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Abstract

This thesis explores two kinds of statistical questions about rational points on certain moduli
spaces of curves. The first question is, what is the probability that a curve over a finite field is
ordinary? Here, a curve C over a field of characteristic p is said to be ordinary if its Jacobian
has largest possible p-torsion. We answer this question for two kinds of curves: Artin-Schreier
curves in arbitrary characteristic and superelliptic curves of prime degree in characteristic 2.
The second question is, how many elliptic curves over Q have a cyclic rational N-isogeny? This
question can be rephrased in terms of counting rational points on the moduli stacks Xp(V).

We answer this question for N € {2,3,4,5,6,8,9,12,16, 18}.
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Notation and Symbols

C : smooth projective curve

Jac(C) : Jacobian of the curve C

[F, : finite field with ¢ elements

a7y : moduli space of principally polarized abelian varieties of dimension g
My : moduli space of smooth genus g curves

o/ ./ 4 : moduli space of Artin-Schreier curves of genus g

g : moduli space of hyperelliptic curves of genus g

Xo(N) : modular curve parametrizing pairs (E,C = Z/N7)

X1(N) : modular curve parametrizing pairs (E, P) with (P) 2 Z/NZ

* ok

I'o(N) : subgroup of SLy(Z) consisting of matrices congruent to modulo N
0 =
1 *

I'1(N) : subgroup of SLy(Z) consisting of matrices congruent to modulo N
0 1

f(X)=0(g(X)) : there is a constant C' such that for large enough X, |f(z)| < Clg(X)]
f(x) < g(X) : there are positive constants K7 and K3 such that Kjg(X) < f(X) < Kog(X)
|Q|: for a polynomial Q € Fyz], |Q|= ¢ ?

¢(s) : Zeta function of AIIan given by l_q%
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Chapter 1

Introduction

Arithmetic statistics is the statistical study of objects arising in arithmetic and algebraic

geometry. This thesis deals with two different questions, both of the nature:
Question 1.0.1. How many curves of a certain description are there?

The answer to both questions is classically known to be infinite. But how infinite is infinite?
For instance, there are infinitely many even numbers as well as squares. However, there are
roughly %X even integers among all positive integers up to X, while there roughly X/2 squares
in the same range. So although both sets are countable, one clearly seems larger than the other.
In particular, if we order integers by size, we get a notion of how many of a certain kind there
really are and how that number compares with all the integers in the range. In this report, we

do the same, but for curves in certain moduli spaces.

1.1 Overview

We explore two directions in this report.

The first is understanding curves over finite fields in certain p-rank strata. A curve C over
a field of characteristic p is said to be ordinary if its Jacobian has largest possible p-torsion.
Fixing a finite field I, one can ask what is the probability that a curve over [, is ordinary?
The notion of probability here is defined by counting curves up to a certain genus and asking
how many such curves are ordinary. Chapter 2 of this report answers this question for certain

commonly studied families of curves, namely Artin-Schreier and superelliptic curves. In 2012,



Cais, Ellenberg and Zureick-Brown ([6]) came up with heuristics that showed that if Frobenius
behaved randomly in a certain sense, then abelian varieties of arbitrarily large dimension over
[F, had a high probability of being ordinary (made precise later). The randomness hypothesis
on the Frobenius matrix is a philosophy that is widely believed to be true. It is often termed
as the ‘Katz-Sarnak’ philosophy and comes in many forms. Some versions of it are known to be
true. For example, one such result was used by Achter in proving a large ¢-limit version of the
Cohen-Lenstra heuristics over function fields ([1]). However, the statement required for the
large g-limit in [6] is still not known to be true. And while we are quite far from knowing the
truth of such a statement, what this report proves, at the very least, is that in some special

families of curves, Frobenius does not behave randomly.

The second direction that this report explores is a version of the Batyrev-Manin conjecture
for stacks via the classical problem of counting elliptic curves with a rational N-isogeny. It
is known that for certain IV, there are infinitely many such curves. However, a more precise
asymptotic is only known for N = 1,2,3 and 4 ([17], [28], [29]), ordering elliptic curves by naive
height. This report provides an asymptotic for certain higher N. Let V' be a Fano variety over
a number field K (one may think instead, of a scheme with lots of K-rational points) and let
X be a real number. The K-rational points on V' can be ordered by an invariant called the
height, coming from an ample line bundle on V. The Batyrev-Manin conjecture predicts that
the number of K-rational points on V with height bounded by X is asymptotic to cX?log(X)®
for some constants a, b and ¢. Now, many spaces that parametrize objects of interest are not
schemes, but stacks (e.g. moduli spaces of curves, moduli spaces of elliptic curves with an
N-isogeny, to name a few), that is, spaces whose points have automorphisms. Not only is
counting points on stacks harder, but until recently there was neither a well established theory
of heights on stacks, nor a version of the Batyrev-Manin conjecture for them. In [13], the
authors establish such a theory and make a similar conjecture in the case when V' is a stack.
This report shows that the conjecture has the right form when V is the classical moduli stack

Xo(NV).



This thesis has four chapters, including the present one. Chapter 2 talks about the first direction,

and Chapter 3 about the second. Chapter 4 talks about future work in both directions.

1.2 Main results

1.2.1 Ordinary curves over finite fields

Let C be a smooth projective curve of genus g over a finite field F, of characteristic p > 0. Its
Jacobian Jac(C) is an abelian variety of dimension g. For each n € Z~, the n-torsion group
scheme Jac[n] is a finite flat group scheme. When (n,p) = 1, this group scheme is étale, and as
an abelian group, is isomorphic to (Z/nZ)% over F,,. When n is not invertible in F, this group
scheme is never étale and its isomorphism class over F, depends significantly on the curve. In

particular, there is an integer s with 0 < s < g such that

Jac(C)[p](Fq) = (Z/pZ)".

We call the curve C ordinary if s = g. Let .# denote a set of curves over F, of arbitrarily high

genus. Define

o N(F,X)=#{Ce .7 |¢? < X}

o N(%,9,X)=#{Ce F|¢ < X,C ordinary}.
Consider the limit

. N(#,9,X)
P(Z.9):= tim —Z %y

(1.1)

which calculates the probability that a curve C € .% is ordinary. We study two kinds of families

of curves:

1. Artin-Schreier curves: Such curves can be given by an equation of the form

where f(z) € Fy(x) and p is the characteristic of the field.



2. Superelliptic curves: Such curves can be given by an equation of the form

where f(x) € Fq[z] and ged(n, p) = 1. We specifically consider superelliptic curves with n

an odd prime, over a field of characteristic 2.
In Chapter 2, we prove the following results:

Theorem 1.2.1 (Corollary 2.5.6). Let p be a prime and q a power of p. The probability that

an Artin-Schreier curve over Fy is ordinary is non-zero for p = 2 and zero for all odd primes.
For the family of superelliptic curves, we prove:

Theorem 1.2.2 (Theorem 2.5.18). The probability that a superelliptic curve of prime degree

over a large enough finite field of characteristic 2 is ordinary, is zero.

1.2.2 Elliptic curves with a rational N-isogeny

The contents of Chapter 3 are based on joint work with Brandon Boggess. Let E be an elliptic
curve over Q. An isogeny ¢ : £ — E' between two elliptic curves is said to be a cyclic N-isogeny
if Ker(¢)(Q) = Z/NZ. Further, it is said to be rational if Ker(¢) is stable under the action of
the absolute Galois group, Gg. Henceforth, we will omit the adjective ‘cyclic’, since these are

the only types of isogenies we will consider.
Question 1.2.3. How many elliptic curves over Q have a rational cyclic N-isogeny?

It is classically known that for N < 10 and N = 12,13,16, 18, 25, there are infinitely many
such elliptic curves. An elliptic curve E over Q has a unique minimal Weierstrass equation
y? =23 + Az + B where A, B € Z and ged(A3, B?) is not divisible by any 12th power. Define
the naive height of E to be ht(E) = max{|A|3,|B|?}. We will order our elliptic curves by this
height. In Chapter 3, we show that naive height does indeed come from a line bundle on the

stack of elliptic curves.

Notation 1.2.4. For two functions f,g : R — R, we say that f(X) =< ¢g(X) if there exist



positive constants K; and K» such that K19(X) < f(X) < K29(X). For a real number X and

positive integer N, define

N(N,X)=#{E/Q| ht(E) < X, E has a rational N-isogeny}.

Precise version of Question 1.2.3: Can we find a function hy(X) such that N(N,X) <
hn(X)?

Theorem 1.2.5. Maintaining the notation above, we have the following values of hy(X) :

N hn (X) N h (X)
2 X172 8 | X1/0log(X)
3 X172 9 | X1/6log(X)
4 X173 12 X1/6
5 | XY5(log(X))? | 16 X176
6 | XY0log(X) | 18 X176

Table 1: Values of hn(X), ordered by naive height



Chapter 2

Proportion of ordinary curves in

some families

2.1 Introduction

Let C be a smooth curve of genus g over a field k of characteristic p > 0, and let Jac(C) denote

its Jacobian. Let G be a finite flat group scheme over k killed by p.

Definition 2.1.1. We define the a-number of G as
a(G) = dimy Hom(eoy, G)

where «,, is the affine group scheme Spec(k[z]/2P), and the Hom is in the category of k-group

schemes.

Definition 2.1.2. The p-rank of G is defined as r(G) where
G(k) = (2/p2)"?

as abelian groups.

For the purpose of this thesis, we will only be interested in G = Jac(C)[p]. In this case, it is
well known that 0 < r(G) < ¢(C) and 0 < a(G) + r(G) < g. The Jacobian is called ordinary if
r(G) = g or equivalently, when a(G) = 0 ([3]). By abuse of notation, we will denote the a(C)

and r(C) to be the corresponding invariants of Jac(C)[p].



Fix a family .# of curves over F, of arbitrary genus. Note that by a family, we mean a set
of curves satisfying a particular property, which is not necessarily a family in any geometric
sense. A typical example of a family is Ug>0.#,(F;). Let #s ={C € % | r(C) = s}. The main
question that we want to study in this chapter is, what is the probability that a randomly
chosen C € .# lies in .#,. In other words, what proportion of curves in the family .# is ordinary?

Recall the quantity defined in Equation (1.1):
. N(#,9,X)
P(%#,g) .= lim ———_2
(J“g) Xgnoo N(ﬁ,X)
The goal for this chapter is to prove Theorems 1.2.1 and 1.2.2, that is, to calculate P(#,g) for
the Artin-Schreier and superelliptic families.
Notation

Throughout this chapter, k£ will denote the finite field IF, of characteristic p > 0, unless mentioned
otherwise. Most of the definitions involved make sense over any perfect field of characteristic
p, but the counting results only make sense over a finite field. All abelian varieties will be

assumed to be principally polarized.

2.2 History

The goal of understanding P(.%, g) falls into the larger context of understanding p-divisible
groups of abelian varieties in the large g-limit. Let A be an abelian variety defined over k and

let A[p"] denote its p™-torsion subgroup scheme. Then its p-divisible group is defined as

A[p™] == lim Alp"].

This p-divisible group has height 2¢g (see [38] for the definition of the height of a p-divisible

group) where g is the dimension of the abelian variety.

Example 2.2.1. If A is an ordinary abelian variety, A[p"] = (Z/p"Z)9 x (pupn)? as a group



scheme. Here j,n = Spec k[z]/(2P" — 1) is the kernel of Frobenius on G,,. Thus:

Alp™] = (Qp/Zp)? x (ppee)?.

Being a variety in positive characteristic, A carries an action of the Frobenius endomorphism
which in turn induces an action on A[p>]. We will call this latter operator F. Its dual,
Verschiebung, will be denoted by V. Further, A[p>°] comes equipped with a skew-symmertric
bilinear pairing called the Cartier pairing (see [27]) which realizes the duality between F' and
V', made more explicit below in Section 2.2.1. Thus any attempt at modelling the behavior
of A[p*°] must incorporate the actions of F' and V', as well as the Cartier pairing. Such an

attempt was made by the authors of [6] via Dieudonné modules.
2.2.1 Random Dieudonné Modules and heuristics for p-divisible groups
The Dieudonné functor

Let W (k) denote the ring of Witt vectors over k.

Definition 2.2.2. The Dieudonné Ring over k is defined as E := W (k)[F,V]/ ~, where F" and

V' are two generators subject to the relations ~ given by:

FV=VF=p
FA=)\F
VA= ()7 V.

Here A € W(k) and o is a lift of the Frobenius map on k to W (k).

There exists a functor, namely the Dieudonne functor I, from the category of group schemes
killed by p (resp. the category of p-divisible groups) to the category of E-modules of finite
W (k) length (resp. free over W (k)) that satisfies the following properties.

1. The rank of the group scheme (resp. height of the p-divisible group) is the length (resp.

rank) of the Dieudonne module.



2. Let GV denote the Cartier dual of G. A group scheme is called principally quasi-polarized

if there is an isomorphism A : G — GV, such that the following diagram

GV\/ GV

commutes, where 1 : G¥YV = @ is the canonical identification of the double dual of G
with G. The polarization of a principally polarized abelian variety induces a principal
quasi-polarization on its p™-torsion. If G is principally quasi-polarized, then D(G) has a

perfect, symplectic pairing.
3. If G is a p-divisible group, then D(G[p]) = D/pD.
4. The action of F and V on G induces an action on D(G).
For a more detailed exposition and construction of the Dieudonne module, we refer the reader
to [27].
Examples

1. Let G = E[p™], where FE is an elliptic curve over k. If E is ordinary, then
L:=DG)=ZE/(F,\1-V)®E/(F—-1,V).

If F is supersingular, then since a; =0 mod p, we have that I := D(G) = E/(F + V).

2. Let A be a principally polarized abelian variety with p-rank f and a-number g — f. Then
D(Afp)) 2 L' @ 1971,

In [6], the authors define the notion of a random Dieudonne module, which models the behavior
of the p-divisible group of an abelian variety. A random Dieudonné module of height 2g is
a tuple (D, F, V,w) where D is a W (k)-module of rank 2g, F' and V are operators subject to
relations in Definition 2.2.2, and w is a symplectic pairing on D such that w(Fz,y) = w(z, Vy)°.
The authors show that if we fix one choice of Frobenius, Fy on W (k)29, then all other choices of

Frobenius must come from the double coset Spy, (W (k)) FoSpy, (W (k)). A random choice of the
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tuple (D, F, V,w) amounts to picking F' from Spy, (W (k))FoSpy, (W (k)) uniformly with respect
to the product of the Haar measures on each Spy, (W (k)). Define the p-rank and a-number of
a Dieudonné module D are defined as those of D/pD. Using the model described above, the

authors show that the probability that such a module is ordinary is

o)

[Ta+qaH (2.1)

=1

Further, they ask if the Dieudonné module associated to the Jacobian of a curve behaves like a
randomly chosen one, i.e. whether the limit in Equation (1.1) equals the quantity (2.1) when
Z is the set of all smooth curves. They find, via numerical experiments, that hyperelliptic
curves in small odd characteristic do not appear to obey their heuristics, while plane curves
do. The families considered in this report are the first known cases whose behavior provably
diverges significantly from the heuristics of [6]. While the results in this chapter are motivated
by the heuristics in [6], the approach used is quite different. For instance, we do not prove the
randomness of Frobenius in any sense. What we use instead is a combinatorial criterion for

ordinariness that we deduce from work of Pries and Zhu in [30], and Elkin in [12].

2.2.2 Large g-limits and large ¢-limits

Arithmetic statistics of curves and abelian varieties over finite fields fall into two broad categories:
taking limits as ¢ — oo with g fixed or as g — oo with ¢ fixed. The results in this report are

examples of the latter, as are those in the motivating paper, [6].

Comparing the two behaviors

Large ¢-limit behavior can often be thought of as the geometric behavior of a family of curves
with a fixed genus. For instance, one might ask, what is the codimension of the ordinary locus
inside .#,? To study this question, one can change the base field to F, without loss of generality.
The large g-limit behavior in this sense is usually incomparable to the large g-limit behavior.
However, studying the former can provide some insight into the latter. To illustrate our point,

we list some results here that show how different the geometry of the Artin-Schreier locus is
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from that of some other families of curves. It is known that the locus of ordinary curves is a
non-empty Zariski open subset of .#; ([26]). Thus for a fixed genus g, ‘most’ curves of genus g
tend to be ordinary. Let ¥, denote the sublocus of .#, of curves of p-rank at most r. In [14]
Faber and van der Geer prove that 7;, has codimension g —r. A result of Glass and Pries [15]
states that 7, intersects the hyperelliptic locus, J7;, inside /Zg in a set of dimension g — 1 4 r.
Since 7 has dimension 2g — 1, this implies that the ordinary locus is dense in JZ;. We compare
this to results about «7.%,, the Artin-Schreier locus inside .#,. In [30], Pries and Zhu prove
that for p > 3, the codimension of 7, N &%, inside &/ is less than g — r. This indicates
that for p > 3, the image under the Torelli morphism of /.7, in 7, (the moduli space of
principally polarized abelian varieties of genus g) is not in general position with respect to the
p-rank stratification. Further, from results in [30] which we state in the next section (Theorem
2.3.2), it follows that the ordinary locus intersects only one irreducible component of 7.7 ,. As
g — 00, the number of components of &/.%, increases except when p = 2 (in which case .&7.7
is ;). This gives a heuristic reason for why one might expect a statement like Theorem 1.2.1.

A similar heuristic explains Theorem 1.2.2 as well, as we elaborate in Remark 2.5.19.

Equidistribution results

Another context in which the large g-limit versus large ¢-limit dichotomy arises, is in equidis-
tribution results. As mentioned in Chapter 1, there is a philosophy that governs statistical
questions about varieties over finite fields, often called the Katz-Sarnak philosophy. This is
a Chebotarev density theorem-like claim about the Frobenius endomorphism. Let G be the
arithmetic monodromy group of a family of curves of a fixed genus over a finite field F,. Let W
be a conjugacy class in G. Roughly speaking, equidistribution results about Frobenius state
that the probability that Frobenius belongs to W is equal to |W|/|G|. Of course, this equality
does not hold strictly, but is true up to an error term that is O(1/,/g). This error term makes
such equidistribution results amenable for proving large ¢-limit results (see for example, [1]
or [2]). The dependence of the error term on g, however, is much more complicated and harder

to bound.
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2.3 Background: Artin-Schreier Curves

We now recall some facts about Artin-Schreier curves and covers. An Artin-Schreier curve C

over k is a smooth Z/pZ cover of Pi. Such a curve has an affine model

Y —y = f(x) (2.2)

where f(z) € k(x), and is equipped with a Z/pZ action generated by y — y + 1. An
Artin-Schreier cover is an Artin-Schreier curve along with a choice of map ¢ : Z/pZ — Aut(C)

and a choice of isomorphism C/(¢(Z/pZ)) = P!. This amounts to picking a model of the form 2.2.

Let B C }P’l(l;:) be the set of poles of f. Then, the cover above is ramified precisely at the points
in B ([36]). For a € B, let

r—o
‘TOC =

Then, using a partial fraction decomposition one can write

fl@) =" falza) (2:3)

aEB

where f,, € k[z] is a polynomial of degree d.

Remark 2.3.1. We now make a few helpful observations about the partial fraction decomposition

above.
1. We may, and do assume that for a # 0o, f, has no constant term.

2. By a transformation of the form y — y + z, one can assume that in f,(x), the coefficient

of 2P is zero for any 0 < i < |d,/p]. In particular, we can take d, # 0 mod p.

3. If a, B € B are Galois conjugate, then d, = dg.
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4. Let @ be an irreducible polynomial in k[x] whose zeroes are ramified in the Artin-Schreier
cover under consideration. Then we will denote dg as the degree of any f,, o a zero of Q.

This is well defined by the above remark.

By the Riemann-Hurwitz theorem for wildly ramified covers, we know that the genus of such a

curve is given by:

g= (p;l> (—2 + ) (da+ 1)) = (;9;1) 2+ Y deg(Q)(dg +1) + (do + 1)

Q irred.

ramified

(2.4)

2.3.1 The moduli space of Artin-Schreier curves

In [30], the authors give a complete description of the irreducible components of the p-rank
strata of of &./,. Let &/, C &7/, denote the space of Artin-Schreier curves of genus g
with p-rank s. It follows from the Deuring-Shafarevich formula (see for instance, [8, Corollary

1.8]) that s is divisible by p — 1.

Theorem 2.3.2 ( [30], Theorem 1.1). Let g =d(p—1)/2 withd > 1 and s = r(p — 1) with
r > 0. Then:

1. The set of irreducible components of o/ .7 4  is in bijection with partitions {e1,ea...ep11}

of d + 2 into r + 1 positive integers such that each e; Z1 mod p.

2. The irreducible component of o774 s corresponding to the partition {ei,es...eq11} has

dimension:
r+1

d—1-3"[(e;—1)/p)-

=1

This theorem implies, in particular, that the closure of the ordinary locus has dimension d — 1.

The following criterion for the ordinarity of an Artin-Schreier curve follows from the above

description of the moduli space, but was known earlier as well ([8], [37]):



14

Corollary 2.3.3. The Artin-Schreier cover y? —y = f(x) is ordinary if and only if f has only

stmple poles.

This is equivalent to the condition that d, = 1 for each « in the partial fraction decomposition

(2.3).

Let S be the set of rational functions f(x) € k(z) such that the partial fraction decomposition
of f satisfies the conditions (1-3) from Remark 2.3.1. For simplicity, we will assume that co ¢ B.
This assumption is harmless, as we explain in Remark 2.5.7 and makes the computations in
§2.5 much cleaner. We now restrict our attention to k& = F, and define the families for this

section as follows:
e .7 = Set of Artin-Schreier covers y? —y = f(z), where f(z) € S has no poles over co € P!

o 7, = Set of all ordinary Artin-Schreier covers y? —y = f(z) with f(z) € S, unramified

over oo € PL.

2.3.2 Aside on counting curves versus counting covers

In our proof of the main theorem in Section 2.5, we calculate the probability P(.#,g) by count-
ing polynomials in the set S defined above. We must however, make the distinction between
counting covers versus counting curves. One wishes to count rational points on &7.%; — .,
that is to count isomorphism classes of Artin-Schreier curves. However, what we actually do in
this report, is count isomorphism classes of Artin-Schreier covers. That is, we count models
for the curves instead of curves themselves. For p > 7, this does not change the proportion of
ordinarity, as we explain later in Remark 2.5.7. For p = 3,5 such a conclusion is beyond reach

right now, while for p = 2, it is simply not true.

There is a map

S— | 77y(Fy) (2.5)

920
sending f(x) € S to the curve with model y? — y = f(z). Remark 2.3.1 shows that this map is

surjective. We will now bound the size of the fibers. For an Artin-Schreier curve C, a choice of
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model Cy amounts to a choice of homomorphism ¢ : Z/pZ — Aut(C) and a choice of isomorphism
C/(Z/pZ) = P'. For g > 2, Stichtentoth proved (see [34], [35]) that | Aut(C)| < 16g(C)*. We

claim that the number of choices of isomorphism C/1(Z/pZ) = P! is bounded uniformly.

Proposition 2.3.4. Let C; and C, be two Artin-Schreier covers with ¢ : Cy = C4 such that

there is a commutative diagram

CfL)Cg

oo

Py, —% Pl

where the vertical maps are quotients by the Z/pZ actions. Then f(x) = ug(yz) for some
u € Z/pZ* and v € PGLy(F,).

Proof. The induced map ¢ is induced by some v € PGLy(IF ¢)- Let Dy and Dy denote the
ramification divisors of Cy and C, respectively. By Artin-Schreier theory, these are determined
by the poles of f and g respectively. Note that since the curves are defined over F,, so are their
ramification divisors. Since ¢ must preserve the ramification invariants (namely, the number
of ramified points and the ramification groups at each of these points), we must have that

qg*(Dg) = Dy. Thus Coy and C, are isomorphic curves with the same ramification divisor.

Now, two Artin-Schreier covers,

Yy —y = fi(z) and ¢’ —y= fo(x)

with the same genus and ramification divisor are isomorphic if and only if fi(z) = ufe(x)+dP—4§
(see, for example [30], Remark 3.9) with v € Z/pZ* and ¢ € Fy(x). Since we have imposed the

condition that f(x),g(z) € S, the proposition follows. O

Thus we have that for ¢ > 2, the map on the genus g part in Equation 2.5 has fibers of
size bounded by C(q)g*, where C(q) is a constant. For notational convenience, let ¥ =

Ug>0.e-7 4(Fy).
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Since [{f € S: g(Cs) = g}| < C(q)g*|{C € .7 4(F,)}|, therefore

e g Ty (Fy) | ¢f < X,s(C) =g} |
P@.9) = Im e (7)) ¢ < X}]
JA{f eS| ¢ < X, s(Cp) =g} |
1 {fesS| ¢ <X} |

L
< Jim C(g)log,(X)

The counting arguments in Section 2.5 will show that for p > 7, the quantities P(¥,g) and
P(%#,g) are the same.

2.4 Background: Superelliptic curves

A superelliptic curve over a field k is a curve defined by the affine equation

where f(z) € k[x] and n is coprime to the characteristic of k. This curve has an action of pu,,

(n-th roots of unity) on it, namely the map

(z,y) = (z,Cuy),

where (,, is a primitive n-th root of unity. One can make a transformation to write

n—1

flz) =] (filx))’ (2.6)

=1

where each f;(z) is a squarefree polynomial, and f;(z) and f;(x) are coprime if i # j. The
quotient C/p,, gives a map to P!, sending (z,y) + z. We let N := >~ 'ideg(f;). Then the
curve C is unramified over co € P! if and only if N =0 mod n. In the case that N # 0 mod n,

we let nyo be the smallest positive integer such that N + no =0 mod n.
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The map C — P! is ramified at the zeros of f and possibly at co. The ramification indices at

the ramified points a € P!(k) are given by (see [21])

En if fila) =0
e(a) = ()
The genus of this curve is given by
1= 1
= — 1+ i)(n—(n,t 5 €N =N, Moo 2.
g=n 145 3 den(f)ln— (1,0) + gen — (1) (27)

where ¢ is 0 if the map C — P! is unramified over oo and 1 otherwise.

Remark 2.4.1. Since the techniques of this chapter are based on counting polynomials, it is
necessary to separate the case when the map is ramified over oo € P!, even though that seems

unnatural.

We now specialize to the case where n is an odd prime. Let B C P!(k) be the set of points
ramified in the cover y" = f(x). Let m =|B|. If ¢ = 0, then m = >."""}' deg(f;) and if ¢ = 1,
then m = > deg(f;) + 1.

In either case, we have,
g=5(n—1)(m—2) (2.8)
Thus with regard to superelliptic curves, we will be interested in the family % of covers
y" = f(x), where
e 1 is prime,
e the curve is defined over IF, where ¢ is a power of 2,

o f(x) € Fy[z] is n-th power-free.
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2.4.1 a-numbers of superelliptic curves in characteristic 2

We now give a combinatorial criterion for the ordinarity for superelliptic curves in characteristic
2. The discussion in this section is based on a paper by Elkin [12]. Let C be a smooth proper
superelliptic curve over F,, ¢ a power of 2, with affine model y" = f(x), where n is an odd
prime. We maintain the same notation as before. The space H°(C, Q(lj) inherits the action of

u,, and decomposes into eigenspaces as follows:

H°(C, Q) = &7 D;.

A key player in Elkin’s work is the Cartier operator, €. This is a Frob™!-linear operator on
HO(C, Qé), which annihilates exact differentials and preserves logarithmic differentials. It can
be thought of as capturing the action of Verschiebung. It is well known that the a-number, a(C),
equals g(C) — rank(%’). To state the result in Elkin’s paper, we first describe some notation.

Let d; = dim(D;). Let o be the permutation of {1,2,...n — 1} defined by

po(i) =i mod n. (2.9)

By bounding the rank of the Cartier operator, Elkin proves the following proposition.

Proposition 2.4.2 ( [12], Corollary 1.4). Let C be as above. Then,

n—1
g(C) - a(C) = Z min(di7 da(z))

=1

where the d; = dim(D;) can be computed explicitly from the ramification invariants of the curve

and o is the permutation of the set {1,2,---n — 1} defined by the congruence (2.9).

For any rational number r, let (r) = r — |r]. Elkin proves that the d;’s are given by the formula:

di:gdeg(fj)<g>+<T>_l' (2.10)
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Recall that the ordinarity of an abelian variety is equivalent to the condition that its a-number
is 0. Proposition 2.4.2 tells us that if a(C) = 0, then g(C) = >7'=}' min(d;, dy(iy)- We now give a
condition for ordinarity in terms of the degrees of f;. For better exposition, we will treat the

case n = 3 separately from the case of a general odd prime.

The case n =3

In this subsection, we consider curves of the form C : y* = f(z). The equation for the genus
simplifies to

g=m — 2.
Proposition 2.4.3. A curve of the form y> = f1f2, with f1, fo squarefree is ordinary if and
only if one of the following is true:
1. noo =0 and deg(f1) = deg(f2), or
2. Neo =1 for some i € {1,2} and deg(f;) + 1 = deg(f3—i).

Proof. Since o = (1 2), therefore ¢ = 2min(dy,dz). This in turn implies g = 2d; or g = 2ds.

We prove case (1) here. The other case follows by a similar calculation.

In this case,

&y = g deg(f1) + 5 deg(f2) — 1

and

dy = - des(fr) + 5 deg(f2) ~ 1.

Therefore, deg(f1) = deg(f2). For case (2), we just replace deg(f;) by deg(f;) + 1 in the

expression for each d;. O
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The case of a general odd prime

Proposition 2.4.4. A curve defined by y" = [['=] (fi(z))" as in section 2.4 with n an odd

prime, is ordinary if and only if one of the following is true:
1. neo = 0 and deg(f;) = deg(fn—i), or
2. Noo =1 for some i € {1,2...n— 1}, and deg(f;) + 1 = deg(fn—s), and for all j #i,n —1,

deg(f;) = deg(fn—j)-

Proof. As before, we only prove case (1) and the other case follows from a modified, but similar
calculation. The condition for ordinarity gives: >, d; = >°; min(d;, dy(;)). This automatically

implies that d; = d; for all 1 <4, j < n. Since we are considering the case where ny, = 0,
J
n

d —ideg(fj) (Z)-1.

Define the matrix A, with A;; = <%> Thus the degrees of f;’s must be solutions to the linear

system
xr1 d+1
x9 d+1
A ) = ] (2.11)
Tn—1 d+1

for some d > 0. Let V' denote the space of n — 1 x 1 vectors whose coordinates are all equal. We

are interested in (the integral points of) the space of x = (21,72...2,_1)7 such that Az € V.

Lemma 2.4.5. The space {x € Z"1 | Ax € V'} consists of vectors x for which xj, = x,_j for

allk=1,2...n—1.

Proof of Lemma. We prove this lemma by constructing an explicit basis for the kernel of A,
Ker(A). Let ) denote the n — 1 x 1 vector which has 1’s in the kth and n — kth positions
and —1’s in the 25th and 2L th positions. We claim that {z®) | k= 1,2,... 253} is a basis

for Ker(A).
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(] (et |tozi]) (o0 |sec)
. T(nzz D _ it D)y

s i e B o

Thus, it only remains to prove that A has rank at least “5=. Now, nA can be row reduced such

that the top left "TH "+1 submatrix looks like

-1 1
I
0 0O 0 *
0O 0 0 ... = *
0 0 =x * *
0 * * * *

where each of the entries immediately below the anti-diagonal is necessarily non zero. Such a

matrix has non-zero determinant. Thus, any element in Ker(A) is of the form

1:1,:62,..- Z‘r“ Z‘T’M' ‘,1:27'1:1

This proves the lemma and hence the proposition.

O]

Remark 2.4.6. Perhaps a more natural way to interpret Propositions 2.4.3 and 2.4.4 is to say
that for a curve y™ = f(z) (n prime) has ordinary Jacobian if and only if the same number of

points are ramified to degree 7 and n — i for any ¢ € {1,2...n — 1}. Here we say that a point
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P is ‘ramified to degree i’ if the curve locally looks like y" = ux’, where zp is a uniformizer at

P and wu is unit.

2.4.2 Aside on counting curves versus counting covers

One might wonder, as in the Artin-Schreier case in §2.3, what the difference is between counting
superelliptic curves and covers of the form 3" = f(x). We choose to restrict our attention to
covers, i.e. to equations of the form y" = f(x) with f(z) € Fy[z] n-th power-free, and make the

claim that this does not significantly affect our results.

We first introduce some notation for this section alone. For any u € (Z/nZ)*, let [u] be the map
that takes [T;(fi(2))* to [T;(fi(z))® m°dn) By a straightforward sequence of transformations,

one can see that if f; is squarefree for each i the two curves given by

y" = H(f,(a:))’ and = H(fz(x))(“’ mod n)

(3 7

are indeed isomorphic. By abuse of notation, we also call this isomorphism of curves [u]. We
claim that up to an automorphism of }P’ﬂl;q, the only isomorphisms between superelliptic covers
are of the form [u], with u € (Z/nZ)*. This is a standard Kummer theory argument, whose

proof we recall here.

Proposition 2.4.7. For n an odd prime, let f(x) = [['=!(fi(x))" and g(z) = [175 (gi(x))" be

two monic n-th power-free polynomials in Fy[z] such that:
e For each i, fi(x) and g;(x) are squarefree,
e divg(f) = divo(g).

Suppose that Cy : y"* = f(x) and Cy : y" = g(x) are isomorphic as curves via an isomorphism
¢. Let ¢, be an n-th root of unity that acts as an automorphism of the curve sending (z,y) —

(x,Cny). Then there is a u € (Z/nZ)* such that ¢ = (y o [u].

Proof. Let K = F,(P!) and L = F,(Cy) = F,(C,). Note L(¢,)/K(¢,) is a Galois extension. Let
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¢ Gal(K(()/K(¢n)) — w,, be the homomorphism corresponding to L((,). Any other field
L' that is isomorphic to L(¢,) corresponds to the homomorphism ¢* for some u € (Z/nZ)*.
Therefore, if [a] € K(G,)* /(K (¢)™)™ is the class corresponding to ¢ via the Kummer map,
then there is a u € (Z/nZ)* such that the isomorphism Fq(¢,)(Cr) = Fq(¢n)(Cy) corresponds

to the class [@"]. This proves the claim. O

For n an odd prime, let 7, denote the set of n-th power free polynomials in Fy[z]. Let # &y n(Fy)
denote the set of superelliptic curves of degree n and genus g over [F;. Then the above claim

shows that the fibers of the map:

T — U FE gn(Fy)

920

f(@) = (y" = f(x))

have size bounded by n |Z/nZ* || PGLg(F,) |. As in §2.3, this proves that understanding the
proportion of ordinarity in .% is the same as understanding it for the family of superelliptic

curves of a fixed degree over [F,.

2.5 Proofs of Main Results

In this section we describe the main results obtained from counting each of the families described

above. Our main tool will be the following Tauberian theorem.

Theorem 2.5.1 (See [7], Appendix A). Let {\, }nez., be strictly increasing sequence of positive
integers. Let f be the Dirichlet series:

fs) =2 ealy®
n=1

Further, assume the following:
1. f(s) converges for Re(s) > a > 0.

2. f admits a meromorphic continuation to Re(s) > a — dg > 0 for some dy > 0.
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3. The right-most pole of f is at s = a, with multiplicity b € N. Let © = lims_,, f(s)(s — a)°.

4. (Technical assumption) There exists a k > 0 such that for Re(s) > a — do,

& =O((1+ Im(s))").

‘f(S)(S —a)’

Then there exists a (monic) polynomial P of degree b — 1 such that for any § < dp, we

have,

> = a(bgl)‘XaP(log(X)) +O(X%79).

An<X :

Notation 2.5.2. We will henceforth use the notation | Q | to denote ¢8(Q) where Q is
an irreducible polynomial over F,. We will denote by ((s), the zeta function of Alqu. Thus

¢(s) = [Io(1— |Q|~*)~!, where the product is over monic irreducible polynomials over F,.

2.5.1 Artin-Schreier curves

To recall, the family .% that we are interested in in this section is that of covers y? —y = f(z),

with f(z) € S, such that the corresponding map C — P! is unramified over co.

We first set up some notation in order to calculate N(.#,X) and N(.#,¢,X).

e Define a new invariant: m = % + 2. By equation (2.4), this is an integer and is equal to

>_deg(Q)(dg + 1)
Q

e For any m > 2, let a(m) be the number of Artin-Schreier covers C with the above invariant

equal to m. Let b(m) be the number of such covers with p-rank g.

e Define

N (#,X) = Z a(m) and N*(F,9,X) = Z b(m)
qm<X qm<X
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We will calculate these as an intermediate step towards finding

N(F,X) = N“(F,@X¥P V) and N(F,g9,X) = N*(F, g, XY V),

For this section, define the zeta function:

2(s)= Y2 O =Y a(m)g ™

Ces
Lemma 2.5.3. Z(s) converges for Re(s) > 1 and has a pole of order p—1 at s = 1.

Proof. For a monic irreducible polynomial @ € Fy[z], let dg be the ramification invariant

defined in Section 2.3 if C — P! is ramified over div Q and —1 otherwise. Thus
m =7 deg(Q)(dg +1)
Q

where the sum is over all monic irreducible polynomials in Fy[z]. Since this is a sum of local
factors, we factor Z(s) as a product of local functions, i.e. Z(s) = ][g Zg(s), where Q varies over
monic irreducible polynomials in Fy[z]. We can write Zg(s) = Y550 c(k) |Q|7"*. Recall from
§2.3 that if @ € B and Q(a) = 0, then dg = deg(f,) as in the partial fraction decomposition
of f(x) (2.3). Further, in each f,, the coefficient of ' is 0 for each 0 < i < |dg/p|. Since
k=dg+1,

c(k) = #{fa € Fglz] | deg(fa) = k — 1, coefficient of z'? = 0}

where £ # 1 mod p (since dg # 0 mod p). We write dg = np + 4, with 1 <i <p —1. The

above discussion gives us that for k =np+ 7+ 1,

c(k) = (|Q -1 |QI QY



For convenience, we distinguish the cases where p =2 and p > 3.

For p =2,

For p > 3,

For p > 3, let

Up,(s) (

Define

Zg(

Zo(s) =1+ >_(1Q| -1) |Q[" Q|+

n=0
1- Q™
=l

p—1 oo
$) =143 3 (QI -1 QI |Qe-bjQtr++y

i=1 n=0

Q Q 2s - 9
:1+<(’1_"Q’p|1’p5 )Z’Q‘ (1-

2
B 1+Z€:g ‘Q‘ (t+1)—(i+2)s _ ZP ’Q‘Z (i+2)s
) QT

p—3

1+Z|Q|z+1 (1+2)s Z‘QV (i+2)s )H( |Q|z+1

i=0 =0

¢(25)71 ifp=2

HQ Vp,o(s) ifp>3.

(i+2)s )
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(2.12)
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Therefore we have that

p—2
[1Za(s) = wp(s) IT C(si +2) = (i +1)).
Q 1=0

We now claim that there is a constant J,, (depending only on p) such that 1,(s) converges for

Re(s) > §,. For p = 2, this is known classically, since ((s) = Tll,s. Thus J, = 1. For p > 3,

we introduce some shorthand notation for convenience.

Let a; =| Q |(tD=0+2)s and b; =|Q |"~(F2)s. For k € Zsg and | € Zwo, the | Q [F~!* will be
called good if k +1 < I. Observe that:

e The product J[5(1-[@Q |F=15) converges for Re(s) > % For a good term, the location

of the pole is to the left of s = 1.

o If k1 +1 <y and ko +1 < lo, then k1 + ko + 1 < l1 4+ 5. Therefore a product of two good

terms is good.
e For any 0 <1¢ < p— 2, b; is good. Further, a product of two or more a;’s is a good term.
e For any i, 7, the term a;b; =| Q|+ +T7=(+2)s=(+2)s i5 go0d.

Let p > 3. Then

p—2 p—3
—-Db (1—ai)
=0 i=0

p—3 p—2 p—3
= 1+Zai—2bj 1—Zai+ good terms
1=0 Jj=0 i=0

p—3
wp,Q(S) =1+ Zai
=0

p—3 p—3
=(1- Z a; + Z a; + good terms) = (1 — good terms).
i=0 i=0

If, for a moment, we consider ag, a1 ...a,—3 and by, by ... b,_o as variables, then we see that the
set of monomials appearing in the expression for 1, o(s) is finite and independent of Q. Let §,

be the maximum of the % such that | @ |[¥~!* appears in the simplified expression for 1, o (s).
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Then 6, < 1, and 1,(s) converges for Re(s) > 0p.

Therefore [ Zg(s) = ¥p(s) f;g C(s(i+2) — (i + 1)) converges for Re(s) > 1 and has a pole

of order p — 1 at s = 1. Further, the residue at s = 1 is given by

. p—1_ ()
ll_{l% Z(s)(s —1)P~! = Tog(q)r—T

To count the number of ordinary curves, we define

Zo(s) = 32 7O = 3 b(m)g ™.

CEFy m

Recall that for such curves, d, = 1 for all . Therefore, Zy(s) = [[g Zo,g(s), where the local

factors are given by:

Zog(s)=1+(lQ| -1 Q™.
Lemma 2.5.4. Zy(s) converges for Re(s) > 1 and has a simple pole at s = 1.

Proof. Note that

A+ QI — Q™)1 Q") =1-|Q[™* — Q™™ + Q'™

and

o(s) = [[-[QI™ — QP + Q™)
Q

converges for Re(s) > 3/4. Therefore Zy(s) = ¢(s){(2s — 1) converges for Re(s) > 1 and has a

simple pole at s = 1. Further, the residue at s =1 is

. TR )
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Proposition 2.5.5. For any § > 0,

N'(X) = {2 X og, (X)) 4 O(X19),

N*(F,9,X) = lf;(lq))x +O(X179).

Proof. This follows from Theorem 2.5.1 applied to the results of Lemmas 2.5.3 and 2.5.4, since

((s) has a meromorphic continuation to the entire complex plane. O

Corollary 2.5.6. For any § > 0,

N(#,X) = ‘/’f;((lq’) 2 X2/ (log, (XY D)) 4 O(X 770,
(1) 22X/ - 1)+O(Xp 79,

NZ.9. %) = foe )

In particular, the probability that an Artin-Schreier cover unramified over oo is ordinary is

o(1)¢C(2)  ifp=2,
0 if p>3.

Proof. N(F,X) = N*(.F,¢? X P-1),

O]

Remark 2.5.7. We now make some concluding remarks about counting Artin-Schreier curves.

Data associated to this subsection can be found in Section 2.6.

1. If we modify Z to include the covers ramified over oo, we must modify the partial fraction
decomposition in (2.3) to:

= Z fa(za) + g(2).

aEB
aFoo
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Here g(z) € Fy[z] is a polynomial that, like the other f,’s, has degree coprime to p and
for each 0 < i < |deg(g)/p], the coefficient of 2% in g(z) is 0. This manifests as a change
in the zeta functions Z(s) and Zy(s) defined in the above discussion by factors that we
will call Z(s) and Zp o (s) respectively. That is, we write Z(s) = Zoo(s) [1g Zq(s) and
Zo(8) = Zo,00(8) [1g Zo,g(s). Both these factors only affect the residues of Z(s) and Zy(s)
and not the order of growth, which means that for p > 3, the probability of ordinarity for
the modified family is still 0. For p = 2,

1

Zo(s)=14q" and Zooo(s) =1 —q 1 4+q

Therefore the probability of ordinarity in the modified family is

1+q¢t

) H(1)¢(2) =1—-3¢"1 +6¢724+0(¢?). (2.13)

. Recall from Section 2.3.2, that the probability that an Artin-Schreier curve is ordinary, is

bounded above by the quantity,

. 4N(9793X)
i Clo)loe, (X' 30

Since the order of growth of N(.%,g,X) is X?/(=1) and the that of N(.%,X) is
X2/(=1) Jog(X)P~2, this quantity is 0 whenever p > 7. The geometric description of
the Artin-Schreier locus leads us to believe that the same might be true for p = 3,5, as

explained in part (4) of this remark. However a proof for these cases requires more work.

. Recall that if the Jacobian of a curve behaves randomly in the sense of [6], the heuristics

predict that the probability of that a curve is ordinary is
oo

[I0+a)

i=1

Corollary 2.5.6 and the previous remark prove that the Jacobian of an Artin-Schreier
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curve does not behave randomly in the sense of [6]. For p > 3 this is clear. For p = 2,

elementary calculations show that the constants are not equal. In fact,

o0

[Ta+a ) =1—-¢ =g +q*+0(P).

i=1
One must remember, however, that since we are counting covers instead of curves, as
observed in Section 2.3, that this does not disprove the heuristic for isomorphism classes

of Artin-Schreier curves in characteristic 2.

. Theorem 2.3.2 implies that the ordinary locus intersects exactly one irreducible component
of @77 5, namely the one corresponding to the partition {2,2,...2} of d+2 = 1% +2. On
the other hand, from work in [23], we know that the Artin-Schreier locus is equidimensional,
each component having dimension d — 1. In particular, this implies that for p > 3, the
proportion of components intersecting the ordinary locus goes to 0 as g — oo. Indeed, for
p>3,let A={2,3,...p} and let pa(n) denote the number of partitions of an integer
n into integers from the set A. Then the number of components of dimension d — 1 is
pa(d+2). Asn — oo, pa(n) ~ KnP~2 for some constant K. This might be a somewhat
satisfying geometric explanation, especially for those taken aback by the fact that counting

squarefree rational functions in this order gives a proportion of 0.

2.5.2 Superelliptic curves in characteristic 2

For this section, we use the notation of Section 2.4. We are interested in counting covers in the

family % of covers y" = f(x) over a field I, of characteristic 2, where

e 1 is prime,

o f(x) € Fy[z] is n-th power free.

For convenience, we count by ¢™ instead of ¢9 where

2
m .= g + 2
n—1
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is the number of points in P! (k) over which the curve given by y” = f(z) is ramified. Since
n is fixed in the entire discussion, this will not change the order of counting significantly.
Define N*(.#, X)) as the set of curves in .# with ¢™ < X and N*(#, g, X) similarly. From the

definition of m, it follows that

N(Z,X)=N*"(Z,¢’X*" V) and N(ZF,9,X)=N"(F,g,¢X¥"V). (214

Define

Forener = \F1F - F" | F; € F[z] monic, squarefree and mutually coprime, deg(F;) = e;}.

When we write m = Z?z_ll e;, we will be interested in the case when there are e; points ramifying
to degree i. This is the same as the notion defined in Remark 2.4.6. To express this concretely
in terms of polynomials, it is best to use an example. For instance, for a curve given by
y® = Fi(z)(Fa(z))?, where Fy(z)(Fz(z))? € Fa.4, there are 2 points that occur with degree 1
and 4 that occur with degree 2. If on the other hand, the curve is given by 3® = Fy(z)(Fy(x))?,
where Fy(z)(Fy(z))? € F32, there are 3 points that occur with degree 1 and 3 that occur with

degree 2 (since n., = 2, the curve is ramified over co € P! to degree 2).

Proposition 2.5.8. Consider the set Sy, of superelliptic curves with the number of ramified
points m = E?:_ll e;, such that there are e; points that ramify to degree i. Then the size of Sm
18:

n—1

‘}_61,62'“67171 ‘ + Z "Fel,"'ez'—l,'"en& ’
i=1
Proof. Let C € #, such that C — P! is ramified over m points in P*(F,). If the map is
not ramified over oo, then C € F¢ ¢y, ,.- If it is ramified over oo and n. = 4, then

C € —Fel,...eifl,...enfl- O

11 e;, with e; points occuring with

In the above proposition, imposing the condition m = >>7""
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degree i, implies that Z?:_ll ie; = 0 mod n. Therefore we are interested in the following

quantity:

n—1
Z (‘Fel,ez-~en1 | + Z “Felf"ei_ly“'@nfl ‘) (2‘15)

gm<X =1

where the sum is over tuples (eq,ez...e,—1) such that Z?;ll ie; = 0 mod n. Further, observe

that for a fixed 1 <i<n—1,

Z |‘F€1»"'€i*1,"'6n71 | = Z "Fdlv“‘diy"'dn—l

(ej),a“1 T2 en=1 < x (), T2 dn—12x/q

ZjejEO mod n Zjdjzi mod n

Therefore Equation (2.15) can be rewritten as

Z |‘F61762~~~6n71 | + Z |felye2-~~en71

qel+62”'en_1<X/q X/q<qel+”'€"_1<X

ie;=0 mod n

where the first sum is over all tuples (e1,ez...e,-1) with qz ¢ < X/q. Thus the number of

superelliptic curves with ¢™ < X is bounded below by the quantity

Z |]:81,62---6n—1

qel+62A.Aen71<X/q

For our proof, we only need a lower bound for the total number of superelliptic curves. Therefore,

it suffices to estimate this quantity.

Notation 2.5.9. From now on, a sum of the form

>

q81+€2..4€r <X

will denote a sum over all tuples of non-negative integers (e, ez...e,), with qz ¢ < X.
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For any non-negative integer m, let a(m) = Z | Fereo..en_y |- Define:

ertez...+ep_1=m

such that H := [[-]' F;(x) is squarefree. We will use this characterization to calculate Z(s).

Consider a squarefree polynomial H. Let H = [[h; be its factorization into irreducible
polynomials. We want to count the number of ways in which H can be written as a product
of squarefree polynomials H?;ll F;. For each factor hj, there are n — 1 choices of squarefree

polynomial that it could divide. Therefore, the number of factorizations H = H?:_ll F; is

(n —1)*H)

where w(H) = the number of distinct irreducible factors of H. Therefore,

Z(s)= 3 (- HZ=][1+{n-1) Q7).

H sq. free Q

Note 2.5.10. Let @4 (s) = [[o(1+ % [Q[™%). Then ®1(5)¢(s)7" is a function that converges
for Re(s) > 1/2. We will denote ®(s)¢(s)™ by ¢ (s).

Proposition 2.5.11. As X — oo,

N*(egi,X) > ¢n—1(1)

~ qlog(q)(n — 2)!X(logq(X))n_2 + O(X(log(X))n—?))‘
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Proof. Note that

Z(s) = Pp_1(s)

= ()" pn1(s).

This function has a pole of order n — 1 at s = 1. Thus, the Tauberian theorem implies that:

¢n—1(1) -2 -3
Y a(m)= X (log,(X))"™* + O(X (log(X))" ™).
mei/a qlog(q)(n — 2)!
This provides a lower bound for N*(.#, X). O

Corollary 2.5.12. The number of superelliptic covers with invariant m such that ¢™ < X is

bounded below by

Hn(q)X2/(n_1) logq(X2/(n—1))n—2 + O(X2/(n—1) 10g(X2/(n—1))n—3)

where
q¢n_1(1)
kn(q) = —————.
D= Toa())(n - 2)
Proof. This follows from the fact that N(.#, X) = N*(.%, ¢*?X?/(n=1)), O

Upper bounds for N*(Z#,g,X)

In this subsection, we find an upper bound for the quantity N*(.#, g, X ), as defined in Equation
(2.14). We will maintain the notation of Section 2.4.

Suppose we consider covers with m = Z?:_ll e; ramification points, e; points occurring with
degree i. Using the criterion for ordinarity in Proposition 2.4.4, we can derive the following

conditions on Fe, ey...e,_1:
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1. If noo =0, deg(f;) = deg(fn—i). Note that in this case, the cover belongs to Fe, e,. ¢, ,

with deg(f;) = e;. Therefore the condition for ordinarity implies that there are

‘ ‘F€1,...€n71 s€n—1..-€1 |
2 2

curves of such kind over F,.

2. If noo =14, then C € Fey ¢;~1...c,, With deg(f;) = e; for j # i and deg(f;) = e; — 1.
Further, the condition for ordinarity gives: for j # i,n — 4, deg(f;) = deg(fn—;) and
therefore e; = e,—;. Also, deg(f;) +1 = deg(f,—;) implies e; = e,—;. Therefore, the

number of such curves is

’-7:61,62...,81—1,..-67171 €n—1 --.,€i...€2,€1
2 2

’fe1,62---76i7---6n71 €n—1...6;—1l...ez,e1
2 2
if 4 > 2l
We are interested in the size

* n—1
N*(f,g,X) = Z <|F81,62“'8n1 ’ + Z "Fely"'ei_ly"'enfl ‘) (2'16)

i=1

where the sum is now over tuples (ej, ez ...e,—1) that satisfy the ordinarity criterion e; = e,_;.
Note that for such a tuple, the condition Y 7" 1 ie; =0 mod n is satisfied automatically. We
now proceed to find an upper bound on this quantity, using a result of Bucur et. al. in [5] that

we will recall below. Let

-2

S

1;1( TarGar)

J=1
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where the product is over monic irreducible polynomials @ € F,[z].

Theorem 2.5.13 ( [5], Prop 4.3). Fiz a tuple of positive integers (e1,e2). Then, for any e > 0

and as q gets large,

L1q61+ez

| Ferea |= @

(1 + O(q—GQ(l—E) + q—61/2)>

Remark 2.5.14. The number of monic polynomials of degree d in Fy[z] is ¢? and the proportion
of these that are squarefree is (1 — 1/¢). One might expect, similarly, that the proportion
of pairs of monic polynomials of degrees (e1,ez) that are squarefree and coprime, also form
a positive proportion of the total number of pairs of monic polynomials, ¢¢*™¢2. The above
theorem shows that this is indeed the case. The next proposition shows that the same is true

for (e1,ez...e,—1) for any odd prime n, although with a weaker error term.
For the following proposition, we refer the reader to [5], Corollary 7.2.

Proposition 2.5.15. Fix a tuple of positive integers (e1,ez...en—1). Fix an € > 0. Then, as
q gets large,
Ln_2q€1+€2~~~€n—1

| ]-'(61762._.%71) |= C@) (1+O(q6(62+...en71+Q)+(1—e)q(q—ez 4. q—6n71)+q—(e1—3Q)/2))

Proof. Consider the expression given in [5], Corollary 7.2. Summing the expression over all

possible partitions m = ky + ko ... + k,—1 gives:

Ln_QCq(e21)+’”‘e‘2.1“6711 (q Z T_zi 1)m ((q +n —ql)(q - 1))q"”

% (1 + O(qe(eg+...en71+q)+(1—e)m(q—82 + q—eg . .q—enfl) + q—(el—m)/2+q))‘

Summing over all possibilities of m now gives the result. O
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Parsing these propositions tells us that for large enough ¢ (depending only on n),
n—1

|]:(61,62me7171) |§ Klqe1+€2---enf1 +K2qel/2+62---en71 + ZK3,iqel+...6€i+.-.en71
1=2

where K1, K3 and the K3;’s depend on €, ¢ and n, but are independent of the e;’s. Since for € < 1
the first term in the above expression is the largest, we let K = max(K;, K2, K32...K3,-1)
and so for large enough gq:

’ f(61762~.-6n—1) |§ qul+62"'en—1.

Thus Equation (2.16) implies that

N*(F,9,X) < K (W) Z gAlerteaem-n2) | (2.17)

q e (= e
Flertezcmon/2) o x

The following lemma will be used to find an upper bound for the expression above.

Lemma 2.5.16. As X gets large,

o ot = O0(X log(X)" ).

qel+€2'“57‘ <X

Here, the implied constants depend on q and r.

(=)

The coefficient of T™ in this expression is Z gerte2-ter  On the other hand, by the

e1+ez...ep=m

Proof. Consider the expression:
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r+m-—1
binomial theorem, the coefficient of 7" in (1 — ¢T")~" is: q™. Further,

r—1

r+m—1 (m +r) !
T—l - (T—l).

Therefore, we have that

Z q€1+€2---€r — Z Z q61+62...67»

q‘51+52-~6T<X qm<X e1tez...ep=m
Z r+m—1
qr<X
7" 1 r—1
LY
(T - 1) m<r m>7‘ (r - 1)
qMm<X qm<X

= D, X log(X)"™' + O(X log(X)" ),
where the last step follows by Euler Summation. This proves the lemma. 0
Proposition 2.5.17. For large enough q,
N*(F,g,X) = O(X log(X)"7").
Hence, N(.%,g,X) = O(X?/ (=1 log(X)nT_?)), where the implied constants depend on g and n.

Proof. To obtain the first statement, we use Equation (2.17):

N*(ﬁ,g,X) <K <Q+n_1) Z q2(61+82...8(n71)/2)
q q2(€1+€2u.€(n71>/2)<X

and Lemma 2.5.16, with ¢ replaced by ¢. The second part of the statement follows from the
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fact that N(.Z#,g, X) = N*(.Z, g, ? X ?/(»=1),
O
We remind the reader here that for the quantity that we are interested in, namely the probability

that a superelliptic curve is ordinary, ¢ and n are fixed. Therefore, the fact that the implied

constants above depend on ¢ and n will make no difference to the theorem below.

Theorem 2.5.18. The probability that a superelliptic curve y™ = f(x) over For with n prime

and r large enough depending only on n, is ordinary, is zero. That is,

X—00 N(ﬂ,X) =0

Proof. By Proposition 2.5.17, the numerator N(.%, g, X) is bounded above by the quantity

n—3

X2 (n=Diog(X) 7.

By Corollary 2.5.12, the denominator grows faster than X2/("=1 log(X)"~2. This proves the

theorem.

O]

Remark 2.5.19. It is interesting to note that for a given g, the space of superelliptic curves
of degree n and genus g decomposes over F, into irreducible components that correspond to
partitions of m = 2?2—11 e; such that Z?:_f ie; = 0 mod n. The ordinary locus intersects a
small proportion of these components. For n = 3, for instance, it only intersects one component.
A similar thing was true for the Artin-Schreier locus «/.,. For fixed p-rank s, one can obtain
a combinatorial description of the components contained in the stratum /., ;. One can ask

if a similar result holds for superelliptic curves in odd characteristic.
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2.6 Numerical Data on Artin-Schreier curves

We conclude this chapter by listing some values of constants computed in the previous section.
Recall that

L ) B(1)((2)

P(od S, g) = <

is the probability that an Artin-Schreier curve in characteristic 2 is ordinary (Corollary 2.5.6).

For brevity, we let ¢(q) = [[32;(1 4+ ¢~%) 7, the constant predicted in [6].

o(1) | P(oS,9) | »l(q)
0.314148 | 0.314148 | 0.419422

0.593976 | 0.514777 | 0.737512
0.776577 | 0.702617 | 0.873264
16 | 0.882162 | 0.833730 | 0.937270
321 0.939367 | 0.911820 | 0.968720

0 | &~ N

NN NN NS

Table 2: Proportion of ordinary Artin-Schreier curves in characteristic 2
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Chapter 3

Counting elliptic curves with a

rational N-isogeny

3.1 Introduction

We quickly recall some of the notation from Chapter 1. Throughout this chapter, E will
denote an elliptic curve over Q. We say that F has a rational N-isogeny if there is an isogeny
¢ : E — E' such that Ker(¢)(Q) = Z/NZ and if Ker(¢) is stable under the action of the
absolute Galois group of Q. An elliptic curve E over Q has a unique minimal Weierstrass

equation y? = 23 + Ax + B where A, B € Z and gcd(A3, B?) is not divisible by any 12th power.
Define the naive height of E to be ht(E) = max{|A[?,|B|?}.

Notation 3.1.1. For two functions f,g : R — R, we say that f(X) =< g(X) if there exist
positive constants K and Ky such that K1g(X) < f(X) < Keg(X). For a real number X and

positive integer N, define
N(N,X)=#{E/Q| ht(E) < X, E has a rational N-isogeny},

where we count elliptic curves up to isomorphism over Q.

Recall that we want to find a function hy(X) such that N(N, X) =< hn(X). We will often call
this the asymptotic growth rate of the the function N (N, X). Our goal is to prove Theorem 1.2.5.

An elliptic curve over Q equipped with a rational N-isogeny gives rise to a Q-rational point on

the modular curve Xy(NN) (defined in Section 3.1.1). Thus, up to a constant equal to the degree
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of the forgetful map Xy(N) — Xp(1), the counting function N (N, X) is the number of points
of bounded naive height on the modular curve Xp(N). In [24], Mazur gave the list of prime
N for which there exists an elliptic curve over Q with a rational N isogeny. Various cases of
composite N were proved by several people, and a complete list of IV for which there exists an
elliptic curve over Q with a rational N-isogeny can be found in work of Kenku ( [20]). For the
modular curves that we are interested in, the existence of such a non-cuspidal rational point is
not in question. For N < 10 and N = 12,13, 16, 18, 25, the coarse space of Xp(N) is isomorphic
to P! (see for e.g. the genus computation in [11]). In particular, there are infinitely many
j-invariants j such that there is an elliptic curve E with a rational N-isogeny and j(F) = j.
Further, the fact every point of Xp(V) has automorphism group of size at least two implies that
there are infinitely many elliptic curves of a given j invariant that have a rational N-isogeny.

This makes counting them significantly more challenging.

3.1.1 Modular curves

Let N be a positive integer. Let Yo(V) denote the modular curve such that for a Z[3;] scheme
S,
No(N)(5) ={(E/S,C/S) | C =5 Z/NZ}

where E/S is an elliptic curve over S, C is a sub-group scheme of E defined over S, and the
pair is taken up to isomorphism. Let Xy(/N) denote the compactification of Vy(INV) in the sense
of [10]. Every point of this moduli space possesses the extra automorphism [—1], since the
automorphism of F sending P — —P also induces an automorphism of C. Let Bu, over a
scheme S be the stacky quotient [S/u,] parametrizing principal p,-bundles. Thus Ap(N) is a

stack over Z with generic inertia stack Bus.

Let Y1 (N) denote the curve whose points are given by:
Yi(N)(S) ={(E/S,P/S) | N - P =0}

where F/S is an elliptic curve over S, P € E(S) is a point of order N, and the pair is taken
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up to isomorphism. Let X;(N) denote the compactification of Yy (N). For N > 5, X1(N) is a
scheme. There is a natural map &y : X1(N) — Xy(N) which sends (E, P) to (E, (P)), where
(P) denotes the subgroup of E generated by P. We remark here that the cusps of modular
curves also have a moduli interpretation. They paramterize ‘generalized’ elliptic curves with
To(N) or I'1 (N) structures. For a more detailed exposition on these, we refer the reader to [10]

or [40]. A short description is given in the appendix.

Definition 3.1.2. Let M denote any modular curve. For any point S — M, let p: E — S
denote the corresponding elliptic curve. The Hodge bundle Ap4 is the line bundle on M such
that (A)s = p«wi /s- For ease of notation, we will omit the M in Ax¢ whenever the underlying
modular curve is clear from context. Further, it follows from the definition of the Hodge bundle
that if M is a modular curve parametrizing elliptic curves with a certain level structure, and

Y M — Xp(1) is the forgetful map, then Ay = 9™ Ay 1)-

Modular forms of weight k£ and level N are sections of the k-th power of the Hodge bundle on
Xo(N). The coefficients A and B in the Weierstass equation y? = 23 + Az + B are, up to a
scalar, the Eisenstein series F; and Eg on Xp(1) respectively (see for e.g. [32]). Thus A3 and
B? are sections of the 12th power of the Hodge bundle on any modular curve. Thus counting
elliptic curves of bounded naive height is the same as counting elliptic curves of bounded height
with respect to A®!2 on any modular curve that is a scheme. We will see later, that the same is

true for moduli stacks.

Definition 3.1.3. Let M denote the coarse space of a modular curve M. When M =2 P!, its
function field is freely generated by a single element; this element is called a hauptmodul. These
hauptmoduln parametrize elliptic curves with a given level structure, and can be used to write

equations for modular curves.

3.1.2 Two approaches to counting points on a stack

We take two approaches to counting rational points on Xy(N). The first is based on the work
of Harron and Snowden in their paper [17], and uses the fact Xp(/V) has an open substack )

such that every point on ) has an automorphism group of size exactly 2. The second uses
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the theory of heights on stacks developed in [13] to show that the naive height comes from

geometry. We outline the approaches below.

The work of Harron and Snowden and counting points on stacky modular curves

In [17], Harron and Snowden ask, for a given group G from Mazur’s list in [24, Theorem 2] ,
how many elliptic curves have F(Q)rs = G? They compute the asymptotic growth rate of this
quantity for each G. Part of their framework involves counting elliptic curves in families. Let
M be a modular curve parametrizing elliptic curves with prescribed level structure. Suppose
further that there exists a universal family M over M. That is there is a map M — M such
that any family of elliptic curves E/S corresponding to a point S — M is pulled back from M.

In particular, if M = P!, then one can find an equation:

y? =2 + f(t)z + g(t)

such that every elliptic curve over Q with prescribed level structure is isomorphic to one of this
form for some ¢ € Q. To count such elliptic curves with bounded height therefore, one must

count the set of pairs (A, B) € Z? such that
o 4A3 4272 40,
e max{|A[?,|B|?} < X,
e gcd{ A3, B2} is not divisible by any 12th powers, and
e Ju,t € Q such that u*f(t) = A and u%¢(t) = B.

In [17], the authors give the asymptotic growth rate for such pairs (A4, B) as an explicit power

of X in the special case that f and g are coprime, and

4 7 6 m

X{deg(f) deg(g)} _.n

in lowest terms with either m or n = 1. As an example, the curves X;(N) for N =

3,4,5,6,7,8,9,10,12 all admit such a universal family.
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Now of course, Xy(IN) does not admit such a universal family (Proposition 3.2.4). However, for
certain N, one can construct a double cover of Xy(/N) that does. This double cover satisfies the
property that any elliptic curve with a rational N-isogeny is a quadratic twist of one arising as
a rational point on the cover. In particular, this leads to a similar counting problem as above,

just with the last condition replaced by:
Ju,t € Q such that v f(t) = A and u’g(t) = B.

This puts us back in the framework of [17, Theorem 4.1], with some extra conditions on the degree,

as made precise in Section 3.4. We use this to compute hy(X) for N € {3,4,6,8,9,12,16, 18}.

Embedding curves into a weighted projective space

Let V be a projective variety defined over Q. Let £ be an ample line bundle on it. Then one can
embed V <5 PM via £87 for some n,ie. Opu(1) = L. Let 2 € V(Q). Then f(z) € PM(Q)
can be extended to an integral point f(x) € PM(Z). Writing f(x) = [yo : y1 ... : yn| with the

y;’s mutually coprime, we define

Ht () = [ max{|yolv, ly1ly - - - lyn o}/
14

where the product is over all the places of QQ. For stacks, there is neither an embedding into
projective space, nor can every rational point be extended to an integral point. These problems
are solved in forthcoming work, [13], where the authors give a theory of heights on stacks. As
a particular case of their results, if a stack X is equipped with a line bundle £ such that a
power of £ can be used to embed X into a weighted projective space instead, then the height of
a rational point can be computed in a manner very similar to the scheme case (Proposition

3.5.2). Now, the map

(y? = 23 + Az + B in minimal form ) — [A : B]
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is a map from the modular curve X'(1) to the weighted projective space P(4,6). Thus with the
definition of height from [13], the naive height on Xy(/N) is a constant times the height with
respect to the 12th power of the Hodge bundle. Using the fact that naive height comes from
geometry allows us to use different sections that globally generate the twelfth power of the
Hodge bundle. For a general stack, it is not always easy to find sections that globally generate
a line bundle, but in our case, we are in luck, since the ring of modular forms of Xp(N) is

classically well understood (see for e.g. [18]).

Remark 3.1.4. We believe that forthcoming work of Bruin and Najman also proves the asymptotic
growth rate for Xp(4) by using the fact that it is isomorphic over Z[1/6] to the weighted projective
stack P(2,2).

3.2 Preliminaries

3.2.1 Rationally defined subgroups

In this subsection, we describe a degree two cover of Xp(/N) that we will use to set up our
counting problem. To this end, let N > 3 and let G = (Z/NZ)*. Then ®y : X1(N) — Xp(N)
is a branched G-cover of Xy(NN), with branch locus supported possibly at cusps and points with
j =0,1728. Away from the branch locus, G acts freely and transitively on the fibers of @y, by
sending (£, P) + (E,aP). Let H be an index two subgroup of G. We denote by J; /5(IV) the
quotient Y (N)/H. One can make sense of the quotient by the action of H at the cusps by
using the modular interpretation of cusps. This is explained in Appendix A.1. We denote by
Xy /2(N) the quotient X1 (N)/H.

Remark 3.2.1. We begin with some comments about the curve X /5(N).

1. The curve &j/5(IV) is not a novel construction. It can be understood classically as the
quotient of the upper half plane by an index 2 subgroup of I'g(/V). Further, we do not

claim that &X7(N)/H is a scheme. In fact it is a stack in many cases (see Section 3.4).

2. The notation X /o(N) might be misleading, since there is not always a unique index two

subgroup of (Z/NZ)*. However, in our case we will only consider the H for which G/H
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is represented by {+H, —H}. As an example, (Z/8Z)* = Z/27 x Z/2Z. We will write
this set as {1,3,5,7}. This has three index two subgroups: H; = {1,3}, Ho = {1,5} and
Hs = {1,7}. The two cosets of H; are therefore H; = {1,3} and —H; = {5, 7}. The case
Hy is similar. However, the two cosets of H3 are Hs = {1,7} and 3H3 = {3,5}. We will
make it a point not to pick Hs. The choice between H; or Hs will not affect our final

result.

3. In the context of the remark above, we note that there are some values of N (namely
N =5,10,13,25) for which there is no choice of index 2 subgroup such that G/H = {+H}.
For these N, while the construction of X} /2(N ) still makes sense, it does not have the
nice properties that we want (see Lemma 3.2.2 and Proposition 3.4.1). Another way to
rephrase the condition that G/H = {£H} is in terms of the subgroup I'o(N) C SLa(Z).

Consider the short exact sequence:

1 —{£1} - To(N) = PI'o(N) — 1. (3.1)

If —1 is a square modulo N, then I'g(/N) contains a primitive fourth root of unity. The

converse is also true. Consider the homomorphism ¢ : SLy(Z) — p12 given by,

a b 297
— e 12
c d

((1—c?)(bd+3(c—1)d+c+3)+c(a+d+3))

and its restriction to T'o(IV). If T'o(N) doesn’t contain a fourth root of unity, then the
image of the restricted map is contained in pg =2 o X p3. One can check that the map
g, composed with the map ug — p2 provides a splitting of the sequence 3.1. Thus for
N € {5,10, 13,25}, this sequence is non-split, while for N € {3,4,6,7,8,9,12,16, 18}, it
does split. This splitting allows us to identify PI'o(N) with a subgroup of I'g(/V) and

hence construct a degree two cover of Xy(N) without generic inertia.

We now explain the significance of the curves & /5(/N). Most of what follows is well known

(e.g., see [31], [16]) but we recall them here for completeness. Let E be an elliptic curve
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over Q with a rational N-isogeny. For notational convenience, we fix a Weierstrass form for
E :y? = 23 + Az + B, with A, B € Z. Fix an isomorphism of the kernel of the rational

N-isogeny with Z/NZ. The Galois action of Gg on the kernel defines a homomorphism:

x:Gg — (Z/NZ)*.

For each N € {3,4,6,7,8,9,12,16, 18}, we can write f : (Z/NZ)* = (Z/2Z) x (Z/mZ) for some
m € Z. This allows us to factor x into two characters x1 : Gg — Z/27Z and x3 : Gg — Z/mZ.
That is, we may write x = x1x2 using the isomorphism f. Now, since x; is a quadratic
character, it factors through a quadratic extension K = Q(\/;l), with d a squarefree integer.
Let EX1 : dy? = 2% + Az 4+ B denote the quadratic twist of E over K.

Lemma 3.2.2. Maintaining the above notation, EX' has a rational N-torsion subgroup on

which Gg acts via x2. That is, the Galois action on this N-torsion subgroup factors as:

G (Z/NZ)*
N

Z/mZ

Proof. Let C denote the kernel of the rational N isogeny of F. Let ¢ : E — EX! denote the
isomorphism of elliptic curves defined over Q(v/d). For P € C and o € Gg, P? = x(o)P by

assumption. Further, by the definition of a twist,
P(P)7 = x1(0)p(P7)

where 7 is the image of o in Z/27Z. Since x; is quadratic, x1x = x2. It follows that Gg acts on
»(C) via xa. O
We have thus proved the following for N € {3,4,6,7,8,9,12,16, 18}.

Proposition 3.2.3. Fiz an appropriate index 2 subgroup H C (Z/NZ)* and consider the
corresponding curve Xy,5(N). Let (E,C) € Xo(N)(Q). Then there erists a unique d € Z
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squarefree, such that the corresponding twist (EX', $(C)) satisfies:
1. (¢(C))* has an index two subgroup He defined over Q, and therefore

2. (EaHC)v (E7 _HC) € X1/2(N)<Q)

Proof. This follows from combining the interpretation of X 5(/N) as a fiberwise quotient of

X1 (N) with Lemma 3.2.2. O

A nice example of Proposition 3.2.3 is in the cases N = 3,4,6, where (Z/NZ)* = Z/2Z. In
these cases X} /5(N) = X1(N). For these values of N, Proposition 3.2.3 says that if £ has a

rational N-isogeny then there exists a quadratic twist of E that has a rational N torsion point.

3.2.2 Automorphisms and universal families

In this section, we briefly recall the relation between automorphisms and the existence of
universal families. For more details, we refer the reader to [19], Chapter 4 and Appendix A.4.
Let F be a functor on the category Ellg of elliptic curves over a ring R. Let F denote the
corresponding functor on the category of R-schemes sending an R-scheme S to isomorphism
classes of pairs (E/S,«), where E is an elliptic curve over S and o € F(E/S) is an ‘F-
level structure’. The functor F (resp. F) is representable if there exists a universal elliptic
curve &£ over a scheme M (resp. a scheme M) such that F(E/S) = Hom(E/S,E/M) (resp.
F(S) = Hom(S, M)). Note that the representability of F' guarantees the existence of M, and
therefore implies the representability of F. The functor F' is said to rigid if for any E /S € Ellg,
and any a € F(E/S), the pair (FE/S, «) has no non-trivial automorphisms. In general, if F' is
representable, then F' is rigid. This is because a non-trivial automorphism of (E£/S, «) would
induce a non-trivial automorphism of an element of Hom(E/S, £/M), which is not allowed for
Hom sets in the category of schemes. The following proposition tells us when the converse is

true.

Proposition 3.2.4 ( [19], 4.7.0). Suppose that for every elliptic curve E/S, the functor Fg
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on the category of schemes over S defined by the map
T — F(Ep/T)

is representable by a scheme Fg,g. Suppose further that F is affine over Ellg, that is, the

morphism Fr,s — S is affine. Then F is representable if and only F is rigid.

In this paper, we will be interested in the functors of points corresponding to Xy(N), X1(N)
and the intermediate quotient X;/5(NN). To see that in these cases, the two hypotheses of
Proposition 3.2.4 are satisfied, we refer the reader to [19]. Thus we may move freely between

the existence of universal families and rigidity.

3.2.3 Counting lattice points in a region

In this section, we state a theorem of Davenport on a Lipschitz principle ( [9]). Let R be a

closed and bounded region in R™. Suppose R satifies the following two conditions:

1. Any line parallel to one of the coordinate axes intersects R in a set that is a union of at

most h intervals.

2. The same is true (with n replaced by m) for any of the m-dimensional regions obtained

by projecting R down to an m-dimensional coordinate axis (1 <m <n —1).

Let V(R) be the volume of the region R and N(R) the number of lattice points in it. Then,

the following theorem holds.

Theorem 3.2.5 (Davenport, [9]). For R satisfying 1 and 2,

n—1
IN(R) = V(R)| < > " "V,
m=0
where Vy,, is the sum of the (m-dimensional) volumes of the m-dimensional projections of R

and Vo = 1.
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3.3 Main counting results

From Section 3.2.1, we see that in order to count elliptic curves in Xp(N)(Q) with respect to
naive height, we must count elliptic curves for which there exists a quadratic twist that gives a
rational point on &} /5(IN)(Q). In this section we state and prove the counting results that will

enable us to do so.

Proposition 3.3.1 ( [17], Theorem 4.1). Let f,g € Q[t] be coprime polynomials of degrees r

and s respectively. Let max{r,s} > 0 and let m and n be coprime integers such that

i {7‘ 8} _n
2’3 m’
Assume that either n =1 or m = 1. Let S(X) be the set of pairs (A, B) € Z* such that
o 4A34+27B? £0,
e gcd(A3, B?) not divisible by a 12th power,
o |Al < X3 and |B| < X'/?,

e Ju,t € Q such that A =u?f(t) and B = u?g(t).

Define
X (m+1)/6n m+1>n
k(z) = { XY6log(X) m+1=n
X6 m+1<n
Then,

S(X) = k(z).

As we will see in section 4, this theorem is not enough for all the cases that we are interested
in. For N = 3, the condition: ‘either n = 1 or m = 1’ is not satisfied. We will thus prove a

generalization of this proposition.
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Remark 3.3.2. We note here that we do not prove the most general version of Theorem 3.3.3
possible, since we do not need it. It might be an interesting exercise in analytic number theory

to prove such a version, independent of the interpretation of counting points on a moduli space.

Theorem 3.3.3. Let f,g € Q[t] be coprime polynomials of degrees r and s respectively. Let

max{r, s} > 0 and let m and n be coprime integers such that:

Suppose that n,m # 1. Define

3h 2h

and w = max{=', =

}. Suppose further that,
e m+1>n, and
o Ml (y+1)=-1
e min{3rm — 6h,2sm — 6h} < 6.
Let S(X) be the set of pairs (A, B) € Z? such that
o 4A3 4 27B? #0,
e gcd(A3, B?) not divisible by a 12th power,
o |[Al < X'/3 and |B] < X'/2,
e Ju,t € Q such that A = u?f(t) and B = ug(t).

Then,

S(X) =< XxmHD/6n 00 X).

Remark 3.3.4. Note that the hypotheses on m,n,r and s make it so that there aren’t many

choices of these variables that satisfy all the hypotheses together. The degree conditions for
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Xo(3) are perhaps the only moduli problem of interest that that satisfy these. However, stating
the theorem in this manner instead of using numbers makes the method less opaque and more

amenable to generalization.

Proof of Theorem 3.3.3

The proof of this theorem closely follows that in [17]. We provide the key parts of the proof
here for the sake of completeness. We prove the upper bound and the lower bound in two

separate sections. For the reader’s convenience, we outline each proof first.

Notation 3.3.5. For any two real valued functions h(X) and k(X), we say that h(X)Sk(X)
if there is a positive constant C' such that h(X) < Ck(X).

Upper bound. Our goal is to reduce the problem of counting pairs in S(X) to the problem
of counting tuples of integers in a bounded region, perhaps with some divisibility conditions.
Let S1(X) be the set of u, t such that (u?f(t),ug(t)) € S(X). Counting S;(X) gives an upper
bound for S(X). We will express u and t as gc~'db™ and ab~™ respectively for some integers
a, b, c and d and some rational number ¢q. Lemmas 3.3.6, 3.3.7 and 3.3.8 enable us to do this.
The next key observation is that there are only finitely many possibilities for g. Thus for the
kind of upper bound that we are looking for, we can count 4-tuples of integers (a, b, ¢, d) in a
particular region. Lemma 3.3.9 gives the bounds for such a region. Lemma 3.3.10 outlines what
divisibility conditions these integers must satisfy, and also calculates the number of such tuples.

O

Lemma 3.3.6 ( [17], Lemma 2.2). For each place p of Q, there is a constant ¢, > 0 such that
for each t € Q:

max(|f(t)p, [9(t)]p) = cp.
Furthermore, we can take ¢, = 1 for all sufficiently large p.
Let S1(X) be the set of u, ¢ such that (u?f(t),ug(t)) € S(X).

Lemma 3.3.7. For each prime p there is a constant Cy, such that for all (u,t) € S1(X), we
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have:

o [=mvalp(®)] valy(t) <0

val,(u) =€ + (3.2)

0 valy(t) >0
for some |¢'| < Cp. Moreover, we can take Cp, =1 for all p sufficiently large.

Proof. The proof of this lemma closely follows that of Lemma 2.3 in [17]. Fix a prime p. Since

A and B must be integral, we have that:

valp(A) = 2val,(u) + val,(f(t)) >0 (3.3)
val,(B) = 3val,(u) + val,(g(t)) >0 (3.4)

Thus,
valy (u) 2 max ([ 5 val, (/)] [ -3 valy(9(8)] ) = K. (3.5)

Note that if val,(u) > 2+ K, then by replacing u by p*u we see that p'? | ged(|A|3, B?). Thus
we must have K < valy(u) < K + 1. The rest of the proof goes exactly like in [17]. Suppose
val,(t) < 0. Pick Ky such that |val,(f(t)) — rval,(t)| < K and |val,(g(t)) — sval,(t)| < K

for all such t. Note that K; can depend on p and is 0 for large enough p. Then,

K = e+ max ({—; val,(t)], [—g valp(tﬂ) =€+ {r: Valp(t)-‘
where |e| < K5 for some K5. Thus we have:
—n

€+ [;: Valp(t)-‘ < valp(u) < e+ {m Valp(t)-‘ +1

for val,(t) < 0.
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Now consider the case when val,(t) > 0. By Lemma 3.3.6, there exists K3 such that
min(val,(f(t)),valy(g(t)) < K3. Further, K3 = 0 for p > 0. Thus — val,(u) < K4 for some
constant Ky4. Since val,(t) > 0, there is a K5 such that val,(f(t)) > K5 and val,(g(t)) > K5
for all such ¢. This gives a lower bound on — val,(u), appealing again to (3.5). Thus there is a
constant K7 such that |val,(u)| < K7. We remark here to avoid confusion that all the K;’s are

constant with respect to ¢ and u, but do depend on p, f and g.

This gives us first part of the lemma. For the second part of the lemma, we need only take, as
in [17], p > 0 such that: (1) the coefficients of f and g are p-integral, (2) the leading coefficients
of f and g are p-units and (3) the constant ¢, in lemma 3.3.6 can be taken to be 1. Since

K <waly(u) < K + 1, we can only get C}, = 1 for p > 0.

O
The next step is to prove an analogue of Lemma 2.4 in [17]. This will enable us to reduce our
problem to that of counting lattice points in a region. We start with some notation. Recall that
w = max{3h/s,2h/r}. For a given pair of positive integers (a,b), we say a prime p satisfies ()
if:

plb = p“la
Lemma 3.3.8. Suppose (u,t) € S1(X). There is a finite set Q@ C Q* (independent of u and t)
such that: we can write t = ab™™ and v = qc~'db", where:
1. a,b € Z, withb >0,
2. ged(a,b™) is m-th power free,
3. d is a squarefree integer,
4. ¢ €Q, and

5. ¢ € Z such that val,(c) < h for all p and val,(c) > 0 if and only if p satisfies (x).

Proof. Given t € Q, one can always write ¢ = ab™™ satisfying (1) and (2). Pick any such
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representation. We now analyze ub™" and show that val,(ub™") must satisfy the required
constraints. For convenience we will fix Ny to be an integer such that C},, =1 for p > Ny. Such

an Ny exists by Lemma 3.3.7.

We divide the set of all primes into two groups: p|b and p{b. If p{ b, then val,(t) > 0 and by
Lemma 3.3.7, we have | val,(ub™")| < C),. If p|b, then we write — val,(t) = mval,(b) — k, where
0 < k < m. Therefore, by Lemma 3.3.7 again, we have:

—n

valy(u) = € + nvaly(b) + [WH

Therefore for any p, we have —C}, — h < val,(ub™) < C),.

If p < Ny, we have no control over Cj,, but we know that there are finitely many possibilities
for the Ny-smooth part of ub™", since |val,(ub™")| < Cp + h (here, Ny-smooth means the part
of the numerator or denominator that is divisible only by primes less than or equal to Ny). For
p > Ny, we have:

|val, (ub™™) <1ifp{b

and

—1—h <wval, (ub™") < 1if p|b.

In the case that p{b and p > Ny, we see that valy(t) > 0. Further, in the proof of the previous
lemma, Ny is picked so that for p > Ny, the val,(f(t)) > 0 and val,(g(t)) > 0, with at least one
of them being an equality. In particular, this implies that val,(ub~") > 0 for such p. Similarly,
for p|b (valy(t) < 0) and p > Ny, we can take € = 0. Thus, val,(ub™™) = [Z2k] or [T2k] + 1.

Therefore val,(ub~") > —h.

We factor the p > Ny part of ub™" as ¢~ 1d, where val,(d) # 0 iff either p 1 b or val,(ub™™) =1

if p|b. Further, in these cases, we set val,(d) = val,(ub~"). The previous paragraph shows that
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d is a squarefree integer and that val,(c) < h.

We now explain the condition (). This comes from the fact that A and B are required to be

integers. For any p:

val, (u? f(t)) = 2 val,(ge™ ™) + val, (f(t))
= 2valy(q) — 2valy(c) + 2m(n/m — r/2) val,(b) + rvaly(a) + K

> 2valp(q) + K1 + rvaly(a) — 2valy(c)

where K7 is a positive constant that can be taken to be 0 for p > 0. Similarly, for B, we get that:
val,(u3g(t)) = 3val,(q) + K1 + sval,(a) — 3valy(c). Since ¢ is Ny-smooth, for p large enough,
the condition of integrality of A and B translates directly to condition (). Further, since we
are only interested in an upper bound for the asymptotic growth, not imposing conditions on

say, 2val,(q) + K for small p causes us no harm. O

Now consider (u,t) € S1(X) and write them as in Lemma 3.3.8. The fact that max{|A[3, |B|*} <

X implies bounds for a, b, ¢ and d, which we now find.

Lemma 3.3.9. Let (u,t) € S1(X). Represent u = qc *db"™ and t = ab™™ as in Lemma 3.3.8.
Then,
‘a|iXm/6ncm/ndfm/n and ’b”le/Gncl/ndfl/n‘

Proof. If A =u?f(t) and B = u3g(t), the bound max(|A?,|B|?) < X translates to:
Jul max(|f ()2, 1g()[/?) < XV/C.

Let K be the positive constant such that max(|f(¢)|'/2, |¢(t)|'/3) > K for all t. Thus: |u| <
KXY, Let My = K~ (max,eq|q|™"). Thus, we have that

le7Ldb"| < Mo X1/6,
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ie. |b] < MyXY/oncl/ng=1/m,

We now turn to bounding a(= tb™). Suppose t < 1. Then, by the above bound for b, we
have |a| < MyX™/6n¢m/ng=m/m  If ¢ > 1, then we can find a constant M > 0 such that
M2|t|" < |f(t)] and M3|t|]* < |g(t)|. Thus we have that,

X6 > Julmax(|£(0)]'/2, |g(0)]'/?) > Mu| max([t]"/2, [t[*/%) = M|ut"/™|.
Now, [ut™/™| = |gc~da™™| and so, |c~'da™™| < M~} (max,eq |g| 1) X /®. Thus, we see that

‘a|iXm/6ncm/nd7m/n‘

Lemma 3.3.10. Under the hypotheses of Theorem 38.8.3, |S1(X)|SX™+1/67 log(X).

Proof. Fix a ¢ > 1. Let S1(X;c) denote the set of all (a,b,d) € Z3 such that
1. adm/n| < xm/onemin.
2. |bd'/"| < X1/6ncl/n
3. ple <= p|b,p"|a, and val,(c) < h for all p.
Let T(X;d,c) = {(a,b) | (a,b,d) € S1(X;c)}. By standard analytic number theory and

Theorem 3.2.5, it follows that

1

1 .
. _ _—  y(m+41)/6n j—(m+1)/n (m+1)/n
IT(X;d,0)] = o X d ¢ +O<Cw+1

Xm/6ndm/ncm/n> ]

Thus we have,

1S1(X;0)l= > |T(X;d,c)|
d<X1/6
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_ Z (mA1) /n—(w+1) x (m+1) /6n g—(m+1)/n | ) Z w1+1Xm/6nd—m/nCm/n .
d<X1/6 dex1/6 ©

We will only consider the case m + 1 > n. Further, since m # n, the error term above just
becomes

0 ( 1 Xm/6ncm/n) )

cw+1

Therefore we have

151 (X; C)|A<Jc(m+1)/nf(w+1)X(m+1)/6n.
Summing over (h + 1)-th power-free ¢, with ¢ < X* (for any «), since mTH —(w+1)=-1:

|S1(X)|SX (mHD/6m 16g(X).

O

Lower Bound. The outline of the proof of the lower bound is as follows: we know that if
(u,t) € S1(X), then u and ¢ have expressions as in Lemma 3.3.8. Instead of counting all of these,
we only count ones of the form u = ¢~ 1" and t = ab~™, where a, b and ¢ are within appropriate
bounds. Let S3(X) be the set of such triples (a,b,c). There is a map S3(X) — S(X), and
the bulk of the proof is in showing that this map has bounded fibers. We first form another
intermediary set, which we call S3(X). We then describe maps S3(X) — S3(X) — S(X), and
bound the fibers of these maps. This will enable us to find a lower bound for S(X) by finding
one for Sp(X) instead. O

Since we only need a lower bound, observe that by changing u to Mu for large enough M, we
can assume that f(t),g(t) € Z[t]. For a triple (a,b,c) € Z3, set u = ¢~ 'b" and t = ab™™. Let
A=u?f(t) and B = u3g(t). Fix some constant x > 0. Define So(X) to be: the set of triples
(a,b,c) € Z3 such that:
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eom II

plb,p*|a

e 0 <b< rXYoncl/n |a| < kX™/60¢™/™ ged(a, b™) is m-th power free
e 443 +27B? # 0 (where A and B are as defined above).

Note that if (a,b) € S3(X), then for a suitable value of x, we get (A, B) € S(X), since

|A| = |[u?f (1)< | 2a"b? ™| < X /3, and similarly for B.

Notation: Define S3(X) C Z? to be the set of (4, B) € Z? coming from S2(X). We then have
a map from S3(X) — S(X) sending (A, B) — (A/d*, B/d5) where d'? || gcd(A3, B?). Stratify
S2(X) by sets S2(X;c) of pairs (a,b) such that []
(A, B) coming from (a,b) € S2(X;c).

p\b,pw|aph = c. Define S3(X;c) as the pairs

The following lemma will help us bound the fibers of the map S3(X) — S(X).

Lemma 3.3.11. There exists a non-zero integer D (depending only on f and g) with the
following property: if (a,b,c) € So(X), then ged(A3, B?) can be factored as (Mp)B such that
Mp divides D and p|f = plb.

Proof. We follow the same method of proof as Harron and Snowden. Let (a,b) € S2(X;c)
and let p be a prime. Let M; be a constant such that |3val,(f(t)) — 3rval,(t)] < M; and
|2valy,(g(t)) — 2svaly(t)| < M, for all t € Q with val,(t) < 0. Let My be the constant for which
min{3 val,(f(t)),2val,(g(t))} < M, for all t € Q with val,(t) > 0. Note that max{M;, M} is
0 for p > 0 (specifically, p > Ny, as defined in Lemma 3.3.9).

Now, consider the case where val,(t) < 0. In particular, p|b. Let val,(b) = k and let

valp(a) = [(< m). We then have:

6mk (1= — 5) +3rl —6h+¢€ plc
val,(A%) = I

6mk (& — %) +3rl+ ¢ pte



62

6mk (1= —5) +2sl —6h+05 plc
val,(B2) = G =)

6mk (& —35) +2sl+6 pte

where |e| < M and |§] < M;. Let My = min{3rm,2sm}. Let

maX{M1 + Mo, MQ} p S NO

ep—
My p > Ny

and take D = [[,<, p®. This proves the lemma. O

Remark 3.3.12. We find that D is Nyg-smooth and f consists of p|b for p > Ny. It is crucial

that D, My, My and My do not depend on (a, b, ¢) in any way. They only depend on f and g.

We now use this lemma to bound the fibers of S3(X) — S(X) in our case of interest, namely
when

min{3rm — 6h,2sm — 6h} < 6.
We will call this assumption (xx).

Lemma 3.3.13. There exists a constant N such that the size of the fibers of S3(X) — S(X)
s bounded by N.

Proof. The fiber over a point (A', B') € S(X) is in bijection with the set {d € Z | (d*A",dB’) €
S3(X)}. Thus for any (A, B) € S3(X), the size of the fiber above the pair is bounded above by
the number of 12th powers dividing ged(|A|?, B?). We show that this is exactly the number of

12th powers dividing D from Lemma 3.3.11, i.e. no 12th powers divide 5.

Consider a prime p > Ny. We claim that p'? cannot divide ged(|A|3, |B|?). If p|b and p|c, then
this follows from assumption (xx). If p{ b, then since Ky = 0, p doesn’t divide ged(|AJ3, |B|?).
If p|b and p 1 ¢, then by definition of ¢, we must have that p* { a. Since h = 1, this forces [ < 1

in Lemma 3.3.11. Since assumption (k*) implies min{3r, 2s} < 12, we are done. O
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The rest of the proof follows by the exact argument as that of Harron and Snowden, which we

recall below.

Lemma 3.3.14. There exists a constant M such that every fiber of the map So(X) — S3(X)
has size bounded by M.

Proof. Fix any (A,B) € S3(X). An element in fiber of the map S2(X) — S3(X) above
(A, B) is of the form (a,b,c) € Z3 with A = (¢='")2f(ab™™) and B = (¢ 1b")3g(ab™™), and
c= Hp‘b7pw|a pP. Set x = cb™™ and y = ab~™. Then an element (a, b, ¢) in the fiber satisfies the

equations:

Az = f(y)  Ba®=g(y).

These can be thought of as defining curves in P? that intersect transversally, since f and g are
coprime. Thus by Bezout’s theorem, the maximum number of solutions is bounded above by:

M = max(2,r) max(3, s). O

It only remains to bound the size of S2(X). Now, S2(X) =[], S2(X;¢) and the size of S2(X;¢)
is precisely

1 1
e C(m+1)/nX(m+l)/6n +0 <Cw+1 Cm/nXm/6n> 7

where the error term comes from Theorem 3.2.5. Summing over ¢ gives us that

X maD/6n 160g(X)<SH(X).

3.4 Proof of Theorem 1.2.5 for N # 2,5

The proof of Theorem 1.2.5 for the cases N # 2,5 involves applying the appropriate theorems
from §3.3. We start off with geometric descriptions of A} /,(IV) as constructed in Section
3.2.1.When we say that a curve has n stacky points, we are talking about n stacky geometric

points ( [33, Tag 04XE] ). For modular curves, this can be thought of as referring to n distinct
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values of the corresponding hauptmoduln (Definition 3.1.3) or cusps. We use the term ‘stacky

curve’ as defined in [39] to mean curves that have a trivial generic inertia stack.
Proposition 3.4.1. For any N € Z~g, consider the curve Xl/Q(N) constructed in §2. Then:

1. If N = 3, then X, )5(N) = X1(3), which is a stacky curve with one stacky point corre-

sponding to the elliptic curves with j-invariant 0.

2. If N =4, then X, /5(N) = X1(4), which is a stacky curve whose only stacky point is at

the irreqular cusp.

3. If N =17, then Xl/Q(N) is a stacky curve with two stacky points whose hauptmoduln are
defined over K = Q(v/—3) and are conjugate over Q.

4. If N =6,8,9,12,16,18, then X, /5(N) is a scheme.

5. If N =5,10,13,25, then &) /5(N) has generic inertia stack Bpug

Proof. These claims follow from the construction of X} /5(IV), by analysing the automorphisms
of its points and applying Proposition 3.2.4. For N = 3,4 and 6, this is classical, as in each of
these cases X} /o(N) = X1 (V). We demonstrate the cases N =5, 7 and 8, and leave the rest to
the reader. For readability, we do not separately talk about the cusps, but the non-stackiness

in the cases of interest follows from the modular interpretation given in A.1.

Consider the map &) 5(N) — Ap(IV). Since any point in & /5(NV) lies in some geometric fiber
of this map, it is enough to analyse automorphisms of points in each fiber. For any point
(E,C) € Xp(N), choose an isomorphism C = Z/NZ and thus Aut(C) = (Z/NZ)*. Let P be a

generator for C.

For N =7, the fiber above a point (E, C') contains the points

(E,{P,2P,AP}) and (E, {—P, —2P,—4P}).
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If E has non-zero j-invariant, then the only extra automorphism of the pair (E,C) is [—1]
and thus the points in the fiber do not have any extra automorphisms. Recall that Xy(7) has
exactly two elliptic points, both with j-invariant 0 (see for instance, [11]). Each of these points
has an automorphism group that is cyclic of order 6. Let u be an automorphism of the pair
(E,C) of order 6. Then p = [~1] oy’ for some p' of order 3. By the definition of &; 5(NN), this
automorphism must fix the points (E, {P,2P,4P}) and (E,{—P, —2P,—4P}). In order to find
the hauptmoduln corresponding to these points, we use the tables in [25]. Since &;/o(N) and
Xo(N) have isomorphic coarse spaces, they have the same hauptmoduln (in fact, in this case
they have the same even weight modular forms). Let ¢ be the hauptmodul in [25] for Xp(7).
Then the family over X; 5(7) is given by y* = 2% 4+ A(t)z + B(t) where

1
At) = g(t2 + 245t + 2401) (2 + 13t + 49)

1
B(t) = §(t4 —10- 7% — 9. 742 — 2. 7% — 7T) (¢ + 13t + 49),

and the j-invariant is given by

(t? + 245t + 2401)2(t? + 13t + 49)
t7

This family is not universal over the points where t2 + 13t + 49 = 0, since Xy(/N) parametrizes

only semistable curves. The roots of this equation are defined over Q(1/—3).

Remark 3.4.2. Another way to find the stacky points is to note that the universal family over
yl (7) is
v+ (1+v—v?)zy + (0¥ =)y = 23 + (v — v®)2?,

with torsion point (0,0) [22, Table 3|. The j-invariant of the universal family is

(v® — 110° + 300% — 1503 — 1002 + 5v + 1)3(v? — v + 1)3
(v—1)T07(v3 — 8v2 + 50 + 1) '

This gives exactly eight values of v producing a curve of j-invariant 0. Let « be a root of
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v2 — v+ 1 =0. Then the fiber over the curve
y2+2zy+ay:x3+a:c2

contains the points: {P = (0,0), (-, a),(-1,—a + 1),(-1,1),(—«,0), (0, —a)}. The auto-
morphism of this curve given by (z,y) — (—az — o,y + (o + 1)z 4+ «) fixes the subgroup
(P,2P,4P).

If N =8, then recall from Section 3.2.1 that the choice of index 2 subgroup of (Z/NZ)* is
not unique, and we choose one that works for us. That is, write (Z/8Z)* = {P,3P,—3P, P}
and suppose we choose the subgroup {P,3P}, so that fiber above (F,C) consists of the points
(E,{P,3P}) and (F,{—P,—3P}). Neither pair has extra automorphisms. If N = 5. Then
C* = {P,2P,—2P,—1P}, which has a unique index 2 subgroup: {P,—P}. Thus the fiber
above (F,C) has two points: (E,{P,—P}) and (F,{2P, —2P}). Each of these points still has

the automorphism [—1]. This proves the theorem for N = 5. O

What this proposition tells us is that if N € {3,4,6,7,8,9,12,16, 18}, then there is an open
substack U of X 5(N) that is isomorphic to a scheme. Therefore U(Q) can be parametrized
via the universal family over U. For N € {4,6,8,9,12, 16, 18}, the non-stacky locus contains
Vi/2(N), and thus there exist fy and gy € Q[t] coprime such that every elliptic curve arising

from a rational point on }); /5(NN) is isomorphic to one of the form:
Eny v =23+ fn(t)z + gn(t).
Thus, by Proposition 3.2.3, we have the following;:

N(N,X)=#{E |ht(F) < X, and 3d € Z,u,t € Q,s.t. By:y* = 2> +ulfy(t)x +ulgn(t)}

= #{E | ht(F) < X, and Ju,t € Q,s.t. E: 9% =23 +u®fy(t)x + udgn(t)}.

To find the asymptotic growth for A/(N, X) in these cases, we use Proposition 3.3.1 to find the
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value of hy(X), given in Table 3 below.

For N = 3, the situation is slightly different. The curve & /5(3) = &1(3) has one stacky point
lying above the elliptic curve with j-invariant 0. Let ®3 : X 5(3) — X'(1) be the usual forgetful
map. Set Y =V /5(3) \ ¢3 ({j = 0}). Then, for a suitable embedding of ¥ < Al, there is a
universal family &, over Y (e.g. see [17]) given by

1 2 2
2 3 2
gyt =P+ (20— )+ (2 —Zt+ =),
S¢°Y ( 3) ( 3 27)

Every elliptic curve with non zero j-invariant and a rational 3-torsion point is isomorphic to
one of the above form for some ¢t € Q. However, this family does not extend to a universal
family over ¢ = 1/6. Indeed &3 ;¢ is given by y? =23 — Ttl)s and its torsion subgroup of order 3
is generated by the rational point: (1/3,1/6). On the other hand, all curves E” : y? = 23 + D?,
D € Q contain the rational 3 torsion point (0, D) and have j-invariant 0, but none of them is

isomorphic to 8371 /6 Over Q. For this reason, we separate our counting function into two pieces:

N(3,X) = N (3, X)j—0 + N (3, X) 0.

By Theorem 3.3.3, we have the following proposition.

Proposition 3.4.3. Maintaining the notation as above,

N3, X)jz0 = X3 log(X).

In order to find the asymptotics for N'(3, X) =0, we observe the following: by lemma 3.4 in [17],
we know that any elliptic curve that has j-invariant 0, a rational 3 torsion point, but is not of
the form &3, for any ¢t € Q, admits an equation of the form y? = 23 + D?, D € Z. Thus the

curves missing from our count are those that are quadratic twists of these exceptional curves.
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That is, they are elliptic curves of the form

y? = 2P + i3t
for some u,t € Q with 43t? integral and minimal. This is the same as counting elliptic curves

y? = 2 4+ b, with b> < X and b 6th power free. This number is just a constant times X /2.

Remark 3.4.4. Note that our result agrees with that in [28]. In fact the argument for (3, X),=o

is exactly the same as in their paper, albeit stated slightly differently.

To complete the proof of the main theorem, for each N we need only calculate r, s, m and n
in the notation of Proposition 3.3.1 and Theorem 3.3.3. In Table 3, we give the components
required to compute r and s in each of the cases of interest. We do not give the explicit
polynomials fn and gy here, since we do not need them, but these polynomials are given in

Appendix A.2.

N | r | s | m|n | Reference hn(X)
31112312 3.3.3 X2
4121311 3.3.1 X1/3
6 | 46|12 3.3.1 X1/610g(X)
81416 |12 3.3.1 X1/610g(X)
9 416 |12 3.3.1 X1/610g(X)
128|121 |4 3.3.1 X1/6
168 121 |4 3.3.1 X1/6
1812 118| 1 |6 3.3.1 X1/6

Table 3: Values of invariants

Remark 3.4.5 (Distinction between N = 3 and N = 7). One might wonder why one can find
a model for an open substack U of ) 5(3) with f3 and g3 coprime, but not for J; 5(7). A
priori, a model of the form y? = 2% + f(t)x + g(t) found for & might not have f and g coprime.
However, since )1 (3) only has one geometric stacky point, that point can be moved to oo € P!
via a transformation. On the other hand, ), »(7) has two stacky points, neither of which is

rational. Thus we cannot find f7 and g7 coprime, and therefore cannot apply our method.
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3.5 Counting points of bounded height on stacks

In this section, we prove Theorem 1.2.5 for N = 2,3, 4,5, 6, 8,9 by using results from forthcoming
work of Ellenberg, Satriano and Zureick-Brown in [13]. As we have seen, one can define some
height on Xy(N), namely the naive height. The question is does this height come from geometry?
We know that this is true for modular curves that are schemes — the naive height is the height
with respect to the twelfth power of the Hodge bundle. It follows from the work in [13] that
the same is true for moduli stacks of elliptic curves, and we use their machinery to count the

number of points of bounded height. Before we proceed, we must set up some notation.

Notation 3.5.1. Recall that we use ht(E) for the naive height of a point E on any modular
curve. Let X be a stack and V a vector bundle on it. We will let hty denote the logarithmic
height with respect to V as defined in [13] and Hty the multiplicative height corresponding to
it. That is to say, Hty = exp(hty).

We will not define hty, here, but we will use the fact that if V = A®'2 on Xy(N), then for an
elliptic curve E corresponding to a rational point x : Spec Q — Ap(N), log ht(E) = hty(z)+0(1)

(see Example 3.5.3 below). Thus our counting function satisfies

NN, X) = #{z € X(N)(Q) | Htl2(x) < X}. (3.6)

3.5.1 Computing heights on stacks

Throughout this subsection, X will be a proper Artin stack over SpecZ with finite diagonal. A
Q-rational point  of X' is a map = : SpecQ — &'. Let V be a vector bundle on X'. Consider
for a moment the case where X = X, a proper scheme, and V is an ample line bundle on it.
When computing the height of a point on X, we use a power of V to embed X <« P" for some
n, and then use the naive height of the image of the point on P". This makes computations
easier. For a stack, the analogue would be mapping it into weighted projective space. In [13],

the authors show that this works. We recall the specific result below.
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Consider the special case where V is a metrized line bundle £ (see [13] for precise definition).

Suppose s1, S2, ..., Sk are sections of L. Then, L is said to be generically globally generated by
$1,...,sE if the cokernel of the corresponding morphism
o =L

vanishes over the generic point of SpecZ. In particular, this implies that the cokernel is

supported at finitely many places.

Proposition 3.5.2 ( [13], Proposition 2.27). Let X' be a stack over SpecZ, let L be a line bundle
on X such that L®" is generically globally generated by sections s1,sg - -+ 5. Let x : SpecQ — X
and for each i, let x; = x*(s;) (after picking an identification of x*L with Q). Scale x1, ...,z

so that each x; € Z and for every prime p, there is some x; such that vy(x;) < n. Then
1
hte(z) = - logm;dxﬂxl’v lz2| ... |2k} + Ox(q@)(1)

where | - | is the usual archimedean absolute value.

Note here that we have only stated the version of the proposition that we require, i.e. for
Spec Q and SpecZ. A more general version of this proposition holds for other global fields.
We will say that the tuple (z1,...x) € Z* is minimal if it satisfies the last condition in the

theorem: for each prime p, there is some i € {1...k} such that p" { z;.

Example 3.5.3. Let £ = A, the Hodge bundle on X (1). Then the global sections of A®!? are
weight 12 modular forms, and it is a classical fact that the Eisenstein series E3, E2 generically
globally generate A®!2. An elliptic curve E : y? = 23+ Az+ B gives a Q-point z : Spec Q — X'(1).
The assumption about scaling the sections corresponds to choosing a minimal Weierstrass

equation for E. Proposition 3.5.2 then says that
1
hta(z) = 5 logmax{|A]%, [ B*} + Ox1y (1),

which is, up to the constant Ox(1)(1), a twelfth of the logarithmic naive height of F. Thus,
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Hti?(x) is a constant multiple of the naive height ht(E).

3.5.2 The ring of modular forms of low level

Since modular forms are sections of powers of the Hodge bundle, we will rely on the structure
of the rings of modular forms of Xy(N) quite heavily. This subsection summarizes part of the

work of Hayato and Tomohiko in [18].

Notation 3.5.4. Let My (N) denote the space of modular forms for I'g(N) of weight k. We
let M(N) =@, Mi(N) be the entire ring of modular forms for I'o(N).

e E: classical Eisenstein series of weight k. Note that Ej € My(1). For k an even integer,

E, is given by

where By, is the k-th Bernoulli number and oy, is sum of k-th powers of divisors function.
e For a modular form f and an integer h, let f(")(q) = f(qh).
e Forany N > 1, let Cy = b5 (NESY — By) € My(N),
e For a prime p, let a, = 515(Ey — Eip)) € My(p).

e For the definitions of Sy for general N and for ay for N composite, we refer the reader

to [18].

Proposition 3.5.5 ( [18], Theorems 1,2). Maintaining the above notation, the rings of modular

forms for To(N) for N € {2,3,4,5,6,8,9} are as follows.
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N | Degrees of generators M(N)

2 (2,4) C[Ca, as]

3 (2,4,6) C[Cs, a3, 33]/(03)

4 (2,2) ClCy, C4]

5 (2,4,4) (C[C5,045755]/( 5)

6 (2,2,2) ClCS?, g, Bs) / (O5)
8 (2,2,2) ClC?, ag, a1/ (0s)
9 (2,2,2) ClCs, a9, o] /(Og)

Table 4: Rings of modular forms of low level
Here the Oy, ’s are explicit polynomials whose form we will mention later.

Since the ring of modular forms is graded by weight, the degrees in Table 4 refer to the weights
in which the corresponding rings are generated. In what follows, we will use the structure of the
ring of modular forms of the levels in Table 4 to count points of bounded height. The reason
we restrict to these cases is that for such NV, the rings of modular forms are easier to handle.
For some other N (e.g. see Chapter 4), this method reduces to a problem of counting integral

points on more complicated varieties.

3.5.3 Counting results

Our counting results will be split into three parts: the first, for NV = 2,4 corresponds to the
N for which M(N) is freely generated. The second part, is for N = 3,6,8,9. These are the
levels N for which the corresponding Op’s in Table 4 have a similar form. The last part is for
N =5, which has to be dealt with separately because Os has a starkly different form, and thus

requires different counting techniques.

Notation 3.5.6. Let (a1,...a;) € Z¥, p = (p1,...pr) € ZX, be two tuples of integers. Let
n € Zso such that lem(py, ... pg)|n. We will say that the pair, ((a1,...ax), p) satisfies condition

(1) if for any prime p,

p" 1 ged(lag™).
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Condition (1) reflects the minimality condition in Proposition 3.5.2. For the rest of this section,

we will only consider (f) for n = 12, unless mentioned otherwise.

The cases N = 2,4 : From Table 4, we see that M(2) = C[z,y](24) and M(4) = Clz,y](2.2)-
For N = 2, A\®!2 is globally generated by C$ and and a3. Let x : SpecQ — Xy(2). Let
a = x*(Cs) and b = x*(az). Taking these to be in minimal form implies that a,b € Z with

p'2 f ged(ab, b?). Then, by Proposition 3.5.2, we see that
1
htx(2) = 3 log max{|a|’, [b]*} + Oxy(2) (@) (1)
Thus we have that,

N(2,X) = #{z € %(2)(Q) | Ht;*(2) < X}
= #{(a,b) € Z* | ((a,b), (6,3)) satisfies (1), max{|a|’, 0]’} < X}.

By a similar argument, observing that C§ and C¢ globally generate A'? on Xy(4), we set

a = 2*(Cs) and b = x*(Cy4). Thus,

N4, X) =< #{(a,b) € 7% | ((a,b), (6,6)) satisfies (T),max{|a|6, \b\ﬁ} < X}

In each of these cases, our counting problem reduces to counting integers in a box with certain
divisibility conditions. The set we need to count has the form {(a,b) € Z? | |a| < M, |b| <
N, p'? t ged(aPt,bP2)} for some constants py, p2, M and N. The set {(a,b) € Z? | |a] < M, |b| <
N, gcd(a,b) = 1} is always a subset of this set, and in particular, has size a constant multiple

of M N. Thus the condition (1) does not affect the asymptotic growth rate.

Proposition 3.5.7. Maintaining the above notation, we have:

N2, X) = X1/?

N4, X) = X3,
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Note that this agrees with the asymptotics in [17], [29] as well as the conclusions of Table 3 in
Section 3.4.

The cases N = 3,6,8,9: These cases are similar because of the similarity in form on the Opn’s

in Table 4. More precisely, we have from [18]:
e O3 = a% — (503
e Os=a%—C{ B
e Og=aj— C’f)af)
e Oy = ag — C3f9.

In order to deal with these cases uniformly, we must introduce some notation. For (a,b,c) € Z3

and pP= (pa)pbapc) S Z3>07 define

HtP(a,b, ¢) = max{la[*, [b["", [c[*}.

12 o

Later, for each N, we will fix a choice of p that makes this height compatible with Ht

Xo(N). We will be interested in the following counting functions:

N(p, X) := #{(a,b,c) € Z* | HtP(a,b,c) < X,b* = ac},

N(p, X, 1) :=#{(a,b,c) € Z* | HtP(a,b,c) < X,b* = ac, and ((a, b, c), p) satisfies (1)}

Lemma 3.5.8. Let n be any integer such that lem(pq, pp, pe)|n. There is a positive constant C

that depends only on p and n such that:
N(p,X) = C x1/ps log(X) + x1/Pe 4 O(Xl/pa)'

i X 1
Proof. We start by noting that we must have |a] < X7ra, [b] < X7 and |c] < XPe. Now
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suppose a # 0. Then

20X X 1= > X

1 1 1 1 1
la|<XPa |c|<X Pc |b|<X Pb la|<XPa |b|<X Pb a|b?
a;ﬁo b2:ac a’;éo
X 1/po
= > + 0(1))
1 a
la]<X Pa

a#0

= CXYPrlog(X) + O(X1/Pa),

One might worry here that the ‘error’ term, X /P« is actually bigger than the main terms.
However, for all of our cases pg > pp, pe, 0 X1/P+ will indeed be an error term. If @ = 0, then b
is necessarily 0 too. Thus we are reduced to counting the set {c € Z | ¢ < X 1/ Pe} . which has

size X/Pe + O(1). O

Claim 3.5.9. If p,,py and p. are not all equal to n, then N (p, X, 1) is a positive proportion
of N(p, X).

Proof. Without loss of generality, suppose p, # n. If a = 0, then
#{c € Z | cis p.th power free, |¢| < X1/P<}

is a positive proportion of #{c € Z | |¢| < X'/P<}. In particular these sizes differ by a factor of
((pc). Now suppose a # 0. Then the set of triples satisfying (f) contains those for which a is
squarefree. The proof of Lemma 3.5.8 shows that the set of such triples has size a constant

times X'/P log(X) as well. This proves the claim. O

We have therefore proved the following proposition.

Proposition 3.5.10. Maintaining the above notation:

N3, X) = X2,

N(6,X) = X0 log(X),
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N(8,X) = XY01og(X),

N(9, X) = XY01og(X).

Proof. Since we only care about the 12th power of the Hodge bundle, we will take n = 12.
From Table 4, we observe that for the following choices of p, N'(IV, X) < N (p, X, 1):

e N=3:p=(6,3,2),

o N =6,8,9 p=(6,6,6).
The proposition now follows from Claim 3.5.9 and Lemma 3.5.8. O
Note that for N = 3, the elliptic point on Xy(3) corresponds to the point where a is 0. Indeed,
one may think of Xy(3) as being cut out by the octic b — ac inside P(2,4,6). The point [0: 0 : 1]

has an automorphism group of size 6. If a # 0, then from Lemma 3.5.8, we get an asymptotic

growth rate of X'/3log(X) which agrees with that obtained from Theorem 3.3.3.

The case N = 5: Note that this is one of the cases that cannot be tackled by the methods in
Sections 3.2 and 3.3. We first give an upper bound for NV(5, X), and then use a simple sieving

argument to refine it into an asymptotic.

The ring of modular forms, M (5) is generated by three modular forms, Cs, a5 and S5 of weights

2,4 and 4 respectively. The relation between these forms is

Os = a? — B5(C? + 4as — 8085). (3.7)

Set n =12 and p = (6, 3, 3). Proceeding analogously as before, we must count integers (a, b, c)

with HtP(a, b, c) < X such that
b? — a’c — 4bc + 8¢* = 0, (3.8)

and the pair ((a, b, c), p) satisfies the minimality condition (). If a5 = 0, then 85 = 0, and we
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get < X 1/6 elliptic curves, which is the trivial lower bound. If C5 = 0, we get the two points
of Xy(5) that have automorphism group p4. Each of these is defined over Q(i) and doesn’t

contribute to the rational points on Xy (5).

We obtain the upper bound by counting integer triples (a, b, ¢) without the minimality condition

(t). Equation 3.8 can be rearranged to one of the form:

(4b — 8¢)® + (8¢ — a*)? = a'.

For any integer n, let ro(n) denote the number of ways of writing an integer as a sum of two

squares. An upper bound can be proved by summing r3(a?) over all a < X/6,

Lemma 3.5.11 ( [4], Chapter XV). Let n € Z~qo have factorization:
n=2%p .. .pﬁ"q%flqgh g2
where the p;’s are =1 mod 4 and the g;’s are =3 mod 4. Define B(n) =[],_,(e; +1). Then:

ro(n) = 4B(n)

Remark 3.5.12. This is a well known result. Note that the constant in front of B is different
depending on whether one takes into account signs and order. But this will not make a difference

to our result, since we are only interested in the asymptotic growth rate.

‘We will now focus on the sum:

Z B@ (n)

la|<X1/6

where we define B (n) to be B(n?), for notational convenience. Note that if p =1 mod 4,
B®W(pF) = 4k + 1. If p = 2 or 3 mod 4, then B®(p¥) = 1 for any k. Thus, B®(n) is a

multiplicative (although not completely multiplicative) function.
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Proposition 3.5.13. Maintaining the above notation, there is a constant ¢ > 0 such that for
any 0 < 0 < 1/6,
> BW(n) = eXV0(log(X))? + O(X /0.

|n|<X1/6

B
Proof. Consider the Dirichlet series: Z &

n>1

~— . By multiplicativity, this can be written as

the Euler product:

L (o) L (2 ()

p=1 mod 4 \k>0 p=3 mod 4 \ k>0 k>0

We now simplify this expression.

(o) o

p=3 mod 4 \k>0

11 (Z(4k + 1)p—’”) = I (4 > kphe Zp"“)

p=1 mod 4 \ k>0 p=1 mod 4 k>0 k>0
4p~*° 1
= +
pEll_r[nod4<(1pS)2 1p3>
B H ( 143p~° )
p=1 mod 4 (1 _p_S)Q '
Thus:
ZB<4>(n) =H< 1 ) 10 <1+3p—3>
n>1 n® P 1- pe p=1 mod 4 1- p?
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Now, let x(p) denote the usual Legendre Symbol (%) Let K(s) = =2". Then,

1+3.2—°
1+>2<(p)
14+ 3p~° 1+3p~°
U(s)= ] (1_> =K(s)]] (1_)
p=1 mod 4 p p p
1+>2<(p)
4p~*°
=K 1

=K(s)[] (1 + %(1 + X(p))14_p:_s +.. )

p

= K(s) H (14 2(1 + x(p))p~* + higher powers of p~*) .
P

Consider the Dirichlet L-function L(s,x) = [],(1 - x(p)p~*)~!. Since

L2+ x@)p = +...) A =xP)p ) =1+2p" ...,

we see that W(s)L(s,x) 2 has a pole of order 2 at s = 1 and converges for Re(s) > 1. We know
that L(s, x) is holomorphic at s = 1. Thus >, ~; % has a pole of order 3 at s = 1. The

proposition now follows from the standard Tauberian theorem (2.5.1). O

Proposition 3.5.14. There is an absolute constant K > 0 such that for X > K, N(5,X) =<
X1/6]og(X)2.

Proof. The main ingredient here is the upper bound proved in Proposition 3.5.13. To refine
this to give an asymptotic growth rate, we must count only the minimal (a, b, ¢). If a triple is
non-minimal, then there exists a prime p such that p?|a, p*|b and p*|c. Let p be such a prime.
Then the number of such triples is in bijection with the number of ways of writing a* as a sum
of two squares, say a* = A% 4+ B2, such that p4]A and p*|B. This is the same as the number

of ways of writing (a/p?)* as a sum of two squares. Therefore the number of triples that are
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non-minimal at p can be calculated by:

S BW).

In|<X1/6/p?

By Proposition 3.5.13, this has the same asymptotic growth rate as

X1/6 X 2 X
¢ los (plg> = (¢/p") X"/ (log(X)? — 2log(X) log(p'?) + log(p'?)?)

where c is independent of p. Thus,

x1/6 X\ 2
cXV01log(X)?—c e log (pl?)

2
= cX'®log(X)? (1 ~ Ly 1og(X)*11°g§p) +144 log(X)ZlOg(Qm> .
p p D

We now examine the product

1 1 log(p)?
11 (1 C L odleg(x) 18Py log(X)ZOg(Qm> .
p2<X1/6 p p p

For large enough X, this product is bounded both above and below by positive constants. This

proves the proposition.
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Chapter 4

Future work

4.1 On counting curves with given p-torsion

For p = 2 the Artin-Schreier locus &7, coincides with the hyperelliptic locus ;. However,
in general, &7.% 4 is not irreducible. In [30], the authors give the following characterization for

the irreducibility of «7.%:

Proposition 4.1.1 ( [30] Corollary 1.2). The moduli space o/ .7 is irreducible in exactly the
following cases: (a) p=2, or (b) g=0 or g= %, or (¢)p=3 and g =2,3,5.

It is interesting to ask whether the reducibility of &7, completely explains the probability
obtained in theorem 2.5.6. That is, for each g, let /., , denote the closure of the ordinary
locus inside «7.%;. Then, is:

#{CedSgq]¢9 <X}

lim — (4.1)
Xooo fH{C € o Sg4(Fq) | 7 < X}

positive?

On a different note, for p > 3

p—2 p—2 p—2
Upo(s) = (1 + Z |Q |~ (+2)s _ Z ’Q‘i(i+2)s> H(l_ | Q|+ D—(i+2)s)
i=0 i=0 i=0

and let 1,(s) = Ilo Upo(s). Let so = [%(g + p —1)]. Then one can show, by a similar

calculating as in Chapter 2, that the probabilty that an Artin-Schreier curve has p-rank > s is
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bounded below by the quantity

This quantity comes from counting the rational points on the d — 1-dimensional components
of each p-rank stratum &/, ; with s > sg. As expected, for any fixed p, this number gets
closer to 1 as ¢ increases. Further, if § > sg, then the probability that an Artin-Schreier curve
has p-rank > § is 0. For § < sg, it would be interesting to calculate the probability that the
p-rank is > §. This would give us a better understanding of the distribution of p-ranks in the

Artin-Schreier locus.

4.2 On counting points on Aj(V)

This report raises multiple questions, some that we believe can be answered by pushing further
the methods used here, and some that require different approaches. The first question is
about Xy(7). We believe that the ideas of Section 3.3 can be generalized to count points on
Xo(7), since X 5(7) is a stacky curve with two stacky points. In this case, one must generalize
Proposition 3.3.1 to the case where f and g are not necessarily coprime. The tricky bit here

turns out to be the analogue of Lemma 3.3.7.

One might wonder whether one can count rational points on Xy(7) via the framework in [13],
as we did for some values of NV in Section 3.5. The issue with this is that for each level not
listed in Table 4, the ring of modular forms is quite complicated. Using relations between the
generators of these rings to count points on Xy(N) can lead to very hard counting problems.
For instance, the problem of counting rational points on Xy(7) can be rephrased in terms of
counting integral points on the intersection of one cubic and two quadric hypersurfaces in AS.

More precisely, one must count tuples (a, b, ¢, d, e) of integers satisfying
o ¢ —ae=0,

e ce —bd =0,

o b2 —c(a?+Tb—19c) =0,
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e No 12th power divides ged(|al®, [b]3, |c[?, |d|?, |e|?).

This gets more complicated with higher N, at least as far using the description in [18] goes.
For these higher IV, if one were to find a smaller set of modular forms that could both globally
generate A®12 and had simpler relations among them, then one could perhaps count points on

the corresponding Xp(/N) more easily. We do not know at this time if that is indeed possible.

There is of course the question of an exact asymptotic as opposed to an asymptotic growth

rate. More precisely, one can ask if the limit:

o NOVX)
N = Xgnoo hN(X)

exists and what its value is. The case N = 2 is known due to [17], N = 3 due to [28] and

N =4 due to [29]. It would be interesting to calculate the values for other N, perhaps using

the precise definition of logarithmic height from [13].

The stacky Batyrev-Manin-Malle conjecture. As mentioned in Chapter 1, for a scheme
V and an ample line bundle L on it, the Batyrev-Manin conjecture predicts that there are
constants a(L) and b(L) such that the number of rational points on V' of height bounded by a
number B grows like

BYE) 1og(B)"L),

Here the height refers to the height with respect to the line bundle L. The weaker analogue
states that the number of rational points should grow like BYX)*¢, In [13], the authors make a
similar conjecture for stacks, which they call the ‘Weak stacky Batyrev-Manin-Malle conjecture’.
For each of the modular curves considered in this paper, as well as those in [17], the asymptotic
growth rate seems to be of the same form as predicted, but it would be interesting to verify if

the constants match the constants in [13]. This is work in progress.
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Appendix A
Explicit description of X} 5(V)

A.1 Modular descriptions of cusps

The main reference for this section is [40]. Let C, be a Néron n-gon. Each irreducible
component of C,, is isomorphic to P'. For each i < n, the i-th component is glued to the
1+ 1-th component by gluing oo € Pl(i) to0 € Pl(iﬂ), and analogously for the n-th component.
The smooth part of C),, denoted C:™, is isomorphic to G, X Z/nZ. The group structure on
C3™ is given by the usual group structures on each component. The automorphism group of
C,, is given by p, x (inv), where ¢ - (z,i) = ({*x,4) for ¢ a primitive n-th root of unity and
inv: (z,i) — (z7%, —i). A generalized elliptic curve E over S is a flat, finitely presented map

E — S whose geometric fibers are either
e elliptic curves (hence smooth and equipped with a group structure), or
e a Néron n-gon for some n > 1 equipped with a group structure on the smooth part.

Let Ell, denote the moduli space of generalized elliptic curves whose degenerate fibers are
n-gons. In general, for a moduli stack X of generalized elliptic curves, and a positive integer n,
let X(;,) denote the substack of X' that parametrizes generalized elliptic curves whose degenerate

fibers are n-gons.

A.1.1 T4 (N) and I'y(N) structures

Let N be a positive integer, n|N and E an elliptic curve over S. A T'y(N) structure on F is
the following data:

e A homomorphism « : Z/NZ — E*™(S) such that D = 3,y /nzla(a)] is an effective
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Cartier divisor on E forming an S-subgroup scheme of E.

e If the fiber over some point in S is an n-gon, then the divisor D intersects every irreducible

component of the n-gon. This criterion is equivalent to the ampleness of D.

The stack X;(N) parametrizes generalized elliptic curves with a I'1(N) structure. Further, we

have that X} (N) = U X (N)(n)
n|N

Unlike the definition of a T';(N) structure, which is fairly intuitive given our understanding of
Vi(NN), the definition of a I'g(IV) structure takes more work. To explain this, let us first define

a naive I'g(N) structure on a generalized elliptic curve E/S. This consists of the following data:

e A homomorphism « : Z/NZ — E*™ such that D = 3~ ¢z /,,z[(a)] is an ample, effective

divisor on FE.
e The image of « is an S subgroup scheme of E*.

One defines Xy(N)"@"¢ as the moduli space parametrizing generalized elliptic curves with an

naive T'g(NN) structure. As before, Xy(IN)"%v¢ = U A (N)ratve,
n|N

Consider the modular curve Xy(p?) for some prime p. Let E/S be a generalized elliptic curve
whose degenerate fiber is a p-gon, equipped with a naive I'g(p?) structure Gz. On the degenerate
fiber, the group G generated by ({2, 1) gives a naive [o(p?) structure, and the pair (Cp, G)
has automorphism group g, x (inv). On the other hand, the image of (E,Gg) in Ap(1) is a
generalized elliptic curve whose degenerate fiber has automorphism group (inv). In particular,
the map Xp(IV)"*¢ — X,(1) is not representable (see criterion for representability in Lemma
3.2.2 in [40]). This does not agree with the construction of Xy(N) in [10], which is what we are

using.

The correct definition of a I'g(IN) structure is a little bit long-winded, so we do not define it
here. Instead, we explain how to construct one from a naive I'g(N) structure, which is sufficient

for our purposes. Let n|N and let d(n) = m, and let E/S be a generalized elliptic curve.
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Let G be a naive I'o(N) structure on E, let E*° denote a degenerate fiber of E that is an n-gon.
Let G*° denote the fiber of G on E*°. Consider the torsion subgroup E°*"[d(n)] € E°™.
Define the contraction of E along E*™[d(n)] by leaving the non-degenerate fibers intact, and
on each F*° in the degenerate n-gon locus, by contracting any components that don’t intersect
E>*™[d(n)] to a point. Thus, the image of E* is a d(n)-gon. A new elliptic curve E’/S
may now be constructed by gluing together the contractions of E/S for each n|N along the
non-degenerate locus. The image of G under these contractions, gives a I'g(N) structure. Note
that a T'o(N) structure remembers G as well as the images of all the degenerate fibers of G

under the contractions.

Let Xy(N) be the modular curve paramterizing generalized elliptic curves with a I'g (V) structure.
The following lemma from [40] is probably the best way to understand the relation between the

n-part of Xo(N)"*v¢ and the d(n) part of Xy(N).

Lemma A.1.1 ( [40], Lemma 5.1.2). There is a commutative diagram:

(N)?sive mn

Xo(N)(anyy — Ellg(m)

where the vertical maps are contractions.

A.1.2 Construction of &) /(N) at the cusps

Recall the definition of ) /5(N) from Chapter 3. We claimed, in Section 3.2.1, that the
construction makes sense for Xy (N), i.e. for generalized elliptic curves, via a similar process.
We now outline a proof of the claim. The process is the same as obtaining a I'g(N) structure
via a naive I'o(/N) structure. In order to make our description less wordy, we will let C), denote
the cusp parametrizing generalized elliptic curves whose degenerate fibers are n-gons, and
describe the construction on C,, directly. The fiber of X;(N) — Xo(N)™¢ over C,, consists of

natve

generators of the I'g(V) structure. Thus, it makes sense to define X 5(INV) as the fiberwise

quotient of X1(IN) — Xo(IN)™¥¢ by an index two subgroup of (Z/NZ)*. We now declare that
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the fiber of X /5(N) — Ap(IN) over a cusp consists of the data:
e The fiber above the corresponding point & jo(IN)"*¢ — Xo(N)"ve,
e The I'y(N) structure on the cusp.

The second condition helps rigidify our structure.

As an example, consider the case N = 9. In this case, we are dealing with 3 possible n-gons in

the degenerate fiber: C7, C5 and Cy.

e There is exactly one (naive as well as not) I'o(9) structure on C}, namely the subgroup
generated by (g, a primitive 9th root of unity. The fiber of the map ®g : X1 (N) — Xy(N)
corresponds to the generators of this subgroup, namely {¢§ | i = 1,2,4,5,7,8}. The two
points in the fiber of X} /5(9) — Xy(9), therefore, correspond to the cosets {Co, (g, (g} and

{365,656}

e Consider the cusp C5. One naive I'g(9) structure on Cj3 is generated by the pair ((g,1).
Further, d(3) = 1 and so E*"[d(3)] = 0. To obtain the contraction corresponding
I'p(9) structure therefore, one contracts the degenerate fiber to a Ci, and the image of
{(¢9, 1)) under this contraction, is the subgroup generated by (¢3,0). The data of the

I'p(9) structure consists of both the data of the original naive structure, and its contraction.

To obtain the fibers of X;/5(9) — Xo(9), consider the points over X;5(9) "¢ —
Xp(9)"@ve. The fibers above ((Cg, 1)) correspond to the cosets {((o, 1), (¢5,1), (¢5,1)} and
{(¢3,2),(¢5,2), (¢§,2)} respectively. Note as an aside, that each of these cosets has an
automorphism group of size 3. We rigidify these points by adding in the data of the I'g(9)

structure above.

e Consider the naive I'g(9) structure on Cy generated by the element ({y,1). This is also a

Lo(9) structure, since d(9) = 9. The fiber of X;5(9)"*"¢ — X(9)™**¢ thus corresponds
to the two cosets {(¢o, 1), (¢,4), (65, 7)} and {(¢3,2),(¢3.5). (¢5.8)}-
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A.2 Equations for X),;(N) for some N

For N € {8,9,12,16, 18}, we give the equations for &; (V) using the hauptmoduln from [25].

We use the notation of Chapter 3 where in we give polynomials fx (), gn(t) € Q[t] such that

every elliptic curve arising as a rational point on X} /5(NN) is isomorphic to one of the form,

v =2+ fn(t)z + gn(t).

N | fn(2) gn(t)

8 | $(t + 256t 4 5120¢> + 32768t + 65536) | 3 (12 + 32t + 128)(t* — 512t3 — 10240t —
65536t — 131072)

9 | $(t+9)(t> + 243t> 4 2187t + 6561) 1(t5 — 486t5 — 24057t* — 36741613 —
2657205t2 — 9565938t — 14348907)

12 | 2(t2 + 12t + 24)(t® + 2525 + 4392t + | 1(¢* + 36> + 28812 + 864t + 864)%(t5 —
3110413 + 10886412 + 186624t + 124416) | 504¢7 — 14832t5 — 179712t5 — 1175040t* —

447897613 — 9953280t% — 11943936t —
5971968)?

16 | %(t34256t7+5632t°+53248t°+282624¢" + | $(¢* + 3263 + 192t + 512¢ 4 512) (18 —
91750413 + 1835008t2 + 2097152t + | 5127 — 1126415 — 106496t° — 565248t* —
1048576) 1835008t — 3670016t — 4194304t —

2097152)

18 | 2(t3+12¢2+36t+36) (¢ +252t5+ 4644t + | L(t5 + 36> + 324t + 140443 + 3240t +
396365+198288¢5+6298561141294704¢3+ | 3888t + 1944)(t'2 — 504¢*1 — 15336t10 —
1679616t% + 1259712t + 419904) 208872t — 1700352t% — 920678417 —

3483648015 — 94058496t° — 1813985281+ —
24522393613 — 2217093122 — 120932352t —
30233088)

Table 5: Equations for & /5 (IV)
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