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abstract

Regularized optimization that minimizes the sum of a smooth and a nons-
mooth function is widely seen in applications including signal processing,
engineering, and data analysis, where the smooth term is for data fitting
and the nonsmooth term is for promoting desirable properties in the solu-
tion. Optimization methods that utilize smoothness of the data-related
term are usually preferred for this type of problems as they have close
relation with the unregularized, smooth counterparts. In this dissertation,
we study efficient methods for large-scale regularized optimization prob-
lems, covering second- and first-order methods as well as incremental
methods that update a block of variables at a time. We provide theory for
convergence speed, novel algorithms with efficient practical performance,
and analysis for existing methods sharper than existing theory. We also
discuss its application in distributed implementations, in which multiple
machines are used to cope with extremely large-scale data sets.
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1 introduction

Nonsmooth optimization arises naturally in many important applications,
especially as a means of inducing desired properties in the solution of
the optimization problem. For general nonsmooth optimization prob-
lems, usually we can only rely on subgradient-type methods that converge
slowly. Fortunately, by utilizing problem structures in specific nonsmooth
optimization settings, various algorithms with much better convergence
guarantees can be designed. Among them, regularized optimization is a
natural extension from smooth optimization, which covers many widely-
used optimization problems in machine learning, signal processing, statis-
tics, just to name a few.

In regularized optimization, a common setting is that there is one
smooth term and one nonsmooth but convex term, and the appearance of
the latter usually generates a regularized solution with desired property
such as sparsity or feasibility. One popular special case is constrained
optimization of the form

min
xRn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,
(1.1)

where f0 is differentiable and fi, i = 1, . . . ,m are convex. We can consider
the constraints as a form of regularization, and reformulate the problem
as an equivalent regularized optimization problem using an indicator
function.

min
x
f0(x) + 1{x|fi(x)≤0,i=1,...,m}(x).

Another widely seen case is that the regularization term is a certain
norm on the variables, either smooth or nonsmooth, to control certain
properties of the solution. This type of minimization problem can be
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traced back to the 40s by Tikhonov to cope with ill-conditioned problems,
where the regularization is the squared-Euclidean norm (Tikhonov, 1943)
and the data-related term is linear least square regression, resulting in the
following problem.

min
x∈Rn

‖Ax− b‖2
2 + λ‖x‖2

2, (1.2)

where A is a given data matrix, b is the target to approximate, and λ ≥ 0 is
a user-specified parameter to balance the two terms. In statistics, (1.2) is
also known as ridge regression. The main purpose of (1.2) is to generate a
solution of bounded norm, therefore avoiding overfitting the given data
and expecting for better generalization ability on new data points. See, for
example, Shalev-Shwartz and Ben-David (2014, Chapter 13). From their
respective optimality conditions, (1.2) generates the same solution as (1.1)
with f0(x) = ‖Ax− b‖2

2 and m = 1, f1(x) = ‖x‖2
2 − ρ for some ρ ≥ 0. The

regularization term in (1.2) also serves as a way to improve the problem
condition and make it easier to solve than the nonregularized counterpart.
In other cases, however, regularized or constrained versions are harder to
solve.

The squared-Euclidean norm is a very special case, and most other
widely considered regularized problems are nonsmooth. One of the most
considered problem is the LASSO (Tibshirani, 1996).

min
x∈Rn

‖Ax− b‖2
2 + λ‖x‖1. (1.3)

The `1 norm in (1.3) induces sparse solutions (that is, x contains few
nonzero elements) and has important applications in high-dimensional
settings and feature selection. In signal processing, this formulation is
used for compressive sensing (Donoho et al., 2006; Baraniuk, 2007) for
recovering signals and can be applied in image denoising. The problem
(1.3) can be extended to accommodate problems beyond the least square
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regression, including classification and ordinal regression. Another im-
portant extension of (1.3) that induces sparsity in the individual variables
is to use `2,1 norms to induce group sparsity in the blocks of the variables.

From the Bayesian view, these norms as the regularization can also be
interpreted as in the maximum likelihood estimation a certain prior of the
model, or the solution to the optimization problem (Rasmussen, 2003),
where we assume in addition that the model follows a given probability
distribution. For example, the `1 norm is equivalent to assuming a Laplace
distribution centered at 0:

p(x) = λ

2 exp (−λx) .

Similarly, the squared-Euclidean norm assumes a Gaussian distribution
of the solution centered at 0 with standard deviation 1/λ.

One can also extend the discussion to matrix variables, where the
counterparts to the `1 norm and the `2 norm (squared-Euclidean norm)
are the nuclear norm and the Frobenius norm, respectively. The former is
the sum of the singular values of the matrix variable, while the latter is the
sum of entry-wise square. The nuclear norm induces low-rank solutions,
while the Frobenius norm controls the overall size of the matrix.

These applications illustrate the popularity and importance of regu-
larized optimization. Unfortunately, except for some special cases, they
are difficult to minimize due to the presence of nonsmoothness. General-
purpose methods for nonsmooth optimization tend to converge slowly
and are not suitable for these problems that have a special structure such
that there is one smooth term. In the special case of (1.1), under the ad-
ditional assumption that projection to the feasible set can be performed
efficiently, the problem structure has long been utilized to extend smooth
optimization algorithms to obtain more efficient solvers for this setting,
including the famous gradient projection method (Rosen, 1960) and the
projected Newton method (Bertsekas, 1982).
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By generalizing the projection operation, these projection methods are
extended to the type of proximal methods that can deal with nonsmooth
regularizations beyond indicator to the feasible set. Given a regularization
term ψ and a norm ‖ · ‖, the proximal operator that being used is defined
as

prox‖·‖ψ (v) := arg min
x

ψ(x) + 1
2‖x− v‖

2, (1.4)

which covers the projection operation as a special case in which ψ is the
indicator function of the feasible set. Proximal methods are also called
operator splitting methods (Lions and Mercier, 1979), and include the
proximal gradient method (by taking the Euclidean norm) and the prox-
imal Newton method (by taking the norm induced by the Hessian of f ,
assuming positive-definiteness) as prominent examples. Similar to the
projection approach, the proximal approach assumes that the operation
(1.4) can be conducted efficiently. A more detailed survey on proximal
algorithms can be found in the monograph Parikh and Boyd (2014).

An advantage of regularized optimization is that usually one can ex-
tend existing algorithms for smooth optimization to it with little effort
theoretically, to obtain convergence guarantees similar to the smooth case.
Among them, the most well-studied is proximal gradient and its acceler-
ated variant, but studies for other algorithms are rather limited, mostly
because of the difficulty of finding the exact solution to the proximal oper-
ator (1.4). This comes from two practicality issues in the proximal operator.
The first one is the assumption of a simple structure in the function ψ,
which may not be the case beyond simple cases such as when ψ is the
`1-norm or an indicator function for simple sets. Evenwhen the feasible set
is simply a polyhedron, the projection can be time consuming. Secondly,
when the norm used in the proximal operator is not the Euclidean norm,
the computation can also be difficult even if ψ has a simple structure.

In this dissertation, algorithms for regularized optimization problems
are studied. We generalize the proximal algorithms to consider the cases
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that the subproblem (1.4) cannot be solved to optimality but just approxi-
mately, possibly from another iterative process. This flexibility extends the
possibility of operator splitting to make second-order methods practically
feasible. Under a mild block-separability assumption of the regularization
term, we further develop second-order block-coordinate approaches that
can converge much faster than the first-order ones. We also study its real-
ization in applications with extremely large problem size where multiple
processors are required to process the problem-defining data.

1.1 Overview

Chapters 2-5 are derived from our papers Lee and Wright (2019b, 2018a,
2019a); Lee et al. (2018), respectively.

We first consider a general framework that includes proximal Newton
and proximal quasi-Newton as special classes in Chapter 2. The central
idea in this chapter is to consider approximate solutions of the proximal
operator (1.4) with arbitrary precision defined in terms of the objective
value of the proximal operation. This relaxation therefore removes the ne-
cessity of assuming simple structure in the regularizer and allows broader
choices of the norm used to define the proximal operator. Under only the
assumption that the smooth term is Lipschitz-continuously differentiable,
We show that this framework can deal with both convex and nonconvex
problems, and we give detailed convergence rates. By using inexact proxi-
mal operations, our framework makes extensions of high-order methods
for smooth optimization to the regularized setting empirically feasible.
We discuss in detail how the inexactness in the proximal operation affects
the convergence rates, and in particular show that the impact is mild both
theoretically and empirically. In the detailed convergence analysis, we
show that global linear convergence of our framework holds on a wide
class of problems beyond the strongly convex ones, and local linear con-
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vergence can be obtained when a sharpness condition holds. For convex
problems, the widely observed phenomenon that many algorithms can
obtain an approximate solution with medium precision is justified in the-
ory, and this behavior is used to sharpen existing iteration complexities.
We further show that when the problem is nonconvex, our framework
generates iterates that converge to the set of stationary points, on which
the point zero is included in the set of generalized gradient.

In Chapter 3, we extend the framework to a stochastic second-order
block-coordinate descent approach for problems with the additional as-
sumption that the regularization term is block-separable. This framework
can utilize the problem structure to have much lower cost per iteration
by updating just one block of the variables. In particular, the proximal
operator (1.4) is applied on just one block of the variables while other parts
remain intact. Within each block, our framework allows flexible use of
higher-order information of the smooth term with line search to accelerate
the convergence. By picking the blocks using a certain probability distri-
bution, we show that faster convergence rates in the expected objective
value can be obtained. When applied to the special case of stochastic
proximal coordinate descent, our result shows that sampling according to
the block-wise Lipschitz constant can improve the convergence rate greatly
both in the convex and the nonconvex setting. These results generalize the
sampling strategy of coordinate descent for smooth optimization proposed
by Nesterov (Nesterov, 2012) to regularized optimization. We also show
how to make use of the second-order derivative and conduct line search
with low implementation cost.

After discussion of the general frameworks in Chapters 2 and 3, we
turn to specific algorithms in Chapter 4. Our discussion focus on special
properties of first-order methods, in particular proximal gradient and
proximal coordinate descent. We show that when applied on convex prob-
lems, these algorithms provides an implicit regularization such that the
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iterates generated lie within a bounded region even without such a con-
straint given in the optimization problem. This implicit regularization is
then used to improve the O(1/k) convergence we obtained in the previous
chapters to o(1/k), where k is the iteration counter. As gradient descent
and coordinate descent are special cases of proximal gradient and proxi-
mal coordinate descent, the well-established convergence speed of these
fundamental and extensively studied algorithms are also improved by our
analysis.

In Chapter 5, we tackle a real-world application of regularized optimiza-
tion in distributed optimization, where multiple machines are connected
through a local network to store and process data with extremely large vol-
ume. In particular, we consider the problem setting in which the smooth
term f(x) is of the form f̃(A>x), where f̃ is Lipschitz-continuously differ-
entiable and A is the data matrix whose columns are disjointly stored on
multiple machines. This setting of distributed optimization arises natu-
rally when A has size beyond the capacity of a single machine and when
A is by nature collected in a distributed manner. The major bottleneck of
this setting is that synchronization of the variables and the computation
of the gradient requires expensive inner-machine communication, which
can be magnitudes slower than accessing data locally. By utilizing the
framework proposed in Chapter 2, we propose a communication- and
computation-efficient proximal quasi-Newton-type algorithm for this ap-
plication. Prior to our approach, only first-order methods can be used in
this setting because of the distributed data storage, but in practice first-
order methods can be unsatisfactorily slow for any real applications. By
properly utilizing the gradient of the smooth term from previous itera-
tions, our framework provides much faster empirical performance than
state of the art for distributed optimization.
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2 inexact successive quadratic approximation
for regularized optimization

2.1 Introduction

In this chapter, we consider the following regularized optimization prob-
lem:

min
x

F (x) := f(x) + ψ(x), (2.1)

where f : Rn → R is L-Lipschitz-continuously differentiable, and ψ :
Rn → R is convex, extended-valued, proper, and closed, but might be
nondifferentiable. Moreover, we assume that F is lower-bounded and the
solution set Ω of (2.1) is non-empty. Unlike the many other works on this
topic, we focus on the case in which ψ does not necessarily have a simple
structure, such as (block) separability, which allows a prox-operator to
be calculated economically, often in closed form. Rather, we assume that
subproblems that involve ψ explicitly are solved inexactly, by an iterative
process.

Problems of the form (2.1) arise in many contexts. The function ψ could
be an indicator function for a trust region or a convex feasible set. It could
be a multiple of an `1 norm or a sum-of-`2 norms. It could be the nuclear
norm for a matrix variable, or the sum of absolute values of the elements
of a matrix. It could be a smooth convex function, such as ‖ · ‖2

2 or the
squared Frobenius norm of a matrix. Finally, it could be a combination of
several of these elements, as happens when different types of structure
are present in the solution. In some of these situations, the prox-operator
involving ψ is expensive to calculate exactly.

We consider algorithms that generate a sequence {xk}k=0,1,... from some
starting point x0, and solve the following subproblem inexactly at each
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iteration, for some symmetric matrix Hk:

arg min
d∈Rn

Qxk

Hk
(d) := ∇f

(
xk
)T
d+ 1

2d
THkd+ ψ

(
xk + d

)
− ψ

(
xk
)
. (2.2)

We abbreviate the objective in (2.2) as Qk(·) (or as Q(·) when we focus on
the inner workings of iteration k). In some results, we allow Hk to have
zero or negative eigenvalues, provided that Qk itself is strongly convex.
(Strong convexity in ψ may overcome any lack of strong convexity in the
quadratic part of (2.2).)

In the special case of the proximal-gradient algorithm (Combettes and
Wajs, 2005; Wright et al., 2009), where Hk is a positive multiple of the
identity, the subproblem (2.2) can often be solved cheaply, particularly
when ψ is (block) separable, by means of a prox-operator involving ψ.
For more general choices of Hk, or for more complicated regularization
functions ψ, it may make sense to solve (2.2) by an iterative process, such
as accelerated proximal gradient or coordinate descent. Since it may be too
expensive to run this iterative process to obtain a high-accuracy solution
of (2.2), we consider the possibility of an inexact solution. In this chapter,
we assume that the inexact solution satisfies the following condition, for
some constant η ∈ [0, 1):

Q (d)−Q∗ ≤ η (Q (0)−Q∗) ⇔ Q(d) ≤ (1− η)Q∗, (2.3)

where Q∗ := infdQ(d) and Q(0) = 0. The value η = 0 corresponds to exact
solution of (2.2). Other values η ∈ (0, 1) indicate solutions that are inexact
to within a multiplicative constant.

The condition (2.3) is studied in (Bonettini et al., 2016, Section 4.1),
which applies a primal-dual approach to (2.2) to satisfy it. In this connec-
tion, note that if we have access to a lower bound QLB ≤ Q∗ (obtained by
finding a feasible point for the dual of (2.2), or other means), then any d
satisfying Q(d) ≤ (1− η)QLB also satisfies (2.3).
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In practical situations, we need not enforce (2.3) explicitly for some
chosen value of η. In fact, we do not necessarily require η to be known, or
(2.3) to be checked at all. Rather, we can take advantage of the convergence
rates of whatever solver is applied to (2.2) to ensure that (2.3) holds for
some value of η ∈ (0, 1), possibly unknown. For instance, if we apply an
iterative solver to the strongly convex function Q in (2.2) that converges at
a global linear rate (1− τ), then the “inner” iteration sequence {d(t)}t=0,1,...

(starting from some d(0) with Q(d(0)) ≤ 0) satisfies

Q(d(t))−Q∗ ≤ (1− τ)t (Q (0)−Q∗) , t = 0, 1, 2, . . . . (2.4)

If we fix the number of inner iterations at T (say), then d(T ) satisfies (2.3)
with η = (1−τ)T . Although τ might be unknown as well, we can implicitly
tune the accuracy of the solution by adjusting T . On the other hand, if we
wish to attain a certain target accuracy η and have an estimate of rate τ ,
we can choose the number of iterations T large enough that (1− τ)T ≤ η.
Note that τ depends on the extreme eigenvalues ofHk in some algorithms;
we can therefore choose Hk to ensure that τ is restricted to a certain range
for all k.

Empirically, we observe that Q-linear methods for solving (2.2) often
have rapid convergence in their early stages, with slower convergence later.
Thus, a moderate value of η may be preferable to a smaller value, because
moderate accuracy is attainable in disproportionately fewer iterations than
high accuracy.

A practical stopping condition for the subproblem solver in our frame-
work is just to set a fixed number of iterations, provided that a linearly
convergent method is used to solve (2.2). This guideline can be combined
with other more sophisticated approaches, possibly adjusting the number
of inner iterations (and hence implicitly η) according to some heuristics.
For simplicity, our analysis assumes a fixed choice of η ∈ (0, 1). We exam-
ine in particular the number of outer iterations required to solve (2.1) to a
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given accuracy ε. We show that the dependence of the iteration complexity
on the inexactness measure η is benign, increasing only modestly with η
over approaches that require exact solution of (2.2) for each k.

Quadratic Approximation Algorithms

To build complete algorithms around the subproblem (2.2), we either
do a step size line search along the inexact solution dk, or adjust Hk and
recompute dk, seeking in both cases to satisfy a familiar “sufficient decrease”
criterion. We present two algorithms that reflect each of these approaches.
The first uses a line search approach on the step sizewith amodifiedArmijo
rule, as presented in Tseng and Yun (2009). We consider a backtracking
line-search procedure for simplicity; the analysis could be adapted for
more sophisticated procedures. Given the current point xk, the update
direction dk and parameters β, γ ∈ (0, 1), backtracking finds the smallest
nonnegative integer i such that the step size αk = βi satisfies

F
(
xk + αkd

k
)
≤ F

(
xk
)

+ αkγ∆k, (2.5)

where
∆k := ∇f

(
xk
)T
dk + ψ

(
xk + dk

)
− ψ

(
xk
)
. (2.6)

This version appears as Algorithm 1. The exact version of this algorithm
can be considered as a special case of the block-coordinate descent algo-
rithm of Tseng and Yun (2009).1 In Bonettini et al. (2016), Algorithm 1
(with possibly a different criterion on dk) is called the “variable metric
inexact line-search-based method”. (We avoid the term “metric” because
we consider the possibility of indefinite Hk in some of our results.) More
complicated metrics, not representable by a matrix norm, were also con-

1The definition of ∆ in Tseng and Yun (2009) contains another term ωdTHd/2, where
ω ∈ [0, 1) is a parameter. We take ω = 0 for simplicity, but our analysis can be extended
in a straightforward way to the case of ω ∈ (0, 1).
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sidered in Bonettini et al. (2016). Since our analysis makes use only of the
smallest and largest eigenvalues of Hk (which correspond to the strong
convexity and Lipschitz continuity parameters of the quadratic approxi-
mation term), we could also generalize our approach to this setting. We
present only the matrix-representable case, however, as it allows a more
direct comparison with the second algorithm presented next.

Algorithm 1 Inexact Successive Quadratic Approximation with Backtrack-
ing Line Search

Given β, γ ∈ (0, 1), x0 ∈ Rn;
for k = 0, 1, 2, . . . do

Choose a symmetric Hk that makes Qk strongly convex;
Obtain from (2.2) a vector dk satisfying (2.3), for some fixed η ∈ [0, 1);
Compute ∆k by (2.6);
αk ← 1;
while (2.5) is not satisfied do

αk ← βαk;
xk+1 ← xk + αkd

k;

The second algorithm uses the following sufficient decrease criterion
from Scheinberg and Tang (2016); Ghanbari and Scheinberg (2018):

F (x)− F (x+ d) ≥ −γQx
H (d) ≥ 0, (2.7)

for a given parameter γ ∈ (0, 1]. If this criterion is not satisfied, the algo-
rithm modifies H and recomputes dk. The criterion (2.7) is identical to
that used by trust-region methods (see, for example, (Nocedal and Wright,
2006, Chapter 4)), in that the ratio between the actual objective decrease
and the decrease predicted by Q is bounded below by γ; that is,

F (x)− F (x+ d)
Qx
H (0)−Qx

H (d) ≥ γ.

We consider two variants of modifying H such that (2.7) is satisfied.
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The first successively increases H by a factor β−1 (for some parameter
β ∈ (0, 1)) until (2.7) holds. We require in this variant that the initial
choice of H is positive definite, so that all eigenvalues grow by a factor
of β−1 at each multiplication. The second variant uses a similar strategy,
except that H is modified by adding a successively larger multiple of the
identity, until (2.7) holds. (This algorithm allows negative eigenvalues in
the initial estimate of H .) These two approaches are defined as the first
and the second variants of Algorithm 2, respectively.

Algorithm 2 Inexact Successive Quadratic Approximation with Modifica-
tion of the Quadratic Term
1: Given β, γ ∈ (0, 1], x0 ∈ Rn;
2: for k = 0, 1, 2, . . . do
3: if Variant 1 then Choose H0

k � 0;
4: if Variant 2 then Choose a suitable H0

k ;
5: αk ← 1, Hk ← H0

k ;
6: Obtain from (2.2) a vector dk satisfying (2.3), for some fixed η ∈

[0, 1);
7: while (2.7) is not satisfied do
8: if Variant 1 then αk ← βαk, Hk ← H0

k/αk;
9: if Variant 2 then Hk ← H0

k + α−1
k I , αk ← βαk;

10: Obtain from (2.2) a vector dk satisfying (2.3);
11: xk+1 ← xk + dk;

Algorithm 1 and Variant 1 of Algorithm 2 are direct extensions of
backtracking line search in the smooth case, in the sense that when ψ

is not present, both approaches are identical to shrinking the step size.
However, aside from the sufficient decrease criteria, the two differ when
the regularization term is present.

The second variant of Algorithm 2 is similar to the method proposed in
Scheinberg and Tang (2016); Ghanbari and Scheinberg (2018), with the only
difference being the inexactness criterion of the subproblem solution. This
variant of modifyingH can be seen as interpolating between the step from
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the original H and the proximal gradient step. It is also a generalization
of the trust-region technique for smooth optimization. When ψ is not
present, adding a multiple of the identity to H in (2.2) is equivalent to
shrinking the trust region (Moré and Sorensen, 1983). We can therefore
think of Algorithm 2, Variant 2 as a generalized trust-region approach for
regularized problems.

Rather than our multiplicative criterion (2.3), the works Scheinberg
and Tang (2016); Ghanbari and Scheinberg (2018) use an additive criterion
to measure inexactness of the solution. In the analysis of Scheinberg and
Tang (2016); Ghanbari and Scheinberg (2018), this tolerance must then be
reduced to zero at a certain rate as the algorithm progresses, resulting
in growth of the number of inner iterations per outer iteration as the
algorithms progress. By contrast, we attain satisfactory performance (both
in theory and practice) for a fixed value η ∈ (0, 1) in (2.3).

Which of the algorithms described above is “best” depends on the
circumstances. When (2.2) is expensive to solve, Algorithm 1 may be
preferred, as it requires approximate solution of this subproblem just once
on each outer iteration. On the other hand, when ψ has special properties,
such as inducing sparsity or low rank in x, Algorithm 2 might benefit
from working with sparse iterates and solving the subproblem in spaces
of reduced dimension.

Variants and special cases of the algorithms above have been discussed
extensively in the literature. Proximal gradient algorithms have H = ξI

for some ξ > 0 (Combettes and Wajs, 2005; Wright et al., 2009); proximal-
Newton uses H = ∇2f (Lee et al., 2014; Rodomanov and Kropotov, 2016;
Li et al., 2017a); proximal-quasi-Newton and variable metric use quasi-
Newton approximations for Hk (Scheinberg and Tang, 2016; Ghanbari
and Scheinberg, 2018). The term “successive quadratic approximation”
is also used by Byrd et al. (2016). Our methods can even be viewed as
a special case of block-coordinate descent (Tseng and Yun, 2009) with a



15

single block. The key difference in this work is the use of the inexactness
criterion (2.3), while existing works either assume exact solution of (2.2),
or use a different criterion that requires increasing accuracy as the number
of outer iterations grows. Some of these works provide only an asymptotic
convergence guarantee and a local convergence rate, with a lack of clarity
about when the fast local convergence rate will take effect. An exception is
Bonettini et al. (2016), which also makes use of the condition (2.3). How-
ever, Bonettini et al. (2016) gives convergence rate only for convex f and
requires existence of a scalar µ ≥ 1 and a sequence {ζk} such that

∞∑
k=0

ζk <∞, ζk ≥ 0, Hk+1 � (1 + ζk)Hk, µI � Hk �
1
µ
I, ∀k, (2.8)

where A � B means that A− B is positive semidefinite. This condition
may preclude such useful and practical choices of Hk as the Hessian and
quasi-Newton approximations. We believe that our setting may be more
general, practical, and straightforward in some situations.

Contribution

This chapter shows that, when the initial value ofHk at all outer iterations k
is chosen appropriately, and that (2.3) is satisfied for all iterations, then the
objectives of the two algorithms converge at a global Q-linear rate under
an “optimal set strong convexity” condition defined in (2.10), and at a
sublinear rate for general convex functions. WhenF is nonconvex, we show
sublinear convergence of the first-order optimality condition. Moreover,
to discuss the relation between the subproblem solution precision and the
convergence rate, we show that the iteration complexity is proportional to
either 1/(1− η) or 1/(2(1−√η)), depending on the properties of f and ψ,
and the algorithm parameter choices.2

2Note that for η ∈ [0, 1), 1/(1− η) > 1/(2(1−√η)).
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In comparison to existingworks, ourmajor contributions in this chapter
are as follows.

• We quantify how the inexactness criterion (2.3) affects the step size
of Algorithm 1, the norm of the final H in Algorithm 2, and the
iteration complexity of these algorithms. We discuss why the process
for finding a suitable value of αk in each algorithm can potentially
improve the convergence speed when the quadratic approximations
incorporate curvature information, leading to acceptance of step
sizes whose values are close to one.

• We provide a global convergence rate result on the first-order op-
timality condition for the case of nonconvex f in (2.1) for general
choices of Hk, without assumptions beyond the Lipschitzness of∇f .

• The global R-linear convergence case of a similar algorithm in Ghan-
bari and Scheinberg (2018) when F is strongly convex is improved to
a global Q-linear convergence result for a broader class of problems.

• For general convex problems, in addition to the known sublinear
(1/k) convergence rate, we show linear convergence with a rate inde-
pendent of the conditioning of the problem in the early stages of the
algorithm.

• Faster linear convergence in the early iterations also applies to prob-
lems with global Q-linear convergence, explaining in part the empir-
ical observation that many methods converge rapidly in their early
stages before settling down to a slower rate. This observation also
allows improvement of iteration complexities.

Related Work

Our general framework and approach, and special cases thereof, have
been widely studied in the literature. Some related work has already been
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discussed above. We give a broader discussion in this section.
When ψ is the indicator function of a convex constraint set, our ap-

proach includes an inexact variant of a constrained Newton or quasi-
Newton method. There are a number of papers on this approach, but
their convergence results generally have a different flavor from ours. They
typically show only asymptotic convergence rates, together with global
convergence results without rates, under weaker smoothness and con-
vexity assumptions on f than we make here. For example, when ψ is
the indicator function of a “box” defined by bound constraints, Conn
et al. (1988) applies a trust-region framework to solve (2.2) approximately,
and shows asymptotic convergence. The paper Byrd et al. (1995) uses a
line-search approach, with Hk defined by an L-BFGS update, and omits
convergence results. For constraint sets defined by linear inequalities, or
general convex constraints, Burke et al. (1990) shows global convergence of
a trust region method using the Cauchy point. A similar approach using
the exact Hessian as Hk is considered in Lin and Moré (1999), proving
local superlinear or quadratic convergence in the case of linear constraints.

Turning to our formulation (2.1) in its full generality, Algorithm 1 is
analyzed in Bonettini et al. (2016), which refers to the condition (2.3) as
“η-approximation.” (Their η is equivalent to 1− η in our notation.) This
paper shows asymptotic convergence of Qk(d) to zero without requiring
convexity of F , Lipschitz continuity of ∇f , or a fixed value of η. The only
assumptions are that Qk(dk) < 0 for all k and the sequence of objective
function values converges (which always happens when F is bounded
below). Under the additional assumptions that∇f is Lipschitz continuous,
F is convex, (2.8), and (2.3), they showed convergence of the objective value
at a 1/k rate. The same authors considered convergence for nonconvex
functions satisfying a Kurdyka-Łojasiewicz condition in Bonettini et al.
(2017), but the exact rates are not given. Our results differ in not requiring
the assumption (2.8), and we are more explicit about the dependence of
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the rates on η. Moreover, we show detailed convergence rates for several
additional classes of problems.

A version of Algorithm 2 without line search but requiring Hk to over-
estimate the Hessian, as follows:

f(xk + d) ≤ f(xk) +∇f(xk)Td+ 1
2d

THkd

is considered in Chouzenoux et al. (2014). Asymptotic convergence is
proved, but no rates are given.

Convergence of an inexact proximal-gradient method (for which Hk =
LI for all k) is discussed in Schmidt et al. (2011). With this choice of Hk,
(2.7) always holds with γ = 1. They also discuss its accelerated version
for convex and strongly convex problems. Instead of our multiplicative
inexactness criterion, they assume an additive inexactness criterion in the
subproblem, of the form

Qk

(
dk
)
≤ Q∗k + εk. (2.9)

Their analysis also allows for an error ek in the gradient term in (2.2).
The paper shows that for general convex problems, the objective value
converges at a 1/k rate provided that∑k

√
εk and

∑
k ‖ek‖ converge. For

strongly convex problems, they proved R-linear convergence of ‖xk − x∗‖,
provided that the sequence {‖ek‖} and {√εk} both decrease linearly to zero.
When our approaches are specialized to proximal gradient (Hk = LI), our
analysis shows a Q-linear rate (rather than R-linear) for the strongly convex
case, and applies to the convergence of the objective value rather than
the iterates. Additionally, our results shows convergence for nonconvex
problems.

Variant 2 of Algorithm 2 is proposed in Scheinberg and Tang (2016);
Ghanbari and Scheinberg (2018) for convex and strongly convex objectives,
with inexactness defined additively as in (2.9). For convex f , Scheinberg
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and Tang (2016) showed that if∑∞k=0 εk/‖Hk‖ and
∑∞
k=0

√
εk/‖Hk‖ converge

then a 1/k convergence rate is achievable. The same rate can be achieved if
εk ≤ (a/k)2 for any a ∈ [0, 1]. When F is µ-strongly convex, Ghanbari and
Scheinberg (2018) showed that if∑ εk/ρ

k is finite (where ρ = 1− (γµ)/(µ+
M),M is the upper bound for ‖Hk‖, and γ is as defined in (2.7)), then a
global R-linear convergence rate is attained. In both cases, the conditions
require a certain rate of decrease for εk, a condition that can be achieved
by performing more and more inner iterations as k increases. By contrast,
our multiplicative inexactness criterion (2.3) can be attained with a fixed
number of inner iterations. Moreover, we attain a Q-linear rather than an
R-linear result.

Algorithm 1 is also considered in Lee et al. (2014), withHk set either to
∇2f(xk) or a BFGS approximation. Asymptotic convergence and a local
rate are shown for the exact case. For inexact subproblem solutions, local
results are proved under the assumption that the unit step size is always
taken (which may not happen for inexact steps). A variant of Algorithm 1
with a different step size criterion is discussed in Byrd et al. (2016), for
the special case of ψ(x) = ‖x‖1. Inexactness of the subproblem solution is
measured by the norm of a proximal-gradient step for Q. By utilizing spe-
cific properties of the `1 norm, this paper showed a global convergence rate
on the norm of the proximal gradient step on F to zero, without requiring
convexity of f — a result similar to our nonconvex result. However, the
extension of their result to general ψ is not obvious and, moreover, our
inexactness condition avoids the cost of computing the proximal gradient
step on Q. When Hk is ∇2f(xk) or a BFGS approximation, they obtain
for the inexact version local convergence results similar to the exact case
proved in Lee et al. (2014).

For the case in which f is convex, thrice continuously differentiable,
and self-concordant, and ψ is the indicator function of a closed convex
set, Tran-Dinh et al. (2014) analyzed global and local convergence rates
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of inexact damped proximal Newton with a fixed step size. The paper
Li et al. (2017a) extends this convergence analysis to general convex ψ.
However, generalization of these results beyond the case of Hk = ∇2f(xk)
and self-concordant f is not obvious.

Accelerated inexact proximal gradient is discussed in Schmidt et al.
(2011); Villa et al. (2013) for convex f to obtain an improvedO(1/k2) conver-
gence rate. The work Jiang et al. (2012) considers acceleration with more
general choices of H under the requirement Hk � Hk+1 for all k, which
precludes many interesting choices of Hk. This requirement is relaxed by
Ghanbari and Scheinberg (2018) to θkHk � θk+1Hk+1 for scalars θk that
are used to decide the extrapolation step size. However, as shown in the
experiment in Ghanbari and Scheinberg (2018), extrapolation may not
accelerate the algorithm. Our analysis does not include acceleration using
extrapolation steps, but by combining with the Catalyst framework (Lin
et al., 2018), similar improved rates could be attained.

Outline: Remainder of the Chapter

The remainder of this chapter is organized as follows. In Section 2.2, we
introduce notation and prove some preliminary results. Convergence
analysis appears in Section 2.3 for Algorithms 1 and 2, covering both
convex and nonconvex problems. Some interesting and practical choices
of Hk are discussed in Section 2.4 to show that our framework includes
many existing algorithms. We provide some preliminary numerical results
in Section 2.5, and make some final comments in Section 2.6.

2.2 Notations and Preliminaries

The norm ‖ · ‖, when applied on vectors, denotes the Euclidean norm.
When applied to a symmetric matrix A, it denotes the corresponding
induced norm, which is equivalent to the spectral radius of A. For any
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symmetric matrix A, λmin(A) denotes its smallest eigenvalue. For any two
symmetric matrices A and B, A � B (respectively A � B) denotes that
A − B is positive semidefinite (respectively positive definite). For our
nonsmooth function F , ∂F denotes the set of generalized gradient defined
as

∂F (x) := ∇f(x) + ∂ψ(x),

where ∂ψ denotes the subdifferential (as ψ is convex). When the minimum
F ∗ ofF (x) is attainable, wedenote the solution set byΩ := {x | F (x) = F ∗},
and define PΩ(x) as the (Euclidean-norm) projection of x onto Ω.

In some results, we use a particular strong convexity assumption to
obtain a faster rate. We say that F satisfies the optimal set strong convexity
condition with modulus µ ≥ 0 if for any x and any λ ∈ [0, 1], we have

F (λx+ (1− λ)PΩ(x)) ≤ λF (x) + (1− λ)F ∗ − µλ (1− λ)
2 ‖x− PΩ (x)‖2 .

(2.10)

This condition does not require the strong convexity to hold globally,
but only between the current point and its projection onto the solution
set. Examples of functions that are not strongly convex but satisfy (2.10)
include:

• F (x) = h(Ax) where h is strongly convex, and A is any matrix;

• F (x) = h(Ax) + 1X(x), where X is a polyhedron;

• Squared-hinge loss: F (x) = ∑max(0, aTi x− bi)2.

A similar condition is the “quasi-strong convexity” condition proposed
by Necoara et al. (2018), which always implies (2.10), and can be implied
by optimal set strong convexity if F is differentiable. However, since we
allow ψ (and therefore F ) to be nonsmooth, we need a different definition
here.
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Turning to the subproblem (2.2) and the definition of ∆k in (2.6), we
find a condition for d to be a descent direction.

Lemma 2.1. If ψ is convex and f is differentiable, then d is a descent direction
for F at x if ∆ < 0.

Proof. We know that d is a descent direction for F at x if the directional
derivative

F ′(x; d) := lim
α→0

F (x+ αd)− F (x)
α

is negative. Note that since f is differentiable and ψ is convex,

F ′(x; d) = max
s∈∂F (x)

sTd = ∇f(x)Td+ max
ŝ∈∂ψ(x)

ŝTd

is well-defined. Now from the convexity of ψ,

ψ(x+ d) ≥ ψ(x) + ŝTd, ∀ŝ ∈ ∂ψ(x),

so
max
ŝ∈∂ψ(x)

ŝTd+∇f(x)Td ≤ ψ(x+ d)− ψ(x) +∇f(x)Td = ∆.

Therefore, when ∆ < 0, the directional derivative is negative and d is a
descent direction.

The following lemma motivates our algorithms.

Lemma 2.2. IfQ and ψ are convex and f is differentiable, thenQ(d) < 0 implies
that d is a descent direction for F at x.

Proof. Note that Q(0) = 0. Therefore, if Q is convex, we have

λ∇f (x)T d+ λ2

2 d
THd+ ψ (x+ λd)− ψ (x) = Qx

H (λd) ≤ λQx
H (d) < 0,
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for all λ ∈ (0, 1]. It follows that∇f(x)T (λd) + ψ(x+ λd)− ψ(x) < 0 for all
sufficiently small λ. Therefore, from Lemma 2.1, λd is a descent direction,
and since d and λd only differ in their lengths, so is d.

Positive semidefiniteness of H suffices to ensure convexity of Q. How-
ever, Lemma 2.2 may be used even when H has negative eigenvalues,
as ψ may have a strong convexity property that ensures convexity of Q.
Lemma 2.2 then suggests that no matter how coarse the approximate solu-
tion of (2.2) is, as long as it is better than d = 0 for a convex Q, it results in
a descent direction. This fact implies finite termination of the backtracking
line search procedure in Algorithm 1.

2.3 Convergence Analysis

We start our analysis for both algorithms by showing finite termination
of the line search procedures. We then discuss separately three classes of
problems involving different assumptions on F , namely, that F is convex,
that F satisfies optimal set strong convexity (2.10), and that F is nonconvex.
Different iteration complexities are proved in each case. The following
condition is assumed throughout our analysis in this section.

Assumption 1. In (2.1), f is L-Lipschitz-continuously differentiable for some
L > 0; ψ is convex, extended-valued, proper, and closed; F is lower-bounded;
and the solution set Ω of (2.1) is nonempty.

Line Search Iteration Bound

We show that the line search procedures have finite termination. The
following lemma for the backtracking line search in Algorithm 1 does not
require H to be positive definite, though it does require strong convexity
of Q (2.2).
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Lemma 2.3. If Assumption 1 holds, Q is σ-strongly convex for some σ > 0,
and the approximate solution d to (2.2) satisfies (2.3) for some η < 1, then for ∆
defined in (2.6), we have

∆ ≤ −1
2

(
1−√η
1 +√ησ ‖d‖

2 + dTHd

)

≤ −1
2

(
1−√η
1 +√ησ + λmin (H)

)
‖d‖2 . (2.11)

Moreover, if
(1−√η)σ + (1 +√η)λmin(H) > 0,

then the backtracking line search procedure in Algorithm 1 terminates in finite
steps and produces a step size α that satisfies the following lower bound:

α ≥ min

1, β (1− γ)

(
1−√η

)
σ +

(
1 +√η

)
λmin (H)

L
(
1 +√η

)
 . (2.12)

Proof. From (2.3) and strong convexity ofQ, we have that for any λ ∈ [0, 1],

1
1− η (Q (0)−Q (d)) ≥ Q (0)−Q∗

≥ Q (0)−Q (λd) (2.13)

≥ Q (0)−
(
λQ (d) + (1− λ)Q (0)− σλ (1− λ)

2 ‖d‖2
)
.

Since Q(0) = 0, we obtain by substituting from the definition of Q that

1
1− η

(
∇f (x)T d+ 1

2d
THd+ ψ (x+ d)− ψ (x)

)
≤ λ

(
∇f (x)T d+ 1

2d
THd+ ψ (x+ d)− ψ (x)

)
− σλ (1− λ)

2 ‖d‖2 .
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Since 1/(1− η) ≥ 1 ≥ λ, we have
(

1
1− η − λ

)
∆ ≤ −σλ (1− λ)

2 ‖d‖2 + 1
2

(
λ− 1

1− η

)
dTHd

≤ −
(
σλ (1− λ)

2 + 1
2

(
1

1− η − λ
)
λmin (H)

)
‖d‖2 .

(2.14)

It follows immediately that the following bound holds for any λ ∈ [0, 1]:

∆ ≤ −1
2

σλ (1− λ)(
1

1−η − λ
) + λmin (H)

 ‖d‖2 .

We make the following specific choice of λ:

λ =
1−√η
1− η ∈ (0, 1]. (2.15)

for which
1− λ = √ηλ, 1

1− η − λ =
√
η

1− η .

The result (2.11) follows by substituting these identities into (2.14).
If the right-hand side of (2.11) is negative, then we have from the

Lipschitz continuity of∇f , the convexity ofψ, and themean value theorem
that the following relationships are true for all α ∈ [0, 1]:

F (x+ αd)− F (x)

= f (x+ αd)− f (x) + ψ (x+ αd)− ψ (x)

≤ α∇f (x)T d− α (ψ (x)− ψ (x+ d)) + α
∫ 1

0
(∇f (x+ tαd)−∇f (x))T d dt

≤ α∆ + Lα2

2 ‖d‖2

≤ α∆−
Lα2(1 +√η)(

1−√η
)
σ +

(
1 +√η

)
λmin (H)

∆.
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Therefore, (2.5) is satisfied if

α∆−
Lα2(1 +√η)(

1−√η
)
σ +

(
1 +√η

)
λmin (H)

∆ ≤ αγ∆.

We thus get that (2.5) holds whenever

α ≤ (1− γ)

(
1−√η

)
σ +

(
1 +√η

)
λmin (H)

L
(
1 +√η

) .

This leads to (2.12), when we introduce a factor β to account for possible
undershoot of the backtracking procedure.

Note that Lemma 2.3 allows indefinite H , and suggests that we can
still obtain a certain amount of objective decrease as long as λmin(H) is not
too negative in comparison to the strong convexity parameter of Q. When
the strong convexity of Q is accounted for completely by the quadratic
part (that is, λmin(H) = σ > 0) we have the following simplification of
Lemma 2.3.

Corollary 2.4. If Assumption 1 holds, λmin(H) = σ > 0, and the approximate
solution d to (2.2) satisfies (2.3) for some η < 1, we have

∆ ≤ − 1
1 +√ηd

THd ≤ − σ

1 +√η ‖d‖
2 . (2.16)

Moreover, the backtracking line search procedure in Algorithm 1 terminates in
finite steps and produces a step size that satisfies the following lower bound:

α ≥ ᾱ := min

1, 2β (1− γ)σ
L
(
1 +√η

)
 . (2.17)
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Proof. Following (2.13), we have from convexity of ψ for any λ ∈ [0, 1] that

1
1− η

(
∇f (x)T d+ 1

2d
THd+ ψ (x+ d)− ψ (x)

)

≤ λ
(
∇f (x)T d+ λ

2d
THd+ ψ (x+ d)− ψ (x)

)
.

Therefore, (
1

1− η − λ
)

∆ ≤
(
λ2 − 1

1− η

)
1
2d

THd. (2.18)

Using (2.15) in (2.18), we obtain (2.16). The bound (2.17) follows by sub-
stituting σ = λmin(H) into (2.12).

Note that the first inequality in (2.11) and the second inequality in (2.16)
make use of the pessimistic lower bound dTHd ≥ λmin(H)‖d‖2, in practice,
we observe (see Section 2.5) that the unit step αk = 1 is often accepted in
practice (significantly larger than the lower bounds (2.12) and (2.17)) when
Hk is the actual Hessian∇2f(xk) or its quasi-Newton approximation.

Next we consider Algorithm 2.

Lemma 2.5. If Assumption 1 holds,Q is σ-strongly convex for some σ > 0, and
d is an approximate solution to (2.2) satisfying (2.3) for some η ∈ [0, 1), then
(2.7) is satisfied if

(1− γ)
1−√η
1 +√ησ + λmin(H) ≥ L. (2.19)

Therefore, in Algorithm 2, if the initial H0
k satisfies

m0I � H0
k �M0I (2.20)
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for someM0 > 0,m0 ≤M0, then for Variant 2, the final Hk satisfies

‖Hk‖ ≤ M̃2(η) := M0 + max

1, 1
β

 L
(
1 +√η

)
2− γ

(
1−√η

) −m0

 . (2.21)

For Variant 1, if we assume in addition thatm0 > 0, we have

‖Hk‖ ≤ M̃1(η) := M0 max

1,
L
(
1 +√η

)
β
(
2− γ

(
1−√η

))
m0

 . (2.22)

Proof. From Lipschitz continuity of ∇f , we have that

F (x)− F (x+ d) + γQx
H (d)

= f (x)− f (x+ d) + γ∇f (x)T d+ γ

2d
THd+ (1− γ) (ψ (x)− ψ (x+ d))

≥ (γ − 1)∇f (x)T d− L

2 ‖d‖
2 + γ

2d
THd+ (1− γ) (ψ (x)− ψ (x+ d))

= (γ − 1)∆− L

2 ‖d‖
2 + γ

2d
THd (2.23)

≥ 1− γ
2

(
1−√η
1 +√ησ‖d‖

2 + dTHd

)
− L

2 ‖d‖
2 + γ

2d
THd, (2.24)

where in (2.23)weused the definition (2.6), and in (2.24)weusedLemma2.3.
By noting dTHd ≥ λmin(H)‖d‖2, (2.24) shows that (2.19) implies (2.7).

Since ψ is convex, we have that σ ≥ λmin(H), so that a sufficient condi-
tion for (2.19) is that

(
(1− γ)

1−√η
1 +√η + 1

)
λmin(H) ≥ L,

which is equivalent to

2− γ(1−√η)
1 +√η λmin(H) ≥ L.
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Let the coefficient of λmin(H) in the above inequality be denoted by C1, this
observation suggests that for Variant 1 the smallest eigenvalue of the final
H is no larger than L/(C1β), and since the proportion between the largest
and the smallest eigenvalues of Hk remains unchanged after scaling the
whole matrix, we obtain (2.22).

For Variant 2, to satisfy C1H � LI , the coefficient for I must be at least
L/C1 −m0. Considering the overshoot, and that the difference between
the largest and the smallest eigenvalues is fixed after adding a multiple of
identity, we obtain the condition (2.21).

By noting the simplification from dTHd ≥ λmin(H)‖d‖2, we rarely ob-
serve the worst-case bounds (2.22) or (2.21) in practice, unless H0 is a
multiple of the identity.

Iteration Complexity

Now we turn to the iteration complexity of our algorithms, considering
three different assumptions on F : convexity, optimal set strong convexity,
and the general (possibly nonconvex) case.

The following lemma is modified from some intermediate results in
Ghanbari and Scheinberg (2018), which shows R-linear convergence of
Variant 2 of Algorithm 2 for a strongly convex objective when the inex-
actness is measured by an additive criterion. A proof can be found in
Appendix 2.A.

Lemma 2.6. Let F ∗ be the optimum of F . If Assumption 1 holds, f is convex
and F is µ-optimal-set-strongly convex as defined in (2.10) for some µ ≥ 0, then
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for any given x and H , and for all λ ∈ [0, 1], we have

Q∗ ≤ λ (F ∗ − F (x))− µλ (1− λ)
2 ‖x− PΩ (x)‖2

+ λ2

2 (x− PΩ (x))T H (x− PΩ (x))

≤ λ (F ∗ − F (x)) + 1
2 ‖x− PΩ (x)‖2

(
‖H‖λ2 − µλ (1− λ)

)
, (2.25)

where Q∗ is the optimal objective value of (2.2). In particular, by setting λ =
µ/(µ+ ‖H‖) (as in Ghanbari and Scheinberg (2018)), we have

Q∗ ≤ µ

µ+ ‖H‖(F ∗ − F (x)). (2.26)

Note that we allow µ = 0 in Lemma 2.6.

Sublinear Convergence for General Convex Problems

We start with case of F convex, that is, µ = 0 in the definition (2.10). In
this case, the first inequality in (2.25) reduces to

Q∗k ≤ λ
(
F ∗ − F

(
xk
))

+ λ2

(
xk − PΩ

(
xk
))T

Hk

(
xk − PΩ

(
xk
))

2 , (2.27)

for all λ ∈ [0, 1]. We assume the following in this subsection.

Assumption 2. There exists finite R0,M > 0 such that

sup
x:F (x)≤F (x0)

‖x− PΩ(x)‖ = R0 <∞ and ‖Hk‖ ≤M, k = 0, 1, 2, . . . .

(2.28)

Using this assumption, we can bound the second term in (2.27) by

Â := sup
k

(
xk − PΩ

(
xk
))T

Hk

(
xk − PΩ

(
xk
))
≤MR2

0. (2.29)
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The bound Â ≤ MR2
0 is quite pessimistic, but we use it for purposes of

comparing with existing works.
The following lemma is inspired by (Bach, 2015, Lemma 4.4) but con-

tains many nontrivial modifications, and will be needed in proving the
convergence rate for general convex problems. Its proof can be found in
Appendix 2.B.

Lemma 2.7. Assume we have three nonnegative sequences {δk}k≥0, {ck}k≥0,
and {Ak}k≥0, and a constant A > 0 such that for all k = 0, 1, 2, . . . , and for all
λk ∈ [0, 1], we have

0 < Ak ≤ A, δk+1 ≤ δk + ck

(
−λkδk + Ak

2 λ2
k

)
. (2.30)

Then for δk ≥ Ak, we have

δk+1 ≤
(

1− ck
2

)
δk. (2.31)

In addition, if we define k0 := arg min{k : δk < A}, then

δk ≤
2A∑k−1

t=k0 ct + 2
, for all k ≥ k0. (2.32)

By Lemma 2.7 together with Assumption 2, we can show that the
algorithms converge at a global sublinear rate (with a linear rate in the
early stages) for the case of convex F , provided that the final value of Hk

for each iteration k of Algorithms 1 and 2 is positive semidefinite.

Theorem 2.8. Assume that f is convex, Assumptions 1 and 2 hold, Hk � 0 for
all k, and there is some η ∈ [0, 1) such that the approximate solution dk of (2.2)
satisfies (2.3) for all k. Then the following claims for Algorithm 1 are true.

1. When F (xk)− F ∗ ≥ (xk − PΩ(xk))THk(xk − PΩ(xk)), we have a linear
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improvement of the objective error at iteration k, that is,

F
(
xk+1

)
− F ∗ ≤

(
1− (1− η) γαk

2

)(
F
(
xk
)
− F ∗

)
. (2.33)

2. For any k ≥ k0, where k0 := arg min{k : F (xk)− F ∗ < MR2
0}, we have

F
(
xk
)
− F ∗ ≤ 2MR2

0

γ(1− η)∑k−1
t=k0 αt + 2

, (2.34)

suggesting sublinear convergence of the objective error. If there exists ᾱ >
0 such that αk ≥ ᾱ for all k, we have

k0 ≤ max
{

0, 1 + 2
γ (1− η) ᾱ log F (x0)− F ∗

MR2
0

}
. (2.35)

For Algorithm 2 under the condition (2.20), the above results still hold, with
ᾱ = 1, αk ≡ 1 for all k, andM replaced by M̃1(η) defined in (2.22) for Variant
1, and M̃2(η) defined in (2.21) for Variant 2.

Proof. Denoting δk := F (xk)− F ∗, we have for Algorithm 1 that the suffi-
cient decrease condition (2.5) together with Hk � 0 imply that

δk+1 − δk ≤ αkγ∆k = αkγ
(
Qk

(
dk
)
− 1

2
(
dk
)T
Hkd

k
)
≤ αkγQk

(
dk
)
.

(2.36)
By defining

Ak :=
(
xk − PΩ

(
xk
))T

Hk

(
xk − PΩ

(
xk
))
, A := MR2

0,

(note that Ak ≤ A follows from (2.29)) and using (2.3), (2.36), and (2.27),
we obtain

δk+1 − δk ≤ αkγ (1− η)
(
−λkδk + Akλ

2
k

2

)
, ∀λk ∈ [0, 1]. (2.37)
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We note that (2.37) satisfies (2.30) with

ck = αkγ (1− η) .

The results now follow directly from Lemma 2.7.
For Algorithm 2, from (2.7) and (2.3), we get that for any k ≥ 0,

δk+1 − δk ≤ γ (1− η)Q∗k, (2.38)

and the remainder of the proof follows the above procedure starting from
the right-hand side of (2.36) with αk ≡ 1.

The conditions of Parts 1 and 2 of Theorem 2.8 bear further considera-
tion. When the regularization term ψ is not present in F , andM is a global
bound on the norm of the true Hessian ∇2f(x), the condition in Part 2 of
Theorem 2.8 is satisfied for k0 = 0, since f(x0)−f ∗ ≤ 1

2M‖x
0−PΩ(x0)‖2 ≤

1
2MR2

0. Under these circumstances, the linear convergence result of Part 1
may appear not to be interesting. We note, however, that the contribution
from ψ may make a significant difference in the general case (in particular,
it may result in F (x0) − F ∗ > MR2

0) and, moreover, a choice of Hk with
‖Hk‖ significantly less thanM may result in the condition of Part 1 being
satisfied intermittently during the computation. In particular, Part 1 lends
some support to the empirical observation of rapid convergence on the
early stages of the algorithms, as we discuss further below. Note that
(Nesterov, 2013, Theorem 4) suggests that when the algorithm is exact
proximal gradient, we get F (xk)− F ∗ ≤MR2

0 for all k ≥ 1, but this is not
always the case when a different H is picked or when (2.2) is solved only
approximately.

By combining Theorem 2.8 with Lemma 2.3 and Corollary 2.4 (which
yield lower bounds on αk), we obtain the following results for Algorithm 1.
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Corollary 2.9. Assume the conditions of Theorem 2.8 are all satisfied. Then we
have the following.

1. If there exists σ > 0 such that λmin(Hk) ≥ σ for all k, then (2.33) becomes

F
(
xk+1

)
− F ∗

F (xk)− F ∗ ≤ 1− γ

2 min

(1− η) ,
2
(
1−√η

)
β(1− γ)σ

L

 ,
(2.39)

(2.34) becomes

F
(
xk
)
− F ∗ ≤ 2MR2

0

γ(k − k0) min
{

1− η, 2(1−√η)β(1−γ)σ
L

}
+ 2

,

and (2.35) becomes

k0 < 1+ 2
γ

max
{

0, log F (x0)− F ∗
MR2

0

}
·max

{
1

(1− η) ,
L

2(1−√η)β (1− γ)σ

}
.

2. If Qk is σ-strongly convex and Hk � 0 for all k, then (2.33) becomes

F
(
xk+1

)
− F ∗

F (xk)− F ∗ ≤ 1− γ

2 min

1− η,

(
1−√η

)2
β(1− γ)σ
L

 ,
(2.34) becomes

F
(
xk
)
− F ∗ ≤ 2MR2

0

γ(k − k0) min
{

1− η, (1−√η)2β(1−γ)σ
L

}
+ 2

,

and (2.35) becomes

k0 < 1+ 2
γ

max
{

0, log F (x0)− F ∗
MR2

0

}
max

{
1

(1− η) ,
L

(1−√η)2β (1− γ)σ

}
.
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We make some remarks on the results above.

Remark 2.10. For any η ∈ [0, 1), we have

1
2(1−√η) <

1
1− η <

1
(1−√η)2 .

Therefore, Algorithm 1 with positive definiteHk has better dependency on η than
the case in which we set λmin(Hk) = 0 and rely on ψ to makeQk strongly convex.
If ψ is strongly convex, we can move some of its curvature toHk without chang-
ing the subproblems (2.2). This strategy may require us to increaseM , but this
has only a slight effect on the bounds in Corollary 2.9. These bounds give good
reasons to capture the curvature ofQk in the HessianHk alone, so henceforth we
focus our discussion on this case.

Remark 2.11. For Algorithm 2, when we use the bounds (2.22) and (2.21) for
M in (2.28), the dependency of the global complexity on η becomes

max

 1
1− η ,

1(
2− γ

(
1−√η

))
(1−√η)

 ≤ max
{

1
1− η ,

1
(2− γ)(1−√η)

}
,

This result is slightly worse than that of using positive definite H in Algorithm
1 if we compare the second part in the max operation.

Remark 2.12. The bound in (2.29) is not tight for generalH , unlessHk ≡MI ,
as in standard prox-gradient methods. This observation gives further intuition
for why second-order methods tend to perform well even though their iteration
complexities (which are based on the bound (2.29)) tend to be worse than first-
order methods. Moreover, when Hk incorporates curvature information for f ,
step sizes αk are often much larger than the worst-case bounds that are used in
Corollary 2.9. Theorem 2.8, which shows how the convergence rates are related
directly to the αk, would give tighter bounds in such cases. Line search onHk in
Algorithm 2 does not improve the rate directly, but we note that using Hk with
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smaller norm whenever possible gives more chances of switching to the intermit-
tent linear rate (2.33).

Part 1 of Theorem 2.8 also explains why solving the subproblem (2.2)
approximately can save the running time significantly, since because of
fast early convergence rate, a solution of moderate accuracy can be attained
relatively quickly.

Linear Convergence for Optimal Set Strongly Convex Functions

We now consider problems that satisfy the µ-optimal-set-strong-convexity
condition (2.10) for some µ > 0, and show that our algorithms have a
global linear convergence property.

Theorem 2.13. If Assumption 1 holds, f is convex, F is µ-optimal-set-strongly
convex for some µ > 0, there is some η ∈ [0, 1) such that at every iteration of
Algorithm 1, the approximate solution d of (2.2) satisfies (2.3), and

σI � Hk �MI, for someM ≥ σ > 0, ∀k. (2.40)

Then for k = 0, 1, 2, . . . , we have

F
(
xk+1

)
− F ∗

F (xk)− F ∗ ≤ 1− αkγ (1− η)µ
µ+ ‖Hk‖

(2.41a)

≤ 1− γµ

µ+M
min

(1− η) ,
2
(
1−√η

)
β (1− γ)σ
L

 . (2.41b)

Moreover, on iterates k for whichF (xk)−F ∗ ≥ (xk−PΩ(xk))THk(xk−PΩ(xk)),
these per-iteration contraction rates can be replaced by the faster rates (2.33) and
(2.39).
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Proof. By rearranging (2.36), we have

F
(
xk+1

)
− F ∗ ≤ F

(
xk
)
− F ∗ + αkγQk

(
dk
)

≤ F
(
xk
)
− F ∗ + αkγ (1− η)Q∗k (2.42a)

≤ F
(
xk
)
− F ∗ − αkγ (1− η) µ

µ+ ‖Hk‖
(
F
(
xk
)
− F ∗

)
(2.42b)

=
(

1− αkγ (1− η) µ

µ+ ‖Hk‖

)(
F
(
xk
)
− F ∗

)
,

where in (2.42a) we used the inexactness condition (2.3) and in (2.42b) we
used (2.26). Using the result in Corollary 2.4 to lower-bound αk, we obtain
(2.41b).

To show that the part for the early fast rate in (2.33) and (2.39) can be
applied, we show that Assumption 2 holds. Then because f is assumed
to be convex as well here, Theorem 2.8 and Corollary 2.9 apply as well.
Consider (2.10), by rearranging the terms, we get

λ (F (x)− F ∗) ≥ µλ(1− λ)
2 ‖x− PΩ (x)‖2 + F (λx+ (1− λ)PΩ (x))− F ∗

≥ µλ(1− λ)
2 ‖x− PΩ (x)‖2 , ∀λ ∈ [0, 1], (2.43)

as F (λx+ (1− λ)PΩ (x)) ≥ F ∗ from optimality. By dividing both sides of
(2.43) by λ and letting λ→ 0, we get the bound

F (x0)− F ∗ ≥ F (x)− F ∗ ≥ σ

2 ‖x− PΩ(x)‖,∀x : F (x) ≤ F (x0), (2.44)

validating Assumption 2.

Note that the parameter µ in the theorem above is decided by the
problem and cannot be changed, while σ can be altered according to the
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algorithm choice. We have a similar result for Algorithm 2.

Theorem 2.14. If Assumption 1 holds, f is convex, F is µ-optimal-set-strongly
convex for some µ > 0, there exists some η ∈ [0, 1) such that at every iteration of
Algorithm 2, the approximate solution d of (2.2) satisfies (2.3), and the conditions
for H0

k in Lemma 2.5 are satisfied for all k. Then we have

F
(
xk+1

)
− F ∗

F (xk)− F ∗ ≤ 1− γ µ (1− η)
µ+ ‖Hk‖

, k = 0, 1, 2, . . . , (2.45)

and the right-hand side of (2.45) can be further bounded by

1− γ µ (1− η)
µ+ M̃1(η)

and 1− γ µ (1− η)
µ+ M̃2(η)

(2.46)

for Variant 1 and Variant 2, respectively, where M̃1(η) and M̃2(η) are defined in
Lemma 2.5. Moreover, whenF (xk)−F ∗ ≥ (xk−PΩ(xk))THk(xk−PΩ(xk)), the
faster rate (2.33) (with αk ≡ 1 and the modification for Algorithm 2 mentioned
in Theorem 2.8) can be used to replace (2.45).

Proof. From (2.26) and (2.38), we have

F
(
xk+1

)
− F ∗ ≤ F

(
xk
)
− F ∗ + γQk

(
dk
)

≤ F
(
xk
)
− F ∗ + γ (1− η)Q∗k

≤
(

1− γ µ

µ+ ‖Hk‖
(1− η)

)(
F
(
xk
)
− F ∗

)
,

proving (2.45). From Lemma 2.5, we ensure that ‖Hk‖ is upper-bounded
by M̃1(η) and M̃2(η) for the two variants respectively, leading to (2.46).
The statement concerning (2.33) follows from the same reasoning as in the
proof for Theorem 2.13.

By reasoning with the extreme eigenvalues of Hk, we can see that
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the convergence rates still depend on the conditioning of f . For Algo-
rithm 1, if we select M ≤ L, then backtracking may be necessary, and
the bound (2.41b) (in which a factor µ/L appears) is germane. This same
factor appears in both (2.41a) and (2.41b) whenM > L. Often, however,
the backtracking line search chooses a value of αk that is not much less
than 1, which is why we believe that the bounds (2.33), (2.34), and (2.41a)
(which depend explicitly on αk) have some value in revealing the actual
performance of the algorithm. Similar comments apply to Algorithm 2,
because (2.7) may be satisfied with ‖Hk‖much smaller than the bounds
for properly chosen H0

k .
In the interesting case in which we choose Hk ≡ LI and η = 0, we

have m0 = ‖Hk‖ = L in Algorithm 2, and modification of Hk is not
needed, since (2.7) always holds for γ = 1. The bound (2.34) becomes
(F (xk)−F ∗) ≤ 2LR2

0/(k+2), which matches the known convergence rates
of proximal gradient (Nesterov, 2013) and gradient descent (Nesterov,
2004). The global linear rate in Theorem 2.14 also matches that of existing
proximal gradient analysis for strongly convex problems, but the inter-
mittent linear rate (2.33) that applies to both cases is new. For the case of
accelerated proximal gradient covered in Nesterov (2013), although not
covered directly by our framework studied in this work, one can combine
our algorithm and analysis with the Catalyst framework (Lin et al., 2018)
to obtain similar accelerated rates for both the strongly convex and the
general convex cases.

Convergence Rates for a Sharpness Condition

We then consider the case that in addition to convexity, the function satis-
fies a sharpness condition

S

r
‖x− PΩ (x)‖r ≤ F (x)− F ∗,∀x (2.47)
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for some S > 0 and some r ≥ 1. Two noteworthy special cases are the
weak sharpminima (Burke and Ferris, 1993) where r = 1 and the quadratic
growth condition where r = 2. The case of r = 2 is studied in Peng et al.
(2018) and they show linear global convergence is achieved in this case.
Here we extend their result to develop more general results. The key idea
is to notice that in (2.25), we can remove the term related to µ and use the
inequality in (2.47) to develop convergeence rates related to the objective
value. For this class of problems, we obtain the following results.

Theorem 2.15. Assume that Assumption 1 holds, f is convex, there is some
η ∈ [0, 1) such that at every iteration of Algorithm 1, the approximate solution
d of (2.2) satisfies (2.3), there is some η ∈ [0, 1) such that at every iteration of
Algorithm 1, the approximate solution d of (2.2) satisfies (2.3), and (2.40) holds
for all k. If F satisfies (2.47) for some S > 0 and some r ≥ 1, then we have the
following for Algorithm 1.

1. When r ∈ [1, 2), the objective value decrease per iteration is at least

F
(
xk
)
− F

(
xk+1

)
≥ (1− η)αkγ

2

(
M
(
r

S

) 2
r

) 3r
r−2

(2.48)

as long as

F
(
xk
)
− F ∗ ≥

(
M
(
r

S

) 2
r

) r
r−2

. (2.49)

Let k0 be the first index such that (2.49) fails, then we further have that the
objective value converges Q-linearly to the optimum for all k ≥ k0.

2. When r = 2, we have global Q-linear convergence.

3. When r > 2, we have Q-linear convergence as long as (2.49) holds.

Proof. We will use (2.42a). To begin, we consider Lemma 2.6 and notice
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that since (2.10) does not hold, we can use (2.27) and (2.47). This leads to

Q∗k ≤ λ
(
F ∗ − F

(
xk
))

+ Mλ2

2

(
r

S

(
F
(
xk
)
− F ∗

)) 2
r

,∀λ ∈ [0, 1]. (2.50)

As the right-hand side of (2.50) is convex with respect to λ, the minimum
happens at either where the derivative is zero or the boundary. Namely,

λ = min

1,

(
F
(
xk
)
− F ∗

)1− 2
r

M
(
r
S

) 2
r

 .
Thus we need to consider when

(
F
(
xk
)
− F ∗

)1− 2
r ≤M

(
r

S

) 2
r

(2.51)

and when (
F
(
xk
)
− F ∗

)1− 2
r > M

(
r

S

) 2
r

(2.52)

Therefore, we discuss the three cases r < 2, r = 2, and r > 2 separately.
Case I: r ∈ [1, 2).
As 1− 2

r
< 0, (2.51) holds if and only if (2.49) holds. In this situation, by

using

λ =

(
F
(
xk
)
− F ∗

)1− 2
r

M
(
r
S

) 2
r

, (2.53)

(2.50) becomes

Q∗k ≤ −

(
F
(
xk
)
− F ∗

)2− 2
r

2M
(
r
S

) 2
r

. (2.54)
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Now as 2− 2/r ≥ 0, by using (2.49) again, we get that

Q∗k ≤ −

(
M
(
r
S

) 2
r

) r
r−2 (2− 2

r
)

2M
(
r
S

) 2
r

≤ −

(
M
(
r
S

) 2
r

) r
r−2 (2− 2

r
)−1

2 ,

which together with (2.42a) leads to (2.48).
Next, when (2.52) holds, we let λ = 1 in (2.50) and get

Q∗k ≤
(
F
(
xk
)
− F ∗

)(
−1 + M

2

(
r

S

) 2
r (
F
(
xk
)
− F ∗

) 2
r
−1
)
≤ 1

2
(
F
(
xk
)
− F ∗

)
,

(2.55)

where the second inequality is from (2.52). This result togetherwith (2.42a)
then implies the desired local Q-linear convergence.
Case II: r = 2.
In this case, 1− 2/r = 0, so

Q∗k ≤
(
F
(
xk
)
− F ∗

)(
−λ+ λ2M

2

(
r

S

) 2
r

)
,∀λ ∈ [0, 1].

Notice that the coefficient for F (xk)− F ∗ is independent of the function
value, so global linear convergence follows directly from (2.42a).
Case III: r > 2.
In this case, we have 1− 2/r ≥ 0 so (2.52) holds if and only if (2.49) holds.
When (2.49) holds, we can use λ = 1 to get (2.55), and the rest then follows
directly from the same argument.

We note that when r > 2, when (2.49) stops to hold, we can use the
result for the convex case to obtain global convergence results. The result
for Algorithm 2 is very similar and thus omitted.
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Sublinear Convergence of the First-order Optimality Condition for
Nonconvex Problems

We consider now the case of nonconvex F . In this situation, Lemma 2.6
cannot be used, so we consider other properties of Q. We can no longer
guarantee the convergence of the objective value to the global minimum.
Instead, we consider the norm of the exact solution of the subproblem as
the indicator of closeness to the first-order optimality condition 0 ∈ ∂F (x)
for (2.1) (see, for example, (Fletcher, 1987, (14.2.16))). In particular, it is
known that 0 ∈ ∂F (x) if and only if

0 = arg min
d

Qx
I (d) = arg min

d
∇f (x)T d+ 1

2d
Td+ψ (x+ d)−ψ (x) . (2.56)

This is a consequence of the following lemma.

Lemma 2.16. Given any H � 0, and Qx
H defined as in (2.2), the following are

true.

1. A point x satisfies the first-order optimality condition 0 ∈ ∂F (x) if and
only if

0 = arg min
d

Qx
H(d).

2. For any x, defining d∗ to be the minimizer of Qx
H(·), we have

Qx
H(d∗) ≤ −1

2λmin (H)‖d∗‖2. (2.57)

Proof. Part 1 is well known. For Part 2, we have from the optimality condi-
tions for d∗ that −∇f(x)−Hd∗ ∈ ∂ψ(x+ d∗). By convexity of ψ, we thus
have

ψ(x) ≥ ψ(x+ d∗) + (d∗)T (∇f(x) +Hd∗) ⇒ 0 ≥ Qx
H(d∗) + 1

2(d∗)THd∗,

from which the result follows.



44

As in (2.56), we consider the following measure of closeness to a sta-
tionary point:

Gk := arg min
d

Qxk

I (d). (2.58)

We show that the minimum value of the norm of this measure over the
first k iterations converges to zero at a sublinear rate of O(1/

√
k). The first

step is to show that the minimum of |Qk| converges at a O(1/k) rate.

Lemma 2.17. Assume that there is an η ∈ [0, 1) such that (2.3) is satisfied at all
iterations. For Algorithm 1, if Assumption 1 holds andHk � σI for some σ > 0
and all k, we have

min
0≤t≤k

∣∣∣Qt

(
dt
)∣∣∣ ≤ F (x0)− F ∗

γ (k + 1) min0≤t≤k αt
≤ F (x0)− F ∗

γ (k + 1) max
{

1,
(1 +√η)L

2β (1− γ)σ

}
.

(2.59)

For Algorithm 2 (requires H0
k � 0 for the first variant), we have

min
0≤t≤k

∣∣∣Qt

(
dt
)∣∣∣ ≤ F (x0)− F ∗

γ (k + 1) .

Proof. From (2.36), we have that for any k ≥ 0,

F ∗−F
(
x0
)
≤ F

(
xk+1

)
−F

(
x0
)
≤ γ

k∑
t=0

αtQt

(
dt
)
≤ γ min

0≤t≤k
αt

k∑
t=0

Qt

(
dt
)
.

(2.60)
From Corollary 2.4, we have that αt for all t is lower bounded by a positive
value. Therefore, using |Qt (dt)| = −Qt (dt) for all t, we obtain

min
0≤t≤k

∣∣∣Qt

(
dt
)∣∣∣ ≤ − 1

k + 1

k∑
t=0

Qt

(
dt
)
≤ F (x0)− F ∗
γ (k + 1) min0≤t≤k αt

.

Substituting the lower bound for α from Corollary 2.4 gives the desired
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result (2.59). The result for Algorithms 2 follows from the same reasoning
applied to (2.7).

The following lemma is from Tseng and Yun (2009). (Its proof is omit-
ted.)

Lemma 2.18 ((Tseng and Yun, 2009, Lemma 3)). Given Hk satisfying (2.40)
for all k, we have

‖Gk‖ ≤
1 + 1

σ
+
√

1− 2 1
M

+ 1
σ2

2 M
∥∥∥dk∗∥∥∥ ,

where
dk∗ := arg minQk.

We are now ready to show the convergence of ‖Gk‖.

Corollary 2.19. Assume that (2.3) holds at all iterations for some η ∈ [0, 1) and
that Assumption 1 holds. Let M̃1(η) and M̃2(η) be as defined in Lemma 2.5. For
Algorithm 1, suppose that Hk satisfies (2.40) for all k ≥ 0. We then have for all
k = 0, 1, , 2, . . . that

min
0≤t≤k

‖Gt‖2 ≤F (x0)− F ∗
γ (k + 1)

M2
(
1 + 1

σ
+
√

1− 2
M

+ 1
σ2

)2

2(1− η)σmin0≤t≤k αt

≤F (x0)− F ∗
γ (k + 1)

M2
(
1 + 1

σ
+
√

1− 2
M

+ 1
σ2

)2

2σ

max

 1
1− η ,

L

2
(
1−√η

)
(1− γ)σβ

 .
For Algorithm 2, if the initialH0

k satisfiesM0I � H0
k � m0I withM0 ≥ m0 > 0
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then for Variant 1 we have:

min
0≤t≤k

‖Gt‖2 ≤ F (x0))− F ∗
γ ((k + 1))

M̃1(η)2
(

1 + 1
m0

+
√

1− 2
M̃1(η) + 1

m2
0

)2

2 (1− η)m0
.

For Variant 2, we have under the same assumptions on H0
k that the same bound

is satisfied,3 with M̃1(η) replaced by M̃2(η).

Proof. Let k̄ := arg min0≤t≤k |Qt(dt)|, the condition (2.3) and Lemmas 2.16
and 2.18 imply

−Qk̄

(
dk̄
)
≥ − (1− η)Q∗k̄

≥ σ (1− η)
2

∥∥∥dk̄∗∥∥∥2

≥ 2σ (1− η)

M2
(
1 + 1

σ
+
√

1− 2
M

+ 1
σ2

)2 ‖Gk̄‖
2 . (2.61)

Finally, we note that ‖Gk̄‖ ≥ min0≤t≤k ‖Gt‖. The proof is finished by
combining (2.61) with Lemma 2.17.

If we replace the definition of Gk in (2.58) by the solution of (2.2), the
inequality in Lemma 2.18 is not needed. In particular, when we use the
proximal gradient algorithm with Hk = LI and η = 0 (so that (2.7) holds
with γ = 1, andM = L) we obtain a bound of 2(F (x0) − F ∗)/(L(k + 1))
on ‖dk‖2, matching the result shown in Nesterov (2013); Drusvyatskiy and
Lewis (2018).

Comparison Among Different Approaches

Algorithms 1 and 2 both require evaluation of the function F for each
choice of the parameter αk, to check whether the decrease conditions (2.5)

3We could instead require only H0
k � 0 and start with Hk + I instead.



47

and (2.7) (respectively) are satisfied. The difference is that Algorithm 2may
also require solution of the subproblem (2.2) for each αk. This additional
computation comes with two potential benefits. First, the second variant
of Algorithm 2 allows the initial choice of approximate Hessian H0

k to
be indefinite, although the final value Hk at each iteration needs to be
positive semidefinite for our analysis to hold. (There is a close analogy
here to trust-region methods for nonconvex smooth optimization, where
an indefinite Hessian is adjusted to be positive semidefinite in the process
of solving the trust-region subproblem.) Second, because full steps are
always taken in Algorithm 2, any structure induced in the iterates xk by
the regularizer ψ (such as sparsity) will be preserved. This fact in turn may
lead to faster convergence, as the algorithm will effectively be working in
a low-dimensional subspace.

2.4 Choosing Hk

Here we discuss some ways to choose Hk so that the algorithms are well
defined and practical, and our convergence theory can be applied.

When Hk are chosen to be positive multiples of identity (Hk = ζkI ,
say), our algorithms reduce to variants of proximal gradient. If we set
ζk ≥ L, then the unit step size is always accepted even if the problem is not
solved exactly, because Qk(dk) is an upper bound of F (xk)− F (xk + dk).
When L is not known in advance, adaptive strategies can be used to find
it. For Algorithm 2, we could define ζ0

k (such thatH0
k = ζ0

kI) to be the final
value ζk−1 from the previous iteration, possibly choosing a smaller value
at some iterations to avoid being too conservative. For Algorithm 1, we
could increase ζ0

k over ζk−1 if backtracking was necessary at iteration k− 1,
and shrink it when a unit stepsize sufficed for several successive iterations.

The proximal Newton approach of setting Hk = ∇2f(xk) is a common
choice in the convex case (Lee et al., 2014), where we can guarantee thatHk
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is at least positive semidefinite. In Lee et al. (2014), it is shown that in some
neighborhood of the optimum, when dk is the exact solution of (2.2), then
unit step size is always taken, and superlinear or quadratic convergence
to the optimum ensues. (A global complexity condition is not required
for this result.) Generally, however, indefiniteness in ∇2f(xk) may lead to
the search direction dk not being a descent direction, and the backtracking
line search will not terminate in this situation. (Our convergence results
for Algorithm 1 do not apply in the case of Hk indefinite.) A common
fix is to use damping, setting Hk = ∇2f(xk) + ζkI , for some ζk ≥ 0 that
at least ensures positive definiteness of Hk. Strategies for choosing ζk
adaptively have been the subject of much research in the context of smooth
minimization, for example, in trust-region methods and the Levenberg-
Marquardt method for nonlinear least squares (see Nocedal and Wright
(2006)). Variant 2 of our Algorithm 2 uses this strategy. It is desirable
to ensure that ζk → 0 as the iterates approach a solution at which local
convexity holds, to ensure rapid local convergence.

An L-BFGS approximation of∇2f(xk) could also be used forHk. When
ψ is not present in (2.1) and f is strongly convex, it is shown in Liu and
Nocedal (1989) that this approach has global linear convergence because
the eigenvalues of Hk are restricted to a bounded positive interval. This
proof can be extended to our algorithms, when a convex ψ is present in
(2.1). When f is not strongly convex, one can apply safeguards to the
L-BFGS update procedure (as described in Li and Fukushima (2001)) to
ensure that the upper and lower eigenvalues ofHk are bounded uniformly
away from zero.

Another interesting choice of Hk is a block-diagonal approximation
of the Hessian, which (when ψ can be partitioned accordingly) allows
the subproblem (2.2) to be solved in parallel while still retaining some
curvature information. Strategies like this one are often used in distributed
optimization for machine learning problems (see, for example, Yang (2013);
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Lee and Chang (2017); Zheng et al. (2017)).

2.5 Numerical Results

We sketch some numerical simulations that support our theoretical results.
We conduct experiments on two different problems: `1-regularized logistic
regression, and the Lagrange dual problem of `2-regularized squared-
hinge loss minimization. The algorithms are implemented in C/C++.

`1-regularized Logistic Regression

Given training data points (ai, bi) ∈ Rn × {−1, 1}, i = 1, . . . , l, and a
specified parameter C > 0, we solve the following convex problem

min
x∈Rn

C
l∑

i=1
ψ
(
1 + exp

(
−biaTi x

))
+ ‖x‖1. (2.62)

We define Hk to be the limited-memory BFGS approximation (Liu and
Nocedal, 1989) based on the past 10 steps, with a safeguard mechanism
proposed in Li and Fukushima (2001) to ensure uniform boundedness of
Hk. The subproblems (2.2) are solved with SpaRSA (Wright et al., 2009), a
proximal-gradient method which, for boundedHk, converges globally at a
linear rate. We consider the publicly available data sets listed in Table 2.1,4

and present empirical convergence results by showing the relative objective
error, defined as

F (x)− F ∗
F ∗

, (2.63)

where F ∗ is the optimum, obtained approximately through running our al-
gorithmwith long enough time. For all variants of our framework, we used

4Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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parameters β = 0.5, and γ = 10−4. Further details of our implementation
are described in Chapter 5.

We use the two smaller data sets a9a and rcv1 to quantify the rela-
tionship between accuracy of the subproblem solution and the number
of outer iterations. We compare running SpaRSA with a fixed number of
iterations T ∈ {5, 10, 15, 20, 25, 30}. Figure 2.1 shows that, in all cases, the
number of outer iterations decreases monotonically as the (fixed) number
of inner iterations is increased. For T ≥ 15, the degradation in number of
outer iterations resulting from less accurate solution of the subproblems is
modest, as our theory suggests. We also observe the initial fast linear rates
in the early stages of the method that are predicted by our theory, settling
down to a slower linear rate on later iterations, but with sudden drops of
the objective, possibly as a consequence of intermittent satisfaction of the
condition in Part 1 of Theorem 2.8.

Next, we examine empirically the step size distribution for Algorithm 1
and how often in Algorithm 2 the matrix Hk needs to be modified. On
both a9a and rcv1, the initial step estimate α = 1 is accepted on over 99.5%
of iterations in Algorithm 1, while in both variants of Algorithm 2, the
initial choice of Hk is used without modification on over 99% of iterations.
These statistics hold regardless of the value of T (the number of inner
iterations), though in the case of Algorithm 2, we see a faint trend toward
more adjustments for larger values of T . When adjustments are needed,
they never numbermore than 4 at any one iteration, except for a single case
(a9a for Variant 1 of Algorithm 2with T = 5) for which up to 8 adjustments
are needed.

We next compare our inexact method with an exact version, in which
the subproblems (2.2) are solved to near-optimality at each iteration. Since
the three algorithms behave similarly, we use Algorithm 1 as the repre-
sentative for this investigation. We use a local cluster with 16 nodes for
the two larger data sets rcv1 and epsilon, while for the small data set a9a,
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Data set l n #nonzeros
a9a 32, 561 123 451, 592
rcv1_test.binary 677, 399 47, 236 49, 556, 258
epsilon 400, 000 2, 000 800, 000, 000

Table 2.1: Properties of the Data Sets

only one node is used. Iteration counts and running time comparisons
are shown in Figure 2.2. The exact version requires fewer iterations, as
expected, but the inexact version requires only modestly more iterations.
In terms of runtime, the inexact versions with moderate amount of inner
iterations (at least 30) has the advantage, due to the savings obtained by
solving the subproblem inexactly.

We note that the approach of gradually increasing the number of in-
ner iterations, suggested in Scheinberg and Tang (2016); Ghanbari and
Scheinberg (2018), produces good results for this application, the number
of iterations required being comparable to those for the exact solver while
the running time is slightly faster than that of T = 30 for epsilon and
competitive with it for the rest two data sets.

Dual of `2-regularized Squared-Hinge Loss Minimization

Given the same binary-labelled data points as in the previous experiment
and a parameter C > 0, the `2-regularized squared-hinge loss minimiza-
tion problem is

min
x∈Rn

1
2‖x‖

2
2 + C

l∑
i=1

max(1− biaTi x, 0)2.

With the notation A := (b1a1, b2a2, . . . , blal), the dual of this problem is

min
α≥0

1
2α

TATAα− 1Tα + 1
4C ‖α‖

2
2, (2.64)
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Algorithm 1 Variant 1 of Algorithm 2 Variant 2 of Algorithm 2

(a) a9a

(b) rcv1t

Figure 2.1: Comparison of different subproblem solution exactness in
solving (2.62). The y-axis is the relative objective error (2.63), and the
x-axis is the iteration count.

which is (1/2C)-strongly convex. We consider the distributed setting
such that the columns of A are stored across multiple processors. In this
setup, only the block-diagonal parts (up to a permutation) of ATA can
be easily formed locally on each processor. We take Hk to be the matrix
formed by these diagonal blocks, so that the subproblem (2.2) can be
decomposed into independent parts. We use cyclic coordinate descent
with random permutation (RPCD) as the solver for each subproblem.
(Note that this algorithm partitions trivially across processors, because of
the block-diagonal structure of Hk.)

Our experiment compares the strategy of performing a fixed number of
RPCD iterations for each subproblem with one of increasing the number
of inner iterations as the algorithm proceeds, as in Scheinberg and Tang
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(a) a9a (b) rcv1 (c) epsilon

Figure 2.2: Comparison between the exact version and the inexact version
of Algorithm 1 for solving (2.62). Top: outer iterations; bottom: running
time. The y-axis is the relative objective error (2.63).

(2016); Ghanbari and Scheinberg (2018). We use the data sets in Table 2.1,
and compare the two strategies on Algorithm 1, but use an exact line
search to choose αk rather than the backtracking approach. (An exact
line search is made easy by the quadratic objective.) For the first strategy,
we use ten iterations of RPCD on each subproblem, while for the second
strategy, we perform 1+bk/10c iterations of RPCD at the kth outer iteration
as suggested by Scheinberg and Tang (2016); Ghanbari and Scheinberg
(2018). The implementation is a modification of the experimental code
of Lee and Roth (2015). We run the algorithms on a local cluster with
16 machines, so that Hk contains 16 diagonal blocks. Results are shown
in Figure 2.3. Since the choice of Hk in this case does not capture global
curvature information adequately, the strategy of increasing the accuracy
of subproblem solution on later iterations does not reduce the number
of iterations as significantly as in the previous experiment. The runtime
results show a significant advantage for the first strategy of a fixed number
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(a) a9a (b) rcv1 (c) epsilon

Figure 2.3: Comparison of two strategies for inner iteration count in Al-
gorithm 1 applied to (2.2): Increasing accuracy on later iterations (blue)
and a fixed number of inner iterations (red). Top: outer iterations; bottom:
running time. Vertical axis shows relative objective error (2.63).

of inner iterations, particularly on the a9a and rcv1 data sets. Judging from
the trend in the approach of increasing inner iterations, we can expect that
the exact version will show huger disadvantage for running time in this
case. We also observe the faster linear rate on early iterations, matching
our theory.

2.6 Conclusions

We have analyzed global convergence rates of three practical inexact suc-
cessive quadratic approximation algorithms under different assumptions
on the objective function, including the nonconvex case. Our analysis
shows that inexact solution of the subproblems affects the rates of conver-
gence in fairly benign ways, with a modest factor appearing in the bounds.
When linearly convergent methods are used to solve the subproblems, the
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inexactness condition holds when a fixed number of inner iterations is
applied at each outer iteration k.

Appendix

2.A Proof of Lemma 2.6

Proof. We have

Q∗ = min
d
∇f (x)T d+ 1

2d
THd+ ψ (x+ d)− ψ (x)

≤ min
d

f (x+ d) + ψ (x+ d) + 1
2d

THd− F (x) (2.65a)

≤ F (x+ λ (PΩ (x)− x)) + λ2

2 (PΩ (x)− x)T H (PΩ (x)− x)− F (x) ∀λ ∈ [0, 1]

(2.65b)

≤ (1− λ)F (x) + λF ∗ − µλ (1− λ)
2 ‖x− PΩ (x)‖2 (2.65c)

+ λ2

2 (x− PΩ (x))T H (x− PΩ (x))− F (x) ∀λ ∈ [0, 1]

≤ λ(F ∗ − F (x))− µλ (1− λ)
2 ‖x− PΩ (x)‖2 + λ2

2 ‖H‖‖x− PΩ (x) ‖2 ∀λ ∈ [0, 1],

where in (2.65a) we used the convexity of f , in (2.65b) we set d = λ(PΩ(x)−
x), and in (2.65c) we used the optimal set strong convexity (2.10) ofF . Thus
we obtain (2.25).

2.B Proof of Lemma 2.7

Proof. Consider

λk = arg min
λ∈[0,1]

−λδk + λ2

2 Ak, (2.66)
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then by setting the derivative to zero in (2.66), we have

λk = min
{

1, δk
Ak

}
. (2.67)

When δk ≥ Ak, we have from (2.67) that λk = 1. Therefore, from (2.30) we
get

δk+1 ≤ δk + ck

(
−δk + Ak

2

)
≤ δk + ck

(
−δk + δk

2

)
=
(

1− ck
2

)
δk,

proving (2.31).
On the other hand, since A ≥ Ak > 0, ck ≥ 0 for all k, (2.30) can be

further upper-bounded by

δk+1 ≤ δk + ck

(
−λkδk + Ak

2 λ2
k

)
≤ δk + ck

(
−λkδk + A

2 λ
2
k

)
, ∀λk ∈ [0, 1].

Now take
λk = min

{
1, δk
A

}
. (2.68)

For δk ≥ A ≥ Ak, (2.31) still applies. If A > δk, we have from (2.68) that
λk = δk/A, hence

δk+1 ≤ δk −
ck
2Aδ

2
k. (2.69)

This together with (2.31) imply that {δk} is a monotonically decreasing
sequence. Dividing both sides of (2.69) by δk+1δk, and from the fact that
δk is decreasing and nonnegative, we conclude

δ−1
k ≤ δ−1

k+1 −
ckδk

2δk+1A
≤ δ−1

k+1 −
ck
2A

Summing this inequality from k0, and using δk0 < A, we obtain

δ−1
k ≥ δ−1

k0 +
∑k−1
t=k0 ct
2A ≥

∑k−1
t=k0 ct + 2

2A ⇒ δk ≤
2A∑k−1

t=k0 ct + 2
,
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proving (2.32).
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3 inexact variable metric stochastic
block-coordinate descent for regularized
optimization

3.1 Introduction

In this chapter, we consider the following regularized convexminimization
problem:

min
x

F (x) := f (x) + ψ (x) , (3.1)

where f is block-wise Lipschitz-continuously differentiable but not nec-
essarily convex, and ψ is convex, extended-valued, proper, closed, and
block-separable, but possibly nondifferentiable. We assume F is lower-
bounded and the solution set Ω is non-empty. For simplicity, we assume
x ∈ Rn, but our methods can be applied to matrix variables too. We
decompose x ∈ Rn into N blocks such that

x = (x1, x2, . . . , xN) ∈ Rn, xi ∈ Rni , ni ∈ N,
N∑
i=1

ni = n,

and assume throughout that the function ψ can be decomposed into
ψ(x) = ∑N

i=1 ψi(xi), with all ψi convex. Many regularized empirical risk
minimization (ERM) problems in machine learning have this structure
with ni > 1 for all i, see, for example, Yuan and Lin (2006); Meier et al.
(2008); Crammer and Singer (2002); Lebanon and Lafferty (2002); Tsochan-
taridis et al. (2005); Lee and Lin (2013). For the block-separability of x, we
use the column submatrices of the identity denoted by U1, . . . , UN , where
Ui corresponds to the indices in the ith block of x. Thus we have

xi = U>i x, x =
N∑
i

Uixi, and ∇if = U>i ∇f.
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By f being block-wise Lipschitz-continuously differentiable, we mean that
there exist constants Li > 0 for all i such that

‖∇if(x+ Uih)−∇if(x)‖ ≤ Li‖h‖, ∀h ∈ Rni , ∀x ∈ Rn. (3.2)

We consider randomized block-coordinate-descent (BCD) type meth-
ods to optimize (3.1) where only one block of variables is updated each
time. Moreover, we define subproblems with varying quadratic terms,
and use possibly non-uniform sampling to select which blocks to update at
each step. Significantly, in order to accommodate general quadratic terms
and complicated regularizers ψi, we also allow inexactness in computation
of the update step.

The kth iteration of the “exact” version of our approach proceeds as
follows. Given the current iterate xk, we pick a block i, according to some
discrete probability distribution over {1, . . . , N}, andminimize a quadratic
approximation of f plus the original ψ, restricted to block i, to obtain the
update direction dki . That is,

dki := arg min
d∈Rni

Qxk

Hk
i

(d) , (3.3)

where

Qxk

Hk
i

(d) := ∇if
(
xk
)>
d+ d>Hk

i d

2 + ψi
(
xki + d

)
− ψi

(
xki
)
, (3.4)

Hk is some positive-definite matrix that can change over iterations, and
Hk
i ∈ Rni×ni is the ith diagonal block ofHk. (The subscript i refers to block

index rather than coordinate index.) A backtracking line search along dki
is then performed to determine the step. We denote the objective in (3.4)
byQk

i (·), or byQi when discussing the internal workings of some iteration
k.

Stochastic methods of this type have been discussed in existing works
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(Nesterov, 2012; Tappenden et al., 2016; Fountoulakis and Tappenden,
2018), but under various assumptions that may be impractical for some
problems. Nesterov (2012) require the prior knowledge of the component-
wise Lipschitz constants, and assume that (3.3) is solved to optimality,
which is usually possible only when ψi possesses some simple structure
and Hk is diagonal. Tappenden et al. (2016) restricts Hk to be fixed over
iterations. Its extension Fountoulakis and Tappenden (2018) is close to our
framework, but their subproblem termination condition may be expensive
to check except for specific choices of ψ (as they point out). By contrast,
we aim for more general applicability by requiring only that (3.3) is solved
arbitrarily inexactly, in a sense defined below in (3.5). Moreover, these
works consider only uniform sampling for the regularized problem in
which ψ 6≡ 0.1 Since Nesterov (2012) showed possible advantages of
non-uniform sampling in the non-regularized (smooth) case, we wish to
consider non-uniform sampling in the regularized setting too. Others
studied the cyclic version under different assumptions (Chouzenoux et al.,
2016; Sun andHong, 2015; Tseng and Yun, 2009; Yun, 2014), but it is known
that this variant is significantly slower than the randomized one in the
worst case (Sun and Ye, 2016).

This chapter contributes both to theory and practice. From the practical
angle, we extend randomized BCD for regularized functions to a more
flexible framework, involving variable quadratic terms and line searches,
recovering existing BCD algorithms as special cases. Knowledge of block-
wise Lipschitz constants is not assumed. We thus develop more practical
algorithms, applicable to wider problem classes, including convex and
nonconvex ones, without prior knowledge of parameters. Our frame-
work leads to algorithms that are significantly faster than existing ones
when applied to real-world problems. The theoretical contributions are as
follows.

1For the special case ψ ≡ 0, works including Tappenden et al. (2016) considered
arbitrary samplings.



61

1. For convex problems, our analysis reflects a phenomenon that is
widely observed in practice for BCD on convex problems: fast Q-
linear convergence in the early stages of the algorithm, until a mod-
est degree of suboptimality is attained. This result can be used to
strongly weaken the dependency of the iteration complexity on the
initial objective value.

2. We show that global linear convergence holds under an assumption
weaker than strong convexity. By combining this fact with the fast
rate above, even for strongly convex problems, we can get iteration
complexities sharper than existing analyses.

3. Our convergence analysis allows arbitrary sampling probabilities
for the blocks; we show that non-uniform distributions can reduce
the iteration complexity significantly in some cases including both
convex and nonconvex problems.

4. We show that the inexactness of subproblem solution affects the
convergence rates in a benign way. It follows that if approximate so-
lutions can be obtained cheaply for the subproblems, overall running
time of the algorithm can be reduced significantly.

Special cases of our algorithm of diagonal H extends existing analysis for
smaller classes of problems, showing that for (3.1), with the additional
information of blockwise Lipschitz constants, sampling with probability
proportional to the value of these constants Li enjoys the same improve-
ment of the convergence by a factor of Lmax/Lavg, where

Lmax := max
1≤i≤N

Li, Lavg :=
∑N
i=1 Li
N

, and Lmin := min
1≤i≤N

Li,

over uniform sampling, a novel result in the regularized setting (3.1), to
our knowledge. We also show the advantage of the same sampling strategy
for nonconvex problems, which is novel even for the non-regularized case.
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We introduce our assumptions and the proposed algorithm in Section
3.2. Section 3.3 provides detailed convergence analysis for various classes
of problems, including the convex and the nonconvex ones as well as the
cases where our algorithm enjoys global linear convergence. The special
case of traditional BCD with the extension of non-uniform sampling is
studied in Section 3.4. We then discuss related works in Section 3.5 and
efficient implementation of our algorithm for ERM problems in Section
3.6. Computational results are shown in Section 3.7 with some concluding
remarks in Section 3.8.

3.2 Proposed Algorithm

We consider the case in which (3.3) is too difficult to be solved in closed
form, so it must be solved inexactly by an iterative method, such as coordi-
nate descent, proximal gradient, or their accelerated variants. We assume
that dki is an η-approximate solution to (3.3) for some η ∈ [0, 1) fixed over
all k and all i, satisfying the following condition similar to (2.3):

η
(
Qk
i (0)−

(
Qk
i

)∗)
≥ Qk

i

(
dki
)
−
(
Qk
i

)∗
, (3.5)

where (Qk
i )∗ := infdQk

i (d). We do not necessarily need to know η or to
verify this condition explicitly as discussed in Chapter 2. Our analysis can
be extended easily to variable, adaptive choices of η, which might lead to
better iteration complexity, but for better interpretability and simplicity,
we fix η for all k in the discussion below.

Our Method

In each iteration of our algorithm, with the current iterate x, a block i is cho-
sen according to some discrete probability distribution over {1, 2, . . . , N},
with probabilities p1, p2, . . . , pN > 0. For the selected block i, we com-
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Algorithm 3 Inexact variable-metric block-coordinate descent for (3.1)
1: Given β, γ ∈ (0, 1), η ∈ [0, 1), and x = x0 ∈ Rn;
2: for k = 0, 1, 2, . . . do
3: Pick a probability distribution p1, . . . , pN > 0,∑i pi = 1, and sample
i accordingly;

4: Compute ∇if(x) and choose a positive-definite Hi;
5: Approximately solve (3.3) to obtain a solution di satisfying (3.5);
6: Compute ∆i by (3.7), αi ← 1;
7: while (3.6) is not satisfied do
8: αi ← βαi;
9: x← x+ αiUidi;

pute∇if , and choose a positive-definiteHi, thus defining the subproblem
(3.4). The selection of Hi is application-dependent, but in most cases, the
(generalized) Hessian, 2 its quasi-Newton approximation, and its diago-
nal entries, possibly plus a diagonal damping term, are obvious choices.
We then find an approximate solution to (3.3) that satisfies (3.5) for some
η ∈ [0, 1).

After obtaining di, we conduct a backtracking line search, as in Tseng
and Yun (2009), and require a sufficient decrease condition to hold. Given
β, γ ∈ (0, 1), we let αi be the largest value in {1, β1, β2, . . . } such that

F (x+ αiUidi) ≤ F (x) + αiγ∆i (3.6)

holds, where

∆i := ∇if (x)> di + ψi (xi + di)− ψi (xi) . (3.7)

Then the iterate is updated to x+ αiUidi. Our algorithm is summarized in
Algorithm 3.

2Since ∇if is Lipschitz continuous, it is differentiable almost everywhere. Therefore,
we can at least define a generalized Hessian as suggested by Hiriart-Urruty et al. (1984).
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3.3 Convergence Analysis

The convergence analysis extends that in Chapter 2, which can be con-
sidered as a special case of the framework in this chapter with N = 1
block. Nontrivial modifications are needed to allow for multiple blocks
and non-uniform sampling. The following result about lower bound on
the step size tracks Corollary 2.3 and its proof is therefore removed.

Lemma 3.1. If the ith block is selected, Hi � mi for some mi > 0, and (3.5)
holds, then we have

∆i ≤ −
1

1 +√ηd
>
i Hidi ≤ −

mi

1 +√η‖di‖
2. (3.8)

Moreover, the backtracking line search procedure inAlgorithm 3 terminates finitely
with a step size lower bounded by

αi ≥ ᾱi := min

1, 2β (1− γ)mi

Li
(
1 +√η

)
 . (3.9)

The bound ᾱi in (3.9) is a worst-case guarantee. For properly selected
Hi (for example, when Hi includes true second-order information about f
confined to the ith block), the steps will usually be closer to 1 because the
last inequality in (3.8) can be loose in this case.

We proceed on to deal with the case that F is convex and that F is not
necessarily convex, respectively.

Convex Case

The following technical lemma is crucial for both the convergence rate
proofs and for motivating the choice of pi, i = 1, 2, . . . , N .

Lemma 3.2. If f and ψ are convex and F satisfies (2.10) for µ ≥ 0, then for any
point x, matrices Hi � 0 with Hi ∈ Rni×ni , probability distribution {pi} > 0,
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and step sizes {αi} > 0, by defining

P := diag(p1In1 , . . . , pNInN ), A := diag(α1In1 , . . . , αNInN ),

H := diag(H1, . . . , HN),

we have that for Qi defined by (3.4) with the givenHi and x, the following holds
for all λ ∈ [0, 1] and all θ such that 0 ≤ θ ≤ αipi, i = 1, . . . , N :

Ei [αiQ∗i |x] ≤ θλ (F ∗ − F (x))− µθλ (1− λ) ‖x− PΩ (x)‖2

2 +

θ2λ2

2 (x− PΩ (x))>P−1A−1H (x− PΩ (x)) . (3.10)

Proof. Given any d ∈ Rn, let d̃ := APd. We can then obtain by change of
variables that

Ei[αiQ∗i |x]

= min
d

∇f (x)>APd+ 1
2d
>HAPd+

N∑
i=1

αipi (ψi (xi + di)− ψi (xi))

= min
d̃

∇f (x)> d̃+ 1
2 d̃
>P−1A−1Hd̃+

N∑
i=1

αipi

(
ψi

(
xi + d̃i

αipi

)
− ψi (xi)

)

≤ min
d̃

min
θ:θ∈[0,1], θ

αipi
≤1,∀i
∇f (x)>

(
θd̃
)

+ 1
2
(
θd̃
)>
P−1A−1H

(
θd̃
)

+ (3.11)

N∑
i=1

αipi

(
ψi

(
xi + θd̃i

αipi

)
− ψi (xi)

)
.

Next, from the convexity of f , we have

∇f (x)> θd̃ = θ
(
∇f (x)> d̃

)
≤ θ

(
f
(
x+ d̃

)
− f (x)

)
,
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and from that θ/(αipi) ≤ 1 for all i and the convexity of ψ, we get

ψi

(
xi + θd̃i

αipi

)
≤
(

1− θ

αipi

)
ψi (xi) + θ

αipi
ψi
(
xi + d̃i

)
= θ

αipi

(
ψi
(
xi + d̃i

)
− ψi (xi)

)
+ ψi (xi) .

Therefore,

min
d̃

min
θ:θ∈[0,1], θ

αipi
≤1,∀i
∇f (x)>

(
θd̃
)

+ 1
2
(
θd̃
)>
P−1A−1H

(
θd̃
)

+

N∑
i=1

αipi

(
ψi

(
xi + θd̃i

αipi

)
− ψi (xi)

)

≤ min
d̃

min
θ:θ∈[0,1], θ

αipi
≤1,∀i

θ
(
F (x+ d̃)− F (x)

)
+ θ2

2 d̃
>P−1A−1Hd̃

≤ min
λ∈[0,1]

min
θ:θ∈[0,1], θ

αipi
≤1,∀i

θ (F (x+ λ (PΩ (x)− x))− F (x)) +

θ2λ2

2 (PΩ (x)− x)> P−1A−1H (PΩ (x)− x) . (3.12)

The desired result (3.10) then follows from combining (3.11)-(3.12) and
(2.10).

By the positive-definiteness of H , (3.6) implies that

F (x+ αiUidi)− F (x) ≤ γαi

(
∆i + 1

2d
>
i Hidi

)
= γαiQi(di)

≤ (1− η)γαiQ∗i . (3.13)

Thus Lemma 3.2 can be applied to the right-hand side of this bound to
obtain an estimate of the decrease in F at the current step.

Now we are ready to state the convergence speed results. Given any
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x0, we define
R0 := sup

x:f(x)≤f(x0)
‖x− PΩ(x)‖ . (3.14)

For the case of general convex problems, we make the additional assump-
tion that for any x0, R0 defined in (3.14) is finite and obtain the following
convergence rate results.

Theorem 3.3. Assume that f and ψ are convex and (3.2) holds. If at all iteration
of Algorithm 3 (3.5) is satisfied with a fixed η ∈ [0, 1), and Hk

i are chosen such
that

Hk
i � mi, k = 0, 1, . . . , (3.15)

for somemi > 0 for all i. We can then guarantee that the step sizes αki are lower-
bounded away from zero for all i and all k by Lemma 3.1 and get the following.

1. At the kth iteration, given any probability distribution {pki }Ni=1 > 0 for
picking the block ik to update, and given the final step sizes {αki }Ni=1 > 0
generated by the backtracking line search for different blocks. Let

Pk := diag(pk1In1 , . . . , p
k
NInN ), Ak := diag(αk1In1 , . . . , α

k
NInN ),

Hk := diag(Hk
1 In1 , . . . , H

k
NInN ).

If

F
(
xk
)
−F ∗ ≥

(
xk − PΩ

(
xk
))>
P−1
k A−1

k Hk
(
xk − PΩ

(
xk
))

min
1≤i≤N

αki p
k
i ,

the convergence rate of the expected objective value is Q-linear:

Eik
[
F
(
xk+1

)
− F ∗

∣∣∣ xk]
(F (xk)− F ∗) ≤

(
1− (1− η) γmin1≤i≤N α

k
i p

k
i

2

)
. (3.16)
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2. Assume in addition that there existMi ≥ mi, i = 1, . . . , N , and we define

M := diag(M1In1 , . . . ,MNInN ), Ā := diag(ᾱ1In1 , . . . , ᾱNInN ),

where ᾱi are defined in Lemma 3.1. Given a probability distribution {pi} >
0 and define

k0 := arg min
{
k : F

(
xk
)
− F ∗ < ‖P−1Ā−1M‖ min

1≤i≤N
ᾱipiR

2
0

}
,

(3.17)
if for all k ≥ k0,

Mi � Hk
i � mi, i = 1, . . . , N (3.18)

and the sampling of ik follows the distribution {pi} for all k ≥ k0, then the
expected objective follows a sublinear convergence rate

Eik0 ,ik0+1,...,ik−1

[
F
(
xk
)∣∣∣ xk0

]
− F ∗ ≤ 2‖P−1Ā−1M‖R2

0
2N + (1− η)γ(k − k0) . (3.19)

3. If a fixed probability distribution {pi}Ni=1 > 0 is used throughout to sample
the blocks and (3.18) holds at all iterations, then we have that for all k < k̄0,
where

k̄0 :=

max

0,
log F(x0)−F ∗
‖P−1Ā−1M‖mini ᾱipiR2

0

log
(

2
2−(1−η)γmini ᾱipi

)

 , (3.20)

the expected objective is upper bounded by

Ei0,...,ik−1

[
F
(
xk
)
− F ∗

∣∣∣x0
]
≤
(

1− (1− η)γmini ᾱipi
2

)k (
F
(
x0
)
− F ∗

)
,

(3.21)
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and for all k ≥ k̄0, the expected objective is upper bounded by

Ei0,...,ik−1

[
F
(
xk
)
− F ∗

∣∣∣x0
]
≤

2
∥∥∥P−1Ā−1M

∥∥∥R2
0

2N + (1− η)γ(k − k̄0)
. (3.22)

Proof. Consider Lemma 3.2. For the general convex case, we have µ = 0
and thus only two terms are left in (3.10):

Eik
[
αkik

(
Qk
ik

)∗∣∣∣xk] (3.23)

≤ θλ
(
F ∗ − F

(
xk
))

+ θ2λ2

2
(
xk − PΩ

(
xk
))>
P−1
k A−1

k Hk
(
xk − PΩ

(
xk
))

for all λ ∈ [0, 1] and all θ ∈ [0,mini αki pki ]. We then set θ = min1≤i≤N α
k
i p

k
i

because the whole possible range of the right-hand side of (3.23) remains
unchanged by manipulating λ alone. Since the right-hand side of (3.23) is
a strongly convex function of λ (provided x /∈ Ω, in which case we have
reached the optimal objective and there is nothing to prove), we can find
the maximum by setting the derivative to zero, or its projection to the
feasible set [0, 1] if the optimum occurs outside the range. Therefore,

λ = min

1,
F
(
xk
)
− F ∗

(xk − PΩ (xk))>P−1
k Ā−1

k Hk (xk − PΩ (xk)) mini αki pki

 .
(3.24)

By this choice, when

F
(
xk
)
− F ∗ ≥

(
xk − PΩ

(
xk
))>
P−1
k A−1

k Hk
(
xk − PΩ

(
xk
))

min
1≤i≤N

αki p
k
i ,

we have λ = 1 and (3.23) becomes

Eik
[
αkik

(
Qk
ik

)∗]
≤ 1

2 min
1≤i≤N

αki p
k
i

(
F ∗ − F

(
xk
))
. (3.25)

By combining (3.25) and (3.13), we have proven (3.16).
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Now consider (3.23) again but with αki replaced by ᾱi and pki replaced
with pi and take k ≥ k0. We define

δk := Eik0 ,...,ik−1

[
F
(
xk
)
− F ∗

∣∣∣xk0
]

and take expectation on both sides of (3.23) over ik0 , . . . , ik−1 conditional
on xk0 , then by the definition (3.14) and the bound (3.15), we get

Eik0 ,...,ik

[
ᾱik

(
Qk
ik

)∗∣∣∣xk0
]
≤ −θλδk + θ2λ2

2
∥∥∥P−1Ā−1M

∥∥∥R2
0. (3.26)

Consider θ = min1≤i≤N ᾱipi in (3.26), we get that since Algorithm 3 is a de-
scentmethod, δk < min1≤i≤N ᾱipi

∥∥∥P−1Ā−1M
∥∥∥R2

0, for all k ≥ k0. Therefore,
we can use

λ = δk

min1≤i≤N ᾱipi
∥∥∥P−1Ā−1M

∥∥∥R2
0

in (3.26) to get

Eik0 ,...,ik

[
ᾱik

(
Qk
ik

)∗∣∣∣xk0
]
≤ − min

1≤i≤N
ᾱipi

δ2
k

2 min1≤i≤N ᾱipi
∥∥∥P−1Ā−1M

∥∥∥R2
0

= − δ2
k

2
∥∥∥P−1Ā−1M

∥∥∥R2
0
. (3.27)

Therefore, taking expectation on (3.13) over ik0 , . . . , ik and conditional on
xk0 and with (3.27) gives

δk+1 ≤ δk −
(1− η) γδ2

k

2
∥∥∥P−1Ā−1M

∥∥∥R2
0
. (3.28)

By dviding both sides of (3.28) by δkδk+1 and noting from Lemma 3.1
and (3.6) that {F (xk)} and therefore {δk} is descending, we get

1
δk
≤ 1
δk+1

− (1− η) γδk
2δk+1

∥∥∥P−1Ā−1M
∥∥∥R2

0
≤ 1
δk+1

− (1− η) γ
2
∥∥∥P−1Ā−1M

∥∥∥R2
0
. (3.29)
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Further by telescoping, (3.29) leads to

1
δk
≥ 1
δk0

+ (k − k0) γ (1− η)
2
∥∥∥P−1Ā−1M

∥∥∥R2
0
. (3.30)

Finally, note that because ᾱi ∈ [0, 1] for i = 1, . . . , N , (3.17) implies that

1
δk0

≥ 1
mini ᾱipi

∥∥∥P−1Ā−1M
∥∥∥R2

0
≥ 1

mini pi
∥∥∥P−1Ā−1M

∥∥∥R2
0
. (3.31)

Next, it is straightforward that the solution to

min
p1,...,pN

1
min1≤i≤N pi

subject to
N∑
i=1

pi = 1,

pi ≥ 0, i = 1, . . . , N,

is pi ≡ 1/N and the corresponding objective value is N . Therefore, (3.31)
is improved to

1
δk0

≥ N∥∥∥P−1Ā−1M
∥∥∥R2

0
.

Combining the inequality above with (3.30) then proves (3.19).

The first part of Theorem 3.3 has been observed frequently in practice,
and some restricted special cases without a regularizer has been discussed
in the literature Lee and Wright (2018b); Wright and Lee (2017). However,
to our knowledge, this is the first time that a theoretical proof for BCD-
type methods on general regularized problems (3.1) is given. Other works
in the literature usually have global convergence bounds dependent on
R2

0 +F (x0)−F ∗, here our results significantly weaken the dependency on
the initial objective value.
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We can see from the second item of Theorem 3.3 that the optimal
probability distribution after k0 iterations is

pi = Miᾱ
−1
i∑

jMjᾱ
−1
j

. (3.32)

It is also possible to replace ᾱi and Mi with the real αki ’s ‖Hk
i ‖’s to get

adaptive probabilities and sharper rates. Note that although in Algorithm
3, pi can change over iterations, we fix the probability over iterations for
more succinct analysis, possibly sacrificing some sharper convergence
rates.

We now consider the case that F satisfies the quadratic growth condi-
tion

F (x)− F ∗ ≥ µ

2 ‖x− PΩ (x)‖2 (3.33)

for some µ > 0. This is a condition implied by (2.10) but not vice versa. We
can get a global Q-linear convergence as shown in the following theorem.

Theorem 3.4. Assume that f and ψ are convex and (3.2) and (3.33) hold for
some L1, . . . , LN , µ > 0. If at the kth iteration of Algorithm 3, (3.5) is satisfied
with some η ∈ [0, 1) and Hk is chosen such that (3.15) holds for some mi > 0
for all i so that the step sizes αki are all lower bounded away from 0 as suggested
by Lemma 3.1. Then given any probability distribution {pki } > 0, we have

Eik
[
F
(
xk+1

)
− F ∗

∣∣∣ xk]
F (xk)− F ∗ (3.34)

≤



1− (1−η)γmini αki p
k
i

2 ,

if F(xk)−F ∗
(xk−PΩ(xk))>P−1

k
A−1
k
Hk(xk−PΩ(xk)) ≥ mini αki pki ,

1− (1−η)γµ
4‖P−1

k
A−1
k
Hk‖ , if µ

2‖P−1
k
A−1
k
Hk‖mini αki p

k
i

≤ 1,

1− (1− η)γ
(

mini αki pki
(

mini αki p
k
i ‖P

−1
k
A−1
k
Hk‖

µ
− 1

))
, else.
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Proof. The first case is directly from Theorem 3.3. For the remaining two
cases. By (3.13), (3.23), the Cauchy-Schwarz inequality, and (3.33), we have
that

Eik
[
F
(
xk+1

)
− F

(
xk
)
| xk

]
≤ γ(1− η)Eik

[
αkik

(
Qk
ik

)∗]
≤ γ(1− η)θ

(
F
(
xk
)
− F ∗

)−λ+
θλ2

∥∥∥P−1
k A−1

k Hk
∥∥∥

µ

 , (3.35)

∀λ ∈ [0, 1],∀θ ∈ [0, min
1≤i≤N

αipi].

By the same argument in the previous proofs, we let θ = min1≤i≤N α
k
i p

k
i .

To minimize the right-hand side of (3.35), we set its derivative with respect
to λ to 0, which is guaranteed to be the minimizer because the right-hand
side of (3.35) is strongly convex with respect to λ. This leads to

λ = max

 µ

2θ
∥∥∥P−1

k A−1
k Hk

∥∥∥ , 1
 , θ = min

1≤i≤N
αki p

k
i . (3.36)

Substituting (3.36) back to (3.35) and substracting F ∗ from both sides of
(3.35) then proves (3.34).

Next, for problems satisfying (2.10), we have a faster convergence result.

Theorem 3.5. Assume that f and ψ are convex and (3.2) and (2.10) hold for
some L1, . . . , LN , µ > 0. If at the kth iteration of Algorithm 3, (3.5) is satisfied
with some η ∈ [0, 1) and Hk is chosen such that (3.15) holds for some mi > 0
for all i so that the step sizes αki are all lower bounded away from 0 as suggested
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by Lemma 3.1. Then given any probability distribution {pki } > 0, we have

Eik
[
F
(
xk+1

)
− F ∗

∣∣∣ xk]
F (xk)− F ∗ (3.37)

≤



1− (1−η)γmini αki p
k
i

2 ,

if F(xk)−F ∗
(xk−PΩ(xk))>P−1

k
A−1
k
Hk(xk−PΩ(xk)) ≥ mini αki pki ,1− (1−η)γ

maxi 1
αk
i
pk
i

+maxi
‖Hki ‖
µαk
i
pk
i

 , else.

Proof. The first case in (3.37) is directly from Theorem 3.3. To prove the
second case in (3.37), we let λ = µ/(µ + ‖P−1A−1H‖θ) to cancel out the
last two terms in (3.10), and this value of λ is clearly within the range [0, 1].
This together with setting θ = min1≤i≤N α

k
i p

k
i then implies

Eik
[
αik

(
Qk
ik

)∗]
≤ µθ

µ+
∥∥∥P−1

k A−1
k Hk

∥∥∥ θ
(
F ∗ − F

(
xk
))

= 1
1
θ

+ ‖P
−1
k
A−1
k
Hk‖

µ

(
F ∗ − F

(
xk
))

= 1

maxi 1
αki p

k
i

+ maxi
‖Hk

i ‖
µαki p

k
i

(
F ∗ − F

(
xk
))
. (3.38)

By combining (3.38) and (3.13), we get the desired result.

As we have noted in the respective theorems, for problems on which
Theorem 3.4 or 3.5 holds, Theorem 3.3 is also applicable, and the early
linear convergence rate is significantly faster than the global ones from
Theorems 3.4 and 3.5. Thus, we can sharpen the global iteration complexity
for problems satisfying (2.10) with µ > 0 by combining Theorems 3.5 and
3.3. The resulting complexity is therefore tighter than existing results from
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global linear convergence rates. We also notice that the rate in Theorem 3.5
is faster than that in Theorem 3.4 and this is why we consider these two
conditions separately.

Note too that with knowledge of αi and ‖Hk
i ‖, we could in principle

minimize the expected gap Eik
[
F
(
xk+1

)
− F ∗

∣∣∣ xk] by minimizing the de-
nominator in the right-hand side of (3.37) and (3.34) with respect to pki
over pki > 0 and ∑i p

k
i = 1. (This is not generally a practical proposition

except in the special cases discussed below, as it is usually expensive to
get all αki and all ‖Hk

i ‖.)
The results Theorems 3.3 and 3.5 suggest that larger step sizes αi lead

to faster convergence. When Hk
i incorporates curvature information of f ,

we tend to have much larger step sizes than the lower bound predicted in
Lemma 3.1, and thus the practical performance of using the Hessian or its
approximation usually outperforms using a multiple of the identity as Hi.

All the results here can be combined with Markov’s inequality to get
high-probability bounds for the objective value. The proofs are straight-
forward and therefore omitted.

Nonconvex Case

When f is not necessarily convex, we cannot use Lemma 3.2 anymore.
Moreover, we cannot guarantee convergence to the global optima. Instead,
we will show convergence of measures of stationarity of our method.

The first measure we consider is how fast the optimal objective of the
subproblem (3.3) converges to zero. Since the subproblems are strongly
convex, this measure is zero if and only if the optimal solution is the zero
vector, implying the iterates will not change anymore. This is clear from
the following lemma.

Lemma 3.6. AssumeHi � mi for somemi > 0 for all i in (3.3)-(3.4), and (3.2)
holds true. Then for any step sizes {αi}Ni=1 > 0 and any probability distribution
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{pi}Ni=1 > 0 for picking the blocks, we have

Ei[αiQ∗i ] = 0 ⇔ Q∗i = 0, i = 1, . . . , N ⇔ 0 ∈ ∂F (x) , (3.39)

where ∂F (x) = ∇f(x) + ∂ψ(x) is the set of generalized gradient of F at x.

Proof. From (3.8) in Lemma 3.1, by setting η = 0 we see that Q∗i ≤ 0 for all
i, proving the first equivalence in (3.39).

To prove the second equivalence, we first notice that since Qi are all
strongly convex and Qi(0) ≡ 0, Q∗i = 0 if and only if d∗i = 0, where

d∗i := arg min
d
Qi(d).

Therefore, it suffices to prove that

d∗i = 0 ⇔ −∇if (x) ∈ ∂ψi (xi) , i = 1, . . . , N. (3.40)

Now consider the optimality condition of (3.3). By setting the derivative
to zero, we get

− (∇if (x) +Hid
∗
i ) ∈ ∂ψi (xi + d∗i ) . (3.41)

When d∗i = 0, (3.41) implies that −∇if(x) ∈ ∂ψi(xi). Conversely, assume

−∇if(x) ∈ ∂ψi(xi). (3.42)

We have from the convexity of ψi thatψi (xi + d∗i ) ≥ ψi (xi) + h>d∗i , ∀h ∈ ∂ψi (xi) ,

ψi (xi) ≥ ψi (xi + d∗i )− r>d∗i , ∀r ∈ ∂ψi (xi + d∗i ) .
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Combine the above inequalities with (3.41) and (3.42), we get that
ψi (xi + d∗i ) ≥ ψi (xi)−∇if(x)>d∗i ,

ψi (xi) ≥ ψi (xi + d∗i ) +∇if(x)>d∗i + (d∗i )
>Hid

∗
i .

By summing up these two inequalities, we obtain

0 ≥ (d∗i )
>Hid

∗
i .

Since Hi is positive definite, we get that d∗i = 0 as desired.

The second measure is how fast the gradient mapping vanishes, which
we define as below.

Gk := arg min
d
∇f(xk)>d+ 1

2d
>d+ ψ(xk + d). (3.43)

From Lemma 3.6, it is clear that Gk = 0 if and only if 0 ∈ ∂F (xk), and this
gradient mapping can serve as an indicator for closeness to stationarity.

Now we show convergence rates for these measures.

Theorem 3.7. For Algorithm 3, assume there exists η ∈ [0, 1) such that (3.5)
holds for all iterations. Given any probability distributions {pki }Ni=1 > 0 for
picking the blocks at each k, and let {αki }Ni=1 > 0 be the step sizes generated by
the line search procedure. If Hk

i � 0 for all i and k, for any given x0, we have

min
0≤k≤T

∣∣∣Ei0,...,ik [αkikQk
ik

(
dkik

)∣∣∣x0
]∣∣∣ ≤ F (x0)− F ∗

γ (T + 1) , ∀T ≥ 0. (3.44)

Moreover, Ei0,...,ik
[
αkikQ

k
ik

(dkik)
∣∣∣x0

]
converges to 0 as k approaches infinity.

Proof. Take expectation on (3.13) over ik, we get that

Eik
[
F
(
xk+1

)∣∣∣xk]− F (xk) ≤ γEik
[
αikQ

k
ik

(
dkik

)∣∣∣xk] . (3.45)
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By taking expectation on (3.45) over i0, . . . , ik−1 conditional on x0 and
summing it from k = 0 to k = T , and noting from (3.5) and Lemma 3.1
that Qk

i (dki ) ≤ 0 for all k and all i, we get

γ
T∑
k=0

∣∣∣Ei0,...,ik [αikQk
ik

(
dkik

)∣∣∣x0
]∣∣∣

= − γ
T∑
k=0

Ei0,...,ik
[
αikQ

k
ik

(
dkik

)∣∣∣x0
]

≤
T∑
k=0

Ei0,...,ik−1

[
F
(
xk
)∣∣∣x0

]
− Ei0,...,ik

[
F
(
xk+1

)∣∣∣x0
]

= F
(
x0
)
− Ei0,...,iT

[
F
(
xT+1

)∣∣∣x0
]
≤ F

(
x0
)
− F ∗. (3.46)

The proof for the convergence rate is then concluded by the fact that

T∑
k=0

∣∣∣Ei0,...,ik [αikQk
ik

(
dkik

)∣∣∣x0
]∣∣∣ ≥ (T + 1) min

0≤k≤T

∣∣∣Ei0,...,ik [αikQk
ik

(
dkik

)∣∣∣x0
]∣∣∣

That
∣∣∣Ei0,...,ik [αikQk

ik

(
dkik

)∣∣∣x0
]∣∣∣ converges to 0 is straightforward from its

summability implied by (3.46).

Unlike previous results, the result above is independent of howaccurate
the subproblem is solved, the probability distributions for sampling the
blocks, and the step sizes. From it we cannot see any difference in using
different sampling strategies and using different η. We next take the second
measure (3.43) and show that its convergence is relavant to these factors.
We will need the following lemma from Tseng and Yun (2009).

Lemma 3.8 ((Tseng and Yun, 2009, Lemma 3)). Given xk and assume Hk

satisfies (3.18) for all i, we have

∥∥∥U>i Gk

∥∥∥ ≤ 1 + 1
mi

+
√

1− 2 1
Mi

+ 1
m2
i

2 Mi

∥∥∥dk∗i ∥∥∥ , where dk∗i := arg minQk
i .
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By using Lemma 3.8 and Theorem 3.7, we are able to show the conver-
gence speed of min1≤k≤T Ei0,...,ik [‖Gk‖|x0] for any given x0.

Corollary 3.9. Assume that (3.5) holds at all iterations for some η ∈ [0, 1). For
Algorithm 3, assume thatHk satisfies (3.18) for all k ≥ 0. Given any probability
distributions for sampling the blocks {pki }Ni=1 > 0 and let {αki }Ni=1 > 0 be the step
sizes generated by the line search procedure for all k, we have

min
0≤k≤T

Ei0,...,ik−1

[
‖Gk‖2

∣∣∣x0
]

≤ F (x0)− F ∗
2(1− η)γ(T + 1) max

0≤k≤T, 1≤i≤N

M2
i

(
1 + 1

mi
+
√

1− 2 1
Mi

+ 1
m2
i

)2

pki α
k
imi

. (3.47)

Proof. Consider Theorem 3.7 and denote k̄ the iteration that corresponds
to this smallest expected value. We therefore have from (3.5) and Theorem
3.7 that

F (x0)− F ∗
γ (T + 1) ≥

∣∣∣Ei0,...,ik̄ [αk̄ik̄Qk̄
ik̄

(
dk̄ik̄

)∣∣∣x0
]∣∣∣

≥ −(1− η)Ei0,...,ik̄
[
αk̄ik̄

(
Qk̄
ik̄

)∗∣∣∣x0
]
. (3.48)

Now notice that sinceHk
i � mi from (3.18) and that ψi are convex, we have

that for all i,Qk
i for all k aremi-strongly convex and therefore satisfy (3.33)

with µ = mi. We thus have

−
(
Qk
i

)∗
≥ mi

2
∥∥∥dk∗i ∥∥∥2

, ∀k, i. (3.49)
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Apply (3.49) and Lemma 3.8 to (3.48), we get

F (x0)− F ∗
(1− η)γ (T + 1)

≥
N∑
i=1

pk̄i α
k̄
imiEi0,...,ik̄−1

[∥∥∥dk̄∗i ∥∥∥2
∣∣∣∣x0

]
2 (3.50)

≥
N∑
i=1

pk̄i α
k̄
imi

M2
i

2(
1 + 1

mi
+
√

1− 2 1
Mi

+ 1
m2
i

)2Ei0,...,ik̄−1

[∥∥∥U>i Gk̄

∥∥∥2
∣∣∣∣x0

]

≥ 2Ei0,...,ik̄−1

[
‖Gk̄‖

2
∣∣∣x0

]
min

1≤i≤N

pk̄i α
k̄
imi

M2
i

(
1 + 1

mi
+
√

1− 2 1
Mi

+ 1
m2
i

)2 , (3.51)

where in (3.51), we use the fact that ‖x‖2 = ∑N
i=1 ‖U>i x‖2 for any x ∈ Rn.

Finally, (3.47) is proven by noticing that

min
0≤k≤T

Ei0,...,ik−1

[
‖Gk‖2

∣∣∣x0
]
≤ Ei0,...,ik̄−1

[
‖Gk̄‖2

∣∣∣x0
]
.

The result in Corollary 3.9 reveals as well that line search can help
improve the convergence speed, and it is also possible to consider non-
uniform sampling to obtain faster convergence.

3.4 Special Case: Traditional Randomized BCD

We now discuss how to extend the result of non-uniform sampling of
the blocks for the non-regularized case (ψ ≡ 0) in Nesterov (2012) to
the regularized problem (3.1), using results in Section 3.3. In the non-
regularized case, the update for the ith block described in Nesterov (2012)



81

is −∇if(x)/Li, which can be viewed as either the solution of

min
d

∇if(x)>d+ Lid
>d

2

with unit step size, or as the solution of

min
d

∇if(x)>d+ d>d

2

with step size 1/Li. Similarly, in this section, we do not use backtracking;
an appropriate choice for αi is available without performing this part of
the algorithm, given the additional knowledge of Li.

Both viewpoints above result in the same update in the non-regularized
case, but with the presence of ψ in (3.1), the two interpretations lead to
different updates rules.

We first use a more general setting to show that both approaches
achieve a guaranteed degree of function value decrease.

Lemma 3.10. Assume that (3.2) holds. If the ith block is selected, andHi � ciI

in (3.4) for some ci ∈ (0, Li], then α̂i := ci/Li satisfies

F (x+ αUid)− F (x) ≤ αQHi(d), ∀d ∈ Rni ,∀α ∈ [0, α̂i]. (3.52)

Proof. Because ci ∈ (0, Li], we have α̂i = ci/Li ∈ (0, 1]. Thus we have from
(3.2) and the convexity of ψ that for any α ∈ [0, α̂i],

F (x+ αUid)

= f (x+ αUid) + ψ (x+ αUid)

≤ f (x) + α∇if (x)> d+ Liα
2

2 ‖d‖2 + αψ (x+ Uid) + (1− α)ψ (x)

= f (x) + ψ (x) + αQαLiI (d)

≤ F (x) + αQHi (d) .
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Algorithm 4 Inexact Randomized BCD with Unit Step Size for (3.1)
1: Given η ∈ [0, 1) and x = x0 ∈ Rn;
2: for k = 0, 1, 2, . . . do
3: Pick a probability distribution p1, . . . , pN > 0,∑i pi = 1, and sample
i accordingly;

4: Compute ∇if(x) and let Hi = LiI ;
5: Approximately solve (3.3) to obtain a solution di satisfying (3.5);
6: x← x+ Uidi;

Algorithm 5 Inexact Randomized BCD with Short Step Size for (3.1)
1: Given η ∈ [0, 1) and x = x0 ∈ Rn;
2: Properly scale f such that Lmin ≥ 1;
3: for k = 0, 1, 2, . . . do
4: Pick a probability distribution p1, . . . , pN > 0,∑i pi = 1, and sample
i accordingly;

5: Compute ∇if(x) and let Hi = I ;
6: Approximately solve (3.3) to obtain a solution di satisfying (3.5);
7: x← x+ 1

Li
Uidi;

In the last inequality, we used the fact that

Hi � ciI = α̂iLiI � αLiI.

We assume without loss of generality that Li ≥ 1 for all i, so that
for H = I we can directly apply αi = 1/Li. (This assumption can be
satisfied via scaling the whole problem by a constant factor L−1

min.) We
summarize the two variants of BCD we described above in Algorithms 4-5.
In those two cases, since the step sizes and the eigenvalues of H are all
known in advance, we can use the probability given in (3.32) to get better
convergence speed. This will be the focus of our discussion in this section.

With the help of Lemma 3.10, we can discuss the iteration complexities
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of randomized BCD with different sampling strategies. We first consider
the interpretation in Algorithm 4, starting from the case in which f is
convex. The results below are direct applications of Theorem 3.3.

Corollary 3.11. Consider Algorithm 4 and assume that (3.2) holds. If f is con-
vex and (3.5) holds at every iteration for some η ∈ [0, 1), the expected objective
value satisfies the following.

1. When the uniform sampling pi ≡ 1/N is used:

1.1. If F
(
xk
)
− F ∗ ≥

(
xk − PΩ

(
xk
))>

L
(
xk − PΩ

(
xk
))
, where

L := diag(L1In1 , . . . , LNInN ), (3.53)

we have

Eik
[
F
(
xk+1

)
− F ∗ | xk

]
≤
(

1− (1− η)
2N

)(
F
(
xk
)
− F ∗

)
.

1.2. For all k ≥ k0, where k0 := arg min{k : F
(
xk
)
− F ∗ < LmaxR

2
0},

Eik0 ,...,ik−1

[
F
(
xk
)
| xk0

]
− F ∗ ≤ 2NLmaxR

2
0

2N + (1− η)(k − k0) .

2. When pi are selected by

pi = Li
NLavg

, i = 1, 2, . . . , N, (3.54)

2.1. If F
(
xk
)
− F ∗ ≥ Lmin

(
xk − PΩ

(
xk
))> (

xk − PΩ
(
xk
))
:

Eik
[
F
(
xk+1

)
− F ∗ | xk

]
≤
(

1− Lmin (1− η)
2NLavg

)(
F
(
xk
)
− F ∗

)
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2.2. For all k ≥ k0, where k0 := arg min{k : F
(
xk
)
− F ∗ < LminR

2
0},

Eik0 ,...,ik−1

[
F
(
xk
)
| xk0

]
− F ∗ ≤

2NLavgR
2
0

2N + (1− η)(k − k0) .

The strategy (3.54) is referred to as “Lipschitz sampling” from now on.
We notice that since in Algorithms 4 and 5, we always have that

‖Hi‖
αi

= Li,

(3.54) matches the optimal probability distribution (3.32) and it results in

‖P−1A−1M‖ = NLavg.

We next consider when (2.10) holds for some µ > 0.

Corollary 3.12. Consider Algorithm 4 and assume that (3.2) holds. For prob-
lems satisfying (2.10)with µ ∈ (0, Lmin], if (3.5) holds at every iteration for some
η ∈ [0, 1), the iteration complexity for reaching an expected ε-accurate solution
is:

1. O
(

N
(1−η)

(
1 + Lmax

µ

)
log (1/ε)

)
, if pi ≡ 1

N
.

2. O
(
NLavg

(1−η)µ log (1/ε)
)
, if (3.54) is used.

Proof. As shown in Lemma 3.10, this choice of Hi and αi satisfies (3.13)
with γ = 1. Thus the case of uniform sampling is directly obtained from
Theorem 3.5 and the known fact that for Q-linear convergence rate of
1− xwith x ∈ (0, 1), the iteration complexity for obtaining an ε-accurate
solution is O(x−1 log(1/ε)).

For (3.54), we derive a different result from (3.10). We first get that
‖P−1A−1H‖ = NLavg, and by letting λ = 1/2 and θ = µ/(NLavg), (3.10)
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leads to
Eik

[
αikQ

∗
ik

∣∣∣xk] ≤ µ

2NLavg

(
F ∗ − F

(
xk
))
. (3.55)

The rest then traces the same argument in the proof of Theorem 3.5 to get
a Q-linear convergence rate.

When η = 0, the rates in Corollaries 3.11-3.12 are similar to the result
in Nesterov (2012) for the non-regularized case with the same sampling
strategies, if we interpret their result in the Euclidean norm. We can clearly
see the advantage of the Lipschitz sampling over the uniform sampling.
Therefore, our result here can be viewed as an extension of Nesterov’s
analysis for Lipschitz sampling to the regularized problem (3.1). Note that
Nesterov has discussed the case of constrained optimization in Nesterov
(2012), which can be treated as a special case of regularized optimization.
In the constrained case, Nesterov shows a O(1/k) convergence rate of the
objective value when the objective is convex, but the rate depends on
(R2

0/2 + F (x0)− F ∗). Here we provide another improvement to weaken
the dependency on the initial objective value by showing the early linear
convergence. The case that F satisfies (3.33) can also provide linear con-
vergence for Algorithm 4 to be seen as an improvement of existing results,
but the consequent rates do not suggest clear advantages of the Lipschitz
sampling, and the derivations are trivial. We therefore omit these rates.

When f is not convex, Algorithm 4 still benefits from Lipschitz sam-
pling.

Corollary 3.13. Consider Algorithm 4 and assume that (3.2) holds. If (3.5)
holds at every iteration for some η ∈ [0, 1), then we have

min
0≤k≤T

Ei0,...,ik−1

[
‖Gk‖2

∣∣∣x0
]
≤ 2(F (x0)− F ∗)

(1− η)(T + 1) max
1≤i≤N

Li
pi
.
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Therefore, when uniform sampling is used, we get

min
0≤k≤T

Ei0,...,ik−1

[
‖Gk‖2

∣∣∣x0
]
≤ 2NLmax(F (x0)− F ∗)

(1− η)(T + 1) ,

and when Lipschitz sampling is used, we get

min
0≤k≤T

Ei0,...,ik−1

[
‖Gk‖2

∣∣∣x0
]
≤

2NLavg(F (x0)− F ∗)
(1− η)(T + 1) .

Our result here for the case of uniform sampling is similar to that in
Patrascu and Necoara (2015), but we show that Lipschitz sampling can
improve the convergence rate by considering a slightly different measure
of stationarity.

Now we turn to consider Algorithm 5. This can again be viewed as
an extension of the sampling strategy in Nesterov (2012) to regularized
problems (3.1).

Corollary 3.14. Consider Algorithm 5 and assume that (3.2) holds. Assume
(3.5) holds for some η ∈ [0, 1) for all iterations. Then

1. For pi = 1/N we have

min
0≤k≤T

Ei0,...,ik−1

[
‖Gk‖2

∣∣∣x0
]
≤ 2NLmax(F (x0)− F ∗)

(1− η)(T + 1) .

2. If f is convex, for pi = 1/N we have

2.1. When F (xk) − F ∗ ≥ (xk − PΩ(xk))>L(xk − PΩ(xk))/Lmax, the
convergence of the expected objective value is Q-linear:

Eik
[
F
(
xk+1

)
− F ∗

∣∣∣ xk] ≤ (1− (1− η)
2NLmax

)(
F
(
xk
)
− F ∗

)
.
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2.2. For all k ≥ k0, where k0 := arg min{k : F
(
xk
)
− F ∗ < R2

0}, the
expected objective follows a sublinear convergence rate

Eik0 ,...,ik−1

[
F
(
xk
)∣∣∣ xk0

]
− F ∗ ≤ 2NLmaxR

2
0

2N + (1− η)(k − k0) .

3. If F satisfies (2.10) for some µ > 0, then for pi = 1/N we have

Eik
[
F (xk+1)− F ∗

∣∣∣ xk] ≤ (1− (1− η)(1 + 1/µ)−1

NLmax

)(
F (xk)− F ∗

)
.

4. With pi chosen from (3.54), results in the the first and the thrid parts hold,
with NLmax improved to NLavg. The second part becomes the following
for convex f .

4.1. When F (xk)−F ∗ ≥ (xk−PΩ(xk))>(xk−PΩ(xk)), the convergence
of the expected objective value is Q-linear:

Eik
[
F
(
xk+1

)
− F ∗

∣∣∣ xk] ≤ (1− (1− η)
2NLavg

)(
F
(
xk
)
− F ∗

)
.

4.2. For all k ≥ k0, where k0 := arg min{k : F
(
xk
)
− F ∗ < R2

0}, the
expected objective follows a sublinear convergence rate

Eik0 ,...,ik−1

[
F
(
xk
)∣∣∣ xk0

]
− F ∗ ≤

2NLavgR
2
0

2N + (1− η)(k − k0) .

It is clear that no matter whether (2.10) holds, in terms of convergence
rates, the bounds indicate a potential speedup of Lmax/Lavg when (3.54) is
used.

In comparing the Algorithms 4 and 5, an advantage of Algorithm 4 is
when the solution exhibits some partly smooth structure, it may be able
to identify the low-dimensional manifold. When it is not the case, we
can compare the convergence speeds. We can see that the convergence
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speeds for ‖Gk‖ are identical in both algorithms, and the convergence in
the general convex case after k0 iterations is the same as well, although the
definition of k0 can be different and the early linear convergence conditions
and rates also differ slightly. For the global linear convergent cases, the
iteration complexities for Algorithm 5 to reach an ε-accurate solution in
expected value are

O

(
N

(1− η)

(
Lmax + Lmax

µ

)
log 1

ε

)
, and O

(
N

(1− η)

(
Lavg +

Lavg

µ

)
log 1

ε

)
,

respectively for uniform sampling and Lipschitz sampling. We can see
that when Lmax/µ (or Lavg/µ) dominates, which is usually the case, those
complexities are similar to that in Corollary 3.12. Thus to conclude the
comparison, the two algorithms seem to perform similarly in terms of
iteration complexity when the problem does not exhibit partly smoothness.
We will further confirm this empirically in Section 3.7.

Diagonal Scaling

It is possible to scale x by L−1/2 so that in the scaled problem, Li ≡ 1,∀i,
and Lipschitz sampling degenerates to uniform sampling. A pitfall is
that for problems satisfying (2.10), the parameter µ changes by a factor
of 1/Lmax under this scaling, so iteration complexity may not improve.
Similarly, for general convex problems,R2

0 as well as F (x0)−F ∗ can also be
scaled by the same factor, leading to no convergence improvement. These
observations suggest that Lipschitz sampling can still be more preferable
for randomized BCD. The following result confirms these observations.

Theorem 3.15. Consider (3.1) with (3.2) holds. Let x̃ :=
√
Lx, where L is

defined in (3.53). Then (3.1) is equivalent to

min
x̃

f̃(x̃) + ψ̃(x̃) := f(
√
L
−1
x̃) + ψ(

√
L
−1
x̃), (3.56)
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and ∇f̃ is blockwise 1-Lipschitz continuous.
Moreover, updating the ith block of x̃ for (3.56) by solving (3.3) withHi = I

and unit step size is equivalent to updating the ith block of x for (3.1) by solving
(3.3) with Hi = LiI and unit step size.

Proof. The equivalence between (3.1) and (3.56) is straightforward from
that
√
L
−1
x̃ = x. Regarding the blockwise Lipschitz continuity parameters

of ∇f̃ , we have

∥∥∥∇if̃ (x̃+ Uih)−∇if̃ (x̃)
∥∥∥

=
∥∥∥∥U>i (√L−1

∇f
(√

L
−1

(x̃+ Uih)
)
−
√
L
−1
∇f

(√
L
−1
x̃
))∥∥∥∥

=
√
Li
−1 ∥∥∥∥∇if(

√
L
−1
x̃+

√
Li
−1
Uih)−∇if(

√
L
−1
x̃))
∥∥∥∥

≤
√
Li
−1
Li

∥∥∥∥√Li−1
h
∥∥∥∥ = ‖h‖ .

Next, for the different update rules, we show that the generated steps
are equivalent. For (3.56), given any x̃, and any i, let the corresponding
update direction be d̃, and define d =

√
Li
−1
d̃. The corresponding objective

defined in (3.4) can then be written as

∇if̃(x̃)>d̃+ 1
2 d̃
>d̃+ ψ̃i(x̃i + d̃)

=
√
Li
−1
∇if(

√
L
−1
x̃)>d̃+ 1

2 d̃
>d̃+ ψi(

√
Li
−1

(x̃i + d̃))

= ∇if(x)>d+ Li
2 ‖d‖

2 + ψ(xi + d),

which is equivalent to usingHi = LiI in (3.4) for (3.1). Note that d directly
corresponds to the update for the original x =

√
L
−1
x̃ for (3.1).
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3.5 Related Works

One of the (serial, deterministic) algorithms considered in Chapter 2 is a
special case of Algorithm 3 with only one block (N = 1). The technique
for measuring inexactness is also borrowed from Chapter 2, but our exten-
sion to stochastic BCD and arbitrary sampling probabilities is nontrivial,
requiring novel convergence analysis. Moreover, our BCD algorithm is
empirically much faster for certain problems.

The case in which (3.3) is solved exactly is discussed in Tseng and
Yun (2009). This chapter uses the same boundedness condition for Hk as
ours, and the blocks are selected either under a cyclic manner (with an
arbitrary order), or a Gauss-Southwell fashion. For the cyclic variant, The
convergence rate of the special case in which Q forms an upper bound of
the objective improvement is further sharpened by Sun and Hong (2015);
Li et al. (2017b). The relaxation to approximate subproblem solutions, with
an inexactness criterion different from ours, is analyzed in Chouzenoux
et al. (2016). In the latter paper, the coefficients in their convergence rates
are unclear, only linear or a certain type of sublinear convergence is shown,
but the relation between convergence rates and either the measure of
inexactness or the choiceHk is unclear. We note to that the cyclic ordering
of blocks is inefficient in certain cases: Sun and Ye (2016) showed that the
worst case of cyclic BCD is O(N2) times slower than the expected rate for
randomized BCD.

The Gauss-Southwell variant discussed in Tseng and Yun (2009) can
be extended to the inexact case via straightforward modification of the
analyses for inexact variable-metric methods in works such as Chapter 2
or Scheinberg and Tang (2016); Ghanbari and Scheinberg (2018); Bonettini
et al. (2016), giving results close to what we obtain here with uniform
sampling. It might be possible to utilize techniques for single-coordinate
descent in Nutini et al. (2015) to obtain better rates by considering a norm
other than the Euclidean norm, as was done in Nutini et al. (2017), but this
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is beyond the scope of the current work.
The special case of Algorithm 4we discussed in Section 3.4 has received

much attention in the literature. The case for the non-regularized case
of ψ ≡ 0 in (3.1) was first analyzed in Nesterov (2012) for convex and
strongly convex f . That paper uses a quadratic approximation of f that
is invariant over iterations, together with a fixed step size. Since it is
relatively easy to solve the subproblem to optimality in the non-regularized
case, inexactness is not considered. The sampling strategy of using the
probability pi = Lαi /

∑
j L

α
j for any α ∈ [0, 1] was analyzed in that work.

The two extreme cases of α = 0 and α = 1 correspond to uniform sampling
and (3.54), respectively. The ith block update is di = −∇if(x)/Li, so we
obtain from the blockwise Lipschitz continuity of∇f that

Ei [f (x+ Uidi)− f (x)] ≤
∑
i

pif (x)− pi
2Li
‖∇if(x)‖2 − f (x)

≤ −min
i

pi
2Li
‖∇f(x)‖2 .

This bound suggests that if we use pi = 1/N , the complexity will be related
to NLmax, whereas when pi is proportional to Li, the complexity is related
to the smaller quantityNLavg (consistentwith our discussion in Section 3.4).
The case that ψ is an indicator function of a convex set is also analyzed in
Nesterov (2012), but the analysis is for uniform sampling of the blocks only.
This analysis is extended to regularized problems (3.1) in Lu and Xiao
(2015) for convex and strongly convex problems but still limited to uniform
sampling. The case that f is not necessarily convex in (3.1) is analyzed
in Patrascu and Necoara (2015) again under uniform sampling. These
results for regularized problems are restricted to Algorithm 4 (with η = 0)
and uniform sampling only, while our analysis covers broader algorithm
choices and shows that non-uniform sampling can be used to accelerate
the optimization process. The advantage of non-uniform sampling will be
further confirmed empirically in Section 3.7.
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In Zhao and Zhang (2015), the analysis for Algortihm 4 is extended to
the special case of the dual of convex regularized ERM, where each ψi is
strongly convex, with non-uniform samplings for the blocks. Some primal-
dual properties of the convex regularized ERM problems are used in Zhao
and Zhang (2015) to derive the optimal probability distribution for the
primal suboptimality. However, generalization to other classes of problems
is unclear. Our analysis fully extends Nesterov’s result to regularized
problems without assuming any particular primal-dual relations.

The paper Tappenden et al. (2016) describes inexact extensions of Nes-
terov (2012) to convex (3.1). This paper uses a different inexactness crite-
rion from ours, and their framework fixes Hi over all iterations, and uses
small steps based on Li rather than a line search. (Thus, their algorithm
requires knowledge of the parameters Li, which is often expensive to cal-
culate when ni > 1.) In the regularized case of ψ 6= 0, their algorithm
is compatible only with uniform sampling. Fountoulakis and Tappen-
den (2018) tries to address the limitations of Tappenden et al. (2016) by
allowing variable Hi and backtracking line search, but under a different
sampling strategy in which a predefined number of blocks is sampled at
each iteration from a uniform distribution. Besides this different sampling
strategy, themajor difference between our algorithm and theirs is that their
inexactness condition can be expensive to check except for special cases of
ψ (see their Remark 5). In summary, our improvements over Fountoulakis
and Tappenden (2018) include (1) a more practical framework that allows
general ψ, (2) non-uniform sampling that may lead to significant accelera-
tion when additional information is available, and (3) sharper convergence
rates (4) convergence speed coverage for nonconvex f .
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3.6 Efficient Implementation for Algorithm 3

The major concern for Algorithm 3 is its practicality. In particular, it
is usually considered that linesearch can be as expensive as evaluating
the objective or the full gradient of f , and it can also be hard to obtain
a meaningful choice of variable metrics that can be updated efficiently.
Fortunately, if f is of the form

f(x) = g(Ax) (3.57)

with a given matrix A ∈ R`×n and a function g : R` → R that is block-
separable and the evaluation of g(z) costs O(`), we can implement Al-
gorithm 3 with high efficiency. The problem class (3.57) includes many
problems widely seen in real-world applications including the popular
regularized ERM problem in machine learning and its Lagrange dual
problem. We also discuss the practicality of non-uniform sampling in this
section.

Line Search

Since ψ is assumed to be block-separable, when we update just one xi,
objective value evaluation of the regularization term is cheap as we just
need to consider the change in ψi(xi). Therefore, we focus on the part of
the smooth term.

We notice that for (3.57), we have

f (x+ αiUidi) = g (Ax+ AαiUidi) = g (Ax+ αi (AUi) di) .

The computation of (AUi) di costs only O(ni`), so instead of conducting
full matrix-vector products that costs O(N`) each time, using (AUi) di to
evaluate f(x + αiUidi) with different values of αi costs only O(l) each
time, which is the same cost as updating Ax after the step size is finalized.



94

Therefore, the cost of linesearch is negligible as the dominant part will be
the update of∇f and solving the subproblem, just like the variant without
linesearch. When A is sparse, the vector (AUi) di can be sparse as well
and the cost of linesearch might be even lower if the sparsity pattern is
properly exploited.

Pick for the Varible Metric

The reason of considering BCD in large-scale problems is its low computa-
tional cost per iteration. Therefore, if the cost of updating the quadratic
term H is high, the algorithm becomes impractical. However, updating
H can be much more expensive than updating x and ∇f(x) because it
contains more variables. One possible choice of H that contains fewer
variables but can potentially improve convergence over a fixed choice of
H is to consider the diagonal entries of the (generalized) Hessian of f .
As there are only n variables and we only need to use ni of them at each
iteration if the ith block is picked, this choice can be used in general.

On the other hand, when the smooth term is of the form (3.57), we can
use the whole Hessian with low cost. The key is to observe that

∇2f(x) = A>∇2g(Ax)A, (3.58)

and∇2g is a block-diagonal matrix from the block-separable assumption
of g. If we were to compute the whole updated ∇2f(x), even with the
structure (3.58), the cost can still be prohibitively high. Fortunately, most of
the algorithms for solving (3.3) do not need to explicitly form Hi. Instead,
only the matrix-vector product Hidi will be needed. In this case, we just
need to update the corresponding block in ∇2g at each iteration so the
implementation can be highly efficient.
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Implementation of Nonuniform Samplings

There are two empirical concerns in implementing non-uniform samplings
including the Lipschitz sampling. The first one is the cost of sampling from
a non-uniform distribution. A naive implementation can easily cost O(N)
per sampling if it is not carefully designed. Fortunately, there are efficient
methods such as that proposed inWalker (1977) for non-uniform sampling
such that given a fixed distribution, after O(N) cost of initialization, each
time sampling a point from this distribution costs the same as sampling
two points uniformly randomly. Note that this is also a reason that a fixed
probability distribution over iterations is preferred: changing probability
distributions over iterations nullify those efficient methods with O(N)
overhead, and thus the sampling of the blocks can become the bottleneck
especially when the update itself is cheap. For completeness, details our
implementation of non-uniform sampling is given in Appendix 3.A.

The second concern is that the cost per iteration is different under dif-
ferent sampling strategies. Especially when the data are sparse, the value
of Li may be positively correlated to the density of the corresponding data
point. In this case, sampling according to Li may increase the cost per iter-
ation significantly. However, if one can estimate ‖Hi‖, the step sizes, and
the cost of updating each coordinate in advance, it is not hard to compare
the expected cost increase and the expected convergence improvement to
decide if non-uniform sampling should be considered. When the related
information is unavailable or hard to get, uniform sampling is still the first
choice.

3.7 Computational Results

We report on the empirical performance of our algorithm. We consider two
sets of experiments. In the first one, we compare uniform sampling and
the Lipschitz sampling for the traditional randomized BCD approaches
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Figure 3.1: Comparison of different sampling strategies using fixed step
sizes in terms of epochs. The prefix “H” refers to the choice Hi = LiI ,
while “I” means H = I .

Data set #instances n Lmax/Lavg
cpusmall_scale 8, 192 12 1.29
covtype.binary.scale 581, 012 54 8.58
epsilon_normalized 400, 000 2, 000 5.49

Table 3.1: Data sets used in the LASSO problems.

discussed in Section 3.4. We consider both Algorithm 4 and 5. In the
second experiment, we show the empirical performance of the proposed
variable metric approach with line search, using the corresponding block
of the real Hessian as the quadratic term H .

In both experiments, we present the relative objective value difference
to the optimum, defined as

F (x)− F ∗
F ∗

,

where F ∗ is approximately obtained by running our algorithmwith a tight
termination condition.
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Figure 3.2: Comparison of fixed and variable quadratic terms for solving
(3.60) with C = 1. Top row: epochs, bottom row: running time.
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Comparison of Traditional BCD

We first illustrate the speedup of Lipschitz over uniform sampling using
the rather simple LASSO problem (Tibshirani, 1996).

min
x∈Rn

C

2

l∑
i=1

(a>i x− bi)2 + ‖x‖1, (3.59)

where (ai, bi) ∈ Rn×R, i = 1, . . . , l, are the training data points and C > 0
is a parameter to balance the two terms. Note that the corresponding sub-
problem (3.3) has a closed-form solution when H is a multiple of identity
so η = 0. Note that we do not aim at providing an algorithm for LASSO
faster than state of the art, as these methods can significantly accelerate the
optimization process by means of active set selection heuristics. Though
our basic algorithm can indeed be combined with these techniques, the
purpose of this experiment is to compare the two different samplings and
the two algorithms, so we avoid a more sophisticated comparison.

To exclude possible speed difference caused by active set identification,
we choose C large enough such that the optimal solutions are all nonzero.
Statistics of the data sets are listed in Table 3.1. We test both Algorithms 4
and 5, and both uniform and Lipschitz samplings. We present convergence
in terms of epochs to compare the iteration complexity difference, where
one epoch means that N blocks are processed. The results in Figure 3.1
show a clear advantage for Lipschitz sampling, consistent with our conver-
gence analysis. We also observe that Algorithms 4 and 5 seem to possess
similar convergence behavior with the former being slightly faster when
active set identification is not included. We can also clearly observe the
early linear convergence result described in Theorem 3.3 in all variants on
all data sets.
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Empirical Performance of the Variable Metric Approach

We show the advantage of using variable quadratic terms in (3.3), in com-
parison with a fixed term. For this purpose, we consider the group-LASSO
regularized squared-hinge loss problem defined by

min
x∈Rn

C
l∑

i=1
max

{
1− bia>i x, 0

}2
+
dn/5e∑
i=1

√√√√√min{5,n−5(i−1)}∑
j=1

x2
5(i−1)+j, (3.60)

where (ai, bi) ∈ Rn × {−1, 1}, i = 1, . . . , l are the training data points and
C > 0 is a parameter to balance the two terms. Each set of five consecutive
coordinates is grouped into a single block to form the regularizer. We
compare the following approaches:

• VM-x: the proposed variable metric approach in Algorithm 3, with
H being the realHessian plus 10−10I to ensure (3.18). Weuse uniform
sampling of the blocks and the SpaRSA approach of Wright et al.
(2009) to solve the subproblem, with x being the number of SpaRSA
iterations each time, with x ∈ {5, 10, 20}.

• FM: the fixed metric approach considered in Tappenden et al. (2016).
We use a global upper bound of the Hessian as the fixed metric. As
H are precomputed, we consider both the sampling in (3.32) and
uniform sampling for the blocks.

• RCD: Algorithm 4 with η = 0. We use both the Lipschitz sampling
(3.54) and uniform sampling.

• FISTA Beck and Teboulle (2009): the accelerated proximal gradient
approach that does not consider the block-separable nature of the
problem.

The FISTA approach is included as a comparison with state of the art for
problems without block separability. We do not include the approach
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of Fountoulakis and Tappenden (2018) in our comparisons, as their sub-
problem solver inexactness condition can be expensive to check on this
problem. We consider the data sets in Table 3.2, downloaded from the
LIBSVM website,3 with C = 1. Results are shown in Figure 3.2. We first
observe that different SpaRSA iterations have little impact on the conver-
gence in terms of both epochs and running time, showing that inexactly
solving the subproblem is indeed advantageous in the overall efficiency.
Next, we see that except for in terms of epochs for news20, the variable
metric approach is always significantly faster than state of the art. For
news20, the Lipschitz sampling approach for the fixed metric approach
and Algorithm 4 are the fastest in terms of epochs, but the real running
time of them are much slower than the proposed variable metric approach.
The reason is that news20 is a very sparse data set, and the size of the
Lipschitz constants are highly correlated to the density of each feature.
Thus the computational cost of using Lipschitz sampling is much higher
than uniform sampling.

We also observe that for both the fixed metric approach and Algo-
rithm 4, using Lipschitz sampling is always faster than using uniform
sampling, in terms of epochs, confirming our analysis. But it is not always
the case when it comes to the real running time. We also observe that
FISTA performs better in running time than in epochs, mainly because it
updates the variables and the gradient less frequently, and its memory
access is always sequential and therefore much faster. Finally, we can ob-
serve the early linear convergence in the variablemetric approach, the fixed
metric approach, and Algorithm 4, verifying the result in Theorem 3.3
empirically.

We also notice that the variable metric approach is the only one that
requires line search, but it is still the fastest in terms of running time, show-
ing that linesearch does not occupy a significant portion of the running

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Data set #instances n
w8a 49, 749 300
real-sim 72, 309 20, 958
news20 19, 996 1, 355, 191
rcv1_test 677, 399 47, 236

Table 3.2: Data sets used in the group-LASSO regularization experiment.

time.

3.8 Conclusions

Starting with a strategy for regularized optimization using regularized
quadratic subproblems with variable quadratic terms, we have described
a stochastic block-coordinate-descent scheme that is well suited to large
scale problems with general structure. We provide detailed iteration com-
plexity analysis, and our framework allows arbitrary sampling schemes.
Special case of our theory extends theory for a sampling strategy based
on blockwise Lipschitz constants for randomized gradient-coordinate de-
scent from the non-regularized setting to the regularized problem (3.1).
Computational experiments show empirical advantages for our approach.

Appendix

3.A Efficient Implementation of Nonuniform
Sampling

We describe our implementation of non-uniform sampling. The O(N)
initialization step is described in Algorithm 6. After the initialization, each
time to sample a point from the given probability distribution, it takes
only 2 independent uniform sampling as described in Algorithm 7.
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Algorithm 6 Initialization for non-uniform sampling
1: Given a probability distribution p1, . . . , pN > 0;
2: i← 1;
3: Construct U ← {u | pu > 1/N}, L← {l | pl ≤ 1/N};
4: while L 6= φ do
5: Pop an element l from L;
6: Pop an element u from U ;
7: upperi ← u, loweri ← l, thresholdi ← pl/(1/N);
8: pu ← pu − (1/N − pl);
9: if pu > 1/N then

10: U ← U ∪ {u};
11: else
12: L← L ∪ {u};
13: i← i+ 1;

Algorithm 7 Nonuniform sampling after initialization by Algorithm 6
1: Sample i and j independently and uniformly from {1, . . . , N};
2: if j/N ≥ thresholdi then
3: Output upperi;
4: else
5: Output loweri;
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4 first-order algorithms converge faster than
o(1/k) on convex problems

4.1 Introduction

Consider the unconstrained optimization problem

min
x

f(x), (4.1)

where f has domain in an inner-product space and is convex and L-
Lipschitz continuously differentiable for some L > 0. We assume through-
out that the solution set Ω is non-empty. (Elementary arguments based on
the convexity and continuity of f show that Ω is a closed convex set.) Clas-
sical convergence theory for gradient descent on this problem indicates a
O(1/k) global convergence rate in the function value. Specifically, if

xk+1 := xk − αk∇f(xk), k = 0, 1, 2, . . . , (4.2)

and αk ≡ ᾱ ∈ (0, 1/L], we have

f (xk)− f ∗ ≤
dist(x0,Ω)2

2ᾱk , k = 1, 2, . . . , (4.3)

where f ∗ is the optimal objective value and dist(x,Ω) denotes the distance
from x to the solution set. The proof of (4.3) relies on showing that

k(f (xk)− f ∗) ≤
k∑

T=1
(f (xT )− f ∗) ≤ 1

2ᾱdist(x0,Ω)2, k = 1, 2, . . . , (4.4)

where the first inequality utilizes the fact that gradient descent is a descent
method (yielding a nonincreasing sequence of function values {f(xk}). We
claim that the bound (4.3) is not tight, in the sense that k(f(xk)− f ∗)→ 0,
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and thus f(xk)−f ∗ = o(1/k). This result is a consequence of the following
technical lemma.

Lemma 4.1. Let {∆k} be a nonnegative sequence satisfying the following con-
ditions:

1. {∆k} is monotonically decreasing;

2. {∆k} is summable, that is,∑∞k=0 ∆k <∞.

Then k∆k → 0, so that ∆k = o(1/k).

Proof. The proof uses simplified elements of the proofs of Lemmas 2 and 9
of Section 2.2.1 fromPolyak (1987). Define sk := k∆k and uk := sk+∑∞i=k ∆i.
Note that

sk+1 = (k + 1)∆k+1 ≤ k∆k + ∆k+1 ≤ sk + ∆k. (4.5)

From (4.5) we have

uk+1 = sk+1 +
∞∑

i=k+1
∆i ≤ sk + ∆k +

∞∑
i=k+1

∆i = sk +
∞∑
i=k

∆i = uk,

so that {uk} is a monotonically decreasing nonnegative sequence. Thus
there is u ≥ 0 such that uk → u, and since limk→∞

∑∞
i=k ∆i = 0, we have

sk → u also.
Assuming for contradiction that u > 0, there exists k0 > 0 such that

sk ≥ u/2 > 0 for all k ≥ k0, so that ∆k ≥ u/(2k) for all k ≥ k0. This
contradicts the summability of {∆k}. Therefore we have u = 0, so that
k∆k = sk → 0, proving the result.

Our claim about the fixed-step gradient descent method follows im-
mediately by setting ∆k = f(xk) − f ∗ in Lemma 4.1. We state the result
formally as follows.
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Theorem4.2. Consider (4.1)with f convex andL-Lipschitz continuously differ-
entiable and nonempty solution set Ω. If the step sizes satisfy αk ≡ ᾱ ∈ (0, 1/L]
for all k, then gradient descent (4.2) generates objective values f(xk) that con-
verge to f ∗ at an asymptotic rate of o(1/k).

This result shows that the o(1/k) rate for gradient descent with a fixed
short step size is universal on convex problems, without any additional
requirements such as the boundedness of Ω assumed in (Bertsekas, 2016,
Proposition 1.3.3). In the remainder of this chapter, we show that this faster
rate holds for several other smooth optimization algorithms, including
gradient descent with various line-search strategies and stochastic coordi-
nate descent with arbitrary sampling strategies for the coordinates. We
then extend the result to algorithms for regularized convex optimization
problems, including proximal gradient and stochastic proximal coordinate
descent with arbitrary sampling. Assumptions such as bounded solution
set, bounded level set, or bounded distance to the solution set, which are
commonly assumed in the literature, are all unnecessary.

In our description, the Euclidean norm is used for simplicity, but our
results can be extended directly to any norms induced by an inner prod-
uct,1 provided that the definition of Lipschitz continuity of ∇f is with
respect to the corresponding norm and its dual norm.

Related Work. Our work was inspired by (Peng et al., 2018, Corollary 2)
and (Bertsekas, 2016, Proposition 1.3.3), which improve convergence for
certain algorithms and problems on convex problems in a Euclidean space
fromO(1/k) to o(1/k) when the level set is compact. However, this chapter
develops improved convergence rates of several algorithms on convex
problems without the assumption on the level set, and some of our results
apply to non-Euclidean Hilbert spaces. The main proof techniques in this

1We meant that given an inner product < ·, · >, the norm ‖ · ‖ is defined as ‖x‖ :=√
< x, x >.
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work are developed independently and different from that in the above
works.

For an accelerated version of proximal gradient on convex problems, it
is proved in Attouch and Peypouquet (2016) that the convergence rate can
be improved from O(1/k2) to o(1/k2). Accelerated proximal gradient is a
more complicated algorithm than the nonaccelerated versions we discuss,
and thus Attouch and Peypouquet (2016) require a more complicated
analysis that is quite different from ours.

We note that Deng et al. (2017) have stated a version of Lemma 4.1
with a proof different from the proof that we present, using it to show the
convergence rate of the quantity ‖xk−xk+1‖ of a version of the alternating-
directions method of multipliers (ADMM). Our work differs in the range
of algorithms considered and the nature of the convergence. We also
provide a discussion of the tightness of the o(1/k) convergence rate.

4.2 Main Results on Unconstrained Smooth
Problems

We start by detailing the procedure for obtaining (4.4), to complete the
proof of Theorem 4.2. Let us define

M(α) := α− Lα2

2 . (4.6)

From the Lipschitz continuity of∇f , we have for any point x and any real
number α that

f(x− α∇f(x)) ≤ f(x)−∇f(x)> (α∇f(x)) + L

2 ‖α∇f(x)‖2

= f(x)−M(α)‖∇f(x)‖2. (4.7)
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Clearly,
α ∈

(
0, 1
L

]
⇒ M(α) ≥ α

2 > 0, (4.8)

so in this case, we have by rearranging (4.7) that

‖∇f(x)‖2 ≤ 1
M(α) (f(x)− f(x− α∇f(x)))

≤ 2
α

(f(x)− f(x− α∇f(x))) . (4.9)

Considering any solution x̄ ∈ Ω and any T ≥ 0, we have for gradient
descent (4.2) that

‖xT+1 − x̄‖2 = ‖xT − αT∇f(xT )− x̄‖2

= ‖xT − x̄‖2 + α2
T‖∇f(xT )‖2 − 2αT∇f(xT )> (xT − x̄) .

(4.10)

Since αT ∈ (0, 1/L] in (4.10), we have from (4.9) and the convexity of f
(which implies ∇f(xT )T (x̄− xT ) ≤ f ∗ − f(xT )), we obtain

‖xT+1 − x̄‖2 ≤ ‖xT − x̄‖2 + 2αT (f (xT )− f (xT+1)) + 2αT (f ∗ − f (xT )) .
(4.11)

By rearranging (4.11) and using αT ≡ ᾱ ∈ (0, 1/L], we obtain

f (xT+1)− f ∗ ≤ 1
2ᾱ

(
‖xT − x̄‖2 − ‖xT+1 − x̄‖2

)
. (4.12)

We then obtain (4.4) by summing (4.12) from T = 0 to T = k and noticing
that x̄ is arbitrary in Ω.

The argument above and Theorem 4.2 apply to arbitrary inner-product
spaces. So, in particular, the o(1/k) convergence result holds in Hilbert
spaces. On the other hand, Theorem 4.2 applies to step sizes in the range
(0, 1/L] only, but it is known that gradient descent converges at the rate of
O(1/k) for both the fixed step size schemewith ᾱ ∈ (0, 2/L) and line-search
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schemes in (finite-dimensional) Euclidean spaces. We first show o(1/k)
rates for these variants, and then extend the result to stochastic coordinate
descent with arbitrary sampling of coordinates, also in Euclidean spaces.

Gradient Descent with Line Search

In this section and the next, we consider the domain of f to be a Euclidean
space. We consider two strategies for deciding αk in (4.2). The first is again
a fixed step size scheme

αk ≡ ᾱ ∈
(

0, 2
L

)
. (4.13)

The second one is a general line-search scheme that finds αk satisfying

αk ∈ [C2, C1], C2 ∈
(

0, 2 (1− γ)
L

)
, C1 ≥ C2, (4.14a)

f (xk − αk∇f(xk)) ≤ f (xk)− γαk‖∇f(xk)‖2, γ ∈ (0, 1). (4.14b)

From (4.7), the upper bound of C2 ensures the existence of an αk that
satisfies conditions (4.14). The main result for this subsection is as follows.

Theorem 4.3. Consider (4.1) with f convex and L-Lipschitz continuously dif-
ferentiable and nonempty solution set Ω. Assume that the domain of f is the
Euclidean space <n. If the step sizes αk are decided by either (4.13) or (4.14),
then gradient descent (4.2) generates objective values f(xk) converging to f ∗ at
an asymptotic rate of o(1/k).

We will give a brief overview of O(1/k) rates derived in the literature
for step sizes chosen by (4.13) or (4.14), then improve on these rates to
obtain the desired o(1/k) rate. We first show that for both strategies, the
iterates lie in a bounded set. Some parts of the results below are from
(Nesterov, 2004, Section 2.1.5).

Before proving Theorem 4.3, we prove two technical lemmas.
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Lemma 4.4. Consider algorithm (4.2) with any initial point x0, and assume
that f is L-Lipschitz-continuously differentiable for some L > 0. Then when the
sequence of steplengths αk is chosen to satisfy either (4.13) or (4.14), all iterates
xk lie in a bounded set.

Proof. Consider any solution x̄ ∈ Ω. By convexity of f , and using the
optimality condition ∇f(x̄) = 0, we have for any T ≥ 0 that

‖xT+1 − x̄‖2 = ‖xT − x̄‖2 + α2
T‖∇f(xk)‖2 − 2αT (xT − x̄)> (∇f(xT )−∇f(x̄))

≤ ‖xT − x̄‖2 + α2
T‖∇f(xT )‖2.

For both (4.13) and (4.14), there exists a constantC > 0 such thatα2
k ≤ C for

all k. By summing the bound above for T = 0, 1, . . . , k−1, and telescoping,
we obtain

‖xk − x̄‖2 − ‖x0 − x̄‖2 ≤ C
k−1∑
T=0
‖∇f(xT )‖2 ≤ C

∞∑
T=0
‖∇f(xT )‖2. (4.15)

For (4.13), note thatM(ᾱ) > 0, so from (4.7) we obtain

∞ > f(x0)− f ∗ ≥ f(x0)− lim
k→∞

f(xk) ≥M (ᾱ)
∞∑
k=0
‖∇f(xk)‖2,

which implies that

∞∑
k=0
‖∇f(xk)‖2 ≤ f(x0)− f ∗

M (ᾱ) <∞. (4.16)

Similarly, for (4.14), we can sum (4.14b) from k = 0, 1, 2, . . . to obtain

∞∑
k=0
‖∇f(xk)‖2 ≤ f(x0)− f ∗

C2γ
<∞. (4.17)
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By combining (4.16) and (4.17) with (4.15), we obtain

‖xk‖ ≤ ‖x̄‖+
√√√√‖x0 − x̄‖2 + C

∞∑
T=0
‖∇f(xT )‖2 <∞, k = 0, 1, 2, . . . ,

proving that {xk} are in a bounded set.

When f has domain in a Euclidean space, from the Bolzano-Weierstrass
theorem, a bounded and closed set is compact. In this case, Lemma 4.4
then implies that the sequence {xk} is in a compact set, thus there must
be at least an accumulation point.

Denote δT := f(xT )−f ∗ and let x̄T be the projection of xT ontoΩ (which
is well defined because Ω is nonempty, closed, and convex). We can utilize
convexity to obtain

δT ≤ ∇f(xT )> (xT − x̄T ) ≤ ‖∇f(xT )‖dist (xT ,Ω) ,

so that
‖∇f(xT )‖ ≥ δT

dist(xT ,Ω) . (4.18)

For the fixed step length (4.13), we have from (4.7) that

f(xT+1) ≤ f(xT )−M(ᾱ)‖∇f(xT )‖2,

withM(ᾱ) > 0 by definition of ᾱ. By subtracting f ∗ from both sides of
this expression, and using (4.18), we obtain

δT+1 ≤ δT −M(ᾱ) δ2
T

dist (xT ,Ω)2 .

By dividing both sides of this expression by δT δT+1, and using δT+1 ≤ δT ,
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we obtain

1
δT+1

≥ 1
δT

+ M (ᾱ) δT
dist (xT ,Ω)2 δT+1

≥ 1
δT

+ M (ᾱ)
dist (xT ,Ω)2 . (4.19)

Summing (4.19) over T = 0, 1, . . . , k, we obtain

1
δk+1

≥ 1
δ0

+
k∑

T=0

M(ᾱ)
dist (xT ,Ω)2 ⇒ δk+1 ≤

1
1
δ0

+∑k
T=0

M(ᾱ)
dist(xT ,Ω)2

. (4.20)

A O(1/k) rate is obtained by noting from Lemma 4.4 that dist(xT ,Ω) ≤ R0

for some R0 > 0 and all T , so that

k∑
T=0

1
dist (xT ,Ω)2 ≥

k + 1
R2

0
. (4.21)

A similar rate is obtained for (4.14) by replacingM(ᾱ) above with γC2.
We will show that the bound (4.21) is loose and an improved result

can be obtained by working directly with (4.20). The key is to observe
that dist(xk,Ω) converges to zero asymptotically and to use the arithmetic-
mean / harmonic-mean inequality. Convergence of dist(xk,Ω) is shown in
the following lemma, whose proof follows from a similar result in (Peng
et al., 2018, Proposition 1).

Lemma 4.5. When the method (4.2) is applied to a convex and L-Lipschitz-
continuously differentiable function f : <n → <, with step sizes satisfying
either (4.13) or (4.14), then

lim
k→∞

dist (xk,Ω) = 0. (4.22)

Proof. We prove the result for (4.13); the reasoning for (4.14) is nearly
identical. Assume for contradiction that (4.22) does not hold. Then there
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are ε > 0 and an infinite increasing sequence {ki}, i = 1, 2, . . . , such that

dist (xki ,Ω) ≥ ε, i = 1, 2, . . . . (4.23)

From Lemma 4.4 and that {xki} ⊂ <n, we can use the Bolzano-Weierstrass
theorem to deduce that the sequence {xki} lies in a compact set and there-
fore has an accumulation point x∗. From (4.19), we have 1/δki+1 ≥ 1/δki +
M(ᾱ)/ε2, so since {1/δk} is an increasing sequence, we have 1/δk ↑ ∞ and
hence δk ↓ 0. By continuity, it follows that f(x∗) = f ∗, so that x∗ ∈ Ω by
definition, contradicting (4.23).

We note that a result similar to Lemma 4.5 has been given in Burachik
et al. (1995) using a more complicated argument with more restricted
choices of α.

We are ready to prove Theorem 4.3.

Theorem 4.3. We start from (4.20) and show that

lim
k→∞

1
1
δ0

+M(ᾱ)
∑k

T=0
1

dist(xT ,Ω)2

1
k+1

= 0,

which is implied by

lim
k→∞

k + 1∑k
T=0

1
dist(xT ,Ω)2

= 0. (4.24)
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From the arithmetic-mean / harmonic-mean inequality,2 we have that

0 ≤ k + 1∑k
T=0

1
dist(xT ,Ω)2

≤
∑k
T=0 dist(xT ,Ω)2

k + 1 . (4.25)

Lemma 4.5 shows that dist(xT ,Ω) → 0, so by the Stolz-Cesàro theorem
(see, for example, Mureşan (2009)), the right-hand side of (4.25) converges
to 0. Therefore, from the sandwich lemma, (4.24) holds.

Coordinate Descent

We now extend Theorem 4.2 to the case of randomized coordinate descent.
Our results can extend immediately to block-coordinate descent with fixed
blocks.

The standard short-step coordinate descent procedure requires knowl-
edge of coordinate-wise Lipschitz constants. Denoting by ei the ith unit
vector, we denote by Li ≥ 0 the constants such that:

|∇if(x)−∇if(x+ hei)| ≤ Li |h| , for all x ∈ <n and all h ∈ <, (4.26)

where∇if(·) denotes the ith coordinate of the gradient. Note that if∇f(x)
is L-Lipschitz continuous, there always exist L1, . . . , Ln ∈ [0, L] such that
(4.26) holds. Without loss of generality, we assume Li > 0 for all i. Given
parameters {L̄i}ni=1 such that L̄i ≥ Li for all i, the coordinate descent
update is

xk+1 ← xk −
∇ikf (xk)

L̄ik
ei, (4.27)

2 This inequality says that for any real numbers a1, . . . , an > 0, their harmonic mean
does not exceed their arithmetic mean. Namely,

n∑n
i=1 a

−1
i

≤
∑n

i=1 ai

n
.
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where ik is the coordinate selected for updating at the kth iteration. We
consider the general case that each ik is independently identically dis-
tributed following a fixed prespecified probability distribution p1, . . . , pn

satisfying

pi ≥ pmin, i = 1, 2, . . . , n;
n∑
i=1

pi = 1, (4.28)

for some constant pmin > 0. NesterovNesterov (2012) proves that stochastic
coordinate descent has a O(1/k) convergence rate (in expectation of f ) on
convex problems. We show below that this rate can be improved to o(1/k).

Theorem 4.6. Consider (4.1) with f convex and nonempty solution set Ω, and
that componentwise-Lipschitz continuous differentiability (4.26) holdswith some
L1, . . . , Ln > 0. If we apply coordinate descent (4.27) and at each iteration, ik
is independently picked at random following a probability distribution satisfying
(4.28), then the expected objective Ei0,i1,...,ik [f(xk)] converges to f ∗ at an asymp-
totic rate of o(1/k).

Proof. From (4.26) and that L̄i ≥ Li, by treating all other coordinates as
non-variables, we have that for any T ≥ 0,

f

(
xT −

∇if (xT )
L̄i

ei

)
− f (xT ) ≤ − 1

2L̄i
‖∇if (xT )‖2, (4.29)

showing that the algorithm decreases f at each iteration. Consider any
x̄ ∈ Ω, by defining

r2
T :=

n∑
i=1

L̄i
pi
‖(xT − x̄)i‖

2, (4.30)

we have from (4.27) that

r2
T+1 = r2

T + 1
L̄iT piT

‖∇iT f (xT )‖2 − 2
piT
∇iT f (xT )> (xT − x̄)iT . (4.31)

Taking expectation over iT on both sides of (4.31), we obtain from the
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convexity of f and (4.29) that

EiT
[
r2
T+1

]
− r2

T

(4.29)
≤ 1

pmin

n∑
i=1

2pi
(
f (xT )− f

(
xT −

∇if (xT )
L̄i

ei

))
− 2∇f (xT )> (xT − x̄)

≤ 2
pmin

(f (xT )− EiT [f (xT+1)]) + 2 (f ∗ − f (xT )) . (4.32)

By taking expectation over i0, i1, . . . , ik on (4.32), abbreviating Ei0,...,ik as E,
and summing (4.32) over T = 0, 1, . . . , k, we obtain

2
k∑

T=0
(Ef(xT )− f ∗) ≤ r2

0 − Er2
k+1 + 2 (f (x0)− Ef (xk+1))

pmin

≤ r2
0 + 2 (f (x0)− f ∗)

pmin
.

The result now follows from Lemma 4.1.

4.3 Regularized Problems

We turn now to regularized optimization:

min
x

F (x) := f(x) + ψ(x), (4.33)

where both terms are convex, f is L-Lipschitz-continuously differentiable,
and ψ is extended-valued, proper, and closed, but possibly nondifferen-
tiable. We also assume that ψ is such that the prox-operator can be applied
easily, by solving the following problem for given y ∈ <n and λ > 0:

min
x

ψ (x) + 1
2λ‖x− y‖

2.
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We assume further that the solution set Ω of (4.33) is nonempty, and denote
by F ∗ the value of F for all x ∈ Ω. We discuss two algorithms to show
how our techniques can be extended to regularized problems. They are
proximal gradient (both with and without line search) and stochastic
proximal coordinate descent with arbitrary sampling.

Short-Step Proximal Gradient

Given L̄ ≥ L, the kth step of the proximal gradient algorithm is defined
as follows:

xk+1 ← xk + dk, dk := arg min
d
∇f(xk)>d+ L̄

2 ‖d‖
2 + ψ (xk + d) . (4.34)

Note that dk is uniquely defined here, since the subproblem is strongly
convex. It is shown in Beck and Teboulle (2009); Nesterov (2013) that
F (xk) converges to F ∗ at a rate of O(1/k) for this algorithm, under our
assumptions. We prove that a o(1/k) rate can be attained.

Theorem 4.7. Consider (4.33)with f convex and L-Lipschitz continuously dif-
ferentiable, ψ convex, and nonempty solution set Ω. Given any L̄ ≥ L, the prox-
imal gradient method (4.34) generates iterates whose objective value converges to
F ∗ at a o(1/k) rate.

Proof. The method (4.34) can be shown to be a descent method from the
Lipschitz continuity of∇f and the fact that L̄ ≥ L. From the optimality of
the solution to (4.34) and that xk+1 = xk + dk,

−
(
∇f(xk) + L̄dk

)
∈ ∂ψ (xk+1) , (4.35)

where ∂ψ denotes the subdifferential of ψ. Consider any x̄ ∈ Ω. We have
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from (4.34) that for any T ≥ 0, the following chain of relationships holds:

‖xT+1 − x̄‖2 − ‖xT − x̄‖2

= 2d>T (xT − x̄) + ‖dT‖2

= 2d>T (xT + dT − x̄)− ‖dT‖2

= 2
(
dT + ∇f(xT )

L̄

)>
(xT+1 − x̄)− 2

L̄
∇f(xT )> (xT + dT − x̄)− ‖dT‖2

(4.35)
≤ 2ψ (x̄)− ψ (xT+1)

L̄
− 2
L̄
∇f(xT )> (xT − x̄)− 2

L̄
∇f(xT )>dT − ‖dT‖2

≤ 2
L̄

(
(ψ (x̄)− ψ (xT+1)) + f (x̄)−

(
f (xT ) +∇f(xT )>dT + L̄‖dT‖2

2

))

≤ 2 (F ∗ − F (xT+1))
L̄

, (4.36)

where in the last inequality, we have used

f(x+ d) ≤ f(x) +∇f(x)>d+ L

2 ‖d‖
2 ≤ f(x) +∇f(x)>d+ L̄

2 ‖d‖
2. (4.37)

By rearranging (4.36) we obtain

F (xT+1)− F ∗ ≤ L̄

2
(
‖xT − x̄‖2 − ‖xT+1 − x̄‖2

)
.

The result follows by summing both sides of this expression over T =
0, 1, . . . , k and applying Lemma 4.1.

Proximal Gradient with Line Search

We discuss a line-search variant of proximal gradient, where the update is
defined as follows:

xk+1 ← xk +dk, dk := arg min
d
∇f(xk)>d+ 1

2αk
‖d‖2 +ψ (xk + d) , (4.38)



118

where αk is chosen such that for given αmax > αmin > 0 and γ ∈ (0, 1], we
have

αk ∈ [αmin, αmax], F (xk + dk) ≤ F (xk)−
γ

2αk
‖dk‖2. (4.39)

This framework includes the SpaRSA algorithmWright et al. (2009), which
obtains an initial choice ofαk fromaBarzilai-Borwein approach and adjusts
it until (4.39) holds. The approach of the previous subsection can also be
seen as a special case of (4.38)-(4.39) through the following lemma, whose
proof is in the appendix.

Lemma 4.8. Consider a convex function ψ, a positive scalar a > 0 and two
vectors b and x. If d is the unique solution of the following problem:

min
d

b>d+ a

2‖d‖
2 + ψ(x+ d), (4.40)

then
b>d+ a

2‖d‖
2 + ψ(x+ d)− ψ(x) ≤ −a2‖d‖

2.

By setting b = ∇f(x), 1/αk ≡ a = L̄ > 0 (where L̄ ≥ L), this lemma
together with (4.37) implies that (4.39) holds for any γ ∈ (0, 1]. Therefore,
provided that αmin ≤ 1/L, we can always find αk such that (4.39) holds.

We show now that this approach also has a o(1/k) convergence rate on
convex problems.

Theorem 4.9. Consider (4.33)with f convex and L-Lipschitz continuously dif-
ferentiable, ψ convex, and nonempty solution set Ω. Given αmin and αmax such
that αmax > αmin > 0 and αmin ≤ 1/L, and given some γ ∈ (0, 1], then the al-
gorithm (4.38) with αk satisfying (4.39) generates iterates {xk} whose objective
values converge to F ∗ at a rate of o(1/k).
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Proof. From optimality conditions in (4.38), we have

−
(
∇f(xT ) + 1

αT
dT

)
∈ ∂ψ (xT+1) . (4.41)

Now consider any x̄ ∈ Ω. We have from (4.38) that for any T ≥ 0, the
following chain of relationships holds:

‖xT+1 − x̄‖2 − ‖xT − x̄‖2

= 2d>T (xT + dT − x̄)− ‖dT‖2

= 2 (dT + αT∇f(xT ))> (xT+1 − x̄)− 2αT∇f(xT )> (xT + dT − x̄)− ‖dT‖2

(4.41)
≤ 2αT (ψ (x̄)− ψ (xT+1))− 2αT∇f(xT )> (xT − x̄)− 2αT∇f(xT )>dT − ‖dT‖2

≤ 2αT (ψ (x̄)− ψ (xT+1))− 2αT∇f(xT )> (xT − x̄)− 2αT∇f(xT )>dT
= 2αT (ψ (x̄)− ψ (xT+1))− 2αT∇f(xT )> (xT − x̄)− 2αT∇f(xT )>dT

+ αTL‖dT‖2 − αTL‖dT‖2

≤ 2αT
(
ψ (x̄)− ψ (xT+1) + f (x̄)−

(
f (xT ) +∇f(xT )>dT + L

2 ‖dT‖
2
))

+ αTL‖dT‖2

(4.39)
≤ 2αT (F ∗ − F (xT+1)) + 2Lα2

T

γ
(F (xT )− F (xT+1))

≤ 2αmin (F ∗ − F (xT+1)) + 2Lα2
max
γ

(F (xT )− F (xT+1)) . (4.42)

The result then follows from summing (4.42) from T = 0 to T = k and
applying Lemma 4.1.

Theorems 4.7-4.9, like Theorem 4.2, are applicable to arbitrary inner-
product spaces, while other results in this work require Euclidean spaces.
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Proximal Coordinate Descent

We now discuss the extension of coordinate descent to (4.33), with the
assumption (4.26) on f , sampling weighted according to (4.28) as in Sec-
tion 4.2, and the additional assumption of separability of the regularizer
ψ, that is,

ψ(x) =
n∑
i=1

ψi(xi), (4.43)

where each ψi is convex, extended valued, and possibly nondifferentiable.
As in our discussion of Section 4.2, the results in this subsection can be
extended directly to the case of block-coordinate descent.

Given the component-wise Lipschitz constants L1, L2, . . . , Ln and algo-
rithmic parameters L̄1, L̄2, . . . , L̄n with L̄i ≥ Li for all i, proximal coordi-
nate descent updates have the form

xk+1 ← xk + dkikeik , (4.44a)

dkik := arg min
d∈<
∇ikf(xk)d+ L̄ik

2 d2 + ψik ((xk)ik + d) . (4.44b)

For (4.44) with pi ≡ 1/n for all i, Lu and Xiao (2015) showed that the
expected objective value converges to F ∗ at a O(1/k) rate. When arbitrary
sampling (4.28) is considered, (4.44) is the same as Algorithm 4. For this
algorithm, we have shown in Chapter 3 the same O(1/k) rate for convex
problems under the additional assumption that for any x0,

max
x:F (x)≤F (x0)

dist (x,Ω) <∞. (4.45)

We show here that with arbitrary sampling according to (4.28), (4.44)
produces o(1/k) convergence rates for the expected objective on convex
problems, without the assumption (4.45).

Theorem 4.10. Consider (4.33) with f and ψ convex and nonempty solution
set Ω. Assume further than ψ is separable according to (4.43) is true, and that



121

(4.26) holds with some L1, L2, . . . , Ln > 0. Given {L̄i}ni=1 with L̄i ≥ Li for all
i, suppose that proximal coordinate descent defines iterates according to (4.44),
with ik chosen i.i.d. according to a probability distribution satisfying (4.28).
Then Ei0,i1,...,ik [F (xk)] converges to F ∗ at an asymptotic rate of o(1/k).

Proof. From (4.26), we first notice that in the update (4.44),

F
(
xk + dkikeik

)
− F (xk) ≤ ∇ikf(xk)dkik + L̄ik

2
(
dkik

)2

+ ψik
(
(xk)ik + dkik

)
− ψik

(
(xk)ik

)
. (4.46)

From Lemma 4.8, the method defined by (4.44) is a descent method. The
optimality condition of (4.44b) is

−
(
∇iT f (xT ) + L̄iT d

T
iT

)
∈ ∂ψiT

(
(xT )iT + dTiT

)
. (4.47)

Taking any x̄ ∈ Ω, and using the definition (4.30), we have the following:

r2
T+1

= r2
T + 2L̄iT

piT

(
d>iT

)> (
xT + dTiT − x̄

)
iT
− L̄iT
piT

(
dTiT

)2

= r2
T + 2

piT

(
∇iT f (xT ) + L̄iT d

T
iT

)> (
xT + dTiT − x̄

)
iT
− L̄iT
piT

(
dTiT

)2

− 2
piT
∇iT f (xT )> (xT − x̄)iT −

2
piT
∇iT f (xT )> dTiT

(4.47)
≤ r2

T + 2
piT

(
ψiT (x̄iT )− ψiT

(
(xT )iT + dTiT

)
−∇iT f (xT )> (xT − x̄)iT

)
− 2
piT

(
∇iT f (xT )> dTiT + L̄iT

2
∥∥∥dkiT ∥∥∥2

)

≤ r2
T + 2

piT

(
ψiT (x̄iT )− ψiT

(
(xT )iT

)
−∇iT f (xT )> (xT − x̄)iT

)
(4.48)

− 2
piT

(
∇iT f (xT )> dTiT + L̄iT

2
∥∥∥dTiT ∥∥∥2

+ ψiT
(
(xT )iT + dTiT

)
− ψiT

(
(xT )iT

))
.
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Taking expectation over iT on both sides of (4.48), using convexity of f
(which implies that −∇f(xT )T (xT − x̄) ≤ f(x̄)− f(xT )), and using (4.46),
we obtain

EiT
[
r2
T+1

]
− r2

T

≤ 2 (ψ (x̄)− ψ (xT ) + f (x̄)− f (xT )) + 2
(

n∑
i=1

F (xT )− F
(
xT + dTi ei

))

≤ 2 (F ∗ − F (xT )) + 2
pmin

n∑
i=1

pi
(
F (xT )− F

(
xT + dTi ei

))
(4.49a)

= 2 (F ∗ − F (xT )) + 2
pmin

(F (xT )− EiT [F (xT+1)]) , (4.49b)

where in (4.49a) we used the fact that (4.44) is a descent method. By taking
expectation over i0, i1, . . . , ik on (4.49b), summing over T = 0, 1, . . . , k, and
applying Lemma 4.1, we obtain the result.

Notice that our analysis here improves the rates in Lu and Xiao (2015)
and Chapter 3 in terms of the dependency on k and removes the assump-
tion of (4.14a). Even without the improvement from O(1/k) to o(1/k),
Theorem 4.10 is the first time that a convergence rate of plain proximal
stochastic coordinate descent with arbitrary sampling for the coordinates
is proven without additional assumptions such as (4.45). However, we
note that unlike the result in Chapter 3, without the additional assumption,
we are not able to show faster convergence rate of nonuniform sampling
for the coordinates.

4.4 Tightness of the o(1/k) Estimate

We demonstrate that the o(1/k) estimate of convergence of {f(xk)} is tight
by showing that for any ε ∈ (0, 1], there is a convex smooth function for
which the sequence of function values generated by gradient descent with
a fixed step size converges slower than O(1/k1+ε). The example problem
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we provide is a simple one-dimensional function, so it serves also as a
special case of stochastic coordinate descent and the proximal methods
(where ψ ≡ 0) as well. Thus, this example shows tightness of our analysis
for all methods considered in this chapter.

Consider the one-dimensional real convex function

f(x) = xp, (4.50)

where p is an even integer greater than 2. The minimizer of this function
is clearly at x∗ = 0, for which f(0) = f ∗ = 0. Suppose that the gradient
descent method is applied starting from x0 = 1. For any descent method,
the iterates xk are confined to [−1, 1] and we have

‖∇2f(x)‖ ≤ p(p− 1) for all xwith |x| ≤ 1,

so we set L = p(p − 1). Suppose that ᾱ ∈ (0, 2/L) as above. Then the
iteration formula is

xk+1 = xk − ᾱ∇f(xk) = xk
(
1− pᾱxp−2

k

)
, (4.51)

and by Lemma 4.4, all iterates lie in a bounded set: the level set [−1, 1]
defined by x0. In fact, since p ≥ 4 and ᾱ ∈ (0, 2/L), we have that

xk ∈ (0, 1] ⇒ 1− pᾱxp−2
k ∈

(
1− 2p

p(p− 1)x
p−2
k , 1

)

⊆
(

1− 2
p− 1 , 1

)
⊆
(2

3 , 1
)
,

so that xk+1 ∈
(

2
3xk, xk

)
and the value of L remains valid for all iterates.

We show by an informal argument that there exists a constant C such
that

f(xk) ≈
C

kp/(p−2) , for all k sufficiently large. (4.52)
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From (4.51) we have

f(xk+1) = xpk+1 = xpk
(
1− pᾱxp−2

k

)p
= f(xk)

(
1− pᾱf(xk)(p−2)/p

)p
. (4.53)

By substituting the hypothesis (4.52) into (4.53), and taking k to be large,
we obtain the following sequence of equivalent approximate equalities:

C

(k + 1)p/(p−2) ≈
C

kp/(p−2)

(
1− pᾱC

(p−2)/p

k

)p

⇔
(

k

k + 1

)p/(p−2)

≈
(

1− pᾱC
(p−2)/p

k

)p

⇔
(

1− 1
k + 1

)p/(p−2)
≈
(

1− p2ᾱ
C(p−2)/p

k

)

⇔
(

1− p

p− 2
1

k + 1

)
≈
(

1− p2ᾱ
C(p−2)/p

k

)

This last expression is approximately satisfied for large k if C satisfies the
expression

p

p− 2 = p2ᾱC(p−2)/p.

Stated another way, our result (4.52) indicates that a convergence rate
faster than O(1/k1+ε) is not possible when steepest descent with fixed
steplength is applied to the function f(x) = xp provided that

p

p− 2 ≤ 1 + ε,

that is,
p ≥ 21 + ε

ε
and p is a positive even integer.

We follow Attouch et al. (2018) to provide a continuous-time analysis
of the same objective function, using a gradient flow argument. For the



125

function f defined by (4.50), consider the following differential equation:

x′(t) = −α∇f(x(t)). (4.54)

Suppose that
x(t) = t−θ (4.55)

for some θ > 0, which indicates that starting from any t > 0, x(t) lies in a
bounded area. Substituting (4.55) into (4.54), we obtain

−θt−θ−1 = −αpt−θ(p−1), (4.56)

which holds true if and only if the following equations are satisfied:
θ = αp,

−θ − 1 = −θp+ θ,

from which we obtain θ = (p − 2)−1, α = (p(p − 2))−1. Starting from
t = 1/

√
2, we have 0 < x(t) ≤ 2−1/(p−2) ≤

√
2 for p = 4, 6, 8, . . . and for

all t ≥ 1/
√

2, and L = p(p− 1)/2 is an appropriate value for a bound on
‖∇2f(x)‖ for all x(t) in this range. For this value of L, we have 0 < α ≤ 1

L
,

making α a valid step size. The objective value is f(x(t)) = t−p/(p−2),
matching the rate in (4.52).
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Appendix

4.A Proof of Lemma 4.8

From the optimality of p for (4.40) and convexity of ψ, we have that for any
λ ∈ [0, 1],

b>d+ a

2‖d‖
2 + ψ (x+ d)− ψ (x) ≤ b>λd+ a

2‖λd‖
2 + λ (ψ (x+ d)− ψ (x)) .

By rearranging the terms, we get

(1− λ)
(
b>d+ a

2‖d‖
2 + ψ (x+ d)− ψ (x)

)
≤ −aλ (1− λ)

2 ‖d‖2.

Dividing both sides by 1− λ and let λ→ 1, we get the desired result.
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5 a distributed quasi-newton algorithm for
primal and dual regularized empirical risk
minimization

5.1 Introduction

In this chapter, we adopt notations in the machine learning convention
that are different from what we used in previous chapters. We consider
using multiple machines to solve the following regularized problem

min
w∈Rd

P (w) := ξ
(
X>w

)
+ g (w) , (5.1)

where X is a d by n real-valued matrix, and g is a convex, closed, and
extended-valued proper function that can be nondifferentiable, or its dual
problem

min
α∈Rn

D (α) := g∗ (Xα) + ξ∗ (−α) , (5.2)

where for any given function f(·), f ∗ denotes its convex conjugate

f ∗ (z) := max
y

z>y − f (y) .

Each column of X represents a single data point or instance, and we
assume that the set of data points is partitioned and spread across K > 1
machines (i.e. distributed instance-wise). We write X as

X := [X1, X2, . . . , XK ] (5.3)

where Xk is stored exclusively on the kth machine. The dual variable α
is formed by concatenating α1,α2, . . . ,αK where αk is the dual variable
corresponding toXk. We let IX1 , . . . , IXK denote the indices of the columns
of X corresponding to each of the Xk matrices. We further assume that ξ
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shares the same block-separable structure and can be written as follows:

ξ
(
X>w

)
=

K∑
k=1

ξk
(
X>k w

)
, (5.4)

and therefore in (5.2), we have

ξ∗ (−α) =
K∑
k=1

ξ∗k (−αk) . (5.5)

For the ease of description and unification, when solving the primal prob-
lem, we also assume that there exists somepartition Ig1 , . . . , I

g
K of {1, . . . , d}

and g is block-separable according to the partition:

g (w) =
K∑
k=1

gk
(
wIg

k

)
, (5.6)

though our algorithm can be adapted for non-separable g with minimal
modification.

When we solve the primal problem (5.1), ξ is assumed to be a differen-
tiable function with Lipschitz continuous gradients, and is allowed to be
nonconvex. On the other hand, when the dual problem (5.2) is considered,
for recovering the primal solution, we require strong convexity on g and
convexity on ξ, and ξ can be either nonsmooth but Lipschitz continuous
(within the area of interest), or Lipschitz continuously differentiable. Note
that strong convexity of g implies that g∗ is Lipschitz-continuously dif-
ferentiable (Hiriart-Urruty and Lemaréchal, 2001, Part E, Theorem 4.2.1
and Theorem 4.2.2), making (5.2) have the same structure as (5.1) such
that both problems have one smooth and one nonsmooth term. There
are several reasons for considering the alternative dual problem. First,
when ξ is nonsmooth, the primal problem becomes hard to solve as both
terms are nonsmooth, meanwhile in the dual problem, ξ∗ is guaranteed to
be smooth. Second, the number of variables in the primal and the dual
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probelm are different. In our algorithm whose spatial and temporal costs
are positively correlated to the number of variables, when the data set has
much higher feature dimension than the number of data points, solving
the dual problem can be more economical.

The bottleneck in performing distributed optimization is often the
high cost of communication between machines. For (5.1) or (5.2), the
time required to retrieve Xk over a network can greatly exceed the time
needed to compute ξk or its gradient with locally storedXk. Moreover, we
incur a delay at the beginning of each round of communication due to
the overhead of establishing connections between machines. This latency
prevents many efficient single-core algorithms such as coordinate descent
(CD) and stochastic gradient and their asynchronous parallel variants
from being employed in large-scale distributed computing setups. Thus, a
key aim of algorithm design for distributed optimization is to improve the
communication efficiencywhile keeping the computational cost affordable.
Batch methods are preferred in this context, because fewer rounds of
communication occur in distributed batch methods.

When the objective is smooth, many batch methods can be used di-
rectly in distributed environments to optimize them. For example, Nes-
terov’s accelerated gradient (AG) (Nesterov, 1983) enjoys low iteration
complexity, and since each iteration of AG only requires one round of
communication to compute the new gradient, it also has good communica-
tion complexity. Although its supporting theory is not particularly strong,
the limited-memory BFGS (LBFGS) method (Liu and Nocedal, 1989) is
popular among practitioners of distributed optimization. It is the default
algorithm for solving `2-regularized smooth ERM problems in Apache
Spark’s distributed machine learning library (Meng et al., 2016), as it is
empirically much faster than AG (see, for example, the experiments in
Wang et al. (2016)). Other batch methods that utilize the Hessian of the
objective in various ways are also communication-efficient under their



130

own additional assumptions (Shamir et al., 2014; Zhang and Lin, 2015; Lee
et al., 2017; Zhuang et al., 2015; Lin et al., 2014).

However, when the objective is nondifferentiable, neither LBFGS nor
Newton’s method can be applied directly. Leveraging curvature informa-
tion from the smooth part (ξ in the primal or g∗ in the dual) can still be
beneficial in this setting. For example, the orthant-wise quasi-Newton
method OWLQN (Andrew and Gao, 2007) adapts the LBFGS algorithm to
the special nonsmooth case inwhich g(·) ≡ ‖·‖1 for (5.1), and is popular for
distributed optimization of `1-regularized ERM problems. Unfortunately,
extension of this approach to other nonsmooth g is not well understood,
and the convergence guarantees are only asymptotic, rather than global.
Another example is that for (5.2), state of the art distributed algorithms
(Yang, 2013; Lee and Chang, 2017; Zheng et al., 2017) utilize block-diagonal
entries of the real Hessian of g∗(Xα).

To the best of our knowledge, for ERMswith general nonsmooth regular-
izers in the instance-wise storage setting, proximal-gradient-like methods
(Wright et al., 2009; Beck and Teboulle, 2009; Nesterov, 2013) are the only
practical distributed optimization algorithmswith convergence guarantees
for the primal problem (5.1). Since these methods barely use the curvature
information of the smooth part (if at all), we suspect that proper utiliza-
tion of second-order information has the potential to improve convergence
speed and therefore communication efficiency dramatically. As for algo-
rithms solving the dual problem (5.2), computingXα in the instance-wise
storage setting requires communicating a d-dimensional vector, and only
the block-diagonal part of ∂2

αg
∗(Xα) can be obtained easily. Therefore,

global curvature information is not utilized in existing algorithms, and we
expect that utilizing global second-order information of g∗ can also provide
substantial benefits over the block-diagonal approximation approaches.
We thus propose a practical distributed inexact variable-metric algorithm
that can be applied to both (5.1) and (5.2). Our algorithm uses gradients
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and updates information from previous iterations to estimate curvature
of the smooth part in a communication-efficient manner. We describe
construction of this estimate and solution of the corresponding subprob-
lem. We also provide convergence rate guarantees, which also bound
communication complexity. These rates improve on existing distributed
methods, even those tailor-made for specific regularizers.

More specifically, We propose a distributed inexact proximal-quasi-
Newton-like algorithm that can be used to solve both (5.1) and (5.2) under
the instance-wise split setting that share the common structure of having
a smooth term f and a nonsmooth term Ψ. At each iteration with the
current iterate x, our algorithm utilizes the previous update directions
and gradients to construct a second-order approximation of the smooth
part f by the LBFGS method, and approximately minimizes this quadratic
term plus the nonsmooth term Ψ to obtain an update iteration p.

p ≈ arg min
p

QH(p;x), (5.7)

where H is the LBFGS approximation of the Hessian of f at x, and

QH(p;x) := ∇f(x)>p+ 1
2p
>Hp+ Ψ(x+ p)−Ψ(x). (5.8)

For the primal problem (5.1), we believe that this work is the first to
propose, analyze, and implement a practically feasible distributed opti-
mization method for solving (5.1) with general nonsmooth regularizer g
under the instance-wise storage setting. For the dual problem (5.2), our
algorithm is the first to suggest an approach that utilizes global curvature
information under the constraint of distributed data storage. This usage
of non-local curvature information greatly improves upon state of the
art for the distributed dual ERM problem which uses the block-diagonal
parts of the Hessian only. An obvious drawback of the block-diagonal
approach is that the convergence deteriorates with the number of ma-
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chines, as more and more off-block-diagonal entries are ignored. In the
extreme case, where there are nmachines such that each machine stores
only one column of X , the block-diagonal approach reduces to a scaled
proximal-gradient algorithm and the convergence is expected to be ex-
tremely slow. On the other hand, our algorithm has convergence behavior
independent of number of machines and data distribution over nodes, and
is thus favorable when many machines are used. Our approach has both
good communication and computational complexities, unlike certain ap-
proaches that focus only on communication at the expense of computation
(and ultimately overall time).

Contributions

We summarize our main contributions as follows.

• Theproposedmethod is the first real distributed second-ordermethod
for the dual ERM problem that utilizes global curvature informa-
tion of the smooth part. Existing second-order methods use only
the block-diagonal part of the Hessian and suffers from asymptotic
convergence speed as slow as proximal gradient, while our method
enjoys fast convergence throughout. Numerical results show that our
inexact proximal-quasi-Newton method is magnitudes faster than
state of the art for distributed optimizing the dual ERM problem.

• We propose the first distributed algorithm for primal ERMs with
general nonsmooth regularizers (5.1) under the instance-wise split
setting. Prior to our work, existing algorithms are either for a specific
regularizer (in particular the `1 norm) or for the feature-wise split
setting, which is often impractical. In particular, it is usually easier
to generate new data points than to generate new features, and each
time new data points are obtained from one location, one needs to



133

distribute their entries to different machines under the feature-wise
setting.

• The proposed framework is applicable to both primal and dual ERM
problems under the same instance-wise split setting, and the conver-
gence speed is not deteriorated by the number of machines. Existing
methods that applicable to both problems can deal with feature-wise
split for the primal problem only, and their convergence degrades
with the number ofmachines used, and are thus not suitable for large-
scale applications where thousands of or more machines are used.
This unification also reduces two problems into one and facilitates
future development for them.

• Our analysis provides sharper convergence guarantees and there-
fore better communication efficiency. In particular, global linear
convergence for a broad class of non-strongly convex problems that
includesmany popular ERMproblems are shown, and an early linear
convergence to rapidly reach a medium solution accuracy is proven
for convex problems.

Organization

We first describe the general distributed algorithm in Section 5.2. Conver-
gence guarantee, communication complexity, and the effect of the subprob-
lem solution inexactness are analyzed in Section 5.3. Specific details for
applying our algorithm respectively on the primal and the dual problem
are given in Section 5.4. Section 5.5 discusses related works, and empiri-
cal comparisons are conducted in Section 5.6. Concluding observations
appear in Section 5.7.
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Notation and Assumptions

We use the following notation.

• ‖ · ‖ denotes the 2-norm, both for vectors and for matrices.

• Given any symmetric positive semi-definite matrix H ∈ Rd×d and
any vector p ∈ Rd, ‖p‖H denotes the semi-norm

√
p>Hp.

In addition to the structural assumptions of distributed instance-wise
storage of X in (5.3) and the block separability of ξ in (5.4), we also use
the following assumptions throughout this chapter. When we solve the
primal problem, we assume the following.

Assumption 3. The regularization term g(w) is convex, extended-valued, proper,
and closed. The loss function ξ(X>w) is L-Lipschitz continuously differentiable
with respect to w for some L > 0. That is,
∥∥∥X>ξ′ (X>w1

)
−X>ξ′

(
X>w2

)∥∥∥ ≤ L ‖w1 −w2‖ ,∀w1,w2 ∈ Rd. (5.9)

On the other hand, when we consider solving the dual problem, the
following is assumed.

Assumption 4. Both g and ξ are convex. g∗(Xα) is L-Lipschitz continuously
differentiable with respect to α. Either ξ∗ is σ-strongly convex for some σ > 0,
or the loss term ξ(X>w) is ρ-Lipschitz continuous for some ρ.

Because a function is ρ-Lipschitz continuously differentiable if and only
if its conjugate is (1/ρ)-strongly convex (Hiriart-Urruty and Lemaréchal,
2001, Part E, Theorem 4.2.1 and Theorem 4.2.2), Assumption 4 implies that
g is ‖X>X‖/L-strongly convex. From the same reasoning, ξ∗ is σ-strongly
convex if only if ξ is (1/σ) Lipschitz continuously differentiable. Convexity
of the primal problem in Assumption 4 together with Slater’s condition
guarantee strong duality Boyd and Vandenberghe (2004, Section 5.2.3),
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which then ensures (5.2) is indeed an alternative to (5.1). Moreover, from
KKT conditions, any optimal solutionα∗ for (5.2) gives us a primal optimal
solution w∗ for (5.1) through

w∗ = ∇g∗(Xα∗). (5.10)

5.2 Algorithm

We describe and analyze a general algorithmic scheme that can be applied
to solve both the primal (5.1) and dual (5.2) problems under the instance-
wise distributed data storage scenario (5.3). In Section 5.4, we discuss how
to efficiently implement particular steps of this scheme for (5.1) and (5.2).

Consider a general problem of the form

min
x∈RN

F (x) := f(x) + Ψ(x), (5.11)

where f is L-Lipschitz continuously differentiable for some L > 0 and Ψ
is convex, closed, proper, extended valued, and block-separable into K
blocks. More specifically, we can write Ψ(x) as

Ψ(x) =
K∑
k=1

Ψk(xIk). (5.12)

where I1, . . . , IK partitions {1, . . . , N}.
We assume as well that for the kth machine, ∇Ikf(x) can be obtained

easily after communicating a vector of size O(d) across machines, and
postpone the detailed gradient calculation until we discuss specific prob-
lem structures in later sections. Note that this d is the primal variable
dimension in (5.1) and is independent of N .

The primal and dual problems are specific cases of the general form
(5.11). For the primal problem (5.1) we let N = d, x = w, f(·) = ξ(X>·),
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and Ψ(·) = g(·). The block-separability of g (5.6) gives the desired block-
separability of Ψ (5.12), and the Lipschitz-continuous differentiability of
f comes from Assumption 3. For the dual problem (5.2), we have N = n,
x = α, f(·) = g∗(X·), and Ψ(·) = ξ∗(−·). The separability follows from
(5.5), where the partition (5.12) reflects the data partition in (5.3) and
Lipschitz continuity from Assumption 4.

Each iteration of our algorithm has four main steps – (1) computing
the gradient∇f(x), (2) constructing an approximate Hessian H of f , (3)
solving a quadratic approximation subproblem to find an update direction
p, and finally (4) taking a step x+ λp either via line search or trust-region
approach. The gradient computation step and part of the line search pro-
cess is dependent on whether we are solving the primal or dual problem,
and we defer the details to Section 5.4. The approximate HessianH comes
from the LBFGS algorithm Liu andNocedal (1989). To compute the update
direction, we approximately solve (5.7), where QH consists of a quadratic
approximation to f and the regularizer Ψ as defined in (5.8). We then
use either a line search procedure to determine a suitable stepsize λ and
perform the update x← x+ λp, or use some trust-region-like techniques
to decide whether to accept the update direction with unit step size.

We now discuss the following issues in the distributed setting: commu-
nication cost in distributed environments, the choice and construction ofH
that have low cost in terms of both communication and per machine com-
putation, procedures for solving (5.7), and the line search and trust-region
procedures for ensuring sufficient objective decrease.

Communication Cost Model

For the ease of description, we assume the allreduce model of MPI (Mes-
sage Passing Interface Forum, 1994) throughout the chapter, but it is also
straightforward to extend the framework to a master-worker platform.
Under this allreducemodel, all machines simultaneously fulfill master and
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worker roles, and for any distributed operations that aggregate results
from machines, the resultant is broadcast to all machines.

This can be considered as equivalent to conducting one map-reduce
operation and then broadcasting the result to all nodes. The communica-
tion cost for the allreduce operation on a d-dimensional vector under this
model is

log (K)Tinitial + dTbyte, (5.13)

where Tinitial is the latency to establish connection between machines, and
Tbyte is the per byte transmission time (see, for example, Chan et al. (2007,
Section 6.3)).

The first term in (5.13) also explains why batch methods are preferable.
Even if methods that frequently update the iterates communicate the same
amount of bytes, it takes more rounds of communication to transmit the
information, and the overhead of log(K)Tinitial incurred at every round of
communication makes this cost dominant, especially when K is large.

In subsequent discussion, when an allreduce operation is performed
on a vector of dimension O(d), we simply say that a round of O(d) com-
munication is conducted. We omit the latency term since batch methods
like ours tend to have only a small constant number of rounds of com-
munication per iteration. By contrast, non-batch methods such as CD or
stochastic gradient require number of communication rounds per epoch
equal to data size or dimension, and therefore face much more significant
latency issues.

Constructing a good H efficiently

We use the Hessian approximation constructed by the LBFGS algorithm
(Liu and Nocedal, 1989) as ourH in (5.8), and propose a way to maintain it
efficiently in a distributed setting. In particular, we show that most vectors
involved can be stored perfectly in a distributed manner in accord with
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the partition Ik in (5.12), and this distributed storage further facilitates
parallelization ofmost computation. Note that the LBFGS algorithmworks
even if the smooth part is not twice-differentiable, see Lemma 5.1. In fact,
Lipschitz continuity of the gradient implies that the function is twice-
differentiable almost everywhere, and generalized Hessian can be used at
the points where the smooth part is not twice-differentiable. In this case,
the LBFGS approximation is for the generalized Hessian.

Using the compact representation in Byrd et al. (1994), given a prespec-
ified integerm > 0, at the tth iteration for t > 0, letm(t) := min(m, t), and
define

si := xi+1 − xi, yi := ∇f(xi+1)−∇f(xi), ∀i.

The LBFGS Hessian approximation matrix is

Ht = γtI − UtM−1
t U>t , (5.14)

where

Ut := [γtSt, Yt] , Mt :=
 γtS

>
t St, Lt

L>t −Dt

 , γt := y>t−1yt−1
s>t−1yt−1

, (5.15)

and

St :=
[
st−m(t), st−m(t)+1, . . . , st−1

]
, (5.16a)

Yt :=
[
yt−m(t),yt−m(t)+1, . . . ,yt−1

]
, (5.16b)

Dt := diag
(
s>t−m(t)yt−m(t), . . . , s

>
t−1yt−1

)
, (5.16c)

(Lt)i,j :=

s
>
t−m(t)−1+iyt−m(t)−1+j, if i > j,

0, otherwise.
(5.16d)

For t = 0 where no si and yi are available, we either set H0 := a0I for
some positive scalar a0, or use some Hessian approximation constructed
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using local data. More details are given in Section 5.4 when we discuss
the primal and dual problems individually.

If f is not strongly convex, it is possible that (5.14) is only positive
semi-definite, making the subproblem (5.7) ill-conditioned. In this case,
we follow Li and Fukushima (2001), taking them update pairs to be the
most recentm iterations for which the inequality

s>i yi ≥ δs>i si (5.17)

is satisfied, for some predefined δ > 0. It can be shown that this safe-
guard ensures that Ht are always positive definite and the eigenvalues
are bounded within a positive range. For a proof in the case that f is
twice-differentiable, see, for example, the appendix of Lee and Wright
(2017). For completeness, we provide a proof without the assumption of
twice-differentiability of f in Lemma 5.1.

To construct and utilize this Ht efficiently, we store (Ut)Ik,: on the kth
machine, and all machines keep a copy of thewholeMtmatrix as usuallym
is small and this is affordable. Under our assumption, on the kth machine,
the local gradient∇Ikf can be obtained, andwewill show how to compute
the update direction pIk locally in the next subsection. Thus, since si are
just the update direction p scaled by the step size λ, it can be obtained
without any additional communication. All the information needed to
construct Ht is hence available locally on each machine.

We now consider the costs associated with the matrixM−1
t . The matrix

Mt, but not its inverse, is maintained for easier update. In practice,m is
usually much smaller than N , so the O(m3) cost of inverting the matrix
directly is insignificant compared to the cost of the other steps. On contrary,
if N is large, the computation of the inner products s>i yj and s>i sj can
be the bottleneck in constructingM−1

t . We can significantly reduce this
cost by computing and maintaining the inner products in parallel and
assembling the results withO(m) communication cost. At the tth iteration,
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given the new st−1, because Ut is stored disjointly on the machines, we
compute the inner products of st−1 with both St and Yt in parallel via the
summations

K∑
k=1

(
(St)>Ik,:(st−1)Ik

)
,

K∑
k=1

(
(Yt)>Ik,:(st−1)Ik

)
,

requiring O(m) communication of the partial sums on each machine. We
keep these results until st−1 and yt−1 are discarded, so that at each iteration,
only 2m (not O(m2)) inner products are computed.

Solving the Quadratic Approximation Subproblem to
Find Update Direction

The matrix Ht is generally not diagonal, so there is no easy closed-form
solution to (5.7). We will instead use iterative algorithms to obtain an
approximate solution to this subproblem. In single-core environments,
coordinate descent (CD) is one of the most efficient approaches for solving
(5.7) (Yuan et al., 2012; Zhong et al., 2014; Scheinberg and Tang, 2016).
When N is not too large, instead of the distributed approach we discussed
in the previous section, it is possible to constructHt on all machines. In this
case, a local CD process can be applied on all machines to save communi-
cation cost, in the price that all machines conduct the same calculation and
the additional computational power from multiple machines is wasted.
The alternative approach of applying proximal-gradient methods to (5.7)
may be more efficient in distributed settings, since they can be parallelized
with little communication cost for large N .

The fastest proximal-gradient-type methods are accelerated gradient
(AG) (Beck and Teboulle, 2009; Nesterov, 2013) and SpaRSA (Wright et al.,
2009). SpaRSA is a basic proximal-gradient methodwith spectral initializa-
tion of the parameter in the prox term. SpaRSA has a few key advantages
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over AG despite its weaker theoretical convergence rate guarantees. It
tends to be faster in the early iterations of the algorithm (Yang and Zhang,
2011), thus possibly yielding a solution of acceptable accuracy in fewer
iterations than AG. It is also a descent method, reducing the objective QH

at every iteration, which ensures that the solution returned is at least as
good as the original guess p = 0

In the rest of this subsection, we will describe a distributed imple-
mentation of SpaRSA for (5.7), with H as defined in (5.14). The major
computation is obtaining the gradient of the smooth (quadratic) part of
(5.8), and thus with minimal modification, AG can be used with the same
per iteration cost. To distinguish between the iterations of our main algo-
rithm (i.e. the entire process required to update x a single time) and the
iterations of SpaRSA, we will refer to them by main iterations and SpaRSA
iterations respectively.

SinceH and x are fixed in this subsection, we will writeQH(·;x) simply
as Q(·). We denote the ith iterate of the SpaRSA algorithm as p(i), and we
initialize p(0) = 0 whenever there is no obviously better choice. We denote
the smooth part of QH by f̂(p), and the nonsmooth Ψ(x+ p) by Ψ̂(p).

f̂(p) := ∇f(x)>p+ 1
2p
>Hp, Ψ̂(p) := Ψ(x+ p)−Ψ(x). (5.18)

At the ith iteration of SpaRSA, we define

u
(i)
ψi

:= p(i) − ∇f̂(p(i))
ψi

, (5.19)

and solve the following subproblem:

p(i+1) = arg min
p

1
2
∥∥∥p− u(i)

ψi

∥∥∥2
+ Ψ̂(p)

ψi
, (5.20)
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where ψi is defined by the following “spectral” formula:

ψi =

(
p(i) − p(i−1)

)> (
∇f̂(p(i))−∇f̂(p(i−1))

)
‖p(i) − p(i−1)‖2 . (5.21)

When i = 0, we use a pre-assigned value for ψ0 instead. (In our LBFGS
choice for Ht, we use the value of γt from (5.15) as the initial estimate of
ψ0.) The exact minimizer of (5.20) can be difficult to compute for general Ψ.
However, approximate solutions of (5.20) suffice to provide a convergence
rate guarantee for solving (5.7) as discussed in Chapter 2. Since it is known
(see Lemma 5.1) that the eigenvalues ofH are upper- and lower-bounded in
a positive range after the safeguard (5.17) is applied, we can guarantee that
this initialization of ψi is bounded within a positive range; see Section 5.3.
The initial value of ψi defined in (5.21) is increased successively by a
chosen constant factor β > 1, and p(i+1) is recalculated from (5.20), until
the following sufficient decrease criterion is satisfied:

Q
(
p(i+1)

)
≤ Q

(
p(i)

)
− σ0ψi

2
∥∥∥p(i+1) − p(i)

∥∥∥2
, (5.22)

for some specified σ0 ∈ (0, 1). Note that the evaluation of Q(p) needed in
(5.22) can be done efficiently through a parallel computation of

K∑
k=1

1
2
(
∇Ik f̂ (p) +∇Ikf (x)

)>
pIk + Ψ̂k (pIk) .

From the boundedness of H , one can easily prove that (5.22) is satisfied
after a finite number of increases of ψi, as we will show in Section 5.3. In
our algorithm, SpaRSA runs until either a fixed number of iterations is
reached, or when some certain inner stopping condition for optimizing
(5.7) is satisfied.

For general H , the computational bottleneck of∇f̂ would take O(N2)
operations to compute the Hp(i) term. However, for our LBFGS choice of
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H , this cost is reduced to O(mN +m2) by utilizing the matrix structure,
as shown in the following formula:

∇f̂ (p) = ∇f (x) +Hp = ∇f(x) + γp− Ut
(
M−1

t

(
U>t p

))
. (5.23)

The computation of (5.23) can be parallelized, by first parallelizing com-
putation of the inner product U>t p(i) via the formula

K∑
k=1

(Ut)>Ik,: p
(i)
Ik

with O(m) communication. (We implement the parallel inner products as
described in Section 5.2.) We let each machine compute a subvector of u
in (5.19) according to (5.12).

From the block-separability of Ψ, the subproblem (5.20) for computing
p(i) can be decomposed into independent subproblems partitioned along
I1, . . . , IK . The kth machine therefore locally computes p(i)

Ik without com-
municating the whole vector. Then at each iteration of SpaRSA, partial
inner products between (Ut)Ik,: and p

(i)
Ik can be computed locally, and the

results are assembled with an allreduce operation of O(m) communica-
tion cost. This leads to a round of O(m) communication cost per SpaRSA
iteration, with the computational cost reduced from O(mN) to O(mN/K)
per machine on average. Since both the O(m) communication cost and
the O(mN/K) computational cost are inexpensive when m is small, in
comparison to the computation of ∇f , one can afford to conduct multiple
iterations of SpaRSA at every main iteration. Note that the total latency
incurred over all allreduce operations as discussed in (5.13) can be capped
by setting a maximum iteration limit for SpaRSA.

The distributed implementation of SpaRSA for solving (5.7) is summa-
rized in Algorithm 8.
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Algorithm 8 Distributed SpaRSA for solving (5.7) with LBFGS quadratic
approximation (5.14) on machine k
1: Given β, σ0 ∈ (0, 1),M−1

t , Ut, γt, and Ik;
2: Set p(0)

Ik ← 0;
3: for i = 0, 1, 2, . . . do
4: if i = 0 then
5: ψ = γt;
6: else
7: Compute ψ in (5.21) through

K∑
j=1

(
p

(i)
Ij − p

(i−1)
Ij

)> (
∇Ij f̂

(
p(i)

)
−∇Ij f̂

(
p(i−1)

))
, and

K∑
j=1

∥∥∥p(i)
Ij − p

(i−1)
Ij

∥∥∥2
;

8: Obtain
U>t p

(i) =
K∑
j=1

(Ut)>Ij ,: p
(i)
Ij ;

9: Compute

∇Ik f̂
(
p(i)

)
= ∇Ikf (x) + γp

(i)
Ik − (Ut)Ik,:

(
M−1

t

(
U>t p

(i)
))

by (5.23);
10: while TRUE do
11: Solve (5.20) on coordinates indexed by Ik to obtain pIk ;
12: if (5.22) holds then
13: p

(i+1)
Ik ← pIk ; ψi ← ψ;

14: Break;
15: ψ ← β−1ψ;
16: Re-solve (5.20) with the new ψ to obtain a new pIk ;
17: Break if some stopping condition is met;

Sufficient Function Decrease

After obtaining an update direction p by approximately solving (5.7), we
need to ensure sufficient objective decrease. This is usually achieved by
some line-search or trust-region procedure. In this section, we describe two
such approaches, one based on backtracking line search for the step size,
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and one based on a trust-region like approach that modifies H repeatedly
until an update direction is accepted with unit step size.

For the line-search approach, we follow Tseng and Yun (2009) by using
a modified-Armijo-type backtracking line search to find a suitable step
size λ. Given the current iterate x, the update direction p, and parameters
σ1, θ ∈ (0, 1), we set

∆ := ∇f (x)> p+ Ψ (x+ p)−Ψ (x) (5.24)

and pick the step size as the largest of θ0, θ1, . . . satisfying

F (x+ λp) ≤ F (x) + λσ1∆. (5.25)

The computation of ∆ is negligible as all the terms are involved in Q(p;x),
and Q(p;x) is evaluated in the line search procedure of SpaRSA. For the
function value evaluation, the objective values of both (5.1) and (5.2) can
be evaluated efficiently if we precompute Xp or X>p in advance and
conduct all reevaluations through this vector but not repeated matrix-
vector products. Details are discussed in Section 5.4. Note that because
Ht defined in (5.14) attempts to approximate the real Hessian, empirically
the unit step λ = 1 frequently satisfies (5.25), so we use the value 1 as the
initial guess.

For the trust-region-like procedure, we start from the original H , and
use the same σ1, θ ∈ (0, 1) as above. Whenever the sufficient decrease
condition

F (x+ p)− F (x) ≤ σ1QH(p;x) (5.26)

is not satisfied, we scale up H by H ← H/θ, and resolve (5.7), either
from 0 or from the previously obtained solution p if it gives an objective
better than 0. We note that when Ψ is not present, both the backtracking
approach and the trust-region one generate the same iterates. But when
Ψ is incorporated, the two approaches may generate different updates.
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Similar to the line-search approach, the evaluation of QH(p;x) comes
for free from the SpaRSA procedure, and usually the original H (5.14)
generates update steps satisfying (5.26). Therefore, solving (5.7) multiple
times per main iteration is barely encountered in practice.

The trust-region procedure may be more expensive than line search
because solving the subproblem again is more expensive than trying a
different step size, although both cases are empirically rare. But on the
other hand, when there are additional properties of the regularizer such
as sparsity promotion, a potential benefit of the trust-region approach is
that it might be able to identify the sparsity pattern earlier because unit
step size is always used.

Our distributed algorithm for (5.11) is summarized in Algorithm 9.
We refer to the line search and trust-region variants of the algorithm as
DPLBFGS-LS and DPLBFGS-TR respectively, and we will refer to them
collectively as simply DPLBFGS.

Cost Analysis

We now describe the computational and communication cost of our al-
gorithms. The computational cost for each machine depends on which
Xk is stored locally and the size of |Ik|, and for simplicity we report the
computational cost averaged over all machines. The communication costs do
not depend on Xk.

For the distributed version of Algorithm 8, each iteration costs

O
(
N

K
+ mN

K
+m2

)
= O

(
mN

K
+m2

)
(5.27)

in computation, where the N/K term is for the vector additions in (5.23),
and

O (m+ number of times (5.22) is evaluated)
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in communication. In the next section, we will show that (5.22) is accepted
within a fixed number of times and thus the overall communication cost
is O(m).

For DPLBFGS, we will give details in Section 5.4 that for both (5.1)
and (5.2), each gradient evaluation for f takes O(#nnz/K) per machine
computation in average and O(d) in communication, where #nnz is the
number of nonzero elements in the data matrix X . As shown in the
next section, in one main iteration, the number of function evaluations in
the line search is bounded, and its cost is negligible if we are using the
same p but just different step sizes; see Section 5.4. For the trust region
approach, the number of times for modifyingH and resolving (5.7) is also
bounded, and thus the asymptotical cost is not altered. In summary, the
computational cost per main iteration is therefore

O

(
#nnz
K

+ mN

K
+m3 + N

K

)
= O

(
#nnz
K

+ mN

K
+m3

)
, (5.28)

and the communication cost is

O (1 + d) = O (d) ,

where the O(1) part is for function value evaluation and checking the
safeguard (5.17). We note that the costs of Algorithm 8 are dominated by
those of DPLBFGS if a fixed number of SpaRSA iterations is conducted
every main iteration.

5.3 Convergence Rate and Communication
Complexity Analysis

The use of an iterative solver for the subproblem (5.7) generally results
in an inexact solution. We first show that running SpaRSA for any fixed
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number of iterations guarantees a step p whose accuracy is sufficient to
prove overall convergence.

Lemma 5.1. Consider optimizing (5.11) by DPLBFGS. By usingHt as defined
in (5.14) with the safeguard mechanism (5.17) in (5.7), we have the following.

1. We have L2/δ ≥ γt ≥ δ for all t > 0, where L is the Lipschitz constant for
∇f . Moreover, there exist constants c1 ≥ c2 > 0 such that c1I � Ht � c2I

for all t > 0.
2. At every SpaRSA iteration, the initial estimate of ψi is bounded within the

range of [
min {c2, δ} ,max

{
c1,

L2

δ

}]
,

and the final accepted value ψi is upper-bounded.
3. SpaRSA is globally Q-linear convergent in solving (5.7). Therefore, there

exists η ∈ [0, 1) such that if we run at least S iterations of SpaRSA for all
main iterations for any S > 0, the approximate solution p satisfies

−ηSQ∗ = ηS (Q (0)−Q∗) ≥ Q (p)−Q∗, (5.29)

where Q∗ is the optimal objective of (5.7).

Lemma 5.1 establishes how the number of iterations of SpaRSA affects
the inexactness of the subproblem solution. Given this measure, we can
leverage the results developed in Chapter 2 to obtain iteration complexity
guarantees for our algorithm. Since in our algorithm, communication
complexity scales linearly with iteration complexity, this guarantee pro-
vides a bound on the amount of communication. In particular, our method
communicates O(d+mS) bytes per iteration (where S is the number of
SpaRSA iterations used, as in Lemma 5.1) and the second term can usually
be ignored for smallm.

We show next that the step size generated by our line search procedure
in DPLBFGS-LS is lower bounded by a positive value.
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Lemma 5.2. Consider (5.11) such that f is L-Lipschitz differentiable and Ψ is
convex. If SpaRSA is run at least S iterations in solving (5.7), the corresponding
∆ defined in (5.24) satisfies

∆ ≤ −c2 ‖p‖2

1 + η
S
2
, (5.30)

where η and c2 are the same as that defined in Lemma 5.1. Moreover, the back-
tracking subroutine in DPLBFGS-LS terminates in finite number of steps and
produces a step size

λ ≥ min
{

1, 2θ (1− σ1) c2

L (1 + ηS/2)

}
(5.31)

satisfying (5.25).

We also show that for the trust-region technique, at one main iteration,
the number of times we solve the subproblem (5.7) until a step is accepted
is upper-bounded by a constant.

Lemma 5.3. For DPLBFGS-TR, suppose each time when we solve (5.7) we have
guarantee that the objective value is no worse than Q(0). Then when (5.26) is
satisfied, we have that

‖Ht‖ ≤ c1 max
{

1, L
c2θ

}
. (5.32)

Moreover, at eachmain iteration, the number of times we solve (5.7)with different
H is upper-bounded by

max
{

1,
⌈
logθ

c2

L

⌉}
Note that the bound in Lemma 5.3 is independent to the number of

SpaRSA iterations used. It is possible that one can incorporate the sub-
problem suboptimality to derive tighter but more complicated bounds,
but for simplicity we use the current form of Lemma 5.3.
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The results in Lemmas 5.2-5.3 are just worst-case guarantees; in practice
we often observe that the line search procedure terminates with λ = 1 for
our original choice of H , as we see in our experiments. This also indicates
that inmost of the cases, (5.26) is satisfiedwith the original LBFGSHessian
approximation without scaling H .

We now lay out the main theoretical results in Theorems 5.4 to 5.7,
which describe the iteration and communication complexity under dif-
ferent conditions on the function F . In all these results, we assume the
following setting:

We apply DPLBFGS to solve the main problem (5.11), running
Algorithm 8 for S iterations in each main iteration. Let xt, λt,
and Ht be respectively the x vector, the step size, and the final
accepted quadratic approximation matrix at the tth iteration
of DPLBFGS for all t ≥ 0. LetM be the supremum of ‖Ht‖ for
all t (which is either c1 or c1L/(c2θ) according to Lemmas 5.1
and 5.3), and λ̄ be the infimum of the step sizes over iterations
(either 1 or the bound from Lemma 5.2). Let F ∗ be the optimal
objective value of (5.11), Ω the solution set, and PΩ the (convex)
projection onto Ω.

Theorem 5.4. If F is convex, given an initial point x0, assume

R0 := sup
x:F (x)≤F (x0)

‖x− PΩ(x)‖ (5.33)

is finite, we obtain the following expressions for rate of convergence of the objective
value.

1. When

F (xt)− F ∗ ≥
(
xt − PΩ

(
xt
))>

Ht

(
xt − PΩ

(
xt
))
,
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the objective converges linearly to the optimum:

F (xt+1)− F ∗
F (xt)−F ∗

≤ 1−

(
1− ηS

)
σ1λt

2 .

2. For any t ≥ t0, where

t0 := arg min{t |MR2
0 > F

(
xt
)
− F ∗},

we have

F
(
xt
)
− F ∗ ≤ 2MR2

0
σ1(1− ηS)∑t−1

i=t0 λt + 2
.

Moreover,

t0 ≤ max
{

0, 1 + 2
σ1(1− ηs)λ̄

log f (x0)− f ∗
MR2

0

}
.

Therefore, for any ε > 0, the number of rounds of O(d) communication required
to obtain an xt such that F (xt)− F ∗ ≤ ε is at most


O
(

max
{

0, 1 + 2
σ1(1−ηs)λ̄ log F(x0)−F ∗

MR2
0

}
+ 2MR2

0
σ1λ̄(1−ηS)ε

)
if ε < MR2

0,

O
(

max
{

0, 1 + 2
σ1(1−ηS)λ̄ log F(x0)−F ∗

ε

})
else.

Theorem 5.5. When F is convex and the quadratic growth condition

F (x)− F ∗ ≥ µ

2 ‖x− PΩ (x)‖2 , ∀x ∈ RN (5.34)

holds for some µ > 0, we get a global Q-linear convergence rate:

F (xt+1)− F ∗
F (xt)− F ∗ ≤ 1− λtσ1

(
1− ηS

)
·


µ

4‖Ht‖ , if µ ≤ 2‖Ht‖,

1− ‖Ht‖
µ
, else.

(5.35)



152

Therefore, the rounds of O(d) communication needed for getting an ε-accurate
objective is


O
(

max
{

0, 1 + 2
σ1(1−ηs)λ̄ log F(x0)−F ∗

MR2
0

}
+ 4M

µλ̄σ1(1−ηS) log MR2
0

ε

)
if ε < MR2

0, µ ≤ 2M,

O
(

max
{

0, 1 + 2
σ1(1−ηs)λ̄ log F(x0)−F ∗

MR2
0

}
+ µ

(µ−M)λ̄σ1(1−ηS) log MR2
0

ε

)
if ε < MR2

0, µ > 2M,

O
(

0, 1 + 2
σ1(1−ηS)λ̄ log F(x0)−F ∗

ε

)
if ε ≥MR2

0.

Theorem 5.6. Suppose that the following relaxation of strong convexity holds:
There exists µ > 0 such that for any x ∈ RN and any a ∈ [0, 1], we have

F (ax+ (1− a)PΩ (x)) ≤ aF (x) + (1− a)F ∗ − µa (1− a)
2 ‖x− PΩ (x)‖2 .

(5.36)
Then DPLBFGS converges globally at a Q-linear rate faster than (5.35). More
specifically,

F (xt+1)− F ∗
F (xt)− F ∗ ≤ 1−

λtσ1
(
1− ηS

)
µ

µ+ ‖Ht‖
.

Therefore, to get an approximate solution of (5.11) that is ε-accurate in the sense
of objective value, we need to perform at most

O
(

max
{

0, 1 + 2
σ1(1−ηs)λ̄ log F(x0)−F ∗

MR2
0

}
+ µ+M

µσ1λ̄(1−ηS) log MR2
0

ε

)
if ε < MR2

0,

O
(

0, 1 + 2
σ1(1−ηS)λ̄ log F(x0)−F ∗

ε

)
else.

rounds of O(d) communication.

Theorem 5.7. If F is non-convex, the norm of

Gt := arg min
p

∇f
(
xt
)>
p+ ‖p‖

2

2 + Ψ (x+ p)
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converges to zero at a rate of O(1/
√
t) in the following sense:

min
0≤i≤t

‖Gi‖2 ≤ F (x0)− F ∗
σ1 (t+ 1)

M2
(

1 + 1
c2

+
√

1− 2
M

+ 1
c22

)2

2c2(1− ηS) min0≤i≤t λi
.

Moreover, if there are limit points in the sequence {x0, x1, . . . }, then all limit
points are stationary.

Note that it is known that the norm of Gt is zero if and only if xt is a
stationary point, so this measure serves as an indicator for the first-order
optimality condition. The class of quadratic growth (5.34) includes many
non-strongly-convex ERM problems. Especially, it contains problems of
the form

min
x∈X

g (Ax) + b>x, (5.37)

where g is strongly convex, A is a matrix, b is a vector, and X is a poly-
hedron. Commonly seen non-strongly-convex ERM problems including
`1-regularized logistic regression, LASSO, and the dual problem of sup-
port vector machines all fall in the form (5.37) and therefore our algorithm
enjoys global linear convergence on them.

5.4 Solving the Primal and the Dual Problem

Now we discuss details on how to apply DPLBFGS described in the previ-
ous section to the specific problems (5.1) and (5.2) respectively. We discuss
how to obtain the gradient of the smooth part f and how to conduct line
search efficiently under distributed data storage. For the dual problem,
we additionally describe how to recover a primal solution from our dual
iterates.
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Primal Problem

Recall that the primal problem is (5.1) minw∈Rd ξ
(
X>w

)
+ g (w) , and is

obtained from the general form (5.11) by having N = d, x = w, f(·) =
ξ(X>·), and Ψ(·) = g(·). The gradient of ξ with respect to w is

X∇ξ(X>w) =
K∑
k=1

(
Xk∇ξk(X>k w)

)
.

We see that, except for the sum over k, the computation can be conducted
locally providedw is available to all machines. Our algorithm maintains
X>k w on the kth machine throughout, and the most costly steps are the
matrix-vector multiplications between Xk and∇ξk(X>k w). Clearly, com-
puting X>k w and Xk∇ξk(X>k w) both cost O(#nnz/K) in average among
the K machines. The local d-dimensional partial gradients are then aggre-
gated through an allreduce operation using a round of O(d) communica-
tion.

To initialize the approximate Hessian matrix H at t = 0, we set H0 :=
a0I for some positive scalar a0. In particular, we use

a0 :=

∣∣∣∇f(w0)>∇2f(w0)∇f(w0)
∣∣∣

‖∇f(w0)‖2 , (5.38)

where ∇2f(w0) denotes the generalized Hessian when f is not twice-
differentiable.

For the function value evaluation part of line search, each machine
will compute ξk(X>k w + λX>k ) + gk(wIg

k
+ λpIg

k
) (the left-hand side of

(5.25)) and send this scalar over the network. Once we have precomputed
X>k w and X>k p, we can quickly obtain X>k (w + λp) for any value of λ
without having to performing matrix-vector multiplications. Aside from
the communication needed to compute the summation of the fk terms
in the evaluation of f , the only other communication needed is to share



155

the update direction p from subvectors pIg
k
. Thus, two rounds of O(d)

communication are incurred per main iteration.

Dual Problem

Now consider applying DPLBFGS to the dual problem (5.2). To fit it
into the general form (5.11), we have N = n, x = α, f(·) = g∗(X·), and
Ψ(·) = −ξ∗(−·). In this case, we need a way to efficiently obtain the vector

z := Xα

on eachmachine in order to compute g∗ (Xα) and the gradientX>∇g∗(Xα).
Since each machine has access to some columns of X , it is natural to

split α according to the same partition. Namely, we set Ik as described
in (5.12) to IXk . Every machine can then individually compute Xkαk,
and after one round of O(d) communication, each machine has a copy
of z = Xα = ∑K

k=1Xkαk. After using z to compute ∇zg∗(z), we can
compute the gradient∇IX

k
g∗(Xα) = X>k ∇g∗(Xα) at a computation cost

of O(#nnz/K) in average among the K machines, matching the cost of
computing Xkαk earlier.

To construct the approximation matrix H0 for the first main iteration,
we make use of the fact that the (generalized) Hessian of g∗(Xα) is

X>∇2g∗(z)X. (5.39)

Each machine has access to oneXk, so we can construct the block-diagonal
proportion of this Hessian locally for the part corresponding to IXk . There-
fore, the block-diagonal part of the Hessian is a natural choice for H0.
Under this choice of H0, the subproblem (5.7) is decomposable along the
IX1 , . . . , IXK partition and one can apply algorithms other than SpaRSA to
solve this. For example, we can apply CD solvers on the independent local
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subproblems, as done by Lee and Chang (2017); Yang (2013); Zheng et al.
(2017). As it is observed in these works that the block-diagonal approaches
tend to converge fast at the early iterations, we use it for initializing our
algorithm. In particular, we start with the block-diagonal approach, until
Ut has 2m columns, and then we switch to the LBFGS approach. This turns
out to be much more efficient in practice than starting with the LBFGS
matrix.

For the line search process, we can precompute the matrix-vector prod-
uct Xp with the same O(d) communication and O(#nnz/K) per machine
average computational cost as computing Xα. With Xα and Xp, we can
now evaluate Xα+ λXp quickly for different λ, instead of having to per-
form a matrix-vector multiplication of the form X(α + λp) for every λ.
For most common choices of g, given z, the computational cost of eval-
uating g∗(z) is O(d). Thus, the cost of this efficient implementation per
backtracking iteration is reduced toO(d), with an overhead ofO(#nnz/K)
per machine average per main iteration, while the naive implementation
takes O(#nnz/K) per backtracking iteration. After the sufficient decrease
condition holds, we locally update αk and Xα using pIX

k
and Xp. For the

trust region approach, the two implementations take the same cost.

Recovering a Primal Solution

In general, the algorithm only gives us an approximate solution to the
dual problem (5.2), which means the formula

w (α) := ∇g∗ (Xα) . (5.40)

used to obtain a primal optimal point from a dual optimal point (equation
(5.10), derived from KKT conditions) is no longer guaranteed to even
return a feasible point without further assumptions. Nonetheless, this is
a common approach and under certain conditions (the ones we used in
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Assumption 4), one can provide guarantees on the resulting point.
It can be shown from existing works (Bach, 2015; Shalev-Shwartz and

Zhang, 2012) that when α is not an optimum for (5.2), for (5.40), certain
levels of primal suboptimality can be achieved, which depend on whether
ξ is Lipschitz-continuously differentiable or Lipschitz continuous. This is
the reason why we need the corresponding assumptions in Assumption
4. A summary of those results is available in Lee and Chang (2017). We
restate their results here for completeness but omit the proof.

Theorem 5.8 (Lee and Chang (2017, Theorem 3)). Given any ε > 0, and any
dual iterate α ∈ Rn satisfying

D(α)− min
ᾱ∈Rn

D(ᾱ) ≤ ε.

If Assumption 4 holds, then the following results hold.
1. If the part in Assumption 4 that ξ∗ is σ-strongly convex holds, then w(α)

satisfies

P (w (α))− min
w∈Rd

P (w) ≤ ε
(

1 + L

σ

)
.

2. If the part in Assumption 4 that ξ is ρ-Lipschitz continuous holds, then
w(α) satisfies

P (w (α))− min
w∈Rd

P (w) ≤ min
{

4ρ2L,
√

8ερ2L
}
.

One more issue to note from recovering the primal solution through
(5.40) is that our algorithm only guarantees monotone decrease of the
dual objective but not the primal objective. To ensure the best primal
approximate solution, one can follow Lee and Chang (2017) to maintain
the primal iterate that gives the best objective for (5.1) up to the current
iteration as the output solution. The theorems above still apply to this
iterate and we are guaranteed to have better primal performance.
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5.5 Related Works

The framework of using the quadratic approximation subproblem (5.7)
to generate update directions for optimizing (5.11) has been discussed in
existing works with different choices of H , but always in the single-core
setting. Lee et al. (2014) focused on using H = ∇2f , and proved local
convergence results under certain additional assumptions. In their experi-
ment, they used AG to solve (5.7). However, in distributed environments,
for (5.1) or (5.2), using ∇2f as H needs an O(d) communication per AG it-
eration in solving (5.7), because computation of the term∇2f(x)p involves
either XDX>p or X>DXp for some diagonal matrix D, which requires
one allreduce operation to calculate a weighted sum of the columns of X .

Scheinberg andTang (2016) andGhanbari and Scheinberg (2018) showed
global convergence rate results for a method based on (5.7) with bounded
H , and suggested using randomized coordinate descent to solve (5.7). In
the experiments of these two works, they used the same choice ofH as we
do in this chapter, with CD as the solver for (5.7), which is well suited to
their single-machine setting. Aside from our extension to the distributed
setting and the use of SpaRSA, the third major difference between their al-
gorithm and ours is how sufficient objective decrease is guaranteed. When
the obtained solution with a unit step size does not result in sufficient
objective value decrease, they add a multiple of the identity matrix to H
and solve (5.7) again starting from p(0) = 0. This is different from how
we modify H and in some worst cases, the behavior of their algorithm
can be closer to a first-order method if the identity part dominates, and
more trials of different H might be needed. The cost of repeatedly solving
(5.7) from scratch can be high, which results in an algorithm with higher
overall complexity. This potential inefficiency is exacerbated further by
the inefficiency of coordinate descent in the distributed setting.

For the dual problem (5.2), there are existing distributed algorithms
under the instance-wise storage scheme (for example, Yang (2013); Lee and
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Chang (2017); Zheng et al. (2017); Dünner et al. (2018) and the references
therein). As we discussed in Section 5.4, it is easy to recover the block-
diagonal part of the Hessian (5.39) under this storage scheme. Therefore,
these works focus on using the block-diagonal part of the Hessian and use
(5.7) to generate update directions. In this case, only blockwise curvature
information is obtained, so the update direction can be poor if the data
is distributed nonuniformly. In the extreme case in which each machine
contains only one column of X , only the diagonal entries of the Hessian
can be obtained, so the method reduces to a scaled version of proximal
gradient. Indeed, we often observe in practice that these methods tend to
converge quickly in the beginning, but after a while the progress appears
to stagnate even for small K.

Zheng et al. (2017) give a primal-dual framework with acceleration that
utilizes a distributed solver for (5.2) to optimize (5.1). Their algorithm is
essentially the same as applying the Catalyst framework (Lin et al., 2018)
on a strongly-convex primal problem to form an algorithm with an inner
and an outer loop. In particular, their approach consists of the following
steps per round to optimize a strongly-convex primal problem with the
additional requirement that g being Lipschitz-continuously differentiable.

1. Add a quadratic term centered at a given point y to form a subprob-
lem with better condition.

2. Approximately optimize the new problem by using a distributed
dual problem solver, and

3. find the next y through extrapolation techniques similar to that of
accelerated gradient (Nesterov, 2013; Beck and Teboulle, 2009).

A more detailed description of the Catalyst framework (without requiring
both terms to be differentiable) is given in Appendix 5.B. We consider one
round of the above process as one outer iteration of their algorithm, and
the inner loop refers to the optimization process in the second step. The
outer loop of their algorithm is conducted on the primal problem (5.1)
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and a distributed dual solver is simply considered as a subproblem solver
using results similar to Theorem 5.8. Therefore this approach is more a
primal problem solver than a dual one, and it should be compared with
other distributed primal solvers for smooth optimization but not with the
dual algorithms. However, the Catalyst framework can be applied directly
on the dual problem directly as well, and this type of acceleration can to
some extent deal with the problem of stagnant convergence appeared in
the block-diagonal approaches for the dual problem. Unfortunately, those
parameters used in acceleration are not just global in the sense that the
coordinate blocks are considered all together, but also global bounds for
all possible w ∈ Rd or α ∈ Rn. This means that the curvature information
around the current iterate is not considered, so the improved convergence
can still be slow. By using the Hessian or its approximation as in our
method, we can get much better empirical convergence.

A column-wise split of X in the dual problem (5.2) corresponds to
a primal problem (5.1) where X is split row-wise. Therefore, existing
distributed algorithms for the dual ERM problem (5.2) can be directly
used to solve (5.1) in a distributed environment where X is partitioned
feature-wise (i.e. along rows instead of columns). However, there are
two potential disadvantages of this approach. First, new data points can
easily be assigned to one of the machines in our approach, whereas in the
feature-wise approach, the features of all new points would need to be
distributed around the machines. Second, as we mentioned above, the
update direction from the block-diagonal approximation of the Hessian
can be poor if the data is distributed nonuniformly across machines, and
data is more likely to be distributed evenly across instances than across
features. Thus, those algorithms focusing on feature-wise split of X are
excluded from our discussion and empirical comparison.
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5.6 Numerical Experiments

We investigate the empirical performance of DPLBFGS for solving both the
primal and dual problems (5.1) and (5.2) on binary classification problems
with training data points (xi, yi) ∈ Rd × {−1, 1} for i = 1, . . . , n. For the
primal problem, we consider solving `1-regularized logistic regression
problems:

P (w) = C
n∑
i=1

log
(
1 + e−yix

>
i w
)

+ ‖w‖1, (5.41)

where C > 0 is a parameter prespecified to trade-off between the loss
term and the regularization term. Note that since the logarithm term is
nonnegative, the regularization term ensures that the level set is bounded.
Therefore, within the bounded set, the loss function is strongly convexwith
respect to X>w and the regularizer can be reformulated as a polyhedron
constrained linear term. One can thus easily show that (5.41) satisfies the
quadratic growth condition (5.34). Therefore, our algorithm enjoys global
linear convergence on this problem.

For the dual problem, we consider `2-regularized squared-hinge loss
problems, which is of the form

D(α) = 1
2 ‖Y Xα‖

2
2 + 1

4C ‖α‖
2
2 − 1>α+ 1Rn+ (α) , (5.42)

where Y is the diagonal matrix consists of the labels yi, 1 = (1, . . . , 1) is
the vector of ones, given a convex set X, 1X is its indicator function such
that

1X(x) =

0 if x ∈ X,

∞ else,

and Rn
+ is the nonnegative orthant in Rn. This strongly convex quadratic

problem is considered for easier implementation of the Catalyst framework
in comparison.

We consider the publicly available binary classification data sets listed
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in Table 5.1,1 and partitioned the instances evenly across machines. C is
fixed to 1 in all our experiments for simplicity. We ran our experiments
on a local cluster of 16 machines running MPICH2, and all algorithms are
implemented in C/C++. The inversion ofM defined in (5.15) is performed
through LAPACK (Anderson et al., 1999). The comparison criteria are the
relative objective error ∣∣∣∣∣F (x)− F ∗

F ∗

∣∣∣∣∣
versus either the amount communicated (divided by d) or the overall
running time, where F ∗ is the optimal objective value, and F can be
either the primal objective P (w) or the dual objective D(α), depending
on which problem is being considered. The former criterion is useful in
estimating the performance in environments in which communication
cost is extremely high.

The parameters of our algorithm were set as follows: θ = 0.5, β = 2,
σ0 = 10−2, σ1 = 10−4, m = 10, δ = 10−10. The parameters in SpaRSA
follow the setting in Wright et al. (2009), θ is set to halve the step size
each time, the value of σ0 follows the default experimental setting of Lee
et al. (2017), δ is set to a small enough value, and m = 10 is a common
choice for LBFGS. The code used in our experiments is available at http:
//github.com/leepei/dplbfgs/.

In all experiments, we show results of the backtracking variant only,
as we do not observe significant difference in performance between the
line-search approach and the trust-region approach in our algorithm.

In the subsequent experiments, we first use the primal problem (5.41)
to examine how inexactness of the subproblem solution affects the com-
munication complexity, overall running time, and step sizes. We then
compare our algorithm with state of the art distributed solvers for (5.41).
Finally, comparison on the dual problem (5.42) is conducted.

1Downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.

http://github.com/leepei/dplbfgs/
http://github.com/leepei/dplbfgs/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 5.1: Data statistics.

Data set n (#instances) d (#features) #nonzeros
news 19,996 1,355,191 9,097,916
epsilon 400,000 2,000 800,000,000
webspam 350,000 16,609,143 1,304,697,446
avazu-site 25,832,830 999,962 387,492,144

Effect of Inexactness in the Subproblem Solution

We first examine how the degree of inexactness of the approximate solu-
tion of subproblems (5.7) affects the convergence of the overall algorithm.
Instead of treating SpaRSA as a steadily linearly converging algorithm, we
take it as an algorithm that sometimes decreases the objective much faster
than theworst-case guarantee, thus an adaptive stopping condition is used.
In particular, we terminate Algorithm 8 when the norm of the current
update step is smaller than ε1 times that of the first update step, for some
prespecified ε1 > 0. From the proof of Lemma 5.1, the norm of the update
step bounds the value of Q(p)−Q∗ both from above and from below (as-
suming exact solution of (5.20), which is indeed the case for the selected
problems), and thus serves as a good measure of the solution precision.
In Table 5.2, we compare runs with the values ε1 = 10−1, 10−2, 10−3. For
the datasets news20 and webspam, it is as expected that tighter solution
of (5.7) results in better updates and hence lower communication cost,
though it may not result in a shorter convergence time because of more
computation per round. As for the dataset epsilon, which has a smaller
data dimension d, the O(m) communication cost per SpaRSA iteration for
calculating∇f̂ is significant in comparison. In this case, setting a tighter
stopping criterion for SpaRSA can incur higher communication cost and
longer running time.

In Table 5.3, we show the distribution of the step sizes over the main
iterations, for the same set of values of ε1. As we discussed in Section 5.3,



164

Table 5.2: Different stopping conditions of SpaRSA as an approximate
solver for (5.7). We show required amount of communication (divided by
d) and running time (in seconds) to reach F (w)− F ∗ ≤ 10−3F ∗.

Data set ε1 Communication Time

news20
10−1 28 11
10−2 25 11
10−3 23 14

epsilon
10−1 144 45
10−2 357 61
10−3 687 60

webspam
10−1 452 3254
10−2 273 1814
10−3 249 1419

Table 5.3: Step size distributions.

Data set ε1 percent of λ = 1 smallest λ

news20
10−1 95.5% 2−3

10−2 95.5% 2−4

10−3 95.5% 2−3

epsilon
10−1 96.8% 2−5

10−2 93.4% 2−6

10−3 91.2% 2−3

webspam
10−1 98.5% 2−3

10−2 97.6% 2−2

10−3 97.2% 2−2

although the smallest λ can be much smaller than one, the unit step is
usually accepted. Therefore, although the worst-case communication
complexity analysis is dominated by the smallest step encountered, the
practical behavior is much better. This result also suggests that the dif-
ference between DPLBFGS-LS and DPLBFGS-TR should be negligible, as
most of the times, the original H with unit step size is accepted.



165

Comparison with Other Methods for the Primal Problem

Now we compare our method with two state-of-the-art distributed algo-
rithms for (5.11). In addition to a proximal-gradient-type method that can
be used to solve general (5.11) in distributed environments easily, we also
include one solver specifically designed for `1-regularized problems in
our comparison. These methods are:

• DPLBFGS-LS: our Distributed Proximal LBFGS approach. We fix
ε1 = 10−2.

• SpaRSA (Wright et al., 2009): the method described in Section 5.2,
but applied directly to (5.1) but not to the subproblem (5.7).

• OWLQN (Andrew and Gao, 2007): an orthant-wise quasi-Newton
method specifically designed for `1-regularized problems. We fix
m = 10 in the LBFGS approximation.

All methods are implemented in C/C++ and MPI. As OWLQN does not
update the coordinates i such that −Xi,:∇ξ(XTw) ∈ ∂gi(wi) given any
w, the same preliminary active set selection is applied to our algorithm
to reduce the subproblem dimension and the computational cost, but
note that this does not reduce the communication cost as the gradient
calculation still requires communication of a full d-dimensional vector.

The AG method (Nesterov, 2013) can be an alternative to SpaRSA,
but its empirical performance has been shown to be similar to SpaRSA
(Yang and Zhang, 2011) and it requires strong convexity and Lipschitz
parameters to be estimated, which induces an additional cost.

A further examination on different values ofm indicates that conver-
gence speed of our method improves with larger m, while in OWLQN,
largerm usually does not lead to better results. We use the same value of
m for both methods and choose a value that favors OWLQN.
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The results are provided in Figure 5.1. Our method is always the fastest
in both criteria. For epsilon, our method is orders of magnitude faster,
showing that correctly using the curvature information of the smooth part
is indeed beneficial in reducing the communication complexity.

Comparison on the Dual Problem

Now we turn to solve the dual problem, considering the specific example
(5.42). We compare the following algorithms.

• BDA (Lee and Chang, 2017): a distributed algorithm using Block-
Diagonal Approximation of the real Hessian of the smooth part with
line search.

• BDA with Catalyst: using the BDA algorithm within the Catalyst
framework (Lin et al., 2018) for accelerating first-order methods.

• ADN(Dünner et al., 2018): a trust-region approachwhere the quadratic
term is a multiple of the block-diagonal part of the Hessian, scaled
adaptively as the algorithm progresses.

• DPLBFGS-LS: our Distributed Proximal LBFGS approach. We fix
ε1 = 10−2 and limit the number of SpaRSA iterations to 100. For
the first ten iterations whenm(t) < m, we use BDA to generate the
update steps instead.

For BDA,weuse theC/C++ implementation in the packageMPI-LIBLINEAR.2

We implement ADN by modifying the above implementation of BDA. In
both BDA and ADN, following Lee and Chang (2017) we use random-
permutation coordinate descent (RPCD) for the local subproblems, and
for each outer iteration we perform one epoch of RPCD. For the line search
step in both BDA and DPLBFGS-LS, since the objective (5.42) is quadratic,

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
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Communication Time

Figure 5.1: Comparison between different methods for (5.41) in terms
of relative objective difference to the optimum. Left: communication
(divided by d); right: running time (in seconds).
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we can find the exact minimizer efficiently (in closed form). The conver-
gence guarantees still holds for exact line search, so we use this here in
place of the backtracking approach described earlier.

We also applied the Catalyst framework (Lin et al., 2018) for accelerat-
ing first-order methods to BDA to tackle the dual problem, especially for
dealing with the stagnant convergence issue. This framework requires a
good estimate of the convergence rate and the strong convexity parameter
σ. From (5.42), we know that σ = 1/(2C), but the actual convergence
rate is hard to estimate as BDA interpolates between (stochastic) proximal
coordinate descent (when only one machine is used) and proximal gra-
dient (when n machines are used). After experimenting with different
sets of parameters for BDA with Catalyst, we found the following to work
most effectively: for every outer iteration of the Catalyst framework, K
iterations of BDA is conducted with early termination if a negative step
size is obtained from exact line search; for the next Catalyst iteration, the
warm-start initial point is simply the iterate at the end of the previous Cata-
lyst iteration; before starting Catalyst, we run the unaccelerated version of
BDA for certain iterations to utilize its advantage of fast early convergence.
Unfortunately, we do not find a good way to estimate the κ term in the Cat-
alyst framework that works for all data sets. Therefore, we find the best κ
by a grid search. We provide a detailed description of our implementation
of the Catalyst framework on this problem and the related parameters
used in this experiment in Appendix 5.B.

We focus on the combination of Catalyst and BDA (instead of with
ADN) for a few reasons. Since both BDAandADNare distributedmethods
that use the block-diagonal portion of the Hessian matrix, it should suffice
to evaluate the application of Catalyst to the better performing of the two
to represent this class of algorithms. In addition, dealing with the trust-
region adjustment of ADN becomes complicated as the problem changes
through the Catalyst iterations.
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The results are shown in Figure 5.2. We do not present results on the
avazu data set in this experiment as all methods take extremely long time
to converge. We first observe that, contrary to what is claimed in Dünner
et al. (2018), BDA outperforms ADN on news20 and webspam, though the
difference is insignificant, and the two are competitive on epsilon. This
also justifies that applying the Catalyst framework on BDA alone suffices.
Comparing our DPLBFGS approach to the block-diagonal ones, it is clear
that our method performs magnitudes better than the state of the art in
terms of both communication cost and time. For webspam and epsilon,
the block-diagonal approaches are faster at first, but the progress stalls
after a certain accuracy level. In contrast, while the proposed DPLBFGS
approach does not converge as rapidly initially, the algorithm consistently
makes progress towards a high accuracy solution.

As the purpose of solving the dual problem is to obtain an approximate
solution to the primal problem through the formulation (5.40), we are
interested on how the methods compare in terms of the primal solution
precision. This comparison is presented in Figure 5.3. Since these dual
methods are not descent methods for the primal problem, we apply the
pocket approach (Gallant, 1990) suggested in Lee and Chang (2017) to
use the iterate with the smallest primal objective so far as the current
primal solution. We see that the primal objective values have trends very
similar to the dual counterparts, showing that our DPLBFGS method is
also superior at generating better primal solutions.

A potentially more effective approach is a hybrid one that first uses a
block-diagonal method and then switches over to our DPLBFGS approach
after the block-diagonal method hits the slow convergence phase. Devel-
oping such an algorithmwould require a way to determine when we reach
such a stage, and we leave the development of this method to future work.
Another possibility is to consider a structured quasi-Newton approach to
construct a Hessian approximation only for the off-block-diagonal part so
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that the block-diagonal part can be utilized simultaneously.
We also remark that our algorithm is partition-invariant in terms of

convergence and communication cost, while the convergence behavior
of the block-diagonal approaches depend heavily on the partition. This
means when more machines are used, these block-diagonal approaches
suffer from poorer convergence, while our method retains the same effi-
ciency regardless of the number of machines begin used and how the data
points are distributed (except for the initialization part).

5.7 Conclusions

In this chapter, we propose a practical and communication-efficient dis-
tributed algorithm for solving general regularized nonsmooth ERM prob-
lems. The proposed approach is the first one that can be applied both
to the primal and the dual ERM problem under the instance-wise split
scheme. Our algorithm enjoys fast performance both theoretically and
empirically and can be applied to a wide range of ERM problems.

Appendix

5.A Proofs

In this appendix, we provide proof for Lemma 5.1. The rest of Section 5.3
directly follows the results in Chapter 2 and Peng et al. (2018) and are
therefore omitted. Note that (5.36) implies (5.34), and (5.34) implies (5.33)
because R2

0 is upper-bounded by 2(F (x0) − F ∗)/µ. Therefore, we get
improved communication complexity by the fast early linear convergence
from the general convex case.

Lemma 5.1. We prove the three results separately.



171

Communication Time

Figure 5.2: Comparison between different methods for (5.42) in terms
of relative objective difference to the optimum. Left: communication
(divided by d); right: running time (in seconds).
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Communication Time

Figure 5.3: Comparison between different methods for (5.42) in terms of
relative primal objective difference to the optimum. Left: communication
(divided by d); right: running time (in seconds).
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1. We assume without loss of simplicity that (5.17) is satisfied by all
iterations. When it is not the case, we just need to shift the indices
but the proof remains the same as the pairs of (st,yt) that do not
satisfy (5.17) are discarded.
We first bound γt defined in (5.15). From Lipschitz continuity of∇f ,
we have that for all t,

‖yt‖2

y>t st
≤ L2‖st‖2

y>t st
≤ L2

δ
, (5.43)

establishing the upper bound. For the lower bound, (5.17) implies
that

‖yt‖ ≥ δ‖st‖, ∀t. (5.44)

Therefore,
y>t st
y>t yt

≤ ‖st‖
‖yt‖

≤ 1
δ
, ∀t.

Following Liu and Nocedal (1989), Ht can be obtained equivalently
by

H
(0)
t = γtI,

H
(k+1)
t = H

(k)
t −

H
(k)
t st−m(t)+ks

>
t−m(t)+kH

(k)
t

s>t−m(t)+kH
(k)
t st−m(t)+k

+
yt−m(t)+ky

>
t−m(t)+k

y>t−m(t)+kst−m(t)+k
, k = 0, . . . ,m(t)− 1,

(5.45)

Ht = H
(m(t))
t .

Therefore, we can bound the trace of H(
tk) and hence Ht through

(5.43).

trace
(
H

(k)
t

)
≤ trace

(
H

(0)
t

)
+

t−m(t)+k∑
j=t−m(t)

y>j yj
y>j sj

≤ γtN + kL2

δ
, ∀t,

(5.46)



174

where N is the matrix dimension. According to Byrd et al. (1994),
the matrix H(k)

t is equivalent to the inverse of

B
(k)
t := V >t−m(t)+k · · ·V >t−m(t))B

0
t Vt−m(t) · · ·Vt−m(t)+k + ρt−m(t)+kst−m(t)+ks

>
t−m(t)+k+

t−m(t)−1+k∑
j=t−m(t)

ρjV
>
t−m(t)+k · · ·V >j+1sjs

>
j Vj+1 · · ·Vt−m(t)+k, (5.47)

where for j ≥ 0,

Vj := I − ρjyjs>j , ρj := 1
y>j sj

, B0
t = 1

γt
I.

From the form (5.47), it is clear thatB(k)
t and henceHt are all positive-

semidefinite because γt ≥ 0, ρj > 0 for all j and t. Therefore, from
positive semidefiniteness, (5.46) implies the existence of c1 > 0 such
that

H
(k)
t � c1I, k = 0, . . . ,m(t), ∀t.

Next, for its lower bound, from the formulation for (5.45) in Liu and
Nocedal (1989), and the upper bound ‖H(k)

t ‖ ≤ c1, we have

det (Ht) = det
(
H

(0)
t

) t−1∏
k=t−m(t)

y>k sk
s>k sk

s>k sk

s>kH
(k−t+m(t))
t sk

≥ γNt

(
δ

c1

)m(t)

≥M1.

for someM1 > 0. From that the eigenvalues ofHt are upper-bounded
and nonnegative, and from the lower bound of the determinant, the
eigenvalues of Ht are also lower-bounded by a positive value c2,
completing the proof.

2. By directly expanding∇f̂ , we have that for any p1, p2,

∇f̂(p1)−∇f̂(p2) = ∇f(x) +Hp1 − (∇f(x) +Hp2) = H(p1 − p2).
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Therefore, we have
(
∇f̂(p1)−∇f̂(p2)

)>
(p1 − p2)

‖p1 − p2‖2 = ‖p1 − p2‖2
H

‖p1 − p2‖2 ∈ [c2, c1]

for bounding ψi for i > 0, and the bound for ψ0 is directly from the
bounds of γt. The combined bound is therefore [min{c2, δ},max{c1, L

2/δ}].
Next, we show that the final ψi is always upper-bounded. The right-
hand side of (5.20) is equivalent to the following:

arg min
d

Q̂ψi (d) := ∇f̂
(
p(i)

)>
d+ψi ‖d‖2

2 +Ψ̂ (d+ p)−Ψ̂ (p) . (5.48)

Denote the solution by d, then we have p(i+1) = p(i) +d. Note that we
allow d to be an approximate solution. BecauseH is upper-bounded
by c1, we have that∇f̂ is c1-Lipschitz continuous. Therefore,

Q
(
p(i+1)

)
−Q

(
p(i)

)
≤ ∇f̂(p(i))>

(
p(i+1) − p(i)

)
+ c1

2
∥∥∥p(i+1) − p(i)

∥∥∥2
+ Ψ̂

(
p(i+1)

)
− Ψ̂

(
p(i)

)
(5.48)= Q̂ψi(d)− ψi

2 ‖d‖
2 + c1

2 ‖d‖
2 . (5.49)

As Q̂ψi(0) = 0, provided that the approximate solution d is better
than the point 0, we have

Q̂(d) ≤ Q̂(0) = 0. (5.50)

Putting (5.50) into (5.49), we obtain

Q
(
p(i+1)

)
−Q

(
p(i)

)
≤ c1 − ψi

2 ‖d‖2.

Therefore, whenever

c1 − ψi
2 ≤ −σ0ψi

2 ,
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(5.22) holds. This is equivalent to

ψi ≥
c1

1− σ0
,

Note that the initialization of ψi is upper-bounded by c1 for all i > 1,
so the final ψi is indeed upper-bounded. Together with the first
iteration where we start with ψ0 = γt, we have that ψi for all i are
always bounded from the boundedness of γt.

3. From the results above, at every iteration, SpaRSA finds the update
direction by constructing and optimizing a quadratic approximation
of f̂(x), where the quadratic term is a multiple of identity, and its
coefficient is bounded in a positive range. Therefore, the theory
developed in Chapter 2 can be directly used to show the desired
result even if (5.20) is solved only approximately. For completeness,
we provide a simple proof for the case that (5.20) is solved exactly.
We note that since Q is c2-strongly convex, the following condition
holds.

mins∈∇f̂(p(i+1))+∂ĝ(p(i+1)) ‖s‖
2

2c2
≥ Q

(
p(i+1)

)
−Q∗. (5.51)

On the other hand, from the optimality condition of (5.48), we have
that for the optimal solution d∗ of (5.48),

−ψid∗ = ∇f̂
(
p(i)

)
+ si+1, (5.52)

for some
si+1 ∈ ∂Ψ̂

(
p(i+1)

)
.
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Therefore,

Q
(
p(i+1)

)
−Q∗

(5.51)
≤ 1

2c2

∥∥∥∇f̂ (p(i+1)
)
−∇f̂

(
p(i)

)
+∇f̂

(
p(i)

)
+ si+1

∥∥∥2

(5.52)
≤ 1

c2

∥∥∥∇f̂ (p(i+1)
)
−∇f̂

(
p(i)

)∥∥∥2
+ ‖ψid∗‖2

≤ 1
c2

(
c2

1 + ψ2
i

)
‖d∗‖2 . (5.53)

By combining (5.22) and (5.53), we obtain

Q
(
p(i+1)

)
−Q

(
p(i)

)
≤ −σ0ψi

2 ‖d∗‖2 ≤ −σ0ψi
2

c2

c2
1 + ψ2

i

(
Q
(
p(i+1)

)
−Q∗

)
.

Rearranging the terms, we obtain
(

1 + c2σ0ψi
2(c2

1 + ψ2)

)(
Q
(
p(i+1)

)
−Q∗

)
≤ Q

(
p(i)

)
−Q∗,

showing Q-linear convergence of SpaRSA, with

η = sup
i=0,1,...

(
1 + c2σ0ψi

2 (c2
1 + ψ2

i )

)−1

∈ [0, 1).

Note that since ψi are bounded in a positive range, we can find this
supremum in the desired range.

5.B Implementation Details and Parameter
Selection for the Catalyst Framework

We first give an overview to the version of Catalyst framework for strongly-
convex problems (Lin et al., 2018) for accelerating convergence rate of first-
ordermethods, then describe our implementation details in the experiment
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in Section 5.6. The Catalyst framework is described in Algorithm 10.
According to Lin et al. (2018), whenM is the proximal gradientmethod,

the ideal value of κ is max(L − 2µ, 0), and when L > 2µ, the conver-
gence speed can be improved to the same order as accelerated proxi-
mal gradient (up to a logarithm factor difference). Similarly, whenM is
stochastic proximal coordinate descent with uniform sampling, by taking
κ = max(Lmax − 2µ, 0), where Lmax is the largest block Lipschitz constant,
one can obtain convergence rate similar to that of accelerated coordinate
descent. Since when using proximal coordinate descent as the local solver,
both BDA and ADN interpolate between proximal coordinate descent and
proximal gradient,3 depending on the number of machines, it is intuitive
that acceleration should work for them.

Considering (5.42), the problem is clearly strongly convex with param-
eter 1/(2C), thus we take µ = 1/(2C). For the stopping condition, we use
the simple fixed iteration choice suggested in Lin et al. (2018) (called (C3)
in their notation). Empirically we found a very effective way is to run K
iterations of BDA with early termination whenever a negative step size is
obtained from exact line search. For the warm-start part, although (5.42)
is a regularized problem, the objective part is smooth, so we take their
suggestion for smooth problem to use xk0 = xk−1. Note that they suggested
that for general regularized problems, one should take one proximal gra-
dient step of the original F at xk−1 to obtain xk0. We also experimented
with this choice, but preliminary results show that using xk−1 gives better
initial objective value for (5.54).

The next problem is how to select κ. We observe that for webspam and
epsilon, the convergence of both BDA andADN clearly falls into two stages.
Through some checks, we found that the first stage can barely be improved.

3Although we used RPCD but not stochastic coordinate descent, namely sampling
with replacement, it is commonly considered that RPCD behaves similar to, and usually
outperforms slightly, the variant that samples without replacement; see, for example,
analyses in Lee and Wright (2018b); Wright and Lee (2017) and experiment in Shalev-
Shwartz and Zhang (2013).
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Table 5.B.1: Catalyst parameters.

Data set #BDA iterations before starting Catalyst κ
news 0 17
epsilon 2, 000 12, 000
webspam 400 2, 000

On the other hand, if we pick a value of κ that can accelerate convergence at
the later stage, the fast early convergence behavior is not present anymore,
thus it takes a long time for the accelerated approach to outperform the
unaccelerated version. To get better results, we take an approach from
the hindsight: first start with the unaccelerated version with a suitable
number of iterations, and then we switch to Catalyst with κ properly
chosen by grid search for accelerating convergence at the later stage. The
parameters in this approach is recorded in Table 5.B.1. We note that this
way of tuning from the hindsight favors the accelerated method unfairly,
as it takes information obtained through running other methods first. In
particular, it requires the optimal objective (obtained by first solving the
problem through other methods) and running the unaccelerated method
to know the turning point of the convergence stages (requires the optimal
objective to compute). Parameter tuning for κ is also needed. These
additional efforts are not included in the running time comparison, so our
experimental result does not suggest that the accelerated method is better
than the unaccelerated version. The main purpose is to show that our
proposed approach also outperforms acceleration methods with careful
parameter choices.
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Algorithm 9 DPLBFGS: A distributed proximal variable-metric LBFGS
method for (5.11)
1: Given θ, σ1 ∈ (0, 1), δ > 0, an initial point x = x0, a partition {Ik}Kk=1

satisfying (5.12);
2: for Machines k = 1, . . . , K in parallel do
3: Obtain F (x);
4: for t = 0, 1, 2, . . . do
5: Compute∇f(x);
6: Initialize H ;
7: if t 6= 0 and (5.17) holds for (st−1,yt−1) then
8: Update UIk,:,M , and γ by (5.15)-(5.16);
9: ComputeM−1;

10: Implicitly form a new H from (5.14);
11: if U is empty then
12: Solve (5.7) using some existing distributed algorithm to ob-

tain pIk ;
13: else
14: Solve (5.7) using Algorithm 8 in a distributed manner to

obtain pIk ;
15: if Line search then
16: Compute ∆ defined in (5.24);
17: for i = 0, 1, . . . do
18: λ = θi;
19: Compute F (x+ λp);
20: if F (x+ λp) ≤ F (x) + σ1λ∆ then
21: Break;
22: else if Trust region then
23: λ = 1;
24: Compute QH(p;x);
25: while F (x+ p)− F (x) > σ1QH(p;x) do
26: H ← H/θ;
27: Re-solve (5.7) to obtain update pIk ;
28: Compute QH(p;x);
29: xIk ← xIk + λpIk , F (x)← F (x+ λp);
30: xt+1 := x;
31: (st)Ik ← xt+1

Ik − x
t
Ik , (yt)Ik ← ∇Ikf(xt+1 −∇Ikf(xt);
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Algorithm 10 Catalyst Framework for optimizing strongly-convex (5.11).
1: Input: x0 ∈ RN , a smoothing parameter κ, the strong convexity param-

eter µ, an optimization methodM, and a stopping criterion for the
inner optimization.

2: Initialize y0 = x0, q = µ/(µ+ κ), β = (1−√q)/(1 +√q).
3: for k = 1, 2, . . . , do
4: UseMwith the input stopping condition to approximately opti-

mize
min
x

F (x) + κ

2‖x− y
k−1‖2 (5.54)

from a warm-start point xk0 to obtain the iterate xk.
5: yk = xk + β(xk − xk−1).
6: Output xk.
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