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ABSTRACT

Many important problems in engineering are large scale and nonlinear – two things that are in-

herently at odds. As a result, it is desirable to make use of underlying structure to reduce the

computational complexity. This work considers problems in power systems, statistics and opti-

mization that have underlying algebraic structure and exploits this structure to answer relevant

questions.

The first part of this thesis focuses on the power flow equations. Using techniques from numer-

ical algebraic geometry, we design a novel algorithm that dramatically increases the speed with

which we can find all solutions to the power flow equations. We study the real solution sets for

various families of networks and show that there exist electrical parameter values for which the

number of complex solutions is achieved by all real solutions. Finally, we find outer approxima-

tions of the convex hull of the real solutions to these equations.

The next chapter studies data center geographic load shifting. We propose a metric to allow data

center operators to shift load independently of collaboration with independent system operators.

We demonstrate the superiority of our metric over other commonly used metrics using a years

worth of data.

The next part of this thesis focuses on a classical problem in statistics, density estimation for

Gaussian mixture models (GMMs). We study the variety stemming from the moment equations of

GMMs and provide upper bounds on the number of complex solutions to these equations. We apply

these results to GMMs in Rn and design a homotopy algorithm that performs density estimation

where the number of paths scales linearly in n.

We conclude by considering problems in optimization. We first study maximum likelihood

estimation where the statistical model is defined by system of sparse polynomial equations. We
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give an expression for the number of critical points for this problem and show that the number

of critical points is determined by the Newton polytopes of the model. Next, we study the Shor

relaxation of quadratic programs. We characterize the geometry of the set of objective functions

for which this relaxation is exact and apply these results to the quadratic binary programs.
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Chapter 1

Introduction

Exploiting algebraic structure in problems arising in the sciences is at the core of applied alge-

braic geometry. Most of these problems involve polynomial systems of equations whose solutions

have some type of physical meaning. The work in this thesis considers problems arising in power

systems engineering, statistics and optimization that have underlying algebraic structure and uti-

lizes this structure to develop novel solutions to these problems. The work of this thesis splits into

three self contained sections.

1.1 Power systems engineering

Power systems engineering is a field in electrical engineering that studies the operation and

planning of electric power networks. Critical to these studies is the understanding of operating

points to electric power networks. Operating points are calculated as the real solutions to the

power flow equations, a system of quadratic polynomial equations that encodes the underlying

physics of electric power networks. Understanding these equations is a critical problem in this

field, one which the first two chapters of this thesis makes gains towards.

1.2 Statistics

Statistics is a branch of math that aims to rigorously characterize empirical data. A classic

problem in this domain is density estimation. Density estimation asks one to fit a density to a

finite set of data. This problem has been studied in many contexts for many different families of
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densities. The work in this thesis considers two techniques for density estimation: the method of

moments and maximum likelihood estimation.

1.3 Optimization

Optimization problems are problems in math that seek to minimize an objective function to

some set of constraints. These problems have applications in many other disciplines from machine

learning and operations research to signal processing and the aerospace industry. Broadly speak-

ing, if your optimization problem is convex then it can be solved efficiently to global optimality.

Unfortunately, many important problems are nonconvex. Nonconvex optimization is an active field

of research. An important tool used in nonconvex optimization is the use of convex relaxations.

A particular relaxation of interest is the semidefinite relaxation. This relaxation is applied to poly-

nomial optimization problems and has seen much success in applications. The work in this thesis

studies when this relaxation is exact for a variety of quadratic polynomial optimization problems.
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Chapter 2

Solving the power flow equations

A main focus of this thesis work is the optimal power flow (OPF) problem. This is a nonconvex,

quadratically constrained, quadratic program that aims to optimally dispatch generation profiles of

electric power networks subject to physical and engineering constraints. The power flow equations

are a system of quadratic polynomial equations that comprise the nonconvex constraints. We begin

by outlining the power flow equations.

2.1 The power flow equations

We model an n-node electric power network as a connected, undirected graph, G = (V,E),

where each vertex vm ∈ V , 0 ≤ m ≤ n− 1, represents a node (bus) in the power network. There

is an edge, ekm between vertices vk and vm if the corresponding nodes in the power network are

connected. Each edge has a known complex admittance bkm + igkm where bkm, gkm ∈ R and

i =
√
−1. We take the admittance bkm + igkm to be zero if the vertices k and m are not connected.

Each vertex vk has an associated complex power injection Pk + iQk, Pk, Qk ∈ R where Pk models

the active power and Qk models the reactive power.

At each node, vk, the relationship between the active and reactive power flows is captured by

the nonlinear relations

Pk =
n−1∑
m=0

|Vk||Vm|(gkm cos(θk − θm) + bkm sin(θk − θm)) (2.1.1)

Qk =
n−1∑
m=0

|Vk||Vm|(gkm sin(θk − θm) + bkm cos(θk − θm)) (2.1.2)
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where Vk is the complex voltage magnitude and θk represents the complex voltage angle at node

vk. We fix v0 to be the slack bus, meaning θ0 = 0. Equations (2.1.1)-(2.1.2) are the power flow

equations.

We consider a power network where all nodes, except the slack node, have unknown reactive

power injections but maintain constant voltage magnitude: Qk is unknown while Pk and |Vk|, are

known constants. These nodes are called PV nodes since the active power injection Pk and voltage

magnitude |Vk| are known. They model typical generator buses.

We can make this system algebraic by introducing the change of variables xk = |Vk| cos(θk)

and yk = |Vk| sin(θk). Under this transformation (2.1.1) becomes the system of 2(n−1) equations

in 2(n− 1) variables

Pk =
n−1∑
m=0

gkm(xkxm + ykym) + bkm(xmyk − xkym) (2.1.3)

|Vk|2 = x2
k + y2k. (2.1.4)

Equations (2.1.3) and (2.1.4) are the power flow equations for the special case where all nodes

are PV nodes. The power flow problem is to compute all of the real-valued solutions to the system

of equations (2.1.3)-(2.1.4). At the slack node (x0, y0) = (|V0|, 0).

In practice gkm ≪ bkm, so we assume that the power network is lossless , meaning gkm = 0

for all nodes k,m. In addition, we assume that the voltage magnitude Vk = 1 for all k. For

k = 1, . . . , n− 1, this turns (2.1.3)-(2.1.4) into the system

Pk =
n−1∑
m=0

bkm(xkym − xmyk)

1 = x2
k + y2k.

(2.1.5)

The reference node in this case is then x0 = 1, y0 = 0. One special case of (2.1.5) is when there

are zero active power injections, namely when Pk = 0 for k = 1, . . . , n − 1. This case is studied

because it typically admits the most real-valued solutions1. Under the assumption of zero active

power injections, the power flow equations for a graph on n vertices admits 2n−1 trivial solutions

1Certain rare examples have been found where this fails to be true [1]
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corresponding to yk = 0, xk = ±1. This means finding all complex solutions to (2.1.5) is then

reduced to finding all nontrivial solutions.

Work in this area can largely be categorized as

1. Finding all real solutions [2, 3, 4, 5, 6, 7, 8, 9]

2. Bounding the number of C∗ solutions [10, 11, 12, 13]

3. Studying distributions of the number of real solutions [1, 14, 15]

We outline previous work done in each of these areas and present new contributions we made to

each of these topics. Before getting to the details, we outline techniques from numerical algebraic

geometry used to find all complex solutions to a polynomial system of equations.

2.2 Homotopy Continuation

Finding all complex solutions to a system of polynomial equations has received considerable

attention in the past few decades. There exist many techniques to do this, and we outline two of

the most popular techniques below.

2.2.1 Total degree and polyhedral homotopies

We briefly outline the main idea of homotopy continuation below but give [16, 17] as more

detailed references. Say you would like to solve a system of polynomial equations

F (x) = {p1(x1, . . . , xm), p2(x1, . . . , xm), . . . , pm(x1, . . . , xm)} = 0.

where we assume that the number of solutions to F (x) = 0 is finite. The main idea is to introduce

a variable t and to construct a homotopy from a start system G to a target system F such that:

1. The solutions to G(x) = 0 are trivial to find,

2. There are no singularities along the path t ∈ [0, 1), and

3. All isolated solutions of F (x) = 0 can be reached [18].
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One such example of a homotopy, known as a straight line homotopy is :

H(x; t) = γ(1− t)G(x) + tF (x). (2.2.1)

By using a random γ ∈ C each path for t ∈ [0, 1) avoids singularities almost surely, so condition

2 is easily met. This is referred to as the gamma trick [17]. Continuation methods are then used to

track the solutions from G(x) = 0 to F (x) = 0 as t varies from 0 to 1. These methods are called

predictor-corrector methods and are commonly used numerical techniques [19].

There are many choices for the start system G(x). A total degree start system is

G(x) = {xd1
1 − 1, . . . , xdn

n − 1} = 0 (2.2.2)

where di is the degree of pi [17]. The number of solutions to G(x) = 0 is d1 · · · dn, which is the

Bezout bound. This means that you have to track d1 · · · dn paths in order to get all solutions to

F (x) = 0. If F (x) = 0 has close to d1 · · · dn solutions this is a reasonable start system.

If F (x) is sparse, the number of solutions to F (x) = 0 can be much less than d1 · · · dn so track-

ing d1 · · · dn paths is wasteful computation. In this case it is often more computationally efficient

to use a polyhedral start system. These homotopy algorithms rely on the Bernstein-Kushnirenko-

Khovanskii (BKK) bound [20, 21, 22], which gives an upper bound on the number of isolated

C∗ = C\{0} solutions for polynomial systems. This upper bound relates the number of zeros of

F (x) = 0 to properties of convex polytopes associated with F (x).

Definition 2.2.1. Let p(x1, . . . , xm) =
∑K

k=1 ckx
ak be a polynomial where the notation xa is short-

hand for xa = xa1
1 · · ·xam

m . The Newton polytope of p is Newt(p) = Conv{a1, . . . , aK}.

Example 2.2.2. Consider the system of polynomial equations

f1(x1, x2) = 3x2
1 + 2x1x2 − x2 − 13x1x

2
2 + 3

f2(x1, x2) = 7x1x
2
2 + 3x2

2 − 2x1x2 − x1 − 6x2
1 + 6.

The Newton polytopes of f1 and f2 are Newt(f1) = Conv{(2, 0), (1, 1), (0, 1), (1, 2), (0, 0)} and

Newt(f2) = Conv{(1, 2), (0, 2), (1, 1), (1, 0), (2, 0), (0, 0)} where Conv{} denotes the convex hull

of the set of vertices. These polytopes are shown in Figure 2.1.
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Figure 2.1: The Newton polytopes of f1 (left) and f2 (right) from Example 2.2.2.

Given s convex polytopes in Rn, K1, . . . , Ks, we consider the standard n−dimensional Eu-

clidean volume of a linear combination of these polytopes v(λ1, . . . , λs) = Voln(
∑s

i=1 λiKi)

where the sum here refers to the Minkowski sum. The polynomial v(λ1, . . . , λs) is homogeneous

of degree n in λ1, . . . , λs.

Definition 2.2.3. Given s convex polytopes K1, . . . , Ks in Rn, the mixed volume of K1, . . . , Ks is

the coefficient in front of the λ1λ2 · · ·λs term in v(λ1, . . . , λs). It is denoted MVol(K1, . . . , Ks).

Lemma 2.2.4. [23] The mixed volume of K1, . . . , Ks can be expressed using the inclusion exclu-

sion formula

MVol(K1, . . . , Ks) =
∑
J⊆[n]

(−1)n−|J | · Voln(KJ)

where KJ = Ki1 + . . .+Ki|J| and J = (i1, . . . , i|J |).

Example 2.2.5. Consider the polytopes Newt(f1) and Newt(f2) from Example 2.2.2. Using

Lemma 2.2.4 we see

MVol(Newt(f1),Newt(f2)) = Vol2(Newt(f1) + Newt(f2))− Vol2(Newt(f1))− Vol2(Newt(f2)).

Since in this case n = 2, the volume is just the area. This gives MVol(Newt(f1),Newt(f2)) =

11.5 − 2.5 − 3 = 6. We also observe that there are exactly 6 solutions to the system of equations

defined in Example 2.2.2. This can be formally explained.
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Theorem 2.2.6 (BKK Bound [20, 22, 21]). The number of isolated C∗ solutions to F (x) = 0 is less

than or equal to MVol(Newt(p1), . . . ,Newt(pm)). Moreover, for generic2 choice of coefficients,

the number of C∗ solutions is exactly MVol(Newt(p1), . . . ,Newt(pm)).

Theorem 2.2.6 gives an upper bound on the number of isolated C∗ solutions for any polynomial

system. Moreover, in his paper [20], Bernstein gives conditions under which the coefficients of pi,

i ∈ [m] are generic and this mixed volume is a strict upper bound. To do this we need a bit more

notation.

Given a nonzero vector w ∈ Zm and a polytope P ⊆ Rm, we denote Pw as the face exposed by

w and valw(P ) the value w takes on this face. Specifically:

Pw = {x ∈ P : ⟨w, x⟩ ≤ ⟨w, y⟩ for all y ∈ P} and valw(P ) = min
x∈P

⟨w, x⟩,

with ⟨(w1, . . . , wm), (x1, . . . , xm)⟩ := w1x1 + · · ·wmxm. If p =
∑

α∈Newt(f) cαx
α, we call

initw(p) =
∑

α∈(Newt(p))w

cαx
α

the initial polynomial of p. For convenience, let valw(p) = valw(Newt(p)). Given a polynomial

system F = ⟨p1, . . . , pm⟩ we define initw(p1, . . . , pm) := ⟨initw(p1), . . . , initw(pm)⟩.

Theorem 2.2.7. [20, Bernstein’s Other Theorem] If for all 0 ̸= w ∈ Zm the initial systems

initw(p1, ..., pm) have no solutions in (C∗)m, then the number of C∗ solutions to F (x) = 0 is

MVol
(
Newt(p1), . . . ,Newt(pm)

)
.

For sparse polynomial systems the mixed volume can be much smaller than the Bezout bound.

Huber and Sturmfels proposed the first polyhedral homotopy algorithm that achieves this bound

by deforming the start system to a system with number of solutions equal to the mixed volume

of the original system [24]. The main disadvantage to polyhedral homotopy methods is that the

start systems may not be as easy to solve as in the total degree case. There is still the potential for

wasted computation here as the mixed volume of a system might not be a tight upper bound on the

number of solutions.
2Generic in this context means that the coefficients lie in a Zariski open set. In relation to the standard Euclidean

topology, this means that if the coefficients of p1, . . . , pm are drawn from the same continuous distribution indepen-
dently at random, then with probability one the BKK bound is exact.
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2.2.2 Parameter homotopies

Many times we consider a family of polynomial systems that are parameterized by coefficients

that are allowed to vary. Here, we often would like to solve this polynomial system for multiple

choices of the parameters. In this case we consider a type of homotopy known as a parameter

homotopy where the start system G(x) is given as an instance in this parameterized family where

all solutions are known. We describe this more formally below but give [17] as a more detailed

reference.

Consider a system of parametric polynomial equations

F (x, b̂) = {f1(x, b̂), . . . , fm(x, b̂)} = 0 (2.2.3)

where b̂ ∈ CN are the parameters and x ∈ Cm are the variables. Suppose you have have a solution

set Sb̂ to (2.2.3). We then construct a homotopy taking all solutions Sb̂ to our target parameters

b ∈ RN

H(x; t) = F (x,
γ1(1− t)b̂+ γ2tb

tγ2 + (1− t)γ1
)

where t runs from 0 to 1. Again, we choose random γ1, γ2 ∈ C to avoid singularities. This returns

solutions Sb to F (x, b). This is an efficient homotopy method in the sense that for every solution

in Sb we track exactly one path from Sb̂.

Homotopy continuation algorithms have been used in a variety of applications from game the-

ory, kinematics, and computer vision to polynomial optimization and many others [25, 26, 27, 28]

and have many off the shelf software choices [29, 30, 31]. A downside of these algorithms is that

they don’t exploit any additional structure often found in polynomial systems arising in applica-

tions such as symmetry or decomposability. For this, we consider a continuation based method

known as monodromy.

2.2.3 Monodromy

We briefly outline the idea of monodromy below using the same notation as [32], but give

[32, 33, 34], as more complete references. Let Fb be a parameterized polynomial system in m
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variables and call the space of all such polynomial systems B. Assume the solution set of Fb is

zero dimensional. Let V denote the solution variety of Fb, meaning

V = {(x, Fb) ∈ Cm ×B : Fb(x) = 0}.

Consider the projection

π : V → B

(x, Fb) 7→ Fb

and the fiber π−1(Fb) = {x ∈ Cm : Fb(x) = 0}. For almost all choices of parameters in B,

|π−1(Fb)| = K is constant. Define D to be the discriminant locus of Fb, this is the set of measure

zero in B where |π−1(Fb)| ̸= K. We define the fundamental group π1(B\D) as a set of loops

modulo homotopy equivalence that start and finish at a point b ∈ B\D. Each loop permutes ele-

ments in π−1(Fb) and induces a group action called the monodromy action. Monodromy methods

work by taking one solution x̂ to the system of equations Fb̂ and finding other elements of π−1(Fb̂)

via the monodromy action.

The monodromy action is transitive if and only if the solution variety V is irreducible [35,

Proposition 2.5]. In words, this tells us that we only have a hope of finding all solutions to our

polynomial system if the solution variety V is irreducible. Therefore, if we want to use mon-

odromy methods we first need to verify that the solution variety is irreducible. A final benefit of

monodromy is that it allows us to solve for solutions up to symmetry.

One downside of monodromy methods is that unless the number of C∗ solutions is known,

there is no clear stopping criterion for this algorithm to terminate.

2.3 Solving the power flow equations

Applying homotopy continuation techniques to the power flow equations has been done with

some success [2, 6]. One drawback is that no matter what start system used, as the size of the net-

work increases the number of paths needed to track increases exponentially so these methods are

only practical on small networks. Secondly, polyhedral methods are limited to small or medium
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networks, due to the computational expense in finding a start system. Some work has recently been

done to address this using toric deformations [36]. Finally, there are certain situations, namely loss-

less and zero power injections, where the power flow equations have a solution set that decomposes

into two subvarieties and have symmetry that we would like to exploit.

To address these points, we propose using a combination of monodromy and parameter homo-

topy techniques. In order to do so, we first need a few preliminary results.

Lemma 2.3.1. The subvariety of the solution variety of (2.1.5) corresponding to the nontrivial

solutions with zero active power injections form an irreducible variety.

Proof. By Theorem 6 of [11], the nontrivial component of (2.1.5) for tree networks is empty, so

this statement is vacuously true. Consider the change of variables xi =
2ti
1+t2i

and yi =
1−t2i
1+t2i

. This

gives a new system of equations for k = 1, . . . , n− 1,

0 =
n−1∑
m=0

bkm

(2tk(1− t2m)− 2tm(1− t2k)

(1 + t2k)(1 + t2m)

)
. (2.3.1)

By Remark 2 of [32] is suffices to show that the image of the following map is dense:

π : V → Cn−1

(Fb, t) 7→ t

where Fb is the system of equations defined in (2.3.1) and t = (t1, . . . , tn−1). For all tk ∈

C\{±i, 0,±1}, k = 1, . . . , n − 1, this gives a linear system of n − 1 equations in |E| unknowns

where the unknowns are the susceptances bkm. Since we do not consider trees, |E| ≥ n. Let

b ∈ R|E| be the vector of susceptances. Then this linear system can be written as Ab = 0 where

A ∈ Cn−1×|E| is a weighted incidence matrix of G with the first row removed. This matrix has rank

n− 1 so long as none of the weights are zero, which occurs for all tk, tm ̸∈ {±i, 0,±1}, tk ̸= tm.

Therefore, for generic t ∈ Cn−1 we can find a nonzero solution b to (2.3.1) giving that the map

(Fb, t) 7→ t is dense in Cn−1.

Corollary 2.3.2. The solution variety corresponding to (2.1.5) with nonzero active power injec-

tions is irreducible.
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Proof. As in Lemma 3.1 of [9] we consider the change of coordinates xi =
2ti
1+t2i

and yi =
1−t2i
1+t2i

.

This transforms (2.1.5) into for k = 1, . . . , n− 1

Pk =
n−1∑
m=0

bkm

(2tk(1− t2m)− 2tm(1− t2k)

(1 + t2k)(1 + t2m)

)
. (2.3.2)

As explained in the proof of Lemma 3.1 in [9], it suffices to show that for almost all t = (t1, . . . , tn−1) ∈

Cn−1 there exists a P1, . . . , Pn−1 ∈ R and b ∈ R|E| that is a solution to (2.3.2). This system of

equations is linear in the susceptances bkm and active power injections Pk for m, k = 1, . . . , n− 1

so we can write it as Ab = P where P = (P1, . . . , Pn−1) and A ∈ Cn−1×|E| is a weighted incidence

matrix of G. This matrix generically has rank n − 1, meaning for almost all choices of t ∈ Cn−1,

Ab = P has a solution.

Lemma 2.3.3. In the case with zero active power injections, if (x1, . . . , xn−1, y1, . . . , yn−1) is a

solution to (2.1.5), so is (x1, . . . , xn−1,−y1, . . . ,−yn−1)

Proof. Substituting in (x1, . . . , xn−1,−y1, . . . ,−yn−1) to (2.1.5) the result is immediate.

Lemma 2.3.4. Suppose (2.1.5) has zero active power injections. Let G = (V,E) be a bipar-

tite graph with disjoint vertex sets S, T ⊂ V that partition V where for all e = vmvn ∈ E,

vm ∈ S and vn ∈ T . Without loss of generality, say v1, . . . , vs ∈ S and vs+1, . . . , vn−1 ∈ T . If

(x1, . . . , xn−1, y1, . . . , yn−1) is a solution to (2.1.5) so is

1. (x1, . . . , xn−1,−y1, . . . ,−yn−1)

2. (−x1, . . . ,−xs, xs+1, . . . , xn−1, y1, . . . , ys,−ys+1, . . . ,−yn−1)

3. (−x1, . . . ,−xs, xs+1, . . . , xn−1,−y1, . . . ,−ys, ys+1, . . . , yn−1)

Proof. At a node k ∈ S the power flow equations are

0 =
n−1∑

m=s+1

bkm(xmyk − xkym). (2.3.3)

At a node l ∈ T the power flow equations are

0 =
s∑

m=1

blm(xmyl − xlym). (2.3.4)

Substituting in (1)− (3) to the two expressions above, the result is clear.
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Corollary 2.3.5. Let G = (V,E) be a bipartite graph with disjoint vertex sets S, T ⊂ V that

partition V where for all e = vmvk ∈ E, vm ∈ S and vk ∈ T or vice versa. Without loss of

generality, say v0, . . . , vs ∈ S and vs+1, . . . , vn−1 ∈ T . Consider (2.1.5) with nonzero active power

injections: Pk ̸= 0, for k = 1, . . . , n. Then if (x1, . . . , xn−1, y1, . . . , yn−1) is a solution to (2.1.5)

so is (−x1, . . . ,−xs, xs+1, . . . , xn−1, y1, . . . , ys,−ys+1, . . . ,−yn−1).

These lemmas tell us that in the case of zero active power injections or if G is bipartite, the

power flow equations have symmetry in their solutions. We exploit this for significant computa-

tional speed up. In addition, since for a fixed graph G the number of C∗ solutions is constant for

a generic choice of susceptances, this monodromy step only needs to be done once. After this pa-

rameter homotopy methods can be used to track these solutions to solutions of desired susceptance

values. Putting all of these results together, we have an algorithm for finding all complex, and

therefore real, solutions to the power flow equations much efficiently.

We present timings in Table 2.1 that demonstrate the superiority of Algorithm 1 over standard

homotopy techniques. Table 2.1 gives the average amount of time it takes to find all solutions to the

power flow equations in a trial of 100. We use HomotopyContinuation.jl [29] for all methods

and do all computations on a 2018 Macbook Pro with a 2.3 GHz Quad-Core Intel Core i5 processor.

In all cases, we see that using parameter homotopy and only solving for the nontrivial solutions

up to symmetry is much faster than polyhedral and total degree homotopy. For the cycle cases we

also see that polyhedral homotopy outperforms total degree homotopy. In contrast, polyhedral is

never better than total degree in the complete cases. This is because the number of paths tracked

in polyhedral homotopy is slightly smaller than in the total degree case and the start system in the

polyhedral case is more time consuming to compute.

In addition, using just the monodromy step of Algorithm 1 we are able to find all complex

solutions when other methods can’t. We consider the cyclic graph on 20 vertices. This system has

1, 847, 560 complex solutions but ignoring the trivial solutions and up to symmetry it has 330, 818.

If we tried to use total degree homotopy on this system, the Bezout bound is 274, 877, 906, 944 so

we would have to track over 274 billion paths. In addition, polyhedral methods aren’t practical

as the solver could not find a start system. Using monodromy we found all 330, 818 complex
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Algorithm 1 An algorithm to find all complex solutions to the power flow equations that exploits

irreducibility and symmetry.

• Input: A graph G = (V,E), a choice of susceptances b ∈ R|E|

• Output: All solutions to the power flow equations of the graph G with susceptances b

• Preprocessing Step:

1. Find one solution to the power flow equations for one choice of susceptance values

b̂ ∈ C|E|

– For k = 1, . . . , n − 1 pick random xk ∈ C and set yk =
√
1− x2

k so (xk, yk)

satisfy x2
k + y2k = 1 ∀ k.

– Substitute these choices of xk, yk into (2.1.5) and find one solution b̂ to the corre-

sponding underdetermined linear system.

2. Use monodromy to find remaining nontrivial solutions to the power flow equations for

susceptances b̂ up to the equivalence (xk, yk) ∼ (xk,−yk)∀k. Call this solution set Sb̂.

Procedure:

1. Use parameter homotopy to track Sb̂ from susceptances b̂ ∈ C|E| to desired suscep-

tances b ∈ R|E|

solutions in 15, 375 seconds after tracking 792,934 loops. In this case, 71, 212 of these 330, 818

complex solutions were real. This example is the largest network to the authors’ knowledge for

which all solutions to the power flow equations have been found for a power system model.3

3The authors’ note that in [37] all real solutions to a network on 60 vertices were found, but as noted by the authors
in [37], the assumptions in that paper are not attainable by any realistic power systems model.
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Table 2.1: Average time (seconds) to find all solutions to Kn and Cn using Algorithm 1.

Kn 4 5 6 7 8 9

Total Degree 0.03 0.23 0.97 9.71 46.86 279.38

Polyhedral 0.04 0.29 1.03 18.57 115.25 644.52

Parameter 0.003 0.03 0.14 0.62 4.85 29.79

Cn 4 5 6 7 8 9

Total Degree 0.03 0.14 0.70 4.75 23.10 136.73

Polyhedral 0.02 0.10 0.36 2.16 9.60 23.69

Parameter 0.001 0.01 0.01 0.08 0.13 0.67

2.4 Distributions of the number of real solutions

Using Algorithm 1 we are able to find all real solutions for many instances of the power flow

equations allowing for a statistical analysis of the behavior of the real solutions.

A downside of homotopy methods is that it is possible that not all paths tracked from a start

system will make it to a target system. Note that from a theoretical perspective, all paths will

be tracked from the start system to the target system but numerical implementation using finite

precision can cause some of the paths to fail. Some reasons for this is that an algorithm could

incorrectly conclude a path is diverging to infinity or that two paths converge to the same solution.

The rate of failures can be reduced using adaptive precision path tracking methods [38].

We experienced these phenomena running our simulations. If the parameter homotopy step

lost solutions, we ran monodromy on the solution set to recover the remaining solutions. This was

largely successful and in each topology studied, we found all solutions at least 98.6% of the time,

ensuring accuracy of the computed distributions.

We would like to calculate empirical distributions of the number of real solutions to the power

flow equations for different topologies by varying susceptance values. In order to do this we need

to choose how to sample the susceptances. Since the susceptances are linear in the other variables,

it is natural to vary the susceptances on the unit sphere. Sampling randomly from the unit sphere is
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equivalent to assuming the susceptances are independently sampled as N (0, 1) random variables

[39].

By using Algorithm 1, we are able to empirically find distributions of the number of real so-

lutions to the power flow equations much faster, allowing for a more accurate description of the

distributions. Using statistical methods, we can be precise about what more accurate means.

Given a random variable X , its cumulative distribution function is defined as F (x) = P(X ≤

x) for x ∈ R. Given n independent and identically distributed random variables X1, . . . , Xn

with cumulative distribution function F , we define the empirical distribution function as Fn(x) =

1
n

∑n
i=1 1{Xi≤x} where 1 is the indicator function. The cumulative distribution function F (x) gives

the probability that one random variable is less than x where Fn(x) gives the probability that a

fraction of random variables is less than x. The Dvoretzky–Kiefer–Wolfowitz inequality allows us

to give confidence statements about the accuracy of empirical distributions based on the number of

samples collected.

Lemma 2.4.1 (Dvoretzky–Kiefer–Wolfowitz Inequality [40]). With probability 1− α,

Fn(x)− ϵ ≤ F (x) ≤ Fn(x) + ϵ

where ϵ =

√
ln 2

α

2n
.

This provides a way to assess the accuracy of our empirical results with high probability. For

all distributions we evaluate the number of real solutions of the power flow equations on at least

1.4 million samples, implying by Lemma 2.4.1 that with 99% probability, the true cumulative

distribution function is within ϵ = 0.0005 of what is listed.

2.4.1 Cycle networks

The distribution of the number of nontrivial real solutions for C3 was completely solved and

for C4 was closely analyzed in [1] by using Mathematica to symbolically solve the entire system.

Let N be the number of nontrivial real solutions to the given network. The authors proved that the
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Figure 2.2: Solution Regions for C3 (left) and C4 with b01 = 0.3 (right)

distribution for C3 is given by

P(N = 0) = 3− 4√
3
≈ 0.6906

P(N = 2) =
4√
3
− 2 ≈ 0.3904

and the distribution for C4 is,

P(N = 0) ≈ 0.6945, P(N = 4) ≈ 0.3055.

Figure 2.2 shows the distribution for C3 in the space of susceptances where blue regions are

where there are no nontrivial real solutions and red regions are where there are two nontrivial real

solutions. Figure 2.2 also shows an example for C4 where b01 is fixed. In this figure, the green

regions represent where there are four nontrivial real solutions.

We can also visualize solution regions for C5 after fixing two of the susceptances. Examples of

this are given in Figure 2.3. In these images we observe a lot of symmetry; this can be explained as

the number of real solutions to cyclic networks is unchanged under any permutation of the edges,

so also of the susceptances. The color scheme for solution regions of all pictures is given in Table

2.2.

Numerical results for C3−C10 are shown graphically in Figure 2.4. We graph the distributions

for Cn, Cn+1 next to each other for n ∈ {3, 5, 7, 9} since the support for Cn+1 is that of Cn scaled

by two. For all cycle graphs we notice a major left skew in the distribution. In addition, we notice
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Figure 2.3: Solution regions for C5 with b01 = 0.5, b04 = 0.3 (left) and b01 = 0.6, b04 = 0.2 (right)

Table 2.2: Colors of solution regions

# Nontrivial R Solutions 0 2 4 6 8 10 12 14

Color Blue Red Green Purple Yellow Black Orange Pink
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C3
C4

0 0 2 4 4 8 6 12 8 16 10 20 12 24
0.0

0.1

0.2

0.3

0.4

C5
C6

0,0 20,40 40,80
0.0

0.1

0.2

0.3

0.4

C7
C8

0,0 40,80 80,160 120,240 160,320
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C9
C10

Figure 2.4: Distribution of number of nontrivial real solutions for cycle networks

that C5 − C10 are multimodal and Cn and Cn+1 have similar numbers of modes, although they

occur in different places.
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2.4.2 Complete networks

We perform a similar analysis to Section 2.4.1 but this time on complete networks Kn where

n ∈ {4, 5, 6, 7, 8}. The results of these simulations are shown in Figure 2.5.

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

K4
K5
K6
K7
K8

Figure 2.5: Distribution of the number of nontrivial real solutions for K4, K5, K6, K7, K8.

In contrast to the cycle networks we see the distributions for the complete networks tending

to more of a normal shape. While they are still left skewed compared to the range given by the

complex bound, there isn’t as large of a number of instances with zero nontrivial real solutions.

We also see that as n increases the variance becomes much larger.

We also study the solution regions for K4 in Figure 2.6. In each case there appear to be almost

convex, quasi polygonal areas. In contrast to the cyclic cases we don’t observe any symmetry. This

is explained as the only automorphism of K4 that fix edges e01, e02 and e03 is the identity mapping.

2.4.3 Number of Real Solutions to Random Polynomials

Much of this work was motivated by the observation that the power flow equations generally

admit few real solutions compared to the complex bounds. This has been well documented in ex-

isting power systems literature [2, 5]. While we agree that the number of real solutions tends to be

low when compared with the total number of complex solutions, we observe that when compared

with a random polynomial system, the power flow equations actually admit more real solutions

than should be expected! In [41] it is shown that finding the number of real solutions to a system

of polynomial equations is equivalent to finding the number of real roots of a univariate polynomial
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Figure 2.6: Solution Regions for K4 with b01 = 0.03, b02 = 0.15, b03 = 0.2 (right) and b01 = 0.1,

b02 = 0.2, b03 = 0.3 (left)

whose coefficients are polynomials in the coefficients of the original polynomial system. Specif-

ically, the distribution of the number of nontrivial real solutions to the power flow equations is

equivalent to that of the polynomial q(x) =
∑N

i=0 cix
i where N is the number of nontrivial com-

plex solutions to the power flow equations and each ci is a polynomial in the susceptances. The

variable x is defined as a random linear combination of original variables xi, yi, i = 1, . . . , n− 1.

Since we can reduce the distribution of the number of real solutions to the power flow equations

to a single univariate polynomial, a natural question then arises.

Question 2.4.2. How does the distribution of the number of nontrivial real solutions to the power

flow equations with N complex solutions compare to that of a corresponding random univariate

polynomial of degree N?

We compare the distribution of the number of real solutions to the power flow equations with N

nontrivial complex solutions to that of a random polynomial q(x) =
∑N

i=0 cix
i where ci ∼ N (0, 1).

Remark 2.4.3. This is the set up Kac considered in [42]. Kac showed that the expected number

of real roots of q(x) scales logarithmically in N . Other work has considered the expected number

of real roots under a different distribution on the coefficients. Using this distribution it was shown

that the expected number of real roots is
√
N [43]. Since it is natural to sample the susceptances

uniformly at random from a unit sphere and therefore assume they are independently drawn from
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a N (0, 1) distribution, the more natural comparison in this case is when the coefficients of the

q(x) are also drawn iid N (0, 1). In either case, we find the power flow equations admit more real

solutions than these results would predict.

2.4.3.1 Cycle networks

We compare the distribution of the number of real solutions to cyclic 3 − 10 node networks

to that of corresponding random polynomials. Figure 2.7 plots the distributions of the number

of nontrivial real solutions for cycle networks against that of real roots corresponding to random

polynomials of appropriate degree. We see that while the cycle networks seem to give many

more instances of zero nontrivial real solutions than random polynomials give of zero real roots,

there also seems to be a much higher chance of getting instances of larger numbers of nontrivial

real solutions with cycle networks than with that of a random polynomial. This phenomenon is

reflected in Table 2.3 as we see the expected number of nontrivial real solutions is higher than that

of random polynomials for C5, . . . , C10. We suspect that this is true for all Cn, n ≥ 5, and the gap

between the two values will continue to increase.

Table 2.3: Expected Number of Nontrivial Real Solutions to cycle Networks

C3 0.62 C4 1.22 C5 2.85 C6 5.93

q(x) 1.30 q(x) 1.64 q(x) 2.35 q(x) 2.77

C7 11.57 C8 25.57 C9 52.38 C10 105.40

q(x) 2.96 q(x) 3.83 q(x) 4.40 q(x) 4.84

2.4.3.2 Complete networks

We do a similar analysis here as in the cyclic case. Here we compare the number of nontrivial

real solutions to power flow equations of complete 4−8 node networks to that of even polynomials

of degree 12, 54, 220, 860 and 3304, the generic number of nontrivial complex solutions for each

network respectively. Distribution results are shown graphically in Figure 2.8 and expected values
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Figure 2.7: Distributions of the number of nontrivial real solutions to cycle networks and the

number of real roots of a random polynomial

are given in Table 2.4. We see in Figure 2.8 that as the number of vertices grows, the distribution

of the number of nontrivial real solutions to the power flow equations shifts further right than for

random polynomials. This is reflected in the expected values as the expected number of nontrivial

real solutions for K5 − K8 is much higher than that for a random polynomial. For K8 we see

that the expected number of nontrivial real solutions is over 28 times as high as that for a random

polynomial of degree 3304.

In both cases, our computations show that the power flow equations have many more real val-

ued solutions then random polynomial systems with comparable complexity. The main difference

between the power flow equations and such a random system is that some of the coefficients in the

power flow equations are equal. Specifically, the susceptance bij shows up four times in the power

flow equations, in power flow equations i and j in front of monomials xiyj and xjyi.
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Figure 2.8: Distributions of the number of nontrivial real solutions to complete networks and the

number of real roots of a random polynomial

Table 2.4: Expected Number of Nontrivial Real Solutions to Complete Networks

K3 0.62 K4 2.45 K5 7.41 K6 20.11 K7 51.54 K8 150.65

q(x) 1.30 q(x) 2.26 q(x) 3.18 q(x) 4.06 q(x) 4.93 q(x) 5.30

2.4.4 Solutions when all susceptances are equal

We now consider when the susceptances are assumed to be the same or approximately the

same. Again we differentiate between both cyclic and complete networks and find that in both

cases, when the susceptances are the same, we find many real solutions.

Theorem 2.4.4. The cyclic graph on n vertices, Cn for n ≥ 1, has susceptance values that achieve

the generic maximum bound of n
(

n−1
⌊n−1

2
⌋

)
real solutions.

Proof. First consider the case of Cn where 4 ∤ n. Set all susceptances equal to 1. The system of

equations defined in (2.1.1) with |Vk| = 1, gkm = 0 becomes

sin(θk − θk−1) = sin(θk+1 − θk) (2.4.1)
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for k = 1, . . . , n. Consider the change of variables uk =
θk−θk−1

π
for k = 1, . . . , n. This transforms

(2.4.1) into

sin(πuk) = sin(πuk+1) (2.4.2)
n∑

k=1

uk ≡ 0 mod 2 (2.4.3)

for k = 1, . . . , n. This means that for all k,m, uk = um or uk = 1−um. This allows us to partition

the set S = {u1, . . . , un} into two sets: S1 = {uk ∈ S : uk = 1− u} and S2 = {uk ∈ S : uk = u}

for some u ∈ R. Let |S1| = m and |S2| = n−m.

By (2.4.3) we have (n − 2m)u + m ≡ 0 mod 2. Suppose n − m is odd. This gives

(n − 2m)u ≡ 1 mod 2. There are n − 2m different u that satisfy this, namely u = s
n−2m

for s ∈ {1, 3, 5, . . . , 2(n − 2m) − 1}. Now suppose n − m is even. By (2.4.3) we have (n −

2m)u ≡ 0 mod 2. There are n − 2m solutions to this equation, namely u = s
n−2m

where s ∈

{0, 2, 4, . . . , 2(n−2m−1)}. In either case, there are
(
n
m

)
ways to construct S1, giving

(
n
m

)
(n−2m)

such solutions u for each m ≤ k. This gives
∑k

m=0

(
n
m

)
(n − 2m) = (k + 1)

(
n

k+1

)
= n

(
n−1
k

)
real

solutions where the first equality is (5.18) of [44] and the second equality is (1.2) of [45].

Now consider Cn for n = 4k for k ∈ N. As per the proof of Lemma 2.4.6, the previous choice

of susceptances produces infinitely many solutions. So instead, consider susceptances b01 = −1

and bij = 1 for all other edges ij. Using the same notation as above, we have that u1 = −u or

u1 = 1+u and uk = u or uk = 1−u for all 2 ≤ k ≤ n. For all k ≥ 2, let S1 = {uk ∈ S\u1 : uk =

1− u} and S2 = {uk ∈ S\u1 : uk = u}. Note that for u1 = −u, |S1| = m, and |S2| = n−m− 1

(2.4.3) gives (2+2m−n)u ≡ m mod 2. Similarly, for u1 = 1+u, |S1| = n−m−1 and |S2| = m

(2.4.3) also gives (2 + 2m − n)u ≡ m mod 2 so the solutions to the two cases are redundant.

Therefore, without loss of generality we suppose u1 = −u, |S1| = m and |S2| = n−m−1. When

m is odd (2.4.3) gives (2 + 2m − n)u ≡ 1 mod 2. This equation has |2 + 2m − n| solutions

mod 2, namely u = s
2+2m−n

for s ∈ {1, 3, 5, . . . , 2(2+2m−n)− 1}. When m is even we want to

find all solutions to (2 + 2m− n)u ≡ 0 mod 2. Again, this equation has |2 + 2m− n| solutions

mod 2, namely u = s
2+2m−n

for s ∈ {0, 2, 4, . . . , 2(2m− n + 1)}. For each m ≤ n− 1 there are
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(
n−1
m

)
ways to construct S1. This gives a total of

∑n−1
m=0

(
n−1
m

)
|2+2m−n| = n

(
n−1
k−1

)
real solutions

where the equality is proven below in Lemma 2.4.5.

Lemma 2.4.5.
∑2k−1

m=0

(
2k−1
m

)
|2 + 2m− 2k| = 2k

(
2k−1
k−1

)
.

Proof. We see that
∑2k−1

m=0

(
2k−1
m

)
|2 + 2m− 2k| is equal to
k−1∑
m=0

(
2k − 1

m

)
(2k − 2m− 2) (2.4.4)

+
2k−1∑

m=k−1

(
2k − 1

m

)
(2 + 2m− 2k) (2.4.5)

Applying (5.18) of [44] to (2.4.4), (2.4.4) is equal to

k

(
2k − 1

k

)
−

k−1∑
m=0

(
2k − 1

m

)
= k

(
2k − 1

k − 1

)
−

k−1∑
m=0

(
2k − 1

m

)
(2.4.6)

Again, using (5.18) of [44] we get the identity
2k−1∑
m=0

(
2k − 1

m

)
(2k − 1− 2m) = 2k

(
2k − 1

2k

)
= 0 (2.4.7)

This gives the identity for (2.4.5) as
2k−1∑
m=0

(
2k − 1

m

)
−

k−1∑
m=0

(
2k − 1

m

)
(2 + 2m− 2k) (2.4.8)

Adding (2.4.6) and (2.4.8) we see
2k−1∑
m=0

(
2k − 1

m

)
|2 + 2m− n| = k

(
2k − 1

k − 1

)
−

k−1∑
m=0

(
2k − 1

m

)
(2.4.9)

+
2k−1∑
m=0

(
2k − 1

m

)
−

k−1∑
m=0

(
2k − 1

m

)
(2 + 2m− 2k) (2.4.10)

Applying (2.4.6) to the last term in (2.4.10) gives
2k−1∑
m=0

(
2k − 1

m

)
|2 + 2m− n| = 2k

(
2k − 1

k − 1

)
− 2

k−1∑
m=0

(
2k − 1

m

)
+

2k−1∑
m=0

(
2k − 1

m

)

= 2k

(
2k − 1

k − 1

)
−

k−1∑
m=0

(
2k − 1

m

)
+

2k−1∑
m=k

(
2k − 1

m

)
= 2k

(
2k − 1

k − 1

)
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In the final case of Theorem 2.4.4 we switch from the susceptances being equal. The following

explains why.

Lemma 2.4.6. There exist susceptance values for Cn, 4 | n, where there are infinitely many real

solutions.

Proof. Set all susceptances equal to 1. The system of equations as defined in (2.1.1) with |Vk| =

1, gkm = 0 becomes sin(θk − θk−1) = sin(θk+1 − θk), for k = 1, . . . , n, where the indices wrap

around mod n. Set uk = θk−θk−1

π
for k = 1 . . . , n. Under these coordinates we know that∑n

k=1 uk ≡ 0 mod 2 and uk = ul or uk = 1 − ul for all k, l. Now partition the set {u1, . . . , un}

into two equal size sets S1 and S2. For all uk ∈ S1 set uk = u for some u ∈ R. For all uk ∈ S2

set uk = 1 − u. This implies that
∑n

k=1 uk = n
2
u + n

2
(1 − u) = n

2
≡ 0 mod 2 satisfying the

first condition. Since we can choose any u ∈ R, this implies that there are infinitely many real

solutions.

By [46] we know that generically there are finitely many solutions to the power flow equations

implying that such susceptances where Cn admits infinitely many real solutions lie on an algebraic

set of codimension at least two. We extend the results of Lemma 2.4.6 to complete networks.

Lemma 2.4.7. There are susceptance values for Kn with n ≥ 4 even that admit infinitely many

real solutions.

Proof. Set all susceptances bkm = 1. For n even it can be verified that there exists a family of

solutions of the form

{y1 = 0, yk+1 = −yk, x1 = −1, xk+1 = −xk}

for all even k ≥ 2. Taking xm, ym ∈ (0, 1) where x2
m + y2m = 1 for all odd m ≥ 1 gives infinitely

many real solutions.
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For n odd it can be verified that there exists a family of solutions of the form y1 = 0, x1 = −1

and

{y2 =
√
3

2
x3 −

1

2
y3, y4 = −

√
3

2
x3 −

1

2
y3, yk = −yk−1,

x2 =
1

2
x3 +

√
3

2
y3, x4 =

1

2
x3 −

√
3

2
y3, xk = −xk−1}

for k even and k ≥ 6. Taking xm, ym ∈ (0, 1) where x2
m + y2m = 1 for odd m ≥ 3 gives infinitely

many real solutions.

Theorem 2.4.4 shows that for cyclic networks on n ̸≡ 0 mod 4 nodes when all susceptances

are the same, there are the generic maximum number of real solutions. Since this instance lies off

the discriminant locus, this implies that for small perturbations of the susceptances there will still

be the maximum number of real solutions.

In contrast, the situations in Lemma 2.4.6 and Lemma 2.4.7 are not generic. The fact that

there are infinitely many solutions here means that the Jacobian is singular at this point. This has

practical importance as in a neighborhood of this point the Jacobian will be close to singular. This

affects the accuracy and efficiency of numerical methods like Newton-Raphson algorithms, which

are commonly used to find solutions to the power flow equations.

In addition, we find that when we perturb the susceptances in these cases to have finitely many

solutions, we also find instances with many real solutions. This indicates that a good heuristic for

finding instances with many real solutions is to consider when the susceptances are equal or almost

equal.

2.4.5 Other families of solutions

Finally, we conclude this section by showing that under the present assumptions, tree networks

only have trivial solutions.

Lemma 2.4.8. Tree networks admit only trivial solutions.

Proof. Let T = (V,E) be a tree and suppose T has s vertices with degree equal to 1 and t

vertices with degree greater than or equal to one. Since T is a tree, s ≥ 1. Let Ak = {m :
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vm is adjacent to vk}. This gives equations∑
m∈Ak

bkm sin(θk − θm) = 0 when deg(vk) ≥ 1 (2.4.11)

bkm sin(θk − θm) = 0 when deg(vk) = 1. (2.4.12)

If |V | > 2 for each vertex of degree 1, we know it must be adjacent to at least one vertex of degree

greater than 1. This means we can rewrite (2.4.11) as∑
m∈Ak

deg(vm)≥2

bkm sin(θk − θm) = 0 when deg(vk) ≥ 1 (2.4.13)

The equations defined in (2.4.13) are the same as those on tree T = (V ′, E ′) where V ′ = {v ∈

V : deg(v) > 1} and E ′ = {e ∈ E : e is adjacent to vk, vm ∈ V ′}. Since T was a tree and T ′

is a subgraph of T , this means T ′ is also a tree. We can repeat this argument again on T ′ and

so on until we are left with a system of equations where each equation only involves one term,

bkm sin(θk − θm). The equation at v1 simplifies to b01 sin(θ1) = 0 so θ1 = nπ for some n ∈ Z.

This forces y1 = sin(θ1) = 0 and x1 = cos(θ1) = ±1. We also have that for all vl adjacent to v1

that b1l sin(θl − θ1) = 0 so θ1 − θl = nπ for some n ∈ Z. This implies θl = n′π for n′ ∈ Z giving

that yl = 0 and xl = ±1. This argument repeats for all vertices adjacent to vl and so on. Since T

is connected, this covers all vertices v ∈ V .

Corollary 2.4.9. Solution sets for tree networks are always zero dimensional.

Remark 2.4.10. Lemma 2.4.8 would follow from a result proven in [11] with the assumption that

the variety is zero dimensional. The proof provided here does not rely on this assumption.

2.5 Bounding the number of complex solutions

Using monodromy methods it is theoretically possible to find all solutions to the power flow

equations given just one solution but a necessary component to monodromy is a stopping criterion.

One downside of monodromy is that a stopping criterion is not always immediate. If the number

of C∗ solutions is known, this gives a stopping criterion. Another stopping criterion, known as
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a trace test, gives a way to verify the number of solutions to a polynomial system [47, 48, 33].

The downside of a trace test is that it relies on finding all solutions to an even larger polynomial

system than the one under consideration. Moreover, there does not exist a certified numerical

implementation of the trace test.

Recently, another approach that uses monodromy to statistically estimate the number of so-

lutions was proposed [49]. Further, a common heuristic when the number of C∗ solutions is not

known, is to terminate the calculation after there have been 10 loops without finding any new

solutions. At this point you can run a trace test to verify that there are no other solutions.

We denote the number of C∗ solutions as K. For a fixed network, K is generically independent

of the susceptance values. For complete graphs Kn and cycle graphs Cn on n vertices with real-

valued power injections, [10, 11] prove that the number of C∗ solutions is
(
2n−2
n−1

)
and n

(
n−1
⌊n−1

2
⌋

)
respectively4. This provides an upper bound for K and can be used as a stopping criterion for the

monodromy method.

Our first result in this section is to show that removing a leaf halves the number of solutions to

the power flow equations. This is stated formally below.

Theorem 2.5.1. Let G = (V,E) be a graph on n vertices where the corresponding power flow

equations have K complex solutions. Then the power flow equations of G′ = (V ′, E ′) where

V ′ = V \{vk} and E ′ = E\{ekm} have K
2

solutions if e = vkvm where deg(vk) = 1.

Proof. Suppose e = {vk, vm} where deg(vk) = 1. The active power injection and voltage equation

at node vk is then

Pk = bkm(xkym − xmyk), 1 = x2
k + y2k. (2.5.1)

Observe that G′ is no longer connected to node vk and moreover, any solution to the power flow

equations of G′ where the active power injection at node vm is node Pk + Pm, is a solution to the

power flow equations of G so long as xk is chosen so (2.5.1) is satisfied. There are two xk, yk that

satisfy (2.5.1) for fixed xm, ym, giving the result.
4We note that while these bounds were proven for networks with nonzero active power injections, they are still

valid under our assumption of zero active power injections. This is because zeroing out the constant terms does not
change the Jacobian of the system and therefore won’t force the system onto the discriminant locus.
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Corollary 2.5.2. Let G = (V,E) be a graph on n vertices and G′ = (V ′, E ′) where V ′ =

V \{vn−1} and E ′ = E\{en−1,m} where e = vn−1vm and deg(vn−1) = 1. If

(x∗, y∗) = (x∗
1, . . . , x

∗
n−2, y

∗
1, . . . , y

∗
n−2)

is a solution to the power flow equations on graph G′ with active power injections P1, . . . , Pm−1, Pn−1+

Pm, Pm+1, . . . , Pn−2 then (x∗, y∗, x∗
n−1, y

∗
n−1) is a solution to the power flow equations on graph G

with active power injections P1, . . . , Pn−1 where

{
x∗
n−1 =

Pn−1y
∗
m − x∗

m

√
b2m,n−1 − P 2

n−1

bm,n−1

, y∗n−1 = −
Pn−1x

∗
m + y∗m

√
b2m,n−1 − P 2

n−1

bm,n−1

}
{
x∗
n−1 =

Pn−1y
∗
m + x∗

m

√
b2m,n−1 − P 2

n−1

bm,n−1

, y∗n−1 = −
Pn−1x

∗
m − y∗m

√
b2m,n−1 − P 2

n−1

bm,n−1

}
.

Finding explicit closed forms for other graphs is an active area of research. Attaining bounds

via Theorem 2.2.6 and mixed volume computations is one method for this. Unfortunately, using the

form of power flow equations in (2.1.5), the mixed volume is a strict upper bound on the number

of C∗ solutions.

To remedy this, we observe that there is more than one way to make (2.1.1) algebraic. For

instance, we can use the identity sin(θk − θm) =
1
2i
(eiθke−iθm − e−iθkeiθm) then set xk = e−iθk to

write

Pk =
n−1∑
m=0

bkm
2i

( xk

xm

− xm

xk

)
(2.5.2)

where now x0 = 1.

Let pk := Pk −
∑n−1

m=0
bkm
2i

(
xk

xm
− xm

xk

)
. Using this formulation of the power flow equations, all

complex solutions lie in the torus and we have the following conjecture.

Conjecture 2.5.3. For generic susceptance values, bkm, the number of C∗ solutions to (2.5.2) is

equal to MVol
(
Newt(p1), . . . ,Newt(pn−1)

)
.
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Observe that in Conjecture 2.5.3 we make no assumptions on the genericity of the active power

injections, Pk. This is because the origin is in the interior of Newt(pk) for k ∈ [n−1], so genericity

of the active power injections is not necessary.

In [11] it is shown that Conjecture 2.5.3 is true for tree networks and cyclic networks under the

assumption that bkm ̸= bkm. As a corollary of Theorem 2.4.4 we can show that Conjecture 2.5.3 is

true for cyclic graphs even when bkm = bmk.

Corollary 2.5.4. Let Cn be the cyclic network on n nodes. For generic choice of susceptances and

n ≥ 1, the number of complex solutions to the power flow equations for Cn is n
(

n−1
⌊n−1

2
⌋

)
.

Proof. By Theorem 2.2.6 and [11, Theorem 15] we know that generically, there are at most

n
(

n−1
⌊n−1

2
⌋

)
solutions for cyclic networks. By Theorem 2.4.4 we know that bound is achievable by all

real (and therefore complex) solutions.
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Chapter 3

Real intersection points of ellipsoids

Much of the work in Chapter 2 focused on studying the real solutions to the power flow equa-

tions only after finding all complex solutions. The work in this chapter wishes to circumvent having

to find all complex solutions to the power flow equations by exploiting the ellipsoid structure of

the power flow equations.

3.1 Tracing around the intersections of ellipsoids

As outlined in Section 2.4, typically the number of real solutions to the power flow equations is

much less than the total number of complex solutions. Therefore, even though Algorithm 1 signif-

icantly decreased the amount of time it took to find all real solutions to the power flow equations,

there is still a lot of wasted computation associated with finding all complex solutions then filtering

out the real ones.

There have been methods proposed to only find the real-valued solutions to (2.1.5), but none

exist that are able to provably find all of them [3, 4, 5]. The methods proposed in these papers rely

on the fact that the power flow equations can be reformulated as high dimensional ellipsoids, so

finding all real solutions to the power flow equations is equivalent to finding all real intersection

points of high dimensional ellipsoids. This transforms (2.1.5) into the system

xTA1x = 0

xTA2x = 0

...

xTA2n−2x = 0

(3.1.1)
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where Ai ∈ Sym2n−2(R) is positive definite for i = 1, . . . , 2n−2 and x = (x1, . . . , xn−1, y1, . . . , yn−1).

Previous methods [4, 5] used the fact that the intersection of n− 1 ellipsoids in n dimensional

space is a one dimensional curve, H where H = ∪k
i=1Si and each Si is homeomorphic to a circle.

The authors in [5] argue that each solution to the power flow equations is connected by such a

curve Si. This was later disproved in [3].

Instead of trying to trace around H, the authors in [4] instead introduced a parameter, αi, for

each ellipsoid and defined xTAix = αi. Varying each αi, corresponds to shrinking and expanding

each ellipsoid which then allows one to trace along the hypersurface defined by the intersection of

n− 1 ellipsoids.

This idea is illustrated in Figure 3.1 for two ellipsoids defined by the equations

2x2 + y2 + xy − 1 = 0, x2 + 3y2 + 2xy − 1 = 0.

Here we set x2+3y2+2xy− 1 = α1 and vary α1 from 0 to 3 then back down to 0 to find a second

real solution to these two ellipsoids from the first.

In [4] the authors explicitly construct the ellipsoids representing the power flow equations. It

is clear that when n = 2 this method will find all real solutions but work proving this method will

find all real solutions when n > 2 is missing in the literature. The main results of this section are

to show that this method works when n = 3 and when all eigenvectors of A1, . . . , An are the same.

We first need a few preliminaries.

Lemma 3.1.1. For Ai ∈ Rn×n, i ∈ [n], consider the system of equations

xTA1x = 1, . . . , xTAnx = 1, (3.1.2)

xTMA1M
Tx = 1, . . . , xTMAnM

Tx = 1 (3.1.3)

where M ∈ Rn×n is an invertible matrix. Then, x∗ is a solution to (3.1.2) if and only if M−Tx∗ is a

solution to (3.1.3), where M−T denotes the inverse of the transpose of M . In addition, the number

of real solutions between (3.1.2) and (3.1.3) is preserved.

Proof. Substituting in M−Tx∗ to xTMAiM
Tx we have

x∗TM−1MAiM
TM−Tx∗ = x∗TAix

∗ = 1.
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Figure 3.1: Expanding and shrinking the ellipse x2 + 3y2 + 2xy − 1 = α1 from α1 = 0 → 3 → 0

to find a second real solution to 2x2 + y2 + xy − 1 = 0, x2 + 3y2 + 2xy − 1 = 0.

Both directions are then clear. For the second part, observe that since M−T is a real matrix, if x∗

is real-valued so is M−Tx∗ and vice versa.

Lemma 3.1.1 tells us that we are allowed to simultaneously multiply our ellipses by a nonsin-

gular matrix and its transpose and we still preserve all solutions to this system. We would like to

chose such an M that simplifies our problem. The following theorem gives an indication of which

such M to choose.

Theorem 3.1.2. [50, Theorem 7.6.1] For symmetric, positive definite matrices A,B ∈ Rn×n, there

exists a nonsingular matrix M ∈ Rn×n such that MAMT = I and MBMT = D where D is a

diagonal positive definite matrix.

The proof of Theorem 3.1.2 given in [50] is constructive, meaning that for practical purposes

we can easily compute such a matrix M using Cholesky and spectral decompositions.
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Figure 3.2: The intersection of ellipses defined by equations x2
1+x2

2+x2
3 = 1, 1

2
x2
1+2x2

2+
3
2
x2
3 = 1.

Theorem 3.1.3. There exists a method to systematically shrink and expand three ellipsoids in R3

to find all real intersection points starting from one.

Proof. Consider three ellipsoids, E1, E2, E3 ⊂ R3, where Ei = {x ∈ R3 : xTAix = 1} and Ai ≻ 0

for i = 1, 2, 3. By Lemma 3.1.1 and Theorem 3.1.2, we can scale each Ai by A′
i = MAiM

T such

that A′
1 = I and A′

2 = D for diagonal positive definite D. Let E ′
1, E ′

2 and E ′
3 be the corresponding

ellipsoids of A′
1, A

′
2 and A′

3. Our problem is now reduced to finding all real intersection points of

E ′
1, E ′

2 and E ′
3.

Observe that for ellipsoids E ′
1 = {x ∈ R3 : xT Ix = 1} and E ′

2 = {x ∈ R3 : xTDx = 1}, the

corresponding defining equations can be simplified to

x2
1 + x2

2 + x2
3 = 1

d1x
2
1 + d2x

2
2 + d3x

2
3 = 1

for positive d1, d2, d3. If di > 1 for all i ∈ [3] or if di < 1 for all i ∈ [3] then E ′
1 ∩ E ′

2 = ∅. In this

case, there are no real solutions to E ′
1 ∩ E ′

2 ∩ E ′
3, and therefore no real solutions to E1 ∩ E2 ∩ E3.

Now consider E ′
1 ∩E ′

2 ̸= ∅. In this case, there are two, one-dimensional connected components

of E ′
1 ∩ E ′

2, S1 and S2 where S1 = −S2. A picture of this is shown in Figure 3.2. Since all real

intersection points of E ′
1, E ′

2, E ′
3 must lie on S1 or S2, it is clear that by tracing around both curves

one will find all real intersection points. What is not clear is that if one starts with a real intersection
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point x∗ ∈ S1, then there exists a path through the other one-dimensional curves defined by the

intersection of E ′
1 ∩ E ′

3 or E ′
2 ∩ E ′

3. Fortunately, since S1 = −S2, by tracing around just one of

these curves then negating all real solutions found, one will then find all real intersection points of

E ′
1, E ′

2, E ′
3.

Theorem 3.1.3 shows that for the intersection of three ellipsoids in R3, one can efficiently

find all real intersection points without computing all complex ones. We conclude this section by

showing that we can do the same thing if all eigenvectors of the ellipsoids are the same.

Theorem 3.1.4. Consider the polynomial system

xTA1x = 1, . . . , xTAnx = 1

where Ai ∈ Symn(R) is positive definite, i ∈ [n] and A1, . . . , An have eigenvectors {v1, . . . , vn}.

Then there exists an efficient way to find all real solutions to xTA1x = 1, . . . , xTAnx = 1.

Proof. Let V = [v1 · · · vn] ∈ Rn×n be the matrix of eigenvectors of A1, . . . , An. This means that

V AiV
T = Λi for i ∈ [n] where Λi is a diagonal matrix with the eigenvalues of Ai on the diagonal.

By Lemma 3.1.1 we can scale each Ai by V and V T giving an equivalent system of equations

xTΛix = 1 for i ∈ [n].

Observe that this system now only contains the monomials x2
i , therefore finding all solutions

to this system amounts to solving the linear system of equations
− Diag(Λ1) −

− Diag(Λ2) −
...

− Diag(Λn) −

 ·


x2
1

x2
2

...

x2
n

 =


1

1
...

1

 . (3.1.4)

Given (x2
1, . . . , x

2
n) satisfying (3.1.4), all 2n solutions to xTΛ1x = 1, . . . , xTΛnx = 1 are then

(±√
x1, . . . ,±

√
xn).
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3.2 Approximating the convex hull of the real intersection points of ellipsoids

Aside from finding all real solutions to the intersection of ellipsoids, another problem of im-

portance is to approximate the convex hull of these real intersection points. Specifically, given

distinct ellipsoids E1, . . . , En ⊆ Rn where Ei = {x ∈ Rn : xTAix = 1} for Ai ≻ 0, we wish

to approximate the polytope defined by the convex hull of the real intersection points of these

ellipsoids:

C(A1, . . . , An) = Conv({x ∈ Rn : xTAix = 1, ∀ i ∈ [n]}).

Observe that C(A1, . . . , An) is a polytope where each vertex is a real solution to xTAix = 1

for i ∈ [n]. Approximating the convex hull of real varieties is an important problem in convex

algebraic geometry due to the fact that the minimum of a convex function over a set is the same as

the minimum over the convex hull of that set.

We are interested in minimizing a linear function over the intersection of ellipsoids. Specifi-

cally, we are interested in the polynomial optimization problem:

min
x∈Rn

cTx subject to xTAix = 1, i ∈ [n], (Opt-Ellipse)

where c ∈ Rn and Ai ≻ 0 for i ∈ [n]. This problem is non-convex and NP hard to solve, therefore

we are interested in computationally friendly approximations to (Opt-Ellipse). To do this, we first

consider existing methods in solving quadratic polynomial optimization problems.

Quadratic programs (QP) are optimization problems of the form

min
x∈Rn

xTCx+ 2cTx subject to xTAix+ 2aTi x+ αi ≤ 0, i ∈ [m] (QP)

where C,Ai ∈ Symn(R) are symmetric n × n matrices, c, ai ∈ Rn and αi ∈ R for i ∈ [m].

QPs have broad modelling power and have found applications in signal processing, combinatorial

optimization, power systems engineering and more [51, 52, 53]. As mentioned above, in general

these problems are NP hard to solve [54] but a convex relaxation defined by a semidefinite pro-

gram gives an outer relaxation of (QP). This relaxation, called the Shor relaxation [55], lifts the
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optimization variable x ∈ Rn to
(
n+1
2

)
-dimensional space by considering optimization variable

X ∈ Symn+1(R). It is defined as:

min
X⪰0

⟨C, X⟩ subject to ⟨Ai, X⟩ ≤ 0, i ∈ [m]

⟨A0, X⟩ = 0 (QP-Relax)

where ⟨·, ·⟩ denotes the trace, C :=

0 cT

c C

, Ai =

αi aTi

ai Ai

 and A0 =

 1 01×n

0n×1 0n×n

.

To solve the Shor relaxation, one must solve a semidefinite program which is a type of convex

optimization problem that can be solved efficiently using interior point methods [56, Chapter 11].

If the optimal solution X∗ to (QP-Relax) is rank 1 and unique, we say the relaxation is exact. If

(QP-Relax) is not exact then its objective value still gives a lower bound on the objective value of

(QP). An example of this convex relaxation is shown in Figure 3.3.

Figure 3.3: The feasible space and objective function contours to the optimization problem

minx,y∈R x2 + 2y2 subject to 3x2 − 4xy + y2 = 1 (left) and the corresponding convex relax-

ation in the matrix variable space X =

x11 x12

x12 x22

 projected onto the x11, x22 coordinates (right).

A downside of the Shor relaxation is that if it is not exact, then, in general, the optimal solution

attained gives no information about the optimal solution of the original problem. Specifically, since

the Shor relaxation exists in a different variable space then the original problem, it is in general

not even possible to get a feasible solution from it. In addition, while semidefinite programs have
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polynomial time algorithms, these algorithms still can be too computationally expensive, both in

terms of time and storage, for problems of medium to large size. For this reason, we consider a

different relaxation of (Opt-Ellipse) that only requires linear programming.

The key observation that guides our relaxation is that ellipsoids are compact sets that can be

easily bounded by the eigenvectors and values of their corresponding defining matrix. Specifically,

for any ellipsoid E = {x ∈ Rn : xTAx = 1}, let 0 < λ1 ≤ · · · ≤ λn be its eigenvalues with

corresponding eigenvectors v1, . . . , vn ∈ Rn. Then E ⊂ P where

P(A) = {x ∈ Rn : ⟨vi, x⟩ ≤
1√
λi

, −⟨vi, x⟩ ≤
1√
λi

, i ∈ [n]}. (3.2.1)

Example 3.2.1. We consider the ellipse E = {x ∈ Rn : xTAx = 1} where A =

1 1
2

1
2

2

. A has

eigenpairs defined as:

{v1, λ1} =
{ −1+

√
2√

4−2
√
2

1√
4−2

√
2

 ,
1

2
(3 +

√
2)
}

{v2, λ2} =
{ −1−

√
2√

4−2
√
2

1√
4−2

√
2

 ,
1

2
(3−

√
2)
}
.

The ellipse E and its corresponding bounding polytope P(A) are shown in Figure 3.4.

The observation that each ellipse can be efficiently bounded by a polytope with at most 2n

facets then suggests a natural outer linear relaxation for (Opt-Ellipse). Let P(A1, . . . , An) =

P(A1) ∩ · · · ∩ P(An). We consider the following relaxation of (Opt-Ellipse):

min cTx subject to x ∈ P(A1, . . . , An). (Ellipse-Relax)

Observe that (Ellipse-Relax) is a linear program with 2n2 constraints, meaning that it can be

solved in polynomial time. Figure 3.5 shows P(A1, A2) for the ellipses

E1 = {x ∈ R2 : xT

 1 1/2

1/2 2

x = 1}, E2 = {x ∈ R2 : xT

1 0

0 1

x = 1}.
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Figure 3.4: The ellipse E defined in Example 3.2.1 and the corresponding polytope P(A) (left).

The ellipse P(A) with the constraint ⟨Ap, x− p⟩ ≤ 0 for p = [3
4
, 1
16
(−3 +

√
65)] (right).

Figure 3.5: The ellipses E1 = {x ∈ R2 : x2
1+2x2

2+x1x2 = 1} and E2 = {x ∈ R2 : x2
1+x2

2 = 1}

(orange), the convex hull of E1 ∩ E2 (light blue) and the relaxation P(A1, A2) (dark blue).

As seen in Figure 3.5, C(A1, . . . , An) ⊆ P(A1, . . . , An) so (Ellipse-Relax) gives an outer ap-

proximation of (Opt-Ellipse). Anytime one presents a relaxation of a difficult optimization prob-

lem, a natural question is when is it exact.

Theorem 3.2.2. P(A1, . . . , An) = C(A1, . . . , An) if Ai is rank one for all i ∈ [n].
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Proof. Suppose rank(Ai) = 1 for i ∈ [n]. Then

xTAix− 1 = xTλiviv
T
i x = (

√
λiv

T
i x)

T · (
√
λiv

T
i x)− 1 = (⟨

√
λivi, x⟩ − 1)(⟨

√
λivi, x⟩+ 1).

This shows that {x ∈ Rn : xTAix = 1} is the union of two hyperplanes. Therefore,

C(Ai) = Conv({x ∈ Rn : xTAix = 1})

= {x ∈ Rn : ⟨
√
λivi, x⟩ − 1 ≤ 0, ⟨

√
λivi, x⟩+ 1 ≥ 0}

= P(Ai),

giving that C(A1, . . . , An) = P(A1, . . . , An).

Since C(A1, . . . , An) ⊆ P(A1, . . . , An) any optimal value to (Ellipse-Relax) will give a lower

bound on the optimal solution to (Opt-Ellipse). Another benefit is that an optimal solution to

(Ellipse-Relax) lives in the same variable space as a feasible solution to (Opt-Ellipse). With this in

mind, and using Lemma 3.1.1 to assume without loss of generality that one of the ellipses is a unit

sphere, we can bound how far an optimal solution to (Ellipse-Relax) is from (Opt-Ellipse).

Theorem 3.2.3. Consider an optimal solution x∗ to (Opt-Ellipse) where E1 is a unit sphere. Then

an optimal solution to (Ellipse-Relax), x∗
relax, satisfies ∥x∗ − x∗

relax∥2 ≤
√

n+ 1 +
√
n.

Proof. Since E1 is a unit sphere, then any optimal solution to (Opt-Ellipse), x∗, must satisfy

∥x∗∥2 = 1. In this case, P(A1) is defined as Conv({−1, 1})n. Since P(A1, . . . , An) ⊆ P(A1), we

have that ∥x∗
relax∥1 ≤ 1.

Now observe that the maximum distance between any two points in P(A1) is 2
√
n which is

attained for x = (1, . . . , 1) and y = (−1, . . . ,−1). Since we have that ∥x∗∥2 = 1, we want the

maximum distance from any point in P(A1) to the unit sphere. This is given by projecting y onto

the unit sphere. Therefore, the maximum distance between x∗ and x∗
relax is less than or equal to the

distance between (1, . . . , 1) and −( 1√
n
, . . . , 1√

n
). The result then follows.

As an immediate corollary of Theorem 3.2.3 we also have a bound on the optimal value of

(Ellipse-Relax).
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Corollary 3.2.4. Consider the optimal value c∗ to (Opt-Ellipse) where E1 is a unit sphere. Then

the optimal value to (Ellipse-Relax), c∗relax, satisfies |c∗ − c∗relax| ≤ ∥c∥2 ·
√

n+ 1 +
√
n.

Proof. Observe that c∗ = cTx∗ and c∗relax = cTx∗
relax and recall the Cauchy-Schwarz inequality

which states for x, y ∈ Rn, |xTy| ≤ ∥x∥2 · ∥y∥2 . Therefore,

|c∗ − c∗relax| = |cT (x∗ − x∗
relax)|

≤ ∥c∥2 · ∥x∗ − x∗
relax∥2

≤ ∥c∥2 ·
√
n+ 1 +

√
n

While Theorem 3.2.3 and Corollary 3.2.4 gives an upper bound on the distance between optimal

solutions and values of (Ellipse-Relax) and (Opt-Ellipse), for large n these bounds may still be

large. For this reason, we would like to strengthen our approximation of C(A1, . . . , An).

Observe that for any p ∈ E = {x ∈ Rn : xTAx = 1}, the hyperplane that is tangent to E at

p adds a constraint to P(A) that tightens this approximation even further. This constraint can be

written as ⟨Ap, x− p⟩ ≤ 0. A picture of this is shown in Figure 3.4

We see then that for any point p ∈ Ei, intersecting P(A1, . . . , An) with the constraint ⟨Ap, x−

p⟩ ≤ 0 can only tighten our approximation of C(A1, . . . , An). The following algorithm defines a

way to systematically add these constraints.
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Algorithm 2 A linear relaxation to the intersection of ellipsoids.

• Input: A set of ellipsoids E1, . . . , En with defining matrices A1, . . . , An, a tolerance ϵ > 0

• Output: A candidate solution to min {cTx : x ∈ C(A1, . . . , An)}

• Preprocessing Step:

1. Compute the polytope P(A1, . . . , An) using the inequalities defined in (3.2.1) and find

x0 = argmin{cTx : x ∈ P(A1, . . . , An)}

2. Set p0 = cTx0, p∗ = ∞ and P∗ = P(A1, . . . , An)

• While: p∗ − p0 > ϵ

1. Compute x
(i)
0 = x0/

√
x0AT

i x0 for i ∈ [n]

2. Set P∗ = P∗ ∩ {⟨Aix
(i)
0 , x− x

(i)
0 ⟩ ≤ 0, i ∈ [n]}

3. Compute x0 = argmin{cTx : x ∈ P∗} and update p∗ = p0 and p0 = cTx0

• Return: x0 and p0

We highlight Algorithm 2 on a small example.

Example 3.2.5. We consider the optimization problem

min x1 − 2x2 subject to x1, x2 ∈ E1 ∩ E2

where E1 = {x ∈ R2 : x2
1 + x1x2 + 2x2

2 = 1} and E2 = {x ∈ R2 : x2
1 + x2

2 = 1}. These ellipses

and the corresponding polytope P(A1, A2) are shown in Figure 3.5.

We run Algorithm 2 with ϵ = 0.1 and give the results on the optimal solution and objective

value at each iteration in Table 3.1. We also show the geometric picture of what is happening in

Algorithm 2 between iterations two and three in Figure 3.6. In this case, Algorithm 2 converges to

the true optimal solution in four iterations.
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Iteration Number Optimal Solution Objective Value

1 [-0.801, 1.00] -2.801

2 [-0.707, 0.715] -2.137

3 [-0.707, 0.707] -2.121

4 [-0.707, 0.707] -2.121

Table 3.1: Progression of Algorithm 2 from Example 3.2.5.

Figure 3.6: The feasible region of P∗ (dark blue), C(A1, A2) (light blue) and the corresponding

ellipses E1, E2 (orange) between iterations one (left) and two (right) running Algorithm 2 using the

parameters in Example 3.2.5.

While in Example 3.2.5, Algorithm 2 converges to the true optimal solution of (Opt-Ellipse), in

general this is not guaranteed to happen. Instead, we view Algorithm 2 as a way to quickly attain

better lower bounds on the true optimal solution to (Opt-Ellipse) as well as find a potential solution

relatively close to the true global optimizer.

We present the timings it took to run Algorithm 2 versus the standard Shor relaxation outlined

in (QP-Relax) for (Opt-Ellipse) as the size of the problem increases. We see in Table 3.2 that

Algorithm 2 is increasingly faster than (QP-Relax) as n increases.
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n 10 25 50 100 150 200

Time Algorithm 2 0.001 0.02 0.34 9.21 58.63 214.00

Time (QP-Relax) 0.02 0.13 0.81 16.30 95.22 769.27

Table 3.2: The average time (seconds) it took to run Algorithm 2 with tolerance ϵ = 0.1 · n versus

(QP-Relax) as relaxations to (Opt-Ellipse) where each ellipse Ei ⊂ Rn, i ∈ [n].

All computations were done on a 2018 Macbook Pro 2.3 GHz Quad-Core Intel Core i5 and the

average is taken over 10 random problem instances. We solve the linear program in Algorithm 2

using GLPK [57] and we solve the semidefinite program needed for (QP-Relax) using Mosek [58].

The problem data is generated randomly as follows. Each entry of the objective value c ∈

Rn is chosen to be iid N (0, 1). To generate each ellipsoid, we define a matrix B where each

entry is chosen iid N (0, 1). We then consider α · BTB where α is a scaling factor that ensures

x = (1, . . . , 1) ∈ Rn is a solution to xTαBBTx = 1. This is done to ensure that the problem

(Opt-Ellipse) is feasible.
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Chapter 4

Data center geographical load shifting

The content of this chapter addresses a concrete problem. It is similar to Chapter 2 and Chap-

ter 3 in that it considers an optimization problem on power systems but overall, it is less theoretical

than the rest of this thesis. In this chapter we consider the linearized version of the power flow equa-

tions, so the complexity comes from the nested structure of the optimization model. This chapter

focuses on modeling of geographic load shifting which is motivated by the following problem.

Increasing demand for computing has led to the development of large-scale, highly optimized

data centers, which represent large loads in the electric power network. Many major comput-

ing and internet companies operate multiple data centers spread geographically across the world.

Thus, these companies have a unique ability to shift computing load, and thus electric load, ge-

ographically. This chapter outlines a “bottom-up” load shifting model which uses data centers’

geographic load flexibility to lower carbon emissions. This model utilizes information about the

locational marginal carbon footprint of the electricity at individual nodes, but does not require

direct collaboration with the system operator. We demonstrate how to calculate marginal carbon

emissions, and assess the efficacy of our approach compared to other settings, including where the

data centers bid their flexibility into a centralized market. We find that data center load shifting

can achieve substantial reductions in carbon emissions even with modest load shifting.

4.1 Motivation

The recent technology revolution has led to an increase in demand for computing resources.

Between 2010 and 2018 there was an estimated 550% increase globally in the number of data
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center workloads and computing instances [59]. Technology companies like Amazon, Facebook,

Google, Microsoft and Alibaba run networks of these highly optimized and efficient hyper-scale

data centers dispersed geographically throughout the world [60, 61].

Hyper-scale data centers represent large loads on electric power networks. In an effort to

mitigate their environmental impact, many of the companies that operate these data centers have

made public pledges to reduce their carbon emissions through improved efficiency and by investing

in renewable power generation [62, 63]. Google is working to become carbon free through the use

of carbon-intelligent computing which shifts computing tasks to less carbon intensive hours or

locations [64]. The concept of computing that adapts to the operation of the electric grid has been

realized by start-ups [65], and plays an important part in the vision of zero carbon cloud computing

[66, 67, 68].

Computing companies that operate networks of data centers have the ability to defer when

computing tasks are processed or process them at different locations. This provides data centers

with a unique tool to control and adapt their electricity use geographically. Previous research has

examined the impact of integrating data centers and demand response [69, 70, 71, 72, 73, 74,

75], considered geographical load shifting to reduce electricity costs [76, 77, 78, 79] and studied

optimal investment locations of data centers [80].

The electricity markets are operated by independent system operators (ISOs) to minimize gen-

eration cost without direct consideration of carbon emissions. Other work has investigated the

potential benefit of cooperation between data centers and the ISO [78], and modelled data center

flexibility through the use of virtual links in time and space [81]. Many of these works and others

consider shifting of computing load to reduce the carbon emissions of data centers by increasing

absorption of renewable energy [82, 83, 79, 84, 85]. An important aspect of these previous works

is that they either assume collaboration between the ISO and the data centers (meaning that data

center operators must give up control of their energy usage to the market clearing), or perform load

shifting using very simplified metrics of carbon emissions associated with the electric grid (i.e.,

they neglect variations in CO2 emissions across different locations which arise due to transmission
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congestion). Here, we use additional data from the electric market clearing to compute the loca-

tional marginal carbon emissions, a metric that more accurately represents the carbon emissions

associated with electricity usage at different locations in the grid.

In electricity markets the price of electricity is calculated based on locational marginal prices

(LMPs), which reflect the increase in system cost for one additional unit of load. Previous work

on reducing carbon emissions through load shifting has assumed that prices are directly tied to

the fraction of non-renewable energy [86], or considered average carbon emissions for electricity

in a region and/or renewable energy curtailment [87, 88, 85]. A benefit to these metrics is that

several companies provide information about the average carbon intensity of electricity [89, 90]

or total renewable energy curtailment [91], which makes the metrics easier to compute. However,

these metrics fail to consider important aspects of electric grid operation, such as the impact of a

marginal increase or decrease in load or transmission capacity. The use of marginal emissions as a

tool to assess the impact of interventions such as energy efficiency or renewable energy has been

discussed in [92, 93, 94, 95, 96]. The purpose of this chapter is to define a locational marginal

carbon emission that is based off the underlying dynamics of the electric power system and to

evaluate this metric against other commonly considered models.

4.2 Models for load shifting

Electricity markets are typically cleared using a DC optimal power flow (DC OPF) model,

which minimizes generation cost subject to transmission and generation constraints [97, 98]. We

distinguish between two different modes of interaction between the data centers and the ISO that

operates the electricity market.

(1) Data center-driven load shifting. In this model, the data center loads are fixed values to

the ISO, but can be adapted by the data centers themselves. Here the data centers solve

an internal optimization problem (reflecting internal constraints on the load flexibility) to

determine how to shift their electricity consumption to reduce carbon emissions.
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(2) ISO-driven load shifting. In this model, the data center interacts with the market as a

market participant with flexible demand, and provides a model of load flexibility to the

ISO. The ISO then integrates the load flexibility model into the overall market clearing, and

determines how to shift data center load to achieve the best solution for the whole system.

We outline both models below.

4.2.1 Data center-controlled load shifting

We first describe the data center driven load shifting model, which is adopted from [99]. This

model operates in a three stages.

Step 1: The ISO solves a DC OPF. In the first step, the ISO clears the electricity market by

solving the DC OPF. To formulate the DC OPF, we consider an electric power network with the

set of nodes, loads, transmission lines and generators denoted N , D, L and G respectively. Let

Gi ⊂ G and Di ⊂ D be the subset of generators and loads connected to node i. Given this notation,

the DC OPF is defined as:

min
θ,Pg

cTPg (4.2.1a)

s.t.
∑

ℓ∈Gi
Pg,ℓ −

∑
ℓ∈Di

Pd,ℓ =∑
j:(i,j)∈L−βij(θi−θj), ∀i ∈ N (4.2.1b)

−P lim
ij ≤−βij(θi−θj)≤P lim

ij , ∀(i, j) ∈ L (4.2.1c)

Pmin
g,i ≤ Pg,i ≤ Pmax

g,i , ∀i ∈ G (4.2.1d)

θref = 0. (4.2.1e)

Here, the optimization variables are the voltage angles at each node, θi for i ∈ N as well as the

generation dispatch Pg,ℓ for all ℓ ∈ G. The objective value (4.2.1a) seeks to minimize generation

costs where c ∈ R|G| is a vector of generator costs and Pg is the vector of all generator variables

Pg,ℓ. The constraint (4.2.1b) ensures that nodal power balance constraints are met, where βij ∈ R

is the susceptance value on line (i, j) and Pd,ℓ is the load demand at load ℓ ∈ Di. The constraints

(4.2.1d) and (4.2.1c) define transmission line and generator capacity constraints where P lim
ij is the
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transmission capacity, which we assume is the same in both directions, and Pmin
g and Pmax

g are the

generator capacity constraints. Finally, (4.2.1e) fixes the voltage angle at the reference node to be

zero.

Step 2: Data centers shift load. Independently of the ISO, data center operators shift their load to

minimize carbon emissions. To estimate the impact of a load shift, the data centers utilize a shifting

metric λ. There are multiple possible definitions of λ, which will be discussed in Section 4.2.2. We

let C denote the set of all shiftable data center loads and consider optimization variables ∆Pd,i for

all i ∈ C and sij for all (i, j) ∈ C×C. The former represents the change in load at data center i and

the latter represents the shift in load from data center i to j. The resulting optimization problem is

given by:

min
∆Pd,s

∑
i∈C

λi∆Pd,i +
∑

(i,j)∈C×C

dijsij (4.2.2a)

s.t. ∆Pd,i =
∑

j∈C sji −
∑

k∈C sik ∀i ∈ C (4.2.2b)∑
i∈C

∆Pd,i = 0 (4.2.2c)

− ϵi · Pd,i ≤ ∆Pd,i ≤ ϵi · Pd,i ∀i ∈ C (4.2.2d)

0 ≤ sij ≤ Mij ∀ij ∈ C × C. (4.2.2e)

The objective value (4.2.2a) minimizes λ over the shift in data center load, ∆Pd, while considering

a cost dij associated with shifting load from data center i to data center j. The constraint (4.2.2b)

defines that the change in load at data center i is equal to the total load shifted in minus the total

load shifted out, (4.2.2c) enforces the sum of all load shifts to be zero, (4.2.2d) limits the amount

each data center can shift as a percentage, ϵ, of their original load and (4.2.2e) limits how much

load data center i can send to data center j.

Step 3: ISO resolves DC OPF with new load pattern. Next, the ISO resolves the DC OPF (4.2.1)

with new load profile, P ′
d,i = Pd,i + ∆P ∗

d,i, where ∆P ∗
d,i is the optimal solution to (4.2.2) for all

i ∈ N . We assume that the system is operated using this solution1

1Note that we assume that the ISO solves the OPF twice for each time step, once before and once after the load
shift. In reality, OPF is only solved once for each time step, and the data center loads would likely use λ values



51

4.2.2 Shifting Metrics

For data centers to shift load as described in (4.2.2), the shifting metric λ needs to be specified.

Below, we review four different metrics that have been proposed to guide load shifting. Note that

all the metrics are defined as vectors with one entry for each node in the system.

The price of electricity λLMP. The most widely used metric for load shifting is the price of

electricity, which is given by the locational marginal price (LMP) at each node in the power grid.

We will refer to this metric as λLMP. The LMP represents the increase in overall system cost due to

an incremental increase of 1 MW of load at the given node, and is calculated as the dual variable of

the nodal balance constraints (4.2.1b) of the original DC OPF. LMPs are easy to access, as they are

typically made available in real time, and have been proposed for data center load shifting in [78].

Furthermore, since renewable generators tend to be the cheaper generators, it is often assumed

that shifting load to nodes with lower prices λLMP will contribute to reducing renewable energy

curtailment.

Average carbon emissions λaverage. A common metric for the carbon content of electricity is

average carbon emissions per MW of load across a region of the electric grid [89]. This metric,

which we will denote by λaverage, has the same value for all nodes in a region R. The kth entry of

λaverage, corresponding to the kth node located in region R, is defined as

λaverage =
∑

i∈R gi·Pg,i∑
i∈R Pg,i

, (4.2.3)

where gi is the carbon intensity of generator i. The intuition behind this metric is to shift load

to regions with lower average carbon footprint, and thus reducing the average carbon emissions

associated with electricity consumption. This type of metric has been proposed for data center

load shifting in [85]. A benefit of using λaverage is that these values are made publicly available by

various companies [89, 90].

Excess low carbon power λexcess. This metric considers shifting based on the amount of excess low

carbon generation capacity available in a region, and accounts for renewable energy curtailment

calculated based on the OPF solution from the previous time step for shifting. However, if the OPF model is solved
frequently enough, e.g. every 5 minutes, it is reasonable to assume that the load will remain largely constant between
time periods and our model is a good estimate.
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(solar PV and wind) as well as unused hydro, nuclear power and storage generation. The excess

low carbon power is defined for a given region, where the value of the kth component of λexcess is

the same for all nodes k in a region R. Let ei be the excess capacity (MW) for each low carbon

generator Pg,i (with ei = 0 for other generators). The kth component in λexcess is given by

λexcess = −
∑
i∈R

ei. (4.2.4)

This metric provides incentive to shift load to regions with high amounts of excess low carbon

power (i.e., more negative values of λexcess), which could allow for more utilization of low carbon

generation. This metric has been proposed for inter-regional data center load shifting in [85].

Locational marginal carbon emissions λCO2 . We first derived this metric in [99] and propose this

metric as the proper way to shift load geographically. This metric is defined as the change in carbon

emission as a function of the change in load at a given node k in the network. Similar to the λLMP,

it is derived by considering how the DC OPF solution would change given a change in the load at

a specific location. However, instead of considering the change in the objective function (which

measures overall system cost), the derivation of λCO2 uses sensitivity analysis of linear programs

to identify the change in the carbon emissions.

Consider an optimal solution x∗ = [θ∗, P ∗
g ] ∈ Rn to the DC OPF (4.2.1). From linear optimiza-

tion theory we know there exists at least one basic optimal solution with Ax∗ = b, where A ∈ Rn×n

is a full rank matrix consisting of the coefficients for all the binding constraints of (4.2.1) at the

optimal solution x∗ and b is the right hand side. Specifically, the rows of A consist of the equality

constraints (4.2.1b) and (4.2.1e) as well as a subset of the inequality constraints (4.2.1c), (4.2.1d)

that are satisfied at equality for x∗.

A small change in load can be represented as a small change in the right hand side b, given

by ∆b =
[
∆Pd 0

]T
. Assuming that the change is sufficiently small to not alter the set of active

constraints, we can compute the associated change in generation as A∆x = ∆b where ∆x =

[∆θ ∆Pg], giving the linear relationship
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 ∆θ

∆Pg

 = A−1 ·

∆Pd

0

 (4.2.5)

Denote the matrix consisting of the last |G| rows and first |N | columns of A−1 by B. This gives

the linear relationship between load and generation changes, ∆Pg = B ·∆Pd.

Let g ∈ R|G| be a cost vector that measures the carbon emissions of each generator per MW.

The ith component of g, gi, is the carbon intensity of generator i. Multiplying each side of ∆Pg =

B ·∆Pd on the left by g gives us the following carbon sensitivity:

∆CO2 = g ·∆Pg = g ·B ·∆Pd = λCO2∆Pd. (4.2.6)

where we define λCO2 = g · B. Intuitively we think of the kth component of λCO2 as measuring

how an increase of 1 MW of load at node k will affect the total carbon emissions of the system.

The benefit of λCO2 is that it captures the impact of load shifting on carbon emissions in a

more direct way than λLMP and includes detailed information regarding the marginal impact of

load shifting at specific data center locations compared with λaverage and λexcess. However, since the

full network information needed to calculate the λCO2 is not made publicly available, it is not easy

to calculate these values in real time. In addition, since λCO2 represents a linear sensitivity, these

values may only be accurate for small load shifts.

Remark 4.2.1. Marginal carbon emissions at a node depends on the objective function considered

when calculating an operating point. In a situation where the ISO minimizes carbon emissions

instead of generation costs by replacing the objective function (4.2.1a) with gTPg where g ∈ R|G|

is as defined above, the values of λCO2 could be obtained as the dual variables to the nodal power

balance constraints in the same way that λLMP is obtained for the DC OPF where the ISO is mini-

mizing cost.
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4.2.3 ISO-controlled load shifting

A second model for load shifting considered in this chapter assumes that the data centers give

their flexibility to the ISO, which uses this flexibility to achieve overall system objectives. We

primarily consider this situation as a benchmark to the load shifting model defined in Section 4.2.1.

DC OPF with flexibility (DC-FLEX). In the DC-FLEX model, the ISO considers the following

optimization problem which includes data center load shifting flexibility:

min
Pg ,θ,∆Pd,s

cTPg +
∑

ij dijsij (4.2.7a)

s.t.
∑

ℓ∈Gi
Pg,ℓ −

∑
ℓ∈Di

(Pd,ℓ +∆Pd,ℓ) =∑
j:(i,j)∈L−βij(θi−θj), ∀i ∈ N (4.2.7b)

Constraints (4.2.1c), (4.2.1d), (4.2.1e) (4.2.7c)

Constraints (4.2.2b), (4.2.2c), (4.2.2d), (4.2.2e) (4.2.7d)

The optimization variables θi, i ∈ N and Pg,ℓ, ℓ ∈ G are as in DC OPF (4.2.1). The variables ∆Pd,ℓ

for ℓ ∈ C and sij for (i, j) ∈ C × C are as defined in the data center driven shifting model (4.2.2).

The objective value (4.2.7a) minimizes the cost of electricity production where c ∈ R|G| is a vector

of generator costs with the additional cost dij of shifting load from data center i to data center

j. Constraints (4.2.7b)-(4.2.7d) ensure the nodal power balance, line limits, generation capacity,

reference node and data center load shifting flexibility constraints are met.

Cost of carbon emissions. In the formulation of DC OPF (4.2.1) and DC-FLEX (4.2.7), we

assumed that the ISO is minimizing the overall cost of operating the electric system, without con-

sideration of carbon emissions. This is representative of system operations today. However, as

mentioned in Remark 4.2.1, it is also possible that the ISO may change their objective and include

a cost on the carbon emissions. In this case, we consider objective function

[αcT + (1− α)gT ] · Pg (4.2.8)

where α is a weighting factor that represents the emphasis on minimizing generation cost versus

reducing carbon emissions.
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Benchmarking. We use the DC-FLEX model as a benchmark for two reasons. First, many de-

mand response schemes allow flexible loads to participate in markets by providing information

about their flexibility to the ISO. Thus, the DC-FLEX model (4.2.7) represents a realistic model

of potential future interactions between data centers and the ISO. Second, all of the load shifting

metrics that are proposed to guide data center load shifting in Section 4.2.2 provide only partial

information about the impact of a load shift. In comparison, DC-FLEX is able to optimize the load

shift with exact knowledge of how the cost and/or carbon emissions will change as a result. There-

fore, we can expect that these models will always find the most optimal load shift, i.e., the load

shift that gives the lowest cost or carbon emissions. Theoretical results comparing these models

were derived in [99].

4.3 Evaluation Metrics

Some evaluation metrics for data center efficiency and carbon emissions are provided in [100].

These metrics assess the flexibility and sustainability of data centers as well as the potential benefit

to upgrading data center equipment. In contrast, we want to evaluate how shifting load geographi-

cally affects total system generation costs and carbon emissions.

Since the data centers represent a small subset of loads and only a relatively small percentage

of the load at each data center is allowed to shift, the percentage decrease or increase is frequently

only a small fraction of the total system emissions and cost. For this reason, we introduce two

metrics that measure the change in generation cost and carbon emissions relative to the (small)

amount of load that is shifted. The main purpose for introducing these two metrics is to normalize

the change in carbon emissions and generation cost by the small amount of load being shifted.

Reduction per allowed MW: µ%, CO2
. This metric is defined as the change in carbon emission

normalized by the maximum amount of load that can be shifted. The maximum amount of load

that can be shifted (in MW), L, can be calculated as L =
∑

i∈C ϵi · Pd,i. Let ∆ be the total change

in carbon emissions from the original DC OPF. We then define the relative reduction µ%, CO2
as

µ%, CO2
=

∆

L
.
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The units of µ%, CO2
are carbon tons per MW. This metric is a measure of how well a method is

able to make use of the available flexibility.

Reduction per shifted MW: µshift, CO2
. This metric is similar to µ%, CO2

but considers the change

in carbon emissions when normalized by the actual load shift, as opposed to the maximum allowed

load shift. Again, let ∆ be the total change in carbon from the original DC OPF. Denote S =∑
i∈C |∆Pd,i| as the total amount of load shifted (in MW). We then define

µshift, CO2
=

∆

S
. (4.3.1)

The units of µshift, CO2
are carbon tons per MW. This metric is a measure of the change in carbon

emissions per MW shifted. Notice that if in each time step we shift the maximal amount of load as

dictated by ϵ, then µshift, CO2
= µ%, CO2

.

The definitions of µ%, CO2
and µshift, CO2

can easily be adapted to assess cost reductions by

defining ∆ as the total change in cost relative to the original DC OPF. We denote the corresponding

cost reduction metrics as µ%, $ and µshift, $.

Predicted vs actual impact of load shifting. For the data center-driven load shifting, all evaluation

metrics mentioned above can be defined either for the predicted impact of the load shift obtained

by considering the objective function of the data center problem (4.2.2) in Step 2 of our model,

and for the actual load shift obtained after the ISO resolves the DC OPF (4.2.1) in Step 3. By

evaluating the difference between the two, we can assess the accuracy of the data center-driven

load shifting and check whether this model is overly optimistic when predicting the impact of a

load shift.

4.4 Test Case

We next perform an extensive year long analysis of the different methods to guide data center

load shifting, using the data center-driven shifting model and shifting metrics outlined in Sec-

tion 4.2. Considering a full year of operations allows us to provide information based on a range

of different operating conditions which gives a good overall idea of the behavior of each shifting

metric.
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For our analysis we use the IEEE RTS-GMLC system [101]. This system has 73 buses, 158

generators and 120 lines. The network has three regions, R1 = {v1, . . . , v24}, R2 = {v25, . . . , v48}

and R3 = {v49, . . . , v73}, which are used as definitions of the regions when evaluating λaverage and

λexcess. Since the original system does not contain any loads that are designated as data centers, we

assign data centers at buses 3, 7, 28 and 70. We assume that each of the data centers consume a

fixed power of 250 MW throughout the year. For all other loads and renewable generation, we use

the hourly load and generation data provided with [101]. The system serves a total of 44, 821, 000

MWh of load over the course of the whole year and the data centers account for 8, 784, 000 MWh

or 19.6% of the total energy consumption (though the relative share varies over time).

Adding these large data center loads to the network greatly increases the total system load and

results in time steps where the original DC OPF is infeasible. To remedy this we set the minimum

generation constraint, Pmin
g = 0 for all g ∈ G, and increase the maximum generation constraints

by 50% of the original value. We allow each data center to shift up to 20% of its load, or 50 MW,

and put no limitations on how much load each data center can shift to one another. This means

throughout the year at most 1, 756, 800 MW of load can shift, or 3.92% of the total system load.

4.5 Comparison of Shifting Metrics

CO2 tons Generation $ Curtailment (MW) µ%, CO2
µ%, $ µshift, CO2 µshift, $

DC OPF 13.96 322.69 4.01

DC-FLEX 13.87 (−0.65%) 319.19 (−1.09%) 3.90 (−2.85%) −0.05 −2.00 −0.06 −2.31

λCO2
13.76 (−1.44%) 321.83 (−0.27%) 3.91 (−2.52%) −0.11 −0.49 −0.14 −0.62

λLMP 13.87 (−0.68%) 319.26 (−1.07%) 3.90 (−2.83%) −0.05 −1.96 −0.06 −1.99

λaverage 13.87 (−0.68%) 320.99 (−0.53%) 3.92 (−2.33%) −0.06 −0.95 −0.09 −1.64

λexcess 13.98 (+0.14%) 323.47 (+0.24%) 4.06 (+1.16%) +0.01 +0.44 +0.03 +1.11

Table 4.1: Carbon emissions, generation cost and curtailment (all ×106) after shifting based on

different shifting metrics.
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CO2 tons Generation $ Curtailment (MW) µ%, CO2
µ%, $ µshift, CO2

µshift, $

DC OPF 13.96 322.69 4.01

DC-FLEX 13.87 (−0.65%) 319.19 (−1.09%) 3.90 (−2.85%) −0.05 −2.00 −0.06 −2.31

λCO2
13.62 (−2.45%) 319.60 (−0.96%) 3.81 (−4.94%) −0.19 −1.77 −0.25 −2.22

λLMP 13.81 (−1.12%) 316.37 (−1.96%) 3.81 (−4.99%) −0.09 −3.60 −0.09 −3.66

λaverage 13.77 (−1.42%) 318.76 (−1.22%) 3.83 (−4.45%) −0.11 −2.22 −0.20 −3.83

λexcess 13.93 (−0.27%) 321.96 (−0.23%) 4.00 (−0.17%) −0.02 −0.42 −0.05 −1.05

Table 4.2: Predicted carbon emissions, generation cost and curtailment (all ×106 after shifting

based on the different shifting metrics.

In this section we compare the performance of the different shifting metrics and benchmark

against ISO-controlled load shifting.

4.5.1 Carbon Emissions Reduction from ISO-controlled Load Flexibility

We first compare the impact of ISO-controlled load shifting on generation cost and carbon

emission reduction by comparing results obtained from the DC OPF (4.2.1) and the DC OPF-FLEX

(4.2.7). We repeatedly solve these two problems with cost function (4.2.8) and values of α ranging

from 0 to 1. Figure 4.1 shows the generation cost and carbon emissions across all the different

solutions for the cases with and without data center load flexibility. The low generation cost/high

carbon emissions solution in the bottom right corner corresponds to the setting with α = 1, where

the ISO only considers cost minimization in their solution. The high generation cost/low carbon in

the top left corner corresponds to the case with α = 0, where the ISO minimizes carbon emissions.

The intermediate values of alpha gives rise to the solutions along the blue and yellow lines.

We observe that as α is reduced, there is first a large decrease in carbon emissions with only

a small increase in generation cost, but as we approach α = 0, there is both a large decrease in

carbon emissions and a large increase in generation cost. The point α = 0.1 is where the gradient

of each curve changes, indicating that if the ISO would even lightly weight minimizing carbon
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Figure 4.1: Trade off as ISO minimizes cost and carbon with and without data center flexibility.

emissions, substantial reductions could be achieved without dramatically increasing generation

costs. This trend is similar for both cases (with/without flexibility), but the solution with flexibility

consistently has lower generation cost for a solution with comparable carbon emissions. Similarly,

the solution with flexibility can achieve lower carbon emissions at similar generation cost. This

demonstrates the benefits of flexibility in general.

However, in our case, we are interested in understanding the impact of flexibility on carbon

emission reductions for a specific choice of cost function. We can gain an initial understanding of

this by comparing the difference in carbon emissions for the solutions without and with flexibility

for α = 1, i.e., when we only minimize cost. These two solutions correspond to the rightmost

points on the blue and yellow lines. We observe that the solution with flexibility (yellow line) has

lower carbon emissions than the solution with no flexibility (blue line). Specifically, the carbon

emissions are reduced by 91 CO2 tons (0.65%). This indicates that for a given cost function, the

carbon emissions reduction achieved through data center load flexibility only amounts to a small

reduction of the total system emissions, even in the best case scenario where the ISO is using all

available system information to make the best possible use of the additional flexibility.

4.5.2 Comparison of Outcomes with Different Shifting Metrics

We next compare the performance of data center-controlled load shifting with different shifting

metrics against each other and against the ISO-controlled benchmark. Using the data center-driven

load shifting model and network parameter values as described in Section 4.4, we obtain solutions
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for the whole year with each shifting metrics. We also include the results obtained from the initial

DC OPF (without load flexibility, minimizing cost) and from the DC OPF-FLEX (with load flexi-

bility, minimizing cost). The results in Table 4.1 represent the final results of the load shifting after

the ISO has solved the DC OPF with the shifted load. The two first lines represent the benchmark

results with the DC OPF and the DC OPF-FLEX, and the shifting metrics are ranked based on their

total achieved carbon emission reduction. Observe that the DC OPF and DC OPF-FLEX models

are both evaluated when α = 1.

We notice that the λCO2 metric is by far the best in terms of reducing carbon emissions, both in

terms of the total carbon emission reduction and the reduction per shifted MW of load µshift, CO2
.

On average, for every 1 MW shifted, we save 0.14 tons of carbon. The total carbon emission

reduction is −1.44% which is twice as large as the reduction achieved with the DC OPF-FLEX.

This is a particularly interesting result, because it indicates that data center-driven load shifting

with respect to λCO2 achieves higher carbon reductions than if the data centers were to relinquish

their flexibility to the ISO. This supports the idea that direct action by the data centers to minimize

carbon emissions can make a substantial difference in carbon emission reductions. We note that

the carbon emission reduction is achieved while the system cost is reduced by 0.27%.

Next, we observe that shifting with respect to λLMP results in carbon and cost savings that are

comparable to the case where the ISO assumes control of the data center flexibility. The two cases

decrease carbon emissions by −0.68% and −0.65% and give an overall decrease in generation

cost of 1.07% and 1.09%, respectively. This similarity is explained by observing that when the

data centers shift with respect to λLMP they have similar objectives and the same constraints as

when the ISO assumes control of the data center flexibility. The main difference is that DC-FLEX

gives a global solution while shifting with respect to λLMP relies on local sensitivity information.

Further, we observe that shifting with respect to λaverage gives a similar overall decrease in

carbon as λLMP. However, when the reduction is considered per MW shifted as in µshift, we see that

λaverage results in a greater carbon savings per MW shifted. This demonstrates that if a cost were to

be associated to shifting load, λaverage would be more effective.
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Finally, the shifting metric based on excess availability of low carbon power λexcess actually

increases the carbon emissions and generation costs of the network. This is a counter-intuitive

since shifting load to a region of the network with the most excess low carbon resources seems

like it should allow the data centers to make more use of low carbon generation sources. This is

clearly not always the case as the actual location of the data center must be such that the data center

can access the low carbon power. Line constraints within a region can prevent a data center from

having access to these low carbon resources.

4.5.3 Comparison of Accuracy

For each of the data center-driven shifting metrics, we can assess the accuracy of the metric as

the difference between the predicted carbon emission reduction (obtained from the data center in-

ternal optimization problem (4.2.2) in Step 2) and the actual change in carbon emissions (computed

from based on the DC OPF in Step 3).

Table 4.2 and Table 4.1 show the predicted and actual change in carbon emissions, generation

cost and curtailment, respectively. By comparing the results in the two tables, we see that the

predicted carbon savings are better than the actual savings for all of the metrics. This implies

that the shifting metrics are not able to provide an entirely accurate picture of the impact of load

shifting. This is largely because the shifting model relies on a linear approximation of (4.2.1),

which assumes the binding constraints remain the same before and after shifting. This need not be

the case, which then makes the original linearization inaccurate.

In particular we notice that λexcess predicts an overall decrease of 14, 000 tons of carbon or

−0.05 tons per MW shifted, but actually produces a solution which leads to an increase in carbon

emissions as seen in Table 4.1. Further we observe that λaverage predicts a better carbon savings

then λLMP, both overall and per MW shifted. However, this contradicts the results in Section 4.5.2

which indicated that λLMP lead to a better overall savings.
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4.6 A more realistic data center load shifting model

The above model has several drawbacks. First, it is unrealistic to assume that the ISO resolves

the market clearing twice, once before and once after the shifting has happened. Second, since the

model is linear, we tend to see large load shifts even with small differences in λCO2 between data

center locations. Since λCO2 is a local sensitivity factor that is only accurate near the previous opti-

mal solution, these large shifts lead to inaccurate results that sometimes increase carbon emissions.

To address these issues, we introduce two improvements to the model: cumulative load shifting,

regularization and more accurate data.

4.6.1 Cumulative load shifts

We refine the model defined above by considering cumulative load shifts. Instead of resolving

the DC OPF in Step 3 of the above model, the load shift is applied to the market clearing in the

next time step. Specifically, the algorithm runs as follows:

Step 1: At time t, the ISO solves the DC OPF (4.2.1) with data center load set to P t
d.

Step 2: Given information about λCO2 as described above, the data center operator computes a load

shift ∆P t
d according to (4.2.2). Then, the data center load for time t+1 is set to P t+1

d = P t
d+∆P t

d,

and the algorithm proceeds to Step 1 of the next time step.

While the cumulative load shifting model more accurately reflects the current market set up, it

introduces an additional inaccuracy in our model. The locational marginal carbon emission value

λCO2 at each data center is derived as a linearization from the operating point at time t, but the

internal data center shifting optimization will only affect the market clearing at time t + 1. The

expectation is that since operating conditions remain similar between time steps, shifting with

respect to λCO2 will still lead to a decrease in total system carbon emissions. We also note that

cumulative load shifting can increase accuracy relative to the existing model, particularly the load

shift allowed in each time step is small (i.e., only a small fraction ϵ can be shifted). In this case,

changes in the data center load build up slowly over time. This is in contrast to our previous model,

where the data center load was reset to the original value Pd in each time step.
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4.6.2 Regularizing load shifts

To discourage large load shifts which can cause oscillations and increased emissions, we pro-

pose to use a regularization term (i.e., a quadratic penalty) that discourages large shifts. Specifi-

cally, this model replaces the objective value (4.2.2a) with∑
i∈C

λCO2,i∆Pd,i + γ∥∆Pd,i∥22

where γ ∈ R is a regularization parameter. The goal in using this regularization term is to dis-

courage large shifts that lead to an increase in carbon emissions as well as increase the accuracy of

the data center driven shifting model. However, the regularization term can also be interpreted as

a quadratic cost on load shifting. This ensures that while small shifts are cheap and frequent, we

only shift a large amount of load when there will be a large reduction in carbon emissions.

Throughout the rest of this paper we refer to the model outlined in this section as (λCO2−shift).

4.6.3 More realistic data

We again perform an extensive year long analysis of the carbon reduction methods mentioned

above using the RTS-GMLC system [101]. This time, for all other loads and renewable generation,

we use the real time, i.e. 5 minute, load and generation data provided with [101]. We assume

that cumulatively, the four data centers consume a fixed power of 1000 MW at each time step

throughout the year, although the distribution of that power among the four data centers varies. We

assume at time step 0, each data center starts with 250 MW of load. Over the course of the year,

this system serves 526, 220, 000 MW of load, and 105, 408, 000 MW or roughly 20.03% of it is

data center load.

As above, we change the generation limits by setting Pmin
g = 0 for all g ∈ G, and increase

the maximum generation limits by 50%. At each time step we allow each data center to shift up

to 20% of its total capacity, i.e. 50 MW, and enforce that data center capacities remain between 0

and 300 MW. Further, we put no limitations on how much load each data center can shift to one

another.
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4.7 Benchmark model for optimal shifting

We introduce a new model to benchmark this more accurate data center driven shifting model.

Since the shifts provided by λCO2 are calculated by a linear sensitivity, they can be inaccurate, even

giving shifting profiles that increase carbon emissions.

The problem of identifying the optimal load shift data center operators should employ to min-

imize carbon emissions can be modelled as a bilevel linear program. The upper level problem

identifies the optimal choice of load shift ∆Pd to minimize carbon, i.e.,

min
∆Pd,s,P ∗

g

gTP ∗
g

s.t. P ∗
g = argmin (DC-shift) (Opt-shift)

(∆Pd, s) ∈ P

Here, the last constraint represents the set of feasible load shifts from the data center perspective,

i.e., P is the polytope of permissible load shifts defined by the constraints in (4.2.2). The first

constraint states that the generation value P ∗
g is the solution to the lower level optimization problem

(DC-shift). This problem is a version of the standard DC OPF (4.2.1) where the nodal balance

constraints include the change in demand. Formally we write it as

min
Pg ,θ

cTPg subject to

Constraints (4.2.1c), (4.2.1d), (4.2.1e) (DC-shift)∑
ℓ∈Gi

Pg,ℓ −
∑
ℓ∈Di

(Pd,ℓ +∆Pd,ℓ) =
∑

j:(i,j)∈L

−βij(θi−θj), ∀i∈N

As in (λCO2-shift), we also consider cumulative load shifting in (Opt-shift). Specifically, at

each data center ℓ ∈ C, at time step t we assume the load Pd,ℓ in (DC-shift) reflects the sum of new

load Pd,ℓ from time t and the load shift ∆Pd,ℓ from time t − 1. Herein out when we refer to the

model (Opt-shift) we assume it is employed with this cumulative load shifting.

4.8 Computational Results

We next analyze the efficacy in carbon reduction of (λCO2-shift) versus (Opt-shift).
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Figure 4.2: Change in carbon (left) emissions, generation cost (middle) and load shift (right) as the

regularization parameter γ varies.

4.8.1 The effect of regularization

We first investigate the effect of the regularization parameter γ. The effect of various reg-

ularization parameters on generation cost, total system carbon emissions and total load shift is

shown in Figure 4.2, where the orange and blue lines represent the predicted and actual values,

respectively. Figure 4.2(a) show that the minimum total system carbon emissions occurs when the

regularization parameter γ = 1.5 is used. In addition, we see in both Figure 4.2(a) and (b) that

as the regularization parameter γ increases, the difference between the predicted carbon emissions

and generation cost and the actual carbon emissions and generation costs decreases. This indicates

that including a regularization term helps not only in the efficacy of the data center driven shifting

model, but also in the accuracy.

The reason regularization is considered is to discourage load shifting in cases where it is not

predicted to make large differences. Figure 4.2(c) shows how as the regularization parameter

increases, the total load shifted throughout the year decreases. We see that when the regularization

parameter is set at γ = 1.5, the total amount of load shifted is less than half of the amount of load

shifted when γ = 0. Considering that the carbon emissions and generation cost when γ = 1.5 are

lower than when γ = 0, this demonstrates that shifting less load, more strategically can lead to a

larger reduction in carbon emissions and a smaller increase in generation costs.



66

DC OPF (Opt-shift) λCO2−shift: γ = 0 λCO2−shift: γ = 1.5

Generation Cost 3, 802, 706, 000 4, 981, 076, 000 3, 847, 332, 000 3, 843, 847, 000

CO2 Emissions 164, 402, 000 110, 444, 000 161, 522, 000 161, 427, 000

Total Shifts 0 1, 048, 000 6, 199, 000 2, 245, 000

Table 4.3: Summary of results from all models

4.8.2 Comparison with Opt-Shift and Original DC OPF solution

We next compare the solutions for (λCO2-shift) with regularization parameters γ = 0 and

γ = 1.5 with the original DC OPF solution and the solution obtained using our benchmark model

(Opt-shift). These results are given in Table 4.3. We see that when considering (λCO2-shift) with no

regularization, carbon emissions relative to the original DC OPF decreases by around 2.8 million

tons or 1.75%. This reduction is achieved while shifting around 6.2 million MW of load. Con-

versely, once the regularization term γ = 1.5 is added, we achieve an even greater reduction in

carbon emissions, namely 2, 975, 000 tons or 1.81% while only shifting around 2.25 million MW

of load. In addition, when considering regularization, total system generation costs only increased

by 1.08% while without regularization it increased by 1.17%.

In contrast to the above results, we see a dramatic carbon savings when using the benchmark

(Opt-shift). In this case we save 53, 958, 000 tons of carbon, i.e. 32.82%. This occurs while only

shifting a little over 1 million MW. This dramatic savings occurs at a major increase to generation

costs. Namely, (Opt-shift) results in an increase in $1, 178, 370, 000 to generation costs or 30.99%

over the original DC OPF. This benchmark model suggests that dramatic reductions in carbon

emissions are possible even with limited data center flexibility, but come at a large increase to

generation costs.

4.8.3 Carbon Emissions vs Generation Costs

As seen above, minimizing carbon emissions can lead to an increase in generation cost. To

better understand the trade-off between carbon emissions and cost, we consider the benchmark
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Figure 4.3: Trade off between carbon emissions and generation cost.

model (Opt-shift) with objective function

(αcT + (1− α)gT )P ∗
g

and (λCO2−shift) with objective function

(αLMP + (1− α)λCO2)∆Pd + 1.5 · ∥∆Pd∥22

in place of (4.2.2a) where α ∈ [0, 1] is a trade off parameter that allows us to weight the emphasis

on minimizing carbon emissions versus generation costs and LMP is a vector of the locational

marginal prices at each node. The trade off between minimizing carbon emissions and generation

cost is shown graphically in Figure 4.3.

When considering (λCO2−shift), shown in yellow, we see a small variation in the overall system

carbon emissions and generation cost that remains close to the carbon emissions and generation

cost of the original DC OPF. This is consistent with the results shown above, and is due to the

fact that this model considers small shifts away from an operating point that minimizes generation

costs. The benchmark model (Opt-shift) produces a much larger variation in operating points as we

change the trade-off parameter α. As α increases, the model produces a large increase in carbon

emissions for only a moderate cost savings. In addition, we see that for (Opt-shift) to achieve

lower carbon emissions than the DC OPF and the (λCO2−shift), a major increase to generation

cost is needed. This demonstrates that even with limited geographic load shifting flexibility, a

large reduction in carbon emissions is possible but it comes at the price of significantly higher

generation costs.
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Figure 4.3 also demonstrates an interesting phenomenon, namely the greedy nature of (Opt-shift).

When only trying to minimize carbon emissions, (Opt-shift) is able to reduce total system carbon

emissions by roughly 33% but this comes at a significant increase to total system generation cost.

However, for the same generation cost, (Opt-shift) gives a solution with higher carbon emissions

than the DC OPF or (λCO2-shift). This demonstrates that the greedy nature of (Opt-shift) is not

necessarily an optimal way to shift load over a long time span. Specifically, (Opt-shift) finds a load

shift that gives the largest reduction in carbon emissions at that time step, with no consideration

to how the load shift will affect the carbon emissions of the system at the next time step. Using

forecasts of future load and generation information to aid in a long term load shifting strategy is

left as future work.

4.8.4 Data Center Operating Load

Finally, we consider the impact of each model on the data center operating load. We consider

(λCO2-shift) with regularization parameter γ = 1.5 and (Opt-shift), and two different limits on the

amount of load that can be shifted in each time step, ϵ = 0.01 and ϵ = 0.2.

In Figure 4.4 we see the operating conditions of each data center over the course of the first

day when using (λCO2-shift) when ϵ = 0.01 (left) and ϵ = 0.2 (right). In both cases we see

similar overall trends in operating load. However, ϵ = 0.2 leads to much quicker changes and also

dramatic oscillations in the load at data centers 1 and 3 towards the end of the day. Similarly, in

Figure 4.5 we see the operating conditions of each data center over the course of the first day using

(Opt-shift) when ϵ = 0.01 (left) and ϵ = 0.2 (right). Again, we see similar trends data center load

for both values of ϵ, but for (λCO2-shift), ϵ = 0.2 leads to more oscillations in data center operating

load.

Interestingly, there are some differences between the (λCO2-shift) and (Opt-shift). In both cases

we see an initial pull for data center 4 to operate at maximum capacity while the other data centers

operate at lower capacities. This implies that the λCO2 value for data center 4 is accurately dictating

that it is the most carbon neutral data center. In contrast, we see that when shifting with respect

to (λCO2-shift), data center 2 is also operating at maximum capacity. This is in contrast to shifting
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when using (Opt-shift). In this instance data center 2 initially drops to be the data center operating

at the lowest load. This discrepancy highlights the inaccuracy when shifting with respect to λCO2 .

Figure 4.4: Load at each data center during the first 24 hours using λCO2-shift with γ = 1.5 and

ϵ = 0.01 (left) and ϵ = 0.2 (right).

Figure 4.5: Load at each data center during the first 24 hours using (Opt-shift) with ϵ = 0.01 (left)

and ϵ = 0.2 (right).

Finally, we investigate how using different ϵ values impacts the overall effect on carbon emis-

sions. In Figure 4.6 we see the change in total system carbon emissions as ϵ varies for both (λCO2-

shift) with γ = 1.5 as well as (Opt-shift). In both cases we see only a very mild decrease in total

carbon emissions as we allow ϵ to increase. Further, for (λCO2-shift), we see that as ϵ increases, the

accuracy of the model decreases and once ϵ > 0.1, the carbon emissions starts to increase. This

indicates that allowing small shifts not only is more desirable from an operational stand point to

avoid rapid changes and oscillations in data center loading, but it leads to similar carbon savings

as allowing larger shifts.
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Figure 4.6: Predicted and actual change in carbon emissions using λCO2−shift (left) and the change

in carbon emissions using (Opt-shift) (right) for varying epsilon values.
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Chapter 5

Method of moments for Gaussian mixture models

5.1 Problem set-up

A fundamental problem in statistics is to estimate the parameters of a density from samples.

This problem is called density estimation and formally it asks, “Given n samples from an unknown

distribution p, can we estimate p”? To have any hope of solving this problem we need to assume

our density lives in a family of distributions. One family of densities known as Gaussian mixture

models are a popular choice due to their broad expressive power.

Theorem 5.1.1. [102, Chapter 3] A Gaussian mixture model is a universal approximator of den-

sities, in the sense that any smooth density can be approximated with any specific nonzero amount

of error by a Gaussian mixture model with enough components.

Theorem 5.1.1 motivates our study of Gaussian mixture models. These are ubiquitous in the

literature with applications in modeling geographic events [103], the spread of COVID-19 [104],

the design of planar steel frame structures [105], speech recognition [106, 107, 108], image seg-

mentation [109] and biometrics [110].

A Gaussian random variable, X , has a probability density function given by

f(x|µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
,

where µ ∈ R is the mean and σ ∈ R>0 is the standard deviation. In this case we write X ∼

N (µ, σ2). A random variable X is the mixture of k Gaussians if its probability density function

is the convex combination of k Gaussian densities. Here we write X ∼
∑k

ℓ=1 λℓN (µℓ, σ
2
ℓ ) where
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µℓ ∈ R, σℓ ∈ R>0 for all ℓ ∈ [k] = {1, . . . , k} and (λ1, . . . , λk) ∈ ∆k−1 = {λ ∈ Rk
>0 :

∑k
i=1 λi =

1}. Each λℓ, ℓ ∈ [k], is the mixture weight of the ℓth component.

A Gaussian k-mixture model is a collection of mixtures of k Gaussian densities. Often one

imposes constraints on the means, variances or weights to define such models. For example, one

might assume that all variances are equal or that the mixture weights are all equal. The former is

known as a homoscedastic mixture model, and the latter is called a uniform mixture model in the

literature. In this chapter we consider four classes of Gaussian mixture models.

1. The λ-weighted model, where the mixture weights are fixed for λ ∈ ∆k−1

2. The λ-weighted homoscedastic model, which is the λ-weighted model under the additional

assumption that the variances are equal

3. The λ-weighted known variance model, where the weights and variances are assumed known

4. The k = 4 model

We wish to do parameter recovery for these Gaussian mixture models, that is, we would like to

solve the following problem.

Problem 5.1.2. Given samples, y1, . . . , yN , distributed as the mixture of k Gaussian densities,

recover the parameters µi, σ
2
i , λi for i ∈ [k].

It is important to distinguish parameter recovery from density estimation. For density estima-

tion, one wishes to estimate a density that is close to the true density, with no restriction on how

close each individual component is. In this chapter we wish to do parameter recovery. Namely,

we wish to recover accurate estimates of the mean, variance and mixing weight of each compo-

nent. It is clear that density estimation follows trivially once all of the parameters are known. The

important distinction between density estimation and parameter recovery is illustrated next.

Example 5.1.3. Consider a mixture of three univariate Gaussians with sample moments m1, . . . ,m8

given by:

(0.1661, 2.133, 1.3785, 12.8629, 16.0203, 125.6864, 239.2856, 1695.5639).
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Figure 5.1: Two distinct Gaussian mixture densities with k = 3 components and the same first

eight moments.

There are two Gaussian mixture densities with these eight moments. These densities are shown

in Figure 5.1 where it is seen that they are almost indistinguishable. In contrast, the individual

components and weights are noticeably different. The weights and individual components for each

of the mixture models are shown in Figure 5.2.

Figure 5.2: Individual components of two Gaussian mixture models with similar mixture densities.

Problem 5.1.2 is well-defined because Gaussian mixtures are identifiable [111]. Specifically,

one can recover the mean, variance and weight of each component if given the full mixture density.

One idea to solve Problem 5.1.2 is to use maximum likelihood estimation. Maximum likeli-

hood estimation aims to maximize the likelihood function by solving the following optimization
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problem:

argmaxµ,σ2,λ

n∏
i=1

k∑
i=1

λi
1√
2πσ2

i

exp
(
− (yi − µi)

2

2σ2
i

)
. (5.1.1)

Unless k = 1, (5.1.1) is a nonconvex optimization problem and obtaining a global optimum is

difficult or impossible. In general (5.1.1) is unbounded, so no global maximum exists. Iterative

algorithms such as expectation maximization (EM) try to find the largest local maximum [112].

On top of being sensitive to the starting point, another downside of the EM algorithm is that it

needs to access all data in each iteration, which is prohibitive for applications with large data sets.

Even worse, there is no bound on the number of critical points of the likelihood function and in

general these estimates are transcendental [113].

Recent work has analyzed the local behavior of (5.1.1) by considering maximum likelihood

estimation for two Gaussians in Rn when λ1 = λ2 = 1
2

and all of the covariance matrices are

known and equal — this is a special case of the models we consider. It has been shown that

in this regime the EM algorithm converges to the global optimum in 10 iterations [114]. Other

work has studied the global landscape of the EM algorithm and the structure of local optima in this

setting [115, 116]. Further work has considered inference for Gaussian mixture models with known

mixing coefficients and identity covariance matrices [117] and clustering analysis of the mixture of

two Gaussians where the covariance matrices are equal and unknown [118]. When these covariance

matrices are further assumed to be spherical, [119] gives polynomial time approximation schemes

for (5.1.1). Recently, techniques from numerical algebraic geometry have been used to identify

the number of components in a Gaussian mixture model [120]. Further progress has been made on

giving optimal sampling bounds needed to learn a Gaussian mixture model [121].

A recent revolution of robust statistics has led to the development of algorithms to learn the

parameters for mixtures of multivariate Gaussians when some of the samples are corrupted. A

Computationally efficient algorithm with dimension-independent error guarantees for agnostically

learning several fundamental classes of high-dimensional distributions including a single Gaussian

and mixtures of spherical Gaussians was given in [122]. Clustering algorithms and learning al-

gorithms for Gaussians that are well separated were given in [123] and [124] respectively. For a
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mixture of two Gaussians with equal mixture weights, [125] gives an algorithm to learn each mean

and variance up to a distance that is poly(ϵ) from the true density. Recent work gives a polynomial-

time algorithm for robustly learning the parameters of a high-dimensional mixture of a constant

number of Gaussians under assumptions on the weights, the covariances, and the separation be-

tween the components [126]. A downside to this algorithm is that it runs in time polynomial in the

sample size which can be prohibitive for large data sets.

Another idea for density estimation in this set-up is to use the generalized method of moments.

The generalized method of moments was proposed in [127] and aims to minimize the difference

between the fitted moments and the sample moments. For Gaussian mixture models, this again

cannot be solved in a way guaranteeing global optimality due to the nonconvexity of the moment

equations. Recently this method has been remedied for Gaussian mixture models in one dimen-

sion with the same variance parameter, where the authors provably and efficiently find the global

optimum of the generalized method of moments [128]. It is important to note that in many of the

cases above, assumptions are made on the values that each Gaussian component can take and also

that these algorithms focus on density estimation, not parameter recovery. In other words, with

high probability they return a density that is close to the true density with no guarantees on how

close the estimated components are to the true ones.

In this chapter we are interested in identifying the means, variances and weights of each mix-

ture from its moments up to a certain order. It has been shown that one dimensional Gaussian k

mixture models can be uniquely recovered using the first 4k− 2 moments [129] and using the first

3k − 1 moments generically gives finitely many solutions [130]. Multivariate Gaussians are still

identifiable [131] and there exists a finite number of moments that identify them [132].

In this chapter we propose using the method of moments to estimate the density arising from

the mixture of k multivariate Gaussians. This methodology was first proposed and resolved for the

mixture of two univariate Gaussians by Karl Pearson [133]. Pearson reduced solving this system of

6 polynomial equations in the 6 unknown density parameters, µi, σ
2
i , λi, i = 1, 2, to understanding

the roots of a degree nine polynomial with coefficients in the sample moments mi, i ∈ [5].
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Parameter recovery using the method of moments for Gaussian mixture models was revisited

in 2010 in a series of papers [134, 135]. The case of a k = 2 mixture model in n dimensions

was handled in [134] where a polynomial time algorithm was presented. This approach was gen-

eralized in [135] where an algorithm for a general k mixture model in n dimensional space was

presented that scales polynomially in n and the number of samples required scales polynomially

in the desired accuracy.

5.1.1 Method of moments

This chapter focuses on an approach for parameter recovery known as the method of moments.

The method of moments for parameter estimation is based on the law of large numbers. This

approach expresses the moments of a density as functions of its parameters.

Let f : R → R be the probability density function of a random variable X . For i ≥ 0, the i−th

moment of X is

mi = E[X i] =

∫
R
xif(x)dx.

We consider a statistical model with n unknown parameters, θ = (θ1, . . . , θn), and consider the

moments up to order n as functions of θ, g1(θ), . . . , gn(θ).

Assume y1, . . . , yN are independent samples from the same distribution. The rth sample mo-

ment is given by

mr =
1

N

N∑
i=1

yri .

The number of samples, N , needed to accurately estimate mr is dependent on the distribution.

The method of moments works by using samples from the statistical model to calculate sample

moments m1, . . . ,mn, and then solve the corresponding system mi = gi(θ), i = 1, . . . , n, for the

parameters θ1, . . . , θn.

The moments of Gaussian distributions are polynomials in the variables µ, σ2 and can be cal-

culated recursively as M0(µ, σ
2) = 1,M1(µ, σ

2) = µ and

Mi(µ, σ
2) = µMi−1 + (i− 1)σ2Mi−2, i ≥ 2. (5.1.2)
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We calculate the ith moment of a mixture of k Gaussian densities as the convex combinations of

Mi(µ1, σ
2
1), . . . ,Mi(µk, σ

2
k).

We are interested solving the system,

fk
i (µ, σ

2, λ) := λ1M1(σ
2
1, µ1) + · · ·+ λkMk(σ

2
k, µk)−mi = 0 (5.1.3)

under assumptions on the parameters, µ, σ2, λ where i varies over an appropriate index set.

As stated in the introduction, for a k mixture model with generic sample moments, the first

3k − 1 moments are needed to have a polynomial system with finitely many solutions [130]. This

shows that Gaussian mixture models in one dimension are algebraically identifiable using moment

equations

fk
0 = 0, . . . , fk

3k−1 = 0.

In other words, for a generic choice of sample moments, the polynomial system (5.1.3) for i =

0, . . . , 3k − 1 has finitely many solutions.

5.1.2 Statistically meaningful solutions

We note that for any set of real-valued sample moments it is not guaranteed that the moment

equations will give any statistically meaningful solutions. A statistically meaningful solution is a

real valued solution with positive variances and mixing weights. In other words, it is a solution

that corresponds to a true density. If the sample moments are inaccurate, it may happen that no

solutions obtained from the method of moments is statistically meaningful. By the law of large

numbers, as the number of samples goes to infinity the sample moments will converge to the true

moments and the method of moments will return a consistent estimator [136, Theorem 9.6].

A property of parameterized polynomial systems is that the number of real solutions is constant

in open Euclidean sets of the parameter space. Such open sets can be computed via cylindrical

algebraic decomposition [137]. The constraints differing real solutions and statistically meaningful

ones will further divide these cells. Therefore, in any of these open cells the number of statistically

meaningful solutions will be constant. So long as the sample moments lie in a cell that has at least

one statistically meaningful solution, the method of moments will return a true density.
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Example 5.1.4. Consider the mixture of two Gaussians with equal mixing weights, λ1 =
1
2
= λ2.

In this case there are four equations and four unknowns: µ1, σ
2
1, µ2, σ

2
2 . Restricting to m1 =

0,m2 = 1 there is one open cell that dictates whether or not there is a statistically meaningful

solution. The region where there is only one statistically meaningful solution (up to symmetry)

is shown in blue in Figure 5.3, where the horizontal and vertical axes correspond to m3 and m4,

respectively.

Figure 5.3: Blue region shows where there is one statistically meaningful solution for k = 2,

m1 = 0,m2 = 1 and λ1 = λ2 =
1
2
.

5.1.3 Mixed volumes and the BKK bound

Recall Theorem 2.2.6 which states that the number of C∗ solutions to a polynomial system is

bounded above by the mixed volume of the Newton polytopes of each polynomial. We will use

this theorem again for the results derived in this section.

Example 5.1.5. The mixed volume of K1, . . . , Kn is easy to describe when Ki is a line segment

from the origin to the vertex vi ∈ Zn. The Minkowski sum λ1K1 + · · ·+ λnKn is a parallelpiped.
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Hence, its volume is given by a determinant:

Vol(λ1, λ2, . . . , λn) =
∣∣∣det [λ1v1 λ2v2 . . . λnvn

]∣∣∣ .
So MVol(K1, . . . , Kn) equals the absolute value of the determinant of the matrix with the vertices

v1, . . . , vn as its columns.

Recall that an important property of mixed volumes is that they are monotonic. Namely, if

P̂1 ⊆ P1 then

MVol(P̂1, P2, . . . , Pn) ≤ MVol(P1, P2, . . . , Pn).

Therefore by Example 5.1.5, taking line segments Conv({0, vi}) = Qi ⊆ Pi for i ∈ [n], is an easy

way to get a lower bound on MVol(P1, . . . , Pn). We would like conditions under which such a

lower bound is tight.

Definition 5.1.6. [138, Definition 7.29] Let P1, . . . , Pm be convex polytopes in Rn. We say

P1, . . . , Pm are dependent if there is a non-empty subset I ⊆ [m] such that dim(
∑

i∈I Pi) < |I|.

Otherwise we say P1, . . . , Pm are independent.

This definition may be difficult to parse on a first read. But it is related to the usual definition of

linear independence: if each Pi is a line through the origin, then the two ideas of dependent agree.

Moreover, the collection of empty sets is independent.

Recall from Section 2.2.1 the definition of initw(f) for a polynomial f and initw(P ) for a

polytope P ⊆ Rn.

Proposition 5.1.7. [138, Proposition 7.36] Let Pi = Conv(Ai) and Qi = Conv(Bi) ⊆ Pi for

i ∈ [n]. The following are equivalent:

1. MVol(P1, . . . , Pn) = MVol(Q1, . . . , Qn)

2. One of the following holds:

(a) P1, . . . , Pn are dependent i.e. MVol(P1, . . . , Pn) = 0
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Figure 5.4: The triangle P1 with the line segments Q1 (red) and Q2 (blue) from Example 5.1.8.

(b) For each w ∈ Rn\{0}, the collection of polytopes

{initw(Qi) : Qi ∩ initw(Pi) ̸= ∅}

is dependent.

Proposition 5.1.7 gives conditions under which is suffices to consider the (potentially much

simpler) polytopes Qi ⊆ Pi to compute the mixed volume of P1, . . . , Pn.

Example 5.1.8. Consider the triangles P1 = P2 = Conv({(0, 0), (1, 0), (0, 1)}), and the line

segments

Q1 = Conv({(0, 0), (1, 0)}) ⊂ P1, Q2 = Conv({(0, 0), (0, 1)}) ⊂ P2.

The regions P1, Q1 and Q2 are shown in Figure 5.4.

Direct computation shows

MVol(P1, P2) = 1 = MVol(Q1, Q2).

We can also use Example 5.1.5 to prove MVol(Q1, Q2) = 1 and Proposition 5.1.7 to prove

MVol(P1, P2) = MVol(Q1, Q2) since for any nonzero w ∈ Z2, the collection of polytopes
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{initw(Qi) : Qi ∩ initw(Pi) ̸= ∅}, i = 1, 2, contains a single point so the collection is de-

pendent. This type of argument, where we use the dependence of polytopes and Proposition 5.1.7,

is also used in the proofs of Proposition 5.2.3 and Proposition 5.2.7.

The following lemma will be of use later to apply Proposition 5.1.7 in the proof of our main re-

sults.

Lemma 5.1.9. Let Pi ⊆ Rn and Qi = Conv({0n, vi}) ⊆ Pi for i ∈ [n] be convex polytopes.

Consider the set, W , of nonzero w ∈ Rn such that Qi ∩ initw(Pi) ̸= ∅ for all i ∈ [n]. I.e.,

W = {w ∈ Rn\{0n} : Qi ∩ initw(Pi) ̸= ∅, ∀i ∈ [n]}.

If {v1, . . . , vn} are linearly independent, then the polytopes

{initw(Q1), . . . , initw(Qn)}

are dependent for all w ∈ W .

Proof. Fix w ∈ W . By the definition of dependent, we need to show that

dim
( n∑

i=1

initw(Qi)
)
< n.

Since initw(Qi) ⊆ Rn, for all i ∈ [n],
∑n

i=1 dim(initw(Qi)) ≤ n. Furthermore, since each Qi is

one dimensional,
∑n

i=1 dim(initw(Qi)) = n if and only if w minimizes all of Qi for all i ∈ [n].

I.e.,
∑n

i=1 dim(initw(Qi)) = n if and only if initw(Qi) = Qi for all i ∈ [n].

Recalling Qi = Conv({0n, vi}), one sees initw(Qi) = Qi if and only if

0 = ⟨w, 0n⟩ = ⟨w, vi⟩,

for all i ∈ [n]. Since {v1, . . . , vn} are linearly independent, the only w that satisfies this is w =

0n ̸∈ W .

5.2 Density estimation in one dimension

We are now able to present our first set of results: efficiently finding all complex solutions

stemming from the moment equations.
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5.2.1 Mixed volume of λ-weighted models

First consider a λ-weighted model with k mixture components. We consider the moment sys-

tem

fk
1 (µ, σ

2, λ) = 0, . . . , fk
2k(µ, σ

2, λ) = 0, (5.2.1)

where λ are known mixing coefficients, and fk
i , i ∈ [2k] is as defined in (5.1.3). In this set-up the

unknowns are µℓ, σℓ, ℓ ∈ [k].

First, we record the following fact about the moment functions Mk.

Lemma 5.2.1. The partial derivatives of Mk satisfy

∂

∂µ
Mk(σ

2, µ) = kMk−1 and
∂

∂σ2
Mk(σ

2, µ) =

(
k

2

)
Mk−2.

Proof. We verify both by induction. For both identities, the base case k = 1 is immediate. Suppose
∂
∂µ
Mk−1(σ

2, µ) = (k − 1)Mk−2. By the recursive relationship (5.1.2) we have

∂

∂µ
Mk(µ, σ

2) = Mk−1 + µ
∂

∂µ
Mk−1 + σ2(k − 1)

∂

∂µ
Mk−2

= Mk−1 + µ(k − 1)Mk−2 + σ2(k − 1)(k − 2)Mk−3

= Mk−1 + (k − 1)Mk−1 = kMk−1.

Similarly, suppose that ∂
∂σ2Mk−1(σ

2, µ) =
(
k−1
2

)
Mk−3. Using (5.1.2) again,

∂

∂σ2
Mk(µ, σ

2) = µ
∂

∂σ2
Mk−1 + (k − 1)Mk−2 + σ2(k − 1)

∂

∂σ2
Mk−2

= µ

(
k − 1

2

)
Mk−3 + (k − 1)Mk−2 + σ2(k − 1)

(
k − 2

2

)
Mk−4

= (k − 1)Mk−2 +

(
k − 1

2

)(
µMk−3 + σ2(k − 3)Mk−4

)
= (k − 1)Mk−2 +

(
k − 1

2

)
Mk−2 =

(
k

2

)
Mk−2.

Now we prove our first algebraic identifiability result.
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Proposition 5.2.2. For nonzero λℓ, ℓ ∈ [k], and generic mi, i ∈ [2k], the number of solutions to

(5.2.1) is finite.

Proof. By [139, Ch. 1, Section 5] it is enough to show the Jacobian of (5.2.1) is full rank at a

generic point. The Jacobian of (5.2.1) is a 2k × 2k matrix with rows indexed by equations and

columns indexed by the variables µ1, σ1, . . . , µk, σk:

Jk = J̃k · D̃k

=



∂M1

∂µ1
(σ1, µ1)

∂M1

∂σ1
(σ1, µ1) . . . ∂M1

∂µk
(σk, µk)

∂M1

∂σk
(σk, µk)

∂M2

∂µ1
(σ1, µ1)

∂M2

∂σ1
(σ1, µ1) . . . ∂M2

∂µk
(σk, µk)

∂M2

∂σk
(σk, µk)

...
...

...
...

...
∂M2k−1

∂µ1
(σ1, µ1)

∂M2k−1

∂σ1
(σ1, µ1) . . . ∂M2k−1

∂µk
(σk, µk)

∂M2k−1

∂σk
(σk, µk)

∂M2k

∂µ1
(σ1, µ1)

∂M2k

∂σ1
(σ1, µ1) . . . ∂M2k

∂µk
(σk, µk)

∂M2k

∂σk
(σk, µk)


· D̃k,

where D̃k is the diagonal matrix given by (λ1, λ1, λ2, λ2, . . . , λk, λk). Note that for nonzero λℓ,

ℓ ∈ [k], Jk is full rank if and only if J̃k is full rank. We now show that J̃k is full rank by induction

on k. When k = 1,

J̃1 =

 1 0

2µ1 1


is rank 2 for any µ1.

Note that µk, σ
2
k only appear in the last two columns of J̃k. Further, by Lemma 5.2.1, the

nonzero entries of each row of J̃k have higher degree than the previous row.

Doing Laplace’s cofactor expansion along the last two columns of J̃k, we get

det(J̃k) = det(J̃k−1) · µ2k−2
k σ2k−2

k + lower order terms.

By induction, det(J̃k−1) is nonzero at generic (µ1, σ
2
1, . . . , µk−1, σ

2
k−1). This shows that det(J̃k)

is a nonzero bivariate polynomial in µk, σk with leading coefficient det(J̃k−1). At generic µk, σk,

det(J̃k) does not vanish so we conclude J̃k, and hence Jk, is invertible at a generic point (µ1, σ
2
1, . . . , µk, σ

2
k).
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Lemma 5.2.2 shows that for generic sample moments, the moment equations yield finitely

many solutions. We now use Theorem 2.2.6 and Propsition 5.1.7 to give an upper bound on the

number of complex solutions to (5.2.1). Recall that if N is odd, the double factorial is defined as

N !! = 1 · 3 · 5 · · ·N.

Theorem 5.2.3 (Mixing coefficients known). Consider a Gaussian k-mixture model with known

and nonzero mixing coefficients λℓ and generic sample moments mi, ℓ ∈ [k], i ∈ [2k]. The moment

system (5.2.1) has at most (2k − 1)!!k! complex solutions.

Proof. Consider the moment equations fk
1 , . . . , f

k
2k as defined in (5.2.1) with variable ordering

(µ1, σ
2
1, . . . , µk, σ

2
k). Denote Pi = Newt(fk

i ).

Let Qℓ ⊂ Pℓ be the line segment defined as:

Q2ℓ−1 = Conv({02k, (2ℓ− 1) · e2ℓ−1}), ℓ ∈ [k]

Q2ℓ = Conv({02k, ℓ · e2ℓ}), ℓ ∈ [k],

where 02k ∈ R2k is the vector of all zeros and eℓ ∈ R2k is the ℓth standard basis vector. By

Example 5.1.5 we have

MVol(Q1, . . . , Q2k) = (1 · 3 · 5 · · · (2k − 1)) · (1 · 2 · 3 · · · k) = (2k − 1)!!k!.

We want to use the equivalence of (1) and (2) in Proposition 5.1.7 to show

MVol(P1, . . . , P2k) = (2k − 1)!!k!.

Theorem 2.2.6 then gives that the number of complex solutions to (5.2.1) is bounded above by

(2k − 1)!!k!.

For a nonzero vector w ∈ R2k, let

Iw = {i ∈ [2k] : Qi ∩ initw(Pi) ̸= ∅}.

We will show for each w ∈ Rn\{0}, the collection of polytopes

{initw(Qi) : i ∈ Iw}
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is dependent.

By Lemma 5.2.4, (which we postpone to after this proof) Iw is nonempty. Since each Qi is a

one dimensional line segment, it suffices to show that for any nonzero w ∈ R2k, w minimizes some

Qi at a unique point for i ∈ Iw. This follows from the definition of dependent since each Qi is one

dimensional, so if initw(Qi) is a single point for some i ∈ Iw, then
∑

i∈Iw initw(Qi) < |Iw|.

We look at two cases.

• First, consider when 2ℓ ̸∈ Iw for all ℓ ∈ [k]. Since the origin is in Qi, we have 02k ̸∈

initw(P2ℓ) for all ℓ ∈ [k]. Since P2ℓ ⊂ R2k
≥0, this means valw(P2ℓ) < 0 for all ℓ ∈ [k]. Hence,

wi < 0 for some i ∈ [2k].

Let i be the index of the smallest element of w. If i is odd, then

Pi = Conv
(
{02k,

i− 1

2
e2, . . . ,

i− 1

2
e2k, ie1, , . . . , ie2k−1}

)
is in the nonnegative orthant. So

valw(Pi) = min{0, i− 1

2
w2, . . . ,

i− 1

2
wk, iw1, , . . . iw2k−1} = iwi.

So initw(Qi) = {iei} for i ∈ Iw and we are done.

Now consider when i is even. Recall,

P2ℓ = Conv
(
{02k, ℓe2, ℓe4, . . . , ℓe2k, 2ℓe1, 2ℓe3, . . . , 2ℓe2k−1}

)
= ℓ · P2,

and so initw(P2ℓ) = ℓ · initw(P2) for all ℓ ∈ [k]. Therefore, 2ℓ ̸∈ Iw for all ℓ ∈ [k] implies

that P2 cannot be minimized at ej for any even j. This implies that if i is even, 0 > wi > 2wj

for some odd j (otherwise Pi would be minimized at i
2
ei). Let j be the index of the smallest

odd element of w. In this case, Pj would be minimized at jej so j ∈ Iw. Hence initw(Qj) is

{jej}.

• Second, suppose 2ℓ ∈ Iw for some ℓ ∈ [k]. If initw(P2ℓ) ∩Q2ℓ is a point, then we are done.

Otherwise, we may assume P2ℓ is minimized by w at a face containing the line segment

Q2ℓ = Conv({02k, ℓe2ℓ}).
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This means

0 = wT02k ≤ wTa ∀a ∈ P2ℓ.

So wi ≥ 0 for all i ∈ [2k] because the vertices of P2ℓ are scaled standard basis vectors. With

the fact each Pi is in the nonnegative orthant, this implies

0 = valw(Pi) for all i ∈ [2k],

so 02k ∈ initw(Pi) for all i ∈ [2k].

This shows that Iw = [2k] so by Lemma 5.1.9, we conclude that the collection of polytopes

{initw(Q1), . . . , initw(Q2k)} is dependent.

Lemma 5.2.4. The index set Iw as defined in the proof of Theorem 5.2.3 is nonempty for any

nonzero w ∈ R2k.

Proof. Recall that

P2 = Conv
(
{02k, e2, . . . , e2k, 2e1, . . . , 2e2k−1}

)
.

We consider three cases, depending on initw(P2).

• If either 02k or e2 is in initw(P2), then Q2 ∩ initw(P2) ̸= ∅ and hence 2 ∈ Iw.

• Now suppose ej ∈ initw(P2) for some even j > 2. This means 2wj ≤ wi for all odd i and

wj ≤ wm for all even m. Consider

Pj = Conv
(
{02k, je1,

j

2
e2, . . . , je2k−1,

j

2
e2k}

)
.

Then j
2
ej ∈ initw(Pj). Since Qj = Conv({02k, j

2
ej}), we have j ∈ Iw.

• Now suppose ei ∈ initw(P2) for some odd i ≥ 1. This means wi ≤ wj for all odd j and

2wi ≤ wm for all even m. Consider

Pi = Conv
(
{02k,

i− 1

2
e2, . . . ,

i− 1

2
e2k, ie1, . . . , ie2k−1}

)
.

Then iei ∈ initw(Pi). Since Qi = Conv
(
{02k, iei}

)
, we have i ∈ Iw.
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Remark 5.2.5. An instance of the previous theorem is when the mixing weights are all equal. In

this case, there are (2k − 1)!! solutions up to the standard label-swapping symmetry. Monodromy

techniques outlined in Section 2.2.3 exploit this symmetry for tremendous computational speed

up. This technique was recently used for this problem with success [33, Section 4.1].

5.2.2 Mixed volume of λ-weighted homoscedastic models

We consider the λ−weighted homoscedastic model. In this setting the means are unknown and

the variances are unknown but all equal. In this case, a k mixture model has k + 1 unknowns. We

address the high dimensional version of this problem in Section 5.3 which is also considered in

recent work, for example [118].

We consider the moment system

fk
1 (µ, σ

2, λ) = 0, . . . , fk
k+1(µ, σ

2, λ) = 0, (5.2.2)

where λ are known mixing coefficients, and fk
i , i ∈ [k + 1] is as defined in (5.1.3). In this set-up

the unknowns are µℓ, ℓ ∈ [k] and σ2.

Again, the first step is to prove that this model is algebraically identifiable.

Proposition 5.2.6. For nonzero λℓ,mi, ℓ ∈ [k], i ∈ [k + 1] the number of solutions to (5.2.2) is

finite.

Proof. This argument is analogous to the one given in Lemma 5.2.2. Again, we consider the Jaco-

bian of (5.2.2) with rows indexed by equations and columns indexed by the variables σ2, µ1, . . . , µk.

It suffices to show that for generic, σ2, µ1, . . . , µk the Jacobian, Jk, is full rank. We proceed by

induction on k. When k = 1,

J1 = J̃1 · D̃1 =

0 1

1 2µ1

 ·

λ1 0

0 λ1


is full rank for λ1 ̸= 0. Now consider the (k+1)×(k+1) matrix Jk for any k. By cofactor expansion

along the last column, det(J̃k) = det(J̃k−1)µ
k+1
k where J̃k−1 is the upper left k × k block of J̃k.
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By induction det(J̃k−1) is nonzero at generic (σ2, µ1, . . . , µk−1) so det(J̃k) is a nonzero univariate

polynomial in µk, and by Lemma 5.2.1 it has leading coefficient det(J̃k−1). Therefore, det(J̃k) is

not the zero polynomial and for generic µk it does not vanish. This shows that det(J̃k) ̸= 0 at a

generic point (σ2, µ1, . . . , µk), hence the Jacobian is full rank, giving that the variety defined by

(5.2.2) is zero dimensional, i.e., has finitely many solutions.

We bound the number of solutions to (5.2.2) for a generic λ-weighted homoscedastic mixture

model using mixed volumes.

Theorem 5.2.7 (Mixing coefficients known, variances equal). Consider a Gaussian k-mixture

model with known and nonzero mixing coefficients λℓ, ℓ ∈ [k], generic sample moments mi, i ∈

[k + 1] and equal variances. The moment system of equations (5.2.2) has at most (k+1)!
2

complex

solutions.

Proof. Let Pi = Newt(fk
i ) where fk

i is as defined in (5.2.2) with variable ordering (µ1, . . . , µk, σ
2)

for i ∈ [k + 1].

Define Qi ⊂ Pi as follows:

Q1 = Conv({0k+1, e1})

Q2 = Conv({0k+1, ek+1})

Qi = Conv({0k+1, i · ei−1}), 3 ≤ i ≤ k + 1.

(5.2.3)

where 0k+1 ∈ Rk+1 is the vector of all zeros and ei ∈ Rk+1 is the ith standard basis vector. By

Example 5.1.5,

MVol(Q1, . . . , Qk+1) = 1 · 3 · 4 · · · · (k + 1) =
(k + 1)!

2
.

As in the proof of Theorem 5.2.3, we want to show the equality of mixed volumes MVol(P1, . . . , Pk+1) =

MVol(Q1, . . . , Qk+1) by using the equivalence of (1) and (2) in Proposition 5.1.7.

Let Iw be the set of indices such that Qi has a vertex in initw(Pi). Specifically,

Iw = {i ∈ [k + 1] : Qi ∩ initw(Pi) ̸= ∅}.
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By Lemma 5.2.8, Iw is nonempty. Now we want to show that for any w ∈ Zk+1\{0} the

nonempty set of polytopes

{initw(Qi) : i ∈ Iw}

is dependent. Since Qi is a one dimensional line segment, it suffices to show that for any w, there

exists an i ∈ Iw such that Qi is minimized at a single vertex. We consider 2 cases.

• Suppose 2 ∈ Iw. If initw(P2) is a single point, then we are done. Otherwise, assume P2 is

minimized at Q2 = Conv({0k+1, ek+1}). This means wk+1 = 0 and wj ≥ 0 for all j ∈ [k],

giving valw(Pi) = 0 so 0 ∈ initw(Pi) for all i ∈ [k]. This shows that Iw = [k + 1]. By

Lemma 5.1.9, the collection of polytopes {initw(Q1), . . . , initw(Qk+1)} is dependent.

• Now suppose 2 ̸∈ Iw. If 1 ∈ Iw and Q1 is minimized at a single vertex then {initw(Qi) :

i ∈ Iw} is dependent, so we are done. If Q1 is not minimized at a single vertex, then w1 = 0

and wj ≥ 0 for all 2 ≤ j ≤ k. Since 2 ̸∈ Iw, this gives that wk+1 > 2wj for all j ∈ [k].

Therefore, valw(Pj) = 0 for all j ∈ [k+1] which shows that 0 ∈ initw(P2). This contradicts

2 ̸∈ Iw. On the other hand, if i ∈ Iw where i ≥ 3, either Qi is minimized at a single vertex

or wi−1 = 0 and wj ≥ 0 for all j ∈ [k+1]\(i−1). In the latter case, this shows valw(Pi) = 0

for all i ∈ [k + 1], contradicting 2 ̸∈ Iw.

Lemma 5.2.8. The index set Iw as defined in the proof of Theorem 5.2.7 is nonempty for any

nonzero w ∈ Rk+1.

Proof. If w is in the nonnegative orthant, then w minimizes Pi at the origin for all i ∈ [k + 1]. In

this case Iw = [k + 1] ̸= ∅. Now let i be the index of the smallest element of w. If i = k + 1 then

w minimizes P2 and Q2 at {ek+1}. If i < k + 1 then w minimizes Pi+1 and Qi+1 at {(i + 1)ei},

which shows Iw is nonempty.



90

5.2.3 Finding all solutions using homotopy continuation

To do parameter recovery for any of the set-ups described in Section 5.2.1 and Section 5.2.2, it

is not enough to know the number of complex solutions to the moment equations, we need a way

to find all of them. We propose using homotopy continuation methods as outlined in Section 2.2.

Recall both total degree and polyhedral homotopies outlined in Section 2.2.1. For the λ-

weighted model, by Theorem 5.2.3 we have that the number of solutions to the corresponding

moment system is at most (2k − 1)!!k! while the Bezout bound is (2k)!. The ratio

lim
k→∞

(2k − 1)!!k!

(2k)!
= 0

meaning for large enough k, polyhedral methods are arbitrarily better than total degree methods.

Similarly, for the λ-weighted homoscedastic model Theorem 5.2.7 gives that there are at most
(k+1)!

2
complex solutions to the moment equations. In this case, the Bezout bound is (k + 1)!, so

for any k, polyhedral homotopies will be twice as good as total degree homotopies.

Recall that the main drawback to polyhedral methods is that there is often a computational

bottleneck associated with computing the start system. Our related approach circumvents this

bottleneck and relies on the following lemma.

The collection of Newton polytopes of a polynomial system F = (f1, . . . , fn) is denoted by

Newt(F ) = (Newt(f1), . . . ,Newt(fn)).

Lemma 5.2.9. Suppose G(x) = 0 is a general sparse binomial system such that MVol(Newt(G)) =

MVol(Newt(F )) and Newt(G) ⊆ Newt(F ) element-wise. If the origin is in each Newton poly-

tope of G, then the three assertions:

1. the solutions to H(x, 0) = G(x) = 0 are trivial to find,

2. there are no singularities along the path t ∈ [0, 1), and

3. all isolated solutions of H(x, 1) = F (x) = 0 can be reached,

hold for the homotopy H(x; t) = γ(1− t)G(x) + tF (x).
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Proof. By Theorem 2.2.6 the number of solutions for G(x) = 0 equals the generic number of

solutions for a polynomial system with Newton polytopes Newt(F ). Since Newt(G) ⊆ Newt(F )

and γ is generic, we have Newt(F ) = Newt(γ(1 − t)G + tF ) for t ∈ (0, 1]. So the mixed

volume, and therefore the number of solutions, of (1− t)G+ tF agrees with the mixed volume of

Newt(F ).

The fact that the total degree homotopy works is a special case of the previous lemma applied

to polynomials with full monomial support. Combining Lemma 5.2.9 with Theorem 5.2.3 and

Theorem 5.2.7 we get the following corollary.

Corollary 5.2.10. The binomial system induced by the polytopes Qi in the proofs of Theorem 5.2.3

and Theorem 5.2.7 constructs an optimal homotopy continuation start system for the corresponding

moment system.

Proof. In this proof we construct the homotopy; give its start points; and show that it is optimal.

We only show the details for the case of Theorem 5.2.3 because the other statement’s proof is

analogous.

Consider the binomial system

g2ℓ−1 = aℓµ
2ℓ−1
ℓ + bℓ, ℓ ∈ [k]

g2ℓ = cℓ(σ
2
ℓ )

ℓ + dℓ, ℓ ∈ [k]

where aℓ, bℓ, cℓ, dℓ ∈ C∗ are generic for ℓ ∈ [k].

Since each g2ℓ−1 and g2ℓ is a univariate polynomial in distinct variables, multiplying the degrees

we know that there are (2k − 1)!!k! solutions. This number agrees with the mixed volume of the

respective moment system by Theorem 5.2.3. Moreover, the solutions are the start points of the

homotopy

H(µ, σ2; t) :=


(1− t)γg1 + tfk

1 = 0

...

(1− t)γg2k + tfk
2k = 0.

(5.2.4)

where fk
i are defined as in (5.2.1). By Lemma 5.2.9 the result follows.



92

Theorem 5.2.10 bypasses the computational bottleneck associated with polyhedral homotopy

methods. Therefore, the proofs of each theorem give the number of complex solutions to the

corresponding variety and provide an efficient way to find all of them.

Example 5.2.11. Consider (5.2.1) when k = 2 and λ = (1/2, 1/2). Here we have

f 2
1 (µ, σ

2, λ) =
1

2
µ1 +

1

2
µ2 −m1

f 2
2 (µ, σ

2, λ) =
1

2
(µ2

1 + σ2
1) +

1

2
(µ2

2 + σ2
2)−m2

f 2
3 (µ, σ

2, λ) =
1

2
(µ3

1 + 3µ1σ
2
1) +

1

2
(µ3

2 + 3µ2σ
2
2)−m3

f 2
4 (µ, σ

2, λ) =
1

2
(µ4

1 + 6µ2
1σ

2
1 + 3σ4

1) +
1

2
(µ4

2 + 6µ2
2σ

2
2 + 3σ4

2)−m4

In this case we consider the start system:

g1 = µ1 − 10, g2 = σ2
1 − 12,

g3 = µ3
2 − 27, g4 = σ4

2 − 4.

This gives six start solutions of the form (µ1, σ
2
1, µ2, σ

2
2):

(10, 12, η · 3, 2), (10, 12, η2 · 3, 2), (10, 12, 3, 2)

(10, 12, η · 3,−2), (10, 12, η2 · 3,−2), (10, 12, 3,−2)

where η is a primitive third root of unity. We chose integers as the coefficients for ease of exposi-

tion. In practice, random complex numbers with norm close to one are used as the coefficients.

5.2.4 Means unknown

A final case of interest is the λ-weighted, known variance model. This is where only the means

are unknown. This set-up was considered in high dimensions in [115, 114, 116].

We consider the moment system

fk
1 (µ, σ

2
1, λ) = · · · = fk

k (µ, σ
2
k, λ) = 0 (5.2.5)
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where λ are known mixing coefficients, σℓ
2 is a known variance, and fk

ℓ , ℓ ∈ [k] is as defined in

(5.1.3). In this set-up, the unknowns are µℓ, ℓ ∈ [k].

Theorem 5.2.12 (Means unknown). A λ-weighted, known variance Gaussian k-mixture model is

algebraically identifiable using moment system (5.2.5). Moreover, for generic λℓ, σ
2
ℓ , mℓ, ℓ ∈ [k],

the moment system (5.2.5) has k! solutions.

Proof. First we observe that (5.2.5) generically has finitely many solutions by the same arguments

as in the proof of Lemma 5.2.2 and Proposition 5.2.6. This proves the first part of the theorem.

It follows from the Bezout bound that there are at most k! complex solutions to (5.2.5). We

now show that this bound is generically achieved with equality by giving parameter values where

there are k! solutions.

Consider λℓ = 1
k
, σ2

ℓ = 1 and mℓ =
∑k

ℓ=1
1
k
Mℓ(1, ℓ) for ℓ ∈ [k]. It is clear that this has a

solution of the form µ = (1, 2, . . . , k). Further, by the same induction argument involving the Ja-

cobian of (5.2.5) referenced above, there are finitely many solutions for this set of parameters. We

observe that in this case our solution set has the typical label-swapping symmetry. This shows that

any action by the symmetric group on k letters, Sk, on any solution is also a solution. Therefore,

there are k! solutions to (5.2.5) in this case namely {σ · (1, 2, . . . , k) : σ ∈ Sk}.

Corollary 5.2.13 (Equal mixture weights and variances). A generic Gaussian k−mixture model

with uniform mixing coefficients and known and equal variances is identifiable up to label-swapping

symmetry using moments m1, . . . ,mk.

As a consequence of Theorem 5.2.12, when only the means are unknown the Bezout bound

is equal to the BKK bound. In this case using polyhedral homotopy gives no advantage to total

degree.

As discussed in Corollary 5.2.13, when the mixture weights and variances are known and equal

the standard label-swapping symmetry observed with mixture models gives only one solution up

to symmetry. Tracking a single path from a total degree start system, this one solution is easy to

find.
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Example 5.2.14. When k = 2, λ1 = λ2 = 1
2

and σ2
1 = σ2

2 = σ2 is a known parameter, we can

symbolically solve the corresponding moment system and see that up to symmetry

µ1 = m1 −
√

−m2
1 +m2 − σ2, µ2 = m1 +

√
−m2

1 +m2 − σ2.

This shows that so long as −m2
1 +m2 − σ2 > 0 we are guaranteed to get something statistically

meaningful. A picture of that region in R3 is shown in Figure 5.5.

Figure 5.5: Region in the space of parameters m1,m2, σ
2 where there are statistically meaningful

solutions for k = 2 mixture model with unknown means and λ1 = λ2 =
1
2
.

5.2.5 Mixture models with k = 4 components

The final result of this chapter is for a general Gaussian mixture model with k = 4 components.

For k = 4, the conjectured structure of the solutions to the system of twelve variables and twelve

equations according to [140] consists of 264600 complex solutions arranged in 11025 equivalence

classes of size 4! = 24. We disprove this conjecture using a numerical tool called a trace test. We

omit details of trace tests but refer the reader to [33] for more details.

Theorem 5.2.15. The number of solutions for a k = 4 mixture model is 248400 = 10350 · 4! for

generic moments (m0,m1, . . . ,m11).
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Proof. Let F̄ : C× C13 → C13 be the parametric system in the unknowns (v,µ,σ2) given by

F̄ (t; v,µ,σ2) =

mℓ − (λ1Mℓ(µ1, σ1) + · · ·+ λ4Mℓ(µ4, σ4) ℓ = 0, . . . 11

ℓ1(v) · ℓ2(g(µ,σ)) + t

with L(v) = (m0,m1, . . . ,m11) where L : C → C12 is a general affine linear function and

ℓ1, ℓ2 : C → C are general affine linear functions.

For t = 0, we find 31815 solutions and verify this is a complete set of solutions up to symmetry

using Algorithm 2 in [33] with ϵ < 10−12. Of the 31815 solutions, 10350 solutions satisfy ℓ1(v) =

0. Since ℓ1 is a general affine linear function, all of these solutions have the same v-coordinate, say

v⋆. The 10350 are solutions for the moment system chosen as L(v⋆).

5.3 Density estimation for high dimensional Gaussian mixture models

Section 5.2 gives upper bounds on the number of solutions to the moment equations for Gaus-

sian mixture models where some parameters of the model are assumed known. Using homotopy

continuation algorithms we can efficiently perform density estimation in these cases. We now use

our results to do density estimation on Gaussian mixture models in high dimensions.

5.3.1 High-dimensional Gaussian mixture models

A random variable X ∈ Rn is distributed as a multivariate Gaussian with mean µ ∈ Rn and

symmetric positive definite covariance matrix Σ ∈ Rn×n, if it has density

fX(x1, . . . , xn|µ,Σ) = ((2π)n det(Σ))−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

We denote X ∼ N (µ,Σ).

A random variable is distributed as the mixture of k multivariate Gaussians if it is a convex

combination of k multivariate Gaussian densities. It has probability density function

fX(x1, . . . , xn|λℓ, µℓ,Σℓ)ℓ=1,...,k =
k∑

ℓ=1

λℓfXℓ
(x1, . . . , xn|µℓ,Σℓ)
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where (λ1, . . . , λk) ∈ ∆k−1, µℓ ∈ Rn, and Σℓ ∈ Rn×n is symmetric and positive definite for

ℓ ∈ [k]. Here we write X ∼
∑k

ℓ=1 λℓN (µℓ,Σℓ).

Let fX : Rn → R be the probability density function of a random vector X = (X1, . . . , Xn).

The (i1, . . . , in)−th moment of X is

mi1,...,in = E[X i1
1 · · ·X in

n ] =

∫
Rn

xi1
1 · · · xin

n fX(x1, . . . , xn)dx1 · · · dxn

where is ≥ 0 for all s ∈ [n]. The non-negative integer i1 + . . . + in = d is called the order of

mi1,...,in .

We can get the explicit polynomials mi1,...,in of a Gaussian mixture using the moment generat-

ing function. This gives the identity:

∑
i1,...,in≥0

mi1,...,in

i1! · · · in!
ti11 · · · tinn =

k∑
ℓ=1

λℓ exp(t1µℓ1 + . . . tnµℓn) · exp(
1

2

n∑
i,j=1

σℓijtitj). (5.3.1)

Using Taylor’s formula, we can expand the left side of (5.3.1) and equate coefficients of each

side to get mi1,...,in . Note that m0,...,0 = 1.

Example 5.3.1. Consider a Gaussian mixture model with k = 2 components in R2. Here we have

X ∼ λ1N (µ1,Σ1) + λ2N (µ2,Σ2) where

µ1 =

µ11

µ12

 , Σ1 =

σ111 σ112

σ112 σ122

 ,

µ2 =

µ21

µ21

 , Σ2 =

σ211 σ212

σ212 σ222

 .

Observe that our convention is to use the first index to identify the component of the mixture. The

moments up to order three are
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m00 = λ1 + λ2

m10 = λ1µ11 + λ2µ21

m01 = λ1µ12 + λ2µ22

m20 = λ1(µ
2
11 + σ111) + λ2(µ

2
21 + σ211)

m11 = λ1(µ11µ12 + σ112) + λ2(µ21µ22 + σ212)

m02 = λ1(µ
2
12 + σ122) + λ2(µ

2
22 + σ222)

m30 = λ1(µ
3
11 + 3µ11σ111) + λ2(µ

3
21 + 3µ21σ211)

m21 = λ1(µ
2
11µ12 + 2µ11σ112 + µ12σ111) + λ2(µ

2
21µ22 + 2µ21σ212 + µ22σ211)

m12 = λ1(µ11µ
2
12 + µ11σ122 + 2µ12σ112) + λ2(µ21µ

2
22 + µ21σ222 + 2µ22σ212)

m03 = λ1(µ
3
12 + 3µ12σ122) + λ2(µ

3
22 + 3µ22σ222).

(5.3.2)

The m0,0,...,0,is,0,...0−th moment is the same as the is−th order moment for the univariate Gaus-

sian mixture model
∑k

ℓ=1 λℓN (µℓs, σℓss). This observation is key to our proposed density estima-

tion algorithm in Section 5.3.2 and it follows from the property that marginal distributions of a

Gaussian are Gaussian themselves.

5.3.2 Dimension reduction and recovery algorithm

We propose an algorithm for density estimation of multivariate Gaussian densities using the

method of moments. The main idea is that if we use higher order moment equations, density

estimation for multivariate Gaussian mixture models reduces to multiple instances of density esti-

mation for univariate Gaussian mixture models. The algorithm is described in Algorithm 3.

Remark 5.3.2. There are many possible choices for the input m2 and such a choice exists by

Isserlis’ Theorem [141]. To avoid cumbersome and unnecessary notation for the reader, we do

not explicitly list all such options. Our personal preference is to only use second and third order

moments.

Example 5.3.3. Suppose X ∼ λ1N (µ1,Σ1) + λ2N (µ2,Σ2) as in Example 5.3.1.



98

Algorithm 3 Density Estimation for Mixtures of Multivariate Gaussians
Input: The set of sample moments:

m1 := {me1 ,m2e1 , . . . ,m(3k)e1 ,mei , . . . ,m(2k+1)ei : 2 ≤ i ≤ n}

m2 := {ma1 , . . . ,maN : aj ∈ Nn}

that are the moments to the multivariate Gaussian mixture model:

λ1N (µ1,Σ1) + · · ·+ λkN (µk,Σk)

where N = k
2
(n2 − n) and m2 is any set of sample moments with polynomials where the off-

diagonal entries of Σℓ are linear for ℓ ∈ [k].

Output: Parameters λℓ ∈ R, µℓ ∈ Rn, Σℓ ≻ 0 for ℓ ∈ [k] such that m1,m2 are the moments of

distribution
∑k

ℓ=1 λℓN (µℓ,Σℓ).

1. Solve the general univariate case using sample moments {me1 ,m2e1 , . . . ,m(3k−1)e1} to get

parameters λℓ, µℓ,1 and σℓ,1,1.

2. Select the statistically meaningful solution with sample moment m3ke1 .

3. Using the mixing coefficients λℓ and sample moments {mei , . . . ,m2kei}, solve (5.2.1) n− 1

times to obtain µℓi and σℓii for ℓ ∈ [k], 2 ≤ i ≤ n

4. Select the statistically meaningful solution with sample moment m(2k+1)ei for 2 ≤ i ≤ n.

5. Using m2, solve the remaining system of N linear equations in N unknowns

6. Return λℓ, µℓ,Σℓ, ℓ ∈ [k].

The first steps of Algorithm 3 use the sample moments m1. Here we use the input

[m10,m20,m30,m40,m50,m60] = [−0.25, 2.75, −1.0, 22.75, −6.5, 322.75]

[m01,m02,m03,m04,m05] = [2.5, 16.125, 74.5, 490.5625, 2921.25].
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In Step 1 we solve the general univariate case to obtain λℓ, µℓ1, σ
2
ℓ11 for ℓ = 1, 2.

We find up to symmetry that there are two statistically meaningful solutions:

(λ1, λ2, µ11, µ21, σ
2
111, σ

2
211) = (0.25, 0.75, 0,−1, 3, 1)

(λ1, λ2, µ11, µ21, σ
2
111, σ

2
211) = (0.967, 0.033, −0.378, 3.493, 2.272, 0.396).

The first solution has m60 = 322.75 and the second has m60 = 294.686 so in Step 2 we select

the first solution.

Using λ1 = 0.25, λ2 = 0.75 we solve

2.5 = 0.25 · µ12 + 0.75 · µ22

16.125 = 0.25 · (µ2
12 + σ2

122) + 0.75 · (µ2
22 + σ2

222)

74.5 = 0.25 · (µ3
12 + 3µ12σ

2
122) + 0.75 · (µ3

22 + 3µ22σ
2
222)

490.5625 = 0.25 · (µ4
12 + 6µ2

12σ
2
122 + 3σ4

122) + 0.75 · (µ4
22 + 6µ2

22σ
2
222 + 3σ4

222),

and find there is one statistically meaningful solution:

(µ12, µ22, σ
2
122, σ

2
222) = (−2, 4, 2, 3.5 ).

To recover the off-diagonal entries of Σ1,Σ2, we use sample moments

m2 = [m11,m21] = [0.8125, 7.75]

then solve the linear system

0.8125 = 0.25 · (2 + σ112) + 0.75 · σ212

7.75 = 0.25 · (−4− 2 · σ112) + 9

to find (σ112, σ212) = (0.5, 0.25). We estimate that our samples came from density

0.25 · N
(−1

−2

 ,

 1 0.5

0.5 2

)
+ 0.75 · N

(0
4

 ,

 3 0.25

0.25 3.5

)
.
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The clear benefit to Algorithm 3 is that it avoids the curse of dimensionality. We observe that

Step 1 is the most computationally prohibitive step since density estimation for univariate Gaussian

mixture models with many components is difficult.

Currently, the only known way to solve Step 1 is by finding all complex solutions then selecting

the statistically meaningful one closest to the next sample moment. It has been shown, in [133,

140, 33] respectively, that for a mixture of k = 2, 3 and 4 Gaussian densities there are 9 ·2!, 225 ·3!

and 10350 ·4! complex solutions. Since the number of complex solutions is known in each of these

cases, state of the art polynomial system solvers can exploit the label swapping symmetry to find

all solutions quickly.

Also, unlike varying n, which just changes the dimension of the problem, changing k gives a

new class of problems — for example, a one-mixture is qualitatively different from a two-mixture.

Our algorithm hints that every k deserves its own independent analysis.

Remark 5.3.4. Using the homotopy continuation methods discussed in Section 5.2.3, we can

efficiently solve Step 3 of Algorithm 3. Using these continuation methods for fixed k, the number

of homotopy paths we need to track is O(n). One observation for implementation is that Steps 3

and 4 can be performed in parallel.

Now we establish preliminary results for the proof of correctness of Algorithm 3.

Lemma 5.3.5. A generic one dimensional Gaussian k mixture model for k ≤ 4 is uniquely iden-

tifiable up to symmetry using moments m0, . . . ,m3k.

Proof. When k = 1 the result is trivial. Lazard proved the result when k = 2 [142]. For k = 3, 4,

we observe this statement is equivalent to saying the polynomial system

m0 = 1,mi = mi, i ∈ [3k]

where m3k is considered as a variable has solutions where the m3k coordinate has multiplicity k!.

Since multiplicity is generic behavior, we find all solutions to this polynomial system when k =

3, 4 for generic m1, . . . ,m3k−1 ∈ C and verify the result numerically using HomotopyContinuation.jl

[29] and the certificate described in [143].



101

We conjecture that Lemma 5.3.5 is true for all k. It has been shown that every Gaussian mixture

model is uniquely identifiable by the first 4k − 2 moments [129] and that if all means are equal,

this bound is tight [144]. A generic Gaussian mixture model does not have equal means, which

distinguishes the conjectured generic bound of 3k moments from the proven upper bound of 4k−2.

We consider a lemma similar to Lemma 5.3.5.

Lemma 5.3.6. A generic Gaussian k mixture model for k ≤ 4 with known mixing coefficients is

uniquely identifiable up to symmetry using moments m1, . . . ,m2k+1.

Proof. When k = 1 the result is trivial. When k = 2, 3, 4 we provably find all solutions using

Theorem 5.2.3 then compute the multiplicity of the coordinate m2k+1 as in Lemma 5.3.5.

Theorem 5.3.7. For a generic Gaussian k mixture model with k ≤ 4 in Rn,

λ1N (µ1,Σ1) + · · ·+ λkN (µk,Σk)

with sets of moments m1 and m2, Algorithm 3 is guaranteed to recover the parameters λℓ, µℓ,Σℓ,ℓ ∈

[k].

Proof. The proof of correctness follows from Lemma 5.3.5 and Lemma 5.3.6.

The philosophy behind Algorithm 3 extends to any k. The main bottleneck is that state of the

art numerical methods to solve Step 1 by finding all complex solutions are exhausted for k ≥ 5.

The benefit of finding all complex solutions is that we are guaranteed to find all of the statisti-

cally meaningful ones. While the number of complex solutions to the moment equations seems to

grow exponentially with k, our computational results (discussed in Section 5.4) show that typically

there are few statistically meaningful ones. This motivates future work to efficiently find only the

statistically meaningful solutions.

Remark 5.3.8. In Step 2 and Step 4, strict identifiability results are needed to guarantee correct-

ness. This is already settled if one identifies the desired statistically meaningful solution from

sample moments m3k, . . . ,m4k−2 instead of just m3k as done in Algorithm 3.
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Remark 5.3.9. Although Algorithm 3 uses higher order moments, this order doesn’t exceed what

we would need for the univariate case. In addition, it has been shown that there exist algebraic

dependencies among lower order moment equations complicating the choice of which moment

system to consider [130].

5.3.3 Uniform mixtures with equal variances

We consider the special case of estimating the mixture of k Gaussians in Rn where all of the

means µi ∈ Rn are unknown, each λi =
1
k

and each covariance matrix Σi ∈ Rn×n is equal and

known. This is the in [115, 114, 117, 116].

The fundamentals of Algorithm 3 can be applied with even greater success. Recall from Corol-

lary 5.2.13 that in one dimension, there is generically a unique solution up to symmetry to (5.2.5)

that can be found efficiently. We use this fact in Step 1 of Algorithm 4. In Step 2 there are other

choices for sample moments that will give a square linear system. Some of these choices involve

sample moments of lower order.

Observe that Step 1 of Algorithm 4 requires tracking a single homotopy path. This is in contrast

to Step 1 of Algorithm 3 in which one needs to track many homotopy paths to obtain all complex

solutions. Further, Algorithm 4 requires solving a k × k linear system n − 1 times (Step 2). This

is again in contrast to Algorithm 3 where one needs to solve a nonlinear polynomial system that

tracks (2k − 1)!!k! paths n − 1 times (Step 3). In both cases, we see that we need to solve n

polynomial systems, where n is the dimension of the Gaussian mixture model.

If we consider the tracking of a single homotopy path as unit cost, we consider the number of

paths tracked as the complexity of the algorithm (as is customary in numerical algebraic geometry).

With this choice, Algorithm 4 tracks n homotopy paths, while Algorithm 3 tracks (2k−1)!!k!(n−

1)+Nk paths where Nk is the number of homotopy paths needed to complete Step 1 in Algorithm 3.

This highlights how Algorithm 4 is highly efficient and the method of moments up can be effective

for large n and k.
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Algorithm 4 Density Estimation for Uniform Mixtures of Multivariate Gaussians with Equal Co-

variances
Input: The set of sample moments:

m1 := {me1 , . . . ,mke1}

mi := {mei ,me1+ei ,m2e1+ei , . . . ,m(k−1)e1+ei}, 2 ≤ i ≤ n

that are the moments to multivariate Gaussian mixture model:

1

k
N (µ1,Σ) + · · ·+ 1

k
N (µk,Σ).

Output: Parameters µℓ ∈ Rn, such that mi, i ∈ [n], are the moments of distribution∑k
ℓ=1

1
k
N (µℓ,Σ)

1. Using mixing coefficients λℓ =
1
k

for ℓ ∈ [k] and sample moments m1 solve (5.2.5) to obtain

µℓ1 ∈ R.

2. Using sample moments mi solve the k × k linear system in µi1, . . . , µik for 2 ≤ i ≤ n.

5.4 Computational results

We perform numerical experiments by running Algorithm 3 on randomly generated Gaussian

mixture models with diagonal covariance matrices. We use HomotopyContinuation.jl to do all

of the polynomial system solving [29]. The average running time and error for k = 2 are given in

Table 5.1 and for k = 3 in Table 5.2. Overall, we see that the error incurred from doing homotopy

continuation is negligible. In addition, we see that we don’t suffer from any other numerical errors

associated with homotopy continuation, such as path jumping.

In addition we run simulations on the number of statistically meaningful solutions for a k

mixture model in one dimension. We find that if we choose random, real valued sample moments

mi, i ∈ [3k−1] then there are generically no statistically meaningful solutions. Instead we generate

a set of sample moments by computing the moments of a generic Gaussian mixture model, then
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n 10 100 1,000 10,000 100,000

Time (s) 0.17 0.71 6.17 62.05 650.96

Error 7.8× 10−15 4.1× 10−13 5.7× 10−13 2.9× 10−11 1.8× 10−9

Normalized Error 1.9× 10−16 1.0× 10−15 1.4× 10−16 7.3× 10−16 4.5× 10−15

Table 5.1: Average running time and numerical error running Algorithm 3 on a mixture of 2

Gaussians in Rn. The error is ϵ = ∥v− v̂∥2 where v ∈ R4n+2 is a vector of the true parameters and

v̂ is a vector of the estimates. The normalized error is ϵ/(4n+ 2).

n 10 100 1,000 10,000 100,000

Time (s) 4.71 10.87 73.74 845.55 8291.84

Error 3.6× 10−13 4.6× 10−12 1.3× 10−10 4.6× 10−10 9.6× 10−9

Normalized Error 1.1× 10−14 1.5× 10−14 4.2× 10−14 1.5× 10−14 3.2× 10−14

Table 5.2: Average running time and numerical error running Algorithm 3 on a mixture of 3

Gaussians in Rn. The error is ϵ = ∥v− v̂∥2 where v ∈ R6n+3 is a vector of the true parameters and

v̂ is a vector of the estimates. The normalized error is ϵ/(6n+ 3).
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finding all other statistically meaningful solutions. We generate a generic Gaussian k-mixture

model as follows: Let Xi, Yi, Zi ∼ N (0, 1) for i ∈ [k] be independent random variables. Then

λi =
|Xi|∑k
i=1 |Xi|

, µi = Yi and σ2
i = |Zi| for i ∈ [k].

The results of these simulations is given in Table 5.3. We run each simulation 10, 000 times

and the results are given up to the label swapping symmetry.

k 2 3 4

Average number of R solutions 2.93 4.34 13.17

Maximum number of R solutions 5 17 55

Average number of statistically meaningful solutions 1.51 1.77 2.81

Maximum number of statistically meaningful solutions 2 5 15

Table 5.3: Average and maximum number of real and statistically meaningful solutions (up to

label-swapping symmetry) for generic Gaussian k-mixture models.
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Chapter 6

The maximum likelihood degree of sparse polynomial sytems

6.1 Introduction

Maximum likelihood estimation is a statistical method of density estimation that seeks to max-

imize the probability that a given set of samples comes from a distribution. Given independent and

identically distributed (iid) samples s(1), . . . , s(N) we can form a data vector u ∈ △n−1 := {p ∈

Rn
>0 :

∑n
i=1 pi = 1} which counts the fraction of times each event happened in the sample set

s(1), . . . , s(N).

Given u, the log likelihood function for a discrete random variable is given by

log(pu1
1 · · · pun

n ) = u1 log(p1) + . . .+ un log(pn).

Maximum likelihood estimation aims to select the set of points p ∈ △n−1 that maximizes the

likelihood that u came from that distribution. In many instances, we assume that our density p

lives in a statistical model M ⊆ △n−1. In this set-up, maximum likelihood estimation amounts to

solving the (often) nonconvex optimization problem

max
p

u1 log(p1) + . . .+ un log(pn) subject to p ∈ M.

This is the primary problem under consideration. While nonconvex optimization is often much

more challenging than its convex counterpart, methods exist to tackle this problem. We consider

the set-up where M is defined by a set of polynomial equations and use tools from algebraic geom-

etry to study the critical points of this optimization problem. This problem has been studied from

several points of view. An algebraic geometry approach and definition of maximum likelihood

(ML) degree were made in [145, 146]. The results in [147] show that the ML degree of a smooth
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variety equals a signed Euler characteristic, and in the case of a hypersurface, that the ML degree

equals a signed volume of a Newton polytope. For the singular case, formulas for the ML Degree

are given by the Euler obstruction function [148]. ML degrees also make an appearance in toric

geometry [149, 150] and are studied for other statistical models [151, 152, 153].

Specifically, we consider when M is given by the variety of a system of sparse polynomial

equations. Sparse polynomials have been studied in several contexts [154, 24]. A good introduc-

tion to this material is [155, Chapter 3]. Following similar conventions as those in [156], we spec-

ify a family of sparse polynomials by its monomial support using the following notation. For each

α = (α1, ..., αn) ∈ Nn, the monomial xα := xα1
1 · · ·xαn

n with exponent α is the map xα : Cn → C.

A sparse polynomial is a linear combination of monomials. Let A• = (A1, . . . ,Ak) denote a

k-tuple of nonempty finite subsets of Nn. A general sparse polynomial system of equations with

support A• is given by ∑
α∈A1

c1,αx
α = . . . =

∑
α∈Ak

ck,αx
α = 0,

where the coefficients {ci,α}α∈Ai,i∈[k] are general.

Related work has considered a similar optimization problem

min
x∈Rn

g(x) subject to x ∈ X (6.1.1)

where X is a real algebraic variety and g is a specified objective function. A particular choice of g

that is of interest is when g = ∥x − u∥22 for a point u ∈ Rn. This is called the Euclidean distance

function and the number of critical points to this optimization problem for general u is called the

ED degree of X . The study of ED degrees began with [157] and initial bounds on the ED degree of

a variety were given in [158]. Other work has found the ED degree for real algebraic groups [159],

Fermat hypersurfaces [160], orthogonally invariant matrices [161], smooth complex projective

varieties [162], the multiview variety [163], and when X is a hypersurface [164]. Further work

has considered instances of this problem when the data u are not general [165] as well as when the

semidefinite relaxation is tight [166].

A final connection is when the objective function in (6.1.1) is a polynomial. In this case, the

number of critical points is called the algebraic degree of the optimization problem. In [167], the
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algebraic degree of (6.1.1) is considered when X = V (f1, . . . , fk) with fi and g are all generic

polynomials of some degree. By [167, Proposition 2.1] the number of solutions (x∗, λ∗
1, . . . , λ

∗
k) ∈

Cn+k to the the Karush-Kuhn-Tucker (KKT)-system

∇g(x∗) +
k∑

i=1

λ∗
i∇fi(x

∗) = 0

f1(x
∗) = · · · = fk(x

∗) = 0

is the algebraic degree. Moreover, a formula for this degree is given in [167, Theorem 2.2] in

terms of the degrees of g and f1, . . . , fk. Other formulas for many classes of convex polynomial

optimization problems are given in [168] and [169]. Related topics and background on algebraic

optimization problems and the corresponding convex geometry can be found in [170].

6.2 The ML degree of sparse systems

Let F : Rn → Rk be a sparse polynomial system with general coefficients. Let u ∈ Rn be

a general point. Here u is the data and F = ⟨f1, . . . , fk⟩ is the model. We want to solve the

maximum likelihood optimization problem:

sup
x∈Rn

>0

n∑
i=1

ui log(xi) subject to x ∈ V(F ). (MLE)

One approach to solving (MLE) is to find all critical points which can be done using Lagrange

multipliers. The Lagrangian function for (MLE) is defined as

Λ(x1, . . . , xn, λ1, . . . , λk) :=
n∑

i=1

ui log(xi)−
k∑

i=1

λifi. (6.2.1)

To find all critical points of (MLE) we solve the square polynomial system L : Rn+k → Rn+k

obtained by taking the partial derivatives of Λ. The partial derivatives are

∂

∂xi

Λ =
ui

xi

− ∂

∂xi

( k∑
j=1

λjfj

)
, i ∈ [n] (6.2.2)

∂

∂λj

Λ = −fj, j ∈ [k]. (6.2.3)
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Multiplying ∂
∂xi

Λ by xi clears the denominators to get the polynomials

ℓi := xi ·
∂

∂xi

Λ = ui − xi

k∑
j=1

λj
∂

∂xi

(fj), i ∈ [n]. (6.2.4)

Using the notation in (6.2.3)-(6.2.4), the ML system of F is

L(F ) = ⟨ℓ1, . . . , ℓn, f1, . . . , fk⟩. (6.2.5)

In the literature, the ML system is also known as the Lagrange likelihood equations. We use the

former terminology for brevity.

The critical points to (MLE) are given by the real solutions to L(F ) with positive x-coordinates.

It is often more convenient to work over algebraically closed fields because the number of complex

solutions to L(F ) is constant over a dense Zariski open subset of the parameter space. This number

is called the ML degree of F .

Remark 6.2.1 (Sum-to-one-constraint). Typically f1 ∈ F will be x1+ . . .+xn− 1. Although this

polynomial does not have general coefficients, we can rescale the variables so the traditional MLE

situation falls into our set-up.

The following proposition shows that the ML degree of a sparse polynomial system is well

defined.

Proposition 6.2.2. For a general sparse polynomial system F = ⟨f1, . . . , fk⟩ and for generic data

u, the corresponding ML system has finitely many solutions in Cn × Ck. Moreover, all solutions

to the ML system are in (C∗)n × (C∗)k.

Proof. This proof uses genericity in two different ways. First we use genericity of the coefficients

of f1, . . . , fk. By Bertini’s Theorem [139, Ch. III,§10.9.2]., the variety of ⟨f1, . . . , fk⟩ saturated by

the coordinate hyperplanes is either empty or codimension k. Denote this variety by X . Moreover,

by Bertini’s Theorem, if k < n, then the variety X is irreducible.

The polynomials ℓ1, . . . , ℓn give a map X×Ck
λ → Cn

u. The source of this map is n-dimensional

and irreducible and therefore the image is at most n-dimensional.
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Now we use genericity of the data. If the image is n dimensional, then a fiber over a generic

point is zero dimensional. This means the ML system for generic data has finitely many solutions.

On the other hand, if the image is lower dimensional, then the fiber over a generic point is empty.

In such a case the ML degree is zero.

Since X is defined by saturating by the coordinate hyperplanes, we must show that there are

still only finitely many solutions to the ML System in (Cn\(C∗)n)×Ck. By the data being generic,

we may assume the ui coordinate is nonzero. For i = 1, . . . , n, having ui ̸= 0 and ℓi = 0 implies

that the xi coordinate of the solution is not zero. Therefore all solutions to the ML system are in

(C∗)n × Ck.

We have shown the first statement and part of the second statement. It remains to show that

there are no solutions with λi = 0 for i ∈ [k]. If we assume λ∗
k = 0 by way of contradiction, then

(x∗
1, . . . , x

∗
n, λ

∗
1, . . . , λ

∗
k−1) is a solution to the ML system of f1, . . . , fk−1. By the argument above,

this new ML system has finitely many solutions. By the genericity of fk, none of these solutions

will satisfy fk(x
∗) = 0.

We remark that the arguments used in the first half of the proof are analogous to the ones

presented in [146, Proposition 3].

6.2.1 Newton polytopes of likelihood equations and the algebraic torus

We want to use existing results on sparse polynomial systems from algebraic geometry. To do

this, recall the definition of Newton polytopes and initial systems. For simplicity, we denote ∥(f)

to be the set of vertices of Newt(f).

The next lemma describes the Newton polytopes of the ML system (6.2.5). We use the notation

x1 · · ·xn | f when there exists a polynomial g such that x1 · · ·xn · g = f .

Lemma 6.2.3. Consider a sparse polynomial system F = ⟨f1, . . . , fk⟩. If x1 · · ·xn | fj for all

j ∈ [k], then for every i ∈ [n] and j ∈ [k], Newt(fj) = Newt(xi
∂
∂xi

fj). Moreover, for every

i ∈ [n] the Newton polytope of ℓi is equal to

Newt(ℓi) = Conv({0n+k} ∪ Vert(λ1f1) ∪ · · · ∪ Vert(λkfk)).
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Proof. The proof of the first statement follows from the fact that a Newton polytope is determined

by its vertices, and that

∂

∂xi

(xα1
1 · · ·xαn

n ) =

0 αi = 0

αi
x
α1
1 ···xαn

n

xi
otherwise.

The proof of the second statement follows from the the definition of the likelihood equations and

Newton polytopes.

The following example provides an intuitive description of Lemma 6.2.3.

Example 6.2.4. Let F = f = ⟨2x4 + 3y3 − 5⟩, and consider variable ordering (x, y, λ). Then the

Newton polytopes given by L(f) are

Newt(f) = Conv({(4, 0, 0), (0, 3, 0), (0, 0, 0)}),

Newt(ℓ1) = Conv({(0, 0, 0), (4, 0, 1)}), and

Newt(ℓ2) = Conv({(0, 0, 0), (0, 3, 1)}).

These are different from the Newton polytopes coming from L(f̂), where f̂ = ⟨xyf⟩:

Newt(f̂) = Conv({(5, 1, 0), (1, 4, 0), (1, 1, 0)}), and

Newt(ℓ̂1) = Newt(ℓ̂2) = Conv({(5, 1, 1), (1, 4, 1), (1, 1, 1), (0, 0, 0)}).

Figure 6.1: Newt(ℓ1),Newt(ℓ2) and Newt(ℓ̂1) = Newt(ℓ̂2) from Example 6.2.4
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The following proposition shows that the assumption x1 · · · xn | fj for all j ∈ [k] in Lemma 6.2.3

is not an issue.

Proposition 6.2.5. Let F = (f1, . . . , fk) and F̂ = (f̂1, . . . , f̂k) where fj ∈ C[x1, . . . , xn] and

f̂j = x1 · · · xn · fj for j ∈ [k]. The ML degree of F equals the ML degree of F̂ .

Proof. Recall the definition of ML system in (6.2.5), and let

L(F ) = ⟨ℓ1, . . . , ℓn, f1, . . . , fk⟩ and L(F̂ ) = ⟨ℓ̂1, . . . , ℓ̂n, f̂1, . . . , f̂k⟩.

By Proposition 6.2.2 it suffices to show that there is a bijection between V(L(F )) ∩ (C∗)n+k and

V(L(F̂ )) ∩ (C∗)n+k. We claim such a bijection is given by

ϕ : V(L(F )) ∩ (C∗)n+k → V(L(F̂ )) ∩ (C∗)n+k

(x1, . . . , xn, λ1, . . . , λk) 7→ (x1, . . . , xn,
λ1

x1 · · ·xn

, . . . ,
λk

x1 · · ·xn

)

We need to show that ϕ is well defined. Since we assume (x, λ) ∈ (C∗)n+k, λi

x1···xn
is well defined.

Now observe that if fj(x1, . . . , xn) = 0 then f̂j = x1 · · ·xn · fj(x1, . . . , xn) = 0 so we only need

to show ℓ̂i vanishes on the image of ϕ. By definition,

ℓ̂i = ui − xi ·
k∑

j=1

λj
∂

∂xi

(x1 · · ·xnfj)

= ui − xi ·
k∑

j=1

λj(x1 · · ·xi−1xi+1 · · ·xnfj + x1 · · ·xn
∂

∂xi

(fj)).

Since fj(x1, . . . , xn) = 0 the first term in the summand vanishes. Substituting λj 7→ λj

x1···xn
,

the result is then clear.

Consider

ϕ−1 : V(L(F )) ∩ (C∗)n+k → V(L(F̂ )) ∩ (C∗)n+k

(x1, . . . , xn, λ1, . . . , λk) 7→ (x1, . . . , xn, x1 · · ·xnλ1, . . . , x1 · · · xnλk)

It is clear that the map ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ is the identity, and that

ϕ−1(x1, . . . , xn, λ1, . . . , λk) ∈ V(L(F )) ∩ (C∗)n+k.
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6.2.2 Initial systems of the likelihood equations

We now consider the geometry of the Newton polytopes of the likelihood equations and how it

relates to the number of C∗ solutions to these equations.

By Proposition 6.2.2 we know that for a general sparse polynomial system F and data vector

u, there are finitely many complex solutions to the likelihood equations and that all such complex

solutions live in the torus. Therefore, we would like to use the BKK bound (Theorem 2.2.6) to

identify the ML degree of F . To do this we need some preliminary results.

By Lemma 6.2.3, if x1 · · ·xn | fj for all j ∈ [k] then

Newt(ℓj) = Newt(ℓi)

for i, j ∈ [n]. Call this polytope P . Given some nonzero weight vector w ∈ Zn+k, we would like

to determine which face of P is exposed by w, based on which faces of Newt(f1), . . . ,Newt(fk)

are exposed by w.

Lemma 6.2.6. Let F = (f1, . . . , fk) denote a general sparse polynomial system. Let ẽj ∈ Rn+k be

the vector with (n+ j)-th entry equal to 1 and all other entries equal to 0. Suppose w is a nonzero

weight vector in Zn+k.

If x1 · · ·xn | fj for all j ∈ [k], then up to reordering the f1, . . . , fk, w exposes P on one of the

following faces:

1. the origin

2. Conv(ẽ1 +Newtw(f1), . . . , ẽt +Newtw(ft)) for some t ∈ [k]

3. Conv(0, ẽ1 +Newtw(f1), . . . , ẽt +Newtw(ft)) for some t ∈ [k].

Proof. Fix a nonzero weight vector w = (a, b) ∈ Rn × Rk and suppose (v, 0k) ∈ Newt(f1) \

Newtw(f1). From the description of P in Lemma 6.2.3 we have that

valw(P ) ∈ {0, b1 + valw(f1), . . . , bk + valw(fk)}.

If bj + valw(fj) > 0 for all j ∈ [k], then P is exposed at the origin, so we are in Case 1. If

b1 + valw(f1) = · · · = bt + valw(ft) = γ < 0 for some t ∈ [k], where bj + valw(fj) > γ for all

t+ 1 ≤ j ≤ k, then we are in Case 2. If above γ = 0, then we are in Case 3.



114

We illustrate Lemma 6.2.6 with the following example.

Example 6.2.7. Recall the ML system L(f̂) from Example 6.2.4 where f̂ = ⟨xy(2x4 + 3y3 − 5)⟩

and P from Figure 6.1. Consider the three weight vectors

w1 = (−3, 14, 3), w2 = (−3,−4, 3), w3 = (−3, 12, 3).

The respective exposed faces of P for these weight vectors are

Pw1 = {(0, 0, 0)}, Pw2 = Conv({(5, 1, 1), (1, 4, 1)}), Pw3 = Conv({(0, 0, 0), (5, 1, 1)}),

and are shown in red in Figure 6.2. Each Pwi
corresponds to one of the three cases in Lemma 6.2.6.

Namely, Pw1 is the origin; Pw2 is in Case 2; and Pw3 is in Case 3.

Figure 6.2: Pw1 , Pw2 and Pw3 from Example 6.2.7.

We now need to show that for each of the three cases outlined in Lemma 6.2.6, there are no C∗

solutions to the corresponding initial system.

Lemma 6.2.8. Let F = (f1, . . . , fk) denote a general sparse polynomial system. If x1 · · ·xn | fj
for all j ∈ [k], then there are no C∗ solutions to initw(L(F )) when Pw is as in Case 1.

Proof. Recall that in Case 1 in Lemma 6.2.6, Pw is the origin. In this case we have initw(ℓi) =

ui = 0. Since generally ui ̸= 0, this initial system has no solutions.

Lemma 6.2.9. Let F = (f1, . . . , fk) denote a general sparse polynomial system. If x1 · · ·xn | fj
for all j ∈ [k], then there are no C∗ solutions to initw(L(F )) when Pw is as in Case 2.
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Proof. Recall that in Case 2 in Lemma 6.2.6, Pw is Conv(ẽ1 + Newtw(f1), . . . , ẽt + Newtw(ft))

for some 1 ≤ t ≤ k.

Let f̃j = initw(fj) for j ∈ [k]. We consider the following as a subsystem of initw(L(F )):

f̃1 = . . . = f̃t = 0

x1

( t∑
j=1

λj
∂

∂x1

(f̃j)
)
= . . . = xn

( t∑
j=1

λj
∂

∂xn

(f̃j)
)
= 0

Since we only consider C∗ solutions, this reduces to

f̃1 = . . . = f̃t = 0

t∑
j=1

λj
∂

∂x1

(f̃j) = . . . =
t∑

j=1

λj
∂

∂xn

(f̃j) = 0.

By Bertini’s Theorem [139, Ch. III,§10.9.2], the variety cut out by f̃1 = 0, . . . , f̃t = 0 has

codimension t in (C∗)n and V(f̃1, . . . , f̃t) has no singular solutions in the torus. So this initial

system has no C∗ solutions.

Before we consider the final case of Lemma 6.2.6, we need a preliminary lemma.

Lemma 6.2.10. Let F = (f1, . . . , fk) denote a general sparse polynomial system where x1 · · ·xn |

fj for all j ∈ [k]. Furthermore, let w = (a, b) ∈ Zn×Zk be a nonzero weight vector. If a = 0 then

there are no C∗ solutions to initw(L(F )).

Proof. Under the assumption a = 0,

Newtw(fj) = Newt(fj) and valw(fj) = 0 for all j ∈ [k].

Recall from the proof of Lemma 6.2.6,

valw(P ) ∈ {0, b1 + valw(f1), . . . , bk + valw(fk)}.

Since valw(fj) = 0, this gives that valw(P ) ∈ {0, b1, . . . , bk}. If any bj < 0 or all bj > 0 for

j ∈ [k], then by Lemmas 6.2.9 and 6.2.8 there are no C∗ solutions to the initial system.
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It remains to consider when

b1 = . . . = bt = 0 and bt+1, . . . , bk > 0.

Note that t < k, because otherwise b would be the all zeros vector, which is not allowed. Observe

that initw(ℓ1, . . . , ℓn, f1, . . . , ft) is equal to the ML system of (f1, . . . , ft). By Proposition 6.2.2

there are finitely many solutions to this ML system. Since ft+1, . . . , fk are general, they won’t

intersect the variety of this Lagrange system.

Lemma 6.2.11. Let F = (f1, . . . , fk) denote a general sparse polynomial system. If x1 · · ·xn | fj
for all j ∈ [k], then there are no C∗ solutions to initw(L(F )) when Pw is as in Case 3.

Proof. Recall from Case 3 in Lemma 6.2.6, Pw is Conv(0, ẽ1 + Newtw(f1), . . . , ẽt + Newtw(ft))

for some 1 ≤ t ≤ k. Let f̃j = initw(fj) for j ∈ [k].

We consider the subsystem of initw(L(F )) given by:

f̃1 = . . . = f̃t = 0

x1

t∑
j=1

λj
∂

∂x1

(f̃j) = u1

...

xn

t∑
j=1

λj
∂

∂xn

(f̃j) = un.

Multiplying f̃j by λj , this becomes

λ1f̃1 = . . . = λtf̃t = 0

x1

t∑
j=1

λj
∂

∂x1

(f̃j) = u1

...

xn

t∑
j=1

λj
∂

∂xn

(f̃j) = un.
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Observe that λj f̃j has the same monomial support as xiλj
∂
∂xi

(f̃j) for all i ∈ [n]. Therefore if we

write λj f̃j =
∑Mj

i=1 ci,jx
αi,j we can write initw(ℓ1, . . . , ℓn, f1, . . . , ft) as the linear system AX =

U : 

α1,1 . . . α1,M1 . . . αt,1 . . . αt,Mt

− 1M1 − 0 · · · 0
...

...
...

0 · · · 0 · · · − 1Mt −


·



c1,1x
α1,1

...

c1,M1x
α,M1

...

ct,1x
αt,1

...

ct,Mtx
αt,Mt


=



u1

...

un

0
...

0


.

Note that A ∈ N(n+t)×(M1+...+Mt), X ∈ RM1+...+Mt , U ∈ Nn+t, and 1Mi
is a row vector of size

Mi of all ones.

For M1, . . . ,Mt large enough, a dimension count of A suggests its rows are linearly indepen-

dent. However, it turns out that no matter the size of M1, . . . ,Mt, the matrix A always has a

nontrivial left kernel vector:

(a1, . . . , an,−valw(f1), . . . ,−valw(ft)),

where w = (a, b) ∈ Zn × Zk. This follows from ⟨a, αj,i⟩ = valw(fj) for j ∈ [t].

By Lemma 6.2.10, we know that some of the ai are nonzero, which contradicts the generality

of u, as it would imply that ⟨a, u⟩ = 0 with a ̸= 0.

6.3 Main result and consequences

Theorem 6.3.1 (Main Result). For general sparse polynomials F = (f1, . . . , fk), denote its ML

system (6.2.5) by L(F ). The ML degree of F equals the mixed volume of L(F ).

Proof. Consider the system F̂ = (f̂1, . . . , f̂k) where f̂j = x1 · · · xn ·fj for j ∈ [k]. It follows from

the BKK bound (Theorem 2.2.6), Proposition 6.2.2 and Lemmas 6.2.6, 6.2.8, 6.2.9 and 6.2.11 that

the ML degree of F̂ equals the mixed volume of L(F̂ ).
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Now we show that the ML degree of F equals the mixed volume of L(F ). First observe that

Newt(fj) + (1n, 0k) = Newt(f̂j) for j ∈ [k]. Since the mixed volume is translation invariant, this

gives

MVol(ℓ1, . . . , ℓn, f1, . . . , fk) = MVol(ℓ1, . . . , ℓn, f̂1, . . . , f̂k)

For ϕ ∈ SLn+k given by  In 1n×k

0k×n Ik

 ,

we have

MVol(ℓ1, . . . , ℓn, f̂1, . . . , f̂k) = MVol(ϕ · ℓ1, . . . , ϕ · ℓn, ϕ · f̂1, . . . , ϕ · f̂k)

= MVol(ϕ · ℓ1, . . . , ϕ · ℓn, f̂1, . . . , f̂k)

Since ϕ(Newt(ℓi)) ⊆ Newt(ℓ̂i), by monotonicity of mixed volume we get

MVol(ϕ · ℓ1, . . . , ϕ · ℓn, f̂1, . . . , f̂k) ≤ MVol(ℓ̂1, . . . , ℓ̂n, f̂1, . . . , f̂k).

Thus far we have shown the inequality MVol(L(F )) ≤ MVol(L(F̂ )). We claim the following

list of equalities also holds:

MVol(L(F̂ )) = ML Degree of F̂ = ML Degree of F ≤ MVol(L(F )). (6.3.1)

From the argument given above we also have that the mixed volume of L(F̂ ) is equal to the

ML degree of F̂ . By Proposition 6.2.5 we have that the ML degree of F̂ equals the ML degree

of F . The first part of the BKK bound (Theorem 2.2.6) tells us that the ML degree of F is upper

bounded by the mixed volume of L(F ). The inequalitiy MVol(L(F )) ≤ MVol(L(F̂ )) paired with

(6.3.1) shows that the mixed volume L(F ) equals the ML degree of F .

Remark 6.3.2. Theorem 6.3.1 shows that an optimal homotopy method to find all critical points

for maximum likelihood estimation is given by a standard polyhedral homotopy (as outlined in

Section 2.2.1) from its ML system.

A corollary of our results is that the ML degree of a general sparse polynomial system F

depends only on the Newton polytopes.
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Corollary 6.3.3. Consider two general sparse polynomial systems: F = (f1, . . . , fk) and G =

(g1, . . . , gk), where Newt(fj) = Newt(gj) for j ∈ [k]. The ML degree of F equals the ML degree

of G.

Proof. Suppose F and G have the same Newton polytopes. Consider x1 · · ·xnF = F̂ and x1 · · · xnG =

Ĝ. The ML systems of F̂ and Ĝ have the same Newton polytopes, so by Theorem 6.3.1 the ML

degree of F̂ equals the ML degree of Ĝ. Proposition 6.2.5 then gives that the ML degree of F

equals the ML degree of F̂ and likewise for G and Ĝ, giving the result.

This is a surprising corollary because the Newton polytopes of F do not determine the Newton

polytopes of the respective ML system.

Example 6.3.4. Consider the ML systems L(f) and L(f̂) from Example 6.2.4 and Example 6.2.7.

Both of these systems have a mixed volume of 12 even though the Newton polytopes of the corre-

sponding Lagrangian likelihood equations are quite different.

Corollary 6.3.3 suggests a way to design homotopy algorithms to do maximum likelihood

estimation in the case when the statistical model, M, is algebraic. By considering only the vertices

of the Newton polytopes of the polynomials defining M the likelihood equations can dramatically

simplify, leading to optimal start systems that circumvent the bottleneck associated with traditional

polyhedral methods. This is illustrated on an example below.

Example 6.3.5. Consider when M = {x ∈ Rn : f(x) = 0} where f is a generic quadratic

polynomial. The ML degree of f is the same as the ML degree of g where g(x) = a0 + a1x
2
1 +

. . .+ anx
2
n for generic ai, i ∈ [n]. The ML system of g is

0 = ℓi = ui − 2λaix
2
i , i ∈ [n]

0 = g = a0 + a1x
2
1 + . . .+ anx

2
n.

We can explicitly solve this system and see

λ = −
1
2
(u1 + . . .+ un)

a0

x2
i =

a0ui

−ai(u1 + . . .+ un)
.
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This shows that the ML degree of g (and therefore f ) is 2n. Moreover, the binomial system B =

(ℓ1, . . . , ℓn, a0+a1x
2
1) gives an optimal polyhedral homotopy start system to find all critical points

of the MLE problem for f . Observe that in this case, the Bezout bound of the ML system of f is

2 · 3n, so for large enough n, this polyhedral start system will be arbitrarily better.
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Chapter 7

Exact semidefinite relaxations to binary programs

We conclude this thesis by studying the Shor relaxation of classes of quadratic polynomial op-

timization problems. We first study this relaxation when the feasible region is the image of a linear

transformation and when it is acted upon by a group. We then consider when the feasible region

consists of finitely many points and we show that the set of polynomial optimization problems

where this relaxation is tight consists of the union of finitely many spectrahedra. We then focus on

quadratic binary programs. We give explicit descriptions of the regions where the Shor relaxation

is exact in a variety of situations.

7.1 Problem set up

We first recall from Section 3.2 the Shor relaxations of quadrtaic programs. Let Symn(R) be

the set of all n× n real symmetric matrices. We consider a quadratic program

min
x∈Rn

g(x) subject to fi(x) = 0, i ∈ [m]. (QP)

where g(x) = xTCx+2dTx and fi(x) = xTAix+2aTi x+αi for C,Ai ∈ Symn(R) and d, ai ∈ Rn

for i ∈ [m]. Denote V(F ) to be the complex variety of F = (f1, . . . , fm).

The optimization problem (QP) has Lagrangian

L(λ, x) = g(x)−
m∑
i=1

λifi(x).

The Hessian of L with respect to x is

H(λ) = 2 · (C −
m∑
i=1

λiAi).
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Definition 7.1.1. [171, Def. 3.2] The SDP-exact region of (QP), RF , is the set (C, d) ∈ (Symn(R),Rn)

such that the Shor relaxation of (QP) is exact. Specifically,

RF = {(C, d) : H(λ) ≻ 0, d−
m∑
i=1

λiai +H(λ)x = 0 for some x ∈ VR(F ), λ ∈ Rm}.

We wish to examine RF for various classes of quadratic programs.

7.2 When is the SDP exact region is well-defined?

The goal of this section is to establish conditions under which ⟨F ⟩ = ⟨G⟩ implies RF = RG

where deg(f) = deg(g) = 2 for all f ∈ F and g ∈ G. Unfortunately, as demonstrated in further

examples, two ideals being the same does not imply that their corresponding SDP exact region is

the same. This section makes progress towards understanding when the SDP exact region of an

ideal is well defined. We begin with a proposition which classifies when RF is empty.

Proposition 7.2.1. RF = ∅ if and only if VR(F ) = ∅.

Proof. (⇒) : We prove this by contrapositive. Assume VR(F ) ̸= ∅, we want to show that then

RF ̸= ∅. Let x ∈ VR(F ) and fix λ ∈ Rm and C ∈ Symn(R) such that H(λ) ≻ 0. Observe that

such a C exists since taking C = α ·I where α is greater than the smallest eigenvalue of
∑m

i=1 λiAi

works. Then choose d ∈ Rn such that d−
∑m

i=1 λiai +H(λ)x = 0.

(⇐) : Suppose VR(F ) = ∅. Then trivially by Definition 7.1.1, RF = ∅.

The condition for RF to be empty as outlined in Proposition 7.2.1 is a very natural one. We

would now like to extend our analysis of when RF is well defined to the case when VR(F ) is

nonempty. The main result of this section is now presented.

Theorem 7.2.2. The SDP exact region of F = ⟨f1, . . . , fm⟩ is the same as L ·F where L ∈ RN×m

is a rank m matrix.
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Proof. Let RF be the SDP exact region of F = ⟨f1, . . . , fm⟩ where fi = xTAix + aTi x + αi and

RLF be the SDP exact region of L · F = ⟨f̂1, . . . , f̂N⟩ where ℓij is the (i, j)th entry of L and

f̂i =
m∑
j=1

ℓijfj =
m∑
j=1

ℓij(x
TAjx+ aTj x+ αj), i ∈ [N ].

Observe that the variety cut out by F and L · F are the same. Specifically, if VR(F ) = ∅ then

VR(LF ) = ∅ so by Proposition 7.2.1 both SDP exact regions will be empty. Therefore, we now

assume VR(F ) ̸= ∅.

First we will show RF ⊆ RLF . Suppose (C, d) ∈ RF corresponding to point x ∈ VR(F ) and

λ ∈ Rm. We claim (C, d) ∈ RLF corresponding to point x ∈ V(F ) and λ̂ ∈ Rm where LT λ̂ = λ.

Observe that since LT is a rank m, N ×m matrix, such a λ̂ exists. Let Ĥ be the Hessian of LF .

Then

Ĥ(λ̂) =
N∑
i=1

λ̂iÂi

=
N∑
i=1

λ̂i

m∑
j=1

ℓijAj

=
m∑
i=1

Ai

N∑
j=1

λ̂jℓji

=
m∑
i=1

λiAi = H(λ) ≻ 0

where the last line is by definition of λ̂. Now consider the equality constraint:

d−
N∑
i=1

λ̂iâi + Ĥ(λ̂)x = d−
N∑
i=1

λ̂i

m∑
j=1

ℓijaj +H(λ)x

= d−
m∑
i=1

ai

N∑
j=1

λjℓji +H(λ)x

= d−
m∑
i=1

λiai +H(λ)x = 0.

The same argument holds for showing RLF ⊆ RF by considering λ = LT λ̂.
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Theorem 7.2.2 tells us that for an ideal I = ⟨F ⟩ = ⟨f1, . . . , fm⟩, RF is well-defined if for any

other ideal J such that J = I, there exists a set of generators of J = ⟨G⟩ = ⟨g1, . . . , gN⟩ such

that G = L · F for some L ∈ RN×m with rank m. We give a sufficient condition under which

ideals defined by quadratic generators satisfy this assumption.

Theorem 7.2.3. Consider F = ⟨f1, . . . , fm⟩ where deg(fi) = 2, fi ∈ R[x1, . . . , xn] and m ≤ n.

Write fi = gi + hi where gi is the homogeneous degree two part of fi and hi is the degree zero and

one part. If the variety V(g1, . . . , gm) has codimension m, then RF is well-defined.

Proof. Consider some ideal Q = ⟨q1, . . . , qN⟩ where Q = F and deg(qj) = 2 for all j ∈ [N ].

Since Q = F , for all q ∈ Q we can write

q = a1f1 + . . .+ amfm

for some ai ∈ R[x1, . . . , xn]. By Theorem 7.2.2, it suffices to show that deg(ai) = 0. We prove

this by induction on d = maxi∈[m] deg(ai).

If d = 0 we are done, so assume d > 0. Let ai = a
(d)
i +a′i where a(d)i is homogeneous of degree

d and deg(a′i) < d. The degree d+ 2 part of q is then given by

q(d+2) = a
(d)
1 g1 + . . .+ a(d)m gm.

Since deg(q) = 2 and d > 0, we have that q(d+2) = 0. Therefore, we can write
a
(d)
1

...

a
(d)
m

 = M ·


g1
...

gm


where M is a matrix of homogeneous forms of degree at most d− 2. Substituting, we write

a1 − a′1
...

am − a′m

 = M ·


f1 − h1

...

fm − hm

 .
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Putting this together, we write
a1
...

am

 = M ·


f1
...

fm

−M ·


h1

...

hm

+


a′1
...

a′m

 = M ·


f1
...

fm

+


a′′1
...

a′′m


where deg(a′′i ) ≤ d− 2 + 1 = d− 1. We then see that

q = a′′1f1 + . . .+ a′′mfm

so we can use the induction hypothesis on a′′i to conclude that

q = α1f1 + . . .+ αmfm

where αi ∈ R. By Theorem 7.2.2 we are done.

Corollary 7.2.4. Consider F = ⟨f1, . . . , fm⟩ where deg(fi) = 2, each fi has full monomial

support and the coefficients of each fi lie in some Zariski open set for all i ∈ [m]. Then RF is

well-defined.

The requirement that each fi has degree 2 is a critical assumption. This is demonstrated in the

next proposition and example.

Proposition 7.2.5. Consider F = ⟨f1, . . . , fm⟩ and F̂ = ⟨f1, . . . , fm, g⟩ where g ∈ ⟨F ⟩ and

deg(g) = 2. Then RF ⊆ RF̂ .

Proof. Consider (C, d) ∈ RF corresponding to λ ∈ Rm and x ∈ VR(F ). Then (C, d) ∈ RF̂

corresponding to λ̂ = (λ, 0) ∈ Rm+1 and x ∈ VR(F̂ ) = VR(F ).

The following example illustrates why RF ̸= RF̂ in Proposition 7.2.5 even though V(F ) =

V(F̂ ).

Example 7.2.6. Consider RF and RF̂ where F = ⟨x − y⟩ and F̂ = ⟨x − y, x2 − xy + x − y⟩.

First observe that the Hessian of F , HF = C. Therefore any (C, d) ∈ RF must have C ≻ 0.

We claim there exists C ̸≻ 0 in RF̂ . Consider C =

−1
2

−1

−1 5

 and d = [2 2]T . Then taking

(λ1, λ2) = (−31
5
,−1) and x = −4

5
, one can check that (C, d) ∈ RF̂ .
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While this example is counterintuitive, we explain it as follows. The objective value considered,

C is non-convex so we think this SDP should be unbounded and therefore strong duality will not

hold. In this case, restricting to the linear space x = y then transforms the original objective value

−1
2
x2 + 5y2 − 2xy into the objective value 5

2
x2 which is convex. In other words, the objective

value is convex when restricted to the feasible space. In the original formulation, our Hessian did

not consider this.

7.3 Geometric descriptions of RF

We now consider situations where we can nicely characterize RF . We first consider when

VR(F ) has symmetry.

7.3.1 Group actions by subgroups of GLn(R)

We now consider the SDP exact region of a variety VR(F ) under the multiplication of an ele-

ment of GLn(R) where an element M ∈ GLn(R) acts on a point x ∈ VR(F ) by x 7→ M · x.

Theorem 7.3.1. Suppose (C, d) ∈ RF where RF is the SDP exact region of (QP). Consider

min
x∈Rn

g(x) subject to x ∈ M · VR(F ) (M-QP)

where M ∈ GLn(R). Then (M−TCM−1,M−Td) ∈ RM ·F , the SDP exact region of (M-QP).

Proof. Consider M ∈ GLn(R) and suppose (M, b) acts on x ∈ VR(F ) of (QP) by x 7→ Mx.

Using the change of coordinates induced by M , (QP) becomes

min
x∈Rn

g(M−1x) subject to fi(M
−1x) = 0. (7.3.1)

In matrix notation, g(M−1x) and fi(M
−1x) for i ∈ [m] become

g(M−1x) = xTM−TCM−1x+ 2dTM−1x

fi(M
−1x) = xTM−TAiM

−1x+ 2aTi M
−1x+ αi.

The Hessian of the Lagrangian of (7.3.1) problem is given as

Ĥ(λ) = M−TH(λ)M−1
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where H(λ) is the Hessian of the Lagrangian associated to (QP). It is clear that if H(λ) ≻ 0 for

some λ ∈ Rm then Ĥ(λ) ≻ 0.

Writing out the definition of RF for (7.3.1) we have

M−Td−
m∑
i=1

λiM
−Tai +M−TH(λ)Mx̂ = 0 for x̂ ∈ RMF

Since x̂ = Mx for some x ∈ VR(F ) we have

M−T (d−
m∑
i=1

λiai +H(λ)x) = 0

It is then clear that if (C, d) ∈ RF , then (M−TCM−1,M−Td) ∈ RMF .

Corollary 7.3.2. Consider a subgroup G ⊆ GLn(R) that acts on VR(F ) as above and partitions

VR(F ) into orbits Oi, i ∈ I. Suppose x ∈ Oi for some i. Then the spectrahedral shadows, Sx and

SMx, defined as the SDP exact regions corresponding to x and Mx are in bijection via the action

induced by M ∈ G described above.

7.3.2 RF as a finite union

In [171] the authors remark that RF is nicely parameterized as the union of spectrahedral

shadows where there is one spectrahedral shadow for every point x ∈ VR(F ). We would like to

refine this type of characterization where we only consider finite unions. We first begin for the

general case of a complete intersections.

Theorem 7.3.3. Let F = ⟨f1, . . . , fm⟩ be a complete intersection such that I(F ) is radical where

fi = xTAix+ 2aTi x+ αi. The SDP exact region of

min
x∈Rn

xTCx+ 2dTx subject to x ∈ VR(F )

is a finite union of basic semi-algebraic sets. Moreover, the number of such sets is bounded above

by 2n+m.
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Proof. By Definition 7.1.1 we have

RF = {(C, d) : H(λ) ≻ 0, d−
m∑
i=1

λiai +H(λ)x = 0 for some x ∈ VR(F ), λ ∈ Rm}.

In order for (C, d) ∈ RF two conditions must be satisfied. The first is that d−
∑m

i=1 λiai+H(λ)x =

0 for some x ∈ VR(F ). This can be rephrased as understanding the real variety of G where G is

d−
m∑
i=1

λiai +H(λ)x = 0

f1 = 0

...

fm = 0

Observe that this is a system of n + m equations in the n + m unknowns, xi, λj for i ∈ [n] and

j ∈ [m]. Since F is a complete intersection, this system of equations has finitely many complex,

and therefore real, solutions. Projecting the real solutions of G onto the the λ coordinates gives

finitely many H(λ). Observe that H(λ) has entries that are linear in C,Ai, i ∈ [m] and roots

of polynomials with coefficients in C, d,Ai, ai, i ∈ [m]. Therefore, H(λ) does not necessarily

contain entries that are just linear in C, d so the set (C, d) such that H(λ) ≻ 0 is not necessarily a

spectrahedron, but the condition H(λ) ≻ 0 does give a set (C, d) where the SDP exact region is

exact.

By the Bezout bound, the number of complex, and therefore real, solutions to V(G) is bounded

above by 2n+m. The result then follows.

We remark that in all computations, V(G) as defined in the proof of Theorem 7.3.3 has had

fewer than 2n+m complex solutions. Therefore, we conjecture that this upper bound is strict. We

show the explicit description of the semialgebraic sets referenced in Theorem 7.3.3 below.

Example 7.3.4. Consider the problem

min
x1,x2∈R

x2
2 + c12x1x2 + 2d1x1 subject to x2

1 = 1 (7.3.2)
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The SDP exact region of (7.3.2) is

{c12, d1 : H(λ) ≻ 0, d1 − λx1 +
1

2
c12x2 = 0,

1

2
c12x1 + x2 = 0, x2

1 = 1}.

We can solve the equations explicitly to get two solutions for λ:

−c212 ± 4d1
4

Substituting this for λ in H(λ) we have the SDP exact region of (7.3.2) is (c12, d1) such that

one of the following holds:

H(λ1) =

 c212
4
+ d1

c12
2

c12
2

1

 ≻ 0

H(λ2) =

 c212
4
− d1

c12
2

c12
2

1

 ≻ 0

In this case, RF = {(c12, d1) ∈ R2 : d1 ̸= 0}. The upper plane corresponds to points in H(λ1)

and the lower to points in H(λ2).

We now wish to refine the results from Theorem 7.3.3 and give conditions under which RF

consists of finitely many spectrahedra, not just semialgebraic sets. The following theorem gives a

necessary condition for this.

Theorem 7.3.5. Let F = (f1, . . . , fn) be a quadratic ideal such that I(F ) is radical where fi =

xTAix+ 2aTi x+ αi and VC(F ) is finite. The SDP exact region of

min
x∈Rn

xTCx+ 2dTx subject to x ∈ VR(F )

is a finite union of spectrahedra where the number of spectrahedra is |VR(F )|.

Proof. The system d −
∑n

i=1 λiai + H(λ)x = 0 is linear in λ. Specifically, this system can be

written as

[a1 + A1x, . . . , an + Anx]λ = d+ Cx. (7.3.3)
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Observe that Jx = [a1 + A1x, . . . , anAnx] is the Jacobian of F at x. Since dim(VC(F )) = 0,

this implies that Jx is full rank for all x ∈ VC(F ). This means (7.3.3) has a unique solution,

λ1(x), . . . , λn(x), that can be written in terms of x. Observe that λ = J−1
x (d+Cx). This means that

λi(x) is a rational function in x, d, C but by properties of matrix multiplication, the denominator

of λi does not contain any d, C coordinates. Moreover, the numerator is linear in d and C. This

means we can write H(λ) ≻ 0 as H(x) ≻ 0. For each x ∈ V(F ) this gives a spectrahedron. i.e.

Sx = {(C, d) : H(x) ≻ 0}. Therefore,

RF =
⋃

x∈VR(F )

Sx.

7.4 Quadratic binary programs

Finally, we conclude this thesis by considering an application of the results derived above to an

important class of problems prevelant in combinatorial optimization: quadratic binary programs.

Specifically, we consider

min
x∈Rn

xTCx+ 2dTx subject to fi(x) := x2
i − 1 = 0, i ∈ [n]. (QBP)

We would like to study the SDP exact region of RF . The constraint H(λ) ≻ 0 and d+H(λ)x = 0

in this case reduces to finding which (C, d) give

H(x) =


− 1

x1
(d1 +

∑n
i=2 c1ixi) c12 · · · c1n

c12 − 1
x2
(d2 + c12x1 +

∑n
i=3 c2ixi) · · · c2n

... . . . ...

c1n − 1
xn
(dn +

∑n−1
i=1 cinxi)

 ≻ 0

(7.4.1)

for some xi ∈ {−1,+1}.

Proposition 7.4.1. Let D ∈ Rn×n be a diagonal matrix with dii ∈ {−1,+1} for all i ∈ [n]. Then

PDn = D · PDn ·D.
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Proof. Since the eigenvalues of a matrix are invariant under conjugation, PDn is invariant under

conjugation by full rank matrices. In this case, D = D−1 is full rank. The result then follows.

Theorem 7.4.2. The SDP-exact region of (QBP) consists of 2n disjoint spectrahedra which are all

linearly equivalent to

S = {(C, d) :


−(d1 +

∑n
i=2 c1i) c12 · · · c1n

c12 −(d2 + c12 +
∑n

i=3 c2i) · · · c2n
... . . . ...

c1n −(dn +
∑n−1

i=1 cin)

 ≻ 0}.

Specifically, RF = {g · S : g ∈ G} where G is the matrix group

G = {Diag(x1x2, x1x3, . . . , x1xn, x2x3, . . . , x2xn, . . . xn−1xn, x1, . . . , xn) : xi ∈ {−1, 1}, i ∈ [n]}.

Moreover, G is isomorphic to Z2 × · · · × Z2.

Proof. First observe by Theorem 7.3.5, RF consists of the union of 2n disjoint spectrahedra, each

one given by (7.4.1) for each x ∈ {−1,+1}n. Next we see that S corresponds to H(x) for the

point x = (1, . . . , 1) ∈ {−1,+1}n. Now fix a point y ∈ {−1,+1}n and let My ∈ G be the

corresponding diagonal matrix and Sy = {(C, d) : H(y) ≻ 0} be the corresponding spectrahedron

defined by (7.4.1). We claim that S ·My = Sy.

By direct computation, we first see that

S ·My =

{(C, d) :


− 1

y1
(d1 +

∑n
i=2 c1iyi) y1y2c12 · · · y1ync1n

y1y2c12 − 1
y2
(d2 + c12y1 +

∑n
i=3 c2iyi) · · · y1ync2n

... . . . ...

y1ync1n − 1
yn
(dn +

∑n−1
i=1 cinyi)

 ≻ 0}.
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Call S ·My = S ′
y. It remains to show that

S ′
y = {(C, d) :


− 1

y1
(d1 +

∑n
i=2 c1iyi) c12 · · · c1n

c12 − 1
y2
(d2 + c12y1 +

∑n
i=3 c2iyi) · · · c2n

... . . . ...

c1n − 1
yn
(dn +

∑n−1
i=1 cinyi)

 ≻ 0}

= Sy.

Observe that if S ′
y is considered in R

n(n+1)
2 with coordinate ordering

(c12, . . . , c1n, c23, . . . , c2n, . . . , cn−1,n, d1, . . . , dn)

then taking

D = Diag(y1y2, . . . , y1yn, y2y3, . . . , y2yn, . . . yn−1yn, y1, . . . , yn)

we have that D · S ′
y ·D = Sy. By Proposition 7.4.1, S ′

y = Sy.

The fact that G ∼= Z2 × · · · × Z2 is immediate via the isomorphism:

ϕ : G → Z2 × · · · × Z2

gx 7→ x

Example 7.4.3. Consider when n = 2. Here we have

H(x) =

− 1
x1
(d1 + c12x2) c12

c12 − 1
x2
(d2 + c12x1)

 .

In this case (x1, x2) ∈ {(1, 1), (−1, 1), (1,−1), (−1,−1)}. This gives

H(1, 1) =

−c12 − d1 c12

c12 −c12 − d2

 H(−1, 1) =

c12 + d1 c12

c12 c12 − d2


H(−1,−1) =

−c12 + d1 c12

c12 −c12 + d2

 H(1,−1) =

c12 − d1 c12

c12 c12 + d2

 .
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Call the corresponding spectrahedron S1,1, S−1,1, S−1,−1, S1,−1. Note that each spectrahedron

lives in (c12, d1, d2) = R3. We claim every spectrahedron is linearly equivalent to S1,1. Observe

S−1,−1 =


1 0 0

0 −1 0

0 0 −1

 · S1,1

S−1,1 =


−1 0 0

0 −1 0

0 0 1

 · S1,1

S1,−1 =


−1 0 0

0 1 0

0 0 −1

 · S1,1.

We see that the set of matrices transforming S1,1 to the other spectrahedron form a group. Note here

that

c11 c12

c12 c22

 and

 c11 −c12

−c12 c22

 define the same spectrahedron. In this case RF = {x · S1,1 :

x ∈ G} where

G =



1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 −1 0

0 0 −1

 ,


−1 0 0

0 −1 0

0 0 1

 ,


−1 0 0

0 1 0

0 0 −1


 ∼= Z2 × Z2.

A picture of RF in this case is shown in Figure 7.1.

7.4.1 An algorithm to test if (C, d) give an SDP exact solution

Recall from (7.4.1), determining if a quadratic binary program has exact SDP relaxation it is

enough to say if

H(x) =


− 1

x1
(d1 +

∑n
i=2 c1ixi) c12 · · · c1n

c12 − 1
x2
(d2 + c12x1 +

∑n
i=3 c2ixi) · · · c2n

... . . . ...

c1n − 1
xn
(dn +

∑n−1
i=1 cinxi)

 ≻ 0

(7.4.2)
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Figure 7.1: RF for the problem minx∈{−1,1}2 xTCx+ 2dTx.

for some xi ∈ {−1,+1}. While this problem is NP hard [172], we still would like to use some

of the results above to derive an algorithm to test if for a given (C, d) ∈ Symn(R)× Rn, the SDP

relaxation of (QBP) is exact.

A necessary condition for H(x) ≻ 0 for some x ∈ {−1, 1}n is for the diagonal entries of

H(x) to be positive. Observe that these entries are linear, so for each x ∈ {−1, 1}n we have

a corresponding polyhedral cone, Px. Observe that checking if x ∈ Px amounts to checking if n

expressions are positive. For a given (C, d) ∈ Symn(R)×Rn we would like to find an x ∈ {−1, 1}n

such that (C, d) ∈ Px. The following algorithm outlines a way to do this.
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Algorithm 5 Algorithm to find Px such that (C, d) ∈ Px

Input: Objective function (C, d) ∈ Symn(R)× Rn

Output: x ∈ {−1, 1}n such that (C, d) ∈ Px

1. Fix x ∈ {−1, 1}n. See if (C, d) ∈ Px, if so then terminate.

2. If (C, d) ̸∈ Px then let i∗ be the first index of v ∈ Rn such that vi∗ < 0. Let x̂ ∈ {−1, 1}n be

the vector such that

x̂j =

xj for j ̸= i∗

−xj for j = i∗

Check if (C, d) ∈ Px̂.

3. If (C, d) ∈ Px̂ then terminate. Else, repeat Step (2) until we find an x′ ∈ {−1, 1}n such that

(C, d) ∈ Px′ .

Every time Step 2 is repeated we jump from x ∈ {−1, 1}n to x′ ∈ {−1, 1}n where x′ only

differs from x in the ith coordinate. We can consider the complexity of this algorithm as the

number of times we repeat Step 2.

We write the sequence Algorithm 5 takes as {ei1 , . . . , eik} where eij reflects the fact that in

Step 2 we negate the ijth entry. Each time we repeat Step 2, another inequality is induced on the

entries of (C, d).

To follow the path that Algorithm 5 takes, we consider the bipartite graph, G, consisting of

nodes VE, VO. Each x ∈ {−1, 1}n that differs from (1, . . . , 1) in an even number of places repre-

sents a node in VE and each x ∈ {−1, 1}n that differs from (1, . . . , 1) in an odd number of places

represents a node in VO. There is an edge between x ∈ VE and y ∈ VO if x and y differ in exactly

one place.

Example 7.4.4. Here is a picture of G for n = 2. Suppose we have d1 = 5, d2 = −1, c12 = 3.

Then we would get
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(11) (−11)

(1− 1)
(−1− 1) d1 − c12

−d1 − c12

−d2 − c12 d2 − c12

(11) (−11)

(1− 1)
(−1− 1) 2

−8

−2 −4

Each edge has a linear expression in the entries of C and d associated to it, given by one of the

inequalities of Px. Namely, consider an edge e = xy where x ∈ VE and y ∈ VO. Suppose that x

and y differ in the ith place. Then, e has the ith inequality of Px associated to it. If this inequality is

positive we direct e to be pointing to the left i.e. e = yx. If it is negative we direct e to be pointing

to the right i.e. e = xy.

For a fixed (C, d), G then consists of a directed bipartite graph. For this algorithm to terminate,

G needs to be acyclic.

Lemma 7.4.5. Consider a sequence ei1 , . . . , eik starting from x = (1, . . . , 1). Let si be the number

of times ei appears in this sequence. Suppose ej appears next in the sequence, then this induces

the inequality

(−1)sjdj + (−1)s1+sjc1j + . . .+ (−1)sj−1+sjcj−1,j + (−1)sj+1+sjcj,j+1 + . . .+ (−1)sn+sjcjn < 0.

(7.4.3)

Proof. This is by definition of Px.

Theorem 7.4.6. Algorithm 5 terminates. Moreover, for all (C, d) there exists at least one x ∈

{−1, 1}n such that (C, d) ∈ Px.

Proof. It suffices to show that G is acylic. For the sake of contradiction, suppose there is a cycle

of length 2k, C = {ei1 , . . . , ei2k}. For each vertex in the cycle we get an inequality of the form

(7.4.3). We claim the sum of these inequalities is 0.

Let S = {i1, . . . , i2k} be the set of moves used to form C. Since C is a cycle, every ij ∈ S

appears exactly twice. This tells us that dj appears in exactly two inequalities: when ej appears
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first and when ej appears second. By Lemma 7.4.5, when it first appears it is negative and when

it appears second it is positive. This shows that summing these inequalities results in all di being

canceled out.

Now we claim that cij appears in exactly 0, 2 or 4 inequalities. If i ̸∈ S and j ̸∈ S then

cij does not appear in a single inequality. If i ∈ S and j ̸∈ S then cij appears in exactly two

inequalities, when ei appears each time. By Lemma 7.4.5, the first time ei appears cij is negative

and the second time it appears it is positive. If i ∈ S and j ∈ S then cij appears in four inequalities.

By Lemma 7.4.5 the first time ei or ej appears cij is negative, the second time it is positive, the

third time it is negative and the fourth time it is positive. In either case, this shows that summing

all inequalities results in all cij being canceled out. Therefore summing all inequalities gives 0 < 0

which is an obvious contradiction. Therefore, no cycle can exist.

Since our graph is a directed acyclic graph, this means there exists a topological sorting. This

means there exists a vertex with all arrows pointing in. The vertex x with all arrows pointing in

then satisfies (C, d) ∈ Px.

Since there are no cycles in our graph, as we follow a path from (1, . . . , 1) we will not visit any

vertex twice. Since there are finitely many vertices, we keep going to distinct vertices and there

is guaranteed to exist a vertex such that (C, d) ∈ Px, this means eventually we will end up at one

such vertex.

Since our graph is a directed acyclic graph, this means there exists a topological sorting. This

means there exists a vertex with all arrows pointing in. The vertex x with all arrows pointing in

then satisfies (C, d) ∈ Px.

We present empirical results on how long it takes to run Algorithm 5 in Table 7.1. We calculate

each (C, d) randomly by sampling each element cij, di, i, j ∈ [n], to be iid N (0, 1). Overall, we

see on average that Algorithm 5 terminates in less than n iterations and it always terminates in less

than 2n iterations.

Conjecture 7.4.7. Algorithm 5 terminates in at most 2n iterations.
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n 10 20 30 40 50 60 70 80 90 100

Maximum 16 29 44 63 87 99 115 126 146 171

Minimum 1 3 7 8 15 24 31 37 47 58

Mean 6.21 13.39 21.81 31.82 42.19 53.46 66.06 78.34 91.30 104.81

Median 6 13 21 31.5 42 53 65 77 90 105

Standard Deviation 2.49 4.42 6.39 8.25 9.99 11.94 14.09 15.54 17.54 19.22

Table 7.1: Statistics on the number of iterations it took for Algorithm 5 to terminate using random

(C, d) ∈ Symn(R)× Rn in a trial of 1, 000.

Now, once we run Algorithm 5 and return x ∈ {−1, 1}n, we have a prospective spectrahedron

that (C, d) may live in. This spectrahedron is namely {(C, d) : H(x) ≻ 0} where H(x) is as

defined in (7.4.2). The natural next step is to check if (C, d) lies in this spectrahedron. If it does

then we can conclude that not only is the Shor relaxation of this quadratic binary program exact,

but it has optimal solution x. Therefore, Algorithm 5 gives a natural way to solve (QBP) for some

objective functions.

The complexity of Algorithm 6 comes from the complexity of Algorithm 5 as well as the

number of times we need to repeat Step 3. Since we suspect the complexity of Algorithm 5 is linear

in n, we suspect the main source of complexity will come from the latter issue. We formalize this

with the following two conjectures obtained via empirical analysis.

Conjecture 7.4.8. For fixed x ∈ {−1, 1}n, Px intersects Px′ nontrivially for 2n − n different

x′ ∈ {−1, 1}n. Namely, it intersects all Px′ for all x′ that differ from x in more than one place.

Conjecture 7.4.9. For some fixed (C, d) ∈ Px, x ∈ {−1, 1}n, (C, d) ∈ Px′ for at most n other

x′ ∈ {−1, 1}n.

These two conjectures give us conflicting messages of hope. On the one hand, Conjecture 7.4.8

tells us that even if we know (C, d) ∈ Px, there are still exponentially many other x′ that we would

need to consider. On the other hand, Conjecture 7.4.9 tells us that for any (C, d) there are at most

n+ 1 different Px that if could live in which then implies there are at most n+ 1 spectrahedra we
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Algorithm 6 Algorithm to find x ∈ {−1, 1}n such that H(x) ≻ 0

Input: Objective function (C, d) ∈ Symn(R)× Rn

Output: x ∈ {−1, 1}n such that H(x) ≻ 0 or a message that the SDP relaxation of (QBP) with

objective function (C, d) is not exact

1. Initialize the set S = {−1, 1}n

2. Run Algorithm 5 to find x ∈ {−1, 1}n such that (C, d) ∈ Px

3. Check if H(x) ≻ 0. If it is, return x and a message that says that x is the global optimum to

(QBP). Else, remove all points x ∈ {−1, 1}n that Algorithm 5 considered from the set S

4. Repeat Step 2 initializing at a new random point x′ ∈ S, terminating if Algorithm 5 ever

considers a point x ̸∈ S

5. If S = ∅, return the message that the SDP relaxation of (QBP) is not exact

need to consider. Since the problem of determining if the SDP relaxation is exact for this class of

problems is NP hard, we suspect that even if we can prove a positive answer to Conjecture 7.4.9,

determining for which x, (C, d) ∈ Px will still be quite challenging.
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