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abstract

Through this thesis, I purse rigorous understanding of adversarial training in
multiclass classification problem which is now one of the most important tasks in
modern machine learning community. Especially, after the great success of deep
learning based algorithms, there have been a numerous demands to understand
the robustness of machine learning models after their training, especially since the
discovery that they exhibit a critical vulnerability to adversarial perturbations that
are imperceptible to humans was known. Since 2010 there have been numerous
papers regarding adversarial training in order to defend against such adversarial
attacks, and hence to obtain more robust machine learning models.

However, in spite of huge efforts devoted to in this field, until very recently no
rigorous mathematical understanding was achieved, to the author’s best knowl-
edge. Because of the lack of rigorous understanding regarding this problem, many
properties, or even the existence of such robust classifiers, is unveiled.

Since this problem has both interesting and important for both theoretical and
practical reasons, the ultimate goal of this thesis is not only to provide the mathemat-
ically rigorous foundation for the adversarial training in multiclass classification but
also to propose practical algorithms. Part of new algorithms we purse in this thesis
is guided by the new mathematical framework for adversarial training perspective
that we develop.

The contributions of this thesis can be summarized in the following three themes,
which we will develop in succeeding three chapters:

1. In chapter 3, Adversarial learning, Generalized barycenter problem and their con-
nection by multimarginal optimal transport, the adversarial training problem is
connected to multimarginal optimal transport problem. To obtain this beauti-
ful connection, the generalized (Wasserstein) barycenter problem which is
indeed the generalization of classical barycenter problem is introduced. Based
on that, various equivalent formulas are derived including a multimarginal
optimal transport formulation. Through these equivalent formulations we are



vii

able to prove that the adversarial training problem, especially, distributional-
perturbing adversarial training model, is equivalent to the generalized barycenter
problem and the associating multimarginal optimal transport problem. One
of advantages of these equivalences is that it allows to use many computa-
tional optimal transport tool to calculate the adversarial risk. We will leverage
such computational advantages in chapter 5.

2. In chapter 4, On the existence of solutions to adversarial training in multiclass
classification, the mathematical understanding of three variant adversarial
training models is pursued. In particular, we show that the well-posedness of
adversarial training models. The existence of Borel measurable optimal ro-
bust classifiers is proved in the distributional-perturbing adversarial training
model. Furthermore, other two models also impose Borel measurable optimal
robust classifiers through the previous result. Lastly, a unifying perspective of
all three models is provided, through which we will see that the three models
are almost the same.

3. In chapter 5, Two approaches for computing adversarial training problem based
on optimal transport frameworks, based on the theoretical understanding of
the previous two chapters, we propose two numerical implementations for
adversarial training. One employs the geometric structure of the generalized
barycenter problem in chapter 3 which suggests a way to count all possible
interactions efficiently. The other relies on a multimarginal optimal transport
formulation of the adversarial training problem, also developed in chapter 3,
which implicitly hints the idea of truncation. Numerical results on real data
sets obtained by these algorithms are also provided.
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1 introduction

This thesis is the attempt to provide a rigorous bridge between adversarial learn-
ing community and optimal transport community. The aim is to build up the
understanding of adversarial training model in classification via the lens of modern
optimal transport theory, especially so-called multimarginal optimal transport.

Modern machine learning models, in particular those generated with deep
learning, perform remarkably well, in many cases much better than humans, at
classifying data in a variety of challenging application fields like image recognition,
medical image reconstruction, and natural language processing. However, the
robustness of these learning models to data perturbations is a completely different
story. For example, in image recognition, it has been widely documented (e.g.,
Goodfellow et al. (2015) and Zhang et al. (2019); see Figure 1) that certain struc-
tured but human-imperceptible modifications of images at the pixel level can fool
an otherwise well-performing image classification model. These small data pertur-
bations, known as adversarial attacks, when deployed at scale can make a model’s
prediction accuracy drop substantially and in many cases collapse altogether. As
such, they are a significant obstacle to the deployment of machine learning systems
in security-critical applications, e.g. Biggio and Roli (2018). To defend against these
attacks, many researchers have investigated the problem of adversarial training,
i.e., training methods that produce models that are robust to attacks. In adversarial
training, one typically pits the adversary against the learner during the training
step, forcing the learner to select a model that is robust against attacks. Nonethe-
less, despite the attention that has been devoted to understanding these problems,
theoretically and algorithmically, there are still several important mathematical
questions surrounding them that have not been well understood.
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Figure 1.1: Top : Adversarial examples generated for GoogLeNet. (Left) is a
correctly predicted sample, (center) difference between correct image and (right)
adversarial example from Goodfellow et al. (2015).
Bottom : The car with a camouflage pattern is misdetected as a “cake” from Zhang
et al. (2019).

1.1 Generalized barycenter problem and
multimarginal optimal transport formulation

The first attempts Bhagoji et al. (2019); Pydi and Jog (2021a,b) to understand the
adversarial training problem are based on an somewhat accidental but intriguing
observation that the optimal adversarial risk in the binary classification with the
agnostic learning setting has the same form of an optimal transport problem which
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is also known as “Strassen’s theorem”, equivalently known as the total-variation
distance on the space of probability measures. This is the first breakthrough to
reach some meaningful mathematical result on this field in a very general sense.
Also, through the equivalence of optimal transport problem they can explicitly
compute the adversarial risk. However, their achievements are not fully satisfactory.
Although those papers open a new door to explore this field, it is still mysterious
that what is really going on the coincidence of formula. In fact, no explanation
was provided about this coincidence. Because of this reason, no one truly under-
stands the meaning of the adversarial learning in some sense beyond this miracle
coincidence.

In chapter 3, base on Garcıa Trillos et al. (2023), we generalize the adversarial
training problem to multiclass classification and prove the equivalence between this
problem and several fomulae written as multimarginal optimal transport problems.
In addition to these, we can provide the mathematical explanation regarding the
adversarial training problem, especially the geometric understanding regarding
the adversarial attack. The key object for all works is the generalized (Wasserstein)
barycenter problem which is the following:

inf
λ,µ̃1,...,µ̃K

{
λ(X) +

∑
i∈Y

C(µi, µ̃i) : λ ⩾ µ̃i for all i ∈ Y

}
.

where µ1, . . . ,µK are given positive measures and

C(µi, µ̃i) = inf
πi∈Π(µi,µ̃i)

∫
X

c(x, x ′)dπi(x, x ′)

which is classical optimal transport cost from µi to µ̃i. The first main theorem is
that

Theorem 1.1. Under some assumptions on c(x, x ′), we have

adversarial risk = 1 − inf
λ,µ̃1,...,µ̃K

{
λ(X) +

∑
i∈Y

C(µi, µ̃i) : λ ⩾ µ̃i for all i ∈ Y

}
.
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This equivalence shows the nice interpretation of adversarial training problem,
especially from the adversary’s perspective because variables µ̃i’s are taken by
the adversary. Geometrically and intuitively, the adversary wants to make more
overlaps among µ̃i’s provided that the total transporting cost is not too big.

Once obtaining it, following the philosophy of classical barycenter problems,
one would attain an equivalent multimarginal optimal transport formulation of
the adversarial training model. Like classical barycenter problems, the generalized
barycenter problem has an equivalent multimarginal optimal transport (MOT)
formulation. To be precise, we use a stratified multimarginal optimal transport
problem to obtain an equivalent reformulation.

Theorem 1.2. Under some assumptions on c(x, x ′), let SK := {A ⊆ Y : A ̸= ∅}. Given
A ∈ SK, define cA : XK → [0,∞] as cA(x1, . . . , xK) := infx ′∈X

∑
i∈A c(xi, x ′).

Consider the problem:

inf
{πA:A∈SK}

∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK)

s.t.
∑

A∈SK(i)

Pi #πA = µi for all i ∈ Y,

where Pi is the projection map Pi : (x1, . . . , xK) 7→ xi, and SK(i) := {A ∈ SK : i ∈ A}.
Then

inf λ(X) +
∑
i∈Y

C(µi, µ̃i) = inf
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK).

In particular, if you solve this stratified multimargianl optimal transport problem,
then you can obtain the optimal adversarial attiacks µ̃i’s from πA’s. In this sense,
this formulation is the problem for the adversary.

Lastly, one would get a nice single MOT formulation. But, it is still not like
usual MOT problems because its cost function c, we call it a MOT cost function
to distinguish a given cost c, has a very special structure. Heuristically, a MOT
cost function is itself an optimization problem. So, we have a nested optimization
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problem; first solve a local problem givenK-many points and solve a global problem
by taking an optimal coupling which organizes the mass from µi’s in a most efficient
way.

Theorem 1.3. Under some assumptions on c(x, x ′), there is some MOT cost function c

such that

inf λ(X) +
∑
i∈Y

C(µi, µ̃i) = inf
π∈Π(µ̂1,...,µ̂K)

∫
XK∗

c(x1, . . . , xK)dπ(x1, . . . , xK).

One can regard the above formulae for the adversary’s problem. In words, if
the adversary solves one of the above three problems, then the optimal adversarial
attacks follow. A natural question is about the learner, or classifier. How can we
obtain a robust classifier? A very natural guess is to study the dual of the adversary’s
minimzation problems. Regarding the adversarial training as a two-players mini-
max game, it is an intuitive consequence that its dual is a problem for the learner.
Without the previous observations, however, this guess is not trivial at all. The
following results are about the learner’s problems.

Theorem 1.4. Let Cb(X) be the set of bounded real-valued continuous functions over X.
Under some assumptions on c(x, x ′), The dual of the generalized barycenter problem is

sup
f1,...,fK∈Cb(X)

∑
i∈Y

∫
X

fci (xi)dµi(xi)

s.t. fi(x) ⩾ 0,
∑
i∈Y

fi(x) ⩽ 1, for all x ∈ X, i ∈ {1, . . . ,K},

where fci (x) := infx ′{fi(x) + c(x, x ′)}. Also, there is no duality gap between primal and
dual problems.

The dual of the stratified MOT problem is

sup
g1,...,gK∈Cb(X)

∑
i∈Y

∫
X

gi(xi)dµi(xi)

s.t.
∑
i∈A

gi(xi) ⩽ 1 + cA(x1, . . . , xK) for all (x1, . . . , xK) ∈ XK, A ∈ SK,
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and there is no duality gap between primal and dual problems.
If f is a solution for the dual of the generalized barycenter problem, then it is a (optimal)

robust classifier.

Every detail will be described and formulated in chapter 3. We also need to
mention that to solve the first dual problem is not trivial because it lacks any
structure. Instead, one can detour through the second dual problem which has
more structures thanks to a specific constraints to obtain a robust classifier.

Theorem 1.5. Suppose that (µ̃∗,g∗) is a solution pair for the generalized barycenter problem
and the dual of its MOT formulation. Let f∗ be defined as

f∗i (x̃) := sup
x∈spt(µi)

{g∗i (x) − c(x, x̃)} ,

for each i ∈ Y.
If f∗ is Borel-measurable, then (f∗, µ̃∗) is a saddle solution for the adversarial training

problem. In particular, f∗ is a robust classifier.

To summarize, using the generalized barycenter problem, the corresponding
MOT formulation and its duality, we can completely characterize a pair of solutions,
optimal adversarial attack and robust classifier, for the adversarial training model.
Furthermore, we can prove the existence of an optimal adversarial attack and
explain its geometry of the generalized barycenter problem.

1.2 The existence of robust classifier and unifying
perspective of adversarial models

The last theorem describes how to obtain a robust classifier. A problem is that,
although we have a very explicit transformation from an optimal dual potential g∗

to f∗, it is not trivial that such g∗ exists. If a cost function c is bounded and Lipschitz,
it is well known that there is an optimal g∗ which is also bounded and Lipschitz,
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hence, so as f∗. But, most cost functions of interest are not either continuous nor
bounded. Thus, it is not clear whether an optimal dual potential g∗ exists.

Furthermore, even if such g∗ exists, it is even more unclear that f∗ obtained by the
above transformation is measurable in general. It is well-known that the supremum
of an uncountably large family of measurable functions is not measurable in general.
Hence, the statement imposes the precondition that “f∗ is measurable”. In fact, this
issue is common, because the transformation, known as c-transform in optimal
transport community, does not preserve the measurability.

In this sense, the existence of (Borel measurable) robust classifier is not straight-
forward, and this is the reason why, through this thesis, we choose agnostic setting,
in other words, the solution space is the set of all Borel measurable functions whose
values are between 0 and 1. For the adversarial attack, thanks to the semi-continuity
and uniform boundedness of the values of problem, we are able to use compactness
argument to guarantee the minimum and a minimizer easily.

A fundamental difficulty for obtaining a roubst classifier in adversarial training,
in contrast to standard training of learning models, is the fact that the adversary has
the power to alter the underlying data distribution. In particular, model training
becomes an implicit optimization problem over a space of measures, as a result, one
may be forced to leave the prototypical setting of equivalence classes of functions
defined over a single fixed measure space. In general, measurability issues become
more delicate for adversarial training problems at the moment of providing a
rigorous mathematical formulation for the problem. Due to these difficulties, there
are several subtle variations of the adversarial training model in the literature and it
has not been clear whether these models are fully equivalent. More worryingly, for
some models, even the existence of optimal robust classifiers is unknown, essentially
due to convexity and compactness issues.

Let us emphasize that these issues arise even in what can be regarded as the
simplest possible setting of the agnostic learner, i.e. where the space of classifiers is
taken to be the set of all possible Borel measurable weak (probabilistic) classifiers.
While this setting is trivial in the absence of an adversary (there the optimal choice
for the learner is always the Bayes classifier), the structure of the problem is much
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more subtle in the adversarial setting (in other words the analog of the Bayes
classifier is not fully understood). With an adversary, the training process can be
viewed as a two-player min-max game (learner versus adversary) Bose et al. (2020);
Meunier et al. (2021); Pydi and Jog (2021b); Balcan et al. (2023) and as a result,
the optimal strategies for the two players are far from obvious. By relaxing the
problem to the agnostic setting, one at least is working over a convex space, but
again measurability issues pose a problem for certain formulations of adversarial
training.

The existence of measurable “robust" solutions to optimization problems has
been a topic of interest not only in the context of adversarial training Pydi and
Jog (2021b); Frank and Niles-Weed (2022); Frank (2022); Awasthi et al. (2021a,b)
but also in the general distributionally robust optimization literature, e.g., Blanchet
and Murthy (2019). Previous studies of robust classifiers use the universal σ-algebra
not only to formulate optimization problems rigorously, but also as a feasible
search space for robust classifiers. The proofs of these existence results rely on the
pointwise topology of a sequence of universally measurable sets, the weak topology
on the space of probability measures, and lower semi-continuity properties of Rε(·).
The (universal) measurability of a minimizer is then guaranteed immediately by
the definition of the universal σ-algebra. We want to emphasize that all the works
Pydi and Jog (2021b); Frank and Niles-Weed (2022); Frank (2022); Awasthi et al.
(2021a,b) prove their results in the binary (K = 2) classification setting where X is
a subset of Euclidean space.

In light of the above considerations, the purpose of chapter 4, based on Gar-
cía Trillos et al. (2023a), of my thesis is twofold. On one hand, we provide rigorous
justification for the existence of Borel-measurable robust classifiers in the multiclass
classification setting for three different models of adversarial training. Notably, our
analysis includes a widely used model for which the existence of Borel classifiers
was not previously known and existence of solutions had only been guaranteed
when enlarging the original Borel σ-algebra of the data space. On the other hand,
we develop a series of connections between the three mathematical models of ad-
versarial training discussed throughout the paper exploiting ideas from optimal
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transportation and total variation minimization. By developing these connections,
we hope to present a unified formulation of adversarial training and highlight
the prospective advantages of using tools in computational optimal transport for
solving these problems in the agnostic-classifier setting (and perhaps beyond the
agnostic setting too). We also highlight, in concrete terms, the connection between
adversarial training and the direct regularization of learning models. To achieve
all the aforementioned goals, we expand and take advantage of chapter 3 as well
as of the work Bungert et al. (2023) exploring the connection between adversarial
training and perimeter minimization in the binary classification setting.

Two main results discussed in chapter 4 are the following:

Theorem 1.6. Under some assumptions on c(x, x ′), there exists a (Borel) robust classi-
fier f∗. Furthermore, there exists µ̃∗ ∈ P(Z) such that (f∗, µ̃∗) is a saddle point for the
adversarial training problem.

Theorem 1.7. For almost all ε ⩾ 0, there exists a Borel robust classifiers for three different
adversarial training models.

To summarize, based on optimal transport duality theorem, we can prove the
existence of Borel robust classifiers for three variants of adversarial training problem.
We want to emphasize that all the proofs does rely on the ingredients developed
in chapter 3. Based on that, an elementary but critical observation leads to the
unifying perspective for different adversarial training models.

1.3 More tractable numerics
The adversarial training problem is not just a toy example to understand something
abstract. Rather, practitioners in reality require its understanding and do something
based on it everyday. Therefore, a natural next question is how to compute it.

Although there are a lot of demands for computing several objects in the ad-
versarial training problem, for example an optimal adversarial attack, an optimal
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robust classifier and the optimal adversarial risk, until very recently there has been
no clear way, at least theoretically, for this purpose.

The purpose of chapter 5, based on García Trillos et al. (2023b), is to suggest
more tractable algorithms to achieve such purpose: to compute everything we need
in this problem. We propose two different algorithms, exact solving and truncated
Sinkhorn iteration. Interestingly, thanks to various formulations of the adversarial
training problems developed in chapter 3, each of algorithms is based on different
theoretical backgrounds: exact solving relies on the generalized barycenter problem
and truncated Sinkhorn iteration does on the stratified MOT problem.

The common idea shared by two approaches is that in real data sets there might
not be many higher-order interactions. Regarding a data point of each class as a particle,
one is able to imagine that the adversary has more chance to fool the learner if
particles are close to each other. Then, the terminology interaction indicates how
these particles to interact with each other, or, how they are close to each other. If
we assume that two particles cannot interact with each other when the distance
between them is too large, larger than the given adversarial budget ε ⩾ 0, then the
adversary is not able to use them together to deceive the learner.

In this sense, one can reach the hypothesis that if each of classes are not so
close to each other, then there may not be many interactions so that computing
the optimal adversarial risk is not too hard. In particular, although higher-order
interactions are critical for the learner, it might be unlikely to confront them due to
weak interactions.

In other words, there is a combinatorial problem at the core of the adversarial
training problem: Which classes of points should be moved onto a single point and
where should that single point be placed? Naively, if there are K classes, each of
which has n points this leads to a total of (n + 1)K − 1 possible classes of 1 to K
points to consider, and this quickly becomes infeasible for even moderately chosen
n and K. However, if the previous guess is indeed true, we avoid this overwhelming
number and somehow compute what we want.

Here, we state two algorithms: details will be discussed in chapter 5.
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Algorithm 1 Exact solving
Input: X : data set, µ = (µ1, . . . ,µK) : empirical distribution, ε : adversarial budget.

Construct C(ε).
Construct the ε-incidence matrix Iε ∈ {0, 1}X×C(ε).
Solve LP.

Output: λ∗ =
∑
C∈C(ε)w

∗(C)δF(C), µ̃i =
∑
A∈SK(i)

∑
C∈CA(ε)w

∗(C)δF(C) and
value =

∑
C∈C(ε)w

∗(C).

Algorithm 2 Truncated entropic regularization(Sinkhorn)
Input: X : data set, η > 0 : entropic parameter, L : trucation level, µ = (µ1, . . . ,µK) :

empirical distribution, ε : adversarial budget.
Initialization : λi = η logµi for all i ∈ Y.
while not converge do
λ1(·)← η logµ1(·) − η log

(∑
A∈SLK(1)G(λA\{1})(·)

)
,

...
λK(·)← η logµK(·) − η log

(∑
A∈SLK(K)

G(λA\{K})(·)
)

.
end while
Compute π∗

A(xA) = exp
(

1
η

(∑
i∈A λ

∗
i (x

i
li
)
))

exp
(
− 1
η
(1 + cA(xA))

)
for all A ∈

SLK.
Output: {π∗

A}A∈SLK and value =
∑
A∈SLK

∑
XA(1 + cA(xA))π

∗
A(xA).

1.4 Organization
The remaining of my thesis is organized in this way.

In chapter 2, we will elaborate some preliminaries to state our problem rigor-
ously.

In chapter 3, we reformulate the adversarial training problem in terms of equiv-
alent formulae which are based on optimal transport theory. They include the
generalized (Wasserstein) barycenter problem, the stratified MOT problem, an-
other MOT problem and their dual problems.

In chapter 4, we will prove the existence of Borel measurable robust classifiers
for the adversarial training problem and provide the unifying perspective for its
variant models.
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In chapter 5, we will propose more tractable numerical implementations for
the adversarial training problem based on the theoretical results developed in the
previous two chapters.

Lastly, in chapter 6, we will finish this long for long, short for short journey with
the summary of my thesis and advance some of possible future works in this field.
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2 preliminaries

The setting of our problem will be a feature space (X,d) (a Polish space with
metric d) and a label space Y := {1, . . . ,K}, which will represent a set of K labels
for a given classification problem of interest. We denote by Z := X× Y the set of
input-to-output pairs and endow it with a Borel probability measure µ ∈ P(Z),
representing a ground-truth data distribution. For convenience, we will often
describe the measure µ in terms of its class probabilities µ = (µ1, . . . ,µK), where
each µi is the positive Borel measure (not necessarily a probability measure) over
X defined according to:

µi(A) = µ(A× {i}),

for A ∈ B(X), i.e., A is a Borel-measurable subset of X. Notice that the measures
µi are, up to normalization factors, the conditional distributions of inputs/features
given the different output labels.

Typically, a (multiclass) classification rule in the above setting is simply a Borel
measurable map f : X→ Y. In this paper, however, it will be convenient to expand
this notion slightly and interpret general classification rules as Borel measurable
maps from X into ∆Y :=

{
(ui)i∈Y : 0 ⩽ ui ⩽ 1,

∑
i∈Y ui ⩽ 1

}
, the set of (up to nor-

malization constants) probability distributions over Y (see remark 2.1); oftentimes
these functions are known as soft-classifiers. For future reference, we denote by F

the set
F := {f : X→ ∆Y : f is Borel measurable} . (2.1)

Given f ∈ F and x ∈ X, the vector f(x) = (f1(x), . . . , fK(x)) will be interpreted as
the vector of probabilities over the label set Y that the classifier f assigns to the
input data point x. In practice, from one such f one can induce actual (hard) class
assignments to the different inputs x by selecting the coordinate in f(x) with largest
entry. The extended notion of classifier considered in this paper is actually routinely
used in practice as it fares well with the use of standard optimization techniques
(in particular, F is natural as it can be viewed as a convex relaxation of the space of
maps from X to Y).
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The goal in the standard (unrobust) classification problem is to find a classifier
f ∈ F that gives accurate class assignments to inputs under the assumption that
data points are distributed according to the ground-truth distribution µ. This aim
can be mathematically modeled as an optimization problem of the form:

inf
f∈F

R(f,µ), (2.2)

where R(f,µ) is the risk of a classifier f relative to the data distribution µ:

R(f,µ) := E(X,Y)∼µ[ℓ(f(X), Y))].

The loss function ℓ : ∆Y × Y → R appearing in the definition of the risk can be
chosen in multiple reasonable ways, but here we restrict to the choice

ℓ(u, i) := 1 − ui, (u, i) ∈ ∆Y × Y,

which, in lieu of the fact that ℓ(ej, i) is equal to 1 if i ̸= j and 0 if i = j (ej is the
extremal point of ∆Y with entry one in its j-th coordinate), will be referred to as the
0-1 loss. Note that under the 0-1 loss function the risk R(f,µ) can be rewritten as

R(f,µ) =
∑
i∈Y

∫
X

(1 − fi(x))dµi(x).

Remark 2.1. Given the structure of the 0-1 loss function considered here, we may replace
the set F with the set of those f ∈ F for which

∑
i fi = 1. Indeed, given f ∈ F we can

always consider f̃ ∈ F defined according to f̃i0 := fi0 + (1 −
∑
i∈Y fi) and f̃i = fi for

i ̸= i0 to obtain a value of risk that is no greater than the one of the original f.

Moreover, one can observe that solutions to the risk minimization problem (2.2)
are the standard multiclass Bayes classifiers from statistical learning theory (e.g.,
see Bousquet et al. (2004); von Luxburg and Schölkopf (2011)). These classifiers
are characterized by the condition f∗Bayes,i(x) = 0 if P(X,Y)∼µ(Y = i|X = x) ̸=
maxj∈Y P(X,Y)∼µ(Y = j|X = x) for all i, and it is always possible to select a Bayes
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classifier of the form f∗Bayes(x) = (1A∗
1
(x), . . . ,1A∗

K
(x)), where A∗

1 , . . . ,A∗
K form a

measurable partition of X. In other words, there always exist hard classifiers that
solve the risk minimization problem (2.2).

By definition, a solution to (2.2) classifies clean data optimally; by clean data
here we mean data distributed according to the original distribution µ. However,
one should not expect the standard Bayes classifier to perform equally well when
inputs have been adversarially contaminated, and the goal in adversarial training
is precisely to create classifiers that are less susceptible to data corruption. One
possible way to enforce this type of robustness is to replace the objective function in
(2.2) with one that incorporates the actions of a well-defined adversary, and then
search for the classifier that minimizes the new notion of (adversarial) risk. This
adversarial risk can be defined in multiple ways, but two general ways stand out in
the literature and will be the emphasis of our discussion; we will refer to these two
alternatives as data-perturbing adversarial model and distribution-perturbing adversarial
model. As it turns out, there exist connections between the two (see Pydi and Jog
(2021b) for more details) and we will develop further connections shortly.

For the data-perturbing adversarial model we will consider the following two
versions:

Roε := inf
f∈F

Roε(f) := inf
f∈F

{∑
i∈Y

∫
X

sup
x̃∈Bε(x)

{1 − fi(x̃)}dµi(x)

}
, (2.3)

inf
f∈F

{∑
i∈Y

∫
X

sup
x̃∈Bε(x)

{1 − fi(x̃)}dµi(x)

}
. (2.4)

Here Bε(x) (Bε(x), respectively) denotes an open (closed) ball with radius ε cen-
tered at x. In both versions, the adversary can substitute any given input x with a x̃
that belongs to a small ball of radius ε around the original x. In this setting, the
learner’s goal is to minimize the worst-loss that the adversary may induce by carry-
ing out one of their feasible actions. Although at the heuristic level the difference
between the two models is subtle (in the first model the adversary optimizes over
open balls and in the second over closed balls), at the mathematical level these two



16

models can be quite different. For starters, the problem (2.4) is not well-formulated,
as it follows from a classical result in Luzin and Sierpiński (1919), which discusses
that, in general, the function x 7→ supx̃∈Bε(x){1−fi(x̃)} may not be Borel-measurable
when only the Borel-measurability of the function fi has been assumed. For this
reason, the integral with respect to µi in (2.4) (which is a Borel positive measure,
i.e., it is only defined over the Borel σ-algebra) may not be defined for all f ∈ F. In
(4.2.2) we provide a rigorous formulation of (2.4) (which at this stage should only
be interpreted informally). This reformulation will require the use of an extension
of the Borel σ-algebra, known as the universal σ-algebra, as well as an extension of
the measures µi to this enlarged σ-algebra. Problem (2.3), on the other hand, is
already well formulated, as no measurability issues arise when taking the sup over
open balls. At a high level, this is a consequence of the fact that arbitrary unions of
open balls are open sets and thus Borel-measurable; see, for example, Remark 2.3
in Bungert et al. (2023). Regardless of which of the two models one adopts, and
putting aside for a moment the measurability issues mentioned above, it is unclear
whether it is possible to find minimizers for any of the problems (2.3) and (2.4)
within the family F.

The distributional-perturbing adversarial model is defined as a minimax problem
that can be described as follows: after the learner has chosen a classifier f ∈ F,
an adversary selects a new data distribution µ̃ ∈ P(Z), and, by paying some cost
C(µ, µ̃), attempts to make the risk R(f, µ̃) be as large as possible. Precisely, we
consider the problem

R∗
DRO := inf

f∈F
sup
µ̃∈P(Z)

{R(f, µ̃) − C(µ, µ̃)} , (2.5)

where C : P(Z)× P(Z)→ [0,∞] has the form:

C(µ, µ̃) := inf
π∈Π(µ,µ̃)

∫
cZ(z, z̃)dπ(z, z̃),

for some Borel measurable cost function cZ : Z × Z → [0,∞]. Here and in the
remainder of the paper, we use Π(·, ·) to represent the set of couplings between
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two positive measures over the same space; for example, Π(µ, µ̃) denotes the set
of positive measures over Z × Z whose first and second marginals are µ and µ̃,
respectively. Note that problem (2.5) is an instance of a distributionally robust
optimization (DRO) problem. Problem (2.5) is well-defined given that all its terms
are written as integrals of Borel measurable integrands against Borel measures.

In the remainder, we will assume that the cost cZ : Z× Z→ [0,∞] has the form

cZ(z, z̃) :=

c(x, x̃) if y = ỹ∞ otherwise ,
(2.6)

for a lower semi-continuous function c : X × X → [0,∞]. Note that when cZ has
the above structure we can rewrite C(µ, µ̃) as

C(µ, µ̃) =
K∑
i=1

C(µi, µ̃i),

where on the right-hand side we slightly abuse notation and use C(µi, µ̃i) to repre-
sent

C(µi, µ̃i) = min
π∈Π(µi,µ̃i)

∫
c(x, x̃)dπ(x, x̃). (2.7)

Remark 2.2. Throughout my thesis, we use the convention that C(µi, µ̃i) = ∞ whenever
the set of couplings Π(µi, µ̃i) is empty. This is the case when µi and µ̃i have different total
masses.

A typical example of a cost c that we will discuss in detail throughout this paper
is the cost function:

c(x, x̃) = cε(x, x̃) :=

∞ if d(x, x̃) > ε

0 if d(x, x̃) ⩽ ε,
(2.8)

where in the above ε is a positive parameter that can be interpreted as adversarial
budget.
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Example 2.3. Notice that in this case, the c-transform fc of a given function f takes the
form:

fc(x) = inf
x ′ :d(x,x ′)⩽ε

f(x ′).

In this setting, (2.5) can be written as

inf
f∈F

sup
µ̃ :W∞(µ,µ̃)⩽ε

R(f, µ̃).

whereW∞(µ, µ̃) is the ∞-OT distance between µ and µ̃ relative to the distance function:

δ(z, z̃) :=

d(x, x̃) if y = ỹ,∞ otherwise.

Example 2.4. Let p > 0 and let c(x, x̃) be given by

c(x, x ′) = cp(x, x ′) := 1
τ
(d(x, x ′))p,

for some constant τ > 0. For this choice of cost c, it is possible to show, through a formal
argument whose details we omit, that problem (2.5) can be written as

inf
f∈F

sup
µ̃ :Wp(µ,µ̃)⩽ε

R(f, µ̃),

for some ε > 0 and forWp(µ, µ̃) the p-OT distance between µ and µ̃ relative to the distance
function δ from Example 2.3. The relation between τ and ε is not explicit, but, qualitatively,
small values of τ should correspond to small values of ε.

Notice that in this case the c-transform fc of a given function f takes the form:

fc(x) = inf
x ′∈X

f(x ′) +
1
τ
d(x, x ′)p.

If f is bounded below by a constant it follows that fc is always continuous (in the d metric)
regardless of the continuity properties of the original f.
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We introduce two notions that will be used throughout our analysis, called
c-transform and c-transform. Given a lower semi-continuous function f : X→ R
we define

fc(x) := inf
x ′∈X

{f(x ′) + c(x ′, x)}, (2.9)

and given an upper semi-continuous function g : X→ R we define

gc̄(x ′) := sup
x∈X

{g(x) − c(x ′, x)}. (2.10)

They have an important role in optimal transport problems. More details will be
explained in section 4.6.

Through my thesis, we always impose some assumptions on the cost c : X×X→
[0,∞] stated below.

Assumption 2.5. We assume that the cost c : X×X→ [0,∞] is a lower semi-continuous
and symmetric function satisfying c(x, x) = 0 for all x ∈ X. We also assume the the
following compactness property holds: if {xn}n∈N is a bounded sequence in (X,d) and
{x ′n}n∈N is a sequence satisfying supn∈N c(xn, x ′n) <∞, then {(xn, x ′n)}n∈N is precompact
in X× X (endowed with the product topology).

Remark 2.6. Notice that Assumption 2.5 implicitly requires bounded subsets of X to be
precompact.
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3 adversarial learning, generalized barycenter
problem and their connection by multimarginal optimal
transport

This chapter is based on Garcıa Trillos et al. (2023) which is a joint work with
Nicolas García Trillos and Matt Jacobs.

The main goal of this chapter is regarding (2.5). For a large family of functionals
C in (2.5) we show that the adversarial problem (2.5) is equivalent to a multimarginal
optimal transport problem (MOT) of the form:

inf
π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK), (3.0.1)

where c is a cost function discussed in detail throughout the paper and ΠK(µ) is a
space of couplings specified in section 3.1. As part of this equivalence, we explicitly
describe how to construct solutions to the original problem (2.5) from solutions to
the problem (3.0.1) and its dual, offering in this way new computational strategies
for solving problem (2.5). Since most algorithms for OT are primal-dual (i.e., they
simultaneously search for solutions to both the primal OT problem and its dual),
it is actually possible to construct a saddle solution (f∗,µ∗) for (2.5) by running
one such OT algorithm. The equivalence between (2.5) and (3.0.1) that we study
here is an extension to the multi-class case of a series of recent results connecting
adversarial learning in binary classification with optimal transport: Bhagoji et al.
(2019); Nakkiran (2019); Pydi and Jog (2021a,b); García Trillos and Murray (2022).

In order to establish the equivalence between (2.5) and (3.0.1), we develop
another interesting equivalent reformulation of (2.5) that reveals a rich geometric
structure of the original adversarial problem. This reformulation takes the form of
a generalized barycenter problem

inf
λ,µ̃1,...,µ̃K

λ(X) +
∑
i∈Y

C(µi, µ̃i) s.t. λ ⩾ µ̃i, i ∈ Y,
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which is a novel variant of the Wasserstein barycenter problems introduced in
Agueh and Carlier (2011a); Carlier and Ekeland (2010). In the classical Wasserstein
barycenter problem, given K probability measures ρ1, . . . , ρK defined over a Polish
space X and a cost c : X×X→ [0,∞], one tries to find a probability measure ρ such
that the summed cost of transporting each of the ρi onto ρ is as small as possible.
In our generalized problem, we try to find a nonnegative measure λ (no longer
necessarily a probability measure) such that the total mass of λ plus the summed
cost of transporting each µi (not necessarily having the same total mass) onto some
part of λ is as small as possible. Here transporting a µi onto some part of λmeans
we want to find a measure µ̃i ⩽ λ and transport µi to µ̃i in the classical optimal
transport sense. This problem will be studied in detail in section 3.2. We prove
that these generalized barycenter problems can be written as appropriate MOT
problems, a result that is analogous to ones in Agueh and Carlier (2011a); Carlier
and Ekeland (2010) for standard Wasserstein barycenter problems.

From the equivalence with the generalized barycenter problem we will be able
to deduce that optimal adversarial attacks can always be obtained as suitable
barycenters of K or less points in the original training data set. Also, from this
reformulation we will be able to recognize the structure of the cost function c in
(3.0.1): for the adversary to obtain their optimal strategy, they can actually localize
their problem to sets of K or fewer data points —see section 3.1. Other theoretical,
methodological, and computational implications of these reformulations will be
pursued in future work. See section 3.5 for a discussion on future directions for
research.

In contrast to many of the existing applications of OT to ML, it is worth empha-
sizing that in this work OT arises naturally in connection with a learning problem,
rather than as a particular way to address a certain machine learning task. For
the growing literature in multimarginal optimal transportation this paper offers
new examples of cost functions worthy of study. MOT is a rich topic that has
been developed over the years from theoretical and applied perspectives. After
the first mathematical analysis of general MOT problems in Gangbo and Świech
(1998), there have been numerous subsequent papers establishing geometric and
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analytic results (e.g., Kim and Pass (2013); Pass (2015); Kitagawa and Pass (2015);
Chiappori et al. (2017)) for MOT problems. MOT problems have also been used
extensively in applications. For example, they appear in the so-called density func-
tional theory in physics Seidl et al. (2007); Buttazzo et al. (2012); Cotar et al. (2013);
Mendl and Lin (2013); Colombo et al. (2015), and in economics Ekeland (2005);
Chiappori et al. (2010); Carlier and Ekeland (2010). In the machine learning com-
munity, researchers have recently explored many interesting applications, including
generative adversarial networks(GANs) Choi et al. (2018); Cao et al. (2019) and
Wasserstein Barycenters Agueh and Carlier (2011a); Cuturi and Doucet (2014);
Benamou et al. (2015); Carlier et al. (2015); Srivastava et al. (2018); Delon and
Desolneux (2020), where MOTs are used. Recent works like Di Marino and Gerolin
(2020); Haasler et al. (2021) develop a connection between the Schrödinger bridge
problem and MOT. MOT problems have been extended to the unbalanced setting
—see Beier et al. (2021).

Outline of this chapter

In section 3.1, we introduce the generalized Wasserstein barycenter problem, which
can be interpreted as dual of (2.5), and define in detail the MOT problem (3.0.1).
In section 3.2, we study the aforementioned generalized Wasserstein barycenter
problem and prove its equivalence with 1) a stratified barycenter problem and
2) a first version of an MOT problem. In section 3.3 we discuss the equivalence
between (2.5) and (3.0.1) through the duality results in earlier sections. In section
3.4, we present a collection of examples and numerical experiments whose goal is to
illustrate the theory developed throughout the paper and provide further insights
into the geometric structure of adversarial learning in multiclass classification.
Finally, we wrap-up the chapter in section 3.5 by presenting some summary.
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3.1 The generalized barycenter problem and the MOT
problem

Recall the solution space F and the space of probability measures P(Z). For a given
pair (f, µ̃) ∈ F × P(Z), we define the risk:

R(f, µ̃) := E(X̃,Ỹ)∼µ̃[ℓ(f(X̃), Ỹ)] =
∑
i∈Y

∫
X

(1 − fi(x̃))dµ̃i(x̃),

which can be regarded as a bilinear functional R(·, ·) : F × P(Z) −→ R+. For
convenience, we introduce the so-called classification power for a pair (f, µ̃) ∈ F ×
P(Z), which is defined by

B(f, µ̃) :=
∑
i∈Y

∫
X

fi(x̃)dµ̃i(x̃). (3.1.1)

With these new definitions, problem (2.5) is immediately seen to be equivalent to

sup
f∈F

inf
µ̃∈P(Z)

{B(f, µ̃) + C(µ, µ̃)} . (3.1.2)

Moreover, if we denote by B̃∗
µ the optimal value of (3.1.2), and by R∗

µ the optimal
value of (2.5), we have the identity:

R∗
DRO = 1 − B̃∗

µ.

We write 1 explicitly, although for the most part 1 can be thought of as being equal
to one.

The dual of (3.1.2) is obtained by swapping the sup and the inf:

inf
µ̃∈P(Z)

sup
f∈F

{B(f, µ̃) + C(µ, µ̃)} . (3.1.3)

Notice that the value of (3.1.3) is always greater than or equal to the value of
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(3.1.2). Instead of attempting to invoke an abstract minimax theorem implying the
equality of these two quantities at this stage, we prefer to defer this discussion to
later sections where in fact we will prove that, under Assumption 2.5, there is no
duality gap in this problem. In what follows we focus on the dual problem (3.1.3)
and only return to problem (3.1.2), which is equivalent to the original adversarial
problem (2.5), in section 3.3. Notice, however, that the statement of Theorem 3.3
mentions the adversarial problem explicitly.

For fixed µ̃, notice that

sup
f∈F

{B(f, µ̃) + C(µ, µ̃)} = sup
f∈F

{∑
i∈Y

∫
X

fi(x̃)dµ̃i(x̃) + C(µ, µ̃)
}

= sup
f∈F

{∑
i∈Y

∫
X

fi(x̃)dµ̃i(x̃)

}
+ C(µ, µ̃).

Introducing a new variable λ, a positive measure over X, we can rewrite the latter
sup as:

inf
λ
λ(X) s.t.

∫
X

g(x)d(λ− µ̃i)(x) ⩾ 0 for all g ⩾ 0, i ∈ Y;

the constraint in λ can be simply written as λ ⩾ µ̃i for all i ∈ Y. Combining the
above with the structure of the cost C(µ, µ̃), we conclude that problem (3.1.3) is
equivalent to the generalized barycenter problem mentioned in the introduction:

B∗
µ := inf

λ,µ̃1,...,µ̃K

{
λ(X) +

∑
i∈Y

C(µi, µ̃i) : λ ⩾ µ̃i for all i ∈ Y

}
, (3.1.4)

where we use the notation B∗
µ for future reference; see Figure 3.1 for a pictorial

explanation.

Remark 3.1. It is straightforward to see from (3.1.3) that B∗
µ is 1-homogeneous in µ. That

is, if a > 0, then B∗
aµ = aB∗

µ.
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μ1
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μ2

λ
μ2

μ3

μ1

Figure 3.1: Picture for (3.1.4). µi’s are first moved to µ̃i’s and λ is chosen to cover
all µ̃i’s: it is the smallest positive measure which is larger than all µ̃i’s.

The MOT problem

General MOT problems

Before providing the details of our MOT problem (3.0.1), it is worth introducing the
generic MOT problem first. Let S1, . . . , SK be fixed spaces and let c : S1× · · · × SK →
R ∪ {+∞,−∞} be a cost function. For each 1 ⩽ k ⩽ K, let νk ∈ P(Sk) be a
Borel probability measure. The MOT problem associated to the cost function
c and the measures ν1, . . . ,νK is the following (possibly infinite dimensional) linear
optimization problem with K-marginal constraints:

inf
π∈Π(ν1,...,νK)

∫
S1×···×SK

c(ξ1, . . . , ξK)dπ(ξ1, . . . , ξK),

where

Π(ν1, . . . ,νK) := {π ∈ P(S1 × · · · × SK), s.t., for every i, i-th marginal of π = νi}.
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MOTs are generalizations of the standard (two marginals) optimal transport (OT)
problems and their duals take the form:

sup
ϕ∈Φ

{
K∑
j=1

∫
Sj

ϕj(ξj)dνj(ξj)

}
, (3.1.5)

whereΦ is the set of all ϕ = (ϕ1, . . . ,ϕK) ∈
∏K
j=1 L

1(νj) such that

K∑
j=1

ϕj(ξj) ⩽ c(ξ1, . . . , ξK), ∀(ξ1, . . . , ξK) ∈ S1 × · · · × SK.

One of the most popular examples of MOT problems is connected to the Wasser-
stein Barycenter problem over P(X); see Ekeland (2005); Chiappori et al. (2010);
Agueh and Carlier (2011a). Let c : X×X→ R∪ {+∞,−∞} be a fixed pairwise cost
function. In the Wasserstein barycenter problem the goal is to find a solution ν∗ to
the problem

inf
ν ′

∑
i∈Y

C(ν ′,νi) where C(ν,νi) := inf
π∈Π(ν,νi)

∫
X×X

c(x ′, x)dπ(x ′, x).

Such ν∗ can be interpreted as an “average" or barycenter of the input measures
ν1, . . . ,νK relative to the cost C. It can then be showed that the above Wasserstein
barycenter problem is equivalent to solving the following MOT problem

inf
π∈Π(ν1,...,νK)

∫
XK

c(x1, . . . , xK)dπ(x1, . . . , xK),

where
c(x1, . . . , xK) := inf

x ′∈X

∑
i∈Y

c(x ′, xi).

Indeed, let π∗ be a minimizer of the above MOT problem. Defining ν∗ = T#π,
where T(x1, . . . , xK) := argminx ′

∑
i∈Y c(x

′, xi), i.e., defining ν∗ as the pushforward
measure of π∗ with respect to the barycenter mapping T , one can recover a solution
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to the original barycenter problem. Conversely, one can use a Wasserstein barycenter
ν∗ and couplings πi realizing the costs C(ν∗,νi) to build a solution to the MOT
problem; see more details in Agueh and Carlier (2011a).

From adversarial robustness to MOT

Now we are ready to state problem (3.0.1) precisely. For this, we will need to
modify the space Z and in particular add an extra element to it that will be denoted
by the symbol . The marginals of the couplings in the desired MOT problem
will be probability measures over the set Z∗ := Z ∪ { }. More precisely, letting Pi
represent the projection onto the i-th coordinate, we consider the set:

ΠK(µ) :=

{
π ∈ P(ZK∗ ) : Pi♯π =

1
2µ(· ∩ Z) +

1
2δ for all i ∈ Y

}
. (3.1.6)

Notice that in this set all K marginals are the same. Dividing by the factor 1
2 , the

set ΠK(µ) is made to be consistent with the literature on multimarginal optimal
transport, where sets of couplings are typically assumed to be probability measures.

Let us now discuss the cost function for the desired MOT problem. For a given
tuple (z1, . . . , zK) in ZK∗ , often denoted by z⃗ in the sequel for convenience, we define

c(z1, . . . , zK) := B∗
µ̂z⃗

, (3.1.7)

where µ̂z⃗ is the positive measure (not necessarily a probability measure) defined
as:

µ̂z⃗ :=
1
K

K∑
l s.t. zl ̸=

δzl .

Recall that B∗
µ̂z⃗

is equal to (3.1.4) (alternatively, equal to (3.1.3)) when µ is equal to
µ̂z⃗. In this sense, c(z1, . . . , zK) of (3.1.7) is the value of the generalized barycenter
problem given µ̂z⃗ as the data distribution, or local generalized barycenter problem.

Remark 3.2. Notice that µ̂z⃗ is a probability measure if and only if no element in the tuple
z⃗ is .
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Following the literature of MOT, the dual of our MOT problem can be written as

sup
ϕ∈Φ

{
K∑
j=1

∫
X×Y

ϕj(zj)
1
2dµ(zj) +

1
2

K∑
j=1

ϕj( )

}
, (3.1.8)

where

Φ :=

{
ϕ = (ϕ1, . . . ,ϕK) ∈

K∏
j=1

L1(1
2µ+

1
2δ

)
:

K∑
j=1

ϕj(zj) ⩽ B
∗
µ̂z⃗

, ∀z⃗ ∈ ZK∗

}
.

(3.1.9)
We will later show that under Assumption 2.5 there is no duality gap between the
MOT problem and its dual (3.1.8) —see Corollary 3.28.

One of the main results of the paper is the following.

Theorem 3.3. Suppose that Assumption 2.5 holds. Let µ be a finite positive measure over
Z. Then (3.1.3) is equivalent to the MOT problem (3.0.1) with set of couplings ΠK(µ)
defined as in (3.1.6), and cost function c defined as in (3.1.7). Specifically,

1
2B

∗
µ = min

π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK).

Furthermore, (3.1.2) = (3.1.3). In addition, from a solution pair (π∗,ϕ∗) for the MOT
problem and its dual one can obtain a solution pair (f∗, µ̃∗) for (3.1.3) and its dual, i.e.
problem (3.1.2). The pair (f∗, µ̃∗) is also a saddle point for the original adversarial problem
(2.5).

One immediate consequence of Theorem 3.3 is that with the identity

R∗
DRO = 1 − B̃∗

µ,

one can compute R∗
µ, the optimal adversarial risk, by finding the optimal value of

the equivalent MOT problem. To find the latter, one could attempt to use one of the
off-the-shelf algorithms in computational optimal transport. Some algorithms to
solve generic MOTs that have been developed recently include the ones proposed
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in see Benamou et al. (2015, 2019); Lin et al. (2022); Tupitsa et al. (2020); Haasler
et al. (2021); Altschuler and Boix-Adsera (2021); Carlier (2022). Our numerical
results for a subsample of MNIST and CIFAR 10, shown in Figure 3.6, are obtained
using the algorithm discussed in Lin et al. (2022), also known as MOT Sinkhorn
algorithm; see subsection 3.4 for more details. We want to warn the reader, however,
that off-the-shelf MOT algorithms may suffer an excessive computational burden
when K goes beyond 4. For this reason, it is important to develop algorithms that
exploit the structure of our MOT problem, which, as we will discuss below, has the
structure of a generalized barycenter problem. An investigation on more specific
algorithms is left for future work.

The proof of Theorem 3.3 is presented throughout section 3.3; the expression for
(f∗, µ̃∗) in terms of (ϕ∗,π∗) is presented in Corollary 3.30. Given the definition of
the cost function c, Theorem 3.3 states that the adversarial problem localizes to data
sets consisting of K or less equally weighted points. More precisely, the problem
for the adversary reduces to first determining their actions when facing arbitrary
distributions supported on K or fewer data points, and then finding an optimal
grouping for the data in order to assemble their global strategy. The ghost element,

, indicates when fewer than K points are being grouped by the adversary. We
highlight that it is not always (globally) optimal for the adversary to group together
points from all the K different classes whenever it is possible.

We emphasize that from the solution to the MOT and its dual, one can directly
obtain an optimal adversarial attack and an optimal classification rule for the
original adversarial problem. Note that problem (3.0.1) is a problem solved by the
adversary: ideally, the adversary wants to group together points (z1, . . . , zK) for
which there is a low classification power B∗

µ̂z⃗
(or alternatively large robust risk). On

the other hand, the dual of (3.0.1) can be interpreted as a maximization problem
solved by the learner. We formalize this novel connection in subsection 3.3: see
Corollary 3.30.

In order to prove Theorem 3.3, we will first obtain a series of equivalent re-
formulations of problem (3.1.4) which will reveal a rich geometric structure of
the adversarial problem and will facilitate the connection with the desired MOT
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problem. These equivalent formulations are of interest in their own right.

3.2 The generalized barycenter problem
We begin this section by proving that the generalized barycenter problem always
has at least one solution. In the following subsections we will then discuss a series
of equivalent problems to the generalized barycenter problem, their duals, and
some geometric properties of their solutions.

Proposition 3.4. Suppose that c is a lower semicontinuous cost satisfying the property
that for any compact set E ⊂ X there exists a compact set F ⊂ X such that for all x ∈ E, x ′ ∈
F, x ′′ ∈ X \ F we have c(x, x ′) ⩽ c(x, x ′′). Given finite positive measures µ1, . . . ,µK and c
as above, there exists at least one solution to problem (3.1.4).

Remark 3.5. If c is a cost that satisfies Assumption 2.5, then c satisfies the hypothesis of
Proposition 3.4.

Remark 3.6. Nearly identical arguments can be used to prove that the various reformu-
lations of (3.1.4) that we will consider throughout this section have minimizers. For this
reason, in what follows, we will simply assume the existence of minimizers without explicitly
proving their existence.

Proof. Using transportation plans to compute the cost C(µi, µ̃i) in (3.1.4), we can
rewrite the problem in the following form

inf
λ,π1,...,πK

{
λ(X) +

∑
i∈Y

∫
X×X

c(x, x ′)dπi(x, x ′)
}

s.t. πi(X× E) ⩽ λ(E),πi(E× X) = µi(E) for all i ∈ Y, ∀E ⊆ X Borel.

Note that a feasible solution to this problem exists since we may choose λ,π1, . . . ,πK
such that λ :=

∑
i∈Y µi and for all f ∈ Cc(X×X)

∫
X×X

f(x, x ′)dπi(x, x ′) :=
∫
X
f(x, x)dµi(x).

Also note that with these choices, the problem attains the value
∑
i∈Y µi(X).
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Let λn,πn1 , . . . ,πnK be a sequence of feasible solutions such that

t := inf
λ,π1,...,πK

λ(X) +
∑
i∈Y

∫
X×X

c(x, x ′)dπi(x, x ′)

= lim
n→∞ λn(X) +

∑
i∈Y

∫
X×X

c(x, x ′)dπni (x, x ′).

From our work above and the nonnegativity of the transport cost, λn(X) is uniformly
bounded by

∑
i∈Y µi(X). Furthermore, we may assume that for any Borel set E

∑
i∈Y

∫
X×E

dπni (x, x ′) ⩾ λn(E),

otherwise we could delete mass from λn and attain a smaller value. Given some
ϵ > 0, letEϵ ⊂ X be a compact set such that

∑
i∈Y µi(X\Eϵ) ⩽ ϵ. Let Fϵ be a compact

set such that for all x ∈ Eϵ, x ′ ∈ Fϵ and x ′′ ∈ X\ Fϵ we have c(x, x ′) ⩽ c(x, x ′′). If λn

gives more than ϵ to X\ Fϵ then some of this mass must be transported to Eϵ. Since
the transportation cost would be cheaper if the excess mass was placed inside of Fϵ
instead of X \ Fϵ, it follows that λn(X \ Fϵ) ⩽ ϵ. Therefore, the λn are a tight family.

The tightness of λn and µ1, . . . ,µK implies that πn1 , . . . ,πnK are a tight family.
Therefore, we can extract a subsequence that converges weakly to a limit λ∗,π∗

1 , . . . ,π∗
K.

From the lower semicontinuity of the cost, it follows that {λ∗,π∗
1 , . . . ,π∗

K} is a mini-
mizer.

A first MOT reformulation of (3.2.1) and geometric consequences

In the rest of what follows, we shall let SK denote the power set of Y except for the
empty set and for every i ∈ Y we let SK(i) = {A ∈ SK : i ∈ A}. We can reduce (3.1.4)
to a more concrete problem by partitioning λ and each of µi’s properly, eliminating
the variables µ̃i’s from the optimization. We start with the following observation.

Lemma 3.7. Let u1, . . . ,uK ∈ [0, 1] be such that maxi=1,...,K ui = 1. Then there exists a
collection of non-negative scalars {rA}A∈SK such that the following two conditions hold:



32

1. 1 =
∑
A∈SK rA.

2. ui =
∑
A∈SK(i) rA for all i = 1, . . . ,K.

Proof. Without loss of generality we can assume that the ui are arranged in increas-
ing order. That is,

0 ⩽ u1 ⩽ u2 ⩽ . . . ,⩽ uK = 1.

Let i ′ be the first i such that ui > 0. We set

r{i ′,...,K} := ui ′

r{i ′+1,...,K} := ui ′+1 − ui ′

r{i ′+2,...,K} := ui ′+2 − ui ′+1

...

r{K} := 1 − uK−1.

and rA = 0 for all other sets. It is straightforward to check that the collection
{rA}A∈SK defined in this way satisfies the required conditions.

Proposition 3.8. Problem (3.1.4) is equivalent to

inf
{λA,µi,A:i∈Y,A∈SK}

∑
A∈SK

{
λA(X) +

∑
i∈A

C(λA,µi,A)
}

s.t.
∑

A∈SK(i)

µi,A = µi for all i ∈ Y.
(3.2.1)

Proof. We split the proof into two parts.
Step 1: Suppose that λ, µ̃1, . . . , µ̃K is feasible for problem (3.1.4). In particular,

λ ⩾ µ̃i for all i. Let us denote by dµ̃i
dλ

the Radon-Nikodym derivative of µ̃i w.r.t.
λ. Notice that dµ̃i

dλ
⩽ 1 because λ dominates µ̃i. Moreover, without the loss of

generality we can assume that for every x ∈ spt(λ) we have maxi=1,...,K
dµ̃i
dλ

(x) = 1,
for otherwise we could modify λ and potentially reduce the energy in (3.1.4) while
maintaining the constraints.
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For each x ∈ spt(λ) we apply Lemma 3.7 with ui(x) := dµ̃i
dλ

(x) to obtain a
collection of scalars {rA(x)}A∈SK satisfying:

(i) 1 =
∑
A∈SK rA(x).

(ii) ui(x) =
∑
A∈SK(i) rA(x) for all i = 1, . . . ,k.

Notice that the functions rA(·) can be constructed in a measurable way as it follows
from the proof of Lemma 3.7. For each A ∈ SK we define the measure λA as

dλA

dλ
(x) := rA(x),

and for A and i ∈ A we define
µ̃i,A := λA.

See Figure 3.2 (a) for an illustration of the λA’s. From the above definitions and the
properties of the functions rA we deduce∑

A∈SK

dλA(x) =
∑
A∈SK

rA(x)dλ(x) = dλ(x)

and ∑
A∈SK(i)

dµ̃i,A(x) =
∑

A∈SK(i)

rA(x)dλ(x) =
dµ̃i

dλ
(x)dλ(x) = dµ̃i(x).

Now, let πi ∈ Π(µi, µ̃i) be a coupling realizing the costC(µi, µ̃i), i.e., a minimizer
of (2.7), and use the disintegration theorem to write it as

dπi(x, x̃) = dπ∗
i (x|x̃)dµ̃i(x̃),

where dπ∗
i (·|x̃) is the conditional of x given x̃ according to the joint distribution π∗

i .
For each A ∈ SK and i ∈ A we define the measure πi,A according to

dπi,A(x, x̃) := dπ∗
i (x|x̃)dµ̃i,A(x̃).

Finally, we set µi,A to be the first marginal of πi,A.
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It is now straightforward to show that {λA,µi,A} is feasible for (3.2.1). Moreover,

λ(X) +

k∑
i=1

C(µi, µ̃i) ⩾
∑
A∈SK

{
λA(X) +

∑
i∈A

C(λA,µi,A)
}

.

Step 2: Conversely, suppose that {λA}A, {µi,A}A is feasible for (3.2.1). Set λ :=∑
A∈SK λA and for every i let µ̃i :=

∑
A∈Sk(i) λA. Clearly we have λ ⩾ µ̃i for all i.

Moreover, let πi,A ∈ Γ(µi,A, λA) realizing the cost C(λA,µi,A). See (b) of Figure 3.2
to understand how µi,A is transported to λA. Finally, for each iwe set

πi :=
∑

A∈SK(i)

πi,A.

With these constructions it is now straightforward to show that

∑
A∈SK

{
λA(X) +

∑
i∈A

C(λA,µi,A)
}

⩾ λ(X) +
k∑
i=1

C(µi, µ̃i).

λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1}
λ{2}

λ{2,3}
λ{3}

λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1} μ1,{1}

μ1,{1,3}
μ1,{1,2,3}

μ1,{1,2}

μ1

(a) (b)

Figure 3.2: (a) : Illustration of a partition of λ. (b) : Illustration of the transport
from µ1,A’s to λA’s.
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λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1}
λ{2}

λ{2,3}
λ{3}

μ1,{1}

μ1,{1,2,3}μ1,{1,2} μ1,{1,3}

μ2,{2,3}

μ2,{1,2,3}

μ2,{1,2}μ2,{2}

μ3,{3}μ3,{2,3}
μ3,{1,3}

μ3,{1,2,3}

Figure 3.3: Picture for (3.2.1). Each of µi,A’s is transported to λA for all i ∈ A.

Remark 3.9. Figure 3.3 illustrates the partitions for λ and the µi’s. To keep notation from
getting too complicated, in the sequel we shall assume that µi,A is defined for all i ∈ Y and
A ⊆ SK, however, note that if i /∈ A, then µi,A plays no role in the optimization (3.2.1).

Suppose that for some A ∈ SK we fix a choice of µi,A for all i ∈ A. With the
µi,A fixed, we can determine the corresponding optimal λ∗A = λ∗A(µ1,A, . . . ,µK,A)

by solving the classic Wasserstein barycenter problem. Indeed, the optimal choice
must be an element of

argmin
λA

∑
i∈A

C(λA,µi,A). (3.2.2)

Note that here we do not need to consider the mass of λA, since the value of the
optimization problem will be +∞ if λA does not have the same mass as all of the
µi,A (or if the µi,A themselves do not all have the same mass).

It is well known that problem (3.2.2) can be reformulated as a multimarginal
optimal transport problem Agueh and Carlier (2011a); see also our subsection 3.1.
To that end, given A ⊆ Y, define cA : XK → R

cA(x1, . . . , xK) := inf
x ′∈X

∑
i∈A

c(x ′, xi), (3.2.3)
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and TA : XK → X

TA(x1, . . . , xK) := argmin
x ′∈X

∑
i∈A

c(x ′, xi). (3.2.4)

Remark 3.10. If argminx ′∈X

∑
i∈A c(x

′, xi) is not unique, we can consider using an
additional selection procedure. For example, when X = Rd we can still recover a unique
mapping by choosing TA to be the element of argminx ′∈X

∑
i∈A c(x

′, xi) that is closest (in
the Euclidean distance) to the Euclidean barycenter 1

|A|

∑
i∈A xi.

With the definition of cA, we can rewrite (3.2.2) as the multimarginal optimal
transport problem

inf
πA

∫
XK
cA(x1, . . . , xK)dπA(x1, . . . , xK) s.t. Pi #πA = µi,A for all i ∈ A, (3.2.5)

where Pi is the projection map (x1, . . . , xK) 7→ xi. Again, even though πA is defined
over XK, only the coordinates iwhere i ∈ A play a role in the optimization problem.
Indeed, cA is independent of the other coordinates and we only have marginal
constraints for i ∈ A.

Using (3.2.5) we can now eliminate λA and all of the µi,A’s from problem (3.2.1)
and reformulate the optimization as the multimarginal problem

inf
{πA:A∈SK}

∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK)

s.t.
∑

A∈SK(i)

Pi #πA = µi for all i ∈ Y.
(3.2.6)

The next two propositions formally prove the equivalence between (3.2.1) and
(3.2.6). They will also allow us to establish some important geometric properties of
optimal generalized barycenters.

Proposition 3.11. Let c be a cost satisfying Assumption 2.5. Given measures µ1, . . . ,µK,
let {πA}A∈SK be a feasible solution to (3.2.6). For each (x1, . . . , xK) ∈ XK and A ∈ SK,
let fA(x1, . . . , xK) be a choice of element in TA(x1, . . . xK), where we recall the definition of
TA(x1, . . . , xK) from (3.2.4).
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If for each A ∈ SK and i ∈ A we set λ̃A = fA #πA and µ̃i,A = Pi #πA, then {λ̃A, µ̃i,A :

A ∈ SK, i ∈ A} is a feasible solution to (3.2.1) and

∑
A∈SK

λ̃A(X) +
∑
i∈A

C(λ̃A, µ̃i,A) ⩽
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK).

Proof. Since
∑
A∈SK(i) Pi #πA = µi, it is automatic that

∑
A∈SK(i) µ̃i,A = µi. Since

pushforwards do not affect the total mass of a measure, so we also have µ̃i,A(X) =
λ̃A(X) for all A ∈ SK and i ∈ A. Hence, {λ̃A, µ̃i,A}A∈SK,i∈A is a feasible solution to
(3.2.1).

For each A ∈ SK and i ∈ A, choose φi,A,ψi,A ∈ Cb(X) that satisfy, for all
x, x ′ ∈ X,

φi,A(x) −ψi,A(x
′) ⩽ c(x, x ′).

We can then compute∫
X

φi,A(xi)dµ̃i,A(xi) −

∫
X

ψi,A(x
′)dλ̃A(x

′)

=

∫
X

φi,A(xi)dµ̃i,A(xi) −

∫
XK
ψi,A(fA(x1, . . . , xK))dπA(x1, . . . , xK)

⩽
∫
X

φi,A(xi)dµ̃i,A(xi) +

∫
XK

(
c
(
xi, fA(x1, . . . , xK)

)
−φi,A(xi)

)
dπA(x1, . . . , xK)

=

∫
XK
c
(
xi, fA(x1, . . . , xK)

)
dπA(x1, . . . , xK).

Thus,

∑
i∈A

∫
X

φi,A(xi)dµ̃i,A(xi) −

∫
X

ψi,A(x
′)dλ̃A(x

′)

⩽
∫
XK

∑
i∈A

c
(
xi, fA(x1, . . . , xK)

)
dπA(x1, . . . , xK)

=

∫
XK
cA(x1, . . . , xK)dπA(x1, . . . , xK),

where we have used the definition of fA, TA, and cA to obtain the last equality.
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Hence,

∑
A∈SK

λ̃A(X) +
∑
i∈A

∫
X

φi,A(xi)dµ̃i,A(xi) −

∫
X

ψi,A(x
′)dλ̃A(x

′)

⩽
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK).

Taking the supremum over all admissible choices of φi,A,ψi,A and exploiting the
dual formulation of optimal transport,

∑
A∈SK

λ̃A(X) +
∑
i∈A

C(λ̃A, µ̃i,A) ⩽
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK),

which is the desired result we want.

In the next proposition we will show that any feasible solution of problem (3.2.1)
induces a feasible solution of (3.2.6) with lesser or equal value. This will prove
the equivalence between problems (3.2.1) and (3.2.6) and will provide a powerful
geometric characterization of optimal generalized barycenters.

Proposition 3.12. Let c be a cost satisfying Assumption 2.5. Given measures µ1, . . . ,µK,
let µi,A, λA be feasible solutions to problem (3.2.1). Let γi,A ∈M(X× X) be an optimal
plan for the transport of µi,A to λA with respect to the cost c. Let γA ∈M(XK+1) such that
for all i ∈ A and g ∈ Cb(X× X)∫

XK+1
g(xi, x ′)dγA(x1, . . . , xK, x ′) =

∫
XK+1

g(xi, x ′)dγi,A(xi, x ′).

If we define π̃A on XK such that for any h ∈ Cb(XK) we have∫
XK
h(x1, . . . , xK)dπA(x1, . . . , xK) =

∫
XK+1

h(x1, . . . , xK)dγA(x1, . . . , xK, x ′),
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then π̃A is a feasible solution to (3.2.6) and

∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK) ⩽

∑
A∈SK

λA(X) +
∑
i∈A

C(λA,µi,A).

Therefore, (3.2.1) = (3.2.6).

Proof. We begin by noting that the marginal constraints on γA are compatible in
the sense that for any g ∈ Cb(X) and i ∈ A we have∫

X

g(x ′)dγi,A(xi, x ′) =
∫
X

g(x ′)dλA(x
′).

Thus, each γA is well-defined.
Using the definition of dπ̃A and then cA, it follows that

∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK)

=
∑
A∈SK

∫
XK+1

(
cA(x1, . . . , xK) + 1

)
dγA(x1, . . . , xK, x ′)

⩽
∑
A∈SK

∫
XK+1

(
1 +

∑
i∈A

c(xi, x ′)
)
dγA(x1, . . . , xK, x ′)

=
∑
A∈SK

∫
XK+1

(
1 +

∑
i∈A

c(xi, x ′)
)
dγi,A(xi, x ′)

=
∑
A∈SK

λA(X) + C(µi,A, λA)

where the final equality follows from the fact that γi,A is an optimal plan for the
transport of µi,A to λA.

In addition to proving the equivalence between problems (3.2.1) and (3.2.6),
Proposition 3.11 and Proposition 3.12 have the following very important geometric
consequences.
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Corollary 3.13. Let c be a cost satisfying Assumption 2.5. Given measures µ1, . . . ,µK,
let λ be an optimal generalized barycenter and let {λA}A∈SK be a decomposition of λ and
{µi,A}A∈SK(i) a decomposition of each µi that are optimal for (3.2.1). Recalling (3.2.4), let
TA(x1, . . . , xK) := argminx∈X

∑
i∈A c(x, xi). If we define TA := {TA(x1, . . . , xK) : x1 ∈

spt(µ1), . . . , xK ∈ spt(µK)} and T = ∪A⊆YTA, then λA(X) = λA(TA), λ(X) = λ(T) and
the optimal measures µ̃i in (3.1.4) can be assumed to satisfy µ̃i(X) = µ̃i(T) as well.

In particular, if fA(x1, . . . , xK) is a choice of element from TA(x1, . . . , xK) for each
A ∈ SK and (x1, . . . , xK) ∈ XK, then there exists an optimal barycenter λf such that
λf(X) = λf(F) where F =

⋃
A∈SK

⋃
(x1,...xK)∈spt(µ1)×···×spt(µK) fA(x1, . . . , xK).

Remark 3.14. In the case where we have a tuple (x1, . . . , xK) ∈ spt(µ1)× · · · × spt(µK)
such that

∑
i∈A c(x, xi) = +∞ for all x ∈ X, we set TA(x1, . . . , xK) = ∅.

Proof. From Proposition 3.12, we can use {λA}A∈SK and {µi,A}A∈SK,i∈A to construct
measures {π̃A}A∈SK with

∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK) ⩽

∑
A∈SK

λA(X) +
∑
i∈A

C(λA,µi,A).

(3.2.7)
From Proposition 3.11, we can then use π̃A to construct decompositions {λ̃A}A∈SK

and {µ̃i,A}A∈SK,i∈A such that

∑
A∈SK

λ̃A(X) +
∑
i∈A

C(λ̃A, µ̃i,A) ⩽
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK).

(3.2.8)
Examining the proof of Proposition 3.12, it follows that the inequality in (3.2.7)
is strict if λA(X) > λA(TA). In that case, combining (3.2.7) and (3.2.8) would
contradict the optimality of λ. Therefore, λA(TA) = λA(X). The final statements
follow from the constraints satisfied by the µ̃i and the construction in Proposition
3.11.

When µ1, . . . ,µK are supported on a finite set of points, Corollary 3.13 has the
following consequence.
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Corollary 3.15. If µ1, . . . ,µK are measures that are supported on a finite set of points and c
is a cost satisfying Assumption 2.5, then there exists a solution λ to the optimal generalized
barycenter problem (3.1.4) that is supported on a finite set of points.

In particular, if each µi is supported on a set of ni points, then there exists an optimal
barycenter that is supported on at most

∑
A∈SK

∏
i∈A ni ⩽ 2K

∏K
i=1 ni points.

Remark 3.16. Notice that the bound mentioned at the end of Corollary 3.15 is a worst case
bound. In practice, especially when data sets have a favourable geometric structure, the
optimal barycenter λ may have a much sparser support. See section 3.4.

Proof. For each i ∈ Y we can assume there exists a finite set Xi ⊂ X such that µi is
supported on Xi. For each A ∈ SK, let fA : XKi → X be a function such that

fA(x1, . . . , xK) ∈ TA(x1, . . . , xK)

for all (x1, . . . , xK) ∈ XKi , where we recall the definition of TA from (3.2.4). We can
now construct the set

F =
⋃
A∈SK

⋃
(x1,...,xK)∈

∏K
i=1Xi

{fA(x1, . . . , xK)},

which is necessarily finite. Indeed, if we setni = |Xi|, then Fhas at most
∑
A∈SK

∏
i∈A ni

elements. By Corollary 3.13, there exists an optimal barycenter supported on F
only.

A second MOT reformulation of (3.2.1)

Note that in problem (3.2.6) we need to find a distribution πA for each A ∈ SK.
Hence, it is natural to wonder if we can reformulate problem (3.2.6) in such a way
that we only need to find a single distribution γ. Here one must be careful, as
the previous formulations of the problem do not require the input distributions
µ1, . . . ,µK to have the same mass. As a result, if we try to work over a space of
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probability distributions whose marginals are µ1, . . . ,µK, then we cannot recover
the full generality of (3.2.6).

To overcome this difficulty, we will define γ over the slightly larger space (X×
[0, 1])K. The extra coordinate will help us track the mass associated to each label i.
Define c̃ : (X× [0, 1])K → R by

c̃((x1, r1), . . . , (xK, rK))

:= inf
m:SK→R

∑
A∈SK

mA
(
cA(x1, . . . , xK) + 1

)
s.t.

∑
A∈SK(i)

mA = ri. (3.2.9)

For each i ∈ Y, let P̃i be the projection ((x1, r1), . . . , (xK, rK)) 7→ xi. In what follows,
we use (⃗x, r⃗) to denote the tuple ((x1, r1), . . . , (xK, rK)). We then claim that problem
(3.2.6) is equivalent to

inf
γ

∫
(X×[0,1])K

c̃(⃗x, r⃗)dγ(⃗x, r⃗) s.t. P̃i #(riγ) = µi for all i ∈ Y. (3.2.10)

Proposition 3.17. Problems (3.2.6) and (3.2.10) are equivalent, and thus (3.2.10) is also
equivalent to (3.1.3), (3.1.4) and (3.2.1).

Proof. Given a feasible solution π{1}, . . . ,πY to problem (3.2.6), define γ such that
for every continuous and bounded function f : (X× [0, 1])K → R we have∫
(X×[0,1])K

f(⃗x, r⃗)dγ(⃗x, r⃗) =
∑
A∈SK

∫
XK
f
(
(x1,χA(1)), . . . , (xK,χA(K))

)
dπA(x1, . . . , xK).

where χA(i) = 1 if i ∈ A and zero otherwise. We can then check that γ is feasible
for (3.2.10), since for any function g : X→ R∫

(X×[0,1])K
rig(xi)dγ

(
x⃗, r⃗) =

∑
A∈SK(i)

∫
XK
g(xi)dπA(x1, . . . , xK)

=

∫
X

g(xi)dµi(xi),
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where the final equality uses the fact that
∑
A∈SK(i) Pi #πA = µi.

Next, we observe that for anyA ∈ SK and a tuple of the form ((x1,χA(1)), . . . , (xK,χA(K))
)

we have
c̃((x1,χA(1)), . . . , (xK,χA(K))

)
⩽ cA(x1, . . . , xK) + 1.

Therefore,∫
(X×[0,1])K

c̃(⃗x, r⃗)dγ(⃗x, r⃗) ⩽
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK).

Conversely, suppose that γ is a feasible solution to (3.2.10). Given a tuple (⃗x, r⃗),
let

mA(⃗x, r⃗) ∈ argmin
m:SK→R

∑
A∈SK

mA
(
cA(x1, . . . , xK) + 1

)
s.t.

∑
A∈SK(i)

mA = ri.

Given A ∈ SK define πA such that for any continuous and bounded function
h : XK → R we have∫

XK
h(x1, . . . , xK)dπA(x1, . . . , xK) =

∫
(X×[0,1])K

h(x1, . . . , xK)mA(⃗x, r⃗)dγ(⃗x, r⃗).

We can then check that for any continuous and bounded function g : X→ R

∑
A∈SK(i)

∫
XK
g(xi)dπA(x1, . . . , xK) =

∫
(X×[0,1])K

rig(xi)dγ(⃗x, r⃗)

=

∫
X

g(xi)µi(xi),

where we have used the fact that
∑
A∈SK(i)mA(⃗x, r⃗) = ri in the first equality. Thus,

our construction gives us a feasible solution to (3.2.6). Evaluating the objective in
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(3.2.6) we see that

∑
A∈SK

∫
XK

(cA(x1, . . . , xK) + 1)dπA(x1, . . . , xK)

=

∫
(X×[0,1])K

∑
A∈SK

mA(⃗x, r⃗)(cA(x1, . . . , xK) + 1)dγ(⃗x, r⃗)

=

∫
(X×[0,1])K

c̃(⃗x, r⃗)dγ(⃗x, r⃗)

where the final equality uses the definition of c̃ and our choice ofmA(⃗x, r⃗). Thus,
the two problems have the same optimal value and any feasible solution to one
problem can be easily converted into a feasible solution to the other.

Localization

In this section we show that the cost function c̃ in problem (3.2.10) is equal to B∗
µ̂

for a measure µ̂ that depends on the arguments of c̃. This result can be interpreted
as a localization property for problem (3.1.4) (and hence for problem (3.1.3) as
well). Compare with the discussion after Theorem 3.3.

Lemma 3.18. Let x̃1, . . . , x̃k ∈ X, and let 0 ⩽ r̃1, . . . , r̃k ⩽ 1. Then c̃((x̃1, r̃1), . . . , (x̃K, r̃K))
defined in (3.2.9) is equal to B∗

µ̂, where

µ̂ :=
∑
i∈Y

r̃iδ(x̃i,i).

Proof. To prove this claim we first notice that by Proposition 3.17 B∗
µ̂ is equal to

inf
γ

∫
(X×[0,1])K

c̃(⃗x, r⃗)dγ(⃗x, r⃗),

where γ is in the constraint set of problem (3.2.10). For a feasible γ, notice that γ
must concentrate on the set {(⃗x, r⃗) : xi = x̃i, i ∈ Y}. Applying the disintegration
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theorem to γ, we can rewrite the objective function evaluated at γ as∫
[0,1]K

c̃((x̃1, r1), . . . , (x̃K, rK))dγr(r1, . . . , rK),

where γr is a positive measure over [0, 1]K satisfying the constraints:∫
[0,1]

ridγr(r1, . . . , rK) = r̃i, ∀i = 1, . . . ,K. (3.2.11)

It is clear that the map associating a feasible γ to a γr satisfying (3.2.11) is onto,
and thus, we can rewrite B∗

µ̂ as

B∗
µ̂ = inf

γr

∫
[0,1]K

c̃((x̃1, r1), . . . , (x̃K, rK))dγr(r1, . . . , rK)

= inf
γr

∫
[0,1]K

inf
{mA}A∈G(r1,...,rK)

{ ∑
A∈SK

mA(1 + cA(x̃1, . . . , x̃K))
}
dγr(r1, . . . , rK)

= inf
γr

inf
{mA}A∈G

∫
[0,1]K

{ ∑
A∈SK

mA(r1, . . . , rK) · (1 + cA(x̃1, . . . , x̃K))
}
dγr(r1, . . . , rK)

= inf
{mA}A∈G

inf
γr

∫
[0,1]K

{ ∑
A∈SK

mA(r1, . . . , rK) · (1 + cA(x̃1, . . . , x̃K))
}
dγr(r1, . . . , rK).

In the above, the set G(r1, . . . , rK) is the set of {mA}A∈SK satisfying the constraints
in (3.2.9) for the specific tuple

(
(x̃1, r1), . . . , (x̃K, rK)

)
, while G is the set of {mA}A

where eachmA is a functions with inputs r1, . . . , rK satisfying {mA(r1, . . . , rK)}A ∈
G(r1, . . . , rK).

We can now write the term∫
[0,1]K

{ ∑
A∈SK

mA(r1, . . . , rk) · (1 + cA(x̃1, . . . , x̃k))
}
dγr(r1, . . . , rK)

=
∑
A∈SK

mA,γ(1 + cA(x̃1, . . . , x̃k)),
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where we define

mA,γr :=

∫
mA(r1, . . . , rk)dγr(r1, . . . , rK).

Notice that ∑
A∈SK(i)

mA,γr =
∑

A∈SK(i)

∫
[0,1]K

mA(r1, . . . , rk)dγr(r1, . . . , rK)

=

∫
[0,1]K

 ∑
A∈SK(i)

mA(r1, . . . , rk)

dγr(r1, . . . , rK)

=

∫
[0,1]K

ridγr(r1, . . . , rK)

= r̃i.

Conversely, notice that given a collection of functions m̃A satisfying the constraint
in (3.2.9) for the tuple (x̃1, r̃1), . . . , (x̃K, r̃K), it is straightforward to find γr such that
m̃A = mA,γr for all A. It now follows that

B∗
µ̂ = inf

m̃A

∑
A

m̃A(1 + cA(x̃1, . . . , x̃k)) = c̃((x̃1, r̃1), . . . , (x̃K, r̃K)),

as we wanted to prove.

Dual Problems

In this section we discuss the dual problems of the different formulations of the
generalized barycenter problem studied in section 3.2.1.

Proposition 3.19. The dual problems to (3.1.4), (3.2.6), and (3.2.10) can be written as

sup
f1,...,fK∈Cb(X)

∑
i∈Y

∫
X

fci (xi)dµi(xi)

s.t. fi(x) ⩾ 0,
∑
i∈Y

fi(x) ⩽ 1, for all x ∈ X, i ∈ Y,
(3.2.12)
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sup
g1,...,gK∈Cb(X)

∑
i∈Y

∫
X

gi(xi)dµi(xi)

s.t.
∑
i∈A

gi(xi) ⩽ 1 + cA(x1, . . . , xK) for all (x1, . . . , xK) ∈ XK,A ∈ SK,
(3.2.13)

and
sup

h1,...,hK∈Cb(X)

∑
i∈Y

∫
X

hi(xi)dµi(xi)

s.t.
∑
i∈Y

rihi(xi) ⩽ c̃(⃗x, r⃗) for all (⃗x, r⃗) ∈ (X× [0, 1])K,
(3.2.14)

respectively.
Let f1, . . . , fK; g1, . . . ,gK; h1, . . . ,hK be feasible solutions to problems (3.2.12), (3.2.13),

and (3.2.14) respectively. Problems (3.2.13) and (3.2.14) have the same feasible set
and hence are identical. Furthermore, g ′

i := fci is a feasible solution to (3.2.13) and
f ′i = max{gi, 0}c̄ is a feasible solution to (3.2.12), hence the optimization of (3.2.13) can
be restricted to nonnegative gi that satisfy gi = gc̄ci . In particular, (3.2.12), (3.2.13), and
(3.2.14) all have the same optimal value.

Proof. The derivation of the dual problems is standard.
To see the equivalence between problems (3.2.13) and (3.2.14), fix someh1, . . . ,hK

that are feasible for (3.2.14) and choose some B ∈ SK and (x1, . . . , xK) ∈ XK such
that cB(x1, . . . , xK) <∞. Choose

m∗ ∈ argmin
m:SK→R

∑
A∈SK

mA(1 + cA(x1, . . . , xK)) s.t.
∑

A∈SK(i)

mA = χB(i),

where χB(i) = 1 if i ∈ B and zero otherwise. Note that the choice mA = 1 if
A = B andmA = 0 otherwise is feasible for the above optimization. Therefore, the
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optimality ofm∗ implies that

1 + cB(x1, . . . , xK) ⩾
∑
A∈SK

m∗
A(1 + cA(x1, . . . , xK))

= c̃((x1,χB(1)), . . . , (xk,χB(k))
)

⩾
∑
i∈Y

rihi(xi)

=
∑
i∈B

hi(xi).

Thus, we see that the hi are feasible for (3.2.13) since B and (x1, . . . , xK) were
arbitrary.

Conversely, fix some g1, . . . ,gK that are feasible for (3.2.13) and some (⃗x, r⃗) ∈
(X× [0, 1])K. Choose

n∗ ∈ argmin
m:SK→R

∑
A∈SK

mA(1 + cA(x1, . . . , xK)) s.t.
∑

A∈SK(i)

mA = ri,

and observe that ∑
i∈Y

rigi(xi) =
∑
i∈Y

gi(xi)
∑

A∈SK(i)

n∗
A

=
∑
A∈SK

n∗
A

∑
i∈A

gi(xi)

⩽
∑
A∈SK

n∗
A(1 + cA(x1, . . . , xK))

= c̃((x1, r1), . . . , (xK, rK)),

where we used the feasibility of the gi. Thus, the gi are feasible for (3.2.14). Since
both problems are optimizing the same functional over the same constraint set, we
see that (3.2.13) and (3.2.14) are identical.

Now suppose that f1, . . . , fK and g1, . . . ,gK are feasible solutions to problems
(3.2.12) and (3.2.13) respectively and define g ′

i = fci and f ′i = max{gi, 0}c̄. Given
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A ∈ SK, x1, . . . , xK ∈ XK, and r > 0 we can choose xr such that∑
i∈A

c(xr, xi) ⩽ r+ cA(x1, . . . , xK).

Then we see that∑
i∈A

g ′
i(xi) ⩽

∑
i∈A

f(xr) + c(xr, xi) ⩽ r+ 1 + cA(x1, . . . , xK).

Letting r→ 0, we see that the g ′
i are feasible for (3.2.13). Hence, the optimal value

of (3.2.13) cannot lie strictly below the optimal value of (3.2.12).
It remains to verify the feasibility of the f ′i. We begin by showing that if g1, . . . ,gK

are feasible for (3.2.13) then max{g1, 0}, . . . , max{gK, 0} are also feasible. Fix A ∈ SK
and (x1, . . . , xK) ∈ XK. Let A ′ = {i ∈ A : gi(xi) > 0}. We then see that∑

i∈A

max{gi(xi), 0} =
∑
i∈A ′

gi(xi) ⩽ 1 + cA ′(x1, . . . , xK) ⩽ 1 + cA(x1, . . . , xK)

where the final inequality follows from the definition of cA and the fact thatA ′ ⊆ A.
Now we are ready to verify the feasibility of the f ′i. Clearly f ′i(x) ⩾ 0 since c(x, x) = 0
for all x ∈ X. Given x ∈ X, fix r > 0 and for each i ∈ Y, choose xi,r ∈ X such that

(max{gi, 0})c̄(x) ⩽ max(gi(xi,r), 0) − c(xi,r, x) + r.

We then have∑
i∈Y

max{gi, 0}c̄(x) ⩽
∑
i∈Y

max{gi(xi,r), 0}− c(xi,r, x) + r

⩽ 1 + r+ cY(x1,r, . . . , xk,r) −
∑
i∈Y

c(xi,r, x),

where the final inequality follows from the feasibility of max{gi, 0}. Now from the
definition of cY, the last line is bounded above by 1 + r. Sending r→ 0 we are done.

Notice that the above arguments prove that whenever g1, . . . ,gK are feasible
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for (3.2.13), then max{g1, 0}c̄c, . . . , max{gK, 0}c̄c are also feasible for (3.2.13). Since
u ⩽ uc̄c for any function u : X→ R, it follows that

∑
i∈Y

∫
X

gi(x)dµi(x) ⩽
∑
i∈Y

∫
X

max{gi, 0}c̄c(x)dµi(x).

Since we showed that max{gi, 0}c̄ was feasible for (3.2.12), it follows that (3.2.13)
cannot attain a larger value than (3.2.12). Hence, we have shown that (3.2.13) and
(3.2.12) have the same optimal value.

We now want to show that the dual problems attain the same values as the
original primal problems. We begin with a minimax lemma for the following partial
optimal transport problem.

Lemma 3.20. Suppose that c is a bounded Lipschitz cost that satisfies the hypotheses of
Proposition 3.4. If B ⊂ M(X) is a weakly compact and convex set, then given measures
µ1, . . . ,µK,∈M(X), let we have the following minimax formula

min
ρ,νi∈B,νi⩽ρ

∑
i∈Y

C(µi,νi)

= max
φi,ψi∈Cb(X)

min
ρ∈B

∑
i∈Y

∫
X

φi(x)dµi(x) −ψi(x
′)dρ(x ′)

s.t. φi(x) −ψi(x ′) ⩽ c(x, x ′),ψi(x ′) ⩾ 0.

Proof. Using the dual formulation of optimal transport, we can write

C(µi,νi) = sup
φi,ψi∈Φc

Ji(νi,φi,ψi) s.t. φi(x) −ψi(x ′) ⩽ c(x, x ′).

where
Ji(νi,φi,ψi) =

∫
X

φi(x)dµi(x) −ψi(x)dνi(x),

and Φc = {(φi,ψi) ∈ Cb(X)× Cb(X) : φi(x) − ψi(x ′) ⩽ c(x, x ′) for all x, x ′ ∈ X}.
For each φi,ψi ∈ Cb(X) fixed, the mapping (ρ,νi) 7→ Ji(νi,φi,ψi) is linear and
lower semicontinuous with respect to the weak convergence of measures. For any
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ρ,νi fixed, the mapping (φi,ψi) 7→ Ji(νi,φi,ψi) is linear and upper semicontinu-
ous with respect to strong convergence in Cb(X). Since the constraint sets νi ⩽ ρ
and Φc are convex, we are in a situation where Sion’s minimax theorem applies.
Therefore,

min
ρ,νi∈B,νi⩽ρ

sup
φi,ψi∈Φc

∑
i∈Y

Ji(νi,φi,ψi) = sup
φi,ψi∈Φc

min
ρ,νi∈B,νi⩽ρ

∑
i∈Y

Ji(νi,φi,ψi)

Since

min
νi⩽ρ

∑
i∈Y

Ji(νi,φi,ψi) =
∑
i∈Y

∫
X

φi(x)dµi(x) − max(ψi(x ′), 0)dρ(x ′),

we have

min
ρ,νi∈B,νi⩽ρ

∑
i∈Y

C(µi,νi) = sup
φi,ψi∈Φc

min
ρ∈B

∑
i∈Y

∫
X

φi(x)dµi(x) − max(ψi(x ′), 0)dρ(x ′).

If we replace φi by ψci and ψi by max(ψi, 0)cc̄ then the value of the problem can
only improve. Since we assume that c is bounded and Lipschitz, it follows that
ψci and ψc̄ci are bounded and Lipschitz. Thus, we can restrict the supremum to a
compact subset ofΦc where ψi ⩾ 0. Thus, the supremum is actually attained by
some pair (φ∗

i ,ψ∗
i ) ∈ Φc with ψ∗

i ⩾ 0, φ∗
i = (ψ∗

i )
c and (ψ∗

i )
cc̄ = ψ∗

i .

Using Lemma 3.20 we can prove that there is no duality gap for bounded and
Lipschitz costs. We will then show that there is no duality gap for general costs by
approximation.

Proposition 3.21. Given measures µ1, . . . ,µK and a bounded Lipschitz cost c satisfying
the assumptions in Proposition 3.4, suppose that λ, µ̃1, . . . , µ̃K are optimal solutions to
(3.1.4). If φ∗

i ,ψ∗
i ∈ Cb(X) are the optimal Kantorovich potentials for the partial transport

of µi to λ (c.f Lemma 3.20), then φ∗
1 , . . . ,φ∗

K are optimal solutions to problem (3.2.13),
ψ∗

1 , . . . ,ψ∗
K are optimal solutions to (3.2.12), and the values of (3.2.12)-(3.2.14) are equal

to (3.1.4). In other words, there is no duality gap.
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Proof. If we fix some convex weakly compact subset B ⊂M(X) containing λ, then it
follows from Lemma 3.20 and the optimality of λ that there exists φ∗

i ,ψ∗
i such that

λ(X) +
∑
i∈Y

C(µi, µ̃i) = min
ρ∈B

ρ(X) +
∑
i∈Y

∫
X

φ∗
i (x)dµi(x) −ψ

∗
i (x

′)dρ(x ′), (3.2.15)

ψ∗
i (x

′) ⩾ 0, and (φ∗
i )
c̄(x ′) = ψ∗

i (x
′), (ψ∗

i )
c(x) = φ∗

i (x) for all 1 ⩽ i ⩽ K and x, x ′ ∈ X.
If there exists x ′ ∈ X such that

∑
i∈Yψ

∗
i (x

′) > 1, then we can make the right hand
side of (3.2.15) smaller than the left hand side by choosing ρ = Mδx ′ for some
sufficiently large value of M. Hence, it follows that

∑
i∈Yψ

∗
i (x) ⩽ 1 everywhere.

Thus, the ψ∗
i are feasible solutions to problem (3.2.12) and, by Proposition 3.19

(ψ∗
i )
c = φ∗

i are feasible solutions to (3.2.13). Finally, if we choose ρ = 0, it follows
that

(3.1.4) = λ(X) +
∑
i∈Y

C(µi, µ̃i) ⩽
∑
i∈Y

φ∗
i (x)dµi(x) ⩽ (3.2.13) = (3.2.12) ⩽ (3.1.4)

where the second last equality follows from Proposition 3.19 and the last inequality
holds trivially by duality. Therefore, we can infer that there is no duality gap.

Proposition 3.22. Given measures µ1, . . . ,µK, if c is a cost that satisfies Assumption 2.5,
then problems (3.2.12)-(3.2.14) all have the same value as (3.1.4).

Remark 3.23. Note that we do not claim that the supremums in (3.2.12)-(3.2.14) are
attained.

Proof. Let η : [0,∞) → [0,∞) be a smooth strictly increasing function such that
η(x) = x for x ⩽ 1 and η(x) ⩽ 2 for all x ∈ [0,∞). For each j ∈ Z+, define

c̃j(x, x ′) := inf
(x1,x ′

1)∈X×X
c(x1, x ′1) + jd(x, x1) + jd(x

′, x1),

and cj(x, x ′) := jη( c̃j(x,x ′)

j
). It then follows that cj is a bounded Lipschitz cost that

satisfies the assumptions of Proposition 3.4. Since c is lower semicontinuous it is
straightforward to check that cj converges to c pointwise everywhere.
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Let αj and βj denote the optimal values of Problems (3.1.4) and (3.2.13) respec-
tively with cost cj. From Proposition 3.21 we know that αj = βj. Let α,β denote
the optimal values of Problems (3.1.4) and (3.2.13) respectively with the original
cost c. Since we already know that β ⩽ α, our goal is to show that α ⩽ β.

Exploiting the fact that cj is increasing with respect to j, if gj01 , . . . ,gj0K is a feasible
solution to (3.2.13) for the cost cj0 , then it is also a feasible solution to (3.2.13) for c.
Therefore, limj→∞ βj ⩽ β.

On the other hand, let λj and µ̃j1, . . . , µ̃jK be optimal solutions to (3.1.4) with
the cost cj. Let πji be the optimal transport plan between µi and µ̃ji. Arguing as
in Proposition 3.4, it follows that λj and πji are tight with respect to j. Thus, there
exists a subsequence (that we do not relabel) such that λj converges weakly to some
λ and πji converges weakly to some πi. Fix some j0 and note that for all j ⩾ j0

αj = λ
j(X) +

∑
i∈Y

∫
X

cj(x, x ′)dπji(x, x ′) ⩾ λj(X) +
∑
i∈Y

∫
X

cj0(x, x ′)dπji(x, x ′).

Therefore,
lim inf
j→∞ αj ⩾ λ(X) +

∑
i∈Y

∫
X

cj0(x, x ′)dπi(x, x ′).

Taking a supremum over j0, it follows that

lim inf
j→∞ αj ⩾ λ(X) +

∑
i∈Y

∫
X

c(x, x ′)dπi(x, x ′) ⩾ α.

Thus, α ⩽ lim infj→∞ αj = lim infj→∞ βj = β. Thanks to Proposition 3.19, it follows
that (3.1.4) and (3.2.12)-(3.2.14), all have the same optimal value.

3.3 Proof of Theorem 3.3
In this section, we prove Theorem 3.3 and return to the adversarial problem (2.5).
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Theorem 3.3: upper bound

First we show that

1
21B

∗
µ ⩽ inf

π∈ΠK(µ)

∫
ZK∗

c(z1, . . . , zK)dπ(z1, . . . , zK).

To see this, recall that B∗
µ is, according to Proposition 3.17, equal to

inf
γ∈Υµ

∫
(X×[0,1])K

c̃(⃗x, r⃗)dγ(⃗x, r⃗) s.t. P̃i #(riγ) = µi for all i ∈ Y.

Here and in what follows we useΥµ to denote the set of positive measures satisfying
P̃i #(riγ) = µi for all i ∈ {1, . . . ,K}.

Let π ∈ ΠK(µ), and for given z⃗ = (z1, . . . , zK) ∈ ZK∗ , let γz⃗ ∈ Υµ̂z⃗ be a solution
for problem (3.2.10) (when µ = µ̂z⃗). We define a measure γ as follows:∫

(X×[0,1])K
h(⃗x, r⃗)dγ(⃗x, r⃗) :=

∫
ZK∗

(∫
(X×[0,1])K

h(⃗x, r⃗)dγz⃗(⃗x, r⃗)
)
dπ(z1, . . . , zK)

for every test function h : (X× [0, 1])K → R.
We check that γ ∈ Υ 1

21µ
. Indeed, for any test function g : X→ R we have:

∫
(X×[0,1])K

rig(xi)dγ(⃗x, r⃗) =
∫
ZK∗

(∫
(X×[0,1])K

rig(xi)dγz⃗(⃗x, r⃗)
)
dπ(z1, . . . , zK)

=
1
K

∫
ZK∗

 ∑
j:zj ̸=

g(xj)1ij=i

dπ(z1, . . . , zK)

=
1

21

∫
X

g(x)dµi(x).
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Let us now compute the cost associated to this γ:∫
(X×[0,1])K

c̃(⃗x, r⃗)dγ(⃗x, r⃗) =
∫
ZK∗

(∫
(X×[0,1])K

c̃(⃗x, r⃗)dγz⃗(⃗x, r⃗)
)
dπ(z1, . . . , zK)

=

∫
ZK∗

B∗
µ̂z⃗
dπ(z1, . . . , zK)

=

∫
ZK∗

c(z1, . . . , zK)dπ(z1, . . . , zK).

Combining the above with Remark 3.1, we conclude that

1
21B

∗
µ = B∗

1
21µ

= inf
γ∈Υ 1

21µ

∫
(X×[0,1])K

c̃(⃗x, r⃗)dγ(⃗x, r⃗) ⩽ inf
π∈ΠK(µ)

∫
ZK∗

c(⃗z)dπ(⃗z).

Theorem 3.3: lower bound

Now, it is sufficient to show

inf
π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK) ⩽

1
21B

∗
µ.

First, observe that for any ϕ ∈ Φwe have:

K∑
j=1

∫
X×Y

ϕj(zj)
1
2dµ(zj) +

1
2

K∑
j=1

ϕj( )

=
∑
i∈Y

∫
X

( K∑
j=1

ϕj(xi, i) +
K∑
j=1

ϕj( )
)1

2dµi(xi).

For each i ∈ Y, define

ψi(xi) :=

K∑
j=1

ϕj(xi, i) +
K∑
j=1

ϕj( ).
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It is thus clear from the above computation and definition that

K∑
j=1

∫
X×Y

ϕj(zj)
1
2dµ(zj) +

1
2

K∑
j=1

ϕj( ) =
∑
i∈Y

∫
X

ψi(xi)
1
2dµi(xi). (3.3.1)

Our goal is now to show that {ψi : i ∈ Y} is feasible for problem (3.2.13) (working
with the normalized measure 1

21µ). We start with a preliminary lemma and an
example illustrating the strategy behind the proof of this fact. The precise statement
appears in Proposition 3.25 below.

Lemma 3.24. Given (z1, . . . , zK) ∈ ZK∗ , let A = {j ∈ Y : zj ̸= }. Suppose that for each
j ∈ A zj = (xj, j). Then, for each ϕ ∈ Φ,

K∑
j=1

ϕj(zj) ⩽
1
K
+

1
K
cA. (3.3.2)

Proof. Since ϕ ∈ Φ, it suffices to show that

B∗
µ̂z⃗

⩽
1
K
+

1
K
cA,

where

µ̂z⃗ =

K∑
l s.t. zl ̸=

1
K
δzl =

∑
j∈A

1
K
δzj =

∑
j∈A

1
K
δ(xj,j).

For simplicity, assume that A = {1, . . . ,S}. By Lemma 3.18,

B∗
µ̂z⃗

= c̃((x1, 1
K
), . . . , (xS, 1

K
), (xS+1, 0), . . . , (xK, 0)),

where we can pick xS+1, . . . , xK arbitrarily. Let mA = 1
K

and mA ′ = 0 for A ′ ̸= A. It
is easy to check that such m is feasible for (3.2.9) since rs = 1

K
for 1 ⩽ s ⩽ S and

rj = 0 for j /∈ A. So, (3.2.9) implies

c̃((x1, 1
K
), . . . , (xS, 1

K
), (xS+1, 0), . . . , (xK, 0)) ⩽ 1

K
+

1
K
cA.
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The conclusion follows.

We now present specific examples which illustrate why {ψi : i ∈ Y} is feasible
for (3.2.13), that is, we need to show that for any (x1, . . . , xK) ∈ XK and for any
A ∈ SK we have ∑

i∈A

ψi(xi) ⩽ 1 + cA.

Let K = 4 and suppose that A = {1, 2, 3}. Expanding the ψi’s we get:

ψ1(x1) +ψ2(x2) +ψ3(x3) =
∑
i∈[3]

4∑
j=1

ϕj(xi, i) + 3
4∑
j=1

ϕj( ),

or, after a rearrangement of the summands:

ϕ1(x1, 1) + ϕ2(x2, 2) + ϕ3(x3, 3) + ϕ4( )

+ϕ2(x1, 1) + ϕ3(x2, 2) + ϕ4(x3, 3) + ϕ1( )

+ϕ3(x1, 1) + ϕ4(x2, 2) + ϕ1(x3, 3) + ϕ2( )

+ϕ4(x1, 1) + ϕ1(x2, 2) + ϕ2(x3, 3) + ϕ3( )

+2
4∑
j=1

ϕj( ).

We can bound the first line above using (3.3.2):

ϕ1(x1, 1) + ϕ2(x2, 2) + ϕ3(x3, 3) + ϕ4( ) ⩽
1
4 +

1
4cA.

The same argument holds for the second, third and fourth lines. For the last line,
notice that c( , . . . , ) = 0. Hence, the last line is bounded above by 0 and we can
now deduce that

ψ1(x1) +ψ2(x2) +ψ3(x3) ⩽ 1 + cA.

The above situation becomes less trivial if |A| is much smaller than K. To illus-
trate, let K = 9 and suppose that A = {1, 2}. Rearranging the ϕj’s as above we will
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not be able to obtain the desired upper bound since the total number of ϕj( )’s
available is in this case K|A| = 18 while the required number of ϕj( )’s in the
analogous arrangement as above would be at least K(K− |A|) = 63. To overcome
this problem, we need to rearrange the ϕj’s further in order to reduce the required
number of ϕj( )’s and deduce from this refined analysis the desired upper bound.

First of all, construct a 9 × 9 arrangement in the following way: for the k-th
row in the arrangement, let the k-th and the (k+ 1)-th elements be ϕk(x1, 1) and
ϕk+1(x2, 2), respectively, and let the remaining elements be “empty". Note that here
k and k+ 1 are considered modulo 9; for example, 10 ≡ 1 mod 9, and an empty
element means literally no element. We merge rows in the following way: merge
together the 1-st, the 3-rd, the 5-th and the 7-th rows, i.e. replace empty elements
for none-empty ones coming from other rows; likewise, merge together the 2-nd,
the 4-th, the 6-th and the 8-th rows; finally, keep the 9-th row as is. By the above
construction, the 1-st, the 3-rd, the 5-th and the 7-th rows share no common ϕj. Let
∅j denote an empty element at the j-th coordinate. The resulting arrangement can
be written as:

ϕ1(x1, 1),ϕ2(x2, 2),ϕ3(x1, 1),ϕ4(x2, 2),ϕ5(x1, 1),ϕ6(x2, 2),ϕ7(x1, 1),ϕ8(x2, 2), ∅9,

∅1,ϕ2(x1, 1),ϕ3(x2, 2),ϕ4(x1, 1),ϕ5(x2, 2),ϕ6(x1, 1),ϕ7(x2, 2),ϕ8(x1, 1),ϕ9(x2, 2),

ϕ1(x2, 2), ∅2, ∅3, ∅4, ∅5, ∅6, ∅7, ∅8,ϕ9(x1, 1),

with the first row representing the merge of rows 1-3-5-7, the second row repre-
senting the merge of rows 2-4-6-8, and the last row representing row 9.

Notice that the above arrangement contains all ϕj(xs, s)’s. Furthermore, the
number of ∅j for each 1 ⩽ j ⩽ 9 is exactly 1. Filling ∅j’s with ϕj( )’s, and using the
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fact that the number of ϕj( )’s for each 1 ⩽ j ⩽ 9 is 2, it follows that

ψ1(x1) +ψ2(x2) =

4∑
j=1

(
ϕ2j−1(x1, 1) + ϕ2j(x2, 2)

)
+ ϕ9( )

+ ϕ1( ) +

4∑
j=1

(
ϕ2j(x1, 1) + ϕ2j+1(x2, 2)

)
+ ϕ1(x2, 2) +

8∑
j=2

ϕj( ) + ϕ9(x1, 1)

+

9∑
j=1

ϕj( ).

Observe that for (z1, . . . , zK) = ((x1, 1), (x2, 2), . . . , (x1, 1), (x2, 2), ), µ̂z⃗ = 4
9δ(x1,1) +

4
9δ(x2,2). Factoring out the 4 (see Remark 3.1) and applying (3.3.2), what we obtain
is

4∑
j=1

(
ϕ2j−1(x1, 1) + ϕ2j(x2, 2)

)
+ ϕ9( ) ⩽ B∗

µ̂z⃗
⩽

4
9 +

4
9cA.

Similarly, the second and third lines can be bounded by 4
9 + 4

9cA and 1
9 + 1

9cA,
respectively. Since

∑9
j=1ϕj( ) ⩽ 0, it follows that

ψ1(x1) +ψ2(x2) ⩽ 1 + cA.

The above two situations help us illustrate the general strategy for proving that
the resulting ψi are feasible: the idea is to arrange summands appropriately so
that we can utilize Lemma 3.24 in the most effective way possible. In the following
proposition we state precisely our aim and prove it by such strategy.

Proposition 3.25. Let (ϕ1, . . . ,ϕK) ∈ Φ be a feasible dual potential. For each i ∈ Y, define

ψi(xi) :=

K∑
j=1

ϕj(xi, i) +
K∑
j=1

ϕj( ), xi ∈ X.
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Then {ψi : i ∈ Y} is feasible for (3.2.13).

Proof. Fix K and A ∈ SK. Without loss of generality, assume that A = {1, . . . ,S}. We
need to show that ∑

i∈A

ψi(xi) ⩽ 1 + cA. (3.3.3)

First, suppose K is divisible by S. For each 1 ⩽ s ⩽ S and 1 ⩽ j ⩽ K, let

u(s, j) :=

(s+ j− 1 mod S) if s+ j− 1 ̸= 0 mod S

S if s+ j− 1 = 0 mod S.

Rearranging the sum of the ψ’s, it follows that

∑
i∈A

ψi(xi) =

K∑
j=1

S∑
s=1

ϕj(xs, s) + S
K∑
j=1

ϕj( )

=

S∑
s=1

K∑
j=1

ϕj(xu(s,j),u(s, j)) + S
K∑
j=1

ϕj( ).

Note that for each 1 ⩽ s ⩽ S, |{u(s, j) : 1 ⩽ j ⩽ K}| = K
S

, and hence

µ̂z⃗ =

S∑
u(s,j)=1

K
S

K
δ(xu(s,j),u(s,j)).

Factoring out K
S

and applying (3.3.2),

K∑
j=1

ϕj(xu(s,j),u(s, j)) ⩽
K

S

( 1
K
+

1
K
cA
)
=

1
S
+

1
S
cA.
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Since
∑K
j=1ϕj( ) ⩽ 0, it is deduced that

∑
i∈A

ψi(xi) =

S∑
s=1

K∑
j=1

ϕj(xu(s,j),u(s, j)) + S
K∑
j=1

ϕj( )

⩽
S∑
s=1

(1
S
+

1
S
cA
)

= 1 + cA,

proving the desired inequality in the first case.
Now suppose thatK is not divisible by S. For each 1 ⩽ s ⩽ S and each 1 ⩽ k ⩽ K,

let

v(s,k) :=

(s+ k− 1 mod K) if s+ k− 1 ̸= 0 mod K

K if s+ k− 1 = 0 mod K.

Construct a K × K arrangement in the following way: for each 1 ⩽ s ⩽ S we set
the v(s,k)-th element to be ϕv(s,k)(xs, s), and we set the remaining elements to be
empty. We use ∅j to denote an empty element at the j-th coordinate. Note that
the k-th row has ϕv(1,k)(x1, 1), . . . ,ϕv(S,k)(xS,S) as non-empty elements, which are
placed from the v(1,k)-th coordinate to the v(S,k)-th coordinate, while it has (K−S)
many empty elements. For example, the 3-rd row is

∅1, ∅2,ϕ3(x1, 1), . . . ,ϕS+2(xS,S), ∅S+3, . . . , ∅K.

We split this case into two further subcases.
First, assume that ⌊K

S
⌋ = 1. In this case, we have K(K − S) ⩽ KS. For each

1 ⩽ k ⩽ K, collect all the ϕj( )’s such that j /∈ Ak := {v(1,k), . . . , v(S,k)}. Notice
that for fixed j, the number of k’s such that j /∈ Ak is exactly K−S since allϕj(xs, s)’s
are contained in this arrangement and ⌊K

S
⌋ = 1. In other words, the total number of

∅j is smaller than the total number of ϕj( ). From the above and an application of
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(3.3.2), we deduce that

∑
i∈A

ψi(xi) =

K∑
k=1

( S∑
s=1

ϕv(s,k)(xs, s) +
∑
j/∈Ak

ϕj( )
)
+ (2S− K)

K∑
j=1

ϕj( )

⩽
K∑
k=1

( 1
K
+

1
K
cA
)

= 1 + cA,

proving the desired inequality in this case.
Finally, assume that ⌊K

S
⌋ > 1. Here the idea is to merge ⌊K

S
⌋-many rows to

a single row. We do this in the following way: for each 1 ⩽ s ⩽ S, we merge
together the s-th row, the (S + s)-th row, . . . , and the ((⌊K

S
⌋ − 1)S + s)-th row, to

obtain a single row which will be re-indexed by s. In the original arrangement,
since the ((m− 1)S+ s)-th row has ϕv(s,(m−1)S+1)(x1, 1), . . . ,ϕv(s,mS)(xS,S) as non-
empty elements, the rows that get merged share no common ϕj. We keep the last
(K− ⌊K

S
⌋S)-many rows in the original arrangement the same, and for convenience

we let the indices of these rows be unchanged. After this procedure, we obtain
S-many merged rows and (K − ⌊K

S
⌋S)-many remaining original rows. Now, it is

necessary to count, for every fixed j, the total number of empty elements ∅j in
this new arrangement. If the number of ∅j’s was smaller than or equal to S for all
1 ⩽ j ⩽ K, we would be done since the number of ϕj( ) is S for each j, whence it
would be possible to replace the ∅j’s with ϕj( )’s. We show that this is indeed the
case.

For each merged row, its non-empty elements are

ϕv(s,1)(x1, 1), . . . ,ϕv(s,S)(xS,S), . . . ,ϕv(s,(⌊KS ⌋−1)S+1)(x1, 1), . . . ,ϕv(s,⌊KS ⌋S)
(xS,S).

Observe that for each merged row, the index j of ∅j varies from v(s, ⌊K
S
⌋S + 1) to
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v(s,K). The definition of v(s,k) yields that

v(s, ⌊K
S
⌋S+ 1) = ⌊K

S
⌋S+ s if 1 ⩽ s ⩽ K− ⌊K

S
⌋S, (3.3.4)

v(s, ⌊K
S
⌋S+ 1) = ⌊K

S
⌋S+ s− K if K− ⌊K

S
⌋S+ 1 ⩽ s ⩽ S (3.3.5)

and

v(s,K) = K if s = 1, (3.3.6)

v(s,K) = s− 1 if 2 ⩽ s ⩽ S. (3.3.7)

To count the total number of ∅j’s in the merged rows, let’s consider the following
sub-cases.

(i) ⌊K
S
⌋S + 1 ⩽ j ⩽ K : By (3.3.4), if 1 ⩽ s ⩽ K − ⌊K

S
⌋S, then the s-th row has ∅j

for ⌊K
S
⌋S + s ⩽ j ⩽ K. Also, by (3.3.5) and (3.3.7), if K − ⌊K

S
⌋S + 1 ⩽ s ⩽ S,

then no merged row has such ∅j. Hence, the number of ∅j is j− ⌊K
S
⌋S.

(ii) S ⩽ j ⩽ ⌊K
S
⌋S : It follows from (3.3.4) and (3.3.5) that either v(s, ⌊K

S
⌋S+ 1) >

⌊K
S
⌋S or v(s, ⌊K

S
⌋S+ 1) < S. Similarly, it follows from (3.3.6) and (3.3.7) that

either v(s,K) > ⌊K
S
⌋S or v(s,K) < S. Since the index j of ∅j of the s-th merged

row varies from v(s, ⌊K
S
⌋S+ 1) to v(s,K), the number of ∅j is 0.

(iii) S−(K− ⌊K
S
⌋S)+ 1 ⩽ j ⩽ S− 1 : By (3.3.5) and (3.3.7), if S−(K− ⌊K

S
⌋S)+ 1 ⩽

j ⩽ S− 1, then ∅j appears from the (j+ 1)-st merged row to the S-th merged
row. Hence, the number of ∅j is S− j.

(iv) 1 ⩽ j ⩽ S − (K − ⌊K
S
⌋S) : Similar to (iii), if 1 ⩽ j ⩽ S − (K − ⌊K

S
⌋S), then ∅j

appears from the (j+ 1)-st merged row to the S-th merged row. Hence, the
number of ∅j is K− ⌊K

S
⌋S.
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To summarize, in the merged rows

the number of ∅j =


j− ⌊K

S
⌋S for ⌊K

S
⌋S+ 1 ⩽ j ⩽ K,

0 for S ⩽ j ⩽ ⌊K
S
⌋S,

S− j for S− (K− ⌊K
S
⌋S) + 1 ⩽ j ⩽ S− 1,

K− ⌊K
S
⌋S for 1 ⩽ j ⩽ S− (K− ⌊K

S
⌋S).

(3.3.8)

Now, it remains to count the total number of ∅j in the last (K− ⌊K
S
⌋S)-many re-

maining original rows. In this part, each row has only S-many non-empty elements.
Recall that we still use the same index k for these remaining rows. Precisely, for
⌊K
S
⌋S+ 1 ⩽ k ⩽ K, the k-th row has

ϕv(1,k)(x1, 1),ϕv(2,k)(x2, 2), . . . ,ϕv(S,k)(xS,S).

Recall that Ak := {v(1,k), . . . , v(S,k)}. To count the total number of ∅j’s in the
original rows, let’s consider the following sub-cases.

(i) ⌊K
S
⌋S + 1 ⩽ j ⩽ K. : If 1 ⩽ j + 1 − k ⩽ S, by the definition of v(s,k), then

j ∈ Ak. In other words, each k-th row has ∅j for k > j. Hence, the number of
∅j is K− j.

(ii) S ⩽ j ⩽ ⌊K
S
⌋S : From the definition of v(s,k) and the range of k, we deduce

that if ⌊K
S
⌋S+ 1 ⩽ k ⩽ K, then v(1,k) > ⌊K

S
⌋S and v(S,k) < S. In other words,

∅j for S ⩽ j ⩽ ⌊K
S
⌋S appears in every row. Hence, the number of ∅j is K−⌊K

S
⌋S.

(iii) S−(K−⌊K
S
⌋S)+1 ⩽ j ⩽ S−1 : Since ⌊K

S
⌋S+1 ⩽ k ⩽ K, if v(S,k) = S+k−K < j,

then j /∈ Ak. This yields that if ⌊K
S
⌋S + 1 ⩽ k ⩽ K − S + j, then the k-th row

has ∅j. Hence, the number of ∅j is K− ⌊K
S
⌋S− S+ j.

(iv) 1 ⩽ j ⩽ S − (K − ⌊K
S
⌋S) : Since v(S, ⌊K

S
⌋S + 1) = S − (K − ⌊K

S
⌋S), if 1 ⩽ j ⩽

S− (K− ⌊K
S
⌋S) and ⌊K

S
⌋S+ 1 ⩽ k ⩽ K, then j ∈ Ak. Hence, the number of ∅j

is 0.
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To summarize, in the remaining original rows

the number of ∅j =


K− j for ⌊K

S
⌋S+ 1 ⩽ j ⩽ K,

K− ⌊K
S
⌋S for S ⩽ j ⩽ ⌊K

S
⌋S,

K− ⌊K
S
⌋S− S+ j for S− (K− ⌊K

S
⌋S) + 1 ⩽ j ⩽ S− 1,

0 for 1 ⩽ j ⩽ S− (K− ⌊K
S
⌋S).

(3.3.9)
Combining (3.3.8) with (3.3.9), the total number of ∅j is always exactly equal to
K − ⌊K

S
⌋S which is always less than S. This allows us to replace every ∅j with a

ϕj( ). Accordingly, using
∑
ϕj( ) ⩽ 0, we deduce that

∑
i∈A

ψi(xi) ⩽
∑

merged rows

∑
v(s,j)

ϕv(s,j)(xs, s) +
∑

l ̸=v(s,j)

ϕl( )


+

∑
remaining rows

∑
v(s,j)

ϕv(s,j)(xs, s) +
∑

l ̸=v(s,j)

ϕl( )

 .

Let’s focus on the first summation over merged rows. Notice that there are ⌊K
S
⌋S

many non-empty elements and the set of arguments of such non-empty elements is
{(x1, 1), . . . , (xS,S)}. Thus,

µ̂z⃗ =

S∑
s=1

⌊K
S
⌋
K
δ(xs,s).

Factoring out ⌊K
S
⌋ and applying (3.3.2), we obtain

∑
v(s,j)

ϕv(s,j)(xs, s) +
∑

l ̸=v(s,j)

ϕl( ) ⩽
⌊K
S
⌋
K

+
⌊K
S
⌋
K
cA.

On the other hand, for the second summation over remaining rows, there are S
many non-empty elements. Thus,

µ̂z⃗ =

S∑
s=1

1
K
δ(xs,s).
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(3.3.2) immediately implies

∑
v(s,j)

ϕv(s,j)(xs, s) +
∑

l ̸=v(s,j)

ϕl( ) ⩽
1
K
+

1
K
cA.

Note that the number of merged rows is S and the number of remaining original
rows is K− ⌊K

S
⌋S, respectively. Combining all arguments, we can infer that

∑
i∈A

ψi(xi) ⩽
⌊K
S
⌋S
K

+
⌊K
S
⌋S
K

cA +
K− ⌊K

S
⌋S

K
+
K− ⌊K

S
⌋S

K
cA

= 1 + cA,

obtaining the desired inequality in the last remaining case.

In summary, we have proved that for a givenϕ = (ϕ1, . . . ,ϕK) ∈ Φ, its associated
(ψ1, . . . ,ψK) (which satisfies (3.3.1)) is feasible for (3.2.13). Consequently, this
leads to

(3.1.8) ⩽
1

21(3.2.13) (3.3.10)

In turn, by the equivalence between (3.2.13) and (3.1.4) by Proposition 3.22, this
automatically implies that

(3.1.8) ⩽
1

21B
∗
µ.

Finally, combining with Corollary 3.28 below (which establishes that under As-
sumption 2.5 there is no duality gap for the MOT problem (3.0.1)) we obtain the
desired inequality relating the minimum value for the MOT problem and B∗

µ.

Returning to the adversarial problem (2.5)

We begin by establishing that, under Assumption 2.5, the cost c is lower semi-
continuous with respect to a suitable notion of convergence.
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Proposition 3.26. Let Z∗ = Z ∪ { } on which is considered as an isolated point. Let d̂
be defined according to:

d̂(z, z ′) :=


d(x, x ′) if i = i ′,∞ if i ̸= i ′ or z = and z ′ ∈ Z(vice-versa),
0 if z = z ′ = .

Define d̂K on ZK∗ by

d̂K((z1, . . . , zK), (z ′1, . . . , z ′K)) := max
i∈Y

d̂(zi, z ′i).

Recall
c(z1, . . . , zK) := B∗

µ̂z⃗

where µ̂z⃗ is defined as

µ̂z⃗ :=
1
K

K∑
l s.t. zl ̸=

δzl .

Under Assumption 2.5, c is lower semi-continuous on (ZK∗ , d̂K).

Remark 3.27. Note that (ZK∗ , d̂K) is still a Polish space.

Proof. Suppose z⃗n = (zn1 , . . . , znK) converges to z⃗ = (z1, . . . , zK) in (ZK∗ , d̂k). Without
loss of generality, assume that z1, . . . , zL = for all 1 ⩽ L ⩽ K. If L = K, the claim
would be trivial and so we can focus on the case L < K. By the definition of d̂K,
without loss of generality we can further assume that zn1 , . . . , znL = for all n, and
likewise, for each L+ 1 ⩽ j ⩽ K, we can assume that inj = ij for all n, for otherwise
the convergence would not hold due to the definition of d̂K.

By Lemma 3.18 we have

c(zn1 , , . . . , znK) = B∗
µ̂z⃗n

= inf
m:SK→R

∑
A⊆{L+1,...,K}

mA
(
cA(x

n
L+1, . . . , xnK) + 1

)
, (3.3.11)

where the min ranges over all {mA}A⊆{L+1,...,K} such that
∑
A∈SK(i)∩{L+1,...,K}mA =
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1
K

, ∀i = L+ 1, . . . ,K.
We now claim that for every A ⊆ {L+ 1, . . . ,K},

cA(xL+1, . . . , xK) ⩽ lim inf
n→∞ cA(x

n
L+1, . . . , xnK).

Indeed, if the right hand side is equal to +∞, then there is nothing to prove. If the
right hand side is finite, we may then find a sequence {x̃n}n∈N such that

lim inf
n→∞

∑
i∈A

c(x̃n, xni ) = lim inf
n→∞ cA(x

n
L+1, . . . , xnK) <∞.

By the compactness property in Assumption 2.5 it follows that up to subsequence
(not relabeled) we have that {x̃n}n∈N converges toward a point x̃ ∈ X. Combining
with the lower semi-continuity of c, we deduce that

cA(xL+1, . . . , xK) ⩽
∑
i∈A

c(x̃, xi) ⩽ lim inf
n→∞ cA(x

n
L+1, . . . , xnK),

as we wanted to show.
Returning to (3.3.11), we can find for each n ∈ N a collection of feasible

{mnA}A⊆{L+1,...,K} such that

lim inf
n→∞

∑
A⊆{L+1,...,K}

mnA
(
cA(x

n
L+1, . . . , xnK) + 1

)
= lim inf

n→∞ c(zn1 , . . . , znK).

Using the Heine-Borel theorem in Euclidean space, we can assume without the loss
of generality that for every A,mnA converges to somemA as n→∞. The resulting
collection ofmA is feasible for the problem defining c(z1, . . . , zK) and thus, using
the lower semicontinuity of cA established earlier, we deduce:

c(z1, . . . , zK) ⩽
∑

A⊆{L+1,...,K}

mA
(
cA(x

n
L+1, . . . , xnK) + 1

)
⩽ lim inf

n→∞ c(zn1 , . . . , znK).
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Corollary 3.28. (Duality of MOT) Under Assumption 2.5,

inf
π∈ΠK(µ)

∫
Z∗
K

c(z1, . . . , zK)dπ(z1, . . . , zK)

= sup
ϕ∈Φ

{
K∑
j=1

∫
X×Y

ϕj(zj)
1
2dµ(zj) +

1
2

K∑
j=1

ϕj( )

}
.

Furthermore, a minimizer π∗ exists, hence the infimum is indeed the minimum.

Proof. From Proposition 3.26 it follows that the cost function c(z1, . . . , zK) is lower
semi-continuous on (ZK∗ , d̂K), which is a Polish space. Applying Theorem 1.3 in
Villani (2003), which is stated for the usual optimal transport, but that can be
generalized to the MOT setting, we obtain the desired duality. The existence of
a minimizer π∗ follows from the lower semi-continuity of c(z1, . . . , zK) and the
compactness of ΠK(µ).

Corollary 3.29. Under Assumption 2.5, (3.1.2)=(3.1.3).

Proof. By the upper bound from section 3.3 we have

1
21B

∗
µ ⩽ min

π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK).

On the other hand, from (3.3.10) and Corollary 3.28 we have

min
π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK) = (3.1.8) ⩽

1
21(3.2.13) ⩽

1
21B

∗
µ.

Combining these two inequalities we conclude that all the above terms must be
equal. In particular, (3.2.13) = B∗

µ. Finally, by Proposition 3.19 we know that
(3.2.13) = (3.2.12) = (3.1.2). In particular, (3.1.3) = B∗

µ = (3.1.2).

Corollary 3.30. Suppose that Assumption 2.5 holds and that (π∗,ϕ∗) is a solution pair



70

for the MOT problem and its dual. Define f∗ and µ̃∗ according to:

f∗i (x̃) := sup
x∈spt(µi)

{
max

{
K∑
j=1

ϕ∗
j (x, i) +

K∑
j=1

ϕ∗
j ( ), 0

}
− c(x, x̃)

}

and for any test function h on X,∫
X

h(x̃)dµ̃∗
i (x̃) :=

∫
ZK∗

{∫
X

h(x̃)dµ̃∗
z⃗,i(x̃)

}
dπ∗(⃗z),

where µ̃∗
z⃗,i is the i-th marginal of µ̃∗

z⃗, an optimal adversarial attack which achieves c(z1, . . . , zK)
given z⃗ = (z1, . . . , zK). Suppose f∗ is measurable. Then (f∗, µ̃∗) is a saddle for problem
(2.5).

Remark 3.31. Here, we do not claim that f∗ is in general measurable. However, if either c
is continuous or µ is an empirical measure with a finite support, then f∗ can be shown to be
measurable. See Remark 5.5 and Remark 5.11 in Villani (2009).

Notice that the supremum in the definition of f∗i , is only taken over spt(µi).

Proof. We will show that (f∗, µ̃∗) is a saddle point for problem (3.1.3). More explic-
itly, we show that for any f ∈ F and for any µ̃,

B(f, µ̃∗) + C(µ, µ̃∗) ⩽ B(f∗, µ̃∗) + C(µ, µ̃∗) ⩽ B(f∗, µ̃) + C(µ, µ̃). (3.3.12)

First we compute B(f∗, µ̃∗) + C(µ, µ̃∗). Notice that

B(f∗, µ̃∗) + C(µ, µ̃∗) =

K∑
i=1

∫
X

f∗i (x̃i)dµ̃
∗
i (x̃i) +

K∑
i=1

C(µi, µ̃∗
i )

=
∑
A∈SK

∑
i∈A

{∫
X

f∗i (x̃i)dλ
∗
A(x̃i) + C(µi,A, λ∗A)

}

=
∑
A∈SK

{∫
XK

(∑
i∈A

f∗i (TA(⃗x)) + cA(⃗x)
)
dπ∗
A(⃗x)

}
,
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where λ∗A and π∗
A correspond to µ̃∗. By the construction of f∗i and (2.10),

∑
i∈A

f∗i (TA(⃗x)) =
∑
i∈A

sup
x ′

{
max

{
K∑
j=1

ϕ∗
j (x

′, i) +
K∑
j=1

ϕ∗
j ( ), 0

}
− c(x ′, TA(⃗x))

}

= max
{

sup
x ′
i:i∈A

{∑
i∈A

( K∑
j=1

ϕ∗
j (x

′
i, i) +

K∑
j=1

ϕ∗
j ( )

)
− cA(x

′
i : i ∈ A)

}
, 0
}

⩽ max {sup {1 + cA(x
′
i : i ∈ A) − cA(x ′i : i ∈ A)} , 0}

⩽ 1,

where the third inequality follows from (3.3.3). Hence,

B(f∗, µ̃∗) + C(µ, µ̃∗) ⩽
∑
A∈SK

∫
XK

(
1 + cA(⃗x)

)
dπ∗
A(⃗x)

=

∫
ZK∗

c(z1, . . . , zK)dπ∗(z1, . . . , zK)

= B∗
µ.

On the other hand, the definition of f∗i implies that for any xi in the support of µi
we have

f∗i (x̃i) ⩾
K∑
j=1

ϕ∗
j (xi, i) +

K∑
j=1

ϕ∗
j ( ) − c(x̃i, xi). (3.3.13)
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Using
∑
A∈SK(i) µi,A = µi and (3.3.13), the optimality of ϕ∗ implies that

B(f∗, µ̃∗) + C(µ, µ̃∗) =
∑
A∈SK

∑
i∈A

{∫
X×X

(
f∗i (x̃i) + c(x̃i, xi)

)
dπ∗
i (x̃i, xi)

}

⩾
∑
A∈SK

∑
i∈A

{∫
X×X

( K∑
j=1

ϕ∗
j (xi, i) +

K∑
j=1

ϕ∗
j ( )

)
dπ∗
i (x̃i, xi)

}

=
∑
A∈SK

∑
i∈A

{∫
X

( K∑
j=1

ϕ∗
j (xi, i) +

K∑
j=1

ϕ∗
j ( )

)
dµi,A(xi)

}

=

K∑
j=1

∫
Z

ϕj(zj)dµ(zj) +

K∑
j=1

ϕj( )

= B∗
µ.

Here π∗
i denotes an optimal coupling between µi and µ̃∗

i which correspond to π∗
A’s.

From the above we infer that

B(f∗, µ̃∗) + C(µ, µ̃∗) = B∗
µ.

Now we can prove (3.3.12). The first inequality of (3.3.12) is straightforward,
since the definition of B∗

µ in (3.1.4) and the optimality of µ̃∗ imply that

B(f, µ̃∗) + C(µ, µ̃∗) ⩽ sup
f∈F

{B(f, µ̃∗) + C(µ, µ̃∗)} = B∗
µ = B(f∗, µ̃∗) + C(µ, µ̃∗).

For the second inequality of (3.3.12), let arbitrary µ̃ be fixed and πi ∈ Γ(µ̃i,µi)
be an optimal coupling for each i ∈ Y. Then,

B(f∗, µ̃) + C(µ, µ̃) =
∑
i∈Y

∫
X

f∗i (x̃)dµ̃i(x̃) +
∑
i∈Y

C(µ̃i,µi)

=
∑
i∈Y

∫
X×X

(f∗i (x̃) + c(x, x̃))dπi(x, x̃).
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Applying (3.3.13) yields that

B(f∗, µ̃) + C(µ, µ̃) ⩾
∑
i∈Y

∫
X×X

(
K∑
j=1

ϕ∗
j (x, i) +

K∑
j=1

ϕ∗
j ( )

)
dπi(x, x̃)

=
∑
i∈Y

∫
X×X

(
K∑
j=1

ϕ∗
j (x, i) +

K∑
j=1

ϕ∗
j ( )

)
dµi(x)

= B∗
µ

= B(f∗, µ̃∗) + C(µ, µ̃∗).

Therefore, (f∗, µ̃∗) is a saddle point for (3.1.3), hence for (3.1.2) and (2.5) also.

Remark 3.32. Many recent papers have tried to analyze adversarial learning from a game-
theoretic perspective Bose et al. (2020); Meunier et al. (2021); Pydi and Jog (2021b).
This approach is natural: the learner aims at maximizing the classification power B∗

µ while
the adversary aims at maximizing the loss R∗

µ(hence to minimize B∗
µ): this is a standard

zero-sum game. Our main results thus provide a way to build Nash equilibria for the
adversarial problem using a series of equivalent formulations taking the form of generalized
barycenter problems or MOTs.

Corollary 3.33. Let π∗ be a solution of the MOT problem (3.0.1) and let F : ZK∗ → ZK∗ be
defined according to

F(z1, . . . , zK) = (zσ(1), . . . , zσ(K)),

for σ : Y → Y a permutation. Then any convex combination of F♯π∗ and π∗ is also a
solution.

Proof. This follows immediately from the fact that the cost function c is invariant
under permutations and the fact that all marginals of π∗ are the same.
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3.4 Examples and Numerical experiments
Through this section, the cost c is as in Example 2.3. This cost has been widely used
in adversarial learning literature and distributional robust optimization literature.
Examples in this section illuminate how our general framework of generalized
barycenter and MOT finds applications in practice.

Recovery of the binary case

Consider the binary case K = 2. Our goal is to show that our results recover the
result in García Trillos and Murray (2022).

Let z1, z2 ∈ Z∗. If both z1 and z2 are , then c(z1, z2) = 0. If only one of them is
, then the cost is 1

2 . Finally, consider the case where z1, z2 ̸= . First assume that
i1 = i2 = 1. In that case,

µ̂z⃗ =
1
2δ(x1,1) +

1
2δ(x2,1).

Since only class 1 is represented in this configuration, there is no meaningful
adversarial attack in this case, and thus,

B∗
µ̂z⃗

= 1.

Assume now that i1 = 1 and i2 = 2. In that case,

µ̂z⃗ =
1
2 µ̂1 +

1
2 µ̂2 =

1
2δ(x1,1) +

1
2δ(x2,2),

and the adversary can attack meaningfully if and only if d(x1, x2) ⩽ 2ε. Thus,

B∗
µ̂z⃗

=

{
1
2 if d(x1, x2) ⩽ 2ε,
1 if d(x1, x2) > 2ε.
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To summarize,

c(z1, z2) =


1
2 if i1 ̸= i2 and d(x1, x2) ⩽ 2ε,
1 if i1 = i2 or d(x1, x2) > 2ε,
1
2 if exactly one of zi’s is ,
0 if z1 = z2 = .

In García Trillos and Murray (2022), it is proved that

B∗
µ = inf

π̃∈Γ(µ,µ)

∫
Z×Z

(costε(z1, z2) + 1
2

)
dπ̃(z1, z2),

where

costε(z1, z2) =

{
0 if i1 ̸= i2 and d(x1, x2) ⩽ 2ε,
1 if i1 = i2 or d(x1, x2) > 2ε.

In other words, in the binary case, it is unnecessary to introduce the element . To
illustrate this point, assume for simplicity that 1 = 1. Notice that every π̃ ∈ Γ(µ,µ)
induces a π ∈ Π2(µ) as follows:∫

Z∗×Z∗

φ(z1, z2)dπ(z1, z2) :=
1
2

∫
Z×Z

φ(z1, z2)dπ̃(z1, z2) +
1
2φ( , ),

where φ : Z∗ × Z∗ → R is an arbitrary test function. The cost associated to the
induced π is:

2
∫
Z∗×Z∗

c(z1, z2)dπ(z1, z2) =

∫
Z×Z

c(z1, z2)dπ̃(z1, z2) =

∫
Z×Z

(costε(z1, z2) + 1
2

)
dπ̃(z1, z2).

On the other hand, let π be a solution for the MOT problem (3.0.1) (such
a solution exists thanks to Proposition 3.28). Thanks to Corollary 3.33, we can
assume without loss of generality that

π(A×A ′) = π(A ′ ×A),
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for all A,A ′ measurable subsets of Z∗. We now define π̃ according to:∫
Z×Z

φ̃(z1, z2)dπ̃(z1, z2) := 2
∫
Z×Z

φ̃(z1, z2)dπ(z1, z2)

+

∫
Z×{ }

φ̃(z1, z1)dπ(z1, z2) +

∫
{ }×Z

φ̃(z2, z2)dπ(z1, z2),

for test functions φ̃ : Z × Z → R. It follows that π̃ ∈ Γ(µ,µ). Moreover, from the
above formula and the expressions for the cost c we get∫
Z×Z

(costε(z1, z2) + 1
2

)
dπ̃(z1, z2) =

∫
Z×Z

c(z1, z2)dπ̃(z1, z2) = 2
∫
Z∗×Z∗

c(z1, z2)dπ(z1, z2).

The above computations show that our results indeed recover those from García
Trillos and Murray (2022) for the binary case.

Toy example: three points distribution

Let’s assume that K = 3 and µ is such that

µ1 = ω1δx1 , µ2 = ω2δx2 , µ3 = ω3δx3 ,

for three points x1, x2, x3 in Euclidean space. Without loss of generality, assume
further that ω1 ⩾ ω2 ⩾ ω3 > 0 and

∑
ωi = 1. Let ε > 0 be given and consider

the cost from Example 2.3 with d as the Euclidean distance (for simplicity). We
will explicitly construct an optimal robust classifier and an optimal adversarial
attack for this problem. Even in this simple scenario, one can observe non-trivial
situations.

Since for every µ̃i such thatW∞(ωiδxi , µ̃i) ⩽ εwe have∫
X

fi(xi)dµ̃i(xi) =

∫
B(xi,ε)

fi(xi)dµ̃i(xi),

where B(x, r) = {x ′ : d(x, x ′) ⩽ r}, we can assume without loss of generality
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that spt(µ̃i) ⊆ B(xi, ε). Notice that it is sufficient to consider f ∈ F restricted to
B(x1, ε)∪B(x2, ε)∪B(x3, ε) (in fact, problem (2.5) can not disambiguate the values
of f outside of this set). We consider 4 non-trivial configurations and one trivial
one. Figure 3.4 below illustrates how the adversary perturbs the original data
distribution in each of the non-trivial cases.

Case 1. d(xi, xj) > 2ε for all 1 ⩽ i ̸= j ⩽ 3. This is a trivial case. We claim that
for any µ̃i such that W∞(ωiδxi , µ̃i) ⩽ ε, ((1B(x1,ε),1B(x2,ε),1B(x3,ε)), (µ̃1, µ̃2, µ̃3)) is
a saddle point for (2.5). This is straightforward, since spt(µ̃i) ∩ spt(µ̃j) = ∅, and
thus it can be deduced that (1B(x1,ε),1B(x2,ε),1B(x3,ε)) is a dominant strategy for the
learner. It is easy to check that B∗

µ = 1 in this case.
Case 2. There is some x such that d(x, xi) ⩽ ε for all 1 ⩽ i ⩽ 3. We claim

that ((1, 0, 0), (ω1δx,ω2δx,ω3δx)) is a saddle point. First, ωiδx is feasible for all
1 ⩽ i ⩽ 3, since x ∈ B(xi, ε) for all i. Now, given (ω1δx,ω2δx,ω3δx), the best
strategy for the learner is to choose class 1 deterministically for all points, since
ω1 ⩾ ω2 ⩾ ω3. On the other hand, given (1, 0, 0), any adversarial attack yields the
same classification power. From this we conclude that ((1, 0, 0), (ω1δx,ω2δx,ω3δx))

is indeed a saddle point. Notice that B∗
µ = ω1 in this case.

Case 3. Two points are close to each other while the other point is far from
them. For simplicity, we only consider the case d(x1, x2) ⩽ 2ε, d(x1, x3) > 2ε and
d(x2, x3) > 2ε. The other cases are treated similarly. Let x12 = x1+x2

2 , and define
f̂ = (1B(x1,ε)∪B(x2,ε), 0,1B(x3,ε)) and µ̂ = (ω1δx12 ,ω2δx12 , µ̃3) for arbitrary µ̃3 with
W∞(µ̃3,ω3δx3) ⩽ ε. We claim that (f̂, µ̂) is a saddle point. For any (f1, f2, f3) ∈ F we
have

Bµ(f, µ̂) =
∫
X

f1(x)ω1δx12(x) +

∫
X

f2(x)ω2δx12(x) +

∫
X

f3(x)dµ̃3(x)

= ω1f1(x12) +ω2f2(x12) +

∫
X

f3(x)µ̃3(x)

⩽ ω1 +ω3

=

∫
X

1B(x1,ε)∪B(x2,ε)ω1δx12(x) +

∫
X

0ω2δx12(x) +

∫
X

1B(x3,ε)dµ̃3(x).
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On the other hand, given (1B(x1,ε)∪B(x2,ε), 0,1B(x3,ε)), for any (µ̃1, µ̃2, µ̃3),

Bµ(f̂, µ̃) =
∫
X

1B(x1,ε)∪B(x2,ε)dµ̃1(x) +

∫
X

0dµ̃2(x) +

∫
X

1B(x3,ε)dµ̃3(x)

= ω1 +ω3

= Bµ(f̂, µ̂)

where the second equality follows from the assumption on the configuration of
points. The above computations imply the claim. In this case B∗

µ = ω1 +ω3.
Case 4. d(xi, xj) ⩽ 2ε for any xi, xj but B(x1, ε) ∩ B(x2, ε) ∩ B(x3, ε) = ∅. Note

that when K = 2, d(x1, x2) ⩽ 2ε if and only if B(x1, ε)∩B(x2, ε) ̸= ∅. However, when
K ⩾ 3, these cases are not equivalent anymore. There are two subcases to consider
depending on the magnitudes of the weights (ω1,ω2,ω3).

Case 4 - (i) ω1 < ω2 +ω3. In this case, we can find some αi ∈ [0,ωi] for all
1 ⩽ i ⩽ 3 such that

α1 = ω2 − α2, α2 = ω3 − α3 and α3 = ω1 − α1.

Precisely,

α1 =
ω1 +ω2 −ω3

2 , α2 =
ω2 +ω3 −ω1

2 , and α3 =
ω3 +ω1 −ω2

2 .

Note that for all i, αi ⩾ 0 since ω1 ⩽ ω2 + ω3. Let x12 ∈ B(x1, ε) ∩ B(x2, ε),
x13 ∈ B(x1, ε) ∩ B(x3, ε) and x23 ∈ B(x2, ε) ∩ B(x3, ε). Construct the following
measures

µ̂1 :=
(
α1δx12 + (ω1 − α1)δx13

)
=
(
(
ω1 +ω2 −ω3

2 )δx12 + (
ω1 −ω2 +ω3

2 )δx13

)
,

µ̂2 :=
(
α2δx23 + (ω2 − α2)δx12

)
=
(
(
ω2 +ω3 −ω1

2 )δx23 + (
ω2 −ω3 +ω1

2 )δx12

)
,

µ̂3 :=
(
α3δx13 + (ω3 − α3)δx23

)
=
(
(
ω3 +ω1 −ω2

2 )δx13 + (
ω3 −ω1 +ω2

2 )δx23

)
.

Observe that at each xij, µ̂i and µ̂j put the same mass: it is natural since, otherwise,
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the learner will choose a class which puts more mass at xij. So, this gives a hint
about what would be the best adversarial attack. The adversary gathers classes as
much as possible and distributes them as uniform as possible.

Let Aij = Aji := B(xi, ε) ∩ B(xj, ε) and Ai = B(xi, ε) \ (Aij ∪ Aik). One can
observe that since d(xi, xj) ⩽ 2ε for any xi, xj but B(x1, ε) ∩ B(x2, ε) ∩ B(x3, ε) = ∅,
B(xi, ε) = Aij∪̇Aik∪̇Ai for each i. Here ∪̇ denotes a disjoint union. Also, since
W∞(µ̃i,ωiδxi) ⩽ ε, it must be the case that Aij ∩ spt(µ̃k) = ∅ if k ̸= i, j. For each
1 ⩽ i ⩽ 3, construct the following weak partition:

f̂i(x) :=


1 if x ∈ Ai,
1
2 if x ∈ Aij,
0 if x /∈ B(xi, ε).

f̂ is a weak partition sinceB(xi, ε) = Aij∪̇Aik∪̇Ai andB(x1, ε)∩B(x2, ε)∩B(x3, ε) = ∅.
We claim that (f̂, µ̂) is a saddle point. Note that a straightforward computation
yields Bµ(f̂, µ̂) = 1

2 .
Given (µ̂1, µ̂2, µ̂3), for any (f1, f2, f3) ∈ F,

Bµ(f, µ̂) =
∫
X

f1(x)dµ̂1(x) +

∫
X

f2(x)dµ̂2(x) +

∫
X

f3(x)dµ̂3(x)

= (
ω1 +ω2 −ω3

2 )f1(x12) + (
ω1 +ω3 −ω2

2 )f1(x13) + (
ω2 +ω3 −ω1

2 )f2(x23)

+ (
ω1 +ω2 −ω3

2 )f2(x12) + (
ω1 +ω3 −ω2

2 )f3(x13) + (
ω2 +ω3 −ω1

2 )f3(x23)

= (
ω1 +ω2 −ω3

2 )(f1(x12) + f2(x12)) + (
ω1 +ω3 −ω2

2 )(f1(x13) + f3(x13))

+ (
ω2 +ω3 −ω1

2 )(f2(x23) + f3(x23))

⩽ (
ω1 +ω2 −ω3

2 ) + (
ω1 +ω3 −ω2

2 ) + (
ω2 +ω3 −ω1

2 )

=
1
2,

where the second to last inequality follows from the fact that
∑
fi(x) ⩽ 1 and the

last equality follows from the fact that
∑
ωi = 1. Given (f̂1, f̂2, f̂3), on the other
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hand, for any (µ̃1, µ̃2, µ̃3)

Bµ(f̂, µ̃) =
∫
X

f̂1(x)dµ̃1(x) +

∫
X

f̂2(x)dµ̃2(x) +

∫
X

f̂3(x)dµ̃3(x)

=
µ̃1(A12) + µ̃2(A12)

2 +
µ̃1(A13) + µ̃3(A13)

2 +
µ̃2(A23) + µ̃3(A23)

2
+ µ̃1(A1) + µ̃2(A2) + µ̃3(A3).

Note that sinceW∞(µ̃i,ωiδxi) ⩽ ε, spt(µ̃i)∩Aj = ∅ for any µ̃i and for any i ̸= j. To
minimize the above, the adversary should put spt(µ̃i) ⊆ Aij ∪Aik for all i. Also, at
the minimum, it must be the case that µ̃i(Aij) = µ̃j(Aij), otherwise the adversary
would be able decrease the classification power further. Combining all arguments,
we can deduce

Bµ(f̃, µ̃) ⩾
µ̃1(A12) + µ̃2(A12)

2 +
µ̃1(A13) + µ̃3(A13)

2 +
µ̃2(A23) + µ̃3(A23)

2 =
1
2,

which verifies the claim. In this case, B∗
µ = 1

2 .
In fact, it is unavoidable to introduce weak partitions f ∈ F. Let f = (1F1 ,1F2 ,1F3)

be any strong partition, i.e. F1∪̇F2∪̇F3 = ∪B(xi, ε). We will show that for any µ̃,
(f, µ̃) cannot be a saddle point. Assume that B(x1, ε) ⊆ F1. Since d(x1, x2) ⩽ 2ε
and d(x1, x3) ⩽ 2ε, it must be the case that F1 ∩ B(x2, ε) ̸= ∅ and F1 ∩ B(x3, ε) ̸= ∅.
These facts yield that optimal µ̃2 and µ̃3 for the adversary must satisfy spt(µ̃2) ⊆
F1∩B(x2, ε) and spt(µ̃3) ⊆ F1∩B(x3, ε). This configuration gives a classifying power
ω1 since the learner can only detect class 1 perfectly and always misclassifies others.

However, given any such (µ̃1, µ̃2, µ̃3), the learner has an incentive to modify
a classifying rule. Let F ′1 := F1 \ (spt(µ̃2) ∪ spt(µ̃3)), F ′2 := F2 ∪ spt(µ̃2) and F ′3 :=

F3 ∪ spt(µ̃3). Then, this classifying rule perfectly classifies. Precisely, there exists a
deviation for the learner, f ′ = (1F ′

1
,1F ′

2
,1F ′

3
), such that

1 = B(f ′, µ̃) > B(f, µ̃) = ω1.

Assume that B(x1, ε) ̸⊆ F1. Since (F1, F2, F3) is a partition, it must be the case
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that either F2 ∩ B(x1, ε) ̸= ∅ or F3 ∩ B(x1, ε) ̸= ∅. Without loss of generality, assume
the former case only. The other cases are analogous. F2 ∩ B(x1, ε) ̸= ∅ yields that
an optimal µ̃1 for the adversary must satisfy spt(µ̃1) ⊆ F2. Then, a corresponding
classifying power is at mostω2 +ω3 since the learner always misclassifies class 1.

However, given any such (µ̃1, µ̃2, µ̃3), the learner has an incentive to modify a
classifying rule again. Let F ′1 := F1 ∪ spt(µ̃1), F ′2 := F2 \ spt(µ̃1) and F ′3 := F3. Similar
as above, letting f ′ = (1F ′

1
,1F ′

2
,1F ′

3
), such that

1 = B(f ′, µ̃) > ω2 +ω3 ⩾ B(f, µ̃).

Therefore, any strong partition f = (1F1 ,1F2 ,1F3) cannot sustain a saddle point in
this case.

We want to emphasize that the same reasoning still holds for other cases. In
other words, even this simple discrete measures, it is necessary to extend strong
partition to weak partition in order to achieve the minimax value.

Case 4 - (ii)ω1 ⩾ ω2 +ω3. In this case, no matter how the adversary perturbs
the distribution, there will always be an excess mass from class 1 that won’t be
matched to other classes. Motivated by this observation, let κ = ω1 −(ω2 +ω3) ⩾ 0
and consider the following measures (µ̂1, µ̂2, µ̂3):

µ̂1 = ω2δx12 +ω3δx13 + κδx1 ,

µ̂2 = ω2δx12 ,

µ̂3 = ω3δx13 .

Consider (f̂1, f̂2, f̂3) = (1, 0, 0). We claim that (f̂, µ̂) = ((f̂1, f̂2, f̂3), (µ̂1, µ̂2, µ̂3)) is a
saddle point. Note that a straightforward computation yields Bµ(f̂, µ̂) = ω1.
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For any (f1, f2, f3) ∈ F,

Bµ(f, µ̂) =
∫
X

f1(x)dµ̂1(x) +

∫
X

f2(x)dµ̂2(x) +

∫
X

f3(x)dµ̂3(x)

= ω2f1(x12) +ω3f1(x13) + κf1(x1) +ω2f2(x12) +ω3f3(x13)

= ω2(f1(x12) + f2(x12)) +ω3(f1(x13) + f3(x13)) + κf1(x1)

⩽ ω2 +ω3 + κ

= ω1.

On the other hand, for any feasible (µ̃1, µ̃2, µ̃3),

Bµ(f̂, µ̃) =
∫
X

f̂1(x)dµ̃1(x) +

∫
X

f̂2(x)dµ̃2(x)

∫
X

f̂3(x)dµ̃3(x) = ω1.

The claim follows. In this case, B∗
µ = ω1. Here, ω1 ⩾ 1

2 , since ω1 ⩾ ω2 +ω3 and∑
ωi = 1. In the case that ω1 = ω2 +ω3, both Case 4 -(i) and Case 4 -(ii) provide

B∗
µ = 1

2 , which shows the consistency.
We now show that the adversary has no incentive to use the point x23, in contrast

to what happens in Case 4 -(i). Fix a small η > 0, and suppose that the adversary
moves ηmass from each ofω2δx2 andω3δx3 to the point x23, respectively. Construct
corresponding measures:

µ̃1 = (ω2 − η)δx12 + (ω3 − η)δx13 + κ
′δx1 ,

µ̃2 = ηδx23 + (ω2 − η)δx12 ,

µ̃3 = (ω3 − η)δx13 + ηδx23

where κ ′ = ω1 − (ω2 +ω3 − 2η) = κ + 2η. We show that µ̃ can not be a solution
to the adversarial problem by showing that the learner can select a strategy f̃ for
which

Bµ(f̃, µ̃) > ω1.
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Indeed, we can select f̃ := (1B(x1,ε), 0,1X\B(x1,ε)). It follows that

Bµ(f̃, µ̃) =
∫
X

f̃1(x)dµ̃1(x) +

∫
X

f̃2(x)dµ̃2(x) +

∫
X

f̃3(x)dµ̃3(x)

= (ω2 − η) + (ω3 − η) + κ
′ + η = ω1 + η > ω1.

Notice that while the geometry of points x1, x2, x3 in case 4 -(i) and case 4 -(ii)
is the same, the geometries of the corresponding optimal adversarial attacks are
determined by the full distribution µ and not just by the geometry of its support.
In fact, the optimal adversarial attacks µ̃ and the optimal barycenter measure λ
depend on not only the geometry of the support of µ but also the magnitudes of its
marginals, µi’s.

Numerical Experiments

In this section we illustrate our theoretical results numerically. We obtain robust
classifiers for synthetic data sets and compute optimal adversarial risks for two
popular real data sets: MNIST and CIFAR.

From the perspective of numeric, our aim is to solve the MOT problem (3.0.1)
and its dual for an empirical measure µwhose support consists of n data points. We
use Sinkhorn algorithm for concreteness. Introduced in Cuturi (2013), Sinkhorn
algorithm has been one of the central algorithmic tools in computational optimal
transport in the past decade. This algorithm, originally introduced in the context
of standard (2-marginal) optimal transport problems, was extended to MOTs in
Benamou et al. (2015, 2019). Works that study the computational complexity of
generic MOT problems include: Lin et al. (2022); Tupitsa et al. (2020); Haasler et al.
(2021); Carlier (2022). In particular, Lin et al. (2022) and Tupitsa et al. (2020) prove
the complexity of MOT Sinkhorn algorithm to be Õ(K3nKϵ−2) and Õ(K3nK+1ϵ−1),
respectively, where ϵ is the error tolerance.

In our first illustration, we consider a data set (x1,y1), . . . (xn,yn) in R2× {1, 2, 3}
obtained by sampling yi uniformly from {1, 2, 3} and then xi from a certain Gaussian
distribution with parameters depending on the outcome of yi. We consider the cost
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Figure 3.4: Illustrations of the adversarial attacks in all cases from section 3.4.
Weights on arrows indicate the amount of mass the adversary moves to a perturbed
point. x’s are the support of λ in (3.1.4). One observes that the support of λ depends
on both the geometry of data distributions and their magnitudes.

c = cε from Example 2.3 with d the Euclidean distance in R2 and different values
of ε. In Figure 3.5 we show the labels assigned to the data by the (approximate)
robust classifier, which we computed using Corollary 3.30 for the dual potentials
ϕj generated by the MOT Sinkhorn algorithm.

In our second illustration, we use the mutlimarginal version of Sinkhorn algo-
rithm to compute the adversarial risk R∗

µ (i.e. the optimal value of (2.5)) for µ an
empirical measure supported on a subset of either the CIFAR or MNIST data sets.
In both cases we consider samples belonging to one of four possible classes in order
to decrease the computational complexity of the problem. We use the cost c from
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Figure 3.5: Three Gaussians in R2. One can observe that as ε grows the robust
classifying rule becomes simpler, as expected.

Example 2.3 for different values of ε and two choices of d: the Euclidean distance
ℓ2 and the ℓ∞ distance. The results are shown in Figure 3.6. We can observe that
for the CIFAR data set the two distance functions behave similarly: while not the
same, the plots exhibit a similar qualitative behavior. For the MNIST data set, on
the other hand, the situation is markedly different: in contrast to the plot for the ℓ2
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Figure 3.6: Adversarial risks (2.5) computed using the multimarginal Sinkhorn
algorithm. η is the entropic regularization parameter of the Sinkhorn algorithm.
The maximum adversarial risk in all cases is 0.75 because we consider 4 classes
and an equal number of points in each class. Due to the entropic penalty, the
multimarginal Sinkhorn algorithm always gives an upper bound for the optimal
classification power B∗

µ, hence gives a lower bound for the adversarial risk R∗
µ.

distance, the adversarial risk with ℓ∞ distance varies dramatically as ε grows. This
observation is consistent with the findings in Pydi and Jog (2021a) for the binary
case.

We emphasize that Figure 3.6 only provides approximations of the true adver-
sarial risk R∗

µ. Indeed, recall that R∗
µ = 1 − B∗

µ. Approximating B∗
µ using the MOT

Sinkhorn algorithm will always produce an upper bound forB∗
µ since the regulariza-

tion term effectively restricts the solution space of (3.0.1). Thus, the multimarginal
Sinkhorn algorithm always yields a lower bound for the true R∗

µ. Of course, one can
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always compute a tighter lower bound by reducing the regularization parameter η
at the expense of increasing the computational burden.

As way of conclusion for this section we provide pointers to the literature
discussing the computational complexity of the Wasserstein barycenter problem;
Wasserstein barycenter problems are specific instances in the MOT family. On the
one hand, Altschuler and Boix-Adserà (2022) prove certain computational hardness
of the barycenter problem in the dimension of the feature space (here X). On the
other hand, Altschuler and Boix-Adsera (2021) present an algorithm that can get
an approximate solution of the optimal barycenter in polynomial time for a fixed
dimension of the feature space. While our MOT is not the standard barycenter
problem, it is still a generalized version thereof, and thus, it is reasonable to expect
that the structure of our problem can be used in the design of algorithms that
perform better than off-the-shelf MOT solvers. We leave this task for future work.

3.5 Summary
In this chapter we have discussed a series of equivalent formulations of adversarial
problems in the context of multiclass classification. These formulations take the
form of problems in optimal transport, specifically, multimarginal optimal transport
and (generalized) Wasserstein barycenter problem. Besides providing a novel
connection between apparently unrelated fields, we have also discussed a series of
theoretical and computational implications emanating from these equivalences. In
what follows we briefly expand this discussion, while at the same time provide a
few perspectives on future work.
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4 on the existence of solutions to adversarial
training in multiclass classification

This chapter is based on García Trillos et al. (2023a) which is a joint work with
Nicolas García Trillos and Matt Jacobs.

4.1 Outline of this chapter
This chapter is organized as follows. In section 4.2, we introduce the main results of
this chapter. In section 4.3 we lay down the main mathematical tools for analyzing
the DRO model. Part of these tools come directly from chapter 3, while others
are developed here. In section 4.4 we prove our main results: first, we prove the
existence of solutions for the DRO model; then we prove that solutions to the
DRO model are solutions to the closed-ball model; finally, we relate the closed-ball
model with the open-ball model. Lastly, in section 4.5 we wrap up the chapter by
summarizing it.

4.2 Main results
Our first main theorem discusses the existence of (Borel) solutions for problem
(2.5) under Assumption 2.5 on the cost c.

Theorem 4.1. Suppose that c : X×X→ [0,∞] satisfies Assumption 2.5. Then there exists
a (Borel) solution f∗ of (2.5). Furthermore, there exists µ̃∗ ∈ P(Z) such that (f∗, µ̃∗) is
a saddle point for (2.5). In other words, the following holds: for any µ̃ ∈ P(Z) and any
f ∈ F we have

R(f∗, µ̃) − C(µ, µ̃) ⩽ R(f∗, µ̃∗) − C(µ, µ̃∗) ⩽ R(f, µ̃∗) − C(µ, µ̃∗). (4.2.1)

When the cost function c is regular enough or when µ is an empirical measure,
we can reduce the problem of finding a solution f∗ of (2.5) to the problem of solving
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the dual of a generalized barycenter problem or the dual of a multimarginal optimal
transport problem. These connections were first put forward in our earlier work
Garcıa Trillos et al. (2023) and will be discussed again in section 4.3, concretely in
Proposition 4.19. Unfortunately, when the cost is only lower semi-continuous (e.g.,
for c = cε as in (2.8)) and when µ is an arbitrary Borel probability measure, we can
not directly use the content of Proposition 4.19 to guarantee the existence of (Borel)
solutions f∗. One possible way around this issue is to consider an approximation
argument where, instead of working directly with the cost c, we work with smoother
approximations cn to c for which we can use some of our previous theory. At a
high level, we can thus reduce finding solutions for the DRO problem (2.5) to that
for an MOT or a generalized barycenter (or sequences thereof).

Remark 4.2. When the cost c has the form cε in (2.8), Assumption 2.5 reduces to the
requirement that bounded subsets in X are precompact, which we are anyway assuming
in Assumption 2.5, according to remark 2.6. This is the case for Euclidean space or for a
smooth manifold of finite dimension endowed with its geodesic distance.

In order to discuss the existence of solutions to the problem (2.4) we actually
first need to modify the problem and define it properly. To do this, we first introduce
the universal σ-algebra of the space X.

Definition 4.3 (Definition 2.2 in Nishiura (2008)). Let B(X) be the Borel σ-algebra over
X and let M(X) be the set of all signed σ-finite Borel measures over X. For each ν ∈M(X),
let Lν(X) be the completion of B(X) with respect to ν. The universal σ-algebra of X is
defined as

U(X) :=
⋂

ν∈M(X)

Lν(X).

We will use P(Z) to denote the set of probability measures γ over Z for which γi is a
universal positive measure (i.e., it is defined over U(X)) for all i ∈ Y. For a given probability
measure µ ∈ P(Z) we will denote by µ its universal extension, which we will interpret as

µ(A× {i}) := µi(A), ForallA ∈ U(X),
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where µi is the extension of µi to U(X). Finally, we will use U(Z) to denote the set of all
f = (f1, . . . , fK) for which each fi is universally measurable.

Remark 4.4. If (X,d) = (Rn, || · ||), then U(X) is the set of all Lebesgue measurable sets;
see Theorem 4.2 in Nishiura (2008). So, any Lebesgue-measurable function is universally
measurable and vice-versa.

Having introduced the above notions, we can reformulate problem (2.4) as:

Rε := inf
f∈F

Rε(f) := inf
f∈F

{∑
i∈Y

∫
X

sup
x̃∈Bε(x)

{1 − fi(x̃)}dµi(x)

}
. (4.2.2)

Although the difference with (2.4) is subtle (in (2.4) we use µi whereas in (4.2.2)
we use µi), problem (4.2.2) is actually well-defined. Indeed, combining Lemma
4.2 in Pydi and Jog (2021b) with Corollary 7.42.1 in Bertsekas and Shreve (1996),
originally from Luzin and Sierpiński (1919), it follows that for any Borel measurable
fi the function x 7→ supx∈Bε(x){1 − fi(x̃)} is universally measurable and thus the
integrals on the right hand side of (4.2.2) are well defined.

Our second main result relates solutions of (2.5) with solutions of (4.2.2).

Theorem 4.5. There exists a Borel solution of (2.5) for the cost function c = cε from (2.8)
that is also a solution of (4.2.2). In particular, there exists a (Borel) solution for (4.2.2).

Finally, we connect problem (4.2.2) with problem (2.3).

Theorem 4.6. For all but at most countably many ε ⩾ 0, we have Roε = Rε. Moreover, for
those ε ⩾ 0 for which this equality holds, every solution f∗ of (4.2.2) is also a solution of
(2.3).

Remark 4.7. In general, we can not expect the optimal adversarial risks of open-ball and
closed-ball models to agree for all values of ε. To illustrate this, consider the simple setting
of a two class problem (i.e., K = 2) where µ1 =

1
2δx1 and µ2 =

1
2δx2 . Let ϵ0 =

1
2d(x1, x2).

It is straightforward to check that Roϵ0
= 0 whereas Rϵ0 = 1/2. Naturally, if we had selected

any other value for ε > 0 different from ϵ0 we would have obtained Roε = Rε.
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From Theorem 4.1, Proposition 4.5, and Theorem 4.6 we may conclude that
it is essentially sufficient to solve problem (2.5) to find a solution for all other
formulations of the adversarial training problem discussed in this paper. Our
results thus unify all notions of adversarial robustness into the single DRO problem
(2.5). The advantage of (2.5) over the other formulations of the adversarial training
problem is that it can be closely related to a generalized barycenter problem or an
MOT problem, as has been discussed in detail in our previous work Garcıa Trillos
et al. (2023) (see also section 4.3 below). In turn, either of those problems can be
solved using computational optimal transport tools. From a practical perspective, it
is thus easier to work with the DRO formulation than with the other formulations
of adversarial training.

Discussion and literature review

The existence of measurable “robust" solutions to optimization problems has been a
topic of interest not only in the context of adversarial training Pydi and Jog (2021b);
Frank and Niles-Weed (2022); Frank (2022); Awasthi et al. (2021a,b) but also in
the general distributionally robust optimization literature, e.g., Blanchet and Murthy
(2019). Previous studies of robust classifiers use the universal σ-algebra not only
to formulate optimization problems rigorously, but also as a feasible search space
for robust classifiers. The proofs of these existence results rely on the pointwise
topology of a sequence of universally measurable sets, the weak topology on the
space of probability measures, and lower semi-continuity properties of Rε(·). The
(universal) measurability of a minimizer is then guaranteed immediately by the
definition of the universal σ-algebra. We want to emphasize that all the works
Pydi and Jog (2021b); Frank and Niles-Weed (2022); Frank (2022); Awasthi et al.
(2021a,b) prove their results in the binary (K = 2) classification setting with X the
Euclidean space.

In contrast to the closed-ball model formulation, the objective in (2.5) is well-
defined for all Borel probability measures µ̃ and all f ∈ F, as has been discussed in
previous sections. The papers Pydi and Jog (2021b); Frank and Niles-Weed (2022);
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Frank (2022); Awasthi et al. (2021a,b) can only relate, in the binary case, problems
(2.5) and (4.2.2) when problem (2.5) is appropriately extended to the universal
σ-algebra, yet it is not clear that such extension is necessary. For concreteness, we
summarize some of the results in those works in the following theorem.

Theorem 4.8 (Pydi and Jog (2021b); Awasthi et al. (2021a,b); Frank (2022)). Suppose
K = 2 and µ ∈ P(Z). Then, for any f ∈ F, we have supx̃∈Bε(x){1 − fi(x̃)} ∈ U(Z) and

2∑
i=1

∫
X

sup
x̃∈Bε(x)

{1 − fi(x̃)}dµi(x) = sup
µ̃∈P(Z)

{R(f, µ̃) − C(µ, µ̃)} ,

where C is defined in terms of the cost cε from (2.8).
Assume further that (X,d) = (Rn, || · ||). Then, for any f ∈ U(Z), it holds that

supx̃∈Bε(·){1 − fi(x̃)} is universally measurable for each i. In addition, there exists a
minimizer of the objective in (4.2.2) in the class of soft-classifiers that are universally
measurable. Finally, (4.2.2) and (2.5) are equivalent, provided that the latter is interpreted
as an optimization problem over the space of universally measurable soft-classifiers.

In this paper, we use the universal σ-algebra to rigorously define the objective
function in (4.2.2), but we will only consider elements in F (thus, Borel measurable
soft-classifiers) as feasible classifiers. Indeed, based on some of our previous results
in Garcıa Trillos et al. (2023), we prove the existence of Borel measurable robust
classifiers of (2.5) for general lower semi-continuous c satisfying Assumption 2.5
only. Then, back to the closed-ball model, we prove the existence of Borel robust
classifiers of (4.2.2). When we specialize our results to the binary classification
setting (i.e., K = 2), we obtain the following improvement upon the results from
Bhagoji et al. (2019); Pydi and Jog (2021a); Frank (2022).

Corollary 4.9. Let K = 2 and let f∗ ∈ F be any solution to the problem (4.2.2). Then, for
Lebesgue a.e. t ∈ [0, 1], the pair (1{f∗1⩾t}

,1{f∗1⩾t}
c) is also a solution to (4.2.2).
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In particular, there exist solutions to the problem

min
A∈B(X)

∫
X

sup
x̃∈Bε(x)

1Ac(x̃)dµ1(x) +

∫
X

sup
x̃∈Bε(x)

1A(x̃)dµ2(x).

Notice that Corollary 4.9 implies, for the binary case, the existence of robust
hard-classifiers for the adversarial training problem, a property shared with the
nominal risk minimization problem (2.2) that we discussed at chapter 2. Analogous
results on the equivalence of the hard-classification and soft-classification problems
in adversarial training under the binary setting have been obtained in Pydi and Jog
(2021a,b); Bungert et al. (2023); García Trillos and Murray (2022). Unfortunately,
when the number of classes is such that K > 2, the hard-classification and soft-
classification problems in adversarial training may not be equivalent, as has been
discussed in Section 5.2 of our work Garcıa Trillos et al. (2023).

In light of Theorem 4.6, one can conclude from Corollary 4.9 that for all but
countably many ε > 0 the problem

min
A∈B(X)

∫
X

sup
x̃∈Bε(x)

1Ac(x̃)dµ1(x) +

∫
X

sup
x̃∈Bε(x)

1A(x̃)dµ2(x)

admits solutions; notice that the above is the open-ball version of the optimization
problem in Corollary 4.9. However, notice that the results in Bungert et al. (2023)
guarantee existence of solutions for all values of ε. It is interesting to note that the
technique used in Bungert et al. (2023) can not be easily adapted to the multiclass
case K > 2. Specifically, it does not seem to be straightforward to generalize
Lemma C.1 in Bungert et al. (2023) to the multiclass case. For example, if one used
the aforementioned lemma to modify the coordinate functions fi of a multiclass
classifier f, one could end up producing functions for which their sum may be
greater than one for some points in X, thus violating one of the conditions for
belonging to F.

We observe, on the other hand, that the total variation regularization interpreta-
tion for the open ball model in the binary case discussed in Bungert et al. (2023)
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continues to hold in the multiclass case. To make this connection precise, let us
introduce the non-local TV functionals:

T̃Vε(fi,µi) :=
1
ε

∑
i∈Y

∫
X

sup
x̃∈Bε(x)

{fi(x) − fi(x̃)}dµi(x).

It is then straightforward to show that problem (2.3) is equivalent to

inf
f∈F

K∑
i=1

∫
X

(1 − fi(x))dµi(x) + ε

K∑
i=1

T̃Vε(fi,µi), (4.2.3)

which can be interpreted as a total variation minimization problem with fidelity
term. Indeed, the fidelity term in the above problems is the nominal (unrobust) risk
R(f,µ). On the other hand, the functional T̃Vε(·,µi) is a non-local total variation
functional in the sense that it is convex, positive 1-homogeneous, invariant under
addition of constants to the input function and is equal to zero when its input is
a constant function. Moreover, in the case (X,d) = (Rd, ∥·∥) and when dµi(x) =
ρi(x)dx for a smooth function ρi, one can see that, for small ε > 0,

T̃Vε(fi,µi) ≈
∫
X

|∇fi(x)| ρi(x)dx,

when fi is a smooth enough function. The functional T̃Vε(fi,µi) is thus connected
to more standard notions of (weighted) total variation in Euclidean space. This
heuristic can be formalized further via variational tools, as has been done recently
in Bungert and Stinson (2022).

Total variation regularization with general TV functionals is an important
methodology in imaging, and also in unsupervised and supervised learning on
graphs, where it has been used for community detection, clustering, and graph
trend-filtering; e.g., see Hu et al. (2013); Merkurjev et al. (2013); van Gennip et al.
(2014); Bertozzi and Flenner (2016); Luo and Bertozzi (2017); Caroccia et al. (2020);
Boyd et al. (2020); Cristofari et al. (2020); García Trillos et al. (2022); García Trillos
and Murray (2017) and references therein.
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4.3 Distributional-perturbing model and its
generalized barycenter formulation

In this section we reintroduce some tools from chapter 3 and develop a collection
of technical results that we will use in section 4.4 to prove Theorem 4.1.

Generalized barycenter and MOT problems

Given µ ∈ P(Z), recall the generalized barycenter problem, (3.1.4), in chapter 3:

inf
λ,µ̃1,...,µ̃K

{
λ(X) +

∑
i∈Y

C(µi, µ̃i) : λ ⩾ µ̃i for all i ∈ Y

}
.

In the above, the infimum is taken over positive (Borel) measures µ̃1, . . . , µ̃K and λ
satisfying the constraints λ ⩾ µ̃i for all i ∈ Y. This constraint must be interpreted
as: λ(A) ⩾ µ̃i(A) for all A ∈ B(X). Problem (3.1.4) can be understood as a
generalization of the standard (Wasserstein) barycenter problem studied in Agueh
and Carlier (2011b). Indeed, if all measures µ1, . . . ,µK had the same total mass and
the term λ(X) in (3.1.4) was rescaled by a constant α ∈ (0,∞), then, as α→∞, the
resulting problem would recover the classical barycenter problem with pairwise cost
function c. As stated, one can regard (3.1.4) as a partial optimal transport barycenter
problem: we transport each µi to a part of λwhile requiring the transported masses
to overlap as much as possible (this is enforced by asking for the term λ(X) to be
small).

One of the essential results of chapter 3 is that the generalized barycenter prob-
lem (3.1.4) is the dual of (2.5).

Theorem 4.10 (Proposition 3.4 and Corollary 3.29 in chapter 3). Suppose that c
satisfies Assumption 2.5. Then

(2.5) = 1 − (3.1.4).
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Furthermore, the infimum of (3.1.4) is attained. In other words, there exists (λ∗, µ̃∗) which
minimizes (3.1.4).

Like classical barycenter problems, (3.1.4) has an equivalent multimarginal
optimal transport (MOT) formulation which is already shown in subsection 3.19.
To be precise, we recall a stratified multimarginal optimal transport problem to
obtain an equivalent reformulation of (3.1.4).

Theorem 4.11 (Proposition 3.11 and 3.12). Suppose that c satisfies Assumption 2.5. Let
SK := {A ⊆ Y : A ̸= ∅}. Given A ∈ SK, define cA : XK → [0,∞] as cA(x1, . . . , xK) :=
infx ′∈X

∑
i∈A c(x

′, xi).
Let’s recall (3.2.6):

inf
{πA:A∈SK}

∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK)

s.t.
∑

A∈SK(i)

Pi #πA = µi for all i ∈ Y,

where Pi is the projection map Pi : (x1, . . . , xK) 7→ xi, and SK(i) := {A ∈ SK : i ∈ A}.
Then (3.1.4) = (3.2.6). Also, the infimum in (3.2.6) is attained.

Remark 4.12. Even though cA and πA above are defined over XK, only the coordinates i
where i ∈ A actually play a role in the optimization problem. Also, notice that (3.2.6) is
not a standard MOT problem since in (3.2.6) we optimize over several couplings πA (each
with its own cost function cA) that are connected to each other via the marginal constraints.
We refer to this type of problem as a stratified MOT problem.

The following theorem is the recast regarding the duals of the generalized
barycenter problem and its MOT formulation proven in subsection 3.2. Recall the
notions of c-transform and c-transform, (2.9) and (2.10), introduced in chapter 2,
play an important role in these results: revisit in section 4.6 for more details.

Theorem 4.13 (Proposition 3.19 and Proposition 3.21). Suppose that c satisfies As-
sumption 2.5. Let Cb(X) be the set of bounded real-valued continuous functions over X.
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The dual of (3.1.4) is (3.2.12):

sup
f1,...,fK∈Cb(X)

∑
i∈Y

∫
X

fci (xi)dµi(xi)

s.t. fi(x) ⩾ 0,
∑
i∈Y

fi(x) ⩽ 1, for all x ∈ X, i ∈ {1, . . . ,K},

and there is no duality gap between primal and dual problems. In other words, (3.1.4) =
(3.2.12). In the above, fci denotes the c-transform of fi, (2.9), as introduced in chapter 2.

The dual of (3.2.6) is (3.2.13):

sup
g1,...,gK∈Cb(X)

∑
i∈Y

∫
X

gi(xi)dµi(xi)

s.t.
∑
i∈A

gi(xi) ⩽ 1 + cA(x1, . . . , xK) for all (x1, . . . , xK) ∈ XK, A ∈ SK,

and there is no duality gap between primal and dual problems. In other words, (3.2.6) =
(3.2.13).

If in addition the cost function c is bounded and Lipschitz, then (3.2.13) is achieved by
g ∈ Cb(X)

K. Also, for f feasible for (3.2.12), g ′ := fc is feasible for (3.2.13). Similarly, for
g feasible for (3.2.13), f ′ = max{g, 0}c is feasible for (3.2.12). Therefore, the optimization
of (3.2.13) can be restricted to non-negative g satisfying gi = gcci , or 0 ⩽ gi ⩽ 1 for all
i ∈ Y.

Remark 4.14. Combining 4.10, 4.11, and 4.13 we conclude that 1 − (3.2.13) = (2.5).

Remark 4.15. A standard argument in optimal transport theory shows that problem
(3.2.13) is equivalent to

sup
g1,...,gK

∑
i∈Y

∫
X

gi(xi)dµi(xi), (4.3.1)
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where the sup is taken over all (g1, . . . ,gK) ∈
∏
i∈Y L

∞(X;µi) satisfying: for any A ∈ SK,∑
i∈A

gi(xi) ⩽ 1 + cA(x1, . . . , xK)

for ⊗iµi-almost every tuple (x1, . . . , xK). Indeed, notice that since (3.2.13) has already
been shown to be equal to (3.2.6), the claim follows from the observation that any feasible
g1, . . . ,gK for (4.3.1) satisfies the condition

∑
i∈Y

∫
X

gi(xi)dµi(xi) ⩽
∑
A∈SK

∫
XK

(1 + cA(x1, . . . , xK))dπA(x1, . . . , xK)

for every {πA}A∈SK satisfying the constraints in (3.2.6).

Existence of optimal dual potentials g for general
lower-semicontinuous costs

We already know from the last part in Theorem 4.13 that if c is bounded and
Lipschitz, then there is a feasible g ∈ Cb(X)

K that is optimal for (3.2.13). In this
subsection we prove an analogous existence result in the case of a general lower
semi-continuous cost function c satisfying Assumption 2.5. More precisely, we
prove existence of maximizers for (4.3.1). We start with an approximation result.

Lemma 4.16. Let c be a cost function satisfying Assumption 2.5. For each n ∈ N let

cn(x, x ′) := min{c̃n(x, x ′),n},

where
c̃n(x, x ′) := inf

(x̃,x̃ ′)∈X×X
{c(x̃, x̃ ′) + nd(x, x̃) + nd(x ′, x̃ ′)}.

Then the following properties hold:

1. cn is bounded and Lipschitz.

2. cn ⩽ cn+1 ⩽ c and c̃n ⩽ c̃n+1 for all n ∈ N.
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3. limn→∞ cn(x, x ′) = c(x, x ′) for all (x, x ′) ∈ X× X.

Proof. Items 1. and 2. are straightforward to prove. To prove item 3., notice that due
to the monotonicity of the cost functions we know that limn→∞ cn(x, x ′) exists in
[0,∞] and limn→∞ cn(x, x ′) ⩽ c(x, x ′). If limn→∞ cn(x, x ′) = ∞, then we would be
done. Hence, we may assume that limn→∞ cn(x, x ′) <∞. From the definition of cn
it then holds that limn→∞ c̃n(x, x ′) = limn→∞ cn(x, x ′) <∞. Let (xn, x ′n) ∈ X× X

be such that

c(xn, x ′n) + nd(x, xn) + nd(x ′, x ′n) ⩽ c̃n(x, x ′) + 1
n

.

Since c(xn, x ′n) ⩾ 0, the above implies that limn→∞ d(x, xn) = 0 and limn→∞ d(x ′, x ′n) =
0. Indeed, if this was not the case, then we would contradict limn→∞ c̃n(x, x ′) <∞.
By the lower semicontinuity of the cost function cwe then conclude that

c(x, x ′) ⩽ lim inf
n→∞ c(xn, x ′n) ⩽ lim inf

n→∞ c(xn, x ′n) + nd(x, xn) + nd(x ′, x ′n) ⩽ lim inf
n→∞ c̃n(x, x ′)

= lim
n→∞ cn(x, x ′) ⩽ c(x, x ′),

from where the desired claim follows.

Lemma 4.17. Let c be a cost function satisfying Assumption 2.5, and let cn be the cost
function defined in Lemma 4.16. For each A ∈ SK, let

cA,n(xA) := inf
x ′∈X

∑
i∈A

cn(x
′, xi), and cA(xA) := inf

x ′∈X

∑
i∈A

c(x ′, xi),

where we use the shorthand notation xA = (xi)i∈A. Then cA,n monotonically converges
toward cA pointwisely for all A ∈ SK, as n→∞.

Proof. Fix A ∈ SK and xA := (xi)i∈A ∈ X|A|. From Lemma 4.16 it follows cA,n ⩽

cA,n+1 ⩽ cA. Therefore, for a given xA, limn→∞ cA,n(xA) exists in [0,∞] and is less
than or equal to cA(xA). If the limit is ∞, we are done. We can then assume without
the loss of generality that limn→∞ cA,n(xA) < ∞. We can then find sequences
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{xn,i}n∈N, {x ′n,i}n∈N, and {x ′n}n∈N such that for all large enough n ∈ N

∑
i∈A

c(x ′n,i, xn,i) + n(
∑
i∈A

(d(xn,i, xi) + d(x ′n,i, x ′n))) ⩽ cA,n(xA) +
1
n

.

From the above we derive that limn→∞ d(x ′n,i, x ′n) = 0 and limn→∞ d(xn,i, xi) = 0.
Hence, it follows that lim supn→∞ c(x ′n,i, xn,i) <∞. Combining the previous facts
with Assumption 2.5, we conclude that {x ′n}n∈N is precompact, and thus, up to
subsequence (that we do not relabel), we have limn→∞ d(x ′n, x̂) = 0 for some x̂ ∈ X.
Combining with limn→∞ d(x ′n,i, x ′n) = 0 we conclude that limn→∞ d(x ′n,i, x̂) = 0 for
all i ∈ A. Using the lower semi-continuity of cwe conclude that

cA(xA) ⩽
∑
i∈A

c(x̂, xi) ⩽ lim inf
n→∞

∑
i∈A

c(x ′n,i, xn,i) ⩽ lim
n→∞ cA,n(xA) ⩽ cA(xA).

Proposition 4.18. Let c be a cost function satisfying Assumption 2.5. Then there exists a
solution for (4.3.1).

Proof. Let {cn}n∈N be the sequence of cost functions introduced in Lemma 4.16.
Notice that for each n ∈ N there is a solution gn = (gn1 , . . . ,gnK) ∈ Cb(X)

K for the
problem (3.2.13) (with cost cn) that can be assumed to satisfy 0 ⩽ gni ⩽ 1 for each
i ∈ Y. Therefore, for each i ∈ Y the sequence {gin}n∈N is weakly∗ precompact in
L∞(X;µi). This implies that there exists a subsequence of {gn}n∈N (not relabeled) for
which gn weakly∗ converges toward some g∗ ∈

∏
i∈Y L

∞(X;R,µi), which would
necessarily satisfy 0 ⩽ g∗i ⩽ 1 for all i ∈ Y; see section 4.6 for the definition of
weak∗ topologies. We claim that this g∗ is feasible for (4.3.1). Indeed, by Lemma
4.17 we know that cA,n ⩽ cA for all A ∈ SK. In particular, since cA,n ⩽ cA, and∑
i∈A g

n
i (xi) ⩽ 1 + cA,n ⩽ 1 + cA for all A ∈ SK and all n ∈ N, it follows that∑

i∈A g
∗
i (xi) ⩽ 1 + cA, ⊗iµi-almost everywhere, due to the weak∗ convergence of

gni toward g∗i . This verifies that g∗ is indeed feasible for (4.3.1).
Let αn and βn be the optimal values of (3.1.4) and (3.2.13), respectively, for

the cost cn. Likewise, let α and β be the optimal values of (3.1.4) and (3.2.13),
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respectively, for the cost c. Recall that, thanks to Theorem 4.11 and Theorem 4.13,
we have αn = βn for all n ∈ N and α = β. Suppose for a moment that we have
already proved that limn→∞ αn = α. Then we would have

∑
i∈Y

∫
X

g∗i (x)dµi(x) = lim
n→∞

∑
i∈Y

∫
X

gni (x)dµi(x) = lim
n→∞βn = β = lim

n→∞αn = α,

which would imply that g∗ is optimal for (4.3.1).
It thus remains to show that limn→∞ αn = α. Given that cn ⩽ cn+1 ⩽ c, it

follows that αn ⩽ αn+1 ⩽ α. In particular, the limit limn→∞ αn exists in [0,∞] and
must satisfy limn→∞ αn ⩽ α. If the limit is ∞, then there is nothing to prove. Thus
we can assume without the loss of generality that α∞ := limn→∞ αn <∞.

Let λn and µ̃n1 , . . . , µ̃nK be an optimal solution of (3.1.4) with the cost cn and letπni
be a coupling realizing C(µi, µ̃ni ). We first claim that {µ̃ni }n∈N is weakly precompact
for each i ∈ Y. To see this, notice that for every n we have µ̃ni (X) = µi(X) ⩽ 1,
for otherwise C(µi, µ̃ni ) = ∞. Thus, by Prokhorov theorem it is enough to show
that for every η > 0 there exists a compact set K ⊆ X such that µ̃ni (X \ K) ⩽ Cη

for all n ∈ N and some C independent of n,η or K. To see that this is true, let us
start by considering a compact set G such that µi(Gc) ⩽ η. Let n0 ∈ N be such that
n0 − 1 > 1

η
. For n ⩾ n0 we have

α∞ ⩾ αn = λn(X) +
∑
i∈Y

∫
X

∫
X

cn(xi, x̃i)dπni (xi, x̃i) ⩾
∫
G

∫
X

cn0(xi, x̃i)dπni (xi, x̃i).

Consider the set
K̃ := {x ∈ X s.t. inf

x̃∈G
cn0(x, x̃) ⩽ n0 − 1};

using the definition of cn0 and Assumption 2.5 it is straightforward to show that K̃
is a compact subset of X. We see that α∞ ⩾ 1

η
(µ̃ni (K̃

c) − µi(G
c)), from where we

can conclude that µ̃ni (K̃c) ⩽ (α∞ + 1)η for all n ⩾ n0. We now consider a compact
set K̂ for which µ̃ni (K̂c) ⩽ η for all n = 1, . . . ,n0, and set K := K̃ ∪ K̂, which is
compact. Then for all n ∈ N we have µ̃ni (Kc) ⩽ (α∞ + 1)η. This proves the desired
claim.
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Now, without the loss of generality we can assume that λn has the form

dλn(x) = max
i=1,...,K

{
dµ̃ni
dµn

(x)

}
dµn(x),

where µn(x) =
∑K
i=1 µ̃

n
i . Indeed, notice that the above is the smallest positive

measure greater than µ̃n1 , . . . , µ̃nK. Given the form of λn and the weak precompact-
ness of each of the sequences {µ̃ni }n∈N, we can conclude that {λn}n∈N is weakly
precompact and so are the sequences {πni }n∈N. We can thus assume that, up to
subsequence, µ̃ni converges weakly toward some µ̃i; πni converges weakly toward
some πi ∈ Γ(µi, µ̃i); and λn converges weakly toward some λ satisfying λ ⩾ µ̃i for
each i ∈ Y. In particular, λ, µ̃1, . . . , µ̃K is feasible for (3.1.4).

Therefore, for all n0 ∈ N we have

α ⩾ α∞ = lim
n→∞

(
λn(X) +

∑
i∈Y

∫
X

∫
X

cn(xi, x̃i)dπni (xi, x̃i)
)

⩾ lim
n→∞

(
λn(X) +

∑
i∈Y

∫
X

∫
X

cn0(xi, x̃i)dπni (xi, x̃i)
)

⩾ λ(X) +
∑
i∈Y

∫
X

∫
X

cn0(xi, x̃i)dπi(xi, x̃i).

Sending n0 →∞, we can then use the monotone convergence theorem to conclude
that

α ⩾ α∞ ⩾ λ(X) +
∑
i∈Y

∫
X

∫
X

c(xi, x̃i)dπi(xi, x̃i) ⩾ λ(X) +
∑
i∈Y

C(µi, µ̃i) ⩾ α.

This proves that α∞ = α.
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From dual potentials to robust classifiers for continuous cost
functions

Having discussed the existence of solutions g∗ for (4.3.1), we move on to discussing
the connection between g∗ and solutions f∗ of problem (2.5).

Proposition 4.19 (Corollary 3.30 in chapter 3). Let c : X × X → [0,∞] be a lower-
semicontinuous function and suppose that (µ̃∗,g∗) is a solution pair for the generalized
barycenter problem (3.1.4) and the dual of its MOT formulation (4.3.1). Let f∗ be defined
as

f∗i (x̃) := sup
x∈spt(µi)

{g∗i (x) − c(x, x̃)} , (4.3.2)

for i = 1, . . . ,n.
If f∗ is Borel-measurable, then (f∗, µ̃∗) is a saddle solution for the problem (2.5). In

particular, f∗ is a minimizer of (2.5).

The reason why we can not directly use Proposition 4.19 to prove existence of
solutions to (2.5) for arbitrary c and µ is because it is a priori not guaranteed that f∗i ,
as defined in (4.3.2), is Borel measurable; notice that the statement in Proposition
4.19 is conditional. If spt(µi) was finite for all i, then the Borel measurability of
f∗i would follow immediately from the fact that the maximum of finitely many
lower-semicontinuous functions is Borel; this is of course the case when working
with empirical measures. Likewise, the Borel measurability of f∗i is guaranteed
when µ is arbitrary and c is a bounded Lipschitz function (in fact, it is sufficient for
the cost to be continuous), as is discussed in Definitions 5.2 and 5.7 and Theorem
5.10 in Villani (2009). However, nothing can be said about the Borel measurability
of f∗i without further information on g∗i (which in general is unavailable) when c is
only assumed to be lower-semicontinuous (as is the case for the cost cε from (2.8))
and spt(µi) is an uncountable set.

Our strategy to prove Theorem 4.1 in section 4.4 will be to approximate an
arbitrary cost function c from below with a suitable sequence of bounded and
Lipschitz cost functions cn (the costs defined in Lemma 4.16), and, in turn, consider
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a limit of the robust classifiers f∗n associated to each of the cn. This limit (lim sup,
to be precise) will be our candidate solution for (2.5).

4.4 Proofs of our main results
In this section we prove the existence of a Borel measurable robust classifier for
problem (2.5) when c is an arbitrary lower semi-continuous cost function satisfy-
ing Assumption 2.5. We also establish the existence of minimizers of (4.2.2) and
establish Theorem 4.6 and Corollary 4.9.

Well-posedness of the DRO model

Proof of Theorem 4.1. Let {cn}n∈N be the sequence of cost functions converging to
c from below defined in Lemma 4.16. For each n ∈ N, we use Theorem 4.13 and
let gn = (gn1 , . . . ,gnK) ∈ Cb(X)

K be a solution of (3.2.13) with cost cn; recall that
we can assume that 0 ⩽ gni ⩽ 1. In turn, we use gn and the cost cn to define
fn := (fn1 , . . . , fnK) following (4.3.2). Since the gni and cn are continuous, and given
that the pointwise supremum of a family of continuous functions is lower semi-
continuous, we can conclude that fni is lower semi-continuous and thus also Borel
measurable for each n ∈ N. Thanks to Proposition 4.19, fn is optimal for (3.2.12)
with cost function cn.

From the proof of Proposition 4.18, we know that there exists a subsequence
(that we do not relabel) such that the gni converge in the weak∗ topology, as n→∞,
toward limits g∗i that form a solution for (4.3.1) with cost c. Using this subsequence,
we define f∗ ∈ F according to

f∗i (x̃) := lim sup
n→∞ fni (x̃), x̃ ∈ X. (4.4.1)

Notice that each f∗i is indeed Borel measurable since it is the lim sup of Borel
measurable functions. In addition, notice that 0 ⩽ f∗i ⩽ 1, due to the fact that
0 ⩽ fni ⩽ 1 for all i ∈ Y and all n ∈ N. We’ll prove that f∗ is a solution for (2.5).
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Let µ̃ ∈ P(Z) be an arbitrary Borel probability measure with C(µ, µ̃) <∞. For
each i ∈ Y let πi be an optimal coupling realizing the cost C(µi, µ̃i). Then

R(f∗, µ̃) − C(µ, µ̃)

= 1 −
∑
i∈Y

∫
X

f∗i (x̃)dµ̃i(x̃) −
∑
i∈Y

∫
X×X

c(x, x̃)dπi(x, x̃)

= 1 −
∑
i∈Y

∫
X×X

(f∗i (x̃) + c(x, x̃))dπi(x, x̃)

= 1 −
∑
i∈Y

∫
X×X

(
lim sup
n→∞ sup

x ′∈spt(µi)
{gni (x

′) − cn(x
′, x̃)}+ c(x, x̃)

)
dπi(x, x̃).

Choosing x ′ = x in the sup term (notice that indeed x can be assumed to belong to
spt(µi) since πi has first marginal equal to µi), and applying reverse Fatou’s lemma,
we find that

R(f∗, µ̃) − C(µ, µ̃) ⩽ 1 −
∑
i∈Y

∫
X×X

lim sup
n→∞ {gni (x) − cn(x, x̃) + cn(x, x̃)}dπi(x, x̃)

= 1 −
∑
i∈Y

∫
X×X

lim sup
n→∞ {gni (x)}dπi(x, x̃)

= 1 −
∑
i∈Y

∫
X

lim sup
n→∞ {gni (x)}dµi(x)

⩽ 1 − lim sup
n→∞

∑
i∈Y

∫
X

gni (x)dµi(x)

= 1 −
∑
i∈Y

∫
X×X

g∗i (x)dµi(x)

= 1 − (3.2.13)

= R∗
DRO,

where the third equality follows from the weak∗ convergence of gni toward g∗i ,
the second to last equality follows from the fact that g∗ is a solution for (4.3.1)
(combined with 4.15), and the last equality follows from remark 4.14. Taking the
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sup over µ̃ ∈ P(Z), we conclude that

sup
µ̃∈P(Z)

{R(f∗, µ̃) − C(µ, µ̃)} ⩽ R∗
DRO,

and thus f∗ is indeed a minimizer of (2.5).
Let now µ̃∗ be a solution of (3.1.4) (which exists due to Theorem 4.10). The fact

that (µ̃∗, f∗) is a saddle for (2.5) follows from the above computations and the fact
that by Theorem 4.10 and Corollary 3.29 we have

R∗
DRO = sup

µ̃∈P(Z)

inf
f∈F

{R(f, µ̃) − C(µ, µ̃)} = inf
f∈F

{R(f, µ̃∗) − C(µ, µ̃∗)} .

The next proposition states that the function g∗i constructed in the proof of
Proposition 4.18 is a Borel measurable version of the c-transform of f∗i , where f∗i
was defined in (4.4.1).

Proposition 4.20. Let {gn}n∈N and {fn}n∈N be as in the proof of 4.18, let g∗ be the weak∗

limit of the gn, and let f∗ be as defined in (4.4.1). Then, for every i ∈ Y,

g∗i (x) = inf
x̃∈X

{f∗i (x̃) + c(x, x̃)} (4.4.2)

for µi-a.e. x ∈ X. This statement must be interpreted as: the set in which (4.4.2) is violated
is contained in a Borel measurable set with zero µi measure.

Proof. From the proof of Theorem 4.1 it holds that for each i ∈ Y∫
X

f∗i (x̃)dµ̃
∗
i (x̃) +

∫
X×X

c(x, x̃)dπ∗
i (x, x̃) =

∫
X

g∗i (x)dµi(x). (4.4.3)

On the other hand, from the definition of fni it follows that

gni (x) ⩽ f
n
i (x̃) + cn(x, x̃), Forallx̃ ∈ X, and µi-a.e. x ∈ X.
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We can then combine the above with Lemma 4.23 to conclude that for µi-a.e. x ∈ X

and every x̃ ∈ X we have

g∗i (x) ⩽ lim sup
n→∞ gni (x) ⩽ lim sup

n→∞ fni (x̃) + cn(x, x̃) = f∗i (x̃) + c(x, x̃).

Taking the inf over x̃ ∈ X we conclude that for µi-a.e. x ∈ X we have

g∗i (x) ⩽ inf
x̃∈X

{f∗i (x̃) + c(x, x̃)}. (4.4.4)

From this and (4.4.3) we see that g∗i ∈ L1(µi) and −f∗i ∈ L1(µ̃i) are optimal dual
potentials for the optimal transport problem C(µi, µ̃∗

i ). If (4.4.4) did not hold with
equality for µi-a.e. x ∈ X, then we would be able to construct a Borel-measurable
version hi of the right hand side of (4.4.4) (see Lemma 4.27) which would be strictly
greater than g∗i in a set of positive µi-measure. In addition, we would have that
(hi,−f∗i ) is a feasible dual pair for the OT problem C(µi, µ̃i). However, the above
would contradict the optimality of the dual potentials (g∗i ,−f∗i ). We thus conclude
that (4.4.4) holds with equality except on a set contained in a set of µi measure
zero.

Well-posedness of the closed-ball model (4.2.2)

Proof of Proposition 4.5. We actually prove that for arbitrary cost c satisfying As-
sumption 2.5, the solution f∗ to (2.5) constructed in the proof of Theorem 4.1 is also
a solution for the problem:

inf
f∈F

{∑
i∈Y

∫
X

sup
x̃∈X

{1 − fi(x̃) − c(x, x̃)}dµi(x)
}

. (4.4.5)

4.5 will then be an immediate consequence of this more general result when applied
to c = cε.

Let f∗ be the Borel solution of (2.5) constructed in the proof of Theorem 4.1. It
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suffices to show that for any f ∈ F

∑
i∈Y

∫
X

inf
x̃∈X

{f∗i (x̃) + c(x, x̃)}dµi(x) ⩾
∑
i∈Y

∫
X

inf
x̃∈X

{fi(x̃) + c(x, x̃)}dµi(x).

Suppose not. Then there exists some f̂ ∈ F which provides a strict inequality in the
opposite direction. Now, on one hand, (4.4.2) of Proposition 4.20 implies

∑
i∈Y

∫
X

inf
x̃∈X

{f∗i (x̃) + c(x, x̃)}dµi(x) =
∑
i∈Y

∫
X

g∗i (x)dµi(x).

On the other hand, by Lemma 4.27, for each i ∈ Y there exists a Borel mea-
surable function ĝi equal to infx̃∈X{f̂i(x̃) + c(x, x̃)} µi-almost everywhere. Let
ĝ := (ĝ1, . . . , ĝK). Combining the existence of such ĝ with the above equation,
and using (4.6.2), it follows that ĝ satisfies

∑
i∈Y

∫
X

g∗i (x)dµi(x) <
∑
i∈Y

∫
X

ĝi(x)dµi(x). (4.4.6)

Notice that for each A ∈ SK and ⊗µi-almost everywhere x1, . . . xK, we have

∑
i∈A

inf
x̃∈X

{
f̂i(x̃) + c(xi, x̃)

}
⩽ inf
x̃∈X

{∑
i∈A

f̂i(x̃) + c(xi, x̃)
}

⩽ 1 + cA(x1, . . . , xK).

From the above we conclude that ĝ is feasible for (4.3.1). However, this and (4.4.6)
combined contradict the fact that g∗ is optimal for (4.3.1), as had been shown in
Proposition 4.18.

Proof of Corollary 4.9. It is straightforward to verify (e.g., see Bungert et al. (2023))
that for (f1, 1 − f1) ∈ F we can write

Rε((f1, 1 − f1)) =

∫ 1

0
Rε((1{f1⩾t},1{f1⩾t}c))dt. (4.4.7)
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It is also straightforward to see that

Rε((1{f1⩾t},1{f1⩾t}c)) =

∫
X

sup
x̃∈Bε(x)

1Ac(x̃)dµ1(x) +

∫
X

sup
x̃∈Bε(x)

1A(x̃)dµ2(x).

Let (f1, 1 − f1) be a solution to (4.2.2) (which by remark 2.1 can indeed be
taken of this form). It follows from (4.4.7) that for almost every t ∈ [0, 1] the
pair (1{f1⩾t},1{f1⩾t}c) is also a solution for that same problem and thus also for the
problem restricted to hard-classifiers. This proves the desired result.

Connection between closed-ball model and open-ball model

Proof of Theorem 4.6. One can easily observe that for any fixed ε > 0 and δ > 0 we
have

sup
x̃∈Bε(x)

{1 − fi(x̃)} ⩽ sup
x̃∈Bε(x)

{1 − fi(x̃)} ⩽ sup
x̃∈Bε+δ(x)

{1 − fi(x̃)}

for all x ∈ X and all f ∈ F. This simple observation leads to Roε(f) ⩽ Rε(f) ⩽ Roε+δ(f)
for all f ∈ F. Thus we also have Roε ⩽ Rε ⩽ Roε+δ and in particular Roε ⩽ Rε ⩽

lim infδ→0 R
o
ε+δ. From the above we can also see that the function ε 7→ Roε is non-

decreasing and as such it is continuous for all but at most countably many values
of ε > 0. Therefore, for all but at most countably many εwe have Roε = Rε.

Now, let f∗ be solution of (4.2.2) and assume we have Roε = Rε. Then

Roε(f
∗) ⩽ Rε(f

∗) = Rε = R
o
ε ,

which means f∗ is a solution of 2.3.

4.5 Conclusion
Through this chapter, we prove the existence of optimal Borel measurable robust
classifier for three models of the problem of adversarial training in multiclass
classification and provide not only a unifying framework of three models but also
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a connection from optimal transport to total variation regularization. This is the
first result of the existence of optimal Borel measurable robust classifiers.

4.6 Technical results
In this section, we state some technical results used in chapter 4.

Weak∗ topology

Definition 4.21 (Weak∗ topology). Let µ = (µ1, . . . ,µK) ∈
∏K
i=1 M+(X). We say that

a sequence {hn}n∈N ⊆
∏
i∈Y L

∞(X;µi) weak∗-converges to h ∈
∏
i∈Y L

∞(X;µi) if for
any q ∈

∏
i∈Y L

1(X;µi), it holds that

lim
n→∞

∫
X

hni (x)qi(x)dµi(x) =

∫
X

hi(x)qi(x)dµi(x) (4.6.1)

for all i ∈ Y.

Remark 4.22. Note that for a Borel positive measure ρ which is either finite or σ-finite over
a Polish space, the dual of L1(ρ) is L∞(ρ), which justifies the definition (4.6.1).

Lemma 4.23. Suppose {gni }n∈N is a sequence of measurable real-valued functions over X
satisfying 0 ⩽ gni ⩽ 1 for every n ∈ N. Suppose that gni converges in the weak∗ topology
of L∞(X;µi) toward gi, where µi is a finite positive measure. Then, for µi-a.e. x ∈ X, we
have

lim sup
n→∞ gni (x) ⩾ gi(x).

Proof. Let E be a measurable subset of X. Then∫
X

(lim sup
n→∞ gni (x)−gi(x))1E(x)dµi(x) ⩾ lim sup

n→∞
∫
X

(gni (x)−gi(x))1E(x)dµi(x) = 0,

by the reverse Fatou inequality and the assumption that the sequence {gni }n∈N

converges in the weak∗ sense toward gi. SinceEwas arbitrary, the result follows.
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c-transform

c-transform has an important role in optimal transport theory. One can characterize
an optimizer of a dual problem by iterating c-transform: see Villani (2003, 2009)
for more details.

Definition 4.24 (c-transform in Villani (2009)). Let X,X ′ be measurable spaces, and
let c : X × X ′ → (−∞,∞]. Given a measurable function h : X → R ∪ {∞,−∞}, its
c-transform is defined as

hc(x ′) := inf
x∈X

{h(x) + c(x, x ′)}.

Similarly, for g : X ′ → R ∪ {∞,−∞}, its c-transform is defined as

gc(x) := sup
x ′∈X ′

{g(x ′) − c(x, x ′)}.

Proposition 4.25. For any mearurable functions h over X and g over X ′, and cost function
c : X× X ′ → (−∞,∞], it holds that for every (x, x ′) ∈ X× X ′,

hc(x ′) − h(x) ⩽ c(x, x ′), g(x ′) − gc(x) ⩽ c(x, x ′).

Theorem 4.26 (Theorem 5.10 in Villani (2009)). Let X be a Polish space and c(·, ·) be a
cost function bounded from below and lower semi-continuous. Then, for ν, ν̃ ∈ P(X),

inf
πi∈Γ(ν,ν̃)

∫
X×X

c(x, x̃)dπi(x, x̃) = sup
gi,fi∈Cb,gi−fi⩽c

{∫
X

gi(x)dν(x) −

∫
X

fi(x̃)dν̃(x̃)

}
= sup
fi∈L1(ν̃)

{∫
X

(fi)
c(x)dν(x) −

∫
X

fi(x̃)dν̃(x̃)

}
= sup
gi∈L1(ν)

{∫
X

gi(x)dν(x) −

∫
X

(gi)
c(x̃)dν̃(x̃)

}
.
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Furthermore, the infimum is indeed a minimum. However, the supremum may not be
achieved.

Decomposition of universally measurable functions

Lemma 4.27. Let X be a Polish space, µ and let µ be a Borel probability measure and its
extension to the universal σ-algebra, respectively. Let f be a universally measurable function
for which

∫
X
|f(x)|dµ(x) <∞. Then there exists a Borel measurable function g such that

f = g µ-almost everywhere. Also,∫
X

f(x)dµ(x) =

∫
X

g(x)dµ(x). (4.6.2)

Proof. Without the loss of generality we can assume that f ⩾ 0. Since f is universally
measurable, we can write

f(x) = lim
n→∞ fn(x) := lim

n→∞
n∑
k=1

cnk1Ank (x),

for positive coefficients cn1 , . . . , cnn and An1 , . . . ,Ann universally measurable and pair-
wise disjoint sets. By the definition of universally measurable sets, for each Ank
there exists a Borel set Bnk such that µ(Ank \ Bnk ) = 0. Hence, for each n ∈ N, we can
write

fn(x) =

n∑
k=1

cnk1Bnk (x) +

n∑
k=1

cnk1Cnk (x),

where Cnk = Ank \ Bnk . We conclude that

f(x) = g(x) + h(x) := lim sup
n→∞

n∑
k=1

cnk1Bnk (x) + lim inf
n→∞

n∑
k=1

cnk1Cnk (x)

where g is Borel measurable, h is universally measurable and h = 0 µ-almost
everywhere.
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Since f = g µ-almost everywhere and g is Borel measurable, then∫
X

f(x)dµ(x) =

∫
X

g(x)dµ(x) =

∫
X

g(x)dµ(x),

from which (4.6.2) follows.
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5 two approaches for computing adversarial training
problem based on optimal transport frameworks

This chapter is based on García Trillos et al. (2023b) which is a joint work with
Nicolas García Trillos, Matt Jacobs and Matt Werenski.

Outline

The rest of this chapter is organized as follows. In section 5.1, we will present two
main algorithms and their informal explanations. In section 5.2, some empirical
results based on proposed algorithms and their interpretation will be offered. We
will finish off this chapter in section 5.3, where the summary of this chapter will be
concerned. All technical details and delayed proofs will be discussed in section 5.4.

5.1 Main results
The main contribution of this chapter is to suggest two new algorithms which
solves (2.5), the adversarial training problem in multiclass classification, using
two equivalent problems developed in chapter 3. The first algorithm is called
exact solving algorithm inspired by (3.1.4). The geometric intuition of (3.1.4) is to
find µ̃i’s which can be stacked over each other as much as possible, equivalently
collecting higher-order interactions, as many as points from different classes, in the
cheapest way. After collecting all possible such interactions, solving (3.1.4) reduces
to a certain linear programming. Pseudocode appears in Algorithm 3.
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Algorithm 3 Exact solving
Input: X : data set, µ = (µ1, . . . ,µK) : empirical distribution, ε : adversarial budget.

Use Algorithm 5 to construct C(ε).
Construct the ε-incidence matrix Iε ∈ {0, 1}X×C(ε).
Solve (5.4.1).

Output: g∗ =
∑
C∈C(ε)w

∗(C)δF(C), µ̃i =
∑
A∈SK(i)

∑
C∈CA(ε)w

∗(C)δF(C) and
value =

∑
C∈C(ε)w

∗(C).

Algorithm 3 contains two main steps: use Algorithm 5 to construct C(ε), the set
of all possible interactions, and solve an appropriate linear programming with a
matrix Iε. Figure 5.1 below describes Algorithm 5 pictorially. It shows the procedure
demonstrating the optimistic (and probably realistic) setting that there are several
lower-order interactions and the number of higher-order interactions quickly decays.
However, it may be possible in some settings that most, or all of the lower-order
interactions can be merged together so that the number of higher-order interactions
is comparable to that of lower-order ones. The details about this algorithm will be
discussed in section 5.4.

Initial Data (1st order) 2nd order Possible 3rd Order True 3rd Order Possible 4th Order True 4th Order

Pairwise Distances Index Matching Optimization to Validate Index Matching Optimization to Validate

Figure 5.1: Steps to compute the labeled interactions.

The first main theorem is about the worst complexity of Algorithm 3. We
want to emphasize that this is worst case scenario: one could expect much smaller
complexity of Algorithm 3 in many real data sets. Since the size of Iε notably
depends on the size of C(ε), therefore, the complexity of Algorithm 3 is affected by
the size of C(ε). The size of C(ε) is determined by the possibility of interactions,
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or, the geometry(separability) of classes. One can expect that if classes are far
from each other and given adversarial budget is not too big, it is very likely that
higher-order interactions vanish, in other words, Iε is sparse. We expect that in
most reasonable situations, Iε is super spares. Under this prediction, we expect
that Algorithm 5 stops earlier whence Algorithm 3 terminates faster than its worst
case complexity.

Theorem 5.1 (Complexity of Algorithm 3). Assume that ni = O(n) for all i ∈ Y.
Algorithm 3 gives a δ-approximation of (2.5) in O(K2nK

(
log 1

δ

)2
) time.

Remark 5.2. Algorithm 3 has also a truncated version: namely, when constructing C(ε),
one can ignore all the higher-order interactions and restrict C(ε) to at most L-order interac-
tions. Then, the resulted ε-incidence matrix becomes much smaller, hence the complexity
decreases. We will also discuss truncation in subsection 5.4.

The second approach is the truncated entropic regularization: it is also known as
truncated Sinkhorn iteration in computational optimal transport community. Sinkhorn
iteration, firstly proposed by Cuturi (2013), has been extensively used and stud-
ied in various fields, especially in machine learning community, due to its faster
implementation and empirical successes. This approach is based on the formula
(3.2.6).

Observe that cA’s of (3.2.6) is indeed the cost for the adversary to pay for the
consideration of |A|-order interaction associated with A classes: xA is a local plan
of forming an interaction, and πA’s are a global (transporting) plan of |A|-order
interactions consisting of subclass A. Thanks to this special structure, we can
explicitly truncate this problem by only focusing on πA’s whose |A| is at most
L. It means that we explicitly ignore all higher-order interactions. Of course, this
truncated Sinkhorn not only reduces computational costs but also still have a chance
to approximate o a solution well provided that the well-separability of data sets
and the reasonable adversarial budget. This is the same intuition that we have in
the previous algorithm.

Let SLK := {A ∈ SK : |A| ⩽ L} and SLK(i) := {A ∈ SLK : i ∈ A}. Pseudocode appears
in Algorithm 4.
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Algorithm 4 Truncated entropic regularization(Sinkhorn)
Input: X : data set, η > 0 : entropic parameter, L : trucation level, µ = (µ1, . . . ,µK) :

empirical distribution, ε : adversarial budget.
Initialization : gi = η logµi for all i ∈ Y.
while not converge do
g1(·)← η logµ1(·) − η log

(∑
A∈SLK(1)G(gA\{1})(·)

)
,

...
gK(·)← η logµK(·) − η log

(∑
A∈SLK(K)

G(gA\{K})(·)
)

.
end while
Compute π∗

A(xA) = exp
(

1
η

(∑
i∈A g

∗
i (x

i
li
)
))

exp
(
− 1
η
(1 + cA(xA))

)
for all A ∈

SLK.
Output: {π∗

A}A∈SLK and value =
∑
A∈SLK

∑
XA(1 + cA(xA))π

∗
A(xA).

Algorithm 4 is basically a block coordinate ascent method which is the nature
of Sinkhorn-type algorithms. Since (5.4.8) is strictly convex, a solution is unique.

We want to emphasize one strong advantage of Algorithm 4 compared to Al-
gorithm 3: it proposes not only optimal couplings but also robust classifiers. If
everything is well conditioned, for example well-separability of classes, it would be
reasonable to expect that Algorithm 3 works faster than Algorithm 4 and its error
is also smaller(or even vanishes). However, since Algorithm 3 solves (3.1.4), it
does not give any information about (3.2.12), the problem for the learner to obtain
robust classifiers. In other words, it does not care about anything for the learner’s
perspective. On the other hand, however, since Algorithm 4 naturally relies on the
duality (with the entropic term), (3.2.13), it automatically solves both (3.1.4) and
(3.2.13) simultaneously, hence solves (3.1.4) and (3.2.12) simultaneously. There-
fore, Algorithm 4 implements an approximation of saddle point of (2.5). In this
sense, it (approximately) solves the problem in two sides perfectly, while Algorithm
3 does only in one side. We state this as the following theorem.

Theorem 5.3. Let g∗ be a fixed point of Algorithm 4. Let f∗i := max{g∗i , 0}c̄ for each i ∈ Y.
Then, f∗ is an approximation for (3.2.12). Therefore, f∗ is an approximation of an optimal
robust classifier.
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Remark 5.4. Notice that Algorithm 4 in general does not provide feasible {π∗
A}A∈SLK for

(5.4.8) in a finite time. However, this violation becomes moderate as iterating Algorithm 4
more and converges to 0 in the limit.

The authors of Altschuler et al. (2017) provide the rounding scheme which enables
an output within a finite time to be feasible for (5.4.8). This rounding scheme is recently
used in MOT Sinkhorn setting Lin et al. (2022) to achieve the complexity of general MOT
Sinkhorn. Here, we do not adopt their rounding scheme but only apply the vanilla Sinkhorn
iteration. We leave it to the future work.

Remark 5.5. In practice, one may face one numerical issue of Algorithm 4 which is that
cA can be +∞. This fact hampers at least numerically the success of this algorithm. If
one thinks that it is a really issue, Algorithm 6 is an alternative one. This algorithm has
pros and cons: it can avoid the infinite cost function but should require a slightly large
computational cost to recover the original coupling π∗

A. In fact, Algorithm 4 and Algorithm
6 solve two different regularized problems. However, for small η, both problems are close
enough and give two approximated solutions for (5.4.8): see subsection 5.4 for more details.

Our second main theorem is about the convergence rate of Algorithm 4. With
the bounded cost function, it is known Carlier (2022) that the MOT Sinkhorn
iteration has the linaer convergence rate. A similar result holds in our setting
because, although cA is not bounded, it behaves like a hard constraint so that cost
function on cA = 0 is bounded nicely. More technical details will be discussed in
section 5.4.

Theorem 5.6 (Informal). Algorithm 4 has the linear convergence rate.

5.2 Empirical results
In this section, we present empirical results: see figure 5.2 and figure 5.3. We
apply our algorithms, Exact solving and Truncated entropic regularization, to
famous MNIST and CIFAR10 data sets. Also, we put the result computed by
the MOT Sinkhorn proposed by Lin et al. (2022) based on another equivalent
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formulation obtained in chapter 3 which plays a role of state-of-the-art algorithm
for approximating MOT problems.

In both MNIST and CIFAR-10 data sets, we consider 4 classes and its possible
truncations, 2 and 3-levels. As we expect, unless the adversarial budget ε is large,
truncation is a good approximation for the full consideration. Both figure 5.2 and
figure 5.3 show our heuristic: if the adversarial budget is not too large and if classes
are well-separated, the truncated problem is a good approximation for the original
problem. Here, we see the upper bound of the adversarial budget at which each
level of truncation works nicely.

In particular, looking at the plots of Algorithm 3(bottom two plots for both
MNIST and CIFAR-10), one can completely characterize when 3-rd order and 4-th
order interactions become effective: for example, regarding MNIST plots, with ℓ2

distance, 3-rd order and4-th order interactions occur after ε ⩾ 1200 and ε ⩾ 1400,
respectively. In fact the number 1200 is roughly the half of the maximum distance
between two different classes and it makes sense high-order interactions arise after
this number.

In this sense, one can reversely estimate the geometry of MNIST and CIFAR-10
data sets from those plots. As everyone knows that the dimension of both data sets is
quite huge, 28×28 for MNIST and 32×32 for CIFAR 10. For this high-dimensionality,
it is hard to understand their geometry directly and most of their aspects are quite
counter intuitive. But, interestingly, one can get geometric information from these
adversarial risks because the adversarial risk highly depends on the geometry of
data sets(and the adversarial budget). For example, in terms of ℓ∞ metric, MNIST
data sets are super separeted in a way that each class almost is concentrated on each
vertex of ℓ∞ hypercube. It is reflected in the plots: until less than 120 adversarial
budget, no iteraction happens and then until 160, no 3-rd order interaction happens
an so on and forth. We have a similar observation in CIFAR-10 data, but it is not
separated as much as MNIST: the adversarial risk gradually increases from 80 to 110
and after 110, 3-rd order interaction seems to exist. Therefore, one may conclude
that MNIST is more separated than CIFAR-10. We expect such estimate can give
more rigorous and pedagogical information about inaccessible geometry of many
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high-dimensional data sets.
Notice that, unless LP and its truncated versions, there are some gaps between

the full MOT Sinkhorn and its truncated versions. This is because of the entropic
parameter η. The more decreasing η, the less such gaps while one should pay more
computing costs. This gap is not huge, and interestingly, in ℓ∞ metric, the gap is
even smaller than in ℓ2 metric. We don’t know why such asymmetry happens and
probably, there are hidden geometric reasons to induce such difference.

Lastly, we give a comment about the complexity of the MOT Sinkhorn. In our
case, its complexity is

O

(
K5nK logn

δ2

)
.

The proof will be presented in subsection 5.4. To achieve the correct complexity, we
will give a slightly simpler single MOT formulation of (2.5), a small improvement
of Theorem 3.3 in chapter 3: see Proposition 5.4.32 and Corollary 5.23.

5.3 Conclusion
In this chapter, we propose new algorithms to solve the adversarial training prob-
lem, exact solving(LP), its trucated version and the truncated entropic regulariza-
tion(Sinkhorn). Each of them is built on a different equivalent optimal transport
type problem which is developed in chapter 3: the generalized barycenter problem,
(3.1.4), and the stratified MOT problem, (3.2.13).

The novelty of these algorithms is that we do not need to perform the full nK-
order computation when data is well-separated and the adversarial budget is not
too big. If these two conditions are satisfied, it is very unlikely that higher-order
interactions have meaningful contributions of the adversarial risk so that, one can
safely ignore them, as a result, the computational complexity drops significantly.

Also, these two approaches have their own pros and cons. For exact solving,
thanks to the sparsity of Iε, in spite of its huge size, it performs quite reasonably.
Furthermore, it works faster than its worst case scenario because there are not many
high-order interactions in real data sets with a reasonable adversarial budget.



121

800 1000 1200 1400 1600
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

ia
l r

isk
MNIST classes 1, 4, 6 and 9 ( 2 norm)

MOT Sinkhorn
Truncation(order 3)
Truncation(order 2)

120 140 160 180 200
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

ia
l r

isk

MNIST classes 1, 4, 6 and 9 (  norm)
MOT Sinkhorn
Truncation(order 3)
Truncation(order 2)

800 1000 1200 1400 1600
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

ia
l r

isk

MNIST classes 1, 4, 6 and 9 ( 2 norm)
LP
Truncation(order 3)
Truncation(order 2)

120 140 160 180 200
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ad

ve
rs

ar
ia

l r
isk

MNIST classes 1, 4, 6 and 9 (  norm)
LP
Truncation(order 3)
Truncation(order 2)

Figure 5.2: MNIST comparison.

For the truncated entropic regularization, there is an intrinsic error due to the
entropic parameter η. Also, its speed is not faster than exact solving because after
fixing the truncation level L, it requires computing nL−1 tensor in any case. If data
is well-separated so that the number of high-order interaction decays fast enough,
Exact solving will not compute such large(but moderate than nK) tensor.

However, there is an advantage of the truncated entropic regularization. Due



122

1000 1500 2000 2500 3000
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

ia
l r

isk
CIFAR classes 2, 3, 5 and 7 ( 2 norm)

MOT Sinkhorn
Truncation(order 3)
Truncation(order 2)

60 80 100 120 140
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

ia
l r

isk

CIFAR classes 2, 3, 5 and 7 (  norm)
MOT Sinkhorn
Truncation(order 3)
Truncation(order 2)

1000 1500 2000 2500 3000
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

ia
l r

isk

CIFAR classes 2, 3, 5 and 7 ( 2 norm)
LP
Truncation(order 3)
Truncation(order 2)

60 80 100 120 140
Adversarial budget, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ad

ve
rs

ar
ia

l r
isk

CIFAR classes 2, 3, 5 and 7 (  norm)
LP
Truncation(order 3)
Truncation(order 2)

Figure 5.3: CIFAR10 comparison.

to its nature, computing the dual problem, it not only approximates (3.2.6) but
also its dual (3.2.13). Hence, thanks to Proposition 3.19, we can obtain not only an
optimal adversarial attack but also an optimal robust classifier at the same time.
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5.4 Analysis of Algorithms 3 and 4
In this section, we will provide all the details of our proposed algorithms. Before
doing that, we introduce some notations that we will use through this section.

• Let Xi = {xili ∈ RN : li = 1, . . . ,ni} be the set of points for the label i where
ni is the total number of points of that label and X =

⋃K
i=1 Xi be the set of

all points (with replacement if a point occurs for multiple labels). For each
A ∈ SK, we use

XA :=
∏
i∈A

Xi, xA := (xili : i ∈ A) ∈ XA.

• Let µi =
∑ni
li=1 µi(x

i
li
)δxili

be the (positive) empirical measure for the label i.

• For k = 2, . . . ,K, a kth order labeled complex will be tracked by k (label,
index)-pairs {(i1, li1), . . . , (ik, lik)} where each ip ̸= iq for p ̸= q and the index
lip corresponds to the xiplip , the lip-th point for the label ip.

• Fix A ∈ SK and ε > 0. We use CA and CA(ε) to denote the set of all labeled
interactions and (A, ε)-feasible interactions, respectively,

CA := {{(i, li)}i∈A} ,

CA(ε) :=
{
{(i, li)}i∈A ∈ CA : {(xili)}i∈A ⊂ B(x, ε) for some x

}
.

• The set of all ε-feasible interactions will be denoted by

C(ε) :=
⋃
A∈SK

CA(ε).

Given C(ε), the ε-incidence matrix Iε ∈ {0, 1}X×C(ε) is defined as

Iε((i, xili),C) :=

1 if (i, li) ∈ C,

0 otherwise.
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Assuming that you can keep the data well-organized, the main bottleneck will
be in one of two places

1. Simply enumerating all of the pairs of interactions which have (k−2)matching
labels.

2. Performing the check to see if the interactions can be fused.

Exact solving: Linear programming

Executing Algorithm 3 requires three steps. First, constructing C(ε), the set of all
ways of merging points given a budget ε. Second, convert C(ε) into a sparse matrix
Iε. Third, use the existing libraries to solve a linear program with constraint matrix
Iε. We detail each of the steps in the following subsections.

Remark 5.7. At the same time the authors of Dai et al. (2023) also proposed the same
idea using the notion conflict hypergraph independently. In this paper, we elaborate why
this algorithm succedes in practice based on the generalized barycenter problem which was
introduced in Garcıa Trillos et al. (2023).

Feasible labeled interactions

There is an iterative method for computing the feasible interactions, starting from
order 1-st order interaction(namely, all points of each class) and then building up
to order K. This is done by the following algorithm:
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Algorithm 5 Construct C(ε)
Input: X : data set, ε : adversarial budget.

For each i ∈ Y, set C{i}(ε) = {(i, 1), ..., (i,ni)}.
for k = 2, . . . ,K do

for A,A ′ with |A| = |A ′| = k− 1, |A ∩A ′| = k− 2 and CA(ε),CA ′(ε) ̸= ∅ do
for Each C ∈ CA(ε),C ′ ∈ CA ′(ε) with |C ∩ C ′| = k− 2 do

Check if there exists a point xwithin ε of every point in C ∪ C ′.
If so, add C ∪ C ′ to the set CA∪A ′(ε).

end for
end for

end for
Output: C(ε) =

⋃
A∈SK CA(ε).

The main difficulty in implementing Algorithm 5 is to ensure that the checks for
|A ∩A ′| = k− 2 and |C ∩C ′| = k− 2 are efficient and are not done by enumerating
all possibilities. With a proper implementation, the most time consuming step is
checking when a point x is within ε of every point in C ∪ C ′. This is often a non-
trivial geometric problem. For example in Rn with the Euclidean distance it requires
checking if as many as K spheres in Rn of radius ε have a mutual intersection. One
geometry where this calculation is particularly simple is when using d(x,y) =

∥x− y∥∞, where the problem is reduced to finding the intersection of axis-aligned
rectangles.

In general the speed of Algorithm 5 can be estimated by O(K|C(ε)|m(K)) where
m(K) is the computational complexity required to check the existence of a point
x for groups of size at most K. This complexity can at the worst be essentially the
same as trying every possible group of K or fewer points, which is what would be
required if for example ε is so large that every selection of points are close enough.
However, in practice there are often far fewer higher-order interactions which leads
to a much faster algorithm. This output-dependent complexity is often a substantial
gain.
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Optimization

With the notation above, we describe the optimization problem to get the exact
solution for (3.2.6). The linear programming(LP) for the exact solution is

min
∑

C∈C(ε)

w(C)

s.t. w(C) ⩾ 0 for all C ∈ C(ε), Iεw = [µ1, . . . ,µK]T
(5.4.1)

Let w∗ be the minimizer of this problem. Then g, the generalized barycenter of
the optimal adversarial attacks, can be recovered as

λ =
∑

C∈C(ε)

w∗(C)δF(C)

where F(C) returns any point x such that {xili : (i, li) ∈ C} ⊂ B(x, ε), and such a
point must exist by the condition C ∈ C(ε). Furthermore the optimal adversarial
attacks {µ̃1, . . . , µ̃K} can be recovered as

µ̃i =
∑

A∈SK(i)

∑
C∈CA(ε)

w∗(C)δF(C)

The mass works correctly in this problem because of the constraint Iεw = [µ1, . . . ,µK]T .
From the preceding equations it is clear that g dominates µ̃i for each i ∈ Y. In
addition, it is also easy to recover the transformation µk 7→ µ̃i.

This leads to (3.1.4) = (5.4.1), hence, the optimal adversarial risk is obtained by

(2.5) = 1 − (5.4.1) = 1 −
∑

C∈C(ε)

w∗(C).

Complexity Considerations of Algorithm 3

In general the optimization problem involves a vectorwwhose length is determined
by |C(ε)| as well as a sparse matrix Iε with at mostK|C(ε)| non-zero entries (although
this is quite pessimistic). It is therefore essential to control |C(ε)|. The expected
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size of this set is given by

E|C(ε)| = E

[∑
A∈SK

|CA(ε)|

]

=
∑
A∈SK

E

[ ∑
C∈CA

1[CA ∈ CA(ε)]
]

=
∑
A∈SK

∑
C∈CA

E [1[CA ∈ CA(ε)]]

=
∑
A∈SK

[∏
i∈A

nk

]
P
{
{Xi}i∈A ⊂ B(x, ε) for some x

}
where Xi ∼ µi are independent random variables. It is therefore crucial that the
classes are in some sense well-separated as this will control the probability of the
formation of an ε-interaction. It may be interesting in its own right to try and come
up with interesting cases where we can cleanly bound the probability on the right
hand side. For example, if Xi ∼ N(mi,Σi), then we can reasonably expect to bound
the probability by a function of the values of {(mi,Σi)}.

Theorem 5.8 (Complexity of Algorithm 3). Assume that ni = O(n) for all i ∈ Y.
Then, Algorithm 3 gives {g ′, µ̃ ′

1, . . . , µ̃K} which satisfies∑
x∈X

λ ′(x) +
∑
i∈Y

C(µi, µ̃ ′
i) ⩽ (3.1.4) + δ

inO(K2nK
(
log 1

δ

)2
) time. Therefore, it gives a δ-approximation for (2.5) inO(K2nK

(
log 1

δ

)2
)

time.

Proof. First, the computational complexity of constructing C(ε) is O(K|C(ε)|m(K))

where m(K) is the computational complexity required to check the existence of
a point x for groups of size at most K. Since m(K) = O(K), its complexity is
O(K2|C(ε)|).

In the worst case, the optimization part of Algorithm 3 requires a complexity of
O(K|C(ε)|

(
log 1

δ

)2
) where δ is an error tolerance if one solves the associated linear
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program using the method of Yen et al. (2015) which leverages the sparsity in the
constraint matrix. As noted above, |C(ε)| can in the worst case be on the order of

|C(ε)| =

K∑
k=1

(
K

k

)
O(nk) ⩽ (O(n) + 1)K = O(nK)

when each class i has ni = O(n) points. Therefore, in total, a computational
complexity would be O(K2nK

(
log 1

δ

)2
).

Truncation: Deterministic Approximation Ratio

The main reason that the complexity can explode in the previous section is that the
number of ways of forming an interaction of order k is on the order of O(nk), and
there are

(
K
k

)
types of these interactions.

In practice we can avoid this blow up by simply truncating the maximum size
of the interaction being considered. For example, suppose there are K classes and
we choose a maximum interaction size of L. There are two reasons why this may
be perfectly fine. First, is because it provides a provably a K

L
-approximation of the

optimal risk.

Proposition 5.9. Let L < K be a truncation level and w∗ be the optimal value of (5.4.1).
Consider the L-truncated version of (5.4.1) with the restriction to

CL(ε) :=
⋃
A∈SLK

CA(ε).

Let w∗
L be the optimal value of the L-truncated version of (5.4.1). Then,

w∗
L

w∗ ⩽
K

L

Proof. Suppose that there is an interaction of order K that is assigned massm. Since
every sub-interaction of an admissible interaction is also admissible, we can re-
allocate tha mass amongst the

(
K
L

)
-many sub-interactions of order L. Doing so
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uniformly requires placing mK
L

(
K
L

)−1 on each of the
(
K
L

)
-many sub-interactions of

order L .
This requires a total mass of

mK

L

(
K

L

)−1

·
(
K

L

)
=
mK

L
.

This satisfies the mass allocation constraints since each point in the original K
interaction hasmmass to allocate and belongs to precisely(

K− 1
L− 1

)
=

(
K

L

)
· L
K

total interactions.
Let w(C) be the optimal weight allocation vector for the full order K attack.

Repeating the reallocation for every interaction C of order L+ 1 or greater we have
an attack which requires mass

∑
C∈C(ε):|C|⩽L

w(C) +
∑

C∈C(ε):|C|=L

∑
C ′∈C(ε):C⊊C ′

|C ′|w(C ′)

|C|

(
|C ′|

|C|

)−1

⩽
∑

C∈C(ε):|C|⩽L

w(C) +
∑

C∈C(ε):|C|=L

∑
C ′∈C(ε):C⊊C ′

Kw(C ′)

L

(
|C ′|

L

)−1

=
∑

C∈C(ε):|C|⩽L

w(C) +
∑

C ′∈C(ε):|C ′|>L

Kw(C ′)

L

where C ⊊ C ′ means C is a strict subset of C ′. The inequality comes from |C ′| ⩽ K.
To complete the proof divide this cost by the cost of the full attack. Note that for

a ⩾ b ⩾ 0 and any c ⩾ 0 such that a+ c,b+ c > 0 we it holds c+a
c+b

⩽ a
b

. Applying
this we have∑

C∈C(ε):|C|⩽Lw(C) +
∑
C ′∈C(ε):|C ′|>L

Kw(C ′)
L∑

C∈C(ε):|C|⩽Lw(C) +
∑
C ′∈C(ε):|C ′|>Lw(C

′)
⩽

∑
C ′∈C(ε):|C ′|>L

Kw(C ′)
L∑

C ′∈C(ε):|C ′|>Lw(C
′)

=
K

L
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The proof above always works. However it may be pessimistic for the second
reason that truncating is most likely not a bad thing to do: There is likely to be
much more mass in small interactions than in large interactions. A better book
keeping can be used to show that the restriction to order L interactions gives an
approximation error of

1P⩽L +
K∑

L=L+1

L

L
PL

where
P⩽L =

∑
C∈C(ε):|C|⩽Lw(C)∑
C∈C(ε)w(C)

, PL =

∑
C∈C(ε):|C|=Lw(C)∑
C∈C(ε)w(C)

.

If PL decays rapidly with L, then the bound will be much tighter than the pessimistic
K
L

.
In addition, the truncation leads to a much smaller set of interactions, denoted by

C(ε;L) and improves the speed of solving the linear program toO(L|C(ε;L)|
(
log 1

δ

)2
)

where the factor of L is because each interaction leads to a row in the constraint
matrix with at most L non-zero entries instead of K. Again in the worst case we
have

|C(ε;L)| ⩽
L∑
k=1

(
K

k

)
nk = O(KLnL) (5.4.2)

which leads to a total complexity of O(L2KLnL
(
log 1

δ

)2
) again using the method of

Yen et al. (2015) to solve the linear program.

Truncated Entropic Regularization

Derivation of Truncated Entropic Regularization

Recalling (2.5) = 1 − (3.2.6), now the goal is to solve (3.2.6). One popular way to
solve optimal transport problems numerically is the entropic regularization, also
known as Sinkhorn interation, introduced in Cuturi (2013)(originally proposed
in Sinkhorn (1964); Sinkhorn and Knopp (1967). The idea is that to add a certain
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regularization term which enforces a problem to be strictly convex: the most popular
choice of regularization term is entropy.

The entropic regularization of (3.2.6) is defined as

min
{πA}A∈SK

∑
A∈SK

∫
XK

(1 + cA(x1, ..., xK))dπA(x1, ..., xK) − η (Ent (πA) + ||πA||)

s.t.
∑

A∈SK(i)

Pi#πA = µi for all i ∈ Y
(5.4.3)

where Ent (πA) and ||πA|| are the entropy and the total mass of πA, respectively.
Here, when computing Ent (πA) we regard 0 · log 0 = 0 according to the convention.
The term η||πA|| is introduced for the computational convenience.

From now on, we consider (5.4.3) with the finite support case to derive Sinkhorn-
type update scheme. Introducing the Lagrangain dual variables g1 ∈ Rn1 , . . . ,gK ∈
RnK , we need to solve

min
{πA},{gi}

L({πA}, {gi})

:=
∑
A∈SK

∑
xA∈XA

(1 + cA(xA) + η (log πA − 1))πA(xA)

−
∑
i∈Y

∑
xi∈Xi

gi(xi)

 ∑
A∈SK(i)

∑
xA\{i}∈XA\{i}

πA(xi, xA\{i}) − µi(xi)

 .

(5.4.4)

Since it is strictly convex, the first order condition is sufficient for characterizing a
solution. Differentiating with respect to πA(xA) for each A ∈ SK and each xA ∈ XA

yields

0 = ∂πA(xA)L({πA}, {gi}) = 1 + cA(xA) + η log πA(xA) −
∑
i∈A

gi(xi).
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From the above, it is deduced that

logπA(xA) =
1
η

(∑
i∈A

gi(xi) − 1 − cA(xA)

)

Plugging such logπA’s into (5.4.4), we have

L({gi}) =
∑
A∈SK

∑
xA∈XA

(
1 + cA(xA) +

∑
i∈A

gi(xi) − 1 − cA(xA) − η

)
πA(xA)

−
∑
i∈Y

∑
xi∈Xi

gi(xi)

 ∑
A∈SK(i)

∑
xA\{i}∈XA\{i}

πA(xi, xA\{i}) − µi(xi)

 .

Since ∑
i∈Y

∑
xi∈Xi

gi(xi)
∑

A∈SK(i)

∑
xA\{i}∈XA\{i}

πA(xi, xA\{i})

=
∑
i∈Y

∑
A∈SK(i)

∑
xA∈XA

gi(xi)πA(xA)

=
∑
A∈SK

∑
xA∈XA

(∑
i∈A

gi(xi)

)
πA(xA),

it follows that the dual of (5.4.3) is

max
{gi:i∈Y}

L({gi}) =
∑
i∈Y

∑
xi∈Xi

gi(xi)µi(xi)

− η
∑
A∈SK

∑
xA∈XA

exp
(

1
η

(∑
i∈A

gi(xi) − 1 − cA(xA)

))
.

(5.4.5)

Using gA := (gi)i∈A, let us introduce the tensor product associated withA ∈ SK
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by

G(gA\{i})(xi)

:=
∑

xA\{i}∈XA\{i}

exp

1
η

 ∑
j∈A\{i}

gj(x
j
lj
)

 exp
(
−

1
η

(
1 + cA(xi, xA\{i})

))
.

For the convenience, we define G(g∅) := 1.
For each i ∈ Y and each xi ∈ Xi, the first order condition is

0 = ∂gi(xi)L({gi}) = µi(xi) − exp
(

1
η
gi(xi)

) ∑
A∈SK(i)

G(gA\{i})(xi).

Then, the above first order condition yields

gi(xi) = η logµi(xi) − η log

 ∑
A∈SK(i)

G(gA\{i})(xi)

 . (5.4.6)

Let {g∗i } be a maximizer of (5.4.5). Then, the minimizer of (5.4.3), {π∗
A}, is

obtained by

π∗
A(xA) = exp

(
1
η

(∑
i∈A

g∗i (xi)

))
exp

(
−

1
η
(1 + cA(xA))

)

and the corresponding approximated minimum value is∑
A∈SK

∑
xA∈XA

(1 + cA(xA))π
∗
A(xA).

All the arguments above are similar to the derivation of Sinkhorn iteration for
classical optimal transport: but the denominator is not just the matrix multiplication
but the tensor product. For each i ∈ Y we update gi according to (5.4.6) while other
gj’s are fixed. Since we fix xi, the computational complexity of

∑
A∈SK(i)G(gA\{i})

is O(nK−1) caused by the largest contribution A = Y. Of course, whenever K is
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large, its complexity is huge so that computing this problem is quite intractable in
practice.

Remark 5.10. (5.4.6) can be formulated in a different way. Let ϕi := exp
(

1
η
gi

)
. Then,

(5.4.6) is equivalent to

ϕi(xi) =
µi(xi)∑

A∈SK(i)G(gA\{i})(xi)
. (5.4.7)

This different point of view is also widely adopted in computational optimal transport
community: see (Peyré et al., 2019, section 4) for more details.

One can truncate (5.4.3) by considering only A ∈ SK with |A| ⩽ L ≪ K. This
means that we only care about the lower-order interactions and ignore the higher-
order ones. This truncation or ignorance of the higher-order interactions can be
justified by empirical observations: in most real data sets, with a reasonable ad-
versarial budget, an adversarial attack is concentrated on at most 2nd order or 3rd
order interactions. See section 5.2.

Fix the truncation level L < K. Recall SLK = {A ∈ SK : |A| ⩽ L} and SLK(i) = {A ∈
SLK : i ∈ A}. The L-level truncated entropic regularization problem is

min
πA

∑
A∈SLK

∫
XK

(1 + cA(x1, ..., xK))dπA(x1, ..., xK) − η (Ent (πA) + ||πA||)

s.t.
∑

A∈SLK(i)

Pi#πA = µi for all i ∈ Y.
(5.4.8)

(5.4.8) would be a good approximation of (5.4.3) provided that πA ≈ 0 for all
|A| > L. Applying the same argument in subsection 5.4, the dual formulation
suggests the following update scheme:

gi(xi) := η logµi(xi) − η log

 ∑
A∈SLK(i)

G(gA\{i})(xi)

 . (5.4.9)
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Complexity Considerations of Algorithm 4

In this subsection, we obtain an upper bound of the computational complexity
of Algorithm 4. The proof is based on Carlier (2022) which is built on Beck and
Tetruashvili (2013) which is regarding the block coordinate descent method.

First of all, we claim that an upper and lower bound of g∗ for (5.4.5).

Remark 5.11. Notice that L({gi}) might have many solutions unless the restriction of
{gi}. For example, assume that µi = 1

K
δxi for all i ∈ Y and there is some x ′ such that

d(xi, x ′) ⩽ ε for all i ∈ Y. Then, the optimal π∗ is {π∗
Y = 1

K
δx ′}. In this case, any

g = (g1, . . . ,gK) such that
∑
i∈Y gi = 1 can be a solution for L({gi}). This is a common

issue in entropic optimal transport problems(equivalently, in Sinkhorn iteration). So, people
have used Hilbert–Birkhoff projective metric or centring method with bounded cost setting
to manage this issue: see Franklin and Lorenz (1989); Chen et al. (2016); Di Marino and
Gerolin (2020); Carlier (2022).

Lemma 5.12. Let γ := mini∈Y,xi∈Xi logµi(xi) > −∞. If g∗ is a maximizer of (5.4.5),
then

−(L− 2) + η (γ− (L− 1) log(K− 1) − L logn) ⩽ gi(xi) ⩽ 1

for all i ∈ Y and all xi ∈ Xi.

Proof. Recalling the first order condition, one has

g∗i (xi) = η logµi(xi)−η log

 ∑
A∈SLK(i)

G(g∗A\{i})(xi)

 ⩽ −η log

 ∑
A∈SLK(i)

G(g∗A\{i})(xi)


since µi ⩽ 1. Notice that the right-hand side above is the usual log-sum-exp
operator. Let

G(g, i)(x) := max
xA\{i}∈XA\{i},A∈SLK(i)

 ∑
j∈A\{i}

g∗j (xj) −
(
1 + cA(x, xA\{i})

) . (5.4.10)
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Then,

G(g, i)(xi) ⩽ η log

 ∑
A∈SLK(i)

G(g∗A\{i})(xi)

 ⩽ G(g, i)(x) + η log(number of terms).

By taking A = {i}, it is easy to check that G(g, i)(x) ⩾ −1. Hence,

g∗i (xi) ⩽ −η log

 ∑
A∈SLK(i)

G(g∗A\{i})(xi)

 ⩽ 1.

Observe that the number of terms of
∑
A∈SLK(i)

G(g∗A\{i})(xi) is bounded by (K −

1)L−1nL where n := max{n1, . . . ,nK}. Since g∗i ⩽ 1,it follows that

g∗i (xi) ⩾ ηγ− (L− 2) − η log
(
(K− 1)L−1nL

)
= −(L− 2) + η (γ− log(K− 1) − L logn) .

This completes the proof.

Notice that gi’s in the dual problem (5.4.5) correspond to gi’s of (3.2.13) of
Proposition 3.19. It is also proved there that it suffices to consider 0 ⩽ gi ⩽ 1. With
the entropic regularization term, this is not trivial. But, if η→ 0, (5.12) recovers the
usual bounds of gi’s which can be also obtained by c-transform: see Villani (2009).

Recall Algorithm 4. We elaborate the algorithm in detail: for each t = 1, 2, . . .
let’s consider the subroutine k = 1, . . . ,K such that given gt = (gt1, . . . ,gtK), update

gt+1
1 (·)← η logµ1(·) − η log

 ∑
A∈SLK(1)

G(gtA\{1})

 (·)

and setgt+1,1 = (gt+1
1 ,gt2, . . . ,gtK). In general, givengt+1,k = (gt+1

1 , . . . ,gt+1
k ,gtk+1, . . .gtK),
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update

gt+1
k+1(·)← η logµ1(·) − η log

 ∑
A∈SLK(1)

G(gt+1,k
A\{1})

 (·).

Finally, gt+1 = gt+1,K = (gt+1
1 ,gt+1

2 , . . . ,gt+1
K ) and move to t + 2 and consider the

subroutine k = 1, . . . ,K again. For the consistency of notation, let gt = gt+1,0 =

(gt1,gt2, . . . ,gtK)
The following lemma gives an upper and a lower bounds of gt.

Lemma 5.13. Let g0 = (0, . . . , 0) and γ := mini∈Y,xi∈Xi logµi(xi) > −∞. For each
t = 1, 2, . . .

−(L− 2) + η (γ− (L− 1) log(K− 1) − L logn) ⩽ gti(xi) ⩽ 1. (5.4.11)

for each i ∈ Y and each xi ∈ Xi.

Proof. Recall (5.4.10). Since g0
j = 0 for all j ∈ Y, G(g0, 1)(x1) = −1. So, it follows

from the above that for each x1 ∈ X1,

g1
1(x1) ⩽ 1. (5.4.12)

We use an induction argument on the subroutine k. Let’s Assume that (5.4.12)
holds until k− 1. Again, it holds that

G(g1,k−1,k)(xk) ⩽ η log

 ∑
A∈SLK(k)

G(g1,k−1
A\{k})(xk)

 .

Notice that
−1 ⩽ G(g1,k−1,k)(x)

by taking A = {k}. Thus,
g1
k(xk) ⩽ 1.

This verifies the induction hypothesis for the subroutine, k = 1, . . . ,K.
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Let’s use induction on t = 1, 2, . . . . Assume that (5.4.12) holds until t − 1. It
is easy to check that the setting of the subroutine remains the same as before, so
one can directly apply the above argument. Therefore, the induction hypothesis is
satisfied for t = 1, 2, . . . . This verifies an upper bound.

With an upper bound, a lower bound can be obtained analogously as in Lemma
5.12 by using induction argument again.

Recall the objective function of the dual maximization problem:

LL({gi}) :=
∑
i∈Y

∑
xi∈Xi

gi(xi)µi(xi)

− η
∑
A∈SLK

∑
xA∈XA

exp
(

1
η

(∑
i∈A

gi(xi) − 1 − cA(xA)

))
.

(5.4.13)

It is easy to see that it is concave. For simplicity, let

Γ :=
∣∣∣min{−(L− 2) + η (γ− (L− 1) log(K− 1) − L logn) ,−1}

∣∣∣,
K :=

∏
i∈Y

[−Γ , 1]ni . (5.4.14)

Then, LL({gi}) is strongly concave on K. Also, g∗ ∈ K

The following lemma is analogous to Carlier (2022)[Lemma 3.2].

Lemma 5.14. For each t = 0, 1, . . .

LL(gt+1) − LL(gt) ⩾
e−(Γ+ 1

η )

2η

K∑
k=1

∑
xk∈Xk

(
gt+1
k (xk) − g

t
k(xk)

)2
µk(xk).

Proof. Writing LL(gt+1) − LL(gt) in a telescopic fashion,

LL(gt+1) − LL(gt) =

K∑
k=1

LL(gt+1,k) − LL(gt+1,k−1)
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where gt+1,k−1 = gt. Let us focus on LL(gt+1,1) − LL(gt+1,0). The other cases are
analogous.

A straightforward calculation leads to

LL(gt+1,1) − LL(gt+1,0)

=
∑
x1∈X1

(
gt+1

1 (x1) − g
t
1(x1)

)
µ1(x1)

+ η
∑

A∈SLK(1)

∑
xA∈XA

(
exp

(
1
η
gt(x1)

)
− exp

(
1
η
gt+1(x1)

))

× exp

1
η

 ∑
i∈A\{1}

gti(xi) − (1 + cA(xA))

 .

(5.4.15)

Notice that if a,b ∈ [−m,m],

eb − ea ⩾ ea(b− a) +
e−m

2 (b− a)2. (5.4.16)

Combined with (5.4.11), (5.4.16) yields that for each x1 ∈ X1,

exp
(

1
η
gt(x1)

)
− exp

(
1
η
gt+1(x1)

)
⩾

1
η

(
gt(x1) − g

t+1(x1)
)

exp
(

1
η
gt+1

1 (x1)

)
+
e−Γ

2η2

(
gt(x1) − g

t+1(x1)
)2 .

(5.4.17)

Let πt+1,k
A denote πA(gt+1,k) defined as

πA(g
t+1,k)(xA)

:= exp
(

1
η

( ∑
i∈A:i⩽k

gt+1
i (xi) +

∑
i∈A:i>k

gti(xi)

))
exp

(
−

1
η
(1 + cA(xA))

)

and ∑
A∈SK(i)

(Pi#π
t+1,k
A )(xi) :=

∑
A∈SLK(i)

∑
xA\{i}∈XA\{i}

πA(g
t+1,k)(xi, xA\{i}).
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An equality associated with the first term of the right-hand side of (5.4.17) is
expressed as

∑
A∈SLK(1)

∑
xA∈XA

(
gt(x1) − g

t+1(x1)
)

exp
(

1
η

(
gt+1

1 (x1) +
∑
i ̸=1∈A

gti(xi) − (1 + cA(xA))

))

=
∑
x1∈X1

(
gt(x1) − g

t+1(x1)
) ∑
A∈SK(1)

(P1#π
t+1,1
A )(x1).

The other inequality associated with the second term of the right-hand side of
(5.4.17) is written similarly as

∑
A∈SLK(1)

∑
xA∈XA

e−
1
η

2η
(
gt(x1) − g

t+1(x1)
)2 exp

(
1
η

( ∑
i ̸=1∈A

gti(xi) − (1 + cA(xA)

))

=
e−Γ

2η
∑
x1∈X1

(
gt(x1) − g

t+1(x1)
)2 exp

(
−

1
η
gt+1

1 (x1)

) ∑
A∈SK(1)

(P1#π
t+1,1
A )(x1).

Returning to (5.4.15), we have

LL(gt+1,1) − LL(gt+1,0)

⩾
∑
x1∈X1

(
gt+1

1 (x1) − g
t
1(x1)

)
µ1(x1) +

∑
x1∈X1

(
gt(x1) − g

t+1(x1)
) ∑
A∈SK(1)

(P1#π
t+1,1
A )(x1)

+
e−Γ

2η
∑
x1∈X1

(
gt(x1) − g

t+1(x1)
)2 exp

(
−

1
η
gt+1

1 (x1)

) ∑
A∈SK(1)

(P1#π
t+1,1
A )(x1).

Observe that, by the construction of gt+1,i,∑
A∈SK(i)

(Pi#π
t+1,i
A )(xi) = µi(xi). (5.4.18)
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Hence,

LL(gt+1,1) − LL(gt+1,0)

⩾
∑
x1∈X1

(
gt+1

1 (x1) − g
t
1(x1)

)
µ1(x1) +

∑
x1∈X1

(
gt(x1) − g

t+1(x1)
)
µ1(x1)

+
e−Γ

2η
∑
x1∈X1

(
gt(x1) − g

t+1(x1)
)2 exp

(
−

1
η
gt+1

1 (x1)

) ∑
A∈SK(1)

(P1#π
t+1,1
A )(x1)

⩾
e−Γ

2η
∑
x1∈X1

(
gt(x1) − g

t+1(x1)
)2 exp

(
−

1
η
gt+1

1 (x1)

) ∑
A∈SK(1)

(P1#π
t+1,1
A )(x1).

Since exp
(
− 1
η
gt+1

1 (x1)
)
⩾ exp

(
− 1
η

)
due to the fact that gti ⩽ 1 for all i ∈ Y, it

follows that

LL(gt+1,1) − LL(gt+1,0) ⩾
e−(Γ+ 1

η )

2η
∑
x1∈X1

(
gt1(x1) − g

t+1
1 (x1)

)2
µi(xi).

The conclusion, therefore, follows.

Theorem 5.15 (Linear convergence of Algorithm 4). For t = 0, 1, . . .

LL(g∗) − LL(gt) ⩽

(
1 −

e−2Γ+(Γ−1) 1
η

4K

)t (
LL(g∗) − LL(g0)

)
. (5.4.19)

Remark 5.16. Recall that Γ ≈ L+η(γ−L logn). Hence, with γ = mini,xi logµi(xi) <
0,

(Γ − 1)1
η
≈ γ− L logn < 0.

So, on the reasonable regime of η≪ 1, the multiplicative factor of (5.4.19) is less than 1.

Proof. First of all, the convergence follows as usual: since K is compact, one can
find a convergent subsequence (after relabeling properly), {gt}. Then the limit of
this subsequence, g∗, readily satisfies (5.4.9) since it is a fixed point, hence due
to the strong concavity of LL on K, it is the unique maximizer. Thus, the whole
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sequence {gt} converges to g∗.
Let g∗ ∈ K be the maximizer of LL. Since −LL is e

−(Γ+ 1
η )

η
-strongly convex on K,

−LL(g∗) − (−LL(gt)) ⩾
K∑
i=1

⟨∂gi(−LL(gt)),g∗i − gti⟩+
e−(Γ+ 1

η )

2η ||g∗ − gt||2.

By (5.4.9), ∂giLL(gt+1,i) = 0. So,

− LL(g∗) − (−LL(gt))

⩾
K∑
i=1

⟨∂gi(−LL(gt)) − ∂gi(−LL(gt+1,i)),g∗i − gti⟩+
e−(Γ+ 1

η )

2η ||g∗ − gt||2.

Recall Young’s inequality which is

ab ⩽
a2

2q +
qb2

2 .

Applying this to the above inequality, we have

LL(g∗) − LL(gt) ⩽
2η

e−(Γ+ 1
η )
||∂giL

L(gt)||2.

Again, writing ||∂giL
L(gt)||2 in a telescopic fashion,

||∂giL
L(gt)||2 ⩽

K∑
j=1

||∂giL
L(gt+1,j) − ∂giL

L(gt+1,j−1)||2

where gt+1,j = (gt+1
1 , . . . ,gt+1

j ,gtj+1, . . .gtK). A straightforward computation yields
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that

∂giL
L(gt+1,j)(xi) − ∂giL

L(gt+1,j−1)(xi)

= − exp
(

1
η
gti(xi)

)

×

 ∑
A∈SLK(i,j)

∑
xj∈Xj

(
exp

(
1
η
gt+1
j (xj)

)
− exp

(
1
η
gtj(xj)

))
G(gt+1,j−1

A\{i,j} )(xi, xj)


if j < i. Here SLK(i, j) = {A ∈ SLK : i, j ∈ A} and

G(gA\{i,j})(xi, xj)

:=
∑

xA\{i,j}∈XA\{i,j}

exp

1
η

 ∑
k∈A\{i,j}

gk(xk))

 exp
(
−

1
η

(
1 + cA(xi, xj, xA\{i,j})

))
.

For j > i,

∂giL
L(gt+1,j)(xi) − ∂giL

L(gt+1,j−1)(xi)

= − exp
(

1
η
gt+1
i (xi)

)

×

 ∑
A∈SLK(i,j)

∑
xj∈Xj

(
exp

(
1
η
gt+1
j (xj)

)
− exp

(
1
η
gtj(xj)

))
G(gt+1,j−1

A\{i,j} )(xi, xj)


and for j = i,

∂giL
L(gt+1,i)(xi) − ∂giL

L(gt+1,i−1)(xi)

=
∑

A∈SLK(i)

∑
xi∈Xi

(
exp

(
1
η
gt+1
i (xi)

)
− exp

(
1
η
gti(xi)

))
G(gt+1,i−1

A\{i} )(xi).

Let’s consider j < i case first. Notice that if a,b ∈ [−m,m],

|eb − ea| ⩽ em|b− a|. (5.4.20)
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Using (5.4.20) and Jensen’s inequality,

(
∂giL

L(gt+1,j)(xi) − ∂giL
L(gt+1,j−1)(xi)

)2

= exp
(

1
η
gti(xi)

)2

×

 ∑
A∈SLK(i,j)

∑
xj∈Xj

(
exp

(
1
η
gt+1
j (xj)

)
− exp

(
1
η
gtj(xj)

))
G(gt+1,j−1

A\{i,j} )(xi, xj)


2

⩽ exp
(

1
η
gti(xi)

)2

×

 ∑
A∈SLK(i,j)

∑
xj∈Xj

(
exp

(
1
η
gt+1
j (xj)

)
− exp

(
1
η
gtj(xj)

))2

G(gt+1,j−1
A\{i,j} )(xi, xj)


×

 ∑
A∈SLK(i,j)

∑
xj∈Xj

G(gt+1,j−1
A\{i,j} )(xi, xj)


⩽
eΓ

η2 exp
(

1
η
gti(xi)

)2
 ∑
A∈SLK(i,j)

∑
xj∈Xj

(
gt+1
j (xj) − g

t
j(xj)

)2
G(gt+1,j−1

A\{i,j} )(xi, xj)


×

 ∑
A∈SLK(i,j)

∑
xj∈Xj

G(gt+1,j−1
A\{i,j} )(xi, xj)

 .
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Along the above lines, it follows that

||∂giL
L(gt+1,j) − ∂giL

L(gt+1,j−1)||2

⩽
eΓ

η2

∑
xi∈Xi

exp
(

1
η
gti(xi)

)2
 ∑
A∈SLK(i,j)

∑
xj∈Xj

(
gt+1
j (xj) − g

t
j(xj)

)2
G(gt+1,j−1

A\{i,j} )(xi, xj)


×

 ∑
A∈SLK(i,j)

∑
xj∈Xj

G(gt+1,j−1
A\{i,j} )(xi, xj)


=
eΓ

η2

∑
xi∈Xi

∑
A∈SLK(i,j)

∑
xj∈Xj

(
gt+1
j (xj) − g

t
j(xj)

)2 exp
(

1
η
gti(xi)

)
G(gt+1,j−1

A\{i,j} )(xi, xj)

× exp
(

1
η
gti(xi)

) ∑
A∈SLK(i,j)

∑
xj∈Xj

G(gt+1,j−1
A\{i,j} )(xi, xj)

 .

Observe that ∑
xi∈Xi

∑
A∈SLK(i,j)

exp
(

1
η
gti(xi)

)
G(gt+1,j−1

A\{i,j} )(xi, xj)

=
∑

A∈SLK(j)

exp
(
−

1
η
gt+1
j (xj)

)
(Pi#π

t+1,j
A )(xj).

Also, since exp
(

1
η
gti(xi)

)(∑
A∈SLK(i,j)

∑
xj∈Xj

G(gt+1,j−1
A\{i,j} )(xi, xj)

)
> 0,

exp
(

1
η
gti(xi)

) ∑
A∈SLK(i,j)

∑
xj∈Xj

G(gt+1,j−1
A\{i,j} )(xi, xj)


⩽

∑
xi∈Xi

exp
(

1
η
gti(xi)

) ∑
A∈SLK(i,j)

∑
xj∈Xj

G(gt+1,j−1
A\{i,j} )(xi, xj)


=

∑
xj∈Xj

∑
A∈SLK(j)

exp
(
−

1
η
gt+1
j (xj)

)
(Pi#π

t+1,j
A )(xj).



146

Combining (5.4.11) and (5.4.18) with the above two computations, we have

||∂giL
L(gt+1,j) − ∂giL

L(gt+1,j−1)||2

=
eΓ

η2

∑
xj∈Xj

∑
A∈SLK(j)

(
gt+1
j (xj) − g

t
j(xj)

)2 exp
(
−

1
η
gt+1
j (xj)

)
(Pi#π

t+1,j
A )(xj)

×

∑
xj∈Xj

∑
A∈SLK(j)

exp
(
−

1
η
gt+1
j (xj)

)
(Pi#π

t+1,j
A )(xj)


=
eΓ(1− 2

η )

η2

∑
xj∈Xj

(
gt+1
j (xj) − g

t
j(xj)

)2
µj(xj). (5.4.21)

One can check that (5.4.21) holds for j ⩾ i cases. As a result,

||∂giL
L(gt)||2 ⩽

K∑
j=1

||∂giL
L(gt+1,j) − ∂giL

L(gt+1,j−1)||2

⩽
eΓ(1− 2

η )

η2

K∑
j=1

∑
xj∈Xj

(
gt+1
j (xj) − g

t
j(xj)

)2
µj(xj).

Hence,

LL(g∗) − LL(gt) ⩽
2η

e−(Γ+ 1
η )
||∂giL

L(gt)||2

⩽
2KeΓ(1− 2

η )

η

K∑
j=1

∑
xj∈Xj

(
gt+1
j (xj) − g

t
j(xj)

)2
µj(xj).

Applying Lemma 5.14, finally one obtains

LL(g∗) − LL(gt) ⩽
2Ke2Γ(1− 1

η )+
1
η

η

(
LL(gt+1) − LL(gt)

)
.

(5.4.19), therefore, immediately follows from the above.
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Alternative Truncated Entropic Regularization

Algorithm 4 may have some issue which is that cA is not bounded. Since cA is
either 0 or ∞, it impedes not only theoretical understanding of this algorithm but
also implementation in practice. At the same time, we already know that the value
of (3.2.6) is bounded by 1 so that cA never attains ∞ at the optimum. With this hint,
we can further reformulate (5.4.9) replacing 1 + cA by a bounded cost function.

Recall the generalized barycenter problem (3.1.4). With the choice of a cost
function c = cε as in (2.8), it has a solution. More generally, if c satisfies Assumption
2.5, (3.1.4) always has a solution: see Proposition 3.4 in chapter 3.

Define a new cost function

B∗
A(xA) := B

∗
µ̂xA

(5.4.22)

where µ̂xA is a non-negative measure defined as

µ̂xA :=
∑
i∈A

δXi . (5.4.23)

for given given xA ∈ XA. In words, B∗
A(xA) is the value of generalized barycenter

problem regarding the input distribution given by µ̂xA . Trivially, µ̂xA = 0 when
A = ∅.

Proposition 5.17 justifies the replacement of (1 + cA) by B∗
A(xA).

Proposition 5.17. Recall B∗
A(xA) defined as (5.4.22). Define

min
{πA}A∈SK

∑
A∈SK

∫
XK
B∗
A(xA)dπA(x1, ..., xK)

s.t.
∑

A∈SK(i)

Pi#πA = µi for all i ∈ Y.
(5.4.24)

Then,
(3.2.6) = (5.4.24).
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Furthermore, let {π̂A}A∈SK be a solution for (5.4.24). Then, we can obtain a solution
{π∗
A}A∈SK for (3.2.6) from {π̂A}A∈SK .

Proof. First, it follows from (5.4.28) and (5.4.29) that

B∗
A(xA) ⩽ 1 + cA(xA).

Hence, (3.2.6) ⩾ (5.4.24) is direct.
For proving the other direction, let {π̂A}A∈SK be a solution for (5.4.24). Observe

that for each xA, according to (5.4.29) we can find a collection of {u∗
B}B ̸=∅⊆A which

satisfies
B∗
A(xA) =

∑
B ̸=∅⊆A

(1 + cB(xB))u
∗
B(xA). (5.4.25)

Fixing arbitrary feasible {πA}A∈SK ,

∑
A∈SK

∫
XK
B∗
A(xA)dπA(x1, ..., xK)

=
∑
A∈SK

∫
XK

 ∑
B ̸=∅⊆A

(1 + cB(xB))u
∗
B(xA)

dπA(x1, ..., xK).

Note that fordπA(x1, ..., xK), since xjwith j /∈ A is a dummy variable, dπA(x1, ..., xK) =
dπA(xA). For each B ∈ SK, we can define

dπ∗
B :=

∑
A:B⊆A

∫
XA\B

u∗
A(xA\B, xB)dπA(xA\B, xB). (5.4.26)

Here,
∫
XA\B u

∗
A(xA\B, xB)dπA(xA\B, xB) is understood as the integration with re-

spect to the coordinates xA\B given xB and x∅ = 1. Note that this integration is
well-defined since u∗ is Borel measurable. Changing the role of A and B, it follows
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that ∑
A∈SK

∫
XK
B∗
A(xA)dπA(x1, ..., xK)

⩾
∑
A∈SK

∫
XK

 ∑
B ̸=∅⊆A

(1 + cB(xB))u
∗
B(xA)

dπA(x1, ..., xK)

=
∑
B∈SK

∫
XB

(1 + cB(xB))

( ∑
A:B⊆A

∫
XA\B

u∗
A(xA\B, xB)dπA(xA\B, xB)

)

=
∑
B∈SK

∫
XK

(1 + cB(xB))dπ
∗
B(xB).

Since the inequality holds for any feasible {πA}A∈SK , this yields (3.2.6) ⩽ (5.4.24).
Lastly, it remains to show that {π∗

A}A∈SK is feasible for (3.2.6). In other words,
for each i ∈ Y,

∑
B∈SK(i)

∫
XB\{i}

∑
A:B⊆A

∫
XA\B

u∗
A(xA\B, xB)dπA(xA\B, xB) = dµi(xi).

Notice that for any A ∈ SK and any xA ∈ XA∑
B∈A(i)

u∗
B(xA) = 1

due to the definition of (5.4.28). Also, {πA}A∈SK satisfy
∑
A∈SK(i) Pi#πA = µi.
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Hence, a similar calculation as above provides

dµi(xi) =
∑

A∈SK(i)

∫
XA\{i}

dπA(xA\{i}|xi)

=
∑

A∈SK(i)

∫
XA\{i}

 ∑
B∈A(i)

u∗
B(xA)

dπA(xA\{i}, xi)

=
∑

B∈SK(i)

∫
XB\{i}

∑
A:B⊆A

∫
XA\B

u∗
B(xA\B, xB\{i}, xi)dπA(xA\B, xB\{i}, xi)

=
∑

B∈SK(i)

∫
XB\{i}

∑
A:B⊆A

∫
XA\B

u∗
B(xA\B, xB\{i}, xi)dπA(xA\B, xB\{i}, xi).

It verifies that {π∗
A}A∈SK is feasible for (3.2.6).

Thanks to Proposition 5.17, we can propose a slight variation of truncated
Sinkhorn iteration. Here, we follow the fashion stated in remark 5.10 for diversity: in
other words, this algorithm iterates over the space of exponential of dual variables,
ϕi’s. Of course, taking the logarithm, you can boil down the algorithm to the
variables gi’s as usual.

The final update rule of ϕi = exp
(

1
η
gi

)
is

ϕi(xi) = µi(xi)

/ ∑
A∈SLK(i)

〈
exp

(
−

1
η
B∗
A(xi, ·)

)
,
⊗
j∈A\{i}

ϕj(·)
〉

and the optimal value of this iteration is written as∑
A∈SLK

∑
XA

(1 + cA(xA))π
∗
A(xA) =

∑
A∈SLK

∑
XA

B∗
A(xA)π̂A(xA).

Notice that if one only needs to compute the optimal adversarial risk, the step of
transformation, defined in (5.4.26), is redundant due to the above identity.

Pseudocode appears in Algorithm 6.
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Algorithm 6 (Alternative) Truncated entropic regularization(Sinkhorn)
Input: X : data set, η > 0 : entropic parameter, L : trucation level, µ = (µ1, . . . ,µK) :

empirical distribution, ε : adversarial budget.
Initialization : ϕi = µi. Compute {B∗

A : A ∈ SLK}.
while not converge do

ϕ1(x
1
l1
)← µ1(x

1
l1
)

/∑
A∈SLK(1)

〈
exp

(
− 1
η
B∗
A(x

1
l1

, ·)
)

,
⊗
j∈A\{1}ϕj(·)

〉
,

...

ϕK(x
K
lK
)← µK(x

K
lK
)

/∑
A∈SLK(K)

〈
exp

(
− 1
η
B∗
A(x

K
lK

, ·)
)

,
⊗
j∈A\{K}ϕj(·)

〉
.

end while
Compute π̂A(xA) =

∏
i∈Aϕi(x

i
li
) exp

(
− 1
η
B∗
A(xA)

)
for all A ∈ SLK.

Output: {π∗
A = T({π̂A}A∈SLK)}A∈SLK and value =

∑
A∈SLK

∑
XA B

∗
A(xA)π̂A(xA).

Remark 5.18. Of course, Algorithm 6 solves the following problem

min
{πA}A∈SL

K

∑
A∈SLK

∫
XK
B∗
A(x1, . . . , xK)dπA(x1, . . . , xK) − η (Ent (πA) + ||πA||)

s.t.
∑

A∈SLK(i)

Pi#πA = µi for all i ∈ Y.
(5.4.27)

Even though Proposition 5.17 holds, when adopting the entropic term, however, the replace-
ment (1 + cA) by B∗

A engenders the discordance between (5.4.8) and (5.4.27).
Recall the transformation from πA’s to π∗

A:

dπ∗
B :=

∑
A:B⊆A

∫
XA\B

u∗
A(xA\B, xB)dπA(xA\B, xB).

Hence, for each A ∈ SLK, while the entropy terms of (5.4.27) are∑
XA

−πA(xA) log πA(xA),
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those of (5.4.8) are∑
XA

−π∗
A(xA) logπ∗

A(xA)

=
∑
XA

−

( ∑
C:A⊆C

∑
XC\A

u∗
C(xC\A, xBA)πAC(xC\A, xA

)

× log
( ∑
C:A⊆C

∑
XC\A

u∗
C(xC\A, xBA)πAC(xC\A, xA

)
.

Thus, (5.4.8) ̸= (5.4.27) in general. But, (5.4.27) still gives a good approximation for the
L-level truncated version of original problem due to Proposition 5.17. Also, one can prove
that, as η→ 0, both (5.4.8) and (5.4.27) converge to the solution for L-truncated version
of original problem which has the maximum entropy among all other solutions.

Remark 5.19 (Some argument about the complexity of Algorithm 6). Although,
we cannot fully characterize the complexity, we can give some argument regarding that
of Algorithm 6, heuristically. First, for each xA you use Algorithm 3 to compute B∗

A(xA).
The computational complexity of B∗

A(xA) is at most O(L3) since the number of inputs is at
most L. So, the total computational complexity to obtain {B∗

A : A ∈ SLK} is O(KLL3nL).
At the last step of Algorithm6, we need to compute {π∗

A} through the transformation
defined in (5.4.26). There are two extreme cases which contribute the total computational
complexity. One is the case that |A| is very small, say a singleton. In this case, the
computational complexity of computing the summation term is O(KLnL−1) since there
are at most O(KL) many C including A and the inner sum requires O(nL−1) arithmetic
operations. Since there are O(n) points related to A, the total complexity is O(KLnL). The
other is the case that |A| is very large, say |A| = L − 1. In this case, the computational
complexity of computing the summation term is O(Kn) and there are O(nL−1) points so
that the total complexity is O(KnL). Hence, the computational complexity of computing
{π∗
A}A∈SLK is O(K2LnL).

We want to emphasize that, for sure, Algorithm 6 has the same convergence rate of
Algorithm 4 proved in Theorem 5.15.
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Complexity of the full MOT Sinkhorn

In this section, we consider the complexity of the (full) MOT Sinkhorn used in
section 5.2. To achieve its correct complexity, we will provide the simpler MOT
formulation. In fact, the following argument can apply for a general cost function c
provided that c satisfies Assumption 2.5.

Recall that X is a Polish space with a metric d and Y is the set of classes. We
denote by the so-called ghost element introduced in chapter 3 and letX∗ := X∪{ }.
Let us define d̂ to X∗ as

d̂(x, x ′) :=


d(x, x ′) if x ̸= and x ′ ̸= ,

0 if x = x ′ = ,∞ otherwise.

As similar, one can prove that (X∗, d̂) is again a Polish space: see Proposition 3.26.
Let us define a proper MOT cost function. Recall the generalized barycenter

problem (3.1.4) and (5.4.23). One can regard µ̂xA =
∑
i:Xi ̸= δXi . Then, we are able

to extend it to XK∗ in this way: for x = (x1, . . . , xK) ∈ XK∗ ,

µ̂x =
∑
i:Xi ̸=

δXi .

Now, we define the MOT cost function as

c(x1, . . . , xK) := B∗
µ̂x

.

If x1 = · · · = xK = , B∗
µ̂x

= 0 trivially. Suppose A = A(x1, . . . , xK) ̸= ∅. Let
us use A(i) := {B ⊆ A : i ∈ B}. Reformulating B∗

µ̂x
by the following equivalent
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multimarginal problem which is proved in Proposition 3.11 and 3.12,

B∗
µ̂x

= inf
πB:B ̸=∅⊆A

 ∑
B ̸=∅⊆A

∫
XK

(1 + cB(x))dπB(x) :
∑
B∈A(i)

Pi #πB = δxi for all i ∈ A

 .

(5.4.28)
In addition, under Assumption 2.6, (5.4.28) always attains a solution {π∗

B}B ̸=∅⊆A

which satisfies spt(π∗
B) ⊆

∏
i∈B{xi} for any non-empty B ⊆ A due to its constraints.

So, one can characterize c(x1, . . . , xK) as

c(x1, . . . , xK) =
∑

B ̸=∅⊆A

(1 + cB(x))u
∗
B(x) (5.4.29)

such that u∗
B ⩾ 0 for all B and for each i ∈ A,∑

B∈A(i)

u∗
B(x) = δxi

In the following lemma, we prove that c(x1, . . . , xK) is lower semi-continuous
under an appropriate topology on XK∗ .

Lemma 5.20. Define d̂K on XK∗ by

d̂K((x1, . . . , xK), (x ′1, . . . , x ′K)) := max
1⩽i⩽K

d̂(xi, x ′i).

Then, under Assumption 2.6, c is lower semi-continuous on (XK∗ , d̂K).

Remark 5.21. Note that (XK∗ , d̂K) is still a Polish space.

Proof. Suppose xn = (xn1 , . . . , xnK) converges to x = (x1, . . . , xK) in (XK∗ , d̂k). Without
loss of generality, assume that x1, . . . , xL = for all 1 ⩽ L ⩽ K. If L = K, c = 0 and
the claim would be trivial. So we focus on the case L < K. By the definition of d̂K,
without loss of generality we can further assume that xn1 , . . . , xnL = for all n, and
likewise, for each L+ 1 ⩽ j ⩽ K, we can assume that inj = ij for all n, for otherwise
the convergence would not hold due to the definition of d̂K.
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Let A = {L+ 1, . . . ,K} and A(i) = {B ⊆ A : i ∈ B}. We now claim that for every
B ̸= ∅ ⊆ A,

cB(xL+1, . . . , xK) ⩽ lim inf
n→∞ cB(x

n
L+1, . . . , xnK).

Indeed, if the right hand side is equal to ∞, then there is nothing to prove. If the
right hand side is finite, we may then find a sequence {x̃n}n∈N such that

lim inf
n→∞

∑
i∈B

c(x̃n, xni ) = lim inf
n→∞ cB(x

n
L+1, . . . , xnK) <∞.

By Assumption 2.6, up to subsequence (not relabeled) we can find a sequence
{x̃n}n∈N converging toward a point x̃ ∈ X. Combining with the lower semi-continuity
of c, we deduce that

cB(xL+1, . . . , xK) ⩽
∑
i∈B

c(x̃,Xi) ⩽ lim inf
n→∞ cB(x

n
L+1, . . . , xnK).

Since (5.4.29) holds, we can find for eachn ∈ N a collection of feasible {πnB}B ̸=∅⊆A

such that

lim inf
n→∞

∑
B ̸=∅⊆A

(
1 + cB(x

n
L+1, . . . , xnK)

)
πnB = lim inf

n→∞ c(xn1 , . . . , xnK).

Using the Heine-Borel theorem in Euclidean space, we can assume without the loss
of generality that for every B ̸= ∅ ⊆ A, πnB converges to some πB as n → ∞. The
resulting collection of πB is feasible for the problem defining c(x1, . . . , xK) and thus,
using the lower semi-continuity of cB established earlier, we deduce:

c(x1, . . . , xK) ⩽
∑

B ̸=∅⊆A

(1 + cB(xL+1, . . . , xK))πB ⩽ lim inf
n→∞ c(zn1 , . . . , znK).

In order to describe of the primal MOT problem and its the dual formally, we
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need some preliminary works. For each i ∈ Y, let µ̂i be the extension of µi to X∗ as

dµ̂i := dµi + (1 − ||µi||)δ .

Here, ||µi|| is the total mass of µi. By the construction of µ̂i’s, all of them have the
same mass, 1, allowing the application of the usual MOT theory directly.

Let us define the set of couplings by

Π(µ̂1, . . . , µ̂K) :=
{
π ∈ P(XK∗ ) : Pi #π = µ̂i for all i ∈ Y

}
(5.4.30)

and the set of feasible potentials by

Φ :=

{
ϕ = (ϕ1, . . . ,ϕK) ∈

K∏
j=1

L1(µ̂i) :
∑
i∈Y

ϕi(xi) ⩽ c(x1, . . . , xK)
}

. (5.4.31)

Proposition 5.22. Under Assumption 2.6, we have

(3.2.6) = inf
π∈Π(µ̂1,...,µ̂K)

{∫
XK∗

c(x1, . . . , xK)dπ(x1, . . . , xK)
}

. (5.4.32)

Furthermore, it satisfies the duality which is

inf
π∈Π(µ̂1,...,µ̂K)

{∫
XK∗

c(x1, . . . , xK)dπ(x1, . . . , xK)
}

= sup
ϕ∈Φ

{∑
i∈Y

∫
X∗

ϕi(xi)dµ̂i(xi)

}
(5.4.33)

and both of the primal and the dual have solutions.

Proof. (5.4.33) is straightforward thanks to the fact that c(x1, . . . , xK) is lower semi-
continuous and bounded below by 0: see (Villani, 2009, Theorem 5.10). The ex-
istence of a minimizer for a primal problem is also classic and the existence of a
maximizer for dual problem follows from (5.4.32) and Proposition 4.18.

Let g = (g1, . . . ,gK) ∈ Cb(X)
K be a feasible solution for (3.2.13). Define ĝ :=
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(ĝ1, . . . , ĝK) as, for each i ∈ Y

ĝi(x) :=

gi(x) if x ∈ X,

0 if x = .

We want to show that for any (x1, . . . , xK) ∈ XK∗ ,∑
i∈Y

ĝi(xi) ⩽ c(x1, . . . , xK).

First, if x1 = · · · = xK = , it holds trivially. Let A = {i : xi ̸= } and A(i) =
{B ⊆ A : i ∈ B}. Combining (5.4.29) with the fact that g satisfies

∑
i∈A gi(xi) ⩽

1 + cA(xA) for any A ⊆ SK, it follows that for any non-empty B ⊆ A,

π∗
B

∑
i∈B

gi(xi) ⩽ (1 + cB(xB))π
∗
B =

∫
XK

(1 + cB(x))dπ
∗
B(x). (5.4.34)

Using (5.4.29), (5.4.34),
∑
B⊆A(i) ||πB|| = 1 for all i ∈ A and

∑
i∈Y ĝ(Xi) =

∑
i∈A gi(Xi),

one can deduce ∑
i∈Y

ĝ(Xi) =
∑

B ̸=∅⊆A

∑
i∈B

π∗
Bgi(Xi)

⩽
∑

B ̸=∅⊆A

∫
XK

(1 + cB(x))dπ
∗
B(x)

= c(x1, . . . , xK),

which verifies that ĝ ∈ Φ. Applying Corollary 3.28 and 3.29, it follows that

(3.2.6) ⩽ sup
ϕ∈Φ

{∑
i∈Y

∫
X∗

ϕi(xi)dµ̂i(xi)

}
.

On the other hand, given a dual potential ϕ ∈ Φwhich is feasible for the dual
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problem, define ψ := (ψ1, . . . ,ψK) ∈
∏
i∈Y L

1(X;µi) as, for each i ∈ Y

ψi(x) := ϕi(x) +
∑
j∈Y

ϕj( ) − ϕi( ).

It is straightforward that

∑
i∈Y

∫
X

ψi(Xi)dµi(Xi) =
∑
i∈Y

∫
X

(
ϕi(Xi) +

∑
j∈Y

ϕj( ) − ϕi( )

)
dµi(Xi)

=
∑
i∈Y

{∫
X

ϕi(Xi)dµi(Xi) + ||µi||

(∑
j∈Y

ϕj( ) − ϕi( )

)}

=
∑
i∈Y

∫
X∗

ϕi(Xi)dµ̂i(Xi).

Fix A ∈ SK. Consider∑
i∈A

ψi(Xi) =
∑
i∈A

ϕi(Xi) + |A|
∑
j∈Y

ϕj( ) −
∑
i∈A

ϕi( )

Letting ϕkj ( ) := ϕj( ), k-th copy of ϕj( ), rewrite the second term as

|A|
∑
j∈Y

ϕj( ) =
∑
i∈A

∑
j∈Y

ϕkj ( ).

Fix l ∈ A. By (5.4.28) and the definition of ϕ,∑
i∈A

ϕi(Xi) +
∑
j∈Y

ϕlj( ) −
∑
i∈A

ϕi( ) =
∑
i∈A

ϕi(Xi) +
∑
j∈Ac

ϕlj( )

⩽ c(x1, . . . , xK)

⩽ 1 + cA(xA).
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Hence, since
∑
j∈Yϕj( ) ⩽ 0,∑

i∈A

ψi(Xi) =
∑
i∈A

ϕi(Xi) +
∑
i∈A

∑
j∈Y

ϕkj ( ) −
∑
i∈A

ϕi( )

=
∑
i∈A

ϕi(Xi) +
∑
j∈Y

ϕlj( ) −
∑
i∈A

ϕi( ) +
∑
k̸=l∈A

∑
j∈Y

ϕkj ( )

⩽ 1 + cA(xA),

which verifies that ψ is feasible for (3.2.13) in
∏
i∈Y L

1(µi)-sense. This yields

sup
ϕ∈Φ

{∑
i∈Y

∫
X∗

ϕi(Xi)dµ̂i(Xi)

}
⩽ (3.2.6).

The conclusion follows.

This new MOT formula (5.4.32) gives a correct upper bound of the complexity
of approximated solution for adversarial training.

Corollary 5.23. Assume that ni = O(n) for all i ∈ Y. The computational complexity of
finding a δ-approximate solution for the adversarial training problem is at most

O

(
K4nK+

1
2 logn
δ

∧
K5nK logn

δ2

)

Proof. Recall
(2.5) = 1 − (3.2.6).

With (5.4.32) of Proposition 5.22, the conclusion follows from Tupitsa et al. (2020);
Lin et al. (2022). Note that ||c||∞ = K.

Remark 5.24. Notice that each marginal µ of the previous MOT formula in Garcıa Trillos
et al. (2023) has the size O(Kn). Then, the computational complexity corresponding the
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previous MOT formula is

O

(
KK+

7
2nK+

1
2 log(Kn)
δ

∧
KK+4nK log(Kn)

δ2

)
.
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6 conclusion and future works

My thesis provide both theoretical understanding and practical implementations
regarding the adversarial training problem in multiclass classification. The hammer
we have used to tackle this problem is optimal transport, especially multimarginal
optimal transport which has been recently payed attention from pure mathematics
to applied fields.

More formally, we have three adversarial training models, DRO model (2.5),
closed-ball model (2.4) and open-ball model (2.3), which also has an exciting
connection to “total-variation regularization”. The main object is DRO model
intensively studied in chapter 3. The main theme of chapter 3 is that DRO model
has twofold: the adversary’s part and the learner’s part. The adversary’s part is
equivalent to the generalized barycenter problem (3.1.4), in other words, solving the
generalized barycenter problem is sufficient from the perspective of the adversary.
Based on this observation, we derive the stratified MOT problem (3.2.6) which in
turn connects everything to optimal transport type formulations. From the dual of
the stratified MOT problem, (3.2.13), we can construct a robust classifier, hence, it
is indeed a problem for the learner.

Then, in chapter 4, first of all we analyze the learner’s problem more rigorously.
We prove that DRO model has a Borel measurable optimal robust classifier in a
very general setting, as a result, we can prove the existence of a saddle point of
DRO model. Based on that, we give a connection between DRO model and closed-
ball model again by the argument of optimal transport theory. Finally, a simple
but critical observation allows us to conclude that indeed closed-ball model and
open-ball model are almost equivalent: hence the conclusion is that three models
are equivalent in some sense.

These theories guide new algorithms to solve the adversarial problems numer-
ically, which is the main theme of chapter 5. We propose two algorithms, exact
solving(Algorithm 3) and truncated entropic regularization(Algorithm 4). More
precisely, exact solving solves the generalized barycenter problem and truncated
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entropic regularization solves both the stratified MOT problem and its dual. The
idea of them is that under well separability of classes and the reasonable adversarial
budget, problematic higher-order interactions, which is indeed a barrier of solving
the problem, are really rare in real data set. We provide some numerical results
obtained by them supporting the success of our algorithms. Also, they show how
our heuristic belief can be justified in real data set.

There are really exciting and demanding remained questions in this field. First,
it would be of interest to use (2.5) to help in the training of robust classifiers within
specific families of models. Notice that (2.5) is model free from the perspective of
the learner, but in applications practitioners may be interested in solving a problem
like:

inf
f∈G

sup
µ̃∈P(Z)

{R(f, µ̃) − C(µ, µ̃)} ,

which differs from (2.5) in the family of classifiers G, which may be strictly smaller
than F; for example, G could be a family of neural networks, kernel-based classifiers,
or other popular (parametric) models. There are two ways in which problem
(2.5) is still meaningful for the above model-specific problem: 1) the optimal µ̃∗

computed from the problem (2.5) can be used as a way to generate adversarial
examples that could be used during training of the desired model; 2) the optimal
value of (2.5) can serve as a benchmark for robust training within any family of
models.

Another question is more geometric one. For an optimal Borel robust classifier
f∗, can we say some regularity of f∗ as in Bungert et al. (2023)? Since we do not
have a hard classifier in general, a question might be about the level set of f∗. For
instance, letting Ai = {x ∈ X : f∗i = 1}, is this set regular in some sense? Or, is
there an optimal Borel robust classifier whose level set is regular? Answering this
question will give a more rigorous understanding of robustness or regularity of
classifiers in adversarial training problem.

A next one is about the extension of our framework to other settings. In this
paper, we assume that the loss function is 0-1 loss but practitioners prefer convex
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loss functions, for example cross entropy, for faster optimization. Can we obtain a
similar DRO-type formulation with non-linear loss functions? If so, it helps expand
rigorous understanding of adversarial training and develop more tractable and
accurate numerics for practice.

About algorithms, definitely one of the most important questions is the sample
complexity. Note that even for W2-Wasserstein metric and its entropic regular-
ization, their sample complexity is not trivial to understand: see Manole and
Niles-Weed (2021); Niles-Weed and Bach (2019); Harchaoui et al. (2022). One
big potential issue of the adversarial training problem is the singularity of cost
function. Unlike ℓ2 norm cost function, a typical cost function in our setting is 0-∞
cost function which is really singular. Also, with this cost function, cA appear-
ing in the stratified MOT problem is not uniquely defined. Such properties are
potential barriers against this question. Furthermore, it is well-known that many
optimal transport problems exhibit the curse of dimensionality. We also expect that
dimension really matters in the adversarial training.

Also, can we obtain a better complexity of Algorithm 3 and Algorithm 4? For
example, using some elementary statistics of data sets, can we a priori choose an
appropriate interaction-order level L to implement them faster and still obtain a
good approximation? What is the correct notion of separation among different
classes? Also, we reasonably guess that adopting greedy descent method and the
rounding scheme suggested in Altschuler et al. (2017) helps obtain near-linear
time(O(KLnL)) complexity.

Another practically important question is how to enforce a specific robust classi-
fier or an adversarial attack by our algorithms. It is naturally expected that there are
multiple Nash equilibria, in other words, multiple saddle points of robust classifiers
and adversarial attacks. Suppose that we want some additional aspects of them: for
example, among all possible robust classifiers, we want to pick a specific one which
has the maximum entropy. Then, how can we implement such classifier? This is
indeed a very practical issue but quite non-trivial task. Answering this questions
would have an impact in reality for sure.

Finally, it is of interest to investigate the geometric content that profiles like the
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ones presented in Figure 3.6, 5.2 and 5.3 carry about a specific data set. As illustrated,
these plots are probably specific signatures (adversarial signatures) of a given
data distribution, and thus, they may be potentially used to capture similarities
and discrepancies between different data sets and the geometry, separability or
concentration etc., of given data set.
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