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Abstract

This thesis explores two kinds of statistical questions about rational points on certain moduli

spaces of curves. The first question is, what is the probability that a curve over a finite field is

ordinary? Here, a curve C over a field of characteristic p is said to be ordinary if its Jacobian

has largest possible p-torsion. We answer this question for two kinds of curves: Artin-Schreier

curves in arbitrary characteristic and superelliptic curves of prime degree in characteristic 2.

The second question is, how many elliptic curves over Q have a cyclic rational N -isogeny? This

question can be rephrased in terms of counting rational points on the moduli stacks X0(N).

We answer this question for N ∈ {2, 3, 4, 5, 6, 8, 9, 12, 16, 18}.
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Notation and Symbols

C : smooth projective curve

Jac(C) : Jacobian of the curve C

Fq : finite field with q elements

Ag : moduli space of principally polarized abelian varieties of dimension g

Mg : moduli space of smooth genus g curves

A S g : moduli space of Artin-Schreier curves of genus g

Hg : moduli space of hyperelliptic curves of genus g

X0(N) : modular curve parametrizing pairs (E,C ∼= Z/NZ)

X1(N) : modular curve parametrizing pairs (E,P ) with 〈P 〉 ∼= Z/NZ

Γ0(N) : subgroup of SL2(Z) consisting of matrices congruent to

∗ ∗
0 ∗

 modulo N

Γ1(N) : subgroup of SL2(Z) consisting of matrices congruent to

1 ∗

0 1

 modulo N

f(X) = O(g(X)) : there is a constant C such that for large enough X, |f(x)| ≤ C|g(X)|

f(x) � g(X) : there are positive constants K1 and K2 such that K1g(X) ≤ f(X) ≤ K2g(X)

|Q |: for a polynomial Q ∈ Fq[x], |Q |= qdegQ

ζ(s) : Zeta function of A1
Fq , given by 1

1−q1−s
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Chapter 1

Introduction

Arithmetic statistics is the statistical study of objects arising in arithmetic and algebraic

geometry. This thesis deals with two different questions, both of the nature:

Question 1.0.1. How many curves of a certain description are there?

The answer to both questions is classically known to be infinite. But how infinite is infinite?

For instance, there are infinitely many even numbers as well as squares. However, there are

roughly 1
2X even integers among all positive integers up to X, while there roughly X1/2 squares

in the same range. So although both sets are countable, one clearly seems larger than the other.

In particular, if we order integers by size, we get a notion of how many of a certain kind there

really are and how that number compares with all the integers in the range. In this report, we

do the same, but for curves in certain moduli spaces.

1.1 Overview

We explore two directions in this report.

The first is understanding curves over finite fields in certain p-rank strata. A curve C over

a field of characteristic p is said to be ordinary if its Jacobian has largest possible p-torsion.

Fixing a finite field Fq, one can ask what is the probability that a curve over Fq is ordinary?

The notion of probability here is defined by counting curves up to a certain genus and asking

how many such curves are ordinary. Chapter 2 of this report answers this question for certain

commonly studied families of curves, namely Artin-Schreier and superelliptic curves. In 2012,
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Cais, Ellenberg and Zureick-Brown ([6]) came up with heuristics that showed that if Frobenius

behaved randomly in a certain sense, then abelian varieties of arbitrarily large dimension over

Fq had a high probability of being ordinary (made precise later). The randomness hypothesis

on the Frobenius matrix is a philosophy that is widely believed to be true. It is often termed

as the ‘Katz-Sarnak’ philosophy and comes in many forms. Some versions of it are known to be

true. For example, one such result was used by Achter in proving a large q-limit version of the

Cohen-Lenstra heuristics over function fields ([1]). However, the statement required for the

large g-limit in [6] is still not known to be true. And while we are quite far from knowing the

truth of such a statement, what this report proves, at the very least, is that in some special

families of curves, Frobenius does not behave randomly.

The second direction that this report explores is a version of the Batyrev-Manin conjecture

for stacks via the classical problem of counting elliptic curves with a rational N -isogeny. It

is known that for certain N , there are infinitely many such curves. However, a more precise

asymptotic is only known for N = 1, 2, 3 and 4 ([17], [28], [29]), ordering elliptic curves by naive

height. This report provides an asymptotic for certain higher N . Let V be a Fano variety over

a number field K (one may think instead, of a scheme with lots of K-rational points) and let

X be a real number. The K-rational points on V can be ordered by an invariant called the

height, coming from an ample line bundle on V . The Batyrev-Manin conjecture predicts that

the number of K-rational points on V with height bounded by X is asymptotic to cXa log(X)b

for some constants a, b and c. Now, many spaces that parametrize objects of interest are not

schemes, but stacks (e.g. moduli spaces of curves, moduli spaces of elliptic curves with an

N -isogeny, to name a few), that is, spaces whose points have automorphisms. Not only is

counting points on stacks harder, but until recently there was neither a well established theory

of heights on stacks, nor a version of the Batyrev-Manin conjecture for them. In [13], the

authors establish such a theory and make a similar conjecture in the case when V is a stack.

This report shows that the conjecture has the right form when V is the classical moduli stack

X0(N).
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This thesis has four chapters, including the present one. Chapter 2 talks about the first direction,

and Chapter 3 about the second. Chapter 4 talks about future work in both directions.

1.2 Main results

1.2.1 Ordinary curves over finite fields

Let C be a smooth projective curve of genus g over a finite field Fq of characteristic p > 0. Its

Jacobian Jac(C) is an abelian variety of dimension g. For each n ∈ Z>0, the n-torsion group

scheme Jac[n] is a finite flat group scheme. When (n, p) = 1, this group scheme is étale, and as

an abelian group, is isomorphic to (Z/nZ)2g over F q. When n is not invertible in Fq, this group

scheme is never étale and its isomorphism class over Fq depends significantly on the curve. In

particular, there is an integer s with 0 ≤ s ≤ g such that

Jac(C)[p](Fq) ∼= (Z/pZ)s.

We call the curve C ordinary if s = g. Let F denote a set of curves over Fq of arbitrarily high

genus. Define

• N(F , X) = #{C ∈ F | qg < X}

• N(F , g,X) = #{C ∈ F | qg < X, C ordinary}.

Consider the limit

P (F , g) := lim
X→∞

N(F , g,X)
N(F , X) , (1.1)

which calculates the probability that a curve C ∈ F is ordinary. We study two kinds of families

of curves:

1. Artin-Schreier curves: Such curves can be given by an equation of the form

yp − y = f(x),

where f(x) ∈ Fq(x) and p is the characteristic of the field.
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2. Superelliptic curves: Such curves can be given by an equation of the form

yn = f(x),

where f(x) ∈ Fq[x] and gcd(n, p) = 1. We specifically consider superelliptic curves with n

an odd prime, over a field of characteristic 2.

In Chapter 2, we prove the following results:

Theorem 1.2.1 (Corollary 2.5.6). Let p be a prime and q a power of p. The probability that

an Artin-Schreier curve over Fq is ordinary is non-zero for p = 2 and zero for all odd primes.

For the family of superelliptic curves, we prove:

Theorem 1.2.2 (Theorem 2.5.18). The probability that a superelliptic curve of prime degree

over a large enough finite field of characteristic 2 is ordinary, is zero.

1.2.2 Elliptic curves with a rational N-isogeny

The contents of Chapter 3 are based on joint work with Brandon Boggess. Let E be an elliptic

curve over Q. An isogeny φ : E → E
′ between two elliptic curves is said to be a cyclic N-isogeny

if Ker(φ)(Q̄) ∼= Z/NZ. Further, it is said to be rational if Ker(φ) is stable under the action of

the absolute Galois group, GQ. Henceforth, we will omit the adjective ‘cyclic’, since these are

the only types of isogenies we will consider.

Question 1.2.3. How many elliptic curves over Q have a rational cyclic N -isogeny?

It is classically known that for N ≤ 10 and N = 12, 13, 16, 18, 25, there are infinitely many

such elliptic curves. An elliptic curve E over Q has a unique minimal Weierstrass equation

y2 = x3 +Ax+B where A,B ∈ Z and gcd(A3, B2) is not divisible by any 12th power. Define

the naive height of E to be ht(E) = max{|A|3, |B|2}. We will order our elliptic curves by this

height. In Chapter 3, we show that naive height does indeed come from a line bundle on the

stack of elliptic curves.

Notation 1.2.4. For two functions f, g : R → R, we say that f(X) � g(X) if there exist
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positive constants K1 and K2 such that K1g(X) ≤ f(X) ≤ K2g(X). For a real number X and

positive integer N , define

N (N,X) = #{E/Q | ht(E) < X,E has a rational N -isogeny}.

Precise version of Question 1.2.3: Can we find a function hN (X) such that N (N,X) �

hN (X)?

Theorem 1.2.5. Maintaining the notation above, we have the following values of hN (X) :

N hN (X) N hN (X)
2 X1/2 8 X1/6 log(X)
3 X1/2 9 X1/6 log(X)
4 X1/3 12 X1/6

5 X1/6(log(X))2 16 X1/6

6 X1/6 log(X) 18 X1/6

Table 1: Values of hN (X), ordered by naive height
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Chapter 2

Proportion of ordinary curves in

some families

2.1 Introduction

Let C be a smooth curve of genus g over a field k of characteristic p > 0, and let Jac(C) denote

its Jacobian. Let G be a finite flat group scheme over k killed by p.

Definition 2.1.1. We define the a-number of G as

a(G) = dimk Hom(αp, G)

where αp is the affine group scheme Spec(k[x]/xp), and the Hom is in the category of k-group

schemes.

Definition 2.1.2. The p-rank of G is defined as r(G) where

G(k̄) ∼= (Z/pZ)r(G)

as abelian groups.

For the purpose of this thesis, we will only be interested in G = Jac(C)[p]. In this case, it is

well known that 0 ≤ r(G) ≤ g(C) and 0 ≤ a(G) + r(G) ≤ g. The Jacobian is called ordinary if

r(G) = g or equivalently, when a(G) = 0 ([3]). By abuse of notation, we will denote the a(C)

and r(C) to be the corresponding invariants of Jac(C)[p].
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Fix a family F of curves over Fq of arbitrary genus. Note that by a family, we mean a set

of curves satisfying a particular property, which is not necessarily a family in any geometric

sense. A typical example of a family is ∪g≥0Mg(Fq). Let Fs = {C ∈ F | r(C) = s}. The main

question that we want to study in this chapter is, what is the probability that a randomly

chosen C ∈ F lies in Fg. In other words, what proportion of curves in the family F is ordinary?

Recall the quantity defined in Equation (1.1):

P (F , g) := lim
X→∞

N(F , g,X)
N(F , X)

The goal for this chapter is to prove Theorems 1.2.1 and 1.2.2, that is, to calculate P (F , g) for

the Artin-Schreier and superelliptic families.

Notation

Throughout this chapter, k will denote the finite field Fq of characteristic p > 0, unless mentioned

otherwise. Most of the definitions involved make sense over any perfect field of characteristic

p, but the counting results only make sense over a finite field. All abelian varieties will be

assumed to be principally polarized.

2.2 History

The goal of understanding P (F , g) falls into the larger context of understanding p-divisible

groups of abelian varieties in the large g-limit. Let A be an abelian variety defined over k and

let A[pn] denote its pn-torsion subgroup scheme. Then its p-divisible group is defined as

A[p∞] := lim−→
n

A[pn].

This p-divisible group has height 2g (see [38] for the definition of the height of a p-divisible

group) where g is the dimension of the abelian variety.

Example 2.2.1. If A is an ordinary abelian variety, A[pn] ∼= (Z/pnZ)g × (µpn)g as a group
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scheme. Here µpn = Spec k[x]/(xpn − 1) is the kernel of Frobenius on Gm. Thus:

A[p∞] ∼= (Qp/Zp)g × (µp∞)g.

Being a variety in positive characteristic, A carries an action of the Frobenius endomorphism

which in turn induces an action on A[p∞]. We will call this latter operator F . Its dual,

Verschiebung, will be denoted by V . Further, A[p∞] comes equipped with a skew-symmertric

bilinear pairing called the Cartier pairing (see [27]) which realizes the duality between F and

V , made more explicit below in Section 2.2.1. Thus any attempt at modelling the behavior

of A[p∞] must incorporate the actions of F and V , as well as the Cartier pairing. Such an

attempt was made by the authors of [6] via Dieudonné modules.

2.2.1 Random Dieudonné Modules and heuristics for p-divisible groups

The Dieudonné functor

Let W (k) denote the ring of Witt vectors over k.

Definition 2.2.2. The Dieudonné Ring over k is defined as E := W (k)[F, V ]/ ∼, where F and

V are two generators subject to the relations ∼ given by:

FV = V F = p

Fλ = λσF

V λ = (λ)σ−1
V.

Here λ ∈W (k) and σ is a lift of the Frobenius map on k to W (k).

There exists a functor, namely the Dieudonne functor D, from the category of group schemes

killed by p (resp. the category of p-divisible groups) to the category of E-modules of finite

W (k) length (resp. free over W (k)) that satisfies the following properties.

1. The rank of the group scheme (resp. height of the p-divisible group) is the length (resp.

rank) of the Dieudonne module.
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2. Let G∨ denote the Cartier dual of G. A group scheme is called principally quasi-polarized

if there is an isomorphism λ : G→ G∨, such that the following diagram

G∨∨ G∨

G

−λ∨

ı λ

commutes, where ı : G∨∨ ∼= G is the canonical identification of the double dual of G

with G. The polarization of a principally polarized abelian variety induces a principal

quasi-polarization on its pn-torsion. If G is principally quasi-polarized, then D(G) has a

perfect, symplectic pairing.

3. If G is a p-divisible group, then D(G[p]) ∼= D/pD.

4. The action of F and V on G induces an action on D(G).

For a more detailed exposition and construction of the Dieudonne module, we refer the reader

to [27].

Examples

1. Let G = E[p∞], where E is an elliptic curve over k. If E is ordinary, then

L := D(G) ∼= E/(F, 1− V )⊕ E/(F − 1, V ).

If E is supersingular, then since aq ≡ 0 mod p, we have that I := D(G) ∼= E/(F + V ).

2. Let A be a principally polarized abelian variety with p-rank f and a-number g− f . Then

D(A[p]) ∼= Lf ⊕ Ig−f .

In [6], the authors define the notion of a random Dieudonne module, which models the behavior

of the p-divisible group of an abelian variety. A random Dieudonné module of height 2g is

a tuple (D, F, V, ω) where D is a W (k)-module of rank 2g, F and V are operators subject to

relations in Definition 2.2.2, and ω is a symplectic pairing on D such that ω(Fx, y) = ω(x, V y)σ.

The authors show that if we fix one choice of Frobenius, F0 on W (k)2g, then all other choices of

Frobenius must come from the double coset Sp2g(W (k))F0Sp2g(W (k)). A random choice of the
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tuple (D, F, V, ω) amounts to picking F from Sp2g(W (k))F0Sp2g(W (k)) uniformly with respect

to the product of the Haar measures on each Sp2g(W (k)). Define the p-rank and a-number of

a Dieudonné module D are defined as those of D/pD. Using the model described above, the

authors show that the probability that such a module is ordinary is

∞∏
i=1

(1 + q−i)−1. (2.1)

Further, they ask if the Dieudonné module associated to the Jacobian of a curve behaves like a

randomly chosen one, i.e. whether the limit in Equation (1.1) equals the quantity (2.1) when

F is the set of all smooth curves. They find, via numerical experiments, that hyperelliptic

curves in small odd characteristic do not appear to obey their heuristics, while plane curves

do. The families considered in this report are the first known cases whose behavior provably

diverges significantly from the heuristics of [6]. While the results in this chapter are motivated

by the heuristics in [6], the approach used is quite different. For instance, we do not prove the

randomness of Frobenius in any sense. What we use instead is a combinatorial criterion for

ordinariness that we deduce from work of Pries and Zhu in [30], and Elkin in [12].

2.2.2 Large g-limits and large q-limits

Arithmetic statistics of curves and abelian varieties over finite fields fall into two broad categories:

taking limits as q →∞ with g fixed or as g →∞ with q fixed. The results in this report are

examples of the latter, as are those in the motivating paper, [6].

Comparing the two behaviors

Large q-limit behavior can often be thought of as the geometric behavior of a family of curves

with a fixed genus. For instance, one might ask, what is the codimension of the ordinary locus

inside Mg? To study this question, one can change the base field to Fq without loss of generality.

The large q-limit behavior in this sense is usually incomparable to the large g-limit behavior.

However, studying the former can provide some insight into the latter. To illustrate our point,

we list some results here that show how different the geometry of the Artin-Schreier locus is
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from that of some other families of curves. It is known that the locus of ordinary curves is a

non-empty Zariski open subset of Mg ([26]). Thus for a fixed genus g, ‘most’ curves of genus g

tend to be ordinary. Let Vg,r denote the sublocus of M̄g of curves of p-rank at most r. In [14]

Faber and van der Geer prove that Vg,r has codimension g − r. A result of Glass and Pries [15]

states that Vg,r intersects the hyperelliptic locus, Hg, inside M̄g in a set of dimension g− 1 + r.

Since Hg has dimension 2g−1, this implies that the ordinary locus is dense in Hg. We compare

this to results about A S g, the Artin-Schreier locus inside Mg. In [30], Pries and Zhu prove

that for p ≥ 3, the codimension of Vg,r ∩A S g inside A S g is less than g − r. This indicates

that for p ≥ 3, the image under the Torelli morphism of A S g in Ag (the moduli space of

principally polarized abelian varieties of genus g) is not in general position with respect to the

p-rank stratification. Further, from results in [30] which we state in the next section (Theorem

2.3.2), it follows that the ordinary locus intersects only one irreducible component of A S g. As

g →∞, the number of components of A S g increases except when p = 2 (in which case A S g

is Hg). This gives a heuristic reason for why one might expect a statement like Theorem 1.2.1.

A similar heuristic explains Theorem 1.2.2 as well, as we elaborate in Remark 2.5.19.

Equidistribution results

Another context in which the large g-limit versus large q-limit dichotomy arises, is in equidis-

tribution results. As mentioned in Chapter 1, there is a philosophy that governs statistical

questions about varieties over finite fields, often called the Katz-Sarnak philosophy. This is

a Chebotarev density theorem-like claim about the Frobenius endomorphism. Let G be the

arithmetic monodromy group of a family of curves of a fixed genus over a finite field Fq. Let W

be a conjugacy class in G. Roughly speaking, equidistribution results about Frobenius state

that the probability that Frobenius belongs to W is equal to |W |/|G|. Of course, this equality

does not hold strictly, but is true up to an error term that is O(1/√q). This error term makes

such equidistribution results amenable for proving large q-limit results (see for example, [1]

or [2]). The dependence of the error term on g, however, is much more complicated and harder

to bound.



12

2.3 Background: Artin-Schreier Curves

We now recall some facts about Artin-Schreier curves and covers. An Artin-Schreier curve C

over k is a smooth Z/pZ cover of P1
k. Such a curve has an affine model

yp − y = f(x) (2.2)

where f(x) ∈ k(x), and is equipped with a Z/pZ action generated by y 7→ y + 1. An

Artin-Schreier cover is an Artin-Schreier curve along with a choice of map ι : Z/pZ ↪→ Aut(C)

and a choice of isomorphism C/(ι(Z/pZ)) ∼= P1. This amounts to picking a model of the form 2.2.

Let B ⊂ P1(k̄) be the set of poles of f . Then, the cover above is ramified precisely at the points

in B ([36]). For α ∈ B, let

xα =


1

x−α α 6=∞

x α =∞.

Then, using a partial fraction decomposition one can write

f(x) =
∑
α∈B

fα(xα) (2.3)

where fα ∈ k̄[x] is a polynomial of degree dα.

Remark 2.3.1. We now make a few helpful observations about the partial fraction decomposition

above.

1. We may, and do assume that for α 6=∞, fα has no constant term.

2. By a transformation of the form y 7→ y + z, one can assume that in fα(x), the coefficient

of xip is zero for any 0 ≤ i ≤ bdα/pc. In particular, we can take dα 6= 0 mod p.

3. If α, β ∈ B are Galois conjugate, then dα = dβ.
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4. Let Q be an irreducible polynomial in k[x] whose zeroes are ramified in the Artin-Schreier

cover under consideration. Then we will denote dQ as the degree of any fα, α a zero of Q.

This is well defined by the above remark.

By the Riemann-Hurwitz theorem for wildly ramified covers, we know that the genus of such a

curve is given by:

g =
(
p− 1

2

)(
−2 +

∑
α∈B

(dα + 1)
)

=
(
p− 1

2

)−2 +
∑

Q irred.
ramified

deg(Q)(dQ + 1) + (d∞ + 1)

 .
(2.4)

2.3.1 The moduli space of Artin-Schreier curves

In [30], the authors give a complete description of the irreducible components of the p-rank

strata of of A S g. Let A S g,s ⊂ A S g denote the space of Artin-Schreier curves of genus g

with p-rank s. It follows from the Deuring-Shafarevich formula (see for instance, [8, Corollary

1.8]) that s is divisible by p− 1.

Theorem 2.3.2 ( [30], Theorem 1.1). Let g = d(p − 1)/2 with d ≥ 1 and s = r(p − 1) with

r ≥ 0. Then:

1. The set of irreducible components of A S g,s is in bijection with partitions {e1, e2 . . . er+1}

of d+ 2 into r + 1 positive integers such that each ei 6≡ 1 mod p.

2. The irreducible component of A S g,s corresponding to the partition {e1, e2 . . . er+1} has

dimension:

d− 1−
r+1∑
i=1
b(ei − 1)/pc.

This theorem implies, in particular, that the closure of the ordinary locus has dimension d− 1.

The following criterion for the ordinarity of an Artin-Schreier curve follows from the above

description of the moduli space, but was known earlier as well ([8], [37]):
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Corollary 2.3.3. The Artin-Schreier cover yp − y = f(x) is ordinary if and only if f has only

simple poles.

This is equivalent to the condition that dα = 1 for each α in the partial fraction decomposition

(2.3).

Let S be the set of rational functions f(x) ∈ k(x) such that the partial fraction decomposition

of f satisfies the conditions (1-3) from Remark 2.3.1. For simplicity, we will assume that∞ /∈ B.

This assumption is harmless, as we explain in Remark 2.5.7 and makes the computations in

§2.5 much cleaner. We now restrict our attention to k = Fq and define the families for this

section as follows:

• F = Set of Artin-Schreier covers yp−y = f(x), where f(x) ∈ S has no poles over∞ ∈ P1.

• Fg = Set of all ordinary Artin-Schreier covers yp − y = f(x) with f(x) ∈ S, unramified

over ∞ ∈ P1.

2.3.2 Aside on counting curves versus counting covers

In our proof of the main theorem in Section 2.5, we calculate the probability P (F , g) by count-

ing polynomials in the set S defined above. We must however, make the distinction between

counting covers versus counting curves. One wishes to count rational points on A S g ↪→Mg,

that is to count isomorphism classes of Artin-Schreier curves. However, what we actually do in

this report, is count isomorphism classes of Artin-Schreier covers. That is, we count models

for the curves instead of curves themselves. For p ≥ 7, this does not change the proportion of

ordinarity, as we explain later in Remark 2.5.7. For p = 3, 5 such a conclusion is beyond reach

right now, while for p = 2, it is simply not true.

There is a map

S →
⋃
g≥0

A S g(Fq) (2.5)

sending f(x) ∈ S to the curve with model yp − y = f(x). Remark 2.3.1 shows that this map is

surjective. We will now bound the size of the fibers. For an Artin-Schreier curve C, a choice of
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model Cf amounts to a choice of homomorphism ı : Z/pZ ↪→ Aut(C) and a choice of isomorphism

C/ı(Z/pZ) ∼= P1. For g ≥ 2, Stichtentoth proved (see [34], [35]) that |Aut(C)| ≤ 16g(C)4. We

claim that the number of choices of isomorphism C/ı(Z/pZ) ∼= P1 is bounded uniformly.

Proposition 2.3.4. Let Cf and Cg be two Artin-Schreier covers with φ : Cf ∼= Cg such that

there is a commutative diagram

Cf Cg

P1
Fq P1

Fq

φ

φ̃

where the vertical maps are quotients by the Z/pZ actions. Then f(x) = ug(γx) for some

u ∈ Z/pZ× and γ ∈ PGL2(Fq).

Proof. The induced map φ̃ is induced by some γ ∈ PGL2(Fq). Let Df and Dg denote the

ramification divisors of Cf and Cg respectively. By Artin-Schreier theory, these are determined

by the poles of f and g respectively. Note that since the curves are defined over Fq, so are their

ramification divisors. Since φ must preserve the ramification invariants (namely, the number

of ramified points and the ramification groups at each of these points), we must have that

φ̃∗(Dg) = Df . Thus Cf◦γ and Cg are isomorphic curves with the same ramification divisor.

Now, two Artin-Schreier covers,

yp − y = f1(x) and yp − y = f2(x)

with the same genus and ramification divisor are isomorphic if and only if f1(x) = uf2(x)+δp−δ

(see, for example [30], Remark 3.9) with u ∈ Z/pZ× and δ ∈ Fq(x). Since we have imposed the

condition that f(x), g(x) ∈ S, the proposition follows.

Thus we have that for g ≥ 2, the map on the genus g part in Equation 2.5 has fibers of

size bounded by C(q)g4, where C(q) is a constant. For notational convenience, let G =

∪g≥0A S g(Fq).
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Since |{f ∈ S : g(Cf ) = g}| ≤ C(q)g4|{C ∈ A S g(Fq)}|, therefore

P (G , g) = lim
X→∞

| {C ∈ A S g(Fq) | qg < X, s(C) = g} |
| {C ∈ A S g(Fq) | qg < X} |

≤ lim
X→∞

C(q) logq(X)4 | {f ∈ S | qg(Cf ) < X, s(Cf ) = g} |
| {f ∈ S | qg(Cf ) < X} |

.

The counting arguments in Section 2.5 will show that for p ≥ 7, the quantities P (G , g) and

P (F , g) are the same.

2.4 Background: Superelliptic curves

A superelliptic curve over a field k is a curve defined by the affine equation

yn = f(x),

where f(x) ∈ k[x] and n is coprime to the characteristic of k. This curve has an action of µn

(n-th roots of unity) on it, namely the map

(x, y) 7→ (x, ζny),

where ζn is a primitive n-th root of unity. One can make a transformation to write

f(x) =
n−1∏
i=1

(fi(x))i (2.6)

where each fi(x) is a squarefree polynomial, and fi(x) and fj(x) are coprime if i 6= j. The

quotient C/µn gives a map to P1, sending (x, y) 7→ x. We let N :=
∑n−1
i=1 i deg(fi). Then the

curve C is unramified over∞ ∈ P1 if and only if N ≡ 0 mod n. In the case that N 6≡ 0 mod n,

we let n∞ be the smallest positive integer such that N + n∞ ≡ 0 mod n.
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The map C → P1 is ramified at the zeros of f and possibly at ∞. The ramification indices at

the ramified points α ∈ P1(k̄) are given by (see [21])

e(α) =


n

(n,i) if fi(α) = 0

n
(n,n∞) if α =∞

The genus of this curve is given by

g = −n+ 1 + 1
2

n−1∑
i=1

deg(fi)(n− (n, i)) + 1
2ε(n− (n, n∞)) (2.7)

where ε is 0 if the map C → P1 is unramified over ∞ and 1 otherwise.

Remark 2.4.1. Since the techniques of this chapter are based on counting polynomials, it is

necessary to separate the case when the map is ramified over ∞ ∈ P1, even though that seems

unnatural.

We now specialize to the case where n is an odd prime. Let B ⊂ P1(k̄) be the set of points

ramified in the cover yn = f(x). Let m =|B |. If ε = 0, then m =
∑n−1
i=1 deg(fi) and if ε = 1,

then m =
∑n−1
i=1 deg(fi) + 1.

In either case, we have,

g = 1
2(n− 1)(m− 2). (2.8)

Thus with regard to superelliptic curves, we will be interested in the family F of covers

yn = f(x), where

• n is prime,

• the curve is defined over Fq, where q is a power of 2,

• f(x) ∈ Fq[x] is n-th power-free.
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2.4.1 a-numbers of superelliptic curves in characteristic 2

We now give a combinatorial criterion for the ordinarity for superelliptic curves in characteristic

2. The discussion in this section is based on a paper by Elkin [12]. Let C be a smooth proper

superelliptic curve over Fq, q a power of 2, with affine model yn = f(x), where n is an odd

prime. We maintain the same notation as before. The space H0(C,Ω1
C) inherits the action of

µn and decomposes into eigenspaces as follows:

H0(C,Ω1
C) = ⊕n−1

i=1 Di.

A key player in Elkin’s work is the Cartier operator, C . This is a Frob−1-linear operator on

H0(C,Ω1
C), which annihilates exact differentials and preserves logarithmic differentials. It can

be thought of as capturing the action of Verschiebung. It is well known that the a-number, a(C),

equals g(C)− rank(C ). To state the result in Elkin’s paper, we first describe some notation.

Let di = dim(Di). Let σ be the permutation of {1, 2, . . . n− 1} defined by

pσ(i) ≡ i mod n. (2.9)

By bounding the rank of the Cartier operator, Elkin proves the following proposition.

Proposition 2.4.2 ( [12], Corollary 1.4). Let C be as above. Then,

g(C)− a(C) =
n−1∑
i=1

min(di, dσ(i))

where the di = dim(Di) can be computed explicitly from the ramification invariants of the curve

and σ is the permutation of the set {1, 2, · · ·n− 1} defined by the congruence (2.9).

For any rational number r, let 〈r〉 = r−brc. Elkin proves that the di’s are given by the formula:

di =
n−1∑
j=1

deg(fj)
〈
ij

n

〉
+
〈
in∞
n

〉
− 1. (2.10)
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Recall that the ordinarity of an abelian variety is equivalent to the condition that its a-number

is 0. Proposition 2.4.2 tells us that if a(C) = 0, then g(C) =
∑n−1
i=1 min(di, dσ(i)). We now give a

condition for ordinarity in terms of the degrees of fi. For better exposition, we will treat the

case n = 3 separately from the case of a general odd prime.

The case n = 3

In this subsection, we consider curves of the form C : y3 = f(x). The equation for the genus

simplifies to

g = m− 2.

Proposition 2.4.3. A curve of the form y3 = f1f
2
2 , with f1, f2 squarefree is ordinary if and

only if one of the following is true:

1. n∞ = 0 and deg(f1) = deg(f2), or

2. n∞ = i for some i ∈ {1, 2} and deg(fi) + 1 = deg(f3−i).

Proof. Since σ = (1 2), therefore g = 2 min(d1, d2). This in turn implies g = 2d1 or g = 2d2.

We prove case (1) here. The other case follows by a similar calculation.

In this case,

d1 = 1
3 deg(f1) + 2

3 deg(f2)− 1

and

d2 = 2
3 deg(f1) + 1

3 deg(f2)− 1.

Therefore, deg(f1) = deg(f2). For case (2), we just replace deg(fi) by deg(fi) + 1 in the

expression for each dj .
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The case of a general odd prime

Proposition 2.4.4. A curve defined by yn =
∏n−1
i=1 (fi(x))i as in section 2.4 with n an odd

prime, is ordinary if and only if one of the following is true:

1. n∞ = 0 and deg(fi) = deg(fn−i), or

2. n∞ = i for some i ∈ {1, 2 . . . n− 1}, and deg(fi) + 1 = deg(fn−i), and for all j 6= i, n− i,

deg(fj) = deg(fn−j).

Proof. As before, we only prove case (1) and the other case follows from a modified, but similar

calculation. The condition for ordinarity gives:
∑
i di =

∑
i min(di, dσ(i)). This automatically

implies that di = dj for all 1 ≤ i, j ≤ n. Since we are considering the case where n∞ = 0,

di =
n−1∑
j=1

deg(fj)
〈
ij

n

〉
− 1.

Define the matrix A, with Aij =
〈
ij
n

〉
. Thus the degrees of fi’s must be solutions to the linear

system

A



x1

x2
...

xn−1


=



d+ 1

d+ 1
...

d+ 1


(2.11)

for some d ≥ 0. Let V denote the space of n− 1× 1 vectors whose coordinates are all equal. We

are interested in (the integral points of) the space of x = (x1, x2 . . . xn−1)T such that Ax ∈ V .

Lemma 2.4.5. The space {x ∈ Zn−1 | Ax ∈ V } consists of vectors x for which xk = xn−k for

all k = 1, 2 . . . n− 1.

Proof of Lemma. We prove this lemma by constructing an explicit basis for the kernel of A,

Ker(A). Let x(k) denote the n− 1× 1 vector which has 1’s in the kth and n− kth positions

and −1’s in the n−1
2 th and n+1

2 th positions. We claim that {x(k) | k = 1, 2, . . . n−3
2 } is a basis

for Ker(A).
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(Ax(k))i =
(
ik

n
−
⌊
ik

n

⌋)
+
(
i(n− k)

n
−
⌊
i(n− k)

n

⌋)
−
(
i(n− 1)

2n −
⌊
i(n− 1)

2n

]⌋
−
(
i(n+ 1)

2n −
⌊
i(n+ 1)

2n

⌋)
=
⌊
i(n− 1)

2n

⌋
+
⌊
i(n+ 1)

2n

⌋
−
⌊
ik

n

⌋
−
⌊
i(n− k)

n

⌋
= 0

Thus, it only remains to prove that A has rank at least n+1
2 . Now, nA can be row reduced such

that the top left n+1
2 ×

n+1
2 submatrix looks like



1 2 3 . . . n−1
2

n+1
2

0 0 0 . . . 0 ∗

0 0 0 . . . ∗ ∗
...

0 0 ∗ . . . ∗ ∗

0 ∗ ∗ . . . ∗ ∗



where each of the entries immediately below the anti-diagonal is necessarily non zero. Such a

matrix has non-zero determinant. Thus, any element in Ker(A) is of the form

(x1, x2, . . .−
n−3

2∑
i=1

xi,−
n−3

2∑
i=1

xi, . . . x2, x1)T

This proves the lemma and hence the proposition.

Remark 2.4.6. Perhaps a more natural way to interpret Propositions 2.4.3 and 2.4.4 is to say

that for a curve yn = f(x) (n prime) has ordinary Jacobian if and only if the same number of

points are ramified to degree i and n− i for any i ∈ {1, 2 . . . n− 1}. Here we say that a point
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P is ‘ramified to degree i’ if the curve locally looks like yn = uxiP , where xP is a uniformizer at

P and u is unit.

2.4.2 Aside on counting curves versus counting covers

One might wonder, as in the Artin-Schreier case in §2.3, what the difference is between counting

superelliptic curves and covers of the form yn = f(x). We choose to restrict our attention to

covers, i.e. to equations of the form yn = f(x) with f(x) ∈ Fq[x] n-th power-free, and make the

claim that this does not significantly affect our results.

We first introduce some notation for this section alone. For any u ∈ (Z/nZ)×, let [u] be the map

that takes
∏
i(fi(x))i to

∏
i(fi(x))(ui mod n). By a straightforward sequence of transformations,

one can see that if fi is squarefree for each i the two curves given by

yn =
∏
i

(fi(x))i and yn =
∏
i

(fi(x))(ui mod n)

are indeed isomorphic. By abuse of notation, we also call this isomorphism of curves [u]. We

claim that up to an automorphism of P1
Fq , the only isomorphisms between superelliptic covers

are of the form [u], with u ∈ (Z/nZ)×. This is a standard Kummer theory argument, whose

proof we recall here.

Proposition 2.4.7. For n an odd prime, let f(x) =
∏n−1
i=1 (fi(x))i and g(x) =

∏n−1
i=1 (gi(x))i be

two monic n-th power-free polynomials in Fq[x] such that:

• For each i, fi(x) and gi(x) are squarefree,

• div0(f) = div0(g).

Suppose that Cf : yn = f(x) and Cg : yn = g(x) are isomorphic as curves via an isomorphism

φ. Let ζn be an n-th root of unity that acts as an automorphism of the curve sending (x, y) 7→

(x, ζny). Then there is a u ∈ (Z/nZ)× such that φ = ζn ◦ [u].

Proof. Let K = Fq(P1) and L = Fq(Cf ) ∼= Fq(Cg). Note L(ζn)/K(ζn) is a Galois extension. Let
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ϕ : Gal(K(ζn)/K(ζn))→ µn be the homomorphism corresponding to L(ζn). Any other field

L
′ that is isomorphic to L(ζn) corresponds to the homomorphism ϕu for some u ∈ (Z/nZ)×.

Therefore, if [α] ∈ K(ζn)×/(K(ζn)×)n is the class corresponding to ϕ via the Kummer map,

then there is a u ∈ (Z/nZ)× such that the isomorphism Fq(ζn)(Cf ) ∼= Fq(ζn)(Cg) corresponds

to the class [αu]. This proves the claim.

For n an odd prime, let Tn denote the set of n-th power free polynomials in Fq[x]. Let S E g,n(Fq)

denote the set of superelliptic curves of degree n and genus g over Fq. Then the above claim

shows that the fibers of the map:

Tn →
⋃
g≥0

S E g,n(Fq)

f(x) 7→ (yn = f(x))

have size bounded by n |Z/nZ× || PGL2(Fq) |. As in §2.3, this proves that understanding the

proportion of ordinarity in F is the same as understanding it for the family of superelliptic

curves of a fixed degree over Fq.

2.5 Proofs of Main Results

In this section we describe the main results obtained from counting each of the families described

above. Our main tool will be the following Tauberian theorem.

Theorem 2.5.1 (See [7], Appendix A). Let {λn}n∈Z>0 be strictly increasing sequence of positive

integers. Let f be the Dirichlet series:

f(s) =
∞∑
n=1

cnλ
−s
n

Further, assume the following:

1. f(s) converges for Re(s) > a > 0.

2. f admits a meromorphic continuation to Re(s) > a− δ0 > 0 for some δ0 > 0.
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3. The right-most pole of f is at s = a, with multiplicity b ∈ N. Let Θ = lims→a f(s)(s− a)b.

4. (Technical assumption) There exists a κ > 0 such that for Re(s) > a− δ0,

∣∣∣∣∣f(s)(s− a)b

sb

∣∣∣∣∣ = O((1 + Im(s))κ).

Then there exists a (monic) polynomial P of degree b − 1 such that for any δ < δ0, we

have, ∑
λn<X

cn = Θ
a(b− 1)!X

aP (log(X)) +O(Xa−δ).

Notation 2.5.2. We will henceforth use the notation | Q | to denote qdeg(Q), where Q is

an irreducible polynomial over Fq. We will denote by ζ(s), the zeta function of A1
Fq . Thus

ζ(s) =
∏
Q(1− |Q |−s)−1, where the product is over monic irreducible polynomials over Fq.

2.5.1 Artin-Schreier curves

To recall, the family F that we are interested in in this section is that of covers yp − y = f(x),

with f(x) ∈ S, such that the corresponding map C → P1 is unramified over ∞.

We first set up some notation in order to calculate N(F , X) and N(F , g,X).

• Define a new invariant: m = 2g
p−1 + 2. By equation (2.4), this is an integer and is equal to

∑
Q

deg(Q)(dQ + 1).

• For any m ≥ 2, let a(m) be the number of Artin-Schreier covers C with the above invariant

equal to m. Let b(m) be the number of such covers with p-rank g.

• Define

N∗(F , X) =
∑
qm<X

a(m) and N∗(F , g,X) =
∑
qm<X

b(m)
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We will calculate these as an intermediate step towards finding

N(F , X) = N∗(F , q2X2/(p−1)) and N(F , g,X) = N∗(F , g, q2X2/(p−1)).

For this section, define the zeta function:

Z(s) =
∑
C∈F

q−m(C)s =
∑
m

a(m)q−ms

Lemma 2.5.3. Z(s) converges for Re(s) > 1 and has a pole of order p− 1 at s = 1.

Proof. For a monic irreducible polynomial Q ∈ Fq[x], let dQ be the ramification invariant

defined in Section 2.3 if C → P1 is ramified over divQ and −1 otherwise. Thus

m =
∑
Q

deg(Q)(dQ + 1)

where the sum is over all monic irreducible polynomials in Fq[x]. Since this is a sum of local

factors, we factor Z(s) as a product of local functions, i.e. Z(s) =
∏
Q ZQ(s), where Q varies over

monic irreducible polynomials in Fq[x]. We can write ZQ(s) =
∑
k≥0 c(k) |Q |−ks. Recall from

§2.3 that if α ∈ B and Q(α) = 0, then dQ = deg(fα) as in the partial fraction decomposition

of f(x) (2.3). Further, in each fα, the coefficient of xip is 0 for each 0 ≤ i ≤ bdQ/pc. Since

k = dQ + 1,

c(k) = #{fα ∈ F|Q|[x] | deg(fα) = k − 1, coefficient of xip = 0}

where k 6≡ 1 mod p (since dQ 6≡ 0 mod p). We write dQ = np + i, with 1 ≤ i ≤ p − 1. The

above discussion gives us that for k = np+ i+ 1,

c(k) = (|Q | −1) |Q |i−1|Q |n(p−1)
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For convenience, we distinguish the cases where p = 2 and p ≥ 3.

For p = 2,

ZQ(s) = 1 +
∞∑
n=0

(|Q | −1) |Q |n|Q |−s(2n+2)

= 1− |Q |−2s

1− |Q |1−2s .

For p ≥ 3,

ZQ(s) = 1 +
p−1∑
i=1

∞∑
n=0

(|Q | −1) |Q |i−1|Q |n(p−1)|Q |−s(np+i+1)

= 1 +
(

(|Q | −1) |Q |−2s

1− |Q |p−1−ps

) p−1∑
i=1
|Q |i(1−s)

= 1 +
∑p−3
i=0 |Q |(i+1)−(i+2)s −

∑p−2
i=0 |Q |i−(i+2)s

1− |Q |p−1−ps .

For p ≥ 3, let

ψp,Q(s) =

1 +
p−3∑
i=0
|Q |(i+1)−(i+2)s −

p−2∑
i=0
|Q |i−(i+2)s

 p−3∏
i=0

(1− |Q |(i+1)−(i+2)s).

Define

ψp(s) :=


ζ(2s)−1 if p = 2∏
Q ψp,Q(s) if p ≥ 3.

(2.12)
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Therefore we have that

∏
Q

ZQ(s) = ψp(s)
p−2∏
i=0

ζ(s(i+ 2)− (i+ 1)).

We now claim that there is a constant δp (depending only on p) such that ψp(s) converges for

Re(s) > δp. For p = 2, this is known classically, since ζ(s) = 1
1−q1−s . Thus δ2 = 1

2 . For p ≥ 3,

we introduce some shorthand notation for convenience.

Let ai =|Q |(i+1)−(i+2)s and bi =|Q |i−(i+2)s. For k ∈ Z≥0 and l ∈ Z>0, the |Q |k−ls will be

called good if k + 1 < l. Observe that:

• The product
∏
Q(1− |Q |k−ls) converges for Re(s) > k+1

l . For a good term, the location

of the pole is to the left of s = 1.

• If k1 + 1 < l1 and k2 + 1 < l2, then k1 + k2 + 1 < l1 + l2. Therefore a product of two good

terms is good.

• For any 0 ≤ i ≤ p− 2, bi is good. Further, a product of two or more ai’s is a good term.

• For any i, j, the term aibj =|Q |(i+1)+j−(i+2)s−(j+2)s is good.

Let p ≥ 3. Then

ψp,Q(s) =

1 +
p−3∑
i=0

ai −
p−2∑
j=0

bj

 p−3∏
i=0

(1− ai)

=

1 +
p−3∑
i=0

ai −
p−2∑
j=0

bj

1−
p−3∑
i=0

ai + good terms


=

1−
p−3∑
i=0

ai +
p−3∑
i=0

ai + good terms

 = (1− good terms).

If, for a moment, we consider a0, a1 . . . ap−3 and b0, b1 . . . bp−2 as variables, then we see that the

set of monomials appearing in the expression for ψp,Q(s) is finite and independent of Q. Let δp
be the maximum of the k+1

l such that |Q |k−ls appears in the simplified expression for ψp,Q(s).
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Then δp < 1, and ψp(s) converges for Re(s) > δp.

Therefore
∏
Q ZQ(s) = ψp(s)

∏p−2
i=0 ζ(s(i+ 2)− (i+ 1)) converges for Re(s) > 1 and has a pole

of order p− 1 at s = 1. Further, the residue at s = 1 is given by

lim
s→1

Z(s)(s− 1)p−1 = ψp(1)
log(q)p−1 .

To count the number of ordinary curves, we define

Z0(s) =
∑
C∈Fg

q−m(C)s =
∑
m

b(m)q−ms.

Recall that for such curves, dα = 1 for all α. Therefore, Z0(s) =
∏
Q Z0,Q(s), where the local

factors are given by:

Z0,Q(s) = 1 + (|Q | −1) |Q |−2s .

Lemma 2.5.4. Z0(s) converges for Re(s) > 1 and has a simple pole at s = 1.

Proof. Note that

(1+ |Q |1−2s − |Q |−2s)(1− |Q |1−2s) = 1− |Q |−2s − |Q |2−4s + |Q |1−4s

and

φ(s) :=
∏
Q

(1− |Q |−2s − |Q |2−4s + |Q |1−4s)

converges for Re(s) > 3/4. Therefore Z0(s) = φ(s)ζ(2s− 1) converges for Re(s) > 1 and has a

simple pole at s = 1. Further, the residue at s = 1 is

lim
s→1

Z0(s)(s− 1) = φ(1)
log(q) .
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Proposition 2.5.5. For any δ > 0,

N∗(F , X) = ψp(1)
log(q)X(logq(X))p−2 +O(X1−δ),

N∗(F , g,X) = φ(1)
log(q)X +O(X1−δ).

Proof. This follows from Theorem 2.5.1 applied to the results of Lemmas 2.5.3 and 2.5.4, since

ζ(s) has a meromorphic continuation to the entire complex plane.

Corollary 2.5.6. For any δ > 0,

N(F , X) = ψp(1)
log(q)q

2X2/(p−1)(logq(X2/(p−1)))p−2 +O(X
2
p−1−δ),

N(F , g,X) = φ(1)
log(q)q

2X2/(p−1) +O(X
2
p−1−δ).

In particular, the probability that an Artin-Schreier cover unramified over ∞ is ordinary is

φ(1)ζ(2) if p = 2,

0 if p ≥ 3.

Proof. N(F , X) = N∗(F , q2X2/(p−1)).

Remark 2.5.7. We now make some concluding remarks about counting Artin-Schreier curves.

Data associated to this subsection can be found in Section 2.6.

1. If we modify F to include the covers ramified over∞, we must modify the partial fraction

decomposition in (2.3) to:

f(x) =
∑
α∈B
α6=∞

fα(xα) + g(x).
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Here g(x) ∈ Fq[x] is a polynomial that, like the other fα’s, has degree coprime to p and

for each 0 ≤ i ≤ bdeg(g)/pc, the coefficient of xip in g(x) is 0. This manifests as a change

in the zeta functions Z(s) and Z0(s) defined in the above discussion by factors that we

will call Z∞(s) and Z0,∞(s) respectively. That is, we write Z(s) = Z∞(s)
∏
Q ZQ(s) and

Z0(s) = Z0,∞(s)
∏
Q Z0,Q(s). Both these factors only affect the residues of Z(s) and Z0(s)

and not the order of growth, which means that for p ≥ 3, the probability of ordinarity for

the modified family is still 0. For p = 2,

Z∞(s) = 1 + q−1 and Z0,∞(s) = 1− q−1 + q−2.

Therefore the probability of ordinarity in the modified family is

(
1− q−1 + q−2

1 + q−1

)
φ(1)ζ(2) = 1− 3q−1 + 6q−2 +O(q−3). (2.13)

2. Recall from Section 2.3.2, that the probability that an Artin-Schreier curve is ordinary, is

bounded above by the quantity,

lim
X→∞

C(q) logq(X)4N(F , g,X)
N(F , X) .

Since the order of growth of N(F , g,X) is X2/(p−1), and the that of N(F , X) is

X2/(p−1) log(X)p−2, this quantity is 0 whenever p ≥ 7. The geometric description of

the Artin-Schreier locus leads us to believe that the same might be true for p = 3, 5, as

explained in part (4) of this remark. However a proof for these cases requires more work.

3. Recall that if the Jacobian of a curve behaves randomly in the sense of [6], the heuristics

predict that the probability of that a curve is ordinary is

∞∏
i=1

(1 + q−i)−1.

Corollary 2.5.6 and the previous remark prove that the Jacobian of an Artin-Schreier
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curve does not behave randomly in the sense of [6]. For p ≥ 3 this is clear. For p = 2,

elementary calculations show that the constants are not equal. In fact,

∞∏
i=1

(1 + q−i)−1 = 1− q−1 − q−3 + q−4 +O(q−5).

One must remember, however, that since we are counting covers instead of curves, as

observed in Section 2.3, that this does not disprove the heuristic for isomorphism classes

of Artin-Schreier curves in characteristic 2.

4. Theorem 2.3.2 implies that the ordinary locus intersects exactly one irreducible component

of A S g, namely the one corresponding to the partition {2, 2, . . . 2} of d+2 = 2g
p−1 +2. On

the other hand, from work in [23], we know that the Artin-Schreier locus is equidimensional,

each component having dimension d− 1. In particular, this implies that for p ≥ 3, the

proportion of components intersecting the ordinary locus goes to 0 as g →∞. Indeed, for

p ≥ 3, let A = {2, 3, . . . p} and let pA(n) denote the number of partitions of an integer

n into integers from the set A. Then the number of components of dimension d − 1 is

pA(d+ 2). As n→∞, pA(n) ∼ Knp−2 for some constant K. This might be a somewhat

satisfying geometric explanation, especially for those taken aback by the fact that counting

squarefree rational functions in this order gives a proportion of 0.

2.5.2 Superelliptic curves in characteristic 2

For this section, we use the notation of Section 2.4. We are interested in counting covers in the

family F of covers yn = f(x) over a field Fq of characteristic 2, where

• n is prime,

• f(x) ∈ Fq[x] is n-th power free.

For convenience, we count by qm instead of qg where

m := 2g
n− 1 + 2
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is the number of points in P1(k̄) over which the curve given by yn = f(x) is ramified. Since

n is fixed in the entire discussion, this will not change the order of counting significantly.

Define N∗(F , X) as the set of curves in F with qm < X and N∗(F , g,X) similarly. From the

definition of m, it follows that

N(F , X) = N∗(F , q2X2/(n−1)) and N(F , g,X) = N∗(F , g, q2X2/(n−1)). (2.14)

Define

Fe1,e2···er = {F1F
2
2 · · ·F rr | Fi ∈ Fq[x] monic, squarefree and mutually coprime, deg(Fi) = ei}.

When we write m =
∑n−1
i=1 ei, we will be interested in the case when there are ei points ramifying

to degree i. This is the same as the notion defined in Remark 2.4.6. To express this concretely

in terms of polynomials, it is best to use an example. For instance, for a curve given by

y3 = F1(x)(F2(x))2, where F1(x)(F2(x))2 ∈ F2,4, there are 2 points that occur with degree 1

and 4 that occur with degree 2. If on the other hand, the curve is given by y3 = F1(x)(F2(x))2,

where F1(x)(F2(x))2 ∈ F3,2, there are 3 points that occur with degree 1 and 3 that occur with

degree 2 (since n∞ = 2, the curve is ramified over ∞ ∈ P1 to degree 2).

Proposition 2.5.8. Consider the set Sm of superelliptic curves with the number of ramified

points m =
∑n−1
i=1 ei, such that there are ei points that ramify to degree i. Then the size of Sm

is:

|Fe1,e2···en−1 | +
n−1∑
i=1
|Fe1,···ei−1,···en−1 |

Proof. Let C ∈ F , such that C → P1 is ramified over m points in P1(Fq). If the map is

not ramified over ∞, then C ∈ Fe1,e2...en−1 . If it is ramified over ∞ and n∞ = i, then

C ∈ Fe1,...ei−1,...en−1 .

In the above proposition, imposing the condition m =
∑n−1
i=1 ei, with ei points occuring with
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degree i, implies that
∑n−1
i=1 iei ≡ 0 mod n. Therefore we are interested in the following

quantity: ∑
qm<X

(
|Fe1,e2···en−1 | +

n−1∑
i=1
|Fe1,···ei−1,···en−1 |

)
(2.15)

where the sum is over tuples (e1, e2 . . . en−1) such that
∑n−1
i=1 iei ≡ 0 mod n. Further, observe

that for a fixed 1 ≤ i ≤ n− 1,

∑
(ej),qe1+e2...en−1<X∑

jej≡0 mod n

|Fe1,···ei−1,···en−1 | =
∑

(dj),qd1+d2...dn−1<X/q∑
jdj≡i mod n

|Fd1,···di,···dn−1 | .

Therefore Equation (2.15) can be rewritten as

 ∑
qe1+e2...en−1<X/q

|Fe1,e2...en−1 |

+
∑

X/q<q
e1+...en−1<X∑
iei≡0 mod n

|Fe1,e2...en−1 |

where the first sum is over all tuples (e1, e2 . . . en−1) with q
∑

ei < X/q. Thus the number of

superelliptic curves with qm < X is bounded below by the quantity

 ∑
qe1+e2...en−1<X/q

|Fe1,e2...en−1 |

 .

For our proof, we only need a lower bound for the total number of superelliptic curves. Therefore,

it suffices to estimate this quantity.

Notation 2.5.9. From now on, a sum of the form

∑
qe1+e2...er<X

will denote a sum over all tuples of non-negative integers (e1, e2 . . . er), with q
∑

ei < X.
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For any non-negative integer m, let a(m) =
∑

e1+e2...+en−1=m
|Fe1,e2...en−1 |. Define:

Z(s) =
∑
m≥0

a(m)q−ms

One way to think about an element of Fe1,e2...en−1 is to say that we are considering a polynomial

f(x) =
n−1∏
i=1

(Fi(x))i

such that H :=
∏n−1
i=1 Fi(x) is squarefree. We will use this characterization to calculate Z(s).

Consider a squarefree polynomial H. Let H =
∏
hj be its factorization into irreducible

polynomials. We want to count the number of ways in which H can be written as a product

of squarefree polynomials
∏n−1
i=1 Fi. For each factor hj , there are n − 1 choices of squarefree

polynomial that it could divide. Therefore, the number of factorizations H =
∏n−1
i=1 Fi is

(n− 1)ω(H)

where ω(H) = the number of distinct irreducible factors of H. Therefore,

Z(s) =
∑

H sq. free
(n− 1)ω(H) |H |−s=

∏
Q

(1 + (n− 1) |Q |−s).

Note 2.5.10. Let Φk(s) =
∏
Q(1 + k |Q |−s). Then Φk(s)ζ(s)−k is a function that converges

for Re(s) > 1/2. We will denote Φk(s)ζ(s)−k by φk(s).

Proposition 2.5.11. As X →∞,

N∗(F , X) ≥ φn−1(1)
q log(q)(n− 2)!X(logq(X))n−2 +O(X(log(X))n−3).
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Proof. Note that

Z(s) = Φn−1(s)

= ζ(s)n−1φn−1(s).

This function has a pole of order n− 1 at s = 1. Thus, the Tauberian theorem implies that:

∑
m<X/q

a(m) = φn−1(1)
q log(q)(n− 2)!X(logq(X))n−2 +O(X(log(X))n−3).

This provides a lower bound for N∗(F , X).

Corollary 2.5.12. The number of superelliptic covers with invariant m such that qm < X is

bounded below by

κn(q)X2/(n−1) logq(X2/(n−1))n−2 +O(X2/(n−1) log(X2/(n−1))n−3)

where

κn(q) = qφn−1(1)
log(q))(n− 2)! .

Proof. This follows from the fact that N(F , X) = N∗(F , q2X2/(n−1)).

Upper bounds for N∗(F , g,X)

In this subsection, we find an upper bound for the quantity N∗(F , g,X), as defined in Equation

(2.14). We will maintain the notation of Section 2.4.

Suppose we consider covers with m =
∑n−1
i=1 ei ramification points, ei points occurring with

degree i. Using the criterion for ordinarity in Proposition 2.4.4, we can derive the following

conditions on Fe1,e2...en−1 :
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1. If n∞ = 0, deg(fi) = deg(fn−i). Note that in this case, the cover belongs to Fe1,e2...en−1

with deg(fi) = ei. Therefore the condition for ordinarity implies that there are

|Fe1,...en−1
2
,en−1

2
...e1 |

curves of such kind over Fq.

2. If n∞ = i, then C ∈ Fe1,...ei−1...en−1 with deg(fj) = ej for j 6= i and deg(fi) = ei − 1.

Further, the condition for ordinarity gives: for j 6= i, n − i, deg(fj) = deg(fn−j) and

therefore ej = en−j . Also, deg(fi) + 1 = deg(fn−i) implies ei = en−i. Therefore, the

number of such curves is

|Fe1,e2...,ei−1,...en−1
2
,en−1

2
...,ei...e2,e1 |

if i ≤ n−1
2 , and

|Fe1,e2...,ei,...en−1
2
,en−1

2
...,ei−1...e2,e1 |

if i > n−1
2 .

We are interested in the size

N∗(F , g,X) =
∗∑

qm<X

(
|Fe1,e2···en−1 | +

n−1∑
i=1
|Fe1,···ei−1,···en−1 |

)
(2.16)

where the sum is now over tuples (e1, e2 . . . en−1) that satisfy the ordinarity criterion ei = en−i.

Note that for such a tuple, the condition
∑n−1
i=1 iei ≡ 0 mod n is satisfied automatically. We

now proceed to find an upper bound on this quantity, using a result of Bucur et. al. in [5] that

we will recall below. Let

Ln−2 =
n−2∏
j=1

∏
Q

(
1− j

(|Q | +1)(|Q | +j)

)
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where the product is over monic irreducible polynomials Q ∈ Fq[x].

Theorem 2.5.13 ( [5], Prop 4.3). Fix a tuple of positive integers (e1, e2). Then, for any ε > 0

and as q gets large,

|Fe1,e2 |=
L1q

e1+e2

ζ(2)2

(
1 +O(q−e2(1−ε) + q−e1/2)

)

Remark 2.5.14. The number of monic polynomials of degree d in Fq[x] is qd and the proportion

of these that are squarefree is (1 − 1/q). One might expect, similarly, that the proportion

of pairs of monic polynomials of degrees (e1, e2) that are squarefree and coprime, also form

a positive proportion of the total number of pairs of monic polynomials, qe1+e2 . The above

theorem shows that this is indeed the case. The next proposition shows that the same is true

for (e1, e2 . . . en−1) for any odd prime n, although with a weaker error term.

For the following proposition, we refer the reader to [5], Corollary 7.2.

Proposition 2.5.15. Fix a tuple of positive integers (e1, e2 . . . en−1). Fix an ε > 0. Then, as

q gets large,

| F(e1,e2...en−1) |=
Ln−2q

e1+e2...en−1

ζ(2)n−1 (1+O(qε(e2+...en−1+q)+(1−ε)q(q−e2 +· · · q−en−1)+q−(e1−3q)/2))

Proof. Consider the expression given in [5], Corollary 7.2. Summing the expression over all

possible partitions m = k1 + k2 . . .+ kn−1 gives:

Ln−2q
e1+e2...en−1

ζ(2)n−1

(
n− 1

q + n− 1

)m ( q

(q + n− 1)(q − 1)

)q−m
× (1 +O(qε(e2+...en−1+q)+(1−ε)m(q−e2 + q−e3 · · · q−en−1) + q−(e1−m)/2+q)).

Summing over all possibilities of m now gives the result.
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Parsing these propositions tells us that for large enough q (depending only on n),

| F(e1,e2...en−1) |≤ K1q
e1+e2...en−1 +K2q

e1/2+e2...en−1 +
n−1∑
i=2

K3,iq
e1+...εei+...en−1

whereK1,K2 and theK3,i’s depend on ε, q and n, but are independent of the ej ’s. Since for ε < 1

the first term in the above expression is the largest, we let K = max(K1,K2,K3,2 . . .K3,n−1)

and so for large enough q:

| F(e1,e2...en−1) |≤ Kqe1+e2...en−1 .

Thus Equation (2.16) implies that

N∗(F , g,X) ≤ K
(
q + n− 1

q

) ∑
q

2(e1+e2...e(n−1)/2)
<X

q2(e1+e2...e(n−1)/2)

 . (2.17)

The following lemma will be used to find an upper bound for the expression above.

Lemma 2.5.16. As X gets large,

∑
qe1+e2...er<X

qe1+e2...er = O(X log(X)r−1).

Here, the implied constants depend on q and r.

Proof. Consider the expression: ( 1
1− qT

)r

The coefficient of Tm in this expression is
∑

e1+e2...er=m
qe1+e2...+er . On the other hand, by the
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binomial theorem, the coefficient of Tm in (1− qT )−r is:

r +m− 1

r − 1

 qm. Further,
r +m− 1

r − 1

 ≤ (m+ r)r−1

(r − 1)! .

Therefore, we have that

∑
qe1+e2...er<X

qe1+e2...er =
∑
qm<X

∑
e1+e2...er=m

qe1+e2...er

=
∑
qm<X

r +m− 1

r − 1

 qm
≤ (2r)r−1

(r − 1)!
∑
m<r
qm<X

qm +
∑
m≥r
qm<X

(2m)r−1

(r − 1)! q
m

= DrX log(X)r−1 +O(X log(X)r−2),

where the last step follows by Euler Summation. This proves the lemma.

Proposition 2.5.17. For large enough q,

N∗(F , g,X) = O(X log(X)
n−3

2 ).

Hence, N(F , g,X) = O(X2/(n−1) log(X)
n−3

2 ), where the implied constants depend on q and n.

Proof. To obtain the first statement, we use Equation (2.17):

N∗(F , g,X) ≤ K
(
q + n− 1

q

) ∑
q

2(e1+e2...e(n−1)/2)
<X

q2(e1+e2...e(n−1)/2)



and Lemma 2.5.16, with q replaced by q2. The second part of the statement follows from the
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fact that N(F , g,X) = N∗(F , g, q2X2/(n−1)).

We remind the reader here that for the quantity that we are interested in, namely the probability

that a superelliptic curve is ordinary, q and n are fixed. Therefore, the fact that the implied

constants above depend on q and n will make no difference to the theorem below.

Theorem 2.5.18. The probability that a superelliptic curve yn = f(x) over F2r with n prime

and r large enough depending only on n, is ordinary, is zero. That is,

lim
X→∞

N(F , g,X)
N(F , X) = 0

Proof. By Proposition 2.5.17, the numerator N(F , g,X) is bounded above by the quantity

X2/(n−1) log(X)
n−3

2 .

By Corollary 2.5.12, the denominator grows faster than X2/(n−1) log(X)n−2. This proves the

theorem.

Remark 2.5.19. It is interesting to note that for a given g, the space of superelliptic curves

of degree n and genus g decomposes over Fq into irreducible components that correspond to

partitions of m =
∑n−1
i=1 ei such that

∑n−1
i=1 iei ≡ 0 mod n. The ordinary locus intersects a

small proportion of these components. For n = 3, for instance, it only intersects one component.

A similar thing was true for the Artin-Schreier locus A S g. For fixed p-rank s, one can obtain

a combinatorial description of the components contained in the stratum A S g,s. One can ask

if a similar result holds for superelliptic curves in odd characteristic.
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2.6 Numerical Data on Artin-Schreier curves

We conclude this chapter by listing some values of constants computed in the previous section.

Recall that

P (A S , g) :=
(

1− q−1 + q−2

1 + q−1

)
φ(1)ζ(2)

is the probability that an Artin-Schreier curve in characteristic 2 is ordinary (Corollary 2.5.6).

For brevity, we let ϕ(q) =
∏∞
i=1(1 + q−i)−1, the constant predicted in [6].

p q φ(1) P (A S , g) ϕ(q)

2 2 0.314148 0.314148 0.419422

2 4 0.593976 0.514777 0.737512

2 8 0.776577 0.702617 0.873264

2 16 0.882162 0.833730 0.937270

2 32 0.939367 0.911820 0.968720

Table 2: Proportion of ordinary Artin-Schreier curves in characteristic 2
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Chapter 3

Counting elliptic curves with a

rational N-isogeny

3.1 Introduction

We quickly recall some of the notation from Chapter 1. Throughout this chapter, E will

denote an elliptic curve over Q. We say that E has a rational N -isogeny if there is an isogeny

φ : E → E′ such that Ker(φ)(Q̄) ∼= Z/NZ and if Ker(φ) is stable under the action of the

absolute Galois group of Q. An elliptic curve E over Q has a unique minimal Weierstrass

equation y2 = x3 +Ax+B where A,B ∈ Z and gcd(A3, B2) is not divisible by any 12th power.

Define the naive height of E to be ht(E) = max{|A|3, |B|2}.

Notation 3.1.1. For two functions f, g : R → R, we say that f(X) � g(X) if there exist

positive constants K1 and K2 such that K1g(X) ≤ f(X) ≤ K2g(X). For a real number X and

positive integer N , define

N (N,X) = #{E/Q | ht(E) < X,E has a rational N -isogeny},

where we count elliptic curves up to isomorphism over Q.

Recall that we want to find a function hN (X) such that N (N,X) � hN (X). We will often call

this the asymptotic growth rate of the the function N (N,X). Our goal is to prove Theorem 1.2.5.

An elliptic curve over Q equipped with a rational N -isogeny gives rise to a Q-rational point on

the modular curve X0(N) (defined in Section 3.1.1). Thus, up to a constant equal to the degree
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of the forgetful map X0(N)→ X0(1), the counting function N (N,X) is the number of points

of bounded naive height on the modular curve X0(N). In [24], Mazur gave the list of prime

N for which there exists an elliptic curve over Q with a rational N isogeny. Various cases of

composite N were proved by several people, and a complete list of N for which there exists an

elliptic curve over Q with a rational N -isogeny can be found in work of Kenku ( [20]). For the

modular curves that we are interested in, the existence of such a non-cuspidal rational point is

not in question. For N ≤ 10 and N = 12, 13, 16, 18, 25, the coarse space of X0(N) is isomorphic

to P1 (see for e.g. the genus computation in [11]). In particular, there are infinitely many

j-invariants j such that there is an elliptic curve E with a rational N -isogeny and j(E) = j.

Further, the fact every point of X0(N) has automorphism group of size at least two implies that

there are infinitely many elliptic curves of a given j invariant that have a rational N -isogeny.

This makes counting them significantly more challenging.

3.1.1 Modular curves

Let N be a positive integer. Let Y0(N) denote the modular curve such that for a Z[ 1
N ] scheme

S,

Y0(N)(S) = {(E/S,C/S) | C ∼=S Z/NZ}

where E/S is an elliptic curve over S, C is a sub-group scheme of E defined over S, and the

pair is taken up to isomorphism. Let X0(N) denote the compactification of Y0(N) in the sense

of [10]. Every point of this moduli space possesses the extra automorphism [−1], since the

automorphism of E sending P 7→ −P also induces an automorphism of C. Let Bµn over a

scheme S be the stacky quotient [S/µn] parametrizing principal µn-bundles. Thus X0(N) is a

stack over Z with generic inertia stack Bµ2.

Let Y1(N) denote the curve whose points are given by:

Y1(N)(S) = {(E/S, P/S) | N · P = 0}

where E/S is an elliptic curve over S, P ∈ E(S) is a point of order N , and the pair is taken
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up to isomorphism. Let X1(N) denote the compactification of Y1(N). For N ≥ 5, X1(N) is a

scheme. There is a natural map ΦN : X1(N)→ X0(N) which sends (E,P ) to (E, 〈P 〉), where

〈P 〉 denotes the subgroup of E generated by P . We remark here that the cusps of modular

curves also have a moduli interpretation. They paramterize ‘generalized’ elliptic curves with

Γ0(N) or Γ1(N) structures. For a more detailed exposition on these, we refer the reader to [10]

or [40]. A short description is given in the appendix.

Definition 3.1.2. LetM denote any modular curve. For any point S →M, let p : E → S

denote the corresponding elliptic curve. The Hodge bundle λM is the line bundle onM such

that (λM)S = p∗ωE/S . For ease of notation, we will omit theM in λM whenever the underlying

modular curve is clear from context. Further, it follows from the definition of the Hodge bundle

that ifM is a modular curve parametrizing elliptic curves with a certain level structure, and

ψ :M→ X0(1) is the forgetful map, then λM = ψ∗λX0(1).

Modular forms of weight k and level N are sections of the k-th power of the Hodge bundle on

X0(N). The coefficients A and B in the Weierstass equation y2 = x3 + Ax+ B are, up to a

scalar, the Eisenstein series E4 and E6 on X0(1) respectively (see for e.g. [32]). Thus A3 and

B2 are sections of the 12th power of the Hodge bundle on any modular curve. Thus counting

elliptic curves of bounded naive height is the same as counting elliptic curves of bounded height

with respect to λ⊗12 on any modular curve that is a scheme. We will see later, that the same is

true for moduli stacks.

Definition 3.1.3. Let M denote the coarse space of a modular curveM. When M ∼= P1, its

function field is freely generated by a single element; this element is called a hauptmodul. These

hauptmoduln parametrize elliptic curves with a given level structure, and can be used to write

equations for modular curves.

3.1.2 Two approaches to counting points on a stack

We take two approaches to counting rational points on X0(N). The first is based on the work

of Harron and Snowden in their paper [17], and uses the fact X0(N) has an open substack Y

such that every point on Y has an automorphism group of size exactly 2. The second uses
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the theory of heights on stacks developed in [13] to show that the naive height comes from

geometry. We outline the approaches below.

The work of Harron and Snowden and counting points on stacky modular curves

In [17], Harron and Snowden ask, for a given group G from Mazur’s list in [24, Theorem 2] ,

how many elliptic curves have E(Q)tors ∼= G? They compute the asymptotic growth rate of this

quantity for each G. Part of their framework involves counting elliptic curves in families. Let

M be a modular curve parametrizing elliptic curves with prescribed level structure. Suppose

further that there exists a universal familyM over M . That is there is a mapM→M such

that any family of elliptic curves E/S corresponding to a point S →M is pulled back fromM.

In particular, if M ∼= P1, then one can find an equation:

y2 = x3 + f(t)x+ g(t)

such that every elliptic curve over Q with prescribed level structure is isomorphic to one of this

form for some t ∈ Q. To count such elliptic curves with bounded height therefore, one must

count the set of pairs (A,B) ∈ Z2 such that

• 4A3 + 27B2 6= 0,

• max{|A|3, |B|2} < X,

• gcd{A3, B2} is not divisible by any 12th powers, and

• ∃u, t ∈ Q such that u4f(t) = A and u6g(t) = B.

In [17], the authors give the asymptotic growth rate for such pairs (A,B) as an explicit power

of X in the special case that f and g are coprime, and

max
{deg(f)

4 ,
deg(g)

6

}
=: n

m

in lowest terms with either m or n = 1. As an example, the curves X1(N) for N =

3, 4, 5, 6, 7, 8, 9, 10, 12 all admit such a universal family.
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Now of course, X0(N) does not admit such a universal family (Proposition 3.2.4). However, for

certain N , one can construct a double cover of X0(N) that does. This double cover satisfies the

property that any elliptic curve with a rational N -isogeny is a quadratic twist of one arising as

a rational point on the cover. In particular, this leads to a similar counting problem as above,

just with the last condition replaced by:

∃u, t ∈ Q such that u2f(t) = A and u3g(t) = B.

This puts us back in the framework of [17, Theorem 4.1], with some extra conditions on the degree,

as made precise in Section 3.4. We use this to compute hN (X) for N ∈ {3, 4, 6, 8, 9, 12, 16, 18}.

Embedding curves into a weighted projective space

Let V be a projective variety defined over Q. Let L be an ample line bundle on it. Then one can

embed V
f
↪−→ PM via L⊗n for some n, i.e. OPM (1) ∼= L⊗n. Let x ∈ V (Q). Then f(x) ∈ PM (Q)

can be extended to an integral point f(x) ∈ PM (Z). Writing f(x) = [y0 : y1 . . . : yN ] with the

yi’s mutually coprime, we define

HtL(x) =
∏
ν

max{|y0|ν , |y1|ν . . . |yN |ν}1/n,

where the product is over all the places of Q. For stacks, there is neither an embedding into

projective space, nor can every rational point be extended to an integral point. These problems

are solved in forthcoming work, [13], where the authors give a theory of heights on stacks. As

a particular case of their results, if a stack X is equipped with a line bundle L such that a

power of L can be used to embed X into a weighted projective space instead, then the height of

a rational point can be computed in a manner very similar to the scheme case (Proposition

3.5.2). Now, the map

(y2 = x3 +Ax+B in minimal form ) 7→ [A : B]
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is a map from the modular curve X (1) to the weighted projective space P(4, 6). Thus with the

definition of height from [13], the naive height on X0(N) is a constant times the height with

respect to the 12th power of the Hodge bundle. Using the fact that naive height comes from

geometry allows us to use different sections that globally generate the twelfth power of the

Hodge bundle. For a general stack, it is not always easy to find sections that globally generate

a line bundle, but in our case, we are in luck, since the ring of modular forms of X0(N) is

classically well understood (see for e.g. [18]).

Remark 3.1.4. We believe that forthcoming work of Bruin and Najman also proves the asymptotic

growth rate for X0(4) by using the fact that it is isomorphic over Z[1/6] to the weighted projective

stack P(2, 2).

3.2 Preliminaries

3.2.1 Rationally defined subgroups

In this subsection, we describe a degree two cover of X0(N) that we will use to set up our

counting problem. To this end, let N ≥ 3 and let G = (Z/NZ)×. Then ΦN : X1(N)→ X0(N)

is a branched G-cover of X0(N), with branch locus supported possibly at cusps and points with

j = 0, 1728. Away from the branch locus, G acts freely and transitively on the fibers of ΦN , by

sending (E,P ) 7→ (E, aP ). Let H be an index two subgroup of G. We denote by Y1/2(N) the

quotient Y1(N)/H. One can make sense of the quotient by the action of H at the cusps by

using the modular interpretation of cusps. This is explained in Appendix A.1. We denote by

X1/2(N) the quotient X1(N)/H.

Remark 3.2.1. We begin with some comments about the curve X1/2(N).

1. The curve X1/2(N) is not a novel construction. It can be understood classically as the

quotient of the upper half plane by an index 2 subgroup of Γ0(N). Further, we do not

claim that X1(N)/H is a scheme. In fact it is a stack in many cases (see Section 3.4).

2. The notation X1/2(N) might be misleading, since there is not always a unique index two

subgroup of (Z/NZ)×. However, in our case we will only consider the H for which G/H
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is represented by {+H,−H}. As an example, (Z/8Z)× ∼= Z/2Z× Z/2Z. We will write

this set as {1, 3, 5, 7}. This has three index two subgroups: H1 = {1, 3}, H2 = {1, 5} and

H3 = {1, 7}. The two cosets of H1 are therefore H1 = {1, 3} and −H1 = {5, 7}. The case

H2 is similar. However, the two cosets of H3 are H3 = {1, 7} and 3H3 = {3, 5}. We will

make it a point not to pick H3. The choice between H1 or H2 will not affect our final

result.

3. In the context of the remark above, we note that there are some values of N (namely

N = 5, 10, 13, 25) for which there is no choice of index 2 subgroup such that G/H = {±H}.

For these N , while the construction of X1/2(N) still makes sense, it does not have the

nice properties that we want (see Lemma 3.2.2 and Proposition 3.4.1). Another way to

rephrase the condition that G/H = {±H} is in terms of the subgroup Γ0(N) ⊂ SL2(Z).

Consider the short exact sequence:

1→ {±1} → Γ0(N)→ PΓ0(N)→ 1. (3.1)

If −1 is a square modulo N , then Γ0(N) contains a primitive fourth root of unity. The

converse is also true. Consider the homomorphism g : SL2(Z)→ µ12 given by,

a b

c d

 7→ e
2iπ
12 ((1−c2)(bd+3(c−1)d+c+3)+c(a+d+3))

and its restriction to Γ0(N). If Γ0(N) doesn’t contain a fourth root of unity, then the

image of the restricted map is contained in µ6 ∼= µ2 × µ3. One can check that the map

g, composed with the map µ6 → µ2 provides a splitting of the sequence 3.1. Thus for

N ∈ {5, 10, 13, 25}, this sequence is non-split, while for N ∈ {3, 4, 6, 7, 8, 9, 12, 16, 18}, it

does split. This splitting allows us to identify PΓ0(N) with a subgroup of Γ0(N) and

hence construct a degree two cover of X0(N) without generic inertia.

We now explain the significance of the curves X1/2(N). Most of what follows is well known

(e.g., see [31], [16]) but we recall them here for completeness. Let E be an elliptic curve
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over Q with a rational N -isogeny. For notational convenience, we fix a Weierstrass form for

E : y2 = x3 + Ax + B, with A,B ∈ Z. Fix an isomorphism of the kernel of the rational

N -isogeny with Z/NZ. The Galois action of GQ on the kernel defines a homomorphism:

χ : GQ → (Z/NZ)×.

For each N ∈ {3, 4, 6, 7, 8, 9, 12, 16, 18}, we can write f : (Z/NZ)× ∼= (Z/2Z)× (Z/mZ) for some

m ∈ Z. This allows us to factor χ into two characters χ1 : GQ → Z/2Z and χ2 : GQ → Z/mZ.

That is, we may write χ = χ1χ2 using the isomorphism f . Now, since χ1 is a quadratic

character, it factors through a quadratic extension K = Q(
√
d), with d a squarefree integer.

Let Eχ1 : dy2 = x3 +Ax+B denote the quadratic twist of E over K.

Lemma 3.2.2. Maintaining the above notation, Eχ1 has a rational N-torsion subgroup on

which GQ acts via χ2. That is, the Galois action on this N -torsion subgroup factors as:

G (Z/NZ)×

Z/mZ

χ2

Proof. Let C denote the kernel of the rational N isogeny of E. Let φ : E → Eχ1 denote the

isomorphism of elliptic curves defined over Q(
√
d). For P ∈ C and σ ∈ GQ, P σ = χ(σ)P by

assumption. Further, by the definition of a twist,

φ(P )σ = χ1(σ)φ(P σ)

where σ is the image of σ in Z/2Z. Since χ1 is quadratic, χ1χ = χ2. It follows that GQ acts on

φ(C) via χ2.

We have thus proved the following for N ∈ {3, 4, 6, 7, 8, 9, 12, 16, 18}.

Proposition 3.2.3. Fix an appropriate index 2 subgroup H ⊂ (Z/NZ)× and consider the

corresponding curve X1/2(N). Let (E,C) ∈ X0(N)(Q). Then there exists a unique d ∈ Z
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squarefree, such that the corresponding twist (Eχ1 , φ(C)) satisfies:

1. (φ(C))× has an index two subgroup HC defined over Q, and therefore

2. (E,HC), (E,−HC) ∈ X1/2(N)(Q).

Proof. This follows from combining the interpretation of X1/2(N) as a fiberwise quotient of

X1(N) with Lemma 3.2.2.

A nice example of Proposition 3.2.3 is in the cases N = 3, 4, 6, where (Z/NZ)× ∼= Z/2Z. In

these cases X1/2(N) = X1(N). For these values of N , Proposition 3.2.3 says that if E has a

rational N -isogeny then there exists a quadratic twist of E that has a rational N torsion point.

3.2.2 Automorphisms and universal families

In this section, we briefly recall the relation between automorphisms and the existence of

universal families. For more details, we refer the reader to [19], Chapter 4 and Appendix A.4.

Let F be a functor on the category EllR of elliptic curves over a ring R. Let F̃ denote the

corresponding functor on the category of R-schemes sending an R-scheme S to isomorphism

classes of pairs (E/S, α), where E is an elliptic curve over S and α ∈ F (E/S) is an ‘F -

level structure’. The functor F (resp. F̃ ) is representable if there exists a universal elliptic

curve E over a schemeM (resp. a schemeM) such that F (E/S) = Hom(E/S, E/M) (resp.

F̃ (S) = Hom(S,M)). Note that the representability of F guarantees the existence ofM, and

therefore implies the representability of F̃ . The functor F is said to rigid if for any E/S ∈ EllR,

and any α ∈ F (E/S), the pair (E/S, α) has no non-trivial automorphisms. In general, if F is

representable, then F is rigid. This is because a non-trivial automorphism of (E/S, α) would

induce a non-trivial automorphism of an element of Hom(E/S, E/M), which is not allowed for

Hom sets in the category of schemes. The following proposition tells us when the converse is

true.

Proposition 3.2.4 ( [19], 4.7.0). Suppose that for every elliptic curve E/S, the functor FE
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on the category of schemes over S defined by the map

T 7→ F (ET /T )

is representable by a scheme FE/S. Suppose further that F is affine over EllR, that is, the

morphism FE/S → S is affine. Then F is representable if and only F is rigid.

In this paper, we will be interested in the functors of points corresponding to X0(N), X1(N)

and the intermediate quotient X1/2(N). To see that in these cases, the two hypotheses of

Proposition 3.2.4 are satisfied, we refer the reader to [19]. Thus we may move freely between

the existence of universal families and rigidity.

3.2.3 Counting lattice points in a region

In this section, we state a theorem of Davenport on a Lipschitz principle ( [9]). Let R be a

closed and bounded region in Rn. Suppose R satifies the following two conditions:

1. Any line parallel to one of the coordinate axes intersects R in a set that is a union of at

most h intervals.

2. The same is true (with n replaced by m) for any of the m-dimensional regions obtained

by projecting R down to an m-dimensional coordinate axis (1 ≤ m ≤ n− 1).

Let V (R) be the volume of the region R and N(R) the number of lattice points in it. Then,

the following theorem holds.

Theorem 3.2.5 (Davenport, [9]). For R satisfying 1 and 2,

|N(R)− V (R)| ≤
n−1∑
m=0

hn−mVm,

where Vm is the sum of the (m-dimensional) volumes of the m-dimensional projections of R

and V0 = 1.
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3.3 Main counting results

From Section 3.2.1, we see that in order to count elliptic curves in X0(N)(Q) with respect to

naive height, we must count elliptic curves for which there exists a quadratic twist that gives a

rational point on X1/2(N)(Q). In this section we state and prove the counting results that will

enable us to do so.

Proposition 3.3.1 ( [17], Theorem 4.1). Let f, g ∈ Q[t] be coprime polynomials of degrees r

and s respectively. Let max{r, s} > 0 and let m and n be coprime integers such that

max
{
r

2 ,
s

3

}
= n

m
.

Assume that either n = 1 or m = 1. Let S(X) be the set of pairs (A,B) ∈ Z2 such that

• 4A3 + 27B2 6= 0,

• gcd(A3, B2) not divisible by a 12th power,

• |A| < X1/3 and |B| < X1/2,

• ∃u, t ∈ Q such that A = u2f(t) and B = u3g(t).

Define

k(x) =


X(m+1)/6n m+ 1 > n

X1/6 log(X) m+ 1 = n

X1/6 m+ 1 < n

Then,

S(X) � k(x).

As we will see in section 4, this theorem is not enough for all the cases that we are interested

in. For N = 3, the condition: ‘either n = 1 or m = 1’ is not satisfied. We will thus prove a

generalization of this proposition.
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Remark 3.3.2. We note here that we do not prove the most general version of Theorem 3.3.3

possible, since we do not need it. It might be an interesting exercise in analytic number theory

to prove such a version, independent of the interpretation of counting points on a moduli space.

Theorem 3.3.3. Let f, g ∈ Q[t] be coprime polynomials of degrees r and s respectively. Let

max{r, s} > 0 and let m and n be coprime integers such that:

max
{
r

2 ,
s

3

}
= n

m
.

Suppose that n,m 6= 1. Define

h =
⌊
n(m− 1)

m

⌋

and w = max{3h
s ,

2h
r }. Suppose further that,

• m+ 1 > n, and

• m+1
n − (w + 1) = −1

• min{3rm− 6h, 2sm− 6h} ≤ 6.

Let S(X) be the set of pairs (A,B) ∈ Z2 such that

• 4A3 + 27B2 6= 0,

• gcd(A3, B2) not divisible by a 12th power,

• |A| < X1/3 and |B| < X1/2,

• ∃u, t ∈ Q such that A = u2f(t) and B = u3g(t).

Then,

S(X) � X(m+1)/6n log(X).

Remark 3.3.4. Note that the hypotheses on m,n, r and s make it so that there aren’t many

choices of these variables that satisfy all the hypotheses together. The degree conditions for
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X0(3) are perhaps the only moduli problem of interest that that satisfy these. However, stating

the theorem in this manner instead of using numbers makes the method less opaque and more

amenable to generalization.

Proof of Theorem 3.3.3

The proof of this theorem closely follows that in [17]. We provide the key parts of the proof

here for the sake of completeness. We prove the upper bound and the lower bound in two

separate sections. For the reader’s convenience, we outline each proof first.

Notation 3.3.5. For any two real valued functions h(X) and k(X), we say that h(X)<∼ k(X)

if there is a positive constant C such that h(X) ≤ Ck(X).

Upper bound. Our goal is to reduce the problem of counting pairs in S(X) to the problem

of counting tuples of integers in a bounded region, perhaps with some divisibility conditions.

Let S1(X) be the set of u, t such that (u2f(t), u3g(t)) ∈ S(X). Counting S1(X) gives an upper

bound for S(X). We will express u and t as qc−1dbn and ab−m respectively for some integers

a, b, c and d and some rational number q. Lemmas 3.3.6, 3.3.7 and 3.3.8 enable us to do this.

The next key observation is that there are only finitely many possibilities for q. Thus for the

kind of upper bound that we are looking for, we can count 4-tuples of integers (a, b, c, d) in a

particular region. Lemma 3.3.9 gives the bounds for such a region. Lemma 3.3.10 outlines what

divisibility conditions these integers must satisfy, and also calculates the number of such tuples.

�

Lemma 3.3.6 ( [17], Lemma 2.2). For each place p of Q, there is a constant cp > 0 such that

for each t ∈ Q:

max(|f(t)|p, |g(t)|p) ≥ cp.

Furthermore, we can take cp = 1 for all sufficiently large p.

Let S1(X) be the set of u, t such that (u2f(t), u3g(t)) ∈ S(X).

Lemma 3.3.7. For each prime p there is a constant Cp such that for all (u, t) ∈ S1(X), we
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have:

valp(u) = ε′ +


d− n

m valp(t)e valp(t) < 0

0 valp(t) ≥ 0
(3.2)

for some |ε′| ≤ Cp. Moreover, we can take Cp = 1 for all p sufficiently large.

Proof. The proof of this lemma closely follows that of Lemma 2.3 in [17]. Fix a prime p. Since

A and B must be integral, we have that:

valp(A) = 2 valp(u) + valp(f(t)) ≥ 0 (3.3)

valp(B) = 3 valp(u) + valp(g(t)) ≥ 0 (3.4)

Thus,

valp(u) ≥ max
(
d−1

2 valp(f(t))e, d−1
3 valp(g(t))e

)
=: K. (3.5)

Note that if valp(u) ≥ 2 +K, then by replacing u by p2u we see that p12 | gcd(|A|3, B2). Thus

we must have K ≤ valp(u) ≤ K + 1. The rest of the proof goes exactly like in [17]. Suppose

valp(t) < 0. Pick K1 such that | valp(f(t)) − r valp(t)| < K1 and | valp(g(t)) − s valp(t)| < K1

for all such t. Note that K1 can depend on p and is 0 for large enough p. Then,

K = ε+ max
(
d−r2 valp(t)e, d−

s

3 valp(t)e
)

= ε+
⌈−n
m

valp(t)
⌉

where |ε| < K2 for some K2. Thus we have:

ε+
⌈−n
m

valp(t)
⌉
≤ valp(u) ≤ ε+

⌈−n
m

valp(t)
⌉

+ 1

for valp(t) < 0.
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Now consider the case when valp(t) ≥ 0. By Lemma 3.3.6, there exists K3 such that

min(valp(f(t)), valp(g(t)) ≤ K3. Further, K3 = 0 for p � 0. Thus − valp(u) ≤ K4 for some

constant K4. Since valp(t) ≥ 0, there is a K5 such that valp(f(t)) ≥ K5 and valp(g(t)) ≥ K5

for all such t. This gives a lower bound on − valp(u), appealing again to (3.5). Thus there is a

constant K7 such that | valp(u)| ≤ K7. We remark here to avoid confusion that all the Ki’s are

constant with respect to t and u, but do depend on p, f and g.

This gives us first part of the lemma. For the second part of the lemma, we need only take, as

in [17], p� 0 such that: (1) the coefficients of f and g are p-integral, (2) the leading coefficients

of f and g are p-units and (3) the constant cp in lemma 3.3.6 can be taken to be 1. Since

K ≤ valp(u) ≤ K + 1, we can only get Cp = 1 for p� 0.

The next step is to prove an analogue of Lemma 2.4 in [17]. This will enable us to reduce our

problem to that of counting lattice points in a region. We start with some notation. Recall that

w = max{3h/s, 2h/r}. For a given pair of positive integers (a, b), we say a prime p satisfies (∗)

if:

p|b =⇒ pw|a

Lemma 3.3.8. Suppose (u, t) ∈ S1(X). There is a finite set Q ⊂ Q× (independent of u and t)

such that: we can write t = ab−m and u = qc−1dbn, where:

1. a, b ∈ Z, with b > 0,

2. gcd(a, bm) is m-th power free,

3. d is a squarefree integer,

4. q ∈ Q, and

5. c ∈ Z such that valp(c) ≤ h for all p and valp(c) > 0 if and only if p satisfies (∗).

Proof. Given t ∈ Q, one can always write t = ab−m satisfying (1) and (2). Pick any such
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representation. We now analyze ub−n and show that valp(ub−n) must satisfy the required

constraints. For convenience we will fix N0 to be an integer such that Cp = 1 for p ≥ N0. Such

an N0 exists by Lemma 3.3.7.

We divide the set of all primes into two groups: p|b and p - b. If p - b, then valp(t) ≥ 0 and by

Lemma 3.3.7, we have | valp(ub−n)| ≤ Cp. If p|b, then we write − valp(t) = m valp(b)− k, where

0 ≤ k < m. Therefore, by Lemma 3.3.7 again, we have:

valp(u) = ε′ + n valp(b) + d−n
m
ke.

Therefore for any p, we have −Cp − h ≤ valp(ub−n) ≤ Cp.

If p ≤ N0, we have no control over Cp, but we know that there are finitely many possibilities

for the N0-smooth part of ub−n, since | valp(ub−n)| ≤ Cp + h (here, N0-smooth means the part

of the numerator or denominator that is divisible only by primes less than or equal to N0). For

p ≥ N0, we have:

| valp (ub−n)| ≤ 1 if p - b

and

−1− h ≤ valp (ub−n) ≤ 1 if p|b.

In the case that p - b and p ≥ N0, we see that valp(t) ≥ 0. Further, in the proof of the previous

lemma, N0 is picked so that for p ≥ N0, the valp(f(t)) ≥ 0 and valp(g(t)) ≥ 0, with at least one

of them being an equality. In particular, this implies that valp(ub−n) ≥ 0 for such p. Similarly,

for p|b (valp(t) < 0) and p ≥ N0, we can take ε′ = 0. Thus, valp(ub−n) = d−nm ke or d−nm ke+ 1.

Therefore valp(ub−n) ≥ −h.

We factor the p ≥ N0 part of ub−n as c−1d, where valp(d) 6= 0 iff either p - b or valp(ub−n) = 1

if p|b. Further, in these cases, we set valp(d) = valp(ub−n). The previous paragraph shows that
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d is a squarefree integer and that valp(c) ≤ h.

We now explain the condition (∗). This comes from the fact that A and B are required to be

integers. For any p:

valp(u2f(t)) = 2 valp(qc−1bn) + valp(f(t))

= 2 valp(q)− 2 valp(c) + 2m(n/m− r/2) valp(b) + r valp(a) +K1

≥ 2 valp(q) +K1 + r valp(a)− 2 valp(c)

where K1 is a positive constant that can be taken to be 0 for p� 0. Similarly, for B, we get that:

valp(u3g(t)) = 3 valp(q) +K1 + s valp(a)− 3 valp(c). Since q is N0-smooth, for p large enough,

the condition of integrality of A and B translates directly to condition (∗). Further, since we

are only interested in an upper bound for the asymptotic growth, not imposing conditions on

say, 2 valp(q) +K1 for small p causes us no harm.

Now consider (u, t) ∈ S1(X) and write them as in Lemma 3.3.8. The fact that max{|A|3, |B|2} <

X implies bounds for a, b, c and d, which we now find.

Lemma 3.3.9. Let (u, t) ∈ S1(X). Represent u = qc−1dbn and t = ab−m as in Lemma 3.3.8.

Then,

|a|<∼Xm/6ncm/nd−m/n and |b|<∼X1/6nc1/nd−1/n.

Proof. If A = u2f(t) and B = u3g(t), the bound max(|A|3, |B|2) < X translates to:

|u|max(|f(t)|1/2, |g(t)|1/3) < X1/6.

Let K be the positive constant such that max(|f(t)|1/2, |g(t)|1/3) > K for all t. Thus: |u| ≤

K−1X1/6. Let M2 = K−1(maxq∈Q |q|−1). Thus, we have that

|c−1dbn| < M2X
1/6,
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i.e. |b| < M2X
1/6nc1/nd−1/n.

We now turn to bounding a(= tbm). Suppose t < 1. Then, by the above bound for b, we

have |a| < M2X
m/6ncm/nd−m/n. If t ≥ 1, then we can find a constant M > 0 such that

M2|t|r ≤ |f(t)| and M3|t|s ≤ |g(t)|. Thus we have that,

X1/6 > |u|max(|f(t)|1/2, |g(t)|1/3) > M |u|max(|t|r/2, |t|s/3) = M |utn/m|.

Now, |utn/m| = |qc−1dan/m| and so, |c−1dan/m| < M−1(maxq∈Q |q|−1)X1/6. Thus, we see that

|a|<∼Xm/6ncm/nd−m/n.

Lemma 3.3.10. Under the hypotheses of Theorem 3.3.3, |S1(X)|<∼Xm+1/6n log(X).

Proof. Fix a c > 1. Let S1(X; c) denote the set of all (a, b, d) ∈ Z3 such that

1. |adm/n| < Xm/6ncm/n,

2. |bd1/n| < X1/6nc1/n,

3. p|c ⇐⇒ p|b, pw|a, and valp(c) ≤ h for all p.

Let T (X; d, c) = {(a, b) | (a, b, d) ∈ S1(X; c)}. By standard analytic number theory and

Theorem 3.2.5, it follows that

|T (X; d, c)| = 1
cw+1X

(m+1)/6nd−(m+1)/nc(m+1)/n +O

( 1
cw+1X

m/6nd−m/ncm/n
)
.

Thus we have,

|S1(X; c)| =
∑

d<X1/6

|T (X; d, c)|
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=
∑

d<X1/6

c(m+1)/n−(w+1)X(m+1)/6nd−(m+1)/n +O

 ∑
d<X1/6

1
cw+1X

m/6nd−m/ncm/n

 .

We will only consider the case m + 1 > n. Further, since m 6= n, the error term above just

becomes

O

( 1
cw+1X

m/6ncm/n
)
.

Therefore we have

|S1(X; c)|<∼c(m+1)/n−(w+1)X(m+1)/6n.

Summing over (h+ 1)-th power-free c, with c < Xα (for any α), since m+1
n − (w + 1) = −1:

|S1(X)|<∼X(m+1)/6n log(X).

Lower Bound. The outline of the proof of the lower bound is as follows: we know that if

(u, t) ∈ S1(X), then u and t have expressions as in Lemma 3.3.8. Instead of counting all of these,

we only count ones of the form u = c−1bn and t = ab−m, where a, b and c are within appropriate

bounds. Let S2(X) be the set of such triples (a, b, c). There is a map S2(X) → S(X), and

the bulk of the proof is in showing that this map has bounded fibers. We first form another

intermediary set, which we call S3(X). We then describe maps S2(X)→ S3(X)→ S(X), and

bound the fibers of these maps. This will enable us to find a lower bound for S(X) by finding

one for S2(X) instead. �

Since we only need a lower bound, observe that by changing u to Mu for large enough M , we

can assume that f(t), g(t) ∈ Z[t]. For a triple (a, b, c) ∈ Z3, set u = c−1bn and t = ab−m. Let

A = u2f(t) and B = u3g(t). Fix some constant κ > 0. Define S2(X) to be: the set of triples

(a, b, c) ∈ Z3 such that:
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• c =
∏

p|b,pw|a
ph,

• 0 < b < κX1/6nc1/n, |a| < κXm/6ncm/n, gcd(a, bm) is m-th power free

• 4A3 + 27B2 6= 0 (where A and B are as defined above).

Note that if (a, b) ∈ S2(X), then for a suitable value of κ, we get (A,B) ∈ S(X), since

|A| = |u2f(t)|<∼ |c−2arb2n−mr|<∼X1/3, and similarly for B.

Notation: Define S3(X) ⊂ Z2 to be the set of (A,B) ∈ Z2 coming from S2(X). We then have

a map from S3(X)→ S(X) sending (A,B) 7→ (A/d4, B/d6) where d12 || gcd(A3, B2). Stratify

S2(X) by sets S2(X; c) of pairs (a, b) such that
∏
p|b,pw|a p

h = c. Define S3(X; c) as the pairs

(A,B) coming from (a, b) ∈ S2(X; c).

The following lemma will help us bound the fibers of the map S3(X)→ S(X).

Lemma 3.3.11. There exists a non-zero integer D (depending only on f and g) with the

following property: if (a, b, c) ∈ S2(X), then gcd(A3, B2) can be factored as (MD)β such that

MD divides D and p|β =⇒ p|b.

Proof. We follow the same method of proof as Harron and Snowden. Let (a, b) ∈ S2(X; c)

and let p be a prime. Let M1 be a constant such that |3 valp(f(t)) − 3r valp(t)| < M1 and

|2 valp(g(t))− 2s valp(t)| < M1 for all t ∈ Q with valp(t) < 0. Let M2 be the constant for which

min{3 valp(f(t)), 2 valp(g(t))} ≤M2 for all t ∈ Q with valp(t) ≥ 0. Note that max{M1,M2} is

0 for p� 0 (specifically, p ≥ N0, as defined in Lemma 3.3.9).

Now, consider the case where valp(t) < 0. In particular, p|b. Let valp(b) = k and let

valp(a) = l(< m). We then have:

valp(A3) =


6mk

(
n
m −

r
2
)

+ 3rl − 6h+ ε p|c

6mk
(
n
m −

r
2
)

+ 3rl + ε p - c
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valp(B2) =


6mk

(
n
m −

s
3
)

+ 2sl − 6h+ δ p|c

6mk
(
n
m −

s
3
)

+ 2sl + δ p - c

where |ε| < M1 and |δ| < M1. Let M0 = min{3rm, 2sm}. Let

ep =


max{M1 +M0,M2} p ≤ N0

M0 p ≥ N0

and take D =
∏
p≤N0 p

ep . This proves the lemma.

Remark 3.3.12. We find that D is N0-smooth and β consists of p|b for p ≥ N0. It is crucial

that D,M1,M2 and M0 do not depend on (a, b, c) in any way. They only depend on f and g.

We now use this lemma to bound the fibers of S3(X)→ S(X) in our case of interest, namely

when

min{3rm− 6h, 2sm− 6h} ≤ 6.

We will call this assumption (∗∗).

Lemma 3.3.13. There exists a constant N such that the size of the fibers of S3(X)→ S(X)

is bounded by N .

Proof. The fiber over a point (A′ , B′) ∈ S(X) is in bijection with the set {d ∈ Z | (d4A
′
, d6B

′) ∈

S3(X)}. Thus for any (A,B) ∈ S3(X), the size of the fiber above the pair is bounded above by

the number of 12th powers dividing gcd(|A|3, B2). We show that this is exactly the number of

12th powers dividing D from Lemma 3.3.11, i.e. no 12th powers divide β.

Consider a prime p ≥ N0. We claim that p12 cannot divide gcd(|A|3, |B|2). If p|b and p|c, then

this follows from assumption (∗∗). If p - b, then since K2 = 0, p doesn’t divide gcd(|A|3, |B|2).

If p|b and p - c, then by definition of c, we must have that pw - a. Since h = 1, this forces l ≤ 1

in Lemma 3.3.11. Since assumption (∗∗) implies min{3r, 2s} < 12, we are done.
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The rest of the proof follows by the exact argument as that of Harron and Snowden, which we

recall below.

Lemma 3.3.14. There exists a constant M such that every fiber of the map S2(X)→ S3(X)

has size bounded by M .

Proof. Fix any (A,B) ∈ S3(X). An element in fiber of the map S2(X) → S3(X) above

(A,B) is of the form (a, b, c) ∈ Z3 with A = (c−1bn)2f(ab−m) and B = (c−1bn)3g(ab−m), and

c =
∏
p|b,pw|a p

h. Set x = cb−n and y = ab−m. Then an element (a, b, c) in the fiber satisfies the

equations:

Ax2 = f(y) Bx3 = g(y).

These can be thought of as defining curves in P2 that intersect transversally, since f and g are

coprime. Thus by Bezout’s theorem, the maximum number of solutions is bounded above by:

M = max(2, r) max(3, s).

It only remains to bound the size of S2(X). Now, S2(X) =
∐
c S2(X; c) and the size of S2(X; c)

is precisely
1

cw+1 c
(m+1)/nX(m+1)/6n +O

( 1
cw+1 c

m/nXm/6n
)
,

where the error term comes from Theorem 3.2.5. Summing over c gives us that

X(m+1)/6n log(X)<∼S2(X).

3.4 Proof of Theorem 1.2.5 for N 6= 2, 5

The proof of Theorem 1.2.5 for the cases N 6= 2, 5 involves applying the appropriate theorems

from §3.3. We start off with geometric descriptions of X1/2(N) as constructed in Section

3.2.1.When we say that a curve has n stacky points, we are talking about n stacky geometric

points ( [33, Tag 04XE] ). For modular curves, this can be thought of as referring to n distinct
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values of the corresponding hauptmoduln (Definition 3.1.3) or cusps. We use the term ‘stacky

curve’ as defined in [39] to mean curves that have a trivial generic inertia stack.

Proposition 3.4.1. For any N ∈ Z>0, consider the curve X1/2(N) constructed in §2. Then:

1. If N = 3, then X1/2(N) = X1(3), which is a stacky curve with one stacky point corre-

sponding to the elliptic curves with j-invariant 0.

2. If N = 4, then X1/2(N) = X1(4), which is a stacky curve whose only stacky point is at

the irregular cusp.

3. If N = 7, then X1/2(N) is a stacky curve with two stacky points whose hauptmoduln are

defined over K = Q(
√
−3) and are conjugate over Q.

4. If N = 6, 8, 9, 12, 16, 18, then X1/2(N) is a scheme.

5. If N = 5, 10, 13, 25, then X1/2(N) has generic inertia stack Bµ2

Proof. These claims follow from the construction of X1/2(N), by analysing the automorphisms

of its points and applying Proposition 3.2.4. For N = 3, 4 and 6, this is classical, as in each of

these cases X1/2(N) = X1(N). We demonstrate the cases N = 5, 7 and 8, and leave the rest to

the reader. For readability, we do not separately talk about the cusps, but the non-stackiness

in the cases of interest follows from the modular interpretation given in A.1.

Consider the map X1/2(N)→ X0(N). Since any point in X1/2(N) lies in some geometric fiber

of this map, it is enough to analyse automorphisms of points in each fiber. For any point

(E,C) ∈ X0(N), choose an isomorphism C ∼= Z/NZ and thus Aut(C) ∼= (Z/NZ)×. Let P be a

generator for C.

For N = 7, the fiber above a point (E,C) contains the points

(E, {P, 2P, 4P}) and (E, {−P,−2P,−4P}).
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If E has non-zero j-invariant, then the only extra automorphism of the pair (E,C) is [−1]

and thus the points in the fiber do not have any extra automorphisms. Recall that X0(7) has

exactly two elliptic points, both with j-invariant 0 (see for instance, [11]). Each of these points

has an automorphism group that is cyclic of order 6. Let µ be an automorphism of the pair

(E,C) of order 6. Then µ = [−1] ◦ µ′ for some µ′ of order 3. By the definition of X1/2(N), this

automorphism must fix the points (E, {P, 2P, 4P}) and (E, {−P,−2P,−4P}). In order to find

the hauptmoduln corresponding to these points, we use the tables in [25]. Since X1/2(N) and

X0(N) have isomorphic coarse spaces, they have the same hauptmoduln (in fact, in this case

they have the same even weight modular forms). Let t be the hauptmodul in [25] for X0(7).

Then the family over X1/2(7) is given by y2 = x3 +A(t)x+B(t) where

A(t) = 1
3(t2 + 245t+ 2401)(t2 + 13t+ 49)

B(t) = 1
2(t4 − 10 · 72t3 − 9 · 74t2 − 2 · 76t− 77)(t2 + 13t+ 49),

and the j-invariant is given by

j = (t2 + 245t+ 2401)2(t2 + 13t+ 49)
t7

.

This family is not universal over the points where t2 + 13t+ 49 = 0, since X0(N) parametrizes

only semistable curves. The roots of this equation are defined over Q(
√
−3).

Remark 3.4.2. Another way to find the stacky points is to note that the universal family over

Y1(7) is

y2 + (1 + v − v2)xy + (v2 − v3)y = x3 + (v2 − v3)x2,

with torsion point (0, 0) [22, Table 3]. The j-invariant of the universal family is

(v6 − 11v5 + 30v4 − 15v3 − 10v2 + 5v + 1)3(v2 − v + 1)3

(v − 1)7v7(v3 − 8v2 + 5v + 1) .

This gives exactly eight values of v producing a curve of j-invariant 0. Let α be a root of
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v2 − v + 1 = 0. Then the fiber over the curve

y2 + 2xy + αy = x3 + αx2

contains the points: {P = (0, 0), (−α, α), (−1,−α + 1), (−1, 1), (−α, 0), (0,−α)}. The auto-

morphism of this curve given by (x, y) 7→ (−αx − α, y + (α + 1)x + α) fixes the subgroup

{P, 2P, 4P}.

If N = 8, then recall from Section 3.2.1 that the choice of index 2 subgroup of (Z/NZ)× is

not unique, and we choose one that works for us. That is, write (Z/8Z)× = {P, 3P,−3P, P}

and suppose we choose the subgroup {P, 3P}, so that fiber above (E,C) consists of the points

(E, {P, 3P}) and (E, {−P,−3P}). Neither pair has extra automorphisms. If N = 5. Then

C× ∼= {P, 2P,−2P,−1P}, which has a unique index 2 subgroup: {P,−P}. Thus the fiber

above (E,C) has two points: (E, {P,−P}) and (E, {2P,−2P}). Each of these points still has

the automorphism [−1]. This proves the theorem for N = 5.

What this proposition tells us is that if N ∈ {3, 4, 6, 7, 8, 9, 12, 16, 18}, then there is an open

substack U of X1/2(N) that is isomorphic to a scheme. Therefore U(Q) can be parametrized

via the universal family over U . For N ∈ {4, 6, 8, 9, 12, 16, 18}, the non-stacky locus contains

Y1/2(N), and thus there exist fN and gN ∈ Q[t] coprime such that every elliptic curve arising

from a rational point on Y1/2(N) is isomorphic to one of the form:

EN,t : y2 = x3 + fN (t)x+ gN (t).

Thus, by Proposition 3.2.3, we have the following:

N (N,X) = #{E | ht(E) < X, and ∃d ∈ Z, u, t ∈ Q, s.t. Ed : y2 = x3 + u4fN (t)x+ u6gN (t)}

= #{E | ht(E) < X, and ∃u, t ∈ Q, s.t. E : y2 = x3 + u2fN (t)x+ u3gN (t)}.

To find the asymptotic growth for N (N,X) in these cases, we use Proposition 3.3.1 to find the
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value of hN (X), given in Table 3 below.

For N = 3, the situation is slightly different. The curve X1/2(3) = X1(3) has one stacky point

lying above the elliptic curve with j-invariant 0. Let Φ3 : X1/2(3)→ X (1) be the usual forgetful

map. Set Y = Y1/2(3) \ φ−1
3 ({j = 0}). Then, for a suitable embedding of Y ↪→ A1, there is a

universal family E3,t over Y (e.g. see [17]) given by

E3,t : y2 = x3 +
(

2t− 1
3

)
x+

(
t2 − 2

3 t+ 2
27

)
.

Every elliptic curve with non zero j-invariant and a rational 3-torsion point is isomorphic to

one of the above form for some t ∈ Q. However, this family does not extend to a universal

family over t = 1/6. Indeed E3,1/6 is given by y2 = x3 − 1
108 and its torsion subgroup of order 3

is generated by the rational point: (1/3, 1/6). On the other hand, all curves ED : y2 = x3 +D2,

D ∈ Q contain the rational 3 torsion point (0, D) and have j-invariant 0, but none of them is

isomorphic to E3,1/6 over Q. For this reason, we separate our counting function into two pieces:

N (3, X) = N (3, X)j=0 +N (3, X)j 6=0.

By Theorem 3.3.3, we have the following proposition.

Proposition 3.4.3. Maintaining the notation as above,

N (3, X)j 6=0 � X1/3 log(X).

In order to find the asymptotics for N (3, X)j=0, we observe the following: by lemma 3.4 in [17],

we know that any elliptic curve that has j-invariant 0, a rational 3 torsion point, but is not of

the form E3,t for any t ∈ Q, admits an equation of the form y2 = x3 +D2, D ∈ Z. Thus the

curves missing from our count are those that are quadratic twists of these exceptional curves.
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That is, they are elliptic curves of the form

y2 = x3 + u3t2

for some u, t ∈ Q with u3t2 integral and minimal. This is the same as counting elliptic curves

y2 = x3 + b, with b2 < X and b 6th power free. This number is just a constant times X1/2.

Remark 3.4.4. Note that our result agrees with that in [28]. In fact the argument for N (3, X)j=0

is exactly the same as in their paper, albeit stated slightly differently.

To complete the proof of the main theorem, for each N we need only calculate r, s,m and n

in the notation of Proposition 3.3.1 and Theorem 3.3.3. In Table 3, we give the components

required to compute r and s in each of the cases of interest. We do not give the explicit

polynomials fN and gN here, since we do not need them, but these polynomials are given in

Appendix A.2.

N r s m n Reference hN (X)
3 1 2 3 2 3.3.3 X1/2

4 2 3 1 1 3.3.1 X1/3

6 4 6 1 2 3.3.1 X1/6 log(X)
8 4 6 1 2 3.3.1 X1/6 log(X)
9 4 6 1 2 3.3.1 X1/6 log(X)
12 8 12 1 4 3.3.1 X1/6

16 8 12 1 4 3.3.1 X1/6

18 12 18 1 6 3.3.1 X1/6

Table 3: Values of invariants

Remark 3.4.5 (Distinction between N = 3 and N = 7). One might wonder why one can find

a model for an open substack U of Y1/2(3) with f3 and g3 coprime, but not for Y1/2(7). A

priori, a model of the form y2 = x3 + f(t)x+ g(t) found for U might not have f and g coprime.

However, since Y1(3) only has one geometric stacky point, that point can be moved to ∞ ∈ P1

via a transformation. On the other hand, Y1/2(7) has two stacky points, neither of which is

rational. Thus we cannot find f7 and g7 coprime, and therefore cannot apply our method.
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3.5 Counting points of bounded height on stacks

In this section, we prove Theorem 1.2.5 for N = 2, 3, 4, 5, 6, 8, 9 by using results from forthcoming

work of Ellenberg, Satriano and Zureick-Brown in [13]. As we have seen, one can define some

height on X0(N), namely the naive height. The question is does this height come from geometry?

We know that this is true for modular curves that are schemes – the naive height is the height

with respect to the twelfth power of the Hodge bundle. It follows from the work in [13] that

the same is true for moduli stacks of elliptic curves, and we use their machinery to count the

number of points of bounded height. Before we proceed, we must set up some notation.

Notation 3.5.1. Recall that we use ht(E) for the naive height of a point E on any modular

curve. Let X be a stack and V a vector bundle on it. We will let htV denote the logarithmic

height with respect to V as defined in [13] and HtV the multiplicative height corresponding to

it. That is to say, HtV = exp(htV).

We will not define htV here, but we will use the fact that if V = λ⊗12 on X0(N), then for an

elliptic curve E corresponding to a rational point x : SpecQ→ X0(N), log ht(E) = htV(x)+O(1)

(see Example 3.5.3 below). Thus our counting function satisfies

N (N,X) � #{x ∈ X0(N)(Q) | Ht12
λ (x) < X}. (3.6)

3.5.1 Computing heights on stacks

Throughout this subsection, X will be a proper Artin stack over SpecZ with finite diagonal. A

Q-rational point x of X is a map x : SpecQ→ X . Let V be a vector bundle on X . Consider

for a moment the case where X = X, a proper scheme, and V is an ample line bundle on it.

When computing the height of a point on X, we use a power of V to embed X ↪→ Pn for some

n, and then use the naive height of the image of the point on Pn. This makes computations

easier. For a stack, the analogue would be mapping it into weighted projective space. In [13],

the authors show that this works. We recall the specific result below.
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Consider the special case where V is a metrized line bundle L (see [13] for precise definition).

Suppose s1, s2, . . . , sk are sections of L. Then, L is said to be generically globally generated by

s1, . . . , sk if the cokernel of the corresponding morphism

O⊕kX → L

vanishes over the generic point of SpecZ. In particular, this implies that the cokernel is

supported at finitely many places.

Proposition 3.5.2 ( [13], Proposition 2.27). Let X be a stack over SpecZ, let L be a line bundle

on X such that L⊗n is generically globally generated by sections s1, s2 · · · sk. Let x : SpecQ→ X

and for each i, let xi = x∗(si) (after picking an identification of x∗L with Q). Scale x1, . . . , xk

so that each xi ∈ Z and for every prime p, there is some xi such that vp(xi) < n. Then

htL(x) = 1
n

log max
i
{|x1|, |x2| . . . |xk|}+OX (Q)(1)

where | · | is the usual archimedean absolute value.

Note here that we have only stated the version of the proposition that we require, i.e. for

SpecQ and SpecZ. A more general version of this proposition holds for other global fields.

We will say that the tuple (x1, . . . xk) ∈ Zk is minimal if it satisfies the last condition in the

theorem: for each prime p, there is some i ∈ {1 . . . k} such that pn - xi.

Example 3.5.3. Let L = λ, the Hodge bundle on X (1). Then the global sections of λ⊗12 are

weight 12 modular forms, and it is a classical fact that the Eisenstein series E3
4 , E

2
6 generically

globally generate λ⊗12. An elliptic curve E : y2 = x3+Ax+B gives a Q-point x : SpecQ→ X (1).

The assumption about scaling the sections corresponds to choosing a minimal Weierstrass

equation for E. Proposition 3.5.2 then says that

htλ(x) = 1
12 log max{|A|3, |B|2}+OX (1)(1),

which is, up to the constant OX (1)(1), a twelfth of the logarithmic naive height of E. Thus,
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Ht12
λ (x) is a constant multiple of the naive height ht(E).

3.5.2 The ring of modular forms of low level

Since modular forms are sections of powers of the Hodge bundle, we will rely on the structure

of the rings of modular forms of X0(N) quite heavily. This subsection summarizes part of the

work of Hayato and Tomohiko in [18].

Notation 3.5.4. Let Mk(N) denote the space of modular forms for Γ0(N) of weight k. We

let M(N) =
⊕
kMk(N) be the entire ring of modular forms for Γ0(N).

• Ek: classical Eisenstein series of weight k. Note that Ek ∈Mk(1). For k an even integer,

Ek is given by

1− 2k
Bk

∞∑
n=1

σk−1(n)qn

where Bk is the k-th Bernoulli number and σk is sum of k-th powers of divisors function.

• For a modular form f and an integer h, let f (h)(q) = f(qh).

• For any N ≥ 1, let CN = 1
gcd(N−1,24)(NE(N)

2 − E2) ∈M2(N).

• For a prime p, let αp = 1
240(E4 − E(p)

4 ) ∈M4(p).

• For the definitions of βN for general N and for αN for N composite, we refer the reader

to [18].

Proposition 3.5.5 ( [18], Theorems 1,2). Maintaining the above notation, the rings of modular

forms for Γ0(N) for N ∈ {2, 3, 4, 5, 6, 8, 9} are as follows.
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N Degrees of generators M(N)

2 (2, 4) C[C2, α2]

3 (2, 4, 6) C[C3, α3, β3]/(O3)

4 (2, 2) C[C2, C4]

5 (2, 4, 4) C[C5, α5, β5]/(O5)

6 (2, 2, 2) C[C(2)
3 , α6, β6]/(O6)

8 (2, 2, 2) C[C(2)
4 , α4, α

(2)
4 ]/(O8)

9 (2, 2, 2) C[C3, α9, β9]/(O9)

Table 4: Rings of modular forms of low level

Here the On’s are explicit polynomials whose form we will mention later.

Since the ring of modular forms is graded by weight, the degrees in Table 4 refer to the weights

in which the corresponding rings are generated. In what follows, we will use the structure of the

ring of modular forms of the levels in Table 4 to count points of bounded height. The reason

we restrict to these cases is that for such N , the rings of modular forms are easier to handle.

For some other N (e.g. see Chapter 4), this method reduces to a problem of counting integral

points on more complicated varieties.

3.5.3 Counting results

Our counting results will be split into three parts: the first, for N = 2, 4 corresponds to the

N for which M(N) is freely generated. The second part, is for N = 3, 6, 8, 9. These are the

levels N for which the corresponding ON ’s in Table 4 have a similar form. The last part is for

N = 5, which has to be dealt with separately because O5 has a starkly different form, and thus

requires different counting techniques.

Notation 3.5.6. Let (a1, . . . ak) ∈ Zk, p = (p1, . . . pk) ∈ Zk>0 be two tuples of integers. Let

n ∈ Z>0 such that lcm(p1, . . . pk)|n. We will say that the pair, ((a1, . . . ak),p) satisfies condition

(†) if for any prime p,

pn - gcd
i

(|ai|pi).
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Condition (†) reflects the minimality condition in Proposition 3.5.2. For the rest of this section,

we will only consider (†) for n = 12, unless mentioned otherwise.

The cases N = 2, 4 : From Table 4, we see that M(2) ∼= C[x, y](2,4) and M(4) ∼= C[x, y](2,2).

For N = 2, λ⊗12 is globally generated by C6
2 and and α3

2. Let x : SpecQ → X0(2). Let

a = x∗(C2) and b = x∗(α2). Taking these to be in minimal form implies that a, b ∈ Z with

p12 - gcd(a6, b3). Then, by Proposition 3.5.2, we see that

htλ(x) = 1
12 log max{|a|6, |b|3}+OX0(2)(Q)(1).

Thus we have that,

N (2, X) � #{x ∈ X0(2)(Q) | Ht12
λ (x) < X}

� #{(a, b) ∈ Z2 | ((a, b), (6, 3)) satisfies (†),max{|a|6, |b|3} < X}.

By a similar argument, observing that C6
2 and C6

4 globally generate λ12 on X0(4), we set

a = x∗(C2) and b = x∗(C4). Thus,

N (4, X) � #{(a, b) ∈ Z2 | ((a, b), (6, 6)) satisfies (†),max{|a|6, |b|6} < X}.

In each of these cases, our counting problem reduces to counting integers in a box with certain

divisibility conditions. The set we need to count has the form {(a, b) ∈ Z2 | |a| < M, |b| <

N, p12 - gcd(ap1 , bp2)} for some constants p1, p2,M and N . The set {(a, b) ∈ Z2 | |a| < M, |b| <

N, gcd(a, b) = 1} is always a subset of this set, and in particular, has size a constant multiple

of MN . Thus the condition (†) does not affect the asymptotic growth rate.

Proposition 3.5.7. Maintaining the above notation, we have:

N (2, X) � X1/2

N (4, X) � X1/3.
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Note that this agrees with the asymptotics in [17], [29] as well as the conclusions of Table 3 in

Section 3.4.

The cases N = 3, 6, 8, 9: These cases are similar because of the similarity in form on the ON ’s

in Table 4. More precisely, we have from [18]:

• O3 = α2
3 − C3β3

• O6 = α2
6 − C

(2)
3 β6

• O8 = α2
4 − C

(2)
4 α

(2)
4

• O9 = α2
9 − C3β9.

In order to deal with these cases uniformly, we must introduce some notation. For (a, b, c) ∈ Z3

and p = (pa, pb, pc) ∈ Z3
>0, define

Htp(a, b, c) = max{|a|pa , |b|pb , |c|pc}.

Later, for each N , we will fix a choice of p that makes this height compatible with Ht12
λ on

X0(N). We will be interested in the following counting functions:

N (p, X) := #{(a, b, c) ∈ Z3 | Htp(a, b, c) < X, b2 = ac},

N (p, X, †) := #{(a, b, c) ∈ Z3 | Htp(a, b, c) < X, b2 = ac, and ((a, b, c),p) satisfies (†)}.

Lemma 3.5.8. Let n be any integer such that lcm(pa, pb, pc)|n. There is a positive constant C

that depends only on p and n such that:

N (p, X) = C X1/pb log(X) +X1/pc +O(X1/pa).

Proof. We start by noting that we must have |a| < X
1
pa , |b| < X

1
pb and |c| < X

1
pc . Now
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suppose a 6= 0. Then

∑
|a|<X

1
pa

a6=0

∑
|c|<X

1
pc

∑
|b|<X

1
pb

b2=ac

1 =
∑

|a|<X
1
pa

a6=0

∑
|b|<X

1
pb ,a|b2

1

=
∑

|a|<X
1
pa

a6=0

(
X1/pb

a
+O(1)

)

= CX1/pb log(X) +O(X1/pa).

One might worry here that the ‘error’ term, X1/pa , is actually bigger than the main terms.

However, for all of our cases pa ≥ pb, pc, so X1/pa will indeed be an error term. If a = 0, then b

is necessarily 0 too. Thus we are reduced to counting the set {c ∈ Z | c < X1/pc}, which has

size X1/pc +O(1).

Claim 3.5.9. If pa, pb and pc are not all equal to n, then N (p, X, †) is a positive proportion

of N (p, X).

Proof. Without loss of generality, suppose pa 6= n. If a = 0, then

#{c ∈ Z | c is pcth power free, |c| < X1/pc}

is a positive proportion of #{c ∈ Z | |c| < X1/pc}. In particular these sizes differ by a factor of

ζ(pc). Now suppose a 6= 0. Then the set of triples satisfying (†) contains those for which a is

squarefree. The proof of Lemma 3.5.8 shows that the set of such triples has size a constant

times X1/pb log(X) as well. This proves the claim.

We have therefore proved the following proposition.

Proposition 3.5.10. Maintaining the above notation:

N (3, X) � X1/2,

N (6, X) � X1/6 log(X),
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N (8, X) � X1/6 log(X),

N (9, X) � X1/6 log(X).

Proof. Since we only care about the 12th power of the Hodge bundle, we will take n = 12.

From Table 4, we observe that for the following choices of p, N (N,X) � N (p, X, †):

• N = 3: p = (6, 3, 2),

• N = 6, 8, 9: p = (6, 6, 6).

The proposition now follows from Claim 3.5.9 and Lemma 3.5.8.

Note that for N = 3, the elliptic point on X0(3) corresponds to the point where a is 0. Indeed,

one may think of X0(3) as being cut out by the octic b2−ac inside P(2, 4, 6). The point [0 : 0 : 1]

has an automorphism group of size 6. If a 6= 0, then from Lemma 3.5.8, we get an asymptotic

growth rate of X1/3 log(X) which agrees with that obtained from Theorem 3.3.3.

The case N = 5: Note that this is one of the cases that cannot be tackled by the methods in

Sections 3.2 and 3.3. We first give an upper bound for N (5, X), and then use a simple sieving

argument to refine it into an asymptotic.

The ring of modular forms, M(5) is generated by three modular forms, C5, α5 and β5 of weights

2,4 and 4 respectively. The relation between these forms is

O5 = α2
5 − β5(C2

5 + 4α5 − 8β5). (3.7)

Set n = 12 and p = (6, 3, 3). Proceeding analogously as before, we must count integers (a, b, c)

with Htp(a, b, c) < X such that

b2 − a2c− 4bc+ 8c2 = 0, (3.8)

and the pair ((a, b, c),p) satisfies the minimality condition (†). If α5 = 0, then β5 = 0, and we
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get � X1/6 elliptic curves, which is the trivial lower bound. If C5 = 0, we get the two points

of X0(5) that have automorphism group µ4. Each of these is defined over Q(i) and doesn’t

contribute to the rational points on X0(5).

We obtain the upper bound by counting integer triples (a, b, c) without the minimality condition

(†). Equation 3.8 can be rearranged to one of the form:

(4b− 8c)2 + (8c− a2)2 = a4.

For any integer n, let r2(n) denote the number of ways of writing an integer as a sum of two

squares. An upper bound can be proved by summing r2(a4) over all a < X1/6.

Lemma 3.5.11 ( [4], Chapter XV). Let n ∈ Z>0 have factorization:

n = 2a0pe1
1 . . . perr q

2f1
1 q2f2

2 . . . q2fs
s

where the pi’s are ≡ 1 mod 4 and the qi’s are ≡ 3 mod 4. Define B(n) =
∏r
i=1(ei + 1). Then:

r2(n) = 4B(n)

Remark 3.5.12. This is a well known result. Note that the constant in front of B is different

depending on whether one takes into account signs and order. But this will not make a difference

to our result, since we are only interested in the asymptotic growth rate.

We will now focus on the sum: ∑
|a|<X1/6

B(4)(n)

where we define B(4)(n) to be B(n4), for notational convenience. Note that if p ≡ 1 mod 4,

B(4)(pk) = 4k + 1. If p = 2 or 3 mod 4, then B(4)(pk) = 1 for any k. Thus, B(4)(n) is a

multiplicative (although not completely multiplicative) function.
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Proposition 3.5.13. Maintaining the above notation, there is a constant c > 0 such that for

any 0 < δ < 1/6, ∑
|n|<X1/6

B(4)(n) = cX1/6(log(X))2 +O(X1/6−δ).

Proof. Consider the Dirichlet series:
∑
n≥1

B(4)(n)
ns

. By multiplicativity, this can be written as

the Euler product:

∏
p≡1 mod 4

∑
k≥0

(4k + 1)p−ks
 ∏
p≡3 mod 4

∑
k≥0

p−ks

∑
k≥0

2−ks
 .

We now simplify this expression.

∏
p≡3 mod 4

∑
k≥0

p−ks

 =
∏

p≡3 mod 4

1
1− p−s .

∏
p≡1 mod 4

∑
k≥0

(4k + 1)p−ks
 =

∏
p≡1 mod 4

4
∑
k≥0

kp−ks +
∑
k≥0

p−ks


=

∏
p≡1 mod 4

(
4p−s

(1− p−s)2 + 1
1− p−s

)

=
∏

p≡1 mod 4

(
1 + 3p−s

(1− p−s)2

)
.

Thus:

∑
n≥1

B(4)(n)
ns

=
∏
p

( 1
1− p−s

) ∏
p≡1 mod 4

(
1 + 3p−s

1− p−s

)

= ζ(s)
∏

p≡1 mod 4

(
1 + 3p−s

1− p−s

)
.
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Now, let χ(p) denote the usual Legendre Symbol
(
−1
p

)
. Let K(s) = 1−2−s

1+3.2−s . Then,

Ψ(s) :=
∏

p≡1 mod 4

(
1 + 3p−s

1− p−s

)
= K(s)

∏
p

(
1 + 3p−s

1− p−s

) 1+χ(p)
2

= K(s)
∏
p

(
1 + 4p−s

1− p−s

) 1+χ(p)
2

= K(s)
∏
p

(
1 + 1

2(1 + χ(p)) 4p−s

1− p−s + . . .

)

= K(s)
∏
p

(
1 + 2(1 + χ(p))p−s + higher powers of p−s

)
.

Consider the Dirichlet L-function L(s, χ) =
∏
p(1− χ(p)p−s)−1. Since

(
1 + 2(1 + χ(p))p−s + . . .

) (
1− χ(p)p−s

)2 = 1 + 2p−s . . . ,

we see that Ψ(s)L(s, χ)−2 has a pole of order 2 at s = 1 and converges for Re(s) > 1. We know

that L(s, χ) is holomorphic at s = 1. Thus
∑
n≥1

B(4)(n)
ns has a pole of order 3 at s = 1. The

proposition now follows from the standard Tauberian theorem (2.5.1).

Proposition 3.5.14. There is an absolute constant K > 0 such that for X > K, N (5, X) �

X1/6 log(X)2.

Proof. The main ingredient here is the upper bound proved in Proposition 3.5.13. To refine

this to give an asymptotic growth rate, we must count only the minimal (a, b, c). If a triple is

non-minimal, then there exists a prime p such that p2|a, p4|b and p4|c. Let p be such a prime.

Then the number of such triples is in bijection with the number of ways of writing a4 as a sum

of two squares, say a4 = A2 +B2, such that p4|A and p4|B. This is the same as the number

of ways of writing (a/p2)4 as a sum of two squares. Therefore the number of triples that are
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non-minimal at p can be calculated by:

∑
|n|<X1/6/p2

B(4)(n).

By Proposition 3.5.13, this has the same asymptotic growth rate as

c.
X1/6

p2 log
(
X

p12

)2
= (c/p2)X1/6

(
log(X)2 − 2 log(X) log(p12) + log(p12)2

)
.

where c is independent of p. Thus,

cX1/6 log(X)2−cX
1/6

p2 log
(
X

p12

)2

= cX1/6 log(X)2
(

1− 1
p2 − 24 log(X)−1 log(p)

p2 + 144 log(X)−2 log(p)2

p2

)
.

We now examine the product

∏
p2<X1/6

(
1− 1

p2 − 24 log(X)−1 log(p)
p2 + 144 log(X)−2 log(p)2

p2

)
.

For large enough X, this product is bounded both above and below by positive constants. This

proves the proposition.
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Chapter 4

Future work

4.1 On counting curves with given p-torsion

For p = 2 the Artin-Schreier locus A S g coincides with the hyperelliptic locus Hg. However,

in general, A S g is not irreducible. In [30], the authors give the following characterization for

the irreducibility of A S g:

Proposition 4.1.1 ( [30] Corollary 1.2). The moduli space A S g is irreducible in exactly the

following cases: (a) p = 2, or (b) g = 0 or g = p−1
2 , or (c) p = 3 and g = 2, 3, 5.

It is interesting to ask whether the reducibility of A S g completely explains the probability

obtained in theorem 2.5.6. That is, for each g, let A S g,g denote the closure of the ordinary

locus inside A S g. Then, is:

lim
X→∞

#{C ∈ A S g,g | qg < X}
#{C ∈ A S g,g(Fq) | qg < X}

(4.1)

positive?

On a different note, for p ≥ 3

ψ̃p,Q(s) =

1 +
p−2∑
i=0
|Q |(i+1)−(i+2)s −

p−2∑
i=0
|Q |i−(i+2)s

 p−2∏
i=0

(1− |Q |(i+1)−(i+2)s)

and let ψ̃p(s) =
∏
Q ψ̃p,Q(s). Let s0 = d2

p(g + p − 1)e. Then one can show, by a similar

calculating as in Chapter 2, that the probabilty that an Artin-Schreier curve has p-rank ≥ s0 is
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bounded below by the quantity
ψ̃p(1)
ψp(1) .

This quantity comes from counting the rational points on the d− 1-dimensional components

of each p-rank stratum A S g,s with s ≥ s0. As expected, for any fixed p, this number gets

closer to 1 as q increases. Further, if s̃ > s0, then the probability that an Artin-Schreier curve

has p-rank ≥ s̃ is 0. For s̃ < s0, it would be interesting to calculate the probability that the

p-rank is ≥ s̃. This would give us a better understanding of the distribution of p-ranks in the

Artin-Schreier locus.

4.2 On counting points on X0(N)

This report raises multiple questions, some that we believe can be answered by pushing further

the methods used here, and some that require different approaches. The first question is

about X0(7). We believe that the ideas of Section 3.3 can be generalized to count points on

X0(7), since X1/2(7) is a stacky curve with two stacky points. In this case, one must generalize

Proposition 3.3.1 to the case where f and g are not necessarily coprime. The tricky bit here

turns out to be the analogue of Lemma 3.3.7.

One might wonder whether one can count rational points on X0(7) via the framework in [13],

as we did for some values of N in Section 3.5. The issue with this is that for each level not

listed in Table 4, the ring of modular forms is quite complicated. Using relations between the

generators of these rings to count points on X0(N) can lead to very hard counting problems.

For instance, the problem of counting rational points on X0(7) can be rephrased in terms of

counting integral points on the intersection of one cubic and two quadric hypersurfaces in A5.

More precisely, one must count tuples (a, b, c, d, e) of integers satisfying

• c2 − ae = 0,

• ce− bd = 0,

• b2 − c(a2 + 7b− 19c) = 0,
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• No 12th power divides gcd(|a|6, |b|3, |c|3, |d|2, |e|2).

This gets more complicated with higher N , at least as far using the description in [18] goes.

For these higher N , if one were to find a smaller set of modular forms that could both globally

generate λ⊗12 and had simpler relations among them, then one could perhaps count points on

the corresponding X0(N) more easily. We do not know at this time if that is indeed possible.

There is of course the question of an exact asymptotic as opposed to an asymptotic growth

rate. More precisely, one can ask if the limit:

cN := lim
X→∞

N (N,X)
hN (X)

exists and what its value is. The case N = 2 is known due to [17], N = 3 due to [28] and

N = 4 due to [29]. It would be interesting to calculate the values for other N , perhaps using

the precise definition of logarithmic height from [13].

The stacky Batyrev-Manin-Malle conjecture. As mentioned in Chapter 1, for a scheme

V and an ample line bundle L on it, the Batyrev-Manin conjecture predicts that there are

constants a(L) and b(L) such that the number of rational points on V of height bounded by a

number B grows like

Ba(L) log(B)b(L).

Here the height refers to the height with respect to the line bundle L. The weaker analogue

states that the number of rational points should grow like Ba(L)+ε. In [13], the authors make a

similar conjecture for stacks, which they call the ‘Weak stacky Batyrev-Manin-Malle conjecture’.

For each of the modular curves considered in this paper, as well as those in [17], the asymptotic

growth rate seems to be of the same form as predicted, but it would be interesting to verify if

the constants match the constants in [13]. This is work in progress.
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Appendix A

Explicit description of X1/2(N)

A.1 Modular descriptions of cusps

The main reference for this section is [40]. Let Cn be a Néron n-gon. Each irreducible

component of Cn is isomorphic to P1. For each i < n, the i-th component is glued to the

i+ 1-th component by gluing ∞ ∈ P1
(i) to 0 ∈ P1

(i+1), and analogously for the n-th component.

The smooth part of Cn, denoted Csmn , is isomorphic to Gm × Z/nZ. The group structure on

Csmn is given by the usual group structures on each component. The automorphism group of

Cn is given by µn × 〈inv〉, where ζ · (x, i) = (ζix, i) for ζ a primitive n-th root of unity and

inv : (x, i) 7→ (x−1,−i). A generalized elliptic curve E over S is a flat, finitely presented map

E → S whose geometric fibers are either

• elliptic curves (hence smooth and equipped with a group structure), or

• a Néron n-gon for some n ≥ 1 equipped with a group structure on the smooth part.

Let Elln denote the moduli space of generalized elliptic curves whose degenerate fibers are

n-gons. In general, for a moduli stack X of generalized elliptic curves, and a positive integer n,

let X(n) denote the substack of X that parametrizes generalized elliptic curves whose degenerate

fibers are n-gons.

A.1.1 Γ1(N) and Γ0(N) structures

Let N be a positive integer, n|N and E an elliptic curve over S. A Γ1(N) structure on E is

the following data:

• A homomorphism α : Z/NZ → Esm(S) such that D =
∑
a∈Z/NZ[α(a)] is an effective



85

Cartier divisor on E forming an S-subgroup scheme of E.

• If the fiber over some point in S is an n-gon, then the divisor D intersects every irreducible

component of the n-gon. This criterion is equivalent to the ampleness of D.

The stack X1(N) parametrizes generalized elliptic curves with a Γ1(N) structure. Further, we

have that X1(N) =
⋃
n|N
X1(N)(n).

Unlike the definition of a Γ1(N) structure, which is fairly intuitive given our understanding of

Y1(N), the definition of a Γ0(N) structure takes more work. To explain this, let us first define

a naive Γ0(N) structure on a generalized elliptic curve E/S. This consists of the following data:

• A homomorphism α : Z/NZ→ Esm such that D =
∑
a∈Z/nZ[α(a)] is an ample, effective

divisor on E.

• The image of α is an S subgroup scheme of Esm.

One defines X0(N)naive as the moduli space parametrizing generalized elliptic curves with an

naive Γ0(N) structure. As before, X0(N)naive =
⋃
n|N
X0(N)naive.

Consider the modular curve X0(p2) for some prime p. Let E/S be a generalized elliptic curve

whose degenerate fiber is a p-gon, equipped with a naive Γ0(p2) structure GE . On the degenerate

fiber, the group G generated by (ζp2 , 1) gives a naive Γ0(p2) structure, and the pair (Cp, G)

has automorphism group µp × 〈inv〉. On the other hand, the image of (E,GE) in X0(1) is a

generalized elliptic curve whose degenerate fiber has automorphism group 〈inv〉. In particular,

the map X0(N)naive → X0(1) is not representable (see criterion for representability in Lemma

3.2.2 in [40]). This does not agree with the construction of X0(N) in [10], which is what we are

using.

The correct definition of a Γ0(N) structure is a little bit long-winded, so we do not define it

here. Instead, we explain how to construct one from a naive Γ0(N) structure, which is sufficient

for our purposes. Let n|N and let d(n) = n
gcd(n,N/n) , and let E/S be a generalized elliptic curve.
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Let G be a naive Γ0(N) structure on E, let E∞ denote a degenerate fiber of E that is an n-gon.

Let G∞ denote the fiber of G on E∞. Consider the torsion subgroup E∞,sm[d(n)] ∈ E∞,sm.

Define the contraction of E along Esm[d(n)] by leaving the non-degenerate fibers intact, and

on each E∞ in the degenerate n-gon locus, by contracting any components that don’t intersect

E∞,sm[d(n)] to a point. Thus, the image of E∞ is a d(n)-gon. A new elliptic curve E′/S

may now be constructed by gluing together the contractions of E/S for each n|N along the

non-degenerate locus. The image of G under these contractions, gives a Γ0(N) structure. Note

that a Γ0(N) structure remembers G as well as the images of all the degenerate fibers of G

under the contractions.

Let X0(N) be the modular curve paramterizing generalized elliptic curves with a Γ0(N) structure.

The following lemma from [40] is probably the best way to understand the relation between the

n-part of X0(N)naive and the d(n) part of X0(N).

Lemma A.1.1 ( [40], Lemma 5.1.2). There is a commutative diagram:

X0(N)naive(n) Elln

X0(N)(d(n)) Elld(n)

where the vertical maps are contractions.

A.1.2 Construction of X1/2(N) at the cusps

Recall the definition of Y1/2(N) from Chapter 3. We claimed, in Section 3.2.1, that the

construction makes sense for X1/2(N), i.e. for generalized elliptic curves, via a similar process.

We now outline a proof of the claim. The process is the same as obtaining a Γ0(N) structure

via a naive Γ0(N) structure. In order to make our description less wordy, we will let Cn denote

the cusp parametrizing generalized elliptic curves whose degenerate fibers are n-gons, and

describe the construction on Cn directly. The fiber of X1(N)→ X0(N)naive over Cn consists of

generators of the Γ0(N) structure. Thus, it makes sense to define X1/2(N)naive as the fiberwise

quotient of X1(N)→ X0(N)naive by an index two subgroup of (Z/NZ)×. We now declare that
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the fiber of X1/2(N)→ X0(N) over a cusp consists of the data:

• The fiber above the corresponding point X1/2(N)naive → X0(N)naive.

• The Γ0(N) structure on the cusp.

The second condition helps rigidify our structure.

As an example, consider the case N = 9. In this case, we are dealing with 3 possible n-gons in

the degenerate fiber: C1, C3 and C9.

• There is exactly one (naive as well as not) Γ0(9) structure on C1, namely the subgroup

generated by ζ9, a primitive 9th root of unity. The fiber of the map Φ9 : X1(N)→ X0(N)

corresponds to the generators of this subgroup, namely {ζi9 | i = 1, 2, 4, 5, 7, 8}. The two

points in the fiber of X1/2(9)→ X0(9), therefore, correspond to the cosets {ζ9, ζ
4
9 , ζ

7
9} and

{ζ2
9 , ζ

5
9 , ζ

8
9}.

• Consider the cusp C3. One naive Γ0(9) structure on C3 is generated by the pair (ζ9, 1).

Further, d(3) = 1 and so Esm[d(3)] = 0. To obtain the contraction corresponding

Γ0(9) structure therefore, one contracts the degenerate fiber to a C1, and the image of

〈(ζ9, 1)〉 under this contraction, is the subgroup generated by (ζ3
9 , 0). The data of the

Γ0(9) structure consists of both the data of the original naive structure, and its contraction.

To obtain the fibers of X1/2(9) → X0(9), consider the points over X1/2(9)naive →

X0(9)naive. The fibers above 〈(ζ9, 1)〉 correspond to the cosets {(ζ9, 1), (ζ4
9 , 1), (ζ7

9 , 1)} and

{(ζ2
9 , 2), (ζ5

9 , 2), (ζ8
9 , 2)} respectively. Note as an aside, that each of these cosets has an

automorphism group of size 3. We rigidify these points by adding in the data of the Γ0(9)

structure above.

• Consider the naive Γ0(9) structure on C9 generated by the element (ζ9, 1). This is also a

Γ0(9) structure, since d(9) = 9. The fiber of X1/2(9)naive → X0(9)naive thus corresponds

to the two cosets {(ζ9, 1), (ζ4
9 , 4), (ζ7

9 , 7)} and {(ζ2
9 , 2), (ζ5

9 , 5), (ζ8
9 , 8)}.
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A.2 Equations for X1/2(N) for some N

For N ∈ {8, 9, 12, 16, 18}, we give the equations for X1/2(N) using the hauptmoduln from [25].

We use the notation of Chapter 3 where in we give polynomials fN (t), gN (t) ∈ Q[t] such that

every elliptic curve arising as a rational point on X1/2(N) is isomorphic to one of the form,

y2 = x3 + fN (t)x+ gN (t).

N fN (t) gN (t)

8 1
3(t4 + 256t3 + 5120t2 + 32768t+ 65536) 1

2(t2 + 32t+ 128)(t4 − 512t3 − 10240t2 −

65536t− 131072)

9 1
3(t+ 9)(t3 + 243t2 + 2187t+ 6561) 1

2(t6 − 486t5 − 24057t4 − 367416t3 −

2657205t2 − 9565938t− 14348907)

12 1
3(t2 + 12t + 24)(t6 + 252t5 + 4392t4 +

31104t3 + 108864t2 + 186624t+ 124416)

1
2(t4 + 36t3 + 288t2 + 864t + 864)2(t8 −

504t7− 14832t6− 179712t5− 1175040t4−

4478976t3 − 9953280t2 − 11943936t −

5971968)2

16 1
3(t8+256t7+5632t6+53248t5+282624t4+

917504t3 + 1835008t2 + 2097152t +

1048576)

1
2(t4 + 32t3 + 192t2 + 512t + 512)(t8 −

512t7 − 11264t6 − 106496t5 − 565248t4 −

1835008t3 − 3670016t2 − 4194304t −

2097152)

18 1
3(t3 +12t2 +36t+36)(t9 +252t8 +4644t7 +

39636t6+198288t5+629856t4+1294704t3+

1679616t2 + 1259712t+ 419904)

1
2(t6 + 36t5 + 324t4 + 1404t3 + 3240t2 +

3888t+ 1944)(t12− 504t11− 15336t10−

208872t9 − 1700352t8 − 9206784t7 −

34836480t6− 94058496t5− 181398528t4−

245223936t3−221709312t2−120932352t−

30233088)

Table 5: Equations for X1/2(N)
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