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Introduction

One of the central questions in industrial organization is whether firms compete or collude

in oligopolistic markets, given the significant implications of collusion for market outcomes

and competition policy. An extensive body of literature has emerged, focusing on empirically

analyzing the degree of collusion and measuring its impact on welfare. However, this task is

challenging because observed higher prices may be attributed to various factors such as a

high degree of collusion, increased product di�erentiation, or higher marginal costs—all of

which are unobserved.

The standard approach to this di�cult task is to rely on structural modeling that consists

of demand and cost primitives (Berry and Haile 2014). Over the decades, a body of the

literature, initially referred to as the “New Empirical Industrial Organization (NEIO)”, has

provided structural frameworks for estimating conduct parameters. These parameters serve as

a continuous measure of the degree of competition, ranging between perfect competition and

collusion in the case of homogeneous products markets (Bresnahan 1989; Kadiyali, Sudhir,

and Rao 2001; Sexton and Lavoie 2001; Sexton and Xia 2018). The method is often referred

to as the conjectural variation model since its theoretical foundation is based on the canonical

model presented by Bowley (1924). While this approach allows for the flexible estimation

of the degree of competition, concerns about its theoretical validity and the reliability of

inference have been raised (Friedman 1983; Corts 1999; Reiss and Wolak 2007).

Additionally, although the model can be theoretically extended to accommodate product

di�erentiation, its practical application is hindered by the curse of dimensionality problem due
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to a large number of parameters (Nevo 1998). This issue remains unsolved, and the literature

tends to restrict the level of competition to predetermined conduct such as Bertrand-Nash

price competition (Goeree 2008; Nakamura and Zerom 2010; Miravete, Moral, and Thurk

2018). Given this situation, Schmalensee (2012) suggests a direction for future research,

saying “the best way forward may be to attempt to develop and employ parsimonious

parameterizations in the spirit of the “conjectural variations” approach that can provide

reliable reduced-form estimates of the location of conduct.”

In this dissertation, I propose a new structural model of demand and supply that enables

the flexible estimation of firm conduct as continuous conduct parameters in di�erentiated

products markets. A significant advantage of the framework is its empirical tractability, even

when our focus is on the conduct of a large number of firms. This innovation is achieved

through my unique setup of the supply-side modeling. Unlike the previous studies, I construct

the supply side of the model using an oligopolistic model developed by d’Aspremont, Dos

Santos Ferreira, and Gérard-Varet (2007). Their model captures competition among firms in

two dimensions: one is competition for market share and the other is competition for market

size. This dichotomous characterization reduces the number of conduct parameters, making

the estimation feasible for a larger number of firms. Importantly, the model retains flexibility

on the degree of competition from monopolistic competition to collusion. Since d’Aspremont,

Dos Santos Ferreira, and Gérard-Varet (2007) is a purely theoretical analysis and no other

research has explored its empirical application, this study is the first attempt to use this

oligopolistic model for estimating the conduct of firms.

In the first chapter, I demonstrate how to introduce the theoretical model by d’Aspremont,

Dos Santos Ferreira, and Gérard-Varet (2007) into an empirical structural framework and

discuss its advantages compared with the previous approach. A key benefit of the proposed

model is its reduced number of parameters and simpler functional form. Given the challenge

in identifying conduct parameters, mainly due to the di�culty in finding valid instruments,

my approach significantly extends its applicability to many situations where the existing
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models cannot be applied.

In the second chapter, I apply the proposed structural model to the US retail market

for ground co�ee, utilizing scanner data provided by Information Resources, Inc (IRI). To

implement the empirical analysis, I use a multistage demand system following Hausman,

Leonard, and Zona (1994) and Hausman, Pakes, and Rosston (1997). In the US retail

co�ee market, the two largest national brands (Folgers and Maxwell House) have more than

50% market share while there exist many regional brands with smaller market shares. I

estimate conduct parameters of these two firms and the results show that the conduct of these

firms is close to collusion and Nash-Bertrand pricing conduct is rejected. This application

demonstrates the applicability of my proposed framework in assessing competition in retail

pricing using the standard scanner datasets.

In the third chapter, I apply the model to analyze the US corn seed industry using a

proprietary dataset on farm-level transactions for genetically modified seeds. Despite concerns

regarding the ramifications of the growing market power of large biotech firms, there is limited

understanding of whether firms compete or collude in their pricing strategies. On the supply

side of the model, I extend the proposed framework to allow for multiproduct firms, while

d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) rely on a restrictive assumption

of single-product firms. On the demand side of the model, I choose the discrete/continuous

demand system because it allows for recovering utility and expenditure functions of a

representative consumer generated from the population of heterogeneous consumers (Anderson,

De Palma, and Thisse 1987; Dubé, Joo, and Kim 2023). This integrability property ensures a

theoretical consistency between the demand and supply model, allowing for welfare analysis

based on the structural model. My estimation results show that the five largest firms are all

engaged in imperfect collusion, and I reject benchmark conduct such as price and quantity

competition. The low degree of competition translates into high price-cost margins, which I

estimate at approximately 38%-51%. The results of counterfactual simulations indicate that

seed companies extract substantial rent from farmers through non-competitive pricing, and
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total welfare loss is measured at $3.65 billion over the period 2008-2014.

This dissertation contributes to the literature by providing a new empirical strategy for

estimating continuous conduct parameters in an empirically tractable way. In this context,

the most closely related papers are Ciliberto and Williams (2014), Miller and Weinberg

(2017), Sullivan (2017), and Michel, Manuel Paz y Mino, and Weiergraeber (2023), which

estimate similar conduct parameters. Furthermore, it o�ers a valuable alternative to the

testing-based approach employed in studies such as Rivers and Vuong (2002), Villas-Boas

(2007), Backus, Conlon, and Sinkinson (2021), and Duarte et al. (2023) for identifying firms’

conduct.
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Chapter 1

The New Structural Framework for

Estimating Firm Conduct

1.1 Introduction

This chapter demonstrates a theoretical framework for estimating conduct parameters in

di�erentiated products markets. My approach is in line with the standard structural modeling

that consists of demand and supply primitives (Berry, Levinsohn, and Pakes 1995; Nevo 2001;

Berry and Haile 2014). Unlike the existing papers, I use an oligopolistic model developed by

d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) as the theoretical model on the

supply side. In this chapter, I first explain their model and demonstrate how to incorporate

it into an empirical structural framework. Then, I discuss its advantages and disadvantages

in terms of empirical applications.

1.2 Theoretical framework

In this section, I explain the oligopolistic model developed by d’Aspremont, Dos Santos

Ferreira, and Gérard-Varet (2007). My motivation of using this framework is that it provides

a tractable equilibrium markup formula while keeping theoretical validity and flexibility on
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firm conduct with a single continuous parameter per firm.1 The following explanation is

basically based on d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007), whereas I

put detailed derivations of equations and additional interpretations for readers’ convenience.

1.2.1 Demand model

First, the demand side of the model is discussed. d’Aspremont, Dos Santos Ferreira, and

Gérard-Varet (2007) consider an industry that provides J di�erentiated products by produced

by J firms. Assume a representative consumer has a weakly separable preference between

the di�erentiated products and all the other products.2

U = U(Q(q), z)

where U and Q are continuously, twice di�erentiable, increasing, and strictly quasi-concave

functions. q is a vector of the di�erentiated products and z represents the composite good of

all other products. Here, the sub-utility function Q(q) is interpreted as a composite product

or quantity aggregator of the di�erentiated products. Assume that Q(q) is homogeneous

degree one in its arguments, which ensures the existence of a price aggregator corresponding to

the quantity aggregator Q(q). With this assumption, the utility function U is homothetically

separable.

Since the utility function is weakly separable, the utility maximization can be solved

in two stages.3 The representative consumer first decides how much should be spent on

the di�erentiated products and then decides expenditure allocation between J di�erentiated
1d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) refer the conduct parameters as competitive

toughness of firm conduct.
2This setting is the same as one introduced Dixit and Stiglitz (1977) and later widely used in the field

of international trade and macroeconomic analysis. Also, much of the literature in industrial organization
usually focuses on a particular industry of interest by assuming quasi-linear preference, which implies weakly
separable preference (See Vives 1999).

3Gorman (1959) shows that the existence of group price indices, such that group expenditures are functions
only of these price indices, holds if and only if the utility function is homothetically separable or additively
separable.
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products. A utility maximization problem in the first stage allocation is formulated as follows:

max
Q,z

U(Q, z)

subject to PQ + z Æ Y

where P = P (p) is the price aggregator of J di�erentiated products and p is a vector of prices

of the J di�erentiated products. The price of z is normalized to 1. Y is the representative

consumer’s income. By solving this problem, the demand function of the composite good Q

is derived as a function of the price aggregator and income.

Q = D(P (p), Y ) (1.1)

Next, an expenditure minimization problem in the second stage allocation is formulated

as follows:

min
q

Jÿ

j=1
pjqj

subject to Q(q) Ø Q

Solving this minimization problem gives the following expenditure function. The functional

form is multiplicative of the price and quantity aggregator as it is a general feature of

homothetic utility functions.

e(p, Q) = P (p)Q

By Shepard’s lemma, the demand function conditional on the quantity aggregator Q is

derived:

hj(p, Q) = ˆP (p)
ˆpj

Q j = 1, ..., J (1.2)

From the first order conditions, it is shown that the price of product j also has a
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multiplicative form as the dual representation of equation (1.2).

pj = ⁄D

ˆQ(q)
ˆqi

= ˆe(p, Q)
ˆQ

ˆQ(q)
ˆqj

= P (p)ˆQ(q)
ˆqj

j = 1, ..., J

where ⁄D is the Lagrange multiplier.

By substituting equation (1.1) into equation (1.2), the unconditional demand function of

product j is given:

dj(p, Y ) = ˆP (p)
ˆpj

D(P (p), Y ) j = 1, ..., J

The two-stage budgeting under separable preference has important implications for com-

petition between firms. In the first stage of optimization, the market size of J di�erentiated

products is determined by the industry’s level price, while in the second stage of optimization,

the demand for each product is determined by the relative prices of the products. Firms

must consider how both the demand for the industry and the demand for their own product

respond to their decisions, which can be measured by relevant demand elasticities. In this

model, the intra-sectoral and inter-sectoral elasticities of substitution are crucial determinants

for understanding the degree of competition for each firm. The equilibrium markup equations

can be expressed as a function of these two elasticities, as we will see later.4

Intra-sectoral elasticity of substitution

The intra-sectoral elasticity of substitution of product j for the composite good Q is defined

as the absolute value of the elasticity of the ratio qj/Q(q) with respect to the corresponding

price ratio pj/P (p). This elasticity of substitution measures substitutability between product

j and the composite product within the industry, without considering a change in the total
4This is analogous to the case of Bertrand-Nash price competition in which an equilibrium markup is

expressed as a reciprocal of own price elasticity of demand.
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demand of the industry.5

÷j © ≠ d(qj/Q)
d(pj/P (p))

----
qj=hj(p,Q)

pj/P (p)
qj/Q

= ≠

ˆ ln hj(p, Q)
ˆ ln pj

1 ≠ ˆ ln P (p)
ˆ ln pj

j = 1, ..., J

(See Appendix 1.A for derivations).

Inter-sectoral elasticity of substitution

The inter-sectoral elasticity of substitution is defined as the absolute value of the elasticity

of the ratio qj/Y with respect to the corresponding price ratio pj/1. This elasticity measures

substitutability between product j and all other products, with implicitly considering a

change in the total demand to the industry.

‡j © ≠d(qj/Y )
dpj

----
Q(q)=D(P (p),Y )

pj

qj/Y
= ≠ˆ ln D(P (p), Y )

ˆ ln P
j = 1, ..., J

(See Appendix 1.A for derivations).

1.2.2 Supply model

Assume that each firm maximizes its own profit given other firms’ choices under two demand

constraints: 1) market share constraint and 2) market size constraint. A profit maximization

problem of firm j is formulated as follows:

max
pj ,qj

(pj ≠ cj)qj

subject to qj Æ hj((pj,p≠j), Q(qj, q≠j))

and Q(qj, q≠j) Æ D(P (pj,p≠j), Y )
5The intra-sectoral elasticity is di�erent from the elasticity of substitution between two products (qi, qj).

If the sub-utility function Q is symmetric like CES preference, both elasticities coincide.
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where cj is the marginal cost of firm j, and (q≠j,p≠j) are vectors of quantities and prices of

the firms other than firm j. hj is the demand function of product j in equation (1.2) and D

is the demand function of the composite good in equation (1.1).

By substituting the second constraint into the first constraint, we obtain:

qj Æ hj((pj,p≠j), D(pj,p≠j, Y )) = dj(pj,p≠j, Y )

This equation is exactly the same as a constraint in the Bertrand price competition. Thus,

the formulation with two demand constraints allows for a wider range of firms’ decisions than

the price competition.

The first constraint, referred to as the market share constraint, governs firms’ choices

of prices and quantities in terms of their own demand (market share) within the market.

The Hicksian demand function hj considers substitution between J di�erentiated products

conditional on Q. Under this constraint, firms compete to obtain higher market shares by

lowering their prices.

The second constraint, referred to as the market size constraint, governs firms’ choices of

prices and quantities in terms of the aggregate demand for the J di�erentiated products. The

Marshallian demand function D considers substitution between J di�erentiated products and

all other products. An increase in the market-level price prompts consumers to increase the

purchased quantity of other products outside the industry. Thus, the constraint on market

size captures their common interest as a sector, while the constraint on market share captures

the conflictual side of competition between the firms.

To see how these constraints are connected to the two elasticities of substitution, I define

two implicit functions from the two constraints: f(q,p) = qj ≠ hj((pj,p≠j), Q(qj, q≠j)) and

g(q,p, Y ) = Q(qi, q≠j) ≠ D(pj,p≠j, Y ). By taking a total derivative with respect to (qj, pj)
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and letting df = dg = 0,

d ln qj

d ln pj

----
qj=hj((pj ,p≠j),Q(qj ,q≠j))

=

ˆ ln hj(p, Q)
ˆ ln pj

1 ≠ ˆ ln hj(p, Q)
ˆ ln Q

ˆ ln Q(q)
ˆ ln qj

= ≠÷j (1.3)

d ln qj

d ln pj

----
Q(qj ,q≠j)=D(pj ,p≠j ,Y )

=

ˆ ln D(p, Y )
ˆ ln pj

ˆ ln Q(q)
ˆ ln qj

= ≠‡j (1.4)

Equation (1.3) indicates that the absolute value of the own price elasticity along the

market share constraint is equal to the intra-sectoral elasticity of substitution ÷j. Similarly,

equation (1.4) shows that the inter-sectoral elasticity of substitution ‡j is equal to the absolute

value of the elasticity along the market size constraint. These relationships between the

constraints and elasticities are crucial for understanding firms’ market power.

The fundamental source of firms’ market power lies in their downward residual demand

function. If the demand for an individual firm is not perfectly elastic, the firm has an incentive

to reduce a quantity and raise its price to earn a positive markup. In the standard oligopoly

problem, the markup is obtained as an inverse of the own price elasticity. Therefore, the

more inelastic the demand, the higher the markup the firm can earn. In this model, the

two constraints have di�erent slopes, and how firms address these constraints has important

implications for their market power.
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1.2.3 Market equilibrium

Assuming the existence of a pure-strategy Nash equilibrium, a market equilibrium is defined

as (qú
j
, p

ú
j
)j=1,...,J œ RJ

+ such that for all j,

(qú
j
, p

ú
j
) = max

pj ,qj
(pj ≠ cj)qj

subject to qj Æ hj((pi,p
ú
≠j

), Q(qj, q
ú
≠j

))

and Q(qj, q
ú
≠j

) Æ D(pj,p
ú
≠j

, Y )

(1.5)

At the equilibrium (p⇤
, q⇤), each firm maximizes its own profit given the other firms’

decisions. d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) show that the markup

at the equilibrium is expressed as the weighted harmonic mean of the reciprocals of the two

elasticities of substitution ÷j and ‡j. To derive the equilibrium markup, define the Lagrangian

of this profit maximization problem as follows:

L = (pj ≠ cj)qj + ⁄j

A

1 ≠ qj

hj(p, Q(q))

B

+ vj

A

1 ≠ Q(q)
D(P (p), Y )

B

j = 1, ..., J

where ⁄j and vj are the Lagrange multipliers for the market share and market size constraint

respectively.

Solving this maximization problem, the equilibrium markup of firm j is derived as follows

(See Appendix 1.B for detailed derivations).

µj = pj ≠ cj

pj

= ◊i(1 ≠ bj) + (1 ≠ ◊j)bj

◊j(1 ≠ bj)÷j + (1 ≠ ◊j)bj‡j

j = 1, ..., J
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where bj is the budget share of product j within the industry and ◊j is defined as:

◊j = ⁄j

⁄j + vj

=

Y
________]

________[

1 if vj = 0, ⁄j > 0

(0, 1) if ⁄j, vj > 0

0 if ⁄j = 0, vj > 0

The parameter ◊j measures the degree of competition of firm j. Defined as the ratio of

the two Lagrange multipliers, ◊j takes values from zero to one. This parameter represents

the relative attitude toward market share and market size constraints. When ◊j = 1, firm

j maximizes its profit as if it competes solely for market share, as the shadow value of the

market size constraint is zero at the equilibrium. In this case, the degree of competition

of firm j is the highest. Conversely, when ◊j = 0, firm j competes exclusively for market

size, resulting in the lowest degree of competition. Standard price competition and quantity

competition always fall between these two extremes. Additionally, if ÷i > ‡j, indicating

higher substitutability within the industry than against outside the industry, ◊j is lower,

and µj is higher for Cournot quantity competition than for Bertrand price competition. To

summarize, the equilibrium markup and firm conduct are related as follows:

µj =

Y
_____________]

_____________[

1
‡j

if ◊j = 0 (Collusion),

1≠bj

÷j
+ bj

‡j
if ◊j = 1

1+÷j/‡j
(Cournot quantity competition),

1
(1≠bj)÷j+bj‡j

if ◊j = 1/2 (Bertrand price competition),

1
÷j

if ◊j = 1 (Monopolistic competition).

It is worth emphasizing that each firm can take di�erent values of ◊j, so it may be possible

some firms take the conduct of price competition and others take the conduct of quantity

competition. Therefore, the vector ✓ = (◊1, ..., ◊J) characterizes the degree of competition in

the di�erentiated industry, which is translated into the level of markups.
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1.3 Empirical structural model

In this section, I demonstrate how to incorporate the oligopolistic model by d’Aspremont,

Dos Santos Ferreira, and Gérard-Varet (2007) into an empirical structural framework.

1.3.1 Estimation equations

In empirical applications, there are Jt di�erentiated products produced by Jt firms at

market t. I assume that observed prices and market shares of products at each market are

equilibria generated from the theoretical model. Specifically, the markup equation provides

relationships between prices, market shares, elasticities of substitutions, marginal costs, and

conduct parameters at each market.

µjt = pjt ≠ cjt

pjt

= ◊j(1 ≠ bjt) + (1 ≠ ◊j)bjt

◊j(1 ≠ bjt)÷jt + bjt(1 ≠ ◊j)‡jt

j = 1, ..., Jt (1.6)

where µjt is the markup of product j at market t, pjt is the price, cjt is the marginal cost, ◊j

is the conduct parameter, bjt is the market share in value, ÷jt is the intra-sectoral elasticity

of substitution, and ‡jt is the inter-sectoral elasticity of substitution.

Identification of conduct parameters is straightforward if marginal costs are observed,

because they are calculated directly from the data by solving (1.6) for ◊j given the identification

of demand elasticities. However, since marginal costs are rarely observed due to the discrepancy

with accounting costs (Fisher and McGowan 1983), inferring marginal costs becomes necessary.

This introduces complexity into the identification of conduct parameters as it requires a joint

estimation with marginal costs.

To derive estimation equations, the marginal cost function is specified as follows. Estimat-

ing the marginal cost using firms’ first-order conditions is a standard practice in the empirical

industrial organization field, first conducted by Rosse (1970) to infer monopoly power.

cjt = !Õ
jt
� + ’jt (1.7)
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where !jt is a vector of observed cost shifters, � is a vector of estimated parameters and ’jt

is the unobserved cost shifter.

Substituting (1.7) in (1.6), the estimation equations on the supply side are obtained.

pjt = !Õ
jt
� + ◊j(1 ≠ bjt) + (1 ≠ ◊j)bjt

◊j(1 ≠ bjt)÷jt + bjt(1 ≠ ◊j)‡jt

pjt + ’jt j = 1, ..., Jt (1.8)

To estimate equation (1.8), obtaining two elasticities of substitution, ÷jt and ‡jt, is

necessary. There are two dominant approaches to estimating demand for di�erentiated

products: 1) multistage demand models (Hausman, Leonard, and Zona 1994) and 2) discrete

choice models (Berry, Levinsohn, and Pakes 1995). Several authors have compared these two

demand models, discussing their advantages and disadvantages (Bajari, Benkard, et al. 2003;

Hausman and Leonard 2005; Hausman and Leonard 2007; Reiss and Wolak 2007; Huang,

Rojas, and Bass 2008; Weinberg and Hosken 2013).

The proposed structural model is applicable to both types of demand models. First,

the theoretical model developed by d’Aspremont, Dos Santos Ferreira, and Gérard-Varet

(2007) assumes the weakly separable utility function, generating two demand functions: the

demand function of each product conditional on the sub-utility function hjt(pt, Qt) and the

unconditional demand function of the aggregate product Dt(pt, Y ). One approach to recover

these two demand functions is to estimate them separately, motivating the use of multi-stage

demand systems (Hausman, Leonard, and Zona 1994). In Chapter 2, I demonstrate how to

implement this approach.

Another approach is to estimate an unconditional demand system and recover the con-

ditional demand from it. Discrete choice demand models, such as random coe�cient logit,

are recognized as good tools for estimating demand for di�erentiated products since Berry,

Levinsohn, and Pakes (1995). However, it is not immediately clear whether these models are

consistent with the theoretical model developed by d’Aspremont, Dos Santos Ferreira, and

Gérard-Varet (2007), which assumes the existence of a representative consumer. In Chapter

3, I illustrate how to ensure such consistency using discrete/continuous choice models.
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1.3.2 Identification

In this section, I discuss how to identify conduct parameters ✓ = (◊1, ..., ◊J) from equation (1.8).

In the theoretical model, conduct parameters are defined as a ratio of Lagrange multipliers on

two constraints in firms’ profit maximization problems. This implies that these parameters

take di�erent values at di�erent equilibria. However, it is impossible to make an inference

if ◊j takes di�erent values at each observation. Therefore, the following assumption is imposed.

Assumption 1: A competitive parameter ◊j is constant across some observations for each firm j.

The assumption of constant conduct is common in the previous research.6 One way to

justify this assumption is to consider firms’ choices in two stages; In the first stage, firms

choose conduct ◊j, and in the second stage, the firms maximize their own profits under the

given conduct. That is, the first assumption is equivalent to saying that firms do not change

their conduct in the short run.

Since the estimation equations (1.8) are nonlinear in parameters, nonlinear regressions

need to be employed. Nonlinear least squares (NLLS) is a candidate for an estimator in this

context. However, it cannot provide consistent estimates due to the correlation between the

markup term (the second term in eq. (1.8)) and the unobserved cost shifter. This endogene-

ity inevitably leads to the inconsistency of estimates from NLLS. Therefore, instrumental

variables are required to identify parameters.

Assumption 2: There exists a set of instruments Zjt such that E[’jt|Zjt] = 0].

This assumption requires that the instrument Zjt is mean-independent of the unobserved
6Sullivan (2017) also introduces conduct parameters derived from Lagrange multipliers on firms’ maxi-

mization problems. He theoretically justifies the same conduct parameters among cross-sectional observations,
pooling relevant constraints. However, he still needs to assume that conduct parameters are constant across
time-series observations in the empirical application.
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cost shifter ’jt. Under this mean independent restriction, a generalized method of moments

(GMM) estimator generates consistent estimates (Hansen 1982) . A GMM estimator (✓̂, �̂) is

defined as follows.

(✓̂, �̂) = min
✓,�

’(✓,�)ÕZWZ Õ
’(✓,�)

where ’(✓,�)Õ = (’ Õ
1, ..., ’

Õ
J
), ’jt = pjt

A

1 ≠
◊(1 ≠ bjt) + (1 ≠ ◊j)bjt

◊j(1 ≠ bjt)÷jt + bjt(1 ≠ ◊j)‡jt

B

≠ !Õ
jt
�, W is a

weight matrix for the GMM estimator.

In estimations, valid instruments should exogenously shift the markup while keeping

the unobserved marginal costs constant. This shift in the markup is then reflected in the

equilibrium price. Di�erent types of conduct lead to distinct reactions of equilibrium prices to

changes in the exogenous instruments, enabling the identification of conduct parameters. In

the applications in Chapters 2 and 3, I follow the identification strategy o�ered by Bresnahan

(1982) and generalized by Berry and Haile (2014). However. finding appropriate instruments

is challenging in practice. Thus, the more parameters need to be estimated, the more

challenging the identification is. In this context, the proposed structural model has great

advantages for practical applications. I discuss them in the following section.

1.4 Comparison of the proposed model with the

previous approach

In this section, I discuss advantages of the proposed structural model compared with the

existing models.

1.4.1 Supply models in the previous research

My main innovation is related to the introduction of a new supply framework that allows for

estimation of conduct parameters and maintains empirical tractability even when the number
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of firms increases. To highlight the advantages of my proposed model, I first demonstrate

how to estimate firm conduct in the existing models and then discuss what is the di�culty in

implementing such models.

I start from the standard Bertrand price competition model (see for instance, Berry,

Levinsohn, and Pakes 1995).

There are F firms. Firm f produces a subset, �f , of the j = 1, ..., J di�erentiated products.

Here, I suppress the subscript of market t for notational simplicity. The profit maximization

problem of firm f is:

max
pf

ÿ

jœ�f

(pj ≠ cj)qj(pf ,p≠f , Y ) ≠ FCf

where pf is a vector of prices of products produced by firm f ; p≠f is a vector of prices of

products produced by the other firms; cj is the marginal cost of product j; FCf is the fixed

cost of firm f ; and qj is the demand function of product j.

Deriving the first-order conditions and stacking them in vector form, we have:

p ≠ c = ≠
S

U
A

ˆq(p, Y )
ˆp

B
T

T

V
≠1

q(p, Y )

where p, c, and q are J by 1 vectors of prices, marginal costs, and quantities of all products,

respectively. ˆq/ˆp is a J by J Jacobian matrix of the demand function. Subscript T denotes

the transpose of the matrix.

This is a vector of the equilibrium markups under Nash-Bertrand price competition.

Because only demand-side parameters need to be estimated, many papers rely on the

assumption of this benchmark conduct to estimate markups (Nevo 2000; Hausman and

Leonard 2007; Goeree 2008; Nakamura and Zerom 2010).

Nevo (1998) shows how to introduce conduct parameters concerning competition between

multiproduct firms. The marginal cost is specified as a linear function, c = “! + ✏, where
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“ is a marginal cost parameter, ! is a vector of observed cost shifters, and ⇣ is a vector of

unobserved cost shifters. Substituting this marginal cost function in the first-order conditions

and introducing a matrix of conduct parameters, we have:

p = “! ≠
S

U� ú
A

ˆq(p, Y )
ˆp

B
T

T

V
≠1

q(p, Y ) + ⇣ (1.9)

where ú denotes element-wise multiplication, and � is a J by J matrix of conduct parameters

defined by:

� =

S

WWWWWWWWWWU

◊11 ◊12 · · · ◊1J

◊21
. . . · · · ◊2J

... ... . . . ...

◊J1 ◊J2 · · · ◊JJ

T

XXXXXXXXXXV

The matrix � measures the degree of internalization for a pair of products when firms

solve their profit maximization problems. For instance, consider a situation where firm f

produces product j and firm g produces product k. If ◊jk takes a positive value, it indicates

that firm f internalizes a profit of product k when it chooses a price of product j. Within

this framework, di�erent models of competition can be nested depending on values of �; a

single-product Nash-Bertrand pricing model corresponds to an identity matrix, a multiproduct

Nash-Bertrand pricing model corresponds to a block diagonal matrix, and a collusive model

corresponds to a matrix of one. Therefore, this formulation allows for flexible estimation of

firm conduct.

Nevo (1998) also argues that a downside of this formulation is that there are J
2 numbers

of conduct parameters and thus it requires the same number of excluded instruments because

the markups are necessarily correlated with unobserved marginal costs through firms’ price

decisions. Since finding such a large number of instruments is hard in practice, he suggests

using testing-based approaches for a menu of pre-specified models, which is less demanding in

terms of the number of excluded instruments (Backus, Conlon, and Sinkinson 2021; Magnolfi
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and Sullivan 2022; Duarte et al. 2023).

Several papers estimate conduct parameters by imposing additional assumptions on a

matrix of � to reduce the dimension of the parameters, including Sudhir (2001), Ciliberto

and Williams (2014), Miller and Weinberg (2017), and Michel, Manuel Paz y Mino, and

Weiergraeber (2023).

First, these papers focus on firm-level conduct rather than product-level conduct by

specifying the same values of parameters for all products produced by the same firm. This

decreases the number of conduct parameters from J
2 to F

2. Second, they reduce the number

of firms that are subject to estimation. For instance, Sudhir (2001) focuses on competition

between two stores (firms), which makes the number of parameters 4 (= 2 ◊ 2). Kadiyali,

Sudhir, and Rao (2001) point out that, in many studies, the focus has been on the largest two

or three firms in an industry. Third, most of the papers set diagonal elements of the parameter

matrix to one (Ciliberto and Williams 2014; Miller and Weinberg 2017; Michel, Manuel Paz

y Mino, and Weiergraeber 2023). In this formulation, conduct parameters measure deviation

from the benchmark Bertrand pricing. This reduces the number of parameters from F
2 to

F (F ≠ 1).

In addition to these assumptions, Miller and Weinberg (2017) further assume symmetric

coordination between a subset of firms. Specifically, their matrix of conduct parameters � for

four firms (Anheuser-Busch InBev (ABI), MillerCoors, Modelo, and Heineken) in the beer

industry is specified as follows:

�Miller =

S

WWWWWWWWWWU

1 ◊ 0 0

◊ 1 0 0

0 0 1 0

0 0 0 1

T

XXXXXXXXXXV

As you can see from the matrix, they assume symmetric coordination between ABI and

MillerCoors and no coordination for any other combinations of the firms. This specification
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is based on their interest in the e�ects of the merger between Miller and Coors on the

coordination between ABI and MillerCoors. The number of conduct parameters is reduced

to 1.

The other papers also reduce the number of conduct parameters to 1 or 2. Michel, Manuel

Paz y Mino, and Weiergraeber (2023) estimate conduct parameters of firms in the US cereal

industry using two specifications. In the first specification, all conduct parameters take the

same value, resulting in a single conduct parameter. In the second specification, they assume

group-specific conduct for two groups: the largest two firms (Kellogg’s and General Mills)

and the other firms.7 Ciliberto and Williams (2014) take another approach, which specifies

conduct parameters as functions of exogenous variables of multi-market contact between a

pair of firms in the US airline industry. Under this functional assumption, the number of

conduct parameters is reduced to 2 in their application. This approach is useful when it is

possible to find exogenous variables that directly determine the conduct of firms in industries.

To illustrate the challenges of applying this framework, consider the case of five firms,

as examined in my application to the US corn seed industry in Chapter 3. To estimate the

conduct of the five firms, possible specifications of a matrix of � are:

�1 =

S

WWWWWWWWWWWWWWU

1 ◊12 ◊13 ◊14 ◊15

◊21 1 ◊23 ◊24 ◊25

◊31 ◊32 1 ◊34 ◊35

◊41 ◊42 ◊43 1 ◊45

◊51 ◊52 ◊53 ◊54 1

T

XXXXXXXXXXXXXXV

, �2 =

S

WWWWWWWWWWWWWWU

1 ◊12 ◊13 ◊14 ◊15

◊12 1 ◊23 ◊24 ◊25

◊13 ◊23 1 ◊34 ◊35

◊14 ◊24 ◊34 1 ◊45

◊15 ◊25 ◊35 ◊45 1

T

XXXXXXXXXXXXXXV

, �3 =

S

WWWWWWWWWWWWWWU

1 ◊1 ◊1 ◊1 ◊1

◊2 1 ◊2 ◊2 ◊2

◊3 ◊3 1 ◊3 ◊3

◊4 ◊4 ◊4 1 ◊4

◊5 ◊5 ◊5 ◊5 1

T

XXXXXXXXXXXXXXV

(1.10)

The first specification �1 is the most flexible, in which any pair of firms can interact

asymmetrically. The number of parameters is 20. The second specification �2 assumes
7Michel, Manuel Paz y Mino, and Weiergraeber (2023) add further flexibility to estimate separate

parameters for three periods: pre-merger, post-merger, and price war period. Their main objective is to
propose new instruments using promotion data, which can be constructed from the standard data set.
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symmetry of interactions between firms. The number of parameters is reduced to 10. The

third specification �3 assumes that each firm internalizes the profits of other firms by the

same degree, resulting in the five conduct parameters. All of these specifications can provide

valuable insights about firm conduct, but finding five or more excluded instruments is di�cult

in practice.

Furthermore, deriving estimation equations involves an inversion of a matrix of conduct

parameters, which makes the markup term a complicated function of derivatives of demand

functions and conduct parameters. To highlight this issue, I illustrate a simpler case in which

there are three single-product firms. With the same assumption of the third specification �3,

estimation equations are derived as:

p1 = !Õ
1� ≠ (q22q33 ≠ ◊2◊3q23q32)q1 + (◊1◊3q13q32 ≠ ◊1q12q33)q2 + (◊1◊2q12q23 ≠ ◊1q13q22)q3

D
+ ’1rt

p2 = !Õ
2� ≠ (◊2◊3q23q31 ≠ ◊2q21q33)q1 + (q11q33 ≠ ◊1◊3q13q31)q2 + (◊1◊2q13q21 ≠ ◊2q11q23)q3

D
+ ’2rt

p3 = !Õ
3� ≠ (◊2◊3q21q32 ≠ ◊3q22q31)q1 + (◊1◊3q12q31 ≠ ◊3q11q32)q2 + (q11q22 ≠ ◊1◊2q12q21)q3

D
+ ’3rt

where djk = ˆqj

ˆpk
and D is a denominator of the inverse matrix in equation (1.9) given by:

D = q11q22q33 + ◊1◊2◊3q12q23q31 + ◊1◊2◊3q13q21q32 ≠ ◊1◊3q13q22q31 ≠ ◊2◊3q11q23q32 ≠ ◊1◊2q12q33q21

These estimation equations have highly nonlinear markup terms. They are already

intractable even when the number of firms is three, and it becomes more complicated when

the number of firms increases. In the end, it is impractically di�cult to estimate conduct

parameters for five firms in the existing framework. This motivates me to introduce a new

supply framework that provides more tractable equations.
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1.4.2 Discussion

As a final remark of this chapter, I discuss advantages and disadvantages of the proposed

model compared with the previous approach.

First, the proposed model maintains its tractability even for a large number of firms. From

equation (1.8), the markup term takes a much simpler functional form; more importantly, it

is determined by only one conduct parameter ◊f . This structure ensures that the estimation

equations do not lose tractability even for a large number of firms. Furthermore, a single

excluded instrument can be enough to estimate all conduct parameters � = (◊1, ..., ◊F ) if the

data exhibits within-firm variations. In the following application, I interact one instrument

with firm-dummy variables to estimate five conduct parameters. This is in contrast with the

existing model, in which – in principle – it requires the same number of instruments as the

number of conduct parameters in more complicated estimation equations.

Second, the proposed model does not restrict the degree of collusion. Each value of the

conduct parameters determines the degree of collusion of each firm, which can be at any

level from monopolistic competition to collusion. For instance, some firms may be engaged in

imperfect collusion while others are engaged in price competition. Therefore, the model can

generate a rich set of equilibrium markups depending on firm-specific conduct parameters.

A disadvantage of the proposed model is that it cannot estimate the degree of coordination

of a pair of firms. The existing model allows for such an estimation, but only when the number

of parameters is small enough. Table 1.1 summarizes the number of conduct parameters

in both approaches. In the existing model, the number of parameters increases more than

the number of firms for asymmetric specifications (labeled (a) in the table) and symmetric

specifications (b). Thus, the estimation becomes infeasible very quickly as the number of

firms increases. On the other hand, firm-specific specifications (c) have the same number of

parameters in the existing model and the proposed model. However, the tractability is much

higher for the proposed model due to the structure of the estimation equations. Therefore,

while the existing model is suitable when researchers have an interest in the conduct of a
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small subset of firms, the proposed model serves to estimate firm-specific conduct for many

firms.

Table 1.1: Comparisons of number of conduct parameters

Number of conduct parameters
Number of firms Existing model based on Nevo (1998) Proposed model

(a) asymmetric (b) symmetric (c) firm-specific
1 1 1 1 1
2 2 1 2 2
3 6 3 3 3
4 12 6 4 4
5 20 10 5 5
... ... ... ... ...

n n(n ≠ 1) n(n ≠ 1)
2 n n

Note: In the existing model, column (a) refers to a model in which asymmetric coordination
is allowed for any pair of firms, column (b) refers to a model that assumes symmetry of a
matrix of conduct parameters, and column (c) refers to a model that assumes firm-specific
conduct parameters. See specifications given in equation (1.10). The proposed model refers
to the model developed in this paper.
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Appendix

1.A Derivations of elasticities of substitution

The intra-sectoral elasticity of substitution of product j for the composite good Q is defined

as the absolute value of the elasticity of the ratio qj/Q(q) with respect to the corresponding

price ratio pj/P (p). This elasticity of substitution measures substitutability between product

j and the composite product within the industry, without considering a change in the total

demand of the industry.

÷j © ≠ d(qj/Q)
d(pj/P (p))

----
qj=hj(p,Q)

pj/P (p)
qj/Q

j = 1, ..., J

By substituting qj = hj(p, Q) and di�erentiating (hj(p, Q)/Q) and (pj/P (p)) with respect

to pj, we have:

÷j = ≠

ˆhj(p, Q)
ˆpj

1
Q

pj

P (p)A
1

P (p) ≠ pj

P 2(p)
ˆP (p)

ˆpj

B
hj(p, Q)

Q

= ≠

ˆhj(p, Q)
ˆpj

pj

hj(p, Q)

1 ≠ pj

P (p)
ˆP (p)

ˆpj

= ≠

ˆ ln hj(p, Q)
ˆ ln pj

1 ≠ ˆ ln P (p)
ˆ ln pj

=
÷

H

jj

1 ≠ bj

j = 1, ..., J
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where ÷
H

jj
is the own price elasticity of demand hj(p, Q). Under homothetic preference,

ˆ ln Q(q)/ˆ ln qj = ˆ ln P (p)/ˆ ln pj = qjpj/PQ = bj. Here, bj is the budget share of product

j within the di�erentiated products industry.

‡j © ≠d(qj/Y )
dpj

----
Q(q)=D(P (p),Y )

pj

qj/Y
= ≠ˆ ln D(P (p), Y )

ˆ ln P
= ‡ j = 1, ..., J

By totally di�erentiating Q(q) = D(P (p), Y ) with respect to pj and qj
8 and substituting

dqj/dpj, we have:

‡j = ≠

ˆD(P (p), Y )
ˆP

ˆP (p)
ˆpj

ˆQ(q)
ˆqj

pj

qj

= ≠

ˆD(P (p), Y )
ˆP

P (p)
D(P (p), Y )

ˆP (p)
ˆpj

pj

P (p)
ˆQ(q)

ˆqj

qj

Q(q)

= ≠ˆ ln D(P (p), Y )
ˆ ln P

j = 1, ..., J

(1.11)

where the third equality holds because ˆ ln Q(q)/ˆ ln qj = ˆ ln P (p)/ˆ ln pj. This means that

the inter-sectoral elasticity of substitution is equal to the price elasticity of the demand for

the composite good with respect to the industry price index under homothetic preference.

1.B Derivations of equilibrium markup

The Lagrangian of the profit maximization problem is as follows:

L = (pj ≠ cj)qj + ⁄j

A

1 ≠ qj

hj(p, Q(q))

B

+ vj

A

1 ≠ Q(q)
D(P (p), Y )

B

j = 1, ..., J

8Since the relation between pj and qj are implicitly controlled by Q(q) = D(P (p), Y ), it is necessary to
totally di�erentiate it.
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where ⁄j and vj are the Lagrange multipliers for the market share and market size constraints,

respectively.

By di�erentiating the Lagrangian with respect to pj and qj, the first-order conditions are

derived.

ˆL
ˆpj

= qj + ⁄j

A
qj

h
2
j
(p, Q(q))

ˆhj(p, Q(q))
ˆpj

B

+ vj

A
Q(q)

D2(P (p), Y )
ˆD(P (p), Y )

ˆP

ˆP (p)
ˆpj

B

= 0

… qj = ⁄j

A

≠ 1
hj(p, Q(q)

ˆhj(p, Q(q)
ˆpj

B

+ vj

A

≠ 1
D(P (p), Y )

ˆD(P (p), Y )
ˆP

ˆP (p)
ˆpj

B

… qj = ⁄j

pj

A

≠ˆ ln hj(p, Q(q)
ˆ ln pj

B

+ vj

pj

A

≠ˆ ln D(P (p), Y )
ˆ ln P

ˆ ln P (p)
ˆ ln pj

B

… qj = ⁄j

pj

(1 ≠ bj)÷j + vj

pj

bj‡j

(1.12)

ˆL
ˆqj

= pj≠cj+⁄j

A

≠ 1
hj(p, Q(q)) + qj

h
2
j
(p, Q(q))

ˆhj(p, Q(q))
ˆQ

ˆQ(q))
ˆqj

B

+vj

A

≠ 1
D(P (p), Y )

ˆQ(q)
ˆqj

B

… pj ≠ cj = ⁄j

A
1
qj

≠ 1
qj

ˆhj(p, Q(q))
ˆQ

ˆQ(q)
ˆqj

B

+ vj

A
1

D(P (p), Y )
ˆQ(q)

ˆqj

B

… pj ≠ cj = ⁄j

qj

A

1 ≠ ˆ ln hj(p, Q(q))
ˆ ln Q

ˆ ln Q(q)
ˆ ln qj

B

+ vj

qj

A
ˆ ln Q(q)

ˆ ln qj

B

… pj ≠ cj = ⁄j

qj

A

1 ≠ ˆ ln Q(q)
ˆ ln qj

B

+ vj

qj

A
ˆ ln Q(q)

ˆ ln qj

B

… pj ≠ cj = ⁄j

qj

(1 ≠ bj) + vj

qj

bj

(1.13)

where the two constraints hold as equality at the equilibrium and ˆ ln h(·)/ˆ ln Q = 1 under

homothetic preference. Remember bj is the budget share of product j within the industry.
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Dividing both sides of equation (1.13) by equation (1.12) and multiplying (qj/pj) gives:

pj ≠ cj

pj

= ⁄j(1 ≠ bj) + vjbj

⁄j(1 ≠ bj)÷j + vjbj‡j

By dividing both the denominator and numerator of the right-hand side by (⁄j + vj) and

defining ◊j = ⁄j/(⁄j + vj), the equilibrium markup formula is derived as follows:

µj = pj ≠ cj

pj

= ◊j(1 ≠ bj) + (1 ≠ ◊j)bj

◊j(1 ≠ bj)÷j + (1 ≠ ◊j)bj‡j
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Chapter 2

Comparing Competitive Toughness to

Benchmark outcomes in Retail

Oligopoly Pricing: The Case of the

US Ground Co�ee Market

2.1 Introduction

d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) and d’Aspremont and Dos

Santos Ferreira (2016) discuss the Cournot-Bertrand dichotomy,1 and develop oligopolistic

models based on the shadow values of market share and market size constraints leading

to a measure they dub ‘competitive toughness’. The primary purpose of this chapter is to

empirically implement this oligopolistic framework for measuring firm conduct under product

di�erentiation in consumer goods.

The so-called New Empirical Industrial Organization (NEIO) (Bresnahan 1989) framework
1Literature on mixed Cournot-Bertrand (dubbed ‘di�erentiated oligopolies’) recognizes that not all firms

maintain the same strategic variable(s) at the same time in the same industry (Häckner 2000; Zanchettin
2006, Arya, Mittendorf, and Sappington 2008; Tremblay and Tremblay 2011).
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measures firm conduct for a homogeneous goods industry using a continuous conjectural

variations parameter in a range between perfect competition and collusion. While its use in

empirical industrial organization research has been quite popular (see surveys by Bresnahan

1989; Kadiyali, Sudhir, and Rao 2001; Sexton and Lavoie 2001), its reliance on a static

measure for what is conceptually a dynamic behavior has led to much resistance and declining

acceptance in the industrial organization field. A common alternative relies on non-nested

tests to select the best-fitted benchmark outcome from a menu of possible benchmark solutions

(i.e. Cournot, Stackelberg, Bertrand, Collusion) (See for instance, Bresnahan 1987; Gasmi,

La�ont, and Vuong 1992). Although this approach can be applicable to many industries, it

has an essential drawback ascribed to Bain (1968). He closely observes many industries in

the US and concludes that much of the observed market conduct lies somewhere between

competitive and collusive one. This implies that the benchmark models in the menu approach

may fail to capture the true conduct. My approach avoids most of these pitfalls. It estimates

firm conduct using a theoretically valid continuous conduct parameter (competitive toughness)

in a range between monopolistic competition and collusion using an empirically tractable

framework that is parsimonious in the parameter space.

I apply the proposed structural model to sales data to examine its performance. I use

U.S. retail scanner data provided by Information Resources, Inc (IRI) for the ground co�ee

category. The two largest national brands (Folgers and Maxwell House) have more than 50%

market share while there exist other brands with various market shares. Using pretests to

determine which brands belong to the dominant subgroup and which belong to the fringe, I

find that Folgers and Maxwell House are the only two dominant brands. As such, the main

focus of my empirical application is to evaluate the conduct of these two national brands.

To derive the required demand elasticities for estimating the developed structural model, I

employ a multistage demand system, as employed by Hausman, Leonard, and Zona (1994) and

Hausman, Pakes, and Rosston (1997). This approach exploits the fact that consumers’ budget

allocation can be decomposed into multiple stages under weakly separable preferences. Under
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this assumption, the number of products in each group becomes empirically manageable.

While substitution patterns of products in di�erent groups are restricted to some extent, the

substitution patterns in the same group remain flexible.

The rest of the chapter is organized as follows. The next section presents a brief discussion

of the theoretical model. Sections 2.3 and 2.4 contain a discussion of the constructed empirical

model, data, and identification strategies. The results and conclusions are presented in sections

2.5 and 2.6, respectively.

2.2 Theoretical framework

In this section, the oligopolistic model developed by d’Aspremont, Dos Santos Ferreira, and

Gérard-Varet (2007) and d’Aspremont and Dos Santos Ferreira (2016) is demonstrated as

a basic framework.2 Consider a single industry where J single-product firms produce J

di�erentiated products q = (q1, ..., qJ)Õ. All other products are aggregated as a numéraire

good z.

2.2.1 Utility maximization under separable preference

Assume a representative consumer with preferences characterized by a separable utility func-

tion U(q, z) = U(Q(q), z), where Q(q) is a sub-utility function. Because of the separability

assumption, J di�erentiated products q can be aggregated into one composite good Q. The

representative consumer maximizes his/her utility under the budget constraint pÕq + z Æ Y

where Y is income, p = (p1, ..., pJ)Õ is a vector of prices of q and the price of z is normalized

to one.

Since the utility function is weakly separable, utility maximization is solved in two stages.

First, the consumer allocates his/her income to the composite good Q and the numéraire z,

and then the consumer chooses the quantity demanded of qj for all j given the first-stage
2d’Aspremont and Dos Santos Ferreira (2016) extends the model by d’Aspremont, Dos Santos Ferreira,

and Gérard-Varet (2007) to allow for a non-homothetic utility function.
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decision. By solving the consumer’s optimization problem, we obtain the following demand

functions.

qj = hj(p, Q) j = 1, ..., J (2.1)

Q = D(p, Y ) (2.2)

where hj(p, Q) is the demand function for product j conditioned on Q. D(p, Y ) is the demand

function for the composite good Q and can be interpreted as the aggregate demand function

to the industry.

This oligopolistic model defines the intra-sectoral elasticity of substitution ÷j as

÷j © ≠ d ln(qj/Q)
d ln(ˆQ/ˆqj)

= ≠d ln(qj/Q)
d ln(pj/P ) j = 1, ..., J (2.3)

where P is the price index of the composite good Q. The second equality holds because of the

first-order condition of the consumer’s utility maximization problem. This elasticity measures

substitutability of product j against the composite good Q. That is, it provides information

about how each firm’s market share responds to price changes inside the industry.

In the first stage of the utility maximization problem, the representative consumer allocates

his/her budget between Q and z. Each firm’s pricing strategy impacts the size of the market,

which is governed by the inter-sectoral elasticity of substitution ‡j given by:

‡j © ≠d ln(qj/Y )
d ln pj

----
Q(q)=D(p,Y )

j = 1, ..., J (2.4)

This elasticity measures substitutability of product j against the numéraire taking into

account how the aggregate demand to the industry responds to a change of pj.
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2.2.2 Firms’ competition and Market equilibrium

Firm j chooses quantity and price of its product (qj, pj) to maximize its own profit given the

other firms’ decisions (x≠j,p≠j), where cj is a marginal cost of producing qj. Assuming the

existence of a pure-strategy Nash equilibrium, a market equilibrium is defined as (qú
,pú) =

(qú
1, ..., q

ú
J
, p

ú
1, ..., p

ú
J
) such that for all j,

(qú
j
, p

ú
j
) = max

qj ,pj
(pj ≠ cj)qj

subject to qj Æ hj((pj,p
ú
≠j

), Q(qj, q
ú
≠j

))

and Q(qj, q
ú
≠j

) Æ D(pj,p
ú
≠j

, Y )

(2.5)

where hj(p, Q) and D(p, Y ) are the demand functions defined by (2.1) and (2.2), respectively.

The first constraint (market share constraint) limits the market share of firm j while the

second constraint (market size constraint) bounds the market size of the industry. The

Lagrangian of firm j’s profit maximization is as follows:

Lj = (pj ≠ cj)qj + ⁄j(hj(p, Q) ≠ qj) + vj(D(p, Y ) ≠ Q(q)) j = 1, ..., J (2.6)

where ⁄j and vj are the Lagrange multipliers for the market share and market size constraints,

respectively. d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) and d’Aspremont

and Dos Santos Ferreira (2016) define competitive toughness for each firm as a “normalized

Lagrange Multiplier” given by:

◊j = ⁄j

⁄j + vj

j = 1, ..., J (2.7)

The concept of competitive toughness is best seen through the interpretation of each

Lagrange multiplier. In a highly competitive setting (i.e. with competitively tough firms),

the shadow value of the market size constraint is close to zero: the firm increases the supply

of a di�erentiated product without regard to the market impacts of increased supply of the
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composite good. A low value of vj might be due to a highly unconcentrated industry in

which firms cannot control the quantity of the composite good. This could also be the case

of concentrated industries with a significant threat of new entry or in an industry with an

aggressive culture that yields competitive outcomes. As discussed further below, competitive

toughness depends critically on the ability of industry participants to constrain the output of

the composite good. On the other hand, the market share constraint focuses on competition

among the firms in the industry. A low value of ⁄j would be consistent with a firm having a

product that is highly di�erentiated or a product with strong brand loyalty.

Each ◊j takes a value from zero to one by definition. When ◊j = 1 (or vj = 0), the market

size constraint is not binding. In other words, firm j maximizes profits as if it competes

considering only the impact of its pricing strategy on its market share. In this case, the

degree of competition of the firm is the highest: the firm is competitively tough. In other

words, this is the point where the firm experiences little gain in limiting output. On the other

hand, when ◊j = 0 (or ⁄j = 0), the market share constraint is not binding. Firm j competes

considering only the impact of its pricing on the market size, so the degree of competition of

firm j is at its lowest point. This would be consistent with joint profit maximization. The

vector of ✓ = (◊1, ..., ◊J) describes the degree of competition of the industry. Therefore, the

parameters of competitive toughness serve as conduct parameters.

d’Aspremont and Dos Santos Ferreira (2016) develop the relationship between the conduct

parameters (competitive toughness), the intra- and inter-sectoral elasticities of substitution,

and the Lerner Index of market power. By using the first order conditions of (2.5), the

equilibrium markup µ
ú
j

is derived:

µ
ú
j

©
p

ú
j

≠ cj

p
ú
j

=
◊

ú
j
(1 ≠ –

ú
j
—

ú
j
) + (1 ≠ ◊

ú
j
)–ú

j

◊
ú
j
(1 ≠ –

ú
j
—

ú
j
)÷ú

j
+ –

ú
j
(1 ≠ ◊

ú
j
)‡ú

j

= 1
w

ú
j
(◊ú

j
)÷ú

j
+ (1 ≠ w

ú
j
(◊ú

j
))‡ú

j

j = 1, ..., J

(2.8)
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where wj(◊j) = ◊j(1 ≠ –j—j)
◊j(1 ≠ –j—j) + (1 ≠ ◊j)–j

, –j = ˆ ln Q(q)
ˆ ln qj

, —j = ˆ ln hj(p, Q)
ˆ ln Q

.

From equation (2.8), an equilibrium markup is expressed as a weighted harmonic mean of

the reciprocal of the two elasticities of substitution defined in (2.3) and (2.4). By definition,

the weight wj(◊j) goes to zero (one) as ◊j goes to zero (one). Thus, the conduct parameters

◊
ú
j

determine the relative importance of the two elasticities of substitution for a level of the

markup µ
ú
j
. For instance, the markup is 1/‡

ú
j

when ◊
ú
j

= 0 (the degree of competition is

the lowest). This means only the substitutability between qj and z measured by ‡
ú
j

matters

in determining the markup, which corresponds to joint profit maximization. On the other

hand, when ◊
ú
j

= 1 (the degree of competition is the highest), the markup is 1/÷
ú
j
, so only

the substitutability between q measured by ÷
ú
j

matters for the markup. In this case, the

markup corresponds to the benchmark for free-entry monopolistic competition obtained

by Dixit and Stiglitz (1977). Thus, the parameter ◊
ú
j

is theoretically bound to any result

from monopolistic competition to collusion which includes benchmarks such as Bertrand and

Cournot competition. Table 2.1 contains a summary of common benchmarks for di�erent

values of ◊j

Table 2.1: Equilibrium markups

Markup
Di�erentiated (si < Œ) Homogeneous (÷j = Œ)

1 Collusion ◊
1
j

= 0 µ
1
i

= 1
‡

ú
j

-

2 Quantity competition ◊
2
j

= 1/(1 + ÷
ú
j
/‡

ú
j
) µ

2
j

=
(1 ≠ –

ú
j
)

÷
ú
j

+
–

ú
j

‡
ú
j

µ
2
j

=
–

ú
j

‡
ú
j

3 Price competition ◊
3
j

= 1/2 µ
3
j

= 1
÷

ú
j
(1 ≠ –

ú
j
) + ‡

ú
j
–

ú
j

µ
3
j

= 0

4 Monopolistic competition
◊

4
j

= 1 µ
4
j

= 1
÷

ú
j

µ
4
j

= 0(Perfect competition)
Note: To make comparisons of markups easier, the sub-utility function is assumed to be homothetic.

In the following discussion, I consider the situation where the intra-sectoral elasticity

is greater than the inter-sectoral elasticity, i.e., s
ú
j

> ‡
ú
j
. Since substitutability among the

di�erentiated products in the same industry is more likely higher than across industries, this

situation is expected to be more relevant to empirical applications. Then, the markups and

the degree of competition are ordered as follows. This ranking shows that the markup and
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the conduct parameter are negatively correlated.

Monopolistic Price Quantity Collusioncompetition competition competition
µ

4
j

< µ
3
j

< µ
2
j

< µ
1
j

◊
4
j

> ◊
3
j

> ◊
2
j

> ◊
1
j

I also compare markups under product di�erentiation and product homogeneity. As goods

become highly substitutable, I observe the standard conditions that quantity competition

is required to obtain economic profit and collusion cannot be sustained. However, when

products are highly di�erentiated, firms are not rewarded with increased market share for

lowering their prices, which is suggestive of a low degree of competition.

2.3 Empirical structural model

2.3.1 Demand model

On the demand side of the model, I use a multistage demand system.3 The primary motivation

for using a multistage demand system approach comes from the structure of the theoretical

model by d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007). Because this model

assumes a separable utility function, it is necessary to estimate demand functions for di�erent

levels of consumer decisions. The multistage demand system approach allows us to estimate

demand functions in each stage of the consumer’s utility maximization, which enables the

empirical analysis to be fully consistent with the model.

In the empirical analysis, I assume the industry to be divided into two segments: a

dominant and a fringe segment. The dominant segment includes di�erentiated products

produced by firms whose conduct is subject to estimation, while the fringe segment includes

other products in the same industry.4 This assumption is motivated by the need to exploit
3There are many applications of multistage demand systems (Chaudhuri, Goldberg, and Jia 2006; Rojas

2008; Weinberg and Hosken 2013).
4The words ”dominant” and ”fringe” come from the fact that this setting is similar to the dominant-firm

model under which the industry is characterized by a dominant firm and many fringe firms (Suslow 1986;
Salvo 2010).
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the structure of the oligopolistic model for identifying conduct parameters. From equation

(2.8), the markup in the model is expressed as a function of two elasticities of substitution.

As discussed later, changes in the number of products in the fringe segment exogenously shift

the inter-sectoral elasticity of substitution through changes in the competitive environment,

but they are expected to be independent of the marginal cost. This characteristic renders the

number of products in the fringe segment a suitable instrument for the conduct parameters.

In the following application, I utilize a three-stage demand system. The three budgeting

decisions correspond to: 1) allocation between the industry of interest and all other industries

represented by the numéraire (top level), 2) allocation between the dominant segment and

the fringe segment (middle level), 3) allocation within the dominant segment (bottom level).

The utility function of the representative consumer is given as follows:

U(q) = U(Q(q), z)

= U(Q(QD(qD), QF (qF )), z)

where qÕ = (qÕ
D

, qÕ
F

), qD is a vector of quantities of products in the dominant segment, qF is

a vector of quantities of products in the fringe segment (brands, goods, and products are used

interchangeably hereafter), and z is the numéraire. U is the utility function for all goods,

and (Q, QD, QF ) are the sub-utility functions corresponding to di�erent levels of consumer

decisions. Under this specification, consumer preference is assumed to be weakly separable

between (q) and (z) and is also weakly separable between (qD) and (qF ). Having separable

preferences restricts the substitution patterns of goods at di�erent levels.

The estimation equations for each of the three stages of the demand system are presented

as follows:

w
B

it
= –

B

i
+

ÿ

j

“
B

ij
ln p

B

jt
+ —

B

i
ln(Y B

t
/P

B

t
) + ‘

B

it
i = 1, ..., J, t = 1, ..., T (2.9)
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w
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ij
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ln Q
T

t
= –

T + “
T ln P

T

t
+ —

T ln Y
T

t
+ ‘

T

t
t = 1, ..., T (2.11)

where superscript letters denote the bottom, the middle and the top stages of the demand

system, respectively. Subscripts t denote markets and T is the number of markets.

Under the separability assumption, I specify demand for the bottom level (2.9), and the

middle level (2.10) using a linearized version of the almost ideal demand system (LA/AIDS)

proposed by Deaton and Muellbauer (1980). The LA/AIDS is known as a (locally) flexible

demand specification and has been successful for various demand estimations. The theoretical

restrictions and price and expenditure elasticities are well-known and thus are not presented

here. For the top-level demand, a log-log model (2.11) is used. The same specification is

used in Hausman, Leonard, and Zona (1994). They estimate a three-stage demand system

for beer and specify demand using a LA/AIDS and a log-log model.

2.3.2 Supply model

Estimating an empirical counterpart of the markup equation derived in (2.8) requires demand-

side estimates including two elasticities of substitutions. Although the conduct parameters

are immediately identified if marginal costs are observable, they are rarely observed since

observed accounting cost does not properly capture economic marginal costs (Fisher and

McGowan 1983). Estimating equations for marginal cost are specified as follows:

cit = !Õ
it
�i + ’it i = 1, ..., J, t = 1, ..., T (2.12)
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where !it is a vector of observed cost shifters, �i is a vector of estimated parameters and ’it

is the unobserved cost shifter.

Rearranging the first-order condition of each firm and substituting the marginal cost

function (2.12), estimation equations for the supply model are derived.5

pit = !Õ
it
�i + ◊i(1 ≠ –it—it) + (1 ≠ ◊i)–it

◊i(1 ≠ –it—it)sit + –it(1 ≠ ◊i)‡it

pit + ’it i = 1, ..., n, t = 1, ..., T (2.13)

In equation (2.13), estimated parameters are ◊i and �i while –it, —it, sit and ‡it are inputs

from the demand-side estimation. Since the conduct parameters take value from zero to one,

I transform them to impose this theoretical restriction:

◊i = 1
1 + exp(◊̄i)

i = 1, ..., J (2.14)

2.4 Data and Estimation

2.4.1 IRI retail scanner data

The main data source is retail ca�einated ground co�ee scanner data provided by Information

Resources, Inc (IRI) available for academic studies (see Bronnenberg, Kruger, and Mela

(2008) for further details). The data includes revenue and unit sales of co�ee products in

48 demographic market areas (DMA) throughout the US from 2001-2004. Each DMA is a

metropolitan region that includes major cities and all the adjacent counties and townships.

The data is identified by its universal product code (UPC), retail store, and week. The

ca�einated ground co�ee category covers approximately 80% revenue share in the co�ee

category of the data. Co�ee has been a focus of previous demand analysis (Draganska,

Klapper, and Villas-Boas 2010; Nakamura and Zerom 2010; Bonnet et al. 2013). Narrowing
5Estimating the marginal cost from firms’ first order conditions is the standard practice in the empirical

industrial organization field since Rosse (1970).
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the market category to ca�einated ground co�ee allows us to simplify the cost side of the

analysis. For example, instant co�ee, whereas it consists of only a small share of the market,

uses a very di�erent production process that is more capital intensive and costly (Sutton

1991).6

The quantities of co�ee are transformed into 16-ounce equivalent units. Prices are inferred

from revenue and quantity sales. I aggregate the data from UPC level to brand level.7 I also

aggregate the data to month-DMA level. This aggregation helps to reduce the computational

burden caused by the large number of observations. The data used in the estimations is

at the product-month level in 48 DMAs from 2001 to 2004. Four products are used in the

estimation: Folgers, Maxwell House, Starbucks, and Private label. These products have the

largest national revenue shares in the dataset, while each of the other ca�einated ground

co�ee products has less than 3% national revenue share. Table 2.2 shows prices and revenue

shares of these products. The number of observations is 2, 304 for each product.

Table 2.2: Prices and revenue shares

Prices ($ per 16 ounce) Revenue shares (%)
Brand Mean Std Min Max Mean Std Min Max

1 Folgers 2.55 0.33 1.46 4.32 32.04 11.41 8.24 71.07
2 Maxwell House 2.63 0.46 1.47 4.82 23.76 13.67 1.03 69.94
3 Private Label 2.38 0.57 1.41 5.26 9.27 4.83 0.61 31.37
4 Starbucks 9.84 0.71 6.20 12.43 8.70 3.84 0.36 25.05
5 All others 3.83 0.79 1.93 7.34 26.23 13.38 4.83 73.44

Notes: The table provides summary statistics of prices and revenue shares over 2001-2004.

The Stone price index is calculated as the fixed weight average of each product as it is

considered superior to the original Stone index used by Deaton and Muellbauer (1980) (see

Moschini (1995)). The per capita expenditure for each level is calculated by dividing the
6Note also that Nelson, Siegfried, and Howell (1992) and Nakamura and Zerom (2010) focus on only

ground co�ee in their analysis.
7For instance, there are numerous products within the Folgers brand at UPC levels. They di�er in flavors,

packaging, and sizes.
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expenditure by population of each market. The data on population is collected from the US

Census Bureau.

2.4.2 Cost data

The monthly import co�ee prices are obtained by the International Co�ee Organization for the

varieties Colombian mild Arabica, other mild Arabica, Brazilian and other natural Arabicas,

and Robusta. Following Nakamura and Zerom (2010), I construct a weighted average price

of these four co�ee varieties based on the US import quantity share obtained from Lewin,

Giovannucci, and Varangis (2004). Wage data are Monthly Earning Extracts obtained from

the US Current Population Survey provided by the National Bureau of Economic Research.

Since this is an average county-level wage paid in the supermarket sector, I calculate a weighted

average wage of each DMA using wages of all countries that compose the DMA. Following

Miller and Weinberg (2017), I also construct a distance variable to capture transportation

costs. First, I calculate driving miles from the roasting plant of Folgers and Maxwell House

to the center of each city using Google map. Folgers is produced mainly in a plant in New

Orleans and Maxwell House is produced in plants located in Jacksonville, Houston, and San

Leandro (Leibtag et al. 2007). I assume that Maxwell House co�ee is transported to each

city from the nearest plant. Then, I multiply this driving distance (in miles) times diesel fuel

prices which are obtained from the Energy Information Agency of the Department of Energy.

The fuel prices have a monthly variation at the national level.

2.4.3 Estimation

The estimation is carried out in two sequential stages. First, I estimate the demand-side

equations (2.9), (2.10) and (2.11) separately, using seemingly unrelated regressions (SUR) and

generalized method of moments (GMM). Consistency is ensured regardless of the equations

being estimated jointly or separately, although the joint estimation can be more e�cient

because of the possible correlations of the error terms in each equation. I conduct GMM
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estimation with the standard two-steps procedure, setting a weight matrix W = (Z Õ
Z)≠1 in

the first step where Z is a set of instruments and the optimal weight matrix in the second

step. I proceed then to the supply-side estimation; the results of the demand model are used

to calculate –it, —it, ÷it and ‡it, substituting these values into (2.13).

Since the supply-side estimation equations are nonlinear in the parameter space, a

nonlinear regression technique is required. A possible choice of an estimator is nonlinear

least squares (NLLS). However, since the markup term is a function of price, it is necessarily

correlated with unobserved cost shifters, and the endogeneity of price causes inconsistency in

NLLS estimates. Therefore, I use GMM estimator. A GMM estimator (✓̂, �̂) of the conduct

parameters and marginal cost parameters are defined as follows:

(✓̂, �̂) = min
✓,�

’(✓,�)ÕZWZ Õ
’(✓,�) (2.15)

where ’(✓,�)Õ = (’11, ..., ’1T , ’21, ..., ’nT ), ’it = pit

A

1 ≠ ◊i(1 ≠ –it—it) + (1 ≠ ◊i)–it

◊i(1 ≠ –it—it)÷it + –it(1 ≠ ◊i)‡it

B

≠

!Õ
it
�i, Z is a set of instruments and W is a weight matrix obtained by the same procedure

used for the demand-side estimations.

2.4.4 Identification

2.4.4.1 Demand-side identification

A major concern in demand estimation is that prices may be endogenous due to the presence

of unobserved factors a�ecting both demand and manufacturers’ pricing decisions.8 This is

the standard simultaneity bias problem as discussed in Berry, Levinsohn, and Pakes (1995).

To deal with this problem, I evaluate two di�erent types of instruments. The first instrument

is the so-called Hausman instrument. Hausman, Leonard, and Zona (1994) propose that the

average product price in other DMAs can serve as an instrument for the price in one DMA.

These instruments can be constructed as long as the data has a panel structure, which is the
8Endogeneity of expenditure is not addressed in this analysis due to data limitations. Hausman, Leonard,

and Zona (1994) do not deal with this endogeneity in a similar setting.
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case for the data used in this study. Many papers use the Hausman instruments because of

their ready availability in panel data (Pinkse and Slade 2004; Rojas 2008; Nakamura and

Zerom 2010; Weinberg and Hosken 2013, etc.). The average prices in the other DMAs are

correlated with the price to be instrumented through a common cost factor a�ecting prices

across all DMAs. In the case of ground co�ee, the import co�ee bean price and much of the

transport and processing costs are common cost factors for products sold in all DMAs. The

assumption justifying the validity of Hausman-type instruments is that city-specific demand

shocks must be independent across cities after controlling for product-city-fixed e�ects. This

assumption is violated in the presence of regional or national demand shocks. For instance, in

the presence of a national brand ad campaign, demand shocks across DMAs can be correlated.

Because of concerns regarding a potential violation of the identification assumption of the

Hausman instruments, I construct another instrument by using the import price of co�ee,

since it constitutes a major cost factor. I dub this approach the cost instrument. For cost

instruments to be valid, unobserved demand shocks must be independent of the import co�ee

prices. This assumption is violated if common trends in US co�ee consumption are major

determinants of the import co�ee price. However, this is unlikely to be the case because the

import co�ee price is mainly driven by weather conditions in major co�ee producing countries.

Since changes in the import co�ee price are transmitted to the retail co�ee price with some

lag (Nakamura and Zerom 2010), it is necessary to determine the number of lagged values to

be used as instruments. Thus, I estimate the model using di�erent lags of co�ee import prices

as instruments and select the lag structure that produces significant first-stage F-statistics.

2.4.4.2 Supply-side identification

The main di�culty in identifying the conduct parameters is that the endogeneity of markups

arises due to the presence of unobserved factors a�ecting firms’ decisions on both markups

and prices. To correct this endogeneity bias, I follow a suggestion presented by Berry and

Haile (2014). They point out that variations in market environments, such as the number of
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competing firms and the set of characteristics of competing goods, can be used as instruments

for conduct parameters because these variables shift markups independently of costs. My

identification strategy is in line with this idea as I use the number of products in the

fringe segment as an instrument for conduct parameters. This instrument is expected to

shift markups exogeneously because it a�ects the inter-sectoral elasticity of substitution

independently of marginal costs. In other words, if the number of products in the fringe

segment increases, the substitutability between the dominant segment and the fringe segment

increases due to the increased variety of co�ee brands available in the industry. The

identification assumption is that unobserved cost shifters for products in the dominant

segment are independent of the number of products in the fringe segment. This is expected

to hold because the marginal costs of Folgers and Maxwell House are unlikely to be correlated

with the number of other products in the co�ee industry.

Quarterly dummies are also included in the instrument set to exploit possible seasonal

demand variations. The production cost of co�ee is unlikely to have seasonal variations after

controlling for imported co�ee price variation.

2.4.5 Tests on weakly separable preferences

As a pretest, I determine which products best belong to the dominant segment. Based on

Moschini, Moro, and Green (1994), a null hypothesis for testing a weakly separable preference

is as follows:

H0 : ÷ikEjEm ≠ ÷jmEiEk = 0 for all (i, j) œ Ig and (m, k) œ Is, for all g ”= s (2.16)

where ÷ik is the Allen-Uzawa elasticity of substitution between product i and k, Ei is the

expenditure elasticity of product i. All products (q1, ..., qJ) are assigned to one of the mutually

exclusive groups (I1, ..., IN) under weakly separable preferences. I conduct Wald tests on
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four preference structures: (1) Folgers and Maxwell House are weakly separable from the

others, (2) Folgers, Maxwell House, and Private Label are weakly separable from the others,

(3) Folgers, Maxwell House, and Starbucks are weakly separable from the others, (4) Folgers,

Maxwell House, Private Label and Starbucks are weakly separable from the others.

To conduct Wald tests on these weakly separable preferences, I estimate the LA/AIDS

with five products: 1)Folgers, 2)Maxwell House, 3)Private Label, 4)Starbucks, and 5)All

others by SUR and GMM. All regressions include product, DMA, and time fixed e�ects.

In order to evaluate my instruments, I estimate the first-stage F-statistics for each of four

endogenous variables (ln p1/p5, ln p2/p5, ln p3/p5, ln p4/p5). Staiger and Stock (1997) propose

a rule of thumb that an F-statistic greater than 10 suggests that instruments are not weak.

The F-statistics from the first-stage model estimations using the Hausman instruments

are greater than 10 for all of the four endogenous variables. Therefore, I conclude that

the Hausman instruments are not weak. However, some of the F-statistics from the cost

instruments are smaller than 10 for these four endogenous variables regardless of choices of

lagged values of import co�ee prices.9 Thus, I conduct GMM estimation using the Hausman

instruments10, and then calculate test statistics corresponding to null hypotheses implied by

the four separable preferences according to equation (2.16).

The results of the separability tests are shown in table 2.3. These findings show that the

preference structures except for (1) are all rejected at the 10% level. This shows that Folgers

and Maxwell House are likely to be separable from the other products. As a result, I include

Folgers and Maxwell House in the dominant segment while all other products are included in

the fringe segment. Under this preference structure, the representative consumer first decides

their expenditure on co�ee (top level), then chooses between the dominant and fringe (middle

level), and then decides on their expenditure between Folgers and Maxwell House (bottom
9I use di�erent combinations of lagged values of import co�ee prices for instruments, but I can not find

the instrument whose first-stage F-statistics are greater than 10 for all of the four endogenous variables.
10The results of the LA/AIDS estimation by SUR and GMM show that the own-price elasticities are all

negative and statistically significant at the 1 % level. Also, most of the cross-price elasticities are positive
and statistically significant at the 5 % level. It is noteworthy that Folgers and Maxwell House are closer
substitutes than the other products.
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level). The prices and market shares at these three levels are reported in table 2.4.

Table 2.3: Wald tests on weakly separable preference

Preference structure SUR GMM Critical Value
at the 10% level

(1) (F, M), PL, SB, OH 2.11 5.41 6.25
(0.55) (0.14)

(2) (F, M, PL), SB, OH 21.96*** 8.48* 7.78
(0.00) (0.08)

(3) (F, M, SB), PL, OH 26.92*** 13.92*** 7.78
(0.00) (0.01)

(4) (F, M, PL, SB), OH 13.41*** 8.81** 6.25
(0.00) (0.03)

Notes: The column named preference structure shows a testing weakly
separable preference. Products in the parentheses are weakly separable
from the other products: F=Folgers, M=Maxwell House, PL=Private
Label, SB=Starbucks, OH=All others. We use the Hausman instruments
for GMM estimation. Wald statistics are distributed chi-square with k
degrees of freedom where k is the number of restrictions. The degrees of
freedom are 3 for (1) and (4), and 4 for (2) and (3). Figures in parenthesis
are P-values for corresponding Wald test. Statistical significance at the
10%, 5% and 1% is denoted by * , ** and *** respectively.

Table 2.4: Prices and market shares of three stage demands

Prices ($ per 16 ounce) Shares (% in value)
brand Mean Std Min Max Mean Std Min Max

Bottom level
1 Folgers 2.55 0.33 1.46 4.32 59.17 19.22 10.80 97.82
2 Maxwell House 2.63 0.46 1.47 4.82 40.83 19.22 2.18 89.20

Middle level
1 Dominant segment 2.56 0.33 1.67 4.31 55.80 13.62 19.94 83.70
2 Fringe segment 3.70 0.72 2.09 6.22 44.20 13.62 16.30 80.06

Top level
All co�ee 3.00 0.44 2.01 4.93 - - - -
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2.5 Estimation Results

2.5.1 Demand estimates

The results of LA/AIDS estimation of the bottom-level demand for Folgers and Maxwell

House are presented in table 2.5. Since there are only two products, this is a single equation

estimation: a share equation of Folgers is estimated by OLS and GMM. All regressions include

product, DMA, and time fixed e�ects. As the first-stage F-Statistics of cost instruments for

GMM estimations are all greater than 10, weak instrument problems are not at issue here.

Therefore, I proceed with the cost instruments. The results show that the estimate of “
B

11 is

negative and statistically significant at the 1 % level. Because absolute values of “
B

11 obtained

using GMM are greater than that of OLS, my instruments are likely to remove an upward

bias caused by the simultaneity problem. In the following, I use the estimates from GMM

(3). Next, I estimate the LA/AIDS of the middle level: the dominant segment and fringe

segment. A share equation of the dominant segment is estimated by OLS and GMM. I follow

the same procedure as the bottom-level estimation. The results are reported in table 2.6.

Since the results of the middle-level demand are basically the same as the bottom level, I

do not repeat them here. I use the estimates from GMM (1) for the following estimations.

Finally, the log-log model for the top-level demand is estimated by OLS and GMM. I allow

for the price coe�cients to vary by quarter in order to add flexibility on price elasticities.

Due to the seasonality of co�ee demand, consumers’ price responses to total co�ee demand

may be di�erent by quarter. Since the cost instruments are weak, the instruments used in

the GMM estimation are products of the Hausman instrument and quarter dummy variables.

Table 2.7 shows the estimated elasticities obtained from the estimates of the three-stage

demand system. First, all of the own-price elasticities are negative and statistically significant

at the 1 % level. Also, the GMM estimation generates more elastic price responses than

the OLS estimation. Next, the results of the cross-price elasticities show that Folgers and

Maxwell House are close substitutes with each other, and the dominant segment and the
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fringe segment are also substitutes. The top-level demand estimates show the own price

elasticity of total co�ee demand varying from ≠1.493 to ≠1.311 for OLS and from ≠1.900 to

≠1.527 for GMM.

Finally, I calculate two elasticities of substitution using these demand estimates. The

results are shown in the bottom part of table 2.7. The estimates of intra-sectoral elasticity

of substitution which measures substitutability within the dominant segment (Folgers and

Maxwell House) are 2.168, 2.274 for OLS and 2.942, 3.145 for GMM. The estimates of inter-

sectoral elasticity of substitution which measures substitutability against the products outside

the dominant segment are 1.675 for OLS and 2.163 for GMM. These estimates show that

the intra-sectoral elasticity of substitution is greater than the inter-sectoral one, which is an

expected result.

Table 2.5: Estimated parameters of LA/AIDS for the bottom level demand

Parameter OLS GMM
(1) (2) (3)

Own price “
B

11 -0.303 -0.564 -0.439 -0.507
(0.009) (0.076) (0.074) (0.062)

Expenditure —
B

1 -0.012 -0.017 -0.015 -0.017
(0.004) (0.006) (0.005) (0.005)

Instruments - Ct≠1, Ct≠4 Ct≠1, Ct≠6 Ct≠1, Ct≠4, Ct≠6
1st stage F-statistic - 14.79 12.37 12.56

Notes: The table shows the results of LA/AIDS estimation for the bottom level
demand: 1=Folgers, 2=Maxwell House. A share equation of Folgers is estimated
under the theoretical constraints: “

B
11 = “

B
22 = ≠“

B
12 = ≠“

B
21 and —

B
1 + —

B
2 = 0. All

estimations include product, DMA, and time fixed e�ects. Figures in parenthesis are
robust standard errors.
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Table 2.6: Estimated parameters of LA/AIDS for the middle level demand

Parameter OLS GMM
(1) (2)

Own price “
M

DD
-0.182 -0.372 -0.238
(0.008) (0.067) (0.043)

Expenditure —
M

D
0.043 0.023 0.037

(0.004) (0.008) (0.006)

Instruments - Ct≠2, Ct≠3 Ct,Ct≠2, Ct≠3
1st stage F-statistic - 18.58 22.92

Notes: The table shows the results of LA/AIDS estimation for the middle
level demand: Dominant segment and Fringe segment. A share equation
of the dominant segment is estimated under the theoretical constraints:
“

M

DD
= “

M

F F
= ≠“

M

DF
= ≠“

M

F D
and —

M

D
+ —

M

F
= 0. All estimations include

product, DMA and time fixed e�ects. Figures in parenthesis are robust
standard errors.

2.5.2 Supply estimates

Using the demand-side estimates, the conduct parameters can now be estimated. I estimate the

supply-side model using GMM under di�erent lagged cost structures and inclusion/exclusion

of the distance variable. Since the supply model is estimated conditional on the demand

estimates, standard errors are calculated with the moment conditions from the supply

estimation stacked with the moment conditions from the demand estimation. This emulates

the calculation of standard errors as if supply and demand were estimated jointly. The results

from each of the three estimations are presented in table 2.8. The sum of the lagged cost

coe�cients can be interpreted as the cost-pass through rate (Nakamura and Zerom 2010).

The coe�cient on wage is positive for all regressions, as expected.

The estimates of the conduct parameters for Folgers and Maxwell House are reported

at the top of table 2.8. Folgers’ conduct parameter is estimated in a tight range between

0.12 and 0.14. Maxwell House’s conduct parameters are in an equally tight range of 0.02 to

0.04. These results indicate that the estimated conduct parameters are not sensitive to the

cost structure chosen. Given the theoretical restriction that the conduct parameters must

vary between zero and one, I test for Bertrand (◊i = 0.5), using a two-tailed t-test, and for
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Table 2.7: Estimated elasticities from the three stage demand estimates

OLS GMM
Bottom (1:Folgers and 2:Maxwell House)
E1 0.979 (0.008) 0.969 (0.009)
E2 1.026 (0.010) 1.037 (0.012)
e11 -1.540 (0.016) -1.908 (0.111)
e12 0.562 (0.016) 0.939 (0.113)
e21 0.659 (0.020) 1.107 (0.136)
e22 -1.685 (0.019) -2.142 (0.138)

Middle (Dominant and Fringe)
ED 1.074 (0.008) 1.040 (0.014)
EF 0.895 (0.011) 0.943 (0.020)
eDD -1.366 (0.013) -1.661 (0.105)
eDF 0.293 (0.013) 0.621 (0.117)
eF D 0.522 (0.019) 0.941 (0.150)
eF F -1.361 (0.023) -1.863 (0.176)

Top (All co�ee)
“

T (quarter 1) -1.311 (0.091) -1.527 (0.184)
“

T (quarter 2) -1.328 (0.089) -1.574 (0.184)
“

T (quarter 3) -1.488 (0.084) -1.844 (0.176)
“

T (quarter 4) -1.493 (0.079) -1.900 (0.164)

Elasticity of substitutions (1:Folgers and 2:Maxwell House)
Intra-sectoral
s1 2.168 (0.039) 2.942 (0.236)
s2 2.274 (0.039) 3.145 (0.264)

Inter-sectoral
‡ 1.675 (0.056) 2.163 (0.148)

Notes: The GMM estimate for the bottom is GMM (3) in table 2.5 and the GMM estimate for
the middle is GMM (1) in table 2.6. Ei is the expenditure elasticity of product i. eij is the
Marshallian price elasticities (eij = ˆ ln di/ˆ ln pj). All elasticities are evaluated at the median
of the sample.

collusion (◊i = 0) and monopolistic competition (◊i = 1) using one-tailed t-tests. Other than

Folgers in the GMM (3) estimates case, all conduct parameters are not statistically di�erent

than 0 (collusion) at the 95% level. All conduct parameters are statistically di�erent from

Bertrand price competition (◊i = 0.5) using a 2-tailed test, and monopolistic competition
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(◊i = 1) using a one-tailed test. These results suggest that Folgers and Maxwell House

operated in a collusive pricing structure.

Finally, I compare the markups from the estimated conduct parameters to three benchmark

outcomes obtained by setting ◊i = 0 for collusion, ◊i = 0.5 for Bertrand, and ◊i = 1 for

monopolistic competition (see table 2.9). The markup under the Bertrand price competition

is around 37%, which is close to the estimates by Nakamura and Zerom (2010). Their median

markups are 36.8% over the period 2000-2004. The markups calculated from the conduct

parameters are close to the markups under collusion. This is expected since the conduct

parameters take values that are close to zero. These results imply that assuming Bertrand

price competition would lead to an underestimation of markups in cases, like this analysis,

where the true conduct is closer to collusion than Bertrand.

2.6 Conclusion

In this chapter, I develop the empirical procedures to implement a new approach for measuring

firm conduct. I construct an empirical structural model using the oligopolistic model proposed

by d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) and d’Aspremont and Dos

Santos Ferreira (2016) and apply the model to the U.S. food market for ca�einated ground

co�ee. One particular finding from this study is that the degrees of collusion for the two

largest brands are understated in a model that imposes the restriction of Bertrand pricing.

The results suggest that firms may be able to deviate from such a base strategy to improve

overall margins, depending on the competitive environment in the industry.

Early scientific developments in the empirical assessment of market power began with crude

reduced-form approaches in the structure-conduct-performance paradigm. Since the 1970s,

methodological advancements and refinements constructed on game theoretic foundations

have met considerable and growing resistance in at least the past few decades, due primarily to

theoretical inconsistencies, dimensionality problems, and endogeneity concerns. The propsed
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model overcomes some of the hurdles in the existing models to analyze non-competitive

conduct. By viewing the firm as operating through pairs of price-quantity outcomes, the

method sidesteps the problems of theoretical inconsistency associated with the conjectural

variations approach. Also, the proposed model is empirically tractable since it is parsimonious

in the parameter space, which provides a great advantage for identifying firm conduct in

applications. This application demonstrates the applicability of my proposed framework in

assessing competition in retail pricing using the standard scanner datasets.
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Table 2.8: Estimates of firm conduct and marginal cost parameters

GMM
(1) (2) (3)

Folgers Maxwell House Folgers Maxwell House Folgers Maxwell House
◊i 0.115 0.030 0.123 0.037 0.139 0.018

(0.074) (0.037) (0.081) (0.047) (0.074) (0.020)

q
k Ct≠k 0.321 0.771 0.467 0.522 0.420 0.680

Ct≠1 -0.249 0.321 -0.179 0.216 -0.311 0.525
(0.097) (0.178) (0.098) (0.180) (0.130) (0.227)

Ct≠2 - - - - 0.053 -0.531
(0.156) (0.232)

Ct≠3 - - - - 0.331 0.316
(0.158) (0.234)

Ct≠4 0.585 0.978 0.659 0.867 0.154 0.694
(0.113) (0.181) (0.113) (0.191) (0.166) (0.237)

Ct≠5 - - - - 0.474 0.336
(0.155) (0.240)

Ct≠6 -0.015 -0.528 -0.013 -0.560 -0.281 -0.660
(0.084) (0.141) (0.084) (0.142) (0.114) (0.188)

wage 0.071 0.016 0.086 0.023 0.071 0.020
(0.009) (0.018) (0.009) (0.020) (0.009) (0.015)

distance - - -0.061 0.200 - -
(0.011) (0.025)

Notes: The table shows the results of the supply-side estimates. All estimations include region-year
fixed e�ects. Figures in parenthesis are robust standard errors.
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Table 2.9: Median markups estimated from the competi-
tive toughness parameters

Folgers Maxwell House
GMM(1) 44.22 44.82
GMM(2) 44.11 44.76
GMM(3) 43.93 45.05

Collusion 46.05 46.05
Bertrand price competition 37.27 37.14
Monopolistic competition 32.23 30.05

Notes: Markup is defined as (p ≠ mc)/p ◊ 100.
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Chapter 3

Detecting Collusion in

High-Dimensional Oligopoly Models:

The Case of the US Corn Seed

Industry

3.1 Introduction

Whether firms compete or collude has significant implications for market outcomes. A lack of

competition allows firms to set higher prices that extract excess surplus from consumers. The

recent literature documents a growing prevalence of highly concentrated industries and rising

markups (De Loecker, Eeckhout, and Unger 2020; Döpper et al. 2022). These trends raise

concerns about the impacts of growing market power on total welfare and its distribution

between consumers and firms. However, such high markups are not necessarily caused by

anti-competitive conduct such as implicit collusion because they can be attributed to several

other factors, including changes in demand and cost. Therefore, empirically identifying

firm conduct has been the central issue in the field of industrial organization for obtaining
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policy-relevant implications in many industries.

Seminal work by Bresnahan (1982) shows that exogenous rotation of demand can be used

to distinguish di�erent oligopoly models with a homogeneous good. Motivated by his finding,

many papers have estimated firm conduct parameters to measure the degree of competition

in numerous markets (Bresnahan 1989). Nevo (1998) shows how to extend such models

to accommodate product di�erentiation. He argues that it is possible to identify conduct

parameters of multiproduct firms in principle, but it is infeasible due to the requirement

of a large number of excluded instruments for a large number of parameters. This curse of

dimensionality problem forces researchers to rely on arbitrary assumptions about how firms

compete with each other, which may lead to misleading evaluations of market power and

policy recommendations.

In this chapter, I develop a novel structural model of demand and supply that allows for

estimating the degree of collusion of multiproduct firms in a di�erentiated products market. A

main advantage of the proposed model is that it is empirically tractable even when we employ

a high-dimensional oligopoly model in which many firms strategically interact. Importantly,

my model retains the flexibility that allows each firm to operate at any level of competition

from collusion to monopolistic competition.

On the supply side of the model, I use an oligopolistic model developed by d’Aspremont,

Dos Santos Ferreira, and Gérard-Varet (2007) to construct an empirical framework to estimate

conduct parameters. In their oligopolistic model, each firm maximizes its own profit given

prices and quantities of other firms under two demand constraints: market share constraint

and market size constraint. The conduct of each firm is measured by a relative attitude

toward these two constraints and di�erent conduct leads to di�erent degrees of collusion.

Intuitively, when firms compete aggressively with each other, they put more weight on the

market share constraint and tend to obtain higher market shares by lowering prices. By

contrast, when firms collude with each other, they put more weight on the market size

constraint and tend to sustain higher prices by coordinating and controlling the total supply
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of the market. D’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) show that this

dichotomous characterization of competition accommodates varying degrees of competition,

which nest the benchmark models such as collusion, monopolistic competition, Nash-Bertrand

price, and Cournot quantity competition. While their analysis is purely theoretical with an

assumption of single-product firms, I incorporate it into an empirical structural model with

an extension to multiproduct firms.1 This formulation significantly reduces the dimension

of conduct parameters because the degree of collusion is measured by a firm-specific single

parameter. The estimation equations constructed from firms’ first-order conditions are

empirically tractable owing to a reduced number of parameters and simpler functional forms.2

On the demand side of the model, I use a discrete/continuous logit demand model in which

consumers choose one of the products and then choose a purchase amount under their budget

constraint (Hanemann 1984). Following Björnerstedt and Verboven (2016), I incorporate

random coe�cients related to consumer heterogeneity into the discrete/continuous framework.

This model generates flexible substitution patterns such as the standard random coe�cients

logit model originally proposed by Berry, Levinsohn, and Pakes (1995). I choose the

discrete/continuous demand system because it allows for recovering utility and expenditure

functions of a representative consumer generated from the population of heterogeneous

consumers (Anderson, De Palma, and Thisse 1987; Dubé, Joo, and Kim 2023). This

integrability property ensures a theoretical consistency between the demand and supply

model and enables us to conduct welfare analysis based on the structural model.

In the empirical part of this study, I apply the proposed model to the US corn seed industry.
1Sakamoto and Stiegert (2018) incorporate the oligopolistic model by d’Aspremont, Dos Santos Ferreira,

and Gérard-Varet (2007) into a structural model with the almost ideal demand system by Deaton and
Muellbauer (1980), and estimate conduct parameters of two single-product firms in the US retail co�ee
industry. The results show that the conduct of these firms is close to collusion and Nash-Bertrand pricing
conduct is rejected.

2Corts (1999) points out that inference of conduct parameters is invalid if researchers do not formulate
“the true nature of the behavior underlying the observed equilibrium.” This critique does not apply to the
model here because I assume that the observed equilibrium is generated from firms’ static profit-maximization
behavior with true values of conduct parameters. My conduct parameters have structural interpretations
conditional on this assumption. This argument is borrowed from Ciliberto and Williams (2014) and Magnolfi
and Sullivan (2022).
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This industry has undergone considerable structural change since genetically modified (GM)

seeds were introduced in 1996. The combined shares of the top five seed companies (Monsanto,

Dupont, Syngenta, Dow AgroSciences, and AgReliant) accounted for over 85% of the market

in 2014. This highly concentrated structure has been shaped by a number of vertical and

horizontal mergers. Furthermore, biotech firms such as Monsanto permit other firms to use

patented GM traits through cross-licensing agreements. This business practice contributes

to the expansion of GM traits, but it is sometimes considered a non-merger cartel because

the web of cross-licensing agreements between firms may facilitate anti-competitive practices

(Moschini 2010; Howard 2015). The patented GM technologies and the consolidation of the

seed industry raise concerns about the pricing of GM seeds and its impacts on welfare (Clancy

and Moschini 2017; Deconinck 2020). Surprisingly little, however, is known about the extent

of competition between firms in the seed industry (OECD 2018).

My aim in the empirical application is to estimate conduct parameters for the five largest

firms in the US corn seed market from 2008 to 2014. I use a proprietary data set about

farm-level seed choices. The data include expenditure, purchased quantity, brands, parent

companies, and types of genetically modified traits for each transaction. I also utilize farmer

demographic variables such as farm size and location of production to incorporate preference

heterogeneity. I focus on the core region of the Corn Belt spanning 10 major corn-producing

states in the midwestern US, which account for a significant portion of US corn production

and share relatively similar agro-economic conditions.

The results of the demand estimation show that the product-level demand for GM seeds

is quite elastic and that di�erent companies’ seeds are imperfect substitutes for one another.

The interaction parameter of the price coe�cient with farm size indicates that larger farmers

are more sensitive to price increases. In contrast, the aggregate demand for GM seeds is

inelastic, which might allow firms to sustain higher prices by coordination. The estimates of

willingness to pay for GM traits indicate that farmers highly value GM seeds with stacked

traits of two types of insect resistance (corn borer and rootworm) and herbicide tolerance.
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In the supply side of the empirical analysis, I estimate conduct parameters for each of

the five firms along with marginal cost parameters. Identification of the conduct parameters

requires addressing the endogeneity arising from the fact that firms consider unobserved

marginal costs when setting their markups. The structure of the proposed model significantly

reduces the requirement for the number of excluded instruments. Following Berry and Haile

(2014), I use the number of rival firms interacting with firm dummies as excluded instruments

for conduct parameters; the number of rival firms is expected to shift markups by changing

the market environment but to be uncorrelated with marginal costs of seed production.

The results of the supply-side estimation indicate that the conduct parameters for the

five firms are all precisely estimated. The values of all estimated conduct parameters lie

between collusion and quantity competition, which means that the conduct of these firms is

imperfect collusion. The low degree of competition might reflect coordination between firms,

internalization by the licensing firms (which can earn licensing fees from sales of the licensed

firms), or both. The results of hypothesis testing reject all benchmark conduct, including

Nash-Bertrand price competition and Cournot quantity competition. The low degree of

competition leads to higher markups, indicating that the markup of the largest firm is about

51%, while the markups of the other four firms range from 38% to 41%.

To quantify the impacts of the collusive conduct on market outcomes, I conduct counter-

factual simulations. My results show that, if these firms engaged in price competition, the

average price of GM seeds would have been 29% lower. These lower prices would increase

farmer surplus while decreasing seed firm profits. As a result, total welfare would have been

3.65 billion US dollars higher over the period from 2008 to 2014. My results indicate that the

low degree of competition significantly a�ects both total welfare and its distribution between

farmers and firms in the seed industry.

This study contributes to the literature both methodologically and empirically. Method-

ologically, my research provides a good alternative to estimate firm conduct in di�erentiated

products markets. Nevo (1998) suggests the use of selection tests for a menu of benchmark



60

models rather than the estimation of conduct parameters, due to the severe requirement

of excluded instruments. Many previous studies adopt and refine a testing-based approach

in their empirical applications (Rivers and Vuong 2002; Villas-Boas 2007; Backus, Conlon,

and Sinkinson 2021; Duarte et al. 2023). An advantage of the testing approach is that it is

generally less demanding in terms of the number of excluded instruments. A disadvantage is

that it requires researchers to specify a fixed set of oligopoly models in advance to test against

each other. In addition, it becomes cumbersome very quickly when the number of firms

increases. Furthermore, as shown in my estimation results of the corn seed industry, the true

conduct may be in between the benchmark conduct models. My estimation-based approach

for conduct parameters can be applicable in many situations, even when the testing-based

approach has been considered the only option for analyzing the degree of collusion due to a

large number of firms.

Another strand of related papers includes Ciliberto and Williams (2014) and Miller and

Weinberg (2017). They estimate continuous conduct parameters using a structural model

of demand and supply, which is essentially the same approach as in this study. Miller and

Weinberg (2017) measure the e�ects of a joint venture between ABI and MillerCoors on

the degree of price coordination in the US beer industry. The focus on the coordination

between two firms allows them to estimate only a single conduct parameter. Ciliberto

and Williams (2014) also focus on pair-wise relationships between airlines; they reduce the

number of parameters by assuming a certain relationship between conduct and a level of

multimarket contact. While their approach provides valuable insights about how to estimate

pair-wise relationships of coordination, it has di�culty in accommodating a large number of

conduct parameters. On the other hand, although my approach cannot identify pair-wise

coordination, it allows for flexible estimation of the degree of coordination of each firm. The

degree of coordination is instead interpreted as the average conduct of each firm toward the

whole industry. This approach is applicable even when researchers have an interest in many

oligopolistic firms in an industry.
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This study also contributes to accumulating empirical evidence of the degree of competition

in the US seed industry. The previous research focuses on the demand side of this industry

(Ciliberto, Moschini, and Perry 2019; Luo, Moschini, and Perry 2023). Compared to the

demand analyses, the related empirical evidence about firm conduct is limited, even though

many researchers and stakeholders have raised concerns about the growing concentration in

the seed industry. To my knowledge, Shi, Meloyan, and Kubo (2023) is the only paper that

explicitly analyzes the degree of collusion in the US corn seed industry. They find that firms

are implicitly colluding in both product lines and pricing, with a focus on three major players.

This study estimates the conduct of the five largest firms in their pricing and analyzes its

welfare implications, which provides new policy-relevant empirical evidence, especially on the

overall competitiveness in the seed industry.

The rest of the chapter is organized as follows. The next section presents the background

of the US corn seed industry. Section 3.3 presents a structural model of demand and supply.

The data and identification strategy are discussed in section 3.4. Section 3.5 presents the

estimation results. Section 3.6 concludes.

3.2 Background: The US Corn Seed Industry

Rapid advancement of modern biotechnology has contributed to the strong growth of agricul-

tural productivity, especially through the development of genetically modified (GM) seeds.

Recombinant DNA techniques make it possible to insert useful foreign genes into the corn

germplasm, conferring valuable traits. Primary GM traits for corn seeds include herbicide

tolerance and insect resistance. The herbicide tolerance trait makes corn resistant to certain

herbicides such as glyphosate. The insect resistance trait makes corn resistant to certain

insects such as corn borer and rootworm. Farmers highly value these GM traits because

they o�er an e�ective tool for weed and insect control, which results in reduced variance of

yield and lower production costs (Fernandez-Cornejo 2004; Moschini 2008). Figures 3.1 and
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3.2 show the adoption rate and the average price of GM corn seeds from 1996 to 2014 in

the United States. Farmers adopted GM corn seeds rapidly, with over 90% of seeds having

GM traits by 2014. The figures also show that, in the early stage of di�usion, most GM

seeds possessed a single trait of either herbicide tolerance or insect resistance, but seeds with

stacked traits became more prevalent over time. The adoption rate of seeds with stacked

traits was higher than 80% by 2014, and the adoption rate of triple-stacked traits increased

to 55% of the total acreage. In tandem, the average prices have increased over the years and

farmers have paid the highest prices for the triple-stacked GM seeds.
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Figure 3.1: Adoption rate of GM corn seeds
(in % of total corn acreage) in the US
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Figure 3.2: The average price of GM corn
seeds (in $ per bag) in the US

Note: In Figure 3.1, the adoption rate is the corn acreage of each GM trait divided by the total
corn acreage. In Figure 3.2, the average price is measured in dollars per bag. “Single trait” refers
to products with only one GM trait (corn borer resistance, rootworm resistance, or herbicide
tolerance). “Double-Stacked” refers to products with two GM traits and “Triple-Stacked” refers to
products with three GM traits. Source: GfK Kynetec data.

The US seed industry has become more consolidated since the large-scale commercial

introduction of GM seeds. One important aspect of GM technologies is that GM traits need

to be inserted into elite germplasm through breeding processes. GM traits are developed and

owned by a few large firms such as Monsanto and Syngenta, while the elite germplasm is owned

by many local and regional seed companies. This complementary property between GM traits

and elite germplasm has spurred a number of horizontal and vertical mergers (Gra�, Rausser,

and Small 2003; Fernandez-Cornejo 2004). For example, when Monsanto originally developed
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one of its patented GM traits (Roundup Ready), it did not have its own seed subsidiary. A

lack of direct access to the elite germplasm and distribution channels to farmers motivated

Monsanto to pursue a series of acquisitions of seed companies, including the acquisition of

Dekalb in 1998. At the same time, other large biotech firms made similar strategic moves.

In 1999, Dupont acquired Pioneer, which was the dominant seed company at that time.

Syngenta formed in 2000 as a result of the restructuring of the life science companies Novartis

and AstraZeneca. Dow AgroSciences formed as Dow Chemical’s subsidiary in 1997 and

acquired Mycogen in 1998. AgReliant formed as a joint venture of European-based companies

KWS and Limagrain in 2000. Even after the establishment of the five large firms, these firms

continued to acquire regional seed companies in the subsequent years.

Figure 3.3 shows the market shares of GM seed companies from 2004 to 2014. The figure

shows that the total market share of the five firms (Monsanto, Dupont, Syngenta, Dow

AgroSciences, and AgReliant) increased from 65% in 2004 to 87% in 2014. By contrast, the

market share of other local and regional seed companies accounted for about 35% in 2004,

but decreased to less than 14% in 2014. Monsanto and Dupont are the two dominant firms

that control around 70% of the market. The other three firms (Syngenta, Dow AgroSciences,

and AgReliant) have relatively smaller shares but have maintained a significant presence.

The Herfindahl-Hirshman Indexes (HHIs) exceed 2, 500 after 2011, which means that the

market is highly concentrated based on the horizontal merger guidelines issued by the US

Department of Justice and Federal Trade Commission. The market shares of these five firms

are relatively stable after 2008.

The business practice of cross-licensing agreements raises another concern of reduced

competition. GM traits are developed and owned by six big biotech firms (Monsanto,

Syngenta, Dupont, Dow, Bayer, and BASF). As Figure 3.4 shows, these firms sign cross-

licensing agreements among themselves, allowing them to produce GM seeds with genes from

other firms. Although the licensing agreement can facilitate competition through widespread

utilization of proprietary technologies, they can also function as non-merger cartels (Howard



64

0

500

1,000

1,500

2,000

2,500

3,000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Monsanto Dupont Syngenta Dow Agrosciences Agreliant Others HHI

Figure 3.3: Market shares and HHI
Note: Market shares are measured by value for Monsanto, Dupont, Syngenta, Dow

AgroSciences, and AgReliant. “Others” refers to the total market shares of the other firms.
The Herfindahl-Hirshman Indexes (HHIs) are scaled from 0 to 10, 000 on right axis. Source:

GfK Kynetec data.

2009, 2015). Other local and regional seed firms have to sign licensing contracts with biotech

firms to insert GM traits in their seed products. In particular, Monsanto aggressively licenses

its patented GM traits, such as Roundup Ready and YieldGard, to other seed companies.

As a result, the market share of products that incorporate Monsanto’s patented traits was

approximately 85% in 2014, based on a calculation from GfK Kynetec data. The terms of

licensing agreements are confidential, but licensees are supposed to pay certain licensing fees

to licensors (Moschini 2010). This suggests that licensing agreements might give the licensors

additional incentives to increase their prices through internalization of other firms’ profits

because they can earn additional profits from the sales of other firms.

In recent years, this already highly concentrated industry has seen further waves of large

M&A; the merger of Dow and DuPont in 2017, the acquisition of Syngenta by ChemChina in
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Figure 3.4: Cross-licensing agreements between big six biotech firms for GM traits
Source: Howard (2015)

2017, and the merger of Bayer and Monsanto in 2018. These mergers are seen to reinforce

corporate power as they combine firms with a strong position in the agrochemical market

(Bayer, Dow, ChemChina) with firms in a strong position in the seed and biotechnology

industry (Monsanto, DuPont, and Syngenta) (OECD 2018). Antitrust agencies extensively

scrutinize the potential impacts of these mergers on market outcomes and approve them

under certain conditions, such as divestiture of assets. For instance, Bayer was required to

divest most of its seed business, including the GM traits named Liberty Link, and all of these

assets were sold to BASF, which is a competitor to Bayer.

The growing concentration of the seed industry heightens concerns about its impacts on

the pricing of GM seeds, its contribution to welfare, and incentives for innovation (Clancy

and Moschini 2017). However, little empirical information has been available (OECD 2018).
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3.3 Structural model of demand and supply

Several potential factors explain the observed price patterns. Higher prices may be due to

inelastic demand, higher marginal costs, or a high degree of collusion. A structural model

makes it possible to separately identify these sources (Berry and Haile 2014). I develop a

novel structural model that allows for flexible estimation of the degree of collusion for a large

number of multiproduct firms in an empirically tractable way.

3.3.1 Demand model

On the demand side, I use a variant of a random coe�cient logit model. The demand model

is theoretically the same as a discrete/continuous demand model proposed by Hanemann

(1984). In this model, a consumer first chooses one of the products and then decides

how much to purchase under his/her budget constraint. The discrete/continuous demand

specification allows for recovering utility and expenditure functions of a representative

consumer corresponding to the population of heterogeneous consumers. This integrability

property ensures the existence of price and quantity aggregators and makes it possible to

conduct welfare analyses in a theoretically consistent way.

There are Irt farmers in region r and period t. In each market, there are Jrt products.

I consider farmers to be utility-maximizing individuals who choose the alternative with

the highest utility.3 Farmer i chooses one of the GM seed products (j = 1, ..., Jrt) or the

conventional seed as an outside option. This specification means that it is a conditional

demand model in which only corn seed choices are considered.4

3The previous studies take the same approach. For instance, using a discrete choice model, Qaim and De
Janvry (2003) model farmers’ choices of genetically modified cotton using the utility maximization framework.
See also Hubbell, Marra, and Carlson (2000) and Breustedt, Müller-Scheeßel, and Latacz-Lohmann (2008).

4Although it is common to specify an outside option as a non-purchase choice in discrete demand models,
some papers such as Train and Winston (2007) and Sheu (2014) estimate conditional demand models without
a non-purchase option. One advantage of conditional demand is that it is not necessary to speculate a total
market size, which often requires strong assumptions. Train and Winston (2007) discuss this issue in detail.
In the case of seed demand estimation, Luo, Moschini, and Perry (2023) estimate a conditional demand model
that considers choices only between soybean seeds.
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The conditional indirect utility function of farmer i given he/she chooses product j is:

uijrt = xÕ
j�i + –i(ln yirt ≠ ln pjrt) + „b + „r + „t + ›jrt + ‘ijrt

(3.1)

where xj is a vector of observed product characteristics, yirt is the corn seed expenditure of

farmer i, and pjrt is the price. The terms „b, „r, „t represent multiple fixed e�ects; „b allows

for the mean valuation of the unobserved product characteristic to vary freely by brand

(Dekalb, Pioneer, etc.); „r and „t allow the mean valuation of the utility from choosing the

inside products to vary freely by region and time, respectively. I control for „b, „r, and „t

using brand, region, and time dummy variables, respectively. The term ›jrt represents an

unobserved quality variation specific to region r and period t, and ‘ijrt is a structural error

term. I normalize the mean utility of the conventional seed (j = 0) to zero.

The observable product characteristics include indicator variables for GM traits (GT,

CB RW, CB GT, RW GT, CB RW GT), where GT, CB, and RW stand for glyphosate

tolerance, corn borer resistance, and rootworm resistance, respectively. Each of the indicator

variables takes the value 1 if the product contains the corresponding trait. For instance, in

the case of a product with a single trait of GT, only the indicator variable for GT takes the

value 1. For products with a double-stacked trait of glyphosate tolerance and corn borer, both

indicator variables for GT and CB GT take the value 1. If products have a triple-stacked

trait of CB, RW, and GT, indicator variables for GT and CB RW GT take the value 1. I do

not include an indicator variable for a single trait of CB because there is a linearly dependent

relationship between the indicator variables of GM traits (see the discussion in Shi, Chavas,

and Stiegert 2010).5 With this specification, the values of the parameters for each GM trait

are measured as a di�erence from the valuation of CB.

I include random coe�cients associated with farmer demographic variables to allow
5Also, I do not include an indicator variable for RW because I omit the products with the single trait of

RW due to very few observations in my sample.
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for flexible substitution patterns following the standard procedure used in the previous

research since Berry, Levinsohn, and Pakes (1995). I specify the farmer-specific coe�cients

as [–i,�Õ
i
] = [–,�Õ] + �Dirt, where Dirt is a vector of farmer i’s demographic variables and �

is the corresponding parameter matrix. I allow the price-sensitive coe�cient – to vary by

farm size, which is measured by planted corn acreage. I also allow the valuation of GM traits

� to vary by geographic location, which is measured by longitude and latitude of the center

of the county where farmers produce corn. These location variables are expected to capture

regional di�erences in soil and climate that a�ect farmers’ willingness to pay for GM traits.

Assuming farmer i chooses a product that maximizes the utility uijrt, and assuming the

error term ‘ijrt follows the extreme value distribution, the probability that farmer i chooses

product j is derived:

sijrt(�rt, �) = exp(”jrt + ‹ijrt(�))
1 + q

Jrt
k=1 exp(”krt + ‹ikrt(�))

where ”jrt is the mean utility of product j and ‹ijrt(�) is the random part of farmer-specific

valuations defined by:

”jrt = xÕ
j� ≠ – ln pjrt + „b + „r + „t + ›jrt

‹ijrt(�) = (xÕ
j
, ln pjrt) ú �Dirt

To derive the demand for product j, I apply Roy’s identity to the indirect utility function

(3.1), which gives dijrt = yirt/pjrt. This is the conditional demand given that farmer i chooses

product j. Then, the expected demand for product j by farmer i is:

qijrt(prt, yirt) = E‘[qijrt|prt] = sijrt(�rt, �) yirt

pjrt

This expected demand indicates that farmer i chooses one of the products and purchases

multiple units of the chosen product.6

6Dubé (2019) points out that the observed consumer behavior is consistent with multiple purchases in
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Aggregating the expected demand for product j over all farmers (i = 1, ..., Irt), the market

demand for product j in region r and period t is derived:

qjrt(prt, Yrt) = sjrt(�rt, �) Yrt

pjrt

(3.2)

sjrt(�rt, �) =
Irtÿ

i=1
wirt

exp(”jrt + ‹ijrt(�))
1 + q

Jrt
k=1 exp(”krt + ‹ikrt(�))

(3.3)

f where Yrt is the aggregate expenditure, defined by Yrt = Irt

q
i wirtyirt. wirt is the share of

farmers who have demographic variable Dirt in the population of region r and period t.

The market share equation in (3.3) takes the familiar form of the standard random

coe�cient logit proposed by Berry, Levinsohn, and Pakes (1995). One notable di�erence is

that here the price term enters logarithmically (≠– ln pjt), while it enters linearly (≠–pjt)

in the standard logit. Due to this specification, the market share is measured by value,

not by quantity as it is determined from equation (3.2). Björnerstedt and Verboven (2016)

discuss that this type of discrete choice model is a straightforward variant of BLP’s demand

specification and the same estimation technique including contraction mapping can be applied.

To estimate demand-side parameters [–,�, �], I use a GMM estimator and define its

objective function by:

J
D(–,�, �) =

S

U 1
N

ÿ

j,r,t

›jrtZ
D

jrt

T

V
Õ

W
D

S

U 1
N

ÿ

j,r,t

›jrtZ
D

jrt

T

V

where N is the number of observations, Z
D

jrt
is a set of instruments that satisfy moment

conditions E[›jrtZ
D

jrt
] = 0, and W

D is a GMM weighting matrix.

3.3.2 Supply model

In the supply side of my structural model, I formulate firms’ profit maximization problems

based on the oligopolistic model developed by d’Aspremont, Dos Santos Ferreira, and Gérard-
many industries.
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Varet (2007). In this model, competition between firms is modeled by two dimensions:

competition for market share and competition for market size. Oligopolistic firms compete

with each other to obtain higher market shares by lowering prices. On the other hand, they

have a common interest in coordinating a total market supply to sustain higher prices, which

can be viewed as competition against firms or products that are outside the market. The

relative attitude on these two kinds of competition determines the degree of competition of

each firm. d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) show that di�erent

degrees of competition, from monopolistic competition to collusion, can be realized as an

oligopolistic equilibrium in their theoretical analyses.

I show how to incorporate this model into an empirical structural model with a discrete/-

continuous logit demand. This formulation significantly reduces the number of dimensions of

interactions between firms while maintaining flexibility for the degree of competition because

a single conduct parameter per firm characterizes optimal markups. To construct the model,

I extend theoretical model of d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) to

allow for multiproduct firms because their assumption of single-product firms is restrictive in

many applications. In the meantime, I suppress the subscript of region r and period t for

notational simplicity.

There are F firms. Firm f produces a subset, �f , of the j = 1, ..., J di�erentiated products.

Following d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007), firm f maximizes

its profit given other firms’ choices under two demand constraints. A profit maximization

problem of firm f is formulated as:

max
pf ,qf

ÿ

jœ�f

(pj ≠ cj)qj ≠ FCf

subject to Qf (qf ) Æ Hf (pf ,p≠f , Q(qf , q≠f ))

and Q(qf , q≠f ) Æ D(pf ,p≠f , Y )

(3.4)

where pj is the price of product j, cj is the marginal cost, qj is the quantity, FCf is the

fixed cost of firm f . pf is a vector of prices produced by firm f , and qf is a vector of
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the corresponding quantities. p≠f and q≠f are vectors of prices and quantities of all other

products produced by the other firms. Qf (qf ) is the quantity aggregator of firm f ’s products

and Hf is its Hicksian demand function. Q(q) is the quantity aggregator of all inside products

and D is its Marshallian demand function. Y is the total expenditure on seeds (GM and

conventional seeds). The integrability property of the discrete/continuous demand ensures

the existence of these quantity aggregators (see Appendix 3.A.1 for further details.).

The first constraint is called the market share constraint, which governs firm f ’s choices

of prices and quantities in terms of the firm-level demand (market share) within the inside

products (GM seeds). The Hicksian demand function Hf considers substitution between the

inside products conditional on Q. To make the framework compatible with multiproduct

firms, I construct the market share constraint using a firm-level demand function rather than

a product-level demand to allow for internalization of profits for their own products.7

The second constraint is called the market size constraint, which governs firm f ’s choices

of prices and quantities in terms of the aggregate demand for all inside products (GM seeds).

The Marshallian demand function D considers substitution between the inside products and

the outside product. When the prices of the inside products increase, consumers increase the

amount purchased of the outside product. While the constraint on market share captures

the conflictual side of competition between the firms, the constraint on market size captures

their common interest as a sector.

In models of oligopolistic competition with di�erentiated products, profit-maximizing

firms charge positive markups depending on perceived demand elasticities. For instance, a

single-product firm sets a higher markup as the demand becomes more inelastic.8 In this

sense, the demand elasticities summarize necessary information for profit maximization. The

same argument applies to the profit maximization problem given in (3.4), but perceived

elasticities need to be formulated to be consistent with the market share and size constraints.
7When firm f is a single-product firm, the market share constraint is qf Æ Hf (pf , p≠f , Q(qf .q≠f )), which

is the same as one used in d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007).
8In the case of a single-product firm and price competition, an optimal markup is determined by a

so-called inverse elasticity rule, that is µ = 1/( ˆ ln qj

ˆ ln pj
). See, for instance, Tirole (1988).
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By totally di�erentiating the two constraints respectively, I derive the following elasticities.

÷j © ≠d ln qj

d ln pj

----
Qf (qf )=Hf (p,Q(q))

= ≠

ˆ ln Hf

ˆ ln pj

ˆ ln Qf

ˆ ln qj

≠ ˆ ln Q

ˆ ln qj

for j œ �f

‡j © ≠d ln qj

d ln pj

----
Q(q)=D(p,Y )

= ≠

ˆ ln D

ˆ ln pj

ˆ ln Q

ˆ ln qj

for j œ �f

With the discrete/continuous demand specification, these elasticities of substitutions are

given by:

÷j = 1
Sf |in(sj|f ≠ sj|in)

Iÿ

i=1
–isij|in(1 ≠ Sif |in) + 1 for j œ �f (3.5)

‡j = 1
(1 ≠ s0)sj|in

Iÿ

i=1
–isijsi0 + 1 for j œ �f (3.6)

(see Appendix 3.A.2 for details on derivations.)

The elasticity ÷j is called the intra-sectoral elasticity of substitution. As it is calculated

as a curvature of the market share constraint, this measures substitutability of product

j within the inside products (GM seeds). On the other hand, the elasticity ‡j is called

the intra-sectoral elasticity of substitution. It is calculated as a curvature of the market

size constraint, so this measures substitutability of product j against the outside product

(non-GM seed). In many applications, the intra-sectoral elasticity is expected to be greater

than the inter-sectoral elasticity, because inside products are more substitutable for each

other compared to an outside product; that is, we expect ÷j > ‡j.9

9These elasticities correspond to elasticities of substitution defined in d’Aspremont, Dos Santos Ferreira,
and Gérard-Varet (2007) when a firm produces a single product.



73

To solve the maximization problem for firm f , I derive the Lagrangian as:

Lf =
ÿ

jœ�f

(pj ≠ cj)qj ≠ FCf + ⁄f

A

1 ≠ Qf (qf )
Hf (pf ,p≠f , Q(qf , q≠f ))

B

+ vf

A

1 ≠ Q(qf , q≠f )
D(pf ,p≠f , Y )

B

where ⁄f and vf are the Lagrange multipliers for the market share and size constraint,

respectively.

Solving the first-order conditions of the profit maximization problem for firm f , we have

the following equilibrium markup of product j supplied by firm f .

(see Appendix 3.A.3 for details on derivations.)

µ
ú
j

= pj ≠ cj

pj

= ◊f (1 ≠ Sf |in) + (1 ≠ ◊f )Sf |in

◊f (1 ≠ Sf |in)÷j + (1 ≠ ◊f )Sf |in‡j

for j œ �f (3.7)

where Sf |in is the conditional market share of firm f ’s products within the inside products

(subscript in denotes the inside products hereafter). That is, Sf |in = q
jœ�f

sj|in, where sj|in

is the conditional market share of product j produced by firm f . ◊f is the conduct parameter

that measures the degree of collusion of firm f . This parameter is defined as the ratio of two

Lagrange multipliers, ◊f = ⁄f/(⁄f + vf ), so it is interpreted as the relative attitude toward

market share constraint and market size constraint.

Equation (3.7) indicates that the optimal markup is determined by the firm market

share, two elasticities of substitution, and the conduct parameter. To further understand the

relationship between these factors, I rewrite the equilibrium markup equation as a weighted

harmonic mean of the two elasticities of substitution.

µ
ú
j

= 1
(1 ≠ wf )÷j + wf‡j

(3.8)
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where the weight wf is given by:

wf = (1 ≠ ◊f )Sf |in

◊f (1 ≠ Sf |in) + (1 ≠ ◊f )Sf |in
(3.9)

From equation (3.8), the markup µj increases as the weight wf increases when ÷j > ‡j.

From equation (3.9), the weight wf is an increasing function of the firm share Sf |in and is

a decreasing function of the conduct parameter ◊f . Thus, the markup is higher for higher

market shares and lower values of the conduct parameter, ceteris paribus. For instance, if

Sf |in = 1, which is a monopoly case, the weight is equal to zero and the markup is 1/‡j. Also,

if ◊f = 0, the markup attains the same level as the monopoly case even though Sf |in < 1. It

turns out that the specific values of ◊f correspond to the benchmark conduct as follows:

µ
ú
j

=

Y
_____________]

_____________[

1
‡j

if ◊f = 0 (Collusion),

1≠Sf |in

÷j
+ Sf |in

‡j
if ◊f = 1

1+÷j/‡j
(Cournot quantity competition),

1
(1≠Sf |in)÷j+Sf |in‡j

if ◊f = 1/2 (Bertrand price competition),

1
÷j

if ◊f = 1 (Monopolistic competition).

(see Appendix 3.B for details on derivations.)

To illustrate the model, I present a simple example in which two firms each produce two

products. I set ÷j = 6 and ‡j = 2 for two elasticities of substitution. The market share

of each product is set to sj = 0.2 for j = 1, ..., 4, so Sf |in = 0.5(= (0.2 ◊ 2)/(0.2 ◊ 4)) for

f = 1, 2. Prices of all products and total expenditure are set to 1. These values are consistent

with the simple discrete/continuous logit. Then, I calculate markups by using equation (3.7)

for values of ◊f from 0 to 1.

Figure 3.5 shows the results of the calculations. The markup increases as ◊f decreases

from 1 to 0. The highest value of the markup is attained when ◊f = 0 (=collusion), while

the lowest value is attained when ◊f = 1 (=monopolistic competition). The markups under

quantity competition and price competition are between these two extremes and the markup
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under quantity competition is larger than price competition (see Appendix 3.C for further

details.).

0
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0.2

0.3

0.4
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Markup

Price competition
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Monopolistic 
competition

0.25
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Figure 3.5: Relationship between markup (µj = (pj ≠ cj)/pj) and conduct parameter (◊f )
Note: Author’s computations. I set ÷j = 6, ‡j = 2, Sf |1 = 0.5 and calculate the equilibrium

markups for values of conduct parameters from 0 to 1. See Appendix 3.C for further details.

As a final step for deriving estimation equations, I assume that the marginal cost of

product j in region r and period t is linear in both parameters and in the observed cost

shifters.

cjrt = !Õ
jrt
� + „r + ’jrt

where !jrt is a vector of observed cost shifters of product j and � is a vector of parameters.

The observed cost shifters include the previous year’s future corn price and dummy variables

about licensing on GM traits. „r is the region fixed e�ects that are expected to absorb

region-specific costs such as distributional and marketing costs. ’jrt is an unobserved cost

shifter left as a structural error.

Substituting this marginal cost equation into the equilibrium markup equation (3.7), we
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have the following estimation equations.

’jrt = pjrt

A

1 ≠
◊f (1 ≠ Sfrt|in) + (1 ≠ ◊f )Sfrt|in

◊f (1 ≠ Sfrt|in)÷jrt + (1 ≠ ◊f )Sfrt|in‡jrt

B

≠ !Õ
jrt
� for j œ �f f = 1, ..., F

(3.10)

To estimate supply-side parameters [�,✓], I construct an objective function for a GMM

estimator as:

J
S(�,✓) =

S

U 1
N

ÿ

j,r,t

’jrtZ
S

jrt

T

V
Õ

W
S

S

U 1
N

ÿ

j,r,t

’jrtZ
S

jrt

T

V

where N is the number of observations, Z
S

jrt
is a set of instruments that satisfy moment

conditions E[’jrtZ
S

jrt
] = 0, and W

S is a GMM weighting matrix.

In equation (3.10), the estimated parameters are marginal cost parameters (�) and firm

conduct parameters ⇥ = (◊1, ..., ◊F ). The markup term is endogenous in the sense that it

is necessarily correlated with the unobserved costs. This correlation arises from the fact

that firms consider unobserved marginal costs when setting their prices and the markups

are functions of the prices of all products in the market. This endogeneity requires excluded

instruments for ⇥ = (◊1, ..., ◊F ).

3.4 Data and Identification

In this section, I present the data and identification strategy for the application of the

proposed structural model to the US corn seed industry.

3.4.1 Data Sources

My primary data source is the corn TraitTrak data set, collected by GfK Kynetec, a major

market research organization that specializes in agriculture-related industries. This data

set is constructed from a stratified sample of US corn growers surveyed annually from 1995
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to 2014. In the data set, expenditure, quantity, brands, parent companies, and types of

genetically modified traits are recorded for individual transactions between seed firms and

farmers. The data is supposed to represent each crop reporting district (CRD) of the US

Department of Agriculture. There are 407,801 observations in 254 CRDs from 47 states over

1995-2014. Every year there are about 5,000 farmers on average in the sample and 25% of

them are kept in the subsequent year.

I focus on the core region of the Corn Belt in the midwestern US. The market share of

the Corn Belt accounts for approximately 85% of the total corn seed market and the share of

the core region accounts for roughly half of the Corn Belt. My definition of the core region

includes 25 CRDs in six states: Illinois, Indiana, Iowa, Minnesota, North Dakota, and South

Dakota.10 The selected regions share relatively similar agro-economic conditions, such as

soil fertility and rainfall. Stiegert, Shi, and Chavas (2011) discuss that the core of the Corn

Belt is where farmers are less likely to substitute between corn and di�erent crops, compared

with the fringe region. These features are suited to my demand estimation, which specifies a

conditional demand for corn seeds given that allocation between crops is predetermined.

I also focus on the years 2008-2014, which seem to undergo fewer structural changes in

both demand and supply. On the demand side, as Figure 3.1 shows, the introduction of

triple-stacked traits in 2006 drastically changed the market situation. I expect that farmer

preference is relatively stable after the di�usion of the triple-stacked traits. On the supply side,

major biotech firms engaged in many acquisitions and mergers in the 2000s. In particular, the

leading company, Monsanto, completed a series of acquisitions by 2007. Thus, the structure

of the industry has not experienced a considerable change within the selected years, which is

important for obtaining reliable estimates of firm conduct parameters. As a result, there are

68,129 observations from 2008 to 2014.

I define products as combinations of brand and GM traits following the previous papers

that estimate discrete choice demand using the same dataset (Ciliberto, Moschini, and
10I follow Stiegert, Shi, and Chavas (2011) for a definition of the core region, but I make a slight change

to reflect the trend of corn acreage in my estimation period.



78

Perry 2019; Luo, Moschini, and Perry 2023). Corn farmers perceive the product qualities

of corn seeds through brands and types of GM traits. There are a large number of brands,

which are sold by large seed firms or other local/regional seed companies. I choose brands

whose market shares are greater than 1% in the estimation period. Smaller brands are

aggregated into one brand for each parent company: Monsanto, Dupont, Syngenta, Dow

AgroSciences, AgReliant, and regional companies. I aggregate GM traits to CB (corn borer),

RW (rootworm), GT (glyphosate tolerance), double-stacked (CB RW, CB GT, RW GT),

and triple-stacked (CB RW GT). I do not treat Liberty Link as a separate trait because it is

usually considered a marker gene (Ciliberto, Moschini, and Perry 2019). I also drop products

with a single trait of RW or other herbicide tolerance because there are very few observations

and their market shares are less than 0.1% in the estimation years.

Table 3.1 shows the market shares of GM seeds calculated by brand and GM trait,

respectively. The market shares of products are measured in value, not in quantity, to

maintain consistency with discrete/continuous demand models. The table shows that Dekalb,

owned by Monsanto, and Pioneer, owned by Dupont, are two dominant brands that together

have more than a 50% market share. These brands keep a significant presence in the seed

market, possibly due to brand loyalty and long-term relationships with customers. The

market share of triple-stacked seeds (CB RW GT) is larger than 70%. The triple-stacked

seeds were introduced in 2006 and their shares expanded rapidly. On the other hand, the

market shares of seeds with other traits have decreased. In particular, the shares of CB-single,

CB RW, and RW GT are very small –about a 1% share.
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Table 3.1: Brand and GM trait market shares

Parent company Brand Market share GM trait Market share
Monsanto Dekalb 35.7% CB-single 1.2%

Channel 4.2% GT-single 11.4%
Others 6.5% CB RW 1.0%

Dupont Pioneer 23.8% CB GT 11.5%
Others 1.0% RW GT 0.8%

Syngenta Golden Harvest 3.6% CB RW GT 74.1%
NK Seeds 1.2% Total 100%
Others 0.4%

Dow AgroSciences Mycogen 1.6%
Others 1.0%

AgReliant Agrigold 4.2%
LG Seeds 2.0%
Producer Hybrids 1.0%
Others 1.3%

Regional Myfeels Hybrids 2.2%
Croplan Genetics 1.7%
Beck’s Hybrids 1.4%
Others 7.2%

Total 100%

Note: Market shares of GM seeds are calculated by brands and GM traits over 2008-2014
in the core region of the Corn Belt. GT, CB, and RW stand for glyphosate tolerance, corn
borer resistance, and rootworm resistance, respectively. Source: GfK Kynetec data.

The price of each product is calculated by dividing expenditure by purchase quantity

(number of bags). Table 3.2 reports the average prices for each GM trait. This shows stylized

facts about seed prices. First, all prices tend to increase over time. Second, the prices

of GM seeds are consistently higher than conventional (non-GM) seeds. The price of the

triple-stacked seeds is the highest among GM seeds. Third, the prices of GM seeds increase

by more than the prices of conventional seeds.

The outside option is choosing conventional seeds. The average share of the outside option

is 5% in the sample. In the estimation, the price of each GM product is divided by the price

of the outside product.

I also construct farmer demographics from the same TraitTrak data to incorporate

heterogeneity of preferences. First, I calculate the corn-planted acreage of farmers as the farm
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Table 3.2: Average seed prices

Year Conventional Single trait Double-Stacked Triple-Stacked
CB GT CB RW CB GT RW GT CB RW GT

2008 114.0 137.5 149.2 163.6 158.6 166.5 181.1
2009 140.3 159.1 180.8 185.1 191.2 200.4 232.5
2010 142.5 172.6 186.2 200.4 198.6 221.6 235.3
2011 147.2 184.0 188.5 199.1 208.6 219.9 236.3
2012 168.3 205.1 210.9 203.7 228.0 260.6 260.6
2013 177.7 243.3 225.3 235.7 247.6 260.1 276.5
2014 178.5 243.4 227.1 234.5 254.4 254.9 285.6

Note: The table reports the average seed prices paid by farmers ($/bag). GT, CB, and RW stand
for glyphosate tolerance, corn borer resistance, and rootworm resistance, respectively. Source:
Kynetec data

size. This variable is used to allow di�erent price sensitivity parameters for di�erent-sized

farms. Second, following Shi, Chavas, and Stiegert (2010), I construct location variables using

longitude and latitude of the center of the county where farmers cultivate their corn. These

location variables are expected to reflect di�erent geographical conditions and to capture the

heterogeneity of farmer preference for GM traits. Summary statistics of variables used for

demand estimation are presented in Table 3.3.

On the supply side, the expected price of corn is a major component of the marginal costs

of seed production. Seed firms sign a contract with farmers to produce commercial seeds

in year t ≠ 1 for the firm to sell in year t (Fernandez-Cornejo 2004). Under the contract,

seed companies must pay at least what farmers could have obtained if they had sold their

own corn. Following Kim and Moschini (2018) and Luo, Moschini, and Perry (2023), I use

the previous year’s future corn price as a proxy of the expected price of corn, which is used

as the observed marginal cost shifter. To construct this variable, I collect the data for corn

futures prices from the database of Barchart.com. Using futures prices with a delivery month

of December, I average daily closing prices from January to March, which are the periods

before the planting season.

I utilize technological information about how firms incorporate GM traits licensed from
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Table 3.3: Summary statistics of variables for demand estimation

Variable obs Mean Std. Dev. Min Max
Product share 5,749 0.275 0.057 0.00003 0.628
Relative price 5,749 1.446 0.291 0.442 2.859
GT 5,749 0.868 0.057 0 1
CB RW 5,749 0.056 0.231 0 1
CB GT 5,749 0.181 0.385 0 1
RW GT 5,749 0.022 0.146 0 1
CB RW GT 5,749 0.359 0.480 0 1
Farm size (100 acre) 34,489 6.241 6.517 0.08 108
Longitude 34,489 -92.46 3.286 -100.13 -86.65
Latitude 34,489 42.23 1.789 38.01 46.47

Note: Author’s computations from Kynetec data. Relative price is
calculated by dividing the price of the product by the average price of
conventional seed in each market. GT, CB, and RW stand for glyphosate
tolerance, corn borer resistance, and rootworm resistance, respectively.
Farm size is the corn-planted acreage of a farm. Longitude and latitude
are the center of the county where farmers cultivate corn.

others. For instance, Pioneer’s product AcreMax Xtreme contains Monsanto’s YieldGard,

Syngenta’s Agrisure, and Dow-Dupont’s Herculex HX1 for insect resistance traits, as well as

Monsanto’s Roundup Ready and Bayer’s LibertyLink for herbicide tolerance. In this case,

Dupont is supposed to pay certain royalty fees to Monsanto, Syngenta, and Bayer for its

utilization of their patented traits. Thus, I use dummy variables that take the value 1 if

the product contains the corresponding licensed trait. For instance, if the product contains

Monsanto’s traits and its seller is not Monsanto, the corresponding dummy variable takes the

value 1. Because the corn TraitTrak data set contains the names of specific seed products

such as SmartStack and AcreMax, I supplement it with technical documentation that is

available on company websites, to infer which GM traits are incorporated in the products.

The licensing dummy variables explain di�erences in how seed firms utilize licensed GM

traits from other firms. Monsanto mostly utilizes its own patented technologies: Roundup

Ready and YieldGard. Dupont and Dow rely heavily on Monsanto’s traits; more than

80% of their products incorporate Roundup Ready. In addition, they incorporate Bayer’s

Liberty Link for 70% and 50% of their products. On the other hand, Syngenta does not
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use Monsanto’s traits as much as the other firms. Syngenta utilizes its own patented trait,

Agrisure, and also uses Bayer’s trait. Lastly, AgReliant, which does not own any patented GM

traits, extensively utilizes Monsanto’s traits. More than 90% of the products use Monsanto’s

Roundup Ready and YieldGard, while the utilization rate of other firms’ traits is fairly low.

To summarize, how firms rely on licensed traits a�ects marginal costs through payments of

licensing fees. In this sense, Monsanto and Syngenta are expected to be cost-e�cient firms,

while Dupont, Dow, and AgReliant’s marginal costs may be higher due to licensing fees.

Table 3.4 shows the summary statistics of variables for supply estimation. I calculate them

for the entire sample (all firms) and each firm, respectively. In the supply estimation, I focus

on the largest five firms: Monsanto, Dupont, Syngenta, Dow AgroSciences, and AgReliant.
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Table 3.4: Summary statistics of variables for supply estimation

Variable obs Mean Std. Dev. Min Max

All firms Product price 4,448 215.6 45.7 74.0 350.4
Firm-level share 4,448 0.215 0.193 0.0005 0.757
License Roundup Ready 4,448 0.757 0.480 0 1
License YieldGard 4,448 0.393 0.473 0 1
License DowDupont 4,448 0.045 0.162 0 1
License Syngenta 4,448 0.111 0.085 0 1
License Bayer 4,448 0.359 0.458 0 1
Corn future price 4,448 495.0 80.30 398.3 589.4

By Firms
Monsanto Product price 1,237 222.9 47.13 77.54 350.4

Firm-level share 1,237 0.467 0.118 0.141 0.757
License Roundup Ready 1,237 0 0 0 0
License YieldGard 1,237 0 0 0 0
License DowDupont 1,237 0.105 0.236 0 1
License Syngenta 1,237 0 0 0 0
License Bayer 1,237 0.105 0.236 0 1

Dupont Product price 893 220.0 39.29 100.0 319.0
Firm-level share 893 0.254 0.101 0.054 0.543
License Roundup Ready 893 0.838 0.363 0 1
License YieldGard 893 0.423 0.454 0 1
License DowDupont 893 0 0 0 0
License Syngenta 893 0.037 0.151 0 1
License Bayer 893 0.708 0.446 0 1

Syngenta Product price 820 195.9 41.85 74.0 327.6
Firm-level share 893 0.056 0.027 0.001 0.161
License Roundup Ready 820 0.052 0.197 0 1
License YieldGard 820 0.057 0207 0 1
License DowDupont 820 0.033 0.134 0 1
License Syngenta 820 0 0 0 0
License Bayer 820 0.676 0.460 0 1

Dow AgroSciences Product price 557 215.2 47.42 91.0 342.0
Firm-level share 500 0.030 0.021 0.0005 0.156
License Roundup Ready 500 0.832 0.365 0 1
License YieldGard 500 0.682 0.426 0 1
License DowDupont 500 0 0 0 0
License Syngenta 500 0.026 0.137 0 1
License Bayer 500 0.498 0.474 0 1

AgReliant Product price 999 219.2 46.84 88.89 345.75
Firm-level share 999 0.090 0.065 0.012 0.545
License Roundup Ready 998 0.928 0.253 0 1
License YieldGard 998 0.972 0.156 0 1
License DowDupont 998 0.044 0.160 0 1
License Syngenta 998 0.004 0.043 0 1
License Bayer 998 0.046 0.161 0 1

Note: Roundup Ready and YieldGard are owned by Monsanto. Author’s computations
from Kynetec data. License variables are dummy variables that take the value 1 if a firm
uses the corresponding trait owned by the other firms.
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3.4.2 Identification

I discuss my identification strategy to estimate the parameters of the demand and supply

models. On the demand side, the key identification issue is the endogeneity of seed prices

that are attributed to the fact that oligopolistic firms set their prices by taking into account

the unobserved demand shifter that is unknown to researchers. The inclusion of multiple

fixed e�ects is expected to alleviate the price endogeneity. However, it is still necessary to

use valid instruments to obtain consistent estimates, because the OLS estimate of the price

coe�cient is positive even after controlling brand, region and year fixed e�ects, as discussed

in the next section. I rely on the commonly used identification assumption that the product

characteristics are uncorrelated with the error term (Berry, Levinsohn, and Pakes 1995).

This assumption seems fairly reasonable in the seed industry as is discussed in Ciliberto,

Moschini, and Perry (2019), which estimates the nested logit demand models for the US corn

and soybean seeds market. They argue that the introduction of new products is predetermined

and is largely exogenous to pricing decisions because the introduction of GM seeds to the

market requires a lengthy and complex process, including extensive molecular and agronomic

testing, repeated breeding with elite germplasm, and clearing GM regulatory hurdles.

To construct instruments using product characteristics of GM seeds, I count the number

of products that embed each GM trait (CB, GT, CB RW, CB GT, RW GT, CB RW GT),

following the same idea used in Ciliberto, Moschini, and Perry (2019). Then, I calculate the

interaction of the counting numbers in each market with the dummy variables that take the

value 1 if the product has the corresponding trait. There are six instrumental variables for

the price coe�cient.

It is also necessary to construct instruments for random coe�cients on demographic

variables. Following Romeo (2013) and Miller and Weinberg (2017), I exploit cross-market

variation of demographic variables. Specifically, I compute the mean and variance of longitude

and latitude at each market. Then, they interact with exogenous product characteristics

(CB, GT, CB RW, CB GT, RW GT, CB RW GT). There are 20 instrumental variables for
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10 non-linear parameters of longitude and latitude. I follow the same idea for a random

coe�cient related to farm size, but the farm size variable interacts with the logarithm of

endogenous price. Therefore, to compute the predicted value of the logarithm of price, I first

regress the logarithm of price on the six instruments used for the price coe�cient. Then, the

predicted log price interacts with the mean and variance of farm size in each market. This

generates two instruments. In total, my demand estimation uses 28 instruments (6 IVs for

the price coe�cient, and 22 IVs for the non-linear parameters).

On the supply side, it is necessary to deal with the endogeneity of the markups that

are correlated with unobserved marginal costs. This is because the markups are functions

of the firm-level market share and two demand elasticities, all of which are functions of

unobserved marginal costs through endogenous prices. To obtain consistent estimates of

conduct parameters, it is necessary to find excluded instruments that are correlated with

the markups but uncorrelated with the unobserved marginal costs. Berry and Haile (2014)

argue that candidates for instruments require variation in market conditions that rotate the

marginal revenue curve, which includes the number of competing firms, the set of competing

goods, characteristics of competing products, or costs of competing firms. Following their

argument, I use the number of rival firms’ products interacting with firm dummy variables as

excluded instruments. It is expected that the number of rivals’ products a�ects the market

share and substitutability between products and thus shifts the optimal markups. The

assumption of identification is that they are uncorrelated with the unobservable marginal

costs. This seems fairly reasonable in the seed industry because the marginal cost of seed

production is not likely to be correlated with the number of rival products.
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3.5 Empirical results

3.5.1 Demand estimates

Table 3.5 presents the results of the seed demand estimation. Columns (i) and (ii) correspond

to the discrete/continuous logit with OLS and e�cient GMM estimators. Column (iii)

corresponds to the discrete/continuous logit with random coe�cients interacting with farmer

demographics. All specifications include brand, CRD, and year-fixed e�ects. I use the pyBLP

python package developed by Conlon and Gortmaker (2020) for estimations.
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Table 3.5: Demand estimates

(i) (ii) (iii)
Demand model DC-Logit DC-Logit DC-RCL
Estimator OLS GMM GMM
Mean (—)

log(Price) 1.259*** -2.018*** -5.836***
(0.122) (0.580) (0.933)

GT 0.538*** 0.790*** 1.265***
(0.073) (0.089) (0.143)

CB RW 0.070 0.467*** 1.104***
(0.097) (0.127) (0.205)

CB GT -0.066 0.107 0.412***
(0.054) (0.072) (0.101)

RW GT -1.265*** -0.927*** -0.316
(0.124) (0.155) (0.232)

CB RW GT 1.281*** 2.021*** 2.905***
(0.048) (0.135) (0.220)

Demographics interaction(�) Farmsize Longitude Latitude
log(Price) -0.320***

(0.092)
GT 0.657*** 0.805***

(0.187) (0.190)
CB RW -0.036 0.173

(0.245) (0.247)
CB GT -0.349*** -0.165

(0.129) (0.122)
RW GT -0.714** -0.429

(0.342) (0.312)
CB RW GT 0.290*** 0.202**

(0.093) (0.096)
Mean of price elasticities

Own-price 0.224 -3.002 -6.871
Cross-price -0.033 0.053 0.158

Mean of elasticities of substitution
Intra-sectoral elasticity 7.059
Inter-sectoral elasticity 1.290

Notes: DC-logit and DC-RCL refer to the discrete/continuous logit model and the discrete/continuous
random coe�cient logit. In the parameters, GT, CB, and RW stand for GM traits of glyphosate
tolerance, corn borer resistance, and rootworm resistance, respectively. All of the estimates include
brand, CRD, and year-fixed e�ects. Standard errors are robust standard errors. The number of
observations is 5,794. ú, úú, ú ú ú denote significance of the test statistic at the 10%, 5%, and 1%
level, respectively.
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Figure 3.6: Estimaetd distribution of price coe�cients among farmers in all markets

The price coe�cient is positive in the OLS estimation, suggesting that prices are indeed

endogenous. In two GMM estimations, it is negative as expected and statistically significant

at the 1% level. The results indicate that the excluded instruments are valid in the sense

that the upward bias on the price coe�cient decreases in the right direction. In specification

(iii), the estimate of the log(p)-farm size interaction parameter is negative and statistically

significant at the 1% level. The negative value indicates that larger farmers are more sensitive

to price. Figure 3.6 shows the distribution of estimated –i(= – + �– farmsizei) in all

markets. The shape of the distribution reflects the empirical distribution of the farm size

variable, which is relatively left-tailed due to the existence of very large farms. The value of

– ranges from ≠5.53 to ≠10.83 between farmers. All farmers have a negative preference for

higher prices, as expected.

The mean of the estimated own-price elasticities is ≠6.87 for the DC-RCL specification,

indicating that the product-level demand for GM seeds is quite elastic. This value is very close

to the own-price elasticity ≠6.99 in Ciliberto, Moschini, and Perry (2019), which estimates

the nested logit demand model for corn and soybean seed in the US over 1996-2011. The

mean of the cross-price elasticities is 0.158, which indicates that di�erent types of GM corn
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Figure 3.7: Estimated distribution of intra-
sectoral elasticities of substitution in all mar-
kets

Figure 3.8: Estimated distribution of inter-
sectoral elasticities of substitution in all mar-
kets

seeds are imperfect substitutes for each other.

The average values of estimated intra- and inter-sectoral elasticities of substitution are

7.059 and 1.290, respectively. The value of intra-sectoral elasticity is much larger than

the value of inter-sectoral elasticity, as expected. This is consistent with the definitions of

these elasticities, in which the intra-sectoral elasticity measures substitutability between GM

seeds, while the inter-sectoral elasticity measures substitutability against the outside product

(non-GM seeds). The larger value of the intra-sectoral elasticity indicates that GM products

are more substitutable with other GM products compared to non-GM products. The low

value of the inter-sectoral elasticity indicates that the market demand for GM seeds is fairly

inelastic. Because the estimates of these elasticities are used for a supply-side estimation,

I show the distribution of the estimates in all markets in Figures 3.7 and 3.8. The figures

indicate that they range from 6.710 to 11.331 and 1.001 to 4.264, respectively. There are

distinct variations across markets, reflecting farmer preference and market conditions such as

product availability.

The coe�cients (�) associated with the GM trait dummy variables are positive and

precisely estimated, other than —RW GT . The values of these parameters are measured as a

di�erence from the value of CB. The result, —GT = 1.265, indicates that farmers value the
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glyphosate tolerance trait more than the corn borer resistance trait. This is consistent with

the results of Ciliberto, Moschini, and Perry (2019), which finds that farmers’ willingness to

pay for the GT trait is higher than the CB trait after 2007. The coe�cients of the stacked

traits are also positive, indicating that farmers value the stacked traits more than the CB trait.

The only exception is —RW GT , which is negative. The negative value suggests that farmers

see little additional value in stacking RW with GT, although this coe�cient is insignificant.11

The demographics interaction parameters of each trait (�—) are statistically significant at

the 5% level for 6 out of 10 parameters. The positive value of longitude and latitude means

that farmers put more value on the corresponding trait from south to north and from west to

east, respectively. The results show that farmers tend to value GT and CB RW GT more to

the north and east of the core region of the Corn Belt, while farmers tend to value CB GT

and RW GT more in the south. These statistically significant coe�cients reflect preference

heterogeneity between farmers in di�erent locations.

To obtain the economic interpretation of these coe�cients, I compute farmers’ willingness

to pay (WTP). In the standard logit, it is well known that the ratio of a coe�cient of the

product characteristics of interest to a price coe�cient indicates willingness to pay (see Train

2009). In my demand specification, the price term enters logarithmically in the conditional

indirect utility function. Thus, I calculate WTP using the following formula.

WTP
GT

i
= —

GT

i
/(–i/pi)

WTP
CB RW

i
= —

CB RW

i
/(–i/pi)

WTP
CB GT

i
= (—GT

i
+ —

CB GT

i
)/(–i/pi)

WTP
RW GT

i
= (—GT

i
+ —

RW GT

i
)/(–i/pi)

WTP
CB RW GT

i
= (—GT

i
+ —

CB RW RW

i
)/(–i/pi)

11This imprecise estimate may be due to a very small market share of products with RW GT. Its market
share is less than 1% in the entire sample. Also, since there are no observations with the single-RW trait, it
may be di�cult to identify the value of RW separately from GT.
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Table 3.6 reports the results of the estimated distribution of farmers’ WTP for each

GM trait. These estimates of WTP are measured as a di�erence from the CB trait, which

is used as a reference in the estimation. Farmers have di�erent WTP depending on their

demographic variables. I present the median, 10th percentile, and 90th percentile of the

estimated distribution.

The estimated values of WTP take the highest value for the triple-stacked traits (CB RW GT),

indicating that the median value is $154.35 per bag. The result is consistent with its large

market share, which is over 70% in the entire sample. Also, the WTP estimates of CB GT

and GT tend to be higher than the remaining traits, reflecting their relatively larger market

shares. The results also indicate that the estimates of WTP tend to be higher than the

observed price di�erence. In particular, the WTP for the triple-stacked traits is larger than

the observed price di�erence for most of the farmers, as the WTP at the 10th percentile is

still larger than the price di�erence. This suggests that the introduction of the stacked GM

traits significantly increases farmers’ welfare, which is consistent with the empirical findings

by Ciliberto, Moschini, and Perry (2019).

Overall, I judge that the results of the DC-RCL specification are reasonable and economi-

cally meaningful. I use this result for the subsequent supply-side estimation, which is of main

interest.

3.5.2 Supply estimates

On the supply side, I estimate parameters of firm conduct and marginal cost given the esti-

mated demand-side parameters. This two-step estimation is computationally less demanding

and has been used in past research (Miller and Weinberg 2017; Michel, Manuel Paz y Mino,

and Weiergraeber 2023). In the two-step procedure, the estimation errors of the demand

parameters need to be considered. Therefore, I calculate robust standard errors that account

for the inclusion of the demand parameters, following Wooldridge (2010). In the estimation,

I use OLS to concentrate the linear marginal cost parameters and CRD fixed e�ects out of
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Table 3.6: Estimates of willingness-to-pay

Distribution of willingness to pay Observed
10th percentile Median 90th percentile price di�erence

GT ≠ CB 20.86 46.11 77.76 26.87
(5.14) (6.07) (10.96)

CB RW ≠ CB 25.55 41.24 58.55 18.91
(5.15) (6.18) (10.54)

CB GT ≠ CB 34.63 62.12 93.51 46.09
(5.10) (6.07) (10.33)

RW GT ≠ CB 11.60 35.48 60.25 29.55
(11.26) (8.68) (14.19)

CB RW GT ≠ CB 100.94 154.35 219.76 79.26
(10.07) (15.58) (23.17)

Notes: GT, CB, and RW stand for glyphosate tolerance, corn borer resistance, and
rootworm resistance, respectively. The estimates of willingness to pay are measured as
a di�erence from CB, which is used as a reference trait in the estimation. Values in
parentheses are standard errors that are calculated by parametric bootstrap using the
asymptotic distribution of the estimated parameters. The number of simulation draws
is 1,000. Observed price di�erences are calculated as the average of di�erences between
the prices of CB alone and each trait of each market.

the optimization problem, which reduces the dimensionality of the nonlinear search to only

five conduct parameters.

Table 3.7 presents the results of the supply-side parameters using an e�cient GMM

estimator. The conduct parameters for the five firms are all precisely estimated and take

values from 0 to 1, as the theoretical model requires. The results show that the conduct of

these firms is imperfect collusion, in the sense that the estimated conduct parameters are

values between collusion (◊f = 0) and quantity competition (◊f = 0.16).12 The low values

of the conduct parameters might reflect coordination between firms, internalization by the

licensing firms, or both. In the seed industry, the licensing firms can earn additional profits

from sales made by the licensed firms, which gives the licensing firms additional incentives to

sustain higher prices.

Table 3.8 indicates the results of hypothesis testing on the benchmark conduct. The
12In the case of quantity competition, ◊f = 1/(1 + ÷j/‡j), where (÷j , ‡j) are the intra- and inter-sectoral

elasticities of substitution of product j. I calculate this value using the average of the elasticities in the
sample.
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Table 3.7: Supply estimates

Coe�cient Standard Error
◊f (firm conduct) Monsanto 0.106*** 0.027

Dupont 0.092*** 0.025
Syngenta 0.015*** 0.004
Dow AgroSciencies 0.008*** 0.002
AgReliant 0.020*** 0.006

“ (marginal cost) Corn future price 0.136*** 0.005
License RoundupReady 15.387*** 1.346
License Y ieldGard 8.273*** 1.499
License DowDupont 17.535*** 3.470
License Syngenta 4.665 4.278
License Bayer 19.495*** 1.082

Notes: The estimation includes CRD fixed e�ects. Roundup Ready and
YieldGard are owned by Monsanto. Standard errors are robust standard errors
that account for two-step estimation. The number of observations is 4,448. ú ú ú
denotes significance of the test statistic at the 1%-level.

testing results strongly reject price competition and monopolistic competition, both of which

are more competitive conduct than quantity competition.13 Collusive conduct is also rejected

for all firms at the 1% significance level. The results also reject quantity competition for all

firms, with significance levels at 10% for Monsanto, 5% for Dupont, and 1% for the other

three firms.
13Pricing competition is more competitive than quantity competition when the intra-sectoral elasticity

of substitution is larger than the inter-sectoral elasticity of substitution. My results of demand estimation
satisfy this inequality.
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Table 3.8: Hypothesis testing on benchmark conduct

Null Hypothesis Collusion Quantity competition Price competition Monopolistic competition
◊f = 0 ◊f = 0.16 ◊f = 0.5 ◊f = 1

t-statistics
Monsanto 3.956*** 1.833ú 14.705*** 33.366***
Dupont 3.567*** 2.512** 16.173*** 36.016***
Syngenta 3.401*** 33.153*** 116.432*** 236.422***
Dow AgroSciencies 3.401*** 62.377*** 215.099*** 433.599***
AgReliant 3.444*** 22.855*** 81.003*** 165.45***

Notes: The table reports the t-statistics associated with the associated hypothesis. In the case of
quantity competition, ◊f = 1/(1 + ÷j/‡j), where (÷j , ‡j) are the intra- and inter-sectoral elasticities
of substitution of product j. I calculate this value using the average of the elasticities, which is 0.16.
Standard errors account for two-step estimation. ú, úú, ú ú ú denote significance of the test statistic at
the 10%, 5%, and 1% level, respectively.

Back to Table 3.7, the marginal cost parameters are all positive, as expected. The positive

coe�cient on corn future price implies that seed firms must pay more to corn farmers when

corn price is expected to increase in the future. The positive parameters on the dummy

variables for licensed traits indicate that the utilization of licensed traits increases marginal

costs. This result reflects the fact that, through licensing agreements, firms are supposed to

pay a licensing fee to licensors when they incorporate patented traits. The parameters for

Monsanto’s two traits (Roundup Ready and YieldGard) are precisely estimated. The value

for YieldGard is relatively smaller, possibly reflecting the smaller WTP for CB compared

to GT. The other parameters also take positive values. Bayer’s trait (Liberty Link) and

DowDupont’s trait (Herculex) take larger values, while the value is smaller for Syngenta’s

trait (Agrisure).14

To understand the economic meaning of these estimates, I calculate marginal costs and

markups for these firms. The results are shown in Table 3.9. The average values of the

marginal costs are lower for Monsanto ($108) and Syngenta ($118), while the other three

firms have higher marginal costs ($128-136). The structure of patented traits explains these

marginal cost di�erences. Monsanto and Syngenta mainly use their own patented GM traits,
14The estimates of License Syngenta are imprecise. As Table 3.4 shows, the market shares of the products

with this licensed trait are fairly small. This limited variation of the data may cause imprecise estimates.
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but Syngenta additionally uses Bayer’s trait for about 70% of their products, while Monsanto

uses it for only 10% of their products. This makes Monsanto more cost-e�cient than Syngenta.

On the other hand, Dupont, Dow, and AgReliant heavily rely on Monsanto’s GM traits,

which results in additional licensing costs. To better see this tendency, I show a kernel density

of estimated marginal costs in all markets for Monsanto, Syngenta, and Dupont in Figure

3.9. It shows the clear ranking of the marginal cost e�ciency of these three firms.

The estimates of markups are also shown in Table 3.9. Monsanto charges the highest

markup, while the other firms charge their markups in relatively similar ranges. The average

values of the relative markup (= (p ≠ mc)/p) are 51.45% for Monsanto and 37.89 ≠ 41.12% for

the other four firms. Figure 3.10 shows the estimated distribution of markups for Monsanto,

Syngenta, and Dupont. It indicates that Monsanto tends to change higher markups than the

other two firms.

To summarize, the results indicate that the conduct of the seed firms is between collusive

conduct and quantity competition, with a strong rejection of pricing competition, and the

low degree of competition translating into high markups.

Figure 3.9: Estimated distribution of
marginal costs (in $ per bag)

Figure 3.10: Estimated distribution of
markups (p ≠ mc) (in $ per bag)
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Table 3.9: Estimates of marginal costs and markups of GM seeds

Price (in $) Marginal cost (in $) Markup (in $) Relative markup
p mc p ≠ mc (p ≠ mc)/p

(observed) (estimated) (estimated) (estimated)
Monsanto 222.88 108.15 114.73 51.45%

[95% CI] [88.07, 128.22] [94.65, 134.81] [42.49, 60.43]
Dupont 219.97 136.13 83.85 37.89%

[95% CI] [114.88, 157.37] [62.60, 105.09] [28.28, 47.50]
Syngenta 195.86 117.78 78.08 39.8%

[95% CI] [98.62, 136,94] [58.92, 97.25] [30.06, 49.57]
Dow AgroSciencies 215.17 130.66 84.51 39.08%

[95% CI] [108.75, 152.56] [62.61, 106.42] [28.93, 49.21]
AgReliant 219.18 128.31 90.87 41.12%

[95% CI] [106.63, 150.00] [69.19, 112.55] [31.32, 51.00]

Notes: The table reposts the average of observed prices, estimated marginal costs, and markups
of GM seeds. The price, marginal cost, and markup are US dollars per bag. 95% confidence
intervals are calculated by parametric bootstrap using the asymptotic distribution of the estimated
parameters. The number of simulation draws is 1,000.

3.5.3 Counterfactual simulations

Welfare analysis can be conducted based on the structural model. To quantify the importance

of the estimated firm conduct, I conduct counterfactual simulations about how changes in

firm conduct would a�ect market outcomes. I analyze three counterfactual scenarios. First, I

consider the situation in which the conduct of all firms is price competition (CF1 ◊f = 0.5

for all firms), which is referred to as competitive conduct in the following discussion. Next, I

consider the situations in which the conduct of a subset of the firms is competitive. Based

on the observed market shares, I categorize the five seed firms into two groups: large firms

(Monsanto and Dupont) and small firms (Syngenta, Dow AgroSciencies, and AgReliant). I

analyze two scenarios in which the conduct is competitive for only large firms (CF2: ◊f = 0.5

for large firms, ◊f = ◊
ú(the estimated values) for small firms) and for only small firms (CF3:

◊f = ◊
ú for large firms, ◊f = 0.5 for small firms).

In each simulation, I set the values of conduct parameters depending on the considered

scenario. Then, I generate new equilibria by solving firms’ first-order conditions with fixed-
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point iterations. The calculations are conducted separately for each market. I find that the

fixed-point iterations attain convergence within 500 iterations. I assume that the price of

regional seed firms and the price of outside products are unchanged, as my supply model

focuses on the five seed firms. Also, I assume that the marginal costs are fixed in the

simulations.

I denote the new equilibrium price as p1 for each scenario and the observed (baseline)

price as p0. As a measure of consumer welfare, I use a compensating valuation. Following

Dubé, Joo, and Kim (2023), the consumer’s compensating variation for a change in price

from p0 to p1 in the discrete/continuous logit demand model is:

CV = Y
0 I(�(p1)) ≠ I(�(p0))

I(�(p1)) (3.11)

where

I(�(p)) = exp
Q

a≠
Iÿ

i=1
wi ln

A

1 +
Jÿ

k=1
exp(”k(pk) + ‹i(�))

B1/–i
R

b (3.12)

In addition, as a measure of producer surplus, I calculate the di�erence in the sum of

firms’ variable profits from p0 to p1.

�PS =
Fÿ

f=1
(fif (p1) ≠ fif (p0)) (3.13)

Table 3.10 presents the results of counterfactual simulations. I report the change in price,

quantity, firm profit, farmer surplus, and total welfare. In CF1, in which the conduct is

competitive for all firms, the average price decreases by 29%. Firm profits decrease by 3,032

million dollars. On the other hand, farmer surplus increases by 6,682 million dollars. As a

result, total welfare increases by 3,650 million dollars. The simulation results of CF2 and

CF3 highlight how the e�ects of increased competition on market outcomes di�er when the

conduct of large firms and small firms changes in di�erent ways. The values of the total

welfare change are 3,155 million dollars in CF2 and 1,736 million dollars in CF3. The former

result is similar to CF1, indicating that the conduct of large firms is more important in terms
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of total welfare.

Table 3.10: Welfare analysis from counterfactual simulations

CF1 CF2 CF3
Hypothetical conduct
Large firms Competitive Competitive Non-Competitive
Small firms Competitive Non-Competitive Competitive
Simulation results
� Price (in %) -28.718 -18.936 -19.959
� Quantity (in mio-bag) 57.729 41.710 39.432
� Firm profit (in mio-USD) -3031.770 -2042.901 -2178.464
� Farmer surplus (in mio-USD) 6681.594 5197.968 3914.924
� Total welfare (in mio-USD) 3649.825 3155.067 1736.460

Note: ‘Competitive’ indicates the conduct parameter (◊f ) takes 0.5 and ‘Non-competitive’
indicates the conduct parameter (◊f ) takes the estimated values given in Table 3.7. The
simulation results are changes of each variable from the base scenario in which the conduct
of all firms is non-competitive. CF1: The conduct of all firms is competitive. CF2: The
conduct of the large firms (Monsanto and Dupont) is competitive, while the small firms
(Syngenta, Dow, and AgReliant) remain non-competitive. CF3: The conduct of small firms
is competitive, while the large firms remain non-competitive. Price changes are averages
over all markets. For quantity, firm profit, farmer surplus, and total welfare, I report the
total changes aggregated over all years and all CRDs.

Next, to see how di�erent conduct a�ects the price and profits of each firm, I report the

firm-level values of each counterfactual simulation in Table 3.11. In CF1, all firms lower

their prices due to competitive conduct. In this case, the quantity increases for all firms by

stealing demand from the regional seed firms and the outside option, but the negative e�ects

of the price decrease exceed the positive e�ects of the quantity increase, and the firm profits

decrease for all firms. In CF2, the large firms with competitive conduct lower their prices by

more than 20%. The smaller firms, whose conduct remains non-competitive, also lower their

prices due to the strategic complements of pricing. Firm profits decrease for all firms. On

the other hand, the result of CF3 shows a di�erent tendency from CF1 and CF2. In CF3,

the prices decrease by more than 25% for smaller firms whose conduct is competitive. The

decreases in the relative prices increase their quantity. As a result, small firms obtain higher

profits.
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The counterfactual results show that the seed firms extract substantial surplus from

farmers by setting prices higher than the competitive level. If the seed firms were to behave

more competitively, total welfare would significantly increase. Also, the results of the firm-

level decomposition indicate that the e�ects of more competitive conduct are disproportionate

among firms. When the conduct becomes more competitive, the profits of the large firms

decrease more than the profits of the small firms, because the price decrease significantly

reduces the current sales of large firms. This negative impact might induce the large firms

to behave less competitively and sustain higher prices. On the other hand, the profits for

the smaller firms would increase if they lower their prices. This result suggests that the

smaller firms might have an incentive to deviate from the imperfect collusive equilibrium

by lowering their prices and stealing market demand, at least in the short run. However,

there are several possible explanations for why the smaller firms do not deviate. For instance,

they may consider long-run profits. The results of the counterfactual show that small firms

can increase their profits in CF3, but their profits decrease in CF1 and CF2. This indicates

that, if large firms also lower their prices when small firms lower their prices, all firms lose

some profits. These results also imply that the large firms may be price leaders, while the

small firms are followers. To analyze this point, a dynamic model needs to be considered as

proposed in Miller, Sheu, and Weinberg (2021). Another possibility is that the small firms

might have di�erent strategic incentives related to complicated licensing agreements. I do

not formally analyze these issues further, and this remains a future task.
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3.6 Conclusion

This study develops a new structural model of demand and supply that is useful for the

estimation of firm-specific conduct parameters in a di�erentiated products market. The

proposed model allows for the flexible estimation of the degree of collusion and is also

empirically tractable even when conduct parameters of many multiproduct firms are estimated.

Thus, the model overcomes the limitations of the existing models that su�er from the curse of

dimensionality. A key assumption of the model is that competition can be formulated by two

dimensions: one is competition within di�erentiated products and the other is competition

against an outside product. This requirement is compatible with the standard settings using

the discrete choice demand models without additional assumptions.

A limitation of the model is that it cannot identify pair-wise relationships of coordination.

The existing methods are suitable for analyzing such pair-wise relationships, but they are

applicable only when the number of parameters is reduced su�ciently. Instead, the proposed

model is suitable for analyzing the degrees of collusion of many firms toward the whole

market.

I apply the proposed model to the US corn seed industry, in which there are longstanding

concerns about the negative impacts of growing market power on market outcomes, while

the related empirical evidence is limited. I estimate firm-specific conduct parameters for the

five largest firms. The results indicate that all firms are engaged in imperfect collusion. The

results of counterfactual simulations indicate that seed firms extract substantial rent from

farmers through collusive pricing. This application proves the applicability of the model and

provides new empirical evidence on the degree of collusion in the seed industry, which has

been subject to numerous anti-trust regulations in many countries.
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Table 3.11: Firm-level decomposition of counterfactual results

CF1 CF2 CF3
Hypothetical conduct
Large firms Competitive Competitive Non-Competitive
Small firms Competitive Non-Competitive Competitive
Simulation results
� Price (in %)
Monsanto -31.151 -26.975 -12.434
Dupont -24.428 -23.034 -10.113
Syngenta -29.061 -13.427 -27.858
Dow AgroSciencies -28.376 -13.138 -27.676
AgReliant -29.428 -12.735 -27.738
� Quantity (in mio-bag)
Monsanto 31.797 36.799 -5.577
Dupont 3.614 10.962 -6.547
Syngenta 5.820 -2.086 16.728
Dow AgroSciencies 4.462 -0.996 11.144
AgReliant 12.037 -2.970 23.694
� Firm profits (in mio-USD)
Monsanto -1309.216 -327.812 -1731.756
Dupont -1212.264 -842.320 -961.949
Syngenta -221.295 -281.783 103.533
Dow AgroSciencies -82.630 -146.005 123.185
AgReliant -206.363 -444.982 288.523

Note: ‘Competitive’ indicates that the conduct parameter (◊f ) takes 0.5 and ‘Non-
competitive’ indicates that the conduct parameter (◊f ) takes the estimated values given
in Table 3.7. The simulation results are changes of each variable from the base scenario
in which the conduct of all firms is non-competitive. CF1: The conduct of all firms is
competitive for all firms. CF2: The conduct of the large firms (Monsanto and Dupont)
is competitive, while the small firms (Syngenta, Dow, and AgReliant) remain non-
competitive. CF3: The conduct of small firms is competitive, while the large firms remain
non-competitive. Price changes are averages over all markets. For quantity and firm
profit, I report the total changes aggregated over all years and all CRDs.
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Appendix

3.A Further details on derivations

3.A.1 Derivations of demand functions in market share and size

constraint

I show how to derive firm-level Hicksian demand and market-level Marshallian demand

functions in market share and market size constraints using a discrete/continuous logit

demand model. Two constraints are given as follows.

Qf (qf ) Æ Hf (pf ,p≠f , Q(qf , q≠f )) (market share constraint)

Q(qf , q≠f ) Æ D(pf ,p≠f , Y ) (market size constraint)

First, I derive the expected demand of product j conditional on choosing inside products

(j = 1, ..., J).

qj|in(p, YIn) = 1
I

Iÿ

i=1

exp(”j + ‹ij(�))
q

J

k=1 exp(”k + ‹i(�))
Yin

pj

= sj|in(p)Yin

pj

(3.14)

where sj|in is the choice probability of product j conditional on choosing the inside products,

”j = xÕ
j� ≠ – ln pj + ›j is the mean utility from product j. Yin is the expenditure on the

inside products. Notice that the denominator of this conditional choice probability does not
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include the mean utility of the outside product (exp(”0) = 1).

Dubé, Joo, and Kim (2023) show that the expected demand system derived from the

discrete/continuous demand model is integral because it satisfies the necessary and su�cient

conditions from Hurwicz and Uzawa (1971). This integrability ensures recovering an expendi-

ture function of the representative consumer corresponding to the conditional demand system

given in (3.14).

Following Dubé, Joo, and Kim (2023), I derive the expenditure function as:

e(p, Q) = exp
Q

a≠1
I

Iÿ

i=1
ln

A
Jÿ

k=1
exp(”k + ‹i(�))

B1/–i
R

b Q = P (p)Q (3.15)

where P and Q are the price and quantity aggregators of all inside products.

Using this price aggregator, the Marshallian demand function D is:

D =
Jÿ

j=1
sj

Y

P (p) = Sin

Y

P (p) (3.16)

where Sin is the total market share of all inside products, Sin = q
J

j=1 sj(�).

Similarly, I derive the expected demand of product j conditional on choosing products of

firm f .

qj|f (pf , Yf ) = 1
I

Iÿ

i=1

exp(”j + ‹ij(�))
q

kœ�f
exp(”k + ‹i(�))

Yf

pj

= sj|f (pf )Yf

pj

(3.17)

where sj|f is the choice probability of product j conditional on choosing the products of firm

f . Yf is the expenditure on the products of firm f .

Using the same integrability result above, the expenditure function corresponding to the

demand system given in (3.17) is

Yf = ef (pf , Qf ) = exp

Q

ca≠1
I

Iÿ

i=1
ln

Q

a
ÿ

kœ�f

exp(”k + ‹i(�))
R

b
1/–i

R

db Qf = Pf (pf )Qf (3.18)
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where Pf and Qf are the price and quantity aggregators of the products produced by firm f .

Using this firm-level price aggregator, the Hicksian demand function Hf is:

Hf =
ÿ

jœ�f

sj|in
Yin

Pf (pf ) = Sf |in
P (p)Q
Pf (pf ) (3.19)

where sj|in is the conditional market share of product j within the inside products. Sf |in is

the conditional market share of firm f ’s products, Sf |in = q
jœ�f

sj|in.

The discrete/continuous demand system has a homothetic preference as the expenditure

function has a multiplicative form of the price aggregator and quantity aggregator (see

equation (3.15) and (3.18)). The homotheticity generates the following useful properties.

ˆ ln Q

ˆ ln qj

= ˆ ln P

ˆ ln pj

= sj|in,
ˆ ln Qf

ˆ ln qj

= ˆ ln Pf

ˆ ln pj

= sj|f
ˆ ln Hf

ˆ ln Q
= 1 (3.20)

where these equations are derived from the first-order conditions of the consumer expenditure

minimization problem and the functional form of the expenditure functions.

Several remarks should be made. Formulating two constraints in the firms’ profit maxi-

mization problem is key and discrete/continuous demand models are compatible with the

formulation. On the other hand, the standard logit demand models are not necessarily

consistent with this formulation because they may fail to satisfy the integrability property

for some situations (Nocke and Schutz 2018; Dubé, Joo, and Kim 2023). The failure of the

integrability means that it is not possible to recover an expenditure function nor a utility

function of a representative consumer. If these functions are not recovered, the existence

of relevant price and quantity aggregators is not ensured. As a result, deriving demand

functions in two constraints is not possible in general.



105

3.A.2 Derivations of intra- and inter-sectoral elasticity of

substitution

I show how to derive Intra- and Inter-sectoral elasticities of substitution.

3.A.2.1 Intra-sectoral elasticity of substitution

By totally di�erentiating the market share constraint with equality and setting dpk = dqk = 0

for k ”= j, we have

ˆQf

ˆqj

dqj = ˆHf

ˆpj

dpj + ˆHf

ˆQ

ˆQ

ˆqj

dqj for j œ �f

By arranging the terms and dividing both sides by pj/qj, we have the intra-sectoral

elasticity of substitution of product j.

d ln qj

d ln pj

----
Qf (qf )=Hf (pf ,Q(q))

= ≠

ˆ ln Hf

ˆ ln pj

ˆ ln Qf

ˆ ln qj

≠ ˆ ln Q

ˆ ln qj

for j œ �f (3.21)

where ˆ ln Hf

ˆ ln Q
= 1 due to homothetic preference.

This elasticity is calculated as a curvature of the market share constraint, so this is

interpreted as a perceived demand elasticity of product j for firm f . Firm f takes into

account the value of this elasticity when it maximizes profits under the market share constraint.

Next, I show that this elasticity equals the elasticity of Qf/Q with respect to Pf/P ,

which is an analog to the definition of the intra-sectoral elasticity proposed in d’Aspremont,

Dos Santos Ferreira, and Gérard-Varet (2007). The di�erence is that I use Qf instead of qj

because the market share constraint is formulated for the firm-level share of multiproduct
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firms, so if firm f produces only one product, both definitions coincide.

≠d(Qf/Q)
d(Pf/P )

Pf/P

Qf/Q
= ≠

ˆHf

ˆpj

Pf

QPA
ˆPf

ˆpj

1
ˆP

≠ ˆP

ˆpj

Pf

P 2

B
Qf

Q

= ≠

ˆ ln Hf

ˆ ln pj

ˆ ln Pf

ˆ ln pj

≠ ˆ ln P

ˆ ln pj

= ≠

ˆ ln Hf

ˆ ln pj

ˆ ln Qf

ˆ ln qj

≠ ˆ ln Q

ˆ ln qj

= ÷j

where the first equality follows a di�erentiation with respect to pj, and the second equality

follows by arranging the terms. The third equality follows from equation (3.20).

Next, I show how to derive equation (3.5). By di�erentiating the Hicksian demand given

in equation (3.19) and expressing the terms in elasticity forms, we have:

ˆ ln Hf

ˆ ln pj

= ˆ ln Sf |in

ˆ ln pj

+ ˆ ln P

ˆ ln pj

≠ ˆ ln Pf

ˆ ln pj

= ≠ 1
Sf |in

Iÿ

i

–isij|in(1 ≠ Sif |in) ≠ (sj|f ≠ sj|in)

By substituting this into equation (3.21) and using equation (3.20), we have:

÷j = 1
Sf |in(sj|f ≠ sj|in)

Iÿ

i=1
–isij|in(1 ≠ Sif |in) + 1 for j œ �f

In the case of a simple logit without any random coe�cients, this elasticity is simplified

to:

÷j = – + 1 (3.22)
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3.A.2.2 Inter-sectoral elasticity of substitution

By totally di�erentiating the market size constraint with equality and setting dpk = dqk = 0

for k ”= j, we have:

ˆQ

ˆqj

dqj = ˆD

ˆpj

dpj for j œ �f

By arranging the terms and dividing both sides by pj/qj, we have the inter-sectoral

elasticity of substitution of product j.

‡j © ≠d ln qj

d ln pj

----
Q(q)=D(p,Y )

= ≠

ˆ ln D

ˆ ln pj

ˆ ln Q

ˆ ln qj

for j œ �f (3.23)

This elasticity is calculated as a curvature of the market size constraint, so firm f takes

into account the value of this perceived demand elasticity when it maximizes profits under

the market size constraint. Also, this elasticity coincides with the inter-sectoral elasticity of

substitution defined in d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007).

Next, I show how to derive equation (3.6). By di�erentiating the Marshallian demand

function given in equation (3.16) with respect to pj and expressing the terms in elasticity

forms, we have:

ˆ ln D

ˆ ln pj

= ˆ ln Sin

ˆ ln pj

≠ ˆ ln P

ˆ ln pj

= ≠ 1
1 ≠ s0

Iÿ

i

–isijsi0 ≠ sj|in

By substituting this into equation (3.23) and using equation (3.20), we have:

‡j = 1
(1 ≠ s0)sj|in

Nÿ

i=1
–isijsi0 + 1 (3.24)

In the case of a simple logit without any random coe�cients, this elasticity is simplified
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to:

‡j = –s0 + 1 (3.25)

3.A.3 Solving first-order conditions of profit maximization

problem

I show how to solve the profit maximization problem of firm f given in (3.4). The Lagrangian

for firm f is:

Lf =
ÿ

jœ�f

(pj ≠ cj)qj ≠ FCf + ⁄f

A

1 ≠ Qf (qf )
Hf (pf ,p≠f , Q(qf , q≠f ))

B

+ vf

A

1 ≠ Q(qf , q≠f )
D(pf ,p≠f , Y )

B

By di�erentiating this Lagrangian with respect to (pj) and (qj) for j œ �f , we have:

(pj) qj + ⁄f

A
Qf

H
2
f

ˆHf

ˆpj

B

+ vf

A
Q

D2
ˆD

ˆpj

B

= 0 for j œ �f

(qj) pj ≠ cj + ⁄f

A

≠ 1
Hf

ˆQf

ˆqj

+ Qf

H
2
f

ˆHf

ˆQ

ˆQ

ˆqj

B

+ vf

A

≠ 1
D

ˆQ

ˆqj

B

= 0 for j œ �f

Arranging the terms, we have:

(pj) qj = ⁄f

pj

A

≠ˆ ln Hf

ˆ ln pj

B

+ vf

pj

A

≠ˆ ln D

ˆ ln pj

B

for j œ �f (3.26)

(qj) pj ≠ cj = ⁄f

qj

A
ˆ ln Qf

ˆ ln qj

≠ ˆ ln Hf

ˆ ln Q

ˆ ln Q

ˆ ln qj

B

+ vf

qj

ˆ ln Q

ˆ ln qj

for j œ �f (3.27)
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Dividing equation (3.27) by equation (3.26) and arranging the terms, we have:

pj ≠ cj

pj

= ⁄f (sj|f ≠ sj|in) + vfsj|in

⁄f (≠ˆ ln Hf

ˆ ln pj

) + vf (≠ˆ ln D

ˆ ln pj

)
for j œ �f

where I use ˆ ln Qf

ˆ ln qj
= sj|f , ˆ ln Q

ˆ ln qj
= sj|in, and ˆ ln Hf

ˆ ln Q
= 1, all of which hold due to the homothetic

preference.

Finally, defining ◊f = ⁄f/(⁄f + vf) and arranging the terms, the equilibrium relative

markup is derived:

µ
ú
j

= pj ≠ cj

pj

= ◊f (1 ≠ Sf |in) + (1 ≠ ◊f )Sf |in

◊f (1 ≠ Sf |in)÷j + (1 ≠ ◊f )Sf |in‡j

for j œ �f (3.28)

where ÷j and ‡j are the intra- and inter- sectoral elasticities of substitution of product j.
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3.B Relationship with benchmark competition models

I show how the specific values of ◊f generate the equilibrium markups that correspond to

ones generated from benchmark models. I use a discrete/continuous logit demand without

random coe�cients because it allows us to obtain closed-form derivations.

The demand function of product j is given as:

qj = sj

Y

pj

= exp(vj ≠ – log pj)
1 + q

J

k=1 exp(vk ≠ – log pk)
Y

pj

where vj is a product-specific valuation.

3.B.1 Price competition

In the case of multiproduct Bertrand price competition, a profit maximization problem of

firm f is:

max
pf

fif =
ÿ

jœ�f

(pj ≠ cj)qj(p, Y )

The first-order condition for product j produced by firm f is given by:

ˆfif

ˆpj

= qj +
ÿ

kœ�f

(pk ≠ ck)ˆqk

ˆpj

= 0

The derivatives of the demand function are given by:

ˆqj

ˆpj

= ˆsj

ˆpj

Y

pj

≠ sjY

p
2
j

=
A

≠–
sj

pj

+ –
s

2
j

pj

B
Y

pj

≠ sjY

p
2
j

= –
s

2
j
Y

p
2
j

≠ (– + 1)sjY

p
2
j

for j œ �f

ˆqk

ˆpj

= ˆsk

ˆpj

Y

pj

= –
sjskY

pjpk

for j, k œ �f k ”= j
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Substituting the derivatives into the first-order condition, we have:

qj + –
ÿ

kœ�f

(pk ≠ ck)
pk

skqj ≠ (– + 1)(pj ≠ cj)
pj

qj = 0

As relative markups (pj ≠ cj)/pj take the same values under the discrete/continuous logit

(see Konovalov and Sándor (2010) and Nocke and Schutz (2018)), I set µ = (pj ≠ cj)/pj for

all j. Rearranging the terms, we have:

µ = pj ≠ cj

pj

= 1
(1 ≠ Sf )– + 1 (3.29)

where Sf = q
kœ�f

sk is the market share of firm f .

This is the equilibrium markup under multiproduct price competition. The markups are

higher for firms with higher market shares because multiproduct firms internalize their own

products.

Next, I derive the equilibrium markup under the proposed model when ◊f = 0.5, which is

given as:

pj ≠ cj

pj

= 1
(1 ≠ Sf |1)÷j + Sf |1‡j

Substituting ÷j = – + 1 and ‡j = –s0 + 1 from equations (3.22) and (3.25), we have:

pj ≠ cj

pj

= 1
(1 ≠ Sf |1)(– + 1) + Sf |1(–s0 + 1)

= 1
(1 ≠ Sf |1 + Sf |1(1 ≠ S1))– + 1 = 1

(1 ≠ Sf )– + 1

This markup equation is the same as equation (3.29). This result indicates that the

markup under the proposed model with ◊f = 0.5 takes the same value as the multiproduct

price competition model.
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3.B.2 Quantity competition

In the case of multiproduct Cournot quantity competition, a profit maximization problem of

firm f is:

max
qf

fif =
ÿ

jœ�f

(pj(q, Y ) ≠ cj)qj

where pj(q, Y ) = D
≠1(Q(q), Y )ˆQ

ˆqj

is the inverse demand function of product j. This inverse

demand function is obtained from the first-order condition of the expenditure minimization

problem and substitute P = D
≠1(Q(q), Y ).

The first-order condition for product j produced by firm f is given by:

ˆfif

ˆqj

= pj ≠ cj +
ÿ

kœ�f

ˆpk

ˆqj

qk = 0

The derivatives of the inverse demand function are given by:

ˆpj

ˆqk

= ˆD
≠1

ˆQ

ˆQ

ˆqj

ˆQ

ˆqk

+ D
≠1 ˆ

2
Q

ˆqjqk

for j, k œ �f

Substituting the derivatives into the first-order condition, we have:

0 = pj ≠ cj +
ÿ

kœ�f

A
ˆD

≠1

ˆQ

ˆQ

ˆqj

ˆQ

ˆqk

+ D
≠1 ˆ

2
Q

ˆqjqk

B

qk

pj ≠ cj = ≠ˆD
≠1

ˆQ

ˆQ

ˆqj

ÿ

kœ�f

ˆQ

ˆqk

qk ≠ D
≠1 ÿ

kœ�f

ˆ
2
Q

ˆqjqk

qk

pj ≠ cj

pj

= ≠ˆ ln D
≠1

ˆ ln Q

ÿ

kœ�f

ˆ ln Q

ˆ ln qk

≠ 1
ˆQ

ˆqj

ÿ

kœ�f

ˆ
2
Q

ˆqjqk

qk (3.30)
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The first term in equation (3.30) is written by:

≠ˆ ln D
≠1

ˆ ln Q

ÿ

kœ�f

ˆ ln Q

ˆ ln qk

= 1
ˆ ln D

ˆ ln P

ÿ

kœ�f

sk|1 = Sf |1
–s0 + 1 (3.31)

For the second term in equation (3.30), I recover the direct utility function corresponding to

the expenditure function in equation (3.15) by exploiting the duality between the expenditure

function and the direct utility function.

Q(q) =
Q

a
Jÿ

j=1
Cjq

–
–+1
j

R

b

–+1
–

where Cj is the product-specific constant of product j.

I calculate the derivatives of the utility function with respect to qj as:

ˆQ

ˆqj

= Cjq

≠1
–+1
j

Q

a
Jÿ

j=1
Cjq

–
–+1
j

R

b

1
–

ˆ
2
Q

ˆq
2
j

= ≠ Cj

– + 1q

≠–≠2
–+1

j

Q

a
Jÿ

j=1
Cjq

–
–+1
j

R

b

1
–

+
C

2
j

– + 1q

≠2
–+1
j

Q

a
Jÿ

j=1
Cjq

–
–+1
j

R

b

1≠–
–

ˆ
2
Q

ˆqjqk

= CjCk

– + 1q

≠1
–+1
j

q

≠1
–+1
k

Q

a
Jÿ

j=1
Cjq

–
–+1
j

R

b

1≠–
–

for k ”= j
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Substituting these derivatices into the second term in equation (3.30), we have:

≠ 1
ˆQ

ˆqj

ÿ

kœ�f

ˆ
2
Q

ˆqjqk

qk =

Cj

– + 1q

≠1
–+1
j

3q
J

j=1 Cjq

–
–+1
j

4 1
–

≠ q
kœ�f

A
CjCk

– + 1q

≠1
–+1
j

q

≠1
–+1
k

3q
J

j=1 Cjq

–
–+1
j

4 1≠–
–

qk

B

Cjq

≠1
–+1
j

3q
J

j=1 Cjq

–
–+1
j

4 1
–

= 1
– + 1 ≠ 1

– + 1
ÿ

kœ�f

Ckq

≠1
–+1
k

q
J

j=1 Cjq

–
–+1
j

qk

= 1
– + 1 ≠ 1

– + 1
ÿ

kœ�f

sk|in = 1 ≠ Sf |in

– + 1

(3.32)

Substituting equations (3.31) and (3.32) into equation (3.30), we have the equilibrium

markup under multiproduct quantity competition.

pj ≠ cj

pj

= Sf |in

–s0 + 1 + 1 ≠ Sf |in

– + 1 (3.33)

On the other hand, the equilibrium markup under the proposed model is given as follows

when ◊f = 1/(1 + ÷j/‡j).

pj ≠ cj

pj

= 1 ≠ Sf |in

÷j

+ Sf |in

‡j

Substituting ÷j = – + 1 and ‡j = –s0 + 1 from equations (3.22) and (3.25) generates

the same markup equation given in (3.33). This result indicates that the markup under the

proposed model with ◊f = 1/(1 + ÷j/‡j) takes the same value as the multiproduct quantity

competition model.
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3.B.3 Collusion

In the case of collusion, firms maximize joint profits of all firms. A profit maximization

problem of firm f is given as:15

max
pf

fif =
Jÿ

j=1
(pj ≠ cj)qj(p, Y )

The first-order condition for product j produced by firm f is given by:

ˆfif

ˆpj

= qj +
Jÿ

k=1
(pk ≠ ck)ˆqk

ˆpj

= 0

Firms internalize all products in the market when maximizing their profits. Substituting

the derivatives of the demand function into this equation, we have:

qj + –

Jÿ

k=1

(pk ≠ ck)
pk

skqj ≠ (– + 1)(pj ≠ cj)
pj

qj = 0

Using the same markup property under the logit, we have:

pj ≠ cj

pj

= 1
– + 1 ≠ –Sin

= 1
–s0 + 1 (3.34)

On the other hand, the equilibrium markup under the proposed model is given as follows

when ◊f = 0.

pj ≠ cj

pj

= 1
‡j

= 1
–s0 + 1

This result indicates that the markup under the proposed model with ◊f = 0 takes the

same value as one when firms maximize joint profits.
15It is also possible to formulate the problem using the inverse demand function and treat quantities as

choice variables. The solutions in both formulations end up with the same collusive equilibrium.
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3.B.4 Monopolistic competition

In the proposed model, the optimal markup with ◊f = 1 is given by:

pj ≠ cj

pj

= 1
÷j

= 1
– + 1 (3.35)

I show that this markup equals one when firms do not internalize any other products in

the market. The first-order condition for product j produced by firm f is given by

ˆfif

ˆpj

= qj +
Jÿ

k=1
(pk ≠ ck)ˆqk

ˆpj

= qj + (pj ≠ cj)
ˆqj

ˆpj

= 0

Rearranging the terms, we have:

pj ≠ cj

pj

= ≠ 1
ˆ ln qj

ˆ ln pj

This equation indicates that the markup under monopolistic competition is a reciprocal of

the own price elasticity. Here, this own price elasticity needs to be calculated by not taking

into account its impact of price change on the denominator of the choice probability (see

Nocke and Schutz (2018)). A simple calculation generates the following elasticity.

ˆ ln qj

ˆ ln pj

=
A

≠–
sjY

p
2
j

≠ sjY

p
2
j

B
pj

qj

= – + 1

Rearranging the terms, we have:

pj ≠ cj

pj

= 1
– + 1 (3.36)

Combining these facts indicates the equivalency between the proposed model with ◊f = 1
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and the monopolistic competition model.
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3.C Illustration of the supply model in a simple case

I illustrate a simple example of the proposed supply model. There are four products, two

firms f1 = {1, 2}, f2 = {3, 4} selling two products each. There is an outside option (j = 0).

I use a discrete/continuous logit without any random coe�cients. The demand function

of product j is given as:

qj = sj

Y

pj

= exp(vj ≠ – log pj)
1 + q4

k=1 exp(vk ≠ – log pk)
Y

pj

I suppose that we observe Y = 1, s = (0.2, 0.2, 0.2, 0.2)Õ, p = (1, 1, 1, 1)Õ, q = (0.2, 0.2, 0.2, 0.2)Õ.

I also assume – = 5. With this setting, we can calculate that ˆqj

ˆpk
= ≠1 if j = k, 0.2 otherwise.

The profit maximization problems of the two firms are given by :

max
p1,p2,q1,q2

fi1 = (p1 ≠ c1)q1 + (p2 ≠ c2)q2

subject to Q1(q1, q2) Æ H1(p, Q(q))

and Q(q) Æ D(p, Y )

max
p3,p4,q3,q4

fi2 = (p3 ≠ c3)q3 + (p4 ≠ c4)q4

subject to Q2(q3, q4) Æ H2(p, Q(q))

and Q(q) Æ D(p, Y )

Solving the first-order conditions, we have the following equilibrium markups (see equation

(3.7)).

pj ≠ cj

pj

= ◊1(1 ≠ S1|in) + (1 ≠ ◊1)S1|in

◊1(1 ≠ S1|in)÷j + (1 ≠ ◊1)S1|in‡j

for j = 1, 2

pj ≠ cj

pj

= ◊2(1 ≠ S2|in) + (1 ≠ ◊2)S2|in

◊2(1 ≠ S2|in)÷j + (1 ≠ ◊2)S2|in‡j

for j = 3, 4

From equations (3.22) and (3.25), the intra- and inter-sectoral elasticities of substitution



119

(÷j, ‡j) are calculated as ÷j = – + 1 = 6 and ‡j = –s0 + 1 = 2 for all j. Also, the firm-level

shares within the inside products are S1|1 = S2|1 = (0.2 ú 2)/(0.2 ú 4) = 0.5.

The equilibrium markups are given as follows depending on the values of ◊f .

p ≠ c

p
=

Y
_____________]

_____________[

0.5 (= 1
‡j

) if ◊f = 0 (Collusion),

0.33 (= 1≠Sf |1
÷j

+ Sf |1
‡j

) if ◊f = 0.25 (= 1
1+÷j/‡j

) (Quantity competition),

0.25 (= 1
(1≠Sf |1)÷j+Sf |1‡j

) if ◊f = 0.5 (Price competition),

0.17 (= 1
÷j

) if ◊f = 1 (Monopolistic competition).
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Dubé, Jean-Pierre H, Joonhwi Joo, and Kyeongbae Kim. 2023. “Discrete-choice models and
representative consumer theory.” NBER Working Paper.

Fernandez-Cornejo, Jorge. 2004. The seed industry in US agriculture: An exploration of data
and information on crop seed markets, regulation, industry structure, and research and
development. Technical report Agricultural Information Bulletin no.786. US Department
of Agriculture.

Fisher, Franklin M, and John J McGowan. 1983. “On the misuse of accounting rates of return
to infer monopoly profits.” The American Economic Review 73 (1): 82–97.

Friedman, James W. 1983. Oligopoly Theory. Cambridge University Press.

Gasmi, Farid, Jean Jacques La�ont, and Quang Vuong. 1992. “Econometric Analysisof
Collusive Behaviorin a Soft-Drink Market.” Journal of Economics & Management Strategy
1 (2): 277–311.

Goeree, Michelle Sovinsky. 2008. “Limited information and advertising in the US personal
computer industry.” Econometrica 76 (5): 1017–1074.

Gorman, William M. 1959. “Separable utility and aggregation.” Econometrica: 469–481.



123

Gra�, Gregory D., Gordon C. Rausser, and Arthur A. Small. 2003. “Agricultural biotechnol-
ogy’s complementary intellectual assets.” The Review of Economics and Statistics 85 (2):
349–363.
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