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Abstract 

Maintaining that students’ conceptions of proof can be better understood if studied as 

they evolve in a classroom community over an extended time, I conducted an in-depth case study 

of one high school mathematics class and examined students’ conceptions of proof in relation to 

their teacher’s conceptions of proof and their classroom experiences. In this paper, I focus on the 

interviews with the students and their teacher and examine to what extent and in what ways the 

students’ conceptions of proof resemble or differ from their teacher’s conceptions of proof. 

Specifically, I present the results of the analyses of the participants’ conceptions of proof as 

understood through (a) their descriptions of proof and proving (i.e., proof description), (b) their 

evaluations of hypothetical student proofs (i.e., proof evaluation), and (c) the arguments they 

produce to prove a given statement and their evaluations of their own arguments as a proof (i.e., 

proof production), respectively. I then discuss how the triangulation of the results from each 

measure collectively afforded a better understanding of the participants’ conceptions of proof, by 

providing a more complete and nuanced understanding of their conceptions. The study also 

shows that the analyses of the teacher interviews provide context and background to the students’ 

conceptions of proof, and thus strengthens our understanding of the students’ ways of thinking 

and understandings about proof. In conclusion, the results indicate a close alignment between the 

students’ and their teacher’s conceptions of proof.  
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1. Introduction 

The importance of proof for doing and learning mathematics is well recognized, which is 

evident by the extensive body of literature on proof, as well as the increased emphasis placed on 

proof and proving in the policy documents (e.g., The Principles and Standards for School 

Mathematics [NCTM, 2000]; Common Core State Standards in Mathematics [National 

Governors Association/Council of Chief State School Officers, 2010]). While a vast majority of 

this scholarship focuses on students’ conceptions of proof (e.g., Balacheff, 1988; Bell, 1976; 

Chazan, 1993; Harel & Sowder, 1998; Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009), 

some research focuses on teachers’ conceptions of proof (e.g., Dickerson & Doerr, 2014; Knuth 

2002a, 2002b; Martin & Harel, 1989; Simon & Blume, 1996), with both lines of research often 

documenting that students and teachers hold narrow conceptions (or even misconceptions) of 

proof.  

However, the existing literature usually documents students’ or teachers’ conceptions of 

proof based on a survey or interview administered at one point in time. Moreover, students’ and 

teachers’ conceptions of proof are often studied separately and thus documented independent of 

each other. While these studies inform how proof is viewed and understood by each group, more 

research is needed to better understand how students’ conceptions of proof develop through their 

schooling experiences, in general, and how students’ conceptions of proof are related to their 

teachers’ conceptions of proof, in particular. Hence, I conducted an in-depth case study of one 

high school mathematics class to investigate students’ conceptions of proof in relation to their 

teacher’s conceptions of proof and their classroom experiences, assuming there is greater 

potential to more thoroughly understand students’ conceptions of proof if studied as they evolve 

in a classroom community over an extended period.  
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More specifically, this study assumes that a teacher’s conception of proof is a helpful lens 

for better understanding students’ experiences with proof in school mathematics and seeks to 

understand to what extent the students’ conceptions of proof resemble or differ from their 

teacher’s conceptions- with the ultimate goal of identifying classroom experiences that may 

support the observed proof conceptions in class, though the latter focus is outside the scope of 

this paper (see Paper #2, Classroom Factors Supporting Students’ Conceptions of Proof: 

Classroom Norms, Instructional Practices, and Curriculum). 

Furthermore, the existing research on proof conceptions often asks individuals to prove a 

given mathematical statement to determine their conceptions of proof; however, Stylianides and 

Stylianides (2009) point to the distinction between an individual’s ability to produce a proof and 

their understanding of what a valid proof is. Taking into account this distinction, Stylianides and 

Stylianides asked pre-service teachers to construct their own arguments to prove a statement and 

then to evaluate their own argument in terms of whether they thought it counted as proof. By 

doing so, they sought to differentiate between individuals who produce an empirical argument to 

prove a given statement and believe they proved it and others who produce empirical arguments, 

but know that it does not count as proof. Stylianides and Stylianides found that half of the 

participants who produced empirical arguments were aware that they did not prove the statement, 

and highlighted the importance of the ways in which individuals’ conceptions of proof are 

studied, showing that individuals’ conceptions may be interpreted differently depending on the 

research methods used. Hence, Stylianides and Stylianides called for further research to examine 

teachers’ conceptions of proof through both proof production and proof evaluation activities. 

Following their recommendation, I explored both the students’ and the teacher’s conceptions of 

proof through multiple measures to gain a better sense of their proof conceptions. Specifically, I 
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examined the participants’ proof conceptions through three activities- proof production, proof 

evaluation, and proof description. 

In this paper, I present the results of the analyses of the students’ and the teacher’s 

conceptions of proof as understood through (a) their descriptions of proof and proving (i.e., proof 

description), (b) their evaluations of hypothetical student proofs (i.e., proof evaluation), and (c) 

the arguments they produce to prove a given statement and their evaluations of their own 

arguments as a proof (i.e., proof production), respectively. I then discuss how the triangulation of 

the results from each measure collectively enabled a better understanding of the participants’ 

conceptions of proof, by providing a more complete and nuanced understanding of their 

conceptions. The study also shows that the analyses of the teacher interviews provide context 

and background to the students’ conceptions of proof, and thus strengthens our understanding of 

the students’ ways of thinking and understandings about proof. Finally, the study offers evidence 

that students can develop more robust and desired conceptions of proof if the learning 

environment is conducive to sharing and justifying mathematical ideas where the teacher values 

proof as an important aspect of doing and learning mathematics. 

In the following sections I provide a brief theoretical background of the study, by 

outlining some key constructs and findings in the literature that informed this study.   

2. Theoretical Background and Relevant Literature 

2.1. Defining Proof and Proving	

While the importance of poof is agreed on, there is not an agreed-upon definition of proof 

within the mathematics education community. However, three characteristics of proof stand out. 

That is, proving is a mathematical, cognitive, and social activity. Proving includes looking for 

relationships, making conjectures, generalizing, and justifying (mathematical aspect); proof may 
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take different forms and have different levels of sophistication based on students’ ages and 

cognitive development (cognitive aspect); and proof is socially constructed and thus its validity 

is determined according to the norms of the community (social aspect). 

Traditional definitions of proof tend to foreground the mathematical aspect of it, 

emphasizing certainty, form and rigor. For instance, the Curriculum and Evaluation Standards 

defines proof as “a careful sequence of steps with each step following logically from an assumed 

or previously proved statement and from previous steps” (NCTM, 1989, p. 144). Such a 

definition gives prominence to deductive arguments and judges the validity of an argument 

according to the logical inferences made. While this is a mathematically valid definition, it falls 

short of accounting for other important aspects of proof. As many scholars argue (e.g., Balacheff, 

1988; Hanna, 1990), proving is a social process and the validity of proof is determined according 

to the norms of the community.  

Accordingly, Stylianides (2007) offers a proof definition that blends the social aspects of 

proof with the mathematical aspects. He defines proof as an argument that (a) “uses statements 

accepted by the classroom community that are true and available without further justification- 

“set of accepted statements”; (b) employs forms of reasoning that are valid and known to, or 

within the conceptual reach of, the classroom community- “modes of argumentation”; and (c) is 

communicated with forms of expression that are appropriate and known to the classroom 

community, or within the conceptual reach of, the classroom community - “modes of argument 

representation” (p. 291). Thus, this definition is more helpful to study and understand proofs 

that occur in classrooms.  

Harel and Sowder (1998) offer another useful proof definition, one that highlights both 

the cognitive and social aspects of proof. They define proving as the process employed by an 
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individual (or a community) to remove doubts about the truth of an assertion, which includes two 

sub-processes: one is a cognitive process (ascertaining), and the other is a social process 

(persuading). Ascertaining is the process by which one removes his or her doubts about the truth 

of an assertion, and persuading is the process of removing others’ doubts. So, the process of 

persuading accounts for the social aspect of proof, whereas the processes of ascertaining 

accounts for the cognitive aspect of proof.  

 The first definition, which highlights the mathematical aspect of proof, may be the one 

most reminiscent of how people typically view proof, since the traditional treatment of proof in 

school mathematics is focused on mathematical formalism. However, the second and third 

definitions are more useful for studying proof and proving in school mathematics as these 

definitions allow one to view proving as a collective classroom practice. Therefore, I take a view 

of proof and proving that blends the definitions provided by Harel and Sowder (1998) and 

Stylianides (2007), maintaining that proving is a mathematical, cognitive and a social activity. 

Accordingly, I view proving as a process (a) of establishing conviction about the validity 

of mathematical statements and constructing mathematical meanings, which has individual and 

social aspects as Harel and Sowder (1998) describe (i.e., ascertaining and persuading, 

respectively); and (b) of communicating those meanings via arguments as outlined by Stylianides 

(2007) (i.e., through sets of accepted statements, modes of argumentation, and modes of 

argument representation). I view a proof as the product of the proving process that is accepted 

by the classroom community.  

2.2. Conception of Proof 

Pointing to the importance of studying knowledge and beliefs together, Thompson (1992) 

defines conception as “a general notion or mental structure encompassing beliefs, meanings, 
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concepts, propositions, rules, mental images, and preferences” (p. 130). Following this 

definition, I use conception of proof to refer to what meanings individuals hold for proof, what 

they believe the role and function of proof is, what constitutes proof for them, and what they 

understand about proof, as well as the kinds of arguments they produce and consider to be a 

proof.  

2.2.1. Students’ conceptions of proof 

2.2.1.a. Meanings of proof: What is the role of proof? 

 Many studies report that students do not see the value of proving for learning 

mathematics, but rather see it as a requirement- a formal, meaningless ritual in which they are 

asked to either verify something that they are told to be true (by their teacher or textbook) or 

confirm something that is obvious (Schoenfeld, 1985). Similar findings occur even among 

undergraduate students. Coe and Ruthven (1994) found that undergraduate freshmen’s notion of 

proof was mainly limited to verification and confirmation. Some of their students viewed proof 

as “a general formula” that helps one rigorously check the veracity of statements. Yet, there are 

various functions that a proof can serve in learning mathematics that can contribute to students’ 

understanding. In particular, researchers (e.g., Bell, 1976; deVillers, 2012; Healy & Hoyles, 

2000; Porteous, 1990) emphasize three main purposes of proof as follows: (a) verification (i.e., a 

proof verifies the truth of a proposition), (b) explanation (i.e., illumination and communication; a 

proof should also give insight into why the proposition is true), and (c) discovery (i.e., discovery 

and systematization; the arguments put forth for the proof- axioms, concepts, and the derived 

results- should be organized into a deductive system). Indeed, Hanna (2000) highlights the 

verification and explanation as the fundamental functions of proof, arguing that the main purpose 

of proof in school should be to explain. Hanna asserts that rigor is secondary to understanding 
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(especially in school mathematics), arguing that the focus should be on the educational value of 

proof rather than its formal correctness. However, studies document that few students recognize 

the explanation role of proof, and even fewer students (if any at all) recognize the discovery role 

of proof (Healy & Hoyles, 2000; Porteous, 1990), underscoring that students (even advanced 

students such as senior high school students and undergraduate students) have a very limited idea 

regarding the purpose and role of proof. 

2.2.1.b. Students’ proof evaluations: What counts as a proof?  

It has been frequently shown that students’ accounts of what counts as a proof seem to 

depend more on the form of the arguments rather than on the correctness and completeness of the 

arguments, with many students thinking that a proof must be presented in a particular form, 

written in a clear and logical format (Almeida, 2000; Healy & Hoyles, 2000; Smith, 2006; 

Vinner, 1983). For instance, Healy and Hoyles (2000) explored the characteristics of arguments 

that students recognized as proofs and the reasons behind their judgments, by surveying nearly 

2500 high school students. The researchers provided students with several arguments including 

narrative, empirical, visual, and deductive arguments- both valid and invalid deductive 

arguments- for one familiar and one unfamiliar algebra problem and asked them to choose the 

argument closest to what they would produce themselves and the argument that they thought 

their teacher would give the best mark. The study revealed that students had different 

conceptions of what constitutes proof for themselves and for their teachers- a similar finding to 

Chazan’s (1993) study. The researchers reported that the students considered algebraic 

arguments as appropriate proofs for their teachers, while they themselves viewed other forms of 

arguments as proof as well.  



 

	

10 

More specifically, when choosing an argument that they would produce themselves to 

prove the familiar conjecture, 46% of the students chose a narrative argument, 24% chose the 

empirical argument, 16% chose the visual argument, and 14% chose an algebraic argument, 

although 2% chose an invalid deductive argument. However, 64% of them picked an algebraic 

argument as the one that would receive the best mark, with 42% choosing the invalid algebraic 

argument. Tendency to choose an algebraic argument increased for the unfamiliar conjecture: 

20% chose an algebraic argument as the one that they would produce, and 79% thought an 

algebraic argument would receive the best mark. These findings indicate that students choose 

arguments that they can understand and find to be convincing and explanatory for themselves, 

while they focus on the form of the arguments when it comes to choosing an argument that 

would count as a proof in the eyes of their teachers. However, the students’ low tendency to 

choose algebraic arguments as their personal choices may be related to the distinction that 

Stylianides and Stylianides (2009) pointed to; that is, the distinction between producing and 

recognizing a valid proof. Indeed, the students were not precisely asked to choose the argument 

that they would personally consider as a proof, but rather they were asked to choose the one that 

they would ‘produce’ themselves. Hence, these findings may instead be pointing to the students’ 

difficulties in constructing algebraic proofs, rather than understanding what a valid proof is.  

2.2.1.c. Students’ proof schemes: How students go about proving? 

Students’ proof competencies are often examined by classifying their proof productions 

as either empirical or deductive arguments (Bell, 1976; Coe & Ruthven, 1994; Porteous, 1990). 

Several researchers have also examined students’ proof competencies from the learner’s 

perspective, specifically by trying to identify how students go about proving and what students 

consider as proof (e.g., Balacheff, 1988; Harel & Sowder, 1998; van Dormolen, 1977). For 
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instance, Balacheff (1988) identified two main categories for student proofs as ‘pragmatic’ and 

‘conceptual’, which roughly correlates to empirical and deductive proofs. Within the pragmatic 

class, he identified three levels: naïve empiricism, the crucial experiment, and the generic 

example. Both naïve empiricism and the crucial experiment involve empirical arguments; 

however, crucial experiment refers to deliberately testing the conjecture with non-special or 

extreme cases to gain conviction that the conjecture will hold in general, whereas naïve 

empiricism refers to being convinced by only a few confirming examples. Balacheff defined 

generic example as students proving the conjecture with an example that is seen as the 

representative of a class. Lastly, he described student arguments that demonstrate an 

understanding of the key idea of a proof as a thought experiment, the only member of the 

conceptual proof category.  

Harel and Sowder (1998) further elaborated on what students consider as proof and 

proposed a framework for students’ proof schemes, including three main categories: external 

conviction, empirical, and analytical proof schemes. By proof scheme, they mean “what 

constitutes ascertaining and persuading for that person” (p. 244). Hence, their categorization of 

proof schemes is based on individuals’ doubts, truths, and convictions in a social context. More 

recently, Harel (2006) offered a revision of the framework by incorporating a historical and 

philosophical analysis on proof, resulting in some revisions on the third class. Hence, the revised 

framework includes the external conviction, empirical, and deductive proof scheme classes.  

External conviction proof schemes include student proofs in which students’ conviction 

comes from external factors such as a teacher or a textbook (i.e., the authoritative proof scheme), 

appearance of a proof (i.e., the ritual proof scheme), or the symbol manipulation without a 
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coherent system of referents (i.e., the non-referential symbolic proof scheme) (Harel & Sowder, 

1998).  

 Students holding an empirical proof scheme validate conjectures by appealing to 

examples (i.e., the inductive proof schemes) or sensory experiences (i.e., the perceptual proof 

scheme). It is a very common proof scheme observed among students across grade bands, 

including high school students (e.g., Balacheff, 1988; Chazan, 1993; Edwards, 1999; Porteous, 

1990). The inductive proof scheme is particularly common among students, where students are 

convinced by testing the conjecture with one or more specific cases. The literature is abounded 

with studies documenting that many students prefer numerical calculations as justification and 

find a few confirming examples as sufficient to prove (e.g., Balacheff, 1988, Chazan, 1993; Coe 

& Ruthven, 1994; Edwards, 1999; Harel & Sowder, 1998; Knuth et al, 2002; Knuth, Choppin, & 

Bieda, 2009; Porteous, 1990). It is also documented that some students are convinced by 

examples only if the conjecture also holds true for non-special examples such as an extreme or 

random case- that is, in Balacheff’s terms, if the conjecture pass the “crucial experiment” (e.g., 

Balacheff, 1988; Chazan, 1993; Knuth et al., 2002). The perceptual proof scheme, on the other 

hand, involves coming to a conviction based on observation or the appearance of a visual figure. 

For instance, a student may conclude that two triangles are similar because they look similar 

(Harel & Sowder, 1998). 

 The deductive proof scheme class basically entails validating conjectures by means of 

logical deductions. It consists of the transformational proof scheme, which is characterized by 

generality, operational thought, and logical inference, and the axiomatic proof scheme, which 

requires further understanding that any proving process, in principle, must start from accepted 

axioms (Harel, 2006). More precisely, the deductive proof scheme requires that an individual: (a) 
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understands that a proof should account for all cases it is given for (generality), (b) sets goals and 

sub-goals and attempts to anticipate the outcomes of his or her actions during the proving 

process (operational thought), and (c) understands that mathematical justification should be 

based on the rules of logical inference (logical inference). Although it is desired that students 

develop deductive proof schemes as they go through schooling, research has often portrayed a 

disappointing picture. Studies repeatedly document that only a small percentage of students 

exhibit deductive proof schemes (e.g., Bell, 1976; Edwards, 1999; Healy & Hoyles, 2000; 

Ususkin, 1987). 

2.2.2. Teachers’ conceptions of proof 

Research on teachers’ conceptions of proof is relatively limited compared to students’ 

conceptions of proof. Moreover, most such studies have investigated pre-service teachers’ 

conceptions of proof, thus, even less is known about in-service teachers’ conceptions of proof. 

The existing research, however, documents that pre-service and in-service teachers’ conceptions 

of proof are somewhat limited. In particular, teachers seem to have narrow views about the 

nature of proof in school mathematics, and often think of two-column, formal proofs that are 

typical in geometry when they think of proof (Knuth, 2002b). Studies found that teachers tend to 

view proof as a separate topic of study reserved for upper mathematics classes, and thus 

appropriate only for the most able students who are likely to pursue mathematics-related majors 

in college (Furinghetti & Morselli, 2011; Knuth, 2002b; Varghese, 2009). Further, Knuth 

(2002b) found that most teachers in his study did not think that proof (formal or less formal 

proofs) was appropriate for all students, thus they did not view proof as a central idea in school 

mathematics.   
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Knuth investigated secondary mathematics teachers’ views about the role of proof in the 

context of mathematics as a discipline (2002a) and in the context of school mathematics (2002b), 

and found that the teachers had different views about the roles and purposes of proof in each 

context. Within the context of mathematics as a discipline, Knuth (2002a) found that many 

teachers expressed various roles of proof such as verification, communication, and 

systemization, but they did not recognize promoting understanding as a role of proof. Knuth 

reported that only a slim percent of the teachers considered explaining why something was true 

as a role of proof, while no teacher stated promoting understanding as a role of proof. 

In the context of school mathematics, on the other hand, teachers described the role of 

proof as developing logical thinking skills, communicating mathematics, displaying students’ 

thinking processes, explaining why, and creating mathematical knowledge (Knuth, 2002b). 

However, Knuth found that teachers had two meanings for explain why; for some teachers, he 

noted, ‘explain why’ simply meant to show how the statement came to be true, rather than 

focusing on the underlying mathematical reasons (e.g., relationships, concepts) that makes the 

statement true. Likewise, Dickerson and Doerr (2014) found that the teachers in their study 

considered the two pedagogical purposes of proof in secondary school mathematics as “to 

enhance students’ mathematical understandings” and “to develop generalizable thinking skills 

that were transferable to other fields of endeavor” (p. 711). Thus, it seems that teachers have 

more positive views about the role of proof in school mathematics compared to their views of the 

role of proof in disciplinary mathematics. But, this discrepancy may be due to teachers having 

different meanings for proof in each context, which may have important implications for their 

treatment of proof and what they accept as a proof in class. 
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Several studies indicate that pre-service and in-service teachers accept both empirical and 

deductive arguments as proof (e.g., Knuth, 2002a; Martin & Harel, 1989; Morris, 2002). For 

instance, Martin and Harel (1989) found that 46% of pre-service teachers concurrently rated a 

general deductive proof high (as a valid proof) while also rating at least one inductive argument 

high. Similarly, Morris (2002) found that pre-service (elementary and middle school) teachers 

considered inductive arguments, as well as deductive arguments, to constitute proof, believing 

that they both assured the certainty of the statements. Furthermore, when evaluating arguments, 

some teachers also accepted false deductive arguments as proofs (e.g., Knuth, 2002a, 2002b; 

Martin & Harel, 1989), suggesting that teachers, too, may focus on the form of the argument 

rather than the plausibility of the argument when determining validity.  

For example, in-service teachers in Knuth’s study (2002b) were overall successful in 

identifying the arguments that were proofs; however, one third of them also accepted non-proof 

arguments as a proof. Interestingly, Knuth (2002a) also noticed that what teachers found most 

convincing were often arguments that were not proofs; the teachers were more convinced by 

arguments that included specific examples or a visual to accompany the argument, which would 

fall under the empirical proof scheme class. Moreover, Dickerson and Doerr (2014) found that 

less experienced teachers emphasized the form and rigor of proof, specifically expressing that 

proof in high school should conform to the standard form of proof (i.e., two-column proof), 

while more experienced teachers asserted that visual and concrete proofs are well suited for high 

school students. Hence, further research is needed to uncover teachers’ reasons for accepting 

non-proof arguments as proofs. Given that teachers favored specific examples and visuals to 

supplement the arguments, their choices may be related to their views of the nature and 

pedagogic purposes of proof in school mathematics, again pointing to a possible discrepancy 
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between teachers’ meanings for proof in the context of school mathematics and mathematics 

discipline.  

In sum, together these two lines of research portray how students and teachers view of 

proof and what they understand about proof, but several questions emerge needing further 

attention: What lies beneath students’ and teachers’ conceptions of proof? How students’ 

conceptions of proof develop through their schooling experiences, and particularly, how they are 

related to their teacher’s conceptions of proof? Hence, there is a pressing need to go beyond 

identifying students’ conceptions of proof and to focus on understanding why students conceive 

of proof the way they do. Maintaining that studying students’ conceptions of proof in the context 

of their mathematics class (together with a focus on their teacher’s conceptions) has a great 

potential to gain a better understanding of their conceptions, I sought to examine both the 

students’ and their teacher’s conceptions of proof through multiple measures to shed some light 

on these questions. 

3. Methods 

 To explore students’ conceptions of proof from multiple perspectives, I conducted an in-

depth case study (Yin, 2003) of one high school mathematics class. As I situate the teacher’s 

conceptions of proof (as well as the classroom norms and practices) as helpful lenses to better 

understand students’ ways of thinking and understandings about proof, I also conducted teacher 

interviews and classroom observations, in addition to interviewing students. In this paper, I focus 

on the interview data and report findings about the students’ conceptions of proof, supplementing 

them with analyses of their teacher’s conception of proof. (See Paper #2, Classroom Factors 

Supporting Students’ Conceptions of Proof: Classroom Norms, Instructional Practices, and 
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Curriculum, for findings on the relationship between the students’ proof conceptions and their 

classroom experiences). 

3.1. Context of the Study  
 

The study is situated in an honors, integrated Algebra-II, Geometry, and Pre-Calculus 

course in a public school district in the Midwest. After observing various mathematics classes in 

different schools, I chose this class as the study site due to its emphasis on mathematical 

discussions and justifying ideas. Specifically, I needed a classroom in which proof and 

justification would be a regular part of the classroom discourse to obtain rich data about not only 

students’ proof conceptions, but also about the ways in which students’ classroom experiences 

may have shaped their understanding of proof. 

Designed by a team of mathematics teachers in the school (including the participant 

teacher, Ms. V), this hybrid class was a recently created course. The team designed the course in 

part to allow students to take more advanced mathematics courses before they graduate from 

high school. As such, the course was part of a sequence that enables students to take Algebra-II, 

Geometry, and Pre-calculus in two years. Students who have already passed an Algebra-I course 

are eligible to take this course if they choose an accelerated math path. Thus, unlike the 

traditional honors courses, multiple sessions of the course were available due to high student 

interest. In this study, I examine one session of this two-year hybrid course during the first 

semester of Year-1of the course sequence. 

3.2. Data Collection and Participants 

The teacher, Ms. V, was part of a team of three teachers who designed and implemented 

this hybrid course for the first time. I had conducted informal classroom observations of this 

course during its initial implementation the year before the actual study was carried out. Thus, 
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the study took place during the second implementation of this course. Ms. V had four years of 

teaching experience and had previously taught Algebra-I, Algebra-II, and Geometry classes. At 

the time of the study, Ms. V was teaching both Year-1 and Year-2 of the course sequence. The 

class included 31 students, who were a mix of 9th and 10th grade students. The students typically 

worked on problems in teams of three or four students, and thus small group discussions 

constituted an essential characteristic of the class.  

Data sources of the study include interviews with students and the teacher, videotapes of 

lessons, audiotapes of small group discussions of a subset of students, field notes, reflections, 

and artifacts (e.g., lesson plans, tasks, student work, etc.). Figure 1 below summarizes the entire 

data collection process.  

Teacher Interview-1 
(October 13, 2015) 

 
 

Classroom Observations & 
Student Interviews-1 

(October 16 – December 16, 2015) 
 
 

Student Interviews-2 
(February 10-19, 2016) 

 
Teacher Interview-2 

(March 15, 2016) 

Figure 1. Data collection process 

3.2.1. Teacher interview-1 

Data collection began in mid-October with an hour-long, semi-structured interview with 

the teacher to understand her conceptions of proof, with a focus on her views about the notion of 

proof, her views about the learning and teaching of proof, her goals for her students with regards 
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to proof and proving, as well as background information about the class (see Appendix A for the 

interview protocol). 

3.2.2. Classroom observations  

To examine students’ proof conceptions in situ, I observed mathematics lessons for two 

months, consisting of 18 lessons covering two units in geometry (i.e., Unit 3: 2D Figures & Unit 

4: Similarity and Congruence) and one unit in pre-calculus (i.e., Unit 5: Intro to Trigonometry). I 

had started classroom visits in September and informally observed the class several times prior to 

beginning the data collection. This allowed me both to familiarize myself with the class, and to 

become a somewhat regular member of the class by the time the study officially started, after 

which I visited each lesson for two months. I videotaped the lessons, collected classroom 

artifacts (such as classwork, homework assignments, and sample student work), and took field 

notes to document classroom norms and practices related to proof and proving, as well as any 

remarks revealing individuals’ conceptions of proof. I also wrote reflections after each classroom 

observation. Table 1 below summarizes the mathematical topics that the class studied throughout 

the observations. 

Table 1. Mathematical topics of lessons 

Day # Unit# Day# Topics 
Unit 3: 2D Figures 
Day 1 U3D3 Pythagoras 
Day 2 U3D4 Shapes, Definitions, Properties 
Day 3 U3D5 Circles, Triangles, Composites, Parallelograms 
Day 4 U3D6 Constructions 
Unit 4: Similarity and Congruence 
Day 5 U4D1 Similarity 
Day 6 U4D2 Proofs 
Day 7 U4D3 Congruence 
Day 8 U4D4 Ratios and Similarity 
Day 9 U4D5 Quadrilateral Proofs 
Day 10 U4D6 Coordinate Proofs 
Day 11 U4D7 Team Test  
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Unit 5: Intro to Trigonometry 
Day 12 U5D1 Special Rights and Angles of Polygons 
Day 13 U5D2 SOHCAHTOA 
Day 14 U5D3 Inverse Trigonometric Functions 
Day 15 U5D4 Law of Sines and Cosines 
Day 16 U5D5 Choosing A Trig Tool 
Day 17 U5D6 Finding Area of Regular Polygons 
Day 18 U5D7 Team Test 

 

3.2.3. Student interviews-1 

Alongside the classroom observations, I conducted two student interviews, Interview 1 

and Interview 2. Interview 1 was an hour-long, semi-structured individual interview with 18 

students. I interviewed every student who agreed to be interviewed. The interview protocol 

consisted of three parts (i.e., proof evaluation, proof description, and proof production) in order 

to examine students’ conceptions of proof from multiple perspectives (see Appendix B for the 

entire interview protocol). Specifically, I asked the students (a) to evaluate six hypothetical 

student proofs given for an algebra task by judging whether each argument constitutes a proof or 

not and explaining why they think so- proof evaluation (see Figure 2), (b) to describe what proof 

and proving means to them- proof description, and (c) to prove a mathematical statement and to 

evaluate their own proof productions in terms of whether they consider it to be a proof- proof 

production (see Figure 3). 

Arthur, Bonnie, Ceri, Duncan, Eric, and Yvonne were trying to prove whether the following 
statement is true or false: 
 
When you add any two even numbers, your answer is always even.  
 

Arthur’s answer 
 
a is any whole number 
b is any whole number  
2a and 2b are any two even numbers 
2a + 2b = 2(a + b) 
 

Bonnie’s answer 
 
2 + 2 = 4          4 + 2 = 6 
 
2 + 4 = 6          4 + 4 = 8 
 
2 + 6 = 8          4 + 6 = 10 
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So, Arthur says it’s true. 
 
 

 
So, Bonnie says it’s true. 

Ceri’s answer 
 
Even numbers are numbers that can be 
divided by 2. When you add numbers with a 
common factor, 2 in this case, the answer will 
have the same common factor. 
 
So, Ceri says it’s true. 
 

Duncan’s answer 
 
Even numbers end in 0, 2, 4, 6, or 8. When 
you add any two of these, the answer will 
still end in 0, 2, 4, 6, or 8. 
 
So, Duncan says it’s true. 

Eric’s answer 
 
Let x = any whole number 
       y = any whole number 
 
x + y = z 
z – x = y 
z – y = x 
z + z – (x + y) = x +y = 2z 
 
So, Eric says it’s true. 
 

Yvonne’s answer 
 

 
 
So, Yvonne says it’s true. 
 

Figure 2. Student interview-1, Proof evaluation task, adopted from Healy & Hoyles (2000) 

How would you prove the following statement? 
 
If p and q are any two odd numbers, (p + q) x (p - q) is always a multiple of 4. 

§ Do you think your argument counts as proof? 

§ How confident are you in terms of the validity of your proof? 

§ How do you know your proof is sufficient?  

§ Do you think your teacher would agree that your proof is valid? 

Figure 3. Student interview-1, Proof production task, adapted from Healy & Hoyles (2000) 

3.2.4. Student interviews-2  

Of the 18 students from Interview 1, 7 students (who also consented to audiotaping their 

small-group discussions and were grouped together) were chosen as focus-group students, and 

were interviewed a second time two months after the classroom observations were completed to 
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further probe their conceptions of proof. Thus, when reporting the results about students’ 

conceptions of proof, I restrict my analyses to the focus-group students for whom I have a more 

thorough account of their conceptions of proof. Furthermore, the focus-group students also 

happened to be quite representative of the class in terms of their mathematical background and 

abilities, as confirmed both by their teacher and by their first interviews.  

Like the class in general, the focus-group students were a mix of 9th and 10th grade 

students, with Julie, Mark, and Molly being the 10th graders. They all had taken algebra (either in 

8th grade or 9th grade), which was the pre-requisite to take this hybrid course. Only two students 

(Julie and Mark) had taken an honors mathematics course before, while one student (Mark) had 

taken a geometry course. Except one student (Molly), all focus-group students stated that they 

liked mathematics, expressing mathematics as one of their favorite subjects. In addition, all of 

them considered themselves good at mathematics. Overall, they had a positive disposition to 

mathematics; many explained that they wanted to take this hybrid course because they liked 

taking accelerated mathematics to challenge themselves, and so that they could take more 

advanced courses (like calculus) in high school. Furthermore, they all studied the same 

mathematics curriculum (Core Connections series by CPM Educational Program) in middle 

school- the curriculum they continue to use in high school.  

The initial student interviews started with the focus-group students, completing their 

interviews during the first month of the classroom observations. The focus-group students were 

interviewed a second time about three months after their initial interviews, with an aim to further 

probe their conceptions of proof. Hence, the preliminary analyses of the first interviews (with 18 

students) were used to inform the design of the second interview protocol. This time using a 

geometry task, I first asked the students to prove the given task, and then provided four 
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hypothetical student proofs for them to evaluate. Additionally, I compiled a list of proof 

statements based on the preliminary analysis of the students’ proof descriptions and asked the 

focus-group students to mark whether they agree, disagree, or somewhat agree with those 

statements and then to pick three statements that best describe what proof and proving means to 

them (see Appendix C for the full interview protocol). With this task, my goal was to see to what 

extent the students share similar understandings and views about proof and proving. Lastly, I 

revisited the proof evaluation task from the first interview by providing the students with two 

additional hypothetical student proofs, which was designed based on the preliminary analysis of 

the first interviews (see Figure 4).  

Figure 4. Two additional hypothetical student proofs for the algebra task given in Interview-1 
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I developed these additional student proofs to better understand the nuances of the 

students’ conceptions of proof; namely, whether they would accept an empirical argument as a 

proof when it is followed with a narrative explanation of reasoning (Sam’s argument), and 

whether the students would be more likely to accept a deductive argument as a proof when the 

warrants are made explicit (Abby’s argument). Below, Table 2 summarizes the structure of the 

student interview protocols.  

Table 2. Structure of the student interview protocols 

Student Interview-1 Student Interview-2 

Proof Evaluation (Algebra task) 
• Evaluating 6 hypothetical student proofs 
• Favorite argument 

o Personal favorite 
o Teacher’s favorite 

Proof Production (Geometry task) 
• Making a conjecture 
• Proving their conjecture 
 

Proof Description 
• Defining proof and proving 
• Views on proof and proving in class 
• Importance of proof & purposes of proof 
 

Proof Evaluation (Geometry task) 
• Evaluating 4 hypothetical student proofs 
• Favorite argument 

o Personal favorite 
o Teacher’s favorite 

Proof Production (Algebra task) 
• What do they produce as proof? 
• How do they evaluate their own proof? 
• What difficulties do students have in 

proving? 

Proof Description 
• Proof statements table 

(Agree/Disagree/Somewhat agree) 
• Top 3 proof statements 
 

 Proof Evaluation (Revisiting the algebra 
task from Interview-1) 
• Evaluating 2 additional hypothetical 

student proofs 
• Favorite argument 

o Personal favorite 
o Teacher’s favorite 

 

3.2.5. Teacher interview-2 
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One way to draw parallels between the students' and the teacher's conceptions of proof is 

to provide the teacher with the student interview protocols and to ask her how she would respond 

to them, as well as her expectations regarding how her students would have responded to the 

same items. Therefore, I completed the data collection with a second teacher interview, during 

which I also asked clarifying questions that emerged from the initial analysis of the teacher’s 

first interview and the classroom observations (for more details, see Appendix-D). Hence, this 

interview enabled me to examine how the teacher engaged with those tasks and to probe her 

expectations about the students’ ways of thinking and their abilities to prove. 

Table 3. Structure of the teacher interview protocols 

Teacher Interview-1 Teacher Interview-2 

Background Information Proof Production (Algebra task) 
• Proving the statement 
• Explaining how she would prove in class  

Course information Proof Evaluation (Algebra task) 
• Evaluating 8 hypothetical student proofs 
• Favorite argument 

o Personal favorite 
o Students’ favorite 

Curriculum 
- Is the curriculum supportive of 

reasoning and proof? 

Proof Production (Geometry task) 
• Making a conjecture 
• Proving her conjecture 
• Explaining how she would prove in class  

Proof Description 
• Defining proof and proving 
• Views on proof and proving in class 
• Importance of proof and purposes of 

proof 
 

Proof Evaluation (Geometry task) 
• Evaluating 4 hypothetical student proofs 
• Favorite argument 

o Personal favorite 
o Students’ favorite 

Students’ proof competencies Proof Description 
• Proof statements table 

(Agree/Disagree/Somewhat agree) 
• Top 3 proof statements 
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Teaching proof 
- Strategies for teaching proof 

Clarification questions 
- How does she view “verify”, “justify”, 

“explain reasoning”, and “prove? Same? 
Different? 

- Formal proof vs. informal proof? 

 

 In sum, together these data sources enabled me to investigate the students’ and their 

teacher’s conceptions of proof in relation to each other and from multiple aspects. Specifically, I 

examined the participants’ conceptions of proof through (a) their descriptions of proof and 

proving (proof description), their evaluations of hypothetical student proofs (proof evaluation), 

and (c) the arguments they produce to prove given statements (proof productions). By 

triangulating various data sources and measures of individuals’ proof conceptions, I could 

develop a more complete and nuanced understanding of the participants’ conceptions of proof.  

3.3. Data Analysis 

All interviews were videotaped and transcribed verbatim for analysis. Transcripts of each 

interview were first parsed into chunks per each distinct task, by using the three main categories 

(i.e., proof description, proof evaluation, and proof production), as well as other related sub-

categories. For instance, the proof evaluation task was further divided by each student argument 

(e.g., evaluating Arthur’s argument, etc.), favorite argument, and teacher’s choice.  

The analysis began with open coding (Charmaz, 2006), starting with the first teacher 

interview, continuing with the first set of interviews with the focus-group students (Interview-1), 

followed up by the second set of student interviews with the focus-group students (Interview-2), 

and finished with the second teacher interview. The first round of the analysis was more 

explorative in nature. Although the three main categories loosely framed the analysis, and the 

literature (particularly as reviewed in the theoretical background section) broadly informed the 
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analysis, in this initial phase the analysis was essentially open to emergent codes, aiming to 

identify aspects of the participants’ conceptions of proof as freely and thoroughly as possible. 

During analysis, I continually compared evidence of aspects of the participants’ proof 

conceptions with previously coded instances. As new insights about the participants’ conceptions 

were gained, I wrote analytical memos to keep track of the ideas and emerging themes. Thus, 

codes were revised accordingly throughout the analysis. By the end of the first round of analysis, 

I created an emergent coding scheme by organizing the codes around themes through constant 

comparison (Glaser & Strauss, 1967) and reflections on the analytical memos, and by 

eliminating idiosyncratic codes.  

I then used this coding scheme for focused coding (Charmaz, 2006) to analyze the data 

set by using the most recent codes. Thus, I re-analyzed all the interviews, continuing to write 

analytical memos to further distinguish nuances to the codes, and to maintain consistency and 

coherence in coding. After the second round of analysis, I aggregated the frequencies of codes 

within each category (i.e., proof description, proof evaluation, proof production) for each 

interview per participants; codes with low frequencies were further eliminated. The most salient 

aspects of the participants’ conceptions of proof are presented in the results section.  

4. Results 

 I will present and discuss the results in three parts, following the three main measures 

used for investigating the participants’ proof conceptions. First, I will present the participants’ 

proof descriptions, focusing on their views about proof and proving. Specifically, I will present 

the students’ meanings of proof revealed in their first interviews, and then juxtapose them with 

their teacher’s description of proof. I will then present further details about the students’ 

meanings of proof that are understood through the second interviews. Second, I will report the 
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results regarding the participants’ proof evaluations, highlighting the types of arguments they 

consider to be proofs, their understandings about proof, and their criteria for accepting (or 

rejecting) an argument as a proof. Third, I will elaborate on the students’ proof productions and 

argue that what students produce as proof may not truly reflect their ways of thinking and 

understandings about proof. In reporting the results, particularly about the proof evaluation and 

proof production parts, the students’ conceptions will be foregrounded, with the teacher’s 

conceptions providing context for and supplementing the students’ conceptions. 

4.1. Proof Description: Participants’ Meanings of Proof  

One of the measures I used to determine how the students conceived of proof was asking 

them to describe what proof and proving means to them, their views about proof and proving in 

mathematics, and their experiences with proof in class. The students’ responses revealed that, in 

contrast to the existing literature, all the focus-group students deemed proof important in 

mathematics. For example, Julie expressed that proving advances mathematical understanding: 

“When you prove something, you gain a better knowledge of that and if you know how to apply 

that topic well because of the knowledge that you have, then it allows you to do better in other 

things that get gradually more complicated”. As for the roles and purposes of proof, all the 

students stressed the verification role of proof, while three students (Brett, Julie, and Neil) also 

mentioned the explanation role of proof, and only one student (Brett) referred to the 

systematization role of proof. Hence, the students’ descriptions of the roles of proof during the 

first interviews were consistent with the findings reported in the literature (e.g., Healy & Hoyles, 

2000; Porteous, 1990).  

4.1.1. Students’ views of proof and proving: The first interview 
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During the first interviews the students’ descriptions of proof emerged around three 

themes as follows: (a) proof is backing up statements/conclusion, (b) proof is evidence that 

shows the statement is true, and (c) proof is explaining/showing how you know that your 

work/answer is true. Table 4 below shows each focus-group student’s description of proof, 

presenting students in the chronological order of the interviews. The first three interviews 

(Tyson, Hera, and Neil) occurred before the proof-related lessons had started in Unit 4 (in which 

the lessons emphasized similarity and congruence), while the remaining interviews (Molly, Julie, 

Mark, and Brett) occurred after the proof-related lessons had started.  

Table 4.  Students’ descriptions of what proof and proving means to them 

Students’ Descriptions of Proof Tyson Hera Neil Molly Julie Mark Brett 

Proof is backing up 
statements/conclusions. ✓ ✓      

Proof is evidence that shows the 
statement is true.   ✓    ✓ ✓ 

Proof is showing how you know 
that your work/answer is true.  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

4.1.1.a. Proof is backing up statements/conclusions  

The notion of proof as backing up statements or conclusions was uttered by only the first 

two students, Tyson and Hera. However, this notion of proof seemed to be closely related to the 

students’ view of proof as showing how you know that your work or answer is true- another 

theme of the students’ proof descriptions. For instance, Tyson explained:  

Proof is like backing up your statements, and like you can't just say like I like 

purple or something; you have to explain like why you like purple. Or like in the 

case of math, this equals 13, how does it equal 13? Well you show them your 

work, and that's proof. 
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Judging from the example of a mathematical proof that Tyson gave, one may argue that he was 

referring to a view of proof as explaining how one got his or her answer, rather than showing 

why the answer was true, which is certainly less sophisticated than proof. However, as will be 

elaborated in the following sections, the students seemed to hold a broad view of what it means 

to show something is true, which at times included both how and why something was true. It was 

also clear that the students were curious to understand why a conjecture was true during the 

interviews, and they demonstrated a profound emphasis on explaining why as a critical aspect of 

proof when they evaluated hypothetical proofs.  

4.1.1.b. Proof is evidence that shows the statement is true  

Another meaning of proof that emerged from the students’ descriptions was proof as 

evidence; Hera, Mark, and Brett articulated proof as evidence. For example, Brett described 

proof as “Something like a piece of evidence that you can use, and then the proving is like the 

explanation of the evidence, the argument that I'm making for why it might be true”. On the 

other hand, Hera’s description of proof as evidence resembled an inductive way of thinking 

about proof, distinguishing her from Mark and Brett, who also viewed proof as evidence. Hera 

described proof as similar to a scientific experiment, emphasizing the need for testing many 

times and the accumulation of evidence leading to proof: “To me to prove something is to show 

that nothing else works, like, it's just that I guess. So, there's like no doubt almost in what proof 

is. So, if I, it's kinda like a science experiment”. Hera went on to comment that, “I kind of 

interchange proof and a rule because if you have enough proof, you have a rule, like something 

that is always true”. Although Hera’s description hints that she understood that a proof needs to 

show that a statement is always true, her phrasing of having “enough proof” suggests that Hera 

was considering inductive testing as a viable approach to “prove”. Indeed, when evaluating the 
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hypothetical student proofs Hera considered that a statement can be shown to be always true 

through testing various examples, as well as through deductive reasoning. More specifically, her 

use of “always true” may possibly refer to something holding true for each example tested 

against a claim, rather than a logical implication necessitating the general truth. Hence, even 

though both Brett and Hera described proof as providing evidence, what students considered to 

be a legitimate evidence for proof seemed to differ among students, thus pointing to an important 

nuance to further probe during their proof evaluations and proof productions. 

4.1.1.c. Proof is explaining/showing how you know that your work/answer is true  

All focus-group students had a shared notion of proof as explaining or showing how you 

know that your answer or work is true. In fact, this view seemed to be the overarching idea that 

the students had of proving, which the other two descriptions of proof - proof as backing up and 

proof as evidence- could be deemed as part of. However, being such a broad and encompassing 

description (as seen in Tyson’s account above), the students’ descriptions fell short in clarifying 

what is entailed in showing how one knows that his or her answer is true. For example, Julie 

described, “I feel in math it's proving that your answer is correct through the work that you 

show.” Julie’s description does not elucidate whether she referred to simply showing how one 

got the answer, or whether it also included justifying why something must be true- an important 

distinction similar to the distinction that Knuth (2002b) observed among teachers’ accounts of 

“explaining why”. 

Other students echoed similarly inexplicit views. For example, the students described 

proving as a common practice in class in the form of explaining one’s answer, emphasizing that 

it was never called as proving, though. For instance, Mark expressed that, “I suppose it [proving] 

was commonly used, but it wasn't ever referred to as proving or anything like that. Probably 
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more like explain your answer, it should be a form of proving.” Molly confirmed a similar view 

when she stated, “But a lot of teachers would always be like, show proof of how you got it, 

which is just like explain.” Tyson also noted that they were always engaged in proving “in the 

form of show work”, noting that they were always expected to show their work in their math 

class. Thus, the students’ descriptions appear to reflect an informal meaning of proof that the 

students seemed to appropriate from their classroom experiences.  

Therefore, a critical question arises regarding the all three meanings of proof that the 

students uttered; that is, what is the nature of legitimate evidence, backing up, and showing the 

truth of something? Would the students consider an example a valid evidence or back up? Or, 

would they accept explaining the steps of one’s solution as a proof? The students’ descriptions of 

proof in the first interview did not explicitly disclose what it meant for them to explain how one 

knows that something is true, leaving it uncertain whether they would consider showing how one 

got their answer as a case of proving, which is different than showing something must be true 

through deduction. On the other hand, the analysis of the first set of interviews in their entirety 

hinted that the students possibly had a notion of proof that conflated showing why something 

must be true with showing the steps of one’s answer. Thus, the second interviews aimed to 

elucidate some subtleties about the students’ meanings of proof, which will be discussed next, 

after presenting the teacher’s description and views of proof and proving to provide some context 

to the students’ descriptions of proof.      

4.1.2. Ms. V’s description of proof 

 During the first interview, Ms. V expressed that her perspective of proof has changed as a 

teacher; while she used to think of only formal proofs (which she associates with her high school 
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geometry and college mathematics courses) as proof, Ms. V stated that as a teacher she now 

adopts a broader view of proof as justifying ones’ reasoning or claims: 

I think what I learned to be as a proof in high school is definitely different from 

how I perceive proofs today. So, as a teacher, I guess, when I think of proofs- just 

in general, students saying an answer to something and then explaining how they 

know that that answer is correct. 

Ms. V’s description reveals that she had two meanings of proof; one that she associated with 

formal proofs in the context of mathematics discipline (considering from the perspective of a 

learner of mathematics), and one that is related to the context of school mathematics, which 

appears to be a broader, informal meaning of proof (considering from the perspective of a 

teacher of mathematics). Note that this broad meaning of proof is reminiscent to the students’ 

notion of proof as explaining how you know that your answer is true. Although explaining one’s 

conclusions and claims is a practice that students are encouraged to engage with (NGA/CCSSO, 

2010), it does not necessarily constitute proof; more specifications are needed for proving. 

In response to the question of whether proving is expected of students in the class, Ms. V 

affirmed that students were expected to prove in her class, noting that the answer to this question 

depends on how one thinks about proof. Thus, Ms. V elaborated that she considers proof as 

“being able to always say the answer is this because, or I know this because- being able to justify 

your reasoning and explain it in some way, I think that's always something that we're expecting 

students to do.” Here Ms. V emphasized proof as justifying reasoning with warrants, suggesting 

that she views proving as backing up one’s claims- which will be more evident in her second 

interview.  
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On the other hand, Ms. V also explained that she does not use the word “proof” in class, 

but rather asks students questions such as “How do you know that?”. She articulated, “I don't 

say, ‘Prove it’. I don't say, ‘Write me a proof that explains why this is true’, I just say: ‘How do 

you know?’, ‘Can you explain that?’, ‘How do you know that's true?’, ‘How do you know that's 

the answer’?” Indeed, Ms. V frequently asked such questions when monitoring small group 

discussions or leading whole class discussions. However, while such questions were often 

intended to press students to justify and back up their claims deductively, there were also times 

that they were simply meant to have students explain their work or strategy. Hence, this dual 

emphasis on both justifying claims deductively and explaining one’s work seem to account for 

why the students had developed an informal meaning of proof as explaining or showing how you 

know that your answer is true. 

Furthermore, despite to her emphasis on “proving” in class, Ms. V anticipated that the 

students would not recognize that they prove regularly in their math class, assuming the students 

did not have the perspective that she had of proving. Ms. V expected that the students would 

have a narrow view of proof that is limited to geometry units. Hence, she expressed that her goal 

was to broaden students’ view of proof. More specifically, she asserted: 

I guess that is one thing I would like to change as a teacher. Because from my 

experience, once I learned about proofs in those specific units, that's all I 

associated with proof… So, I guess one thing that I would like to do with my 

students is make them see that proving is not just those two units that we do in 

geometry; it's something that you're constantly doing. 

Contrary to the teacher’s expectation, however, the student interviews revealed that the 

students did share the same perspective of proving with their teacher; that is, proving is 
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not limited to geometry and that they are always expected to justify their ideas in class. 

Given that research (e.g., Furinghetti & Morselli, 2011; Knuth, 2002b; Varghese, 2009) 

documents that teachers often have impoverished conceptions of proof (and so do 

students), viewing proof as limited to geometry, appropriate only for advanced students, 

and thus not a central idea in school mathematics, this is an interesting finding as it shows 

that when a teacher has a more encompassing conception of proof, this may be powerful 

in influencing students’ conceptions of proof.  

In sum, while the students’ descriptions of proof disclosed broad accounts of how they 

viewed proof, their articulation of what proof and proving meant to them often left out important 

details, showing that individuals’ descriptions of proof alone is not enough to draw conclusions 

on their conceptions of proof.	Articulating what proof means is not an easy task, especially for 

students; thus, the students’ definitions of proof may not adequately portray their views of proof. 

Therefore, I sought to further probe the students’ meanings of proof in the second interview 

through a list of proof statements that was developed based on the preliminary analyses of the 

first interviews. In what follows I present some additional findings regarding the students’ 

meanings of proof that emerged from the second interviews, and discuss to what extent the 

students shared similar meanings of proof among each other and with their teacher. 

4.1.3. Further probing into the students’ views of proof and proving: The second interview   

4.1.3.a. Proof is backing up statements and providing evidence 

Students’ descriptions of proof in the first interview pointed to two views of proof that 

may have been interchangeably used by the students; that is, proof is backing up statements and 

proof is providing evidence. It is possible that, for both views of proof, the students may have 

intended to express that proof means providing warrants to the claims or statements that explain 



 

	

36 

why a statement or a claim is true. Moreover, these views of proof may still be part of what 

students believed a proof is, even though they had not expressed it during the first interview. 

Hence, seeking to identify some nuances of the students’ views of proof, I had developed a list of 

20 proof statements based on the remarks that the students made during the first interviews, 

considering all 18 student interviews. I asked both the students and their teacher to mark whether 

they agree, disagree, or somewhat agree with each statement (see Appendix C for the full list). 

Two of those statements were related to the students’ views of proof as backing up and proof as 

evidence, and Table 5 below presents how the students evaluated each statement. ✓ indicates 

agreement with the statement, ✗ indicates disagreement, and ~ indicates that the student 

somewhat agrees with the statement. Grey shading signifies that the statement was also one of 

the top three statements that was picked as best describing what proof means to the interviewee. 

Table 5. Proof statements regarding students’ meanings of proof and proving 

Proof Statements Tyson Hera Neil Molly Julie Mark Brett 

Proving is backing up your 
statements or claims.  ✓ ✓ ✓ ~ ✓ ✓ ✓ 

Proving is providing evidence, 
such as an example, that the 
statement is true.  

✓ ~ ✓ ~ ✓ ✓ ✓ 

 

Perhaps not surprisingly, the number of students who agreed with each statement 

exceeded the number of students who articulated the corresponding views of proof in the first 

interview. While only Tyson and Hera described proof as backing up claims in the first 

interview, almost all students, except Molly, agreed with the statement that proof is backing up 

statements or conclusion. Similarly, while Hera, Mark, and Brett described proof as evidence in 

the first interview, five students agreed with that statement in the second interview, and two 
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students somewhat agreed. As seen in the table, all students, but Hera, marked both statements 

the same, hinting that the students might have considered these two views to be very similar. In 

fact, one student, Mark, commented that the second statement was the same as the first 

statement. Note that the second statement, proof as evidence, also indicates examples as a means 

to prove; the aim was to see how students would react to it. Given that most students agreed with 

the statement, the inclusion of examples as an evidence, and therefore as a means to prove, was 

not problematic for the students. However, this was not necessarily because the students 

accepted examples as proof, as will be seen in the next sections, but rather because the students 

considered examples helpful in the process of proving, and thus an important part of the process 

of proving.  

 Although Hera’s description of proof in the first interview involved both views of proof, 

proof as backing up and proof as providing evidence, interestingly in the second interview she 

somewhat agreed with the statement that proof is providing evidence. Hera thought that it would 

be “really hard to give evidence that applies to all scenarios”, indicating that she understood that 

proof must account for all cases and that one example is insufficient to prove. On the other hand, 

Hera strongly agreed with the statement that proving is backing up statements or claims, which 

was one of her favorite statements. In fact, that statement was one of the favorite statements of 

the teacher, as well. Ms. V. remarked that, “That's awesome. I'm glad that the first thing wasn't 

that they had to make a flowchart”, and commented that, “This would be my most basic 

explanation of what a proof is. And I hope that's what my students think as well; proving is just 

being able to justify what you're saying is true.” Thus, the analysis of the interviews overall 

showed that the students did share the same perspective of proving with their teacher; that is, 

proving is justifying one’s ideas with reasons. But what did they consider to be legitimate 
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reasons? A definite answer to this question was not possible based on their descriptions of proof, 

but will become evident in their evaluations of hypothetical proofs, which will be discussed later. 

Only one student, Molly, did not fully agree with either statement, pointing to the 

limitations of the statements. She somewhat agreed with the statement that proving is backing 

up, expressing that proof is more than backing up your statements or claims, “Because there are 

so many ways that you could back it up.” She also somewhat agreed with the statement about 

proof as providing evidence, highlighting that evidence shows the truth for specific cases instead 

of showing that the statement is always true. Explicitly, Molly expressed that, “You're not really 

supposed to use evidence, like when they used evidence in the ones like Clara and Ben and all 

them [referring to the proof evaluation task], it only made it seem true for specific numbers and 

not for every single number.” Ms. V also somewhat agreed with this statement due to the same 

limitation that Molly expressed. As Molly pointed out, the given statements were still inherently 

somewhat vague as they were based on the student responses, but they allowed the students to 

comment on them and enabled one to see to what extent they were shared understandings among 

the students. In sum, both proof as backing up and proof as providing evidence were commonly 

held views of proof among the students and their teacher, as no students disagreed with them.  

4.1.3.b. Proof is explaining/showing how you know that your work/answer is true 

During the first interview, all focus-group students described proof as explaining or 

showing how you know that your work or answer is true, but what it exactly entailed was not 

clear. To understand more nuances as to the students’ meanings of ‘showing work’ or 

‘explaining’, three statements, based on the students’ remarks, were added to the list of proof 

statements. Specifically, the statements aimed at understanding whether the students regarded (a) 

showing how one got an answer, (b) checking one’s solution, and (c) explaining one’s thought 
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process as forms of proof. As seen in Table 6, the number of students who agreed that proof is 

explaining one’s answer dropped to five in the second interview; the other two students asserted 

that the statement was somewhat true. Molly, one of the two students, articulated that “I mean it's 

not necessarily showing how you got it. It’s just showing why it's true”. Thus, although most 

students still perceived showing how one got an answer as a kind of proof, providing students 

with proof statements enabled me to uncover some nuanced (and more sophisticated) meanings 

associated with students’ descriptions of proof. 

Table 6. Proof statements regarding the meaning of proof as showing work and explaining 

Proof Statements Tyson Hera Neil Molly Julie Mark Brett 

Proof is like showing how you 
got your answer; explaining your 
answer.  

✓ ✓ ✓ ~ ✓ ~ ✓ 

Proving is like checking your 
work to make sure that it is 
correct. 

✓ ✓ ✓ ✓ ~ ✓ ✗ 

Proof is explaining your thought 
process.  ✓ ✗ ~ ✗ ~ ✗ ~ 

 

As suspected, for some students showing how you know that your work is true seems to 

involve checking one’s work to make sure that it is correct, which was also agreed by five 

students. So, most students regarded checking one’s work as a form of proof, as they believed 

that proof ensures the accuracy of the work. For example, Molly explained that it was an 

accurate statement because, she asserted, “When we have to do proofs, it helps you make sure 

that your stuff is correct because you have to follow all the rules of math when you make one”. 

Her remarks suggest that she deemed a role of proof was to verify the steps of one’s solution, on 

the basis that proof is built on the mathematical rules. Hence, it is also possible that students 

might have perceived verifying each step with a warrant- a reason that made an argument or an 
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operation valid. In addition, Ms. V was pleased that the students had said that proving was like 

checking one’s work, asserting that verifying the solution of an equation algebraically could be 

one way of proving, whereby ‘algebraically verifying’ means plugging a solution into an 

equation. Ms. V’s comments show that her notion of proof was, indeed, quite broad as she stated, 

accepting the verification of the solution of an equation as a kind of proving. In fact, several 

students mentioned checking the solution of an equation as an example of proof, suggesting that 

this broad notion of proof was a shared view across the students and the teacher.  

Yet, the students’ notion of proof was not too broad to accept explanation of thought 

process as a proof; only one student agreed that proof is explaining one’s thought process, which 

suggests that the students understood that proof must have certain characteristics. For instance, 

Brett argued:  

Proof is like showing that there's no holes or like missing pieces in why you think 

that, but your thought process … could be missing a lot of things. I need to have 

examples and evidence and like proof that it works, not just like why I think it. 

Brett’s remarks indicate that he understands that a proof requires reasons that validate each step 

or claim, albeit also suggesting examples as a possible means of warrant. Nevertheless, the 

students overall understood that proving entails providing warrants to claims; although what they 

accepted as legitimate warrants is equally, if not more, important, as will be discussed in the 

following sections. The teacher somewhat agreed with this statement, asserting that although 

explaining thought process does not count as proof, it is still important during proving. Thus, Ms. 

V’s comment reflects her view of proving as a process that includes exploring a conjecture with 

examples, figuring out reasons that make the conjecture true, and communicating the reasoning. 

4.1.3.c. Proving is showing something is true based on known facts, rules, and definitions 
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Even though during the first interviews no students defined proof as showing that a 

mathematical statement is true based on definitions, known facts and properties, their 

engagement with proof evaluation and proof production tasks hinted that they might have held 

this meaning of proof as well. Aiming to see to what extent the students would agree with this 

view, the list of proof statements that was given to the students included the following statement: 

“Proving is showing that something is right based on the known facts, rules, definitions, and 

properties.” All students agreed that it was a valid statement. Furthermore, all students, except 

Hera, also picked this statement as one of the top three statements that best described what proof 

meant to them, asserting that they use rules and definition when they do proofs in class. Tyson, 

for example, remarked, “Yeah, when we were trying to prove that triangles were similar, we 

would have to do these exact things, like we could prove that they're similar because of 

definitions”. Those classroom experiences seem to be ingrained in Tyson so much that he picked 

this statement as one of his favorite proof statements, saying that he sees that in class every day. 

Additionally, Hera expressed her agreement by making reference to her teacher: “Yeah, at least 

that's what my teacher says.” Evidently, the students’ classroom experiences with proving and 

their teacher’s emphasis on using known facts, definitions, and rules to prove mathematical 

statements seem to have made an influence on the students’ views of proof and proving. Thus, 

the second interview not only provided a context for uncovering some nuances about the 

students’ meanings of proof but also exposed some of the students’ evolving notions of proof 

that were influenced by the classroom factors. By the time the second interviews were conducted 

the students had been in Ms. V’s class for a substantially long time, and thus they had been 

subject to certain emphasis on what it means to prove a mathematical statement. Through such 
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influences, the students’ views of proof appear to have aligned more closely with their teacher’s 

view of proof.  

 In conclusion,  the students’ proof descriptions revealed that they hold various meanings 

of proof, including proof as evidence, backing up claims, and showing that something is true. In 

addition, the students knew that proof is constructed based on known facts, rules, and 

definitions- a clear influence of their classroom experiences. However, proof descriptions alone 

were not sufficient to distinguish students in terms of their conceptions of proof, but they 

provided a helpful foundation for the other two measures (proof evaluation and proof 

production). Specifically, asking the participants to evaluate hypothetical student proofs turned 

out to be a fruitful context for uncovering more details regarding their ways of thinking and 

understandings about proof. 

4.2. Proof Evaluation: What Do Students Understand About Proof? 

 Asking students to evaluate hypothetical student proofs (ranging from empirical 

arguments to algebraic deductive arguments) in terms of whether they constitute a proof or not 

was informative about (a) what kinds of arguments the students accepted as a proof, (b) what 

understandings about proof informed their evaluations, and (c) what criteria they considered for 

accepting an argument as a proof (or for rejecting when certain criteria were not met). First, I 

present what kinds of arguments the students accepted as a proof for the algebra conjecture given 

in the first interview, along with a discussion of the sources of difficulties that seemed to affect 

the students’ evaluations. I then present the students’ proof evaluations for two additional 

hypothetical proofs given for the same task during the second interview, which is then followed 

up by the students’ favorite proof selections. Next, I focus on the students’ proof understandings 

and the criteria they used for accepting an argument as a proof to provide a more detailed 



 

	

43 

account of the students’ conceptions of proof, by also considering their evaluations of their own 

proof productions in addition to their evaluations of the hypothetical student proofs.  

4.2.1. What kinds of arguments did the students accept as a proof?  

In the first interview, the students were asked to evaluate six hypothetical student proofs 

given for the conjecture that the sum of any two even numbers is an even number (Figure 2), 

expecting that the conjecture would be a familiar mathematical statement for high school 

students and thus its proof would be accessible to them in terms of the mathematical content 

knowledge it requires. To recap, the given hypothetical student proofs included a deductive 

algebraic argument (Arthur), an empirical argument (Bonnie), a deductive narrative argument 

(Ceri), a narrative argument of proof by exhaustion (Duncan), an incorrect algebraic argument 

(Eric), and a visual argument that could be viewed as a generic example (Yvonne).  

The proper evaluation of Arthur’s argument requires students to recognize how the 

definition of even numbers is used in algebraically representing even numbers and building the 

mathematical statement. Similarly, Ceri’s argument also requires students to recognize how the 

definition of even numbers is used in constructing the statement, but in a narrative form. In both 

arguments, students need to be able to follow the logical chains between the premises, the 

definition of even numbers, and the claim. Duncan’s argument draws on the fact that even 

numbers can be characterized by the unit digits of numbers and presents a proof by exhaustion 

by listing all possible unit digits of even numbers; thus, students need to see that connection and 

be aware of proof by exhaustion as an acceptable method of proving. The proper evaluation of 

Eric’s argument requires students to focus on the meaning of algebra, rather than on the form of 

the argument, by decomposing the algebraic expressions and evaluating the logical chains 

between premises and the claim. Lastly, the evaluation of Yvonne’s argument would depend on 
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whether students view it as a generic example or just a particular example. For students to view it 

as a generic example they need to recognize that the definition of even numbers is represented 

visually and that the visual representation shows that the sum of any two even numbers is always 

an even number. 

As shown in the Table 7, the students tended to choose deductive arguments, albeit more 

frequently in narrative form than algebraic form, as a proof, but not the empirical argument. 

More specifically, almost all the students considered Ceri’s deductive narrative argument as a 

proof, while more than half of the students also considered Arthur’s deductive algebraic 

argument and Yvonne’s visual argument as a proof. Overall, the students were aware of the 

limitations of empirical arguments, with only two students accepting Bonnie’s empirical 

argument as a proof.  

Table 7. Types of arguments accepted as proof 

 

Furthermore, although the students found the use of variables and equations to be 

sophisticated and important in proving, they were not, however, influenced by the form of the 

argument alone. This is more evidently seen in their evaluation of the incorrect algebraic 

Hypothetical student proofs Number of students who 
accepted it as a proof 

Deductive/narrative argument (Ceri) 6 

Deductive/algebraic argument (Arthur) 4 

Visual argument/generic example (Yvonne) 4 

Narrative argument/proof by exhaustion (Duncan) 2 

Empirical argument (Bonnie) 2 

Invalid algebraic argument (Eric) 1 
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argument given by Eric; only one student (Julie) accepted it as a proof. These findings are 

encouraging as they demonstrate more sophisticated proof conceptions than reported in the 

literature (e.g., Healy & Hoyles, 2000). On the other hand, almost half of the students did not 

consider the correct algebraic argument as a proof either. Thus, while these findings, taken 

together, suggest that the students did not base their decisions solely on the form of the 

argument, yet a question remains: Why did some of the students not accept the valid algebraic 

argument as a proof?  

4.2.1.a. Student difficulties in evaluating hypothetical student proofs 

A close examination of the students’ evaluation of the hypothetical proofs revealed 

several student difficulties, which affected their ability to accurately evaluate the arguments, in 

general, and led some students to reject Arthur’s algebraic deductive argument as a proof, in 

particular. The two main difficulties that affected the students the most were (a) understanding 

how the definitions and previously established results were used in constructing arguments and 

(b) understanding the mathematical properties of numbers. Clearly, the students’ ability to 

correctly evaluate the arguments as a proof was closely linked to their knowledge of mathematics 

involved in the argument to be evaluated, in addition to their conception of what a proof is.   

Arthur’s argument had been particularly challenging for the students to evaluate; all 

students had difficulty in understanding how Arthur had algebraically represented any two even 

numbers by using the definition of even numbers, and how he then used it to construct the 

mathematical statement and showed that the sum of any two even numbers is an even number. 

The warrant for each step of Arthur’s argument was present, but implicitly, which (for some 

students) obscured how and why the argument proved the conjecture. For instance, Neil was 

confused why Arthur began his proof by defining a and b as any two whole numbers instead of 
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defining them as any two even numbers: “I don't get why it says- wait 2a and 2b are any two 

even numbers, but usually a is just a single variable, so shouldn't it be a plus b equals an even 

number? I don't know if I'm not understanding that right.” I followed up his comment by asking 

him to describe what he was specifically confused about, and suggested that he use an example 

to explain his confusion. Neil described: 

Well, when it says any whole number I think it can mean 1 or 3 because it's 

whole. So, you multiply it by 2 and it goes to 2a, so that would be 2, then plus 6, 

and then. But its saying- Oh, it's just an extra process to say any number! If 

they're even, that means they always add up together because if you multiply an 

even number by 2, it becomes, it's still even. If you multiply an odd number by 2, 

it becomes even. So, now I understand where he's going; he's saying when you 

add them together it's still going to be even when you multiply it by 2. 

Neil initially had difficulty in understanding why Arthur began his proof with any whole 

numbers, and therefore did not understand how Arthur proved the statement. But, through 

explaining his confusion Neil recognized that by doing so Arthur constructed two even numbers, 

which can then be used in the next step where the sum of any two even numbers were shown to 

be an even number. Thus, after overcoming his initial difficulty, Neil accepted Arthur’s 

argument as a proof, asserting that it showed that the statement was always true and also 

explained why it was true. But, Neil also added that had Arthur provided an example to illustrate 

his proof, it would be helpful, indicating his initial struggle to understand Arthur’s argument. 

As shown in the case of Neil, some students were able to overcome their difficulties in 

understanding how the definitions and previously established results were used in constructing 

arguments and subsequently accepted Arthur’s argument as a proof. But, three students, Mark, 
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Hera, and Tyson, were not able to fully overcome this difficulty and thus did not consider it as a 

proof. Hera and Tyson claimed that it showed that the statement was always true- because it 

used variables- but it did not explain why it was true, therefore, they rejected it as a proof. This 

is reminiscent to Harel’s (2006) discussion of the need for causality of a proof, which had been a 

contested debate between mathematicians, with some arguing that proofs that do not show 

causality, such as proof by contradiction, are not acceptable as a proof. Thus, in his revision of 

the proof schemes framework, Harel (2006) introduced the causal proof scheme as a sub-

category of the transformational proof scheme, describing causal proof as “an enlightening proof 

that gives not just mere evidence for the truth of the theorem but the cause of the theorem’s 

assertion” (p. 71). Hence, Hera and Tyson’s emphasis on explaining why as a decisive criterion 

for their judgment of Arthur’s argument seems to be a manifestation of the causal proof scheme.  

On the other hand, Mark thought that it neither showed that the statement was always 

true nor explained why it was true, thus, he did not accept it as a proof.  Mark remarked: “I think 

that all sounds very sound, but I don't quite see how it proves that it's true… it only-  it tells the 

obvious, but it doesn't tell why two even numbers always add up to even numbers.” Apparently, 

Mark failed to see how the argument was connected to the statement being proved, as he claimed 

that the argument was not connected to all numbers, that is “All even numbers add up to an even 

number when they're added together.” Mark had difficulty in understanding how the variables 

were set to establish the given statement, and thus showed the statement was true in general, 

difficulties arising from not seeing the logical implications inherent in Arthur’s argument. In 

addition, by pointing to the need for the argument to explain why the statement was always true, 

Mark also signals his inability to recognize that Arthur established any two even numbers by 

using the definition of even numbers. 
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 Similar to Neil and Mark, Hera was also confused that Arthur began his proof by defining 

a and b as any whole numbers, which she considered to be redundant: “I'm confused why he did 

that I guess to prove his answer. Oh, but then, add two even numbers. I guess he didn't really 

need to do that step.” Her puzzlement was also coupled with a temporary confusion of 

considering whole number to imply being an even number. Hera exclaimed: “We already know 

that those are even, because when he says it’s a whole number, well it's also an even number, 

right?” Clearly, Hera did not see the logical necessity of establishing any two even numbers by 

multiplying any whole number by 2, and thus she considered the first step of Arthur’s proof to be 

redundant. So, Hera initially thought that Arthur did not prove: “He didn’t really prove, like 

show why that’s, I feel like that just has no place in there almost. They already said that two 

times a plus b, that's just rewriting it, it's not really proving it.” But, as she further explored the 

argument, Hera suddenly realized that Arthur’s “purpose was to represent even numbers” in 

writing 2a and 2b, and that Arthur showed that the sum of two even numbers will be an even 

number. With this insight, Hera was able to make connections between the definition of even 

numbers and the algebraic argument, which was evident in her comments when she elaborated 

on how Arthur showed that the sum of two even numbers was an even number, the second step 

of Arthur’s proof: “Even numbers are numbers that can be divided by two. So, we know that if 

that's a number that has already been multiplied by two, then that's an even statement.”  

Consequently, Hera thought that Arthur explained why the statement was true and 

accepted it as a proof. However, shortly after that, Hera changed her mind again and said that, 

“I'm still kind of like iffy about it though for some reason, just because it's like if a plus b is 

equal to a plus b, like if I divide it by two that's- I don't think it proved it.” In conclusion, Hera 

claimed that although Arthur’s argument showed that the statement was always true (since it 
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used variables), it was not a proof because it did not explain why the statement was true. Like 

Neil, Hera also indicated that using examples would have been helpful to explain Arthur’s 

argument. Hence, Hera’s case displays shifting changes in her understanding of the deductive 

algebraic argument; although she was able to grasp the logic in Arthur’s proof for a brief period 

of time, this insight was not a solid understanding yet. Specifically, Hera struggled to make sense 

of the chain of deductions because she struggled to understand the necessity of the type of 

algebraic representations Arthur used, reflecting her difficulty in understanding the mathematics 

of this particular argument- not necessarily reflecting a deficit in her conception of what a valid 

proof is.  

In conclusion, these examples of student difficulties show that what students accept as a 

proof depend not only on their conception of what a valid proof is but also on their 

comprehension of the mathematics involved in an argument. In other words, it is evident that 

students’ evaluation of arguments as a proof occurs at the intersection of their understanding of 

mathematics and their notion of what a proof is more broadly. Recall that two students (Mark 

and Tyson) accepted Ceri’s narrative deductive argument as a proof, but not Arthur’s algebraic 

argument, because they did not see how Arthur’s argument explained why the statement was true 

due to their difficulty in understanding how the stated definitions and mathematical properties 

were used to construct the statement. Apparently, Arthur’s argument was harder for students to 

understand, possibly due to lack of experience in algebraically representing even numbers and 

constructing mathematical arguments based on definitions and established results. In sum, these 

findings do not reveal impoverished understandings of proof, but rather show that the students 

struggled to make sense of the algebraic connections and that some students had higher 

expectations regarding what counts as proof, including the need for causality. 
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4.2.1.b. Favorite proof choices 

To see what types of arguments students considered to be the best proof I asked the 

students which argument was their favorite proof among the six hypothetical proofs given in the 

first interview. The students’ favorite proof choices, as shown in Table 8, reflect what they 

considered to be the most explanatory argument for the given conjecture. Again, Ceri’s 

deductive narrative argument was chosen as the favorite proof by most students, either by itself 

or in combination with Yvonne’s visual proof or with Arthur’s algebraic argument. It is 

noteworthy to mention that the students often considered an imagined audience when they 

evaluated arguments, so the students’ evaluations reflect not only what was personally 

explanatory to them but also what, they believed, would be explanatory to others. For example, 

some students found Yvonne’s visual proof very explanatory but did not accept it as a proof 

because they were not sure whether it would be clear to other students how that visual 

representation could be applied to all even numbers, and thus, showed the truth for all cases. In 

other words, some students viewed Yvonne’s argument as a generic example (Mason & Pimm, 

1984), recognizing that it showed the truth in general, but they were cautious that others may not 

view it as a generic example. Hence, consideration of explanatory power of an argument was 

essential in the students’ favorite proof choices, as well as consideration of an imagined 

audience, highlighting that the students viewed proof as a social process. The students’ low 

preference of the algebraic argument as a favorite proof, on the other hand, was likely due to 

their difficulties in understanding the mathematics involved in that particular argument (Arthur’s 

argument), and thus should not be taken as an evidence that students in general do not consider 

algebraic arguments as favorite proof choices. In fact, the students did pick an algebraic 
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argument as their favorite proof when they were able to comprehend the argument during the 

second interview, as will be shown in the following section. 

Table 8. Students’ favorite argument choices 

Favorite argument as a proof in Interview-1 # of 
students 

Deductive/narrative (Ceri) 2 
Narrative argument/proof by exhaustion (Duncan) 2 
Visual (Yvonne) 1 
Deductive/narrative (Ceri) + Visual (Yvonne) 1 
Deductive/algebraic (Arthur) + Deductive/narrative (Ceri) + Visual (Yvonne) 1 

 

In addition, I asked the students which argument they thought would be their teacher’s 

favorite proof, aiming to see if the students’ personal choices differed from what they expected 

that their teacher would consider as the best proof. In contrast to the existing findings (e.g., 

Healy & Hoyles, 2000), it turned out that the students’ expectations for their teachers’ favorite 

proof aligned to the large extent with their personal favorite proofs, suggesting that the students 

had appropriated their teacher’s proof values. Six students in total thought that their teacher 

would choose Ceri’s narrative argument as the best proof, while two students believed that 

Arthur’s argument would be their teacher’s favorite. One of the students who thought Ceri’s 

argument would be the teacher’s favorite suggested that her teacher would also choose Duncan’s 

argument, which was her personal favorite proof. All in all, the students’ guesses for their 

teacher’s favorite proof points to alignment between their personal views of proof and the view 

of proof that they perceived that their teacher had. The students’ predictions of their teacher’s 

favorite proof, a deductive narrative argument, suggests that the students had developed an 

impression that a proof needs to be an explanatory general argument, which does not need to be 

in algebraic form. 
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4.2.1.c. Proof evaluation task revisited: The second interview 

 During the first interviews the students appeared to believe that testing a wide range of 

examples would be a more sophisticated way to show the truth of a statement compared to just 

testing a few small numbers. Also, in their descriptions of proof and their evaluation of 

arguments they praised the importance of explaining reasoning in proof. Therefore, I wanted to 

test whether the students would accept an empirical argument consisting of a diverse set of 

examples that also included a narrative explanation of the thought process as a proof. 

Furthermore, given that the students commonly had difficulty in understanding the implicit 

warrants in Arthur’s algebraic argument, I also wanted to see if the students would be more 

likely to accept an algebraic deductive argument as a proof when the warrants in the argument 

were made more explicit. Therefore, I created two additional hypothetical student arguments for 

the same mathematical statement given in the first interview: one was an empirical argument- 

what would be classified as crucial experiment in Balacheff’s (1988) terms- that was presented 

as Sam’s answer, and the other one was a deductive algebraic argument that was presented as 

Abby’s answer (see Figure 4 re-presented below). During the second interview, I reminded the 

students of the proof evaluation task from the first interview and asked them to similarly evaluate 

these two additional hypothetical student proofs.  
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Figure 4. Two additional hypothetical student proofs for the algebra task given in Interview-1 
(re-presented) 

 
The students (except Hera) did not accept Sam’s empirical argument as a proof, although 

it included a diverse set of examples and an explanation. The students explicitly stated that 

Sam’s argument showed the truth only for a particular set of examples, not for all cases, and that 

his explanation did not show why the statement was true. For instance, Tyson argued that, “It's 

just, it shows, like he's showing work, but I don't think he's really explaining it just because … he 

needs to provide more, like he needs to explain it… It does not show that it is always true.” 

Similarly, Molly contended that, “I mean there's an explanation, but there's not a good reasoning 

behind the explanation, so there's not anything.” On the other hand, all the students accepted 
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Abby’s algebraic argument as a proof, with no hesitation. Tyson’s reaction exemplifies the 

students’ evaluation of Abby’s argument in general: “See I like this new one! Because it shows 

like the equation, the thinking behind it; because even numbers is [sic] always going to be 

divisible by two… So, the statement is always true? I agree. It shows to me for all.” Furthermore, 

all, but Hera, thought that their teacher would not accept Sam’s empirical argument as a proof, 

while all the students asserted that their teacher would accept Abby’s argument as a proof, 

providing further evidence for the close alignment between the students’ personal proof 

evaluations and what they perceived to be their teacher’s proof values are. Moreover, revisiting 

the proof evaluation task showed that the students had developed a sharpened understanding of 

the distinction between empirical arguments and deductive arguments, revealing that the students 

did not consider simply any narrative explanation as sufficient for proof; they deemed the 

explanation devoid of any warrants illuminating why the statement was true as inadequate. 

Overall, the students had a combined need for an argument to explain why something was true 

and to show that it is true for all cases to consider it as a proof. 

In addition, during the second interview I asked the students which argument was their 

favorite proof out of the eight student arguments. Students’ solidified understanding of what 

counts as a proof was also manifested in their favorite proof choices, as this time they chose 

deductive algebraic proofs (either Abby or Arthur). Three students picked Abby’s and two 

students picked Arthur’s argument as their favorite proof (data are not available for Brett and 

Tyson’s favorite proof choices in the second interview). It is notable that all students for which 

we have available data selected an algebraic argument in the second interview, considering that 

most students had preferred a narrative argument in the first interview.  
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I posed the same question to the teacher and inquired her personal favorite proof, as well 

as what she thought the students would have picked as their favorite proof. Ms. V selected 

Abby’s proof as her favorite proof because “It included a lot of justifications that verified each 

step”. Yet, Ms. V predicted that her students would have picked either Abby’s or maybe Eric’s 

argument as their favorite proofs. Her prediction that the students may have picked Eric’s as their 

favorite proof reflects her awareness that students are often swayed by the form of the argument 

when it comes to proof, so Ms. V expected that her students might have considered it to be more 

sophisticated and thus to be the best proof.  

In conclusion, considering the results from the first and second interviews, the students 

overall had sophisticated conceptions of proof in terms of the kinds of arguments that may count 

as a proof, by mostly accepting deductive arguments- both narrative and algebraic arguments- 

(and rejecting empirical arguments) as a proof. Notably, the students’ proof evaluations were not 

reliant on the form of the argument- as commonly observed in the literature, but rather depended 

on the perceived explanatory power of the argument, which was largely influenced by the 

students’ understanding of mathematics involved in each argument. Essentially, the findings 

suggest that students’ proof evaluations exist at the intersection of their understanding of 

mathematics and their notion of what a valid proof is, underscoring that the types of arguments 

students accept as a proof should not be taken as what students universally consider to be a 

proof. As we have seen in the second interview, the students unanimously accepted an algebraic 

argument when the warrants for each step of the argument was made explicit, and thus the 

students had no difficulty in understanding the content of the argument. What was more 

important for the students is whether the argument explained why the statement was true in 

general, regardless of its form. But, the students were also aware that an algebraic proof is what 
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is expected of them, and thus they considered it highly. Ms. V, on the other hand, was generally 

aware of common student difficulties with proof. Finally, the students’ proof evaluations and 

favorite proof choices were closely aligned with what they thought their teacher would accept as 

a proof and consider as the best proof, indicating that the students had appropriated their 

teacher’s proof values. This is also a promising finding as it shows that students can develop 

desired conceptions of proof when their teachers appreciate the value of proof and have robust 

conceptions of proof. (The classroom norms and practices that appeared to have supported the 

students’ evolving conceptions of proof will be unpacked in paper #2, Classroom Factors 

Supporting Students’ Conceptions of Proof: Classroom Norms, Instructional Practices, and 

Curriculum). Next, I present results regarding the students’ understandings about proof that 

informed their proof evaluations. 

4.2.2. Students’ understandings about proof and proving 

In addition to the types of arguments that the students accepted as a proof, the students’ 

comments in interviews, especially during their evaluation of the hypothetical student proofs, 

unveiled some key proof understandings that the students possessed, which are presented in 

Table 9 in a somewhat gradually increasing order in sophistication. The number of references 

column displays the total frequency of instances that the students made an explicit remark about 

a proof understanding during the interviews, including the first and the second interviews 

collectively.  

Table 9. Students’ proof understandings 

Students’ Proof Understandings # of 
students 

# of 
references 

Appeal to form or appearance is not accepted in mathematics. 
 

2 2 

Examples are insufficient for proof. 6 19 
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One counterexample is sufficient to disprove. 5 7 

Testing a diverse set of examples is more convincing than testing a 
small set of similar examples. 

7 18 

Proof shows the truth for all cases. 5 9 

Proof explains why a conjecture/statement is true. 5 10 

Examples are helpful/needed to:   
• communicate/illustrate one’s proof 5 10 

• verify one’s proof 4 11 

 

4.2.2.a. Appeal to form or appearance is not accepted 

Although during the first interviews only one student (Mark) explicitly remarked that 

making assumptions about the truth of a conjecture based on its appearance is not accepted when 

proving, I suspected that other students might have shared this understanding as well because 

Mark’s comment referred to an example of proof they did in class, thus pointed to a possible 

classroom influence. He specifically noted that, “When we have shapes that we have to prove 

they are congruent- you can really see… You can assume they're congruent, but you have to 

prove it. And to prove it, you need to have facts that are undeniable.” Hence, I included the 

following statement to the list of proof statements that was given to the students in the second 

interview: “In math you cannot build your work on assumptions. That's why we prove things in 

math”. In the second interview, one more student explicitly remarked that making assumptions 

based on appearance is not acceptable, yet all the students agreed with the statement presented to 

them. In short, despite that not many students had articulated this understanding, presenting the 

corresponding statement to the students revealed that it was, in fact, a shared understanding 

among the students, underscoring the importance of triangulation of multiple data sources when 

determining students’ conceptions of proof. 
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4.2.2.b. Examples are insufficient for proving 

All the students, but Hera, made explicit remarks indicating their understanding of 

examples as insufficient for proving. Mark, for example, provided an elaborated expression of 

this understanding when evaluating hypothetical proofs as follows:  

When you're just using values to prove something, then that is not really a proof. 

Yeah, because when you're just using integers or actual values and not variables, 

then you're not proving it. You're just showing that for that case that this works, 

but not for every case like a proof should. 

On the other hand, Hera (the only student who did not exhibit a clear understanding of examples 

being insufficient for proof), nevertheless recognized the limitations of examples when the 

argument involved a single example or limited range of examples. 

Moreover, while attempting to prove a conjecture, all of the students indicated that they 

found examples helpful for gaining conviction about the truth of a statement, but four students 

(Brett, Mark, Molly, and Tyson) subsequently also declared that examples were insufficient for 

proving. Once the students believed the conjecture was true, such comments were often followed 

by a remark indicating that the students were aware that they needed to algebraically prove the 

statement. For instance, during the proof production task in the first interview, Molly explored 

whether the conjecture was true by testing two examples and found that it held true for both 

examples, leading her to assume that the conjecture was true. But, Molly knew that those 

examples did not prove that the conjecture was true; instead, they simply suggested that the 

conjecture was probably true and now she needed to find a way to algebraically prove it: “I'm 

just going to assume that that works with all other odd numbers… I'm just going to say that it's 

true. I don't know how I would prove it algebraically, but I sense that it's true.” This is a 
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particularly pleasant finding that the students recognized examples as helpful entry points in 

exploring mathematical conjectures, yet they knew that simply testing and confirming the 

conjecture with examples do not constitute proof- counter to what is frequently found in the 

literature (e.g., Balacheff, 1988, Harel & Sowder, 1998; Knuth, Choppin, & Bieda, 2009). 

In addition, the students generally had a clear understanding of the role of 

counterexamples for disproving; five students stated that only one counterexample was sufficient 

to disprove, while only one student (Hera) viewed counterexamples as exceptions. For instance, 

Brett articulated that to disprove a conjecture “All you need is like one in certain situations. If it 

uses like an absolute verb like always or something like that, then you need to- it's just one thing 

to prove it wrong, and that would- it would be false” (Interview-2). Whereas, Hera contended 

that if a counterexample is found “You're not necessarily disproving it, you're just finding 

exceptions” (Interview-2)- a common student misconception (Harel & Sowder, 1998). 

4.2.2.c. A diverse set of examples is more convincing than a few small examples 

The analysis of the interviews revealed a distinction between students’ views of diverse 

set of examples as more convincing for the truth of a statement and viewing it as a proof for the 

truth of the statement. While all the students considered a diverse range of examples more 

convincing for gaining conviction about the veracity of a statement, which was evidenced in 

their critique of Bonnie’s empirical argument and was also reflected in their deliberate test of 

large and diverse numbers during their proof attempt in the first interview, it was not clear 

whether they would consider it a proof as well. Specifically, Julie and Hera’s comments in the 

first interview led me to explore if the students would accept a diverse set of examples as a 

legitimate proof. Hence, as described earlier in Section 4.2.1.c., in the second interview I asked 

the students to evaluate an additional hypothetical student proof, Sam’s empirical argument. 
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While in the first interview Julie commented that Bonnie’s argument would have been more 

accurate if she had shown other numbers beyond the limited scope of the numbers that she had 

tested, commenting that Bonnie showed “A pretty limited window of numbers because she keeps 

everything under ten”, Julie did not, however, accept Sam’s argument as a proof in the second 

interview, arguing that Sam showed that the argument was true only for some even numbers 

even though he tested “a variety of examples… in different ranges”. The only exception was 

Hera, as she thought that Sam proved the conjecture by showing that it was true for a range of 

numbers.  

Hence, the findings indicate that the students overall found testing a diverse set of 

examples (or crucial experiment in Balacheff’s (1988) terms) more sophisticated and informative 

than testing a small limited range of examples, yet most of the students understood that it did not 

count as a proof. This points to a nuance to the way ‘crucial experiment’ is previously discussed 

in the literature that presented it as if what students accepted as a proof. While this may be the 

case for some students, it also seems possible that some students simply find it more convincing 

and sophisticated. Indeed, in this study both the students and the teacher considered a ‘crucial 

experiment’ as a more sophisticated and valued approach to proving compared to just testing a 

few examples, but they were aware that it is still insufficient for proof.  

4.2.2.d. Proof is a general argument that explains why the conjecture is true  

A particularly encouraging finding of the study was that many students articulated proof 

as a general explanatory argument as they evaluated or described what proof meant to them. As 

seen in Table 9, five students (excluding Julie and Neil) explicitly remarked that proof shows the 

truth for all cases, while five students (except Hera and Neil) stated that proof explains why a 

statement is true or false. For instance, Brett’s remark, “If I prove something, then it's true in all 
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cases”, indicates that he understood that proof accounts for all cases. Molly, on the other hand, 

emphasized the need to provide warrants when proving, as she described: “You need to say 

because of this and this, this will be this, kind of like in geometry like a proof like that.”  

Important to note here, however, is that these frequencies reflect the explicit remarks students 

made, and thus, they do not necessarily mean that those students who did not explicitly remark 

such comments do not share those understandings. As will be seen in the next section, all the 

students considered generality and explaining why as critical aspects of proof when they 

evaluated arguments. 

 Furthermore, while only five students explicitly articulated that proof needs to account 

for all cases, all the students repeatedly remarked that the use of variables or equation enables 

one to show the truth for all cases. For example, Mark tried to come up with a general argument 

to prove the conjecture about odd numbers during the first interview. When I inquired of his 

goal, Mark responded that he was looking for a general explanation, “One with variables that 

could account for all odd numbers”. Although all the students considered using variables or 

equations as a means to show the truth in general, most of them also expressed that a proof can 

be in any form, and that it did not need to be an algebraic argument. Recall that all of the 

students accepted Ceri’s narrative argument as a proof in the first interview, for example. 

Molly’s remark nicely sums up the students’ shared understanding: “A proof isn't like, no one 

says a proof is this, like a proof has to be an equation. A proof can kind of be however you can 

prove it. And you could do that through an equation, you could do that through whatever.” 

Hence, it is pleasing that the students’ conceptions of proof were not limited by the form of the 

arguments.  
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 Additionally, the students had a shared understanding of proof as an explanatory 

argument, as evidenced by their unanimous approval of the statement, “Proof shows why 

something is true or false by showing the reasons behind it.” Hence, even though two students 

did not make an explicit remark about proof as explaining why, when considering multiple data 

sources, it was evident that the students collectively understood proof as an argument 

illuminating the reasons that makes an argument true.  

4.2.2.e. The need for examples in proving: To illustrate the proof and to verify the proof 

The analysis of the student interviews revealed interesting nuances about the students’ 

need to use examples after accepting an argument as a proof (or even after producing a general 

deductive proof). In the proof literature students’ tendency to use an example after accepting an 

argument as a proof is often discussed as a deficiency in students’ understanding of proof (e.g., 

Vinner, 1983), since there is no need to further check with an example given that proof 

guarantees the truth in general. However, I found the students’ intentions to use an example to be 

different than to further test the veracity of the statement to be proved. Instead, the students’ need 

to use an example appeared to be either to illustrate a proof or to verify the accuracy of a proof.  

The students’ need to use examples to illustrate a proof was related to their view of 

examples as helpful tools to convey meaning of deductive arguments, similar to generic 

examples that reveal the structure of an argument (Mason & Pimm, 1984). In addition, the 

students often suggested using an example to illustrate a proof when they considered the proof 

being communicated to an audience. More specifically, five students expressed that an example 

would be helpful to include in a proof so that others could better understand it. This was more 

frequently uttered when evaluating an algebraic deductive argument where it was not easy for the 

students to immediately comprehend it. Similarly, when responding to the statement, “A proof 
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should include why a statement is true, the reasoning, and an example”, several students alluded 

to the need for examples to illustrate one’s proof. Molly, for instance, discussed that, “I think a 

solid proof would have all of them, just because it would help the whoever is looking at it better 

understand what you're trying to get across.” Likewise, Julie agreed with the statement, asserting 

that, “Because that’s kind of the way we are taught to do them”. Hence, the students’ need to use 

examples turned out to be more nuanced and sophisticated, also reflecting an influence of 

classroom experiences. Ms. V’s comments indicated that she considers and draws on examples 

as a pedagogical tool to better illustrate to students how a proof makes sense. Given that the 

students are accustomed to seeing examples being used to illustrate a proof, they also found 

examples helpful to include in their proofs to better communicate their arguments. Hence, the 

students valued illustrative examples highly to communicate their argument. 

 Additionally, four students expressed that examples were helpful to verify the accuracy 

of one’s proof. This is reminiscent to how Porteous (1990) argued the use of an example after 

accepting an argument as a proof on logical grounds; he described this phenomenon as a type of 

“checking”, stressing that students’ aim is to check the validity of the proof itself, not to check a 

particular instance of the conjecture as an individual case. Thus, contrary to its typical treatment 

by researchers, Porteous advocated that this is a sophisticated behavior. Moreover, this view also 

seemed to reflect a classroom influence, resulting from the emphasis placed on checking answers 

in students’ (previous and current) mathematics classes. For instance, this emphasis can be seen 

in Tyson’s remarks, “You should always double check everything that you do”. Similarly, Hera 

was unsure whether her teacher would accept an algebraic argument as a proof “Because they 

didn't really test any numbers”, indicating a similar need to check the accuracy of one’s work. 

Hera explained her hesitation by referring to how she could discover an error in her proof 
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attempt by means of an example: “Because I know when I tested mine, it didn't work and then I 

was like oh, I made an error. This was… we call it like checking”. Hence, some students 

regarded the use of an example as a way to show that the proof they produced was actually 

correct, which they considered a validation of their proof.  In fact, students were frequently asked 

to check their answers (particularly, their solutions to equation systems because some of the 

solutions could be an extraneous solution) through their classwork and homework assignments as 

well as by their teacher. Recall that Ms. V had a broad notion of proof that included verification 

of the algebraic solution(s) of an equation system as a type of proof, a view that was also shared 

by the students. It seems that the teacher and the students have transferred the verification role of 

proof to verifying the accuracy of everything they do, including verifying the accuracy of one’s 

proof as well as verifying the solutions of an equation system. 

4.2.2.f. The teacher’s evaluation of the hypothetical student proofs 

These five key proof understandings also reflect how the teacher viewed proving in class. 

More specifically, when presented the same proof evaluation tasks to the teacher, Ms. V 

accepted all the hypothetical student proofs as students’ versions of proving, stressing that they 

varied from incomplete to complete proofs. In her evaluation, Ms. V pointed to what was 

missing in each argument and explained how she would provide feedback to the students to 

improve their proofs. Thus, her evaluation of the student arguments corresponded to the 

progression of proof understandings as outlined in Table 9. To recap, like the students, Ms. V 

viewed examples as first steps into proving. Ms. V described examples as incomplete proofs, but 

also stressed that examples are helpful for understanding what a conjecture says and for gaining 

conviction about the truth of the conjecture. Ms. V also considered testing a diverse set of 

examples more sophisticated and more strategic than simply testing a few similar examples, but 
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also emphasized that it was still an incomplete proof. In addition, she accepted general deductive 

arguments, either in algebraic form or in a narrative form, as a complete proof, highlighting the 

need for a proof to account for all cases. Furthermore, Ms. V also considered the inclusion of an 

example as a helpful pedagogical tool to illustrate a proof to students. All in all, there was a close 

alignment between the students’ proof understandings and their teacher’s views about proof and 

proving in class. 

Indeed, Ms. V’s orientation that some of the student proofs were incomplete, rather than 

incorrect, and her approach of providing feedback to the students about how to enhance their 

proofs seem to be productive in supporting students’ developing proof conceptions. As she 

reported during the interviews, Ms. V’s approach to providing students feedback to improve their 

proofs was a recurrent emphasis in class discussions as well as in her written feedbacks to the 

students’ homework. Hence, the teacher’s consistent emphasis on such feedback seems to have 

contributed to the students’ ways of making sense of proof, given that the students’ 

understandings of proof resemble many similarities with their teacher’s view of proof in class.  

4.2.3. Students’ criteria for accepting an argument as a proof 

While the students’ proof understandings reported above largely explicate how the 

students conceived of proof, they are restricted to the students’ explicit remarks, and thus, may 

not adequately portray how each student conceived of proof. In fact, the reasons that the students 

had for accepting an argument as a proof as they evaluated the hypothetical student proofs or 

their own proof attempts provided another window into how they conceived of proof and 

proving. In some cases, the students also discussed why they rejected an argument as a proof, 

stressing the aspects of a valid proof that was missing in the argument being judged to not be a 

proof. For instance, when explaining why he thought that Bonnie’s empirical argument was not a 
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proof, Mark expressed that, “In order to prove it, he [sic] needs to have some kind of theorem 

that uses all possible integer numbers that are even to explain his answer.” Thus, Mark 

emphasized generality as a missing aspect of Bonnie’ s argument, as well as the need to build on 

theorems in proving.  

Hence, the criteria that the students used for accepting or rejecting an argument as a 

proof, which were outlined in Table 10, shed light on what the students considered to be the 

aspects of a valid proof and thus contributed to more thoroughly uncovering the students’ 

conceptions of proof. As seen in the table, the students’ criteria for proof were grouped into four 

categories as they related to (a) the generality of the argument, (b) explanation of the reasons for 

why a statement is true, and the connections between premises and the claims, (c) forms of the 

argument, and (d) some other aspects of proof that the students deemed important. In what 

follows, each group of criteria will be elaborated respectively.   

Table 10. Students’ criteria for accepting (or rejecting) an argument as a proof 

Students’ Criteria for Accepting an Argument as a Proof 
# of 

students 
# of 

references 

Generality 7 33 

Explains why 7 40 

Provide warrants 7 47 

• Definitions 7 18 

• Known facts/properties 
 

3 9 

• Logical inferences  
 

3 9 

• Theorems  
 

2 2 

• Empirical evidence 
 

2 2 

Assertions lead to the conclusion   4 9 

Forms of arguments:   

• Variables/equation 
 

7 16 
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• Narrative explanation 
 

5 13 

• Visual representation  
 

5 10 

• Deductive/algebraic argument 
 

4 5 

• Examples 
 

3 10 

• Examples (crucial experiment) + Deductive/algebraic 
argument 

 

2 6 

• Examples (crucial experiment) + Narrative explanation 
 

2 4 

Other aspects of arguments:   

• Easy to understand  
 

7 16 

• Thorough/sophisticated argument 
 

3 5 

• Familiar argument 
 

2 2 
 

4.2.3.a. Generality 

 Although only five students expressed that a proof must account for all cases, all the 

students, however, considered generality as an aspect of a valid proof. In fact, generality was one 

of the main criteria that the students typically considered when evaluating arguments, which was 

also evident by the high frequency of its occurrences. For example, in explaining why one of the 

hypothetical student proofs presented in the second interview was not a proof, Hera emphasized 

the generality as a missing aspect of the argument, simultaneously also pointing out that it was 

not built on theorems. Specifically, Hera argued: 

Because you really didn't say like- shows us applying to all cases because … 

when we're doing like similarity or congruency theorems for triangles, we have 

like specific theorems that work for every triangle that we base our conjectures 

off of, but when you don't base yours off of anything, then you can't really say 

that it’s true all the time. 
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Hera’s emphasis on showing the truth for all cases as a missing aspect of the argument is 

particularly important, given that she was the only person who accepted an empirical argument 

that included a diverse set of examples (Sam’s argument) as a proof during the same interview. 

Her remarks suggest that Hera was aware that a proof needs to account for all cases, but she was 

not always consistent in considering this aspect when evaluating arguments. Nevertheless, Hera 

often acknowledged generality as a criterion for accepting an argument as a proof, or for 

rejecting an argument when it was not general, as seen above. This is also important as it points 

to the complexity of studying individual’s conceptions of proof, and thus underscores the 

necessity of using multiple measures to uncover individuals’ conceptions as thoroughly as 

possible. 

4.2.3.b. Explaining why something is true with warrants 

  In addition to the generality of arguments, all of the students also frequently considered 

whether an argument explained why a statement was true as a critical feature of proof, such that 

this criterion largely affecting their acceptance of an argument as a proof. For instance, Neil 

asserted, “If you have something that's being proved, you have to be able to say why it works” 

(Interview-1). Clearly, explaining why constituted an important criterion for the students 

throughout the interviews. Simultaneously, the students commonly emphasized providing 

warrants, which often fulfilled a supportive role to explain why a statement was true. As seen in 

Table 10, the students recognized various types of warrants including definitions, known 

mathematical facts, rules and properties, logical inferences, theorems, and even empirical 

evidence. Among these various types of warrants that the students considered as a criterion for 

evaluating arguments as proof, backing up an argument with definitions was the most common 

type of warrant, as all of the students unanimously emphasized it. To continue with Neil, he 
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specifically emphasized the use of definitions, as well as explaining why, as reasons that made 

Ceri’s argument a proof. Neil described that, “Well, it defines first … what an even number is. 

And then it shows like the factor that can be divided by when added, so that means it shows that 

it's an even number they're adding together.” When evaluating Yvonne’s argument, on the other 

hand, Neil rejected it as a proof on the basis that the argument did not include the definition of 

even numbers: “He [sic] doesn't really state anything about what the even number is. What 

makes the even number and why in the end the answer is even.” Similarly, when Julie was 

evaluating Eric’s incorrect algebraic argument, she pointed to the fact that Eric did not “actually 

specifically mention the even numbers at all”. Moreover, several students picked Abby’s 

algebraic deductive argument as their favorite proof for the reasons that included generality, 

explaining why, and providing warrants such as the definition of even numbers, and known facts 

and properties. For example, Hera justified her favorite proof choice of Abby as follows: 

Because they [Abby] didn't test anything, but the way that, they very logically- 

they used like all three facts. a is always going to be a whole number because 

that's the definition of an even number, and then the way like she plugged it in 

using the information. It’s all like, there would be no exceptions to that rule. 

 Related to the students’ criteria of explaining why a statement was true and providing 

warrants was another criterion that four students considered in their evaluation of proofs; that is, 

whether the assertions made in an argument followed logically from premises to conclusion. In 

Brett’s words, whether the assertions “leads you to a conclusion”. Specifically, Brett explained: 

Ceri's [argument] is like a walk through and like that's kind of easy because it 

kind of like, it kind of explains what an even number is sort of and that kind of 
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leads you to a conclusion, while a lot of them kind of just lead to it by- like 

Bonnie’s definitely not, and I still don't know what's up with Eric's answer. 

As seen in Brett’s excerpt, this criterion, assertions leading to a conclusion, indeed embraces the 

other two criteria, explaining why and providing warrants, since the process of arriving at a 

conclusion from premises naturally involves providing warrants, and as a result, expose viewers 

what reasons make the statement true, provided that the warrants are valid and complete.   

Hence, explanation of the reasons for why a statement is true was one of the most 

frequently referenced proof criteria that the students used when evaluating arguments, which 

seems to be related to the students’ and the teacher’s notion of proof as backing up claims. 

Indeed, explaining why something is true was a recurrent emphasis in class- both in small group 

discussions and whole class discussions.  

4.2.3.c. Forms of arguments  

When it comes to the forms of arguments, there appears to be a diversity of forms that the 

students valued in accepting as a proof. Foremost, all the students indicated the use of variables 

(or equations) as favorably affecting their evaluation of an argument. But, it is important to note 

that the form of an argument as a criterion was never sufficient by itself to accept an argument as 

a proof. In other words, even though all the students considered highly the use of variables in 

proving, the use of variables alone was not enough for the students to accept an argument as a 

proof- recall that only one student accepted Eric’s incorrect algebraic argument. Moreover, 

many students also praised the inclusion of a narrative explanation or a visual representation as 

contributing to the acceptability of an argument as a proof, which seemed to be an influence of 

classroom norms set by their course syllabus as well as their classroom experiences. In addition, 

four students (Brett, Mark, Molly, and Tyson) specifically emphasized deductive algebraic 
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arguments as a valid and sophisticated form of proof, highlighting it as a reason for their 

evaluation. 

On the other hand, three students (Hera, Julie, and Neil) also considered the inclusion of 

examples as contributing to the validity of arguments as a proof. For those students, examples 

often served the role of illustrating the argument by exposing the structure of the argument (such 

as a generic example) or verifying that the argument was correct. Additionally, Hera and Neil 

also suggested that a diverse set of examples together with an algebraic argument would be an 

acceptable proof, while Hera and Julie suggested a diverse set of examples combined with a 

narrative explanation would be acceptable, too. In short, although for the most part the students 

understood that examples alone were not a legitimate way to prove, the students, especially those 

who had more difficulty in understanding the content of a given argument, nevertheless found 

examples quite helpful (and even necessary) in proving. Given that the students also indicated 

complementing a diverse set of examples either with a narrative or algebraic argument, it is fair 

to argue that they viewed examples as a tool for proving, rather than as an end in proving. This 

may also be a result of the students’ experiences with proving, in which students often explore a 

situation with a variety of examples, try to find a pattern, and then express that pattern either 

algebraically or more often with a narrative explanation. Thus, for those students who suggested 

a diverse set of examples coupled with an explanation as a proof, the examples were likely a 

medium for explicitly showing that the statement was true for various cases, while the 

explanation provided a backing up for why the statement was true in general.  

4.2.3.d. Other aspects of proof 

The students also considered some additional aspects of arguments, which in combination 

with the other criteria outlined above, contributed to the students’ evaluation of arguments as a 
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proof. These aspects included (a) accessibility of arguments- whether an argument was easy to 

understand, (b) sophistication of arguments, and (c) familiarity of arguments- whether the 

argument being evaluated resembled to the students’ own approaches. Of those, perhaps the most 

important aspect was the accessibility of arguments, as it was considered by all the students quite 

frequently. However, it is important to note that the students’ sense of an easy-to-understand 

argument was not restricted to a particular form, as it was uttered for all forms of arguments 

(including algebraic deductive arguments), but instead it was mediated by the students’ ability to 

understand the content of an argument. That said, however, it was generally easier for students to 

unpack the meaning of narrative arguments compared to algebraic arguments- this finding is 

consistent with the literature (e.g., Healy & Hoyles, 2000). 

About half of the students also considered an argument’s thoroughness and sophistication 

as contributing to its acceptability as a proof. Whereas, two students stated that the argument 

they accepted as a proof was similar to their own proof approaches, indicating it as an additional 

reason for why they considered that the argument was a proof. Hence, accessibility, 

sophistication, and familiarity of arguments functioned as supplementary criteria supporting the 

students’ proof evaluations. 

4.2.4. Conclusion: Students’ proof evaluations 

All in all, when the students’ proof evaluations are considered together with the kinds of 

arguments they accepted as a proof, the proof understandings they expressed, and the criteria 

they used for accepting an argument as a proof, two loosely defined groups emerged in which the 

students can be grouped together: (a) students with a robust understanding of proof as a 

deductive argument, and (b) students who understood proof as a deductive argument, but also 

occasionally valued empirical arguments. Brett, Mark, Molly, and Tyson demonstrated a robust 
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understanding of proof as a deductive argument, which was evidenced by their explicit 

articulation of the need for deductive argument for proving, their understanding of generality and 

explaining why a statement is true as key characteristics of proof, and consistent emphasis on 

examples as being insufficient for proof. On the other hand, while Hera, Julie, and Neil also 

understood proof as a deductive argument that explains why a statement is true in general, they 

did not consistently (or clearly) consider examples as insufficient for proof, which was evidenced 

by their occasionally accepting an empirical argument as a proof or viewing examples as an 

aspect of a valid proof.  

Even though all of the students considered whether an argument accounted for all cases 

and whether it explained why the statement was true, the students in the first group more 

frequently and explicitly emphasized those aspects. For Brett, Mark, Molly, and Tyson, 

generality and explaining why were the two main criteria that they consistently used to evaluate 

hypothetical student proofs, as well as their own proofs. Moreover, these students explicitly 

highlighted that showing something is true (i.e., merely verifying the truth of a statement) is 

different than showing why something is true (i.e., explaining the reasons that make a statement 

true). But, despite some variations across the students in terms of their thinking and 

understandings about proof, there were remarkable shared understandings about proof (among 

the students as well as with their teacher) too, which can be attributed to classroom norms and 

practices as briefly described above (for a detailed discussion of the interplay between the 

students’ proof conceptions and the classroom norms and practices, see Paper #2).  

In the following section, I will focus on students’ proof productions to complement the 

analysis of their proof conceptions and argue that what students produce as proof may not truly 
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reflect what they understand about proof. I will also show how students’ ability to prove is 

largely dependent on the conjecture to be proved and what mathematical knowledge it entails. 

4.3. Proof Production: What Does Students’ “Proofs” Tell Us? 

As a third measure for studying students’ proof conceptions, I asked all of the 

participants to prove a conjecture in each interview, an algebra task in the first interview and a 

geometry task in the second interview (as seen in Table 11). If time permitted, I provided 

students with an additional proof production task during the first interview to see students’ 

proving approaches and competencies through multiple tasks. Thus, four students (Hera, Julie, 

Molly, and Tyson) attempted to prove a second conjecture (i.e., the bonus task). For each task, 

students’ proof attempts were followed up with questions probing whether they think that their 

argument counts as a proof, how confident they are in terms of the validity of their proof, how 

they know that their proof is sufficient, and whether they think that their teacher would accept it 

as a proof. While the algebra task required students to prove a mathematical statement about odd 

numbers, the geometry task required students first to explore a given problem and develop a 

conjecture, and then to attempt to prove their own conjecture. For the bonus task, students first 

examined a hypothetical student argument and then attempted to prove or disprove the given 

conjecture about the sum of consecutive numbers. Hence, the proof production tasks varied by 

their domain (algebra vs. geometry), the activities they require students to engage with (e.g., 

exploring, conjecturing, proving), and the mathematics content knowledge it requires. 

Table 11. Proof production tasks 

Algebra 
Task 

How would you prove the following statement? 

If p and q are any two odd numbers, (p + q) x (p - q) is always a multiple of 4. 

Bonus 
Task  

Can you comment on what Georgia now knows as a result of what she noticed? 
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“Georgia is asked to prove or disprove that the sum of any n consecutive 
integers is divisible by n. In order to test whether or not the statement is true, 
she tries a few examples. She notices that 1 + 2 + 3 is divisible by 3, but  
7 + 8 + 9 + 10 is not divisible by 4.”  

 
How would you prove or disprove the conjecture? Let’s try to prove or disprove it.  

Geometry 
Task 

Say you have a square and you add a certain amount to its length and take away 
that same amount from its width. What happens to the area? 

 

 Students’ proof productions for each task are presented in Table 12. To see if there is any 

pattern between students’ thinking and understandings about proof and their ability to prove, the 

results about students’ proof productions are presented per the two main groups that emerged 

from the analysis of the other two measures- students’ proof descriptions and proof evaluations 

(as described in section 4.2.4.); that is, (a) students with strong understanding of proof as 

deductive argument (Brett, Mark, Molly, and Tyson), and (b) students with relatively moderate 

understanding of proof as deductive argument who sometimes also regarded empirical arguments 

as a proof (Hera, Julie, and Neil). All in all, there does not appear to be a clear link between 

students’ proof understandings and their proof productions. Specifically, contrary to popular 

belief, the students with strong understanding of proof as a deductive argument did not 

necessarily perform better (by producing deductive arguments) than the students who 

demonstrated a relatively mixed understanding of proof as deductive and empirical arguments. 

Table 12. Students’ proof productions per task 

 Students with Strong Understanding of 
Proof as Deductive Argument 

(Brett, Mark, Molly, and Tyson) 

Students with Relatively Moderate 
Understanding of Proof as  

Deductive Argument 
(Hera, Julie, and Neil) 

Algebra 
Task 

- Partial narrative argument supported 
with empirical evidence (Molly, 
Tyson)  

- Empirical evidence (Brett, Mark) 

- Partial narrative argument supported 
with empirical evidence (Hera, Julie, 
Neil) 

 



 

	

76 

Bonus 
Task  

- Deductive (narrative) proof (Molly, 
Tyson) 

- N/A (Brett, Mark) 

- Deductive (algebraic) proof (Hera) 
- Partial narrative argument (Julie) 
- N/A (Neil) 

Geometry 
Task 

- Developed correct conjecture (Brett, 
Mark, Tyson) 

- Partial deductive (algebraic) 
argument (Tyson) 

- Developed correct conjecture (Hera) 
- Deductive (algebraic) proof (Hera) 

 

 

In the algebra task, although no students could fully prove the conjecture, half of the 

students with a strong understanding of proof and all the students with relatively moderate 

understanding of proof developed a partial narrative proof, which was supported with empirical 

evidence, to explain why the conjecture is true. Their arguments were considered a partial proof 

because the arguments were on the right track to be a proof, but they had logical holes or missing 

parts, and thus, were incomplete. On the other hand, the two students who demonstrated the most 

robust understanding of proof (Brett and Mark), who consistently and strongly emphasized 

generality and explaining why as two critical aspects of proof, were not able to produce a proof. 

These students explored the conjecture with examples and once convinced that the conjecture 

was true they attempted to prove it algebraically, yet they could not construct an algebraic 

argument. Hence, Brett and Mark could produce only empirical evidence; but, importantly, they 

were aware that they had not proved the conjecture. In fact, all of the students with strong proof 

understanding maintained that they could not prove the conjecture, while two students with 

relatively moderate proof understanding (Hera and Julie) asserted that they partially proved it, 

and one student (Neil) claimed that he proved it. Therefore, there was not much difference 

between the two groups in terms of the arguments they produced, and the students were largely 

aware that they had not proved the conjecture, with one distinction: the students with a strong 
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proof understanding more firmly acknowledged that they had not proven it, reflecting a higher 

set of expectations for proof. 

Interestingly, in the same interview all four students who were given the extra proving 

task could produce a deductive proof, albeit one of them (Julie) was a partial proof. While Molly 

and Tyson (students with strong proof understanding) could develop a narrative deductive proof, 

Hera, who was classified as one of the students with relatively moderate proof understandings, 

could construct an algebraic proof. This is an important finding for couple of reasons. First, it 

confirms that students’ ability to produce proofs (i.e., types and sophistication of their 

arguments) vary depending on the context (i.e., the nature of the proving task). Second, it also 

shows that students’ views and understandings about proof do not necessarily determine what 

they are able to produce as a proof, as Hera was one of the three students who had accepted an 

empirical argument as a proof, yet she was also the one who could produce the most 

sophisticated proofs across the two interviews. 

Lastly, the geometry task was of a different nature; in addition to being a geometry 

problem (a different domain), the students also needed to form a conjecture first. Four students 

could make a correct conjecture; three of them (Brett, Mark, and Tyson) were the students who 

had strong proof understandings; but, only one of them (Tyson) could -partially- prove it. On 

the other hand, Hera, the only student from the second group who could develop a conjecture, 

could also prove her conjecture. Hence, although the students with a strong understanding of 

proof as a deductive argument were more successful at developing a conjecture, that was not the 

case for proving their conjectures. It was Hera again who produced the most sophisticated proof, 

rebutting an implicit (but common) assumption that students’ views about proof and their proof 
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productions are analogous, one determining the other, and therefore could be used 

interchangeably.  

Hence, the findings underscore that what students can produce as a proof may not truly 

reflect their ways of thinking and understandings about proof. For instance, Brett and Mark 

produced an empirical argument, yet they knew that it does not constitute a proof. Focusing only 

on students’ “proofs” would have resulted in underrating what Brett and Mark knew about proof. 

By asking students to evaluate their “proofs”, one can see that what is regarded as “students’ 

proofs” may not always be what students themselves consider to be “proof”; instead, they are 

simply what students are able to produce at a given time. Using multiple measures, on the other 

hand, allowed me to see the complexity and richness of each individual’s conceptions, and thus 

enabled me to more accurately represent the students’ conceptions of proof.  

Moreover, students’ proof understandings and their proof productions did not appear to 

be linked in a way that favored the students with strong proof understandings to produce 

deductive proofs. In fact, while the students who had a strong deductive understanding of proof 

were not able to produce a deductive proof, a student whose understanding of proof included 

both deductive and inductive ways of thinking (Hera) was able to produce an algebraic proof 

when presented with an additional proving task. Thus, taken together, the results show that 

students’ “proofs” can be different from what they find convincing as a proof and their beliefs 

about proof, and therefore what students produce as a proof should not be taken as the only 

evidence for determining their proof schemes. Students’ beliefs and views about proof may 

inform their approach to proving, but nevertheless students’ ability to prove a given conjecture 

depends on various factors, the conjecture to be proved and the mathematics content knowledge 

necessary for its proof being one of the major factors.  
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 Indeed, the students’ increased success in proving the bonus task during the first 

interview speaks to that issue. Although the conjecture given as the algebra task was expected to 

be accessible to the students, it required representing odd numbers, which turned out to be a 

major student difficulty and a critical obstacle to algebraically proving the statement. Unable to 

represent odd numbers generically, the students were left to explore the conjecture with 

examples, aiming to identify a pattern that can justify the claim. But, another common student 

difficulty emerged as the students largely focused on the results (outcome) of the operations 

rather than focusing on understanding how the operands might be related to the claim. More 

specifically, especially during their initial exploration, the students generally tested the 

conjecture with examples to see whether the statement was true; thus, they focused on the result 

of the multiplication of the sum of two odd numbers and the difference of two odd numbers, 

checking if it was divisible by 4. By focusing on the calculation and not on the factors in that 

multiplication operation, many students (at least initially) missed an important opportunity to 

notice that a factor of 4 is produced from the multiplication operation, a key insight that could 

lead to proof of the conjecture. On the other hand, the conjecture about the sum of consecutive 

integers happened to be easier for students to express symbolically, making it possible for 

students to generalize the insights they gained from their example exploration. Hence, as seen in 

these examples, each proving task presents unique mathematical challenges and opportunities for 

students that inevitably affect their ability to prove depending on their mathematical abilities as 

well as their readiness, willingness, and perseverance to deal with them; some tasks, for instance, 

may require algebraically representing mathematical propositions- which may or may not be 

within the mathematical resources students possess, while in some cases the mathematical 
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structure that is core to the proof of a given conjecture might be easier to detect, which in turn 

may influence students’ approach to prove the conjecture. 

4.3.1. Shifting nature of student proofs by task: An illustrative case 

To further illustrate how students’ proof productions were not necessarily dependent on 

students’ views of what a valid proof is, but rather varied depending on the task and the 

mathematics involved in its proof, I present an overview of Hera’s proving process for both 

proof production tasks given in the first interview- the algebra task and the bonus task. Hera’s 

case, namely her approach to prove (together with the difficulties she had) during these two 

tasks, portray quite different proving processes. The difficulties Hera had during the first task did 

not appear to be an issue during the second task, showing that the difficulties Hera experienced 

were related to the specific conjecture. Through this illustrative case, I show that students (who 

even sometimes value empirical evidence as proof) can produce algebraic deductive proofs when 

the conjecture and the mathematics involved in proving it is within their reach. In presenting 

Hera’s proving processes, I will also exemplify some of the common student difficulties that 

hindered students’ ability to prove. 

4.3.1.a. Hera’s proving process during the algebra task 

Hera’s exploration of the first proving task, the algebra task, began with testing the 

veracity of the statement with an example. Noticing that the difference and the sum of two odd 

numbers (premises of the conjecture) yield even numbers, Hera then shifted to thinking about the 

conjecture generically. Using the known facts and properties as warrant, Hera justified that the 

product of the sum and the difference of two odd numbers would be an even number, but was 

still unaware why the product might be divisible by 4:  
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If you take an even plus an even, or an odd plus an odd, you would always get an 

even. And if you take an odd minus an odd, you would always get an even. So, if 

you multiply two evens, I don't know if you would always get a number that is 

divisible by four; I know it would always be divisible by two, though. 

A turning point in Hera’s approach was when she started focusing more on the result of 

the calculations, aiming to verify the statement, as she continued her example exploration 

by assuming random numbers to be an example of (p + q) and (p – q), neglecting the 

premises of the conjecture: “Let's pick like two even numbers, like 12 and 4 assuming 

that p plus q is 12 and then p minus q is 4. I don't know if that would actually work out. 

Let's just say it does to make two evens.” Thus, by making such unwarranted 

assumptions, Hera unwittingly continued her exploration with irrelevant examples (e.g., p 

= 8 and q = 4, violating the premise of the conjecture), which, of course, was unhelpful to 

progress towards proof. Hence, during this phase a fixed focus on verification together 

with a disregard of the premises and the reasons that make the conjecture true became 

sources of difficulties for Hera.  

 In response to the question of whether she proved the conjecture, Hera avoided to make a 

claim about proving; instead, she replied that she “could definitely show evidence”. This prompt 

led her to focus on the premises again and to explore the conjecture with relevant examples, but 

she did not go beyond providing empirical evidence. Hence, I followed up by asking whether she 

thinks that the conjecture is always true, which shifted her approach to algebra. Hera tried to 

justify why the statement is true through algebraic expressions (as seen in Figure 5), but was 

again unable to fully explain why the conjecture must be divisible by 4.  
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Figure 5. Shifting to algebra to prove 

 In brief, throughout her attempt to prove the conjecture about odd numbers, Hera made 

use of examples, developed a narrative argument that justifies that the product is an even 

number, and later attempted to construct an algebraic argument, but was unable to fully explain 

why the conjecture must be true. She had several difficulties along the way, including 

representing odd numbers, focusing on the results of the examples used (and verification of the 

conjecture), and neglecting the given premises that led to a disconnect between the premises and 

the claim of the conjecture. These are difficulties that occurred in the context of this task; they 

may or may not appear in other tasks.  

4.3.1.b. Hera’s proving process during the bonus task 

 The second proving task involved a hypothetical student argument exploring the 

conjecture that the sum of any n consecutive integers is divisible by n for the cases of 3 and 4 

consecutive integers by testing each case with an example (1 + 2 + 3 and 7 + 8 + 9 + 10, 

respectively) and showing that the conjecture held true for the case of 3, but not for the case of 4. 

In response to what conclusions could be made about the conjecture, Hera stated that it means 

that the conjecture is not true, but she was also hesitant that it might not be true only for the 

particular example that was tested. Therefore, Hera went on to further explore the conjecture 

with her own examples, testing 7 + 8 + 9 and 1 + 2 + 3 + 4. Unlike her tendency in the previous 

task, Hera was curious to understand why the conjecture worked for the case of 3 but not for the 
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case of 4. Her eagerness to understand why paid off, as she noticed a structural element in her 

example. Hera exclaimed:  

I think I know why. Because oh, the difference here, yeah, so the difference here 

is one. So, you have two extras so if you're already at seven plus seven plus seven 

plus two. (pause) Is that? And then two, oh so it'd be a 3. So, then that's why you 

know it's true because you have these. So, like three times seven, you know that's 

going to be divisible by 3, and then you have three which you know is going to be 

divisible by 3. 

 
Figure 6. Generic example for the case of 3 

Hence, through one example Hera gained a key insight accounting for why the conjecture 

is true for the case of 3 consecutive numbers. It was clear that Hera viewed the example as a 

generic example (Mason & Pimm, 1984), as she elaborated that the conjecture is true for any 

three consecutive numbers as follows: 

Because we know that if we try to make every one of these numbers the same so 

that we know that, you know, that you have three of the same number added 

together that's going to be divisible by 3, and you want to get a number that is 

divisible by 3 as the extra numbers… You want to make that divisible by 3 too, so 

that, you know, when you add those together, you're gonna get divisible by 3.  

Eager to construct “a rule type thing”, Hera went on to develop an algebraic proof for the 

case of 3 by using variables (a, b, c) and representing consecutive numbers in relation to 

each other (i.e., b = a + 1, c = a + 2): 
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So, if we did like a plus b plus c, just trying to come up with one that would be 

true… So, then a plus 1 plus a plus 2 is 3a. One two three and then plus three. So, 

we know that whatever number you start out with that is always going to be true. 

 
Figure 7. Algebraic proof for the case of 3 

 Therefore, for the sum of the consecutive numbers conjecture, Hera could develop an 

algebraic proof; unlike representing odd numbers, Hera was familiar with representing 

consecutive numbers. Generalizing her reasoning and the insight she gained, Hera developed 

similar proofs for why the conjecture was not true for the case of 4 and 6 consecutive numbers, 

but true for the cases of 5 and 7 consecutive numbers. Thus, by examining each case 

individually, Hera developed general arguments for each sub-conjecture, and correctly concluded 

that the conjecture was true for odd number of string of consecutive numbers: “When you add 

consecutive numbers and the number of consecutive numbers that you're adding is seven, or an 

odd number I mean, then it will be divisible by n, and then if it's an even number it won't work”. 

Furthermore, in contrast to the previous task, this time Hera confidently claimed that she proved 

the conjecture. She argued: 

I tested many numbers and I also came up with a rule type thing… I didn't give a 

definitive number that will, like definitive consecutive numbers. I didn't say one 

two three like Georgia did. I said like a plus a plus one plus a plus 2 plus a plus 3 

and then proved why that was right. So, then I think that's why I proved my 
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statement because I showed that for any number, that is a, it would work, for the 

specific ones that I made up like for three, five, and seven [consecutive numbers]. 

 In conclusion, each proving task presents students with different challenges and 

opportunities for proving based on their mathematical background and the resources available to 

them. This illustrative case provides evidence that students’ ability to prove is essentially 

dependent on the conjecture to be proved and the mathematical resources its proof requires. That 

is, students may produce different types of arguments (with varying degree of sophistication) 

depending on the nature of the task and their familiarity with its mathematics content. As seen, 

students can produce algebraic proofs if the mathematics involved in the task is accessible to 

them, irrespective of their conception of what a valid proof is.  

5. Discussion and Implications 

By investigating conceptions of proof in a mathematics class, this study takes a novel 

approach and examines both the students’ and their teacher’s conceptions of proof. Analysis of 

the participants’ conceptions of proof as situated in their mathematics class allowed me to 

identify in what ways the students’ conceptions were related to their teacher’s conceptions of 

proof. Further, studying the class over a long time enabled me to examine the participants’ proof 

conceptions through multiple measures and at different time points, which contributed to a better 

characterization of the participant’s ways of thinking and understandings about proof. Both the 

teacher and the students turned out to have more sophisticated and advanced conceptions of 

proof than commonly reported in the literature, portraying a positive case to further probe what 

accounts for these positive findings, which will be the focus of the next paper. In what follows, I 

discuss some of the key findings that differ from the literature, point to some nuances detected 
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that offer alternative interpretations to the existing findings, and highlight the methodological 

contribution of the study; that is, the triangulation of the data. 

Although the existing research indicates that students typically do not recognize the value 

of proving for learning mathematics and view proof as restricted to geometry or certain forms, 

the students in this study regarded proof important in learning and doing mathematics. They 

deemed proof as a central practice that they commonly engaged in their mathematics class 

because the students’ notion of proof was not limited to a particular form such as an algebraic 

proof or a two-column proof, even though writing flowchart and two-column proofs was a strong 

focus of the geometry unit that they learned during this study. Instead, the students viewed proof 

more broadly as justifying one’ claims by supporting their reasoning with warrants and showing 

that their claim is true, which is precisely the perspective that their teacher wanted her students to 

have. Furthermore, unlike the existing findings (e.g., Almeida, 2000; Healy & Hoyles, 2000; 

Smith, 2006; Vinner, 1983), the students’ evaluations of an argument as a proof was not based 

on the form of the argument; they accepted narrative arguments, algebraic arguments, and visual 

arguments as a proof if they believed that the argument explained why the given statement must 

be true. In addition, the students (except one) rejected an invalid algebraic argument as a proof, 

further indicating that the form of an argument was not decisive for the students’ proof 

evaluations.  

Contrary to the common finding that students across grade levels (including 

undergraduate students) are often convinced that a conjecture will hold true in general after 

testing a few examples (Balacheff, 1988, Chazan, 1993; Coe & Ruthven, 1994; Edwards, 1999; 

Harel & Sowder, 1998; Knuth et al., 2002), I found that the students in this study overall 

understood that examples are insufficient to prove. They did not accept empirical arguments as a 
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proof, and in their attempts to prove a given conjecture they tried to go beyond empirical 

evidence and sought to develop a general argument. Instead, the students viewed examples 

helpful to investigate whether a conjecture is true, and valued examples to illustrate their proof to 

others or to verify that their proof is accurate. This is a nuance to the interpretation of students’ 

recourse to an example after accepting or producing an argument as a proof.  

While this behavior has been recognized as an indication of students’ poor understanding 

of the generality of proof (e.g., Fischbein & Kedem, 1982; Vinner, 1983), the findings of this 

study indicate that students’ inclination to use an example does not arise from the need to further 

check the veracity of a conjecture. But rather, the students’ intention was either to better 

communicate their proof to someone else or to make sure that their proof was correct, both of 

which were (directly and indirectly) encouraged through their classroom experiences. Because 

team work and group discussions were essential features of the class, the students were 

accustomed to explaining and justifying their ideas to their teammates, leading to view proving 

as a social process such that they considered an imagined audience even when evaluating 

hypothetical student arguments. As Porteous (1990) argues, students’ resort to examples does not 

necessarily indicate a weakness in their conceptions of proof. Indeed, students’ tendency to use 

an example to illustrate a proof resonates with teachers’ proclivity to favor arguments that are 

supplemented with specific examples or visuals (Knuth, 2002a). Hence, these findings point to 

the nuances in how students can and do think with examples in a way that does not necessarily 

indicate that they have impoverish views of proof. 

Perhaps the most prominent aspect of the students’ conceptions of proof was their strong 

emphasis on explaining why something must be true as a defining criterion for an argument to 

count as a proof. This is a novel finding, diverging starkly from the literature, as research often 
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reports that many students do not consider seeking explanations for why their observations are 

true as important or relevant to what they are expected to do (e.g., Coe & Ruthven, 1994; 

Porteous, 1990; Vinner, 1983). In contrast, the students in this study were curious to understand 

why the given conjectures were true (or false) and deliberately sought to figure out the 

underlying reasons that make a conjecture true (or false). In Harel’s (2006) terms, the students in 

general attempted to develop a causal proof, one that not only shows that a conjecture is true but 

also illuminates the reasons that make the conjecture true.  

There may be various factors accounting for this positive finding, but one principal factor 

seems to be related to the students’ meanings of proof and their views of the roles of proof, 

which are shaped by their classroom experiences. A shared notion of proof among the students 

and their teacher was that proof is justifying one’s reasoning by backing up their claims with 

reasons that shows that their claim is valid. Accordingly, explaining why something is true was a 

recurrent emphasis in their mathematics class- both in small group discussions and whole class 

discussions, which will be elaborated in the subsequent paper. Furthermore, if students believe 

that the sole purpose of proof is to verify the truth of mathematical statements, then it is no 

surprise that a few confirming examples will suffice as a proof for them; even though multiple 

confirming examples (no matter how diverse they are) does not verify that the statement holds 

true in general, yet students may consider it to be “enough evidence” and be satisfied with a few 

confirming examples. Thus, cultivating a need for understanding why something is true should 

be an important instructional goal for teachers to support their students’ conceptions of proof and 

their abilities to prove, in particular, and learning of mathematics, in general. 

Considering all these promising findings, a natural question follows: What enabled the 

students to have such conceptions of proof? While this question will be more thoroughly 
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addressed in the ensuing paper, I argue that the triangulation of data employed in this study also 

contributed to uncovering a more comprehensive and nuanced understanding about the 

participants’ conceptions of proof. More specifically, in this study I sought to go beyond 

identifying students’ conceptions of proof, aiming to understand why students hold such 

conceptions by exploring what may account for their conceptions so that we can be better off at 

finding ways to support students in advancing their understandings of proof. In accomplishing 

this goal, triangulation of data has been crucial and is achieved through various ways; 

specifically, by means of (a) different measures used for studying individuals’ conceptions of 

proof (e.g., proof description, proof evaluation, and proof production), (b) different data 

sources/subjects (e.g., students and their teacher), and (c) multiple interviews.  

 Each measure used for exploring the participants’ conceptions of proof revealed different 

- though not mutually exclusive- aspects of their conceptions and thus complemented and 

informed each other, enabling me to more thoroughly and accurately represent the students’ 

conceptions of proof. In other words, any single measure was inadequate to truly expose the 

students’ conceptions of proof. For instance, the students’ proof descriptions were often too 

vague and brief, leaving out many important details to confidently draw conclusions about their 

proof conceptions or to distinguish students in terms of their meanings of proof. Students’ proof 

evaluations, on the other hand, provided an expanded set of information about their ways of 

thinking and understandings about proof, by considering the types of arguments the students 

accepted as proof, the proof understandings that informed their decisions, as well as the criteria 

they used for accepting (or rejecting) an argument as a proof. Furthermore, considering students’ 

proof productions alone was misleading as to what they think and understand about proof, given 

that the students’ proof productions did not appear to be linked to their proof understandings in a 
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way that favored the students with strong proof understandings to produce deductive proofs, but 

rather the students’ proof productions were found to be largely affected by their understanding of 

the mathematics involved in a proving task. Thus, the results underscored that that what students 

can produce as a proof may not truly reflect their ways of thinking and understandings about 

proof. By comparing findings obtained from each measure, I looked at the overall patterns in 

students’ ways of thinking and understandings about proof, distinguishing two groups of 

students; that is, (a) students with strong understanding of proof as a deductive argument and (b) 

students with relatively moderate understanding of proof as deductive argument, who also 

occasionally valued empirical arguments. But, the combination of these two measures (proof 

description and proof evaluation) does not account for students’ abilities to develop proofs. Thus, 

the third measure (proof production) complemented the analysis of students’ proof conceptions, 

showing that students’ ability to develop proofs (i.e., types and sophistication of their argument) 

depends on the task and the mathematics involved in its proof.  

The three measures used for examining students’ conceptions of proof do not reveal 

disconnected aspects of their conceptions, but rather they present interrelated characteristics of 

students’ ways of thinking and understandings about proof. For instance, students who described 

proof as backing up also emphasized explaining why as a key criterion when accepting (or 

rejecting) an argument as a proof by pointing to the use of (or lack of) warrants such as 

definitions or known properties, which was also reflected in their own proof productions where 

they tried to come up with an explanation for why the conjecture must be true.  

On the other hand, triangulation of the different measures showed that students’ proof 

productions, as well as their evaluations of proofs, largely occur at the intersection of their 

understandings about proof with their understanding of mathematics involved in a task. Attention 
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to students’ difficulties when evaluating and producing proofs revealed various difficulties that 

hampered students’ judgments or their progress on a proof. Important to note is that many 

common difficulties were related to students’ mathematical facilities, such as expressing 

mathematical ideas symbolically, familiarity with mathematical properties of numbers, and 

understanding how definitions and previously established results are used in constructing 

deductive arguments, to name a few. Hence, just like proof and proving need to be continually 

emphasized across grade levels, topics, and domains, these are areas that need to be always 

attended to by creating opportunities for students to engage with them and thus to develop their 

mathematical facilities. Apparently, development of students’ proof abilities depends on a 

simultaneous emphasis on and support for their understandings about proof as well as their 

mathematical facilities.  

 A novelty of the study was its use of multiple data sources to develop a comprehensive 

understanding of students’ conceptions of proof, by drawing on supplementary data sources in 

addition to the student interviews. To be precise, students’ conceptions were examined through 

the interviews with students, the interviews with their teacher, as well as the classroom 

observations, although the latter is minimally used in this paper- only to point to the classroom 

influences on students’ conceptions. Specifically, the interviews with the teacher helped to 

situate the identified conceptions of proof that the students had, revealing a close alignment 

between the students’ ways of thinking and understandings about proof and their teachers’ views 

on proof and proving. This close alignment was a rather surprising finding given that research 

often documented a mismatch between students’ personal notions of proof and their perceptions 

regarding their teachers’ notion of proof. Because both the students’ and their teacher’s 

conceptions of proof were found to be more sophisticated than reported in the literature, this 
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study presents an encouraging case, suggesting that teachers can be influential in helping 

students to develop robust conceptions of proof.  

 Furthermore, an essential part of the data triangulation was achieved via multiple 

interviews. Both the focus-group students and the teacher were interviewed twice (one during the 

beginning phase of the classroom observations and one at the end). Interviewing the participants 

twice was helpful to more thoroughly and adequately study their conceptions of proof. 

Specifically, it allowed me to study their conceptions in multiple domains and contexts, but also 

allowed me to ask probing questions through clarifying questions or new tasks designed based on 

the preliminary results of the first set of interviews as well as the classroom observations. The 

second interviews also enabled me to check agreement among the participants (both among 

students and between the students and their teacher), discovering numerous shared 

understandings across the students and the teacher. Although the two interviews were not 

intentionally designed to show growth in the students’ conceptions of proof (thus, it is not 

possible to make claims about quantifiable changes in students’ conceptions of proof between 

two interviews), the two interviews nevertheless were far apart in time that some qualitative 

changes were evident across two interviews. Investigating the same aspect of students’ 

conceptions of proof (e.g., students’ meanings of proof) through multiple measures and multiple 

interviews, therefore, enhanced our understanding of students’ conceptions by uncovering 

nuances and increasing credibility of the interpretations of the data.  

In sum, consideration of the findings obtained from each measure together informed a 

more detailed and nuanced understanding of the students’ conceptions of proof. Different data 

sources and measures revealed different aspects of the individuals’ proof conceptions, helping to 

corroborate findings as well as pointing to mismatches, which was further strengthened with two 
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interviews per participant at different time points. All together, they attest to the intricacy and 

complexity of individuals’ conceptions; any single method alone or data source is likely to yield 

incomplete (or even misleading) conclusions.  

 The findings reported in this paper regarding the students’ conceptions of proof by no 

means represent freshmen and junior high school students in general; instead, these seven focus-

group students offer a fair representation of a select mathematics classroom. Thus, the findings 

of the study are significant not because it presents generalizable results about students’ 

conceptions of proof, but rather because it offers an illustrative case, examined in-depth, that 

shows that students’ conceptions of proof are related to their teacher’s conception of proof, as 

well as to their classroom experiences. While this paper mainly focused on the links between the 

students’ conceptions and their teacher’s conceptions of proof, the following paper specifically 

focuses on how the classroom norms, instructional practices, and curriculum mediated the 

identified alignment between the students’ and their teacher’s conceptions of proof.  
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Abstract 

Given that the students’ and their teacher’s conceptions of proof were examined in Part 

#1 and were found to be both closely aligned to each other and also more sophisticated than what 

is typically found in the proof literature, this paper specifically focuses on the ways in which the 

classroom factors might have supported the students’ conceptions of proof, and thus the close 

alignment between the students’ and their teacher’s conceptions. In addressing this question, I 

first turned to the curriculum used in the class and examined what opportunities for proving were 

present in the mathematical activities and tasks given to the students, and then to the teacher’s 

instructional emphases and practices and examined to what extent and in what ways the teacher 

emphasized proving and supported students’ conceptions of proof. I share the results about the 

classroom factors related to the students’ proof conceptions by considering both of these 

analyses. Specifically, I discuss how the curricular materials and the teacher (through her 

instructional emphases and practices) supported the students’ notions of proof, including the 

students’ views about the roles of proof. I also consider the classroom factors with respect to 

their potential support for the development of the students’ proof schemes. Specifically, I discuss 

how the classroom factors may have fostered the development of the deductive proof scheme, 

while discouraging the development of the authoritative and empirical proof schemes. In 

conclusion, the study offers evidence that students can develop robust conceptions of proof if the 

learning environment is conducive to sharing and justifying mathematical ideas where the 

teacher values proof as an important aspect of doing and learning mathematics.  
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1. Introduction 

Although there is a wealth of research on students’ conceptions of proof, less is known 

about how students’ conceptions of proof relate to their experiences in classrooms. Through task 

selection, instructional emphases, and classroom practices, teachers are influential on what 

meanings and understandings of proof and proving students construct, but very few studies (e.g., 

Harel & Rabin, 2010; Martin, McCrone, Bower, & Dindyal, 2005) have specifically investigated 

the relationship between instructional practices and students’ understanding of proof. Moreover, 

the Common Core State Standards for Mathematics (CCSSM) (NGA/CCSSO, 2010) charges 

teachers to incorporate proof into all of their mathematics classes, yet proof is still not adequately 

emphasized in many mathematics classrooms (e.g., Bieda, 2010). Hence, it is sorely needed to 

find ways to help teachers make proof a consistent emphasis in their teaching, and thus, support 

their students in developing productive conceptions of proof.  

To achieve this, as a field we need studies that unpack the relationship between 

instructional practices and students’ evolving ideas and understandings about proof. Specifically, 

we need to better understand how to positively influence students’ conceptions of proof through 

instruction. Thus, as Harel and Fuller (2009) urge, more research is needed to investigate 

classroom activities and interactions that foster desirable conceptions of proof. This study 

addresses this call by examining the links between students’ conceptions of proof and their 

classroom experiences, by focusing on the classroom norms and instructional practices related to 

proof, as well as their teacher’s conceptions of proof.  

As Pajares (1992) argues, conceptions can act as filters through which individuals make 

decisions; thus, it is important to examine how teachers’ conceptions (or misconceptions) of 

proof are reflected in their instructional practices. Indeed, it is widely acknowledged that 
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teachers’ conceptions shape their instructional goals and practices (Ambrose, 2004; Ball, 

Lubienski & Mewborn, 2001; Cross, 2009; Even, 1993; Hammerness et al., 2005; Hill, Rowan, 

& Ball, 2005; Sowder, 2007; Thompson, 1984, 1992). Accordingly, it follows that what teachers 

believe about the role of proof and what counts as proof is likely to influence their instructional 

treatment of proof. More precisely, teachers’ pedagogical decisions regarding what to include, 

exclude, or encourage regarding proving related activities may be filtered through their 

conceptions of proof. Put differently, how one defines and conceives of proof, including its 

perceived role in school mathematics, is likely to influence one’s treatment of proof in one’s 

mathematics class. However, empirical findings are needed to better understand in what ways 

those constructs are related. 

Conner (2007) provided preliminary findings regarding the link between teachers’ 

conception of proof and their instructional supports for proof. Specifically, Conner worked with 

three secondary pre-service mathematics teachers and examined how they facilitated classroom 

argumentation, a practice closely related to proving. Conner found that the student teachers’ 

conceptions of proof, especially their view of the role and function of proof, were closely aligned 

with the way each student teacher supported classroom argumentation. Thus, Conner’s work 

provides evidence that teachers’ conceptions of the role of proof can influence their instructional 

practices in important ways, calling for more research to unpack the nature of those connections 

and the ways in which teachers’ practices may influence student understanding. 

Hence, this study investigates how students’ views and understandings about proof and 

proving are related to the classroom factors. By observing a high school mathematics class for 

over two months and interviewing the students and their teacher, I examined the possible links 

between the students’ developing conceptions of proof and the proof-related classroom norms 
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and practices that occurred in their mathematics class. Given that the students had more 

sophisticated proof conceptions than what is typically found in the proof literature, this paper is 

specifically concerned with the question of what classroom factors might have supported those 

proof conceptions. In addressing this question, I first turned to the curriculum used in the class 

and examined what opportunities for proving were present in the mathematical activities and 

tasks given to the students, and then to the teacher’s instructional emphases and practices and 

examined to what extent and in what ways the teacher emphasized proving and supported 

students’ conceptions of proof. I will present the findings about the classroom factors related to 

the students’ proof conceptions by considering both of these analyses, and discuss them in 

relation to what proof schemes they are likely to promote.  

2. Theoretical Background and Relevant Literature 

2.1.  The Emergent Perspective on Learning 

With its emphasis on coordinating psychological analyses of students’ individual activity 

with interactionist analyses of classroom discourse in which an individual’s activity is 

embedded, the emergent perspective on learning mathematics (Cobb & Bauersfeld, 1995; Cobb 

& Yackel, 1996) frames this study. Drawing on the tenets of constructivism and social 

interactionism, the emergent perspective views students as active creators of the mathematical 

meanings they construct, but also considers those meanings to be shaped by the social 

interactions in a classroom culture (Cobb & Bauersfeld, 1995). Thus, learning occurs through 

negotiation of meanings in social interactions, which also includes indirect learning that occurs 

when the negotiation of meanings is implicit. As Cobb and Bauersfeld argue, when participating 

in mathematical practices in a classroom the teacher and students often implicitly negotiate 

meanings without being aware of it. Hence, the emergent perspective maintains that the 
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individual's mathematical activity and the classroom culture are reflexively related to each other. 

In other words, individual students’ active participation contributes to the construction of 

classroom mathematical practices and the classroom culture, and in turn, those practices shape 

students’ subsequent mathematical activities by allowing or restricting their participation in 

certain ways. Thus, due to this reflexive relationship, Cobb and Bauersfeld argue that one cannot 

adequately account for either the social or psychological aspects of learning alone, unless they 

are considered in relation to each other.  

Because the emergent perspective attends to both the social aspects (i.e., classroom social 

norms, sociomathematical norms, classroom mathematical practices) and the psychological 

aspects of individuals (i.e., beliefs about one’s own role, others’ role and nature of the 

mathematical tasks, mathematical beliefs, values and conceptions), it is a useful perspective for 

examining individuals’ mathematical activity situated in a classroom community. Hence, I have 

adapted Cobb and Yackel’s (1996) interpretive framework for studying individuals’ proof 

conceptions as situated in their mathematics class as shown in Table 1. 

Table 1. An interpretive framework for analyzing individual and collective proof-related 
activities at the classroom level, adapted from Cobb & Yackel, 1996 

Social Perspective Psychological Perspective 

Classroom social norms  Beliefs about own role, others’ roles, 
and nature of mathematical activity  

Sociomathematical norms  
(related to proving) 

Mathematical beliefs and values  
(related to proving) 

Classroom mathematical practices  
(related to proving) 

Mathematical conceptions and activity 
(related to proving) 

 

Classroom social norms refer to the regularities observed in collective classroom 

activities that are established together by the teacher and students. These norms are not specific 



 

	

104 

to mathematics classrooms, but can be observed in other classes as well. For example, 

“explaining and justifying solution methods, attempting to make sense of other students’ solution 

methods, and asking clarifying questions whenever a conflict in interpretations arose” (Stephan 

& Cobb, 2003, p. 38) are norms that can be observed in other courses as well. In contrast, 

sociomathematical norms refer to the normative aspects of the students’ and teacher’s activity 

that are specific to mathematics, such as what counts as “a different mathematical solution, a 

sophisticated mathematical solution, an efficient mathematical solution, and an acceptable 

mathematical explanation” (Cobb, Stephan, McClain, & Gravemeijer, 2001, p. 124). Each row of 

the table presents the related psychological and social aspects; for example, mathematical beliefs 

and values that pertain to proving are assumed to be the psychological correlate of the 

sociomathematical norms related to proving. When a teacher initiates and facilitates a discussion 

on whether a given student justification is a valid and sufficient proof, this may simultaneously 

lead students to reconsider their corresponding beliefs about what proof means and entails. 

Conversely, students’ beliefs about what counts as proof influence the collective establishment 

of the sociomathematical norms about proving in that classroom.  

Lastly, classroom mathematical practices are described as taken-as-shared ways of 

reasoning and arguing mathematically about particular mathematical ideas, which evolve as the 

teacher and students discuss situations, problems and solution methods and often include aspects 

of symbolizing and notating (Cobb et al., 2001). Thus, classroom mathematical practices are 

specific to particular mathematical ideas under discussion, and refer to the collective 

understanding of the mathematical content as a class, which is the correlate of individuals’ 

mathematical conceptions. For instance, one proof-related classroom mathematical practice in a 

high school geometry class could be creating a proof for showing that two triangles are 
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congruent by using the taken-as-shared understandings (such as the known properties, 

relationships, theorems, and definitions) at a given time in that classroom community. 

In accordance with the emergent perspective, I focused both on the psychological 

aspects– the individual students’ and their teacher’s conceptions of proof- and the social 

aspects– the classroom practices situated in the classroom interactions and governed by the 

collectively set classroom norms. While the first paper focuses on the psychological aspects, this 

paper mainly focuses on the social aspects, with an aim to coordinate the analyses of the 

students’ and the teacher’s conceptions of proof with the analyses of the classroom factors.  

2.2.  Relationship Between Teachers’ Proof Conceptions and Their Instructional Practices 

Teachers’ knowledge of and beliefs about mathematics, constructs that are hard to 

separate and thus referred as conceptions in this study, have been identified as important factors 

that shape teachers’ instructional practices (Ambrose, 2004; Ball, Lubienski & Mewborn, 2001; 

Cross, 2009; Even, 1993; Fennema & Franke, 1992; Hammerness et al., 2005; Hill, Rowan, & 

Ball, 2005; Sowder, 2007; Thompson, 1992). While there is limited existing research that 

empirically establishes this relationship specifically for the case of proof, it naturally follows that 

teachers’ support for student learning of proof is likely to be determined by teachers’ conceptions 

of what proving entails and the roles proof plays in mathematics. In other words, teachers’ 

conceptions of what proving entails and the roles proof plays in learning mathematics are likely 

to influence what kind of a notion of proof they cultivate in their classes; that is, teachers can 

incorporate proof into their instruction to the extent commensurate with their understanding of 

proof. Thus, to what extent, and in what ways, a teacher requests students to justify their claims; 

what he or she accepts as a sufficient proof; and in what ways he or she supports students to 
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develop proofs in class is likely to align with his or her conceptions of proof, which may be 

mediated together by other personal, classroom, or institutional factors. 

 As mentioned before, in her study with three secondary mathematics pre-service teachers 

Conner (2007) examined each pre-service teacher’s support for classroom argumentation and 

provided empirical support to the alluded link between teachers’ conceptions of proof and their 

instructional practices. Specifically, Connor examined the nature and the frequency of the 

components of the arguments (i.e., data, claim, warrant, and backings) constructed in teachers’ 

classrooms, and then compared those to their conceptions of proof. She found that the pre-

service teachers’ conceptions of proof, especially their view of the role and function of proof, 

were closely aligned with the way each student teacher supported classroom argumentation. For 

example, a pre-service teacher who viewed proof as explaining why something works used more 

warrants and the warrants were usually theorems and definitions. Whereas another pre-service 

teacher who viewed proof as explaining how things work had facilitated arguments with less 

warrants and of those warrants she used were usually either a rule or procedure. 

Likewise, Knipping (2008) reported that teachers’ proof-related classroom practices were 

linked to their rationales for how individuals learn to prove. In comparing six French and 

German secondary mathematics teachers’ collective classroom argumentations on the same 

content (i.e., the Pythagorean theorem), Knipping examined the warrants (and backings) used for 

the arguments developed in each class and classified the provided warrants according to their 

nature (i.e., empirical-visual, conceptual-visual, conceptual-deductive). Her analyses resulted in 

identification of two distinct types of global argumentation structures (i.e., source-structure and 

reservoir-structure) within these six classes, suggesting that learning to prove had different 

meanings in each class. Hence, by establishing links between different types of argumentation 
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structures and teachers’ purposes of proving, Knipping’s work offers further support to the claim 

that teachers’ (conscious or unconscious) conceptions of proof and goals for proving are 

manifested in their instruction through emphasizing and fostering different notions of proof.  

2.3. Curricular Opportunities for Proof and Their Classroom Implementation 

A critical factor in students’ experiences with, and thus opportunities to learn to prove, is 

the curriculum they study (Stylianides, 2009). Curriculum also has a key influence on teachers’ 

instructional emphases and practices, as it essentially frames the mathematical tasks and 

activities that students are to engage with (Cai, Ni, & Lester, 2011), and thus sets the 

expectations for conceptual demand, in general, and proving, in particular. Hence, to what extent 

a curriculum offers opportunities for reasoning and proof is crucial to achieve the goal of making 

reasoning and proof central to students’ mathematical experiences as the policy documents 

recommend (e.g., NGA/CCSSO, 2010; NCTM, 2000). This critical role of curriculum has led to 

copious research on the designed opportunities for proof related activities in textbooks across 

grade levels, ranging from elementary grades (e.g., Bieda, Ji, Drwencke, & Picard, 2014) to 

middle school (e.g., Stylianides, 2009), to high school (e.g., Davis, Smith, Roy, & Bilgic, 2014; 

Johnson, Thompson, and Senk, 2010), and to teacher education programs at the undergraduate 

level (e.g., McCrory & Stylianides, 2014). The findings across this body of research show that 

secondary textbooks typically include significantly more opportunities for reasoning-and-proving 

compared to elementary textbooks and that those opportunities for reasoning-and-proving vary 

across different content areas, with geometry being one of the content areas that most frequently 

include reasoning-and-proving tasks. 

Given that the study of proof is typically regarded as a subject of high school geometry 

course in the US (Herbst, 2002), it is not surprising that more opportunities for proof is found in 
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high school textbooks, and particularly in geometry textbooks. Because of the explicit emphasis 

on proof in geometry courses, Otten, Males and Gilbertson (2014) examined six high school 

geometry textbooks that are commonly used in the US, and analyzed the introduction to proof 

chapter of each textbook in terms of the nature and frequency of “reasoning-and-proving 

opportunities” (Stylianides, 2009) included. Their analysis showed that the reasoning-and-

proving opportunities in the introduction to proof chapters included investigating conjectures, 

making conjectures, and developing rationales for the conjectures, but the requests for 

constructing a proof was not common. Further, the frequency of reasoning-and-proving 

opportunities varied across the six textbooks, ranging from 27% to 65% of the total number of 

tasks analyzed in each textbook. Note that these frequencies reflect only the introduction to proof 

chapters (in which proof is the explicit focus), hence one would expect to find more 

opportunities for reasoning and proof. 

Johnson, Thompson and Senk (2010) examined the proof-related reasoning opportunities 

present in non-geometry high school textbooks and analyzed various algebra and pre-calculus 

textbooks (including both conventional and reform-oriented textbooks). In their analysis, the 

researchers considered the proof-related reasoning opportunities to include: investigating a 

conjecture, making a conjecture, developing an argument, evaluating an argument, correcting a 

mistake in an argument, finding a counterexample, and reading arguments and proofs. Their 

findings indicate that the opportunities for proof-related reasoning increased from Algebra 1 to 

Algebra 2 to pre-calculus, but nevertheless the percentage of proof-related reasoning 

opportunities was quite low (3.4 %, 5.4 %, and 7.7 %, respectively). This is a concerning finding, 

if students are to develop appropriate notions of proof and skills to prove, and appreciate the 

value of proof in doing and learning mathematics. 
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On the other hand, Stylianides (2009) examined a reform-oriented curriculum, Connected 

Mathematics Project (CMP), that claims to be aligned to the recommendations set by the policy 

documents (i.e., NCTM, 2000), so one may expect to find more opportunities for reasoning and 

proof. Stylianides analyzed 12 units of the CMP curriculum across three content areas (algebra, 

number theory, and geometry) and across three grade levels (grades 6 to 8). He found that about 

40% of the tasks included at least one opportunity for students to engage with a proof-related 

activity (such as identifying a pattern, making a conjecture, developing a proof (generic example 

or demonstration), and developing non-proof arguments, including empirical arguments and 

rationale). Of those opportunities, 62% required students to give a rationale, 24% required to 

identify patterns (definite or plausible patterns), and only 12% required a demonstration (i.e., a 

proof). However, the distribution of the reasoning-and-proving tasks significantly varied across 

the units and grade levels. 

 Although Stylianides’s (2009) analysis of the CMP curriculum reveals promising results 

with respect to the opportunities for learning to prove when compared with the considerably 

fewer opportunities that were typically found in other textbooks (even at the high school level), 

the implementation of the curriculum matters the most for the actual opportunities students have 

for reasoning and proving. For instance, Stylianides’s curriculum analysis pointed out that very 

little percentage of the tasks in CMP required students to develop empirical arguments (3%); yet, 

Knuth, Choppin, Slaughter, and Sutherland (2002) studied the proof understandings of students 

from the CMP classrooms and found that most students across all three grade levels relied on 

empirical arguments to justify the truth of mathematical claims. This mismatch between a low 

emphasis on empirical arguments in the curriculum and the high tendency of students to use 

empirical arguments to justify underscores a potential issue in the implementation of the 
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curriculum; that is, the implemented curriculum might have diverged significantly from the 

intended (written) curriculum. Indeed, Bieda (2010) investigated how experienced CMP teachers 

implemented proof-related tasks in their classrooms. Studying seven middle school mathematics 

classrooms (grades 6 to 8), Bieda found that the designed opportunities for proof in the written 

curriculum were not fully realized during the implementation of the tasks, pointing out that the 

classroom implementations fell short of developing a robust understanding of proof, and thus, 

were insufficient to support students’ abilities to prove.  

In sum, Stylianides’ work on curriculum analysis and Bieda’s study of the classroom 

implementation of the same curriculum nicely complement each other, contributing to our 

understanding of the relationships between the intended curriculum and its classroom 

implementation. These studies together suggest that the classroom implementation of a 

curriculum may further reduce the opportunities for reasoning and proving designed by the 

curriculum, and thus point to the critical role teachers have in maintaining or improving the 

opportunities available in a curriculum so that students can develop a robust understanding of 

proof. But, more research is needed to identify how a curriculum, its classroom implementation, 

and student learning is related to each other (Thompson, 2014); specifically, research “to conduct 

a detailed analysis connecting the intended opportunities to learn reasoning-and-proving with the 

practices that are actually enacted in classrooms, and further, to connect students’ development 

of reasoning-and-proving skills with various curricula” (Cai & Cirillo, 2014, p. 138) is needed. 

This study is in line with this call, as it examines the interplay between students’ conceptions of 

proof and the related classroom factors, including the curriculum used.  

2.4. Relationship Between Instructional Practices and Students’ Conceptions of Proof 
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Research has documented that teachers’ instructional practices significantly influence 

students’ learning opportunities (e.g., Blanton & Kaput, 2005; Mason, 2000; Mewborn, 2003). In 

a recent review of research on teachers’ roles in mathematical classroom discourse, Walshaw and 

Anthony (2008) provided an extensive review of the studies that presented an explicit link 

between teacher practices and student learning and concluded that teachers’ pedagogical 

decisions related to classroom discourse significantly influenced student learning. Furthermore, 

the authors contend that studies that investigate the link between teacher practices and student 

leaning help us understand not only what discourse practices work, but also how and why they 

work.  However, they underscore that “We do not know as much about quality classroom 

discourse at the high (secondary) school level as we do about the elementary (primary) level” 

(Walshaw & Anthony, 2008, p. 541). 

Accordingly, researchers (e.g., Herbst, 2002; Hoyles, 1997; Martin et al., 2005; Selden & 

Selden, 2008) acknowledge the role of teachers in shaping students’ proof schemes through their 

instructional emphasis on proof and justification, but relatively few studies have specifically 

investigated the relationship between instructional practices related to proving and students’ 

understanding of proof. Furthermore, most of them were conducted either at the elementary level 

(e.g., Stylianides, Ball, 2008; Reid & Zack, 2009) or at the undergraduate level (e.g., Blanton, 

Stylianou, & David, 2009; Smith, 2006; Stylianides & Stylianides, 2009), and thus less is known 

about how instructional practices in secondary grade mathematics classes relate to students’ 

proof conceptions.  

At the undergraduate level, Blanton, Stylianou and David (2009) conducted a year-long 

teaching experiment in a discrete mathematics course, with an explicit focus on learning to 

prove. The researchers examined the teacher-researcher’s discourse and the students’ 
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development of proof competencies with an aim to relate two analyses. They specifically 

examined the instructional scaffolding in classroom discourse during proof development, 

building on the premise that the nature of instructional scaffolding is critical in understanding 

how students learn to prove. Hence, they developed a framework of instructional support for 

proof development, consisting of four types of instructional scaffolding: (a) transactive 

utterances, (b) facilitative utterances, (c) didactic utterances, and (d) directive utterances. 

Transactive utterances consist of “requests for critique, explanations, justifications, clarifications, 

elaborations, and strategies, where the teacher’s intent is to prompt students’ transactive 

reasoning” (p. 294), thus, they are the building blocks for proof development. Facilitative 

utterances are used to structure classroom discussions and consist of re-voicing or confirming 

student contributions. Through facilitative moves such as summarizing a discussion or leading 

students to focus their arguments on certain aspects, teachers structure classroom discussions. 

Didactive utterances refer to teacher explanations related to the nature of mathematical 

knowledge (e.g., nature of mathematical proof, proof methods, etc.). Lastly, directive utterances 

are more leading and are aimed at correcting student errors or explicitly leading students towards 

the solution path. Blanton and colleagues investigated the effects of these four types of 

utterances on the development of students’ understanding of proof. As a result, they 

hypothesized that teacher prompts that requested students to share new ideas and to clarify, 

elaborate and justify their ideas were pivotal in students’ development in learning to prove. 

Furthermore, they stressed that transactive and facilitative prompts, which were key to making 

student ideas public and negotiating mathematical meanings, enabled students to engage in 

conjecturing.  
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At the secondary level, Harel and Rabin (2010) examined two high school algebra 

classrooms, with an aim to identify teaching practices that contributed to the development of the 

authoritative proof scheme. The researchers observed 8 class sessions for Teacher A and 9 

sessions for Teacher B, approximately once in every three weeks over the course of an academic 

year. Harel and Rabin identified three categories of teaching practices that can promote the 

authoritative proof scheme: (a) answering students’ questions, (b) responding to students’ ideas, 

and (c) lecturing. Specifically, the researchers identified several instructional practices (such as 

telling students how to proceed with the solution, evaluating student ideas rather than asking the 

class to evaluate) that conveyed the message that the teacher is the sole authority in the 

classroom who decides what counts as mathematically correct, and thus they argued that these 

practices are likely to promote the development of the authoritative proof scheme in students. 

Harel and Rabin also noted that the teachers’ lectures often began with a general rule, followed 

by examples and then continued with asking students to solve similar tasks, which, they argued, 

further contributed to an image of teacher as the authority figure in class. In addition, they 

reported that teachers’ justifications were usually authoritative and sometimes empirical in 

nature, which is likely to reinforce students’ authoritative and empirical proof schemes. They 

also identified some productive teacher moves (such as probing student reasoning, prompting 

error correction, encouraging argumentation among peers, and offering deductive justifications) 

that can support more advanced conceptions of proof.  

In another exemplar study conducted at the secondary school level, Martin, McCrone, 

Bower, and Dindyal (2005) investigated the classroom factors related to the development of 

students’ proof understandings. Specifically, the researchers linked a high school geometry 

teacher’s instructional practices to students’ developing axiomatic proof schemes. In their 
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analysis of the classroom observations, the researchers identified the actions the teacher and 

students did and visualized those actions in a chronological order. They discussed that the 

teacher supported students’ reasoning and proof abilities by (a) asking open-ended tasks, (b) 

encouraging student argumentations in which students were responsible for reasoning, (c) 

analyzing student arguments, and (d) coaching students during their proof constructions. The 

researchers argued that the teacher moves such as evaluating, re-voicing, exposing students’ 

flaws, and pressing students to provide justifications based on the axiomatic system had 

supported the students’ movement towards the axiomatic proof scheme. Additionally, they 

maintained that giving students responsibility to assess each other’s arguments helped students 

move away from the authoritative proof scheme.   

This study builds on the body of literature described here, with an aim to contribute to 

our collective understanding of the relationships between classroom factors (such as 

sociomathematical norms, the teacher’s emphasis on proof and justifying, and instructional 

practices) and students’ developing conceptions of proof. To achieve this, I complement 

classroom observations with interviews with students and their teacher, as well as an analysis of 

the curriculum they study. As Steele and Rogers (2012) argue, each method (interview and 

classroom observation) enables different aspects of individuals’ conceptions of proof to surface, 

allowing one to better understand what the participants understand about proof and how that 

understanding is manifested and supported in the classroom. 

3. Methods 

As described in the previous chapter, this study examines a high school mathematics 

class, an honors integrated algebra-II, geometry, and pre-calculus course, situated in a public 

school district in the Midwest (for more details about the context and the participants of the 
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study, see Paper #1, An Investigation of Proof Conceptions in a High School Mathematics 

Classroom). Being an honors course, this class may be considered a non-typical class; however, 

since proof and proving often receive little attention, and thus, assume limited roles in most 

classrooms, for the purposes of this study it was essential to examine a non-typical classroom in 

which proof and proving were emphasized. As Stylianides (2007) argues, “To study how proof 

and proving can be cultivated we need to look at what might be considered as successful rather 

than typical teaching practices” (p. 301). 

As part of the overall study, this paper focuses on the classroom factors related to proof 

and proving (as highlighted in Figure 1), with an aim to relate the analyses of classroom factors 

with the analyses of the students’ and their teacher’s conceptions of proof. Therefore, the 

videotapes of mathematics lessons and the associated mathematical tasks (both classwork and 

homework assignments) constituted the main data sources for this paper, while the audiotapes of 

small group discussions of two focus-groups, field notes, and reflections were used to 

supplement the data analysis.  

Teacher Interview-1 
(October 13, 2015) 

 
 

Classroom Observations & 
Student Interviews-1 

(October 16 – December 16, 
2015) 

 
 

Student Interviews-2 
(February 10-19, 2016) 

 
Teacher Interview-2 

(March 15, 2016) 

Figure 1. Data collection process 
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3.1. Classroom Observations  

I observed 18 consecutive lessons over two months, covering two units in geometry (Unit 

3: 2D Figures & Unit 4: Similarity and Congruence) and one unit in pre-calculus (Unit 5: Intro to 

Trigonometry). In this paper, I report the analyses of the two geometry units, consisting of 10 

lessons, in order to focus on the students’ introduction to and experiences with proof within one 

mathematical domain. Table 2 summarizes the mathematical topics of each lesson. The class met 

every other day for a period of 87 minutes. 

Table 2. Mathematical topics of lessons analyzed 

Lesson # Unit # Day # Topics 
Unit 3: 2D Figures 
Lesson 1 U3D3 Pythagoras 
Lesson 2 U3D4 Shapes, Definitions, Properties 
Lesson 3 U3D5 Circles, Triangles, Composites, Parallelograms 
Lesson 4 U3D6 Constructions 
Unit 4: Similarity and Congruence 
Lesson 5 U4D1 Similarity 
Lesson 6 U4D2 Proofs 
Lesson 7 U4D3 Congruence 
Lesson 8 U4D4 Ratios and Similarity 
Lesson 9 U4D5 Quadrilateral Proofs 
Lesson 10 U4D6 Coordinate Proofs 

 

I videotaped each lesson with a camera placed at the back of the room, by focusing on the 

teacher and following her as she shifted from monitoring small group discussions to leading 

whole-class discussions. Additionally, a clip mic was used to better record the teacher’s 

discourse. Because the teacher frequently moved between different groups of students, it was not 

possible to record individual students’ discussions in its entirety as the camera followed the 

teacher. Thus, I audiotaped two focus-groups’ team discussions (who consented to audiotaping) 
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so that I could also have access to a subset of students’ discourse at length. There were 7 focus-

group students in total, who happened to be fairly representative of the class in general (for more 

information on the focus-group students, see Paper #1, An Investigation of Proof Conceptions in 

a High School Mathematics Classroom). The focus-group students remained stable, except that 

they were grouped differently across the two units in order to conform to the classroom norm 

(that is, students worked in different teams in each unit), yet still maintaining that the focus-

group students were teamed together. During the observations, I also took field notes to 

document the classroom norms and practices related to proof and proving, and wrote reflections 

after the observations. Further, I collected classroom artifacts such as mathematical tasks used in 

the class and a sample of students’ written work to draw on multiple sources of data and 

triangulate the findings. The mathematical tasks (both classwork and homework assignments) 

were mainly drawn from the College Preparatory Mathematics (CPM) curriculum, which 

emphasizes team work and discovery of core mathematical ideas through problem based lessons, 

and identifies itself as well-aligned to the CCSSM. While the three books of Core Connections 

series of the CPM curriculum (i.e., Algebra-2, Geometry, and PreCalculus with Trigonometry) 

were alternately used throughout the semester, during the focal units of this paper the class relied 

on the Core Connections Geometry book.  

3.2. Data Analysis 

3.2.1. Analysis of curricular materials 

Prior to analyzing the lessons, I first examined the curricular materials available for the 

class in order to better understand the nature of the class and the opportunities available in the 

tasks in which the students engaged. Specifically, I analyzed the mathematical tasks and 

activities that the students engaged in (both as classwork and homework) for the entire semester, 
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covering units 1 through 5, as well as the syllabus of the course. Examining the syllabus and the 

curricular materials of the previous units (i.e., Units 1 and 2) enabled me to better understand the 

classroom norms and expectations as well as the students’ prior mathematical experiences 

pertinent to this class that will be foundational for the rest of the semester.  

For each unit, I populated the tasks in classwork and homework per each lesson and then 

coded each task for any proof-related emphases (such as not making assumptions based on 

appearance) or requests for proof-related activities (such as identifying a pattern, making a 

generalization, providing a justification, etc.), with the unit of analysis being the entire task. For 

instance, if a task had several parts, I considered all parts together constituting one distinct task. 

Table 3 shows the total number of tasks presented as classwork and homework in units 3 and 4- 

the units that are the focus of this paper. Because the tasks usually included multiple aspects of 

proof-related emphases or practices, multiple codes were permitted to capture them all. I coded 

each task to identify the mathematical activities it required and the mathematical emphases it 

included. In coding, I mainly followed the language of the tasks, although I was also sensitive to 

the proof-related practices identified in the literature described in section 2.3. In other words, I 

did not use an existing analytical framework for analyzing the tasks, but rather the codes were 

emergent. By following the language of the tasks, I wanted to see how the language used in the 

tasks might have been taken up by the students. Specifically, I was interested in seeing to what 

extent and in what ways the tasks asked students to justify or prove something. I used the 

findings of the analysis of the curricular materials to supplement the findings of the analysis of 

the lessons. 

Table 3. The number of tasks per unit 

 # of Classwork Task # of Homework Tasks 
Unit 3 (= 4 lessons) 34 30 
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Unit 4 (= 6 lessons) 61 46 
Total (= 10 lessons) 95 76 

 

3.2.2. Analysis of lessons 

I used the findings about the students’ and the teacher’s meanings of proof, their views 

about the roles of proof, and their understandings about proof- the findings reported in Paper 

#1- as a guide for the analysis of the mathematics lessons. Specifically, based on the coding 

scheme that emerged from the analysis of the interview data, I developed a list of possible 

classroom influences related to those findings (see Appendix-E for the full list). For instance, 

given that the students commonly described the role of proof as verification and explanation, in 

the classroom data I looked for a potential instance in which a justification is given to verify a 

claim or a justification is given to explain a claim.  

Although this list provided me with an initial focus for the analysis, I also aimed to attend 

to various aspects of the lessons that might have supported the students’ conceptions of proof; 

therefore, I conducted an open coding (Charmaz, 2006) of the videotaped lessons, by being open 

to emergent codes. My unit of analysis was a full exchange between the teacher and students 

either in a small-group discussion or in a whole-class discussion setting, which I call an episode. 

The students worked on mathematical tasks in teams of three or four students, with a total of 8 

groups (31 students), and the teacher frequently monitored and facilitated small-group 

discussions. Thus, an episode often lasted a few minutes, enabling me to parse the data into 

small-enough pieces that were manageable to code, yet captured a complete exchange between 

students and the teacher, allowing me to see how the teacher elicited students’ reasoning, pushed 

them to justify their ideas, and facilitated their proving abilities. I identified and analyzed 132 

episodes in unit 3, and 167 episodes in unit 4, summing to 299 episodes in total.  
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I carefully watched each videotaped lesson and identified the episodes in which a proof-

related emphasis or practice occurred, by keeping track of the time it occurred and transcribing 

the parts of the episode that were particularly revealing. Following the identification and 

transcription of an episode, I coded the episode based on the existing codes as well as emergent 

codes at a given time during the analysis. I also noted the classroom norms that might have 

supported the students’ notions of proof (e.g., encouraging team collaboration/discussion, giving 

students responsibility), as well as other teacher moves for supporting student reasoning (Ozgur, 

Reiten, & Ellis, 2015), such as re-voicing and prompting error correction, that may have had a 

supplementary role to explain the learning environment and the teacher’s instructional support. 

Other general aspects of instruction were excluded from the analysis.  

After the analysis of each lesson, I updated the current coding scheme with new codes 

and organized the codes around themes. At the end of the analysis of all 10 lessons, the codes 

were organized around four main categories as follows: (a) the meanings of proof promoted in 

the class, (b) the roles of proof emphasized in the class, (c) other proof-related emphases (such as 

emphasizing not making assumptions based on appearance or using accurate mathematical 

notations), and  (d) the proof-related practices, which is further organized around instructional 

practices in which the teacher requests students to engage in a mathematical activity such as 

identifying a pattern, making a generalization, developing a justification, and thus placing the 

emphasis on the student; and the instructional practices in which the teacher facilitates and 

supports students’ engagement in those proof-related activities by, for example, scaffolding how 

to write a proof or by providing a justification. While I allowed multiple codes for any given 

episode in order to capture all proof-related emphases and practices, I applied each unique code 

only once within the same episode even if it occurred multiple times. For instance, even though 
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the teacher might have asked three questions in succession to press a student to give a 

justification, the “request for justification” code was applied only once. I aggregated the 

frequencies of codes per unit, and will present some of the main findings in the ensuing section. 

4. Results 

I will report the findings in two parts. First, I will present the connections between the 

classroom factors and select findings about the students’ conceptions of proof reported in the 

first paper. More specifically, I will discuss how the curricular materials and the teacher (through 

her instructional emphases and practices) supported the students’ notions of proof, including the 

students’ views about the roles of proof. Next, I will consider the classroom factors with respect 

to their potential support for the development of the students’ proof schemes. Specifically, I will 

discuss how the classroom factors may have fostered the development of the deductive proof 

scheme, while discouraging the development of the authoritative and empirical proof schemes. 

First, I begin with a brief description of the nature of the class. 

4.1. Overview of the Course: Classroom Norms and Expectations  

The course syllabus describes the course as having a “strong emphasis on group-based 

discovery and teamwork”, further elaborating that, in this course “Students will be making 

connections, discovering relationships, figuring out what strategies can be used to solve 

problems, and explaining their thinking”. My observations of the class concur with these 

descriptions. Investigating problems in teams and coming to a conclusion through small-group 

discussions was an essential feature of the class; the teacher regularly encouraged team 

collaboration and discussion, and the students were both expected to justify their ideas and also 

to ask their teammates to explain their ideas and back up their claims. Another essential feature 

of the class is that the students were given responsibility for figuring out mathematical ideas by 
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themselves. This was supported by both the curriculum and the teacher. For instance, instead of 

responding to the questions right away, the teacher redirected student questions back to the team 

or class. Furthermore, new mathematical ideas and concepts were introduced as a foundation for 

more advanced concepts, but were also connected back to prior knowledge. Previous concepts 

were also continually revisited through homework questions. Thus, mathematical ideas were 

introduced and discussed in relation to other ideas and concepts, maintaining a view of 

mathematics as a growing body of knowledge, rather than as a collection of disconnected 

concepts and procedures.  

Typically, each lesson started with a brief review of homework questions, with the 

teacher helping students individually and also leading a whole class discussion on the common 

student questions. Homework check was followed by a warm-up task, by which students began 

to think about the mathematical ideas to be studied in that lesson, and thus getting ready for the 

ensuing classwork. After a quick discussion of what the students had come up with in the warm-

up task, the teacher summarized the discussion and introduced the goal of the lesson, launching 

the classwork. In a typical lesson, there were usually two or three parts of classwork, with each 

part consisting of multiple mathematical tasks and activities. During the classwork, students 

worked in their teams and the teacher frequently monitored the teams’ work, elicited their 

reasoning, pressed for explanation and justification of their ideas, and provided guidance, if 

needed. Each classwork concluded with a quick whole-class discussion in which students shared 

their ideas and the teacher summarized the main ideas.  

4.2. Classroom Factors Related to the Students’ Notions of Proof  

The interview data revealed that both the teacher and the students used proof and 

justification interchangeably, indicating that they viewed proving synonymous to justifying. As 
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shown in Table 4, the students described proof in various ways, including proof as backing up, 

proof as evidence, and proof as explaining how one knows that his or her answer is true. The 

second interview showed that the students also viewed proof as showing that something is true 

based on known facts, rules, and definitions, though it was not articulated in the first interview. 

(for more information on the students’ meanings of proof, see Paper #1, An Investigation of 

Proof Conceptions in a High School Mathematics Classroom). 

Table 4. The students’ meanings of proof 

Students’ Meanings of Proof # of students 
(Interview-1) 

# of students 
(Interview-2) 

Proof is backing up statements/conclusions. 2 6 

Proof is evidence that shows that something is true.  3 5 

Proof is explaining/showing how you know that your 
work/answer is true. 7 5 

Proof is showing that something is right based on known 
facts, rules, definitions and properties.  - 7 

 

Given that all of the students described proof as explaining how one knows that his or her 

answer is true during the first interview, I will begin with presenting the possible classroom 

influences on the students’ notion of proof as explaining. I will then focus on the treatment of 

proof and justification in the curricular materials and by the teacher, respectively, before I further 

discuss the possible classroom factors in shaping the other meanings of proof that the students 

had.  

4.2.1. Classroom factors related to the notion of proof as explaining 

 Interestingly, all of the students in the first interview described proof as “explaining (or 

showing) how you know that your answer (or your work) is true”, leaving it uncertain whether 

the students conflated proof with simply explaining one’s solution steps. The analysis of the 
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curricular materials and the lessons illuminated why the students unanimously described proof 

that way.  

As part of the syllabus, homework expectations set for students required them to show all 

of their work; the same document also noted that, “Problems will often ask you to describe, 

explain, or justify your work. Given these directions, it is important to show any mathematical 

steps and use full sentences to support your reasoning” (emphasis in the original). Because such 

directions (i.e., to describe, explain, or justify your work) were commonly included in the tasks, 

the students seem to have associated proof with explaining how one knows that his or her work 

or answer is true. The teacher also followed the language of the textbook when requesting 

students to justify their ideas. In fact, during the first interview, Ms. V told me that she does not 

use the word “proof” in class, but rather asks students questions such as, “How do you know 

that?” She further explained: “I don't say, ‘Prove it’. I don't say, ‘Write me a proof that explains 

why this is true’, I just say ‘How do you know?’, ‘Can you explain that?’, ‘How do you know 

that's true?’, ‘How do you know that's the answer?’” Note that the questions that the teacher 

listed to exemplify how she typically asks for a justification in class also includes a request to 

explain, similar to the directions found in the tasks, which may have reinforced the students’ 

notion of proof as explaining one’s work or answer. However, what is important to highlight is 

that a request to explain can serve two functions: (a) to describe one’s reasoning or solution, 

when a teacher’s intention is to figure out students’ reasoning, or (b) to provide a justification in 

support of a claim, when the teacher’s intention is to push students to provide a more thorough 

argument. In my analysis, I found that both the task directions and the teacher’s requests for an 

explanation included both types of purposes; while the task directions to “explain an answer” 

were often in service of requesting a justification, the teacher frequently prompted students to 
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explain their work or solution both to figure out their reasoning and also to press them to justify 

their ideas. Although both purposes of asking students to explain are pedagogically valuable and 

desired, students may not necessarily recognize the distinction between those two functions, and 

thus may view explaining one’s reasoning same as justifying one’s claims. Out of seven students, 

however, only one of them agreed that proof is explaining one’s thought process, while three 

students somewhat agreed. Three students’ partial agreement indicates an influence of the 

prevalence of requests for explaining their thinking in the class, yet the students were largely 

aware that explaining one’s reasoning is not sufficient to prove. For instance, Brett disagreed 

with the statement that proof is explaining one’s though process by arguing that, “Proof is like 

showing that there's no holes or like missing pieces in why you think that, but your thought 

process … could be missing a lot of things.” As Ms. V argued, although explaining one’s 

reasoning does not constitute a proof, nevertheless, it is helpful in proving and also 

pedagogically valuable as it allows teachers to understand how their students are reasoning about 

a given task or concept.  

Next, I will elaborate to what extent and in what ways the tasks and the teacher requested 

for a proof and a justification, and the possible influence of those on the students’ meanings of 

proof, but first how the textbook distinguishes between a proof and a justification is due.  

4.2.2. Classroom support for proof and justification 

4.2.2.a. Curricular support for proof and justification  

In its glossary section, the textbook (Core Connections Geometry) defines proof as “A 

convincing logical argument that uses definitions and previously proven conjectures in an 

organized sequence to show that a conjecture is true”; whereas it defines justification as “To give 

a logical reason supporting a statement or step in a proof. More generally to use facts, 
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definitions, rules, and/or previously proven conjectures in an organized sequence to convincingly 

demonstrate that your claim (or your answer) is valid (true)”. The first sentence in the definition 

of justification indicates that the difference between a proof and a justification is that justification 

refers to one piece of an argument that is part of a sequence of logically organized arguments; 

that is, a proof consists of multiple justifications corresponding to each constituent statement (or 

step) of the proof. But, the second sentence in the definition of justification blurs the distinction 

between a justification and a proof, making it possible to use them interchangeably.   

I examined the tasks to see to what extent and in what ways the tasks requested a 

justification or a proof, and found that in general requests for justifications were more common 

than requests for a proof, with the requests for a proof being almost always reserved for 

requesting a full argument that shows that something is true or explain why something must be 

always true. Table 5 below shows the number of times a justification or a proof was requested 

within the 171 tasks given (in classwork and homework) in units 3 and 4. As seen, there were a 

total of 67 requests for a justification, and 35 total requests for a proof within the 171 tasks 

analyzed. Note that the unit 3 was about 2D figures and unit 4 was about similarity and 

congruence, in which the students were introduced to writing flowchart and two-column proofs. 

Thus, the unit 3 was a foundational unit in which students learned about the definitions and 

properties of geometric shapes, which they would need to use in constructing proofs to show that 

two given shapes are (or, are not) similar or congruent. Thus, the specific focus of the unit 4 on 

proof explains the sharp increase in the number of requests for justifications and proof. 

Table 5. Frequency of requests for a justification and a proof in tasks 

 Request for a Justification Request for a Proof 
Unit 3 (= 4 lessons) 11 1 
Unit 4 (= 6 lessons) 56 34 
Total (= 10 lessons) 67 35 
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The requests for a proof in the (classwork and homework) tasks occurred either by 

explicitly asking students to prove that something is true or to write a convincing argument, or in 

most cases (29 out of 35 instances) by requesting a specific form of proof. Of those 29 instances, 

22 of them were a request to create a flowchart proof, while there were only two requests for an 

algebraic proof, one of which occurred in unit 3. The remaining five instances asked students 

either to create a two-column proof or to construct a proof in a form that they choose among a 

flowchart, two-column, or paragraph form. Figure 2 shows a sample task in which students were 

asked to create a flowchart proof- the most common type of a request for a proof found in the 

tasks. 

 
Figure 2. A sample task that requests students to create a flowchart proof 

 

As part of a homework assignment in unit 4, the task asks students to create a flowchart 

proof. But, note that the task includes several parts, and thus, through the earlier parts of the task, 

it also scaffolds students’ proof constructions by giving directions about how to proceed in 

proving, suggesting what to consider and posing guiding questions. Note that the task also 

encourages students to use definitions in proving and to look for relationships, and emphasizes 

showing why something is true.  
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On the other hand, as seen in Table 5, the number of requests for a justification almost 

doubled the number of requests for a proof. Furthermore, the requests for a justification appeared 

in a variety of ways in the task directions, which could be grouped into three categories as shown 

in Table 6.  

Table 6. Frequency of the types of requests for a justification  

Types of Request for a Justification Frequency % 
Request a warrant (Explain how you know that something is true) 32 48% 
Justify your conclusion/answer/reasoning 23 34% 
Explain why an argument or claim is true 12 18% 

 

About half of the requests for a justification (48%) occurred in the form of asking student 

to explain (or state) how they know that something is true, where the requested justification was 

concerned only with a particular part of a problem, rather than requiring a logically connected 

sequence of arguments. This is closely related to the distinction made in the textbook between a 

proof and a justification, which emphasizes that a justification is given to support one constituent 

statement (or step) of a proof. In other words, these were rather requests for a warrant for one 

particular claim or statement. For example, tasks requiring students to create a flowchart often 

included directions to provide a warrant as well, by reminding students “to justify each statement 

with a reason”. Another common way to request a justification in the tasks was by asking 

students to “explain why an argument or claim is true”; 12 instances (18%) of the requests for a 

justification were in this form.  

Lastly, about one third of the total number of requests for a justification (23 instances out 

of 67) appeared in tasks that explicitly ask students to justify, through phrases such as “justify 

your conclusion”, “justify your answer (response or solution)”, and “justify your reasoning”. 

While only 2 requests to justify were asked for one’s reasoning, the rest of the requests to justify 
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were almost evenly split between for a conclusion (11) and an answer (10). Such phrasings of 

requests to justify may appear as possibly problematic since there is an uncertainty as to what is 

specifically asked for; for instance, whether an empirical evidence would count as sufficient for 

justifying an answer. But, such requests were usually meant to push students to provide a logical 

reason and support their claims or work. To give an example, a sample task from unit 3 is 

provided below in Figure 3.  

 
Figure 3. A sample task that requests students to justify their conclusion 

 
The task aims to have students investigate the relationship between the area of a rectangle 

and the area of a parallelogram, and make a generalization based on the identified relationship. 

By setting the problem as a disagreement between two hypothetical students, the task requires 

students to defend their conclusion. What is important here is that students could “justify” their 

conclusion by simply calculating the area of the given rectangle and parallelogram and show that 

they are the same, and thus contend that they “justified” their conclusion. Hence, this possibility 

places an important responsibility on the teacher to make sure that appropriate standards are set 

for justifying. Ms. V set the standards for providing a justification by emphasizing the need to 

know why their conclusion is true. For instance, when monitoring the students’ work on the task, 
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Ms. V pressed students to think about why the area of the parallelogram was the same as the area 

of the rectangle: “So, here it says Kenisha thinks that the rectangle and parallelogram at right 

have the same area. But I want to know why.” To another team, Ms. V asked students if they 

could “visually show that the area of that parallelogram is the same as if it were a rectangle?”, 

helping them to move away from relying on one specific example.   

In sum, in the curricular materials the requests for a proof and requests for a justification 

often occurred together, and by means of various task directions such as, “Justify your 

conclusion”, “Explain why your answer is true”, or “Write a convincing argument”. Moreover, 

the task narratives also tacitly promoted particular notions of proof such as (a) proof is defending 

one’s answer, (b) proof confirms that something is true, (c) proof explains why something is true, 

(d) proof involves logical conclusions that are based on the known facts, and (e) proof is 

constructed by using known facts, properties, definitions, relationships, and theorems. For 

instance, the task presented in Figure 3 can be taken as indicating that proof is defending one’s 

answer, while the task in Figure 2 can be taken as indicating that proof is constructed by using 

definitions and that proof explains why something is true. Hence, the discourse used in the tasks 

seems to have contributed to the meanings of proof that the students had developed, given that 

students’ descriptions of proof included corresponding notions of proof as follows: (a) proof is 

backing up statements/conclusions, (b) proof is evidence that shows that something is true, (c) 

proof is explaining/showing how you know that your work is true, and (d) proof is showing that 

something is true based on known facts, rules, definitions, and properties. 

4.2.2.b. The teacher’s support for proof and justification  
 

Consistent with the curricular materials, proof and justification were also interchangeably 

used in the class, where justification meant to back up claims by providing a reason (a warrant) 
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to explain why a claim is true, which was often requested by asking how one knows that a claim 

made is true. Yet, the distinction made in the textbook between a proof and a justification (that 

is, a justification is given for one particular statement (or step) in a proof (which is usually a set 

of logically sequenced arguments)) was evident in the teacher’s discourse as well. For instance, 

when leading a whole-class discussion, Ms. V told her students that, “In order to prove 

something, we have to be able to justify everything that we're saying is true” (U4D5). Table 7 

below shows the distribution of Ms. V’s requests for a justification and a proof across the two 

units. Note that the frequency of the requests for a proof reflects the teacher’s explicit use of the 

words proof or prove when asking students to construct a proof. 

Table 7. Frequency of the teacher’s requests for a justification and a proof in class 

 Request for a Justification Request for a Proof 
Unit 3 (= 4 lessons) 35 0 
Unit 4 (= 6 lessons) 70 8 
Total (= 10 lessons) 105 8 

 

As seen in Table 7, while Ms. V quiet frequently requested a justification (105 times in 

total), she rarely requested a proof (only 8 times). The low occurrence of the teacher’s explicit 

request to prove can be explained by a few factors. First, as mentioned earlier, during the 

interview Ms. V explained that she typically does not use the word “proof” in class, but instead 

asks students to explain why something is true or how they know that it is true, which concurs 

with what was observed. Underlying her practice of not explicitly asking students to prove lie 

two inter-related reasons: (a) she thinks that students are often intimidated by the word “proof”, 

and (b) she views proving as synonymous to justifying; hence, Ms. V used proof and justification 

interchangeably. Second, Ms. V’s requests for a proof often occurred when launching the 

classwork, but because a classwork included multiple tasks, the frequency of the teacher’s 
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requests for a proof was fewer than the actual number of tasks that required students to create a 

proof. Lastly, and more importantly, given that the students worked on the mathematical tasks in 

teams and the teacher monitored and facilitated their group discussions during the majority of the 

class time, the teacher predominantly requested a justification, rather than requesting to prove. 

Namely, when facilitating group discussions, Ms. V naturally focused on a particular claim or a 

step in a proof. For instance, even though the teacher may have been monitoring the students’ 

construction of a flowchart proof, she would assist students by asking them to justify a specific 

claim or statement that was part of the proof. 

Indeed, Ms. V commonly requested justifications, 105 times in total across the two units. 

As seen in Table 8, Ms. V’s requests for a justification were grouped into three sub-categories as 

follows: (a) request for a warrant, (b) request to explain why, and (c) request to verify. There 

were five additional requests for a justification that were not coded as one of those sub-

categories.  

Table 8. Frequency of the types of teacher requests for a justification  

Types of Teacher Requests for a Justification Frequency % 
Request a warrant for a claim 72 69% 
Request to explain why a claim is true or false 18 17% 
Request to verify that a claim is true 10 10% 

 

Ms. V most frequently requested a justification by asking students how they know that 

something is true, which was actually requesting a warrant for a claim. Specifically, Ms. V 

pressed students to support their claims with known facts, properties, relationships, definitions, 

or theorems. 69% of the requests for a justification (72 of the 105 instances) were in this form, 

where 55 of them occurred in unit 4. For example, while leading a whole-class discussion in the 

first lesson of the unit 4 (U4D1), Ms. V pressed students to support their conclusion that the 
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given figures were not similar. She said, “The more important question is how do we know that 

two figures aren't similar. So, what certain characteristics have to happen in order for us to be 

able to say 'Yes, this figure is similar to this figure.' Ok, Rachael, what did your team talk 

about?” In this excerpt, Ms. V was specifically asking students to support their claim that the 

figures were not similar by using the relevant definitions and properties of the geometric shapes 

and the relationships they had learned in class. Note that this type of requests for a justification 

described here promotes the notion of proof as backing up claims with known facts, properties, 

and definitions, which was a shared view of proof among the students and their teacher.  

In fact, Ms. V described proof as backing up one’s claims with warrants in the first 

interview, saying that, “[To me proof is] being able to always say the answer is this because, or I 

know this because- being able to justify your reasoning and explain it in some way, I think that's 

always something that we're expecting students to do.” In line with her description of proof, in 

her introduction to writing proofs in unit 4, Ms. V emphasized proof as a common mathematical 

activity that the class has been regularly engaging in, and stressed that they will just learn a new 

way to organize reasoning and information: 

So, today's focus is going to be those two things that I just mentioned; talking 

about similarity and ratios of similarity between two similar triangles and then 

being able to write proofs to justify how do we know that they are either similar or 

not similar. And a lot of the time when people see that word 'proof', they get really 

intimidated by it, but I think what you'll see today is that a proof is basically 

something that we are already doing all year. It's stating a fact and then saying how 

you know it is true. Not just saying, ‘Oh, the triangles are similar’, but saying they 

are similar because I know this, this, and this. So, that's really what we're going to 
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be doing today. But we're going to kind of learn a way to organize our thoughts 

and organize information. (U4D2) 

Note that Ms. V’s introduction of proof is very similar to the way she described proof in the first 

interview, and it is also consistent with her goal to broaden students’ views of proof, as she 

expressed in the interview. More precisely, Ms. V thought that students might have a narrow 

view of proof that is limited to flowchart or two-column proofs, and asserted that, “One thing 

that I would like to do with my students is make them see that proving is not just those two units 

that we do in geometry; it's something that you're constantly doing.” Thus, her emphasis on 

proving as a common mathematical activity that the class has regularly engaged is a 

manifestation of her explicit goal that she set for supporting students’ notion of proof. Ms. V 

seems to be successful at her goal to have students recognize that they engage in proving outside 

of geometry units as well, given that during the interviews all of the students asserted that they 

were always expected to justify their ideas in class, noting that it may never be referred to as 

proof, though. Figure 4 summarizes how Ms. V’s instructional emphases and practices were 

related to her notion of proof and the goal she had for supporting students’ notions of proof. 

 

 

 

Figure 4. Links between Ms. V’s notion of proof and her instructional goals, emphases, and 
practices 
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 As mentioned earlier, during the second interview all of the students agreed with the 

statement that, “Proof is showing that something is right based on known facts, rules, definitions 

and properties”, while this notion of proof was not evident in the first interview. Moreover, all 

the students, but one, picked this statement as one of the top three statements that best describes 

what proof meant to them. For example, one student remarked that, “Yeah, when we were trying 

to prove that triangles were similar, we would have to do these exact things, like we could prove 

that they're similar because of definitions”. Hence, Ms. V’s instructional emphases and her 

frequent requests for a warrant, coupled with the tasks requiring students to support their claims 

with a warrant, seem to have jointly supported the students’ conceptions of proof to evolve to 

encompass a new notion of proof- one that aligns with their teacher’s notion of proof. 

Another common way that Ms. V requested a justification was by pressing students to 

explain why something was true or false, which accounted for about 17% of her requests for a 

justification. For instance, when observing a team’s work on a task and finding out that the 

students in the team had different answers, Ms. V asked the team members to discuss their 

answers not only to figure out the correct answer but also to figure out why it was true: “You just 

said two different things. Talk it out, figure out which because it is one of those, but not both; 

figure out which one it is and why” (U4D4). Lastly, about 10% of Ms. V’s requests for a 

justification were phrased in a way that asked students to verify that something is true. For 

example, Ms. V asked students: “How could we verify that the opposite sides in Julie's diagram 

are actually parallel?” (U3D6). Hence, while the teacher’s emphasis on asking students to 

explain why a claim or answer is true may have supported students’ meaning of proof as backing 

up, her emphasis on verifying that a claim or answer is true may have contributed to the 

development of the notion of proof as evidence, as depicted in Figure 5. As shown in Table 4, 
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during the second interview, the majority of the students agreed that proof is backing up 

statements or conclusions and that proof is evidence that shows that something is true. 

 

 

 
 
 
 
 
 

 
Figure 5. Links between the types of teacher requests for a justification and the students’ 

meanings of proof  
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this?’, okay?”, as she moved to another team. Such emphases on verifying one’s answer or work 

was also common in more procedural questions such as solving an equation system. Thus, the 

students seem to have associated such emphasis on checking and verifying one’s work with 

proving, as all of the students highlighted the verification role of proof during the first interview.  

Ms. V also promoted the explanation role of proof by highlighting the need and 

importance of explaining why something is true when monitoring and facilitating students’ 

teamwork and summarizing discussions. For example, the following excerpt shows how Ms. V 

concluded a class activity in which the teams explored why the Pythagorean Theorem is true, by 

pointing to the importance of understanding why something is true. Ms. V said: 

I know that this theorem may be not new to you, but I think that the quick 

investigation that you just did is a really valuable way for you to reinforce why 

the theorem works. Maybe you knew the theorem, but you hadn't actually seen 

why it worked before, so hopefully that helped you reinforced that a little bit. 

(U3D3) 

Hence, by emphasizing the value of understanding why something is true rather than 

merely showing that a claim is true, the teacher promoted the explanation role of proof 

through such comments and feedback as well as the explicit requests for a justification 

that explains why something is true. While in the first interview only three students stated 

explanation as a role of proof, all of the students considered explaining why as an 

essential aspect of proof.  

4.3. Classroom Factors Related to the Students’ Proof Schemes 

Now that we have drawn some connections between the students’ notions of proof and 

the classroom factors, I move on to discuss the classroom factors in relation to their potential 



 

	

138 

influence on the development of students’ proof schemes, by using Harel and Sowder’s (1998) 

proof scheme taxonomy to structure the findings. Specifically, I will discuss how the curricular 

materials and the teacher’s instructional emphases and practices discouraged the development of 

the authoritative and empirical proof schemes, but fostered the development of the deductive 

proof scheme (Harel, 2006). 

4.3.1. Classroom factors discouraging the authoritative proof scheme 

In the authoritative proof scheme, individuals’ conviction of the truth of a statement or 

claim is rooted in external factors such as a teacher or a textbook. For instance, students may 

assume that a conjecture must be true if it appears in a textbook or is presented by someone who 

is viewed as an authority, such as their teacher. Although this is not an uncommon proof scheme 

among students, I have not found evidence that any of the students in this study had an 

authoritative proof scheme. What classroom factors, if at all, might have supported students not 

to develop this proof scheme? 

Harel and Sowder (1998) argue that viewing mathematics as a collection of truth (whose 

validity need not be questioned as long as it comes from an authority) seems to be the underlying 

characteristic of this proof scheme. Further, focusing on the truth of statements rather than 

exploring why the statements are true might also contribute to the development of this proof 

scheme. In Ms. V’s classroom, there was evidence that the teacher discouraged this view. For 

example, while checking students’ homework questions, Neil asked Ms. V if he could use a 

formula that he had seen elsewhere to solve a homework question. In response, Ms. V 

discouraged Neil from using the mathematical formula unless he fully understood why it worked 

and could justify it: 

Neil: So, I was wondering if we could use this equation, c minus b squared 
over 4a, to get the maximum minimum point of a quadratic equation? 
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Ms. V:   Do you know why that works? 
 
Neil: Not necessarily. 
 
Ms. V: So, here's my rule of thumb. If you don't know why it works, don't use 

it. Because you want to be able to always justify what you're doing, and 
so if you're, if you found a formula that somebody says is true, which is 
great, but if you don't understand fully why it works or if for sure even 
that works, then I wouldn't use it. Okay? So, if you can reason through 
that and figure it out- 

 
 Neil: - figure out how it works? 
 
Ms. V: -yeah, then by all means use it. Yeah, but you want to be able to justify 

it.  
 
Neil: So, if I try to, if I figure out how this works, can I use it? 
 
Ms. V: Yes, of course, yep.  

 
The teacher’s emphasis on the importance of understanding why a claim (or a formula, as 

it was the case in this excerpt) is true seemed to be influential on the students’ understandings 

and views about proof. As seen in the interview data, all of the students considered explaining 

why as a critical feature of proof, which affected the students’ acceptance of an argument as a 

proof. For example, Neil maintained that, “If you have something that’s being proved, you have 

to be able to say why it works”. Thus, the students’ eagerness to understand why a mathematical 

statement or claim is true, which was clearly evidenced both in their evaluation of hypothetical 

proofs and in their attempts to prove a given statement as reported in the first paper, indicates 

that the students did not possess the authoritative proof scheme.  

Furthermore, Harel and Rabin (2010) hypothesized that answering students’ questions, 

responding to their ideas, evaluating student ideas rather than asking the class to evaluate, 

lecturing, and telling students how to proceed with the solution are the instructional practices that 
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can promote the development of authoritative proof scheme. Instead of evaluating students’ ideas 

directly, Ms. V often asked students to discuss in their teams, or she had them explain their 

argument and help them notice their error, if a student had a flaw or error in his or her argument. 

Instead of answering students’ questions right away, Ms. V usually redirected a student question 

to the student’s teammates or to the whole class to discuss first, thereby giving students 

responsibility for their own reasoning. For instance, while Ms. V was monitoring teams’ work in 

U4D3, a student asked to Ms. V if the AAS and ASA were the same similarity condition. She 

started responding by saying that, “They are not the same because-”, and then directed the 

question to the team to explain why there are not the same: “Well, can somebody in the team 

explain why the AAS and ASA are not the same?”.  

Additionally, it is a very common practice in mathematics classes that students are 

typically asked to prove true mathematical statements, which may lead students to assume that a 

statement must be true if it is asked to be proven, and thus student may inadvertently develop an 

appeal to the textbook. Although most of the requests for proof involved true mathematical 

statements in this curriculum as well, there were also tasks that asked students to prove an 

incorrect mathematical statement, challenging the idea that if a statement is asked to be proven, 

then it must be a true statement.  

4.3.2. Classroom factors discouraging the empirical proof schemes 

The empirical proof schemes class includes two sub-categories: (a) the inductive proof 

scheme, in which an individual’s conviction comes from appeal to examples, and (b) the 

perceptual proof scheme, in which the conviction is based on sensory experiences (Harel & 

Sowder, 1998). In the inductive proof scheme, students’ convictions come from examples 

through testing a conjecture with one or more specific cases. It is a very common proof scheme 



 

	

141 

observed among students across grade bands, including high school students (e.g., Balacheff, 

1988; Chazan, 1993; Edwards, 1999; Porteous, 1990). For instance, Porteous (1990) found that 

75% of the students believed a number theory conjecture was true based on empirical evidence 

alone. Of those, only 10% offered additional logical support on their own for the claim that the 

conjecture was true. However, as discussed in detail in Paper #1, An Investigation of Proof 

Conceptions in a High School Mathematics Classroom, the students in this study were mostly 

aware that examples are insufficient for proof; but rather, they believed that a proof must be a 

general explanatory argument. In other words, the students had evidence of possessing the 

deductive proof scheme rather than the inductive proof scheme. For instance, one student 

remarked that: 

When you're just using values to prove something, then that is not really a proof. 

Yeah, because when you're just using integers or actual values and not variables, 

then you're not proving it; you're just showing that for that case that this works, 

but not for every case like a proof should. 

Hence, to keep it concise, I will reserve the discussion of how the classroom factors 

supported students to move away from the inductive proof scheme to the deductive proof scheme 

to the next section (sec. 4.3.3), in which I will focus on the classroom factors that may have 

promoted deductive proof scheme. Instead, here I would like to focus on the classroom factors 

that helped students move away from the perceptual proof scheme- another sub-category of the 

empirical proof schemes class. 

The perceptual proof scheme involves coming to a conviction based on an observation or 

the appearance of a visual figure. For instance, a student may conclude that two triangles are 

similar because they look similar. Indeed, Harel and Sowder (1998) noted that the perceptual 
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proof scheme is children’s first source of internal conviction. In what follows I present how the 

tasks and the teacher discouraged the development of the perceptual proof scheme by 

emphasizing the importance of not making assumptions based on appearance. 

First of all, the task directions included an explicit emphasis on not making assumptions; 

more specifically, I identified eight tasks (within 171 tasks that the students engaged with), in 

which making assumptions was explicitly discouraged. For instance, to deter students from 

making assumptions based on appearance, the tasks deliberately included figures that were not 

drawn to scale, with an accompanying warning to students. There were also tasks that clearly set 

the expectation that the claims need to be supported with known properties, relationships, and 

definitions. For example, in one task, students were given four equations and asked to draw the 

lines corresponding to the given equations, and then to identify what geometric shape the 

intersection of these lines would form and to prove their conclusion (see Figure 6). The task 

direction explicitly stated that, “It is not enough to say that a quadrilateral looks like it is of 

certain type or looks like it has a certain property.” (emphasis on the original) (U4D6). Hence, 

the task made it clear that making claims based on the appearance of diagrams are not acceptable 

in mathematics. 
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Figure 6. A sample task discouraging making assumptions based on appearance 

The teacher further reinforced such emphases found in the tasks by regularly emphasizing 

the importance of not making assumptions. Specifically, I identified 13 instances in which Ms. V 

explicitly asked students not to make assumptions, which occurred in six lessons spreading over 

the two units. For instance, during the first lesson that I observed, students had just investigated 

why the Pythagorean theorem is true and then moved to a new task, which required the use of the 

theorem. As she was introducing the task to the students, Ms. V advised them, “Really make sure 
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that you're never making assumptions; use what you know about the Pythagorean theorem to 

determine where the hypotenuse has to be” (U3D3). In another lesson, as she was monitoring 

students’ work on a task, Ms. V pressed a group of students to base their argument (that the 

given triangles were similar) based on the known facts, properties, and relationships, instead of 

the appearance of the figures: 

Ms. V: So, what if these aren't drawn to scale? … I only asked because a lot of time 
these figures aren’t necessarily drawn to scale. 

 
(Harry described how he knew that the triangles were similar, but it is inaudible.) 
 
Ms. V: Okay (gesturing at Harry to validate his answer). So, instead of going 

off of based on the look, like which angles look smallest or which side 
is the smallest, we have to really go off of what we know. So, 
(gesturing at Harry) using that scale factor, so recognizing that the 
scale factor is 2 and then showing which angles are congruent to which 
angles is the way to go. (U4D1).  

Therefore, both the tasks and the teacher helped students refrain from making 

assumptions based on appearance. The task directions and Ms. V’s feedback highlighted that 

making unwarranted assumptions is not acceptable in mathematics, and stressed that 

mathematical claims need to be supported with known facts, properties, relationships, and 

definitions. Hence, these classroom influences seem to have collectively discouraged the 

development of the perceptual proof scheme, given that the students unanimously agreed with 

the statement that building one’s work on assumptions is not acceptable in mathematics during 

the second interview. Moreover, when describing what proof and proving meant to him (during 

the first interview), one student stated that, “When we have shapes that we have to prove they are 

congruent- you can really see… you can assume they're congruent, but you have to prove it. And 

to prove it, you need to have facts that are undeniable”, indicating that the emphasis on not 

making assumptions based on appearance has been taken up by the students. 
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4.3.3. Classroom factors supporting the deductive proof scheme 

The deductive proof scheme entails validating conjectures by means of logical 

deductions. More precisely, the deductive proof scheme requires that an individual: (a) 

understands that a proof should account for all cases it is given for (generality); (b) sets goals 

and sub-goals and attempts to anticipate the outcomes of his or her actions during the proving 

process (operational thought); and (c) understands that mathematical justification should be 

based on the rules of logical inference (logical inference) (Harel, 2006). Unlike the common 

finding that students, including high-attaining high school students, typically do not exhibit 

deductive proof schemes (e.g., Bell, 1976; Edwards, 1999; Healy & Hoyles, 2000; Ususkin, 

1987), the students in this study overall understood that proof is a general argument that explains 

why a mathematical statement or claim is true (for more details, see Paper #1, An Investigation of 

Proof Conceptions in a High School Mathematics Classroom). In addition to the classroom 

factors that discouraged the authoritative and empirical proof schemes, what other classroom 

factors might have supported or reinforced the development of the deductive proof scheme? 

First of all, in order to cultivate a deductive proof scheme, students must be given ample 

opportunities to engage in proof-related mathematical activities, such as investigating 

conjectures, making conjectures, generalizing, justifying claims, and proving (one’s own or 

given) conjectures, and also appreciate the need for proof; that is, the need for deductive 

arguments rather than empirical evidence that is based on a specific case. The mathematical tasks 

with which students engaged included several opportunities for searching for a pattern, 

identifying a general relationship, making conjectures, and generalizing, although not as many as 

the requests for a justification and proof. The tasks, however, had a strong emphasis on requests 

for a justification and proof; out of 171 tasks in total, there were 67 requests for a justification 
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and 35 requests for a proof, summing to a total of 102 opportunities for developing a justification 

and proof. As described earlier (in section 4.2.2.a.), these opportunities were further supported 

with the teacher’s requests for a justification (105 instances) or a proof (8 instances), as she 

monitored and facilitated small-group discussions or led a whole class discussion.  

However, equally important to the presence of the opportunities for justification and 

proof is the expectations set for what an acceptable justification and proof is. Recall that about 

one third of the requests for a justification found in the tasks were phrased as “Justify your 

conclusion” or “Justify your answer”, leaving it ambiguous as to what is a satisfactory 

justification. This ambiguity in the task language was cleared with the teacher’s emphasis on 

pushing students to move beyond empirical verification to providing a logical argument that 

explains why their conclusion or answer is true. In fact, the teacher’s recurrent emphasis on 

explaining why a claim or statement is true appear to be a key factor in supporting (or 

reinforcing) the development of the deductive proof scheme, as all of the students considered 

explaining why as a critical criterion for proof, creating an intellectual need (Harel, 2007) to go 

beyond empirical evidence and merely showing that a claim or statement is true. Indeed, 

researchers maintain that intellectual need for proof is crucial in order for students to appreciate 

the value of proof and develop more advanced proof conceptions (e.g., Harel, 2007; Stylianides, 

2011; Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-Landman, 2012). Additionally, 

some tasks set the expectation to not assume that a mathematical property is true unless it is 

proven. For instance, students were told that, “Although we know it to be true in isosceles 

triangles, we CANNOT ASSUME THAT ÐA @ ÐC until we prove that it is true!” (emphasis on 

the original) (U4D5). Hence, through such task directions and the complementing teacher 

emphases, the need for proof was fostered in class.  
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Having pointed out to the importance of the opportunities for proof-related activities and 

creating a need for proof, to being with, let us now consider the three pillars of the deductive 

proof scheme (i.e., generality, operational thought, and logical inference) to discuss the 

classroom norms and teacher practices that may have supported the development of the 

deductive proof scheme. First, as clearly evidenced in the interview data, the students had a 

strong understanding that a proof needs to account for all cases it is given for (generality). For 

instance, one student remarked that, “If I prove something, then it's true in all cases.” Moreover, 

another student, Hera, made a connection to her classroom experiences with proof, as she 

rejected a hypothetical student proof on the basis that it did fail to account for all cases, also 

noting that it was not built on theorems. Specifically, Hera expressed that the argument did not 

“show us applying to all cases”, and argued that, “Because when we're doing like similarity or 

congruency theorems for triangles, we have like specific theorems that work for every triangle 

that we base our conjectures off of, but when you don't base yours off of anything, then you can't 

really say that it’s true all the time”.  

In addition to creating opportunities for students to develop proofs based on the known 

definitions, properties, and theorems in class, Ms. V also supported the students’ understanding 

of the generality aspect of proof through her careful attention to setting the norms for an 

acceptable justification. As described earlier, Ms. V did not accept empirical verification as a 

sufficient justification, instead she asked students to develop a general argument by encouraging 

them to think about why a claim must always be true or suggesting they use a generic 

representation to think about all cases rather than relying on one specific case (as explained in 

section 4.2.2.a.). For example, while facilitating one team’s investigation of the relationship 

between the area of a rectangle and a parallelogram, instead of calculating the area by using the 
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given dimensions, Ms. V asked students to develop a visual argument, which could lead to 

noticing the general relationship: “How could you visually show that the area of that 

parallelogram is the same as if it were a rectangle?” In addition, there were also several tasks that 

specifically asked students to show that something is “always” true, further supporting the need 

for generality by pressing students to develop arguments that cannot be restricted to particular 

cases. 

The second pillar of the deductive proof scheme requires students to engage in 

operational thought by setting goals and sub-goals and attempting to anticipate the outcomes of 

their actions during the proving process. Ms. V supported this by highlighting the goal of a 

proving task when introducing tasks, and by clarifying the goal or focusing students’ attention on 

the goal of the proving task when monitoring their work, if students seem to be struggling. For 

instance, in one task the students were asked to investigate whether a line segment that 

proportionally subdivided the two sides of a triangle was parallel to the base of the triangle. As 

part of the task, the students were asked to algebraically show that !"#
!
	= &"'

&
, given that #

!
 = '

&
. 

Not knowing what to do, one team asked for help from Ms. V: 

Hera: Ms. V, can you please help me? It says, start with b over a equals to d 
over c, what does that mean? 

 
Ms. V:  We're trying to show this is true, but we have to start with what we 

know, and what we know is true is that these are equal because they 
[the task] told us that was given. So, we're starting with what we know 
and our goal is to make it look like this. That's our goal, okay? 

 
Hera: Okay.  

 
Furthermore, there was a substantial scaffolding built in the tasks that required students to 

develop a proof by breaking the task into sub-tasks through which the ultimate goal of the task 
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(e.g., creating a flowchart proof) was divided into sub-goals (e.g., justifying constituent 

arguments of the proof). For an example, consider the task presented in Figure 2 (re-presented 

below).  

 
Figure 2. A sample task that requests students to create a flowchart proof (re-presented) 

The task leads students through the steps of the proof with the accompanying questions 

that cue students’ attention, asks students to anticipate the outcomes of their actions, and to 

provide a warrant for each mathematical statement used in the proof. Thus, by partitioning a task 

into sub-parts and through guiding questions, the curriculum helped students develop a proof. 

However, while this may help students recognize the importance of setting goals and sub-goals 

in proving, it may also make students too reliant on such scaffolding when proving, given that 

identifying the sub-goals in a proving task is an important intellectual work, yet it was often 

carried out by the tasks, instead of the students. 

The teacher further scaffolded the students’ proof development by frequently asking 

students what information they could use to prove a given mathematical statement and asking for 

a warrant to support each statement. Indeed, about 69% of Ms. V’s requests for a justification 

were a request for a warrant that justifies a mathematical claim or statement. For example, in a 
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construction task, the students were asked to construct a quadrilateral by following the directions 

that were given in the task, and then identify what type of a quadrilateral it was and justify how 

they know it (see Figure 7). While monitoring a team’s work, the students stated that the 

quadrilateral was a rhombus. In response, Ms. V asked the students how they knew that it was a 

rhombus: 

Ms. V: How do we know… because what else has to happen if it is a rhombus? 
Not only do they have to have the same side lengths, but-  

 
Molly: -the opposites sides have to be parallel. 
 
Ms. V: Yes. So how could we verify that characteristics?  
 

 
Figure 7. The construction task (U3D6) 
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The third fundamental aspect of the deductive proof scheme is that students must 

understand that mathematical justification should be based on the rules of logical inference. The 

students’ understanding of this aspect of the deductive proof scheme was fostered through the 

continual emphasis on using definitions, properties, relationships, and theorems as a warrant in 

developing a proof. As discussed earlier, the teacher regularly requested a warrant to support 

claims made, but also provided a warrant as she validated students’ responses, re-voiced their 

arguments, or summarized a discussion in order to make sure that the given justifications were 

made available to other students as well as to enhance a given justification to make it a more 

sophisticated and mathematically accurate argument, if needed. More specifically, there were 60 

episodes in which Ms. V used mathematical definitions, properties, relationships, and theorems 

as a warrant through re-voicing students’ arguments or summarizing discussions, as compared 

with 72 episodes in which Ms. V requested a warrant. Hence, this frequent co-occurrence of 

requesting a warrant from students and providing a warrant by the teacher appears to have 

contributed to the development of a shared understanding of proof as based on the known facts, 

properties, relationships, definitions, and theorems.   

Below, I provide a vignette from a whole-class discussion on a warm-up task, which 

meant to review the similarity conditions and then transition to the congruency conditions, in 

order to exemplify how Ms. V asked students to justify their claims and then provided warrants 

in response to the students’ justifications. 
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Figure 8. Warm-up task, U4D3 

Ms. V: Okay, last but not least, we’ve got number four. Any team who wants 
to share what they came up with number four? Different team. Already 
had Team 8, Team 5, and Team 7. Can we get a different team to talk 
about number four? Even- (a student volunteers) yeah, thank you! 

 
Mark: We did Side-Angle-Side. 
 
Ms. V: Okay. Can you show- can you elaborate a little bit because I only see 

like one set of sides that is equal in this diagram and I don’t see any 
angles marked as equal, so can you share a little bit about what your 
team talked about?  

 
Mark: For angle C, there is like, the two angles are equal. 

 
Ms. V pushed students to be precise in naming angles, stressing that there are four different 
angles that meet at point C. As a result of the class discussion on how to appropriately specify 
the angles, Mark clarified that he was referring to angles CED and ACB. 
 

Ms. V: So, you said, Mark, that we had vertical angles here (marks the angle 
on the diagram), right? Okay, so we know those are equal. And then 
what other angles did you have? 

 
Mark: That’s the only angle.  
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Ms. V: Oh, that's the only angle you had, okay. So, then you had the side. But, 
then what about the other side? I see this is labeled (circles EC on the 
diagram), but then I don't see this labeled (circles CA on the diagram).  

 
Figure 9. Warm-up task #4 

Mark:  That one has to equal to 4. 
 
Ms. V:  Why? 
 
Mark:  Because the other side is parallel to the other one. 

 
Ms. V:  Okay, so we're using the fact that these lines are parallel. We need to be 

really careful because when we learned about parallel lines, we learned 
conditional statements that said if these lines are parallel, what do we 
know is true? This isn't just for Mark; this is for the whole class. If we 
have two lines cut by a transversal and we know that those lines are 
parallel, what do we know it has to be true?  

 
Several students responded that alternate angles need to be congruent. 

 
Ms. V:  Yeah, alternate interior angles have to be congruent. So, we can't jump 

from the parallel lines to side lengths being equal; we can only use 
theorems that we have learned in this class. So, we have learned that if 
these are parallel, then angle CED is congruent to angle ABC because 
those are alternate interior angles. So, just be really careful about what 
information you're using. So, which condition would we be using then, 
if we use that information that highlighted up there? 

 
Ray: AA. 
 
Ms. V: Yeah, yeah, you can just use AA because you’ve got two angles here. 

So, yeah AA would suffice. Awesome. 
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As seen in the vignette, Mark claimed that the triangles were similar due to the Side-

Angle-Side similarity condition. Although this was not a valid condition in this task based on 

what was known to the classroom community at that time, Ms. V asked Mark to elaborate on his 

reasoning, instead of evaluating his answer as incorrect right away. She then pushed him to 

justify how he knew that CA was congruent to CE. Mark used the fact that DE was parallel to 

AB as a warrant for his claim that the length of AC was equal to 4, same as the length of CE. 

While, indeed, AC is congruent to CE, this could be deduced from the fact that the triangle CED 

is congruent to the triangle CAB, which the class had not proven yet. Hence, Ms. V asked the 

class what could be reasonably concluded from the given premise. Once the students responded 

that the alternate interior angles must be congruent, Ms. V then emphasized the connection 

between the premises and the conclusions made, as she summarized the discussion. Hence, Ms. 

V also supported students’ understanding that a proof must be based on logical inferences, by 

emphasizing not to draw conclusions more than what could be reasonably deduced from the 

available information. 

Additionally, there was a profound emphasis on using definitions as a warrant for 

justifications in the class, beginning in unit 3. For instance, Ms. V stressed the importance of 

definitions by informing students that, “Definitions will come into play a lot because we need to 

use definitions when we are explaining, justifying, and trying to back up our solutions or 

answers” (U3D4). In fact, by focusing on the definitions and properties of 2D shapes, the Unit 3 

could be considered as a foundational unit for the ensuing unit in which proof was the main 

focus. This special emphasis given on using definitions as a warrant explains why the students 

unanimously praised the hypothetical student arguments in which definitions were used to back 

up a claim. When evaluating the hypothetical student proofs, the students commonly praised the 
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use of a warrant as a valid aspect of a proof, recognizing various types of warrants such as 

definitions, known mathematical facts, rules and properties, logical inferences, theorems, and 

even empirical evidence.  

5. Discussion and Implications 

By studying a high school mathematics classroom over an extended period of time, I 

investigated students’ evolving conceptions of proof in the context of their mathematics class, 

with the goal to better understand how the students’ conceptions of proof were related to the 

classroom factors (which are organized by their teacher). Specifically, I explored the links 

between (a) the students’ and their teacher’s conceptions of proof, (b) the teacher’s conceptions 

of proof and her instructional practices, and (c) the classroom factors and the students’ 

conceptions of proof, where by classroom factors I refer to the classroom norms, the teacher’s 

instructional practices, and the curriculum used in the class. Because curriculum has an essential 

role in establishing students’ potential learning experiences with respect to proof through the 

opportunities for proof-related activities it includes (or excludes), I considered curriculum as part 

of the classroom factors as well. While in the first paper I primarily focused on the connections 

between the students’ and their teacher’s conceptions of proof, in this paper I focused on the 

connections between the classroom factors and the students’ conceptions of proof, by also 

attending to how the teacher’s conceptions of proof were manifested in her instructional 

emphases and practices.  

The first paper not only illustrated the students’ and their teacher’s conceptions in detail, 

but also showed that the students’ proof conceptions were in large part similar to their teacher’s 

conceptions, indicating that the students may have appropriated their teacher’s notions of proof. 

Moreover, both the teacher and the students had more sophisticated conceptions of proof than 
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typically documented in the respective proof literature, leading naturally to the examination of 

classroom environment to uncover how the teacher’s conceptions might have manifested in her 

instruction and also to identify the possible classroom factors that might have supported the 

students’ developing proof conceptions to resemble their teacher’s proof conceptions. Hence, 

based on the analyses of the curricular materials and the lessons, in this paper I offered evidence 

of connections between the teacher’s conception of proof and her instructional emphases and 

practices, as well as the connections between those instructional emphases and practices 

(together with the curricular opportunities) and the students’ conceptions of proof. 

For example, in the first interview, all of the students described proof as explaining or 

showing that one’s answer or work is true, which is a quite vague description of proof, leaving 

one to wonder whether the students had a mathematically rigorous understanding of proof. Yet, 

in the second interview, the students also unanimously agreed with the description of proof that, 

“Proof is showing that something is true based on known facts, rules, definitions and properties”. 

Unlike the first description, the latter description specifies the means to establish the 

mathematical truth. The analysis of the curricular materials and the lessons pointed to several 

classroom influences on the students’ notions of proof. First, about one third of the requests for a 

justification found in the tasks specifically asked students to justify their conclusion or answer, 

supporting an informal and vague notion of what it means to justify, as reflected in the students’ 

description of proof during the first interview. On the other hand, about half of the requests for a 

justification (48% of 67 requests) found in the tasks asked students to provide a warrant for a 

particular claim or statement. 

The teacher also frequently asked students to justify their conclusions or the claims made. 

In addition, Ms. V emphasized the need to understand why a claim is true, and pushed students 
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to go beyond providing an empirical evidence and encouraged them to think about why a claim 

must be true in general, therefore setting the expectation for an acceptable justification. 

Moreover, similar to the tasks, most of Ms. V’s requests for a justification (69% of 105 requests) 

was in the form of asking students to provide a warrant for a claim; namely, she asked students 

to support their claims with known facts, properties, relationships, definitions, or theorems.  Ms. 

V’s instructional emphases on providing warrants to mathematical claims and her frequent 

requests for a warrant are compatible with her notion of proof as backing up claims by providing 

a reason (i.e., known facts, definitions, properties, relationships, or theorems) to explain why a 

claim is true. Indeed, Ms. V’s introduction of proof to the class precisely reflected her 

description of proof in the interview, which highlighted proof as backing up one’s claims with 

warrants. Hence, Ms. V introduced the notion of proof and supported the students’ conceptions 

of proof in accordance with her view of proof, which was found to be appropriated by the 

students as evidenced in the second interview. In short, Ms. V’s instructional emphases and her 

frequent requests for a warrant, coupled with the tasks requiring students to support their claims 

with a warrant, seem to have jointly supported the students’ conceptions of proof to evolve to 

encompass a new notion of proof- one that aligns with their teacher’s notion of proof. 

These findings are noteworthy for two reasons. First, it shows that a teacher and 

curriculum collectively create opportunities for students to prove and justify, and thus convey 

messages about what an acceptable justification or proof is. Further, it also underscores that 

teachers have an important role not only to maintain the opportunities for proof-related activities 

designed in the curriculum but also to improve them, if they are open to different interpretations 

(than the intended goal of the task) that could promote less sophisticated or undesirable notions 

of proof. Second, the findings also provide further empirical support that students’ conceptions 
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of proof are related to the classroom factors, offering some specific instantiations of this 

relationship. 

In sum, the findings confirm the assumption made in the study that a mathematics teacher 

has an important role in shaping students’ conceptions of proof through her instructional 

emphases and practices, which are influenced by her conceptions of proof. In particular, Ms. V’s 

notion of proof as backing up claims with warrants to explain why a claim is true was influential 

on the way she introduced proof to the class, in what ways she requested a justification and what 

she accepted as a sufficient justification, as well as how she supported students to develop a 

justification, concurring with the findings of Conner’s study (2007). In addition, the analyses of 

the interviews revealed that the students also have developed the same notion of proof as their 

teacher; that is, proof is backing up one’s claims with known facts, definitions, and theorems.  

Therefore, the results regarding the connections between the teacher’s conceptions of 

proof and her instructional practices concur with the studies that identify teachers’ knowledge 

and beliefs (which are referred to as conceptions in this study) about mathematics as important 

determinants shaping their instructional practices in general (e.g., Ball, Lubienski & Mewborn, 

2001; Hill, Rowan, & Ball, 2005; Sowder, 2007), and lend credence to the studies that establish 

such links precisely for proof (e.g., Conner, 2007; Knipping, 2008). Moreover, the close 

alignment found between the teacher’s and the students’ conceptions of proof is in agreement 

with the body of work that shows that teachers’ pedagogical practices significantly influence 

students’ learning (e.g., Blanton & Kaput, 2005; Mason, 2000; Mewborn, 2003), expanding this 

work in the area of proof. More precisely, this study provides further empirical support to the 

link between teacher’s instructional practices and students’ conceptions of proof (Harel & Rabin, 
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2010; Martin et al., 2005) and exemplifies specific instantiations of such links, which are much 

needed for sharing with pre-service and in-service mathematics teachers.  

In addition to establishing links between particular aspects of the students’ notions of 

proof and the classroom factors, I also discussed the classroom factors in relation to their 

potential support for the development of particular proof schemes. Specifically, I identified and 

described the classroom factors that seemed to have discouraged the authoritative and empirical 

proof schemes (such as, emphasizing not making assumptions based on appearance, and 

rejecting empirical verification as a valid justification), as well as the possible classroom factors 

that supported the development of the deductive proof scheme, though they are not mutually 

exclusive factors. Indeed, research has identified various teacher practices that can support 

development of the deductive proof scheme, such as requesting for a justification; encouraging 

argumentation among peers; eliciting students’ ideas; responding to their ideas through probing 

their reasoning, re-voicing, prompting error correction, or correcting students’ flaws in a 

justification; and facilitating their reasoning through cueing their attention on specific aspects, 

summarizing a discussion, or offering a justification (Blanton et al., 2009; Harel & Rabin, 2010; 

Martin et al., 2005). While I agree that these are productive teacher moves for advancing 

students’ proof conceptions, and I found that Ms. V commonly engaged in these practices, I was, 

however, interested in identifying classroom factors that might have specifically supported the 

three characteristics of the deductive proof scheme; that is, generality, operational thought, and 

logical inference. Thus, I discussed the classroom support for the development of deductive 

proof scheme by focusing on those three characteristics and presented corresponding classroom 

evidence for each, offering some novel findings and further empirical support for the links 

between instructional practices and students’ proof schemes. 
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6. Conclusion, Limitations, and Future Directions 

The findings reported in these two papers jointly show that students can develop robust 

conceptions of proof if the learning environment is conducive to sharing and justifying 

mathematical ideas where the teacher values proof as an important aspect of doing and learning 

mathematics. In particular, the study offers evidence that students can develop desired 

conceptions of proof when they are provided with appropriate tasks and instructional supports, 

suggesting that students form their notions of proof through implicit or explicit messages 

conveyed by the nature of mathematical tasks with which they engage, the norms established in 

class, and teachers’ instructional emphasis on proof. In addition, the findings underscore the 

crucial role of teachers in setting clear norms about what a valid justification or proof is, because 

unless there are rigorous standards set in class, opportunities for proof present in a curriculum 

may be missed and students may develop improper conceptions of proof. Thus, the empirical 

findings reported in these papers may be valuable to teacher educators in informing and 

exemplifying pre-service and in-service mathematics teachers about in what ways teachers’ own 

conceptions of proof may be reflected in their instructional support for proof, and in turn, how 

they may shape students’ developing conceptions of proof.  

More specifically, if students are to appreciate the value of proof in doing and learning 

mathematics and advance their notions of proof and skills to prove, they must be provided with 

ample opportunities for engaging in proof-related mathematical activities, such as investigating 

conjectures, making conjectures, generalizing, and justifying claims, and must be given 

responsibility for their own reasoning. Teachers can support their students’ conceptions of proof 

by emphasizing the importance of understanding why a claim is true, rather than merely showing 

that it is true, and setting clear expectations for what an acceptable justification and proof is. 
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While examples can be useful in exploring a problem and in developing a justification, teachers 

should set explicit norms that empirical arguments alone are insufficient for proof. Accordingly, 

teachers should push students to move beyond empirical verification to developing a general 

deductive argument, by encouraging them to think why a claim must always be true and stressing 

that mathematical claims need to be supported with known facts, properties, definitions, and 

theorems. Additionally, teachers can emphasize the importance of not making assumptions based 

on appearance and not to draw conclusions more than what could be reasonably deduced from 

the available information. 

That said, however, it is important to acknowledge a caveat that, being a case study of 

one mathematics classroom, the empirical findings reported in this study regarding the interplay 

between students’ proof conceptions and the classroom factors cannot be generalized to make 

conclusive claims about those alluded relationships in general. Instead, this case study 

characterizes the nature of those relationships in one particular context. Specifically, this study 

offers an example of how a teacher who did not hold a narrow view of proof (that is restricted to 

certain mathematics classes or forms) and values proving in class may support students’ 

developing proof conceptions in the domain of geometry. In addition, the students in this study 

were not typical high school students, but rather- considering that they were in an honors level, 

accelerated mathematics course- they were advanced mathematics students who had positive 

dispositions to mathematics and who viewed themselves good at mathematics. Hence, further 

research is needed to examine and compare those relationships in different classrooms, including 

different domains of mathematics and teachers with different conceptions of proof, as well as 

more typical mathematics classes that are not an advanced level mathematics course.  
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Moreover, the identified classroom factors cannot be conclusively claimed to be 

responsible for the students’ conceptions of proof. Individuals’ conceptions are formed over long 

period of time through various sources. Conceptions of proof are no exception; students come to 

mathematics classes with preconceived ideas about what it means to prove or what is a valid 

proof (though, they may be tacit), influenced not only by their previous mathematical 

experiences but also by their everyday experiences, such as proving one’s argument in a debate. 

Hence, it is not possible to attribute the students’ conceptions of proof solely to the identified 

classroom factors, but instead I argue that those classroom factors are possible classroom 

influences that might have supported or reinforced the development of students’ conceptions of 

proof. Although we cannot make conclusive claims about causality, these hypothesized 

relationships, nevertheless, provide a helpful foundation on which to build future research to 

study their effects. 

In conclusion, this study contributes to our collective understanding of the ways in which 

students’ views and understandings about proof are related to the classroom factors, such as 

curriculum and teachers’ instructional emphases and practices, and thus, to the teacher’s 

conceptions of proof. Hence, this study was explorative in nature, aiming to unpack those 

relationships in the context of one high school mathematics course. By building on the results of 

this explorative study and the related body of knowledge in the field, a much-needed next step is 

sharing those results with mathematics teachers and collaboratively designing intervention 

studies in order to help students develop robust conceptions of proof and to support their proving 

competencies. 
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APPENDICES 

 

Appendix-A. Teacher Interview-1 Protocol 

1. Tell me about yourself. How many years have you been teaching? What courses are you 
teaching this year? What other courses and grade levels have you taught previously? 
 

2. Tell me a little bit about the course. How was the course designed? Were you part of the design 
team? What are the goals of this course?  

 
3. Can you tell me a little bit about students who take this course? What math courses do they 

typically take prior to this course? 
 

4. Do you consider this course to be an advanced level math course among the math courses 
offered at the school? 
 

5. Tell me about the curriculum you use. Do you follow the textbooks strictly or do you also 
design your own tasks? If so, how do you come up with the tasks?  
 

6. Because this is an integrated course, I understand that you try to carefully select which tasks 
to use in class, which ones to assign as a homework, etc. Can you tell me how you choose the 
tasks? 
 

7. Another aspect of the class that I would like to talk about is the team assessments. What is the 
goal of these assessments? Is this something common to all math classes or is it unique to this 
class? 
 

8. I noticed that students work on math projects as well. Can you tell me what these projects are 
about and what are their goals? 
 

9. Do you think the curriculum is supportive of engaging students in reasoning and proof? If 
yes, can you give a specific example?  
 

10. Can you describe what the notion of proof means to you? What purpose do you think proof 
serve in mathematics? What does it mean to prove something? 

 
§ What makes something a proof? 

o Is there a requirement for a particular format? 
o Are there different types of proofs? 
o Are some types more valid than others? 

 
11. Many mathematicians think proof is a big idea in mathematics. What do you think about this 

view? Why do you think that? 
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12. How would you describe the notion of proof in the context of secondary school mathematics? 
§ How do you (or would you) describe the notion of proof to your students? 

 
13. What purpose do you think proof serves in secondary school mathematics? 

 
§ Why teach it?  
§ Do you think some courses or content better suited to including proof? Why?  
§ Does proof look different in different classes? 

 
14. What role should proof play in secondary school mathematics curricula? Why? 

§ Do you think proof is a separate topic in a course or an integral part of a course? 
 

15. What do you think is important for students to learn about proof? Why? 
§ When should students be introduced to proof? 

 
16. How important reasoning and proof for this class? 

 
17. What goals do you have for your students regarding justification and proof in your class?  

§ Does your expectation vary depending on the course you teach? 
 

18. We know from research that students find learning proof very challenging, why do you think 
this is the case? 
 

19. Considering your experience teaching high school mathematics courses, what kinds of 
activities do you think work well to get students to explain their reasoning about problems or 
mathematical ideas? 
 

20. In your experience, have you found that high school students generate explanations that could 
be considered proof? 
 

21. What are some strategies that you think are useful in helping students justify and prove their 
reasoning? 
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Appendix-B. Student Interview-1 Protocol 

 

Introduction 

Thank you for agreeing to interview. I am interested in how you are thinking about mathematics, 
so I am going to ask you a few mathematics problems. You do not need to worry about being right 
or wrong, I am just interested in hearing your ideas and how you are reasoning. So, the more you 
can talk aloud how you are thinking the better.  
 

Background information 

§ What mathematics courses have you taken so far?  

§ How would you describe your experiences with mathematics?  

§ Do you like/dislike mathematics?  

§ Do you consider yourself good at mathematics? 
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Evaluation of hypothetical student proofs 

Arthur, Bonnie, Ceri, Duncan, Eric, and Yvonne were trying to prove whether the following 
statement is true or false: 
 
When you add any two even numbers, your answer is always even.  
 

Arthur’s answer 
 
a is any whole number 
b is any whole number  
2a and 2b are any two even numbers 
2a + 2b = 2(a + b) 
 
So, Arthur says it’s true. 
 
 

Bonnie’s answer 
 
2 + 2 = 4          4 + 2 = 6 
 
2 + 4 = 6          4 + 4 = 8 
 
2 + 6 = 8          4 + 6 = 10 
 
So, Bonnie says it’s true. 

Ceri’s answer 
 
Even numbers are numbers that can be 
divided by 2. When you add numbers with a 
common factor, 2 in this case, the answer will 
have the same common factor. 
 
So, Ceri says it’s true. 
 

Duncan’s answer 
 
Even numbers end in 0, 2, 4, 6, or 8. When 
you add any two of these, the answer will 
still end in 0, 2, 4, 6, or 8. 
 
So, Duncan says it’s true. 

Eric’s answer 
 
Let x = any whole number 
       y = any whole number 
 
x + y = z 
z – x = y 
z – y = x 
z + z – (x + y) = x +y = 2z 
 
So, Eric says it’s true. 
 

Yvonne’s answer 
 

 
 
So, Yvonne says it’s true. 
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Arthur’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    

 

Bonnie’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    

 
Ceri’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    
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Duncan’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    

 

Eric’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    

 

 
Yvonne’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    
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Meanings and view of proof and proving 

§ Can you describe what proof means to you? What does it mean to prove something in 
mathematics?  (Suggest explaining what proof means in the context of the previous task, if 
student has difficulty articulating his or her views.) 
 

§ How important do you think proving is in mathematics? 
 

§ Has the term “proof” come up in any of your math classes?  
o If, yes: Which classes? Do you recall in what ways or in what context the term proof has 

been used? 
 

§ Are you asked to prove or justify mathematical statements or your ideas in mathematics 
classes?  

 
§ Why do you think you are asked to prove in mathematics classes?  

 
§ Why do you think mathematicians prove mathematical statements? 

 
 
Proof production task 

How would you prove the following statement? 

If p and q are any two odd numbers, (p + q) x (p - q) is always a multiple of 4. 

§ Do you think your argument counts as proof? 

§ How confident are you in terms of the validity of your proof? 

§ How do you know your proof is sufficient?  

§ Do you think your teacher would agree that your proof is valid? 

 
 

Extra proof production task  

(Note that not all students received this task due to time constraints.)  
 

What do you think about the following task?  

“Georgia is asked to prove or disprove that the sum of any n consecutive 
integers is divisible by n. In order to test whether or not the statement is true, 
she tries a few examples. She notices that 1 + 2 + 3 is divisible by 3, but 7 + 8 + 
9 + 10 is not divisible by 4.”  

Can you comment on what Georgia now knows as a result of what she noticed? 
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Ask the following questions based on the student’s response. 

§ Should she try other numbers to prove or disprove the statement? 

o  If so, which numbers?  

o If not, why not? 

§ How would you prove or disprove it? 

o Let’s try to prove or disprove it.  

§ Do you think you proved the statement?  

§ How confident are you in terms of the validity of your proof? 

§ How do you know your proof is sufficient?  

§ Do you think your teacher would agree that your proof is valid? 
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Appendix-C. Student Interview-2 Protocol 

 

Proof production task  

Say you have a square and you add a certain amount to its length and take away that same amount 

from its width. What happens to the area? 

 

Evaluation of hypothetical student proofs  

Ali, Ben, Clara, and Dylan were working on the same task. Here are each student’s arguments: 

 
Ali 

 
 

 
 
 
 

 
 
 
 

 
 

 
 
  
 
 

 
 
 

 
  

 
 
 
 
 
 
 

 

 
5 cm 

5 cm 
3 cm 

7 cm 

A1 = 5 x 5 = 25 cm2 A2 = 3 x 7 = 21 cm2 
 

A1 - A2 = 25 – 21 = 4 cm2 

8 cm  

8 cm  

6 cm  

10 cm  

A1 = 8 x 8 = 64 cm2 A2 = 6 x 10= 60 cm2 
 

A1 - A2 = 64 – 60 = 4 cm2 
 

10 cm 

10 cm 

12 cm 

8 cm 

A1 = 10 x 10 = 100 cm2 A2= 8 x 12 = 96 cm2 A1 – A2 = 100 - 96 = 4 cm2 
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 So, the area decreases by 4 cm2. 
 

 
Ben  

 
Say the original square is 4 cm by 4 cm, and you take away 1 cm from the length 
and add 1 cm to the width. Then, you get a rectangle that is 3 cm by 5 cm. 
 

 
 
 
 
 
 

  

 
Say the original square is 5 cm by 5 cm, and you take away 2 cm from the length  
and add 2 cm to the width. Then, you get a rectangle that is 3 cm by 7 cm. 

 
Say the original square is 6 cm by 6 cm, and you take away 3 cm from the length  
and add 3 cm to the width. Then, you get a rectangle that is 3 cm by 9 cm. 

 
Say the original square is 7 cm by 7 cm, and you take away 4 cm from the length  
and add 4 cm to the width. Then, you get a rectangle that is 3 cm by 11 cm. 

 
Say the original square is 8 cm by 8 cm and you take away 5 cm from the length 
and add 5 cm to the width. Then, you get a rectangle that is 3 cm by 13 cm. 

 
I noticed a pattern between the amount you take/add and the difference between  
the areas. When you take/add 1 cm, the area decreases by 1 cm2; when you take/add 
2 cm, the area decreases by 4 cm2; when you take/add 3 cm, the area decreases by  
9 cm2; when you take/add 4 cm, the area decreases by 16 cm2, and when you  

Original area = 4 x 4 = 16 cm2, New Area = 3 x 5 = 15 cm2  à  
Difference between areas = 16 - 15 = 1 cm2 

4 cm 

5 cm 
4 cm 

3 cm 

Original area = 5 x 5 = 25 cm2, New Area = 3 x 7 = 21 cm2  à  
Difference between areas = 25 - 21 = 4 cm2 

Original area = 6 x 6 = 36 cm2, New Area = 3 x 9 = 27 cm2  à  
Difference between areas = 36 - 27 = 9 cm2 

Original area = 7 x 7 = 49 cm2, New Area = 3 x 11 = 33 cm2  à  
Difference between areas = 49 - 33 = 16 cm2 

Original area = 8 x 8 = 64 cm2, New Area = 3 x 13 = 39 cm2  à  
Difference between areas = 64 - 39 = 25 cm2 



 

	

179 

take/add 5 cm, the area decreases by 25 cm2. So, the area decreases by the square of  
the amount you add/take away.  
 

 
Clara 

 
Say the original square was a cm by a cm. The area of the original square would be 
 a2 cm2. 
 

 
 

 
 
 

 
 
If you take x cm from the length and add x cm to the width of the original square,  
then the new dimensions will be (a – x) cm and (a + x) cm. 
 

 
 
 

 
 
 
A1 – A2 = a2 – (a2 – x2)  
             = a2 – a2 + x2 
             = x2 cm2  
 
So, the difference between the original square and the new rectangle will always be  
the square of the amount added/taken. Therefore, the area will always decrease by  
the square of the amount added/taken away. 
 

 
Dylan 

 
Say the original square, ABCD, is a cm by a cm. When you take away x cm from  
its length and add x cm to its width, you get a rectangle, EBGF, which is (a – x) cm  
by (a + x) cm, as shown in the figure below. 
 
The original area (the area of ABCD) is the sum of A1 and A2, and the new area  
(the area of EBGF) is the sum of A2 and A3. 
 

a cm  

a cm  A1 = a * a = a2 cm2 

(a + x) cm 

(a - x) cm 
A2 = (a – x) * (a + x)     
A2 = a2 – a * x + a * x – x2 

A2 = (a2 – x2) cm2  
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Because A2 is common in both the original and the new area, the difference between  
A1 and A3 determines how the area changes.  
 
A1 - A3 = x * a – (a - x) * x  
             = x * a – a * x + x2 
             = x2 cm2 
 
Therefore, the original area is x2 cm2 bigger than the new area. Thus, the area will  
always decrease by the square of the amount added/taken away. 
 

 

 
Ali’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it     

Shows that her conjecture is always true     

Only shows that her conjecture is true for some cases    

Shows you why her conjecture is true     

Is an easy way to explain to someone in your class who is 
unsure    

My math teacher would accept this as a proof    

 

a cm A 

x cm 

(a - x) cm 
(a - x) cm 

x cm a cm B C 

D 

E F 

G 
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Ben’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it     

Shows that his conjecture is always true     

Only shows that his conjecture is true for some cases    

Shows you why his conjecture is true     

Is an easy way to explain to someone in your class who is 
unsure    

My math teacher would accept this as a proof    

 
Clara’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it     

Shows that her conjecture is always true     

Only shows that her conjecture is true for some cases    

Shows you why her conjecture is true     

Is an easy way to explain to someone in your class who is 
unsure    

My math teacher would accept this as a proof    

 
Dylan’s answer  

 Agree Disagree Don’t 
know 

Has a mistake in it     

Shows that his conjecture is always true     

Only shows that his conjecture is true for some cases    

Shows you why his conjecture is true     

Is an easy way to explain to someone in your class who is 
unsure    

My math teacher would accept this as a proof    
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Meanings and views of proof and proving 

Below is a collection of student statements about proof and proving. Please mark each statement 
whether you agree, somewhat agree, or disagree with it.  

# Statements about Proof and Proving Agree Somewhat 
agree Disagree 

1 Proving is backing up your statements or claims.    

2 Proving is providing evidence, such as an 
example, that the statement is true. 

   

3 When you prove something, you gain a better 
knowledge of that. 

   

4 Proof is explaining your thought process.    

5 Proving in math is like a science experiment; 
you need to test a statement many times to make 
a claim. 

   

6 Proof is like a rule, something that is always 
true.  

   

7 To disprove something, you need to find at least 
three counterexamples. 

   

8 Proving is like checking your work to make sure 
that it is correct. 

   

9 Proof shows why something is true or false by 
showing the reasons behind it. 

   

10 If proof is accurate, you cannot find an example 
that would disprove it.   

   

11 In math, you cannot build your work on 
assumptions. That’s why we prove things in 
math. 

   

12 Proof is like showing how you got your answer; 
explaining your answer. 

   

13 When proving a mathematical statement, you 
need to show that it works in all cases. 

   

14 A proof should include why a statement is true, 
your reasoning, and an example. 

   

15 The purpose of proof is to make sure that you 
made no errors. 

   

16 Proof is important when you’re learning a new 
concept, but it’s not important when you know 
the concept. 

   

17 Every equation is a proof, but proof is not 
limited to equations. 

   

18 Proving is showing that something is right based 
on the known facts, rules, definitions, and 
properties.   

   

19 You need to try several examples to know that 
your proof is valid.  

   

20 We are asked to prove in class so that teachers 
can see how we got our answers. 

   



 

	

183 

Pick 3 statements that you think best describes what proof and proving means to you or that are 
key aspects of what proof and proving means. If you think there are important aspects that are 
missing in this collection, please write it down. 
 

 

Evaluation of hypothetical student proofs: Revisiting the algebra task in interview-1 

Remember the student arguments that were trying to prove the mathematical statement that, 
“When you add 2 even numbers, your answer is always even”, from the 1st interview? Here are 
two additional student arguments. Do you think Sam and/or Abby proved the statement? Why or 
why not? 
 
Sam’s answer  

 
2 + 4 = 6  
60 + 26 = 86 
406 + 262 = 668 
 

I tested it with different numbers, both small and large numbers. It worked each time. So, it 
works for any two even numbers. 
 
So, Sam says it’s true. 
 

 

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    

My math teacher would accept this as a proof.    
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Abby’s answer 

 
Say x and y are any two even numbers. By definition, x and y can be represented as follows: 
 
 x = 2 • a (a is any whole number) 
 y = 2 • b (b is any whole number) 
 
Then, x + y = 2 • a + 2 • b = 2 • (a + b) 
 
Because the sum of x and y has a factor of 2, it is divisible by 2. Therefore, the sum of any two 
even numbers is always an even number. 
 
So, Abby says it’s true. 

 

 Agree Disagree Don’t 
know 

Has a mistake in it 	    

Shows that the statement is always true     

Only shows that the statement is true for some even 
numbers 	    

Shows you why the statement is true 	    

Is an easy way to explain to someone in your class who is 
unsure    

My math teacher would accept this as a proof.    
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Appendix-D. Teacher Interview-2 Protocol 

Introduction 

In our first interview, we talked about the course as well as what you think about proof and proving. 
Today, I would like to continue our conversation around proof and proving, and this time I would 
like to share with you some of the tasks that I gave to the students, and I am eager to know what 
you think about them, especially in relation to your students. 
 

Proof production task: Algebra task 

First, I will give you a conjecture and ask you to prove it the way you would do in class, and  
tell me why you would prove it that way. 
 

“When you add any two even numbers, your answer is always even.”  
 

Evaluation of hypothetical student proofs 

I provided the students with several hypothetical student arguments for the proof of this conjecture 
and asked them to evaluate those arguments. I would like you to evaluate those student arguments 
and for each argument tell me whether you think it proves the conjecture or not, and why. 
 

Arthur, Bonnie, Ceri, Duncan, Eric, and Yvonne were trying to prove whether the following 
statement is true or false: 
 
When you add any two even numbers, your answer is always even.  
 

Arthur’s answer 
 
a is any whole number 
b is any whole number  
2a and 2b are any two even numbers 
2a + 2b = 2(a + b) 
 
So, Arthur says it’s true. 
 
 

Bonnie’s answer 
 
2 + 2 = 4          4 + 2 = 6 
 
2 + 4 = 6          4 + 4 = 8 
 
2 + 6 = 8          4 + 6 = 10 
 
So, Bonnie says it’s true. 

Ceri’s answer 
 
Even numbers are numbers that can be 
divided by 2. When you add numbers with a 
common factor, 2 in this case, the answer will 
have the same common factor. 
 
So, Ceri says it’s true. 
 

Duncan’s answer 
 
Even numbers end in 0, 2, 4, 6, or 8. When 
you add any two of these, the answer will 
still end in 0, 2, 4, 6, or 8. 
 
So, Duncan says it’s true. 
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Eric’s answer 
 
Let x = any whole number 
       y = any whole number 
 
x + y = z 
z – x = y 
z – y = x 
z + z – (x + y) = x +y = 2z 
 
So, Eric says it’s true. 
 

Yvonne’s answer 
 

 
 
So, Yvonne says it’s true. 
 

Sam’s answer 
 
2 + 4 = 6  
60 + 26 = 86 
406 + 262 = 668 
 

I tested it with different numbers, both small 
and large numbers. It worked each time. So, it 
works for any two even numbers. 
 
So, Sam says it’s true. 
 

Abby’s answer 
 
Say x and y are any two even numbers. By 
definition, x and y can be represented as 
follows: 
 
 x = 2 • a (a is any whole number) 
 y = 2 • b (b is any whole number) 
 
Then, x + y = 2 • a + 2 • b = 2 • (a + b) 
 
Because the sum of x and y has a factor of 2, 
it is divisible by 2. Therefore, the sum of any 
two even numbers is always an even 
number. 
 
So, Abby says it’s true. 
 

 

§ How would you evaluate these arguments in terms of whether the argument shows that the 

conjecture is always true, whether it only shows that the conjecture is true for some cases, 

whether it shows why the conjecture is true, and whether it is an easy way to explain? 

§ Which one is your favorite proof? Why?  

§ What arguments do you think your students might have picked as proof? Why? 

 

Proof production task: Geometry task 

I would like you to explore the following problem and then prove your conjecture the way you 
would do in class, and tell me why you would prove it that way. 
 

“Say you have a square and you add a certain amount to its length and take away 
that same amount from its width. What happens to the area?” 
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Evaluation of hypothetical student proofs 

Here are a few hypothetical student proofs that I provided to the students. Again, I would like you 
to evaluate these student arguments and tell me whether you think they are valid proofs or not, and 
why. (The teacher is provided with the hypothetical student proofs¾Ali, Ben, Clara, and Dylan¾ 
that were given to the students.) 
  

§ How would you evaluate these arguments in terms of whether the argument shows that the 

conjecture is always true, whether it only shows that the conjecture is true for some cases, 

whether it shows why the conjecture is true, and whether it is an easy way to explain? 

§ Which one is your favorite proof? Why?  

§ What arguments do you think your students might have picked as proof? Why? 

 
Views about proof and proving 

Below is a collection of student statements about proof and proving. Please mark each statement 
whether you agree, somewhat agree, or disagree with it. (The teacher is provided with the same 
list of proof statements that was given to the students.) 
 

Other clarification questions 

§ When I was in your class, I often heard you asking students to “verify”, “justify”, “explain 
their reasoning”, and “prove”. I’m curious to know what these terms mean to you. Can you 
tell me what you expect students to do when you ask them to “verify”, “justify”, “explain 
their reasoning”, and “prove”? Are they basically the same thing or do you see them 
differently? 

o Can you think of a case where explaining reasoning would not be considered as 
proof?  

 
§ I have also heard you saying “formally proving” and “formal proofs”. What do you refer 

to when you say formal proofs? And how different are they from proofs in general? 
 

§ Do you have any criteria for student explanations to be satisfactory or sufficient for 
proving? 
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Appendix-E. List of Potential Classroom Influences 
 
Roles and purposes of proof: 

§ A justification is given to verify a claim. 
§ A justification is given to explain a claim. 

 
Meanings of proof: 

§ Proving is showing something is true based on known facts, rules, and definitions. 
§ Proof is evidence.  
§ Proof is backing up.  

o Proof requires warrants. (What kinds of warrants are acceptable?) 
§ Proof is justifying one’s reasoning or claims.  
§ Proof is checking your work to make sure that it is correct.  
§ Proof is like showing how you got your answer; explaining your answer. 
§ Proof is explaining your thought process. 

 
Forms of arguments: 

§ Narrative arguments are valued as valid justification/proof. 
§ Visual representations are valued and students are encouraged to use them. 
§ Deductive arguments are valued and the students are expected of constructing deductive 

arguments. 
§ Empirical arguments are accepted as a proof.  

 
Related to proof understandings: 

§ Assumptions without warrants are not acceptable. 
§ Making claims based on appearance is not acceptable. 
§ Examples are insufficient for proof. 
§ One counterexample is sufficient for disproving. 
§ Crucial experiment is more convincing.  
§ Proof shows the truth for all cases. 
§ Proof explains why a conjecture/statement is true. 
§ An example is used to illustrate/communicate one’s argument. 
§ An example is used to verify the accuracy of one’s argument. 
§ An example is used to check/verify one’s work/solution/answer 

 
Proof-related activities: 

§ Students are asked to make a conjecture. 
§ Students are asked to verify their conjectures. 
§ Students are asked to make a generalization. 
§ Students are asked to algebraically represent mathematical statements.  
§ Students are asked to explain why something is true. 

 
 
List of Potential Manifestations of the Teacher’s Conceptions of Proof in her Instruction 
 

§ Teacher values proof and proving. 
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§ Teacher requests a warrant/backing. (List the questions and classify the expected type of 
warrant.) 

o How do you know that? 
o How do you know that is true? 
o Can you explain that? 
o How do you know that is the answer? 

 
§ Teacher provides a warrant. 

o Definitions 
o Known facts/properties 
o Logical inferences 
o Theorems 
o Empirical evidence 

 
§ Teacher requests for a justification. (Is the expectation a deductive answer justifying the 

claim or just describing one’s steps to solve the problem?) 
 

§ Teacher provides a justification. 
 
 
 
 
 

 


