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Abstract

This thesis is about a linear algebraic object called a tridiagonal pair. The concept of a

tridiagonal pair was introduced in [10] and is defined as follows. Let K denote a field and

let V denote a vector space over K with finite positive dimension. By a tridiagonal pair

on V , we mean an ordered pair of linear transformations A : V → V and A∗ : V → V

that satisfy the following four conditions: (i) Each of A,A∗ is diagonalizable; (ii) there

exists an ordering {Vi}di=0 of the eigenspaces of A such that A∗Vi ⊆ Vi−1 + Vi + Vi+1 for

0 ≤ i ≤ d, where V−1 = 0 and Vd+1 = 0; (iii) there exists an ordering {V ∗i }δi=0 of the

eigenspaces of A∗ such that AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 for 0 ≤ i ≤ δ, where V ∗−1 = 0 and

V ∗δ+1 = 0; (iv) there does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W ,

W 6= 0, W 6= V .

Let A,A∗ denote a tridiagonal pair on V as above. It is known that the integers d

and δ from (ii) and (iii) are equal; we call this common value the diameter of A,A∗. To

avoid trivialities, assume that the diameter is at least one.

This thesis is divided into two parts. The first part of this thesis is about two

commuting linear transformations associated with A,A∗. The second part of this thesis

explores a connection between A,A∗ and the quantum enveloping algebra Uq(sl2). We

now summarize our results for each part.

In the first part of this thesis, we show that there exists a unique linear transformation

∆ : V → V such that (∆ − I)V ∗i ⊆ V ∗0 + V ∗1 + · · · + V ∗i−1 and ∆(Vi + Vi+1 + · · · +

Vd) ⊆ V0 + V1 + · · · + Vd−i for 0 ≤ i ≤ d. We consider two well-known decompositions

of V called the first and second split decomposition. They are denoted {Ui}di=0 and
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{U⇓i }di=0 respectively. We show that ∆Ui = U⇓i , (∆ − I)Ui ⊆ U0 + U1 + · · · + Ui−1,

and (∆ − I)U⇓i ⊆ U⇓0 + U⇓1 + · · · + U⇓i−1 for 0 ≤ i ≤ d. We introduce a second linear

transformation Ψ : V → V ; one feature of Ψ is that ΨUi ⊆ Ui−1 and ΨU⇓i ⊆ U⇓i−1 for

1 ≤ i ≤ d and both ΨU0 = 0, ΨU⇓0 = 0. We describe ∆,Ψ from several points of view

and show how they are related to each other. Along this line we have two main results.

Our first main result is that ∆,Ψ commute. In the literature on tridiagonal pairs, there

is a scalar β used to describe the eigenvalues. Our second main result is that each of

∆±1 is a polynomial of degree d in Ψ, under a minor assumption on β.

In the second part of this thesis, we assume that A,A∗ has q-Racah type. This

is the most general type of tridiagonal pair. For simplicity, we also assume that K is

algebraically closed. We define linear transformations K : V → V and B : V → V

such that (K − qd−2iI)Ui = 0 and (B − qd−2iI)U⇓i = 0 for 0 ≤ i ≤ d. Our results are

summarized as follows. Recall the quantum enveloping algebra Uq(sl2) with Chevalley

generators e, f, k, k−1. We obtain two Uq(sl2)-module structures on V . For the first

Uq(sl2)-module structure, the generator k acts as K and the generator e acts as a nonzero

scalar multiple of Ψ. For the second, the generator k acts as B and the generator e acts

as the same scalar multiple of Ψ. In each case, we express the action of f in terms of A.

For each of the Uq(sl2)-module structures, we compute the action of the Casimir element

on V . We show that these two actions agree. Using this fact, we express Ψ as a rational

function of K±1, B±1 in several ways. Eliminating Ψ from these equations we find that

K and B are related by a quadratic equation.
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Chapter 1

Introduction

This thesis is about a linear algebraic object called a tridiagonal pair. Before summa-

rizing our results, we recall the definition of a tridiagonal pair.

Throughout this thesis, let K denote a field and let V denote a vector space over K

with finite positive dimension. For a linear transformation A : V → V and a subspace

W ⊆ V , we say that W is an eigenspace of A whenever W 6= 0 and there exists θ ∈ K

such that W = {v ∈ V |Av = θv}. In this case, θ is called the eigenvalue of A associated

with W . We say that A is diagonalizable whenever V is spanned by the eigenspaces of

A.

We now recall the notion of a tridiagonal pair.

Definition 1.0.1. [10, Definition 1.1]. By a tridiagonal pair (or TD pair) on V we mean

an ordered pair of linear transformations A : V → V and A∗ : V → V that satisfy the

following four conditions.

(i) Each of A,A∗ is diagonalizable.

(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (1.1)

where V−1 = 0 and Vd+1 = 0.
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(iii) There exists an ordering {V ∗i }δi=0 of the eigenspaces of A∗ such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 (0 ≤ i ≤ δ), (1.2)

where V ∗−1 = 0 and V ∗δ+1 = 0.

(iv) There does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W , W 6= 0,

W 6= V .

We say the TD pair A,A∗ is over K.

Note 1.0.2. According to a common notational convention A∗ denotes the conjugate-

transpose of A. We are not using this convention. In a TD pair A,A∗ the linear

transformations A and A∗ are arbitrary subject to (i)–(iv) above.

Referring to the TD pair A,A∗ in Definition 1.0.1, by [10, Lemma 4.5] the integers d

and δ are equal. We call this common value the diameter of A,A∗. To avoid trivialities,

throughout this thesis we assume that the diameter is at least one.

In Definition 1.0.1 we do not assume that the spaces {Vi}di=0, {V ∗i }di=0 all have di-

mension one. A TD pair for which each of these spaces has dimension one is called a

Leonard pair [33]. A TD pair for which each of V0, V
∗
0 , Vd, V

∗
d has dimension one is said

to be sharp [9]. Note that all Leonard pairs are sharp.

We comment on the history of the TD pair concept. This concept originated in

the theory of Q-polynomial distance-regular graphs [32] and was formally introduced in

[10]. Ever since, researchers have been exploring various ramifications and connections.

For example, in [10, 37], the eigenvalues of a TD pair were investigated. The paper [11]

concerns the shape of a TD pair. In [10, 25, 38], the split decompositions were discussed.

The Drinfel’d polynomial of a TD pair was examined in [16]. The papers [33, 35, 37, 38,



3

39] are about Leonard pairs. These papers led to several characterizations of Leonard

pairs involving orthogonal polynomials [36, 37], the Lie algebra sl2 [8], parameter arrays

[33], upper/lower bidiagonal matrices [37, 39], and tridiagonal/diagonal matrices [39].

The papers [9, 14, 15, 18, 26, 28, 29, 42] are about sharp TD pairs. These papers

ultimately led to the classification of sharp TD pairs up to isomorphism [9, Theorem

3.1]. As a corollary, the TD pairs over an algebraically closed field were classified up to

isomorphism [9, Corollary 18.1]. In [19] it is shown how to “sharpen” a TD pair.

We mention some notable connections between TD pairs and other areas of mathe-

matics and physics. Connections have been found between TD pairs and representation

theory [1, 7, 12, 13, 17, 22, 23, 41], orthogonal polynomials [37, 40], partially ordered

sets [35], statistical mechanical models [2, 6, 31], and other areas of physics [24, 30].

Among the above papers on representation theory, there are several works that connect

TD pairs to quantum groups [1, 7, 13, 17]. These papers consider certain special classes

of TD pairs. In [1], Curtin and Al-Najjar considered the class of mild TD pairs of q-Serre

type. They showed that these TD pairs induce an action of the quantum affine algebra

Uq(ŝl2) on the underlying vector space. In [7], Funk-Neubauer extended this construc-

tion to TD pairs of q-Hahn type. In [13], Ito and Terwilliger extended the construction

to the entire q-Serre class. In [17], Ito and Terwilliger extended the construction to the

q-Racah class.

We now summarize the contents of this thesis. This thesis is divided into two parts.

Below we give a brief overview of what each part is about. Later in the Introduction,

we give a more detailed summary.

The first part of this thesis is about two commuting linear transformations associated

with a TD pair. Given a TD pair A,A∗ on V , we introduce two linear transformations
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∆ : V → V and Ψ : V → V that we find attractive. We discuss how ∆,Ψ act on the

first and second split decomposition of V . We describe ∆,Ψ from several points of view

and show how they are related to each other. Along this line we have two main results.

Our first main result is that ∆,Ψ commute. In the literature on tridiagonal pairs, there

is a scalar β used to describe the eigenvalues. Our second main result is that each of

∆±1 is a polynomial of degree d in Ψ, under a minor assumption on β.

The second part of this thesis explores a connection between TD pairs and the

quantum enveloping algebra Uq(sl2). In this part, we focus on TD pairs of q-Racah

type. For simplicity, we also assume that K is algebraically closed. We define two linear

transformations K : V → V and B : V → V which act on the split decompositions in

an attractive way. Using Ψ, K,B we obtain two Uq(sl2)-module structures on V . For

each of the Uq(sl2)-module structures, we compute the action of the Casimir element on

V . We show that these two actions agree. Using this fact, we express Ψ as a rational

function of K±1, B±1 in several ways. Eliminating Ψ from these equations we find that

K and B are related by a quadratic equation.

We now describe our main results in more detail. To set the stage, we give some

additional background on TD pairs. For the rest of the Introduction, let A,A∗ denote

a TD pair on V . We fix an ordering {Vi}di=0 (resp. {V ∗i }di=0) of the eigenspaces of A

(resp. A∗) which satisfies (1.1) (resp. (1.2)). For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote the

eigenvalue of A (resp. A∗) corresponding to Vi (resp. V ∗i ). By [10, Theorem 11.1] the

ratios

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(1.3)

are equal and independent of i for 2 ≤ i ≤ d − 1. This gives two recurrence relations

whose solutions can be written in closed form. There are several cases [10, Theorem
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11.2]. The most general case is called the q-Racah case [17, Section 1]. For convenience,

let β + 1 denote the common value of (1.3). In the q-Racah case, there exists a nonzero

scalar q in the algebraic closure K such that q4 6= 1 and β = q2 + q−2.

We now recall the split decompositions of V [10]. For 0 ≤ i ≤ d define

Ui = (V ∗0 + V ∗1 + · · ·+ V ∗i ) ∩ (Vi + Vi+1 + · · ·+ Vd),

U⇓i = (V ∗0 + V ∗1 + · · ·+ V ∗i ) ∩ (V0 + V1 + · · ·+ Vd−i).

By [10, Theorem 4.6], both the sums V =
∑d

i=0 Ui and V =
∑d

i=0 U
⇓
i are direct. We call

{Ui}di=0 (resp. {U⇓i }di=0) the first split decomposition (resp. second split decomposition)

of V . The split decompositions are of interest to us because A,A∗ act on them in

the following attractive manner. By [10, Theorem 4.6], A,A∗ act on the first split

decomposition in the following way:

(A− θiI)Ui ⊆ Ui+1 (0 ≤ i ≤ d− 1), (A− θdI)Ud = 0,

(A∗ − θ∗i I)Ui ⊆ Ui−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U0 = 0.

By [10, Theorem 4.6], A,A∗ act on the second split decomposition in the following way:

(A− θd−iI)U⇓i ⊆ U⇓i+1 (0 ≤ i ≤ d− 1), (A− θ0I)U⇓d = 0,

(A∗ − θ∗i I)U⇓i ⊆ U⇓i−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U⇓0 = 0.

We now recall the raising maps R,R⇓ [10, Definition 6.1]. Let R : V → V denote the

linear transformation that acts on Ui as A− θiI for 0 ≤ i ≤ d. Let R⇓ : V → V denote

the linear transformation that acts on U⇓i as A− θd−iI for 0 ≤ i ≤ d. By construction,

RUi ⊆ Ui+1, R⇓U⇓i ⊆ U⇓i+1
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for 0 ≤ i ≤ d − 1 and both RUd = 0 and R⇓U⇓d = 0. We refer to R (resp. R⇓) as the

first (resp. second) raising map.

We now discuss the main results from the first part of this thesis. We show that

there exists a unique linear transformation ∆ : V → V such that both

(∆− I)V ∗i ⊆ V ∗0 + V ∗1 + · · ·+ V ∗i−1, (1.4)

∆(Vi + Vi+1 + · · ·+ Vd) ⊆ V0 + V1 + · · ·+ Vd−i (1.5)

for 0 ≤ i ≤ d. We also show that there exists a unique linear transformation Ψ : V → V

such that both

ΨVi ⊆ Vi−1 + Vi + Vi+1, (1.6)(
Ψ− ∆− I

θ0 − θd

)
V ∗i ⊆ V ∗0 + V ∗1 + · · ·+ V ∗i−2 (1.7)

for 0 ≤ i ≤ d. By construction,

ΨV ∗i ⊆ V ∗0 + V ∗1 + · · ·+ V ∗i−1 (0 ≤ i ≤ d). (1.8)

We investigate the actions of ∆,Ψ on the split decompositions of V . We show that

∆Ui = U⇓i , (1.9)

(∆− I)Ui ⊆ U0 + U1 + · · ·+ Ui−1, (1.10)

(∆− I)U⇓i ⊆ U⇓0 + U⇓1 + · · ·+ U⇓i−1 (1.11)

for 0 ≤ i ≤ d. We also show that

ΨUi ⊆ Ui−1, ΨU⇓i ⊆ U⇓i−1 (1.12)

for 1 ≤ i ≤ d and both ΨU0 = 0, ΨU⇓0 = 0. In light of this, we refer to Ψ as the double

lowering map.
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Let 0 ≤ i ≤ d. We show that on Ui,

ΨR−RΨ =
θi − θd−i
θ0 − θd

I. (1.13)

We show that on U⇓i ,

ΨR⇓ −R⇓Ψ =
θi − θd−i
θ0 − θd

I. (1.14)

We now discuss how ∆,Ψ are related to each other. Along this line we have two

main results. Our first main result is that ∆,Ψ commute. In order to state the second

result, we define

ϑi =
i−1∑
h=0

θh − θd−h
θ0 − θd

(1 ≤ i ≤ d).

Our second main result is that both

∆ = I +
η1(θ0)

ϑ1

Ψ +
η2(θ0)

ϑ1ϑ2

Ψ2 + · · ·+ ηd(θ0)

ϑ1ϑ2 · · ·ϑd
Ψd, (1.15)

∆−1 = I +
τ1(θd)

ϑ1

Ψ +
τ2(θd)

ϑ1ϑ2

Ψ2 + · · ·+ τd(θd)

ϑ1ϑ2 · · ·ϑd
Ψd (1.16)

provided that each of ϑ1, ϑ2, . . . , ϑd is nonzero. Here τi, ηi are the polynomials

τi = (x− θ0)(x− θ1) · · · (x− θi−1),

ηi = (x− θd)(x− θd−1) · · · (x− θd−i+1)

for 0 ≤ i ≤ d. We show that each of ϑ1, ϑ2, . . . , ϑd is nonzero if and only if neither of

the following holds: (i) β = −2, d is odd, and Char(K) 6= 2; (ii) β = 0, d = 3, and

Char(K) = 2. In particular, (1.15), (1.16) hold whenever A,A∗ has q-Racah type.

We now discuss the main results of the second part of this thesis. We focus on TD

pairs of q-Racah type. As we will see in Section 3.1, for these TD pairs, there exist

nonzero scalars a, b ∈ K such that

θi = aqd−2i + a−1q2i−d, θ∗i = bqd−2i + b−1q2i−d
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for 0 ≤ i ≤ d. For the rest of the Introduction, assume that A,A∗ has q-Racah type.

For simplicity, we also assume that K is algebraically closed.

Motivated by [18, Section 1.1], we define some maps K,B as follows. Let K : V → V

and B : V → V denote the linear transformations such that (K − qd−2iI)Ui = 0 and

(B − qd−2iI)U⇓i = 0 for 0 ≤ i ≤ d. In [18, Section 1.1] it is shown how each of K,B is

related to A and A∗, but the relationship between K and B is not discussed. One of our

results describes how K,B are related. We show that

aK2 − a−1q − aq−1

q − q−1
KB − aq − a−1q−1

q − q−1
BK + a−1B2 = 0. (1.17)

In order to state the remaining results concisely, we work with the normalization

ψ = (q − q−1)(qd − q−d)Ψ. Drawing on the results in the first part of this thesis, we

obtain some equations that link ψ to the maps K,B,R,R⇓. From these equations we

obtain two Uq(sl2)-module structures on V . For the first Uq(sl2)-module structure, the

Chevalley generators e, f, k, k−1 act as follows:

element of Uq(sl2) e f k k−1

action on V (q − q−1)−1ψ (q − q−1)−1R K K−1

For the second Uq(sl2)-module structure, the Chevalley generators act as follows:

element of Uq(sl2) e f k k−1

action on V (q − q−1)−1ψ (q − q−1)−1R⇓ B B−1

For each of the above Uq(sl2)-module structures we obtain a direct sum decomposition

of V into irreducible Uq(sl2)-submodules. In each case, we compute the action of the

Casimir element on V . We show that these two actions agree. Using this information
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we show that ψ is equal to each of the following:

I −BK−1

q(aI − a−1BK−1)
,

I −KB−1

q(a−1I − aKB−1)
, (1.18)

q(I −K−1B)

aI − a−1K−1B
,

q(I −B−1K)

a−1I − aB−1K
. (1.19)

Line (1.17) is a consequence of the fact that the four expressions in (1.18), (1.19) are

equal.

This thesis is based on [3, 4].
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Chapter 2

The operators ∆ and Ψ

This part of the thesis is about two commuting linear transformations associated with

a TD pair. Given a TD pair A,A∗ on V , we introduce two linear transformations

∆ : V → V and Ψ : V → V that we find attractive. We discuss how ∆,Ψ act on the

first and second split decomposition of V . We describe ∆,Ψ from several points of view

and show how they are related to each other. Along this line we have two main results.

Our first main result is that ∆,Ψ commute. In the literature on tridiagonal pairs, there

is a scalar β used to describe the eigenvalues. Our second main result is that each of

∆±1 is a polynomial of degree d in Ψ, under a minor assumption on β.

2.1 Preliminaries

When working with a tridiagonal pair, it is useful to consider a closely related object

called a tridiagonal system. In order to define this, we first recall some facts from

elementary linear algebra.

Let V denote a vector space over K with finite positive dimension. Let End(V )

denote the K-algebra consisting of all linear transformations from V to V . Let A denote

a diagonalizable element in End(V ). Let {Vi}di=0 denote an ordering of the eigenspaces of

A. For 0 ≤ i ≤ d let θi be the eigenvalue of A corresponding to Vi. Define Ei ∈ End(V )
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by

(Ei − I)Vi = 0, (2.1)

EiVj = 0 if j 6= i, (0 ≤ j ≤ d). (2.2)

In other words, Ei is the projection map from V onto Vi. We refer to Ei as the primitive

idempotent of A associated with θi. By elementary linear algebra, we have

AEi = EiA = θiEi (0 ≤ i ≤ d), (2.3)

EiEj = δijEi (0 ≤ i, j ≤ d), (2.4)

Vi = EiV (0 ≤ i ≤ d), (2.5)

I =
d∑
i=0

Ei. (2.6)

One readily checks that

Ei =
∏

0≤j≤d
j 6=i

A− θjI
θi − θj

(0 ≤ i ≤ d).

Let M denote the K-subalgebra of End(V ) generated by A. We note that each of

{Ai}di=0, {Ei}di=0 is a basis for the K-vector space M .

Given a TD pair A,A∗ on V, an ordering of the eigenspaces of A (resp. A∗) is said to

be standard whenever (1.1) (resp. (1.2)) holds. Let {Vi}di=0 denote a standard ordering

of the eigenspaces of A. By [10, Lemma 2.4], the ordering {Vd−i}di=0 is standard and

no further ordering is standard. A similar result holds for the eigenspaces of A∗. An

ordering of the primitive idempotents of A (resp. A∗) is said to be standard whenever

the corresponding ordering of the eigenspaces of A (resp. A∗) is standard.

Definition 2.1.1. [28, Definition 2.1] Let V denote a vector space over K with finite
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positive dimension. By a tridiagonal system (or TD system) on V, we mean a sequence

Φ = (A; {Ei}di=0;A
∗; {E∗i }di=0)

that satisfies (i)–(iii) below.

(i) A,A∗ is a tridiagonal pair on V .

(ii) {Ei}di=0 is a standard ordering of the primitive idempotents of A.

(iii) {E∗i }di=0 is a standard ordering of the primitive idempotents of A∗.

We call d the diameter of Φ, and say Φ is over K. For notational convenience, set

E−1 = 0, Ed+1 = 0, E∗−1 = 0, E∗d+1 = 0.

For the rest of the present paper, we fix a TD system Φ as in Definition 2.1.1.

Definition 2.1.2. For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp.

A∗) associated with Ei (resp. E∗i ). We refer to {θi}di=0 (resp. {θ∗i }di=0) as the eigenvalue

sequence (resp. dual eigenvalue sequence) of Φ.

A given TD system can be modified in a number of ways to get a new TD system.

For example, given the TD system Φ in Definition 2.1.1, the sequence

Φ⇓ = (A; {Ed−i}di=0;A
∗; {E∗i }di=0)

is a TD system on V . Following [10, Section 3], we call Φ⇓ the second inversion of

Φ. When discussing Φ⇓, we use the following notational convention. For any object f

associated with Φ we let f⇓ denote the corresponding object for Φ⇓.

For later use, we associate with Φ two families of polynomials as follows. Let x be

an indeterminate. Let K[x] denote the K-algebra consisting of the polynomials in x that
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have all coefficients in K. For 0 ≤ i ≤ j ≤ d+ 1, we define the polynomials τij = τij(Φ),

ηij = ηij(Φ) in K[x] by

τij = (x− θi)(x− θi+1) · · · (x− θj−1), (2.7)

ηij = (x− θd−i)(x− θd−i−1) · · · (x− θd−j+1). (2.8)

We interpret τi,i−1 = 0 and ηi,i−1 = 0. Note that each of τij, ηij is monic with degree

j − i. In particular, τii = 1 and ηii = 1. We remark that τ⇓ij = ηij and η⇓ij = τij.

Observe that for 0 ≤ i ≤ j ≤ k ≤ d+ 1,

τijτjk = τik, ηijηjk = ηik. (2.9)

As we proceed through the paper, we will focus on τij. We will develop a number

of results concerning τij. Similar results hold for ηij, although we will not state them

explicitly.

Lemma 2.1.3. For 0 ≤ i ≤ j ≤ d+ 1, the kernel of τij(A) is

EiV + Ei+1V + · · ·+ Ej−1V.

Proof. For 0 ≤ h ≤ d, EhV is the eigenspace of A corresponding to θh. The result

follows from this and (2.7). �

For 0 ≤ j ≤ d+ 1, we abbreviate

τj = τ0j, ηj = η0j.

Thus

τj = (x− θ0)(x− θ1) · · · (x− θj−1), (2.10)

ηj = (x− θd)(x− θd−1) · · · (x− θd−j+1). (2.11)

In our discussion of Ψ, the following scalars will be useful.
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Definition 2.1.4. [33, Section 10] For 0 ≤ i ≤ d+ 1, define

ϑi =
i−1∑
h=0

θh − θd−h
θ0 − θd

.

We observe that

ϑi+1 − ϑi =
θi − θd−i
θ0 − θd

(0 ≤ i ≤ d). (2.12)

These scalars will be discussed further in Section 2.12.

2.2 The first split decomposition of V

We continue to discuss the TD system Φ from Definition 2.1.1.

We use the following concept. By a decomposition of V, we mean a sequence of sub-

spaces whose direct sum is V . For example, {EiV }di=0 and {E∗i V }di=0 are decompositions

of V . There are two more decompositions of V of interest called the first and second

split decomposition. In this section, we discuss the first split decomposition of V . In

Section 2.3, we will discuss the second split decomposition of V .

Definition 2.2.1. For 0 ≤ i ≤ d define

Ui = (E∗0V + E∗1V + · · ·+ E∗i V ) ∩ (EiV + Ei+1V + · · ·+ EdV ).

For notational convenience, define U−1 = 0 and Ud+1 = 0.

Theorem 2.2.2. [10, Theorem 4.6] The sequence {Ui}di=0 is a decomposition of V .

Moreover, the following (i)–(iii) hold.

(i) (A− θiI)Ui ⊆ Ui+1 (0 ≤ i ≤ d− 1), (A− θdI)Ud = 0.



15

(ii) (A∗ − θ∗i I)Ui ⊆ Ui−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U0 = 0.

(iii) For 0 ≤ i ≤ d both

Ui + Ui+1 + · · ·+ Ud = EiV + Ei+1V + · · ·+ EdV,

U0 + U1 + · · ·+ Ui = E∗0V + E∗1V + · · ·+ E∗i V.

Definition 2.2.3. With reference to Definition 2.2.1, we refer to the sequence {Ui}di=0

as the first split decomposition of V .

Lemma 2.2.4. [10, Corollary 5.7] For 0 ≤ i ≤ d the dimensions of EiV , E∗i V , Ui

coincide. Denoting this common dimension by ρi, we have ρi = ρd−i.

Definition 2.2.5. [11, Section 1] With reference to Lemma 2.2.4, we refer to the se-

quence {ρi}di=0 as the shape of Φ. Note that Φ and Φ⇓ have the same shape.

Lemma 2.2.6. Both

AUi ⊆ Ui + Ui+1 (0 ≤ i ≤ d− 1), AUd ⊆ Ud, (2.13)

A∗Ui ⊆ Ui + Ui−1 (1 ≤ i ≤ d), A∗U0 ⊆ U0.

Proof. Use Theorem 2.2.2(i),(ii). �

Corollary 2.2.7. For 0 ≤ i ≤ d both

AkUi ⊆ Ui + Ui+1 + · · ·+ Ui+k (0 ≤ k ≤ d− i), (2.14)

(A∗)k Ui ⊆ Ui + Ui−1 + · · ·+ Ui−k (0 ≤ k ≤ i). (2.15)

Proof. Use Lemma 2.2.6. �
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Definition 2.2.8. [10, Definition 5.2] For 0 ≤ i ≤ d define Fi ∈ End(V ) by

(Fi − I)Ui = 0, (2.16)

FiUj = 0 if j 6= i, (0 ≤ j ≤ d). (2.17)

In other words, Fi is the projection map from V onto Ui. For notational convenience,

define F−1 = 0 and Fd+1 = 0.

Lemma 2.2.9. [10, Lemma 5.3] With reference to Definition 2.2.8, both

FiFj = δijFi (0 ≤ i, j ≤ d), (2.18)

I =
d∑
i=0

Fi.

Definition 2.2.10. [10, Definition 6.1] Define

R = A−
d∑

h=0

θhFh, L = A∗ −
d∑

h=0

θ∗hFh.

We refer to R (resp. L) as the first raising map (resp. first lowering map) for Φ.

Lemma 2.2.11. [10, Lemma 6.2] For 0 ≤ i ≤ d the following hold on Ui.

R = A− θiI, L = A∗ − θ∗i I. (2.19)

Combining Theorem 2.2.2(i),(ii) with Lemma 2.2.11 we obtain the following result.

Lemma 2.2.12. Both

RUi ⊆ Ui+1 (0 ≤ i ≤ d− 1), RUd = 0, (2.20)

LUi ⊆ Ui−1 (1 ≤ i ≤ d), LU0 = 0. (2.21)
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Corollary 2.2.13. The expression

Rj−i − τij(A)

vanishes on Ui for 0 ≤ i ≤ j ≤ d+ 1.

Proof. Use (2.7), (2.20), and Lemma 2.2.11. �

Lemma 2.2.14. For 0 ≤ i ≤ j ≤ d+ 1,

τij(A)Ui ⊆ Uj.

Proof. Use Lemma 2.2.12 and Corollary 2.2.13. �

The following result is a reformulation of [10, Lemma 6.5].

Lemma 2.2.15. [10, Lemma 6.5] For 0 ≤ i ≤ j ≤ d the linear transformation

Ui → Uj

v 7→ τij(A)v

is an injection if i+ j ≤ d, a bijection if i+ j = d, and a surjection if i+ j ≥ d.

Proof. By [10, Lemma 6.5] the linear transformation Ui → Uj, v 7→ Rj−iv is an injection

if i+ j ≤ d, a bijection if i+ j = d, and a surjection if i+ j ≥ d. The result follows from

this and Corollary 2.2.13. �

Corollary 2.2.16. The restriction of A− θiI to Ui is injective for 0 ≤ i < d/2.
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2.3 The second split decomposition of V

We continue to discuss the TD system Φ from Definition 2.1.1. Since Φ⇓ is a TD system

on V, all the results from Section 2.2 apply to it. For later use, we now emphasize a few

of these results. By definition,

U⇓i = (E∗0V + E∗1V + · · ·+ E∗i V ) ∩ (E0V + E1V + · · ·+ Ed−iV ) (2.22)

for 0 ≤ i ≤ d. Applying Theorem 2.2.2 to Φ⇓ we obtain the following facts. The sub-

spaces {U⇓i }di=0 form a decomposition of V which we call the second split decomposition

of V . We also have that

(A− θd−iI)U⇓i ⊆ U⇓i+1 (0 ≤ i ≤ d− 1), (A− θ0I)U⇓d = 0,

(A∗ − θ∗i I)U⇓i ⊆ U⇓i−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U⇓0 = 0.

In addition, for 0 ≤ i ≤ d both

U⇓i + U⇓i+1 + · · ·+ U⇓d = E0V + E1V + · · ·+ Ed−iV,

U⇓0 + U⇓1 + · · ·+ U⇓i = E∗0V + E∗1V + · · ·+ E∗i V.

Lemma 2.3.1. For 0 ≤ i ≤ d,

U0 + U1 + · · ·+ Ui = U⇓0 + U⇓1 + · · ·+ U⇓i .

Proof. Both sides equal E∗0V + E∗1V + · · ·+ E∗i V by Theorem 2.2.2(iii). �

We now make some comments concerning {F ⇓i }di=0 and the second raising map R⇓.

For 0 ≤ i ≤ d, F ⇓i is the projection of V onto U⇓i . Observe that

R⇓ = A−
d∑

h=0

θd−hF
⇓
h . (2.23)
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For 0 ≤ i ≤ j ≤ d + 1, the action of
(
R⇓
)j−i

on U⇓i agrees with the action of ηij(A) on

U⇓i . In addition,

R⇓U⇓i ⊆ U⇓i+1 (0 ≤ i ≤ d− 1), R⇓U⇓d = 0.

2.4 The projections Fi, F
⇓
i

We continue to discuss the TD system Φ from Definition 2.1.1. In this section, we

consider how the maps {Fi}di=0 and {F ⇓i }di=0 interact. In [10, Section 5], there are a

number of results concerning how the maps {Ei}di=0 and {Fi}di=0 interact. The results

given in this section are reformulations of those results.

Lemma 2.4.1. For 0 ≤ i < j ≤ d both

FjF
⇓
i = 0, F ⇓j Fi = 0. (2.24)

Proof. We first verify the equation on the left in (2.24). By Definition 2.2.8 and Lemma

2.3.1,

FjF
⇓
i V = FjU

⇓
i

⊆ Fj(U
⇓
0 + U⇓1 + · · ·+ U⇓i )

= Fj (U0 + U1 + · · ·+ Ui) . (2.25)

Since i < j, it follows from (2.17) that (2.25) equals 0. So FjF
⇓
i vanishes on V .

The proof for the equation on the right in (2.24) is similar. �

Lemma 2.4.2. For 0 ≤ i ≤ d both

FiF
⇓
i Fi = Fi, (2.26)

F ⇓i FiF
⇓
i = F ⇓i . (2.27)
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Proof. We first show (2.26). By Lemma 2.2.9 and Lemma 2.4.1,

Fi = FiFi = Fi

(
d∑

h=0

F ⇓h

)
Fi = FiF

⇓
i Fi.

The proof of (2.27) is similar. �

Lemma 2.4.3. For 0 ≤ i ≤ d the restrictions

F ⇓i |Ui
: Ui → U⇓i , Fi|U⇓i : U⇓i → Ui

are bijections. Moreover, these bijections are inverses.

Proof. We first show that the map FiF
⇓
i acts as the identity on Ui. Let v ∈ Ui. By

(2.16) and (2.26),

FiF
⇓
i v = FiF

⇓
i Fiv = Fiv = v.

We have shown FiF
⇓
i acts as the identity on Ui. One can show similarly that F ⇓i Fi acts

as the identity on U⇓i . The result follows. �

Lemma 2.4.4. [10, Lemma 6.4] We have

(i) RFi = Fi+1R (0 ≤ i ≤ d− 1), RFd = 0, F0R = 0,

(ii) LFi = Fi−1L (1 ≤ i ≤ d), LF0 = 0, FdL = 0.

Lemma 2.4.5. For 0 ≤ i ≤ d− 1,

R⇓F ⇓i Fi = F ⇓i+1Fi+1R.

Proof. We show R⇓F ⇓i Fi − F
⇓
i+1Fi+1R = 0. By Lemma 2.4.4(i) (applied to both Φ and

Φ⇓),

R⇓F ⇓i Fi − F
⇓
i+1Fi+1R = F ⇓i+1R

⇓Fi − F ⇓i+1RFi

= F ⇓i+1

(
R⇓ −R

)
Fi. (2.28)
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By Definition 2.2.10,

R⇓ −R =
d∑

h=0

θhFh −
d∑

h=0

θd−hF
⇓
h . (2.29)

Eliminate R⇓ − R in (2.28) using (2.29). Simplify the resulting expression using (2.18)

(applied to both Φ and Φ⇓) and Lemma 2.4.1 to get 0. �

2.5 The subspaces Ki

We continue to discuss the TD system Φ from Definition 2.1.1. Shortly we will define

the linear transformation Ψ. In our discussion of Ψ, it will be useful to consider a

certain refinement of the first and second split decomposition of V . This refinement

was introduced in [25]. In order to describe this refinement, we introduce a sequence of

subspaces {Ki}ri=0, where r = bd/2c.

Definition 2.5.1. For 0 ≤ i ≤ d/2, define the subspace Ki ⊆ V by

Ki = (E∗0V + E∗1V + · · ·+ E∗i V ) ∩ (EiV + Ei+1V + · · ·+ Ed−iV ).

Observe that K0 = E∗0V = U0.

Lemma 2.5.2. We have

Ki = Ui ∩ U⇓i (0 ≤ i ≤ d/2).

Proof. Use (2.22), Definition 2.2.1, and Definition 2.5.1. �

Lemma 2.5.3. [25, Lemma 4.1(iii)] For 0 ≤ i ≤ d/2, the restriction of τi,d−i+1(A) to Ui

has kernel Ki.

Proof. Use Lemma 2.1.3 and Definition 2.2.1. �
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We now consider the spaces

τij(A)Ki

where 0 ≤ i ≤ d/2 and i ≤ j ≤ d− i. We start with an observation.

Lemma 2.5.4. [25, Lemma 4.1(vi)] For 0 ≤ i ≤ d/2 and i ≤ j ≤ d − i, the linear

transformation

Ki → τij(A)Ki

v 7→ τij(A)v

is a bijection.

Proof. By construction the map is surjective. By Lemma 2.2.15 the restriction of τij(A)

to Ki is injective. The result follows. �

From Lemma 2.5.4, we draw two corollaries.

Corollary 2.5.5. For 0 ≤ i ≤ d/2 and i ≤ j ≤ k ≤ d− i, the linear transformation

τij(A)Ki → τik(A)Ki

v 7→ τjk(A)v

is a bijection.

Proof. Use Lemma 2.5.4 and the equation on the left in (2.9). �

Corollary 2.5.6. For 0 ≤ i ≤ d/2 and i ≤ j ≤ d − i, the dimension of τij(A)Ki

coincides with the dimension of Ki.
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2.6 Concerning the decomposition {Ui}di=0

We continue to discuss the TD system Φ from Definition 2.1.1. Recall the first split

decomposition {Ui}di=0 of V from Definition 2.2.1. We know that K0 = U0 and Ki ⊆ Ui

for 1 ≤ i ≤ d. We will use this fact along with information about the first raising map

R to give a decomposition of each Ui.

The following result is essentially due to K. Nomura [25, Theorem 4.2]. We give an

alternate proof.

Lemma 2.6.1. [25, Theorem 4.2] For 1 ≤ i ≤ d/2, each of the following sums is direct.

(i) Ui = Ki +RUi−1,

(ii) Ui = Ki + (A− θi−1I)Ui−1.

Proof. (i) We first show that Ui = Ki + RUi−1. By Lemma 2.2.12 and Lemma 2.5.2,

Ui ⊇ Ki + RUi−1. We now show Ui ⊆ Ki + RUi−1. Let v ∈ Ui. By Lemma 2.2.12 we

get Rd−2i+1v ∈ Ud−i+1. By Corollary 2.2.13 and Lemma 2.2.15 there exists w ∈ Ui−1

such that Rd−2i+2w = Rd−2i+1v. Rearranging terms we obtain Rd−2i+1(Rw − v) = 0.

So Rw − v is in the kernel of Rd−2i+1. By Lemma 2.2.12, Rw − v ∈ Ui. By Corollary

2.2.13 and Lemma 2.5.3, Ki is the intersection of Ui and the kernel of Rd−2i+1. By these

comments Rw − v ∈ Ki. Therefore

v = −(Rw − v) +Rw

∈ Ki +RUi−1.

Hence Ui ⊆ Ki + RUi−1. We have shown Ui = Ki + RUi−1. We now show that this

sum is direct. Let v ∈ Ki ∩ RUi−1. Since v ∈ RUi−1, there exists w ∈ Ui−1 such that
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v = Rw. Recall v ∈ Ki so Rd−2i+1v = 0. Therefore Rd−2i+2w = 0. By Lemma 2.2.15,

the restriction of Rd−2i+2 to Ui−1 is injective. So w = 0 and thus v = 0. We have shown

that the sum Ui = Ki +RUi−1 is direct.

(ii) Use (i) and Lemma 2.2.11. �

From Lemma 2.6.1 we obtain the following two corollaries.

Corollary 2.6.2. [10, Corollary 6.6] With reference to Lemma 2.2.4,

(i) ρi ≤ ρi+1 for 0 ≤ i < d/2,

(ii) ρi ≥ ρi+1 for d/2 ≤ i ≤ d− 1.

Proof. (i) Use Lemma 2.6.1(i) and Lemma 2.2.15.

(ii) Use Corollary 2.6.2(i) and Lemma 2.2.4. �

Corollary 2.6.3. [25, Lemma 4.3] For 1 ≤ i ≤ d/2, the dimension of Ki equals ρi−ρi−1

(this dimension could be zero). Moreover, the dimension of K0 equals ρ0.

Lemma 2.6.4. [25, Theorem 4.7]

(i) For 0 ≤ i ≤ d/2, the following sum is direct.

Ui = Ki + τi−1,i(A)Ki−1 + τi−2,i(A)Ki−2 + · · ·+ τ0,i(A)K0. (2.30)

(ii) For d/2 ≤ i ≤ d, the following sum is direct.

Ui = τd−i,i(A)Kd−i + τd−i−1,i(A)Kd−i−1 + · · ·+ τ0,i(A)K0.

Proof. (i) Recall U0 = K0. By Lemma 2.6.1(ii), the sum Uj = Kj + (A− θj−1I)Uj−1 is

direct for 1 ≤ j ≤ i. Combining these equations and simplifying the result using (2.7),
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we get (2.30). The directness of the sum (2.30) follows in view of Corollary 2.2.16.

(ii) Observe that 0 ≤ d− i ≤ d/2. So (2.30) gives a decomposition of Ud−i. By Lemma

2.2.15, the restriction of τd−i,i(A) to Ud−i gives a bijection Ud−i → Ui. Apply this

bijection to each term in the above mentioned decomposition for Ud−i and simplify the

result using the equation on the left in (2.9). �

Combining parts (i) and (ii) of Lemma 2.6.4 we have

Uj =

min{j,d−j}∑
i=0

τij(A)Ki (direct sum) (2.31)

for 0 ≤ j ≤ d.

Corollary 2.6.5. [25, Theorem 4.8] The following sum is direct.

V =
r∑
i=0

d−i∑
j=i

τij(A)Ki, (2.32)

where r = bd/2c.

Proof. In the decomposition of V from Theorem 2.2.2, evaluate each summand using

(2.31). In the resulting double summation, invert the order of summation. �

The refinement of the first split decomposition given above yields the following de-

scription of the kernel of the map R from Section 2.2.

Lemma 2.6.6. For 0 ≤ i < d/2, the restriction of R to Ui is injective. For d/2 ≤

i ≤ d, the restriction of R to Ui is surjective with kernel τd−i,i(A)Kd−i and image Ui+1.

Moreover the kernel of R on V is
∑bd/2c

i=0 τi,d−i(A)Ki.

Proof. The claims concerning injectivity and surjectivity follow from [10, Lemma 6.5].

Let d/2 ≤ i ≤ d. We now show that the kernel of R on Ui is τd−i,i(A)Kd−i. Recall that

R acts on Ui as A− θiI and RUi ⊆ Ui+1. The result follows from this along with (2.7)

and Lemma 2.6.4. �
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2.7 The subalgebra M

We continue to discuss the TD system Φ from Definition 2.1.1. Recall from Section 2.1

the subalgebra M of End(V ) generated by A. In our discussion of M , we mentioned

that each of {Ei}di=0, {Ai}di=0 is a basis for M . In this section, we give a third basis for

M and use it to realize V as a direct sum of M -modules.

Lemma 2.7.1. For 0 ≤ i ≤ d/2, the vector space M has basis

{E0, E1, . . . , Ei−1} ∪ {Ed−i+1, Ed−i+2, . . . , Ed} ∪ {τij(A)|i ≤ j ≤ d− i}. (2.33)

Proof. By [28, Lemma 5.1],

{E0, E1, . . . , Ei−1} ∪ {Ed−i+1, Ed−i+2, . . . , Ed} ∪ {Aj−i|i ≤ j ≤ d− i}

is a basis for M . By the comments following (2.8),

Span{Aj−i|i ≤ j ≤ d− i} = Span{τij(A)|i ≤ j ≤ d− i}.

The result follows. �

For the rest of this section, we view V as an M -module. For 0 ≤ i ≤ d/2, let MKi

denote the M -submodule of V generated by Ki. Our goal in this section is to show

that the sum V =
∑r

i=0MKi is direct, where r = bd/2c. We start by giving a detailed

description of the MKi.

Lemma 2.7.2. For 0 ≤ i ≤ d/2 such that Ki 6= 0, the sum

MKi = Ki + τi,i+1(A)Ki + τi,i+2(A)Ki + · · ·+ τi,d−i(A)Ki (2.34)

is direct. Moreover τi,d−i+1 is the minimal polynomial for the action of A on MKi.
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Proof. For the basis of M given in (2.33), apply each element to Ki. By Definition

2.5.1, each primitive idempotent in (2.33) vanishes on Ki. This gives equation (2.34).

We now show that the sum on the right in (2.34) is direct. By Lemma 2.2.14, we have

τij(A)Ki ⊆ Uj for i ≤ j ≤ d− i. The sum (2.34) is direct by this and Theorem 2.2.2.

It remains to show that τi,d−i+1 is the minimal polynomial for the action of A on

MKi. Let P denote the minimal polynomial for the action of A on MKi and let k

denote the degree of P . By Lemma 2.1.3 and Definition 2.5.1, τi,d−i+1(A)Ki = 0. Since

A ∈M and M is commutative, it follows that τi,d−i+1(A)MKi = 0. So P divides τi,d−i+1

and hence k ≤ d− 2i+ 1.

Suppose now that k < d− 2i+ 1 to get a contradiction. Since the degree of P is k,

MKi = Ki + AKi + · · ·+ Ak−1Ki. (2.35)

By (2.14), the right-hand side of (2.35) is contained in Ui+Ui+1+· · ·+Ui+k−1. By Lemma

2.5.4, the restriction of τi,d−i(A) to Ki is an injection. It follows from this and Ki 6= 0

that τi,d−i(A)Ki 6= 0. Recall that τi,d−i(A)Ki ⊆ Ud−i. By (2.34) and the above comments

we find that τi,d−i(A)Ki is contained in the intersection of Ui + Ui+1 + · · ·+ Ui+k−1 and

Ud−i. Since k < d − 2i + 1, this intersection is zero by Theorem 2.2.2. Therefore

τi,d−i(A)Ki = 0 for a contradiction. Thus k = d− 2i+ 1 and therefore P = τi,d−i+1 since

τi,d−i+1 is monic. �

Corollary 2.7.3. For 0 ≤ i ≤ d/2 and 0 6= v ∈ Ki, the vector space Mv has basis

v, τi,i+1(A)v, τi,i+2(A)v, . . . , τi,d−i(A)v.

Lemma 2.7.4. The following is a direct sum of M-modules.

V =
r∑
i=0

MKi, (2.36)
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where r = bd/2c.

Proof. Equation (2.36) follows from Corollary 2.6.5 and Lemma 2.7.2. The directness

of the sum follows from the directness of the sum in Corollary 2.6.5. �

2.8 The linear transformation ∆

We continue to discuss the TD system Φ from Definition 2.1.1. In this section we will

construct a linear transformation ∆ ∈ End(V ) that has certain properties which we find

attractive. It will turn out that ∆ is the unique element of End(V ) such that both

(∆− I)E∗i V ⊆ E∗0V + E∗1V + · · ·+ E∗i−1V,

∆(EiV + Ei+1V + · · ·+ EdV ) ⊆ E0V + E1V + · · ·+ Ed−iV

for 0 ≤ i ≤ d.

Definition 2.8.1. Define ∆ ∈ End(V ) by

∆ =
d∑

h=0

F ⇓h Fh,

where Fh, F
⇓
h are from Definition 2.2.8.

Lemma 2.8.2. With reference to Definition 2.8.1,

F ⇓i ∆ = ∆Fi (0 ≤ i ≤ d).

Proof. Use (2.18) and Definition 2.8.1. �

Lemma 2.8.3. With reference to Definition 2.8.1, ∆−1 exists and

∆−1 = ∆⇓.
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Proof. Observe that ∆⇓ =
∑d

h=0 FhF
⇓
h . Consider the product ∆∆⇓. Simplify this

product using Lemma 2.2.9 and Lemma 2.4.2 to obtain ∆∆⇓ = I. �

Lemma 2.8.4. With reference to Definition 2.8.1,

∆Ui = U⇓i (0 ≤ i ≤ d), (2.37)

(∆− I)Ui ⊆ U0 + U1 + · · ·+ Ui−1 (0 ≤ i ≤ d). (2.38)

Proof. Line (2.37) follows from Definition 2.2.8, Lemma 2.4.3 and Definition 2.8.1.

We now verify (2.38). By Definition 2.2.8, it suffices to show that Fj (∆− I)Ui = 0

for i ≤ j ≤ d. For i = j, this follows from Definition 2.2.8, Definition 2.8.1, and (2.26).

For i+ 1 ≤ j ≤ d, this follows from Definition 2.2.8, Definition 2.8.1, and (2.24). �

We now show that (2.37), (2.38) characterize ∆.

Lemma 2.8.5. Given ∆′ ∈ End(V ) such that

∆′Ui ⊆ U⇓i (0 ≤ i ≤ d), (2.39)

(∆′ − I)Ui ⊆ U0 + U1 + · · ·+ Ui−1 (0 ≤ i ≤ d). (2.40)

Then ∆′ = ∆.

Proof. In view of Theorem 2.2.2, it suffices to show that ∆,∆′ agree on Ui for 0 ≤ i ≤ d.

Let i be given. By (2.37) and (2.39),

(∆−∆′)Ui ⊆ U⇓i . (2.41)

By (2.38), (2.40), and Lemma 2.3.1,

(∆−∆′)Ui ⊆ U0 + U1 + · · ·+ Ui−1

= U⇓0 + U⇓1 + · · ·+ U⇓i−1. (2.42)
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Combining (2.41) and (2.42) we find that (∆−∆′)Ui is contained in the intersection of

U⇓i and U⇓0 + U⇓1 + · · · + U⇓i−1. This intersection is zero by Theorem 2.2.2 (applied to

Φ⇓). Therefore (∆−∆′)Ui = 0. So ∆,∆′ agree on Ui. �

Lemma 2.8.6. With reference to Definition 2.8.1,

(∆−1 − I)Ui ⊆ U0 + U1 + · · ·+ Ui−1 (0 ≤ i ≤ d).

Proof. Apply ∆−1 to both sides in (2.38). In the resulting containment, simplify the

right-hand side using Lemma 2.3.1 and (2.37). �

Lemma 2.8.7. With reference to Definition 2.8.1,

(∆− I)U⇓i ⊆ U⇓0 + U⇓1 + · · ·+ U⇓i−1 (0 ≤ i ≤ d).

Proof. Apply Lemma 2.8.6 to Φ⇓. Use Lemma 2.8.3 to simplify the result. �

We now obtain the characterization of ∆ given in the Introduction.

Lemma 2.8.8. With reference to Definition 2.8.1,

(∆− I)E∗i V ⊆ E∗0V + E∗1V + · · ·+ E∗i−1V (0 ≤ i ≤ d), (2.43)

∆(EiV + Ei+1V + · · ·+ EdV ) = E0V + E1V + · · ·+ Ed−iV (0 ≤ i ≤ d). (2.44)

Proof. We first show (2.43). By Theorem 2.2.2(iii) and (2.38),

(∆− I)E∗i V ⊆ (∆− I)(E∗0V + E∗1V + · · ·+ E∗i V )

= (∆− I)(U0 + U1 + · · ·+ Ui)

⊆ U0 + U1 + · · ·+ Ui−1

= E∗0V + E∗1V + · · ·+ E∗i−1V.
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We now show (2.44). Applying Theorem 2.2.2(iii) to both Φ and Φ⇓, and also using

(2.37), we obtain

∆(EiV + Ei+1V + · · ·+ EdV ) = ∆(Ui + Ui+1 + · · ·+ Ud)

= U⇓i + U⇓i+1 + · · ·+ U⇓d

= E0V + E1V + · · ·+ Ed−iV.

�

We now show that (2.43), (2.44) characterize ∆.

Lemma 2.8.9. Given ∆′ ∈ End(V ) such that

(∆′ − I)E∗i V ⊆ E∗0V + E∗1V + · · ·+ E∗i−1V (0 ≤ i ≤ d), (2.45)

∆′(EiV + Ei+1V + · · ·+ EdV ) ⊆ E0V + E1V + · · ·+ Ed−iV (0 ≤ i ≤ d). (2.46)

Then ∆′ = ∆.

Proof. By Lemma 2.8.5, it suffices to show that ∆′ satisfies (2.39) and (2.40). These

lines are routinely verified using Theorem 2.2.2(iii) (applied to both Φ and Φ⇓) and

Lemma 2.3.1. �

We now derive some relations involving ∆ that will be of use later.

Lemma 2.8.10. With reference to Definition 2.8.1,

R⇓∆ = ∆R.

Proof. In the expression R⇓∆ − ∆R, eliminate ∆ using Definition 2.8.1. Simplify the

result using Lemma 2.4.4(i) and Lemma 2.4.5 to obtain R⇓∆−∆R = 0. �
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Lemma 2.8.11. With reference to Definition 2.8.1,

∆A− A∆ =
d∑

h=0

(θh − θd−h)F ⇓h Fh. (2.47)

Proof. By Lemma 2.8.10,

∆R−R⇓∆ = 0. (2.48)

In (2.48), eliminate R and R⇓ using Definition 2.2.10 and (2.23) to get

∆A− A∆ =
d∑

h=0

θh∆Fh −
d∑

h=0

θd−hF
⇓
h ∆. (2.49)

Simplify the right-hand side of (2.49) using Definition 2.8.1 and (2.18) to get the result.

�

We now express Lemma 2.8.11 from a slightly different perspective.

Corollary 2.8.12. With reference to Definition 2.8.1,

A−∆−1A∆ =
d∑

h=0

(θh − θd−h)Fh.

Proof. Apply ∆−1 to both sides of (2.47). Simplify the resulting right-hand side using

Lemma 2.4.2, Definition 2.8.1, and (2.18). �

Lemma 2.8.13. With reference to Definition 2.8.1,

L⇓∆−∆L = A∗∆−∆A∗. (2.50)

Proof. In the left-hand side of (2.50), eliminate L and L⇓ using Definition 2.2.10. Eval-

uate the result using Lemma 2.8.2. �

Lemma 2.8.14. With reference to Definition 2.8.1,

(∆−1A∗∆− A∗)Ui ⊆ Ui−1 (1 ≤ i ≤ d), (∆−1A∗∆− A∗)U0 = 0.
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Proof. By Lemma 2.8.13,

∆−1A∗∆− A∗ = ∆−1L⇓∆− L.

Let 1 ≤ i ≤ d. By (2.37) and (2.21) (applied to Φ⇓), ∆−1L⇓∆Ui ⊆ Ui−1. By (2.21),

LUi ⊆ Ui−1. Thus (∆−1L⇓∆ − L)Ui ⊆ Ui−1. By these comments, (∆−1A∗∆ − A∗)Ui ⊆

Ui−1.

To obtain (∆−1A∗∆−A∗)U0 = 0, use (2.21) (applied to both Φ and Φ⇓) and (2.37).

�

2.9 More on ∆

We continue to discuss the TD system Φ from Definition 2.1.1. Recall the decomposition

of V given in Corollary 2.6.5. In this section, we consider the action of ∆ on each of the

summands of this decomposition.

Lemma 2.9.1. Let 0 ≤ i ≤ d/2. For v ∈ Ki and i ≤ j ≤ d− i, both

F ⇓j τij(A)v = ηij(A)v, (2.51)

Fjηij(A)v = τij(A)v. (2.52)

Proof. We first show (2.51). First suppose i = j. Use (2.16), Lemma 2.5.2, and the fact

that both τii and ηii equal 1. Now suppose i < j. By the comments following (2.8),

τij − ηij has degree at most j − i − 1 and is therefore in Span{ηih}j−1h=i. From this and

Lemma 2.2.14 (applied to Φ⇓) we find that

(τij(A)− ηij(A)) v ∈ U⇓i + U⇓i+1 + · · ·+ U⇓j−1. (2.53)
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Apply F ⇓j to each side of (2.53). By Definition 2.2.8 (applied to Φ⇓), F ⇓j applied to

the right-hand side of (2.53) is zero. By (2.16) and Lemma 2.2.14 (applied to Φ⇓),

F ⇓j ηij(A)v = ηij(A)v. Line (2.51) follows from the above comments.

Line (2.52) is similarly obtained. �

Lemma 2.9.2. For 0 ≤ i ≤ d/2 and i ≤ j ≤ d − i, let ∆ij denote the restriction of ∆

to the subspace τij(A)Ki. Then the following diagram commutes.

Ki

τij(A)Ki

∆ij -
�

τ ij
(A

)

ηij(A)Ki

η
ij (A

)

-

Proof. Let v ∈ Ki. We push v around the diagram. Observe that ∆ijτij(A)v = ∆τij(A)v.

Consider ∆τij(A)v. In this expression, eliminate ∆ using Definition 2.8.1. Then simplify

the result using Definition 2.2.8, Lemma 2.2.14 (applied to both Φ and Φ⇓), and Lemma

2.9.1. By these comments we find ∆τij(A)v = ηij(A)v. �

We emphasize a point for later use. By Lemma 2.9.2, we see that for 0 ≤ i ≤ d/2

and i ≤ j ≤ d− i,

∆τij(A)v = ηij(A)v (v ∈ Ki). (2.54)

Setting j = i in the above argument, we see that

(∆− I)Ki = 0. (2.55)

2.10 The linear transformation Ψ

We continue to discuss the TD system Φ from Definition 2.1.1. We now introduce a

certain linear transformation Ψ ∈ End(V ) which has properties that we find attractive.
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To define Ψ we give its action on each summand in the decomposition of V from Corollary

2.6.5. It will turn out that Ψ is the unique linear transformation such that both

ΨEiV ⊆ Ei−1V + EiV + Ei+1V,(
Ψ− ∆− I

θ0 − θd

)
E∗i V ⊆ E∗0V + E∗1V + · · ·+ E∗i−2V

for 0 ≤ i ≤ d. This characterization of Ψ will be discussed in Section 2.15.

Lemma 2.10.1. There exists a unique linear transformation Ψ ∈ End(V ) such that

Ψτij(A)− (ϑj − ϑi) τi,j−1(A) (2.56)

vanishes on Ki for 0 ≤ i ≤ d/2 and i ≤ j ≤ d− i. Recall that τi,i−1 = 0.

Proof. By Corollary 2.6.5 the sum in (2.32) is a decomposition of V . In the statement

of the lemma, we specified the action of Ψ on each summand and therefore Ψ exists.

The uniqueness assertion is clear. �

We clarify the meaning of Ψ. Fix an integer i (0 ≤ i ≤ d/2). Lemma 2.10.1 implies

that ΨKi = 0. More generally, for i ≤ j ≤ d− i and v ∈ Ki,

Ψτij(A)v = (ϑj − ϑi)τi,j−1(A)v. (2.57)

We look at Ψ from several perspectives.

Lemma 2.10.2. With reference to Lemma 2.10.1,

ΨUj ⊆ Uj−1 (1 ≤ j ≤ d), ΨU0 = 0.

Proof. We first show ΨUj ⊆ Uj−1 for 1 ≤ j ≤ d. Let j be given. Recall from (2.31) the

direct sum Uj =
∑min{j,d−j}

i=0 τij(A)Ki. Referring to this sum, we will show Ψ sends each
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summand into Uj−1. Consider the ith summand τij(A)Ki. First suppose i = j. Then

Ψ sends this summand to zero because ΨKi = 0. Next suppose i < j. Using Lemma

2.2.14 and (2.57), we obtain

Ψτij(A)Ki ⊆ τi,j−1(A)Ki ⊆ Uj−1.

We now show ΨU0 = 0. Recall that ΨK0 = 0. The result follows since K0 = U0.

�

Lemma 2.10.3. With reference to Lemma 2.10.1,

FiΨ = ΨFi+1 (0 ≤ i ≤ d− 1), ΨF0 = 0, FdΨ = 0. (2.58)

Proof. We first show that FiΨ = ΨFi+1 for 0 ≤ i ≤ d − 1. Let i be given. Recall

the decomposition {Uj}dj=0 of V from Theorem 2.2.2. We will show that FiΨ − ΨFi+1

vanishes on each Uj. Observe that

FiΨ−ΨFi+1 = (Fi − I)Ψ−Ψ(Fi+1 − I). (2.59)

The right-hand side of (2.59) vanishes on Uj by Definition 2.2.8 and Lemma 2.10.2. Thus

FiΨ − ΨFi+1 vanishes Uj and hence on V . The equation on the left in (2.58) follows

from the above comments.

The assertions ΨF0 = 0, FdΨ = 0 follow from Lemma 2.10.2. �

Lemma 2.10.4. With reference to Definition 2.8.1 and Lemma 2.10.1, for 0 ≤ j ≤ d

apply either of

∆− I − (θ0 − θd)Ψ, ∆−1 − I + (θ0 − θd)Ψ (2.60)

to Uj and consider the image. This image is contained in U0 + U1 + · · ·+ Uj−2 if j ≥ 2

and equals 0 if j < 2.
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Proof. We first consider the expression on the left in (2.60). Recall the direct sum

Uj =
∑min{j,d−j}

i=0 τij(A)Ki from (2.31). Consider a summand τij(A)Ki. We show that

the image of τij(A)Ki under the expression on the left in (2.60) is contained in U0 +U1 +

· · · + Uj−2 if j ≥ 2 and equals 0 if j < 2. By (2.54) and Lemma 2.10.1, the actions of

the expression on the left in (2.60) times τij(A) and

ηij(A)− τij(A)− (θ0 − θd)(ϑj − ϑi)τi,j−1(A) (2.61)

agree on Ki. By (2.7), (2.8), and Definition 2.1.4, (2.61) is a polynomial in A of degree

at most j− i− 2 if j ≥ i+ 2 and equals 0 if j < i+ 2. The result follows from the above

comments and (2.14).

We now consider the expression on the right in (2.60). We will use the fact that the

result holds for the expression on the left in (2.60). Observe that

∆−1 − I + (θ0 − θd)Ψ = ∆−1(∆− I)2 −∆ + I + (θ0 − θd)Ψ.

The result follows from the above comments, (2.38) and Lemma 2.8.6. �

Lemma 2.10.5. With reference to Lemma 2.10.1, Ψ satisfies

ΨR−RΨ =
d∑

h=0

θh − θd−h
θ0 − θd

Fh. (2.62)

Proof. Referring to the decomposition of V given in Corollary 2.6.5, consider any sum-

mand τij(A)Ki. We apply each side of (2.62) to this summand. We claim that on this

summand, each side of (2.62) acts as (θj − θd−j)(θ0 − θd)−1I.

The claim holds for the right-hand side of (2.62) by Definition 2.2.8 and the fact

that τij(A)Ki ⊆ Uj. Concerning the left-hand side of (2.62), we routinely carry out this

application using (2.7), (2.12), Lemma 2.2.11, and Lemma 2.10.1. �
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Corollary 2.10.6. With reference to Definition 2.8.1 and Lemma 2.10.1,

A−∆−1A∆

θ0 − θd
= ΨR−RΨ.

Proof. Use Corollary 2.8.12 and Lemma 2.10.5. �

We now give a characterization of Ψ.

Lemma 2.10.7. Given Ψ′ ∈ End(V ) such that

Ψ′R−RΨ′ =
d∑

h=0

θh − θd−h
θ0 − θd

Fh (2.63)

and Ψ′Ki = 0 for 0 ≤ i ≤ d/2. Then Ψ′ = Ψ.

Proof. Recall from Corollary 2.6.5 the decomposition V =
∑r

i=0

∑d−i
j=i τij(A)Ki, where

r = bd/2c. We show that Ψ−Ψ′ vanishes on each summand by fixing i and inducting on

j. Let i be given. Recall that ΨKi = 0. Thus Ψ− Ψ′ vanishes on τii(A)Ki = Ki. Now

suppose Ψ−Ψ′ vanishes on τij(A)Ki. We show that Ψ−Ψ′ vanishes on τi,j+1(A)Ki. By

(2.62) and (2.63), we see that

(Ψ−Ψ′)R = R(Ψ−Ψ′).

By the above comments, Ψ − Ψ′ vanishes on Rτij(A)Ki. By (2.7) and Lemma 2.2.11,

Rτij(A)Ki = τi,j+1(A)Ki. Thus Ψ− Ψ′ vanishes on τi,j+1(A)Ki. So Ψ− Ψ′ vanishes on

V . �

Shortly we will give a second characterization of Ψ. That characterization will be

based on the following result.

Lemma 2.10.8. Given X ∈ End(V ) such that XR = RX and XUi ⊆ Ui−1 for 0 ≤ i ≤

d. Then X = 0.



39

Proof. By (2.7), Lemma 2.2.11, and Corollary 2.6.5, it suffices to show that XRhKi = 0

for 0 ≤ i ≤ d/2 and 0 ≤ h ≤ d− 2i. Since XR = RX, it suffices to show that XKi = 0

for 0 ≤ i ≤ d/2. Let i be given. First assume that i = 0. Then XK0 = 0, since K0 = U0

and XU0 = 0. Next assume that i ≥ 1. By Lemma 2.6.6 and Rd−2iKi = τi,d−i(A)Ki, we

obtain Rd−2i+1Ki = 0. From this and since XR = RX, it follows that Rd−2i+1XKi = 0.

By Lemma 2.5.2, Ki ⊆ Ui and hence XKi ⊆ Ui−1. By Lemma 2.6.6 the action of Rd−2i+1

on Ui−1 is injective. By these comments, XKi = 0. We have now shown that X = 0. �

Lemma 2.10.9. Given Ψ′ ∈ End(V ) such that (2.63) is satisfied and Ψ′Ui ⊆ Ui−1 for

0 ≤ i ≤ d. Then Ψ′ = Ψ.

Proof. By Lemma 2.10.2 and (2.62), Ψ satisfies these conditions. We now show the

uniqueness assertion. Assume Ψ′ ∈ End(V ) satisfies the conditions in the statement of

the lemma. Observe that (Ψ−Ψ′)R = R(Ψ−Ψ′) and (Ψ−Ψ′)Ui ⊆ Ui−1 for 0 ≤ i ≤ d.

The result follows from these comments along with Lemma 2.10.8. �

Lemma 2.10.10. With reference to Definition 2.8.1 and Lemma 2.10.1, ∆−1A∗∆−A∗

acts on Ui as

(θ∗i−1 − θ∗i )(θ0 − θd)Ψ

for 1 ≤ i ≤ d and as 0 for i = 0.

Proof. First assume 1 ≤ i ≤ d. For notational convenience, we abbreviate Ω = (θ0 −

θd)Ψ. We will show that

∆−1A∗∆− A∗ − (θ∗i−1 − θ∗i )Ω (2.64)

vanishes on Ui. To accomplish this, we show that the image of Ui under (2.64) is

contained in both Ui−1 and
∑i−2

h=0 Uh.
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We first show that the image of Ui under (2.64) is contained in Ui−1. This follows

from Lemma 2.8.14 and Lemma 2.10.2.

We now show that the image of Ui under (2.64) is contained in
∑i−2

h=0 Uh. Observe

that (2.64) is equal to

θ∗i−1(∆
−1 − I)Ω + ∆−1(A∗ − θ∗i−1I)Ω + (∆−1 − I)(A∗ − θ∗i I)

+ ∆−1A∗(∆− I − Ω) + θ∗i (∆
−1 − I + Ω).

(2.65)

We will argue that each of the five terms in this sum sends Ui into
∑i−2

h=0 Uh. We begin

by recalling some facts. For 0 ≤ j ≤ d each of

A∗ − θ∗j I, ∆− I, ∆−1 − I, Ω

sends Uj into
∑j−1

h=0 Uh. This is a consequence of Theorem 2.2.2(ii), (2.38), Lemma 2.8.6,

and Lemma 2.10.2 respectively. It follows from these comments that for 0 ≤ j ≤ d, each

of A∗, ∆, ∆−1, Ω sends Uj into
∑j

h=0 Uh. Using the above facts, we find that each of

(∆−1 − I)Ω, ∆−1(A∗ − θ∗i−1I)Ω, (∆−1 − I)(A∗ − θ∗i I)

sends Ui into
∑i−2

h=0 Uh. Thus each of the first three terms in the sum (2.65) sends Ui

into
∑i−2

h=0 Uh. By Lemma 2.10.4, each of

∆− I − Ω, ∆−1 − I + Ω

sends Ui into
∑i−2

h=0 Uh. By the above facts, each of the last two terms in the sum (2.65)

sends Ui into
∑i−2

h=0 Uh. We have now shown that each of the five terms in the sum (2.65)

sends Ui into
∑i−2

h=0 Uh. Therefore, the image of Ui under (2.65) is contained in
∑i−2

h=0 Uh.
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By the above comments and Theorem 2.2.2, the expression (2.64) vanishes on Ui.

The proof is complete for 1 ≤ i ≤ d.

The case when i = 0 follows from Lemma 2.8.14. �

Combining Lemma 2.10.10 with Lemma 2.8.13, we obtain the following corollary.

Corollary 2.10.11. With reference to Definition 2.8.1 and Lemma 2.10.1, ∆−1L⇓∆−L

acts on Ui as

(θ∗i−1 − θ∗i )(θ0 − θd)Ψ

for 1 ≤ i ≤ d and as 0 for i = 0.

2.11 The eigenvalue and dual eigenvalue sequences

We continue to discuss the TD system Φ from Definition 2.1.1. In Sections 2.14, 2.15,

and 2.16, we will obtain some detailed results about ∆ and Ψ. In order to do so, we

must first recall some facts concerning the eigenvalues and dual eigenvalues of Φ.

Theorem 2.11.1. [10, Theorem 11.1] The expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(2.66)

are equal and independent of i for 2 ≤ i ≤ d− 1.

Definition 2.11.2. We associate a scalar β with Φ as follows. If d ≥ 3 let β + 1 denote

the common value of (3.1). If d ≤ 2 let β denote any nonzero scalar in K. We call β the

base of Φ.

Theorem 2.11.3. [10, Theorem 11.2] With reference to Definition 2.11.2, the following

(i)–(iv) hold.
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(i) Suppose β 6= ±2, and pick q ∈ K such that q2 + q−2 = β. Then there exist scalars

α1, α2, α3, α
∗
1, α

∗
2, α

∗
3 in K such that

θi = α1 + α2q
2i + α3q

−2i,

θ∗i = α∗1 + α∗2q
2i + α∗3q

−2i,

for 0 ≤ i ≤ d. Moreover q2i 6= 1 for 1 ≤ i ≤ d.

(ii) Suppose β = 2 and Char(K) 6= 2. Then there exist scalars α1, α2, α3, α
∗
1, α

∗
2, α

∗
3 in

K such that

θi = α1 + α2i+ α3i
2,

θ∗i = α∗1 + α∗2i+ α∗3i
2,

for 0 ≤ i ≤ d. Moreover Char(K) = 0 or Char(K) > d.

(iii) Suppose β = −2 and Char(K) 6= 2. Then there exist scalars α1, α2, α3, α
∗
1, α

∗
2, α

∗
3

in K such that

θi = α1 + α2(−1)i + α3i(−1)i,

θ∗i = α∗1 + α∗2(−1)i + α∗3i(−1)i,

for 0 ≤ i ≤ d. Moreover Char(K) = 0 or Char(K) > d/2.

(iv) Suppose β = 0 and Char(K) = 2. Then d = 3.

Lemma 2.11.4. [33, Lemma 9.4] With reference to Definition 2.11.2, pick integers

i, j, r, s (0 ≤ i, j, r, s ≤ d) and assume i + j = r + s, i 6= j. Then the following (i)–(iv)

hold.
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(i) Suppose β 6= ±2. Then

θr − θs
θi − θj

=
qr−s − qs−r

qi−j − qj−i
,

where q2 + q−2 = β.

(ii) Suppose β = 2 and Char(K) 6= 2. Then

θr − θs
θi − θj

=
r − s
i− j

.

(iii) Suppose β = −2 and Char(K) 6= 2. Then

θr − θs
θi − θj

=

 (−1)r+i r−s
i−j if i+ j is even,

(−1)r+i if i+ j is odd.

(iv) Suppose β = 0 and Char(K) = 2. Then

θr − θs
θi − θj

=

 0 if r = s,

1 if r 6= s.

Proof. Use Theorem 2.11.3. �

2.12 Some scalars

We continue to discuss the TD system Φ from Definition 2.1.1. In Section 2.1, we used Φ

to define the scalars {ϑi}d+1
i=0 . In this section we discuss some properties of these scalars

which will be of use later.

Recall from Definition 2.1.4 that

ϑi =
i−1∑
h=0

θh − θd−h
θ0 − θd

(0 ≤ i ≤ d+ 1).
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We remark that

ϑ0 = 0, ϑ1 = 1, ϑd = 1, ϑd+1 = 0.

Moreover,

ϑi = ϑd−i+1 (0 ≤ i ≤ d+ 1). (2.67)

Lemma 2.12.1. For 0 ≤ i ≤ d,

ϑd−i − ϑi =
θi − θd−i
θ0 − θd

.

Proof. Use (2.12) and (2.67). �

We now express the ϑi in closed form.

Lemma 2.12.2. [33, Lemma 10.2] With reference to Definition 2.11.2, the following

holds for 0 ≤ i ≤ d+ 1.

(i) Suppose β 6= ±2. Then

ϑi =
(qi − q−i)(qd−i+1 − qi−d−1)

(q − q−1)(qd − q−d)
,

where q2 + q−2 = β.

(ii) Suppose β = 2 and Char(K) 6= 2. Then

ϑi =
i(d− i+ 1)

d
.

(iii) Suppose β = −2, Char(K) 6= 2, and d is odd. Then

ϑi =

 0 if i is even,

1 if i is odd.
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(iv) Suppose β = −2, Char(K) 6= 2, and d is even. Then

ϑi =

 i/d if i is even,

(d− i+ 1)/d if i is odd.

(v) Suppose β = 0, Char(K) = 2, and d = 3. Then

ϑi =

 0 if i is even,

1 if i is odd.

Proof. The above sums can be computed directly using Lemma 2.11.4. �

Corollary 2.12.3. With reference to Lemma 2.12.2, assume we are in the situation of

(i), (ii) or (iv). Then ϑi 6= 0 for 1 ≤ i ≤ d.

When we were working with the eigenvalues of Φ, a key feature was that they are

mutually distinct. So it is natural to ask if there are any duplications in the sequence

{ϑi}d+1
i=0 . In (2.67) we already saw that ϑi = ϑd−i+1 for 0 ≤ i ≤ d + 1. So we would like

to know if the {ϑi}ri=0 are mutually distinct, where r = bd+1
2
c. It turns out that this is

false in general, but something can be said in certain cases. We now explain the details.

Corollary 2.12.4. With reference to Definition 2.11.2, the following holds for 0 ≤ i, j ≤

d+ 1.

(i) Suppose β 6= ±2. Then

ϑi − ϑj =
(qi−j − qj−i)

(
qd−i−j+1 − qi+j−d−1

)
(q − q−1) (qd − q−d)

.

(ii) Suppose β = 2 and Char(K) 6= 2. Then

ϑi − ϑj =
(i− j)(d− i− j + 1)

d
.
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(iii) Suppose β = −2, Char(K) 6= 2, and d odd. Then

ϑi − ϑj =

 0 if i+ j is even,

(−1)j if i+ j is odd.

(iv) Suppose β = −2, Char(K) 6= 2, and d even. Then

ϑi − ϑj =

 (−1)j i−j
d

if i+ j is even,

(−1)j d−i−j+1
d

if i+ j is odd.

(v) Suppose β = 0, Char(K) = 2, and d = 3. Then

ϑi − ϑj =

 0 if i+ j is even,

1 if i+ j is odd.

Proof. Use Lemma 2.12.2. �

Lemma 2.12.5. With reference to Lemma 2.12.2, assume we are in the situation of (i),

(ii) or (iv). Then the following are equivalent for 0 ≤ i, j ≤ d+ 1.

(i) ϑi = ϑj.

(ii) i = j or i+ j = d+ 1.

Proof. Use Theorem 2.11.3 and Corollary 2.12.4. �

We finish this section with a comment.

Lemma 2.12.6. For 0 ≤ i, j, r, s ≤ d we have

(θr − θs) (ϑi − ϑj) = (θi − θj) (ϑr − ϑs) ,

provided that i+ j = r + s.

Proof. Use Lemma 2.11.4 and Corollary 2.12.4. �
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2.13 The scalars [r, s, t]

We continue to discuss the TD system Φ from Definition 2.1.1. To motivate our results

in this section, for the moment fix an integer i (0 ≤ i ≤ d/2). As we proceed, it will be

convenient to express each of {τij}d−ij=i as a linear combination of {ηij}d−ij=i. In order to

describe the coefficients, we will use the following notation.

For all a, q ∈ K define

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n = 0, 1, 2, . . . (2.68)

and interpret (a; q)0 = 1.

In [34] Terwilliger defined some scalars [r, s, t]q ∈ K for nonnegative integers r, s, t

such that r + s+ t ≤ d. By [34, Lemma 13.2] these scalars are rational functions of the

base β. In this paper we are going to drop the subscript q and just write [r, s, t]. For

further discussion of these scalars see [16] and [34].

Definition 2.13.1. [34, Lemma 13.2] With reference to Definition 2.11.2, let r, s, t

denote nonnegative integers such that r + s+ t ≤ d. We define [r, s, t] as follows.

(i) Suppose β 6= ±2. Then

[r, s, t] =
(q2; q2)r+s(q

2; q2)r+t(q
2; q2)s+t

(q2; q2)r(q2; q2)s(q2; q2)t(q2; q2)r+s+t
,

where q2 + q−2 = β.

(ii) Suppose β = 2 and Char(K) 6= 2. Then

[r, s, t] =
(r + s)! (r + t)! (s+ t)!

r! s! t! (r + s+ t)!
.
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(iii) Suppose β = −2 and Char(K) 6= 2. If each of r, s, t is odd, then [r, s, t] = 0. If at

least one of r, s, t is even, then

[r, s, t] =
b r+s

2
c!b r+t

2
c!b s+t

2
c!

b r
2
c!b s

2
c!b t

2
c!b r+s+t

2
c!
.

The expression bxc denotes the greatest integer less than or equal to x.

(iv) Suppose β = 0, Char(K) = 2, and d = 3. If each of r, s, t equals 1, then [r, s, t] = 0.

If at least one of r, s, t equals 0, then [r, s, t] = 1.

We make a few observations. The expression [r, s, t] is symmetric in r, s, t. Also,

[r, s, t] = 1 if at least one of r, s, t equals zero.

Lemma 2.13.2. [16, Lemma 5.3] Let r, s, t, u denote nonnegative integers such that

r + s+ t+ u ≤ d. Then

[r, s, t+ u][t, u, r + s] = [s, u, r + t][r, t, s+ u].

The following result is a modification of [27, Lemma 12.4].

Lemma 2.13.3. Let 0 ≤ i ≤ d/2 and i ≤ j ≤ d− i. Both

τij =

j−i∑
h=0

[h, j − i− h, d− i− j]τi,i+h(θd−i)ηi,j−h, (2.69)

ηij =

j−i∑
h=0

[h, j − i− h, d− i− j]ηi,i+h(θi)τi,j−h. (2.70)

Proof. Apply [27, Lemma 12.4] to the sequence {θk}d−ik=i. �

Later in the paper, we will be doing some computations involving the coefficients in

(2.69) and (2.70). The following results will aid in these computations.
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Corollary 2.13.4. For 0 ≤ i ≤ d/2 and i+ 1 ≤ j ≤ d− i,

(θ0 − θd) (ϑj − ϑi) = (θi − θd−i) [1, j − i− 1, d− i− j].

Proof. Let C denote the coefficient of xj−i−1 on either side of (2.69). From the left-hand

side of (2.69), we see

C = −
j−1∑
h=i

θh. (2.71)

From the right-hand side of (2.69), we see

C = (θd−i − θi) [j − i− 1, 1, d− i− j]−
j−1∑
h=i

θd−h. (2.72)

Subtract (2.71) from (2.72) and invoke the symmetry of [r, s, t] as well as Definition 2.1.4

to get the result. �

Lemma 2.13.5. For 0 ≤ i ≤ d/2 and i+ 1 ≤ j ≤ d− i and 0 ≤ h ≤ j − i− 1,

(ϑj − ϑi)[h, j − i− h− 1, d− i− j + 1]

= (ϑj−h − ϑi) [h, j − i− h, d− i− j]
(2.73)

and

(ϑj − ϑi)[h, j − i− h− 1, d− i− j + 1]

= (ϑi+h+1 − ϑi) [h+ 1, j − i− h− 1, d− i− j].
(2.74)

Proof. For (2.73), use Lemma 2.13.2 with r = 1, s = j − i− h− 1, t = d− i− j, u = h.

Simplify the result using Corollary 2.13.4 and the fact that [r, s, t] is symmetric in r, s, t.

Line (2.74) is similarly obtained. �

Corollary 2.13.6. With reference to Lemma 2.12.2, assume we are in the situation of

(i), (ii) or (iv). For 0 ≤ i ≤ d/2 and i ≤ j ≤ d− i and 0 ≤ h ≤ j − i,

[h, j − i− h, d− i− j] =
h−1∏
k=0

ϑj−k − ϑi
ϑd−i−k − ϑi

. (2.75)

In (2.75) the denominators are nonzero by Lemma 2.12.5.
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Proof. Assume h ≥ 1; otherwise both sides of (2.75) equal 1. From (2.74) we obtain

[h, j − i− h, d− i− j] =
ϑj − ϑi
ϑi+h − ϑi

[h− 1, j − i− h, d− i− j + 1].

Iterating this we get

[h, j − i− h, d− i− j] =
h−1∏
k=0

ϑj−k − ϑi
ϑi+k+1 − ϑi

.

Evaluating the denominator using Lemma 2.12.5 we obtain the result. �

2.14 The maps ∆,Ψ commute

We continue to discuss the TD system Φ from Definition 2.1.1. In Section 2.8, we

introduced the linear transformation ∆ and discussed some of its properties. In Section

2.10, we introduced the linear transformation Ψ and discussed some of its properties.

We now discuss how ∆,Ψ relate to each other. Along this line we have two main results.

They are Theorem 2.14.1 and Theorem 2.16.1. We prove Theorem 2.14.1 in this section.

Before proving Theorem 2.16.1, it will be convenient to give the characterization of Ψ

discussed in the Introduction. This will be done in Section 2.15.

Theorem 2.14.1. With reference to Definition 2.8.1 and Lemma 2.10.1, the operators

∆, Ψ commute.

Proof. Recall the decomposition of V given in Corollary 2.6.5. We will show that Ψ∆,

∆Ψ agree on each summand τij(A)Ki.

First assume that i = j. Recall that τii and ηii both equal 1. Using (2.55) and the

fact that ΨKi = 0, we routinely find that each of Ψ∆, ∆Ψ vanishes on τii(A)Ki.
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Next assume that i < j. In order to show that Ψ∆, ∆Ψ agree on τij(A)Ki, it suffices

to show that Ψ∆τij(A) and ∆Ψτij(A) agree on Ki. By (2.70), Lemma 2.9.2, and Lemma

2.10.1, the operators Ψ∆τij(A) and

j−i−1∑
h=0

(ϑj−h − ϑi) [h, j − i− h, d− i− j]ηi,i+h(θi)τi,j−h−1(A) (2.76)

agree on Ki. By (2.70), Lemma 2.9.2, and Lemma 2.10.1, the operators ∆Ψτij(A) and

(ϑj − ϑi)
j−i−1∑
h=0

[h, j − i− h− 1, d− i− j + 1]ηi,i+h(θi)τi,j−h−1(A) (2.77)

agree on Ki. In order to show (2.76), (2.77) agree on Ki, we will need the fact that

(ϑj−h − ϑi) [h, j − i− h, d− i− j]

and

(ϑj − ϑi) [h, j − i− h− 1, d− i− j + 1]

are equal for 0 ≤ h ≤ j− i−1. This equality is (2.73). Therefore (2.76) and (2.77) agree

on Ki. Thus Ψ∆τij(A) and ∆Ψτij(A) agree on Ki. Hence Ψ∆, ∆Ψ agree on τij(A)Ki.

By Corollary 2.6.5, Ψ∆, ∆Ψ agree on V . �

From Theorem 2.14.1, we derive a number of corollaries.

Corollary 2.14.2. With reference to Lemma 2.10.1, Ψ⇓ = Ψ.

Proof. We first show that Ψ⇓∆ = ∆Ψ. Recall the decomposition of V given in Corollary

2.6.5. We will show that Ψ⇓∆, ∆Ψ agree on each summand τij(A)Ki. By (2.54) and

(2.57) (applied to both Φ and Φ⇓), Ψ⇓∆τij(A) and ∆Ψτij(A) agree on Ki. Hence Ψ⇓∆,

∆Ψ agree on τij(A)Ki. By Corollary 2.6.5, Ψ⇓∆, ∆Ψ agree on V . Thus Ψ⇓∆ = ∆Ψ.

Combine this fact with Theorem 2.14.1 and the fact that ∆ is invertible to get the

result. �
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Corollary 2.14.3. With reference to Lemma 2.10.1, we have

ΨU⇓i ⊆ U⇓i−1 (1 ≤ i ≤ d), ΨU⇓0 = 0.

Proof. Combine Corollary 2.14.2 with Lemma 2.10.2. �

Corollary 2.14.4. With reference to Lemma 2.10.1, we have

ΨEiV ⊆ Ei−1V + EiV + Ei+1V (0 ≤ i ≤ d).

Proof. Let i be given. On the one hand, by Theorem 2.2.2(iii) and Lemma 2.10.2, we

have

ΨEiV ⊆ Ψ(EiV + Ei+1V + · · ·+ EdV )

= Ψ(Ui + Ui+1 + · · ·+ Ud)

⊆ Ui−1 + Ui + · · ·+ Ud

= Ei−1V + Ei+1V + · · ·+ EdV. (2.78)

On the other hand, by Theorem 2.2.2(iii) applied to Φ⇓ and Corollary 2.14.3, we have

ΨEiV ⊆ Ψ(E0V + E1V + · · ·+ EiV )

= Ψ(U⇓d−i + U⇓d−i+1 + · · ·+ U⇓d )

⊆ U⇓d−i−1 + U⇓d−i + · · ·+ U⇓d

= E0V + E1V + · · ·+ Ei+1V. (2.79)

Observe that ΨEiV is in the intersection of (2.78) and (2.79). This intersection equals

Ei−1V + EiV + Ei+1V , and the result follows. �
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2.15 A characterization of Ψ

We continue to discuss the TD system Φ from Definition 2.1.1. Our goal in this section

is to obtain the characterization of Ψ given in the Introduction.

Lemma 2.15.1. With reference to Lemma 2.10.1, we have

ΨE∗i V ⊆ E∗0V + E∗1V + · · ·+ E∗i−1V (0 ≤ i ≤ d).

Proof. Using Theorem 2.2.2(iii) and Lemma 2.10.2, we obtain

ΨE∗i V ⊆ Ψ (E∗0V + E∗1V + · · ·+ E∗i V )

= Ψ (U0 + U1 + · · ·+ Ui)

⊆ U0 + U1 + · · ·+ Ui−1

= E∗0V + E∗1V + · · ·+ E∗i−1V.

�

Lemma 2.15.2. With reference to Definition 2.8.1 and Lemma 2.10.1, for 0 ≤ j ≤ d

apply either of

∆− I − (θ0 − θd)Ψ, ∆−1 − I + (θ0 − θd)Ψ

to E∗jV and consider the image. This image is contained in E∗0V + E∗1V + · · ·+ E∗j−2V

if j ≥ 2 and equals 0 if j < 2.

Proof. Use Theorem 2.2.2(iii) and Lemma 2.10.4. �

By Corollary 2.14.4 and Lemma 2.15.2, both

ΨEiV ⊆ Ei−1V + EiV + Ei+1V,(
Ψ− ∆− I

θ0 − θd

)
E∗i V ⊆ E∗0V + E∗1V + · · ·+ E∗i−2V
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for 0 ≤ i ≤ d. We show that these two properties characterize Ψ.

Lemma 2.15.3. Given Ψ′ ∈ End(V ) such that both

Ψ′EiV ⊆ Ei−1V + EiV + Ei+1V,(
Ψ′ − ∆− I

θ0 − θd

)
E∗i V ⊆ E∗0V + E∗1V + · · ·+ E∗i−2V

for 0 ≤ i ≤ d. Then Ψ′ = Ψ.

Proof. Recall from Theorem 2.2.2 that {Ui}di=0 is a decomposition of V . It suffices to

show that Ψ,Ψ′ agree on Ui for 0 ≤ i ≤ d. Let i be given. Observe that

Ψ−Ψ′ = Ψ− ∆− I
θ0 − θd

−Ψ′ +
∆− I
θ0 − θd

. (2.80)

Using (2.80) along with Theorem 2.2.2(iii) and Lemma 2.15.2, we obtain

(Ψ−Ψ′)Ui ⊆ (Ψ−Ψ′)(U0 + U1 + · · ·+ Ui)

= (Ψ−Ψ′)(E∗0V + E∗1V + · · ·+ E∗i V )

⊆ E∗0V + E∗1V + · · ·+ E∗i−2V

= U0 + U1 + · · ·+ Ui−2.

By Theorem 2.2.2(iii) and Corollary 2.14.4,

(Ψ−Ψ′)Ui ⊆ (Ψ−Ψ′)(Ui + Ui+1 + · · ·+ Ud)

= (Ψ−Ψ′)(EiV + Ei+1V + · · ·+ EdV )

⊆ Ei−1V + EiV + · · ·+ EdV

= Ui−1 + Ui + · · ·+ Ud.

Thus (Ψ−Ψ′)Ui is contained in the intersection of U0 + U1 + · · ·+ Ui−2 and Ui−1 +

Ui + · · ·+Ud. This intersection is zero since {Ui}di=0 is a decomposition of V . So Ψ−Ψ′

vanishes on Ui. Therefore Ψ,Ψ′ agree on Ui. �
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2.16 In general, ∆±1 are polynomials in Ψ

We continue to discuss the TD system Φ from Definition 2.1.1. Recall the map ∆ from

Definition 2.8.1 and the map Ψ from Lemma 2.10.1. In Section 2.14, we saw that ∆,Ψ

commute. In this section, we show that ∆±1 are polynomials in Ψ provided that each

of ϑ1, ϑ2, . . . , ϑd is nonzero.

Theorem 2.16.1. Let ∆ ∈ End(V ) be as in Definition 2.8.1 and let Ψ ∈ End(V ) be as

in Lemma 2.10.1. With reference to Lemma 2.12.2, assume we are in the situation of

(i), (ii), or (iv) so that the scalars {ϑi}di=1 from Definition 2.1.4 are nonzero. Then both

∆ = I +
η1(θ0)

ϑ1

Ψ +
η2(θ0)

ϑ1ϑ2

Ψ2 + · · ·+ ηd(θ0)

ϑ1ϑ2 · · ·ϑd
Ψd, (2.81)

∆−1 = I +
τ1(θd)

ϑ1

Ψ +
τ2(θd)

ϑ1ϑ2

Ψ2 + · · ·+ τd(θd)

ϑ1ϑ2 · · ·ϑd
Ψd. (2.82)

Proof. We first show (2.81). Recall the decomposition of V from Corollary 2.6.5. We

show that each side of (2.81) agrees on each summand τij(A)Ki. Let v ∈ Ki. We apply

each side of (2.81) to the vector τij(A)v and show that the results agree.

We first apply the left-hand side of (2.81) to τij(A)v. By Lemma 2.9.2 and (2.70),

∆τij(A)v is a linear combination of {τi,j−h(A)v}j−ih=0 such that the coefficient of τi,j−h(A)v

is

[h, j − i− h, d− i− j]ηi,i+h(θi) (2.83)

for 0 ≤ h ≤ j − i. We now apply the right-hand side of (2.81) to τij(A)v. For the sum

on the right-hand side of (2.81), the action of each term on τij(A)v is computed using

(2.57). From this computation, one finds that the right-hand side of (2.81) applied to

τij(A)v is a linear combination of {τi,j−h(A)v}j−ih=0 such that the coefficient of τi,j−h(A)v
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is

ηh(θ0)

ϑ1ϑ2 · · ·ϑh

h−1∏
k=0

(ϑj−k − ϑi) (2.84)

for 0 ≤ h ≤ j − i. It remains to show that (2.83) is equal to (2.84) for 0 ≤ h ≤ j − i.

Let h be given. By (2.8) and Corollary 2.13.6, the scalar (2.83) is equal to

h−1∏
k=0

(θi − θd−i−k) (ϑj−k − ϑi)
ϑd−i−k − ϑi

. (2.85)

By (2.11) and since ϑ` = ϑd−`+1 for 1 ≤ ` ≤ h, the scalar (2.84) is equal to

h−1∏
k=0

(θ0 − θd−k) (ϑj−k − ϑi)
ϑd−k

. (2.86)

By Lemma 2.12.6 and since ϑ0 = 0,

θi − θd−i−k
ϑd−i−k − ϑi

=
θ0 − θd−k
ϑd−k

(0 ≤ k ≤ h− 1).

Using this we find that (2.85) is equal to (2.86). Therefore (2.83) is equal to (2.84) for

0 ≤ h ≤ j − i as desired. We have shown (2.81).

To get (2.82), apply (2.81) to Φ⇓ and use Corollary 2.14.2 along with the fact that

ϑ⇓k = ϑk for 1 ≤ k ≤ d. �
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Chapter 3

Tridiagonal systems and Uq(sl2)

This part of the thesis explores a connection between TD pairs and the quantum envelop-

ing algebra Uq(sl2). In this part, we focus on TD pairs of q-Racah type. For simplicity,

we also assume that K is algebraically closed. We define two linear transformations

K : V → V and B : V → V which act on the split decompositions in an attractive

way. Using Ψ, K,B we obtain two Uq(sl2)-module structures on V . For each of the

Uq(sl2)-module structures, we compute the action of the Casimir element on V . We

show that these two actions agree. Using this fact, we express Ψ as a rational function

of K±1, B±1 in several ways. Eliminating Ψ from these equations we find that K and B

are related by a quadratic equation.

3.1 The q-Racah case

We now focus our attention on a special class of TD systems said to have q-Racah type.

Recall from Section 2.11 that the expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(3.1)

are equal and independent of i for 2 ≤ i ≤ d − 1. This gives two recurrence relations

whose solutions can be written in closed form. There are several cases [10, Theorem 11.2].

The most general case is known as the q-Racah case [17, Section 1] and is described as
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follows.

We say that the TD system Φ has q-Racah type whenever there exist nonzero scalars

q, a, b ∈ K such that q4 6= 1 and

θi = aqd−2i + a−1q2i−d, θ∗i = bqd−2i + b−1q2i−d

for 0 ≤ i ≤ d.

Throughout the rest of this thesis, we make the following assumption.

Assumption 3.1.1. Assume that K is algebraically closed and that the TD system Φ

has q-Racah type. Thus, there exist nonzero scalars q, a, b ∈ K such that q4 6= 1 and

θi = aqd−2i + a−1q2i−d, θ∗i = bqd−2i + b−1q2i−d (3.2)

for 0 ≤ i ≤ d. To avoid trivialities, we also assume that the diameter d is at least three.

Lemma 3.1.2. With reference to Assumption 3.1.1, the following hold.

(i) Neither of a2, b2 is among q2d−2, q2d−4, . . . , q2−2d.

(ii) q2i 6= 1 for 1 ≤ i ≤ d.

Proof. By Definition 2.1.2 the {θi}di=0 are mutually distinct and the {θ∗i }di=0 are mutually

distinct. �

3.2 The linear transformations K,B

We continue to discuss the situation of Assumption 3.1.1. In this section, we introduce

two linear transformations K : V → V and B : V → V and discuss their actions on the

split decompositions.
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Definition 3.2.1. Define K ∈ End(V ) such that for 0 ≤ i ≤ d, Ui is the eigenspace of

K with eigenvalue qd−2i. In other words,

(K − qd−2iI)Ui = 0 (0 ≤ i ≤ d). (3.3)

Definition 3.2.2. Define B ∈ End(V ) such that for 0 ≤ i ≤ d, U⇓i is the eigenspace of

B with eigenvalue qd−2i. In other words,

(B − qd−2iI)U⇓i = 0 (0 ≤ i ≤ d). (3.4)

Observe that B = K⇓.

By construction each of K,B is invertible and diagonalizable on V .

Lemma 3.2.3. For 0 ≤ i ≤ d,

(B − qd−2iI)Ui ⊆ U0 + U1 + · · ·+ Ui−1, (3.5)

(K − qd−2iI)U⇓i ⊆ U⇓0 + U⇓1 + · · ·+ U⇓i−1. (3.6)

Proof. We first show (3.5). By Lemma 2.3.1, Ui ⊆ U⇓0 + U⇓1 + · · · + U⇓i . Use this fact

along with (3.4).

The proof of (3.6) is similar. �

Recall the raising maps R,R⇓ from Sections 2.2 and 2.3. We now express R,R⇓ in

terms of A,K,B.

Lemma 3.2.4. We have

R = A− aK − a−1K−1, (3.7)

R⇓ = A− a−1B − aB−1. (3.8)
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Proof. To obtain (3.7), observe that K =
∑d

i=0 q
d−2iFi and K−1 =

∑d
i=0 q

2i−dFi. The

result follows from this and Definition 2.2.10.

The proof of (3.8) is similar. �

We now recall some results concerning K and B.

Lemma 3.2.5. [18, Section 1.1]. Both

KRK−1 = q−2R, BR⇓B−1 = q−2R⇓. (3.9)

Proof. We first show the equation on the left in (3.9). Recall that for 0 ≤ i ≤ d, Ui is

an eigenspace for K with eigenvalue qd−2i. Use this fact along with (2.20).

The proof is similar for the equation on the right in (3.9). �

Lemma 3.2.6. [18, Section 1.1]. Both

qKA− q−1AK
q − q−1

= aK2 + a−1I,
qBA− q−1AB

q − q−1
= a−1B2 + aI. (3.10)

Proof. First we show the equation on the left in (3.10). By Lemma 3.2.5, qKR −

q−1RK = 0. In this equation, eliminate R using (3.7).

The proof is similar for the equation on the right in (3.10). �

We conclude this section by giving a result which relates R and R⇓. Combining (3.7),

(3.8) we obtain

R⇓ −R = aK + a−1K−1 − a−1B − aB−1. (3.11)
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3.3 The linear transformation ψ

We continue to discuss the situation of Assumption 3.1.1. In Section 2.10 we introduced

an element Ψ ∈ End(V ). For our present purpose it is convenient to use the normaliza-

tion ψ = (q− q−1)(qd− q−d)Ψ. We note that Lemma 2.10.5 can now be reformulated as

follows.

Lemma 3.3.1. The map ψ is the unique element of End(V ) such that both

ψR−Rψ = (q − q−1)(K −K−1) (3.12)

and ψKi = 0 for 0 ≤ i ≤ d/2.

Recall the decomposition of V given in Corollary 2.6.5 and consider the summand

τij(A)Ki. We describe the action of ψ on this summand. By (2.57), for v ∈ Ki,

ψτij(A)v = (qj−i − qi−j)(qd−i−j+1 − qi+j−d−1)τi,j−1(A)v. (3.13)

We also note that the following hold on τij(A)Ki:

Rψ = (qj−i − qi−j)(qd−i−j+1 − qi+j−d−1)I,

ψR = (qj−i+1 − qi−j−1)(qd−i−j − qi+j−d)I.

Lemma 3.3.2. With reference to Lemma 3.3.1,

KψK−1 = q2ψ, BψB−1 = q2ψ. (3.14)

Proof. Use Lemma 2.10.2 together with the definitions of K and B. �

Lemma 3.3.3. For 0 ≤ i ≤ d/2, Ki is the kernel of ψ acting on Ui.

Proof. Use Lemma 2.6.4 along with (3.13) and the fact that q2j 6= 1 for 1 ≤ j ≤ d. �
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3.4 The algebra Uq(sl2)

In this section we recall the quantum universal enveloping algebra Uq(sl2). See [20], [21]

for background information.

Definition 3.4.1. Let Uq(sl2) denote the K-algebra with generators e, f, k, k−1 and

relations

kk−1 = k−1k = 1,

kek−1 = q2e, kfk−1 = q−2f, (3.15)

ef − fe =
k − k−1

q − q−1
. (3.16)

We refer to e, f, k±1 as the Chevalley generators for Uq(sl2).

Following [20, p. 21], we define the normalized Casimir element Λ for Uq(sl2) by

Λ = (q − q−1)2ef + q−1k + qk−1, (3.17)

= (q − q−1)2fe+ qk + q−1k−1. (3.18)

By [20, Lemma 2.7], Λ is central in Uq(sl2).

Lemma 3.4.2. With reference to Definition 3.4.1, both

f 2e− (q2 + q−2)fef + ef 2 = −Λf, (3.19)

e2f − (q2 + q−2)efe+ fe2 = −Λe. (3.20)

Proof. We first prove (3.19). The left-hand side of (3.19) is equal to

−f(ef − fe)− (q − q−1)2fef + (ef − fe)f. (3.21)
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By (3.16), the element (3.21) is equal to

−f k − k
−1

q − q−1
− (q − q−1)2fef +

k − k−1

q − q−1
f.

Line (3.19) follows from this along with (3.15) and (3.18).

The proof is similar for (3.20). �

We now discuss the finite-dimensional modules for Uq(sl2). Recall the natural num-

bers N = {0, 1, 2, . . .} and the integers Z = {0,±1,±2, . . .}. For n ∈ Z define

[n]q =
qn − q−n

q − q−1
.

For n ∈ N define

[n]!q = [n]q[n− 1]q · · · [1]q,

where we interpret [0]!q = 1.

Lemma 3.4.3. [20, Theorem 2.6]. For n ∈ N and ε ∈ {1,−1}, there exists a Uq(sl2)-

module L(n, ε) with the following properties. L(n, ε) has a basis {vi}ni=0 such that

evi = ε[n+ 1− i]qvi−1 (1 ≤ i ≤ n), ev0 = 0, (3.22)

fvi = [i+ 1]qvi+1 (0 ≤ i ≤ n− 1), fvn = 0, (3.23)

kvi = εqn−2ivi (0 ≤ i ≤ n). (3.24)

The Uq(sl2)-module L(n, ε) is irreducible provided that q2i 6= 1 for 1 ≤ i ≤ n.

With reference to Lemma 3.4.3 we refer to ε as the type of L(n, ε).

Lemma 3.4.4. [20, Lemma 2.7]. With reference to Lemma 3.4.3, for n ∈ N and

ε ∈ {1,−1}, Λ acts on L(n, ε) as ε(qn+1 + q−n−1) times the identity.
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If q is not a root of unity, then the L(n, ε) (n ∈ N, ε ∈ {1,−1}) are the only finite-

dimensional irreducible Uq(sl2)-modules. If q is a root of unity, there are other types

of finite-dimensional irreducible Uq(sl2)-modules. See [20, Chapter 2] for a complete

classification. In our application, we will only be concerned with the finite-dimensional

irreducible Uq(sl2)-modules of type L(n, ε).

We now consider finite-dimensional Uq(sl2)-modules which are not necessarily irre-

ducible.

Definition 3.4.5. Let V denote a finite-dimensional Uq(sl2)-module. We say that V is

semisimple whenever it is a direct sum of irreducible Uq(sl2)-modules.

Definition 3.4.6. [20, Section 2.2]. Let V denote a finite-dimensional Uq(sl2)-module.

For λ ∈ K, let Vλ = {v ∈ V |kv = λv}. We call λ a weight of V whenever Vλ 6= 0. In this

case we call Vλ the weight space of V associated with λ.

Referring to Lemma 3.4.3, assume q2i 6= 1 for 1 ≤ i ≤ n. Observe that the weights of

L(n, ε) are εqn, εqn−2, . . . , εq−n. We note that for 0 ≤ i ≤ n, vi is a basis for the weight

space of L(n, ε) associated with the weight εqn−2i.

Definition 3.4.7. Let V denote a finite-dimensional Uq(sl2)-module. Let λ denote a

weight of V . By the highest weight space of V associated with λ, we mean the kernel of

the action of e on Vλ. We refer to λ as a highest weight of V whenever the corresponding

highest weight space is nonzero.

Referring to Lemma 3.4.3, assume q2i 6= 1 for 1 ≤ i ≤ n. We note that εqn is the

unique highest weight of L(n, ε). For L(n, ε), the highest weight space associated with

the weight εqn is equal to the weight space associated with εqn.
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Definition 3.4.8. Let V denote a finite-dimensional Uq(sl2)-module. For n ∈ N and

ε ∈ {1,−1}, consider the subspace of V spanned by the Uq(sl2)-submodules of V which

are isomorphic to L(n, ε). We call this subspace the homogeneous component of V

associated with L(n, ε).

3.5 A Uq(sl2)-module structure on V associated with

Φ

We now return to the situation of Assumption 3.1.1. Recall from Lemma 3.3.1 the

equation

ψR−Rψ = (q − q−1)(K −K−1). (3.25)

Recall from Lemma 3.2.5 and Lemma 3.3.2 that

KRK−1 = q−2R, KψK−1 = q2ψ. (3.26)

These relations are reminiscent of the defining relations for Uq(sl2). In this section we

use the above relations to obtain a Uq(sl2)-module structure on V . Then we will discuss

this Uq(sl2)-module structure from various points of view.

Lemma 3.5.1. With reference to Definition 3.4.1, there exists a Uq(sl2)-module struc-

ture on V for which the Chevalley generators act as follows:

element of Uq(sl2) e f k k−1

action on V (q − q−1)−1ψ (q − q−1)−1R K K−1

Proof. Use (3.25), (3.26), and Definition 3.4.1. �
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For the rest of this section, we will discuss the Uq(sl2)-module V from Lemma 3.5.1.

Recall the Casimir element Λ of Uq(sl2) from (3.17), (3.18).

Lemma 3.5.2. The action of Λ on V is equal to both

ψR + q−1K + qK−1, (3.27)

Rψ + qK + q−1K−1. (3.28)

Proof. Use (3.17), (3.18), and Lemma 3.5.1. �

Lemma 3.5.3. The action of Λ on V commutes with each of

ψ, R, K, A.

Proof. Since Λ is central in Uq(sl2), Λ commutes with each of e, f, k. So the action of

Λ on V commutes with each of ψ,R,K in view of Lemma 3.5.1. The action of Λ on V

commutes with A by (3.7). �

Lemma 3.5.4. The following equations hold on V :

R2ψ − (q2 + q−2)RψR + ψR2 = −(q − q−1)2ΛR, (3.29)

ψ2R− (q2 + q−2)ψRψ +Rψ2 = −(q − q−1)2Λψ. (3.30)

Proof. Use Lemma 3.4.2 and Lemma 3.5.1. �

Lemma 3.5.5. For 0 ≤ i ≤ d, Ui is the weight space of the Uq(sl2)-module V associated

with the weight qd−2i.

Proof. Recall from Definition 3.2.1 that Ui is an eigenspace of K with corresponding

eigenvalue qd−2i. The result follows. �
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Corollary 3.5.6. The weights of the Uq(sl2)-module V are qd, qd−2, . . . , q−d.

Lemma 3.5.7. For 0 ≤ i ≤ d/2, Ki is the highest weight space of the Uq(sl2)-module V

associated with the weight qd−2i.

Proof. Use Lemma 3.3.3 and Lemma 3.5.5. �

Lemma 3.5.8. Let 0 ≤ i ≤ d/2 and 0 6= v ∈ Ki. Then Mv is an irreducible Uq(sl2)-

submodule of V . The Uq(sl2)-module Mv is isomorphic to L(d− 2i, 1).

Proof. For 0 ≤ j ≤ d − 2i, let vj = γ−1j τi,i+j(A)v, where γj = (q − q−1)j[j]!q. By

Corollary 2.7.3, {vj}d−2ij=0 is a basis for Mv. By Lemma 2.2.11 and Lemma 2.6.4, Rvj =

(q − q−1)[j + 1]qvj+1 for 0 ≤ j ≤ d − 2i − 1 and Rvd−2i = 0. By (3.13), ψv0 = 0 and

ψvj = (q−q−1)[d−2i+1−j]qvj−1 for 1 ≤ j ≤ d−2i. By Lemma 2.6.4, Kvj = qd−2i−2jvj

for 0 ≤ j ≤ d−2i. The result follows from the above comments along with Lemma 3.4.3

and Lemma 3.5.1. �

Lemma 3.5.9. For 0 ≤ i ≤ d/2, MKi is a Uq(sl2)-submodule of V . Moreover MKi is

the homogeneous component of V associated with L(d− 2i, 1).

Proof. Use Lemma 2.7.4 and Lemma 3.5.8. �

Lemma 3.5.10. For 0 ≤ i ≤ d/2, MKi is an eigenspace for Λ with corresponding

eigenvalue qd−2i+1 + q2i−d−1.

Proof. By Lemma 3.1.2, the scalars {qd−2j+1 + q2j−d−1}bd/2cj=0 are mutually distinct. The

result follows from this along with Lemma 2.7.4, Lemma 3.4.4, and Lemma 3.5.9. �

Lemma 3.5.11. The Uq(sl2)-module V is semisimple. Let W denote an irreducible

Uq(sl2)-submodule of V . Then there exists an integer i (0 ≤ i ≤ d/2) such that W is

isomorphic to L(d− 2i, 1).
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Proof. Use Lemma 2.7.4, Lemma 3.5.8, and Lemma 3.5.9. �

3.6 A Uq(sl2)-module structure on V associated with

Φ⇓

We continue to discuss the situation of Assumption 3.1.1. In Section 3.5 we used Φ

to obtain a Uq(sl2)-module structure on V . In the present section, we consider the

corresponding Uq(sl2)-module structure on V associated with Φ⇓.

Recall from Corollary 2.14.2 that ψ⇓ = ψ. Applying Lemma 3.3.1 to Φ⇓ we obtain

ψR⇓ −R⇓ψ = (q − q−1)(B −B−1). (3.31)

Recall from Lemma 3.2.5 and Lemma 3.3.2 that

BψB−1 = q2ψ, BR⇓B−1 = q−2R⇓. (3.32)

Lemma 3.6.1. With reference to Definition 3.4.1, there exists a Uq(sl2)-module struc-

ture on V for which the Chevalley generators act as follows:

element of Uq(sl2) e f k k−1

action on V (q − q−1)−1ψ (q − q−1)−1R⇓ B B−1

Proof. Use (3.31), (3.32), and Definition 3.4.1. �

For the rest of this section, we will discuss the Uq(sl2)-module V from Lemma 3.6.1.

Recall the Casimir element Λ.

Lemma 3.6.2. The action of Λ on V is equal to both

ψR⇓ + q−1B + qB−1, (3.33)

R⇓ψ + qB + q−1B−1. (3.34)
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Lemma 3.6.3. The action of Λ on V commutes with each of

ψ, R⇓, B, A.

Lemma 3.6.4. The following equations hold on V :

(R⇓)2ψ − (q2 + q−2)R⇓ψR⇓ + ψ(R⇓)2 = −(q − q−1)2ΛR⇓, (3.35)

ψ2R⇓ − (q2 + q−2)ψR⇓ψ +R⇓ψ2 = −(q − q−1)2Λψ. (3.36)

Lemma 3.6.5. For 0 ≤ i ≤ d, U⇓i is the weight space of the Uq(sl2)-module V associated

with the weight qd−2i.

Corollary 3.6.6. The weights of the Uq(sl2)-module V are qd, qd−2, . . . , q−d.

Lemma 3.6.7. For 0 ≤ i ≤ d/2, Ki is the highest weight space of the Uq(sl2)-module V

associated with the weight qd−2i.

Lemma 3.6.8. Let 0 ≤ i ≤ d/2 and 0 6= v ∈ Ki. Then Mv is an irreducible Uq(sl2)-

submodule of V . The Uq(sl2)-module Mv is isomorphic to L(d− 2i, 1).

Lemma 3.6.9. For 0 ≤ i ≤ d/2, MKi is a Uq(sl2)-submodule of V . Moreover MKi is

the homogeneous component of V associated with L(d− 2i, 1).

Lemma 3.6.10. For 0 ≤ i ≤ d/2, MKi is an eigenspace for Λ with corresponding

eigenvalue qd−2i+1 + q2i−d−1.

Lemma 3.6.11. The Uq(sl2)-module V is semisimple. Let W denote an irreducible

Uq(sl2)-submodule of V . Then there exists an integer i (0 ≤ i ≤ d/2) such that W is

isomorphic to L(d− 2i, 1).
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Note 3.6.12. The paper [17] describes an action of Uq(ŝl2) on V . Roughly speaking,

Uq(ŝl2) is generated by two copies of Uq(sl2) that are glued together in a certain way

[5, p. 262]. Thus the action of Uq(ŝl2) on V induces two actions of Uq(sl2) on V . For

these actions the Chevalley generator e does not act as a scalar multiple of ψ [17, Lines

(28) and (30)]. Therefore the two Uq(sl2)-actions from [17] are not the same as the two

Uq(sl2)-actions from Lemma 3.5.1 and Lemma 3.6.1. As far as we know, the two Uq(sl2)-

actions from [17] are not directly related to the Uq(sl2)-actions from Lemma 3.5.1 and

Lemma 3.6.1.

3.7 How ψ,K±1, B±1 are related

We continue to discuss the situation of Assumption 3.1.1. In Sections 3.5 and 3.6 we

introduced two Uq(sl2)-module structures on V . In this section we compare these module

structures. From this comparison, we obtain several equations relating ψ,K±1, B±1.

Recall the Casimir element Λ of Uq(sl2) from Section 3.4.

Lemma 3.7.1. The following coincide:

(i) the action of Λ on V for the Uq(sl2)-module structure from Lemma 3.5.1,

(ii) the action of Λ on V for the Uq(sl2)-module structure from Lemma 3.6.1.

Proof. Use Lemma 2.7.4, Lemma 3.5.10, and Lemma 3.6.10. �

Proposition 3.7.2. The following coincide:

(I − aqψ)K, (I − a−1qψ)B, K(I − aq−1ψ), B(1− a−1q−1ψ).
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Moreover the following coincide:

(I − a−1q−1ψ)K−1, (I − aq−1ψ)B−1, K−1(I − a−1qψ), B−1(1− aqψ).

Proof. Consider the expression q−1 times (3.27) minus q times (3.28) minus q−1 times

(3.33) plus q times (3.34). We evaluate this expression in two ways. First, by Lemma

3.7.1 this expression is equal to zero. Second, eliminate R and R⇓ using (3.7) and (3.8)

and simplify the result using Lemma 3.3.2. By these comments,

(1− aqψ)K = (1− qa−1ψ)B. (3.37)

The remaining assertions follow from (3.37) and Lemma 3.3.2. �

Shortly we will write KB−1, K−1B, and their inverses in terms of ψ. In order to do

this, we will need that certain elements of End(V ) are invertible.

Lemma 3.7.3. Each of the following is invertible:

I − aqψ, I − a−1qψ, I − aq−1ψ, I − a−1q−1ψ. (3.38)

Their inverses are as follows:

(I − aqψ)−1 =
d∑
i=0

aiqiψi, (I − a−1qψ)−1 =
d∑
i=0

a−iqiψi, (3.39)

(I − aq−1ψ)−1 =
d∑
i=0

aiq−iψi, (I − a−1q−1ψ)−1 =
d∑
i=0

a−iq−iψi. (3.40)

Proof. Recall from Lemma 2.10.2 that ψd+1 = 0. �

Theorem 3.7.4. The following hold:

BK−1 =
I − aqψ
I − a−1qψ

, KB−1 =
I − a−1qψ
I − aqψ

, (3.41)

K−1B =
I − aq−1ψ
I − a−1q−1ψ

, B−1K =
I − a−1q−1ψ
I − aq−1ψ

. (3.42)

In (3.41), (3.42) the denominators are invertible by Lemma 3.7.3.
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Proof. Use Proposition 3.7.2 and Lemma 3.7.3. �

Lemma 3.7.5. The following mutually commute:

ψ, BK−1, KB−1, K−1B, B−1K.

Proof. By Theorem 3.7.4 each of the four expressions on the right is a polynomial in

ψ. �

Shortly we will give four ways to write ψ in terms of K,B. In order to do this, we

will need that certain elements of End(V ) are invertible.

Lemma 3.7.6. Each of

I −BK−1, I −KB−1, I −K−1B, I −B−1K (3.43)

sends Ui into U0 + U1 + · · ·+ Ui−1 for 0 ≤ i ≤ d. Moreover each of (3.43) is nilpotent.

Proof. We first consider I −BK−1. On Ui,

I −BK−1 = I − q2i−dB.

By this and Lemma 3.2.3, I −BK−1 sends Ui into U0 + U1 + · · ·+ Ui−1.

Since KB−1 and BK−1 are inverses, we see that I −KB−1 sends Ui into U0 + U1 +

· · ·+ Ui−1.

The proof is similar for I −K−1B and I −B−1K. �

Lemma 3.7.7. Each of the following is invertible:

aI − a−1BK−1, a−1I − aKB−1,

aI − a−1K−1B, a−1I − aB−1K.
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Proof. We show that aI − a−1BK−1 is invertible. Observe that

aI − a−1BK−1 = (a− a−1)I + a−1(I −BK−1).

Now aI − a−1BK−1 is invertible by Lemma 3.7.6 and the fact that a2 6= 1.

The remaining assertions are similarly proved. �

Theorem 3.7.8. The map ψ is equal to each of the following:

I −BK−1

q(aI − a−1BK−1)
,

I −KB−1

q(a−1I − aKB−1)
, (3.44)

q(I −K−1B)

aI − a−1K−1B
,

q(I −B−1K)

a−1I − aB−1K
. (3.45)

In (3.44), (3.45) the denominators are invertible by Lemma 3.7.7.

Proof. In each equation of Theorem 3.7.4, solve for ψ. �

Theorem 3.7.9. We have

aK2 − a−1q − aq−1

q − q−1
KB − aq − a−1q−1

q − q−1
BK + a−1B2 = 0. (3.46)

Proof. Equate the expression on the left in (3.44) and the expression on the right in

(3.45). For every term in the resulting equation, multiply on the left by B(a−1I−aB−1K)

and on the right by (aI − a−1BK−1)K. �

We mention a reformulation of Theorem 3.7.9.

Theorem 3.7.10. We have

aB−2 − a−1q − aq−1

q − q−1
K−1B−1 − aq − a−1q−1

q − q−1
B−1K−1 + a−1K−2 = 0. (3.47)

Proof. For every term in (3.46), multiply on the left by B−1K−1 and on the right by

K−1B−1. Simplify the result using Lemma 3.7.5. �
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Equations (3.46) and (3.47) can be put in the following attractive forms.

Lemma 3.7.11. The following equations hold:

q(K −B)(aK − a−1B) = q−1(aK − a−1B)(K −B), (3.48)

q(a−1K−1 − aB−1)(K−1 −B−1) = q−1(K−1 −B−1)(a−1K−1 − aB−1), (3.49)

q(I −K−1B)(aI − a−1BK−1) = q−1(aI − a−1K−1B)(I −BK−1), (3.50)

q(a−1I − aKB−1)(I −B−1K) = q−1(I −KB−1)(a−1I − aB−1K). (3.51)

Proof. To verify (3.48), multiply out each side and compare the result with (3.46).

Equation (3.49) is similarly verified using (3.47). To verify (3.50), multiply each term

in (3.48) on the left by K−1 and on the right by K−1. To verify (3.51), multiply each

term in (3.49) on the left by K and on the right by K. �

3.8 How R,K±1 and R⇓, B±1 are related

We continue to discuss the situation of Assumption 3.1.1. In Sections 3.5 and 3.6 we

displayed two Uq(sl2)-actions on V . A natural question is, can we write each of the

operators for one action in terms of the operators for the other action. In this section

we demonstrate that this can be done.

Recall from Corollary 2.14.2 that

ψ = ψ⇓.

We now give R⇓, B±1 in terms of ψ,R,K±1.
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Lemma 3.8.1. The following equations hold:

B = a2K + (1− a2)K
d∑
i=0

a−iq−iψi, (3.52)

B−1 = a−2K−1 + (1− a−2)K−1
d∑
i=0

aiqiψi, (3.53)

R⇓ = R + (a− a−1)
d∑
i=0

(a−iq−iK − aiqiK−1)ψi. (3.54)

Proof. To obtain (3.52) and (3.53), use Theorem 3.7.4 along with (3.39), (3.40), and the

fact that ψd+1 = 0. To obtain (3.54), use (3.11) along with (3.52) and (3.53). �

We now give R,K±1 in terms of ψ,R⇓, B±1.

Lemma 3.8.2. The following equations hold:

K = a−2B + (1− a−2)B
d∑
i=0

aiq−iψi, (3.55)

K−1 = a2B−1 + (1− a2)B−1
d∑
i=0

a−iqiψi, (3.56)

R = R⇓ + (a− a−1)
d∑
i=0

(a−iqiB−1 − aiq−iB)ψi. (3.57)

Proof. To obtain (3.55) and (3.56), use (3.52) and (3.53) along with Lemma 3.3.2. To

obtain (3.57), use (3.11) along with (3.55) and (3.56). �

3.9 How A,ψ are related

We continue to discuss the situation of Assumption 3.1.1. In this section we show how

A and ψ are related. In what follows we refer to the Λ-action from Lemma 3.7.1.
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Lemma 3.9.1. On V , we have

A2ψ − (q2 + q−2)AψA+ ψA2 + (q2 − q−2)2ψ

= −(q − q−1)2ΛA+ (a+ a−1)(q − q−1)2(q + q−1)I

(3.58)

and also

ψ2A− (q2 + q−2)ψAψ + Aψ2 = −(q − q−1)2Λψ. (3.59)

Proof. We first prove (3.58). Let L denote the expression on the left-hand side in (3.58).

In L, eliminate A using A = R + aK + a−1K−1. Simplify the result using (3.26) and

(3.29). This shows that L is equal to −(q − q−1)2ΛA plus Λ− ψR times

a(q2 − 1)K + a−1(q−2 − 1)K−1

plus Λ−Rψ times

a(q−2 − 1)K + a−1(q2 − 1)K−1.

In this expression, eliminate Λ − ψR and Λ − Rψ using Lemma 3.5.2. The resulting

expression for L is the right-hand side of (3.58).

The proof of (3.59) is similar. �
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