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Abstract

The feasibility determination problem involves deciding whether a design meets certain

criteria based on a performance measure estimated through Monte Carlo simulation. It

typically comes into play when the decision-maker faces the problem of selecting a subset

of designs according to some prescribed standards. Feasibility determination of a finite

set of alternative designs is a special case of the classical multiple comparisons with a

control problem, in the sense that the control that we compare with here is modeled as

known.

Ranking and selection procedure focuses on intelligently allocating the total simu-

lation budget to each design to better support the decisions when comparing a set of

alternative designs. It is an issue of critical importance when the decision-maker faces a

limited simulation budget. The ranking and selection procedure for feasibility determi-

nation provides the potential for significant simulation budget reduction while obtaining

decisions with greater accuracy.

In this thesis, we first investigate the performance of current asymptotically optimal

allocation methods. We prove that under certain conditions, current methods perform

no better than the naive equal allocation method. To achieve better performance when

the total simulation budget is limited, we propose a new allocation method that is based

on a finite simulation budget perspective. We prove that the simulation budget allo-

cated by our method converges to the optimal value. We also provide a proof that our

method always performs no worse than current asymptotically optimal allocation meth-

ods. Numerical experiments of three illustrative examples, a facility-sizing problem, and
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an emergency department setup problem are conducted to demonstrate the effectiveness

of our method.

The majority of the research in ranking and selection formulate the budget alloca-

tion problem as a static optimization problem. We demonstrate the inadequacy of this

formulation. In Bayesian setting, we formulate the budget allocation as a stochastic con-

trol problem and provide a one-step lookahead policy. We also illustrate the stochastic

control implementation of previous proposed finite budget allocation method. Numer-

ical examples are provided to demonstrate the differences between static and dynamic

methods.

In simulation practice, different designs with close parameters often have similar

performances. In this situation, we propose a new allocation method that takes the

relationships between different designs into consideration. We use the kriging metamodel

to capture the inter-design relationships and incorporate the information obtained from

kriging into our allocation procedure based on the Bayesian framework. Computational

results demonstrate the efficacy of this methodology.
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3.4 ERCD comparison in different examples. . . . . . . . . . . . . . . . . . . 42

3.5 The effect of different initial budget settings in ALD procedure. . . . . . 45

3.6 Emergency department process view . . . . . . . . . . . . . . . . . . . . 47

4.1 Comparison of Optimal EA and Heuristic ALD. . . . . . . . . . . . . . . 51

4.2 PCD comparison in different examples. . . . . . . . . . . . . . . . . . . . 61

5.1 Comparison of OAK with other methods . . . . . . . . . . . . . . . . . . 77



1

Chapter 1

Introduction

1.1 Overview and Research Motivation

Simulation is widely applied to the design and analysis of complex discrete-event sys-

tems such as health care systems, telecommunication systems, financial forecasting, and

supply chain management. One common task of simulation is to aid in identifying the

optimal system design from among a finite set of alternative designs. However, in real

life, such a decision can be hard to make for various reasons.

One possible reason is that a decision-maker often has to face different objectives

and constraints. In many cases, it is difficult to include all objectives and constraints

to form one single criterion by which the decision-maker can compare the performance

of different designs. For instance, suppose we want to use simulation to find an optimal

ordering policy that has the lowest expected cost in inventory management. For complex

inventory models, we can approximate the optimal policy by using threshold policies. In

general, the more thresholds we set, the better we can approximate the optimal policy.

However, the increasing number of thresholds in a policy clearly makes it harder to

implement in practice. Therefore, we take at least two factors into consideration: the

expected cost and the complexity of ordering policies (Yan et al. [88]).

Another possible reason is that the design space can be extremely large, which renders

the total simulation cost prohibitively high. The simulation of complex systems allows
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for free configuration of a great number of parameters, which could easily result in a

vast design space. For instance, the design of chip multiprocessors requires tuning a

wide range of customizable parameters that are mainly related to microarchitecture,

memory hierarchy, and interconnection network. The design space is so large that a full

exploration is infeasible (Palermo et al. [67]).

To tackle these situations, feasibility determination (FD) is sometimes preferred. In

FD, the designs have performance measures that must be estimated using Monte Carlo

simulation, and thresholds for each performance measure are given. In this thesis, with-

out loss of generality we define a design as feasible if all its performance measures are

under corresponding thresholds. For multi-objective problems, we can deem one perfor-

mance measure as primary and other measures as secondary. Thresholds are set on the

secondary performance measures and the feasibility of each design is then determined.

We then identify a feasible design with the best primary performance measure as the

optimal one. For large design space problems, a common method is to first apply a

simplified model and detect the feasibility of each design based on an appropriate cri-

terion (Yan et al. [88]). Then we can carefully explore this much smaller design space

consisting of all feasible designs.

FD is highly useful in a wide variety of simulation optimization problems. We en-

deavor to detect the feasibility of each design under a fixed total simulation budget. This

FD problem is a special case of the classical multiple comparisons with a control (MCC)

problem, in the sense that the control that we compare with here is modeled as known

(Nelson and Goldsman [65]). The MCC problem is one of the four classes of comparison

problems that arise in ranking and selection (R&S) studies (Kim and Nelson [55]).

The main focus of this thesis is on how to allocate a given simulation budget in-

telligently among the alternative designs to best support the feasibility decisions. The
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most straightforward and widely used way is to allocate the total budget equally to each

design. This is inefficient because it is possible that some designs have performance far

from the threshold. We can draw conclusions about their feasibility with a certain con-

fidence and avoid consuming further budget. Other designs that need more simulation

effort to make an accurate decision can then be assigned more simulation budget. This

motivates the effort to design more intelligent ways to allocate the simulation budget.

This allocation problem can be addressed via frequentist or Bayesian approach. The

current intelligent allocation methods from frequentist perspective aim to allocate a finite

total simulation budget optimally. However, to make their derivation tractable they

make approximations assuming the total simulation budget is infinite. The method has

asymptotically optimal property may not perform well in finite budget situation. Xie

and Frazier [87] have shown in their numerical experiments that it performs even worse

than the equal allocation procedure, which undermines its value in practical applications.

Gao et al. [42] have also pointed out the importance of designing allocation procedures

under finite budget conditions in R&S studies.

The Bayesian approach in R&S usually models the budget allocation process as a

stochastic control problem (SCP). Peng et al. [71] state that for selecting the best design

problem, SCP framework is a better approach than the previous frequentist approach.

Xie and Frazier [87] address the FD in the SCP framework. However, as stated in their

paper, their method cannot be applied to the fixed budget scenario directly. To the

author’s best knowledge, currently there is no work solves the FD in the fixed budget

scenario through SCP approach.

The current existing allocation methods do not take into consideration the relation-

ships between different designs. The performance of each design is only evaluated via

results of repeated simulation runs of the design itself. In real life simulation problems,
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it is often the case that different designs with close parameters have similar performance.

In this situation, when we assess the performance of a design, the simulation results of

its neighboring designs could be highly informative. Taking the relationships between

different designs into consideration in the FD procedure has the potential to further

enhance simulation efficiency.

In this thesis, we first propose our Finite simulation budget Large Deviations-based

(FLD) allocation method, which is a frequentist approach based on a finite budget

perspective. We investigate the limitations of current existing frequentist approach

methods and provide a proof to show the superiority of our method. Secondly, we

compare the SCP approach with the frequentist approach to demonstrate that in FD

the SCP framework is more realistic. We then formulate the FD problem as a SCP, and

provide a one-step lookahead policy. We also illustrate the dynamic implementation

of our FLD method. At last, we propose our Optima simulation budget Allocation

with Kriging (OAK) method, which applies kriging models to capture the relationships

between different designs. Numerical experiments are conducted to demonstrate the

effectiveness of the three methods in this thesis.

1.2 Organization of the Thesis

The rest of this document is organized as follows. In Chapter 2, a review of existing liter-

ature on ranking and selection is presented. Several R&S procedures for FD problem are

briefly introduced, and we also review several simulation budget allocation procedures

that using metamodels to facilitate the procedure development.

In Chapter 3, we investigate the performance of current existing asymptotically op-

timal allocation method under finite simulation budget condition. We then propose our
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FLD allocation method and demonstrate its superiority compared to current existing

methods theoretically. Three illustrative numerical examples, one facility-sizing prob-

lem, and an emergency department setup problem are presented to show the efficiency

of our method.

In Chapter 4, we demonstrate the inadequacy of static optimization formulation

for FD allocation. In Bayesian setting, we formulate the allocation problem as a SCP.

We provide a one-step lookahead policy for this SCP. We also demonstrate the dynamic

implementation of FLD. Numerical examples are provided to demonstrate the differences

of static and dynamic methods.

In Chapter 5, the kriging model is introduced to capture the relationships between

different designs. We incorporate the information provided by kriging model in our

FD procedure using Bayesian framework and devise a corresponding simulation budget

allocation method. Computational tests are conducted to illustrate the effectiveness of

the method.

In Chapter 6, future research works on practical application of feasibility determina-

tion and risk averse feasibility determination based on robust optimization techniques

are discussed.
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Chapter 2

Literature Review

Much research effort has been devoted to ranking and selection procedures for different

classes of problems that arise in simulation studies. The following literature review

focuses on both the R&S studies about the FD problem, discussed in Section 2.1, and

using metamodels to aid R&S procedures, introduced in Section 2.2.

2.1 Ranking and Selection Studies about Feasibility

Determination

Ranking and selection procedures are to compare a finite number of simulated alter-

natives. Over the past few decades, there have been fruitful efforts in developing R&S

procedures for finding the best among a finite set of alternative designs.

For example, Dudewicz and Dalal [28], Rinott [75], Nelson et al. [66], Kim and Nelson

[53], and Kim and Nelson [54] propose indifferent zone based screening procedures, which

attempt to correctly detect the best design whose performance is at least a user-specified

amount better than the other designs with a guaranteed probability. Gupta and Mi-

escke [47], Chen et al. [21] and Chick and Inoue [22] exemplify the value of information

approach, which uses a Bayesian framework to describe the evidence for correct selection

and focuses on allocating a simulation budget to maximize the expected value of infor-

mation. Chen [17], Chen et al. [19], Chen and Lee [18], and Gao and Shi [41] present the
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Optimal Computing Budget Allocation (OCBA) method, which intelligently allocates

the simulation budget to asymptotically maximize the expected probability of correct

selection or the expected opportunity cost, assuming the design output is normally dis-

tributed. Glynn and Juneja [44] introduced the large deviations (LD) framework to

R&S community and generalized this approach to general distribution scenarios. Fra-

zier et al. [34] model the budget allocation process as a SCP problem, and present the

knowledge-gradient policy. Fu et al. [37],Goldsman et al. [46] and Branke et al. [13]

provide extensive reviews and comparisons of some of the aforementioned methods.

Other possible selection tasks include selecting several top designs instead of the

single best design (Koenig and Law [56], Chen et al. [20], Gao and Chen [38], Zhang et al.

[89], Gao and Chen [39]) and selecting the alternative with the largest quantile (Batur

and Choobineh [6], Shin et al. [78]). All of the aforementioned procedures focus on only

one performance measure. In reality, we often face designs with multiple performance

measures or constraints (Butler et al. [16], Andradóttir et al. [3]). It is possible that these

measures are independent of each other. However, it also frequently happens that some of

these measures are correlated or even in conflict with one another. For example, suppose

we want to determine how many receptionists, doctors, lab technicians and nurses should

be hired when setting up an emergency department. Our goal is to minimize total cost

while making sure that average total waiting time for critical patients does not exceed

a prescribed value (Ahmed and Alkhamis [1]).

The practical problems with multiple performance measures or constraints have in-

spired R&S studies in the presence of stochastic constraints. That is developing R&S

procedures to select the best design based on a primary performance measure from the

feasible designs whose feasibility is determined according to the secondary performance

measures. Andradóttir and Kim [2], Lee et al. [58], Hunter and Pasupathy [52], Healey
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et al. [49], and Pasupathy et al. [68] all work through this research line. FD is a crit-

ical ingredient in these procedures and has received increasing attention in simulation

optimization. FD can also find applications in many other scenarios. Yan et al. [88],

and Xie and Frazier [87] have demonstrated some practical applications in which FD is

highly useful.

FD can also find its origin from the classical multiple comparisons with a control

(MCC) problem. In MCC, the control against which we compare is usually the per-

formance of a specific design that we also need to estimate via simulation. Paulson

[69], Dunnett [30], Dudewicz and Ramberg [27], Dudewicz and Dalal [29], Bofinger and

Lewis [10], and Damerdji and Nakayama [24] propose various sampling procedures con-

centrating on creating simultaneous confidence intervals for the differences between the

performance of each design and the control. The readers interested in MCC can refer

to several books and review papers, Hochberg and Tamhane [50], Fu [36], Goldsman

and Nelson [45], and Hsu [51]. When the control is modeled as known we recover FD

problem.

For an FD problem, a requirement is imposed either on the determination quality or

on the simulation budget. Batur and Kim [7] follow the former approach. Assuming the

distribution of outputs of each design is normal, they provide fully sequential procedures

to identify a set of feasible or near-feasible designs with a statistical guarantee on the

determination quality. Szechtman and Yücesan [84] also provide a guarantee on the

probability of correct decisions for each design. Based on the Bayesian approach, the

paper proposes a screening procedure and if when the budget is depleted, the paper

determines the number of additional samples required to make the feasibility decision

for each unclassified design.

We are interested in the second approach. Gao and Chen [40] solve the fixed budget



9

FD problem following OCBA approach. The derivation of OCBA approach assumes the

distribution of observations of each design is normal. In reality, this may not be the

case (Law and Kelton [57], Gao and Chen [40]). Szechtman and Yücesan [83] employ

the LD framework to address the FD problem under a fixed simulation budget, which

relaxes the normal assumption to general light-tailed distribution. Their paper concen-

trates on maximizing the asymptotic decay rate of the expected number of incorrect

determinations. In another related work, Xie and Frazier [87] model the FD problem

as a stochastic control problem (SCP). They assume the total simulation budget is ge-

ometrically distributed and then turn the budget allocation problem to a multi-armed

bandit problem (Mahajan and Teneketzis [60]). Based on Gittins index (Gittins [43]),

they then develop Bayes-optimal fully sequential policies for the FD problem.

2.2 Ranking and Selection Studies with Metamodels

If the performance measure of different designs exhibits spatial correlation, the efficiency

of R&S can be further improved by incorporating information from neighboring designs

when we estimate the performance of each design. One approach to utilize information

from all the designs is to build metamodels to approximate the performance measures,

which can be used to tackle large-scale R&S problems (Barton and Meckesheimer [5]).

One major issue in metamodeling includes the choice of a functional form (Barton and

Meckesheimer [5]). The popular choices include polynomial response surface metamodels

(Box [11], Chih [23]), Myers et al. [64], multivariate adaptive regression splines (Friedman

[35]), kriging metamodels (Santner et al. [77], Ankenman et al. [4]), radial basis functions

(Franke [33], Shin et al. [79]), and artificial neural networks (Masson and Wang [61],

Sabuncuoglu and Touhami [76]). Simpson et al. [80] and Li et al. [59] provide a review
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of these metamodel performances.

Using metamodels to aid the R&S procedure has drawn some attention in the simula-

tion optimization community. Brantley et al. [14] demonstrated that if the performance

measure is quadratic or near quadratic, R&S efficiency can be enhanced by incorporating

simulation information from across the domain into a quadratic regression metamodel.

Brantley et al. [15] and Xiao et al. [86] partitioned the domain into small local areas and

then applied the quadratic regression model in each area to aid the simulation budget

allocation.

We are interested in the kriging metamodel because it assumes less structure than the

quadratic models. It also tends to be more resistant to overfitting than artificial neural

network (Ankenman et al. [4]). Li et al. [59] applied the aforementioned metamodels to

four popular test functions with different degrees of noise, and the kriging metamodel

performed well compared to others. The kriging metamodel was first developed in the

field of geostatistics and has been applied extensively to various fields since then. Readers

may refer to Ankenman et al. [4], Quan et al. [73] and Sun et al. [82] for more details

on kriging metamodeling in stochastic settings.
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Chapter 3

Finite Simulation Budget Large

Deviations-based Allocation

Procedure

Existing intelligent budget allocation methods make approximations assuming the to-

tal simulation budget is infinite and achieve asymptotically optimal property. In real

life, however, the total simulation budget is certainly finite. In this chapter, we first

investigate the performance of the current methods under finite budget condition. We

then propose our Finite budget Large Deviations-based (FLD) allocation method. We

provide a proof that FLD is superior to the current methods. Numerical experiments

are conducted to demonstrate the effectiveness of the FLD method.

3.1 Problem Formulation

In this section, we precisely define the budget allocation problem of interest. Consider

a finite set i = 1, ..., r of designs. Each design i has a performance measure µi ∈ R,

µ = [µ1, ..., µr]
T. Given a constant γ ∈ R, a design i is defined to be feasible if µi ≤ γ.

Let Xi,j for i = 1, ..., r, j = 1, 2, ... denote an observation from jth replication of the

ith design, E[Xi,j] = µi. We assume the simulationist use X̄i(Ni) = N−1
i

∑Ni

j=1Xi,j to
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estimate µi, where Ni is the number of samples of design i. We wish to use limited total

simulation budget to determine for each design i whether it is feasible or not effectively.

The total simulation budget n is allocated to each alternative design in order to max-

imize the expected number of correct determinations. Let αi represent the proportion

of simulation budget that is allocated to sampling from design i. In this research we

ignore the minor technicalities associated with nαi not being an integer.

We make the following assumptions in our analysis.

Assumption 1. The simulation output replicates are independent from replication to

replication as well as independent across different designs.

Common random numbers (CRN) technique is used in simulation to improve effi-

ciency. However, our task is to determine the feasibility of the designs, which does not

require comparison among designs. Consequently the efficiency will not be benefited

by the use of CRN. The assumption of independence across different designs is thus

plausible.

Assumption 2. No design has the performance measure that lies exactly at the

boundary, that is, µi ̸= γ, for i = 1, 2, ..., r

This assumption also appears in (Szechtman and Yücesan [83]) and (Hunter and

Pasupathy [52]). It ensures no design requires consuming all the simulation budget.

Assumption 3. For all designs, the moment generating function Mi(θ) = E[exp(θXi,j)] <

∞ for θ ∈ R

As was presented in (Szechtman and Yücesan [83]), this assumption holds in situ-

ations where underlying distribution is light-tailed, such as normal, Bernoulli, Poisson

and gamma family.

Let gn denote the expected number of correct determinations under total budget

n. We use SY = {i : µi ≤ γ} to denote the set consisting of feasible designs, and
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SN = {i : µi > γ} to denote the set consisting of infeasible designs. The FD budget

allocation problem is to

Problem P : max
α1,...,αr

gn(α1, ..., αr)

s.t.
r∑

i=1

αi = 1

αi ≥ 0, i = 1, ..., r

where

gn(α1, ..., αr) =
∑
i∈SY

P (X̄i(nαi) < γ) +
∑
i∈SN

P (X̄i(nαi) > γ)

3.2 Current Asymptotically Optimal Allocation Meth-

ods

In this subsection, we assume the designs have normal distributed outputs, Xi,j ∼

N(µi, σ
2
i ), for i = 1, 2, ..., r, j = 1, 2, .... Currently there are mainly two asymptoti-

cally optimal allocation rules, ALD and OCBA. In the normal environment the two

allocation rules are identical. We first briefly derive these two rules and then discuss

their performance under finite budget condition.

3.2.1 Derivation of ALD/OCBA Allocation Rule

In the normal environment we can express gn(α1, ..., αr) in closed form,
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gn(α1, ..., αr) =
∑
i∈SY

P (X̄i(nαi) < γ) +
∑
i∈SN

P (X̄i(nαi) > γ)

=
∑
i∈SY

∫ (γ−µi)
√
nαi

σi

−∞
e−

x2

2 dx+
∑
i∈SN

∫ ∞

(γ−µi)
√

nαi
σi

e−
x2

2 dx

Remember that for a random variable Xi,j ∼ N(µi, σ
2
i ), its LD rate function (see

Dembo and Zeitouni [26]) Ii(x) = 1
2
(µi−x

σi
)2. Since we have assumption 2, µi ̸= γ,

Ii(γ) > 0, i = 1, .., r. For design i, given budget Ni the probability that we make a

correct decision is
∫√2NiIi(γ)

−∞ e−
x2

2 dx. If Ii(γ) is large, this probability is relatively high

and vice versa. Therefore Ii(γ) could be seen as an indicator that indicates how difficult

we can correctly determine the feasibility of design i. The larger Ii(γ) is, the more easily

we detect its feasibility. WLOG, from now on we assume I1(γ) ≤ I2(γ) ≤ ... ≤ Ir(γ).

gn(α1, ..., αr) can be expressed as

gn(α1, ..., αr) =
r∑

i=1

(1−
∫ ∞

√
2nIi(γ)αi

e−
x2

2 dx)

Therefore, the original problem P can be transformed to

Problem P1 : min
α1,...,αr

r∑
i=1

∫ ∞

√
2nIi(γ)αi

e−
x2

2 dx (3.1)

s.t.

r∑
i=1

αi = 1 (3.2)

αi ≥ 0, i = 1, ..., r (3.3)

∫∞√
2nIi(γ)αi

e−
x2

2 dx is convex since it’s twice differentiable and its second derivative

with respect to αi is n2Ii(γ)
2e−nIi(γ)αi(2nIi(γ)αi)

− 3
2 (1+2nIi(γ)αi), which is nonnegative.

The objective function of problem P1 is sum of convex functions, thus it is also a convex
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function. Since all the constraints are linear, we can conclude that problem P1 is a

convex optimization problem. We first omit constraint (3.3) and consider the problem

P̃1

Problem P̃1 : min
α1,...,αr

r∑
i=1

∫ ∞

√
2nIi(γ)αi

e−
x2

2 dx

s.t.
r∑

i=1

αi = 1

This is still a convex optimization problem, thus the solution satisfying the Karush-

Kuhn-Tucker (KKT) conditions is the optimal solution to this problem (Boyd and Van-

denberghe [12]). We use λ to represent a constant. The KKT conditions are stated as

follows:

e−nIi(γ)αi(2nIi(γ)αi)
− 1

2nIi(γ) = λ, i = 1, 2, ..., r (3.4)
r∑

i=1

αi = 1

Taking log function of both sides of condition (3.4) and performing some arithmetic

operations, the KKT conditions are equivalent to

1

2
log Ii(γ)−

1

2
logαi − nIi(γ)αi = λ, i = 1, 2, ..., r (3.5)

r∑
i=1

αi = 1

When n tends to infinity, the term 1
2
log Ii(γ) − 1

2
logαi in condition (3.5) becomes

much smaller than nIi(γ)α and is negligible. We can then simplify condition (3.5) to
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−nIi(γ)αi = λ. Since we have assumption 2, Ii(γ) is positive. The solution of the

conditions are then derived as αi = 1/Ii(γ)∑r
i=1 1/Ii(γ)

, i = 1, 2, ..., r, which is the limit the

optimal solution of problem P̃1 converges to when the total simulation budget n tends

to infinity.

Let p∗i =
1/Ii(γ)∑r
i=1 1/Ii(γ)

, i = 1, 2, ..., r, p∗ = (p∗1, p
∗
2, ..., p

∗
r)

T. p∗i > 0, p∗i satisfies constraint

(3.3). Therefore the optimal solution of problem P1 approaches p∗ when the total

simulation budget n tends to infinity.

p∗ is exactly the ALD/OCBA allocation rule. Szechtman and Yücesan [83] has

established that lim
n→∞

1
n
log(r − gn(α1, ..., αr)) is minimized when αi = p∗i , i = 1, ..., r.

That means when the total simulation budget n tends to infinity, allocation rule p∗ can

make the expected number of correct determinations gn converge to r at highest rate of

convergence.

3.2.2 Performance of ALD/OCBA under Finite Budget Con-

dition

ALD/OCBA achieves asymptotically optimal property. However, in reality the total

simulation budget n is always finite. If we apply the ALD/OCBA allocation rule p∗

directly in finite budget situation, the performance may not be satisfying. We now

prove the following property of allocation rule p∗:

Proposition 3.1 For any set of designs and any threshold, there exists an nt > 0, when

the total simulation budget n ≤ nt, the performance of allocation rule p∗ is always no

better than the equal allocation (EA) rule, αi =
1
r
, i = 1, 2, ..., r.

Proof: If I1(γ) = I2(γ) = ... = Ir(γ), the ALD/OCBA allocation rule p∗ is identical

to the equal allocation, we can select any positive number as nt.
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Assume we have at least i, j, Ii(γ) ̸= Ij(γ). Let f1(n) = gn(p
∗
1, ..., p

∗
r)−gn(1/r, ..., 1/r),

f1(n) =
r∑

i=1

∫ ∞

√
2nIi(γ)

1
r

e−
x2

2 dx−
r∑

i=1

∫ ∞

√
2nIi(γ)p∗i

e−
x2

2 dx

We have f1(0) = 0. f1(n) is differentiable. Taking derivative,

f
′

1(n) = −
r∑

i=1

e−nIi(γ)
1
r (2nIi(γ)

1

r
)−

1
2 Ii(γ)

1

r
+

r∑
i=1

e−nIi(γ)p
∗
i (2nIi(γ)p

∗
i )

− 1
2 Ii(γ)p

∗
i

= (2n)−
1
2

r∑
i=1

(e−nIi(γ)p
∗
i (Ii(γ)p

∗
i )

1
2 − e−nIi(γ)

1
r (Ii(γ)

1

r
)
1
2 )

Let h(n) =
∑r

i=1(e
−nIi(γ)p

∗
i (Ii(γ)p

∗
i )

1
2 − e−nIi(γ)

1
r (Ii(γ)

1
r
)
1
2 ). We next show h(0) < 0.

h(0) =
r∑

i=1

(Ii(γ)p
∗
i )

1
2 −

r∑
i=1

(Ii(γ)
1

r
)
1
2

Plug in p∗i =
1/Ii(γ)∑r
i=1 1/Ii(γ)

,

h(0) = r(
r∑

i=1

1

Ii(γ)
)−

1
2 −

r∑
i=1

(
r

Ii(γ)
)−

1
2

Consider the function x− 1
2 , x ∈ (0,∞). It is twice differentiable and its second

derivative 3
4
x− 5

2 > 0, which indicates that x− 1
2 , x ∈ (0,∞) is a strictly convex function.

By Jensen’s inequality,

(
1

r

1

I1(γ)
+ ...+

1

r

1

Ir(γ)
)−

1
2 ≤ 1

r
(

1

I1(γ)
)−

1
2 + ...+

1

r
(

1

Ir(γ)
)−

1
2

which is equivalent to r(
∑r

i=1
1

Ii(γ)
)−

1
2 ≤

∑r
i=1(

r
Ii(γ)

)−
1
2 . The equality holds only

when I1(γ) = ... = Ir(γ). By assumption we have i, j that Ii(γ) ̸= Ij(γ). Hence here we

have strict less than relationship, h(0) < 0.
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h(n) is a continuous function. Thus there exists an nt > 0, when n ≤ nt we have

h(n) < 0. This implies when n ≤ nt, f
′
1(n) < 0, f1(n) is a decreasing function. Re-

member that f1(0) = 0, hence in (0, nt], f1(n) < 0, gn(p
∗
1, ..., p

∗
r) ≤ gn(1/r, ..., 1/r).

Proposition 3.1 indicates that there exists an nt > 0, if the total simulation budget

n falls within the interval (0, nt), the performance of ALD/OCBA is actually inferior

to the equal allocation. The range of this interval depends on concrete cases. We now

use a numerical example to illustrate this interval. Assume we have ten designs with

Xi,j ∼ N(i, 102), i = 1, 2, ..., 10. The threshold γ = 6.4. The comparison of ALD/OCBA

with EA under different budgets is displayed in Figure 3.1.

In Figure 3.1 (a), gn is calculated by theoretical formula. Due to the factors such as

rounding to integer when allocating the total budget to each design, the performance of

each allocation rule would not be in the full accord with the theoretical result. We also

use simulation to estimate the value of gn. The estimation is based on 10000 independent

experiments and the result is shown in Figure 3.1 (b). From the figure we can see the

performance of ALD/OCBA could not surpass EA until the total budget exceeds 3000.

At that moment both methods could achieve the gn level 9.62.

Unfortunately, intelligent budget allocation method is often applied in the back-

ground that the budget is quite limited. The scenario n <= nt could happen easily

in this situation, which undermines the value of ALD/OCBA method in realistic appli-

cation. This motivates us to seek improvements on current allocation methods. Next

section we propose our FLD allocation method, which is our effort along this research

direction.
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Figure 3.1: Comparison of ALD/OCBA with EA.
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3.3 FLD Allocation Method

In this section, we discuss our FLD allocation rule. Remember that small Ii(γ) value

indicates design i is relatively more difficult to determine its feasibility. If we see difficult

designs as critical, ALD/OCBA rule p∗i =
1/Ii(γ)∑r
i=1 1/Ii(γ)

implies that critical designs obtain

larger budget fraction.

In the previous section, we have derived an equivalent expression of KKT conditions

of problem P̃1:

1

2
log Ii(γ)−

1

2
logαi − nIi(γ)αi = λ, i = 1, 2, ..., r (3.5)

r∑
i=1

αi = 1

In constraint (3.5) if the total simulation budget n is sufficient large, we drop the term
1
2
log Ii(γ) − 1

2
logαi and derive the ALD/OCBA rule. However, if n is sufficient small,

we could ignore the effect of nIi(γ)αi. We then get αi =
Ii(γ)∑r
i=1 Ii(γ)

. This implies when

the total simulation budget is very limited, the optimal allocation rule has the property

that critical designs receive less budget fraction, which is contrary to the ALD/OCBA

rule. This may explain for FD problem why it is possibly inappropriate to apply the

ALD/OCBA rule directly given the total simulation budget is limited.

This is very different from the problem of selecting the best design from among a

number of alternative designs via simulation. In that problem we define the design that

is optimal or near optimal as critical and in actual practice the critical designs always

receive relatively high budget fraction no matter what the total simulation budget is.

Here the optimal budget allocation rule changes drastically when n changes, which

indicates that we should consider the effect of n in our allocation rule.
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3.3.1 Derivation of p Allocation Rule

Suppose the design outputs are normally distributed. We now consider the effect of

the term 1
2
log Ii(γ)− 1

2
logαi in condition (3.5). Since p∗ is the asymptotically optimal

allocation ratio, we expect that the optimal allocation ratio should not deviate too far

from p∗. Therefore we approximate logαi by its first order Taylor expansion at p∗i ,

logαi
.
= log p∗i + (αi − p∗i )/p

∗
i . Let T =

∑r
i=1

1
Ii(γ)

. Remember p∗i = 1/Ii(γ)
T

, the KKT

conditions of problem P̃1 could be approximated by

log Ii(γ)−
αi

2p∗i
− nIi(γ)αi = λ, i = 1, 2, ..., r (3.6)

r∑
i=1

αi = 1 (3.2)

Let ci = log Ii(γ)T −
∑r

i=1
log Ii(γ)
Ii(γ)

, i = 1, ..., r. Note
∑r

i=1
ci

Ii(γ)
= T

∑r
i=1

log Ii(γ)
Ii(γ)

−∑r
i=1

log Ii(γ)
Ii(γ)

T = 0. Let pi = p∗i (1 +
ci

n+T/2
), i = 1, ..., r, p = [p1, p2, ..., pr]

T. We have

Proposition 3.2 Allocation rule p satisfies constraint (3.6) and constraint (3.2).

Proof:
r∑

i=1

pi =
r∑

i=1

p∗i (1 +
ci

n+ T/2
)

= 1 +
r∑

i=1

p∗i ci
n+ T/2

= 1 +
1

T (n+ T/2)

r∑
i=1

ci
Ii(γ)

= 1
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p satisfies constraint (3.2).

log Ii(γ)−
pi
2p∗i
− nIi(γ)pi

= log Ii(γ)−
1

2
(1 +

ci
n+ T/2

)− n

T
(1 +

ci
n+ T/2

)

= log Ii(γ)−
1

2
− n

T
− ci

T

= log Ii(γ)− log Ii(γ) +
1

T

r∑
i=1

log Ii(γ)

Ii(γ)
− 1

2
− n

T

=
1

T

r∑
i=1

log Ii(γ)

Ii(γ)
− 1

2
− n

T

1
T

∑r
i=1

log Ii(γ)
Ii(γ)

− 1
2
− n

T
does not depend on specific i. Hence p satisfies constraint (3.6).

Since I1(γ) ≤ I2(γ) ≤ ... ≤ Ir(γ), c1 ≤ c2 ≤ ... ≤ cr. For design i that ci ≥ 0, pi is

always positive. For the designs with ci < 0, when n > −c1 − T
2
, pi = p∗i (1 +

ci
n+T/2

) >

p∗i (1 +
ci
−c1

) ≥ 0. Therefore when n > −c1 − T
2
, p satisfies constraint (3.3). We can see

p as a good approximation of exact optimal allocation ratio.

If all Ii(γ)’s are equal, ci = 0, p∗i = pi =
1
r
. Otherwise comparing with constraint

(3.5), we observe that

λ1 =
1

2
log I1(γ)−

1

2
log p1 − nI1(γ)p1

= log I1(γ) + log(
r∑

i=1

1

Ii(γ)
)− n∑r

i=1
1

Ii(γ)

< log Ir(γ) + log(
r∑

i=1

1

Ii(γ)
)− n∑r

i=1
1

Ii(γ)

=
1

2
log Ir(γ)−

1

2
log pr − nIr(γ)pr

= λr

λ in constraint (3.5) must lie in the interval (λ1, λr). To make constraint (3.5) valid,

for design i with Ii(γ) relatively small we should decrease p∗i and for design i with large
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Ii(γ) we should increase p∗i . This means ALD/OCBA allocation rule tends to allocate

too small budget to the designs that are relatively easy to detect the feasibility and

allocate too large budget to those relatively difficult designs.

pi = p∗i (1 + ci
n+T/2

), we can see ci
n+T/2

as a modification coefficient to alleviate the

aforementioned drawback of ALD/OCBA allocation rule. For the easy designs, Ii(γ) is

large, hence ci tends to be positive. In this case pi > p∗i , p allocates more budget than

allocation rule p. For the difficult designs, Ii(γ) is small, hence ci tends to be negative.

pi < p∗i , p allocates less budget than p.

3.3.2 Convergence of p Allocation Rule

When n → ∞, pi → p∗i . p converges to p∗ at rate O( 1
n
) when n tends to infin-

ity. This indicates that p is also asymptotically optimal. However, lim
n→∞

(npi − np∗i ) =

lim
n→∞

n
n+T/2

p∗i ci = p∗i ci. That means although our rule converges to p, there always exists

a difference between the budget assigned to each design by the two rules even when

the total simulation budget tends to infinity. We now use a numerical example to show

this phenomenon. Suppose we have two designs, X1,j ∼ N(2, 22), X2,j ∼ N(4, 22). The

threshold γ = 3.7. The comparison of budget allocated to design 1 is illustrated in

Figure 3.2.

In Figure 3.2 the ’Optimal’ line represents the optimal value of N1, denoted by N∗
1 ,

which is obtained by using numerical methods. From the figure we can see budget

allocated to design 1 by p converges quickly to N∗
1 . Meanwhile there is a gap between

budget allocated by ALD/OCBA rule and N∗
1 . Instead of decreasing, this gap seems

to become larger when the total simulation budget increases. This observation can be

validated by |npi − np∗i | = |p∗i ci|(1− T
2n+T

), which is increasing as n increases. The gap

converges to |p∗i ci|, in this example |p1c1|
.
= 9. The figure indicates that compared with
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Figure 3.2: Comparison of budget allocated to design 1.

N∗
1 this gap is significant even when the total simulation budget achieves 500.

Let N∗
i (n) be the optimal budget that should be allocated to design i given total

simulation budget n. We now prove the convergence of budget allocated by FLD rule

to optimal value – as observed in the previous example – always holds.

Proposition 3.3 lim
n→∞

(N∗
i (n)− npi) = 0, i = 1, ..., r.

Proof: Suppose there exists a design i, lim
n→∞

(N∗
i (n) − npi) ̸= 0. That means there

exists an ϵ > 0, for any natural number N , we can find an n such that n ≥ N and

|N∗
i (n)− npi| ≥ ϵ. Note that

∑r
i=1 N

∗
i (n) =

∑r
i=1 npi = n. Case 1, if N∗

i (n)− npi ≥ ϵ,

there must exists a design j, N∗
j (n)−npj ≤ − ϵ

r
. Otherwise 0 =

∑r
i=1N

∗
i (n)−

∑r
i=1 npi ≥

ϵ− ϵ
r
(r − 1) = ϵ

r
> 0, which is impossible. Similarly, case 2, if N∗

i (n)− npi ≤ −ϵ, there

must exists a design j, N∗
j (n)− npj ≥ ϵ

r
.

From constraint (3.5), we can see for any design a, b, 1
2
log Ia(γ) − 1

2
logN∗

a (n) −

N∗
a (n)Ia(γ) =

1
2
log Ib(γ)− 1

2
logN∗

b (n)−N∗
b (n)Ib(γ). By assumption no matter what N
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is, we can always find an n ≥ N and a design j that satisfies case 1 or case 2. For case

1,

|1
2
log Ii(γ)−

1

2
log(npi)− npiIi(γ)− (

1

2
log Ij(γ)−

1

2
log(npj)− npjIj(γ))|

= |1
2
logN∗

i (n) +N∗
i (n)Ii(γ)−

1

2
log(npi)− npiIi(γ)

− (
1

2
logN∗

j (n) +N∗
j (n)Ij(γ)−

1

2
log(npj)− npjIj(γ))|

≥ 1

2
log(npi + ϵ) + ϵIi(γ)−

1

2
log(npi)− (

1

2
log(npj −

ϵ

r
)− ϵ

r
Ij(γ)−

1

2
log(npj))

=
1

2
(log(

npi + ϵ

npi
)− log(

npj − ϵ/r

npj
)) + ϵIi(γ) + ϵ

1

r
Ij(γ)

> ϵIi(γ) + ϵ
1

r
Ij(γ)

> 0

Similarly, for case 2, we can derive |1
2
log Ii(γ)− 1

2
log(npi)−npiIi(γ)− (1

2
log Ij(γ)−

1
2
log(npj)− npjIj(γ))| > ϵIi(γ) + ϵ1

r
Ij(γ) > 0. However, for any a, b,
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lim
n→∞

(
1

2
log Ia(γ)−

1

2
log(npa)− npaIa(γ)− (

1

2
log Ib(γ)−

1

2
log(npb)− npbIb(γ)))

= lim
n→∞

(
1

2
log Ia(γ)−

1

2
log(np∗a(1 +

ca
n+ T/2

))− np∗a(1 +
ca

n+ T/2
)Ia(γ)

− (
1

2
log Ib(γ)−

1

2
log(np∗b(1 +

cb
n+ T/2

))− np∗b(1 +
cb

n+ T/2
)Ib(γ)))

= lim
n→∞

(log Ia(γ)−
1

2
log(1 +

ca
n+ T/2

)− n

T
(1 +

ca
n+ T/2

)− (log Ib(γ)

− 1

2
log(1 +

cb
n+ T/2

)− n

T
(1 +

cb
n+ T/2

)))

= lim
n→∞

(log Ia(γ)−
1

2
log(1 +

ca
n+ T/2

)− n

n+ T/2
log Ia(γ)− (log Ib(γ)

− 1

2
log(1 +

cb
n+ T/2

)− n

n+ T/2
log Ib(γ)))

= 0

Which is a contradiction. Therefore lim
n→∞

(N∗
i (n)− npi) = 0, i = 1, ..., r.

3.3.3 FLD Allocation Rule and its Superiority

Suppose the design outputs are normally distributed. Since in previous subsection we

have observed that budgets allocated by p converge to optimal values, we expect that

when the total budget n is sufficient large p should perform better than ALD/OCBA

rule. Let ng =
2c1

1−
√
5
− T

2
, we now prove the following lemma,

Lemma 3.1 When n ≥ ng, allocation rule p performs no worse than p∗. Furthermore,

if Ii(γ)’s are not all equal, p always performs better than p∗.

Proof: If I1(γ) = I2(γ) = ... = Ir(γ), c1 = c2 = ... = cr = 0, allocation rule p is the

same as p∗. p and p∗ have the same performance.
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If Ii(γ)’s are not all equal, let f2(x) =
∑r

i=1

∫√ 2n
T

(1+xci)

−∞ e−
t2

2 dt. f2(0) = gn(p
∗
1, ..., p

∗
r),

f2(
1

n+T/2
) = gn(p1, ..., pr). Since f ′

2(x) =
∑r

i=1 e
− n

T
(1+xci)(2n

T
(1+xci))

− 1
2
n
T
ci, gn(p1, ..., pr)−

gn(p
∗
1, ..., p

∗
r) =

∫ 1
n+T/2

0 f2
′(x)dx = ( n

2T
)
1
2 e−

n
T

∫ 1
n+T/2

0

∑r
i=1 e

− n
T
xci(1 + xci)

− 1
2 cidx.

When x ∈ [0, 1
n+T/2

], if ci ≥ 0, e− n
T
xci ≥ e−

n
T

1
n+T/2

ci , if ci < 0, e− n
T
xci ≤ e−

n
T

1
n+T/2

ci .

Therefore,

∫ 1
n+T/2

0

r∑
i=1

e−
n
T
xci(1 + xci)

− 1
2 ci ≥

r∑
i=1

e−
n
T

1
n+T/2

ci

∫ 1
n+T/2

0

(1 + xci)
− 1

2 ci

= 2
r∑

i=1

e−
n
T

1
n+T/2

ci((1 +
1

n+ T/2
ci)

1
2 − 1)

=
2

n+ T/2

r∑
i=1

e−
n
T

1
n+T/2

ci ci

(1 + 1
n+T/2

ci)
1
2 + 1

=
2

n+ T/2

r∑
i=1

cie
− ci

T e
ci
2

1
n+T/2

1

(1 + 1
n+T/2

ci)
1
2 + 1

Let function h(y) = e
y
2

(1+y)
1
2+1

, h′(y) = e
y
2 (1+y)−

1
2 (y+(1+y)−

1
2 )

2((1+y)
1
2+1)2

. When y ≥ 1−
√
5

2
, h′(y) ≥

0, the equality holds only when y = 1−
√
5

2
. h(y) is a strict increasing function in

[1−
√
5

2
,∞). Let yi = ci

n+T/2
, we have n ≥ 2c1

1−
√
5
− T

2
, yi ≥ c1

n+T/2
≥ 1−

√
5

2
. Hence there exists

a positive constant K, when ci ≥ 0, h(yi) > K, when ci < 0, h(yi) < K. Therefore,

∫ 1
n+T/2

0

r∑
i=1

e−
n
T
xci(1 + xci)

− 1
2 cidx >

2K

n+ T/2

r∑
i=1

cie
− ci

T

Since
∑r

i=1
ci

Ii(γ)
= 0,

∑r
i=1 cie

− ci
T = e

1
T

∑r
i=1

log Ii(γ)

Ii(γ)
∑r

i=1
ci

Ii(γ)
= 0. We have∫ 1

n+T/2

0

∑r
i=1 e

− n
T
xci(1+xci)

− 1
2 cidx > 0. Hence gn(p1, ..., pr)−gn(p∗1, ..., p∗r) > 0, allocation

rule p performs better than p∗.

We now consider the coefficient 1
n+T/2

in the formula of p, pi = p∗i (1 +
1

n+T/2
ci). Ob-

serve p∗i (1 + xci), where x is some coefficient. If I1(γ) = ... = Ir(γ), c1 = ... = cr = 0, no
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matter what the coefficient is, pi = p∗i . Suppose the scenario is nontrivial, not all Ii(γ)’s

are equal. In the proof of lemma 1, we have denoted f2(x) =
∑r

i=1

∫√ 2n
T

(1+xci)

−∞ e−
t2

2 dt.

Note that f2(0) = gn(p
∗
1, ..., p

∗
r), f2( 1

n+T/2
) = gn(p1, ..., pr). Taking derivative, f ′

2(x) =∑r
i=1 e

− n
T
(1+xci)(2n

T
(1 + xci))

− 1
2
n
T
ci, f

′
2(0) = e−

n
T ( n

2T
)
1
2

∑r
i=1 ci. The second derivative

f
′′
2 (x) = −e−

n
T ( n

2T
)
1
2

∑r
i=1 e

− n
T
xci(1 + xci)

− 1
2 c2i (

n
T
+ 1

2
(1 + xci)

−1) < 0.

Let k be the index of the first nonnegative ci, that means ck−1 < 0, ck ≥ 0. Since∑r
i=1

ci
Ii(γ)

= 0,
∑r

i=1 ci =
∑r

i=1 ciIi(γ)/Ii(γ) >
∑r

i=1 ciIk(γ)/Ii(γ) = Ik(γ)
∑r

i=1
ci

Ii(γ)
=

0. Thus f ′
2(0) > 0. It implies that f ′

2(x) > 0 when x is positive and small enough, which

means we could benefit from the modification from p∗i to p∗i (1+xci) if positive x is small

enough.

The best choice of x should be the value making f
′
2(x) = 0. Note that f

′
2(

1
n
) =

e−
n
T ( n

2T
)
1
2

∑r
i=1 cie

− ci
T (1 + ci

n
)−

1
2 < e−

n
T ( n

2T
)
1
2

∑r
i=1 cie

− ci
T = 0. The best choice of x

should be in the interval (0, 1
n
). Since x is in the neighborhood of 0, we make the

approximation 1 + xci = exci , f
′
2(

1
n+T/2

) = e−
n
T ( n

2T
)
1
2

∑r
i=1 e

− n
T

1
n+T/2

cie−
1
2

1
n+T/2

cici =

e−
n
T ( n

2T
)
1
2

∑r
i=1 e

− ci
T ci = 0. 1

n+T/2
is a good approximation of the solution to equation

f ′
2(x) = 0.

When the total simulation budget n is large, 1
n+T/2

is small, the approximation

is relatively accurate. Lemma 1 guarantees if n ≥ ng, the modification from p∗i to

p∗i (1 + 1
n+T/2

ci) is always beneficial. However, if n is very limited, 1
n+T/2

may be too

large to be a good coefficient. In the scenario n < ng, we want the coefficient x in the

formula p∗i (1 + xci) is relatively small compared to 1
n+T/2

and is continuous with the

scenario n ≥ ng. The most direct and easy to implement way is to fix x to be 1
ng+T/2

when n < ng, which results in our FLD allocation rule in normal environment:

FLD allocation rule: If n ≤ ng, the ratio of budget allocated to design i is

pi = p∗i (1 +
1

ng+T/2
ci), i = 1, 2, ..., r. If n > ng, pi = p∗i (1 +

1
n+T/2

ci), i = 1, 2, ..., r.
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We now illustrate that this setting is reasonable.

Theorem 3.1 FLD allocation rule performs no worse than ALD/OCBA rule. Fur-

thermore, if Ii(γ)’s are not all equal, FLD allocation rule always performs better than

ALD/OCBA rule.

Proof: If I1(γ) = ... = Ir(γ), c1 = ... = cr = 0, FLD rule is identical with

ALD/OCBA rule.

Suppose Ii(γ)’s are not all equal. Remember f2(x) =
∑r

i=1

∫√ 2n
T

(1+xci)

−∞ e−
t2

2 dt,

f
′
2(x) =

∑r
i=1 e

− n
T
(1+xci)(2n

T
(1 + xci))

− 1
2
n
T
ci. If n ≥ ng, lemma 1 has proved that FLD’s

performance is always better than ALD/OCBA. If n < ng, when ci ≥ 0, e− n
T
xci ≥ e−

ng
T

xci ,

when ci < 0, e− n
T
xci < e−

ng
T

xci . Therefore,

gn(p1, ..., pr)− gn(p
∗
1, ..., p

∗
r) = f2(

1

ng + T/2
)− f2(0)

= (
n

2T
)
1
2 e−

n
T

∫ 1
ng+T/2

0

r∑
i=1

e−
n
T
xci(1 + xci)

− 1
2 cidx

> (
n

2T
)
1
2 e−

n
T

∫ 1
ng+T/2

0

r∑
i=1

e−
ng
T

xci(1 + xci)
− 1

2 cidx

From lemma 1, we know when n = ng, gng(q1, ..., qr) > gng(p1, ..., pr). Hence

gng(p1, ..., pr)− gng(p
∗
1, ..., p

∗
r) = (

ng

2T
)
1
2 e−

ng
T

∫ 1
ng+T/2

0

r∑
i=1

e−
ng
T

xci(1 + xci)
− 1

2 ci

> 0

Therefore
∫ 1

ng+T/2

0

∑r
i=1 e

−ng
T

xci(1 + xci)
− 1

2 ci > 0, gn(p1, ..., pr) > gn(p
∗
1, ..., p

∗
r). FLD

allocation rule performs better than ALD/OCBA when n < ng.
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3.3.4 FLD Allocation Rule in General Distribution Scenarios

In this subsection, we no longer require that the output distribution is normal. Remem-

ber that gn is represented as

gn(α1, ..., αr) =
∑
i∈SY

P (X̄i(nαi) < γ) +
∑
i∈SN

P (X̄i(nαi) > γ)

A major difficulty in solving feasibility determination problem in general distribution

situation is that gn does not have closed form expression as in normal distribution

case. To facilitate the development of optimal allocation rules, we derive an closed form

approximation of gn.

Let Λi(θ) = logE[exp(θXi,j)] be the cumulant generating function of Xi,j, for i =

1, ..., r. Let Ii(·) be the large deviations rate function for design i

Ii(x) = sup
θ∈R

(θx− Λi(θ))

Since θ = 0 always leads to θx−Λi(θ) = 0, Ii(x) ≥ 0. In assumption 2 we set µi ̸= γ,

hence Ii(γ) > 0, for i = 1, ..., r. Remember WLOG, we assume I1(γ) ≤ I2(γ) ≤ ... ≤

Ir(γ). In the following, we consider i ∈ SY and i ∈ SN individually. First let us consider

the case i ∈ SY , which means the design is actually feasible, µi < γ. To bound the term

P (X̄i(nαi) < γ), we observe for θ ≥ 0
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P (X̄i(nαi) < γ) = 1− P (X̄i(nαi) ≥ γ)

= 1− E[IX̄i(nαi)−γ≥0]

≥ 1− E[exp(nαiθ(X̄i(nαi)− γ))]

= 1− e−nαiθγ

nαi∏
j=1

E[eθXi,j ]

= 1− e−nαi(θγ−Λi(θ)) (3.7)

where I is the indicator function.

It was shown in (Dembo and Zeitouni [26]) that for random variable X, if x > E[X],

we have

I(x) = sup
θ≥0

(θx− Λ(θ))

Since γ > µi, from equation (7) we can derive

P (X̄i(nαi) < γ) ≥ 1− e−nαiIi(γ)

Although the bound may not be tight for a small n, lim
n→∞

(1− e−nαiIi(γ)) = 1. It can

serve as a good approximation for P (X̄i(nαi) < γ) when n is large. To verify this, we

conduct numerical experiments to compare P1 = 1 − e−mI(γ) with P2 = P (Ȳ (m) < γ)

under different m values. Here Ȳ (m) =
∑m

i=1 Yi is the sample mean of m replicates of Y .

The comparison is conducted in three distributions, Y ∼ N(0, 1), Y ∼ Exponential(1),

and Y ∼ Bernoulli(0.4). For each distribution we test two γ values. The results are

illustrated in Figure 3.5, from the figure we can see that P1 converges to P2 quite fast

with m.
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(b) Y ∼ N(0, 1), γ = 0.6
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(c) Y ∼ Exponential(1), γ = 1.5
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(d) Y ∼ Exponential(1), γ = 1.8
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(e) Y ∼ Bernoulli(0.4), γ = 0.6
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(f) Y ∼ Bernoulli(0.4), γ = 0.7

Figure 3.3: Convergence of P1 = 1− e−mI(γ) to P2 = P (Ȳ (m) < γ) with m.
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Similarly for i ∈ SN , we can deduce

P (X̄ij(nαi) > γ) ≥ 1− e−nαiIi(γ)

We use the lower bound 1−e−nαiIi(γ) to approximate P (X̄ij(nαi) > γ). Now we have

a closed form expression to approximate gn, gn(α1, ..., αr) =
∑r

i=1(1 − e−nαiIi(γ)). The

original budget allocation problem P can be transformed to

Problem P2 : min
α1,...,αr

r∑
i=1

e−nαiIi(γ)

s.t.
r∑

i=1

αi = 1

αi ≥ 0, i = 1, ..., r

As in the previous subsection, let ci = log(Ii(γ))
∑

i
1

Ii(γ)
−
∑

i
log(Ii(γ))

Ii(γ)
, for i =

1, 2, ..., r. Observe that
∑r

i=1
ci

Ii(γ)
= 0 still holds. Hence same as in the previous

subsection,
∑r

i=1 ci ≥ 0, the equality holds only when I1(γ) = ... = Ir(γ). Let

T =
∑r

i=1 Ii(γ)
−1.

Proposition 3.4 When n ≥ −c1, problem P2 is solved by αi = p∗i (1 +
αi

n
), i = 1, ..., r.

Proof: First we prove that problem P2 is a convex optimization problem. e−nαiIi(γ)

is a convex function of αi since it is twice differentiable and its second order derivative

n2Ii(γ)
2e−nαiIi(γ) is positive.

∑r
i=1 e

−nαiIi(γ) is sum of convex functions, thus it is a

convex function. Since all the constraints of problem P2 are linear, we can conclude

that it is a convex optimization problem.
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We now omit the constraint αi ≥ 0. Consider the problem

P̃2 : min
α1,...,αr

∑r
i=1 e

−nαiIi(γ) s.t.
∑r

i=1 αi = 1. This is still a convex optimization problem,

the solution satisfying KKT conditions is the optimal solution to the problem (Boyd

and Vandenberghe [12]). We use λ to denote a constant, the KKT conditions are stated

as follows:

nIi(γ)e
−nαiIi(γ) = λ, i = 1, ..., r (3.8)

r∑
i=1

αi = 1 (3.9)

Taking log function of both sides of condition (3.8), the condition is equivalent with

log Ii(γ)− nIi(γ)αi = λ, i = 1, ..., r

We plug in αi = p∗i (1 +
ci
n
),

log Ii(γ)− nIi(γ)αi = log Ii(γ)−
n

T
(1 +

ci
n
)

= log Ii(γ)−
n

T
− ci

T

=
1

T

r∑
i=1

log Ii(γ)

Ii(γ)
− n

T

which is independent of special i. Therefore αi = p∗i (1 +
ci
n
) satisfies condition (3.8).∑r

i=1 p
∗
i (1 + ci

n
) =

∑r
i=1 p

∗
i +

1
nT

∑r
i=1

ci
Ii(γ)

=
∑r

i=1 p
∗
i = 1. αi = p∗i (1 + ci

n
) satisfies

condition (3.9). Hence αi = p∗i (1 +
ci
n
) is the solution to problem P̃2. When n ≥ −c1,

p∗i (1 + ci
n
) ≥ p∗i (1 + c1

n
) ≥ p∗i (1 − c1

c1
) = 0. αi = p∗i (1 + ci

n
) satisfies constraint αi ≥ 0.

αi = p∗i (1 +
ci
n
) solves problem P2.

Same as in normal distribution case, the optimal allocation rule has the form p∗i (1+
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xci), where x = O( 1
n
). If I1(γ) = ... = Ir(γ), c1 = ... = cr = 0. The optimal al-

location rule degenerates to rule p∗. Suppose not all Ii(γ)’s are equal. Let f3(x) =∑r
i=1 e

−nIi(γ)p
∗
i (1+xci). f

′
3(x) = − n

T
e−

n
T

∑r
i=1 e

− n
T
xcici, f

′′
3 (x) =

n2

T 2 e
− n

T

∑r
i=1 e

− n
T
xcic2i > 0.

Note that f
′
3(0) = − n

T
e−

n
T

∑r
i=1 ci < 0. If x is positive and small, the allocation based

on ratio p∗i (1 + xci) should perform better than based on ratio p∗i .

When we use
∑r

i=1(1 − e−nαiIi(γ)) to approximate gn, we derive the value of x as
1
n
. However in previous subsection, when we use exact closed form expression for gn in

normal case, we figured out that 1
n

is slightly larger than the optimal choice of x and

we set x to be 1
n+T/2

. Since small x guarantees superiority here we choose to use the

more conservative x = 1
n+T/2

instead of x = 1
n
. The allocation rule will be p∗i (1+

ci
n+T/2

).

Note that the approximation of gn is more accurate when n is large, in which case the

difference of 1
n

and 1
n+T/2

is negligible.

The approximation of gn works quite well when n is large. However, when n is small,

the approximation could be not so accurate. Hence similar with the normal case, we

want to set a threshold ng. When n ≤ ng, the allocation ratio is fixed to be p∗i (1+ ci
ng+T/2

),

for i = 1, ..., r. In normal case, ng is selected so that 1 + c1
ng+T/2

= 3−
√
5

2
. In general

distribution case, we can set a parameter ϵ, 0 < ϵ < 1. ng = c1
ϵ−1
− T

2
. By this setting

1 + c1
ng+T/2

= ϵ.

In summary, the FLD allocation rule could be generalized to general distribution

scenarios. The only change is the setting of threshold ng. In general distribution case,

ng =
c1
ϵ−1
− T

2
, 0 < ϵ < 1. ϵ could be selected based on concrete examples and practical

experiences. The superior performance of FLD allocation rule in general distribution

case is also verified by the numerical experiments.
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3.3.5 FLD Allocation Procedure

In this subsection, we present our budget allocation algorithm for FD problem. Initially

the LD rate function of each design is unknown, so must be estimated via simulation.

Therefore we propose a heuristic sequential allocation algorithm. First we warm-up each

design with n0 replicates and estimate the LD rate function of each design. At each step,

these estimates are used to estimate the optimal allocation rule. Based on the optimal

rule we allocate additional ∆ replicates. Combining the outputs of new replicates we

update our estimate of the LD rate function. We iterate this procedure until the total

budget is exhausted. The algorithm is stated as follows:

Finite simulation budget LD − based (FLD) Algorithm

1 For a set of r designs, specify the total simulation budget n, the initial simulation

budget for each design n0, the incremental budget ∆ and the parameter ϵ, 0 < ϵ < 1.

2 Iteration counter t ← 0. Perform n0 simulation replications to each design, N t
1 =

N t
2 = ... = N t

r = n0.

3 If N t =
∑r

i=1 N
t
i ≥ n, stop. Otherwise,

a update LD rate function Ii(γ) for each design

b compute p∗i and ci for i = 1, ..., r, compute T =
∑r

i=1 Ii(γ)
−1

c compute d = max{ c1
ϵ−1
− T

2
−N t, 0}

d compute allocation ratio αi = p∗i (1 +
ci

Nt+d+T/2
), i = 1, ..., r

e perform ∆i = max{0, αi(N
t+∆)−N t

i } simulation replications to design i, i = 1, ..., r

f N t+1
i = N t

i +∆i, t← t+ 1
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4 Determine the feasibility of each design based on sample means of the performance

measure.

One important step in the preceding algorithm is the estimate of LD rate function

Ii(γ). Denote the empirical cumulant generating function of design i as Λ
(m)
i (θ) =

log( 1
m

∑m
j=1 e

θXi,j), here m is the number of samples. The LD rate function of design i

is

I
(m)
i (γ) = sup

θ∈R
(θγ − Λ

(m)
i (θ))

= θ∗i γ − Λ
(m)
i (θ∗i )

where θ∗i solves the root problem

γ =

∑m
j=1 Xi,je

θ∗i Xi,j∑m
j=1 e

θ∗i Xi,j

If the distribution of the observations of each design is known or assumed, the esti-

mate of LD rate function can be significantly simplified. For example, if Xi,j is normally

distributed as N(µi, σ
2
i ), LD rate function Ii(γ) =

(γ−µi)
2

2σ2
i

. Therefore after we perform

a certain number of simulation replications of design i, we estimate the sample mean

and sample variance. The estimate of LD rate function can then be easily derived

by plugging the sample mean and sample variance into the previous formula. Simi-

larly, if Xi,j follows Bernoulli distribution with success probability µi, LD rate function

Ii(γ) = γ log γ
µi

+ (1 − γ) log 1−γ
1−µi

. Thus we can estimate µi first and then using the

formula to obtain the estimate of Ii(γ).

Remark 3.1 It was shown in (Glynn and Juneja [44]) that the estimate of LD rate

function is consistent. Therefore as more and more budget is allocated, the estimated
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optimal allocation rule will converge to the exact optimal rule. The allocation procedure

is asymptotically valid.

3.4 Numerical Experiments

In this section, we test the proposed simulation budget allocation procedure for FD

problem by comparing it with following allocation procedures.

• Equal Allocation (EA): The total simulation budget is allocated equally to each

design. This is the simplest allocation rule and has been widely applied.

• Asymptotic LD-based Allocation (ALD): ALD method allocates simulation bud-

get to each design based on the asymptotically optimal rule that maximizes the

exponential rate of decay for the expected number of incorrect determinations.

The rule is derived using the LD techniques and allows the systems have a general

lighted tail distribution. (Szechtman and Yücesan [83]) discussed ALD method in

detail.

• OCBA: OCBA is a class of sequential simulation budget allocation procedures

for normally distributed designs, initially proposed by (Chen [17]). Based on the

approach described in (Lee et al. [58]), we derive a variation for FD problem. In

this variation, at each iteration, we allocate an incremental budget to the designs

according to αi =
σ2
i /(µi−γ)2∑r

j=1 σ
2
j /(µj−γ)2

, where µi and σi are mean and variance of design

i.

We first explore the relative performance of these algorithms and our FLD algorithm

on three illustrative examples with normal or non-normal distribution and on one toy
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application in facility-sizing determination. We then present an emergency department

setup application, which is adapted from Ahmed and Alkhamis [1].

3.4.1 Illustrative Example Problems

The relative effectiveness of the algorithms is measured by the expected number of

the correct determinations gn, where n is the total simulation budget. To make the

comparisons convenient, in this subsection we rescale the gn. Assume we have r systems,

we use gn
r

, the expected ratio of correct determinations (ERCD) as our performance

measure. We introduce the following illustrative examples.

• Example 1: Ten designs with Xi,j ∼ N(i, σ2), i = 1, 2, ..., 10, σ = 10. The threshold

γ = 6.4. Designs 1, 2, 3, 4, 5, 6 are feasible.

• Example 2: Twenty designs with Xi,j ∼ Exponential(λi), rate λi = 10.2 − 0.2i,

i = 1, 2, ..., 20. That means the mean µi of system i is 1
10.2−0.2i

. The threshold

γ = 0.126. Designs 1, 2, .., 11 are feasible.

• Example 3: Five designs with Xi,j ∼ Bernoulli(µi), success probability µi =

0.45 + 0.05i, i = 1, 2, ..., 5. The threshold γ = 0.61. Designs 1, 2, 3 are feasible.

• Example 4: It is a facility-sizing problem which is adapted from (Rengarajan and

Morton [74]). Suppose there are 20 facilities at which nonnegative capacities xi, i =

1, ..., 20 are to be installed, x = [x1, ..., x20]
T. The random demand at facility i is

denoted ξi, and the joint distribution of the random vector ξ = [ξ1, ..., ξ20]
T follows

a 20 dimensional truncated multivariate normal distribution. The distribution

has mean 10 and variance 1 for each component, and correlation coefficient ρi,j =

0.8, i ̸= j. ξ is truncated so that ξ ≥ 0.
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A realization of the demand ξ = [ξ1, ..., ξ20]
T is said to be satisfied if xi ≥ ξi, for

all i = 1, ..., 20. Thus the risk of failing to satisfy demand is p(x) = P(ξ 
 x),

where ξ 
 x means there exists at least one facility i such that ξi > xi. We set

a risk parameter 0.1. A proposed x is defined to be feasible if P(ξ 
 x) ≤ 0.1.

The per unit cost of installing capacity for each capacity is 1. We now have 5

alternative designs of x, which are summarized in Table 3.1. In the table (i, j, k)

means we have i facilities with capacity 13, j facilities with capacity 12, k facilities

with capacity 11, thus the cost should be 13 ∗ i + 12 ∗ j + 11 ∗ k. For example,

design 5 is (8, 10, 2), which means that we have 8 facilities with capacity 13, 10

facilities with capacity 12 and 2 facilities with capacity 11. The total cost is

13∗8+12∗10+11∗2 = 246. Our goal is to select the x with lowest installation cost

from among the feasible designs. Since the total cost of each design is deterministic,

we need only to use simulation to detect the feasibility of each x. From the table

we can see design 2 is the optimal one.

Table 3.1: The five designs for the facility-sizing problem.
Design 1 2 3 4 5

x setting (0, 20, 0) (10, 10, 0) (20, 0, 0) (16, 0, 4) (8, 10, 2)

risk p(x) 0.1045 0.0796 0.0096 0.2862 0.2255

feasible or not N Y Y N N

cost 240 250 260 252 246

Y means feasible, N means infeasible.

In comparing the procedures, the measure ERCD is estimated based on 5000 inde-

pendent experiments of each algorithm. In FLD, we set the initial budget per design,
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the incremental budget per iteration and the maximum budget as Table 3.2. Sequential

procedures ALD and OCBA follow the same parameter settings. FLD has an addi-

tional parameter ϵ. We use the ϵ value in normal case, that is, 3−
√
5

2

.
= 0.38, in all four

examples.

Table 3.2: Parameter settings of FLD for different examples.
Initial budget Incremental budget Maximum budget

Ex.1 10 50 2800

Ex.2 10 50 30000

Ex.3 10 50 6000

Ex.4 10 50 11000

The performance of the four procedures with different budgets and simulation bud-

get needed to reach ERCD level 0.97 are illustrated in Figure 3.4 and Table 3.3. If

the observations of designs have normal distribution, ALD and OCBA have the same

allocation rule. Hence in example 1, the performances of ALD and OCBA are illus-

trated simultaneously by one curve. We can see that in all four problem settings FLD

outperforms other procedures. It is significantly more efficient than EA, which is most

commonly used in practice. Thus practitioners can substantially enhance efficiency by

using FLD procedure instead.

The unstable performance of ALD and OCBA seems surprising. In example 1 ALD

performs better than EA while in example 2, EA performs better than ALD. In example

3 and 4, ALD performs worse than EA when the total simulation budget is small. When

the total simulation budget is above some threshold, the performance of ALD surpasses

that of EA. This phenomenon of unstable performance of ALD is due to the effect of
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Figure 3.4: ERCD comparison in different examples.
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Table 3.3: Simulation budget needed to reach ERCD level 0.97.
FLD ALD OCBA EA

Ex.1 1400 2400 2400 4600

Ex.2 16300 88900 >100000 51200

Ex.3 4100 7100 7800 12900

Ex.4 8000 13900 53700 30000

initial budget setting.

To illustrate this phenomenon we use a two design example. Suppose the two designs

are distributed as N(2, 22), N(4, 22) respectively. Assume the threshold value is 3.9.

According to ALD allocation rule, the idealized optimal budget allocation fraction is

(0.0028, 0.9972), the second design will consume 99.72% of the total budget. Hence we

can see that when the total simulation budget is limited the fraction of budget allocated

to the first design is too few, which impedes simulationist from obtaining the optimal

ERCD level. Assume we have total budget 400, according to the ALD rule, we should

simulate the first design once and the second design 399 times. This allocation yields

ERCD 0.83, which is not so satisfying compared to the 0.88 ERCD level the equal

allocation yields.

However, in practice we have to assign an initial budget n0 to each design to estimate

the parameters. This forces us to allocate at least n0 budget to each relatively easy

design, even this allocation breaks the theoretical ALD rule. In this two design example

if we set n0 = 5, the ALD allocation is changed to be (5, 395), which yields ERCD

0.91. Now ALD exhibits a better performance than the equal allocation. We test the

relationship between the performance of ALD and the initial budget setting in numerical
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example 1, 2 and 3, the results are demonstrated in Figure 3.5.

In Figure 3.5, Ib0 means we use exact values of parameters when deriving ALD

rule so we do not need initial budget to estimate them, thus the initial budget is set

to be 0. Ib5, Ib10 and Ib20 means that we set the initial budget to be 5, 10 and 20

respectively. From the figure we can see the idealized implementation of ALD (Ib0)

performs significantly worse than EA in all three examples. The existence of initial

budget could improve the performance of ALD. Different settings of initial budget make

ALD exhibit different performance compared to EA, which is in accordance with our

observation in Figure 3.4.

The increase of the initial budget seems to be a good method to improve the ALD

performance. However, it is not suffice to solve the drawback of ALD. On the one

hand, we do not know the optimal initial budget setting in advance. A high initial

budget could make some designs obtain unnecessarily high budget, which prohibits the

algorithm from obtaining optimal performance. On the other hand, there is no guarantee

that there exists an initial budget which could make ALD perform better than EA. For

instance, in the two design example, if the total budget is 10, the optimal allocation

should be (6, 4). In this case, since the ALD allocation is (0.0028, 0.9972), no matter

what the initial budget is the budget allocated to the first design is always less than

that allocated to the second one. The performance of ALD could not be better than

EA for any initial budget setting. The increase of the initial budget could not solve the

drawback of ALD, which motivate us to seek more intelligent allocations. Our FLD is a

possible candidate.

The situation of OCBA is similar with ALD. However, OCBA is designed in normal

environment. It suffers from the skewness of the design output distribution. Hence in

example 2, 3 and 4, OCBA behaves even worse than ALD. Especially in example 4, the
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Figure 3.5: The effect of different initial budget settings in ALD procedure.



46

high skewness of output distribution affect the performance of OCBA heavily.

In order to achieve ERCD level 0.97, FLD can reduce the simulation budget by 41.7%,

68.2%, 42.3% and 42.4% on the four examples respectively compared to the second best

method and save much more budget compared to the other 3 methods.

3.4.2 Emergency Department Setup

To demonstrate the effectiveness of our FLD method in a more realistic application

setting, we use an emergency department setup example, which is introduced by Ahmed

and Alkhamis [1]. Here we use the version provided by Gutierrez [48] in the Simulation

Optimization Library.

Assume we want to set up an emergency department. The department receives both

walk-in patients and ambulance patients. Walk-in patients go through the receptionist

and then wait for availability of an examination room, while ambulance patients enter

the examination queue directly. In the examination room, a doctor will decide if the

patient needs further tests. If so, the patient leaves the examination room and enters

a test queue until a lab technician is available. After the test, the patient re-enters the

examination queue.

If no extra tests are necessary, the doctor will assess the status of the patients and

decide if they need treatment. Patients who do not require treatment are provided

their medication and released immediately. Patients who need treatment are classified

into two categories, critical or non-critical. Non-critical patients are routed into the

treatment room and wait for a minor treatment, which is performed by a treatment

room nurse. Critical patients are routed into the emergency room, where an emergency

room nurse provides complete treatment and close observation to the patient. After the

treatment, the patients leave the system. The whole process is depicted in figure 3.6.
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Figure 3.6: Emergency department process view

The hospital wants the total waiting time for the critical patients must not exceed

2 hours. Assume the salary of receptionists, doctors, lab technicians, and nurses are

$40, 000, $120, 000, $50, 000, and $35, 000 respectively. The goal is to find the configura-

tion of the employees that has the lowest total salary while satisfying the aforementioned

waiting time constraint. We now have five proposals of employee configuration. Each

configuration has the form (i, j, k, l), where i represents the number of receptionists,

j represents the number of doctors, k is the number of lab technicians, and l is the

number of nurses in emergency room. The number of nurses in treat room does not

affect the waiting time of the critical patients, hence we do not take this number into

account. The critical patients waiting time, the feasibility, and the total salary of each

configuration are summarized in table 3.4. From the table we can see configuration 2 is

the best choice.

In our numerical experiment, in each simulation run we use a 4 day warm-up period
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Table 3.4: The five configurations of the emergency department employee.
configuration 1 2 3 4 5

employee setting (1, 3, 2, 7) (1, 3, 2, 8) (1, 3, 3, 6) (1, 3, 3, 7) (1, 4, 2, 5)

waiting time 2.03 1.86 2.49 1.95 12.02

feasible or not N Y N Y N

total salary 745,000 780,000 760,000 795,000 795,000

Y means feasible, N means infeasible.

and run for 100 more days. The obtained critical patient waiting time of each run is

the average waiting time of the critical patients during the 100 days. Therefore we can

assume this waiting time is approximately normally distributed among different runs.

The total simulation budget is 40. In ALD/OCBA and FLD setting, the initial budget

is 4 for each configuration and the incremental budget is 5. The parameter ϵ for FLD

algorithm is still set to be 0.38.

The performances of each algorithm are reported in table 3.5. The expected number

of correct determinations gn is estimated based on 400 independent experiments of each

algorithm. The standard errors are in the column std err. From the table we can see,

our FLD algorithm is superior to other algorithms.

Table 3.5: The performances of different algorithms in emergency department setup
problem.

algorithm gn std err

EA 4.48 3.04e−2

ALD/OCBA 4.61 2.75e−2

FLD 4.72 2.30e−2
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Chapter 4

Feasibility Determination via

Stochastic Control

The feasibility determination (FD) budget allocation process can also be modeled as a

stochastic control problem (SCP). In this chapter, we first compare the SCP approach

with the previous frequentist approach to demonstrate the necessity of considering FD in

SCP framework. We then formulate the FD as a SCP, and propose a one-step lookahead

policy. The dynamic implementation of FLD method is also discussed. Numerical

examples are provided to illustrate the performance of our approaches.

4.1 The Necessity of Stochastic Control Approach

In the previous chapter, we formulate the FD budget allocation problem as a static

optimization problem. That is, let gn(α1, ..., αr) denote the expected number of correct

determinations under total budget n. We solve
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Problem P : max
α1,...,αr

gn(α1, ..., αr)

s.t.
r∑

i=1

αi = 1

αi ≥ 0, i = 1, ..., r

The solution of the problem P is deemed as the optimal allocation ratio. However, in

Figure 3.5, we note that the performance of allocation procedure with true parameters

is worse than the heuristic sampling procedure in which the parameters are unknown

and need to be estimated. To see this more clearly, we design an experiment with

10 identical alternatives follow normal distribution N(1, 102). The threshold is set as

γ = 0. By symmetry, we know equal allocation (EA) is the optimal solution of the static

optimization problem P .

We allocate the budget by EA and ALD to decide the feasibility of each design. In

ALD, 10 initial replications are allocated to each alternative to estimate the unknown

parameters at the first stage, and 20 incremental budget is added sequentially until

total budget 600. ERCD is estimated by 10000 Macro simulations. In Figure 4.1, we

can see that the ALD procedure denoted as Heuristic has even better performance than

EA/OPT that follows the optimal solution of the static optimization problem P .

This example demonstrates that the static optimization approach is inadequate for

the FD budget allocation problem. It is possible that a design that is theoretically easy

to identify its feasibility (due to the large difference between its mean and the threshold,

or the small variance of the simulation noise, or both) may exhibit performance close

to the threshold during the simulation. In this case, it needs much more simulation
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Figure 4.1: Comparison of Optimal EA and Heuristic ALD.

budget than the theoretically optimal value. On the contrary, it is possible that a

design with actual performance close to the threshold has simulation results far from

the threshold, hence there is no need to consume so much budget as expected. In

summary, we should decide the budget allocation based on the dynamic simulation

results, not based on a predetermined theoretical optimal ratio. The SCP framework

is a more realistic description of the FD budget allocation problem. Next we formulate

the problem as a SCP.

4.2 SCP Formulation

In this section, we propose a rigorous dynamic sampling allocation framework for FD,

where the dynamic sampling decision is a SCP. Suppose we have r alternative designs,

the performance of each design µi, i = 1, 2, ..., r is unknown and we can only estimate
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them by sampling, µ = {µ1, ..., µr}
′ . The threshold is γ and a design is defined as feasible

if µi ≤ γ. SY is the set consists of all feasible designs. In this chapter, for simplicity we

use S instead of SY . Given a total simulation budget, we want to determine the feasible

set S = {i : µi ≤ γ}.

For each design i = 1, 2, ..., r, let q(·|θi) be the probability density function or prob-

ability mass function for samples from design i, where θi comprises all unknown param-

eters residing in a parameter space Θ. θ = {θ1, ..., θr}
′ . Generally, the mean µi ∈ θi,

i = 1, 2, ..., r. In Bayesian setting, we place a prior probability distribution on each

unknown θi. The prior distribution expresses our subject beliefs about the parameter.

It could come from historical knowledge, expert opinion, or personal experience. If

we know little or no information about the parameter, we can use some uninformative

prior. To facilitate computation, we adopt conjugate prior, θi ∼ f(·|ζ(0)i ), ζ(0)i contains

all hyper-parameters for the prior distribution of θi and resides in state space Λ. Denote

by ζ(0) the vector composed of ζ(0)i with i ranging from 1 to r. It is generally tractable to

find conjugate priors for distributions coming from exponential family (DeGroot [25]).

Time is indexed by t = 1, 2, ..., n. Since the prior is conjugate, at each time t the

posterior distribution of θi is f(·|ζ(t)i ), where ζ
(t)
i is the updated parameter. We denote

the vector composed of ζ(t)1 , ..., ζ
(t)
r as ζ(t). At each time t ≥ 1, we select a design At,

At ∈ {1, 2, ..., r}. We then simulate design At once, and observe the corresponding

sample yt ∼ f(·|θAt). We define an information set Et, which is the sigma-algebra

generated by ζ(0), A1, y1, ..., At, yt. Since the selection decision At+1 can be made only

by information through time t, we have At+1 ∈ Et.

Let µ
(t)
i denote the posterior mean of design i after t simulation replications have

been allocated. At each time t, we can approximate the feasible set S by St = {i : µ(t)
i ≤

γ}. There is no reward at each selection, and the final reward is set as h(Sn,µ, γ)
.
=
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∑
i∈Sn

1{i ∈ S}+
∑

i/∈Sn
1{i /∈ S}, where 1{·} is an indicator function that is one if the

event in the bracket is true and is zero otherwise.

An allocation policy is a sequence of selection decisions A = (A1, ..., An). Our goal

is to find a policy that maximizes the expected final reward, i.e, to solve the problem

sup
A

EA[h(Sn,µ, γ)] (4.1)

4.3 Sampling Allocation Policy

In this section, we derive solutions for problem (4.1). Suppose r alternatives follow

independent normal distribution N(µi, σ
2
i ), i = 1, 2, ..., r, with unknown means and

known variances. The conjugate prior distribution of µi is a normal distribution and we

set the prior mean and variance are µ
(0)
i and (σ0

i )
2. In the case where the variances are

unknown, we use their sample estimates as plug-in for the true values.

Suppose Xi,j is the jth replication of design i, ti is the total number of replications

assigned to design i up to time t. The posterior distribution of µi is N(µ
(t)
i , (σ

(t)
i )2),

where

m
(t)
i

.
=

∑ti
j=1 Xi,j

ti
(4.2)

µ
(t)
i = (σ

(t)
i )2(

µ
(0)
i

(σ
(0)
i )2

+
tim

(t)
i

σ2
i

)

(σ
(t)
i )2 = (

1

(σ
(0)
i )2

+
ti
σ2
i

)−1

If σ
(0)
i → ∞, µ(t)

i = mt
i and (σt

i)
2 = σ2

i /ti, which is called a noninformative prior.

In the following, we first construct an myopic one-step lookahead policy, and then we
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construct a policy based on the FLD rule.

4.3.1 One-step Lookahead Policy

In principle, the finite horizon optimal control problem can be solved by backward

induction, however, the computational complexity is typically exponential. We address

the computational difficulty by using an approximate dynamic programming (ADP)

paradigm that is not guaranteed to achieve the optimal policy, but can overcome the

”curse of dimensionality” through value function approximation (VFA) (Powell [72]).

The ADP approach relies on VFA to make sampling allocation decision rather than the

true value function obtained by backward induction, and keeps learning VFA with more

information collected from allocated replications.

Since we seek one-step lookahead policy, we do not consider the total time horizon n

and suppose any step t could be the last step. At step t, the value function for correct

feasibility determination is

E[h(St,µ, γ|Et] =
∑
i∈St

P (µi ≤ γ|Et) +
∑
i/∈St

P (µi > γ|Et)

=
∑
i∈St

P (Zi ≤ (γ − µ
(t)
i )/σ

(t)
i |Et) +

∑
i/∈St

P (Zi > (γ − µ
(t)
i )/σ

(t)
i |Et),

where Zi, i = 1, . . . , r, are independent standard normal random variables. Let d(t)i
.
=∣∣∣(µ(t)

i − γ
)
/σ

(t)
i

∣∣∣ , i = 1, . . . , r. A popular bound and approximation of cumulative dis-

tribution function of standard normal distribution is P (Zi ≤ d
(t)
i ) ≥ 1− 1

d
(t)
i

exp(− (d
(t)
i )2

2
)

(Durrett [31]). Use this approximation, we have our VFA as,

Ṽt(Et) = r −
∑
i

1

d
(t)
i

e−
(d

(t)
i

)2

2
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If the (t+1)th replication is the last one, a VFA looking one step ahead at step t by

allocating the ith design can be given as follows:

Ṽt(Et; i) = E
[
Ṽt+1(Et, Xi,ti+1)

∣∣∣ Et] .

Since above expectation is difficult to calculate, we use the following certainty equiva-

lence (Bertsekas [8]) as an approximation:

V̂t(Et; i)
.
= Ṽt+1 (Et, E [Xi,ti+1| Et])

= r −
∑
j ̸=i

1

d
(t)
j

e−
(d

(t)
j

)2

2 − |µ(t)
i − γ|−1(

1

(σ
(0)
i )2

+
ti + 1

σ2
i

)−
1
2 e

−
(µ

(t)
i

−γ)2

2
( 1

(σ
(0)
i

)2
+

ti+1

σ2
i

)

An approximately optimal allocation policy is given by

Ât+1(Et) = arg max
i=1,...,r

V̂t(Et; i)

To make V̂t(Et; i) the largest, it is equivalent to make V̂t(Et; i) − Ṽt(Et) the largest.

This difference is equivalent to

1

d
(t)
i

e−
(d

(t)
i

)2

2 (1− (
σ2
i + ti(σ

(0)
i )2

σ2
i + (ti + 1)(σ

(0)
i )2

)
1
2 e

−
(µ

(t)
i

−γ)2

2σ2
i )

Note that when ti tends to infinity, d(t)i tends to infinity, and the rightmost bracket

part converges to a constant. We use ∆i to represent this constant. Hence when ti

is sufficient large, 1

d
(t)
i

e−
(d

(t)
i

)2

2 is the dominant part of the difference. To see this more

clearly, we can observe the log of the approximate difference, log∆i − log d
(t)
i −

(d
(t)
i )2

2
.

When ti is sufficient large, log∆i is neglible. Hence to make this difference the largest,

we need to select design i with the smallest d
(t)
i . We obtain our approximate optimal

policy

Ât+1(Et) = arg min
i=1,...,r

d
(t)
i . (4.3)
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This policy is same with the approximately optimal allocation policy (AOAP) pre-

sented by Peng [70]. Remember that the large deviation rate function of design i is

Ii(x) = 1
2
(µi−x

σi
)2, and the asymptotical optimal allocation ratio p∗i = 1/Ii(γ)∑r

i=1 1/Ii(γ)
, i =

1, 2, ..., r. From a theoretical perspective, Peng [70] proved that this policy possesses the

following desirable asymptotic properties.

Theorem 4.1 Suppose the sampling distribution for alternative i is N(µi, σ
2
i ) with un-

known mean and known variance, and µi follows the conjugate prior, i = 1, . . . , r. AOAP

is consistent, i.e.

lim
t→∞
St = S a.s.

In addition, the sampling ratio of each alternative asymptotically achieves the optimal

large deviations ratio p∗i , i.e.,

lim
t→∞

p
(t)
i = p∗i , a.s. i = 1, .., r,

where p
(t)
i

.
= ti/t.

4.3.2 The Stochastic Control Approach of FLD

In this subsection, we focus on the stochastic control implementation of FLD rule. To

be accordant with the FLD derivation, we adopt the terminal payoff as h(Sn,µ, γ)
.
=∑

i∈Sn
1{i ∈ S}+

∑
i/∈Sn

1{i /∈ S}. To ease the computation, we use the noninformative

prior.

At step t, suppose a budget n > t is allocated according to a sampling allocation

ratio w = (w1, ..., wr). We try to optimize the following posterior performance:
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Problem P3 :max
w

Vn(w; Et)

s.t.
r∑

i=1

wi = 1

wi ≥ 0, i = 1, ..., r

where

Vn(w; Et)
.
= E[h(Sn,µ, γ)|Et] .

The object value of problem P3 is the largest expected final reward we can receive

given the information set Et, hence can be adopted as the value function. We have

Vn(w; Et) = E

[∑
i∈Sn

P (µi ≤ γ| En) +
∑
i/∈Sn

P (µi > γ| En)

∣∣∣∣∣ Et
]

= E

[∑
i∈Sn

P
(
Z ≤ (γ − µ

(n)
i )/σ

(n)
i

∣∣∣ En)+∑
i/∈Sn

P
(
Z > −(µ(n)

j − γ)/σ
(n)
i

∣∣∣ En)
∣∣∣∣∣ Et
]

= E

[ ∑
i=1,..,r

Φ
(√

win|µ(n)
i − γ|/σi

)∣∣∣∣∣ Et
]
,

where Z is a standard normally distributed random variable and Φ(·) is its distri-

bution function. By a certainty equivalence (Bertsekas [8]) , we approximate Vn(w; Et)

by

g(t)n (w) =
∑

i=1,..,r

Φ
(√

win|E[µ
(n)
i |Et]− γ|/σi

)
=
∑

i=1,..,r

Φ

(√
2winI

(t)
i (γ)

)
.
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where

I
(t)
i (γ)

.
=

1

2

(
µ
(t)
i − γ

σi

)2

, i = 1, . . . , r.

We then consider the following optimization problem:

Problem P4 : max
w

g(t)n (w)

s.t.

k∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , r.

Similar with Chapter 3, we can show Φ(

√
2winI

(t)
i (γ)) is a concave function of wi.

The objective function of problem P4 is sum of concave functions, thus it is also a

concave function. Since all the constraints are linear, we can conclude that problem P4

is a convex optimization problem. Thus the solution satisfying the KKT conditions is

the optimal solution.

Problem P4 can be approximated solved by FLD allocation rule. Let T (t) .
=
∑r

i=1 1/I
(t)
i (γ),

w
(t)
i

.
=

1/I
(t)
i (γ)

T (t) , c
(t)
i

.
= log I

(t)
i (γ)T (t) −

∑r
j=1 log I

(t)
j (γ)/I

(t)
j (γ). Let c

(t)
⟨1⟩ is the smallest

value among all c(t)i , and set n
(t)
0

.
=

−2c
(t)
⟨1⟩√

5−1
− T (t)

2
. The FLD allocation rule w̃

(t)
i (n) is

w̃
(t)
i (n)

.
=


w

(t)
i

(
1 +

c
(t)
i

n+ T (t)/2

)
n > n

(t)
0 ,

w
(t)
i

(
1 +

c
(t)
i

n
(t)
0 + T (t)/2

)
n ≤ n

(t)
0 ,

Based on the property of FLD, we can have some insights about w̃(t)
i (n) . For exam-

ple, based on Theorem (3.1), we can see for any n, we have g
(t)
n (w̃(t)(n)) ≥ g

(t)
n (w(t)) .

That is, allocation rule w̃(t)(n) always has a better approximate value function than the

asymptotical allocation rule w(t).

In the stochastic control setting, for any step t and simulation budget n > t, the

remaining n − t replications can be allocated according to the sampling ratio w̃(t)(n).
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Particularly, let n = t + 1 and the “most starving” technique in Chen and Lee [18] can

be used to obtain a fully sequential allocation policy as follows:

At+1(Et) = arg max
i=1,...,r

{
(t+ 1)w̃

(t)
i (t+ 1)− ti

}
.

We use FLD-D to denote this policy, which means dynamic FLD. At any step t, this

sequential sampling procedure allocates the next replication to the alternative that has

the largest difference between the number of replications suggested by optimizing a pos-

terior performance subject to t+1 budget constraint and the actual number replications

allocated to that alternative so far.

4.4 Numerical Experiments

In this part, we focus on compare the performances of dynamic approach methods and

static approach methods. Analogous with FLD-D, by stochastic control setting and

“most starving” technique, we develop a dynamic ALD method (ALD-D). We will test

the performance of FLD and ALD with true parameter values, and compare them with

FLD-D and ALD-D to demonstrate the effectiveness of stochastic control approach. We

also test the performance of the new proposed AOAP approach and the benchmark EA

method.

The performance of different procedure is measured by the probability of correct

determination (PCD), P (Sn = S), which is measured by 10000 Macro simulations. The

two numerical examples are stated as follows:

• Example 1: There are 10 alternatives following N(µi, σ
2
i ) with µi ∼ N(µ

(0)
i , (σ

(0)
i )2),

where µ
(0)
i = 0 and σ

(0)
i = σi = 1, i = 1, ..., 10. The threshold is set by γ = 0.
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• Example 2: There are 10 alternatives following N(µi, σ
2
i ) with µi ∼ N(µ

(0)
i , (σ

(0)
i )2),

where µ
(0)
i = 0.1 ∗ i, σ(0)

i = 1, and σi = 2, i = 1, ..., 10. The threshold is set by

γ = 0.5.

For the dynamic methods FLD-D, AOAP, and ALD-D, 10 initial replications are

allocated to each alternative for estimating sample mean and variance. For static meth-

ods FLD and ALD, we use the true values for the needed parameters. In example 1 we

use noninformative prior, while in example 2 we incorporate the prior information in

dynamic approaches.

The performance of each procedure is shown in Figure 4.2. From the figure we can

see that all the dynamic approaches have better performance than the static approaches,

which justifies the importance of addressing the FD problem from stochastic control per-

spective. Note that the figure also exhibits the importance of finite budget perspective,

as asymptotical method ALD has unsatisfying performance.



61

200 400 600 800 1000 1200

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
C

D

FLD-D
AOAP
ALD-D
FLD
EA
ALD

(a) Example 1

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
C

D

FLD-D
AOAP
ALD-D
FLD
EA
ALD
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Figure 4.2: PCD comparison in different examples.
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Chapter 5

Optimal Budget Allocation with

Kriging

Traditional allocation procedures for FD problem do not consider the relationships be-

tween different designs. The only source from which they draw information about the

design performance is the simulation results of the design itself. In practice, however,

the designs with close parameters often have similar performances. The performance

of the nearby designs could be a useful information source when we evaluate the per-

formance of a design. Integrating the information from both sources when evaluating

design performance has the potential to enhance simulation efficiency.

In this chapter, we use the kriging model to extract information about the design per-

formance from the simulation results of its nearby design points. Based on the Bayesian

framework, we then incorporate this information with the simulation results of the de-

sign itself to evaluate its performance. We develop a new budget allocation procedure

in the context of this new performance evaluation method. Numerical experiments are

conducted to demonstrate the effectiveness of our procedure.
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5.1 Problem Formulation

5.1.1 Problem Statement

Suppose we have a fixed number r of alternative design points, x1, ...,xr, where xi ∈ Rk.

Each design point has a performance measure y(xi) = E[f(xi)]. y(xi) is unknown

and can only be estimated via simulation with noise. The simulated performance at

design point xi is denoted as f(xi). We use ϵ(xi) to represent the simulation noise at

design point xi. ϵ(xi) is normally distributed with mean 0 and variance σ2(xi), hence it

can handle the heteroscedasticity of simulation outputs at different design points. We

assume the noise is independent from replication to replication as well as independent

across different design points. For ease of notation, we use σ2
i to represent σ2(xi). The

simulation output f(xi) can then be represented by the following expression:

f(xi) = y(xi) + ϵ(xi); i = 1, ..., r, ϵ(xi) ∼ N(0, σ2
i )

Given a constant γ ∈ R, a design point xi is defined to be feasible if y(xi) < γ and

infeasible if y(xi) > γ. Here we assume that there is no design point has the performance

measure that lies exactly at the boundary, that is, y(xi) ̸= γ, for i = 1, ..., r. Our

objective is to use limited total simulation budget to determine for each design point xi

whether it is feasible or not effectively.

The total simulation budget n is allocated to each design point in order to maximize

the expected number of correct determinations. Let αi represent the proportion of

simulation budget that is allocated to sampling at design point xi, α = (α1, ..., αr)
T. In

this research we ignore the minor technicalities associated with nαi not being an integer.

Let gn denote the expected number of correct determinations under total budget n.

The budget allocation problem in feasibility determination is to
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Problem P : max
α1,...,αr

gn(α1, ..., αr)

s.t.

r∑
i=1

αi = 1

αi ≥ 0, i = 1, ..., r

In the following subsections, we will try to figure out an analytic form expression for

gn(α1, ..., αr).

5.1.2 A Kriging Metamodel

It is not uncommon in reality that nearby design points have similar performance mea-

sures. That means, if xi is close to xj, y(xi) should not deviate too far from y(xj). In

this context, knowing the performance measure of nearby design points of xi could help

us infer y(xi). Hence there is potential to enhance simulation efficiency if we can extract

information about y(xi) from simulation results at nearby design points and integrate

it with our information obtained by simulating at xi directly.

In this thesis, we apply kriging methodology to provide information about y(xi) based

on simulation results at other design points. The traditional kriging method models the

simulation output at a design point x as

f(x) = M(x) + ϵ(x) (5.1)

where M(x) is a stationary Gaussian process with mean 0 and covariance function

σ2ρ(·, ·), and ϵ(x) is a normal random variable with mean 0 and variance σ2(x) (Sun

et al. [82]).
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In Equation (4.1), the stationary Gaussian process M(x) models the unknown per-

formance measure y(x). M(x) exhibits space correlation, which means the values M(xi)

and M(xj) are close to each other if xi and xj are close to each other. This space

correlation is exploited to capture the similarity between performance measures of close

design points. Using M(x) to model y(x) embeds a deterministic problem into a prob-

abilistic framework so that statistical inference about y(x) at values of x not simulated

(not just an estimate of value y(x)) can be obtained, which is important in incorporating

information of y(x) from nearby design points and from simulating at x directly.

The correlation function ρ(xi,xj) = Corr(M(xi),M(xj)) is typically a function of

xi−xj, which we denote as R(xi−xj). It is the crucial ingredient in a Gaussian process

predictor, as it defines space correlation of M(x). We require that R(xi − xj) → 0

as the distance between xi and xj goes to infinity, and R(0) = 1. Several functional

forms are often used as correlation function. For instance, the squared exponential

correlation function R(t) = exp(−at2) with parameter a > 0, the exponential correlation

function R(t) = exp(−at) with parameter a > 0, and the Matérn correlation function

R(t) = 1
Γ(ν)2ν−1 (

√
2ν t

l
)νKν(

√
2ν t

l
) with non-negative parameters ν and l, where Γ is the

gamma function and Kν is the modified Bessel function of the second kind.

The error term ϵ(x) captures the noise in the simulation output. It is common in

kirging model to assume ϵ(x) is independent with M(x) since they capture completely

different sources of randomness. In accordance with our assumption that the noise is

independent from different design points, we assume that Cov(ϵ(xi), ϵ(xj)) = 0 for any

xi ̸= xj.

Suppose we have run simulation at m design points x1, ...,xm, and in each design

point xi we have taken Ni simulation replications. Let the output obtained from the jth

simulation replication at xi be
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fj(xi) = M(xi) + ϵj(xi)

Let sample mean f̄(xi) = 1
Ni

∑Ni

j=1 fj(xi) and let f̄ = (f̄(x1), ..., f̄(xm))
T. Now we

want to estimate the performance measure at x0 conditioned on the observed data. Let

ΣM be the m ×m covariance matrix whose (i, j)th element is Cov[M(xi),M(xj)], and

let ΣM(x0, ·) be the m × 1 vector (Cov[M(x0),M(x1)], ..., Cov[M(x0),M(xm)])
T. Let

Σϵ be the m×m covariance matrix of noises whose (i, i)th element is σ2(xi)/Ni whereas

all other elements are 0. The kriging model predicts that y(x0) is normally distributed

with mean

ŷ(x0) = ΣM(x0, ·)T(ΣM + Σϵ)
−1f̄ (5.2)

and variance

V (x0) = σ2 − ΣM(x0, ·)T(ΣM + Σϵ)
−1ΣM(x0, ·) (5.3)

Remark 5.1 Ankenman et al. [4] show that for any x0, ŷ(x0) is the MSE-optimal linear

predictor of y(x0). The corresponding optimal MSE is exactly given by V (x0).

The kriging metamodel provides us knowledge about y(x0) based on observed simu-

lation results at other design points. Our next goal is to incorporate this knowledge with

information obtained by simulating at x0 directly, which is the task of next subsection.

5.1.3 A Bayesian Framework for Combining Information

Suppose we have run simulation at all r design points, and for each design point xi we

have Ni simulation replications. Now we want to draw information about y(xi), 1 ≤ i ≤ r
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from observed simulation outputs to determine the feasibility of each design point. For

any design point xi, there are two data sources we can draw information from. The first

one is directly simulation results at xi, f1(xi), ..., fNi
(xi). The second one is simulation

results at other design points, from which we can use stochastic kriging metamodel to

gain information about y(xi). In this thesis we turn to a bayesian framework to combine

information from these two data sources.

Let Σ(i)
M be the (r−1)×(r−1) covariance matrix across M(x1), ...,M(xi−1),M(xi+1), ...,M(xr),

and let ΣM(xi, ·) be the (r−1)×1 vector (Cov[M(xi),M(x1)], ..., Cov[M(xi),M(xi−1)],

Cov[M(xi),M(xi+1)], ..., Cov[M(xi),M(xr)])
T. Let Σ

(i)
ϵ be the matrix whose diago-

nal elements are {σ2(x1)/N1, ..., σ
2(xi−1)/Ni−1, σ

2(xi+1)/Ni+1, ..., σ
2(xr)/Nr} whereas all

other elements are 0. Let f̄ (i) = (f̄(x1), ..., f̄(xi−1), f̄(xi+1), ..., f̄(xr))
T. Using equation

(4.2) and (4.3), based on simulation outputs at other design points than xi we predict

that y(xi) is normally distributed with mean

ŷ(xi) = ΣM(xi, ·)T(Σ(i)
M + Σ(i)

ϵ )−1f̄ (i) (5.4)

and variance

V (xi) = σ2 − ΣM(xi, ·)T(Σ(i)
M + Σ(i)

ϵ )−1ΣM(xi, ·) (5.5)

We can see this normal distribution as a prior distribution for y(xi). We have Ni

measurements of y(xi), f1(xi), ..., fNi
(xi). Hence the posterior distribution for y(xi) is

an updated normal distribution (Murphy [63]) with mean

ỹ(xi) =
V (xi)

σ2
i

Ni
+ V (xi)

f̄(xi) +

σ2
i

Ni

σ2
i

Ni
+ V (xi)

ŷ(xi) (5.6)

and variance
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Ṽ (xi) = (
1

V (xi)
+

Ni

σ2
i

)−1 (5.7)

Remark 5.2 When Ni → ∞, f̄(xi) converges a.s. to y(xi). Hence when Ni → ∞,

ỹ(xi) converges a.s. to y(xi), ỹ(xi) is consistent. When Ni →∞, NiṼ (xi) converges to

σ2
i .

After combining information from two data sources, we derive that N(ỹ(xi), Ṽ (xi))

could be used to infer y(xi). Naturally, if ỹ(xi) < γ, we see design point xi as feasible

since in this case P (y(xi) < γ) > P (y(xi) ≥ γ). The probability that we made an

incorrect determination is

P (y(xi) ≥ γ) =

∫ ∞

γ−ỹ(xi)√
Ṽ (xi)

e−
t2

2 dt

Similarly, if ỹ(xi) ≥ γ, we see the design point xi as infeasible and the incorrect

determination probability is

P (y(xi) < γ) =

∫ γ−ỹ(xi)√
Ṽ (xi)

−∞
e−

t2

2 dt

Let Ĩ(xi) = (γ−ỹ(xi))
2

2Ṽ (xi)Ni
, i = 1, ..., r. When Ni → ∞, ỹ(xi) converges a.s. to y(xi)

and Ṽ (xi)Ni converges to σ2
i . Therefore Ĩ(xi) converges a.s. to Ixi

(γ) = (γ−y(xi))
2

2σ2
i

,

where Ixi
(·) is large deviation rate function of f(xi).We can then derive an analytic

form expression for gn(α1, ..., αr),

gn(α1, ..., αr) = r −
r∑

i=1

∫ ∞

√
2NiĨ(xi)

e−
t2

2 dt

Since n is allocated to each design point xi, when n is exhausted we have nαi = Ni. αi

is implicitly included in the above equation. The original problem P can be transformed

to



69

Problem P5 : min
α1,...,αr

r∑
i=1

∫ ∞

√
2NiĨ(xi)

e−
t2

2 dt

s.t.

r∑
i=1

αi = 1

αi ≥ 0, i = 1, ..., r

5.2 Analysis of Optimal Simulation Budget Alloca-

tion with Kriging

5.2.1 Derivation of OAK Allocation Rule

In this subsection, we derive OAK rule based on problem P5. To facilitate the deriva-

tions, we adopt the same strategy with (Chen et al. [19]), (Glynn and Juneja [44]) and

(Szechtman and Yücesan [83]), which is finding an asymptotically optimal allocation

rule. Namely, we consider the case that n → ∞. In our budget allocation with krig-

ing setting, the asymptotically optimal allocation rule improves efficiency significantly

compared to other existing methods.

Let Σ(i) = Σ
(i)
M +Σ

(i)
ϵ . Note that Σ(i)

ϵ = Diag{σ
2(x1)
nα1

, ..., σ
2(xi−1)
nαi−1

, σ
2(xi+1)
nαi+1

, ..., σ
2(xr)
nαr
} has

no relationship with αi. Based on equation (4) and (5), we can derive that ∂ȳ(xi)
αi

= 0

and ∂V (xi)
αi

= 0. When the simulation budget n tends to infinity, Σ(i)
ϵ tends to a zero

matrix. In our derivation n is large enough, Σ(i) ≈ Σ
(i)
M , the stochastic kriging model

degenerates to a deterministic kriging model (Stein [81]). In this case ∂ȳ(xi)
αj

= 0 and
∂V (xi)

αj
= 0, where j ̸= i.
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Consider Ĩ(xi) = (γ−ỹ(xi))
2

2Ṽ (xi)nαi
, i = 1, ..., r. The first order derivatives of Ĩ(xi) with

respect to α are,

∂Ĩ(xi)

∂αi

=

∂((γ − V (xi)
σ2
i

nαi
+V (xi)

f̄(xi)−
σ2
i

nαi
σ2
i

nαi
+V (xi)

ŷ(xi))
2( 1

2V (xi)nαi
+ 1

2σ2
i
))

∂αi

= (γ − ỹ(xi))
σ2
i V (xi)

nα2
i

(
σ2
i

nαi

+ V (xi))
−2(ŷ(xi) (5.8)

− f̄(xi))(
1

V (xi)nαi

+
1

σ2
i

)− (γ − ỹ(xi))
2 1

2V (xi)nα2
i

and for j ̸= i we have

∂Ĩ(xi)

∂αj

= 0 (5.9)

Note that when n → ∞, ỹ(xi) and f̄(xi) converge a.s. to y(xi). Meanwhile, ŷ(xi)

converges to a finite value and V (xi) converges to a nonzero constant. Therefore ∂Ĩ(xi)
∂αi
∝

1
n

and converges to 0 as n tends to infinity. We now prove

Lemma 5.1 P5 is an asymptotically convex optimization problem.

Proof: The first order derivatives of Ĩ(xi) with respect to α are shown in (4.8) and

(4.9). We now derive the second order derivatives. Obviously, ∂2Ĩ(xi)
∂αj∂αi

= 0 and ∂2Ĩ(xi)
∂2αj

= 0,

where j ̸= i. Rearrange equation (4.8), we have

∂Ĩ(xi)

∂αi

=
γ − ỹ(xi)

nα2
i

(σ2
i V (xi)(

σ2
i

nαi

+V (xi))
−2(ŷ(xi)−f̄(xi))(

1

V (xi)nαi

+
1

σ2
i

)− γ − ỹ(xi)

2V (xi)
)

Let A = γ−ỹ(xi)

nα2
i

, B = σ2
i V (xi)(

σ2
i

nαi
+ V (xi))

−2(ŷ(xi) − f̄(xi))(
1

V (xi)nαi
+ 1

σ2
i
) and

C = γ−ỹ(xi)
2V (xi)

. Note that A ∝ 1
n
. When n goes to infinity, A tends to 0. Meanwhile, B
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and C converges to some finite values. ∂2Ĩ(xi)
∂2αi

= ∂A
∂αi

(B − C) + A( ∂B
∂αi
− ∂C

∂αi
). We now

consider ∂A
∂αi

, ∂B
∂αi

and ∂C
∂αi

respectively.

∂A

∂αi

=
(

σ2
i

nαi
+ V (xi))

−2σ2
i V (xi)(ŷ(xi)− f̄(xi))− 2(γ − ỹ(xi))nαi

n2α4
i

∂B

∂αi

= σ2
i V (xi)(ŷ(xi)− f̄(xi))(2(

σ2
i

nαi

+ V (xi))
−3 σ2

i

nα2
i

(
1

V (xi)nαi

+
1

σ2
i

)

− (
σ2
i

nαi

+ V (xi))
−2 1

V (xi)nα2
i

)

∂C

∂αi

=
σ2
i

2nα2
i

(
σ2
i

nαi

+ V (xi))
−2(ŷ(xi)− f̄(xi))

We can observe that ∂A
∂αi

, ∂B
∂αi

and ∂C
∂αi

all∝ 1
n
. Therefore ∂2Ĩ(xi)

∂2αi
∝ 1

n
and vanishes when

n goes to infinity. We then consider the second order derivatives of
∫∞√

2nαiĨ(xi)
e−

t2

2 dt.

We can easily check that
∂2

∫∞√
2nαiĨ(xi)

e−
t2

2 dt

∂αj∂αi
= 0 and

∂2
∫∞√

2nαiĨ(xi)
e−

t2

2 dt

∂2αj
= 0, where j ̸= i.

The first order derivative of
∫∞√

2nαiĨ(xi)
e−

t2

2 dt with respect to αi is

∂
∫∞√

2nαiĨ(xi)
e−

t2

2 dt

∂αi

= −e−nαiĨ(xi)(2nαiĨ(xi))
− 1

2 (nĨ(xi) + nαi
∂Ĩ(xi)

∂αi

)

The second order derivative is

∂2
∫∞√

2nαiĨ(xi)
e−

t2

2 dt

∂2αi

=e−nαiĨ(xi)(2nαiĨ(xi))
− 1

2 [(nĨ(xi) + nαi
∂Ĩ(xi)

∂αi

)2 − (2n
∂Ĩ(xi)

∂αi

+ nαi
∂2Ĩ(xi)

∂2αi

)]

+
1

2
e−nαiĨ(xi)(2nαiĨ(xi))

− 3
2 (nĨ(xi) + nαi

∂Ĩ(xi)

∂αi

)2

Since ∂Ĩ(xi)
∂αi

∝ 1
n

and ∂2Ĩ(xi)
∂2αi

∝ 1
n
, when n is sufficient large [(nĨ(xi) + nαi

∂Ĩ(xi)
∂αi

)2 −

(2n∂Ĩ(xi)
∂αi

+ nαi
∂2Ĩ(xi)
∂2αi

)] would be nonnegative. Therefore, when n is sufficient large,
∂2

∫∞√
2nαiĨ(xi)

e−
t2

2 dt

∂2αi
would be nonnegative. The second order derivatives of

∫∞√
2nαiĨ(xi)

e−
t2

2 dt
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with respect to α, ▽2
∫∞√

2nαiĨ(xi)
e−

t2

2 dt is a diagonal matrix with nonnegative diagonal

elements. Hence when n is sufficient large, ▽2
∫∞√

2nαiĨ(xi)
e−

t2

2 dt is a positive semi-definite

matrix, which means
∫∞√

2nαiĨ(xi)
e−

t2

2 dt is a convex function. The objective function of

problem P5 is the sum of convex functions, hence itself is a convex function. The con-

straints of P5 are linear, thus problem P5 is an asymptotically convex optimization

problem.

We now omit the constraint αi ≥ 0 in problem P5 and consider problem P̃5,

Problem P̃5 : min
α1,...,αr

r∑
i=1

∫ ∞

√
2nαiĨ(xi)

e−
t2

2 dt

s.t.
r∑

i=1

αi = 1

This is still an asymptotically convex optimization problem. Let λ be the Lagrange

multiplier. The Karush-Kuhn-Tucker (KKT) conditions of problem P̃5 are stated as

follows:

e−nαiĨ(xi)(2nαiĨ(xi))
− 1

2 (nĨ(xi) + nαi
∂Ĩ(xi)

∂αi

) = λ, i = 1, ..., r (5.10)
r∑

i=1

αi = 1 (5.11)

Observing term nĨ(xi) + nαi
∂Ĩ(xi)
∂αi

in equation (4.10), since ∂Ĩ(xi)
∂αi
∝ 1

n
, when n tends

to infinity nαi
∂Ĩ(xi)
∂αi

become much smaller than the other term and is negligible. This

implies the condition (4.10) could be approximated by

e−nαiĨ(xi)(2nαiĨ(xi))
− 1

2nĨ(xi) = λ, i = 1, ..., r



73

Taking the natural log on both sides, we have

−nαiĨ(xi)−
1

2
log(2αi) +

1

2
log(nĨ(xi) = log(λ), i = 1, ..., r

When n→∞, all the log terms become negligible. This yields

−nαiĨ(xi) = log(λ), i = 1, ..., r (5.12)

Solving equations (4.11) and (4.12), we obtain αi =
1/Ĩ(xi)∑r
i=1 1/Ĩ(xi)

, i = 1, ..., r. With

the convexity, the solution satisfying the KKT conditions is the optimal solution to

problem P̃5. We can check that 1/Ĩ(xi)∑r
i=1 1/Ĩ(xi)

≥ 0, i = 1, ..., r. The solution satisfies

constraint αi ≥ 0 in problem P5, hence it is also the optimal solution to problem P5.

αi =
1/Ĩ(xi)∑r
i=1 1/Ĩ(xi)

, i = 1, ..., r is our OAK allocation rule and we have the following result:

Theorem 5.1 Problem P5 can be asymptotically minimized with the following allocation

rule:

αi =
1/Ĩ(xi)∑r
i=1 1/Ĩ(xi)

, i = 1, ..., r

Initially Ĩ(xi) is unknown, therefore we must warm-up each design point with Ni

replicates. The parameters involved in the kriging model can be estimated using several

methods (Santner et al. [77], Fang et al. [32]) and the most well known method is

maximum likelihood estimation (MLE). After ỹ(xi) and Ṽ (xi) are calculated based

on the Bayesian framework, Ĩ(xi) can then be obtained based on Ĩ(xi) = (γ−ỹ(xi))
2

2Ṽ (xi)Ni
,

i = 1, ..., r.

5.2.2 OAK Allocation Procedure

In this subsection, we present our budget allocation algorithm based on OAK allocation

rule. The allocation rule can only be determined after we know the mean and variance
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of each design point and the parameters for the kriging model. However, these pieces of

information are unknown before simulation experiments are conducted. Therefore, we

suggest a sequential simulation budget allocation algorithm that uses simulation results

to estimate OAK allocation rule step by step. The algorithm is stated as follows:

Optimal simulation budget Allocation with Kriging (OAK) Algorithm

1 For a set of r design points, specify the total simulation budget n, the initial simulation

budget for each design point n0, the incremental budget ∆. Select appropriate variance

function in kriging model.

2 Iteration counter t ← 0. Perform n0 simulation replications to each design point,

N t
1 = N t

2 = ... = N t
r = n0.

3 If N t =
∑r

i=1 N
t
i ≥ n, stop. Otherwise,

a update the mean and variance of each design point

b estimate the parameters in variance function of kriging model

c for each design point, compute the kriging mean and variance based on equation

(4.4) and (4.5)

d for each design point, compute the posterior mean and posterior variance based on

equation (4.6) and (4.7)

e for each design point, compute Ĩ(xi)

f compute allocation ratio αi =
1/Ĩ(xi)∑r
i=1 1/Ĩ(xi)

, i = 1, ..., r

g perform ∆i = max{0, αi(N
t + ∆) − N t

i } simulation replications to design point

xi, i = 1, ..., r

h N t+1
i = N t

i +∆i, t← t+ 1
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4 Determine the feasibility of each design point based on the posterior mean of perfor-

mance measure.

Remark 5.3 In step 3(c) of the above procedure, when computing the kriging mean and

variance of one design point we include observations from all other design points. This

may not be necessary when some design points are not within the spatial correlation

range of this design point. We can add a k nearest neighbor search or some similar

operation to screen out a subset of design points for kriging.

5.3 Numerical Experiments

The OAK procedure applies kriging metamodel to capture the inter-design relationships,

and incorporates this information into ALD procedure. Analogous with Chapter 3, we

can also consider this methodology from finite budget perspective. We combine kriging

with FLD and derive OAK+ procedure. In this section, we test the effectiveness of OAK

and OAK+ by comparing them with procedures without inter-design relationships con-

sideration. The test is conducted on two numerical examples, one with one-dimensional

design points and the other with two-dimensional design points:

• Example 1: A function taken from (Torn and Zilinskas [85]), f(x) = sin(x) +

sin(10x/3) + ln(x)− 0.84x+ 3 +N(0, 62), 3 ≤ x ≤ 8. Threshold γ = 0.

• Example 2: Six-hump camel function taken from (Molga and Smutnicki [62]),

f(x) = (4− 2.1x2
1 + x4

1/3)x
2
1 + x1x2 + (−4+ 4x2

2)x
2
2 +N(0, 62), −2 ≤ x1 ≤ 2,−1 ≤

x2 ≤ 1. Threshold γ = 2.

In comparing the procedures, the measure ERCD is estimated based on 5000 inde-

pendent experiments of each algorithm. Since the position of the design points have
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great effect on the kriging model, in each experiment we randomly pick r = 15 design

points from available domain so that the test results are independent of the special

design points position selection. In OAK and OAK+, we set the initial budget per

design point, the incremental budget per iteration and the maximum budget as Table

5.1. Sequential procedures ALD/OCBA and FLD follow the same parameter settings.

In OAK and OAK+ we have to specify the functional form of the correlation func-

tion in the kriging model. Here we use the squared exponential correlation function,

Cov(M(xi),M(xj)) = σ2 exp(−a∥xi − xj∥2), where parameters σ and a are estimated

using MLE method.

Table 5.1: Parameter settings of OAK for different examples.
Initial budget Incremental budget Maximum budget

Ex.1 20 100 9000

Ex.2 20 100 9000

Remember that ALD and OCBA have the same allocation rule in the normal envi-

ronment, hence the performance of ALD and OCBA are illustrated simultaneously by

one curve. The performance of the five procedures with different budgets and simulation

budget needed to reach ERCD level 0.95 are illustrated in Figure 5.1 and Table 5.2. We

can see that in both problem settings, OAK+ outperforms FLD and OAK outperforms

ALD/OCBA. These imply that taking the relationships between different design points

into consideration could enhance the simulation efficiency.

In order to achieve ERCD level 0.95, incorporating kriging metamodel in ALD/OCBA

can reduce simulation budget by 55.0% and 36.7% on the two examples respectively,

and incorporating kriging metamodel in FLD can reduce simulation budget by 41.7%
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(b) Example 2

Figure 5.1: Comparison of OAK with other methods
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Table 5.2: Simulation budget needed to reach ERCD level 0.95.
OAK+ OAK FLD ALD/OCBA EA

Ex.1 4900 7700 8400 19000 17100

Ex.2 3500 5400 4600 8500 12000

and 23.9%.
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Chapter 6

Future Research

In this thesis, we seek various methods to address the FD budget allocation problem in

small budget environment. The FD problem arises in a variety applications. One such

application is to use FD to select appropriate manufacturing schedules. In the future,

I will utilize the FD allocation procedure in a Kimberly-Clark (K-C) paper production

scheduling project.

In previous methods, we determined the feasibility of each design based on its ex-

pected performance, which is risk neutral. However, there are indeed situations in which

the decision makers are risk averse. For example, in financial risk management, instead

of expected return, value at risk is often used to assess the risk of the portfolios. In

engineering design problems, the physical properties of a system can often be estimated

by numerical simulation. When implemented in the real world, we often require the

physical properties of the system satisfy some hard constraints, meaning that even a

small violation of the constraints cannot be tolerated. In this case, the expected perfor-

mance of the system is not suitable for feasibility determination. We have to develop

FD methods that improve the robustness of decision quality.

We introduce risk averse feasibility determination by applying robust optimization

techniques (Bertsimas et al. [9]). The philosophy of robust optimization is to represent

model uncertainty by deterministic set based values, and then seek optimal solutions in

worst-case scenarios. In future research, we incorporate robust implementation decisions



80

into a Bayesian framework to address the risk averse FD problems.

6.1 Manufacturing Application of FD Methodology

The K-C has constructed a new paper mill in Oklahoma. The mill consists of 2 tissue

machines, 1 off-line-unit, and 12 converting lines. Currently the schedules of the mill is

generated manually. The mill has several mid-term schedulers and for every asset there

is a person in charge of its schedule. The company hope we can develop a tool to aid

them generating schedules.

There are multiple criterions to judge if a schedule is good or not. The most im-

portant one is to finish customer orders on time. Other considerations include stocking

level, machine utilization, production line balance rate and so on. It is hard or even

impossible to combine these criterions together to form a single standard. Hence we

often provide multiple schedules with different emphasis to the decision-maker. When a

schedule is generated, the company usually simulates it in their PLC simulation platform

to predict the aforementioned performances.

There is fluctuations in the K-C production line. The major concern is the random-

ness in production rates, whose distribution is unknown. We address this randomness

through robust optimization. We set an uncertainty set for the production rate, and

generate the schedules in the worst scenario. To avoid over conservativeness, we have

to use some parameters to control the size of the uncertainty set. The different conser-

vativeness level results in different schedules. In addition, the different setting of the

objective function leads to different schedules too. Usually, we can generate a bunch of

schedules, which need to be tested in the simulation platform. We want to select some

promising schedules for the decision-maker through feasibility determination.
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The simulation time for the schedule simulation is quite limited. Sometimes there

is major breakdown or other emergent incidents. The refreshing schedules need to be

generated in a very limited time. Thus, the simulation efficiency is very important.

Another issue is that several thresholds need to be set for different performance measures

simultaneously. Thus multiple performance FD is considered in our future work.

6.2 The Robust Feasibility Determination

We state a formal model for the Bayesian FD problem, and then formulate it as a

dynamic program.

Suppose we have k alternative designs. For each x ∈ {1, ..., k}, the underlying

performance of design x is θx. Assume the threshold is d, a design is defined to be

feasible if θx ≤ d. Hence we want to determine the set B = {x : θx ≤ d}.

Let θ = (θ1, ..., θk)
T . We take a Bayesian approach, placing a normal prior probability

distribution on each unknown θx. Suppose we can have exactly N measurements, and

time is indexed by n = 0, 1, ..., N − 1. At each time n, we select a design xn to measure.

Assume the measurement has an error ϵn+1, which is normally distributed with mean 0

and finite known variance σ2
ϵ . Assume the measurement errors are independent of each

other and independent with θ. The observed value would be yn+1 = θxn + ϵn+1.

We define a filtration (Fn)Nn=0, where Fn is the sigma-algebra generated by x0, y1, ..., xn−1, yn.

Let En[·] denote the conditional expectation taken with respect to Fn, so En[·] = E[·|Fn].

The measurement decision is made only based on the information from measurements

observed and decisions made in the past. That is, xn is Fn measurable.

Let N(µ0
x, (σ

0
x)

2) be the prior predictive distribution of θx, for each x ∈ {1, ..., k}.

Let µn
x = En[θx] be the mean of the predictive distribution after n measurements have
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been observed. Similarly let (σn
x)

2 = Cov[θx|Fn] be the covariance of the predictive

distribution given Fn. The measurement process is at time n, our knowledge of θx is

N(µn
x, (σ

n
x)

2). We then select a design xn to measure and the observation value is yn+1.

Based on this new information we update our knowledge of θx, which is represented by

a updated normal distribution N(µn+1
x , (σn+1

x )2).

At time N , we determine the set of feasible designs B based on the measurements

recorded. Define a terminal payoff function r:

r(B; θ, d) =
∑
x/∈B

1x/∈B +
∑
x∈B

1x∈B

B∗ ⊆ {1, ..., k} is chosen to maximize the expected terminal payoff after N measure-

ments.

B∗ = argmax
B

EN [r(B; θ, d)]

Our goal is to find a optimal measurement policy (x0, ..., xN−1) that maximized

the expected total reward. Let Π be the set consisting of all measurement strategies

π = (x0, ..., xN−1). The objective function of our problem is

sup
π∈Π

Eπ[r(B∗; θ, d)]

In reality, decision makers are possibly risk averse when determining feasibility of

the designs. We propose an alternative definition of feasibility which is adapted to this

situation. After all measurements are finished, we have certain knowledge about θx.

Define a design x is feasible if P (θx ≤ d) ≥ 1 − α, where α is some risk tolerance

parameter. Now we want to determine the set B′
= {x : P (θx ≤ d) ≥ 1− α}.

In this new setting, we still use B to denote the set of feasible designs that we
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determine based on the measurements recorded. The terminal payoff function is changed

to be:

r
′
(B; θ, d) =

∑
x/∈B

1x/∈B′ +
∑
x∈B

1x∈B′

B
′ ⊆ {1, ..., k} is chosen to maximize the expected terminal payoff after N measure-

ments.

B
′
= argmax

B
EN [r

′
(B; θ, d)]

Our goal is to find a optimal measurement policy (x0, ..., xN−1) that maximized the

new expected total reward. Hence the new objective function is

sup
π∈Π

Eπ[r
′
(B

′
; θ, d)]
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