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ABSTRACT 

Digital dermatitis (DD) is an infectious bovine claw disease that presents as painful, ulcerative 

lesions on the coronary band at the skin horn border of the hoof. The disease is the main cause of 

lameness in both dairy and beef cattle, leading to a decrease in production and fertility and an 

increase in culling, resulting in diminished economic well-being and animal welfare. Currently, 

visual inspection of the lifted hoof is the gold standard for DD diagnosis. However, this method 

is time-consuming, labor-intensive, subjective, inaccurate, and unable to perform early detection 

of DD. Tools for early detection and prompt treatment of DD are critical for good practice. Early 

detection of DD reduces the use of topical treatments and disinfecting foot bath chemicals such 

as the environmentally problematic copper sulfate and the carcinogenic formalin. 

Computer vision (CV) can be used to perform object detection and calculate the associated class 

probabilities from a series of images or videos. Object detection locates the presence of an object 

with a bounding box, class label, and class probability. Thus, CV provides a unique opportunity 

to improve early detection of DD and optimize treatment plans for cattle. Such methods have 

been used for animal detection to assess the health and well-being of livestock in cattle and small 

ruminants. However, applications for the classification of health events are still rare in veterinary 

medicine and food production. The purpose of this project is to implement a CV model for the 

real-time detection of DD in dairy and beef cattle. The motivation is to minimize the effects of 

DD-associated lameness in all cattle by means of early detection, prompt treatments, and 

prevention measures. 

Chapter 2 aims to train and compare applications for the real-time detection of DD in dairy cows. 

Nine CV models were trained for detection and scoring, compared using performance metrics 

and inference time, and the best model was automated for real-time detection using images and 
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video. YOLOv4, Tiny YOLOv4, and YOLOv5s outperformed all other models with almost 

perfect precision, perfect recall, and a high mean average precision (mAP). Tiny YOLOv4 

outperformed all other models with respect to inference time at 333 frames per second (FPS). 

Chapter 3 aims to train, embed, and benchmark DD detection models on edge devices. The Tiny 

YOLOv4 model deployed on a CV specific integrated camera module connected to a single 

board computer achieved high mAP, high overall prediction accuracy, and  substantial agreement 

between the computer vision model and the trained investigator. The model reached a final 

inference speed of 40 FPS. Chapter 4 aims to develop, deploy, and evaluate DD detection models 

on cloud platforms. The TensorFlow.js application outperformed all other deployments with 

respect to agreement. All deployments exceeded the minimum threshold for image processing at 

approximately 10 FPS. Chapter 5 extend the current workflow from bovine DD to canine 

pododermatitis and neoplasia of the paw. The Pawgnosis tool is a novel object detection model 

deployed on a microcomputer with a camera for the rapid detection of canine pododermatitis and 

neoplasia. The proposed tool achieved a high precision, recall, and mAP with an inference speed 

of 20 FPS such that the novel object detection model has the potential for application in the field 

of veterinary dermatology. 

Chapter 6 aims to provide a singular, automated workflow for extracting health and event 

information from DairyComp to DairyCoPilot and compile and analyze the data using graphical 

user interface. DairyCoPilot provides statistical tools for both categorical data analysis and 

regression analysis. The program provides an elegant and powerful web framework where the 

user interface is dynamic to conditionally generate input controls and uses reactive programming 

to automatically update outputs when inputs change. The web application can clean data for 

downstream data analysis, create interactive graphics for exploratory and expository 
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visualization, and export high quality figures using interactive views for documents, reports, and 

presentations. Lastly, DairyCoPilot is mobile-friendly, desktop progressive web application for 

all device platforms. 

Chapter 7 aims to update and improve the DD Check app for individuals with limited statistical 

training or experience. The DDCheckPlus app is designed to include a DD detection module 

where cows can be scored for M-stages using a custom object detection model. Additionally, the 

app is developed to streamline data analysis for automated prediction of current DD trends and 

forecasting of future DD proportions. All plots are interactive with details on demand and all 

tables are interactive with filtering, pagination, and sorting. The DDCheckPlus app standardizes 

M-stage data recording, automates comprehensive data analysis including trends over time, 

calculates predictions, and assigns Cow Types (I – III) based on the presence or absence of 

active DD lesions. 

Chapter 8 serves as a placeholder for research in progress. It describes a comparative analysis of 

different mobile apps for real-time detection of DD on both Android and iOS devices. Chapter 9 

discusses the subsequent workflow for object detection to train and deploy a model that can 

accurately detect and localize objects of interest within images or videos. This approach can save 

significant training time and resources while adapting the model to new tasks. Chapter 10 

provides a discussion extending the research to further analysis and future studies. The focus of 

the chapter describes the major opportunities and challenges for deployment of computer vision 

algorithms and object detection models in precision farming and veterinary medicine. 
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CHAPTER 1 INTRODUCTION 

Definition of Digital Dermatitis 

Digital dermatitis (DD) is a polybacterial disease primarily affecting the skin horn border on 

cattle heels. The infection causes inflammation and skin damage, resulting in pain and 

discomfort (Laven and Proven, 2000; Plummer and Krull, 2017). The disease is a leading cause 

of lameness in both dairy cows and beef cattle, posing a significant problem for the dairy and 

beef industry in numerous countries (Bruijnis et al., 2012; Laven and Logue, 2006; Plummer and 

Krull, 2017; Sullivan et al., 2013; USDA, 2007). This condition leads to reduced animal welfare 

and economic loss (Laven, 2001). Recently, DD has emerged as a growing concern in beef cattle 

(Sullivan et al., 2013). The bacteria is causally associated with DD have also been identified in 

similar lesions in sheep (Duncan et al., 2014), dairy goats (Sullivan et al., 2015), and even wild 

North American Elk (Clegg et al., 2014). Furthermore, these DD-associated bacteria have been 

detected in three severe bovine foot lesions that have been studied during the past 15 years: toe 

necrosis, non-healing white line disease, and non-healing sole ulcer (Evans et al., 2011). These 

developments underscore the increasing importance of DD for both domestic and wild animals, 

as well as for farmers and veterinarians. 

Despite the significant economic and welfare implications of this disease, numerous uncertainties 

persist regarding its cause, transmission, prevention, and treatment. Several factors contribute to 

the challenges associated with addressing this disease. The infection appears to involve multiple 

types of bacteria, including hundreds of species, namely of the genus Treponema, which have 

been isolated from lesions (Choi et al., 1997; Cruz et al., 2005; Dhawi et al., 2005; Evans et al., 

2008; Krull et al., 2014; Walker et al., 1995; Zinicola et al., 2015). Additionally, the initial 

cultivation of these bacteria proved to be problematic (Evans et al., 2008), and the development 
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of experimental infection models has been challenging (Gomez et al., 2012; Read and Walker, 

1998), leaving the mechanisms of disease transmission largely unknown. However, recent 

advancements resulted in significant progress in identifying the pathogenic bacteria and 

detecting their presence in affected animals on the farm (Evans et al., 2012; Klitgaard et al., 

2014; Krull et al., 2014; Zinicola et al., 2015). 

Previous research has been conducted on endemically infected farms to study both farm and herd 

level risk factors and animal level risk factors associated with the occurrence of DD (Refaai et 

al., 2013; Rodríguez Lainz et al., 1996; Somers et al., 2005). Both risk factors, at the farm and 

individual animal levels, provide valuable insights for minimizing DD infection levels and 

understanding infection risk. The time between diagnosis and treatment, tie-stall housing, and the 

amount of concentrate fed are associated with the occurrence of DD (Weber et al., 2023). Hoof 

knives post-trimming were frequently contaminated with DD-associated treponeme DNA 

(Gillespie et al., 2020). Treponemes were identified on hoof trimming knives, and suggested a 

mode of transmission of DD in ruminants. The cleaning and disinfection of hoof trimming 

equipment between animals and between farms was emphasized to be particularly important, and 

may control the spread of DD (Sullivan et al., 2014). Another intriguing aspect, albeit less 

explored, is the presence of cattle variation in susceptibility to the disease. Studies have observed 

repeated infections in individual cattle within a herd, while others of the same breed, parity, and 

under identical conditions remained uninfected (Capion et al., 2012; Gomez et al., 2015; Laven, 

1999). Identifying the reasons behind this individual variation in susceptibility could enhance our 

understanding of the disease and contribute to the development of effective prevention and 

treatment strategies. 
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Symptoms of Digital Dermatitis 

Digital Dermatitis was initially documented in Italy in 1974 (Cheli and Mortellaro, 1974) and 

has since been reported in the majority of countries with dairy and beef industries (Demirkan et 

al., 2000; Holzhauer et al., 2006). The infection leads to ulcerative lesions along the coronary 

band (Cheli and Mortellaro, 1974) or the skin adjacent to the interdigital cleft (Holzhauer et al., 

2008), resulting in pain and discomfort (Laven and Proven, 2000). Heifers with DD exhibited 

less time ruminating and more time inactive compared to heifers without lesions (Thomas et al., 

2021). Dӧpfer et al. described the disease progression in four stages (Döpfer et al., 1997). The 

initial stage, known as M1, is characterized by a limited granulomatous area that is typically 

smaller than 2 cm diameter in size (Döpfer et al., 1997) and generally not painful (Holzhauer et 

al., 2008). The lesion then progresses to the M2 stage, characterized by classic ulceration 

(Döpfer et al., 1997). During this stage, the lesion is larger than 2 cm diameter and causes pain 

upon palpation (Holzhauer et al., 2008). As the lesion begins to heal, typically after topical 

treatment, a scab forms over the ulcerated area, resulting in the M3 stage (Döpfer et al., 1997). In 

certain cases, the lesion progresses to the M4 stage, known as the chronic stage (Döpfer et al., 

1997), characterized by surface proliferation or hyperkeratosis. This stage is typically non-

painful but infectious and can revert back to an active M2 lesion (Berry et al., 2012; Döpfer et 

al., 2012). Berry et al. introduced the M4.1 lesion type, which describes a chronic lesion (M4) 

with a small area displaying an active M1 lesion (Berry et al., 2012). The differences in 

rumination time and inactivity are associated with DD and different M-stages in feedlot cattle 

(Thomas et al., 2021). It is common to find cattle with lesions on both hind feet simultaneously 

such that in one herd, 51% of diameter have lesions on both feet, 22% on the left foot only, and 

27% on the right foot only (Laven, 1999). The reason why some animals develop DD on only 
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one hind foot, despite both feet being exposed to the same risk factors, remains unknown. 

Investigating the factors influencing foot-specific infection could contribute to understanding of 

DD and variation in susceptibility to the disease. 

Causes of Digital Dermatitis 

Spirochaetes belonging to the genus Treponema have consistently been found to be associated 

with DD lesions (Choi et al., 1997; Demirkan et al., 1999; Dhawi et al., 2005; Evans et al., 2009; 

Krull et al., 2014; Walker et al., 1995; Zinicola et al., 2015) and the bacteria are believed to be 

the primary microbial agents associated with DD pathogenesis (Evans et al., 2014). The presence 

of Spirochaetes deep within the lesions (Blowey et al., 1994) indicates that the bacteria are 

invasive to the epidermis and dermis rather than merely colonizing damaged tissue (Edwards et 

al., 2003). Treponemes that have been isolated from disease lesions show that cause tissue 

destruction in various hosts, including humans (Edwards et al., 2003). While treponemes are the 

most frequently detected bacteria in DD lesions, other types of bacteria have also been identified, 

including Borrelia burgdorferi (Blowey et al., 1994; Collighan and Woodward, 1997), 

Bacteroides and Mycoplasma species (Collighan and Woodward, 1997), Campylobacter species 

(Döpfer et al., 1997), and Candidatus Amoebophilus asiaticus (Zinicola et al., 2015). 

In recent studies, efforts have been made to examine the microbiome of healthy skin and DD 

lesions at various stages of infection (Ariza et al., 2022; Bay et al., 2023; Caddey and De Buck, 

2021; Krull et al., 2014; Zinicola et al., 2015). Bay et al. showed evidence of dysbiosis and 

differences in taxonomy and functional profiles in the bovine foot skin microbiome of clinically 

healthy animals that subsequently develop DD lesions (Bay et al., 2023). Krull et al. investigated 

the microbiota of lesions at seven different developmental stages and discovered a significant 

increase in the proportion of treponemes detected in lesion biopsies as the lesions progressed 
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(Krull et al., 2014). They also observed changes in the proportions of different treponeme species 

throughout lesion development. Similarly, Zinicola et al., who discovered distinct differences in 

the microbiomes of skin with active DD lesions (M1, M2, and M4.1) compared to those with 

inactive lesions (M3 and M4), as well as healthy skin (Zinicola et al., 2015). The microbiome of 

active, ulcerative DD lesions is predominantly composed of six groups of treponemes: 

Treponema denticola, Treponema maltophilum, Treponema medium, Treponema putidum, 

Treponema phagedenis, and Treponema paraluiscuniculi (Zinicola et al., 2015). Moreira et al. 

identified eleven different Treponema strains belonging to the six major phylotypes of 

Treponema in DD lesions. Furthermore, Moreira et al. identify Dichelobacter nodosus in DD 

lesions in almost half of biopsy specimens in areas with mild epithelial damage and together with 

Treponema. Ariza et al. confirmed the skin microbiota associated with DD lesions, dominated 

by Treponema spp., is different from the microbiota of healthy skin (Ariza et al., 2022). The 

diversity and structure of the microbiota in DD lesions did not change based on the footbath 

disinfectant or the individual topical antibiotic treatments. Microbiotas from proliferative lesions 

showed a different structure and diversity compared to non-proliferative lesions. Ariza et al. 

confirmed the role of Treponema spp. and emphasized the role of Mycoplasmopsis spp. in the 

onset of DD lesion (Ariza et al., 2022). Members of Treponema, Mycoplasma, Porphyromonas, 

and Fusobacterium were consistently identified in the majority of DD lesions, were the best 

genera at differentiating DD lesions from normal skin, and may have significant roles in DD 

pathogenesis (Caddey and De Buck, 2021). Early-stage lesions were associated with T. medium, 

T. phagedenis, and P. levii (Caddey et al., 2021). Caddey et al. suggested a core DD microbial 

group consisting of species of Treponema, Fusobacterium, Porphyromonas, and Bacteroides 

may be closely tied with the etiopathogenesis of DD (Caddey et al., 2021). These studies suggest 
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that the variation in bacterial species observed in previous studies of DD lesions may be 

attributed to sampling at different stages of lesion development. 

Environmental transmission of DD-associated treponemes has been hypothesized for years. 

Initially, these bacteria were challenging to detect in the environment. Evans et al. found no 

evidence of treponemes in dairy cow feces or environmental slurry samples (Evans et al., 2012). 

Technological advancements have enabled the detection of treponemes in both dairy cow feces 

and environmental slurry samples on infected farms. This was achieved by utilizing targeted 

deep-sequencing methods to detect trace amounts of bacterial RNA (Klitgaard et al., 2014). 

Direct skin-to-skin transmission from infected to uninfected feet has been proposed as a potential 

route of infection (Evans et al., 2012). Another suggested mode of transmission is through hoof 

trimming tools (Sullivan et al., 2014). The gut has been suggested as a possible reservoir of DD 

bacteria. Shibahara et al. found similar spirochaetes responsible for simultaneous infections of 

bovine dysentery and DD in two Japanese dairy cows, indicating a potential connection 

(Shibahara et al., 2002). Evans et al. detected DD-related treponemes in both oral and rectal 

tissues of dairy cows on DD-affected farms (Evans et al., 2012). These findings were 

corroborated by Zinicola et al., who identified DD-associated treponemes in the rumen and fecal 

microbiomes (Zinicola et al., 2015). These results suggest that the gastrointestinal tract serves as 

a reservoir for DD-related treponemes (Zinicola et al., 2015), with feces and slurry acting as a 

mode of transmission between the reservoir and the site of infection (Evans et al., 2012). 

Treatment of Digital Dermatitis 

Treatment options for DD include systemic and topical antibiotics (Laven and Proven, 2000; 

Refaai et al., 2013; Walker et al., 1995). Currently, non-antimicrobial topical treatment agents 
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are preferred (Jacobs et al., 2018; Laven and Logue, 2006; Moore et al., 2001; Paudyal et al., 

2020). In herds with a high prevalence of DD, individual treatment is time-consuming and labor-

intensive, prompting many farmers to opt for footbaths to prevent DD the entire herd (Laven and 

Proven, 2000).  

Footbathing is widely employed as a herd-level prevention method for DD. There is significant 

variation in the types of products used, their concentrations, and application frequencies (Jacobs 

et al., 2019). A recent study examined 141 freestall farms and found that 87% of them utilized 

footbaths. Interestingly, each farm employed a range of 1 to 4 different products (Solano et al., 

2015). The most commonly used products were copper sulfate (CuSO4) and formalin. 

Unfortunately, the use of CuSO4 raises environmental concerns due to soil accumulation 

(Epperson and Midla, 2007; Flemming and Trevors, 1989; Hoff et al., 1998), while formalin is 

known to be carcinogenic (Doane and Sarenbo, 2014). These drawbacks underscore the necessity 

to explore alternative options for footbath strategies. 

Unfortunately, complete eradication of DD is rarely achieved, necessitating the repeated 

application of treatments to prevent the recurrence of infection (Laven and Logue, 2006). Dairy 

cows develop an antibody response against treponemes when infected with DD, yet this response 

does not appear sufficient to prevent subsequent infections, as some animals experience repeated 

infections (Demirkan et al., 1999; Gomez et al., 2014). One possible explanation for the 

challenges encountered in treating DD and preventing its recurrence is the presence of 

treponemes in the epithelium that have been found to exist in both encysted and spiral forms 

(Döpfer et al., 2012). It is conceivable that these encysted bacterial forms could persist deep 

within the lesions and lead to a recurrence of clinical symptoms at a later stage. However, further 
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research is needed to elucidate the significance of the encysted form of bacteria and its response 

to DD treatments (Döpfer et al., 2012). 

Costs of Digital Dermatitis 

The majority of active DD lesions are reported to be painful (Laven and Proven, 2000; Manske 

et al., 2002; Somers et al., 2005). If left untreated, infected animals may experience lameness for 

a prolonged period of time (Frankena et al., 2009). Cows that suffer from sufficient pain to 

develop lameness also exhibit behavioral changes compared to healthy cows. These changes 

include increased lying time (Hassall et al., 1993; Juarez et al., 2003; Margerison et al., 2002; 

Walker et al., 2008) and reduced total feeding time (Almeida et al., 2008; Hassall et al., 1993; 

Juarez et al., 2003; Palmer et al., 2012). These behavior changes are expected to have an impact 

on productivity. 

Digital dermatitis is the leading cause of infectious lameness in dairy cattle, resulting in 

ulcerative skin lesions that severely affect animal production and welfare. Lameness ranks as the 

second most significant health issue in dairy cattle in terms of production losses, preceded by 

mastitis and followed by Bovine viral diarrhea, and the most prominent with respect to welfare 

concerns (Bennett and IJpelaar, 2005). A comprehensive review examining lameness prevalence 

studies worldwide from 1993 to 2014 reported that, on average, 25-55% of dairy cattle are 

clinically lame (Cook, 2017; Solano et al., 2017; Underwood et al., 2015). Additionally, it was 

found that approximately 15% to 22% of cows have one or more DD lesions, and up to 94% of 

herds were affected by DD (Cook, 2017; Solano et al., 2017; Underwood et al., 2015). 

Various studies examining the impact of DD on milk yield have yielded different findings. While 

DD is a major contributor to lameness, its association with a significant reduction in milk yield is 
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not consistently observed. Amory et al. conducted a study in England and Wales and found that 

cows with DD did not exhibit decreased milk yield during infection (Amory et al., 2008). 

Instead, a slight increase in milk yield was observed after treatment (Amory et al., 2008). In two 

other studies, cows with DD showed slightly lower milk production, but the differences were not 

statistically significant (Argaez-Rodriguez and Hird, 1997; Hernandez et al., 2002). Warnick et 

al. examined two US dairy farms and found that cows with DD experienced a reduction in milk 

yield (Warnick et al., 2001). This reduction was less pronounced compared to cows affected by 

other causes of lameness (Warnick et al., 2001). In a study using a large dataset from Holstein 

cows on French farms, Relun et al. identified a small but statistically significant decrease in milk 

yield (<1 kg per day) associated with DD (Relun et al., 2013). Pavlenko et al. studied DD-

affected Swedish Red and Swedish Holstein cows and found that they had significantly lower 

milk yield (5.5 kg energy-corrected milk per day) compared to healthy control cows (Pavlenko et 

al., 2011). Additionally, Gomez et al. discovered that the DD infection history of heifers 

influenced their milk yield during the first lactation (Gomez et al., 2015). Cows that experienced 

one or more DD infections before their first calving exhibited a reduction in milk yield of 199 kg 

or 335 kg over 305 days, respectively, compared to cows without a prior DD infection before 

calving (Gomez et al., 2015). 

While it is established that lameness, in general, can have a negative impact on fertility 

(Alawneh et al., 2011; Melendez et al., 2003; Morris et al., 2011), there is limited research 

specifically investigating the relationship between DD infection and fertility changes. A study 

conducted on Mexican Holstein-Friesian cows revealed an extended calving to conception 

interval and increased days open in cows with DD compared to healthy cows (Argaez-Rodriguez 

and Hird, 1997). Similarly, Gomez et al. found that heifers with repeated DD infections prior to 
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their first calving had a lower conception rate at first service and an increase in the number of 

days open compared to cows without any prior DD infection (Gomez et al., 2015). Zinicola et al. 

estimated that DD results in an annual economic loss of US $1.1 billion for dairy cows in the 

United States and European Union, assuming a DD prevalence rate of 25% (Zinicola et al., 

2015). 

Estimates of the cost per case of non-specific lameness ranged from $76 to $533, depending on 

the location of the study (Dolecheck and Bewley, 2018). The cost of DD over all combinations 

of parity group and incidence timing, regardless of incidence likelihood, was $64 ± 24 for DD 

using a stochastic simulation model (Dolecheck et al., 2019). The cost of a lame cow and a DD-

affected cow was $345.09 ± 9.43 and $439.70 ± 11.22 per year on average, respectively using a 

bioeconomic model (Robcis et al., 2023a). Charfeddine and Pérez-Cabal (2017) noted that it 

costs $53 to $402 per cow affected with DD (Charfeddine and Pérez-Cabal, 2017), while Cha et 

al. noted that it costs $132.96 per DD case (Cha et al., 2010). The disease surpasses all other 

causes and incurs an additional cost of approximately $100 (Robcis et al., 2023a). For each 

subsequent week that a cow remained lame, the financial burden on the farmer increased by 

$13.26 per week (Robcis et al., 2023a). The cost of a mild lesion was $53 per affected cow and 

year, whereas the cost of a severe lesion ranged from $402 per affected cow and year for DD 

(Charfeddine and Pérez-Cabal, 2017). It was recommended that 95.5% of DD cases be treated 

and the main contributor to the total cost per case is treatment cost for DD (42%) (Cha et al., 

2010). The current estimates of cost for DD do not account for the cost of transmission. 

Digital dermatitis is a contagious disease, and disregarding the costs associated with additional 

cases resulting from an initial case overlooks the complete economic impact of the disorder 

(Dolecheck et al., 2019). Döpfer et al. determined the reproductive ratio of DD to range from 0.5 
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to 3.3, depending on the preventive measures implemented (Döpfer et al., 2012). This cost 

category could constitute a significant portion of the overall cost per DD case, contingent upon 

the herd-level prevention strategies in place. Due to the complexity of modeling contagious 

diseases, this cost category is typically omitted from cost estimates (Dolecheck et al., 2019). 

The impact of DD varies depending on the stage of the disease. During acute ulcerative phases, 

cows experience pain that affects their behavior, leading to reduced milk yield and fertility. 

Chronically affected animals can perpetuate the disease within the herd, acting as reservoirs for 

pathogens and contributing to the establishment of an endemic state of infection. This can 

ultimately lead to premature culling of cows and additional costs for disease control and 

eradication (Biemans et al., 2018; Döpfer et al., 2012). Consequently, determining the disease 

stage is crucial for informing prevention and control strategies and accurately assessing the 

economic implications of DD (Gomez et al., 2015). 

Detection of Digital Dermatitis 

Currently, various methods are employed to gather data related to DD. Herd mobility scoring 

serves as a widely used screening tool to identify lame animals, followed by clinical 

investigation of feet to determine the underlying cause of lameness and implement the 

appropriate treatment. Mobility scoring is subjective and susceptible to biases from both intra- 

and inter-observer variations (Archer et al., 2010; Whay, 2002). The presence of DD lesions does 

not always correlate with lameness, potentially resulting in underreporting (Krull et al., 2016). 

This approach to detecting DD is labor-intensive, expensive, and causes stress to the animals, as 

it requires thorough cleaning and examination (Relun et al., 2011; Stokes et al., 2012a). 

Locomotion scoring may overlook cases with less obvious lesions (Solano et al., 2017). The 

subjective approach of locomotion scoring is often employed to evaluate lameness in dairy cattle, 
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but it is time-consuming and may not be sufficiently sensitive to detect hoof lesions (Flower and 

Weary, 2006; Sprecher et al., 1997; Tadich et al., 2010). The standard method for detecting and 

classifying DD involves clinical observation of hooves lifted in a foot trimming chute. 

Researchers have proposed alternative approaches for monitoring DD, including visual 

inspections during milking routines in the parlor (Relun et al., 2011; Stokes et al., 2012a), as well 

as exploring the use of infrared thermography for lesion identification (Stokes et al., 2012b). 

Unfortunately, these alternatives generally exhibit lower diagnostic accuracy compared to the 

standard method of foot inspection (Orsel et al., 2018). 

Benefits of Early Detection 

Currently, visual inspection of lifted hooves is considered the gold standard for DD detection in 

dairy cattle (Afonso et al., 2021). However, this method is labor-intensive and subjective in 

nature. The diagnosis of DD is commonly performed during routine claw trimming by lifting the 

foot in a claw-trimming chute (Holzhauer et al., 2006; Manske et al., 2002; Thomsen et al., 

2008b). Alternative methods have been explored to directly inspect feet affected by DD while 

the cow is standing in the milking parlor. These methods can involve using a swiveling mirror or 

a rigid borescope for assessment (Relun et al., 2011; Rodriguez-Lainz et al., 1998; Thomsen et 

al., 2008a). 

As previously stated, DD can be present even without noticeable lameness, and severe lameness 

may not manifest until the DD lesion has progressed (Laven and Proven, 2000; Stokes et al., 

2009). Hence, early detection of DD holds significant value in preventing further advancement 

and enabling timely and effective treatment (Döpfer et al., 2012; Shearer and Hernandez, 2000). 

There is a need for reliable, practical, and non-invasive screening methods that can rapidly and 

frequently assess the presence of DD in real time at both the foot and cow level. 
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Early detection allows for prompt intervention and treatment, minimizing the progression and 

severity of the disease (Main et al., 2010; Robcis et al., 2023b). This increases the chances of 

successful treatment outcomes and faster recovery for affected animals. Treating DD in its early 

stages can be more effective and less costly compared to treating advanced chronic cases. Early 

detection can help avoid potential complications and more extensive treatments, resulting in cost 

savings for farmers (Charfeddine and Pérez-Cabal, 2017; Dolecheck and Bewley, 2018). Early 

detection of DD can help mitigate negative effects and alleviate pain, leading to improved milk 

yield and overall performance of the animals (Charfeddine and Pérez-Cabal, 2017; Dolecheck 

and Bewley, 2018; Dolecheck et al., 2019; Galligan, 2006; Laven et al., 2008; Liang et al., 2017; 

Robcis et al., 2023b; Whay and Shearer, 2017). It early detection of DD enables farmers to 

implement appropriate biosecurity measures to control the spread of DD (Brennan and Christley, 

2012; Oliveira et al., 2017). 

Overview of Computer Vision 

Deep learning algorithms draw inspiration from the remarkable capabilities of the human brain, 

which utilizes an extensive network of interconnected neurons to perform complex tasks such as 

speaking, moving, thinking, and seeing (Goodfellow et al., 2016). In the realm of artificial 

intelligence, deep learning architectures typically comprise multiple layers of artificial neurons, 

forming what is known as "deep" neural networks. The fundamental building block of these 

networks is the neuron (Goodfellow et al., 2016). Neurons are typically organized into layers, 

where each neuron has a specific function while learning distinct parameters. Through a so-

called “feed-forward” process, data input is continually transformed as it passes through the 

layers, ultimately mapping the data transformations to a desired output. 
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To optimize the performance of the network, the parameters of neurons and the weights of 

connections between neurons are updated through a learning process known as backpropagation 

(Goodfellow et al., 2016). During backpropagation, the network computes the error, which 

represents the difference between the observed and predicted outcome. This error is then 

propagated backward through the network using parameter gradients. These gradients are 

employed to update the parameters of individual neurons and the weights of connections 

between neurons, aiming to minimize the observed error in the output. The network learns the 

optimal parameters and weights for each neuron to accurately predict the desired outcome. 

Through the iterative error minimization process, the network's parameters tend to converge 

within the network architecture. This convergence results in the network making precise and 

accurate predictions when presented with new data points or images. 

Deep neural networks are constructed using various types of layers, each serving a distinct 

purpose (Oliveira et al., 2021). Commonly employed layer types include fully connected (or 

dense), convolutional, deconvolutional, pooling, recurrent, and others. Fully connected (or 

dense) layers consist of neurons that apply a single activation function to transform the summed 

weighted input from a node to an output value. 

Convolutional layers utilize so-called “kernels” to perform convolutions on input images, where 

each node convolves its kernel with the input image, generating a convolved image as output 

(Oliveira et al., 2021). These layers can also modify image scales using strides, resulting in 

smaller output images, or employ transpose convolutions, often referred to as deconvolutional 

layers, to generate larger output images (Oliveira et al., 2021). 

Pooling and upsampling layers serve similar functions of processing images but with opposite 

effects. Pooling layers aggregate input image values into smaller images, while upsampling 
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layers interpolate values from smaller images to create larger images (Oliveira et al., 2021). 

These layers are often used in conjunction with convolutional layers to build encoders and 

decoders, such as for image segmentation (Oliveira et al., 2021). 

Deep learning algorithms, a subset of machine learning techniques, have emerged as a powerful 

tool in various computer vision (CV) applications. These algorithms extend traditional artificial 

neural networks (ANN) and demonstrate their ability to learn more abstract representations of 

input data by constructing a hierarchical structure of nested concepts (Goodfellow et al., 2016). 

These nested concepts, also known as hidden layers, contribute to the creation of highly complex 

models with numerous trainable parameters. The training of such models became feasible due to 

significant advancements in the field of deep learning including the availability of extensive 

datasets, the utilization of data augmentation techniques, and the progress made in ANN, such as 

the development of stochastic gradient descent for learning optimization, the introduction of new 

activation functions such as the rectified linear unit (ReLU), the implementation of regularization 

techniques, and the efficient utilization of graphics processing units (GPU) (Goodfellow et al., 

2016; LeCun et al., 2015). 

Object detection is a prominent research area within CV and has generated a substantial body of 

literature. Deep learning techniques have consistently demonstrated their effectiveness in object 

detection, and they can be broadly classified into two categories: region proposal-based methods 

and regression-based methods (Li et al., 2020).  

Region proposal-based methods involve proposing potential object regions in an image and 

classifying them into one or more categories. On the other hand, regression-based methods 

approach object detection as a regression problem, determining object coordinates within 

images. One of the early successful region proposal-based methods was the region-based 
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Convolutional Neural Network (CNN) (Girshick et al., 2016). This algorithm generates a 

multitude of region proposals by mean of “selective search” (Uijlings et al., 2013). It then 

extracts deep convolutional features from these regions using a CNN and employs a support 

vector machine to label object candidates with PASCAL VOC classes. Deep learning approaches 

in object detection have significantly advanced the field, and these region proposal-based 

methods have played a crucial role in achieving state-of-the-art object predictions. 

The initial concept of region-based CNN has undergone significant enhancements, resulting in 

the development of new approaches. One such improvement is Fast R-CNN, which introduced 

the concept of feeding the input image directly into the CNN to generate a convolutional feature 

maps for identifying region proposals (Girshick, 2015). This differs from the previous approach 

of feeding region proposals into the CNN. In the case of Faster R-CNN, a separate network was 

used to predict the region proposals instead of a selective search algorithm applied to the feature 

map (Ren et al., 2015). This modification improved efficiency and accuracy in generating region 

proposals. Cascaded R-CNN introduced a sequential framework comprising cascaded object 

detectors employing R-CNN-like networks (Cai and Vasconcelos, 2018). Each detector in the 

sequential framework exhibits increasing accuracy and is trained with progressively higher 

Intersection over Union (IoU) thresholds to evaluate the overlap between a predicted bounding 

box and a ground truth bounding box. This cascaded approach enhances selectivity against close 

false positives. These innovations have contributed to the refinement of region-based CNNs, 

offering improved performance, increased efficiency, and enhanced selectivity in object 

detection tasks. 

The concept of regression-based networks for object detection was initially introduced in 

OverFeat (Sermanet et al., 2014), and subsequently gained popularity with the emergence of 
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YOLO (Redmon et al., 2016) and RetinaNet (Lin et al., 2018). YOLO is a regression network 

that employs a single CNN backbone to predict bounding boxes with label probabilities in a 

unified evaluation process (Redmon et al., 2016). This architecture employs a grid structure to 

divide the input image space and locate objects at the center of each grid cell. Multiple bounding 

boxes and class probabilities are generated for each cell, and the network training involves 

maximizing these values for every cell. 

In YOLOv2, several modifications were proposed to enhance precision compared to the original 

YOLO architecture (Redmon and Farhadi, 2017). These include the replacement of fully 

connected layers with anchor boxes that are more robust and have fewer parameters, for 

bounding box prediction. This approach is similar to what was proposed in the Single Shot 

Multibox detector (SSD) (Liu et al., 2016). YOLOv3 further improved the use of anchor boxes 

by employing dimension clusters to predict bounding boxes and logistic classifiers to generate 

class probabilities for each bounding box (Redmon and Farhadi, 2018). 

RetinaNet, on the other hand, integrates ResNet (He et al., 2015) and Feature Pyramid Networks 

(Lin et al., 2017) as backbone networks for feature extraction. These features are concatenated 

with two task-specific subnetworks dedicated to classification and bounding box regression. The 

training schema involves utilizing focal loss, resulting in a single-stage regression approach that 

outperforms Faster R-CNN. 

For scenarios where reduced computational resources are available, Tiny-YOLO (Redmon et al., 

2016) was introduced as a smaller version of YOLO. This network architecture requires less time 

for training and testing but generally exhibits lower accuracy compared to the original models. 

These advancements in regression-based networks have significantly contributed to the field of 
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object detection, offering improved performance and varying trade-offs between accuracy and 

computational efficiency. 

Applications of Computer Vision 

In the field of animal and veterinary sciences, sensors have been widely employed for various 

purposes, although most applications have been limited to experimental settings, with only a few 

developed for commercial farm use. These applications encompass a wide range of functions, 

including assessing the composition of beef cuts, identifying and tracking live animals, 

monitoring behavior, and measuring relevant phenotypes such as body weight, condition score, 

and gait (Fernandes et al., 2020). This technology holds great potential for precision livestock 

farming and high-throughput phenotyping applications. The continuous measurement of 

phenotypic traits through CV has the potential to reduce management costs, enhance decision-

making in livestock operations, and create new opportunities for selective breeding (Fernandes et 

al., 2020). While applications of CV are currently a burgeoning research area, there are already 

commercial products available. The remaining challenges necessitate further research to achieve 

the successful development of autonomous solutions capable of delivering critical information. 

Object detection tasks have been employed in various livestock animal studies for multiple 

purposes. As previously mentioned, the primary objective of these tasks is to identify and locate 

one or more objects within an image. In animal science research, object detection algorithms 

have predominantly been applied to animal detection, with a particular focus on swine (Cowton 

et al., 2019; Lee et al., 2019; Psota et al., 2019; Seo et al., 2020). However, other applications 

have been explored, including the detection of lameness (Kang et al., 2020) and DD (Cernek et 

al., 2020) in dairy cattle. 
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Lee et al. proposed a hybrid approach that combines image processing techniques with a deep 

learning algorithm (Lee et al., 2019). They utilized a Gaussian Mixture Model to detect the 

moving frame within a 24-hour timeframe. Tiny YOLOv3 was employed to identify individual 

pigs in each selected frame. Finally, they applied Otsus' method for pig body segmentation, 

which utilizes automatic image thresholding to calculate pig size. Instead of relying on end-to-

end deep learning methods, the authors introduced these hybrid models and demonstrated that 

they offer faster analysis speed and satisfactory accuracy when implemented on single-board 

GPUs, such as the Jeston TX2. This approach was compared to deep learning strategies like 

Mask R-CNN. 

In animal science, YOLO and Faster R-CNN emerged as the main algorithms used for object 

detection. The specific deep learning architectures employed varied across the different studies. 

Popular architectures for deep learning included ResNet, Xception, VGG16, Inception, and 

Darknet. Barbedo et al. utilized an Unmanned Aerial Vehicle (UAV) to capture aerial images of 

beef farms and evaluated 15 CNN architectures for animal detection (Barbedo et al., 2017). The 

authors concluded that many CNN architectures exhibited robustness in detecting cattle on 

farms, with NASNet and Xception networks demonstrating particularly impressive performance. 

Geffen et al. employed Faster R-CNN with a ResNet-101 backbone network to detect and count 

hens per cage, achieving a detection accuracy of 89.6% (Geffen et al., 2020). Ye et al. utilized R-

CNN and reported an accuracy of 98.6% in predicting the stunned condition of broilers (Ye et 

al., 2020). 

Cernek et al. implemented YOLOv2 using RGB images and achieved an accuracy of 88% in 

detecting cows with DD (Cernek et al., 2020). These promising results demonstrated the 

significant potential of CV in accurately identifying animals affected by DD, thereby reducing its 
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prevalence and improving animal welfare. Kang et al. developed a lameness scoring system for 

dairy cows using the Receptive Field Block Net Single Shot Detector deep learning network 

(Kang et al., 2020). They achieved a mean average precision of 87.0% in accurately locating cow 

hooves within video footage. The located legs were subsequently utilized as input in a proposed 

algorithm called the “supporting phase”, which involved calculating the difference between the 

hoof lifting time and the hoof load time. 
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CHAPTER SUMMARY 

Chapter 2, 3, and 4, discuss real-time detection of DD in dairy cows using computer vision 

algorithms. Chapter 2 performs a comparative analysis of different computer vision algorithms 

for the real-time detection of DD in dairy cows. Chapter 3 applies the prior information in 

Chapter 2 and performs benchmarking analysis of the best computer vision algorithm on an edge 

device. Chapter 4 extends the benchmarking analysis on an edge device in Chapter 3 to various 

cloud computing platforms and updates the computer vision algorithm to the latest version. The 

chapters demonstrate the feasibility of implementing a portable solution for early detection of 

DD in precision farming. 

Chapter 5 expands on real-time detection of DD in dairy cows to pododermatitis in canines. 

Additionally, the study examines the differences in performance using single or multiple labelers 

with various levels of instruction. The custom models, edge devices, and cloud deployments are 

a significant step towards the integration of CV algorithms in veterinary medicine and signifies 

forward progress in the real-time detection of health outcomes in agriculture. 

Chapter 6 and Chapter 7 describe data analysis tools for dairy records. Chapter 6 demonstrates 

the extraction of health and production data from DairyComp, then data cleaning and analysis 

using a menu-driven point-and-click approach via the DairyCoPilot app. Chapter 7 demonstrates 

real-time detection of DD on a mobile app, data analysis including trends of M-stages over time, 

and predictions and assignments of Cow Types via the DairyCheckPlus app. Chapter 8 serves as 

a placeholder for research in progress. It describes a comparative analysis of different mobile 

apps for real-time detection of DD on both Android and iOS devices. 
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The tools are the first step in developing advanced freely available tools for rapid analysis of 

records from dairy farms that are translatable to all other animal species and healthcare settings. 

Additionally, the proposed tools are user-friendly and can be download to a mobile device or can 

be accessed via the web. The applications are an important step in converting farm records into 

data assets for more customized decision-making processes by informed consultants in the life 

sciences.  

Chapter 9 discusses the subsequent workflow for object detection to train and deploy a model 

that can accurately detect and localize objects of interest within images or videos. This approach 

can save significant training time and resources while adapting the model to new tasks. Chapter 

10 provides a discussion extending the research to further analysis and future studies. The focus 

of the chapter describes the major opportunities and challenges for deployment of computer 

vision algorithms and object detection models in precision farming and veterinary medicine. 
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CHAPTER 2 COMPARATIVE ANALYSIS OF COMPUTER VISION ALGORITHMS 

FOR THE REAL-TIME DETECTION OF DIGITAL DERMATITIS IN DAIRY COWS 

ABSTRACT 

Digital dermatitis (DD) is a bovine claw disease responsible for ulcerative lesions on the 

coronary band of the hoof. DD is associated with massive herd outbreaks of lameness and 

influences cattle welfare and production. Early detection of DD can lead to prompt treatment and 

decrease lameness. Computer vision (CV) provides a unique opportunity to improve early 

detection. The study aims to train and compare applications for the real-time detection of DD in 

dairy cows. Nine CV models were trained for detection and scoring, compared using 

performance metrics and inference time, and the best model was automated for real-time 

detection using images and video. 

Images were collected from commercial dairy farms while facing the interdigital space on the 

plantar surface of the foot. Images were scored for M-stages of DD by a trained investigator 

using the M-stage DD classification system. Two sets of images were compiled: the first dataset 

(Dataset 1) containing 1,177 M0/M4H and 1,050 M2/M2P images and the second dataset 

(Dataset 2) containing 240 M0, 17 M2, 51 M2P, 114 M4H, and 108 M4P images. Models were 

trained to detect and score DD lesions and compared for precision, recall, and mean average 

precision (mAP) in addition to inference time in frame per second (FPS). 

Seven of the nine CV models performed well compared to the ground truth of labeled images 

using Dataset 1. The six models, Faster R-CNN, Cascade R-CNN, YOLOv3, Tiny YOLOv3, 

YOLOv4, Tiny YOLOv4, and YOLOv5s achieved an mAP between 0.964 to 0.998, whereas the 

other two models, SSD and SSD Lite, yielded an mAP of 0.371 and 0.387 respectively. Overall, 
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YOLOv4, Tiny YOLOv4, and YOLOv5s outperformed all other models with almost perfect 

precision, perfect recall, and a higher mAP. Tiny YOLOv4 outperformed all other models with 

respect to inference time at 333 FPS, followed by YOLOv5s at 133 FPS and YOLOv4 at 65 FPS. 

YOLOv4 and Tiny YOLOv4 performed better than YOLOv5s compared to the ground truth 

using Dataset 2. YOLOv4 and Tiny YOLOv4 yielded a similar mAP of 0.896 and 0.895, 

respectively. However, Tiny YOLOv4 achieved both higher precision and recall compared to 

YOLOv4. 

Finally, Tiny YOLOv4 was able to detect DD lesions on a commercial dairy farm with high 

performance and speed. The proposed CV tool can be used for early detection and prompt 

treatment of DD in dairy cows. This result is a step towards applying CV algorithms to 

veterinary medicine and implementing real-time DD detection on dairy farms. 
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INTRODUCTION 

Digital dermatitis (DD) is the most prevalent bovine infectious claw disease worldwide (Refaai 

et al., 2013; Logue et al., 2005; Teixeira et al., 2010). The disease is responsible for painful 

circumscribed ulcerative lesions of the coronary band of the hoof in both dairy and beef cattle 

(Cheli and Mortellaro, 1974; Döpfer et al., 1997). Massive herd outbreaks of lameness are 

caused by DD, influencing cattle welfare and production (Cramer et al., 2009; Krull et al., 2016; 

Jacobs et al., 2019). In addition, the disease results in major losses for the cattle industry due to 

decreased milk production, decreased fertility rate, and increased premature culling. (Vanhoudt 

et al., 2019). Early detection can lead to prompt treatment and decrease lameness within the herd 

(Schulz et al., 2016). Lesions are detected through visual inspection and scored using the M-

stage classification system by trained investigators (Döpfer et al., 1997; Berry et al., 2012). Early 

identification and prompt intervention requires extensive employee training in an industry with a 

high employee turnover rate (Döpfer et al., 2012; Shearer and Hernandez, 2000). 

Recent advances in computational power and state-of-the-art algorithms have made object 

detection and classification possible by applying machine learning techniques (Vaidya and 

Paunwala, 2019; Wu et al., 2020). Such methods for animal detection have been used to assess 

the health and well-being of livestock in cattle and small ruminants (Alsaaod et al., 2014; Byrne 

et al., 2018, 2017; Gomes et al., 2016; Hovinen et al., 2008; Martins et al., 2013; Metzner et al., 

2015; Salau et al., 2017; Scoley et al., 2018; Yang et al., 2018; Zaninelli et al., 2018). However, 

applications for the classification of health events are still rare in veterinary medicine and food 

production (Vinicki et al., 2018). There are many unexplored applications in veterinary medicine 

and an untapped potential for machine learning algorithms to predict relevant biological 
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outcomes (Liakos et al., 2018). Thus, machine learning provides a unique opportunity to improve 

early detection of DD and optimized treatment plans for cattle. 

Computer vision (CV) can be used to perform object detection and calculate the associated class 

probabilities from a series of images or videos (Szeliski, 2022). Object detection locates the 

presence of an object with a bounding box, class label, and class probability (Zhao et al., 2019). 

The input is an image with one or more objects and the output is an image or video with zero or 

more class detections. The bounding box is defined by x- and y- coordinates of the center, width, 

height, and a class label for each object. The conditional class probability is the probability that 

the detected object belongs to a particular class (Zhao et al., 2019; Wu et al., 2020; Sharma and 

Mir, 2020).  

Object detectors are mainly divided into two-stage object detectors and one-stage object 

detectors. The first stage of two-stage networks identifies region proposals, or subsets of the 

image that might contain an object. The second stage classifies the objects within the region 

proposals (Wu et al., 2020; Sharma and Mir, 2020). One-stage networks produce predictions for 

regions across the entire image using anchor boxes, and the predictions are decoded to generate 

the final bounding boxes for the objects. The approach skips the region proposal stage and runs 

detection directly over a dense sampling of possible locations  (Wu et al., 2020; Sharma and Mir, 

2020). Single-stage networks can be much faster than two-stage networks, but they may not 

reach the same level of accuracy, especially for images containing small objects.  

One-stage object detectors such as You Only Look Once (YOLO) and Single Shot MultiBox 

Detector (SSD) in addition to two-stage object detectors such as Faster and Cascade region-

based convolutional neural networks (R-CNNs) are commonly used, because of higher speed and 

higher accuracy compared to other computational approaches (Soviany and Ionescu, 2018). Such 
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models are used for real-time detection of health outcomes to generate bounding boxes and class 

probabilities from labeled objects in images (Ünver and Ayan, 2019; Cao et al., 2017; Al-antari 

et al., 2020). The current study compares and contrasts five versions of YOLO: YOLOv3, Tiny 

YOLOv3, YOLOv4, Tiny YOLOv4, and YOLOv5s for differences in prediction performance in 

addition to the SSD, SSD Lite, Faster R-CNN, and Cascade R-CNN (Redmon and Farhadi, 2018; 

Adarsh et al., 2020; Bochkovskiy et al., 2020; Liu et al., 2016; Ren et al., 2016; Cai and 

Vasconcelos, 2017; ultralytics, 2022). 

YOLO models have several advantages over other object detectors. First, YOLO can recognize 

multiple objects in a single frame (Redmon et al., 2016). It is extremely fast, because it uses a 

single network evaluation to simultaneously predict multiple bounding boxes and class 

probabilities, where other systems require thousands of network evaluations for a single image 

(Redmon et al., 2016). YOLO looks at the entire image during training and test time to implicitly 

encode contextual information about classes including their appearance and generalize 

representations of the objects (Redmon et al., 2016).  

YOLO has achieved high performance on a high-end graphics processing unit (GPU), but does 

not perform fast enough on portable devices, because of the high memory requirements 

(Redmon, 2018; Redmon and Farhadi, 2018). Consequently, lightweight network architectures 

are used for constrained environments such as portable devices resulting in reduced model size 

and computation cost (Redmon, 2018). Tiny YOLO is the compressed version of YOLO with a 

simpler network structure and a reduced number of corresponding parameters (Adarsh et al., 

2020). For real-time object detection, Tiny YOLO is the better option compared to YOLO, 

where speed is prioritized over precision or accuracy (Adarsh et al., 2020). The speed of Tiny 

YOLOv4 is approximately eight times faster than YOLOv4 (Alexey, 2021; Bochkovskiy et al., 
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2020; Techzizou, 2021). Furthermore, the speed of YOLOv5s is approximately two-and-a-half 

times faster than YOLOv4 (Kin-Yiu, 2020). However, the accuracy for YOLOv4 is 33% better 

than Tiny YOLOv4 tested on the MS COCO dataset (Alexey, 2021; Bochkovskiy et al., 2020; 

Techzizou, 2021). Moreover, the accuracy for YOLOv4 is better than 11% better than YOLOv5s 

on the MS COCO dataset using the same image and batch size (Kin-Yiu, 2020). 

A YOLOv2 model was previously trained on a database of more than 3,500 DD lesion images to 

detect M-stages of DD (Cernek et al., 2020). The resulting predicting accuracy was 71% and the 

agreement between the human investigator and CV model was quantified as “moderate” by 

Cohen’s kappa during internal validation (Cernek et al., 2020). In the external validation, the 

YOLOv2 model detected DD with an accuracy of 88% and agreement between a human 

investigator and CV model was quantified as “fair” by Cohen’s kappa (Cernek et al., 2020).  

The YOLOv3 model builds on the YOLOv2 framework by making detections at three different 

scales and predicts ten times more bounding boxes to improve performance on smaller objects 

(Redmon and Farhadi, 2018). YOLOv4 improves on the average precision (AP) by 10% and 

frames per second (FPS) by 12% compared to YOLOv3 on the COCO dataset (Bochkovskiy et 

al., 2020). For the purpose of our use case, different state-of-the-art CV models are trained using 

the same datasets to determine the best performing approach for fast and accurate object 

detection. Model performance is characterized by common benchmarking measures for speed 

and accuracy.  

The study aims to design, develop, and implement an application for the real-time detection of 

DD in dairy cattle with the intention of minimizing the adverse effects of DD and lameness in all 

cattle by means of early detection and prompt treatments. Nine state-of-the-art CV models are 

trained for detection and scoring of DD, compared for performance, and implemented for real-



41 
 

time detection. Such tools have not yet been implemented and will help dairy farmers and 

producers to improve DD prevention strategies for early intervention as well as helping increase 

cattle welfare and production. We hope the proposed tool can be employed in combination with 

current practice for prevention of DD in dairy cattle. Automated detection of DD on streaming 

video can be used to generate treatment lists in real-time for dairy and beef cattle. Ultimately, the 

workflow can be deployed as a web-based application for the real-time detection of DD lesions. 

Such approaches can help identify high risk cattle for DD. Monitoring herds with endemic DD 

for changes in lesion prevalence or severity and classifying cattle based on lesion stages can 

improve on-farm decision-making processes (Plummer and Krull, 2017). 

MATERIALS AND METHODS 

Data Collection and Image Labeling 

We used two different datasets for the study: the first dataset (Dataset 1) of images was used to 

compare the performance of all eight CV models and a second dataset (Dataset 2) of images was 

used to evaluate the performance of the best models for real-world application. Dataset 1 

contained a collection of 2,227 images of cattle feet from midwestern United States commercial 

dairy farms and images were labeled for M-stages of DD (Cernek et al., 2020). Images were 

generated using GoPro Hero 5 Black cameras to collect MP4 video recordings of the plantar 

aspect of standing feet of dairy cows. Additionally, traditional and cell phone cameras were used 

to obtain JPG images from other studies in Wisconsin; Manitoba, Canada; and Utrecht, The 

Netherlands. All images were collected between June 2018 and March 2019. A rich, diverse 

library of images was compiled from various settings and scenarios including images of feet 

lifted in stand-up restraining chutes and cattle standing in the cattle housing area, in automated 

milking systems, or in rotary milking parlors. Dataset 2 contained a collection of 409 images of 
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cattle feet from milking parlors in Wisconsin and images were labeled for M-stages of DD. As 

previously described, GoPro Hero 5 Black cameras were used to take MP4 video recordings of 

the backside of the hind feet at claw level. Images were taken during May 2021 of hooves lifted 

in the cattle housing area, automated milking system, or exiting a disinfecting foot bath.  

Images were scored for M-stages of DD by a trained investigator using the M-stage DD 

classification system. The classification system describes various clinical stages over the course 

of the disease based on morphological observations between healthy (M0), active (M2), and 

chronic (M4) with hyperkeratosis (H) or proliferation (P) stages (Döpfer et al., 1997; Berry et al., 

2012). For Dataset 1, the images were combined and reclassified into M0/M4H lesions versus 

active ulcerative M2/M2P lesions. For Dataset 2, the images were classified into the different 

stages of DD as follows: M0, M2, M2P, M4H, and M4P. 

Overall, the first library (Dataset 1) of a single foot per image and two class labels included 

1,177 M0/M4H class labels (936 JPG images from MP4 video recordings and 241 JPG images 

from camera images) and 1,050 M2 class labels (660 screenshot JPG images from MP4 video 

recordings and 390 JPG images from camera images). The second library (Dataset 2) of multiple 

feet per image and five labels consisted of 240 M0, 17 M2, 51 M2P, 114 M4H, and 108 M4P 

class labels (409 screenshot JPG images from MP4 video recordings). The associated 

annotations for the bounding boxes and class labels were generated in LabelImg version 1.8.1 

using Python (Lin, 2018). Labels were converted from Pascal VOC format for R-CNN and SSD 

models to YOLO format for YOLO models (Tashiev, 2022). 
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Model Training and Performance Evaluation 

The datasets were split with 90% of the images placed into a training set and 10% of the images 

placed into a testing set at random. For Dataset 1, the testing set contained 222 images including 

117 M0/M4H and 105 M2 class labels. For Dataset 2, the testing set contained 40 images 

consisting of 20 M0, 4 M2, 4 M2P, 14 M4H, and 10 M4P class labels. All models were trained 

and tested using Google Colab and a 12GB NVIDIA Tesla K80 GPU with a batch size of 64 and 

subdivision size of 16 (“Google Colaboratory,” 2022). The training weights were initialized 

using convolutional weights that were pre-trained on Imagenet (“ImageNet,” 2020; Krizhevsky 

et al., 2012). The eight different computer vision models were trained until the model converged 

or the maximum number of batches was reached. 

The R-CNNs were performed using ResNet-50 as the backbone feature extractor and input 

images were resized to 640 by 640 pixels. Faster R-CNN improved on Fast R-CNN by utilizing a 

Region Proposal Network to generate high-quality region proposals used by Fast R-CNN for 

detection (Ren et al., 2016). Cascade R-CNN extended Faster R-CNN where a sequence of 

detectors was trained stage by stage to leverage the output of a previous detector to train the next 

detector (Cai and Vasconcelos, 2017).  

SSD uses MobileNet V1 as the backbone feature extractor and SSDLite network uses MobileNet 

V2. The SSD network accepts images that are resized to an input resolution of 300 by 300 pixels 

(Liu et al., 2016). SSDLite is similar to SSD, but implements depthwise-separable convolutions 

rather than regular convolution layers, which increases the speed compared to the regular SSD 

making it perfectly suited for use on mobile devices (Fan et al., 2018). 
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The YOLOv3 network uses a variant of the custom deep architecture Darknet, originally a 53-

layer network trained on Imagenet with a 53-layer stack of neurons added for the task of 

detection to result in a total of a 106-layer fully convolutional underlying architecture (Redmon 

et al., 2016; Redmon and Farhadi, 2016, 2018). The YOLOv4 and YOLOv5 network uses 

CSPDarknet53 as the backbone, a spatial pyramid pooling additional module, PANet path-

aggregation neck, and a YOLOv3 head (Bochkovskiy et al., 2020; ultralytics, 2022). The 

YOLOv4 network size height and width is 416 by 416 pixels with a learning rate of 0.001 for a 

maximum number of 4,000 batches. The YOLOv5 network size height and width is also 416 by 

416 pixels with an initial learning rate of 0.001 for a maximum number of 1,500 epochs. The 

best training weights were selected for model evaluation. 

For speed, frames per second (FPS) were used to evaluate the time to predict the bounding boxes 

and class labels of the located objects in an image. For detection and identification, precision, 

recall, and mean average precision (mAP) at intersection over union (IOU) of 0.5 were used as 

performance measures to compare between the predictions made by the CV models, and labels 

made by a trained investigator (the so-called ‘ground truth’). Lastly, the best CV model was 

validated for detection of each M-stage on video files from dataset 2. 

RESULTS 

Tiny YOLOv4 outperformed all other models with a speed of 333 FPS (Figure 1). The closest 

model was YOLOv5s at 133 FPS, then SSD and SSD Lite at approximately 100 FPS, followed 

by YOLOv4 at 65 FPS. Cascade R-CNN and Faster R-CNN performed worse than the seven 

other models with a speed less than 10 FPS. For the purpose of real-time detection on a portable, 

stand-alone device, Tiny YOLOv4 was the best model for the use case, based on the size and 

speed of the implementation. 
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Seven of the nine CV models performed well compared to the ground truth using the first dataset 

with a single object per image and two class labels for object detection (Figure 2 - 4). In addition, 

the seven models outperformed SSD and SSD Lite. The six models achieved an mAP between 

0.964 to 0.998, whereas SSD and SSD Lite yielded an mAP of 0.371 and 0.387 respectively. 

Cascade R-CNN significantly outperformed Faster R-CNN for all three performance measures 

including precision, recall, and mAP. YOLOv4, Tiny YOLOv4, and YOLOv5s outperformed 

YOLOv3 and Tiny YOLOv3 for all three performance measures of precision, recall, and mAP. 

In addition, YOLOv3 had a lower precision but higher recall compared to Tiny-YOLOv3, but 

still had a slightly higher mAP. YOLOv4, Tiny YOLOv4, and YOLOv5s achieved similar 

precision and recall, however Tiny YOLOv4 and YOLOv5s achieved the highest mAP of 0.998 

and 0.995, respectively. Overall, YOLOv4, Tiny YOLOv4, and YOLOv5s outperformed all 

other models with almost perfect precision, perfect recall, and a higher mAP. 

Tiny YOLOv4 was an extremely fast and accurate model for real-time object detection (333 FPS 

and mAP of 0.998) and the best model for object detection on a portable, stand-alone device, 

followed by YOLOv5s (133 FPS and mAP of 0.995) and YOLOv4 (65 FPS and mAP of 0.974). 

Consequently, YOLOv4, Tiny YOLOv4, and YOLOv5s were evaluated for real-world 

application using the second dataset of multiple objects per image and more class labels for 

object detection (Figure 5 - 6). YOLOv4 and Tiny YOLOv4 performed better than YOLOv5s 

compared to the ground truth yielding a similar mAP of 0.896 and 0.895, respectively. However, 

Tiny YOLOv4 achieved both higher precision and recall. Tiny YOLOv4 was able to detect all 

five class labels well (Figure 7 - 8). The model was able to detect M2P, M4H, and M4P lesions 

with a higher average precision compared to M2 lesions. Overall, Tiny YOLOv4 was able to 

detect all five M-stages of DD on video files. 
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DISCUSSION 

Seven of the nine CV models were able to detect DD lesions in dairy cattle from an image. For 

speed, Tiny YOLOv4 clearly outperformed all other models with the highest FPS. For detection, 

YOLOv4, Tiny YOLOv4, and YOLOv5 outperformed all other models with high precision, high 

recall, and the highest mAP. The next closest model was Cascade R-CNN followed by Faster R-

CNN, YOLOv3, and Tiny YOLOv3. YOLOv4, Tiny YOLOv4, and YOLOv5 achieved similar 

precision and recall using the first dataset, but Tiny YOLOv4 yielded higher mAP. YOLOv4 and 

Tiny YOLOv4 achieved similar mAP using the Dataset 2, however Tiny YOLOv4 yielded 

higher precision and recall. Tiny YOLOv4 was the best CV model for the use case of real-time 

detection on streaming video. Additionally, the YOLOv3, YOLOv4, and YOLOv5 models had 

better performance than the YOLOv2 model using the same input data (Cernek et al., 2020). As 

a proof-of-concept, the Tiny YOLOv4 model was able to detect the different M-stages of DD on 

video files.  

For future application, the comparison of CV models for a given task can help identify which 

approaches perform best for a given situation (Cao et al., 2019; Jia et al., 2020; Liu et al., 2020; 

Xu et al., 2020). For instance, the R-CNN models, including Faster, Mask, and Cascade R-CNN, 

provide better detection performance when hooves were in close proximity, such as in densely 

populated dairy barns or feedlots. For applications where hooves were clearly separated from 

each other, such as a milking parlor, the YOLO models were a superior approach for the 

detection of DD lesions. 

For Dataset 2, Tiny YOLOv4 was able to detect all five class labels well. However, the model 

was able to detect M2P, M4H, and M4P lesions better than M2 lesions with a higher average 

precision. This was probably caused by unbalanced classes of data in the second dataset with a 
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relatively small number of M2 in the training set. Unbalanced datasets where the number of 

instances for class labels, such as M2, is less than the other class labels can create problems with 

regards to overall prediction performance of the CV model (Oksuz et al., 2021). Adding images 

to the dataset for infrequent classes will improve the model performance. The difference in 

distance between the camera and the object can create inaccurate object detection performance 

when using YOLO models (Redmon and Farhadi, 2018).  

The CV models applied during this project were able to identify and classify DD lesions on 

commercial dairy farms with high accuracy, in real-time, and at high speed. This result is a step 

in applying CV algorithms to veterinary medicine and implementing real-time DD detection on 

dairy farms. The proposed CV tool can be used for early detection and prompt treatment of DD 

in dairy cattle and has been extended to beef cattle (unpublished data). The trained model may be 

applied to different cattle breeds and various locations. The CV models for DD detection can be 

expanded to include more images from more farms for implementation on different farms. The 

YOLO framework can classify multiple claw diseases simultaneously in the future after training 

the models using more images of claw lesions. For increased generalization, the model requires 

additional images originating from additional cattle breeds, animal species, and geographical 

regions for robust predictions. CV has the potential to be used in precision livestock farming and 

high-throughput phenotyping applications. Such applications include animal identification and 

tracking, behavior monitoring, and phenotype classification and recognition (Fernandes et al., 

2020). Applications of CV in animal production systems and veterinary sciences are a growing 

research area (Fernandes et al., 2020; Li et al., 2021; Wurtz et al., 2019).  

The TensorFlow 1.x framework used in the study can be expanded to other open-source machine 

learning frameworks for deployment and overall ease of use. TensorFlow 2 offers better usability 
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and high performance (NVIDIA Corporation, 2022; tensorflow, 2017). TensorFlow models can 

be converted to TensorFlow Lite models reducing model size and power consumption and 

subsequently, they can be deployed on edge devices like mobiles or microcontrollers 

(tensorflow, 2021). PyTorch framework is quite fast and extremely efficient compared to some 

of the alternatives (Paszke et al., 2019; pytorch, 2021). YOLOv3 has been implemented in 

PyTorch by Ultralytics. YOLOv5 is the PyTorch implementation of YOLOv4 and achieves 

similar speed and accuracy, but reduced training time (ultralytics, 2022, 2021). The PyTorch 

implementation of YOLOv3 or different size models of YOLOv5 can be evaluated to see if there 

is an improvement in performance or speed. Lastly, YOLOv4 and YOLOv5 can be updated to 

the most recent version of each implementation, namely YOLOv7 and YOLOv8, providing an 

increase in accuracy and efficiency (Jocher, 2023; Jocher et al., 2023; Wang et al., 2022; Wong, 

2023). 

Accessibility to CV tools can promote the growth of such techniques in veterinary medicine and 

reduce adoption thresholds for the models. The CV models can be extended to portable 

platforms, including iOS or Android application for mobile use, as well as using a docker 

container for deployment of CV models as cloud-based applications (Docker, 2021). The 

implementation of such CV models in hand-held devices and in collaboration with cattle 

professionals will generate a rich, diverse library of images for the optimization and validation of 

CV models. Ultimately, the proposed CV tool will improve animal welfare and increase 

production for large-scale cattle facilities as an example for other applications in veterinary 

medicine and agriculture. 
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TABLES AND FIGURES 

Figure 2.1 DairyCoPilot Inference time of the nine CV algorithms for the testing set in Dataset 1 
(n= 2,227).  Inference time was measured in frames per second (FPS) and the nine CV models 

include the five latest versions of You Only Look Once (YOLO) models: YOLOv3, Tiny 
YOLOv3, YOLOv4, Tiny YOLOv4, and YOLOv5s in addition to Single-Shot Multibox 
Detector (SSD), SSD Lite, Faster Region-Based Convolutional Neural Networks (R-CNN), and 

Cascade R-CNN. 
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Figure 2.2 Performance of the nine CV algorithms for the testing set in Dataset 1 (n= 2,227).  
Performance was measured in mean average precision (mAP) and the nine CV models include 

the five of the latest versions of You Only Look Once (YOLO) models: YOLOv3, Tiny 
YOLOv3, YOLOv4, Tiny YOLOv4, and YOLOv5s in addition to Single-Shot Multibox 

Detector (SSD), SSD Lite, Faster Region-Based Convolutional Neural Networks (R-CNN), and 
Cascade R-CNN. 
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Figure 2.3 Precision and recall of the nine CV algorithms (bottom-left) with inset of the top 
seven CV model (top-right) for the testing set in Dataset 1 (n= 2,227). Performance was 

measured in precision and recall and the nine CV models include the five of the latest versions of 
You Only Look Once (YOLO) models: YOLOv3, Tiny YOLOv3, YOLOv4, Tiny YOLOv4, and 

YOLOv5s in addition to Single-Shot Multibox Detector (SSD), SSD Lite, Faster Region-Based 
Convolutional Neural Networks (R-CNN), and Cascade R-CNN. 
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Figure 2.4 Bounding box predictions of M0/M4 and M2 by the nine CV algorithms for the 
testing set in Dataset 1 (n= 2,227). The nine CV models include the five latest versions of You 

Only Look Once (YOLO) models: YOLOv3, Tiny YOLOv3, YOLOv4, Tiny YOLOv4, 
YOLOv5s in addition to Single-Shot Multibox Detector (SSD), SSD Lite, Faster Region-Based 

Convolutional Neural Networks (R-CNN), and Cascade R-CNN compared to labels by a trained 
investigator (‘Ground Truth’). 
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Figure 2.5 Performance of the top three CV algorithms for the testing set of Dataset 2 (n= 409).  
Performance was measured in mean average precision (mAP) and the CV models include the 

three of the latest versions of You Only Look Once (YOLO) models: YOLOv4, Tiny YOLOv4, 
and YOLOv5s. 
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Figure 2.6 Precision and recall of the top three CV algorithms for the testing set of Dataset 2 (n= 
409).  Performance was measured in precision and recall and the CV models include the three of 

the latest versions of You Only Look Once (YOLO) models: YOLOv4, Tiny YOLOv4, and 
YOLOv5s. 
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Figure 2.7 Bounding box predictions of M-stages by Tiny YOLOv4 for the testing set in Dataset 
2. Predictions were made for each of the M-stages: M0 (top-center; magenta), M2, M2P (bottom-

left; cyan), M4H, and M4P (bottom-right; green). 
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Figure 2.8 Average precision of the five M-stages by Tiny YOLOv4 for the testing set in 
Dataset 2 (n= 409). Performance was measured in average precision and calculated for each of 

the five M-stages: M0, M2, M2P, M4H, and M4P. 
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CHAPTER 3 BENCHMARKING ANALYSIS OF COMPUTER VISION ALGORITHMS 

ON EDGE DEVICES FOR THE REAL-TIME DETECTION OF DIGITAL 

DERMATITIS IN DAIRY COWS 

ABSTRACT 

Digital dermatitis (DD) is a bovine claw disease responsible for ulcerative lesions on the 

coronary band of the foot. It causes significant animal welfare and economic losses to the cattle 

industry. Early detection of DD can lead to prompt treatment and decrease lameness. Current 

detection and staging methods require a trained individual to evaluate the interdigital space on 

each foot for clinical signs of DD.  

Computer vision (CV), a type of artificial intelligence for image analysis, has demonstrated 

promising results on object detection tasks. However, farms require robust solutions that can be 

deployed in harsh conditions including dust, debris, humidity, precipitation, other equipment 

issues. The study aims to train, embed, and benchmark DD detection models on edge devices.  

Images were collected from commercial dairy farms with the camera facing the interdigital space 

on the plantar surface of the foot. Images were scored for M-stages of DD by a trained 

investigator using the M-stage DD classification system. Models were trained to detect and score 

DD lesions and embedded on an edge device. 

The Tiny YOLOv4 model deployed on a CV specific integrated camera module connected to a 

single board computer achieved a mean average precision (mAP) of 0.895, an overall prediction 

accuracy of 0.873, and a Cohen’s kappa of 0.830 for agreement between the computer vision 

model and the trained investigator. The model reached a final inference speed of 40 frames per 

second (FPS) and was stable without any interruptions.   
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The CV model was able to detect DD lesions on an edge device with high performance and 

speed. The CV tool can be used for early detection and prompt treatment of DD in dairy cows. 

Real-time detection of DD on edge device will improve health outcomes, while simultaneously 

decreasing labor costs. We demonstrate that the deployed model can be a low-power and 

portable solution for real-time detection of DD on dairy farms. This result is a step towards 

applying CV algorithms to veterinary medicine and implementing real-time detection of health 

outcomes in precision farming. 
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INTRODUCTION 

Bovine digital dermatitis (DD) is an infectious disease affecting the coronary band of cattle feet 

(Cheli and Mortellaro, 1974; Döpfer et al., 1997). The disease is characterized by circumscribed 

ulcero-proliferative lesions generally situated on the plantar aspect of the hoof and spread 

through direct contact between animals or contact with contaminated surfaces or objects (Blowey 

and Sharp, 1988; Read and Walker, 1998). Approximately 70 percent of US dairies and 95 

percent of dairies with more than 500 cows have reported to have DD (Gomez, 2018; Bruijnis et 

al., 2012; Solano et al., 2016). Up to 80 percent of lameness is caused by DD in the US and 

world cattle industry, resulting in production losses, decreased fertility, and increased mortality 

(Gomez, 2018; USDA, 2009). Lost productivity, labor, treatment or preventive measures, and 

other indirect economic costs attributable to DD cost the US cattle industry hundreds of millions 

of dollars annually (Losinger, 2006; de Jesús Argáez-Rodríguez et al., 1997; Hernandez et al., 

2001; Whay et al., 1997; Cha et al., 2010; Evans et al., 2016; Solano et al., 2017; Evans et al., 

2009; Bruijnis et al., 2010; Gomez et al., 2015; Ettema et al., 2010; Relun et al., 2013). 

Prevention and proper treatment of DD are essential to reduce the economic burden of the 

disease on the US cattle industry (Orsel et al., 2018; Evans et al., 2016; Branine et al., 2014). 

After detection, treating DD lesions involves a combination of topical applications of 

antimicrobials or disinfecting agents (Shearer et al., 2015; Solano et al., 2015; Döpfer et al., 

2011; Berry et al., 2010, 2012; Nishikawa and Taguchi, 2008; Hernandez et al., 1999; el-Ghoul 

and Shaheed, 2001; Read and Walker, 1998). Long-term management and prevention of DD 

often requires disinfecting footbaths and environmental remediation to control for risk factors 

(Shearer et al., 2015; Solano et al., 2015; Laven and Proven, 2000; Laven and Hunt, 2002; Silva 

et al., 2005; Teixeira et al., 2010; Thomsen et al., 2008; Speijers et al., 2012). Regular inspection 
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of cattle for signs of DD and early detection of DD can help to reduce the risk of environmental 

contamination and spread of the disease (Orsel et al., 2018; Refaai et al., 2013). 

The M-stage scoring system is a highly effective way to classify and monitor DD lesions and 

signs of chronicity (Döpfer et al., 2012). Recording M-stages, particularly at regular time 

intervals, enables herdsmen to improve claw health and to quantify economic and welfare losses 

(Döpfer et al., 2012). The M-stage scoring system classifies DD lesions into one of five stages: 

M0, M1, M2, M3, M4, and M4.1 (Döpfer et al., 1997; Berry et al., 2012). The combination of 

M-stages with signs of chronicity results in 5 recognizable stages while the foot is standing on 

the ground: M0, M2, M2P, M4H, and M4P (Figure 1). The first stage, M0, is characterized by 

normal digital skin upon visual inspection. The M2 lesions are characterized by an acute, active 

ulcerative or granulomatous digital skin lesion, less than 2.0 cm in diameter and M2P lesions are 

characterized by M2 lesions with proliferative growth. Chronic stages of DD have a thickened 

epithelium (hyperkeratosis) for M4H lesions or proliferative growth of the epithelium in the case 

of M4P lesions. This classification system helps farmers, hoof trimmers, agricultural consultants, 

and veterinarians gauge the transition between stages of DD and to quantify the effectiveness of 

current treatment and prevention protocols (Döpfer et al., 2012). The management of DD, 

whether endemic or during outbreak scenarios, is an ongoing challenge and early detection of 

DD lesions is critical in the eventual treatment of the disease (Döpfer et al., 2012). 

Computer vision (CV) is a subfield of artificial intelligence (AI) using machine learning 

algorithms to identify objects in digital images and videos (Szeliski, 2022). This technology is 

capable of learning the shape, size, and color of the target object and distinguishing the target 

object from other objects and background (Z.-Q. Zhao et al., 2019; Wu et al., 2020; Sharma and 

Mir, 2020). Agricultural CV applications continue to develop at a rapid pace (Arthur F A 
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Fernandes et al., 2020; Arthur Francisco Araújo Fernandes et al., 2020). Object detection can be 

used to precisely monitor animal health and accurately diagnose a variety of medical conditions 

(Arthur Francisco Araújo Fernandes et al., 2020; Ryu and Tai, 2021). This technique assists in 

identifying illnesses and infections by means of early detection, reducing the need for invasive 

diagnostic tests and aiding the development of optimized treatment plans. By automating visual 

observation tasks, object detection is able to reduce the time needed for diagnosis using 

standardized clinical signs that are otherwise difficult to see and may go untreated. Early 

detection and automatization are particularly important for underserved and underprivileged 

areas where veterinary services for food animal production is increasingly scarce. 

You Only Look Once (YOLO) is a CV algorithm for real-time object detection and 

classification. YOLO splits the input image into a grid of cells (Redmon et al., 2016). Each cell 

runs a classifier to determine the type of object using a single neural network (Redmon et al., 

2016). The model output is a bounding box around each object to detect the specific location of 

each object, a class label to classify the type of object, and a class probability to indicate the 

confidence scores for each box (Redmon et al., 2016). 

YOLO models have several advantages over other object detection algorithms which results in 

high accuracy and speed (Redmon et al., 2016). YOLO looks at the entire image at once during 

training and testing of the detection model, resulting in prediction of bounding boxes and class 

probabilities simultaneously (Redmon et al., 2016). YOLO is able to leverage pre-trained 

weights on ImageNet for transfer learning, saving resources and improving efficiency to train a 

new model (Redmon et al., 2016). YOLO is energy efficient in terms of computational costs, 

resulting in implementation on low-power, portable devices (Redmon et al., 2016). 
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YOLO achieves best performance on a high-end graphics processing unit (GPU), but is limited 

by high memory requirements, specifically on portable devices (Redmon, 2018; Redmon and 

Farhadi, 2018). Lightweight network architectures are needed for constrained environments, 

such as portable devices, resulting in reduced model size and computation cost (Redmon, 2018). 

Tiny YOLO is the compressed version of YOLO with a simpler network structure and a reduced 

number of corresponding parameters (Adarsh et al., 2020). For real-time object detection, Tiny 

YOLO is the better option compared to YOLO, where speed is prioritized over precision or 

accuracy (Adarsh et al., 2020). The speed of Tiny YOLOv4 is approximately eight times faster 

than YOLOv4 (Alexey, 2021; Bochkovskiy et al., 2020; Techzizou, 2021). However, the 

accuracy for YOLOv4 is 33% better than Tiny YOLOv4 when tested on the MS COCO dataset 

(Alexey, 2021; Bochkovskiy et al., 2020; Techzizou, 2021). 

A YOLOv2 model was previously trained on a database of more than 3,500 DD lesion images to 

detect M-stages of DD (Cernek et al., 2020). The resulting predicting accuracy was 71% and the 

agreement between the human investigator and CV model was quantified as “moderate” by 

Cohen’s kappa during internal validation (Cernek et al., 2020). In the external validation, the 

YOLOv2 model detected DD with an accuracy of 88% and agreement between a human 

investigator and CV model was quantified as “fair” by Cohen’s kappa (Cernek et al., 2020). 

There have been multiple subsequent versions of YOLO models. The YOLOv3 model builds on 

the YOLOv2 framework by making detections at three different scales and predicts ten times 

more bounding boxes to improve performance on smaller objects (Redmon and Farhadi, 2018). 

YOLOv4 improves on the average precision (AP) by 10% and on the frames per second (FPS) 

by 12% compared to YOLOv3 on the COCO dataset (Bochkovskiy et al., 2020). For the purpose 

of our use case, Tiny YOLOv4 and Single Shot MultiBox Detector (SSD) models are trained to 
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detect M-stages of DD, because of higher speed and lower size compared to other computer 

vision algorithms for use on portable, edge devices (Redmon and Farhadi, 2018; Bochkovskiy et 

al., 2020; Liu et al., 2016). 

Edge devices are used to collect, process, analyze, and report data as close as possible to the 

source data for data-driven decisions. Edge devices are essential for real-time detection or 

extremely rapid results on location where data transmission from the camera or sensor to the 

cloud takes time (Cao et al., 2020; Chen and Ran, 2019; Murshed et al., 2022). Edge lets users 

process data faster and allows them to make split-second decisions and complete tasks efficiently 

(Cao et al., 2020; Chen and Ran, 2019; Murshed et al., 2022). They are typically deployed on the 

edge of network infrastructures, such as mobile networks and Internet of Things (IoT) devices, to 

better support distributed data processing (Cao et al., 2020; Chen and Ran, 2019; Pan and 

McElhannon, 2018; Murshed et al., 2022). Edge devices are characterized by their low power 

consumption, high portability, and ability to perform real-time data processing (Cao et al., 2020; 

Chen and Ran, 2019; Pan and McElhannon, 2018; Murshed et al., 2022). 

The popularity of edge devices is due to the various advantages for a wide-array of use cases. For 

example, edge devices that do not require internet connectivity make the technology ideal for use 

in remote, rural locations such as cattle feedyards and dairy farms (Cao et al., 2020; Chen and 

Ran, 2019; Pan and McElhannon, 2018; Murshed et al., 2022). Edge devices provide increased 

scalability and flexibility, allowing users to quickly adjust to changing demands (Cao et al., 

2020; Chen and Ran, 2019; Pan and McElhannon, 2018). Edge devices can process and store 

data locally, such as real-time video and audio that are otherwise unable to be sent over wide 

area networks (Chen and Ran, 2019; Pan and McElhannon, 2018; Murshed et al., 2022). By 

processing and analyzing data at the source, edge devices can reduce latency, eliminating the 



71 
 

need to transfer large data sets over long distances and helping improve overall response times 

(Cao et al., 2020; Chen and Ran, 2019; Pan and McElhannon, 2018; Murshed et al., 2022). 

An example of edge devices are single-board computers (SBCs) used in IoT scenarios because of 

low power consumption, tiny volume, and high performance. SBCs are combined with various 

edge accelerators to accelerate machine learning algorithms on edge devices. There are three 

ways to combine SBCs and edge accelerators: (1) GPU-based SBCs, that are suitable for 

general-purpose applications because of their good compatibility, such as NVIDIA Jetson Nano 

and NVIDIA Xavier NX; (2) Application Specific Integrated  Circuit (ASIC)-based SBCs, that 

specialize in deep neural network applications, such as Intel’s vision processing unit (VPU) and 

Google’s tensor processing unit (TPU); and (3) Field Programmable Gate Array (FPGA)-based 

SBCs, that are more energy efficient (Feng et al., 2021; Nair et al., 2020; Intel, 2022, 2023; 

OpenVINO, 2023a, 2023b; Intel, 2021a, 2021b; Coral, 2020a, 2020b, 2020c; Attaran et al., 

2018). This work will be carried out on GPU-based SBCs (NVIDIA Jetson Nano and NVIDIA 

Xavier NX) and an ASIC-based SBC (OAK-1 and OAK-D-Lite with Intel Neural Compute 

Stick2). 

Previous edge detection device evaluation has been completed using the NVIDIA Jetson family 

and Raspberry Pi platform (Magalhães et al., 2023). Object detection models on Raspberry Pi 

platform were too slow for real-time detection (Suzen and Duman, 2020). NVIDIA Jetson TX2 

and NVIDIA GTX Titan X was benchmarked with similar accuracy for both (H. Zhao et al., 

2019). Inference speed of the NVIDIA Jetson TX2, running at 18 FPS, was ten times slower, but 

consumed 20 times less power. Additional research to benchmark machine learning models on 

NVIDIA Jetson boards, also showed an inverse relationship between inference speed and power 

consumption where the NVIDIA Jetson AGX Xavier had the highest inference speed and the 
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NVIDIA Jetson Nano with the lower power consumption (Suzen and Duman, 2020; Chiu et al., 

2020; Rahmaniar and Hernawan, 2021; Panero Martinez et al., 2021). Therefore, there exist a 

tradeoff between performance and other costs on edge devices to achieve adequate accuracy at 

the requisite speed for the use case. 

The most benchmarked object detection models include SSD MobileNet networks family and 

YOLO family. YOLOLACT model achieved 66 FPS on an NVIDIA Jetson AGX Xavier and 16 

FPS on an NVIDIA Jetson TX2 (Panero Martinez et al., 2021). SSD model benchmarking have 

achieved best performance on the NVIDIA Jetson TX2 (Chiu et al., 2020; Rahmaniar and 

Hernawan, 2021). Additionally, there exist implementations of object detection models on edge 

devices in medicine and agriculture. A skin lesion image classification model was deployed on a 

Raspberry Pi to provide a handheld diagnostic support tool (Sahu et al., 2018). A person-

recognition system to improve safety of autonomous tractors was implemented using a YOLOv3 

model on a Jetson AGX Xavier with faster speed and higher precision compared to a general 

YOLO model trained on the COCO dataset (Jung et al., 2020). 

The study aims to train lightweight CV models for constrained environments and compare edge 

devices for the real-time detection of DD in dairy cows. CV models are trained for detection and 

scoring of DD, compared using performance metrics and inference time, and automated for real-

time detection using images and video streams on portable devices. Edge devices offer 

advantages in terms of scalability, flexibility, energy efficiency, and privacy. Furthermore, edge 

devices can reduce latency and provide businesses with the ability to process highly localized 

data streams. Object detection in precision farming and veterinary medicine can improve the 

accuracy of diagnoses for health outcomes. It can help producers, herdsmen, and veterinarians 

make more informed decisions regarding the diagnosis that would otherwise go untreated and 
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better customize treatment plans according to severity and dynamics of the disease. We hope the 

proposed tool can be employed in combination with current practice for prevention of DD in 

dairy cattle. Ultimately, object detection on the edge can help identify high risk cattle for DD, 

monitoring herds with endemic DD, and improve cattle welfare via on-farm decision-making 

processes (Plummer and Krull, 2017). 

MATERIALS AND METHODS 

Data Collection and Image Labeling 

We used a collection of 409 images of cattle feet for the study from farms in Wisconsin and 

images were labeled for M-stages of DD. GoPro Hero 5 Black cameras were used to take MP4 

video recordings of the backside of the hind feet at claw level, while standing on the ground. 

Videos were taken during May 2021 with feet located in cattle pens, standing in an automated 

milking system, or while exiting a disinfecting foot bath. 

Images were scored for M-stages of DD by a trained investigator using the M-stage DD 

classification system. The classification system describes various clinical stages over the course 

of the disease, based on morphological observations between healthy (M0), active (M2), and 

chronic (M4) with hyperkeratosis (H) or proliferation (P) stages (Döpfer et al., 1997; Berry et al., 

2012). The images were classified into the different stages of DD as follows: M0, M2, M2P, 

M4H, and M4P. 

Overall, the library of multiple feet per image and five labels consisted of 240 M0, 17 M2, 51 

M2P, 114 M4H, and 108 M4P class labels (409 screenshot JPG images from MP4 video 

recordings). The associated annotations for the bounding boxes and class labels were generated 

using LabelImg version 1.8.1 in Python version 3.8.15 (Lin, 2018). Labels were converted from 
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Pascal VOC format for R-CNN and SSD models to YOLO format for YOLO models (Tashiev, 

2022). 

Model Training 

The datasets were split into 90% of the images placed into a training set and 10% of the images 

placed into a testing set at random. The testing set contained 40 images consisting of 20 M0, 4 

M2, 4 M2P, 14 M4H, and 10 M4P class labels. Models were trained and tested using Google 

Colab and a 12GB NVIDIA Tesla K80 GPU with a batch size of 64 and subdivision size of 16 

(“Google Colaboratory,” 2022). The training weights were initialized using convolutional 

weights that were pre-trained on Imagenet (“ImageNet,” 2020; Krizhevsky et al., 2012). The 

framework used for training is TensorFlow 1.15.2. 

SSD uses MobileNet V2 as the backbone feature extractor from the Tensorflow Object Detection 

API model zoo. The SSD network accepts images that are resized to an input resolution of 300 

by 300 pixels (Liu et al., 2016). SSDLite is similar to SSD, but implements depthwise-separable 

convolutions rather than regular convolution layers, which increases the speed compared to the 

regular SSD making it perfectly suited for use on mobile devices (Fan et al., 2018). 

The YOLOv3 network uses a variant of the custom deep architecture Darknet, originally a 53-

layer network trained on Imagenet with a 53-layer stack of neurons added for the task of 

detection to result in a total of a 106-layer fully convolutional underlying architecture (Redmon 

et al., 2016; Redmon and Farhadi, 2016, 2018). The YOLOv4 network uses CSPDarknet53 as 

the backbone, a spatial pyramid pooling additional module, PANet path-aggregation neck, and a 

YOLOv3 head (Bochkovskiy et al., 2020). The YOLO network size height and width is 416 by 

416 pixels with a learning rate of 0.001 for a maximum number of 4,000 batches. 
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Model Embedding 

The Tiny YOLOv4 best weights file from the training step was converted to a TensorFlow 

frozen model using OpenVINO-YOLOV4. The TensorFlow frozen model was converted to an 

OpenVINO 21.03 IRv10 model and FP16 data type using OpenVINO 2021.3 for optimizing and 

deploying AI inference. Model optimizer converts other model formats to OpenVINO’s IR 

format, which produces xml and bin files. This format of the model can be deployed across 

multiple Intel devices including VPU. The TinyIR model was compiled to an IR model to a 

MyriadX blob with FP16 precision and 5 shave cores for use on DepthAI modules/platform. 

DepthAI is a Spatial AI platform built around Movidius VPU to running custom trained models 

on OAK cameras. Models were converted using Google Colab and a 2.30GHz 12GB Intel Xeon 

Dual-Core vCPU (“Google Colaboratory,” 2022). 

RESULTS 

Edge Device 

The build of the portable edge device for deployment and demonstration contains four main 

components:  Jetson Xavier NX SBC, OAK-1 camera, an LCD screen, and a portable 12V/5mA 

power source (Figure 2). The four constituent parts are enclosed in a hard plastic container to 

protect it from the elements (Figure 3). 

Jetson Xavier NX module delivers server-class performance from 21 Tera Operations Per 

Second (TOPS) at 15W or 20W or up to 14 TOPS at 10W. It is smaller than a credit card (70 x 

45mm), extremely energy-efficient, and can run multiple modern neural networks in parallel and 

process data from multiple high-resolution sensors (NVIDIA, 2023). Jetson Xavier NX is 

production-ready and supports popular AI frameworks. This opens new possibilities for 
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embedded edge-computing devices that demand increased performance to support AI workloads 

but are constrained by size, weight, power budget, or cost (NVIDIA, 2023). 

The OAK-1 adds USB3 Type-C device power and connectivity, and a single 12MP RGB camera 

module (Luxonis, 2023a). The integrated camera module communicates over an on-board 

interface directly with the Robotics Vision Core 2, that processes the data and performs object 

detection, returning the results over USB (Luxonis, 2023a). Such a data path relieves the host 

processor from all of this work. In the common use case of object detection from an image, the 

host processes the data of the objects and the location in the image, instead of the entire video. 

The LCD screen is used to display the results in a window. The set-up can run without dedicated 

LCD screen as well, where the detection results are collected on a remotely connected PC. The 

device can be plugged into a wall outlet or a portable power bank using an AC power adaptor or 

USB-C cable respectively. DepthAI is installed and a Python script is prompted at the command 

line to open a preview of the RGB camera from the device. While the Python script is running, 

the detection results were displayed as an overlay on the video stream. The Tiny YOLOv4 object 

detector trained on the M-stages of DD was deployed on the OAK-1 camera. 

Benchmarking 

The network performance and efficiency on the edge device are evaluated using accuracy and 

inference speed. For assessing model training accuracy, mean average precision (mAP) at 

intersection over union (IOU) of 0.5 are evaluated. Alternatively, for assessing model 

deployment accuracy, Cohen’s kappa is evaluated. Both stages are measured for inference speed 

using frames per second (FPS). 
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Both Tiny YOLOv4 and SSD are first tested using images on Google Colab. Tiny YOLOv4 

outperforms SSD with a speed of 333 FPS compared to approximately 100 FPS, validating 

previous findings. In addition, Tiny YOLOv4 outperforms SSD where Tiny YOLOv4 achieves 

an mAP of 0.895 whereas SSD and SSD Lite yields an mAP of 0.451, similarly validating 

previous findings. For the purpose of real-time detection on a portable, stand-alone device, Tiny 

YOLOv4 is the best model for the use case, based on the size and speed of the implementation. 

Tiny YOLOv4 is then tested on the edge device using live streaming video (Figure 4). Images 

are at a sufficient distance from the camera such that the object in the image is focused and does 

not present glare or darkness. Video is scored for M-stages of DD and compared to the 

corresponding labels made by a trained investigator (the so-called ‘ground truth’). Tiny YOLOv4 

is extremely fast and accurate for real-time object detection. The Cohen’s kappa is used to 

measure the agreement of two raters (Viera and Garrett, 2005). The model performs well 

compared to the ground truth where the Cohen’s kappa is determined to be 0.830 and interpreted 

as strong to almost perfect agreement between the two raters (n = 55; z = 11.4; p < 0.001). In 

addition, the prediction accuracy is 0.873 with perfect detection for M2P, M4H, and M4P 

(Figure 5). Overall, Tiny YOLOv4 on the edge device is able to detect all five M-stages of DD 

on streaming video. 

The initial inference speed is 25 FPS and it climbs to the final inference speed of 40 FPS over the 

course of 10 minutes. The model on the edge device runs stably for 8 hours and longer without 

any interruptions. The power usage for OAK-1 cameras ranges between 1.94 W (standby) and 

4.56 W (max consumption). The OAK-1 camera also resolves issues regarding heat dissipation 

by running the CV model on the OAK-1 camera instead of the NVIDIA Jetson Xavier NX. The 

Robotics Vision Core 2 on the OAK-1 camera is rated for industrial use and has an operating 
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temperature range of -40°C to 105°C, while other components have a higher temperature range 

(Luxonis, 2023b). In general, for the use case at an ambient temperature of 25°C, the chip 

running at full power (i.e. worst-case heat generation) is approximately 70°C or a thermal margin 

of 45°C. Theoretically, the maximum ambient temperature is the difference between the 

maximum operating temperature and the thermal margin or 60°C (Luxonis, 2023b). 

DISCUSSION 

The DD detection device developed in this study was able to identify DD lesions and classify M-

stages in real-time with high accuracy and speed. For speed, Tiny YOLOv4 outperformed the 

threshold for real-time detection with a high inference speed of approximately 40 FPS. For 

detection, Tiny YOLOv4 was able to perform real-time detection of DD with high mAP on 

Google Colab and high Cohen’s kappa on the edge device. The Tiny YOLOv4 model on the 

edge device had better performance than the YOLOv2 model for additional M-stages of DD on 

more complex dataset analogous to practical scenarios (Cernek et al., 2020). As a proof-of-

concept, the Tiny YOLOv4 model was able to detect the different M-stages of DD on video files 

and streaming video. 

The current model was implemented using Tiny YOLOv4 and the TensorFlow 1.0 framework 

with high speed and performance. TensorFlow 2.0 framework is now available and offers 

improved usability and performance (NVIDIA Corporation, 2022; tensorflow, 2017). 

TensorFlow models can be converted to TensorFlow Lite models reducing model size and power 

consumption making them easier to deploy to edge devices (tensorflow, 2021).  Alternatively, 

the model architecture can be updated to the PyTorch framework using YOLOv5 or YOLOv7 

and likely improving speed and performance (Paszke et al., 2019; pytorch, 2021). 
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Tiny YOLOv4 was able to detect all five class labels well. However, the model was able to 

detect M2P, M4H, and M4P lesions with higher average precision than M2. This was probably 

caused by the imbalanced number of class labels in the dataset with relatively few M2 training 

examples. Model performance can suffer when the number of training examples available for 

each training class is unequal (Oksuz et al., 2021). Remedial measures for improving model 

performance include adding images for minority classes, artificial dataset balancing, image 

augmentation, or adjusting the loss function for training. 

Object detection on edge devices is subject to a number of constraints. Edge devices are 

generally less costly, but also less powerful than cloud-based systems. This means that the 

performance for object detection tasks on edge devices is less than on cloud-based systems. 

Many CV algorithms used for object detection are computationally expensive, and more 

sophisticated algorithms require more data and training data. Edge devices may not have access 

to a consistent power source, resulting in the device to restart frequently or to lose work progress. 

Another challenge for edge devices is that the environmental conditions can affect object 

detection on an edge device, such as recognizing or classifying an object in low light, shadows, 

and other optical occlusions. Edge devices may require advanced sensors that are necessary for 

differentiating between objects in complex environments. Data collection and storage on edge 

devices may have slower rates and larger latency due to connectivity of advanced sensors. This 

means that the amount of data that can be processed at once on an edge device is limited. 

A wide variety of precision agriculture tools are available, primarily in agricultural applications 

(Arthur Francisco Araújo Fernandes et al., 2020). Improving edge device implementation of 

animal health CV models enhances their adoption within animal agriculture and veterinary 

medicine. The CV models developed in this work can be extended to other portable platforms 
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and distributions, including lighter-weight framework and smaller size of enclosure. Increasing 

accessibility to these models can be accomplished through mobile applications or containers for 

a lightweight, standalone package (Docker, 2021). Increasing engagement for these models will 

also help generate a rich, diverse library of images for the optimization and validation of CV 

models. Ultimately, these CV tools will improve access and enhance development speed for 

animal agriculture applications. 

As currently implemented, this portable CV tool is used for automated detection of DD in dairy 

cattle and has been extended to beef cattle (unpublished data). Model development can be 

extended to include model training on a wide variety of breeds, locations, and other sources of 

data variability. Ear tag identification paired with DD detection improves the ability to create 

automated treatment lists and monitoring data. The scope of research can be expanded to include 

additional M-stages of DD, white line disease, foot rot, and other hoof diseases (Lely, 2016). 

The development and deployment of CV algorithms for automatic monitoring and measuring 

traits of interest in animals is a widely investigated topic (Arthur Francisco Araújo Fernandes et 

al., 2020; Li et al., 2021; Wurtz et al., 2019). Studies indicate that different imaging technologies 

can improve model performance. Infrared thermography has shown acceptable performance for 

DD detection, while animal identification using 3D cameras often outperforms standard cameras. 

As technology continues to advance, these tools will be more widely implemented. 

There are still several challenges for the successful development and deployment of practical CV 

solutions. Current challenges include the implementation of CV algorithms for true on-farm 

deployment. There are still few studies that evaluated CV algorithms using validation datasets 

for reliability and robustness across multiple farms (Arthur Francisco Araújo Fernandes et al., 

2020; Li et al., 2021; Wurtz et al., 2019). Individual animal identification and tracking is still 



81 
 

prone to error. Combining multiple devices into a single application is also necessary for true on-

farm deployment of many CV models (Arthur Francisco Araújo Fernandes et al., 2020; Li et al., 

2021; Wurtz et al., 2019). This may enable the implementation of more sophisticated predictive 

algorithms based on multiple inputs and multiple outputs (joint prediction of multiple traits). The 

final challenge is delivering CV model predictions to farmers in a convenient and actionable 

manner (Arthur Francisco Araújo Fernandes et al., 2020; Li et al., 2021; Wurtz et al., 2019). 

Long-term improvements in each of these areas will drive adoption of these technologies and 

development of new applications. 
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TABLES AND FIGURES 

Figure 3.1 M-stage scoring system of digital dermatitis (DD) with signs of chronicity. Images 

are presented for each of the M-stages: M0 (top-left), M2 (top-center), M2P (top-left), M4H 

(bottom-left), and M4P (bottom-right). 
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Figure 3.2 Schematic representation of edge device for deployment. 
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Figure 3.3 Real-time detection of DD on a portable, self-contained edge device in action. 
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Figure 3.4 Bounding box predictions of M-stages by Tiny YOLOv4 on the edge device. 

Predictions are made for each of the M-stages: M0 (top-center; magenta), M2, M2P (bottom-left; 

yellow), M4H, and M4P (bottom-right; green). 
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Figure 3.5 Accuracy of the five M-stages by Tiny YOLOv4 on the edge device. Accuracy is 

measured as the number of correct predictions and calculated for each of the five M-stages: M0, 

M2, M2P, M4H, and M4P. 
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CHAPTER 4 BENCHMARKING ANALYSIS OF COMPUTER VISION ALGORITHMS 

ON CLOUD PLATFORMS FOR THE EARLY DETECTION OF DIGITAL 

DERMATITIS IN DAIRY COWS 

ABSTRACT 

Digital dermatitis (DD) is an infectious disease in cattle that leads to ulcerative lesions on the 

coronary band of the hoof, resulting in diminished animal welfare and economic well-being. DD 

detection at an early stage can facilitate timely treatment and  reduce lameness. Computer vision 

(CV) models including YOLOv5 can identify hoof lesions and classify M-stages of DD. 

However, precision farming demands portable solutions for constrained environments and 

equipment challenges. Therefore, the objective of this study is to develop, deploy, and evaluate 

DD detection models on cloud platforms. 

Data collection included images from the interdigital space on the plantar surface of the foot. The 

images were then assessed for M-stages of DD by a trained investigator. A YOLOv5s model was 

trained to identify and classify DD lesions. The final model was deployed on various cloud 

platforms for testing. Implementations included Google Colab, Docker using an IP camera via 

HTTP, Docker using an IP camera via RTSP, and TensorFlow.js. 

YOLOv5s achieved an mAP of 0.946 with high AP for all five M-stages during model training. 

The TensorFlow.js application outperformed all other deployments with respect to agreement. 

The Cohen’s kappa for TensorFlow.js was 0.763 and interpreted as substant ial agreement. The 

prediction accuracy for TensorFlow.js was 0.842 with high detection for M0, M4H, and M4P 

and perfect detection for M2 and M2P. All deployments exceeded the minimum threshold for 

image processing at approximately 10 FPS.  
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The CV model was able to effectively identify and classify DD lesions on the TensorFlow.js 

application with high performance and sufficient speed. The study demonstrates the feasibility of 

implementing a cloud-based, portable solution for real-time detection of DD for precision 

farming. This achievement is a significant step towards the integration of CV algorithms in 

veterinary medicine and signifies forward progress in the real-time detection of health outcomes 

in agriculture. 
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INTRODUCTION 

Digital dermatitis (DD) is an infectious claw disease causing significant lameness in cattle 

worldwide across different production systems (Bruijnis et al., 2012; Holzhauer et al., 2006). 

This disease is characterized by distinct ulceroproliferative lesions primarily found on the plantar 

aspect of the hoof on the coronary band, leading to discomfort or severe pain (Blowey and Sharp, 

1988; Cheli and Mortellaro, 1974; Döpfer et al., 1997; Read and Walker, 1998). The 

consequences of DD include reduced animal welfare and economic losses from decreased milk 

production, compromised reproductive performance, and premature culling, resulting in an 

estimated cost of approximately US$133 per case (Bruijnis et al., 2010; Cha et al., 2010; de Jesús 

Argáez-Rodríguez et al., 1997; Ettema et al., 2010; Garbarino et al., 2004; Hernandez et al., 

2001; Losinger, 2006; Whay et al., 1997). The reported prevalence rates of DD at the cow level 

range from 21.2% to 29.2%, accounting for 61.8% of lameness cases in bred heifers and 49.1% 

in adult cows (Brown et al., 2000; Holzhauer et al., 2006; Solano et al., 2016; USDA, 2009). 

Consequently, the combined annual economic loss from DD in the United States (approximately 

9 million dairy cows) and the European Union (around 24.5 million dairy cows) surpasses 

US$1.1 billion based on an incidence rate of only 25% (Zinicola et al., 2015). 

Cows affected by DD exhibit altered gait or posture to reduce discomfort, decreased mobility, 

lifting or shaking of the affected leg, and adopting a toe-down posture to minimize contact with 

the ground (Rodriguez-Lainz et al., 1998; Shearer et al., 2005). The disease is a multifactorial 

and polymicrobial, with consistent isolation of treponemes from DD lesions (Döpfer et al., 2012; 

Gomez et al., 2012; Krull et al., 2016). The pathogen can persist endemically within a herd, and 

infected cattle may experience active or chronic stages of infection. Chronically infected cattle 

serve as a reservoir for DD and pose a potential risk for herd outbreaks (Döpfer, 2009; Döpfer et 
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al., 2012). Affected cows may develop changes in the skin of the heel area, promoting the 

persistence of DD, emergence of dermal treponeme reservoirs, and occurrence of heel horn 

erosion (Gomez et al., 2015a). Consequently, DD presents a significant animal welfare concern 

because of prolonged and recurrent painful episodes (Bruijnis et al., 2012; Dörte Döpfer et al., 

2012; Gomez et al., 2015b). 

Early detection and treatment of DD by means of regular monitoring for signs of DD plays a 

crucial role in effectively managing the disease (Döpfer et al., 2012; Döpfer and Morlán, 2008). 

Various classification systems have been developed for the different clinical stages of DD (Krull 

et al., 2014; Laven, 1999; Manske et al., 2002; Vink, 2006). The M-stage scoring system, 

initially introduced by Döpfer et al. (1997) and updated by Berry et al. (2012), categorizes 

different clinical stages of DD throughout the disease progression, allowing for the observation 

of transitions between active, chronic, and healed stages (Berry et al., 2012; Döpfer et al., 1997). 

This scoring system serves as a valuable tool for researchers, farmers, and hoof trimmers to 

monitor the effectiveness of DD control programs at both the individual-animal and herd levels 

(Döpfer et al., 2012; Kofler et al., 2019). 

The dynamics of DD in cattle groups are characterized by different clinical stages and the 

transitions between these stages (Berry et al., 2012; Döpfer et al., 1997). The M-stage system for 

macroscopic scoring is based on lesion development to facilitate clinical inspections of the 

bovine foot (Berry et al., 2012; Döpfer et al., 1997). This classification system defines five M-

stages (Figure 1):  

M0: Normal skin appearance 
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M1: Small focal damage of the epithelium at the skin horn border (less than 2.0 cm in 

diameter) 

M2: Circumscribed ulcerative skin defect with a red or greyish surface, possibly with a 

white epithelial margin and overlong hair (greater than 2.0 cm in diameter) or 

proliferative growth of the epithelium in the case of M2P lesions  

M3: Healing stage of DD, characterized by the lesion being covered with a scab 

M4: Chronic stage of DD, featuring a thickened epithelium (hyperkeratosis) for M4H 

lesions or proliferative growth of the epithelium in the case of M4P lesions 

The scoring of DD lesions can be used to identify animals in need of treatment (Jorritsma et al., 

2017; Schultz and Capion, 2013). The M-stage scoring system is widely recognized as the most 

accurate and comprehensive method for macroscopic evaluation of DD lesions (Egger-Danner et 

al., 2020; Greenough et al., 2008). However, visual inspection can introduce misclassification 

bias (Relun et al., 2011). While lifting the foot for inspection of DD lesions in the trimming 

chute remains the gold standard for DD detection, it presents several drawbacks such as high 

costs, increased labor, and elevated stress for the cows (Relun et al., 2011; Stokes et al., 2012; 

Thomsen et al., 2008). Relying solely on trimming chute inspections is impractical for assessing 

disease prevalence on a regular basis in medium to large scale herds or for early detection and 

treatment of DD. 

Although M-stages is commonly used by hoof-care professionals, the training methods for 

scorers are rarely discussed in the published literature. Some publications mention the use of 

"experienced or trained scorers" to generate M-stages, while in other cases, scorers undergo a 

comprehensive training program that involves recognizing M-stages from color photographs and 
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sometimes scoring live animals (Alsaaod et al., 2014; Cutler et al., 2013; Kulow et al., 2017; 

Logue et al., 2012; Solano et al., 2017; Yang et al., 2017). The absence of standardized training 

programs for DD scoring poses challenges to the reliability and repeatability of the scoring 

process (Vanhoudt et al., 2019). 

Computer vision (CV) is a branch of artificial intelligence (AI) that focuses on enabling 

computers to process, analyze, and interpret visual data (Szeliski, 2022). By leveraging machine 

learning models, computer vision can identify and classify objects within images and videos, 

allowing computers to make informed decisions based on visual input. Object detection is a CV 

technique that focuses on the identification and localization of objects within images or videos. 

The primary objective of object detection is to accurately determine the position and boundaries 

of objects present in an image, while also assigning the appropriate categories. Object detection 

algorithms has shifted towards deep learning techniques, driven by advancements in high-

performance graphics processing units (GPUs) (Sanders and Kandrot, 2010), the availability of 

large-scale datasets (e.g., DOTA, ImageNet, COCO) (Deng et al., 2009; Lin et al., 2014; Xia et 

al., 2018), and the proliferation of convolutional neural networks (CNNs) (LeCun et al., 2015). 

Object detection algorithms can be categorized into two groups: one-stage and two-stage 

detectors (Wu et al., 2020; Sharma and Mir, 2020). Two-shot object detection algorithms use two 

passes of the input image to predict the presence and location of objects. The first pass generates 

a set of proposals or potential object locations. The second pass refines these proposals and 

produces final predictions. This approach is more accurate compared to other methods, but 

computationally expensive and resource intensive (Wu et al., 2020; Sharma and Mir, 2020). 

One-stage object detection algorithms use a single pass of the input image, making predictions 

about the presence and location of objects. By processing the entire image in a single pass, one-
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stage detectors are computationally efficient, but can be less accurate compared to other methods 

and less effective for detecting small objects (Wu et al., 2020; Sharma and Mir, 2020). Such 

algorithms are particularly useful for real-time detection in resource-constrained environments. 

The You Only Look Once (YOLO) algorithm is a CV technique used for real-time object 

detection and classification. The YOLO models combine bounding box prediction and object 

classification within a single end-to-end differentiable network. The algorithm divides the input 

image into a grid of cells, and within each cell, a single neural network is employed to detect and 

classify the objects (Redmon et al., 2016). The output of the model includes bounding boxes for 

the location of the detected objects, the class labels that identify the type of object, and the 

corresponding class probabilities that represent the confidence scores for each bounding box 

(Redmon et al., 2016). 

The YOLO algorithm provides several advantages over other object detection algorithms, 

leading to a combination of high accuracy and speed for inference (Redmon et al., 2016). As a 

one-stage object detector, YOLO looks at the entire image at once such that the model predicts 

both bounding boxes and class probabilities simultaneously (Redmon et al., 2016). Additionally, 

YOLO is able to leverage pre-trained weights, namely ImageNet for transfer learning. Starting 

from pre-trained weights not only conserves resources, but also improves the efficiency of 

training a new model (Redmon et al., 2016). Since YOLO is computationally efficient, it is ideal 

for deployment (Redmon et al., 2016). 

The YOLO algorithm exhibits optimal performance on high-end GPUs, but its memory 

requirements can be limiting, particularly for deployment (Redmon, 2018; Redmon and Farhadi, 

2018). There is a need for lightweight network architectures in object detection that can operate 

efficiently in resource-constrained environments, resulting in reduced model size and 
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computational cost (Redmon, 2018). Tiny YOLO is a compressed version of YOLO, featuring a 

simpler network structure and a reduced number of parameters (Adarsh et al., 2020). Tiny 

YOLO is preferred compared to YOLO when real-time object detection is prioritized over 

accuracy (Adarsh et al., 2020). The speed of Tiny YOLOv4 is approximately eight times faster 

than YOLOv4 (Alexey, 2021; Bochkovskiy et al., 2020; Techzizou, 2021). However, the more 

complex YOLOv4 achieves 33% better accuracy compared to the less complex Tiny YOLOv4 

when evaluated on the MS COCO dataset (Alexey, 2021; Bochkovskiy et al., 2020; Techzizou, 

2021).  

YOLOv5 is a recent release of the YOLO family of models by Ultralytics (Jocher, 2020). The 

previous versions of YOLO were implemented and are currently maintained in the Darknet 

framework (Bochkovskiy et al., 2020; Redmon, 2018; Redmon et al., 2016; Redmon and 

Farhadi, 2018). The YOLOv5 algorithm is the first model in the YOLO family to be developed 

using the PyTorch framework, resulting in a more lightweight and user-friendly (Jocher, 2020). 

YOLOv5 uses mosaic augmentation to combine four images into four tiles of random ratio, 

helping the model learn small objects (Jocher, 2020). Anchor boxes are learned based on the 

distribution of bounding boxes in the custom dataset with K-means and genetic learning 

algorithms (Jocher, 2020). The PyTorch framework is able to half the floating-point precision in 

training and inference from 32-bit to 16-bit precision, significantly speeds up the inference time 

of the models (Jocher, 2020). However, no major architectural changes are introduced in 

YOLOv5 compared to YOLOv4. Moreover, YOLOv5 does not surpass YOLOv4 in terms of 

performance on the commonly used COCO dataset benchmark. The YOLOv5 family of models 

is available in five variants: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x 

where YOLOv5s is analogous to Tiny YOLOv4 and YOLOv5m is analogous to YOLOv4 



103 
 

(Jocher, 2020). Similar to Tiny YOLOv4 and YOLOv4, YOLOv5s is 2.29 times faster than 

YOLOv5m, whereas YOLOv5m achieves 13% better accuracy than YOLOv5s on the MS 

COCO dataset (Jocher, 2020). 

A YOLOv2 model was previously trained on a dataset comprising over 3,500 images of DD 

lesions to detect M-stages of DD (Cernek et al., 2020). The model achieved an accuracy of 71%, 

and the agreement between the human investigator and the CV model was determined to be 

"moderate" level according to Cohen's kappa during internal validation (Cernek et al., 2020). The 

YOLOv2 model achieved an accuracy of 88% in detecting DD, and the agreement between the 

human investigator and the CV model was determined to be "fair" based on Cohen's kappa 

during external validation (Cernek et al., 2020). 

The CV tools and techniques used in agriculture and veterinary medicine are experiencing rapid 

growth for both research and commercial applications (Arthur F A Fernandes et al., 2020; Arthur 

Francisco Araújo Fernandes et al., 2020). Object detection is used to accurately monitor animal 

health and diagnose various medical conditions (Arthur Francisco Araújo Fernandes et al., 2020; 

Ryu and Tai, 2021). This technique aids in the identification of illnesses and infections, thereby 

reducing the reliance on invasive diagnostic tests and facilitating the development of optimized 

treatment plans. The application of object detection model on live-streaming video for inference 

requires significant storage and computational resources. The more complex AI models 

developed for video processing are commonly deployed on cloud servers with sufficient storage 

capacity and computing power compared to the resource-limited field environments where cattle 

are raised and crops are grown. Similarly, cloud computing leads to several other challenges, 

including increased latency, network congestion, and high computing costs. 
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Object detection has been used in video surveillance and monitoring (Oliveira et al., 2021). 

Cloud computing services such as Amazon Web Services, Microsoft Azure, and Google Cloud 

can be used to transfer large amounts of data from on-site devices and servers to the cloud. Cloud 

platforms can be used to share and maintain data and other computing resources, thereby 

ensuring availability and security (Vashisht and Kumar, 2020). The reliance of cloud platforms 

can result in network latency where the processing time depends on the availability of 

computational resources and the current workload on the system and network connection. Cloud 

computing services generally provide near real-time performance, but network latency can be too 

high for real-time detection. Therefore, onboard processing on the edge may be necessary for 

critical tasks and decisions to ensure timely and efficient execution (Lee et al., 2017). 

For animal science and veterinary medicine, object detection models are mostly used for animal 

and disease detection (Cowton et al., 2019; Lee et al., 2019; Psota et al., 2019; Seo et al., 2020). 

Kang et al. trained a lameness scoring model for dairy cows utilizing the Receptive Field Block 

Net Single Shot Detector deep learning network (Kang et al., 2020). The network achieved a 

mean average precision of 87.0% and number of frames per second of 83.3 for locating cow 

hooves on video. The hooves are used as the input for an algorithm to compute the supporting 

phase of a cow’s hoof when walking, which represents the time difference between the hoof 

lifting from the ground and the hoof load is in contact with the ground. Both YOLO and Faster 

R-CNN models are the main algorithms used for object detection in animal science studies 

(Oliveira et al., 2021). Lee et al. introduce a hybrid approach for the practical monitoring of 

undergrown pigs consisting of two steps: an image processing stage followed by a deep learning 

algorithm (Lee et al., 2019). They first use a Gaussian Mixture Model to identify the moving 
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frames during a 24-hour period. Next, they employ Tiny YOLOv3 to detect individual pigs 

within each of the selected frames. 

Additionally, Wang et al. proposes a smart surface inspection system using Faster R-CNN 

algorithm in the cloud-edge computing environment (Wang et al., 2020b). The cloud-edge 

computing method significantly increases the computation speed by more than 10 times 

compared to an embedded system where a microprocessor is dedicated to performing a specific 

task (Wang et al., 2020b). The cloud platform provided strong computation power, but the image 

transmission depended on the internet connection status, resulting in extra time and energy 

(Wang et al., 2020b). Wang et al. propose a CNN-based visual sorting system supported by a 

cloud-edge computing environment developed for fast computation and continuous service 

maintenance and upgrading (Wang et al., 2020a). The proposed R-CNN model is the most robust 

and accurate with high precision, but high computation time per image as well. 

In the current study, lightweight CV models are trained for cloud deployment and evaluated for 

real-time detection of DD in dairy cows. The CV models are trained to detect and score DD 

lesions, and compared using common performance metrics and inference time. The process is 

automated for real-time detection using images and video streams on cloud platforms. Cloud 

deployment provides several advantages, including scalability, flexibility, improved efficiency, 

and enhanced privacy (Carroll et al., 2011; Subramanian and Jeyaraj, 2018; Zissis and Lekkas, 

2012). Object detection for precision farming and veterinary medicine has the potential to 

improve accuracy of diagnoses for health outcomes, enabling producers, herdsmen, and 

veterinarians to make more informed decisions in real-time at the cow-level. This technology 

allows for timely detection and customized treatment plans based on the severity and progression 

of a disease including infectious claw conditions such as DD. The proposed tool is intended to 
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complement existing practices in preventing DD in dairy cattle. Object detection on a cloud 

platform has the potential to identify cattle at high risk for DD, monitor herds affected by 

endemic DD, and enhance cattle welfare by enabling informed decision-making on the farm. 

This technology empowers farmers to take proactive measures to prevent and manage DD, 

leading to improved health outcomes for the cattle and overall herd welfare (Plummer and Krull, 

2017). 

MATERIALS AND METHODS 

Data Collection and Image Labeling 

For the current study, a dataset of 409 images of cattle feet was used. The images were collected 

from multiple farms in Wisconsin during May 2021. The JPG images were captured using GoPro 

Hero 5 Black cameras, which recorded MP4 videos of the hind feet from behind, while the cattle 

were standing on the ground. The videos were taken in multiple settings, including cattle pens, 

automated milking systems, and while exiting disinfecting foot baths. The videos were converted 

into images using FFmpeg with a frame rate of one frame per second (FFmpeg, 2023). All 

resulting images in the dataset were labeled for the M-stages of DD.  

A trained investigator scored the images using the M-stage DD classification system. This 

system categorizes the different clinical stages of the disease based on morphological 

characteristics, including healthy (M0), active (M2), and chronic (M4) stages, with additional 

indications of hyperkeratosis (H) or proliferation (P) (Berry et al., 2012; Döpfer et al., 1997). The 

images were classified into the following stages: M0, M2, M2P, M4H, and M4P. 

The dataset consisted of multiple feet per image, resulting in a total of 240 M0, 17 M2, 51 M2P, 

114 M4H, and 108 M4P class labels. These labels were associated with bounding box 
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annotations to precisely identify the location of the DD lesions in the images. The annotations 

and class labels were generated using LabelImg version 1.8.1 in Python version 3.8.15 (Lin, 

2018). For compatibility with the object detection models used, the labels were converted from 

Pascal VOC format for R-CNN and SSD models to YOLO format for YOLO models (Tashiev, 

2022). 

Model Training 

The datasets were randomly divided, with 90% of the images allocated to the training set and the 

remaining 10% to the testing set. The testing set consisted of 41 images, comprising 22 M0, 2 

M2, 3 M2P, 11 M4H, and 16 M4P class labels. The models were trained and tested using Google 

Colab and an NVIDIA Tesla T4 GPU, with a batch size of 32 and image size of 416 ("Google 

Colaboratory," 2022). The training weights were initialized using convolutional weights pre-

trained on ImageNet ("ImageNet," 2020; Krizhevsky et al., 2012). The PyTorch 1.7.0 framework 

was used for training in Python version 3.10.12 (Paszke et al., 2019). 

YOLOv5 passes training data through a data loader making augmentations including scaling, 

color space adjustments, and mosaic augmentation (Jocher, 2020). The model configuration for 

YOLOv5 is defined in the yaml file compared to the model configuration for YOLOv4 is 

specified in a cfg file (Jocher, 2020). A stochastic gradient descent (SGD) optimizer was used 

with an initial learning rate of 0.001 and momentum of 0.937 for a maximum number of 1,500 

epochs with early stoppage, taking the best set of trained weights (Jocher, 2020). Results are 

logged during model training using TensorBoard 2.4.1 (TensorBoard, 2023). The custom 

YOLOv5s model was deployed on four implementations using live streaming video for 

benchmarking: Google Colab, Docker using an IP camera via HTTP, Docker using an IP camera 

via RTSP, and TensorFlow.js. 
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Implementations 

Google Colaboratory abbreviated as Colab is a hosted Jupyter Notebook service that provides 

free access to computing resources, including GPUs and TPUs runtime to significantly speed up 

the training and inference process (“colab.google,” 2022; “Google Colaboratory,” 2022). Google 

Colab is particularly appropriate for machine learning and deep learning tasks. It is a cloud -based 

web Integrated Development Environment (IDE) primarily designed for Python, enabling the 

user to run code directly in the browser without the requirement of setting up a local 

environment. The YOLOv5 repository was cloned from GitHub and the best weights for the 

custom model were loaded (Jocher, 2020). The detector was run on a live webcam using 

JavaScript to create the live video stream using the webcam as input. 

Docker is an open-source platform that allows developers to automate the deployment, scaling, 

and management of applications inside lightweight, portable containers (Docker, 2022a; Docker, 

2022b). Containers are images that package an application and its dependencies with runtime, 

ensuring consistent behavior across different environments, such as development, testing, and 

production. This isolated environment maintains that the application works consistently across 

various environments and eliminates portability issues. It can run on any platform that supports 

Docker, no matter if it is a local machine, a staging server, or a cloud-based production 

environment. This enables seamless deployment and scaling across different environments. 

Docker containers are lightweight and share the host OS kernel, which means they use fewer 

resources compared to traditional virtual machines. This leads to faster startup times and better 

resource utilization. The YOLOv5 docker image was pulled from DockerHub and the Docker 

container was run with local file access and GPU access (Ultralytics, 2023a; Ultralytics, 2023b). 
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The detector was run within the running Docker container on a live webcam using a wireless IP 

camera via Hypertext Transfer Protocol (HTTP) or Real Time Streaming Protocol (RTSP). 

TensorFlow.js is an open-source JavaScript library developed by Google that allows developers 

to build and train machine learning models directly in the browser or on Node.js servers 

(TensorFlow.js, 2023a; TensorFlow.js, 2023b). It is an extension of TensorFlow, a popular open-

source machine learning framework, and provides a way to run TensorFlow models in JavaScript 

environments. The TensorFlow.js library supports training machine learning models in a local 

web browser using client-side data. Developers can create, train, and fine-tune models for tasks 

such as speech recognition, natural language processing, and object detection. TensorFlow.js 

leverages WebGL, a browser-based graphics library, to accelerate numerical computations and 

optimize performance. This enables running deep learning models efficiently on GPUs, if 

available. The TensorFlow.js library provides support for running models on mobile devices and 

Internet of Things (IoT) devices, allowing developers to deploy machine learning applications on 

a wide range of platforms. Models trained in Python using TensorFlow can be converted to 

TensorFlow.js format, enabling seamless deployment of models from server to browser. 

Node.js is an open-source, server-side runtime environment built on Chrome's V8 JavaScript 

engine (Node.js, 2023). It allows developers to execute JavaScript code outside of a web 

browser, enabling server-side scripting and development of server applications. Node.js provides 

an event-driven, non-blocking I/O model, making it efficient and well-suited for building 

scalable and real-time applications. It is designed to handle asynchronous I/O operations 

efficiently, which allows it to handle many concurrent connections without blocking the 

execution of other tasks, making it suitable for building scalable applications that need to handle 

high traffic. Node.js is commonly used for building server-side applications, such as web servers, 
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APIs, real-time applications, and networking tools. Node.js is designed to be cross-platform 

across various operating systems including Windows, macOS, and Linux. It is lightweight and 

fast, making it ideal for applications that require low latency and quick response times. Node.js is 

widely used for building real-time applications because of its ability to handle simultaneous 

connections efficiently. 

The custom YOLOv5 model was deployed in Google Chrome using TensorFlow.js with WebGL 

backend. The trained model was converted from PyTorch to TensorFlow.js layers format by 

means of a TensorFlow frozen model. The exported YOLOv5 web model contains a json f ile and 

a set of sharded weights files in a binary format. The web model is dropped into an open-sourced 

implementation of YOLOv5 using Tensorflow.js. A local server is started and the application is 

deployed directly in the web browser and offline. The implementation can perform object 

detection on images, videos, and streaming webcam at a minimum class threshold of 0.25 

(Figure 2). 

Performance Evaluation 

The evaluation of network performance and efficiency of the implementations included two main 

components: accuracy and inference speed. For assessing model training, the mean average 

precision (mAP) at intersection over union (IoU) of 0.5 was used to evaluate accuracy. 

Additionally, precision, recall, and average precision (AP) were used as performance measures 

to compare between the predictions made by the CV models, and labels made by a trained 

investigator (the so-called ‘ground truth’) (Ultralytics, 2023c). For assessing model deployment, 

Cohen's kappa was used to evaluate the agreement between the model predictions and the ground 

truth labels, providing valuable insights into the model's ability to make accurate predictions in 

real-world scenarios (Landis and Koch, 1977; Viera and Garrett, 2005). 



111 
 

In addition to accuracy, the inference speed of the model is also significant, especially in cloud 

computing environments. The inference speed is measured in frames per second (FPS), 

calculating the number of images that the model has processed and inferred within one second. A 

higher FPS value implies a faster and more efficient model, wanted in real-time applications or 

scenarios with limited computing resources. By considering both accuracy and inference speed, 

we can comprehensively evaluate the performance of the model deployment. This evaluation 

process helps to select the best model for specific use cases, ensuring optimal accuracy and 

efficiency in real-world applications. 

RESULTS 

Benchmarking 

A YOLOv5s model was trained and tested using 409 images and 530 instances in Google Colab. 

Best results were observed at epoch 107 where the precision was 0.858 and the recall was 0.907. 

Overall, the mAP of the best model was 0.946 with high AP for all five M-stages of DD 

including extremely high AP for M4P and near perfect AP for M2 and M2P (Figure 3). 

The custom YOLOv5s model was deployed on four implementations using live streaming video: 

Google Colab, Docker using an IP camera via HTTP, Docker using an IP camera via RTSP, and 

TensorFlow.js. Images were at a sufficient distance from the camera such that the object in the 

image is focused and the lighting does not present glare or darkness on the image. Videos were 

scored for M-stages of DD and compared to the corresponding labels made by a trained 

investigator. 

Cohen’s kappa was used to measure the agreement between two raters (Landis and Koch, 1977; 

Viera and Garrett, 2005). The Cohen’s kappa for Google Colab compared to the trained 
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investigator was determined to be 0.706 and interpreted as substantial agreement between the 

two raters (z = 11.4; p < 0.001). The Cohen’s kappa for Docker using an IP camera via HTTP 

compared to the trained investigator was determined to be 0.691 and interpreted as substantial 

agreement between the two raters (z = 9.9; p < 0.001). The Cohen’s kappa for Docker using an 

IP camera via RTSP compared to the trained investigator was determined to be 0.568 and 

interpreted as moderate agreement between the two raters (z = 9.24; p < 0.001). The Cohen’s 

kappa for TensorFlow.js compared to the trained investigator was determined to be 0.763 and 

interpreted as substantial agreement between the two raters (z = 9.83; p < 0.001). The model 

performed well compared to the ground truth of the trained investigator for all four 

implementations where the TensorFlow.js application performed the best (Figure 4). The 

TensorFlow.js application was able to detect all five M-stages of DD on live streaming video. 

The prediction accuracy for TensorFlow.js was 0.842 with high detection for M0, M4H, and 

M4P and perfect detection for M2 and M2P (Figure 5). 

The FPS metric was used to measure the inference time of the implementations using live 

streaming video (Figure 6). The Docker container using an IP camera via RTSP stream 

outperformed all other implementations at a maximum of 25 FPS followed closely by the Docker 

container using an IP camera via HTTP stream at a maximum of 22 FPS. On the other hand, both 

the Google Colab and TensorFlow.js implementations ran at a maximum of 12 FPS and 10 FPS, 

or half the speed of the Docker container using an IP camera. Regardless, all four 

implementations were deployed serving YOLOv5s for live object detection. 

DISCUSSION 

The real-time detection applications in this study demonstrated proficiency in identifying DD 

lesions and classifying M-stages with high accuracy speed while deployed in the cloud. For 
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speed, the Docker container using an IP camera via RTSP displayed the highest inference speed 

at 25 FPS, followed closely by the Docker container using an IP camera via HTTP at FPS. 

Notably, all deployments exceeded the minimum threshold for image processing by a human 

visual system at approximately 10 FPS. All four implementations underperformed with respect 

to inference speed compared to a DD detector run on the edge at 40 FPS. This is to be expected 

because model deployment includes the additional step of network connectivity and associated 

latency. 

For detection, the Tensorflow.js application was able to classify the M-stages of DD achieving 

the highest Cohen's kappa value of 0.763 and an overall accuracy of 0.842. Comparatively, the 

YOLOv5s model in the browser outperformed the YOLOv2 model with add itional M-stages of 

DD on a more complex dataset, representative of practical scenarios (Cernek et al., 2020). As a 

proof-of-concept, the YOLOv5s model, deployed in the web browser using TensorFlow.js, was 

able to effectively detect the various M-stages of DD on streaming video and has the ability to 

detect M-stages of DD across other media types, including images and video files. 

The current YOLOv5 model was developed using the PyTorch framework. PyTorch models can 

also be converted to TensorFlow Lite models, instead of TensorFlow.js Layer models, providing 

the additional advantage of reduced model size and latency (tensorflow, 2021). This facilitates 

deployment to cloud platforms and mobile devices, improving accessibility and versatility 

(tensorflow, 2021). The YOLOv5 model architecture can be updated to leverage the current 

framework with YOLOv7 or YOLOv8 for further technological advancements and potential 

performance gains (Paszke et al., 2019; pytorch, 2021). The integration of YOLOv7 or YOLOv8 

would increase speed and performance for real-time detection where the model architecture and 
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the format of the exported model presents the opportunity for further optimization and expand 

the number of possible deployment options (Paszke et al., 2019; pytorch, 2021). 

The custom YOLOv5s model deployed on the TensorFlow.js live detection application 

demonstrated high performance with respect to detection for all five M-stages of DD. However, 

it displayed higher accuracy in detecting M2 and M2P (Fig. 5). This difference in performance 

can be caused by the presence of data imbalanced where the number of class labels within the 

dataset where M2 and M2P had relatively fewer training examples compared to M0, M4H, and 

M4P. 

The impact of class label imbalance on model performance is a persistent challenge in machine 

learning tasks and can adversely affect the ability of a model to accurately detect and classify 

underrepresented classes (Johnson and Khoshgoftaar, 2019). Increasing the number of training 

examples for minor classes using data augmentation techniques can help improve model 

performance (Johnson and Khoshgoftaar, 2019). Augmentation involves applying various 

transformations to existing images, such as rotation, flipping, zooming, and color adjustments, to 

generate new examples that retain the same class label (Albumentations, 2021, 2020; 

albumentations-team, 2018; Buslaev et al., 2020). As previously mentioned, the YOLOv5 model 

training uses mosaic augmentation to combine four images into four tiles of random ratio to help 

the model learn small objects (Jocher, 2020). Additionally, the model training uses image 

reflection, image translation, image scaling, and color space adjustments via Hue, Saturation, and 

Value (HSV) augmentation to mitigate data imbalance (Jocher, 2020). However, additional 

augmentation using blurring, random cropping, and random brightness and contrast can prevent 

overfitting and help build better models (Albumentations, 2021, 2020; albumentations-team, 

2018; Buslaev et al., 2020). 
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Artificially balancing the dataset involves duplicating or replicating instances of minor classes to 

match the number of training examples in the major classes. Similarly, balancing the dataset can 

include deleting or removing instances of major classes to match the number of training 

examples in the minor classes. This guarantees that all classes have equal representation and 

reduces the impact of class imbalance on model performance, but also decreases the training data 

for model learning. Other remedial measures for data imbalance include adjusting the loss 

function during model training can also address the class imbalance issue (Johnson and 

Khoshgoftaar, 2019) in addition to techniques such as weighted loss functions or focal loss can 

be employed to assign greater importance to the minor classes, imposing the model to focus on 

improving the detection accuracy (Lin et al., 2018; Phan and Yamamoto, 2020). Expanding the 

dataset by collecting more data specifically for minor classes can help resolve the class 

imbalance issue. By obtaining additional instances for underrepresented classes, the model can 

better learn their unique features and characteristics. 

By implementing these remedial measures, model performance can be significantly enhanced, 

ensuring accuracy and reliability for detection of all class labels, including M2 and M2P lesions. 

Additionally, continuous evaluation and optimization of the model can lead to further 

improvements and make it more robust for a variety of real-world scenarios and real-time 

applications.  

Object detection on cloud platforms is faced with various constraints. Cloud-based object 

detection requires a stable and reliable internet connection. If there are network disruptions or 

slow connections, it can affect the speed and reliability of the detection process. In areas with 

poor or limited internet connectivity, accessing cloud services may be difficult or not feasible, 

making offline processing necessary. Cloud-based object detection can be subject to latency, as it 
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involves transmitting data to and from the cloud server. The speed and reliability of detection 

may be affected by the network connection, leading to delays in real-time applications. 

Transmitting large amounts of data between edge devices and the cloud can result in significant 

data transfer overhead, consuming bandwidth and potentially affecting the overall performance. 

Lastly, cloud services for object detection can be costly, especially for large-scale or continuous 

data processing where cost is based on data usage, computation time, and storage. Scalability 

may be an issue as the volume of data increases, potentially leading to higher expenses. Cloud 

platforms may experience downtime or performance issues, affecting the availability and 

scalability of object detection services.  

A wide range of precision agriculture tools are readily available, mainly in agricultural 

applications (Arthur Francisco Araújo Fernandes et al., 2020). Expanding the deployment of CV 

models on cloud computing services will contribute to their widespread adoption in agriculture 

and veterinary medicine. The CV models developed in this study can be further extended to 

various portable platforms and distributions, including different lightweight frameworks, 

compact enclosures, and mobile devices. 

Improving accessibility to these models can be achieved through the development of mobile 

applications such as TensorFlow Lite, Ultralytics Hub Android App, or Docker containers, 

creating a lightweight, standalone package (Docker, 2022a; Docker, 2022b; PyTorch, 2023; 

techzizou, 2021; Ultralytics, 2023d, 2023e). By increasing user acceptance of these models, we 

can generate a rich and diverse library of images for optimization and validation of CV models. 

Ultimately, the availability and deployment of these CV tools will greatly benefit agriculture 

applications, providing enhanced access to valuable information and accelerating advancements 

in the field. 
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The current implementation of this portable CV tool focuses on automating DD detection in 

dairy cattle, and preliminary results show its potential applicability to beef cattle as well. Further 

development of the model can be extended to include training on a diverse range of cattle breeds, 

geographical locations, and other sources of data variability, increasing its robustness. By 

integrating ear tag identification with DD detection, the tool can be used for automated treatment 

lists and monitoring data, streamlining management for farmers and veterinarians. Moreover, the 

research can be broadened to encompass additional M-stages of DD, white line disease, foot rot, 

and other hoof diseases (Lely, 2016), making it a comprehensive and versatile tool for addressing 

various challenges in the livestock industry. By extending the capabilities of the CV tool and 

exploring a broader range of applications, this technology can play a widespread role in 

supporting livestock management, promoting animal welfare, and modernizing agricultural 

practices. 

Automatic monitoring and measurement of animal traits using CV algorithms is a highly 

researched area (Arthur Francisco Araújo Fernandes et al., 2020; Li et al., 2021; Wurtz et al., 

2019). Researchers have explored various imaging technologies to enhance the performance of 

these models. Previous studies have demonstrated that infrared thermography can achieve 

acceptable results for detecting diseases like DD. Additionally, the use of 3D cameras for animal 

identification has proven to outperform standard cameras in accuracy and reliability. As 

technology continues to advance, we can expect these CV tools to be more widely adopted and 

integrated into various agricultural practices. The ongoing development and improvement of 

imaging technologies will likely further enhance the performance and applicability of CV 

algorithms for animal monitoring and management, paving the way for more efficient and data-

driven agricultural practices. 
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The successful development and deployment of practical CV solutions still faces several 

challenges. One prominent challenge is adapting CV algorithms for true on-farm deployment. 

Limited studies have thoroughly evaluated these algorithms using validation datasets to assess 

their reliability and robustness across multiple farms (Arthur Francisco Araújo Fernandes et al., 

2020; Li et al., 2021; Wurtz et al., 2019). This validation process is essential for the confirmation 

of these algorithms to effectively perform in diverse real-world farm settings. 

Another significant challenge is individual animal identification and tracking, as it remains 

susceptible to errors. Achieving accurate and consistent identification of animals is essential for 

the success of various CV applications in precision farming and veterinary medicine. 

Additionally, merging multiple devices into a single application is imperative for true on-farm 

deployment of various CV models (Arthur Francisco Araújo Fernandes et al., 2020; Li et al., 

2021; Wurtz et al., 2019). This integration allows the implementation of more sophisticated 

predictive algorithms that can handle multiple inputs and provide joint predictions for multiple 

traits.  

Delivering CV model predictions to farmers in a convenient and actionable manner poses a 

significant challenge. Farmers need easy access to the results and insights provided by the CV 

models to make informed decisions (Arthur Francisco Araújo Fernandes et al., 2020; Li et al., 

2021; Wurtz et al., 2019). The user interface and presentation of the CV outputs play a 

fundamental role in facilitating adoption and practical use of these technologies. Addressing 

these challenges and making long-term improvements in each of these areas will direct the 

adoption of CV technologies in agriculture and foster the development of new applications to 

benefit the industry. 
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TABLES AND FIGURES 

Figure 4.1 M-stage scoring system of digital dermatitis (DD) with signs of chronicity. Images 

are presented for each of the M-stages: M0 (top-left), M2 (top-center), M2P (top-left), M4H 

(bottom-left), and M4P (bottom-right). 

 

 

  



130 
 

Figure 4.2 YOLOv5s live detection in browser using TensorFlow.js on an image. Prediction is 

made using a bounding box for an M2 lesion with a confidence score of 72.6%. 
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Figure 4.3 Average precision of the five M-stages by YOLOv5s for the testing set. Performance 

was measured in average precision and calculated for each of the five M-stages: M0, M2, M2P, 

M4H, and M4P. 
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Figure 4.4 Bounding box predictions of M-stages by YOLOv5s on TensorFlow.js. Predictions 

are made for each of the M-stages: M0 (top-left; red), M2 (top-center; pink), M2P (top-right; 

orange), M4H (bottom-left; light orange), and M4P (bottom-right; light green). 
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Figure 4.5 Accuracy of the five M-stages by YOLOv5s on TensorFlow.js. Accuracy is measured 

as the number of correct predictions and calculated for each of the five M-stages: M0, M2, M2P, 

M4H, and M4P. 
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Figure 4.6 Inference time of the four implementations. Inference time was measured in frames 

per second (FPS) and the fours implementations Google Colab, Docker using an IP camera via 

HTTP, Docker using an IP camera via RTSP, and TensorFlow.js. 

 

 

  



135 
 

CHAPTER 5 PAWGNOSIS - COMPUTER VISION MODELS FOR THE DETECTION 

OF CANINE PODODERMATITIS AND NEOPLASIA OF THE PAW 

ABSTRACT 

Artificial intelligence (AI) has been used successfully in human dermatology. AI utilizes 

convolutional neural networks (CNN) to accomplish tasks such as image classification, object 

detection, and segmentation, facilitating early diagnosis. Computer vision (CV), a field of AI, 

has shown great results in detecting signs of human skin diseases. Canine paw skin diseases are a 

common problem in general veterinary practice, and computer vision tools could facilitate the 

detection and monitoring of disease processes. Currently, no such tool is available for veterinary 

dermatology. Digital images of paws from healthy dogs as well as paws with pododermatitis or 

neoplasia were used. We tested a novel object detection model - Pawgnosis, a Tiny YOLOv4 

image analysis model deployed on a microcomputer with a camera for the rapid detection of 

canine pododermatitis and neoplasia. The prediction performance metrics used to evaluate the 

models included mean average precision (mAP), precision, recall, average precision (AP) for 

accuracy, and frames per second (FPS) for speed. A large dataset labeled by a single individual 

(Dataset A) used to train a Tiny YOLOv4 model provided the best results with a mean mAP of 

0.95, precision of 0.86, recall of 0.93, and 20 FPS. The novel object detection model has the 

potential for application in the field of veterinary dermatology. 
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INTRODUCTION 

Artificial intelligence (AI) can provide valuable tools for veterinary medicine to alleviate 

diagnosis difficulties and long-term disease management problems, similar to their applications 

in human medicine. Computer vision (CV) is a field of AI that enables computers to derive 

meaningful predictions of various aspects of diseases, by interpreting digital images, videos, and 

other visual sources (Vaidya and Paunwala, 2019; Wu et al., 2020). In human dermatology, CV 

approaches to detecting signs of skin diseases have been demonstrated to perform equally to 

those of board-certified specialists (Pham et al., 2021). Object detection is a CV approach and is 

the process of identifying and locating specific objects in images or videos using computer vision 

algorithms. It can facilitate a fast, non-invasive diagnosis, that does not require additional staff or 

manual labor. Diagnostic support for skin lesions or disease detection would be a significant 

asset to veterinarians worldwide. 

Convolutional neural networks (CNN) are types of neural networks frequently utilized for 

medical image analysis (Yu et al., 2021). These networks can accomplish tasks such as image 

classification, object detection, and segmentation. Large datasets of thousands to millions of 

images have been utilized to train CNN models to classify and detect a wide array of objects 

(Deng et al., 2009; Weiss et al., 2016). 

One limiting factor for creating such models is obtaining considerable and comprehensive 

enough dataset to train a CNN structure. The use of transfer learning, a method in which pre-

existing models are pretrained on extensive image datasets, represents a feasible approach for 

training CV models for detection of signs of disease (Deng et al., 2009). After transfer learning, 

the CV models can be tailored to the specific task of interest (Weiss et al., 2016). In machine 

learning and CV, object detection models analyze an image and identify the presence of 
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specified object classes within it. Upon detection, bounding boxes demarcate these objects. The 

model identifies the class by shape, color, and texture, differentiating from the background and 

calculates a class probability (Zhao et al., 2019). 

You Only Look Once (YOLO) is a CNN for performing real-time object detection deep learning 

that has become a standard method in the field of CV (Redmon et al., 2016). The first version of 

YOLO, was released in 2015 (Redmon et al., 2016). YOLOv4 is an architecture originally 

implemented in a TensorFlow framework detecting objects in one step (Bochkovskiy et al., 

2020). Tiny YOLOv4 is a compressed version of YOLOv4 designed for smaller devices with 

limited computing power (Jiang et al., 2020). Tiny YOLOv4 models have a simpler network 

structure and fewer parameters to train compared to YOLOv4 (Adarsh et al., 2020). Higher 

speed is traded-off to lower accuracy by Tiny YOLOv4 compared to YOLOv4 (Alexey, 2023; 

Bochkovskiy et al., 2020; Techzizou, 2021). 

The paws are a discrete body region with well-recognized disease conditions for exploring the 

application of object detection, particularly for research purposes. One of the most common 

diseases is canine pododermatitis (Bajwa, 2016). This study aims to train and deploy a CV 

pododermatitis model named Pawgnosis, which can detect healthy paws, canine pododermatitis, 

and neoplasia cases based on images, videos, or live camera capture in real-time. 

MATERIALS AND METHODS 

Image Collection and Definition of Classes 

The canine paw images used in this study for Datasets A, B, and C described below were 

collected by board-certified dermatologists with owner permission from dermatology patients of 

the last author, friends, and family. Written informed consent for photographs or video imaging 
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was obtained from the owners. The criteria for image collection of canine paws included being 

healthy, having pododermatitis, or showing signs of neoplasia. Images used in this study were 

taken in ventral, dorsal, and lateral position of the dog's paw, with various backgrounds and 

lighting. Images were taken with the interdigital spaces open and closed, as well as of the palmar 

and plantar aspects between the footpads. 

The three object classes used in this study are defined as follows. "Healthy" paws were canine 

paws free from any clinically observable disease with no signs of inflammation, abrasions, or 

masses. "Pododermatitis" paws were defined as canine paws exhibiting clinical signs of 

inflammation due to any underlying diseases without signs of neoplasia. Signs of inflammation 

on the feet include single or multiple lesions that are dry or crusted, edematous, erythematous, 

nodular, ulcerated, exudative, and may have focal areas of alopecia. "Neoplasia" paws were 

defined as paws that had a mass and, after additional diagnostic testing, were diagnosed as 

squamous cell carcinoma, melanoma, osteosarcoma, mast cell tumors, or malignant soft tissue 

sarcomas. Lymphoma cases were not included, due to lack of images. 

Image Labeling and Definition of Datasets 

After collection, the images were manually labeled using the three previously defined classes 

(Healthy, Pododermatitis, and Neoplasia) via LabelImg (Lin, 2018). YOLO formatted bounding 

boxes and annotation files were created for each image of the canine paws for each of the three 

classes. These boxes were then labeled "healthy", "pododermatitis", or "neoplasia". 

Three different datasets were generated to compare the predictive performances of the resulting 

object detection models. Mean average precision (mAP), precision, and recall metrics for all 

classes and average precision (AP) for each class were computed (Chollet, 2021). For each 
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model, the inference time to predict bounding boxes and corresponding class labels in an image 

was measured using frames per second (FPS). Dataset A contained 575 images labeled by one 

person drawing relatively wide boxes around the entire feet area during labeling. Dataset B 

contained the same 575 images labeled by three people. Labeling was divided equally with a mix 

of narrow boxes around lesions or wide boxes around the area of the affected feet during labeling 

resulting in multiple boxes per image. Dataset C included 301 images labeled by two people 

drawing a mix of relatively narrow boxes around the affected feet area, resulting in multiple 

nonoverlapping bounding boxes, or wide boxes around the area of the affected feet. For Dataset 

B and C, images were randomly split between the labelers, labeled by single labeler, and 

reviewed by the other labelers for consistency of box size and consensus of classification. 

Model Building 

All data processing and model training were performed in Python 3.8 (Van Rossum et al., 1995). 

The three data sets were split at random into 90% train and 10% validation image sets without 

data leakage where images of the same paw are deleted and are not part of the train and 

validation data sets simultaneously. 

For the purpose of transfer learning, Tiny YOLOv4 model was initialized using classification 

weights pre-trained on ImageNet (Redmon and Farhadi, 2018). Models were trained using an 

input size of 416 x 416 pixels for a maximum number of batches of 6000 with a batch size of 64 

and a learning rate of 0.00261. The models were trained in triplicates for each Dataset A, B, and 

C and prediction performance metrics were averaged over the three training runs. 

The weights of the best model over the three training runs of Dataset A were used for 

deployment of the Tiny YOLOv4 model on an edge device. Using the same training and 
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validation data sets from the best of three Tiny YOLOv4 training runs, YOLO5s, and Tiny 

YOLOv7 models were trained. The YOLOv5 and YOLOv7 implementations are based on 

Pytorch and were used as a comparison for speed of detections on an edge device (Jocher, 2020; 

Paszke et al., 2019; Wang et al., 2023). The edge device used for deployment of the Tiny 

YOLOV4, YOLOV5s, and Tiny YOLOv7 models was an NVIDIA Jetson Xavier NX connected 

to a Luxonis OAK-1 camera that applies the DepthAI framework for inference (Luxonis, n.d.; 

NVIDIA, n.d.). This set-up of the edge device prototype was independent from web access and 

battery-powered for 8 hours of continuous detection. For deployment of the Tiny YOLOv4 

model in our veterinary dermatology clinic, a Google Colab notebook was adapted to run a real-

time built-in detection camera on a smartphone (Google, n.d.). This deployment required web 

access and a free Google Colab account. 

RESULTS 

The training duration for each model was under two hours. The mAP values for all three datasets 

were stable after an iteration number of approximately 3000. The mAP for Dataset A was higher 

than for both Datasets B and C (Figure 1). The mAP and recall for Dataset A were higher than 

for both Dataset B and C, while the precision was similar for all three datasets (Figure 2). The 

average precision (AP) of pododermatitis and neoplasia for Dataset A was higher than both 

Dataset B and C whereas the AP of healthy was similar for all three datasets (Figure 3). Tiny 

YOLOv7 has the highest mAP (0.973) compared to the other two models. We deployed these 

models on an edge device, where Tiny YOLOv7 was the fastest with 40 FPS, while Tiny 

YOLOv4 and YOLOv5s had 20 FPS. 

Figure 4 shows typical images for the three classes Healthy, Pododermatitis, and Neoplasia, and 

their detections using bounding boxes with class probabilities for each of the three datasets (A, 
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B, and C). Detections of the three classes from Dataset A (Figure 4A – 4C) show larger 

bounding boxes and higher class probabilities compared to smaller bounding boxes and lower 

class probabilities for Datasets B and C. No detections resulted from Dataset C for the healthy 

and neoplasia classes (Figure 4G and 4I). The smaller bounding boxes from Datasets B and C 

were occasionally drawn outside of the relevant paw area in the images from Pododermatitis 

(Figure 4E and 4H). 

We conducted a preliminary limited deployment of the Tiny YOLOv4 model in our dermatology 

exam room (Figure 5). Figure 5A shows the Jetson Xavier NX single-board computer connected 

to a Luxonis OAK-1 camera for the real-time detection of the three classes Healthy, 

Pododermatitis, and Neoplasia. Figure 5B shows the resulting bounding box, class label, and 

class prediction probability during real-time detection of a pododermatitis lesion on a canine 

paw. Figure 5C shows the schematic set-up of the edge device used for deployment in the 

clinical setting. 

DISCUSSION 

In this study, we apply CNNs to detect and classify objects in images in real-time. The 

Pawgnosis model predicts whether a canine paw shows characteristics of pododermatitis or 

neoplasia, or is clinically normal, with high performance after learning from a limited number of 

images. We demonstrate that the Pawgnosis tool can detect the three classes with supervision in 

a veterinary clinical setting. 

Models constrained to these three classes are not without limitations, and the applications of such 

models could be expanded by subdividing and increasing the number of these classes. The model 

could be broadened to detect early flares of pododermatitis due to atopic dermatitis. Further 
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studies can be performed to show agreement between the model detections and the validated 

atopic dermatitis scoring system CADESI-4 or other scores (Olivry et al., 2014). 

The differences in model performance between the three Datasets A, B, and C emphasize the 

importance of sample size and consistent labeling techniques for achieving optimized prediction 

performance of CV models. The model returned higher mean mAP when trained on Dataset B 

(575 images with multiple labellers) compared to training on Dataset C (301 images with 

multiple labellers. When comparing a single labeller (Dataset A) to multiple labellers (Dataset B 

and C), the model returned higher mean mAP values when trained on Dataset A compared to 

training on Datasets B and C (Figure 1). This holds true across all other performance metrics 

including precision and recall (Figure 2). A single labeller achieves a better performance than 

multiple persons labeling. Dataset A outperformed Datasets B and C for mAP (0.95 compared to 

0.54 and 0.53, respectively), recall (0.93 compared to 0.55 and 0.40, respectively), and precision 

(0.82 compared to 0.71 and 0.66, respectively). 

The mAP of Dataset A is higher than the mAPs of Datasets B and C for both the pododermatitis 

and neoplasia classes, while the difference in AP between Dataset A and the other two datasets is 

reduced for the healthy class (Figure 3). This suggests that labeling disproportionally affected 

paws with dermatologic lesions compared to healthy paws. Healthy paws were generally labelled 

with a single box around the entire paw across all datasets. Therefore, more boxes with less 

general features would result in lower accuracy. 

The proportion of the performance for Dataset A attributed to a single labeller or an increase in 

size and simplicity of labeled boxes is unknown. We assume that the benefits of a single labeller 

attributed to a reduction of inter-labeller variation, resulting in improved labeling consistency 

within the dataset. An increase in size of the labeled boxes to include the whole paw also 
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decreased the inter-labeller variation. Consistent labeling of the whole paw in Dataset A was 

more accurate than labeling of individual lesions in Datasets B and C. Further studies comparing 

datasets with the same labeling criteria and different number of labellers to datasets with 

different labeling criteria and the same number of labellers can be performed to determine the 

true relative contribution for each factor. For the current analysis, an increased labeling 

consistency and increased sample size of datasets increased the performance of object detection 

CV models for dermatologic lesions. Labeling under the supervision of a board -certified 

dermatologists is strongly recommended. 

Currently, the use of AI in veterinary medicine is a relatively new and emerging field, mostly 

applied to large animals, clinical and anatomic pathology, and radiology (Appleby and Basran, 

2022; Aubreville et al., 2020; Basran and Appleby, 2022; Borges Oliveira et al., 2021; Celniak et 

al., 2023; Cernek et al., 2020; Gupta et al., 2022; Joslyn and Alexander, 2022; Nagamori et al., 

2021, 2020; Oczak et al., 2022; Wu et al., 2023; Zhang et al., 2019). However, the use of AI for 

skin diseases in dogs is rare (Habal et al., 2021; Hwang et al., 2022; Upadhyay et al., 2023). 

Previous studies used image classification to label entire images, while the current approach uses 

object detection to localize in addition to label individual objects within an image. A recent study 

reported a YOLOv5 model for dry eye disease in dogs with a very high mAP of 0.995 (Kim et 

al., 2022). Another group built a model for dermatophytes, mange, and fleas (Upadhyay et al., 

2023). Another model evaluated 12 dog skin diseases (yeast infection, folliculitis, impetigo, 

seborrhea, dermatophytes, alopecia, mange, fleas, color changes, acral lick/granuloma, skin 

tumors, hot spots, and anal sac disease) (Habal et al., 2021). In 2022 a researchers evaluated 

images from dogs with fungal skin infection, bacterial dermatitis, and allergy (Hwang et al., 

2022). No further details are provided regarding how the diagnoses were made. From a 
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dermatological perspective, it was also unknown if the dogs had a secondary skin infection and 

what was the most common complication or not. Limited information was provided by all three 

studies regarding the individuals that made the diagnosis, and their knowledge and training in 

veterinary dermatology. Overall, these previous studies as well as the current study provide the 

first few steps and serve as a launch pad for the implementation of AI in veterinary dermatology. 

Only YOLO models were implemented to compare the performance of the three labeled datasets 

and embedded on an edge device to detect the three classes in a clinical setting. Further studies 

can explore the differences between the three state-of-the-art YOLO models and other object 

detection models. Two-stage object detection models such as Faster R-CNNs and Cascade R-

CNNs can increase accuracy for improved prediction on a stand-alone device (Howard et al., 

2017; Soviany and Ionescu, 2018). Other one-stage object detection models such as SSD and 

SSD Lite can be light-weight and increase speed for improved prediction on a mobile platform 

(Howard et al., 2017; Soviany and Ionescu, 2018). However, YOLO models provided higher 

speed and similar mAP compared to SSD, ResNet, and other models in human dermatology 

(Ding et al., 2022; Tan et al., 2021). 

Our next goal is to deploy the YOLO model on an edge device in a clinical setting for external 

validation study. CV can be deployed on a laptop or desktop, an edge device, or a smartphone 

cloud-based application. Depending on the use purpose of each model a different option can be 

deployed. These models can be used for teaching both veterinary students and veterinarians, 

aiding in the decision and assisting in the diagnosis. 
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CONCLUSION 

The developed "Pawgnosis" tool is the first object detection model using CV in veterinary 

dermatology to our knowledge. It has the potential to become an accurate and fast CV model for 

the management of canine pododermatitis. The model can be further improved for real-time 

detection of pododermatitis and monitoring of progression or treatment effects. It can also make 

recommendations for future diagnostic steps. Implementing the Pawgnosis on portable devices 

with dermatologists will further optimize the model. Pawgnosis may be used either as a clinical, 

research, or didactic tool. Pawgnosis may improve the field of veterinary dermatology, the 

welfare of dermatologic patients, and increase compliance of pet owners with therapeutic plans 

to manage canine pododermatitis. Further studies are needed to expand its abilities and validate 

its generalizability and applicability in everyday clinical practice. 
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TABLES AND FIGURES 

Figure 5.1 Mean average precision (mAP) over iteration number for training Tiny YOLOv4 
custom models. The plots are grouped by training dataset where the thin, transparent lines 

correspond to three different training sessions per dataset and the thick, opaque line corresponds 
to the means of mAP from the three training sessions per dataset: Dataset A (red), Dataset B 
(green), and Dataset C (blue). 
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Figure 5.2 Mean and 95% confidence intervals for three performance metrics of each of the 
three datasets using Tiny YOLOv4. The plots are grouped by mean average precision (mAP), 

precision, and recall for each dataset. Small circles correspond to distinct training runs, large 
circles correspond to group means, and the vertical lines correspond to the 95% confidence 

intervals: Dataset A (red), Dataset B (green), and Dataset C (blue). 
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Figure 5.3 Mean and 95% confidence intervals for average precision (AP) of each of the three 
classes, Healthy, Pododermatitis, and Neoplasia, for each of the three datasets using Tiny 

YOLOv4. Small circles correspond to distinct runs, large circles correspond to group means, and 
the vertical lines correspond to the 95% confidence interval: Dataset A (red), Dataset B (green), 

and Dataset C (blue). 
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Figure 5.4 Model deployment of Tiny YOLOv4. Portable, battery-powered Jetson Xavier NX 
single-board computer connected to a Luxonis OAK-1 camera detecting three classes healthy, 

pododermatitis, and neoplasia in a clinical setting (Panel A). Canine pododermatitis bounding 
box with class label and class probability (Panel B). Schematic set-up for single-board computer, 

camera, LED monitor and power source (Panel C). 
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Figure 5.5 Image matrix of predictions. Image matrix of predictions from typical images of the 
healthy (left column), pododermatitis (middle column), and neoplasia (right column) classes 

using the best Tiny YOLOv4 model with the highest average mean average precision (mAP) 
value from the three training runs; Dataset A (top row), Dataset B (middle row), and Dataset C 

(bottom row). Matrix rows correspond to the training dataset and columns represent classes 
Healthy, Pododermatitis, and Neoplasia. The predictions are displayed using a bounding box and 
class label with corresponding prediction probability. 
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CHAPTER 6 DAIRYCOPILOT - AUTOMATED DATA COMPILATION AND 

ANALYSIS TOOLS FOR DAIRYCOMP DATA ASSETS 

ABSTRACT 

Modern dairy farm management requires meaningful data and careful analysis to maximize 

profitability, cow health, and welfare. Current data platforms, such as DairyComp, lack robust 

integrated data analysis tools. Producers and consultants need dedicated tools to turn collected 

data sets into assets for informed decision-making processes. The DairyCoPilot app allows users 

to rapidly extract health and production data from DairyComp, then compile and analyze the data 

using a menu-driven point-and-click approach. Prospects for training consultants in applied data 

analysis skills make DairyCoPilot a tool to identify farm management bottlenecks with less time 

spent for data analysis, improving cow health, and dairy production. The DairyCoPilot 

Dashboard R Shiny application is published using RStudio Connect: 

https://connect.doit.wisc.edu/dairy-copilot/. 
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INTRODUCTION 

Managing dairy cows has become a data-intensive practice (Gargiulo et al., 2018; Morota et al., 

2021). Increased number of cows per farm combined with enhanced data recording has expanded 

the availability of data for producers and consultants to make informed decisions (“USDA ERS - 

Milk Production Continues Shifting to Large-Scale Farms,” n.d.). Deriving value from farm data 

and cow records requires software and trained users resulting in so-called ‘data assets’ aligned 

with evidence-based decision-making. Examples of dairy record management software are 

DairyComp, BoviSync, and animal by MILC. The current project will focus on data compilation 

and analysis from DairyComp (DC), a management package that is utilized by about 60% of 

dairy herds in the US (“5 Apps to Help Manage Your Dairy,” 2022).  

According to its promoters, DC has become one of the most popular dairy herd management 

software tools (VAS, n.d.). The software allows producers to store information about individual 

cows and cow-level events in a “cow card” to examine the cows' entire history, their health, 

reproduction, and production records. Cow management worksheets, monitoring reports, 

reproduction management, and other tools are integrated directly into DC. A set of built-in 

analysis tools for graphic displays of trends in health events, reproduction, and milk production 

assist with cow monitoring. However, DC does not currently possess internal tools for statistical 

inference controlled for confounders or provide a simple way to extract cow information for data 

analysis making it difficult for dairies to gain insights. Detailed health data analysis provides 

opportunities for adding value using knowledge about production and health challenges. 

Previously, detailed health analyses using DC data required significant manual data processing 

both in DC and in spreadsheet tool of user choice. 
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The proposed DairyCoPilot app is time efficient for single and repeated applications. We provide 

a singular, automated workflow for extracting health and event information from DC to 

DairyCoPilot followed by a graphical user interface application deployed on an R Shiny server. 

The initial setup requires minimal time in DC. The R Shiny application uploads the extracted file 

from DC to download a cleaned CSV file or perform data analysis. 

MATERIALS AND METHODS 

DairyComp Data Extraction 

The data extraction process consists of two steps. First, a few so-called ‘items’ are created using 

the ALTER function in DC followed by a ‘protocol’ command to generate a CSV file. The 

protocol command can be stored in DC for repeated use. For users who are not familiar with the 

ALTER or SETUP options in DC, the full software reference guide is found in DC Reference 

Guide of https://dc-help.vas.com/ReferenceGuide/Home-DC305RefGuide.htm. Detailed 

instructions for extracting the raw data from DC are found in Appendix A or in the 

Documentation tab of https://connect.doit.wisc.edu/dairy-copilot/. 

DairyCoPilot Data Cleaning 

The CSV file from DC containing all variable names in the first row is read into the R Shiny 

application. The so-called ‘events’ from DC are automatically renamed e.g. 'SCOURS' to 

'DIARRHEA' and missing events are filtered out. Missing columns required for further analysis 

in DairyCoPilot are created as placeholders. Remarks and protocols from DC are combined for 

completeness.  

The data are grouped by cow identification (ID), lactation number (LACT), and event and the 

event number is appended to the event label. The dates and remarks are converted from a wide to 
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a long format and the dates and remarks are appended to the event label respectively. The date 

and remarks are converted back from a long to a wide format with the variable names in the 

format of event, order, and if it is a date or remark. Missing events that are required for further 

analysis e.g. the first milk fever date for all ID and LACT are created as placeholders. The 

resulting variables are converted to the appropriate variable type, such as numeric or factor, for 

further analysis. 

Cows who have not started their first lactation are filtered out and columns are created based on 

number of occurrences of an event for all ID and LACT. Columns are renamed as shown in 

Appendix B. The date and remark of a ‘removed’ event are created based on the sold and died 

events. Observations are excluded if the birth date, fresh date, or first calving date are invalid or 

missing. Predefined variables are created based on cutoff days post-calving or based on a value 

for a given event as described in Appendix B, for example the ‘lactation group’ is 3 if the 

‘lactation number’ is greater than or equal to 3, otherwise, the lactation group is the lactation 

number. Additionally, event occurrence, the days in milk of the first occurrence in the lactation 

period, and predefined variable based on cutoff days post calving for a given event are created as 

described in Appendix B e.g. ‘MLK_FVR<=7’ is ‘1’ if the days in milk of the first occurrence of 

milk fever in the lactation period is less than or equal to 7 DIM, otherwise ‘MLK_FVR<=7’ is 

‘0’. Details regarding the cutoff value for the variables associated with transition cow health 

events are described in Appendix B and under the DairyCoPilot documentation tab. For binomial 

data, factor levels are reordered such that false or ‘0’ is used as reference level and true or ‘1’ as 

the alternative. For multinomial data, factor levels are reordered based on frequency from lowest 

to highest. For a given event, a rolling filter is applied such that if the next observation is 

recorded within a 3-day time lag of the previous observation, then only the previous observation 
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is kept, else both observations are kept in the dataset. For example, if a cow has milk fever at 1 

DIM, 2 DIM, and 4 DIM, then only the observations at 1 DIM and 4 DIM is kept. Detailed 

instructions for extracting the raw data from DC are found in Appendix C. 

Software Requirements 

All analyses are performed using R version 3.6.3 (R Core Team, 2020). The R packages readr, 

dplyr, and tidyr through tidyverse are used for data importation, data manipulation, and data 

tidying respectively (Wickham et al., 2022b, 2022a, 2019; Wickham and Girlich, 2022). The R 

package stringr is used for working with strings, forcats for handling categorical variables 

including reordering character vectors to improve display, and lubridate for working with dates 

and times (Grolemund and Wickham, 2011; Wickham, 2022a, 2022b). The R package janitor is 

used to generate two-way frequency tables for categorical analysis and nnet is used to fit 

multinomial log-linear models and to compute odds ratios (Firke, 2021; Venables and Ripley, 

2002). The R package DT provides an R interface to the JavaScript library DataTables used to 

create an interactive data table and skimr is used to provide summary statistics about variables in 

a data table (“DataTables | Table plug-in for jQuery,” n.d.; Waring et al., 2022; Xie et al., 2022). 

The R package reactable is used to create an interactive data table and reactablefmtr is used to 

streamline and enhance the styling and formatting of tables (Cuilla, 2022; Lin, 2022). The R 

packages ggplot2, GGally, and plotly are used to create data visualizations, pairs plots, and 

interactive graphing respectively (Schloerke et al., 2021; Sievert, 2020; Wickham, 2016). The R 

packages shiny and shinydashboard are used to build interactive web apps and dashboards 

(Chang and Ribeiro, 2021; Sievert, 2020). The DairyCoPilot Dashboard R Shiny application is 

published using RStudio Connect: https://connect.doit.wisc.edu/dairy-copilot/ (Aravamuthan et 

al., 2022). Connect assigns a distinct temporary directory to every process it initiates. Interactive 



160 
 

applications such as Shiny are granted write access to the directory where the unprocessed code 

is stored. This directory serves as the working directory when launching an application, and any 

data written to it is accessible exclusively to processes linked with that particular application and 

is not visible to processes linked to other content. The data in the application directory remains 

accessible until the application is redeployed in Connect, which generates a new application 

directory exclusively containing the newly deployed content. 

RESULTS 

The following sections describe the four tabs of the DairyCoPilot Dashboard. 

Input Tab 

The Dashboard tab of the DairyCoPilot R Shiny app contains three panels. The Input panel is 

used to upload the downloaded CSV file from DC (Figure 1). Moreover, users are able to input 

the farm name, DairyComp extraction date, and earliest fresh date for analysis, most recent fresh 

date for analysis. Users can upload a ‘raw’ or previously unprocessed CSV, download a 

‘cleaned’ CSV, make edits if there are errors in the DC records, and save these changes. Users 

can upload a previously cleaned CSV using the download button in the app or edited CSV in a 

spreadsheet app e.g. Microsoft Excel if necessary. The Contents panel is used to display the first 

100 rows of the dataset providing filtering, pagination, and sorting (Figure 2). The Summary 

panel is used to display summary statistics the user can skim to understand the data (Figure 2). 

Results are printed horizontally with a section for each variable type and a row for each variable. 

Pivot Table Tab 

The Pivot Table tab is used for categorical analysis of multinomial data (Figure 3). The tab 

contains three columns for a total of six panels. The first column is the Input panel that is used to 
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select the row variable and column variable for two-way tabulation where the user can also 

specify the reference level of both variables for further use. The Advanced Input panel allows 

users to specify a confidence level different than the default 95% level. The second column 

includes the Pivot Table panel of a two-way frequency table with the row and column sums, 

where the depth of the color mapping corresponds to counts, such that blue is equivalent to low 

counts and red is equivalent to high counts. The second column also includes the Odds Ratio 

panel of the odds ratio (OR) and corresponding confidence interval (CI) for each alternative level 

with respect to the reference levels previously specified (Dohoo et al., 2009). The OR and CI are 

computed by fitting multinomial a log-linear model via neural network (Venables and Ripley, 

2002). The third column is used to visualize the data where the Comparative Bar Plot panel is 

used to display the count data in the pivot table and the Forest Plot panel is used to present the 

point estimate and interval data in the OR table. All plots are interactive with details on demand 

and can be downloaded as PNG files. 

Regression Analysis Tab 

The Regression Analysis tab is used to fit a regression model for an outcome variable of interest 

(Figure 4). Similar to the previous tab, the tab contains three columns for a total of five panels. 

The first column is the Input panel that is used to select the response and explanatory variables. 

The R Shiny app automatically recognizes if the response variable is a numeric or categorical 

variable as well as if the model is linear or logistic regression respectively (Chambers and Hastie, 

1997; Dobson and Barnett, 2018; McCullagh and Nelder, 1998; Venables and Ripley, 2002). The 

second column includes the Summary panel that is the coefficients table for the regression model 

with estimate for slope, standard error, t-statistic, and p-value for each term in the regression 

model. The table can be used to determine the adjusted effect of each explanatory variable on the 
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response variable and the statistical significance of the association. The second column also 

includes the ANOVA panel, that is the Analysis of Variance table of the regression model 

described above with degrees of freedom, sum of squared errors, mean squared errors, F-statistic, 

and p-value for each term in the regression model (Dohoo et al., 2009). The ANOVA table can 

be used to determine the variation of the response variable due to variation in the explanatory 

variable and the statistical significance of the association. The third column is used to visualize 

the data where the Generalized Pairs Plot panel automatically displays a comparative plot for 

each pair of variables in the regression model, depending on the type of data. The Coefficient 

Plot is used to visualize the estimate and 95% CI using the coefficient table. All plots are 

interactive with details on demand and can be downloaded as PNG files. 

Documentation Tab 

The Documentation tab provides instructions to generate the input CSV file in DC that is used 

for the data cleaning step by DairyCoPilot (Figure 5). A glossary of variables is provided for 

variables used to generate the output CSV file for the analysis in DairyCoPilot. Finally, an 

example dataset is provided for download for interested users to try out and test the app. 

Software Usage and Example 

A case study is performed to demonstrate the potential uses of the DairyCoPilot R Shiny app. A 

1000-cow dairy in Wisconsin, USA provided access to DC records collected in 2022. Following 

data upload, summary statistics and cow records are displayed (Figure 2). Transformed data can 

be downloaded directly as a CSV file and additional analysis is performed using the Pivot Table 

and Regression Analysis tabs. 
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In the Pivot Table tab, the input selected for the Row variable is LCTGP with a reference level of 

1 and the column variable is REMVD with a reference level of 0. The Pivot Table panel cross-

tabulates categorical variables by level (Figure 3). In the LCTGP by REMVD example, the three 

lactation groups are split into 1st, 2nd, and 3rd+ lactations as rows in the panel and removed 

status (1) or not removed (0) as columns. The Odds Ratio panel provides a measure of 

association between two categorical risk factors. The odds of removal as a second lactation cow 

compared to a first lactation cow is 1.24 × 100 (95% CI: 8.59 × 10-1 - 1.78 × 100) indicating no 

significant difference in removal between first and second lactation at a 95% confidence level. 

The 3+ cows have a significantly greater odds of removal than first lactation animals OR: 2.78  × 

100 (95% CI: 1.70  × 100 - 3.05  × 100). The pivot table is visualized in a Comparative Barplot 

panel for total counts of removed and non-removed by lactation and OR is represented in the 

Forest Plot panel. Both of these graphs provide summary statistics by hovering over the image. 

Additionally, the graphics can be downloaded as an image file. 

The Regression Analysis tab is used to quantify the associations between first-test butterfat 

percent (FSTBF), retained placenta (RP), lactation (LACT), and twins (TWIN). The summary 

panel provides estimates for regression coefficients and statistical significance (Figure 4). 

FSTBF is not significantly associated with lactation (estimate: 0.00; p-value: 0.96), negatively 

associated with twins (estimate: -0.21; p-value: 0.02), and FSTBF is negatively associated with 

the occurrence of retained placenta (estimate: -0.25; p-value: 0.02). Similar interpretations are 

generated using the ANOVA table. The Generalized Pairs Plot panel presents a representation of 

associations between coefficients. The Coefficient Plot panel provides a visualization of the 

regression parameter estimates. Both of these graphs provide summary statistics by hovering 

over the image. Additionally, the graphics can be downloaded as an image file. 
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Any choices of analysis for association of risk factors and outcome variables can be quantified 

using the DairyCoPilot tool, except for associations where limited numbers of observations per 

category result in non-convergence of the regression models. For such cases, the Pivot Table tab 

is preferred. 

Example Analysis 

An example analysis is completed to demonstrate a basic analysis of a dairy herd and can be 

replicated by downloading the example.csv found in the documentation tab. The CSV file was 

extracted from DairyComp on 10/13/22, and earliest fresh date for analysis was selected 

10/12/20 to capture 2 years of date and last date was selected as 10/12/23. The data included 

2106 rows. The file was then downloaded as a CSV file for storage and availability outside of 

DairyCoPilot. As an example, the relationship between twins, health, and milk production were 

examined using the Pivot Table tab. The association between twins (TWINS) and lactation group 

(LCTGP) were quantified and visualized. The reference level for LCTGP was selected as 

lactation 1 and for TWINS as 0. The OR for TWINS between LCTGP 1 and 2 was 1.73 × 100 

(95% CI: 8.17 × 10-1 - 3.673 × 100) and LCTGP 1 and 3 was 4.62 × 100 (95% CI: 2.53 × 100 - 

8.44 × 100). The OR between removal from the herd before 60 DIM and twins was 3.415 (95% 

CI: 1.87 × 100 - 6.24 × 100). The numerical variables and multiple variable model was inspected 

the Regression Analysis tab. First test butterfat was selected as an outcome variable for this 

example. The effect of Twins as an explanatory value for FSTBF was added as an explanatory 

variable. The estimated effect of twins on FSTBF was -0.26 with a p-value less than 0.01. In the 

categorical analysis the association of LCTGP and TWINS was noted. Therefore, an additional 

explanatory variable was added to the regression equation for FSTBF = TWINS + LCTGP. The 

resulting estimate for FSTBF changed to -0.28 with a p-value of 0.0. Finally, ketosis (KET) was 
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added to the regression equation resulting in FSTBF = TWINS + LCTGP + KET. The p-value 

for KET was 0.48 and the user may elect to remove it from the regression model. Multiple other 

factors can be added to the regression model to improve user understanding and prediction 

performance. The resulting evaluation shows that twins are associated with lower FSTBF even 

when controlling for LACT at this dairy. 

DISCUSSION 

Dairy Data Collection 

A significant proportion of dairy data is manually acquired and recorded. Events such as disease 

diagnosis and subsequent recording are subject to human error. Errors in data recording will 

propagate forward into subsequent analysis. The DairyCoPilot tool provides a method for 

reducing time to analysis but cannot improve the accuracy of input data. However, it is user 

responsibility to correctly validate data before data analysis. 

Data Analysis Tools 

Agricultural production is a data-rich environment that requires advanced analysis for informed 

decision-making processes (Antle et al., 2017; Moore et al., 2022). Advanced training can be 

accomplished through outreach and extension services with fit-for-purpose tools that reduce 

barriers of application by end users. Training and analysis tools such as DairyCoPilot presented 

in this study, fill a need in the dairy industry that is currently unmet. Decision-making processes 

using graphic analysis or trend observation alone are not powerful enough for modern production 

systems (Correll et al., 2012; Whitley and Ball, 2002). More advanced multiple variable 

statistical tools allow users to control multiple confounding variables such as lactation or milk 

production simultaneously (Kahlert et al., 2017). Data analysis tools used for local on-farm 
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decision support should be customizable to user demands. The proposed DairyCoPilot 

application allows for customization of analysis choices and guarantees data ownership resulting 

in a locally secure tool. 

Platforms providing data analysis including visualization, dashboarding, and economic 

evaluation of cow health and production include milking services companies e.g. Lely T4C, 

DeLaval DelPro, etc.; herd management platforms e.g. DC, animal, Bovisync, Dairy Data 

Wearhouse, etc.; and cow monitoring technologies e.g. SmaXtec, Connectera, CowManager, etc. 

(Lely, n.d.; DeLaval, n.d.; VAS, n.d.; Bovisync LLC, n.d.; “SmaXtec,” n.d.; Connectera, n.d.; 

CowManager B.V., n.d.; DDW, n.d.). Tools for exporting graphs and reports are limited, and 

statistical data analysis can be absent from these applications. Licenses must be paid, or large 

purchases must be made from these companies to access the data analysis tools. The 

DairyCoPilot application has advantages for data assets used for on-farm decision-making 

processes, because the app is free, easy-to-use, secure, and customizable. 

Big Data Approaches 

The alternative to modular data analysis tools is a big data analysis approach. These analysis 

systems take in data from multiple diverse sources, compile them, and generate inferences. For 

example, Dairy Data Warehouse provides integrated data storage, analytics, and forecasting for 

enrolled dairies (DDW, n.d.). These services are billed on a per-cow subscription fee. Another 

example of a big data approach is the UW Madison Dairy Brain and Data Hub (“Dairy Brain,” 

n.d.). 

These tools enhance data analysis on farms. Questions regarding data ownership and security are 

important considerations regarding these tools (Runck et al., 2022; Wilgenbusch et al., 2022). 
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Food production stakeholders, including commercial and governmental organizations, will need 

to reach agreements about data sharing, ownership, and management. These challenges indicate 

that small data approaches, such as the proposed DairyCoPilot application, are still a viable 

option that allows improved and customized control by individual end users. Small data 

applications can be integrated into big data applications in the future. 

Strengths 

First and foremost, DC does not provide advanced data analysis required for dairies to gain 

insights and make data-driven decisions for complex problems. The user interface is extremely 

basic and customization is insufficient where the software is only developed for Windows 

desktops. The management application has a limited set of features lacking the advanced 

functionality to manipulate data, create graphics, and generate figures and tables for estimation 

and prediction.  

Conversely, DairyCoPilot provides statistical tools for both categorical data analysis and 

regression analysis. The program provides an elegant and powerful web framework where the 

user interface is dynamic to conditionally generate input controls and uses reactive programming 

to automatically update outputs when inputs change. The web application can clean data for 

downstream data analysis, create interactive graphics for exploratory and expository 

visualization, and export high quality figures using interactive views for documents, reports, and 

presentations. Lastly, DairyCoPilot is mobile-friendly, desktop progressive web application for 

all device platforms. 
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Limitations 

Currently, DairyCoPilot only handles a subset of events and items as detailed in Appendix B. 

The program is limited to analysis of cow data and is not yet available for calf data but can be 

added in the future. The implementation of software requires appropriate statistical training 

which must be obtained separately from the supplied software tool. Consultants must still use a 

holistic approach to evaluating dairies in addition to statistical tools where visual appraisal of 

dairies can provide information not contained in records and can even contradict records. The 

main drawback of the data analysis tool is slow performance for extremely large data sets 

containing multiple recordings of events compared to other languages. Accordingly, the lack of 

scalability compared to more popular frameworks such as Node.js or React can be an issue for 

dairies that need to handle a lot of traffic or requests. Currently, the regression tab does not 

provide the option to add random effects in the model. Additionally, the application does not 

provide the functionality to check the assumptions of statistical methods e.g. diagnostic plots for 

linear models and generalized linear models. This will be available in forthcoming updates. 

CONCLUSION 

Tools for automated data analysis are necessary for training the next generation of food animal 

consultants and life scientists. Tools, such as DairyCoPilot, help shift the burden of data 

formatting and editing in terms of time and effort to highly trained individuals. The food animal 

consultant does not need to be a statistical expert if automated statistical analysis tools are 

accessible and if such analysis is part of their daily discussion and decisions. 

The outlook for local data analysis tools such as the DairyCoPilot is the expansion of variable 

formatting into customized categorical variables, interaction terms and random effects models in 
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the near future. DairyCoPilot is the first step in developing advanced freely available tools for 

rapid analysis of records from dairy farms that are translatable to all other animal species and 

healthcare settings. Additionally, adoption of these tools will facilitate commercial providers, 

such as VAS, to include advanced graphical and statistical tools directly into their software 

updates and to improve workflows for data extraction to support other tools. The DairyCoPilot 

application represents an important step in turning farm records into data assets for more 

customized decision-making processes by informed consultants in the life sciences. 
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TABLES AND FIGURES 

Figure 6.1 Dashboard Tab of the DairyCoPilot application before data upload. 
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Figure 6.2 Dashboard Tab of the DairyCoPilot application after data upload. The user can input 

the farm name, the date of data extraction from DairyComp, and starting and ending fresh dates 

for inclusion in the data analysis. The Contents panel displays the transformed dataset and is 

searchable. The Summary panel includes information about all variables including descriptive 

statistics and missing variables. 
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Figure 6.3 Pivot Table Tab. The Pivot Table of the DairyCoPilot application allows the user to 

perform statistical analysis for categorical variables and visualize two-way associations. Odd 

ratios and 95% confidence intervals allow the user to quantify pairwise associations and assess 

the statistical significance. 
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Figure 6.4 Regression Analysis Tab. Regression Analysis in the DairyCoPilot application allows 

the user to perform linear and logistic regression. The user can select a response variable and 

multiple explanatory variables followed by different variables to control for confounding across 

groups. Graphical analysis in the Generalized Pairs Plot and Coefficient plot panels visualize the 

relationships between variables in the Summary and ANOVA panels. 
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Figure 6.5 Documentation Tab. Documentation in the DairyCoPilot application provides 

instructions to generate a CSV file for analysis using DairyCoPilot. 
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APPENDIX A 

Instructions: 

1. Open DairyComp desktop software. Make a note of the last date records were updated. If 
using a backup copy from another dairy this may not be the current date.  

2. Ensure all necessary items are created in ALTER (ALTER is accessed under File 

dropdown menu): 

CAUTION: Changes made in ALTER affect the entire program, be cautious 

1. Users can run the following command and DairyComp will warn their item does 
not exist 

2. Items can be searched directly in ALTER 

3. Add missing items to Items menu 

1. Click Add [Ins] 

2. Enter information in the chart below for each item not found in dairy 
records 

Item 

Name 

Item 

Type Loc/Op1 Len/Op2 Item Description 

ID 32 210 4 Animal's identification 

LACT 1 41 1 Lactation number 

FDAT 18 71 2 Fresh date that initiated this lactation 

BDAT 18 37 2 Birth date of the animal 

RC 3 43 1 Reproductive code (1 through 8) 

DRYLG 8 181 
 

Dry log SCC 

DDRY 49 FDAT PDDAT Days dry (prior to the current calving) 

PDCC 49 FDAT PCDAT Previous days carried calf (gestation 
length) 

PDIM 95 DIM -1 Previous lactation days in milk (lactation 
length) 

EASE 1 114 1 Calving ease score, 1 to 5 scale 

CNUM 76 CALF (use 0) Number of calves born to start the current 
lactation 

CLIVE 73 FRESH (Esc) 4 Calf alive or dead (A = alive, D = dead) 
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Item 

Name 

Item 

Type Loc/Op1 Len/Op2 Item Description 

CSEX 73 FRESH (Esc) 1 Calf sex (M, F, MM, FF, FM, etc.) 

FTDIM 81 1 0 Days in milk at first test 

FCDAT 94 FDAT 1 First Calving date 

FSTPJ 86 1 1 First test 305-d ME projection of milk 
prod 

FSTBF 83 1 0 First test milk fat percent 

FSTPR 83 1 1 First test milk protein percent 

PEAKM 82 99 0 Peak milk production in the current 
lactation 

DCAR 171 45 1 Sold or Died "Condition Affecting 
Record" code (numeric) 

PR305 93  305ME -1 Previous lactation 305ME 

LOG1 88 1 1 Log SCC on first test day 

Table 1: 

Items to be created in the DairyComp file for the dairy to be analyzed. 

 

4. Copy the following command into the command line: 

1. EVENTS ID LACT LCTGP FDAT BDAT FCDAT RC DRYLG DDRY 

PDCC PDIM EASE CNUM CLIVE CSEX FTDIM FSTPJ FSTBF FSTPR 

PEAKM DCAR PR305 LOG1\2SI 

2. This command can also be saved in the DairyComp dropdown menu for future 
use: 

1. ALTER – Commands (3) 

1. Add [Ins] 

1. Abbreviation: DCEXTR 

2. Content: EVENTS ID LACT LCTGP FDAT BDAT 
FCDAT RC DRYLG DDRY PDCC PDIM EASE CNUM 

CLIVE CSEX FTDIM FSTPJ FSTBF FSTPR PEAKM 
DCAR PR305 LOG1\2SI 

2. Under File select program setup 

3. Select MENU tab 
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1. Click Add Top Menu 

1. Name menu  

2. Click Menu header you would like command to be saved under 

1. Add Submenu 

2. Click F2 or click in created menu name  

1. Title  

2. Command (DCEXTR) 

3. Add description 

3. The Command can now be referenced directly from dropdown 
menu in the future 

5. Select a date 2-2.5 years prior to DC date 

6. Select Last date you wish to analyze data 

7. Select Events 

1. Select All will contain the most information and is preferred  

2. Can individually choose Events as well 

1. MUST include FRESH 

3. Select optional REM pattern: 

1. Select default “none” by clicking “OK” 

4. This may take a few minutes 

8. Write data to CSV file 

1. Find floppy disk icon above command line  

2. Click downward facing triangle to the right 

3. Save as CSV (Do Not save as XLS) 

4. Choose location and name for CSV 

4. The downloaded CSV is now ready to be analyzed using DairyCoPilot app 
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APPENDIX B 

Item Name Item Description 

ID Animal's identification 

LACT Lactation number 

LCTGP Lactation groups (1: lactation number is 
1; lactation number is 2; 3: lactation 

number is greater than or equal to 3) 

FDAT Fresh date that initiated this lactation 

BDAT Birth date of the animal 

TOCU1 Date of last move to close-up pen 

TOCU2 Date of previous move to close-up pen 

RC Reproductive code (1 through 8) 

DRYLG Dry log SCC 

DDRY Days dry (prior to the current calving) 

PDCC Previous days carried calf (gestation 
length) 

PDIM Previous lactation days in milk 
(lactation length) 

EASE Calving ease score, 1 to 5 scale 

CNUM Number of calves born to start the 
current lactation 

CLIVE Calf alive or dead (A: alive; D: dead) 
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CSEX Calf sex (M, F, MM, FF, FM, etc.) 

FTDIM Days in milk at first test 

FSTPJ First test 305-d ME projection of milk 

prod 

FSTBF First test milk fat percent 

FSTPR First test milk protein percent 

PEAKM Peak milk production in the current 
lactation 

DCAR Sold or Died "Condition Affecting 

Record" code (numeric) 

DATS Date sold 

REMS Remark of the sold event 

DATD Date died 

REMD Remark of the died event 

1DMF Date of 1st milk fever in the current 

lactation 

REMMF Remark of 1st milk fever in the current 

lactation 

XMF Count of all milk fever events in the 
current lactation 

1DRP Date of 1st retained placenta in the 
current lactation 

REMRP Remark of 1st retained placenta in the 
current lactation 
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XRP Count of all RP events in the current 
lactation 

1DME Date of 1st metritis event in the current 

lactation 

REMME Remark of 1st metritis event in the 

current lactation 

XMETR Count of all metritis events in the 

current lactation 

1DKE Date of 1st ketosis event in the current 
lactation 

REMKE Remark of 1st ketosis event in the 
current lactation 

XKET Count of all ketosis events in the current 
lactation 

1DDA Date of 1st DA event in the current 
lactation 

REMDA Remark of 1st DA event in the current 
lactation 

XDA Count of all DA events in the current 

lactation 

1DPN Date of 1st pneumonia event in the 

current lactation 

REMPN Remark of pneumonia event in the 

current lactation 

XPNEU Count of all pneumonia events in the 
current lactation 
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1DDIA Date of 1st diarrhea event in the current 
lactation 

REMDI Remark of 1st diarrhea event in the 

current lactation 

XDIAR Count of all diarrhea events in the 

current lactation 

1DLAM Date of 1st lame event in the current 

lactation 

REMLM Remark of 1st lame event in the current 
lactation 

XLAME Count of all lame events in the current 
lactation 

1DFT Date of 1st foot trim event in the current 
lactation 

REMFT Remark of 1st foot trim event in the 
current lactation 

XFTRM Count of all foot trim events in the 
current lactation 

1DMA Date of 1st mastitis event in the current 

lactation 

REMMA Remark of 1st mastitis event in the 

current lactation 

XMAST Count of all mastitis events in the 

current lactation 

1DIL Date of 1st ILLMISC event in the 
current lactation 
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REMIL Remark of 1st ILLMISC event in the 
current lactation 

XILL Count of all ILLMISC events in the 

current lactation 

DATS Date removed 

REMS Remark of the removed event 

FRESH_MONTH Fresh date that initiated this lactation 
(YYYY-MM) 

DIM Days in milk (difference between fresh 
date and data extraction date or date of 

removal if removed) 

FRESH 372 TO 7 Days in milk between 7 and 372 

FRESH 386 TO 21 Days in milk between 21 and 386 

FRESH 425 TO 60 Days in milk between 60 and 425 

BIRTH_DATE Birth date of the animal 

AGE_AT_CALVING_(MONTHS) Age at calving (from birth date to fresh 

date; months) 

AGE_AT_CALVING_1ST_LACT_(MONTHS) Age at calving (from birth date to first 

calving date; months) 

ABORT Abort (1: gestation length less than 260; 
0: otherwise) 

CALVING_EASE_>=2 Calving ease score greater than or equal 
to 2 

CALVING_EASE_>=3 Calving ease score greater than or equal 
to 3 
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TWINS Twins (1: number of calves born to start 
the current lactation greater than 1; 0: 

number of calves born to start the 
current lactation equal to 1) 

STILLBIRTH Stillborn (1: dead; 0: otherwise) 

CALF_SEX Calf sex 

MALE_CALF Male calf 

FPR Fat protein ratio 

FPR>1.4 Fat protein ratio greater than 1.4 (1: fat 
protein ratio greater than or equal to 1.4; 

0: otherwise) (Duffield et al., 1997) 

SOLD Sold 

SOLD_DIM Days in milk at sale 

SOLD<=60 Days in milk at sale less than or equal to 
60 (1: sale less than or equal to 60; 0: 

otherwise) 

DIED Died 

DIED_DIM Days in milk at death 

DIED<=60 Days in milk at death less than or equal 
to 60 (1: death less than or equal to 60; 

0: otherwise) 

REMVD Removed 

REMVD_DIM Days in milk at removal 

REMVD<=60 Days in milk at removal less than or 
equal to 60 (1: removal less than or 

equal to 60; 0: otherwise) 



187 
 

MLK_FVR Milk Fever 

MLK_FVR_DIM Days in milk at 1st milk fever event 

MLK_FVR<=7 Days in milk at 1st milk fever event less 

than or equal to 7 (1: days in milk less 
than or equal to 7; 0: otherwise) 

RP Retained placenta 

RP_DIM Days in milk at 1st retained placenta 
event 

RP<=7 Days in milk at 1st retained placenta 
event less than or equal to 7 (1: days in 

milk less than or equal to 7; 0: 
otherwise) 

METR Metritis 

METR_DIM Days in milk at 1st metritis event 

METR<=21 Days in milk at 1st metritis event less 

than or equal to 21 (1: days in milk less 
than or equal to 21; 0: otherwise) 

KET Ketosis 

KET_DIM Days in milk at 1st ketosis event 

KET<=60 Days in milk at 1st ketosis event less 

than or equal to 60 (1: days in milk less 
than or equal to 60; 0: otherwise) 

DA DA 

DA_DIM Days in milk at 1st DA event 
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DA<=60 Days in milk at 1st DA event less than 
or equal to 60 (1: days in milk less than 

or equal to 60; 0: otherwise) 

PNEU Pneumonia 

PNEU_DIM Days in milk at 1st pneumonia event 

PNEU<=60 Days in milk at 1st pneumonia event 
less than or equal to 60 (1: days in milk 

less than or equal to 60; 0: otherwise) 

DIARR Diarrhea 

DIARR_DIM Days in milk at 1st diarrhea event 

DIARR<=60 Days in milk at 1st diarrhea event less 
than or equal to 60 (1: days in milk less 

than or equal to 60; 0: otherwise) 

LAME Lameness 

LAME_DIM Days in milk at 1st lameness event 

LAME<=60 Days in milk at 1st lameness event less 
than or equal to 60 (1: days in milk less 

than or equal to 60; 0: otherwise) 

FTRM Foot trim 

FTRM_DIM Days in milk at 1st foot trim event  

FTRM<=60 Days in milk at 1st foot trim event less 
than or equal to 60 (1: days in milk less 

than or equal to 60; 0: otherwise) 

MAST Mastitis 

MAST_DIM Days in milk at 1st mastitis event 
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MAST<=60 Days in milk at 1st mastitis event less 
than or equal to 60 (1: days in milk less 

than or equal to 60; 0: otherwise) 

ILLMISC Miscellaneous illness 

ILLMISC_DIM Days in milk at 1st miscellaneous illness 

event 

ILLMISC<=60 Days in milk at 1st miscellaneous illness 

event less than or equal to 60 (1: days in 
milk less than or equal to 60; 0: 

otherwise) 

Cutoff values were based high-risk time periods defined by previous research and opinion: 

immediately after calving (<=7), during the transition period (<=21), and during early portion 
of lactation (<=6) (Drackley, 1999; McArt et al., 2012; Barragan et al., 2018; McArt and 

Neves, 2020) 
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APPENDIX C 

Instructions: 

1. Event dates are filtered between the earliest and latest fresh date for analysis 

2. Observations are grouped by animal ID, lactation number, and event. Observations are 
arranged by event date in animal ID, lactation number, and event. Event dates are filtered 

where the next observation is removed if it is within a 3-day time lag of the previous 
observation. Observations are ungrouped. 

3. Event names are modified by case when 

Match Event Name Replacement Event Name 

FRESH FRESH 

ABORT ABORT 

SOLD SOLD 

DIED DIED 

MF MF 

RP RP 

METR METR 

KETOSIS KETOSIS 

DA DA 

LDA DA 

RDE DA 

PNEU PNEU 

SCOURS DIARRHEA 

LAME LAME 

FOOTRIM FOOTRIM 
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ILLMISC ILLMISC 

RESP PNEU 

PNEUMON PNEU 

MFEVER MF 

MILKFEV MF 

MILKFVR MF 

MLKFEVR MF 

MLKFVR MF 

RETAINP RP 

MAST MAST 

MET METR 

METRITIS METR 

KET KETOSIS 

DIARRH DIARRHEA 

DIARHEA DIARRHEA 

HOOFROT LAME 

FOOTROT LAME 

FOOTRMK FOOTRIM 

TRIM FOOTRIM 

ILL ILLMISC 

 

Otherwise, event names default to as is. Missing event names are removed. 



192 
 

4. Modify FTDIM, FSTPJ, FSTBF, FSTPR, PEAKM, DCAR, and PR305 if value is ‘0’, 
then replace with ‘NA’. Otherwise, defaults to as is. 

5. Modify LOG1 if FSTPJ is ‘NA’, then LOG1 is ‘NA’. Otherwise, LOG1 defaults to as is. 

6. Add ID, LACT, FDAT, BDAT, FCDAT, RC, DRYLG, DDRY, PDCC, PDIM, EASE, 
CNUM, CLIVE, CSEX, FTDIM, FSTPJ, FSTBF, FSTPR, PEAKM, DCAR, PR305, 
LOG1, Event, Date, Remark, Protocols, and Technician as placeholders if missing where 

all values are ‘NA’. 

7. Keep ID, LACT, FDAT, BDAT, FCDAT, RC, DRYLG, DDRY, PDCC, PDIM, EASE, 
CNUM, CLIVE, CSEX, FTDIM, FSTPJ, FSTBF, FSTPR, PEAKM, DCAR, PR305, 

LOG1, Event, Date, Remark, Protocols, and Technician. Drop all other variables. 

8. Modify Remark where Remark, Protocols, and Technician are concatenated. Drop 
Protocols and Technician. 

9. Event names are filtered to keep FRESH, ABORT, SOLD, DIED, MF, RP, METR, 

KETOSIS, DA, PNEU, DIARRHEA, LAME, FOOTRIM, MAST, and ILLMISC. Drop 
all other observations. 

10. Observations are grouped by animal ID, lactation number, and event. Modify event 
names where event name and event number are concatenated. Observations are 

ungrouped. 

11. Pivot data from wide to long format by Date and Remark. Modify event names where 
event name and if it is a Date or Remark are concatenated. Pivot data from long to wide 

format by event name. 

12. Add MF_1_Date, RP_1_Date, METR_1_Date, KETOSIS_1_Date, PNEU_1_Date, 
DIARRHEA_1_Date, LAME_1_Date, FOOTRIM_1_Date, MAST_1_Date, and 
ILLMISC_1_Date as placeholders if missing where all values are ‘NA’. 

13. Lactation number is filtered to keep all LACT greater than 0. Drop all other observations. 
Fresh dates are filtered between the earliest and latest fresh date for analysis. Dates are 
transformed to Date objects. Remarks are transformed to character objects.   

14. Observations are grouped by row. Create XMF, XRP, XMETR, XKET, XDA, XPNEU, 

XDIAR, XLAME, XFTRM, XMAST, and XILL to count the number of non-missing 
events for each animal ID and lactation number. Observations are ungrouped. 

15. Create DATS as SOLD_1_Date, REMS as SOLD_1_Remark, DATD as DIED_1_Date, 

and REMD as DIED_1_Remark. Create DATR and REMR where if DATS is not 
missing, then DATR is DATS and REMR is REMS; else if DATD is not missing, then 
DATR is DATD and REMR is REMD. Otherwise, DATR and REMR are ‘NA’. 

16. Birth date and fresh are filtered to keep strings between 8 to 10 characters for valid dates. 
Modify FCDAT if string is not between 8 to 10 characters, then replace with ‘NA’. 
Otherwise, FCDAT defaults to as is. 

17. ID and RC are transformed to factor objects. BDAT, FDAT, FCDAT are transformed to 

Date objects. CLIVE and CSEX are transformed to character objects. LACT, FTDIM, 
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FSTPJ, FSTBF, FSTPR, PEAKM, DCAR, PR305, DRYLG, LOG1, LACT, DDRY, 
PDCC, PDIM, EASE, and CNUM are transformed to numeric objects. 

18. Create LACTGP where if LACT is greater than or equal to three, then LACTGP is ‘3’. 

Otherwise, LACTGP is LACT. Create FRESH_MONTH by formatting FDAT in 
ISO8601 character format and represent with year and month format. Create DIM where 

if DATR is missing, then DIM is the difference between DC extraction date and fresh 
date. Otherwise, DIM is the difference between date removed and fresh date. 

19. Create FRESH 372 TO 7, FRESH 386 TO 21, and FRESH 425 TO 60 where if DIM is 

between 7 and 372, then FRESH 372 TO 7 is ‘1’; if DIM is between 21 and 386, then 
FRESH 386 TO 21 is ‘1’; and if DIM is between 60 and 425, then FRESH 425 TO 60 is 
‘1’ respectively. Otherwise, the FRESH 372 TO 7, FRESH 386 TO 21, and FRESH 425 

TO 60 are ‘0’. 

20. Create BIRTH_DATE as BDAT. Create AGE_AT_CALVING_(MONTHS) as the 
number of months between BIRTH_DATE and FDAT. Create 

AGE_AT_CALVING_1ST_LACT_(MONTHS) as the number of months between 
BIRTH_DATE and FCDAT. 

21. Create DDRY where if LACT is not equal to one, then DDRY is ‘NA’. Otherwise, 
DDRY defaults to as is. Create ABORT where if PDCC less than 260, then ABORT is 

‘1’. Otherwise, ABORT is ‘0’. Create PDIM where if LACT is not equal to one, then 
PDIM is ‘NA’. Otherwise, PDIM defaults to as is. 

22. Create CALVING_EASE_>=2 and CALVING_EASE_>=3 where if EASE is greater 

than or equal to two, then CALVING_EASE_>=2 is ‘1’ and if EASE is greater than or 
equal to three, then CALVING_EASE_>=3 is ‘1’. Otherwise, CALVING_EASE_>=2 
and CALVING_EASE_>=3 are ‘0’. 

23. Modify CNUM if CNUM is equal to one and EASE is not equal to zero, then CNUM is 
‘NA’. Otherwise, CNUM defaults to as is. Modify CSEX if CNUM is missing, then 
CSEX is ‘NA’. Otherwise, CSEX defaults to as is. Modify CLIVE if CNUM is missing, 

then CLIVE is ‘NA’. Otherwise, CLIVE defaults to as is. 

24. Create TWINS where if CNUM is greater than one, then TWINS is ‘1’ and CNUM is 
equal to one, then TWINS is ‘0’. Otherwise, TWINS is ‘NA’. Create STILLBIRTH 

where if any element of the string CLIVE matches the pattern ‘D’, then STILLBIRTH is 
‘1’. Otherwise, STILLBIRTH is ‘0’. Create CALF_SEX as CSEX. Create MALE_CALF 
where if any element of the string CSEX matches the pattern ‘M’, then MALE_CALF is 

‘1’. Otherwise, MALE_CALF is ‘0’. 

25. Create FPR where it is the ratio between FSTBF and FSTPR. Create FPR>1.4 where if 
FPR is greater than 1.4, then FPR>1.4 is ‘1’. Otherwise, FPR>1.4 is ‘0’. 

26. Create sold, died, removed, milk fever, retained placenta, metritis, ketosis, DA, 

pneumonia, diarrhea, lameness, foot trim, mastitis, and miscellaneous illness and other 
associated variables according to the definitions and thresholds in S1 Appendix B. 

27. Days in milk are transformed to numeric objects. CLIVE, CSEX, CALF_SEX, 

FRESH_MONTH, FRESH 372 TO 7, FRESH 386 TO 21, FRESH 425 TO 60, ABORT, 
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CALVING_EASE_>=2, CALVING_EASE_>=3, TWINS, STILLBIRTH, 
MALE_CALF, FPR>1.4, and all variable between SOLD and ILLMISC<=60 that does 

not end with ‘DIM’ are transformed to factor objects. The levels of RC, CLIVE, CSEX, 
CALF_SEX, FRESH_MONTH are sorted in alphabetical order. The levels of 

FRESH_MONTH, FRESH 372 TO 7, FRESH 386 TO 21, FRESH 425 TO 60, ABORT, 
CALVING_EASE_>=2, CALVING_EASE_>=3, TWINS, STILLBIRTH, 
MALE_CALF, FPR>1.4, and all variable between SOLD and ILLMISC<=60 that does 

not end with ‘DIM’ are defined such that ‘0’ is the reference level. 
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CHAPTER 7 THE DDCHECKPLUS APP – PREVENTION AND CONTROL OF 

DIGITAL DERMATITIS IN DAIRY HERDS USING EARLY DETECTION AND 

AUTOMATED ANALYSIS 

ABSTRACT 

Digital dermatitis (DD) is an infectious bovine claw disease, leading to lameness. The 

progression of the disease is characterized by five clinical stages, denoted as M-stages, 

representing distinct severities, clinical traits, and outcomes. The monitoring of the proportions 

of cows for each M-stage is critical for understanding and addressing DD in addition to 

identifying risk factors of the disease within a herd. 

Changes in the distribution of cows across M-stages over time or between groups may be 

indicative of variations in management practices, environmental conditions, or treatment 

interventions. These changes can significantly impact the future claw health of the herd. 

However, detecting trends in claw health related to DD is not intuitive without statistical analysis 

of detailed records. 

The aim of the study is to update and improve the DD Check app for individuals with limited 

statistical training or experience. The DDCheckPlus app standardizes M-stage data recording, 

automates comprehensive data analysis including trends over time, calculates predictions, and 

assigns Cow Types (I – III) based on the presence or absence of active DD lesions. The app is 

designed to include a DD detection module where cows can be scored for M-stages using a 

custom object detection model. Additionally, the app is developed to streamline data analysis for 

automated prediction of current DD trends and forecasting of future DD proportions. All plots 
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are interactive with details on demand and all tables are interactive with filtering, pagination, and 

sorting. 

The predictions by the app are generated from stationary distributions in a class-structured multi-

state Markov chain population model, commonly used for modeling endemic diseases. We hope 

that the flexibility in recording details at various levels will aid in the discovery of significant 

trends in M-stage prevalence and assist the user to make informed data-driven decisions for the 

prevention and control of DD on-farm. 

The DDCheckPlus App was tested using two distinct datasets: a video file of the plantar aspect 

of standing feet of dairy cows for DD detection and a tabular format of cows scored for M-stages 

and signs of chronicity on a commercial farm for data analysis, demonstrating versatility and 

value of the app. The app facilitated easy recording of M-stages in diverse environments at 

different levels of detail. Results indicated that the tool effectively identifies trends in M-stage 

proportions, predicts potential DD outbreaks, and facilitates comparisons among Cow Types, 

signs of chronicity, scorers, or pens. 

The DDCheckPlus app also provided a list of cows requiring treatment with individualized Cow 

Types to inform prognosis decisions and instruct treatment plans. This proactive approach allows 

producers to effectively control DD within their herds. The DDCheckPlus app serves as a 

powerful tool for the democratization the knowledge and insights of veterinary epidemiology, 

representing a significant stride in leveraging technology for monitoring, controlling, and 

preventing complex diseases in the cattle industry. 
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INTRODUCTION 

Digital dermatitis (DD) primarily results from Treponema spp. and is a prevalent cause of 

lameness within the dairy industry (Evans et al., 2008; Gomez et al., 2012; Klitgaard et al., 2008; 

Yano et al., 2010; Zinicola et al., 2015). Beyond welfare concerns, it leads to reduced profits, 

caused by involuntary culling, diminished production, and fertility issues (Amstel and Shearer, 

2008; Cha et al., 2010). DD is a multifaceted, polymicrobial disease exhibiting varying severities 

and clinical stages with distinct significance (Read and Walker, 1998). It impacts individual 

cows differently, and the disease manifestation can also vary across parities and lactation stages 

(Palmer and O’Connell, 2015; Schöpke et al., 2015). 

Presently, common treatment and control methods involve topical applications administered 

during routine hoof trims or in response to severe lameness and regular hoof baths for the entire 

herd. The current approach to preventing and controlling DD assumes uniform reactions for all 

cows to interventions. Typically, prevention and control measures are reactive responses to 

outbreaks rather than proactive strategies based on continuous monitoring of herd dynamics. 

Effective proactive prevention and control strategies necessitate investigations into the 

progression of DD lesions over time. 

Similar to monitoring udder health, tracking trends in DD prevalence at the individual cow level 

would improve our understanding and awareness of DD dynamics within herds that are 

endemically affected. Currently, numerous cases of DD go unnoticed, as the focus of detection is 

primarily on cows exhibiting lameness with large, active DD lesions (Rodriguez-Lainz et al., 

1996). This detection strategy ignores many instances of DD where not all cows affected by DD 

display lameness (Tadich et al., 2010). 
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The M-stage classification system, has been employed to characterize the clinical course of DD, 

considering variations in disease severity (Berry et al., 2012; Döpfer et al., 1997). The system is 

recognized as a valuable tool in the fight against DD (Schöpke et al., 2015). Additionally, signs 

of chronicity such as hyperkeratosis and skin proliferations affected by DD are crucial, as such 

factors influence the resulting lameness, infectious potential, treatment requirements, and 

prognosis of DD lesions (Gomez et al., 2014). A proactive and systematic approach to recording 

DD lesions and indicators of chronicity should be an integral part of an inclusive prevention and 

control strategy against DD, including all age groups of cattle, including pre-calving heifers 

(Gomez et al., 2015). 

Changes in M-stage prevalence over time at the herd level are linked to variations in 

management practices e.g. hygiene, environmental conditions e.g. temperature, and control and 

treatment methods (Cramer et al., 2009; Holzhauer et al., 2006; Rodriguez-Lainz et al., 1999; 

Somers et al., 2005; Wells et al., 1999). The prediction of these trends can be accomplished 

through different levels of record detail, ranging from M-stage records to simple presence or 

absence records. 

The forecasting these trends requires the stationary distributions of transitions between DD 

states, such as M-stages or indicators of chronicity, using a class-structured population model 

(Otto and Day, 2007). Such models enable the proactive prediction of outbreaks and the 

anticipated effects of interventions before the occurrence and recurrence of DD in real time. The 

significance of these trends can be subjected to statistical testing using the uncertainty measures 

inherent in the outcomes of the model (Chernick, 2011). 

At the individual cow level, the recurrence of active M2 DD lesions facilitates the categorization 

of cows into defined Cow Types I - III. This classification is determined by the history of M2 
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lesions (Döpfer et al., 2004; Gomez et al., 2014; Holzhauer et al., 2008, 2006). Cow Types 

exhibit distinct immunologic responses to Treponema spp., making it crucial for predicting 

treatment outcomes and guiding genetic selection against DD (Schöpke et al., 2015). 

Advancements in technology have revolutionized the monitoring of dairy cattle, providing 

reliable and cost-effective solutions. In the past century, records were traditionally maintained 

manually, in notebooks or on cards above each cow. The labor-intensive nature of recording and 

calculating new information constrained the feasibility of advanced analytics. Today, dairy herd 

management software applications empower users to input data once and automatically generate 

future insights. These tools enable users to monitor thousands of animals, capturing specific 

information for each one. 

Despite these advancements, the development of health analytics has faced challenges 

characterized by manual data entry and limited insights, perpetually constrained by the quality of 

data recording (Gonçalves et al., 2022; Wenz and Giebel, 2012). Current analysis options within 

herd management software lack statistical decision tools, relying predominantly on visual trend 

analysis for decision-making. Producers and consultants have been restricted in the questions of 

interest and corresponding answers due to limitations in data accessibility and available tools. 

Users typically invest significant time in completing a single analysis, and the average user lacks 

the data skills required for extracting this information. The development of tools for dairy 

professionals, regardless of their proficiency in data transformation, would unlock new insights 

and improve management practices. 

In precision cattle farming, managerial decisions hinge on quantitative data (Mahmud et al., 

2021). Various sensing technologies are employed for data collection where the dataset is 

subsequently analysis using advanced algorithms. Moreover, real-time quantitative data can be 
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collected by utilizing sensors like accelerometers or gyroscopes to monitor cattle behavior or 

movement. Herd management software leverage data to facilitate in making informed decisions 

(Mahmud et al., 2021). This information aids in determining the individual needs of each animal, 

enabling personalized attention to enhance overall production outcomes (Banhazi and Black, 

2009). For a comprehensive utilization of data for decision-making, the integration of various 

artificial intelligence and machine learning algorithms can be considered. This integration serves 

to automate and improve the accuracy and precision of the decision-making processes (Banhazi 

et al., 2012). 

Computer vision (CV) is a subset within artificial intelligence to identify and understand objects 

in images and videos. Initially, the algorithm is trained using a dedicated dataset of labeled 

images, followed by validation employing a distinct dataset. The trained parameters are 

subsequently used for outcome prediction and decision-making processes. In precision cattle 

farming, CV is already applied to address diverse challenges (Mahmud et al., 2021). Such 

examples include the detection of flies on cattle bodies (Psota et al., 2021), identification of 

individual body parts (Jiang et al., 2019), breed recognition (Weber et al., 2020), lameness 

detection (Kang et al., 2020), and mastitis prediction (Xudong et al., 2020) using ground-based 

images. Additionally, CV is employed for predicting body weight (Gjergji et al., 2020) and 

counting (Xu et al., 2020) using of unmanned aerial vehicle images.  

Object detection tasks have been employed for various purposes in studies involving livestock 

animals, where the primary objective is to identify one or more objects within an image or video 

(Borges Oliveira et al., 2021). Object detection algorithms for animal detection, have been used 

in previous studies focused on livestock (Cowton et al., 2019; Lee et al., 2019; Psota et al., 2019; 



201 
 

Seo et al., 2020). These algorithms have also been applied to detect lameness (Kang et al., 2020) 

and DD (Cernek et al., 2020) in dairy cattle. 

Cernek et al. used YOLOv2 in RGB images, achieving an accuracy of 88% (Cernek et al., 2020). 

These findings underscore the significant potential of computer vision systems in identifying 

cows with DD, thereby reducing DD prevalence and improving animal welfare. Kang et al. 

developed a lameness scoring system for dairy cows using the Receptive Field Block Net Single 

Shot Detector deep learning network (Kang et al., 2020). This system effectively located cow 

hooves in videos with a mean average precision of 87.0%. Subsequently, the identified legs 

served as input for an algorithm to calculate the supporting phase, a critical metric derived from 

the difference between hoof lifting time and hoof load time. 

There exists many herd management software designed to assist farmers and livestock managers 

in overseeing and optimizing various facets of animal husbandry (Afimilk, n.d., n.d.; AgriWebb, 

n.d.; CattleMax, n.d.; CattlePro, n.d.; CattleWorks, n.d.; CowManager, n.d.; Cownect, n.d.; 

DeLaval, n.d.; DTS, n.d.; Farmbrite, n.d.; FarmLogic, n.d.; HerdApp, n.d.; Herdlync, n.d., n.d.; 

Herdmaster, n.d.; Herdtrax, n.d.; Herdwatch, n.d.; Keogh, n.d.; Peltjes, n.d.; SMARTBOW, n.d.; 

StockManager, n.d.; UNIFORM-Agri, n.d.; VAS, n.d.). These software solutions are tailored for 

livestock operations, offering features that provide users to monitor health, track breeding and 

reproductive activities, manage feeding programs, and maintain accurate records. There are only 

a few applications that provides analysis tools and reporting features for real-time decision-

making. Moreover, there is no commercial software that combines data collection using object 

detection or any other CV algorithm in addition to statistical analysis for predicting trends and 

forecasting health events. 
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While mathematical and statistical tools are capable of predicting DD states based on historical 

data and trends exist, it may not be readily accessible to dairy farmers and veterinarians. The 

objective of the study is to update and improve the DD Check app to generate standardized DD 

records, assign Cow Types based on DD history, and automate both descriptive and predictive 

data analyses (Tremblay et al., 2016). The DDCheckPlus app aims to assist the user with limited 

statistical training, scoring experience, or access to supporting programs. We hope that the app 

can be applied at various levels of record detail to identify statistically significant trends in the 

prevalence of M-stages, aiding in informed decision-making for on-farm DD prevention and 

control. 

Given the intricate nature of DD and its widespread prevalence in affected herds and cows, 

automated tools for description and prediction are essential for long-term prevention and control 

strategies against DD. Similar apps designed to automate statistical analyses of standardized field 

datasets will enhance awareness and understanding among producers, managers, veterinarians, 

and owners, ultimately leading to improved prevention and control of endemic production 

diseases. 

MATERIALS AND METHODS 

The DDCheckPlus App is designed for iOS devices and can be easily accessed through the 

Apple App Store or iTunes, compatible with both iPad and iPhone platforms. The application is 

structured into two integral components: the mobile-based and web-based modules. 

The mobile-based module is developed using Xcode, a powerful integrated development 

environment distributed by Apple (Apple Inc, n.d.). Xcode is a suite of tools developers use to 
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build apps for Apple platforms, creating seamless deployment and user-friendly experience for 

iPad and iPhone users. 

The web-based module is developed using R Shiny, an interactive and dynamic web application 

framework designed for the R programming language and software environment for statistical 

computing and graphics (R Core Team, n.d.). The framework facilitates data analysis and 

visualization, improving the app performance for detailed record-keeping and strategic decision-

making. 

The DD detection module is implemented in Swift to build a live video object detection iOS app 

using the YOLOv5 model (Hietala, 2022; hietalajulius, 2022). The module is created to setup 

video capture, output video stream, and visual layers for displaying the detections and inference 

time. Apple Vision framework is setup to perform various standard computer vision tasks on iOS 

devices using custom Core ML models (Apple Developer, 2023a). Core ML supports machine 

learning models on iOS devices to build, train, or convert completely custom models (Apple 

Developer, 2023b). Core ML optimizes on-device performance by leveraging the CPU, GPU, 

and Neural Engine while minimizing its memory footprint and power consumption (Apple 

Developer, 2023b). 

The camera is configured for capture to optimal performance with Vision algorithms (Apple 

Developer, 2023c). The device and session resolutions are setup such that Vision can process 

results more efficiently. The video input is added to the session by adding the camera as a device 

and the video output is added to the session when specifying the pixel format. The device 

orientation is specified such that frames are processed relative to the orientation of the capture 

device (Apple Developer, 2023c). The class labels are designated in the Core ML model and the 
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detected objects are parsed to draw a bounding box around the object and display the 

classification and confidence in a textual overlay (Apple Developer, 2023c). 

The user interface is implemented in Objective C using a storyboard runtime for assisted DD 

scoring and standardized data entry. The module is created to provide a user-friendly approach 

for inputting data, segue to and from the DD detection module, summarize the inputted data, and 

generate a dataset for further data analysis. The module saves the dataset locally as a comma-

separated value (CSV) file and makes a URL request to redirect the user to the mobile-based R 

Shiny app. 

This dual-component design not only leverages the native capabilities of iOS devices, but also 

extends the app functionality to web browsers, providing the user with a versatile and accessible 

tool for managing and monitoring DD data. The DDCheckPlus App delivers a comprehensive 

solution to generate standardized DD records, assign Cow Types based on historical data, and 

automate both descriptive and predictive data analyses for effective on-farm prevention and 

control strategies. 

Mobile-Based Module 

The mobile component features a user-friendly interface designed for inputting the herd name, 

herd code, scorer details, date, pen number, cow ID, foot information, M-stage lesion details, and 

indicators of chronicity (Figure 1). The signs of chronicity are categorized as follows: None for 

smooth skin without thickening; Hyperkeratotic for thickened skin; and Proliferative for 

overgrown epidermal tissues. 

The application provides visual aids including images and detailed descriptions to assist the user 

in accurately scoring DD lesions using the M-stage system (Figure 1). The M-stages of DD are 
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categorized as follows: M0 represents normal digital skin; M1 represents an early, small 

circumscribed red to gray epithelial defect measuring less than 2 cm in diameter; M2 represents 

acute, active ulcerative or granulomatous digital skin alteration greater than 2 cm in diameter; 

M3 represents the healing stage within 1 – 2 days after topical treatment where the acute DD 

lesion is covered by a firm scab-like material; M4 represents the chronic stage of DD, which can 

be either hyperkeratotic or proliferative; and M4.1, represents a chronic stage with an early or 

intermediate stage (M1) (Berry et al., 2012; Evans et al., 2016). 

The iPad version, benefitting from a larger screen, prominently displays DD lesions on the 

scoring buttons, enhancing the user ability to accurately assessments of DD lesions. The 

interface supports the scoring of cattle using all five M-stages (Berry et al., 2012), simplified M-

stages where M3 and M4 are combined (Relun et al., 2011), or just two M-stages to indicate the 

absence or presence of DD (Cramer et al., 2018). Users can also employ any other combination 

based on their preferences, provided consistency is maintained throughout the dataset. In cases 

where a cow presents multiple lesions during scoring at the individual level, priority is given to 

M2 lesions over M3 lesions, M3 lesions over M4 lesions, and M4 lesions over M1 lesions. When 

multiple signs of chronicity are observed, proliferation takes precedence over hyperkeratosis.  

Scoring for DD can be performed in various settings, including the milking parlor, using a 

restraint chute, or during pen walks where cattle are secured in head locks along the feed aisle, 

with the scorer walking behind to assess the hind feet (Jacobs et al., 2015; Relun et al., 2011). 

For free-ranging cattle in freestalls, scoring can occur as they walk past the investigator one by 

one in the alleys. Moreover, the app can be effectively employed to generate records in beef 

cattle operations, capturing data while cattle feed at the bunk or during what is referred to as DD 
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alley checks. DD alley checks are feasible in any feedlot equipped with the necessary facilities, 

such as connecting alleys, and with handlers possessing the requisite experience and training. 

The user can refer to the real-time DD detection module for assistance by pressing the "Detect" 

button. The module performs DD detection using the built-in, rear-facing camera. The lesion is 

circumscribed by a bounding box with class label for the respective M-stage classification and a 

confidence score for the prediction (Figure 2). The user can return to the previous module for 

scoring by pressing the "Close" button. 

After scoring a cow, the user can save the data by pressing the "Save/New Cow" button, which 

updates a CSV file and resets the input section for the next cow. The recorded data is 

conveniently displayed in the lower section of the app and can be filtered by the current day, all 

days, all farms, or only M2 observations of a given day. For a comprehensive overview, the 

"Summary" button provides users with a list of individual records and a summary that includes 

the total number of records, percentages of feet scored, and percentages of lesions scored. 

Web-Based Module 

The web-based application facilitates the direct submission of data from the mobile app to a 

cloud-based server. Notably, the data is not retained on the server, ensuring confidentiality. This 

web-based tool provides relative frequencies of M-stages or signs of chronicity per scoring event 

and predictions of future frequencies using the DD Infection Model. The user interface of the 

web-based app is divided into three tabs: the Dashboard tab for data upload, view contents, and 

data summary; the Results tab for tables and plots; and the Documentation tab for dataset 

requirements and disclaimer of limited use. 
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The Dashboard tab of the DDCheckPlus R Shiny app contains three panels. The Input panel is 

used to upload the downloaded CSV file from DC (Figures 3 - 4). Moreover, users are able to 

input bootstrap sample size for predictions and confidence level used for further analysis. 

Specific weeks of interest from the dataset can be selected by the user using the slider in the 

interface. A drop-down menu featuring variables such as herd name, herd code, pen, signs of 

chronicity, Cow Type, and scorer is available for user to subset the data and view the results 

separately. This intuitive design ensures flexibility and customization in data analysis for 

enhanced user experience. 

After the user uploads the CSV file of the dataset, inputs the values in the Input panel, the data is 

dynamically analyzed. The app generates an ID, a concatenation of cow ID and foot if the 

specific foot is provided. Otherwise, records are identified at the cow level. Duplicate 

observations of cow ID for a week or empty cow ID records are excluded. Dates are transformed 

to weeks, and each cow is assigned a Cow Type. Type I cows were never scored with an M2 

lesion, Type II cows have one M2 lesion, and Type III cows have repeat M2 lesions. Cow Type 

is assigned based on all available records where a minimum of two records is required to define 

Cow Type. The assignment of Cow Type is at the cow level, even if records are detailed at the 

foot level. 

There is no maximum time limit between consecutive recordings for assigning a Cow Type. 

However, maintaining consistent time intervals between frequent scoring events is ideal for the 

reliability, accuracy, and interpretability of the assigned Cow Type. A subset of the data is then 

created based on the weeks selected using the slider in the user interface. The cleaned dataset 

with the Cow Type can be downloaded using the "Generate CSV File" button of the Input panel 

(Figure 4). The Contents panel is used to display the first 100 rows of the dataset providing 
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filtering, pagination, and sorting (Figure 4). The Summary panel is used to display summary 

statistics the user can skim to understand their data (Figure 4). Results are printed horizontally 

with a section for each variable type and a row for each variable. 

The DD Infection Model generates predicted relative frequencies of DD disease states, such as 

M-stages or signs of chronicity, using class-structured Multi-state Markov Chain Models (Otto 

and Day, 2007). Sequential scoring events are used to identify transitions among disease states, 

and the total number of transitions between disease states per dataset is employed to construct a 

transition matrix. These transition matrices are then converted into proportions. The predictions 

are derived from the stationary distributions of the probability transition matrix, extracted from 

the first right eigenvector belonging to the dominant eigenvector (Otto and Day, 2007). 

Confidence intervals for the predictions are generated using bootstrapping methods (Caswell, 

2000). For each bootstrap sample, cow ID are randomly sub-sampled with replacement to create 

a subset. Each subset is used to generate predictions via the DD Infection Model. The variance 

for all subset predictions is used to generate the 95% confidence intervals. 

Given the high computational times associated with bootstrapping, the app initially sets the 

number of bootstraps to 10. However, 1000 bootstrap samples are recommended. Increasing the 

number of bootstraps will extend computational time contingent on the size of the dataset. While 

there are no strict rules for the number of bootstraps, increasing the number will improve the 

reliability of the 95% confidence intervals (Henderson, 2005). Maintaining consistent time 

intervals between frequent scoring events is advisable to improve the accuracy of predictions. To 

prevent predictions on data sets with low power e.g., small sample size or too few cows 

repeatedly scored, a limit of 15 transitions was set before results would appear. Error messages 

have been incorporated to assist users in addressing common mistakes or issues. 
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The Results tab is used for data analysis and reporting (Figure 5). The observed proportions of 

disease states for each week in addition to predicted proportions are visually presented using bar 

plots in the Plots panel. The proportion is represented as a bar and includes a 95% confidence 

interval represented as a line range. The confidence intervals serve as an indirect measure of 

significance for weeks or groups (du Prel et al., 2009). Non-overlapping confidence intervals 

indicate a statistically significant difference in proportions, whereas overlapping intervals 

suggest that the difference in proportion is not statistically significant. The predictions used to 

generate the plots are also accessible using tabular format in the Tables panel for a 

comprehensive view of the data. All plots are interactive with details on demand and can be 

downloaded as PNG files. Similarly, all tables are interactive with filtering, pagination, and 

sorting and can be downloaded as CSV files the "Generate CSV File" button. 

There are four ways to explore the results of the data analysis, each accessible by selecting 

different tabs in the web-based interface of either the Plots or Tables panel. The first tab in the 

Plots panel or the second tab in the Tables panel is M-stage and provides the results categorized 

by M-stage and week. The second tab in the Plots panel or the third tab in the Tables panel is 

Chronicity and provides the results categorized by the sign of chronicity and week. The third tab 

in the Plots panel or the fourth tab in the Tables panel is Variable of Interest and provides the 

results categorized by the user-selected variable of interest, M-stage, and week. Additionally, the 

first tab in the Tables panel is M2 Lesions and presents a list of cows that require further 

treatment i.e., cows with M2 lesions during the most recent scoring event, including previous M-

stage and Cow Type to aid in the prognosis of topical treatment. While M1, M2, and M4.1 

lesions are all considered active, the treatment list focuses on M2 lesions since M1 and M4.1 

lesions are not as painful as M2 lesions (Holzhauer et al., 2008). 
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The Documentation tab provides requirements to upload an input CSV file and to generate an 

output CSV file in DDCheckPlus (Figure 6). A disclaimer of limited use is provided for variables 

used to generate the output CSV file and for the analysis in DDCheckPlus. Finally, an example 

dataset is provided for download for interested users to try out and test the app. 

RESULTS 

Mobile-Based Module 

A case study was performed to demonstrate the potential uses of the DDCheckPlus DD detection 

module. The sample data contained over 100 cows on a commercial dairy taken during July 

2023. A GoPro Hero 5 Black cameras was used to take MP4 video recordings of  the backside of 

the hind feet at claw level. The evaluation of network performance and efficiency of the 

implementations included two main components: accuracy and inference speed. Cohen's kappa 

was used to evaluate the agreement between the model predictions and the ground truth labels, 

providing valuable insights into the model's ability to make accurate predictions in real-world 

scenarios (Landis and Koch, 1977; Viera and Garrett, 2005). The Cohen’s kappa for DD 

detection module compared to the trained investigator was determined to be 0.625 and 

interpreted as substantial agreement between the two raters (z = 10.7; p < 0.001). The DD 

detection module was able to detect all five M-stages of DD on live streaming video. The 

prediction accuracy for DD detection module was 0.745 with moderate detection for M0, M2P, 

and M4P, strong detection for M4H, and almost perfect detection for M2 (Figure 7). 

The inference speed was measured in frames per second (FPS), calculating the number of images 

that the model has processed and inferred within one second. A higher FPS value implied a faster 

and more efficient model, wanted in real-time applications or scenarios with limited computing 
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resources. The average inference time was 20 ms or 50 FPS. The inference time far exceeded the 

minimum threshold for image processing by a human visual system at approximately 10 FPS. 

Moreover, the inference time always exceeded the minimum threshold for real-time detection at 

approximately 30 FPS. 

Web-Based Module 

A case study was performed to demonstrate the potential uses of the DDCheckPlus R Shiny app. 

The sample dataset contained 300 observations for 100 cows on a commercial farm. The sample 

dataset included herd code, herd name, scorer name, cow ID, pen, M-stage lesions of 0, 2, and 4, 

and signs of chronicity of 0, 1, and 2 at the cow level. Cows were scored by a trained investigator 

during three pen walks on 4/24/2014, 5/2/2014, and 5/10/2014 and individual Cow Types were 

defined based on week 1 to week 3.  

The dataset was uploaded in the Dashboard tab where the app defaulted to a bootstrap sample of 

10 and a confidence level of 95%. The weeks of 1 to 3 was selected using the slider and a 

variable of interest of chronicity was selected using the drop-down menu. The tables and plots 

were automatically generated in Tables and Plots panels of the Results tabs. There were 12 

predicted M2 lesions where the two cows transitioned from M0 to M2 lesions, two cows 

transitioned from M4 to M2 lesions, and the outstanding 8 cows with M2 lesions remained 

constant. Note that the four cows that transitioned to M2 lesions were a cow type of II and the 8 

cows with M2 lesions that remained constant were a cow type of III.  

The predicted proportion of cows with M2 lesions based on weeks 1 to 3 was 0.124 (95% CI: 

0.073 – 0.176) (Figure 8). Similarly, the predicted proportion of cows with M0 lesions based on 

weeks 1 to 3 was 0.617 (95% CI: 0.528 – 0.705) and the predicted proportion of cows with M4 
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lesions based on weeks 1 to 3 was 0.259 (95% CI: 0.175 – 0.343). The relative proportions of 

cows with M2 lesions were not significantly different in weeks 2 and 3 compared to week 1. The 

relative proportions of cows with M0 lesions were significantly higher in weeks 2 and 3 

compared to week 1. The relative proportions of cows with M4 lesions were significantly lower 

in weeks 2 and 3 compared to week 1. 

The predicted proportion of cows with proliferative lesions based on weeks 1 to 3 was 0.121 

(95% CI: 0.070 – 0.171) (Figure 9). Likewise, the predicted proportion of cows with 

hyperkeratotic lesions based on weeks 1 to 3 was 0.667 (95% CI: 0.587 – 0.747) and the 

predicted proportion of cows with no chronic lesions based on weeks 1 to 3 was 0.123 (95% CI: 

0.148 – 0.277). The relative proportions of cows with proliferative lesions were not significantly 

different in weeks 2 and 3 compared to week 1. The relative proportions of cows with 

hyperkeratotic lesions were significantly higher in weeks 2 and 3 compared to week 1. The 

relative proportions of cows with no chronic lesions were significantly lower in weeks 2 and 3 

compared to week 1. 

Lastly, the proportion of cows over weeks was faceted by the type of M-stage lesions and the 

variable of interest of signs of chronicity (Figure 10). The relative proportions of cows with M2 

lesions and no chronicity were significantly lower in week 3 compared to weeks 1 and 2. All 

others relative proportions of cows between M-stage lesions and chronicity were not 

significantly different in weeks 2 and 3 compared to week 1. The resulting evaluation shows that 

M2 lesions are more chronic over time. Any analyses for association between the proportion of 

cows over weeks by the type of M-stage lesions controlling for a factor can be studied using the 

DDCheckPlus app if the number of observations for each level is sufficiently large. 
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DISCUSSION 

The availability of applications on iOS devices has revolutionized access to information and 

tools, providing individuals with constant connectivity. For the dairy industry, there is an 

ongoing and progressive trend of integrating such technology in management practices and 

decision-making. These applications serve as valuable tools for dairy producers, enabling them 

to make informed improvements to the herds welfare and farm well-being. Moreover, the 

standardized datasets generated by these applications contribute to broader research on cattle 

husbandry and production. 

A noteworthy example of this technological integration in dairy farming is evident in the current 

analysis of datasets collected using the DDCheckPlus app from various farms (Tremblay et al., 

2016). This analysis demonstrates the automation of data analysis for decision-making processes. 

The insights derived from this automated analysis can be shared between dairy farmers and 

veterinarians, fostering collaboration and facilitating the interpretation of statistical differences. 

This collaborative approach allows for a deeper understanding of trends, interventions, and the 

impact of control measures in precision farming. Overall, the utilization of handheld devices and 

specialized applications marks a transformative shift in the way data is employed for the 

improvement of both individual herds and the broader agricultural industry. 

Data Analysis Tools 

Within the context of agricultural production, there exists an abundance of data that requires 

sophisticated analysis for well-informed decision-making processes (Antle et al., 2017; Moore et 

al., 2022). User engagement and acceptance can be facilitated through outreach and extension 

services, employing tools specifically designed for their intended purposes, thereby reducing 



214 
 

barriers to application by end users. This study introduces the DDCheckPlus app to address an 

unmet need in the dairy industry. The current reliance on decision-making processes based on 

graphic analysis or trend observation is insufficient for contemporary production systems 

(Correll et al., 2012). 

To meet the demands of modern agricultural practices, more advanced tools are imperative. The 

DDCheckPlus app offers a comprehensive solution by combining data collection, data cleaning, 

data visualization, and statistical analysis. Recognizing the diverse needs of users engaged in 

local on-farm decision support, it is critical that data analysis tools are customizable according to 

individual preferences. The DDCheckPlus app allows users to tailor their analytical choices. This 

emphasis on customization addresses the unique requirements of agricultural stakeholders, 

providing them with a powerful and adaptable resource for decision support within the complex 

landscape of modern agricultural production. 

Various platforms offer data analysis features, encompassing visualization, dashboarding, and 

economic evaluation of cow health and production. These include milking services companies 

like Lely T4C and DeLaval DelPro, herd management platforms such as DC, Animal, Bovisync, 

Dairy Data Wearhouse, and cow monitoring technologies like SmaXtec, Connectera, and 

CowManager (BoviSync, n.d.; Connecterra, n.d.; CowManager, n.d.; DDW, n.d.; DeLaval, n.d.; 

Lely, 2016; smaXtec, n.d.; VAS, n.d.). Frequently, these applications have limitations in tools for 

exporting graphs and reports, and some may lack comprehensive statistical data analysis 

features. Users often need to pay for licenses or make significant purchases from these 

companies to access the full suite of data analysis tools. In contrast, the DDCheckPlus app 

presents distinct advantages for on-farm decision-making processes. The DDCheckPlus app is 

notable for customization options and user-friendly interface. This makes it a valuable and 
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accessible tool for individuals in cow monitoring and herd management, offering a cost-effective 

and flexible solution to other commercial platforms. 

Mobile-Based Module 

The development of this application significantly enhances the efficiency of tracking DD, 

eliminating the traditional method of recording information with pen and paper, followed by 

manual data transfer to create electronic files. This app introduces a streamlined process that not 

only eliminates these time-consuming steps but also provides additional features that contribute 

to its effectiveness. One noteworthy feature is the inclusion of detailed descriptions and 

illustrative sample photographs of various lesions to promote consistency and introduce a 

standardized approach between users. Additionally, it serves as a valuable educational tool for 

training herd managers on the clinical course and different aspects of DD. While the app 

prioritizes consistency in identifying M-stages, its mobile interface remains sufficiently flexible 

to accommodate diverse environments within the dairy industry.  

Practical applications of the app have been observed in a range of settings within the dairy 

sector, including scoring cattle in restraint chutes, milking parlors, during pen walks, and alley 

checks. Its versatility is evident in its use by various stakeholders, such as hoof trimmers, 

managers, veterinarians, and researchers, each with distinct objectives. Users leverage the 

DDCheckPlus App for purposes ranging from conducting treatment and control studies to 

producing treatment lists and enhancing monitoring of DD treatment and control effects on both 

commercial and research farms. 

While the app is designed to ideally monitor DD at the M-stage level, its flexibility allows less 

experienced users to focus on simply detecting the presence or absence of the disease. The 
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granularity of data recorded using M-stages can be tailored to individual preferences, presenting 

options such as including all five M-stages, only three M-stages, or including scores at the foot 

level. Furthermore, the app allows users to customize the interval between scoring events, 

enabling users the autonomy to adapt the tool to their demanding schedules and specific needs. 

Despite its broad applicability, the flexibility of the app may introduce a limitation in terms of 

comparing results across different farms. The variations in recording practices and user 

preferences may impact the direct comparability of data, emphasizing the need for careful 

interpretation and contextual understanding when analyzing results across different settings. 

Nevertheless, the overall adaptability and utility of the app make it a valuable tool for diverse 

users within the dairy industry. 

Web-Based Module 

Many producers face time constraints or lack the specialized training required for statistical 

analysis. The web-based component of the DDCheckPlus App serves as a valuable solution, 

streamlining the data analysis process and making it accessible to a wider audience. By 

seamlessly summarizing and distributing data collected through the mobile app, it addresses the 

common challenge of time constraints faced by producers. 

This integration of the web-based platform not only simplifies the analytical process, but also 

serves as a powerful incentive for users to invest time in scoring cows and actively monitoring 

DD trends. This real-time feedback loop of data summarization after data collection, not only 

fosters engagement but also empowers users to make timely and informed decisions regarding 

herd management. 
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The web-based platform is designed to accommodate diverse user needs while assessing DD 

trends at various levels of detail. For beginners, a straightforward analysis of trends in the 

relative frequencies of M-stages provides a feasible starting point. This user-friendly approach 

allows individuals with limited experience in statistical analysis to derive valuable insights into 

the prevalence and progression of DD within the herds. 

For more advanced users, the web-based platform offers advanced features for a deeper dive into 

the data. Such functionalities including examining predictions, confidence intervals, and 

exploring variations within subsets provide a more nuanced understanding of the dataset. This 

advanced level of analysis accommodates diverse user needs, providing them with the tools to 

explore predictive patterns, evaluate the uncertainty of results, and make informed decisions. 

The transition between various lesions associated with DD is a dynamic process that unfolds 

over varying durations, ranging from a few days to many years (Berry et al., 2012; Döpfer et al., 

1997; Krull et al., 2016). While it is highly recommended to conduct frequent and consistent 

scoring events, ideally on a weekly basis, to capture M-stage transitions effectively, the 

practicality of such short intervals is not always feasible on farms. 

To enhance the accuracy of monitoring and to mitigate the risk of missing critical M-stage 

transitions between scoring dates, we recommend scoring intervals to be less than or equal to one 

month. Extended intervals increase the likelihood of missing two or more transitions that may 

have occurred between evaluations (Berry et al., 2012). It is important to note that the impact of 

interval duration is more pronounced on farms experiencing acute outbreaks of disease compared 

to those with endemic cases. 
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As scoring intervals increase or are variable, it is imperative to approach the interpretation of 

predictions with caution. In such instances, evaluating observed relative frequencies is a more 

reliable method. It's crucial to recognize that the predictions derived from the model are 

applicable at the average group level and may not precisely describe the prediction for an 

individual animal. However, decisions related to trends, outbreak prevention, and control are 

typically made at the population level. Therefore, utilizing the model predictions serves as a 

valuable tool for informed decisions regarding claw health management. 

The model utility extends to individualized care, where specific animals can be identified for 

treatment. The M2 lesion treatment lists allow for the consideration of individual diagnosis and 

prognosis, contributing to a more targeted and effective approach in managing DD at both the 

population and individual levels. This dual approach assists in a comprehensive strategy for 

managing and preventing DD, providing a practical and adaptable tool for claw health 

management decisions on farms. 

The precision in detecting significant differences between relative frequencies improves with 

larger sample sizes. While significant differences in observed prevalences can be inferred by 

assessing the overlap of confidence intervals, the efficacy of identifying statistically significant 

trends could be further improved through the integration of automated statistical tests, such as 

the chi-squared test or ANOVA. 

In extensive herds, conducting regular scoring for every cow may pose logistical challenges. To 

address this challenge, farms can adopt a systematic approach by randomly selecting a 

proportion of the herd for scoring at regular intervals. This strategy provides an accurate 

representation of the impact of DD on the cows within a specific farm. 
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The determination of the sample size required for scoring is contingent on various factors, 

including the lowest M-stage prevalence, the desired level of precision, total population size, the 

accuracy of the scorer, and the scoring technique employed (Humphry et al., 2004; Naing et al., 

2006; Thrusfield, 2018). It is necessary to minimize substantial changes in the population scored 

over time. Large variations in the population during different scoring events can artificially 

induce significant changes in proportions that may not be representative at the herd -level. 

Moreover, maintaining consistency in the population being scored is critical. A lack of 

uniformity in the population over time reduces the number of animals with consecutive scores 

contributing to the transition matrix and, consequently, the accuracy of predictions.  

The application generates predictions for short-term trends of DD in farms with endemic 

infections. While the predictions offer potential benefits, it is important to note that there is 

inherent uncertainty in the statistical predictions. As such, further research is necessary to 

validate the accuracy and reliability of these results. 

The choice of a class-structured multi-state Markov chain population model for the app was 

deliberate, aligning with its targeted use in herds characterized by endemic DD infections. The 

selection is based on the assumption of constant transition rates between M-stages over time, 

indicative of an endemic state within the infection dynamics, away from periods of outbreaks. 

Notably, outbreaks typically exhibit non-linear features with heightened transition rates due to 

the rapid transmission of disease. In such cases, dynamic models like compartmental SIR models 

are more suitable for accurately capturing the dynamics of infectious disease outbreaks 

(Anderson and May, 1991). 

Infection transmission models are particularly applicable to the outbreak scenarios of DD 

(Döpfer et al., 2012). Future models, driven by clinical hypotheses about meaningful transitions, 
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can combine M-stages and signs of chronicity within a single model. This approach would 

involve the selection of transitions that align exclusively with clinical observations, providing a 

more realistic representation of the disease progression. For instance, it does not clinically make 

sense for a healthy foot to transition directly into M2 without passing through other stages. 

In addition to modeling transitions, integrating sojourn times or the duration spent in different 

clinical stages of the disease and relevant covariates such as lactation number or production 

levels can further enhance the outcomes and interpretation of the transition analysis (Caswell, 

2000). This comprehensive approach ensures that the models not only reflect the clinical reality 

of DD progression but also provide valuable insights into the factors influencing the disease 

dynamics within a herd. 

CONCLUSION 

The DDCheckPlus App effectively standardizes the recording of M-stages of DD, automating 

both descriptive and predictive analyses of longitudinal data. The flexibility allows users to 

employ various levels of record detail in diverse situations, facilitating the identification of 

statistically significant trends in observed or predicted prevalence M-stage. The app aids in 

making informed decisions for the prevention and control of DD on-farm. 

The app performs multiple functions, including assigning Cow Types, generating treatment lists, 

and producing data sets for distribution among herd managers. The app supports the comparison 

of different subsets of cows. The user-friendly interface allows individuals without a statistical 

background to predict near-future trends of DD in farms with endemic infections. Cattle scoring 

can be seamlessly integrated into routine farm activities such as during pen walks, at the milking 

parlor, or using a cattle chute. 
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Similar apps geared towards standardizing datasets have the potential to increase awareness and 

understanding within the dairy industry, ultimately leading to improved prevention and control 

of endemic diseases. Future applications would include economic models to estimate the cost 

and return associated with treating specific DD lesions or implementing prevention and control 

methods. Integrating prevalence and cow characteristics from farm management programs into 

the model offers the opportunity to visualize the association of cow and farm-level risk factors 

with DD. This multifaceted approach presents wide-ranging implications for both the efficiency 

and effectiveness of DD management strategies in precision farming. 
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TABLES AND FIGURES 

Figure 7.1 The DDCheckPlus app user interface. The user can enter data including the herd 

name, herd code, scorer details, date, pen number, cow ID, foot information, M-stage lesion 

details, and indicators of chronicity. The application provides visual aids including images and 

detailed descriptions to assist the user in accurately scoring DD lesions using the M-stage 

system. 
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Figure 7.2 The DDCheckPlus app DD detection module. The lesion is circumscribed by a 

bounding box with class label for the respective M-stage classification and a confidence score for 

the prediction. 
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Figure 7.3 The DDCheckPlus app Dashboard tab before data upload. The user can upload the 

dataset, then input the number of bootstrap samples and the confidence level. 
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Figure 7.4 The DDCheckPlus app Dashboard tab after data upload. In the Upload panel, the user 

can select the week range using the slider, the variable of interest using the drop-down menu, and 

generate a CSV file with Cow Type using the action button (top-center). The Contents panel 

displays the first 100 rows of the dataset where the user can filter, search, and sort the data in the 

table (bottom-left). The Summary panel displays the data structure and data summary including 

the summary statistics, the number of missing values, the rate of complete values, and a low-

level, unicode rendering of a histogram (bottom-right). 
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Figure 7.5 The DDCheckPlus app Results tab. The user can select the interactive box plot and 

corresponding interactive table to visualize and understand DD trends. The user can hover over 

the box plot for details on demand and filter, search, and sort the data in the table. 
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Figure 7.6 The DDCheckPlus app Documentation tab. The DDCheckPlus app provides 

instructions to generate a CSV file for analysis. 
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Figure 7.7 Accuracy of the five M-stages by the DD detection module on the DDCheckPlus app. 

Accuracy is measured as the number of correct predictions and calculated for each of the five M-

stages: M0, M2, M2P, M4H, and M4P. 
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Figure 7.8 Faceted box plot of proportion of cattle over weeks by M-stage classification. The 

box represents the predicted prevalence and the line range represents the 95% confidence 

interval. The panels are faceted by M-stage classification where the first panel is M0 lesions, the 

second panel is M2 lesions, and the third panel is M4 lesions. 
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Figure 7.9 Faceted box plot of proportion of cattle over weeks by signs of chronicity. The box 

represents the predicted prevalence and the line range represents the 95% confidence interval. 

The panels are faceted by signs of chronicity where the first panel is no chronicity, the second 

panel is hyperkeratotic lesions, and the third panel is proliferative lesions. 
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Figure 7.10 Faceted box plot of proportion of cattle over weeks by M-stage classification and 

signs of chronicity. The box represents the predicted prevalence and the line range represents the 

95% confidence interval. The panels are faceted by M-stage classification and signs of chronicity 

where the first column is M0 lesions, the second column is M2 lesions, and the third column is 

M4 lesions while the first row is no chronicity, the second row is hyperkeratotic lesions, and the 

third row is proliferative lesions. 
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CHAPTER 8 REAL-TIME DETECTION OF DIGITAL DERMATITIS IN DAIRY 

COWS ON ANDROID AND IOS APPS USING COMPUTER VISION TECHNIQUES 

ABSTRACT 

The aim of the study is to deploy Android or iOS mobile applications models for real-time 

detection of digital dermatitis (DD) lesions in dairy cows using computer vision (CV). Early 

detection of DD lesions in dairy cows is critical for prompt treatment. Android and iOS apps can 

facilitate early detection of DD at both dairy and beef farms. Dairy farmers can implement 

preventive and control methods, including foot baths, topical treatment, hoof trimming, or 

quarantining cows affected by DD to prevent the spread of the disease. Early detection and 

prompt treatment decreases the severity of the condition, but also increases the overall 

productivity of cows. We applied transfer learning to DD image data for 5 classes, M0, M4H, 

M2, M2P, and M4P, on pretrained YOLOv5 model architecture using COCO-128 pretrained 

weights. The combination of localization loss, classification loss, and objectness loss was used 

for the optimization of prediction performance. This custom DD detection model was trained on 

363 images of size 416x416 pixels and tested on 46 images. During model training, data were 

augmented to increase model robustness in different environments. The model was converted 

into TFLite format for Android devices and CoreML format for iOS devices. These models were 

deployed as Android and iOS applications for real-time DD detection using Android Studio and 

XCode software. Techniques such as quantization were implemented to improve inference speed 

in real-world settings. The DD models achieved an average mean average precision (mAP) of 

0.95 on the test dataset. When tested in real-time, iOS devices resulted in Cohen’s kappa value of 

0.57 averaged across 5 classes denoting the moderate agreement of the model detection with 

human investigators. The Android device resulted in a Cohen’s kappa value of 0.38 denoting fair 
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agreement between model and investigator. Combining M2 and M2P classes and M4H and M4P 

classes resulted in a Cohen’s kappa value of 0.65 and 0.46, for Android and iOS devices 

respectively. For the two-class model i.e. presence an absence of DD lesion, a Cohen’s kappa 

value of 0.74 and 0.65 was achieved for iOS and Android devices. The iOS app achieved an 

inference time of 20ms, compared to 57 ms on the Android app. Additionally, we deployed 

models on Ultralytics iOS and Android apps and our custom apps surpassed the Ultralytics apps 

in terms of Cohen’s kappa and confidence score. 
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CHAPTER 9 WORKFLOW FOR IMPLEMENTING AN OBJECTION MODEL WITH 

CUSTOM DATA 

Summary 

Object detection is a fundamental task in the field of computer vision (CV). It is a valuable tool 

with industrial applications across diverse domains including medical imaging, agriculture, and 

other automated systems. State-of-the-art object detection algorithms harness the power of 

convolutional neural networks (CNNs) to achieve high accuracy and speed (Girshick, 2015; 

Girshick et al., 2014; He et al., 2017; LeCun et al., 2015; Liu et al., 2020, 2016; Redmon et al., 

2016; Ren et al., 2015). Achieving high performance requires extensive training on a significant 

collection of labeled images (Goodfellow et al., 2015; Liu et al., 2020; Ouyang et al., 2017; Zhu 

et al., 2020). This task is energy-intensive and time-consuming where images are manually 

collected, annotated, and processed prior to model training and can be specific to model selection 

(Liu et al., 2020). Given the wide array of tasks, the ability to quickly curate domain-specific 

datasets and custom-trained models is a critical constraint (Liu et al., 2020). Hence, there exists a 

demand for instantaneous and automated processing approaches. 

The workflow for object detection involves several steps to train and deploy a model that can 

accurately detect and localize objects of interest within images or videos. The steps can be 

further organized into three phases: pre-training, intra-training, and post-training (Figure 1). 

Initially, pre-training includes data collection, data preprocessing, and image annotation. Intra-

training includes model selection, model training, and model evaluation. Lastly, post-training 

includes fine-tuning and optimization; inference and deployment; and monitoring and 

maintenance. 
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Pre-Training Phase 

The pre-training phase is a pivotal process in the development of accurate and effective object 

detection models. The first step of data collection involves sourcing a wide array of images that 

represent or simulate real-world scenarios for model learning. This library of images containing 

various environmental conditions, lighting situations, angles, and scales ensures model 

versatility. An exhaustive dataset not only facilitates the robustness of the model, but also 

enhances its ability to detect objects accurately across different contexts (Goodfellow et al., 

2015; Liu et al., 2020; Zhao et al., 2019). 

However, data collection alone is insufficient. The data labeling is also needed for model 

learning. Image annotation involves labeling the images with relevant information that helps the 

model identify and differentiate the objects of interest. For object detection, this includes 

drawing bounding boxes around the objects and tagging it with the appropriate class label. 

Image annotation can be a manual or semi-automated process, depending on the complexity of 

the task and the available tools (Liu et al., 2020). Manual annotation involves human annotators 

meticulously drawing bounding boxes or creating masks around each object. While this can be 

time-consuming, it ensures high accuracy and granularity (Liu et al., 2020). On the other hand, 

semi-automated approaches use AI-assisted tools to speed up the process by suggesting 

annotations that human annotators can then refine. 

The quality of data annotation significantly influences the performance of the final model (Liu et 

al., 2020). Inaccurate or imprecise annotations can lead to false positives or negatives, affecting 

the reliability of the model to recognize objects (Liu et al., 2020). Rigorous quality control 
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measures, such as regular reviews and inter-annotator agreement assessments, are critical to 

maintaining annotation accuracy. 

Data collection and annotation are iterative processes. As the model evolves and encounters new 

scenarios, the dataset must also evolve to reflect these changes. Continuous data collection, 

augmentation, and annotation refinement ensure that the model remains proficient at detecting 

objects in evolving real-world contexts. The success of any object detection model relies on the 

rigorous of data collection and annotation, which form the cornerstone of accurate and reliable 

object recognition. 

Data preprocessing is a critical phase in the development of object detection models that 

significantly impacts the performance and efficiency. It involves a series of steps to clean, 

enhance, and prepare raw data before model training. Effective data preprocessing not only 

improves the model accuracy, but also accelerates the training process and increases the 

generalizability in real-world situations. 

Resizing is a fundamental step in data preprocessing for object detection. Images in the dataset 

may vary in size, and images are resized to a consistent dimension such that the model can 

uniformly process images. This step makes the data more manageable, but also makes the model 

less biased towards specific image sizes during training (Huang et al., 2017; Liu et al., 2016). 

Normalization is another step where pixel values are scaled to a common range. The model is 

less sensitive to variations in pixel intensities because of lighting or shading conditions (Huang et 

al., 2017; Liu et al., 2016). This standardization aids in faster convergence during training and 

assists in generalizability to unseen data (Huang et al., 2017; Liu et al., 2016). 
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Augmentation techniques are employed to artificially increase the diversity of the dataset when 

the available data is limited to prevent overfitting to the available data (Chatfield et al., 2014; 

Girshick, 2015; Girshick et al., 2014). Augmentation involves applying transformations to the 

images, such as rotations, reflections, brightness, blur, translations, cropping, and mosaics (Liu et 

al., 2020). This generates variations of the same instance, effectively expanding the dataset and 

making the model more robust to the variations in inference. Augmentation helps the model 

learn to detect objects under different conditions, such as varying lighting, viewpoints, and 

occlusions. 

Annotation handling is an integral part of data preprocessing. The annotations should be adjusted 

and transformed to match any changes to the corresponding images during resizing or 

augmentation. Otherwise, the bounding boxes or masks would be inaccurate after the 

preprocessing steps. Additionally, noisy, blurry, obscured, obstructed or otherwise trivial data 

samples are filtered out. Lastly, class distribution can be balanced to prevent the model from 

being biased towards dominant or majority classes. 

Intra-Training Phase 

Selecting an appropriate model for object detection is a critical decision that significantly 

impacts the success of the computer vision project. With the rapid advancement of deep learning, 

there is a wide range of models available, each with its strengths, architectures, and performance 

characteristics. The choice of model depends on various factors including the specific 

requirements of the application, the complexity of the detection task, the available computational 

resources, and the expected accuracy. 
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One popular category of object detection models is the family of Faster Region-based 

Convolutional Neural Network (R-CNN) and its variants (Ren et al., 2015). Faster R-CNN 

introduced the concept of using a Region Proposal Network (RPN) to generate potential object 

proposals, followed by classifying and refining these proposals. Single Shot MultiBox Detector 

(SSD) is another popular model that emphasizes speed while maintaining accuracy (Liu et al., 

2016). The SSD algorithm performs object detection at multiple scales using a set of predefined 

anchor boxes. You Only Look Once (YOLO) is another prominent model that has gained 

popularity because of its impressive speed and real-time performance (Redmon et al., 2016). The 

YOLO algorithm divides the image into a grid and directly predicts bounding boxes and class 

probabilities for each grid cell. It is the ideal choice for real-time applications requiring rapid 

detection and relatively high accuracy, such as video analysis and surveillance. The size of the 

model and the computational requirements should also align with the available resources (Diwan 

et al., 2023; Zaidi et al., 2022; Zhao et al., 2019). Larger models provide high accuracy, but 

demand more computational power and memory during training and inference. If deployed on 

resource-constrained devices, lightweight architectures such as SSD Lite, Tiny YOLOv4, and 

YOLOv5s may be appropriate (Bochkovskiy et al., 2020; Jocher, 2020; Liu et al., 2016; Redmon 

and Farhadi, 2018, 2017; Rodriguez-Conde et al., 2021). 

Many pre-trained models are available that have been trained on large-scale datasets. Pre-trained 

models on large datasets such as ImageNet or MS COCO provide an initial starting point since 

general features have been learned and can be fine-tuned for domain-specific object detection 

tasks (Lin et al., 2014; Russakovsky et al., 2015). Fine-tuning models with a smaller dataset 

specific to the task can significantly speed up training and improve performance. Fine-tuning 

models using transfer learning can significantly expedite the training process and improve 
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accuracy for specific tasks as well (Girshick et al., 2016; Sharif Razavian et al., 2014; Shin et al., 

2016; Zhou et al., 2014). During transfer learning, the initial layers are usually frozen, preventing 

them from being updated during training. Only the final layers are fine-tuned using a smaller, 

domain-specific dataset. Moreover, architectures designed for object detection e.g., bounding 

boxes may not be appropriate other tasks e.g., masks. Therefore, model selection should also 

take into account the specific task requirements. Model selection for object detection is a balance 

between accuracy, speed, and resource constraints. Careful consideration of the task 

requirements, real-time constraints, and available datasets is necessary to make an informed 

decision. Ultimately, conducting comparative analyses and evaluating model performance on 

representative data can help determine the best model for the object detection application. 

Model training is involves teaching the selected model to accurately recognize and locate objects 

within images. Proper training requires well-preprocessed data, an appropriate loss function, and 

a careful balance of hyperparameters to achieve optimal results. Model training aims to minimize 

a defined loss function. This function quantifies the difference between the predicted bounding 

boxes and class probabilities and the ground-truth annotations. Commonly used loss functions 

include the mean squared error (MSE) for bounding box regression and the cross-entropy loss for 

class prediction (Krizhevsky et al., 2012; Ren et al., 2015; Zhao et al., 2019). However, object 

detection models involve more complex loss formulations that combine multiple components, 

such as localization loss, objectness loss, and confidence loss (Alexe et al., 2012; Rahtu et al., 

2011; Redmon et al., 2016; Ren et al., 2015; Wu et al., 2020; Zaidi et al., 2022). Other 

commonly used loss functions for object detection include the intersection over union (IoU) loss, 

focal loss, and smooth L1 loss (Girshick, 2015; Lin et al., 2017; Wu et al., 2020; Yu et al., 2016; 

Zaidi et al., 2022). 
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Model training is computationally intensive, often requiring powerful GPUs or cloud resources. 

Training time varies depending on factors like dataset size, model complexity, and hardware. 

Hyperparameters, such as learning rate, batch size, and regularization strength, can significantly 

impact the training process and the final model performance (Huang et al., 2017; Liu et al., 2020; 

Pandiya et al., 2020; Peng et al., 2018; Wu et al., 2020; Zhao et al., 2019). Grid search or random 

search can be used to explore various hyperparameter combinations and identify the ones that 

yield the best results (Huang et al., 2017; Pandiya et al., 2020). Iterative training is common, 

where the model is trained over multiple epochs while updating the weights over differing 

learning rates (He et al., 2016; Pandiya et al., 2020; Shmelkov et al., 2017; Wu et al., 2020; Zhao 

et al., 2019). During training, the model performance is evaluated on a validation dataset. Early 

stopping is employed if the validation performance plateaus or starts to decrease, preventing the 

model from overfitting to the training data (Arulprakash and Aruldoss, 2022; Goodfellow et al., 

2016; Prechelt, 1998). Techniques including learning rate scheduling and early stopping can 

improve training stability and efficiency. Metrics, such as mean average precision (mAP), 

precision, recall, and average precision, provide insights into the model accuracy and robustness 

(Liu et al., 2020; Zaidi et al., 2022). The training process can be fine-tuned based on validation 

results to achieve the required detection accuracy. 

Model evaluation is used to assess the performance and effectiveness of object detection models. 

It involves measuring the model accuracy, precision, recall, and other metrics to determine the 

ability to detect and localize objects within images. A comprehensive evaluation provides 

insights into the strengths, weaknesses, and areas for improvement. 

As previously mentioned, one commonly used metric for object detection is mAP. It combines 

precision and recall across different levels of confidence thresholds to provide an overall 
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measure of model accuracy (Liu et al., 2020). The mAP considers not only if an object is 

detected but also the magnitude of alignment between the detected bounding box and the ground 

truth (Liu et al., 2020). Higher mAP implies better detection performance. Precision and recall 

are fundamental metrics for object detection evaluation. Precision measures the ratio of correctly 

detected objects to all detected objects, while recall measures the ratio of correctly detected 

objects to all actual objects (Borji et al., 2019; Liu et al., 2020). Achieving a balance between 

precision and recall is crucial. A high-precision model minimizes false positives, while a high-

recall model minimizes false negatives (Borji et al., 2019; Liu et al., 2020). F1 score is another 

metric that combines precision and recall, providing a single value that reflects the overall 

performance (Borji et al., 2019). It is particularly useful when there is an imbalance between 

positive and negative samples in the dataset. Additionally, the receiver operating characteristic 

(ROC) curve and area under the curve (AUC) provide insights into the model's trade-off between 

true positive rate and false positive rate as well (Borji et al., 2019). Visualizing the model 

predictions is essential for understanding its behavior. Visualization tools can overlay predicted 

bounding boxes on images and color-code them based on the class labels or confidence scores. 

This helps identify cases where the model struggles and highlights potential areas for refinement. 

Evaluation should be performed on a separate validation test dataset that the model has not 

previously seen during training or validation. Cross-validation techniques can also be employed 

to assess the model performance across multiple subsets of the data. Comparing the model 

performance against baseline models or existing state-of-the-art models is valuable for 

understanding its relative strengths and weaknesses. Regularly monitoring and updating the 

evaluation as the model is refined or deployed in different environments is crucial to maintain its 

performance over time. In summary, model evaluation in object detection involves assessing 
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metrics such as mAP, precision, recall, F1 score, and visualizations to gain insights into the 

model performance. It is a crucial step in determining how well the model can detect and localize 

objects and driving improvements in its design and development. 

Post-Training Phase 

Model optimization is used to refine the model performance and efficiency. Optimization aims to 

enhance the model speed, accuracy, and resource utilization while minimizing computational 

complexity and memory requirements. This process is essential such that object detection models 

can be deployed effectively in real-world applications, especially on resource-constrained 

devices, including edge devices and cloud servers. 

Accelerating inference speed is frequently the primary optimization goal. Optimization 

techniques such as quantization and pruning contribute to a lighter architecture and faster model 

(Diwan et al., 2023; Zaidi et al., 2022). Quantization is used to reduce the precision of the 

model's weights and activations from floating-point values to lower-bit representations, such as 

8-bit integers (Courbariaux et al., 2015; Han et al., 2016). This significantly reduces the 

computational complexity and memory requirements without significantly compromising 

accuracy. Such models run faster and consume less power, making it ideal for model deployment 

on resource-constrained devices. Architectural optimization involves modifying the current 

model design where efficient model architectures are designed with respect to optimization. This 

includes customization or pruning to reduce the number of parameters, resulting in a lighter 

architecture and faster model (Diwan et al., 2023; Zaidi et al., 2022). Pruning is a technique to 

remove weights or neurons from the model (Chen et al., 2021; Denker, 1989; Diwan et al., 2023; 

Hassibi et al., 1993; Zaidi et al., 2022). This can be achieved through weight pruning to remove 

weights with low magnitudes. Structured pruning involves removing entire channels or layers, 
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leading to more efficient models. Pruning combined with quantization provide an effective 

solution for achieving lightweight, but accurate object detection models (Diwan et al., 2023; 

Zaidi et al., 2022). 

Hardware-specific optimizations are critical, specifically for model deployment on edge devices 

or embedded systems (Feng et al., 2019; Reuther et al., 2019; Rodriguez-Conde et al., 2021). 

Model quantization and weight sharing leverage specialized hardware accelerators such as 

GPUs, TPUs, VPUs, NPUs or dedicated neural network inference chips (Feng et al., 2019; 

Reuther et al., 2019; Rodriguez-Conde et al., 2021). Additionally, techniques like model 

parallelism and multi-threading can take advantage of parallel processing capabilities to further 

speed up inference (Cortés Gallardo Medina et al., 2021; Garland et al., 2008; Hosny and Salah, 

2023; Murthy et al., 2020; Stone et al., 2010; Thabet et al., 2014). Efficient post-processing 

techniques also contribute to model optimization. Non-Maximum Suppression (NMS) algorithms 

suppress overlapping bounding boxes to retain the highest confidence bounding box, reducing 

redundancy and improving performance. This can be optimized to reduce redundant 

computations and improve speed (Bodla et al., 2017; Hosang et al., 2017; Liu et al., 2020; Zou et 

al., 2023). Finally, optimizing data pipelines and input preprocessing can also contribute to faster 

inference. As previously stated, techniques such as batching and data prefetching help reduce 

processing overhead (He et al., 2015; Ioffe and Szegedy, 2015; Liu et al., 2020; Peng et al., 

2018; Wu et al., 2020; Zaidi et al., 2022; Zhao et al., 2019). Additionally, resizing images to the 

optimal input size and applying proper normalization techniques can improve efficiency (Chin et 

al., 2019; Dai et al., 2016; Felzenszwalb et al., 2010; Girshick et al., 2014; He et al., 2016; Hu 

and Ramanan, 2017; Liu et al., 2020, 2017; Singh and Davis, 2018; Wu et al., 2020; Yang et al., 
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2016; Zhu et al., 2020; Zou et al., 2023). Tailoring the model size and optimization techniques to 

the target platform is important to balancing accuracy and speed. 

Model optimization for object detection involves a combination of architectural design, 

quantization, pruning, hardware-specific optimizations, and efficient post-processing techniques. 

Efficient inference is a critical consideration, especially when deploying models on resource-

constrained devices such as edge devices, smartphones, or embedded systems. Optimization 

techniques such as model quantization, pruning, and hardware-specific accelerators are 

employed to improve speed and reduce memory and computation requirements. These strategies 

collectively aim to produce lightweight, fast, and accurate object detection models such that it 

can be deployed efficiently across various platforms and applications. 

Inference is the process of applying a trained model to new, unseen data to make predictions 

about the presence, location, and class of objects within images or videos. This stage is necessary 

for real-time application and real-world applicability, where the model needs to perform 

accurately and efficiently (Goodfellow et al., 2016). During inference, the trained object 

detection model takes an input image or video frame and the network computes predictions for 

bounding box coordinates, class labels, and confidence scores for each object detected 

(Goodfellow et al., 2016). The predictions are based on the features learned during the model 

training phase (Goodfellow et al., 2016). The bounding boxes outline the spatial extent of the 

objects, class labels indicate the type of object, and confidence scores indicate the confidence in 

the predictions (Goodfellow et al., 2016).  

The output of the inference process is then visualized by overlaying the predicted bounding 

boxes, associated class labels, and corresponding confidence score on the input image. This 

visualization provides valuable insights into the model performance and helps users overall 
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understanding of the model ability to identify and classify objects within the images. Note that 

model performance during inference directly depends on the quality of the training data, the 

effectiveness of the data preprocessing steps, and the model architecture to generalize to new, 

unseen data (Rodriguez-Conde et al., 2021; Zaidi et al., 2022; Zou et al., 2023). Inference can be 

performed on various platforms, from high-performance servers to edge devices like 

smartphones, embedded systems, and even drones (Rodriguez-Conde et al., 2021; Zaidi et al., 

2022; Zou et al., 2023). 

Deployment is the pivotal phase in the lifecycle of an object detection model, transitioning from 

development and testing to real-world applications to perform the task of identifying and 

localizing objects within images or video streams. Effective deployment involves a series of 

steps for the model to work seamlessly, efficiently, and reliably in the intended environment on 

new, unseen data. A well-executed deployment process is critical to achieving the desired 

outcomes and impact in various domains, such as surveillance, robotics, agriculture, and 

healthcare. 

One of the key considerations in deployment is selecting the appropriate hardware platform. The 

choice of hardware depends on factors such as the desired speed of inference, resource 

constraints, and the target application. Depending on the specific use case, object detection 

models can be deployed on a range of devices, from cloud servers and edge devices to mobile 

phones and specialized hardware accelerators (Feng et al., 2019; Reuther et al., 2019; Rodriguez-

Conde et al., 2021). Some applications may require high-performance GPUs for real-time 

processing, while others might focus on energy-efficient solutions like edge devices or 

specialized hardware accelerators (Feng et al., 2019; Reuther et al., 2019; Rodriguez-Conde et 

al., 2021; Yang et al., 2019; Zhu et al., 2020). 
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Software integration is another critical aspect of deployment. The object detection model needs 

to seamlessly integrate into the existing software infrastructure of the application. This may 

involve developing Application Programming Interfaces (APIs), libraries, or other interfaces that 

allow developers to easily integrate the model's predictions into their applications or systems 

(Garland et al., 2008; Harper et al., 2023; Kamath and Renuka, 2023; Murthy et al., 2020; 

NVIDIA, 2023a, 2023b, 2018, 2017, 2015, 2014; Stone et al., 2010). Compatibility with 

programming languages, frameworks, and platforms commonly used in the application domain is 

essential to ensure a smooth integration process (NVIDIA, 2023c, 2016). 

Model updates and maintenance are continuous aspects of long-term deployment. Models are 

periodically retrained on new data to adapt to changes in object appearance or environmental 

conditions for improved accuracy (Ahmad and Rahimi, 2022; Cao et al., 2017; Girshick et al., 

2014; Murthy et al., 2020; Rodriguez-Conde et al., 2021; Yao et al., 2020; Zhao et al., 2019; Zhu 

et al., 2020). It is important to establish a system for updating the deployed models without 

disrupting the application. Continuous monitoring of model performance and adapting to 

changing conditions help identify potential issues and maintain the effectiveness of the object 

detection system over time (Ahmad and Rahimi, 2022; Cao et al., 2017; Girshick et al., 2014; 

Rodriguez-Conde et al., 2021; Zhao et al., 2019). Real-world testing and validation are critical 

before a model is fully deployed (Liu et al., 2020; Rodriguez-Conde et al., 2021). Testing the 

model in diverse and challenging scenarios helps identify any potential issues and fine-tune the 

system for optimal performance (Liu et al., 2020; Rodriguez-Conde et al., 2021). It is important 

to simulate a wide range of scenarios that the model may encounter in an operational context for 

robustness and reliability (Kamath and Renuka, 2023; Murthy et al., 2020). 
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Ultimately, successful deployment of object detection models requires a holistic approach that 

include hardware selection, software integration, optimization, ongoing maintenance, and 

validation. By carefully addressing these aspects, organizations can leverage the power of object 

detection to enhance a wide range of applications, from surveillance and healthcare to 

manufacturing and autonomous systems. 
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TABLES AND FIGURES 

Figure 9.1 Information graphic of workflow for object detection. The workflow is subdivided 
into three phases: pre-training, intra-training, and post-training. Each phase is further subdivided 

into three steps. 
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CHAPTER 10 DISCUSSION 

Previous Studies for Early Detection of Digital Dermatitis 

The early detection of digital dermatitis (DD) plays a critical role in facilitating prompt treatment 

and minimizing the overall severity of the disease (Alsaaod et al., 2014; Stokes et al., 2012a). By 

identifying such conditions at the initial stages, it is possible to intervene early, preventing 

chronically infected cattle and the progression of the disease (Leach et al., 2012) by reducing the 

infectious reservoir and outbreak courses within the herd (Döpfer, 2009; Döpfer et al., 2012; 

Stokes et al., 2012a). 

The gold standard for diagnosing DD involves visually inspecting the foot in a hoof trimming 

chute. It has traditionally been conducted by restraining the cow in a claw-trimming chute and 

lifting the foot during routine claw trimming (Holzhauer et al., 2006; Manske et al., 2002; 

Thomsen et al., 2008b). This method, while effective, it is not efficient since it can be time-

consuming and labor-intensive and cause disruption in a cow's time budget, limiting the number 

of cows that can be examined within a short period (Relun et al., 2011; Stokes et al., 2012b). As 

a result, researchers have explored alternative scoring areas and methods to identify cows with 

DD in more practical settings, such as the milking parlor, headlocks, or during pen walks (Jacobs 

et al., 2017; Relun et al., 2011; Solano et al., 2017; Stokes et al., 2012b; Thomsen et al., 2008a). 

Visual inspection of the feet in the parlor can significantly improve the efficiency of DD 

diagnosis, as it eliminates the need for cows to be individually restrained in the hoof-trimming 

chute (Relun et al., 2011; Stokes et al., 2012b). It enables quick examination, reducing the time 

and labor required for each cow. However, early-stage or small DD lesions that can be easily 

overlooked during the visual inspection (Solano et al., 2017). Additionally, the presence of gross 



265 
 

contamination on the distal limb can obscure DD lesions, thereby making it difficult to detect. To 

mitigate this issue, feet may need to be washed before inspection to ensure clearer visibility, but 

this could potentially compromise udder hygiene (Oliveira et al., 2017). 

Therefore, while inspecting hind feet in the milking parlor can improve the efficiency of DD 

diagnosis, it is essential to be aware of its limitations, especially early-stage lesions and potential 

hygiene concerns. Efforts are made to develop non-invasive and practical diagnostic methods 

that can be seamlessly integrated into existing milking routines without compromising udder 

health. Such advancements would not only improve DD diagnosis but also contribute to overall 

productivity and welfare in dairy farming. 

Various methods have explored alternative approaches to score cows in the milking parlor, 

including the use of mirrors (Relun et al., 2011; Solano et al., 2017) or borescopes (Laven, 1999; 

Stokes et al., 2012b), without any tools (Oliveira et al., 2017; Rodriguez-Lainz et al., 1998; 

Thomsen et al., 2008a), or without prior washing of feet (Oliveira et al., 2017). Several studies 

compared the DD scores through these methods to the gold standard of hoof trimming chute 

inspection (Cramer et al., 2018). However, some methods were considered impractical due to the 

associated cost or their impact on milking duration (Laven, 1999; Stokes et al., 2012b). 

The accuracy of the detection method was influenced by factors such as milking parlor design 

and the difficulty in accessing hind feet in certain configurations (Stokes et al., 2012b; Thomsen 

et al., 2008a). In general, studies with more detailed descriptions of lesions attempted to assess 

DD (e.g., by color, depth, or stage) had lower agreement and test characteristics compared to the 

gold standard (Cramer et al., 2018). On the other hand, the highest agreement was generally 

observed when DD was simplified into "present" and "absent" categories (Relun et al., 2011; 

Solano et al., 2017; Stokes et al., 2012b). 
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Most alternative scoring method studies have focused on scoring DD in the milking parlor. 

However, it could be beneficial to explore alternative scoring areas, considering that different 

parlor designs may affect the accuracy of DD detection and scoring in the milking parlor can be 

disruptive to the milking process (Thomsen et al., 2008a). Additionally, with the increasing 

prevalence of automatic milking systems globally, there is a growing need to identify alternative 

scoring areas for efficient DD detection. 

Assessing and quantifying pain in animals can be challenging, but it is important to understand 

the welfare impact of DD in dairy cattle. Inference of pain can be made by examining production 

parameters, physiological responses, and behavior (Prunier et al., 2013). Accurately quantifying 

the pain associated with DD is essential for developing pain prevention protocols, determining 

the need for pain mitigation, and promoting animal welfare. 

Previous studies have employed various methods to quantify DD-associated pain in dairy cattle, 

including observing behaviors such as limb withdrawal, kicking, and falling (Stilwell et al., 

2019), evaluating changes in locomotion (Laven and Logue, 2006), grouping behaviors into 

subjective pain scores (Britt et al., 1999; Shearer and Hernandez, 2000), measuring nociceptive 

threshold (Dyer et al., 2007; Whay et al., 2005), and using infrared thermography (IRT) as a 

proxy for inflammation (D.S. LokeshBabu et al., 2018; Stokes et al., 2012a). However, these 

alternative methods often exhibit a lower diagnostic capacity when compared to the gold 

standard (Orsel et al., 2018). 

Changes in locomotion or gait characteristics are often among the first noticeable signs of 

lameness. Dairy cattle affected with DD frequently modify their gait and posture in response to 

pain including reduced mobility, lifting or shaking of the affected leg, or walking with a toe-

down posture to avoid contact with the floor (Bassett et al., 1990; Blowey and Sharp, 1988; Read 
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and Walker, 1998; Rodriguez-Lainz et al., 1998; Shearer et al., 2005). Dairy cattle affected by 

DD can experience changes in the heel area, which may contribute to the persistence and 

occurrence of heel horn erosion (Gomez et al., 2015). Locomotion scoring is a commonly used 

behavioral indicator to assess pain associated with foot disorders in cattle (Gigliuto et al., 2014). 

Visual gait scoring methods have been developed and commonly used to assess lameness in 

dairy cattle. Herd mobility scoring is a widely adopted screening tool used to identify lame 

animals, followed by clinical investigation to determine the underlying cause and administer 

treatment. It has been demonstrated to have a correlation with the severity of foot lesions 

(O’Callaghan et al., 2003; Whay et al., 1997; Winckler and Willen, 2001). These scoring systems 

enable producers to visually observe and assess the gait of their cattle, providing valuable 

insights into the presence and severity of lameness-associated diseases (Flower and Weary, 

2006; Manson and Leaver, 1988; Sprecher et al., 1997). 

This approach has its limitations as it is time-consuming and may not be sensitive to detect DD 

lesions (Tadich et al., 2010). This is because a significant proportion of cows with DD do not 

exhibit lameness (Cramer et al., 2018). These scores are based on subjective scales, and their 

proper usage and interpretation require training and consistent intra- and inter-observer 

agreement over time (Archer et al., 2010; Channon et al., 2009; Engel et al., 2003; Flower and 

Weary, 2009; Whay, 2002). There is a need for more specific and sensitive methods to rapidly 

detect and score DD in cattle, allowing for timely intervention and improved management 

decisions. The presence of DD does not constantly manifest as visible signs of lameness, such 

that lameness may only be evident once DD lesions have reached a severe stage, potentially 

leading to underreporting of the issue (Krull et al., 2016; Laven and Proven, 2000; Stokes et al., 
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2009). Consequently, early detection of DD is critical to prevent further progression and promote 

timely and effective treatment (Döpfer et al., 2012; Shearer and Hernandez, 2000). 

As farm sizes continue to grow, traditional subjective scoring systems for measuring locomotion 

and gait become labor-intensive, highlighting the need for automated and objective measurement 

technologies. Accelerometers, force platforms, and other technologies have been developed and 

employed in dairy production systems to evaluate gait and locomotion in adult cows (Van Nuffel 

et al., 2015). These technologies have primarily been developed and used within dairy 

production systems for adult cows. For feedlot cattle, the application of similar technologies can 

be cost-prohibitive and impractical, especially for evaluating beef cattle in feedlot settings. 

Given the significance of early detection, there is not only a growing demand, but a pressing 

need for non-invasive and practical methods that facilitates fast and frequent screening for the 

presence of DD at both the foot and cow levels in real-time. By developing such methods, 

farmers and veterinarians can take proactive measures to manage and treat DD, ultimately 

improving the welfare and health outcomes of dairy cattle. 

Advancements in computer vision and deep learning technologies have shown promising 

potential in the field of precision agriculture, including the detection of DD. Implementing 

automated computer vision systems that can efficiently analyze and interpret visual data can 

revolutionize the early detection of DD. These technologies, when combined with other data 

sources, such as sensor data and health records, may provide a comprehensive and holistic 

approach to monitoring and managing DD in dairy cattle. 

Early detection of DD is paramount for effective disease management, leading to improved 

animal welfare and reduced economic losses. Developing and integrating advanced computer 
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vision techniques, along with traditional gait scoring methods, can significantly enhance the 

precision and efficiency of DD detection, allowing for timely intervention and improved overall 

herd health. 

Detection Digital Dermatitis with Computer Vision using YOLOv2 

Cernek et al. studied computer vision (CV) models as a potential solution for early detection of 

DD on commercial dairy farms (Cernek et al., 2020). The primary objective was to develop and 

deploy a novel CV tool capable of identifying DD lesions on a commercial dairy farm setting. A 

large database containing more than 3,500 images of DD lesions was used to train a CV model 

using the YOLOv2 architecture including 1,177 M0 images (936 screenshot JPG images and 241 

JPG images), 1,414 M4H images (914 screenshot JPG images and 500 JPG images), and 1,050 

M2 images (660 screenshot JPG images and 390 JPG images). The YOLOv2 model was trained 

to detect between 2 DD lesions: M0/M4H and M2 lesions using 2,591 M0/M4H images and 

1,050 M2 images. 

For internal validation, the YOLOv2 CV model achieved a detection accuracy of 71% for DD 

lesions. Additionally, the agreement between the model's predictions and a human evaluator was 

quantified as "moderate" using Cohen's kappa. For the external validation, the YOLOv2 CV 

model demonstrated even better performance, achieving a detection accuracy of 88% for DD 

lesions. However, the agreement between the model's predictions and a human evaluator was 

quantified as "fair" by Cohen's kappa because of the data imbalance between the two M-stage 

classifications. 

These results indicate that the YOLOv2 model shows potential for identifying DD lesions on 

commercial dairy farms. Early detection of DD can have significant benefits for the welfare of 
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the animals and the overall management of the dairy herd. The application of CV technology in 

this context has the potential to revolutionize the monitoring and detection of hoof health issues 

in dairy cattle, leading to more proactive and effective management practices. 

Based on the accuracy and agreement measured by Cohen's kappa in the previous study, the 

YOLOv2 approach proved to be viable option for detecting DD in a milking parlor setting. 

However, there are opportunities to further improve the model performance and explore other 

CV model architectures for different application domains. 

Cernek et al. proposed adapting the current model from YOLOv2 to YOLOv3 using TensorFlow 

version 2.0 and updated CUDA drivers (Cernek et al., 2020). YOLOv3 builds on YOLOv2 with 

several improvements, leveraging the latest version with updated drivers would potentially lead 

to improved detection performance, increased accuracy, and better use of available computing 

resources for real-time applications (Redmon and Farhadi, 2018). 

In addition, Cernek et al. proposed future studies to conduct comparative analyses of other 

available CV model architectures to identify the most effective approaches in various application 

domains (Cernek et al., 2020). For example, segmentation-based models such as Mask R-CNN 

provide clearer detection boundaries, making them more appropriate for scenarios where hooves 

may overlap, such as in heifer raising facilities or feedlots (He et al., 2018). For applications 

where hooves are distinctly separated, such as in a milking parlor, YOLO remains an excellent 

choice because of its ability to efficiently and accurately classify lesions. By identifying the most 

appropriate CV model for different scenarios, researchers and practitioners can tailor their 

approach to specific use cases, ensuring optimal performance and precision in each setting. 
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The combined accuracy from the external validation set exceeded the combined accuracy from 

the internal validation for the previous study, but the prediction accuracies within specific image 

categories were similar between the two validations. Notably, the model misclassified M2 

lesions more frequently than M0/M4H lesions, primarily due to the lower prevalence of M2 

lesions (3.5%) compared to M0/M4H lesions (96.5%) on the farm. The combined accuracy in the 

study is misleading with respect to overall performance, while the Cohen's kappa presented a 

more appropriate measure of accuracy and provided lower values during the external validation, 

where the detection accuracy of M2 lesions is expected to improve with a higher prevalence of 

M2 lesions in the training the training dataset. The observed performance degradation in the 

study can be attributed to the differences in image settings for each validation set. The internal 

validation images were randomly selected from the training dataset, while the external validation 

images were randomly selected from webcam footage at a single farm location. 

Cernek et al. recommended to generate a more representative training dataset that is similar to 

the expected images during external validation (Cernek et al., 2020). This can be achieved by 

including more GoPro-derived images on the farm in the training dataset and implementing the 

model on additional commercial dairy farms. This approach would provide the model with a 

more diverse range of real-world scenarios, improving its ability to accurately detect DD lesions 

on various farms. 

Additionally, the issue of distance discrepancy between the camera and the object is another 

factor that may have contributed to detection problems with the YOLOv2 model (Redmon and 

Farhadi, 2018). The perspective of the images in the training set was closer to the feet than what 

a camera would typically capture in a real-world application. This disparity in distance between 

training data and real-world scenarios may contribute to the lower-than-expected accuracy of the 
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model. By incorporating images captured at different camera distances, the model can better 

adapt to real-world situations and improve its ability to accurately detect DD lesions under 

varying conditions. This strategy can help bridge the gap between the training data and the 

practical implementation of the model, leading to more reliable and robust performance in real-

world settings. 

Cernek et al. recommended an ideal CV model for detecting DD would greatly benefit from two 

essential components: an expanded training database with a broader range of images and 

increased on-farm implementation across multiple farms (Cernek et al., 2020). Hoof diseases, 

including DD, can affect various types of production animals, and enhancing the training 

database by including additional M-stages of DD, such as M4P, as well as other hoof diseases 

like reverse corkscrew claws, white line disease, and foot rot, would significantly enhance the 

model's versatility and practicality. 

The YOLOv2 DD detection model developed in this study demonstrated a fair level of accuracy 

in identifying and classifying DD lesions on a commercial dairy farm. This marks a significant 

step in applying CV to the fields of veterinary medicine and agriculture. However, it is important 

to view this achievement as a foundational milestone for further advancements. Further 

optimization of DD detection methods has the potential of improving treatment strategies and 

enhancing overall animal welfare. 

Comparative Analysis of Computer Vision Algorithms 

The study aims to mitigate the negative impact of DD and lameness in all cattle by enabling 

early detection and prompt treatment. Eight state-of-the-art CV models including both one-stage 

and two-sage detectors were trained to identify DD lesions and score M-stages. The CV models 
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were compared using various performance metrics and inference time to choose the most 

effective and efficient model for future application of DD detection. 

Out of the eight CV models tested, six demonstrated the ability to detect DD lesions in dairy 

cattle from images. For detection accuracy, both YOLOv4 and Tiny YOLOv4 outperformed all 

other models with high precision, perfect recall, and the highest mAP. The next closest models 

were Cascade R-CNN, Faster R-CNN, YOLOv3, and Tiny YOLOv3, but still trailed behind 

YOLOv4 and Tiny YOLOv4 with respect to all three performance metrics. For detection speed, 

Tiny YOLOv4 outperformed all other models by a wide margin, achieving the highest inference 

time at approximately 333 FPS. 

For Dataset 1 or the simpler dataset, YOLOv4 and Tiny YOLOv4 achieved the same precision 

and recall, but Tiny YOLOv4 yielded higher mAP. However, for Dataset 2 or the more complex 

dataset, both models achieved similar mAP, but Tiny YOLOv4 demonstrated higher precision 

and recall in addition to faster speed. Given its impressive results, Tiny YOLOv4 emerged as the 

top-performing CV model for the real-time detection of DD in streaming video. Notably, both 

YOLOv3 and YOLOv4 models surpassed the performance of the YOLOv2 model when 

processing the same input data of the simpler dataset addressing the limitation of the Cernek et 

al. study. As a proof-of-concept, the Tiny YOLOv4 model successfully detected various M-

stages of DD on image and video files, demonstrating its practicality and appropriateness for 

real-world applications. 

YOLO models can be converted into TensorFlow Lite, TensorRT, or MyriadX BLOB files, 

leading to a reduction in model size and power consumption (david8862, 2023; Hùng, 2023; 

Jung, 2023; Kurniawan, 2023). Consequently, these lightweight models can be deployed on edge 

devices such as mobiles or microcontrollers (tensorflow, 2021). Moreover, the PyTorch 
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framework has shown remarkable speed and efficiency compared to some of its alternatives 

(Paszke et al., 2019; pytorch, 2021). Notably, YOLOv3, which is a popular object detection 

model, has already been implemented in PyTorch by Ultralytics (ultralytics, 2021). Additionally, 

YOLOv5, the PyTorch implementation of YOLOv4, delivers comparable speed and accuracy 

with the added benefit of reduced training time (ultralytics, 2022a). 

Increasing accessibility to CV tools is essential to the widespread adoption of these techniques in 

veterinary medicine. By making CV models compatible with portable platforms, such as Android 

or iOS applications for mobile devices (akhilkailas2001, n.d.; Apple Developer, 2023a; 

hietalajulius, 2022a; TensorFlow, 2022a), and deploying them as cloud-based applications 

through Docker containers (Docker, 2021), the adoption threshold for these models can be 

significantly reduced. Furthermore, collaborating with cattle professionals and integrating the 

CV models into handheld devices will facilitate the generation of a diverse image library, 

resulting in the optimization and validation of CV models, leading to more accurate and efficient 

applications. The proposed CV tool, once implemented and widely adopted, has the potential to 

greatly enhance animal welfare and increase production in large-scale cattle facilities. As a 

successful example in veterinary medicine and agriculture, this approach may pave the way for 

similar advancements in other domains and applications. 

Real-time DD detection application has the potential to revolutionize the disease monitoring and 

management on dairy farms. By leveraging state-of-the-art CV models, the application will 

provide fast and accurate detection of DD lesions, leading to prompt veterinary care and 

treatment. Ultimately, this technology aims to enhance the welfare and productivity of dairy 

cattle while minimizing the physical pain and economic losses associated with DD and lameness. 
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Benchmarking Analysis of Edge Device Implementation 

Lightweight CV models were trained for the real-time detection of DD in dairy cows. The 

proposed CV models were designed to identify DD lesions and score M-stages on cattle feet. The 

CV models were compared using various performance metrics and inference t ime to choose the 

most effective and efficient model for DD detection. The best CV model was optimized for 

constrained environments, deployed on portable edge devices, and automated for real-time 

detection using live streaming video. The CV model was evaluated for agreement and inference 

time to determine feasibility of the implementation for real-time detection  on a portable device.  

The DD detection model implemented on an edge device demonstrated real-time detection and 

accurately identifying DD lesions and classifying M-stages. The Tiny YOLOv4 model exceeded 

the threshold for real-time detection, achieving an inference speed of approximately 40 FPS. 

Notably, it exhibited a high mAP on Google Colab and a high Cohen's kappa on the edge device, 

implying reliable and accurate detection performance. The Tiny YOLOv4 model on an edge 

device in this study outperformed the YOLOv2 model on a local machine in Cernek et al. study. 

While YOLOv2 model only used two classes to mitigate performance on a simpler dataset, Tiny 

YOLOv4 used five distinct M-stages of DD on a more complex dataset, representing practical 

scenarios. As a proof-of-concept, the Tiny YOLOv4 model on an edge device effectively 

detected various M-stages of DD on images, videos, and live streaming video. 

The implementation uses Tiny YOLOv4 and the TensorFlow 1.0 framework, demonstrating 

impressive speed and performance. However, the model can transition to TensorFlow 2.0 

framework, providing enhanced usability and performance (NVIDIA Corporation, 2022; 

tensorflow, 2017). Additionally, TensorFlow models can be converted to TensorFlow Lite 

models, reducing the model size and power consumption, facilitating fast deployment and 
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detection on edge devices (tensorflow, 2021). Alternatively, the model architecture can be 

further improved by migrating to the PyTorch framework and adopting YOLOv5 or YOLOv7, 

yielding better speed and performance (Paszke et al., 2019; pytorch, 2021). These updates would 

enable the model to take advantage of the latest advancements in deep learning and CV for 

higher accuracy and speed in DD detection. By exploring these alternatives, the model can be 

optimized for real-time detection of DD lesions, creating a valuable tool for on-farm 

applications. 

Benchmarking Analysis of Cloud Computing Implementations 

The study focuses on training lightweight CV models intended for cloud deployment, with the 

goal of evaluating their effectiveness in real-time detection of DD in dairy cows. The CV models 

are specifically trained to detect and score DD lesions, optimized for deployment, and 

subsequently compared using various performance metrics and inference time. Furthermore, the 

process is automated to facilitate real-time detection using images, videos, and video streams on 

cloud devices. 

First and foremost, cloud deployment provides the ability for scalability, ensuring that the system 

can effectively handle varying workloads as the demand increases. Additionally, the cloud 

infrastructure allows for greater flexibility, enabling updates and improvements to the models 

without disruptions. Furthermore, cloud deployment enhances overall system efficiency, 

optimizing computational resources and delivering faster response times. Lastly, cloud services 

can also offer enhanced privacy and security measures, ensuring that sensitive data remains 

protected throughout the process. 
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The DD live detection applications developed showed impressive ability to accurately identify 

DD lesions and classify M-stages in real-time. The Docker container using an IP camera via 

RTSP demonstrated the fastest inference speed at approximately 25 FPS, closely followed by the 

Docker container using an IP camera via HTTP. All deployments exceeded the minimum 

threshold required for image processing by a human visual system at approximately 10 FPS. All 

implementations exhibited lower inference speed compared to a detector running locally with a 

webcam at approximately 40 FPS. This disparity is to be expected, as the model deployment 

involves additional steps related to network connectivity and associated latency, leading to a 

slight reduction in performance. 

For detection accuracy, the Tensorflow.js application was highly effective in classifying the M-

stages of DD with a Cohen's kappa value of 0.763 and an overall accuracy of 0.842. 

Comparatively, the YOLOv5s model deployed in the web browser using TensorFlow.js, 

outperformed the YOLOv2 model on a local machine in the Cernek et al study, while detecting 

additional M-stages of DD on a more complex dataset, representing practical scenarios. As a 

proof-of-concept, the YOLOv5s model successfully detected all M-stages of DD across all 

sources, including images, videos, and streaming video, demonstrating its versatility and 

potential for real-world applications. 

The latest YOLOv5 model was developed using the PyTorch framework, resulting in notable 

improvements in speed and overall performance. An additional advantage of using PyTorch is 

the ability to convert the models to TensorFlow Lite models in addition to TensorFlow.js Layer 

models as well as ONXX, OpenVino, TensorRT, and CoreML models for AI development and 

ML applications. This conversion leads to reduced model size and latency, making it easier to 
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deploy the models on cloud platforms and mobile devices, thereby enhancing accessibility and 

versatility (tensorflow, 2021). 

The model architecture can be upgraded to YOLOv7 or YOLOv8 (Paszke et al., 2019; pytorch, 

2021). YOLOv7 or YOLOv8 would significantly increase the speed and performance for real-

time detection. Additionally, the model architecture and the format of the exported model open 

up opportunities for further optimization, allowing for the expansion of possible deployment 

options. This progress would contribute to a more efficient and effective detection system, 

tailoring a broader range of applications to a wide array of use cases. 

Improving accessibility to these models can be achieved by developing mobile applications, such 

as TensorFlow Lite, Ultralytics Hub Android App, or Docker containers, which offer lightweight 

and standalone packages (Docker, 2022a; Docker, 2022b; PyTorch, 2023; techzizou, 2021; 

Ultralytics, 2023a, 2023b). Increased engagement with these models will lead to the generation 

of a complex and comprehensive library of images that can be used for the optimization and 

validation of computer vision models. This availability and rapid deployment of CV tools will 

have significant benefits for agriculture applications and will provide enhanced access to 

valuable information and accelerate advancements in the field. 

Mobile Deployment of YOLO Model on Android and iOS Devices 

Mobile deployment of YOLO models involves optimizing and converting the model to run 

efficiently on mobile devices, such as smartphones and tablets, to perform real-time object 

detection. YOLO models are optimized to reduce its size and computational complexity while 

maintaining its accuracy. This can be achieved through various techniques, such as model 
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quantization to reduce precision, model pruning to remove unnecessary parameters, and model 

compression to create a lightweight version for mobile devices. 

YOLO models are typically trained using deep learning frameworks like TensorFlow or PyTorch 

(Alexey, 2023; Jocher, 2020). For mobile deployment, the models are converted to a compatible 

format with mobile frameworks such as TensorFlow Lite for Android or Core ML for iOS. AI 

accelerators are used to achieve real-time performance on mobile devices. Many modern mobile 

devices have dedicated neural processing units (NPUs) or graphics processing units (GPUs). 

YOLO models can be optimized to leverage these AI accelerators efficiently to speed up 

inference tasks. 

TensorFlow Lite is a lightweight and optimized version of the TensorFlow machine learning 

framework designed specifically for mobile and embedded devices (TensorFlow, 2023a, 2023b, 

2023c, 2023d). It allows developers to run TensorFlow models efficiently on edge devices, such 

as smartphones, tablets, IoT devices, and other resource-constrained platforms, without the need 

for a constant internet connection or cloud-based processing. 

TensorFlow Lite achieves this efficiency by using techniques like model quantization, which 

reduces the precision of model parameters to decrease memory and computation requirements 

while maintaining acceptable accuracy (TensorFlow, 2021a, 2022b, 2023e, 2023f). It also 

supports hardware acceleration through libraries such as Android Neural Networks API and 

Apple Core ML, leveraging specialized hardware on devices to further boost inference speed 

(TensorFlow, 2023g, 2022c, 2022d, 2021b). Similarly, it supports hardware acceleration through 

GPU and Neural Processing Units (NPUs), to accelerate inference on supported devices, 

necessary for real-time detection. 



280 
 

TensorFlow Lite supports a variety of model formats, including TensorFlow models and models 

from other popular deep learning frameworks including PyTorch, Keras, and Caffe (TensorFlow, 

2022c, 2022e, 2022f). Additionally, TensorFlow Lite supports various platforms including 

Android, iOS, Linux, and Windows (TensorFlow, 2023a, 2022c). This versatility allows 

developers to easily convert models and deploy it across different platforms. 

The main goal of TensorFlow Lite is to provide a seamless experience for developers to deploy 

machine learning models on mobile devices, enabling on-device inference and real-time 

processing (TensorFlow, 2023a, 2023b, 2023c, 2023d). This capability opens up a wide range of 

applications, including image and speech recognition, natural language processing, object 

detection, and more, all performed directly on the device without relying on cloud-based servers. 

By enabling machine learning on the edge, TensorFlow Lite empowers developers to create 

efficient and privacy-conscious applications, while also making AI accessible to a broader range 

of users in various domains. 

There exists tutorials to build an Android apps using TensorFlow Lite to continuously detect 

objects in frames captured by a device camera (TensorFlow, 2022a). Similarly, there exists code 

examples to setup the object detection app and run it using Android Studio (akhilkailas2001, 

n.d.). YOLOv5 can be directly exported from a PyTorch weights to a TensorFlow Lite file, while 

the gradle file can be update to reflect the changes to the underlying model. Running the app 

using the COCO dataset presents an inference time of 10 FPS on CPU and 20 FPS on GPU using 

live streaming video, greater than the threshold for human visual systems and sufficient for DD 

detection. 

Core ML is a machine learning framework developed by Apple for developers to integrate 

models into iOS, iPadOS, macOS, watchOS, and tvOS apps (Apple Developer, 2023b; Apple 
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Inc, 2023). It provides a seamless way to run pre-trained machine learning models on Apple 

devices for developers to add smart features to applications without internet connectivity. Core 

ML supports a variety of machine learning model formats, including models from popular 

frameworks like TensorFlow, Keras, scikit-learn, and PyTorch (apple, 2023a, 2023b). These 

models can be converted to the Core ML format using specialized tools provided by Apple. Core 

ML enables on-device inference where machine learning models run directly on the device 

without the need for internet access or cloud servers. This ensures privacy and data security for 

real-time processing without relying on external servers. 

Core ML takes advantage of the underlying hardware on Apple devices, such as the GPU and 

Neural Engine, to accelerate the inference process and improve performance (Apple Developer, 

2023b; Apple Inc, 2023). The tools include optimizations to reduce model size and improve 

efficiency for mobile deployment, ensuring that models run smoothly on resource-constrained 

devices. It supports various machine learning tasks, including image classification, object 

detection, and instance segmentation. Core ML seamlessly integrates with the Apple Vision 

framework to simplify CV tasks like object detection, text recognition, and barcode scanning 

(Apple Developer, 2023c). By leveraging Apple Vision, developers can create sophisticated 

applications that can understand and process visual information. The framework's ease of use 

and integration with other Apple technologies make it a powerful tool for implementing CV 

applications on Apple devices. 

There exist demos of iOS object detection apps with YOLOv5 and Core ML using the COCO 

dataset (Apple Developer, 2023a; Hietala, 2022). Additionally, there exists a Python script to 

export a PyTorch weights as a Core ML file for a YOLOv5 custom model (hietalajulius, 2022b, 

2022c, 2022a). The Core ML file includes non-maximum suppression (NMS) at the end of the 
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model to support Apple Vision. Running the finished app using the COCO dataset presents an 

inference time of approximate 20 ms or 50 FPS on live streaming video, greater than the 

threshold for real-time detection and better than all other implementations described in previous 

studies for DD detection. 

Therefore, the mobile deployment of YOLOv5 model on Android and iOS device is not only 

possible, but very much achievable. Additionally, mobile devices with the upgraded camera and 

chip specification can provide greater margin of error for distance from object and increased 

inference time. Mobile applications can be used to monitor the health of individual animals or 

the entire herd where early detection of health issues can prevent disease outbreaks and improve 

animal welfare. Real-time data analysis allows for timely decision-making and immediate action 

to address any emerging issues. Mobile applications allow farmers to remotely monitor their 

livestock and farm operations from anywhere at any time. This is especially valuable for farmers 

managing large-scale operations in rural, remote areas. Consequently, object detection apps have 

the potential to transform disease monitoring and management on dairy farms. The application 

will enable quick and precise detection of DD lesions, leading to prompt veterinary care and 

treatment. The ultimate goal is to enhance the welfare and productivity of dairy cattle while 

reducing the physical pain and economic losses associated with DD and lameness. By deploying 

object detection models and other CV technology on mobile devices, these applications can 

impact the welfare of dairy cattle and the production of dairy farming. 

Sensors 

The most commonly used image sensor devices in various applications are standard digital 

cameras and surveillance cameras that capture electromagnetic waves within the visible light 

spectra to produce digital images in color or grayscale (Helmers and Schellenberg, 2003). These 
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cameras are widely accessible and offer a broad range of applications in photography, 

surveillance, and many other fields. 

In addition to standard digital cameras, there exist other specialized imaging technologies 

tailored for specific applications. Infrared imaging uses infrared radiation to capture images and 

detect heat signatures and operate in low-light conditions (Lavers et al., 2005; McManus et al., 

2016). This technology finds application in fields like night vision, thermal imaging, and 

detecting heat patterns in various industries. Ultrasound-based imaging devices uses high-

frequency sound waves to generate images in medical applications, such as prenatal imaging or 

non-invasive testing (Fernandes et al., 2020). Furthermore, ionizing radiation-based devices are 

commonly employed in medical imaging techniques like X-ray and CT scans, enabling 

visualization of internal structures, commonly used in medical diagnostics (Fernandes et al., 

2020). 

Advanced imaging technologies can generate more complex arrays of images. Three-

dimensional (3D) imaging produces detailed spatial representations, assisting in fields like CV 

(Giancola et al., 2018; Zanuttigh et al., 2016). Hyperspectral imaging captures images in multiple 

narrow spectral bands and provides rich data about the chemical composition of materials 

(Fernandes et al., 2020). This technology has applications in agriculture, environmental 

monitoring, and remote sensing. However, specialized imaging technologies are more expensive 

and less common than standard digital cameras. Consequently, their adoption is limited to 

specific industries or research applications where the benefits outweigh the costs. 

Overall, the broad spectrum of imaging technologies available provides a powerful toolbox for 

addressing various challenges and fulfilling specific requirements in different domains. 
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Understanding the strengths and limitations of each technology allows professionals to choose 

the most appropriate imaging approach for their particular applications. 

Internet of Things 

Internet of Things (IoT) has emerged as a transformative technology in precision livestock 

farming, revolutionizing how livestock operations are managed and monitored (Nóbrega et al., 

2019; Shi et al., 2019; Wurtz et al., 2019). IoT encompasses a network of interconnected devices, 

sensors, and data analytics that collect and exchange data over the internet, enabling real-time 

monitoring and decision-making for livestock farmers. 

An important application of IoT in precision livestock farming is the monitoring of animal health 

and behavior (Benhai et al., 2015; Ilapakurti and Vuppalapati, 2015; Jingqiu et al., 2017; Kim 

and Choi, 2014; Shinde and Prasad, 2017; Stutz et al., 2019). Wearable sensors, such as smart 

collars, ear tags, and leg bands, are equipped with various biometric and environmental sensors 

to continuously track vital signs, activity levels, and environmental conditions (Benaissa et al., 

2020; Chaudhry et al., 2020; Rahman et al., 2018; Subeesh and Mehta, 2021; Williams et al., 

2020). This data provides valuable insights into individual animal health, detecting early signs of 

diseases, estrus cycles, and stress indicators. By identifying health issues promptly, farmers can 

administer timely treatments and prevent disease outbreaks, leading to improved animal welfare 

and reduced veterinary costs. 

Internet of Things also plays a critical role in optimizing feeding strategies and nutrition 

management (Memon et al., 2016). Smart feeding systems equipped with Radio-Frequency 

Identification (RFID) technology and automated feeders can precisely deliver personalized feed 

rations to individual animals based on their nutritional requirements and production goals (Ariff 
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and Ismail, 2018; Brown-Brandl et al., 2019). This targeted approach enhances feed efficiency, 

reduces waste, and ensures optimal growth and production in livestock. 

Internet of Things facilitates remote monitoring of environmental conditions within livestock 

facilities (Nóbrega et al., 2019; Shi et al., 2019). Sensors installed in barns and pens can track 

temperature, humidity, ventilation, and air quality parameters (Chaudhry et al., 2020). 

Automated systems can then adjust climate control and ventilation settings accordingly, creating 

a comfortable and stress-free environment for animals. This not only promotes better animal 

health but also enhances productivity and reduces energy consumption. 

Another significant application of IoT in precision livestock farming is the tracking of animal 

movements and behavior (Ariff and Ismail, 2018; Bailey et al., 2018; Brown-Brandl et al., 2019; 

Wolfger et al., 2017). Global Positioning System (GPS) collars and tags allow farmers to 

monitor grazing patterns, herd movements, and pasture utilization (Bailey et al., 2018). This 

information aids in making informed decisions regarding rotational grazing, optimizing forage 

usage, and ensuring sustainable land management practices. 

The integration of IoT with data analytics and cloud computing further enhances the potential of 

precision livestock farming. The vast amount of data generated by IoT sensors can be analyzed 

in real-time, providing farmers with actionable insights and predictive analytics. By leveraging 

machine learning algorithms, farmers can gain a deeper understanding of livestock behavior, 

identify trends, and make data-driven decisions to improve farm efficiency. 

Internet of Things enables seamless connectivity between different components of the farm, such 

as milking parlors, feeding systems, and environmental controls. Centralized data management 
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platforms allow farmers to access critical information from multiple devices and systems, 

streamlining farm management and fostering greater operational efficiency. 

Some challenges exist in the widespread adoption of IoT in precision livestock farming. Data 

security and privacy concerns are critical considerations, as the interconnected nature of IoT 

devices increases the risk of data breaches. Moreover, ensuring compatibility and standardization 

among different IoT devices from various manufacturers is essential to achieve seamless 

integration and interoperability. 

Internet of Things is transforming precision livestock farming by providing real-time monitoring, 

data-driven decision-making, and enhanced operational efficiency. The integration of IoT 

technologies with advanced analytics offers tremendous potential for optimizing livestock 

management, promoting animal welfare, and contributing to sustainable and profitable farming 

practices in the modern agricultural landscape. 

Unmanned Aerial Vehicle 

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have also found valuable 

applications in precision livestock farming (Aquilani et al., 2022; Yousefi et al., 2022). These 

aerial devices equipped with various sensors and cameras offer significant benefits in monitoring 

and managing livestock, contributing to improved animal welfare, optimized herd management, 

and enhanced farm productivity (Barbedo and Koenigkan, 2018; Jung and Ariyur, 2017; Li et al., 

2020; Yinka-Banjo and Ajayi, 2019). 

A current application of UAVs in precision livestock farming is the aerial monitoring of 

extensive grazing areas (Andrew et al., 2017; de Lima Weber et al., 2019; García et al., 2020; 

Nielsen, 2013). UAVs equipped with thermal cameras can detect heat stress in livestock, 
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enabling early intervention and preventive measures to maintain animal health during extreme 

weather conditions (Herlin et al., 2021; Tzanidakis et al., 2023). Additionally, aerial surveys help 

identify potential hazards, such as predators or damaged fences, allowing farmers to respond 

promptly and mitigate risks to their livestock (di Virgilio et al., 2018; Li et al., 2020; Reddy 

Maddikunta et al., 2021). 

Unmanned Aerial Vehicles can be employed for individual animal tracking and identification, 

particularly in large-scale farms where monitoring each animal manually can be labor-intensive 

and time-consuming (Goolsby et al., 2016; Li and Xing, 2019; Vayssade et al., 2019; Wamuyu, 

2017). By using specialized tracking technology, farmers can keep track of livestock movements, 

feeding patterns, and behavior, allowing for better insights into individual animal health and 

performance. 

Unmanned Aerial Vehicles offer the potential for disease detection in livestock (Moysiadis et al., 

2021). Thermal cameras can be used to identify animals with elevated body temperatures, which 

may indicate the presence of infectious diseases (Herlin et al., 2021; Tzanidakis et al., 2023). 

Early detection enables rapid isolation and treatment, reducing the risk of disease spread and 

supporting overall herd health. 

Integration with data analytics and decision-support systems is necessary. The data collected by 

UAVs can be processed using CV algorithms and AI techniques, generating valuable insights 

and recommendations for farm management (Anderson et al., 2013). These data-driven 

approaches assist farmers in making more informed decisions related to animal health, nutrition, 

and overall farm efficiency. 
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Some challenges exist in the adoption of UAVs in precision livestock farming. Compliance with 

aviation regulations, data privacy concerns, and the need for skilled operators are important 

aspects to consider. Additionally, robust communication networks are essential for transmitting 

data between UAVs and farm systems in real-time. 

Unmanned Aerial Vehicles have become valuable tools in precision livestock farming for real-

time monitoring, individual animal tracking, and enhanced decision-making capabilities for 

farmers. The combination of UAV technology with CV tools holds great potential to further 

advance livestock management practices, leading to improved animal welfare, increased farm 

productivity, and sustainable agriculture practices in the future. 

Unmanned Aerial Vehicles can be dropped in the current workflow by cloud deployment. Real-

Time Messaging Protocol (RTMP) is a protocol that drones use to transmit video. YOLOv5 can 

be employed to run inference using a drone camera via RTMP stream similar to HTTP and 

RTSP. However, in remote regions, the protocol may lack sufficient cellular network 

connectivity for support. Nevertheless, the implementation of a single, small edge device using a 

fast, lightweight model is ideal for low resource settings over large areas. 

YOLOv7 

YOLO remains a prominent object detection network because of its accessibility, accuracy, and 

computationally cost. These characteristics have made YOLO widely accepted and applied, 

beyond the data science community, because of its practicality. YOLOv7 was developed by the 

creators of YOLOv4, Scaled-YOLOv4, and YOLOR and represents the latest version of this 

popular algorithm with significant improvements over its previous iterations in the YOLO family 

(Wang et al., 2022a; WongKinYiu, 2022).  
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YOLOv7 employs Extended Efficient Layer Aggregation Networks (E-ELAN) for model re-

parametrization during the inference stage to accelerate inference time (Wang et al., 2022a; 

WongKinYiu, 2022). E-ELAN leverages expand, shuffle, and merge cardinality techniques to 

enhance network adaptability and learning without impacting the original gradient path (Wang et 

al., 2022b). This approach applies the same group parameter and channel multiplier to each 

computational block in the layer, followed by shuffling and combining the feature maps into a 

set number of groups. The number of channels in each group of feature maps is the same as the 

original architecture. The groups are added to merge cardinality such that the transition layer is 

left unaffected and the gradient path is fixed. 

Scaling is a common practice in object detection models to release a series of models for 

different use cases. YOLOv7 achieves scaling by simultaneously adjusting network depth and 

width while concatenating layers (Wang et al., 2022a; WongKinYiu, 2022). This approach 

maintains an optimal model architecture for different sizes, mitigating potential performance 

drawbacks when scaling certain aspects, such as the input and output channel ratio in transition 

layers. 

YOLOv7 employs gradient flow propagation paths for the combination of re-parameterized 

convolution with different networks to improve inference (Wang et al., 2022a; WongKinYiu, 

2022). Model training process is split into multiple modules and the outputs are ensembled to 

obtain the final model. Specifically, the 3×3 convolution layer of the E-ELAN computational 

block is replaced with the RepConv layer. YOLOv7 also performs re-parameterization on 

Convolution Batch Normalization (Conv-BN), Online Convolutional Re-parameterization 

(OREPA), and YOLO-R to get the best results (Hu et al., 2022; Wang et al., 2021). 
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Deep supervision is a method that introduces an additional auxiliary head within the intermediate 

layers of the network. This auxiliary head leverages shallow network weights with an assistant 

loss to guide the learning process. This technique is particularly valuable in scenarios where 

model weights tend to converge. The lead head responsible for the final output, while the 

auxiliary head used to assist in training. YOLOv7 uses the lead head predictions as guidance to 

generate coarse-to-fine hierarchical labels (Wang et al., 2022a; WongKinYiu, 2022). These 

labels are then used for learning in both the auxiliary head and lead head, respectively. This 

approach enhances network learning and helps achieve improved performance even in 

challenging convergence scenarios. 

These various improvements result in significant advancements in performance and reductions in 

cost compared to its previous versions. YOLOv7 provides enhanced accuracy and efficiency, 

making it a possible choice for object detection tasks in various applications moving forward. 

YOLOv7 exceeds all known object detectors in both speed and accuracy in the range from 5 FPS 

to 160 FPS and has the highest accuracy 56.8% AP for all known real-time object detectors with 

30 FPS or higher on GPU V100 (Wang et al., 2022a; WongKinYiu, 2022). YOLOv7-E6 object 

detector (56 FPS V100, 55.9% AP) outperforms both state-of-the-art detector SWIN-L Cascade-

Mask R-CNN (9.2 FPS A100, 53.9% AP) by 509% in speed and 2% in accuracy, and 

ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) by 551% in speed and 0.7% 

AP in accuracy (Wang et al., 2022a; WongKinYiu, 2022). Additionally, YOLOv7 outperforms 

YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable DETR, DINO-5scale-R50, 

ViT-Adapter-B and many other object detectors in speed and accuracy (Wang et al., 2022a; 

WongKinYiu, 2022). 
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YOLOv8 

YOLOv8 is the newest state-of-the-art YOLO model designed for various tasks such as object 

detection, image classification, and instance segmentation. YOLOv8 was developed by 

Ultralytics, who also created YOLOv5, and introduces a wide range of architectural and 

developer experience improvements compared to YOLOv5 (Jocher et al., 2023; Ultralytics, 

2023c). 

YOLOv8 employs an anchor-free approach by directly predicting the centroid of the object 

instead of calculating the offset from predetermined anchor boxes (Jocher et al., 2023; 

Ultralytics, 2023c). In previous YOLO models, anchor boxes posed challenges as they may 

reflect the distribution of reference boxes in a benchmark dataset, not necessarily the distribution 

of a specific custom dataset. This anchor-free strategy reduces the quantity of box predictions, 

resulting in faster processing of NMS to improve efficiency. 

The Bottleneck architecture of YOLOv8 is similar to that of YOLOv5, except the first 

convolutional layer's kernel size has been changed from 1x1 to 3x3, reverting back to the ResNet 

block design (Jocher et al., 2023; Ultralytics, 2023c). The Bottleneck module directly 

concatenates features without enforcing the same channel dimensions. This results in a reduction 

in the number of parameters and the overall size of the tensors, resulting in improved efficiency 

and computational performance. 

While deep learning research often prioritizes model architecture, the training routine plays a 

critical role in the success of YOLOv5 and YOLOv8. In the case of YOLOv8, images are 

augmented during the training process (Jocher et al., 2023; Ultralytics, 2023c). At each epoch, 

the model encounters slightly different variations of the images it has been given for training. 
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This dynamic augmentation strategy improves model performance and generalizability to unseen 

data. 

Mosaic augmentation is a notable technique used in the YOLOv5 and YOLOv8 models (Jocher 

et al., 2023; Ultralytics, 2023c). This approach combines four images into a mosaic to expose 

and challenge the model to new object locations, partial occlusions, and varying surrounding 

pixels. However, it has been observed that continuously applying mosaic augmentation 

throughout the entire training process can lead to a decline in performance. Therefore, YOLOv8 

disables mosaic augmentation for the last ten training epochs (Jocher et al., 2023; Ultralytics, 

2023c). 

YOLOv8 outperforms YOLOv7, YOLOv6-2.0, and YOLOv5-7.0 with respect to mAP, size, and 

latency during training (Jocher et al., 2023; Ultralytics, 2023c). The mAP increases as the size, 

speed, and FLOPs increase. The largest YOLOv5 model, YOLOv5x, achieved a maximum mAP 

value of 50.7 (Jocher et al., 2023; Ultralytics, 2023c). YOLOv8 achieved an impressive 

improvement of 2.2 units in mAP, signifying a significant enhancement in capabilities (Jocher et 

al., 2023; Ultralytics, 2023c). This is conserved for all model sizes where YOLOv8 models 

consistently outperforming YOLOv5. Overall, YOLOv8 signifies a significant step from 

YOLOv5 and other competing frameworks. 

Instance Segmentation 

Instance segmentation is a computer vision task that combines object detection and semantic 

segmentation to provide a more detailed understanding of an image. While semantic 

segmentation, which assigns a single class label to each pixel in an image, instance segmentation 

identifies and differentiates individual objects within the same class. This means that objects of 
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the same class, such as multiple cows or lesions, are treated as separate instances with unique 

segmentation masks. 

The goal of instance segmentation is to accurately outline and delineate the boundaries of each 

object instance in an image for precise object localization and separation of overlapping 

instances. This fine-grained level of detail is valuable in various applications including medical 

imaging. 

Instance segmentation algorithms typically use deep learning models, such as Mask R-CNN, 

DeepLab, and YOLOv5 with ProtoNet (Chen et al., 2017a, 2017b; He et al., 2017; ultralytics, 

2022a, 2022b, p. 10258). These models leverage CNNs to extract rich feature representations 

from the input image and sophisticated post-processing techniques to refine and improve the 

segmentation results. These models combine object detection with semantic segmentation to 

simultaneously predict bounding boxes and pixel-level masks for each instance. This task is 

particularly useful in scenarios where objects of the same class may have different shapes, sizes, 

and orientations, making it challenging for traditional object detection and semantic 

segmentation methods. 

The YOLOv5 instance segmentation architecture consists of two main components: the 

YOLOv5 object detection head and a small fully connected neural network called ProtoNet 

(Roboflow, 2023; Ultralytics, 2022; ultralytics, 2022a, 2022b, 2022c). The ProtoNet architecture 

generating prototype masks for the segmentation model (Snell et al., 2017). In the post-

processing phase, after the detection boxes and segmentation masks are obtained, the 

segmentation masks are clipped to fit neatly within each detected bounding box to ensure proper 

alignment. This prevents the segmentation masks from flowing out of the boundaries of the 

corresponding bounding boxes. 
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Image segmentation is the least explored of the three main CV tasks for animal science and 

precision livestock applications (Oliveira et al., 2017). Instance segmentation allows for precise 

tracking of animal movement and behavior to provide insights into growth rates, social 

interactions, and overall health (Nye et al., 2020). It can aid in monitoring water consumption 

and other feeding patterns. It can assist in automating livestock management tasks, such as 

counting and sorting animals, for record-keeping, compliance, and business operations (Qiao et 

al., 2019; Wu et al., 2020). Instance segmentation can aid in early detection of small changes in 

posture, gait, or behavior and assist in scoring of lameness, pain, or discomfort (Brünger et al., 

2020). It can identify specific lesions or injuries, helping farmers and veterinarians take timely 

action, leading to early intervention, and resulting in better animal welfare outcomes. Ultimately, 

it can be employed to detect DD lesions and used by hoof trimmers for therapeutic trimming of 

sole ulcers and other bovine claw diseases to manage and monitor herd outbreaks. 

While instance segmentation holds great potential, there are challenges to consider in its 

implementation. Instance segmentation models is computationally intensive and may require 

robust hardware infrastructure for implementation. Dairy parlors and beef feedlots can be 

diverse, with varying lighting conditions, animal poses, and occlusions. Instance segmentation 

models need to handle these challenges for reliable results. Developing accurate instance 

segmentation models requires large and diverse annotated datasets, which can be labor-intensive 

to create. For real-time applications, instance segmentation models need to deliver fast and 

efficient performance. Successful deployment of instance segmentation in precision livestock 

requires integration with other systems, such as data management platforms and automation 

tools. Nevertheless, the development and adoption of instance segmentation in precision 
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livestock have the potential to revolutionize animal monitoring, leading to improved animal 

welfare, increased productivity, and more sustainable farming practices. 

Pose Estimation 

While YOLO is primarily designed for object detection tasks, it can be extended to estimate the 

body or keypoint locations of subjects, effectively turning it into a pose estimation model (Jocher 

et al., 2023; Munawar, 2023; Ultralytics, 2023d; WongKinYiu, 2022). To train a pose estimation 

model with YOLO, a dataset of images or videos containing annotated keypoints or body parts is 

required (Lynn, 2023). This dataset should include images or frames with labeled coordinates of 

keypoints, such as joints of a human body or specific body parts of animals (Lynn, 2023). 

The YOLO architecture is originally designed for object detection, where it predicts bounding 

boxes and class probabilities for detected objects. For pose estimation, the model needs to be 

modified to predict the keypoints or body part coordinates instead of bounding boxes. The 

training dataset must have annotations of keypoints on the subjects of interest. These annotations 

specify the coordinates of the keypoints within the image or frame. 

The YOLO model is then trained on the annotated dataset to accurately predict the keypoints. 

Model training involves adjusting the model parameters (weights and biases) to minimize the 

error between the predicted keypoints and the ground-truth keypoints. YOLO model can be used 

for pose estimation on new, unseen images or video frames. The model takes an input image or 

frame and predicts the coordinates of keypoints for each subject present in the image. The output 

of the model will be a set of predicted keypoints for each subject (Lynn, 2023). Post-processing 

techniques can be applied to refine the keypoints, smooth the results, and classify the poses 

based on the prediction (Lynn, 2023). 
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Pose estimation using YOLO has various applications, including human pose estimation for 

action recognition, gesture recognition, sports analysis, and fitness tracking. In veterinary 

sciences, it can be used for animal pose estimation to analyze behavior, gait, and posture, which 

can be valuable for monitoring animal health and well-being. Note that while YOLO can be 

adapted for pose estimation, there are other dedicated pose estimation models and algorithms that 

may provide more accurate and specialized results. Popular pose estimation models include 

OpenPose, Hourglass, EfficientPose, and MediaPipe (Bukschat and Vetter, 2020; Cao et al., 

2019; MediaPipe, 2023; Newell et al., 2016). The choice of the model depends on the specific 

requirements and the complexity of the pose estimation task at hand. 

Action Recognition 

Action recognition is a computer vision task that involves identifying and classifying activities or 

actions from images or videos. The goal of action recognition is to develop algorithms and 

models that can automatically detect and categorize various actions performed by individuals or 

objects in a scene. In precision livestock farming, action recognition can play a critical role in 

monitoring and managing the overall welfare of the animals and economic well-being of the 

farm. By automatically detecting and classifying specific actions performed by animals, farmers 

and researchers can gain valuable insights into their behavior, health, and overall welfare. 

Action recognition can be used to identify abnormal behaviors or actions that may indicate 

potential health issues in animals (Fuentes et al., 2023, 2020; Liang et al., 2018; Ma et al., 2022; 

McDonagh et al., 2021; Nguyen et al., 2021). For example, recognizing unusual movements or 

postures in cattle may help detect lameness, while identifying changes in feeding behavior could 

indicate signs of injury or illness (Jiang et al., 2020). Action recognition can aid in tracking 

reproductive behaviors in livestock, such as estrus detection in dairy cows. Recognizing specific 
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behaviors associated with estrus can help optimize breeding programs and improve reproductive 

efficiency. 

Monitoring actions related to activity levels and stress can provide insights into the overall 

welfare of livestock (Fuentes et al., 2023; Liang et al., 2018; Nguyen et al., 2021). An increase in 

stress-related behaviors can indicate environmental or management issues to be addressed. 

Additionally, monitoring actions associated with water consumption and other feeding patterns, 

can provide insights into the overall welfare of livestock as well (Cangar et al., 2008). This 

information can be used to adjust feeding strategies and ensure proper nutrition for each animal. 

By automating of action recognition, farmers and researchers can collect large amounts of data 

efficiently and consistently. This data can be used for further analysis and decision-making in 

precision livestock farming. 

Accurate pose estimation is often a prerequisite for action recognition (Song et al., 2021). Pose 

estimation introduces additional challenges, such as occlusion and varying body sizes and 

shapes. Actions can be observed from multiple viewpoints and angles, significantly affecting the 

appearance of the action. The model needs to be robust to variations in views to accurately 

recognize actions. Proper camera placement is important for clear and unobstructed views of 

animal actions. This requires careful planning and adjustment to capture relevant behaviors 

effectively. 

Livestock animals exhibit a wide range of behaviors, and there exists variability in actions by 

different individuals and species. Actions can be performed in different ways by different 

individuals and in various contexts. Variability in pose, speed, and appearance of actions makes 

it challenging for the recognition model to generalize across different instances of the same 

action. Actions occur in occluded scenes and dynamic environments with complex backgrounds. 
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Distinguishing the action of interest from the background noise can be difficult and may lead to 

misclassifications. 

Building a labeled dataset for training the action recognition model can be time-consuming, 

labor-intensive process, requiring additional domain expertise to accurately annotate actions 

(Tian et al., 2020). Similarly, building a large and diverse dataset for training action recognition 

models can be time-consuming and resource-intensive process. Limited data may result in 

overfitting or reduced performance. 

Data augmentation techniques are commonly used to artificially increase the size of the training 

dataset. However, finding effective data augmentation strategies for action recognition can be 

challenging as well. For real-time monitoring and decision-making, the action recognition 

system needs to process video streams efficiently and in real-time. This can be computationally 

demanding, particularly for large-scale datasets or high-resolution videos. Optimizing models for 

efficient inference is essential, especially in resource-constrained environments. 

Despite these challenges, action recognition in precision livestock farming has the potential to 

significantly improve animal welfare, optimize management practices, and enhance the overall 

efficiency and productivity of livestock operations. As computer vision techniques continue to 

advance, the application of action recognition in precision livestock farming is expected to be 

prevalent and prominent. 

Computer Vision in Precision Farming 

The concept of developing CV for automatic monitoring and measuring of animal traits of 

interest has been an area of interest for researchers and practitioners. Early advancements in 

digital image analysis and computer vision have demonstrated the potential of using images to 
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evaluate various animal characteristics, including behavior, gait, body weight, and other traits, 

particularly in controlled experimental settings. More recent studies have extended these 

applications to on-farm scenarios, showing the feasibility of using computer vision in real-world 

agricultural practices. 

Research has revealed that certain imaging technologies are better suited for specific applications 

in animal health and food sciences. For instance, infrared thermography (IRT) has proven 

effective in identifying mastitis and digital dermatitis in dairy cattle by detecting variations in 

surface temperature associated with these conditions. Spectral and hyperspectral imaging have 

also shown promise in food sciences, enabling detailed analysis of food quality and safety 

parameters. 

Despite the success of specialized imaging technologies, there is a growing interest in developing 

CV based on more accessible and widely available technologies, such as standard digital cameras 

and 3D cameras. These devices offer practical and cost-effective solutions for precision livestock 

monitoring, making them more feasible for broader adoption in diverse settings. 

Standard digital cameras, which capture images within the visible light spectrum, have been 

widely used in various applications. Their simplicity and affordability make them suitable for 

routine monitoring of animal behavior, assessing body condition, and tracking animal 

movements. These cameras have shown great potential in enhancing farm management practices 

and improving animal welfare. 

3D cameras, on the other hand, provide a more sophisticated approach to data acquisition, 

allowing for the creation of three-dimensional images of animals and their surroundings. This 

advanced level of spatial information opens up new opportunities for precise measurements and 
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analysis of animal traits, such as volume, surface, and gait. The adoption of 3D cameras is 

steadily increasing as technology advances and costs decrease, making them a promising tool for 

precision livestock monitoring. 

The development of CV based on standard digital cameras and 3D cameras offers several 

benefits for agriculture and animal husbandry. Firstly, the widespread availability of these 

devices makes them easily accessible to farmers and researchers alike, reducing the barrier to 

entry for utilizing computer vision technologies in the field. Secondly, their practicality and ease 

of use make them suitable for real-time monitoring and decision-making, enabling prompt 

interventions when necessary. 

The versatility of these imaging technologies allows for a wide range of applications, from 

simple behavior analysis to more complex morphological measurements. For instance, CV using 

standard digital cameras can be employed in animal behavior studies and identifying abnormal 

behaviors that may indicate health issues. On the other hand, 3D cameras can be used for precise 

measurements of body dimensions, assisting in animal selection and breeding decisions. 

As research and technology in computer vision continue to advance, the capabilities and 

functionalities of CV based on standard digital cameras and 3D cameras will likely expand. 

Integrating these technologies into precision livestock management systems will provide 

valuable insights into animal health, performance, and overall well-being. By leveraging the 

power of computer vision in combination with accessible imaging devices, the agriculture 

industry can make significant strides towards more efficient and sustainable practices while 

ensuring the welfare and productivity of livestock. 
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Applications of CV in animal and veterinary sciences is an emerging field of research. While 

some commercial products already exist for monitoring groups of live animals, there are still 

significant challenges for the successful development and future implementation of practical 

solutions. 

A current challenge is the development of reliable CV for autonomously acquiring data on single 

or multiple traits in farm conditions. Some studies have explored these systems, but there 

remains a need for further validation using diverse datasets that include different animal breeds 

or species within the same farm or across multiple farms. Accuracy and robustness of these 

systems in real-world farming environments is essential for their widespread adoption and 

practical application. 

Another area of interest is individual animal identification and tracking. Existing methods for 

animal identification are prone to errors, leading to potential issues with data accuracy and 

reliability. The precision and efficiency of individual animal tracking within groups is critical for 

obtaining accurate and meaningful results for farm management and research purposes. 

Furthermore, as the number of devices used for different applications increases, the demand for 

effective methods to integrate and connect these devices increases as well. This integration 

would lead to the implementation of more sophisticated algorithms that can consider multiple 

inputs and outputs. By leveraging data from diverse sources, CV can improve the accuracy of 

joint predictions of multiple traits, providing valuable insights for animal welfare and production 

systems. 

Another area of focus is the development of user-friendly applications to deliver the data 

generated by CV to connected systems. The clear and concise dissemination of information is 
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essential for presenting actionable insights to farmers and managers, ultimately improving 

decision-making and optimizing farming practices. Technologies such as big data and IoT will 

be indispensable in creating a comprehensive ecosystem where CV-generated data can be 

analyzed, combined with other relevant data, and used to optimize animal breeding, health, and 

overall production. 

Successful implementation of CV can lead to enhanced animal welfare, reduced labor-intensive 

monitoring, early disease detection, improved breeding programs, and increased production 

efficiency in agriculture and animal husbandry. The development and deployment of reliable CV 

in animal and veterinary sciences require continued research and collaboration among 

researchers, practitioners, and technology developers. Addressing the challenges of real-world 

data validation, individual animal identification, device integration, and data delivery will pave 

the way for the broader adoption of CV in animal breeding programs and production systems, 

ultimately improving the well-being and productivity of livestock and contributing to sustainable 

and efficient agricultural practices. 
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