 404 63 1, 135	1, 300 4, 519 87 2 1, 750	1, 650 8, 929 162 1, 929	1, 650 4, 575 127 1, 323	1, 650 3, 757 138 1, 367	1, 650 4, 693 117 1, 411
Total 2	17, 500	32,700	34, 600	29, 700	30, 700	31, 500
Africa: Algeria Belgian Congo 6 Egypt French Morocco Nigeria Rhodesia and Nyasaland, Federation of: South-	\$ 24 499 4 10 6	54 1, 113 23 20 25	33 1, 403 15 13 20	1, 685 4 14 1	1, 733 21 3	7 1, 865 3 4
ern Rhodesia. South-West Africa. Tanganyika (exports). Uganda (exports). Union of South Africa.	94 14 4 20 179 207	463 130 15 157 290	419 165 13 197 425	281 115 6 204 675	270 133 10 180 708	287 162 7 193 330
Total	1, 057	2, 290	2, 703	2, 985	3, 058	2, 851
Oceania: Australia New Zealand	1, 523 31	2, 393 69	2, 660 44	2, 563 33	2, 765 2 33	2, 890 33
Total	1,554	2, 462	2, 704	2, 596	2, 798	2, 923
World total (estimate)	42,000	75, 800	79, 700	77, 700	81, 600	81, 400

This table incorporates a number of revisions of data published in previous Tungsten chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.
 Estimate.
 United States imports.
 Average for 1948-51.
 Average for 1 year only, as 1951 was the first year of commercial production.
 Including Ruanda-Urundi.
 Exports.

tary Fund, and International Cooperation Administration by the Banco Central de Bolivia, which retained monopoly of production of medium-and small-size mines.

Exports to the United States were 6 percent less and production 11

percent less than in 1955.

Brazil.—The Wah Chang Corp., announced plans 25 to invest \$5 million in exploiting tungsten deposits in the State of Rio Grande do Norte. Another company, Tungsteno do Brazil, S. A., organized by European and Brazilian capital, was reportedly 26 planning to mine and process scheelite. Brassinter S. A. Industria e Commercio, of Sao Paulo, manufactured tungsten carbide bits under a technical assistance agreement with Firth Sterling, Inc., of Pittsburgh, Pa.²⁷ Exports of concentrate to the United States increased more than 30 percent compared with 1955, and production increased an estimated

Burma.—Although some 590 occurrences of wolfram were known ²⁸ in the Mergui, Tavoy, and Mawchi mining areas, most of the producers were very small. Before World War II 89 percent of the total wolfram production came from 9 percent of the total number of mines. Mawchi Mines, Ltd., previously one of the large producers, was still hampered in 1956 by the presence of insurgent forces in the area. Exports of concentrate to the United States were nearly 4 percent

less than in 1955.

Canada.—Production increased 13 percent from that in 1955, but exports to the United States declined nearly 14 percent. The major tungsten producer was Canadian Exploration, Ltd., from property near Salmo, British Columbia. Burnt Hill Tungsten & Metallurgical, Ltd., made small shipments from properties in New Brunswick.

China.—Various reports throughout 1956 indicated the availability of tungsten concentrate from China for western markets. The October 16, 1956, issue of the Metal Bulletin (London), reported a trade agreement between Austria and Peking for the supply of tungsten. The American Metal Market of June 15, 1956 (vol. 63, No. 114, pp. 1-2), quoted British sources to the effect that China was aiming at production of 30,000 tons of concentrate—a 50-percent increase over the 1952 production. Trade between China and Poland presumably resulted from the visit of Communist Chinese officials to Poland in 1956.

France.—The Montredon mine began producing in 1956, increasing to six the number of active mines in France. The French-Government-sponsored Bureau de Récherches Minières reported discovery of what may be an important deposit of scheelite (the Costabonne deposit) in the eastern Pyrenees.29 Exports of concentrate to the United States in 1956 were negligible.

Metal Bulletin (London), No. 4091, May 4, 1956, p. 24.
 Mining World, vol. 18, No. 9, August 1956, p. 79.
 Mining World, vol. 18, No. 12, November 1956, p. 87.
 Griffith, S. V., Tin and Wolfram in Burma: Mining Mag., (London), vol. 95, No. 4, October 1956, October 1956, D. 87. pp. 212-215.

Metal Industry, vol. 89, No. 16, October 1956, p. 341.

Korea.—Tungsten concentrate valued at more than \$6 million, most of which was purchased by United States firms, was believed to be the largest single item of export from the Republic of Korea in 1956; it comprised nearly 17 percent of the concentrate imported by the United States. During the latter half of the year an increased proportion of the tungsten-ore trade of Republic of Korea was conducted by private interests; this factor made available smaller lots of concentrate and also introduced a wider spread in qualities of concentrate offered.³⁰ The previously announced construction of a synthetic scheelite plant by the Korea Tungsten Mining Co. apparently was still at an early stage.

Mexico.—The Minerals Engineering Co. of Grand Junction, Colo., was reported to have purchased a controlling interest in a scheelite property south of Nogales, Mexico. A 400-ton-per-day mill was planned. Exports of concentrate from Mexico to the United States

were almost 7 percent less than in 1955.

Peru.—Tungsten production increased, although exports to the

United States were less than in 1955.

Portugal.—Beralt Tin & Wolfram, Ltd., reported 31 on October 25 at the 28th annual company meeting confirmation of well-mineralized veins to a depth of 324 feet below the current main working level and also that "diamond drilling and underground workings west of the fault have disclosed veins of good-grade wolfram over an extensive area outside the bounds of what we formerly regarded as our main mine . . ."

Exports of concentrate to the United States declined 28 percent compared with 1955, but production increased about 8 percent.

Rhodesia and Nyasaland, Federation of.—The shipments of concentrate to the United States totaled only about 4½ tons although mine production was 287 tons.

Spain.—The Spanish Directorate of Mines and Fuel was reported to have authorized construction of a processing plant near Madrid, with a capacity of 600 kilos per month of "metallic tungsten and tungsten product." Exports to the United States decreased 56 percent compared with 1955, but production increased 8 percent.

Thailand.—An agreement between the Mitsui Mining & Smelting Co., Japan, and Yip in Tsoi & Co., of Thailand, for development of tungsten mines in Thailand was reported.³² Capitalization was to be at 18 million bahts (\$900,000), and the joint company was to produce 70 tons a month of concentrate in 1958, according to Mitsui. Exports to the United States were 34 percent less than in 1955, although production remained about the same.

Union of South Africa.—(O'okiep Copper Co.) early in 1956 agreed to reduce the quantity of tungsten concentrate to be delivered to General Services Administration under a contract negotiated at the beginning of the Korean War, and production in 1956 was about 50

percent less than in 1955.

Metal Bulletin (London), No. 4129, Sept. 21, 1956, p. 21.
 Metal Bulletin (London), No. 4140, Oct. 30, 1956, pp. 25-26.
 Metal Bulletin (London), No. 4117, Aug. 10, 1956, p. 35.

## Uranium

John E. Crawford 1 and James Paone 2



PVOLUTION of the domestic uranium industry during 1956 projected it to record-breaking proportions; the United States upheld its position as one of the world's leading uranium producers. Continued exploration and development resulted in substantial increases in ore reserves, particularly in the Ambrosia Lake and Laguna areas of New Mexico.

Included in the 60 million tons of domestic uranium-ore reserves were 33 deposits containing over 100,000 tons each. Several deposits were in the million-ton category. Production of ore increased; indications were that the 1956 production rate (about 3.5 million tons)

would be doubled by 1959.

Processing facilities included 12 mills with a total combined ore capacity of 8,960 tons per day in operation. Nine more were expected to be completed in 1957 or early in 1958, which would have a combined daily ore capacity of 4,775 tons. Production of concentrate from existing mills in 1956 was approximately 6,000 tons. Chemical precipitation and ion-exchange methods were used to recover uranium from digested ore in existing mills. Solvent-extraction processes were also considered to have good potential in uranium-recovery operations.

Mergers and combinations of larger firms for integration of mining and milling operations were evident; the tendency seemed to be to combine financial ability and technical skill toward a common goal of increased profit and reduced investment, operation, and maintenance expenditures. Many small mining firms were dissolved or sold out to the larger, more experienced, and financially sound, metal-mining and oil firms, which were establishing themselves in

the uranium industry.

A new domestic uranium-procurement program from April 1, 1962, to December 31, 1966 was announced by the AEC; payment of the initial production bonus was extended to March 31, 1960.

Former Commodity specialist; now nuclear activities technologist.
 Commodity specialist.

Research and development aimed at increasing and improving

the nuclear-weapons arsenal continued.

Reactor planning, designing, and utilization progressed during the year. Expansion of facilities at Hanford, Wash., and at Savannah River, Aiken, S. C., for plutonium production were completed. The civilian power-reactor program was slowly gaining momentum, while the military reactor program became an actuality, as nuclear-propulsion power proved successful by the sustained performance of the USS Nautilus. Aircraft propulsion was found to be feasible. As regards research and special-testing reactors, at least six such facilities were started up during the year, and about 11 were being built.

Electrical-power generation from nuclear sources was actively pursued, while the Nation's first full-scale civilian power reactor at Shippingport, Pa., neared completion. Construction of several large, independently owned power reactors was to be undertaken in 1957.

President Eisenhower announced that the United States would make available 40,000 kilograms of U-235, valued at \$1 billion, to assist nuclear-power development and research at home and to help friendly nations develop the peaceful uses of atomic energy. Agreements and cooperation with other countries for exploitation of nuclear activity continued; 82 nations, including the United States, approved and expected quick ratification of an International Atomic Energy Agency for mutual financial and technical assistance in developing the atom.

### **GOVERNMENT REGULATIONS**

Defense Minerals Exploration Administration contracts for uranium exploration totaled \$2 million in 1956, representing 45 executed and amended contracts. The Government expenditure in joint DMEA uranium exploration through December 31, 1956, has been \$5 million.

The Office of Defense Mobilization issued one certificate of necessity in 1956, involving a uranium-ore-processing plant. The certificate, issued to the Lucky Mc Uranium Corp. in Fremont, Wyo., on Novem-

ber 9, 1956, totaled \$6.5 billion for accelerated amortization.

Government regulations issued in 1956 included: (1) Extension of the mine-production bonus plan (Circular 6); (2) amendment of Circular 5 relative to the mine-development allowance; (3) the purchase program for uranium concentrate subsequent to March 31, 1962; and (4) the fissionable-materials sale program.

#### URANIUM

TABLE 1.—Defense Minerals Exploration Administration contracts involving uranium executed and amended during 1956, by States

State and contractor Coun	Total amount of contract 1
ARIZONA  Big Six Exploration, Inc	\$26, 788
Big Six Exploration, Inc	50, 640
Coso Uranium, Inc	30, 725
COSO Uranium, Inc	30, 120
	23, 944
American Leduc Uranium Corp	15 800
Tofforgon	16,600
Took C Toron of al	39, 586
Jimtown Uranium Co. Boulder Jefferson Jefferson	
Joseph W. Walsh Jefferson Jefferson	22, 604
Lee E. Cox & T. R. Gillenwaters	19, 900 55 590
Joseph W. Walsh Lee E. Cox & T. R. Gillenwaters Mesa Monarch Exploration Co. Saguache do	2 36, 408
Do	22, 604 19, 960 55, 580 26, 408
Union Mines, Inc. Montrose Vulcan Silver Lead Corp. Saguache and G	innison 160, 369
MONTANA	
Burmac Exploration Corp Fallon	15, 512
Colomor Corn NEW MEXICO McKinley	102, 580 41, 740 91, 908
Food Machinery & Chemical Corn	41,740
Do	91, 908
Dodo	71, 928
Four Corners Exploration Codododo	48, 424
Dodo	82,060
NEW MEXICO   McKinley   McKinley   Good Machinery & Chemical Corp   do   do   do   do   do   do   do   d	45, 580 74, 360
SOUTH DAKOTA	
Uranium Research & Development Co Fall River	29, 140
UTAH	
Transver Co. Transver	16, 675
David Borwick San Juan	5, 360
Adams Oranium Co., Inc.   Enterly	583, 020
Heela Mining Co. San Juan	21 680
LaSal Mining & Development Codododo	
LaSalle Mining Cododo	18, 734
Norbute Corp Grand Pacific Uranium Mines Co Emery	73, 840
Pacific Uranium Mines Co. Emery. do	73, 340
Do	
Standard-Col-II-Mey Joint Venture	38, 474
Uranium King Corn	2 18, 275
Westmont Exploration Ltd.	158, 004
Badium King Mines, Inc	55, 080
WASHINGTON	
Affiliated Mines, Inc	9, 460 29, 160
Antelope Mines Fremont	48, 460 9, 492
Charles M. Coleman et aldodo	24, 852
Price Exploration Co	trona 50, 436
Antelope Mines Fremont do	64, 816
Total	2, 622, 73

Government participation, 75 percent.
 Does not include amount of original contract.

#### DOMESTIC PRODUCTION

Mine Production.—Uranium ore was mined on the Colorado Plateau during 1956 in Arizona, Colorado, New Mexico, and Utah. In addition, significant tonnages were produced in Washington and Wyoming. Development and some small-scale mining of deposits was under way in California, Montana, Nevada, Oregon, Texas, and off-Plateau areas of Colorado and Utah. Exploration was in progress in most Western States, and individuals prospected for uranium in all, or nearly all, of the 48 States, and the Territories.

Ore deposits with reserves of 100 thousand tons or more were estimated at 33 by the end of 1956. Reserves of several mines were undoubtedly well over 1 million tons. On December 13, 1956, the Government released for public information statistics on ore reserves and mine production. These data disclosed that the largest part of the domestic reserve was in New Mexico. The Jackpile mine of The Anaconda Co. was the largest producer in the Grants area of New Mexico, and the nearby Ambrosia Lake deposits were also the source of sizable tonnages of uranium (based on preliminary development work). Only one company had sunk a shaft and mined ore from the Ambrosia Lake Deposits in 1956—the Rio de Oro Uranium Mines, Inc.³ The Anaconda Co. announced early in 1956 that, to the end of 1955, it had made capital investments of about \$23 million at its New Mexico uranium mines and mills.

TABLE 2.—Uranium ore reserves 1

State	Quantity (million tons)	Grade (percent U ₃ O ₈ )	Percent of United States total (based on quantity of ore)
New Mexico	- 41.0 7.5	0.24	68. 4
Colorado Arizona	4.1 2.6	.34 .33 .30	12. 5 6. 8
Wyoming	2.3 1.5	.22	4.3 3.8 2.5
Others	1.0	. 24	1.7

¹ Measured, indicated, and inferred ore, Nov. 1, 1956.

A large part of the Utah reserve was in the Big Indian district, Utah, where the extensive mining operations of the Utex Exploration Co., Standard Uranium Corp., and adjacent companies were being conducted. The Happy Jack mine in White Canyon, near Hite, Utah, estimated to contain about 1.5 million tons of ore, was sold by Cooper-Bronson owners for \$30 million to a group including Foley Bros., Inc., Lewis W. Douglas, and Edward Simmons.

Colorado's uranium-ore reserve was probably found in the old Uravan mineral district, long the source of uranium from which radium was recovered in 1912-23.

The Four Corners area (Apache County), the Monument Valley district (Navajo County), and the Cameron area (Coconino County) was the source of most uranium from Arizona.

In Wyoming the Gas Hills and Crooks Gap districts contained most of the State reserve. The Vitro Minerals Corp., Lucky Mc

 $^{^3}$  Mining World, Rio De Oro Leads the Industry to Mine First Ambrosia Lake U $_2$ O $_8$ : Vol. 18, No. 9 August 1956, pp. 53–55.

Uranium Co., Kerr-McGee Oil Industries, Inc., and Homestake Min-

ing Co. were among the larger Wyoming uranium producers.

In Washington the Spokane Indian Reservation contained the entire uranium-ore reserve. Development work continued in this relatively new center of uranium production; Dawn Mining Co. and Daybreak Uranium, Inc., were the major shippers of uranium ore during 1956, but several other organizations were preparing their

properties for production.

Some 3.5 million tons of uraniferous ore was mined in the United States from almost 1,000 operations in 1956; and, although there were a great many small mining operations for uranium, there was a noticeable trend toward consolidation of minor holdings, purchase by larger firms of many favorable-looking claims and "gopher holes," and subsidence of the penny-stock speculation. This was a continuation of the trend that made itself evident in mid-1955. It not only persevered but gained momentum in 1956. Participation in the uranium business by large, conservative metal-mining companies and the oil industry was noted.

Mill Production.—Twelve mills processed uranium ores in the United States during 1956. Three of the mills were new. They were Mines Development, Inc., mill at Edgemont, S. Dak., the Rare Metals Corporation mill at Tuba City, Ariz., and the Uranium Reduction Co. mill at Moab, Utah. Total daily mill capacity at year end was

8,960 tons.

Nine additional mills were under construction in 1956, with a total be completed and in operation by 1957 or early 1958. The AEC was also considering about eight more proposals for mills, but no decisions

were reached.

Because larger ore bodies were discovered and developed in the western United States in 1952-56, the milling capacity of new facilities was greatly increased. Process development resulted in acceptance of new, more efficient treatment methods, attaining as high as 90percent recovery. The average recovery in 1956 was about 88 percent, and some 6,000 tons of concentrate (U₃O₈ equivalent) was produced.

Private investment in milling plants was estimated at \$50 million through 1956. By early 1958, with completion of nine new mills,

the total investment would be nearly \$100 million.

Refinery Production.—At the uranium refineries, called Feed-Materials Production Centers by the AEC, production of natural uranium metal and uranium tetrafluoride (green salt) continued. The two Government-owned refineries managed by private industry in 1956 were:

National Lead Co. of Ohio, Fernald, Ohio. Mallinckrodt Chemical Works, St. Louis, Mo.

In addition, a similar facility was nearing completion at Weldon Springs, Mo. The Mallinckrodt Chemical Works will also run this

installation for the AEC.

The first privately owned and operated plant for the production of enriched uranium dioxide (UO2) for peaceful uses of nuclear energy was opened at Hematite, Mo., in 1956 by the Mallinckrodt Chemical Works. The \$750,000 refinery will produce uranium dioxide, enriched

TABLE 3.—Uranium mills in operation or under construction during 1956

Company	Location	Capacity per (tons of ore per day)		
Vanadium Corp. of America Do	Grand Junction, Colo Ford, Wash Gunnison, Colo Grants, N. Mex Shiprock, N. Mex Split Rock, Wyo Freemont County, Wyo Edgemont, S. Dak Tuba City, Ariz Maybell, Colo Mexican Hat, Utah Uravan, Colo Rifle, Colo O Moab, Utah Durango, Colo Neturite, Colo	400 200 750 500 400 250 250 300 775 850 280 1, 000 430 432	In operation. Do. Under construction. In operation. Under construction. Do. Do. In operation. Do. In operation. Do. Under construction. Do. In operation. Do. Under construction. Do. Under construction. Do. In operation. Do. In operation. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do	

to varying degrees with fissionable uranium—235. Both ceramic-grade, pellet-form uranium dioxide for filling hollow fuel-element containers and sintered material for matrix elements were to be manufactured. Uranium trioxide (UO₃) could also be produced, as well as other compounds of purified uranium for use in nuclear-research or power reactors.

Plants for converting uranium tetrafluoride into gasseous uranium hexafluoride were operated for the AEC by Union Carbide Nuclear

Co. at Oak Ridge, Tenn., and at Paducah, Ky.

AEC dollar investment in feed-materials production plant and equipment, as of June 30, 1956, was approximately \$221 million for completed facilities and approximately \$44 million for construction in progress (including expansion at Fernald, Ohio, and St. Louis, Mo.), for a total of about \$264 million.

By October 1, 1956, the AEC received seven proposals for production of refined uranium compounds from uranium ore and concentrate by industry in privately owned facilities. This was in response to the AEC public invitation of October 27, 1955, for industry to consider erecting privately owned and operated refineries for production of up to 5,000 tons (U₃O₈ equivalent) per year of purified, uranium trioxide (UO₃), uranium tetrafluoride (UF₄) or uranium hexafluoride (UF₆).

A proposal by the General Chemical Division of the Allied Chemical & Dye Corp., offered the lowest cost product to the Government and was accepted. General Chemical agreed to provide the AEC with 5,000 tons of uranium hexafluoride (U₃O₈ equivalent) a year, using a new uranium hexafluoride distillation method to accomplish necessary purification. The company plant will be operational in April 1959.

On November 5, 1956, the AEC invited proposals for the purchase and treatment of uranium-magnesium fluoride slag or scrap generated at the Fernald and St. Louis refineries. The uranium-magnesium fluoride scrap would be sold to industry on a competitive price basis, the recovered uranium purchased by the AEC at a predetermined

1251

price, and the magnesium and fluorine content of the material remain the property of the contractor. Some 75 firms discussed the program

with the AEC, but no contracts were made during 1956.

Production of Fissionable Uranium.—Uranium—235, the fissionable isotope of uranium, was produced by the gaseous diffusion process, using natural uranium hexafluoride. Industry operated three Government-owned plants for U-235 production in 1956. They were:

Union Carbide Nuclear Co., Oak Ridge, Tenn. Union Carbide Nuclear Co., Paducah, Ky. Goodyear Atomic Corp., Portsmouth, Ohio.

The Phillips Petroleum Co. managed a plant for chemical treatment of spent fuel elements at the National Reactor Testing Station near Idaho Falls, Idaho. The uranium—235 was recovered from the elements, and the mixed fission products were stored for future disposition.

#### CONSUMPTION AND USES

Production Reactors.—Additions to AEC production facilities during the year resulted in increased quantities of special nuclear (fissionable) materials. Plutonium was produced from feed materials in the Commission's eight graphite-moderated, natural-uranium-fueled reactors at the Hanford, Wash., plant and five heavy-water-moderated, natural-uranium-fueled reactors at the Savannah River plant, Aiken, S. C. Plutonium, heretofore synonymous with atomic bombs and other nuclear weapons in which it was primarily used, gained a foothold in peaceful applications of the atom; the Commission made the element available as plutonium-beryllium neutron sources for subcritical assemblies used by nonprofit educational institutions for training and research in the nuclear sciences. The neutron sources had an activity of approximately 1 curie, a flux of 1.2×106 neutrons per square centimeter per second, and a plutonium content of 15 to 16 grams. During the year plutonium-beryllium sources were distributed as follows: Yale University—5; University of Wisconsin—1; Stanford University—5; North Carolina State University—5; Department of the Navy-1; Maryland University-2; Magnolia Oil Co.—1; University of Florida—1; Armour Research Foundation—2.

Civilian Power Reactors.—Five full-scale civilian power reactors, capable of generating over 590,000 kilowatts by 1960, were being built, or companies had received construction permits for them from the The plants included: (1) The Shippingport, Pa., pressurizedwater reactor, nearly completed by Westinghouse Electric Corp., and expected to generate 60,000 kilowatts of electricity by the end of 1957 for the AEC and Duquesne Light Co.; (2) the General Electric-Pacific Gas & Electric Co. boiling-water reactor near Livermore, Calif., which was expected to start up in 1958 and to have an electrical output of 3,000 kilowatts; (3) the Commonwealth Edison (Nuclear Power Group), Dresden, Ill., boiling-water reactor, being built by General Electric with a 180,000-kilowatt electrical capacity, scheduled for start-up in 1960; (4) the Indian Point, N. Y., pressurized-water reactor, with a generating capacity of 250,000 kilowatts, to be completed by 1960 by Babcock & Wilcox for Consolidated Edison Co. of New York; (5) the Monroe, Mich., fast breeder reactor, with a 100,000-kilowatt generating capacity, being built by and for Power Reactor Development Co., Inc., to be completed in 1960.

TABLE 4.—United States research, test, and power reactors 12

Cost (thou-sand dollars)		1,100	ε	1.000	(approx.) 5, 200	2,700	200	\$ 7 F	18,000	9		(å	9 960	2, a00	308	350	
Location		Oak Ridge, Tenn Upton, N. Y	Hanford, Wash.	Savannah River, S. C	Oak Ridge, Tenn	National Reactor Testing	Station, Idaho. Oak Ridge, Tenn. Savannah River. S. C.	Hanford, Wash. Los Alamos, N. Mex.	National Reactor Testing Station, Idaho. Raleigh, N. O.	JIL.	Savanuan Kiver, S. C. do. Fort Worth, Tex	National Reactor Testing	Station, Idaho. SSN-571 Nautitus Argonne National Lahora.	tory, Lemont, III. Oak Ridge, Tenn	Fort Worth, Tex. University Park, Pa	Geneva, Switzerland National Reactor Testing	Station, Idaho. West Milton, N. Y. SSN-575 Seawolf
Fuel		90 percent U-235	do		Natural uranium	90 percent U-235	do.	do (NOs)2	UO2SO4	US2SO4		Highly enriched urani-	um. do 90 percent U-235	-do	90 percent U-235	20 percent U-235Highly enriched urani-	um. do
Coolant		Water Air	Water	qo	Air	Sodium potas-	Water do	op	qo	qo	Water	-do	do Heavy water	Water	Water	do	Sodiumdo
Moderator		Water Graphite	do do	Heavy water	Graphite		Water, Water	doWater	qo	qo	Water	qo	doHeavy water	Water	Water.	do	Berylliumdo
Start-up		1950 1950	1944 1944-55	1955	1943	1961	1950 1953	1955 1951 1952	1953	1953	1953	1953	1955	1954	1955	1955	1955 1956
Function		Researchdodo.	Specialized testing.	qo	Research and isotopes pro- duction.	Research	do	do do Research and test	Research.	op	do do	Prototype	Sub propulsionResearch	do	Research education	DemonstrationResearch	PrototypeSub propulsion
Title and owner	OPERATING	Low-intensity test reactor (AEC).  Brookhaven National Laboratory (AEC).	Hanford 305 test reactor (AEC) Hanford Engineering Works (AEC) (R reactors)	Savannah River plant (AEC) (5 reactors).	Oak Ridge X-10 area reactor (AEC).	Experimental breeder reactor-1 (AEC).	Bulk shield test facility (AEC) Thermal test reactor (AEC)	Buperpower water boller (AEC) Materials testing reactor (AEC)	Raleigh research reactor, North	Livermore water boiler (AEC) Process development pile (AEC)	Bavannah River 306 test pile(AEC) Ground test reactor (USAF) Submarine thermal reactor. Mark		S2W Obicago pile-5 (AEC)	Tower shielding facility (AEC)Aircraft shield test reactor (USAF)	Pennsylvania State University re- actor.	Geneva Conference reactor (AEC) Special power excursion reactor Test-1 (AEC)	

550	1,250					3, 550 3, 900 100 100	2,500	096				1							
National Reactor Testing Station, Idaho.	Chicago, III. D. C. Washington, D. C. Los Alamos, N. Mex. West, Jefferson, Ohio. San Ramon, Calif.	National Reactor Testing Station, Idaho. Windsor, Conn	Oak Ridge, Tenn Los Alamos, N. Mex	Santa Susana, Calif		Livermore, Calif. Ann Arbor, Mich. Oak Ridge, Tenn. Argonne National Labora-	tory, Lemont, 111. Cambridge, Mass	Brookhaven National Laboratory, Upton,	N. Y. National Reactor Testing Station, Idaho.	Santa Susana, Calif	Dayton, Ohio	Fort Belvoir, Va	National Reactor Testing Station, Idaho.	West Milton, N. Y.	SSN 586	(1) SSN578.	(3) SSN 584.	(5) SSN 587.	
90 percent U-235	88 percent UO2SO4	Highly enriched urani-	um. 90 percent UO ₃ -H ₃ PO ₄			90 percent U-235 89.5 percent U-235 90 percent U-236 20 percent U ₃ 08	90 percent U-235	do	ор		Highly enriched urani-	Highly enriched UO2	Slightly enriched ura-	Highly enriched urani-	do	qo	***************************************	ď	1
Water	-do -do -do	Water	Water	ор		do do do do	qo	qo	ф	qo	qo	qo	ор	qo	ф	qo		Ç	
Water	do do do Polyethylene	Water	Water	ф		do do do	op	do	qo	qo	qo	do	qo	do	do	фф		(	ap
1955	1956 1956 1956 1956 1956	1956	1956	1956		1957 1957 1957 1957	1957	1957	1957	1958	1958	1957							
Power experiment (2,400 kw.).	Research do. do. do.	do	Power experiment	Safety and research		Research do Research and test Research and training	Research		Test	Safety and research	Aircraft systems testing	Electric power	Large ship-propulsion pro-	Propulsion prototype	Propulsion	-qo		-	a0
ent-3	BORÁX-4). Armour Research Foundation Naval Research Laboratory (USN). Omega west reactor (AEC) Battelle Memorial Institute AGN-201 (Aero et-general unde-	onics). Heat-transfer reactor, experi- ment-1. SIG submarine reactor small	fr-eactor test (AEC-U	ment-1. Kinetic experiment on water boilers-2 (AEC).	UNDER CONSTRUCTION	Livermore pool-type reactor (AEC). University of Michigan. Oak Ridge research reactor (AEC).	(AEC). Massachusetts Institute of Tech-	nology reactor. Brookhaven medical reactor (AEC).	Engineering test reactor (AEC)	Kinetic experiment on water boll-	Nuclear engineering test reactor	Army package power reactor-1	(AEC). Large ship reactor (AEC) (2 reac-	Submarine advanced reactor	(USN). Submarine advanced reactor	(USN) (2 reactors). Submarine fleet reactor (USN) (5	reactors).		Attack submarine reactor (USN)

See footnotes at end of table.

TABLE 4.—United States research, test, and power reactors 12-Continued

	Cost (thou-sand dollars)	107, 000 54, 000 4, 000 55, 000	
	Location	Santa Susana, Calif Argome National Laboratory, Lemont, III. National Reactor Testing Station, Idaho. Shippingport, Pa. Monroe, Mich. Oak Ridge, Tenn. Livermore, Calif. Dresden, III. Indian Point, N. Y. National Reactor Testing Station, Idaho. Station, Idaho.	90 percent UO3+H3PO4. Los Alamos, N. Mex
nonimino e incomo i in il a	Fuel		90 percent UO3+H3PO4-
	Coolant		water
	Moderator	Graphite Water Polyphenol Water dodo do	W abot
	Start-up	1967 1967 1967 1960 1960 1960 1960 1960 1967	7901
	Function	(AEC). Power prototype (6,000 kwy). reactor kwy. prototype (5,000 kwy). Leberic power (60,000 kwy). Leberic power (100,000 kwy). Research and development. Pacific Electric power (30,000 kwy). Leberic power (30,000 kwy). Leberic power (250,000 kwy). Research and kwy). Leberic power (250,000 kwy). Research ment. Research ment. Pacific power (250,000 kwy). Research Pacific power (250,000 kwy). Research Pacific power (250,000 kwy). Research Power experiment.	
	Title and owner	under construction—continued Sodium reactor experiment (AEC).  Experimental boiling-water reactor (AEC).  Organic moderated reactor experiment (AEC).  Pressurized-water reactor (AEC).  Duquesne Light Co.,  Power Reactor Development Co  Homogeneous reactor, experiment No. 2 (AEC).  General Electric Co., and Pacific Gas & Electric Co., and Pacific Gas & Electric Co., and Pacific Commonwealth Edison Co  Consolidated Edison Co. of New Special power excursion reactor-2  Special power excursion reactor-2  Establishment-2  Establishment-2  Special Dower excursion reactor-3  Heat-transfer reactor experiment-3  Los Alamos Dower reactor experiment-3	ment-2.

¹ List does not include 34 critical experiments and zero power reactors.

² Atomic Energy Commission, Radiation Safety and Major Activities in the Atomic Energy Programs; July-December 1956: January 1957, 396 pp. Raytheon Manufacturing Co., Nuclear Reactor Data 2: December 1956, 21 pp.

At least 10 reactors, which would provide a total combined generating capacity of over 800,000 kilowatts by 1964, were in various stages of planning. The list of operators included: (1) Yankee Atomic Electric Co., Rowe, Mass.; (2) Consumers Public Power District, Beatrice, Nebr.; (3) Rural Cooperative Power Association, Elk River, Minn.; (4) Wolverine Electric Cooperative, Hersey, Mich.; (5) Chugach Electric Association, Inc., and Nuclear Development Corp. of America, Anchorage, Alaska; (6) City of Piqua, Ohio; (7) Pennsylvania Power & Light Co., eastern Pennsylvania; (8) nuclear merchant ship reactor (shipboard); (9) Florida Power Corp., Florida Power & Light Co., and Tampa Electric Co., Fla.; and (10) New England Electric Co. Two firms, Carolina-Virginia Nuclear Power Associates, Inc., and Middle South Utilities, Inc., also expressed the intention of entering the nuclear power field.

Military Power Reactors.—Two full-scale military power reactors operated during 1956; they were used for propulsion purposes and involved the submarines, U. S. S. Nautilus and the Seawolf, designated as SSN 571 and SSN 575, respectively. Successful performance of the Nautilus which traveled over 50,000 miles in 2 years, resulted in contractual agreements for several nuclear-powered submarines. Reactors for Skate—SSN 578, Swordfish—SSF 579, Sargo—SSN 583, Seadragon—SSN 584, Skipjack—SSN 585, and the Halibut—SSN 587, were to be developed and manufactured by Westinghouse and

the Triton (with two reactors) by General Electric.

The Army Package Power Reactor (APPR), Fort Belvoir, Va., neared completion and was expected to begin operation early in 1957. Other prototype and experimental reactors being built for the military forces during the year included the Large-Ship Reactor Prototype at the National Reactor Testing Station, Idaho; Submarine Advanced Reactor, West Milton, N. Y.; Heat-Transfer Reactor, Experiment 2, Lockland, Ohio; Small Submarine Reactor, Windsor, Conn.; and the Aircraft Reactor Test, Oak Ridge, Tenn.

It was publicly announced in 1956 that plans were underway for an Army Package Power Reactor for Alaska, six additional nuclearpowered submarines, a Guided-Missile Cruiser (2 reactors), and an

aircraft carrier with eight reactors.

Research and Test Reactors.—The Experimental Boiling-Water Reactor (EBWR) at Lemont, Ill., went critical in 1956 and was expected to be producing 5,000 kilowatts of electricity early in 1957.

The Sodium-Reactor Experiment (SRE) at Santa Susana, Calif., being built by Atomics International, a division of North American Aviation, was expected to begin operation early in 1957. The Naval Research Laboratory, Washington, D. C., completed and was licensed to operate a 100-kilowatt swimming-pool reactor.

Armour Research Foundation, Chicago, Ill., was granted a license to operate a water-boiler-type nuclear reactor for industrial research. The reactor, in Chicago proper, utilized 1,300 grams of fissionable

U-235 in a uranyl sulfate solution as fuel.

The Battelle Memorial Institute, Columbus, Ohio, completed and began operation of a 1,000-kilowatt swimming-pool-type reactor designed exclusively for research purposes.

The Engineering Test Reactor neared completion at the National Reactor Testing Station, Idaho, and was scheduled for operation early in 1957.

The Organic Moderated Reactor Experiment, National Reactor Testing Station, Idaho, being built by Atomics International for research toward increased efficiency in power reactors, was expected to be completed in 1957.

The Heat-Transfer Reactor Experiment No. 1, at the National Reactor Testing Station, made a significant advance toward nuclear-powered aircraft; the reactor supplied heat that exclusively powered a turbojet engine.

Construction of the Argonne Low-Power Reactor began at the National Reactor-Testing Station; it is hoped that the ALPR-type reactor could generate both electric power and space heat for remote installations.

Natural uranium metal and neutron sources were loaned by the AEC to New York University, the University of Florida, and Virginia Polytechnic Institute for use in subcritical assemblies for training nuclear engineers; each loan consisted of 5,500 pounds of uranium metal. Other institutions approved for similar loans included Alabama Polytechnic Institute, City College of New York, Cornell University, Georgia Institute of Technology, Iowa State University, Massachusetts Institute of Technology, North Carolina State College, Ohio State University, Reed College, Stanford University, University of Maryland, and Yale University.

President Eisenhower announced that the United States would release 40,000 kilograms of uranium-235 worth \$1 billion over a 40-year period for use as atomic fuel; of this, 20,000 kilograms would be shipped abroad to free countries not possessing production facilities of their own.

Radioisotopes.—Domestically produced radioactive isotopes for bulk distribution were made principally at Oak Ridge National Laboratory, Oak Ridge, Tenn., which supplied some 2,700 users with radioisotopes. The quantity of radioactive material distributed was about double that in 1955, but the number of shipments increased only slightly. Isotopes were used by over 700 firms for gaging and thickness control, and about 350 companies employed isotopes in radiographic inspections. Other applications included utilization of radiation effects, activation of luminescent materials and phosphors, and manufacture of ionization sources.

Weapons.—Production of atomic weapons continued; research and development were directed toward increasing and improving the domestic nuclear-weapons arsenal.

A series of nuclear tests designated as Operation Redwing, which were conducted during the year, revealed significant data relative to reduction of radioactive fallout from nuclear explosions.

TABLE 5.—Radioisotopes shipped by the United States Atomic Energy Commission, by kinds, 1946-56, in number of shipments

[Atomic Energy Commission]

Radioisotope	Shipments, Aug. 2, 1946, to Dec. 31, 1955	Shipments, Jan. 1, 1956, to Dec. 31, 1956	Total shipments, Aug. 2, 1946, to Dec. 31, 1956
Iodine 131 Phosphorus 32 Carbon 14.	28, 700	4, 620	33, 320
	16, 965	2, 445	19, 410
	2, 385	273	2, 658
	243	208	451
Hydrogen 3 Strontium 89, 90 Cobalt 60 Cesium 137	924	160	1, 084
	1,184	245	1, 429
	636	127	763
	193	125	318
Iridium 192 Other Total	25, 583	5, 382	1 30, 965 90, 398

¹ Includes irradiated units.

TABLE 6.—Radioisotopes shipped from Oak Ridge National Laboratory, by years, 1946-56

[Atomic Energy Commission]

Year	Shipments per year	Total shipments	Year	Shipments per year	Total shipments
1946	281 1,897 3,618 5,633 7,995 9,475	281 2, 178 5, 796 11, 429 19, 424 28, 899	1952 1953 1954 1955 1955	10, 691 12, 027 12, 585 12, 611 13, 585	39, 590 51, 617 64, 202 76, 813 90, 398

The development work on nuclear weapons carried out at the Radiation Laboratory, Livermore, Calif., by the University of California was augmented by ordnance engineering functions carried on by Sandia Corp., Albuquerque, N. Mex.

Nonenergy Uses.—Nonenergy uses of uranium diminished; statistics showing AEC authorizations for purchase of uranium compounds for nonenergy purposes in the United States were no longer compiled by the Commission. A very minor amount of uranium measured in hundreds of pounds was used by the glass, ceramic, and chemical industries for nonenergy uses.

## **PRICES**

Uranium Ore.—The AEC guaranteed purchase prices for uranium ore and its bonus plan for initial production of uranium were effective in 1956. The ore-buying schedule described in AEC Circular 5 was to be valid through March 31, 1962. The bonus plan described in AEC Circular 6, which was valid through February 28, 1957, was extended to March 31, 1960, on May 24, 1956.

The text of Circulars 5 and 6 was published in the Uranium and

Radium chapter of Minerals Yearbook, 1954.

On May 24, 1956, the AEC announced a new domestic uranium procurement program effective April 1, 1962 (the day subsequent to termination of the current ore-buying schedule), and extending through

December 31, 1966.

Under the new program the Commission guaranteed to purchase all normal uranium concentrates or precipitates produced by uranium mills, at a price of \$8 per pound of contained U₃O₈. The purchase plan was subject to a limitation, at the AEC's option, of 500 tons of U₃O₈ per year from one mining property or mining operation, and to compliance with AEC concentrate specifications. Quantities exceeding 500 tons could be purchased at less than \$8 per pound.

The new procurement program when it becomes effective April 1, 1962, will insure a more competitive industry. Until April 1, 1962, the Commission was to continue to purchase uranium ore at specified prices. Under the new regulation, however, the mill-concentrate producer will be free to bargain with the uranium miner for his ore output. Thus, a gradual transition from a Government-controlled uranium market to a commercial market may be expected. After April 1, 1962, mill producers may also sell to licensed domestic consumers, as well as the AEC.

Uranium Metal.—Qualified and licensed users of normal uranium metal in the United States and abroad could purchase the material from the AEC in 1956 at \$40 per kilogram (about \$18 per pound). Foreign purchasers were required to have a bilateral nuclear-energy

agreement with the United States.

Uranium-235.—On November 18, 1956, President Eisenhower announced terms and conditions under which nuclear fuel would be available to other nations under bilateral agreements for cooperation in nuclear-energy programs. The terms would provide to other nations supplies of nuclear fuel at the same prices that the AEC would charge domestic consumers under the United States nuclear-power

program

The new schedule of charges superseded the charge of \$25 per gram of uranium–235 in uranium enriched to 20 percent, announced on August 8, 1955. The earlier charge was for uranium as metal, while the new schedule was for uranium hexafluoride (UF₆). The cost of conversion to metal or other forms must be borne by the user. Generally, the fissionable uranium would be leased for research agreements and sold where power agreements were involved. The contract for sale or lease would contain terms relating to delivery, form of material, quantity, price, assaying, and other appropriate provisions.

The charges for fissionable uranium fuel in the form of UF₆, in varying degrees of enrichment, shown in table 7, apply to transactions in

the United States and abroad.

Costs of reprocessing spent nuclear fuel obtained under agreement with the AEC will be borne by the consumer. The reprocessing would be done at the discretion of the Commission in either AEC facilities or those acceptable to it.

Information on fissionable materials sale and lease program, is given in appropriate AEC releases,4 or the 21st Semiannual AEC

Report, appendix II, pages 339-344.

⁴ Atomic Energy Commission, Press Release: Nov. 18, 1956, 15 pp.

7.—Charges				

Dollars per kilogram of uranium (as UF ₆ )	Weight fraction, U-235	Dollars per gram of U-235 enrichment	Dollars per kilogram of uranium (as UF ₆ )	Weight fraction, U-235	Dollars per gram of U-235 enrichment
40.50	0. 0072 . 0080 . 0090 . 010 . 020 . 030 . 040 . 050 . 060 . 070 . 080	5. 62 6. 25 6. 97 7. 58 11. 00 12. 52 13. 39 13. 96 14. 38 14. 68 14. 94	1,362.00 1,529.00 3,223.00 4,931.00 6,654.00 8,379.00 10,111.00 11,850.00 13,596.00	0.090 .10 .20 .30 .40 .50 .60 .70 .80	15. 13 15. 29 16. 12 16. 44 16. 64 16. 76 16. 85 16. 93 17. 07

Uranium-233.—The AEC also announced on November 18, 1956, guaranteed fair prices to be paid for uranium-233 (and plutonium) produced in nuclear reactors operated under license in the United States from July 1, 1962, to June 30, 1963. For uranium-233 nitrate the AEC agreed to pay \$15 per gram (for plutonium metal, \$12 per gram). The prices were based on the estimated potential fuel value of the fissionable material. The same values would be paid for the breeder byproducts of foreign reactors, fueled with material provided by the United States.

The prices to be paid for uranium-233 (and plutonium) produced in licensed nuclear reactors before the July 1, 1962, date mentioned above were established by the AEC in 1955. They were to be effec-

tive from July 1, 1955, to June 30, 1962.

# FOREIGN TRADE

The Combined Development Agency, a working group consisting of members of the United States Atomic Energy Commission, Atomic Energy of Canada, Ltd., and the British Atomic Energy Authority, arranged for shipments of uranium ore and concentrate to the United States from: (1) The Shinkolobwe mine of the Union minière du Haut Katanga, Belgian Congo; (2) the Witswatersrand, Union of South Africa; (3) Canadian deposits at Great Bear Lake, the Beaverlodge area, and the Blind River area; (4) Rum Jungle and Radium Hill, Australia; and (5) the Urgeirica mine, Portugal.

As of December 31, 1956, the AEC had arranged bilateral nuclear agreements with 39 nations. Under such agreements broad interchange of information, personnel, and skill in the field of nuclear energy was possible. Conferences, meetings, training programs, and reciprocal visits offered opportunities for advancing nuclear technology. An American Atoms-for-Peace Mission visited six countries. The AEC opened liaison offices in London and Paris and participated in the 82-nation conference that adopted the statute for the International Atomic Energy Agency.

In October 1956 the AEC and Export-Import Bank agreed to jointly sponsor financial assistance to foreign countries in constructing nuclear-research or power reactors, assuming that such countries as requested aid had entered into bilateral agreements with the United

States and could provide evidence of their good faith.

Grants had been previously made through the Mutual Security Act of 1956 to friendly nations with bilateral agreements that asked financial aid in reactor construction. The contribution was limited to \$350,000, or one-half the total cost of the reactor project, whichever was less. Grants of \$350,000 each were approved to Brazil, Denmark, the Netherlands, and Spain. Requests for grants from Belgium, Israel, Japan, and the Federal Republic of Germany were under consideration.

On September 24 the United States, United Kingdom, and Canada signed an agreement with respect to nuclear-energy discoveries or inventions that were patented, or patents applied for, in any one of

the three countries.

President Eisenhower announced that the United States Government would make 40,000 kilograms of fissionable U-235 available to assist in developing peaceful uses of nuclear power in the United States and abroad.

# **TECHNOLOGY**

Mining.—Exploration for and development and mining of uraniumore deposits were conducted principally by private interests; the year marked almost complete withdrawal of direct Government exploration for domestic uranium deposits. Private drilling during the year totaled about 8.5 million feet; Government drilling for uranium ceased in 1956. A publication on uranium exploration and production techniques was issued in 1956.⁵

Increased attention was directed toward solution of mining problems, which increased and became more difficult as larger and deeper deposits of uranium were exploited by opencut and underground

mining methods.

The Anaconda Co. Jackpile mine near Grants, N. Mex., was the largest opencut uranium mine in the United States in 1956; its operations supplied ore for the Anaconda 3,000 ton-per-day mill, the

largest capacity uranium mill on the Colorado Plateau.

A huge stripping program was under way during the year by Continental Uranium, Inc., at the Deep North Rattlesnake ore body in San Juan County, Utah. Plans included the stripping of 2.5 million yards of overburden to recover 75,000 tons of uranium—a stripping ratio of 30:1. Continental expected to net \$300,000 more

than could be obtained from underground extraction.

Underground uranium-mining methods and costs were described during the year.⁶ The trend in mining was toward development of new specialized equipment, higher percentage pillar recovery, more efficient roof control, and effective ventilation. Jackleg drills used in development work were replaced in larger mines with highly mechanized tractor-mounted drilling jumbos, resulting in decreased maintenance and increased productivity. Self-propelled units, known by the trade-name Gismo, for loading, transporting, and dumping ore were introduced in many larger mines; operated by one man, the machine was found to speed up the drilling-mucking-loading cycle.

 ⁵ Bureau of Mines, Facts Concerning Uranium Exploration and Production: 1956, 130 pp.
 ⁶ Dare, W. L., and Durk, R. R., Mining Methods and Costs, Standard Uranium Corp., Big Buck Mines, San Juan County, Utah: Bur. of Mines Inf. Circ. 7766, 1956, 51 pp.

The room-and-pillar system of mining gained in popularity. At least one mine employed an unsual method of pillar recovery; the pillars that could not be safety recovered from the stope level were carefully measured, sampled, and wrapped with strong binding material, such as fence wire. Upon completion of mining on the stope level, values of the unrecovered pillars were estimated, and a comparison was made against the estimated cost of driving under them and and pulling out the ore; under profitable circumstances the pillars would be recovered by raising from a subdrift under the remaining ore.

Roof-control and roof-support practices included roof bolting, roof-bolt-supported landing mats, roof-bolt-anchored chain-link fencing,

and in some instances, steel beams.

A longwall mining system was applied in one of the deepest uranium mines on the Colorado Plateau by Hecla Mining Co. The operation known as the Radon mine contained an estimated 300,000 tons of ore averaging 0.7 percent U₃O₈; the production rate was about 300 tons per day by the end of the year. Hecla drove strike drifts to the boundaries of the roughly rectangular Radon ore body and retreated by means of longwalling to the centrally located 690-foot-deep, 3-com-

partment shaft.

Ventilation of uranium mines received considerable attention. Inasmuch as uranium ores contain all the members of the radioactive series, radon and its daughter elements, which are potentially most hazardous to uranium miners, were studied by the Public Health Service and other Federal and State agencies. Inhaled radon gas and its daughter products were believed to cause lung cancer and other diseases of the respiratory system. The Industrial Commission of Utah issued orders, effective January 1, 1956, that the atmospheric concentration of the immediate daughters of radon in Utah uranium mines should not be permitted to exceed 300 micromicrocuries per liter (MMCL). Figures compiled during the year revealed that 64 percent of the uranium miners in 1952 worked in atmospheric concentrations of 1,000 or more micromicrocuries per liter—over 3 times the maximum permissible limit set by the State of Utah. Although no Federal agency had established standards for maximum permissible concentration of radon daughter products (Ra A, Ra B, and Ra C), available information indicated that a level of 300 micromicrocuries appeared reasonably safe and would not be too restrictive to mining operations. Conventional forced-ventilation techniques usually would rid the mine of such hazards.7

Milling.—Uranium ore was treated by acid and carbonate leaching

methods in 1956, both in the United States and abroad.

Some Colorado Plateau acid-leach mills employed percolation leaching in filter-bottom tanks; in South Africa rubber-lined pachuca tanks were considered best; and in Canada either Dorr-type air-lift agitators or pachucas were used. Most plants employed continuous leaching, but some batch operations were noted, particularly in South African mills.

In nearly all mills chemical oxidants were used to assist in acid leaching of uranium. Many oxidants were applicable, but cost and

National Public Health Service, Control of Radon and Daughters in Uranium Mines and Calculations on Biologic Effects: Pub. 494, 81 pp.

availability generally limited use to manganese dioxide and sodium chlorate.

Carbonate (alkaline)-leach mills utilized a mixture of sodium carbonate and sodium bicarbonate to dissolve the uranium. A fine-ore grind and elevated temperatures were necessary to effect a reasonable uranium-solution rate. The process was sensitive to the adjustment of carbonate and bicarbonate ionic ratios, and the concentration of both ions in the solution had to be high.

Because oxidation was more critical in carbonate leaching than in acid leaching, potassium permanganate often was used in normal atmosphere digestion systems for extractions of uranium from relatively refractory ores. In processes where the carbonate leaching was carried out under pressure, air oxidation was utilized for the same

purpose.

Autoclaves, pachucas, and methods of mechanical agitation were all found applicable to carbonate leaching in batch or continuous

operations.

Recovery of the uranium from the leach solution was possible by (1) separating the pregnant liquor from the barren residues and extracting from the clear liquor or (2) making a direct recovery of

uranium from the slurries and pulps of the digestion tanks.

The simplest procedure practiced in uranium milling for recovery of uranium was a straight chemical precipitation by an alkali, a fluoride, a phosphate, an arsenate, or hydrogen peroxide. Solid-liquid-separation, precipitation, and filtration equipment was used. It was practical, however, only on liquors that were clarified. In acid-digestion circuits costs of chemical precipitation were high because of the reagent consumption necessary to neutralize the acid liquors. Often the precipitate would have to be upgraded to meet purchase specifications. Chemical precipitation in carbonate-leach systems was possible by adding alkali to the uranium-loaded filtrate, increasing the pH to the point where the uranium was precipitated out of solution.

Ion-exchange using resins was found practical for uranium recovery from sulfuric-acid leach solutions. The clarified, pregnant leach liquors were passed over beds of ion-exchange resins packed in columns until the resin beads were loaded with uranium. Following enough passthroughs of the liquor to load the resins, the beds were washed, and the uranium was removed from the resins by a nitric acid-nitrate salt solution or a sodium chloride-sulfuric-acid solution. Uranium was precipitated from the eluant by adding ammonia, caustic soda, or magnesia and the precipitate filtered and dried for

shipping. The resins were regenerated and reused.

Where it was virtually impossible to effect reasonably good separation of the pregnant leach liquor from the barren residues, a resinin-pulp process was evolved that was most applicable to recovery of uranium from such material. The process was essentially a fluidized bed ion-exchange system. The resins were similar in chemical characteristics to those used in ion-exchange columns but were of a much larger particle size. The resins were placed in stainless-steel wire mesh or perforated stainless-steel baskets and the desanded ore pulps fed into a series of cells containing the resin-filled baskets. The baskets were kept in constant motion to insure complete contact

between the resin beads or grains and the uranium-bearing pulp. The barren pulp was discarded, the loaded resins were eluted cellby-cell with an acidified salt solution, and uranium was precipitated from the eluate with ammonia, magnesia, or caustic soda, as in the column process. The resin-in-pulp process was used on acid-leach pulps but was also being studied for adaptability to carbonate-leach pulps.

While resin-in-pulp ion-exchange processes may eliminate the often expensive filtration and clarification step, two major drawbacks to it were the large quantity and high cost of resins required and the

high mill-investment and maintenance costs.

An innovation in uranium recovery from leach solutions gained in popularity during 1956. It was the solvent-extraction method, previously applied to removing uranium from ore concentrates at refineries and used for several years in the byproduct recovery of uranium from Florida phosphate rock. The clarified leach liquor was contacted with an organic solution, which selectively extracted the uranium from the pregnant liquor. The important factors in successful solvent extraction were, among others, choice of the most effective organic, proper mixing of pregnant liquor and organic, and efficient stripping of the loaded organic.

Straight or branched-chain alcohols of eight or more carbons with phosphorus pentoxide in a kerosine diluent were employed in pilotplant runs of Colorado Plateau ore. Amines and other organic extractants were investigated. The Bureau of Mines Intermountain Experiment Station at Salt Lake City, Utah, was instrumental in developing this process for Colorado Plateau-type ores. The Vitro Corp. mill at Salt Lake City, Utah, was being modified to include a solvent-extraction circuit. Other mills being planned in 1956 may

use the new process.

Solvent extraction of uranium from ion-exchange eluates also appeared practical; and it might be applicable to extraction of uranium from leach pulps or slurries, obviating the clarification step. The problem of entrainment of organic in the pulps was the major obstacle in developing this type of process. Of more dramatic consequence was investigation of possible direct leaching of uranium ore with a suitable nonaqueous solvent. High extraction rates and recovery of solvent from the ores were the points of most concern, if the method was ever to compete with present processes.

There were study and some application of physical concentration of uranium-bearing minerals, but the results were not very success-Few uranium ores found are amenable to known techniques.8

⁸ Lenneman, W. L., Metallurgical Treatment of Uranium Ore: Min. Eng., vol. 8, No. 6, June 1956, pp. Ross, A. H., Uranium Metallurgy: Canadian Min. and Met. Bull., vol. 49, No. 532, August 1956, pp.

^{570-576.} Mindler, A. B., and Termini, A. B., The Vital Role of Ion Exchange in Uranium Production: Eng. Min. Jo P., vol. 157, No. 9, Septymber 1956, pp. 100-105, 114. Bit er, E. C., A New Acid Process for Urani m Ores: Mining Mag., vol. 46, No. 1, January 1956, pp.

^{21, 59.}Chemical Engineering, More Urani m Secrets Can Now Be Told: Vol. 63, No. 5, May 1956. pp. 124, 126. rg:ll, G. O., How Rare Net ils New Mill Recovers U₃O₈ From ricola's Painted Desert: Min. World. vol. 18, No. 10, September 1956, pp. 68-73.
Osborn, C. E., Sturting a New Urani m Mill: Min. Cong. Jour., vol. 42, No. 5, May 1956, pp. 56-58.
Kurin, R., and Preuss, A. F., Jon Exchange in the Atomic Energy Program: Ind. Eng. Chem., vol. 48, No. 8, August 1956, pp. 30A-35A.

Refining.—At the new Mallinckrodt Chemical Works Hematite, Mo. uranium refinery, pure and enriched uranium dioxide, uranium trioxide, and other uranium fuel compounds were produced from uranium hexafluoride (UF6) raw material. Cylinders of UF6 were heated electrically; the gas vaporized through pigtail pipes into water traps, where the UF6 hydrolized into hydrogen fluoride (HF) and uranyl fluoride (UO2F2). The uranium was precipitated from the aqueous uranyl fluoride as ammonium diuranate, with the addition of aqueous ammonia. The ammonium diuranate was filtered, washed, and dried, after which it was thermally decomposed by pyrohydrolysis, using steam. The uranium oxide (U₃O₈) thus produced was dried and reduced with hydrogen at high temperatures to give uranium dioxide (UO2). A pelletized UO2 was prepared for certain nuclear fuel applications. A sintered UO2 was made by heating UO2 to about 1,700° C. in a molybdenum boat. Particle sizes were made ranging from 2 to 100 microns.

Stainless-steel processing equipment was generally used at the Hematite plant; and, where corrosion was severe, Monel, Inconel, or molybdenum was necessary. Special precautions were required for protection against leakage of uranium hexafluoride gas. Grinding and screening operations were carried out in dry boxes, independent of the room-ventilating system, and conducted at reduced pressures. If leaks occurred, air entered the box instead of escaping from it. Workers' clothing was prewashed at the factory; any uranium detected

in the wash water was recovered.

Pyrometallurgy as a means of reprocessing spent fuel elements was discussed at the Electrochemical Society meeting in May 1956 at San Francisco. The costs of certain pyrometallurgical methods were believed to be less than the present aqueous chemical separation methods. The advantages of pyrometallurgy techniques were indicated as (1) relative stability to radiation fields, (2) short processing time, and (3) small volume of fission-product wastes. Methods investigated include extraction with molten metals, extraction with molten salts, oxidative slagging, voltatilization, and electrorefining. 10

Uranium metal and uranium tetrafluoride were produced at the AEC's Fernald, Ohio, uranium refinery in 1956 by digesting uranium-mill concentrates containing a minimum of 75 percent  $\rm U_3O_8$  in nitric acid; the resulting slurry was pumped into pulsed, perforated-plate, liquid-liquid extraction columns, where it was contacted with tributyl phosphate in kerosine. The uranyl nitrate was removed from the slurry by the solvent, after which the loaded solvent was contacted with water in a second pulsed, perforated-plate column. The uranyl nitrate was partly removed by this scrubbing and the aqueous solution returned to the primary solvent-extraction column. The purified uranyl nitrate in solvent was recovered from the water-scrub column by reextraction with pure water in a third pulsed, perforated-plate, strip column. The stripped solvent was recycled to the primary extraction column via a solvent treatment and storage system.

Chemical and Engineering News, Uranium Pyrometallurgy, First Look: Vol. 34, No. 22, May 28, 1956, p. 2690.
 Niedrach, L. W., and Glamm, A. C., Electrorefining for Removing Fission Products From Uranium Fuels: Ind. Eng. Chem., vol. 48, No. 6, June 1956, pp. 977-981.

URANIUM 1265

Because of nitric-acid costs and disposal problems, a nitric-acid recovery plant was operated to reclaim acid from the raffinates of the

primary extraction columns.

The aqueous uranyl nitrate product was converted by evaporation to a molten salt of uranyl nitrate hydrate and the hydrate transformed into the orange uranium trioxide (UO₃) by calcination. The UO₃ was reduced to the brown uranium dioxide (UO₂) with hydrogen produced by the catalytic dissociation of ammonia. With anhydrous hydrogen fluoride (HF) the UO₂ was converted to uranium tetrafluoride (UF₄). The excess hydrogen fluoride required for conversion was recovered from the hydrofluorination reactor off-gas stream by fractional condensation.

iractional condensation.

Uranium metal was produced by mixing the UF₄ with high-purity metallic magnesium chips and charging the material into a refractory-lined bomb. The bomb was capped, inserted in a Rockwell furnace, and heated until a thermite-type reduction took place, which resulted in the formation of a uranium-metal derby at the base of the bomb and a magnesium fluoride slag. The uranium-metal derby was removed, cleaned, weighed, and transferred to a melting and casting facility, where it was loaded in a refractory-lined crucible. The crucible was placed in a vacuum-induction furnace and the metal heated to above its melting point. The crucible was then bottom-tapped and the metal poured into molds, where it was allowed to solidify under inert atmosphere until the temperature dropped to a few hundred degrees Fahrenheit. The mold was next opened and the uranium ingot removed and cropped, samples were taken, surface defects were ground off, and the ingot sent to the rolling mill.

Ingots were charged into a electrically heated salt-bath furnace and in about 1 hour reached the necessary rolling temperature. Then, in a primary mill, the ingot was rolled into a billet, and the billet was reduced to a round rod and sheared to the desired length. The rods were straightened and cropped and subsequently fed into screw machines for turning to the appropriate diameter and cut into slugs. Centerless grinding machines reduced the diameter of the uranium slugs to the necessary tolerance, after which the ends of the slugs were machined on lathes and the corners rounded. A nitric-acid pickling bath completed the operation, and sound slugs were declared ready

for shipment.

Uranium-bearing reject and scrap material from the metal reduction, casting, and fabrication facilities were carefully recovered, and an

accurate inventory was conducted of all uranium in process.11

Similar methods were used by the Mallinckrodt Chemical Works to refine uranium concentrates at the AEC St. Louis, Mo., plant. In the Mallinckrodt operation, however, the solvent used for extracting the uranyl nitrate from the concentrate slurry was ethyl ether.

Pyrophoricity.—Because of several unusual metal fires and explosions involving refined uranium metal and other metal products used in the nuclear energy program, the AEC intensified its efforts in the investigation of such incidents. The Commission's metal-pyrophoricity research activities were expanded. From the studies and

¹¹ Arnold, D. S., Polson, C. E., and Noe, E. S., Production of Uranium Metal: Min. Eng., vol. 8, No. 6, June 1956, pp. 608-610.

investigations, the AEC and industry hope to obtain fundamental information promoting increased safety in manufacturing and utilizing such heavy pyrophoric metals as uranium, plutonium, thorium, and others. Some fundamental information may also be obtained at the same time on ways of attaining oxidation- and water-resistant alloys and better understanding of how to prevent and control high-energy and explosive water-metal reactions.¹²

# **WORLD REVIEW**

Significant tonnages of uranium were mined in Canada, Union of South Africa, and Belgian Congo. Australia, Portugal, France, and Sweden also contributed to the Free World supply, and many countries were developing known occurrences or exploring for the radioactive element.

Nearly all the countries of the world were investigating the applicability of nuclear-produced power to the future power requirements of their nations. Many were arranging for the purchase and constructon of nuclear research reactors to obtain more scientific background and experience. Great Britain, France, and Russia already were producing commercial power from reactors and had plans for extensive nuclear power-development programs.

Not only were the power aspects of nuclear energy being exploited; the use of radioisotopes in medicine, agriculture, and industry was

growing in a number of countries.

Of utmost concern was the lack of trained and experienced technologists to conduct the necessary programs in nuclear energy research and development. Active measures were being taken to alleviate the scientific and professional manpower shortage.

#### NORTH AMERICA

Canada.—During 1956, great advances were made in the Canadian mining industry, allowing Canada to maintain its position as one of the leading uranium producers of the world. The Geological Survey of Canada reported that, by the end of March 1956, the total number of mining properties with at least one radioactive occurrence containing 0.05 percent or more of uranium or thorium was 1,500. Some 3 survey groups were exploring for uranium, reaching into each Province, including the Yukon and Northwest Territories. At the end of March 1956 the Atomic Energy Control Board announced that 432 exploration permits were in force, distributed as follows: Alberta, 4; British Columbia, 9; Northwest Territories, 33; Manitoba, 4; Saskatchewan, 131; Ontario, 212; Quebec, 36; and New Brunswick, 3. About half of the permit holders did a considerable amount of work during the period. Six mining permits were in force, as follows: Saskatchewan, 3; and Ontario, 3. Two other properties shipped development ore under amended exploration permits by the end of March. 13

The capacity for uranium-ore production increased 200 percent in 1956, and the value of production was raised 100 percent to about \$50 million. Production was expected to reach \$300 million a year

Nucleonics, Pyrophoricity—a Technical Mystery Under Vigorous Attack: Vol. 14, No. 12, December
 pp. 28-33.
 Atomic Energy Control Board of Canada, Annual Report, 1955-56: Ottawa, 1956, 11 pp.

1267 URANIUM

by 1958, when companies with Government contracts for uranium reach full production.

Canadian uranium-ore reserves were revealed to be about 225

million tons, containing about 237,000 tons of uranium.¹⁴

The Crown company, Eldorado Mining & Refining Ltd., designed a uranium-metal-producing plant with enough capacity to meet Canada's Reactor-grade uranium demands, which were being supplied by imports from the United States. The plant was expected to be in operation late in 1957.15

Northwest Territories.—In the Great Bear Lake area, just south of the Arctic Circle, the historic Port Radium branch of Eldorado Mining & Refining, Ltd., continued to investigate potential ore zones and produced uranium from underground mining operations

and dredging of tailing previously deposited in Great Bear Lake. Rayrock Mines undertook erection of an acid-leaching plant in the Marion River region to process uranium ores from producing properties in the area; mill production was expected to begin in June 1957 at the rate of 100 tons per day.

Discovery of high-grade uranium occurrences in the Ingray Lake area, Marion River district, was reported by Spud Valley Gold Mines and Kenare Petroleum Co. 16

Northern Saskatchewan.—The Beaverlodge area in the extreme northwest corner of the Province of Saskatchewan became a major contributor of uranium ore. The Gunnar Mines, Ltd., Gunnar mine near Lake Athabaska had an estimated value exceeding \$130 million ¹⁷ and was one of the continent's largest private uranium operations. ¹⁸ Technical problems resulting from open-pit operations in extremes of weather were solved, and unusual problems such as air and water transportation were overcome. The rated capacity of the Gunnar mill, which utilized an acid leach and ion-exchange recovery with salt and sulfuric elutriation, was raised from its original design of 1,250 tons per day to a capacity of at least 1,650 tons.

The Beaverlodge mine, owned and operated by Eldorado Mining & Refining, Ltd., maintained a significant production, and Eldorado's Beaverlodge mill received uranium ore on a custom basis from Rix-Athabaska, Consolidated Nicholson, Nesbitt-LaBine, and National Shippers to Lorado Uranium's new custom mill Explorations. probably would include Caysor-Athabaska, Black Bay, and St. Michael's. A significant tonnage from Lorado's 250,000-ton ore

body would also be treated at the mill.

Other uranium companies with active programs in Saskatchewan's Beaverlodge area included Gulch Uranium Mines, Lake Cinch Mines, Baska Uranium Mines, Brunston Mining Co., Camdeck Mines, Ad Astra Minerals, Crackingstone Mines, Meta Uranium Mines, and Anglo-Barrington Mines, Ltd. 19

Northern Ontario.—The Algoma uranium area, or Blind River area, of approximately 500 square miles, became of world importance because of the large ore deposits developed and the frequency of their

American Metal Market, vol. 64, No. 4, Jan. 5, 1957, p. 5.
 Journal of Metals, vol. 8, No. 8, August 1956, p. 1049.
 Engineering and Mining Journal, vol. 157, No. 9, September 1956, pp. 196, 200.
 Engineering and Mining Journal, vol. 157, No. 5, May 1956, p. 72.
 Canadian Mining Journal, Departmental Report: Vol. 77, No. 3, March 1956, p. 80.
 Mining World and Engineering Record (London), vol. 170, No. 4446, June 16, 1956, p. 296.

occurrence. The simple metallurgy of the ores and easy accessibility of the area were additional assets.²⁰ The uranium-bearing beds in the Algoma area describe a huge Z-shaped formation, extending over some 30 miles; the uraniferous beds, found in the lower Mississagi series, usually occurred as 2 conglomeratic bands showing minable ore varying from 6 to 15 feet in thickness, separated by 10 to 30 feet

of submarginal material.

Algom Uranium Mines, Ltd., started milling at both the Quirke and the Nordic mines by the end of 1956. The Quirke ore body dips 30°-35° near the surface, averages 12 feet in thickness and will be mined in panels with conventional equipment. The Nordic ore body dips 17°, averages 10 feet in thickness and will be mined in panels, using trackless equipment. Access to each mine was by vertical shafts with a depth of 867 feet for the Quirke shaft and 890 feet for the Nordic shaft. Both the Quirke and Nordic mills had a capacity of 3,000 tons per day and employed sulfuric-acid leach and resin-inpulp concentration to recover uranium from its ores.21 Ore reserves at Algom's Quirke mine were estimated to be almost 7.5 million tons averaging 0.106 percent U₃O₈; at the Nordic mine they were estimated at over 6 million tons averaging 0.113 percent U₃O₈.22

Can-Met Explorations continued work on 2 shafts in the Blind River area to gain entry to a reported 7-million-ton ore body with an average content of approximately 0.10 percent U₃O₈.23 A 2,500-tonper-day-capacity mill was expected to be in operation early in 1957.

Also planned for operation early in 1957 in the Blind River area was the 5,700-ton-per-day mill being built by and for Consolidated Denison Mines, Ltd.; the tonnage of ore to be mined and treated daily was to be greater than for any other uranium operation in the Free World.24 The No. 2 shaft, which has a cross-section area of 525 square feet and contained 7 compartments was probably the largest mine shaft in the Western Hemisphere in 1956. The shaft was to be extended to 2,700 feet in depth.

Development work continued on two shafts on their property by Milliken Lake Uranium Mines. Construction of a 3,000-ton-per-day mill was planned. Ore reserves were reported at 12 million tons

averaging about 0.10 percent U₃O₈.25

Northspan Uranium Mines, under management control by Rio Tinto Mining Co. of Canada, Ltd., was awarded what was claimed to be the world's largest single uranium-mining contract, worth more than \$240 million. Production was expected to exceed 9,000 tons per day. Access and entry to the deposit were to be through seven Northspan was a combination of firms that had established commercial-grade ore bodies on their properties and included Lake Nordic Uranium Mines, Ltd., Panel Consolidated Uranium Mines, Ltd., and Spanish American Mines, Ltd.²⁶ Northspan was reported to have blocked out some 30 million tons of ore assaying about 0.10 percent U₃O₈.

<sup>Mining Engineering, vol. 8, No. 6, June 1956, p. 613.
Western Miner and Oil Review, vol. 29, No. 7, July 1956, p. 83.
Northern Miner, June 21, 1956, pp. 1, 7.
Engineering and Mining Journal, vol. 157, No. 3, March 1956, p. 170.
Work cited in footnote 21, p. 87.
Northern Miner, vol. 42, No. 12, June 14, 1956, pp. 1, 4.
Western Miner and Oil Review, vol. 29, No. 5, May 1956, p. 86.
Northern Miner, vol. 42, No. 18, July 26, 1956, p. 2.</sup> 

1269URANIUM

Pronto Uranium Mines, Ltd., the first of the Blind River mines to reach production, continued development and mining of uranium ore. The haulage drifts were being driven in the footwall; from this drift, on 80-foot centers, 6- by 8-foot boxholes were raised to the ore at a Main stope pillars were 18 feet in width and 160 feet apart; intermediate stope pillars, approximately 10 by 20 feet, were utilized. The optimum stope width at Pronto before pillar recovery was found to be 80 feet. The telephone system used at the Pronto mine for communication between the levels and to the surface permitted dialing individual stations.²⁷ The 1,000-ton-per-day Pronto mill employed an acid-leach and ion-exchange process for uranium extraction.28

Stanleigh Uranium Mining Corp. commenced sinking 2 shafts that will extend to 3,650 and to 3,800 feet, respectively. Full-scale production from the property was expected by August 1957. Stanleigh's ore reserve was reported to exceed 12 million tons and to average

0.093 percent  $U_3O_8$ . 29

Stanrock Uranium Mines, Ltd., proceeded with the sinking of a 3,500-foot production shaft and a 2,900-foot service shaft. Mine production from a 5-million-ton ore body, averaging 0.108 percent U₃O₈, and milling operations at the 3,300-ton-per-day-capacity plant were expected to start by October 1957.30 Ultimate tonnage potential of Stanrock was considered to be 15 to 20 million tons. Stanrock, a subsidiary of Stancan Uranium Corp. and Zenmac Metal Mines, Ltd., expected to develop and mine the ore body with trackless mining equipment, using a five-entry room-and-pillar system.

Other firms exploring for uranium in the Blind River area included

Kamis Uranium Mines and Pater Uranium Mines, Ltd. 31

Southeastern Ontario. —In the Bancroft area of southeastern Ontario development work on uranium ore bodies by several firms neared completion. Bicroft Uranium, formed by the amalgamation of Croft Uranium Mines and Center Lake Uranium Mines, was officially the first uranium mine and mill to operate in the Bancroft area in 1956. The 1,000-ton-a-day plant was completed in 14 months and was expected to produce about \$6 to \$7 million worth of uranium a year.32

Cavendish Uranium & Mining Co., a wholly owned subsidiary of Cavendish Uranium Mines Corp., continued developing an ore body containing over 2 million tons of material averaging 0.08 percent U₃O₈; plans were under way for erecting a 750-ton-per-day mill.³³

Dyno Mines planned to construct a 900-ton-per day mill, to be in operation early in 1957, while developing the 1½-million-ton ore body

through a new 1,000-foot shaft.

A 3-compartment, production-size shaft was started by Dravo of Canada, Ltd., shaft contractors, and will extend to a depth of 1,050 feet; the shaft, Faraday's No. 1, was expected to bring Faraday Uranium Mines into production in 1957. Faraday's 750-ton-per-day mill was being built for rapid expansion to 1,000 tons per day, should such expansion be required.

<sup>Canadian Mining and Metallurgical Bulletin, vol. 49, No. 529, May 1956, p. 330.
Work cited in footnote 21, p. 134.
Work cited in footnote 21, p. 134.
Canadian Mining Journal, vol. 77, No. 10, October 1956, p. 146.
Engineering and Mining Journal, vol. 147, No. 2, February 1956, p. 196.
Northern Miner, vol. 42, No. 37, Dec. 6, 1956, pp. 17, 20.
Northern Miner, vol. 42, No. 15, July 5, 1 956, . 3.</sup> 

Greyhawk Uranium Mines planned the erection of a 600-ton-per-day treatment plant, while development of its ore body was confined to the first level at 115 feet.34

Other firms active in the Bancroft area included Rare Earth Mining

Co., Saranac Uranium Mines, and Halo Uranium Mines.

Canada's first atomic power reactor, being built at Des Joachims, 20 miles from Chalk River, Ontario, was expected to begin producing steam to generate 20,000 kilowatts of electricity by mid-1959. pressurized-type nuclear reactor will use heavy water as a moderator and as a primary coolant and will be fueled initially with natural uranium in the form of sintered uranium oxide pellets enclosed in zirconium-alloy tubes. The total cost of the nuclear power installation was estimated to be \$14.5 million, of which \$9 million will be paid by Atomic Energy of Canada, Ltd., \$3.5 million by Ontario Hydro, and \$2 million by Canadian General Electric.

At Chalk River, Ontario, construction and installation of the NRU reactor progressed satisfactorily. Upon completion, the reactor will have a power rating approximately five times as great as that of the previously built NRX; it was designed to: (1) Produce substantial quantities of plutonium, for sale to the United States Atomic Energy Commission; 35 (2) produce large quantities of radioisotopes, particularly cobalt-60; and (3) provide larger and improved research,

experimental, and testing facilities.

The Commercial Products Division of Atomic Energy of Canada, Ltd., continued to make a significant number of shipments of isotopes

to at least 40 countries.36

Atomic Energy of Canada, announced that a new plant to fabricate reactor-fuel elements would be constructed at Port Hope, Ontario, by AMF Atomics (Canada), Ltd., with full production scheduled for

early 1957.37

Nuclear energy as an industry continued to gain in stature during 1956. Canada agreed to provide India with a NRX-type research and experimental reactor. The reactor, which will be installed at the Indian Government's nuclear energy facilities at Trombay near Bombay, was expected to be completed and in full operation by mid-1958 and will cost about \$14 million.38

Regarding the future of nuclear energy, particularly its application to power generation, an official of Atomic Energy of Canada, Ltd., predicted that more than one-third of the power developed in Canada

in 1980 will be from nuclear reactors.³⁹

Eldorado Mining & Refining, Ltd., Canada's Government purchasing agent, indicated the magnitude of the uranium industry by permitting publication of contracts or letters of intent received for the purchase by the Government of their anticipated output at premium prices before March 31, 1962.40

³⁴ Candadian Mining Journal, vol. 77, No. 4, April 1956, p. 154.
35 Northern Miner, vol. 42, No. 17, July 19, 1956, p. 7.
36 Northern Miner (Toronto), vol. 42, No. 17, July 19, 1956, p. 7.
37 Canadian Mining Journal, vol. 77, No. 11, Nov. 1956, p. 138.
35 U. S. Embassy, Ottawa, State Department Dispatch 776: May 4, 1956, p. 5.
40 Northern Miner (Toronto), vol. 42, No. 25, Sept. 13, 1956, pp. 1, 9.

TABLE 8.—Canadian uranium-ore-processing plants and uranium-ore-purchase contracts

	Plants		Purchase
Company	Location	Capacity (tons per day)	contracts (thousand Can\$)
Consolidated Denison Milliken Northspan Pronto Stanleigh Stanleigh Stanrock Bicroft Cavendish Dyno Ferraday	do	200 150 2, 000 1, 250 500 6, 000 2, 500 5, 700 9, 000 1, 500 3, 000 3, 300 1, 000 750 900 750 600	33, 50 15, 79 168, 50 76, 95 60, 48 206, 91 75, 85 182, 25 77, 92 242, 41 55, 00 72, 98 76, 35 35, 80 24, 19 31, 71 29, 75
Total		42, 100	1, 484, 20

Negotiations were conducted between the British Atomic Energy Authority and Eldorado Mining & Refining, Ltd., relative to a multimillion-dollar contract for the sale of Canadian uranium concentrate to Great Britain; 41 some sources indicated that such sale of uranium would probably amount to \$500 million, or slightly less than half of the \$1.3 billion worth of uranium Canada contracted to sell to the

United States by March 31, 1962. 42

Mexico.—In June 1956 the Mexican Government appointed a three-man Nuclear Energy Commission, which was expected to make specific policy recommendations to the President relative to a domestic nuclear-energy industry. It was hoped that changes in mining laws would be approved, allowing private development of uranium ores. Through 1956 any discoveries of uranium became the property of the Government.43

Occurrences of radioactive minerals have been reported from various parts of Mexico. The significance of the mineralization was never officially determined. However, a description of some deposits in which uranium was said to have been found was 1 ublished.44

## SOUTH AMERICA

Argentina.—The Argentine National Atomic Energy Commission indicated that the first uranium-reduction plant in Argentina would be established at Ezeiza. The installation was to produce uranium metal from ore-grade material. Discussions were in progress during 1956 on a nuclear-power agreement with the United States.

<sup>Mining Journal (London), vol. 247, No. 6318, Sept. 21, 1956, p. 342.
Northern Miner, vol. 42, No. 18, July 26, 1956, p. 18.
Engineering and Mining Journal, vol. 157, No. 7, July 1956, p. 186.
Mencher, A. H., Why Look?, The Dilemma of Mexican Uranium: Uranium Mag., vol. 3, No. 7, July 1956, pp. 10-14.
Atomic Energy Newsletter, vol. 15, No. 9, June 12, 1956.</sup> 

A 3,000-kilowatt swimming-pool-type research reactor was to be purchased from General Electric Co. and installed at Preyra Parks between Buenos Aires and La Plata; a bilateral nuclear-research agreement between the United States and Argentina, consumated July 29, 1955, allowed shipment of domestic uranium to Argentina as fuel for the reactor.

Brazil.—Detailed investigations were made by the Pocos de Caldas Plateau in Minas Gerais, where significant deposits of uranium-bearing

minerals were known to exist.46

In mines of southern Brazil uraniferous coal was discovered. Upon analysis, the uranium content of the coal was determined to be 0.03

to 0.16 percent.⁴⁷
The Brazilian Atomic Energy Commission ordered a swimmingpool-type reactor from the Babcock & Wilcox Co. The reactor would operate at a power level of 5,000 kilowatts (heat). Fuel elements would contain 20 percent enriched uranium and were to be obtained from the AEC under a bilateral agreement approved August 3, 1955.48 The reactor was to be at São Paulo, on the outskirts of Jaguare.

The United States considered a request from Brazil for technologic

assistance in a power-reactor project.

President Kubitschek signed an 18-point atomic policy decree in 1956, which, among other things, abrogated the August 3, 1955, joint United States-Brazil uranium-prospecting venture in that country. The decree: (1) Created a National Nuclear Energy Commission, directly subordinate to the President; (2) developed a National Nuclear Energy Fund; (3) established a program to determine the materials needed in atomic energy applications; (4) included an intensive training program for scientists and technologists in nucleonics: (5) supported a national uranium mining and processing industry; (6) exercised Government control over purchase and sale of materials for nuclear power; (7) established an agency to control prices on radioactive ores and set up a purchasing department to handle mine output; (8) suspended all exports of uranium and thorium until further notice, pending review of the situation; (9) permitted negotiation for the export of domestically produced radioactive materials only after Brazilian requirements are fully satisfied and then only in return for specific compensation in equipment and technology; (10) promoted the use of scientific and technologic experience of all friendly nations: (11) fulfilled the 1954 agreement, in which the Brazilian Government received 100,000 tons of United States wheat, by paying in dollars rather than thorium concentrates; (12) canceled the 1956 contract, an exchange of 300 tons of thorium oxide for an unspecified amount of United States wheat; (13) abrogated the 1955 agreement, in which the United States was to assist Brazil in radioactive minerals exploration; (14) allowed only short-term nuclear-energy agreements to be made with other countries; (15) reviewed and revised all existing legislation relative to nuclear power; (16) required approval by the Brazilian Congress of any future international agreements on nuclearenergy programs; (17) insisted that the national nuclear-power policy could be modified without approval of the National Security Council;

<sup>Mining World, vol. 18, No. 3, March 1956, p. 69.
Mining Journal (London), vol. 247, No. 6321, Oct. 12, 1956, p. 435.
Atomics, Engineering, and Technology, Research Reactor for Brazil: Vol. 7, No. 6, June 1956, p. 185.</sup> 

and (18) created budgetary recommendations for purchase of materials

URANIUM

needed in developing nuclear power.49

Chile.—At the year end the Chilean Congress prepared to ratify a cooperative uranium-prospecting agreement with the United States, by which United States geologists would assist and advise Chilean technologists in the search for uranium.

The United States Embassy in Chile and the Chilean Consultive Committee on Atomic Energy inaugurated an atoms-for-peace exposition, which was reported to be of great interest to the people of

Chile.

Carlos Ruiz, Under Secretary for Mines, indicated that there were 12 uranium deposits near Copiapo in the Province of Atacama, with a uranium content ranging from 0.2 to 0.3 percent U₃O₈.50 The Government considered building a \$36 million uranium-processing plant.

Colombia.—The Institute Geofis de Los Andes Colombianos issued a booklet in April entitled, "Los Minerales Radioactivos in Colombia."

Some radioactive mineralization was found near California in Santander del Norte, and the Institute Colombiano de Asuntos Nucleares proceeded with investigation of the deposits.

The Atoms-for-Peace Mission visited Colombia and disseminated information on radioisotopes, research and power reactors, and

associated data.

Costa Rica.—United States negotiations in 1956 with Costa Rican officials, relative to a nuclear research bilateral agreement, were concluded. The agreement was to become effective as soon as formal notes were exchanged between the two countries. The Atoms-for-Peace Mission also visited Costa Rica in 1956.

Cuba.—Uranium exploration activity continued on a modest scale

The American & Foreign Power Co. announced that it intended to construct a nuclear powerplant in Cuba; however, a nuclear-power bilateral agreement with the United States had not been completed Negotiations were under way.

Arrangements for a nuclear-research bilateral agreement with the United States were concluded by the end of 1956, and the agreement

would become effective upon exchange of notes.

Dominican Republic.—A 12,000-kilowatt-electrical-capacity, pressurized-water reactor was to be erected at Ciudad Trujillo by the Martin Co. of Baltimore, Md., for the Dominican Government. contractual agreement was contingent upon approval of a bilateral power-reactor agreement between the United States and the Dominican Republic.51 More than 5,000 individual fuel elements of slightly enriched uranium would be required.⁵²

A bilateral nuclear-research agreement between the United States and the Dominican Republic was approved, effective December 21,

1956.

Ecuador.—Discussions were in progress between United States and Ecuadoran representatives covering United States technologic assistance for nuclear studies in Ecuador through an appropriate bilateral agreement.

⁴⁹ Nucleonics, Brazil's 18-Point Policy Memo Detailed: Vol. 14, No. 10, October 1956, pp. R5-R7.
⁵⁴ Mining World, vol. 18, No. 6, May 1956, p. 68.
⁵⁴ Atomic Energy Newsletter, vol. 15, No. 10, June 26, 1956, p. 2.
⁵⁵ Nucleonics, vol. 14, No. 7, July 1956, p. R11.

Guatemala.—Negotiations in 1956 between Guatemala and the United States relative to a nuclear-research bilateral agreement were completed. The pact was to be consummated early in 1957.

Haiti.—During the year Haiti asked the United States for technologic assistance in nuclear-research activities. Discussions were

under way at the end of 1956.

Nicaragua.—Consideration was given to a bilateral nuclear-research agreement between the United States and Nicaragua. ment was not completed in 1956.

Peru.—The functions of the Radioactive Substances Control Board were assumed by the newly constituted Atomic Energy Control

Exploration for and development of uranium properties in Peru continued in 1956.

A nuclear-research bilateral agreement between the United States

and Peru was effected January 25, 1956.

Uruguay.—A nuclear-research bilateral agreement between the United States and Uruguay became effective January 13, 1956.

two countries considered a nuclear power agreement.

Venezuela.—The Ministry of Mines and Hydrocarbons announced that significant occurrences of uraniferous phosphates were discovered in 6-foot veins near Lobatena, Capacho, and Junin in the State of Sample material contained 90 to 120 grams of uranium per metric ton.54

### **EUROPE**

Austria.—The Austrian Government considered types of nuclear reactors that might be utilized in that country to produce power.⁵⁵ nuclear-research bilateral agreement with the United States became effective July 13, 1956.

The World Power Conference was held in Vienna, Austria, in 1956, when some considerations of nuclear-power potentialities were offered.56

It was proposed that the International Atomic Energy Agency maintain its headquarters in Vienna, Austria. The statute of the Agency must be ratified by 18 governments before it is effective.

Belgium.—The Syndicat d'étude de l'énergie nucleaire contracted with the Westinghouse Electric Corp. for construction of a pressurizedwater reactor that would produce a total of 11,500 kilowatts of elec-The syndicate was composed of Belgian utilities and trical energy. manufacturers desirous of developing industrial uses of atomic energy in that country. The Union miniere du Haut Katanga, Belgian operators of the Shinkolobwe uranium mine in the Belgian Congo, was a member of the syndicate.57

At the Mol nuclear-studies center, Belgium's first research reactor The reactor was loaded initially with 18 tons went critical in 1956.

of natural uranium.

Czechoslovakia.—Soviet nuclear technologists were to assist in constructing the country's first nuclear-power reactor, to begin in

⁵³ Mining Journal (London), vol. 246, No. 6289, Mar. 2, 1956, p. 264.
54 Nucleonics, vol. 14, No. 11, November 1956, p. R11.
55 Nucleonics, vol. 14, No. 1, January 1956, p. 15.
55 Atomics, Engineering, and Technology, World Power Conference, 1956—Nuclear Aspects: Vol. 7, No.
9, September 1956, pp. 334-337.
56 Mining World, Power Reactor for Belgium to Be Privately Financed: Vol. 18, No. 2, February 1956,

1957. The 150,000-kilowatt powerplant was to be near the Ziar na Hronu aluminum factory.

Denmark.—The Danish Government was preparing a nuclear-research center near Roskilde, 20 miles west of Copenhagen. The Foster-Wheeler Corp. was to be responsible for the design and construction of components for a \$1.4 million research reactor to be installed at the center by Danish firms. The United States was to pay \$350,000 of the total estimated cost of \$1.4 million for the reactor, under a bilateral agreement between the two countries, effective July 25, 1955. A zero-power Atomics International Corp. water-boiler research reactor was also being constructed at the site.

Finland.—Several interesting discoveries of uranium mineralization were reported to have been made in the southern and southwestern parts of Finland. The commercial potentialities of the occurrences

had not yet been determined.58

The chairman, Atomic Power Co. of Finland, expressed hope that the country's first nuclear reactor would be put in operation in the 1960's. The plant would probably produce steam for use in the wood-

pulp industry.

The group organized by the Government in March 1955, called the Contemporary Energy Committee, reported in April 1956 that nuclear power was not yet economically or technically competitive with conventional power and recommended expansion of the country's hydroelectric facilities. The committee called for establishment of a permanent atomic energy commission to study the advancement of nuclear research in Finland.

France.—The French Government announced in December 1956 that reserves of uranium in France totaled 50,000 to 100,000 tons, 10,000 tons of which was a proved reserve, and the balance based on geologic probabilities. It was estimated that 1957 uranium production would consist of 380 tons of uranium concentrate, containing 60 percent uranium, and 300 tons of natural uranium metal of nuclear

purity.

A new ore-concentration plant with a capacity of 50,000 tons of

ore per year was constructed at Geougnon in Saôneet-Loire.

It was said that uranium concentrate currently cost about 12,000 francs per kilo, but it was hoped this cost could be reduced to 10,000

francs per kilo in the near future.

Uranium was mined in the Puy-de-Dôme Department, Lachaux Province, midway between Roannes and Vichy, 12.5 miles south of Lachaux. The average uranium content of the pitchblende ore was about 0.10 percent U₃O₈. Ore was also recovered from the La Crouzille pitchblende deposits in La Crouzille Province, Upper Vienne Department. In the Grury Province, Saône-et-Loire Department, lower grade ore bodies were developed or worked at Issy-l'Éveque, Brosses, La Faye, and Chateau-Chinon.

Large reserves of ore were developed in Vendée Department near Clisson and near Mortagne-sur-Sevres. A chemical concentration mill was constructed at L'Escarpiere to treat the ore mined in this

area.

Metal Bulletin (London), No. 4145, Nov. 16, 1956, p. 24.

At Lignol, Morbihan Department, Brittany Province, a prospector discovered ore-grade uranium along the banks of the Scorff River.

Ores containing less than 0.2 percent uranium were physically or chemically milled at the mine site. The concentrate thus produced and high-grade ore were shipped to the Le Bouchet plant at Vert-le-Petit in the Paris area, where the ore was roasted, ground, and pulped Sulfuric or nitric acid was added to the slurry to leach out the uranium and the pulp dewatered in thickeners. The effluent was treated with sodium carbonate to precipitate iron, manganese, lead, and certain other undesirable elements as hydroxides and phos-The remaining uranium was left in solution as a uranyl phates. carbonate. Heated caustic soda was added to the uranyl carbonate to precipitate a sodium uranate concentrate.

Uranium concentrate was refined at the Bouchet plant by solvent extraction of uranyl nitrate with a tributyl phosphate organic solution. The purified uranyl nitrate was precipitated as uranium oxide (UO₄) by addition of ammonia. The UO₄ was roasted at about 400° C., reducing the UO₄ to UO₃. The UO₃ was converted with ammonia gas into UO2 in a continuous vertical retort. The UO₂ was next briquetted, and the briquets were dissolved in hydrofluoric acid to produce uranium tetrafluoride (UF4); the uranium tetrafluoride was subsequently reduced with pure calcium shavings to produce uranium metal. The resulting metal was reported to be 99.999 percent pure. 59

The G-1 natural-uranium-fueled, graphite-moderated, air-cooled, nuclear reactor at Marcoule was put into full-scale operation in 1956. Electricity from the 40,000-kilowatt-capacity reactor was fed into the grid of Électricité de France. Plutonium was to be extracted from the irradiated fuel elements.⁶⁰ The G-2 reactor will be brought to criticality in 1957 and G-3 in 1958. They will be similar to G-1 in most respects but will be cooled by carbon dioxide gas under pressure rather than air. The three reactors were estimated to have cost \$30 million each.

The Commissariat à l'Energie Atomique and Électricité de France jointly designed and were constructing a nuclear central power station, EDF-1, costing \$40 million. The reactor was being built at Avoine in the Loire Valley. To be completed in 1959, the reactor was to produce 60,000 kilowatts of electricity. French planning was purported to call for a new atomic powerplant every year after completion of EDF-1. By 1970 France hoped to have about 800,000 kilowatts of installed nuclear power. 61

On November 20, 1956, an agreement was signed between the United States and France to exchange of power-reactor information. Two French associations, whose membership included many prominent French firms, were founded in 1956. The associations, called Francatom and Indatom, were organized to exploit the profit possi-

bilities in the industrial applications of nuclear energy.

<sup>Moyal, M., Processes Used in the Treatment of French Uranium Ores: Mining Jour. (London), vol. 246, No. 6303, June 8, 1956, pp. 704-705; vol. 246, No. 6304, June 15, 1956, pp. 740-741.
Chemical Age (London), vol. 74, No. 1906, Jan. 21, 1956, p. 242.
Nucleonics, Report From France: Vol. 14, No. 12, December 1956, pp. R9-R10.</sup> 

TABLE 9.—French research, test, and power reactors 1

Title and function	Start- up	Moderator	Coolant	Fuel	Location	Cost (million dollars)
ZOE; research	1948	Heavy water	None	Natural UO:	Chatillon	(2) (2)
ZOE (modified)	1953	do	D2O	Natural U	do	(2)
P-2 (or EL-2); research.	1952	do	N ₂ , later CO ₂ at 10 atm.	do	Saclay	6
AQUILON; lattice studies.	1956	D2O or H2O	None	Variable U	do	0.5
EL-3; materials re-	1957	D ₂ O	D ₂ O	Slightly en- riched U.	do	10
search. Swimming Pool No. 1: shielding re-	1958	H ₂ O	H ₂ O	Enriched U	Grenoble	
search and training. Swimming Pool No. 2; shielding research.	1958	H ₂ O	H ₂ O	Enriched U	Chatillon or Saclay	
MINERVE; Reac- tivity studies.	1958	H ₂ O, perhaps BeO.	None	Highly enriched	Chatillon	
PROSERPINE; homogeneous reac-	1957	(2)	H ₂ O	Pu sulfate solution.	Saclay	
tor for research. G-1; Pu production G-2; Pu production	1956 1957	Graphite	Air. CO2 at 15 atm.	Natural U	Marcoule	20 30
and power. G-3; Pu production	1958	do	do	do	do	30
and power. EDF-1; power and Pu production.	1959	do	do	do	Avoine	40

Reacteur marin—data not available.
 Pile chaude—data not available.
 Data not available.

Plans were announced in March 1956 to (1) construct a new refinery at Bouchet for treating imported uranium-thorium ores from Madagascar; (2) erect in 1957 a second experimental research reactor and in 1958 a 2-billion-electron-volt synchrotron at Saclay; and (4) build two more power-and plutonium-producing reactors at Marcoule bringing plutonium production at that facility up to 100 kilos.

Germany, East.—The University of Marburg announced a new method of separating uranium isotopes in which uranium hexafluoride gas was forced through a flat nozzle under high pressure. The lighter uranium-235 isotopes accumulated near the edges of the gas stream and the heavier uranium-238 isotopes in the center.62

Discoveries of uranium deposits in Thuringia were rumored to have been of such size that it would take 15 to 20 years to mine to

exhaustion.

It was reported in the press that East Germany's first nuclear powerplant would be built near Neubrandenburg at Tollense Lake,

65 miles north of Berlin.

Germany, West.—At Frankfurt-am-Main the Batelle Memorial Institute opened a gamma irradiation facility. The installed cobalt-60 gamma source provided 1,500 curies of radioactivity for experimentation by European industry in radio-sterilization of foods and drugs and catalysis of chemical reactions.

Only low-grade uranium ore was reported to have been found in West Germany. Some occurred on old mine dumps in the Black Forest, from which about 8 tons of uranium metal might be recovered. In Eastern Bavaria poor-quality uranium occurrences were discovered.

Chemical and Engineering News, vol. 34, No. 3, Jan. 16, 1956, p. 203.

The Max Planck Institute, which had attempted to construct a reactor during World War II, studied the possibilities of erecting in West Germany a reactor similar to the NRX reactor at Canada's Chalk River Installation.

The College of Engineering in Munich and the Siemens factory were also interested in constructing a research reactor. The Studiengesellschaft, a group of large industrial firms, was founded and intended

a combined effort to build a prototype power reactor.

The West German Government assigned Minister Strauss the task of organizing applied nuclear research in that country. It was reported that a Government atomic energy board would be established.

The German Federal Railways planned to construct a small nuclear locomotive. The unit would produce 5,916 horsepower, weigh 175 tons, and be gas-cooled. It was estimated that capital costs would be about \$500,000 and operating costs about 5 cents per mile.

The University of Munich was to receive a \$450,000 swimming-pool-type research reactor of 1,000-kilowatt heat output from AMF Atomics. Costs were to be borne by the Federal Republic and the

State of Bavaria.

The University of Frankfurt and the Technical University of Darmstadt placed an order for a 50- to 100-kilowatt (heat) water-boiler reactor with Atomics International. The Federal Republic and the State of Hesse were to share the \$1.2 million cost.

A similar reactor was requested by the city of West Berlin for use by the Technical University and the Free University; however, the

Allied Kommandatura had not yet approved the project.

The Society for Utilization of Atomic Energy in Shipbuilding of Hamburg was reported to have placed an order with Babcock & Wilson Co. for a spiron pool process and the Co. 1000

Wilcox Co. for a swimming-pool reactor costing \$450,000.

The State of North Rhine-Westphalia ordered a \$200,000 research, swimming-pool-type reactor from AEI—John Thompson, London, England. The reactor would be installed at a nuclear research center to be established at Konigsforst near Cologne, serving the University of Cologne, University of Bonn, and the Technical University of Aachen.

The State of North Rhine-Westphalia was also negotiating for the purchase of a 10,000-kilowatt Pluto materials test reactor, a \$6 million unit manufactured by Head Wrightson & Co., London, England.

Near Karlsruhe the Federal Republic and the State of Baden-

Near Karlsruhe the Federal Republic and the State of Baden-Württemberg planned a 10,000-kilowatt (heat) reactor to be designed and built by German effort, with domestic materials where possible.

The cost was estimated at nearly \$10 million.

The large German utility firm, Rheinisch-westfalische Elecktrizitätsgesellschaft, decided that it would purchase a 10,000-kilowatt electrical-power-generating reactor for testing nuclear power potentials. No announcement was made as to where the company would purchase the reactor. Its cost was estimated at \$5 to \$7.5 million.

A nuclear-research bilateral agreement between the United States and West Germany was signed April 23, 1956, and a nuclear-power

agreement was under discussion during the year.

Greece.—The Greek Atomic Energy Commission negotiated with the USAEC and private American firms with respect to the construction of a 200- to 300-kilowatt swimming-pool research reactor, made possible through the nuclear-research bilateral agreement of August 4,

Hungary.—Representatives of the Hungarian Government announced that Hungary had enough uranium-ore reserves to cover its

electrical-power requirements for many years.

On October 31, 1956, it was indicated that Hungarian freedom fighters blocked the shafts of uranium mines at Macsek near Pecs.63

Early in 1956 the Hungarian Government set up a National Atomic Energy Committee to guide the country in developing peaceful uses of nuclear energy. The committee would: (1) Prepare for the production of electric power with nuclear energy; (2) direct widespread use of radioactive isotopes in scientific research, industry, agriculture, and medicine; (3) supervise the building of the experimental reactor to be provided by the Soviet Union; and (4) organize training of a scientific and technical staff for research and the practical application of nuclear energy.

The research reactor at Csilleberc near Budapest was expected to be operational in 1957, and a nuclear power station was scheduled for construction in 1957. Hungarian research personnel was being trained

in Russia on reactor-operation techniques.64

Ireland.—Officials of the United States and Ireland planned a

nuclear-research bilateral agreement to be executed in 1957.

Italy.—The Societa ricerche impianti nucleari was created by the two largest Italian concerns, Fiat and Montecatini. The companies intended to promote development of nuclear equipment and to obtain plants for the industrial utilization of nuclear power.

Italy's leading power companies established Societa elettronucleare

italiana to determine the applicability of nuclear-produced electricity.

A CP-5-type research reactor with a 10,000-kilowatt (heat) capacity was to be built by ACF Industries near Ispra on the eastern shore of Lake Maggiore.

A nuclear-power congress was held in Rome, July 1956, at which time government versus industry control of atomic-energy projects was debated. The conclusion reached was that a policy similar to

that of the United States should be followed.65

Discussions were in progress during 1956 on a nuclear-power bilateral agreement between the United States and Italy. research bilateral agreement was made July 28, 1955.

Norway.—The Norwegian Geological Laboratory reported that samples from radioactive deposits in northern Norway contained

an average of 0.5 percent U₃O₈ upon analysis.66

At Kjeller near Oslo, a 300-kilowatt research reactor was operated jointly by the Netherlands and Norway. The reactor was constructed in 1957. A 20,000- to 25,000-kilowatt reactor has been designed, and plans were being made for a ship-propulsion reactor.67

In southern Norway near Halden, a nuclear-power reactor was approved by the Norwegian Parliament in conjunction with a pulp

Nucleonics, Hungarians Dynamite Uranium Mines: Vol. 14, No. 12, December 1956, p. R3.
 Atomics, Engineering, and Technology, Hungary's Atomic Plans: Vol. 7, No. 10, October 1956, p. 344.
 Nucleonics, Progress in Italy Reported on Varied Nuclear Projects: Vol. 14, No. 9, September 1956, p.

R6. Mining World, vol. 18, No. 2, February 1956, p. 82. 

Mark Atomic Scientists Journal, (London), vol. 3, No. 6, July 1954, p. 348.

and paper plant. The plant was to produce 10,000 to 20,000 kilowatts of heat, yielding 10 to 20 tons per hour of steam. It will be installed in an underground chamber.69

A design study was completed of a pilot plant for dissolving irradiated fuel rods and separating the constituents. Construction of

the plant was to start in 1957 at Kjeller.70

In 1956 negotiations were concluded on a nuclear-power bilateral agreement between the United States and Norway to become effective in 1957.

Netherlands.—The United States favorably concluded negotiations with the Netherlands on a power-reactor bilateral agreement by the end of 1956. The agreement would be formalized early in 1957.

Poland.—A meeting of the State Council for the Peaceful Utilization of Nuclear Energy on September 14, 1956, revealed that Poland

planned an extensive exploration program for uranium.71

A nuclear-research center was being constructed near Warsaw. It was reported that the center would house a research reactor, a nuclear-physics laboratory, and a radiochemistry laboratory. The reactor was to be a 2,000-kilowatt (heat), light-water-moderatedand-cooled unit provided by the U. S. S. R.

Portugal.—The Portuguese Board of Nuclear Energy announced that, by the end of 1957, a nuclear physics and engineering laboratory would be completed. The installation was to include a research reactor, a particle accelerator, a pilot plant for producing pure uranium from ore, and a chemical laboratory for nuclear metallurgical research.

Uranium ore was mined at the Urgeicera property. The material was sold through the Combined Development Agency to either the

United States or Great Britain.

Rumania.—A 2,000-kilowatt Russian-type research reactor was being constructed. Its completion was expected by early 1957.

Spain.—The Spanish Government negotiated with the General Electric Co. for a 3,000-kilowatt swimming-pool-type research reactor to be built at Madrid for the Junta de Energia Nuclear. Fuel, enriched 20 percent with uranium-235, was to be made available by the AEC under a United States-Spanish bilateral agreement effective July 19, 1955.72

Representatives of the United States and Spain discussed a nuclearpower agreement in 1956; and, with the aroused interest in nuclearpower plants, several firms sent representatives to Spain to promote

the type of reactor that they manufactured.

Spanish and West German officials discussed collaboration in the mining and use of Spanish uranium ore. Joint companies might be established that would use German machinery and technologists, but Spanish labor and capital. Ores would be processed in Germany and the product shared.

Sweden.—Government geologist Dr. Josef Eklund indicated that the alum shales of central Sweden in the Goteborg area contained

Bulletin of the Atomic Scientists (London), vol. 12, No. 2, February 1956, p. 64.
 Atomics, Engineering, and Technology, Norway Builds Industrial Reactor: Vol. 7, No. 6, June 1956,

<sup>Atomics, Engineering, and Technology, J. E. N. E. R.—Progress Through Cooperation: Vol. 7, No. 8, August 1956, pp. 302-303.
Mining Journal (London), vol. 247, No. 6319, Sept. 28, 1956, p. 363.
Chemical and Engineering News, vol. 34, No. 13, Mar. 26, 1956, p. 1417.</sup> 

about 300 grams of uranium per ton, with estimated reserves placed The economics of recovery was not described. at 1 million tons.

The Swedish atomic-energy group announced that four power reactors were to be constructed in the near future. One, the R3a, would deliver 90,000 kilowatts of heat to a powerplant; the second, R3b, would provide 71,000 kilowatts of heat and 13,000 kilowatts of electricity; the third, R4, would be designed to produce 75,000 kilowatts of electricity; and the fourth, undesignated, would have a capacity of 300,000 kilowatts.73

A uranium rolling mill was ordered by the Swedish authorities

from W. H. A. Robertson & Co., Ltd., of Bedford, England.

An atomic-research station was under construction near Stockholm. The cost of the project was estimated at \$2.9 to \$3.9 million, not including apparatus and equipment.74

A nuclear-research bilateral agreement between the United States and Sweden was approved January 18, 1956, and a nuclear-power

agreement was under consideration.

Switzerland.—The atomic trade fair held in conjunction with the International Conference on the Peaceful Uses of Atomic Energy at Geneva in 1955 was to be presented again in 1957 and every 2 years thereafter.

Some 30 kilometers northwest of Zurich at Wurenlingen a building was being prepared for permanent housing of the swimming-pool reactor that the United States sold to Switzerland after the Geneva

Conference of 1955, where it had been demonstrated.

Negotiations were concluded between the United States and Switzerland on a nuclear-power bilateral agreement to be formally

approved in 1957.

U. S. S. R.—A new Soviet Five-Year Plan reportedly called for completion by 1960 of enough nuclear power capacity to provide 2 to 2.5 million kilowatts of electrical energy. The plan also was said to call for expansion of uses for radioisotopes in industry, agriculture, medicine, and other fields.75

During a visit to the Harwell nuclear center in England on April 26, 1956, Igor Kurchatov spoke regarding the peaceful utilization of

energy from thermonuclear reactions.76

The \$125 million nuclear-studies headquarters at Dubna, 95 miles northeast of Moscow, was opened. The installation was constructed for the Joint Nuclear-Research Institute of the U.S.S. R. and 11 satellite countries.

A. M. Khachaturov, director of the U. S. S. R. Institute of Complex Transport Problems and member of the Soviet Academy of Sciences, declared that reserves of uranium and thorium in Russia "exceeded by more than 22 times all known resources of coal, liquid fuel, and oil shale."

United Kingdom.—The Atomic Energy Authority contracted for importation of uranium concentrate from the Mary Kathleen mine in Queensland, Australia. Mary Kathleen Uranium, Ltd., a subsid-

Nucleonics, vol. 14, No. 1, June 1956, p. 15.
 Chemical and Engineering News, vol. 34, No. 31, July 30, 1956, p. 3687.
 Atomic Energy Newsletter, vol. 14, No. 13, Feb. 7, 1956, p. 3.
 Nucleonics, Russian Thermonuclear Experiments: Vol. 14, No. 6, June 1956, pp. 36-44.

iary of the British Rio Tinto Co., was the developer of the Mary Kathleen mine.77

The British were also to receive uranium ore and concentrate from Belgian Congo in accordance with an earlier agreement between Great Britain and Belgium, in which Great Britain agreed to provide Belgium with assistance in developing an atomic-energy program in return for uranium raw material.78

There were negotiations between the British Atomic Energy Authority and the Canadian Government's Eldorado Mining & Refining, Ltd., on the purchase of uranium supplies from Canada; such ores were considered necessary to fulfill British nuclear-power-program

requirements.79

The \$42 million Calder Hall nuclear-power station became operative in October 1956. The two nuclear reactors at the station utilized natural uranium metal for fuel, graphite as a moderator, and carbon dioxide gas as a coolant. The total electrical output of the station was estimated at 92,000 kilowatts, 20,000 kilowatts of which probably would be consumed at the station, the other 72,000 kilowatts to be fed into the national electrical grid. Another nuclearpower station similar to the initial Calder Hall unit was being constructed nearby.

At Chapel Cross, Dumfriesshire, Scotland, the Atomic Energy Authority commenced construction on a nuclear power plant of the Calder Hall design, but with a larger electrical output. At Dounreav. Caithness, Scotland, a fast-breeder power reactor was being erected.

In addition to the Atomic Energy Authority reactors, which will vield plutonium for weapons as well as produce electrical power, the Central Electrical Authority planned to spend \$800 million or more on 12 power reactors to be established in various locations throughout England.80

The ZEUS (Zero Energy Uranium System) research reactor was constructed at Harwell to determine the nuclear characteristics of a fast-breeder reactor system of the type being erected at Dounreay, In 1956 nuclear engineers were able to simulate, in the ZEUS research reactor, conditions that might be expected in the fullscale breeder reactor at Dounreay.

The ZETR (Zero Energy Thermal Reactor) was operated at Harwell to determine the practicality of nuclear fuels in solution. Information about critical mass of various fuel solutions was gained. Plutonium, uranium-235, and uranium-233 fuels were investigated.

The DIDO research reactor became critical at Harwell on November 11, 1956. The reactor, with a flux of about 10¹⁴ neutrons per centimeter squared per second, was conceived to test materials under irradiation and produce high-intensity radioisotopes. The moderator

 ⁷ Chemical Age (London), vol. 74, No. 1913, Mar. 10, 1956, p. 604.
 18 Mining World, vol. 18, No. 2, Feb. 1956, p. 81.
 19 Northern Miner, Preliminaries Settled in Deal for Sale of Uranium to U. K.: Vol. 42, No. 19, Aug. 2,

Engineering and Mining Journal, United Kingdom Seeks Canadian Uranium: Vol. 157, No. 6, July 1956, p. 128.

** The Wall Street Journal, Atom Electric, Ltd.: Vol. 148, No. 76, Oct. 17, 1956, pp. 1, 15.

was heavy water (D2O), from which the reactor's name was derived,

and the fuel highly enriched uranium.

LIDO, a swimming-pool research reactor, was put into operation in September 1956 at Harwell. The reactor, containing enriched uranium plate-type fuel elements suspended in a 24-by-8-by-28-foot tank of light water, was designed for shielding studies; and it was to assist in developing a British submarine-propulsion unit.

Construction continued on the PLUTO, a 10,000-kilowatt (heat)

high-flux research reactor.

Other research reactors which were in operation at Harwell included GLEEP (Graphite Low-Energy Experimental Pile), BEPO (British Experimental Pile), ZEPHYR (Zero Energy Fast Reactor), and

DIMPLE (Deuterium Moderated Pile, Low Energy).

Sir John Cockeroft, director, Atomic Energy Research Establishment, Harwell, indicated that by 1965 the British nuclear-power program would produce over 2 tons of fission products a year from spent fuel elements. The radioiostope cesium-137 contained therein alone would possess several million curies a year. The radioactive wastes might be used as a catalytic agent for the industrial manufacture of materials such as polyethylene and other organic substances.81

Great Britain planned a nuclear-powered navy and merchant-arine service. Vickers, Rolls-Royce, and Foster Wheeler formed a marine service.

ship-propulsion study group.82

A public symposium was held in London November 22-23, 1956, on the Calder Hall nuclear plant. The meeting disclosed information, previously classified, on many aspects of the design and construction of Great Britain's first full-scale powerplant fueled with uranium rather than coal.

A laboratory for irradiating rubber and plastics was established in 1956 at Birmingham. Called the Dunlop Research Centre, it represented the first industrial laboratory planned for irradiation of such Initial investigations were to use a 100-curie cobalt-60

source; later a 1,000-curie unit was to be obtained.

In Newport, South Wales, Monsanto Chemicals, Ltd., opened a radiation laboratory, which would allow study of the effect of gamma and beta radiation on chemical reactions. Two individual 100-curie cobalt-60 sources were to be used at first, but later a 500-curie cobalt-60 source and a 1,000-curie cesium-137 source were to be obtained.

The Rolls Royce Co. investigated nuclear propulsion of aircraft. The first privately owned research reactor in Great Britain was to be constructed at the Associated Electrical Industries research establishment at Aldermaston Court, Berkshire. The reactor, called MERLIN (Medium Energy Research Light-Water-Moderated Industrial Nuclear Reactor) was of the swimming-pool design. It was to be constructed for investigations by Associated Electrical Industries and universities, technical colleges, and research institutions for undergraduate and post-graduate instruction.

South African Mining and Engineering Journal (Johannesburg), Atomic "Ash" Will Make Polyethylene: Vol. 66, pt. 2, No. 3282, Jan. 6, 1956, p. 761.
 Chemical and Engineering News, vol. 34, No. 10, Mar. 5, 1956, p. 1049.

TABLE 10.—British research, test, and nower reactors

lon		•				
_	Startup	Moderator	Coolant	Fuel	Location	Clost
y Experimental	1947	Graphite	Air	Natural U metal and	Harwell	Θ
Pile); research	1948			UsOs. Natural U	-do	
arch.	-		TA OTTO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	Variety of idel types.	op	\$140,000 excl. fuel
st Reactor) re-	1954	None	-do	Pu	-do	ite reflector.
System) "Full- nuclear calcula-	1956	ф	-ф	Highly enriched U;	-ф	
Reactor) homo-	1955	Heavy water or water.	qo		Ç	
	1956	Heavy water	Heavy water		ф	\$5.5×106 excl fnel
gnated RE-775);	1961	qo	op		1 at Harwell 1 at	
	1956	Water swimming pool.		ф	Dounreay. Harwell	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
identical):		do	CO.	Natural U	Windscale, Cumber- land.	
		None	or sodium-	Enriched U	Calder Hall, Cumber-   \$42-56x10%, land. Dounreay, Caithness.	\$42-56x10°.
Calder Hall-type (6 identical); Pu + power	1959	Graphite	Potassium.	Natural U.	2 at Calder Hall: 4 at	
PIPPA Mark 2 (4 identical; advanced Calder Hall type, first in 10-year program for Cen-17 tral Electric Authority; nower 4 Pr		ф	Gas	Natural U or slightly enriched U.		\$84-98x10 ⁶ .

¹ Data not available.

1285 URANIUM

Yugoslavia.—Assistance in nuclear research was requested of the United States by Yugoslavia, but no agreement was reached in 1956.

Published reports indicated that the Soviet Union and Yugoslavia signed a mutual assistance pact for nuclear energy on January 28, As a part of the assistance program, the first Yugoslav reactor was to be constructed. Fuel and reactor parts were to be provided by the Soviet Union.83

#### ASIA

Ceylon.—Officials from Ceylon and the United States discussed a

possible nuclear-research bilateral agreement during 1956.

India.—More information was provided in 1956 on the uranium finds in Bihar and Rajasthan during the latter part of 1955. Uraniumbearing material was discovered previously in Bihar, Madras, and Rajasthan, but the occurrences were low grade. Upon discovery, uranium deposits become the property of the Government, and private prospectors receive only a cash award, ranging from 2,000 to 10,000 rupees, depending upon the uranium content of the material.84

It was announced that Great Britain and India had signed a bilateral

agreement for developing of peaceful uses of atomic energy.85

In the Khakra-Nangel area of North India a multimillion-dollar heavy-water and nitrogen-fertilizer plant was being constructed. heavy-water production would be consumed in nuclear research and power projects contemplated by the Indian Government. Corp. of America will engineer construction of the plant.86

Asia's first nuclear reactor reached criticality on August 4, 1956, on Trombay Island in Bombay harbor. The swimming-pool research reactor was of British design, cost \$630 thousand, and was to be oper-

ated at 1.000 kilowatts.

Also under construction on Trombay was the larger CIR (Canada-India Reactor), a replica of Canada's NRX reactor. The Canadian Government was to supply the reactor, the steel for the hermetically sealed rotunda or enclosure, and design data at a total cost of about \$7.5 million. The Indian Government was to provide for construction work, which was estimated at \$6.5 million.87

Iraq.—Discussions were in progress with respect to a United

States-Iraq nuclear-research bilateral agreement.

Iran.—A nuclear-research bilateral agreement between the United

States and Iran was to be consummated early in 1957.

Israel.—An agreement between the United States and Israel for technical and financial assistance to Israel for a power-reactor project was under consideration. A nuclear-research bilateral agreement was approved July 12, 1955.

Japan.—The Japanese Geological Survey Institute planned to undertake a 300-million-yen nationwide aerial radiometric survey for uranium deposits. Such a program was expected to take about 3 vears.88

<sup>Mining World, Russia and Yugoslavia Join to Build Reactor: Vol. 18, No. 4, April 1956, p. 55.
U. S. Embassy, New Delhi, State Department Dispatch 489: Jan. 5, 1956, 1 p.
Nucleonics, vol. 14, No. 1, January 1956, p. 15.
Chemical and Engineering News, vol. 34, No. 19, May 7, 1956, p. 2271.
Nucleonics, vol. 14, No. 6, June 1956, p. 23.
Mining World, vol. 18, No. 8, July 1956, p. 81.</sup> 

Aerial surveys had indicated the presence of uranium at the Miyeshi tungsten mine in Okayama Prefecture and near the Ogamo mine in Tottari Prefecture. Examination of the properties showed that some pitchblende was present. Investigations continued at both sites.

An act submitted to the Japanese Diet early in 1956 provided for

encouragement in exploration for and mining of uranium.

Japan's Atomic Energy Research Institute indicated that it would purchase a 500-kilowatt water-boiler research reactor from Atomics International. Japanese Government officials were also considering purchase of a power reactor from either the United States or Great Britain.

Terms of a bilateral agreement for technical and financial assistance in a power-reactor project were discussed by United States and Japanese representatives. On December 27, 1955, a nuclear-research bilateral agreement between the United States and Japan was effected.

The Transportation Ministry considered plans for construction of

two nuclear-powered ships, to be completed by 1966.

Korea. —On February 3, 1956, a nuclear-research bilateral agreement between the Governments of the United States and Korea was ap-

Pakistan.—Atomic-energy officials of the Pakistan Government instigated a wide search for radioactive minerals in the northern section

of western Pakistan.89

Consideration was given to construction of a research reactor in West Pakistan and a power reactor in East Pakistan. United States assistance in the research-reactor project was guaranteed under the bilateral agreement of August 11, 1955. A power-reactor agreement was being studied.

Philippines.—Discussions were held on a United States-Philippines nuclear-power bilateral agreement. A similar bilateral agreement for

nuclear research was approved July 27, 1955.

Thailand.—On February 22, 1956, it was announced that exportation of radioactive minerals would be prohibited unless prior permission was granted by the Minister of Economic Affairs. No economic deposits of uranium, however, were known to exist in Thailand.

A nuclear-research bilateral agreement between the United States and Thailand was effected March 13, 1956, and a power-reactor agree-

ment was being contemplated.

Turkey.—The Economic Committee of the Baghdad Pact explained that Great Britain had agreed to assist in establishing a nuclearresearch center in Baghdad for members of the pact—Turkey, Pakistan, Iraq, and Persia. The center was estimated to cost £200 thousand.90

#### **AFRICA**

Belgian Congo.—The World's richest uranium mine, the Shinkolobwe, admitted visitors for the first time in its history as part of the 50th anniversary festivities of the mine owner, Union minière du Haut Katanga. The history of the Shinkolobwe mine was published. 91 Uranium and radium were discovered in 1915, but operations did not

Mining World, vol. 18, No. 12, November. 1956, p. 85.
 Chemical Age (London), vol. 74, No. 1906, January 1956, p. 254.
 Union Minière du Haut Katanga, 50th Anniversary Issue: 1906-56, editions L. Cuypers. Bruxelles

begin until a plant was built in Belgium in 1931 to recover radium from the ores, which consist of pitchblende and its derivatives.

Uranium ore and concentrate were exported to the United States

and Great Britain in 1956.

Egypt.—A nuclear physics laboratory was being set up in Cairo for research on the peaceful uses of atomic energy; scientific and technical assistance was provided by the Soviet Union. 92

Liberia.—Preliminary discussions relative to a nuclear-research agreement between the United States and Liberia were held during

the year.93

Rhodesia and Nyasaland, Federation of.—Nyasaland.—It was reported that a deposit of high-grade uranium was found in the Tam-

bani area of Nyasaland.94

Northern Rhodesia.—Northern Rhodesia was the country in the British Commonwealth that held most promise for the discovery of uranium deposits, according to the Geological Survey of Great Britain, inasmuch as the area is adjacent to the rich Shinkolobwe deposit in Belgian Congo. 95 Encouraging indications of uranium were said to have been found in the Mumbwa district by private prospecting.96

Southern Rhodesia.—The British Atomic Energy Authority anngunced that an office would be set up, probably staffed by two geologists and an electronics expert, to conduct an exploration program for uranium and to assist other uranium prospectors throughout the Federation. Prospecting activity was concentrated in the Lomagundi geological system, west of Salisbury, which is considered the most favorable for uranium.97

A promising discovery of pitchblende in Southern Rhodesia brought offers from Great Britain to buy, at a satisfactory price, any radio-

active minerals mined in the country.98

Tunisia.—Discussions were in progress between the United States and Tunisia for possible establishment of a nuclear research program,

including a nuclear power plant in Tunisia.99

Union of South Africa. The contract for sale of uranium oxide by the South African Atomic Energy Control Board to the Combined Development Agency was filled; 30 mines had been designated as uranium producers at the close of 1956. The contract provided for purchase of uranium valued at £50 million a year. Production of uranium oxide concentrate in the Union in 1956 totaled 4,400 long tons; production at the end of December 1956 was at an annual rate of nearly 5,000 tons.1 The uranium was produced principally as a byproduct of gold-mining operations at little or no additional mining cost.2

<sup>Bulletin of the Atomic Scientists, vol. 12, No. 7, September 1956, p. 275.
Radiation Safety and Major Activities in the Atomic Energy Programs, July-December 1956, U. S.
Atomic Energy Commission, January 1957, p. 13
Nucleonics, vol. 14, No. 12, December 1956, p. R11.
Mines Magazine, vol. 246, No. 6291, Mar. 16, 1956, p. 332.
U. S. Embassy, Salisbury, Rhodesia, State Department Dispatch 304: Apr. 4, 1956, p. 2.
Rhodesia and Nyasaland Newsletter, Friday, Aug. 26, 1956.
Nucleonics, vol. 14, No. 12, December 1956, p. R11.
U. S. Atomic Energy Commission, Radiation Safety and Major Activities in the Atomic Energy Programs: July-December 1956, January 1957, p. 13.
JAtomic Energy Newsletter, vol. 17, No. 1, Feb. 19, 1957, p. 5.
South African Mining and Engineering Journal, vol. 67, pt. 2, No. 3312, Aug. 3, 1956, p. 155,</sup> 

During the year virtually all the security regulations regarding uranium activities in the Union were repealed. Bans remained on the price paid to the individual producer for the uranium and on

production before July 1955.

The ban on general prospecting for radioactive minerals continued. and indications were that it would not be relaxed by the Atomic Energy Board of South Africa. Prospecting could only be done by those obtaining permission from the Board. This measure was designed, not as a security regulation, but to keep out the wildcat

speculators and similar undesirable elements.

The last major uranium plant to be officially commissioned in 1956 was at Hartebeestfontein G. M. in the Klerskdorp area. It was designed to treat 100,000 tons of slimes per month and was expected to earn some 3 million pounds a year from its uranium sales.3 Other uranium plants in operation but not yet officially commissioned included one at West Driefontein G. M., which would also treat slimes from the nearby Doornfontein G. M., and at Bufflesfontein G. M., also in the Klerksdorp area. At the Bufflesfontein mine the productive horizon or reef was found at a depth of 5,000 feet, twin circular shafts handled about 160,000 tons of material a month, and development work progressed at a rate of 8,000 feet per month—a rate unequaled in any South African hard-rock mine during early development stages.

Availability of labor to permit the large scale of operations necessary to fulfill the South African uranium contracts presented a major

problem.4

Introduction of Aerofall mill equipment was reported to be a boon to the South African gold and uranium mines. The Aerofall mill is a large-diameter, short-length grinding or reduction unit. costs were cut 20 to 30 percent and operating costs 30 to 50 percent with Aerofall apparatus, inasmuch as conventional equipment, such as crushers, pumps, and conventional stage-grinding units, can be omitted from the circuit. An increase of 4.2 percent in gold recovery and 9.5 percent in uranium recovery was reported.⁵

Sinking of 763 feet of shaft during September in the Monarch shaft of West Rand Consolidated Mines, Ltd., set a new world record; the rectangular, timber-lined shaft was designed to hoist 8,000 pounds of gold-uranium ore from a depth of 3,600 feet every 2 minutes.6

A commission to study nuclear-power generation in western Cape Province was established by the South African Ministry of Mines Van Rhyn. Discussions were in progress between the United States and the Union of South Africa for establishing a nuclear powerplant.8

Canadian Mining Journal, vol. 78, No. 1, January 1957, p. 71.

Mining Journal, (London), vol. 247, No. 6332, Dec. 28, 1956, p. 803.

Mining World, Aerofall Mill Tests in South Africa Prove: Vol. 18, No. 6, May 1956, p. 48.

Atomics, Engineering, and Technology, Uranium-Ore Mining in South Africa: Vol. 7, No. 2, February

^{1956,} p. 67.

Nucleonics, vol. 14, No. 10, October 1956, p. R8.

U. S. Atomic Energy Commission, Radiation Safety and Major Activities in the Atomic Energy Programs, July-December 1956: January 1957, p. 13.

### **OCEANIA**

Australia.—Mary Kathleen Uranium, Ltd., controlled principally by Rio Tinto Australia, Ltd., and Australasian Oil Exploration, Ltd., contracted with the British Atomic Energy Authority for the sale of uranium oxide valued at \$90 million from the Mary Kathleen mine in the Mount Isa-Cloncurry district of northwest Queensland. Mary Kathleen mine, with reserves reported to exceed 3 million tons of ore above 0.2 percent U₃O₈, would be worked as an open-pit mine and should be one of the world's largest open-pit uranium-mining operations.9 Plans included erection of a reduction plant estimated to cost \$22.4 million, scheduled for production about March 1959.10 A preliminary account of the geology and mineralogy in the Mary Kathleen area was published.¹¹

The United Kingdom Atomic Energy Authority indicated that a contract for purchasing uranium would be given to firms in the South Alligator River area of the Northern Territory, providing such firms could prove an adequate ore reserve by the end of 1957. Development of the El Sharana mine in the South Alligator area about 150 miles south of Darwin, continued by United Uranium N. L. operating company for Uranium Mines N. L. and Northern Uranium Development N. L. (owned partly by Atlas Corp., an American firm). Results were encouraging enough so that a 60-ton-per-day concentrating mill was erected.¹³ A mass of pitchblende weighing 2,156 pounds and assaying 83 percent U₃O₈ was hoisted from the El Sharana mine during the year.¹⁴ Cataract Mining Corp., New York, N. Y., leased 280,000 acres, part of which adjoins the Rum Jungle uranium-producing area.15 Northern Australian Uranium Corp. N. L., was reported to have discovered a significant uranium ore body of primary-type mineralization in the Milestone area 500 miles east of Rum Jungle.16

In the South Wales area, South Australia, the Radium Hill mine continued to produce uranium-bearing davidite. The South Australia Government uranium-processing plant at Port Pirie was reported to have doubled the original estimated output.17 Other properties being investigated for uranium in the general area during the year included

Broken Hill, Mount Victoria Hut, and Trackaringa Hills.

The Australian Atomic Energy Commission announced that some 73 uranium deposits were discovered during 1954-55; of these, 17 were in New South Wales, 1 in Victoria, 41 in Queensland, 3 in Tasmania, 3 in Western Australia, and 8 in Northern Territory. Despite the many discoveries, virtually all the uranium produced in Australia came from the Rum Jungle (Northern Territory) and the Radium Hill (South Australia) areas.¹⁸

Mining Journal (London), vol. 246, No. 6281, Jan. 6, 1956, p. 11.

Nucleonics, vol. 14, No. 4, April 1956, p. 23.

Mary Kathleen Uranium Deposit, Mount Isa-Cloncurry District, Uncensland, Australia: Econ. Geol., vol. 51, No. 6, September-October 1956, pp. 528-540.

U. S. Embassy, Canberra, Australia; State Department Dispatch 386: April 9, 1956, p. 16.

Mining World, vol. 18, No. 13, December 1956, p. 71.

Mining World, vol. 18, No. 13, December 1956, p. 41.

Engineering and Mining Journal, vol. 157, No. 9, September 1956, p. 240.

Mining World, vol. 18, No. 13, December 1956, p. 71.

E&MJ Metal and Mineral Markets, May 17, 1956, vol. 27, No. 20, p. 8.

Chemical Engineering and Mining Review (Melbourne), vol. 48, No. 6, Mar. 10, 1956, p. 8.

The commission also announced that tax exemptions on profits from uranium mining would be extended to June 30, 1965, in an effort to encourage increased participation in the uranium industry by private firms.19

Uranium metal was produced for the first time in Australia by the metallurgical department of the New South Wales University of Technology from uranium compounds supplied by the South Austral-

ian Department of Mines.20

Interest in nuclear energy mounted during the year. Special attention was directed toward utilization of nuclear power in developing huge bauxite deposits on Cape York in the far north of Queensland, where other power sources were not available; radioisotopes for industrial and medical purposes were being exploited on a larger scale.21 Under an agreement with the United States, Australia would be permitted to purchase up to 1,100 pounds of fissionable material during the next 10 years for atomic powerplants and for experimental and research work.22

There were increased activities at the nuclear research center under construction at Lucas Heights, near Sydney. Plans included a 10,000kilowatt DIDO-type research reactor.23

The United Kingdom named Maralinga, South Australia, as a

permanent site for testing nuclear weapons.24

New Zealand.—The United Kingdom Atomic Energy Authority abandoned plans to construct a heavy-water production plant in the Wairakei district of North Island as uneconomical.²⁵

U. S. Embassy, Canberra, Australia, State Department, Dispatch 321, Feb. 24, 1956, p. 1.
 Mining Magazine (London), vol. 94, No. 3, March 1956, p. 163.
 Nucleonics, vol. 14, October 1956, p. R8.
 Mining Journal (London), vol. 246, No. 6306, June 29, 1956, p. 813.
 Nucleonics, vol. 14, No. 8, August 1956, p. R11; No. 16, October 1956, p. R8.
 Science Newsletter, vol 69, No. 3, Jan. 21; 1956, p. 46.
 Atomic Energy Newsletter, vol. 14, No. 13, Feb. 7, 1956, p. 1.
 Chemical and Engineering News, vol. 34, No. 6, Feb. 6, 1956, p. 539.

# Vanadium

By Phillip M. Busch 1 and Kathleen W. McNulty 2



RODUCTION of recoverable vanadium in the United States increased to a new record of 3,868 short tons in 1956, an 18-percent gain over 1955. The quantity of vanadium recovered in vanadium pentoxide from domestic ore and concentrate in 1956 was 3,914 tons (7,827,503 pounds). Despite increased domestic consumption, the supply of vanadium again exceeded requirements. As in prior years, the principal source of vanadium continued to be the uraniumvanadium-bearing ores of the Colorado Plateau from which it was extracted as a byproduct.

Free World production of recoverable vanadium was approximately

4,236 short tons, a gain of 6 percent over 1955.

Production of vanadium pentoxide in the United States was about 7 percent greater than in 1955; the output of ferrovanadium was

22 percent larger.

No vanadium-bearing ore or concentrate or vanadium products were imported in 1956. Increased production of vanadium from ores of the Colorado Plateau have made the United States selfsufficient.

TABLE 1.—Salient statistics of the vanadium industry in the United States, 1947-51 (average) and 1952-56 (pounds of contained vanadium)

	1947-51 (average)	1952	1953	1954	1955	1956
Production (domestic): Recoverable vanadium in ore and concentrate !	2, 561, 572 3, 070, 845 1, 005, 354 14, 525	5, 142, 799 4, 328, 016 1, 043, 797 939	6, 114, 851 5, 012, 448 716, 977 1, 010	6, 051, 784 6, 302, 912 395, 287	6, 571, 655 7, 338, 668 184, 737	7, 735, 088 7, 876, 398
Ferrovanadium and other vana- dium alloying materials con- taining over 6 percent vana- dium 23 Vanadium pentoxide, vanadic	163, 294	293, 162	156, 952	140, 510	439, 457	413, 22
oxide, vanadium oxide, and vanadates  Ore and concentrate processed	7, 550 4, 579, 623	120, 367 6, 557, 691	12, 319 7, 890, 000	42, 935 9, 609, 000	1, 729, 103 11, 312, 000	1, 789, 63 11, 402, 58

Measured by receipts at mills.

About 4.4 million pounds (3.8 million pounds in 1955) of vanadium products was consumed in the United States in 1956; 77 percent was reported consumed as ferrovanadium.

Quoted prices for vanadium oxide in ore, vanadium pentoxide, and vanadium metal remained unchanged throughout 1956, but prices

of ferrovanadium advanced 10 cents a pound.

Measured by receipts at mills.
 Classified as ferrovanadium, 1946-52.
 Figure represents gross weight.
 Classified as "Ore and concentrate", 1947-52, but probably included vanadium pentoxide.

¹ Commodity specialist. ² Statistical clerk.

# DOMESTIC PRODUCTION

#### ORE

Southwestern Colorado, northwestern New Mexico, northeastern Arizona, and southeastern Utah, the "four corners" area of the Colorado Plateau, continued to be the center of vanadium-ore mining in the United States. A small quantity of ore was produced in Wyoming. Vanadium production in these five States was a byproduct or coproduct of uranium.

A new record in production of vanadium in ore and concentrate

was established; output was 13 percent more than in 1955.

Colorado maintained its position as the leading vanadium-oreproducing State; output of recoverable vanadium was 21 percent more than 1955. Ore-processing mills were operated in 1956 by Climax Uranium Corp. at Grand Junction; Union Carbide Nuclear Co. at Rifle and Uravan; and Vanadium Corp. of America at Durango and Naturita.

TABLE 2.—Recoverable vanadium in ore and concentrate produced in the United States, 1947-51 (average) 1952-56, by States

1	Pounds	of	contained	vanadium)

State	1947-51 (average)	1952	1953	1954	1955	1956
Colorado Utah Arizona and other States 1	1, 835, 307 183, 123 543, 142	4, 197, 914 194, 532 750, 353	4, 530, 612 385, 038 1, 199, 201	4, 528, 472 575, 884 947, 428	4, 595, 359 995, 873 980, 423	5, 582, 484 1, 098, 802 1, 053, 802
Total	2, 561, 572	5, 142, 799	6, 114, 851	6, 051, 784	6, 571, 655	7, 735, 088

¹ Includes Idaho 1947–54; New Mexico 1947–48, 1950–54 and 1956; South Dakota 1954; and Wyoming 1954 and 1956.

TABLE 3.—Vanadium and recoverable vanadium in ore and concentrate produced in the United States, 1947-51 (average) and 1952-56, in pounds

Year	Mine pro- duction 1	Recoverable vanadium	Year	Mine pro- duction ¹	Recoverable vanadium
1947-51 (average)	3, 548, 655	2, 561, 572	1954	9, 860, 028	6, 051, 784
1952	7, 176, 861	5, 142, 799		9, 965, 205	6, 571, 655
1953	9, 285, 898	6, 114, 851		11, 270, 919	7, 735, 088

¹ Measured by receipts at mills.

Production of recoverable vanadium in ore and concentrate in Utah increased 10 percent over 1955.

Additional information on domestic production is contained in volume III of this series.

### **OXIDE**

After domestic uranium-vanadium-bearing ore and concentrate is processed in the extractive circuits of mills, the first vanadium product made is vanadium pentoxide, which normally contains 85 to 92 percent  $V_2O_5$ . Vanadium oxide output in 1956 was consumed largely as a raw material in manufacturing ferrovanadium, which averages 53 to 55 percent vanadium. Production of vanadium oxide

in the United States steadily increased to a new record, 7 percent greater than in 1955. Vanadium pentoxide from domestic ores was produced at 5 plants in 1956 and 8 plants in 1955. The figures in table 6 include the vanadium oxide produced as a byproduct of foreign chrome ores, 1946–56; vanadium pentoxide produced from Peruvian concentrate, 1946–55; and vanadium oxide recovered as a byproduct of domestic phosphate rock, 1946–54.

TABLE 4.—Production of vanadium pentoxide in the United States, 1947-51 (average) and 1952-56, in pounds ¹

Year	Gross weight	V ₂ O ₅ content	Year	Gross weight	V ₂ O ₅ content
1947–51 (average)	6, 181, 260	5, 483, 640	1954	12, 735, 000	11, 255, 200
	8, 710, 900	7, 728, 600	1955	14, 851, 000	13, 104, 800
	10, 140, 900	8, 950, 800	1956	15, 925, 900	14, 060, 000

i Includes a relatively small quantity recovered as a byproduct of Peruvian concentrate and foreign chrome ore.

## **FERROVANADIUM**

In 1955 and 1956, ferrovanadium was produced in the United States by two companies—Electro Metallurgical Co. and Vanadium Corp. of America. Production was about 22 percent greater than in 1955.

# CONSUMPTION AND USES

## ORE AND CONCENTRATE

The quantity of domestic and foreign vanadium ore and concentrate consumed at domestic plants in making vanadium pentoxide and ferrovanadium again established a new record of 11 million pounds (vanadium content), about a 1-percent increase over 1955.

### **VANADIUM PRODUCTS**

Statistics on the consumption and stocks of vanadium products are shown in tables 4 and 5. These data cover all the larger and most of the smaller users of vanadium and are believed to represent about 90 percent of total consumption.

Of the reported consumption in 1956, about 77 percent was in the form of ferrovanadium, and 78 percent was used in high-speed and

other alloy steels.

TABLE 5.—Vanadium consumed and in stock in the United States in 1956, by forms, in pounds of vanadium

Form	Stocks at consumers' plants Dec. 31, 1955	Consumption	Stocks at consumers' plants Dec. 31, 1956
FerrovanadiumOxideAmmonium metavanadateOther	461, 268° 29, 210 24, 818 49, 790	3, 054, 159 258, 355 168, 460 495, 710	534, 012 34, 482 30, 570 133, 232
Total	565, 086	1 3, 976, 684	732, 296

¹ Represents approximately 90 percent of total consumption, which was about 4.4 million pounds.

TABLE 6.—Vanadium consumed in the United States in 1956, by uses

Use	Pounds of vanadium	Ușe	Pounds of vanadium
High-speed steel Other alloy steels Alloy east iron Nonferrous alloys	886, 647 2, 218, 014 57, 728 521, 559	Chemicals	181, 925 110, 811 1 3, 976, 684

¹ Represents approximately 90 percent of total consumption, which was about 4.4 million pounds.

Ferrovanadium was used in manufacturing tool steels, engineering steels, high-strength structural steels, high-temperature alloys, and wear-resistant cast irons. Ferrovanadium was used in welding-rod-electrode coatings, permanent-magnet alloys, and as a deoxidizer for low-carbon steel. Vanadium oxide was also used in welding-electrode coatings and as an additive to steel under special conditions. Vanadium oxide and ammonium metavanadate were used as catalysts, in ceramics, and in laboratory research. Metallic vanadium, excluding high-purity vanadium, was used for remelting purposes as an alloy. Vanadium continued to be used in steel for its grain-refining and

To achieve these results, only small quantities were alloving effects. required. In high-speed steels vanadium content ranged from about 0.50 to 2.50 percent, although higher percentages were occasionally employed. Alloy tool steels, other than high-speed steels, contained 0.20 to 1.00 percent. The range for engineering steels was 0.01 to 0.25 percent. Most steels containing over 0.50 percent vanadium were used for special products, such as reamers, roughing and finishing tools, die-casting dies, work dies, and twist drills. Vanadium was used in a variety of engineering and structural steels, usually alloyed with chromium, nickel, manganese, boron, and tungsten. Aluminum alloyed with 2.5 to 40 percent vanadium was used to control thermal expansion, electrical resistivity, and grain size of aluminum alloys (both wrought and cast) and to improve high temperature A product containing 80 to 85 percent vanadium and 13 to 17 percent aluminum increased greatly in use during 1956 as a special low-impurity master alloy adapted for producing titanium-metal alloys. Aluminum, titanium, and boron, alloyed with 25 percent vanadium, was employed in alloy steels to increase depth hardenability and physical properties. This alloy was used to improve the hot-working characteristics of wrought stainless and heat-resisting steels and to reduce heat checking of castings of these steels.

Additions of vanadium ranging from 0.10 to 0.15 percent increased the strength of cast iron from 10 to 25 percent and added a considera-

ble degree of toughness.

### STOCKS

Stocks of various forms of vanadium held at consumers' plants increased about 30 percent from December 31, 1955, to December 31, 1956.

National Stockpile Purchase Specification P-58 for vanadium, dated December 20, 1948, covered one grade (grade A) of fused black oxide suitable for manufacturing vanadium materials, such as ferro-

vanadium, special alloys, additions to alloy steel, or the manufacture of vanadium chemicals. Since stockpile requirements had been fulfilled before 1956, there were no purchases of this item. Chemical requirements on a dry basis conformed to the following limits:

		56 00
Vanadium pentoxide (V2O5) minimum	<b>-</b> -	80. 00
Phoenhouse (P) maximum		. 00
0 16 - (0)i		. 10
Copper (Cu) maximum		ი5
Copper (Cu) maximum		$\dot{0}$ 5
Antimony (Sb) maximum		. 05
Amonia (Ag) mayimim		. 00
Nieled (Ni) maximum		10
Lead (Pb) maximum		. 15
7:00 (Zn) maximum		10
Insolubles		1.00

Physical requirements for stockpiling specified that the materia should pass through a 2-inch screen and that a minimum portion of the should pass a 4-mesh Tyler standard screen. The fused any lot should pass a 4-mesh Tyler standard screen. oxide could be in broken, crushed or flake form.

## **PRICES**

Vanadium oxide (V₂O₅) contained in ore has been quoted at 31 cents per pound from March 8, 1951, through 1956. This quotation, however, disregarded penalties based on grade of the ore or the presence of objectional impurities, such as lime, which are important

to refiners, since impurities vitally affect recoveries.

Effective September 20, 1956, the quotation on ferrovanadium was increased 10 cents a pound to \$3.20 to \$3.40 a pound of contained vanadium, depending upon the grade of the alloy. Material sold averaged about 54 percent but varied from 38 to 80 percent vanadium. The price on vanadium pentoxide (Technical grade) was \$1.28 to \$1.33 a pound of V₂O₅. Vanadium metal for remelting purposes, in 100-pound lots, was quoted at \$3.45 a pound in 1956.

# FOREIGN TRADE 3

Vanadium concentrate, compounds, mixtures, or other forms of vanadium were not imported in 1956 as the United States production

exceeded demand.

Exports of vanadium in various forms in 1956 were about 1 percent less than in 1955. Exports of vanadium ore, concentrate, vanadic oxide, vanadium oxide, and vanadates increased about 4 percent over 1955; those of ferrovanadium and other vanadium alloying materials declined about 6 percent; exports of vanadium flue dust and other waste materials decreased 67 percent. Seven countries— Austria, Canada, France, West Germany, Italy, Japan, and the Netherlands—were the main foreign markets, taking 96 percent of the total exports. One noticeable change was that ferrovanadium exported to West Germany in 1956 decreased about 74 percent from 1955, but those of vanadium oxide, and other vanadium products increased about 56 percent over the previous year.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.

TABLE 7.—Vanadium ore or concentrate, vanadium-bearing flue dust, and ferrovanadium imported for consumption in the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

	Vanadium ore or cond			entrate Vanadium-bearing			Ferrovanadium	
Year	Pot	ınds		P	ounds		Pounds	
	Gross weight	Vanadium content	Value	Gross weight	Vanadium content	Value	(gross weight)	Value
1947-51 (average) 1952 1953 1954 1955	3, 668, 468 4, 338, 660 2, 959, 600 1, 183, 961 2 3 582, 536	1, 055, 354 1, 043, 797 716, 977 395, 287 2 184, 737	\$498, 064 599, 203 421, 091 238, 222 2 104, 230	30, 540 12, 285 9, 822	14, 525 939 1, 010	\$3, 592 2, 425 2, 237	50, 614 21, 396 17, 364	\$38, 293 22, 132 12, 584
1956								

¹ In addition to data shown "vanadic acid, anhydride, salts and compounds, and mixtures of vanadium" imported as follows: 1953—3,090 pounds (gross weight), \$2,368; 1954—4,000 pounds (gross weight), \$2,934.

² Includes 92,594 pounds of concentrate containing 29,904 pounds of vanadium, valued at \$16,811, received but not reported by the Bureau of the Census until 1956.

³ Revised figure.

TABLE 8.—Exports of vanadium from the United States, 1947-51 (average) and 1952-56 by classes

[Bureau of the Census]

Year	trate, var vanadium vanadate	ore, concen- nadic oxide, n oxide, and es (except ally pure	and ot dium materi taining	anadium her vana- alloying als con- over 6 per- anadium 1	Vanadiur alloys, ar		Vanadium-bearing flue dust and other waste ma- terials		
	Pounds (vanadium content)	Value	Pounds (gross weight)	Value	Pounds (gross weight)	Value	Pounds (vanadium content)	Value	
1947-51 (average)	7, 550 120, 367 12, 319 42, 935 1, 729, 103 1, 789, 634	\$16,703 280,216 32,141 120,311 3,768,358 3,899,313	163, 294 293, 162 156, 952 140, 510 439, 457 413, 228	\$276, 134 529, 360 296, 157 237, 333 991, 955 797, 742	7, 322 103, 036 (3) (3) (3) (3) (3)	\$8,052 12,862 (3) (3) (3) (3) (3)	(2) (3) 54, 211 23, 953 86, 519 28, 545	(2) (3) \$31, 285 13, 609 66, 472 27, 185	

Classified as ferrovanadium, 1947-52.
 Not separately classified before Jan. 1, 1953.
 Beginning Jan. 1, 1953, not separately classified.

# VANADIUM

TABLE 9.—Exports of vanadium from the United States, 1955-56, by countries, in pounds

[Bureau of the Census]

Country	Ferrovanadium and other vana- dium alloying materials con- taining over 6 percent vana- dium (gross weight)		vanadic or dium oxid nadates chemica	ore, con- pentoxide, cide, vana- le and va- (except lly pure vanadium	Vanadium flue dust and other vana- dium waste ma- terials (vana- dium content)		
	1955	1956	1955	1956	1955	1956	
North America: Canada Mexico	110, 200 1, 100	159, 018	1, 120 840	3, 360 1, 680			
Total	111, 300	159, 018	1,960	5, 040			
South America: ArgentinaBrazil Chile	2, 240 2, 000	2, 205	3, 342 1, 193	700			
Total	4, 240	2, 205	4, 535	700			
Europe: Austria	13, 215	22, 059 13, 400 112 1, 655	610, 467 6, 525 327, 094 293, 476 116, 600 157, 713 173, 680	542, 789 2, 105 265, 376 456, 617 78, 620 49, 694 65, 019 1, 232		2, 898 16, 276 9, 374	
Total	323, 447	251, 505	1, 686, 787	1, 461, 452	86, 519	28, 54	
Asia: Japan Taiwah	470		35, 821	322, 442			
TotalAfrica: Union of South Africa	470	500	35, 821	322, 442			
Grand total	439, 457	413, 228	1, 729, 103	1, 789, 634	86, 519	28, 54	

## TECHNOLOGY

At the mills treating vanadium-uranium ores by leaching, different procedures were used. Before 1948 vanadium recovery from carnotite and roscoelite ores was based on a salt roast, in which the ground ores were mixed with salt and roasted; the resulting calcine was quenched in water or sodium carbonate solution to extract the vanadium, which had been converted to soluble sodium vanadate. Vanadium was recovered from the leach solution by adjusting the pH to 3 with acid, then heating and stirring to precipitate sodium polyvanadate (red cake).

Uranium-vanadium recovery techniques 4 included: A sodium carbonate and acid leach-fusion method, as employed by the Vanadium Corp. of America mills at Naturita and Durango, Colo.; a water and acid leach process employed at the Union Carbide Nuclear Co. at Uravan, Colo.; and a solvent-extraction method recently installed by the Kerr-McGee Oil Industries, Inc., at Shiprock, N. Mex., and

by the Climax Uranium Co. at Grand Junction, Colo.

A method for producing high-purity vanadium was developed by Magnesium Elektron, Ltd., England. This process was described in Mine and Quarry Engineering 5 and summarized as follows.

Eighty-percent ferrovanadium was used as a starting material for producing high-purity vanadium by reduction with magnesium trichloride. Ferric chloride was eliminated from the tetra and oxytrichloride and the tetrachloride reduced to magnesium trichloride by heating under reflux in a carrier-gas stream. The pure trichloride was reduced at temperatures not exceeding 850° C. in a purified argon atmosphere. Excess magnesium and magnesium chloride was removed from the vanadium sponge by melting at 900° C. and at a 1-micron pressure under an argon atmosphere. Traces of magnesium chloride remaining may be removed by aqueous leaching. Vanadium metal obtained in a small unit producing about 3 pounds per batch averaged 99.7 percent vanadium. A pilot plant producing 40- to 45pound batches was also operated.

Patents were issued for preparing catalysts of vanadium oxide,6 electrodeposition of vanadium with chrome and nickel,7 and recovering

uranium and vanadium from ores.89

# WORLD REVIEW

World production of vanadium ore and concentrate in 1956 was limited almost entirely to Angola, South-West Africa, Finland, and the United States; output increased 6 percent over 1955. United States contributed about 91 percent of the total production

⁴ Lenneman, William L., If You're Planning Uranium Extraction, Take a Look at Today's Flowsheets' Eng. Min. Jour., Min. Guidebook, Mid-June 1956, vol. 157, No. 6A, pp. 122-132.

⁵ Mine and Quarry Engineering, The Less Common Metals: Vol. 22, No. 8, August 1956, pp. 329-330.

⁶ Drake, Leonard C., Smith, Wenonah, and Robert F. (assigned to Socony Mobil Oil Co.), Preparation of Catalysts of Vanadium Oxide or Chromium Oxide on Porous Carriers: U. S. Patent 2,734,874, Feb. 14,

of Catalysts of vanadium Oxide of Chromium Oxide Catalysts of Vanadium Oxide Catalysts of Vanadium Oxide Catalysts of Vanadium F. (assigned to Westinghouse Electric Corp.), Black Chromium-Nickel-Vanadium Electrodeposits: U. S. Patent 2,739,109, Mar. 20, 1956.

§ McLean, Daniel Chalmers (assigned to the United States of America by the United States Atomic Energy Commission), Process for Recovering Uranium and Vanadium from Ores: U. S. Patent 2,756,122, July 24, 1956.

§ Bailes, Richard H., and Long, Ray S. (assigned to the United States of America by the United States Atomic Energy Commission), Uranium-Vanadium Recovery and Purification Process: U. S. Patent 2,756,123, July 24, 1956.

in 1956. Besides ore, other sources of vanadium in prior years have been phosphate rock, iron ore, chrome ore, magnetite beach sands, caustic soda solution employed in the Bayer process of refining bauxite, flue dust collected from the boilers and smoke-stacks of ships and industrial plants, and vanadiferous ashes derived from asphaltites.

Since complete data on the quantity of vanadium recovered as a byproduct of iron ore and other materials was not available, it was impossible to determine world production from all sources. Therefore, table 10 reflects only the production of vanadium ore and concentrate for the countries listed, plus the quantity recovered as a by-

product of phosphate rock from 1947 to 1954.

The figures for the United States from 1947 to 1956 represent recoverable vanadium and are not comparable with those found in Minerals Yearbooks before 1955, which represented vanadium content in ore and concentrate produced.

TABLE 10.—World production of vanadium in ores and concentrates, 1947-56, in short tons

Country	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956
North America: United States (recoverable vana- dium)	1 821	1 670	¹ 1, 188	¹ 1,598	¹ 2, 126	1 2, 571	1 3, 057	1 3, 026	3, 286	3, 868
South America: Argentina	8	2 8	28	2 8	28	28	28	28	28	2 8
Peru (content of concen- trate)	480	563	503	481	495	482	349	195	78	
Total Europe: Finland	488	571	511	489	503	490	357	203	86	2 8 42
Africa: Angola Rhodesia and Nyasaland, Federation of: North-										11
ern Rhodesia (recovered vanadium)	62	191	169		96	47				
South-West Africa (re- coverable vanadium)	311	206	180	325	583	688	596	633	632	30
Total	373	397	349	325	679	735	596	633	632	31
World total (estimate) 8	1, 682	1,638	2,048	2, 412	3, 308	3, 796	4,010	3,862	4,004	4, 23

¹ Includes vanadium recovered as a byproduct of phosphate-rock mining, 1947-54.

#### SOUTH AMERCIA

Argentina.—Vanadium occurs in small, widely scattered deposits in the Provinces of Córdoba, Mendoza, and San Luis. A small quantity of ore has been mined to produce 3 to 8 short tons of vanadium annually.

Peru.—Production of vanadium at the well-known Mina Ragra mine of the Vanadium Corp. of America in the Andes Mountains near Ricran, Department of Junín, was suspended in August, 1955. The

² Estimate.
³ Total represents data only for countries shown in table and excludes vanadium in ores produced in French Morocco, Spain, and U. S. S. R., for which figures are not available; the table also excludes quantities of vanadium recovered as byproducts from other ores and raw materials.

mine and plant were put on an indefinite standby basis; there were no mining and milling activities in 1956.

#### **AFRICA**

Belgian Congo.—The following information was extracted from a report furnished by the American Consul in the Belgian Congo.

Although the Mines Service reports the production of 844 tons of zinc-vanadium, it gives no information on grade or value. This is a new production and is apparently from the Kossu region of Bas Congo. The 1955 report of the BAMOCO Syndicate, active in this area, states that underground work has been started for the development of the deposits discovered in 1954. It seems possible that this production has not yet been marketed and for that reason no value was assigned by the Service.

Rhodesia and Nyasaland, Federation of.—The Engineering company of Grand Junction, Colo., is reported constructing a 500-ton-a-day vanadium plant to process ores of that area.¹⁰

South-West Africa.—Property of the South-West Africa Co., Ltd., at Berg Aukas, Harasib, and Baltika is being thoroughly investigated for vanadium-ore reserves. Although quantitative data are not yet available, the reserve situation appears promising. At the Abenab West mine, the vanadium content of the ore is diminishing. In order to make up a part of this loss, a new plant is being constructed to treat lead and zinc sulfide ores.

Mining World, Federation of Rhodesia and Nyasaland: Vol. 19, No. 3, March 1957, p. 116.
 Mining World, South-West Africa: Vol. 18, No. 6, May 1956, p. 72.

# Vermiculite

By L. M. Otis 1 and Nan C. Jensen 2



THE CONSUMPTION of crude vermiculite has remained fairly constant since 1950 and has not kept pace with the upward trend of many other materials used in the construction industry. Exfoliated vermiculite has followed the same general pattern since 1954 when statistical canvassing by the Bureau of Mines was first inaugurated.

# DOMESTIC PRODUCTION

Crude vermiculite sold or used by producers in the United States was 6 percent less in tonnage and value than in 1955; exfoliated material increased less than 1 percent in tonnage but decreased 3

percent in value.

Crude Vermiculite.—Only 3 producers mined vermiculite in 1956, compared with 7 in 1954 and 1955. The 1956 production of 193,000 short tons, valued at \$2.5 million came from Montana and South Carolina. North Carolina produced in 1954 and 1955. In 1956 two producers exfoliated their entire output in their own furnaces; a third producer sold part and exfoliated the remainder of company output. Production came mostly from the mines of the Zonolite Co. near Libby, Mont.

Full-scale production was begun at the newly completed plant of the Zonolite Co. in the Laurens-Enoree area of South Carolina near Lanford, in March 1956. The mill used a wet process to beneficiate the ore; its system includes flotation on tables or agglomerate tabling to remove feldspar, hornblende, and other minor gangue minerals.

This mill is fed from scattered pits in the vicinity.

TABLE 1.—Screened and cleaned crude vermiculite sold or used by producers in the United States, 1947-51 (average) and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	171, 189	\$1, 842, 760	1954	195, 538	\$2, 537, 577
1952	208, 906	2, 657, 826	1955	204, 040	2, 702, 225
1953	189, 535	2, 445, 381	1956	192, 628	2, 542, 467

Exfoliated Vermiculite.—In 1956, 25 companies exfoliated vermiculite at 55 plants in 32 States and Hawaii, compared with 24 companies exfoliating at 54 plants in the same areas in 1955.

¹ Commodity specialist. ² Statistical assistant.




FIGURE 1.—Screened and cleaned crude vermiculite sold or used by producers in the United States and average value per ton, at their plants, 1944-56.

North Carolina and Texas each had 4 exfoliating plants in 1956; there were 3 plants each in California, Florida, Illinois, Minnesota, New Jersey, and Pennsylvania; and 2 each in Massachusetts, Missouri, Montana, and New York. All other States having vermiculite-exfoliating facilities had one plant each.

TABLE 2.—Exfoliated vermiculite sold or used by producers in the United States,¹
1954-56

				Va	lue
Year	Operators	Plants	Short tons	Total	Average per ton
1954 1955 1966	27 2 24 25	50 54 55	144, 964 157, 952 158, 787	\$10, 807, 023 9, 999, 634 9, 674, 350	\$74, 55 63, 31 60, 93

¹ Includes Hawaii.

# CONSUMPTION AND USES

The construction industry continued to be the principal user of exfoliated vermiculite. Although no accurate determination of uses is available, building plasters, lightweight concrete, and loose-fill in-

² Revised figure.

sulation consumed most of the vermiculite. Vermiculite-plastered surfaces increase fire-resistance and supply thermal- and sound-insulation qualities. Loose fill was also used for insulating refrigerators, incubators, ovens, safes, and water heaters. Miscellaneous uses included: Hatchery litter, soil conditioning, carrier for herbicides, insecticides, fungicides, and fumigants, propagation of seed, transportation of hot steel ingots, insulation of liquid-air storage vessels, and high-temperature insulating cements.

An unusually fine vermiculite powder absorbed and carried a liquid

fumigant that killed nematodes or eelworms—a new method.

An article described the use of exfoliated vermiculite to make a refractory insulating firebrick and the application of refractory vermiculite concrete by spray methods.³ The author covered the previous work of making insulating firebrick from vermiculite, the bonding agents used, pilot-plant production, costs, production techniques, advantages, and uses.

Hazardous painting and drying areas at the Chrysler Corp. new Detroit plant were fireproofed by using a machine-applied vermiculite plaster. This lightweight plaster was quickly applied as a coating on steel beams, trusses, and ceilings, enabling the Chrysler Corp. to

concentrate safely all motor-body painting under one roof.

The word "vermiculaponics" has been coined to describe the soilless culture of plants grown in tanks filled with vermiculite and plant nutrients. Cabbages, beans, and tomatoes are grown throughout the entire year at Orangemund, an arid diamond-producing center in South-West Africa. The tanks or beds are 50 feet long by 4 feet wide and 9 inches deep and can supply all the vegetables required by a family of 4, using about one-twentieth of the water required in conventional gardening.⁴

## **PRICES**

The average mine value of crude screened and cleaned vermiculite in 1956 was \$13.20 per short ton—slightly less than the 1955 average of \$13.24.

The average value of the exfoliated material, f. o. b. exfoliation plants, in 1956 was \$60.93 per ton, a 4-percent decrease compared with

the previous year.

These prices were calculated from the Bureau of Mines canvasses. Vermiculite prices are not quoted regularly in trade journals.

# FOREIGN TRADE

For several years all significant imports of crude vermiculite into the United States came from Union of South Africa. The quantity and value of exports from this source during 1952-56 are shown in table 3.

Crude vermiculite is imported into the United States, duty-free, under paragraph 1719 of the Tariff Act of 1930 as material not specifi-

cally provided for.

³ Hitner, Jan, Developments in the Manufacture and Use of Vermiculite High-Temperature Insulation: Bull. Am. Ceram. Soc., vol. 35, No. 4; Apr. 15, 1966, pp. 147–150.

⁴ Fortilizer and Feeding Stuffs Journal, Dr. Bentley's Soilless Culture in South-West Africa: Vol. 43, No. 7, Sept. 28, 1955, p. 286.

Official United States records of vermiculite exports are not available. However, Canadian statistics show that about 80 percent of the crude vermiculite exfoliated in Canada came from the United States and averaged Can\$350,000 during 1954-55.

TABLE 3.—Exports of crude vermiculite from Union of South Africa, 1952-56, by countries of destination, in short tons 1

1	Compiled	hv	Corre	À	Barryl	
	Compued	υy	COLLA	A,	Barry	

Country	1952	1953	1954	1955	1956
North America:					
Canada	3,674	2,820	4, 873	3, 168	4, 440
Cuba	1	, 020	2,010	349	2, 22
United States	8, 312	6, 615	7, 553	10, 637	0 000
South America:	-,	0,010	1,000	10,007	8, 083
Chile			48	19	
Uruguay	1	120	1 20	181	358
venezuela		1	130	197	251
Europe:	1		100	101	201
Belgium	. 171	274	391	280	286
Denmark	2 012	2, 218	2, 832	1, 439	3, 181
riniand	1 1	5	2,002	1, 100	110
France	3 200	3, 167	5, 209	4.341	5, 162
Germany, West	935	1, 273	2, 668	2,926	5, 703
Italv	9 040	3, 169	5, 036	5,748	5, 705
Netherlands.	2, 267	1, 482	1. 163	1,024	
Norway		214	1,100	50	2, 260
Sweden	060	353	756	366	56
Switzerland	119	000	116		230
United Kingdom	6,700	9, 381		55	357
Asia:	0,100	9, 301	8, 710	11,711	11,879
Arabia		167	52	28	440
Iraq.		107	02	197	419
Israel	560			197	165
Japan	65	293	186	88	134
Lebanon	. 00	60	101	- 00	632
Malaya		29	56		89
Africa:		23	. 50	.59	188
Egypt	192		70	130	171
French West Africa	230	139	70 54		171
Morocco	114	112		159	
Rhodesia and Nyasaland, Federation of	94	437	114 354	382	
oceania:	84	437	304	304	349
Australia	205	436	<b>5770</b>	20.5	
New Zealand	205 51		578	685	1, 951
ther countries	31	123	204	57	125
				172	481
Total	32, 707	20.007	47.054	44.040	
Total value 2		32,887	41, 254	44, 840	52, 775
Average value	\$506, 544	\$556, 405	\$712, 570	\$785, 651	\$970, 804
TELOTORO AUTRO	\$15.49	\$16.92	\$17.27	\$17.52	\$18.40

## **TECHNOLOGY**

The development of a glass-bonded vermiculite enamel was described.⁵ It was shown that the use of expanded vermiculite in an enamel used on metal surfaces produced a coating with thermaland sound-insulating properties. Methods of developing, testing, producing, and application were outlined in some detail.

Vermiculite can be easily identified in the field by applying a flame from a match or pressing a lighted cigarette against a thin flake of the mica. If rapid, accordionlike expansion takes place, the micaceous material is one of the vermiculite family. This test is

⁵ Conway, Myron J., Jr., The Development of an Insulating Enamel: Bull. Am. Ceram. Soc., vol. 35, No. 1, January 1956, pp. 6-10.

⁶ Northern Miner (Toronto), Unusual Properties Make Vermiculite a Useful Mineral: Vol. 42, No. 27, Sept. 27, 1956, p. 20.

mentioned in an article on vermiculite, describing color, exfoliating characteristics, genesis, sources, uses, and the Canadian market.

A Vermiculite Institute pamphlet gave detailed drawings and specifications for both concrete and steel roofs and floor assemblies, columns, beams, girders and trusses, panel or spandrel walls, and

solid plaster partitions.7

Another pamphlet prepared by the Vermiculite Institute gave the American Standards Association specifications for gypsum plastering, including machine-applied vermiculite plaster and vermiculite acoustical plastic. The pamphlet also has suggestions for best plastering results.8

The mineralogical and chemical properties of vermiculite were reviewed. The discussion included a practical definition of vermiculite species, their relation to the micas, and the significant chemical com-

positions as a criterion of quality.

Patents.—A patented composition covers the use of vermiculite

as a carrier for an ammonium silicofluoride weedkiller.10

An apparatus and method for machine application of mortars composed of portland cement or gypsum and vermiculite are described in a patent.11

The addition of exfoliated vermiculite to a sodium acrylate known as "Krilium" is claimed in a patent to increase its aeration, structural

stability, workability, and water-retention properties.12

Improvement in grinding-wheel manufacture is claimed in a patent by using a mixture of exfoliated vermiculite, a hard abrasive, and a The mixture is pulverized, mixed with a small amount of water, pressure molded to shape, dried, and fired to vitrification.¹³

Vermiculite was one of the materials shown in six patents as suitable

for preparing surface-modified, finely divided siliceous solids.14

A patent for a die-forging compound covers vermiculite as a

lubricant and antiwelding agent in the composition.15

Vermiculite is used in a patented method for installing a system of waterproof underground heating pipes; the pipe is wrapped in corrugated or asbestos paper and positioned in the trench on insulating bearing blocks. A liner of asphaltic material is attached and a membrane of tarred felt is applied to the concrete base and liner, and insulating concrete is poured around the assembly. This insulating concrete uses exfoliated vermiculite or other suitable lightweight aggregate.16

⁷ Vermiculite Institute, Vermiculite Fire-Resistance Ratings for Plaster, Acoustical Plastic, and Concrete: 208 South LaSalle St., Chicago, Ill., May 1956, 8 pp.
8 Vermiculite Institute, Standard Specifications for Vermiculite Plastering and for Vermiculite Acoustical Plastic: 208 South LaSalle St., Chicago, Ill., March 1956, 12 pp.
9 G. Kimpflin [Vermiculite. I. Chemistry, Mineralogy, and Geology]: Chim. et ind., 1954, pp. 72, 152; abs. in Trans. British Ceram. Soc. (Stoke-on-Trent, England): Abs. 16, 1955, p. 54 (1), 2A.
10 Sowa, F. J., Herbicidal Composition: U. S. Patent 2,769,702, Nov. 6, 1956.
11 Hobson, L. H. (assigned to E-Z ON Corp., Chicago, Ill.), Method of Emplacing Mortar: U. S. Patent 2,770,560, Nov. 13, 1956.
12 Zlegler, G. E. (assigned to Zonolite Co., Chicago, Ill.): U. S. Patent 2,765,290, Oct. 2, 1956.
13 Rieke, G. A., Vitreous Grinding Composition: U. S. Patent 2,772,150, Nov. 27, 1956.
14 Her, R. K. (assigned to E. I. du Pont de Nemours & Co., Wilmington, Del.), Product and Process: U. S. Patents 2,739,074, 2,739,075, 2,739,076, also U. S. Patents 2,739,077 and 2,739,078 having identical titles and same assignee, to Goebel, M. T. and Broge, E. C., respectively, all dated Mar. 20, 1956; Berry, K. L., Joyce, R. M., and Kirby, J. E. (assigned to E. I. du Pont de Nemours & Co., Wilmington, Del.), Product and Process: U. S. Patent 2,757,089, July 31, 1956.
15 Hodson, L. N., Sr., and Foin, T. C. (assigned to the Hudson Corp., a corporation of Delaware), Die-Forging Compound: U. S. Patent 2,735,814, Feb. 21, 1956.
16 Burk, M. S., Method of Installing Underground Heating Pipe System: U. S. Patent 2,773,512, Dec. 11, 1956.

^{11, 1956.} 

Herbicidal urea compositions are effectively dispersed in finely com-

minuted vermiculite according to a recent patent. 17

An improved acoustical fireproof composition adapted to application of sheet-metal panels is made of exfoliated vermiculite, sodium hydroxide, and waterglass, according to a patent. Acoustical properties are maintained by regulating the water content of the composition so that the surface of the finished product remains relatively soft when in use.18

A patent covers the use of exfoliated vermiculite made into insulating batts or panels, or as loose fill, in hollow-floor heating systems designed for installation in house trailers. 19

## RESERVES

The largest known deposits of vermiculite occur near Libby, Mont., where reserves in 1956 were estimated at 25 to 100 million tons.20 The largest reserves outside of Montana are thought to be in the Union of South Africa. Vermiculite is also found in the U.S.S.R., Southern Rhodesia, Australia, India, British possessions in Africa, Egypt, Brazil, Canada, Finland, and Uganda. Most of these potential reserves are undeveloped.

## WORLD REVIEW

TABLE 4.—World production of vermiculite, by countries, 1947-51 (average) and 1952-56, in short tons 2

[Compiled by	Helen L.	Hunt and	Berenice 1	В.	Mitchelll
--------------	----------	----------	------------	----	-----------

Country 1	1947-51 (average)	1952	1953	1954	1955	1956
Argentina					551	772
Australia	128	69	32			ī
Egypt	3 702	66	4 100			
India	5 160	24		3	138	1,038
Kenya	2		82	807	380	497
Rhodesia and Nyasaland, Federation of:	0.400		1			
Southern Rhodesia	6 483					305
Union of South Africa	25, 349	39, 918	33, 844	45, 633	57, 482	58, 717
United States (sold or used by producers).	171, 189	208, 906	189, 535	195, 538	204, 040	192, 628
World total 1	198, 013	248, 983	223, 593	241. 981	262, 591	253, 958

In addition to countries listed, vermiculite is produced in Brazil and U. S. S. R., but data are not available, and no estimates of their production are included in the total.
 This table incorporates a number of revisions of data published in previous Vermiculite chapters.

The first year of commercial production.

³ 1951 only. 4 Estimate

Average for 1950-51.
 Average for 1948-51.

Searle, N. E. (assigned to E. I. du Pont de Nemours & Co., Wilmington, Del.), 1-Methyl-3-(2-Benzothiozole)-Ureas and Their Use as Herbicides: U. S. Patent 2,756,135, July 24, 1956.
 Kendall, F. E., and Golar, P. (assigned to the E. F. Hauserman Co., Cleveland, Ohio), Sound-Deadening Composition: U. S. Patent 2,756,159, July 24, 1956.
 Anderson, R. R., Apparatus for Compartment Heating: U. S. Patent 2,756,000, July 24, 1956.
 Mining Journal (London), Vermiculite Goes Ahead: Vol. 247, No. 6323, Oct. 26, 1956, p. 488.

# Water

By Robert T. MacMillan 1



rise in 1956, along with the expansion of population and industry.² Precipitation, on which the water supply of the Nation largely depends, was similar to that in 1955; it was excessive in the Pacific Northwest, in the Appalachian region, and in scattered areas of the North Central and Eastern Seaboard States. Rainfall was deficient in most other areas of the country; drought conditions in the Southwest were intensified to near critical degrees.³

## **GOVERNMENT REGULATIONS**

Pollution problems have become more acute as population has expanded and water requirements multiplied. The Water Pollution Control Act 33 (U. S. C. 466–466j) was extended and strengthened by enactment of the Federal Water Pollution Control Act Amendments of 1956.⁴

TABLE 1.—United States water supply potential 1

${f Region}$	Area, 1,000	Runoff,	Billion
	square	inches per	gallons
	miles	year	per day
North Atlantic Upper Hudson Lower Hudson and Coastal area Delaware Chesapeake Eastern Great Lakes and St. Lawrence Western Great Lakes Upper Mississippl Southeast Tennessee-Cumberland Ohio Missouri-Hudson Bay Lower Mississippi Arkansas-White-Red Western Gulf Colorado. Great Basin	6	24	67
	122	22	14
	57	21	6
	47	21	12
	81	19	51
	182	18	40
	279	11	42
	59	7.2	62
	145	16	21
	580	21	21
	64	16	59
	270	1.9	110
	341	16	90
	258	7	90
	200	7	52
Pacific Northwest South Pacific United States	112	13 12 8.5	159 64 1, 164

¹ Geol. Survey Circ. 398, 1957.

125 pp.
4 Public Law 660, 84th Cong., chap. 518, 2d sess., S 890, approved July 9, 1956.

¹ Commodity specialist. ² MacKichan, K. A., Estimated Use of Water in the United States, 1955: Geol. Survey Circ. 398, 1957,

¹⁸ pp.

§ U. S. Department of Commerce, Climatological Data: National Summary, vol. 7, No. 13, Annual 1956,
128 pp.

Administered by the Surgeon General of the Public Health Service, the new law provides for Federal cooperation with various State and private agencies concerned with water pollution. The Federal Govvernment was authorized to grant limited financial assistance on a sharing basis for research and construction projects relating to water-

pollution control.

The water problems of the mining industry often include controlling inflow into a mine or dewatering rock structures so that mining may proceed. Control of drainage water in the anthracite mine fields of Pennsylvania, under provisions of Public Law 162, 84th Congress, was approved in 1955. Funds were authorized to the extent of \$8.5 million on a matching basis with the Commonwealth of Pennsylvania for surface drainage improvement, pumping, and related facilities.⁵

## DOMESTIC SUPPLY

In 1956 runoff was deficient over approximately 40 percent of the United States, involving the largest area since 1934. This deficiency was mostly in the Southern States where the drought was more extensive and severe than in the previous year. Runoff in most Northern States was greater than in 1955, and the area of excessive runoff was about 4 times larger.

The flows of the Mississippi River at Vicksburg and the Missouri River at Hermann, Mo., were 76 and 50 percent of median, respectively; the Colorado River flow was 66 percent of median. In contrast the Ohio River flowed at 109, the St. Lawrence at 114, and the

Columbia at 145 percent of median.

In the Northeast except in Maine, all major power reservoirs were higher than average; industrial and municipal reservoirs were about average. In the Southeast the contents of power reservoirs was about average; in the west-central section it was below average. Contents of most major power reservoirs in the West was considerably above

average.

Ground-water levels in the Northern States were average or above and tended to follow usual seasonal trends. In most sections of the entire southern half of the Nation, ground-water levels were below average, and record lows were established in parts of Florida, Louisiana, Texas, and New Mexico. Increased pumping of ground water for irrigation and other purposes contributed to the general lowering of water table levels in the drought-striken area.

Artificial recharge of ground-water reservoirs by spreading storm runoff on natural recharge areas or by pumping surface or clean waste water into aquifers continued to gain importance as a water-

conservation measure.

Recharge of ground water is a measure used to guard against infiltration of saline water into fresh water aquifers primarily in certain coastal areas where the local water table has been lowered below sea level by excessive pumping of ground water.

In some instances, overpumping of ground water may permit the aquifer to be compacted, resulting in surface subsidence, a more prevalent circumstance than is generally known. Only when sub-

 ⁵ Public Law 162, 84th Cong., chap. 369, 1st sess., approved July 15, 1955.
 ⁶ Geological Survey (in collaboration with Canada Department of Northern Affairs and National Resources), Water Resources Review: Annual Summary, Water Year 1956, Oct. 22, 1956, 15 pp.

1309 WATER

sidence affects buildings and engineering structures or reverses normal drainage flow does it receive adequate consideration.7 Studies have been made to determine, among other things, the terminal point of the compaction and whether or not it is reversible. Areas in the San Joaquin and Santa Clara Valleys have subsidence of from a fraction of a foot up to 6 or 8 feet attributed to compacting of aquifers owing to overpumping of ground water.

Several other factors besides weather affect the water-supply situation. For example, the dry areas of the West are using a larger proportion of their potential water supply than are the more humid Eastern areas. In 1954, 17 Western States were estimated to be using 70 percent of the water they may expect to develop at reasonable

Increasing demands and changing uses were also creating watersupply problems. Following a doubling trend each 25 years since 1900, the consumption of water was expected to double again between 1950 and 1975. By that time, it has been estimated, the United States may be using as much as 90 percent of the water that can be developed at moderate costs. As most of this increase will be for industrial applications, it is anticipated that industry will exceed irrigation in the use of water.

## CONSUMPTION AND USES

Water use in 1956 was substantially the same as in 1955, total withdrawals were estimated at 240 billion gallons daily (b. g. d.) for all purposes except generation of hydroelectric power.⁹ Irrigation and industry each accounted for approximately 46 percent of this total; public supplies took 7 percent; and 1 percent was credited to rural use.

Table 2 is a breakdown of water withdrawn in 1955 by the various States for the four main uses. The source of the water is included—

ground, surface, fresh, saline, or sewage effluent.

Until about 1950 the greatest use of water, other than hydropower, was for irrigation. Although practiced mainly in the West, irrigation gained increasing importance in the East in 1956 to increase crop

returns.10

Beginning with World War II, industrial water use increased tremendously nearly equaling that used for irrigation. In fact, if losses of irrigation water from leakage and evaporation are ignored, industrial-water use considerably exceeds that for irrigation. 1950 estimated water use by industry has increased 43 percent. Together industry and agriculture use more than 90 percent of all water withdrawn, excluding that used for hydroelectric power; public and rural use compose the remainder.

The economic return from water used for irrigation is much less than that used for industrial purposes. The average value of manufactured goods requiring the use of 1,000 gallons of water was esti-

Poland, J. F., and Davis, G. H., Subsidence of the Land Surface in the Tulare-Wasco (Delano) and Los Banos-Kettleman City area, San Joaquin Valley, Calif.: Trans. Am. Geophys. Union, vol. 37, No. 3, 1956, pp. 287-296.
 Bello, F., How Are We Fixed for Water?: Fortune, March 1954, pp. 120-125.
 Work cited in footnote 2.
 Davis, J. R., Future of Irrigation in Humid Areas: Jour. Am. Water Works Assoc., vol. 48, No. 8, August 1956, pp. 982-990.

TABLE 2.—Withdrawal of water, in million gallons per day, 1955, by States

		Water power		95,000	4,7,4 000 000 000 000 000 000 000 000 000 0	11,000	31 510 20,000		43, 000 100, 900 17, 000	60, 000 32, 000 6, 200 37, 000	3,300 3,300 1,500 81
	Total	ex lud- ing	power		1, 514 30, 706 7, 082		2, 812 2, 201	15, 425 9, 879 7, 022 1, 801 2, 235			2, 333 2, 043 2, 256 2, 323 681
		Total		2, 752	6, 280. 3 505	1, 737	1, 945 1, 850	8, 393. 7 6, 590 1, 519 1, 220	3, 160 3, 680 1, 607 1, 945	6, 015 1, 590 1, 790 1, 790 215	490 53 206 3,696 54.5
	ıstrial	Sew-	880		0.3			7.	89		9.
area.	fed ind	water	Saline	10	5, 200	680 250	888 898 898		1, 100 1, 200	83	1, 200
20 60	Self-supplied industrial	Surface	Fresh	2,600	488 488	1,000 46	800 1,400	8,000 1,100 1,000	6,8,000 00,8,8,8,8,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000	1, 400 1, 600 1, 600	2,200 4,200
1000	S.	Ground water Surface water	Saline	63	=	9	15	13 0 0		25 25	94
6		Ground	Fresh	140	58%	252	210 210 210	02188848 08088 08088 08088	91 92 92 92 92 92 93 93 93 93 93 93 93 93 93 93 93 93 93	88888	62 24 024 024
mind barons per adj, 1000, ny Biates		Total		6, 910	878 23, 025 6, 303. 2	13.3	510 30	15, 100 8.0 8.4 4.6 740	8.4 1,210 13.68 4,28	48.3 770 44 9,756.4	2,550 1,916.8 37 2,514
	ion	Sew-	8ge	10	25 3.2	1 1	.04			6.4	6.8
	Irrigation	Surface	water	2, 200	13,000 5,300	12	260	14,000 4.8 3.3 1.2 130	4.5 830 13 4.1	43 6. 7 310 24 9, 600	1,700 1,700 1,700 1,100
		Ground	water	4, 700	10, 000 1, 000	1.3	250 12	1, 100 3.2 5.1 8.4 610	380 380 .19 .68	2.2 460.2 20 150	850 210 .02 22 1, 400
		Total		94 45	8118	114	38	25 117 84 136 70	39 88 8	882288 882288	£∞408
	Rural	Sur- face	water	814	22 7	87	1181	22 57 54 54	2337	88828	81 20 10 4
			water	823	888	တ က	23	15 95 79 79 46	18258	£22281	000000000000000000000000000000000000000
	lies	Total		197	1,290 238	250 44	160 319 285	1,360 1,340 141	225 243 72 277 502	820 144 122 341 94	220 65 580 93
	blic supplies	Sur- face	water	130	200	33	160 200	1, 200 200 41 75	180 160 260 420	940 300 73	001 88 88 80 88 80 80
	Pub	Ground	water	110	8.58	911	240 85	160 140 130	45 83 6 17 82	180 50 41 21	120 29 160 85
		State		Alabama. Arizona.	Colorado	Connecticut Delaware District of	Columbia Florida Georgia	Idaho. Illinois Indiana. Iowa. Kansas.	Kentucky Louistana Maine Maryland Massachusetts	Michigan Minnesota Missiesippi Missourl Montana	Nebraska Nevada New Hampshire New Jersey

130, 000 41, 000 1, 600 3, 300	180,000 41,000 29,000 6,400	100,000 11,000 1,600 24,000	27,000 27,000 84,000 2,300	1, 500, 000
8,884 2,214 408 10,756 976	7,456 11,014 398 951 245	4, 279 17, 176 4, 602 2, 012	6, 406 4, 120 5, 063 11, 148	240,000
6,757 1,970 226 9,540 516	435 9, 501 321 740 105	3,950 5,730 240 67 1,750	818 4, 010 4, 620 60	110,000
				2
3, 500	461 240	2,400	86	18,000
3,000 1,800 1,800 3,600	8,700 70 690	3, 700 2, 300 110 1, 200	3, 900 4, 500 55	83,000
32	2	500		029
250 170 240 70	3 <del>8</del> 6 1188	250 230 130 100 100 100	8558	9,200
47 9.0 121.4 11.1	6, 793.6 15.6 30 27.8	27. 6 4, 170. 27 1. 1 7. 13	5,030 82 9.0 11,032.2	110,000
	3.6	29	4.2	100
25 7.6 120 10 75	6,300 14 18 21	3,700 3,900 1.1 6.7	4, 800 .82 6.4 11, 000	80,000
22 1.4 1.1 150	490 1.6 12 04 6.8	8, 500 270 . 43	230 2.6 28	30,000
120 57 105 50	34 17 20 20	167 167 18 12 45	26 104 19	2, 400
25 25 35 35 35	13 17 16	3250 421	a°aa	069
110 52 14 77 15	30 30 34 34 34	28 8 8 83 83	28 17 9	1,800
1, 960 1, 178 1, 100 1, 185	1, 420 1, 420 147 62	1,050 1,050 174 34 210	510 83 330 37	17,000
1,700 150 16 140	1,300 1,300 120 120	352288	360 190 12	12,000
260 10 250 45	882524	110 110 10 10	150 18 140 25	4, 700
New York North Carolina North Dakota Ohio	Oregon Pennsylvania. Rhode Island South Carolina. South Dakota.	Tennessee	Washington West Virginia Wisconsin Wyoming.	United States

¹ Geol. Survey Circ. 398, 1957.

mated at \$11.70 in 1953. This is more than 140 times the estimated 7½-cent value of agricultural crops requiring 1,000 gallons of irrigation A further consideration of particular importance in watershort regions is that as little as 40 percent of irrigation water may be available for reuse; most water used by industry may be reused after suitable treatment.11

Bureau of Mines engineers estimated that in 1956 approximately 84 billion gallons of water was injected into oil-bearing strata in the secondary recovery of 156.7 million barrels of oil. About 30 percent of the water used for this purpose was classified as fresh water; the remainder was brine obtained from deep aquifers or recycled.

In some instances the injection of waste oilfield brines into oil strata in connection with a water-injection program was found to be a satisfactory method of disposing of such brines without polluting surface water resources.

A report of techniques used and results obtained from systematic waterflooding of certain oilfields in Kansas was published. in the more successful operations oil production was estimated to have increased from 648 to over 2,000 barrels per acre. The ratio of water injected to oil produced was about 10 or 12 to 1. Most of the water was separated from the oil and reinjected after treatment.

Results of studies of water use in the pulp and paper, the carbon-

black and the aluminum industries were reported. 13

Depending on the availability and cost of suitable water, wide divergence was found among various plants in the quantities of water used for a unit of product. In manufacturing woodpulp, average water requirements ranged from 10,000 to 75,000 gallons per ton; and in processing the pulp to paper, 13,000 to 80,000 gallons per ton were The maximum water used per unit by the paper industry averaged about five times the minimum used by plants in the same general area. Although waste from pulp mills was a disposal problem. very little of the water used in pulp manufacturing was actually con-In response to awakening civic responsibility and Governsumed. ment antipollution laws, many pulp manufacturers used recycling techniques to conserve water.14

In contrast to the pulp and paper industry, the water requirements of the carbon-black industry were comparatively small, being about 6,600 gallons per ton of carbon black produced; however, a much

higher percentage of this water was used consumptively.

The aluminum industry was a large user of water, requiring, on the average, over 30,000 gallons of water for producing 1 ton of primary aluminum from bauxite. Most of this water was employed for cooling or gas scrubbing.

**PRICES** 

Prices varied widely in different areas, depending in part upon the use of the water and the treatment required. For municipal water

¹¹ Powell, S. T., Relative Economic Returns From Industrial and Agricultural Water Uses: Jour. Am. Water Works Assoc., vol. 48, No. 8, August 1956, pp. 991–992.

12 Powell, J. P., Water Flooding of Oil Sands in Butler and Greenwood Counties, Kans.: Bureau of Mines Inf. Circ. 7750, May 1956, 42 pp.

13 Mussey, O. D., Water Requirements of the Pulp and Paper Industry: Geol. Survey Water Supply Paper, 1330-A, 1955, 71 pp.; Conklin, H. L., Water Requirements of the Carbon-Black Industry: Geol. Survey, Water Supply Paper, 1330-B, 1956, 101 pp.; Conklin, H. L., Water Requirements of the Aluminum Industry: Geol. Survey, Water Supply Paper, 1330-C, 1956, 139 pp.

14 Brown, H. B., Conservation of Water in Pulp and Paper Industry Through Recycle, Reuse, and Reclamation: Ind. Eng. Chem., vol. 48, No. 12, December 1956, pp. 2151–2156.

WATER 1313

delivered at the tap, the average price was about 30 cents per 1,000

gallons.15

Irrigation-water prices were much lower, ranging from ½ cent to 10 cents per 1,000 gallons. Industrial-water prices generally fell

between these two.

In contrast to most other commodities, water was said to be priced so low that the expansion of facilities necessary to meet growing demands was being retarded. The average domestic consumer used about 6,000 gallons a month, at a cost of \$20 to \$25 per year. In most instances a 50-percent increase in revenue received for water would be necessary to improve current service and provide for future requirements.¹⁶

Heavy water was first made available on an unclassified basis by the Atomic Energy Commission in 1955 at a price of \$28 per pound in 125- and 500-pound stainless-steel drums. These drums are non-returnable and cost \$30 for the smaller size and \$80 for the larger

size. The price was not changed in 1956.

## **TECHNOLOGY**

The solution to problems of expanding water requirements lies not only in the development of additional supplies but also in conserving and reusing existing supplies and in converting relatively untapped sources, such as saline water. Increasing attention was focused on the many technologic problems associated with the latter aspects of

the water problem.

Broad aspects of the saline-water-conversion problem were discussed in an article in the technical press.¹⁷ No entirely new water-conversion methods were anticipated, but economic factors involved in procedures under development were evaluated. Costs for producing potable water from saline sources on a large scale were said to be higher than many previous estimates, but still within reason. Assuming normal development of known processes, converted sea water was expected to be available to customers in the foreseeable future at costs ranging from \$0.50 to \$1.25 per 1,000 gallons.

The Saline Water Conversion Program of the United States Department of the Interior reported significant progress in reducing the cost of existing conversion processes and in developing methods not previ-

ously used in commercial saline-water-conversion processes.

During 1956, research was continued on projects under the following headings: Distillation, membrane, solar, freezing, and solvent-extraction processes. Fabrication of an experimental 25,000 gallon per day rotary-evaporator compression still was completed and tests were begun.

Field testing was continued on an experimental electrodialysis demineralizer, which removed positive and negative salt ions from water; the ions were allowed to migrate through selective cation and anion membrane barriers under the influence of an electric current.

¹⁸ Aandahl, F. G., The Nation's Water Resources: Jour. Am. Water Works Assoc., vol. 48, No. 8, August 1956, pp. 931–941.

16 Howson, L. R. Rates, Revenues, and Rising Costs: Jour. Am. Water Works Assoc., vol. 48, No. 5,

May 1956, pp. 465-471.

17 Hickman, K. C. D., The Water-Conversion Problem: Ind. Eng. Chem., vol. 48, No. 4, April 1956, pp. 7A-19A.

18 Secretary of the Interior, Saline-Water Conversion: Annual Rept., 1956, 18 pp.

Field tests indicated that the unit could be operated satisfactorily on several types of brackish waters. Problems identified by the field tests involved the durability of the membranes and scaling of the equipment owing to precipitation of CaCO₃ and CaSO₄. It was found that the latter could be controlled largely by adjusting pH of the concentrating stream. A program of basic research on membrane development was instituted to provide durable membranes having low resistance and high selectivity. Estimates of the cost of demineralizing brackish water at a rate of 1 million gallons per day was \$0.80 per 1,000 gallons.

Plans for a 5,000-square-foot solar still were completed and a search for a suitable seashore site was started. Several units of an experimental solar still using a wick and multiple-effect evaporation principle were tested. Results indicated that a 10-effect still provided 5 or 6 times as much fresh water as a simple roof-type still

indicating an important saving in space requirement.

The use of plastic materials in solar stills is desirable providing the film will withstand outdoor exposure for long periods without deterioration. Several newly developed films were believed to be capable

of withstanding exposure for at least 10 years.

Results of tests indicated that desalting of water by freezing with commercial equipment would be as expensive as commercial sea-water evaporation. It was concluded that new freezing and ice-brine separating techniques would be necessary for economical demineral-

ization of saline water on a large scale.

The operation of eight commercial membrane demineralizing units over several years was described in an article. Factors affecting the operation of the plants were found to be: (1) Suspended solids, (2) bacterial growth, (3) iron fouling, (4) sulfide fouling, and (5) scaling. Of these, the first four were controlled by filtration, aeration, chlorination, and settling of the influent brines; the last was eliminated by controlling the pH and providing for enough blowdown.

Total costs depended on the concentration of salts in the influent and effluent streams, the size of the plant, energy costs, and other factors. For a 40-percent reduction in salinity in a 1.4-million-gallon-per-day (g. p. d.) plant the cost was \$0.20 per 1,000 gallons for a 92-percent reduction in salinity in a 28,000-gallon-per-day

plant the cost was \$1.33 per 1,000 gallons.

Greater reuse of water by various industries has resulted in the publication of articles concerning the problems encountered. Biological fouling in recirculating cooling-water systems was attributed mainly to algae and fungi.²⁰ Besides plugging screens and restricting flow through conduits, the slime masses retard heat transfer and cause equipment to corrode and rot.

No single toxic agent is completely effective for controlling biological fouling in all types of industrial cooling-water systems. Chlorine is effective over a wide range of conditions. Chlorinated phenols, bromine, copper and mercury salts, and other compounds have their place in controlling biological fouling. Problems relating to

Kirkham, T. A., More Fresh Water Via Membranes: Chem. Eng., October, 1956, pp. 185–189.
 Maguire, J. J., and Betz, W. H., and L. D., Biological Fouling in Recirculating Cooling Water Systems: Ind. Eng. Chem., vol. 48, No. 12, December 1956, pp. 2161–2167.

1315 WATER

recirculation of cooling water in petroleum refining were discussed

in another article.21

In addition to biological fouling, the build-up of minerals in recirculating water caused corrosion and scaling. Blowdown, alkalinity control, and corrosion inhibitors are commonly used in controlling corrosive and scaling tendencies of recirculating cooling water. Combinations of polyphospates and chromates, coupled with proper alkalinity control, were found to provide more satisfactory protection

against corrosion than either used separately.

The reuse of cooling water in atomic energy installations posed some very special problems.²² Water that circulates through the primary loop of the cooling system of an atomic reactor has extremely high-purity requirements because mineral impurities circulating through the system become a potential source of induced radioactiv-Such radioactive waters are a disposal problem, and in many instances eliminating the source of activity by removing the elements subject to induced radioactivity has been found less costly than constructing the necessary holding tanks and shielding to contain the radioactive waters. A mixed bed of cation and anion highcapacity ion-exchange resins was highly successful in removing radioactive elements in the primary loop of a cooling system in

A large steel company expanded its facilities for storing and treating Baltimore sewage effluent, which it used successfully as a source of industrial water. Chlorination and alum treatment provided effluent

water of satisfactory quality for plant use.23

High temperatures and pressures attained in modern steam-generating boilers required water of high quality to resist corrosion and Reuse of steam condensate as boiler feedwater scaling tendencies. was permissible, provided proper devices for policing and deaerating the system were installed and appropriate additives used. Oxygen and carbon dioxide concentrations in the condensate were important causes of corrosion. Ammonia, neutralizing amines, cyclohexylamine, and morpholine were used to combat corrosive properties of boiler condensate.24

A few important facts in the history, production, and uses of heavy water were discussed in a technical journal.25 In 1934 Harold Urey discovered that the molecules of pure water contained, besides the common atoms of hydrogen and oxygen, an unusual type of hydrogen atom that was twice as heavy as the common variety. This isotope of hydrogen, subsequently named deuterium, has an atomic weight of 2 and resembles hydrogen in many ways, combining with oxygen

to form the compound D₂O or "heavy water."

The freezing and boiling points of D₂O are 3.8° and 1.4° C. higher, respectively, than those of ordinary water. Besides being slightly more viscous than water, D2O apparently is not usable by plants or animals, which will die of thirst when supplied exclusively with it.

²¹ Brandel, A. J., Recirculation of Cooling Water in Petroleum Refining: Ind. Eng. Chem., vol. 48, No. 12, December 1956, pp. 2156-2158.

22 Beladean, A. L., Reuse of Cooling Water in an Atomic Energy Installation: Ind. Eng. Chem., vol. 48, No. 12, December 1956, pp. 2159-2161.

23 Hauser, F. R., Expansion of Industrial Water Facilities at Sparrows Point: Iron and Steel Eng., vol. 33, No. 9, September 1956, pp. 81-84.

24 Noll, D. E., and Rivers, H. M., Reuse of Steam Condensate as Boller-Feedwater: Ind. Eng. Chem., vol. 48, No. 12, December 1956, pp. 2146-2150.

25 Buswell, A. M., and Rodebush, W. H., Water: Sci. American, vol. 194, No. 4, April 1956, pp. 77-89.

Heavy water was used mostly as a moderator in nuclear reactors, but it was also employed as a tool in theoretical research. By substituting less reactive deuterium for hydrogen in certain compounds altered chemical properties may result, from which molecular structure

may be studied.

Heavy water may be produced in several ways. In one procedure deuterium is obtained from hydrogen gas by liquefying the gas and fractionating the liquid. Ordinary hydrogen molecules tend to boil off first. The resulting deuterium is reacted with oxygen to produce D₂O. The D₂O content of ordinary water may also be increased by electrolysis and by fractionating steam. To produce heavy water by these processes, large quantities of hydrogen, steam, or cheap electric power are required. It is economical, therefore, to build heavywater plants in connection with plants that utilize larger quantities of hydrogen or steam.

In addition to ordinary hydrogen and deuterium, a third isotope of hydrogen—tritium—may be found in water. This material is of great importance in connection with the hydrogen bomb. Three isotopes of oxygen—O¹⁶, O¹⁷, and O¹⁸—are also found in water. While tritium and O¹⁸ are present only in minute traces, deuterium and O¹⁷ average 200 and 1,000 parts per million, respectively. These 6 isotopes combine to form 18 different substances that may be found in water.

# Zinc

By O. M. Bishop, A. J. Martin, and Esther B. Miller 2



	Page		Page
Government programs and regu-		Domestic production—Con.	
lations	1319	Smelter and refinery produc-	
Defense Minerals Exploration		tion—Continued	
Administration	1320	Zinc dust	1332
General Services Administra-		Zinc pigments and salts	1333
tion	1321	Consumption and uses	1333
Domestic production	1321	Stocks	1340
Mine production	1321	Prices	1341
Smelter and refinery produc-		Foreign trade	1343
tion		Technology	1347
Slab zinc		World review	1349
Propoduct sulfuric acid	1332		

EATURES of the domestic zinc industry in 1956 were a steady zinc price from January 6 through December; a record high production of slab zinc; a material decline in slab-zinc consumption, accompanied by a sharp increase in smelter stocks; and increases in mine production and imports of zinc. Price stability in the face of the decline in commercial demand was maintained through Government acquisitions of surplus zinc for the strategic and supplemental national stockpiles. Slab-zinc output was 3 percent above that in 1955, the previous record year, despite considerable loss of production at 2 smelters caused by a 52-day strike. Consumption of slab zinc declined 10 percent, owing mainly to the cutback of production in the automobile industry, largest consumer of zinc die castings; and a 5-week steel strike, which caused some decrease in the quantity of zinc used for galvanizing during the year.

Domestic mine production of zinc, although 5 percent larger than in 1955, was 6 percent less than the average for the 5 years, 1951–55. Strikes that carried over from 1955 caused considerable loss of production in 1956, but several newly developed mines reached the productive stage, and a number of other mines that had shut down in 1952, 1953, and early 1954 because of the low price of zinc reopened

during 1955 and early 1956.

Output of secondary zinc, recovered chiefly from zinc- and copperbase scrap, decreased 8 percent but was still equivalent to more than

half the quantity produced from domestic ores.

Smelter output of slab zinc was 1.06 million tons in 1956. Of the total, almost 49 percent was derived from foreign ores. Consumption of slab zinc, at 1.01 million tons (excluding that stockpiled by the

¹ Commodity specialist. ² Statistical assistant.

Government), decreased 10 percent from 1955. Total commercial slab-zinc stocks held by producers and consumers increased 6 percent. Government purchases of domestic zinc for the National Stockpile, and acquisitions of foreign zinc through the barter program for the supplemental stockpile, prevented a larger increase in commercial stocks.

Combined imports of slab zinc and zinc contained in ores rose 14 percent to a new record high of 770,300 tons, exceeding by 22,000 tons the former record established in 1953.

Activity of the principal foreign zinc producing and consuming countries in the zinc industry paralleled, to a large extent, that in the United States. Both mine and smelter outputs of foreign zinc increased, consumption decreased (particularly in the United Kingdom), and the supply was plentiful except for short periods in some countries when shipments were being rerouted owing to closing of the Suez Canal in October. An interesting event of the year was the beginning of mine production of zinc and lead in Greenland. The Nordic Mining Co. lead-zinc deposit at Mestersvig, discovered in 1948 and under development for the past several years, was put into operation in 1956.

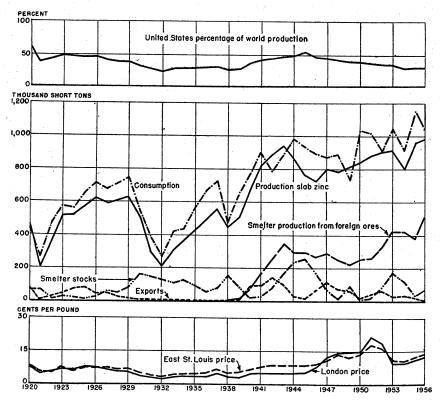



FIGURE 1.—Trends in the zinc industry in the United States, 1920-56. Consumption figures represent primary slab zinc plus zinc contained in pigments made directly from ore.

1319

TABLE 1.—Salient statistics of the zinc industry in the United States, 1947-51 (average) and 1952-56

	1947-51 (average)	1952	1953	1954	1955	1956
Production of slab zinc: By sources:	* .					
From domestic ores short tons From foreign oresdo	569, 919 256, 109	575, 828 328, 651	495, 436 420, 669	380, 312 422, 113	582, 913 380, 591	470, 09 513, 51
Total primarydo From scrapdo	826, 028 58, 506	904, 479 55, 111	916, 105 52, 875	802, 425 68, 013	963, 504 66, 042	983, 61 <b>72,</b> 12
Total production do	884, 534	959, 590	968, 980	870, 438	1, 029, 546	1, 055, 73
Stocks on hand at producers' plants: At primary plantsshort tons_ At secondary plantsdo	41, 245 1, 671	81, 344 3, 677	176, 725 3, 268	121, 847 1, 549	37, 322 1 1, 942	64, 79 2, 08
Total	42, 916	85, 021	179, 993	123, 396	1 39, 264	66, 87
mports (general): Ores (zinc content) _short tons_ Slab zincdo	276, 938 107, 297	449, 636 115, 705	513, 724 234, 576	455, 427 156, 858	478, 044 195, 696	525, 3 244, 9
Mine production of recoverable zinc short tons	633, 070	666,001	547, 430	473, 471	514, 671	542, 34
Consumption: Slab zincshort tons_	843, 408	852, 783	985, 927	884, 299	1, 119, 812	1, 008, 7
Ores (recoverable zinc content) short tons	126, 999	109, 277	118, 244	99, 247	118, 135	113, 3
Zinc-base scrap 2 (recoverable zinc content)short tons_	88, 558	72, 435	73, 936	62, 166	74, 547	70, 8
Copper-base scrap (recoverable zinc content)short tons Aluminum- and magnesium-base	145, 630	175, 937	160, 499	132, 051	149, 630	125, 5
scrap (recoverable zinc content) short tons	833	1, 216	3, 783	2, 929	6, 956	4, 4
Totaldo	1, 205, 428 56, 068	1, 211, 648 57, 714	1, 342, 389 17, 969	1, 180, 692 24, 994	1,469,080 1 18,069	1, 323, 0 8, 8
Price, Prime Western grade: East St. Louis cents per pound Londondodo World mine productionshort tons	13, 62 15, 54 2, 240, 000	16. 21 18. 53 12, 850, 000	10. 86 9. 47 12, 940, 000	10. 69 9. 78 12, 930, 000	12. 30 11. 30 13, 180, 000	13. 12. 3, 330, 0
World mine production_short tons_ World smelter productiondo		12, 460, 000	12, 600, 000	12, 700, 000	12, 970, 000	3, 110, 0

# **GOVERNMENT PROGRAMS AND REGULATIONS**

The Export Control Act of 1949 and the Defense Production Act of 1950, as amended, were extended to June 30, 1958 (Public Laws

631 and 632, 84th Congress).

In May 1956 the Office of Defense Mobilization established the eligibility of lead and zinc for acquisition to the supplemental stockpile during the fiscal year 1957. The supplemental stockpile was authorized under the Agricultural Trade Development and Assistance Act of 1954 (Public Law 480). In June 1956 the Commodity Credit Corporation began to acquire these metals under section 303 of the act, and actual deliveries began about August. Procurement was limited to lead and zinc of foreign origin but included metal smelted in the United States from foreign ores.

Provisions of the Defense Production Act of 1950, as amended, with respect to exploration continued to be carried out by the Defense Minerals Exploration Administration (DMEA) and those with respect to procurement by the General Services Administration The Office of Minerals Mobilization in the United States Department of the Interior had responsibility for developing metal-

and mineral-expansion programs.

Revised figure.
 Excludes redistilled slab and zinc produced by resmelting.

# DEFENSE MINERALS EXPLORATION ADMINISTRATION

The Defense Minerals Exploration Administration (DMEA) program to encourage exploration and increase domestic reserves of strategic and critical minerals and metals was continued throughout 1956. On exploration contracts for lead and zinc the Government provided 50 percent of the approved cost of the project. The number of such contracts made in 1956 was 22, authorizing a total expenditure of \$2,325,791 in Government and private capital, or an average of \$105,718 per project. From the beginning of the program in 1951 through December 1956, 242 contracts involving lead and zinc were

TABLE 2.—Defense Minerals Exploration Administration contracts involving lead and zinc executed in 1956, by States

State and contractor	Property	County	Date approved	Total amount
CALIFORNIA				
Climax Molybdenum Co	Crown Point Annex	Madera	May 28, 1956	\$100,040
Shasta-Phelps Dodge Joint Venture.	Rinaldo No. 1 mine. Balaklala mine	Shasta	Aug. 31, 1956	109, 820
COLORADO				
American Smelting & Refining Co.	Union extension	Gunnison	Dec. 5, 1955	107, 220
G. R. Bennett et al Outlet Mining Co. and Sublet Mining Co.		do Mineral		24, 030 108, 506
Gormax Mining Co	Gormax mine	do	Mar. 22, 1956	56, 720
IDAHO				
Seagraves Mining Co., Inc	Seagraves mine	Custer	Oct. 11, 1956	9, 960
NEVADA				
Milbank & Jones	Bristol Silver	Lincoln	Aug. 13, 1956	82, 250
TENNESSEE	*			
American Zinc Co. of Tennessee. National Lead Co.	Indian Creek	Knox and Jefferson Grainger	Aug. 31, 1956	768, 170 40, 530
Do New Jersey Zinc Co	Thornhill area Talbot area	Jefferson and Hamil-	Oct. 18, 1956 Mar. 30, 1956	57, 490 156, 250
Do	Strawberry Plain	ton. Jefferson, Savier, and	Mar. 30, 1956	228, 350
D ₀	Eidson area Big War Creek area	Knox. Hawkins Hawkins and Hancock.	May 22, 1956 July 30, 1956	107, 150 107, 150
Do	Independence	Hancock.	May 10, 1956	107, 150
UTAH				
Privateer Mining Co	Privateer mine	Jaub	Sept. 14, 1956	5, 820
VIRGINIA			. 1	
New Jersey Zinc Co Do	Beaver Creek area Porter ore Bank James Woodruff area	Smythdo	July 23, 1956	44, 800 41, 350
Roland F. Beers, Inc	New Canton area	Smyth and Wythe Buckingham	July 23, 1956 Sept. 24, 1956	41, 388 10, 337
WASHINGTON		·		-
F. P. LaSota et al	LaSota & Jones	Pend Oreille	Aug. 13, 1956	11, 310
			-	2, 325, 791

¹ Government participation was 50 percent in exploration projects for lead and zinc in 1956.

ZINC 1321

executed; these authorized Government participation of \$11 million ³ and combined total expenditures (Government and private capital) of \$22 million. Lead-zinc and lead-zinc-copper exploration contracts represented 16 percent of all DMEA contracts executed in 1956 and for 25 percent of all the Government funds obligated; and from the beginning through 1956 they comprised 24 percent of all contracts and 38 percent of the Government funds obligated.

# GENERAL SERVICES ADMINISTRATION

The General Services Administration (GSA) continued to be responsible for stockpile procurement and administration, procurement under foreign aid programs as agent of the International Cooperation Administration and administration of Defense Production Act programs, including domestic purchase programs. Purchases of zinc produced from domestically mined ores were made against the long-term stockpile objective for this metal.

# DOMESTIC PRODUCTION

Statistics on zinc production are compiled both on a mine and on a smelter basis. The mine-output data, based upon the zinc content of ores and concentrates produced (adjusted to account for average smelting losses), form a measure of domestic zinc output from year to year. Smelter production of slab zinc from domestic ores represents an accurate figure of zinc-metal recovery but differs from the mine-recovery figures because of a time lag between mine or mill shipments and smelter production and because considerable zinc ore and concentrate are not smelted but rather are utilized directly in making zinc pigments and chemicals. Secondary zinc recovered at smelters treating zinc-bearing scrap metals constitutes a large part of the domestic production of zinc in all forms.

## MINE PRODUCTION

Output of recoverable zinc from domestic mines totaled 542,300 tons in 1956, a 5-percent increase over 1955. Several newly developed mines in Tennessee and Wisconsin reached the productive stage during 1956, and additional potential mines in these two States and in Pennsylvania, Virginia, Colorado, and other States were being developed and equipped for operation. In New Mexico, another of the 6 important producing mines that had shut down during the sharp zinc price decline in 1952 and 1953 was reopened, and the 3 that had reopened in 1955 greatly increased their outputs in 1956. Loss of production caused by strikes was somewhat less than in 1955, but there was a decline in output of zinc in the large Tri-State zinc-lead district caused by gradual depletion of higher grade ore reserves.

caused by gradual depletion of higher grade ore reserves.

Western States.—Mine output of zinc in the 9 zinc-producing Western States increased 10 percent over 1955 and represented 56 percent of the United States total.

Owing to the large output from the Butte area, Montana was again the principal zinc-producing State in the Nation. The bulk of the

³ Includes sums provided through amendments to contracts and also funds for participation in exploration contracts which were subsequently cancelled or terminated upon completion.

TABLE 3.—Mine production of recoverable zinc in the United States, 1947-51 (average) and 1952-56, by States, in short tons

State	1947-51 (average)	1952	1953	1954	1955	1956
Vestern States and Alaska:						
Alaska	11			1		
Arizona	58, 652	47. 143	27, 530	21, 461	22, 684	25, 58
Camornia	7 020	9, 419	5, 358	1, 415	6, 836	8.04
Colorado	46 620	53, 203	37, 809	35, 150	35, 350	40, 24
Idano	89 380	74, 317	72, 153	61, 528	53, 314	49, 56
Montana	69 440	82, 185	80, 271	60, 952	68, 588	70, 520
Nevada	19, 350	15, 357	5, 812	1,035	2,670	
New Mexico	37,927	50, 975	13, 373	1,000	15, 277	7, 48
Oregon		00, 010	10, 010		15, 277	35, 010
South Dakota	10					
Texas	1	3				
	38, 366	32, 947	29, 184	34, 031		
Washington	14, 035	20, 102	32, 786		43, 556	42, 374
	14,000	20, 102	34, 180	22, 304	29, 536	25, 609
Tetal	366, 826	385, 652	304, 276	237, 882	277, 811	304, 437
Vest Central States:						
Arkansas						
Kansas	21	26				
Missouri	32, 517	25, 482	15, 515	19, 110	27, 611	28, 665
Oklahoma	9, 823	13, 986	9, 981	5, 210	4, 476	4, 380
Oklahoma	47, 821	54, 916	33, 413	43, 171	41, 543	27, 515
Total	90, 182	94, 410	58, 909	67, 491	73, 630	60, 560
ates east of the Mississippi River:						
Illinois						
Illinois Kentucky	17. 993	18, 816	14, 556	14, 427	21,700	24, 039
Now Toron	1, 254	3, 280	489	458		417
New Jersey	64, 427	59, 190	45, 700	37, 416	11, 643	4, 667
New York	37, 005	32, 636	51, 529	53, 199	53, 016	59, 111
Tennessee	32, 898	38, 020	38, 465	30, 326	40, 216	46, 023
Virginia Winconstr	13, 113	13, 409	16, 676	16, 738	18, 329	19, 196
Wisconsin	9, 372	20, 588	16, 830	15, 534	18, 326	23, 890
Total	176, 062	185, 939	184, 245	168, 098	163, 230	177, 343
Grand total	633, 070	666, 001	547, 430	473, 471	514, 671	542, 340

zinc-bearing ore mined came from the Anselmo, Lexington, and Orphan Girl lead-zinc mines and the Emma manganese mine of The Anaconda Co. at Butte, Silver Bow County. The company programed new expansion projects at Butte,⁴ one of which will involve sinking two new shafts that will permit developing copper-zinc veins in large areas virtually untouched by past mining activities. Substantial zinc producers in other Montana areas included the East Helena fuming plant, Lewis and Clark County (treating zinc-bearing slag from the lead smelter); the Trout-Algonquin, Scratch Awl, and Moorlight mines, Granite County; and Jack Waite mine, Sanders County.

Idaho's mine output of zinc in 1956 was 7 percent less than in 1955 and the lowest since 1939. The strike that shut down the properties of the "Sixteen Operators" bargaining group in the Coeur d'Alene region, Shoshone County, on August 23, 1955, ended February 1, 1956. The Star mine of the Bunker Hill Co. continued to be the State's largest zinc producer (despite a material decline in output), and the Bunker Hill mine of the same company ranked second. Other important producers in the Coeur d'Alene region included the Page, Frisco (closed December 31), and Morning mines of the American Smelting & Refining Co.; the Sidney Mining Co., Sidney mine; and Day Mines, Inc., properties. The Triumph mine in Blaine County and Clayton in Custer County were also substantial producers.

⁴ Mining World, Anaconda Maps Greatest Expansion: Vol. 18, No. 12, November 1956, pp. 56-61.

ZINC 1323

Zinc production in Utah declined 3 percent compared with 1955. The United States & Lark mine of the United States Smelting, Refining and Mining Co. in Salt Lake County (Bingham district) was much the largest producer. The Ontario-Park Utah mine of the United Park City Mines Co. and New Park Mining Co. group, both in Wasatch County, and the Chief Consolidated Mining Co. mines in

Juab County were other important producers.

Colorado gained 14 percent over 1955 in zinc production. The Idarado Mining Co., the State's second largest zinc producer, expanded its mining and milling operations in San Miguel County. The company 1,400-ton Pandora mill at Telluride (rebuilt in 1955) resumed operations early in 1956. On November 30 the company closed its 1,000-ton Red Mountain mill in Ouray County and centered its milling operations at the Pandora mill. The largest producer was the New Jersey Zinc Co. Eagle mine in Eagle County, equipped with a 1,200-ton mill. Other substantial producers included the Keystone, Gunnison County; Rico Argentine, Dolores County; Emperius, Mineral County; Camp Bird, Ouray County; Recurrection Mining Co. properties, Lake County; and Wellington, Summit County.

In New Mexico, reopening in 1955 and 1956 of 4 of the zinc and zinc-lead mines and mills in the Central district (Grant County) that suspended operation in 1952 and 1953 raised the State output of zinc in 1956 to 35,000 tons from 15,300 tons in 1955 and only 6 tons in 1954. The principal producing mines (all in the Central district) were the American Smelting & Refining Co. Ground Hog; New Jersey Zinc Co. Hanover; Peru Mining Co. Kearney; and United States

Smelting, Refining and Mining Co. Bayard.

Washington's zinc output declined 13 percent in 1956. In November the Gold Fields Consolidated Mines Co. shut down its Deep Creek mine in Stevens County. The other important producers were the American Smelting & Refining Co. Van Stone open-pit mine in Stevens County and the Pend Oreille Mines & Metals Co. and the American Zinc, Lead & Smelting Co. underground mines in

Pend Oreille County.

Zinc production in Arizona increased 13 percent over 1955. The largest producer was the Iron King mine of the Shattuck Denn Mining Co. in Yavapai County. Other producers included the Flux mine (American Smelting & Refining Co.) in Santa Cruz County; Athletic (Athletic Mining Co.) in Graham County; San Xavier (Eagle-Picher Co.) in Pina County; and Shannon (Peru Mining Co.)

and Coronado Copper & Zinc Co. mines in Cochise County.

California and Nevada also increased their zinc output in 1956. The bulk of the California production, as in other recent years, came from the Anaconda Co. Darwin and Shoshone groups of zinc-lead properties in Inyo County. The increase in Nevada resulted mainly from renewed and expanded operations at the mines of the Combined Metals Reduction Co. and Bristol Silver Mines Co. in the Pioche district, Lincoln County, and ore shipped from the former Metals Reserve Company stockpile at Jean in Clark County.

West Central States.—Kansas, Missouri, and Oklahoma together produced 60,600 tons of recoverable zinc in 1956, or 13,000 tons less

than in 1955.

Tri-State (Joplin) district.—The Tri-State district output of recoverable zinc decreased 18 percent from 1955 to 57,200 tons in 1956, but lead output increased 4 percent to 20,400 tons. The Lawyers mill of the American Zinc, Lead & Smelting Co., active in 1955, was idle throughout 1956, but the company 1,500-ton Barbara J. mill and several mines were in production. The 15,000-ton Central mill of the Eagle-Picher Co. handled both company and custom ores. Eagle-Picher also operated its smaller Bird Dog mill and several large groups of mines in Oklahoma and Kansas and was the principal producer of zinc and lead in the Tri-State district. The National Lead Co. operated its Ballard group of mines and 2,100-ton concentrator in Kansas. Other companies in Oklahoma and Kansas shipped crude ore to the Central mill. One tailing mill (Sooner Milling Co.) was active from January to March 1956 and was then closed and dismantled. In the Missouri part of the district the Big Four Mining Co. worked its mine, treating the ore in the Dale mill, until August and then suspended operations.

Southeastern Missouri.—Zinc concentrate was recovered as a by-product from lead ores and old tailings treated at some mills of the St. Joseph Lead Co. in St. Francois and Washington Counties; recoverable

zinc produced in 1956 was about 3,300 tons.

States East of the Mississippi River.—Zinc was mined in 7 States east of the Mississippi River, which together produced 177,300 tons

of recoverable zinc in 1956, or 14,100 tons more than in 1955.

Output in New York increased 11 percent over 1955 to a new record high of 59,100 tons and was larger than that in any other State in the Nation except Montana. The producing mines (each equipped with a mill) were the Balmat and Edwards near Gouverneur, St. Lawrence County; both were owned and operated by the St. Joseph Lead Co.

Zinc production in New Jersey was kept low by a strike that shut down the Sterling mine (New Jersey Zinc Co.) in Sussex County from

August 23, 1955, through the first week in September 1956.

In Tennessee the new Jefferson City mine of the New Jersey Zinc Co. in Jefferson County, where shaft sinking began in October 1953 and a 1,000-ton flotation mill was built, reached the productive stage in September 1956. This new source of production and continued large output from other previously established operations of the American Zinc Co. of Tennessee and the United States Steel Corp. in Jefferson and Knox Counties raised Tennessee's zinc production 14 percent over 1955 to a new record high of 46,000 tons in 1956. In Polk County zinc concentrate was recovered as one of the commercial products obtained from iron-copper-zinc sulfide ore of the Tennessee Copper Co.

Virginia's output of zinc increased 5 percent over 1955 and was the largest since 1944. The New Jersey Zinc Co. operated its Austinville mine and 2,400-ton mill in Wythe County throughout the year and continued work on a major mine development and modernization program embracing the Austinville mine and mill and the nearby

Ivanhoe mine. A 13,000-foot tunnel was being driven to connect the

underground workings of the 2 mines.

Output of zinc in Wisconsin—all from Grant, Iowa, and Lafayette Counties—rose 30 percent to 23,900 tons, the largest since 1927. The American Zinc, Lead & Smelting Co. and the Eagle-Picher Co. continued to operate their mines that were in production in 1955, and American Zinc Co. also operated its newly developed Temperly mine from August through December 1956. Mines operated by the Piquette Mining & Milling Co., Ivy Construction Co., Murray & Richards, and H. Turner & Son produced considerable zinc.

In the northern Illinois districts, Tri-State Zinc, Inc., and the Eagle-Picher Co. operated their zinc-lead mines and mills near Galena in Jo Daviess County, and in the southern Illinois district the Ozark Mahoning Co., Aluminum Company of America, and Minerva Oil Co. produced zinc concentrate in milling fluorspar-zinc-lead ores. The total Illinois mine output of zinc increased 11 percent over 1955.

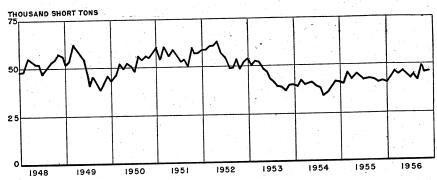



FIGURE 2.—Mine production of recoverable zinc in the United States, 1948-56, by months, in short tons.

TABLE 4.—Mine production of recoverable zinc in the United States, 1955-56, by months, in short tons

Month	1955	1956	Month	1955	1956
January February March April May June July	41, 005 40, 101 46, 286 43, 721 45, 351 43, 972 41, 854	41, 082 42, 703 47, 745 44, 971 47, 286 45, 141 43, 152	August	43, 555 43, 080 42, 700 41, 083 41, 963 514, 671	45, 532 42, 513 49, 600 46, 170 46, 445 542, 340

¹ Includes Alaska.

The 25 leading zinc-producing mines in the United States in 1956, listed in table 5, yielded 69 percent of the total domestic zinc output; the 3 leading mines supplied 25 percent; and the first 6 mines contributed 35 percent.

TABLE 5.—Twenty-five leading zinc-producing mines 1 in the United States in 1956, in order of output

Rank	Mine	District or region	State	Operator	Type of ore
1	Butte Mines	Summit Valley	Montana	The Anaconda Co	Lead-zinc.
2	Balmat	St. Lawrence County.	New York	St. Joseph Lead Co	Do.
3	United States & Lark.	West Mountain (Bingham).	Utah	United States Smelting, Refining & Mining Co.	Do.
4	Eagle	Red Cliff (Bat- tle Mountain).	Colorado	The New Jersey Zinc Co	Do.
5	Austinville	Austinville	Virginia	do	Do.
6	Davis-Bible Group.	Eastern Tennes- see.	Tennessee	United States Steel Corp., Tennessee Coal & Iron	Zinc.
7	Iron King	Big Bug	Arizona	Division	Lead-zinc.
8	Ground Hog	Central	New Mexico	Co.	Do.
9	Unit. Star		4.1	fining Co	Do.
10	Edwards	St. Lawrence County. Eastern Tennes-	Idaho New York		Zinc.
11	Mascot No. 2	see.	Tennessee	American Zinc Co. of Ten- nessee.	Do.
12	Treasury Tunnel- Black Bear- Smuggler Union.	Upper San Miguel.	Colorado	Idarado Mining Co	Copper-lead- zinc.
13	Hanover	Central	New Mexico	The New Jersey Zinc Co	71
14	Bunker Hill	Coeur d'Alene	Idaho	The Bunker Hill Co	Zinc. Lead-zinc.
15	Van Stone	Northport	Washington	American Smelting & Re- fining Co.	Do.
16	Shullsburg	sippi Valley.	Wisconsin	The Eagle-Picher Co	Zinc.
17 18	Gray	do	Illinois	Tri-State Zinc Co.	Lead-zinc.
19	United Park City Mines. Page	gion.	Utah	United Park City Mines Co.	Lead, lead-
20		Coeur d'Alene	Idaho	American Smelting & Refining Co.	Lead-zinc.
21	Pend Oreille	· 1	Washington	Metals Co.	Do.
22		Coso	California	The Anaconda Co	Lead, lead- zinc.
23	Kearney		New Mexico	New Mexico Consolidated Mining Co.	Zinc.
20	Mahoning	Southern Illi- nois.	Illinois	Ozark Mahoning Co	Fluorspar, lead-zinc.
24	Grandview	Metaline	Washington	American Zinc, Lead &	Lead-zinc.
25	Young	Eastern Tennes-	Tennessee	Smelting Co.  American Zinc Co. of Tenn.	Zinc.

¹ Excludes old slag dump of the Bunker Hill Co., Kellogg, Idaho.

# SMELTER AND REFINERY PRODUCTION

Primary slab zinc was produced at 12 domestic smelters using distilling methods, at 5 electrolytic plants, and at an electrothermic zinc slag furnace at the Herculaneum (Mo.) lead smelter. Eight of the distilling plants used horizontal retorts exclusively, and 4 used continuous smelting vertical retorts exclusively (1 plant wholly electrothermic and 1 partly so). Operations at the vertical retort plants at Depue, Ill., and Palmerton, Pa., were interrupted by a 52-day strike in May and June.

Horizontal-Retort Plants.—The total number of retorts reported at active horizontal-retort primary plants in 1956 was 54,640, compared with 54,576 in 1955. Of the total retorts reported, 47,364 (87 percent) were in use at the end of 1956 compared with 46,468 (85 percent) at the close of 1955. At the Blackwell Zinc Co. (subsidiary of American Metal Co.) smelter at Blackwell, Okla., 4 mechanical charging machines and new and improved facilities for recovering

TABLE 6.—Mine production of zinc in the principal districts or regions 1 of the United States, 1947-51 (average) and 1952-56, in terms of recoverable zinc, in short tons

m short tons		<u> </u>	151.0			<u> </u>	
District	State	1947-51 (average)	1952	1953	1954	1955	1956
Summit Valley (Butte)	Montana	57, 066	75, 968	75, 170	53, 527	62, 588	63, 3
St. Lawrence County Pri-State (Joplin region)	New York	37, 005 88, 983	32, 636 90, 512	51, 529 55, 729	53, 199 64, 322	53, 016 69, 696	59, 1 57, 2
	Missouri, Oklahoma.		<i>'</i> ·	<i>'</i>			
Coeur d'Alene Castern Tennessee 2	Idaho Tennessee	79, 703 32, 898	70, 316 38, 020	68, 650 38, 465	58, 736 30, 326	50, 527 40, 216	46, 73 46, 03
Jpper Mississippi Valley	Northern Illinois, Iowa, Wisconsin.	21, 436	34, 716	26, 286	25, 441	31, 411	38, 49
Central (Pina	New Mexico Utah	33, 690	48, 043	12,743	00 400	15, 104	33, 6 24, 3
West Mountain (Bing- ham).		19, 848	20, 395	19, 669	20, 489	21, 864	•
Red Cliff (Battle Mountain).	Colorado	20, 067	26,000	16, 850	18, 604	21, 322	19, 7
Austinville	Virginia Arizona	13, 113 7, 945	13, 409 10, 862	16, 676 10, 476	16, 738 10, 453	18, 329 11, 234	19, 1 13, 9
Big Bug Park City region	IIteh	9, 454	7, 746	4, 848	6, 650	12, 295	10, 9
Kentucky-Southern Illi- nois.	Kentucky-Southern Illinois.	7, 183	7, 968	5, 589	4, 978	8, 615	9, 8
Vew Tersey	New Jersey	64, 427	59, 190	45, 700	37, 416	11, 643	4, 6
Smelter (Lewis and Clark County).	Montana		2,807 4,266	2, 924 3, 893	5, 301	4, 077 3, 295	4, 3 2, 7
Cochise Pima (Sierritas, Papago, Twin Buttes).	do	5, 776	3, 472	3, 893	3, 566	1, 310	2, 7
California (Leadville)	Colorado	6, 505	8, 487	3, 945	2, 437	1, 621	2, 1
Flint Creek	Montana	131	1,084	(4)	1, 290	1, 400	2, 0 1, 6
Rush Valley and Smelter (Tooele County).	Utah		916	1, 528	1, 738	1, 434	-,:
Yellow Pine (Goodsprings)	Nevada Idaho		1, 464 2, 142	3, 026	9 804	716 1, 833	1, 6 1, 3
Warm SpringsBayhorse	do		2, 142	264	2, 584 (4)	790	1, 2
Aravaipa	Arizona	845	1, 315	1, 732	1, 366	1,670	ī, ī
Fintie	Utah	4, 625	2, 951	2, 433	4, 335	4,018	1, 1
Magdalena	New Mexico	3, 217	2, 122	512		98	1,0
Oreede	Colorado	506	1,024	858	1, 111	745	19
Breckenridge	do		620	1, 200 257	1, 186 54	615 273	
Patagonia (Duquesne)	Arizona California		1,049 (4)	201	34	4	
Cow Creek (Ingot) Eureka (Bagdad)	Arizona		3, 520	2, 594	1, 126	444	
Old Hat (Oracle)	do		3, 368	2,001	1,120		- 1
Chelan Lake §	Washington		(4)	(4)		(4)	(4)
Coso 5	California		5, 479	(4)	(4) (4)	(4) (4)	<b>**********</b>
Elk Mountain 5	Colorado	65	303			(4) (4)	(4)
Harshaw 5	Arizona	3, 219	3,924	4, 186	4, 193	(4)	(4)
Heddleston 5	Montana	1,446	1,066		(4) (4)	47	(4)
Metaline 5	Washington	9, 204	(4)	(4) (4)	(4)	(4) (4) (4)	. (4)
Northport 5	do	2, 454	(4)	(4)	(4)	(*)	(4)
Pioche 5	Nevada		12, 493	(4)	(4)	(4)	( <del>1</del> ).
Pioneer (Rico) 5	Colorado		2, 734	2, 634	2,896	(4)	(4)
Silver Bell 5	Arizona	48	364	1, 324	(4)	(4)	(4) (4)
Smelter (Salt Lake County). ⁵	Utah	25	0.013	10 414		3, 148	
Upper San Miguel 5	Colorado	5, 933	9,811	10, 414	7, 899	6, 532	(4)
Pioneer (Superior)	Arizona	1, 767	4, 175				
Verde (Jerome)	do	4, 553	4, 360	959			
Warren (Bisbee)	i do	24, 165	4, 791	1, 182	l		

Districts producing 1,000 short tons or more in any year of the period 1952-56.

zinc from residues were placed in successful operation.⁵ New mechanical charging machines were also installed in the Dumas (Tex.) smelter of the American Zinc Co. of Illinois; these and other improvements raised the plant capacity to more than 50,000 tons of slab zinc annually, approximately 33 percent above that in 1955.

Vertical-Retort Plants.—Four vertical-retort, continuous distilling

plants operated during 1956, the same number as in 1955. Three of

² Includes zinc recovered from copper-zinc-pyrite ore in Polk County.
3 No production in Iowa since 1917.
4 Figure withheld to avoid disclosing individual company confidental data.
5 This district not listed in order of 1956 output.

⁵ The American Metal Company, Ltd., Annual Report for the 69th Year: 1956, 48 pp.

these used the New Jersey Zinc Co. externally gas fired vertical retorts, and the fourth used the St. Joseph Lead Co. electrothermically heated vertical retort, in which the charge forms the resistor. The New Jersey Zinc Co. also has a Sterling arc-type electric furnace. The electrothermic-zinc slag furnace at Herculaneum, Mo., used the St. Joseph Lead Co. type of retort. At its Josephtown (Pa.) plant the St. Joseph Lead Co. began constructing additional facilities designed to increase the monthly capacity from 10,000 tons to 12,000 tons of slab zinc.

Electrolytic Plants.—Five electrolytic-zinc-reduction plants, with a total of 3,914 electrolytic cells, were operated in 1956; 3,636 cells were in use at the end of the year. In 1955 there were 3,720, of which 3,492 were operating at the end of the year. During 1956 work continued on the expansion program at the Corpus Christi (Tex.) plant of the American Smelting & Refining Co., which will increase its monthly capacity from 6,000 tons to 8,500 of slab zinc. The Bunker Hill Co. commenced work on an expansion program at its Kellogg (Idaho) plant. Under the program announced, a new cell and melting building will be constructed, one additional cell unit will be added by mid-1957, and another unit will be installed later. Each unit added will raise the capacity (which was 4,800 tons of slab zinc per month in 1956) 25 percent. The American Zinc Co. of Illinois made further improvements in its Monsanto (Ill.) plant, raising its rated annual capacity (formerly 48,000 tons) to 58,000 tons.

Smelting Capacity.—Owing to changes in metallurgical practice in the various plants, statistics on domestic smelting capacity may vary from year to year, irrespective of additions or subtractions of smelter recovery units. According to reports to the Bureau of Mines, the active zinc-reduction plants in the United States, as of the end of 1956, had an annual capacity of 1,235,400 short tons of slab zinc. This figure indicates that smelter output was 85 percent of capacity. In 1955 smelter production was 88 percent of the reported capacity of 1,164,000 tons. Horizontal- and vertical-retort primary plants operated at 84 percent of the 715,900 tons reported capacity (89 percent of a 669,400-ton reported capacity in 1955), electrolytic plants at 88 percent of a 466,100-ton reported capacity (89 percent of a 53,400-ton capacity in 1955), and secondary smelters at 78 percent of a 53,400-ton reported capacity (71 percent of 58,500-ton capacity in 1955).

Waelz Kilns.—Waelz kilns operated in 1956 or available for opera-

tion during the year were as follows:

Illinois:

Fairmont City—American Zinc Co. of Illinois.⁶ LaSalle—Matthiessen & Hegeler Zinc Co. Kansas: Cherryvale—National Zinc Co., Inc.⁶ Oklahoma: Henryetta—The Eagle-Picher Co. Pennsylvania:

Donora—United States Steel Corp., American Steel and Wire Division.

Palmerton—The New Jersey Zinc Co. West Virginia: Moundsville—St. Joseph Lead Co.

⁶ Plant idle entire year.

Slag-Fuming Plants.—The following companies operated slagfuming plants in 1956 to produce impure zinc oxide, which was treated further to recover zinc as slab zinc:

California: Selby—American Smelting & Refining Co. Idaho: Kellogg—The Bunker Hill Co.
Montana: East Helena—The Anaconda Co.
Texas: El Paso—American Smelting & Refining Co.
High Tocals International Smelting & Refining Co. Utah: Tooele—International Smelting & Refining Co.

During 1956 these 5 plants treated 799,000 tons of hot and cold slag (including some crude ore at 1 plant), which yielded 145,900 tons of oxide fume containing 97,100 tons of recoverable zinc. Corresponding figures for 1955 were 753,300, 125,400, and 85,700 tons, respec-

Active Primary Zinc-Reduction Plants.—A list of primary zincreduction plants operating in the United States in 1956 follows:

# PRIMARY ZINC DISTILLERS

Horizontal-retort plants

Arkansas: Fort Smith—Athletic Mining & Smelting Co. Illinois:

Fairmont City—American Zinc Co. of Illinois.7 LaSalle—Matthiessen & Hegeler Zinc Co.

Oklahoma:

Bartlesville—National Zinc Co., Inc. Blackwell—Blackwell Zinc Co.

Henryetta—Eagle-Picher Co.

Pennsylvania: Donora-United States Steel Corp., American Steel and Wire Division.

Texas:

Amarillo—American Smelting & Refining Co. Dumas—American Zinc Co. of Illinois.

Vertical-retort plants

Illinois: Depue—The New Jersey Zinc Co.

Pennsylvania:

Josephtown—St. Joseph Lead Co.
Palmerton—The New Jersey Zinc Co. of Pennsylvania.
West Virginia: Meadowbrook—Matthiessen & Hegeler Zinc Co.

Electrolytic plants

Idaho: Kellogg—The Bunker Hill Co. Illinois: Monsanto—American Zinc Co. of Illinois.

Montana:

Anaconda—The Anaconda Co. Great Falls-The Anaconda Co.

Texas: Corpus Christi—American Smelting & Refining Co.

Secondary Zinc Smelters.—Zinc-base scrap—a term that includes skimmings and drosses, die-cast alloys, old zinc, engravers' plates, new clippings, and chemical residues—was smelted chiefly at 12 secondary smelters, although about one-third is usually reduced at primary smelters, and much of the sal ammoniac skimmings is processed at chemical plants. Secondary smelters depend mostly on the galvanizers and dealers for their supply of the various types of scrap materials.

 $^{^7\,\}mathrm{Roasting}$  and sintering, cadmium, and germanium units operated; furnaces idle entire year, and therefore no slab zinc was produced.

The primary and secondary smelting operations based on zincbase scrap produced 72,100 tons of redistilled zinc, 8,000 tons of

remelt zinc, and 28,000 tons of zinc dust in 1956.

In addition to secondary zinc and zinc products recovered from zinc-base scrap at primary and secondary smelters and other plants, 125,500 tons of zinc was recovered from copper-base scrap, chiefly brass and bronze. Additional details of the secondary zinc phase of the industry may be obtained from the Secondary Metals-Nonferrous chapter of this volume.

# Secondary Zinc Distillers

Alabama: Fairfield—W. J. Bullock, Inc.

California:

Los Angeles—American Smelting & Refining Co., Federated Metals Division. Torrance—Pacific Smelting Co.

Illinois:

Beckemeyer—American Smelting & Refining Co., Federated Metals Division. Hillsboro—American Zinc, Lead & Smelting Co. Sandoval—Sandoval Zinc Co.

New Jersey: Trenton-American Smelting & Refining Co., Federated Metals Division.

New York: Tottenville—Nassau Smelting & Refining Co.

Oklahoma: Sand Springs—American Smelting & Refining Co., Federated Metals Division.

Pennsylvania:
Bristol—Superior Zinc Corp.

Philadelphia—General Smelting Co.

West Virginia: Wheeling—Wheeling Steel Corp.8

#### SLAB ZINC

The 1,055,700 tons of slab zinc produced in 1956 was a new record high for domestic smelters, surpassing that in 1955—the former record year—by 3 percent. Slab zinc produced from domestic ores decreased

19 percent, and that from foreign ores increased 35 percent.

The output of redistilled slab zinc increased 9 percent to 72,100 tons; most of the increase was in the quantity redistilled at primary smelters, which comprised 42 percent of the total in 1956, compared with 37 percent in 1955. In addition to primary distilled zinc and redistilled secondary zinc, 8,000 tons of remelted secondary slab zinc was recovered by remelting purchased scrap (5,000 tons in 1955). Zinc rolling mills and other large consumers of slab zinc recovered large quantities of slab zinc from "runaround" scrap generated in their own plants.

Of the primary slab zinc produced in 1956, 58 percent was distilled and 42 percent electrolytic. Prime Western constituted 38 percent of the total output of all grades in 1956 (39 percent in 1955), Special High Grade 34 percent (37 percent in 1955), High Grade 15 percent (14 percent in 1955), Brass Special 9 percent (8), Intermediate 4 percent (2), and Select a small fraction of 1 percent in both years.

In 1956 Montana ranked first among the States in production of primary slab zinc; Pennsylvania ranked second. All slab zinc produced in Montana and Idaho was electrolytic, that in Illinois and Texas was in part electrolytic and in part distilled, but all of that

produced in all other States was distilled.

⁸ Plant closed in March 1956.

TABLE 7.—Primary and redistilled secondary slab zinc produced in the United States, 1947-51 (average) and 1952-56, in short tons

		Primary		Total (ex- cludes zinc	
Year	From domestic ores	From foreign ores	Total	Redistilled secondary	recovered by remelt- ing)
1947-51 (average)	569, 919 575, 828 1 495, 436 1 380, 312 582, 913 1 470, 093	256, 109 1 328, 651 1 420, 669 1 422, 113 1 380, 591 1 513, 517	826, 028 904, 479 916, 105 802, 425 963, 504 983, 610	58, 506 55, 111 52, 875 68, 013 66, 042 72, 127	884, 534 959, 590 968, 980 870, 438 1, 029, 546 1, 055, 737

¹ Includes a small tonnage of slab zinc further refined into high-grade metal.

TABLE 8.—Distilled and electrolytic zinc, primary and secondary, produced in the United States, 1947-51 (average) and 1952-56, in short tons

CLASSIFIED ACCORDING TO METHOD OF REDUCTION

	Electro- lytic pri- mary	Distilled	Redistilled		
Year			At primary smelters	At second- ary smelt- ers	Total
1947-51 (average)	322, 464 351, 106 370, 870 311, 237 389, 891 410, 417	503, 564 553, 373 545, 235 491, 188 573, 613 573, 193	23, 521 18, 861 17, 645 31, 658 24, 747 30, 221	34, 985 36, 250 35, 230 36, 355 41, 295 41, 906	884, 534 959, 590 968, 980 870, 438 1, 029, 546 1, 055, 737

CLASSIFIED ACCORDING TO GRADE

High Gr	Gra	de A	Grade B (Interme- diate)	Grades C	and D	Grade E (Prime Western)	
	Special High Grade (99.99% Zn)	High Grade (Ordinary)		Brass Special	Select		Total
1947–51 (average)	254, 289 295, 801 312, 810 270, 159 378, 215 356, 756	192, 227 182, 125 180, 188 132, 980 138, 597 162, 467	27, 904 17, 903 14, 720 19, 284 23, 792 37, 691	54, 136 48, 817 56, 219 52, 662 80, 209 96, 291	7, 529 13, 608 1, 930 1, 233 3, 904 2, 400	348, 449 401, 336 403, 113 394, 120 404, 829 400, 132	884, 534 959, 590 968, 980 870, 438 1, 029, 546 1, 055, 737

¹ For total production of secondary zinc see chapter on Secondary Metals—Nonferrous.

TABLE 9.—Primary slab zinc produced in the United States, by States where smelted, 1947-51 (average) and 1952-56, in short tons

Year	Arkan- sas Ida			Mon- tana	Okla- homa		Texas	Total	
		Idaho	Idaho   Illinois				and West Virginia ¹		Value
1947–51 (average) 1952	18, 465 21, 644 20, 379 8, 576 21, 481 27, 651	46, 822 54, 340 54, 037 47, 404 56, 625 57, 799	102,018 115,331 129,904 92,262 102,808 101,826	209, 267 214, 980 222, 354 154, 024 207, 366 214, 755	146, 051 161, 242 134, 918 153, 846 160, 961 166, 173	174, 687 193, 811 192, 279 180, 706 218, 469 198, 968	128, 718 143, 131 162, 234 165, 607 195, 794 216, 438	826, 028 904, 479 916, 105 802, 425 963, 504 983, 610	\$229, 163, 407 300, 829, 715 210, 154, 487 173, 805, 255 236, 829, 283 270, 099, 306

¹ Includes Missouri, 1947-53 and 1955 and 1956.

#### BYPRODUCT SULFURIC ACID

Sulfuric acid is made from sulfur dioxide gases produced in roasting zinc sulfide concentrate at all zinc smelters where there is enough demand for sulfuric acid to warrant the plant investment and operation. At several such plants large quantities of elemental sulfur are also burned to increase acidmaking capacity. The production of sulfuric acid at such plants from 1952 through 1956 is shown in table 10.

TABLE 10.—Sulfuric acid (basis, 100 percent) made at zinc sulfide roasting plants in the United States, 1947-51 (average) and 1952-56

	Made from zinc- sulfide ¹			om native ılfur	Total ¹			
Year	Short		Short		Short	Value ²		
	tons	Value 2	tons	Value 2	tons	Total	Average per ton	
1947–51 (average)	570, 126 664, 714 636, 864 612, 250 782, 938 807, 477	\$8, 360, 719 11, 031, 494 11, 397, 458 11, 642, 763 14, 687, 012 15, 272, 091	226, 929 224, 671 229, 951 156, 984 153, 622 136, 749	\$3, 313, 376 3, 728, 613 4, 115, 262 2, 985, 268 2, 881, 771 2, 586, 380	797, 055 889, 385 866, 815 769, 234 936, 560 944, 226	\$11, 674, 095 14, 760, 107 15, 512, 720 14, 628, 031 17, 568, 783 17, 858, 471	\$11. 39 12. 89 13. 90 14. 77 14. 57 14. 69	

¹ Includes acid from foreign zinc sulfide. ² At average of sales of 60° B, acid.

# ZINC DUST

The zinc dust reported in table 11 is restricted to commercial grades that comply with close specifications as to percentage of unoxidized metal, evenness of grading, and fineness of particles and hence does not include zinc powder and blue powder. The zinc content of the dust produced in 1956 ranged from 95 percent to 99.7 and averaged 97.7. Shipments of zinc dust were 27,100 tons, of which 100 tons was for foreign consignees. Producers' stocks of zinc dust rose from 1,600 tons at the beginning of the year to 2,100 at the end of 1956.

Most of the production was from zinc scrap (principally galvanizers' dross), but some was recovered from zinc ore and as a byproduct of zinc refining. The secondary raw materials used to manufacture zinc dust are reviewed in the Secondary Metals-Nonferrous chapter of this volume.

TABLE 11.—Zinc dust 1 produced in the United States, 1947-51 (average) and

Year	gi	Value				Value	
	Short tons	Total	Average per pound	Year	Short tons	Total	Average per pound
1947–51 (average) 1952 1953	29, 242 25, 113 25, 297	\$9, 375, 371 9, 794, 070 6, 729, 002	\$0. 160 . 195 . 133	1954 1955 1956	26, 714 30, 118 28, 048	\$7, 266, 208 9, 216, 108 9, 368, 032	\$0. 136 . 153 . 167

¹ All produced by distillation.

#### ZINC PIGMENTS AND SALTS

The principal zinc pigments were zinc oxide and lithopone and the principal salts zinc chloride and zinc sulfate. These products were manufactured from various zinc-bearing materials, including ore, metal, scrap, and residues. In 1956, 173,000 tons of zinc was consumed in these products. Details of the production of zinc pigments and salts are given in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

### CONSUMPTION AND USES

Consumption of slab zinc as compiled from reports covering about 750 plants totaled 1.01 million tons in 1956, a decrease of 10 percent from the record high of 1.12 million tons in 1955. Consumption remained high in the first quarter of 1956 but declined sharply in the second quarter owing mainly to cutbacks in the automobile industry. In the third quarter the steel strike in July and early August broadened the field of decline in zinc use, and in the last quarter there was only a moderate overall improvement.

TABLE 12.—Consumption of slab zinc in the United States, 1947-51 (average) and 1952-56, by industries, in short tons 1

Industry and product	1947-51 (average)	1952	1953	1954	1955	1956
Galvanizing: 2 Sheet and strip	47, 594 81, 648 14, 625	145, 875 48, 645 82, 043 10, 366 90, 759	164, 601 44, 100 88, 428 10, 330 99, 529	181, 558 44, 882 76, 891 10, 513 89, 619	200, 403 48, 171 98, 206 10, 586 93, 775	203, 713 42, 937 86, 277 10, 652 95, 567
Total galvanizing	385, 028	377, 688	406, 988	403, 463	451, 141	439, 146
Brass products: Sheet, strip; and plate	35, 970 15, 501 4, 254 4, 674	71, 706 49, 831 17, 057 7, 262 8, 223 1, 529	94, 826 47, 312 18, 136 8, 145 7, 659 2, 104	52, 284 30, 899 12, 097 5, 499 6, 594 895	67, 550 46, 830 15, 363 7, 518 8, 062 920	56, 207 39, 413 13, 666 6, 337 7, 197 1, 184
Total brass products	117, 937	155, 608	179, 182	108, 268	146, 243	124, 004
Zinc-base alloy: Die castings Alloy dies and rod Slush and sand castings	1,094	225, 877 9, 235 1, 577	297, 280 7, 140 3, 025	279, 676 8, 857 2, 313	417, 333 11, 754 1, 720	349, 200 9, 322 1, 985
Total zinc-base alloy Rolled zinc Zinc oxide	67, 016	236, 689 51, 318 17, 205	307, 445 54, 649 20, 675	290, 846 47, 486 18, 701	430, 807 51, 589 22, 433	360, 507 47, 359 19, 160
Other uses:         Wet batteries	2, 584	1, 396 2, 370 3, 266 7, 243	1, 417 2, 425 5, 939 8, 207	1, 264 2, 740 3, 526 8, 005	1, 420 2, 676 3, 484 10, 019	1, 345 2, 939 5, 830 8, 500
Total other uses	9, 832	14, 275	17, 988	15, 535	17, 599	18, 614
Total consumption 4	843, 408	852, 783	985, 927	884, 299	1, 119, 812	1, 008, 790

Excludes some small consumers.
 Includes zinc used in electrogalvanizing and electroplating, but excludes sherardizing.
 Includes zinc used in making zinc dust, bronze powder, alloys, chemicals, castings, and miscellaneous

uses not elsewhere mentioned. 4 Includes 4,144 tons of remelt zinc in 1952, 3,710 tons in 1953, 3,589 tons in 1954, 2,997 tons in 1955 and 5,230 tons in 1956.

Of the total slab zinc used in 1956, galvanizing took 44 percent and zinc-base alloys (chiefly die castings) 36 percent compared with 40 and 38 percent, respectively, in 1955. The next largest use in 1956 was 12 percent in brass products, making a total of 92 percent taken by the three major consuming industries. In addition to slab zinc. the brassmaking industry consumed 125,500 tons of secondary zinc in copper-base scrap for making brass and bronze ingots at secondary smelters.

Rolling mills, which used 47,400 tons of slab zinc in 1956, also remelted and rerolled 7,900 tons of metallic scrap (home scrap) produced from associated fabricating operations. In addition, the mills melted and rolled 2,700 tons of purchased zinc scrap (zinc clippings, old zinc, and engravers' plates).

Total production of rolled zinc was 47,900 tons—10 percent less than in 1955 and the lowest since 1938. Inventories of rolled zinc at the beginning and end of 1956 were 2,100 (revised) and 2,200 tons, respectively. In addition to shipments of 33,200 tons of rolled zinc. the rolling mills processed 22,300 tons of rolled zinc in manufacturing 13,900 tons of semifabricated and finished products.

TABLE 13.—Rolled zinc produced and quantity available for consumption in the United States, 1955-56

		1955			1956	
		Value			Value	
	Short tons	Total	Average per pound	Short tons	Total	Average per pound
Production: Sheet zinc not over 0.1 inch thick Boiler plate and sheets over 0.1 inch thick Strip and ribbon zinc 1 Foil, rod, and wire  Total rolled zinc Imports Exports Available for consumption Value of slab zinc (all grades) Value added by rolling	13, 339 1, 046 36, 926 1, 766 53, 077 431 2, 604 2 50, 296	\$7, 640, 582 439, 854 13, 401, 954 981, 052 22, 463, 442 148, 389 1, 317, 756	\$0.286 .210 .181 .278 .212 .172 .253 .123 .089	11, 929 1, 205 32, 780 2, 024 47, 938 454 3, 043 45, 173	\$7, 302, 484 567, 170 12, 640, 543 1, 152, 748 21, 662, 945 171, 960 1, 718, 187	\$0.306 .235 .193 .285 .226 .189 .282 .137 .089

¹ Figures represent net production. In addition, 8,134 tons of strip and ribbon zinc in 1955 and 7,906 tons in 1956 were rerolled from scrap originating in fabricating plants operating in connection with zinc rolling mills.

² Revised figure.

Of the commercial grades of slab zinc consumed in 1956, Special High Grade constituted 42 percent, Prime Western 36 percent, High Grade 9, Brass Special 10, Intermediate 2, and Select and Remelt combined 1 percent. The quantity of Special High Grade used decreased 14 percent, owing mainly to the decline in automobile production. Slab zinc used for galvanizing decreased only 3 percent,

despite the 5-week steel strike. All grades of zinc were used in galvanizing; but, with the increasing number of continuous galvanizing lines in use, there was a gradual shift to the higher grades. to the American Zinc Institute, 3 34 continuous lines were operating, 1 under construction, and 5 in the planning stage at the end of 1956. A year earlier only 26 were in operation. If the slab zinc used in brass products, 49 percent was High Grade, 26 percent Special High Grade, about 16 percent Prime Western, and 9 percent other grades.

TABLE 14.—Consumption of slab zinc in the United States in 1956, by grades and industries, in short tons

Industry	Special High Grade	High Grade	Inter- mediate	Brass Special	Select	Prime Western	Remelt	Total
Galvanizers Brass mills  Die easters  Zinc rolling mills Oxide plants	19, 969 32, 447 359, 011 7, 974 200	14, 695 60, 796 227 11, 010 1, 257	7, 997 1, 420 40 12, 011	72, 659 7, 206 15, 075	293 2, 148 1, 289	320, 185 19, 107 870 17, 703	3, 348 880 359	439, 146 124, 004 360, 507 47, 359 19, 160
Other	6, 645	1, 555 89, 540	21, 929	95, 397	3, 730	8, 853 366, 718	643 5, 230	18, 614

Includes brass mills, brass ingotmakers, and brass foundries.
 Includes producers of zinc-base die castings, zinc-alloy dies, and zinc-alloy rods.

## CONSUMPTION OF SLAB ZINC BY GEOGRAPHIC AREAS

Tables 15-20 show the distribution of slab-zinc consumption by geographic divisions and by major use categories.

Consumption of Slab Zinc for Galvanizing.—Among the 36 States consuming zinc for galvanizing, Ohio ranked first in 1956 and was followed by Pennsylvania, Illinois, and Indiana. These 4 States used 61 percent of the total slab zinc consumed in galvanizing during the year. The iron and steel industry—largest consumer of slab zinc used it to galvanize or coat steel sheets, wire, tube, pipe, cable, chain, bolts, railway-signal equipment, building and poleline hardware, and numerous other items. Fabricators of sheet steel and job galvanizers also use quantities of zinc in zinc-coating many products. Shipments of galvanized steel sheets in 1956 reported by the American Iron and Steel Institute totaled 2,958,000 short tons, a new alltime high in the history of the industry compared with the previous record high of 2.864.500 tons in 1955.

Consumption of Slab Zinc for Brass Products.—Mills in the Connecticut Valley took 35 percent of the total zinc used in brassmaking in the United States in 1956 and 37 percent in 1955. years Connecticut has ranked first among the States in use of zinc for brassmaking; Illinois ranked second in 1956, Michigan third, Ohio fourth, and New York fifth.

American Metal Market, American Zinc Institute Head Expects Peak Year For Industry: Vol. 64 No.3, Jan. 4, 1957, pp. 1, 7.

TABLE 15.—Consumption of slab zinc in the United States, 1949-53 (average) and 1954-56, by geographic divisions and States ¹

0	1949-53 (a	verage)	1954	1	1955		1956	
Geographic division and State	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
I. New England: Connecticut Maine Massachusetts New Hampshire Rhode Island	63, 907 127 9, 195 15 451	4 34 15 38 29	46, 955 (2) 8, 355 (2) 590	7 34 16 38 31	61, 172 (2) 8, 963 (2) 732	7 38 16 40 29	52, 416 (2) 8, 150 (2) 835	4 1 4 2
Total	73, 695	3	56, 082	4	70, 904	3	61, 452	
II. Middle Atlantic: New Jersey New York Pennsylvania Total	22, 874 54, 463 128, 740 206, 077	12 6 3 2	24, 890 56, 971 124, 841 206, 702	11 6 3 2	33, 575 74, 239 147, 776 255, 590	10 6 3	30, 710 63, 650 131, 242 225, 602	1
III. South Atlantic: Delaware District of Columbia Florida. Georgia Maryland North Carolina South Carolina Virginia West Virginia Total	285 34 196 1,718 31,596 4 40 364 25,209 59,446	31 37 33 22 9 40 36 30 11	(2) (2) (2) 1, 498 33, 985 (2) 441 20, 501 58, 253	26 37 32 24 9 	(2) (2) (2) 1, 534 41, 217 (2) 500 18, 208 64, 652	22 37 30 25 9 32 31 13	(2) (2) (3) (3) (3) 37, 753 (2) (2) (2) 565 19, 074 62, 316	2 3 3 2 3 3 3 1
IV. East North Central. Illinois Indiana Michigan Ohio Wisconsin Total	156, 759 61, 250 54, 376 148, 601 12, 554 433, 540	1 5 7 2 14	146, 453 68, 642 68, 888 141, 668 10, 370 436, 021	1 5 4 2 15 1	179, 136 86, 422 104, 564 204, 594 14, 013 588, 729	2 5 4 1 14 1	163, 872 84, 669 87, 959 176, 581 13, 404 526, 485	- 1
V. East South Central: Alabama Kentucky Mississippi Tennessee Total	27, 521 8, 940 1, 382 37, 843	10 16 	30, 106 11, 697 1, 421 43, 224	10 14 25 5	31, 350 (2) (2) (2) 1, 747 35, 900	11 20 39 23 6	22, 905 11, 833 (2) (3) (3) 37, 221	1 1 3 2
VI. West North Central:  Iowa	4, 769 257 3, 395 15, 746 1, 543	17 32 19 13 24	4, 547 593 2, 413 14, 233 1, 664	18 30 20 13 23	3, 929 (2) 2, 939 19, 392 (2)	17 33 18 12 24	(2) (2) 3, 031 15, 027 2, 226	2 3 1 1 2
Total	25, 710 2 746 1, 697 4, 391 6, 836	7 41 26 23 18 8	23, 450 (2) 818 (2) 7, 822 10, 576	40 27 21 17 8	(2) (2) (2) (2) (2) (3) (9), 737 12, 250	7 41 27 26 15 8	(2) (2) (2) (2) (2) (3) (4) (1) (4) (5) (1) (6) (7) (1) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	4 2 2 1
VIII. Mountain: Arizona Colorado Idaho Montana Utah Total	70 2,180 496 9 2,755	35 20 28 	(2) 2,583 (2) (2) (2) (2) (2) (2) 3,284	35 19 29 41 39	(2) 2, 908 (2) (2) (2) (2) (2) (3) 492	35 19 34 42 36	(2) 2, 658 (2) (2) (2) (2) (3) 3, 356	3 3
Total	38, 358 628 1, 886 40, 872	8 27 21 5	40, 375 811 1, 932 43, 118	8 28 22 6	53, 775 933 2, 423 57, 131	8 28 21 5	45, 964 1, 583 2, 502 50, 049	
Grand total 1	886, 774		880, 710		1, 116, 815		1, 003, 560	

Excludes remelt zinc and some small consumers of slab zinc.
 Nominal quantity consumed included with subtotal for division, as less than 3 companies reported.

TABLE 16.—Consumption of slab zinc for galvanizing in the United States, 1949-53 (average) and 1954-56, by States 1

	Geo-	1949–53 (a	verage)	195	4	195	5	195	6
State 	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
AlabamaArizona	VIII	26, 857	6	29, 425	6	30, 299	6	21, 885 (2)	
California	İX	21, 618	8	25, 462	7	26, 941	7	24, 451	33
Colorado	VIII	2, 020	19	(2)	17	(2)	17	2, 319	1
Connecticut	1	2, 805	17	3, 169	16	3, 454	15	(2)	16
Florida	III	196	28	(2)	27	(2)	25	(2)	26
Georgia	III	1,707	20	(2)	22	(2)	22	(2)	26 23 3
Illinois	IV	47, 691	3	49, 412	3	54, 076	3	51, 674	1 3
Indiana	IV	31, 624	4	39, 265	4	45, 634	4	47, 809	4
Iowa	VI	190	29	172	30	242	29	324	29
Kentucky	v	8, 717	9	11, 308	9	(2) (2)	18	(2)	29
Louisiana	VII	744	24	818	24	(2)	24	(2)	24 34
Maine	Ţ	123	31	(2)	31	(2)	33	(2)	34
Maryland		31, 147	5	33, 694	5	40, 722	5	37, 154	5
Massachusetts	I	4, 961	13	5, 035	13	5, 250	13	4,712	14
Michigan Minnesota	IV	5, 081	12	(2)	11	6, 279	11	5,054	13
Mississippi	VI	3, 380	16	(2)	18	(2)	16	2, 967	17
Missouri	vi	4. 422				(2)	32	(2)	36
Nebraska	Ϋ́I	366	14 26	4, 108	15	4, 287	14	4, 102	15
New Jersey	II	5, 213	20 11	566 4, 995	26	(2)	27	(2)	25
New York	註	5, 936	10	5,854	14 10	5, 437	12	5, 814	12
North Carolina	ıİİ	0, 900	10	0, 804	10	6, 949	10	6, 275	11
Ohio	īv	81, 636	1	74, 283	1	100, 580	1.	(2)	35
Oklahoma	vii	1, 693	21	(2)	20	(2)	21.	88, 890 (2)	1
Oregon	ΙX	228	27	246	28	262	28	494	20 28
Pennsylvania	II	70, 742	2	67, 774	20	74, 256	20	75, 707	20
Rhode Island	Î	442	25	(2)	25	(2)	26	75, 767	27
South Carolina	III	40	33	(2)	32		. 20	(2)	32
Tennessee	v	989	23	ì, 185	23	1, 385	23	1,739	21
Texas	VII	3, 756	15	5, 440	12	7, 354	9	9, 447	10
Utah	VIII	48	32			(2)	31	(2)	31
Virginia	III	186	30	(2)	29	(2)	30	(2)	30
Washington	IX	1, 499	22	1,499	21	(2)	20	1, 274	22
West Virginia	III	24, 639	7	(2)	8	(2)	8	(2)	8
Wisconsin	IV	2, 572	18	(2) (2)	19	2, 238	19	2, 528	18
Total 1		393, 268		³ 401, 583		³ 449, 650		³ 435, 798	

¹ Excludes remelt zinc. Includes zinc used in electrogalvanizing and electroplating, but excludes sherardizing.

² Figure withheld to avoid disclosing individual company confidential data.

³ Includes States not individually shown (footnote 2).

Consumption of Slab Zinc for Zinc-Base Alloys.—The total tonnage of slab zinc used in zinc-base alloys declined 16 percent in 1956 from the alltime high (table 18) of 1955 but was still the second highest The decrease was due mainly to the drop in number of on record. automobiles made. However, according to the American Zinc Institute, 10 1957 model cars that were introduced in the latter part of 1956 carried about 8 percent more zinc die castings than did their 1956 counterparts. The average 1957 car carried over 65 pounds of zinc, compared with 60 pounds used on the 1956 models. Zinc die castings were also used extensively in manufacturing home appliances, office machines, builders' hardware, scientific communications, and photo-Five States where large quantities of automotive graphic equipment. parts and home appliances are manufactured-Ohio, Illinois, Michigan, New York, and Indiana—consumed 77 percent of the slab zinc used in zinc-base alloys.

¹⁰ American Metal Market, New 1957 Cars Using 8% More Zinc Castings: Vol. 63, No. 233, Dec. 7, 1956,

⁴⁶⁶⁸¹⁸⁻⁻⁵⁸⁻⁻⁻⁻⁸⁵ 

TABLE 17.—Consumption of slab zinc for brass products in the United States. 1949-53 (average) and 1954-56, by States 1

	Geo-	1949-53 (a	verage)	1954	1	195	5	1956	3
State	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
Alabama. California. Colorado. Connecticut. Delaware District of Columbia. Georgia. Illinois. Indiana. Kansas. Kentucky. Maine Maryland Massachusetts. Michigan. Minnesota. Missouri. Nebraska Nisouri. Nebraska New Hampshire. New Jersey. New York. North Carolina. Ohio. Oregon. Pennsylvania. Rhode Island. South Carolina. Tennessee. Texas. Utah. Virginia. Washington.	IV VI VI VI VI VI VI VI VI VI VI VI VI V	622 2,091 125 54,868 216 34 11 17,571 6,043 52 101 13,3017 15,081 132 15 5,319 9,916 10,182 27 6,965 9 8 8 51 11 13 133	12 11 17 14 22 27 28 19 18 30 13 13 25 16 31 24 23 6 8 28 20 32 21 22 21 26 21 26 26 27 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	(2) 1, 840 88 38, 970 (2) (2) (2) (3) (4) 14, 130 4, 844 (2) (2) (3) (2) (2) (3) (4) (5) (6) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (1) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	12 11 18 1 16 23 25 29 17 15 29 13 31 10 31 21 24 28 8 6 6	(2) 2, 451 (2) 53, 104 (2) (2) (2) 17, 650 7, 184 (2) (2) (2) (3) (4) (5) (5) (6) (2) (2) (2) (2) (3) (4) (5) (5) (6) (7) (9) (6) (7) (9) (6) (7) (9) (6) (7) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	12 10 16 1 21 24 25 2 7 20 14 30 13 11 32 25 15 31 31 26 28 4 4 23 5 7 7 7	(2) 084 (2) 43, 604 (3) (4) 15, 308 (2) (2) (2) (3) (4) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (4) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	122 111 14 122 222 22 22 23 33 13 10 10 21 11 22 22 22 22 22 22 22 21 11 11 11
Wisconsin Total 1	IV	6, 635	7	5,043 3 107, 392	7	7, 157 3 145, 490	8	6,072 3 123, 124	

1 Excludes remelt zinc.
2 Figure withheld to avoid disclosing individual company confidential data.
3 Includes States not individually shown (footnote 2).

Consumption of Slab Zinc for Rolled Zinc.—Slab zinc used by rolling mills in making sheet, strip, plates, ribbon, foil, rod, and wire decreased 8 percent from 1955. Unalloyed zinc has many uses, such as in producing dry-cell battery cases; weather stripping, roof valleys, and flashing in building construction; photoengraving plates; and heavy plates installed on steam boilers and on ship hulls to protect them from corrosion. Illinois ranked first in 1956 in production of rolled zinc; it was followed in order by Indiana. Pennsylvania, and New York.

Consumption of Slab Zinc for Zinc Oxide.—Because only a small number of companies consume slab zinc in manufacturing zinc oxide and because individual company figures by State may not be disclosed, slab zinc so used is included with the section on consumption

of slab zinc for other uses.

TABLE 18.—Consumption of slab zinc for zinc-base alloys in the United States, 1949-53 (average) and 1954-56, by States ¹

	Geo-	1949–53 (a	verage)	195	4	195	5	195	6
State	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short	Rank
Alabama	V IX	11 14, 224	20	12, 683	8	23, 941	7	18, 828	
Colorado	VIII	34	17	12,000		20, 011		10, 020	,
Connecticut DelawareFlorida	III	<b>4,</b> 837 69	10 16	3, 549 (²)	10 13	3, 707 (2)	11 13	4, 250 (2)	11 12
Illinois Indiana Iowa	IV IV VI	61, 362 13, 163 28	1 7 18	58, 953 16, 686	1 6	79, 979 24, 248	3 6	71, 150 19, 718	2 5
Kansas Kentucky Massachusetts	ΫΪ V I	195 122 9	14 15 21	(2) (2)	15 16	(2)	16	(2) (2)	15 19
Michigan Missouri	IV VI	33, 959 10, 695	3 9	-52, 109 9, 106	3 9	82, 352 13, 683	2 9	70, 651	3
New Jersey New York	II	10, 724 32, 802	8	13, 882 38, 548	7	20, 869 51, 663	8	9, 659 17, 829 42, 799	8
North Carolina	III	4	22	00,010		(2)	15	(2)	16
Ohio Oregon	IV IX	56, 276 369	13	57, 884 (2)	2	92, 306	1	74, 691	. 1
Pennsylvania Rhode Island	Î	23, 286	5	19, 542	14 5	27, 701	14 5 18	18, 535	14 7
Tennessee	v			(2)	17		17		18 17
Texas Virginia	VII	548 28	12 19	2,´291	12	(2) (2) (2)	12	(2) (2) (2)	13
Washington Wisconsin	IX IV	3, 344	11	(2)	11	4, 618	10	(2) 4, 804	20 10
Total 1		266, 089		³ 290, 680		³ 430, 716		³ 360, 148	

Excludes remelt zinc.
 Figure withheld to avoid disclosing individual company confidential data.
 Includes States not individually shown (footnote 2).

TABLE 19.—Consumption of slab zinc for rolled zinc in the United States, 1949-53 (average) and 1954-56, by States

	Geo-	1949–53 (a	verage)	195	4	195	5	195	6
State	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
Connecticut	I IV VI II II III	1, 142 28, 312 9, 850 4, 264 1, 181 5, 079 8, 518 393	7 1 2 5 6 4 3 8	(1) 19,310 (1) (1) (1) (1) (1)	7 1 3 5 6 4 2	(1) 22,371 (1) (1) (1) (1) (1)	7 1 3 5 6 4 2	(1) 20, 082 (1) (1) (1) (1) (1)	7 1 2 5 6 4 3
Total		58, 739		47, 486		51, 589		47, 359	

¹ Figure withheld to avoid disclosing individual company confidential data.

Consumption of Slab Zinc for Other Uses.—These uses (table 20), included slab zinc consumed in slush castings, wet batteries, desilverizing lead, light-metal alloys, zinc dust, chemicals, bronze powders, zinc oxide, and part of the zinc used for cathodic protection.

TABLE 20.—Consumption of slab zinc for other uses in the United States, 1949-53 (average) and 1954-56, by States 1

	Geo-	1949-53 (av	verage)	1954	2	1955	2	1956	2
State	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
A labama Arizona Arkansas California Colorado Connecticut Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan	VIII VIII VIII VIII VIII VIIV VII VII V	32 70 2 424 41 256 496 1,347 226 286 10	20 16 29 9 30 13 8 3 15 12 23 	(a) (b) (c) (d) (d) (d) (d) (d) (d) (e) (e)	21 16 24 11 19 12 8 2 13 9 28	(9) (442) (9) (5) (6) (9) (9) (9) (9) (9)	19 15 27 10 23 12 11 2 13 9 20 28 	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	19 15 22 10 23 16 12 2 2 11 1 29 27
Minnesota Missouri Montana Nebraska Nevada	VI VII VIII VIII	1 497 1, 176	31 7 4	745 (3) (3)	6 26 3	(3) (3) (3) (3)	25 4 30 5	(3) (3) (3) (3)	30 6 31 3
New Hampshire New Jersey New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah	IV VII IX II V VIII VIII	1,617 731 507 3 4 3,149	2 5 6 28 25 1 10 19 24	1, 002 (3) 847 (3) (3) 21, 658 (3) (3) (3) (3) (4)	4 7 5 27 20 1 1 25 23	1, 134 (3) 813 (3) 26, 596 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	3 8 6 26 21 1 1 	1, 166 (*) 875 (*) 21, 543 (*) (*) (*) (*) (*)	26 28 24 1 1 18 18 18
Virginia Washington West Virginia Wisconsin	IX	58 374 43 4 12,039	17 11 18 26	(3) (3) 	15 10	4 39, 370	16 7	(3) (3) 	4

1 Excludes remelt zinc.

Includes slab zinc used for zinc oxide.
 Figure withheld to avoid disclosing individual company confidential data.
 Includes States not individually shown (footnote 3).

#### STOCKS

National Stockpiles.—In accordance with purchase directives from the Office of Defense Mobilization (ODM), the General Services Administration continued throughout 1956 to purchase zinc (and lead) monthly from domestic producers for the long-term stockpile authorized by the President in March 1954.

In May 1956 the ODM approved transfer of lead and zinc from barter-acquired stocks of the Commodity Credit Corporation (CCC) to the supplemental stockpile during the fiscal year, 1957. This stockpile was authorized under the Agricultural Trade Development and Assistance Act of 1954 (PL 480). In June 1956 the CCC began to acquire zinc and lead under section 303 of the act, and actual deliveries began about August. Procurement was limited to lead and zinc of foreign origin but included metal smelted in the United States from foreign ores. According to a press release of the United States Department of Agriculture during the period July-December 1956, supplemental type strategic material purchases included contracts for \$23 million worth of lead and \$41 million worth of zinc.

Producers' Stocks.—Slab-zinc stocks at producers' plants rose from 39,300 tons at the beginning of 1956 to the year's peak of 104,300 tons in August and then dropped to 66,900 tons at the end of Decem-The total supply of slab zinc (domestic smelter production of primary and secondary slab zinc plus imports of metal minus exports) exceeded consumption by 283,100 tons. Continued monthly Government purchases of zinc for the National Stockpile prevented a much larger increase in commercial slab-zinc stocks during 1956.

TABLE 21.—Stocks of zinc at zinc-reduction plants in the United States at end of year, 1952-56, in short tons

	1952	1953	1954	1955	1956
At primary reduction plants At secondary distilling plants	 81, 344 3, 677	176, 725 3, 268	121, 847 1, 549	37, 322 1 1, 942	64, 794 2, 081
Total	 85, 021	179, 993	123, 396	1 39, 264	66, 875
1 0001-1-1					

¹ Revised figure.

Consumers' Stocks.—Slab-zinc stocks held by consumers on December 31, 1956 (105,000 tons), were 15 percent less than on the same date in 1955. At the average consumption rate of 84,100 tons a month in 1956, stocks on hand at the end of the year plus 9,600 tons of metal in transit to consumers' plants represented a 6-week supply.

TABLE 22.—Consumers' stocks of slab zinc at plants at the beginning and end of 1956, by industries, in short tons

Date	Galva- nizers	Brass mills ¹	Zinc die casters 2	Zine rolling mills	Oxide plants	Other	Total
Dec. 31, 1955 3	65, 307	15, 936	34, 577	5, 634	301	1, 789	4 123, 544
Dec. 31, 1956	56, 588	12, 463	29, 499	4, 195	388	1, 830	4 104, 963

# **PRICES**

The only change in the quoted price of slab zinc (Prime Western grade, East St. Louis) during 1956 was an advance on January 6 from 13.0 cents per pound to 13.5 cents. The average yearly price was therefore a negligible fraction under 13.5 cents compared with 12.3 The unusual price stability in 1956 in the face of the cents in 1955. decline in commercial demand for zinc was attributed to the support afforded by the Government stockpiling program.

Average monthly zinc quotations 11 on the London Metal Exchange in 1956 ranged from a high of £101 11s. 2d. per long ton in March (equivalent to 12.70 cents a pound computed at the average exchange rate recorded by the Federal Reserve Board) to a low of £93 9s. 8d. in July (11.69 cents a pound) and averaged £97 15s. 4d. (12.19 cents a pound) for the year, compared with £90 13s. 9d. (11.30 cents a pound) in 1955.

Includes brass mills, brass ingotmakers, and foundries.
 Includes producers of zinc-base die castings, zinc-alloy dies, and zinc-alloy rods.
 Revised figures.
 Stocks on Dec. 31, 1955 and 1956, exclude 595 and 594 tons, respectively, of remelt spelter.

¹¹ Monthly mean of buyers' and sellers' quotations at the close of morning sessions.

TABLE 23.—Price of zinc concentrate and zinc, 1952-56

	1952	1953	1954	1955	1956
Joplin 60-percent zinc concentrate: ¹ Price per short ton_dollars_ A verage price common zinc at—	116. 10	64.65	65. 72	77. 50	86. 1
St. Louis (spot) 1 cents per pound_  New York 1 do  London 2 do  Price indexes (1947-49) average=100):	16, 21	10. 86	. 10. 69	12.30	13. 4
	17, 03	11. 53	11. 19	12.80	13. 9
	18, 53	9. 47	9. 78	11.30	12. 1
Zinc (New York) Lead (New York) Copper (New York) Straits tin (New York) Nonferrous metals 3 All commodities 3	135	91	88	101	11
	102	84	88	94	10
	117	138	142	177	19
	130	103	100	103	11
	124	125	124	143	12
	112	110	110	111	11

TABLE 24.—Average monthly quoted prices of 60-percent zinc concentrate at Joplin, and of common zinc (prompt delivery or spot) St. Louis and London, 1955-56 1

	1955				1956		
$\mathbf{Month}$	centrates per pound)			60-percent zinc con- centrates	per pound)		
	in the Jop- lin region (dollars per ton)	St. Louis	London 2 3	in the Jop- lin region (dollars per ton)	St. Louis	London 2	
January February March March April May June July August September October November December	68. 00 68. 00 68. 00 70. 92 72. 00 73. 70 76. 00 76. 00 78. 77 80. 00 80. 00 80. 00	11. 50 11. 50 11. 50 11. 93 12. 00 12. 25 12. 50 12. 50 12. 96 13. 02 13. 00	10. 64 11. 09 11. 03 11. 13 11. 21 11. 42 11. 31 11. 12 11. 39 11. 36 11. 55- 12. 30	82, 62 84, 00 84, 00 84, 00 84, 00 84, 00 84, 00 84, 00 84, 00 84, 00 84, 00	13. 44 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50 13. 50	12. 6 12. 5 12. 7 12. 2 11. 8 11. 7 11. 6 11. 9 11. 8 12. 5 12. 5	
Average for year	77. 50	12.30	11.30	83. 89	13. 49	12.1	

¹ Joplin: Metal Statistics, 1957, p. 590. St. Louis: Metal Statistics, 1957, p. 588. London: E&MJ Metal and Mineral Markets.

2 Conversion of English quotations into American money based on average rates of exchange recorded by

Federal Reserve Board.

Reserve Board.

Average of daily mean of bid and asked quotations at morning session of London Metal Exchange.

TABLE 25.—Average price received by producers of zinc, 1952-56, by grades, in cents per pound

	or poun	u.			
Grade	1952	1953	1954	1955	1956
Grade A: Special High Grade High Grade High Grade Grade B: Intermediate Grades C and D: Brass Special Select Grade E: Prime Western All grades Prime Western; spot quotation at St. Louis 1.	17. 04 16. 42 17. 76 17. 07 16. 73 16. 33 16. 63 16. 21	11. 81 11. 40 11. 38 11. 72 11. 59 11. 21 11. 47 10. 86	11. 46 11. 05 11. 36 10. 93 10. 02 10. 39 10. 83 10. 69	12. 79 12. 59 12. 30 12. 21 11. 13 11. 74 12. 29 12. 30	14. 26 13. 98 14. 06 13. 71 13. 41 13. 13 13. 73 13. 49

¹ Metal Statistics, 1957, p. 588.

Metal Statistics, 1957.
 E&MJ Metal and Mineral Markets English quotations converted into American money on basis of average rates of exchange recorded by Federal Reserve Board.
 Based upon price indexes of U. S. Department of Labor.

# FOREIGN TRADE 12

Imports.—General imports of zinc in 1956 rose to a record high of 770,300 tons—96,600 tons more than in 1955 and 22,000 tons above those in 1953 (the former record year). Imports of ores and concentrates (zinc content) increased 10 percent to 525,400 tons in 1956, of which Mexico supplied 37 percent, Canada 34 percent, Peru 19 percent, Australia 3 percent, and other countries (chiefly Union of South Africa, Guatemala, and Bolivia) 7 percent.

Slab-zinc imports rose 25 percent to 245,000 tons, of which Canada furnished 48 percent, Belgium 13 percent, Belgian Congo and Mexico each 7 percent, West Germany and Italy each 6 percent, and other countries (principally Australia, Peru, Netherlands, and Japan) 13

percent.

TABLE 26.—Zinc imported into the United States, in ores, blocks, pigs, or slabs, by countries, 1947-51 (average) and 1952-56, in short tons ¹

[1	Bureau of th	e Census]		1000		
Country	1947-51 (average)	1952	1953	1954	1955	1956
Ores (zine content): North America: Canada-Newfoundland-Labrador. Cuba	70, 442 12 1, 308 101 149, 803 12 221, 678 1, 126 7, 375 226 26, 682 201	149, 130 171 9, 744 316 200, 647 360, 008 603 14, 603 33 44, 337 320	165, 910 6, 477 637 169, 124 (2) 342, 148 22, 528 3, 247 84, 365 389	156, 830 3, 755 792 175, 692 (2) 337, 069 11, 440 1, 797 93, 216 31	173, 157 3, 704 8, 353 1, 433 186, 461 373, 108 1, 833 4, 858 83, 915 142	177, 087 1, 155 11, 433 2, 288 193, 007 4 384, 974 2 7, 294 98, 541 212
Total	35, 610	59, 896	110, 529	106, 484	90, 748	106, 395
Europe: Belgium-Luxembourg. Italy. Malta, Gozo, and Cyprus. Netherlands. Spain. United Kingdom. Yugoslavia. Other Europe.	7, 886	16, 647 2, 512	8, 738 3, 009 8, 617 10, 820 1	4, 871		1,062
Total	12, 817	19, 159	31, 185	4, 886	3, 043	1, 923
Asia: Japan Korea, Republic of Philippines Other Asia.	26	1, 389 (2) 1, 664 7	2, 104 778	444	465	66 828
Total		3, 060	2, 882	444	465	894
Africa: Algeria Union of South Africa Other Africa	3, 011	4, 917 198	2, 804 13, 356	4, 183	5, 050	13, 400
TotalOceania: Australia	3, 011 2, 301	5, 115 2, 398	16, 160 10, 820	4, 183 2, 361	5, 050 5, 630	13, 400 17, 764
Grand total: Ores	276, 938	449, 636	513, 724	455, 427	478, 044	525, 350
		-	-		•	

See footnotes at end of table.

¹² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from reports of the Bureau of the Census.

TABLE 26.—Zinc imported into the United States, in ores, blocks, pigs, or slabs, by countries, 1947-51 (average) and 1952-56, in short tons — Continued

	· · · · · · · · ·					mueu
Country	1947-51 (average)		1953	1954	1955	1956
Blocks, pigs, or slabs: North America: Canada			7			
Canada Mexico	87, 265 9, 463	69, 775 18, 686		105, 154 9, 726		
TotalSouth America: Peru	96, 728 246	88, 461 1, 600				
Europe: Austria				-		
Belgium-Luxembourg Germany Italy Netherlands Norway Lutted Viscolory	327 852	6, 854 3 7, 619 4, 063 3, 976	3 13, 906 23, 972 4, 338	3, 109 5, 285 1, 461	³ 6, 642 6, 190	2, 296 32, 353 3 15, 285 13, 486 5, 965
United KingdomYugoslavia. Other Europe	111	2, 788 12	6, 323 6, 317 1, 900 165	22	504	611
Total	5, 851	25, 422	78, 470	18, 134	32, 242	70, 606
Asia: Japan Other Asia	4, 323 25	222				4, 883
Total	4, 348	222				4, 883
Africa: Belgian Congo French Morocco Mozambique	88		882	13, 895	15, 228 1, 264	17, 782
Rhodorio and Massaland To 1			4 1, 064	112	280	1, 568 560 1, 680
TotalOceania: Australia	88 36		1, 946 3, 951	14, 007 3, 080	16, 772 4, 033	21, 590 7, 281
Grand total: Blocks, pigs, or slabs	107, 297	115, 705	234, 576	156, 858	195, 696	244, 978

Data include zine imported for immediate consumption plus material entering country under bond.

Exports.—Exports of zinc in ores and zinc scrap and as metal and zinc dust totaled 29,400 tons in 1956 valued at \$7,335,300, compared with 43,800 tons (revised figure) valued at \$8,779,900 in 1955. In addition to the export items listed in tables 28 and 29, considerable zinc was exported, as in other years, in brass, pigments, chemicals, and die-cast alloy and as zinc coatings on steel products. Export data on zinc pigments and chemicals are given in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

Of the exports of slab zinc (8,800 tons) the United Kingdom received 57 percent, Belgium-Luxembourg 16 percent, Mexico 10 percent, and other countries 17 percent. Most of the sheets, plates,

and strips were shipped to Canada, Mexico and Colombia.

Less than 1 ton.
West Germany.
Northern Rhodesia.

TABLE 27.—Zinc imported for consumption in the United States, 1947-51 (average) and 1952-56, by classes [Bureau of the Census]

TABLE 28.—Slab and sheet zinc exported from the United States, by destinations, 1953-56, in short tons

[Bureau of the Census]

Destination	-	Slabs, pi	gs, and b	locks	Shee	Sheets, plates, strips, or other forms, n. e. s.			
	1953	1954	1955	1956	1953	1954	1955	1956	
North America:	1.0					- <del></del>	<u> </u>	<del> </del>	
Canada	7		8	8	2, 322	1 704	0.000		
Cuba	_ 12		- 1Ĭ				2,062 132	2, 59	
Mexico		517	1 961	839			583	103 716	
Other North America	- 5		- 4	21			43	96	
Total	481	526	1 984	954	3, 013	2, 495	2,820	3, 507	
South America:				=	==		= ====	0,000	
Argentina		2, 205	6,062				1		
Brazii	1 697	2, 900			697	1	. 9		
Chile	1 141	230			31	952	71	61	
Colombia	62		_   2	90	136	219	270	1 7	
Venezuela	21	1		1	41	70	50	344	
Other South America	11	13		- 7	43	49	26	97 37	
Total	1,883	5, 349	6, 119	153	950	1, 299	434		
Europe:						1, 200	404	546	
Belgium-Luxembourg	0.00			1					
Denmark	840	3, 136	1 2, 883	1, 428	1	10	2		
France	56		84	ļ	.	l	[	34	
Germany, West	ı	56					1	ī	
11.9.17	1	2,777 224		279			30	46	
Netherlands		560	112				12	14	
Switzerland		1.064	1 224	44	3	22	12	9	
United Kingdom	13, 859	10, 052	7, 504	5, 040	13	17	30	34	
Other Europe	10,000	113	1,004	25	9	34	50	30	
Total			ļ	20	3	3	71	9	
	14, 759	17, 982	10, 808	7, 264	29	86	208	177	
Asia:									
India		112	l	2	352	49	38	00	
Israel and Palestine	34		2 11	2 2	9	2 16	21	(2 3)	
Japan		28		1	11	4	11	6	
Korea, Republic of Philippines	771	948	132	433	94	6	ī		
Other Asia		16	7		104	67	84	85	
	40	33	6	4	48	.9	17	34	
Total	845	1, 137	156	442	618	151	152	193	
frica:									
Union of South Africa			No allege		18			_1	
Other Africa			2		10	14	(3) 38	21	
Total	1		2						
ceania			2		(3)	14	38	21	
Grand total	17, 969	24, 994	118 060	8, 813	4,628	4, 045	3, 657	4, 444	

¹ Revised figure.

Tariff.—The duty on slab zinc remained at 0.7 cent per pound, that on zinc contained in ore and concentrate at 0.6 cent per pound, and that on zinc scrap at 0.75 cent per pound throughout 1955 and 1956. The rates of duty imposed on zinc articles under the Tariff Act of 1930, in specific years, 1930-54, are given in the 1953 Minerals Yearbook zinc chapter.

² Israel. ³ Less than 1 ton.

TABLE 29.—Zinc ore and manufactures of zinc exported from the United States, 1947-51 (average) and 1952-56

[Bureau of the Census]

Year	Zinc ore, con- centrates and dross (zinc con- tent) Slabs, pigs, blocks			strips	ts, plates, s, or other s, n. e. s.	Zinc s	crap (zinc ntent)	Zinc dust		
	Short	Value	Short tons	Value	Short	Value	Short tons	Value	Short	Value
1947-51 (average)- 1952 ³ 1953 ³ 1953 ³ 1956 ³	1 \$2,421 1 3,370 1 2,953  854	1 434, 572 1 899, 162 1 758, 600 	56, 068 57, 714 17, 969 24, 994 5 18, 069 8, 813	\$15, 385, 894 24, 508, 568 4, 620, 452 5, 393, 938 54, 175, 451 2, 465, 173	7, 417 4, 231 4, 628 4, 045 3, 657 4, 444	\$3, 540, 745 2, 960, 769 2, 637, 240 2, 183, 170 2, 192, 882 3, 031, 215	(2) 972 1,000 16,689 21,612 14,921	(2) \$282, 816 169, 517 2, 023, 493 2, 249, 583 1, 540, 404	891 (4) 502 509 445 372	\$319, 320 (4) 181, 055 150, 756 161, 956 136, 096

¹ Effective Jan. 1, 1949, "dross" included with "scrap." ² Classification established Jan. 1, 1949. Not included in 1947–51 averages, 1949—1,570 tons, (\$224,291); 1950—6,212 tons, (\$674,235); and 1951—4,613 tons, (\$871,302). ³ Effective Jan. 1, 1952 zine and zine-alloy semifabricated forms, n. e. c., were exported as follows: 1952—191,746 (quantity not available); 1953—286 tons, \$151,496; 1954—543 tons, \$257,316; 1955—651 tons, \$295,685; 1956—582 tons, \$301,230. ⁴ "Dust" included with "scrap." ⁴ Bryisad figure

Revised figure.

# **TECHNOLOGY**

Technologic advances in the zinc industry in 1956 generally paced those in other industries. Notable progress was made in improving underground mechanization for drilling, loading, and transport operations; in the use of mechanical charging machines on horizontal retort furnaces; in automatic casting and packaging of slab zinc; in improving facilties for extracting zinc from lead-smelter slags and for recovering byproduct metals, such as cadmium, germanium, and indium; in making specification zinc metal, such as that required for the new continuous galvanizing lines; and in controlling (and recovering metals from) smoke. Much valuable technologic information was published by the technical staffs of companies, trade journals, Federal and State agencies, and various research units.

The Federal Bureau of Mines 13 and the Geological Survey 14 published reports on several investigations relating to zinc.

¹³ Sullivan, P. M., Electrolytic Recovery of Zinc From Galvanizers' Sal Skimmings: Bureau of Mines Rept. of Investigation 5205, 1956, 21 pp.
Hazen, Scott W., Jr., Exploration For Lead And Zinc At The Madonna Mine, Monarch Mining District, Chaffee County, Colo.: Bureau of Mines Rept. of Investigation 5218, 1956, 38 pp.
Reynolds, John R., Mining Methods And Costs At The Morning Mine, American Smelting & Refining Co., Shoshone County, Idaho, Bureau of Mines Inf. Circ. 7743, 1956, 40 pp.
14 Bridge, Josiah, Stratigraphy of the Mascot-Jefferson City Zinc District, Tenn., with an introduction by John Rodgers: Geol. Survey Prof. Paper 277, 1956, 76 pp.
Hosterman, J. W., Geology of the Murray Area, Shoshone County, Idaho: Geol. Survey Bull. 1027-P, 1956, pp. 725-748 (Contributions to Economic Geology).
Wallace, R. E., and Hosterman, J. W., Reconnaissance Geology of Western Mineral County, Mont.: Geol. Survey Bull. 1027-M, 1956, pp. 575-612 (Contributions to Economic Geology).
Agnew, A. F., Heyl, A. V., Jr., Behre, C. H. Jr., and Lyons, E. J., Stratigraphy of Middle Ordovician Rocks in the Zinc-Lead District of Wisconsin, Illinois, and Iowa. Geol. Survey Prof. Paper 274-K, 1956, pp. 251-312. (Contributions to General Geology).
Kennedy, V. C., Geochemical Studies in the Southwestern Wisconsin Zinc-Lead Area: Geol. Survey Bull. 1000-E, 1956, pp. 187-223 (Contributions to Geological Prospecting for Minerals).
Simons, F. S., and Mapes, V. E., Geology And. Ore Deposits of the Zimapan Mining District, State of Hidalgo, Mexico: Geol. Survey Prof. Paper 284, 1956, 128 pp.

The integrated system of underground mechanical drilling, loading, and transport operations adopted at the Grandview mine of the American Zinc, Lead and Smelting Co. in the Metaline Falls district, Washington, was described.15 This system (Gismo mining) has resulted in a greatly increased output per man-shift.

An article 16 told how improvements in equipment and operating methods helped combat the cost-price squeeze at a large western zinclead mine. Among the time-saving installations that helped to reduce mining costs were photoelectric cells used at the automatic weigh loader at the bottom of the ore pass from the underground crusher and at the automatic car dump near the tunnel portal.

A test run at the slag-fuming plant of the Consolidated Mining & Smelting Co. smelter at Trail, British Columbia, in the summer of 1956 added substantially to the understanding of slag fuming.¹⁷ The test yielded practical information on what the operator can expect when a temporary failure of the coal-supply occurs (the slag temperature rises sharply!). Also, the test demonstrated for the first time that the gas-slag interface in a conventional fuming furnace is far larger than had been thought—large enough to be the seat of the fuming reaction. As a corollary of this conclusion, it follows that application of gaseous fuels (natural gas) to slag fuming cannot be ruled out on grounds of low mass-transfer rate.

A chromatographic method was described 18 for separating zinc in the range 1-40 percent from all normal types of copper-base alloy. The separated zinc is determined by titration with disodium ethylene diamine tetra acetate (E. D. T. A.). The conditions for accurate determination of the zinc were investigated, as was the effect of various

elements on the separation and titration.

Commercial production of electrodeposited iron-zinc alloys that were developed at the Swansea laboratories was reported in London.19 It was stated that these alloys are attractive in appearance, hard wearing and not easily damaged by deformation, and they can be plated at Alloys with 35-65 percent zinc appear, from corrosion tests, to have as great a resistance to atmospheric corrosion as pure zinc.

The low-frequency induction melting furnace and straight-line inclined casting machine used at the electrolytic zinc plant of the Consolidated Mining and Smelting Co. of Canada, Ltd., at Trail, British Columbia, was described in detail.20 It was stated that, as far as known, the melting furnace at Trail was the largest installation for melting zinc cathodes in the world and that the casting machine was the first of its kind to be installed in North America.

An article 21 comparing techniques in a study of zinc self-diffusion was published. According to the article, self-diffusion in zinc has been used as an instrument for comparing the absorption and sectioning

¹⁵ Hayes, Dale I., The Gismo Mining Method: Mine and Quarry Eng., vol. 22, No. 5, May 1956, pp. ¹⁶ Crandall, W. E., Star Mine Fights Rising Costs: Eng. Min. Jour., vol. 158, No. 1, January 1957, pp.

<sup>86-89.

17</sup> Kellogg, H. H., A New Look at Slag Fuming: Eng. Min. Jour., vol. 158, No. 3, March 1957, p. 90.

18 Chew, B., and Lindley, G., The Determination of Zinc in Copper Alloys: Metallurgia, vol. 53, No.

315, January 1956, pp. 45-47.

19 Metal Bulletin (London), July 3, 1956, No. 4107, p. 12.

20 Nicholson, J. H. (The Consolidated Mining and Smelting Company of Canada, Ltd.), An Induction-Melting Furnace for Zinc Cathodes, and a Casting Machine for High-Purity Zinc Slabs: Pres. at AIME, Annual Meeting of the New Orleans, La. Feb. 24-28, 1957.

21 Jaumot, F. E., Jr., and Smith, R. L., Comparison of Techniques In a Study of Zinc Self-Diffusion: Jour. Metals, vol. 8, No. 2, February 1956, pp. 137-141.

**ZINC** 1349

technique as a means of studying diffusion. Single-crystal as well as polycrystal samples were used, and the temperature range of diffusion extended from 200° to 415° C. Above 200° C, the data indicate that the results obtained from the absorption techniques agree with those obtained from the sectioning technique. The effect on the values of the diffusion coefficient of electroplating versus evaporation as a means of applying the tracer was investigated, and no significant differences were observed. It was found that an excess or deficiency of tracer did not materially affect the results obtained from the sectioning technique, but invariably caused errors with the absorption technique.

A technique was described for producing etch pits at the edge dislocations in zinc monocrystals.²² A survey was made of the etch-pit patterns that appear in cast crystals, as well as crystals that were deformed in various ways, including basal glide, twinning, kinking,

pyramid glide, and bending.

## **WORLD REVIEW**

World mine production of zinc in 1956 was estimated at 3.3 million short tons, or 5 percent more than in 1955. Among the principal producing countries, gains were reported in the United States, U. S. S. R., Australia, Italy, Japan, and Belgian Congo; and decreases occurred in Canada, Mexico, Peru, Spain, Yugoslavia, and Morocco (Southern Zone). West German production changed little. The United States continued to be the leading zinc-producing country, followed in order by Canada, U. S. S. R., Australia, Mexico, and Peru. Together these 6 nations contributed 62 percent of the world mine output (as listed in table 30), compared with 63 percent in 1955. Greenland became a commercial producer of zinc and lead for the first time in 1956. The Nordic Mining Co. lead-zinc deposit at Mestersvig, which was discovered in 1948, was being developed during the past several years and started operations in 1956.

World smelter production of zinc again increased (the 11th year in succession) and totaled 3 million tons—5 percent above 1955. There were substantial gains in the U. S. S. R., Belgium, and Japan and smaller increases in several other countries that were large producers

of slab zinc. No significant declines were reported.

Tables 30 and 31 show the quantity of zinc mined and smelted throughout the world by individual countries. It is significant that the United States, which consumed close to 40 percent of the total zinc used in the world in 1956, mined only 16 percent and smelted approximately 32 percent of the total produced.

#### NORTH AMERICA

Canada.—Mine production of recoverable zinc in Canada was 419,400 short tons—a 3-percent decline from 1955. Smelter output of slab zinc from domestic and foreign ores totaled 255,600 tons, slightly lower than in 1955. All of Canada's production of slab zinc came from 2 electrolytic plants, 1 operated by the Consolidated

²² Gilman, John J., Etch Pits and Dislocations In Zine Monocrystals: Jour. Metals, vol. 8, No. 8, August 1956, pp. 988-1004.

TABLE 30.—World mine production of zinc (content of ore), by countries, 1947-51 (average) and 1952-56, in short tons 3

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 2	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada	904 499	951 000	404 540			
CubaGreenland		371, 802	401, 762	376, 491	433, 357 1, 134	419, 40: 1, 638
Guatemala Honduras ⁵	4 3, 765	9,000	6, 700	4, 400	10, 400	2, 600 12, 000
MexicoUnited States 7	210, 947 633, 070	316 250, 638 666, 001	636 249, 715 547, 430	791 246, 441 473, 471	1, 433 296, 961 514, 671	2, 288 274, 351
Total		1, 297, 757	1, 206, 243	1, 101, 594	1, 257, 956	1, 254, 619
South America:						
Argentina Bolivia (exports)	14, 884	16, 971 39, 263	17, 735 26, 427	8 22,000	23, 260 23, 509 3, 200	26, 100
ChilePorts	22, 819 4 370	3,650	3,500	22, 403 8 1, 650	3, 200	18, 818 8 3, 300
		140, 925	153, 334	114, 104	183, 074	167, 413
Total	121, 630	200, 809	200, 996	8 220, 840	233, 043	8 215, 630
Europe:						1/2
Austria Finland	3, 082 2, 712	5, 496 7, 700	4, 826 3, 500	5, 140	5, 787	5,868
France	10, 339	16, 100	14,600	5,000 12,500	23, 300 11, 400	43,000 13,800
France Germany, West	58, 988	88, 956	100, 506	103, 867	101 558	101,803
Greece Ireland	3, 694 4 917	8,000 1,892	8,300	7,900	13, 500 2, 769 131, 891	22,300
Italy	86731	124, 466	1, 819 117, 102	1, 719 129, 707	131 801	2, 127 134, 912
Norway	6, 554 9 108, 000	6, 160	5,661	5, 917	7,411	7,055
Poland 8Spain		110,000	130,000	129,000	139,000	138,000
Sweden	40, 125	95, 000 42, 357	92, 000 49, 706	97, 000 64, 407	102,000 64,810	96, 000 72, 763
U. S. S. R. 8 9	138,000	214,000	241,000	258, 000	300,000	351,000
SwedenU. S. S. R. 8 9_ United Kingdom_ Yugoslavia	51 42, 418	1, 707 52, 678	3, 187 66, 106	3, 905 63, 052	3, 167	1, 563
Total 2 8	577, 000	799, 000	869,000	931,000	65, 800 1, 016, 000	63, 400 1, 103, 000
Asia:					1,010,000	1, 100, 000
Burma		2, 400	4,300	6, 400	9, 100	8,000
India	4 800	2, 500	2,900	2,600	2,900	4, 200
Iran 10	11 13,000	5, 500	6, 200	5,800	6,300	3,700
Korea, Republic of	48, 763 74	96, 418 550	106, 507 22	120, 581	119, 787	135, 194 440
Philippines	11 165	1, 770	830			1,050
Japan Korea, Republic of Philippines Thailand (Siam) Turkey [§]	6 238 820	550 990	2,000	3,000	3, 200	8 2, 200
Total 28	65,000	118, 400	138, 800	6, 100 159, 900	770 160, 200	170,000
		110, 100	100,000	100, 800	100, 200	176, 900
Africa: Algeria	8, 143	13, 160	20, 470	31, 538	24 200	91 001
Angola	11 386	50	20, 470	91, 999	34, 200	31, 891
Belgian Congo	67, 594	109, 071	138, 661	94, 015	74, 700	126, 235
Egypt	488 261	977 416	282	262	757	692
French Equatorial Africa Morocco	8, 207	31, 253	38, 895	37, 908	47, 686	43,000
Nigeria	97	57	71			10,000
Rhodesia and Nyasaland, Fed- eration of: Northern Rhodesia.	9 24, 968	41, 140	43, 353	38, 672	99 070	90 194
South-West Africa	12,078	7 17, 200	7 17, 400	7 22, 000	38, 070 19, 500	38, 134 20, 458
Tunisia	3, 285	3, 900	4,020	5, 707	5, 990	5, 200
Total	125, 507	217, 224	263, 262	230, 102	220, 903	265, 613
Oceania: Australia	210, 750	220, 954	265, 481	282, 978	287, 352	311, 334
World total (estimate)2	2, 240, 000	2, 850, 000	2, 940, 000	2, 930, 000	3, 180, 000	3, 330, 000

¹ Data derived in part from the Yearbook of the American Bureau of Metal Statistics, the United Nations Statistical Yearbook, and the Statistical Summary of the Mineral Industry (Colonial Geological Surveys, London).

Surveys, London).

2 In addition to countries listed, Bulgaria, Czechoslovakia, East Germany, Rumania, China, and North Korea also produce zinc, but production data are not available, estimates by senior author of chapter included in total.

3 This table incorporates a number of revisions of data published in previous Zinc chapters. Data do not add to total shown owing to rounding where estimated figures are included in the detail.

4 Average for 1950-51.

5 Average for 1948-51.

8 Estimated.

9 Smelter production.

10 Year ended March 21 of year following that stated.

11 Average for 1 year only, as 1951 was first year of commercial production.

TABLE 31.—World smelter production of zinc, by countries, 1947-51 (average) and 1952-56, in short tons 12

[Compiled by Augusta W. Jann and Berenice B. Mitchell]

* *						
Country	1947-51 (average)	1952	1953	1954	1955	1956
North America:						
Canada		222, 200	250, 961	253, 365	256, 542	255, 60
Mexico	59, 703	3 55, 542	3 58, 481	8 60, 477	³ 61, 878	³ 62, 13
United States	826, 028	904, 479	916, 105	802, 425	963, 504	983, 610
Total	1, 086, 497	1, 182, 221	1, 225, 547	1, 116, 267	1, 281, 924	1, 301, 34
South America:						
Argentina		11,023	12, 787	4 12, 000	14, 881	15, 43
Peru	1, 294	5, 750	9, 819	16, 935	18, 801	10, 41
Total	6, 815	16, 773	22, 606	4 29, 000	33, 682	25, 84
Europe:						100
Austria					1, 493	7, 31
Belgium 5	185, 566	205, 910	213, 217	234, 481	232, 840	251, 91
Bulgaria Czechoslovakia					1, 497 (6)	6, 43
		(6)	(6)	(6)	123, 624	(6) 124, 10
France	66, 919	88, 255	89, 219	122, 249		204, 10
Germany, West		162, 278	163, 430 66, 214	184, 804 74, 356	197, 026 77, 761	81.08
Italy Netherlands	35, 534 17, 877	60, 463 28, 555	27, 780	28, 702	31, 347	31, 98
			42, 767	49, 010	50, 176	53, 17
Norway	44, 461	43, 248		157, 000	172,000	169, 00
Poland 4Rumania	108,000	132,000	152,000	(6)	(6)	(6)
		23, 543	(6)		26, 291	
Spain U. S. S. R.4	22, 749		25, 490	25, 653 258, 000	300,000	24, 54 351, 00
U. S. S. R	138,000	214,000	241, 000 81, 433	90, 989	91, 108	91. 24
United Kingdom	77, 145	76, 984			15, 176	15, 43
Yugoslavia	10, 394	15, 943	16, 038	15, 040	15, 170	10, 40
Total 4	803, 000	1, 059, 000	1, 127, 000	1, 249, 000	1, 329, 000	1, 420, 00
Asia:						
China 4	270	200	400	13, 800	16, 500	19, 80
Japan	38, 269	77, 197	85, 001	111, 748	124, 036	149, 14
Total 4	38, 540	77, 400	85, 400	125, 500	140, 500	168, 90
Africa:						100
Belgian Congo			8, 599	35, 274	37, 443	47, 41
Rhodesia and Nyasaland, Fed	.	1	3,500	,		
eration of: Northern Rhodesia	24,968	25, 636	28, 370	29, 736	31, 248	32, 39
Total	24, 968	25, 636	36, 969	65, 010	68, 691	79, 81
Oceania: Australia	87, 887	97, 930	100, 999	117, 066	113, 220	117, 59
World total (estimate)	2, 048, 000	2, 460, 000	2, 600, 000	2, 700, 000	2, 970, 000	3, 110, 00

¹ Data derived in part from the Yearbook of the American Bureau of Metal Statistics, the United Nations Monthly Bulletin and the Statistical Yearbook, and the Statistical Summary of the Mineral Industry (Colonial Geological Surveys, London).
² This table incorporates a number of revisions of data published in previous Zinc chapters. Data do not add to totals shown due to rounding where estimated figures are included in the detail.
³ In addition, other zinc-bearing materials totaling 3,746 tons in 1952; 30,288 in 1953; 18,545 in 1954; 37,442 in 1955; and 39,554 in 1956.
⁴ Estimate.
⁴ Estimate.

Mining and Smelting Co. of Canada, Ltd., at Trail, British Columbia, and the other by the Hudson Bay Mining and Smelting Co., Ltd., at Flin Flon, Manitoba.

Domestic consumption of slab zinc was 59,200 short tons 23 compared with 58,500 tons in 1955. Exports of refined metal totaled 183,700 short tons and of zinc contained in concentrate 199,300 tons. Of the total slab zinc and concentrate exported, the United States

Includes production from reclaimed scrap.
 Data not available; estimate by senior author of chapter included in total.

²³ British Bureau of Non-Ferrous Metal Statistics, World Non-Ferrous Metal Statistics: Vol. 10, No. 9, September 1957, p. 44.

received 64 and 89 percent, respectively. The zinc-producing Provinces were British Columbia, Quebec, Saskatchewan and Manitoba, Newfoundland, New Brunswick, Yukon, Nova Scotia, and Ontario.

The Sullivan mine of the Consolidated Mining and Smelting Co. of Canada, Ltd., continued to be much the largest zinc (and lead) producer in Canada. Zinc-lead-silver ore produced from this mine in 1956 totaled 2,769,200 tons,²⁴ which was treated in the company 11,000-ton concentrator at Kimberley. In addition to the Sullivan mine, the company operated its H. B. zinc-lead mine near Salmo, Bluebell lead-zinc mine at Riondell, and Tulsequah zinc-lead-copper mines in northern British Columbia, which together produced 891,500 tons of ore during the year.

Other British Columbia producers of zinc concentrate were Canadian Explorations, Ltd., near Salmo; Reeves Macdonald Mines, Ltd., near Nelway; Britannia Mining and Smelting Co., Ltd. (producing copper-zinc ore), on Howe Sound; Sheep Creek Mines, Ltd., Lake Windemere district; Sunshine Lardeau Mines, Ltd., near Camborne; Violamac Mines, Ltd., near Sandon; Yale Lead & Zinc Mines, Ltd., Ainsworth; Silver Standard Mine, Ltd., near Hazelton; and Giant

Mascot Mines, Ltd., near Spillimacheen.

In the Flin Flon area on the Manitoba-Saskatchewan boundary the Hudson Bay Mining & Smelting Co., Ltd., operated its copperzinc-gold-silver mines and 6,300-ton concentrator, copper smelter, electrolytic zinc plant, and zinc-fuming plant. The mill treated 1,653,800 tons ²⁵ of ore in 1956—or 10,800 tons more than in 1955. In addition, 12,900 tons of direct-smelting ore and 100,500 tons of zinc-plant residue were treated at the smelter.

Output of refined zinc was 63,300 tons compared with 67,400 tons in 1955. Zinc oxide was recovered by treating zinc-plant residue in

the copper smelter and fuming the copper-smelter slag.

In Ontario, Geco Mines, Ltd., continued underground development of its copper-zinc-silver deposits at Manitouwadge. Ore reserves were reported at 15.2 million tons averaging 1.76 percent copper, 3.48 percent zinc, and 1.77 ounces of silver to the ton. 26 Consolidated Sudbury Basin Mines, Ltd., continued to explore zinc-lead-copper deposits northwest of Sudbury. Jardun Mines, Ltd., produced both zinc and lead concentrates from its mine 18 miles northeast of Sault Ste. Marie.

Barvue Mines, Ltd., Quebec's leading producer of zinc concentrate, shifted its mining operations in Abitibi East County from open-pit (which has reached a depth of 250 feet) to underground during 1956. The Barvue mill had a daily capacity of 5,300 tons. Other Quebec producers of zinc concentrate included the East Sullivan Mines, Ltd., Normetal Mining Corp., Ltd., Quemont Mining Corp., Ltd., Waite Amulet Mines, Ltd., and Weedon Pyrite and Copper Corp., Ltd. (all treating zinc-copper ore); Anscot Metals Corp., Ltd., and Golden Manitou Mines, Ltd. (treating zinc-lead-cooper ore); New Calumet Mines, Ltd., and West Macdonald Mines, Ltd. (zinc-lead and zinc ores).

Consolidated Mining and Smelting Co. of Canada, Ltd., Fifty-first Annual Report, for the Year Ended Dec. 31, 1956, 8 pp.
 Northern Miner, Hudson Bay Enjoys Record Year: Vol. 42, No. 52, Mar. 21, 1957, p. 25.
 Western Mines and Oil Review (Canada), vol. 30, No. 1, January 1957, pp. 27-37.

1353ZINC

In New Brunswick Heath Steele Mines, Ltd. (subsidiary of American Metal Co., Ltd.), continued developing its ore bodies near Newcastle and completed constructing a mill and related facilities to permit operation at a rate of 1,500 tons of ore daily. Full production was expected by mid-1957. The ore produced will be of two types copper ore and lead-zinc-copper ore—which will be treated in separated sections of the mill.

The Brunswick Mining and Smelting Corp., in which the St. Joseph Lead Co. has a 40-percent financial interest and responsibility for management, continued to develop its extensive copper-lead-zinc ore bodies near Bathurst and to carry on metallurgical research work on methods for handling New Brunswick ores. Total expenditure on the Brunswick project 28 by the end of 1956 had reached \$5.6

million and production was still at least 2 years away.

Prospecting and development were also continued by New Larder "U" Island Mines, Ltd., Kennco Explorations (Canada), Ltd. (subsidiary of Kennecott Copper Corp.), and Middle River Mining Co., Ltd. (subsidiary of Texas Gulf Sulphur Co.). During the year Great Sweet Grass Oils, Ltd., began drilling on its claims in the Bathurst-Navagestle area. Bathurst-Newcastle area.

The Buchans Mining Co., Ltd. (subsidiary of American Smelting & Refining Co.), continued to operate its properties at Buchans, Newfoundland. Ore mined and treated in 1956 totaled 355,000 short tons, yielding lead, zinc, and copper concentrates. Preparations were being made for mining a new deep ore body located to the northwest of the ore body being worked in 1956. Work was begun on a 14-footdiameter circular shaft, which will be sunk to a minimum depth of 3,400 feet and a possible extension to 4,000 feet.29

In Yukon, United Keno Hill Mines continued to operate its 500-ton mill, producing both lead and zinc concentrates. Mackeno Mines,

Ltd., concentrated zinc-lead ore in its 220-ton mill.

Cuba.—Zinc concentrate was recovered from complex gold-silver-

copper-lead-zinc ore produced at the San Fernando mine.

Greenland.—Commercial production of zinc and lead concentrates in Greenland began in 1956 with completion by the Nordic Mining Co., Ltd., of the underground mill and auxiliary facilities at the Mestersvig mine in East Greenland. The deposit was discovered in 1948 and has been under development for several years. mill has an annual capacity of some 8,800 short tons of zinc concentrate and 11,000 short tons of lead concentrate. During the 6 months ended September 30, 1956,30 about 50,000 short tons of ore was crushed at Mestersvig, yielding 6,900 short tons of 63-percent zinc concentrate and 4,400 tons of 82-percent lead concentrate. About 9,900 tons of concentrates was sent to Belgium for treatment.

Guatemala.—Compania Minera de Guatemala continued to produce

zinc and lead concentrates at its Caquipec mine near Coban.

Mexico.—Mine production of zinc in Mexico was 274,400 short tons in 1956—8 percent under the record high of 1955. As no significant changes in operating rates of the principal producing companies

⁷ The American Metal Company, Ltd., Annual Report for the 69th Year: 1956, 48 pp. 28 St. Joseph Lead Co., 1956, President's Report to Employees: 23 pp. 3 American Smelting & Refining Co. Fifty-eighth Annual Report, for the Year Ended Dec. 31, 1956: 18 pp. 39 Metal Bulletin (London), No. 4146, Nov. 20, 1956, p. 24.

were reported, the decline in recoverable zinc production indicated that the average grade of ore treated was lower. Some stimulus to the mining of lower grade ores was provided by the new "Law of Taxes and Promotion of Mining" that became effective on January 1, 1956. However, burdensome production and export taxes continued to be a deterrent to investment of capital in new mining enterprises.

The mines and smelting and refining plants of the American Smelting & Refining Co. in Mexico operated on a normal basis throughout 1956.31 The producing company lead-zinc mines were the Charcas unit at Charcas, San Luis Potosi; Nuestra Senora at Cosala, Sinaloa; the Parral, Santa Barbara, and Santa Eulalia units, Chihuahua; and Taxco, Guerrero. Operating mines leased or owned in part and managed by American Smelting were the Aurora-Xichu unit, Guanajuanto; Cia Metalurgica Mexicana mines; and Montezuma Lead Co. mines at Santa Barbara, and Plomosas unit at Picachos in Chihuahua. Smelting and refining plants operated were the Chihuahua plant (lead smelting and zinc fuming); Monterrey (lead refining); San Luis Potosi (copper smelting and converting, arsenic refining, lead smelting); and Rosita, Coahuila (zinc retort smelting).

The American Metal Co., through its Mexican subsidiary, Cia Minera de Penoles, S. A., produced zinc and lead concentrates at its Avalos unit at Avalos, Zacatecas; Calabaza unit, Etzatlan, Jalisco; and Topia unit, Topia, Durango. Lead concentrate was produced at the company Ocampo unit, Boquillas, Coahuila. The company zinc concentrate was shipped to the Blackwell (Okla.) smelter of the Blackwell Zinc Co. (subsidiary of American Metal Co.), but the lead concentrate was smelted at the company smelter at Torreon, Coahuila, in Mexico. According to the company annual report, 32 an agreement was reached with the Mexican Government under its revised mining legislation enacted in 1955 which will permit long-range development of the Avalos mine, largest of the company Mexican mines. report stated that any profits resulting from this venture will in effect be shared with the Mexican Government through the payment of heavy production and export taxes, and that healthy expansion of the Mexican mining industry will require further amelioration in the tax treatment accorded it.

The San Francisco Mines of Mexico, at San Francisco del Oro, Chihuahua, in which the American Metal Co. has an interest, was also

a large producer of zinc and lead concentrates.

The El Potosi Mining Co. (subsidiary of Howe Sound Co.), another large lead-zinc producer, operated its El Potosi mine in the Santa Eulalia district and El Carmen at Batophilas, both in the State of Chihuahua.

According to the annual report of the Fresnillo Co. for the fiscal year ended June 30, 1956,33 the Fresnillo mill treated 695,800 tons of ore, yielding 31,800 tons of lead concentrate, 57,400 tons of zinc concentrate, 4,700 tons of copper concentrate, and 12,600 tons of iron concentrate, and the Naica mill treated 245,300 tons of ore yielding 25,700 tons of lead concentrate and 13,200 tons of zinc concentrate; in addition, 1,300 tons of lead carbonate ore was shipped.

³¹ Work cited in footnote 29.
22 Work cited in footnote 27.
23 Metal Bulletin (London), No. 4154, Dec. 18, 1956, p. 23.

ZINC 1355

company enlarged its Naica operations by purchasing the adjacent Gibraltar mine from the Eagle-Picher Co. and increasing the capacity of Naica mill 50 percent. As of June 30, 1956, estimated ore reserves of the Fresnillo mine and the Naica-Gilbraltar mines totaled 6.3 million short tons.

The Minas de Inguala, S. A., subsidiary of the Eagle-Picher Co., operated its zinc-lead-copper mine and concentration mill at Parral,

Chihuahua.

The Waelz plant of Zinc Nacional, S. A., at Monterrey treated run-of-mine zinc carbonate and zinc oxide ores. The fume produced was shipped to the National Zinc Co. smelter at Bartlesville, Okla.

#### SOUTH AMERICA

Argentina.—Most of Argentina's output of lead and zinc continued to come from the Aguilar mine of Compania Minera Aguilar, S. A., a subsidiary of the St. Joseph Lead Co. The mine produced 33,400 short tons of lead concentrate and 46,700 tons of zinc concentrate in 1956, compared with 30,700 and 46,500 short tons, respectively, in 1955. The rehabilitation program for the mine and mill, which began in 1954, was completed in 1956. Lead concentrate produced was shipped to the Puerto Vilelas (Chaco) smelter of the National Lead Co., S. A., and zinc concentrate to the electrothermic zinc smelter at Austral.

The recently developed Mina Castano lead-zinc-silver mine and new mill of the National Lead Co. in San Juan Province were put in operation on schedule in 1956. Zinc and lead concentrates were

produced.

Bolivia.—As there was no zinc smelter in Bolivia, the zinc produced in 1956 was exported in the form of concentrate. Exports were 18,800 tons (zinc content), or 20 percent less than in 1955. Mining was at a critically low point during the year, according to a report ³⁴ by Ford, Bacon & Davis, a United States consulting firm employed in 1955, at the request of the Bolivian Government, to study conditions, evaluate all factors, and recommend measures to improve production. The report pointed out inadequacies in management, technical staff, economic planning, and ore reserves, that adversely affected the mining industry. Recommendations included a program of reorganization of the Mining Corporation of Bolivia, employment of a highly skilled staff, and final financial settlement with former owners of nationalized mines so that foreign investment capital may again be attracted to Bolivia.

Chile.—Cia. Minera Aysen continued to produce zinc and lead concentrates at its mining and milling operations in the south of Chile. Cia Minera e Industrial "Bellavista," S. A., produced zinc

concentrate for its own use.

Peru.—After increasing for 8 years in succession, mine output of zinc decreased 9 percent from 1955 to 167,400 short tons in 1956. Exports of zinc (mostly to the United States) totaled 158,300 short tons, of which 150,600 tons was contained in ore and concentrate and 7,700 tons was refined zinc.

Mining World, vol. 18, No. 13, December 1956, p. 41.

The Cerro de Pasco Corp., principal zinc producer in Peru, operated zinc-lead-copper-silver mines at Cerro de Pasco, Morococha. Casapalca, San Cristobal, and Yauricocha, with mills at the first three mines and at Mahr, and also operated smelting and refining works at The works at La Oroya include, besides lead and copper smelters and refineries, an electrolytic zinc plant and a Sterling process electrothermic zinc plant. According to the annual report, 35 the production of refined zinc, at 10,400 short tons, was 45 percent below that of the preceding year due to closing of the zinc refinery to conserve power during 5 months of the year. Operation of the electrolytic zinc plant, the capacity of which was expanded from 35 to 90 short tons per day, was resumed toward the end of the year. Modifications to the electrothermic zinc plant, which had a capacity of 60 tons per day were virtually completed, and the plant was expected to be in operation in the second quarter of 1957. Production of zinc concentrate in 1956 (including that converted to refined zinc at La Oroya) totaled 147,600 dry short tons in 1956, compared with 167,500 tons The new 72,000-kv.-a. hydroelectric generating plant on the Paucartambo River was approaching completion at the year end. The Banco Minero del Peru operated 5 custom mills, with a com-

The Banco Minero del Peru operated 5 custom mills, with a combined daily capacity of some 1,000 tons of ore to serve many small mines. The mills were at La Virreyna, Province of Castrovirreyna; Hauchocolpa, Province of Huancavelica; Sacrachancha, near Morococha; Hualgayoc, Province of Cajamarca; and Huarochiri, Province

of Lima.

The Northern Peru Mining and Smelting Co. (American Smelting & Refining Co. subsidiary) continued to operate its Chilete silver-lead-zinc mine and 350-ton mill near Pacasmayo.

#### EUROPE

Austria.—The lead-zinc mine at Bleiberg-Dreuth, Province of Carinthia, was the source of Austria's mine output of zinc in 1956. The mine, operated by the Bleiberger Bergwerks Union, a nationalized company, yielded 179,800 short tons of ore, of which 29,300 tons was taken from the dump. The ore was concentrated by flotation. The new electrolytic zinc plant at Gailitz that began operations in September 1955 produced 8,300 short tons of refined zinc in 1956; the annual capacity of the plant was around 11,000 tons.

Belgium and France.—No zinc mine was operated in Belgium in 1956. In France there were several active lead-zinc mines, and the

output of zinc contained in concentrates was 13,800 short tons.

Belgian and French smelters together produced 376,000 short tons of slab zinc, compared with 356,500 tons (revised figure) in 1955. The smelters operated mainly on concentrate imported from Belgian Congo, North Africa, Sweden, Finland, Australia, Spain, and Peru.

The largest producing company was the Société Anonyme des Mines & Fonderies de Zinc de la Vieille-Montagne, with 4 smelters in Belgium (including 1 electrolytic plant) and 2 in France (1 electrolytic). Other smelting companies included the Cie des Métaux d'Overpelt-Lommel et de Corphalie (2 active smelters), Société Anonyme Métallurgique de Prayon, and Société Anonyme de Rothem in Belgium and the Société

³⁵ Cerro de Pasco Corp., Annual Report, 1956; 24 pp.

1357ZINC

Minière et Métallurgique de Penarroya and Cie Royale Asturienne des

Mines (2 smelters) in France.

Finland.—Production of zinc concentrate in Finland increased to 82,700 short tons in 1956 from 44,900 tons in 1955. The bulk of the output came from the new Vihanti zinc-copper-lead mine of the Outokumpu Oy, in Central Ostrobotnia which had its first production in The other zinc producer was the Metsamonttu zinc-pyrite mine, also operated by Outokumpu. The concentrate was shipped

outside the country, mostly to Belgium, for smelting.

Germany, West.—West German mine production of zinc was nearly the same as in 1955, but smelter production increased 4 percent. The major producing zinc and zinc-lead mines were the State-owned Rammelsburg and Bad Grund mines in the Harz Mountains and the Stolberger properties (Ramsbeck-Bad Ems, Holzappel, Maubacher, and Ehrenbreitstein) and several others in the Rhineland. A report 36 indicated that some producers of refined zinc were accumulating stocks, as considerable zinc from the U.S.S.R. had been disposed of in West Germany, and Poland was prepared to offer electrolytic zinc for sale there. West Germany had 6 active zinc smelters, all retort plants, 1 of which had continuous smelting vertical retorts. Imports of zinc ore (recovered metal content) amounted to 55,000 short tons in 1956; the largest individual tonnages came from Peru, Italy, and Sweden. Imports of refined zinc totaled 63,600 short tons, mostly from Belgium, Norway, Netherlands, and Italy. West Germany's consumption of primary and secondary zinc in 1956 (254,200 short tons) continued at close to the same level as in 1955.

Italy.-Mine output of zinc, mostly from the island of Sardinia, was 134,900 short tons in 1956 or 2 percent more than in 1955. larger producers on Sardinia were the mines of "Montevecchio" Societa italiana del piombo e dello zinco and Societa di Monteponi. The Sapez Co. of Nossa (part of the Italian Metals Ores Agency, AMMI, a Government-owned corporation) mines produced chiefly calamine ores in Sardinia and at Bergamo on the mainland. tions at one of the mills recovering calamine were described.37

Slab-zinc output rose 4 percent over 1955 to 81,100 tons in 1956. Electrolytic plants were operated at Monteponi on Sardinia and Crotone (Bergamo), Nossa, Porto Marghera (Venice), on the mainland; a retort smelter operated at Vado Ligure.

Norway.—The Mofjelletsand and Bleikvassli mines produced zinc The electrolytic zinc plant of Det Norske Zinkkompani, A. S.

continued to operate.

Poland.—Upper Silesia has been an important zinc-producing field for many years. A large part of the production since World War II has come from nationalized mines. Mine production of zinc in 1956 was estimated at 138,000 short tons and smelter output of slab zinc at 169,000 tons.

Spain.—The Real Compania Asturiana de Minas continued to be the largest producer of zinc concentrate and the only producer of The company operated the Reocin and Arditurri slab zinc in Spain. mines near the north coast and Arnao zinc-retort smelter near Aviles.

Metal Bulletin (London), No. 4178, Mar. 15, 1957, p. 11.
Billi, Marcello, How Gorno Recovers Oxidized Zinc: Eng. Min. Jour., vol. 158, No. 4, April 1957, pp.

The Penarroya zinc smelter near Cordoba in southern Spain remained idle. Most of Spain's output of zinc concentrate (171,600 short tons) was shipped to other countries (mainly Belgium and France) for smelting. Slab zinc produced from concentrate smelted in Spain was 24,500 short tons in 1956.

Sweden.—Companies operating zinc-producing mines in Sweden included the Boliden Mining Co., the Government-owned AB Statsgruvor, and AB Zinkgruvor. The zinc concentrate produced was

shipped to other countries for smelting.

U. S. S. R.—Official data on zinc production in the U. S. S. R. are not available for 1956, but estimates are given in tables 30 and 31. The estimates from 1949 through 1956 show successive substantial increases each year. During 1955 and 1956 considerable slab zinc

was exported.

United Kingdom.—Lead-zinc ore was produced from several mines, including the Greenside in northern England and the Halkyn District United Mines, Ltd., property in northern Wales. Output of zinc ³⁸ (content of concentrates) was 1,600 short tons, a 51-percent decline from 1955. Smelters, operating chiefly on concentrates imported from Australia, Rhodesia, Canada and Peru, produced 91,000 short tons of slab zinc, almost the same quantity as in 1955. Output of zinc oxide was 37,600 short tons compared with 41,000 tons in 1955. Imports of metal, mostly from Canada, Belgium, and Belgian Congo, U. S. S. R., and Australia, totaled 142,000 short tons or 37,700 tons less than in 1955. Consumption of slab zinc was 256,100 short tons compared with 281,600 tons in 1955. Exports and reexports of slab zinc totaled 1,500 tons.

Stocks of slab zinc (excluding strategic stocks held by the Government) were 50,200 short tons at the end of 1956 compared with 56,000 tons at the beginning of the year. The Board of Trade announced on December 7 39 that it was about to make arrangement for reducing the United Kingdom's strategic stocks of lead and zinc but that no

sale would be made before the middle of January 1957.

Yugoslavia.—Although more zinc-lead ore was mined in Yugoslavia in 1956 than in 1955, the output of zinc contained in concentrate declined slightly owing to the mining of lower grade ores. With reserves at the large Trepca lead-zinc mine in Serbia nearing exhaustion, plans were being made to move mining operations to the Kiznica lead-zinc ore deposit nearby. First operations would be at the rate of 150,000 tons of crude ore annually, to be stepped up to 500,000 tons at a later date. A new flotation plant was to be built at Kiznica. Both projects were scheduled for completion by mid-1958. A large part of the total zinc concentrate produced at Trepca and other flotation mills in Serbia, Macedonia, Montenegro, and Slovenia was exported. Concentrate smelted in Yugoslavia yielded 15,400 tons of slab zinc.

The zinc retort smelter at Celje, Slovenia, has a rated annual capacity of 19,800 short tons of slab zinc. The new 13,200-ton electrolytic zinc plant built at Sabac in Serbia began producing slab zinc in the spring of 1956. About 5,500 short tons of cathode zinc was

Work cited in footnote 23.
 Metal Bulletin, No. 4152, Dec. 11, 1956, p. 23.
 Mining World, vol. 19, No. 5, Apr. 15, 1957, p. 114.

1359 ZINC

produced, most of which remained in stock, unfinished, as the remelting and casting furnace was not put in operation until December.

#### ASIA

Burma.—Zinc concentrate output from the Bawdwin lead-zincsilver mine of the Burma Corp., Ltd., in northern Burma was 15,600 dry short tons during the fiscal year ended June 30, 1956. 41 Ore mined was 124,500 short tons. Smelter output was 16,700 short tons of refined lead, 600 tons of antimonial lead, 1,358,500 ounces of silver, 400 tons of copper matte, and 600 tons of nickel speiss. The company mill and lead smelting and refining works are at Namtu, 13 miles from the mine.

India.—Mine output of zinc in India in 1956 came from the Zawar lead-zinc mines of the Metal Corp. of India, Ltd., near Udaipur in The zinc concentrate produced was sent to Japan for The lead concentrate was smelted at the corporation Production of zinc concentrate in the calendar smelter at Tundoo. year 1956 was 7,700 short tons, averaging 54 percent zinc. Imports of zinc in the fiscal year ended March 31, 1956, amounted to 32,600

short tons, and consumption was 39,200 tons.

Japan.—Mine production of zinc at 135,200 short tons in 1956, was 13 percent larger than in 1955. The zinc ores contained some lead and were the source of most of Japan's mine output of that metal. The principal zinc producers, all operating mines and smelters, were the Mitsui Metal Mining Co., Ltd., Nippon Mining Co., Ltd., Mitsubishi Metal Mining Co., Ltd., and Toho Zinc Co., Ltd. The Dowa Mining Co., Ltd., an iron- and copper-ore producer, also produced electrolytic zinc. Smelter output of slab zinc, comprising 61 percent electrolytic and 39 percent distilled zinc, totaled 149,100 short tons-20 percent more than the former record high in 1955. Imports of zinc concentrate, mostly from Australia, Peru, and India, totaled 42,000 short tons. Zinc consumption in Japan was 173,500 short tons, of which 126,300 tons was primary slab zinc, 40,800 tons was derived from scrap, and 6,400 tons was remelt zinc.

#### **AFRICA**

Mine output of zinc in Africa in 1956 increased 20 percent over 1955. Stepped-up production in Belgian Congo more than offset declines in Morocco and Algeria caused by operating and transportation difficulties resulting from depredations attributed to political unrest. Of the 265,600 tons of zinc recovered from African ores, Belgian Congo contributed 48 percent, Morocco (southern zone) 16 percent, Northern Rhodesia 14 percent, Algeria 12 percent, South-West Africa 8 percent, and other countries (mainly Tunisia) 2 percent.

Algeria.—Most of Algeria's production of zinc continued to come from deposits near the Algerian-Moroccan border south of Oudja, Morocco, and adjacent to the Bou Beker lead-zinc mines in Morocco. The larger zinc producers in Algeria included the mines of the Société Nord Africaine du Plomb and Société Algerienne du Zinc. to the annual report of the Newmont Mining Corp., owner of 31.8 percent of the stock of both companies, their combined output of ore

a Mining World and Engineering Record (London), vol. 171, No. 4470, Dec. 1, 1956, p. 297.

in 1956 was 210,500 short tons, compared with 190,400 tons in 1955. The ore mined in 1956 averaged 14.07 percent zinc and 1.98 percent Political unrest resulted in a number of depredations and incidents, including the raiding and destruction of the dynamite magazine belonging to the Société Algerienne du Zinc, which culminated in a shutdown of the mine and mill on December 11, 1956. tion of operations was delayed owing to difficulty in obtaining a renewed supply of dynamite under existing military regulations.

Belgian Congo.—The large Prince Leopold copper-zinc mine of the Union Miniéré du Haut Katanga at Kipushi near Elisabethville was the only zinc producer in the Congo. According to published data, 42 Prince Leopold ore treated in the Kipushi concentrator in 1956 totaled about 1,177,000 short tons, yielding 266,600 short tons of copper concentrate averaging 26.91 percent copper and 43,000 tons averaging 21.28 percent copper; and 203,800 tons (125,800 in 1955) of zinc concentrate averaging 57.68 percent zinc. A large part of the zinc concentrate was roasted in the Sogechim works at Jadotville for production of sulfuric acid. Some of the calcined concentrate was sold to the METALKAT electrolytic zinc plant at Kolwezi, and some was shipped to Belgium for smelting. The METALKAT plant operated at near full capacity, and output of electrolytic zinc (prewas shipped to Belgium for smelting. liminary figures) was 46,400 short tons, 43 compared with 37,500 tons the previous year. Exports of zinc concentrate, however, dropped from 113,600 short tons to 78,900 tons. Exports of zinc metal totaled 44,900 short tons.

French Morocco.—Production of zinc concentrate was 78,200 short tons (metal content 43,000 tons) in 1956, compared with 86,000 tons (metal content 47,700 tons) in 1955. About 98 percent of the zinc-concentrate output was exported to France. The Bou Beker mines group of the Société des Mines de Zellidja continued to be the largest Moroccan producer of zinc (and lead also). The Touisitt properties of the Companie Royale Asturienne des Mines ranked Both mines are in eastern Morocco (Southern Zone) 25 to 30 miles south of Oudja on the Algerian border. Several other mines in Morocco contributed to the output of zinc concentrate. (Southern Zone, formerly French Morocco) became an independent country in March 1956.

Rhodesia and Nyasaland, Federation of.—The Rhodesia Broken Hill Development Co., Ltd., in Northern Rhodesia continued to be the only producer of zinc in the Federation. Operations at Broken Hill included the zinc-lead mine and mill, lead smelter, and electrolytic Both oxide and sulfide ores were mined. Crude ore treated in 1956 totaled 135,700 short tons—a small increase over 1955. Slab-zinc production was 32,400 short tons 44 and refined lead 17,000 tons, compared with 31,200 and 18,000 tons, respectively, in 1955.

South-West Africa.—The Tsumeb Corp., Ltd., controlled by Newmont Mining Corp. and the American Metal Co., Ltd., continued operations at its Tsumeb lead-copper-zinc mine. During the fiscal year ended June 30, 1956, 45 the combined salable copper, lead, and zinc contained in concentrates produced was 139,000 short tons,

⁴² Metal Bulletin (London), No. 4200, June 4, 1957, p. 14. 43 U. S. Consulate, Elisabethville, Dispatch 40: Mar. 19, 1957. 44 Rhodesia Broken Hill Development Co., Ltd., Annual Report: Dec. 31, 1956, 24 pp. 45 Work cited in footnote 27.

1361 ZINC

Within 4 years Tsumeb's compared with 197,000 short tons in 1955. metal production had more than doubled. Although the movement of Tsumeb's concentrates to seaport by rail improved, there was further large increase in the stocks of zinc concentrate that could not be shipped overseas, owing to lack of adequate transportation facilities from the mine to the seaport at Walvis Bay. Sales of metals (refined or in concentrates) in the fiscal year 1956 were 90,200 short tons of lead, 25,800 short tons of copper, 4,200 tons of zinc, 122,900 pounds of cadmium, 1,404,800 ounces of silver, and 3,700 kilograms of electronically pure germanium dioxide.

Tunisia.—The El-Akhouat and Sakiest-Sidi-Youssef mines together produced ore yielding 9,500 short tons of zinc sulfide concentrate containing 5,200 tons of zinc. The mines also produced 3,300 tons

of lead concentrate.

#### OCEANIA

Australia.—Among the zinc-producing countries of the world listed in tables 30 and 31, Australia ranked fourth in mine output of zinc and ninth in smelter output in 1956. Mine production increased 8 percent over 1955 to a new record of 311,300 short tons. The zinc mines also produced lead, of which Australia's output was exceeded only by that of the United States. Australia had one zinc smelter (the electrolytic plant at Risdon) and lead smelter at Mount Isa and a lead smelter and refinery at Port Pirie. Output of refined zinc was 117,600 tons, an increase of 4 percent over 1955. Exports of zinc concentrate totaled 162,800 short tons 46 and of slab zinc

The Broken Hill district, with four large zinc-lead-silver mining and milling operations, produced around two-thirds of Australia's total mine output of zinc. In 1956 the Zinc Corporation, Ltd.,47 mined 802,600 short tons of ore, yielding 90,300 short tons of recoverable lead, 2,000,300 ounces of silver, and 149,700 tons of zinc concentrate. New Broken Hill Consolidated, Ltd. (in which Zinc Corp. interest remained at approximately 32 percent), mined 679,100 short tons of ore, for a production of 53,700 short tons of recoverable lead, 1,206,300 ounces of silver, and 154,500 short tons of zinc concentrate.

North Broken Hill, Ltd., 48 treated 378,300 short tons of ore during the fiscal year ended June 30, 1956, yielding 85,900 short tons of lead concentrate and 78,200 tons of zinc concentrate. Ore reserves on June 30, 1956, were 5.5 million short tons. Broken Hill South, Ltd. (operating the Broken Hill south and Barrier Central properties), produced 73,700 short tons of zinc concentrate and 57,000 short tons of lead-silver concentrate during the fiscal year ended June 30, 1956.

In the Captain's Flat district Lake George Mines (Pty.), Ltd.,49 treated 187,000 short tons of zinc-lead-copper ore during the fiscal year ended June 30, 1956. Ore reserves were estimated at 1.7 million

short tons, or 7 years' output, at the 1956 production rate.

⁴⁶ American Metal Market, vol. 64, No. 85, May 3, 1957, p. 13.
⁴⁷ Metal Bulletin (London), No. 4201, June 7, 1957, p. 24.
⁴⁸ Metal Bulletin (London), No. 4141, Nov. 2, 1956, p. 23.
⁴⁹ Metal Bulletin (London), No. 4169 Feb. 12, 1957, p. 23.

At Mount Isa in North Queensland, Mount Isa Mines, Ltd., (52 percent owned by the American Smelting & Refining Co.) continued to operate its copper-lead-zinc-silver mine group, 2,000-ton concentration mill, and copper and lead smelters. The output of metals during the fiscal year ended June 30, 1956,50 was 40,900 short tons of lead bullion (containing 3,289,600 ounces of silver), 34,400 tons of zinc concentrate, and 27,300 tons of blister copper, which were extracted from 1,548,400 tons of ore. Exploration and development results, both for lead-zinc ores and for copper ores, continued to be favorable. A 5-year expansion program was under way to triple the ore-production rate by late 1961.

The mines of the Electrolytic Zinc Co. of Australasia, Ltd., in the Read-Rosebery district produced 220,400 short tons of ore during the fiscal year ended June 30, 1956. The ore yielded 61,800 short tons of zinc concentrate, 10,300 short tons of lead concentrate, and 6,800 short tons of copper concentrate. Ore reserves rose to 2.6 million The zinc concentrate was shipped to the company short tons. Risdon electrolytic-zinc plant, and the lead and copper concentrates

were exported.

The Risdon zinc plant produced 116,400 short tons of slab zinc in 1956, a record for the plant, 52 and was expected to increase annual production to 129,000 short tons by the end of 1957: Besides company concentrate from the Read-Rosebery district mines, the plant treats a large tonnage of concentrate from the Broken Hill district.

<sup>Work cited in footnote 29.
Engineering and Mining Journal, vol. 158, No. 1, January 1957, p. 183.
Mining World, vol. 19, No. 2, February 1957, p. 115.</sup> 

# Zirconium and Hafnium

By Glen C. Ware 1



THE BURGEONING DEMAND for metal reacted upon inadequate production facilities to stimulate significant developments in the zirconium industry in 1956. Interest in the use of zirconium in atomic-energy plants was heightened by the successful trials of the nuclear-powered submarine, U. S. S. Nautilus, the first craft of a nuclear-powered Navy. The second submarine, U. S. S. Seawolf, had been launched and six keels for other undersea boats laid. During the year the United States Navy contracted for a guided-missile cruiser and indicated that all major naval ships built after 1960 might be nuclear-powered. The Navy and the Air Force were vying for the distinction of producing the first fighting aircraft with a nuclear engine. No less than six major companies were studying the application of

nuclear power to aircraft propulsion.

The Congress authorized and appropriated funds for constructing an atom-powered merchant ship. Private enterprise was urged to build nuclear powerplants. Chairman Strauss of the Atomic Energy Commission (AEC) voiced the urgency of the power-development program before a meeting of the American Nuclear Society. He proposed an eight-point program of financial assistance to companies qualified to build power reactors and stressed the fact that the Commission would build reactors if private industry could not move rapidly enough. The AEC approved 7 proposals to build nuclear electric plants involving \$70 million of Federal funds, and 7 other groups indicated that, without Government aid, they would invest about \$300 million to build plants having an aggregate capacity of 1 million kilowatts. If the Congress enacts legislation to resolve the difficulties confronting insurance against nuclear accidents, only a shortage of zirconium and hafnium would be a serious obstacle to projected powerplant development. To supply this potential demand there was only one producer, The Carborundum Metals Co., Inc., Akron, N. Y.

The AEC took three steps to increase the immediate supply of metal during the period required for new plants to be brought into production. The Commission invited companies to submit an expression of interest in operating the Bureau of Mines zirconium plant at Albany, Oreg., and subsequently contracted with the Wah Chang Corp. of New York to operate the Albany plant at a rate of 150 tons of reactorgrade zirconium per year. It initiated a program to procure 5,500 tons of reactor-grade metal over a 5-year period by inviting bids from

potential producers; and it closed an agreement with Japan to barter

surplus agricultural products for 100 tons of sponge.

The demand for zirconium foreshadowed by the impending growth of nuclear power caused a ferment that led to significant developments and innovations in production methods. The capacity for melting zirconium sponge was increased, and the sources of raw material were augmented. Signs of integration of industrial processes—the final stage of a maturing technology—appeared. Prices of zirconium broke under the influence of improved technology and stiffened competition, and commercial-grade zirconium headed for a possible price of \$3.50 per pound. At the close of 1956 the zirconium industry stood on the threshold of all-out production, with prices under the control of supply and demand.

## DOMESTIC PRODUCTION

Mine Production.—Florida retained its position as the only domestic producer of zircon. Although Gulf coast deposits were reported under development, the only production in 1956 came from established areas in Florida. The output increased 56 percent—from 28,110 tons in 1955 to 43,980 tons in 1956. The estimated value increased 51 percent—from \$1,425,641 to \$2,159,540. Zircon from Idaho placer operations continued to face prohibitive freight costs and, as it was not marketed, is not included in domestic production figures. No baddeleyite was produced, and no hafnium minerals were produced apart from zircon.

Refinery Production.—The Carborundum Metals Co., Inc., Akron, N. Y., was the only producer of zirconium sponge until July, when the Wah Chang Corp. of New York City began operating the Federal Bureau of Mines plant at Albany, Oreg., under a contract to supply 300,000 pounds of sponge per year to the AEC. The combined production of the 2 firms was 475,229 pounds of reactor-grade zirco-

nium sponge and 6,940 pounds of crystal-bar hafnium.

In addition to the processors listed in the 1955 chapter of the Minerals Yearbook, three companies entered the field. The Columbia Southern Chemical Co., of Corpus Christi, Tex., planned to produce zirconium oxide; the Oregon Metallurgical Corp., of Albany, Oreg., completed a melting plant and began producing ingots and shapes in August; and the Wah Chang Corp., operated the federally owned plant and began constructing a new zirconium-production plant at Albany, Oreg.

## CONSUMPTION AND USES

The uses of zircon and zirconium remained essentially the same as in previous years. Foundry uses of zircon consumed nearly one-half of the total and refractories nearly a quarter. Metal production, enamels, ceramics, and abrasives used about a quarter. Chemicals and miscellaneous uses required about 3 percent of the zirconium raw materials. Zircon also began to be used in processing food and in producing detergents, insecticides, weed killers, petrochemicals, heat-resistant plastics, and chemical catalysts. Zirconium compounds give enamels resistance to alkali penetration and are used to produce pastel colors for ceramics. Zircon is the base of certain refractories that are

stable at the operating temperatures of the combustion chambers of jet and gas-turbine engines and may be used for some stationary parts. The AEC allocated virtually the entire output of hafnium-free zirconium for use in atomic reactors; but, as production capacity increased beyond that needed to meet contracts with the AEC increasing quantities of lower cost commercial-grade metal became available for uses in which hafnium contamination was not objectionable, notably in the grain refining of steel and the production of corrosion-resistant alloys. Chemical construction and oil refining are expected to require increasing tonnages of commercial-grade zirconium when the supply is adequate and prices are lower.

## **STOCKS**

Dealers' stocks of zircon concentrate and baddeleyite decreased from 8,800 short tons to 6,600 during the year.

#### **PRICES**

The price of zircon concentrate increased one-third during the year. The price quoted by E&MJ Metal and Mineral Markets for concentrate (65 percent ZrO₂), c. i. f. Atlantic ports, was \$48 to \$49 per long ton until June 21, 1956—unchanged since December 16, 1954. The quotation was \$56 to \$57 June 21, \$62 to \$67 July 5, and \$64 to \$68 September 13 to the end of the year.

Prices of standard minus-135-mesh zirconium oxide, quoted by Zirconium Corp. of America, effective September 4, 1956, f. o. b. factory, Solon, Ohio, were as follows:

	Price pe	Price per pouna			
Pounds:	Monoclinic	Stabilized			
Less than 100		<b>\$</b> 0. 85			
Less than 500	\$1.30				
100 to 499					
500 to 999	1. 265	. 665			
1.000 to 1.999		. 62			
1,000 to 4,999	1.24	·			
		. 595			
2,000 to 4,999					
5,000 to 9,999	1. 225	. 585			
10.000 and over	1. 215	. 58			
10,000 and 0.011111111111111111111111111111111111					

Stabilized zirconium oxide grog (minus-4-mesh to minus-100-mesh). Add \$0.05 per pound to price shown for stabilized zirconium oxide. An additional charge is made for band sizing. Stabilized zirconium oxide ramming mix (tentative price). Add \$0.05 per pound to price shown for standard stabilized zirconium oxide.

On October 15 the company announced a 25-percent reduction in

price.

The U. S. Industrial Chemicals Co., Ashtabula, Ohio, offered price and delivery quotations and technical information on zirconium and hafnium platelets, ingots, mill products, and hafnium chemicals. It quoted the following prices for hafnium-free zirconium oxide and tetrachloride:

	I nee per pow.		
Pounds:	Oxide	Tetrachloride	
1 to 4	\$10,00	\$10,00	
5 to 49	5. 00	3. 00	
50 to 999	3. 00	2. 50	
1,000 to 10,000	2. 25	1. 75	
10,000 to 100,000	2.00	1. 50	
Over 100,000	1. 75	1. 25	

466818-58-87

It quoted the following prices on hafnium products.

Pounds	Price per pound			
	Oxide	Tetrachloride	Metal platelets	
1 to 5	\$25.00 20.00 18.00 17.00 16.00 15.00	\$20.00 15.00 14.00 13.00 12.00 11.00 8.00	\$50, 00 45, 00 40, 00 35, 00 32, 00 28, 00 25, 00	

The Zirconium Metals Corp. of America, New York, issued a price schedule for zirconium metal effective February 15, 1956, giving a base price and extras. Extras, such as cutting to length, surface finish, heat treatment, and edges, ranged in price from \$0.25 to \$0.75 per pound. Size extras for bars under 1 inch in diameter or thickness were \$2.50 per pound, and cutting extras were \$0.25 for cuts less than 2 square inches and \$0.50 for larger areas. Chemical analysis was quoted at \$25 per sample and tensile tests at \$10 per specimen. Base prices per pound for commercial-grade zirconium were: Hot-rolled sheared plate, \$20.35; hot-rolled strip, \$23.95; cold-rolled strip, \$32; forged or hot-rolled bars, \$18.40; and cold-drawn wire, diameter 0.375 to 0.251 inch \$32.50, 0.250 to 0.126 inch \$37.50, and 0.125 to 0.60 inch \$42.50. Smaller diameters were quoted per foot, 0.030 at \$0.15 and 0.015 at \$0.08.

The Allegheny Ludlum Steel Co., Brackenridge, Pa., listed prices, effective March 1, 1956, for converting zirconium sponge to unalloyed zirconium or Zircaloy ingots as follows:

	Price per po	und based on	ingot weight		
Pounds of sponge	As cast	As cond	As conditioned—		
		By fusion	Mechanically		
Up to 12,000 12,000-15,999 16,000-19,999 20,000-23,999 24,000-27,999 28,000-31,999 32,000-35,999 36,000-39,999 40,000-43,999 44,000-47,999 48,000-51,999 52,000-55,999 56,000-60,000	\$4. 00 3. 10 2. 70 2. 30 2. 15 2. 05 1. 85 1. 75 1. 70 1. 65 1. 60 1. 50	\$4. 15 3. 25 2. 85 2. 50 2. 35 2. 25 2. 10 2. 00 1. 90 1. 85 1. 80 1. 75 1. 65	\$4. 40 3. 45 3. 00 2. 60 2. 45 2. 35 2. 20 2. 10 2. 00 1. 95 1. 90 1. 85 1. 75		

Complete analysis for alloying and impurity elements in zirconium

or Zircalov ingots was quoted at \$200 per ingot.

Because of the wide range of sizes, shapes, and quantities, price quotations for fabrication are too extensive to include. However, prices ranged from \$0.85 per pound for bars, billets, and slabs to \$4.75 for smaller rods and squares, and reactor-grade zirconium was quoted at \$23 per pound, f. o. b. Watervliet, N. Y., for conditioned 800- to 2,200-pound ingots.

DeRewal International Rare Metals Co. quoted the following prices per gram on November 12, 1956: Hafnium-metal powder (99.3 percent), \$23; hafnium oxide (99.5 percent), \$12; hafnium tetrachloride (99 percent), \$12; and hafnyl sulfate, nitrate, and chloride (99 percent), \$10.

FOREIGN TRADE 2

Although imports increased about 7 percent to 31,140 short tons, they were only 42 percent of the supply (imports plus production), compared with 51 percent in 1955. Increased mining activity in Florida indicated even greater reliance upon domestic ore in the future. Although the tonnage imported in 1956 was greater than in 1955, the total value was less due to a sharp decrease in the quantity

of higher-priced baddeleyite from Brazil.

Exports of ores and concentrates to Canada were 993 tons valued at \$84,064 and to Argentina 55 tons valued at \$5,947. Shipments of scrap and of metals and alloys in crude form reached a wider market than in previous years. Canada, Argentina, Sweden, United Kingdom, Netherlands, France, and West Germany received 18,519 pounds valued at \$187,046. In return, the United States imported 150 pounds of metal worth \$3,751 from Canada. Semifabricated forms, shipped to Canada, Sweden, Netherlands, France, Switzerland, and Japan, totaled 468 pounds valued at \$13,317. Canada also received by received by received from the United States 2,022 short tops of also received by reexport from the United States 2,023 short tons of ores and concentrates valued at \$107,505. There were no exports or imports of zirconium-silicon.

TABLE 1.—Zirconium ore (concentrates)1 imported for consumption in the United States, 1947-51 (average) and 1952-56, by countries, in short tons

	Bureau of t	he Census	l			
Country	1947-51 (average)	1952	1953	1954	1955	1956
North America: Canada South America: Brazil	29 2, 589	1, 972	1, 206	1, 408	1, 549	303 331 155
Europe: United KingdomAsia: IndiaOceania: Australia 2	892 19, 250	21, 935	23, 461	17, 249	27, 542	30, 351
Total: Short tonsValue	22, 760 \$638, 877	23, 907 \$630, 559	24, 667 \$571, 783	\$ 18,657 \$486,555	\$ 29, 091 \$813, 448	² 31, 140 \$791, 612

Concentrates from Australia are zircon or mixed zircon-rutile-ilmenite and those from Brazil are badde-

## **TECHNOLOGY**

The basic trends in the technology and uses of zirconium and its sister metal, hafnium, are best understood in the light of a brief history of their recent emergence from the category of expensive rarities.

¹ Concentrates from Australia are zircon or mixed zircon-rutile-ilmenite and those from Brazil are baddeleyite or zircon. All other imports are zircon.

3 Imports of zircon, rutile, and ilmenite from Australia until early 1948 were largely in the form of mixed concentrates. These mixed concentrates are classified by the Bureau of the Census arbitrarily as "zirconium ore," "rutile," or "ilmenite." Total zircon content of the "zirconium ore" (as shown in this table) and of the "rutile" and "ilmenite" concentrates (see Titanium chapter) are estimated as follows: 1949, 14,623 tons; 1950, 15,098 tons; 1951, 24,577 tons; 1952, 21,500 tons; 1953, 22,200 tons; 1954, 16,300 tons; 1955, 27,542 tons, and 1966, 30,351 tons.

3 Owing to changes in tabulating procedures by the Bureau of the Census the data are not comparable with those of other years.

Figures on imports and exports compiled by Mae B. Price and Elsle D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of Census.

Hafnium has developed along with zirconium, because it invariably occurs in zirconium ores, which at present are the only source of hafnium.

The Federal Bureau of Mines has published a bulletin on the chemistry and technology of zirconium, giving extensive references to the literature.3 A few salient features are given here to correlate

recent activity with previous development.

The magnesium-reduction process developed by Kroll and his coworkers at the Bureau of Mines Electrodevelopment Laboratory, Albany, Oreg., reduced the cost of pure ductile zirconium to less than \$15 per pound, making it competitive with stainless steel as a structural material for use in nuclear reactors. Pure zirconium and some of its alloys are ductile enough to be fabricated by easy modifications of conventional processes and have other properties essential for use in reactors. They resist neutron bombardment, heat and corrosive mediums attending transfer of heat from the fuel to the coolant. They have low neutron-capture cross section; that is, they are transparent to slow neutrons. These properties and the availability of Krollprocess metal from the Albany (Oreg.) plant at a relatively low cost have influenced the trend of reactor development in this country toward the use of slow neutrons. As a result, the development of nuclear power requires a corresponding development in the production and fabrication of zirconium.

Even a trace of hafnium vitiates the low-neutron-capture property of zirconium; it must be removed from metal used in reactor components where neutron conservation is critical. Because hafnium in other respects has the general properties of zirconium, its high neutron capture may be used to control fission rates. Control rods of hafnium withstand the same operating conditions of zirconium. As hafnium is obtained only as a byproduct of zirconium, its usefulness for control rods has stimulated search for zirconium minerals with a high hafnium content, and until independent source minerals are found, prices and uses of hafnium must be linked to production of zirconium.

The product of magnesium reduction of zirconium tetrachloride is sponge metal. Sponge metal is reactive to the degree that it is pyrophoric when pure and violently explosive under certain conditions when impure. Extreme care is required to melt it to massive form without introducing impurities, particularly oxygen and nitrogen. The pioneer work in melting was done at the Albany plant in carbon resistor furnaces. Later arc furnaces with a vacuum or an inert atmosphere were studied. The consumable-electrode techniques and furnaces now in common use were perfected at Albany along with ways to add alloying ingredients to the melt. To these developments Bureau scientists added hot-water-corrosion testing and ingot evaluation and advanced fabrication techniques. The fruit of this technical development was the production of the first 11/4 million pounds of reactor-grade zirconium for allocation by the AEC.

In 1955 the plant at Albany was put in standby condition, leaving the Carborundum Metals Co., Inc., the sole producer of reactor-grade zirconium for the AEC. In 1953 this company, using Bureau ex-

³ Shelton, S. M., and staff, Zirconium, Its Production and Properties: Bureau of Mines Bull. 561, 1956,

perience and keymen, set up a plant at Akron, N. Y., and in 1954 and 1955 the company supplemented the Bureau supply of zirconium to

AEC contractors.

While these developments were in progress in the Kroll process, other developments were under way and other processes being investigated. At the beginning of 1956 three innovations with farreaching consequences appeared ready for initial application. They can be discussed most logically along with AEC's program to procure zirconium for reactor development.

To implement its procurement program, AEC invited bids to be opened in March from companies qualified to produce reactor-grade zirconium and recover the hafnium compounds separated in the purification process. Ten bids were received. In May, contracts to produce a total of 5,500 tons of metal over a 5-year period were signed with three successful bidders, each of which began constructing a

plant to go into production after mid-1957.

One successful bidder, Carborundum Metals Co., Inc., had been operating a zirconium plant at Akron, N. Y., using magnesium to reduce zirconium tetrachloride since late in 1953. As its contract with AEC called for delivery of 250 tons of reactor-grade metal per year at a reported price of \$8 per pound, the company began constructing a Kroll-process plant at Parkersburg, W. Va., to provide additional

capacity.

The National Distillers Products Corp. contracted with AEC to supply 500 tons annually at \$4.50 per pound. Construction of its 1,125-ton-per-year plant was begun at Ashtabula, Ohio, where a 250-ton zirconium plant, designed for conversion to the production of other metals, was under construction. The new plant will feature two innovations; it will use sodium as a reductant in place of magnesium and an Australian process to separate the hafnium. The company claimed important economies and predicted that the price of commercial-grade sponge eventually might be lowered to \$3.50 per pound, owing to savings resulting from lower installation costs, continuous instead of batch operation, and more economical separation

The NRC Metals Corp., a subsidiary of the National Research Corp., contracted to supply 350 tons per year at \$650 per pound. It will use the Kroll magnesium-reduction process in a plant being built at Milton, Santa Rosa County, Fla., near chemical plants and a source of zirconium concentrate. The company claimed that the purity of the sponge would be higher than is usual with magnesium as a reductant and predicted that significant economies would result from complete integration of its operations, beginning with concentration of nearby zircon-bearing sand to the final reduction of the

tetrachloride to sponge.

Construction of the first non-Government-sponsored plant at Bedford, Ohio, was proposed by Kennecott Copper Corp. The company obtained a license to use an electrolytic process from Horizons Titanium Corp. of Princeton, N. J. It will produce granular metal rather than sponge and expects to produce hafnium.

Melting capacity appeared to keep abreast of producing capacity in 1956. Allegheny Ludlum Steel Corp. added two furnaces with a combined capacity of 75,000 pounds a month. It believes that its

50,000-pound-per-month furnace at Watervliet, N. Y., is the largest in use for melting zirconium—it can produce a 2,200-pound ingot. The total monthly melting capacity of the plant at the end of the year Firth Sterling, of Pittsburgh, Pa., expanded was 125,000 pounds. the melting capacity of its Trafford plant to 1 million pounds per year and contracted with U. S. Industrial Chemicals Co. for zirconium The Trafford plant will produce ingots weighing as much as 2,000 pounds and expects to be able to sell mill-rolled products for

one-third less than current prices. Research on zirconium in 1956, as shown by abstracts of patents and published papers, was channeled into four main subdivisions: Analytical procedures, purification, alloys, and physical chemistry and physical metallurgy. These studies were supplemented by industrial investigations of processing, production, fabrication, and uses—studies of a proprietary nature that commonly are published only in patent specifications. Handling hazards were studied by agencies of the AEC. The fact that hafnium seems to have received little attention, except for methods of separating it from zirconium, is understandable. Because of its origin in zirconium-process materials, hafnium participates in all the beneficiation and purification steps in the metallurgy of zirconium before the metals are separated.

During the year the AEC released a bibliography of unclassified reports on zirconium.⁴ The United Nations published conference proceedings, which included six papers on zirconium and hafnium.5

## WORLD REVIEW

Africa.—The Portuguese Government granted a British concern, Central Mining & Investment Corp., Ltd., a concession to prospect for specified minerals, including zircon, in Mozambique.

Australia.—Australia retained its position as the world's largest producer of zircon (80,382 short tons) by increasing output 50 percent The United States imported 37 percent of the total. Australia's intention to keep production equal to world demand is shown by the many reports of financial reorganization and property exploration and development appearing in the country's chief technical journal.6

Brazil.—Imports from Brazil were only a fraction of those in 1955, despite the announcement from Brazil that a deposit of zirconium ore claimed to be the largest in the world had been found in the State of Minas Gerais, at Poço de Caldo.

Canada.—Saranac Uranium Mines discovered a deposit of zirconium that may prove valuable in southeastern Ontario during drilling tests on uranium property. In 1956, however, Canada supplied its needs for zirconium ore and concentrate (3,016 short tons) by imports from the United States. The country imported 90 pounds of metal and 102 pounds of semifabricated forms and exported 150 pounds of zirconium to the United States.

⁴ AEC Technical Information Service Extension, Zirconium; A Bibliography of Unclassified Report Literature: Office of Tech. Serv., TID-3304, July 1956, 43 pp.
⁵ United Nations, New York, N. Y., Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955. Vol. 8, 1956, 627 pp.
⁶ Industrial and Mining Standard, vol. 111, No. 2819, Sept. 20, 1956, p. 22; No. 2821, Oct. 18, 1956, p. 22; No. 2823, Nov. 15, 1956, p. 26; No. 2824, Dec. 6, 1956, p. 29, 31, and 32.

TABLE 2.—World production of zirconium concentrate, by countries,1 1947-56, in short tons 2

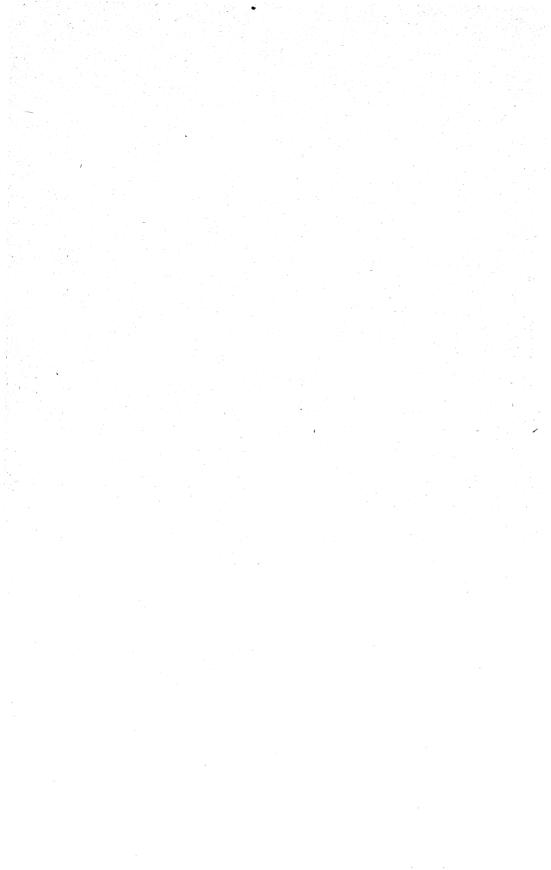
[Compiled by Augusta W. Jann and Berenice B. Mitchell]

Country 1	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956
Australia ⁸ Brazil ⁴ Egypt	24, 165 5 4, 385	25, 017 5 4, 011 104	23, 156 2, 977 141	24, 120 3, 325 105	47, 006 3, 854 4	32, 893 4, 378 133	30, 081 3, 409 263	45, 830 4, 173 109	53, 994 3, 312 126	80, 382 6 1, 000 402
French West Airica Madagascar	43	211	270	243	32	5	1,047	1, 012 		1, 268
Malaya United States 3	(7)	(7)	(7)	(7)	(7)	(7)	23, 904	16, 322	28, 110	43, 980

¹ In addition to the countries listed, zirconium is also produced in India; however, production data are not available for publication.

² This table incorporates a number of revisions of data published in previous Zirconium and Hamium

chapters.
3 Estimated zircon content of all zircon-bearing concentrate.
4 Chiefly baddeleyite.


5 Exports.
6 Estimate.
7 Data not available for publication.

India.—A Foreign Service dispatch from India for May 1956 reports 15,000 tons of zircon deposits in Madras State. Sands along the coast of Malabar and some east coast areas contain zircon, monazite, rutile, and sillimanite associated with the chief mineral, ilmenite.

Japan.—Japan entered the field of zirconium production, using

zircon reported to come from Australia.

Korea.—About 1,000 pounds of zircon was produced in Korea in 1956, according to a Foreign Service dispatch, but was not included in production figures because it was too small.



## Minor Metals

By C. T. Baroch, William R. Barton, Donald E. Eilertsen, Elmo G. Knutson, Wilmer McInnis, and James Paone



$m{p}$	age Page
Command rubidium 13	73 Rhenium 1383
Callian 13	74 Selenium 1383
Gamun 13	75 Silicon 1386
Germanium13	77 Tellurium 1387
Dadium 13	77 Thallium 1388
Pero certh minerals and metals 13	79

## CESIUM AND RUBIDIUM 5

ESIUM-137 ISOTOPE began to displace cobalt-60 in the

treatment of cancer during 1956. Production and Consumption.—Consumption of cesium and rubidium was approximately the same as in 1955. Production, however, decreased, as several companies shipped from stocks produced in previous years. South Africa was the source of most cesium and rubidium minerals used in the United States in 1956. Cesium and rubidium metals and compounds were produced from ore by: De-Rewal International Rare Metals Co., Philadelphia, Pa.; Fairmont Chemical Co., Inc., Newark, N. J.; Foote Mineral Co., Philadelphia, Pa.; and Rocky Mountain Research, Inc., Denver, Colo. Most sales were to domestic consumers, but small quantities were exported to Australia, England, Germany, and Sweden. New production facilities were under construction in 1956 by San Antonio Chemicals to produce mixed potassium, rubidium, and cesium carbonates. plant capable of separating and packaging 200,000 curies of cesium-137 annually was under construction at Oak Ridge National Laboratorv.6

Uses.—Cesium was used in photoelectric cells, spectrographic instruments, scintillation counters, radio tubes, military infrared signaling lamps, and various optical and detecting devices. Rubidium closely resembles cesium and was used for similar purposes. Cesium and rubidium compounds were used in glass and ceramic production, as an adsorbent in carbon dioxide purification plants, in radio tubes,

Acting chief, Branch of Rare and Precious Metals.
 Commodity specialist.
 Former commodity specialist.
 Unless otherwise noted, figures on imports compiled by Mae B. Price and Elsie D. Page, Division of Foreign Activities, Bureau of Mines, from records of the Bureau of the Census.
 Prepared by William R. Barton.
 Chemical Engineering News, vol. 34, No. 34, Aug. 20, 1956, p. 4037.

and in microchemistry. Rubidium compounds were used in treating goiter and syphilis, and rubidium-mercury amalgams have been used as catalytic agents. Cesium salts were used medicinally as an antishock after administration of arsenic drugs. Cesium-137 was reported to be a better radioactive medium than cobalt in treating cancer.7

Prices.—Cesium was quoted by producers at \$1.90 per gram and cesium compounds from \$0.19 to \$0.75 per gram. Rubidium was priced at \$2.95 per gram, and compounds of rubidium sold at about

\$0.45 to \$0.75 per gram.

Technology.—A procedure was developed for separating small amounts of cesium from sodium and rubidium by ion exchange, followed by precipitation.8 Chemical treatment of silicate rocks before flame photometric determination of trace alkali elements was described.9

Reserves.—Both lepidolite and pollucite occur in South and South-West Africa. Enough reserves to satisfy any demand likely to develop were known to exist. Relatively small quantities of cesium and rubidium ores have been mined in the United States. Resources of rubidium exist in the rubidium-bearing feldspar of certain domestic pegmatites and in the rubidium-carnallite from the Stassfurt, Germany, salt deposits. Because the demand for both cesium and rubidium is extremely small, these potentially large reserves have not been investigated to any great extent.

## GALLIUM 10

Gallium is found in minute quantities in bauxite, zinc and tin ores,

coals, and some pegmatites.

Domestic Production.—The Aluminum Company of America, East St. Louis, Ill., was the only producer of gallium in 1956; however, The Aluminum Company of America and The Anaconda Co., Great Falls, Mont. shipped gallium. Although less gallium was produced in 1956 than in 1955, the quantity shipped was larger, and stocks declined at the end of the year.

Uses.—Gallium liquid metal was used as a sealant for glass joints and valves in vacuum equipment and as backing for optical mirrors. Small quantities of gallium increase the hardness of ternary aluminum Gallium has been used successfully in gold alloys for dental

No new large use of gallium was reported in 1956.

Prices.—Throughout 1956 the price of gallium was quoted by E&MJ Metal and Mineral Markets at \$3.25 per gram for 1 to 999

grams, and \$3 per gram in 1,000-gram lots.

Technology.—A new procedure for removing gallium from alkaline liquors of the Bayer alumina process without sacrificing sodium and aluminum was developed on a laboratory scale and was the subject of doctoral thesis. Polarographic determinations of gallium have been limited because of interference of the hydrogen wave. By adapting

⁷ Mining Journal (London), vol. 247, No. 6309, July 20, 1956, p. 90.
8 Ring, S. A., Separation and Purification of Milligram Amounts of Cesium From Large Amounts of Other Alkali Salts: Anal. Chem., vol. 28, No. 7, July 1956, pp. 1200-1201.
9 Horstman, E. L., Flame Photometric Determination of Lithium, Rubidium, and Cesium in Silicate Rocks: Anal. Chem., vol. 28, No. 9, September 1956, pp. 1417-1418.
19 Prepared by Donald E. Eilertsen.
11 Bonebrake, H. P., Gallium: Metal Progress, vol. 70, No. 2, August 1956, pp. 105-106.
12 Chemical Engineering News, Gallium from Bauxite: Vol. 34, No. 36, Sept. 3, 1956, pp. 4300, 4302.

a method utilized to determine aluminum, interference from hydrogen is eliminated, and much smaller concentrations of gallium can be measured.13

## **GERMANIUM 14**

Production of semiconductor electronic devices established new records in 1956. Although germanium received increasingly heavy competition, it continued to be widely used in transistors, diodes, and The supply of germanium available was satisfactory to meet demands.

Domestic Production.—Domestic production of germanium oxide from zinc concentrate or residues was estimated to have increased 25 percent in 1956. Domestic producers were American Zinc Co. of Illinois, Fairmont City, Ill.; The Eagle-Picher Co., Miami, Okla.; and Sylvania Electric Products, Inc., Towanda, Pa. No output was reported by American Smelting and Refining Co., Perth Amboy, N. J., a producer in 1955. Principal domestic sources of germanium-bearing zinc ores were the Tri-State district and the Illinois-Kentucky fluorospar district. Production of domestic germanium was initially dependent upon the demand for zinc and was affected by fluctuations in zinc output.

Darmond Mining & Smelting Corp., Rosamond, Calif., reported that germanium oxide had been produced from its Kern County ore

in a pilot plant.15

Consumption and Uses.—Germanium was used mostly for manufacturing transistors, diodes, and rectifiers. One source estimated that approximately 80,000 pounds of germanium was consumed in the electronic industry in 1956. The proportions of the total consumed from scrap, stocks, imports, and domestic production are not

Germanium as a semiconductor received increased competition Transistor sales totaled 12.8 million in 1956, from silicon in 1956. more than triple those in 1955. A large proportion of the units was germanium-containing. Sales of all types of diodes and rectifiers totaled almost 40 million units in 1956—almost double the number of units reported in 1955. Over two-thirds of the units were believed to be manufactured of germanium. Diodes, transistors, and rectifiers were used in the electronic industry in many types of equipment, and increased competition from silicon was predicted for the future. Large power rectifiers were also used in the electrochemical, metallurgical, electroplating, anodizing, power generation, and other fields. General Electric estimated that it would install 48,000 kw. capacity of germanium rectifiers in 1956. Other uses of germanium included red-fluorescing phosphor, infrared lamps, jewelry solder, wide-angle camera lenses, microscopes, coal-hydrogenation catalyst, an additive for hardness and strength in aluminum and for improving the rolling properties of magnesium.

¹² Latimer, George W., Jr., and Houston, Charles D., Polarographic Determination of Gallium in Aluminum and Aluminum Alloys: Materials Laboratory, Wright Air Development Center, WADO Technical Report 56-263, Astia Document AD 97280, September 1956, 14 pp.

14 Prepared by William R. Barton.

15 Western Mining and Industrial News, Germanium Metal To Be Produced at Kern: Vol. 24, No. 1, Daniery 1958, p. 20

January 1956, p. 20. 18 American Metal Market, vol. 64, No. 8, Jan. 11, 1957, p. 7.

Prices.—Germanium and germanium dioxide prices were reported in E&MJ Metal and Mineral Markets. At the start of 1956 germanium metal was quoted at \$295 per pound. On January 26 the basis for quotation was changed, and prices were reported per gram, f. o. b. Miami, Okla. In 1,000-gram lots: 1st reduction, \$0.485; intrinsic metal \$0.535. In 10,000-gram lots: 1st reduction \$0.445; intrinsic metal \$0.485. Germanium dioxide was priced at \$124 per pound until February 2, when the quotation changed to \$0.275 per gram.

Foreign Trade.—Imports of germanium oxide and metal increased to almost 10,000 pounds in 1956, compared with less than 4,000 pounds reported in 1954.¹⁷ At least one large consumer obtained the greater part of its supply from Belgian sources. Foreign production probably could be expanded greatly if the market required. Ger-

manium export data were not available for publication.

Technology.—The Bureau of Mines developed a technique for treating zinc concentrate from the Illinois-Kentucky fluorspar field; an inert-atmosphere fuming process, separated germanium and cad-mium from the concentrate. 18 The properties and production techniques of single-crystal germanium were described, 19 and methods of separating and determining germanium were discussed.20 based on neutron-activation analysis using gamma scintillation spectrometry was developed to identify and measure the quantity of various impurities present in germanium.²¹ Fly ash from Illinois powerplants was studied as a potential source of germanium.22 A method of producing germanium tetrachloride from germaniferous scrap was patented.23 A new process uniformly distributed a small quantity of radioactive germanium in a melt of germanium and recrystallized this mixture.24 Germanium crystals were produced by maintaining germanium alloy at temperature between the liquidus and the solidus of the alloy to crystallize the germanium from the melt. After cooling, the crystals were separated from the residual mass by treatment with a preferentially active solvent.25 A British patent was granted for a process of separating germanium from other metals by roasting. 26
World Review.—Belgian Congo.—The occurrence and treatment of

germanium-bearing ores of Union Minière du Haut Katanga were described.27 Exports of germanium-bearing flue dusts increased several

hundred percent over 1955.

Belgium.—The increased scale of activities in 1956 allowed both

Ochemical Age (London), Estimation of Germanium and Gallium: Vol. 75, No. 1933, July 28, 1956, pp.

¹⁷ U. S. Tariff Commission. 18 Kenworth, H., Starliper, A. G., and Ollar, A., Laboratory Recovery of Germanium and Cadmium in Sphalerite Concentrates: Bureau of Mines Rept. of Investigations 5190, 1956, 17 pp.
 19 Bridgers, Henry E., Single-Crystal Germanium: Chem. Eng. News, vol. 34, No. 3, Jan. 16, 1956, pp.

²⁰ Chemical Age (London), Estimation of Germanium and Gallium: Vol. 75, No. 1933, July 28, 1956, pp. 169-171.
21 Morrison, G. H., and Cosgrove, J. F., Activation Analysis of Trace Impurities in Germanium, Using 22 Machin, J. S., and Witters, Juanita, Germanium in Fly Ash and Its Spectrochemical Determination: Illinois State Geol. Survey, Circ. 216, 1956, 13 pp. 28 Harner, H. R., and Trahin, D. S. (assigned to the Eagle-Picher Co.), Recovery of Germanium From Scrap Materials: U. S. Patent 2,767,052, Oct. 16, 1956.
24 Belmont, Emanuel (assigned to Sprague Electric Co.), Process for Introducing Impurites: U. S. Patent 2,759,895, Aug. 21, 1956.
25 Wainer, Eugene, and Steinberg, Morris A., Method of Producing Germanium Crystals: U. S. Patent 2,766,152, Oct. 9, 1956.
26 De Merre, Marcel (assigned to Société générale metallurgique de Hoboken), Separation of Germanium From Metals: British Patent 755,258, Aug. 22, 1956.
27 Engineering and Mining Journal, Union Minière du Haut-Katanga Upgrades Kolwezi Smelter Dust: Vol. 157, No. 5, May 1956, pp. 83, 85.

Société Générale Métallurgique de Hoboken and Vieille Montagne to reduce prices for all forms of germanium. The program at Hoboken has been expanded to raise output of germanium dioxide to 34,000 kg. a year.28 The operations at Hoboken were described.29

France.—The first large germanium power rectifiers installed on the European continent were put into service at an aluminum plant at St. Jean-de-Maurienne. The equipment consisted of two 1,000-kw. units

and provided current for the potlines at the plant.30

Poland.—Poland was reported to be preparing to produce several kilograms of germanium utilizing a process developed at the Warsaw College of Science and Technology.31

South-West Africa.—The recovery of germanium from ore of the

Tsumeb Corp., Ltd., was described.32

United Kingdom.—British railways were considering using germanium rectifiers in place of mechanical or mercury-arc devices for converting alternating current into direct current for driving electric trains.³³

#### INDIUM³⁴

A teaspoon could have held the world supply of indium in 1924;

today, it has many industrial uses.

Domestic Production.—The American Smelting and Refining Co., Perth Amboy, N. J., produced indium metal and compounds in 1956, and The Anaconda Co., Great Falls, Mont., produced the metal. Less indium was produced and shipped in 1956 than in 1955.

Uses.—Indium was used in aircraft bearings for strength, resistance to corrosion, and to retain protective-oil film. It was also used in dental alloys, for bonding glass-to-glass and glass-to-metal, transistors, additive to gasoline to increase efficiencies and give cool-running engines, and in solders.

Prices.—Throughout 1956, E&MJ Metal and Mineral Markets

quoted \$2.25 per troy ounce for 99.9-percent-pure indium metal.

## RADIUM³⁵

Radium consumption declined in 1956. Imports of radium and radium salts in the United States dropped in 1956; imports of radioactive substitutes reached a value of 2½ times that of substitutes imported in 1955, indicating a significant trend. The year marked the 50th anniversary of Union Minière du Haut Katanga, the principal producer of radium.³⁶ Union Minière continued to produce radium from the rich pitchblende and radium-bearing slimes of its uranium mines in the Belgian Congo in the refinery at Oolen, Belgium, and to distribute radium domestically through its sales representative. Prices remained steady during 1956.

^{**} Metal Bulletin (London), No. 4134, Oct. 9, 1956, p. 28.

** Engineering and Mining Journal, How Germanium Oxide and Metal Are Produced at Hoboken: Vol. 157, No. 5, May 1956, pp. 85-88.

** Metal Bulletin (London), No. 4123, Aug. 31, 1956, p. 21.

** Mining Journal (London), vol. 246, No. 6286, Feb. 10, 1956, p. 183.

** Engineering and Mining Journal, For Tsumeb's African Concentrates-Sulfide Sublimation in Belgium: Vol. 157, No. 5, May, 1956, pp. 79, 82.

** Mining Journal (London), vol. 246, No. 6289, Mar. 2, 1956, p. 265.

** Prepared by Donald E. Eilertsen.

** Prepared by James Paone.

** Union Minière du Haut Katanga, Anniversary Issue, 1906-56: Ed. L., Cuypers Bruxelles (Franch), 288 pp.

²⁸⁸ pp.

During the year it was disclosed that a tiny platinum capsule of radium exploded in 1951 at an electronics plant in the Midwest. Radium dust was tracked by the workmen all through the building and despite immediate decontamination measures the building remained dangerously radioactive, pointing up the problems associated with handling radioactive materials.37

Domestic Production.—Virtually all new radium requirements in 1956 were met by imports. A small quantity of domestic radium production resulted from primary and secondary refining at Canadian

Radium & Uranium Corp. refinery at Mount Kisco, N. Y.

Radium, its derivatives, and related compounds were distributed in the United States by the Canadian Radium & Uranium Corp., New York, N. Y.; the Radium Chemical Co., Inc., New York, N. Y., sales representative for Union Minière du Haut Katanga; and the United States Radium Corp., Morristown, N. J.
Consumption and Uses.—Radium and radium-salt material con-

tinued to be sold and leased for medical, scientific, and industrial

purposes during 1956.

The medical profession used radium in telecurietherapy applications to combat cancer. Another important use of radium resulted from its utilization in radium-beryllium mixtures, which were employed as a moderate source of neutrons; these neutron sources found application in nuclear-energy research and in borehole gammalogging. The advent of the cheaper plutonium-beryllium neutron sources in 1956 could make a significant impact on the future of the radium industry. Radium was also used in industrial radiography, in zinc sulfide compounds to make self-activated luminescent paint, and in radium foil to act as an ionizing agent in static-elimination equipment.

The Memorial Hospital, New York, N. Y., still had 689.6 mg. of radium on loan from the Federal Bureau of Mines since 1918.

Prices.—Throughout 1956 the price of radium was quoted by E&MJ Metals and Minerals Market at \$16 to \$21.50 per milligram

of radium content, dependent on quantity.

Radium and its derivatives are generally sold in the United States on the basis of Government certification of radium content by the National Bureau of Standards, Washington, D. C.; the Bureau of Standards also tests the sources for radium leakage and contamination. The price is quoted in terms of the quantity of radium, by weight, in a purified salt.

Foreign Trade.—Virtually all radium salts imported in the United States came from Belgium, where they were purified from ores and slimes produced by Union Minière du Haut Katanga in the Belgian

Congo.

Statistics in table 1 show that 43,221 mg. of radium salts was imported for consumption in the United States in 1956, representing a 37-percent decrease under the quantity imported in 1955.

²⁷ Iron Age, vol. 178, No. 12, Sept. 20, 1956, p. 49,

TABLE 1.—Radium salts imported for consumption in the United States 1947-51 (average), and 1952-56

[Bureau of the Census]

	1947–51 (average)	1952	1953	1954	1955	1956
Radium salts: Quantity mg Total value A verage value per gram Radioactive substitutes (value)	84, 501	173, 711	85, 055	57, 879	65, 545	43, 221
	\$1, 414, 176	\$2, 873, 688	\$1, 474, 625	\$856, 822	\$974, 982	\$633, 195
	\$16, 736	\$16, 500	\$17, 337	\$14, 804	\$14, 875	\$14, 650
	\$3, 630	\$85, 849	\$169, 762	\$149, 759	\$188, 729	\$511, 214

## RARE-EARTH MINERALS AND METALS 88

Monazite continued to be the dominant source of the rare-earth metals in 1956, largely because the AEC continued to absorb the thorium produced from the monazite. Interest in the individual rare-earth metals and compounds, particularly in the heavier yttrium group of the rare earths, continued at a high rate. Rumors of sudden and obscure demands caused several flurries of activity, and research for new markets was intensive. While business continued accelerating at a fair rate, many were disappointed that the long-predicted boom for the rare-earth metals did not materialize.

Domestic Production.—Production of monazite, previously classified by the AEC because of its thorium content, was declassified as of the fiscal year beginning July 1, 1955. However data on domestic monazite and bastnasite production cannot be published separately as this would reveal individual company operations. Mine shipments of all types of rare-earth concentrates were estimated to aggregate 787 short tons equivalent of rare-earth oxides (REO) including thorium. Mine production totaled about 1,900 tons of rare-earth oxides.

Monazite was produced as a coproduct with zirconium and titanium minerals from the dredging operations of Humphreys Gold Corp., in Duval County, near Jacksonville, Fla., and Marine Minerals, Inc.,

near Aiken, S. C.39

The Molybdenum Corp. of America continued to mine and process bastnasite ore at Mountain Pass, Calif. A plant at the property produced both flotation concentrate, containing up to 63 percent REO and acid-leached concentrate containing plus 90 percent REO, from ore containing 7 to 10 percent REO.40 Shipments of bastnasite were also reported by New Mexico Copper Corp., Carrizozo, N. Mex.

Porter Bros. Corp., Boise, Idaho, was the only source of rare-metals ores in that State. Its dredge in Bear Valley, Valley County, produced euxenite concentrate under a contract which provided for purchase by the Government of 1.05 million pounds of 90-percent columbium-tantalum pentoxide. Dredge concentrate was trucked to a plant at Lowman, Idaho, for separating heavy-sand components. The euxenite concentrate was shipped to Mallinckrodt Chemical Works, St. Louis, Mo., for extracting columbium-tantalum, uranium, and thorium.

^{**} Prepared by C. T. Baroch.

** See the Titanium and Thorium chapters in this volume.

** Dayton, Stanley H., How MCA Floats Rare Earths in Heated Circuit: Min. World, vol. 18, No. 1, January 1956, pp. 43-5.

Small quantities of euxenite, gadolinite, samarskite, and yttrofluorite were reported from pegmatites near Fort Collins, the Neder-

land-Boulder area, and Teller County, all in Colorado.

Monazite and bastnasite were processed commercially for producing rare-earth salts by Lindsay Chemical Co., West Chicago, Ill.; Davison Chemical Co., Baltimore, Md.; Maywood Chemical Works, Maywood, N. J.; and Molybdenum Corp. of America, Pittsburgh, Pa. Lindsay Chemical Co. specialized in producing thorium, cerium and other rare-earth compounds, including the oxides, hydrates, chlorides, fluorides, and sulfates. The company also produced compounds of the individual rare-earth metals and pursued an intensive advertising campaign in scientific and metal journals in an effort to educate industry in the usefulness of rare-earth compounds. Davison Chemical Co. announced the absorption of the former Rare Earths, Inc., plant at Pompton Plains, N. J., and produced chemicals, both of the mixed and individual rare-earth elements. The company also opened a new \$2 million plant at Curtis Bay, Md., to produce thoria and rare-earth salts. Operating under AEC contract, the plant was designed to process monazite from the GSA stockpile and return a purified mixed rare-earth double salt in insoluble form to the stockpile.41 Molybdenum Corp. processed bastnasite from its Mountain Pass mine in California and specialized in rare-earth additions for iron and steel. Research Laboratories of Colorado, Inc., Newtown, Ohio, began producing the pure individual rare-earth oxides, particularly the heavy or yttrium-subgroup oxides, and Michigan Chemical Corp., St. Louis. Mich., announced it would engage in similar activities through the acquisition of Saturnium Corp.

Misch-metal production was reported by Cerium Metals Corp., Niagara Falls, N. Y.; Mallinckrodt Chemical Works, St. Louis, Mo.; New Process Metals, Inc., Newark, N. J.; General Cerium Corp., Edgewater, N. J.; and American Metallurgical Products Co., Pitts-

burgh, Pa.

Heavy Minerals Co., jointly owned by Crane Co., Vitro Corp. of America, and Société de Produits Chimiques des Terres Rares, was completing a plant at Chattanooga, Tenn. in December 1956, for processing monazite produced by Marine Minerals, Inc., Aiken, S. C. At the same time, United States Yttrium, Inc., was completing a plant at Laramie, Wyo., to be used particularly for producing the yttrium

subgroup of the rare-earth metals.

Consumption and Uses.—It is estimated that about 2,000 short tons of rare-earth oxides were consumed in 1956 by industry. As in 1955, the major uses were divided almost equally between (1) the production of arc-lighting carbons; (2) the production of various alloys, such as misch metal and ferrocerium for alloying and lighter flints; (3) the production of oxides and other salts for the glass industry; and (4) a variety of miscellaneous uses, including compounds for optical and lapidary polishing, ceramic coloring and opacifying, textile waterproofing and mildewproofing, scavengers in explosives manufacture, and additions used in producing cast iron and steel.

Production was principally of the unseparated mixed rare earths or

⁴¹ Chemical Engineering News, Government Service—Davison Style: Vol. 34, No. 28, July 9, 1956, p. 3338.

those separated only roughly into the cerium group (cerium, lanthanum, neodymium, and praseodymium) and the didymium (ceriumfree) metals. The demand for the individual pure rare-earth metals

was small and was hindered by the high cost of separation.42

Each rare-earth metal has a distinctive use in ceramics, although some were used only experimentally. For instance, neodymium, praseodymium, samarium, and erbium were used for infrared absorbing glass; lanthanum was applied in infrared transparent glass; and cerium, in glass sensitive to ultraviolet light. Samarium, gadolinium, and europium were of interest to the nuclear energy industry as good neutron absorbers, and praseodymium, holmium, neodymium, and dysprosium oxides were promoted for their high dielectric and refractory qualities. Among new uses, several rare-earth oxides, particularly those of gadolinium, neodymium, samarium, and holmium, were used as catalysts for organic reactions such as dehydrogenation or decarboxydation. A few grams of thulium, upon being made radioactive, can be used in portable X-ray units for diagnostic purposes and will last about 1 year. 43 Promethium, a product of the neutron fission of uranium and not a naturally occurring rare-earth metal, was advocated as a low-energy X-ray source. It was used experimentally in phosphors for watch dials, where it is stated to be less hazardous than the highly toxic strontium-90 now used.44

Prices.—Monazite, the only rare-earth mineral quoted in the E&MJ Metal and Mineral Markets, remained steady throughout the year as follows: Total rare-earth oxides, including thorium, per pound c. i. f. U. S. ports, massive 55-percent grade, 13 cents; sand, 55-percent,

15 cents; 66-percent, 18 cents; and 68-percent, 20 cents.

The price of misch metal remained at \$3.50 per pound throughout 1956, ferrocerium sold for \$3 per pound, pure cerium metal (98 percent) was quoted at \$25 per pound, and lighter flints were \$7.50 per pound. Cerium compounds were steady all year—the chloride at \$0.35, the hydrate at \$1.44 (74 percent CeO₂) and \$1.74 (77 percent CeO₂), and the oxide (Optical grade) at \$1.85-\$1.98 per pound, as quoted in Oil, Paint and Drug Reporter. Oxides and other salts of the 14 individual rare-earth metals were offered by several producers and laboratories. Prices between different producers varied widely, partly owing to a difference in purity. Typical price schedules for individual rare-earth oxides was as follows: Yttrium, lanthanum, cerium, praseodymium, and neodymium ranged individually from \$0.35 to \$2 per gram; samarium, gadolinium, dysprosium, erbium, and ytterbium ranged between \$2.35 and \$15.50 per gram; terbium was \$38.50; and holmium ranged from \$8 to \$35 per gram depending on the degree of purity; and the rarest, lutetium and thulium, were \$65 and \$100 per gram, respectively.

Foreign Trade.—Because contracts for thorium imports had not yet been declassified by some foreign governments, import data on monazite cannot be published. Imports of ferrocerium and other cerium alloys (misch metal) in 1956 totaled 12,536 pounds valued

Chemical Engineering News, Rare Earths Raring to Go: Vol. 34, No. 6, Feb. 6, 1956, pp. 550-552. Chemical Week, Future for Rare-Earth Markets: Vol. 78, No. 17, Apr. 28, 1956, pp. 90, 92, 94. Vickery, R. C., The Rare Earths, Up from Obscurity: Research and Eng. vol. 2, April 1956, pp. 28-33. 4 Chemical Engineering News, Rare Earths—Switch to Solvents: Vol. 34, No. 50, Dec. 10, 1956, pp. 105 C118. 6116-6118.

at \$40,108 and came mostly from Austria with small quantities from West Germany and the United Kingdom. Imports of cerium compounds totaled 75,121 pounds valued at \$10,942 mostly from India, with a small quantity from France. No cerium metal, cerite, or cerium ores were received.

Exports of cerium ores, metals, and alloys totaled 23,784 pounds valued at \$79,396 and 16,303 pounds of lighter flints or ferrocerium These exports went mostly to Canada; small valued at \$109,553. quantities were shipped to Japan, Mexico, and several South American

Tariff rates on cerium metal remained at \$1 a pound, and ferrocerium and other cerium alloys (including lighter flints) remained at \$1 a pound plus 12½ percent ad valorem. President Eisenhower rejected a Tariff Commission recommendation that the duty on lighter flints be doubled, based on the reasoning that imports repre-

sented only 6.8 percent of domestic consumption in 1954.

Technology.—Reports on the exploration program conducted by the Bureau of Mines in cooperation with the AEC and the Federal Geological Survey were declassified and published.45 These included 9 areas in Idaho and 1 in Wyoming that showed indicated and inferred reserves of 244,000 short tons of monazite, in addition to reserves of uranothorite, euxenite, ilmenite, and zircon; also 17 areas in North Carolina and South Carolina with total indicated and inferred reserves of over 126,000 short tons of monazite and 1.8 million tons of ilmenite, rutile, and zircon. The occurrences and reserves of rare-earth metals as well as the general status of the industry were discussed in a review of the Pacific Northwest,46 and a comprehensive textbook containing chapters on the chemistry of the rare-earth metals was published.⁴⁷ Research on the fundamental nature of the rare-earth metals and their separation was continued by the Bureau of Mines; also at the Ames Laboratory, Ames, Iowa, under AEC sponsorship and under a new contract granted to Horizons, Inc., by the Office of Naval Research and the Air Research and Development Command. Work done in England was described.⁴⁸ Discoveries of new deposits were reported from San Miguel County, N. Mex., and near Encampment, Wyo.

World Review.—49 Exports of monazite from Malaya totaled about 630 tons, recovered as a byproduct of tin mining, compared with 240 tons in 1955, 350 tons in 1954, 186 tons in 1953, and 56 tons in During 1952 a new technique combining magnetic and hightension electrostatic separation was introduced. Malaya continued

an export duty of 10 percent ad valorem on monazite.

Using a loan of \$50,000 from the United Nations Korean Reconstruction Agency, the Korea Rare Elements Development Co. expected to install new machinery to produce high-grade monazite concentrate from deposits at Pi-in on the west coast of Korea.

⁴⁸ Eilertsen, D. E., and Lamb, F. D., A Comprehensive Report of Exploration by the Bureau of Mines for Thorium and Radioactive Black Mineral Deposits: Bureau of Mines RME-3140, Office Tech. Serv., U. S. Dept. of Commerce, June 1956, 46 pp.

48 Kauffman, A. J., Jr., and Baber, K. D., Potential of Heavy-Mineral-Bearing Alluvial Deposits in the Pacific Northwest: Bureau of Mines Inf. Circ. 7767, 1957, 36 pp.

48 Remy, H. (trans. by Anderson, J. S.), Treatise on Inorganic Chemistry: Vol. 2, Sub-Groups of the Periodic Table and General Topics; Elsevier Publishing Co., N. Y., 1956, 800 pp.

48 Topp, N. E., The Use of Complexing Agents for Rare-Earth Separation by Ion-Exchange Techniques: Chem. and Ind., No. 45, Nov. 17, 1956, pp. 1320-1323.

49 See also the Thorium chapter in this volume for information on monazite.

company produced about 22 short tons of low-grade monazite monthly

in 1956.

Belated reports stated that 4.3 tons of mineral reported as monazite but believed to be cerite were produced in Belgian Congo in 1955, compared with 4.5 tons in 1954. The Karonge mine in Urundi produced 324 tons of bastnasite in 1955 and 375 tons in 1954.

## RHENIUM 50

Rhenium has extremely high melting and boiling points.

Domestic Production.—There were two producers of rhenium metal and compounds in the United States in 1956. Kennecott Copper Corp. produced rhenium metal and ammonium perrhenate and stocked rhenium metal, ammonium perrhenate, and potassium perrhenate. The Department of Chemistry, University of Tennessee, produced and stocked rhenium metal and such compounds as ammonium

perrhenate, potassium perrhenate, and rhenium oxide.

Prices.—Chase Brass & Copper Co., Inc., subsidiary of Kennecott
Copper Corp., quoted the price of rhenium powder at about \$700 per pound in 1/2-pound lots. Base prices for rhenium rod and wire having diameters ranging from 0.2 to 0.025 inch were \$900 to \$1,260 per pound, respectively. Base prices for rhenium strip having thicknesses ranging from 0.06 to 0.005 inch were \$880 to \$1,260 per pound, respectively. Rhenium disks having thicknesses from 0.06 to 0.008 inch and various diameters were also available.

Uses.—Rhenium has many outstanding properties and high potential for use in the electrical contact and electronics field.

Research was developing uses for rhenium metal.

Technology.—A technical report describing various properties of

rhenium was published.51

A Bureau of Mines project was begun at the Intermountain Experiment Station at Salt Lake City, Utah, to find new sources of rhenium and develop extraction methods for the metal. Evaluation work was begun by using various mine ores and mill and smelter products already on hand.

#### SELENIUM 52

The alltime high in United States production plus imports of selenium in 1956 eased the critical supply, which had existed since This total supply approximated 1,352,000 the late months of 1950. pounds, or 29 percent more than 1955. Imports increased 21 percent over the preceding year; producers' shipments were also high.

On June 7, 1956, the Defense Minerals Exploration Administration made selenium eligible for financial assistance in exploration projects; Government participation was set at 75 percent of the authorized

cost of a project.53

Domestic Production.—Production of primary selenium in 1956 totaled 928,400 pounds compared with 699,300 pounds in 1955. This 33-percent increase over 1955 was attributed to greater copper pro-

^{**} Prepared by Donald E. Eilertsen.

** Sims, Chester T., and others, Investigations of Rhenium: Battelle Memorial Institute, Wright Air Development Center, WADC Tech. Rept. 54-371, Suppl. 1, Astia Document AD 97301, September 1956,

⁷⁹ pp. 39 Prepared by Elmo G. Knutson.
30 Prepared by Elmo G. Knutson.
31 Prepared Minerals Exploration Administration, Press Release: June 7, 1956, 1 p.

duction, higher overall recoveries, and increased shipments of selenium-

bearing lead flue dusts from Mexico.

Of the five major companies that produced selenium in 1956, Kawecki Chemical Co., Boyertown, Pa., produced from only secondary selenium. Its products were high-purity selenium and ferroselenium, made principally by refining factory scrap returned by manufactures of selenium rectifiers. Scrap consisting of drippings, spent catalysts. and burned-out rectifying units turned in by television repairmen was supplemented by purchases of commercial grade selenium. four companies based their production entirely upon anode slimes, but the American Smelting and Refining Co. used some factory scrap and produced high-purity and commercial-grade selenium and ferroselenium at its Baltimore, Md., refinery. American Metal Co., Ltd., produced selenium compounds and commercial-grade selenium at Carteret, N. J. Kennecott Copper Corp. at Garfield, Utah, produced both high-purity and commercial-grade selenium; the International Smelting & Refining Co. produced commercial-grade selenium at its Perth Amboy, N. J., plant.

Consumption and Uses.—Apparent domestic consumption ⁵⁴ of selenium increased from 1,050,800 pounds in 1955 to 1,242,900 pounds in 1956, an 18-percent increase. Uses remained approximately

the same as 1955.

In 1956 selenium was consumed principally by manufacturers of selenium rectifiers. It was also used for the following purposes: In glass, selenium used alone acts as a decolorizer; mixed with cadmium and added to glass it produces a family of reds, including the brilliant ruby red of traffic signals; as an ingredient in colorants in the range of deep red to orange-yellow, for glass, paint, soap, rubber, ceramics, printing ink, plastics, dyes, and leather; as an alloy to improve the machinability of stainless steel and copper; in chemicals for activating charcoal for gas absorption and as a reagent for separating and purifying various hydrocarbons; as an insecticide for the control of red spider on certain greenhouse plants; in rubber as a vulcanizing agent without sulfur or an accelerator with sulfur; as an antioxidant in some lubricating oils; in pharmaceuticals as catalyst agent in preparing cortisone and various chemicals; and as a fungicide for controlling dandruff. uses of selenium were in xerography, an inkless printing process; in photoelectric cells; and in photographic photosensitizers and toning baths. Selenium in the oxychloride form is one of the most powerful solvents known.

Stocks.—Stocks of refined selenium in the possession of producers increased more than 150 percent from 75,800 pounds at the beginning of the year to 191,000 pounds at the end. No additions were made in 1956 to the national strategic stockpile holdings of selenium.

Prices.—The price of commercial grade selenium was quoted throughout January 1956 by producers at \$9 to \$10 a pound and by distributors at \$10.50 a pound; effective February 1, 1956, the price was advanced to \$13.50 a pound by producers and to \$15.50 a pound

⁵⁴ Producer's domestic shipments to consumers plus consumer imports, minus exports.

by distributors and remained unchanged throughout the remainder of the year. High-purity selenium metal sold for \$3 to \$5 per pound

more than commercial grade during 1956.

Foreign Trade.—United States imports of selenium and selenium compounds in 1956 totaled 235,000 pounds valued at \$3,451,700 compared with 191,900 pounds valued at \$1,482,900 (revised figure) Selenium-bearing concentrates imported from Mexico were sent to bonded smelters in the United States, and the selenium recovered from these concentrates was reported as domestic production. Imports for consumption came from the following countries: Canada, 227,200 pounds valued at \$3,379,900; and Sweden, 7,800 pounds valued at \$71,800. The exportation of 24,000 pounds of selenium was authorized in 1956.

Technology.—The contract between the Bureau of Mines and the GSA for selenium investigations was continued through 1956. A nationwide reconnaissance plan called for initial screening of samples from mines, prospects, and mineral-processing plants and subsequent examination and evaluation of the more promising selenium sources revealed in the preliminary survey. Several areas, such as Ambrosia Lake (N. Mex.)., Temple Mountain (Utah), Gas Hills (Wyo.), and the Phosphoria formation in the Paris-Bloomington area of Idaho,

appeared to have potential importance as future sources.

In 1956 the Bureau of Mines initiated a program to develop a practical method for recovering selenium in a usable form from seleniferous uranium ores, without adversely affecting the extraction and recovery of uranium from these ores. Preliminary results were encouraging.

The study of commercial extraction of selenium from seleniferous vegetation was continued on contract between Battelle Memorial

Institute, Columbus, Ohio, and the GSA.

A publication described the occurrence of selenium in sulfides from some sedimentary rocks of the western United States,55 and another described a volumetric method for determining selenium in refined selenium, sodium selenate, and iron selenide. The Government issued a publication in 1956 that provided general information on selenium, ⁵⁷ and a paper described the occurrences of selenium in the

United States.58

World Review.—Canada.—Canadian selenium production increased from 427,100 pounds valued at Can\$3,203,300 (revised figures) in 1955 to 508,000 pounds valued at Can\$6,858,000 in 1956. The output was about 19 percent greater than the 1955 production. The increase was attributed principally to the greater output of refined copper by Canadian Copper Refiners, Ltd., Montreal East, Quebec; and the International Nickel Company of Canada, Ltd., Copper Cliff, Ontario. The gross weight and value of selenium and selenium salts exported from Canada in 1956 were as follows: United States, 228,300 pounds valued at Can\$3,395,300; United Kingdom, 169,900 pounds, Can

Socks of the Western United States: Geol. Survey TEIR 632, November 1956, 54 pp.

Barabas, S., and Cooper, W. C., Volumetric Determination of Selenium: Anal. Chem., vol. 26, No. 1, January 1956, pp. 129-130.

Sargent, J. D., Selenium (chap. in Mineral Facts and Problems): Bureau of Mines Bull. 556, 1956, pp. 777-782.

Titles, A. F., Jr., Selenium Occurrences in the United States: Mines Magazine, vol. 46, No. 8, August 1956, pp. 42-44.

^{1956,} pp. 43-44.

\$2,573,200; West Germany, 2,000 pounds, Can\$71,900; Italy, 1,660

pounds, Can\$52,400; and other, 1,400 pounds, Can\$26,400.

Belgium-Luxembourg.—Belgium Luxembourg 81,400 pounds of selenium in 1956 to the following countries: France, 13,800 pounds; Netherlands, 5,280 pounds; United Kingdom, 9,020 pounds; West Germany, 50,380 pounds; and other, 2,860 pounds.

Finland.—Finland produced 8,370 pounds of selenium in 1956.59 Germany, West.—In 1956, West Germany produced approximately

70,000 pounds of selenium.

Japan.—Japan produced 162,600 pounds of selenium in 1956.60 Norway.—In 1956, Norway produced about 7,300 pounds of selen-

Sweden.—Approximately 200,000 pounds of selenium was produced

in Sweden during 1956.

Rhodesia and Nyasaland, Federation of.—An estimated 33,000 pounds of recoverable selenium contained in copper anodes and anode slimes was exported from Northern Rhodesia in 1956.

## SILICON 62 63

Ultrapure silicon toward the end of the year became a strong competitor of germanium in manufacturing diodes, transistors, rectifiers, and solar cells and selenium in manufacturing rectifiers.

Production.—Although polycrystalline silicon of about 99.9 percent purity was produced and used in crystal mixers for radar receivers during World War II, single-crystal silicon of purity suitable for manufacturing diodes, rectifiers, and transistors was a product largely confined to research until 1956 when its use in manufacturing components for commercial applications was estimated to have exceeded

that used for research.

It was estimated that production of ultrapure silicon in 1956 was about 10,000-20,000 pounds. In July E. I. Dupont de Nemours & Co., Inc., by far the leading producer, at its Newport, Del. plant, announced purchasing a 10,500-acre tract of land near Brevard, N. C., for constructing another plant. Later it was announced that the new plant was expected to be completed by early 1958 and would have an initial annual capacity of about 50,000 pounds of Semiconductor grade and 20,000 pounds of Solar-Cell-grade silicon. Toward the end of 1956, Sylvania Electric Products, Inc., Tungsten and Chemical Division, Towanda, Pa., began commercial production of Semi-conductor-grade silicon. Among other firms that produced Semiconductor-grade silicon experimentally or commercially were Kawecki Chemical Co. and Texas Instrument Co.

Consumption and Uses. - Domestic consumption of ultrapure

silicon in 1956 is estimated to have been about 10,000 pounds.

The commercial and research application of semiconductor-silicon devices included the manufacture of radios, television sets, telephones, and telephone systems, computers, control instruments and equip-

<sup>U. S. Embassy, Helsinki, Finland, State Department Dispatch 511, May 24, 1957, p. 2.
Pauly, Paul E. (commercial attaché, Tokyo, Japan), Foreign Service dispatch 1191, May 6, 1957, p. 5.
U. S. Embassy, Oslo, Norway, State Department Dispatch 788, May 15, 1957, p. 2.
Data on lower grades of silicon, such as those used for alloying aluminum and copper alloys, and in producing silicones and silicon tetrachloride, are included in the Ferroalloy chapter.
Prepared by Wilmer McInnis.</sup> 

ment, variable-speed motors, brushless A. C. generators, welding equipment, guided missiles, and plating equipment. Solar cells were used commercially in radios and experimentally in other applications.

Prices.—Effective June 28, 1956, E. I. Dupont de Nemours & Co., Inc., reduced the price of Semiconductor-grade silicon from \$380 to \$350 per pound for both the needle and densified forms, and reduced the price of Solar-Cell grade to \$180 per pound on the same date. On December 1, the company further reduced prices of the Semiconductor and Solar-Cell grades of silicon to \$320 and \$150 per pound,

respectively, f. o. b. common carrier, Newport, Del.

Technology.—The metal-reduction process for producing ultrapure silicon was described.⁶⁴ Essentially the process consists of reducing silicon tetrachloride (SiCl4) with highly refined zinc at a temperature of about 1,740° F. which is well below the melting point (2,610° F.) of silicon, in a quartz tube. The silicon deposits on the bottom of the tube in needle-shaped crystals. The silicon is remelted, and traces of impurities are further reduced by zone-refining techniques. One method of zone refining consisted of drawing the silicon through an induction-heated quartz tube in an inert atmosphere. Another was the floating-zone technique by which a molten zone moves through the silicon. As the molten zone moves, it carries certain impurities with it.

The measurement of impurities (less than 10 parts per billion in Semiconductor grades and up to about 50 parts per billion in Solar-Cell grade) was beyond the sensitivity of spectroscopic analysis; one

of the other methods devised was resistivity measurements.

A process for preparing pure crystalline silicon was patented. A melt of silicon-gold at 700° C. with 41 atom percent silicon is placed in a vertical tube within a furnace and the tube slowly withdrawn downwardly, freezing out silicon on a piece of silicon attached to a vertical rod.

A furnace for the producing of large single crystals of either silicon

or germanium was reported to have been developed.66

## TELLURIUM 67

Tellurium continued to gain popularity as an additive to stainless steel for improving its machinability. This growth resulted principally from the continued stability of the price of tellurium and from the short supply of selenium, which prevailed through most of 1956.

Domestic Production.—Domestic primary tellurium production increased 33 percent from 143,800 pounds in 1955 to 190,700 in 1956. Tellurium producers were the American Smelting and Refining Co., Baltimore, Md.; International Smelting & Refining Co., Perth Amboy, N. J.; United States Smelting & Refining Co., East Chicago, Ind.;

⁴ Hartman, D. K., and Ostapkovich, P. L., Processing and Purification of Silicon for Semiconductor Use: Metal Progress, vol. 70, No. 4, October 1956, pp. 100-103.
4 Hein, C. O. (assigned to Westinghouse Electric Corp.), Preparation of Pure Crystalline Silicon: U. S. Patent 2,747,971, May 29, 1956.
5 U. S. Dynamics Corp. Develops Furnace for Single-Crystal Work: Am. Metal Market, vol. 63, No. 217, Nov. 14, 1956, pp. 1, 5.
6 Prepared by Elmo G. Knutson.

and American Metal Co., Ltd., Carteret, N. J. Most of the 1956 production was obtained as a byproduct of lead and copper refining.

Consumption and Uses.—Total shipments of tellurium decreased 13 percent—from 164,800 pounds in 1955 to 143,700 pounds in 1956. Tellurium was used for the following purposes: As an alloying agent in making tellurium-copper (tellurium greatly improves the machinability of copper without seriously affecting conductivity); in making tellurium-lead (tellurium-lead has superior resistance to fatigue failure caused by vibration and has the ability to work-harden or strengthen itself under strain); and in stainless steel for degasifying and improving machinability. It is also employed as an additive to rubber to increase resistance to abrasion and heat and to improve the aging and mechanical properties of low-sulfur rubber; and small quantities of tellurium added to molten iron to control the depth of chill in forming hard-chilled, abrasion-resistant-surface iron castings. Tellurium was also used in ceramics and glass, ultramarine pigments, and electronic semiconductors.

Stocks.—Stocks of refined tellurium held by the producers increased from 76,200 pounds in 1955 to 123,200 pounds in 1956. Raw-material stocks remained approximately the same as in 1955 and represented a 4-year supply of metal on the basis of apparent consumption for 1956.

Prices.—The price of refined tellurium had remained unchanged for 16 years at \$1.75 per pound until January 26, 1956, when the price was lowered to \$1.50-\$1.75 per pound and remained there throughout the year.68 Ferrotellurium, 50-58 percent tellurium, sold for \$2.00 per pound of contained tellurium.

Technology.—In 1956 a patent was granted on improved thermoelectric materials, more particularly to tellurium alloys containing bismuth, antimony, and selenium, useful in thermoelectric devices comprising single or multiple junctions between different metals.⁶⁹

The United States Government issued a publication in 1956 that provided general information on tellurium.70

World Review.—Canada.—Preliminary estimates placed Canadian production of tellurium at 24,000 pounds valued at Can\$24,000 in 1956, compared with 9,000 pounds (revised figure) valued at Can-\$15,800 in 1955.

Japan.—Japan produced 330 pounds of refined tellurium in 1956.71

## THALLIUM 72

Thallium, a soft, bluish-white metal discovered about a century ago, is a byproduct of the treatment of cadmium flue dusts and residue, obtained in smelting zinc-lead ores.

Domestic Production. The Globe Cadmium refinery of the American Smelting and Refining Co. at Denver, Colo., was the only domestic

E&MJ Metal and Mineral Markets, vol. 27, No. 1-52, 1956.
 Lindenblad, N. E. (assigned to Radio Corp. of America), Thermoelectric Materials and Elements Utllizing Them: U. S. Patent 2,762,857, Sept. 11, 1956.
 Sargent, J. D., Tellurium (chap. in Mineral Facts and Problems): Bureau of Mines Bull. 556, 1956, pp. 867-870.
 Pauly, Paul E. (commercial attaché, Tokyo, Japan), Foreign Service Dispatch 1191: May 6, 1957, p. 5.
 Prepared by Donald E. Eilertsen.

producer of thallium in 1956. Thallium-metal production was smaller and shipments greater in 1956 than 1955; production was larger and

shipments of thallium compounds were greater than in 1955.

**Üses.**—Thallium was used as a sulfate to exterminate rodents and insects, because it is odorless, tasteless, and extremely poisonous. Other uses for thallium included special glasses, acid and hydrogen sulfide resistant alloys, optical instruments, pigments, and fungicides.

Prices.—Throughout 1956 E&MJ Metal and Mineral Markets

quoted thallium metal at \$12.50 per pound.



## Minor Nonmetals

By D. O. Kennedy, Albert E. Schreck, Annie L. Mattila³



"HIS CHAPTER on minor nonmetals covers greensand, meerschaum, mineral wool, and wollastonite. Mineral wool was by far the most valuable material among these minor nonmetals reported in the United States in 1956.

#### **GREENSAND**

Output of greensand (glauconite) declined in 1956. The Kaylorite Corp., Dunkirk, Md., and the Inversand Co., Sewell, N. J., were the only firms that reported production of this commodity. Output came from open pits in Calvert County, Md., and Gloucester County, N.J.

TABLE 1.—Greensand sold or used by producers in the United States, 1947-51 (average), and 1952-56

Year	Short tons	Value	Year	Short tons	Value
1947-51 (average)	6, 147	\$334, 154	1954	2, 838	\$198, 909
	4, 600	177, 847	1955	5, 704	217, 671
	6, 821	193, 404	1956	(¹)	(1)

¹ Figures withheld to avoid disclosing individual company confidential data.

Prices for greensand, f. o. b. mine, ranged from \$22 to \$70 per short ton.

All material produced was used either as a water softening agent for soil conditioning or as a source of potassium. Production was consumed mostly by the water-softening market.

#### MEERSCHAUM

The manufacture of smokers' accessories, such as pipe bowls and cigars or cigarette holders, was the principal outlet for meerschaum. Consumers continued to rely upon foreign sources for their rawmaterial supplies.

Assistant chief, Branch of Construction and Chemical Materials,
 Commodity specialist.
 Statistical assistant.

All imports in 1956 came from Turkey, which has been the world's principal supplier of meerschaum for many years. In the past, small tonnages have been imported from Austria, Italy, and Union of South Africa.

TABLE 2.—Meerschaum imported for consumption in the United States, 1947-51 (average) and 1952-56 1

[Bureau	٥f	the.	Congral
Dureau	Οı	ипе	Census

Year	Pounds	Value	Year	Pounds	Value
1947-51 (average)	7, 102	\$13, 287	1954	12, 068	\$26, 357
1952	10, 479	12, 344	1955	5, 102	15, 285
1953	8, 568	12, 600	1956	13, 140	2 21, 770

^{1 1947-49, 1951} and 1954-56, all from Turkey. 1950: Italy: 20 pounds, \$120; Turkey: 9,601 pounds, \$18,429; 1952; Austria: 18 pounds, \$40; Turkey: 19,461 pounds, \$12,304; 1953: Turkey: 8,168 pounds, \$11,911; Union of South Africa: 400 pounds, \$689.

2 Owing to changes in tabulating procedures by the Bureau of the Census, data known to be not com-

parable with years before 1954.

## MINERAL WOOL

The total value of mineral-wool production from rock, slag, and glass in the United States in 1956 was \$200 million, according to the Bureau of the Census. This was a decrease of 2 percent compared with the output value of \$205 million in 1955. In 1947 the Bureau of the Census (the latest statistics) reported the following percentages for broad classifications in use of mineral wool: Structural insulation, 56 percent; equipment insulation, 23; industrial insulation, 17; and unspecified, 4. In 1956 insulation continued to be the principal use.

The number of people employed in the mineral-wool industry averaged 11,600 compared with 12,300 in 1955; the number of production workers was 9,113, compared with 9,411 in 1955 and 7,555

Exports of mineral-wool products from the United States during 1956 were valued at \$5.1 million, compared with \$4.2 million in 1955.

Samples of several materials from Alaska, Florida, Texas, and Virginia were found satisfactory for making mineral wool.4

Mineral wool was made at 12 plants in Canada during 1956.⁵ Patents were issued covering the use of mineral wool for trailer insulation, gaskets, and soundproofing material.6

Kenworthy, H., and Moreland, M. L., Laboratory Results on Testing Mineral-Wool Raw Materials: Bureau of Mines Rept. of Investigations 5203, 1956, 18 pp.
 Milling Plants in Canada, Industrial Minerals: Mineral Resources Division and Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada, January 1957, p. 32.
 Anderson, R. R., Apparatus for Compartment Heating: U. S. Patent 2,756,000, July 24, 1956.
 Victor, J. H. (assigned to Victor Manufacturing and Gasket Co.), Gasket: U. S. Patent 2,753,199, July 3, 1056.

Kendall, F. E., and Golar, P. (assigned to The E. F. Hauserman Co.), Sound-Deadening Composition: U. S. Patent 2,756,159, July 24, 1956.

## WOLLASTONITE

The Cabot Carbon Co. continued to produce wollastonite from its Bristol Mountain and Willisboro mines, Essex County, N. Y. Output

in 1956 was greater than in the preceding year.

From talus deposits near Blythe, Riverside County, Calif., J. W. Hannah, Jr., and Lawrence Johnson shipped wollastonite float. Melvin L. Jontz Co. and Western States Stone marketed this material as an interior or exterior ornamental stone because of its resemblance to driftwood, which results from weathering.

A paper was published on using wollastonite in ceramic artware bodies. The substitution of wollastonite for talc in low-talc semi-vitreous-artware bodies appeared to increase the fired strength, fired shrinkage, and thermal expansion and to increase slightly dry strength, reduce drying shrinkage and moisture expansion, and improve the

fired color.

The December 31, 1956, issue of Oil, Paint and Drug Reporter quoted the following prices on wollastonite: Fine, bags, carlots, works \$39.50 per ton; less than carlots, ex warehouse, \$56.00 per ton; medium, bags, carlots, works, \$27.00 per ton; less than carlots, ex warehouse, \$44.00 per ton.

⁷ Stalter, Thomas L., Use of Wollastonite in Artware Bodies: Ceram. Bull., vol. 35, No. 10, Oct. 15, 1956, pp. 396-398.



## **INDEX**

The index consists of two parts, a commodity index and a world review index. Because nearly all commodity chapters in Minerals Yearbook, volume I, follow a standard outline (Introductory Summary, Domestic Production, Consumption and Uses, Prices (and specifications), Foreign Trade, Technology, and World Review), references to such data have been omitted under the various headings. Readers wanting information on mine production for States, Territories, or possessions should refer to tables in the Statistical Summary chapter, starting on

Readers wanting information on mine production for States, Territories, or possessions should refer to tables in the Statistical Summary chapter, starting on page 75. These tables show the commodities produced in each area, thus guiding the reader to the appropriate commodity chapters. The reader should refer to volume III, however, for complete area information.

# Commodity Index

Abrasive Materials chapter	·	Page	Pag	ge
Actinium See Uranium chapter. 1245 Agstone. 1107, 1108 Alaskite. 465, 466 Alaskite. 465, 466 Alaskite. 465, 466 Alaskite. 465, 466 Alaskite. 465, 466 Alumina See Bauxite chapter. 231 Alumina See Abresve Materials chapter. 139 Bauxite chapter. 231 Alumina See Abresve Materials chapter. 139 Bauxite chapter. 231 Alumina See Abresve Materials chapter. 139 Bauxite chapter. 231 Alumina chapter. 159 See Bauxite chapter. 231 Alumina compounds. See Bauxite chapter. 231 Aluminum compounds. See Bauxite chapter. 231 Aluminum compounds. See Bauxite chapter. 241 Aluminum compounds. See Bauxite chapter. 255 Ammonitum broate. See Boronina chapter. 265 Ammonitum broate. See Boronina chapter. 265 Ammonitum bromide. See Boronina chapter. 265 Ammonitum bromide. See Boronina chapter. 265 Ammonitum bromide. See Romanite chapter. 265 Ammonitum in odine. See Idine chapter. 265 Ammonitum in odine. See Idine chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite chapter. 265 Ammonitum in odine. See Romanite	A brasive Materials chapter	139	Bervllium chapter 2	53
Agstone				
Alaum. See Bauxite chapter. 231 Alumina. See Abrasive Materials chapter. 139 Bauxite chapter. 159 Bauxite chapter. 159 See Bauxite chapter. 159 See Bauxite chapter. 1007 Aluminum chapter 1007 Ambilygonite. See Lithium chapter. 755 Ammonium borate. See Borom chapter. 265 Ammonium borate. See Bromine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium iodine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See See See See See See See See See S	Agstone 1107	. 1108	Black ash 2	23
Alaum. See Bauxite chapter. 231 Alumina. See Abrasive Materials chapter. 139 Bauxite chapter. 159 Bauxite chapter. 159 See Bauxite chapter. 159 See Bauxite chapter. 1007 Aluminum chapter 1007 Ambilygonite. See Lithium chapter. 755 Ammonium borate. See Borom chapter. 265 Ammonium borate. See Bromine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium iodine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See Indine chapter. 275 Ammonium odine. See See See See See See See See See S	Alabaster See Gynsum chanter	559	Black copper. See Copper chapter 4	
Alumina See Bauxite chapter 231 Aluminam chapter 133 Bauxite chapter 231 Blue vitrol 243 Secondary Metals—Nonferrous chapter 231 Aluminum compounds See Bauxite chapter 231 Aluminum compounds See Bauxite chapter 231 Aluminum compounds See Bauxite chapter 231 See Bauxite chapter 231 Blue vitrol 243 Boron and boron compounds chapter 243 Boros 1 266 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros 1 267 Boros	Alaskite 46	5, 466	Blanc fixe 2	26
Alumina   See Abrasive Materials chapter   138   Bauxite chapter   158   Bauxite chapter   158   Boron and boron compounds chapter   268   See Bauxite chapter   1007   Aluminum compounds   See Bauxite chapter   1007   Aluminum compounds   See Bauxite chapter   1007   Aluminum compounds   See Bauxite chapter   1007   Aluminum compounds   See Bauxite chapter   1007   Aluminum compounds   See Bauxite chapter   1007   Aluminum compounds   See Bauxite chapter   1007   Amblygonite   See Lithium chapter   275   Ammonium borndide   See Boron chapter   275   Ammonium borndide   See Boron chapter   275   Ammonium compounds   See Nitrogen Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compounds   See National Compound			Blast-furnace slag 306, 3	07
Bauxite chapter 231 Aluminum chapter 525 See Bauxite chapter 231 See Bauxite chapter 231 See Bauxite chapter 231 Aluminum compounds See Bauxite chapter 1007 Aluminum compounds See Bauxite chapter 231 Aluminum oxide (See Alumina) 525 Ammonia See Nitrogen Compounds chapter 265 Ammonia See Nitrogen Compounds chapter 265 Ammonium borate See Boron chapter 265 Ammonium borate See Bromine chapter 265 Ammonium borate See Bromine chapter 265 Ammonium odine, See Nitrogen Compounds See Nitrogen Compounds Chapter 265 Ammonium odine, See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen Compounds See Nitrogen See See Nitrogen Compounds See Nitrogen See See Nitrogen Compounds See Nitrogen See See Nitrogen Compounds See Nitrogen See See Nitrogen Compounds See Nitrogen See See Nitrogen See See Nitrogen Compounds See Nitrogen See See Nitrogen See See Nitrogen See See Nitrogen See See Nitrogen See See Nitrogen See See Nitrogen See See Nitrogen See See See Nitrogen See See Nitrogen See See Nitrogen See See Nitrogen See See See See See See See See See S	Alumina See Abrasive Materials chapter		Bluestone 10	95
Aluminum chapter	Ranvite chanter		Blue vitrol 4	35
See Bauxite chapter. 231 See Bauxite chapter. 1007 Aluminum compounds. See Bauxite chapter. 231 Aluminum oxide. (See Alumina.) Amblygonite. See Lithium chapter. 255 Ammonium borate. See Broon chapter. 265 Ammonium borate. See Broon chapter. 275 Ammonium borate. See Broon chapter. 275 Ammonium compounds. See Nitrogen Compounds chapter. 275 Ammonium compounds. See Nitrogen Compounds chapter. 275 Ammonium odine. See Iodine chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Kyanite and Related Minerals chapter. 275 Andphibole asbestos. See Asbestos chapter. 276 Anthracite. 58, 67, 307, 308 Antimony chapter. 288 Anthrophylite asbestos. 288 Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter. 295 Arsenic chapter. 295 Aspeatic. 296 Arsenic chapter. 295 See also. 132 Babbitt. See Tin chapter. 295 Bardium and barium compounds. See Barite chapter. 295 Bardium and barium compounds. See Barite chapter. 295 Barium and barium compounds. See Barite chapter. 295 Barium sulfate. See Barite chapter. 295 Barium sulfate. See Barite chapter. 295 Bastnasite. See Minor Metals chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bartnatie. See Barite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter. 295 Bauxite chapter.			Boron and boron compounds chapter 2	65
Secondary Metals—Nonferrous chapter. 231 Aluminum compounds. See Bauxite chapter. 231 Aluminum oxide. (See Alumina.) Amblygonite. See Lithium chapter. 755 Ammonium bromide. See Broron chapter. 265 Ammonium bromide. See Broron chapter. 265 Ammonium compounds. See Broron chapter. 265 Ammonium bromide. See Bromine chapter. 265 Ammonium compounds. See Nitrogen Compounds chapter. 267 Ammonium compounds. See Nitrogen Compounds chapter. 267 Ammonium iodine. See Iodine chapter. 267 Amosite. See Asbestos chapter. 205 Amphibole asbestos. See Asbestos chapter. 205 Amphibole asbestos. See Asbestos chapter. 205 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Calcium and caddium compounds chapter. 216 Calcium intrate. See Nitrogen Compounds chapter. 217 Arsenic chapter. 219 Bablite	See Bauvite chanter			66
Aluminum compounds. See Bauxite chapter. Aluminum oxide. (See Alumina.) Amblygonite. See Lithium chapter. 575 Amboronium borate. See Boron chapter. 275 Ammonium borate. See Boron chapter. 275 Ammonium borate. See Bromine chapter. 275 Ammonium borate. See Bromine chapter. 275 Ammonium compounds. See Nitrogen Compounds chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Graphite chapter. 275 Ammonium iodine. See Graphite chapter. 275 Ammonium iodine. See Graphite chapter. 275 Ammonium iodine. See Graphite chapter. 275 Ammonium iodine. See Graphite chapter. 275 Ammonium iodine. See Kyanite and Related Minerals chapter. 288 Amphibole asbestos. See Asbestos chapter. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthoracte. 288 Anthophyllite asbestos. 291 Anthoracte. 288 Anthoracte. 288 Anthoracte. 288 Anthoracte. 288 Anthoracte. 288 Anthoracte. 288 Anthoracte. 288 Anthorac	Secondary Metals—Nonferrous chanter		Rort 147. 1	48
Aluminum oxide. (See Alumina.) Amblygonite. See Lithium chapter. 755 Ammonium borate. See Boron chapter. 265 Ammonium borate. See Boron chapter. 275 Ammonium compounds. See Nitrogen Compounds chapter. 275 Ammonium compounds. See Nitrogen Compounds chapter. 275 Ammonium iodine. See Indine chapter. 275 Ammonium iodine. See Rodine chapter. 275 Ammonium iodine. See Graphite chapter. 275 Ammonium iodine. See Graphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Asbestos chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Asbestos chapter. 275 Ammonium iodine. See Asbestos chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Ammonium iodine. See Raphite chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bromine chapter. 275 Bruit chapter. 275 Bruit chapter. 275 Bruit chapter. 275 Bruit chapter. 275 Bruit chapter. 275 Bruit chapter. 275 Bruit cha	Aluminum compounds See Bauxite chapter		Brass. See Copper chapter 4	
Amblygonite. See Lithium chapter. 755 Ammonian. See Nitrogen Compounds chapter. 265 Ammonium borate. See Bronn chapter. 265 Ammonium borate. See Bronn chapter. 265 Ammonium compounds. See Nitrogen Compounds chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Iodine chapter. 275 Ammonium iodine. See Graphite chapter. 275 Amphibole asbestos. See Asbestos chapter. 285 Amphibole asbestos. See Asbestos chapter. 286 Amphibole asbestos. See Asbestos chapter. 295 Anthracite. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthoph		201	Zinc chapter	17
Ammonium borate. See Boron chapter. Ammonium bromide. See Bromine chapter. Ammonium compounds. See Nitrogen Compounds chapter. See See Nitrogen Compounds chapter. See See Nitrogen Compounds chapter. See See Nitrogen Compounds chapter. See See Nitrogen Compounds chapter. See Aspestos chapter. See Aspestos chapter. See Aspestos chapter. See Aspestos Chapter. See Andelsustie. See Kyanite and Related Minerals chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See See Secondary Metals-Nonferrous chapter. See See See See See See See See See Se		755	Brass scrap. See Secondary Metals-Nonfer-	
Ammonium borate. See Boron chapter. 265 Ammonium bromide. See Bromine chapter 275 Ammonium compounds. See Nitrogen Compounds chapter 275 Ammonium iodine. See Iodine chapter. 576 Amorphous graphite. See Graphite chapter. 205 Amphibole asbestos. See Asbestos chapter. 205 Amphibole asbestos. See Asbestos chapter. 205 Anthophyllite asbestos. See Asbestos chapter. 205 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286 Anthophyllite asbestos. 286			rous chapter 10	07
Ammonium bromide. See Bromine chapter. Ammonium compounds. See Nitrogen Compounds chapter. Ammonium compounds. See Nitrogen Compounds chapter. Ammonium iodine. See Iodine chapter. Amosite. See Asbestos chapter. Andalusite. See Kyanite and Related Minerals chapter. Anthophyllite asbestos. Anthophyllite asbestos. Anthophyllite asbestos. Anthophyllite asbestos.  See Secondary Metals-Nonferrous chapter. Apatite. Apilite. See Feldspar, Nepheline Syenite, and Aplite chapter.  See also.  Arsenic chapter.  See also.  See also.  See Asbestos chapter.  See Secondary Metals-Nonferrous chapter.  See Secondary Metals-Nonferrous chapter.  See also.  See also.  See also.  See See Feldspar, Nepheline Syenite, and Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter.  See also.  See also.  See also.  See also.  See Asbestos chapter.  See See Feldspar, Nepheline Syenite, and Aplite chapter.  See also.  See also.  See Asbestos chapter.  See See Feldspar, Nepheline Syenite, and Aplite chapter.  See also.  See also.  See Asbestos chapter.  See Asbestos chapter.  See Asbestos chapter.  See Asbestos chapter.  See Asbestos chapter.  See Recopper chapter.  See Copper chapter.  See Copper chapter.  See Copper chapter.  See Copper chapter.  See Augnesium Compounds chapter.  See Also.  See Magnesium Compounds chapter.  Calcium and cadmium compounds chapter.  Calcium and cadmium compounds chapter.  Calcium and cadmium compounds chapter.  See Nitrogen Compounds chapter.  See Nitrogen Compounds chapter.  Sea See Nitrogen Compounds chapter.  Sea See Nitrogen Compounds chapter.  Sea See See Tin chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Clays Chapter.  See Also.  See Also.	Ammonium horata See Roran chanter		Brimstone See Sulfur and Pyrites chapter 11	25
Ammonium compounds. See Nitrogen Compounds chapter pounds chapter. See Graphite chapter. 547 Ammonium syraphite. See Graphite chapter. 268 Amphibole asbestos. See Asbestos chapter. 205 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite				73
Ammonium iodine. See Iodine chapter		2.0	See also 291. 2	92
Ammonium fodine. See Iodine chapter. 575 Amorphous graphite. See Graphite chapter. 547 Amosite. See Asbestos chapter. 205 Amphibole asbestos. See Asbestos chapter. 586 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Anthophyllite asbestos. 216 Aladium and cadmium compounds chapter. 228 Calcium and calcium compounds chapter. 228 Calcium and calcium compounds chapter. 228 Calcium and calcium compounds chapter. 228 Calcium and calcium compounds chapter. 228 Calcium and calcium compounds chapter. 226 Calcium and calcium compounds chapter. 226 Calcium and calcium compounds chapter. 226 Calcium and calcium compounds chapter. 226 Calcium		880	Bromine chanter 2	75
Amorphous graphite. See Graphite chapter. Amosite. See Abestos chapter. Andelusite. See Kyanite and Related Minerals chapter. Anthracite. Anthracite. See Kyanite and Related Minerals chapter. Anthracite. See Secondary Metals-Nonferrous chapter. Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter. Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter. See Secondary Metals-Nonferrous chapter. Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter. See Secondary Metals-Nonferrous chapter. Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Secondary Metals-Nonferrous chapter. See Nitrogen Compounds chapter. See Olaicum and calcium compounds chapter. Calcium arsenate. See Nitrogen Compounds chapter. See Olaicum sanate. See Nitrogen Compounds chapter. See Olaicum suffate. (See Gypsum.) Calcium arsenate. Calcium nitrate. See Nitrogen Compounds chapter. See Secondary Metals-Nonferrous chapter. See Clays Chapter. See See Nitrogen Compounds chapter. Calcium nitrate. See Nitrogen Compounds chapter. See Secondary Calcium and calcium compounds chapter. Calcium cryanamide. See Nitrogen Compounds chapter. See Clays Chapter. See Clays Chapter. See Cl	Ammonium iodina See Iodina chanter		Bronze See Conner chanter 4	.09
Amphibole asbestos. See Asbestos chapter. Andalustie. See Kyanite and Related Minerals chapter. See Kyanite and Related Minerals chapter. See Secondary Metals-Nonferrous chapter. 1875  See Secondary Metals-Nonferrous chapter. 1907 Apatite. See Feldspar, Nepheline Syenite, and Aplite chapter. 1994 Asplite chapter. 1995 See also 132 Babbitt. See Tin chapter. 1995 Baddeleyite. See Zirconium and Hafnium chapter. 1995 Baddeleyite. See Zirconium and Hafnium chapter. 1995 Ball clay. See Clays chapter 1995 Ball clay. See Clays chapter 1995 Barium sulfate. See Barite chapter 1995 Basatnasite. See Minor Metals chapter 1995 Basatnasite. See Minor Metals chapter 1995 Bautite chapter 1995 Basatnasite. See Minor Metals chapter 1995 Bautite chapter 1995 Bautite chapter 1995 Basatnasite. See Minor Metals chapter 1995 Bautite chapter 1995 Bautite chapter 1995 Basatnasite. See Minor Metals chapter 1995 Bautite chapter 1995 Bautite chapter 1995 Bautite chapter 1995 Basatnasite. See Minor Metals chapter 1995 Bautite chapter 1995 Bautine Mills See Minor Metals chapter 1995 Bautine Mills See Minor Metals Cerimical Part of Clays chapter 1995 Bautine Mills See Minor Metals Cerimical Part of Clays chapter 1995 Bautine Mills See Minor Metals Cerimical Part of Clays chapter 1995 Bautite Chapter 1995 Bautine Magnesium Compounds chapter 1995 Calcium and cadmium compounds chapter 1995 Calcium dadmium compounds chapter 1995 Calcium and cadmium compounds chapter 1995 Calcium and cadmium compounds chapter 1995 Calcium and cadmium compounds chapter 1995 Calcium and cadmium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compounds chapter 1995 Calcium and calcium compoun	Amorphous graphita See Graphite chapter		Brown ore See Iron Ore chapter 5	81
Amphibole asbestos. See Asbestos chapter. 205 Andalusite. See Kyanite and Related Minerals chapter. 281 Anthophyllite asbestos. 216 Anthracite. 58, 67, 307, 308 Antimony chapter. 187 See Secondary Metals-Nonferrous chapter. 187 Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter. 205 Arsenic chapter. 205 Arsenic chapter. 206 Arsenic chapter. 207 Asbestos chapter. 208 Asbestos chapter. 209 Asbestos chapter. 209 Asphalt. 209 Asphalt. 209 Babbitt. See Tin chapter. 209 Baddeleyite. See Zirconium and Hafnium chapter. 209 Baddeleyite. See Zirconium and Hafnium chapter. 209 Barite chapter. 209 Barite chapter. 209 Barite chapter. 209 Barite chapter. 209 Baritum sulfate. See Barite chapter. 209 Baritum sulfate. See Barite chapter. 209 Baritum sulfate. See Barite chapter. 209 Baritum sulfate. See Barite chapter. 209 Basatt. See Stone chapter. 209 Basatt. See Stone chapter. 209 Basatt. See Stone chapter. 209 Basatts. See Minor Metals chapter. 201 Bautic chapter. 209 Basatts. See Minor Metals chapter. 201 Bautic chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite chapter. 201 Barite ch			Brucita raw See Magnesium Compounds	-
Andaluste. See Kyanite and Related Minerals chapter. 58, 67, 307, 308 Anthophyllite asbestos. 216 Anthracite. 58, 67, 307, 308 Antimony chapter. 187 See Secondary Metals-Nonferrous chapter. 1007 Apatite. See Feldspar, Nepheline Syenite, and Aplite chapter. 199 Arsenic chapter. 199 Assenic chapter. 199 Assenic chapter. 199 See also. 132 Babbitt. See Tin chapter. 1167 See also. 707 Baddeleyite. See Zirconium and Hafnium chapter. 126 Ball clay. See Clays chapter 136 Barium and barium compounds. See Barite chapter. 129 Ball clay. See Clays chapter 136 Barium sulfate. See Barite chapter 199 Basath. See Stone chapter. 109 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See Stone chapter 199 Basath. See			chanter 7	75
erals chapter		200	Rurretones	
Anthoplyllite asbestos		602	Codmium and sodmium compounds chapter 9	
Antimony chapter See See Geondary Metals-Nonferrous chapter 187 Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter 194 Aplite chapter 194 Arsenic chapter 195 Arsenic chapter 195 See also 195 See also 195 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds 205 Calcium sulfate. (See Gypsum.)  See also 707 Carboratic (Synthetic) 223 Carbonatic (Synthetic) 223 Carbonatic (Synthetic) 225 Carbonatic (Synthetic) 226 Carboratic (Synthetic) 226 Carboratic (Synthetic) 227 Carboratic (Synthetic) 228 Carboratic (Synthetic) 228 Carboratic (Synthetic) 228 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (See Uranium chapter 1245 Vanadium chapter 1245 Vanadium chapter 1245 Cassiterite. See Strontium chapter 1167 Carboratic (Synthetic) 228 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synt	Anthonbullito ashestas	016	Coloronic morl	
Antimony chapter See See Geondary Metals-Nonferrous chapter 187 Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter 194 Aplite chapter 194 Arsenic chapter 195 Arsenic chapter 195 See also 195 See also 195 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds chapter 201 Calcium and calcium compounds 205 Calcium sulfate. (See Gypsum.)  See also 707 Carboratic (Synthetic) 223 Carbonatic (Synthetic) 223 Carbonatic (Synthetic) 225 Carbonatic (Synthetic) 226 Carboratic (Synthetic) 226 Carboratic (Synthetic) 227 Carboratic (Synthetic) 228 Carboratic (Synthetic) 228 Carboratic (Synthetic) 228 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (See Uranium chapter 1245 Vanadium chapter 1245 Vanadium chapter 1245 Cassiterite. See Strontium chapter 1167 Carboratic (Synthetic) 228 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synthetic) 229 Carboratic (Synt	Anthophymic aspestos	7 200	Coloined magnesite See Magnesium Com-	
See Secondary Metals-Nonferrous chapter1007ApatiteApliteSee Feldspar, Nepheline Syenite, and Aplite chapter465Arsenic chapter194465Calcium and calcium compounds chapter291Asbestos chapter195Calcium arsenate201Asphalt132Calcium arsenate201BabbittSee also132Calcium sulfateSee Gypsum.)BabbittSee Tin chapter1167CarbonatiteSee Gypsum.)BaddeleyiteSee Zirconium and Hafnium chapter136Chapter136CarbonatiteSee Uranium chapter1245Ball claySee Clays chapter355CarbonatiteSee Uranium chapter1245Barite chapter136CarbonatiteSee Strontium chapter1167See also135CarbonatiteSee Uranium chapter1245Vanadium chapter1245Vanadium chapter1245CarbonatiteSee Strontium chapter1167See also135CelestiteSee Strontium chapter1167CarbonatiteSee Strontium chapter1245CarbonatiteSee Strontium chapter1167CarbonatiteSee Strontium chapter1245Calcium arsenateSee Strontium chapter1245CarbonatiteSee Strontium chapter1245CelestiteSee Strontium chapter1167CelestiteSee Strontium chapter1167Stone chapter135Stone chapter135See also <td>Antimacite 00, 01, 00</td> <td>107</td> <td>nounds shanter 7</td> <td>75</td>	Antimacite 00, 01, 00	107	nounds shanter 7	75
Apalité   See Feldspar   Nepheline Syenite   and Aplite chapter   194     Arsenic chapter   194     Arsenic chapter   195     Ashests chapter   195     Ashests chapter   195     Ashests chapter   196     Ashests chapter   197     Ashests chapter   197     Ashests chapter   197     Ashests chapter   197     Ashests chapter   197     Ashests chapter   197     Ashests chapter   197     Babbitt   See Tin chapter   1167     Babbitt   See Tin chapter   1167     Badl clay   See Clays chapter   1358     Barium and barium compounds   See Barite     Carbonatite   See Uranium chapter   1245     Carbonatite   See Uranium chapter   1245     Carbonatite   See Uranium chapter   1167     Carbonatite   See Tin chapter   1167     Carbonatite   See Trin chapter   1167     Carbonatite   See Uranium chapter   1167     Carbonatite   See Trin chapter   1167     Carbonatite   See Uranium chapter   1167     Carbonatite   See Uranium chapter   1167     Carbonatite   See Uranium chapter   1167     Carbonatite   See Uranium chapter   1245     Vanadium chapter   1167     Carbonatite   See Uranium chapter   1167     Carbonatite   See Uranium chapter   1245     Vanadium chapter   1167     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Winchapter   1245     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Gerbonate (synthetic)   223     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Griden   1245     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Griden   1245     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Griden   1245     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Griden   1245     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Griden   1245     Carbonatite   See Uranium chapter   1245     Calcium arsenate   See Griden   1245     Carbonatic   See Uranium chapter   1245     Carbonatic   See Uranium chapter   1245     Calcium arsenate   See Griden   1245     Carbonatic   See Uranium chapter	Antimony chapter		Coloium ovenemide See Nitrogen Com-	••
Aplite. See Feldspar, Nepheline Syenite, and Aplite chapter.	A motite		nounds shantar	eso.
Aplite chapter	Apatite C. T. Janes Nambalina Granita and	821	Coloium and coloium compounds chanter	
Assenic chapter	Aplite shorter	465	Coloium arcanata	
Asbestos chapter	Aprile chapter			-
See also	Arseme chapter			280
Asphalt				
Balbitt   See Tin chapter   1167   See also   267   See also   268   See Zirconium and Hafnium chapter   1284   See Zirconium and Hafnium chapter   1284   See Zirconium and Hafnium chapter   1285   See Zirconium and Hafnium chapter   1285   See Zirconium and Hafnium chapter   1287   See also   1328   See Zirconium chapter   1187   Carbortam   1286   Carbortam   1287   Carbortam   1288   Carbortam   1288   Carbortam   1288   Carbortam   1288   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   Carbortam   1289   C			Carbonata (ampthatia)	22
See also	ASDIBIT.			
Baddeleyite. See Zirconium and Hafnium chapter	Badditt. See I'm chapter			
Ball clay. See Clays chapter.       355       Cassiterite. See Tin chapter.       1107         Barite chapter.       219       Celestite. See Storn chapter.       225         Barium and barium compounds. See Barite chapter.       219       See Clays chapter.       355         Barium sulfate. See Barite chapter.       219       See As Stone chapter.       1081         Basalt. See Stone chapter.       1081       See also 135, 137, 138, 590, 594, 1057, 1062, 1065, 1066       Cement chapter.       205         Basalt. See Stone chapter.       1373       Ceramics.       Clays chapter.       235         Bauxite chapter.       231       Ceramics.       224, 225, 731-733         Bentonite. See Clays chapter.       355       Cerium and rare earths. See Minor Metals	Del 0180	101	Cornetite See Transum chanter 19	
Ball clay. See Clays chapter.       355       Cassiterite. See Tin chapter.       1107         Barite chapter.       219       Celestite. See Storn chapter.       225         Barium and barium compounds. See Barite chapter.       219       See Clays chapter.       355         Barium sulfate. See Barite chapter.       219       See As Stone chapter.       1081         Basalt. See Stone chapter.       1081       See also 135, 137, 138, 590, 594, 1057, 1062, 1065, 1066       Cement chapter.       205         Basalt. See Stone chapter.       1373       Ceramics.       Clays chapter.       235         Bauxite chapter.       231       Ceramics.       224, 225, 731-733         Bentonite. See Clays chapter.       355       Cerium and rare earths. See Minor Metals	Baddeleyite. See Zirconium and Hainium	1000		
Barite chapter 219 Celestife. See Strontium chapter 1121 See also 250 See also 250 See also 250 See also 250 See Barite chapter 250 See Clays chapter 355 See Clays chapter 355 See Clays chapter 1081 See also 135, 137, 138, 590, 594, 1057, 1062, 1065, 1066 See also 135, 137, 138, 590, 594, 1057, 1062, 1065, 1066 Cement rock. See Cement chapter 295 Ceramics 250 Ceramics 254, 225, 731-733 Ceramics 250 Cerium and rare earths. See Minor Metals	chapter			
132   Cement chapter   295			Calcatite Cas Strontium chapter 11	
Barium and barium compounds. See Barite chapter. 219 Barium sulfate. See Barite chapter. 219 Basalt. See Stone chapter. 1081 Basalt. See Stone chapter. 1081 Bastnasite. See Minor Metals chapter. 1373 Bauxite chapter. 231 Clays chapter. 295 Clays chapter. 355 Ceramics. 204, 225, 731-733 Ceramics. 224, 225, 731-733 Cerium and rare earths. See Minor Metals				
Stone chapter   219   Stone chapter   1081   See also   135, 137, 138, 590, 594, 1057, 1062, 1065   1068   Basalts   See Stone chapter   1081   See also   135, 137, 138, 590, 594, 1057, 1062, 1065   1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1065   1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1065   1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 590, 594, 1057, 1062, 1068   See also   135, 137, 138, 138, 138, 138, 138, 138, 138, 138	See also	132		
Barium sulfate. See Barite chapter   219   See also   135, 137, 138, 590, 594, 1057, 1062, 1065, 1066   Basalt. See Stone chapter   1081   Cement rock. See Cement chapter   256   Bastnasite. See Minor Metals chapter   237   Ceramics   224, 225, 731-733   Bentonite. See Clays chapter   355   Cerium and rare earths. See Minor Metals		010	Sco Ciays chapter 222222222222222222222222222222222222	
Basalt. See Stone chapter				
Bastnasite. See Minor Metals chapter			Oce atsu 100, 101, 100, 090, 094, 1001, 1002, 1000, 10	nu Mr
Bauxite chapter 231 Ceramics 224, 225, 731-733 Bentonite. See Clays chapter 355 Cerium and rare earths. See Minor Metals	Basait. See Stone chapter		Clare shorter	
Bentonite. See Clays chapter	Bastnasite. See Minor Metals chapter		Clays chapter	ພປ ເອວ
	Bauxite cnapter		Ceramics 224, 220, 731-7	00
Beryl. See Beryllium chapter 253   chapter 15/3	Bentonite. See Clays chapter			272
	Beryl. See Beryllium chapter	253	chapter 13	,,,

	Page		Page
Cerium oxide	154	Ferrotitanium. See Ferroallovs chapter	478
Cesium. See Minor Metals chapter	1373	Ferrotungsten. See Ferroalloys chapter Ferrozirconium. See Ferroalloys chapter See Ferroalloys chapter	47
China slave Cas Classes has been	1118	Ferrovanadium. See Ferroalloys chapter	47
China clay. See Clays chapterChloride	355	Ferrozirconium. See Ferroalloys chapter	478
Chromite See Chromises shorter	223	Zirconium and Hafnium chapter	1363
Chromite. See Chromium chapter	339	vanadium cnapter	1291
ter	339	Vanadium chapter Fire clay. See Clays chapter Flagstone. See Slate chapter	355
See Ferroalloys chapter	475	Fluorine and fluorine compounds. See Fluor-	1067
Chrysotile. See Asbestos chapter	205	spar and Cryolite chapter	493
Cinder (volcanic). See Pumice chapter	957	spar and Cryolite chapter Fluorspar. See Fluorspar and Cryolite chap-	490
Cinnabar. (See Mercury.)	•	i ter	493
Clays chapter	355	See also	693
See Employment and Injuries chapter	127	i Forsterite	369
See also 65, 243, 30 Coal 58-60, 62, 63, 72, 30	6, 307	l Erench challs	1148
Coal 58-60, 62, 63, 72, 30	7, 308	Fuller's earth. See Clays chapter	355
Cobalt and cobalt compounds chapter	379	i Cradonnie	1380
See Nickel chapter	869	Galena. See Lead chapter	687
See also 203, 437–439, 45 Coke 203, 437–439, 45		Galena. See Lead chapter Gallium. See Minor Metals chapter	1373
Colemanite	618	See atso 24	
Columbite. See Columbium-Tantalum chap-	266	Garnet. See Abrasive Materials chapter	139
ter	393	Gem Stones chapter	511
Columbium. See Columbium-Tantalum chap-	090	Germanium See Minor Motals chapter	511 1373
ter	393	Germanium. See Minor Metals chapter———Glauber's salt. See Sodium and Sodium Com-	1010
See also 52	. 1183	pounds chapter	1075
Concrete. See Cement chapter	295	Glauconite. See Minor Nonmetals chapter	1391
Slag—Iron Blast-Furnace chapter	1057	Gold chapter	525
See also 67, 29	3, 294	See Employment and Injuries chapter	127
Copper chapter	409		409
See Employment and Injuries chapter	127	Silver chapter	1037
Cobalt chapter	379	Copper chapter Silver chapter See also. 925, 926, 930, 93 Granite. See Stone chapter	7, 938
Gold chapter	525	Granite. See Stone chapter	1081
Lead chapter	687	See also13 Granules. See Slate chapter13	5–138
Nickel chapter Secondary Metals-Nonferrous chapter	869	Granules. See Slate chapter	1067
Silver chapter	1007 1037	Graphite chapter Gravel. See Sand and Gravel chapter	547
Zinc chapter	1317	Greensand. See Minor Nonmetals chapter	985
Zinc chapter 49, 199, 858, 867, 92	6 937	Greenstone	1391 1095
Conner alloys See Conner chanter	409	GreenstoneGrinding pebbles. See Abrasive Materials chapter	1090
Cornwall stone	470	chapter	139
Corumuum 143, 14	4. 155	Grindstones. See Abrasive Materials chapter	139
Crocidolite. See Asbestos chapter	205	Gross Almerode	5. 358
Cryolite. See Fluorspar and Cryolite chapter.	493	Guano. See Phosphate Rock chapter	905
Crystalline graphite. See Graphite chapter	547	Gypsum chapter	559
Diamond (gem). See Gem Stones chapter	511	see also	307
Diamond (industrial). See Abrasive Materials		Hafnium. See Zirconium and Hafnium chap-	
chapter (G. Jidan	139	ter	1363
Diatomaceous earth. (See diatomite.)		Hematite. See Iron Ore chapter	581
Diatomite chapter Dolomite. See Magnesium Compounds chap-	457	Iron and Steel chapter Hones	613
	772		155
Stone chapter	775 1081	Hübnerite. See Tungsten chapter	1225
Dolomite (dead-burned). See Lime chapter	739	Hydraulic cements. See Cement chapter——	$\frac{295}{295}$
Magnesium Compounds chapter	775	Hydraulic lime. See Cement chapter——— Hydrogen sulfide————————————————————————————————————	1131
Stone chapter	1081		223
Dumortierite. See Kyanite and Related Min-		Ilmenite. See Titanium chapter	1199
erals chapter	683	Indian kyanite. See Kyanite and Related	1100
Emery. See Abrasive Materials chapter	139	Minerals chapter	683
Epsom salts. See Magnesium Compounds		Indium. See Minor Metals chapter	1373
chapter Ethylene dibromide	775	Iodine and iodine compounds chapter	575
Ethylene dibromide	276	Iridium. See Platinum-Group Metals chap-	
Euxenite 39: Feberite. See Tungsten chapter		ter	923
Feldspar. See Feldspar, Nepheline Syenite,	1225	Iron Ore chapter See Employment and Injuries chapter	581
and Aplite chapter	465	Iron and Steel chapter	127
See also	836	Iron and Steel chapter	613
See also	475	Iron and Steel chanter	4, 809
See also	654	See also 45-47, 30 Iron and Steel chapter 860, 874, 877-879 Iron and Steel Scrap chapter	1050
Ferroboron. See Boron chapter	265	Iron and Steel Scrap chapter	641
Ferroalloys chapter	475	See also	623
Ferrochromium. See Chromium chapter	339	Iron oxide. See Iron Oxide Pigments chapter	671
Ferroalloys chapter	475	Iron Oxide Pigments chapter	671
Ferrocolumbium. See Columbium enapter— Ferrocolumbium. See Columbium-Tantalum chapter— Ferrocalloys chapter	1	Isotopes. See Uranium chapter	1245
cnapter	393	Jewel Bearings chapter	679
Ferroalloys chapter Ferromanganese. See Ferroalloys chapter	475	Isotopes. See Uranium chapter Jewel Bearings chapter Kaolin. See Clays chapter	355
Manganese chapter	475	See also	307
Manganese chapter Ferromolybdenum. See Ferroalloys chapter	789	Kernite	5 <b>, 266</b>
Molybdenum chapter	475	Longhoinite Language August Longhoinite	683
Molybdenum chapter Ferronickel. See Ferroalloys chapter	857 475	Langbeinite 940 Lanthanum	J, 941
Nickel chapter	869	Lanilli	1381
Nickel chapter Ferrophosphorus. See Ferroalloys chapter	475	Lapilli Lead and Lead Compounds chapter	957
PROSDRATE Kock chapter	905	See Employment and Injuries chapter	687 127
Ferrosilicon. See Ferroalloys chapter Ferrotantalum-columbium. See Columbium-	475	Copper chapter	409
Ferrotantalum-columbium. See Columbium-		Copper chapter Lead and Zinc Pigments and Zinc Salts	±09
1 antaium cnapter	393	chapter	725
rerroallovs chapter	475	chapter Secondary Metals—Nonferrous chapter	1007
Ferrotellurium	1388	Silver chapter	1037

Page Lead and Lead Compounds chapter—Con.	Nickel alloys. See Nickel chapter 869
Zinc chapter 131	Nickel anoys. See Nickel chapter. 393
Zinc chapter 131 See also 199, 259, 26 Lead and Zinc Pigments and Zinc Salts chap-	Nitrogen Compounds chapter 889
ter	Ocher. See Iron Oxide Pigments chapter 671 Oil 307, 308
See Lead chapter 68	7   Oilstone
Zinc chapter 131 Lead, antimonial. See Antimony chapter 18	
Lead chapter 68	Orange mineral. See Lead and Zinc Pigments
Lead arsenate 201, 736, 73 Lepidolite. See Lithium chapter 75	
Leucoxene. See Titanium chapter 119	chapter 923
Lightweight aggregate, See Clays chapter 35. Perlite chapter	
Pumice chapter 95	7 Ovide 223
Slag—Iron Blast-Furnace chapter 105	Oystershell. See Stone chapter 1081
Slate chapter   106     Lime chapter   73     See Stone chapter   108     See also   136-138, 29     Limestone, See Stone chapter   108     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308     See also   136-138, 308	Palladium. See Platinum-Group Metals chap-
See Stone chapter 108	t ter 923 Paris green 203
Limestone. See Stone chapter 108	Paris green 203 Periclase. See Magnesium Compounds chap-
	10
Litharge. See Lead and Zinc Pigments and Zinc Salts chapter 72	Perlite chapter 899 5 Petalite. See Lithium chapter 755
Lithium chapter 75	Phlogopite. See Mica chapter 831
Lithopone. See Lead and Zinc Pigments and Zinc Salts chapter 72	Phosphate Rock chapter
Barite chapter 21	Pig iron. See Iron and Steel chapter 613
Magnesia. See Magnesium Compounds chap- ter	Finite. See Talc, Soapstone, and Pyrophyl-
Magnesite. See Magnesium Compounds	lite chapter 1143
chapter 77 Magnesium chapter 76	
Secondary Metals-Nonferrous chapter 100	7 Plutonium. See Uranium chapter 1245
Magnesium alloys 1155, 1158, 115	9   Pollucite 1374
Magnesium-base scrap 131 Magnesium Compounds chapter 77	Lime chapter 739
Magnetite. See Iron Ore chapter 58	Slag—Iron Blast-Furnace chapter 1057
See also 38 Manganese and manganese compounds chap-	Potash chapter 279 Potassium bromide. See Bromine chapter 275
ter 78	Potassium cyanide 946-948
See Iron Ore chapter 58 Iron and Steel chapter 61	
See also	3   chapter 889
Manganese alloys. See Manganese chapter 78 Ferroalloys chapter 47	
Manganese ore. See Iron and Steel chapter 61	Pulpstones. See Abrasive Materials chapter. 139
Manganiferous zinc residuum 79 Marble. See Stone chapter 108	
See also 136-13	8 Pyrites. See Sulfur and Pyrites chapter 1125
Marl 306, 30 Masonry cement. See Cement chapter 29	
Meerschaum. See Minor Nonmetals chapter. 139	1   Pyrolusite 810
Mercury chapter         81           See also         19	
Methyl bromide. See Bromine chapter 27	Quartz. See Abrasive Materials chapter 139
Mica chapter 83 Mica schist. See Mica chapter 83	
See also 108	2   Quartz Crystal (Electronic Grade) chapter 967
Millstones. See Abrasive Materials chapter. 13 Mineral black. See Iron Oxide Pigments	9 Quartzite. See Stone chapter 1081 Quicklime. See Lime chapter 739
chapter 67	1   Quicksilver. See Mercury chapter
Mineral pigments. See Lead and Zinc Pigments and Zinc Salts chapter	Radioisotopes. See Uranium chapter 1245 5 Radium. See Minor Metals chapter 1373
Iron Oxide Pigments chapter 67	Rare-earth metals and compounds. See Minor
Titanium chapter 119 Mineral wool. See Minor Nonmetals chapter 139	
See also 1073, 107	Refractories. See Clays chapter
Minor Metals chapter 137 Misch metal. See Minor Metals chapter 137	3   Review of Metallurgical Technology chapter 45   Review of the Mineral Industries chapter 1
Molybdenite. See Molybdenum chapter 85	7 Review of Mining Technology chapter 55
Molybdenum and molybdenum compounds	Rhenium. See Minor Metals chapter 1373
Monazite. See Minor Metals chapter 137	923 ter 923
Thorium chapter 115	5 Rock salt. See Salt chapter 973
Mullite. See Kyanite and Related Minerals	Rottenstone 140
chapter 68 Muriate, See Potash chapter 93	Rubidium. See Minor Metals chapter 1373
Muscovite. See Mica chapter 83	I Jewel Bearings chapter 679
Muscovite. See Mica chapter	Ruthenium, See Platinum-Group Metals chapter 923
Nepheline syenite. See Feldspar, Nepheline Syenite, and Aplite chapter 46	chapter
Nickel and nickel compounds chapter 86	9   Salt chapter 973
See Cobalt chapter 37 Copper chapter 40	
Ferroalloys chapter 47	5   Samarskite 1380
See also 936, 93	
200 00000000000000000000000000000000000	

<b>D</b>	age	•	D
Sand and sandstone (ground). See Abrasive	age		Page
Materials chapter	139	chapter	112
Sand, industrial. See Sand and Gravel chap-		Sulfuric acid. See Sulfur and Pyrites chapter.	1125
Sandstone See Stone chanter	985	See also	1332
Sandstone. See Stone chapter 1 See also 136-138, 139, Santorini earth	141	Sulfur mud	672
	965	Sylvinite. (See Potash.) Sylvite. (See Potash.)	
Sapphire. See Gem Stones chapter	511	Synthetic cryolite	509
Jewel Bearings chapter	679	Taconite 45	5, 606
	1225 957	Talc. See Talc, Soapstone, and Pyrophyllite	1149
Sea water	275	chapter	1143 132
Selenium and selenium compounds See	- 1	Talc, Soapstone, and Pyrophyllite chapter	1143
Minor Metals chapter	1373	Tantalite. See Columbium-Tantalum chan-	i.
Tale, Soapstone, and Pyrophyllite chapter1	831	Tantalum See Columbium Tantalum chan	393
Serpentine 878. 1	1082	terTantalum. See Columbium-Tantalum chap- ter	393
Serpentine 878, 1 Shale. See Clays chapter 5tone chapter 1 Sharpening stones. See Abrasive Materials chapter	355	ter Thorium chapter	1155
Stone chapter 1	1081	See also	1183
chapter	139	Tellurium. See Minor Metals chapter	1373
Chapter	671	Terneplate. See Tin chapter	1167 665
Silica. See Sand and Gravel chapter	985	Terrazzo	1106
	307	Thallium. See Minor Metals chapter	1373
See also Silicomanganese. See Manganese chapter	789	Thallium. See Minor Metals chapter Thorite. See Thorium chapter	1155
Silicon. See Minor Metals chapter 1 See also 1	1373 50	Thorium chapter	1155
Silicon carbide. See Abrasive Materials	50	Tin chapter  See Seconday Metals—Nonferrous chapter  Titanium chapter	1167 1007
chapter	139	Titanium chapter	1199
Sillimanite. (See Kyanite.)		See Ferroalloys chapter Titanium dioxide pigments. See Titanium	475
Silver chapter 1	037	Titanium dioxide pigments. See Titanium	
See Employment and Injuries chapter	127 409	chapter	1199
	525	Traprock. See Stone chapter	1081
Lead chapter	687		1118
Zinc chapter 1	317	Tripoli. See Abrasive Materials chapter	139
Silvery pig iron. See Ferroalloys chapter	475	Trona. See Sodium and Sodium Compounds	
Sinter. See Iron Ore chapter	581	chapter————————————————————————————————————	1075
Slag—Iron Blast-Furnace chapter1	057	chapter.	139
Slag—lime cement. See Cement chapter	295	chapterTungsten chapter	1225
Slate chapter 1	.067	See rerroamoy enapter	475
See also 136-		See also	, 859
Slip clay. See Clays chapter Soapstone. See Talc, Soapstone, and Pyro-	355	Himber See Iron Ovide Pigmente chanter	671
phymic chapter I	143	Uranium chapter	1245
See also	.082	Uranium chapter See also Vanadium chapter Vanadium chapter Vanadium chapter	1298
Soda ash. See Sodium and Sodium Com-		Vanadium chapter Vandyke brown. See Iron Oxide Pigments	1291
pounds chapter 1. See also 975,	075	chapter	0171
Sodium aluminate. See Bauxite chapter	231	Venetian red. See Iron Oxide Pigments	671
Sodium and Sodium Compounds chapter 10	075	chapter	671
Sodium arsenate	203	chapter. Vermiculite chapter Volcanic cinder. See Pumice chapter. Water chapter. See also	1301
	275	Volcanic cinder. See Pumice chapter	957
Sodium nitrate See Nitrogen Compounds	575	See also	1307
chapter	889	White lead. See Lead and Zinc Pigments and	, 244
Sodium tetraborate	265	Zinc Salts chapter	725
Spiegeleisen. See Manganese chapter	789	Whiting .	1106
Spodumene. See Lithium chapter Steatite. See Talc, Soapstone, and Pyro-	755	Witherite. See Barite chapter. Wolframite. See Tungsten chapter. Wolfastonite. See Minor Nonmetals chapter. Wolman salts	219
DUVING CHADIET	143	Wollastonite See Minor Normatals abouter	$\frac{1225}{1391}$
Steel. See Iron and Steel chapter	613	Wolman salts	201
Iron Ore chapter	581	wonderstone	$1\overline{154}$
Manganese chapter	789	Y ttrium	1380
Manganese chapter 1: See also 51, 52, 71,	225	Zinc chapter	1317
Steel scrap. See Iron and Steel Scrap chapter.	641	See Employment and Injuries chapter	127 409
Stibnite. (See Antimony.)	J-1	Gold chapter	525
Stone chapter 10	081	Copper chapter	687
Stoneware clay. See Clays chapter	355	Lead and Zinc Pigments and Zinc Salts	
Strontianite. See Strontium chapter 1:	121	cnapter	725
	121	Silver enapter	1037
	223		49 1363
	125	Zirconium. See Zirconium and Hafnium	
See also 132,	387	chapter	1363

# World Review Index

Page	Page
Aden: Salt	Australia—Continued
Afghanistan:	Arsenic 204
Beryl	Asbestos 214, 217
Chromium 352	Barite 228
Salt 983	Bauxite 245, 250, 251
Talc, soapstone, and pyrophyllite 1151	Beryl
Albania:	Bismuth263, 264
Cement332	Cadmium290
Chromium	Cement 333, 337
Algeria:	Chromium 352
Antimony	Clays
Barite 228	Cobalt
Cement 333	Columbium and tantalum 403, 407
	Copper41, 442, 455, 456
	Distantia 469 464
Diatomite 463	Diatomite 463, 464 Feldspar 472
Gypsum	
Iron ore 609, 612	Fluorspar 507, 509
Lead	Gem stones 521
Mercury 826	Gold540, 541, 542
Phosphate rock 918	Graphite555
Pyrites1139	Gypsum572, 573
Salt	Iron ore 609
Silver 1054	Iron and steel 633, 634, 639
Tungsten 1242	Iron oxide pigments678
Zina 1350 1360 1360	Lead 712, 713, 722-724
Angaur Island: Phosphate rock 919	Magnesite 784, 788
Angola:	Manganese ore 807, 812
Cement 333	Mica 854. 855
Copper41, 442	Molybdenum 867
Diamonds	Nickel 887
Gold542	Nitrogen compounds 896
Gypsum572	Phosphate rock 919
Manganese ore 806	Platinum-group metals 937
Mica853, 854	Potash
Phosphate rock 918	Pyrites 1139
Salt	Salt982, 984
Vanadium 1299	Silver 1052 1054
Zine1350	Sodium and sodium compounds 1080
Argentina:	Qtono   1007 1110
Antimony 198	Tale, soapstone, and pyrophyllite 1150, 1151
Asbestos 214	1 110114111 1100
Barite	Tin 1187, 1188, 1189, 1190
Beryl	Titanium 1215, 1216, 1217, 1218
Bismuth 264	Tungsten 1241, 1242
Boron 274	Uranium 1289
Cement332	Vermiculite 1306
Columbium and tantalum 403	Zinc
Diatomite 463	Zirconium 1370, 1371
Feldspar 472	Austria:
Fluorspar 507	Aluminum 179
Gold	Antimony 198
Graphite555	Barite
Gypsum571	Bauxite 245
Iron ore 608	Cement 332
Iron and steel 633-635	Copper441, 442
Iron and steel scrap666, 667	Diatomite 463
Iron oxide pigments	Feldspar 472
Lead 711, 713, 717	Graphite 555
Lithium 762	Gypsum 571
Manganese ore 806	Iron ore 608, 610
Mica	Iron and steel 633, 634
Salt 982	Iron and steel scrap 667
Silver 1053	Lead 712, 713, 718
Quifus 1190 1140	Magnesite 784-787
Sulfur 1138, 1140 Talc, soapstone, and pyrophyllite 1151	Manganese ore 809
Tin	Mercury 826
Tungsten 1241, 1242	
Uranium 1271, 1272	
Vanadium 12/1, 12/2	
Vanadum 1299 Vermiculite 1306	Nitrogen compounds 895, 896 Phosphate rock 918
Zinc	
Australia:	
Australia:	
	Silver 1053
Antimony	Talc, soapstone, and pyrophyllite 1150, 1151

rase.	Page
Austria—Continued	Brazil—Continued
Thorium 1163	Lithium 76
Uranium 1274 Zinc 1350, 1351, 1356	Magnesite783.78
Zinc	Manganese ore 806, 800 Mica 853, 854
Bahamas: Salt982	Mica
Bechuanaland:	Nickel
Asbestos 214, 216	Phosphate rock 91
Gold	Quartz crystal 97
Silver1054	Salt98
Belgian Congo:	Silver 105
	Tole goodstone and never health 1150 115
Aluminum 184	Talc, soapstone, and pyrophyllite 1150, 115
Bismuth 264	Thorium 1162, 116 Tin 1187, 1188, 1189, 119
Cadmium 290	<u>Tin</u>
Cement333	1 Titanium 1216
Cobalt	1 Tingsten 1942 1943
Cobalt       388, 390, 391         Copper       441, 442, 451, 452	Zirconium 1370, 137 British Borneo: Sarawak:
Diamonds 521, 522	British Borneo: Sarawak:
Germanium 1376	Antimony 198
Gypsum 572	Phosphate rock 918
Lead 712	
Lithium 763	British Guiana: Bauxite 245, 24
Manganese ore 806, 811	Columbium and tantalum 405
Monogito 1900	Columbium and tantalum 403
Monazite 1383 Platinum-group metals 937	Diamonds 52
Platinum-group metals937	Gold 541
Salt	British Somaliland:
Silver 1054	Beryl
Steel 634	Phosphate rock 918
Uranium 1286, 1287	Bulgaria:
Vanadium 1300	Asbestos 214
Zinc	Cement 332
Belgian Congo (including Ruanda-Urandi):	Gypsum571
Beryl	Tron ore
Columbium and tantalum 403, 406	Iron and steel 633 634
Gold	Iron and steel 633, 634 Lead 712, 713, 715
Tin	Manganese ore 800
Tungsten 1241, 1242	Salt98
Belgium:	Zinc
Arsenic 203, 204	Burma:
	Antimony198
	Cement 333, 335
Fluorspar 507	Gold541
Germanium 1376, 1377	Gypsum. 572
Iron ore 608	Lead712, 713, 720
Iron and steel 633, 634	Manganese ore 806, 810
Lead	Nickel 880, 885
Nitrogen compounds 896	Salt 988
Phosphate rock 918	Silver 1058
Tin1188	Tin 1187, 1192, 1193
Uranium 1274	Tungsten 1242 1243
Zine1351	Zinc
Belgium-Luxembourg:	Conodo
Selenium1386	Aluminum 179 180
Tin1189	Antimony 196, 198
Bolivia:	Arsenic 203 204
Antimony 196, 198	Arsenie 203, 204 Asbestos 213–215
Asbestos 214	Barita 227 226
Bismuth 264	Barite 227, 228 Bismuth 263, 264
Cement 332	Cadmium 289, 290
Columbium and tantalum 403, 405	Calcium and calcium compounds 294
Copper 441	Cement 331, 332
Fluorspar 507	Chromium 352
Gold	Clays378
Lead	Cobalt 388, 389
	Columbium and tentalum 402 404 404
Mercury         826           Nickel         880	Columbium and tantalum 403, 404, 405
NICKEL 000	Copper440-445
Silver1053, 1054	Diafomite 462, 465 Feldspar and nepheline syenite 471, 475
Sulfur1138	Feldspar and nepheline syenite
<u>Tin</u>	Fluorspar 506, 507 Gold 541, 542, 542
Tungsten 1241, 1242	Gold
Zine 1350, 1355	Graphite 55
Brazil:	Gypsum 570, 571 Iron ore 606-608
Aluminum 179, 181	Iron ore 606-609
Arsenic 204	Iron and steel 632–634
Asbestos 214	Lead711, 713-715
Barite	Lead
Bauxite 245, 246	Lithium 760-762
Beryl	Magnesium 772
Cement	Magnesite 78
Chromium 359	Mica
Columbium and tantalum 403, 405	Molybdenum
Feldspar 472	Niekol 900, 804
Fluorspar	Nickel         880–884           Nitrogen compounds         895, 896
Fluorspar 507	Porlish
Diamonds 522	Perlite 904
Gold	Phosphate rock 917, 918 Platinum-group metals 936, 937
Graphite 555	riatinum-group metais 936, 937
Gypsum571	Potash
Iron ore 608, 610	Salt
Iron and steel 633-635 Lead 711 713 717	Selenium 1385, 1386
1.090 711 719 717	Qilyor 1059 1054 1055

Page	Page
Canada—Continued	Costa Rica—Continued
Sodium and sodium compounds 1080 Stone 1097, 1119	Uranium 1273
	Parita 999
Sulfur and pyrites 1138, 1139 Tale, soapstone, and pyrophyllite 1150, 1151, 1152	Cement 332 Chromium 351, 352
Tellurium1388	Copper 441
Tellurium 1388 Thorium 1162	Gold541
Tin 1187, 1188, 1189, 1193	Gvpsum 571
Titanium 1216, 1218, 1219 Tungsten 1242, 1243	Iron and steel 632
Uranium1266-12/1	Lead (1)
Zinc	Manganese ore 805, 806 Nickel 880, 884, 885
Canary Islands: Salt 984	Pyrites 1139
Cape Verde Islands: Salt 984	Salt 982
Cevion: 333	
Graphite 555, 556	Zine 1350, 1353
Gypsum 572 Mica 854	
Salt 983	Chromium352
Thorium 1163	Copper41,449
Titanium 1219 Uranium 1285	Gypsum 572 Iron oxide pigments 678
Chile:	Magnesite 784
Asbestos 214	Salt 983
Barite 228 Cement 332	Sulfur and pyrites 1139, 1142 Czechoslovakia:
Copper 441, 442, 446, 447, 448	Aluminum 179, 181
Distomite 463	Antimony 198 Cement 332
Feldspar 472 Gold 541	
Gypsum571	Iron ore 608
Iron ore 608, 610	Iron and steel 633, 634 Lead 712, 713
Iron and steel 633, 634 Lead 711, 713, 717	Magnesite
Manganese ore 806, 808	Mercury 826
Mercury         826           Molybdenum         867	Nitrogen compounds 896 Silver 1053
Nitrogen compounds 896	Tin 1189
Phosphate rock 918	Uranium 1274, 1275
Potash 951 Salt 982	
Silver 1053	Cement 332
Sulfur 1138, 1141 Tale, soapstone, and pyrophyllite 1151	Diatomite 462, 463 Iron and steel 633, 634
Zinc	Nitrogen compounds 896
China:	Tin1189
Aluminum 179 Antimony 198	Uranium 1275 Dominican Republic:
Bismuth 264	Bauxite 246
Cement 333, 335	Cement 332
Copper	Gold
Gypsum 572	Iron ore 608
Iron ore 608 Iron and steel 633, 634, 638	Nickel
Lead	Uranium 1273
Magnesium 772	Ecuador:
Mercury 826 Phosphate rock 918, 920	Cement 332   Copper 441
Salt 983	Gold 541
Silver 1053	Gypsum 571
Tin1187, 1188 Tungsten1242, 1243	Iron oxide pigments 678
Zine 1351	Salt 982
Christmas Island: Phosphate rock 918	Silver
Colombia: Barite	Sulfur
Cement 332	Egypt:
Gem Stones 521	Asbestos 214 Barite 228
Gold	Cement 333, 336, 337
Iron ore 608	Chromium 352
Iron and steel 633, 634 Mercury 826	Diatomite 463 Gold 542
Platinum-group metals 936, 937	Graphite
Salt	Gypsum572
Silver	Lead 712 Magnesite 784
Uranium 1273	Manganese ore 806
Costa Rica:	Nitrogen compounds 896, 897
Bauxite	Phosphate rock 918, 921
Gold	Salt 984
Manganese ore 805	Steel
Salt 982 Silver 1053	Tale, seapstone, and pyrophylite

Egypt—Continued		French Cameroon:	
Titanium	1216	Gold	54
Tungsten	1242	Tin.	118
Uranium	1287	Titanium	121
Vermiculite	1306	French Equatorial Africa:	141
Zine			40
	1350	Columbium and tantalum	40
Zirconium	1371	Diamonds 521	1, 52
Eritrea:		Gold	54
Feldspar	472	Lead 719	2, 72
Gold	542	Phosphate rock	92
Potash	951	Salt	98
Salt	984	Titanium	121
Ethiopia:	001	Zine	
	000	Manual Carina	135
Cement	333	French Guiana:	
Gold	542	Columbium and tantalum	403
Gold Platinum-group metals	937	Gold	54
Salt	984	Iron ore	609
Fiji Islands:		French Morocco:	-
Gold	542	Antimony	198
Manganese ore 80		Asbestos	
Silver		Dorito	214
	1054	Barite	22
Finland:		Beryl	258
Asbestos		Cement	333
Cement	332	Cobalt388	391
Cobalt	390	Columbium and tantalum	406
Copper44		Copper	441
Diatomite	463	Fluorspar	507
Feldspar	472	Gold	
Gold		Granhita	542
Graphita	541	Graphite	558
Graphite	556	Gypsum	572
Gypsum	571	Iron ore	609
Iron ore	608	Lead 712, 713	. 721
Iron and steel 633	3, 634	Manganese ore	806
Lead	2.718	Mica	854
Molybdenum	867	Molybdenum	867
Nickel 880	001	Nickel	
Mittagen compounds		Dhambata and	880
Nitrogen compounds	896	Phosphate rock 918	
Pyrites	1139	Pyrites	1139
Selenium	1386	Salt	984
Silver	1053	Silver	1054
Stone 1097,		Tin1187,	1188
	1151	Tungsten	1242
Tin	1189	Zine	1960
Titanium 1216,		French Somaliland: Salt.	
		From ab West Africa	984
	1242	French West Africa:	
Uranium	1275	Aluminum 184	, 185
_ Zinc 1350,	1357	Bauxite245	, 250
France:	1357	Cement	
	1357	Cement	333
France: Aluminum	179	Cement Diamonds	333 522
France: Aluminum Antimony	179 198	Cement Diamonds Gold	333 522 542
France: Aluminum Antimony Arsenic	179 198 204	Cement. Diamonds. Gold Manganese ore	333 522 542 812
France: Aluminum Antimony Arsenie. Asbestos	179 198 204 214	Cement	333 522 542 812 921
France: Aluminum Antimony Arsenic Asbestos Barite	179 198 204 214 228	Cement. Diamonds. Gold. Manganese ore. Phosphate rock. 918, 920,	333 522 542 812 921 984
France: Aluminum Antimony Arsenic Ashestos Barite Baute 245	179 198 204 214 228 5, 248	Cement	333 522 542 812 812 921 984 1187
France: Aluminum Antimony Arsenie Asbestos Barite Barutie Barute 245	179 198 204 214 228 5, 248 258	Cement. Diamonds. Gold. Manganese ore. Phosphate rock. Salt Tin. Zirconium	333 522 542 812 921 984
France:	179 198 204 214 228 5, 248	Cement. Diamonds. Gold. Manganese ore. Phosphate rock. Salt Tin. Zirconium	333 522 542 812 , 921 984 1187 1371
France: Aluminum Antimony Arsenie. Asbestos. Barite. Bauvite. Beryl. Bismuth Cadmium	179 198 204 214 228 5, 248 258 264 290	Cement	333 522 542 812 812 921 984 1187
France: Aluminum Antimony Arsenie. Asbestos. Barite. Bauvite. Beryl. Bismuth Cadmium	179 198 204 214 228 5, 248 258 264 290	Cement	333 522 542 812 , 921 984 1187 1371 1216
France:     Aluminum     Antimony     Arsenie     Asbestos     Barite     Bauvite     Bary     Bismuth     Cadmium     Cement     332, 334	179 198 204 214 228 5, 248 258 264 290 1, 335	Cement. Diamonds. Gold. Manganese ore. Phosphate rock. Salt. Tin Zirconium Gambia: Titanium Germany, East: Aluminum	333 522 542 812 , 921 984 1187 1371 1216
France:     Aluminum     Antimony     Arsenie.     Asbestos.     Barite     Baurite     Beryl     Bismuth     Cadmium     Cement	179 198 204 214 228 5, 248 258 264 290 4, 335	Cement Diamonds Gold Manganese ore. Phosphate rock. 918, 920, Salt Tin Zireonium Gambia: Titanium Germany, East: Aluminum Barite.	333 522 542 812 921 984 1187 1371 1216 179 228
France:     Aluminum     Antimony     Arsenie.     Asbestos.     Barite.     Bauvite.     Beryl.     Bismuth     Cadmium     Cement.     332, 334 Copper.     411 Diatomite.     463	179 198 204 214 228 5, 248 258 264 290 4, 335 442 5, 464	Cement.   Diamonds.   Gold.   Manganese ore.   Phosphate rock.   918, 920, Salt.   Tin.   Zirconium.   Gambia: Titanium   Germany, East:   Aluminum   Barite.   Cement.   Cement.   Cement.   Cement.   Cement.   Cement.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Coment.   Come	333 522 542 812 921 984 1187 1371 1216 179 228 332
France:     Aluminum     Antimony     Arsenic.     Asbestos.     Barite.     Baryl:     Beryl.     Bismuth.     Cadmium     Cement.     Copper.     41 Diatomite.     463 Feldspar.	179 198 204 214 228 5, 248 258 264 290 4, 335 442 5, 464 472	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442
France:     Aluminum     Antimony     Arsenie	179 198 204 214 228 5, 248 258 264 290 4, 335 442 5, 464 472 507	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507
France:     Aluminum     Antimony     Arsenie.     Asbestos.     Barite.     Barutie.     Baryl.     Bismuth     Cadmium     Cement.     Jay 334 Copper.     441 Diatomite.     463 Feldspar Fluorspar Germanium	179 198 204 214 228 5, 248 258 264 290 335 442 472 507 1377	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507
France:	179 198 204 214 228 5,248 258 264 290 4,335 4442 5,442 5,464 472 507 1377 541	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634
France:     Aluminum     Antimony     Arsenie.     Asbestos.     Barite.     Bauvite.     Beryl.     Bismuth     Cadmium     Cement.     Cadmium     Copper.     411 Diatomite.     Feldspar Fluorspar Germanium Gold Graphite.	179 198 204 214 228 5, 248 258 264 290 4, 335 4442 5, 442 5, 464 472 1377 507 1377 541 557	Cement.   Diamonds.   Gold.   Manganese ore.   Phosphate rock.   918, 920, Salt.   Tin.   Zirconium.   Gambia: Titanium   Germany, East:   Aluminum   Barite.   Cement.   Copper.   441, Fluorspar   Iron ore.   Iron and steel.   633, Lead   772	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713
France:     Aluminum     Antimony     Arsenie.     Asbestos.     Barite.     Barutie.     Beryl.     Bismuth.     Cadmium     Cement.     Copper.     441     Diatomite.     463     Feldspar     Fluorspar     Germanium     Gold     Graphite.     Gypsum	179 198 204 214 228 5,248 258 264 290 4,335 4442 5,442 5,464 472 507 1377 541	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713
France:     Aluminum     Antimony     Arsenie.     Asbestos.     Barite.     Barutie.     Beryl.     Bismuth.     Cadmium     Cement.     Copper.     441     Diatomite.     463     Feldspar     Fluorspar     Germanium     Gold     Graphite.     Gypsum	179 198 204 214 228 5, 248 258 264 290 4, 335 3, 442 507 1377 541 557 571	Cement	333 5225 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897
France:	179 198 204 214 228 5, 248 258 264 290 4, 335 442 507 1377 541 557 608	Cement	333 5225 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897
France:	179 198 204 214 228 5, 248 258 264 290 4, 335 442 507 1377 541 557 608 634	Cement.   Diamonds.   Gold.	333 5225 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953
France:   Aluminum	179 198 204 214 228 5, 248 258 264 290 335 442 507 1377 541 608 638	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 915 305 305
France:	179 198 204 214 228 5, 248 258 264 290 335 442 507 1377 541 557 571 608 638 678	Cement.   Diamonds.   Gold.	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 1053 1188
France:	179 198 204 214 228 5, 248 264 290 335 4, 335 442 507 1377 541 557 608 634 678 718	Cement	333 522 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 1053 1053
France:     Aluminum     Antimony     Arsenie	179 198 204 214 5,248 5,248 258 264 290 1,335 7,442 507 1377 541 557 571 608 762 772	Cement	333 522 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 1053 1053
France:	179 198 204 214 228 5, 248 264 290 335 4, 335 442 507 1377 541 557 608 634 678 718	Cement	333 522 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 1053 1053
France:	179 198 204 214 2258 5,248 5,248 256 290 4,335 5,442 472 507 1377 551 608 634 634 678 762 809	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 1053 1188 1277
France:   Aluminum	179 198 204 214 228 228 228 264 258 264 472 507 1377 1377 1377 1377 1377 1377 1377 13	Cement	333 522 542 812 921 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 1053 1188 1277
France:	179 198 204 214 228 5, 248 228 5, 248 290 264 290 264 472 507 1377 551 1377 557 608 634 678 772 809 772 889 885 885	Cement	333 522 542 812 921 921 1187 1371 1216 179 228 342 507 608 634 713 897 917 1053 1188 1277 182 228
France:   Aluminum	179 198 204 214 228 5, 248 226 258 264 2290 4, 335 5, 442 472 5571 608 678 762 809 885 887 918	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 634 713 897 915 915 1053 10188 1277 182 228 224 224
France:	179 198 204 214 228 5, 248 258 258 258 258 264 290 335 541 464 472 557 1377 1377 571 1377 772 608 608 634 678 772 985 995 995 995	Cement	333 522 542 812 921 984 1187 1371 1216 179 228 332 442 507 608 6713 897 917 915 1053 1053 1018 1277 182 204 2249 274
France:   Aluminum	179 198 204 212 228 5, 248 264 290 507 1377 557 1377 5571 608 638 638 762 895 951 989	Cement	333 522 5422 812 921 984 11187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 1053 1188 1277 182 228 249 227 274 279
France:	179 198 204 2228 5, 248 220 5, 248 290 6, 345 4, 464 472 557 1377 5571 5571 571 678 608 634 678 678 772 991 991 995 9983	Cement	333 522 542 921 984 1187 1371 1216 179 228 332 442 507 608 634 671 897 917 9053 1188 1277 182 224 224 227 229 229
France:	179 198 204 212 228 5, 248 264 290 507 1377 557 1377 5571 608 638 638 762 895 951 989	Cement	333 522 542 921 984 1187 1371 1216 179 228 332 442 507 608 634 671 897 917 9053 1188 1277 182 224 224 227 229 229
France:	179 198 204 228 5, 248 268 264 290 4, 335 244 472 557 557 561 608 855 772 885 951 965 9983 1053	Cement	333 522 5422 812 921 984 1187 1371 1371 1216 179 228 332 442 507 608 634 713 897 917 917 182 228 229 228 229 229 229 230 230 230 240 250 250 250 250 250 250 250 250 250 25
France:	179 198 204 228 5, 248 268 264 290 4, 335 244 472 557 557 561 608 855 772 885 951 965 9983 1053	Cement	333 522 5422 812 921 984 1187 1371 1371 1216 179 228 332 442 507 608 634 713 897 917 917 182 228 229 228 229 229 229 230 230 230 240 250 250 250 250 250 250 250 250 250 25
France:	179 198 204 228 5, 248 268 264 290 4, 335 244 472 557 557 561 608 855 772 885 951 965 9983 1053	Cement	333 522 542 9814 1187 1371 1216 179 228 332 442 507 608 634 713 897 917 953 10158 1277 182 228 249 229 233 244 227 228 249 229 335 249 249 259 269 279 279 279 279 279 279 279 279 279 27
France:	179 198 204 228 5, 248 258 264 290 6, 335 557 571 571 377 541 678 885 762 983 951 983 983 1119 91139	Cement	333 522 542 981 984 1371 1371 1216 179 228 332 442 507 917 953 0158 1277 182 224 224 224 224 224 227 224 228 249 229 335 244 244 244 244 244 244 245 246 247 248 249 249 249 249 249 249 249 249 249 249
France:	179 198 204 2214 228 5, 248 258 2290 1, 335 557 571 557 571 571 809 918 885 , 834 1053 1119 965 11139 11139	Cement	333 522 542 812 921 984 11187 1371 1216 179 228 332 442 442 268 634 897 917 953 1188 1277 182 229 405 229 405 339 442 442 443
France:	179 198 204 228 5, 248 264 472 290 6, 335 557 557 557 1377 551 1377 762 809 918 885 983 983 1119 965 983 1119 965 91139	Cement	333 5225 542 9812 9811 1187 1371 1216 179 228 332 442 507 608 634 713 917 917 917 917 917 918 228 249 229 229 422 229 422 249 422 249 443 443 443 443 444 443 444 443 444 443 444 443 444 443 444 443 444 444 444 445 446 446 447 447 447 447 447 447 447 447
France:   Aluminum	179 198 204 2214 228 5, 248 258 2290 335 557 1377 561 1377 571 577 809 918 885 , 718 877 918 919 911 1139 11139 11139 11139	Cement	333 522 542 981 984 1187 1371 1216 179 228 332 507 608 634 713 897 917 917 182 224 224 227 224 227 224 227 224 227 228 249 250 274 274 275 275 275 275 275 275 275 275 275 275
France:   Aluminum	179 198 204 2214 228 5, 248 258 2290 335 557 1377 561 1377 571 577 809 918 885 , 718 877 918 919 911 1139 11139 11139 11139	Cement	333 522 812 924 1187 1371 1216 179 228 332 442 507 6634 713 897 7953 1053 1277 1188 229 405 229 405 229 442 274 274 275 276 277 277 277 277 277 277 277 277 277
France:	179 198 204 2214 228 5, 248 268 269 260 464 472 270 1377 1377 1377 762 885 561 885 981 885 983 1053 983 1119 985 1119 1115 1116 1116 1116 1116 1116 111	Cement	333 522 542 981 984 1187 1371 1216 179 228 332 507 608 634 713 897 917 917 182 224 224 227 224 227 224 227 224 227 228 249 250 274 274 275 275 275 275 275 275 275 275 275 275

Page	Page
Germany, West-Continued	Hungary:
Iron ore 608, 610, 611	
Iron and steel 633, 634	Bauxite 245, 249
Iron and steel scrap 667, 668	Cement 332
Iron oxide pigments	Copper441
Lead 712, 713, 718	Iron ore 608
Magnesium	Iron and steel
Nitrogen compounds	
Phosphate rock 918	Nitrogen compounds 896, 897
Potash 951, 953, 954	Silver 1053
Pyrites 1139	Iceland: Cement 335
Salt983	India:
Selenium 1386	
Silver 1053 Talc, soapstone, and pyrophyllite 1151	Asbestos
Tin	
Uranium1277, 1278	Beryl
Zinc 1350, 1351, 1357	Cement
Gold Coast:	Chromium 352
Aluminum	
Bauxite	Feldspar 472 Fluorspar 509
Diamonds 522	
Gold 542	
Manganese ore 806, 812	Graphite555
Silver 1054	Gypsum572
Greece:	Iron ore 608, 611
Antimony198	Iron and steel 633, 634, 638
Arsenic 204 Asbestos 214, 215, 216	
Aspestos 214, 215, 216 Barite 227, 228	Lead 712, 713, 720
Bauxite 245, 249	Magnesite784
Cement 332	Manganese ore
Chromium 351, 352	
Clays	
Gold	
Iron ore	Salt 983
Lead 712, 713	Silver
Magnesite 784, 787, 788	Talc, soapstone, and pyrophyllite 1151 Thorium 1163, 1164
Manganese ore806, 806 Nickel880, 880	
Nitrogen compounds	
Pumice 968	Tungsten1242
Salt985	
Silver 1056	
Steel634 Sulfur and pyrites1138, 1139	
Talc, soapstone, and pyrophyllite 115	Indochina:
Uranium 1278, 1279	Cement333
Zinc	Salt983 Tin1187, 1188
Greenland:	I Turd's marries
Cryolite 509 Lead 711, 714	Bauxite
Thorium 116	Cement
Zinc1350, 1350	Gold
Guatemala:	Iodine580   Manganese ore806, 811
Cadmium	Dhogabata rook 019
Cement 333	1 901+ 082
Chromium	Sulfur
Lead 711, 713, 715, 716	1 norium 1104
Salt 982	1 1111 1180, 1180
Silver 1053	
Uranium 127	A monto 204
Zinc	Asbestos 214
Haiti: Bauxite	Cement 333, 336
Cement 33	Chiomiam.
Salt983	
Uranium 1274	Lead 712, 713
Honduras:	Manganese ore 806
Antimony 196	112000111111111111111111111111111111111
Gold 54 Lead 71	
Mercury820	
Salt 988	Iraq:
Silver 1053	Cement
Zinc 1350	Gypsum 572
Hong Kong: Cement 333	Phosphate rock 920   Salt 983
Cement 333 Clavs 378	
Graphite 555, 55	Ireland:
Iron ore 608	Antimony 196
Lead 71	Barite 228
Molybdenum	
T UTPONOTO 151	. ooppot 110

# MINERALS YEARBOOK, 1956

Page	Page
Ireland—Continued	Japan—Continued
Gypsum	Magnesium 772, 773
Lead 712, 719	I Manganese ore 906 911
Perlite	Mercury 826 827
Phosphate rock 918 Steel 634	Molybdenum 867, 868
Sulfur 1141	Nickel         885, 886           Nitrogen compounds         896, 898
Uranium 1279	Phosphate rock 918
Zinc1350	Platinum-group metals 937
Israel:	Potash 951
Cement 333	Salt
Diamonds 522 Gypsum 572, 573	Selenium 1386
Nitrogen compounds 907	Silver 1055 Sodium and sodium compounds 1080
Nitregen compounds 897 Phesphate rock 918, 920	Sulfur and pyrites 1138, 1139
P tash 951, 954	Talc, soapstone, and pyrophyllite 1151
Salt	Tellurium 1200
Uranium 1285 Italian Somaliland: Salt 984	Thorium 1164
Italian Somaliland: Salt	1 111 1187, 1188, 1189, 1193, 1194
Aluminum 179, 182	Titanium 1216, 1220, 1221 Tungsten 1242
Antimony 198	Tungsten 1242 Uranium 1285, 1286
Arsenic204	Zinc 1350, 1351, 1359
Asbestos 214	Zirconium 1371
Barite 228	Jordan:
Bauxite 245, 249 Boron 274	Cement 333
Boron	Phosphate rock 918, 920
Cadmium 290	Potash 954 Salt 983
Cement332	Kenya:
Copper441, 442	Asbestos 214
Diatomite 463	Cement 333
Feldspar 472	Copper
Fluorspar 507 Gold 541	Diatomite 463, 464
Graphite 555	Feldspar 477 Gold 542
Gypsum 571	Gold 542 Graphite 555
Iron ore 608	Gypsum 572
Iron and steel 633, 634	Magnesite784
Iron and steel scrap 668, 669	M1ca854
Lead 712, 713 Magnesium 772, 773	Salt 984
Magnesite 784	Silver 1054
Manganese ore 806	Sodium and sodium compounds 1080 Talc, soapstone, and pyrophyllite 1151
Mercury 826	Tale, soapstone, and pyrophyllite 1151 Thorium 1164
Mica 853	Vermiculite 1306
Nitrogen compounds 896, 898	Korea:
Potash 954 Pumice 965	North:
Pumice	Aluminum 179
Silver	Cement 333   Copper 442
Sodium and sodium compounds 1080	Copper
Stone 1007	I Iron oro
Strontium 1123	Iron and steel 633 634
	1 Lead 712 713
Tale, soapstone, and pyrophyllite 1151, 1153, 1151, 1153, 1151, 1153, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 1161, 11	Suver
Tungsten 1242	Tungsten 1242 Republic of:
Uranium1279	Ashastas
Zinc	Barite 228
Jamaica:	Bervl 256
Bauxite 245, 246	Bismuth 264
Cement 332	Cement
Gypsum 571 Phosphate rock 918	Copper
Japan:	Diatomite 463
Aluminum 179, 183, 184	Fluorspar 507 Gold 541
Antimony 198	Graphite
Arsenic 204	Iron ore608
Asbestos 214	Lead 712 713
Barite 228 Bauxite 249, 250	Magnesite784
Bismuth 249, 250	I Manganese ore gos
Cadmiim	Molybdenum 867
Cement 333, 336	Monazite 1382, 1383 Nitrogen compounds 896
Chromium 352	Pyrites 1139
Cobalt	Sait983
Copper 441, 442, 449, 450	Silver
Feldspar     472       Fluorspar     507, 509	1 Tale, soanstone, and pyrophyllite 1151 1159
Gem stones 522	Thornim 1164
Gold 541	Tungsten 1242 1244
Graphite 555 557	Uranium 1286 Zinc 1350
Gypsum572	Zine 1350 Zirconium 1371
10dine580	Lebanon:
Iron ore 608, 611, 612 Iron and steel 633, 634, 638, 639	Cement 333
iron and steel scran	Iron ore 608
Lead	
112, 110, 120, 121	Leeward Islands: Salt

Pa	ge   Page
Liberia:	Netherlands—Continued
Diamonds 5	22 Nitrogen compounds
	12   0410
Iron ore 609, 6 Uranium 12	12
	84 Zinc 1351
Luxembourg:	Netherlands Antilles:
Cement3	32 Phosphate rock 918
Gypsum5	71 Salt 982
Iron ore	08 New Caledonia: 34 Chromium351, 352
Iron and steel 633, 6	Gypsum 572
Madagascar: Asbestos	14   Trop ore 909
	58 Manganese ore 807
	33 Nickel 880, 886
Columbium and tantalum	03 New Guinea: Platinum-group metals 937
	72   New Zealand:
Graphite 555, 5	57 Arsenic 214 54 Asbestos 214
	18 Cement 333, 337
Quartz crystal-	71 Diatomite 463
Thorium1164, 11	.65 Gold
Zirconium 13	71 Magnesite 784
Makatea Island: Phosphate rock	019 Manganese ore 807
Malaya:	Phosphate rock 919 Platinum-group metals 937
Bauxite 245, 2	
Cement 333, 3 Columbium and tantalum 4	136 Pumice 984
Gold	641   Silver
	508 Stone 1119
Monazite 12	882 Tin 1189
Thorium 11	Tungsten
Tin 1187, 1188, 1194, 11	195   Nicaragua: 
<u>Titanium</u> 1216, 12	Delication of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th
	242 Gold 541 371 Salt 982
	983 Silver
	084 Uranium 1274
Mexico:	Nigeria:
Antimony 196, 1	198 Bauxite 250
Arsenic	204   Columbium and tantalum 403, 400
Barite 227, 2	228 Gold 542 264 Lead 712, 721
Bismuth	264   Lead
	290 Silver
Cement 332, Cobalt 332,	388 Tin1187, 1194, 1195
Copper	146 Tungsten 1242
Fluorspar 507,	508   Zinc 1500
Gold	041   Norway:
Graphite 555,	557 Aluminum 179, 183
Iron ore 608-	
Iron and steel     633-       Lead     711, 713, 716, 716, 717, 718, 716, 717, 718, 716, 717, 718, 716, 718, 718, 718, 718, 718, 718, 718, 718	717 Cement 332, 338
Manganese ore 806, 807,	Columbium and tantalum 403, 405
Mercury	828   Copper 411, 412, 416
Molybdenum	867 Feldspar 472
Molybdenum Nitrogen compounds 896,	898 Fluorspar 507
Phosphate rock	917 Graphite
	982 Iron and steel 633, 63
Salt	055 Lead 713
Silver 1053, 10 Strontium 1129	123 Magnesium 772, 773
Tin 1187, 1 Tungsten 1242, 1	188 Mica
Tungsten 1242, 1	244 Molybdenum 867, 869 271 Nickel 88
Uranium	271         Nickel
Zinc 1500, 1501, 1505-1	Selenium 138
Mozambique: Asbestos	214 Silver 105
Bauxite	245 Sulfur and pyrites 1139, 114
Beryl	258 Tale, soapstone, and pyrophyllite 1151
Bismuth	264 1153, 115
Cement	333   Titanium 1210 403   Tungsten 124
	542 Uranium 1279, 128 555 Zinc 1350, 1351, 135
Mica	854 Ocean Island: Phosphate rock 91
	984 Pakistan:
Silver 1	054 Bauxite 24
Thorium 1	165 Cement 333, 33
Tin1	187   Chromium
Zirconium 1	370 Fluorspar 50
Nauru Island: Phosphate rock	919 Gypsum
Netherlands:	2102 Onital Jung
Cement633,	634 Strontium 112
Lead	713   Sulfur 114
Magnesia	788 Uranium 128
	-

	Page		Pag
Panama:		Portugal—Continued	
Cement.	332	Gypsum	. 57
Gold	541	Iron ore	
Manganese ore	808	Lead 7	12, 71
SaltSilver	982 1053	Manganese ore	U6, 80
Papua:	1000	Nitrogen compounds	. 89 . 113
Manganese ore	807	Salt	98
Manganese ore Platinum-group metals	937	Silver	105
Paraguay:		Tale soanstone and nuronhyllite	115
Cement	332	Tin	5, 119
Manganese ore	808	1 Tranium	121
Manganese ore Talc, soapstone, and pyrophyllite	1151	Tungsten 124	2, 124
Peru:		Uranium Portuguese Africa: Bauxite	128
Antimony19		Portuguese India:	25
Arsenic	204	Iron ore	60
Barite	228	Manganese ore 8	06.81
Bismuth Cadmium	264 290	Colf	98
Cement 33	9 334	Rhodesia and Nyasaland, Federation of:	
Copper 441, 44	2. 448	Antimony	198
Feldspar	472	Arsenic	204
Gold	541	Asbestos 2 Barite 2	14, 210 228
Gypsum	571	Beryl	258
Iron ore 60 Lead 711, 713, 71	8, 610	Cadmium	290
Manganese ore	7, 718	Cement 3	33, 33
Mercury	806 826	Chromium 3 Cobalt 3	52, 35
Molybdenum	867	Cobalt 3	38, 39
Nitrogen compounds 89	6, 898	Columbium and tantalum 4	03. 407
Phosphate rock	918	Copper441, 442, 44   Feldspar	52-455 472
Salt	982	Fluorspar	507
Silver 1053		Gold	542
Sulfur Tale, soapstone, and pyrophyllite	1138 1151	Iron ore	609
Tin1187	1188	Iron and steel 6	33, 634
Tungsten1242	1244	Lead712, 7	13, 721
Uranium	1274	Lithium	763
Vanadium 1900	, 1300	Magnesite Manganese ore	784 806
Zine 1350, 1351, 1355 Philippines:	, 1356	Mica	854
z mappiatos.		Nickel8	30, 887
Barite33:	228	Phosphate rock 91	
Chromium 35	1-353	Selenium	1386
Copper 441, 450	0. 451	Silver Sulfur and pyrites1139	1054
Gold 54		Thorium	1165
Gypsum606	572	Tin 1187, 1189	3, 1196
Lead	712	Tungsten 1242	, 1244
Manganese ore	806	Uranium Vanadium	1287 1299
Mercury820		Vermiculite	1306
Nickel Phosphate rock	886	Zine1350, 1351	. 1360
Salt	918 983	Rumania:	
Silver	1053	Aluminum	179
Sulfur and pyrites 1138, 1139,	1142	BauxiteCement	245 332
Uranium		Iron ore	608
Zine	1350	Iron and steel 63	3, 634
Poland:	150	Lead 71	2, 713
AluminumCadmium	179	Manganese ore	806
Cement.	290 332	SaltSilver•	983
Germanium	1377	Uranium	1053 1280
Gypsum	571	Zine	1351
Iron ore	608	Ryukyu Islands: Salt	983
Iron and steel 633	634	Saar:	300
Lead 712 Dolomite 712		Cement	332
Nitrogen compounds	786	Iron and steel 63 Salvador:	3, 634
Phosphate rock	919	Cement	332
Potash	954	Gold	541
Salt	983	Lead	711
Silver	1053	Salt	982
Tin	1141	SilverSarawak: Gold	1053
Uranium.	1280	Sarawak: Gold	541
Zinc	1357	Saudi Arabia: Gold	217
Portugal:		Cilvon	541 1053
Antimony	198	Senegal: Titanium	1216
Arsenic	204	Seychelles Islands: Phosphate rock	918
Asbestos	214	Sierra Leone:	
Barite	228	Chromium	352
Beryl	258	Columbium and tantalum	403
Chromium	352	Diamonds Gold	522 542
ChromiumColumbium and tantalum	403	Iron ore	609
Copper	441	Platinum-group metals	937
Feldspar	472	Thorium	1165
Gold	541 l	Titanium	1221

	Page		age
South-West Africa:	oro	Sweden—Continued Beryllium	258
BerylBismuth	258 264	Bismuth	264
Cadmium	290	Cement	332
Columbium and tantalum	403	Columbium and tantalum	403
Copper 44	1, 455	Copper 441,	463
Diamonds Fluorspar	522 507	Feldspar	472
Germanium	1377	Fluorspar	507
Gold	542	Gold	541
Graphite	555	Graphite	555
Lead 712, 713, 72	1,722	Iron ore 608,	-636
Manganese ore 80	854	Iron and steel 633- Lead 712, 713,	719
Phosphate rock	918	Mica	853
Salt	984	Molyhdonim	867
Silver	1054	Nitrogen compounds	896 918
Sulfur	1142 1187	Phosphate rockPotash	951
Tin Tungsten	1242	Pyrites	1139
Vonedium	1299	Selenium	1386
Zinc	0, 1361	Gilwar	1053
Spain:			1151 1189
Aluminum 17	79, 182   198		1242
Antimony Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsenic Arsen	204	Uranium 1280,	1281
Asbestos	214	Zinc1350,	1358
Barite	228	Switzerland: Aluminum	109
Bauxite 2	45, 249 264	Aluminum	, 183 332
Rismuth Cadmium	290	Gypsum	571
Cement	332	Team and	608
Cobalt	390	Iron and steel 633	, 634
Columbium and tantalum 4	03, 406	MagnesiumSalt	983
Copper 4	472	Tin	1189
Feldspar Fluorspar	507	Uranium	1281
Gold		Syria:	
Graphite	555		1142 333
Gypsum	571 608	Cement Gypsum Gypsum	572
Iron ore	33 634	l Solt	983
Iron and steel 6 Lead 712, 7	13, 719	Sulfur	1142
Lithium	762	Taiwan:	104
Magnesite	784	Aluminum 179 Asbestos 179	214
Manganese ore 826, 8	906	Dografic	245
Mica	853	Coment	, 336
Nitrogen compounds	. 896	Copper41	541 541
Phosphate rock	918	Gold Graphite 555	559
Potash 9	965		
PumiceSalt	983	Tron and steel 633, 634	, 639
Silver	1053	Mercury	820
Silver1138, 113	9, 1141	1 Mica	854 896
Talc, soapstone, and pyrophyllite	1151 9 1190	Nitrogen compounds	983
Titanium 121	6. 1222	Cilwan	1053
Tungsten 124	2. 1244	Sodium and sodium compounds	1080
Uranium 1350, 1351, 135	1280		1119
Zinc 1350, 1351, 135	7, 1358	Sulfur and pyrites 1138, Tale, soapstone, and pyrophyllite 1138,	1151
Spanish Morocco: Antimony	198	Thorium.	1164
Cement		Tanganvika:	
Conner	442	Beryl	258 407
Graphite	. 555	Columbium and tantalum	441
Iron oreLead	609	Diamonds 022	2, 52
Manganese ore	806	Gold 556	542
Salt	984	Graphite	5, 55
Sudan:		Gypsum712	572
Gold	. 542 . 572	I" Managaita	784
Gypsum Manganese ore	812	Mica854	4, 85
Salt.		Magnesite	918
Surinam:		Salt	98- 105-
Bauxite 245, 2	247, 248	SilverThorium	116
BerylColumbium and tantalum	. 258 . 405	Tim	118
GoldGold		Tungsten	124
Swaziland:		Tasmania: Asbestos	21
A shestos	. 214	Thailand:	19
Barite	. 228	Antimony	3. 33
Gold Silver	- 542 - 1054		40
Tin		Fluorspar	50
Sweden:		Gem stones	52 9 57
Aluminum	- 179 - 204	Trop ore	-, 67 60
ArsenieBarite	- 204 - 228		3, 63
DM1W	- 4440		

Date   Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Continued   The Conti		Page	1	age
Manganese ore.	Thailand—Continued	710	Union of South Africa—Continued	
Thortum   1187, 1188, 1196 Titanium   1187, 1188, 1196 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titanium   1216 Titaniu	Manganese ore	806	Platinum-group metals	922
Titanium   1187, 1188, 1194   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1195   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1188, 1189   1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187, 1187,	Salt	983	I Fyrites	, 938 1120
Titunium	Thorium.	1164	I Salt	004
Uranium	Titanium	188, 1196	Silver	1054
Trailing   1286	Tungsten	242. 1244	Thorium 1151, 1	1154
Trimidad and Tobago: Cement	Uranium	1286	1 1111 11127 1	1100
Uranium   1287, 1288	Trinidad and Tahaga, Camant	1350	1 Titaniim 1916 1	200
Cement	Tunisia:	332	Tungsten 1242, 1	244
Filterspace   353   Common   170   183   183   183   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184   184	Barite	228	i verimente 1	288
General	Cement	333	1 U. S. S. R.	
From ore	Gypsum	507 579	Aluminum 179,	
Lead	Iron ore	600	Barite	214
Phosphate rock	Lead 712	713.722	Bauxite	245
Pyrites	Phosphate rock	826	Cadmium	290
Sail	Pyrites	1139	Chromium 332,	
Strentium	Salt	984	Columbium and tantalum	
Uranium	Strontium	1054	Copper441 4	442
Zine	Uranium.	1987	Nepnenne syenite	
Asbestos. 214 Boron. 234 Boron. 234 Boron. 234 Boron. 234 Boron. 234 Boron. 234 Cement. 333, 34 Chromium 332, 333 Chromium 332, 333 Chromium 332, 333 Chromium 332, 333 Chromium 332, 333 Chromium 332, 333 Chromium 332, 333 Chromium 332, 333 Magneste. 364 Manganese ore. 608 Iron and steel 633, 634 Hospital 784 Manganese ore. 806 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury. 832, 829 Mercury	Zinc. 13	350, 1361	Gold	
Asbestos.		100	Gypsum	
Boron.   274   Cement.   333, 336   Cement.   333, 336   Cement.   333, 336   Cement.   333, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 336   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330, 340   Cement.   330	Asbestos	198 914	Iron ore	806
Chromium   353, 356   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 358   Copper   352, 352   Copper   352, 352   Copper   352, 352   Copper   352, 352   Copper   352, 352   Copper   352, 352   Copper   352, 352   Copper   352, 352   Co	Boron	. 274		
Copper	Chromium	333, 336	l Lead . 719 712 7	710
Fluorspar	Copper	352, 353	Wagnesium 772.7	773
Nitrogen compounds	Fluorspar.	507	Mercury 806, 809, 8	
Teach	Iron ore	- 608	Nitrogen compounds	202
Marganese ore	Lead	633, 634	Phosphate rock 918, 919, 9	)20
Marganese ore	Magnesite	784	Potash 937, 9	138
Molybdenum	Manganese ore	806	Saitg	
Salt.         983         Uranium         1281           Uranium         1189         Uranium         1350, 1351, 1353           Tin.         1189         Aluninum         179           Zine.         1350         Antimony         197           Turks and Caicos Islands: Salt         982         Aspestos         204           Asbestos         214         Barite         228           Asbestos         214         Bismuth         264           Cement         238         Codmium         290           Cobat         333         Columbium and tantalum         403           Columbium and tantalum         403, 407         Copper         448, 449           Columbium and tantalum         403, 407         Diatomite         463           Gold         5542         Germanium         1377           Lead         712         Graphite         558           Mica         854         Gypsum         571           Phosphate rock         918, 921, 922         Iron and steel         638, 634           Ilver         1054         Lead         712, 713, 719, 720           Thorium         11166         Lead         712, 713, 719, 720	Molybdonum	826, 829	Silver	)53
Sulfur and pyrites	Salt	983	Tungsten 12	
Uranium	Sulfur and pyrites 11	38, 1139	Zlnc 1350 1351 12	781 158
Zinc	Tin Uranium		United Kingdom:	
Turks and Caicos Islands: Salt	Zinc	1250		
Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt   Salt	Turks and Caicos Islands: Salt	- 982	Arsenic	
Beryl			Barite2	
Bismuth         264         Cement         283           Cement         333         Columbium and tantalum         406           Cobalt         391         Columbium and tantalum         406           Copper         484         449           Columbium and tantalum         403         467           Copper         485         484           Gold         542         Germanium         1377           Lead         712         Graphite         558           Mica         918, 921, 922         170 nore         608           Salt         984         Iron and steel         633, 634           Silver         1054         Lead         712, 713, 719, 720           Thorium         1165         Lithium         702, 763           Tungsten         1242         Manganese ore         810           Union of South Africa:         Mercury         829, 830           Antimony         196, 197, 198         Nitrogen compounds         829, 830           Arsenic         204         Phosphate rock         919           Asestos         214, 216, 217         Potash         954, 955           Barite         222         Pyrites         1139	Bervi	258	Codmium 2	
Coment         333         Columbium and tantalum         406           Cobabt         391         Columbium and tantalum         408, 407           Copper         455         Floorspar         507, 508           Gold         542         Floorspar         507, 508           Mica         854         Graphite         578           Mica         854         Graphite         578           Phosphate rock         918, 921, 922         Iron ore         508           Salt         984         Iron and steel         63, 634           Silver         1054         Lead         712, 713, 719, 720           Thorium         1165         Lithium         762, 763           Tin         1187         Magnasese ore         810           Union of South Africa:         Mercury         806         812           Antimony         196, 197, 198         Mercury         829, 830           Arisenic         204         Phosphate rock         919           Assettos         214, 216, 217         Potash         94, 955           Beryl         258         Salt         92, 922           Bismuth         262         Sive         103           C	Bismuth	_ 264	Cement	
Columbium and tantalum	Cohelt	- 333	Columbium and tantalum	വര
Copper         455         Fluorspar         508           Gold         542         Germanium         507, 508           Mica         854         Gypsum         571           Phosphate rock         918, 921, 922         106         Gypsum         571           Phosphate rock         918, 921, 922         11 ron ore         608           Salt         984         170 and steel         63, 634           Lead         712, 713, 719, 720         710         710 ron and steel         63, 634           Lead         1165         Lithium         762, 763         763           Tin         1187         Magnesite         786         786           Tungsten         1242         Manganese ore         810         894         810         894         810         894         893         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894         894	Columbium and tantalum	- 391 403 407	Uopper 448, 4	49
Lead	Copper	455	Fluorspar 507 5	กร กร
Mica.         845         Graphite         558           Phosphate rock         918,921,922         Iron ore         608           Salt         994         Iron ore         608           Silver         1054         Iron and steel         633,634           Thorium         1165         Lithium         762,763           Tin         1187         Magnesite         786           Tungsten         1242         Manganese ore         810           Union of South Africa:         Mercury         829,830           Antimony         196,197,198         Nitrogen compounds         829,830           Arsenic         204         Phosphate rock         919           Asbestos         214,216,217         Potash         954,955           Barite         222         Pyrites         1139           Beryl         258         Salt         92,983           Bismuth         264         Silver         1083           Cement         333         Slate         1074           Chromium         352         Strontium         1123           Columbium and tantalum         403         Tin         1187,1188,1189,1196,1197           Feldspar         4	Gold	- 542	Germanium13	77
Finosphate rock	Mica		Graphite	58
Sait.         984         Iron and steel         633, 634           Silver         1054         Lead         712, 713, 719, 720           Thorium         1165         Magnesite         762, 763           Tungsten         1242         Magnesite         786           Unlon of South Africa:         Manganese ore         810           Antimony         196, 197, 198         Mercury         829, 830           Arsenic         204         Phosphate rock         919           Asbestos         214, 216, 217         Potash         954, 955           Beryl         228         Sait         982, 983           Bismuth         264         Silver         103           Cement         333         Slate         1074           Chromium         352         Strontium         1123           Columbium and tantalum         403         Talc, soapstone, and pyrophyllite         1151           Topper         441, 442, 455         Thorium         1163           Tianium         1187, 1188, 1189, 1196, 1197         Timesten         1242           Diamonds         522, 523         Uranium         1222, 1223           Tungsten         1242         Viriete         1350, 135	Phosphate rock918.9	921, 922	Iron ore	no
Thorium. 11054 Tin. 1187 Tin. 1242 Union of South Africa: 1242 Union of South Africa: 1243 Antimony 196, 197, 198 Arsenic. 204 Asbestos. 214, 216, 217 Barite 228 Bismuth 2258 Bismuth 2264 Cement 333 Bismuth 264 Chromium 352 Columbium and tantalum 403 Copper 441, 442, 455 Diatomite 463 Diatomite 463 Diatomite 463 Diatomite 463 Craphite 552 Gold 542, 544, 545 Graphite 563 Graphite 609 Iron and steel 633, 634 Lead 712, 722 Magnesite 728 Itlium 762, 763 Magnesite 788 Manganese ore 810 Manganese ore 810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Manganese ore 9810 Man	Sait	984	iron and steel essert	94
Tin.         1187         Magnesite.         786           Tungsten         1242         Manganese ore.         310           Union of South Africa:         196, 197, 198         Mercury         829, 830           Antimony         196, 197, 198         Nitrogen compounds         896           Arsenic.         204         Nitrogen compounds         906           Asbestos.         214, 216, 217         Potash.         954, 955           Barite.         228         Pyrites.         1139           Beryl.         258         Sat.         982, 983           Cement.         333         Silver.         1063           Chromium.         352         Strontium.         1074           Columbium and tantalum.         403         Talc, soapstone, and pyrophyllite.         1151           Thorium.         1163         Thorium.         1163           Teldspar.         472         Titanium.         1187, 1188, 1189, 1196, 1197           Titanium.         1187, 1188, 1189, 1196, 1197         Titanium.         1222, 1223           Gold.         542, 544, 545         Tungsten.         1242           Uranium.         1231-1284         Jinc.         1350, 1351, 1358           Gryp	Thorium	1165	Lead 712 712 710 70	ด
Tungsten         1242         Manganese ore         810           Union of South Africa:         Mercury         829, 830           Antimony         196, 197, 198         Mercury         829, 830           Arsenic         204         Phosphate rock         919           Asbestos         214, 216, 217         Potash         954, 955           Barite         228         Pyrites         1139           Beryl         258         Salt         982, 983           Cement         264         Silver         1053           Chromium         333         Slate         1074           Chromium         333         Strontium         1123           Columbium and tantalum         403         Talc, soapstone, and pyrophyllite         1161           Topper         441, 442, 455         Thorium         1163           Feldspar         472         Titanium         1187, 1188, 1189, 1196, 1197           Titanium         1222, 1223         Tungsten         1242           Qold         542, 544, 545         545           Gypsum         572         Junium         1231-1284           Gypsum         572         Aluminum         179           Iron ore	Tin	1187	Magnesite 762, 76	63 96
Antimony 196, 197, 198	Tungsten	1242	Manganese ore	10
Asbestos	Antimony 106 1	107 108	Mercury 829, 82	
Asbestos	Arsenic	904	. Phosphate rock or	10
Beryl.   228   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait   982,983   Sait	Asbestos 214, 2	216, 217	Potash 954 qs	55
Sismuth	Beryl	. 228	Pyrites	20
Cement         333         Slate         1074           Chromium         353         Strontium         1123           Columbium and tantalum         403         Talc, soapstone, and pyrophyllite         1151           Copper         441, 442, 455         Thorium         1163           Feldspar         472         Thorium         1187, 1188, 1189, 1196, 1197           Fluorspar         507, 509         Titanium         1222, 1223           Gold         522, 523         Tungsten         1221, 1223           Graphite         555         Urianium         1281-1284           Grypsum         572         Junited States:         1350, 1351, 1358           Gypsum         572         Aluminum         179           Iron ore         609         Antimony         198           Iron and steel         633, 634         Arsenic         204           Aspectos         213           Manganeste         784, 788         Barite         228           Manganese ore         806, 812         Barytte         298	Bismuth	264	Salt	33
Strontium   1123   123   123   123   124   124   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125	Cement	222	State	74
Thorium	Columbium and tentalum	. 352	Strontium 112	23
Diatomite	Copper441.4	400	Tale, soapstone, and pyrophyllite 115	51
Tunispar   122   1223   1   1224   1224   1   1224   1225   1   1   1   1   1   1   1   1   1	Diatomite	463	Tin1187, 1188, 1189, 1196, 119	)3 )7
Gypsum         572         Aluminum         179           Iron ore         609         Antimony         198           Iron and steel         633,634         Arsenic         204           Lead         712, 722         Asbestos         213           Magnesite         784, 788         Barite         228           Manganese ore         806,812         Banyite         228	Feldspar	472	Titanium 1222, 122	23
Gypsum         572         Aluminum         179           Iron ore         609         Antimony         198           Iron and steel         633,634         Arsenic         204           Lead         712, 722         Asbestos         213           Magnesite         784, 788         Barite         228           Manganese ore         806,812         Banyite         228	Diamonds	22, 523	Uranium 124	12
Gypsum         572         Aluminum         179           Iron ore         609         Antimony         198           Iron and steel         633,634         Arsenic         204           Lead         712, 722         Asbestos         213           Magnesite         784, 788         Barite         228           Manganese ore         806,812         Banyite         228	Gold542, 5	44, 545	Zinc1281-128	54 58
Iron ore     609     Antimony     178       Iron and steel     633,634     Arsenic     204       Lead     712,722     Asbestos     213       Magnesite     784,788     Barite     228       Manganese ore     806,812     Banytta     228	Graphite	555	Chica blates.	~
Iron and steel     633, 634     Arsenic     204       Lead     712, 722     Asbestos     213       Magnesite     784, 788     Barite     228       Manganese ore     806, 812     Barrite     226	Iron ore		Antimony 17	
Lead     712, 722     Asbestos     213       Magnesite     784, 788     Barite     228       Manganese ore     806,812     Barrite     228	Iron and steel	22 624	Arsenic 19	
Magnesite 784, 788 Barite 228  Manganese ore 806, 812 Barrite 245	Lead7	12 722	Asbestos 21	
Mica.     854, 856     Beryl.     257, 258       Nickel.     880, 887     Bismuth     264	Manganese ore	AR 219 I	Barite	28
Nickel 880, 887 Bismuth 264	Mica	EA OFC	Bervl 957 OF	رة 10
	Nickel8	80, 887	Bismuth 26	4

	P	age		P	age
United States—Continued			Venezuela:		
Cadmium		290	Aluminum		181
Cement		332	Asbestos		214
Chromium		352	Barite		227
Cobalt		388	Bauxite		248
Columbium and tantalum		403	Cement		334
Copper			Diamonds		522
Diatomite	111	463	Gold		541
Feldspar.		472	Gvpsum		571
Fluorspar		507	Iron ore		
Gold (incl. Alaska)		541	Magnesite		784
		555	Manganese ore		806
Graphite			Nitrogen compounds		898
Gypsum		571			
Iron ore		608	Salt		982
Iron and steel	633	, 634	Steel		635
Lead			Uranium.		274
Magnesium		772	Yemen: Salt		983
Manganese ore		806	Yugoslavia:		
Mercury		826	Aluminum	179,	183
Mica		853	Antimony	197,	198
Molybdenum		867	Asbestos		214
Nickel		880	Barite	228,	229
Nitrogen compounds		896	Bauxite	245.	249
Phosphate rock		918	Bismuth		264
Platinum-group metals		937	Cement		332
Potash		951	Chromium		
Pumice		965	Copper		
Salt		982	Gold		541
Silver		1053	Graphite		555
Strontium		1123	Gypsum		571
Sulfur and pyrites			Iron ore		608
Sunur and pyrices	1100,	1151	Iron and steel		
Talc, soapstone, and pyrophyllite	1100		Lead		
Tin					
Titanium.		1216	Magnesite		
Tungsten			Manganese ore		806
Vanadium		1299	Mercury	826,	830
Vermiculite		1306	Molybdenum		867
Zinc			Nitrogen compounds	896,	
Zirconium		1371	Salt		983
Uruguay:			Silver		1053
Cement		332	Sulfur and pyrites	1139, 1	
Feldspar		472	Talc, soapstone, and pyrophyllite	1	151
Mica		853	Tungsten	1	242
Talc, soapstone, and pyrophyllite		1151	Uranium		285
Uranium		1274	Zine 1350, 13		359