Towards Scalable Topology Optimization, Classical or Quantum?

by

Zisheng Ye

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Mechanical Engineering)

at the
UNIVERSITY OF WISCONSIN-MADISON

2025

Date of final oral examination: 05/05/2025

The dissertation is approved by the following members of the Final Oral Committee:
Wenxiao Pan, Associate Professor, Mechanical Engineering
Xiaoping Qian, Professor, Mechanical Engineering
Dan Negrut, Professor, Mechanical Engineering
Jinlong Wu, Assistant Professor, Mechanical Engineering
Bu Wang, Associate Professor, Civil and Environmental Engineering

Xiaozhe Hu, Associate Professor, Mathematics, Tufts University



© Copyright by Zisheng Ye 2025
All Rights Reserved



ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere gratitude to
those who have contributed to the completion of my doctoral thesis.

First and foremost, I am deeply thankful to my advisor, Dr. Wenxiao
Pan, for her invaluable guidance, unwavering support, and insightful ad-
vice throughout my PhD journey. Her systematic training and mentorship
have played a pivotal role in shaping me into a more rigorous and logical
researcher.

I am also grateful to the members of my dissertation committee, Dr.
Xiaoping Qian, Dr. Dan Negrut, Dr. Jinlong Wu, Dr. Bu Wang, Dr. Xiaozhe
Hu and Dr. Wenxiao Pan, for their time, patience, and valuable feedback
on this work. Their expertise and constructive criticism have significantly
enriched the quality of this thesis.

Next, I want to express my thanks to my lab-mates and collaborators,
especially Zhan Ma, for their exceptional collaboration and support. I
extend my appreciation to all friends Chuangi Chen, Chao Hu, Zhiwei Tu
and my cousin Ziqi Gu for their assistance throughout my PhD career.

Furthermore, I would like to extend my heartfelt gratitude to Ziying
(Sarah) Han. Her unwavering belief in me, even in moments of self-doubt,
has propelled me forward. Her love, companionship and support have
illuminated my path and enriched every aspect of my life.

Finally, I extend my thanks to my parents, Xin Ye and Hanbing Gu,
my grandparents Huankui Ye, Judi Wang, Tianhu Gu and Liudi Wu for
their encouragement and sacrifices. Their boundless support has been
the cornerstone of my academic journey, and I am profoundly grateful for
having them in my life.



CONTENTS

ii

Contents ii

List of Tables iv

List of Figures vii

Abstract xiii

1 Introduction 1

1.1
1.2
1.3
1.4

Background 1

Acceleration via Classical Computing 2
Acceleration via Quantum Computing 2
Outline 3

2 Discrete Variable Topology Optimization 5

2.1
2.2
2.3
24
2.5
2.6

Problem Statement 6
Design Objectives 15
Multi-cuts Formulation 21
Parameter Relaxation 29
Numerical Results 33

Summary and Conclusions 57

3 Classical PDE Solver for Complex Geometry 59

3.1
3.2
3.3
3.4
3.5

Generalized Moving Least Square Method 61
Geometric Multigrid Preconditioner 72
Parallel Implementation 85

Numerical Results 88

Conclusions112



iii

4 Classical Optimizer for Discrete Variable Topology Optimiza-
tion116
4.1  Algorithm for Solving the Bilinear Programming (2.36)116
4.2 Modified Dantzig-Wolfe (DW) Decomposition119
4.3 Numerical Results127

5 Quantum Optimizer for Discrete Variable Topology Optimiza-
tion140
5.1 Quantum Computing for Optimization140
5.2 Preliminary of QUBO141
5.3 Quantum Implementation of the Discrete Topology Optimization
Problem144
5.4 Numerical Results149

6 Summary159

References160



iv

LIST OF TABLES

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

29

2.10

211

212

2.13

2D design space: Properties of the five candidate materials. . . 19
3D design space: Properties of the four candidate materials. . 20
Single-material minimum compliance for the MBB design: The

roles of the minimum Young’s modulus and the target volume
fraction in the optimization problem’s conditioning. . . . . . . 32
Single-material minimum compliance: Results with fixed trust-
regionradii. . .. ... ... . L L oo 36
Single-material minimum compliance: Comparison for employ-

ing adaptive vs. fixed trust-regionradii. . .. ... ... .. .. 39
Single-material minimum compliance: Comparison with other

TO methods for solving the MBB problem. . . ... ... ... 40
Single-material minimum compliance for the MBB design: Two
parameter relaxation schemes. . . . . .. ... ... .. ... 43
Single-material minimum compliance for the MBB design: Com-

parison between the two parameter relaxation schemes, using

the results from the SIMP method as the reference. . . . . . . . 43
Single-material compliant mechanism: Results and comparison

with the SIMP method. . . . . .. ... .............. 47
Five-material cantilever: Parameter relaxation scheme employed. 49

Five-material cantilever: Main results, for both material sets
considered and compared with the reference results reported
inliterature. . . . . . .. ... ... 49
Five-material compliant mechanism: Main results and compar-
ison with the single-materialcase.. . . . . ... ... ... ... 53
Five-material compliant mechanism: Results with different
adjustment factors for the trust-region radius (i.e., 0; and 6, in
Eq. (2.38)). . . . . o o 55



2.14 Five-material compliant mechanism: Results with different

3.1

4.1

4.2

4.3

44

4.5

4.6

4.7

51

5.2

convergence tolerancee. . . .. ... ... ... . o L. 57
Pure fluid flow—Artificial vascular network: Strong scaling test. 96

Single-material minimum compliance: Results with different
discretization resolutions using the modified DW decomposition.128
Multi-material minimum compliance: Results with different
discretization resolutions using the modified DW decomposition.128
Single-material minimum compliance: Comparison between
the modified DW decomposition and the SIMP method in terms
of the objective function. . . . .. ... ... .. ... ...... 133
Single-material minimum compliance: Comparison between
the modified DW decomposition and the SIMP method in terms
of the time of FEM analysis. . . ... ... ............ 133
Single-material minimum compliance: Comparison between
the modified DW decomposition and the SIMP method in terms
of the time of optimization. . . . ... ... ... ........ 136
Single-material minimum compliance: Comparison between
the modified DW decomposition and the standard MILP solver
in terms of the time of optimization. . . . ... ... ... ... 138
Multi-material minimum compliance: Comparison between
the modified DW decomposition and the standard MILP solver
in terms of the time of optimization. . . .. .. ... ... ... 139

Comparison between different implementations for the reduced
binary global sub-problem (5.10) on the quantum annealer pro-
vided by D-Wave, where T denotes the total wall time spent for
finding the optimal topology. . . . ... ... ... .. ..... 150
Statistics about the 11 QUBO problems (5.13) solved in the
implementation of Heuristic-Direct, where Toupo denotes the

time spent for embedding and annealing on the QPU. . . . . . 151



5.3

54

5.5

5.6

5.7

5.8

5.9

Comparison between different methods for solving the mini-
mum compliance problem. . . . . ... ... ... . 00 L
Run time of the D-Wave’s hybrid CQM solver for solving prob-
lem (4.11), where the discretization resolution is 480 x 160,
Toru denotes the annealing time spent on QPUs, and Tcqu is
the total wall time costby the COM. . . . ... ... ... ...
Single-material minimum compliance: Time of main compo-
nents of the the modified DW decomposition optimizer. . . . .
Multi-material minimum compliance: Time of main compo-
nents of the the modified DW decomposition optimizer. . . . .
Solving accuracy of the randomly selected sub-problems (n =
30) by using different number of layers L of the ansatz and
different sizes of the sub-problems [D;|. . ... ... ......
Single-material minimum compliance: Time of the expected
quantum accelerated implementation of the the modified DW
decomposition optimizer. . . ... ... ... ... ...
Multi-material minimum compliance: Time of the expected
quantum accelerated implementation of the the modified DW

decomposition optimizer. . . ... ... ... ... .. ..

Vi

155

155



vii

LIST OF FIGURES

2.1

2.2

2.3
24

2.5

2.6

2.7

Minimum compliance: design domain and boundary condi-
tions for two different problems. . . ... ... ... ... ... 18
Minimum compliance: design domain and boundary condi-
tions for the bridge design problemin3D. . . . ... ... ... 19
Compliant mechanism: Design domain and boundary conditions. 22
Single-material minimum compliance for the MBB design: Evo-
lution of the adaptive trust-region radius and the objective
function value during the optimization process, along with
the resulting material configuration at different iteration steps.
Here, the target volume fraction is V1 = 0.4; the discretization
resolution is 240 x 80; and the initial trust-region radius is set
as d° = 0.3. The minimum Young’s moduli are E; = 1072 and
Ey = 107, respectively, for the iteration steps before and after
the gray dashed line. . . . ... ... ... ... . ... ...... 38
Single-material minimum compliance: The optimal topology
obtained for the MBB design from different methods, with the
discretization resolution of 360 x 120 and the target volume
fractionof VT =0.3. . . . . . ... .o 42
Single-material minimum compliance for the MBB design: The
final topological configuration with the target volume fraction
of Vi =03, . . . . 44
Five-material cantilever: The resultant material configurations
at various resolutions for Material Set 1. The color code for de-
noting different candidate materials is specified as: Bl denotes
MAT 1;  denotes MAT 2; | denotes MAT 3; Ml denotes MAT
4;and M denotes MAT 5. . . . . . . . 49



2.8

29

2.10

211

212

Five-material cantilever: The resultant material configurations
at various resolutions for Material Set 2. The color code for de-
noting different candidate materials is specified as: Bl denotes
MAT 1;  denotes MAT 2; | denotes MAT 3; Il denotes MAT
4;and B denotes MAT 5. . . . . . . .
Five-material cantilever: The resultant material configurations
by solving the problems with the candidate materials disor-
dered, at the discretization resolution of 240 x 160. The color
code is the same as in Figure 2.7 and Figure 2.8. . . . . . . . ..
Five-material compliant mechanism: The resulting material
configurations at various resolutions for Material Set 1. The
color code for denoting different candidate materials is speci-
fied as: B denotes MAT 1;  denotes MAT 2; ' denotes MAT
3; Il denotes MAT 4; and B denotes MATS5. . . . . . ... ...
Five-material compliant mechanism: The resulting material
configurations at various resolutions for Material Set 2. The
color code for denoting different candidate materials is speci-
fied as: B denotes MAT 1;  denotes MAT 2; [ denotes MAT
3; M denotes MAT 4; and B denotes MAT5. . . . ... ... ..
Five-material compliant mechanism: The resulting material
configurations for Material Set 2 with different adjustment fac-
tors (0, and 0,) for the trust-region radius. The color code for
denoting different candidate materials is specified as: Bl de-
notes MAT 1;  denotes MAT 2; I denotes MAT 3; Ml denotes
MAT 4; and B denotes MAT 5. . . . . . .. ... ... .....

viii

52



ix

2.13 Five-material compliant mechanism: The resulting material

3.1

3.2

3.3

34

3.5

3.6

configurations obtained with different convergence tolerance ¢,
all at the discretization resolution of 800 x 400 and for Material
Set 2. The color code for denoting different candidate materials
is specified as: B denotes MAT 1;  denotes MAT 2; I denotes
MAT 3; Ml denotes MAT 4; and Ml denotes MAT 5. . . . . . .. 57

Schematic of the interpolation and restriction. Coarse-level
nodes are displayed in red and fine-level nodes are in blue. The
black dashed lines indicate part of a solid body’s boundary. . 77
[lustration of construction of Q. Blue nodes denote the bound-
ary nodes on I',,. Red nodes represent the nodes near the bound-
ary I, and contribute to the force and torque terms to the n-th
solid. The green nodes denote the normal interior GMLS nodes. 82
Pure fluid flow—Taylor-Green vortex: RMS errors and conver-
gence for the numerical solutions of the velocity (dashed line)
and pressure (solid line). Here, N denotes the total number of
GMLS nodes; P denotes the order of polynomial basis used in
the GMLS discretization; m is the slope of each line. . . . . .. 90
Pure fluid flow—Taylor-Green vortex: Scalability of the pro-
posed GMG preconditioner and the weak scalability of the
parallel implementation of the preconditioner, tested for differ-
ent order of GMLS discretization (black for the 2nd order and
red for the 4th order). Here, N, denotes the number of CPU
coresusedineachtest. . . .. ... .. ... ... ..... ... 91
Pure fluid flow—Artificial vascular network: Computed veloc-
ity field, where the color bar indicates the magnitude of velocity. 93
Pure fluid flow—Artificial vascular network: Convergence of
the total recovered error. Here, the slope is regressed from the
last 4 points; N denotes the total number of GMLS nodes. . . . 93



3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

Convergence test with respect to the non-convexity of compu-
tational domain. . . . . ... ..o Lo o oo
Pure fluid flow—Artificial vascular network: Parallel portion w
determined from Amdahl’s law in Eq. (3.42). . . . .. ... ..
Fluid-solid interactions—Duplicate cells with cylinders: The
schematic of a square cell with four cylinders. . . . . . ... ..
Fluid-solid interactions—Duplicate cells with cylinders: The
pressure field computed in each cell. The color is correlated to
the magnitude of pressure. . . . . . ... ... ... ...
Fluid-solid interactions—Duplicate cells with cylinders: The
growths of total DOFs and the boundary (GMLS) nodes with
respect to the number of solids included in the domain and
different iterations of adaptive refinement. . . . . . .. ... ..
Fluid-solid interactions—Duplicate cells with cylinders: The
number of GMRES iterations required in the SOLVE stage of

each adaptive refinement iteration, for fixed numbers of solids.

Fluid-solid interactions—Duplicate cells with cylinders: Scal-
ability results. Here, N denotes the number of solids, and
N, = 4N, with N, the number of CPU cores. . ... ... ...
Particulate suspensions in 2D: Configuration of 100 freely mov-
ing circular particles in a Taylor—-Green vortex flow at the ter-
minal time. The zoom-in images are the computed pressure
distributions at selected locations where the particles are either
in close contact with each other or with the outer wall. Here,
the color is correlated to the magnitude of pressure, and the
point clouds are the GMLS nodes with adaptive refinement.
Particulate suspensions in 2D—100 similar particles: Conver-
gence of the recovered error and the required number of GM-
RESiterations. . . . ... ... .. ... . ... . ... ... ..

102

103

. 104



3.16

3.17

3.18

3.19

4.1

4.2

Fluid-solid interactions—Particulate suspensions in 2D: Config-
uration of 100 freely moving dissimilar particles in a Taylor—
Green vortex flow at the terminal time. The zoom-in images
are the computed pressure distributions at selected locations
where the particles are either in close contact with each other
or with the outer wall. Here, the color is correlated to the mag-
nitude of pressure, and the point clouds are the GMLS nodes
with adaptive refinement. . . ... ... ... ... ... .. ..
Particulate suspensions in 2D—100 dissimilar particles: Con-
vergence of the recovered error and the required number of
GMRES iterations. . . . . . ... ... ... . . 0oL,
Particulate suspensions in 3D: Configuration of 27 freely mov-
ing spherical particles in a Taylor-Green vortex flow at the
terminal time. The color on each particle is correlated to the
magnitude of its velocity. The zoom-in images show the flow-
field pressure distributions on selected planes where the parti-
cles are either in close contact with each other or with the outer
wall. Here, the color is correlated to the magnitude of pres-
sure, and the point clouds are the GMLS nodes with adaptive
refinement. . . . . ... L L Lo Lo
Particulate suspensions in 3D: Convergence of the recovered
error and the required number of GMRES iterations. . . . . . .

The optimal topology of the bridge design problem using single
candidate material and different discretization resolutions. . .
The optimal topology of the bridge design problem using four
candidate materials and different discretization resolutions.
Magnesium is rendered in dark blue; aluminum is rendered
in light blue; titanium is rendered in orange; stainless steel is

renderedinred. . . . . . . ... ...

Xi

129

130



4.3

44

4.5

51

The scaling analysis of the the modified DW decomposition
method on TO problems. . . . ... ................
Single-material minimum compliance: Time of FEM analysis
for each iteration step with a discretization resolution of 150 x
600 x 150. Different colors indicate the different stages of the
optimization process. . . . . . ... ... .o
The optimal topology of the bridge design problem using a
single candidate material and different discretization resolu-
tions. The left half shows the topology obtained at Ngev = 200;
the right half shows the topology obtained at Nggyv = 400. The
visualized results are filtered with a threshold of 0.5, colored
with the design variablep. . . . ... ... .. ... ... ... ..

The resultant optimal material layouts with different discretiza-
tion resolutions by using the Heuristic-CQM method. . . . . .

Xii

154



Xiii

ABSTRACT

Continuum topology optimization (TO), originated from structural me-
chanics, aims to find optimal distributions of materials to improve the
performance of designs under governing physical equations described
with partial differential equations (PDEs). Discrete variable topology
optimization (DVTO) employs binary design variables to represent opti-
mal topologies with sharp and clear boundaries, eliminating the need for
post-processing. However, achieving high-fidelity designs requires fine
discretization, leading to large-scale mixed-integer nonlinear program-
ming (MINLP) problems. This thesis proposes a new scalable framework
for solving the large-scale TO problems, with implementations for both
classical and quantum computing. It discusses the proposed framework
in the integration of classical and quantum computing for solving the
large-scale TO problems.

The proposed framework in this thesis can tremendously reduce the
number of iteration steps required to achieve optimality, compared to the
conventional continuous relaxation based methods like the solid isotropic
material with penalization (SIMP) method. A series of mixed integer linear
programming (MILP) problems are constructed to the MINLP formulation
under the proposed framework. A new optimizer based on Dantzig-Wolfe
(DW) decomposition is proposed to solve the MINLP formulation, which
leverages the block-angular structure of TO problems. The proposed op-
timizer enables a parallel implementation of the optimization process,
which can take advantage of the computational resources available in the
scalable computation environment used for solving the large-scale PDEs.
The new proposed formulation based on DW decomposition also enables
a simple implementation of a quadratic unconstrained binary optimiza-
tion (QUBO) problem, which can be embeded on near-term quantum

computers for further acceleration of the optimization process. The pro-



Xiv

posed framework is validated through a series of numerical experiments,
ranging from the single-material minimum compliance problem to the
multi-material compliant mechanism design problem. The results demon-
strates the effectiveness of the proposed framework in solving large-scale
TO problems, including the design of complex structures with multiple
candidate materials.

A geometric multi-grid (GMG) preconditioner, as a classically scalable
approach, based on the generalized moving least square (GMLS) method
is presented to implement a scalable PDE solver with moving boundaries
in fluid-solid interaction problems. Due to the lack of large enough mature
quantum computers and the ill-conditioning of the linear systems arising
from the discretization of PDEs, this thesis only investigates and discusses
the commonly used quantum computing algorithms for solving the linear
systems and the potential approach to develop the quantum algorithms

for solving the linear systems arising from TO problem:s.



1 INTRODUCTION

In terms of size [of transistors] you can see that we’re ap-
proaching the size of atoms which is a fundamental barrier,
but it'll be two or three generations before we get that far—but
that’s as far out as we’ve ever been able to see. We have another
10 to 20 years before we reach a fundamental limit. By then
they’ll be able to make bigger chips and have transistor budgets
in the billions.

— Gordon Moore, 2006

1.1 Background

Continuum topology optimization (TO) has emerged as a design method-
ology, enabling the identification of optimal shapes and material distri-
butions to optimize specified objectives and satisfy constraints across
variables fields of physics and engineering. These applications span multi-
scale mechanics [82], fluid mechanics [14, 26, 42, 52], electromagnetics
[39, 55], photonics [51, 20], and coupled multi-physics problems [22, 41,
68, 44]; as well as automotive [19] and aerospace industries [87]. Since
its introduction [11], density based methods, including Solid Isotropic
Material with Penalty (SIMP) method [10], Evolutionary Structure Opti-
mization (ESO) method [34], or topological representative methods like
Level Set method [77] and Phase Field method [71] have proven their ver-
satility in addressing the diverse physical phenomena and manufacturing
constraints encountered.

To expand the design space and enhance the precision of the result-
ing designs, the adoption of large-scale simulations has become essential.
Among the available techniques, the density based method is predom-
inantly favored [1, 48] for its simplicity in avoiding additional partial



differential equations (PDEs) computation, inherent in methods like Level
Set (LS), and for its straightforward implementation conducive to scala-
bility across different computational architectures [48, 74].

1.2 Acceleration via Classical Computing

According to the Moore’s law [62], the capacity of the chip can be doubled
every 18 months. However, the increase in the number of transistors
on a chip does not necessarily translate to a proportional increase in the
performance of the chip. The performance of the chip is also limited by the
power consumption and the heat generated by the chip. The increase of
performance with respect to a single chip has been slowing down in recent
years. To overcome this limitation, the parallel computing [38] has been
proposed to sustain the scalability in scientific computing. In recent years,
as the quick advance of machine learning, general-purpose computing on
graphics processing units (GPUs) [24] has becoming a popular option for
the acceleration of classical computing as well [70, 46].

Many efforts have been paid for the acceleration of continuum TO
problem via classical computing. Both the parallel computing based on
CPU clusters [2, 48] or based on GPUs [74] has been studied in recent
years. These efforts mainly focuses on applying the SIMP method onto
modern computing clusters, both including the implementation to reduce
the cost of solving the governing equations via parallel computing and

the adoption of the classical optimizer onto modern devices [3].

1.3 Acceleration via Quantum Computing

Rather than a law of physics, Moore’s law is only an empirical observation
and the advancement of the semiconductor industry has already slowed
down since around 2010 [50]. The quantum computing [66] has been



proposed as a potential alternative to overcome the limitation of the clas-
sical computing. The quantum computing is based on the principles of
quantum mechanics, which allows the quantum computer to perform
calculations that are impossible for classical computers. The quantum
computer can perform calculations in parallel and can solve certain prob-
lems much faster than classical computers. The quantum computer has
the potential to achieve significant speedup on many classical computa-
tional tasks [30, 27] or to solve problems that are currently intractable for
classical computers [29].

Only very recently, people have paid attention on utilizing the quantum
computing for solving TO problems [79]. Most of these efforts [78, 61, 81]
has been paid onto the truss systems. Instead, this thesis focuses on solving
large-scale continuum TO problems discretized by a mesh.

1.4 Outline

This thesis proposes a new multi-cuts framework for solving the general
continuum TO problem based on the mixed-integer nonlinear program-
ming (MINLP). It can both harness the current classical computers and
near-term quantum devices for the acceleration of finding the optimal
layout for TO design tasks. The remainder of the thesis is organized as fol-
lows. Chapter 2 introduces the Discrete Variable Topology Optimization
(DVTO) and the proposed multi-cuts formulation based framework for
solving general linear elasticity problems. It uses 2D examples to demon-
strate the capability of the proposed framework in reducing the number of
evaluations of objective functions and quality of resulted optimal designs.
Chapter 3 discusses the a meshless discretization framework for solving
complex PDE constrained problems and the Geometric Multigrid Method
(GMG) for accelerating the evaluation of complex governing equations.

Chapter 4 proposes an accelerated optimizer for solving large-scale TO



problems. Chapter 5 discusses the quantum based approaches for acceler-

ating the solving of TO problems.



2 DISCRETE VARIABLE TOPOLOGY OPTIMIZATION

The conventional density based method, e.g. the Solid Isotropic Mate-
rial with Penalization (SIMP) method, conceptualizes the continuum TO
problem as a nonlinear integer optimization challenge, employing inter-
polation schemes to soften the binary design variables into a continuum.
Consequently, the issue transforms into a solvable nonlinear optimiza-
tion problem, typically navigated via sophisticated nonlinear optimizers
such as the Method of Moving Asymptotes (MMA) [69]. Additionally,
the Heaviside projection technique is instrumental in nudging intermedi-
ate outcomes towards binary solutions, ensuring a controlled transition
between solid and void states and mitigating optimization oscillations
inherent to the problem’s discontinuous nature. Nevertheless, the choice
of an interpolation scheme is critical and context-specific, often influencing
the optimization’s efficacy and accuracy. A notable illustration [88, 49]
is the application of the SIMP method in scenarios involving multiple
materials under mass constraints, where the choice of interpolation can
inadvertently introduce new local minima, potentially diverting the op-
timization from identifying the true coexistence conditions of different
materials.

Other than using the continuous relaxation to formulate a well-posed
TO problem, the continuum TO problem can also be formulated as a
discrete optimization problem. Directly dealing with the discrete nature
of the TO problem also has a long history. Early attempts like [58, 9]
tried to use sequential integer programming to find the optimal material
layouts. Methods like Bidirectional Evolutionary Structure Optimization
(BESO) method [35] and Topology Optimization of Binary Structures
(TOBS) [57], have already demonstrated their success in finding optimal
material configuration as heuristic approaches. Recently, Liang et al. [47]

tried to use canonical relaxation to bypass the linear binary programming



problem while using the sequential integer programming to preserve the
discrete feature of the original TO problem.

In this thesis, a novel framework on top of discrete programming is
established in this chapter. Based on the results on numerical experiments,
it is expected to deliver a better performance compared to the conven-
tional density based method and many other methods based on discrete
variables formulations. By taking advantage of the proposed framework,
the number of iterations required to reach the optimality condition can be
greatly reduced and the design of problem-specific interpolation schemes,
e.g. the ordered SIMP interpolation [88], can be avoided. Based on the
theoretical analysis, the introduction of the adaptive trust region method
has demonstrated the superior performance for ensuring the desired fewer
number of iterations accompanying with the parameter relaxation scheme
for controlling the reduction of parameters in the design challenge.

The chapter is organized as follows: the formal statement of the con-
tinuum TO problem with respect to the discrete variables is formulated
in Section 2.1; all of the design objectives discussed in this thesis is intro-
duced in Section 2.2 in Section 2.3, the multi-cuts formulation used for
solving the defined continuum TO problem is established; a parameter re-
laxation scheme which can mitigate the ill-conditioning of the TO problem
is discussed in Section 2.4; finally, the numerical examples in 2D design
space are presented in Section 2.5 to demonstrate the effectiveness of the
proposed framework.

2.1 Problem Statement

Continuum TO optimizes the material layout p(x) within a continuum
bounded design domain Q € R¢ (where d = 2 or 3). The continuum TO
problem is constrained by a set of partial differential equations (PDEs)

with respect to a set of field variables u(x) subject to prescribed boundary



conditions (BCs) which together describe the physical laws governing the
underlying problem, as well as the target material usage limit and local
constraints on the field variables or design variables, etc. In a formal way,

the problem can be stated as:

min J Flu(x, p(x)), p(x)}dQ
Q

e

s.t. L(u(p(x)))+b=0 Vx € Q
u(x, p(x)) = ur(x) Vx € T'p (2.1)
n-Vu(x,p(x)) =hr(x) Vxely
Gig(ulx, p(x))) <0, ic=1,...ng
Hi, (p(x)) <0, w=1...,nu,

where u denotes the field variable defined in the design domain Q; p is
the design variable, denoting the material usage; £ denotes some linear
differential operator; b is the source term; and I' = 9Q represents the
boundary of the design domain with I'p denoting the boundary where
Dirichlet BC is imposed and 'y the boundary where Neumann BC is
enforced. In addition to governing equations and the corresponding BCs,
it considers other two types of inequality constraints: G;, denotes the
constraints applied on the field variable u or the derived variables from u;
H;,, denotes the linear constraints only exerted on design variables p. A
typical example of G;, would be the local stress constraint which controls
the maximum value of local stresses; one typical example of H;,, would
be the volume constraints which limits the total volume of material can be
utilized within the design domain Q.

There are two general approaches can be applied to solve the contin-
uum TO problem as in Equation (2.1): the first approach optimizes the
problem and follows with discretization of the continuum problem; the
second approach discretizes the design domain and then optimizes the



discretized problem. The first approach generally utilizes the level set
method to implicitly represent the material layout and utilizes the topo-
logical derivatives to move forward in the optimization iterations [77].
The second approach, which is generally denoted as density method [6],
utilizes the sensitivity analysis to find routes for the optimal solution in
iterations. The second approach is followed in this report and the density
method is examined in the discrete programming setup to solve a series
of topology optimization problems under the physics governed by linear
elasticity and exerted with different kinds of constraints. The design do-
main () is first discretized into rectangular elements in 2D or hexahedron
elements in 3D. The finite element method (FEM) is commonly utilized
to discretize the governing equations in (2.1). The resulting discretized
nonlinear optimization problem can be generally written as follows:

min f(u, p)

u,p

s.t. K(plu=f
Gig(u(x, p(x))) <0, ic=1,...n¢g (2.2)
HiH(p)gol :LH:1,...,TLH

uecR™, pei{01}",

where f is a known discretized BCs and source terms; u is the discretized
field variable defined on the vertices of the mesh; and p. is the discretized
design variable defined at the centroid of each mesh element e; K(p)
is the discretized linear operator. In this thesis, it only considers the
constraints H;, (p) that directly applied on the design variables and it
does not consider the constraints Gi (u(x, p(x))) that applied on the field
variable u.



2.1.1 Linear Elasticity Problem

In this thesis, it is focused on the linear elasticity problems as the un-
derlying physics for TO problems. The governing equation is written

as:
V-o(u)+b=0 in Q,

o(u)-n=hr on Iy, (2.3)
u=ur on Ip,
where o(u) = C : g(u) is the stress tensor; b is the body force; C is the

fourth-order elasticity tensor; and € = 2(Vu + VuT) is the strain tensor.

The elasticity tensor of plane stress in 2D is written as:

£ 1T v O
— 24
¢ 1—+2 v 1 19\/ 4 ( )
00 =
and in 3D is written as:
1—v v v o 0 0|
v 1—v v 0 0 0
E v v 1—-v O 0 0
— , (25
fivi-2v| 0o o o = o o]’ ®
0 0 0 0 1_22V 0
I 0 0 0 0 0 1’2“_

where E is the Young’s modulus and v is the Poisson’s ratio. ny candi-
date materials can be utilized in the design domain Q) and the material
properties are different for different materials, with prescribed Young’s
modulus E; and Poisson’s ratio v; for all ny; candidate materials. The

discrete material optimization scheme is used to evaluate the elasticity
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tensor on each element e based on the design variable p. ., as:

(Ce — nZ’\_Al pe,m(cm s (26)

where C,, is the elasticity tensor for the m-th material defined as:

- 1 v 0
Cm = mz v, 1 0 , (2.7)
1—+v2, -
0 0 2““
in 2D or
Em C 0
(Cm _ m _2V3><3 ) (28)
(1 + Vm)(l - 2Vm) 03><3 2 mI3><3
in 3D with
1—vn Vi Vi
Cn = Vi 1—vn, Vi
Vi Vm 1—vm

When using the finite element method to discretize the governing
equation in (2.3), the nodal displacement u is considered as the field
variable in the optimization problem. u. denotes the nodal displacement
on the element e and the nodal strain ¢, is calculated based on the nodal

displacement as:

— |Qu 9ov du 4 Ov| _
€e = dx 0y Oy + aX:| Bue s (29)
in 2D or
— [%u 9 2w Qdu ; v Qdu 4 dw v, dw| _
€e = |3x 3y 0z oy Tox 9z Tox oz T y:| Bu., (2.10)

in 3D, where B is the strain-displacement matrix. The elemental stiffness
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matrix K, is calculated based on the elemental elasticity tensor C, as:

K. = J B"C.BdQ, (2.11)
where
nm
Ce=) pemCnm - (2.12)
m=1

The global stiffness matrix K is assembled based on the elemental stiffness
matrix K. as:

K=K +) K., (2.13)

e=1

where K is the stiffness matrix assembled from void elements infilling
the entire design domain with the elasticity tensor Cy formed from E, =
€ maxm (Ey ) and vo = 0.3. With the inclusion of Ky, it is guaranteed that
the global stiffness matrix K is symmetric positive definite. To minimize
the influence from the K, ¢ is selected as a small constant value, e.g.
10~*. The nodal displacement u is calculated by solving the linear system
Ku = f.

2.1.2 Volume Constraint

One of the most commonly used constraints with respect to the design
variables p is the volume constraint:

Me

Hy(p) =Y o< Vi, (214)

i1 e
where it assumes the underlying discretization of the computational do-
main O with a uniform square/cubic mesh and V7 denotes the target

volume fraction in the resulting material configuration. If the compu-

tational domain Q is discretized with a non-uniform mesh, the volume
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constraint can be generalized as:
Hv(p) = Z Vipi < V7, (2.15)
i=1

2.1.3 Mass Constraint

By generalizing the volume constraint in (2.14), the total mass constraint
can be utilized when multiple candidate materials are included in the de-

sign problem and ready for selection. The total mass constraint is defined

as: ne T Mm )
HMO( ):ZZ n pemngax
_ _ e
i;; m=1 (2.16)
Hv (p) =) Pem <1, e=12,...,n.,
m=1

where M., is the maximum allowed mass of the structure. This constraint
contains two components: the first line denotes that the total mass of
the resulting structure is no greater than the allowed maximum mass;
the second line denotes that each element can only be a void element or
take at most a single material from the candidates. Different from many
other methods in literature [33, 49], there is no prior assumption that the

candidate materials have to been sorted in any specific order.

2.1.4 Sensitivity Analysis and Filtering

In this thesis, it is targeting to propose a new gradient based optimization
framework. Before getting into the detailed derivation of the proposed
framework, several useful gradients or sensitivities are calculated in ad-

vance. First, the gradient of the elemental stiffness matrix K. with respect
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to the design variable p. ., is calculated as:

oK oC
< = J BT —=BdQ = J BTC,,BdQ =K, . (2.17)
0Pe,m Q Pem .

To evaluate the sensitivity of the objective function with respect to the
design variable p. ., the Lagrangian of the optimization problem is first

defined as:

where p € R™ is the adjoint variable. According to the Karush-Kuhn—
Tucker (KKT) conditions [54], the adjoint variable p takes the form:

of
=K' — :
1 3a (2.19)

With the adjoint variable p, the gradient of the objective function with
respect to the design variable p , is calculated as:

of (Of\T du

dPem  \OU/  pem
of\T 0K

=—(K'—) - K 'f
( 'c)u) 0Pem

0K
u , 2.20
0Pe,m (2:20)

K,
0Pe,m

:uT

Ue

—ul (J BTCdeQ) u.

where u. and p. are the field and the adjoint variable on the element e,
respectively. This relation is valid for both of the convex and non-convex
objective functions discussed above. Finally, the sensitivity of the objective
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function with respect to the design variable p., can be calculated as:

(- of
30 ifpern =1
em
of of
ape,m ape,m’ .
Wem = of of if Pem = 0, Pem = 1,m 7£ m’ .
ape,m ape,m’
nm
T (J BT(COBdQ> u if Y pewm =0
Qe m=1

(2.21)

It is known that differentiation of the objective function with respect to
the binary design variable p. ., is not well-defined [67], especially for the
case when p. , = 0. Therefore, in Equation (2.21), the sensitivity takes the
gradient of the objective function value when p. ., =1 and it is regulated
when p. ., = 0. Two scenarios are considered for regulation: the first
scenario is when p. ., = 0and p. v = 1 for m # m/, when the element e is
occupied by the material m’, the sensitivity is calculated as the harmonic
mean of the gradients of the two candidate materials; the second scenario
iswhen > "M, p. .. =0, indicating the case that the element e is assigned
as a void element, the sensitivity is calculated as the sensitivity of the void
material. The use of harmonic mean over the arithmetic mean is inspired
from the Reuss model [60] in the composite material design. And the
numerical experiments indicate that the harmonic mean is superior when
selecting the optimal material in the design problem.

Similar to many other methods in literature [45, 47], no matter continu-
ous or binary design variables, the sensitivity of the objective function with
respect to the design variable p. ., is filtered to avoid the checkerboard
pattern. Due to the sharp transition between different candidate materials
and void elements, the Helmholtz filter, which expects a smooth transition,
is not suitable for the binary design variables. In this thesis, the radius
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filter with a prescribed size of r is utilized to smooth the sensitivity of the
objective function with respect to the design variable p. ., as:

renr Ne e (TIW
We,m = Leren; Nee(r) e (2.22)

Zelej\[g hve,e’ (T)

with he (1) = max(0,r — || xe — Xe/||2), following [57, 67].

2.2 Design Objectives

2.21 Minimum Compliance Problem

One of the most commonly used design objectives is the minimum com-
pliance problem. The minimum compliance problem targets to minimize
the compliance of the structure under the given loading conditions. The
objective function of the the minimum compliance problem is defined as:

ch(ll, p) =u'Ku. (223)

As K is symmetric positive definite, it is not difficult to find that

o _O(KK™)
aKap Ny (2.24)
=—K'+K
op * op

It gives the gradient of the stiffness matrix K with respect to the design

variable p as:
oK! oK
=-K' —K"'. 2.2
30 30 (2.25)
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With the gradient of the stiffness matrix K, the gradient of the compliance

function f(u, p) can be calculated as:

Ofyc  O(fTK™'f)
dp  0p
T oK !

op

oK
K,

f (2.26)

With the gradient, one can calculate the Hessian of the compliance function
f(u, p) as:

0K
9 0|lu’™—u
0“fmc _ op

0%p op

d (fTKlg—KK1f>
=— a (2.27)
op
K ! 0K 92K
= — 2T —K YK ' ——Kf
op 0p 0%p
K. 0K
=2uT—K'—
u 2p 2p u,

2

K 0K
where 7 is eliminated as K is only a linear function of p. Lety = a—pu,
the Hessian of the compliance function f(u, p) can be further simplified

as:
0% e

02p

=2y"Ky. (2.28)

Since K is symmetric positive definite, yTK 'y is always positive when y
is not zero. It indicates that the compliance function f(u, p) is convex with
respect to the design variable p.
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2.2.1.1 2D design space

In this thesis, two different settings in a rectangular design space is con-
sidered, as depicted in Figure 2.1. The first setting corresponds to the
Messerschmitt-Bolkow-Blohm (MBB) beam problem, as illustrated in Fig-
ure 2.1a. In this thesis, it is designated in a rectangular domain with a
length-height ratio of L : H = 3 : 1 if without any further notification. The
left-side edge of the rectangular domain is constrained in x (horizontal)
direction but can freely move along y (vertical) direction. The movement
of the bottom-right corner is restricted solely along x-axis. An external
force Fy, = —1 is exerted at the top-left corner of the design domain. The
second setting represents the design of a cantilever, defined in a rectan-
gular domain with a length-height ratioof L : H = 2 : 1, as shown in
Figure 2.1b. The left side of the rectangular domain is constrained in both
x and y axes.

Up to five candidate materials can be considered in the 2D design
space, as listed in Table 2.1. All of the materials are using the normalized
Young’s modulus or density. The first material set contains five materials
with Young’s modulus E,, ranging from 0.4 to 1.0. The second material
set contains five materials with Young’s modulus E ranging from 0.43 to
1.0. The normalized densities M, are ranging from 0.3 to 1.0. The main
difference the two material sets is the ratio between the Young’s modulus
and the density. This ratio basically determines the selection of the optimal
material in the design problem, especially for the minimum compliance
problem as discussed in [33, 49]. The two material sets are designed to
demonstrate the capability of the proposed method in selecting the optimal
combination of materials from the candidate set in the design problem.

2.2.1.2 3D design space

In this thesis, the design space in 3D is a box with the length of L = 40
cm, the width of W = 10 cm, and the height of H = 10 c¢m, as depicted
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(a) MBB

L

(b) Cantilever

Figure 2.1: Minimum compliance: design domain and boundary condi-
tions for two different problems.



19

Table 2.1: 2D design space: Properties of the five candidate materials.

MAT 1 2 3 4 5

Em 04 0.7 08 09 1.0
Material Set 1 M. 03 05 065 08 1.0
En/Mn 133 14 131 113 1.0

E 043 0.7 085 094 1.0
Material Set 2 M 03 05 065 08 1.0
Em/M, 143 14 131 1175 1.0

in Figure 2.2. On top of the box, the design space is assigned to plate
with a height of 0.4, always assigned as solid elements with the strongest
candidate material, as indicated by the red region in the illustration. At the
bottom surface, the design space is fixed in the region where y is greater
than 38 or less than 2, as illustrated as the orange regions in Figure 2.2. All
the other region rendered in gray is the free design space that can be filled
any candidate materials. A uniform distributed force of —0.1 is applied on
the top surface of the design space as rendered in blue arrows in Figure 2.2.

J \

Figure 2.2: Minimum compliance: design domain and boundary condi-
tions for the bridge design problem in 3D.

Up to four candidate metallic materials can be considered in the 3D
design space, as listed in Table 2.2. The four materials are selected from
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the most commonly used metallic materials in the engineering field. The
first material is magnesium, which is the lightest metallic material with a
relatively low Young’s modulus. The second material is aluminum, which
is the most commonly used metallic material in the engineering field. The
third material is titanium, which is a high-strength metallic material with
a high Young’s modulus. The fourth material is stainless steel, which
is a high-strength metallic material with a high Young’s modulus and a
high density. The four materials are selected to demonstrate the capability
of the proposed method in selecting the optimal material in the design
problem.

Table 2.2: 3D design space: Properties of the four candidate materials.

Materials Magnesium Aluminum Titanium Stainless steel
Young’s modulus E,,, (GPa) 44 73 100 210
Poisson’s_ratio Vi 0.28 0.33 0.36 0.29
Mass density M, (10°kg/m?) 1.74 2.70 4.50 7.80

2.2.2 Compliant Mechanism Problem

The compliant mechanism problem targets to maximize the displacement
at specific locations with respect to prescribed directions under the given
loading conditions. The objective function of the compliant mechanism

problem is defined as:
fom(u, p) = Z nlu; . (2.29)
i=1

Different from the compliance function, the objective function of the com-
pliant mechanism problem is a non-convex problem with respect to the
design variable p. By solving the compliant mechanism problem, it is
expected to demonstrate that the proposed method can be applied to
generalized TO problems.
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The design domain and the associated BCs are depicted in Figure 2.3,
where the domain is a square with each side measuring L, and the top-left
and bottom-left corners are fixed in place. The domain is also connected
to two springs each at the middle of the left or right side, respectively.
The stiffness coefficient of both springs is k; = k, = 0.1. In addition, an
input force F' = 1 is applied at the midpoint of the left side. The TO
design herein aims to maximize the displacement along x-direction at the
midpoint of the right side, i.e., minimizing u"* as denoted in Figure 2.3.
Due to the problem’s axial symmetry around the center line (as highlighted
in red dotted-dash in Figure 2.3), only half of the design domain needs to
be considered in the actual solution procedure and hence was discretized
with a uniform mesh. The target volume fraction is V1 = 0.3. The material
parameters are specified as: Young’s modulus E; = 1.0; Poisson’s ratio
v = 0.3. The convergence tolerance required in Algorithm 1 was set as
e=5x10"°.

2.3 Multi-cuts Formulation

As the gradient of a general objective function is non-zero as shown in
Equation (2.26), the TO problem is commonly seen as a nonlinear opti-
mization problem with respect to the binary design variables p. Directly
solving a nonlinear binary optimization problem is intractable due to the
combinatorial nature of the problem. In this section, a multi-cuts formu-
lation based framework to solve the TO problem with a general linear
elasticity governing equation is proposed. The proposed framework is
inspired from the Generalized Benders’ Decomposition (GBD) method.
By incorporating with the trust region method, the proposed framework
can solve the TO problem with a general linear elasticity design problem
efficiently and robustly.

The framework based on the GBD method to solve the continuum
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Figure 2.3: Compliant mechanism: Design domain and boundary condi-
tions.

TO problems is first discussed in Section 2.3.1. Next, the trust region
constraints are introduced to the framework for the extension to the
non-convex problems, e.g. compliant mechanism design problems in Sec-
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tion 2.3.2. An adaptive trust region radius adjustment scheme is presented
in Section 2.3.3 to improve the robustness of the optimization procedure.
Finally, the details of the algorithm implementation are summarized in
Section 2.3.4.

2.3.1 Generalized Benders’ Decomposition

Inspired by the early attempt of the Generalized Benders” Decomposition
method on the TO problem with a truss system [53], the continuum
TO problem can be addressed by the GBD method through forming the
following primal problem:

min  fyc(u, p¥)
u

st. K(pMu=f (2.30)
ucR™,
and master problem:
min n
pM
. . ne TLM . .
st fuc(W,p)+) Y Wl (pem—pLn)<n, i=1...%
i (2.31)

Hi (p) <0, ih=1,...,nn
p €{0, 1} ™,

as well when the design challenge is the minimization of the compli-
ance of the structure and is subject to the volume constraint or total
mass constraint. In the master problem (2.31), ﬁMc(P) = fue(w, pl) +
Yooy W (Pem — Pl ) is used to form a lower estimator to the
objective function fyic while satisfying the underlying governing equation
K(p)u = £ at the point (u, p’). Therefore, EMC(p) is considered as a cut to

the original optimization problem (2.1).
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2.3.2 Trust Region Method

However, the GBD framework can only works for convex problems, e.g.
minimum compliance problem with the objective function fyic, which
greatly limits the application of the proposed method. One of the common
way to extend the gradient-based methods to solving a general non-convex
problem is utilizing the trust region method. Additionally, due to the un-
derlying governing PDEs in (2.1) is generally an ill-conditioned problem,
the introduction of trust region method can also improve the robustness
of the optimization procedure in TO problems. As the trust region is only
required within the master problem and only required to be applied on
the binary design variables, the trust region constraint can be constructed

about any fixed point p’ with a size d’ in a L, norm as:

2
<d. (2.32)

Me

o)=Y

e=1

nm nm
pe,m - § pae,m
m=1 m=1

Since any given element can take at most one solid material (as stated by

the total mass constraint Hy,, in (2.16)), the bilinear term pempe,m With
m # m’ derived from (} "M, pe,m)2 is always zero. As a result, the trust
region extended to multi-material scenarios remains a linear constraint

with respect to the design variable p ., as can be seen from:

e 2

nm nm
z z j
pe,m - pe,m
e=1 |m=1 m=1

Ne npm nm Te nm 2
:Z (1 -2 Z pje,m> <Z pe,m) + Z <Z pje,m> .
e=1 m=1 m=1 e=1 \m=1

If there are multiple linear approximations (cuts) to the general objec-

(2.33)
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tive function f:

Me MM

flp)=Fu,p)+> > W o (Pem—pbm) F=1...k, (234)

e=1 m=1

each within the neighborhood of p’, are found, a piece-wise linear approxi-
mation to the objective function f(u, p) is obtained and can be represented
by introducing a new set of binary variables & = {1, x, ..., %} as:

(2.35)

where ITis a large positive penalty real number. «; is introduced to control
the validity of the linear approximation f) (p): when «; =1 (referred to as
an active cut), it indicates that the linear approximation f) (p) holds and the
solution locates within the trust region t/(p); when «; = 0 (referred to as
an inactive cut), it implies that the linear approximation is invalid, because
the solution can be too far away from p’, and the linear approximation is
not accurate enough.
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The master problem can then be rewritten as
min n
P,xmM

s.t. F"(p)ocj —TM1l—-0o5)<n, j=1,...,k

(2.36)

a#od, j=1,...,k—1
p € {0, 1}™ ™ o €{0,1}°,

All optimal solutions are rejected that have already appeared in the itera-
tionstepsj =1,...,k—1by considering the constraint &« # o, as repeated
results won’t help finding the convergent optimal solutions.

The master problem (2.36) is a bi-linear integer programming prob-
lem, which requires branch-and-bound methods to solve. In §4.1, a new

algorithm is proposed to solve the master problem (2.36) efficiently.

2.3.3 Adaptive Trust Region Radius Adjustment

Employing appropriate trust-region radii in Equation (2.32) is crucial for
ensuring both solution accuracy and efficiency. Thus, it can be advanta-
geous to vary it adaptively during the solution process when solving the
master problem (2.36). By leveraging a merit function as given by [86]:

k . (f(uj/ pJ) _f(uk/ pk))

W< = min I
JEP o (K) f(ul, pi) —nk

(2.37)
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the trust-region radius d* can be updated at each iteration step k, following

the rule:
max(0;d*, dmin), k<1

O0<w
d* = { min(0,d*, dmay), wk>1 (2.38)

max(0.5d*, dmin), wr <0

<
K

with d* = minjcyp . (k) (dV). Here, 6; and 6, are the adjustment (shrink-
ing/enlarging) factors for the trust-region radius and are assigned as 0.7
and 1.5, respectively, in all numerical tests. And it adopts dpyin = 1072
(sufficiently small) and dmax = 0.6 (sufficiently large) in this paper.

The merit function defined in Equation (2.37) evaluates the ratio be-
tween the exact reduction in the objective function and the reduction
estimated from problem (2.36). The desired trust-region radius d* ren-
ders the merit function satisfying w* > 1. Thus, if w* > 1, d* may be
enlarged, for which a magnification factor 1.5 is employed to enlarge the
trust-region radius for the newly added k-th cut for the next iteration step.
Conversely, if 0 < w* < 1, the exact reduction in the objective function is
smaller than the one estimated from problem (2.36), and hence d* needs
to be decreased. Here, a shrinking factor 0.7 is employed to reduce the
trust-region radius for the k-th cut. However, if wk <0, it implies that the
radius is too large that the searching goes to the wrong direction. Hence,
a more aggressive shrinkage for the trust-region radius is demanded, and

here it empirically chooses a factor of 0.5.

234 Algorithm Implementation

The iterations of solving the primal problem (2.30) and the master problem
(2.36) yield a series of upper bounds and lower bounds, respectively, for
the objective function in the original problem (2.2). The gap between
the lowest upper bound U = min;(f(w, p)) with j < k and the lower

bound n* should be minimized until reaching lnTu;|w < ¢ (with ¢ the
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preset tolerance) to terminate the optimization iterations. Additionally,
the criterion n* > U is enforced, meaning the iterations should stop once
the lower bound exceeds the upper bound, i.e., when the master problem
(2.36) finds a solution greater than U. The entire framework proposed for

solving the TO problem in Eq. (2.2) is summarized in Algorithm 1.

Algorithm 1 TOSowver(p°)

Input: Initial material configuration p°
Output: Optimal material layout p*
1: Employ a linear system solver to obtain u® = K (p°)f
2: Evaluate the objective function value f(u’, p°)
3 pF=p% U=0c0
4: fork=1,--- do

5: o, p*,n* «+ MasTERPROBSOLVER( ')
6: Employ a linear system solver to obtain u* = K~!(p*)f
7: Evaluate the objective function value f(u*, p*)
8: if f(u*,p*) < U then
9: U = f(u*, p¥), p* = p*
10: end if
11: if '”TT_‘L”<£ornk>U then
12: break
13: end if

14: Adjust the trust region radius according to Equation (2.38)
15: end for

Return: p*

It is worth noting that the stopping criterion used here differs from
those in other methods. In SIMP [6], the optimization iterations are ter-
minated when the changes in the design variables become small over
multiple consecutive iterations. In the methods that directly handle binary
design variables and draw on integer optimization [35, 57, 47], including
the framework proposed in this work, the stopping criterion is typically
based on the objective function values. However, BESO [35], TOBS [57],
and SAIP [47] terminate the optimization iterations when the changes
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in the objective function values become small over multiple consecutive
iterations, usually requiring at least 10 consecutive iterations. In contrast,
the proposed framework allows for the estimation of the upper and lower
bounds of the original objective function by decomposing the problem into
primal and master sub-problems, which are expected to converge as the
solution nears the true value. Thus, the stopping criterion is established by
comparing the difference between these upper and lower bounds, which

is both theoretically sounder and practically more efficient.

2.4 Parameter Relaxation

Due to the small value of the minimum Young’s modulus assigned to
void elements (i.e., Eg = 107*), and the small target volume fraction (e.g.,
V1 = 0.3) or small maximum permissible total mass fraction (e.g., M imax
= 0.3), the optimization problem can be ill-conditioned, as evidenced in
Table. 2.3. Thus, different TO methods usually relax some parameter’s
values during the solution process, i.e., starting with a relatively larger
value and later reducing the parameter’s value to the desired one, in order
to ease the ill-conditioning issue. Typically, for single-material problems,
the target volume fraction is chosen to relax, e.g., in [84, 57, 47, 34]; for
multi-material problems, the target maximum permissible mass fraction
is typically relaxed, e.g., in [35, 49].

In the present work, it further explores relaxing the minimum Young’s
modulus E,, alongside the target volume fraction Vy or the target maxi-
mum permissible mass fraction I\_/lmax. From numerical experiments, it is
found that the minimum Young’s modulus contributes the most to the
conditioning of the optimization problem. Thus, it considers the minimum
Young’s modulus as the primary parameter for relaxation and the target
volume fraction or the maximum permissible total mass fraction as the

secondary parameter for relaxation. Accordingly, the proposed parameter
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relaxation scheme consists of two parts. In the first part, the value of the
target volume fraction or the maximum permissible total mass fraction is
changed, while the minimum Young’s modulus is fixed at a larger value
1072, This part can consist of Np stages. In each stage, the parameter’s
value is gradually changed from an initial larger value towards the desired
one, following:

_ P,
P Ppe R 11N, (2:39)

where P denotes the initial value for the parameter; P4 denotes the desired
value of the parameter; and P can be either the target volume fraction V7 or
the maximum permissible total mass fraction Mumax. Here, an exponential
function is employed to achieve a substantial initial reduction in the pa-
rameter values, followed by a gradual and smoother decrease, ultimately
reaching the desired value. The second part consists of only one stage,
where E, is varied from 1072 to 10~?, while the value of the target volume
fraction or the maximum permissible total mass fraction is fixed at its
desired value. As a result, the entire parameter relaxation scheme involves
Np + 1 stages in total. Such proposed parameter relaxation scheme is
summarized in Algorithm 2. In the present work, for the very first stage,
the initial material configuration p" is set to a gray material layout, same
as that in SIMP. For subsequent stages, the initial material configuration
p’ in Algorithm 2 is the resulting binary (black/white) material layout
yield at the end of the previous stage.

In this section, a thorough analysis for parameter relaxation is pre-
sented, exploring its effectiveness in improving both solution efficiency
and quality. It discusses the rationale behind its efficacy and the selection
of suitable parameters for relaxation.

During the solution process, especially in the initial stages, the op-
timization problem encountered may suffer from ill-conditioning. This

implies that slight variations on the design variable (i.e., a few elements
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Algorithm 2 PARAMETERRELAXATION (X)

Input: X, which are the minimum Young’s modulus E ={E},-- -, EON"H}
and the target volume fraction V. = {Vy,---, VN, 41} or the maximum
permissible total mass fraction M = {My, - -+ , My, 11}

Output: Optimal material layout p*

1: Initialize the design variables as p* = V71 or p* = Mpax1, where 1 is
a unit vector

2: Initialize the trust-region radius d°

3: forl=1,---Np+1do

4: p « p*
5: if L < Np then
6: Ep+ Ef =102
7: Evaluate Vi or M, from Eq. (2.39)
8: VT — Vl or Mmax — ]\_/11
9: end if
10: if L = Np + 1 then
11: Eo«+ E} =107°
12: VT — Vl = Vd or Mmax — Ml = ]\_/ld
13: end if
14: p* < TOSoLver(p")
15: end for
Return: p*

transitioning from solid to void or vice versa), could lead to significant
fluctuations in the objective function value. To demonstrate this, it first
compares the objective function values corresponding to different topologi-
cal configurations obtained with the minimum Young’s modulus E; = 10~°
vs. Eg = 1072, as denoted as f; and f,, respectively, in Table. 2.3.

Table 2.3(a) and 2.3(b) are what it was obtained from the first two
consecutive iteration steps, where the target volume fraction was set as
V1 = 0.3. In these two steps, the difference in the design variable, mea-
sured in 2-norm, is ”pl;—pZHZ = 0.3, which is considered a minor change.
However, the substantial disparity in objective function values between

these two steps, with Eg = 1077, indicates the presence of ill-conditioning



32

Table 2.3: Single-material minimum compliance for the MBB design: The
roles of the minimum Young’s modulus and the target volume fraction in
the optimization problem’s conditioning.

Configuration | Vi | f1(Eg=10"") | f2 (Eg=10"2)

0.3 | 10186564604.77 1473.14

0.3 109405.30 764.62
0.6 | 83637287.04 521.03
0.6 2902.42 398.42

in the optimization problem at this stage. Solving this ill-conditioned prob-
lem could lead to an unstable or non-converging solution. In contrast, by
relaxing the minimum Young’s modulus to Ey = 1072, the ill-conditioning
is mitigated. This elucidates why relaxing the value of the minimum
Young’s modulus during the optimization process can effectively enhance
both solution efficiency and quality. It is noted that in literature, other
TO methods that rely on discrete programming chose to relax the tar-
get volume fraction during the optimization process, e.g., as reported in
[47,57, 84]. Thus, it repeated the same numerical experiment but with a
larger target volume fraction, i.e., V1 = 0.6, as outlined in Table 2.3(c) and
2.3(d). The difference in the design variable p, measured in 2-norm, is less
than 0.3 between the two configurations in Table 2.3(c) and 2.3(d). With
Ey = 107, by setting a larger target volume fraction from 0.3 to 0.6, the
optimization problem is still ill-conditioning. It is evident that enlarging
the target volume fraction has a limited effect on improving the problem’s
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conditioning, when compared with elevating the minimum Young’s mod-
ulus. Thus, in the prior sections, it chose to focus on the minimum Young’s
modulus E; in parameter relaxation.

In practice, relaxing more than one parameters can further improve
the solution efficiency and/or solution quality, depending on the condi-
tioning of the problem. Henceforth, it further explored adjusting both the
minimum Young’s modulus E, and the target volume fraction Vy. One
exemplary implementation is given as Scheme 2 in Table 2.7, where the
parameter relaxation process described in §2.5.1.5 was partitioned into 9
stages with Np = 8 and the initial value for the volume fraction V; set as
0.6 in Eq. (2.39). The results, as summarized in Table 2.8, are compared
with those obtained by relaxing only E, in two stages as employed in the
prior sections, denoted as Scheme 1 in Table 2.7.

2.5 Numerical Results

For the validation of the proposed multi-cuts framework, a series of bench-
mark problems in 2D are considered. It includes the minimum compliance
problem and compliant mechanism design. The numerical experiments
are conducted on a workstation with two Intel Xeon E5-2690 v4 CPUs and
512 GB of RAM. MATLAB R2023a is used as the programming environ-
ment. The Gurobi optimizer v11.0 [28] is utilized for solving the mixed
integer programming problems. The proposed method is compared with
the SIMP method with the Heaviside projection [6]. It is also compared
with other discrete variable TO methods, e.g. the FP method [32, 33] and
the SAIP method [47, 49]. To eliminate the influence of the programming
environment, the number of FEM evaluations and the objective function

value are used as the primary metrics for comparison.



34

2,51 Minimum Compliance
2.5.1.1 Problem steup

The minimum compliance design is first considered, but with two different
settings, as depicted in Figure 2.1. The first setting corresponds to the
Messerschmitt-Bolkow-Blohm (MBB) beam problem, as illustrated in Fig-
ure 2.1a. Itis designated in a rectangular domain with a length-height ratio
of L: H =3 : 1. The left-side edge of the rectangular domain is constrained
in x (horizontal) direction but can freely move along y (vertical) direction.
The movement of the bottom-right corner is restricted solely along x-axis.
An external force F, = —1 is exerted at the top-left corner of the design do-
main. The second setting represents the design of a cantilever, defined in a
rectangular domain with a length-height ratioof L : H =2 : 1, as shown in
Figure 2.1b. The left side of the rectangular domain is constrained in both
x and y axes. In both problems, the goal of optimization is to minimize
the compliance of the entire structure within the corresponding design
domain. The single material’s Young’s modulus is specified as E; = 1.0
and Poisson ratio as v = 0.3. The design domain is always discretized
into quadrilateral elements, but with different resolutions. In Eq. (2.2),
f(u, p) = fTu, where f is the discretized external force vector; and there is
only one constraint, i.e., the volume constraint that constrains the volume
fraction of solid material toward the target value V7. In each problem, it
considers three different target volume fractions, i.e., V1 = 0.3, 0.4, or 0.5,
for a systematic analysis and validation. Particular emphasis is placed on
the scenario with the highest discretization resolution and lowest target
volume fraction, because of the high fidelity of designs provided by high
discretization resolutions and the preference of low volume fractions of
solid material in practical designs [1]. The solution process consistently
started with an initial gray configuration satisfying the desired target vol-

ume fraction, same as that in SIMP [6]. The convergence tolerance (as
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delineated in Algorithm 1) was setas e =5 x 1072,

2.5.1.2 Fixed trust-region radius

A fixed trust-region radius was firstly employed without dynamically
varying it in the solution procedure. Thus, the trust-region radius was
always equal to its initial value d°, and three different fixed radii were
examined, each with d° = 0.05,0.1 or 0.2, respectively. In the parameter
relaxation scheme proposed in Section 2.5.1.5, only the minimum Young’s
modulus Ey was relaxed. Thereby, the optimization procedure was split
into two stages: in the first stage, it was setas Eg = 10~2; in the second stage,
it was set with the required value in the original problem as Ey = 1077,
The numerical results are summarized in Table 2.4, where Ngpy denotes
the number of FEM analyses performed, or equivalently the number of
iterations required throughout the optimization procedure; f denotes the
resultant value of the objective function. Here, the maximum allowed
number of iterations was set as 100.

From the results, it is obvious that using a fixed trust-region radius
may not ensure reaching a converged solution within the maximum al-
lowed number of iterations, especially when the target volume fraction is
small (e.g. V1 = 0.3) or the trust-region radius is set too large (e.g. with
d® = 0.2). This implies that if a fixed trust-region radius is employed,
how to select its proper value should be problem dependent, and find-
ing a consistent value applicable across different problem setups, each
characterized by different BCs, discretization resolutions, and/or volume
constraints, can be inherently challenging. Generally speaking, the opti-
mization process with either too small or too large trust-region radii could
require more iteration steps to reach convergence [54]. More sophisticate
discussions are provided below.

As indicated in sensitivity analysis about the discrete TO problems
[67], the accuracy of the sensitivities estimated for void elements (p; =
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Table 2.4: Single-material minimum compliance: Results with fixed trust-
region radii.

; MBB Cantilever
Resolution Vr d° Npeum f Resolution Vr d° Npeum f
005 100 44636 005 24 103.14
03 01 100 368.66 03 01 31 13555
02 100 44636 02 100 349.87
005 34 241.60 005 23 8286
4 240x80 4 01 37 23220 240x1200 54 071 28 8681
02 66 27553 02 29 7551
005 30 21079 005 26 6292
05 01 32 19696 05 01 24 6327
02 100 265.65 02 25 6435
005 65 380.72 005 100 115.12
03 01 100 44264 03 01 33 12138
02 100 742.72 02 100 381.12
005 34 240.08 005 24 8293
6 360x120 54 01 100 25110 SOUx180 o4 01 27 77ss
02 100 35544 02 35 7922
005 31 22737 005 26 6292
05 01 30 196.03 05 01 24 6359
02 29 192.64 02 25 6497

0) is usually lower than that for solid elements (p; = 1). Therefore, if
the target volume fraction is large (e.g. Vy = 0.5), the fidelity of the
sensitivity analysis can be maintained, and the proposed framework can
easily converge within a reasonable number of iterations (around 30) with
the optimal values of the objective function comparable across various
choices of d°. On the contrary, if the target volume fraction is small (e.g.
V1 = 0.3), a smaller trust-region radius (e.g., with d° = 0.05) is preferred,
in order to enhance the sensitivity analysis” accuracy and ensure a fast
converged solution. A representative instance matching this discussion
is the MBB problem solved at the resolution of 360 x 120 for V1 = 0.3
or 0.4. The convergence of solution is achieved solely when d° is set to



37

0.05, resulting in 65 or 34 iteration counts, whereas setting d°to0.10r0.2
both fails to yield convergence within the maximum allowed number of
iterations. This suggests that if a fixed trust-region radius is employed,
its value should be set sufficiently small to ensure convergence. However,
if its value is set too small, the optimization process may be terminated
early by the stopping criterion % < ¢ before the local minimum of the
objective function is actually found. For instance, in the MBB problem at
the resolution of 360 x 120 and with the target volume fraction of V1 = 0.5,
employing a small trust-region radius (d° = 0.05) results in a higher
objective function value compared to using d° = 0.2, with the difference
between the resultant objective function values as much as 18.0%.

The findings of this study indicate that trust-region radii need to be
determined by the problem and dynamically adjusted during the opti-

mization process to ensure fast convergence of the solution.

2.5.1.3 Adaptive trust-region radius

For the tests in this section, instead of maintaining a fixed value, the trust-
region radius was dynamically varied following the rule described in Eq.
(2.38). Figure 2.4 depicts the evolution of the trust-region radius and the
objective function value during the optimization process, along with the
resulting material configuration at different iteration steps for the MBB
design. Same as in the prior section, only the minimum Young’s modulus
E( was relaxed, and the optimization process was split into two stages with
Eo = 1072 in the first stage and Ey = 1077 in the second stage, as indicated
in Figure 2.4.

The results for all the cases considered are compared to the best results
achieved using fixed trust-region radii, as presented in Table 2.5. The
column of Fixed Radius denotes the best performed cases with respect to
the resultant objective function value seen in Table 2.4. For the results using
adaptive radii, as listed in the column of Adaptive Radius, d® denotes
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Figure 2.4: Single-material minimum compliance for the MBB design:
Evolution of the adaptive trust-region radius and the objective function
value during the optimization process, along with the resulting material
configuration at different iteration steps. Here, the target volume fraction
is V1 = 0.4; the discretization resolution is 240 x 80; and the initial trust-
region radius is set as d° = 0.3. The minimum Young’s moduli are Ey =
102 and Ey = 107, respectively, for the iteration steps before and after
the gray dashed line.

the initial trust-region radius, whose value is then varied according to
Eq. (2.38) in subsequent iterations throughout the solution procedure.
For both MBB and cantilever problems and across various discretization
resolutions and target volume fractions, employing adaptive trust-region
radii consistently ensured convergence to the optimal solution within the
maximum allowed number of iterations. Next, the number of optimization
iterations (or Npgm) required for convergence remains notably small and
relatively consistent across different scenarios. When compared to the
outcomes obtained using fixed trust-region radii, Nggy is consistently
smaller in each scenario considered. Finally, with respect to the resultant
objective function value, while employing fixed radii may occasionally lead



39

Table 2.5: Single-material minimum compliance: Comparison for employ-
ing adaptive vs. fixed trust-region radii.

Fixed Radius Adaptive Radius
d®  Nem f | d® Npm f

03 01 100 368.66 |03 36 29443
240x80 4 04 01 37 2322004 19 233.80
05 01 32 19696 | 04 20 19345

Problem Resolution r Vg

MBB

03 005 65 3807204 28 315.02

360 x120 6 04 0.05 34 240.08 |04 22 236.72

05 02 29 19264 |04 26 214.60

03 005 24 103.14|05 19 99.62

240 x 120 4 04 0.2 29 7551 |05 15 77.79

. 05 0.05 26 6292 |05 17 63.62

Cantilever

03 01 100 1151205 19 10471
360x180 6 04 0.1 27 7785 |05 20 76.54
05 005 26 6292 |05 16 64.46

to slightly lower objective function values, particularly for higher target
volume fractions (e.g., V1 = 0.5), the superiority of adaptive radii becomes
apparent for lower target volume fractions (especially, V1 = 0.3), which
are more relevant in practical designs. This superiority is characterized by
not only achieving lower objective function values but also requiring fewer
iteration counts, thus highlighting the effectiveness of adaptive radii over
fixed radii when dealing with designs for lower target volume fractions.
Regarding the initial value of the trust-region radius d°, it tested it
ranging from 0.05 to 0.5. The best results with respect to Ny are included
in Table 2.5. It is worth noting that by adaptively adjusting the trust-region
radius instead of using a fixed value, it could begin with a larger d° while
achieving convergence and comparable objective function values with
fewer iterations. And this becomes particularly evident when the target
volume fraction is small (e.g. V1 = 0.3). In such cases, employing adaptive

trust-region radii consistently yield lower objective function values and
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required far fewer iteration steps compared to employing fixed trust-region

radii.

2514 Comparison with other TO methods

It is then turned to the comparison with other TO methods, including
SIMP with Heaviside projection [65] and GBD [53, 84], for which the
MBB problem was considered. The comparison results are summarized

in Table 2.6. Here, the column Proposed Method contains the results pre-

Table 2.6: Single-material minimum compliance: Comparison with other
TO methods for solving the MBB problem.

Porposed Method SIMP-Heaviside GBD-E, GBD-V+
AV = 217 AV = 117

Resolution r Vg ‘
Nrem f
| NEem f Nrem f

NEem f | Neem f

|

| |
03 36 294.43 300 310.24 300 8.19e+10 | 119 28695 104 41451
240x80 4 04 19 233.80 300 239.53 300 5.80e+10 | 107 22350 99  266.23
05 20 193.45 300 193.10 300 2.05e+10 | 82 19318 76  190.07
03 28 350.48 300 312.31 300 7.38e+10 | 104 454.84 72  496.75
360x120 6 04 22 236.72 300 238.30 300 6.18e+10 | 92 23325 70 232.64
05 26 214.60 300 194.81 300 2.02e+410| 76 19092 54 19425

sented in the rightmost column of Table 2.5, i.e., with adaptive trust-region
radii, for the MBB problem. For GBD, it examined two ways of parameter
relaxation: one for the minimum Young’s modulus and the other for the
target volume fraction. In the former, the optimization procedure was
split into two stages: Ey = 102 was employed in the first stage, and in the
second stage, it was set with the required value in the original problem
as Eg = 1077, same as that employed in the prior two sections. The corre-
sponding results are presented under the column GBD-E, in Table 2.6. In
the latter, the target volume fraction in the volume constraint is decreased
incrementally per stage until reaching the desired value in the original
problem, with the initial value set to 1.0 and the change increment fixed
at AV = 3 or AV = . The corresponding results are presented under
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the column GBD-V7 in Table 2.6. The maximum number of iterations was
capped at 300 for all the methods compared herein.

Across different discretization resolutions and target volume fractions,
the proposed method consistently converges faster with significantly fewer
iteration steps—about one order of magnitude fewer compared to the iter-
ation counts needed by SIMP, as indicated by Nggy, the number of FEM
analyses called during the solution process. The resultant values of the ob-
jective function are comparable to, and sometimes even lower than, those
obtained by the SIMP method, particularly for cases with lower target vol-
ume fractions. The proposed method also outperforms the GBD method
in both the iteration counts and solution quality. When the minimum
Young’s modulus was chosen as the parameter to relax, GBD struggles to
identify the optimal solutions, particularly for the cases with lower target
volume fractions. Considering that the minimum compliance problem is
a convex problem, solving it using the GBD method is equivalent to using
the proposed framework with a fixed trust-region radius of d* = 1. As
shown in Table 2.4, a too large fixed trust-region radius cannot ensure a
stable and converged solution. When the target volume fraction (in the
volume constraint) was chosen as the parameter to relax, GBD performed
better. This is because by gradually changing the volume fraction, a vary-
ing trust region is implicitly enforced. The change in the design variable
p in each iteration is constrained by the volume fraction increment AV,
which limits the allowable total change in p. To ensure convergence, a
smaller AV is preferred, but it could result in more iteration steps, which
can be found when comparing the results for AV = - vs. AV = L.

The resulting optimal topology is illustrated in Figure 2.5. The pro-
posed method achieved a clear-cut 0/1 material layout, in contrast to
that produced by the SIMP method, where part of the topology is still

in gray scale, requiring more optimization iterations or post-processin
y

1

247 al-

steps to reach a clear-cut 0/1 configuration. For GBD-Vy with AV =
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though the optimization converged, the resulting objective function value
remained high, higher than those obtained by the proposed method and
SIMP by more than 30%. This discrepancy leads to a notably distinct final
topology generated by the GBD method, as depicted in Figure 2.5.

AVANNRAVA WA

(a) Proposed method (b) SIMP-Heaviside (c) GBD-Vt

Figure 2.5: Single-material minimum compliance: The optimal topology
obtained for the MBB design from different methods, with the discretiza-
tion resolution of 360 x 120 and the target volume fraction of V; = 0.3.

However, the resulting optimal topology in Figure 2.5a with the de-
flected top-left and bottom-right parts, may be still undesirable. To further
improve the topology, the parameter relaxation scheme (proposed in Algo-
rithm 2) was employed, as discussed in the next subsection. The improved

topology is then shown in Figure 2.6a.

2.5.1.5 Parameter relaxation

In this section, a thorough analysis for parameter relaxation is presented,
exploring its effectiveness in improving both solution efficiency and quality.
It discusses the rationale behind its efficacy and the selection of suitable
parameters for relaxation.

In practice, relaxing more than one parameters can further improve
the solution efficiency and/or solution quality, depending on the condi-
tioning of the problem. Henceforth, it further explored adjusting both the
minimum Young’s modulus E, and the target volume fraction Vy. One
exemplary implementation is given as Scheme 2 in Table 2.7, where the
parameter relaxation process described in §2.5.1.5 was partitioned into 9
stages with Np = 8 and the initial value for the volume fraction V; set as
0.6 in Eq. (2.39). The results, as summarized in Table 2.8, are compared
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with those obtained by relaxing only E, in two stages as employed in the

prior sections, denoted as Scheme 1 in Table 2.7. For a more systematic

Table 2.7: Single-material minimum compliance for the MBB design: Two
parameter relaxation schemes.

Stage 1 2 3 4 5 6 7 8 9

Vi 03 03
E, 102 10°°

Vr  0.600 0.543 0492 0446 0404 0.366 0.331 0.300 0.300
Eo 102 1072 1072 1072 102 1072 102 1072 10°°

Scheme 1

Scheme 2

analysis, it also extended the design domain to a larger length-height ratio,
L:H =4:1. For the domain of each ratio, two different discretization
resolutions were examined. The results are summarized in Table 2.8. The
Table 2.8: Single-material minimum compliance for the MBB design: Com-

parison between the two parameter relaxation schemes, using the results
from the SIMP method as the reference.

Scheme 1 Scheme 2 SIMP-Heaviside
f Negm | f Negm | f Nrem

240 x 80 294.43 36 294.07 52 310.24 300
320 x 80 662.61 41 613.37 58 635.74 300
360 x 120 350.48 28 292.88 51 312.31 300
480 x 120 808.75 84 605.63 51 639.60 300

Resolution

final material configuration for each domain, obtained with the finest
discretization resolution, are exhibited in Figure 2.6. Through comparison,
it is found that the resultant objective function values from Scheme 2
are consistently lower. More pronounced improvements are observed at
higher discretization resolutions and greater aspect ratios of the design
domain, e.g., in the case of 480 x 120, with the improvement in the ob-
jective function value reaching as high as 26.4% and the iteration counts
reduced by about 40%. These findings suggest that relaxing the minimum
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Young’s modulus along with another parameter in multiple stages could
potentially offer greater advantages in achieving lower objective function
values and possibly reducing iteration counts as well. The extent of these
enhancements can vary depending on the specific problem, particularly

its conditioning.

SN

(a) Length-height ratio: 3 : 1; dis- (b) Length-height ratio: 3 : 1; dis-
cretization resolution: 360 x 120, ob- cretization resolution: 360 x 120, ob-
tained by employing Scheme 2 in Ta- tained by SIMP.

ble 2.7 for parameter relaxation.

~_ N\

(c) Length-height ratio: 4 : 1; dis- (d) Length-height ratio: 4 : 1; dis-
cretization resolution: 480 x 120, ob- cretization resolution: 480 x 120, ob-
tained by employing Scheme 2 in Ta- tained by SIMP.

ble 2.7 for parameter relaxation.

Figure 2.6: Single-material minimum compliance for the MBB design: The
final topological configuration with the target volume fraction of V; = 0.3.

2.5.2 Compliant Mechanism

The next benchmark is a non-convex TO problem, the compliant mech-
anism design, where the displacement objective exhibits non-convexity
with respect to the design variables p. It represents a broader class of TO
challenges than the minimum compliance design addressed earlier, which

is regarded as a convex TO problem.
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2,521 Problem setup

It addresses the topology optimization of a typical compliant mechanism.
The design domain and boundary conditions for the problem are illus-
trated in Fig. 2.3. The design domain is square-shaped with a side length
L. Both the top-left and bottom-left corners are fixed. Additionally, the
domain is connected to two springs at the center, as depicted in the figure.
Both springs have a stiffness coefficient of k; = k, = 0.1. The input force
applied to the center of the left edge is FI* = 1. The objective of this design
challenge is to maximize the displacement magnitude of the central point
on the right edge along the x-axis which is equivalent to minimize ug".
Given the problem’s axial symmetry about the red dotted-dash line in
the center, it is only necessary to discretize one half of the domain. The
discretized domain, represented by a uniform mesh, can also be viewed in
Fig. 2.3. The Young’s modulus is E = 1.0 and the Poisson ratio is v = 0.3.
The target volume fraction is V1 = 0.3. The convergence tolerance is set
as ¢ =5 x 107°. The domain is discretized by quadrilateral elements and
the governing equation is discretized by the finite element method (FEM).
It is a non-convex optimization problem, as the displacement objective is
non-convex with respect to the design variables p. It can be seen as an
example of more general TO challenges compared to the minimum com-
pliance problem in the previous section. The effectiveness of the proposed
method shown in this numerical experiment suggests that the multi-cuts
framework can be a promising candidate for solving many other more

complex TO problems.

2.5.2.2 Running results and comparison to the SIMP method

Similar to the minimum compliance problem, the design of compliant
mechanism requires the parameter relaxation scheme as well. In this
numerical experiment, two stages of the parameter relaxation is applied.
For all two stages, the target volume fraction is stuck the final value as
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V1 = 0.3. The value of the minimum Young’s modulus is different in the
two stages, Eg = 1072 in the first stage and Ey = 107 in the second stage.
Different initial trust region radius d is tested with different discretization
resolutions for finding the optimal material configuration to the compliant
mechanism problem. The results are collected in Table 2.9 under the
column Adaptive Multi-cuts. Based on the running results, the resulting
objective function value f can be very close to each other with different
initial trust region radius dy. The relative difference between the maximum
and minimum f is less than 3.9%, which happens at the discretization
resolution of 200 x 100. Besides, the number of FEM analysis N can be close
to each in most cases. More importantly, the number is no greater than
40 which is much smaller than the number of iterations required by other
methods. This implies that the proposed method is not quite sensitive to
the setup of parameters used in the optimization and it is robust enough
for accepting a wide range of parameters after the introduction of the
adaptive update scheme on the trust region radius.

The SIMP method with the heaviside projection [6] has been seen
as one of the standard methods to solve the TO problems. Therefore, it
is taken as the baseline in this subsection to evaluate the performance
of the proposed method. The running results with different discretiza-
tion resolutions has been organized in Table 2.9 under the column SIMP-
Heaviside. The maximum number of iteration for the SIMP method is
set as 300. In terms of the resulting objective function value f, only three
setups in the adaptive multi-cuts framework give a larger results, and
the relative differences in these three cases are no larger than 1.5% when
compared to the value f obtained by the SIMP method. It suggests that
the proposed method can effectively find good material configurations
with better objective function values and the inclusion of trust region can
guide the optimizer to find the optimal solution even for a non-convex TO

problem. Furthermore, the number of FEM analysis required to find the
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Table 2.9: Single-material compliant mechanism: Results and comparison

with the SIMP method.
) The Proposed Method SIMP-Heaviside
Resolution T
d NEem f | Nrem f
0.05 35 -0.9271
0.1 24 -0.9139
0.2 26 -0.8919
200 x 100 2 0.3 o4 0.92%6 300 -0.8960
04 24 -0.9098
0.5 29 -0.9282
0.05 29 -0.8661
0.1 25 -0.8652
0.2 36 -0.8677
400 x 200 4 0.3 31 -0.8602 300 -0.8511
0.4 38 -0.8728
0.5 33 -0.8763
0.05 36 -0.8313
0.1 28 -0.8238
0.2 25 -0.8056
800 x 400 8 0.3 ’8 0.8167 300 -0.8132
04 27 -0.8085
0.5 37 -0.8270

optimal solution is quite different between these two methods. While the

SIMP method requires a fixed number of iterations as 300, the multi-cuts

framework can find the optimal solution with an one-order magnitude

smaller in N. A great amount of time can be saved for performing the time

consuming FEM analysis, especially in large-scale problems.

2.5.3 Multi-Material Cantilever

Following the completion of benchmark single-material TO problem:s, in-

cluding both convex and non-convex cases, it was proceeded to address
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more challenging TO problems involving multiple materials. When ad-
dressing the inclusion of multiple candidate materials in an TO framework,
a vital consideration is whether the proposed method can accurately dis-
cern the coexistence of all or some of the candidate materials in the derived
material configuration. It first tackled a problem involving two materials,
from which it demonstrates the effectiveness of the proposed parame-
ter relaxation scheme for further enhancing solution quality (in terms
of the objective function value). Next, it considered a design scenario
incorporating five different candidate materials, by which it aimed to eval-
uate the proposed framework’s ability to identify and select the optimal
combination of candidate materials in the resulting material layout. Two
recent studies [49, 33] were referred to validate the results and assess the
performance of the proposed framework.

It is tackled a cantilever design problem involving five materials to
further assess the applicability and effectiveness of the proposed method
for general multi-material design challenges. The problem setup is the
same as depicted in Figure 2.1b, with the design domain’s length-height
ratioas L : H =2 : 1. For a more systematic assessment, it examined two
distinct sets of five candidate materials, with the respective Young’s moduli
E and normalized densities for the five candidate materials detailed in
Table 2.1.

The parameter relaxation scheme was implemented with 8 distinct
stages, as delineated in Table 2.10, where the maximum permissible total
mass fraction M,y is decreased progressively from 0.5 to the designated
target of 0.3 within the first Np = 7 stages, following Eq. (2.39). In line
with the previous tests, it maintained the same convergence tolerance of
e=5x10"3.

The results reported in the literature [49, 33] are used to validate and
compare with the results, as presented in Table 2.11. While the referenced

papers [49, 33] reported outcomes solely at a discretization resolution of
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Table 2.10: Five-material cantilever: Parameter relaxation scheme em-
ployed.

Stage 1 2 3 4 5 6 7 8

Mma 0500 0459 0422 0387 0356 0.327 0300 0.300
Eo 10— 102 102 10— 102 10 10— 107

120 x 80, the numerical experiments extended to consider two higher res-

olutions as well. The optimal material configurations obtained at various

Table 2.11: Five-material cantilever: Main results, for both material sets
considered and compared with the reference results reported in literature.

The Proposed Method  Reference [33]  Reference [49]

Resolution T
Neem f Nrem f Nrem f
120 x 80 3 34 37.500 250 37.881 >200 36.568
Material Set 1 240 x 160 6 36 37.724 - - - -
480 x 320 12 36 38.458 - - - -
120 x 80 3 33 36.631 250 36.722 >200 35.755
Material Set 2 240 x 160 6 35 36.614 - - - -
480 x 320 12 34 37.325 - - - -

resolutions for two distinct material sets are illustrated in Figures. 2.7 and
2.8.

[ 9 (S [
(a) Discretization reso- (b) Discretization reso- (c) Discretization reso-
lution 120 x 80. lution 240 x 160. lution 480 x 320.

Figure 2.7: Five-material cantilever: The resultant material configurations
at various resolutions for Material Set 1. The color code for denoting
different candidate materials is specified as: Bl denotes MAT 1;  denotes
MAT 2; [ denotes MAT 3; Ml denotes MAT 4; and l denotes MAT 5.
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[ [
(a) Discretization reso- (b) Discretization reso- (c¢) Discretization reso-
lution 120 x 80. lution 240 x 16. lution 480 x 320.

Figure 2.8: Five-material cantilever: The resultant material configurations
at various resolutions for Material Set 2. The color code for denoting
different candidate materials is specified as: M denotes MAT 1;  denotes
MAT 2; ' denotes MAT 3; Ml denotes MAT 4; and ll denotes MAT 5.

As seen in Table 2.11, for both material sets the proposed method yield
comparable resultant objective function values with those reported in
the state-of-the-art literature [49, 33]. For Material Set 1, the obtained
optimal material layout does not select all candidate materials but instead
selects four out of five materials (i.e., MAT 1, 2, 3, and 5), as shown in
Figure 2.7. This is consistent with the finding reported in [49], as the
material preferences, implicitly embedded in the sensitivity specified in
Eq. (2.21), align with those implied in [49]. For Material Set 2, since
MAT 4 exhibits an increased Young’s modulus (E4) along with enhanced
specific stiffness (E4/ M4), all five candidate materials are retained in the
final material layout, as depicted in Figure 2.8, consistent with the findings
reported in [49, 33].

By comparing the number of FEM analyses Nggw, the proposed method
demonstrates its superior performance, achieving a reduction of approxi-
mately one order of magnitude in Nggy. The iteration counts or Nggyv were
not provided in reference [49]. However, based on their reported number
for the two-material case and the fact that the same methodology was
employed for both the two-material and five-material cases, it is estimated

to be more than 200. Furthermore, for both sets of candidate materials,
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the variance in Nggy across different discretization resolutions remains
marginal, with a discrepancy of fewer than 3 iterations. Significantly, in-
creasing the discretization resolution does not correlate with an increased
iteration count, suggesting that the proposed framework maintains effi-
ciency and scalability across various resolutions, demonstrating promise
for tackling large-scale design problems. As the filter radius scales in accor-
dance with the discretization resolution, the consistency of the resultant
material layouts can be maintained by the proposed framework, as shown
in Figures. 2.7 and 2.8. That is, the primary structural features and the
distribution of different candidate materials remain consistent. Slight vari-
ations are mostly confined to the interfaces between distinct materials and
some fine details, such as the configuration of minor structural elements
like holes. This consistency across varying discretization resolutions, evi-
denced by both material sets, indicates the robustness of the proposed TO
framework. Such robustness along with its computational efficiency and
scalability affirm the superior capacity of the proposed TO framework to
address multi-material design challenges.

Finally, it further validates that the proposed methodology does not
rely on any specific encoding of the candidate materials, i.e., it has no
preference on the specific order of candidate materials, as the selection is
solely based on the calculated sensitivity. To this end, the design variables
p1-P5 are randomly ordered for representing MAT 1, MAT 3, MAT 5, MAT
4, MAT 2, respectively. With this new assignment of design variables, it
re-solved the problem at the discretization resolution of 240 x 160. The
results and optimal topologies are summarized in Figure 2.9, where the
materials are rendered with the original monolithic increasing order for
ease of comparison. As compared with Figure 2.7(b) and Figure 2.8(b), the
topologies are almost identical; the iteration counts and resultant objective
function values are also similar to those reported in Table 2.11. These

findings confirm that the proposed method does not need any specific
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sorting of candidate materials for multi-material TO designs.

~

-

\l
2

» [
(a) Material Set 1 (Disordered). (b) Material Set 2 (Disordered).
Neem = 34, f = 37.610. Nrem = 35, f = 36.563.

Figure 2.9: Five-material cantilever: The resultant material configurations
by solving the problems with the candidate materials disordered, at the
discretization resolution of 240 x 160. The color code is the same as in
Figure 2.7 and Figure 2.8.

2.54 Multi-Material Compliant Mechanism

Finally, it investigated a compliant mechanism design incorporating five
candidate materials, so as to assess the performance of the proposed
framework for solving a non-convex TO problem with the complexity of
involving multiple materials and mass constraints. Same as in the prior
section, two distinct material sets, each with five candidate materials, were
examined, with the respective Young’s moduli E and normalized densities
for all candidate materials in each set outlined in Table 2.1. The problem
setup is the same as depicted in Figure 2.3. In the solution process, the
parameter relaxation followed a two-stage relaxation with Ey = 1072 in
the first stage and Eg = 1077 in the second stage while keeping Mmax = 0.3
in both stages. Being consistent with the other sections, the convergence
tolerance was first setas e =5 x 107°.

The results are summarized in Table 2.9 and compared with those of
the single-material case. The numbers of FEM analyses (Nggy) required
to reach convergence are consistently low (typically in twenties) across
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different discretization resolutions, same as the single-material compliant
mechanism case and the five-material minimum compliance case, indi-
cating the proposed framework’s efficiency and scalability for dealing
with multi-material non-convex designs. Due to the lack of literature
data available for this test case, the results are not compared with any
references. It is noted that the resultant displacement objective in this
compliant mechanism design is improved by about 7% across various dis-
cretization resolutions, by involving multiple candidate materials. While
this difference may not be notably significant for the two material sets
considered, the benefits of expanding material diversity in TO design
can be magnified when considering factors such as cost, mass, and other

material properties.

Table 2.12: Five-material compliant mechanism: Main results and compar-
ison with the single-material case.

K ks Resolution T Five-material Single-material

Nrem f | Neem f
200x100 2 22 09318 | 24  -0.9226
. 400x200 4 22 08895 | 31  -0.8602
Material Set1 01 01 .5 500 6 23 08659 | 32  -08413
800 x 400 8 31  -0.8478 | 28  -0.8167
200 x 100 2 22 09421 | 24  -0.9226
. 400x200 4 25  -08951 | 31  -0.8602
Material Set2 01 01 (5 500 6 24 08718 | 32  -0.8413
800 x 400 8 29  -0.8644 | 28  -0.8167
200x100 2 73 20733 | 68  -2.0157
Material Set2 1.0 0001  400x200 4 80  -19919 | 71  -1.9926
800 x 400 8 64  -18677 | 67  -2.0159

The final material layouts are depicted in Figures 2.10 and 2.11. Sim-
ilarly to the five-material minimum compliance design, for Material Set
1, the design objective chose MAT 1, 2, 3 and 5 in the optimal layout;
for Material Set 2, all five candidate materials were retained in the re-

sultant material layout. For each material set, while lower resolutions
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yield rougher interfaces between different materials, the core structural

attributes are maintained across various discretization resolutions.

(a) Discretization reso- (b) Discretization reso- (c) Discretization reso-
lution 200 x 100. lution 400 x 200. lution 800 x 400.

Figure 2.10: Five-material compliant mechanism: The resulting material
configurations at various resolutions for Material Set 1. The color code for
denoting different candidate materials is specified as: Bl denotes MAT 1;

denotes MAT 2; | denotes MAT 3; Ml denotes MAT 4; and l denotes
MAT 5.

In the next test, it studied the effect of the two adjustment factors (6,
and 0,) in Eq. (2.38) for the trust-region radius. The values of 6; and
0, are varied with different combinations. As indicated in Table 2.13,
the optimization solutions show little dependency on these two factors:
Nrpym varies within £3; the optimal objective function value f varies within
6%. As for the resulting topology, the two factors’ effects are different, as
depicted in Figure 2.12. 0,, which controls the degree of enlarging the
trust-region radius, shows minimum influence. However, 0;, the shrinking
factor, has a more pronounced effect on the resultant topology. This is
because shrinking the trust-region radius tends to increase the importance
of the corresponding trust-region constraint in the multi-cut formulation
Equation (4.2), and hence notably perturbs the resultant topology.

In the last test, it systematically studied the impact of the convergence

tolerance ¢ set in Algorithm 1 on the final solution. Specifically, it examined
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(a) Discretization reso- (b) Discretization reso- (c) Discretization reso-
lution 200 x 100. lution 400 x 200. lution 800 x 400.

Figure 2.11: Five-material compliant mechanism: The resulting material
configurations at various resolutions for Material Set 2. The color code for
denoting different candidate materials is specified as: Bl denotes MAT 1;

denotes MAT 2; | denotes MAT 3; Ml denotes MAT 4; and l denotes
MAT 5.

Table 2.13: Five-material compliant mechanism: Results with different
adjustment factors for the trust-region radius (i.e., 61 and 6, in Eq. (2.38)).

200 x 100 400 x 200
NEem f | Nrem f

01 =0.7,0, =15 22 -0.9421 25 -0.8951
0, =07,0,=17 22 -0.9333 27 -0.9238
0, =07,0,=13 22 -0.9351 25 -0.9032
01 =06,0, =15 25 -0.9608 25 -0.9107
01 =038,0, =15 24 -0.9466 28 -0.8729

Factor

three different tolerances, as outlined in Table 2.12. By comparing Nggum
and the optimal objective function value f, it is found that decreasing the
tolerance leads to more optimization iterations to reach a better solution
(or a lower objective function value). However, once the best solution has
been found, further decreasing the tolerance does not change the solution,
as indicted in both Table 2.14 and Figure 2.13. And it is worth noting that

the proposed method did not result in redundant iterations or fluctuating
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95959,

(a) Discretization reso- (b) Discretization reso- (c) Discretization reso-
lution 200 x 100. ©; = lution 200 x 100. 6; = lution 200 x 100. 61 =
0.7, 0, =1.3. 0.7,0, =1.5. 0.7, 0, =1.7.

059 ¢,

(d) Discretization reso- (e) Discretization reso- (f) Discretization resolu-
lution 400 x 200. 67 = lution 400 x 200. 671 = tion 400 x 200. ©0; =
0.6, 6, =1.5. 0.7, 8, =1.5. 0.8, 6, =1.5.

Figure 2.12: Five-material compliant mechanism: The resulting material

configurations for Material Set 2 with different adjustment factors (6,

and 6,) for the trust-region radius. The color code for denoting different

candidate materials is specified as: M denotes MAT 1;  denotes MAT 2;
denotes MAT 3; Ml denotes MAT 4; and M denotes MAT 5.

objective function values when further decreasing the tolerance, which
contrasts with the behavior observed in other methods, e.g., 34, 47].
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Table 2.14: Five-material compliant mechanism: Results with different
convergence tolerance .

. e=5x10"3 e=1073 e=5x10"*
Resolution v
NEem f | Neeum f | Nrem f
200 x 100 2 22 -0.9421 36 -0.9738 32 -0.9738
400 x 200 4 25 -0.8951 39 -0.9348 39 -0.9348
600 x 300 6 24 -0.8718 24 -0.8718 24 -0.8718
800 x 400 8 29 -0.8644 35 -0.8770 35 -0.8770

(a) Convergence (b) Convergence (c) Convergence
tolerance 5 x 1073, tolerance 1073. tolerance 5 x 1074,

Figure 2.13: Five-material compliant mechanism: The resulting material
configurations obtained with different convergence tolerance ¢, all at the
discretization resolution of 800 x 400 and for Material Set 2. The color
code for denoting different candidate materials is specified as: Bl denotes
MAT 1; denotes MAT 2; " denotes MAT 3; Ml denotes MAT 4; and Il
denotes MAT 5.

2.6 Summary and Conclusions

A new TO framework has been presented that can efficiently solve both
convex and non-convex TO problems involving single or multiple materi-
als. It directly handles binary design variables, eliminating the need for
additional efforts to convert binary variables into continuous variables and
vice versa (e.g., through interpolation and projection as in SIMP). When
dealing with multi-material TO designs, it does not need to enumerate
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all possible combinations of candidate materials and solve multiple inde-
pendent TO problems like SIMP [88], nor does it need to sort candidate
materials in a specific order and interpolate design variables between
different materials like other methods [88, 33, 49]. Instead, it only needs
to expand the dimension of design variables and incorporate additional
inequality constraints arising from the mass constraint.

Through numerical tests and comparisons with other methods, it has
been demonstrated that the proposed framework can significantly re-
duce the number of optimization iterations (and thereby the number of
FEM analyses required) by about one order of magnitude, while main-
taining comparable solution quality in terms of the optimal value of the
objective function and the resulting material layout. Despite increasing
discretization resolutions and the inclusion of multiple materials—which
significantly increase the number of design variables and introduce more
inequality constraints—we observe consistency in solution quality and the
number of optimization iterations required to reach the optimal solution.
It has also been found that the minimum Young’s modulus has the greatest
impact on the conditioning of the optimization problem and is therefore
considered as the primary parameter for relaxation. Relaxing it, along with
a secondary parameter in multiple stages, could potentially offer greater
advantages in achieving lower objective function values. The extent of
improvement can vary depending on the specific problem, particularly its

conditioning.
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3 CLASSICAL PDE SOLVER FOR COMPLEX GEOMETRY

The linear systems of equations generated from the generalized moving
least square (GMLS) discretization need to be solved properly to achieve
scalability and efficiency. Krylov methods are usually used for solving
large-scale linear systems of equations, for which robust preconditioners
must be developed. Due to its meshless nature, there are no hierarchical
geometric meshes in the GMLS discretization, making the development of
a monolithic GMG method challenging. Thus, in previous works [75, 31],
the algebraic multigrid (AMG) method was used in conjunction with
the block-factorization-based preconditioners. In particular, since AMG
methods are developed mainly for scalar Poisson-like problems, they are
used to invert the diagonal blocks that appear in the block preconditioners.
However, due to the complexity of the fluid-solid interaction problems and
the limitation of block-factorization-based preconditioners, such AMG-
based preconditioning strategies cannot ensure convergence and achieve
scalability. Therefore, in this work, it proposes to use the geometric infor-
mation of the adaptively refined GMLS nodes to build the hierarchical
structure and develop a monolithic GMG-based preconditioner for solving
the linear systems arising from the GMLS discretization.

This thesis considers the coupled dynamics of steady Stokes flow of
incompressible fluid and freely moving solid bodies suspended in the
fluid. Hence, the computational domain contains the fluid and N, solid
bodies. Denote Q¢ C R? as the sub-domain occupied by the fluid, I as
the outer wall boundary of the whole domain, and I';,,n = 1,2,... N
as the boundaries of N, freely moving solids in d-dimensional physical
space. Assume I'y NIy, =0, m,n=0,1,2,... N always hold during the
whole dynamics process, i.e., there is finite separation between any two
boundaries. Each solid body is assumed to follow rigid-body dynamics,
and its motion is tracked by its center of mass (COM) position X,, and
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orientation ®,,. Its translational and angular velocities are accordingly
donated as X,, and ©,,, respectively. The fluid flow is coupled to the
motions of all solid bodies through the following steady Stokes problem:

%—vvzu:f Vx € Q¢
V-u=0 Vx € Q¢
u=w vx € Ty (3.1)

u=X+0,x(x=X,) Wel,n=1,...,Ng

\Y%
n.Tp—\/]:pVZu:n-f VXEFZFOUHUFZ"'UFNS/

where v is the kinematic viscosity of fluid; p is the density of the fluid; f
denotes the body force exerted on the fluid; w is the velocity of the wall
boundary; and n is the unit normal vector outward facing at boundary T'.

For a divergence-free velocity field (V - u =0), Eq. (3.1) is equivalent

to:
(%Jerxqu:f Vx € Q¢
2
—v—:—V-f Vx € Q¢
p
u—w Vx € Ty
u=X,+ 0, x (x—Xun) Vxel,n=1,...,N;

n-ﬁ%—vn-Vxqu:mf Vxel=TLhuhuly---Ul\,,
° (3.2)
where the velocity identity V?u = —V x V X u is utilized for V - u = 0.
Solving Eq. (3.2) instead of Eq. (3.1) can avoid the saddle-point structure
of the Stokes operator. However, it necessitates a numerical reconstruction

\

of velocity faithful to the divergence-free constraint.
In Stokes limit, the inertia effect of solids can be neglected. Hence, each
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solid body’s translational and angular motions are subject to the force-free

and torque-free constraints as:

J o-dA+f£f.,=0
& (3.3)
J (X—Xn) X (0-dA) +Ten =0,
r’ll

wheren = 1,...,Ng; 0 = —pI + p[Vu + (Vu)'] is the stress exerted by
the fluid on the boundary of each solid body; f. , and T, represent the
external force and torque applied on each solid body, respectively.

Therefore, by solving Egs. (3.2) and (3.3) concurrently as a monolithic

,,,,,

-----

{Xn, Onl} 15 . n.. the solid bodies” new positions and orientations are
updated by invoking a temporal integrator. In this work, it adopts the
5% order Runge-Kutta integrator with adaptive time stepping [23], also
known as obe45 [64], and implement it in the solver. To achieve adaptive
time stepping, this integrator needs to specify an initial time step and
relative error tolerance, which are set as Aty = 0.2s and 10>, respectively,

in this work.

3.1 Generalized Moving Least Square Method

3.1.1 Basic Approximation

The fluid domain Qy is discretized by a set of collocation points (referred
to as interior GMLS nodes). All the boundaries Iy UT; UT; - - - U T, are dis-
cretized by another set of discrete points (referred to as boundary GMLS
nodes), where the boundary conditions (BCs) are imposed. For a GMLS
node at x; and a given scalar function 1 evaluated at its neighbor domain:
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P; = P(x;), a polynomial P (x) of order m is sought to approximate 1
and its derivatives (D*{) at x;. That is, P (x) = P7(x)c* with a polyno-
mial basis P(x) and coefficient vector ¢* such that the following weighted
residual functional is minimized:

Jxi) = Y Qb —PT(x)el*Wy; . (3.4)

JENC,

For this quadratic programming optimization problem, its solution can be

easily given as:

-1
c = ( Z Pi(xk)WikPiT(Xk)) (Z PiT(Xj)Wijlbi) . (3.5)

KENe, JEN¢;

Note that for { € span(P(x)), this approximation ensures 1 to be exactly
reconstructed. This property of polynomial reconstruction grants high-
order accuracy achievable for the GMLS approximation by taking large m,
e.g. m = 4,6 [80]. An arbitrary o' order derivative of the function can
then be approximated by:

D*P(x) ~ DXy (x) = (D*P(X))Tc". (3.6)

The weight function involved in Eqgs. (3.4)-(3.5) is defined as W;; =
W(ry;) with 15 = ||xi — x;|| and W(r) =1 — (%)4 for r < €, or otherwise,
W(r) = 0. Here, € is the compact support, and hence, it is only necessary
to include GMLS nodes within an e-neighborhood of the ith GMLS node,
ie,j € Ne, = {xjs.t. ||xi —x;|| < ei}. Therefore, the approximation
errors in both the interpolant and derivatives of \p depend on the value
of €, or on the normalized support size e/Ax if the characteristic nodal
distance Ax within the support is fixed. €/Ax must be large enough to

ensure unisolvency over the reconstruction space and thereby a well-posed
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solution to Eq. (3.4). Larger ¢/Ax also leads to a more accurate least-
square approximation. However, too large € /Ax can yield very dense linear
operators and ill-conditioned linear systems. Denote N, ,, the minimal
number of neighbors required to solve Eq. (3.4) for the polynomial basis
P(x) of order m. In practice, to ensure a well-posed and accurate solution
of Eq. (3.4), it determines the size of compact support €; for each node by
taking the minimum value of €;/Ax; such that [N¢,| > 29/*N,, ,, where
IN¢,| denotes the number of nodes in the set N,; d represents the physical
dimension.

3.1.2 Divergence-free GMLS reconstruction for the

velocity field

The GMLS approximation discussed above is applied to both the velocity
and pressure fields. However, the polynomial basis used to approximate
the velocity field u is chosen from the space of m™ order divergence-free
vector polynomials P4 (x) to enforce compatibility with the divergence-
free constraint on the velocity. Thus, the following polynomial reconstruc-
tion is built for u and for discretizing its gradient and curl-curl operators:
(PE¥)T (x; )cdiv

(VP (x; ) e (3.7)
(V x V x P&Y)T(x;)edive

1

un (xq)

Vhun(xi)

(V X Vx)huh(xi)

where
C(ijliv* _ Mgliiv—l Z P?iV(xj)u(xj)Wi. , (3.8)
JEN¢;
with

MY — Z P (x5 )Wy (PI) T (x5)
JENe;
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Let x. = ";"i, Ye = % and z. = Zz—fl The complete divergence-free
polynomial basis P{" (x) of different orders m in both 2D (d = 2) and 3D
(d = 3) are provided as follows. The basis When d = 2 and m = 2, the

divergence-free vector polynomial basis P4V (x) at particle i is given by:

. 1 O 0 € € 0 2 2 _2 €Ye '
PEhV(x) — Y X Ye Xe Xel ; (39)
01 Xe 0 —VYe Xze 0 _erye y%—:
when d =2 and m =4, it is given by:
Pgiv(X) _ 100 Ye Xe 0 y%: X%_: —2X€y€
01 x& 0 —ye X2 0 —2xcye Y2
0 yi  xi —3xey: xp¥ ™ . (3.10
X2 0 =3xEEU 3 —XeY2 i (310)
0yt oxb kel ¥ x|
Xe 0 =¥ E yi o xeyl iyl
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and when d = 3 and m = 2, it is given by:

0 0 0 ye¢ 0 xc 0 xe
0 xe 0 0 0O 0 z¢ —Ye
1

1
Piv(x) = |0
0 0 x« 0 yo 0 0 0

S = O

xe 0 0 y>2 0 22 0 x2 x2
0 x2 0 0 0 0 zZ2 —2x.Ye 0
—z. 0 x2 0 y2 0 0 0 —2XZe
—2XcYe 0 —2XeZe 0 YeZe 0 0 T
y%—: y%—: 0 —2YcZe 0 XeZe 0
0 —2Yyeze 22 z2 0 0 XeYe

(3.11)

To impose the Dirichlet (no-slip) BCs in Eq. (3.2) for u, the boundary

GMLS nodes take the velocity of the corresponding boundary I, that they
belong to.

3.1.3 Staggered discretization of div-grad operator

To ensure compatibility and thereby numerical stability, the staggered
GMLS discretization [76, 31] is employed for the div-grad operator of
pressure p in Eq. (3.2). It builds upon each e-neighborhood graph that
plays as a local primal-dual complex for each GMLS node. It is referred as
virtual cell, where a set of primal edges are constructed as: E; = {x;—x;|x; €
Ne,}, each associated with a midpoint x;; = % and a virtual dual face at
the midpoint and normal to the edge. The staggered GMLS discretization
of the div-grad operator is then constructed from a topological gradient
over primal edges and a GMLS divergence recovered from local virtual
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dual faces. Thus, it has:

Prixi) =P (xi)c]
1
Vipn(xi) :E(VPi)T(Xi)C? (3.12)
1
Vipn(xi) :Z(VZPJT(XJC: ,
where
Cj: = M_1 Z Pi(xij)wij (pl — p]) , (313)
jENe,
with

M= Z Pi(xij )Wll PI (Xij ) ’ (314)

JENC,
and the polynomial basis P can be the €;-scaled Taylor m* order monomi-
als; and the coefficient ¢} is the solution of the quadratic program:

¢i(x) = arg min { Z [(pi —pj) — P{(xij)ci]zwﬁ} . (3.15)

“ JEN;

Note that pressure p is subject to an inhomogeneous Neumann BC in
Eq. (3.2), written in the form of 0,r = g. To impose this BC, it can be
added to the quadratic program in Eq. (3.15) for the boundary GMLS
nodes the following equality constraint:

- [SVRUT 0] —glx), xeT

In addition, a zero-mean constraint is imposed for p to ensure the unique-
ness and physical consistency of the solution. Different from the previous
work [31], it does not employ a Lagrangian multiplier for enforcing this

zero-mean constraint in order to achieve scalability. Details are explained
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in §3.3.4.

3.1.4 Adaptive refinement

In order to reduce computational cost and to recover optimal convergence
in the presence of singularities governing lubrication effects, the computa-
tional domain and boundaries are discretized with a hierarchy of different
resolutions based on an adaptive refinement algorithm [31].

At each time step, it starts from a uniform, coarse initial discretization
resolution Ax; = Ax?, resulting in a set of GMLS nodes, Q°. Then, more
GMLS nodes are added adaptively with refined Ax;, leading to new sets
Q' of GMLS nodes. In each refinement iteration, a four-stage procedure is

followed:
SOLVE — ESTIMATE — MARK — REFINE . (3.16)

In SOLVE stage, Eq. (3.2) is numerically solved using the GMLS dis-
cretization discussed in §3.1 and the linear solver introduced in §3.2; both
the velocity and pressure fields are updated. In ESTIMATE stage, the
recovery-based a posteriori error estimator n} is evaluated from Eq. (3.18)
for all GMLS nodes. According to the value of the error estimator on each
node, all nodes are sorted in descending order into a new sequence xy/. In
MARK stage, a fraction of GMLS nodes with largest errors are selected
and marked for refining. This fraction of GMLS nodes contribute to «
percentage of the total recovered error, where « is a preset parameter and
o = 0.8 in the present work. In REFINE stage, the marked GMLS nodes
are refined. For solving 2D problems, generally any marked interior GMLS
node x; € Q¢ is split into four nodes with smaller spacing, and a marked
boundary node x; € I is split into two nodes. For solving 3D problem:s,
any marked interior GMLS node x; € Qy is split into eight nodes with
smaller spacing; a marked boundary node on the wall boundary x; € I
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is split into four nodes; and the details about how to refine any marked
boundary node on the surface of a moving solid x; € I', (n =1,2,...,Ny)
are provided in 3.1.6. Denote Ax; as the original spacing (or resolution)
of the marked nodes, the nodes newly generated by splitting have the

spacing Axy,,,, = %Axi. The updated set of GMLS nodes at the end of
REFINE stage is denoted as Q!"!. These four stages (3.16) are repeated
iteratively at each time step until the total recovered error (Eq. (3.19)) is
less than a preset tolerance, i.e,

n" < €t - (3.17)

The recovery-based a posteriori error estimator is defined based on ve-
locity gradient. Due to the lack of exact solutions in practical applications,
true errors cannot be evaluated. Thus, the recovered error is used to es-
timate the true error, which measures the difference between the direct
and recovered velocity gradients and can be practically determined in any

application problem. More specifically, it is defined as:

2jen,, IRIVUl; = V52V

(3.18)
ZjeNe.l Vi

n =

Here, the recovered velocity gradient can be evaluated locally on each
GMLS node as:

R[Vu], = Nil ]-EZNei Vhtnjsi,
where Viup i = ( VP;ﬁV)T (xi)c;‘ is the velocity gradient reconstructed at
x; but evaluated at x;. In order to properly weigh the contributions from
nodes with different discretization resolutions Ax;, a volumetric weight
V; is assigned to each node at x; and defined as V; = Ax{, where d is the

dimension of the problem’s physical space. Then, the total recovered error



69

over all GMLS nodes is:

, Vi
0= o mea Ve (3.19)
2 xea [IVunil[?Vi

For applications of dilute suspensions of solids, the above adaptive re-
finement procedure can start from an uniform, coarse initial discretization.
However, for concentrate suspensions of solids, or when gaps between
some solid boundaries are rather narrow, even smaller than Ax?, the initial
coarse discretization can result in none GMLS nodes allocated within the
gaps. In that case, adaptive refinement would not take place within those
gaps. Thus, a preprocessing step is evoked to guarantee GMLS nodes allo-
cated everywhere throughout the entire computational domain including
narrow gaps, before the adaptive refinement is conducted following the
algorithm discussed above.

In this preprocessing step, it examines the e-neighborhood of each
boundary GMLS node and check if the following requirement is satisfied:

Forx; € IhandVj € N, x5 € 'y with m#nand m,n=0,1,..., Ny .
(3.20)

This requirement ensures that each boundary GMLS node has enough
interior GMLS nodes in its e-neighborhood. If it is not satisfied, the cor-
responding boundary node and all its neighbor nodes are refined. Note
that in this preprocessing step, the neighbor nodes of a boundary node
can be within solid bodies.

After preprocessing and any iteration of refinement, a post-processing
step is performed to enforce quasi-uniform discretization within any e-
neighborhood N, because large difference in the discretization resolution

within an e-neighborhood would result in ill-conditioned GMLS approxi-



70

mation. Thus, for any e-neighborhood that does not satisfy:

max (Ax;)

<2, for Vx; € Q¢UT and j, k € N, , 3.21
min(Axy) or Vx; € Qg and j . ( )

it will mark and refine the nodes with the coarsest resolution in that e-

neighborhood, until the requirement in Eq. (3.21) is satisfied.

3.1.5 Numerical quadrature

With the GMLS discretization, a composite quadrature rule is employed
for approximating the integrals in Eq. (3.3) as:

J o-dA
I

~ Z (—piI + vIVhuni + (Vhuni)T]) - (AAiny)

xi €M

(3.22)
J (x—Xn) % (0-dA)

~ Z ((xi —Xn) X (—pil + V[Vhuni + (Vhuni)™)) - (AAing),

XiEFn

where Viun; = (VPIY)T(x;)ct; AA; = Ax; for 2D problems, and how
to determine AA; in 3D is provided in §3.1.6. As shown in [31], this
quadrature rule is sufficient for the entire numerical method to achieve
high-order convergence.

3.1.6 Discretization and Adaptive Refinement in 3D for
the Surfaces of Moving Solids
The boundaries of solid bodies in fluid-solid interactions can generally be

curved surfaces or manifolds, so generating and refining point clouds on

them need additional care. First of all, a tool to generate initial, uniform
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point clouds in the curved surfaces (e.g., spherical surfaces) needs to
be invoked. In this work, DistMesh [56] is adopted, which can generate
a quasi-uniform point cloud with a given discretization resolution via
triangulation. The point cloud generated by DistMesh with the initial
resolution Ax° on the surface of each solid, I', (n =1,2,...,Ny), is denoted
as P% = {V9,¢&%,7%}, where V9, = {x} € I,} denotes the set of boundary
GMLS nodes on T,; &% = {e%— = (x?, x]-o) | xY, xj0 € V%1 denotes the set
of edges determined by DistMesh connecting two adjacent nodes; and
To =t = (0, ) [ x), 0, x) € Vel el €8, € &)} represents the
set of triangles formed from three adjacent nodes by DistMesh. Starting
from P, the nodes marked for refinement are refined. P! denotes the
point cloud on I}, resulted from the I-th iteration of adaptive refinement
on PI-1.

Specifically, for a node x. ' € V! marked for refinement, a new

resolution Ax;,,,, = 3Ax; is assigned to this node, and the midpoints on

all edges connected with x{ ' are newly generated nodes to be added

into V). For an edge e{;" € £]"!, its midpoint x;; ' is determined as the
-1 I-1
1

% er I— and the origin of

intersection between I, and the line connecting
the coordinate system defining the surface manifold of the solid body. In

the end of refinement, such determined midpoints along with V1! make

I-1
i

up VI. The edge between the midpoint xi)’ ! and the marked node x
is regarded as a new edge to be added into &. If the node ij’l is also
marked for refinement, the edge between the midpoint x{; ' and x; " is also
added into &}, but the original edge e;; is removed from &,. As for the
triangles, when all the three nodes in tiI].’k1 are marked for refinement, they
along with the midpoints on the three edges form four new triangles to be
added into T}, but t{)fkl is removed from T.. As such, a clear derivation
relation between P! and PL ! is still retained and can be utilized in the
interpolation and restriction operations.

For each node x! € VI, AA; in Eq. (3.22) is evaluated from the areas
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of the triangles t{;, € T}, connected to the node. The area for each such

triangle is denoted as Aj;,. AA; is then calculated as:

1 I
AA; = 2 > Al (3.23)

(kL)

3.2 Geometric Multigrid Preconditioner

Solving the linear systems resulting from discretization dominates the
entire computational cost in simulations. Therefore, the main focus of this
work is to design a scalable preconditioner for the Krylov method to solve
the linear systems generated in the SOLVE stage. A simple preconditioner,
such as the Gauss-Seidel preconditioner, cannot ensure convergence and is
not effective in practice. In the previous work [75, 31], a block-factorization-
based preconditioner based on decoupling of the velocity and pressure
fields was employed, and AMG methods were applied for inverting each
block. For solving benchmark smaller-scale fluid-solid interaction prob-
lems [75, 31], such a linear solver can work reasonably well. However, as
the number of solid bodies increases, e.g., in the examples considered in the
present work, the performance of such a block preconditioner deteriorates.
One major reason is that the velocity block used in the block-factorization-
based preconditioner consists of unknowns related to both the fluid and
solid bodies. In particular, it combines the discretized curl-curl operator
in Eq. (3.2) for the fluid with the discretized integrals in Eq. (3.22) for
the solid bodies. In addition, the inclusion of many solid bodies results
in a very irregular shape for the overall computational domain. All of
these make it difficult for an AMG method to find a proper coarsening.
Consequently, it fails to converge for the velocity block and strongly affects

the overall performance of the block-factorization-based preconditioner.
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This section introduces a monolithic GMG method to build a precon-
ditioner for the Krylov linear solver such as GMRES to solve the linear
systems resulted from GMLS discretization. The new multigrid method
utilizes the hierarchical sets of GMLS nodes generated during the adaptive
refinement. Therefore, no coarsening is needed, avoiding the major diffi-
culty that the AMG method previously encountered. Using the geometric
information of these hierarchical sets of the GMLS nodes, it can construct
interpolation operators based on the GMLS approximation and restriction
operators based on averaging. Furthermore, a two-stage smoother is devel-
oped based on the splitting between the fluid domain and the solid bodies.
Finally, the interpolation/restriction operators and the smoother are used
in a V-cycle fashion to define the overall monolithic GMG preconditioner.

It first discusses about the block structure of the resultant linear sys-
tem in §3.2.1. Then, it briefly reviews the required operations and entire
process of multigrid preconditioning in §3.2.2. In §3.2.3, it explaines how
to construct the interpolation and restriction operators. In §3.2.4, the
smoothers designed based on physics splitting is presented. The entire
monolithic GMG method introduced in this work is finally summarized
in §3.2.5.

3.2.1 Block structure of the linear system

After the governing equations (3.2)-(3.3) are discretized by the GMLS
discretization, the resulting linear system has the following block structure:

K G C u fiot
Ax=y with A=|B L , X=1\pl, y=1|9g | . (324
D T X f,

Here, X includes all solids’ both translational and rotational velocities, i.e.,
X ={Xy, @n}n:m,_“,Ns. K corresponds to the discretized curl-curl operator



74

V x Vx of velocity in Eq. (3.2). It is noted that the curl-curl operator for a
divergence-free polynomial basis is equivalent to Laplacian. L corresponds
to the discretized Laplacian operator V? of pressure in Eq. (3.2), which
is obtained from the staggered discretization of div-grad operator. As
such, the nonzero diagonal blocks in A, i.e., K and L, are all discretized
Laplacian operators. While B denotes the contribution from the vV x Vx
operator in the inhomogeneous Neumann BC in Eq. (3.2), G represents
the discretized %V operator. For the discretized force-free and torque-
free constraints of Eq. (3.3), D denotes the contribution from viscous
stress with velocity gradient; T denotes the contribution from pressure. C
contains the velocity constraints (no-slip BCs) from each solid’s kinematics
on their boundaries in Eq. (3.2). f;,+ combines the body force f exerted in
fluid and the velocity w on the wall boundary. g contains V - f and n - f in
Eq. (3.2). Finally, f, represents the external force and torque applied on
the solid bodies, such that f; = [fcn —Tenll_1, N,

From its block structure, it is seen that A is neither symmetric nor
positive definite. The strong coupling between the fluid and solid DOFs
deteriorates the conditioning of A. Thus, the linear system in Eq. (3.24)
is challenging to solve in practice. Furthermore, since enough neighbor
nodes are needed in GMLS discretization, the matrix A is dense. There-
fore, designing a robust and efficient linear solver is crucial for achieving

scalability in practical simulations.

3.2.2 Multigrid methods

Most relaxation-type iterative solvers, like Gauss-Seidel (GS), converge
slowly for linear systems with fine resolution discretized from partial dif-
ferential equations, e.g., (3.2). The main reason is that the convergence
rates of different error components can vary significantly, if it decomposes
the error using the eigenvectors of the linear system, e.g., A in Eq. (3.24).
The components with the eigenvectors corresponding to large eigenvalues
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(in terms of magnitude) are usually referred to as high-frequency compo-
nents of the error; the components with the eigenvectors corresponding to
small eigenvalues are called low-frequency components of the error. In
general, for relaxation-type iterative solvers, the high-frequency compo-
nents converge to zero quickly independent of the discretization resolution.
However, the low-frequency components converge slowly, getting worse
when the resolutions are refined and hence slowing down the overall
convergence. On the other hand, low-frequency components of the error
on fine resolutions can be well approximated on coarse discretization and
hence become high-frequency error components on coarse resolutions [15].
This fact motivates the idea of moving to a coarser resolution to eliminate
the low-frequency error components and leads to a multi-grid approach
known as the multigrid method [15, 16].

Multigrid methods exploit a discretization with different resolutions to
obtain optimal convergence rate and hence are naturally compatible with
adaptive h-refinement. The operations of going back and forth between
coarse and fine resolutions are called the restriction and interpolation,
respectively. To minimize the approximation errors across different resolu-
tion levels, a smoothing procedure is usually executed before the restriction
operation, and another smoothing step is applied after the interpolation
operation. This report follows the V-cycle for building the multigrid pre-
conditioner.

In the monolithic setting, the interpolation operators J', the restriction
operators R', and the smoothers (i.e., subroutine Smooth(A, y)) need to
be carefully designed to properly handle the coupling of fluid and solid-
body DOFs. The adaptive refinement yields a hierarchical series of node
sets Q1 1 =0,1,2,.... It can utilize the hierarchical structures between
node sets to construct the corresponding interpolation J' and restriction
R' operators for each node set Q.
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Algorithm 3 V-cycle process: V-Cycle(Al,y")

Input: Coefficient matrix A' and right-hand side (RHS) vector y'
Output: Approximate solution x'

1: if [ == 0 then

2. Solve: Alx! =y!

3: else

4: Pre-smooth: x' = Smooth(A!,y')

5 Compute residual: r' = y' — Alx!

6:  Restrict: y'' = R'r!

7: Apply V-cycle recursively: z'~! = V-Cycle(A!, y'=1)
8:  Interpolate: x' = x' +J'z""!

9:  Post-smooth: x' = x' + Smooth(A',y! — Alx!)
10: end if

Return: !

3.2.3 Interpolation and restriction operators

In mesh-based discretization methods, e.g. finite element method, the
interpolation/restriction operators can be constructed from the nested
function spaces across different levels of meshes. In this work, instead of
using function spaces, it builds the interpolation and restriction operators
through local approximations, i.e., approximating any scalar or vector
field locally from a set of neighbor nodes. More specifically, if the fine-
level nodes QF as the “target” nodes and the coarse-level nodes Q¢ are
taken as the “source”, by constructing GMLS approximation (§??) on
the target from the source, it defines the interpolation operator. If the
target are coarse-level nodes, and the source are fine-level nodes, then a
local averaging approximation on the target from the source builds the
restriction operator. An illustrative description about the interpolation
and restriction is provided in Fig. 3.1.
Thus, the interpolation operator for the pressure field is constructed
as:
p(x) =Pl (x})c}, (3.25)



77

(a) The interpolation operator at a fine-level node x! (highlighted in dark
blue) is constructed as the GMLS approximation from the coarse-level
nodes (red) within the fine-level node’s é-neighborhood.

(b) The restriction operator at a coarse-level node x{ (red) is constructed
as averaging over its own child nodes (light blue with green arrows)
generated in REFINE stage during an iteration of adaptive refinement.

Figure 3.1: Schematic of the interpolation and restriction. Coarse-level
nodes are displayed in red and fine-level nodes are in blue. The black
dashed lines indicate part of a solid body’s boundary.
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with
P=Myt Z Pi(XjC)P(XjC)Wij , (3.26)
JENe,;
and
M=} Pi(x))WyPl(xf), x{ € Q", x7 €QF, (3.27)

where the polynomial basis P is the &-scaled Taylor monomials. For veloc-
ity, the interpolation operator is built by directly using the divergence-free
reconstruction space as follows:

u(xf) = (P{™) " (x{)e{™, (3.28)
with
Cidiv* — Midiv_] Z Pfiv(xjc)u(ij)Wij , (329)
jENéi
and

MY = 3 P ()W (PE)T(xC), xf € QF, xS (330)

)
JENe,

As such, it ensures the divergence-free constraint for velocity is consistently
preserved during interpolation across different fine/coarse levels of nodes.
As is well-known [63], for solving the incompressible Stokes equations,
interpolations that maintain the divergence-free property are crucial for
developing an efficient GMG preconditioner. In the above GMLS approxi-
mations for constructing the interpolation operator, &; for each fine-level
node needs to be large enough such that sufficient coarse-level nodes are
included in each &€-neighborhood to ensure unisolvency over the recon-

struction space and a well-posed solution to the weighted least square
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optimization.

For the restriction operator, since the matrix A in the linear system
(3.24) isnon-symmetric, it is unnecessary to require the restriction operator
to be the transpose of the interpolation operator. Hence, it constructs the
restriction operation based on h-refinement. A coarse-level node x{* € Q¢
marked in the MARK stage of the adaptive refinement algorithm is called
a “parent" node. The newly generated nodes (within the fluid domain
or on solid boundaries) in the REFINE stage are called the “child nodes"
corresponding to their parent node x£. As a result, an interior parent node
generally has four child nodes, and a boundary parent node has two child
nodes in 2D, or eight child nodes for an interior parent node and four child
nodes for a boundary parent node in 3D. The approximation at a parent
node is given by averaging the field values from its child nodes, which
provides the restriction operator. By such, the matrix corresponding to the
restriction operator is much sparser than that of the interpolation operator,
leading to cheaper cost for matrix multiplication during the restriction
operations.

For the blocks in A related to solid DOFs, the interpolation and re-
striction operators are simply identity matrices. Assembled together, the
interpolation and restriction operators can be summarized as:

ult! u! 9. u!
p1+1 —9q! pI — 3p pI ,
X X I] [X
- (3.31)
u! ult? Ry ult?
pI —R! pI+1 — Rp p1+1 ,
| X X 1| | x

where the super index I corresponds to the node set Q! resulted from the
I-th iteration of adaptive refinement; while J, denotes the interpolation
for velocity, J,, represents the interpolation for the pressure field; I is an
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identity matrix; R, is the restriction operator for a scalar valued function
(e.g., pressure); R, = diag(R,, --,R,) contains d copies of R, on the
diagonal and is the restriction operator for velocity (a d-dimensional vector
field).

3.2.4 Smoother based on physics splitting

The design of the smoother is introduced in this subsection, i.e., the subrou-
tine Smooth(A, y) used in Algorithm 3. As discussed, it is a relaxation-type
iterative method that can efficiently smooth the high-frequency compo-
nents of the error. For solving a fluid-solid interaction problem, it needs
the smoother to handle the high-frequency components of the errors for
the fluid part and solid part, respectively, as well as the strong coupling
between them.

Egs. (3.2)-(3.3) inherently state two types of physics: One is Stokesian
flow in a confined space, and the other describes the dynamics of several
rigid solid bodies undergoing external loads as well as drags exerted by
surrounding Stokesian flow. The coupling of different types of physics
inspires the design of the physics-based smoother, which contains two
stages. The first stage takes care of the fluid DOFs, and the second handles
the solid bodies as well as their neighboring fluid nodes. The details are

presented as follows.

3.2.4.1 Smoother for the fluid DOFs

The submatrix
K G

(3.32)

is considered as the fluid part of the system. Here, By is a Boolean matrix,
which picks the fluid field variables, u and p, out of the whole unknown

vector. F contains all the field variables (velocity and pressure) directly
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related to the interior GMLS nodes. The diagonal part K and L denotes
the curl-curl operator onto the velocity field and the Laplacian operator
onto the pressure field, respectively. As mentioned in §3.2.1, the curl-curl
operator K is equivalent to the Laplacian operator on the divergence-free
polynomial basis. Therefore, the diagonal blocks of the fluid part matrix F
are all Laplacian-type operators. Further, as seen in the governing equation
(3.2), there exists a strong coupling between the velocity and pressure
fields. It is suggested using a node-wise Gauss-Seidel (GS) smoother. In
2D, all field values are organized into a 3 x 3 sub-matrix for each GMLS
node. In 3D, all field values are organized into a 4 x 4 sub-matrix for each
GMLS node. Therefore, it would include its diagonal entities related to
the two Laplacian operators and the discretized coupling terms at the
node in the smoother. From the numerical experiments, the node-wise
smoother outperforms the normal entry-wise one, and inverting small
dense matrices does not affect the scalability of the smoother. This node-
wise GS smoother is denoted as Sg in Algorithm 4.

3.2.4.2 Smoother for the solid bodies

Now consider the sub-matrix directly related to each solid body and its
neighbor fluid nodes. The submatrix

K. G. Cn
N, =Bn,ABL = B, L, (3.33)
D. T.

corresponds to the n-th solid body and its neighbor fluid nodes. It is a
square matrix and contains discretized drag force and torque exerted by
the fluid. Each N,, is constructed by the following procedure. First, for
each solid body; it is constructed as an index set Q, such that

Qn={{jlxiel, jeN}, n=12,...,Ng. (3.34)
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Figure 3.2 illustrates the construction of Q,, where the green and red
nodes are the interior GMLS (fluid) nodes; the blue nodes are the GMLS
nodes on I, (the boundary of the n-th solid body). Since the red nodes

Figure 3.2: Illustration of construction of Q.. Blue nodes denote the
boundary nodes on I},. Red nodes represent the nodes near the boundary
I» and contribute to the force and torque terms to the n-th solid. The
green nodes denote the normal interior GMLS nodes.

are within the e-neighborhood of the blue nodes, Q,, includes the indices
of the nodes rendered in blue and red in Figure 3.2 but excludes the nodes
rendered in green. Second, the Boolean matrix By, is formed from Q.,,
which picks the variables related to the n-th solid body and its neighbor
fluid nodes out of the whole unknown vector. The submatrix N,, is then
built according to Eq. (3.33). Note that there is no intersection between
most Q, forn =1,2,..., N, especially when after several iterations of
adaptive refinement, there are plenty of neighbor fluid nodes between any
two closely contacting solid bodies. Thus, the parallel scalability can still
be ensured.

Once all sub-matrices N,, are constructed, a Schwarz-type relaxation
method is used to build the smoother. The resulting additive Schwarz-type
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smoother can be defined as Sgot := ¥ N+, Bl N, 'Bn,. Exactly inverting
N, could be expensive. Therefore, a Schur complement approach is used

to invert it approximately, i.e.,

- . lc.
SR L

n

B0 ! | 33
0 W —[Dn Tn} FEog W
0 I

where FS™ approximates the inverse of the submatrix

K., G,
B, Ln

FC

In the numerical experiments, one iteration of the node-wise GS smoother

is used to define FS'. In addition, the approximated Schur complement

Y., is given as:

Yy, = [Dn Tn] block-diag ' (FS) Cn

Here, block—diag*1 (-) denotes the diagonal block inversion of a matrix,
which takes a 3 x 3 or 4 x 4 sub-matrix for each GMLS node in F$ and
inverts those sub-matrices. Since the size of matrix ¥, is quite small, only
3x3in2D and 6 x 6 in 3D, a direct solver is applied whenever the inversion
of ‘T’n is needed. Finally, for the solid bodies, the overall additive Schwarz-
type smoother using the approximate Schur complement approach is
given by:

N
Sni=) BL N.'By,. (3.36)
n=1

Given the two smoothers Sy and Sy, it connects them through an

overlapping multiplicative Schwarz approach and hence establish the
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proposed two-stage smoothing scheme. Algorithm 4 summarizes the

established overall smoother.

Algorithm 4 Smoother: Smooth(A, y)
Input: Coefficient matrix A and RHS vector y
Output: Relaxed solution x

Initialize x =0
Perform k steps of node-wise GS smoother on the fluid DOFs:
fori=1,---,kdo

X < X + BESeBe(y — Ax)
end for
Apply the additive Schwarz-type smoother as in Eq. (3.36) for the
solid bodies:

AL L

N
X < X+ Sn(y —Ax), where Sy = Z BTNnNgliﬁNn

n=1

7: Return: x

3.2.5 Linear solver summary

Given the constructed interpolation/restriction operators (Eq. (3.31)) and
smoothers (Algorithm 4), it follows the V-cycle process in Algorithm 3
to build the entire monolithic GMG preconditioner. Since the coefficient
matrix A is non-symmetric, the GMRES method is employed as the Krylov
iterative solver for solving Eq. (3.24). In each GMRES iteration, it calls
once the multigrid preconditioning, i.e., Algorithm 3. With the proposed
monolithic GMG preconditioner, it aims to ensure the convergence of
the linear solver and to optimize the scaling of the number of GMRES
iterations required with respect to the numbers of solid bodies and total
DOFs.
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3.3 Parallel Implementation

To solve large-scale fluid-solid interaction problems, the parallel imple-
mentation of the proposed monolithic GMG preconditioner is developed.
It aims to achieve the parallel scalability of the numerical solver.

3.3.1 Domain decomposition and neighbor search

All the GMLS nodes, Vx; € Q!, yield after each iteration I of adaptive
refinement, are evenly distributed into N, sets, where N, is the number
of CPU cores invoked in the simulation. Each set of nodes, denoted as Q}
(k=1,2,...,N;), is then allocated into one core, following the Recursive
Coordinate Bisection (RCB) method [72]. In each core, Compadre [43] is
used to generate the coefficients resulted from the GMLS discretization
for the node-set Qi . This way of domain decomposition guarantees that
the nodes in the same set Q! are evenly distributed among CPU cores
and spatially clustered on each core, and hence balances the workload
and minimizes the communication required between cores for solving the
linear system in Eq. (3.24).

After domain decomposition, a ghost node set 9{% is determined ac-
cording to the order (m) of GMLS discretization and the spatial locations
of the GMLS nodes in the node set Q, as:

G, = X5l —xi]| < EAxy, VX € Oy, x5 € QT}, k=1,2,..., N, E=¢§(m),

where £ is a function of m and & = 4m is used in the numerical tests; Ax;
denotes the discretization resolution of node x;. Collecting this ghost node
set only calls one communication between all cores. Once the collection
is done, neighbor search for each node in Qj is performed by calling
nanoflann [13], which is a function building KD-trees [12] and finds all

nodes in the e-neighborhood of any node x; € Qf from the ghost node
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set 911%, ie.,
Nei = {] | HX;L —X)‘H < €4, \V/Xi - Q]I(, Xj - 911%} .

Ne, hence provides the neighbor list needed in the GMLS discretization
that leads to the coefficient matrix A of the linear system in Eq. (3.24).
Note that when building the interpolation operator in §3.2.3, GMLS
approximation is needed, for which it also needs to build the neighbor
list. Different from the above, the neighbor nodes of x; in this GMLS
approximation are not in the same node set as x;. Thus, for that purpose

the ghost node set is determined as:
Sk, = 5 1% —xill < 8Ax, Vxi € O, x5 € Q) , k=1,2,..., N,

where x; and x; belong to the node sets yield from different iterations
of adaptive refinement, respectively. And then the neighbor list is built.
This time, nanoflann finds all nodes in the e-neighborhood of any node
x; € Q! in the ghost node set §,IQ Thus, it has:

Nei :{) | ||Xi —XjH < €4, VXi € Q]I<+1, X; S 9]I<£};

which provides the neighbor list for the GMLS approximation needed to

construct the interpolation operator.

3.3.2 Data storage

To reduce the data storage, all DOFs related to the solid bodies can be stored
in a single CPU core (e.g., the last core). Thus, following the convention
of PETSc, the sub-matrices D and T reside in the last rows of the matrix
A. However, the number of nonzero entities in D and T would increase
with the inclusion of more solid bodies. As a result, the parallel scalability

deteriorates as the number of solid bodies increases. Therefore, it spreads
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the whole storage of data and workload related to D and T among all cores
as follows. When assembling D and T, each core would go through the
GMLS nodes stored in it to generate its local D; and T;. Accordingly, any
matrix-vector multiplication operation for D and T would be split among
all cores. That is, the matrix-vector multiplication is done locally within
each core, followed by a parallel summation over all cores. For example,

the matrix-vector multiplication for D is given by:
Du= ) Diu, (3.37)

where N. is the total number of CPU cores invoked in a simulation; D;u
is computed in each core in parallel and then summed up over all cores.
By such, the parallel scalability is recovered as the number of solid bodies

increases.

3.3.3 Linear algebra operations

The parallel implementation of the linear solver is achieved by interfacing
with PETSc package [7]. Once all coefficients resulting from the GMLS
discretization are generated from each core, the entire coefficient matrix A
is assembled in parallel through PETSc. And all linear algebra operations
associated with the proposed monolithic GMG preconditioner, as well as
the Krylov iterations, are performed by calling the corresponding PETSc
functions, including the matrix-vector multiplication, matrix-matrix multi-
plication, and matrix inversion by a direct solver, as well as the node-wise
GS iteration and the GMRES iterative solver.

3.3.4 Neumann BC for the pressure

As stated in Eq. (3.2), an inhomogeneous Neumann BC is imposed for
pressure. To ensure the uniqueness and physical consistency of the solu-
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tion, it additionally enforces a zero-mean constraint for the pressure field,
i.e., requiring ZTp = 0, where Z is a constant vector (e.g. = = 1); p denotes
the vector of discretized pressure with entities p(xi), x; € Q. If it uses a
Lagrange multiplier to impose this zero-mean constraint, it would break
the block structure of F in Eq. (3.32), and in the meanwhile introduce a
dense row and column, i.e., =7 and Z, respectively, into F, which in turn
would deteriorate the parallel scalability of the proposed preconditioner.

Thus, it instead solves the following problem:

== ==
(1 - ETE) Lp = (1 - ETE) g, (3.38)

which is equivalent to using the Lagrangian multiplier. Here, g denotes the

vector with entities g(xi), x; € I'. In practice, the matrix (I — ;T;,:) does
=p

not need to be explicitly assembled. Noting that

actually calculates the

mean of the entities in p, the application of (I — =

P—
et

can be implemented

==
as: first calculating the mean of all entities of the vector p in parallel
and then subtracting the mean from each entity of p. By such, the block

structure of F can be preserved, and the parallel scalability is unaffected.

3.4 Numerical Results

In this section, the effectiveness and scalability of the proposed monolithic
GMG preconditioner is assessed through several numerical examples,

including pure fluid flows and fluid-solid interaction problems.

3.4.1 Pure fluid flows

It first verifies the GMLS discretization, GMG preconditioner, and parallel

implementation by solving problems of pure fluid flows. It starts with a
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simple Taylor-Green vortex flow followed by a more complicated Stokes

flow in an artificial vascular network.

3.4.1.1 Taylor-Green vortex

The fluid domain is set as Q¢ = [—1,1] x [—1, 1]. Given the source term in
Equation (3.2) as:

7 VXZ(XIU)GQf,

| 27 cos (7x) sin (1y) + 27tsin(27x)
| =27 sin (7x) cos (y) + 27t sin(27mmy)

(3.39)
and the no-slip BC for velocity as
u =cos (7x ) sin
o) sin (79 , Vx=(xy) e, (3.40)
v = — sin (7tx) cos (1Y)

where I, = 00 denotes the outer boundary of the fluid domain, the
analytical solution of Eq. (3.2) is the following:

u = cos (7x) sin (7y)
v = — sin (7tx) cos (1Y) , Vx=(xy) € Q. (3.41)
p = — cos(2mx) — cos(2my)

The numerical solutions of this problem obtained with the 2nd-order
or 4th-order GMLS discretization, respectively, are compared with the
analytical solution. The root mean square (RMS) errors are computed for
both velocity and pressure. As shown in Figure 3.3, the numerical results
exhibit the consistent 2nd-order or 4th-order convergence, as theoretically
expected; the velocity and pressure fields achieve equal-order optimal
convergence.

After verifying the accuracy and convergence of the numerical solu-

tions, it next examines the scalability of the proposed GMG preconditioner,
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Figure 3.3: Pure fluid flow—Taylor—Green vortex: RMS errors and con-
vergence for the numerical solutions of the velocity (dashed line) and
pressure (solid line). Here, N denotes the total number of GMLS nodes; P
denotes the order of polynomial basis used in the GMLS discretization; m
is the slope of each line.

as well as the parallel scalability of the implementation. To this end, the
numbers of CPU cores N, are varied from 25 to 289 in the tests. For such a
pure fluid flow problem without singularities, adaptive refinement is not
needed, and hence only uniform refinement is conducted. To maintain
the same number of GMLS nodes distributed in each CPU core, it starts
from 1 x 1 GMLS nodes in each core, and then execute the same uniform
refinement for the GMLS nodes within each core. After seven iterations of
uniform refinement, there are 128 x 128 GMLS nodes in each CPU core. To
verify the scalability of the proposed GMG preconditioning method, the
number of iterations required for the linear solver to converge is examined.
To evaluate the parallel scalability of the implementation, it records the
computer time spent for a single step of preconditioning. The tests are
particularly for the linear system generated from the last iteration (I =7)

of (uniform) refinement, i.e., with the most DOFs. In Figure 3.4a, it shows
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(a) Number of iterations required for the linear solver to converge.
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(b) Computer time (in seconds) spent for a single step of preconditioning.

Figure 3.4: Pure fluid flow—Taylor-Green vortex: Scalability of the pro-
posed GMG preconditioner and the weak scalability of the parallel im-
plementation of the preconditioner, tested for different order of GMLS
discretization (black for the 2nd order and red for the 4th order). Here,
N. denotes the number of CPU cores used in each test.
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the variation of the number of iterations with respect to different numbers
of CPU cores used and find that it only varies slightly from 15 to 18 for the
2-nd order GMLS discretization and 14 to 16 for the 4-th order GMLS as the
number of CPU cores increases from 25 to 289. The computer time spent
on a single step of preconditioning stays almost constant with increasing
CPU cores, independent of the order of GMLS discretization, as depicted
in Figure 3.4b. By these results, the scalability of the proposed GMG
preconditioner is demonstrated and the weak scalability of the parallel

implementation of the preconditioner.

3.4.1.2 Artificial vascular network

A more complicated pure fluid flow problem is solved next, which is in an
artificial vascular network, mimicking the structure of a zebrafish’s eye [5].
The artificial vascular network is built as in Figure 3.5. A constant inflow
flux drives the flow in this network at the inner circular boundary in the
center, and a constant outflow flux is imposed at the outermost circular
boundary. The overall volume of the fluid in the network is conserved.
All the other boundaries in the network are imposed no-slip BCs for the
velocity. Due to the irregular computational domain with corner singu-
larities, adaptive refinement is required such that the numerical solution
can achieve optimal convergence. Starting from a coarse resolution at
Ax? = 0.02 and setting o = 0.8 (marking percentage) in MARK stage,
it performs 8 iterations of adaptive refinements. The velocity field com-
puted after the 8th iteration of adaptive refinement is shown in Figure 3.5,
where there are in total 930,240 GMLS nodes, and the 2nd-order GMLS
discretization is employed.

Due to a lack of the true solution, the total recovered errors (Eq. (3.19))
is calculated, instead of true errors, during iterations of adaptive refine-
ment to evaluate the accuracy and convergence of the numerical solutions,
as shown in Figure 3.6. It is noted that the convergence rate does not
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Figure 3.5: Pure fluid flow—Artificial vascular network: Computed velocity
tield, where the color bar indicates the magnitude of velocity.
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Figure 3.6: Pure fluid flow—Artificial vascular network: Convergence of
the total recovered error. Here, the slope is regressed from the last 4 points;
N denotes the total number of GMLS nodes.
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reach the theoretical 2nd order. This arises from the presence of significant
portions of non-convex boundaries in the computational domain. It is
well-known that non-convexity can lead to low regularity of the solutions
to elliptic PDEs, which in turn affects the performance and liability of
recovery-based a posteriori error estimator, resulting in deteriorated con-
vergence in adaptive refinement [83, 17]. Therefore, a numerical test is
designed to elucidate this issue. In the test, it lets the computational do-
main be constrained by two boundaries, an exterior boundary I'ex¢ and
an interior boundary Iin¢. lext is set the same as that in the Taylor-Green
vortex case with the same BCs (Eq. (3.40)). Tin. is stationary but with
different shapes, including square, hexagon, triangle, and parallelogram.
Taking T'in¢ of a square as an example, the computational domain Qy is
depicted in Figure 3.7a. For each shape of I, the problem is solved
with 10 iterations of adaptive refinement, and the total recovered errors
calculated during adaptive refinement is summarized in Figure 3.7b. As
expected, the convergence rate decreases from 2 to 1 when Q;,,; changes
from hexagon to triangle, with increasing non-convexity. This confirms
the sub-optimal convergence results observed in Figure 3.6.

After examining the convergence of the numerical solutions, it further
assesses the scalability of the proposed GMG preconditioner and parallel
implementation. Due to the complexity of the computational domain, it
cannot guarantee that the total number of GMLS nodes resulted in each
adaptive refinement iteration increases proportionally, thus, the weak scal-
ing test is not appropriate for this problem. Instead, a strong scaling test
is performed to demonstrate the parallel scalability of the proposed GMG
preconditioning method. In the strong scaling test, the number of cores
invoked changes from 40 to 240 cores in the simulation. The statistics of the
test is collected in Table 3.1. The average DOFs per core after the 8-th adap-
tive refinement iteration is listed in the column DOFs/Core, which shows

the scale of the workload to this problem. As expected, the workload
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(a) Hllustration of the computational domain: Fluid (gray) is
confined in Q¢ by lext and Tint. lext (red solid line) is a square
with side length of 1. Ti, (black dashed line) is at the center
of domain and varied from a square to a hexagon, triangle, or
parallelogram, all with an equal side length of 0.2.

—e— hexagon
107!

—e— square
—e— triangle
—e— parallelogram

Recovered error
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(b) Convergence of the total recovered error. N denotes the total
number of GMLS nodes. The convergence rate is estimated as the
slope regressed from the last 4 data points: slop~2.0 for hexagon
and square; slop~1.6 for parallelogram; slop~1.0 for triangle.

Figure 3.7: Convergence test with respect to the non-convexity of compu-
tational domain.
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decreases when the number of cores increases, since a strong scalability
test is performed and the total DOFs are fixed. The average number of
GMRES iterations required in each adaptive refinement iteration step is
listed in the column Average Iterations. It stays around 66, independent
of different numbers of cores invoked, which indicates that the parallel
implementation does not affect the convergence of the proposed GMG
preconditioning method. To evaluate the parallel scalability of the im-
plementation, it records the CPU wall time spent for solving the linear
systems in each adaptive refinement iteration and sum them up, which
is denoted as T; in Table 3.1; it also tracks the total CPU wall time spent
for the entire simulation, denoted as T. By comparing T and T, it is noted

Table 3.1: Pure fluid flow—Artificial vascular network: Strong scaling test.

N. DOFs/Core Avglter Time for (3.24) Ts [s] Overall T[s]  Speedup S

40 69,768 65.5 90.52 128.47 1.00
80 34,884 67.1 52.43 76.50 1.68
160 17,442 66.5 33.71 46.73 2.75
240 11,628 66.3 28.29 36.68 3.50

that the time spent for solving the linear systems indeed dominates the
overall computing time, by more than 70%, regardless of how many cores
used. The GMLS discretization can be trivially parallelized, and hence
the overall parallel scalability is dictated by the proposed precondition-
ing method. By invoking different numbers of cores, it can compare the
overall execution time and thereby evaluate the speed up factor (denoted
as S) using the least number of cores (i.e., 40 cores) as the base. Hence,
the Amdahl’s law [18] is used to assess the performance of the parallel

implementation, which is given by:
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where w denotes the parallel portion of a numerical solver. To estimate
the value of w for the solver, it takes the reciprocal of Amdahl’s law as:
w2 (3.42)
S N,
Using the data of S in Table 3.1, w can be determined by linear regression.
In particular, only the data of N, = 40 and N. = 80 are employed to
determine w, and then use the data of N, = 160 and N. = 240 for testing.
As depicted in Figure 3.8, the last two data points fall very close to the line
titted from the first two data points, and the estimated parallel portion
w = 85.5%. It hence demonstrates the consistency and scalability of the
parallel implementation of the proposed monolithic GMG preconditioner.

1.0 -
0.9
0.8
0.7 L
= 0.6 w=85.5%
0.5
0.4
/.,
0.3{ ¢
0.2 0.4 0.6 0.8 1.0
1/N.

Figure 3.8: Pure fluid flow—Artificial vascular network: Parallel portion w
determined from Amdahl’s law in Eq. (3.42).
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3.4.2 Fluid-solid interactions

After pure fluid flows, it next addresses fluid-solid interaction problems
with the inclusion of multiple solid bodies of different shapes.

3.4.2.1 Duplicate cells with cylinders

First, for an accurate assessment of the scalability of the proposed mono-
lithic GMG preconditioner, a numerical example is designed that allows
both the solid bodies and the GMLS nodes to be evenly distributed among
computer cores. To this end, the entire computational domain is par-
titioned into N, square cells, each of which includes four cylinders, as
shown in Figure 3.9. All DOFs associated in each square cell are allocated

'10R

[ LOR

Figure 3.9: Fluid-solid interactions—Duplicate cells with cylinders: The
schematic of a square cell with four cylinders.

to a single CPU core. Thus, there are in total Ny = 4N, solid bodies, where
N, is the number of CPU cores for each test. The test intentionally places

the cylinders in close contacts to demonstrate that the spatially adaptive
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GMLS method can resolve the singularities governing the lubrication ef-
fects. To maintain the same total DOFs after adaptive refinement in each
cell, the four cylinders are placed near the center of each cell such that the
distances between the solid bodies in different cells are much larger than
the distances between the solid bodies within one cell.

The source term in Eq. (3.2) and the BC at the outer boundary of the
entire computational domain are set the same as those in the Taylor-Green
vortex case, i.e., Egs. (3.39)- (3.40). The 2nd-order GMLS discretization is
employed for solving this problem. Seven iterations of adaptive refinement
with o = 0.8 are conducted until the total recovered error reaches the
preset error tolerance ¢y,1 = 107° in Eq. (3.17). The stopping criterion for
the GMRES iteration is set as 10~°. The resultant pressure field in a single
cell is shown in Figure 3.10. It can be seen that all the singular pressures

within the narrow gaps between cylinders are correctly captured.

o N b
S o
Pressure

|
N
[=}

|
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[=]

Figure 3.10: Fluid-solid interactions—Duplicate cells with cylinders: The
pressure field computed in each cell. The color is correlated to the magni-
tude of pressure.

Before assessing the parallel scalability of the preconditioner, it exam-
ines how the total DOFs consisting of fluid (GMLS) nodes and boundary
(GMLS) nodes grow with adaptive refinement and the inclusion of more
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solid bodies. In Figure 3.11a, it can be seen that the total DOFs increases
linearly with respect to the number of solids included in the domain, re-
gardless of after any iteration of adaptive refinement; in Figure 3.11b, it is
found that the total boundary nodes also increases linearly with respect
to the number of solids, after each iteration of adaptive refinement. From
these examinations, they confirm that the workload related to the node-
wise GS smoother Sg, the additive Schwarz-type smoother Sy, and the
MG preconditioner can be evenly distributed among all cores. Only with
that ensured, an accurate assessment of scalability can be made.

First, the number of iterations required for the GMRES iterative solver
to converge is checked, i.e., to reach the stopping criterion. In Figure 3.12,
it shows the number of GMRES iterations required in the SOLVE stage of
each iteration of adaptive refinement. As can be seen, for a fixed number of
solids, the number of GMRES iterations required generally stays constant
or decreases slightly. Noting that the total DOFs continuously increase
during iterations of adaptive refinement, it hence demonstrates the weak
scalability of the preconditioner with respect to the number of DOFs for
fixed number of solids. With inclusion of more solids, it is expected that
the number of GMRES iterations required would increase. However, the
scaling of this increase is critical for the sake of scalability. Figure 3.13a
shows that the number of GMRES iterations scales with O(/Ny), and
the scaling is generally consistent for different iteration step of adaptive
refinement. This thesis next checks the computer time spent finishing all
seven adaptive refinement iterations. Although it includes the time spent
on the GMLS discretization and the time for solving the linear system and
executing other stages of adaptive refinement, solving the linear system
dominates the computer time. Figure 3.13b depicts how the computer time
varies with an increasing number of solids. Overall, it exhibits a scaling
of O(v/N; log Ny), for which the factor /Ny arises from the scaling of the
number of GMRES iterations and the factor log N is mainly contributed by
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Figure 3.11: Fluid-solid interactions—Duplicate cells with cylinders: The
growths of total DOFs and the boundary (GMLS) nodes with respect to
the number of solids included in the domain and different iterations of
adaptive refinement.
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Figure 3.12: Fluid-solid interactions—Duplicate cells with cylinders: The
number of GMRES iterations required in the SOLVE stage of each adaptive
refinement iteration, for fixed numbers of solids.

the additional operation introduced in §3.3.2 such as Eq. (3.37). Note that
in this numerical example, the number of CPU cores N. is proportional
to the number of solids N, in fact N; = 4N.. Thus, the above scaling
behaviors are shown in Figure 3.13 also hold with respect to the number

of cores N..

3.4.2.2 Particulate suspensions in 2D

A long-time simulation is performed to examine the performance of the
proposed monolithic GMG preconditioning method. The test simulates
2D suspension flows of freely moving particles of different shapes. The
flow is driven by the source term in Eq. (3.2) and the BC at the outer
boundary of fluid domain ([—1,1] x [—1,1]). One hundred solid particles
are suspended in the flow, subject to bidirectional hydrodynamic couplings.
Initially, all particles are evenly distributed throughout the domain. Due
to hydrodynamic couplings, particles are freely moving with the flow. The
physical time of the entire simulation is T = 5. The 2nd-order GMLS is
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(a) Scaling of the number of GMRES iterations required at differ-
ent iteration step of adaptive refinement.
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(b) Scaling of the total computer time spent for all seven adaptive
refinement iterations.

Figure 3.13: Fluid-solid interactions—Duplicate cells with cylinders: Scala-
bility results. Here, N denotes the number of solids, and Ny = 4N with
N, the number of CPU cores.
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employed for spatial discretization. The 5th-order Runge-Kutta integrator
with adaptive time stepping is used for temporal integration to update the
particles’ translational and angular positions. An initial time step At = 0.2
is applied. In each time step, adaptive h-refinement with o = 0.8 are
conducted until the total recovered error reaches the preset error tolerance
€to1 = 1072 in Eq. (3.17). For the linear solver, the stopping criterion for
the GMRES iteration is set as 10°.

100 similar particles In the first simulation, the 100 particles are all cir-
cular with the radius R = 0.04. The snapshot of the particles’ configuration
at the terminal time T = 5 is shown in Figure 3.14. The zoom-in pressure
distributions at several locations are also shown in Figure 3.14, for which
is intentionally chosen to show where the particles are in close contact

either with each other or with the outer wall. It can seen that even though

Figure 3.14: Particulate suspensions in 2D: Configuration of 100 freely
moving circular particles in a Taylor-Green vortex flow at the terminal
time. The zoom-in images are the computed pressure distributions at
selected locations where the particles are either in close contact with each
other or with the outer wall. Here, the color is correlated to the magnitude
of pressure, and the point clouds are the GMLS nodes with adaptive
refinement.

it is challenging in a dynamic simulation to resolve all point singularities
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governing lubrication effects, the numerical solver can stably predict the
pressure fields without invoking any artificial subgrid-scale lubrication
models. The convergence of the total recovered error as defined in Eq.
(3.19) for the last time step is shown in Figure 3.15a. It is found that the
convergence rate reaches the theoretically expected 2nd order.

To thoroughly examine the performance of the proposed precondi-
tioner, it tracks the number of GMRES iterations required in each adaptive
h-refinement iteration and at each time step, as depicted in Figure 3.15b.
Several iterations of adaptive h-refinement are needed at each step to reach
the preset error tolerance. Hence, the number of GMRES iterations re-
quired in each iteration of adaptive h-refinement at different time steps is
rendered as the height of the bar with different colors and stacked together
for various h-refinement iterations. For example, the lowest black bar rep-
resents the number of GMRES iterations required in the first iteration
(I =1) of adaptive h-refinement at different time steps; the upper gray bar
depicts the number of GMRES iterations needed for the second iteration
(I =2) of adaptive h-refinement at different time steps; and so forth. By
comparing the height of each bar at a fixed time step, it can be seen that
the number of GMRES iterations generally stays constant across different
iterations of adaptive h-refinement, indicating the scalability of the pro-
posed monolithic GMG preconditioner in terms of increasing total DOFs.
By comparing the heights of a bar at different time steps, it is noted that
the number of GMRES iterations is highly correlated with the minimum
gap width between solid boundaries (particle-particle or particle-wall).
To elaborate on that, two lines (red) are added in Figure 3.15b showing the
minimum gap widths between solid boundaries at different time instances.
Note that the minimum gap width can be as small as 0.03R with R = 0.04
the particles’ radius. Generally, when the minimum gap widths between
solid boundaries are small, more GMRES iterations are required for the

linear solver to converge. That is because finer GMLS nodes are needed
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(a) Convergence of the total recovered error (Eq. (3.19)) at the last time
step. The slope measured by the last four data points is 2.2. N denotes
the total number of GMLS nodes.
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Figure 3.15: Particulate suspensions in 2D—100 similar particles: Conver-
gence of the recovered error and the required number of GMRES iterations.
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to resolve narrower gaps between solid boundaries, resulting in more
ill-conditioned linear systems to solve. The numbers of required GMRES
iterations are comparable when the minimum gap widths are larger than
0.002 (indicated by the horizontal red dash line in Figure 3.15b), which is
equivalent to 0.05R.

100 dissimilar particles In the second simulation, the suspended par-
ticles are a mixture of eighty circles and twenty squares. The radius of
circular particles is still R = 0.04; the side length of square particles is
L = 2R = 0.08. To mimic the particles in real applications of particulate
suspensions, the squares are rounded at the corners with a rounding ra-
dius R = 0.1L = 0.008. The snapshot of the particles’ configuration at
the terminal time T = 5 is shown in Figure 3.16, where the zoom-in pres-
sure distributions, particularly around square particles, are also shown
at selected locations. Regardless of particle shapes, the numerical solver
can stably solve the problem even when the particles are in close contact
with each other or with the outer wall boundary. No any artificial subgrid-
scale lubrication model is employed during the entire simulation. The
convergence of the total recovered error as defined in Equation (3.19) for
the last time step is shown in Figure 3.17a. With the inclusion of different
shapes of solids, it still sees the convergence rate reaching the theoretically
expected 2nd order.

By tracking the number of GMRES iterations required in each adap-
tive h-refinement iteration and at each time step, the performance of the
proposed preconditioning method is assessed. Similarly, it compares the
number of GMRES iterations, as depicted in Figure 3.17b. For this case
with mixed shapes of solids, more iterations of adaptive h-refinement are
needed to reach the preset error tolerance at each time step. By comparing
the height of each bar at a fixed time step, it is also seen that the number

of GMRES iterations generally stays constant across different iterations of
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Figure 3.16: Fluid-solid interactions—Particulate suspensions in 2D: Con-
figuration of 100 freely moving dissimilar particles in a Taylor-Green
vortex flow at the terminal time. The zoom-in images are the computed
pressure distributions at selected locations where the particles are either
in close contact with each other or with the outer wall. Here, the color
is correlated to the magnitude of pressure, and the point clouds are the
GMLS nodes with adaptive refinement.

adaptive h-refinement, implying the scalability of the proposed monolithic
GMG preconditioner in terms of increasing total DOFs. As in the case of
100 similar particles, the number of GMRES iterations is correlated with
the minimum gap width between solid boundaries (particle-particle or
particle-wall). In addition, the inclusion of square-shaped particles can
worsen the problem’s conditioning in the continuous limit. To reflect the
combined effects of the minimum gap width between solid boundaries
and the shape of particles, in Figure 3.17b lines are added to track the
minimum gap widths associated with particles of different shapes (cir-
cular or square). It is found that the square particles make the dominant
contributions to the required GMRES iterations. When the minimum gap
widths associated with square particles are larger than 0.0006 (indicated
by the horizontal blue dash line in Figure 3.17b), which is equivalent to
0.075R’ with R” = 0.008 the square particles” corner rounding radius, the
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(a) Convergence of the total recovered error (Equation (3.19)) at the
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Figure 3.17: Particulate suspensions in 2D—100 dissimilar particles: Con-
vergence of the recovered error and the required number of GMRES itera-
tions.
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number of GMRES iterations required at a given h-refinement iteration
is generally comparable across different time instances; when they are
smaller than 0.0006, significantly more GMRES iterations are required for
the linear solver to converge, because the corresponding linear system can
become severely ill-conditioned.

3.4.2.3 Particulate suspensions in 3D

Along-time simulation is performed next to demonstrate that the proposed
monolithic GMG preconditioning method can be extended to 3D, with the
scalability and robustness maintained. In particular, a 3D suspension flow
of 27 freely moving spherical particles is considered. The source term that

drives a Taylor-Green vortex flow in 3D is given by:

37 cos(7x) sin(my) sin(7z) + 27tsin(27x)
f = | —6m?sin(7x) cos(my) sin(nz) + 2wsin(2y) |, V(x,y,z) € Qf,
3% sin(7x) sin(my) cos(7tz) + 27 sin(27z)
(3.43)
and the no-slip BC for the velocity imposed at the outer boundary of the
3D fluid domain ([-1, 1] x [-1,1] x [-1,1]) is specified as:

u = cos(7x) sin(7my) sin(7z)
v = —2sin(mx) cos(my) sin(7z) ,  V(x,y,z) €Ty . (3.44)

w = sin(7tx) sin(7ty) cos(my)

The suspended 27 spherical particles with the radius R = 0.1 are subject
to bidirectional hydrodynamic couplings and freely moving in the flow.
Initially, all particles are evenly distributed throughout the domain. The
2nd-order GMLS is employed for spatial discretization with initial dis-
cretization resolution at Ax? = 0.04. The 5th-order Runge-Kutta integrator
with adaptive time stepping is used for temporal integration to update
the particles’ positions and orientations, with the initial time step set as
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At = 0.1. The physical time of the entire simulation is T = 1, and the
configuration of particles at the last time step is shown in Figure 3.18.
At each time step, the adaptive h-refinement is conducted according to
the recovered error estimator (Eq. (3.18)), with « = 0.9, and for three
times until the total recovered error close to the preset tolerance 10~2. The
convergence of the total recovered error as defined in Eq. (3.19) for the
last time step is presented in Figure 3.19a. It is found that the convergence
rate reaches the theoretically expected 2nd order.

For the linear solver, the stopping criterion for the GMRES iteration
is set as 10~°. The performance of the proposed preconditioner is again
assessed by tracking the number of GMRES iterations required in each
adaptive h-refinement iteration and at each time step during the entire
simulation. Without any modification on the preconditioner, the proposed
preconditioning method preserves the attributes seen in the 2D counter-
parts. As shown in Figure 3.19b, by inspecting the heights of the bars
with gray/black colors at each time step, it is seen that the number of
GMRES iterations almost stay constant across different iterations of adap-
tive h-refinement. This indicates that, with the increasing total DOFs, the
scalability attribute of the proposed monolithic GMG preconditioner is
preserved when applying it to solving a 3D problem. By examining the
variation of the height of each bar with respect to time, it is found that the
numbers of GMRES iterations are generally comparable across different
time steps. The slight increase can be correlated to the decreased mini-
mum gap width between solid boundaries (sphere-sphere or sphere-wall).
The decreased gaps between solid boundaries require finer GMLS nodes
to resolve and hence lead to more ill-conditioned linear system to solve,

which in turn calls for more GMRES iterations to reach convergence.
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Figure 3.18: Particulate suspensions in 3D: Configuration of 27 freely
moving spherical particles in a Taylor-Green vortex flow at the terminal
time. The color on each particle is correlated to the magnitude of its
velocity. The zoom-in images show the flow-field pressure distributions
on selected planes where the particles are either in close contact with
each other or with the outer wall. Here, the color is correlated to the
magnitude of pressure, and the point clouds are the GMLS nodes with
adaptive refinement.

3.5 Conclusions

A monolithic GMG preconditioner for solving fluid-solid interaction prob-
lems in Stokes limit is presented in this chapter. The linear systems of
equations are generated from the spatially adaptive GMLS discretization,
which was developed in the previous work [31]. The GMLS discretization
is meshless and can handle large displacements and rotations of solid
bodies without the expensive cost of generating and managing meshes. It
guarantees the same order of accuracy for both the velocity and pressure
fields, and high-order accuracy is achievable by its polynomial reconstruc-
tion property and choosing appropriate polynomial bases. A staggered
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Figure 3.19: Particulate suspensions in 3D: Convergence of the recovered
error and the required number of GMRES iterations.
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discretization approximates the div-grad operator to ensure stable solu-
tions of Stokes equations. With adaptive h-refinement directed by an a
posteriori recovery-based error estimator, it can resolve the singularities
governing the lubrication effects between solid bodies without invoking
any artificial subgrid-scale lubrication models. With the proposed mono-
lithic GMG preconditioner in this work, it is also able to scale up the
spatially adaptive GMLS discretization for solving larger-scale fluid-solid
interaction problems and achieve scalability with increasing numbers of
solid bodies and total DOFs, while preserving accuracy and stability.
The preconditioner is composed of two main ingredients: the inter-
polation/restriction operators and the smoothers. While the interpola-
tion/restriction operators transfer the velocity and pressure values between
different resolution levels, the smoothers damp the high-frequency error
components on each resolution level. These two ingredients and their
interplay determine the performance and scalability of the preconditioner
and, thereby, the linear solver. The hierarchical structure of the adaptively
refined GMLS nodes has provided us with an appropriate geometric set-
ting for constructing the interpolation/restriction operators. In particular,
to construct the interpolation operator, local GMLS approximations are
employed from the coarse-level nodes to the fine-level nodes. To build
the restriction operator, it lets the value of a variable on a parent GMLS
node equal the average value of its child nodes generated in a new iter-
ation of adaptive refinement. During the interpolation and restriction
processes, the divergence-free property of velocity is preserved, which
plays an essential role in designing efficient MG preconditioning methods
for solving Stokes equations. For the smoothers, a smoother is built for
the fluid domain and a smoother for the solid bodies and then integrate
them following a multiplicative overlapping Schwarz method. It uses a
node-wise block Gauss-Seidel smoother for the fluid domain to address
the coupling between the two field variables: velocity and pressure. The
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smoother for the solid bodies handles each solid body separately: for each
solid body, a submatrix is first assembled corresponding to the solid body
and its neighboring interior GMLS nodes; a Schur complement approach
is then employed to approximately invert the submatrix based on the block
splitting between the fluid and solid DOFs.

Such a developed preconditioner is integrated with the Krylov iterative
solver, GMRES, for solving the linear systems of equations generated
from the GMLS discretization. It has leveraged PETSc [7] for the parallel
implementation of the proposed monolithic GMG preconditioner. In
addition to all associated linear algebra operations handled by PETSc, this
work has carefully taken care of domain decomposition, neighbor search,
data storage, and imposing inhomogeneous Neumann BC for pressure in
parallel implementation in order to warrant the parallel scalability of the
numerical solver. Through a series of numerical tests, including simulating
pure fluid flows and fluid-solid interactions with the inclusion of different
numbers and shapes of solid bodies, it has demonstrated the performance
and parallel scalability of the proposed preconditioner. Specifically, as
the number of solid bodies and total DOFs increases, the convergence of
the Krylov iterative solver can be ensured. For a fixed number of solid
bodies, the preconditioner scales nearly linearly with respect to the total
DOFs. When the number of solid bodies increases, the preconditioner
exhibits sublinear optimality with respect to the number of solid bodies.
In addition, the parallel implementation has achieved weak scalability
for both pure fluid flows and fluid-solid interactions. For the flow in an
artificial vascular network, the numerical result shows consistency with
the prediction of Amdahl’s law, indicating strong scalability and efficiency

of the parallel implementation.
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4  CLASSICAL OPTIMIZER FOR DISCRETE VARIABLE

TOPOLOGY OPTIMIZATION

4.1 Algorithm for Solving the Bilinear
Programming (2.36)

The master problem as described in Eq. (2.36) contains the nontrivial
bilinear terms formed by the binary variables p and «. As a result, it cannot
be directly solved by employing an off-the-shelf integer programming
solver. Thus, it herein proposes a feasible and efficient way to solve it. By
noting that the size of o is much smaller than that of p, branching on « is
not difficult. The branching essentially selects one or multiple indices j,
j €1{0,1,---,k — 1}, such that &; = 1 but the rest elements in « are zero.
For example, 1 and 2 are selected, leading to « = (0,1,1,0,...). By doing
so, the constraint Z}:Ol o; > 1is satisfied. Further, the selection must also
satisfy the constraint: & # «*,1=1,2,--- ,k—1. Let ?; C{0,1,--- , k—1}
denote one selection for the index j that satisfy both constraints, and all
such selections are collected into the set C(k).

Among all selections in €(k), there is only one selection (denoted as
P1), for which only one element of « is nonzero, and this only nonzero
elementis oy, i.e., P; ={k—1}and & = (0,0,...,1). (Note that & with a
single nonzero element «; for Vj < k — 1 has been considered in previous
iterations and hence would not be considered again in the current k-th

iteration step.) For this particular selection, the master problem in Eq.
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(2.36) is reduced to a single-cut problem and can be simplified as:

min n
pM
s.t. f7(p) <n
t1(p) < a1 (41)
Hi, (p) <0, in=1,...,nn
pe{0,1}.

Its solution is denoted as 1y1. (The solution for each of the other single-cut
problems that have been solved in the previous iteration steps is denoted
as M1 with V1 < k.)

For every other selection in C(k), |Ps| > 2,i.e., athas at least two nonzero
elements. For that, the master problem in Eq. (2.36) must involve multiple
cuts (at least two) and can be rewritten as:

t(p)<d, VjeP (4.2)
HIH(p) < O/ H = 1/ s TWH
p €{0, 1}

Its solution is denoted as My s. As the multi-cut problem includes more
than one cuts (or constraints), its solution 1y s cannot be lower than the
solution of any single-cut problem containing just one of those cuts, i.e.,
Nk,s = MaXiep, (M,1). This feature can be utilized for early stopping the
branching on «, thereby enhancing computational efficiency.

To proceed, it is denoted with 7y s = maxiep, (M1). All selections
represented by P, with [P > 2 in C(k) are ranked in non-descending
order based on the value of 1jy . Starting from the first in the rank list, the

corresponding multi-cut problem is solved, as formulated in Eq. (4.2),
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until it is found that the minimum of the solutions of all solved multi-cut
problems is smaller than 7jy s of the next multi-cut problem in the rank
list, i.e.,, mins (M s) < Tk s+1. Once this is achieved, branching on « can be
terminated, because the remaining selections in the list would not yield
better solutions. Thus, the final solution of 1 for the master problem (2.36)
is given by:

ﬂk = min Insin(nk,s)/ nk,l] ’ (4-3)

i.e., the minimum among the solutions of all solved multi-cut problems
(asin Eq. (4.2)) and the single-cut problem (as in Eq. (4.1)). The final
solution of & and p will then be derived from the multi-cut or single-cut
problem that yields the minimum n.

If the final solution for the master problem (2.36) is determined as
the solution of a multi-cut problem, i.e., n"* = ming(ny ), it indicates that
using a single cut solely based on the solution of the last iteration step, as
done by the methods like SIMP [6] and TOBS [57], does not always yield
the best solution; but including multiple cuts based on the solutions from
at least two previous iteration steps can improve the solution. Therefore,
allowing for adaptively including multiple cuts would enable us to find
the best solution at each iteration step, thereby accelerating convergence
and improving solution efficiency. This highlights the distinction of the
framework proposed in this paper from other methods, including SIMP
[6], TOBS [57], FP [32, 33], and SAIP [47, 49].

In summary, solving the master problem as formulated in Eq. (2.36)
involves solving two types of linear integer programming problems, i.e.,
the single-cut problem in Eq. (4.1) and the multi-cut problems in Eq.
(4.2). Each type of problem can be directly solved using a linear integer
programming solver; in this work, it uses the Gurobi optimizer [28]. The
algorithm proposed for solving the master problem (2.36) is summarized
in Algorithm 5.



119

Algorithm 5 MasTERPROBSOLVER (')

Input: ot from previous iteration steps,i=1,..., k —1.

Output: The optimal solution «*, the minimizer p* and the minimum
value n®

Utility: Solve the master problem (2.36)

1: Form the set €(k) for branching on «
2: Solve the single-cut problem in Eq. (4.1) and yield the solution py 1
and My 1
3: Sort P € C(k) (with |Ps| > 2) in non-descending order based on the
value of My s
4: fors=2,...,/C(k)| do
: Solve the multi-cut problem in Eq. (4.2) and yield the solution py s
and Nx,s
if ming(nys) < Tfksy1 then
break
end if
end for
10: s* = argmin (M)
11: pk = Pk,s*s T]k = TMx,s~
122 Letaf =1, Vl€ Pg; of =0, V1 & Py
Return: o, p*,n*

4.2 Modified Dantzig-Wolfe (DW)

Decomposition

The total mass constraint Hps, in (2.16), the sensitivity cuts £ (p) and the
trust regions t/(p) are categorized as global constraints as they evolve all
design variables; the material usage constraint Hyy, in (2.16) is considered
as local constraint since only ny, variables are restricted by it. Thus, for the
multi-cuts formulation (4.2), the programming shows the block-angular
structure and can be applied with the Dantzig-Wolfe (DW) decomposition
[21] to formulate a series reduced size sub-problems. The total mass
constraints defined in (2.16) are considered as the general case for the
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following derivations and the volume constraints Hy defined in (2.14) can
be treated in the same way.

To apply the DW decomposition, the entire design variables have to
be divided into nyp blocks. So, all of the design variables are indexed

according to the following value:

nm
56 = Z MPem (44)
m=1

which gives a new value for each design variable p. ., defined on the
element e. p. can then be sorted in a non-descending order and it can
gives each element e a new index e’. As p. ., is binary, the possible values
for p. is finite. Therefore, the sorting can be performed in parallel and it
only needs to communicate the possible values for p. between different
processes. The cost of communication can be greatly saved compared to
the general sorting algorithms which requires communicating sub-vectors
of p. Next, the entire design variables are evenly divided into ny blocks

according to this new index e’ and each block D; is defined as:

@i:{e PEJ@K{@H)-&J}, (4.5)

np
which collects the indices of the elements e with the same or close value
NeNm

of p in the i-th block. Each block D; then roughly manages design
variables. The design variables then form a vector p; such ?hat pi =
{pemlVe € Di, m =1,...npm}. Finally, two new problems can be generated
from DW decomposition: a sub-problem concerning the local constraints
and a sub-problem concerning the global constraints, by decomposing the
entire design variables into multiple blocks according to the index set D;.
The sub-problem concerning the local constraints can be denoted as the
local sub-problem and the sub-problem concerning the global constraints can

be denoted as the global sub-problem. The size of the local sub-problem is
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only related to the size of each block D;. The size of the global sub-problem
is determined by the number of the blocks ny and the number of iterations
L. As the number of iterations, shown in the numerical experiments 4.3a,
is irrelevant to the size of the design variables, the size of the global sub-
problem can be tractable for the large-scale TO problems.

Different from the standard DW decomposition that utilizing all of
the extreme points in the local sub-problem to formulate the global sub-
problem, the proposed method modifies the standard DW decomposition
that it generates candidate solutions from the local sub-problem and itera-
tively enlarges the size of the global sub-problem until convergence. In
each iteration, the sub-problem would generate a candidate solution to the
original problem. This guess at iteration step 1 of the proposed method is
denoted as p;, ,,,, which uses a third subscript to denote the iteration step.
Due to the slight difference in the formulation, the single cut formulation
(4.1) can be considered as a special case when |P;| = 1 in the multi-cuts
formulation (4.2). Therefore, only the derivation for the multi-cuts formu-
lation (4.2) is considered in this section. The initialization and iteration of

the proposed method is discussed at the end of this section.

4.2.1 Multi-cuts formulation

The multi-cuts problem (4.2) takes a single continuous variable 1 that
can not be decomposed into multiple blocks. Therefore, a series variables

ni,1=1,...,np are introduced to replace n and the multi-cuts formulation
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(4.2) can be rewritten as:

np
min ) _m
~ no
st. Plp)<) M,  VjeEDP
i=1
t(p) < d, Vj € P (4.6)

pe{0,1}.

With the new multi-cuts formulation (4.6), the i-th local sub-problem by
applying the proposed modified DW decomposition can be written as:

min ni+ Y w(Plpd) —no)+ Y (e + M Ha, (p1)
. jePs jePs

nm

s.t. Z Pem <1, e€D; , (47)
m=1
Pi S {O/ 1}|Dilng s

In the local sub-problem (4.7), asn; is unbounded, ) _ i, ﬂjf can then only
be 1 to make the problem bounded. n;, as a redundant variable, can be
omitted from the local sub-problem (4.7) and it can be rewritten as:

min > 7P (pi) + Y mt (pi) + 7™ Hw (po)

Pi

JISUN jEPs
nm

s.t. Z Pem <1, eeD; (4.8)
m=1

Pi € {Or 1}“Di|><nM .
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The local sub-problem (4.8) is a binary optimization problem and can be
solved by any standard MILP solver with the B&B method in parallel.
The global sub-problem for the multi-cuts formulation (4.6) can be

written as:
i 0
st. F(p) <, Vj € P
tY(p) < d, vj € P,
Hu, (p) <M (4.9)

Ae o, 1moxt

where pem = Z1L:1 Pi mAl Ve € Dy, m=1,...np. Itis a linear program-
ming problem and can be solved by any standard linear programming
solver which can calculate the Lagrange multipliers to the constraints in
the programming problem (e.g. Gurobi [28]). When solving this prob-
lem, one does not need to get the solution of A but only needs the value
of Lagrange multipliers 7f, 7t} and 7™ to the cuts, the trust region and
the total mass constraint. If the linear programming solver does not have
the feature to calculate the Lagrange multipliers when solving the pro-
gramming (4.9), the dual problem to (4.9) can be solved instead to get
the Lagrange multipliers. The Lagrange multipliers 7], 7tf and ™ to the
first three lines in the constraints can be calculated and collected into the

vector 7.

4.2.2 Initialization

To initialize the DW decomposition requires a initial guess to the pro-
gramming (4.1) or (4.2), a reduced size problem with a clustered design

variable p € {0, 1} *™™ is considered. It is expected to use a single vari-



124

able p; . to represent the design variables pe ., in the i-th block:
Pe,m = Pim, Ve e Dy. (410)

As it aggregates the design variables p. ., in the i-th block, the coefficients
with respect to the design variables in the original programming (4.2) are
also aggregated in the reduced size problem. The reduced size multi-cuts

problem can be written as:

min n
pm
nm Nop
st. f(p),u)+ Z Z (Z VAVLm> Pi,m
m=11i=1 \eeD;
MNe MM
- Z W]e,mpza,m < n, VJ € J)S
e=1 m=1
1 npm Nop nm ]
L35Iy (125 ) |
m=1 i=1 LeeD; m=1 (411)

+Y (pLn)'<d, e,
e=1

p {0, 1moxmm

In case of the reduced size problem (4.11) is infeasible, the initializa-
tion procedure should be restarted with a doubled size of ny. This process
is repeated until a feasible solution to is found. Based on the numerical
experiment, it is rare to encounter the case of infeasible solution during
initialization stage. When the solution is feasible, the Lagrange multipliers
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to the sensitivity cuts 7i], the trust regions 7j and the total mass constraint
7™ needs to be calculated by the linear programming solver or obtained
from the dual problem of (4.9). All of the Lagrange multipliers are col-
lected to a vector and is denoted as 7t. The initial value for p is then update
with (4.10) and is denoted as p.

As the size of the clustering design variable p is only related to the
number of blocks np and the number of materials nyq, the cost of the

initialization is expected to be low for the large-scale TO problem:s.

4.2.3 Iteration of Modified DW decomposition

The iteration of the modified DW decomposition is similar to the general
optimization algorithm. The iteration starts with the initialization of the
reduced size problem (4.11). The local sub-problem (4.7) is solved by a
standard MILP solver with B&B method. The global sub-problem (4.9)
is solved by a linear programming solver. The Lagrange multipliers 7]
(when necessary ), 7tf and T are calculated by the linear programming
solver. The design variables p m « are updated by the Lagrange multipliers
and the design variables p. ., in the original programming (4.1) or (4.2)
are updated by the design variables p m k. The iteration stops when the
convergence criterion is satisfied. By checking the Lagrange multipliers
7}, 7 and 7™ in the global sub-problem, the convergence criterion can be

defined as:
I =], s
- S 1070 (4.12)
I,
The detail implementation of the proposed modified DW decomposition

is summarized in Algorithm 6.
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Algorithm 6 MopirFiIEDDANTZIGWOLFEDECOMPOSITION

Input: The single cut formulation (4.1) or the multi-cuts formulation (4.2),
and the initial value of np

Output: The optimal solution p and the objective function value n to the
programming (4.1) or (4.2)

Utility: Use the modified DW decomposition to solve the programming
(4.1) or (4.2)

1: Calculate p according to (4.4) and sort p in non-descending order
Divide the design variables into ny blocks according to (4.5)
Initialize the reduced size problem (4.11)
if The initialization is infeasible then

np = 2. nop
Go to Step 2
else
Update the design variables p? | with the solution of the reduced
size problem and update the corresponding Lagrange multiplier 7t°
9: end if
10: for1l=1,2,... do
11: Solve the local sub-problem (4.8) by a standard MILP solver
12: Update the design variables p!
13: Solve the global sub-problem (4.9) by a linear programming solver
and update the corresponding Lagrange multipliers 7t*
|71:1 - |2

14: if < 107° then

i1,

15: Break

16: end if

17: end for

18: Set p* = p'
Return: p, n
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4.3 Numerical Results

4.3.1 Benchmark Results

A benchmark problem, the bridge design problem with a minimum com-
pliance objective as discuss in §2.2.1, is tested in this section. The resulting
objective function value f, the number of FEM evaluations Nggy and the
running time is reported in Table 4.1 with two scenarios. Considering the
candidate materials listed in Table 2.2, the first scenario only takes steel
as the candidate material; the second scenario employs all four materials
as candidates. The maximum total mass is set as 3.744 kg, equivalent to
12% volume fraction when only using steel. As the top plane is fixed to
using steel in this problem, the free mass can be utilized for optimization
is 2.496 kg, equivalent to 8% volume fraction when only using steel. The
The reported running time includes the time spent by the FEM evalua-
tions Trey, the time spent by the optimizer Algorithm 1 solving the MILP
problem (4.1) or (4.2) via the the modified DW decomposition Topr. The
benchmark problem is performed on a computation node with two AMD
EPYC 7763 64-Core Processors and 512 GB memory. Each test is launched
by the Slurm system [85] on a single node using 128 physical cores. The
benchmark problem is tested with different discretization resolutions, in-
cluding 50 x 200 x 50, 100 x 400 x 100, and 150 x 600 x 150. It sets np = 100
as the initial value when applying the modified DW decomposition and
no enlargement of np was observed during the initialization stage of the
modified DW decomposition in Algorithm 6. For the convenience of im-
plementation, each core only solves the local sub-problem with respect to
the local elements to avoid the communication between cores. Therefore,
np local sub-problems are not assembled in the real implementation but
only solved in an alternative way with the mathematical equivalence.
The evaluation of governing equations is performed by FEniCSx [8],
which based on a recent scalable implementation of FEniTop [36] for solv-
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Table 4.1: Single-material minimum compliance: Results with different
discretization resolutions using the modified DW decomposition.

Resolution ‘ f NFEM TFEM (S) TFEM ((yo) TOPT (S) TOPT (0/0)
50 x 200 x 50 15.229 77 303.325 81 67.62 18
100 x 400 x 100 | 14.115 67 2282.22 93 163.5 6
150 x 600 x 150 13.205 47 6233.96 96 200.2 3

Table 4.2: Multi-material minimum compliance: Results with different
discretization resolutions using the modified DW decomposition.

Resolution ‘ f NFEM TFEM (S) TFEM (0/0) TOPT (S) TOPT (0/0)
50 x 200 x 50 12.957 39 123.601 66 61.05 33
100 x 400 x 100 13.052 44 1746.55 85 285.2 14
150 x 600 x 150 12.983 51 9667.09 82 2089 17

ing TO problems. As shown in Table 4.1 and Table 4.2, the evaluation of
FEM dominates the total running, especially for the large-scale problems.
Compared to directly solving the problem (4.1) or (4.2) with a standard
MILP solver as discussed in §4.3.4, the utilization of the the modified
DW decomposition greatly reduced the optimization time and made it
reasonable optimizer for large-scale TO problems.

The resulting configuration of the optimal topology when only consid-
ering a stainless steel as the candidate material is shown in Figure 4.1. As
the increase of the discretization resolution, more branches under the top
plane have been added into the optimal topology as the details added by
the high discretization resolutions.

In the multi-material scenario, though considered four candidate ma-
terials, only three of them appear in the optimal topology. This is because
titanium is much less efficient material under the setup of minimum com-
pliance and linear elasticity assumption as the specific strength E,/M,,
is much lower than other candidate materials. As shown in Figure 4.2,
the stainless steel (rendered in red) as the strongest candidate material
appears at the center of the structure, especially shown at the corner of
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(a) Discretization resolution of 50 x 200 x 50.

(b) Discretization resolution of 100 x 400 x 100.

(c) Discretization resolution of 150 x 600 x 150.

Figure 4.1: The optimal topology of the bridge design problem using single
candidate material and different discretization resolutions.

the bridge. The softest candidate material magnesium (rendered in dark
blue) has been observed as the out coating of the structure. The second
candidate material aluminum then appears as the intermediate material
between magnesium and stainless steel working as transition material.
The layout of the materials in the optimal topology fits the intrinsic way

when manually assigning materials of the structure.
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(a) Discretization resolution of 50 x 200 x 50.

(b) Discretization resolution of 100 x 400 x 100.

(c) Discretization resolution of 150 x 600 x 150.

Figure 4.2: The optimal topology of the bridge design problem using four
candidate materials and different discretization resolutions. Magnesium
is rendered in dark blue; aluminum is rendered in light blue; titanium is
rendered in orange; stainless steel is rendered in red.

4.3.2 Time Analysis for Solving the Global Sub-problem
of the the modified DW decomposition

As the size of the global sub-problem generated from the the modified
DW decomposition is determined by the number of blocks ny and the
number of iterations, the relationship between the number of iterations
and the size of the design variables is first investigated. It considers the 3D
minimum compliance problem with different discretization resolutions

and different number of materials up to ny = 4 introduced in Table 2.2.
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As shown in Figure 4.3a, the average number and its standard deviation
of iterations required for convergence does not increase significantly with
the discretization resolution for the single material (np = 1) case. Thus,
the size of the global sub-problem generated from the the modified DW
decomposition is expected to be the same across different discretization
resolutions. As shown in Figure 4.3b, the average time of solving the
global sub-problem does not increase significantly with the discretization
resolutions. However, when the number of materials increases (e.g. nm =
4), the average number of iterations would increase slightly with respect
to the increase of the discretization resolutions. As the global sub-problem
(4.9) has to be solved multiple times in the iteration process, the solving
time would scale quadratically with respect to the number of iterations.
This is because the number of constraints linearly scales with the number
of iterations and the complexity of linear programming scales linearly
with respect to the product of the number of constraints and the number
of variables [59]. As the increase of the average iteration is very slight,
the solving time of the global sub-problem does not increase significantly
with the discretization resolutions. This indicates that the the modified
DW decomposition is still applicable to the problems with complex local
constraints (e.g. multiple candidate materials) and different discretization
resolutions. In summary, the the modified DW decomposition is expected
to be efficient for solving large-scale TO problems.

4.3.3 Comparison to the SIMP Method

The benchmark problem is tested with the standard SIMP method based
on a recent scalable implementation of FEniTop [36]. In this thesis, it is
set to use the optimality criterion (OC) for its optimization performance.
The maximum number of iteration is set as 400 and the radius of the
Helmbholtz filter is set as 0.6. As the SIMP method is not able to select the

optimal combination of multiple candidate materials, it only considers
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Figure 4.3: The scaling analysis of the the modified DW decomposition
method on TO problems.
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the single material case. The running results are collected in Table 4.3, 4.4
and. In Table 4.3, it compares the resulting objective function value f, the
difference of the objective function value between the SIMP method and
the the modified DW decomposition Af = W x 100%. In Table 4.4,
it compares the total running spent by the FEM analysis Tg, the average
time of FEM analysis Tr for each iteration. It also compares the difference
of the total and average time of FEM analysis between the SIMP method
and the the modified DW decomposition ATy = w x 100% and

T M
= Toowe—T 0 :
ATy = W x 100%, respectively.
Table 4.3: Single-material minimum compliance: Comparison between
the modified DW decomposition and the SIMP method in terms of the
objective function.

| Modified DW Decomposition | SIMP (Nggy =200) | SIMP (Npgy = 400)

Resolution
\ f Nreem \ f Af (%) \ f Af (%)
50 x 200 x 50 15.229 77 19.172 25.89 16.148 6.035
100 x 400 x 100 | 14.115 67 18.418 30.49 14.499 2.721
150 x 600 x 150 | 13.205 47 18.231 38.06 14.048 6.384

Table 4.4: Single-material minimum compliance: Comparison between
the modified DW decomposition and the SIMP method in terms of the
time of FEM analysis.

R . | Modified DW Decomposition | SIMP (Nggy = 200) | SIMP (Nggy = 400)
esolution ks _ _ _ _

| New  Te(s) Te (s) | Te(s) ATe(%) Te(s) ATe(%) | Te(s) ATe(%) Te(s) ATe (%)
50 x 200 x 50 77 303.3 3.939 1009.6 232.9 5.048 28.15 2810.1 826.4 7.025 78.34
100 x 400 x 100 67 2282 34.06 9105.5 299.0 45.53 33.66 20007 776.7 50.02 46.84
150 x 600 x 150 47 6234 132.6 36354 4832 181.8 37.04 82865 1229 207.2 56.19

As shown in Table 4.4, the proposed the modified DW decomposition
method outperforms the SIMP method in terms of the objective function
value and the average time of FEM analysis. When using a small number
of iterations when using the SIMP method (e.g. Ngey = 200), the the
modified DW decomposition method achieves a better objective function
value, with a difference larger than 20%. When the number of iterations



134

increases (e.g. Ngpym = 400), the difference of the objective function value
between the SIMP method and the the modified DW decomposition can
get reduced to less than 5%.

However, increasing the number of iterations is very expensive as the
time of FEM analysis can increase very significantly. The average time of
FEM analysis scales with respect to the number of iterations as shown in
Table 4.4. As the evolution of the optimization process, the continuous
design variable gets close to 0 or 1. This worses the conditioning of the
stiffness matrix and elongates the time of FEM analysis as shown in Sec-
tion 4.3.3. In contrast, the proposed framework does not to sustain such
issue since the parameter relaxation discussed in §2.4 improves the condi-
tioning of the problem at the first stages of the optimization process when
using a single minimum Young’s modulus factor (e.g. Enin = 102). Other
than the last two stages as shown in Section 4.3.3, the time of FEM analysis
is very stable and relatively small when using the proposed framework.
In the last two stages, as the total number of iterations is very limited (no
more than 10 in total), this does not significantly increase the total time
of FEM analysis. The parameter relaxation scheme is then very effective
for reducing the average running time of FEM analysis while the SIMP
method can hardly utilize the scheme in practice. This in turn makes the
proposed framework more efficient than the SIMP method in terms of the
total time of FEM analysis. For example, when using the discretization
resolution of 150 x 600 x 150, the total time of FEM analysis of the pro-
posed framework is one order of magnitude smaller than that of the SIMP
method.

The SIMP method presented in this thesis uses an optimizer based on
the optimality criteria (OC) to solve the optimization problem. The OC
method is very efficient as the average optimization time in each iteration
To is much shorter than the average optimization of the the modified DW

decomposition as shown in Table 4.5. It is only the reason that the total
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Figure 4.4: Single-material minimum compliance: Time of FEM analysis
for each iteration step with a discretization resolution of 150 x 600 x 150.
Different colors indicate the different stages of the optimization process.

number of iterations is very large that the total optimization time T of
the SIMP method is larger than that of the proposed method.

The optimal topologies obtained by the SIMP method are reported in
Figure 4.5. The visualized results are filtered with a threshold of 0.5 for
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showing the configuration of the structure. Compared to the topology
generated by the the modified DW decomposition as shown in Figure 4.1,
the topology shows a better consistency between different discretization
resolutions in terms of the number, the orientation and the size of the
branches shown in the structure. By comparing the left and right half
of the topology, the most apparent difference happens at the change of
the orientation of the branch near the center of the bridge. Instead, the
orientation and the size of the branches at the rear ends of the bridge does
not significantly change. As the objective function value f has been greatly
reduced as shown in Table 4.4, this implies that the additional iterations,
though only modify part of the topology of the structure, can still lead
to significant performance improvements of the design and necessitate
the advantage of a sharp 0-1 configuration provided by the additional

iterations.

4.3.4 Comparison to the general MILP solver

In order to consistently compare the performance of the the modified DW
decomposition with the general MILP solver, the optimization solutions
used in the optimization process of TO benchmark problems are obtained
from the the modified DW decomposition. Each MILP problems (4.2)
and (4.1)is solved both by the the modified DW decomposition and the

Table 4.5: Single-material minimum compliance: Comparison between
the modified DW decomposition and the SIMP method in terms of the
time of optimization.

R . | Proposed Method | SIMP
esolution _ _ _
| To (s) To(s) | To(s) To(s) ATo(%) ATo (%)
50 x 200 x 50 67.76 0.880 11.74 0.029 —82.7 —-96.7
100 x 400 x 100 163.8 2.445 254 .4 0.636 55.33 —74.0
150 x 600 x 150 201.2 4.280 1298 3.244 545.0 —24.2
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(c) Discretization resolution of 150 x 600 x 150.

Figure 4.5: The optimal topology of the bridge design problem using a
single candidate material and different discretization resolutions. The left
half shows the topology obtained at Nggyv = 200; the right half shows the
topology obtained at Nggy = 400. The visualized results are filtered with
a threshold of 0.5, colored with the design variable p.

standard MILP solver Gurobi [28]. The tolerance of the MILP solver is set
as 107°.

4.3.4.1 Single material case

The total running time that directly using the standard MILP solver is
reported in Table 4.6, with a reference of the total FEM analysis time Tg.
As shown in the table, the optimization time of the MILP solver To, mip
is much longer than that of the the modified DW decomposition T, mpw-
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The difference can be larger than one magnitude of order as indicated by
the relative time difference ATp = W x 100%. Taking the time
spent by the FEM analysis as a reference, the optimization time of the
MILP solver is comparable to the time of FEM analysis. This indicates that
the optimization time of the MILP solver is not acceptable for large-scale
TO problems. In contrast, the optimization time of the the modified DW
decomposition is much smaller than the time of FEM analysis. This indi-
cates that the the modified DW decomposition is a reasonable optimizer

for large-scale TO problems.

Table 4.6: Single-material minimum compliance: Comparison between
the modified DW decomposition and the standard MILP solver in terms
of the time of optimization.

Resolution \ Te (s) Tomow (s)  Tomup (s)  ATo (%)
50 x 200 x 50 303.325 67.616 268.11 296.5
100 x 400 x 100 2282.22 163.45 2824.8 1628
150 x 600 x 150 6233.96 200.24 5254.6 2524

4.3.4.2 Multi-material case

Compared to the case of single material, the optimization time of the MILP
solver is much longer as shown in Table 4.7. In case of the discretization
resolution of 150 x 600 x 150, the optimization time of the MILP solver is
too long that it is not reported in the table. The optimization time of the
MILP solver To mip is much larger than the time of FEM analysis Tg. It
indicates that the optimization time of the MILP solver is not scalable in
the case of multi-material TO problems and is not acceptable for large-scale
TO problems. In contrast, the the modified DW decomposition is still a
reasonable optimizer as the optimization time Tp mpw is much smaller
than the time of FEM analysis Tg.
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Table 4.7: Multi-material minimum compliance: Comparison between the
modified DW decomposition and the standard MILP solver in terms of
the time of optimization.

Resolution ‘ TF (S) TO, MDW (S) TO, MILP (S) ATO (0/0)
50 x 200 x 50 123.601 61.054 6118.6 9922
100 x 400 x 100 1746.55 285.21 349929 122590

150 x 600 x 150 | 9667.09 2089.3 — —
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5 QUANTUM OPTIMIZER FOR DISCRETE VARIABLE

TOPOLOGY OPTIMIZATION

51 Quantum Computing for Optimization

Quantum computing (QC) is emerging as a new computing paradigm
that could be superior to classical computing for a variety of problems,
especially when performing binary programming problems. The Quan-
tum Annealing (QA) [4] and the Quantum Approximate Optimization
Algorithm (QAOA) [25] method is the two most protege algorithm that
can handle binary programming problems and is promised to out-perform
the best classical optimizers on these problems. As the QAOA method
requires the quantum circuit which is still limited in the size of available
qubits at present, the QA method is expected to be suitable for testing
the proposed algorithms on the real devices. In this chapter, all proposed
algorithms and all running results are performed and collected from the
real QA devices.

5.1.1 Quantum Annealing

The quantum annealing accepts the quadratic unconstrained binary opti-
mization (QUBO) problem

J=x"Qx=) Quxi+) Y Quxixj, x€{0,1" (5.1)
i=1 i=1j=i+1

as an input to find the solution x* that minimizes J. To find the solution, the

quantum annealer, the physical device to perform the quantum annealing,
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takes the Hamiltonian

H(s) = —A(s) <Z ogﬂ)
i=1
+B(s) (Z QﬁG]-(Z) + Z Z Qijﬁgz)(fj(z)) , sel[0,1]
i=1

i=1j=i+1

(5.2)

where A(s) and B(s) are functions of time, s = t/t; is the normalized
annealing time and ty is the physical annealing time that can be set in front

of the execution of the Hamiltonian on the physical device.

5.2 Preliminary of QUBO

As quantum optimization, e,g, QA and QAOA, only accepts QUBO prob-
lems as inputs, it is required to introduce the commonly used approaches
for the conversion from general optimization problems into a QUBO prob-
lem as preliminary for the following discussion on the proposed algo-
rithms for acceleration of classical implementation proposed in the previ-
ous chapters.

The discussion starts from the representation of general continuous
or integer variables in the binary space. Then it turns to the treatment of
forming QUBO problems for equality and inequality constraints. Finally,
it discusses the scaling of the QUBO problems and how to manage the
form of generated QUBO problems on quantum devices.

5.2.1 Basis Encoding

When performing (mixed) binary optimization on quantum devices, it
considers the basis encoding of different variables, including both the
continuous and integer variables. The continuous and integer variables are

encoded into binary variables through the following expansion functions.
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For a continuous variable x in the range [a, b], it can use n binary

variables x; to any value within in the range [a, b] as

ny—1

~ b— b
X(x,a,b) =a+ ax0+ Z
i=1

%X, xeB" (53)

2Mx 2

By increasing n,, it can improve the approximation accuracy to the original
continuous variable x. The number of binary variables n required for the

expansion of the continuous variable x with the accuracy ¢, such that

b- a)w . This kind of digits

IX — x| < ¢, can be estimated as n = [log2 (

is also known as fixed-point representation.

For an arbitrary integer variable 1 in the range [c, d], c,d € Z, it can
use n = [log,(d — ¢ 4+ 1)] binary variables y; to exactly represent each
integer within the range [c, d] as

n—2

P(y,c,d)=c+ ) 2+ Coyn1, yEB", (5.4)
i=0

where Cyp = (d — ¢ + 1 — 2Mosz(d—c+1)]-1)

5.2.2 From Constraints to QUBO

The equality constraints can be integrated into a unconstrained through
the penalty method. For example, the following linear constrained mini-
mization problem

min f(x)
st. Gx=0 (5.5)
x € B"

where f(x) is the objective function x. It can be converted into a uncon-
strained problem as min f(x) + Pg?(x), where P is a large penalty factor
constant. Due to the limited accuracy of currently available device, the
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penalty factor can not be an arbitrary large value. it is preferred to select a
large value with respect to the maximum possible value of the objective
function f(x). As x is a binary vector, an estimated upper bound of f(x)
canbe Y " | |fi|. Then P can be taken as P = ¢ }_!" |fi|, where c is constant
in the range of [0, 10].

In terms of inequality constraints

min f(x)
st. h(x)<0 (5.6)
x € B"

where h(x) is a linear function with respect to the binary variable x. It first
requires the introduction a slackness variable to convert the inequality
constraint h(x) < 0 into an equality constraint. As x is bounded, h(x) can

be bounded in the range [a, b]. One possible selection of a and b can be

n

a=) —fhl b=} I (5.7)

i

One can also find other tighter bounds to replace the current selection of a
and b. Once a and b is selected, the introduced slackness variable can then
be represented with a series of binary variables z within the range [a, b].
If the coefficients of h(x) are all integers, then x(z, a, b) can be selected as
the expansion function. If the coefficients of h(x) contain fractional values,
P(z, a,b) can then be selected as the expansion function to the slackness
variable. For both cases, one can get the following problem with equality
constraint only as:

min f(x)

s.t. h(x)+ ¢(z,a,b) =0 (5.8)

xeB", zecB™

where ¢(z, a, b) is the selected expansion function according to the prop-
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erty of the coefficients in h(x) and n, is the used number of binary variables
used for the expansion of the slackness variable. Then the problem (5.8)
is an equality constrained linear binary programming with respect to the
binary variables x and z. The unconstrained problem then can be formed

according to the procedure introduced in the first part in this section.

5.3 Quantum Implementation of the Discrete

Topology Optimization Problem

5.3.1 Direct Conversion of the Discrete Topology

Optimization Problem

To solve the continuum TO problem with quantum annealing, it can be
achieved by directly converting the bilinear problem (2.36) into a QUBO
problem. By using the penalty method, the inequality constraints in the
problem (2.36) can be converted into the penalty terms in the objective
function. There exist two bilinear inequality constraints f) (p)oy —TI(1 —
«;) <mand t(p)a; < d in the problem (2.36). The penalty terms would
contain cubic term that is not suitable for near-term quantum devices
which can only handle quadratic terms. Thus, it requires the introduction
of additional binary variables to convert the cubic terms into quadratic
ones [37]. However, to solve the problem (2.36) through this approach
requires a lot of logical qubits (three times of the design variables) to
embed the problem onto a real equipment. The required qubits scale with
respect to the number of design variables, which has greatly exceeded the

capability of the near-term available devices.
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5.3.2 Heuristic Approach to Solve the Continuum
Topology Optimization Problem

The second approach has been proposed in the previous paper [84], the
problem (4.2) can be reorganized into smaller sub-problems according to
the solution to each cut i in Ps. As shown in the paper [84], this approach
can greatly reduce the size of problem needed to be embedded onto the
quantum devices, but it requires that the problem (4.1) can be efficiently
solved. This requirement cannot be satisfied with the introduction of the
complex constraints on the design variables, e.g. the multi-material con-
straints. Furthermore, the number of logic qubits required to embed the
problem scales with respect to the increase of the discretization resolu-
tion as shown in the previous paper [84]. It makes the approach hardly
competitive in a large-scale TO problem.

In this thesis, a new heuristic approach is considered to find the solution
to the problem (4.1) and (4.2) by utilizing linear programming and the
quantum annealing. The fractional coefficients in the total mass constraint
makes the solution obtained from the linear programming containing
fractional values by a chance. It is no more avoidable to utilize a binary
programming solver and ensure a binary solution. In order to reduce
the cost of solving the binary constrained problem (4.1) and (4.2), a two-
step heuristic approach is deployed. In the first step, a relaxed problem
of (4.1) and (4.2) is solved, by removing the integrity constraint on p
with the solution p*, through an off-the-shelf linear programming solver.
In this step, most of the design variables is expected to be binary in the
solution. Only partial of the fractional solution needs to be fixed to binary
values. Then the variables taking binary values can then be picked out
to form a new reduced-size binary problem to find the proper values.
In the second step, once the solution p* taking any non-binary values,
a reduced binary programming problem can then be formed according

the non-binary variables in p*. Such non-binary variables can form a
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subset p C p*, where p = {peml0 < p} o < 1,0:.m € p*}. Therefore, the
reduced binary programming problem to the single cut problem (4.1) and
multi-cut problem (4.2) can be written as:

min Fj(p)
P
st. t(p)<d
Ne MM Mm _
> ) —pem<M
Me
e=1 m=1 (59)

nm
Zpe,m<1; e:1,2,...,ﬂ,e
m=1

p € {0, 1nexm
Pem = p:,ml Pem ¢ () s
and
min 1
p.M
st. fi(p)<n, Vje€Pk)
t(p) <d, Vje Pk
MNe

e=1 m=1

Pem <M

(5.10)

nm
Zpe,m<1/ €:1,2,...,Tle
m=1

p € {0, 1}rexmm
Pem = pz,m/ Pem ¢ () .

5.3.3 Forming QUBO Problem

As the problem (5.9) only contains binary variables in the problem, the
conversion of the problem from the constrained binary programming to
QUBO only needs the introduction of slackness variables and the penalty
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method to form the QUBO. By following the expansion of integer variables
in 5.2, the resulting constrained problem can then be written as:

min ;‘vj(p)
o)

st v (P) + Xt (Zt, tmin, tmax) = d

Me MM

Z Z %m Pem TXm (ZM’ Mmiﬂ/ Mmax) =M

(5.11)

p € {0, 1}rexmm

Pe,m = pz,m/ Pem g ﬁ
zi,Zm € B,z. €1{0,1}.

Therefore, the resulting QUBO reads as:

~ . 2
) (p) + Pt [t] (p) +Xt (Zt/ tmin, tmax) - d}
MNe MM - 2

Z Z Mo Pem + ll)M(ZM/ Min, Mmax) - M

n
e=1 m=1 €

nm 2
+ZPe [Zpe,m+ze_1] 7
m=1

ecp

+Pum

(5.12)

where Py, Pyp1 and P, are penalty factors and is selected as the upper bound
value of (p).

As 1 is a continuous variable and the cut £ (p) takes non-identical frac-
tional coefficients, the expansion of continuous variables in 5.2 is required
for the conversion of the problem (5.10) for forming a QUBO. After the
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introduction of slackness variables, the QUBO reads as:

d)n (Zn/ MNmin, nmax)
2
+ Z P] |:f] +¢f) (ZfJ/ min’ fznax) q)n (Zn/nmin/nmax)]
jePi(k)
2
+ Z Pt) |:t] +Xt(zt)/tmm/ tgnax) - di|
jEP(K) (513)
MNe MM — 2
+PM Z Z , (ZM/ Mmin/ Mmax) - M]
e=1 m=1
+ZP [Z pem+Ze_1] ’
ecp

5.3.4 Quantum Implementation of Modified DW

Decomposition

The modified DW decomposition discussed in §4.2 proposes a systematic
way to decompose the mixed integer programming problem like (4.2)
into a series of two types of sub-problems: binary optimization problems
(4.8); and linear programming problems (4.9). The linear programming
problems can be solved by off-the-shelf linear programming solvers, while
the binary optimization problems can be solved by quantum annealers. In
this section, it is focused on the quantum implementation of the binary
optimization problems for problems (4.8).

For the problem (4.8), the binary constraints are the same and can be
converted to the QUBO form as:

Z [Z pe,m+¢e_1] 7 (514)

ecD; Lm=1

where ¢, is the introduced slackness variable for the binary constraint
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restricting the material usage on element e. As objective function is linear
for both problems, forming the QUBO for each problem (4.8) requires
only (nym +1) x |Dy| physical qubits in sequence or (a1 +1) x n. physical
qubits in parallel, respectively.

The QUBO for the multi-cuts problem (4.8) is given by:

> Y Alflp)+ Y mt(ps) + M Hwm, (i)

ecD; jePs jEPs
M 2 (5.15)
‘H_[ Z [Z pe,m + d)e - 1]
eeD; Lm=1

ITin the above equations is a large positive constant to ensure the binary
constraints are satisfied. As the sensitivity cut 1, the trust region constraint
t) and the total mass constraint Hyy, are bounded with respect to the design
variables p, TT can then be selected with respect to the upper bounds of
these constraints as:

nm
1T = max (ﬂ D> D WLl md, nMMmax> , (5.16)

eeD; m=1

for the multi-cuts problem (4.8).

5.4 Numerical Results

5.4.1 Acceleration via Heuristic Approach

The minimum compliance, as formulated in §2.2.1, is concerned in this
subsection. To solve this TO problem, it followed the proposed method-
ology, consisting of the GBD, conversion of the MILP into QUBO, and
the splitting approach. More specifically, GBD mentioned in §2.3.1 was
executed, but with the heuristic approach proposed in §5.3.2. The bi-
nary programming problem (5.10) was solved on the quantum annealer
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provided by D-Wave. Considering the accuracy of the current quantum
devices and the required number of qubits, the parameters for the binary
approximations were set as: n,, = n,; = 10in (5.3). Once the solution of
the design variable p**! is determined, the problem (5.10) can be treated
as a continuous optimization problem, from which the continuous variable
n* can be solved for its slightly better accuracy.

To implement the problem (5.10) on the quantum annealer provided
by D-Wave, two different ways were examined. In the first way, it directly
embedded the QUBO problem (5.13) in the QPU, which is named as
“Heuristic-Direct”. In the second way, the problem (5.10) were solved by
taking advantage of the hybrid solver provided by D-Wave, particularly
the constrained quadratic model (CQM), which is hence referred to as
“Heuristic-CQM”. The results are compared in terms of solution quality
and wall time, as summarized in Table 5.1, where the discretization reso-
lution is chosen as 60 x 20; the parameter for filtering, as described in Eq.
(2.22), is set as r = 2; T denotes the total wall time spent for finding the
optimal topology layout; f denotes the objective function’s value obtained
corresponding to the optimal material layout; and N denotes the total
number of binary programming. Details about each implementation and

the main findings are provided as below.

Table 5.1: Comparison between different implementations for the reduced
binary global sub-problem (5.10) on the quantum annealer provided by
D-Wave, where T denotes the total wall time spent for finding the optimal

topology.

Heuristic-Direct ‘ Heuristic-CQM
T (s) f Ng | T(s) f Ng

23412 186.3727 80 ‘ 111.97 1789243 74

Resolution n, T
60 x 20 1200 2 |

In Heuristic-Direct, each sampling is set with 20pus annealing time, and
the sampling is repeated for 1000 times. The final states reached at the end
of annealing were recorded, and the state with the lowest energy among
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1000 samplings was regarded as the ground state of the Hamiltonian de-
fined in (5.13) and hence the solution to the binary programming problem
(5.10). From the statistics, totally 80 binary programming problems were
invoked, 11 among which are the problem (5.13) and were solved by the
quantum annealer. For each, it is carefully examined with the number
of the resultant reduced variables (|J¢|), the number of physical qubits
required for embedding the problem (5.13), and the solution time spent
on the QPU, as summarized in Table 5.2, where the 11 problems are orga-

nized according to their sequence of being solved. With the discretization

Table 5.2: Statistics about the 11 QUBO problems (5.13) solved in the
implementation of Heuristic-Direct, where Touso denotes the time spent
for embedding and annealing on the QPU.

7€ my  ng Tauso (s)
16 49 198 6.20
20 53 234 7.11

34 67 512 16.63
22 55 260 8.57

23 56 559 29.05
27 60 498 21.01
23 46 432 32.71
14 47 172 4.20

32 65 423 13.23
18 51 212 10.52
33 66 616 33.99

resolution of 60 x 20, the number of design variables is n, = 1200. From
the value of |J¢| reported in Table 5.2, it is seen that the splitting approach
proposed in §5.3.2 has greatly reduced the size of the problem to be solved
on a quantum computer. Note that the total logical qubits needed to repre-
sent the problem (5.13) should also include those required to represent
the binary approximations of n and o’. Thus, the number of logical qubits
required in total is: 1§, = [I+ny +1+[P(k)[+ X cp() Now- By reducing



152

[9€], n}, can be reduced accordingly. If the physical qubits have all-to-all
connections, the number of physical qubits required would be consistent
with ng. However, due to the sparse connectivity provided by the current

quantum annealing machines, the number of physical qubits required for

e T
q q

[40], as reported in Table 5.2. Also, with the increase of ng, ng can grow

very fast [40], although fluctuating due to inhomogeneous connections

embedding the problem, denoted as n¢ is in fact much larger than n

between qubits. As a result, most of the time spent on the QPU is dom-
inated by the embedding overhead, as indicated by the values of Tqugso
in Table 5.2, noting that the total annealing time for 1000 repetitions of
sampling is only 20 ms. The current D-Wave Advantage system permits
access to no more than 5000 qubits. To constrain ng not beyond 5000, |7€|
has to be no more than a few hundreds. Thus, even with the splitting
approach, the number of design variables in the original problem must
be limited to moderate, which makes solving the minimum compliance
problem with finer discretization resolutions challenging.

To tackle this challenge, the second way of implementation was pur-
sued, i.e., Heuristic-CQM, where the problem (5.10) was submitted, and
the CQM, provided by D-Wave, was called for embedding and solving
the problem. All default setups were used when employing the CQM
hybrid solver in all the numerical tests. As indicated by the wall time T
in Table 5.1, the implementation through CQM greatly saved the entire
solving time. The reason for that is the CQM can further reduce the size
of the problem embedded on the QPU and in turn save the time spent for
embedding, knowing the fact that embedding dominates the time con-
sumed on the quantum devices. In addition, the implementation through
CQM results in fewer binary programming problems invoked and a lower
value for the objective function. Recalling the discussion about the inexact
solution in §5.3.2 that any inexact solution to the problem (4.2) can poten-

tially increase the number of GBD iterations, fewer binary programming
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problem invoked suggest that the solution found by the CQM is closer
to the exact solution. Possible reasons for that include: the CQM further
reduces the problem embedded on the QPU and makes the resultant opti-
mization problem easier to be accurately solved; in Heuristic-Direct, the
values chosen for the penalty factors may not be optimal, and the proba-
bility of recovering the global optimal solution is highly dependent on the
embedding and annealing schedule.

Based on the above comparison and findings, when it was scaled up
the minimum compliance problem with increasing numbers of design
variables (with finer discretization resolutions), the implementation of
Heuristic-CQM was employed, owing to its better performance in terms of
the solution quality, wall time, and the capacity to embed larger problems.
In particular, two different shapes of material domains were considered:
L:H=3:1andL: H = 2:1, and the discretization resolution varies
from 120 x 40 to 480 x 240, leading to the number of design variables (n,)
varying from 4800 to 115200. The results about the obtained minimum
values of the objective function, the associated computing time, and the
corresponding optimal material layouts are presented in Table 5.3 and

Figure 5.1.

Table 5.3: Comparison between different methods for solving the mini-
mum compliance problem.

Resolution n . Heuristic-CQM SIMP
o] T (S) f NFEM T (S) f NFEM
120 x 40 4800 134.18  183.6182 74 19.84 188.176 433

61.51 75.1399 77 37.58 77.3887 450

123.34  183.4272 73 132.44 188.887 530
88.21 78.2722 89 255.84 78.8675 665

19390  185.1250 89 1861.68  190.777 1000
261.34 79.3158 90 2929.59  81.1982 1000

120 x 60 7200

240 x 80 19200
240 x 120 28800

480 x 160 76800
480 x 240 115200

o[BI NDN

Taking the discretization resolution of 480 x 160 as an example, the
run time of the D-Wave’s hybrid CQM solver for solving problem (4.11)
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was examined. Out of the total 89 iterations required for solving the TO
problem (2.31), 6 iterations involve solving (4.11), and their statistics of
run time are summarized in Table 5.4. Here, the size of problem (4.11)
reduced by the proposed splitting approach is reported as |J¢|, which is
significantly smaller than the original number of variables, n, = 76800.
The total time spent by the CQM is denoted as Tcqm. Topu reports the time

spent for annealing in QPUs, which is expected to be short.

Table 5.4: Run time of the D-Wave’s hybrid CQM solver for solving problem
(4.11), where the discretization resolution is 480 x 160, Topy denotes the

annealing time spent on QPUs, and Tcqu is the total wall time cost by the
COM.

Toru  Tcam (s) 7€

0.016 4311 1994
0.032 5.123 2708
0.032 5.064 1526
0.016 4.582 998

0.032 5.129 1308
0.032 5.039 1694

I\ A

(a) Discretization resolution of (b) Discretization resolution of
480 x 240. 480 x 160.

Figure 5.1: The resultant optimal material layouts with different discretiza-
tion resolutions by using the Heuristic-CQM method.
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5.4.2 Acceleration via the Modified DW Decomposition

It is expected that solving the local sub-problem (4.7) can be embedded
onto a quantum computer following the QUBO (5.15). The classical com-
puter only needs to solve the LP problem (4.9) to obtain the optimal
solution. As indicated in Table 5.5 and table 5.6, the major part of the com-
putational time is used for solving the sub-problems Tp s when compared
to the time for solving the global sub-problems To, \1, especially in the case
of large-scale multi-material problems. The main overhead other than
solving the global sub-problems is the time spent on forming the problem
itself Tz. This mainly includes the time of evaluating the coefficients for
A based on p{ . in (4.9) through the iterations of the the modified DW
decomposition. It requires the aggregation on the local process and the
communication between different processes with respect to different Al.
This portion of time can be reduced once the Python code is optimized by
using the just-in-time mechanism, an optimized vectorization code or com-
piling the code to C++. Therefore, this section focuses on the quantum
acceleration on solving the local sub-problem (4.7).

Table 5.5: Single-material minimum compliance: Time of main compo-
nents of the the modified DW decomposition optimizer.

Resolution | T (s) Tos(s)  Tom(s) Tor(s) Tos(%) Tom (%) Tor (%)
50 x 200 x 50 67.6161 29.02 32.77 2.067 42 48 3
100 x 400 x 100 163.453 90.34 48.08 19.69 55 29 12
150 x 600 x 150 200.237 137.8 23.15 34.97 68 11 17

Table 5.6: Multi-material minimum compliance: Time of main components
of the the modified DW decomposition optimizer.

Resolution ‘ TF (S) TO,S (S) TO,M (S) TO,F (S) TO,S (%) TO,M (O/o) TO,F (0/0)
50 x 200 x 50 61.0540 30.28 21.81 4.483 49 35 7
100 x 400 x 100 | 285.215 2247 25.46 30.53 78 8 10
150 x 600 x 150 | 2089.30 1626 49.40 385.6 77 2 18
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First, the proposed QUBO (5.15) is going to be verified. It considers
utilizing QAOA for finding the ground states based on the simulator
provided by cuda-quantum [73]. Due to the limited number of qubits
can be simulated on a classical computer, the size of |D;| is set up to 8
when doing the verification. The single material case is utilized as the
benchmark problem. The number of layers in the ansatz is set to be L = 4
or L =5. Up to 30 sub-problems are randomly selected from the case of
discretization resolution of 50 x 200 x 50. The solutions obtained from
QAOA are compared to the ones obtained from the classical MILP solver.
The accuracy of the solutions are reported in Table 5.7. As shown in the
table, the proposed QUBO can guide to find the desired solution when
working enough number of layers in the ansatz. This implies that the
proposed QUBO is valid for updating the design variables in the TO

process.

Table 5.7: Solving accuracy of the randomly selected sub-problems (n =
30) by using different number of layers L of the ansatz and different sizes
of the sub-problems |D;].

L=4
1Dl 3 4 5 6 7 8
Accuracy | 100%  100%  100%  98.3%  94.3%  64.2%
L=5
|Ds 3 4 5 6 7 8
Accuracy | 100%  100%  100%  100%  100%  95.4%

As QAOA still requires a classical optimizer, it is not an ideal optimizer
when large-scale quantum devices are available. Then, it considers the
quantum annealers which can solve the optimization problem without
evolvement of a classical computer during optimization.

In order to leverage the quantum annealers, the classical computer

needs to form the QUBO problem (5.15) before the optimization is initi-
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ated. The expected running time together with the cost spent on quan-
tum computer is reported in Table 5.8 and 5.9, for both the single and
multi-material scenario, respectively. Ng s denotes total number of local
sub-problems involved in each TO problem; Tp ¢ denotes the total time
spent on forming the QUBO (5.15) accumulated from every local sub-
problem evolved in the TO problem; and Tp o denotes the expected time
spent on the quantum annealer to find out the solution to all of the local
sub-problems evolved in the TO problem with 1000 repetitions and each
using 20 ps for annealing calculated as

To,o = Nos x 1000 x 20us .

For comparison, the time spent on the classical computer for solving the
local sub-problem Tp s is also included in the tables. The expected speedup
is calculated as

Tos
Speedup = Toct+Tog

in which calculates the ratio between the time spent for solving the local
sub-problems on a classical computer Tp g and the combination of To, ¢
and Tp,q. For both scenarios, it expects a speedup in solving the local
sub-problems, especially for the case with a high discretization resolution
and multiple candidate materials. This implies that the quantum annealer
can serve as a potential replacement to the classical computers when large

enough quantum computer is accessible in the future.
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Table 5.8: Single-material minimum compliance: Time of the expected
quantum accelerated implementation of the the modified DW decomposi-
tion optimizer.

Resolution ‘ To,s (s) Nos  To,c (s) To,q (s) Speedup

50 x 200 x 50 29.024 1039 0.0763 20.78 1.39
100 x 400 x 100 90.338 1444 1.4938 28.88 297
150 x 600 x 150 137.83 699 1.7456 13.98 8.76

Table 5.9: Multi-material minimum compliance: Time of the expected
quantum accelerated implementation of the the modified DW decomposi-
tion optimizer.

Resolution ‘ To,s (s) No,s Toc(s) Toq(s) Speedup

50 x 200 x 50 30.276 659 0.2859 13.18 2.25
100 x 400 x 100 224.66 756 2.2416 15.12 12.9
150 x 600 x 150 1626.1 1400 29.703 28.00 28.2
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6 SUMMARY

This thesis aims to propose a new efficient continuum TO framework to
accelerate the process to find the optimal material layouts for a wide range
of large-scale TO design tasks.

The main contribution of this thesis can be summarized as follows:
(1) a discrete variable TO framework based on mixed-integer nonlinear
programming (MINLP) is proposed, incorporating a trust-region con-
straint and a parameter relaxation scheme to accelerate convergence in
solving a wide range of TO design problems; (2) both classical and hy-
brid algorithms based on DW decomposition are developed to exploit
the advantages of classical parallel computing and quantum computation;
(3) a geometric multi-grid (GMG) preconditioner is introduced for the
meshless method based on the generalized moving least square method
with moving boundaries in fluid-solid interaction problems.

Extensive numerical examples presented in the thesis demonstrate
that the proposed framework can substantially reduce the computational
cost associated with evaluating the governing equations that constrain
TO design problems. By leveraging the proposed optimizer based on
the DW decomposition and utilizing hybrid computing platforms that
combine classical and quantum resources, the framework significantly
accelerates the update of design variables compared to standard MILP
solvers. Together with the proposed GMG preconditioner, the proposed
approach shows a strong potential for accelerating the search for optimal
topology in large-scale TO problems and is a promising candidate to

replace conventional methods across a wide range of applications.
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