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Abstract

Beta ensembles (β-ensembles) can be viewed as one parameter generalizations of the

eigenvalues of random matrix ensembles. Under the appropriate scaling, these finite

point processes converge in distribution to certain limiting point processes as the number

of the points grows. This is known as the local scaling limit. The limiting point processes

can be characterized as the spectra of certain random differential operators. This thesis

mainly includes two types of results: the local scaling limits of certain β-ensembles in

the appropriate operator level sense, and properties of the limiting objects.

We first consider the hard-to-soft edge transition for β-ensembles. The soft and hard

edge scaling limits of β-ensembles can be characterized as the spectra of certain random

Sturm-Liouville operators [51, 48]. By tuning the parameter of the hard edge process

one can obtain the soft edge process as a scaling limit [6, 48, 50]. We prove that this

limit can be realized on the level of the corresponding random operators. More precisely,

the random operators can be coupled in a way so that the scaled versions of the hard

edge operators converge to the soft edge operator a.s. in the norm resolvent sense. This

part is based on joint work with Laure Dumaz and Benedek Valkó [16].

Next, we prove an operator level limit for the circular Jacobi β-ensemble. As a

result, we characterize the counting function of the limit point process via coupled

systems of stochastic differential equations. This diffusion description allows us to derive

several properties of the limit point process (e.g. large gap probability and a process

level transition). We show that the normalized characteristic polynomials converge to a

random analytic function, which we characterize via the joint distribution of its Taylor
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coefficients at zero and as the solution of a stochastic differential equation system. We

also provide analogous results for the real orthogonal β-ensemble. This is based on joint

work with Benedek Valkó [37].
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Chapter 1

Introduction and Background

Random matrices were first emerged from the study of sample covariance matrices in

statistics [71], and later were used to model the energy levels of nuclei of heavy atoms in

nuclear physics [69, 68]. A central problem of random matrix theory is to understand the

structure of the spectra of large random matrices. Over the years, many tools have been

developed from various branches of mathematics (including combinatorics, analysis, rep-

resentation theory, etc.) to study the eigenvalue statistics of random matrix ensembles

on different scales. To understand the global picture, one could study the empirical

spectral measure, i.e. a random probability measure supported on the spectrum so that

each eigenvalue has equal weight (up to multiplicity). Under the appropriate scaling,

the empirical spectral measures of a wide class of ensembles converge in distribution to

a deterministic limit as the size of the matrix grows to infinity. For example, the Wigner

semicircle law arises for random symmetric matrices with independent entries, and the

Marchenko–Pastur law for the sample covariance matrices, see Section 1.1 for the precise

statements. These classical results indicate certain universal asymptotic properties of

the spectrum, and are essentially Law of Large Numbers type results.

Another natural object to investigate is the local scaling limit, which describes the

limit of the spectrum in the scaling regime where the spacings between the eigenvalues

remain of constant order. In contrary to the global picture, the local limit will describe
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the asymptotic behavior near a certain value (reference point), and the limit process

could depend on whether the reference point is in the bulk or at the edge of the spectrum.

For several classical ensembles, the bulk and edge scaling limits were derived by Dyson,

Gaudin, and Mehta in the 1960s utilizing the algebraic structures present in the joint

eigenvalue densities. They showed that these algebraic structures are preserved in the

limit, and the joint intensity functions of the limit point processes can be fully described.

By generalizing the eigenvalue distributions of the classical ensembles of random

matrix theory, we get the so-called β-ensembles, which can be viewed as one-parameter

families of particle systems, see Section 1.2 below for more details. In this thesis, we

study local scaling limits of certain β-ensembles and prove various results related to the

limiting objects.

The outline of the remaining of the Chapter is as follows. In Section 1.1 we will

introduce some of the classical random matrix ensembles and review the known results.

In Sections 1.2 and 1.3, we will give a brief introduction to β-ensembles and the random

operator approach that we used in their study. Section 1.4 provides a brief overview of

the main results of this thesis.

1.1 Classical random matrix ensembles

We start this section with introducing the classical matrix ensembles that are most

related to our work. Then we will state the results regarding the global and local scaling

limits of the eigenvalues.

The study of random matrices could be traced back the work of Wishart [71] in 1920s.

The models considered by Wishart are matrices of the formMM † whereM is an n×(n+



3

a) matrix with i.i.d. standard real/complex/quaternion Gaussian entries. The models

are called the Laguerre (or Wishart) ensembles. Noticing that the Laguerre ensembles

are invariant under certain group conjugations, the joint eigenvalue densities can be

computed explicitly. For a size n Laguerre ensemble (indexed by n, a) the eigenvalues

have a joint density function given by

pn,β(λ1, · · · , λn) =
1

Zn,β

∏
j<k

|λk − λk|β
n∏
k=1

f(λk) (1.1)

on Rn
+, where the reference measure f(x) = x

β
2
(a+1)−1e−

β
2
x is proportional to the Gamma

density, and the parameter β = 1, 2, 4 corresponds to the real/complex/quaternion en-

tries, respectively. Here Zn,β is an explicitly computable normalizing constant. Notice

that the matrix m−1MM † is the correlation matrix of n independent individuals whose

m characteristics are i.i.d. standard Gaussians.

Fix β = 1, 2 or 4, denote by Λn,β,a = (λ1,n, . . . , λn,n) a size n Laguerre ensemble with

parameter a. One way of understanding the global picture of the spectrum is to study

the rescaled empirical spectral measure, that is a random probability measure defined

by νn := 1
n

∑n
k=1 δλk,n/n. When n+a is of the same order as n, the macroscopic behavior

of this ensemble is described by the famous Marchenko-Pastur limit law. Let an >

−1, n ≥ 1 be a sequence such that limn→∞
n

n+an
= γ ∈ (0, 1] exists. The Marchenko-

Pastur theorem [39] states that the sequence of random probability measures νn, n ≥ 1

converges in distribution a.s. to a deterministic measure with density given by

σγ(x) =

√
(x− b−)(b+ − x)

2πx
1[b−,b+](x), b± = b±(γ) = (1±√

γ)2. (1.2)

See Figure 1 for a plot of Marchenko-Pastur law for various values of γ. Note that in

the case γ = 1, the density becomes

√
x(4−x)
2πx

1[0,4](x).
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Figure 1: Plot of the Marchenko-Pastur law for different values of γ.

Next we turn to Gaussian ensembles, probably the most famous model of random

matrices. In 1950s Wigner [70] used random matrices to model the energy levels of

nuclei of heavy atoms in nuclear physics. The idea was to approximate a self-adjoint

operator (Hamiltonians with certain symmetries) using a large symmetric or Hermitian

matrix with i.i.d. real or complex standard normals. The resulting models are called the

Gaussian orthogonal ensemble (GOE) or Gaussian unitary ensemble (GUE), which are

classified by the group over which they are invariant. It turns out the joint eigenvalue

densities of these Gaussian ensembles have the same structure as equation (1.1) with the

Gaussian reference measure f(x) = e−
β
4
x2 , and β = 1, 2 for GOE or GUE, respectively.

Let (λ1,n, λ2,n, . . . , λn,n) be the eigenvalues of a size n Gaussian ensemble. Consider

the rescaled empirical spectral measure of size n Gaussian ensembles defined by µn :=

1
n

∑n
k=1 δλk,n/

√
n. It was proved by Wigner that the sequence of random probability

measures µn, n ≥ 1 converges in distribution a.s. to the deterministic Wigner semicircle
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Figure 2: Histogram of rescaled eigenvalues of a 2000× 2000 GUE

law with density given by

ρsc(x) =
1

2π

√
4− x21|x|≤2.

Figure 2 above shows a simulation of the histogram of the rescaled eigenvalues of a GUE

matrix of dimension 2000× 2000.

Another well-studied ensemble in random matrix theory is the circular unitary ensem-

ble (CUE), which describes the eigenvalue distribution of finite Haar unitary matrices.

The model was introduced by Dyson [18] as a generalization of GUE on the unit circle.

For a size n CUE, the eigenangles have a joint density proportional to
∏

j<k≤n |eiθj−eiθk |β

with β = 2, which can be viewed as the density (1.1) evaluated on the unit circle with

f = 1. The cases when β = 1, 4 correspond to symmetric/self-dual unitary matrices.

Other commonly studied random matrix ensembles include Ginibre ensemble, Ja-

cobi/MANOVA (multivariate analysis of variance) ensemble, etc. One common feature

of these ensembles is that the joint eigenvalue functions satisfy (1.1) with different ref-

erence measures f(x). We summarize in the Table 1 below the matrix representations

and the associated joint density functions. Here we assume the entries of the random

matrices A ∈ Cn×n, X ∈ Cn×n1 , Y ∈ Cn×n2 are i.i.d. complex standard normal random
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variables CN (0, 1), and denote the difference of the dimensions by a := n1 − n ≥ 0,

b := n2 − n ≥ 0.

Ensembles Reference measure f Matrix Models (β = 2)

Gaussian/Hermite e−x
2/2 M = A+A†

√
2

Wishart/Laguerre xae−x1x>0 M = XX†

Circular 1x=eiθ uniformly chosen M ∈ U(n)

Ginibre e−|z|2/21z∈C M = A

MANOVA/Jacobi (1− x)axb1x∈(0,1) M = XX†(XX† + Y Y †)−1

Table 1: Classical random matrix ensembles

We now turn to the local scaling limit. The microscopic behavior of the spectrum

Λn = (λ1, λ2, . . . , λn) can be described by the large n limit of the point process cn(Λn−dn)

where dn is the centering point and cn is the appropriate scaling parameter. In order to

get a meaningful point process limit, the scaling parameter cn would need to be chosen

so that it is roughly the inverse of the average spacing between the particles near dn.

In the remaining of the section, we will take the GUE and LUE as examples to

introduce the bulk and the edge limit of random matrices. It follows from the Wigner

Semicircle law that asymptotically the eigenvalues of a size n GUE lie on an interval of

size 4
√
n (see also [25] for a stronger statement regarding the largest/smallest eigenvalues

of random Hermitian matrices). This suggests us to rescale the eigenvalues up by
√
n

to see what happens on a local scale in the bulk of the spectrum. Indeed, using the

algebraic structures of GUE and analyzing the asymptotic of Hermite polynomials, it
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was proved by Gaudin-Mehta (see e.g. [42]) that for any E ∈ (−2, 2),

ρsc(E)
√
n(Λn − E

√
n) ⇒ Sine2 as n→ ∞,

where ρsc(E) =
1
2π

√
4− E2 is the Wigner semicircle density, and where the Sine2 process

is the determinantal point process with the sine kernel K(x, y) = sin(π(x−y))
π(x−y) (see e.g. [29]

for more on determinantal point process). Note that the convergence is universal in the

sense that the limiting point process is independent of reference point E.

A similar type of result can be found at the edge of the spectrum E ∈ {−2, 2} with a

more careful saddle point analysis of the Hermite polynomials. By symmetry, it suffices

to look at the points near the maximum eigenvalue. If the Wigner semicircle law holds

on small scales, the expected number of points in the interval [(2−ε)
√
n, 2

√
n] is of order

n
∫ 2

2−ε ρsc(x)dx ∼ nε3/2. We can expect the spacing of rescaled eigenvalue at the edge is of

order n−2/3. Then by rescaling the spectrum up by n1/6, we get n1/6(Λn−2
√
n) ⇒ Airy2

as n → ∞, see [42] and [21]. Here the Airy2 process is the determinantal point process

with kernel constructed from the Airy function of the first kind. This is called the soft

edge behavior in the sense that the rescaled largest/smallest can fluctuate around the

endpoint of the limiting spectral measure. Indeed, there is positive probability of the

event that some of the rescaled eigenvalues are located outside of the support of the

Wigner Semicircle law.

In contrast, consider a finite Laguerre unitary ensemble, the eigenvalues have to

be positive since the random matrix is a.s. nonnegative definite. In the case when

an = o(n), the Marchenko-Pastur states that the density of the limiting measure becomes
√
x(4−x)
2πx

1[0,4](x). This indicates that the smallest eigenvalues of the Laguerre ensembles

are pushed to 0, and locally the spectrum will feel the hard constraint at the origin.
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Therefore, we expect to see a different limiting point process supported on the positive

half line. It turns out that in the case when an ≡ a > −1, the smallest k eigenvalues

of LUE (under the appropriate rescaling) converge in distribution to a point process

indexed by a, see [61]. The limiting process, which we will denote as Bessel2,a, is a

determinantal point process with kernel constructed from the Bessel functions of the

first kind. This is known as a hard edge behavior.

1.2 β-ensembles

In this section, we define the β-ensembles, which can be viewed as a one-parameter

generalization of the eigenvalues of classical matrix models. First observe that the

measure defined by (1.1) makes sense for all β > 0 for a broad class of reference measures

f under certain regularity assumptions. Hence the classical Laguerre/Gaussian/circular

ensembles (which correspond to Dyson’s threefold way β = 1, 2, 4) can be naturally

generalized to Laguerre β-ensemble, Gaussian β-ensemble, and circular β-ensemble for

all positive β. More precisely, the size n Laguerre β-ensemble is a two-parameter family

of distributions on Rn
+ with density function

pLn,β,a(λ1, . . . , λn) =
1

ZL
n,β,a

∏
j<k

|λj − λk|β
n∏
k=1

λ
β
2
(a+1)−1

k e−
β
2
λk . (1.3)

The parameters satisfy β > 0 and a > −1. This density corresponds to the Gibbs

measure of n positively charged particles living on the positive half-line with a log-

Gamma potential.
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Similarly, we define the size n Gaussian (Hermitian) β-ensemble as a family of dis-

tributions on Rn with density function

pGn,β(λ1, . . . , λn) =
1

ZG
n,β

∏
j<k

|λj − λk|β
n∏
k=1

e−
β
4
λ2k , β > 0.

Denote by D = {z ∈ C : |z| < 1} and ∂D = {z ∈ C : |z| = 1}. The size n circular

β-ensemble is defined as the joint distribution of n distinct points {eiθ1 , . . . , eiθn} on ∂D

with θj ∈ [−π, π), where the joint density function of the angles θj is given by

pcn,β(θ1, . . . , θn) =
1

Zc
n,β

∏
j<k≤n

∣∣eiθj − eiθk
∣∣β . (1.4)

We will refer to the points obeying (1.1) as the associated β-ensembles, and we will

sometimes call these points eigenvalues/eigenangles. This slight abuse of terminology

will be made rigorous in Section 1.3 as there are sparse tridiagonal matrix models whose

eigenvalues are distributed according to (1.1) for positive β for certain reference mea-

sures.

Table 2 below records the β-generalizations of classical matrix ensembles that are

considered in this thesis.

We note that the real Jacobi β-ensemble can be connected to another named ensemble

on the unit circle via a change of variables. Suppose that (x1, · · · , xn) is a size n real

Jacobi β-ensemble with parameters a, b > −1. Introduce θj = arccos(1 − 2xj), then

{θ1, . . . , θn} ∈ (0, π)n has joint density function

pon,β,a,b(θ1, . . . , θn) =
1

Zo
n,β,a,b

∏
j<k≤n

| cos(θj)− cos(θk)|β

×
n∏
k=1

|1− cos(θk)|
β
2
(a+1)−1/2|1 + cos(θk)|

β
2
(b+1)−1/2. (1.5)
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β-ensembles Parameters Support Reference measure f

Gaussian/Hermite n ∈ Z+ Rn e−
β
4
λ2

Wishart/Laguerre n ∈ Z+, a > −1 Rn
+ λ

β
2
(a+1)−1e−

β
2
λ

MANOVA/Jacobi n ∈ Z+, a, b > −1 [0, 1]n λ
β
2
(a+1)−1(1− λ)

β
2
(b+1)−1

Circular n ∈ Z+ (∂D)n 1

Circular Jacobi n ∈ Z+, δ ∈ C : ℜδ > −1
2

(∂D)n (1− eiθ)δ̄(1− e−iθ)δ

Table 2: β-generalization of the classical models

The symmetrized version of (θ1, . . . , θn) is called the real orthogonal β-ensemble (ROβE).

Precisely, ROβE is a family of distributions describing an even number of points on the

unit circle in a reflection symmetric configuration. If we parametrize the points as

{±eiθ1 , . . . ,±eiθn} with θj ∈ (0, π) then the joint density for (θ1, . . . , θn) is given by

(1.5).

For β-ensembles, it turns out that the global scaling limits for general β > 0 remain

the same as in the classical β = 1, 2, 4 cases, e.g. the empirical measure of Laguerre

β-ensembles and Gaussian β-ensembles are still governed by the Marchenko-Pastur law

and the Wigner semicircle law, respectively (see e.g. [21]). In the next section, we will

discuss the local scaling limits of β-ensembles, and in particular the random operator

approach that are used in the study of these local behaviors.

1.3 The random operator approach

In the classical β = 1, 2, 4 cases, the ensembles are integrable (exactly solvable) in the

sense that the local behavior (e.g. the joint intensity functions) of the eigenvalues can
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be explicitly described. However, the tools developed by Dyson, Gaudin and Mehta

can not be adapted for general β > 0. This is due to the lack of the determinantal

structure presented in the classical case. One particularly fruitful approach to study the

asymptotic behavior of β-ensembles (especially on a microscopic level) is via random

differential operators.

The random operator approach can be traced back to the work of Dumitriu and

Edelman [17], where the authors constructed two families of tridiagonal matrix models

whose eigenvalues obey Gaussian β-ensemble and Laguerre β-ensemble, respectively.

Take the Gaussian β-ensemble as an example, the matrix models introduced in [17] is

as follows:

Hn,β =
1√
β



a1 b1

b1 a2 b2

. . . . . . . . .

bn−2 an−1 bn−1

bn−1 an


, (1.6)

where the entries {ai, bj, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1} are independent, ai ∼ N (0, 2) has

normal distribution with mean 0 and variance 2, and bi ∼ χβ(n−i) has chi distribution

with β(n − i) degrees of freedom. Sparse matrix models for circular β-ensemble and

Jacobi β-ensemble are studied and constructed in [33] using Verblunsky coefficients, a

main ingredient of understanding the orthogonal polynomials on the unit circle.

To study the local scaling limit of the spectrum, that is, to find the asymptotic limits

of the rescaled (and possibly recentered) spectrum, Edelman and Sutton [19] presented

heuristics that the scaled tridiagonal matrices can be treated as the discrete versions

of certain random second order differential operators, and that they should converge to
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these operators. They set up conjectures for the form of the limiting operators.

The arguments of [19] have been made rigorous by Ramı́rez, Rider, and Virág [51],

and Ramı́rez and Rider [48] for the soft edge limit and the hard edge limit, respectively.

In the soft edge case, if Λn denotes the set of eigenvalues of the tridiagonal matrix model

Hn,β as defined in (1.6), then it was proved in [51] that n1/6(2
√
n − Λn) converges in

distribution to the stochastic Airy process, which we will denote as Airyβ. In the hard

edge case, Ramı́rez and Rider [48] considered the bottom of the spectrum of Laguerre

β-ensemble with parameters an ≡ a. Then under appropriate rescaling, the smallest

eigenvalues of Laguerre β-ensemble converge in distribution to the stochastic Bessel

process indexed by β > 0, a > −1, denoted as Besselβ,a. It has also been shown in

[51] and [48] that both processes Airyβ and Besselβ,a can be characterized as spectra of

certain random differential operators. Note that though the k-point correlation functions

of the Airyβ and Besselβ,a processes were unknown (unlike the classical β = 1, 2, 4

cases), the limit processes can be described by their counting functions, which tells

the distribution of the number of points in every interval. We further remark that

the limiting random differential operators constructed in [51] and [48] are second order

Sturm-Liouville operators acting on certain subsets of L2 functions, see Section 2.1 and

Section 3.1 below for more details.

Centering in the bulk of the spectrum, the local scaling limit was derived by Valkó

and Virág [62] for the Gaussian β-ensemble. Killip and Stoiciu [34] provided a related

but different description of the point process limit for the circular β-ensemble. In the

Gaussian case, if Λn denotes the size n Gaussian β-ensemble (set of eigenvalues of Hn,β
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defined in (1.6)), then it was proved in [62] that for all E ∈ (−2, 2) we have

ρsc(E)
√
n(Λn − E

√
n) ⇒ Sineβ,

where the limiting point process Sineβ dependents on β and generalizes the Sine2 process

(when β = 2). In [62], the authors provided descriptions of the Sineβ process via

its counting function (which are related to a coupled system of stochastic differential

equations), and also via the so-called Brownian carousel. In the case of the circular β-

ensemble, the limiting process was characterized by its counting function via a different

coupled system of stochastic differential equations [34]. Later it was proved in [44, 64]

that the two descriptions are equivalent, and the Sineβ process can be characterized as

the spectrum of a first order random Dirac operator acting on two-dimensional vector

valued functions. We will give the precise definition of the considered Dirac operators in

Sections 2.2.1 and 4.1 below. For now, we would like to remark that the authors in [64]

also provided similar operator representations for a variation of the Besselβ,a process,

finite unitary or orthogonal ensembles and their limits. These operators constructed in

[64] are parametrized by a path in the upper half plane H = {z : ℑz > 0} and two points

on the boundary ∂H.

Specifically, for finitely supported probability measures on the unit circle, [64] showed

that the Szegő recursion of the normalized orthogonal polynomials (the analogue of

the three-term recursion for real orthogonal polynomials) can be translated into an

eigenvalue problem for a Dirac operator with piecewise constant path. The path of the

associated Dirac operator is built from the Verblunsky coefficients, the main ingredient

of the Szegő recursion, see e.g. [57]. The spectrum of the constructed Dirac operator is

the periodic lifting of the angles corresponding to the support of the probability measure.
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Let us also mention that the point process scaling limits for β-ensembles have been

shown to be universal for a wide class of β-ensembles, see [9, 8, 35, 54]. Moreover,

the last two results also show universality on the level of random operators near the

edge. To end the introductory part of β-ensembles, we note that the random differential

operator descriptions are novel even at the classical β = 1, 2, 4 cases. Using oscillation

theory from differential equations, one can describe the limit point processes via their

counting functions. These counting functions are related to coupled systems of stochastic

differential equations. This representation provides access to various properties of the

limit objects (e.g. large gap probability, tail asymptotics) simultaneously for all values

of β using techniques from stochastic analysis.

1.4 Summary of the main results

The main results of this thesis can be divided into three parts. Chapter 3 proves the

operator level hard-to-soft edge transition for β-ensembles. In Chapter 4 we study the

point process limits of the circular Jacobi β-ensembles and provide several descriptions

of the limiting objects. In Chapter 5, we prove various properties of the limiting objects

proved in Chapter 4. Chapter 3 relies on the joint work with Laure Dumaz and Benedek

Valkó [16]. Chapter 4 is a modified version of a submitted paper [37], which is joint with

Benedek Valkó. The results of Chapter 5 are announced without proofs in [37].

Consider the bottom of the spectra of a sequence of Laguerre β-ensemble (as defined

in (1.3)). Depending on whether the parameter an ≡ a or lim infn→∞ an/n > 0 it has

been proved in [48, 51] that we get the convergence of (rescaled and possibly recentered)

Laguerre β-ensemble to the Besselβ,a process and the Airyβ process, respectively. It is
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expected that the regime when an = o(n) and limn an = ∞ should also fall into the

case of the soft edge (which will give the soft edge limit near the hard edge), but this

statement has not been fully proved yet.

However, if working directly with the limiting point processes without considering

the finite ensembles, one can obtain the soft edge process as a scaling limit by tuning

the parameter of the hard edge process [6, 48, 50]. In Chapter 3, we prove that this

limit can be realized on the level of the corresponding random operators. More precisely,

the random operators can be coupled in a way so that the scaled versions of the hard

edge operators converge to the soft edge operator a.s. in the norm resolvent sense. See

Section 2.1 and Chapter 3 below for more details.

In Chapter 4, we study various limits of the circular Jacobi β-ensemble. The finite

n ensemble can be viewed as a one parameter generalization of circular β-ensemble,

see Table 2 for the precise definition. Using the Dirac differential operator framework

introduced in [64] and [65], we prove an operator level limit for the circular Jacobi β-

ensemble. The convergence is strong enough so that the convergence of the eigenangles

follows. More precisely, if Λn,β,δ denotes the size n circular Jacobi β-ensemble indexed

by δ, then nΛn,β,δ converges in distribution to the limiting point process HPβ,δ indexed

by β, δ. The limiting point process HPβ,δ can be characterized as the spectrum of a

Dirac differential operator, and can be viewed as a one parameter generalization of the

Sineβ process (when δ = 0). We also show in Chapter 4 that the normalized characteris-

tic polynomials converge to a random analytic function. Moreover, we provided several

equivalent descriptions of the limiting objects. Using the same operator theoretic frame-

work, we provide analogous results for the real orthogonal β-ensemble. See Section 2.2

and Chapter 4 for more details.
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In Chapter 5, we prove several results on the HPβ,δ process. Specifically, we prove

the asymptotics of large gap probabilities (probabilities of having no eigenvalues in large

intervals) of the HPβ,δ process, a process level transition from the HPβ,δ process to the

Sineβ process, and a Central Limit Theorem for the counting function of the HPβ,δ

process. We refer to Section 2.3 for the precise statements and Chapter 5 for the proofs.
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Chapter 2

Results

2.1 Operator level hard-to-soft transition for

β-ensembles

We start this section with reviewing the local scaling limits of β-ensembles. In particular,

in Section 2.1.1 we will use the Laguerre β-ensemble as an example to illustrate the two

different type of behaviors at the edge of the spectrum of certain β-ensembles: the soft

edge behavior and the hard edge behavior.

In Section 2.1.2 we will define precisely the hard-to-soft edge transition for β-ensembles

and state our main result.

2.1.1 Limits of β-ensembles at the edge

Recall that the size n Laguerre β-ensemble is a two-parameter family of distributions

on Rn
+ with density function (1.3). The global picture of Laguerre β-ensemble is still

governed by the Marchenko-Pastur limit law in the case when n+an is of the same order

of n. More precisely, fix β > 0 and let an > −1 be a sequence such that limn→∞
n

n+an
=

γ ∈ (0, 1] exists. Denote by Λβ,an,n = (λ1,n, λ2,n, . . . , λn,n) a size n Laguerre β-ensemble

with parameter an. Then the rescaled empirical spectral measure νn := 1
n

∑n
k=1 δλk,n/n
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converges in distribution a.s. to the Marchenko-Pastur law (1.2), see e.g. [39, 21].

The microscopic behavior of the Laguerre ensemble can be described by the large n

limit of the point process cn(Λn,β,an − dn) where dn is the centering point and cn is the

appropriate scaling parameter. From now on, we will focus on the lower edge behavior

i.e. the case dn := b−. (See [31] and [51] for the bulk and upper edge behavior.)

The distribution of the limiting point process depends on the asymptotic behavior

of the sequence an. If an = a > −1 does not depend on n, then Ramı́rez and Rider [48]

showed that the scaling limit of nΛn,β,a exists, and gave an explicit description of the

limiting point process. This is called the hard edge scaling limit.

Theorem 2.1 (Hard edge limit of the Laguerre ensemble, [48]). Fix β > 0 and a > −1,

and let Λn,β,a be a size n Laguerre β-ensemble with parameter a. Then the sequence

nΛn,β,a converges in distribution to a point process Besselβ,a as n → ∞. The Besselβ,a

process has the same distribution as the a.s. discrete spectrum of the random differential

operator

Gβ,a = − 1

m(x)

d

dx

(
1

s(x)

d

dx
·
)
, (2.1)

m(x) = ma(x) = e
−(a+1)x− 2√

β
Ba(x) , s(x) = sa(x) = e

ax+ 2√
β
Ba(x). (2.2)

Here Ba is a standard Brownian motion, and the operator Gβ,a is defined on a subset of

L2(R+,m) with Dirichlet boundary condition at 0 and Neumann boundary condition at

infinity.

We will come back to the precise definition of Gβ,a in Section 3.1. Let us just mention

that since the functions s,m are a.s. continuous, this differential operator fits into the

framework of classical Sturm-Liouville operators.
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If the sequence an, n ≥ 1 goes to infinity with at least a constant speed then the

Marchenko-Pastur theorem and the expression of the limiting measure (1.2) suggest a

different scaling than the one seen in the hard edge case. This is called the soft edge

scaling limit. The description of the limiting point process follows from the work of

Ramı́rez, Rider, and Virág [51].

Theorem 2.2 (Soft edge limit, [51]). Fix β > 0 and suppose that the sequence an, n ≥ 1

satisfies lim infn→∞ an/n > 0. Then there is a point process Airyβ so that the following

limit in distribution holds as n→ ∞:

((n+ an)n)
1/6

(
√
n+ an −

√
n)4/3

(Λn,β,an − (
√
n+ an −

√
n)2) ⇒ Airyβ .

The point process Airyβ has the same distribution as the a.s. discrete spectrum of the

random differential operator

Aβ = − d2

dx2
+ x+

2√
β
B′ (2.3)

defined on a subset of L2(R+) with Dirichlet boundary conditions at 0. Here B′ is the

standard white noise on R+.

The precise definition of the operator Aβ will be discussed in Section 3.1. Note that

a priori it is not even clear that the operator Aβ is well-defined, due to the irregularity

of the white noise term in the potential.

Remark 2.3. In [51], the authors actually proved the soft edge scaling limit near the

upper edge dn := b+ for the Laguerre β-ensemble, but the proof can be easily adapted to

the lower edge dn := b+ under the assumption that lim inf an/n > 0. They also proved

the soft edge limit for the Gaussian β-ensemble. In particular, if Λn,β denotes a size n
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Gaussian β-ensemble, then

n1/6(2
√
n− Λn,β) ⇒ Airyβ .

2.1.2 Hard-to soft transition

It is natural to conjecture that the condition lim infn→∞ an/n > 0 in Theorem 2.2 could

be relaxed to limn→∞ an = ∞, but the tools developed in [51] do not seem to be sufficient

to prove this. (See however [13] for the treatment of the case β = 2, an = c
√
n, where

the appropriate limit is proved using the determinantal structure present at β = 2.)

This conjecture, together with a diagonal argument, would imply the following point

process level transition from the Besselβ,a process to Airyβ:

a−4/3(Besselβ,2a−a2) ⇒ Airyβ, as a→ ∞. (2.4)

See [62] for a similar diagonal argument for the transition between the soft edge and the

bulk limiting processes.

The process level limit (2.4) is called hard to soft edge transition. It can be analyzed

without considering the finite n ensembles, working directly with the limiting point

processes appearing in the statement. This transition was first proved in [6] for β = 2

using again the determinantal structure present in this case. For general β > 0, Ramı́rez

and Rider [48] proved the scaling limit for the first point of the respective point processes.

This result was extended in [50] to a full process level limit.

In light of Theorems 2.1 and 2.2, the statement of (2.4) can be rewritten using the

operators Gβ,2a and Aβ as

a−4/3(spec(Gβ,2a)− a2) ⇒ spec(Aβ),
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where spec(Q) denotes the spectrum of the operator Q. It is natural to ask whether it

is possible to prove the corresponding limit on the level of the operators. This is the

main result of Chapter 3. Theorem 2.4 below shows that one can realize the operator

level limit as an a.s. limit with an appropriate coupling between the Brownian motion

Ba of the Bessel operator (2.1) and the white noise B′ of the Airy operator (2.3).

To describe our coupling, we introduce a simple transformation of Gβ,2a. For a > 0

let θa be the ‘stretching’ transformation defined via

(θaf) (x) = f(a2/3x), (2.5)

and define the following transform of the hard-edge operator corresponding to 2a:

Gβ,2a = θ−1
a

(
m

1/2
2a Gβ,2am

−1/2
2a

)
θa, (2.6)

where m(·) is defined in (2.2). As we will see in Section 3.1, Gβ,2a is a self-adjoint

operator with the same spectrum as Gβ,2a, and the operators A−1
β and (Gβ,2a− a2)−1 are

Hilbert-Schmidt integral operators acting on the same space of L2(R+) functions. Our

main result in Chapter 3 is the following.

Theorem 2.4 (Operator level hard-to-soft transition). Let B′ be white noise on R+ and

let B be a Brownian motion defined as B(x) :=
∫ x
0
B′(y)dy. Set B2a(x) = a−1/3B(a2/3x)

for a > 0. Consider Aβ defined as (2.3) using the white noise B′, and Gβ,2a defined with

the Brownian motion B2a via (2.1) and (2.6) for a > 0. Then a4/3(Gβ,2a − a2)−1 → A−1
β

a.s. in Hilbert-Schmidt norm as a→ ∞.

We expect that with a more careful application of our methods one could also get

estimates on the speed of convergence in our coupling. See Remark 3.20 in Section 3.5.
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The theorem implies that a−4/3(Gβ,2a − a2) → Aβ a.s. in norm resolvent sense from

which the process level transition a−4/3(spec(Gβ,2a) − a2) ⇒ spec(Aβ), and therefore

the limit (2.4) follows. The coupling of the operators produces a coupling of the point

processes in a way that almost surely the points in the scaled hard edge processes

converge to the points in the soft edge point process. More precisely, a version of the

Hoffman-Wielandt inequality (see e.g. [3]) shows that if we denote the ordered points in

the scaled hard edge process a−4/3(Besselβ,2a−a2) by λk,2a, k ≥ 0, and the ones in the

soft edge process Airyβ by λk, k ≥ 0, then in the coupling of Theorem 2.4 we have a.s.

lim
a→∞

∞∑
k=0

∣∣λ−1
k − λ−1

k,2a

∣∣2 = 0 .

Moreover, as the spectrum of the operators are discrete, and each eigenvalue has mul-

tiplicity 1, the a.s. norm resolvent convergence also implies the a.s. convergence of the

respective normalized eigenfunctions in L2.

The proof of Theorem 2.4 will be given in Chapter 3.

2.2 Limits of the circular Jacobi β-ensemble

In this section, we will first review the bulk scaling limit of β-ensembles, and intro-

duce the random Dirac differential operators. Then we will explain the point process

convergence of the circular Jacobi β-ensemble under the Dirac operator framework.

2.2.1 Limits of β-ensembles in the bulk

The bulk limit refers to the case when the reference point dn is chosen inside of the

spectrum. Recall that in the GUE case, after appropriate centering and rescaling, we
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obtain the Sine2 process in the limit. Under the same scaling, the point process limit

of Gaussian β-ensemble was derived by Valkó and Virág [62] for the general β > 0

case. Due to the lack of the determinantal algebraic structure, the Sineβ process is not

characterized by its k-point correlation function, but by its counting function instead.

Roughly speaking, the counting function of Sineβ tells the number of points in the

limiting process for all intervals, and can be analyzed by solving a coupled system of

stochastic differential equations.

In Killip and Stoiciu [34], the authors studied the scaling limits of circular β-ensemble.

If Λn is the finite point process with joint distribution (1.4), then nΛn converges in

distribution to a limiting point process, whose counting function can be described with

a related but different stochastic differential equation system. Later it was proved in

[44, 64] that the two descriptions are equivalent. Moreover, the Sineβ process can be

characterized as the spectrum of a first order differential operator acting on functions

f : [0, 1) 7→ R2.

Theorem 2.5. Consider the differential operator of the form

Sineβ : f → 2R−1
t

0 −1

1 0

 f ′(t), f : [0, 1) → R2,

where Rt, t ∈ [0, 1) is a positive definite matrix built from a hyperbolic Brownian motion

(see (2.7) below for the construction). Then the operator Sineβ is self-adjoint on an

appropriately defined domain, and its spectrum is given by the Sineβ process.

The operators of this form are often called Dirac operators, see Section 4.1 below for

more details. [64] also showed that a number of random matrix models (and their limits)

can be represented using random Dirac differential operators. The ingredients to define
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a Dirac operator are a generating path x + iy : [0, 1) 7→ H = {z ∈ C : ℑz > 0}, and

two non-zero, non-parallel vectors u1, u2 ∈ R2. Then we consider differential operators

of the form

τ : f → R−1(t)

0 −1

1 0

 f ′, f : [0, 1) → R2, R =
1

2y

 1 −x

−x x2 + y2

 . (2.7)

In Theorem 2.5, the generating path of the Sineβ operator is a time-changed hyperbolic

Brownian motion in H satisfying (x+ iy)(t) = (x̃+ iỹ)(− 4
β
log(1−t)) for t ∈ [0, 1), where

x̃+ iỹ is the solution of the SDE

dx = ydB1, dy = ydB2, x(0) = 0, y(0) = 1,

where B1, B2 are independent Brownian motions. It has also been shown in [64] that

under some mild conditions on the triple (x + iy, u1, u2), the associated Dirac operator

is self-adjoint with pure point spectrum, and its inverse is a Hilbert-Schmidt integral

operator with explicit kernel.

Using the theory of orthogonal polynomials on the unit circle (see e.g. [57]), the

authors in [64] provided Dirac operator representations for finite unitary matrices. The

idea was that for finitely supported probability measures on the unit circle, the Szegő

recursion of the normalized orthogonal polynomials can be translated into the eigenvalue

equation for a Dirac operator with piecewise constant path. The path can be constructed

from the so-called modified Verblunsky coefficients appearing in the Szegő recursion.

The main goal of Chapter 4 is to understand the local scaling limit of circular Jacobi

β-ensemble, using the Dirac operator theoretic framework. The main results in Chapter

4 are summarized in the next section.
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2.2.2 Limits of the circular Jacobi β-ensemble

For a given integer n ≥ 1, β > 0, and δ ∈ C with ℜδ > −1/2 the size n circular Jacobi

β-ensemble (CJβE) with parameters β, δ is the joint distribution of n distinct points

{eiθ1 , . . . , eiθn} with θj ∈ [−π, π), where the joint density function of the angles θj is

given by

pcjn,β,δ(θ1, . . . , θn) =
1

Zcj
n,β,δ

∏
j<k≤n

∣∣eiθj − eiθk
∣∣β n∏

k=1

(1− e−iθk)δ(1− eiθk)δ̄, θj ∈ [−π, π).

(2.8)

Here Zcj
n,β,δ is an explicitly computable normalizing constant (see e.g. Section 4.1 of [21]).

We write Λn ∼ CJn,β,δ to denote that the random set Λn = {θ1, . . . , θn} has joint

density given by (2.8). This family of distributions extends several other named ensem-

bles. For β = 2 the distribution was studied by Hua [30] and Pickrell [45], and is known

as the Hua-Pickrell measure in the literature. The local scaling limit of the angles was

derived in [23] using the determinantal structure present in this case. For δ = 0 the dis-

tribution recovers CβE, where the scaling limit was given by the Sineβ process [34],[64],

see the discussions in Section 2.2.1 above. When β = 2 and δ = 0 we get the circular

unitary ensemble, which gives the joint eigenvalue distribution of an n×n Haar unitary

matrix. For k ∈ Z+ with δ = βk
2

the measure given by (2.8) can also be realized as a

conditioned version of the size n+k circular β-ensemble, conditioned to have k points at

1 (i.e. θ = 0). See [7], [23], Section 3.12 of [21], and the references within for additional

information about the ensemble.

In [10] the authors constructed matrix models for CJβE and described explicitly

the distribution of the modified Verblunsky coefficients. These constructions lead to

the random Dirac operators CJn,β,δ, whose spectrum is the periodic extension of CJn,β,δ
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with an extra magnification by n. Under the appropriate scaling, the piecewise con-

stant paths associated to the random operators CJn,β,δ converge to the time-changed

hyperbolic Brownian motion with drift. As shown in [64], one can construct random dif-

ferential operators in terms of the limiting diffusion. Denote the limiting operator and its

spectrum by HPβ,δ and HPβ,δ, respectively (note that HPβ,0 = Sineβ and HPβ,0 = Sineβ).

Our main result in Chapter 4 is the following operator level convergence.

Theorem 2.6. Fix β > 0 and ℜδ > −1/2. Then there is a coupling of the random

operators CJn,β,δ, n ≥ 1 and HPβ,δ so that CJn,β,δ converges to HPβ,δ a.s. in norm resolvent

sense as n → ∞. In particular, if Λn,β,δ ∼ CJβEn with parameter δ then nΛn,β,δ ⇒

HPβ,δ. In this coupling the normalized characteristic polynomial of Λn,β,δ converges

a.s. uniformly on compacts to a random analytic function constructed from the HPβ,δ

operator, which we denote as ζHPβ,δ.

The limit objects are interesting on their own. In Chapter 4, we also characterize

the HPβ,δ process via its counting function, and derive various characterizations of the

limiting random analytic function.

Theorem 2.7. Fix β > 0 and ℜδ > −1/2, and let Z be a standard complex Brownian

motion. Then the counting function N(·) of the HPβ,δ process has the same distribution

as the right continuous version of the function λ 7→ limt→∞
αλ(t)
2π

, where αλ solves the

coupled system of SDE

dαλ = λ
β

4
e−

β
4
tdt+ ℜ

[
(e−iαλ − 1)(dZ − iδdt)

]
, αλ(0) = 0. (2.9)

The limiting analytic function ζHPβ,δ can be characterized through its Taylor coefficients

at 0 given in terms of certain stochastic differential equation, and as the solution of a

stochastic differential equation system.
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Using the same strategy, we also study the point process limit of real orthogonal β-

ensemble (ROβE), which is a finite point processes on the unit circle, see the discussion

around Table 2. The ensemble was introduced in [33] and [32] as a generalization of

the joint eigenvalue distributions of some of the classical ensembles on the orthogonal

and special orthogonal group of matrices. E.g. with β = 2, a = b = 1
β
− 1, we get the

joint eigenvalue distribution of a 2n × 2n special orthogonal matrix chosen according

to Haar measure on SO(2n). We write Λ2n ∼ RO2n,β,a,b to denote that the random set

Λ2n = {±θ1, . . . ,±θn} has a distribution determined by the joint density given by (1.5).

The distribution of the modified Verblunsky coefficients of ROβE were described

explicitly in [33, 32]. These coefficients can be used to construct the random Dirac

operators RO2n,β,a,b, whose spectrum is the periodic extension of RO2n,β,a,b with an extra

magnification by 2n. Under the appropriate scaling, the piecewise constant driving

paths associated to the random operators RO2n,β,a,b converge to the exponential Brownian

motion on the imaginary axis with drift, which can be used to construct the limiting

operator [64]. Denote the limiting operator and its spectrum by Bessβ,a and Bessβ,a.

Then we have the following operator level convergence.

Theorem 2.8. Fix β > 0 and a, b > −1. Then there is a coupling of the random

operators RO2n,β,a,b, n ≥ 1 and Bessβ,a so that RO2n,β,a,b converges to Bessβ,a a.s. in norm

resolvent sense as n → ∞. In particular, if Λ2n,β,a,b ∼ RO2n,β,a,b then 2nΛ2n,β,a,b ⇒

Bessβ,a.

In this coupling the normalized characteristic polynomial of Λ2n,β,a,b converges a.s. uni-

formly on compacts to ζBβ,a, a random analytic function constructed from the Bessβ,a

operator. The function ζBβ,a can be described through its Taylor expansion at 0, and as

the solution of a stochastic differential equation system.
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The proofs of Theorems 2.6, 2.7, and 2.8 will be provided in Chapter 4.

2.3 Additional results on the HPβ,δ process

The third part of this thesis consists of several results on the limiting process HPβ,δ

introduced in Theorem 2.6. The starting point is the diffusion description given in The-

orem 2.7. This representation provides access to various properties of the limit process

(e.g. large gap probability, a process level transition, and a Central Limit Theorem)

using techniques from stochastic analysis.

We start with the large gap probability. For β > 0, δ ∈ C with ℜδ > −1/2, denote

the gap probability

GAPλ = P (HPβ,δ ∩[0, λ] = ∅), λ > 0.

Then Theorem 2.7 allows us to write the gap probability as

GAPλ = P
(
lim
t→∞

αλ(t) = 0
)
.

The problem boils down to understand the asymptotic expansion of the probability of

the process αλ converges to 0. Following the work of Valkó and Virág [63] on the large

gap probability of the Sineβ process, the argument involves estimating the Cameron-

Martin-Girsanov term (the Radon-Nikodym derivative) of a suitably chosen change of

variable. In Section 5.1 we will present the construction of such a change of measure,

and prove the following asymptotic expansion of GAPλ as λ→ ∞.

Theorem 2.9. As λ→ ∞, we have

GAPλ = (κβ,δ + o(1))λγβ,δ exp

(
− β

64
λ2 +

(β
8
− 1

4
+

1

2
ℑδ
)
λ

)
,
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where

γβ,δ =
1

4

(β
2
+

2

β
− 3
)
−ℜδ + 2

β
ℜ(δ + δ2).

Using the diffusion description (2.9), we are also able to show a process level transition

from the HPβ,δ process to the Sineβ process, and a Central Limit Theorem of the counting

function of the HPβ,δ process. The proofs rely on the techniques introduced in Holcomb

[26], where the author considered similar results for the square root of the hard edge

process (constant multiple of the Bessβ,a process).

Theorem 2.10. Fix β > 0 and δ ∈ C with ℜδ > −1/2. Then as λ→ ∞, we have

(HPβ,δ −λ) ⇒ Sineβ .

Let N(·) be the counting function of the HPβ,δ process, as λ→ ∞ we have

1√
log λ

(N(λ)− λ
2π
) ⇒ N (0, 2

βπ2 ),

where N (µ, σ2) is the mean µ, variance σ2 normal distribution.

The proofs of Theorems 2.9 and 2.10 will be presented in Chapter 5.
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Chapter 3

Operator level hard-to-soft

transition for β-ensembles

The content of this chapter is joint work with Laure Dumaz and Benedek Valkó and is

a modified version of an published article [16].

The structure of the rest of the chapter is as follows. In Section 3.1 we show how one

can describe the appearing differential operators using the generalized Sturm-Liouville

theory, show that A−1
β and (Gβ,2a − a2)−1 are Hilbert-Schmidt integral operators, and

describe their kernels in terms of certain diffusions. Section 3.2 outlines the main steps

of the proof of the main Theorem 2.4. Our proof uses the approximation of the inte-

gral operators by their truncated version. We state the convergences of the truncated

operators towards their full operator as well as the convergence of the truncated hard

edge integral operators to the truncated soft edge integral operator in several lemmas

whose proofs are postponed to later sections. Section 3.3 estimates the truncation er-

ror of the soft edge integral operator. Section 3.4 shows that the truncated hard edge

integral operators converge to the truncated soft edge integral operator by proving that

the integral kernels converge uniformly on compacts with probability one. Section 3.5

describes the asymptotic behavior of the diffusions connected to the operator Gβ,2a and

provides the results needed to estimate the truncation error for the hard edge integral



31

operators. Finally, the final section gathers the proof of some technical lemmas needed

for the results of Sections 3.3 and 3.5.

3.1 The operators Aβ and Gβ,2a as generalized Sturm-

Liouville operators

This section briefly introduces the background for the differential operators appearing

in this work, and shows how it can be used to describe the random differential operators

Gβ,2a,Gβ,2a,Aβ and their inverses. We use the classical theory discussed in [67] and

Chapter 9 of [60].

3.1.1 Generalized Sturm-Liouville operators

We consider generalized Sturm-Liouville (S-L) operators of the form

τu(x) =
1

r(x)
(−(p1(x)u

′(x)− q0(x)u(x))
′ − q0(x)u

′(x) + p0(x)u(x)) , (3.1)

where u is a real valued function on [0, L] for some L > 0 or on R+ (which we consider

to be the L = ∞ case in the following). We assume that the real functions p0, p1, q0, r

are continuous on [0,∞) and r(x), p1(x) > 0 for x ≥ 0.

The operation τu is well-defined if both u and p1u
′−q0u are absolutely continuous on

[0, L]. From the standard theory of differential equations we have that for any λ ∈ C the

differential equation τu = λu has a unique differentiable solution on [0, L] with initial

conditions u(0) = c0, u
′(0) = c1. We note that if f1, f2 are both solutions of τf = λf

then integration by parts shows that the Wronskian p1(f1f
′
2 − f ′

1f2) is constant on R+.

We consider differential operators satisfying the following three assumptions:
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(A1) The solution ud of the equation τud = 0 with Dirichlet initial condition ud(0) = 0,

u′d(0) = 1 is not in L2(R+, r), i.e.
∫∞
0
u2d(x)r(x)dx = ∞.

(A2) There is a unique solution u∞ of the equation τu∞ = 0, with initial condition

u∞(0) = 1 that is in L2(R+, r).

(A3) With ud, u∞ defined from (A1), (A2), we have
∫∞
0

∫ x
0
u∞(x)2ud(y)

2r(x)r(y) dydx <

∞.

Under these assumptions, the operator τ can be made self-adjoint on an appropriate

subset of L2([0, L], r) or L2(R+, r). We introduce

DL =
{
u ∈ L2([0, L], r) : τu ∈ L2([0, L], r), u, p1u

′ − q0u ∈ AC([0, L])
}
,

and we drop the subscript L for L = ∞. Here AC([0, L]) is the set of absolutely

continuous real functions on [0, L].

The continuity of the functions p0, p1, q0 and r implies that the operator τ is regular

at 0 and at any finite L and therefore is limit circle at those points. The condition

(A1) implies that the operator τ is limit point at +∞ thanks to the Weyl’s alternative

theorem. Conditions (A2) and (A3) ensure that the inverse and the resolvent are Hilbert

Schmidt operators.

The following propositions summarize the basic properties of generalized Sturm-

Liouville differential operators satisfying conditions (A1)-(A3).

Proposition 3.1 (Self-adjoint version of τ). Assume that τ is of the form (3.1) and

that it satisfies the condition (A1-A3), and let L ∈ (0,∞]. Then there is a self-adjoint

version of the operator on [0, L] with Dirichlet boundary conditions on the domain

DL,0 = DL ∩ {u : u(0) = 0, u(L) = 0},



33

where the end condition u(L) = 0 is dropped in the case L = ∞. We denote this

self-adjoint operator by τL.

Proposition 3.2 (Inverse as an integral operator). Consider the operator τL from Propo-

sition 3.1. If L is finite then assume that ud(L) ̸= 0 (i.e. that 0 is not an eigen-

value of τL). Then the inverse τ−1
L is an integral operator of the form τ−1

L f(x) =∫ L
0
K(L)(x, y)f(y)r(y)dy on L2([0, L], r) with

K(L)(x, y) =
1

p1(0)
(uL(x)ud(y)1(x ≥ y) + ud(x)uL(y)1(x < y)) . (3.2)

Here ud is defined in (A1). If L = ∞ then uL is u∞ from (A2), and in the case L <∞

the function uL is defined as the solution of τuL = 0 with uL(0) = 1, uL(L) = 0. The

inverse operator τ−1
L is a Hilbert-Schmidt operator in L2([0, L], r), and it has a bounded

pure point spectrum.

Proposition 3.3 (Resolvent as an integral operator). Consider τL from Proposition 3.1,

and assume that a given λ ∈ R is not an eigenvalue of τL. Then the resolvent (τL−λ)−1

is a Hilbert-Schmidt integral operator of the same form as K(L) from (3.2), where now

ud, uL are the appropriate solutions of τu = λu with the respective boundary conditions.

For L = ∞ the function uL = u∞ is the unique solution of τu∞ = λu∞ with u∞(0) = 1

and u∞ ∈ L2(R+, r).

The proofs of these propositions follow from the theory of Sturm-Liouville operators.

Again, we refer to the monograph [67]. Note that the classical theory (when q0 = 0) is

treated in a self-contained way in Chapter 9 of [60] (see in particular Theorems 9.6 and

9.7).
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3.1.2 Bessel and Airy operators as generalized S-L operators

The operators Gβ,a, Gβ,2a, and Aβ can be represented as a generalized Sturm-Liouville

operators for which Assumptions (A1-A3) are satisfied, and hence the appropriate re-

solvents are a.s. Hilbert-Schmidt integral operators. We summarize the relevant results

in the propositions below.

Proposition 3.4 (Gβ,2a as a Sturm-Liouville operator). The operator Gβ,2a is a Sturm-

Liouville operator of the form (3.1) with r = m2a, p1 = s−1
2a , p0 = q0 = 0. The operator

satisfies the conditions (A1-A3) with probability one if a > 1/2.

If ϕ solves the equation Gβ,2aϕ = λϕ with deterministic initial conditions ϕ(0) = c0,

ϕ′(0) = c1 then (ϕ, ϕ′) is the unique strong solution of the stochastic differential equation

system

dϕ(x) = ϕ′(x)dx, dϕ′(x) = 2√
β
ϕ′(x)dB2a(x) +

(
(2a+ 2

β
)ϕ′(x)− λe−xϕ(x)

)
dx, (3.3)

with the corresponding initial conditions.

Proof. The fact that Gβ,2a is a Sturm-Liouville operator is contained in the statement of

Theorem 2.1, the statement about the solution of the eigenvalue equation can be checked

with Itô’s formula (see [48]). As explained in [49], the Neumann boundary condition for

Gβ,2a at ∞ for a > 0 can be dropped. The SDE (3.3) satisfies the usual conditions for

existence and uniqueness, so (ϕ, ϕ′) is a well-defined process for all times.

We only need to check that the conditions (A1-A3) are satisfied for a > 1/2. This

can be done directly using the a.s. sublinear growth of the Brownian motion by noting

that ud(x) =
∫ x
0
s2a(y)dy and u∞(x) = 1.
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Proposition 3.5 (Integral kernel for (Gβ,2a−a2)−1). For a given a > 1/2, let ϕ
(2a)
d be the

unique strong solution of (3.3) with λ = a2 and initial conditions ϕ(0) = 0, ϕ′(0) = 1.

Let Ea be the event that a2 is not an eigenvalue of Gβ,2a. Denote by ϕ
(2a)
∞ the unique

solution of Gβ,aϕ
(2a)
∞ = a2ϕ

(2a)
∞ with ϕ

(2a)
∞ (0) = 1 and ϕ

(2a)
∞ ∈ L2(R+,m2a), this exists on

Ea. Then on the event Ea the operator a4/3(Gβ,2a − a2)−1 is a Hilbert-Schmidt integral

operator in L2(R+) with integral kernel

KG,2a(x, y) = ϕ̃∞(x)ϕ̃d(y)1(x ≥ y) + ϕ̃d(x)ϕ̃∞(y)1(x < y),

where

ϕ̃d(x) = a2/3m
1/2
2a (a−2/3x)ϕ

(2a)
d (a−2/3x), ϕ̃∞(x) = m

1/2
2a (a−2/3x)ϕ(2a)

∞ (a−2/3x). (3.4)

On the event Ea the operator a4/3(Gβ,2a − a2)−1 has a bounded pure point spectrum that

is the same as the spectrum of a4/3(Gβ,2a − a2)−1.

Proof. By Proposition 3.3, the function ϕ
(2a)
∞ is well-defined on Ea, and the operator

(Gβ,2a − a2)−1 is Hilbert-Schmidt on L2(R+,m2a) with integral kernel

KG,2a(x, y) = ϕ(2a)
∞ (x)ϕ

(2a)
d (y)1(x ≥ y) + ϕ

(2a)
d (x)ϕ(2a)

∞ (y)1(x < y).

Recalling the definition of Gβ,2a from (2.6) we get that a4/3(Gβ,2a − a2)−1 is a Hilbert-

Schmidt integral operator on L2(R+) with kernel

KG,2a(x, y) = a2/3m
1/2
2a (a−2/3x)KG,2a(a

−2/3x, a−2/3y)m
1/2
2a (a−2/3y),

from which the proposition follows.

Note that for any fixed a > 1/2, the event Ea has a probability 1, see Remark 3.25.

Later, in Corollary 3.18 in Section 3.5 we show that in our coupling if a is large enough

then a2 is not an eigenvalue for Gβ,2a.
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Proposition 3.6 (The operator Aβ as a generalized S-L operator). The operator Aβ is

a generalized Sturm-Liouville operator of the form (3.1) with r(x) = p1(x) = 1, q0(x) =

2√
β
B(x), p0(x) = x. The operator satisfies the conditions (A1-A3) with probability one.

If ψ solves the equation Aβψ = 0 with deterministic initial conditions ψ(0) = c0,

ψ′(0) = c1, (c0, c1) ̸= (0, 0), then (ψ, ψ′) is the strong solution of the SDE system

dψ(x) = ψ′(x)dx, dψ′(x) = ψ(x)
(

2√
β
dB + xdx

)
, (3.5)

which is well defined for all times, and satisfies

ψ′(x)

ψ(x)
√
x
→ 1 a.s. as x→ ∞. (3.6)

A.s. 0 is not an eigenvalue of Aβ, and the operator A−1
β is a Hilbert-Schmidt integral

operator with kernel

KA(x, y) = ψ∞(x)ψd(y)1(x ≥ y) + ψd(x)ψ∞(y)1(x < y). (3.7)

Here ψd is the solution of Aβψ = 0 with initial condition ψd(0) = 0, ψ′
d(0) = 1, and

ψ∞ ∈ L2(R+) is the unique function satisfying Aβψ∞ = 0, ψ∞(0) = 1 (see Figure 3).

Proof. The fact that the soft-edge operator Airyβ can be represented as a generalized

Sturm-Liouville operator of the form (3.1) with the listed coefficients was shown in [5]

(see also [43]). The SDE representation of the solutions of Aβψ = 0 with a deterministic

initial condition is shown in [51]. Since the SDE (3.5) satisfies the usual conditions

of existence and uniqueness for SDEs, the solution is well defined for all times. The

asymptotics (3.6) was stated without proof in [51], we include a proof of this statement

in Proposition 3.11 in Section 3.6.1 below for completeness.

To check that the conditions (A1)-(A3) are satisfied we first observe that if ψd is the

solution of Aβψ = 0 with Dirichlet initial condition then by (3.6) for any fixed ε > 0 we
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have

e(2/3−ε)x
3/2 ≤ ψd(x) ≤ e(2/3+ε)x

3/2

for x large enough, (3.8)

hence ψd is not in L2(R+). This means that a.s. there can be at most one L2(R+)

solution of Aβψ = 0 with initial condition ψ(0) = 1. We will construct such a function

using ψd.

Denote by z0 the largest zero of ψd on R+, and let z0 = 0 if such a zero does not

exists. Motivated by the Wronskian identity we introduce the function

ψ∞(x) = ψd(x)

∫ ∞

x

ψd(y)
−2dy (3.9)

which is well defined for x > z0. One can check that ψ∞ satisfies Aβψ∞ = 0 and the

Wronskian identity

ψ′
∞(x)ψd(x)− ψ∞(x)ψ′

d(x) = −1 (3.10)

for x > z0. Then, the function ψ∞ can be uniquely extended to R+ as a solution of

Aβψ = 0. This function satisfies (3.10) on R+, hence it will satisfy ψ∞(0) = 1.

Using (3.9) we see that for x > z0 we have

ψd(x)ψ∞(x) =

∫ ∞

x

ψd(x)
2

ψd(y)2
dy =

∫ ∞

x

exp

(
−2

∫ y

x

ψ′
d(z)

ψd(z)
dz

)
dy,

and from (3.6) we get the bounds

√
y

∫ y

0

ψd(x)
2ψd(y)

−2dx ≤ C,
√
y

∫ ∞

y

ψd(x)
−2ψd(y)

2dx ≤ C, (3.11)

for some random C < ∞. Together with the bound (3.8) this is now sufficient to show

that ψ∞ is in L2(R+), and that∫ ∞

0

∫ x

0

ψ∞(x)2ψd(y)
2dy dx <∞.
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By Propositions 3.2 and 3.6 it follows immediately that A−1
β is almost surely a Hilbert-

Schmidt integral operator with kernel given in (3.7).

t 7→ ±
√
t

ψ′∞(0)

ψ′∞/ψ∞

ψ′d/ψd

Figure 3: Representation of the log-derivatives of ψd and ψ∞.

Remark 3.7. Using the identity (3.9) and the limit (3.6) one can show that ψ′
∞(x)/ψ∞(x) →

−
√
x a.s. as x → ∞, and that ψ∞(x) ≤ e−(2/3−ε)x3/2 for x large enough. This behavior

was also noted in [51]. See Figure 3 for an illustration for the behavior of ψd, ψ∞.

We record here the Wronskian identities for the appropriate operators:

ψd(x)ψ
′
∞(x)− ψ′

d(x)ψ∞(x) = −1, ϕd(x)ϕ
′
∞(x)− ϕ′

d(x)ϕ∞(x) = −s2a(x). (3.12)

where we dropped the a-dependence in ϕ
(2a)
d , ϕ

(2a)
∞ to alleviate the notation. From the

second equation of (3.12) one can obtain the following analogue of the identity (3.9) for

the hard edge diffusions:

ϕ∞(x) = ϕd(x)

∫ ∞

x

ϕd(y)
−2s2a(y)dy, (3.13)

if x is larger than the largest zero of ϕd.
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Note that the functions ψd, ϕd are diffusions with respect to the natural filtrations

of the Brownian motions B,B2a. This is not the case for the functions ψ∞ and ϕ∞,

as the starting values of these processes depend on the σ-field generated by the whole

Brownian motion B(t), t ≥ 0. In particular, those functions are not Markovian.

3.2 Proof of Theorem 2.4

Proof of Theorem 2.4. In order to prove the theorem, we first need to show that in our

coupling with probability one a2 is not an eigenvalue of the operator Gβ,2a if a is large

enough. This will be the content of Corollary 3.18 in Section 3.5: we will show that

there is an a.s. finite random variable Cev such that the operator Gβ,2a − a2 is invertible

for all a > Cev. In particular, this means that on the event {a > Cev} the operator

(Gβ,2a − a2)−1 is a well-defined integral operator with kernel given in Proposition 3.5.

By the results of Section 3.1, to prove Theorem 2.4 we need to show that we have

lim
a→∞

∫ ∞

0

∫ ∞

0

|KA(x, y)−KG,2a(x, y)|2 dx dy = 0 a.s. (3.14)

We do this by approximating KA and KG,2a with the resolvent kernels of the appropriate

differential operators restricted to [0, L], with L > 0. We denote these operators by K
(L)
A

and K
(L)
G,2a. More specifically, set

K
(L)
A (x, y) = ψL(x)ψd(y)1(y ≤ x ≤ L) + ψd(x)ψL(y)1(x < y ≤ L), (3.15)

where ψL which solves Aβψ = 0 with boundary conditions ψL(0) = 1, ψL(L) = 0. The

function ψL is well-defined if ψd(L) ̸= 0.

Moreover, set

K
(L)
G,2a(x, y) = ϕ̃L(x)ϕ̃d(y)1(y ≤ x ≤ L) + ϕ̃d(x)ϕ̃L(y)1(x < y ≤ L) (3.16)
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where

ϕ̃L(x) = m
1/2
2a (a−2/3x)ϕa−2/3L(a

−2/3x),

and ϕa−2/3L solves the equation Gβ,2aϕ = a2ϕ with ϕa−2/3L(0) = 1, ϕa−2/3L(a
−2/3L) = 0.

The function ϕ̃L is well-defined if ϕd(a
−2/3L) ̸= 0. (Note that ϕ and ϕ̃ depend on a as

well, which we do not denote.)

By the triangle inequality we have

∥KA −KG,2a∥2 ≤ ∥KA −K
(L)
A ∥2 + ∥K(L)

A −K
(L)
G,2a∥2 + ∥KG,2a −K

(L)
G,2a∥2.

We will show that all three terms on the right will vanish in the limit if we let a → ∞

and then L→ ∞ along a particular sequence, this is the content of the Lemmas 3.8, 3.9

and 3.10 below. From these three lemmas, we deduce the convergence (3.14), and hence

Theorem 2.4 follows.

More precisely, we will prove the following three lemmas.

Lemma 3.8 (Truncation of the Airy operator). ∥KA −K
(L)
A ∥22 → 0 a.s. as L→ ∞.

Lemma 3.9 (Convergence of the truncated operators). For any fixed L > 0 we have

∥K(L)
A −K

(L)
G,2a∥

2
2 → 0 a.s. as a→ ∞ .

Lemma 3.10 (Truncation of the Bessel operator). With probability 1, we have,

lim
L→∞

lim sup
a→∞

∥KG,2a −K
(L)
G,2a∥

2
2 = 0 .

We prove Lemma 3.8 in Section 3.3 using the the asymptotics (3.8). The proof of

Lemma 3.9 is given in Section 3.4, we will show that for a fixed L <∞ the kernel K
(L)
G,2a

converges uniformly to K
(L)
A on [0, L]2 as a→ ∞. Finally, the proof of Lemma 3.10 will

be given in Section 3.5, and it will rely on a careful analysis of the asymptotic behavior

of ϕ
(2a)
d .
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3.3 Truncation of the Airy operator

We analyze the solutions of the SDE (3.5) via the Riccati transform ψ′(t)
ψ(t)

. Suppose

that ψ, ψ′ is the strong solution of the SDE (3.5) with deterministic initial conditions

ψ(0) = c0, ψ
′(0) = c1, (c0, c1) ̸= (0, 0). Set X(t) = ψ′(t)

ψ(t)
, by Itô’s formula X satisfies the

SDE

dX(t) = (t−X(t)2)dt+ 2√
β
dB(t), (3.17)

with initial condition X(0) = c1/c0. The initial condition is ∞ if c0 = 0, c1 ̸= 0. Note

that the diffusion blows up to −∞ at the zeros of ψ, and it restarts at ∞ instantaneously

whenever this happens.

The drift in (3.17) vanishes on the parabola x2 = t, it is positive for |x| <
√
t, and

negative for |x| >
√
t. This suggests that the asymptotic behavior of X(t) should be

√
t (since the branch x = −

√
t is unstable), as stated in (3.6). The proposition below

proves this statement by providing quantitative bounds on |X(t) −
√
t|. See Figure 4

for an illustration of the asymptotic behavior of X. Note that less precise asymptotic

bounds on X were also proved in [15] for the study of the small β limit.

Proposition 3.11. Let ψ, ψ′ be the strong solution of (3.5) with deterministic initial

conditions ψ(0) = c0, ψ
′(0) = c1, (c0, c1) ̸= (0, 0). Let X(t) = ψ′(t)

ψ(t)
. Then there is an

a.s. finite random time T such that

|X(t)−
√
t| ≤ t−1/4 ln t, for all t ≥ T . (3.18)

Our upper bound in (3.18) is not optimal. In fact by evaluating the error terms in

the proof given below it can be shown that t−1/4 ln t can be replaced with t−1/4
√
ln t g(t)

for any positive function g(t) satisfying limt→∞ g(t) = ∞.
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ln(t)/t1/4

Critical parabola t 7→ ±
√
t

X

c1/c0

Figure 4: Schematic illustration of the asymptotic behavior of the diffusion X

The proof of Proposition 3.11 relies on the following two technical lemmas, whose

proofs are postponed to Section 3.6.1.

Lemma 3.12. Let X be a strong solution of the SDE (3.17). For a given s ≥ 10 set

σs = inf
{
t ≥ s : |X(t)−

√
t| ≤ 1

2
t−1/4 ln t

}
. (3.19)

Then σs is a.s. finite.

Lemma 3.13. For a given t0 > 0, x0 ∈ R consider the solution X of the SDE (3.17) on

[t0,∞) with initial condition X(t0) = x0, and denote by Pt0,x0 its distribution. Then

lim
t0→∞

inf
|x0−

√
t0|≤ 1

2
t
−1/4
0 ln t0

Pt0,x0

(
|X(t)−

√
t| ≤ t−1/4 ln t, for all t ≥ t0

)
= 1. (3.20)

Lemma 3.12 shows that for any solution X of the SDE (3.17) and any s ≥ 10 the

process X(t) −
√
t will get close enough to 0 after time s. Lemma 3.13 shows that if

X(t)−
√
t is close to 0 for a given large t = t0 then with a high probability it will stay

close to 0 for all t ≥ t0.

Proof of Proposition 3.11. Let f(t) = t−1/4 ln t. By Lemma 3.12 for any fixed s ≥ 10

there is an a.s. finite stopping time σs with σs ≥ s so that |X(σs)−
√
σs| ≤ 1

2
f(σs) with
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probability one. Lemma 3.13 shows that if the diffusion is close to
√
t then with a high

probability it will stay close forever.

More precisely, for a given ε > 0 one can choose s ≥ 10 so that

inf
t0≥s

|x0−
√
t0|≤ 1

2
f(t0)

Pt0,x0

(
|X(t)−

√
t| ≤ f(t), for all t ≥ t0

)
≥ 1− ε.

The strong Markov property and Lemma 3.12 now imply that the inequality (3.18) holds

with T = σs with probability at least 1− ε. This shows that the random time

T0 = inf
{
s ≥ 10 : |X(t)−

√
t| ≤ f(t) for all t ≥ s

}
is finite with probability at least 1− ε, hence it is a.s. finite. Therefore (3.18) holds with

probability one with T = T0.

We can now prove Lemma 3.8.

Proof of Lemma 3.8. By Proposition 3.6 with probability one the operator A−1
β is a

Hilbert-Schmidt integral operator with kernel KA. From (3.6) and the estimate (3.8)

it follows that ψd has a largest zero (if it has one), hence if L is larger than that, the

linearity of the equation Aβψ = 0 implies that

ψL(y) = ψ∞(y)− ψ∞(L)

ψd(L)
ψd(y). (3.21)

Hence the truncated operator K
(L)
A is well-defined in this case. From the definition of

K
(L)
A we get

∥KA −K
(L)
A ∥22 =

∫∫
[0,L]2

∣∣∣KA(x, y)−K
(L)
A (x, y)

∣∣∣2 dx dy + ∫∫
R2
+\[0,L]2

|KA(x, y)|2 dx dy.

(3.22)
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By Proposition 3.6, with probability one we have ∥KA∥22 < ∞. This implies that the

term
∫∫

R2
+\[0,L]2 |KA(x, y)|2 dx dy converges to 0 a.s. as L→ ∞. In fact, by the arguments

described in the proof of Proposition 3.6 it follows that
∫∫

R2
+\[0,L]2 |KA(x, y)|2 dx dy can

be bounded by CL−1/2 with a random constant C.

We now estimate the first term on the right hand side of (3.22). By symmetry we

have∫∫
[0,L]2

∣∣∣KA(x, y)−K
(L)
A (x, y)

∣∣∣2 dx dy = 2

∫ L

0

∫ y

0

∣∣∣KA(x, y)−K
(L)
A (x, y)

∣∣∣2 dx dy.
From (3.21), for L large enough, and 0 ≤ x ≤ y ≤ L, we get

KA(x, y)−K
(L)
A (x, y) = (ψ∞(y)− ψL(y))ψd(x) = ψd(x)ψd(y)

∫ ∞

L

ψd(z)
−2dz,

and∫ L

0

∫ y

0

∣∣∣KA(x, y)−K
(L)
A (x, y)

∣∣∣2 dx dy =
1

2

(∫ L

0

ψd(x)
2

ψd(L)2
dx

)2(∫ ∞

L

ψd(L)
2

ψd(z)2
dz

)2

.

(3.23)

From the bounds of (3.11) we get that the expression in (3.23) is bounded by a random

constant times L−2, and thus it converges to zero a.s. as L → ∞. This concludes the

proof of Lemma 3.8.

3.4 Convergence of the truncated operators

Recall the definition of ϕ̃L, ψL from Section 3.2. Lemma 3.9 will follow from the following

statement:

Lemma 3.14. For any fixed L > 0 we have ϕ̃d → ψd and ϕ̃L → ψL uniformly on [0, L]

with probability one as a→ ∞.
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Proof of Lemma 3.9. From (3.15), (3.16), and Lemma 3.14 it follows that if L > 0 is

fixed then K
(L)
G,2a(x, y) → K

(L)
A (x, y) uniformly on [0, L]2 with probability one. From this

Lemma 3.9 follows.

The proof of Lemma 3.14 relies on the following proposition:

Proposition 3.15. Let B′ be standard white noise on R+, and B the corresponding

Brownian motion. Define Gβ,2a using B2a(x) = a−1/3B(a2/3x), and Aβ with B′ as in

Theorem 2.4. Let η0, η1 be fixed real numbers. Suppose that the processes ua, a ≥ 1

satisfy the following conditions:

(a) Gβ,2aua = a2ua,

(b) ua(0), u
′
a(0) are deterministic, depend continuously on a, and satisfy

(a2/3ua(0), u
′
a(0)− aua(0)) → (η0, η1)

as a→ ∞.

Let ûa(x) = a2/3e−a
1/3xua(a

−2/3x). Then for any L > 0 we have (ûa, û
′
a) → (ψ, ψ′)

a.s. uniformly on [0, L] where ψ, ψ′ is the unique solution of Aβψ = 0 with initial condi-

tions ψ(0) = η0, ψ
′(0) = η1.

Proof. To ease notation, we drop the dependence on a in ua, ûa. By Proposition 3.4 the

process (u(t), u′(t)) satisfies the SDE

du(x) = u′(x)dx, du′(x) = 2√
β
u′(x)dB2a(x) +

(
(2a+ 2

β
)u′(x)− a2e−xu(x)

)
dx.

(3.24)

The initial conditions for û are

û(0) = a2/3u(0), û′(0) = u′(0)− au(0),
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hence by the conditions of the proposition we see that (û(0), û′(0)) → (η0, η1). Note that

û′(x) = −a1/3û(x) + e−a
1/3xu′(a−2/3x), by Itô’s formula and (3.24) we have that

dû′ = 2√
β
(a−1/3û′ + û)dB(x) +

(
a2/3(1− e−a

−2/3x)û+ 2
β
a−1/3û+ 2

β
a−2/3û′

)
dx.

This means that û, û′ satisfies

dû(x) = û′(x)dx, (3.25)

dû′(x) = û(x)( 2√
β
dB(x) + xdx) + F1(ε, x, û(x), û

′(x))dx+ F2(ε, x, û(x), û
′(x))dB,

where ε = a−1/3 and

F1(ε, x, p, q) = (ε−2(1− e−ε
2x)− x)p+ 2

β
εp+ 2

β
ε2q, F2(ε, x, p, q) =

2√
β
εq. (3.26)

With a bit of abuse of notation we will use ûε, û
′
ε to denote the dependence on ε ∈ (0, 1].

The functions F1, F2 can be continuously extended to ε = 0 by setting Fi(0, x, p, q) =

0. Define (û0, û
′
0) to be the solution of (3.25) with ε = 0 and initial conditions (η0, η1).

This is exactly the solution (ψ, ψ′) of Aβψ = 0 and ψ(0) = η0, ψ
′(0) = η1.

Note that for x ∈ [0, L], ε ∈ [0, 1] the functions F1, F2 are globally Lipschitz in p and

q, and (ûε, û
′
ε), ε ∈ [0, 1] gives a stochastic flow where the deterministic initial conditions

are continuous for ε ∈ [0, 1]. Standard theory of stochastic flows (see e.g. Theorem 37 in

Chapter 7 of [46]) shows that there is a unique one-parameter family of strong solutions

for the SDE (3.25) for ε ∈ [0, 1] which is a.s. uniformly continuous in ε for x ∈ [0, L].

But this implies that (ûε, û
′
ε) → (û0, û

′
0) a.s. uniformly on [0, L] as ε → 0, proving the

statement of the lemma.

Proof of Lemma 3.14. Consider ua(x) = ϕd(x). These functions satisfy the conditions

of Proposition 3.15 with η0 = 0, η1 = 1. Thus û(x) = a2/3e−a
1/3xϕd(a

−2/3x) converges to
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ψd a.s. uniformly on [0, L] as a→ ∞. Then the same is true for

ϕ̃d(x) = a2/3m
1/2
2a (a−2/3x)ϕd(a

−2/3x) = û(x)e
−a−2/3

2
x−a−1/3

√
β

B(x)
.

To show the convergence of ϕ̃L we first consider ϕ∗, the solution of Gβ,2aϕ∗ = a2ϕ∗ with

initial conditions ϕ∗(0) = a−2/3, ϕ′
∗(0) = a1/3. Then va(x) = ϕ∗(x) satisfies the conditions

of Proposition 3.15 with η0 = 1, η1 = 0. This means that v̂(x) = a2/3e−a
1/3xϕ∗(a

−2/3x)

converges uniformly to ψ∗(x) where Aβψ∗ = 0 and ψ∗(0) = 1, ψ′
∗(0) = 0 (i.e. the solution

with Neumann initial conditions).

By linearity ψL(x) = ψ∗(x)− ψ∗(L)
ψd(L)

ψd(x). Note that ψd(L) ̸= 0 with probability one

for a fixed L, so ψL is a.s. well-defined. This also implies that for a fixed L the random

variable ϕ̃d(L) is not zero if a is larger than a random constant, and in this case ϕ̃L is

also well-defined.

The function ψL satisfies AβψL = 0 with ψL(0) = 1, ψL(L) = 0. By our previous

arguments we have v̂(x) − v̂(L)
û(L)

û(x) → ψL(x) a.s. uniformly for x ∈ [0, L], as a → ∞.

We have

v̂(x)− v̂(L)

û(L)
û(x) = a2/3e−a

1/3xϕ∗(a
−2/3x)− a2/3e−a

1/3Lϕ∗(a
−2/3L)

a2/3e−a1/3Lϕd(a−2/3L)
a2/3e−a

1/3xϕd(a
−2/3x)

= a2/3e−a
1/3x

(
ϕ∗(a

−2/3x)− ϕ∗(a
−2/3L)

ϕd(a−2/3L)
ϕd(a

−2/3x)

)
,

and we can check (by plugging in x = 0 and x = L) that

v̂(x)− v̂(L)

û(L)
û(x) = e−a

1/3xϕa−2/3L(a
−2/3x) = ϕ̃L(x)e

a−2/3

2
x+a−1/3

√
β

B(x)
.

But this now implies that ϕ̃L → ψL uniformly on [0, L] with probability one, completing

the proof.
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3.5 Truncation of the Bessel operator

In order to control ∥KG,2a −K
(L)
G,2a∥22 and prove Lemma 3.10, we need to understand the

asymptotic behavior of ϕd(t) = ϕ
(2a)
d (t) uniformly in a. As before, we turn to the Riccati

transform p = p(2a)(t) =
ϕ′d(t)

ϕd(t)
. Itô’s formula together with (3.3) implies that p(t) satisfies

the diffusion

dp(t) =
2√
β
p(t)dB2a(t) +

(
(2a+ 2

β
)p(t)− p(t)2 − a2e−t

)
dt (3.27)

with initial condition p(0) = ∞. The diffusion could reach −∞ at a finite time, in which

case it restarts at +∞ instantaneously.

Our next proposition describes the behavior of p in the region [a−2/3L,∞) uniformly

in a. In words the asymptotic behavior of p can be explained as follows: on a microscopic

a−2/3 time scale the scaled version of p (that is a−2/3(p(a−2/3t) − a)) will mimic
ψ′
d(t)

ψd(t)

by Proposition 3.15, and this behavior can be extended up to a small macroscopic time

of order a2/3. For large macroscopic times the diffusion p(t)/a will behave like a time-

stationary diffusion supported on R+, which yields logarithmic bounds on ln p(t)− ln a.

For the rest of this section we set t0 := 1/8. Recall that for a > 0 we have B2a(t) =

a−1/3B(a2/3t).

Proposition 3.16 (Behavior of the Bessel diffusion). Let d1, d2 > 0. For a given L > 0

and a1 ≥ 1, define CL,a1 to be the event where the following inequalities hold for all

a ≥ a1:

p(2a)(t) ≥ a(1 + d1
√
t), for all t ∈ [a−2/3L, t0], (3.28)

exp(−a−1/6 ln t) ≤ p(2a)(t)/a ≤ exp(d2 + a−1/6 ln t), for all t ≥ t0, (3.29)

2√
β
|B2a(t)−B2a(s)| ≤ a1/2(t− s) + a−1/6 ln(a2/3s), for all t ≥ s ≥ a−2/3L. (3.30)



49

a−2/3L t0 = 1/8

d1

√
t

1

ed2ea
−1/6 ln t − 1

e−a
−1/6 ln t − 1

t 7→ (p(t)/a)− 1

Similar to Airy diffusion
' a−1/3X(a2/3t)

Airy behavior extended Fluctuations not too large around 1

Figure 5: Schematic representation of the behavior of the diffusion t 7→ (p(t)/a)− 1

Then we can choose deterministic constants d1, d2 > 0 so that

lim
L→∞

lim
a1→∞

P
(
CL,a1

)
= 1 . (3.31)

See Figure 5 for an schematic illustration of the behavior of the Bessel diffusion. The

proof of Proposition 3.16 is postponed to Section 3.6.2. Using this proposition we can

control the products ϕ̃d(x) ϕ̃∞(x) and ϕ̃d(y)
−2ϕ̃d(x)

2 when y ≥ x ≥ L. This will be key

to estimate ∥KG,2a −K
(L)
G,2a∥22.

In the rest of this section, we assume L ≥ 10 and set cL = (10L)3/2 ∨ 4(1− e−t0)−2.

Proposition 3.17. Define

I(s, t) := −2

∫ t

s

(p(z)− a)dz +
2√
β
(B2a(t)−B2a(s)) . (3.32)

There are absolute constants c, c′ so that for all a1 ≥ cL, the following inequalities hold
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on the event CL,a1 (as defined in Proposition 3.16): for all a ≥ a1,

I(s, t) ≤


−c a

√
s(t− s) + c′ t ≥ s, t0 ≥ s ≥ a−2/3L,

−c a(t− s) + 5a−1/6 ln s+ c′ t ≥ s ≥ t0.

(3.33)

Proof. We first prove the case when t ≥ s ≥ t0 in (3.33). From this point on we will work

on the event CL,a1 with a1 ≥ cL, allowing us to assume the inequalities (3.28)–(3.30).

Let us define

q(t) := q(2a)(t) := ln p(2a)(t)− ln a.

On the event CL,a1 , and for t ≥ t0, q(t) is well defined as p(t) > 0. By Itô’s formula the

process q satisfies the following differential equation:

dq(t) = 2√
β
dB2a(t) + a(2− eq(t) − e−t−q(t))dt,

with the initial condition q(t0) = ln(p(t0)/a) > 0. Note that the drift of the diffusion q

will be close to a(2− eq) for large t. The corresponding diffusion

dq̃ = 2√
β
dB2a(t) + a(2− eq̃(t))dt,

converges to a stationary distribution supported on R (which can be computed explic-

itly). This suggests that q behaves like the stationary solution of q̃, and hence we cannot

expect to get a uniform constant bound on a(eq(t) − 1) = p(t)− a in (3.32). Because of

this we instead look for a bound on the integral term in (3.32).

We start with the following identity: for all t ≥ s ≥ t0, we have

a

∫ t

s

(eq(z) − 1)dz = a(t− s) + 2√
β
(B2a(t)−B2a(s))− (q(t)− q(s))− a

∫ t

s

e−q(z)−zdz .

(3.34)
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Using the lower bound from (3.29) and the fact that −a−1/6 ln t ≥ −t+ t0 for all t ≥ t0,

we get

a

∫ t

s

(eq(z) − 1)dz ≥ a(1− e−t0)(t− s) + 2√
β
(B2a(t)−B2a(s))− (q(t)− q(s)). (3.35)

and thus

I(s, t) ≤ −2a(1− e−t0)(t− s)− 2√
β
(B2a(t)−B2a(s)) + 2q(t)− 2q(s).

Using the inequality ln t ≤ ln s + t−1
0 (t − s) for t ≥ s ≥ t0, the bounds (3.29), (3.30),

and by our choice of cL, we get that there exist positive constants c1, c
′
1 such that for all

t ≥ s ≥ t0, we have

I(s, t) ≤ −c1 a (t− s) + 5a−1/6 ln s+ c′1 .

This completes the proof of (3.33) in the case t ≥ s ≥ t0.

Let us consider now the case a−2/3L ≤ s < t0. From (3.28) we have for all a−2/3L ≤

s ≤ t ≤ t0, ∫ t

s

(p(z)− a)dz ≥ 2

3
a d1(t

3/2 − s3/2) ≥ 2

3
a d1

√
s(t− s) .

Using the lower bound from (3.30) we deduce that for all a−2/3L ≤ s ≤ t ≤ t0,

I(s, t) ≤ −4

3
a d1

√
s(t− s) + a1/2(t− s) + a−1/6 ln(a2/3s) .

As a−2/3L ≤ s ≤ t0 and a ≥ a1 ≥ cL, we get that there exists a constant cI such that:

I(s, t) ≤ −d1 a
√
s(t− s) + cI .

For t ≥ t0 ≥ s ≥ a−2/3L, note that I(s, t) = I(s, t0) + I(t0, t). Therefore, we get

I(s, t) ≤ −d1 a
√
s(t0 − s) + cI − c1 a (t− t0) + 5a−1/6 ln t0 + c′1 ,

≤ −c2 a
√
s(t− s) + c′I ,
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where c2 = min{d1, c1t−1/2
0 }. We choose c = min{c1, c2} and c′ = max{c′1, cI , c′I} to

conclude the proof of (3.33).

As a consequence of Proposition 3.16, we can also show that a2 is not an eigenvalue

of Gβ,2a if a is large enough.

Corollary 3.18. Let a1 ≥ cL. On the event CL,a1 defined in Proposition 3.16, a2 is not

an eigenvalue of Gβ,2a for all a ≥ a1. As a consequence, there exists an a.s. finite random

variable Cev > 0 such that a2 is not an eigenvalue of Gβ,2a on the event {a ≥ Cev}.

Proof. The value a2 is not an eigenvalue of Gβ,2a exactly if the function ϕ
(2a)
d is not in

L2(R+,m2a). On CL,a1 and for a ≥ a1, using the identity (3.34) and the bound (3.35) in

the proof of Proposition 3.17, we get

a

∫ t

t0

eq(z)dz ≥ a(2− e−t0)(t− t0) +
2√
β
(B2a(t)−B2a(t0))− q(t) + q(t0).

Recall that aeq(t) = p(t) =
ϕ′d(t)

ϕd(t)
. Using the above lower bound on the integral of aeq(t),

and the bounds (3.29) and (3.30), we get

ϕd(t)
2m2a(t) = ϕd(t0)

2 exp
(
2

∫ t

t0

p(z)dz
)
exp(−(2a+ 1)t− 2√

β
B2a(t))

≥ c(t0) exp
(
2a(1− e−t0)t− t− a1/2t− 2a−1/6 ln t

)
,

where c(t0) is an a.s. finite random constant. Choosing a ≥ a1 ≥ cL ≥ (1− e−t0)−2, we

get that
∫∞
0
ϕd(t)

2m2a(t)dt is infinite, proving the statement.

Now set

Cev = 1 + inf
a1≥cL,L≥10

a1 · 1CL,a1
.

If a ≥ Cev then a
2 is not an eigenvalue of Gβ,2a. By the limit (3.31), the random variable

Cev is a.s. finite, which completes the proof.
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Proposition 3.19. Recall the definition of the event CL,a1 from Proposition 3.16. On

this event a2 is not an eigenvalue of Gβ,2a (or Gβ,2a) if a ≥ a1 ≥ cL by Corollary 3.18,

hence ϕ̃∞ is well-defined. There exist deterministic constants c1, c > 0 such that for all

L ≥ 10 and a1 ≥ cL, the following inequalities hold on CL,a1: for all a ≥ a1,

ϕ̃d(x)ϕ̃∞(x) ≤


c x−1/2 L ≤ x < a2/3t0,

c a−1/3e−a
−2/3x/2 x ≥ a2/3t0,

(3.36)

and

ϕ̃d(y)
−2ϕ̃d(x)

2 ≤


exp(−c1

√
x(y − x) + c) y ≥ x, a2/3t0 ≥ x ≥ L

exp(−c1 a1/3 (y − x) + 5 a−1/6 lnx+ c) y ≥ x ≥ a2/3t0 .

(3.37)

Moreover, under the same conditions, we also get the following inequality for all y ≥

x ≥ L:

ϕ̃d(y)
−2ϕ̃d(x)

2 ≤ exp
(
−c1

√
L(y − x) + 5a−1/6 lnx+ c

)
. (3.38)

Proof. Recall the definition of ϕ̃d, ϕ̃∞ from (3.4). On CL,a1 , the diffusion p(t) does not

explode on [a−2/3L,∞), which also implies the largest zero of ϕ
(2a)
d is smaller than a−2/3L.

By the Wronskian identity (3.13), for all x ≥ L we have

ϕ̃∞(x)ϕ̃d(x) = a2/3s(a−2/3x)m2a(a
−2/3x)

∫ ∞

a−2/3x

ϕd(a
−2/3x)2ϕd(y)

−2 s(y)

s(a−2/3x)
dy

= e−a
−2/3x

∫ ∞

x

exp
(
I(a−2/3x, a−2/3y)

)
dy , (3.39)

where

I(s, t) := −2

∫ t

s

(p(z)− a)dz +
2√
β
(B2a(t)−B2a(s)) .
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For the product ϕ̃d(y)
−2ϕ̃d(x)

2 for y ≥ x ≥ L, we have

ϕ̃d(y)
−2ϕ̃d(x)

2 = exp
(
a−2/3(y − x) + I(a−2/3x, a−2/3y)

)
.

For a1 ≥ cL, (3.37) follows from (3.33) directly. Integrating the exponential of (3.32)

and using the upper bounds (3.33), we get (3.36) and the statement of the proposition.

The inequality (3.38) follows by comparing the upper bounds in (3.37).

We now turn to the proof of Lemma 3.10. We will use the following identity, that

follows from the linearity of the equation Gβ,2aϕ = a2ϕ:

ϕ̃∞(x)− ϕ̃L(x) = m
1/2
2a (a−2/3x)

ϕ∞(a−2/3L)

ϕd(a−2/3L)
ϕd(a

−2/3x) =
ϕ̃∞(L)

ϕ̃d(L)
ϕ̃d(x). (3.40)

By Propositions 3.16 and 3.17, we have that ϕ̃d(L) ̸= 0 and ϕ̃∞ is well-defined for all

a ≥ a1 on the event CL,a1 .

Proof of Lemma 3.10. For L ≥ 10 define the event

C(1)
L =

{
ψd(K)−2

∫ K

0

ψd(x)
2dx ≤ 2K−1/2, for all K ≥ L

}
∩ {ψd(t) > 0, ∀t ≥ L} .

The family of events C(1)
L , L ≥ 10 is non-decreasing in L and limL→∞ P (C(1)

L ) = 1, by

Proposition 3.11. Define the events

C(2)
L,a1

= CL,a1 ∩ C(1)
L ∩

{
ϕ̃
(2a)
d (L)−2

∫ L

0

ϕ̃
(2a)
d (x)2dx ≤ 3L−1/2, ∀a ≥ a1

}
.

The family C(2)
L,a1

is non-decreasing in a1 for fixed L and the events ∪a1C
(2)
L,a1

are non-

decreasing in L. By the uniform convergence of (ϕ̃d, ϕ̃
′
d) → (ψ, ψ′) on [0, L], we have

lim
L→∞

lim
a1→∞

P (C(2)
L,a1

) = 1.
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We now prove inequalities on the event C(2)
L,a1

for all a1 ≥ cL. In the following, c′ is a

constant that may change from line to line. We start with the following identity:

∥KG,2a−K(L)
G,2a∥

2
2 =

∫∫
[0,L]2

∣∣∣KG,2a(x, y)−K
(L)
G,2a(x, y)

∣∣∣2 dx dy+∫∫
R2
+\[0,L]2

|KG,2a(x, y)|2 dx dy.

On [0, L]2 we have∫∫
[0,L]2

∣∣∣KG,2a(x, y)−K
(L)
G,2a(x, y)

∣∣∣2 dx dy = 2

∫ L

0

∫ y

0

ϕ̃d(x)
2(ϕ̃∞(y)− ϕ̃L(y))

2dxdy ,

=

(
ϕ̃d(L)

−2

∫ L

0

ϕ̃d(x)
2dx

)2

ϕ̃∞(L)2ϕ̃d(L)
2 ,

≤ (3L−1/2)2(cL−1/2)2 ,

using identity (3.40) for the second line and the bound (3.36) for x = L for the third

line. Thus this term is bounded by c′L−2 uniformly in a.

We further split the region R2
+\ [0, L]2 into the union of R1 = [L,∞)× [0, L]∪ [0, L]×

[L,∞) and R2 = [L,∞)2. On R1 we have:∫∫
R1

|KG,2a(x, y)|2 dx dy =
(
2ϕ̃d(L)

−2

∫ L

0

ϕ̃d(x)
2dx
)
ϕ̃d(L)

2

∫ ∞

L

ϕ̃∞(y)2dy .

The first term 2 ϕ̃d(L)
−2
∫ L
0
ϕ̃d(x)

2dx is bounded from above by 6L−1/2. For the second

term, we split the integral, and apply Proposition 3.19 to get the following upper bound:

ϕ̃d(L)
2

∫ ∞

L

ϕ̃∞(y)2dy

=

∫ a2/3t0

L

ϕ̃∞(y)2ϕ̃d(y)
2ϕ̃d(y)

−2ϕ̃d(L)
2dy +

∫ ∞

a2/3t0

ϕ̃∞(y)2ϕ̃d(y)
2ϕ̃d(y)

−2ϕ̃d(L)
2dy

≤
∫ a2/3t0

L

c2y−1e−c1
√
L(y−L)+cdy +

∫ ∞

a2/3t0

c2a−2/3e−a
−2/3ye−c1

√
L(y−L)+cdy

≤ c′(L−3/2 + L−1/2a−2/3).
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At last, on R2 we have∫∫
R2

|KG,2a(x, y)|2 dxdy = 2

∫ a2/3t0

L

∫ y

L

ϕ̃d(x)
2ϕ̃∞(y)2dxdy + 2

∫ ∞

a2/3t0

∫ y

L

ϕ̃d(x)
2ϕ̃∞(y)2dxdy.

We use (3.36) and (3.37) to bound the first integral,∫ a2/3t0

L

∫ y

L

ϕ̃d(x)
2ϕ̃∞(y)2dxdy =

∫ a2/3t0

L

ϕ̃d(y)
2ϕ̃∞(y)2

∫ y

L

ϕ̃d(y)
−2ϕ̃d(x)

2dxdy

≤
∫ a2/3t0

L

c2y−1

∫ y

L

e−c1
√
x(y−x)+cdxdy

≤
∫ a2/3t0

L

c′y−3/2dy

≤ c′L−1/2 .

For the second integral, we use (3.36) and (3.38),∫ ∞

a2/3t0

∫ y

L

ϕ̃∞(y)2ϕ̃d(x)
2dxdy =

∫ ∞

a2/3t0

ϕ̃∞(y)2ϕ̃d(y)
2

∫ y

L

ϕ̃d(y)
−2ϕ̃d(x)

2dxdy

≤
∫ ∞

a2/3t0

c2a−2/3e−a
−2/3y

∫ y

L

e−c1
√
L(y−x)+5a−1/6 ln y+cdxdy

≤
∫ ∞

a2/3t0

c′L−1/2a−2/3e−a
−2/3y+5a−1/6 ln ydy

≤ c′L−1/2 .

Recall that the family of events C(2)
L,a1

is non-decreasing in a1 for fixed L, and the

events C(2)
L := ∪a1C

(2)
L,a1

satisfy C(2)
L ↑ Ω as L → ∞ with P (Ω) = 1. On the event Ω we

have

lim
L→∞

lim sup
a→∞

∥KG,2a −K
(L)
G,2a∥

2
2 = 0,

which completes the proof.

Remark 3.20. Note that our estimates give an upper bound of the order O(L−1/2) on

the squared Hilbert-Schmidt norm difference of KG,2a and K
(L)
G,2a. A bound of the same

order was shown on the truncation error for KA.
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By choosing L = La to be dependent on a with La → ∞ at some rate, one could

potentially obtain a bound on the rate of convergence in (3.14). This would require the

extension of the result of Lemma 3.14 to increasing intervals [0, La]. We do not explore

this path in this paper, but we want to present a hand-waving argument to show that our

methods are not expected to give better than logarithmic convergence.

In the proof of Proposition 3.15, we viewed the process (û, û′) as a stochastic flow

depending on two variables ε = a−1/3 and x. It is reasonable to expect that if the

statement of Lemma 3.14 holds on the interval [0, La] then supx≤La
|ûε(x)− û0(x)| should

vanish as a → ∞. This quantity should be of the same order as ε supx≤La
|v(x)| where

v(x) = ∂εûε(x)|ε=0. One can check that v satisfies the stochastic differential equation,

dv = v′dx, dv′ = v( 2√
β
dB + xdx) + 2

β
û0(x)dx+

2√
β
û′0(x)dB

with initial values v(0) = 0 and v′(0) = 0. If we assume that v′ grows at least as fast as

the contribution of the 2
β
û0(x)dx term then we would get that v grows at least as fast as

e
1
2
x3/2. This would lead to the requirement a−1/3e

1
2
L
3/2
a → 0, and La ≪ (ln a)2/3. Hence

the speed of convergence could not be faster than (ln a)−1/3.

3.6 Bounds on the soft and hard edge diffusions

3.6.1 Asymptotic properties of the soft edge diffusion ψd

This section contains the proofs of Lemma 3.12 and 3.13, which were used for the

asymptotic analysis of the diffusion X in (3.17). In this section we set f(t) = t−1/4 ln t.
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Proof of Lemma 3.12. We will prove that

lim
t0→∞

P
(
|X(t)−

√
t| ≤ 1

2
f(t) for some t ∈ [t0, t0 +

1√
t0
ln3(t0)]

)
= 1. (3.41)

This means that with higher and higher probability we will hit the region |X(t)−
√
t| ≤

1
2
f(t) within a small time interval, which implies that σs <∞ with probability one.

To prove (3.41) we consider X with initial condition X(t0) = x0 with t0 ≥ 10, x0 ∈ R,

and give a bound on the probability in (3.41) in each of the following cases (see Figure

6):

Case I: x0 >
√
t0 + f(t0)/2

Case II: x0 < −
√
t0 − f(t0)

Case III: −
√
t0 + f(t0) < x0 <

√
t0 −

1

2
f(t0)

Case IV: −
√
t0 − f(t0) ≤ x0 ≤ −

√
t0 + f(t0).

In each one of these cases we will compare the diffusion to a time-homogeneous version

of itself. Then in Cases I-III we use the idea that as long as we control the maximal value

of the Brownian motion B, the diffusion will stay close to the deterministic path solving

the ODE x(t)′ = t− x(t)2 which is what we get if we remove the noise from the SDE of

X. In Case IV we will use explicit computations about hitting times of diffusions.

Let g(x) = x + 1√
x
ln(x). We consider Case I, when x0 >

√
t0 + f(t0)/2. We set

t1 = g(t0) and assume that t0 is large enough. Let the time-homogeneous diffusion X+

on [t0, t1] be given by the strong solution of

dX+(t) = (t1 −X+(t)
2)dt+ 2√

β
dB(t), X+(t0) = +∞.

Comparing the drifts of X+ and X we see that on the event {X(t) >
√
t, t ∈ [t0, t1]} we

have X+(t) ≥ X(t) for t ∈ [t0, t1].
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ln(t)/(2t1/4)Case I

Case III

t0

Case IV

Case II

t0 + ln3(t0)/
√
t0

X(t0)

Figure 6: Representation of the four different cases for the position of X(t0)

The process Z(t) := X+(t)− 2√
β
B̃(t) with B̃(t) = B(t)−B(t0) satisfies the ODE

Z ′(t) = t1 − Z(t)2(1 +
2√
β
B̃(t)

Zt
)2, Z(t0) = ∞

for all time t ≥ t0 smaller than the first hitting time of 0 for Z. We set

M := 1
10
f(t0) =

1
10
t
−1/4
0 ln t0,

and introduce the event

A = At0 := { sup
t∈[t0,t1]

|B(t)−B(t0)| ≤
√
β
2
M}.

Note that

P (A) = P

(
sup
s∈[0,1]

|B(s)| ≤
√
β

20

√
ln t0

)
which shows that P (At0) → 1 as t0 → ∞.

On the event A, if Z(s) =
√
t0 for an s ∈ [t0, t1] then this would imply

X(s) ≤
√
t0 +M ≤

√
s+ f(s)/2.



60

On Ã = A ∩ {Z(t) >
√
t0, t ∈ [t0, t1]}, Z is bounded from above by the deterministic

solution of

F ′(t) = t1 − F (t)2(1− 2M/
√
t0), F (t0) = ∞,

which is given by

F (t) =
√
t1/D coth(

√
t1D(t− t0)), D = 1− 2M/

√
t0.

Using Taylor-expansion, we get that for t0 large enough we have F (t1) ≤
√
t0 + 2M

which implies that on Ã we must have X(t1) ≤
√
t0 + 3M ≤

√
t1 +

1
2
f(t1). This shows

that

A ⊂ {|X(t)−
√
t| ≤ 1

2
f(t) for some t ∈ [t0, t1]},

which implies

lim
t0→∞

inf
x0>

√
t0+

1
2
f(t0)

Px0,t0

(
|X(t)−

√
t| ≤ 1

2
f(t) for some t ∈ [t0, t0 +

1√
t0
ln3(t0)]

)
= 1.

Next we consider the case x0 < −
√
t0 − f(t0) (this is Case II). Similar arguments

used as in Case I show that for t0 large enough X explodes to −∞ before time t1 = g(t0)

on the event A. Since X restarts at +∞ at the explosion, we are back in Case I, and by

the arguments presented there we get that |X(t) −
√
t| ≤ 1

2
f(t) must hold before time

g(t1) with high probability. Since g(t1) ≤ t0 + ln3 t0/
√
t0 for t0 large, we get

lim
t0→∞

inf
x0<−

√
t0− 1

2
f(t0)

Px0,t0

(
|X(t)−

√
t| ≤ 1

2
f(t) for some t ∈ [t0, t0 +

1√
t0
ln3(t0)]

)
= 1.

Now consider Case III, when x0 ∈ (−
√
t0 + f(t0),

√
t0 − f(t0)/2). We show that X

reaches
√
t0 − f(t0)/2 before time t1 with probability going to 1. For this we can just

assume that x0 = −
√
t0 + f(t0), since the other cases stochastically dominate this one
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by a simple coupling. Let us examine again Z = X − 2√
β
B̃. The process Z(t) satisfies

the ODE

Z ′(t) = t− (Z(t) + 2√
β
B̃(t))2, Z(t0) = −

√
t0 + f(t0).

On the event A, the process Z is increasing when −
√
t + M ≤ Z(t) ≤

√
t − M , in

particular Z ′(t0) > 0. Before Z hits
√
t0, we can bound Z from below by G(t) where

G′(t) = (
√
t0 − 3

2
M)2 −G2(t), G(t0) = −

√
t0 + f(t0).

Solving the above initial value problem, we get G(t) = (
√
t0− 3

2
M) tanh((

√
t0− 3

2
M)(t−

t0) + c) where c < 0 is chosen such that G(t0) = −
√
t0 + f(t0). Here c ∼ −3

8
ln t0 if t0

is large. Using Taylor-expansion again, we get G(t1) ≥
√
t0 − 2M which implies that

X(t) ≥
√
t− f(t)/2 somewhere in [t0, t1].

For the last case IV when x0 ∈ [−
√
t0 − f(t0),−

√
t0 + f(t0)], denote by τ the exit

time of X(t) from the interval [q−, q+] := [−
√
t1 − f(t1),−

√
t1 + f(t1)]. We use the

time-homogeneous diffusion X̃(t) satisfying the SDE

dX̃(t) = (t0 − X̃(t)2)dt+ 2√
β
dB(t), X̃(t0) = x0.

Let us denote by τ̃ the first exit time for X̃ after time t0 from (q−, q+). By the Cameron-

Martin-Girsanov formula, the Radon-Nikodym derivative of X with respect to X̃ on the

time interval [t0, t1] can be expressed as eG(X̃) where

G(X̃) =
1

( 2√
β
)2

(∫ t1

t0

(X̃(t1)− X̃(t))dt− (t1 − t0)
3

6
−
∫ t1

t0

t (t0 − X̃(t)2)dt
)
.

On the event {X̃(t) ∈ [q−, q+], t ∈ [t0, t1]} one can bound G(X̃) by a constant. This

means that P (τ > t1) can be bounded by a constant times P (τ̃ > t1).
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We can explicitly compute E[τ̃ ] in terms of the scale function and speed measure of

X̃. The scale function sc and speed measure sp for X̃(t) are given by

sc(x) =

∫ x

−∞
exp(−2t0y +

2

3
y3)dy, sp(dx) =

2

sc′(x)
dx.

From this we can express the first moment of τ̃ as

E[τ̃ − t0] =

∫ x0

q−

(sc(y)− sc(q−))(sc(q+)− sc(x0))

sc(q+)− sc(q−)
sp(dy)

+

∫ q+

x0

(sc(x0)− sc(q−))(sc(q+)− sc(y))

sc(q+)− sc(q−)
sp(dy).

(See for example Theorem VII.3.6 [52].) By analyzing the above integrals as t0 → ∞,

one can bound E[τ̃ − t0] by c
ln ln t0√

t0
with an absolute constant c for all t0 large enough

and all x0 ∈ [−
√
t0−f(t0),−

√
t0+f(t0)]. (We refer to Lemma 5.7. of [14] for additional

details for this argument.) By Markov’s inequality, we get

Px0,t0 [τ > t1] = E[exp(G(X̃))1{τ̃>t1}] ≤ c′
ln ln t0

(t1 − t0)
√
t0

= c′
ln ln t0
ln t0

,

with an absolute constant c′. Therefore X exits the region (q−, q+) before time t1 with

probability tending to 1 as t0 → ∞. Once X(t) exits this region, we get to Case II or

III, and repeating the arguments there we can show that

lim
t0→∞

inf
x0:|x0+

√
t0|≤f(t0)

Px0,t0

(
|X(t)−

√
t| ≤ 1

2
f(t) for some t ∈ [t0, t0 +

1√
t0
ln3(t0)]

)
= 1.

This completes the proof of (3.41) and hence the statement of the lemma.

Proof of Lemma 3.13. Introduce Y (t) := X(t) −
√
t, then Y (t) satisfies the stochastic

differential equation

dY (t) = (−Y (t)2 − 2
√
tY (t)− 1

2
√
t
)dt+ 2√

β
dB(t),
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with initial condition y0 = x0 −
√
t0.

With the same driven noise dB, we define two families of diffusions Y1(t) = Y y0,t0
1 (t),

Y2(t) = Y y0,t0
2 (t) on [t0,∞) with initial condition y0 as follows:

dY1(t) = −2
√
tY1(t)dt+

2√
β
dB(t), Y1(t0) = y0,

dY2(t) = (−2
√
tY2(t)− 2f(t)2)dt+ 2√

β
dB(t), Y2(t0) = y0.

By comparing the drift terms in Y, Y1, Y2 we see that if for a given t0 we start Y1, Y2 from

y0 = Y (t0) at time t0 then the coupling Y2(t) ≤ Y (t) ≤ Y1(t) holds for all t ≥ t0 on the

event

Dt0,y0 := {−f(t) ≤ Y2(t), Y1(t) ≤ f(t) for all t ≥ t0}. (3.42)

Consequently, this shows that

Dt0,y0 ⊂ {|Y (t)| ≤ f(t), ∀t ≥ t0}, (3.43)

and thus it is enough to prove

lim
t0→∞

inf
|y0|≤ 1

2
f(t0)

P (Dt0,y0) = 1. (3.44)

Using the integrating factor trick, both Y1 and Y2 can be solved explicitly:

Y1(t) = exp(−4
3
(t3/2 − t

3/2
0 ))y0 +

2√
β
e−

4
3
t3/2
∫ t

t0

e
4
3
s3/2dBs,

Y2(t) = exp(−4
3
(t3/2 − t

3/2
0 ))y0 − 2 e−

4
3
t3/2
∫ t

t0

f 2(s)e
4
3
s3/2ds+ 2√

β
e−

4
3
t3/2
∫ t

t0

e
4
3
s3/2dBs.

Let ξ(t) =
∫ t
1
e

8
3
s3/2ds . There exists a Brownian motion W such that we have the

following distributional identity:(∫ t

1

e
4
3
s3/2dBs, t ≥ 1

)
d
=(W (ξ(t)), t ≥ 1).
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By the Law of Iterated Logarithm, there exist finite random constant C such that

|W (u)| ≤ C
√
u ln lnu, for all u ≥ 20.

Note that ξ(t) ≤ 1
2
e

8
3
t3/2t−1/2 for all t ≥ 1. We may assume t0 ≥ max(10, ξ−1(20)), then

for t ≥ t0 we get

Y1(t) ≤ 1
2
e−

4
3
(t3/2−t3/20 )f(t0) +

2√
β
C e−

4
3
t3/2(

√
ξ(t) ln ln ξ(t) +

√
ξ(t0) ln ln ξ(t0))

≤ e−
4
3
(t3/2−t3/20 )(1

2
f(t0) +

2√
β
Ct

−1/4
0

√
ln t0) +

2√
β
Ct−1/4

√
ln t.

Integration by parts yields the bound∫ t

t0

f(s)2e
4
3
s3/2ds ≤ 1√

t
f(t)2e

4
3
t3/2 .

Therefore, we obtain that

Y2(t) ≥ −e−
4
3
(t3/2−t3/20 )(1

2
f(t0) +

2√
β
Ct

−1/4
0

√
ln t0)− 2t−1/2f(t)2 − 2√

β
Ct−1/4

√
ln t .

For a large enough deterministic c0, we have −f(t) ≤ Y2(t) ≤ Y1(t) ≤ f(t) for all

t ≥ t0 ≥ c0 on the event {C <
√
β

20

√
ln t0}. Hence if t0 ≥ c0 then

inf
|y0|≤ 1

2
f(t0)

P (Dy0,t0) ≥ P (C <
√
β

20

√
ln t0)

which completes the proof of (3.44).

3.6.2 Bounds for the hard edge diffusion

We start this section with a lemma controlling the fluctuations of Brownian motion.

Although the bounds in the lemma are not optimal they are sufficient for our purposes.
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Lemma 3.21. Let B be a standard Brownian motion. Then there is a random finite

positive C so that a.s. we have the following inequality:

|B(s+ h)−B(s)| ≤ C
√
h ln(2 + s

h
+ | lnh|), for all h > 0, s > 0. (3.45)

This implies in particular the following simple bounds:

|B(s+ h)−B(s)| ≤ C1(h+ ln s), for all h > 0, s ≥ 10, (3.46)

with a random constant C1.

Proof. First set h = 2n, s = m2n, for n ∈ Z and m ∈ N. We have

P (max
x≤h

|B(s)−B(s+ x)| ≥ 4 · 2n/2
√
ln(2 + |n|+m)) ≤ 2P (|B(1)| ≥ 4

√
ln(2 + |n|+m))

≤ 2e−8 ln(2+|n|+m) =
2

(2 + |n|+m)8
,

which is summable for n ∈ Z,m ∈ N. Hence by the Borel-Cantelli Lemma, there is a

random C̃ so that

max
x≤h

|B(s)−B(s+ x)| ≤ C̃
√
h
√
ln(2 + | lnh|+ s

h
) (3.47)

for all s = m2n, h = 2n. For general s > 0, h > 0, there exist n ∈ Z,m ∈ N such that

2n < h ≤ 2n+1 and m2n < s ≤ (m + 1)2n. Using (3.47) and the triangle inequality, we

get

|B(s+ h)−B(s)| ≤ 8C̃
√
h ln(2 + | lnh|+ s

h
),

which proves the first part of the lemma with C = 8C̃.

For s ≥ 10 we have

√
h ln(2 + s

h
+ | lnh|) ≤

√
h ln(2 + 1

h
+ | lnh|) + h ln(1 + s).
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For h ≥ ln s, we have

ln(2 + 1
h
+ | lnh|) < h, ln(1 + s) < ln(2s) ≤ 2h,

which implies
√
h ln(2 + s

h
+ | lnh|) ≤ 2h in this case.

Now assume h < ln s. We have h ln(2 + 2
h
+ lnh) ≤ 2 for h ∈ [0, 1], which yields

h ln(2 + 1
h
+ | lnh|) ≤ 2 ln(s) ln ln(s) for h < ln s, s ≥ 10. We also have h ln(1 + s) ≤

(3/2)(ln s)2 under the same conditions, which yields
√
h ln(2 + s

h
+ | lnh|) ≤ 2 ln s. The

bound (3.46) now follows from (3.45).

The next lemma gives estimates on the diffusion p(2a)(t) at time t = a−2/3L using

the convergence result of Proposition 3.15.

Lemma 3.22. For all positive L and a1, let A(1)
L,a1

be the event that

a
(
1 + 4

5
a−1/3

√
L
)
≤ p(a−2/3L) ≤ a

(
1 + 6

5
a−1/3

√
L
)
, for all a ≥ a1.

Then limL→∞ lima1→∞ P (A(1)
L,a1

) = 1.

Proof. The uniform convergence of Proposition 3.15 implies that almost surely,

p(a−2/3L)a−2/3 − a1/3 → X(L) , as a→ ∞ . (3.48)

Indeed

(a2/3ϕ(a−2/3t)e−a
1/3t, ϕ′(a−2/3t)e−a

1/3t − aϕ(a−2/3t)e−a
1/3t) → (ψ(t), ψ′(t)) ,

uniformly on [0, L] and p(t) = ϕ′(t)/ϕ(t) and X(t) = ψ′(t)/ψ(t).

Fix L large and define the event:

AL := { 9
10

√
t ≤ X(t) ≤ 11

10

√
t, ∀t ≥ L}.
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Note that the family AL is non-decreasing in L. From Proposition 3.11 it follows that

limL→∞ P (AL) = 1. For all L and a1, define

AL,a1 = AL ∩ {a(1 + 4
5
a−1/3

√
L) ≤ p(a−2/3L) ≤ a(1 + 6

5
a−1/3

√
L), ∀a ≥ a1}.

By (3.48) and the condition 9
10

√
L ≤ X(L) ≤ 11

10

√
L on AL, we have AL,a1 ↑ AL as

a1 → ∞ which concludes the proof.

Let us introduce q = q(2a) = ln p(2a) − ln a. By Lemma 3.22, the diffusion q is

well-defined at time a−2/3L on the event A(1)
L,a1

. By Itô’s formula, for t ≥ a−2/3L we have

dq(t) = 2√
β
dB2a(t) + a(2− eq(t) − e−t−q(t))dt . (3.49)

The diffusion q blows-up when p reaches 0, so q may not be well-defined on the whole

interval [a−2/3L,+∞).

The next proposition controls the growth of q from small times starting at a−2/3L

until a positive deterministic time. In this time-interval, q is small and therefore p is

close to a(1+ q). Analyzing the drift of the q diffusion for small t and q, we see that one

can compare the behavior of q with the diffusion X defined in (3.17). This allows us to

bound q with constant multiples of the square root function with large probability.

Proposition 3.23. Fix t0 := 1/8. For all positive L and a1 with a
−2/3
1 L ≤ t0, we define

A(2)
L,a1

to be the event that

2
5

√
t ≤ q(2a)(t) ≤ 7

5

√
t, ∀t ∈ [a−2/3L, t0] for all a ≥ a1. (3.50)

Then limL→∞ lima1→∞ P
(
A(2)
L,a1

)
= 1.

Note that the inequality (3.50) implies

p(2a)(t) ≥ a(1 + 2
5

√
t), ∀t ∈ [a−2/3L, t0] for all a ≥ a1.
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Proof. If a1 > (8L)3/2 then on the event A(1)
L,a1

of Lemma 3.22, we have

3
5

√
L ≤ a1/3q(a−2/3L) ≤ 6

5

√
L, for all a ≥ a1.

For 0 ≤ q ≤ 1/2, t ≤ t0 we have the following inequalities:

−q2 + t ≥ 2− eq − e−t−q = 2− eq − e−q + e−q(1− e−t) ≥ −2q2 + 1
2
t .

Let q1 = q
(2a)
1 and q2 = q

(2a)
2 be the diffusions on [a−2/3L, t0] so that

dq1(t) =
2√
β
dB2a(t) + a(1

2
t− 2q1(t)

2)dt, dq2(t) =
2√
β
dB2a(t) + a(t− q2(t)

2)dt ,

with q1(a
−2/3L) = q2(a

−2/3L) = q(a−2/3L). Then the coupling {q1(t) ≤ q(t) ≤ q2(t)}

holds on the event {0 ≤ q1(t) ≤ q2(t) ≤ 1/2,∀t ∈ [a−2/3L, t0]}.

Recall that B2a(t) = a−1/3B(a2/3t). Setting y1(t) = 2 a1/3q1(a
−2/3t) and y2(t) =

a1/3q2(a
−2/3t), we get

dy1(t) =
4√
β
dB(t) + (t− y1(t)

2)dt, dy2(t) =
2√
β
dB(t) + (t− y2(t)

2)dt,

with 6
5

√
L ≤ y1(L) ≤ 12

5

√
L and 3

5

√
L ≤ y2(L) ≤ 6

5

√
L. Thanks to Proposition 3.11, we

know that the event{
∀t ≥ L, y1(t) ∈ [4

5

√
t, 13

5

√
t], y2(t) ∈ [1

2

√
t, 7

5

√
t]
}

(3.51)

has probability going to 1 when L→ ∞. On the event (3.51) we have

0 ≤ 2
5

√
t ≤ q1(t) ≤ q(t) ≤ q2(t) ≤ 7

5

√
t ≤ 1

2
, ∀t ∈ [a−2/3L, t0],

implying that p(t) ≥ a(1 + 2
5

√
t) on [a−2/3L, t0].

Next we estimate the growth of q(t) in the time interval t ∈ [t0,∞). As we will

see, q will have a different behavior for large times: it oscillates near the value ln 2 with
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possibly making large excursions away from this value. We will prove bounds on those

fluctuations using a comparison with a non-exploding, stationary version of the diffusion

q.

Proposition 3.24. Recall the definition of A(2)
L,a1

from Proposition 3.23. Define

A(3)
L,a1

= A(2)
L,a1

∩ {−a−1/6 ln t ≤ q(2a)(t) ≤ c+ a−1/6 ln t,∀t ≥ t0,∀a ≥ a1} .

Then, there exists a constant c > 0 such that limL→∞ lima1→∞ P
(
A(3)
L,a1

)
= 1.

Proof. For each a, we bound q(t) using two stationary diffusions q1(t) = q
(2a)
1 (t) and

q2(t) = q
(2a)
2 (t), and we show that the growth of q1, q2 is at most logarithmic with a large

probability. Let q1 and q2 be the following diffusions:

dq1(t) =
2√
β
dB2a(t) + a(c1 − eq1(t))dt, dq2(t) =

2√
β
dB2a(t) + a(c2 − eq2(t))dt,

with c1 = 2 − e−t0 , c2 = 2, and q1(t0) = q2(t0) = q(t0). Comparing the drift terms of

q, q1, q2 we see that the event {q1(t) ≥ −t+ t0,∀t ≥ t0} implies the event {q1(t) ≤ q(t) ≤

q2(t),∀t ≥ t0}.

Notice that the SDEs for qi for i = 1, 2 can be solved. We get that for t ≥ t0, i = 1, 2,

exp(−qi(t)) = exp(−qi(t0)) exp
(
a ci(t0 − t) + 2√

β
(B2a(t0)−B2a(t))

)
+ a

∫ t

t0

exp
(
a ci(s− t) + 2√

β
(B2a(s)−B2a(t))

)
ds.

Recall that B2a(t) = a−1/3B(a2/3t). Applying the bound (3.46) of Lemma 3.21 on the

event {C1 < a
1/6
1 } for the Brownian motion B, we have the following inequality for

x ≥ a−2/3L, L ≥ 10 and for all a ≥ a1:

2√
β
|B2a(x+ h)−B2a(x)| ≤ C1a

−1/3(a2/3h+ ln(a2/3x)) ≤ a1/2h+ a−1/6 ln(a2/3x).

(3.52)
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Note that this is exactly inequality (3.30) of Proposition 3.16.

Moreover, on A(2)
L,a1

, for a ≥ a1, we have exp(q(t0)) ≥ exp(2
√
t0/5) > c1. We get that

there is an absolute constant c3 > 0 so that for all a ≥ a1 ≥ c3 we have

e−q1(t) ≤ exp
(
− q(t0) + (ac1 − a1/2)(t0 − t) + a−1/6 ln(a2/3t0)

)
+ exp

(
a−1/6 ln(a2/3t)

)
(c1 − a−1/2)−1

(
1− exp

(
(ac1 − a1/2)(t0 − t)

))
≤ ea

−1/6 ln(a2/3t)
(
(c1 − a−1/2)−1 + e(ac1−a

1/2)(t0−t)(e−q(t0) − (c1 − a−1/2)−1)
)

≤ ta
−1/6

.

We conclude that for all a ≥ a1 ≥ c3 we have

q1(t) ≥ −a−1/6 ln t ≥ −t+ t0, ∀t ≥ t0,

which also implies that the coupling q2(t) ≥ q(t) ≥ q1(t) holds on {C1 < a
1/6
1 } ∩ A(2)

L,a1
.

For the upper bound, first note that exp(q(t0)) < e1/2 < c2 = 2 on A(2)
L,a1

. Then there

is an absolute constant c4 > 0, so that for all a ≥ a1 ≥ c4 and t ≥ t0, we have

e−q2(t) ≥ e−a
−1/6 ln(a2/3t)

(
(c2 + a−1/2)−1 + e(ac2+a

1/2)(t0−t)(e−q(t0) − (c2 + a−1/2)−1)
)

≥ e−a
−1/6 ln a2/3−q(t0)t−a

−1/6

.

Therefore, we deduce

−a−1/6 ln t ≤ q(t) ≤ a−1/6 ln t+ 1, ∀t ≥ t0

on the event {C1 < a
1/6
1 }∩A(2)

L,a1
for all a ≥ a1 ≥ c5 with a fixed c5 > 0, which completes

the proof of the proposition.

Now we are ready to complete the proof of Proposition 3.16.
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Proof of Proposition 3.16. The statement follows from Propositions 3.23 and 3.24, and

the inequality (3.52).

Remark 3.25. A more careful analysis of the diffusion ϕ
(2a)
d (using ideas described in

the proofs of Lemma 3.20 and Lemma 3.23) can provide a logarithmic bound on the

diffusion q for a fixed a > 0. More precisely, it can be shown that for a fixed a > 1/2

with probability one the diffusion q satisfies |q(t)| ≤ 2(32)2

β a
ln t for all large t. In particular,

this result implies that ϕd := ϕ
(2a)
d is a.s. not in L2(R+,m2a) for a > 1/2 thanks to the

identities (3.34) and

ϕd(t)
2m2a(t) = ϕd(t0)

2 exp(2 a

∫ t

t0

eq(s)ds) exp(−(2a+ 1)t− 2√
β
B2a(t)).
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Chapter 4

Operator level limits of circular

Jacobi β-ensembles

The content of this chapter is joint work with Benedek Valkó and is a modified version

of a submitted paper [37].

We study point process limits of the circular Jacobi β-ensemble (CJβE) and the real

orthogonal β-ensemble (ROβE), together with the scaling limits of some related objects,

in particular the limits of the normalized characteristic polynomials. Our approach

follows the framework introduced in [64] and [65]. This framework, together with a high

level description of our main results is summarized in the following outline.

1. Differential operators from probability measures. [64] describes how the

spectral information (the modified Verblunsky coefficients) of a finitely supported

probability measure on the unit circle can be used to construct a differential op-

erator (a Dirac operator) with a pure point real spectrum. The spectrum of the

constructed differential operator is the periodic lifting of the angles correspond-

ing to the support of the probability measure, see Proposition 4.3 for the precise

statement. We summarize the background and the relevant results in Section 4.1.
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2. Random Dirac operators. [10] and [33] provide constructions for random prob-

ability measures on the unit circle where the support of the measure is given by the

CJβE and ROβE, respectively, and the distribution of the modified Verblunsky

coefficients can be explicitly described, see Theorems 4.6 and 4.7. These con-

structions together with Proposition 4.3 lead to the construction of the random

differential operators CJn,β,δ and RO2n,β,a,b with pure point spectrum. The spectrum

of CJn,β,δ is distributed as nΛn + 2πnZ with Λn ∼ CJn,β,δ, and the spectrum of

RO2n,β,a,b is distributed as 2nΛ2n + 4πnZ where Λ2n ∼ RO2n,β,a,b, see Section 4.2.1.

The inverses of these differential operators (after a change of basis) are denoted

by r CJn,β,δ and r RO2n,β,a,b, these are random Hilbert-Schmidt integral operators

acting on L2 functions of the form [0, 1) → R2.

3. Operator level convergence. The operators CJn,β,δ and RO2n,β,a,b and their in-

verses can be parameterized in terms of certain random walks in the hyperbolic

plane. Under the appropriate scaling these random walks converge to diffusions

in the hyperbolic plane. As shown in [64], one can construct random differential

operators in terms of these diffusions, these will be called HPβ,δ and Bessβ,a, respec-

tively. (See Section 4.2.2.) Both of these random differential operators have pure

point spectra, the distribution of the point processes of eigenvalues are denoted

by HPβ,δ and Bessβ,a, respectively. The process HPβ,δ for δ = 0 is the process

Sineβ introduced in [62] as the bulk scaling limit of the Gaussian β-ensemble. The

process Bessβ,a is just a symmetrized (and scaled) version of the square root of the

hard edge process Besselβ,a introduced in [48].
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We will prove that in appropriate couplings we have the operator level convergence

∥r CJn,β,δ − r HPβ,δ∥HS → 0 almost surely as n→ ∞, (4.1)

∥r RO2n,β,a,b − r Bessβ,a∥HS → 0 almost surely as n→ ∞. (4.2)

The precise version of these results are stated in Theorems 4.14 and 4.16 in Section

4.3.1. These results identify the point process scaling limits of the ensembles CJβE

and ROβE as the point processes HPβ,δ and Bessβ,a. (See Corollaries 4.15 and

4.17.) The distribution of the point process HPβ,δ can be characterized via its

counting function using coupled systems of stochastic differential equations. Two

equivalent characterizations are given in Theorems 4.18 and 4.19 in Section 4.3.2.

4. Convergence of characteristic polynomials. [65] introduced the secular func-

tion for a Dirac operator τ which is an entire function with zero set given by the

spectrum of τ . This is a generalization of the normalized characteristic polyno-

mial of a unitary matrix. We review the definition in Section 4.1. [65] also showed

that results of the form of (4.1) and (4.2) (together with similar statements on the

so-called integral trace) imply that the scaled and normalized characteristic poly-

nomials of CJβE and ROβE converge to the secular functions of the operators HPβ,δ

and Bessβ,a. These results are stated as part of Corollaries 4.15 and 4.17. Theo-

rems 4.20 and 4.21 provide two separate characterizations of the limiting random

entire functions: by describing the joint distribution of the Taylor coefficients, and

a characterization using entire function valued stochastic differential equations.

For the circular Jacobi β-ensemble the operators CJn,β,δ and HPβ,δ were introduced

in [64], and the convergence (4.1) was stated as a conjecture. (More precisely: as a
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statement to be proved in a future paper.) In [1] Assiotis and Najnudel showed the

existence of the point process limit of the circular Jacobi β-ensemble by providing a

coupling of the scaled finite ensembles so that they posses an a.s. point process limit.

However their result does not provide an explicit characterization for the limiting point

process.

Our main new contributions for the study of the scaling limits of CJβE are the

operator level convergence of Theorem 4.14, the various characterizations of the limit

point process HPβ,δ (Theorems 4.18 and 4.19), and the description and characterization

of the limit of the normalized characteristic polynomials (Corollary 4.15 and Theorem

4.20). Some of our results are extensions and generalizations of corresponding results

for the circular β-ensemble and the Sineβ process proved in [34], [64], [66], [65].

In the β = 1, 2, 4 cases the limiting point processes have been described via their n-

point correlation functions in [23]. In [38] the limiting correlation functions were derived

in the case when β is an even integer, together with exact formulas for expectations of

products of characteristic polynomials. (Note that the normalization for the character-

istic polynomials in [38] is different from ours.) [22] provides corrections to these results

in the case when β is an even integer or equal to 1. Scaling limits of characteristic

polynomials of classical random matrix ensembles were also studied in [12] and [11].

A version of the first three steps of the outline above was carried out by Holcomb

and Moreno Flores in [27] for the real Jacobi β-ensemble. Using the change of variables

of xj = 1
2
(1 − cos θj), their results also imply the point process level convergence of

ROβE. The proof in [27] relies on a tridiagonal representation of the real Jacobi β-

ensemble together with the operator convergence approach for studying the hard edge

limit, introduced in [48] for the Laguerre β-ensemble. [64] provided a representation
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of the hard edge limit operator as a random Dirac operator. [26] provides various

descriptions and properties of the limiting (hard edge) point process. Our main new

contributions for the study of ROβE are the existence and description of the limit of the

normalized characteristic polynomials (Corollary 4.17 and Theorem 4.21), and a new

approach to prove the point process limit via operator convergence (Theorem 4.16).

Outline of the reminder of the chapter

In Section 4.1 we outline the used operator theoretic framework, the presentation will

mostly follow that of [64] and [65]. In Section 4.2 we introduce the random differential

operators corresponding to the finite ensembles and their limits. Section 4.3 states our

precise results, including the description of the limiting point processes and random

analytic functions. Sections 4.4, 4.5, and 4.6 provide the proofs for the operator conver-

gence results, while Section 4.7 contains the proofs of the statements of the properties

and characterizations of the limiting objects.

4.1 The operator theoretic framework

This section collects all the deterministic operator theoretic ingredients. We describe

the type of differential and integral operators we consider, the definition of the secular

function, and how these objects can be used to study finitely supported probability

measures on the unit circle.
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4.1.1 Dirac operators

We start by collecting some basic facts about differential operators of the form

τ : f → R−1(t)Jf ′, f : [0, 1) → R2, J =

 0 −1

1 0

 , (4.3)

where R(t) is a positive definite real symmetric 2 × 2 matrix valued function on [0, 1).

These differential operators are called Dirac operators, for more details see [67] or [64].

We consider differential operators of the form (4.3) where the matrix valued function

R(t) is defined from a locally bounded measurable function x + iy : [0, 1) → H = {z ∈

C : ℑz > 0} as follows:

R =
1

2
X tX, X =

1
√
y

 1 −x

0 y

 . (4.4)

We call R the weight function, and x+ iy the generating path of τ .

The boundary conditions for τ at 0 and 1 are given by nonzero, non-parallel R2

vectors u0, u1. We will assume that these vectors are normalized so that they satisfy the

condition

ut0Ju1 = 1. (4.5)

We will also have the following integrability assumption for the boundary conditions:

Assumption 4.1.∫ 1

0

∥R(s)u1∥ds <∞ and

∫ 1

0

∫ t

0

ut0R(s)u0 u
t
1R(t)u1dsdt <∞. (4.6)

Under these conditions τ will be self-adjoint on the following domain:

dom(τ) = {v ∈ L2
R ∩ AC : τv ∈ L2

R, lim
s→0

v(s)tJu0 = 0, lim
s→1

v(s)tJu1 = 0}. (4.7)
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Here L2
R is the L2 space of functions f : [0, 1) → R2 with the L2 norm ∥f∥2R =

∫ 1

0
f tRfds,

and AC([0, 1)) is the set of absolutely continuous real functions on [0, 1). We will use the

notations Dir(R, u0, u1) or Dir(x+ iy, u0, u1) for the the operator τ defined via (2.7) and

(4.4) with boundary conditions u0, u1 on the domain (4.7). We sometimes replace the

R2 vector by the element in R ∪ {∞} corresponding to the ratio of its two coordinates:

[a, b]t corresponds to a/b if b ̸= 0 and ∞ if b = 0.

The inverse of τ = Dir(x + iy, u0, u1) is a Hilbert-Schmidt integral operator on L2
R

with kernel given by

Kτ−1(s, t) =
(
u0u

t
11s<t + u1u

t
01s≥t

)
R(t). (4.8)

This means that if f ∈ dom(τ) and g = τf then f(s) =
∫ 1

0
Kτ−1(s, t)g(t)dt. The fact

that the integral operator is Hilbert-Schmidt follows from the second inequality of (4.6),

and implies that τ has a discrete pure point spectrum with nonzero real eigenvalues

λk, k ∈ Z that satisfy
∑

k λ
−2
k < ∞. We label the eigenvalues so that they are in an

increasing order with λ−1 < 0 < λ0.

After the change of variables τ̂ = XτX−1, the inverse r τ := τ̂−1 is an integral

operator on the L2 space of functions f : [0, 1) → R2 with norm ∥f∥2 =
∫ 1

0
f tfds, and

its kernel is given by

Kr τ (s, t) =
1
2

(
a(s)c(t)t1s<t + c(s)a(t)t1s≥t

)
, a(s) = X(s)u0, c(s) = X(s)u1. (4.9)

We define the integral trace of r τ as the integral of the trace of the kernel Kr τ , and

denote it by tτ :

tτ =

∫ 1

0

trKr τ (s, s)ds =
1
2

∫ 1

0

a(s)tc(s)ds =

∫ 1

0

ut0R(s)u1ds. (4.10)

By the first inequality of (4.6) the integral trace is finite.
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We define the secular function of τ with the expression

ζτ (z) = e−ztτdet2(I − z r τ) = e−
z
2

∫ 1
0 a(s)

tc(s)ds
∏
k

(1− z/ λk)e
z/λk . (4.11)

Here det2 is the second regularized determinant, see [58]. The secular function ζτ is an

entire function with zero set given by λk, k ∈ Z, it is an analogue of the normalized

characteristic polynomial of a square matrix. (See [65] for details.)

The next statement provides comparisons for the spectra and secular functions of

two Dirac operators.

Proposition 4.2. Let τ1, τ2 be two Dirac operators on [0, 1) satisfying assumptions

(4.5) and (4.6). Denote by λk,i, ζi, r i, ti the eigenvalues, secular function, resolvent and

integral trace of τi. Let ∥ · ∥ denote the Hilbert-Schmidt norm. Then

∑
k

∣∣λ−1
k,1 − λ−1

k,2

∣∣2 ≤∥r 1 − r 2∥2, (4.12)

and there is a universal constant a > 1 so that for all z ∈ C

|ζ1(z)− ζ2(z)| ≤
(
e|z||t1−t2| − 1 + |z|

∥∥r 1 − r 2

∥∥)a|z|2(∥r 1∥2+∥r 2∥2)+|z|(|t1|+|t2|)+1 (4.13)

The inequality (4.12) is just the Hoffman-Wielandt inequality in infinite dimensions

(see e.g. [3]), the bound (4.13) follows from standard properties of the regularized de-

terminant [58] (see Proposition 21 in [65] for additional details). Proposition 4.2 shows

that the Hilbert-Schmidt convergence of Dirac operators implies the convergence of the

spectra, and if the integral traces converge as well then we have uniform on compacts

convergence of the secular functions.

The end points of a Dirac operator can be classified as limit circle or limit point

based on the integrability of the solutions of (τ − λ)u = 0 near that end point. By the
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Weyl’s alternative theorem (e.g. Theorem 5.6 in [67]) the integrability of the solutions

does not depend on λ. Hence one can choose λ = 0, and just check the integrability

of the constant vectors. Since R(t) is locally bounded near 0, the left endpoint of the

interval [0, 1) is limit circle with respect to the weight function R: for any v ∈ R2 the

function vtRv is integrable near 0. Assumption (4.6) shows that vRv is integrable near

1 if v ∥ u1, but that might not be the case if v ̸ ∥ u1. This shows that the right endpoint

could be limit circle or limit point.

For certain applications of the limiting objects, it is more convenient to consider

operators that have 0 as the endpoint that could possibly be limit point. In this case

the domain of the operator is (0, 1], and we have to modify our setup and assumptions.

This reversed framework will be introduced in Section 4.7.1, where we also discuss other

transformations of Dirac operators.

4.1.2 Dirac operators for finitely supported probability mea-

sures on the unit circle

We review the construction given Section 3 of [65] that shows how a finitely supported

probability measure on the unit circle can be represented using a Dirac operator of the

form (2.7). (See also Section 5 of [64].)

Let µ be a probability measure whose support is a set of n distinct points eiλj , 1 ≤

j ≤ n on the unit circle, and assume µ({1}) = 0. The characteristic polynomial of µ,

normalized at 1, is defined as

pµ(z) =
n∏
j=1

z − eiλj

1− eiλj
. (4.14)
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For 0 ≤ k ≤ n, the kth orthogonal polynomial Φk(z) is defined as the unique polynomial

with main coefficient 1 of degree k that is orthogonal to 1, . . . , zk−1 in L2(µ). We

denote by Ψk(z) = Φk(z)
Φk(1)

the normalized orthogonal polynomials. Note that we have

Φ0 = Ψ0 = 1 and pµ = Ψn. For 0 ≤ k ≤ n we define Φ∗
k,Ψ

∗
k as the reversed polynomials

Φ∗
k(z) = zkΦk(1/z̄), Ψ∗

k(z) = zkΨk(1/z̄).

The vector
(
Φk

Φ∗
k

)
satisfies the Szegő recursion [57]:

(
Φk+1(z)

Φ∗
k+1(z)

)
= Ak

 z 0

0 1

(Φk(z)

Φ∗
k(z)

)
, 0 ≤ k ≤ n− 1. (4.15)

Here Ak =

 1 −ᾱk

−αk 1

, the complex numbers α0, . . . , αn−1 are called the Verblun-

sky coefficients. They satisfy |αk| < 1 for 0 ≤ k ≤ n−1 and |αn−1| = 1. The normalized

orthogonal polynomials Ψk,Ψ
∗
k satisfy a similar recursion as (4.15), with the matrix

Ãk =

 1
1−γk

− γk
1−γk

− γ̄k
1−γ̄k

1
1−γ̄k


in place of Ak. The complex numbers γk, 0 ≤ k ≤ n − 1 are called the modified or

deformed Verblunsky coefficients (see [10]). They satisfy

γk = ᾱk

k−1∏
j=0

1− γ̄j
1− γj

, 0 ≤ k ≤ n− 1, (4.16)

from which it follows that |γk| = |αk|.

Define wk, vk ∈ R with

2γk
1− γk

= wk − ivk. (4.17)
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Set x0 = 0, y0 = 1, and define recursively

xk+1 = xk + vkyk, yk+1 = yk(1 + wk), 0 ≤ k ≤ n− 1. (4.18)

Note that |γ| ≤ 1 implies ℜ 2γ
1−γ ≥ −1, and we have equality if and only if |γ| = 1, γ ̸= 1.

Hence yk > 0 for 1 ≤ k ≤ n − 1 and yn = 0. The following proposition was proved in

[65].

Proposition 4.3 ([65]). Set x(t) + iy(t) = x⌊nt⌋ + iy⌊nt⌋ for t ∈ [0, 1]. Let

τ = R−1

 0 −1

1 0

 d

dt
, R =

X tX

2 detX
, X =

 1 −x

0 y

 , (4.19)

with boundary conditions u0 = [1, 0]t, u1 = [−x(1),−1]t.

Then τ satisfies our assumptions, the spectrum of τ is given by the set

spec τ = {nλk + 2πnj : 1 ≤ k ≤ n, j ∈ Z},

and the secular function of τ satisfies

ζτ (z) = pµ(e
iz/n)e−iz/2 =

n∏
j=1

sin(λj/2− z/(2n))

sin(λj/2)
. (4.20)

4.2 Random Dirac operators

This section introduces the random Dirac operators corresponding to the finite ensembles

and to their limits.

4.2.1 Operators for the finite ensembles

The results of this section provide descriptions of random probability measures with

support given by the CJβE and ROβE, respectively, where the joint distribution of the

modified Verblunsky coefficients can be described explicitly.
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Definition 4.4. For a > 0 and ℜδ > −1/2 we denote by Θ(a+1, δ) the distribution on

{|z| < 1} that has probability density function

ca,δ(1− |z|2)a/2−1(1− z)δ̄(1− z̄)δ, (4.21)

where ca,δ =
Γ(a/2+1+δ)Γ(a/2+1+δ̄)

πΓ(a/2)Γ(a/2+1+δ+δ̄)
.

We extend the definition for the a = 0, ℜδ > −1/2 case as follows: Θ(1, δ) is the

distribution on {|z| = 1} with probability density function

Γ(1+δ)Γ(1+δ̄)

Γ(1+δ+δ̄)
(1− z)δ̄(1− z̄)δ. (4.22)

Definition 4.5. For s, t > 0 let B̃(s, t) denote the scaled (and flipped) beta distribution

on (−1, 1) that has probability density function

21−s−tΓ(s+t)
Γ(s)Γ(t)

(1− x)s−1(1 + x)t−1.

Theorem 4.6 (Theorems 3.2 and 3.3 of [10]). For given β > 0, ℜδ > −1/2 and n ≥ 1

let µ = µcj
n,β,δ be the random probability measure µ =

∑n
k=1 rkδeiθk on the unit circle

where (θ1, . . . , θn) and (r1, . . . , rn) are independent, the joint density of θk, 1 ≤ k ≤ n is

given by (2.8), and the joint density of rk, 1 ≤ k ≤ n − 1 is given by 1
Cn,β

∏n
k=1 r

β/2−1
k .

In other words, µ is a probability measure where the support has distribution CJβE, and

the weights are Dirichlet(β/2, . . . , β/2) distributed, independently of the support.

Then the modified Verblunsky coefficients γ0, . . . , γn−1 of µ are independent, and γk

has distribution Θ(β(n− k − 1) + 1, δ) for 0 ≤ k ≤ n− 1.

Theorem 4.7 (Theorem 2 of [33], Proposition 4.5 in [32]). For given β > 0, a, b > −1

and n ≥ 1 let µ = µo
2n,β,a,b be the random probability measure µ =

∑n
k=1

1
2
rk(δeiθk +δe−iθk )

on the unit circle where (θ1, . . . , θn) and (r1, . . . , rn) are independent, the joint density
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of θk, 1 ≤ k ≤ n is given by (1.5), and the joint density of rk, 1 ≤ k ≤ n− 1 is given by

1
Cn,β

∏n
k=1 r

β/2−1
k .

Then the Verblunsky coefficients α0, . . . , α2n−1 corresponding to µ are real, indepen-

dent of each other. We have α2n−1 = −1, and the distribution of αk, 0 ≤ k ≤ 2n− 2 is

given by

αk ∼


B̃
(
β
4
(2n− k + 2a), β

4
(2n− k + 2b)

)
, if k is even,

B̃
(
β
4
(2n− k + 2a+ 2b+ 1), β

4
(2n− k − 1)

)
, if k is odd.

Since all the Verblunsky coefficients are real, we have γk = αk for all 0 ≤ k ≤ 2n− 1.

Theorems 4.6 and 4.7 together with Proposition 4.3 provide random Dirac operator

representations for the CJβE and ROβE.

Definition 4.8. We denote by CJn,β,δ the random Dirac operator constructed from the

random probability measure µcj
n,β,δ of Theorem 4.6 using Proposition 4.3. We denote by

RO2n,β,a,b the random Dirac operator constructed from the random probability measure

µo
2n,β,a,b of Theorem 4.7 using Proposition 4.3 .

The modified Verblunsky coefficients are independent for both µcj
n,β,δ and µo

2n,β,a,b.

Hence the sequence xk + iyk defined by the recursion (4.18) is a Markov chain for both

of these random measures. The generating paths of the CJn,β,δ and RO2n,β,a,b operators

are just these Markov chains embedded into continuous time.

4.2.2 The limiting operators

As we show below, the generating paths of both CJn,β,δ and RO2n,β,a,b approximate certain

diffusions in H, and the operators themselves approximate the Dirac operators built from

these diffusions. In this section we introduce the two limiting operators.
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For the rest of the paper, we set

υβ(t) = − 4
β
log(1− t). (4.23)

Hua-Pickrell operator

Fix β > 0 and δ ∈ C with ℜδ > −1/2. Let B1, B2 be independent standard Brownian

motion, and let xt + iyt, t ≥ 0 be the strong solution of the SDE

dy = (−ℜδdt+ dB1) y, dx = (ℑδdt+ dB2) y, y(0) = 1, x(0) = 0. (4.24)

Proposition 4.9 (Proposition 31 of [64]). Let x(t) + iy(t) be defined via (4.24). The

limit q = limt→∞ x(t) exists, and it is non-zero with probability one. Define x̃(t) =

x(υβ(t)),ỹ(t) = y(υβ(t)), and set u0 = [1, 0]t, u1 = [−q,−1]t. Then the random Dirac

operator HPβ,δ = Dir(x̃+ iỹ, u0, u1) satisfies the assumptions of Section 4.1.1.

We record the following estimates for x̃, ỹ from the proof of Proposition 31 of [64].

For any ε > 0 small there exists a random finite C = C(ε) such that

C−1(1−t)
4
β
(ℜδ+ 1

2
+ε) ≤ ỹ(t) ≤ C(1−t)

4
β
(ℜδ+ 1

2
−ε), |q− x̃(t)| ≤ C(1−t)

4
β
(ℜδ+ 1

2
−ε). (4.25)

The distribution of q = limt→∞ x(t) was identified in [2].

Definition 4.10. For m > 1/2 and µ ∈ R we denote by PIV (m,µ) the distribution of

the (unscaled) Pearson type IV distribution on R that has density function

22m−2|Γ(m+ µ
2
i)|2

π Γ(2m− 1)
(1 + x2)−me−µ arctanx. (4.26)

Theorem 4.11 ([2]). The random variable q in Proposition 4.9 has PIV (ℜδ+1,−2ℑδ)

distribution.



86

There is an interesting connection between the distributions PIV and Θ: the map

z(eiθ) = − cot(θ/2) transforms Θ(1, δ) into PIV (ℜδ + 1,−2ℑδ). The map z can be

extended to the conformal map w → i w+1
−w+1

from {|w| ≤ 1} to {ℑz > 0}, which provides

an isometry between the unit disk and half-plane representations of the hyperbolic plane.

In other words, Θ(1, δ) and PIV (ℜδ+1,−2ℑδ) are different representations of the same

distribution on the boundary of the hyperbolic plane.

Hard edge operator

The point process scaling limit of the Laguerre β-ensemble near the hard edge was

identified by Ramı́rez and Rider in [48], see Theorem 2.1. [64] provided a Dirac operator

representation for Gβ,a, we summarize the result below.

Proposition 4.12 (Theorem 30 of [64]). Fix β > 0, a > −1, and let B be a standard

Brownian motion. We set y(t) = e−
β
4
(2a+1)t−B(2t), ỹ(t) = y(υβ(t)), u0 = [1, 0]t, and

u1 = [0,−1]t. Then the operator Bessβ,a := Dir(iỹ, u0, u1) satisfies the assumptions of

Section 4.1.1, and its spectrum is symmetric about 0: λ−k = −λk−1, k ≥ 1.

Moreover, the set { 1
16
λ20,

1
16
λ21, . . . } has the same distribution as the spectrum of the

hard edge operator Gβ,a defined in (2.1).

Remark 4.13. Theorem 30 of [64] is stated in a slightly different (but equivalent) way.

With the notations of Proposition 4.12 the statement of that theorem is about the operator

Gβ,2a = Dir(iỹ−1, u1, u0). Note however that conjugating Bessβ,a with the permutation

matrix transposing the first and second coordinate in R2 gives −Gβ,2a, and since the

spectra of Bessβ,a and Gβ,2a are symmetric about 0, the statement of the proposition

follows.
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4.3 Precise results

We are ready to state our results in a precise form.

4.3.1 Convergence of random operators and normalized char-

acteristic polynomials

Theorem 4.14. Fix β > 0 and ℜδ > −1/2. Then there is a coupling of the random

operators CJn,β,δ, n ≥ 1 and HPβ,δ so that ∥r CJn,β,δ − r HPβ,δ∥HS and t CJn,β,δ
− t HPβ,δ both

converge to 0 almost surely as n→ ∞.

From Theorem 4.14 and Proposition 4.2 we immediately get the following corollary.

Corollary 4.15. Consider the coupling of Theorem 4.14. Denote by Λn the eigenangles

of CJn,β,δ inside (−π, π], and let λk,n, k ∈ Z be the sequence of ordered elements of the set

nΛn+2πnZ with λ−1,n < 0 < λ0,n. Let pn(z) be the normalized characteristic polynomial

of Λn defined via (4.14). Denote by HPβ,δ = {λk,HP, k ∈ Z} the ordered spectrum of the

operator HPβ,δ, and by ζHPβ,δ the secular function of HPβ,δ. Then

∑
k

|λ−1
k,n − λ−1

k,HP|
2 → 0 almost surely as n→ ∞, (4.27)

|pn(eiz/n)e−iz/2 − ζHPβ,δ(z)| → 0 almost surely, uniformly on compacts as n→ ∞.

(4.28)

In particular, if Λn ∼ CJn,β,δ then nΛn ⇒ HPβ,δ.

The following theorem and its corollary state the corresponding result for the real

orthogonal ensemble.
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Theorem 4.16. Fix β > 0 and a, b > −1. Then there is a coupling of the random

operators RO2n,β,a,b, n ≥ 1 and Bessβ,a so that ∥r RO2n,β,a,b − r Bessβ,a∥HS converges to 0

almost surely as n→ ∞.

Note that since the driving paths are purely imaginary, we have t RO2n,β,a,b
= t Bessβ,a =

0.

Corollary 4.17. Consider the coupling of Theorem 4.16. Denote by Λ2n the eigenangles

of RO2n,β,a,b inside (−π, π], and let λk,2n, k ∈ Z be the ordered elements of the set 2nΛ2n+

4πnZ with λ−1,2n < 0 < λ0,2n. Let p2n(z) be the normalized characteristic polynomial of

Λ2n defined via (4.14). Denote by Bessβ,a = {λk,B, k ∈ Z} the ordered spectrum of the

operator Bessβ,a, and by ζBβ,a the secular function of Bessβ,a. Then∑
k

|λ−1
k,2n − λ−1

k,B|
2 → 0 almost surely as n→ ∞, (4.29)

|p2n(eiz/(2n))e−iz/2 − ζBβ,a(z)| → 0 almost surely, uniformly on compacts as n→ ∞.

(4.30)

Moreover, if Λ2n ∼ RO2n,β,a,b then 2nΛ2n ⇒ Bessβ,a.

4.3.2 Characterization of the limiting point processes

The point process HPβ,δ is a generalization of the Sineβ process: HPβ,0 = Sineβ. The

Sineβ process has various descriptions via its counting function using stochastic differ-

ential equations, we will show that these descriptions can be extended to the process

HPβ,δ as well.

Theorem 4.18. Let β > 0, δ ∈ C with ℜδ > −1/2. Let Z = B1 + iB2 be a standard

complex Brownian motion, and let θ ∈ (−π, π] be a random variable independent of Z

so that eiθ has distribution Θ(1, δ).
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There is a unique process ψλ(t) with t ∈ (0, 1], λ ∈ R that is continuous in both

variables, and for each λ ∈ R the process t→ ψλ(t) is a strong solution of

dψλ = λdt+ ℜ[(e−iψλ − 1)( 2√
βt
dZ − iδ 4

βt
dt)], lim

t→0
ψλ(t) = 0. (4.31)

The point process HPβ,δ has the same distribution as the random set

Ξ = {λ ∈ R : ψλ(1) ∈ θ + 2πZ}. (4.32)

Note that this is an extension of the Killip-Stoiciu characterization of the Sineβ pro-

cess, see [34], [64]. The following theorem provides another, equivalent characterization

of HPβ,δ, which is an extension of the description of Sineβ given in Proposition 4 of [62].

Theorem 4.19. Let β > 0, δ ∈ C with ℜδ > −1/2. Let Z = B1 + iB2 be a standard

complex Brownian motion. Then the following SDE system has a unique strong solution

on t ∈ [0,∞), λ ∈ R

dαλ = λβ
4
e−

β
4
tdt+ ℜ[(e−iαλ − 1)(dZ − iδdt)], αλ(0) = 0. (4.33)

With probability one the process λ → αλ(t) is increasing for all t > 0. For each λ ∈ R

the limit sgn(λ) · lim
t→∞

1
2π
αλ(t) exists almost surely, and it has the same distribution as

the number of points of HPβ,δ in [0, λ] for λ ≥ 0 (and in [λ, 0] for λ < 0). Moreover,

if N(λ) is the right-continuous version of the function λ → lim
t→∞

1
2π
αλ(t), then N(·) has

the same distribution as the counting function of the HPβ,δ process.

The diffusion description given in Theorem 4.19 allows us to study various properties

of the counting function of the HPβ,δ process via the SDE (4.33). See Chapter 5 for

results on the large gap asymptotics of the point process HPβ,δ, a central limit theorem

on the counting function of HPβ,δ, and a process level transition from HPβ,δ to the Sineβ

process (see Theorems 5.1 and 5.2 for the precise statements).
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4.3.3 Characterization of the limiting random analytic func-

tions

Theorem 4.20 (Characterization of ζHPβ,δ). Fix β > 0 and δ ∈ C with ℜδ > −1/2. Let

B1, B2 independent copies of two-sided Brownian motion, and let q be an independent

random variable with distribution PIV (ℜδ + 1,−2ℑδ). Denote by HPβ,δ the spectrum of

the operator HPβ,δ, and by ζHPβ,δ its secular function. Then ζHPβ,δ has the same distribution

as the random analytic function [1,−q]H0 where Hu(z) is the unique analytic solution

of the system of stochastic differential equations

dH =

0 −dB1

0 dB2

H +

0 −ℑδdu

0 −ℜδdu

H− z
β

8
eβu/4JHdu, u ∈ R (4.34)

with the boundary condition lim
u→−∞

sup|z|<1

∣∣Hu(z)−
(
1
0

)∣∣ = 0. Moreover, ζHPβ,δ(z) has the

same distribution as the random power series
∑∞

n=0(A
(n)
0 − qB(n)

0 )zn where A(n)
u ,B(n)

u are

processes satisfying the recursion

B(n)
u = −eB2(u)−( 1

2
+ℜδ)u

∫ u

−∞

β
8
e−B2(s)+(β

4
+ 1

2
+ℜδ)sA(n−1)

s ds, (4.35)

A(n)
u =

∫ u

−∞

(
β
8
eβs/4 B(n−1)

s −ℑδB(n)
s

)
ds−

∫ u

−∞
B(n)
s dB1. (4.36)

with A(0) ≡ 1,B(0) ≡ 0.

Theorem 4.21 (Characterization of ζBβ,a). Fix β > 0, a > −1. Let B be a two-sided

Brownian motion on R, y(t) = exp(−β
4
(2a+ 1)t+B(2t)) and ŷ(t) = y( 4

β
log t). Denote

by Bessβ,a the spectrum of the operator Bessβ,a, and by ζB = ζBβ,a its secular function.

Then ζB has the same distribution as 1 +
∑∞

k=1 rkz
2k, where

rk = (−1)k2−2k

∫∫∫
0<s1<s2<···<s2k≤1

ŷ(s2)ŷ(s4) · · · ŷ(s2k)
ŷ(s1)ŷ(s3) · · · ŷ(s2k−1)

ds1 · · · ds2k. (4.37)
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Moreover, ζB(z) has the same distribution as [1, 0]H0(z), where Hu(z) is the unique

strong solution of the SDE

dH =

0 0

0
√
2dB + (1− β

4
(2a+ 1))du

H− z
β

8
eβu/4JHdu (4.38)

with boundary conditions lim
u→−∞

sup|z|<1

∣∣Hu(z)−
(
1
0

)∣∣ = 0.

Remark 4.22. The random analytic function ζBβ,a can also be represented in a product

form as follows:

ζBβ,a(z) =
∏

0<λ∈Bessβ,a

(
1− z2

λ2

)
. (4.39)

To see this we use definition (4.11), and note that the integral trace of the operator

r Bessβ,a is zero. Moreover, by Proposition 4.12 the point process Bessβ,a is symmetric

about 0, and r Bessβ,a is Hilbert-Schmidt, which gives us∏
λ∈Bessβ,a

(1− z/ λ)ez/λ =
∏

0<λ∈Bessβ,a

(
1− z2

λ2

)
.

The random analytic function ζHPβ,δ(z) should also have a similar representation in terms

of its zeros, it should be equal to the principal value product

lim
r→∞

∏
λ∈HPβ,δ ,
|λ|<r

(
1− z

λ

)
. (4.40)

For δ = 0 this statement was proved in [65]. Using the results of the current paper one

should be able to extend the proof in [65] for the general δ case.

4.4 Convergence of discrete Dirac operators

This section collects some of the tools that will be used to prove Theorems 4.14 and 4.16.

We first prove a general convergence result for the resolvents and integral traces of Dirac
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operators where the driving paths converge pointwise and are also ‘regular’ in a certain

sense. Then we review some probabilistic tools: a standard result on the convergence

of Markov chains to diffusions, and an iterated logarithm type result for products of

independent random variables.

4.4.1 Convergence of resolvents and secular functions of Dirac

operators

The following proposition gives a sufficient condition for the convergence of the resolvents

and integral traces of deterministic Dirac operators.

Proposition 4.23. Suppose that the Dirac operators τ (n), n ∈ Z+∪{∞} are parametrized

by paths x(n) + iy(n) and boundary conditions u0 = [1, 0]t, u
(n)
1 = [−q(n),−1]t. Introduce

the notation ⌊t⌋n = ⌊nt⌋/n with the understanding that ⌊t⌋∞ = t. Assume that there

are constants c1, c2 > −1, c3 > 0, and κ > 0 so that the following bounds hold for all

0 ≤ t < 1,

κ−1(1− ⌊t⌋n)c2 ≤ y(n)(t) ≤ κ(1− ⌊t⌋n)c1 , |q(n) − x(n)(t)| ≤ κ(1− ⌊t⌋n)c3 (4.41)

uniformly in n ∈ Z+ ∪ {∞} with

c3 > c2 − 1, c1 > c2 − 2. (4.42)

Assume that x(n) + iy(n) → x(∞) + iy(∞) point-wise on [0, 1).

Then

lim
n→∞

∥r τ (n) − r τ (∞)∥HS = 0, and lim
n→∞

|tτ (n) − tτ (∞) | = 0. (4.43)
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Proof. From the second inequality of (4.41) and the triangle inequality we have q(n) →

q(∞).

Denote by R(n) the weight function of τ (n), and by X(n) the 2× 2 matrix defined in

(4.4). Recall that r τ (n), n ∈ Z+∪{∞} is an integral operator with kernel given by (4.9).

From q(n) → q(∞) and the pointwise convergence of x(n) + iy(n) we get the pointwise

convergence of the integral kernels of r τ (n) on [0, 1)2.

The bounds (4.41) and the conditions on the constants c1, c2, c3 provide integrable

upper bounds for the functions

trKr τ (n)(s, s) = ut0R
(n)(s)u

(n)
1 =

x(n)(s)− q(n)

2y(n)(s)
,

trKr τ (n)(s, t)tKr τ (n)(s, t) =
1

4
∥X(n)(s ∨ t)u(n)1 ∥2∥X(n)(s ∧ t)u0∥2

=
1

4

(
|q(n) − x(n)(s ∨ t)|2

y(n)(s ∨ t)2
+ 1

)
y(n)(s ∨ t)
y(n)(s ∧ t)

,

on [0, 1) and [0, 1)2, respectively. This shows that condition (4.6) is satisfied for τ (n) for

each n ∈ Z+ ∪ {∞}. Moreover, the General Dominated Convergence Theorem (see e.g.

Theorem 1.4.19 in [56]) and the point-wise convergence of the kernels lead to (4.43).

As an immediate consequence we have the following corollary for random Dirac

operators.

Corollary 4.24. Suppose that τ (n), n ∈ Z+∪{∞} are random Dirac operators built from

the processes x(n) + iy(n), and boundary conditions u0 = [1, 0]t and u
(n)
1 = [−q(n),−1],

with random variables q(n). Assume that the following conditions are satisfied:

1. x(n) + iy(n) → x(∞) + iy(∞) in distribution on [0, 1) with respect to the Skorohod

topology.
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2. There exists constants c1, c2 > −1, c3 > 0 satisfying (4.42), and a sequence of tight

positive random variables κ(n), n ∈ Z+ ∪ {∞} so that for 0 ≤ t < 1

(κ(n))−1(1− ⌊t⌋n)c2 ≤ y(n)(t) ≤ κ(n)(1− ⌊t⌋n)c1 , (4.44)

|q(n) − x(n)(t)| ≤ κ(n)(1− ⌊t⌋n)c3 . (4.45)

Then there is a coupling of τ (n), n ∈ Z+{∞} so that almost surely both ∥r τ (n) −

r τ (∞)∥HS and |tτ (n) − tτ (∞) | converge to 0 as n→ ∞.

Proof. We will show that the quadruple (x(n)+iy(n), q(n), r τ (n), tτ (n)) converges jointly in

distribution to (x(∞) + iy(∞), q(∞), r τ (∞), tτ (∞)) in the appropriate product space. Since

both the space of cadlag functions on [0, 1) under the Skorohod topology and the space of

L2 bounded integral operators on R2 are separable, the statement follows by Skorohod’s

representation theorem (see e.g. Theorem 1.6.7 in [4]).

We have to show that for any subsequence nj, j ∈ Z+ we can choose a further

subsequence nj(m) along which the appropriate convergence in distribution holds. By

the tightness of κ(n), n ∈ Z+ we may choose nj(m) so that (x(nj(m)) + iy(nj(m)), κ(nj(m))) ⇒

(x(∞) + iy(∞), κ(∞)) with an a.s. finite κ(∞). Using Skorohod’s representation theorem

there is a coupling where this convergence in distribution holds in the a.s. sense with x+iy

converging pointwise on [0, 1). We can now use Proposition 4.23 to conclude that in this

coupling the quadruple (x(nj(m)) + iy(nj(m)), q(nj(m)), r τ (nj(m)), t
τ
(nj(m))) converges a.s. to

(x(∞) + iy(∞), q(∞), r τ (∞), tτ (∞)) in the appropriate product metric. This also implies

convergence in distribution along the subsubsequence nj(m), finishing the proof.
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4.4.2 Probabilistic tools

The following two results will allow us to check the conditions in Corollary 4.24. The

first is a special case of a classical result about the diffusion limit of discrete time Markov

chains due to Ethier and Kurtz.

Proposition 4.25. Suppose that for each n ∈ Z+ the the sequence of pairs of ran-

dom variables Z
(n)
k = (v

(n)
k , w

(n)
k ), 0 ≤ k ≤ n − 1 are independent. For a given n let

(x
(n)
k , y

(n)
k ), 0 ≤ k ≤ n be the solution of the recursion (4.18) built from (v

(n)
k , w

(n)
k ), and

introduce the notation (x(n)(t), y(n)(t)) := (x
(n)
⌊nt⌋, y

(n)
⌊nt⌋).

Assume that there exist continuous functions a1, a2, σ
2
1, σ

2
2 on [0, 1) such that

nE(Z(n)
k ) =

(
a1(

k
n
) a2(

k
n
)

)
+ err1(k, n), (4.46)

nCov(Z
(n)
k , Z

(n)
k ) =

σ2
1(

k
n
) 0

0 σ2
2(

k
n
)

+ err2(k, n), (4.47)

and

nE(|v(n)k |4 + |w(n)
k |4) = err3(k, n), (4.48)

where the error terms satisfy

lim sup
n→∞

max
k/n≤1−δ

|errj(k, n)| = 0

for any δ ∈ (0, 1), 1 ≤ j ≤ 3.

Then x(n) + iy(n) converges in distribution to x + iy, the solution of the stochastic

differential equation

dx = (a1(t)dt+ σ1(t)dB1)y, dy = (a2(t)dt+ σ2(t)dB2)y, x(0) = 0, y(0) = 1, (4.49)

on [0, 1) with respect to the Skorohod topology. Here B1 and B2 are independent standard

Brownian motion.
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Proof. The proposition follows from Theorem 7.4.1 and Corollary 7.4.2 of [20] (see Sec-

tion 11.2 in [59] as well).

Our next statement provides a sufficient condition to check the inequality (4.44) for

our models. The proposition is a straightforward extension of Lemma 5 of [48], we do

not present the proof here. (See (2.4)-(2.5) of Lemma 5 and also Claim 10 in [48].)

Proposition 4.26. Let ξ
(n)
k , 0 ≤ k ≤ n − 1, 1 ≤ n be a positive triangular array with

independent entries for any given n. Define y
(n)
j =

∏j−1
k=0 ξ

(n)
k . Assume that there are

constants λ0 > 0, c1 ∈ R and c2, c3 > 0, so that for |λ| < λ0 and 0 ≤ j ≤ n− 1 we have

logE[exp(λ log y(n)j )] = c1λ log(1− j
n
)− c2λ

2 log(1− j
n
) + errn(j), (4.50)

where |errn(j)| ≤ c3 for all j, n. Then for any ε > 0 small, there exists a sequence of

tight positive random variables κ(n) = κ(n)(ε) such that for all 0 ≤ k ≤ n− 1 we have

(κ(n))−1(1− k
n
)c1+ε ≤ y

(n)
k ≤ κ(n)(1− k

n
)c1−ε.

4.5 Path convergence for the discrete models

In this section, we prove that the driving paths of the operators CJn,β,δ and RO2n,β,a,b con-

verge in distribution to the driving paths of the operators HPβ,δ and Bessβ,a, respectively.

For this we will check that the discrete models satisfy the conditions in Proposition 4.25.

4.5.1 Circular Jacobi ensemble

Recall the definition of the distributions Θ(a+ 1, δ) and PIV (m,µ) from Definitions 4.4

and 4.10. We also introduce an additional distribution.
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Definition 4.27. For s, t > 0 let B′(s, t) denote the ‘beta prime’ distribution on (0,∞)

that has the probability density function

Γ(s+t)
Γ(s)Γ(t)

ys−1(1 + y)−s−t.

Note that if Xi, i = 1, 2 are independent Gamma distributed random variables with

density Γ(αi)
−1xαi−1e−x on (0,∞) then X1

X2
has B′(α1, α2) distribution, and X2−X1

X1+X2
has

B̃(α1, α2) distribution.

The following statement follows by a change of variables.

Fact 4.28. Suppose that γ ∈ C is distributed as Θ(a + 1, δ) with a ≥ 0 and ℜδ >

−1/2. Define w, v ∈ R with 2γ
1−γ = w − iv. Then the random variables w and v

2+w
are

independent, and

1 + w ∼ B′(a
2
, a
2
+ 2ℜδ + 1), v

2+w
∼ PIV (

a
2
+ ℜδ + 1,−2ℑδ).

In the a = 0 case w degenerates to −1, and hence v
2+w

= v.

We record here the following facts of the beta prime and Pearson type IV distribu-

tions.

Fact 4.29. Let s, t > 0, and Y ∼ B′(s, t). Then for any −s < k < t,

E[Y k] = Γ(s+k)Γ(t−k)
Γ(s)Γ(t)

.

Let m > 5/2, µ ∈ R, and Z ∼ PIV (m,µ). Then we have

E[Z] = − µ
2m−2

, E[Z2] = 2m−2+µ2

(2m−2)(2m−3)
, E[Z4] = 12(m+(µ2−3)/2)2−2µ4−2µ2−3

(2m−5)(2m−4)(2m−3)(2m−2)
.

We are now ready to prove that the driving paths of the operators CJn,β,δ converge

to the driving path of the operator HPβ,δ.
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Proposition 4.30. Fix β > 0 and δ ∈ C with ℜδ > −1/2. Let {γ(n)k , 0 ≤ k ≤

n − 1} be random variables that are independent for a fixed n, and have distributions

γ
(n)
k ∼ Θ(β(n − k − 1) + 1, δ). Define v

(n)
k , w

(n)
k ∈ R via (4.17) using γk = γ

(n)
k , and let

x
(n)
k , y

(n)
k , 0 ≤ k ≤ n be the solution of the recursion (4.18) using vk = v

(n)
k , wk = w

(n)
k .

Set (x(n)(t), y(n)(t)) := (x
(n)
⌊nt⌋, y

(n)
⌊nt⌋). Let x̃+ ỹ be the process defined in Proposition 4.9.

Then x(n)+ iy(n) converges in distribution to x̃+ iỹ on [0, 1) with respect to the Skorohod

topology.

Proof. Let Nδ = ⌈ 2
β
(2−ℜδ)⌉ ∨ 0.

Set z
(n)
k = v

(n)
k /(2+w

(n)
k ). By Fact 4.28 we have that 1+w

(n)
k and z

(n)
k are independent

with distributions

1 + w
(n)
k ∼ B′(β

2
(n− k − 1), β

2
(n− k − 1) + 2ℜδ + 1), (4.51)

z
(n)
k ∼ PIV (

β
2
(n− k − 1) + ℜδ + 1,−2ℑδ). (4.52)

From Fact 4.29, we get that for 0 ≤ k ≤ n−Nδ − 1

E[w(n)
k ] = −4ℜδ

β(n−k−1)+4ℜδ , E[(w(n)
k )2] = 4β(n−k−1)−8ℜδ+16(ℜδ)2

(β(n−k−1)+4ℜδ−2)(β(n−k−1)+4ℜδ) , (4.53)

E[v(n)k ] = 4ℑδ
β(n−k−1)+4ℜδ , E[(v(n)k )2] = 4β(n−k−1)+8ℜδ+16(ℑδ)2

(β(n−k−1)+4ℜδ−2)(β(n−k−1)+4ℜδ) . (4.54)

Moreover, there exists a constant c > 0 so that for 0 ≤ k ≤ n−Nδ − 1 we have∣∣∣E[v(n)k w
(n)
k ]
∣∣∣+ E[(v(n)k )4] + E[(w(n)

k )4] ≤ c(n− k)−2.

This means that the conditions (4.46) and (4.48) of Proposition 4.25 are satisfied with

the functions a1(t) = ℑδυ′β(t), a2(t) = −ℜδυ′β(t), σ2
1(t) = σ2

2(t) = υ′β(t), with υβ(t) =

− 4
β
log(1 − t). Hence the processes x(n)(t) + iy(n)(t) converge in distribution to the

solution of the sde

dx =
(
ℑδυ′β(t)dt+

√
υ′β(t)dB1

)
y, dy =

(
−ℜδυ′β(t)dt+

√
υ′β(t)dB2

)
y (4.55)
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with independent Brownian motions B1, B2 and initial values x(0) = 0, y(0) = 1. The

distribution of the process in (4.55) is the same as that of the SDE (4.24) with the time

change t→ υβ(t), which is completes the proof of the proposition.

4.5.2 Real orthogonal ensemble

Now we turn to the path convergence of the real orthogonal ensemble. By Theorem 4.7,

the modified Verblunsky coefficients of the real orthogonal ensemble are all real. Hence

(4.17) and (4.18) imply that vk = xk = 0, 1 + wk =
1+γk
1−γk

, and yk =
∏k−1

j=0
1+γk
1−γk

.

Proposition 4.31. Fix a, b > −1, β > 0. Let {γ(2n)k , 0 ≤ k ≤ 2n − 1} be random

variables that are independent for a fixed n with the following distributions: γ
(2n)
2n−1 = −1,

and for 0 ≤ k ≤ 2n− 2

γ
(2n)
k ∼


B̃
(
β
4
(2n− k + 2a), β

4
(2n− k + 2b)

)
, if k is even,

B̃
(
β
4
(2n− k + 2a+ 2b+ 1), β

4
(2n− k − 1)

)
, if k is odd.

(4.56)

Define y(2n)(t) =
∏⌊2nt⌋−1

k=0
1+γ

(2n)
k

1−γ(2n)
k

for all 0 ≤ t < 1. Let ỹ be the process defined in

Proposition 4.12. Then y(2n) converges in distribution to ỹ on [0, 1) with respect to the

Skorohod topology.

Proof. We first consider the multiplicative random walk with step size 2 and define

y
(2n)
1 (t) :=

∏2⌊nt⌋−1
k=0

1+γ
(2n)
k

1−γ(2n)
k

. We will check the conditions in Proposition 4.25 for y
(2n)
1 (t)

(with x
(2n)
1 = 0).

If γ ∼ B̃(s1, s2) then
1+γ
1−γ ∼ B′(s2, s1). Using the moment formulas of Fact 4.29 one

readily checks that with

v
(2n)
k = 0, w

(2n)
k =

1+γ
(2n)
2k

1−γ(2n)
2k

· 1+γ
(2n)
2k+1

1−γ(2n)
2k+1

− 1
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the conditions (4.46) and (4.48) of Proposition 4.25 are satisfied with a1 = σ2
1 = 0,

a2(t) =
4/β−(2a+1)

(1−t) and σ2
2(t) =

8
β(1−t) . Hence the limit in distribution of y

(2n)
1 (·) exist and

it has the distribution of the strong solution of the diffusion

dỹ = 4/β−(2a+1)
(1−t) ỹdt+

√
8

β(1−t) ỹdB, ỹ(0) = 1,

where B is a standard Brownian motion.

The solution of this SDE has the same distribution as the process ỹ in Proposition

4.12. Using the the fourth moment bounds of Fact 4.29 one can show that |y(2n)1 /y(2n)−1|

converges to 0 in the sup-norm in probability on any compact subset of [0, 1). From this it

follows that that y(2n) converges to ỹ in distribution as well, proving the proposition.

4.6 Proofs of the operator limit theorems

We are ready to prove Theorem 4.14. We will do that by applying Corollary 4.24 to

the processes described in Propositions 4.30, for this we need to prove the path bounds

(4.44) and (4.45). This is the content of Propositions 4.32 and 4.33 below.

Proposition 4.32. Fix β > 0, δ ∈ C with ℜδ > −1/2. Let x
(n)
k + iy

(n)
k , 0 ≤ k ≤ n be

defined as in Proposition 4.30. Then for any 0 < ε < cδ = 4
β
(ℜδ + 1

2
), there exists a

sequence of tight random variables κ(n) = κ(n)(ε) such that for all 0 ≤ k ≤ n− 1,

(κ(n))−1(1− k
n
)cδ+ε ≤ y

(n)
k ≤ κ(n)(1− k

n
)cδ−ε. (4.57)

Proof. Using the definition of y
(n)
k together with Fact 4.28 we get that

y
(n)
k =

k−1∏
j=0

(1 + w
(n)
k ),
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where for a fixed n the random variables w
(n)
k , 0 ≤ k ≤ n − 1 are independent with

distribution given in (4.51). By Fact 4.29, for |λ| < ℜδ+1/2 and 0 ≤ k ≤ n− 1 we have

logE[(y
(n)
k )λ] =

k−1∑
j=0

log

(
Γ(s

(n)
j +λ)Γ(t

(n)
j −λ)

Γ(s
(n)
j )Γ(t

(n)
j )

)
,

where s
(n)
j = β

2
(n − j − 1), t

(n)
j = β

2
(n − j − 1) + 2ℜδ + 1. By the asymptotics of the

Gamma function for any r > 0 there is a cr > 0 so that

∣∣log Γ(x)− ((x− 1
2
) log x+ x− log 2π

2
− 1

12
x−1
)∣∣ ≤ crx

−2 for x ≥ r.

From this (and some basic Taylor expansion estimates) it follows that y
(n)
k satisfies

condition (4.50) of Proposition 4.26 with c1 = cδ and c2 =
2
β
, and the statement follows

by Proposition 4.26.

Proposition 4.33. Fix β > 0, δ ∈ C with ℜδ > −1/2. Let x
(n)
k + iy

(n)
k , 0 ≤ k ≤ n be

defined as in Proposition 4.30. Then for any 0 < c′ < cδ =
4
β
(ℜδ + 1

2
), there exist tight

random constants κ
(n)
1 > 0 such that

|x(n)n − x
(n)
j | ≤ κ

(n)
1 (1− j

n
)c

′
for all 0 ≤ j ≤ n− 1. (4.58)

Proof. Fix ε > 0 so that c′ + 2ε < cδ. By Proposition 4.32 there is a sequence of tight

random variables κ(n) so that (4.57) holds, and the sequence κ(n) is measurable with

respect to the sigma-field generated by the random variables y
(n)
k , 0 ≤ k ≤ n− 1.

Set z
(n)
k = v

(n)
k /(2 + w

(n)
k ). Then from (4.18) we get

x
(n)
k+1 = x

(n)
k + z

(n)
k

(
2 + w

(n)
k

)
y
(n)
k = x

(n)
k + z

(n)
k

(
y
(n)
k+1 + y

(n)
k

)
,

and

x(n)n − x
(n)
j =

n−1∑
k=j

z
(n)
k

(
y
(n)
k + y

(n)
k+1

)
.
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Introduce

A(n) := max
0≤j≤n−1

∣∣∣∣∣
n−1∑
k=j

z
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣∣∣ (1− j

n

)−c′
,

the statement will follow once we show that the sequence A(n), n ≥ 1 is tight. We will

do that by first separating finitely many terms in the maximum, and then splitting the

sum using centered versions of z
(n)
k .

Set Nδ = ⌈ 2
β
(4 − ℜδ)⌉ ∨ 0 and ñ = n − Nδ − 1. Note that by Fact 4.29, the fourth

moment of z
(n)
k is finite for j ≤ ñ. By (4.52) the distribution of z

(n)
k only depends on

n− k, hence the path bounds (4.57) on y
(n)
k (together with cδ − 2ε− c′ > 0) imply that

the following sequence of random variables is tight:

A
(n)
0 := max

ñ+1≤j≤n−1

∣∣∣∣∣
n−1∑
k=j

z
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣∣∣ (1− j

n

)−c′
. (4.59)

Since the sequence A
(n)
0 , n ≥ 1 is tight, it suffices to show the tightness of the following

sequence:

Ã(n) := max
0≤j≤ñ

∣∣∣∣∣
ñ∑
k=j

z
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣∣∣ (1− j

n

)−c′
. (4.60)

We introduce

A
(n)
1 = max

0≤j≤ñ

∣∣∣∣∣
ñ∑
k=j

E
[
z
(n)
k

](
y
(n)
k + y

(n)
k+1

)∣∣∣∣∣ (1− j

n

)−c′
,

A
(n)
2 = max

0≤j≤ñ

∣∣∣∣∣
ñ∑
k=j

z̄
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣∣∣ (1− j

n

)−c′
,

where X = X − E[X]. Note that Ã(n) ≤ A
(n)
1 + A

(n)
2 .

By (4.52) and Fact 4.29 we have

E
[
z
(n)
k

]
=

2ℑδ
β(n− k − 1) + 2ℜδ

.
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Using the bounds in (4.57) with ε < cδ − c′ we get

A
(n)
1 ≤ max

0≤j≤ñ

{(
1− j

n

)−c′ ( ñ∑
k=j

4κ(n)|ℑδ|
β(n− k − 1) + 2ℜδ

(
1− k

n

)cδ−ε)}
≤ cκ(n), (4.61)

with a deterministic constant c that only depends on δ and β. This shows that the

sequence A
(n)
1 , n ≥ 1 is tight.

Next we turn to the tightness of the sequence A
(n)
2 . Choose 1 < θ < (cδ − 3

2
ε)/c′.

Define

m = m(n) = inf{i ∈ Z+ : θi ≥ log
(

n
Nδ+1

)
},

σ0 = σ
(n)
0 = 0, σi = σ

(n)
i = min

(
⌊n
(
1− e−θ

i)⌋, ñ) for 1 ≤ i ≤ m.

Note that σ0 = 0 ≤ σ1 ≤ · · · ≤ σm = ñ. In order to bound the tail of A
(n)
2 we will

split the index set of the sums into blocks {σi, σi + 1, · · · , σi+1} to control the term

(1 − j/n)−c
′
, and then control the fluctuations within each block. Fix K > 0, then we

have

P (A
(n)
2 ≥ K) ≤

m−1∑
i=0

P

(
max

σi≤j≤σi+1

∣∣∣ ñ∑
k=j

z̄
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣(1− j

n

)−c′
≥ K,κ(n) ≤

√
K

)

(4.62)

+ P
(
κ(n) >

√
K
)
.

Since κ(n) are tight, we have

lim
K→∞

lim sup
n→∞

P
(
κ(n) >

√
K
)
= 0.
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We now estimate the terms in the sum in (4.62) for each 0 ≤ i ≤ m− 1. We have

P

(
max

σi≤j≤σi+1

∣∣∣ ñ∑
k=j

z̄
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣(1− j

n

)−c′
≥ K,κ(n) ≤

√
K

)

≤ P

(∣∣∣ ñ∑
k=σi

z̄(n)n

(
y
(n)
k + y

(n)
k+1

)∣∣∣ ≥ K

2

(
1− σi+1

n

)c′
, κ(n) ≤

√
K

)

+ P

(
max

σi≤j≤σi+1

∣∣∣ j∑
k=σi

z̄
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣ ≥ K

2

(
1− σi+1

n

)c′
, κ(n) ≤

√
K

)
.

Note that the sequence κ(n) is measurable with respect to y
(n)
k , 0 ≤ k ≤ n and z̄

(n)
k are

independent of y
(n)
k . Hence by conditioning on y

(n)
k , 0 ≤ k ≤ n, using Doob’s maximal

inequality, and the path bound (4.57) we get

P

(
max

σi≤j≤σi+1

∣∣∣ j∑
k=σi

z̄
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣ ≥ K

2

(
1− σi+1

n

)c′
, κ(n) ≤

√
K

)

≤ E

[
1
(
κ(n) ≤

√
K
)(σi+1∑

k=σi

4E
[
(z̄

(n)
k )2

](
y
(n)
k + y

(n)
k+1

)2
K−2

(
1− σi+1

n

)−2c′
)]

≤ E

[
1
(
κ(n) ≤

√
K
)(σi+1∑

k=σi

16(κ(n))2E
[
(z̄

(n)
k )2

](
1− k

n

)2(cδ−ε)
K−2

(
1− σi+1

n

)−2c′
)]

≤ K−1

σi+1∑
k=σi

16E
[
(z̄

(n)
k )2

](
1− k

n

)2(cδ−ε)(
1− σi+1

n

)−2c′

. (4.63)

Using (4.52) and Fact 4.29 one can show that there exists an absolute constant c such

that

R.H.S. of (4.63) ≤ cK−1(1− σi
n
)2(cδ−ε)(1− σi+1

n
)−2c′ ≤ cK−1e−2θi(cδ−ε−c′θ) ≤ cK−1e−εθ

i

.

Similarly, Chebishev’s inequality, conditioning, and the path bound (4.57) give the upper

bound

P

(∣∣∣ ñ∑
k=σi

z̄
(n)
k

(
y
(n)
k + y

(n)
k+1

)∣∣∣ ≥ K

2

(
1− σi+1

n

)c′
, κ(n) ≤

√
K

)
≤ cK−1e−εθ

i

.
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This shows that the sum on the right of (4.62) can be bounded from above by

2
m∑
i=0

cK−1e−εθ
i ≤ c1K

−1

with an absolute constant c1. This proves the tightness of the sequence A
(n)
2 , n ≥ 1, and

completes the proof of the proposition.

Now we have all the pieces for the proof of Theorem 4.14.

Proof of Theorem 4.14. Consider the random variables x
(n)
k + iy

(n)
k , 0 ≤ k ≤ n defined in

Proposition 4.30, and define (x(n)(t), y(n)(t)) := (x
(n)
⌊nt⌋, y

(n)
⌊nt⌋). Let x̃ + iỹ be the process

defined in Proposition 4.9. Set q(n) = x
(n)
n and q = lim

t→1
x̃(t). Define τ (n), n ∈ Z+ using

(x(n) + iy(n), q(n)), and τ (∞) using (x̃+ iỹ, q). Then τ (n) ∼ CJn,β,δ and τ
(∞) ∼ HPβ,δ.

By Propositions 4.32 and 4.33 there exists a tight sequence κ(n), n ∈ Z+ so that the

inequalities (4.44) and (4.45) are satisfied for n ∈ Z+ with c1 = cδ − ε, c2 = cδ + ε,

c3 = cδ − ε. Here cδ =
4
β
(ℜδ + 1/2) and ε ∈ (0,min(cδ,

1
2
)) is arbitrary. By (4.25) there

is a finite random variable κ(∞) so that (4.44) and (4.45) are satisfied for x̃+ iỹ with the

just defined c1, c2, c3. Together with Proposition 4.30 this means that the conditions of

Corollary 4.24 are satisfied, and hence the statement of the theorem follows.

The proof of Theorem 4.16 follows along the same line.

Proposition 4.34. Fix β > 0, a, b > −1. Let y
(2n)
k , 0 ≤ k ≤ 2n be defined as in

Proposition 4.31. Then for any ε > 0 small, there exists a sequence of tight random

variables κ(2n) = κ(2n)(ε) such that for all 0 ≤ k ≤ 2n− 1,

(κ(2n))−1(1− k
2n
)2a+1+ε ≤ y

(2n)
k ≤ κ(2n)(1− k

2n
)2a+1−ε.
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Proof. One can just mimic the steps of the proof of Proposition 4.32 using the parameters

(s
(2n)
k , t

(2n)
k ) =


(
β
4
(2n− k + 2a), β

4
(2n− k + 2b)

)
if k is even,(

β
4
(2n− k + 2a+ 2b+ 1), β

4
(2n− k − 1)

)
if k is odd,

and c1 = 2a+ 1, c2 =
4
β
.

Proof of Theorem 4.16. Consider the random variables y
(2n)
k , 0 ≤ k ≤ n defined in

Proposition 4.31, and define (x(2n)(t), y(2n)(t)) := (0, y
(2n)
⌊2nt⌋). Let ỹ be the process defined

in Proposition 4.12 and set x̃ = 0. Set q(2n) = q = 0, and define τ (2n), n ∈ Z+ using

(x(2n)+iy(2n), q(2n)), and τ (∞) using (x̃+iỹ, q). Then τ (2n) ∼ RO2n,β,a,b and τ
(∞) ∼ Bessβ,a.

By Propositions 4.34 there exists a tight sequence κ(2n), n ∈ Z+ so that the inequal-

ities (4.44) and (4.45) are satisfied for n ∈ Z+ with c1 = 2a + 1 − ε, c2 = 2a + 1 + ε,

c3 = max(c1, 1). (Note that since x(2n) = q(2n) = 0 the inequality (4.45) holds for any

positive c3.) Here ε ∈ (0, 1
2
) is chosen so that c1 > −1. By the sublinearity of Brownian

motion there is a finite random variable κ(∞) so that (4.44) and (4.45) are satisfied for

x̃ + iỹ with the just defined c1, c2, c3. Together with Proposition 4.31 this means that

the conditions of Corollary 4.24 are satisfied, and hence the statement of the theorem

follows.

4.7 Proofs of the theorems related to the limiting

operators

In this section we provide the proofs for our results on the properties and characteri-

zations of the limiting point processes and random analytic functions arising from the
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circular Jacobi β-ensemble and the real orthogonal β-ensemble (Theorems 4.18, 4.19,

4.20 and 4.21).

4.7.1 Simple transformations of Dirac operators

For some of our results it will be more convenient to consider Dirac operators that live

on (0, 1], with a potential limit point at 0. (In fact this is the framework used in [65].)

In order to do this, the framework introduced in Section 4.1.1 has to be extended to also

include the following setup (we call this the reversed framework):

a) Both the generating path x + iy and the weight function R (defined via (4.4)) are

defined on (0, 1]. The operator τ in (2.7) acts on (0, 1] → R2 functions.

b) In Assumption 4.1 the first integral condition is replaced with
∫ 1

0
∥R(s)u0∥ds <∞.

Otherwise we have the same assumptions: x+ iy is measurable and locally bounded

on its domain, the boundary conditions u0, u1 satisfy (4.5). Then τ is self-adjoint on the

domain dom(τ) given by (4.7), its inverse is a Hilbert-Schmidt integral operator with

the kernel given in (4.8). The operator r τ , the integral trace tτ , and the secular function

ζτ can be defined the same way as before (see Section 4.1.1).

There is a simple way to move between the two frameworks. Introduce the time

reversal operator ρf(t) := f(1 − t) acting on functions defined on [0, 1) or (0, 1]. Let

ι : H → H be defined as the reflection x+ iy → −x+ iy, and set

S =

 1 0

0 −1

 .

If a weight function R is generated by the path z = x + iy, then SRS is the weight

function corresponding to the path ιz.

The statements of the following two lemmas are contained in Lemma 36 of [65].
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Lemma 4.35 ([65]). Assume that the Dirac operator τ = Dir(R, u0, u1) satisfies the

assumptions (4.5) and (4.6) with boundary conditions u0, u1, weight function R, and

generating path z = x + iy. Then the operator ρ−1SτSρ satisfies the assumptions of

the reversed framework with boundary conditions −u1,−u0, weight function ρSRS, and

generating path ιρz. The operators τ and ρ−1SτSρ are orthogonally equivalent in the

respective L2 spaces, they have the same integral traces and secular functions.

Lemma 4.36 ([65]). Let Q be a 2 × 2 orthogonal matrix with determinant 1. Let

Q : H̄ → H̄ be the corresponding linear isometry of H̄ mapping z ∈ H̄ to the ratio

of the entries of Q[z, 1]t. Suppose that the Dirac operator τ satisfies the assumptions

(4.5) and (4.6) with boundary conditions u0, u1 and generating path x + iy. Then the

operator QτQ−1 also satisfies the same assumptions, with boundary conditions Qu0,Qu1

and generating path Q(x+ iy). The two operators are orthogonally equivalent, they have

the same integral traces and secular functions. The same statement holds if τ satisfies

the assumptions of the reversed framework.

4.7.2 Proofs of the theorems related to HPβ,δ

Our first step is to produce a unitary equivalent form of the operator HPβ,δ where the

driving path is independent of the boundary conditions. In order to do that, we use

the following factorization lemma for the diffusion (4.24). This is a generalization of

Proposition X.3.1 in [24] which treats the δ = 0 case, i.e. the hyperbolic Brownian

motion.

We recall that in the Poincaré half plane model of the hyperbolic plane the isometries
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are of the form z → az+b
cz+d

with a, b, c, d ∈ R and ad− bc ̸= 0. For r ∈ R we set

Tr(z) =
rz + 1

r − z
. (4.64)

Tr is the hyperbolic rotation about the point i taking r to ∞ and ∞ to −r.

Theorem 4.37. Fix δ ∈ C with ℜδ > −1/2. Consider the diffusion w = x+ iy defined

in (4.24), and denote by w∞ the a.s. limit as t → ∞. Then the process w̃t = Tw∞wt

satisfies the diffusion

dw̃ = ℑw̃(dZ̃ + i(1 + δ̄)dt), w̃0 = i. (4.65)

where Z̃ is standard complex Brownian motion.

Moreover, if a process w̃ satisfies the SDE (4.65), and q is a random variable with

distribution PIV (ℜδ+1,−2ℑδ) then the process xt+iyt = T−1
q w̃t satisfies the SDE (4.24)

with B1, B2 being independent copies of standard Brownian motion.

Proof. By Theorem 4.11 the distribution of w∞ is given by PIV (ℜδ+1,−2ℑδ). The SDE

(4.24) is invariant under affine transformations of the form z → a+bz with a ∈ R, b > 0.

Hence for a ∈ R, b > 0 the solution of (4.24) with initial condition a + ib will converge

in distribution to a + bw∞ where w∞ ∼ PIV (ℜδ + 1,−2ℑδ). Now using either Doob’s

h-transform or the technique of enlargement of filtrations (c.f. [55], or [40]) one can show

that for a given r ∈ R∪{∞} the process w conditioned on the event {w∞ = r} satisfies

the diffusion

dz(r) = ℑz(r)
(
dZ + i(1 + δ̄)

z(r) − r

z(r) − r
dt

)
, z(r)(0) = i. (4.66)

Here Z is a standard complex Brownian motion, and in the r = ∞ case the z(r)−r
z̄(r)−r term

in the drift is replaced by the constant one. In particular, z(∞) has the same distribution
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as the process w̃ from (4.65), and it hits ∞ with probability one. Using Ito’s formula

one can readily check that for r ∈ R the rotated process w̃(r) = Tr(z
(r)) = rz(r)+1

r−z(r) satisfies

the SDE (4.65), in particular, its distribution does not depend on r. This shows that

the rotated process t → Tw∞wt has the same distribution as w̃ from (4.65), and that it

is independent of w∞. Using w∞ ∼ PIV (ℜδ + 1,−2ℑδ) the second half of the theorem

follows as well.

We will now construct a reversed and transformed version of HPβ,δ. Let B1, B2 be

independent two-sided real Brownian motion. Consider the two-sided version of x + iy

from (4.24) defined using B1, B2, i.e.,

ys = eB2(s)−(ℜδ+ 1
2
)s, xs =


−
∫ 0

s
y(t)dB1 −ℑδ

∫ 0

s
y(t)dt s ≤ 0,∫ s

0
y(t)dB1 + ℑδ

∫ s
0
y(t)dt s ≥ 0.

(4.67)

We also introduce the time change

uβ(t) = −υβ(1− t) =
4

β
log t.

Definition 4.38. Let q be a random variable with distribution PIV (1 + ℜδ,−2ℑδ) in-

dependent of B1, B2. Set x̂(t) + iŷ(t) = x(uβ(t)) + iy(uβ(t)) for t ∈ (0, 1]. Define the

reversed and transformed version of the HPβ,δ operator as

τ HPβ,δ = Dir(x̂+ iŷ, u0, u1),

where u0 = [1, 0]t, u1 = [−q,−1]t.

In this section we will use the simplified notation τβ,δ for τ
HP
β,δ, and denote the secular

function of τβ,δ by ζβ,δ.
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Lemma 4.39. The operator τβ,δ is orthogonal equivalent to an operator which has the

same distribution as the HPβ,δ operator. In particular, the random analytic function ζβ,δ

has the same distribution as ζHPβ,δ.

Proof. Recall the transformations ι, S and ρ defined in and around Lemma 4.35. Let Tq

be the hyperbolic rotation defined in (4.64). Consider the Dirac operator

τ̃ = ρ−1S Dir(Tq(x̂+ iŷ), Tqu0, Tqu1)Sρ = Dir(ριTq(x̂+ iŷ),−Tqu1,−Tqu0).

Here we identify the boundary condition u = [a, b]t with its projection a/b onto the real

axis so that Tqu0, Tqu1 are well defined:

−Tqu1 = ∞, −Tqu0 = q.

By Lemmas 4.35 and 4.36 the operator τ̃ is orthogonal equivalent to τβ,δ, hence we just

have to show that τ̃ has the same distribution as HPβ,δ.

Note that Tq = T−1
−q and −q ∼ PIV (ℜδ+1, 2ℑδ). From the definition (4.67) it follows

that the reversed process (x−s + iy−s), s ≥ 0 satisfies the SDE (4.65) with drift i(1 + δ)

in place of i(1 + δ̄). Hence by Theorem 4.37, the process Tq(x−s + iy−s), s ≥ 0 satisfies

the SDE

dw = ℑw(dZ − iδ̄ds), w(0) = i,

with standard complex Brownian motion Z, and the path converges to Tq∞ = −q as

s→ ∞. From this it follows that

ριTq(xu(·) + iyu(·))
d
= ρ(x−u(·) + iy−u(·)) = (xυβ(·) + iyυβ(·)),

with limt→1 ριTq(xu(t) + iyu(t)) = q. This shows that the driving path and boundary

conditions of τ̃ match up (in distribution) with the corresponding ingredients of the

HPβ,δ operator, proving the statement of the lemma.
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The independence of the boundary point and the driving path in the reversed oper-

ator τβ,δ allows us to prove Theorem 4.20. Our proof follows the proof of Theorem 1 of

[65], which can be considered the δ = 0 case of our theorem.

Proof of Theorem 4.20. By Lemma 4.39 the random analytic function ζβ,δ has the same

distribution as ζHPβ,δ. Hence we can work with the reversed operator τβ,δ, and prove the

statements of the theorem for ζβ,δ.

By Proposition 13 in [65] the secular function of τβ,δ can be characterized as follows.

Let R(t) be the weight function built from the driving path of the reversed τβ,δ operator

according to (4.4). Then there exists a unique function H : (0, 1]× C 7→ C2 so that for

every z ∈ C the function H(·, z) solves the ODE

J
d

dt
H(t, z) = zR(t)H(t, z), lim

t→0
H(t, z) = u0 = [1, 0]t. (4.68)

The secular function ζβ,δ can be obtained fromH using the formula ζβ,δ(z) = [1,−q]H(1, z).

Consider the process Xu =

1 −xu

0 yu

 , u ≤ 0, where xu + iyu is defined in (4.67).

Define Hu(z) = XuH(t(u), z) with t(u) = e
β
4
u being the inverse of u(t) = 4

β
log t. Since

X0 =

 1 0

0 1

, we have ζβ,δ(z) = [1,−q]H0(z). A direct computation using Itô’s

formula shows that Hu solves the SDE (4.34). To be precise, one first has to consider

approximations of Hu that are defined on [ε, 1], for this one has to use the approximation

method introduced in Propositions 20 and 43 in [65]. A simple extension of those

arguments also shows the characterization of Hu(z) as the unique solution of (4.34)

with the conditions given.

Now write Hu = [Au,Bu]t. The functions Au,Bu are entire functions on C, we

denote their Taylor coefficients at 0 by A(n)
u ,B(n)

u . Since the SDE system (4.34) depends
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analytically on its parameter z, Itô’s formula can be applied to get SDEs for derivatives

in this parameter as well, see e.g. Section V.7 of [46]. Differentiating (4.34) n times in z

and considering z = 0 shows that the Taylor coefficients A(n),B(n) satisfy the following

system of SDEs

dB(n) = B(n)dB2 −ℜδB(n)du− β

8
eβu/4A(n−1)du,

dA(n) = −B(n)dB1 −ℑδB(n)du+
β

8
eβu/4B(n−1)du,

with initial conditions B(0) ≡ 0, A(0) ≡ 1. Mimicking the proof of Propositions 45 and

47 in [65] one can prove that the solution of the above system exist, and it is given by

equations (4.35), (4.36).

Using the SDE characterization of ζHPβ,δ given in Theorem 4.20 we are able to prove

Theorem 4.18.

Proof of Theorem 4.18. As in the proof of Theorem 4.20, we work with the operator

τβ,δ. The spectrum of this operator has the same distribution as the HPβ,δ process.

Consider the random analytic function valued processes Au,Bu introduced in the

proof of Theorem 4.20. Recall that ζβ,δ = [1,−q]H0 = A0 − qB0, with q given in the

definition of τβ,δ, see Definition 4.38.

We introduce the structure function E(u, z) = Au(z)− iBu(z), note that this can also

be expressed as [1,−i]H(u, z) with Hu defined in the proof of Theorem 4.20. For λ ∈ R

we define 2 log E(u, λ) = Lλ(u) + iαλ(u) with Lλ, αλ ∈ R, where for each u ∈ R the

function is chosen so that it is continuous in λ and α0(u) = 0. (This is possible because

Hu(z) is continuous in z and it is never equal to [0, 0]t.) By (4.34) and Itô’s formula we
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get

dαλ = λβ
4
e

β
4
udu+ ℜ[(e−iαλ − 1)(dZ − iδdu)], αλ(−∞) = 0. (4.69)

The process ψλ(t) = αλ(u(t)) with u(t) = 4
β
log t satisfies the SDE (4.31), and simple

coupling arguments show that it is the unique solution of (4.31) with the conditions

given in Theorem 4.18. (See e.g [34] for more details in the δ = 0 case.)

Set θ = −2 arccot q. By the comment following Theorem 4.11 we have eiθ ∼ Θ(1, δ),

and θ is independent of the complex Brownian motion Z in (4.69). The eigenvalues of

τβ,δ are given by the zeros of ζβ,δ. By definition we have ζβ,δ(λ) = 0 if and only if E(0, λ)

is a real multiple of q − i, or equivalently αλ(0) = ψλ(1) = 2 log(q − i) = θ mod 2π.

Using spec(τβ,δ)
d
= HPβ,δ finishes the proof.

Now we turn to the proof of Theorem 4.19. We first isolate the statements regarding

the SDE (4.33) in a separate lemma.

Lemma 4.40. The SDE system (4.33) has a unique strong solution on t ∈ [0,∞),

λ ∈ R. With probability one the process λ → αλ(t) is increasing for all t > 0. For

each λ ∈ R the limit lim
t→∞

1
2π
αλ(t) exists almost surely and it is an integer. Moreover, if

β ≤ 4(ℜδ + 1
2
) and λ > 0 then a.s. 1

2π
αλ(t) converges to an integer from above.

Note that for δ = 0 these statements were proved in Theorem 7 and Proposition 9

of [62].

Proof. The fact that the system (4.33) has a unique strong solution follows from standard

theory, the monotonicity property is a consequence of the monotone dependence of the

drift function of the parameter λ.
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For a fixed λ ∈ R the process αλ solves the SDE

dαλ = λβ
4
e−

β
4
tdt+ (ℑδ(cosαλ − 1)−ℜδ sinαλ)dt+ 2 sin(αλ

2
)dW, αλ(0) = 0, (4.70)

where W is a standard real Brownian motion depending on λ.

For λ = 0 we have αλ(t) = 0. It is sufficient to show the statement for λ > 0, since

−α−λ solves the same SDE as αλ with δ̄. From the monotonicity in λ it follows that for

λ > 0 we have αλ(t) > 0 for t > 0 almost surely, and if t0 > 0, m ∈ Z then on the event

αλ(t0) > 2mπ one has αλ(t) > 2mπ for all t > t0 with probability one. (See Proposition

9 in [62] for the proof of these statements in the δ = 0 case.)

Fix λ > 0, and introduce the diffusion

X(t) =


log(tan(αλ(t)/4)), if αλ(t) ∈ [4kπ, (4k + 2)π),

− log(− tan(αλ(t)/4)), if αλ(t) ∈ [(4k + 2)π, (4k + 4)π).

By Itô’s formula, this diffusion satisfies the SDE

dX = λβ
8
e−βt/4 coshXdt+ (ℜδ + 1

2
) tanhXidt−ℑδ sechXdt+ dW, X(0) = −∞,

(4.71)

with a W standard Brownian motion that is a simple transformation of the W from

(4.70). Note that the diffusion might blow up to∞ in finite time, in which case it restarts

immediately from −∞. To prove the convergence statement for 1
2π
αλ(t) we need to show

that with probability one lim
t→∞

X(t) exists and it is an element of {−∞,∞}. This can

be proved with fairly straightforward coupling arguments, we will only give a sketch of

the proof.

For given t0 > 0, x ∈ R we can consider the solution of (4.71) on [t0,∞) with

X(t0) = x. We denote the distribution of the process by Pt0,x.
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Denote the drift term in the SDE (4.71) by

R(x, t) = λβ
8
e−βt/4 coshx+ (ℜδ + 1

2
) tanhx−ℑδ sechx.

Note that when |x| ≤ 2M , the function |R(x, t)| could be bounded from above by a

constant c = c(M, δ, β, λ) that is independent of t. By coupling R with a Brownian

motion with drift c, it follows that for any fixed M > 0 there is an ε ∈ (0, 1) so that

sup
t0>0,|x|≤M

Pt0,x (|X(t)| ≤M for all t ∈ [t0, t0 + 1]) ≤ 1− ε.

Using the strong Markov property it now follows that for any t0 > 0, x ∈ [−M,M ] we

have

Pt0,x (|X(t)| ≤M for all t ≥ t0) = 0. (4.72)

We will show that there is a positive constant c1, so that

lim
M→∞

inf
t0≥c1M
|x|≥M

Pt0,x( lim
t→∞

X(t) ∈ {−∞,∞}) = 1. (4.73)

This statement together with (4.72) implies that with probability one limt→∞X(t) ∈

{−∞,∞}.

Fix x ≥M , t0 > 0. For any fixed 0 < c+ < ℜδ+ 1
2
, we could choose M large so that

R(x, t) ≥ c+ for all x ≥M/2, t ≥ 0. Under the distribution Pt0,x, the coupling

X(t)−M ≥ Wc+(t0, t) := W (t)−W (t0) + c+(t− t0)

holds on [t0, σ] where

σ := inf
t≥t0

{X(t−) = ∞ or Wc+(t0, t) ≤ −M/2}.
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Since c+ > 0, the random variable − inft≥t0 Wc+(t0, t) is distributed as an exponential

random variable with parameter 2c+ (see e.g. [41]). Thus,

Pt0,x(Wc+(t0, t) > −M
2
, ∀t ≥ t0) = 1− e−c+M .

Using the sublinearity of Brownian motion we get that

inf
t0>0
x≥M

Pt0,x( lim
t→∞

X(t) = ∞ or X(t) blows up in finite time) ≥ 1− e−c+M . (4.74)

Next we fix the constants c−, c2 with 0 < c− < c2 < min{ℜδ + 1
2
, β
4
}, and fix

t0 ≥ 2c−1
2 M , x0 ≤ −M . The bound R(x, t) ≤ −c− holds in the region

R := {(t, x) : −M/2 ≥ x ≥ −c2t, t ≥ t0},

if M is larger than a fixed constant that only depends on λ, δ and β. Thus under Pt0,x0

we can couple X(t)− x0 on [t0,∞) from above with the process

W−c−(t0, t) := W (t)−W (t0)− c−(t− t0),

on the event that (t,−M+W−c−(t0, t)) stays in the region R. Note that by our assump-

tion (t0,−M +W−c−(t0, t0)) ∈ R. Note that both

sup
t≥t0

W−c−(t0, t) and − inf
t≥t0

W−c−(t0, t) + c2(t− t0)

are exponentially distributed, with parameters 2c− and 2(c2 − c−), respectively. Hence

the probability of (t,−M + W−c−(t0, t)) not staying in the region R is exponentially

small in M . Since −M +W−c−(t0, t) converges to −∞ as t→ ∞, we get

lim
M→∞

inf
t0>2c−1

2 M
x0≤−M

Pt0,x0( lim
t→∞

X(t) = −∞) = 1. (4.75)
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From (4.74) and (4.75) we get (4.73), which implies that a.s. X converges to either ∞

or −∞.

In the case β ≤ 4(ℜδ + 1
2
), the HPβ,δ operator is limit point at t = 1. In this case,

for λ > 0 one can show that the limit of X(t) has to be −∞. This generalizes Theorem

7 of [62] which proves the statement for δ = 0. The idea is that for any fixed δ with

ℜδ+1/2 > 0 one can chooseM large so that the term −ℑδ sechx in R(x, t) is negligible

on the event {X(t) ≥ M for t ≥ t0}. After dropping that term, one can just mimic the

proof of the δ = 0 case from Theorem 7 of [62]. This proves that a.s. X converges to −∞

when β ≤ 4(ℜδ + 1
2
) and hence a.s. αλ converges from above for any fixed λ > 0.

We now have all the ingredients to prove Theorem 4.19.

Proof of Theorem 4.19. The statements about the SDE (4.33) are proved in Lemma

4.40. The rest of the proof will follow along the lines of the proof of Theorem 26 in [64],

where the δ = 0 case is handled.

Consider the operator HPβ,δ defined in Proposition 4.9. Let v = vλ = [v1, v2]
t be the

solution of the differential equation HPβ,δv = λv with v(0) = [1, 0]t. Then the ratio of

the two components rλ(t) =
v1(λ,t)
v2(λ,t)

satisfies the ODE

r′λ = λ ỹ
2+(x̃−rλ)2

2ỹ
, (4.76)

with initial condition rλ(0) = ∞. Consider the hyperbolic angle α̃λ = α̃λ,δ between the

points ∞, x̃+ iỹ, rλ, this is given by α̃λ = 2arccot( x̃−rλ
ỹ

). More precisely, we can define

a “lifted” version of this function on R that is continuous in λ and t, satisfies α̃λ(0) = 0

and cot(α̃λ/2) =
x̃−rλ
ỹ

.

By Itô’s formula, together with a change of variable αλ(t) = α̃λ,δ(e
−βt/4), we get the
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SDE system

dαλ = λβ
4
e−

β
4
tdt+ ℜ[(e−iαλ − 1)(dZ − iδdt)], αλ(0) = 0.

Let N(λ) be the right-continuous version of the limit lim
t→∞

1
2π
αλ(t). It remains to

prove that N(·) has the same distribution as the counting function of the spectrum of

the HPβ,δ operator. The proof relies on the oscillation theory of Dirac operators, see

Section 4 in [64], and it can be done exactly the same way as in Theorem 26 in [64].

The only ingredients that are needed to cover the general ℜδ + 1/2 > 0 case are the

following: (1) the right endpoint of the HPβ,δ operator is limit point if β ≤ 4(ℜδ + 1/2)

and limit circle otherwise (see Proposition 31 in [64]), and (2) for β ≤ 4(ℜδ + 1/2) in

the λ > 0 case αλ(t) converges to its limit from above a.s. by Lemma 4.40.

4.7.3 Proofs of the theorems related to Bessβ,a

Proof of Theorem 4.21. It will be more convenient to work with a time reversed version

of the operator Bessβ,a. Let y(u) = exp(−β
4
(2a+1)u+B(2u)) and ŷ(t) = y(uβ(t)) with

uβ(t) =
4
β
log t. We consider the reversed Dirac operator

τ Bβ,a = Dir(iŷ(t), u0, u1), t ∈ (0, 1],

where u0 = [1, 0]t, u1 = [0,−1]t. Within this proof we use the simplified notation τβ,a

for τ Bβ,a, and denote the secular function of τβ,a by ζβ,a. By the symmetry of Bessβ,a,

Lemmas 4.35 and 4.36, we have

ρJτβ,aJρ
−1 d

= Bessβ,a.

Hence τβ,a is orthogonal equivalent to Bessβ,a, its eigenvalues have the same law of the

Bessβ,a process, and ζBβ,a has the same distribution as ζβ,a.
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The statement about the Taylor expansion of ζβ,a follows from Proposition 9 in [65],

which shows that the nth Taylor coefficient of ζβ,a can be evaluated using the multiple

integral

−
∫∫∫

0<s1<s2<···<sn≤1

ut0R(s1)JR(s2)J · · ·R(sn)u1ds1 · · · dsn, R(s) =
1

2

ŷ(s)−1 0

0 ŷ(s)

 .

Noting that the multiple integral is 0 when n is odd, the statement about the Taylor

expansion of ζβ,a follows.

The SDE representation of ζβ,a can be shown similarly as the analogue statement for

ζHPβ,δ. By Proposition 13 in [65], we have ζβ,a(z) = [1, 0]H(1, z), where H : (0, 1]×C 7→ C2

is the unique function that solves the ODE

J
d

dt
H(t, z) = zR(t)H(t, z), lim

t→0
H(t, z) = u0.

Introduce Xu =

1 0

0 y(u)

 , u ≤ 0. Then we have ζβ,a(z) = [1, 0]H0(z) where Hu(z) =

XuH(e
β
4
u, z). The fact thatH satisfies the SDE (4.38) can be checked using Itô’s formula

and an adaptation of the approximating scheme described in Propositions 20 and 43 in

[65].

Note that the Taylor coefficients of ζβ,a can also be expressed by differentiating the

SDE (4.38) and solving the resulting system of SDEs. This gives another way to derive

(4.37).
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Chapter 5

Additional results related to the

HPβ,δ process

The diffusion description given in Theorem 4.19 allows us to study various properties of

the counting function of the HPβ,δ process via the SDE (4.33). For a given λ ∈ R the

process αλ given by (4.33) has the same distribution as the unique strong solution of

dαλ = λβ
4
e−

β
4
tdt+ (ℑδ(cosαλ − 1)−ℜδ sinαλ)dt+ 2 sin(αλ

2
)dW, αλ(0) = 0. (5.1)

Here W is a standard Brownian motion (which also depends on λ).

As an application of Theorem 4.19, one can study the asymptotics of large gap

probabilities of the HPβ,δ process. For β > 0,ℜδ > −1/2 let

GAPλ = P (HPβ,δ ∩[0, λ] = ∅), λ > 0, (5.2)

be the probability of HPβ,δ having no points in the interval [0, λ]. The asymptotics of

GAPλ as λ → ∞ can be studied with a change of measure argument, by comparing αλ

to a similar diffusion which converges to 0 a.s. This approach was carried out in [63]

for the Sineβ process, and the proof in [63] can be extended to cover the HPβ,δ process.

Our main result is the following asymptotic expansion.

Theorem 5.1. Fix β > 0 and δ ∈ C with ℜδ > −1/2. Then as λ→ ∞ we have

GAPλ = (κβ,δ + o(1))λγβ,δ exp

(
− β

64
λ2 +

(β
8
− 1

4
+

1

2
ℑδ
)
λ

)
,
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where

γβ,δ =
1

4

(β
2
+

2

β
− 3
)
−ℜδ + 2

β
ℜ
(
δ + δ2

)
.

A similar type of result was proved in [47] for the asymptotic gap probability of

the hard edge process (spectrum of the operator Gβ,a given in (2.1)). For the square

root of the hard edge process (which is a constant multiple of the Bessβ,a process, see

Proposition 4.12 and Remark 4.13), Holcomb [26] proved a similar stochastic differential

equation description of its counting function, building on the results of [48]. LetMa,β(λ)

be the counting function of the Bessβ,a process and B a standard Brownian motion.

Then, by Theorem 1.4 of [26], the function λ → Ma,β(λ) has the same distribution as

the right continuous version of the function λ → lim
t→∞

⌊ 1
4π
φa,λ(t)⌋, where φa,λ solves the

SDE

dφa,λ =
β

2

(
a+

1

2

)
sin
(φa,λ

2

)
dt+ λ

β

4
e−βt/8dt+

φa,λ
2
dt+ 2 sin

(φa,λ
2

)
dB, (5.3)

with initial conditions φa,λ(0) = 2π. By analyzing the coupled system of SDE (5.3),

Holcomb [26] also proved various properties (for example a transition to Sineβ process

and a Central Limit Theorem) for the square root of the hard edge process. Using the

techniques introduced in [26], we get similar results for the HPβ,δ process.

Theorem 5.2. Fix β > 0 and δ ∈ C with ℜδ > −1/2. Then as λ→ ∞, we have

(HPβ,δ −λ) ⇒ Sineβ .

Let N(·) be the counting function of the HPβ,δ process, as λ→ ∞ we have

1√
log λ

(
N(λ)− λ

2π

)
⇒ N

(
0,

2

βπ2

)
,

where N (µ, σ2) is the mean µ, variance σ2 normal distribution.
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Section 5.1 provides the proof of Theorem 5.1, the asymptotics of the gap probability.

In Section 5.2, we will prove Theorem 5.2 as two separate propositions.

5.1 Large gap probability

Fix β > 0, δ ∈ C with ℜδ > −1/2, the gap probability for λ > 0 is defined as in (5.2).

Using the counting function description of the HPβ,δ process proved in Theorem 4.19,

we could rewrite the gap probability as

GAPλ = P
(
lim
t→∞

αλ(t) = 0
)
, (5.4)

where αλ is the unique strong solution of (5.1).

To analyze the diffusion αλ, it is more convenient to remove the space dependence

from the diffusion coefficient. Recall also the change of variable used in the proof of

Theorem 4.19,

X(t) = Xλ(t) =


log(tan(αλ(t)/4)), if αλ(t) ∈ [4kπ, (4k + 2)π),

− log(− tan(αλ(t)/4)), if αλ(t) ∈ [(4k + 2)π, (4k + 4)π).

(5.5)

By Itô’s formula, this diffusion satisfies the SDE

dX = λβ
8
e−

β
4
t coshXdt+ (ℜδ + 1

2
) tanhXdt−ℑδ sechXdt+ dW, X(0) = −∞, (5.6)

with aW standard Brownian motion depending on λ. Note that the diffusion might blow

up to ∞ in finite time, in which case it restarts immediately from −∞. By analyzing

the drift term in (5.1) when αλ crosses 2πZ, we get the function ⌊αλ(t)
2π

⌋ is non-decreasing

in t. Together with Theorem 4.19, we see that the event {limt→∞ αλ(t) = 0} implies

X(t) <∞ for all time t ≥ 0. This shows that

GAPλ = P
(
{X(t) <∞, ∀t <∞} ∩ { lim

t→∞
X(t) = −∞}

)
.
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It would be useful later on to consider the diffusion (5.6) with a general initial

condition X(0) = x ∈ [−∞,∞). Introduce the passage probability

pλ(x) := Px (X(t) is finite for all t ≥ 0 and does not converge to ∞ as t→ ∞) ,

where Px denotes the distribution of X(t) under the condition X(0) = x. We drop the

initial condition when x = −∞ and write pλ = pλ(−∞) = GAPλ for all fixed λ > 0.

The proof of Theorem 5.1 will be postponed to the end of this section.

Remark 5.3. In this work, we will describe the constant term κβ,δ as the expectation of

a functional of a certain diffusion, but we do not attempt to identify the exact value of

κβ,δ. In the case when δ = 0, the constant term was known for β = 1, 2, 4, we refer to

[63] and the references therein for more details.

First observe that a time shift of equation (5.6) only changes the parameter λ and

the initial condition. More precisely, the process α̂λ(t) := αλ(t + T ) where T = 4
β
log λ

satisfies (5.6) with λ = 1 and a random initial condition α̂λ(0) = αλ(T ). Together with

the Markov property of X(t) we get

pλ(x) = Ex [1(X(t) is finite for all t ≤ T )p1(X(T ))] ,

where Ex denotes the expectation under the distribution Px. Following the work of

Valkó and Virág [63] on the large gap probability of the Sineβ process (note that

Sineβ = HPβ,0), the idea is to find a new diffusion Y which approximates the condi-

tional distribution of the diffusion X under the event that it does not blow up. Our

main tool is the following version of the Cameron-Martin-Girsanov formula.
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Proposition 5.4 ([63]). Let B, B̃ be standard real Brownian motions. Consider the

stochastic differential equations

dX = g(t,X)dt+ dB, lim
t→0

X(t) = ∞, (5.7)

dY = h(t, Y )dt+ dB̃, lim
t→0

Y (t) = ∞ (5.8)

on the interval (0, T ]. Assume that the equation (5.7) has a unique solution X : (0, T ] 7→

(−∞,∞]. Let

Gs = Gs(X) =

∫ s

0

(h(t,X)− g(t,X))dX − 1

2

∫ s

0

(h(t,X)2 − g(t,X)2)dt, (5.9)

and assume that

(a). g2 − h2 and g − h are bounded when x is bounded from above.

(b). Gs is bounded from above by a deterministic constant.

(c). If X hits +∞ at time τ then Gs → −∞ when s ↑ τ . In this case, we define

Gs := −∞ for s ≥ τ .

Consider the process Ỹ whose density with respect to the distribution of X is given by

eGT . then Ỹ satisfies the SDE (5.8) and never blows up to ∞ almost surely. Moreover,

for any nonnegative function ϕ of the path of X that vanishes when X blows up we have

E[ϕ(X)] = E[ϕ(Y )e−GT (Y )].

From now on, we focus on the construction of the Y diffusion. Precisely, we will

construct an a.s. finite diffusion Y which solves

dY = h(t, Y )dt+ dBt, Y0 = −∞, (5.10)
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and such that the Radon-Nikodym derivative eGT with GT defined in (5.9) is close to

the asymptotic expansion of pλ with the desired logarithmic correction exponent γβ,δ.

Lemma 5.5 (Construction of Y ). Consider the solution of (5.6) and set T = 4
β
log λ.

There exists a function h(t, x) so that assumptions a-c of Proposition 5.4 hold, and GT

satisfies

−GT (X) = − β

64
λ2 +

(β
8
− 1

4
+

1

2
ℑδ
)
λ+

(
1

4

(β
2
+

2

β
− 3
)
−ℜδ + 2

β
ℜ(δ + δ2)

)
log λ

+
β

8
eX(T ) +

(
2− β

2
+ 2ℜδ

)
X(T )+ + ω(X(T )) +

∫ T

0

ϕ(T − t,X(t))dt.

Here the function ω is bounded and continuous, ϕ is continuous and bounded by a func-

tion ϕ̃(t) which has a finite integral on [0,∞).

Moreover, the function h(t, x) has the following form

h(t, x) = −λ
2
f(t) sinh(x) + h0(t, x), (5.11)

where f(t) = β
4
e−

β
4
t and |h0(t, x)| < c for all t ∈ [0, T ].

Proof. Following the work of Valkó-Virág [63], we would like to present the process of

how one can find the appropriate drift function, rather than check directly that GT

satisfies the statement under the choice of the given drift function h(t, x).

Recall that the diffusion X satisfies the SDE (5.6). We further decompose the drift

term of (5.6) as g = g1 + g2 + g3, where

g1(t, x) =
λ

2
f cosh(x), g2(x) = (ℜδ + 1

2
) tanhx, g3(x) = −ℑδ sechx.

Our goal is to find h such that the diffusion Y will approximate the conditional distri-

bution of X under the event that it does not blow up in the interval [0, T ]. If such an
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approximation exists, by Proposition 5.4 we have

−Gs(X) =

∫ s

0

(g(t,X)− h(t,X))dX +
1

2

∫ s

0

(h2(t,X)− g2(t,X))dt.

We will start with the highest order. To that end, we write h = h1+h2+h3+h4. Define

h1(t, x) = −λ
2
f sinhx, then we have

1

2

∫ s

0

h21 − g21dt = −λ
2

8

∫ s

0

f(t)2dt,

which will give the leading term in the asymptotic. On the other hand, the stochastic

integral of g1, h1 with respect to dX is given by∫ s

0

(g1(t,X)− h1(t,X))dX =
λ

2

∫ s

0

eXf(t)dX

=
λ

2
f(s)eX(s) +

λ

2

(β
4
− 1

2

)∫ s

0

eXf(t)dt,

where in the second equality we have used f ′(t) = −β
4
f(t) and the following version of

Itô’s formula

a(t)b′(X)dX = d(a(t)b(X))− a′(t)b(X)dt− 1

2
a(t)b′′(X)dt.

Next, we choose h2 = (β
4
− 1

2
)(1 + tanh(x/2)) so that∫ s

0

h1h2dt =
λ

2

(β
4
− 1

2

)∫ s

0

(1− eX)f(t)dt,

and gives the cancellation∫ s

0

(g1 − h1)dX +

∫ s

0

h1h2dt =
λ

2
f(s)eX(s) +

λ

2
(
β

4
− 1

2
)

∫ s

0

f(t)dt.

Together with

−
∫ s

0

g1g3dt = ℑδλ
2

∫ s

0

f(t)dt,
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we will get the coefficient of the linear term in the asymptotic expansion.

We will choose the next term h3 so that the cross term
∫
h1h3dt cancels the cross

term −
∫
g1g2dt. In particular, with h3(t, x) = −(ℜδ + 1

2
) we have

h1h3 = g1g2 =
λ

2

(
ℜδ + 1

2

)
sinh(x),

which implies ∫ s

0

(h1h3 − g1g2)dt = 0.

Now consider the stochastic integral
∫ s
0
u(X)dX where

u(x) = g2 + g3 − h2 − h3

= 1− β

4
+ ℜδ +

(
ℜδ + 1

2

)
tanhx−ℑδ sechx−

(β
4
− 1

2

)
tanh(x/2).

Denote by

ũ(x) =
(
1− β

4
+ ℜδ

)
x+

(
ℜδ + 1

2

)
log coshx

− 2ℑδ arctan
(
tanh(x/2)

)
+
(
1− β

2

)
log cosh(x/2)

(5.12)

the anti-derivative of u(x). Note that limt→0 ũ(X(t)) = c1 is well defined. By Itô’s

formula,
∫ s
0
u(X)dX − ũ(X(s)) + ũ(X(0)) is given by

−1

2

∫ s

0

u′(X)dt

= −1

2

∫ s

0

((
ℜδ + 1

2

)
sech2(X) + ℑδ sechX tanhX − β − 2

8
sech2(X/2)

)
dt

=
(β − 6

16
− 1

2
ℜδ
)
s

+
1

2

∫ s

0

((
ℜδ + 1

2

)
tanh2(X) +

2− β

8
tanh2(X/2)−ℑδ sechX tanhX

)
dt.

(5.13)
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Now we evaluate 1
2

∫ s
0
(h2 + h3)

2 − (g2 + g3)
2dt, we get

1

2

(
(h2 + h3)

2 − (g2 + g3)
2
)
=

1

2

((β
4
−ℜδ − 1

)2
− (ℑδ)2

)
+

(β − 4ℜδ − 4)(β − 2)

16
tanh(x/2)

+
β2 − 4β + 4

32
tanh2(x/2) (5.14)

+
1

2

(
(ℑδ)2 −

(
ℜδ + 1

2

)2)
tanh2(x)

+ ℑδ
(
ℜδ + 1

2

)
tanhx sechx

Collecting this computation, and expanding (h2 + h3 + h4)
2 in the integral of

∫
h2(t)dt

we get

−Gs(X) = −λ
2

8

∫ s

0

f 2(t)

+
λ

2

(β
4
− 1

2
+ ℑδ

)∫ s

0

f(t)dt

+

(
β2 − 6β + 4

32
− β

4
ℜδ + (ℜδ)2 − (ℑδ)2 + ℜδ

2

)
s

+
λ

2
f(s)eX(s) + ũ(X(s))− c1

+

∫ s

0

h1h4dt+
1

2
h24 + h4(h2 + h3)dt

−
∫ s

0

h4dX +

∫ s

0

η(X)dt,

(5.15)

where

η(x) =
(β − 4(1 + ℜδ))(β − 2)

16
tanh(x/2) +

β2 − 6β + 8

32
tanh2(x/2)

+
4(ℑδ)2 − 4(ℜδ)2 + 1

8
tanh2(x) + ℑδℜδ tanhx sechx.

Here the coefficient of s in (5.15) comes from the linear term on the right hand side

of (5.13), and the constant term of (5.14). The function η(x) collects the rest terms
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from (5.13), (5.14) and −g22/2. The function η(x) contributes to an uniformly bounded

error term. Note that the function η(x)/ sinh(x) is bounded by a constant. We define

h4(t, x) = −η(x)/h1(t, x) so that∫ s

0

h1(t,X)h4(t,X)dt+

∫ s

0

η(X(t))dt = 0.

Let h̃4(t, x) =
∫ x
0
h4(t, y)dy, we obtain that

−
∫ s

0

h4(t,X)dX = −h̃4(s,X(s)) +
β

4

∫ s

0

h̃4(t,X(t))dt+
1

2

∫ s

0

∂xh4(t,X(t))dt.

Substituting this into (5.15), we end up with

−Gs(X) = −λ
2

8

∫ s

0

f 2(t)dt+
λ

2

(β
4
− 1

2
+ ℑδ

)∫ s

0

f(t)dt

+

(
β2 − 6β + 4

32
− β

4
ℜδ + (ℜδ)2 − (ℑδ)2 + ℜδ

2

)
s

+
λ

2
f(s)eX(s) + ũ(X(s))− c1 − h̃4(s,X(s))

+

∫ s

0

1

2
h24 + h4(h2 + h3) +

β

4
h̃4 +

1

2
∂xh4dt.

(5.16)

Since h2, h3 are uniformly bounded and only depend on x, the functions h4, h̃4, ∂xh4 are

all bounded by a constant times 1/(λf(t)) = 16
β
f(T − t) ≤ c for 0 ≤ t ≤ T , we can

rewrite the integrand in (5.16) as ∫ s

0

ϕ(T − t,X(t))dt

where ϕ is continuous, independent of λ, and satisfies |ϕ(t, x)| ≤ φ(t) with
∫∞
0
φ(t)dt <

∞. Using (5.12) and the fact that (log coshx − |x|) is bounded, the terms in the third

line of (5.16) can be written as

λ

2
f(s)eX(s) +

(
2− β

2
+ 2ℜδ

)
X(s)+ + ω0(X(s))− h̃4(s,X(s))
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with a bounded and continuous ω0. Plug s = T = 4
β
log λ into (5.16), then the first two

lines give

−λ
2β

64
(1− λ−2) +

λ

2

(β
4
− 1

2
+ ℑδ

)
(1− λ−1)

+

(
β2 − 6β + 4

8β
−ℜδ + 2

β
(ℜδ2 + ℜδ)

)
log λ

and the third line gives

β

8
eX(T ) +

(
2− β

2
+ 2ℜδ

)
X(T )+ + ω0(X(T ))− h̃4(T,X(T )).

This proves that −GT has the desired form in the statement of Lemma 5.5 . It remains

to check that h satisfies assumptions (a)− (c) of Proposition 5.4.

For assumption (a), we note that as x → −∞ we have g(t, x) = 1
4
λf(t)e−x − (ℜδ +

1
2
) + ĝ(t, x), and h(t, x) = 1

4
λf(t)e−x − (ℜδ + 1

2
) + ĥ(t, x), where max{|ĝ|, |ĥ|} ≤ cex

with constant that only depends on β if 0 ≤ t ≤ T . This proves that both g − h and

g2 − h2 are bounded if x is bounded from above. For assumption (b), comparing with

the construction of h in [63], the only difference is that we need to show(
2− β

2
+ 2ℜδ

)
X(s)+ +

λ

2
f(t)eX(s)

is bounded from below. Since s ≤ 4
β
log λ, we have (2− β

2
+ 2ℜδ)X(s)+ + λ

2
f(t)eX(s) ≤

(2− β
2
+2ℜδ)X(s)+ + β

8
eX(s), which is bounded below by a constant depending only on

β. Lastly for assumption (c), we have (2− β
2
+ 2ℜδ)X(s)+ + λ

2
f(t)eX(s) converges to ∞

as s converges to the hitting time of ∞, which implies Gs → −∞ as desired.

We also need the following preliminary estimation of the gap probability.

Proposition 5.6. Consider the solution of (5.6) with λ = 1 and X(0) = x. Recall

that p1(x) denotes the probability that X does not blow up in finite time and does not
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converge to ∞ as t→ ∞. Then we have

0 < p1(x) < cβe
− β

60
ex .

Proof. The proof is a minor modification of the proof of Lemma 5 in [63]. It is enough to

consider the case when x is large since otherwise the upper bound for x can be obtained

by making the constant cβ,δ large. For fixed β > 0 and δ ∈ C with ℜδ > −1/2, we define

M =Mδ = sinh−1(|ℑδ|/(ℜδ + 1
2
)). Then for x > M + 4, we have

g(x, t) :=
β

8
e−

β
4
t coshx+ (ℜδ + 1

2
) tanhx−ℑδ sechx > β

16
ex−

β
4
t.

Consider the diffusion

dR =
β

16
eR−β

4
tdt+ dB, R(0) = x

which has the same noise term as X. Then we have R ≤ X in this coupling while

R ≥M . This implies that for every t ≥ 0 we have

p1(x) ≤ P

(
min
0≤s≤t

R(s) < M or R does not blow up before time t

)
.

The difference U = R−B satisfies the ODE

e−UdU =
β

16
eB−β

4
tdt, U(0) = x,

which gives

e−x − e−U(t) =
β

16

∫ t

0

eB(s)−β
4
sds.

This implies U(t) ≥ x, and the event

{min
0≤s≤t

R(s) < M} ⊂ {min
0≤s≤t

B(s) < M − x}.
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Moreover, if min0≤s≤tB(s) is not sufficiently small (for example min0≤s≤tBs > −b such

that e−b(1− e−βt/4) > 4e−x), then we have

e−x <
β

16

∫ t

0

eB(s)−β
4
sds.

This shows that U blows up before time t, and if in particular b < x −M also holds,

then

P

(
min
0≤s≤t

R(s) < M or R does not blow up before time t

)
≤ P ( min

0≤s≤t
Bs < −b)

≤
√
t

b
e−

b2

2t .

Set t = 16e2−x/β, b = 4e/
√
30, then both b < x and e−b

4
(1− e−βt/4) > e−x are satisfied.

This gives the upper bound

p1(x) ≤
√
t

b
e−

b2

2t < cβe
− β

60
ex .

For the lower bound, (4.75) shows that p1(x) > 0 for x < −M , where M is a fixed

constant that only depends on β, δ. On the other hand, if X(0) = x > 0, we set

c := β
8
e2x+ℜδ+ 1

2
+ |ℑδ|,and then we couple the process X with B̃(t) := B(t) + ct+ x,

the Brownian motion with drift c starting at x. Note that |g(y, t)| ≤ c for all |y| ≤ 2x.

The coupling X(t) ≤ B̃(t) holds when |B̃(t)| ≤ 2x. Since

P

(
max
0≤s≤1

B̃(s) < 2x, min
0≤s≤1

B̃(s) < −2x

)
> 0,

there exists a positive constant c1 so that p1(x) > c1p1(−x). This proves that p1(x) > 0

for x > M . Using the monotonicity of p1(x) in x completes the proof.

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. Set T = 4
β
log λ, the time-shifted diffusion t 7→ X(t+ T ) satisfies

(5.6) with λ = 1 with initial condition X(−T ) = −∞. Using the Markov property of

X, we get that

pλ = E [1(X(t) is finite for all 0 ≤ t ≤ T )p1(X(T ))] .

Consider the diffusion Y satisfying the SDE (5.10) with the drift function h(t, x) con-

structed in Lemma 5.5. By Proposition 5.4 and Lemma 5.5, we have

pλ = λγβ,δ exp
(
− β

64
λ2 +

(β
8
− 1

4
+

1

2
ℑδ
)
λ
)
E [p1(Y (T )) exp{ψ(Y )}] ,

where

γβ,δ =
1

4

(β
2
+

2

β
− 3
)
−ℜδ + 2

β

(
δ2 + ℜδ

)
.

and where

ψ(Y ) =
(
2− β

2
+ 2ℜδ

)
Y (T )+ +

β

8
eY (T ) + ω(Y (T )) +

∫ T

0

ϕ(T − t, Y (t))dt.

It suffices to show that the limit limλ→∞ E[p1(Y (T )) exp{ψ(Y )}] exists, and is finite and

positive. This limit would equal the constant κβ,δ of the asymptotics, but we would not

attempt to find the exact value, see Remark 5.3.

Following the proof of Theorem 1 in [63], the idea is to run the process Yλ(t) with a

shifted time τ = t − T and consider ỸT (τ) := Yλ(τ + T ). Now the diffusions ỸT (λ) for

different λ satisfy the same SDE on nested time intervals

dỸT (τ) = h̃(τ, Ỹ )dτ + dB, τ > −T, ỸT (−T ) = −∞,

where the drift term is given by

h̃(τ, y) = h(T + τ, y) = −β
8
e−

β
4
τ sinh(y) + h0(T + τ, y).
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Here the processes ỸT are driven by the same Brownian motion, and h0 is the bounded

function constructed in (5.11). Then for T1 > T2 we have ỸT1(τ) > ỸT2(τ) for τ ≥ −T2

and the domination is preserved. It now suffices to prove

lim
T→∞

E
[
p1(ỸT (0)) exp{ψ̃(ỸT )}

]
(5.17)

is positive and finite, where

ψ̃(Ỹ ) =
(
2− β

2
+ 2ℜδ

)
Ỹ (0)+ +

β

8
eỸ (0) + ω(Ỹ (0)) +

∫ T

0

ϕ(t, Ỹ (−t))dt. (5.18)

Consider a nonnegative diffusion Z(t) satisfying the SDE

dZ = r(Z)dt+ dB

which is reflected at 0 and the drift term

r(y) = − β

16
ey + c1, (5.19)

where the constant c1 is chosen so that

r(z) ≥ sup
τ<0,0≤y≤z

h(τ, y).

We will use the stationary version of Z to control the diffusion ỸT . Since Z and Ỹ are

driven by the same Brownian motion, then if Z, Ỹ > 0 we have

d(Z − Ỹ ) = (r(Z)− f(t, Y ))dt.

This implies that if Z(τ0) ≥ Ỹ (τ0) for a negative time τ0, then this ordering is preserved

until time 0.

Consider the process Z in its stationary distribution, since Z(−T ) > ỸT (−T ) we

have Z > ỸT on [−T, 0]. Since ỸT (τ) is increasing in T and bounded by Z(τ) we have
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Ỹ∞(τ) = limT→∞ ỸT (τ) exists and is dominated by Z(τ). By (5.18) we have

ψ̃(ỸT ) = ω(ỸT (0)) +

∫ T

0

ϕ(t, Ỹ (−t))dt,

where ω is continuous and ϕ(t, y) ≤ ϕ̃(y) such that
∫∞
0
ϕ̃(t)dt < ∞ (see Lemma 5.5 for

the construction). This implies that ψ̃(ỸT ) → ψ̃(Ỹ∞) and

qT := exp{ψ̃(ỸT )}p1(ỸT ) → q∞ := exp{ψ̃(Ỹ∞)}p1(Ỹ∞)

as T → ∞. By Proposition 5.6, we have

qT ≤ c exp

{(
2− β

2
+ 2ℜδ

)
ỸT (0)

+ +
β

8
eỸT (0) − β

60
eỸT (0)

}
≤ c′χ(ỸT (0)),

with χ(y) = exp{(β
8
− β

61
ey)}. Note that the stationary density of Z is given by

g(z) = c exp

(
−β
8
ez + 2c1z

)
,

see e.g. Chapter VII of [53]. This implies that

E[χ(Z(0))] ≤
∫ ∞

0

χ(z)g(z)dz <∞,

hence the dominated convergence theorem gives that

E[qT ] → E[q∞] <∞.

This proves the finiteness (and existence) of the limit (5.17). Finally, we have

q∞ ≥ cp1(Ỹ∞(0)) exp

{(
2− β

2
+ 2ℜδ

)
Y∞(0)+

}
.

The positivity of the limit (5.17) follows from Ỹ∞(0) <∞ a.s. and the positivity of p1(·)

proved in Proposition 5.6. This completes the proof.
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5.2 Transition and a CLT

The goal of this section is to prove Theorem 5.2, which states the transition from the

HPβ,δ process to the Sineβ process and a Central Limit Theorem of the counting function

of the HPβ,δ process. This will be the content of Propositions 5.10 and 5.12 below.

By Theorem 4.19, the counting function N(·) = Nβ,δ(·) of the HPβ,δ process has the

same distribution as the right-continuous version of the function λ 7→ limt→∞
1
2π
αλ(t),

where the processes (αλ(t), λ ∈ R) solves the coupled system of SDE (4.33). For a

fixed λ the process αλ satisfies the SDE (5.1) where W is a standard Brownian motion

depending on λ. For large λ > 0, observing that the process αλ will be rapidly increasing

until time on the order of log λ since λβ
4
e−

β
4
t would be the dominating term in (5.1) on

this time regime. Moreover, the trigonometric terms of αλ would be rapidly oscillating

on this regime and hence vanish in the λ→ ∞ limit.

Following the work of Holcomb [26] on similar results for the Bessβ,a process, the

key estimation for proving Propositions 5.10 and 5.12 is the following control of the

oscillatory integrals.

Proposition 5.7 ([28], [26]). For each λ ∈ R, suppose that Aλ,t is an adapted finite

variation process so that |Aλ,t| ≤ ξ is uniformly bounded for all t a.s., and suppose that

Xλ,t is a martingale satisfying d[Xλ]t ≤ 2. Let uλ,t be the process satisfying

duλ,t = λf(t)dt+ Aλ,tdt+ dXλ,t uλ,0 = 0,

where f(t) = fβ(t) =
β
4
e−

β
4
t.

Then for each fixed β > 0, there exists constants R and η uniform in T and λ, a ∈ R
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such that

E
[
sup

0≤t≤T

∣∣∣∣∫ t

0

eiauλ,sds

∣∣∣∣] ≤ R(1 + C)

|aλ|f(T )
,

and for all C > 0,

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0

eiauλ,sds

∣∣∣∣− R(1 + ξ)

|aλ|f(T )
≥ C

)
≤ exp

(
−η(Caλf(T ))2

)
.

We also need the following standard results on characterization of Brownian motions

and weak convergence of diffusions.

Proposition 5.8 (Theorem 7.1.4 of [20]). Let {M (n)} be a sequence of Rd-valued mar-

tingales. Suppose that

lim
n→∞

E
[
sup
s≤t

|M (n)(s)−M (n)(s−)|
]
= 0,

and the quadratic variation [M
(n)
i ,M

(n)
j ] := C

(n)
ij → ci,j(t) in probability for all t ≥ 0,

where M
(n)
i denotes the i-th component of M (n), and where C = [cij]i,j≤n is a continuous,

symmetric matrix valued function on [0,∞) with C(0) = 0 and C(t)−C(s) ≥ 0 for t >

s ≥ 0. Then M (n) ⇒ M , where M is a Gaussian process with independent increments

and E[M(t)M(t)T ] = C(t).

Consider a sequence of diffusions Xn satisfying the stochastic integral equations

Xn(t) = Xn(0) +

∫ t

0

σ(Xn, s−)dMn(s) +

∫ t

0

b(Xn, s)dVn(s),

where Mn is a d-dimensional martingale such that E[[Mn]t] < ∞ for every t ≥ 0, and

where Vn is a Rd×d valued process with uniformly bounded finite variation. The following

convergence result is a special case of Theorem 5.4 of [36].



139

Proposition 5.9. Let W be a standard Brownian motion, and V (t) = tI. Assume

(Mn, Vn) ⇒ (W,V ), and the diffusion X satisfies

Xn(t) = Xn(0) +

∫ t

0

σ(X, s)dW (s) +

∫ t

0

b(X, s)dV (s),

then Xn ⇒ X.

Using the convergence of αλ(t) to 2πZ as t→ ∞, together with Propositions 5.7, 5.8

and 5.9, we are now ready to prove the following transition result.

Proposition 5.10 (Transition). Fix β > 0 and δ ∈ C with ℜδ > −1/2. Then as λ→ ∞

we have

(HPβ,δ −λ) ⇒ Sineβ .

Proof. Fix β > 0 and δ ∈ C with ℜδ > −1/2. Let N(·) := Nδ,β(·) be the counting

function of the HPβ,δ process. Theorem 4.19 shows that N(·) has the same distribution

as the right-continuous version of the function λ 7→ limt→∞
1
2π
αλ(t), where the processes

(αλ(t), λ ∈ R) solves the coupled system of SDE (4.33). Denote by M(·) = Mβ(·) the

counting function of the Sineβ process, note that M(·) = N0,β(·).

It is enough to show that the convergence of the finite dimensional marginals of

the counting function. More precisely, we will prove that for any finite collection

{x1, x2, · · · , xk} we have

{N(λ+ xi)−N(λ)}1≤i≤k ⇒ {M(xi)}1≤i≤k

joint in distribution as λ→ ∞.

To that end, we will use the SDE characterization of the difference N(λ+x)−N(λ).
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Let ψλ,x(t) := αλ+x(t)− αλ(t), a direct calculation shows that

dψλ,x(t) = x
β

4
e−

β
4
tdt+ ℜ[(e−iψλ,x − 1)e−iαλ(t)dZ]

+ ℑδℜ[(e−iψλ,x − 1)e−iαλ(t)]dt+ ℜδℑ[(e−iψλ,x − 1)e−iαλ(t)]dt, (5.20)

with initial condition ψλ,x(0) = 0.

By the triangle inequality,∣∣∣∣ sup
0≤s≤T

∫ s

0

ℜ[(e−iψλ,x − 1)e−iαλ(t)]dt

∣∣∣∣ ≤ ∣∣∣∣ sup
0≤s≤T

∫ s

0

e−iαλ+xdt

∣∣∣∣+ ∣∣∣∣ sup
0≤s≤T

∫ s

0

e−iαλdt

∣∣∣∣ .
A similar estimate also holds for the term ℑ[(e−iψλ,x − 1)e−iαλ(t)]dt. We can then use

Proposition 5.7 to conclude that the two drift terms on the second line of equation 5.20

vanish as λ→ ∞.

Write dZ = dB1+idB2 where B1, B2 are independent standard real Brownian motion.

For a fixed x, we have

ℜ[(e−iψλ,x − 1)e−iαλ(t)dZ] = sinψλ,x(cosαλdB2 − sinαλdB1)

+ (cosψx,λ − 1)(cosαλdB1 + sinαλdB2).

Define

Wλ,1(t) =

∫ t

0

(cosαλdB1 + sinαλdB2) , Wλ,2(t) =

∫ t

0

(cosαλdB2 − sinαλdB1) .

It follows from the independence of B1 and B2 that [Wλ,1]t = t, [Wλ,2]t = t, and

[Wλ,1,Wλ,2]t = 0. By Proposition 5.8, this implies that (Wλ,1,Wλ2) ⇒ (W1,W2) as

λ→ ∞, where W1,W2 are independent real Brownian motions.

Therefore, for a fixed x, the limiting diffusion of ψλ,x should satisfy the SDE

dψ̂x(t) = x
β

4
e−

β
4
tdt+ ℜ[(e−ψ̂x(t) − 1)dZ],
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where Z is a standard complex Brownian motion Z = W1+iW2. Note that this is exactly

the stochastic sine equation ((4.33) when δ = 0) and the unique strong solution is given

by the phase function of the Sineβ process. Note also that the limit (Wλ,1,Wλ,2) ⇒

(W1,W2) is independent of x. So the limiting diffusions ψ̂xi , 1 ≤ i ≤ k are driven by the

same Brownian motion Z. Therefore, for any fixed T and k ∈ Z+ we have

(ψλ,x1(T ), . . . , ψλ,xk(T )) ⇒ (ψ̂x1(T ), . . . , ψ̂xk(T )) (5.21)

as λ→ ∞, which implies that for any l1, . . . , lk ∈ Z+

lim
λ→∞

P (⌊ψλ,xi(T ) + π⌋2π = 2πli, i = 1, . . . , k) = P
(
⌊ψ̂xi(T ) + π⌋2π = 2πli, i = 1, . . . , k

)
,

(5.22)

where ⌊x⌋2π := 2π⌊ x
2π
⌋.

By Theorem 4.19, we have thatM(·) has the same distribution as the right-continuous

version of the function x 7→ 1
2π
ψ̂x(∞), where evaluation at ∞ should be understood as

a limit. In particular,

P

(
1

2π
ψ̂xi(∞) =M(xi), i = 1, . . . , k

)
= 1. (5.23)

This implies that ψ̂x(T ) should be close to 2πZ for large enough T . By Theorem 4.19

again we have ψλ,xi(∞) ∈ 2πZ≥0 for any λ > 0, and

P

(
1

2π
ψλ,xi(∞) = N(λ+ xi)−N(λ), i = 1, . . . , k

)
= 1, (5.24)

For any finite collection {x1, . . . , xk} and 0 < η < π, (5.23) and (5.24) imply that for

any ε > 0 we may choose T large enough so that

P
(
|ψ̂xi(∞)− ψ̂xi(T )| < η, i = 1, . . . , k

)
> 1− ε. (5.25)



142

Combining (5.25), (5.22), (5.23) and (5.24), it suffices to prove for any ε > 0 we can

choose λ and T sufficiently large so that

P (ψλ,xi(∞) = ⌊ψλ,xi(T ) + π⌋2π, i = 1, . . . , k) > 1− ε. (5.26)

Mimicking the proof of Lemma 3.5 in [26], we now show that for |η| < η0 < 1/16 there

exists λ0 and A uniform in x so that for λ ≥ λ0 and T ≥ − 4
β
log ρ0,

P
(
ψλ,x(∞) ̸= ⌊ψλ,x(T ) + π⌋2π

∣∣ψλ,x(T )− ⌊ψλ,x(T ) + π⌋2π = η
)
≤ (x+ A)

√
η0. (5.27)

Set Tλ,η0 :=
4
β
log(λη0). Without loss of generality, we may assume η > 0, in which case

⌊ψλ,x(T )⌋2π = ⌊ψλ,x(T )+π⌋2π. The η < 0 case can be treated similarly with a reflection

argument by considering the diffusion ψλ,−x. On the time regime [T, Tλ,η0 ], we have

ψλ,x(Tλ,η0)− ⌊ψλ,x(T )⌋2π =

∫ Tλ,η0

T

dψλ,x(t) + ψλ,x(T )− ⌊ψλ,x(T )⌋2π. (5.28)

Taking expectation of the right hand side of (5.28) and then applying Proposition 5.7,

we can find R so that the oscillatory integrals are bounded by Rδ. Thus,

E
[
ψλ,x(Tλ,η0)− ⌊ψλ,x(T )⌋2π

∣∣ψλ,x(T )− ⌊ψλ,x(T ) + π⌋2π = η
]
≤ xe−

β
4
T +Rδ.

By Markov’s equality, for T ≥ − 4
β
log η0 we have

P
(
ψλ,x(Tλ,η0)− ⌊ψλ,x(T )⌋2π >

√
δ
∣∣ψλ,x(T )− ⌊ψλ,x(T ) + π⌋2π = η

)
≤ (x+R)

√
δ.

(5.29)

On the region [Tλ,η0 ,∞), we have (λ+x)e−
β
4
Tλ,η0 = 1

η0
+ x

λη0
. To show that ψλ,x(∞) =

⌊ψλ,x(Tλ,η0)⌋2π with high probability, it is equivalent to study the original diffusions

αλ+x and αλ restarted at Tλ,η0 . Consider α̃ 1
η0

+ x
λη0

and α̃ 1
η0

satisfying (4.33) with initial

conditions α̃ 1
η0

+ x
λη0

(0) = αλ+x(Tλ,η0) and α̃ 1
η0

(0) = αλ(Tλ,η0). Then it follows from the
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property that ⌊α̃(t)⌋2π is non-decreasing with an almost surely finite limit that for large

enough S,

P
(
⌊α̃ 1

η0
+ x

λη0

(S)⌋2π = ⌊α̃ 1
η0

+ x
λη0

(∞)⌋2π, ⌊α̃ 1
η0

(S)⌋2π = ⌊α̃ 1
η0

(∞)⌋2π
)
> 1− ε/2. (5.30)

Then by using continuous dependence on parameters and initial conditions α̃ 1
η0

+ x
λη0

(0)−

α̃ 1
η0

(0) = η, there exist η′ and λ′ so that for η0 < η′ and λ > λ′ that

P
(∣∣∣α̃ 1

η0
+ x

λη0

(S)− α̃ 1
η0

(S)
∣∣∣ < 2π

)
> 1− ε/2. (5.31)

Taking the intersection of the two events in (5.30) and (5.31) we get the event ψλ,x(∞) =

⌊ψλ,x(Tλ,η0)⌋2π happens with probability at least 1 − ε. Combining with the estimate

(5.29), we conclude the proof of (5.27).

We are now ready to finish the proof of Proposition 5.10. Observe that (5.27) implies

P
(
ψλ,x(∞) ̸= ⌊ψλ,x(T ) + π⌋2π,

∣∣ψλ,x(T )− ⌊ψλ,x(T ) + π⌋2π
∣∣ < η0

)
≤ (x+ A)

√
η0.

By (5.23), ψ̂x(T ) will be close to a multiple of 2π with high probability for large T . By

(5.22), this implies that for any ε > 0 we may choose T and λ large enough so that

P (|ψλ,x(T )− ⌊ψλ,x(T ) + π⌋2π| < η0) > 1− ε. These bounds imply that

P (ψλ,x(∞) ̸= ⌊ψλ,x(T ) + π⌋2π|) < ε+ (x+ A)
√
η0.

Choosing ε and δ small enough proves (5.26) and completes the proof.

Remark 5.11. Recall that the HPβ,δ process was obtained as the local scaling limit

(n → ∞ limit) of the circular Jacobi β-ensemble near the origin (or equivalent, the

point 1 on the unit circle). Heuristically speaking, if the n→ ∞ and λ→ ∞ limits can

be exchanged, then Proposition 5.10 indicates that if we chooses a sequence of points on
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the unit circle moving away from the point 1, then we expect to get the Sineβ process in

the n→ ∞ limit.

Proposition 5.12 (CLT). Fix β > 0 and δ ∈ C with ℜδ > −1/2. Let N(·) = Nδ,β(·)

be the counting function of the HPβ,δ process, then as λ→ ∞ we have

1√
log λ

(
N(λ)− λ

2π

)
⇒ N

(
0,

2

βπ2

)
,

where N (0, 2
βπ2 ) has normal distribution with mean 0 and variance 2

βπ2 .

Proof. Let T = 4
β
log λ. Notice that the time-shifted process α̂λ(t) := αλ(T +t) satiesfies

the same SDE (5.1) with λ = 1 with (random) initial condition α̂λ(0) = αλ(T ). Since

the equation (5.1) is 2π invariant, the difference with of α̂λ(t) with its limits α̂λ(∞) is

stochastically bounded by α1(∞) + 1, this implies that

αλ(∞)− αλ(T )√
log λ

→ 0 in distribution. (5.32)

On the other hand, solving the SDE (5.1) gives

αλ(T ) = λ− 1 +

∫ T

0

(ℑδ(cosαλ − 1)−ℜδ sinαλ)dt+ 2

∫ T

0

sin(αλ

2
)dW.

Proposition 5.7 shows that the expected value of the first integral is finite for all λ.

Therefore, after dividing by
√
log λ, the first integral vanishes in the limit as λ→ ∞. For

the remaining term, there exists a Brownian motion B̂ such that we have the following

distributional identity

2√
log λ

∫ T

0

sin
(αλ
2

)
dW = B̂

(
4

log λ

∫ T

0

sin2
(αλ
2

)
dt

)
= B̂

(
β

8
− 2

log λ

∫ T

0

cosαλdt

)
.

By Proposition 5.7 again, we have the integral 2
log λ

∫ T
0
cosαλdt converges to 0 in proba-

bility, hence

αλ(T )− λ√
log λ

⇒ N
(
0,

8

β

)
. (5.33)
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Combining (5.32) and (5.33) and then dividing by 2π finishes the proof.
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