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INFERENCE ON A TIME SERIES OF IMAGES USING

TOPOLOGICAL DATA ANALYSIS

Susan Glenn

Under the supervision of Professors Jun Zhu and Jessi Cisewski-Kehe

At the University of Wisconsin-Madison

Topological data analysis (TDA) uses persistent homology to quantify

loops and higher-dimensional holes in data, making it particularly relevant

for examining the characteristics of cell images in the field of cell biology.

In the context of a cell injury, as time progresses, a wound in the form of a

ring emerges in the cell image and then gradually vanishes. Performing

statistical inference on this ring-like pattern in a single image is challenging

due to the absence of repeated samples. This dissertation contributes to

the literature on topological inference, with a specific focus on the analysis

of image data.

First, we introduce a novel TDA-based framework to estimate under-

lying structures within individual images and quantify associated uncer-

tainties through confidence regions. Our proposed method partitions the

image into the background and the damaged cell regions. Then pixels

within the affected cell region are used to establish confidence regions

in the space of persistence diagrams (topological summary statistics).

This method corrects biases in the estimates of topological features on

persistence diagrams that are common in traditional TDA approaches. A
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simulation study is conducted to evaluate the coverage probabilities of the

proposed confidence regions in comparison to an alternative approach

also presented in this dissertation.

Additionally, we develop two hypothesis testing frameworks to dis-

tinguish signal from noise on a persistence diagram of an image. Both

frameworks adapt the traditional permutation test to accommodate a per-

sistence diagram as a summary statistic. Another key contribution of

this dissertation is extending the methodology for analyzing patterns in

a single image to an image evolving throughout time. This extension

uses higher-dimensional topological features to establish temporal connec-

tions among lower-dimensional features, enabling the tracking of evolving

topological features over time.

Keywords: Confidence Regions, Image Processing, Pattern Detection,

Permutation Test, Topological Data Analysis, Uncertainty Quantification

Jun Zhu and Jessi Cisewski-Kehe
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1 background

1.1 Introduction

Ring-like patterns are ubiquitous in biology, being evident during cell

division (Pollard and O’Shaughnessy, 2019), development (Haglund et al.,

2019), and the response of immune cells to challenges (Herron et al., 2022),

to name a few examples. Of particular interest here are the rings of proteins

that form around wounds made in single cells as part of the healing

response (Mandato and Bement, 2001); an example of these patterns

can be seen in Figure 2.5. Such rings close over the wound site, healing

the damage, and manipulations that disrupt healing typically alter the

organization of the rings (Burkel et al., 2012). Currently, assessments

of wound ring disorganization are largely subjective, or are based on

simple comparisons of features like aspect ratios, rather than any metric

of underlying ring pattern quality. The purpose of this document is to

develop a statistical method to objectively identify rings and quantify their

associated uncertainty.

Topological data analysis (TDA) provides a framework for the quan-

tification of the global shape of data. For the wounded cell example, TDA

can quantify the pattern of an image by representing each detected ring

as a loop on a two-dimensional persistence diagram. However, statistical

inference requires addressing the uncertainty of these estimates. Direct

inference on persistence diagrams is challenging due to their complex
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multivariate, multidimensional structure, where even averages are not

necessarily unique (Mileyko et al., 2011; Turner et al., 2014). Existing

techniques in topological inference include resampling procedures, ran-

domization tests, distance functions, density estimation, and spatial point

processes; however, many of these statistical methods are applied to other

types of data outside of a single image or are designed to compare mul-

tiple groups (Robinson and Turner, 2017; Rabadan and Blumberg, 2019;

Boissonnat et al., 2018; Abdallah et al., 2023).

TDA has been applied to analyze a wide range of image processing

problems. Much of the current literature is dedicated to machine learning

tasks, such as classification or prediction, typically involving multiple

images (e.g., Singh et al. 2023; Skaf and Laubenbacher 2022; Bukkuri

et al. 2021). Applications of TDA for inference in image analysis typically

involve either multiple images of a single subject or comparisons between

two distinct groups (e.g., Chung et al. 2009; Wang et al. 2023; Singh et al.

2023). When a single image is examined, the focus is often on extracting

topological features without addressing statistical inference (e.g., Singh

et al. 2023; Gupta et al. 2023). Notably, there is an existing method for

inference on topological features extracted from point cloud data (Fasy

et al., 2014). There is even less literature focusing on TDA applied to a time

series of a single image, with most time series TDA tasks, again, centered

on prediction, signal processing, and classification of point cloud data or

networks (Gholizadeh and Zadrozny, 2018; Ravishanker and Chen, 2019).
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Overall, there is a dearth of TDA methodology in the context of an image

of a ring in a living system, as many existing methods are either designed

for data types other than images, focus on multiple images, or address

tasks other than inference.

A primary challenge—and a unique contribution of this dissertation—is

in accurately quantifying the uncertainty associated with the ring’s topo-

logical features. To address this central challenge, we develop a new

method for constructing confidence regions for the persistence diagram

of a single image in Chapter 2. Our focus is specifically on persistence

diagrams due to their capability to discriminate and perform inference

on individual topological features. The proposed method uses segmenta-

tion, dividing the image into contiguous regions, which are subsequently

matched to corresponding loops identified in the persistence diagram.

These matched loops serve as the basis for estimating the shapes within

the underlying pattern such as rings in the case of the current applica-

tion. The confidence regions built for each matched loop are derived by

analyzing the pixel distribution within each partition. This method pro-

vides unbiased estimates and asymptotic confidence regions with accurate

coverage probabilities. In addition, we extend the method in Fasy et al.

(2014) from point clouds to images as an alternative to compare against

our method. The proposed method allows for inference on the persistence

diagram of a single image which yields a simple intuitive interpretation

and is computationally efficient, whereas traditional methods in TDA are
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limited in this setting. While motivated by the wounded cell applica-

tion, this proposed method generalizes to settings with a single image

characterized by one or more loops.

In Chapter 3, we introduce significance testing on a persistence diagram.

Two separate tests are introduced in order to find statistically significant

topological features on a persistence diagram of a single image, which

notably the confidence regions in Section 2.1 are unable to do. Building

on similar approaches by Robinson and Turner (2017); Abdallah et al.

(2023), we use a variation of the permutation test to perform topological

inference which focuses on the case of a single persistence diagram of an

image, or M-dimensional array. One of the hypothesis tests helps identify

statistically significant features for the method described in Section 2.1,

thereby providing a more rigorous framework for inference. The second

test has a broader scope outside of the method in Section 2.1 and will be

applied, as an example, to the methodology in Chapter 4. In Section 4.2,

we extend the analysis to incorporate time more directly; such that, a

method is created to track a pattern in a single image as the pattern evolves

throughout time. In the next section, Section 1.2, we provide a background

on TDA and explain how TDA can be applied to analyze the shape of

images.
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1.2 Topological Data Analysis and Persistence

Diagrams

This section introduces key principles used in TDA and their application

to data in the context of images. First, concepts in algebraic topology,

such as persistent homology, are described. Then the focus is on how to

characterize the intrinsic shape and structure of an image and represent

this information on a persistence diagram.

TDA uses ideas from algebraic topology and computational geome-

try to extract meaningful insights and patterns from data. In particular,

persistent homology is used to quantify the shape of a dataset through

identifying holes in the space and determining their number, strength

(through persistence), and dimension. Viewing shape through this per-

spective of connectivity and continuity, topological features are used to

characterize a space.

Homology associates algebraic structures, called homology groups,

with topological spaces. These groups Hm(X), where m represents the ho-

mology group dimension, can be thought of as characterizing a topological

space X by the number of connected components (the number of zero-

dimensional homology group generators, H0(X)), the number of loops

(the number of one-dimensional homology group generators, H1(X)), and

the number of voids (the number of two-dimensional homology group

generators, H2(X)) inX (Chazal and Michel, 2021; Edelsbrunner and Harer,
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2010). When m ⩾ 3, Hm(X) corresponds to higher dimensional holes in X.

In Chapter 2, we restrict our focus to the first homology group (H1) since

the interest is in the loops, or rings, found in images such as in Figure 2.5.

Chapters 3 and 4 expand to focusing on higher dimensional homology

groups, along with loops and connected components. Persistent homol-

ogy tracks the evolution of these homology groups across various scales.

(Otter et al., 2017; Edelsbrunner and Harer, 2010).

When the topological space is an image M, the scales can refer to the

intensity values of pixels Z(x,y) where the (x,y) coordinates represent

the locations of the center of the pixels in the image. Homology groups at

different intensities are computed from a triangulation on the upper-level

sets of the image, defined as M−1(δ,∞) = {(x,y) ∈ R2|Z(x,y) > δ} where

δ is the threshold for intensity values (Chazal and Michel, 2021). This

triangulation breaks down the space into simplices—geometric elements

on which the computations are carried out. A simplicial complex K is a set

composed of zero-simplices (points), one-simplices (line segments), and

two-simplices (triangles), and three-simplices (tetrahedral), such that (i)

any face of a simplex of K is also a simplex in K, and (ii) the intersection

of any two simplices in K is a face of both simplices or empty. Let V be

the set of points ((x,y)-coordinates) and K be the set of line segments and

triangles which make up K. When a pixel is in M−1(δ,∞) the triangulation

puts a zero-simplex at the pixel center and connects each zero-simplex to

neighboring zero-simplices by one-simplices. The pairwise connection of
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three zero-simplices form a two-simplex (Chazal and Michel, 2021; Otter

et al., 2017).

Figure 1.1 shows several examples of simplicial complexes built on

upper-level sets of the data along with the correct segmentation of the

data and the underlying pattern from which the data were generated

(e.g., partitions an image into background and manifold(s), details are

discussed in Section 2.1). As the threshold parameter δ decreases from

positive infinity to zero, the space becomes more connected, capturing the

homology of each simplicial complex. While δ varies, a filtration is formed

by a finite sequence of nested sub-complexes Kδ1 ⊂ Kδ2 ⊂ . . . ⊂ Kδl
= K.

Figures 1.1c-1.1e illustrate different Kδ on the upper-level sets in a filtration

of M. The ‘birth time’ b of a loop, is the value of δ when it first appears in

the filtration (e.g., Figure 1.1c), and its ‘death time’ d is the value at which

it merges with another feature (e.g., Figure 1.1e). Persistence, defined as

the feature’s lifetime (persistence = b− d), can be interpreted as longer

lifetimes indicate topological signal and and shorter lifetimes indicate

topological noise (Fasy et al., 2014).
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(a) Pattern M0 (b) Observed Mσ

(c) δ=3778 (birth) (d) δ=3000 (e) δ=2512 (death)
Figure 1.1: (a) Partitions of the underlying pattern into background µ0, loop
µ1, and interior of the loop µ1∗. (b) Partitions of the data into into background,
the loop, and the interior of the loop. Zk where k = {0, 1, 1∗} represents a pixel
intensity value and each Fk is a distribution from which the pixel was drawn. (c)
The simplicial complex K3778, built on (Mσ)−1(3778,∞), contains one connected
component and five loops. The birth time of the true loop (1) is 3778. (d)
K3000 contains five connected component and six loops. (e) K2512 contains two
connected component and no loops, where 2512 is the death time of the large
loop (1) born at 3778.

The evolution of the homology groups of M over the course of the filtra-

tion is graphically represented on a persistence diagram P(M). Figure 1.2

shows an example of a persistence diagram of the data (Figure 1.1b) com-

pared to the persistence diagram of the underlying pattern (Figure 1.1a)

from which the data were generated. Features of each dimension, such

as connected components and loops are represented in the diagram by

displaying the death and birth times as (x,y) coordinates. Each homology
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group, is represented by a shape and color: connected components are

black dots and loops are red triangles. The number of red triangles in each

diagram is the number of loops detected in the upper-level set filtration

for an image. The more persistent loops are farther from the diagonal line

y = x (i.e. birth=death).

In the persistence diagram for the data (Figure 1.2a), the birth time of

the most persistent loop is 3778 and the death time is 2512, both of these

are estimates of the birth and death time of the corresponding loop in the

underlying pattern. All the other loops which are closer to the diagonal

are small loops which are just due to noise. In the persistence diagram of

the underlying pattern (Figure 1.2b) there is only one loop detected with

a birth time of 4000 and a death time of 3000.

(a) Observed P(Mσ) (b) Pattern P(M0)
Figure 1.2: (a) The persistence diagram of the data in Figure 1.1b with loops
(red triangles) and connected components (black dots). (b) The persistence
diagram of the underlying pattern in Figure 1.1a which has only one loop and
one connected component.

In the context of our application, a persistence diagram may be viewed

as an estimate of the underlying pattern of M, where a different realization



10

of the image for the same data-generating process generally results in a

different persistence diagram. The number of loops, and their correspond-

ing birth and death times, can be an estimate of the pattern of the ring

structure. In the next Chapter, we outline a method to get uncertainty

estimates for the birth and death times of the loops found in the data

which allows for inference on the true persistence diagram Figure 1.2b

from the observed persistence diagram Figure 1.2a.
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2 confidence regions for a persistence diagram

of a single image

2.1 Setup

In this section, we develop a method to assess the uncertainty in the

estimated persistence diagram by constructing confidence regions around

the birth and death times of the elements in H1(M
σ), the generators of

the one-dimensional homology groups (i.e., loops). These confidence

regions should cover the one-dimensional homology group generators of

the persistence diagram of the noiseless true manifold M0. However, as

is demonstrated in Section 2.3, there is considerable bias in the estimated

birth and death times of loops using upper-level set filtrations for a raw

image, which we refer to as the traditional TDA estimates.

An approach for reducing the influence of outliers when estimating

persistence diagrams for point-cloud data uses upper-level set filtrations

on kernel density estimates or regression models of the data, rather than

a different type of filtration (e.g., a Vietoris-Rips filtration) on the point-

cloud data directly (Chazal and Michel, 2021; Fasy et al., 2014). This

technique is used in Fasy et al. (2014) to construct confidence regions on

persistence diagrams for point-cloud data.

Since the confidence regions are centered around the estimated birth

and death times, we need to obtain unbiased estimates of the birth and
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death times of loops in images. One possible approach, outlined in Sec-

tion 2.7, is to estimate a smoother function of the image and doing an

upper-level set filtration extending the inference approach in Fasy et al.

(2014) from point-cloud data to a single image. We refer to this proposed

extension as smooth TDA. This is used as a comparison to our primary pro-

posed approach which we refer to as partitioned TDA. The partitioned TDA

method provides unbiased estimates without smoothing, and is presented

in detail below in Section 2.2.

Let the image M be defined by some function f(x,y) discretized onto a

2D grid Gd1×d2 , where each (x,y) coordinate represents the grid columns

x = {1, 2, . . . ,d1} and grid rows y = {1, 2, . . . ,d2}. The true pattern is the

noiseless image M0 = {f(x,y) : (x,y) ∈ G}. However, in practice there is

some zero-centered noise ε(x,y) drawn from distribution F(0,σ2(x,y))

added to the function so that Mσ = {f(x,y) + ε(x,y) : (x,y) ∈ G} with the

σ as the exponent of Mσ indicating there is noise in the image. Each grid

value, or pixel, in Mσ has intensity Z(x,y) drawn from:

Z(x,y) ∼ F(f(x,y),σ2(x,y)), (2.1)

where the mean is defined by M0 and the error is defined by ε.

In this work, the following assumptions are made regarding the topo-

logical features of the noise-free image, M0, which are estimated from the

topological features of its noisy counterpart, Mσ. The proposed method,
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partitioned TDA, involves partitioning the image in a way that distin-

guishes the background and np other topological structures (e.g., loops

and the interior of loops).

Assumption 1. The true image M0 can be segmented into contiguous regions

with constant functional values: f(x,y) = µk ∀ (x,y) within partition Gk.

Image Mσ can be segmented into np + 1 contiguous regions where each region

is defined as Mσ
k = {f(x,y) + ε(x,y) : (x,y) ∈ Gk} for k = {0, . . . ,np} where

Gk = {(x,y) ∈ G : f(x,y) = µk}.

Assumption 2. If the true image, M0, has at least one feature that is homeo-

morphic to a one-sphere (loop), let n1 denote the number of one-spheres. Any

partition of M0 that is homeomorphic to a one-sphere has pixel intensities fixed

at f(x,y) = µi for i = {1, . . . ,n1} where 2n1 ⩽ np, and the partition interior to

this one-sphere has pixel intensities fixed at f(x,y) = µi∗. Let µ0 be designated

as the mean of the background noise partition (if it exists).

Assumption 3. For an upper-level set filtration assume for the majority of

i = {1, . . . ,n1} that µi ⩾ µi∗ and µi ⩾ µ0.

If all the inequalities from Assumption 3 are ⩾, for a given setting, then

an upper-level set filtration is sufficient. However, depending on how

many µi ⩽ µi∗, a lower-level set filtration may capture the topological

features more effectively.

In Section 2.2, we explain how partitioned TDA constructs confidence

regions for an image with a single H1 feature (i.e., loop) so that np =
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3 (background, H1 feature, and the region interior to the H1 feature).

Section 2.5 generalizes this method to handle multiple H1 features.

2.2 Confidence Regions for a Single Image with

a Single H1 Feature

Here we consider the setting with a single loop in M0. Assumptions 1 and

2 imply that M0 can be segmented into three contiguous regions where

the background region is defined as M0
0 = {µ0 : (x,y) ∈ G0}, the part

of the image homeomorphic to a one-sphere is defined as M0
1 = {µ1 :

(x,y) ∈ G1}, and part of the image that is interior to this one-sphere is

defined as M0
1∗ = {µ1∗ : (x,y) ∈ G1∗}. For Sections 2.2-2.5, we assume the

true partitions G0, G1, and G1∗ are known. However, in practice the true

partitions are unknown and segmentation is used to estimate each Gk.

Section 2.6 proposes an algorithm for reducing the bias in the confidence

region coverage due to the misclassification of pixels in an estimated

segmentation.

Using the known partitions, the data Mσ can be separated into three

distributions from which pixels are drawn (Mσ
0 , Mσ

1 , Mσ
1∗) as defined in
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Assumption 1:

Mσ
0 is the background partition where Z0 ∼ F0(µ0,σ2

0)

Mσ
1 is the part homeomorphic to a one-sphere where Z1 ∼ Fbirth(µ1,σ2

1)

Mσ
1∗ is the part interior to the one-sphere where Z1∗ ∼ Fdeath(µ1∗,σ2

1∗)

(2.2)

The loop in the true pattern, of which we are trying to estimate its birth

and death times, has a birth time of µ1 determined by M0
1 and a death time

of µ1∗ determined by M0
1∗, as shown in Figure 1.1a. In order to make the

confidence regions, we define the joint distribution of the sample means

of the pixel intensities associated with the birth and death times, Z̄1 and

Z̄1∗, respectively, as follows:

X =

Z̄1∗

Z̄1

 approx
∼


µ1∗

µ1

 ,

σ2
1∗

nd
0

0 σ2
1

nb


 (2.3)

where nd and nb are the number of pixels in Mσ
1∗ and Mσ

1 , respectively.

By the Central Limit Theorem, X approximately follows a bivariate nor-

mal distribution allowing for a confidence region to be created based on:

(X̄− µ)TΣ−1(X̄− µ) ∼ χ2
2. The asymptotic confidence region for the birth
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and death times of M0 is as follows:

µ(θ) = X̄+
√
χ2

2,α

√
Σ̂

cos(θ)

sin(θ)

 for 0 < θ < 2π (2.4)

where the variance can be estimated by sample variance.

The segmentation of Mσ
k for k = {0, 1, 1∗} creates the confidence regions

in Equation (2.4) and the unbiased estimators for (µ1∗,µ1) : (Z̄1∗, Z̄1).

However, these unbiased estimates are not derived from an upper-level set

filtration on Mσ. This approach for generating confidence regions is called

partitioned TDA; next we describe the bias in traditional TDA methods.

2.3 Bias in Traditional TDA Birth and Death

Times

The level of bias in traditional TDA birth times depends on the proportion

of vertices in the simplicial complex that comprise the birth of the loop

relative to the set of pixels associated with the corresponding true loop

pattern. A similar bias is found with traditional TDA death times and

the relationship between the structure of the simplicial complex and the

interior of the true pattern. A more technical explanation is provided next.

Assumption 3 states that µ1 ⩾ µ0 and µ1 ⩾ µ1∗. When applying an

upper-level set filtration to Mσ, a number of loops can be identified along
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with the associated birth and death times {(d1,b1), . . . , (dj,bj), . . . (dβ1 ,bβ1)}.

Let β1 be the total number of loops detected and (dj,bj) be the traditional

TDA birth and death times for the loop Mσ
1 (topological signal). All other

birth and death times are topological noise and not a part of the true pat-

tern M0. The birth time, bj, is the largest δ value in the filtration when the

loop in Mσ
1 first appears in the simplicial complex Kbj

= {Vbj
,Kbj

}. The

part of the simplicial complex, Kbj
, that comprises the birth of the loop is

defined as follows:

Kbirth = {Vbirth,Kbirth} ⊆ Kbj
and Vbirth ⊆ G1. (2.5)

Similarly, the death time, dj, is the largest δ value in the filtration when

the loop in Mσ
1 disappears in the simplicial complex Kdj

= {Vdj
,Kdj

}. The

part of the simplicial complex, Kdj
, that makes up the interior of the loop

is defined as follows:

Kdeath = {Vdeath,Kdeath} ⊆ Kdj
and Vdeath = G1∗. (2.6)

Figure 2.1 illustrates the difference betweenbj,dj,Kbj
,Kbirth,Kdj

,Kdeath,

Mσ
1 , and Mσ

1∗. The white rectangles in each subfigure outline pixels located

in G1 with intensity values in Mσ
1 (Figure 2.1a) or pixels located in G1∗ with

intensity values in Mσ
1∗ (Figure 2.1b), the total purple simplicial complexes

are either Kbj
(Figure 2.1a) or Kdj

(Figure 2.1b), while the part of the

purple simplicial complexes within the white rectangles are either Kbirth
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(Figure 2.1a) or Kdeath (Figure 2.1b). The black zero-simplex is the location

of the pixel which has intensity bj (Figure 2.1a) or dj (Figure 2.1b). Note

that any of the white rectangles beneath the purple simplicial complex

appear light purple.

(a) Kbj
on (Mσ)−1(bj,∞) (b) Kdj

on (Mσ)−1(dj,∞)

Figure 2.1: Illustration of simplicial complexes (purple) built on the upper-level
sets at the birth time and death times of an image with a loop, with µ1 = 4000
and µ1∗ = 3000. (a) The simplicial complex Kbj

= K3597 at the birth of the
loop where the black dot is the pixel with intensity value equal to 3597, which
is the upper-level set threshold associated with the birth of the loop. The white
rectangles indicate the pixels of Mσ

1 . (b) The simplicial complex Kdj
= K2593 at

the death of the loop where the black dot is the pixel with intensity value equal
to 2593, which is the upper-level set threshold associated with the death of the
loop. The white rectangles, which indicate the pixels of Mσ

1∗, appear light purple
due to the overlaying two-simplices in Kdj

.

The level of bias in the estimate of bj using traditional TDA depends

on the proportion between the number of vertices in the set Kbirth and the

number of elements in the set G1, represented by pb. According to Equa-

tion (2.5), where Z(Vbirth) ⊆Mσ
1 and Z1 ∼ Fbirth(µ1,σ2

1), the proportion pb
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is defined as follows:

pb = 1 −
|Vbirth|

|Mσ
1 |

= 1 −
|Vbirth|

nb

, (2.7)

where |X| is the cardinality of the set X.

Since the birth time is the minimum intensity values of all the pixels

Z1(x,y) where (x,y) ∈ Vbirth, then F−1
birth(pb) = bj. The bias in the birth

time is:

Bias(µ1,bj) = µ1 − E{F−1
birth(pb)}. (2.8)

The birth time is unbiased if bj falls within the 50th percentile of all pixels

comprising loop M1, given that Fbirth is a symmetric distribution.

As an example, the number of vertices in Kbj
= K3597 in Figure 2.1a is

Vbj
= 109 and the number of vertices in Kbirth is Vbirth = 101. The number

of pixels which make up the loop G1 is nb = 106. Therefore, pb ≈ 0.05 and

the birth time bj = 3597 is in the 5th percentile of all the pixels which make

up the loop. The bias of this estimate with a true birth time µ1 = 4000 is

4000 − 3597 = 403.

The level of bias of dj (using traditional TDA) depends on the pro-

portion between the number of vertices in the set Kdeath and the number

of elements in the set G1∗, denoted by pd. Based on the Assumptions in

Section 2.1, all the pixels which make up the interior of the loop are a part

of the simplicial complex at the death of the loop. From Equation (2.6),

Z(Vdeath) ⊆ Mσ
1∗ and Z1∗ ∼ Fdeath(µ1∗,σ2

1∗) and consequently, the propor-
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tion pd is:

pd = 1 −
|Vdeath|

|Mσ
1∗|

= 1 −
nd

nd

= 0. (2.9)

Then F−1
death(0) = min(Z1∗) = dj where the bias in the estimate is:

Bias(µ1∗,dj) = µ1∗ − E{min(Z1∗)}. (2.10)

Therefore, the death time is an unbiased estimator of µ1∗ when there is

only one pixel which makes up Mσ
1∗ since E(min(Z1∗)) = E(Z1∗) = µ1∗.

Simulations Testing Bias in Birth and Death times

Figure 2.2 displays results of an exploration of the relationship between

bias in traditional TDA estimates of the birth and death times and the

construction of the image, compared to the unbiased partitioned TDA

estimates. Differences in the image dimension and the area of the partitions

(Gσ
1 and Gσ

1∗) change the amount of bias in the traditional TDA estimates

of the birth and death times of the loop. Two simulations studies are

carried out: (1) considers four different loop thickness levels and (2)

considers four different different image dimensions levels. Each factor

level for both simulations has 100 iid images generated with one loop

((µ1∗,µ1) = (3000, 4000)). At each of the loop thickness level, {1, 2, 3, 4},

the birth and death times of the loop (dj,bj) is calculated for each image.

Level 1 is for a very thin loop (two pixels thick), level 2 is a medium thin

loop (seven pixels thick), level 3 is a medium thick loop (11 pixels thick),
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and level 4 is for a thick loop (16 pixels thick). Similarly, at each image

dimension level, {20 × 20, 50 × 50, 100 × 100, 150 × 150}, the birth and

death times of the loop (dj,bj) are calculated for each image. These results

are shown in boxplots in Figure 2.2, where the light blue boxplots are

the traditional TDA birth and death times, denoted as tTDA, while the

red boxplots are the partitioned TDA birth and death times, denoted as

parTDA.

As seen in Figure 2.2, estimates of the birth (Figure 2.2a) and death

(Figure 2.2b) times across all different factor levels (dimension and thick-

ness) using partitioned TDA are unbiased. Whereas, estimates of the birth

and death times using traditional TDA are biased and this bias changes

depending on different factor levels.

(a) Birth times (bj) (b) Death Times (dj)
Figure 2.2: Boxplots illustrating estimated birth (a) and death (b) times of loops
using partitioned TDA (red) and traditional TDA (blue), based on 100 iid images
within each factor level of loop thickness or dimensions. The true birth and
death times are indicated by the horizontal solid black lines. The traditional TDA
(tTDA) estimates have a strong negative bias with higher variability, while the
proposed partitioned TDA (parTDA) estimates appear to be unbiased with lower
variability.
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When interpreting Figure 2.2, the dimension of the image serves as a

proxy for the pixel sample size of the partitions, with higher dimensions

indicating larger sample sizes in both Mσ
1 and Mσ

1∗. As image dimension

increases, the bias in the birth time estimates using traditional TDA de-

creases as well as the variance. However, for the death time, the bias

increases as the image dimensions increase. This result is consistent with

the discussion of pd in Equation (2.9). Loop thickness, which serves as a

proxy for examining the area of Mσ
1 and Mσ

1∗, shows less bias in both the

birth and death times. In general, thicker loops or larger image dimensions

(more pixels making up the loop) lead to less biased estimates of the birth

time. Thicker loops or smaller image dimensions (fewer pixels making

up the inside of the loop) lead to less biased estimates of the death time.

In certain situations the traditional TDA estimate, (dj,bj) is an unbiased

estimator for (µ1∗,µ1) whereas, (Z̄1∗, Z̄1) is unbiased regardless of the way

the loop or image is constructed.

2.4 Matching Loops Between Traditional TDA

and Partitioned TDA

The partitions (Gk) used in partitioned TDA to estimate the birth and

death times of a loop do not directly use TDA (e.g., there is no assump-

tion that a partition forms a loop). To detect a loop, the unbiased esti-

mates, (Z̄1∗, Z̄1), need to be matched to a corresponding loop detected
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from traditional TDA, (dj,bj), for a loop to be detected with partitioned

TDA. Algorithm 1 is designed to identify which of the loops in the Mσ,

{(d1,b1), . . . , (dj,bj), . . . (dβ1 ,bβ1)}, are in the partitions G1∗ and G1 by the

location of the birth and death time pixel intensities. The loops which

are not matched to the partitions are not considered to be part of the un-

derlying pattern. Once (dj,bj) is matched with the partitions (G1∗,G1)

using Algorithm 1, the birth and death times of the loop detected with

traditional TDA are estimated with (Z̄1∗, Z̄1).

Algorithm 1 Localizing the birth and death times (dj,bj)

1: Input: df := (x,y,Z[x,y]) of image Mσ; partitions Gk for k = {0, 1, 1∗},
birth and death times from P(Mσ) := {(d1,b1), . . . , (dq,bq)}.

2: Output: (dj,bj) matched to (G1∗,G1)
3: Define: dfk = {(x,y,Z[x,y]) ∈ Gk}, k = {0, 1, 1∗}; outd = ∅; outb = ∅;

out= ∅
4: for l in 1:q do
5: Step 1: Find dfk where Z(x,y) = dl ▷ Identify pixel location of dl

in G

6: if k = 1∗ then outd ← outd ∪ l ▷ Only keep index l for dl ∈ G1∗
7: end if
8: Step 2: Find dfk where Z(x,y) = bl ▷ Identify pixel location of bl

in G

9: if k = 1 then outb ← outb ∪ l ▷ Only keep index l for bl ∈ G1
10: end if
11: Step 3: Calculate out←outd∩ outb
12: if length(out)==2 then (dl,bl) = (dj,bj) ▷ If bl ∈ G1 and

dl ∈ G1∗ loop is matched
13: Stop ▷ Match found, stop algorithm
14: end if
15: end for
16: return out
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2.5 Confidence Regions for Multiple H1

Features

Section 2.2 introduced partitioned TDA for the setting with only one loop in

M0, which is the setting of our motivating cell image application presented

in Section 2.9. The objective of this section is to explain how the proposed

method can be generalized to encompass multiple loops within a single

image. While the primary emphasis is on one-spheres, it is worth noting

that the methodology can be readily extended to m-spheres for higher-

dimensional spaces, such as 3D images.

Assume that there are n1 loops in M0 resulting in 2n1 + 1 partitions

and that the functional value of each loop in f(x,y) is µi and the value of

the interior of each one-sphere in f(x,y) is µi∗ for i = {1, . . .n1}. For every

loop of M0, the persistence diagram of the observed image represents

each loop as birth death pairs: (dj1 ,bj1), . . . (djn1
,bjn1

). The steps listed in

Algorithm 1 can be extended to connect each (dji ,bji) with (Gi∗,Gi) where

the partitions Gk become k = {0, i, i∗} for i = {1, . . . ,n1}.

There are three other possible types of birth-death pairs (dl,bl) where

l ̸= ji for i = {1, . . .n1} detected in the image Mσ which are not loops in

M0:
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(1) loops which are in the background (d0,b0 ∼ F0(µ0,σ2
0))

d0 /∈Mσ
i∗ and b0 /∈Mσ

i ∀i ̸= 0 =⇒ using Algorithm 1 (d0,b0) ̸= (dji ,bji)

(2.11)

(2) loops which are only in Mi or only in Mi∗ (di,bi ∼ Fbirth(µi,σ2
i) or

di∗,bi∗ ∼ Fdeath(µi∗,σ2
i∗))

di,bi ∈Mσ
i =⇒ using Algorithm 1 (di,bi) ̸= (dji ,bji) (2.12)

di∗,bi∗ ∈Mσ
i∗ =⇒ using Algorithm 1 (di∗,bi∗) ̸= (dji ,bji) (2.13)

(3) loops that traverse the background and Mσ
i (bi ∼ Fbirth(µi,σ2

i) and

d0 ∼ F0(µ0,σ2
0))

d0 /∈Mσ
i∗ =⇒ using Algorithm 1 (d0,bi) ̸= (dji ,bji) (2.14)

Since all the loops detected in the segmentation Mσ
i are connected to

the correct (dji ,bji), the only time a problem would arise is when dji = djk

and bji = bjk for i ̸= k where i,k ∈ {1, . . . ,n1}. In other words, if the

loop Mσ
i and the loop in Mσ

k have the exact same birth and death times,

the algorithm would not be able to match (dji ,bji) and (djk ,bjk) with

(Gi∗,Gi) and (Gk∗,Gk), respectively. However, this situation would happen

with zero probability since all Zi ∼ Fbirth(µi,σ2
i), Zk ∼ Fbirth(µk,σ2

k) and

Zi∗ ∼ Fdeath(µi∗,σ2
i∗), Zk∗ ∼ Fdeath(µk∗,σ2

k∗) are continuous distributions.
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2.6 Segmentation of the Image

In the preceding two sections the partitions Gk for k = {0, . . . ,np} are as-

sumed to be known; whereas in this section, the segmentation is unknown

and is estimated with Ĝk for k = {0, . . . , n̂p}. If the segmentation is incor-

rect the partitioned TDA estimated birth and death times in Equation (2.3)

and the corresponding confidence regions in Equation (2.4) may not be

accurate. Here, we propose a method to reduce the misclassification of

pixels in partitions when one or more of the Ĝk’s may have some incorrect

pixels assigned to it.

Recall from Equation (2.2) that if Gk is known ∀k ∈ {0, . . . ,np} then

interior pixel intensities Zi∗ ∼ Fdeath(µi∗,σ2
i∗) for every Zi∗ ∈ Mσ

i∗ and

pattern pixel intensities Zi ∼ Fbirth(µi,σ2
i) for every Zi ∈ Mσ

i , where i ∈

{1, . . . ,n1}, with the number of pixels in the sets defined as |Mσ
i | = ni

b, and

|Mσ
i∗| = ni

d.

When Gk, is unknown M̂σ
i and M̂σ

i∗ are estimated using some segmen-

tation procedure. Any segmentation procedure may be used to estimate

the partitions, as long as the resulting partitions are contiguous regions.

In this dissertation, we apply edge detection methods to segment the

image by identifying edges, which are located at the maxima of the gradi-

ent strength obtained from a Laplacian of the Gaussian-smoothed image

(Canny, 1986; Parker, 2010). For certain parameter values, the edge con-

tours are closed creating contiguous regions and the standard deviation
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of the filter changes how many regions are detected. Let ê be the edge set

which segments the image Mσ into partitions Ĝk.

Assume that some part of the segmentation of a loop or its interior is

incorrect so that Ĝk ̸= Gk for k = {i, i∗} for some i. Then there are md pixel

intensities, denoted by Z̃i∗, in the set Mi∗ which are misclassified into M̂i

(i.e., these are the pixels that should be a part of the interior, but were

assigned to the loop). Similarly, there are mb pixel intensities, denoted by

Z̃i, in the set Mi which are misclassified into M̂i∗ (i.e., these are the pixels

that should be a part of the loop, but were assigned to the interior). There

are then nd −md pixel intensities, denoted by ˜̃Zi∗, in the set Mi∗ which

are correctly classified into M̂i∗ and there are nb −mb pixel intensities,

denoted by ˜̃Zi, in the set Mi which are correctly classified into M̂i.

The set of pixels which comprise the interior of the loop Zi∗ and the

set of pixels which comprise the loop Zi can be decomposed as follows:

Zi∗ = ˜̃Zi∗ ∪ Z̃i∗ and Zi = ˜̃Zi ∪ Z̃i. (2.15)

M̂i∗ denotes all the pixels which are classified as interior pixels of the

loop Ĝi∗ (i.e., M̂i∗ = ˜̃Zi∗ ∪ Z̃i) and M̂i denotes all the pixels which are

classified as loop pixels Ĝi∗ (i.e., M̂i =
˜̃Zi ∪ Z̃i∗). Therefore nb −mb +md

pixels are in the birth time partition Ĝσ
i and nd −md +mb pixels are in

the death time partition Ĝσ
i∗.

The expected value of the (biased) estimators of the birth and death
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time using the incorrect partitions of the loop are:

E( ¯̂
Mi) =

(nb −mb)µi +mdµi∗

nb −mb +md

and E( ¯̂
Mi∗) =

(nd −md)µi∗ +mbµi

nd −md +mb

,

(2.16)

where ¯̂
Mi and ¯̂

Mi∗ are the sample means of the sets of pixels M̂i and M̂i∗,

respectively.

By Assumption 3, µi∗ ⩽ µi and assuming that the segmentation Ĝi and

Ĝi∗ are close to the true Gi and Gi∗ (i.e., only a few pixels are misclassified),

then mb < nd and md < nb and any Z̃i ∈ M̂i∗ and Z̃i∗ ∈ M̂i are neighbors

of the edge set ê (i.e., Z̃i, Z̃i∗ ∈ nc(ê) where c is the unit distance between

two pixels.

Let qi
1,qi∗

1 be the first quantiles and qi
3,qi∗

3 be the third quantiles of

Fbirth, Fdeath, respectively. Assume that the noise distribution ε(x,y) ∼

F(0,σ2(x,y)) is symmetric. An assumption of Algorithm 2 is that the

distribution of the interior pixel intensities and the pattern pixel intensities

are well-separated, as described in the following.

Assumption 4. Assume that (oi−T(µ̃i)) < (oi−T̃(µi∗)) and (oi∗−T(µ̃i∗)) <

(oi∗−T(µ̃i))where oi is an outlier in the distribution Fbirth and oi∗ is an outlier in

the distribution Fdeath. T(µ̃i∗) and T(µ̃i) are the truncated means of Fbirth,Fdeath

with upper bound qi∗
3 + 1.5(qi∗

3 − qi∗
1 ) and lower bound qi

3 + 1.5(qi
3 − qi

1),

respectively.

Under Assumption 4, Algorithm 2 sorts the mb and md misclassified
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pixels, Z̃i and Z̃i∗, into the edge set ê and keep the outliers, ˜̃Zi ∼ Mσ
i and

˜̃Zi∗ ∼ Mσ
i∗ in the correct segments M̂σ

i , M̂σ
i∗.

As an illustration of the performance of Algorithm 2, the following

experiment was carried out and results are displayed in Figure 2.3. For

three different noise settings (σ = {50, 100, 300}), 100 iid images with one

loop, similar to Figure 1.1b with (µ1∗,µ1) = (1000, 3000), are generated

and segmented incorrectly with the same edge set ê. In this example, six

pixels are misclassified in the loop (i.e., Z̃1∗ ∈ Ĝ1) with the edge set ê. The

95% confidence regions using partitioned TDA are calculated using both

this misclassified partition ê and the corrected partition ênew generated

from Algorithm 2. Lower noise levels have more biased coverage of the

resulting confidence regions compared to the higher noise levels.
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Algorithm 2 Remove Misclassified Pixels from Partition (G1,G1∗)
Input: edge set ê; image Mσ; partitions Ĝ1 and Ĝ1∗; c=pixel side length
Output: new edge set ênew

Define: M̂σ
i = {Zi(x,y)l : (x,y)l ∈ Ĝi}, Li = |M̂σ

i |, P(Zi(x,y) ⩽ qi
1) =

0.25, P(Zi(x,y) ⩽ qi
3) = 0.75 for i = {1, 1∗}; outlieri = ∅; outlier.idxi = ∅;

dist()=Euclidean distance; e1 = ∅
for i in {1, 1∗} do

for l in 1 : Li do ▷ Check if Zi(x,y)l is an outlier and neighbors an
edge in Ĝi

if
(
(Zi(x,y)l > qi

3 + 1.5(qi
3 − qi

1)) | (Z
i(x,y)l < qi

1 − 1.5(qi
3 − qi

1))
)

&(
∃(x̃, ỹ) ∈ ê s.t. dist((x,y)l, (x̃, ỹ)) ⩽

√
2c
)

then outlieri ← outlieri ∪
Zi(x,y)l, outlier.idxi ← outlier.idxi ∪ l

end if
end for

end for
Calculate µ̂1 = M̂σ

1 \outlier1 and µ̂1∗ = M̂σ
1∗\outlier1∗ ▷ Calculate means

without outliers
for i in {1, 1∗} do

for l in outlier.pxi do
if |Zi(x,y)l − µ̂i| ⩾ |Zi(x,y)l − µ̂ic | then ▷ ic is the complement

in {1, 1∗} for i e1 ← e1 ∪ (x,y)l ▷ only add (x,y)l to new edge set e1 if
Zi(x,y)l is closer to µ̂ic

end if
end for

end for
ênew = ê ∪ e1
return ênew

Figure 2.3a shows all 100 estimated 95% confidence regions built using

ê (red) and ênew (blue) for the different σ values. The green dot is the

true (µ1∗,µ1) = (1000, 3000) which the regions should cover 95% of the

time, on average. The confidence regions for the misclassified setting are
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underestimating µ1 since some Z1∗s pixel intensities, which are lower than

those of Z1, are included in the Z̄1 resulting in an estimate that is biased low.

After Algorithm 2 is applied, the bias in the confidence regions appear to

be corrected in terms of the birth time.

In Figure 2.3b, the coverage is calculated based on 100 iid images at

each noise level (σ = {10, 50, 100, 200, 300}). The misclassified boxplots

(red) show the coverage of the confidence regions built from ê, and the

corrected boxplots (blue) show the coverage for confidence regions cal-

culated with the ênew after running Algorithm 2. As illustrated in both

plots, the algorithm significantly improves the coverage of the confidence

regions. Correct segmentation is crucial for partitioned TDA, and this

section emphasizes the importance of checking the segmentation.

(a) Example of confidence regions (b) Coverage of confidence regions
Figure 2.3: Confidence regions and coverage before (misclassified) and after
(corrected) Algorithm 2 has been applied. The misclassified segmentation ê has
six pixels incorrectly classified. (a) Confidence regions for 100 images at noise
level σ = {50, 100, 300} are shown using ê (misclassified) and ênew (corrected).
The green dots indicate the true birth and death time location. (b) The coverage
of the 95% confidence regions for σ = {10, 50, 100, 200, 300} for misclassified (red)
and corrected (blue) segmentations, using 100 iid images.
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2.7 Alternative Method

We extend one of the methods from Fasy et al. (2014) from point-cloud

data to handle an image as a way to establish a benchmark, because we

are unaware of a direct basis for comparison with partitioned TDA. In this

approach, a distance metric is used to derive the distribution of distances

between the persistence diagrams of the smoothed data, P(M̃σ), and the

persistence diagram of the true pattern, P(M̃0).

Persistence diagram stability results (Cohen-Steiner et al., 2005) are

used to bound the (bottleneck) distance between the persistence diagrams

by the L∞ distance between kernel density estimates (KDEs) of the point-

cloud data and the true pattern. Asymptotic confidence regions are then

built from the distribution of L∞ distances between M̃σ and M̃0, which

can be estimated using a bootstrap procedure.

This procedure is briefly outlined below and then followed by the

proposed adjustments for image data. See Section 3.4 of Fasy et al. (2014)

for more details.

In the context of Fasy et al. (2014), let Mσ be point-cloud data. One

of their proposed methods for persistence diagram confidence regions

considers a KDE of Mσ, M̃σ, to estimate the true birth and death time,

(µ̃i∗, µ̃i), of the (true) smoothed manifold, M̃0. They define an asymptotic

(1 − α)100% confidence region, adapted to our notation which omits the

dependency on bandwidth and sample size; see Theorem 12 of Fasy et al.
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(2014) for the precise statements:

P
(
W∞(P(M̃σ),P(M̃0)) > cn

)
⩽ P

(
||M̃σ − M̃0||∞ > cn

)
⩽ α+O

(
n−1/2)

(2.17)

where cn defines the confidence region based on the data, and the first

inequality follows from the stability result of Cohen-Steiner et al. (2005).

The bottleneck distance, W∞ is defined as

W∞(P(M̃σ),P(M̃0)) = inf
η:P(M̃σ)−→P(M̃0)

sup
(b,d)∈P(M̃)

||(b,d) − η(b,d)||∞
(2.18)

where η is a bijection of the features of the diagrams, including the diagonal

birth=death line (Cohen-Steiner et al., 2005; Fasy et al., 2014). Since M̃0

is unknown and there is only one realization of the data M̃σ, a bootstrap

approach is used. In particular, the estimate of cn is the (1 − α)-quantile

of the distribution of the L∞ distances between the smoothed data M̃σ and

smoothed bootstrap realizations of the point-cloud data.

To implement this alternative approach two modifications are made:

(1) Instead of a KDE on point clouds, we use local polynomial smoothing

to change the raw image Mσ into a smoothed image M̃σ. In Section 2.8,

we use degree two polynomials and an adaptive bandwidth of 0.3 as

parameter inputs for local polynomial smoothing. These input values

resulted in only one loop detected by an upper-level set filtration for

the smoothed pattern, M̃0, analogous to the original image, M0. This
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facilitates the comparison between smooth TDA and partitioned TDA.

Note that smooth TDA builds confidence regions to cover (µ̃i∗, µ̃i) (i.e.,

death and birth times of loops in M̃0) whereas partitioned TDA builds

confidence regions to cover (µi∗,µi) (i.e., death and birth times of loops in

M0). (2) We propose a method to bootstrap an image as opposed to a point

cloud. The traditional bootstrap method assumes that each observation is

iid which is not a suitable assumption for an image which typically has

spatial correlation. Similar to partitioned TDA, we segment the image

into different strata and use the stratified bootstrap to resample the full

image. Within each stratum the pixels can be viewed as being drawn

from the same distribution, so pixel intensities within each stratum can be

bootstrapped.

2.8 Simulation Study

In this section, we empirically evaluate the accuracy and precision of the

proposed confidence regions. Accuracy is assessed by considering bias in

the estimates, coverage percentage over the truth, and the identification of

the number of loops in the underlying pattern, while precision is evaluated

by analyzing the area of the confidence regions. A summary of all of these

numerical results are displayed in Table 4.1. In our simulation study, the

number of strata and the segmentation is assumed to be correct for the

smooth TDA benchmark.



35

For the simulations, each image has one loop and follows the assump-

tions from Section 2.2. The birth and death times of the true pattern, M0,

are set to (µ1∗,µ1) = (1000, 3000), which are similar intensities to those

of our cell wound example (see Section 2.9). To assess the robustness of

the proposed confidence regions to noise, four different noise levels are

used to generate an image Mσ for σ = {50, 150, 250, 350}, homoscedastic

Gaussian noise is used in this section. For each σ, l images are generated,

denoted Mσ
l where l = {1, . . . , 100}, and an upper-level set filtration is used

to get the birth and death times for each image (i.e., the traditional TDA

estimates). To test the alternative method (smooth TDA) each image is

further smoothed using local polynomial smoothing, denoted M̃σ
l . Then

both smooth TDA and partitioned TDA are used to get confidence regions

for the underlying pattern in M̃0 and M0, respectively.

Figure 2.4 illustrates the simulation results, with examples of point

estimates for the birth and death times shown in Figure 2.4a (i.e., esti-

mated pattern) and their corresponding confidence regions are shown

in Figure 2.4b (i.e., uncertainty estimate for the pattern). In both figures,

each color represents a different σ value. In Figure 2.4a, the shapes are the

estimated birth and death times for each method where the black dots are

the true birth and death time of the smoothed (µ̃1∗, µ̃1) and unsmoothed

loop (µ1∗,µ1). In Figure 2.4b, the rectangles are the confidence regions

using smooth TDA, denoted by sTDA, with the L∞ distance and the ellipses

are the confidence regions generated using partitioned TDA, denoted by
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parTDA.

(a) (Death, Birth) of loop (b) Confidence Regions
Figure 2.4: Birth and death estimates (a) and confidence regions (b) of 100 images
across four noise levels, σ = {50, 150, 250, 350}. (a) Point estimates for (µ1∗,µ1)
using traditional TDA (triangle) and partitioned TDA (asterisk), estimates of
(µ̃1∗, µ̃1) using smooth TDA (plus), and the true birth and death time of the
manifold (circle). (b) The 95% confidence regions for (µ1∗,µ1) using partitioned
TDA (parTDA) and (µ̃1∗, µ̃1) using smooth TDA (smooth TDA).

Across all noise settings, point estimates from traditional TDA in Fig-

ure 2.4a are significantly biased, especially as the noise level increases.

While partitioned TDA creates unbiased estimates close to µ1∗ and µ1 and

smooth TDA creates unbiased estimates close to µ̃1∗ and µ̃1. However,

the confidence regions created using partitioned TDA are much smaller

(more precise) compared to smooth TDA. Using smooth TDA, the con-

fidence bands are large enough that a persistence of zero is within each

confidence region for every loop in the data. This result suggests that

no loop is distinctly identified within the underlying pattern. Whereas,

partitioned TDA correctly identifies one loop for all simulated images

when using Algorithm 1, and no other loops in the image are matched to
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the segmentation. In terms of coverage, smooth TDA covers the true birth

and death times of M̃0 100% of the time for a 95% confidence region. In

comparison, the coverage of partitioned TDA was always approximately

95% at all noise levels.

Method Noise Level Average confidence region area (SE) Average coverage (SE)
sTDA 50 1390574 (5553.5) 100 (0)

150 1460183 (9529.5) 100 (0)
250 1577603 (14139.8) 100 (0)
350 1746974 (28184.4) 100 (0)

parTDA 50 122.9 (0.683) 94.7 (0.2)
150 1099.3 (7.732) 95.3 (0.2)
250 3057.2 (18.359) 94.6 (0.2)
350 5980.2(30.602) 94.9 (0.3)

Table 2.1: Simulations Results of a noisy loop for smooth TDA (sTDA) (rows
1-4) and partitioned TDA (parTDA) (rows 5-8). The average confidence region
area and standard errors (SE) are displayed for each noise level, based on 100
iid images in each setting. The fourth column is the percent coverage of the 95%
confidence regions, and corresponding SEs.

2.9 Cell Biology Application

Pattern formation is a common and critically important feature of living

systems. It is a natural process that occurs across biological scales rang-

ing from ecosystems (Pringle and Tarnita, 2017; Barbier et al., 2022), to

developing tissues (Madamanchi et al., 2021; Herron et al., 2022), to indi-

vidual cells (Bement et al., 2022, 2024). Further, abnormal cell or tissue

pattern formation is a feature of various pathological conditions, including

cancers (Paine and Lewis, 2017; A., 2020). Consequently, approaches for

objectively detecting and quantifying patterns and their quality are of
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interest for both basic biology and medicine. In this dissertation, pattern is

assessed from the perspective of TDA through estimation of the birth and

death times of rings with partitioned TDA. A higher persistence (birth-

death) is indicative of stronger topological signal, and can be interpreted

as a stronger pattern in this context.

The proposed partitioned TDA is applied to images of two individual

cells sustaining wounds at distinct time points as illustrated in Figure 2.5.

One of the cells was injected with a toxin (C3 exotransferase) that inhibits

healing. The other cell is only wounded with no injection and serves as

a control. The image for the C3 cell is denoted as MC3
t and the image for

the Control cell denoted as MCon
t for times t = {t1, . . . , t30}. Time t1 = 0

seconds is when the cell is wounded with sequential images separated by

8 seconds. Examples of the cell images at different time points are shown

in Figure 2.5a. Each of the images at every time point, Mcon
t and MC3

t , was

partitioned using the segmentation scheme from Section 2.6 with eCon
t and

eC3
t representing the edge sets at time t. An example of a segmentation at

t15 for MC3
t is shown in Figure 2.5b.
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(a) MCon
t and MC3

t (b) Segmentation eC3
t15

Figure 2.5: (a) The top row displays the images for the control cell MCon
t and the

bottom row is the images for the C3 cell MC3
t for t = {t1, t10, t20, t30}. The columns

represent different time points, t1, t10, t20, and t30. (b) Image of MC3
t15

segmented
by eC3

t15
where the black lines are the edges.

The analysis is conducted independently at each time point. For each

t the number of rings in an image are detected using Algorithm 1 and

a confidence region is created around the birth and death times using

Equation (2.4). In this higher resolution image, Algorithm 1 has to be

modified because multiple pixels in the image are equal to bj. To address

this, we smoothed the image, calculated the birth and death times, and

used the smoothed birth time b̃j to help locate the pixel associated with

bj.

Using the partitioned TDA method, no rings were detected until times

t8 and t7 for MC3
t and MCon

t , respectively, whereas the traditional TDA

method detected rings in images for t ⩽ t6. When using partitioned TDA

no ring was contained in eCon
t and eC3

t for t < t7, so Algorithm 1 has no

partitions to match with the rings detected in traditional TDA. From times
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t8 to t28 one ring is matched from eCon
t to MCon

t and from eC3
t to MC3

t using

partitioned TDA and thus these are the times focused on in this section.

Two different visualizations of persistence across time for both cells are

displayed in Figure 2.6. In Figure 2.6a, the partitioned TDA birth and death

estimates are shown on a persistence diagram along with the confidence

regions. The estimated birth and death times are connected by time, where

time is indicated by different colors. Figure 2.6b, is another way to visualize

persistence (y-axis) over time (x-axis). When using partitioned TDA, the

estimated persistence is Z̄1
t − Z̄1∗

t , at each time t. The confidence set moves

from a bivariate normal ellipse to a normal confidence interval centered at

Z̄1
t − Z̄1∗

t with approximate variance (σ̂2
1)t + (σ̂2

1∗)t. The red lines are the

estimated persistence and confidence intervals from partitioned TDA for

both C3 (points) and Control (triangle) cells; the error bars are too small

too see since sample size is large due to the high-resolution images. The

dark blue lines use smooth TDA and the light blue lines use traditional TDA

to estimate persistence across time; no confidence intervals were created

for these methods. In general, smooth TDA and traditional TDA display

more variability in the estimated persistences across time than partitioned

TDA, and the C3 and Control cell persistences for traditional TDA are not

well separated. The overall trends in smooth TDA and partitioned TDA

are similar, though the partitioned TDA persistences appear to be more

stable across time.
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(a) (Death, Birth) estimates (b) Estimated Persistence
Figure 2.6: Estimated persistences of the C3 and Control cell images from t =
{t8, . . . , t28}. (a) The partitioned TDA birth and death times are shown on the
persistence diagram along with confidence regions for both the C3 cell (right)
and the Control cell (left). The black line is the diagonal line birth=death. (b)
Persistence is plotted over time for the C3 cell (solid line with points) and the
Control cell (dashed line with triangles) using partitioned TDA (red) denoted
as parTDA, smooth TDA (purple) denoted as sTDA, and traditional TDA (light
blue) denoted as tTDA.

From t8 to t14, the most rapid growth in the persistence (or strength of

pattern) are observed. Originally, the C3 cell images have more pattern in

terms of the ring having a higher persistence than the Control cell images.

However, at t14 the wound ring in the Control cell continues to increase in

its persistence while the wound ring in C3 cell begins to decline. In later

time periods, the rings have shrunk in size, but not necessarily in intensity.

The smaller size of the rings in the images result in larger confidence

regions since the sample sizes of the sample means (i.e., the number of

pixels in the pattern) has decreased. After t29 the segmentation, eC3
t29

, does

not have any rings in the partitions; the edge set in the background is

almost completely connected as one edge. Two distinct edges are needed

to separate the section of an image into Mσ
i and Mσ

i∗ to find a ring in the
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segmentation. Therefore, no ring on P(MC3
29 ) is matched to any regions in

eC3
t29

as per Algorithm 1.

During times t29 − t30, the segmentation of the Control cell images

continues to detect a ring where the wound is (i.e., two distinct edges

separateMCon
1 andMCon

1∗ which are matched to the ring detected inP(MCon)

for times t29, t30); however, in order to directly compare the Control cell

with the C3 cell only times t8 − t28 are included in Figure 2.6.

2.10 Conclusion

This Chapter includes three primary developments in TDA methodology.

First, partitioned TDA is proposed to estimate the birth and death times

of topological features found in an image, which reduces the bias in the

traditional TDA estimates (traditional TDA). Second, partitioned TDA

provides a process to quantify the uncertainty associated with these new

birth and death time estimates in the form of a confidence region on a

persistence diagram for an image. And finally, a persistence diagram

confidence region method of Fasy et al. (2014) was extended from point-

cloud data to a single image as an alternative method (smooth TDA),

which facilitated the creation of a new method to bootstrap an image.

In general, partitioned TDA is applicable to any image to determine the

underlying pattern (in terms of holes) of that image and to quantify the

uncertainty in that pattern. In the next chapter, we explore methods to
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perform hypothesis testing on persistence diagrams of images to be used

in conjunction with partitioned TDA and other applications.
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3 hypothesis test for a persistence diagram

3.1 Introduction

In Section 2.1, partitioned TDA was introduced as a method to make confi-

dence regions for topological features on persistence diagrams generated

from an upper-level set filtration on a single image. These confidence re-

gions give unbiased estimates of the birth and death times of loops along

with quantifying the uncertainty of the estimates. However, partitioned

TDA is not able to successfully differentiate topological signal (where

a topological feature has a persistence that is well-separated from the

birth=death line) from noise for image data compared to the confidence

region method proposed in Fasy et al. (2014) for persistence diagrams

of point clouds. In this chapter, we address this limitation by develop-

ing two hypothesis testing frameworks to identify statistically significant

topological features within images.

There are several ways to formulate a hypothesis testing framework

to distinguish topological signal from topological noise on a persistence

diagram generated from images. Many hypothesis tests on persistence

diagrams, outside of Fasy et al. (2014), use some version of a random-

ization test, spatial point processes, or density estimation to do inference.

Most of the randomization techniques are applied to multiple groups or

compare the topological features at one point in time to another point in
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time (Abdallah et al., 2023; Robinson and Turner, 2017; Dawson et al., 2023;

Chung et al., 2009). We introduce two hypothesis tests: (1) tests whether

the maximum persistent Hm feature on a persistence diagram exhibits

statistically significant differences from the maximum persistent features

generated under the assumption of no underlying pattern in the image,

and (2) tests if a specific Hm feature is part of the underlying pattern by

comparing the mean pixel values in the birth time partition with those in

the rest of the image. Both of these tests are carried out with variations of

a permutation test applied to images using TDA-based test statistics.

The first hypothesis test, referred to as the Maximum Persistence Test,

focuses on the testing if the maximum persistent Hm feature is statistically

significant which is convenient for testing if the cell wound is topological

signal. This test is applied in Chapter 4 to quantify the pattern in a cell

wound over time in a video, as opposed to a single image. The second

hypothesis test, referred to as the Partitioned Test, can be directly integrated

into the partitioned TDA method. The confidence regions created using

partitioned TDA should only include loops that have been found to be

statistically significant using the Partitioned Test.

In the next section, we describe the general setup for both hypothesis

tests. Following this, we define the null hypothesis and the corresponding

null distribution, and provide implementation details for both the Maxi-

mum Persistence Test and the Partitioned Test. Finally, we illustrate the

effectiveness of these tests using examples from both simulated and real
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data, with a focus on the wounded cell application.

3.2 Setup

Recall that an image in Section 2.1 is defined as Mσ = {f(x,y) + ε(x,y) :

(x,y) ∈ G} where f(x,y) is the expected value of the pixel intensity, ε(x,y)

is the noise, and this noisy function is discretized onto a 2D grid Gd1×d2 ,

where each (x,y) coordinate represents the grid columns x = {1, 2, . . . ,d1}

and grid rows y = {1, 2, . . . ,d2}. To generalize this notation to higher

dimensions, let Aσ be an array of dimension d1 × . . .× dM, defined as

Aσ = {f(x1, x2, . . . , xM) + ε(x1, x2, . . . , xM) : (x1, x2, . . . , xM) ∈ G}, (3.1)

where G is an M-dimensional grid, with each tuple (x1, x2, . . . , xM) rep-

resenting a coordinate on that grid. The function f(x1, x2, . . . , xM) and

the noise ε(x1, x2, . . . , xM) are also defined in M dimensions, the noise as-

sumed to follow some symmetric distribution F(0,σ2(x1, x2, . . . , xM)). The

noise-free array, from which we aim to identify the topological features, is

defined as:

A0 = {f(x1, x2, . . . , xM) : (x1, x2, . . . , xM) ∈ G}. (3.2)

When an upper-level set filtration is applied to Aσ, different dimen-

sional features, from H0 to HM−1, may be detected on a persistence di-



47

agram. Some of these features may be generated from ε(x1, x2, . . . , xM)

(noise) and some may be a part of f(x1, x2, . . . , xM) (signal). The goal of

the hypothesis tests are to discriminate the real topological features from

those produced by noise.

3.3 Maximum Persistence Test

To test if any of the topological features detected in the array Aσ are statis-

tically significant, we apply a hypothesis testing framework where the null

hypothesis assumes there is no structure in the image for the Maximum

Persistence Test. Specifically, assume that f(x1, x2, . . . , xM) has a real feature

(Hm)i of a particular homology dimension m where m = {0, . . . ,M− 1},

i = {1, . . . ,nm}, and nm is the total number of real (Hm) features. Then

the persistence of (Hm)i should be higher than most of the persistences

of the Hm features under the null hypothesis, (Hm)null, where there is

no structure present in the image. We focus on the maximum persistent

feature, since a common interpretation is that a higher persistence of a

feature indicates a higher likelihood of that feature being signal.

We assume the following two conditions for the Maximum Persistence

Test when the null hypothesis is true.

Assumption 5. For the null hypothesis of the Maximum Persistence Test, as-

sume that the array A0 has no topological structure such that A0 = {µ0 :
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∀(x1, x2, . . . , xM) ∈ G}, for a fixed µ0. This implies that there are no true Hm

features, m = 0, . . . ,M− 1.

In this case, µ0 denotes the mean of the background partition where there

are no features.

Assumption 6. For simplicity, assume that the noise is homoskedastic in

F(0,σ2(x1, x2, . . . , xM)) such that Aσ = {µ0 + σ0 : ∀(x1, x2, . . . , xM) ∈ G}.

Given these assumptions, any topological features detected in Aσ have

pixels sampled from the following distribution:

Z(x1, . . . , xM) ∼ F(µ0,σ2
0). (3.3)

For a given array, an upper-level set filtration on Aσ and its correspond-

ing persistence diagram P(Aσ) have βm Hm features for each dimension

m = {0, . . . ,M − 1}. Any (Hm)i feature detected in the array has a birth

and death time, {(d(m)
1 ,b(m)

1 ), . . . , (d(m)
βm

,b(m)
βm

)}, where d
(m)
i represents the

death time and b
(m)
i represents the birth time for Hm feature i = 1, . . . ,βm.

All of these birth and death times are considered topological noise assum-

ing Hnull is true so that:

d
(m)
i ∼ F(µ0,σ2

0), b
(m)
i ∼ F(µ0,σ2

0), i = 1, . . . ,βm.
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For a given feature (Hm)i, the null hypothesis can be stated such that

the birth and death times of (Hm)i have the same distributions so that:

Hnull : d
(m)
i ∼ F(µ0,σ2

0), b
(m)
i ∼ F(µ0,σ2

0). (3.4)

For the Maximum Persistence Test, we first focus on the maximum

persistent Hm feature as this feature is the most likely to be statistically

significant in terms of its persistence. The maximum persistent Hm is

defined as follows:

ρ(m)
max = max

(d
(m)
i ,b(m)

i )∈Hm(Aσ)

{b
(m)
i − d

(m)
i |i = 1, . . . ,βm}, (3.5)

where b
(m)
max is the birth time and d

(m)
max is the death time of the most persis-

tent Hm feature.

A one-sample permutation test is used to empirically generate the null

distribution from Equation (3.4) for the Maximum Persistence Test; we

can use a one-sample test since we are assuming all the pixels in the image

are from the same distribution in Equation (3.3). Let B denote the total

number of permutations such that there are j = {1, . . . ,B} permuted arrays

(Aσ
1 )

∗, . . . , (Aσ
B)

∗ from which to generate the null distribution. Let there

be n total pixels with make up Aσ; each pixel intensity (Zj)
∗(x1, . . . , xM)

which make up the jth permuted array (Aσ
j )

∗ are permuted as follows:
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(Zj)
∗(x1, x2, . . . , xM) = Z(xi1 , xi2 , . . . , xiM)

where i1, i2, . . . , iM are permuted indexes from i = {1, . . . ,n}.

For each new permutation (Aσ
j )

∗, we generate a persistence diagram,

P((Aσ
j )

∗), and get the persistence ρ∗
j,max of the maximum persistent Hm

feature:

ρ∗
j,max = max

(d
(m)
i ,b(m)

i )∈Hm((Aσ
j )

∗)

{b
(m)
i − d

(m)
i |i = 1, . . . ,β∗

m,b}. (3.6)

The setρ∗
max = {ρ∗

1,max, . . . , ρ∗
B,max} are used to estimate the null distribution.

The total number of Hm features detected in an upper-level set filtration

for each new permutation (Aσ
j )

∗ is denoted by β∗
m,j. The birth and death

times for the maximum persistent Hm feature in permuted array j are

denoted as ((d(m)
max )∗, (b(m)

max )∗).

The observed test statistic for the Maximum Persistence Test is the per-

sistence of the maximum persistent Hm feature described in Equation (3.5)

for the observed data Aσ defined as:

ρobs
max = b(m)

max − d(m)
max . (3.7)



51

The permutation p-value can be then be estimated as follows:

p-valuemax =

∑B
j=1 I(ρ

∗
j,max ⩾ ρobs

max)

B
. (3.8)

If the observed maximum persistence of the Hm features, ρobs
max, is in

the upper α percentile of the null distribution, ρ∗
max = {ρ∗

1,max, . . . , ρ∗
B,max},

then the null hypothesis is rejected. The statistically significant Hm feature

is considered topological signal (i.e., it is assumed to be a topological

feature in A0).

Recall that the birth and death times of loops detected in an upper-level

set filtration on an array Aσ are based on the intensities of the pixels, not

on geometric information such as area of the feature. One way to indirectly

include geometric information in this filtration process is to smooth the

array Ãσ so that geometrically smaller features may be eliminated by the

smoothing.

An example of the pipeline for this test can be seen in Figure 3.1 where

the first column shows the smoothed images that we want to perform the

Maximum Persistence Test on: M̃C3
t1

(row one) and M̃C3
t12

(row two). The

next column shows an example of a smoothed permutation of that image.

And the last column shows a persistence diagram with the maximum

persistent loop of all the permuted images (null distribution) and the

maximum persistent loop from the data.
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Figure 3.1: Pipeline for the Maximum Persistence Test for M̃c3
t1

and M̃c3
t12

. The first
column contains the smoothed images at time t1 (row 1) and t12 (row 2). The
second column has permuted examples of the smoothed images where the raw
image Mc3

t is permuted and then smoothed to become (M̃c3
t )∗. The last column

has all the maximum persistent H1 features for the permutations ρ∗
max (blue

triangles) and the maximum persistent H1 feature of the data ρobs
max (red triangle).

3.4 Partitioned Test

When conducting the Maximum Persistence Test the null hypothesis as-

sumes that there is no structure in the array, so for a test considering if

an Hm feature is statistically significant the null hypothesis assumes that

there are no features in any dimension 0, . . . ,M − 1. This assumption

can be relaxed for the Partitioned Test. We consider a specific Hm feature

and test if the mean of the distribution of pixel intensities in the partition

that defines it is statistically different from the mean of the distribution

of pixel intensities of the rest of the array. The Hm feature to be tested
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is conditioned on its detection on the persistence diagram and matched

to a partition using Algorithm 1 in Section 2.4. For simplicity, we have

the same assumptions as in Section 2.1, where if there is structure in the

underlying pattern A0, it is just one Hm feature and that the functional

value µ1 of the hole is the highest mean partition in the image.

The pixel intensities of the partition describing the Hm feature Aσ
1 are

defined as:

Aσ
1 = {µm + σ2

m|∀(x1, x2, . . . , xM) ∈ G1}, (3.9)

where G1 is the part of the M-dimensional grid where the Hm feature is

located. Pixels intensities within the partition G1 are sampled from the

following distribution

Z1 ∼ F1(µ1,σ2
1). (3.10)

where µ1 is the functional value of the Hm feature in A0 and σ2
1 is the

variance of the sampling distribution of the pixel intensities. We assume

that all the pixel intensities within a partition have the same sampling

distribution.

The rest of the array is partitioned as background, denoted (Aσ
1 )

C (i.e.,
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the complement of the set Aσ
1 ), defined as follows:

(Aσ
1 )

C = {f(x1, x2, . . . , xM) + ε(x1, x2, . . . , xM)|∀(x1, x2, . . . , xM) ∈ (G1)
C},

(3.11)

where (G1)
C contains all the (x1, x2, . . . , xM) locations in the complement

of G1. The pixels from this distribution have the following distribution:

(Z1)C(x1, x2, . . . , xM) ∼ F1C(f(x1, x2, . . . , xM),σ2(x1, x2, . . . , xM)), (3.12)

The function f(x1, x2, . . . , xM) = µ1C is the mean pixel intensity of the back-

ground partition where there may be superfluous background features.

Assumption 7. If there is a feature with pixel intensities distributed as F1(µ1,σ2
1),

then the distribution for the pixels rest of the array F1C(f(x1, x2, . . . , xM),σ2(x1, x2, . . . , xM))

has the condition that f(x1, x2, . . . , xM) ̸= µ1.

The null hypothesis for the Partitioned Test is

Hnull : µ1C = µ1. (3.13)

The alternative hypothesis is that the two partitions are centered at differ-

ent functional values such thatµ1 ̸= µ1C. Since we are doing an upper-level

set filtration, for simplicity we assume that if there is a Hm feature that is

separate from the background that µ1 > µ1C. The focus of this test is on
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the means since in partitioned TDA, the means of each partition are the

estimated birth and death times of a feature.

To test this null hypothesis, we start with a segmentation on the ar-

ray Aσ where the two partitions are denoted as G1 and (G1)
C and there

is a Hm feature on the persistence diagram P(Aσ) that is within the seg-

mentation G1. Denote the two samples as Z1 = {Z1
1, . . . ,Z1

n1
} and (Z1)C =

{(Z1
1)

C, . . . , (Z1
n1C

)C} where n1 (n1C) is the sample size for all the pixels in

partition G1 ((G1)
C). A two-sample permutation test is used to compute

the p-value for the Partitioned Test where there are j = {1, . . . ,B} permuted

samples, denoted as (Z1
j)

∗ and (Z1
j)

∗C.

Let I = {1, . . . ,n1,n1 + 1, . . . ,n1 + n1C} denote the indices for all the

pixels which make up the array and let Z = Z1 ∪ (Z1)C be all the pixels in

the array. Then each permutation j is defined below as:

(Zj)
∗(x1, x2, . . . , xM) = Z(xi1 , xi2 , . . . , xiM) (3.14)

where iq ∈ I where q = {1, . . . ,M}. The set of all the permuted pixels is

denoted as (Zj)
∗ = {(Zj)

∗(x1, x2, . . . , xM)1, . . . , (Zj)
∗(x1, x2, . . . , xM)n1+n1C}.

Then the permuted pixels which form the partition for the Hm feature are

defined as follows:

(Z1
j)

∗(x1, x2, . . . , xM) = {(Zj)
∗(x1, x2, . . . , xM)k1 , . . . (Zj)

∗(x1, x2, . . . , xM)kn1
}

(3.15)
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where k1, . . . ,kn1 are indexes of the pixels in (Zj)
∗. Then permuted pixels

which form the background partition are define as:

(Z1
j)

∗C(x1, x2, . . . , xM) = {(Zj)
∗(x1, x2, . . . , xM)l1 , . . . (Zj)

∗(x1, x2, . . . , xM)ln1C
}

(3.16)

where l1, . . . , ln1C are indexes of the pixels in (Zj)
∗ and {l1, . . . , ln1C} ∩

{k1, . . . ,kn1} = ∅ and {l1, . . . , ln1C} ∪ {k1, . . . ,kn1} = I. The null distribu-

tion ρ∗ = {ρ∗
1 , . . . , ρ∗

B} is generated by:

ρ∗
j = |(Z̄1

j)
∗ − (Z̄1

j)
∗C|, (3.17)

where (Z̄1
j)

∗ =
∑n1

i (Z1
j)

∗
i/n1 is the mean of the (Z1

j)
∗ defined in Equa-

tion (3.15) and (Z̄1
j)

∗C =
∑n1C

i (Z1
j)

1C
i /n1C is the mean of the (Z1

j)
∗C de-

fined in Equation (3.16). The observed test statistic is the mean difference

for the partitions in the data defined as:

ρobs = |Z̄1 − ¯(Z1)C|. (3.18)

The p-value can be then be calculated as follows:

p-value =

∑B
j=1 I(ρ

∗
j ⩾ ρobs)

B
. (3.19)

In Figure 3.2, there is a visual pipeline of the test. The first column



57

shows the raw images that we want to perform the Partitioned Test on:

MC3
t1

(row one) and MC3
t12

(row two). The next column shows the edge

partitions for each image as described in Section 2.6 where the red dots

are the pixel locations which form the edges. For the C3 cell at time t1, no

loop in the partition is matched to a loop on the persistence diagram. So,

we cannot run the hypothesis test and would stop. However, in the second

row at time t12, the pixel locations which make up the loop are highlighted

in purple and the background partition is in black. This loop is in our

segmentation and detected using partitioned TDA. The histograms for

each partition, Z1 and (Z1)C, is shown in the third column which is then

used to do the Partitioned Test.

Figure 3.2: Pipeline of the Partitioned Test for Mc3
t1

and Mc3
t12

. The first column
has the raw images at times t1 (row 1) and t12 (row 2). The second column is
segmentation of those images where the red lines highlight the edge set, the black
regions are the background partition (G1)

C, and the purple region is the loop
partition G1 (row 2 only). The last column is the distribution of pixel intensities if
a loop in a partition is detected.
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In Sections 3.5 and 3.6, Type I error (α) and Type II error (β) are

empirically evaluated for the permutation tests proposed in Section 3.3 and

Section 3.4. We define empirical methods to estimate α and the power (1−

β) of the Maximum Persistence Test and the Partitioned Test, separately.

3.5 Empirical Evaluation Maximum Persistence

Test

Type I Error

To evaluate the Type I error rate for the Maximum Persistence Test, we

generated 1000 images with an array dimension of M = 2. We began

by examining images with no underlying structure (see an example in

Figure 3.3a), where f(x,y) = µ0 for all (x,y) ∈ G. Different settings were

considered with homoskedastic Gaussian noise added to the images at

three different noise levels σ = {10, 100, 500}. When using the Maximum

Persistence Test a smoothing parameter must be selected. Therefore, to

see how power changes for the Maximum Persistence Test with differ-

ent choices of smoothing parameters, we picked three different levels

span={0.05, 0.1, 0.2}; these levels were chosen such that there is still an H1

feature present. The Maximum Persistence Test was performed on each

image for each noise/smoothing level to detect a statistically significant

loop (i.e., H1 feature). Then the estimated Type I error rate was calculated
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based on how many p-values out of the 1000 for each setting were below

α = 0.05. Since there is no underlying structure, or loop in the simulated

images, we expect around 5% of the p-values to be under 0.05.

(a) (b) (c)
Figure 3.3: Examples of the images used to test if the underlying structure contains
a loop (H1 feature) using the Maximum Persistence Test. (a) A smoothed image
with no H0 or H1 features to assess Type I error. (b) A smoothed image with one
H0 but no H1 features to assess Type I error. (c) A smoothed image with an H1
feature to estimate power.

The estimated Type I error results are presented in Table 3.1 for the

different noise and smoothing settings. In general, the Type I error rates

are close to 0.05 across all noise and smoothing levels, indicating the

Maximum Persistence Test maintains the correct Type I error for these

examples.

span=0.05 span=0.1 span=0.2
σ=10 0.05 0.05 0.05
σ=100 0.05 0.05 0.07
σ=500 0.05 0.04 0.04

Table 3.1: Type I Error Rate for Maximum Persistence Test to identify statistically
significant loops in image with no structure (i.e., when the null hypothesis is
true) where α = 0.05. Each cell is the empirical percentage of p-values below
α = 0.05 using 1000 iid images under the different smoothing (span) and noise
setting..
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Next, we tested 1000 images with an H0 feature (see an example in

Figure 3.3b) but no loops to assess the Type I error in this situation. These

images do not fit the null hypothesis of no structure, but we do not want

to find statistically significant loops in this scenario. Table 3.2 displays the

results when the analysis is repeated for 1000 images containing an H0

feature and no H1 features.

span=0.05 span=0.1 span=0.2
σ=10 0 0 0
σ=100 0 0 0
σ=500 0 0 0

Table 3.2: Type I Error Rate for Maximum Persistence Test to identify statistically
significant loops in image an H0 feature but no loops where α = 0.05.

None of the p-values for all 1000 images in each category detect any

significant loops. These images do not fit the null hypothesis of no struc-

ture. Therefore, rejecting the null hypothesis of no loops does not directly

correspond to a significance level of α. However, the absence of detected

loops is not unexpected, as our test statistic focuses solely on H1 features

as opposed to H0 features.

Statistical Power

Next, we evaluate the statistical power of detecting a statistically significant

Hm feature when there is an actual Hm feature in the underlying pattern in

an image (see an example in Figure 3.3c). We generate 1000 images for the

different noise and smoothing settings when there is one H1 feature in the
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underlying pattern. The power test results for the Maximum Persistence

Test can be seen in Table 3.3. In general, the test is powerful and robust to

the choice of smoothing parameter. In higher noise settings the test is less

powerful, especially for lower span values. We only consider images with

one loop in the underlying pattern to match our wounded cell application.

span=0.05 span=0.1 span=0.2
σ=10 1 1 1
σ=100 1 0.96 1
σ=500 0.026 0.40 0.97

Table 3.3: Power for Maximum Persistence Test to identify statistically significant
loops in image with one H1 feature where α = 0.05.

3.6 Empirical Evaluations Partitioned Test

The empirical evaluation of the Type I error rate and power for the Par-

titioned Test follows a different approach compared to the Maximum

Persistence Test. This test is used only on topological features which are

both in a partition separate from the rest of the image but also detected on

the persistence diagram as a Hm feature using partitioned TDA. When an

image is generated from the null distribution the pixels within the image

are random.

To test the Type I error, we sampled n pixels from a Gaussian distribu-

tion with mean close to the background partition 1000. Then these pixels

were randomly split into a partition of size similar to the cell wound with

n1 pixels, and a partition similar in size to the background with n1C pixels.
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The permutation test is calculated on these two partitions and repeated

1000 times. The mean pixel intensity in the partition of the Hm feature is

increased, which increases the difference between the background and

feature mean pixel intensities to evaluate the statistical power. This proce-

dure is repeated on three different noise levels σ = {10, 100, 500} in order

to see how power is robust to noise. Furthermore, the power analysis is

run when the partition is correct and then rerun on an incorrect partition.

The Partitioned Test does not test if the partition is correct; however if most

of the partition contains the Hm feature then the empirical studies suggest

the test can still detect the feature.

The results from the simulation are shown in Figure 3.4 where the

difference between the mean pixel intensities in the two partitions are on

the x-axis (i.e., a mean difference of zero is assessing Type I error and

a mean difference greater than zero is estimating power), the line type

is for noise level, and the color of the line is for the partition type. As

expected, the lower noise levels, larger mean difference (signal), and a

correct partition results in more powerful tests. The Type I error rate is

around α = 0.05 and overall this test is very powerful at higher signal-to-

noise levels.
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Figure 3.4: Power (y-axis) of the Partitioned Test for levels of difference in the
mean of partition of the Hm feature and mean of the partition of the background
(x-axis). Power was also tested for different noise levels (linetypes) and different
levels of accuracy in the partitions (colors) with the correct partition in red and
an incorrect partition in black.

3.7 Hypothesis Tests Applied to Cell Images

Both the Partitioned Test and the Maximum Persistence Test are applied

to the cell wound images. There are two time series of images; one for a

cell injected with a bacteria called C3 and one wounded but not injected

with anything (Control). At each point in time, the tests are applied

independent of other images in the time series. The results are shown

in Table 4.1 where row one is the Maximum Persistence Test and row
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two is the Partitioned Test, and the columns are the average p-values (for

statistically significant loops) for each time point. The second column has

the time points when a statistically significant loop is detected.

The Maximum Persistence Test finds a statistically significant loop for

all the time points for both the C3 cell and the Control cell. So, even

though there may not be a wound yet in the image, there are still loops

which are a part of the cell itself. For example in Figure 3.1, the smoothed

image for the C3 cell at time t1 has several persistent smaller holes which

do not appear in the permuted version of the image. In comparison, the

Partitioned Test only finds a statistically significant loop at the time points

that the partition detects a loop using partitioned TDA. For the C3 cell this

would be time t8 to time t28 and for the Control cell this would be time t7

to t30. Once the Partitioned Test is run we can build confidence regions

(see Chapter 2), for the time points which find a statistically significant

loop.

Test Type Control C3
Maximum
Persistence
Test

t1 − t30 t1 − t30

Partitioned
Test

t7 − t30 t8 − t28

Table 3.4: Cell image hypothesis test results. The times when a statistically
significant H1 feature is detected using the Maximum Persistence Test (row 1) or
Partitioned Test (row 2) are displayed for the Control cell (column 2) and C3 cell
(column 3) at an α = 0.05 level of significance.
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3.8 Conclusion

A persistence diagram is a complex summary statistic, making statistical

inference challenging. This complexity has led to the development of

significance testing methods for persistence diagrams, offering a more

rigorous framework for identifying patterns in images or arrays beyond

just confidence regions. Each test outlined in this chapter has distinct ad-

vantages and is suited for different scenarios. For instance, the Partitioned

Test, which evaluates specific loop partitions in unsmoothed images, can

be used in conjunction with the partitioned TDA method. In contrast,

the Maximum Persistence Test examines maximum persistent topological

features in smoothed images and is employed in Chapter 4 for analyzing

temporal patterns across a set of images.
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4 inference for time series analysis using tda

4.1 Time Series Analysis in TDA

Partitioned TDA estimates the pattern within an image by constructing

confidence regions for the birth and death times of detected loops. In the

cell biology application discussed in Section 2.9, these loops represent

different stages of a cell wound over time. However, partitioned TDA

does not inherently link patterns across different time points ti and tj,

relying instead on prior or scientific knowledge. To address this limita-

tion, we propose a method called the Maximum Void method, which uses

higher-dimensional homology groups to track the evolving pattern of the

wounded cell over time. Though the focus is on an evolving cell wound in

an image across time, the framework can apply more generally to other

applications.

In recent years, numerous studies have integrated time into TDA anal-

ysis, focusing on tasks such as classifying one-dimensional time series

(Umeda, 2017; Seversky et al., 2016), quantifying periodic or quasiperiodic

behavior (Perea and Harer, 2015; Tralie and Berger, 2018), and analyzing

dynamical systems (Tymochko et al., 2020). The methodology in Fasy et al.

(2014) was extended to perform inference on one-dimensional time series

in Myers et al. (2022). A common technique used in conjunction with TDA

and time series data is a sliding window or time delay embedding, which
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captures the periodicity or dynamics within time series (Perea and Harer,

2015; Tymochko et al., 2020). These embeddings often focus on identifying

dynamical properties of topological features in point clouds over time,

rather than performing inference on the underlying patterns in the data

(Tralie and Berger, 2018; Perea and Harer, 2015; Tymochko et al., 2020).

Many of the studies applying TDA to time series data involve classification

and prediction tasks due to the geometric and structural insights TDA

can provide from complex image data sequences (Topaz et al., 2015; Mata

et al., 2015). Additionally, TDA analysis of images or videos often requires

converting grayscale images into binary images or point clouds, which

can result in the loss of important information.

There are established topological summary statistics for time series

data that could be used to estimate the temporal pattern of the cell wound,

such as vineyards and CROCKER plots (Cohen-Steiner et al., 2006; Topaz

et al., 2015). A CROCKER plot visualizes the evolution of Betti numbers

(the cardinality of each homology group Hm) within simplicial complexes

over the plane of time and scale parameters. While it lacks stability re-

sults, it has proven effective in modeling and classifying dynamic systems

(Topaz et al., 2015). As discussed in Section 1.1, persistence diagrams are

better representations of the cell wound compared to the Betti numbers.

Vineyards, extend persistence diagrams into a time-varying persistence di-

agram by adding a third dimension of time to the diagrams (Cohen-Steiner

et al., 2006).
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An alternative approach, presented in Ciocanel et al. (2021); Dawson

et al. (2023), analyzes time-varying cell images similar to our dataset.

These methods track the persistence of maximum or multiple loops over

time and assess statistical significance by generating topological features

from a null distribution, where significant features are not expected to

occur. This method is more comparable to partitioned TDA but lacks the

robust uncertainty quantification provided by partitioned TDA’s confi-

dence regions. The primary aim of this section is to estimate the degree

of disorganization in wounded cells over time, a task that partitioned

TDA does not fully address. In other words, our goal extends beyond

merely analyzing patterns through the persistence of loops at each time

point. The Maximum Void method integrates functional, geometric, and

spatial information to connect topological features across time frames and

evaluate their significance.

4.2 Maximum Void Method for Image Time

Series

The Maximum Void method consists of four steps which are outlined

below and applied to the C3 cell and Control cell images.

Step 1: Add temporal dimension to identify higher dimensional homology

groups (H2 features).

Step 2: Find statistically significant H2 features which represents the cell
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wound throughout time.

Step 3: Use the birth time of statistically significant H2 feature to identify

lower dimensional features (H0 and H1) which make up the cell wound at

each point in time.

Step 4: Connect the lower dimensional features (H0 and H1) at consectu-

tive time points.

Step 1: Add Time Dimension

Extending the notation from Section 3.2, the time series of images

{Mσ
t1

, . . . ,Mσ
t30
} form an array Aσ where t1 is the first image in the video

and t30 is the last image. In the cell wounding application, t1 = 0 seconds

and a frame of the video is captured every eight seconds. There are 30

total image frames in the video meaning that the last frame is t30 = 240

seconds. Let A0 = {f(x,y, t) : (x,y, t) ∈ G} denote the noise free array

which is described by some function f(x,y, t) discretized onto a 3D grid

(x,y, t) ∈ G, where (x,y) is the spatial location of an image snapshot and

t is the time index.

In practice, there is some zero-centered noise ε(x,y, z) which follows

a symmetric distribution G(0,σ2(x,y, z)) added to the function such that

data, Aσ, is defined as follows:

Aσ = {f(x,y, t) + ε(x,y, t) : (x,y, t) ∈ G}, (4.1)
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where f(x,y, t) is the mean for the pixel intensity in the 3D space location

(x,y, t). Each pixel Z(x,y, t) in the array is drawn from the following

distribution:

Z(x,y, t) ∼ G(f(x,y, t),σ2(x,y, z)). (4.2)

When examining the temporal evolution of the pattern f(x,y, t) in

the array Aσ, the additional time dimension can give rise to higher-

dimensional homology groups which connect the H0 and H1 features

at each point in time. Persistent homology describes the shape and

structure of a 2D space X through its connected components (H0(X))

and loops (H1(X)). In addition to these lower dimensional features

(H0(X) and H1(X)), holes such as voids or cavities, which help characterize

3D space X, belong to the two-dimensional homology group (H2(X)).

In the time series of cell images, an H2 feature can form from a loop

that emerges shortly after the wounding procedure, evolves gradually

over time, and eventually vanishes as the cell undergoes a healing process.

An example of the evolving loops can be seen in Figure 4.1 where the

times series of smoothed images for the C3 cell {M̃C3
t1

, . . . , M̃C3
t30
} are shown

in time order in Figure 4.1a. For this analysis, the image resolution has

been reduced to make computations less intensive. These images are

transformed into the array ÃC3 in Figure 4.1b where only four slices in

time of the array are shown for visualization purposes. The H2 feature
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has a clear cylindrical form throughout the stack of images due to the cell

wounds from the individual time points.

(a) Video of M̃c3
t (b) 3D array of Ãc3

t

Figure 4.1: (a) Time series of images of the C3 cell where each row is a sequence
of ten consecutive images (e.g. row one is t1 − t10, row two is t11 − t20, and row
3 is t21 − t30). (b) The time series of images transformed into an array ÃC3 by
adding a time dimension on the z-axis.

The initial step in the Maximum Void method for analyzing cell data

involves obtaining two arrays, ÃC3 and ÃCon, and apply an upper-level set

filtration to identify various H2 features. Figure 4.2 shows the persistence

diagrams for these arrays with the C3 cell in Figure 4.2a and the Control

cell in Figure 4.2b. The blue diamonds are the H2 features.
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(a) P(Ãc3
t ) (b) P(ÃCon

t )

Figure 4.2: Persistence diagrams for (a) ÃC3 and (b) ÃCon where the blue dia-
monds are H2 feature, the red triangles are H1 features, and the black dots are H0
features. The death time is one the x-axis and the birth time is on the y-axis.

The C3 cell has several persistentH2 features on the persistence diagram

(blue diamonds located further from the birth=death line), whereas the

Control cell shows only one prominently persistent H2 feature.

Step 2: Find Statistically Significant H2 Feature

The function f(x,y, t)which forms the mean of the pixel intensity sampling

distribution and describes the pattern in the arrays can be partitioned as

described in the following assumption.

Assumption 8. For each point in time t = {t1, . . . , t30} an image M̃σ
t in the

array Ãσ can be partitioned into k contiguous regions, where k could depend on

time (e.g. kt), and each of the k partitions has a constant function value defined

as:

θk(t) = {f(x,y, t) : (x,y) ∈ Gk(t) and f(x,y) = µ̃k}, (4.3)
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where Gk(t) is the (x,y) coordinates which make up partition k at time t and µk

is the value of the function for partition k.

For all the times the wound exists t∗, let θ1(t) = {f(x,y, t) : (x,y) ∈

G1(t), t ∈ t∗, and f(x,y) = µ1} be the functional value of the wound and

G1(t) be the partition of the wound at time t. A partition of Ã0, denoted

by G1, contains the entire cell wound throughout time in the form of H2

features where G1 is defined as follows:

G1 = {G1(t) : ∀t ∈ t∗} (4.4)

The birth time of the most persistent H2 feature (θ̂1) in the data array

which has been smoothed across time Ãσ, is used to estimate the birth

time of the H2 features which make up the wound in G1 for the underlying

smoothed pattern Ã0. This birth time, θ̂1, is a good estimate of the birth

time of the H2 features which make up the cell wound as long as the

following assumptions hold.

Assumption 9. For every time t ∈ t∗ where the wound exists, the persistence

of the corresponding Hm feature is higher than the persistence of the background

(k ̸= 1) such that: θ1(t) > θk(t) if the wound is an H0 feature and θ1(t) −

θ1∗(t) > θk(t) − θk∗(t) if the wound is an H1 feature, where θ1∗ and θk∗ denote

the partitions in the interior of loop 1 and loop k, respectively.
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Assumption 10. For every time t ∈ t∗, the functional value of the partition which

describes the wound θ1(t) is closer to the functional value of the wound at another

point in time than it is to the background partition so that: θ1(ti) − θ1(tj) <

θ1(ti) − θk(ti) where k ̸= 1 and i ̸= j.

We assume that the H2 feature representing the wound corresponds

to the maximum persistent feature in the arrays ÃC3 and ÃCon aligning

with Assumptions 9 and 10. Therefore, the second step in the Maximum

Void method applies the Maximum Persistence Test on the entire array to

identify the possible statistically significant H2 feature, which represents

the cell wound at most points in time, instead of on each image individually.

Steps 1-4 of Algorithm 3 applies the Maximum Persistence Test to the C3

and the Control cell arrays ÃC3 and ÃCon, respectively. Using m = 2 for

the dimension of the Hm feature in the Maximum Persistence Test, each

column of Table 4.1 shows the p-valuemax, the 95th percentile of the null

distribution ρ∗
max, and the persistence of the H2 feature for both the C3

cell (row 1) and the Control cell (row 2).

Cell Type p-valuemax 95th percentile ρ∗
max persistence

C3 0 99 388
Control 0 89 693

Table 4.1: Results of the Maximum Persistence Test applied to the smoothed
arrays where row is the cell type, C3 and Control, respectively. The columns are
the p-valuemax from the Maximum Persistence Test, the 95th percentile of the null
distribution of no structure in the array, and the persistence of the most persistent
H2 feature.

Since the most persistent H2 features in ÃC3 and ÃCon are statistically
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significant, the birth times of these features (θ̂C3
1 and θ̂Con

1 ) can be used to

identify the part of the array where the wound is (GC3
1 and GCon

1 ).

Step 3: Identify H0 and H1 Features at Each Point in Time

The partitions of the cell wound in the arrays for the C3 cell and the Control

cell are estimated as follows:

ĜC3
1 (θ̂C3

1 ) = {(x,y, t) : f−1(θ) = (x,y, t) for θ ⩾ θ̂C3
1 }

ĜCon
1 (θ̂Con

1 ) = {(x,y, t) : f−1(θ) = (x,y, t) for θ ⩾ θ̂Con
1 },

(4.5)

where only (x,y, t) coordinates from pixels above the birth times of the

most persistent H2 feature are a part of the estimated partitions. These

partitions can be broken into slices of the cell wound at each point in time

t; let the (x,y) coordinates defining the wound at time ti be estimated as

follows:

ĜC3
1 (ti, θ̂C3

1 ) = {(x,y) : f−1(θ) = (x,y, ti) for θ ⩾ θ̂C3
1 }

ĜCon
1 (ti, θ̂Con

1 ) = {(x,y) : f−1(θ) = (x,y, ti) for θ ⩾ θ̂Con
1 }.

(4.6)

These (x,y) coordinates in ĜC3
1 (ti, θ̂C3

1 ) and ĜCon
1 (ti, θ̂Con

1 ) are the zero-

simplices which form the simpicial complex at each time point (Kθ̂C3
1

ti
and

K
θ̂Con

1
ti

) which can be used to calculate the homology at each point in time

(Hm(K
θ̂C3

1
ti

) and Hm(K
θ̂Con

1
ti

)). The partitions of the wounds in the arrays
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(ĜC3
1 (θ̂C3

1 ) and ĜCon
1 (θ̂C3

1 )) connect the homology of the wound in the C3

and Control cells at each point in time t. The homology of the wound

at time t can manifest as an H0 feature, an H1 feature, the empty set, or

multiple features of both dimensions.

Examples of how the homology of the wound could manifest at three

consecutive slices of time is shown in Figure 4.3 with G1
1 and G2

1. The grey

part of the cylinder are empty regions and the slices are three consecutive

time points t1, t2, t3. The colors show which H1 features are connected in

time through the H2 features. If there is more regularity in the wound (e.g.

G2
1 similar to the Control cell), then the homology at each point in time is

easy to connect to the times before and after. For instance, G2
1 would be

defined by one red loop which is a part of the wound at times t1, t2, and t3.

However, if the wound is more disorganized (e.g. G1
1 similar to the C3 cell)

and has multiple Hm features which describe it, the homology at each

point in time can be difficult to connect to the time before. For instance, G1
1

is defined by a red loop which is a part of the wound at times t1, t2, and t3,

a blue loop which is a part of the wound at time t2 but then merges with

the red loop at time t3, and a completely separate purple loop which is a

part of the wound at times t2 and t3.
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Figure 4.3: Examples of different types of wounds, or G1s. The loop color groups
loops which are connected in time, and the slices are three time points t1, t2, t3.
The white region is the H1 feature and the gray region is empty space or the part
of the image which makes up the background.

The third step of the Maximum Void method identifies ĜC3
1 (θ̂C3

1 ) and

ĜCon
1 (θ̂Con

1 ) from θ̂C3
1 and θ̂Con

1 . Then the simplicial complexes at each

point in time ti ∈ t∗ (Kθ̂C3
1

ti
and K

θ̂Con
1

ti
) are found from ĜC3

1 (ti, θ̂C3
1 ) and

ĜCon
1 (ti, θ̂Con

1 ). Step 5 of Algorithm 3 describes how to get the list of sim-

plicial complexes at each point in time K
θ̂C3

1
ti

and K
θ̂Con

1
ti

. Examples of

ĜC3
1 (ti, θ̂C3

1 ) for times t11, t12, t13 can be seen in Figure 4.4 and the corre-

sponding simplicial complexes K
θ̂C3

1
ti

for times t11, t12, t13 can be seen in

Figure 4.5.
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Algorithm 3 MV Method for Stacked Images
1: Input: df := (x,y, t,Z[x,y, t]) of array Aσ; B = number of permuta-

tions; m = homology group dimension; P = persistence diagram of
Aσ; robs := maxm(P) persistence of most persistent Hm feature; b =
birth time of maximum persistent Hm feature; T total number of time
points

2: Output: S list of simplicial complexes for representing the wound at
each point in time

3: Define: Z = {Z[x,y, t] | (x,y, t,Z[x,y, t]) ∈ df}; p = ∅; r∗ = ∅;
L =nrows(Z)

4: for j in 1:B do
5: Step 1: Define A∗ ∈ R3

6: for l in 1:L do ▷ permute Z[x,y, t]
7: A∗(x,y,t)← sample(Z, without replacement)
8: end for
9: Step 2: P∗ ← pers(A∗) ▷ calculate Persistence Diagram

10: Step 3:
11: r∗ ←maxm(P∗) ▷ Get max persistence
12: end for
13: Step 4: p←

∑
j=1BI(r∗j>robs)

B
▷ Get p-value for Maximum Persistence

Test
14: Step 5:
15: if p > α then S← ∅ ▷ If fail to reject null there is no feature
16: else
17: Define S = ∅; G = ∅ ▷ If reject null find (x,y, t) coordinates of

feature
18: for j in 1:T do
19: Gt =← {(x,y,Z[x,y, t]) | t = j} ▷ Subset dataframe by each

time
20: St ← {(x,y) | (Z[x,y, t] ⩾ b) ∩ ((x,y,Z[x,y, t]) ∈ Gt)} ▷ Get

(x,y) for birth of feature
21: end for
22: end if
23: return S
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Step 4: Connect the H1 and H0 features Across Time

The final step of the Maximum Void method involves connecting and

summarizing the homology of Kθ̂1
ti

and Kθ̂1
tj

for all the consecutive time

points ti and tj where the wound exists (t∗) in both the C3 and Control

cells. This is achieved using ZigZag persistence, a technique designed

for analyzing time-varying dynamic graphs and clustering dynamic data.

ZigZag persistence captures the evolution of H1 and H0 features over time

by examining how homology changes during the filtration process where

δ is time rather than pixel intensity (Carlsson and De Silva, 2010; Mata

et al., 2015; Tausz and Carlsson, 2011; Carlsson et al., 2009; Tymochko et al.,

2020).

ZigZag Persistence

In traditional persistent homology calculations, the simplicial complexes

built using M−1(δ,∞) = {(x,y) ∈ R2|Z(x,y) > δ} form a filtration, or

a finite sequence of nested sub-complexes, as δ decreases from ∞ to 0.

The topology of each simplicial complex is quantified through homology

groups and the δ value when homological feature j is born (bj) and dies

(dj). Throughout the filtration, each simplicial complex is nested within

simplicial complexes on top of upper-level sets with smaller thresholds
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such that:

Kδ1 ↪−→ Kδ2 ↪−→ . . . ↪−→ Kδl=0, (4.7)

where Kδ is the simplicial complex on the upper level set M−1(δ,∞). The

inclusion arrow ↪−→ shows that Kδ1 ⊂ Kδ2 for δ1 ⩾ δ2.

The inclusion maps between simplicial complexes induce linear maps

between the homology groups of those complexes where m denotes the

dimension. All the linear maps point in the same direction.

Hm(Kδ1)→ Hm(Kδ2)→ . . .→ Hm(Kδl=0). (4.8)

This graphical representation of vector spaces Hm(K) is called a persistence

module (Carlsson and De Silva, 2010).

The mathematical relationship shown above allows for clear interpreta-

tion, calculation, and a multi-scale view homology over a space. However,

when a space is evolving throughout time, topological features can disap-

pear and reappear making the birth and death time calculations difficult.

ZigZag persistence is a technique which describes the persistent homol-

ogy of a family of space without requiring nesting (Carlsson and De Silva,

2010). This technique is commonly applied to time series data where the

filtration is through time, not space, or in our case pixel intensity.

ZigZag persistence is a generalization of quiver theory where the di-

rection of each inclusion map in Equation (4.7) and the linear map in
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Equation (4.8) is arbitrary instead of the same direction throughout the fil-

tration. In most applications the inclusion direction alternates earning the

name ZigZag Carlsson and De Silva (2010). An example of this structure

for a filtration over time (e.g. t=time) is shown below:

Kt1 ↪−→ Kt2 ←−↩ Kt3 ↪−→ . . .←−↩ Ktl−1 ↪−→ Ktl

or

Kt1 ←−↩ Kt2 ↪−→ Kt3 ←−↩ . . . ↪−→ Ktl−1 ←−↩ Ktl ,

(4.9)

where tl is the last point in time.

The inclusion maps induce a linear map on the mth homology group

which can now change direction creating new persistence modules:

Hm(Kt1)→ Hm(Kt2)← Hm(Kt3)→ . . .← Hm(Ktl−1)→ Hm(Ktl)

or

Hm(Kt1)← Hm(Kt2)→ Hm(Kt3)← . . .→ Hm(Ktl−1)← Hm(Ktl)

(4.10)

To integrate ZigZag persistence into the Maximum Void method in

order to interpret the homology of the wound, Algorithm 3 reduces the

time series of images M̃σ
t = {M̃σ

t1
, M̃σ

t2
, . . . , M̃σ

t30
} to simplicial complexes

Kθ̂1
t = {Kθ̂1

t1
,Kθ̂1

t2
, . . . ,Kθ̂1

t30
}. These simplicial complexes are constructed

solely from pixels with intensity values above θ̂1 and vary in structure
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over time. Figure 4.4 illustrates slices of the wound for the C3 cell at time

points t11, t12, t13 where each slice in time may depict the wound as a loop,

connected component, or empty space, allowing for linear mappings in

diverse directions. We want to induce this alternating structure to the

persistence modules of Hm(K
θ̂C3

1
t ).

Figure 4.4: Slices of the cell wound ĜC3
1 (t11, θ̂C3

1 ), ĜC3
1 (t12, θ̂C3

1 ), ĜC3
1 (t13, θ̂C3

1 ) where
color is the intensity value of the pixels which are above the threshold θ̂C3

1 . The
nesting structure of the homology of the wound throughout times t11, t12, t13 is
arbitrary.

Since, there is no natural zigzag order to the maps, this relationship can

be induced through unions and intersections of the simplicial complexes.

This helps connect features throughout time which are disappearing, merg-

ing, separating, or staying the same.
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Hm(Kθ̂1
t1
)→ Hm(Kθ̂1

t1
∪Kθ̂1

t2
)← Hm(Kθ̂1

t2
)→ . . .← Hm(Kθ̂1

tl−1
∪Kθ̂1

tl
)→ Hm(Kθ̂1

tl
)

or

Hm(Kθ̂1
t1
)← Hm(Kθ̂1

t1
∩Kθ̂1

t2
)→ Hm(Kθ̂1

t2
)← . . .→ Hm(Kθ̂1

tl−1
∩Kθ̂1

tl
)← Hm(Kθ̂1

tl
)

(4.11)

The choice between intersections and unions did not significantly alter

the analysis; therefore, the remainder of the Chapter will primarily focus

on unions as the set operation that connects homology over time. An

example of these unions between slices of the statistically significant H2

feature representing the wound of the C3 cell, is illustrated in Figure 4.5

for times t11, t12, t13. The color of each loop indicates the grouping across

time.
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Figure 4.5: The black simplicial complexes are the simplicial complexes represent-
ing the wound at time points t11, t12, t13 and the red simplicial complexes are the
unions between simplicial complexes representing the wounds at two consecutive
time points for the C3 cell. The loop color groups H1 features through the time
slices.

These set operations introduce new times points K
θ̂C3

1
t11
∪ K

θ̂C3
1

t12
and

K
θ̂C3

1
t12
∪ K

θ̂C3
1

t13
, denoted as t11.5, and t12.5, which link the simplicial com-

plexes and help interpret the evolution of the wound over the time

series. The light blue loop persists in the filtration at all time points:

t11, t11.5, t12, t12.5, t13. In contrast, the purple loop is present at time points

t11, t11.5, t12 and disappears (i.e. dies) at time t12.5, as it is not part of

K
θ̂C3

1
t12
∪K

θ̂C3
1

t13
. The red loop appears (i.e. is born) at time t13, appearing for

the first time in K
θ̂C3

1
t13

. The union at time t12.5 demonstrates that the red loop

is not the same at the purple loop since these H1 features are in different

locations on the simplicial complex representing the wound.

The Maximum Void method differs from traditional approaches to

applying TDA to time series, specifically time series of images, in two
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significant ways: (i) it connects time through the data space not through

topological summary statistics and (ii) it uses a statistical test with θ̂1 to

threshold the image, thereby generating a simplicial complex at each time

point for ZigZag persistence analysis. Most often ZigZag persistence is

applied to networks or simplicial complexes built on point clouds. In many

TDA applications on images, thresholding is typically based on criteria

not grounded in a statistical test.

In Figure 4.6, the ZigZag diagrams are shown where the Birth (x-

axis) and Death (y-axis) times are displayed in seconds (e.g. t12 = 96

seconds). The C3 cell is shown in Figure 4.6a and the Control cell is shown

in Figure 4.6b. In general, the Control cell is more organized and consistent

with only two loops which make up the wound. The C3 cell has much

more disorganization in the wound with multiple loops and connected

components making up the wound at different points in time.

(a) ZigZag P(Ãc3) (b) ZigZag P(ÃCon)
Figure 4.6: ZigZag diagrams for the array of the C3 cell (a) and the array of the
Control cell (b) where the birth time (in seconds) is on the x-axis and the death
time (in seconds) is on the y-axis. The red triangles are the H1 features and the
black dots are the H0 features.
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4.3 Conclusion

For the wounded cell example, the Maximum Void method captures the

pattern in an sequence of images by tracking changes in the H1 and H0

features that constitute the wound across time. In Section 2.9, partitioned

TDA found that the C3 cell exhibits higher persistence in the ring structure

of the wound compared to the Control cell at earlier time points. However,

this relationship changed at later time points, where the ring of the wound

in the Control cell became more persistent. This new method shows

that the C3 cell has more topological features representing the wound

throughout the time series compared to the Control cell, as illustrated in

Figure 4.6a. The Maximum Void method provides additional information

for quantifying cell wound patterns and approaches time series analysis

from a different perspective than traditional TDA methods.



87

5 discussion and conclusion

This dissertation presents novel methods for inference on both single im-

ages and sequences of images evolving over time through the use of TDA.

In Chapter 2, we introduced the partitioned TDA approach, which im-

proves confidence regions for topological summary statistics by estimating

the mean and variance of partitions associated with the birth and death

times of homology group generators. This method, compared to tradi-

tional TDA and smooth TDA, provides more accurate coverage, smaller

confidence regions, and unbiased estimates of the birth and death times

of homology group generators.

The Maximum Persistence Test and Partitioned Test, introduced in

Chapter 3, are designed to identify statistically significant topological fea-

tures. These hypothesis tests allow for the separation of topological signal

from noise on the persistence diagrams which the confidence regions in

partitioned TDA do not provide. To further improve partitioned TDA

which does not connect patterns across different time points Chapter 4

introduces the Maximum Void method. This method tracks evolving pat-

terns over time using higher-dimensional homology groups, the Maximum

Persistence Test, and ZigZag persistence.

All of the methods in this dissertation were applied to cell biology

data to differentiate between the wounded C3 and Control cells based

on persistence and the amount of topological features of the wound over
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time. These techniques offer useful insights for estimating and quantifying

uncertainty in cellular patterns. Future research could extend partitioned

TDA to point-cloud data or images where the distribution of pixels within

the partition of the loop changes across the partition. With the exten-

sion of partitioned TDA to point cloud data, our method can be more

directly compared to Fasy et al. (2014). To address difference in sam-

pling distributions on the partition of the feature, a local partitioned TDA

approach could use neighboring pixel intensities to estimate the means

and variances of the birth and death times of the feature. Additionally,

the hypothesis tests could be extended to situations involving the task of

finding multiple statistical significant topological features. And lastly, the

Maximum Void Method could also be generalized for time series without

H2 features by using pairwise arrays instead of a complete array across all

time points. Furthermore, improvements could be made to reduce com-

putational complexity and integrate uncertainty estimates into ZigZag

diagrams.

In summary, this dissertation addresses gaps in the TDA literature

regarding inference on a single image. While much of the TDA research

has traditionally focused on tasks outside of estimation, this dissertation

introduces novel insights into addressing biases and quantifying uncer-

tainty in birth and death times of topological features. For example, we

shift from estimating the distribution of distances between persistence

diagrams to using summary statistics derived from pixel distributions to
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estimate the true persistence diagram. Additionally, our hypothesis tests

and method to connect of shapes in images temporally were performed

directly within the images, rather than solely on persistence diagrams.

These techniques demonstrate compelling, new approaches to performing

inference on persistence diagrams.
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