

Passage of microorganisms in septic tank effluents through mound sand in a controlled laboratory environment. [DNR-164] [2001]

Standridge, Jon H.; Olstadt, Jeremy; Sonzogni, William C. Madison, Wisconsin: Wisconsin State Laboratory of Hygiene, [2001]

https://digital.library.wisc.edu/1711.dl/C3D326PUTX63B8D

http://rightsstatements.org/vocab/InC/1.0/

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

Passage of Microorganisms In Septic Tank Effluents Through Mound Sand In a **Controlled Laboratory Environment**

Jon Standridge, Jeremy Olstadt, William Sonzogni Wisconsin State Laboratory of Hygiene 2601 Agriculture Dr. P.O. Box 7996 Madison, WI 53707-7996

Project funding provided by the Wisconsin Department of Natural Resources

Introduction

Pristine groundwater is a greatly treasured Wisconsin resource. Protection of this resource in part relies on removal of organisms from anthropogenic activities that are likely to contaminate ground water. While there is a fairly large literature on the passage of microbes through soil, the specific question of the passage of organisms from relatively clean wastewater effluents through mound sand has received little attention. The basic question to be answered by the research described in this report is: "Do microorganisms suspended in wastewaters from private onsite wastewater treatment systems pass through mound sand in laboratory scale column experiments" This is a complex, multi-faceted question that could be answered with many approaches. The intent of this report is to capture all experimental data with minimal interpretation and discussion.

Experimental Design

As water passes through a mound sand matrix, organisms are removed in three ways, filtration, adsorption or die-off. These mechanisms of removal are complex. Filtration relies on depth, preferential flow paths, saturation, biofilms, surface matting, temperature, flow rate, and dosing frequency. Adsorption depends on microbial flora, surface matting, cation concentration, temperature and pH. Die-off depends on microbial predation, temperature, saturation, drying, organic matrix, microbe multiplication and time. This leads to the following list of experimental variables which could be evaluated.

. Depth

Time

- Dosing rate Saturation
- Dosing schedule
- pН

Cation concentration

- Temperature
- Dosing effluent quality

This list yields thousands of possible experimental variable combinations. In order to reduce the number of variables to a manageable number, we chose to standardize them as follows.

-Depth- Columns were prepared in a variety of depths from 12 inches to 60 inches (see table 5. below)

1

-Dosing rate - For the first six months of the experiment the mound sand columns were dosed at two gallons per square foot per day for high quality effluents, and one gallon per day for the lower quality effluents. The actual daily dose volumes for the three inch (.25 ft) inside diameter columns were calculated by determining the surface area of the column, as pi R^2 [3.14 x 0.125 ft x 0.125 ft = 0.049 ft²], which means 0.049 gallons (186 mL) would be added daily to each column for a one gallon per square foot per day dose and 0.098 gallons (372 mL) for a two gallon per square foot per day dose. The effluent was administered in five equal doses (37 and 74 mL respectively) per day with four doses spaced four hours apart and the last dose of the day administered after an eight hour interval. An exception to this dosing schedule was that one 24" column was dosed once per day only. During the final ten weeks of the experiment, the dosing volumes were doubled for eight weeks, and then doubled again (four times the original volume) for the final two weeks.

-Saturation - Saturation was never achieved. Some drying occurred between each dosing. -pH- For this study pH of the effluent was unaltered.

-Temperature - All tests were run at 20° C.

-Time - The leachate from each column was tested for organism pass through every three weeks during the first 30 weeks of the study and then with increasing frequency during the last weeks, peaking at three times per week at the end of the experiment. -Cation concentrations were unaltered.

-Dosing effluent quality - Two small scale on-site waste water facilities were chosen for collection of septic tank effluent to be used for dosing the experimental sand columns. **Site one.** This system consisted of a septic tank vault followed by a single pass sand filter, preceding the infiltration field. Samples were collected from the pumping tank just after the sand filter. This site was chosen to represent a high quality effluent with biological oxygen demand (BOD) and suspended solids (SS) values of less than 30/30 mg/L.

Site two. Samples were collected from a small scale on-site treatment system serving a mobile home park. The system consisted of three septic tank vaults in series followed by a recirculating sand filter in line prior to the infiltration beds. The samples were collected directly from the surface of the third septic vault. Site two was chosen to represent a typical effluent from a conventional septic tank with BOD/SS levels of approximately 220/150 mg/L.

Effluents from both systems were collected once per week and stored at 2-4° C prior to being dosed to the columns. Each weekly collection of effluents was tested for BOD and SS. These results are summarized in tables 1 and 2 below.

Table 1.

Site one - single pass sand filter effluent

Date	Source	BOD mg/L	SS mg/L
10/9/00	sand filter	<6 `	<5ັ
11/20/00	sand filter	<2	<5
11/29/00	sand filter	<2	<5
12/7/00	sand filter	<2	<5
12/14/00	sand filter	<2	<5
1/10/01	sand filter	<2	<5
1/17/01	sand filter	<6	<5
1/24/01	sand filter	<3	<5
1/31/01	sand filter	<3	<5
2/7/01	sand filter	<3	<5
2/14/01	sand filter	<3	ND
2/21/01	sand filter	<2	ND
2/28/01	sand filter	<3	ND
3/7/01	sand filter	<2	ND
3/16/01	sand filter	<2	<2.5
3/22/01	sand filter	<2	ND
3/28/01	sand filter	<2	ND
4/4/01	sand filter	<3	ND
4/12/01	sand filter		
4/19/01	sand filter	` <3	ND
4/25/01	sand filter	<3	ND
5/2/01	sand filter	<3	ND
5/10/01	sand filter	<2	ND
5/17/01	sand filter	<2	ND
5/24/01	sand filter	<2	ND
5/31/01	sand filter	>40.3	ND
6/6/01	sand filter	<3	ND
6/11/01	sand filter	<2	ND
6/14/01	sand filter	<2	ND
6/18/01	sand filter	<2	ND
6/20/01	sand filter	<2	ND
6/25/01	sand filter	<2	17
6/27/01	sand filter	2.9	6
7/2/01	sand filter	<2	<2.2

Table 2.

Conventional septic tank vault effluent

Date	Source	BOD mg/L	SS mg/L
10/17/00	septic vault	162 [ັ]	276
11/11/00	septic vault	220	196
11/20/00	septic vault	151	96
11/29/00	septic vault	166	79
12/7/00	septic vault	212	72
12/14/00	septic vault	217	50
1/10/01	septic vault	240.8	<5
1/17/01	septic vault	301	160
1/24/01	septic vault	255	176
1/31/01	septic vault	361	204
2/7/01	septic vault	324	148
2/14/01	septic vault	226	41
2/21/01	septic vault	232	255
2/28/01	septic vault	268	168
3/7/01	septic vault	244	54
3/16/01	septic vault	239	34
3/22/01	septic vault	179	35
3/28/01	septic vault	252	136
4/4/01	septic vault	289	128
4/19/01	septic vault	341	120
4/25/01	septic vault	210	120
5/2/01	septic vault	266	200
5/10/01	septic vault	305	630
5/17/01	septic vault	217	185
5/24/01	septic vault	267	146
5/31/01	septic vault	241	184
6/6/01	septic vault	275	60
6/11/01	septic vault	214	40
6/14/01	septic vault	361	332
6/18/01	septic vault	217	50
6/20/01	septic vault	279	94
6/25/01	septic vault	360	175
6/27/01	septic vault	314	206
7/2/01	septic vault	271	94

In addition to the traditional BOD/SS measures of effluent strength, the microbial makeup of the spiking effluents is also important. There are virtually thousands of pathogenic and non pathogenic organisms that could be present in septage and therefore enumerated as part of this project. To keep the project costs within reason, we chose to use the traditional total coliform, fecal coliform and *E. coli* indicators of fecal pollution as well as two innovative indicators, enterococci and male specific coliphages.

Total coliform and *E. coli* counts were performed using the standard minimal media ONPG-MUG enzyme based test system (Colilert_{TM}) with the Quantitray_{TM} enumeration system. Total coliform is the indicator that has been traditionally used by water microbiologists since 1920 to detect microbial contamination of wells. While total coliform does, in fact, detect outside contamination of a water well system, its ability to accurately predict the presence of fecal material is limited. None the less, it is important to include this indicator since Wisconsin groundwater standards are still based on total coliform occurrence. *E. coli* is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is included since it does accurately predict the presence of is miniment health risk from consuming water from a positive well.

Fecal coliform is a traditionally used indicator of fecal contamination in water. While it has generally been replaced by *E. coli*, we are including it in this study to tie the data to previously published studies. The detection method used was the standard membrane filter fecal coliform test (MFFCC).

While *E. coli* has generally been proven to be an excellent indicator organism and public health tool, its utility can be challenged in situations where contaminated water is filtered through soil. The surface characteristics and shape of *E. coli* allow it to be easily removed as it moves through a soil column, unlike the small round virus often associated with waterborne disease outbreaks, that might move through more readily. For this proposal we chose to include two additional indicators, enterococci and coliphage, that behave more like the viral pathogens in their ability to move through soil.

Enterococci are small round bacteria found in the intestinal track of warm blooded animals. For fifteen years, they have been suggested by the USEPA as the best indicator organism to be used in testing of recreational waters, because of the strong correlations with their presence in water with the occurrence of illness in swimmers. Enterococci counts were performed using a proprietary defined substrate enzyme based test system called Enterolert_{TM} combined with the Quantitray_{TM} enumeration system.

Male specific coliphages have been suggested by several researchers as the fecal indicator of choice because of their increased likelihood of behaving like a pathogenic virus in ground water contamination situations. Coliphage are viruses that infect *E. coli* bacteria. Male specific coliphages are viruses of *E. coli* that infect the bacterial cells through sex pili appendages that are only found on the bacteria when they are at or near body temperatures. In other words, the detection of male specific coliphages is strong evidence of fecal contamination from a warm blooded animal. Additionally, since the coliphages are in fact viruses, they behave in the environment much as human pathogenic virus do. For this study, samples were extracted with freon or chloroform. Recovered phage were then detected using the double agar layer plating method using a host organism vulnerable to infection by male specific coliphages.

Since the main focus of the research was to characterize the passage of microbes through mound sand, the microbiological indicator flora of the effluents was determined

and altered when necessary. The high BOD/SS septic tank effluent was tested on five occasions to determine the concentrations of the five chosen indicators. These data are presented below in table 3.

Table 3. Naturally occurring flora for high strength septic tank effluent

total coliform /100mL	<i>E. coli /</i> 100mL	fecal coliform /100mL	<i>Enterococcus /</i> 100mL	male-specific coliphage pfu/mL
4,245,000	120,330	117,000		
1,789,000	197,000	170,000	5290	340
4,352,000	256,000	320,000	43,520	5700
5,475,000	158,000	480,000	30,760	15,850
12,997,000	1,153,000	930,000	7760	5600

Due to the variability it was determined that the effluent should be always be spiked with additional organisms in order to be sure the columns were being challenged with a large number of organisms. The additional organism spike levels were based on the approximate ratios of the organisms to the levels detected in the actual septic effluent. The target spike levels for the high BOD/SS septic tank effluent for each of the indicators were: Fecal coliform (510,000 cfu/100mL), total coliform (6,100,000 cfu/100mL), *E.coli* (490,000 cfu/100mL), *Enterococci* (24,000 cfu/100mL) and male-specific coliphage (7600 pfu/100mL).

Known concentration bacteria spikes were prepared by growing bacterial suspensions of the indicators from stock cultures to a 0.5 McFarland Standard (1.5×10^8) optical density measured using a Mini 20tm Spectrophotometer. The male-specific coliphage stock supply was prepared by viral extraction followed by culture confirmation titering to produce a (9.3×10^9) suspension. Each known concentration suspension was then diluted to the pre-calculated target number of organisms used to spike the effluent.

For the clean sand filtered septic effluent, two spiking effluents representing fecal coliform levels of both 1,000 and 10,000 were required. Once again the background levels of naturally occurring total coliform, fecal coliform, *E. coli*, enterococci and coliphage were determined by testing the first five septic effluent collections. These results are presented below in Table 4. The levels were generally so low that organisms needed to be added to achieve the 1000 and 10,000 fecal coliform levels needed. The spiking solutions were prepared as described above. The actual target spike levels for the clean sand filtered septic tank effluent for each of the indicators was: Fecal coliform (1,000) total coliform (36,000 cfu/100mL), *E. coli* (1,500 cfu/100mL), *Enterococci* (1,400 cfu/100mL) and male-specific coliphage (1,000pfu/100mL), *E. coli* (15,000 cfu/100mL), *Enterococci* (14,000 cfu/100mL) and male-specific coliphage (10,000pfu/100mL), for the 10,000 fecal coliform level spike.

total coliform /100mL	<i>E. coli</i> /100mL	fecal coliform /100mL	<i>Enterococcus /</i> 100mL	coliphage pfu/mL
	118.7	190		
88.2	11	5	47.9	<5
1119.9	17.1	19	6.3	<5
365.4	33.1	18	3.1	<5
11	3.1	2	1	<5

Table 4. Natural microbial levels from the high quality sand filtered septic effluent

A matrix chart of the septic effluent dosing to the columns is summarized in table 5. Table 6 presents the summarized information with numbers assigned to each column that will be used when referring to the data generated from the columns.

Table 5. Summary of column dosing

BOD/SS 30/30	BOD/SS 30/30	BOD/SS 220/150	BOD/SS 30/30
Five doses/day	Five doses/day	Five doses/day	one dose/day
2 gpd/ft ²	2 gpd/ft ²	1 gpd/ft ²	2 gpd/ft ²
10 ³ organisms/100ml	10 ⁴ organisms/100ml	10 ⁶⁻⁷ organisms/100ml	10 ⁴ organisms/100ml
Column 1	-		
Column 2	Column 4		
Column 3	Column 5	Column 8	Column 10
	Column 6		
	Column 7	Column 9	
		Column 11	
		Column 12	· · · · ·
	Five doses/day 2 gpd/ft ² 10 ³ organisms/100ml Column 1 Column 2	Five doses/dayFive doses/day2 gpd/ft²2 gpd/ft²10³ organisms/100ml10⁴ organisms/100mlColumn 1Column 4Column 2Column 4Column 3Column 5Column 6Column 6	Five doses/dayFive doses/dayFive doses/day2 gpd/ft²2 gpd/ft²1 gpd/ft²10³ organisms/100ml10⁴ organisms/100ml10⁶-7 organisms/100mlColumn 1Column 4Column 4Column 3Column 5Column 8Column 4Column 6Column 9Column 1Column 1Column 1

Table 6. Summary of column dosing

Column number	Column length	BOD/SS target	Fecal coliform target	Dosing volume	dose/day
1 2 3 4 5 6 7 8 9 10 11	12 inches 18 inches 24 inches 18 inches 24 inches 30 inches 36 inches 24 inches 36 inches 24 inches 36 inches 24 inches 48 inches	30/30 30/30 30/30 30/30 30/30 30/30 220/150 220/150 30/30 220/150	$\begin{array}{c} 1000 \\ 1000 \\ 1000 \\ 10,000 \\ 10,000 \\ 10,000 \\ 10,000 \\ 10,000 \\ 1,000,000 - 10,000,000 \\ 1,000,000 - 10,000,000 \\ 1,000,000 - 10,000,000 \\ 1,000,000 - 10,000,000 \end{array}$	2 gpd/ft ² 2 gpd/ft ² 2 gpd/ft ² 2 gpd/ft ² 2 gpd/ft ² 2 gpd/ft ² 2 gpd/ft ² 1 gpd/ft ² 1 gpd/ft ² 2 gpd/ft ² 1 gpd/ft ² 1 gpd/ft ²	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12	60 inches	220/150	1,000,000 - 10,000,000	1 gpd/ft ²	5

Column construction was based on the recommendations found in the review paper published by Bitton et al (1979). This paper reviews and evaluates column construction protocols outlined in the literature. Columns were constructed of 3 inch PVC pipe with the pipe sections mounted vertically in a bench top rack. The bottom of each pipe section was fitted with a glazed ceramic buechner funnel lined with nylon screening. The funnel was sealed in place with silicone caulk. The mound sand was purchased from a Dane County sand and gravel dealer and was tested by the University of Wisconsin Soil and Plant Analysis Lab. This analysis was determined suitable by Leroy Jansky, Department of Commerce Wastewater Specialist as meeting the ASTM C-33 standard for use in Wisconsin mound systems. The dry mound sand was scooped into the columns and compacted by tapping the sides of the column. Each column was topped off with six inches of 3/4 inch washed gravel. The spiked septic tank effluent was delivered to the top of the columns through 1/8th inch inside diameter Tygon_{TM} tubing. (See figures 1a/b below). Figure 1a (drawing).

-

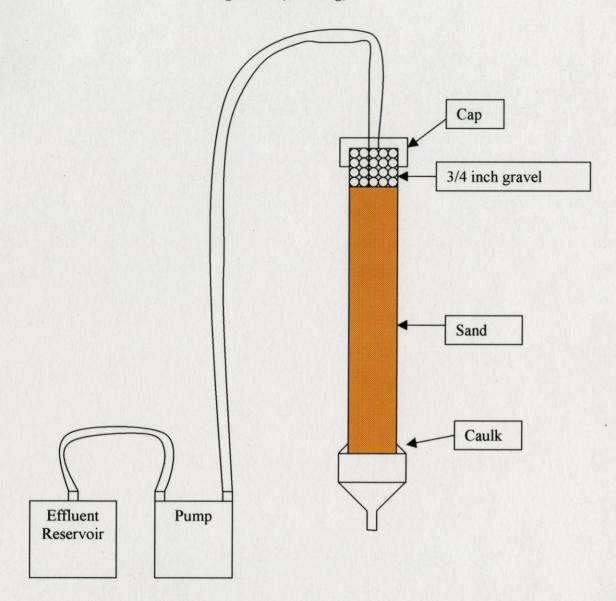
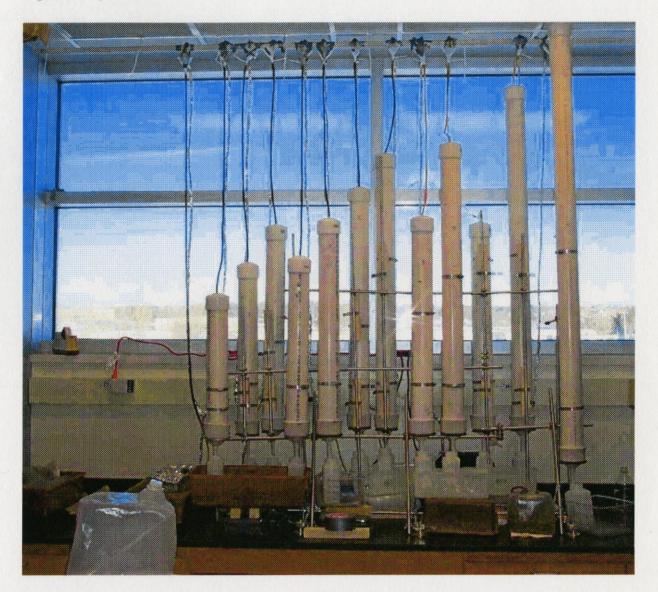



Figure 1.b (photo)

Since the microbe counts of the spiking solutions were measured in the spiking reservoirs, there was some concern as to whether the microbe levels actually dripping from the 1/8th inch tubing would be the same as in the reservoirs. Simultaneous determinations of microbial content of the reservoirs compared to the microbial content at the column end of the spike delivery tubing were made. The results are summarized in table 7. Analysis of this data indicates that there is no difference between the microbial content of the microbial content of the microbial content of the microbial content of the tubing to the columns.

Table 7.

L

Effluent straight from spiking reservoir		Effluent at column input		
	Column 1		Column 1	
total coliform	64,400	total coliform	52,000	
E. coli	1440	E. coli	3100	
fecal coliform	1000	fecal coliform	240	
Enterococci faecalis	1350	Enterococci faecalis	>2419.2	
male-specific coliphage	1000	male-specific coliphage	<5	
	Column 7		Column 7	
total coliform	644,000	total coliform	644,000	
E. coli	14,528	E. coli	19,180	
fecal coliform	10,000	fecal coliform	15,500	
Enterococci faecalis	13,620	Enterococci faecalis	7490	
male-specific coliphage	10,000	male-specific coliphage	10,000	
	Column 12		Column 12	
total coliform	32,200,000	total coliform	10,900,000	
E. coli	1,313,000	E. coli	906,000	
fecal coliform	1,160,000	fecal coliform	1,130,000	
Enterococci faecalis	31,000	Enterococci faecalis	52,000	
male-specific coliphage	410,000	male-specific coliphage	160,000	

Flows through the tubing were periodically monitored and adjusted to specifications. Clogged lines were occasionally observed and immediately corrected. Generally we were able to keep the flow rates within 10% of the target throughout the duration of the experiment.

To further characterize column function, dissolved oxygen and conductivity determinations were made on the both the septage being dosed to the column top and the effluent collected from the bottom of the column. These results are presented in table 8. below. The conductivity values remained unchanged as the septage passed through the columns. The dissolved oxygen values remained unchanged for the low strength wastes, but increased significantly for the high strength wastes as the septage passed through the columns.

Table 8.

	Pre-Column	Effluent	Post-C	olumn Effluent
Column	DO mg/L	Conductivity umho's/cm	DO mg/L	Conductivity umho's/cm
1	8	1340	8.2	1340
2	7.8	1290	8.3	1330
3	7.5	1320	8.3	1290
4	7.1	1310	8.3	1340 1300
5 6	7.3 7.3	1390 1300	8.3 8.3	1290
7	6.8	1370	8.3	1300
8	6.5	3670	8.2	3630
9	4.1	3460	8.2	3470
10	8.5	1360	8	1340
11	5.6	3280	8.05	3490
12	4.8	3610	8.1	3500

Dissolved oxygen and conductivity at inlet and outlet of columns

Preliminary dosing of the columns was begun onto dry sand. The longer columns were dosed many times before the sand was saturated enough so that effluent would drip from the bottom of the column in response to the dosing. At week 22, data was collected to characterize the flow volumes from the bottom of each column immediately after each dosing. Since the columns were dosed at four hour intervals, the effluent was captured for various time intervals from the bottom of the columns and measured. These data are presented graphically for representative column lengths in figures 2-12 below. Generally, the drip rate of effluent from the bottom of the columns was related to the depth of the sand. The twelve inch column would begin dripping almost immediately after dosing and the longer columns would have a slower response with the longest columns dripping fairly steadily at all times. The strength of the effluent also affected the drip rate. Figures 4 and 5 present data from 24 inch columns both receiving low strength wastes. The graphs are very similar. Almost all of the 74 mL dose

passed through the column during the four hour observation period. On both columns there was an immediate flush of about 10mL followed by a steady increase in flow peaking at 60 to 90 minutes. Figure 6 contains the data for the 24 inch column dosed with the high strength waste. Once again there is an immediate flush but the flow is steady for the four hour observation period. Only 24 of the 34 mLs applied had passed through by the end of the period. This phenomenon could be explained either by the lower hydraulic loading or by biofilm formation interfering with flows. The same observations can be made in the 36 inch columns presented in figures 8 and 9.

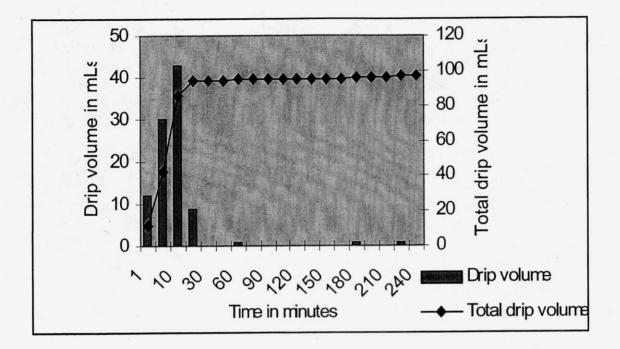
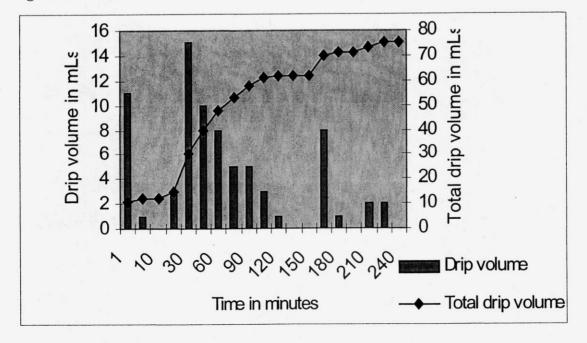



Figure 2. 12 inch column receiving 2 gallons/day low strength effluent (column 1)

Figure 3. 18 inch column receiving 2 gallons/day low strength effluent (column 2)

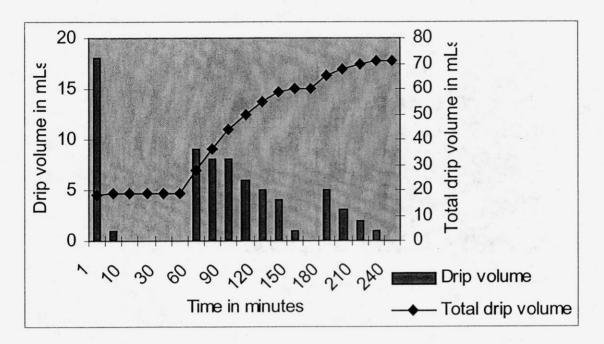
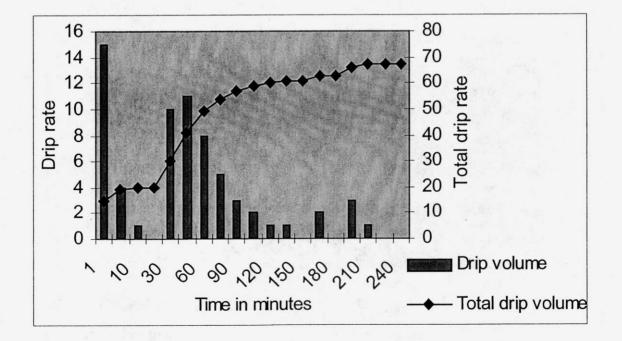



Figure 4. 24 inch column receiving 2 gallons/day low strength effluent (column 3)

Figure 5. 24 inch column receiving 2 gallons/day low strength effluent (column 5)

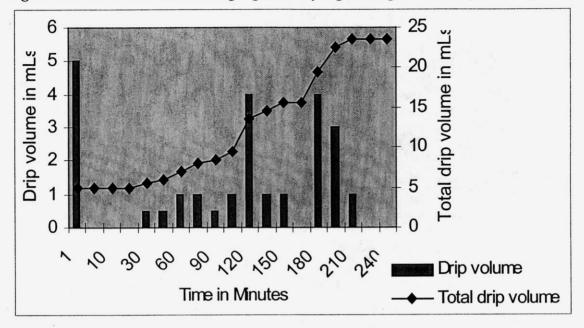



Figure 6. 24 inch column receiving 1 gallon/day high strength effluent (column 8)

Figure 7. 30 inch column receiving 2 gallon/day low strength effluent (column 6)

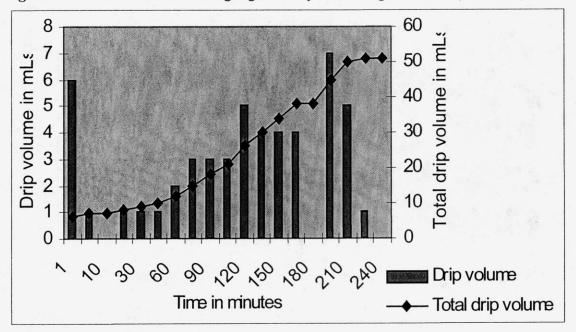
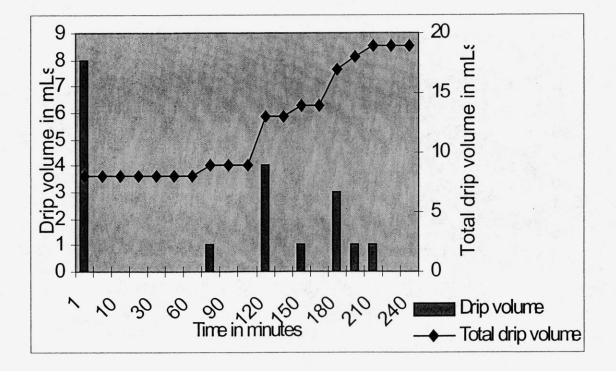



Figure 8. 36 inch column receiving 2 gallon/day low strength effluent (column 7)

Figure 9. 36 inch column receiving 1 gallon/day high strength effluent (column 9)

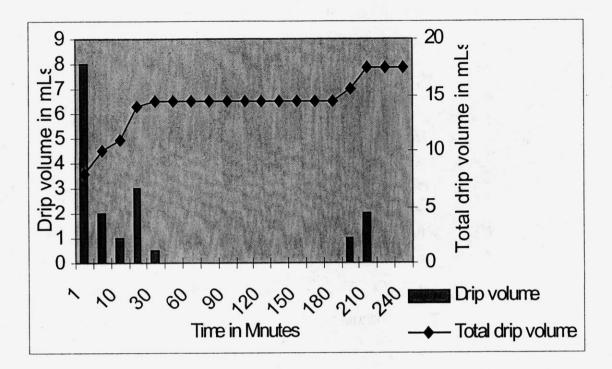
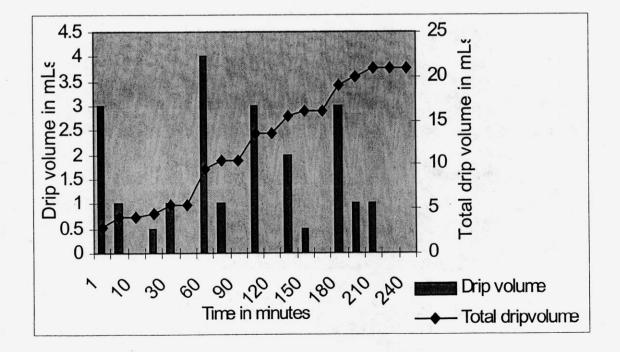



Figure 10. 48 inch column receiving 1 gallon/day high strength effluent (column 11)

Figure 11. 60 inch column receiving 1 gallon/day high strength effluent (column 12)

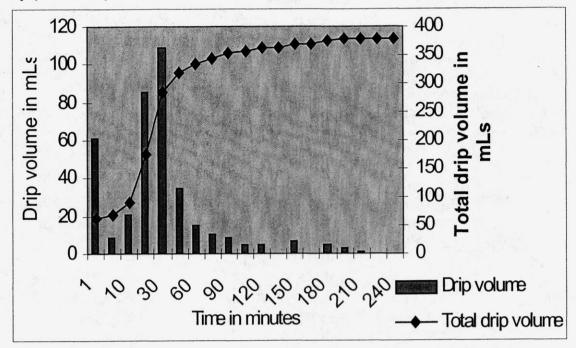


Figure 12. 24 inch column receiving 1 gallon/day high strength effluent, dosed once per day (column 10)

Counts of the microbial indicators for all five target organisms were determined for each batch of spike material prepared. This data is presented in tables 9-11. Preparing consistent spikes over the duration of the experiment was one of the most difficult aspects of this study. Although there was some week to week variability in the spiking doses, we are generally very pleased with the results. The spiked septic tank effluents always contained sufficient numbers of organisms to be representative of organism levels that could be expected in actual systems. Tables 9-11 are divided into two portions where the top portion summarizes the target levels for each organism followed by the geometric mean(average) of all the counts for each organism. The second portion of each table contains the raw data from the analysis of each week's spike preparation used to calculate the geometric means.
 Table 9. Organism spike concentrations for columns 1-3.

	coliform					Enterococci male-specif	
Columns 1-3		/ 100mL	0mL / 100mL	/ 100mL	coliphage / 100mL		
Target #/100mL	35.640	1440	1000	1350	1000		
geometric mean Of all data	33,035	3,002	1,247	520	459		

Columns 1-3	Total coliform / 100mL	E. coli / 100mL	fecal coliform / 100mL	Enterococci /100mL	Male-specific coliphage / 100ml
Target #/100mL	35,640	1440	1000	1350	1000
12/14/00	727	548	300)	119	<5
1/4/01	6370	2010	270	200	6500
1/5/01	4410	1300	260	77.1	1000
1/7/01	4640	1850	230	54.7	<5
1/8/01	3680	940	220	77.1	<5
1/9/01	3,730	1414	168	79.4	500
1/10/01	2,210	921	120	63.7	<5
1/11/01	129,970	1,320	160	107	26,000
1/18/01	54,750	1,730	900	145	1500
1/25/01	43,500	1,565	730	81.6	200
2/1/01	36,900	6,867	6000	1313	500
2/8/01	37,300	13,200	9600	813	300
2/15/01	51,200	2,602	1400	749	100
2/22/01	41,000	9,700	5300	1233	100
3/1/01	239,200	17,500	11,200	1565	200
3/9/01	52,900	14,136	3,200	1565	100
3/16/01	24,000	12,997	1,400	2000	100
3/23/01	29,900	450	390	201	100
3/29/01	13,400	1,000	17	2000	500
4/5/01	12,000	98	11	74	1200
4/12/01	13,500	1,000	LA	107	1000
4/19/01	64,400	3,448	2,200	2000	1000
4/26/01	23,100	1,565	660	1000	600
5/3/01	106,700	5,172	4,000	1112	1500
5/10/01	17,500	1,669	1,900	1000	1000
5/17/01	31,300	5,200	760	1354	900
5/24/01	>2,419,200	9,800	14,300	2000	1000
5/31/01	57,600	8,600	6,000	1669	1100

Table 9. continued					
	Total coliform	E. coli	fecal coliform	Enterococci	Male-specific
Columns 1-3	/ 100mL	/ 100mL	/ 100mL	/100mL	coliphage / 100ml
Target #/100mL	35,640	1440	1000	1350	1000
6/6/01	29,900	28,200	19,800	1956	300
6/11/01	75,400	7,400	9,900	884	200
			•		
6/14/01	75,400	9,700	8,200	836	500
6/18/01	129,100	8,500	7,000	4100	200
6/20/01	117,800	3,000	1,200	860	300
6/25/01	49,600	3,100	770	733	100
6/27/01	24,600	1,145	1,300	677	100
7/3/01	54,800	2,000	16,000	703	200

Table 10. Organism spike concentrations for columns 4,5,6,7, and 10.

	total coliform	E. coli	fecal coliform	Entorococc	i male-specific
Columns 4-7,10	/ 100mL	/ 100mL	/ 100mL	/ 100mL	coliphage / 100mL
Target #/100mL	359,568	14,528	10,000	13,620	10,000
Geometric mean all data	295663	27075	9952	5160	3516
12/14/00	2,400	2,400	2500	1733	1000
1/4/01	81,640	15,410	1,000	1,210	12000
1/5/01	57,940	12,590	1000	860	8500
1/7/01	98,040	8,050	900	866	5500
1/8/01	48,840	13,330	900	740	500
1/9/01	30,760	10,810	690	980	2000
1/10/01	32,550	8650	460	866.4	500
1/11/01	677,000	13,170	1900	1414	140,000
1/18/01	496,000	14,970	3900	1450	10,000
1/25/01	435,000	15,650	7300	816.4	2000
2/1/01	369,000	68,670	60,000	13,130	5000
2/8/01	373,000	132,000	96,000	8,130	3000
2/15/01	512,000	26,020	14,000	7,490	1000
2/22/01	410,000	97,000	53,000	12,330	1000
3/1/01	2,392,000	175,000	112,000	15,650	2000
3/9/01	529,000	141,360	32,000	15,650	1000
3/16/01	240,000	129,970	14,000	20,000	1000
3/23/01	299,000	4,500	3,900	2,010	1000

Table 10. continued

	Total		fecal		
	coliform	E. coli	coliform	Enterococci	Male-specific
Columns 4-7,10	/ 100mL	/ 100mL	/ 100mL	/100mL	coliphage / 100ml
Target #/100mL	359,568	14,528	10,000	13,620	10,000
					5000
3/29/01	134,000	10,000	170	20,000	5000
4/5/01	120,000	1,046	110	740	12,000
4/12/01	135,000	10,000		1,070	10,000
4/19/01	644,000	34,480	22,000	20,000	10,000
4/26/01	231,000	15,650	6,600	10,000	6000
5/3/01	1,067,000	51,720	40,000	11,120	15,000
5/10/01	175,000	16,690	19,000	10,000	10,000
5/17/01	313,00	52,000	7,600	13,540	9,000
5/24/01	24,000,000	98,000	143,000	20,000	10,000
5/31/01	576,000	86,000	60,000	16,690	11,000
6/6/01	299,000	282,000	198,000	19,560	3,000
6/11/01	754,000	74,000	99,000	8,840	2,000
6/14/01	754,000	97,000	82,000	8,360	5,000
6/18/01	1,291,000	85,000	70,000	41,000	2,000
6/20/01	1,178,000	30,000	12,000	8,600	3,000
6/25/01	496,000	31,000	7,700	7,330	1,000
6/27/01	246,000	11,450	13,000	6,770	1,000
7/3/01	548,000	20,000	160,000	7,030	2,000

 Table 11. Organism spike concentrations for columns 8,9,11 and 12

-	Total		Fecal		
	coliform	E. coli	coliform	Enterococci	Male-specific
Columns	/ 100mL	/ 100mL	/ 100mL	/ 100mL	coliphage /
8,9,11,12					100mL
Target #/100mL	6,768,575	485,100	475,000	24,015	7559
Geometric mean	16,517,310	595,418	525,223	45,931	194,446
All data					
12/14/00			3,100,000		310,000
1/4/01	19,863,000	487,000	200,000	14,390	229,500
1/5/01	24,192,000	189,000	200,000	18,500	290500
1/7/01	17,329,000	74,000	100,000	5,880	290,000
1/8/01	10,462,000	86,640	95,000	7630	88,500
1/9/01	12,033,000	104,620	108,000	7,980	95,000
1/10/01	7,701,000	81,640	86,000	4500	18,000
1/11/01	48,700,000	1,850,000	1,060,000	29,090	28,000
1/18/01	1,000,000	985,000	470,000	46,110	160,000
1/25/01	19,900,000	637,000	400,000	18,500	64,500
2/1/01	29,800,000	473,000	430,000	20,000	350,000
2/8/01	21,800,000	1,145,000	1,000,000	63,000	440,000
12/14/00 1/4/01 1/5/01 1/7/01 1/8/01 1/9/01 1/10/01 1/11/01 1/18/01 1/25/01 2/1/01	24,192,000 17,329,000 10,462,000 12,033,000 7,701,000 48,700,000 19,900,000 29,800,000	189,000 74,000 86,640 104,620 81,640 1,850,000 985,000 637,000 473,000	200,000 200,000 100,000 95,000 108,000 86,000 1,060,000 470,000 400,000 430,000	18,500 5,880 7630 7,980 4500 29,090 46,110 18,500 20,000	229,500 290500 290,000 88,500 95,000 18,000 28,000 160,000 64,500 350,000

Lable 11, continue					
	Total		fecal		
	coliform	E. coli	coliform	Enterococci	Male-specific
Columns	/ 100mL	/ 100mL	/ 100mL	/100mL	coliphage / 100ml
8,9,11,12					
Target #/100mL	6,768,575	485,100	475,000	24,015	7559
2/15/01	17,500,000	496,000	200,000	38,730	96,000
2/22/01	3,000,000	318,000	140,000	30,760	41,000
3/1/01	24,192,000	408,000	400,000	2,000,000	140,000
3/9/01	5,475,000	278,000	92,000	3,255,000	62,000
3/16/01	17,329,000	908,000	140,000	910,000	100,000
3/23/01	14,800,000	324,000	610,000	246,000	20,000
3/29/01	12,000,000	594,000	640,000	213,000	30,000
4/5/01	24,192,000	285,000	200,000	31,000	400,000
4/12/01	7,701,000	173,000	30,000	96,000	570,000
4/19/01	32,200,000	1,313,000	1,160,000	31,000	410,000
4/26/01	6,300,000	613,000	200,000	54,750	240,000
5/3/01	39,900,000	455,000	440,000	54,750	970,000
5/10/01	51,200,000	780,000	5,400,000	20,000	2,300,000
5/17/01	25,900,000	313,000	2,600,000	20,000	440,000
5/24/01	27,200,000	862,000	820,000	86,640	450,000
5/31/01	22,800,000	1,529,000	2,300,000	30,000	200,000
6/6/01	14,600,000	1,000,000	1,030,000	31,000	300,000
6/11/01	13,400,000	1,259,000	1,430,000	52,000	140,000
6/14/01	15,531,000	1,789,000	1,800,000	97,000	340,000
6/18/01	47,300,000	5,172,000	3,100,000	40,000	370,000
6/20/01	24,900,000	2,187,000	1,600,000	30,760	490,000
6/25/01	24,196,000	2,603,000	2,000,000	98,000	290,000
6/27/01	14,600,000	2,000,000	1,520,000	30,000	750,000
7/3/01	24,900,000	1,722,000	2,500,000	18,500	270,000

Results and Discussion

Table 11. continued

The overall objective of this study was to determine if a variety of microbes in septic tank effluents of varying qualities could in fact be removed by passage through mound sand in a controlled laboratory environment. The results are summarized in a series of tables below. All of the data is presented in pairs of tables where the eight columns dosed with the high quality effluent (BOD and suspended solids <30 mg/L) are separated from the four columns that received the low quality septic tank effluent (BOD and suspended solids>100).

In addition to the microbial occurrence data collected on the column effluents, pH values were also determined. Table 12 presents the low, high and average pH values

for the weekly effluent samples collected from the bottom of the experimental columns. In all experiments the pH was extremely stable.

Table 12.

Summary of column effluent pH's for columns dosed with high quality septic system effluent.

Column number Column Length	1 12 inch	2 18 inch	3 24 inch	4 18 inch	5 24 inch	6 30 inch	7 36 inch	10 24 inch
Doses per day	5/day	1/day						
Dosing Rate	2 gpd/ft^2	2 gpd/ft ²						
Target microbe								
Dose/ 100 mL	1,000	1,000	1,000	10,000	10,000	10,000	10,000	10,000
Low pH	7.9	8.1	8.3	8.3	8.3	8.4	8.4	8.2
High pH	8.6	8.6	8.6	8.6	8.7	8.6	8.6	8.7
Average pH	8.3	8.4	8.5	8.4	8.5	8.5	8.5	8.4

Table 13.

Summary of column effluent pH's for columns dosed with low quality septic system effluent.

Column number Column Length	8 24 inch	9 36 inch	11 48 inch	12 60 inch
Doses per day	5/day	5/day	5/day	5/day
Dosing Rate	1 gpd/ft^2	1 gpd/ft^2	1 gpd/ft^2	1 gpd/ft^2
Target microbe			•	
dose/100mL	1,000,000	1,000,000	1,000,000	1,000,000
Low pH	7.8	7.6	8.0	7.8
High pH	8.5	8.4	8.5	8.4
Average pH	8.1	8.1	8.3	8.0

Total coliform is the indicator that has been traditionally used by water microbiologists since 1920 to detect microbial contamination of wells. While total coliform does, in fact, detect outside contamination of a water well system, its ability to accurately predict the presence of fecal material is limited. The total coliform data is presented in tables 14 and 15. The data collected through week 18 on the columns dosed with the high quality effluent 5 times per day at 2 gpd/ft² conclusively demonstrates the ability of mound sand to remove almost all of the total coliform organisms introduced to the tops of the columns. The occasional low level detections were most likely due to the difficulty in maintaining sterile conditions during sample collection. The removal efficiency could be characterized as four log reduction, or 99.99% removal.

The 24 inch column dosed once per day with high quality effluent spiked with 10,000 organisms/ 100 mL, presents a different picture. Total coliforms appeared in the effluent of this column at week three and continued to increase in numbers over time. This once per day dosing scenario resulted in a removal efficiency of 3 logs or 99.9%. Additionally when increases in dosing volume were begun on the remainder of the columns at week 19, with a doubling of the flow rate, passage of total coliform can be observed in the 18 inch column dosed with $3x10^5$ organisms but not in the longer columns, or in the columns dosed with $3.3x10^4$ organisms. At week 29 the flow rate was again doubled, resulting in total coliform breakthrough in all of the columns. For the 24, 36,48 and 60 inch columns dosed with the low quality effluent and $1.7x10^7$ organisms, breakthrough also didn't occur until the second phase of dose increases was begun. Once the columns failed, removal efficiencies on these columns dropped to less than 2 logs and was similar for all three dose levels. There is one quirk in the data that we were unable to explain. Of the four columns dosed with the low quality effluent and the highest microbial counts, the shortest (24 inch) performed the best.

It should be noted that the 48 inch column became bio-fouled two weeks after the dosing rate was increased. A microbial mat formed at the surface of the column resulting in an over flow from the top of the column which in turn dripped down the outside of the column contaminating the effluent. The counts for this column from weeks 24 and 27 are most likely from the dripping contamination. Testing on this column was terminated at this point.

Table 14. Total coliform levels/ 100 mLs for columns dosed with high quality septicsystem effluent.

Column number	1	2	3	4	5	6	7	10
Column Length			24 inch		24 inch	30 inch	36 inch	24 inch
•								
Doses per day	5/day	5/day	5/day	5/day	5/day	5/day	5/day	1/day
Dosing Rate				2 gpd/ft^2				2 gpd/ft^2
Volume/dose	74 mLs	74 mLs	74 mLs	74 mLs	74 mLs	74 mLs	74 mLs	372mLs
Microbe dose								
level/100mL	33,000	33,000	33,000	300,000	300,000	300,000	300,000	300,000
Week 3 12/15/00	2	1	0	0	0	2	0	47.2
Week 6 1/04/01	0	0	0	0	0	0	0	410.6
Week 9 1/25/01	2	0	0	6.3	0	0	0	129.6
Week 12 2/15/01	1	0	0	0	0	0	0	16,160
Week 15 3/7/01	0	0	0	0	0	0	0	24,810
Week 18 3/28/01	0	0	0	0	0	0	0	3270
Week 21 4/19/01*	0	0	0	. 0	0	0	0	
Volume/dose	148 mL	148 mL	148 mL	148 mL	148 mL	148 mL	148 mL	744 mLs
Week 23 5/3/01	7.4			200				816.4
Week 24 5/9/01	0	1	0	53.8	14.6	sacrificed	0	81,640
Week 27 6/1/01	0	0	0	365.4	28.2		0	
Week 29	57.6	310	13.5	13,960	114.5		310	
6/14/01**				·				
Volume/dose	296 mL	296 mL	296 mL	296 mL	296 mL		296 mL	
Week 30 6/19/01	58.3	116.2	8.4	3,950	0		630	
Week 30 6/21/01	27.9	66.3	6.3	3,310	95.9		410	
Week 30 6/22/01	18.5	29.5	8.6	2430	113.7		285.1	
Week 31 6/26/01	17.3	56.3	12.2	1732.9	107.1		261.3	
Week 31 6/28/01	23.1	45.5	9.8	3360	435.2		78.9	

• **Flow rate quadrupled at end of week 28

Column number	8	9	11	12
Column Length	24 inch	36 inch	48 inch	60 inch
Dosing Rate	1 gpd/ft^2	1 gpd/ft ²	1 gpd/ft ²	1 gpd/ft ²
Dosing volume	37 mLs	37 mLs	37 mLs	37 mLs
Doses per day	5/day	5/day	5/day	5/day
Microbe dose		·		
level/100mL	17,000,000	17,000,000	17,000,000	17,000,000
Week 3 12/15/00	0	0	0	0
Week 6 1/04/01	0	0	0	0
Week 9 1/25/01	0	0	0	0
Week 12 2/15/01	0	0	0	0
Week 15 3/7/01	0	0	0	0
Week 18 3/28/01*	0	0	0	0
Dosing volume	74mLs	74mLs	74mLs	74mLs
Week 21 4/19/01	0	0	0	12.1
Week 23 5/3/01	0			
Week 24 5/9/01	0	0	20.3	3.1
Week 27 6/1/01	0	0	>2419.2	0
Week 29 6/14/01**	>241,920	310	biofouled	>241,920
Dosing volume	148mLs	148mLs	148mLs	148mLs
Week 30 6/19/01				
Week 30 6/21/01	3590	>241,960		>241,960
Week 30 6/22/01	2750	6050		>241,960
Week 31 6/26/01	23,590	241,960		>241,960
Week 31 6/28/01	98,040	>241,960		>241,960
	141,360	>241,960		>241,960

 Table 15. Total coliform levels/100mLs for columns dosed with low quality septic system effluent.

*Flow rate doubled at end of week 19

**Flow rate quadrupled at end of week 28

The fecal coliform data is presented in tables 16 and 17. Once again, the total absence of this indicator in the effluents from all columns before the dose rates were increased, supports the observation that the mound sand is very capable of removing enteric bacteria. With one exception, the conclusions and observations that can be drawn from this data are the same as those outlined above related to the total coliform data set. The exception is that the columns dosed with the high quality effluent with the lowest concentrations of organisms showed very little passage of fecal coliform, even after dosing rates were increased.

Column number	1	2	3	4	5	6	7	10
Column Length	12 inch	18 inch	24 inch	18 inch	24 inch	30 inch	36 inch	24 inch
Doses per day	5/day	1/day						
Dosing Rate	2 gpd/ft^2							
Volume/dose	74 mLs	372mLs						
Microbe dose								
level/100mL	1,200	1,200	1,200	10,000	10,000	10,000	10,000	10,000
Week 3 12/15/00	0	0	0	0	0	0	0	17
Week 6 1/04/01	0	0	0	0	0	0	0	100
Week 9 1/25/01	0	0	0	0	0	0	0	60
Week 12 2/15/01	0	0	0	0	0	0	0	5600
Week 15 3/7/01	0	0	0	0	0	0	0	1000
Week 18 3/28/01*	0	0	0	0	0	0	0	10
Volume/dose	148 mL	744 mLs						
Week 21 4/19/01	0	0	0	0	0	0	0	0
Week 23 5/3/01	0			1				
Week 24 5/9/01	0	0	0	0	0	sacrificed	0	3900
Week 27 6/1/01	0	0	0	10	2		0	810
Week 29 6/14/01**	10	40	<10	4500	50		100	11,500
Volume/dose	296 mL		296 mL					
Week 30 6/19/01	10	20	0	360	40		230	
Week 30 6/21/01	0	0	0	400	20		80	
Week 30 6/22/01	0	0	0	300	0		30	
Week 31 6/26/01	0	0	0	40	30		40	
Week 31 6/28/01	0	0	0	50	0		0	

Table 16. Fecal coliform levels/100 mLs for columns dosed with high quality septic system effluent.

**Flow rate quadrupled at end of week 28

Table 17. Fecal coliform levels/100 mLs for columns dosed with low quality septic
system effluent.

Column number	8	9	11	12
Column Length	24 inch	36 inch	48 inch	60 inch
Dosing Rate	1 gpd/ft^2	1 gpd/ft^2	1 gpd/ft^2	1 gpd/ft^2
Dosing volume	37 mLs	37 mLs	37 mLs	37 mLs
Doses per day	5/day	5/day	5/day	5/day
Average		•	-	-
microbe dose				
level/100mL	530,000	530,000	530,000	530,000
Week 3 12/15/00	0	0	0	0
Week 6 1/04/01	0	0	0	0
Week 9 1/25/01	0	0	0	0
Week 12 2/15/01	0	0	0	0
Week 15 3/7/01	0	0	0	0
Week 18 3/28/01	0	0	0	0
Week 21 4/19/01*	0	0	0	0
Dosing volume	74mLs	74mLs	74mLs	74mLs
Week 23 5/3/01	0			
Week 24 5/9/01	0	0	0	0
Week 27 6/1/01	0	0	15,000	0
Week 29 6/14/01**	2500	20	biofouled	800
Dosing volume	148mLs	148mLs	148mLs	148mLs
Week 30 6/19/01	470	190,000		190,000
Week 30 6/21/01	90	500		270,000
Week 30 6/22/01	330	18,000		220,000
Week 31 6/26/01	4700	120,000		0
Week 31 6/28/01	5100	238,000		8,600

**Flow rate quadrupled at end of week 28

The data from the *E. coli* testing is presented in tables 18 and 19. The data and subsequent conclusions and observations tracks well with the fecal coliform data with one exception. The *E. coli* counts tend to be slightly higher and there are a few more detections in columns 1-3. This is most likely due to the testing methodology. It has been well documented that the ColilertTM test system is more effective at recovering stressed organisms and thus is expected to have higher counts and more detections at low levels than the fecal coliform (MFFCC) test.

effluent								
Column number	1	2	3	- 4	5	6	7	
Column Length	12 inch	18 inch	24 inch	18 inch	24 inch	30 inch	36 inch	24 inch
Doses per day	5/day	5/day	5/day	5/day	5/day	5/day	5/day	1/day
Dosing Rate	2 gpd/ft^2	2 gpd/ft ²	2 gpd/ft^2					
Volume/dose	74 mLs	74 mLs	372mLs					
Microbe dose								
level/100mL	3,000	3,000	3,000	27,000	27,000	27,000	27,000	27,000
Week 3 12/15/00	0	0	0	0	0	0	0	39.3
Week 6 1/04/01	0	0	0	0	0	0	0	172.3
Week 9 1/25/01	0	0	0	0	0	0	0	58.1
Week 12 2/15/01	0	0	0	0	0	0	0	5280
Week 15 3/7/01	0	0	0	0	0	0	0	6760
Week 18 3/28/01	0	0	0	0	0	0	0	40.8
Week 21 4/19/01*	0	0	0	0	0	0	0	3.1
Volume/dose	148 mL	148 mL	744 mLs					
Week 23 5/3/01	0			6.3				
Week 24 5/9/01	0	0	· O	6.3	2	sacrificed	0	5280
Week 27 6/1/01	0	0	0	11.9	1		0	9330
Week 29 6/14/01**	100	100	3.1	6050	17.3		200	31,000
Volume/dose	296 mL		296 mL					
Week 30 6/19/01	14.5	14.5	3.1	860	0		410	
Week 30 6/21/01	1	3.1	1	410	12		100	
Week 30 6/22/01	2	5.2	3.1	300	11		103.9	
Week 31 6/26/01	0	1	0	85.5	2		38.4	
Week 31 6/28/01	0	0	0	210	4.1		13.4	

Table 18. E. coli levels/100 mLs for columns dosed with high quality septic system effluent

Column number	8	9	11	12
Column Length	24 inch	36 inch	48 inch	60 inch
Doses per day	5/day	5/day	5/day	5/day
Dosing volume	37 mLs	37 mĽs	37 mLs	37 mLs
Dosing Rate	1 gpd/ft^2	1 gpd/ft^2	1 gpd/ft ²	1 gpd/ft^2
Microbe dose				
level/100mL	600,000	600,000	600,000	600,000
Week 3 12/15/00	0	0	0	0
Week 6 1/04/01	0	0	0	0
Week 9 1/25/01	0	0	0.	0
Week 12 2/15/01	0	0	0	0
Week 15 3/7/01	0	0	0	0
Week 18 3/28/01	0	0	0	0
Week 21 4/19/01*	0	0	0	0
Dosing volume	74mLs	74mLs	74mLs	74mLs
Week 23 5/3/01	0			
Week 24 5/9/01	0	0	0	0
Week 27 6/1/01	0	0	>2419.2	0
Week 29 6/14/01**	2090	1	biofouled	173,290
Dosing volume	148mLs	148mLs	148mLs	148mLs
Week 30 6/19/01	410	241,960		241,960
Week 30 6/21/01	310	980		>241,960
Week 30 6/22/01	630	26,130		>241,960
Week 31 6/26/01	4040	>241,960		16,070
Week 31 6/28/01	6700	>241,960		48,840

Table 19. E. coli levels/100 mLs for columns dosed with low quality septic system effluent

**Flow rate quadrupled at end of week 28

The data from the enterococci testing is presented in tables 20 and 21. This bacteria was included in the study because its physical characteristics allow it to pass through a soil matrix more readily than coliforms. Once again the mound sand was capable of removing the organism as long as the columns were not hydraulically overloaded.

Column number	1	2	3	4	5	6	7	10
Column Length	12 inch	18 inch	24 inch	18 inch	24 inch	30 inch	36 inch	24 inch
Doses per day	5/day	5/day	5/day	5/day	5/day	5/day	5/day	1/day
Dosing Rate	2 gpd/ft^2		2 gpd/ft^2	2 gpd/ft^2				
Volume/dose	74 mLs	74 mLs	74 mLs	372 mLs				
Microbe dose								
level/100mL	460	460	460	3,500	3,500	3,500	3,500	3,500
Week 6 1/04/01	0	0	0	1	0	0	0	0
Week 9 1/25/01	0	0	0	0	0	0	0	4.1
Week 12 2/15/01	0	0	0	0	0	0	0	16.1
Week 15 3/7/01	0	0	0	0	0	0	0	122.3
Week 18 3/28/01	0	0	0	0	0	0	0	310
Week 21 4/19/01*	0	0	0	0	0	0	0	21.8
Volume/dose	148 mL	148 mL	148 mL	744 mLs				
Week 23 5/3/01	0	0	0	0	0	0	0	14.8
Week 24	0			0				
Week 27 6/1/01	0	0	0	0	0	sacrificed	0	344.8
Week 29 6/14/01**	1	0	0	1	0		0	648.8
Volume/dose	296 mL		296 mL	1488mL				
Week 30 6/19/01	0	0	0	7980	0		0	410
Week 30 6/21/01	0	0	0	200	0		3.1	
Week 30 6/22/01	3.1	1	0	30.9	1		2	
Week 31 6/26/01	2	1	0	21.6	0		0	
Week 31 6/28/01	0	0	0	16	0		0	

Table 20. Enterococci levels/100 mLs for columns dosed with high quality septic system effluent.

*Flow rate doubled at end of week 19

**Flow rate quadrupled at end of week 28

Column number	8	9	11	12
Column Length	24 inch	36 inch	48 inch	60 inch
Doses per day	5/day	5/day	5/day	5/day
Dosing volume	37 mLs	37 mLs	37 mLs	37 mLs
Dosing Rate	1 gpd/ft^2	1 gpd/ft^2	1 gpd/ft ²	1 gpd/ft ²
Microbe dose				
level/100mL	46,000	46,000	46,000	46,000
Week 3 12/15/00	0	0	0	0
Week 6 1/04/01	0	0	0	0
Week 9 1/25/01	0	0	0	0
Week 12 2/15/01	0	0	0	0
Week 15 3/7/01	0	0	0	0
Week 18 3/28/01	0	0	0	0
Week 21 4/19/01*	0	0	0	0
Dosing volume	74mLs	74mLs	74mLs	74mLs
Week 23 5/3/01	0			
Week 24	0	0	0	0
Week 27 6/1/01	0	0	324.1	0
Week 29 6/14/01**	410	6.3	biofouled	12,100
Dosing volume	148mLs	148mLs	148mLs	148mLs
Week 30 6/19/01	35.9	3590		0
Week 30 6/21/01	32.3	100		5,290
Week 30 6/22/01	58.3	410		100
Week 31 6/26/01	200	1320		620
Week 31 6/28/01	410	4640		850

 Table 21. Enterococci levels/100 mLs for columns dosed with low quality septic system

 effluent.

**Flow rate quadrupled at end of week 28

Male specific coliphage were included in this study as a surrogate for enteric virus. The extremely small size of virus particles as well as their surface charge characteristics make them the most likely organisms to pass through mound sand. Virus passage is particularly worrisome since the majority of gastro-intestinal disease in the U.S. is caused by viruses. The data collected to determine the passage of coliphage through the columns is presented in tables 22 and 23. For almost all of the columns dosed with the high quality effluent, even those spiked with the higher organism levels of organisms, all of the coliphage were removed. The exception was one occasion where a low level was detected from the 24 inch column dosed once per day. The organism was detected in each of the columns receiving the low quality effluent with the highest organism doses after the dosing rates were increased.

Column number	1	2	3	4	5	6	7	10
Column Length	12 inch	18 inch	24 inch	18 inch	24 inch	30 inch	36 inch	24 inch
Doses per day	5/day	5/day	5/day	5/day	5/day	5/day	5/day	1/day
Dosing Rate	2	2	2	2	2	2 gpd/ft^2	2	2 gpd/ft^2
-	gpd/ft ²		gpd/ft ²					
Volume/dose	74 mLs	74 mLs	74	74 mLs	74 mLs	74 mLs	74 mLs	372
			mLs					mLs
Microbe dose								
Level/100 mL	460	460	460	3,500	3,500	3,500	3,500	3,500
Week 3	0	0	0	0	0	0	0	0
12/15/00			_		-	-	•	•
Week 6 1/04/01	0	0	0	0	0	0	0	0
Week 9 1/25/01	0	0	0	0	0	0	0	0
Week 12	0	0	0	0	0	0	0	0
2/15/01	_	-		•	•	0	•	0
Week 15	0	0	0	0	0	0	0	0
3/7/01		•		0	0	0	0	0
Week 18	0	0	0	0	0	0	0	0
3/28/01		0	0	0	0	0	0	0
Week 21	0	0	0	0	0	0	0	0
4/20/01*	140	4 4 0	148	119 ml	148 ml	148 mL	1/8 ml	744
Volume/dose	148 mL	148 mL	mL	140 ML	140 ML	140 ML	140 ML	mLs
Maak 24 5/0/01	0	0	0	0	0	sacrifice	0	10
Week 24 5/9/01		U	0	0	0	d	0	10
Week 27 6/1/01	0	0	0	0	0	ŭ	0	0
Week 29	0	Ő	0 0	Õ	Õ		Ō	0
6/14/01**		U	Ŭ	Ŭ	Ũ		•	-
Volume/dose	296 mL	296	296	296 mL	. 296 mL		296 mL	
Volumoracoo	200	mL	mL					
Week 30	0	0	0	0	0		0	
6/19/01		-						
Week 30	0	0	0	0	0		0	
6/21/01								
Week 30	0	0	0 ·	0	0		0	
6/22/01								
Week 31	0	0	0	0	0		0	
6/26/01								
Week 31	0	0	0	0	0		0	
6/28/01								

Table 22. Male Specific Coliphage/100 mLs levels for columns dosed with high quality septic system effluent.

*Flow rate doubled at end of week 19 **Flow rate quadrupled at end of week 28

Column number	8	9	11	12
Column Length	24 inch	36 inch	48 inch	60 inch
Doses per day	5/day	5/day	5/day	5/day
Dosing volume	37 mĹs	-	•	37 mĽs
Dosing Rate	1 gpd/ft^2	1 gpd/ft^2	1 gpd/ft ²	1 gpd/ft^2
Microbe dose				
Level/100 mL	190,000	190,000	190,000	190,000
Week 3 12/15/00	0	0	0	0
Week 6 1/04/01	0	0	0	0
Week 9 1/25/01	30	0	0	100
Week 12 2/15/01	0	0	0	0
Week 15 3/7/01	0	0	0	0
Week 18 3/28/01	0	0	0	0
Week 21 4/20/01*	0	0	0	0
Dosing volume	74mLs	74mLs	74mLs	74mLs
Week 23 5/3/01	0			
Week 24 5/9/01	0	0	0	0
Week 27 6/1/01	0	0	1170	0
Week 29 6/14/01**	20	0	Bio-fouled	
Dosing volume	148mLs	148mLs	148mLs	148mLs
Week 30 6/19/01	40	30		3270
Week 30 6/21/01	140	0		20
Week 30 6/22/01	120	0		0
Week 31 6/26/01	250	280		120
Week 31 6/28/01	190	390		180

Table 23. Male Specific coliphage/100mLs levels for columns dosed with low quality septic system effluent.

*Flow rate doubled at end of week 19

**Flow rate quadrupled at end of week 28

Five months into the study the researchers were surprised that very few organisms were passing through the columns. At week number 23 of the study it was decided to sacrifice the 30 inch column being dosed with the high quality effluent with the middle microbe dose to determine how far into the column the organisms had traveled. The column was removed from the rack and the sand was removed by pushing it up from the bottom using a piston device. Two inch sand segments from the first 12 inches were collected into separate sterile sampling bags as were four inch segments from the remainder of the column. Organisms from these sand samples were then extracted into sterile buffer which was subsequently tested for each of the study organisms. Interpretation of the data from the examination of sand samples for the organisms must be done with the understanding that the sample size tested is only 1% of what can be tested for a water sample. Additionally, the extraction of the coluphage or enterococci were able to penetrate or survive in any part of the column. The total coliform, and to some

extent the *E. coli* and fecal coliform were detected in decreasing amounts as you moved down the column.

	total coliform /gm	E. coli /gm	Enterococci /gm	fecal coliform /gm	coliphage /gm
gravel / sand interface	91	4	<1	10	<300
0 - 2 inches	74	1	<1	<10	<300
2 - 4 inches	85	3	<1	<10	<300
4 - 6 inches	18	<1	<1	<10	<300
6 - 8 inches	11	1	1	<10	<300
8 - 10 inches	10	1	<1	<10	<300
10 - 12 inches	3	<1	<1	<10	<300
12 - 16 inches	5	1	<1	<10	<300
16 - 20 inches	5	<1	<1	<10	<300
20 - 24 inches	5	<1	<1	<10	<300
24 - 28 inches	4	<1	<1	<10	<300
28 - 30 inches	<1	<1	<1	<10	<300
Residual	<1	<1	<1	<10	<300

Table 24. Organism counts in sand from sacrificed 30 inch column - high quality effluent, 1000 FC/100mL dose rate, dosed 5 times per day, 2gpd/ft²

At the completion of all dosing, the sand from various depths in four additional columns was collected and analyzed as described above. The data is presented in tables 25-28. For column 3, a 24 inch column dosed with high quality effluent with the lowest organism spike dose, decreasing levels of total coliforms were detected as the sampling moved down the column. While few sporadic low level enterococci and E. coli detections occurred, no coliphage or fecal coliforms were observed. For column 5, a 24 inch column dosed with high quality effluent with the middle organism spike dose, the findings were the same as for column 3 with the exception that the organism levels were somewhat higher. Column 8, a 24 inch column dosed with the low quality septic tank effluent with the highest organism dose, the trends are the same as columns 3 and 5 but with higher levels and significant amounts of enterococci found. Fecal coliform also shows up in this column, while no coliphage was detected. In this column the fecal coliform levels are significantly higher than the E. coli levels. A possible explanation for this would be that Klebsiella, which is the organism detected in the fecal coliform test in addition to E. coli is not only passing through the column, but multiplying. This phenomenon has been reported in other studies and is the main reason the fecal coliform has been replaced by the E. coli test as the preferred monitoring tool. The data from column12, the 60 inch column dosed with the low quality effluent and high microbe concentration, is similar to the column 8 data.

	total coliform / gm	<i>E. coli</i> /gm	Enterococci /gm	fecal coliform /gm	coliphage /gm
0-1 inches	137.6	2	<1	<10	<300
1-2 inches	101.9	<1	1	<10	<300
2 - 4 inches	65	1 <1	2	<10	<300
4 - 6 inches	23.1	4.1	3.1	<10	<300
6 - 8 inches	10.8	<1	<1	<10	<300
8 - 10 inches	12.2	<1	1	<10	<300
10 - 12 inches	2	<1	<1	<10	<300
12-14 inches	1	<1	<1	<10	<300
14-16 inches	1	<1	<1	<10	<300
16-18 inches	1	<1	<1	<10	<300
18-20 inches	<1	<1	<1	<10	<300
20-22 inches	<1	<1	<1	<10	<300
22-24 inches	2	<1	<1	<10	<300
Residual	1	<1	<1	<10	<300

Table 25. Column 3- 24 inches, high quality effluent, 1000 FC/100mL dose rate, dosed 5times per day, 2gpd/ft²

Table 26. Column 5 -24 inches, high quality effluent, 10,000 FC/100mL dose rate,dosed 5 times per day, 2gpd/ft²

					male- specific
	total coliform	E. coli	Enterococci	fecal coliform	coliphage
	/gm	/gm	/gm	/gm	/gm
0-1 inches	1732.9	6.3	26.5	<10	<300
1-2 inches	387.3	13.4	27.9	<10	<300
2 - 4 inches	344.8	12.2	13.4	<10	<300
4 - 6 inches	105.4	8.6	3.1	<10	<300
6 - 8 inches	67	3.1	<1	<10	<300
8 - 10 inches	27.5	2	2	<10	<300
10 - 12 inches	14.8	1	1	<10	<300
12-14 inches	8.5	2	1	<10	<300
14-16 inches	10.9	<1	1	<10	<300
16-18 inches	12	3.1	1	<10	<300
18-20 inches	9.7	<1	<1	<10	<300
20-22 inches	8.6	<1	<1	<10	<300
22-24 inches	10.6	<1	<1	<10	<300
Residual	6.3	<1	<1	<10	<300

	total coliform /gm	<i>E. coli /</i> gm	Enterococci /gm	fecal coliform /gm	male- specific coliphage /gm
0-1 inches	>2419.6	488.4	70.8	10,000	<300
1-2 inches	>2419.6	435.2	98.7	9000	<300
2 - 4 inches	>2419.6	260.3	24.3	12,000	<300
4 - 6 inches	>2419.6	72.3	52.1	2000	<300
6 - 8 inches	>2419.6	40.4	24.6	1000	<300
8 - 10 inches	>2419.6	4.1	5.2	240	<300
10 - 12 inches	>2419.6	5.2	4.1	170	<300
12-14 inches	>2419.6	12.1	7.4	150 ·	<300
14-16 inches	>2419.6	4.1	1	100	<300
16-18 inches	>2419.6	9.7	2	20	<300
18-20 inches	2419.6	9.6	4.1	70	<300
20-22 inches	1119.9	7.4	1	40	<300
22-24 inches	>2419.6	12.1	3.1	20	<300
Residual	325.5	4.1	2	10	<300

Table 27. Column 8 - 24 inches, low quality effluent, 1,000,000 FC/100mL dose rate, dosed 5 times per day, gpd/ft²

-1-

Table 28. Column 12- 60 inches, low quality effluent, 1,000,000 FC/100mL dose rate, dosed 5 times per day. 2gpd/ft²

	dosed 5 times per day, 2gpu/ft							
	total	E. coli	Enterococci	fecal	coliphage			
	coliform	∕gm [`]	/gm	coliform	/gm			
	/gm			/gm				
0-1 inches	>2419.6	613.1	344.8	7300	<300			
1-2 inches	>2419.6	770.1	117.8	5000	<300			
2 - 4 inches	>2419.6	206.4	30.1	1900	<300			
4 - 6 inches	>2419.6	35.5	6.2	450	<300			
6 - 8 inches	>2419.6	5.2	2	70	<300			
8 - 10 inches	>2419.6	9.8	3	110	<300			
10 - 12 inches	579.4	<1	4.1	50	<300			
12-14 inches	547.5	<1	1	<10	<300			
14-16 inches	344.8	2	<1	20	<300			
16-18 inches	1732.9	13.4	6.3	<10	<300			
18-20 inches	770.1	7.4	4	30	<300			
20-22 inches	224.7	<1	<1	10	<300			
22-24 inches	125.9	<1	<1	10	<300			
24-30 inches	37.9	<1	1	<10	<300			
30-36 inches	5.2	<1	<1	<10	<300			
36-42 inches	9.8	<1	<1	<10	<300			
42-48 inches	12.2	. <1	<1	<10	<300			
48-54 inches	1	<1	<1	<10	<300			
54-60 inches	<1	<1	<1	<10	<300			

One of the goals of this project was to compare various microbial indicators regarding their ability to pass through the mound sand. The researchers expected that enterococci and coliphages would pass through the sand matrix more readily than coliforms and *E. coli*, and thus prove to be better indicators of septic system failure. Interestingly this was not the case.

Conclusions

The objective of this project was to determine if microbes can be removed as they pass through a mound sand matrix in a controlled laboratory environment. It must be noted that all of the conclusions drawn below are based on a laboratory controlled environment may or may not represent what actually happens in "real world" systems. The study looked at a matrix of several variables which could influence passage; sand depth, general quality of effluent (strength as measured by biological oxygen demand and suspended solids), hydraulic dosing rate, and microbe dose level. The results can be summarized as follows

1. Organisms in reasonably clean effluents do not pass through mound sand in columns 12 inches or longer when dosed evenly throughout the day at the rate of two gallons per day per square foot of surface area.

- 2. Organisms in low quality septic tank effluents do not pass through mound sand in columns 24 inches or longer when dosed evenly throughout the day at the rate of one gallon per day per square foot of surface area.
- 3. If mound sand columns are loaded with either poorly spaced dosing or excessive flows, organisms will pass through the sand, even when the column length is 60 inches.
- 4. Mound sand removes all of the organisms tested with equal efficiency.