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abstract

In fusion energy systems (FES), high energy neutrons are emitted from the
plasma source - due to the D-T fusion reaction - enabling them to penetrate deep in
the materials surrounding the core. Energy is then deposited along the path of the
neutrons due to interactions with nuclides, resulting in - besides nuclear heating -
two main effects; radiation damage and transmutation. Radiation damage causes
changes in the macroscopic properties of the materials due to microscopic changes
that result from interactions of high energy neutrons with nuclides. Transmutation
is caused by the absorption of neutrons by nuclides in the medium and almost
always results in the production of radioactive nuclides. Such radioactive nuclides
are of importance to FES design and operation as they persist after the shutdown
of the facility due to their long half lives. Efforts are directed to quantify the
shutdown dose rate (SDR) that results from gamma emitting nuclides produced by
transmutation. Monte Carlo (MC) methods are favored over deterministic methods
for the simulation of particles transport in FES due to complexity of the models and
to reduce the uncertainties/errors of the predicted particle flux distributions due to
approximations. The rigorous 2-step method (R2S) relies on dedicated activation
calculations to predict the photon emission density distribution, and is widely used
for SDR quantification. It involves a neutron transport step, activation analysis to
obtain the photon emission density, and a photon transport step to calculate the
SDR.

It is often the case that neutrons suffer attenuation in traversing the medium from
the plasma source - due to interactions with nuclides - and that results in a steep
gradient in the neutron flux. Variance reduction (VR) tools have been developed
with the primary goal of pushing neutrons - simulated particles - to regions of
the phase-space that are of importance for the quantities under consideration in
order to reduce the uncertainty in the MC results. The recently developed Group-
wise Transmutation - Consistent Adjoint Driven Importance Sampling (GT-CADIS)
method provides a capability to obtain the photon emission density distribution
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as a function of the energy dependent group-wise neutron flux distribution via
linearization of the transmutation operator. Using the photon emission density it
is possible to overcome previous difficulties of the error propagation in the R2S
workflow. One primary concern with the R2S workflow is that only the contribution
of the photon transport step is considered as a measure of the uncertainty of the
calculated SDR, while the contribution from the neutron transport step remains
undefined. Previous methods have tried to tackle this issue but there was always
difficulty in obtaining the correlation of the neutron fluxes and that resulted in
implementing either impractical approximations or just calculating the upper and
lower bounds of the uncertainty of the SDR.

In this document, the R2S workflow has been investigated. First, issues related
to the neutron transport step and the uncertainty of the photon emission density
have been addressed. Second, a scheme was developed to propagate the statistical
uncertainty of the neutron transport step to the SDR. Starting with the neutron
transport step, a variation of the main R2S that aimed at increasing the resolution
while reducing the computational expenses was found to introduce systematic
errors that might undermine the gain in the computational cost. One of the diffi-
culties in propagating the neutron flux uncertainty to the photon emission density
is obtaining the correlation values between the neutron fluxes in different energy
groups and mesh voxels. By utilizing the GT method, an approximation to the
calculation of the correlation coefficients has been investigated building on the fact
that using group-wise transmutation the correlation terms needed were greatly
reduced. It was discovered that the correlation between the neutron fluxes in dif-
ferent energy groups is a function of the material composition. That facilitated
obtaining the needed correlation matrix and quantifying the uncertainty of the
photon emission density. A method to propagate the photon source uncertainty to
the SDR by random sampling was developed and was demonstrated to be efficient
on various types of numerical experiments as well as a production level problem.
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1 introduction

Many research efforts have been directed to harnessing fusion energy for commer-
cial and research purposes by testing many confinement and fuel cycle concepts.
The confinement concepts include inertial (laser, z-pinch, etc.) and magnetic (toka-
mak, stellarator, etc.) confinement. The fuel cycle includes many candidates that
utilize deuterium (D), tritium (T), and helium (He) such as theD−T ,D−D,D−He3,
etc. [1]. The magnetically confined tokamak and theD−T fuel cycle shows potential
as a practical way to pave the road for the first commercial power plant [2]. When D
and T nuclei are fused together under the harsh conditions inside the plasma core,
energy is released. Neutrons are emitted with energies as high as 14.1MeV and,
being neutral, result in deep penetration in materials present in the system, leading
to deposition of energy along their path and eventually absorption/leakage. Such
behavior affects the materials in the core - besides nuclear heating - in two ways;
radiation damage and transmutation.

Radiation damage is caused by the high energy particles from the plasma col-
liding as they traverse the medium causing microscopic defects in the structural
materials that could lead - over time - to macroscopic changes in the materials
properties, necessitating the replacement of some components. On the other hand,
transmutation happens when the neutron is absorbed by a nucleus leading to the
formation of an excited nucleus that might decay via different modes by emission
of different types of radiation.

Some of the transmutation interactions in the facility are utilized and controlled
for breeding the rare T used as fuel while others lead to the formation of radioac-
tive nuclei that decay by the emission of gamma radiation, persisting even after
shutdown due to their long half lives. This radiation can also cause damage to
biological tissues, so the access/handling of personnel to such "hot" components
inside the facility has to be controlled. Operation of FES like ITER [3] and FNSF
[4] requires a maintenance schedule to repair/replace components. The schedule
determines wait times to allow the dose rate levels from induced radioactivity in
the components to drop below the acceptable limits. An accurate assessment of the
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SDR is then necessary not only for the maintenance stage but also for the design of
shielding in the facility.

Many methodologies have been developed to obtain reliable SDR estimates by
simulating the transport and interaction of particles with the materials exposed to
the radiation environment. The MC method is a stochastic tool that simulates the
random walk of the particles in the medium. The basic idea is to follow a particle as
it traverses the medium and simulate its behavior according to the laws of physics.
Random number generators are used to select the state of the particle - energy,
direction, type of interaction, etc. - until the particle "history" is terminated. The
quantity of interest is then calculated as the mean of the contributions of many
such histories. As the method is stochastic, the calculated quantities of interest
have associated uncertainties that result from the spread in the distribution of the
contributions of all particles histories simulated.

Many codes exist (MCNP [5], FLUKA [6], etc.) that rely on the MC method and
provide useful means of simulating radiation transport in FES. Recent developments
[7] have introduced new capabilities by improving the geometry representation of
the problem allowing for more accurate modeling of design details and making
the simulation more robust. With its capabilities to simulate particle transport
in a continuous space-energy phase-space, MC has been widely used for SDR
quantification for FES. Deterministic tools [8] also exist that simulate the particles
behavior in the medium by solving a set of differential equations that represent
a mathematical model of the problem. Discretization is then necessary in energy,
space, angle, and time and for complex geometries like FES that could result in
approximation errors. Coupling of both methods [9] has proven to boost large scale
simulations and aid in obtaining high fidelity results.

FES are modular integrated engineering systems with many components that
serve different purposes; blankets for tritium breeding, shielding to protect the
life-time components such as the magnets, and other engineering components
inside the facility. Shielding in the facility - whether biological shield or to protect
components - results in a steep gradient in the neutron flux making it difficult to
obtain the desired neutron flux distribution - using MC methods - with acceptable
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statistical uncertainty especially at locations away from the plasma source or behind
shields. Numerous VR techniques are utilized with one goal in mind, pushing
simulated neutrons to regions of phase-space with high importance to the objective
(flux, detector response, etc.). Many tools have been utilized to accurately generate
the needed parameters for VR among which the most widely utilized concept is
that of "importance functions" [10].

One of the methods in use to quantify the SDR in FES is the rigorous 2-step (R2S)
[11] method. The workflow of R2S consists of a neutron transport step to obtain the
multi-group flux distribution over a mesh covering the problem geometry. Using
nuclear inventory analysis codes, the obtained neutron flux distribution is then used
to simulate nuclear transmutations and obtain the distribution of gamma emitting
radionuclides in the system. The nuclear density distribution of those radionuclides
defines the photon emission density. The photon emission density distribution
then defines a source for the transport code to be used in the photon transport step.
Using the resulting photon flux distribution, flux-to-dose-rate conversion factors
are then used to estimate the biological dose (SDR) at the detector(s) at different
times after shutdown. Whether deterministic or MC solutions of the transport
problem are used in the SDR calculation there exist many sources of uncertainties
that have to be taken into account; modeling approximations, discretization, cross
section data uncertainties, transport solution uncertainties, etc. Until recently, in
the R2S workflow only the contribution from the photon transport step has been
considered as a measure of the uncertainty of the calculated SDR assuming that
the neutron flux distribution is obtained with low uncertainty which would lead to
obtaining a photon source with low uncertainty, as a result [12].

While efforts have been directed towards developing new tools for more accurate
and reliable SDR calculations with a focus on the effect of nuclear data uncertainties
on the SDR, less effort focused on the effect of the other sources of uncertainties on
the SDR. Those tools are validated against standard benchmark problems and an
example of data uncertainty propagation in Boltzmann/Bateman coupled problems
can be found in literature [13]. Previous work [14] [15] tried to answer questions on
how the uncertainty of the neutron transport solution affects the calculated SDR.
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The method tried to propagate the statistical uncertainty from the MC transport
solution in the workflow using the adjoint flux and the relation of the SDR to the
photon source distribution. The main obstacle was the difficulty of calculating
the needed correlation terms between neutron fluxes in different regions of the
phase-space.

A different approach has been adopted in this work building on recent devel-
opment in the CADIS method [16] which will help mitigate the difficulty in the
propagation of the uncertainty from the neutron transport step to the calculated
SDR. The GT-CADIS method provides a tool to calculate the group-wise photon
emission density distribution as a function of the group-wise neutron flux distribu-
tion (space-energy distribution). Using group-wise transmutation under certain
conditions - which are widely satisfied for most materials and irradiation scenarios
in FES [16] - the photon emission density in different energy groups can be con-
structed in a form that makes utilization of error propagation techniques more
practical.

This document examines a new approach that overcomes the difficulties encoun-
tered with previous methods and obtains a reliable estimate of the contribution of
the transport solution uncertainty to the calculated SDR in the R2S workflow. This is
done over two steps: by propagating the statistical error through the transmutation
operator (from neutrons to the photon source), then by incorporating it into the
sampling of the photon source (from the photon source to the SDR). By dividing
the error propagation scheme into two steps, it provides a tool to validate new
practices in the SDR calculation and study the effect of different methodologies in
obtaining the neutron flux distribution on the final SDR uncertainty. The transport
solution uncertainty could affect the SDR in two possible ways; uncertainty of
the neutron transport and uncertainty of the photon transport. Building on the
newly developed GT-CADIS method, the photon emission density in every mesh
element (spatial mesh voxel and energy bin) could be obtained as a function of
the energy dependent neutron spectrum in the spatial mesh voxel. The photon
emission density as a function of the neutron spectrum as calculated using GT
method allows propagating the statistical uncertainty from the neutron transport
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step all the way to the SDR.
In R2S workflow, the statistical uncertainty of the calculated neutron flux distri-

bution - obtained using the MC method - in space-energy phase-space is given by
the code and can then be directly propagated to the calculated photon emission
density using the available error propagation techniques. One variation of the main
R2S workflow [17] focused on reducing the uncertainty of the obtained neutron
flux distributions while reducing also the number of nuclear inventory calculations
needed to obtain the photon emission density. The method is based on the idea
of scaling the photon emission density calculated on a coarse spatial mesh by the
total flux magnitudes over the desired fine mesh. Such method - as will be shown
in this work - is found to be equivalent to the main R2S workflow with the neutron
flux distribution replaced by a constructed flux distribution over the coarse and fine
meshes. That will affect the statistical uncertainty of the flux distribution and a
propagation of the statistical error is then paramount to judge the validity of such
practice which - up until now - is not practically possible.

As the statistical uncertainty of the neutron flux distribution is propagated
to the photon emission density as mentioned above, two possible ways could be
adopted to propagate the uncertainty to the SDR; implicit and explicit. The implicit
method involves editing the sampling routine of the transport code to sample
from the photon emission density with its associated standard deviation, treating
the emission density at each mesh element as a local distribution. The method
is developed to estimate the contribution of the photon source uncertainty to the
total uncertainty of the SDR and has been demonstrated to be efficient on various
numerical experiments.

In this work, the uncertainty of the photon source in the R2S workflow as a
result of the uncertainty of the neutron flux distribution will be studied. A method
will be developed to estimate the photon source uncertainty which will then be
propagated to the SDR. This document is divided into different chapters covering
background, theory, and future work. In chapter 2, a thorough literature review
of the neutron transport, MC tools, VR techniques, nuclear inventory analysis,
and SDR analysis will be presented. Chapter 3 will discuss the uncertainty of
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the neutron transport step in the R2S workflow and will introduce a new method
to calculate the uncertainty of the photon emission density. Chapter 4 will be
dedicated to the method of propagating the statistical uncertainty to the photon
emission density in a newly developed variation of the R2S workflow. In chapter 5,
a method to propagate the uncertainty of the photon source to the SDR via random
sampling will be discussed. Finally, in chapter 6 the newly developed methods will
be applied to a production-level problem; the uncertainty of the photon emission
density in one sector of the FNSF facility will be calculated as well as the total
uncertainty of the SDR.
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2 literature review

In the following sections, a brief background of many physics/computational con-
cepts that lie at the heart of SDR quantification will be introduced. Starting with the
physics of neutron interaction with matter, the different ways to solve the neutron
transport equation, and the transmutations of nuclei exposed to radiation and the
nuclear inventory analysis that is performed to quantify that. The computational
schemes currently in use to quantify the SDR will also be introduced followed by
a discussion of the need for more reliable estimations and what difficulties faces
achieving such goal.

2.1 Neutron Transport and the Boltzmann Equation

2.1.1 The Boltzmann Equation

The neutron transport equation is a balance equation that describes the behavior
of neutrons in the medium and can be used to obtain the particles distribution in
FES. In its simplest form, the Boltzmann equation can be written as in Eq. (2.1). It
is often the case that in FES the steady state equation is solved for the distribution
of particles in the facility, so the time derivative in the equation is set to zero.

[
1
v

∂

∂t
+ Ω̂.~∇+ Σ(~r,E)

]
ψ(~r, Ω̂,E, t) = q(~r, Ω̂,E, t)

+

∫∫
dE ′dΩ̂ ′Σs(~r,E ′ → E, Ω̂ ′.Ω̂)ψ(~r, Ω̂ ′,E ′, t) (2.1)

In Eq. (2.1), ψ(~r, Ω̂,E, t) is the angular particle flux defined as the number of
particles at point~r with energies in dE about energy E and moving in directions
contained within an infinitesimal cone of directions dΩ̂ about unit vector Ω̂ at time
t. Σ(~r,E) is the total macroscopic cross section which is defined as the probability
per unit path length that a collision between a particle with energy E and a nucleus
at point~r in the medium will happen. q(~r, Ω̂,E, t) encapsulates all the information
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about the external source of particles in the medium. The term Σs(~r,E ′ → E, Ω̂ ′.Ω̂)

is defined as the double differential scattering cross section which is the probability
per unit path length that a neutron with energy E’ and moving in direction Ω̂ ′ will
as a result of a scattering collision at point~r emerge with energy in dE about E and
direction in dΩ̂ about unit vector Ω̂.

2.1.2 Adjoint Neutron Transport

The steady state transport equation can be written in operator form as in Eq. (2.2a),

Hψ(~r, Ω̂,E) = q(~r, Ω̂,E) (2.2a)

where the transport operator H is defined as in Eq. (2.2b),

H = Ω̂.~∇+ Σ(~r,E) −
∫∫
dE ′dΩ̂ ′Σs(~r,E ′ → E, Ω̂ ′.Ω̂) (2.2b)

Mathematically, the adjoint problem could be defined as in Eq. (2.3) where 〈.〉 de-
notes an inner product, integration over all independent variables (~r, Ω̂,E). Eq. (2.3)
yields the adjoint form of the transport equation given in Eq. (2.4) and the adjoint
flux ψ+(~r, Ω̂,E) is a quantity that has wide application in the modeling/simulation
of FES. The adjoint flux is usually used in MC VR - using the detector response
as a localized adjoint source - and it has the physical meaning of the importance
of different regions in the space-energy phase-space to the SDR at the detector
location [18].

〈
ψ+(~r, Ω̂,E),Hψ(~r, Ω̂,E)

〉
=
〈
H+ψ+(~r, Ω̂,E),ψ(~r, Ω̂,E)

〉
(2.3)

[
−Ω̂.~∇+ Σ(~r,E)

]
ψ+(~r, Ω̂,E) = q+(~r, Ω̂,E)

+

∫∫
dE ′dΩ̂ ′Σs(~r,E→ E ′, Ω̂.Ω̂ ′)ψ+(~r, Ω̂ ′,E ′) (2.4)
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The physical meaning of the adjoint flux could be shown by an example problem.
Assume there is a detector at point~rd with a response function defined as σd(~r,E),
then the detector response R could be defined as,

R =
〈
ψ(~r, Ω̂,E),σd(~r,E)δ(~r−~rd)

〉
(2.5)

and by defining the adjoint problem using the detector response function as the
adjoint source we end up with,

H+ψ+(~r, Ω̂,E) = q+(~r, Ω̂,E) = σd(~r,E)δ(~r−~rd) (2.6)

and using equations (2.2a) , (2.3), and (2.5) ,

〈
ψ+(~r, Ω̂,E),q(~r, Ω̂,E)

〉
=
〈
q+(~r, Ω̂,E),ψ(~r, Ω̂,E)

〉
=
〈
σd(~r,E)δ(~r−~rd),ψ(~r, Ω̂,E)

〉
= R (2.7)

and from this result it can be shown that the detector response, R = 〈ψ+,q〉 is just
the contribution of the source q weighted by the adjoint flux ψ+.

2.1.3 Deterministic Neutron Transport

The term "deterministic" is used in contrast to "stochastic" when discussing solu-
tions to the transport equation. Deterministic solutions of the transport equation
involve numerical methods that seek solution to the equation by means of dis-
cretization in space, energy, angle, etc. The energy discretization is achieved by
dividing the whole energy range into intervals of custom width and integrating the
transport equation (Eq. (2.1)) over different group ranges. It builds on the concept
of separation of energy and space of the angular flux as shown in Eq. (2.8)

ψ(~r, Ω̂,E) = ψg(~r, Ω̂)f(E) , Eg 6 E 6 Eg−1 (2.8)
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where the energy index, g, increases as the neutron energy decreases and the
spectral energy function f(E) is normalized according to Eq. (2.9).

ψg(~r, Ω̂) =

∫Eg−1

Eg

dEψ(~r, Ω̂,E) =
∫Eg−1

Eg

dEψg(~r, Ω̂)f(E) = ψg(~r, Ω̂)

∫Eg−1

Eg

dEf(E)

(2.9)
Applying discretization in energy to the steady state form of Eq. (2.1) yields,

[
Ω̂.~∇+ Σg(~r)

]
ψg(~r, Ω̂) = qg(~r, Ω̂) +

G∑
g ′=0

∫
Ω̂ ′
dΩ̂ ′Σsg ′→g(~r, Ω̂ ′.Ω̂)ψg ′(~r, Ω̂ ′)

(2.10)
where ψg(~r, Ω̂) is group g angular flux, Σg(~r) is group g macroscopic cross section
and is given by Eq. (2.11), qg(~r, Ω̂) is the angular source strength of the emitted
neutrons in group g, and Σsg ′→g(~r, Ω̂ ′.Ω̂) is the macroscopic scattering cross section
from group g’ to group g.

Σg(~r) =

∫Eg−1
Eg

dEΣ(~r,E)ψ(~r, Ω̂,E)∫Eg−1
Eg

dEψ(~r, Ω̂,E)
(2.11)

Numerous methods build on the energy discretization of the transport equation
and use finite difference techniques to achieve discretization in space to relate the
flux in different mesh elements. The discrete ordinates, SN, method solves the
discretized multi-group transport equation along certain directions that form a
quadrature set.

The method is suitable to obtain quick estimates of the flux distribution - at
the cost of accuracy due to truncation and discretization - which are often used
in hybrid methods (MC/deterministic) to estimate the needed parameters for VR.
The method uses large computing resources due to the need to store vast amounts
of data - cross sections and angular multi-group fluxes for each ordinate for each
mesh element - at each iteration step. One of the limitations of this method is that
it is ill fitted for situations where streaming plays a large role. Ray effects which
are just high flux values along certain discrete directions near voids and streaming
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might not be well represented if the streaming direction is not well aligned with an
angle of the quadrature set. All of those limitations make it hard for deterministic
methods to find wide applications in SDR calculation in FES, so stochastic methods
are considered more suitable for such applications.

2.1.4 Monte Carlo Neutron Transport

With the ability of continuous treatment of the transport equation independent
variables (space & energy), MC methods provide a more convenient tool - compared
to deterministic methods - to model FES. MC codes such as MCNP use a number,
N, of particle histories to simulate physical particles as they traverse the medium.
MCNP uses a pseudo random number generator to randomly select the state of
the particle along its path to populate the history. A history starts by randomly
sampling the particle from a given source distribution; using random numbers
to select the position, direction, energy. Random numbers are then generated
to sample the distance to the next collision, the type of nuclides, and the type
of collision. Histories are terminated when a particle is absorbed or escapes the
medium. That avoids the systematic error introduced when simulating FES using
deterministic methods such as the discretization of energy, space, and angle.

MCNP calculates the contribution of all histories simulated to the quantities of
interest and that results in a probability density function (PDF). Quantities such as
fluxes, currents, reaction rates, etc. are tallied over the geometry and reported by
the code as the mean of the contribution of the N histories as given by Eq. (2.12a).
The stochastic nature of the simulation process results in a statistical uncertainty
- which can be calculated from the generated PDF - of the calculated quantities
which is used as a measure of the accuracy of the obtained results. A relative error
(R) - which is defined as in Eq. (2.12b), where σ(x̂) is the standard deviation of the
quantity x̂, is one such measure.

x̂ =
1
N

N∑
i=1

xi (2.12a)
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R =
σ(x̂)

x̂
(2.12b)

2.2 Activation and Nuclear Inventory Analysis

In FES, materials are exposed to radiation either from the plasma itself (alpha
particles, neutrons, etc.) or from the products of radiation interaction with other
nuclides in the facility. The main effect that is of interest for SDR analysis of
irradiation in FES is transmutation. Transmutation occurs when a nuclide absorbs
a neutron forming a compound nucleus that decays by the emission of subatomic
particles. Most of the produced nuclides are radioactive that persist even after
shutdown of the facility due to their long half lives. The concentration of various
nuclides in the facility is affected by transmutation and decay processes and while
the former is only relevant during operation, the latter is of importance during
operation and after shutdown and is the source of SDR. Mathematical models
have been developed to calculate the inventory of various nuclides and dedicated
activation analysis codes (such as ALARA [19], FISPACT [20], etc.) obtain the
distribution of nuclides in the facility at different time steps by solving such models.

2.2.1 The Bateman Equation

The most famous mathematical model to solve for the concentration of nuclides in
a decay chain was developed by Bateman [21] in 1910 and since then it has been
expanded to include other sources of production of various nuclides in the chain
such as irradiation. Consider a linear decay chain, N1 → N2 → ... → Nn−1 →
..., then the concentration of different nuclides can be described by a system of
differential equations as shown in Eq. (2.13). By applying an integral transform and
after some algebraic manipulations, Bateman derived the solution of the system
of differential equations for the concentration of nuclides, at time = t, as shown in
Eq. (2.14), where Noi and λi are the initial concentration and the decay constant of
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nuclide Ni, respectively.

dN1

dt
= −λ1N1 , dN2

dt
= λ1N1 − λ2N2 , ... ,

dNn−1

dt
= λn−2Nn−2 − λn−1Nn−1 , ... (2.13)

N1 = No1 e
−λ1t , N2 =

λ1

λ2 − λ1
No1 e

−λ1t +

[
λ1

λ1 − λ2
No1 +No2

]
e−λ2t , ...

(2.14)

2.2.2 The Transmutation Mathematical Model

The Bateman mathematical model can be extended to include production/destruc-
tion of nuclides in a radiation field. The production rate per nucleus, PTi→j, of
nuclide j due to transmutation of nuclide i in a radiation field can be expressed as a
function of an energy dependent production microscopic cross section, σi→j(~r,E),
and the neutron flux, φ(~r,E), as in Eq. (2.15a). The other pathway by which nuclide
j could be produced from nuclide i is by radioactive decay, PDi→j = λi→j with λi→j
being the decay constant. The total production rate per nucleus of nuclide j from
nuclide i is shown in Eq. (2.15b).

PTi→j =

∫
dEσi→j(~r,E)φ(~r,E) (2.15a)

PTotali→j = PTi→j + P
D
i→j (2.15b)

The same procedure could then be followed as in the derivation of Bateman
equations by writing the balance equations of all nuclides in the medium. The
balance equations could be written in a matrix form using a transfer matrix, A, and
a vector of nuclides concentrations, ~N(~r, t). The elements of the matrix along the
diagonal (i,i) being the destruction rates of nuclide i and the off-diagonal elements
(i,j) being the production of nuclide i from nuclide j. The rate of change of ~N(~r, t)
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as a result of both radioactive decay and transmutation in a radiation field is given
by Eq. (2.16a) and a solution is given in Eq. (2.16b). In FES, it is often the case that
as a result of the complex irradiation scenario a large number of nuclides will be
created due to irradiation and the production/destruction pathways will form a
complex system of balance equations and in turn a large, and possibly sparse, A.
Activation codes focus on utilizing numerical methods to solve such systems.

∂

∂t
~N(~r, t) = A~N(~r, t) (2.16a)

~N(~r, t) = ~N(~r, 0)eAt (2.16b)

2.3 Shutdown Dose Rate Calculation

As mentioned in the introduction, a key point in the design/operation of FES is the
quantification of SDR for hands-on maintenance around irradiated components in
the facility. Fully comprehensive computation of SDR requires - in general - three
steps; neutron transport, activation, and photon transport. The neutron transport
step calculates the neutron energy dependent flux distribution in the facility and it
can be obtained using either deterministic or stochastic tools as discussed before.
The neutron flux is then used to calculate the distribution of gamma emitting nu-
clides at different times after shutdown. The obtained distribution is then used and
a photon transport calculation is performed to obtain the photon flux distribution
at the points of interest. Flux-to-dose-rate conversion factors such as ICRP− 74 [22]
are then used to estimate the SDR. In this section two procedures that have been
developed, to-date, to estimate the SDR are discussed: the Direct 1-Step (D1S) [23]
[24] method and the Rigorous 2-Step (R2S) [11] method.

2.3.1 Direct 1-Step (D1S) Method

The method was initially developed to overcome the difficulty of using deterministic
methods, like SN method, in modeling complex geometries, such as ITER, as it
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introduced high uncertainties due to approximations [23]. The method was also
developed to provide a tool to obtain a better spatial resolution of the photon
source distribution as the photon transport is performed - in one step alongside
neutron transport - at the locations of emission of photons. As MC codes such as
MCNP calculates the prompt gamma production from (n,γ) reactions, it is possible
to modify the code to produce decay gamma and as a result both neutron and
photon transport calculations could be performed in one step. Modification to the
nuclear data libraries were introduced by replacing the prompt gamma reaction
such as the cross section and spectrum by those of reactions producing nuclides
that decay by gamma emission. Based on the irradiation scenario, the ratio of the
actual contribution to the SDR of the production rates calculated by the code could
then be obtained and applied to the contribution of all the nuclides of interest.

The concept of the method is presented by Eq. (2.17) where qi(~r,Ep) is the
photon emission density from nuclide i at energy Ep, σj→i(~r,Ep,En) is the pro-
duction rate of nuclide i from nuclide j due to neutron interaction at energy En.
Also, the modified cross section contains information about the decay constant and
branching ratio of the nuclide producing the photon. The main challenge with
the method is the production of such modified cross sections for all the isotopes
in the problem. The method has been applied to complex geometries as in ITER
and JET [25]. The method is fast as both the neutron and photon transport are
performed in one step and also the method provides high spatial resolution of
the photon emission density as photons are emitted at locations of production.
One disadvantage of the method lies in the fact that it is problem dependent as
pre-analysis has to be done to determine some relevant parameters in relation to
the contribution of activated nuclides to the SDR.

qi(~r,Ep) =
∫
En
σj→i(~r,Ep,En)φ(~r,En)dEn (2.17)
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2.3.2 Rigorous 2-Step (R2S) Method

Unlike the D1S method, the R2S method involves two separate transport steps;
neutron and photon. First, neutron transport is performed and the distribution
of neutrons is obtained - as a function of space and energy - in the geometry
cells or over a superimposed mesh. The neutron flux distribution is then used
as an input for dedicated activation and nuclear inventory codes that perform
analyses to quantify the transmutation of the materials in the problem domain.
The distribution of the nuclides decaying by gamma emission is then obtained
and is used as a source definition for the following photon transport step. Photon
transport is then performed and the flux distribution - as a function of space and
energy - is obtained at different locations of interest in the problem geometry. Flux-
to-dose-rate conversion factors [22] are then used to estimate the SDR at those
locations. The R2S workflow will be used throughout this work.

The R2S method has been through several developments all aiming at a more
efficient utilization of computing resources and a higher fidelity of the obtained
results. While they all agree on the activation and photon transport steps, they
differ based on how the neutron transport step is performed. With the cell-based
R2S [11], the multi-group neutron flux distribution is obtained for all non-void cells
in the problem geometry and the resolution of the flux is then governed by the size
of the different cells that the geometry is decomposed into. Using MCNP meshtally
capabilities, in the mesh-coupled R2S method [26] the neutron flux distribution is
obtained over a mesh laid on the problem geometry and the resolution is then a
function of the size of the mesh voxels. Such method allows controlling the size of
the mesh and the resolution without the need to make changes to the model itself.

To achieve a more efficient use of computing resources by means of reducing
the number of activation calculations performed, the R2Smesh [17] method utilizes
a split of the neutron transport step. The neutron flux spectra are obtained over a
coarse mesh and are used for activation calculations. The obtained photon source
over the coarse mesh is then scaled to the desired fine mesh by the total neutron
flux over the fine mesh. The method has been applied to complex geometries as in
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ITER and JET [25] and was found to be in good agreement with experimental data.

2.4 Monte Carlo Variance Reduction

In FES the objective of many materials in the facility is to protect the life-time
components, such as the magnets, or to help breed the rare fuel, such as tritium (T).
In both cases the result is a steep gradient in the neutron flux across regions that
contain shielding or breeding materials. As a result of the steep gradient in the flux
not all particles will reach regions behind shielding materials and by analogy, not
all simulated histories in MC contribute to tallies behind shielding materials. The
distribution of tally scores from all histories can be assumed as shown in Fig. (2.1)
with g(x) being the distribution of scores of histories contributing to the calculated
tally and x̄ is the mean of histories scores.

A fraction of histories, c on Fig. (2.1), will not contribute - contribution is zero
- to the quantity being evaluated - such as a flux behind a thick shield - and that
might increase the relative error of the tally. That increase in the relative error could
be related to a high standard deviation due to the fact that small fraction of histories
score and contribute to the tally resulting in a spread in the distribution of scores.
It could also be related to a low mean of the calculated tally if a large fraction of
histories, c, didn’t score resulting in a lower mean than expected. A figure of merit
(FOM) is defined as given in Eq. (2.18) where σ2(x̂) is the variance of the calculated
quantity x̂ and T is the computer time spent in processing all histories.

Figure 2.1: Distribution of Tally Scores [8]
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FOM =
1

σ2(x̂)T
(2.18)

2.4.1 Non-Analog Monte Carlo

VR methods aim at increasing the FOM of the calculated tallies and the main
focus of the different VR techniques fall under three categories; source, transport
(Russian roulette, splitting, exponential transform, etc.), and collision (implicit
capture, forced collision, etc.) biasing. Applying VR techniques will affect both
terms contributing to the FOM, the variance of the tally, σ2(x̂), and the time spent in
tracking particles, T . In source biasing, the source PDF is biased such that particles
are being sampled more frequently in regions of the phase-space that are important
to the objective. To ensure that no systematic bias is being introduced and that
particles weights in the problem are conserved, a statistical weight is applied to the
modified PDF as given by Eq. (2.19). In the equation, W is a particle weight and P
is sampling frequency.

WunbiasedPunbiased =WbiasedPbiased. (2.19)

The transport biasing - splitting/roulette - of particles is controlled by means
of weight windows (WW). WWs are range of weights, upper and lower bounds
on the weight of the particle in different regions of the space-energy phase-space
such that particles are split or the Russian roulette game performed - to terminate
histories - when the weight of the particle entering a region is outside the range.
Particles histories are split when moving to a region of higher importance - weight
above the upper bound - or terminated via Russian roulette when moving to a
region of lower importance - weight below the lower bound. In case of splitting,
the particles weights are adjusted with a proper reduction of the weight of each
history. As a result, MC codes will spend more time tracking histories but on the
other hand having more histories in an important region increases the chance of
scoring to tallies in that region and reduce the spread in the scores. The overall
effect is an increase in T and a decrease in σ2(x̂) and with proper implementation,
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the combined effect could be an increase in the FOM.

2.4.2 GT-CADIS

The photon emission density that results from transmutation/decay of nuclides
exposed to neutrons could be expressed in integral form as a function of the energy
dependent neutron flux as in Eq. (2.20). A new method, Group-wise Transmutation
- Consistent Adjoint Driven Importance Sampling (GT-CADIS) [16], provides the
conditions under which a solution for the transformation function, T , in Eq. (2.20)
can be obtained. Such a solution can be found given that some criteria are satisfied
which facilitate introducing some approximations to the activation analysis. The
photon source distribution could be obtained if the distribution of the nuclides
emitting photons is known. By adopting the concept of linear transmutation chains,
the photon source distribution can be expressed as a sum of the contribution from
the last nuclide in each chain as shown in Eq. (2.21) where λc,ic is the decay constant,
bc,ic(E

p) is the branching ratio, and Nc,ic(~r, ttot) is the concentration of the last
nuclide, ic, in chain c at point~r and time ttot.

q(~r,Ep) =
∫
En
T(~r,Ep,En)φ(~r,En)dEn (2.20)

q(~r,Ep, ttot) =
∑
c

λc,icbc,ic(E
p)Nc,ic(~r, ttot) (2.21)

Eq. (2.21) can be expressed in a form similar to Eq. (2.20) so that a solution for
T could be obtained. By decomposing the nuclide concentration as a function of
time, a further simplified expression can be found. As each nuclide concentration
is calculated at time = ttot that could be expressed as an irradiation/decay up to
time = tirr and then only decay in the absence of any transmutation after shutdown
from time = tirr to time = ttot − tirr = tdec. If the concentrations of nuclides are
obtained at the end of irradiation then it can be obtained at any time following the
shutdown using the laws of radioactive decay. Such expression is shown in Eq.
(2.22) with the quantity Nc,j(~r, tirr)Bc,ic,j(tdec) representing the rate of production
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of nuclide ic from nuclide j via chain c after a decay time = tdec. An expression
relating the nuclide concentration at tirr to the neutron flux distribution is shown
in Eq. (2.23) where Uc,i(~r,En, tirr) is a function that is defined by the equation.

Nc,ic(~r, ttot) = Nc,ic(~r, tirr)e−dc,ictdec +

ic−1∑
j=1

Nc,j(~r, tirr)Bc,ic,j(tdec) (2.22)

Nc,i(~r, tirr) =
∫
En
Uc,i(~r,En, tirr)φ(~r,En)dEn (2.23)

The GT-CADIS method showed that under certain criteria, called the Single
Neutron Interaction and Low Burnup (SNILB), a solution to T can be found. Under
such criteria it is assumed that the only flux-dependent pathway is from the parent
to the first daughter in the chain and the production of the other nuclides in the
chain can be assumed to be flux independent. The low burnup condition ensures
that the concentrations of the other nuclides in the chain are not dependent at
any time on the flux but only on the decay process of higher nuclides in the chain.
Violation methods have been also provided to be used when the SNILB criteria are
not met. It has also been shown that T is independent of the flux magnitude and
is only a function of the irradiation scenario and the material composition. The
T value could be calculated for each unique material composition in the problem
using an arbitrary neutron spectrum that allows all reaction chains to be populated
such that the SNILB criteria are satisfied.

2.5 Statistical Uncertainty of Shutdown Dose Rate

2.5.1 Introduction

FES like ITER, DEMO [27], and FNSF will produce neutron fluxes at energies that
go far beyond anything so far encountered in nuclear technology. This will put very
challenging demands on the design especially the selection of construction materi-
als and it will necessitate that a high-quality simulation of neutronic processes be
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performed for a successful development of a fusion device. A good understanding
of biases and uncertainties on FES calculations is essential for assessing safety
features and design margins. That results in an increasing demand for best estimate
predictions to be provided with their confidence bounds, leading to the definition
of several benchmarks for acquiring a realistic estimation of uncertainties to judge
the reliability of the simulation results. As mentioned in the introduction, biases
are induced by many sources such as modeling approximations (geometry simplifi-
cation, spatial discretization), nuclear cross section data uncertainties, transport
solution uncertainties, etc. In this section, the main sources of SDR uncertainties
will be discussed as well as some methods in use for quantification.

2.5.2 Sources of SDR Uncertainty

2.5.2.1 Nuclear Cross Section Data Uncertainties

Whether evaluated through experimental methods or using dedicated codes, the
importance of nuclear cross sections variance-covariance data rests on the proposi-
tion that there would be little sense in evaluating nuclear cross sections without
the corresponding information on how well the values are known. Unless integral
experimental results are available, without covariance files there will be no way to
estimate the accuracy of calculated results using nuclear data. While nuclear cross
sections covariance data are obtained using experimental methods, it is impractical
to require experiments to validate all the calculated quantities - such as the SDR -
using nuclear data especially those related to FES either in the design or operation
phase. In such situation, covariance data are used to assess the reliability of the ob-
tained results based on the uncertainty of the cross section data. In SDR workflows
the neutron flux is calculated by simulating the physical processes in the medium
which is quantified using nuclear data, so macroscopic neutronic calculations are
related to microscopic nuclear data and is affected by any uncertainties in the data.

The obtained neutron flux distribution is used to collapse cross section data and
calculate nuclear number densities of nuclides in the medium especially those emit-
ting gamma through decay processes. It can be seen that an uncertainty in a cross
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section value could affect the flux and the photon source distribution which is used
to perform photon transport and quantify the SDR. Fusion shielding benchmarks
are generally used to test design codes and nuclear data for fusion devices. In
general, the nuclear data file for a given isotope or element, is created on the basis
of theoretical nuclear model calculations and microscopic measurements, with
eventually some adjustments due to a restricted number of integral measurements.
Few methods exist to quantify the uncertainty in the SDR due to nuclear data
uncertainty such as TMC [28] [29], GRS [29], etc.

2.5.2.2 Monte Carlo Statistical Uncertainty

In using the R2S workflow to quantify the SDR, MC methods are often used for neu-
tron and photon transport calculations. As shown before, MC evaluates the mean
values of the quantities of interested by simulating the random walk of particles in
the medium and such mean values have statistical uncertainties associated with
them. In R2S, it is often the case that the uncertainty of the calculated SDR contains
only the statistical uncertainty of the last MC transport step, photon transport. As
the neutron flux distribution calculated in the first step is used to quantify the
photon source distribution that is used in the second step, the final uncertainty
of the SDR obtained based only on that of the second step is expected to be un-
derestimated. As the activation model is non-linear, these uncertainties can be
compounded in time because of the nature of transmutation and decay calculations.
The total uncertainty of the SDR can be thought of having two contributing terms;
neutron transport uncertainty and photon transport uncertainty as given by Eq.
(2.24) [12].

σ2
SDR,Total = σ

2
SDR,Neutron + σ2

SDR,Photon (2.24)
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2.5.3 Methods in Use for Uncertainty Propagation

2.5.3.1 Brute Force Method

The simplest and costly technique to quantify the total uncertainty in the SDR due
to both the neutron and photon transport steps is the brute force. Multiple clones of
the whole problem (neutron transport, activation, photon transport) with different
inputs (different random number seeds in the transport steps) are run and the
sample standard deviation of the obtained SDR is computed and taken to be the
total uncertainty of that result as demonstrated in Fig. (2.2). The technique needs
large computing resources and it is often the case that many such clones are needed
to ensure statistical quality of the obtained uncertainty.

Figure 2.2: Uncertainty Quantification: Brute Force Method [30]

2.5.3.2 Adjoint Based Method

The MS-CADIS [14] method was extended [15] to estimate the contribution of the
neutron transport step uncertainty to the calculated SDR uncertainty by seeking
an adjoint neutron source that lead to an expression of the SDR as given by Eq.
(2.25) where q+

n,i is the adjoint neutron source in mesh element i. Using error
propagation techniques, the uncertainty of the SDR is then given by Eq. (2.26)
where ρj,l is the correlation between fluxes in mesh elements j and l. j and l are
indices for mesh elements designated by space and energy (x,y,z,E). The correlation
coefficients between adjacent elements are expected to be > 0 while it diminishes
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for elements farther away apart. Because of the difficulty of obtaining correlation
coefficients between all elements in the space-energy phase-space, the upper and
lower bounds are only estimated using this method by setting all values of ρj,l to 1
and 0, respectively. The upper and lower bounds are given in Eq. (2.27).

SDR =
∑
i

φn,iq
+
n,i (2.25)

σ2
SDR,Neutron =

∑
i

(
∂SDR

∂φn,i
)2(σφn,i)

2

+ 2
∑
j<l

(
∂SDR

∂φn,j
)(σφn,j)(

∂SDR

∂φn,l
)(σφn,l)ρj,l (2.26)

(σLowerSDR,Neutron)
2 =

∑
i

(q+
n,i)

2(σφn,i)
2 , σUpperSDR,Neutron =

∑
i

(q+
n,i)(σφn,i) (2.27)

2.5.3.3 On-the-Fly Method

A new method [30] has been recently proposed to overcome the difficulty - as
mentioned in the previous subsection - of calculating the correlation coefficients by
means of substituting for the adjoint terms by other quantities that can be calculated
using MC codes while performing the transport calculations. The SDR is considered
as the summation over the contribution of all mesh elements as given by Eq. (2.28).
The SDRi from a mesh element i is just the photon source strength at that element,
qp,i, weighted by the importance of the contribution of that element to the SDR
which is quantified by the adjoint flux, φ+

p,i, obtained using the response function
at the detector as the adjoint source. Using the error propagation formula with Eq.
(2.28) we end up with the formula in Eq. (2.29)

SDR =
∑
i

SDRi =
∑
i

qp,iφ
+
p,i (2.28)
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σ2
SDR,Neutron =

∑
i

(φ+
p,i)

2(σqp,i)
2 + 2

∑
j<l

(φ+
p,j)(σqp,j)(φ

+
p,l)(σqp,l)ρj,l (2.29)

As the photon source strength in mesh element i, qp,i, is proportional to the
neutron reaction rate, Rn,i, then by multiplying and dividing Eq. (2.29) by the
source strength, qp,i, and substituting for

σqp,i
qp,i

by
σRn,i
Rn,i

we end up with Eq. (2.30).
Rn,i is the neutron reaction rate in mesh element i calculated using MCNP and σRn,i

is the statistical uncertainty. In Eq. (2.30), SDRi is the contribution of mesh element
i to the calculated SDR and this quantity is estimated by flagging photons from
mesh elements during MCNP photon transport step. To calculate the correlation
coefficients, the method uses a unit cell strategy, scoring the results in both the mesh
elements and a set of unions of the mesh elements and use the given uncertainty to
estimate the covariance terms. The covariance between mesh elements j and l is
then calculated as given by Eq. (2.31).

σ2
SDR,Neutron =

∑
i

(SDRi)
2(
σRn,i

Rn,i
)2 + 2

∑
j<l

(SDRj)(
σRn,j

Rn,j
)(SDRl)(

σRn,l

Rn,l
)ρj,l (2.30)

Covj,l =
σ2
Rn,j+l

− σ2
Rn,j

− σ2
Rn,l

2
(2.31)

2.6 Summary

In this chapter, a literature review was given about SDR calculation in FES using
the R2S workflow. It has been shown that the obtained neutron fluxes using MC
methods has an associated uncertainty due to the stochastic nature of the simulation.
While many sources of uncertainty has been introduced, the focus in this work will
be on the uncertainty of both the photon sources and SDR in R2S workflow due to
the neutron flux distribution uncertainties.
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3 uncertainty quantification of the photon source i
(r2s workflow)

3.1 Introduction to the GT Method

As discussed in Chapter 2, transmutations in FES of nuclides exposed to a neutron
radiation field take place and some interaction pathways lead to the formation
of photon emitting nuclides that persist after the shutdown of the facility due
to their long half lives. Monte Carlo (MC) codes such as MCNP [5] provide the
capability to obtain the flux distribution with its associated statistical uncertainty.
The neutron flux can be tallied over a mesh covering the problem geometry with
custom energy bins structure making it easy to utilize the concept of group-wise
(GT) transmutation. It has been shown [16] that the photon source can be expressed
as a function of the energy dependent group-wise neutron flux distribution. Using
a transformation function, T , that relates the photon emission density to the energy
dependent neutron flux distribution, the energy dependent photon emission density
can be expressed as shown in Eq. (3.1),

q(~r,Ep) =
∫
En
T(~r,Ep,En)φ(~r,En)dEn (3.1)

where the superscript p and n are for photons and neutrons, respectively and
φ(~r,En) is the neutron flux at point~r and energy E.

Using MCNP to estimate high resolution - used to resolve the flux gradients in
different regions of the system - neutron flux distribution, discretization in space
and energy is needed. The discretization in MC is just a way to define a region of
space and/or energy to tally over without introducing any changes to the problem
geometry. Using MCNP meshtally capabilities, the typical procedure is to lay a
mesh on top the problem geometry and divide the energy range into a number
of intervals corresponding to the number of neutron energy groups of interest.
The number of energy groups is related to the format available of the nuclear
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data library used for cross section data for the interaction of neutrons with the
different nuclides in the problem while the size/shape of the mesh is governed by
the resolution needed in the calculated neutron flux.

Discretization of Eq. (3.1) in energy and space is carried out by integrating over
the photon energy range of interest and a region of space corresponding to the
spatial mesh size. Carrying out the discretization as in Eq. (3.2a), the result is a
group-wise form as shown in Eq. (3.2b), where the subscripth is for a photon energy
group and g is for a neutron energy group, and v designates a spatial mesh voxel.
The energy bin structure typically in use for SDR calculations corresponds to 24
photon energy groups and 175 neutron energy groups (175 groups logarithmically
spaced between 0 and 19.64 MeV).∫∫∫

R

∫Ep+∆Ep
Ep

q(~r,Ep)dEp dr3 =

∫∫∫
R

∫Ep+∆Ep
Ep

∫En+∆En
En

T(~r,Ep,En)φ(~r,En)dEn dEp dr3

(3.2a)
qv,Eph =

∑
g

Tv,Eph,Engφv,Eng (3.2b)

The GT method builds on the concept of superposition of the photon source
distribution when the SNILB criteria are met. This means that the collective con-
tribution of the flux in every neutron energy group - when used individually - to
the photon source distribution sums up to the contribution of the whole spectrum.
When applied, the photon source distribution in every photon energy group h
can be expressed as the sum of the photon sources at the same energy group h
produced via individual transmutations with the neutron fluxes at every single
energy group one-at-a-time as shown in Eq. (3.3a),

qv,Eph(φv) =
∑
g

qv,Eph(φv,Eng ) =
∑
g

Tv,Eph,Engφv,Eng (3.3a)

and φv is given by;
φv =

∑
g

φv,Eng (3.3b)

It has been shown [16] that the concept of superposition - with the SNILB criteria
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met - of the photon source distribution is satisfied for most materials used in FES
and for most irradiation scenarios. A dedicated activation and nuclear inventory
code (ALARA [19] is used in this work) can then be used to perform the analysis
using the group-wise neutron flux distribution. The obtained photon emission
density for each neutron energy group in each mesh voxel is then used along with
the corresponding flux value to calculate the value of T as shown in Eq. (3.4). It
is worth noting that the multi-group neutron flux, φv,Eng , used to calculate Tv,Eph,Eng
does not need to be the actual local spectrum in the problem in the mesh voxel
v - per [16] - as T is independent of the flux magnitude and only depends on the
material composition and the irradiation scenario.

Tv,Eph,Eng =
qv,Eph(φv,Eng )

φv,Eng
(3.4)

3.2 Modification of the GT Method

The calculation of the transformation function, T in Eqs. (3.1) & (3.2b), in the GT [16]
method derives from an approximation of a nonlinear function, f(φn), which relates
the photon emission density, q(~r,Ep), to the multi-group neutron flux, φ(~r,En), as
shown in Eq. (3.5).

q(~r,Ep) =
∫
En
f (φ(~r,En))dEn (3.5)

A Taylor expansion of such function showed that higher order terms can be ignored.
The first order term was ignored based on the assumption that decay photons only
result from neutron interactions. While that assumption is true for most materials
used in FES, it ignores the fact that some elements have a naturally occurring
radioactive isotopes. While ignoring the first term wouldn’t affect the calculation
of the photon emission density using Eq. (3.3a), a more accurate representation of
the photon emission density is required for uncertainty quantification.

Further analysis of the photon emission density showed that, while it’s true for
most elements that the photon emission is a result of the radionuclides formed due
to interaction with neutrons in the radiation field, some elements that are usually
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present in fusion applications have natural emitting isotopes, initial activity. Such
initial activity is not a function of the neutron flux and should appear explicitly in
Eq. (3.3a). As a result, a modification in the implementation of the GT method has
been thought and the photon emission density as a function of the multi-group
neutron flux distribution can be expressed as in Eq. (3.6),

qv,Eph(φv) = q
Initial
v,Eph

+
∑
g

qv,Eph(φv,Eng ) = q
Initial
v,Eph

+
∑
g

Tv,Eph,Engφv,Eng (3.6)

where qInitial
v,Eph

is the initial photon emission density at mesh voxel v and photon
energy group h.

3.3 Statistical Error Propagation: From Neutrons to
the Photon Source

In SDR calculations, MC methods are used to perform both the neutron and the
photon transport calculations. As discussed in Chapter 2, MC creates a distribution
for the contribution of the different histories to the quantity being calculated such
as a flux in a mesh voxel or a reaction rate, etc. The final particle flux distribution
(as a quantity of interest for SDR) in different space and energy phase-space regions
is just the mean of all the contributions of the different histories in that region and
a statistical uncertainty of such quantity can be calculated from the underlying
distribution of individual histories scores.

Using the expression for the photon emission density given in Eq. (3.6), it is
possible to propagate the statistical error of the calculated MC neutron fluxes to
the obtained photon emission density. Further investigation of Eq. (3.6) showed
that, on the right hand side, Tv,Eph,Eng encapsulates information about the material
composition, decay constants, nuclear cross sections, and the irradiation scenario
in a mesh voxel v, while φv,Eng contains information about the energy dependent
neutron spectrum and the boundary conditions (BCs). As a result, Tv,Eph,Eng can be
treated as a constant since the main focus here is on the uncertainty of the neutron
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flux and does not consider that of the nuclear cross sections. By applying the error
propagation formula to Eq. (3.6) it is possible to propagate the uncertainty of the
neutron fluxes at every energy group to the calculated photon emission density as
shown in Eq. (3.7),

σ2
q
v,Ep
h

=
∑
g,g ′

(
∂qv,Eph
∂φv,Eng

)
σφv,Eng

(
∂qv,Eph
∂φv,En

g ′

)
σφv,En

g ′
ρ(φv,Eng ,φv,En

g ′
)

=
∑
g,g ′

Tv,Eph,Engσφv,Eng
Tv,Eph,En

g ′
σφv,En

g ′
ρ(φv,Eng ,φv,En

g ′
) (3.7)

where, σq
v,Ep
h

is the standard deviation of the photon emission density in mesh voxel
v and energy group h, ρ(φv,Eng ,φv,En

g ′
) is the correlation between the neutron fluxes

in groups g and g ′ in mesh voxel v, and σφv,Eng
is the standard deviation of φv,Eng .

When the same mesh is used for both the neutron transport step - to obtain
the energy dependent flux distribution - and the following activation analysis
the number of the correlation terms between the neutron fluxes needed in the
calculation of the standard deviation of the photon source can be reduced. It can
be seen from Eq. (3.7) that the only correlation terms that exist are between the
neutron fluxes in different energy groups within the same mesh voxel, v. Eq. (3.7)
can be written in a more simplified format as,

σ2
q
v,Ep
h

=
∑
g

T 2
v,Eph,Eng

σ2
φv,Eng

+2
∑
g,g ′

g<g ′

Tv,Eph,Engσφv,Eng
Tv,Eph,En

g ′
σφv,En

g ′
ρ(φv,Eng ,φv,En

g ′
) (3.8)

As the neutron fluxes calculated using MC are means of the underlying distri-
butions of scores of different histories, the correlation terms can be calculated given
that such distributions are known. MCNP provides an output file (ptrac) which
contains all the information of each particle along its path such as the position,
energy, direction, statistical weight, etc. and the distributions can be obtained by
means of processing such an output file. Using Eq. (3.8) the lower and upper
bounds of the standard deviation of the photon emission density can be obtained
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by letting ρ(φv,Eng ,φv,En
g ′
) be 0 and 1, respectively. In the next section, the correlation

matrix will be explored further to study its properties and how to be implemented
in the uncertainty quantification of the photon source.

3.4 The Correlation Matrix Approximation

When simulating the behavior of neutrons in a medium, the fate of neutrons is
determined by collision physics as well as the BCs. The population of neutrons in
the problem domain as a whole is a function of the problem settings; source type
and BCs of the geometry as leakage will be more significant in case of vacuum vs
reflective BCs. Also it is a function of collision physics represented by the nuclear
cross section, which is a measure of the probability that different reactions will take
place, as neutrons disappear in absorption vs scattering collisions.

By analogy, the population of neutrons in any region - a mesh voxel - of the
problem domain is a function of both local BCs and collision physics. Neutrons
with low energies in a mesh voxel are either produced at such energies or scattered
down from higher energies due to collisions with nuclides whether within the
same mesh voxel or in a neighboring one and transported in. In MC calculations a
change in the BCs - geometry BCs or meshing scheme (mesh size) - affects directly
the population of particles/scoring and in turn the uncertainty of the calculated
quantities such as a flux over a mesh.

The underlying distribution of scores of individual histories in every mesh
element (spatial mesh voxel and energy bin) could be manipulated to calculate
the correlation between the neutron fluxes in different energy bins within each
spatial mesh voxel. In complex FES, obtaining the correlation matrix for every mesh
voxel in the problem is impractical considering the computing resources needed
to process and store the distributions of histories scores. By performing analyses
on the correlation matrix for simple problems, few properties of the matrix where
discovered that lead to a practical approximation and facilitated using Eq. (3.8) for
uncertainty quantification of photon sources in complex FES.
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3.4.1 Hypotheses

The correlation of two random variables is a measure of the degree of linear de-
pendence between them. When applying this to neutron fluxes in different energy
groups within the same mesh voxel it becomes intuitive to link such correlation
to the collision physics, nuclear cross sections. The population of neutrons in a
mesh voxel will affect the scoring and in turn the statistical uncertainty of the fluxes.
Since the nuclear cross section is unique for each element/mixture, it follows that
the correlation matrix could be dependent on the material composition and in turn
unique. As a result, the correlation matrix approximation assumes that a unique
matrix could be obtained for each element/mixture to a high degree of accuracy
with all the neutron energy bins populated.

A change in the population of neutrons present, due to changing the meshing
scheme or a change in BCs, at constant material composition, could yield some
changes in the resulting correlation matrix but is expected to retain some properties
of the "original" and more accurate one. That is because in MC a change in the
population of neutrons is linked to scoring and in turn to the uncertainty of the
obtained quantities. In other words, a pattern, representative of the relative values
of correlation at different energies, is expected to be identifiable in all cases with
some changes in the relative magnitudes of the values of the correlation at some
energy groups as a response to a change in statistics or due to under-sampling.
Analyses where performed on simple problems to assess the properties of the
correlation matrix; uniqueness and convergence.

3.4.2 Properties of the Correlation Matrix

3.4.2.1 Uniqueness

The first set of analyses involved calculating the correlation matrix on a simple
geometry for different elements/mixtures. The problem consisted of a cube with
uniform material and vacuum BCs on all sides and an external planar boundary 14.1
MeV source facing one side of the cube. The choice of the planar boundary source
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and the energy were to simulate cases relevant to FES. The energy dependent multi-
group neutron fluxes were tallied on a single mesh voxel covering the entire cube
and 175 energy groups. By processing the underlying distribution of histories scores,
the correlation matrix was obtained for different elements/mixtures arbitrarily
chosen. A mapping of the correlation matrices for different elements is shown
in Fig. (3.1) where only the relevant elements, absolute(correlation value) > 0.1,
are shown. The energy group numbers on the axes increase with energy; group
175 corresponds to 19.64 MeV. It can be seen from the mappings of the correlation
matrices that a unique pattern for each element/mixture is identifiable. Such
pattern represents the relative values of the correlation coefficients at different
energy groups and has to be dependent on the nuclear cross section of the material.

The second set of analyses involved examining the effect of changing the bound-
ary source energy on the obtained correlation matrices. Should the uniqueness
hypothesis be true, the uniqueness property should prevail for any subsets of the
correlation matrix. In other words, if the source energy varied then the mapping of
the correlation matrix should be a cut of the mapping produced at higher energies,
a subset. That follows directly from the hypothesis that the correlation between the
fluxes at different energy groups is directly linked to the nuclear cross section of
the material. Fig. (3.2) shows mappings of the correlation matrix using 14.1, 7, 3,
and 0.25 MeV sources for the same problem described in the previous paragraph
and for Steel (SS316L), composition is given in Table 3.1.

Table 3.1: Material Composition for SS316L

Element Mass % Element Mass %
Fe 64.0135 Ta 0.1500
Cr 17.5000 N 0.1100
Ni 11.5000 Nb 0.1000
Mo 2.2500 Ti 0.1000
Mn 2.0000 C 0.0300
Cu 1.0000 P 0.0300
Si 1.0000 S 0.0150
Co 0.0200 B 0.0018
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Figure 3.1: Correlation Matrices for Different Elements

The third set of analyses involved obtaining the correlation matrices over a mesh
and examining the mappings of matrices inside each mesh voxel. One example of
such calculations involved obtaining the correlation matrices for steel (SS316L) over
the same cube problem described at the beginning of this section. The problem
was divided into five mesh voxels in the z direction and matrices were obtained
inside each voxel as well as the matrices for cross-correlation between different
voxels as shown in Fig. (3.3). Along the diagonal, the matrices for each mesh voxel
can be seen starting from the left-bottom corner on the figure, the far side of the
source, and moving along the diagonal till the top-upper corner which is the closest
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Figure 3.2: Correlation Matrix for SS316L Using 14.1, 7, 3, and 0.25 MeV Sources

voxel to the source. It can be seen that the matrices resemble that of Steel shown
in Fig. (3.1). It can also be seen on the figure that the correlation between the
neutron fluxes at different energy groups in different mesh voxels, cross-correlation,
diminishes as mesh voxels become far apart. This observation has been speculated
about before in literature [12], although not by analysis, that neighboring voxels are
highly correlated compared to distant ones. Also, from the figure, it can be noticed
the loss of symmetry in the correlation between distant voxels. Take for example
the third matrix on the bottom row of the figure, the correlations that appear on
the matrix is for each energy group and all the groups lower than it. This is due
to down-scattering, since ,as mentioned before, neutrons of low energy in a mesh
voxel are either slowed down inside the voxel or transported in from neighboring
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voxels.

Figure 3.3: The Correlation Matrix for SS316L over a 1× 1× 5 Mesh

3.4.2.2 Convergence: Statistical Uncertainty

To study the effect of the uncertainties of neutron fluxes on the correlation matrix,
analyses were performed with a cube with isotropic source uniformly distributed
inside the cube and reflective BCs on all sides for different materials. To simulate
a variation from the condition of bad to acceptable statistical uncertainties, the
number of histories processed was varied from 103 to 106, respectively. It can be
seen on Fig. (3.4) how the lower energies are populated and the relative magnitudes
in some regions changed as the number of histories increased - as more particles
contribute to the calculated flux at lower energies - and a pattern begins to take
shape as a result. This further supports the hypothesis of uniqueness, with good
statistics a unique pattern for each material could be identified.
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Figure 3.4: Convergence of the Correlation Matrices. Number of Histories; 103 (far
left), 104, 105, 106, 107 (far right)

3.4.2.3 Convergence: Boundary Conditions

To study the effect of problem settings on the correlation matrix, two parameters
where considered; the neutron source and BCs. Two cases for each parameter
where studied on a cube with uniform Steel (SS316L) and the correlation matrix
was calculated in each case as shown in Fig. (3.5). The changes were found to affect
the statistics of the obtained energy dependent fluxes and resulted in a change
in the relative magnitudes of some correlation coefficients while each matrix still
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resembles the pattern for Steel to some extent, as expected.

Figure 3.5: The Effect of Source Type & BCs on the Correlation Matrix for Steel
(SS316L)

The first change is the BCs, the effect of which could be seen by comparing the
mapping of the correlation matrix obtained for the planar source using vacuum,
reflective, partially reflective (reflective on three sides and vacuum on the other
three) BCs. Using reflective boundary conditions, neutrons are forced to stay
in the medium and interact and as a result populate the lower energy bins and
this is apparent by comparing the top two subfigures on Fig. (3.5). On the top-
right subfigure, where reflective BC was used, it can be seen that the correlation
between some energy groups becomes relevant and the figure spreads more near
lower energies compared to the top-left subfigure where vacuum BCs were used.
Comparing the bottom-left subfigure where partially reflective BCs were used to the
top two subfigures, it can be seen that the correlation matrix is somewhat between



42

the top two cases. This is suggestive that, as was the case for subsets discussed
previously for different source energies, the correlation matrix for a flux with all
energy groups populated with low uncertainty is inclusive of lower cases where
uncertainty is higher due to missing correlation coefficients at lower energy groups.
In other words, the correlation matrix for a flux with high uncertainty is a subset of
the correlation matrix for a flux with low uncertainty, with the material composition
fixed.

The second change is the source type, a planar source with particles directed
to the cube will have less lost particles from the medium compared to a uniform
isotropic source distributed inside the cube (using vacuum BCs in both cases). Such
changes affect the population of neutrons inside the cube and directly affect the
statistical uncertainty of the obtained fluxes. For example, histories in the uniform
case might be terminated before having a chance to score in lower energy bins
due to leakage outside the cube. This can be seen by comparing the top-left and
bottom-right subfigures on Fig. (3.5). From both conditions it can be said that the
effect of boundary conditions is more relevant than that of changing the source
type.

3.5 Implementation of the Correlation Matrix

In the previous section, the properties of the correlation matrix were discussed.
From the discussion, it was concluded that the correlation matrices are mainly de-
pendent on nuclear cross sections which govern how neutrons behave in a medium.
Decomposition of the correlation matrix after a change was introduced in the prob-
lem settings and comparing it to a reference matrix will shed more light on the
matrix properties. As discussed in previous sections, the effect of changing the
problem settings (source type & spectrum and BCs) can be perceived as having
a direct effect on the population of neutrons at different energy groups. As a re-
sult, it is possible to decompose the correlation matrix of a system into its basic
components.
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3.5.1 Correlation Decomposition

Assume we have a cube with specific settings (source type & spectrum, BCs, and
material composition) and we obtained the correlation coefficient between the
neutron fluxes at two different energy groups,Corr(x̂, ŷ), call it refA. Now assume a
change was made to the BCs, such change will have direct impact on the population
of neutrons at the two energy groups and the new correlation coefficient would be,
Corr(x̂+ δx̂, ŷ+ δŷ), call it refB. The new correlation coefficient, refB, can also be
expressed as in Eq. (3.9) (full derivation is given by Appendix A.1).

Corr(x̂+ δx̂, ŷ+ δŷ) = Corr(x̂, ŷ) σx̂σŷ

σx̂+δx̂σŷ+δŷ
+ Corr(x̂, δŷ) σx̂σδŷ

σx̂+δx̂σŷ+δŷ

+ Corr(δx̂, ŷ) σδx̂σŷ

σx̂+δx̂σŷ+δŷ
+ Corr(δx̂, δŷ) σδx̂σδŷ

σx̂+δx̂σŷ+δŷ
(3.9)

The four main components are; refA correlation value, Corr(x̂, ŷ), correlation
between the neutron flux in one energy group and the change introduced to the flux
at the other energy group due to the change in BCs, Corr(x̂, δŷ) & Corr(δx̂, ŷ), and
finally the correlation between the changes in the fluxes at the two energy groups,
Corr(δx̂, δŷ). By examining each term it can be seen that the four terms are just
re-normalization of the respective covariances by the product of the standard devi-
ations in the problem after the change in the BCs, σx̂+δx̂σŷ+δŷ. By the hypothesis
of uniqueness and as the material composition is the same in the problem before
and after the change in BCs, the four correlation terms are expected to be similar.

To examine the possible similarity between the four correlation coefficients,
analysis was performed on a simple problem. The problem consists of a cube filled
with Steel (SS316L) with reflective BCs on all sides but the side facing a planar
boundary source emitting 14.1 MeV neutrons. Neutron transport was performed
using MCNP5 and the distribution of histories scores over 175 energy groups was
obtained by processing MCNP output ptrac file and the reference correlation matrix
was obtained, refA. A change was then introduced to the boundary conditions by
removing all reflective BCs, changing to vacuum BCs and a new correlation matrix
was obtained for the problem, refB. Having calculated the distribution of histories
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scores, the correlation between the reference fluxes and the changes in the fluxes in
the new problem were also calculated.

A mapping of refA and refB correlation matrices, as well as the matrix obtained
for the new problem using Eq. (3.9), calculated correlation matrix, are shown in the
Fig. (3.6). As seen on the figure by comparing the subfigures for refA and refB, the
mapping of refA for energy groups below 115 is wider than that for refB. This is
because reflective BCs force neutrons to remain in the system and populate lower
energy groups which results in higher correlation among those groups because of
scattering. While both mappings for refA and refB are slightly different, using Eq.
(3.9) the correlation matrix for refB is reproduced. Figure (3.7) shows mappings of
the four correlation matrices mentioned before; Corr(x̂, ŷ) (ref-ref on the top-left
corner), Corr(x̂, δŷ) (ref-delta on the top-right corner), Corr(δx̂, ŷ) (delta-ref on
the bottom-left corner), and Corr(δx̂, δŷ) (delta-delta on the bottom-right corner).
The matrices Corr(x̂, ŷ) & Corr(δx̂, δŷ) are similar with the exception of some
correlation values missing on the latter. The other two, Corr(δx̂, ŷ) & Corr(x̂, δŷ)
are transpose of each other. An interesting observation is that the correlation
matrices Corr(δx̂, ŷ) & Corr(x̂, δŷ), have negative values and similar structure to
the other two matrices. Such an observation leads to an approximation of the
correlation matrix and will be discussed in the following subsection under local
approximation.

The conclusion from this discussion is that a correlation matrix for neutron
spectrum under some problem settings is just the superposition of other matrices
that account for the problem settings individually. In the problem discussed, the
correlation matrix for the material with vacuum BCs and planar source was found
to be the superposition of four matrices. One matrix accounts for the reference
correlation between the different energy groups, correlation obtained with reflective
BCs. The other three accounted for the changes of the reference correlation due to
a change in the problem settings like the BCs. We can go as far as saying that even
considering the cross section as being part of the problem settings, we can obtain a
correlation matrix for any material using the four component matrices mentioned
above.
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Figure 3.6: Calculating the Correlation Matrix for SS316L Using Reference Matrix

3.5.2 Approximations

The main goal of the correlation matrix approximation, discussed in sections 3.4
& 3.5.1, is to facilitate obtaining the correlation matrices for different materials on
simple problems. Also, to validate the application of these matrices to calculate the
uncertainty of the photon sources in the respective materials over a mesh where the
boundary/source conditions might have changed compared to the conditions under
which the matrices were obtained. This is motivated by the fact that producing ptrac
files for all histories in complex problems to obtain the correlation matrices over
the mesh is prohibitive as the size of such files will in general be large (depending
on materials and BCs); a cube problem of 40× 40× 100 cm steel and water mixture
with 106 histories could amount to 100+ GB (ASCII format) file. Two main possible
approximations were studied; global and local.
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Figure 3.7: Decomposition of the Correlation Matrix for SS316L

3.5.2.1 Global Approximation

In Fig. (3.3) it can be seen that, for the matrices along the diagonal, although reflec-
tive BCs were used and neutrons were forced to stay in the system and populate
lower energy groups, the matrices in each mesh voxel were slightly different. This
could be due to a change in the neutron spectrum which resulted in a change in
the relative magnitudes of the correlation coefficients in the matrices. This is to
say that the neutron population in each mesh voxel is different resulting from a
change in the spectrum. Applying a generic correlation matrix to all mesh voxels
across the model with similar material composition will need a correction of some
kind. The correction of the correlation matrix has to take into account the local
neutron spectrum and the corresponding statistical uncertainty. Using a MCNP
meshtally output such a correction can be found by comparing the total standard
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deviation from MCNP with that calculated using both the standard deviations of
the individual groups from MCNP and the calculated correlation matrix.

The total standard deviation of the neutron flux in a mesh voxel, v, given by
MCNP can be expressed as in Eq. (3.10a), where σφv,Eng ,φv,En

g ′
is the covariance

between φv,Eng and φv,En
g ′

. As MCNP gives the total standard deviation of the
neutron flux and the individual standard deviations of each energy group, the
covariance term can be calculated and compared against that obtained using the
correlation matrix. Comparing the expressions for the covariance term calculated
using MCNP values of standard deviations (Eq. (3.10b)) and the one calculated
using the correlation matrix (Eq. (3.10c)) will yield a correction factor, Γ , as given in
Eq. (3.10d). Although the uncertainty of the neutron flux in each mesh voxel could
in general be higher than the case with which the correlation matrix was obtained,
it can be thought of as a custom fitting of the correlation matrix to each mesh voxel
by re-normalization using the local product of the respective standard deviations
of the neutron fluxes.

σ2
φv

=
∑
g

σ2
φv,Eng

+ 2
∑
g,g ′

g<g ′

σφv,Eng ,φv,En
g ′

(3.10a)

σ2
φv

−
∑
g

σ2
φv,Eng

= 2
∑
g,g ′

g<g ′

σφv,Eng ,φv,En
g ′

(3.10b)

2
∑
g,g ′

g<g ′

σφv,Eng
ρ(φv,Eng ,φv,En

g ′
)σφv,En

g ′
(3.10c)

Γv =
σ2
φv

−
∑
g σ

2
φv,Eng

2
∑

g,g ′

g<g ′
σφv,Eng

ρ(φv,Eng ,φv,En
g ′
)σφv,En

g ′

(3.10d)

Now the correlation matrix for each mesh voxel, v, can be obtained by applying
the correction factor, Γv, and the final formula for the standard deviation of the
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photon emission density in mesh voxel, v, is given in Eq. (3.11).

σ2
q
v,Ep
h

=
∑
g

T 2
v,Eph,Eng

σ2
φv,Eng

+ 2Γv
∑
g,g ′

g<g ′

Tv,Eph,Engσφv,Eng
ρ(φv,Eng ,φv,En

g ′
)Tv,Eph,En

g ′
σφv,En

g ′

(3.11)
From preliminary analyses, it has been found that such global correction, al-

though easy to apply, underestimates the total uncertainty of the photon emission
density. The correlation matrix should be obtained on a problem with all the neu-
tron fluxes at the different energy groups populated with low enough uncertainty.
A global correction based on the local spectrum in each mesh voxel is bound to
be either missing some energy groups or have high uncertainty in many cases.
Although such correction scales all the elements in the correlation matrix by the
same amount, hence preserving the unique pattern for the material, it’s not advised
that such global correction be used. In the following section an example will be
given showing how the global correction decreases the estimation of the photon
source uncertainty.

3.5.2.2 Local Approximation

Local approximation of the correlation matrix refers to a correction applied to each
element in the correlation matrix based on the local neutron spectrum in each mesh
voxel. Such a correction derives directly from the correlation matrix decomposition
that was presented for one correlation value in Eq. (3.9). While Eq. (3.9) shows the
decomposition of the correlation coefficient as a function of four separate correlation
components between the distribution of histories scores in the reference and new
problem, it is possible to introduce further approximation based on a study of
the mapping of the decomposed correlation matrix. In Fig. (3.7), mapping of the
four component correlation matrices is shown. It can be seen that the ref-ref and
delta-delta matrices - which refer to Corr(x̂, ŷ) and Corr(δx̂, δŷ), respectively - are
similar. The other two correlation matrices, ref-delta and delta-ref - which refer
to Corr(x̂, δŷ) and Corr(δx̂, ŷ), respectively - are the transpose of each other. Both
bear resemblance to the Corr(x̂, ŷ) with negative values.
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In addition to the mapping of the matrices, analysis of the matrices norms also
revealed similarity. The value of three norms are given in Table 3.2. It can be seen
from the table that the norms of the four matrices are similar. This is suggestive
that a local approximation can be derived as given in Eq. (3.12). The value of such
correction term, the sum of four terms in square brackets, can be examined by
looking at the ratio of Corr(x̂ + δx̂, ŷ + δŷ) and Corr(x̂, ŷ). Figure (3.8) shows a
mapping of the ratio of Corr(x̂+ δx̂, ŷ+ δŷ) and Corr(x̂, ŷ) for Steel (SS316L) and
it can be seen that for the important elements in the correlation matrices (elements
with values > 0.1) the ratio is around 1. The result of this analysis adds to the
conclusions from the previous discussion on matrix decomposition; the correlation
matrix for a voxel in a mesh resembles more the one obtained using reflective BCs
(Fig. 3.3) and the correlation matrices are expected to have values > 0 for most
materials in FES. It can be said that the best approximation to a correlation matrix
in a mesh is one that is obtained using reflective BCs.

Table 3.2: Correlation Matrices Norms

Matrix 1st norm infinity norm 2nd norm
Corr(x̂, ŷ) 48.3929 48.3929 36.4389
Corr(x̂, δŷ) 47.2342 44.6562 34.8845
Corr(δx̂, ŷ) 44.6562 47.2342 34.8844
Corr(δx̂, δŷ) 46.0598 46.0598 35.3403

Corr(x̂+ δx̂, ŷ+ δŷ) = Corr(x̂, ŷ)
[

σx̂σŷ

σx̂+δx̂σŷ+δŷ
−

σx̂σδŷ

σx̂+δx̂σŷ+δŷ
−

σδx̂σŷ

σx̂+δx̂σŷ+δŷ

+
σδx̂σδŷ

σx̂+δx̂σŷ+δŷ

]
(3.12)
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Figure 3.8: Ratio of Corr(x̂+ δx̂, ŷ+ δŷ) and Corr(x̂, ŷ) for Steel (SS316L)

3.6 Demonstration Problem

To complete the analysis on the correction factors and to demonstrate the feasibility
of the quantification of the uncertainty of the photon emission density, a demon-
stration problem has been set up. The problem consists of a source cell, tally cells,
and cylindrical region, as shown in Fig. (3.9). The cylindrical region has a radius of
100 cm and has been divided in the z direction according to the radial build of the
OB region of the FNSF facility. The cylindrical region consists of a 4 cm first wall
(FW), 96 cm breeding zone (BZ), 6 cm He manifold, 3 cm tungsten shell, and finally
a 20 cm structural ring (SR). The complete details of the composition of each region
and of the FNSF facility can be found in chapter 6.

3.6.1 Neutron Flux Mapping

Figure (3.10) shows a mapping of the total neutron flux in the problem over 10×
10×10 cm3 mesh. It can be seen that the flux is high at the FW and BZ, at the source
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Figure 3.9: Demonstration Problem Based of FNSF OB Radial Build. Source (right)
and Tally Cells (left)

side, where the former faces the source and the latter has neutron multipliers. The
neutron flux decreases by about three orders of magnitude from the FW to the
SR. The statistical uncertainty of the neutron flux in all energy groups in all mesh
voxels is 6 10%. For the approximation analyses that follow, the neutron spectrum
was obtained at four points along a direction, at x = 60 & y = 60 cm, parallel to
the axis of the cylinder corresponding to FW, front of BZ, back of BZ, and SR. The
spectrum at the four points is shown in Fig. (3.11). The spectrum shifts to lower
energies as we move from the FW to the SR as high energy neutrons attenuate due
to interactions with the FW, BZ, shells, etc.

3.6.2 Correlation Approximation Analysis

3.6.2.1 Global Correction

To study the effect of global correction of the correlation matrix on the estimation
of the photon source uncertainty, R, the uncertainty was calculated at the four
previously mentioned locations; FW, front BZ, back BZ, SR. Rwas obtained using
correlation matrices obtained on reflective BCs one time without correction, Rref,
and the second time with global correction applied,Rc . Figure (3.12) shows a plot
of the ratio of Rref and Rc, for different irradiation and decay times. The irradiation



52

Figure 3.10: Neutron Flux [n/cm2 · s] Mapping for FNSF Radial Problem

Figure 3.11: Neutron Spectrum [n/cm2 · s] at FW, BZ, and SR
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times chosen are; 103, 105, 8.7 × 107, and 109 s. The decay times chosen are; 0, 103,
105, 107, 109 s.

Figure 3.12: Ratio of the Photon Source R with Global Correction Applied to R
without Correction

From the figure it can be seen that at the FW the correction factor nearly doesn’t
introduce any changes to the calculated R. At the BZ it was found that the correction
factor lowers the estimate of R especially at high decay times, as well as at the SR.
This is due to the fact that some energy groups have higher or missing uncertainty
at the BZ and SR such as the higher energy groups where neutrons have already
collided and deposited energy in traversing the FW and the first part of the BZ.
As a result, the correction factor is expected to be 6 1 and will scale down the
correlation matrix, hence reducing R of the photon source. Although the same



54

flux was used for all decay and irradiation times, which means the same correction
factor applied, the T matrix has changed. The combined effect of changing T matrix
and a correction factor 6 1 results in a change in the estimation of the uncertainty
at different decay and irradiation times compared to the reference. As a result, the
global correction has been rejected for the correlation matrix approximation.

3.6.2.2 Local Correction

To study the effect of using different correlation matrices, R of the photon source
was obtained at the four locations mentioned before once using correlation matrices
obtained over vacuum BCs, Rvac, and another time with matrices obtained over
Reflective BCs, Rref. The ratio of Rvac to Rref is shown in Fig. (3.13). From the
figure, it can be seen that the ratio is nearly 1 for most of the cases at decay times up
to 105 s. Following that, as decay times gets larger the ratio was found to go below
1 suggesting that R obtained using correlation matrices over vacuum BCs, Rvac,
underestimates the photon source uncertainty, from a conservative perspective.
This aligns with intuition, as discussed before, that as we move deeper into the
material the uncertainty of the neutron flux at the differed energy groups gets
higher and the correlation matrix will be distorted compared to the original and
more accurate one obtained using reflective BCs with all groups populated. A
correlation matrix obtained over vacuum BCs will lack some elements that are
found in one obtained over reflective BCs. For the FW, it can be seen that while all
the neutron energy groups are expected to be populated in the spectrum, using
vacuum BCs matrix means ignoring a contribution of some of the energy groups,
hence underestimating R of the photon source.

As a result, it’s a more acceptable approximation to calculate the correlation
matrices over reflective BCs for each material and use it for mesh voxels that contain
the respective materials. It’s also worth mentioning that, the covariance between
the neutron flux at different energy groups goes down with the size of the mesh as
more neutrons will have less chance to score in the same mesh voxel at different
energies before leaking out. This could mean that calculating the uncertainty of a
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Figure 3.13: Ratio of the Photon Source Rwith Correlation over Vacuum BCs to R
with Correlation over Reflective BCs

photon source over fine mesh will eliminate the sensitivity to the correlation matrix
and facilitate applying the local approximation.

3.6.3 Uncertainty Quantification of the Photon Source

To show the estimated uncertainty of the photon emission density, an irradiation
time of 105 s and a decay time of 0 s have been chosen arbitrarily. Figure (3.14) shows
a mapping of the photon emission density obtained using a neutron spectrum over
a 10× 10× 10 cm3 spatial mesh. The planar source is at the right side of the figure
and it can be seen that the photon emission density is high in the FW and first
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few centimeters of the BZ facing the source. This is mainly due to lead which is
present in both layers and is the main contributor to the photon emission density.
The photon emission density goes down by about four orders of magnitude from
the FW to the back end of the SR. Figures (3.15 & 3.16 & 3.17) show the minimum
R, R obtained using correlation matrices, and maximum R of the photon emission
density, respectively. It can be seen from the figures that the calculated R of the
photon emission density is closer to the minimum value. Also, it’s worth noting
that R is high near the end of BZ and beginning of the SR at 250 cm due to a high
local photon emission density due to the presence of the tungsten shell and a high
uncertainty of the neutron flux at that region.

Figure (3.19) shows a mapping of R of the photon emission density obtained
using a neutron spectrum over a 5 × 5 × 5 cm3 spatial mesh. It can be seen by
comparing figures (3.16) and (3.19) that the uncertainty of the photon source at 250
cm went up as a result of using a finer mesh. This is expected since R of the neutron
flux will become larger as the mesh size gets smaller.

Figure 3.14: Photon Emission Density [p/cm3 · s] Distribution over a 10× 10× 10
cm3 Mesh for 105 s Irradiation and 0 s Decay Times
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Figure 3.15: Minimum R of the Photon Emission Density over a 10× 10× 10 cm3

Mesh for 105 s Irradiation and 0 s Decay Times

Figure 3.16: R of the Photon Emission Density (Obtained Using Correlation Matri-
ces) over a 10× 10× 10 cm3 Mesh for 105 s Irradiation and 0 s Decay Times
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Figure 3.17: Maximum R of the Photon Emission Density over a 10× 10× 10 cm3

Mesh for 105 s Irradiation and 0 s Decay Times

Figure 3.18: Photon Emission Density [p/cm3 · s] Distribution over a 5× 5× 5 cm3

Mesh for 105 s Irradiation and 0 s Decay Times
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Figure 3.19: R of the Photon Emission Density (Obtained Using Correlation Matri-
ces) over a 5× 5× 5 cm3 Mesh for 105 s Irradiation and 0 s Decay Times

3.7 Conclusions

In this chapter, the standard error propagation technique was applied to an ex-
pression of the photon emission density yielding an expression for the uncertainty
that results from that of the neutron flux distribution in MC simulations of FES.
Analyses have been conducted to study the correlation between the neutron fluxes
at different energy groups and it lead to the discovery of some characteristics of
the correlation coefficients such as uniqueness and convergence. Building on the
discovered properties, approximations where studied to facilitate the quantifica-
tion of the uncertainty of the photon emission density. While the derived formula
for the photon emission uncertainty can be efficiently used to estimate the upper
and lower bounds, analyses showed that the correlation matrices for different ele-
ments/mixtures can be obtained separately and used to estimate the uncertainty
over a mesh and is considered a good approximation to the correlation coefficients.
The developed method has been demonstrated on a simple cylindrical problem
using the neutron spectrum over two different mesh configurations.
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4 uncertainty quantification of the photon source ii
(r2smesh workflow)

4.1 Introduction

One variation of the R2S method [17] aimed at improving the spatial resolution of
the photon source distribution, potentially increasing the computational cost in two
ways. The first potential cost is in maintaining a reasonable statistical uncertainty
across all neutron flux groups as mesh voxels shrink. In addition, there is a cost
associated with each nuclear inventory calculation, with one for each mesh voxel.
To reduce the number of activation calculations, the photon source is obtained using
a neutron energy spectrum with high energy resolution on a coarse spatial mesh,
also reducing the computational cost of achieving reasonable statistical errors. The
photon source distribution is then scaled with a total neutron flux distribution over
the desired fine mesh and the resulting source distribution is used to calculate the
SDR.

4.2 Theory

The photon emission density at point~r and energy Ep, q(~r,Ep), resulting from the
decay of nuclides produced by the interaction of neutrons with the material at point
~r can be expressed as;

q(~r,Ep) =
∫
En
T(~r,Ep,En)φ(~r,En)dEn (4.1)

where superscripts n and p denote neutron and photon, respectively and T is a
transformation function that encapsulates information about the material compo-
sition, interaction cross sections, irradiation scenario, etc. and is defined by this
equation.

Eq. (4.1) can be written in group form by discretization of the neutron and
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photon energy ranges. Also a discretization in space is achieved by integrating over
a range of~r corresponding to the size of a mesh voxel centered at location rf. The
discretized form is then:

q(rf,Epf ) =
∑
Enf

T(rf,Epf ,Enf )φ(rf,Enf ) (4.2)

where f refers to a "fine" space/energy interval such that rf denotes a fine mesh
voxel, Epf is a fine photon energy group, Enf is a fine neutron energy group, and
φ(rf,Enf ) is the neutron flux in a fine mesh voxel as a function of the fine energy
groups.

As pointed out in section 4.1, the modified R2S workflow uses a high energy
resolution neutron spectrum over a coarse spatial mesh, φ(rc,Enf ), to perform the
activation calculations and obtain the photon source distribution over the coarse
spatial mesh, q(rc,Epf ), which is then scaled by the flux magnitude over a respective
fine spatial mesh, F(rf,Enc ), to obtain the fine photon source distribution, q(rf,Epf ).
In the same notation of Eq. (4.2) this can be expressed as:

q(rf,Epf ) = q(rc,E
p
f )F(rf,E

n
c ) =

∑
Enf

T(rc,Epf ,Enf )φ(rc,Enf )

 F(rf,Enc ) (4.3a)

where the subscript c denotes a coarse mesh voxel and the scaling factor F is defined
by:

F(rf,Enc ) =
φ(rf,Enc )
φ(rc,Enc )

=
φ(rf,Enc )∑
Enf
φ(rc,Enf )

(4.3b)

4.3 Constructed Mesh-Based Fluxes

The method defined by Eq. (4.3a) is related to another procedure where the flux
distribution in Eq. (4.2), φ(rf,Enf ) , is replaced by an equivalent distribution "con-
structed" from two separate neutron transport results, a high spatial resolution (fine
r& coarse E) and a spectrum with high energy resolution over a coarse spatial mesh
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(coarse r & fine E). Although the total neutron flux is preserved, the distribution
in each fine spatial mesh is altered by the scaling process that imposes the shape
of the neutron energy spectrum in each coarse mesh on every fine mesh that it
constitutes. The concept of constructed fluxes can be expressed as;

φ(rf,Enf ) =
φ(rf,Enc )φ(rc,Enf )

φ(rc,Enc )
(4.4)

As the flux intensities are calculated using Monte Carlo (MC) methods, the
obtained magnitudes are the mean of scores of many histories normalized to a
single source particle and because the mean of a ratio of random variables (histories
scores) is not equal to the ratio of their means [31], the expression in Eq. (4.4) is
biased and a correction is needed. The corrected formulas for both the mean and
its relative error are shown in Eq. (4.5a) and Eq. (4.5b) (the full derivation is given
by Appendix A.2),

φ(rf,Enf ) =
φ(rf,Enc )φ(rc,Enf )

φ(rc,Enc )

[
1 − R2(rc,Enc ) −

Cov[φ(rf,Enc ),φ(rc,Enf )]
φ(rf,Enc )φ(rc,Enf )

+
Cov[φ(rf,Enc ),φ(rc,Enc )]
φ(rf,Enc )φ(rc,Enc )

+
Cov[φ(rc,Enf ),φ(rc,Enc )]
φ(rc,Enf )φ(rc,Enc )

+O(3)
]

(4.5a)

R2(rf,Enf ) =
[
R2(rf,Enc ) + R2(rc,Enf ) + R2(rc,Enc ) + 2Cov[φ(rf,E

n
c ),φ(rc,Enf )]

φ(rf,Enc )φ(rc,Enf )

−2Cov[φ(rf,E
n
c ),φ(rc,Enc )]

φ(rf,Enc )φ(rc,Enc )
− 2Cov[φ(rc,E

n
f ),φ(rc,Enc )]

φ(rc,Enf )φ(rc,Enc )
+O(3)

]
(4.5b)

where R(rc,Enc ) is a relative error for φ(rc,Enc ) and is defined as in Eq. (4.6) and
σφ(rc,Enc ) is the standard deviation of φ(rc,Enc ).

R(rc,Enc ) =
σφ(rc,Enc )

φ(rc,Enc )
(4.6)
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4.3.1 Convergence of Correction Terms

One of the capabilities of MCNP is that it can produce an output file (ptrac) with
all the relevant information of the random walk of each particle as it traverses the
medium. For each history, the output file contains information about the location
(x, y, z), direction cosines (u, v, w), energy (E), statistical weight (w), etc. at each
interaction point along the path from the beginning at the source location up to the
termination of the history. This information can be used to calculate the covariance
terms. Producing a ptrac file for big models with all the relevant details of the
particles histories is exhausting for both memory and computing resources, so
attention was directed to the correction terms in Eq. (4.5a) and Eq. (4.5b) for
a possible derivation of an approximation for the terms. By solving Eqs. (4.5a)
and (4.5b) (see appendix A.4) simultaneously for the condition under which the
covariance terms could be ignored, it was found that this condition can be reduced
to R(rc,Enc ) << 10%. In other words; obtaining the neutron fluxes distributions
with acceptable statistics (R < 10%) removes the bias from Eq. (4.4).

To test this hypothesis, analysis was performed by processing MCNP ptrac
output files and calculating the constructed fluxes with and without the correction
terms. The difference was found to converge as a function of R over the coarse mesh
in accordance with the derived condition. Fig. (4.1) shows the relative difference
between the corrected flux, φ̂, and the uncorrected flux, φ̃,

∆ =
φ̂− φ̃

φ̂
(4.7)

for a tally population as a function of R. The number of histories processed were
varied to simulate a change in R over the coarse mesh from high (at 103) to acceptable
(at 106). The calculations were performed for five neutron energy groups with the
following upper bounds; 2.8, 5.64, 8.46, 11.28, 14.1 MeV. The choice of the number of
energy groups is arbitrary, so five were chosen as it was possible for the simulation
to be done in a reasonable time. It is also worth noting that the derivation of
the condition (R < 10%) is mathematically correct based on the solution of both
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equations (Eq. (4.5a) and Eq. (4.5b)) and is independent of any other problem
specific parameters.
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Figure 4.1: Convergence of the Correction Terms in the Construed Flux Formula

4.3.2 Scaled Photon Sources

4.3.2.1 Model

The model used in this study is the ITER shutdown dose rate benchmark problem
[32], shown in Fig. (4.2). Because the shielding material will result in a steep flux
gradient along the cylinder and variance reduction tools will need to be used,
the height of the main cylinder (550 cm) is reduced to 150 cm with all the other
dimensions unchanged. A source strength of 1018 n/s was used with a simple
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irradiation scenario which consisted of a single constant pulse for 4 years with the
calculation of photon source distribution at shutdown (0 s).

Figure 4.2: ITER Shutdown Dose Rate Benchmark [32]

4.3.2.2 Difference in Neutron Flux Mapping

Although ignoring the correction terms under the condition introduced in the
previous subsection will yield unbiased constructed fluxes, another source of error
is introduced in the construction process. This approximation error can be seen
by mapping the difference between fluxes obtained by single-run using MCNP
and by construction as described in Eq. (4.4), relative to the standard deviation of
the MCNP result in each mesh voxel. Fig. (4.3) shows a mapping of the relative
difference, expressed as multiples of the relative error, along mesh voxels parallel
to the axis of the cylinder with their center at (x,y) = (−10,−10) cm (10 cm away
from the axis of the cylinder). The fine mesh used for MCNP run is 20× 20× 6.19
cm3 with 5 energy groups covering a range from 0 - 14.1 MeV. For construction
of fluxes the fine mesh used is 20× 20× 6.19 cm3 with one energy group and the
coarse mesh is 20× 20× 18.56 cm3 with 5 energy groups.

From the mapping it can be seen that the constructed fluxes deviate from MCNP
results in most of the space-energy mesh and in some of them by more than 3
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Neutron source side

Figure 4.3: Flux Difference (MCNP Flux - Constructed Flux) as Multiples of the
Standard Deviation of MCNP Flux

standard deviations. This is caused by scaling which imposes the spectrum shape
in the coarse mesh on every fine mesh voxel it constitutes. This scaling does not
take into account changes in the flux gradient for all energy groups over space due
to averaging over a coarse mesh. Considering the three voxels nearest the source
(z = 275 cm), the course mesh spectrum is softer than the reference spectrum in
the first voxel and harder than the reference spectrum of the third voxel.

4.3.2.3 Difference in Photon Source Distribution

The photon source distribution and SDR were calculated for three different cases. A
reference case using a neutron flux distribution over 8× 8× 3.3 cm3 and 175 energy
groups, a second case using constructed fluxes with 8× 8× 3.3 cm3 and one energy
group for the fine spatial flux and 8× 8× 9.9 cm3 and 175 energy groups for the
energy spectrum, and a final case with the photon emission density calculated
using a flux over 8× 8× 9.9 cm3 and 175 energy groups which is then scaled by the
fine mesh flux 8× 8× 3.3 cm3 with one energy group.

In Fig. (4.4), by comparing the mapping of the photon emission density (top
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row of subfigures) for the 6th photon energy group two differences are apparent.
The first is that the photon source near the closure plate at the left edge of the scaled
case covers a region of vacuum since the source is based on a coarse spectrum
that is averaged over a region that contains vacuum. This necessitates a correction
of some kind to be applied when sampling the source to avoid sampling photon
source particles in the vacuum region. The second is that the strength of the
source is different especially near the neutron source (240 - 275 cm). Although
the distribution is similar in shape, the magnitude is different in regions with the
highest photon emission.

On the middle bottom sub-figure, mapping of the difference between the refer-
ence and scaled photon sources shows a pattern similar to that in Fig. (4.3). These
differences originate from a similar effect as described in the previous section, in
which the approximation in the neutron spectrum does not properly account for
different gradients in different neutron energy groups within a coarse mesh voxel.

The similarity between the scaled and constructed photon source distribution
mapping - which can be seen quantitatively from the mapping of the {Constructed
- scaled} difference on the bottom left subfigure - confirms that the scaled method
is equivalent to the constructed flux method. The similarity between the differ-
ences; {reference - scaled} and {reference - constructed} also supports that hypothesis.
Although similar in shape, differences exist in the source magnitudes in many mesh
voxels and both methods, scaled and constructed, give different results for the photon
flux and SDR compared to the reference case as will be discussed in the following
subsection.

4.3.2.4 SDR Results

Both the photon flux and the shutdown dose rate were calculated at the tally cells
defined in Fig. (4.2). Table 4.1 gives the results for case 1, based on the results
presented in Fig. (4.4): 8 × 8 × 3.3 cm3 and 8 × 8 × 9.9 cm3 for fine and coarse
spatial meshes, respectively. At such small size of the coarse mesh, changes in the
flux gradient are captured well enough for the scaled results to approach those of
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Reference - ScaledConstructed - Scaled Reference - Constructed

Figure 4.4: Mapping the Photon Emission Density [p/cm3· s] (sliced at x = 0 cm)

reference and constructed.
As the coarse mesh size is made larger (as it should be with the new R2S

workflow, scaled method) it can be shown that the scaled results begin to diverge
from both the reference and constructed. Table 4.2 gives the results for case 2 in which
the SDR is calculated over a different mesh: 8× 8× 9.9 cm3 and 8× 8× 29.7 cm3

for the fine and coarse meshes, respectively.

4.3.2.5 Difference in Photon Flux

Fig. (4.5) shows the results for the photon flux in the tally cells for cases 1 and 2. In
both cases the photon flux for the scaled method is lower than those from either the
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Table 4.1: SDR [µ Sv/h] for Case No. 1

Reference Scaled Constructed
r=15 [cm] 3.578× 109 3.341× 109 3.569× 109

r=30 [cm] 2.982× 109 2.913× 109 2.921× 109

r=45 [cm] 3.229× 109 3.154× 109 3.139× 109

r=60 [cm] 2.462× 109 2.389× 109 2.396× 109

Table 4.2: SDR [µ Sv/h] for Case No. 2

Reference Scaled Constructed
r=15 [cm] 3.599× 109 2.964× 109 3.610× 109

r=30 [cm] 2.995× 109 2.823× 109 2.929× 109

r=45 [cm] 3.227 × 109 3.135× 109 3.129× 109

r=60 [cm] 2.457 × 109 2.420× 109 2.393× 109

reference method and constructed flux method, especially for the center tally cells.
Since the only difference between these cases is the space-energy photon source
distribution, these differences has to be directly related to the altered photon source
distribution due to scaling compared to using a one step neutron transport over
the desired mesh to perform activation calculations.

Figure 4.5: Photon Flux [p/cm2· s] at the Tally Cells
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4.3.2.6 Remarks

From the above discussion three points were made clear. The first is that using the
new R2S workflow (scaling the photon source) gave similar results to the original
R2S workflow for coarse meshes "fine" enough to capture the important details of
the flux gradient and the results were comparable only for the SDR. The reason
for that could be related to the relative importance of photons at different energy
groups to the SDR, in other words the changes in the photon flux were in groups
that are less important to SDR. The second point is that using the scaling method to
calculate the heating or energy deposition might result in different values of the
calculated quantities compared to the original R2S workflow as the photon flux at
the tally bins was different as a result of the changes introduced to the photon source
distribution by the scaling process. Finally, as seen from the flux mapping, some
changes in the flux deviate by more than 3 standard deviations of the single-run
MCNP value which necessitates a propagation of error to the calculated SDR to
test the reliability of the results.

4.4 Statistical Error Propagation: from Neutrons to
the Photon Source

In the previous sections, it has been demonstrated that a variation of the R2S
workflow [17] that aimed at a reduction in the number of activation calculations
along with an increase in the spatial resolution of the obtained photon source
distribution was equivalent to the method of constructing the fine r - fine E fluxes
using two separate transport simulations. The modified R2S workflow uses a
high energy resolution neutron spectrum over a coarse spatial mesh, φ(rc,Enf ), for
the activation step to obtain the photon emission density over the coarse spatial
mesh, q(rc,Epf ). It is then scaled by the total flux magnitude over the desired fine
spatial mesh, F(rf,Enc ), producing the photon emission density, q(rf,Epf ). The final
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expression is copied here, Eq. (4.8).

q(rf,Epf ) = q(rc,E
p
f )F(rf,E

n
c ) =

∑
Enf

T(rc,Epf ,Enf )φ(rc,Enf )

 F(rf,Enc ) (4.8)

By analogy to the method for uncertainty quantification of the photon emission
density in the R2S workflow, as discussed in chapter 3, the uncertainty of the photon
emission density over the coarse spatial mesh can be estimated as shown in Eq.
(4.9). By applying the error propagation formula to Eq. (4.8), the uncertainty of
the photon emission density over the fine spatial mesh (scaled photon source) can
be obtained using Eq. (4.10). Note that the covariance terms in the calculation
of the relative error of Frf,Enc are ignored as demonstrated in the derivation of the
expression for σ2

F(rf,Enc )
in Appendix A.3. Also, the covariance between qrc,Epf and

Frf,Enc was also ignored since the covariance between φrc,Enf and Frf,Enc where shown
to be irrelevant under some conditions per Appendix A.4.

σ2
q
rc ,Ep

f

=
∑
Enf

T 2
rc,Epf ,Enf

σ2
φrc ,En

f

+ 2
∑
Enf<E

n
f ′

Trc,Epf ,Enf σφrc ,En
f
Trc,Epf ,En

f ′
σφrc ,En

f ′
ρ(φrc ,En

f
,φrc ,En

f ′
)

(4.9)

σ2
q
rf ,Ep

f

= (qrf,Epf )
2

(σqrc ,Ep
f

qrc,Epf

)2

+

(
σFrf ,Enc

Frf,Enc

)2
 (4.10)

Similar to the analysis of the uncertainty of the photon source in chapter 3, the
minimum and maximum uncertainty could also be obtained for the scaled photon
source using Eqs. (4.9) & (4.10). This can be achieved by setting the values of the
correlation coefficient, ρ(φrc,Enf ,φrc,En

f ′
), to 0 or 1 to calculate the minimum and

maximum uncertainty, respectively.

4.5 Demonstration Problem

For demonstration, the same model used in section 3.6 is used here. First, the
uncertainty of the photon emission density at several decay and irradiation times
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was estimated and the ratio between R of the photon sources obtained using the
R2Smesh workflow to R of the photon sources from R2S workflow, reference, were
compared. Figures showing plots of the ratio at four mesh voxels corresponding
to FW, front of BZ, back of BZ, and SR are presented. Second, a mapping of the
photon emission density at shutdown for an irradiation time of 105 s is presented.

4.5.1 Mesh Sensitivity Study

To study the effect of scaling the photon source on the uncertainty, the photon
emission density for several fine and coarse mesh combinations were compared to
the photon emission density from R2S workflow over the same spatial fine mesh.
The photon emission density was obtained in the R2S workflow, reference, using
a neutron flux distribution over a 10 × 10 × 10 cm3 spatial mesh and 175 energy
groups. The photon emission density was also obtained in the R2S workflow using
neutron spectrum over several coarse meshes, 20×20×21, 40×40×32, 50×50×42,
and 100× 100× 64 cm3, and scaled using the total neutron flux over 10× 10× 10
cm3 fine spatial mesh.

Figure (4.6) shows a plot of the ratio between R for the photon emission density
at the four chosen locations (FW, BZ front, BZ back, and SR) and R of the reference
photon emission density obtained in R2S workflow for 105 s irradiation time and
several decay times; 0, 103, 105, 108, and 109 s. It can be seen, except for FW and
back BZ regions, that R of the photon source in the new R2S workflow is lower than
that of the reference. This can be seen to be mainly due to an overestimation of the
photon emission density as shown in Fig. (4.7). In Fig. (4.8) a similar plot is shown
for the comparison of R for R2S and R for the modified R2S workflows for a photon
source over a 5× 5× 5 cm3 fine spatial mesh.
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Figure 4.6: Ratio of R at Different Fine-Coarse Mesh Combinations to a Reference
10× 10× 10 cm3 Mesh
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Figure 4.7: Photon Emission Density [p/cm3 · s] Distribution over Different Mesh
Configurations
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Figure 4.8: Ratio Of R at Different Fine-Coarse Mesh Combinations to a Reference
5× 5× 5 cm3 Mesh
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4.5.2 Uncertainty Quantification of the Scaled Photon Source

Figure (4.9) shows a mapping of the photon emission density obtained using 20×
20× 21 cm3 spectrum over a coarse spatial mesh and scaled using a total neutron
flux over a 10× 10× 10 cm3 fine spatial mesh. Compared to Fig. (3.14), at the end of
chapter 3, it’s clear from the strips near the source that the spectrum in each coarse
mesh is imposed during the scaling process on every fine mesh it constitutes. This,
although acceptable for coarse meshes small enough to resolve the neutron flux
gradients, could alter the photon emission density the coarser the mesh becomes.
Figures (4.10, 4.11, and 4.12) show the minimum R, R, and maximum R, respectively.
As mentioned before in chapter 3, R of the photon emission density obtained using
correlation matrices is close to the minimum. Also, it’s noticeable that the lowest R
of the source occurs near the neutron source where the photon emission density is
high. R of the photon emission density near the end of the BZ, Fig. (4.11), is high
as the neutron flux is expected to have higher uncertainties in that region being far
from the source. Similarly, Fig. (4.13) & (4.14) show mapping for the case of scaling
a photon source over a 20× 20× 21 cm3 by the total neutron flux over a 5× 5× 5
cm3 mesh.
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Figure 4.9: Photon Emission Density [p/cm3 · s] Distribution for 105 s Irradiation
and 0 s Decay Times, 20× 20× 21 cm3 / 10× 10× 10 cm3

Figure 4.10: Minimum R of the Photon Emission Density for 105 s Irradiation and 0
s Decay Times, 20× 20× 21 cm3 / 10× 10× 10 cm3
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Figure 4.11: R of the Photon Emission Density Obtained Using Correlation Matrices
for 105 s Irradiation and 0 s Decay Times, 20× 20× 21 cm3 / 10× 10× 10 cm3

Figure 4.12: Maximum R of the Photon Emission Density for 105 s Irradiation and 0
s Decay Times, 20× 20× 21 cm3 / 10× 10× 10 cm3
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Figure 4.13: Photon Emission Density [p/cm3 · s] Distribution for 105 s Irradiation
and 0 s Decay Times, 20× 20× 21 cm3 / 5× 5× 5 cm3

Figure 4.14: R of the Photon Emission Density Obtained Using Correlation Matrices
for 105 s Irradiation and 0 s Decay Times, 20× 20× 21 cm3 / 5× 5× 5 cm3
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4.6 Conclusions

In this chapter, a new version of the R2S workflow that aimed at reducing the
number of activation analyses while maintaining high resolution of the photon
source has been studied. It has been shown that scaling a photon source obtained
using a neutron spectrum over a coarse spatial mesh by the total spectrum over
the desired fine spatial mesh alters the photon emission density distribution. This
is due to imposing the local spectrum in each coarse spatial mesh on every fine
spatial mesh that it constitutes. A test problem has been studied where the effects
were prominent in the photon flux but didn’t affect the SDR. The reason for that
could be related to the relative importance of photons at different energy groups to
the SDR, in other words the changes in the photon flux were in groups that are less
important to SDR.

Following that, a method to quantify the photon emission density distribution
of the scaled photon source in the modified workflow has been introduced. It has
been shown that the modified workflow produces source distributions with lower
uncertainties compared to the original workflow. This is true only if the neutron
spectrum used to obtain the source distribution was over a mesh coarse enough to
resolve the flux gradients in the problem. The method has been demonstrated to
be effective and simple to apply to quantify the uncertainty of the photon emission
density using a demonstration problem.
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5 uncertainty quantification of the shutdown dose
rate

5.1 Introduction

In the R2S workflow, the photon emission density distribution obtained from ac-
tivation analysis, using the neutron flux distribution from the first transport step,
is used as a source for the subsequent photon transport step. By obtaining the
photon flux distribution in the problem domain, the SDR is then calculated using
proper flux-to-dose-rate conversion factors. As the neutron flux distribution in the
first transport step is obtained using Monte Carlo (MC) simulations, the produced
photon source will have an associated uncertainty, as discussed in chapters 3 and 4.
The uncertainty of the SDR reported by MC codes represents only the contribution
from the photon transport step to the uncertainty of the SDR and doesn’t account
for the contribution due to the photon source uncertainty.

It has long been considered that if the neutron flux was obtained with low
enough uncertainty, by simulating a large number of histories, that would mean a
lower uncertainty of the photon source distribution. The estimate of the uncertainty
of the SDR from the photon transport step was then considered as an adequate
estimate of the total SDR uncertainty. One of the methods to estimate the total
uncertainty from both transport steps which is computationally expensive and
might be prohibitive for large models, is the brute force technique. By running
many clones of the problem, the whole R2S workflow, with different random
number seeds for both transport steps, the standard deviation of the SDR can be
obtained. Aside from the obstacle arising from the complexity of the models, the
number of clones to obtain adequate estimates of the uncertainty are, on average,
large. Many questions arise as a result; how low should the uncertainty of the
neutron flux be to guarantee a low enough uncertainty of the photon source to
be ignored?, how many clones is enough to obtain an adequate estimate of the
uncertainty of the SDR using the brute force method?.
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Previous work, [12] [14] [30], provided methodologies to estimate the lower
and upper bounds or to calculate the uncertainty of the SDR based on some ap-
proximations. While those methods seem adequate for some problems, they often
require additional steps which are often cumbersome. In this chapter, a method is
introduced to estimate the total uncertainty of the SDR as well as the lower and
upper bounds, using the photon source uncertainty, via random sampling.

5.2 Statistical Error Propagation: from the Photon
Source to SDR

The SDR at a location,~r, in the problem domain due to a photon source distribution
can be expressed as in Eq. (5.1), where c(~r,Ep) is the contribution from a photon
source of unit strength at point ~r and energy Ep, q(~r,Ep) is the photon source
strength, and the superscript p denotes a photon. Discretization of Eq. (5.1) in
space and energy is carried out by integrating over the photon energy range of
interest and a region of space corresponding to the spatial mesh size. The SDR in
mesh voxel/geometry cell could then be expressed as a sum over the contributions
of all photon sources from all mesh voxels, v, and energy groups, Eph, in the problem
domain, as given by Eq. (5.2). The subscript h denotes an energy group number.
This is used here to follow the same convention introduced in chapter 3.

SDR =

∫
v

∫
Ep
c(~r,Ep)q(~r,Ep)dEp dv (5.1)

SDR =
∑
v

∑
h

cv,Ephqv,Eph (5.2)

The total uncertainty of the SDR due to both the neutron and photon transport
steps in the R2S workflow can be defined as in Eq. (5.3).

σ2
SDR,Total = σ

2
SDR,MC1 + σ

2
SDR,MC2 (5.3)
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where, σ2
SDR,MC1 is due to the uncertainty of the photon source distribution, the

contribution from the MC neutron transport step (MC1), and σ2
SDR,MC2 is the

contribution of the MC photon transport step (MC2). Since both the neutron and
photon transport steps are independent, not performed in the same simulation, the
covariance between their contributions to the uncertainty of the SDR is ignored.

There are two possible ways to calculate the contribution to the uncertainty of
the SDR due to the uncertainty from the neutron transport step; explicit and implicit.
The explicit method could make use of an expression of the SDR as a function of
the adjoint neutron source, q+

v,Eng , and the forward neutron flux, φv,Eng , obtained
in each mesh voxel. Using the definition of the SDR given by Eq. (5.4), where
the subscript g refers to a neutron energy group number, the uncertainty of the
SDR could be calculated by applying standard error propagation techniques. This
method has two possible drawbacks. The first drawback is that it can only estimate
the upper and lower bounds due to the difficulty of estimating the needed neutron
flux covariance terms, between combinations of mesh voxels and energy groups.
The second comes from relying on an adjoint photon flux to calculate the adjoint
neutron source which is usually obtained via deterministic methods and has a
built-in uncertainty due to discretization.

SDR =
∑
v

∑
g

q+
v,Engφv,Eng (5.4)

The implicit method, the subject of this chapter, utilizes random sampling to
propagate the uncertainty of the photon source to the SDR. As the SDR is calculated
via random sampling in MC simulations, it is possible to tally the uncertainty
associated with the contributions from each mesh element to the SDR given the
uncertainty of the photon source distribution in the problem domain in those mesh
elements. As will be shown, the method requires no modification to the sampling
routine in MC codes, only a custom input based on the source distribution is
provided for an additional photon transport step. The output of such step is then
manipulated to calculate the contribution of the photon source uncertainty to the
uncertainty of the SDR. It’s worth noting that a code modification to the tally and/or
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sampling routine could make it possible to obtain the total uncertainty of the SDR
in a single run.

5.2.1 Theory

By applying the standard error propagation technique, via Taylor expansion, to
Eq. (5.2), the uncertainty of the SDR can be derived as given by Eq. (5.5), where
σ represents statistical uncertainty and ρ represents a correlation coefficient. The
covariance between the photon source, qv,Eph , and the contribution, cv,Eph , for mesh
voxel v and photon energy group h is ignored as the two quantities are independent
since the uncertainty of the source comes from the neutron transport step.

σ2
SDR,Total =

∑
v,v ′

∑
h,h ′

(
∂SDR

∂cv,Eph

)
σc

v,Ep
h

(
∂SDR

∂cv ′,Ep
h ′

)
σc

v ′ ,Ep
h ′
ρ(cv,Eph , cv ′,Ep

h ′
)+

∑
v,v ′

∑
h,h ′

(
∂SDR

∂qv,Eph

)
σq

v,Ep
h

(
∂SDR

∂qv ′,Ep
h ′

)
σq

v ′ ,Ep
h ′
ρ(qv,Eph ,qv ′,Ep

h ′
) (5.5)

The first term in Eq. (5.5) represents the contribution to the uncertainty of
the SDR due to photon transport reported by MC codes, σ2

SDR,MC2, while the
second term represents the contribution due to the uncertainty of the photon
source, σ2

SDR,MC1. The second term, after some algebraic manipulations, can be
expressed as in Eq. (5.6), where Rq

v,Ep
h

is the relative error of qv,Eph .

σ2
SDR,MC1 =

∑
v

∑
h

c2
v,Eph

σ2
q
v,Ep
h

+2
∑
v,v ′

v<v ′

∑
h,h ′

h<h ′

cv,Ephσqv,Ep
h

cv ′,Ep
h ′
σq

v ′ ,Ep
h ′
ρ(qv,Eph ,qv ′,Ep

h ′
)

=
∑
v

∑
h

(cv,Ephqv,Eph)
2R2
q
v,Ep
h

+ 2
∑
v,v ′

v<v ′

∑
h,h ′

h<h ′

(cv,Ephqv,Eph)Rqv,Ep
h

(cv ′,Ep
h ′
qv ′,Ep

h ′
)Rq

v ′ ,Ep
h ′
ρ(qv,Eph ,qv ′,Ep

h ′
) (5.6)
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5.2.2 Implementation of the Implicit Method

Using mesh based sampling of the photon source, the normalized photon emission
density distribution serves as a probability density function (PDF) which governs
the frequency by which particles are sampled at different mesh voxels, v, and energy
groups, h. Eq. (5.2) can be written as in Eq. (5.7), where qtotal =

∑
v

∑
h qv,Eph is

the total photon emission density, and fv,Eph is the relative strength of the photon
source, qv,Eph , and is also the sampling frequency of a particle from qv,Eph . If we
considered random sampling from the PDF represented by Eq. (5.7), N samples
drawn from the PDF, we can switch from summation over v and h to a summation
over i, where i is the sample number. Eq. (5.7) represents how SDR is calculated in
the photon transport step in R2S, by tallying the average contribution of all sources
in the problem domain to the SDR at the different locations of interest.

SDR = qtotal
∑
v

∑
h

cv,Ephfv,Eph = qtotal

(
1
N

∑
i

ci

)
(5.7)

The same mesh based sampling technique can be utilized to propagate the uncer-
tainty of the photon source to the SDR. This method has an advantage; the photon
sources at different mesh voxels, v, and energy groups, h, can be considered as
independent, hence avoiding the second term in Eq. (5.6). By analogy to switching
from v & h notations to i in writing Eq. (5.7), Eq. (5.6) can be rewritten as given in
Eq. (5.8), where R̃q

v,Ep
h

is defined as Rq
v,Ep
h

√
fv,Eph .

σ2
SDR,MC1 = q

2
total

∑
v

∑
h

(cv,Ephfv,Eph)
2R2
q
v,Ep
h

= q2
total

∑
v

∑
h

(
cv,EphRqv,Ep

h

√
fv,Eph

)2
fv,Eph = q2

total

∑
v

∑
h

(cv,EphR̃qv,Ep
h

)2fv,Eph

= q2
total

(
1
N

∑
i

(ciR̃i)
2

)
(5.8)

The contribution of the photon transport step, σ2
SDR,MC2, to the total uncertainty
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of the SDR can be calculated as given in Eq. (5.9), where R2
SDR,MC2 is the relative

error reported by the MC code.

σ2
SDR,MC2 = R

2
SDR,MC2SDR

2 (5.9)

A dedicated MC simulation, similar to the photon transport step, to estimate
the contribution to the total uncertainty of the SDR due to the photon source
uncertainty, σ2

SDR,MC1, can then be performed by proper adjustment of input. In
MC codes, weights can be assigned to the problem domain and is often utilized
when a biased PDF is used for sampling to maintain a fair game, the weight is
equal to the reciprocal of the biased sampling frequency. In a similar way, if a
PDF representing the photon emission density distribution in the problem domain,
fv,Eph , is used for sampling, it is possible to modify the tally, µ̂, by assigning weights
equal to the modified relative error of the photon source, R̃q

v,Ep
h

. The reported
relative error by the MC code, σ2

µ̂, Eq. (5.10), can then be manipulated to obtain the
uncertainty given by Eq. (5.8). This is demonstrated in Eq. (5.11).

σ2
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q2
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 1
N

∑
i

(ciR̃i)
2 −
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1
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∑
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)2
 (5.10)

where µ̂ = qtotal 1
N

∑
i(ciR̃i)

σ2
SDR,MC1 = q

2
total

(
1
N

∑
i

(ciR̃i)
2

)
= µ̂2 [1 +NR2

µ̂

]
(5.11)

The total uncertainty of the SDR due to both the neutron and photon transport
steps can then be calculated as in Eq. (5.12) and the relative error as given by Eq.
(5.13). While the second term, R2

SDR,MC2, goes down with the number of histories,N,
the first term should reach an asymptotic value due to the fact that it’s independent
of N. By considering the tally, µ̂, its value is expected to be lower by few orders of
magnitude compared to the SDR value as a result of the way the tally has been set
up. In Eq. (5.8), the tally is the mean of the square of the contributions from each
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mesh element, mesh voxel v and energy group h, multiplied by a weight equal to
the fractional photon emission of the photon source,

√
fv,Eph , and Rq

v,Ep
h

of the mesh
element from which the contribution originated. This will result in a tally skewed
towards smaller values by few orders of magnitude compared to the value of the
SDR. As a result, an acceptable value for Rµ̂ would be� 0.1.

σ2
SDR,Total = σ

2
SDR,MC1 + σ

2
SDR,MC2 = µ̂

2 [1 +NR2
µ̂

]
+ R2

SDR,MC2SDR
2 (5.12)

R2
SDR,Total =

(
µ̂

SDR

)2 [
1 +NR2

µ̂

]
+ R2

SDR,MC2 (5.13)

5.2.3 Total R Using Random Sampling

To demonstrate the applicability of the method described by Eq. (5.13), a 1-D
problem was set up. The problem consists of a discrete PDF with a finite number of
bins, from 1 to 1000. The average bin number was then tallied by means of random
sampling. This problem was chosen because it is possible to predict the tally and
assess the convergence of its relative uncertainty. At the top right corner of Fig.
(5.1), a mapping is shown of 10 different PDFs, sampled individually. Starting
with uniform at the bottom, to monotonically increasing in the middle, and finally
random at the top. Relative errors, Rbin, were assigned to all the bins in all PDFs, as
shown in the middle plot at the top row on the figure, changing from 0 at the bottom,
to monotonically increasing, to monotonically decreasing, and finally random at the
top. This is to simulate different situations of a uniform PDF with Rbin = 0, uniform
PDFs with increasing Rbin, increasing PDFs with increasing Rbin, increasing PDFs
with decreasing Rbin, and finally random PDFs with randomly assigned Rbin. Each
plot of the remaining plots corresponds to R of bin number tally starting from the
bottom PDF "PDF # 1" to the top PDF "PDF # 10".

In Fig. (5.1), R2 refers to the relative error of samples drawn randomly from the
corresponding PDFs, Rt refers to the total relative error of sampling calculated using
Eq. (5.13). Rts represents a special case where R for each sample was also randomly
sampled from a Normal distribution, N(0, Rbin). It can be seen that in all cases R2
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Figure 5.1: Total Relative Error Using Sampling on Different PDFs
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diminishes as the number of samples increases, as expected. The total relative error,
Rt & Rts, on the other hand levels off at a certain value which is expected also since
this is the contribution to the total uncertainty from the uncertainty associated with
the PDFs, Rbin.

To show the convergence of the method, Rt of the tally was decomposed into two
components, one from sampling, R2, and another from the uncertainty of the PDF
values in each bin, R1, which is calculated using (5.11). This is to be analogous to
the case of SDR uncertainty which comes from two separate contributions. Figure
(5.2) shows a mapping of the bin number tally for a variation of 10 PDFs similar
to those described in the previous two paragraphs with bin numbers increased
to 10000. From the figure, it can be seen that R2, from sampling, decreases with
the number of samples drawn, as expected. R1, which is the component of Rt that
comes from Rbin, can be seen to level off at certain value, which is the expected
behavior since the contribution to the total uncertainty from that of the PDF should
remain constant independent of the samples drawn. This demonstrates that with
sufficient samples, the contribution of the uncertainty of the sampling PDF to the
total uncertainty of the tally can be estimated to a good accuracy.

5.3 Demonstration Problem

For demonstration, the same model used in section 3.6 is used here. First, analyses
were performed on the convergence of the statistical uncertainty of the SDR from
the photon emission density, RSDR,MC1. Following that, the total uncertainty of
the SDR using different source distributions were calculated and both RSDR,MC1 &
RSDR,MC2 were examined. Finally, the method of SDR uncertainty quantification
by random sampling is demonstrated.

5.3.1 Convergence Of RSDR,MC1

As mentioned in previous sections, the contribution of the photon source uncer-
tainty to RSDR,Total should be independent of the number of histories processed
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Figure 5.2: Decomposition of Total Relative Error for Sampling on Different PDFs
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in the MC dedicated simulation for RSDR,MC1 quantification. That means that if
enough samples are drawn then the contribution of their uncertainty to RSDR,Total

should be stable when using random sampling for uncertainty quantification. This
was found to be true before for the toy problem of different PDFs in the previous sec-
tion. Now this is demonstrated on the FNSF cylindrical problem where RSDR,MC2

has been obtained for an irradiation time of 105 s and for different decay times
with the SDR obtained over a 10 × 10 × 10 cm3 spatial mesh. Figure (5.3) shows
a plot of RSDR,MC1 at four points at the mid-plane corresponding to FW, front of
BZ, back of BZ, and SR. It can be seen from the figure that RSDR,MC1 converges to
its asymptotic value after 107 histories in MC simulation. It is worth mentioning
that the mesh consists of 4800 spatial and 24 energy intervals and with 107 histories
simulated that means ∼ 100 samples were drawn per mesh element. This is key
to convergence, enough samples has to be drawn from each mesh element. This
supports the findings of the previous section and proves that random sampling
can be used to calculate the contribution of the photon source uncertainty to the
SDR, RSDR,MC1 from Eq. (5.13).

5.3.2 Mesh Sensitivity Study

The described method of utilizing random sampling to propagate the uncertainty
of the photon source to the SDR can then be used to study the sensitivity of the
SDR and RSDR,Total to mesh size and different workflows, R2S vs modified R2S.
Three different photon sources were used to calculate the SDR over a 10× 10× 10
cm3 spatial mesh. The first photon source was obtained using a neutron spectrum
over 5 × 5 × 5 cm3 spatial mesh and the second using a neutron spectrum over
10 × 10 × 10 cm3 spatial mesh. Both source distributions were obtained for an
irradiation time of 105 s and at different decay times using the R2S workflow. The
third photon source distribution was obtained using the modified R2S workflow,
photon source scaling. The photon source distribution was first obtained using a
20× 20× 21 cm3 for an irradiation time of 105 s and at different decay times and
then scaled by a total neutron flux over a 10× 10× 10 cm3.
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Figure 5.3: Convergence of RSDR,MC1 of the SDR at FW, BZ, and SR

The three sources were then used to calculate the SDR and RSDR,Total over the
FNSF cylindrical model. For comparison, a different calculation of the SDR and
RSDR,Total was also performed using brute force of a photon source obtained using
R2S workflow over 10× 10× 10 cm3 mesh. The result of the different clones, 200
with different random number seeds for both transport steps, were then used to
calculate the mean and R of the SDR distribution. Figure (5.4) shows plots of the
SDR values at different decay times at four points at x = 20 cm, y = -20 cm, and
z = 176.5, 208,5, 261,63, 293.83 cm, corresponding to SR, back of BZ, front of BZ,
and FW, respectively. From the figure, it can be seen that scaling the photon source
results in an overestimation of the SDR especially at higher decay times.

Figure (5.5) shows plots of RSDR,MC2 and RSDR,Total of the SDR values shown
in Fig. (5.4). By examining both figures, it can be seen that although the 5× 5× 5
cm3 photon source produced slightly lower SDR values at different decay times



95

Figure 5.4: SDR [µ Sv/hr] from Photon Sources over Different Mesh Sizes and for
105 s Irradiation Time

compared to the 10×10×10 cm3 photon source, the uncertainty, RSDR,MC1, increased
at shutdown especially at the back of the BZ. This suggests that the uncertainty
of the photon source has to be higher to result in such an increase in RSDR,Total.
The difference between RSDR,Total and RSDR,MC2 is the contribution of the photon
source uncertainty, RSDR,MC1. While there’s no specific trend of that value for the
different sources at the different decay times, it was found that at low decay times, at
shutdown, on average the photon source over the finer mesh has higher uncertainty
associated, Fig. (3.19) vs (3.16), and in turn contributed a higher uncertainty to the
RSDR,Total.

Attention was paid to the case of 10 × 10 × 10 cm3 photon source at 105 s
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Figure 5.5: RSDR,MC2 and RSDR,Total from Photon Sources over Different Mesh Sizes
for 105 s Irradiation Time

decay time at BZ and SR. It can be seen that although the contribution of the
photon transport step to RSDR,Total is low, the contribution from the photon source
uncertainty increased compared to the same cases for 0 s decay time. Two causes
have been found to be responsible for such an increase. The first is the decrease
in the photon emission density compared to the 0 s case, Fig. (5.6). Although
the values in the T matrix have decreased, the multi-group neutron flux values
and its standard deviations caused the photon emission density to decrease by
a higher magnitude compared to 0 s case relative to the decrease in uncertainty,
standard deviation, of the source. Figure (5.7) shows a plot of RSDR,MC1, RSDR,MC2,
RSDR,Total and photon source R. The second cause of the increase in RSDR,MC1
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comes from sampling. The photon emission density in the problem was found to
decrease faster in all regions compared to the stabilizing and kink shells. This is
due to the decay of other isotopes with shorter half lives compared to tungsten,
W-187, that is found in the stabilizing and kink shells which becomes the major
contributor to the photon emission density at decay times after shutdown. This
means a local increase in the fractional photon emission density at the shells and
as a result a higher contribution from that region which has a high uncertainty
associated.

Figure 5.6: Photon Emission Density [p/cm3 · s] over 10× 10× 10 cm3 Mesh for 105

s Irradiation Time
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Figure 5.7: RSDR,MC1, RSDR,MC2, RSDR,Total, and Photon Source R From a Photon
Source over 10× 10× 10 cm3 Mesh for 105 s Irradiation Time
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5.3.3 Uncertainty Quantification of the Shutdown Dose Rate

To show the estimated uncertainty of the SDR, RSDR,Total, an irradiation time of
105 s and a decay time of 0 s have been chosen. The same photon emission density
obtained using a neutron spectrum over a 10× 10× 10 cm3 spatial mesh was used,
to continue the analyses performed in chapter 3 for the same photon source. Figure
(5.8) shows a mapping of the SDR over a 10×10×10 cm3 spatial mesh and Fig. (5.9)
shows a mapping of the relative error, RSDR,MC2. This quantity is the contribution of
the photon transport step to RSDR,Total. It was mentioned before that such quantity
is often considered as being representative of the total uncertainty of the SDR. This
has been found not to be the case especially in regions where there is a high photon
source with an associated high uncertainty, often in regions far from the neutron
source with high photon emission density.

Figure 5.8: SDR [µ Sv/hr], 10× 10× 10 cm3, from a Photon Source, 10× 10× 10
cm3, for 105 s Irradiation and 0 s Decay Times

Figure (5.10) shows a mapping of the minimum total R of the SDR, RminSDR,Total,
which is the value obtained by considering the minimum R of the photon emission
density. In Fig. (5.11), the ratio ofRminSDR,Total toRSDR,MC2 is presented. The mapping
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Figure 5.9: RSDR,MC2, 10× 10× 10 cm3, from a Photon Source, 10× 10× 10 cm3, for
105 s Irradiation and 0 s Decay Times

shows mesh voxels with ratios > 10% and it can be seen that some mesh voxels
exceed a ratio of 50%. This means that taking the R reported by MC codes at the
end of the photon transport step, RSDR,MC2, as being RSDR,Total will underestimate
the SDR uncertainty especially in regions with high photon emission density with
a high associated uncertainty. This can be deduced from the figure since the mesh
voxels with ratios > 10% are found near the end of the BZ and the kink shell where
the photon emission density is high from tungsten and it has a high associated
uncertainty from the neutron fluxes. Figure (5.12) shows the maximum total R of
the SDR, RmaxSDR,Total and the ratio to R from the photon transport step, RSDR,MC2, is
shown in Fig. (5.13). It’s immediately noticeable that the regions where the ratio
exceeds 10% are wider than the case in Fig. (5.11). This is due to the increased
photon uncertainty compared to the minimum, Fig. (3.17) vs Fig. (3.15).
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Figure 5.10: RminSDR,Total, 10× 10× 10 cm3, from a Photon Source, 10× 10× 10 cm3

for 105 s Irradiation and 0 s Decay Times

Figure 5.11: Ratio of RminSDR,Total to RSDR,MC2, 10×10×10 cm3, from a Photon Source,
10× 10× 10 cm3, for 105 s Irradiation and 0 s Decay Times



102

Figure 5.12: RmaxSDR,Total, 10× 10× 10 cm3, from a Photon Source, 10× 10× 10 cm3,
for 105 s Irradiation and 0 s Decay Times

Figure 5.13: Ratio of RmaxSDR,Total to RSDR,MC2, 10×10×10 cm3, from a Photon Source,
10× 10× 10 cm3, for 105 s Irradiation and 0 s Decay Times
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5.4 Conclusions

In this chapter, a method was developed to estimate the contribution of the photon
emission density distribution to the total uncertainty of the SDR. The method has
been demonstrated on simple toy problems and then applied to the cylindrical
FNSF problem. It has been shown that in some regions of the problem domain,
taking the uncertainty of the SDR reported by MC codes in the photon transport
step, RSDR,MC2, as being representative of the total uncertainty, RSDR,Total, underes-
timates the uncertainty of the SDR. This was found to be more important in regions
with high photon emission density and a high associated uncertainty which are
often found far from the source with material composition that dominates the
photon yield compared to surrounding regions.
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6 uncertainty quantification in a production level
problem

In chapter 3, the uncertainty of the photon source was calculated by applying
standard error propagation techniques to an expression of the photon emission
density as a function of the multi-group neutron flux distribution. In chapter 5,
a method to calculate the contribution of the photon source uncertainty to the
RSDR,Total was introduced. Both methods were applied to a reduced model of the
FNSF, a cylindrical geometry with planar boundary source and radial build that
corresponds to the OB region of the FNSF. In this chapter, the developed methods
are applied to a full scale facility design to show the efficacy of the developed
workflow in quantifying the total uncertainty of the SDR in FES. In section 6.1 an
introduction to the FNSF facility will be given followed by a description of the
facility in section 6.2. In section 6.3 the results of the neutron transport step will
be discussed followed by a discussion of the photon source distribution and the
calculation of its uncertainty in section 6.4. Sections 6.5 and 6.6 will be dedicated to
introducing the SDR results and a discussion of the calculated uncertainty due to
neutron and photon transport steps.

6.1 Introduction

The Fusion Energy Systems Studies - Fusion Nuclear Science Facility (FESS-FNSF)
[4] is an important step on the US fusion path from test facilities like ITER [3] to a
demonstration facility like US DEMO [27]. The FNSF is an experimental facility
with the purpose of establishing a database on the behavior of different materials
and components in conditions similar to those expected in prospective power plants.
The FNSF subjected to study in this chapter is a tokamak-based facility with 518 MW
fusion power and consists of 16 sectors - including a 2 cm maintenance clearance
in between - with ports and testing modules cutting through it. A top view of
the facility with all ports identified is shown in Fig. (6.1) and a planar view of the
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CAD model of one sector is shown in Fig. (6.2) with all regions identified. The
composition of different OB regions is listed in Table 6.1. The facility was the subject
of previous studies [33] [34] that assessed tritium self-sufficiency, shielding of the
magnet, and radiation damage.

Figure 6.1: Top View of FESS-FNSF Design

A modular facility like the FNSF with integrated engineering systems will ne-
cessitate interventional maintenance work to repair/replace different components
during the lifetime of the facility. Components near the plasma core will get acti-
vated due to exposure to the high energy (∼ 14.1 MeV) neutrons produced in the
plasma due to deuterium - tritium (D-T) fusion reactions. Such neutrons pene-
trate deep into system components and cause transmutations of existing nuclides,
the products of which are radioactive that decay by emitting photons long after
shutdown of the facility. An accurate calculation of the SDR from decay photons
is necessary to establish the maintenance schedule and will aide in the design of
shielding for activated components outside the core.
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Figure 6.2: CAD Model of a Single FESS-FNSF Sector

Table 6.1: Material Composition of Different OB Regions in FNSF

Region Material Composition [Volume %]
2 mm W armor 91.3% W, 8.7% void

3.8 cm FW 34% FS (F82H), 66% He
94 cm Breeding Zone 73.7% LiPb (90% Li-6), 14.9% He/void, 7.5% FS, 3.9% SiC

2 cm Back Wall 80% FS, 20% He
2 cm Stabilizing Shells 100% W alloy

6 cm He Manifolds 30% FS, 70% He
20 cm Structural Ring 28% FS, 20% He, 52% B-FS Filler

10 cm VV 60% 3Cr-FS, 40% He
17 cm LT Shield 39% 3Cr-FS, 29% B-FS, 32% H2O

Coil Case 100% SS-316LN
Winding Pack 30% JK2LB Steel, 25% Cu, 25% Ternary Nb3Sn,

10% Hybrid Electric Insulator,
10% Liquid He 30% JK2LB Steel, 25% Cu, 25% Ternary Nb3Sn,

10% Hybrid Electric Insulator, 10% Liquid He

6.2 Problem Description

The design philosophy of a modular facility like the FNSF considers extraction
of individual sectors for maintenance away from the core. The proposed scheme
[35] involves radial extraction of sectors through maintenance port doors that are
extensions to the vacuum vessel (VV) by design. The sector design allows of such
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operation since the entire sector is enclosed in a structural ring (SR) that provides
support for all subsystems like the divertors, breeding blankets, etc. The approach
assumes wait times of a sector in place after shutdown. The LiPb coolant will
then be drained and replaced by He to remove residual heat and the sector will be
extracted and transported to a hot cell in a transport cask.

The FNSF will go through many operational phases of the plasma (H-He, D-
D, D-T, etc.) and the third phase lasts ∼ 2.75 years. The facility was the subject
of a recent study [36] that assessed the SDR at different maintenance stages. In
this chapter, the uncertainty of the SDR at one of this stages is calculated. The
uncertainty of the SDR is calculated for a sector inside the core immediately after
shutdown following a single pulse of 2.75 years irradiation time. The CAD-based
R2S workflow (PyNE-R2S) [37] from the PyNE [38] software library was used with
the fusion evaluated nuclear data library (FENDL2.1) [39] and the flux-to-dose-rate
conversion factors ICRP-74 [22]. Transport simulations were performed using DAG-
MCNP5, a version of MCNP5 [5] that has been enhanced by the DAGMC [7] toolkit
which utilizes acceleration techniques to achieve efficient ray tracing directly on
CAD solid models. Activation analysis was performed using the activation code
ALARA [19].

6.3 Neutron Transport Results

The 16 sectors in FNSF differ only by the type of diagnostics/ports cutting through
each one. As diagnostics/ports will have clearance gaps, their main impact would
be an increase in the neutron streaming to the back side of the sectors and the
shielding plugs at the end of the ports. A previous study [36] found that by analogy
to previous tritium breeding analyses [33] [34], the effect of a reduction of the active
volume of a sector due to diagnostics/ports on activation is higher than the effect
of the increased neutron flux at the back end due to streaming. As a result, this
work studies the SDR on a base sector, one without any ports/diagnostics, as it is
expected to provide a higher photon emission density.

The model used for neutron transport is a wedge spanning 22.5o as shown in Fig.
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(6.3). As mentioned above, the analysis in this chapter considers base sectors and
because of symmetry of the 16 sectors in the toroidal direction, reflective BCs were
applied on both sides of the model for one sector to simulate neutron transport in
the 360o model of the facility. The plasma source was modeled as three concentric
tori with varying emission densities; 63%, 32%, 5% from the inner to the outer tori,
respectively. The plasma region has a neutron source strength of 1.8372× 1020 n/s
and because of symmetry the source strength considered for the wedge model
was 1.1483× 1019 n/s. For the transport calculation, 108 histories in MCNP where
simulated.

Figure 6.3: CAD Model for Neutron & Photon Transport

Figure (6.4) shows a mapping of the total neutron flux distribution, at plane
y = -20 cm, calculated using a Cartesian mesh with 14 × 14 × 14 cm3 voxels. On
the figure, it can be seen that there is a reduction of the flux magnitude of about
two orders of magnitude on the outboard and three orders of magnitude on the
inboard, between the FW and back of the SR at the mid plane. R of the neutron flux
distribution is well below 3% as shown in the mapping of R in Fig. (6.5), at plane y
= -20 cm.
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Figure 6.4: Total Neutron Flux Distribution [n/cm2 · s] over a 14 × 14 × 14 cm3

Mesh

Figure 6.5: R of the Total Neutron Flux Distribution over a 14× 14× 14 cm3 Mesh
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6.4 Photon Source Uncertainty Quantification

The obtained neutron flux distribution was then used to calculate the photon
emission density distribution. This was achieved by using ALARA code and the R2S
workflow. The photon source was obtained at shutdown after an irradiation time of
2.75 years. Figure (6.6) shows a mapping, at plane y = -20 cm, of the photon emission
density distribution. The photon emission density can be seen to be relatively higher
than surrounding regions at the FW, stabilizing shells, divertor plates, and the kink
shell near the end of the sector. This increase is caused by isotopes dominating the
photon emission such as; Pb-207m (42.57%), W-187 (29.25%), and W-183m (13.56%)
[36].

Figure 6.6: Photon Emission Density Distribution [p/cm3 · s] at Shutdown for 2.75
years Irradiation Time

The minimum and maximum R of the photon emission density were then
calculated using the method for uncertainty quantification of the photon source
introduced in chapter 3. Figures (6.7) & (6.8) show a mapping, at y = -20 cm plane,
of the minimum and maximum R of the photon emission density, respectively. It
can immediately be noticed that both Rmin and Rmax are relatively lower at the
FW compared to the other regions of the sector. This is due to two factors. First,
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being close to the plasma, the neutron flux distribution has low uncertainty at the
plasma facing regions. Second, a high photon emission density from tungsten in
the W armor. Also, a higher Rmin and Rmax at the kink shell can be noticed. This
could be mainly attributed to a higher neutron flux uncertainty as this region is
deep inside the sector and away from the plasma with no direct streaming paths.

Figure 6.7: Rmin of the Photon Emission Density Distribution at Shutdown for 2.75
years Irradiation Time

6.5 SDR Results

The photon source distribution obtained was then used as a source definition for
the subsequent photon transport step. The SDR was calculated using ICRP-74
flux-to-dose-rate conversion factors. Figure (6.9) shows a mapping, at y = -20 cm
plane, of the SDR over the entire sector over a 14× 14× 14 cm3 spatial mesh. As
expected, the SDR levels are highest at the core and at the FW. It then goes down by
about two orders of magnitude as we move radially from the FW towards the SR.
The SDR level is very low behind the VV and LT shield. This was part of the design
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Figure 6.8: Rmax of the Photon Emission Density Distribution at Shutdown for 2.75
years Irradiation Time

philosophy of FNSF, each layer provides protection to the subsequent layers, so
collectively the whole sector provides protection for the magnets behind the VV.

Figure 6.9: SDR [µ Sv/hr] over a 14× 14× 14 cm3 Mesh

The relative error of the SDR from the photon transport step, RSDR,MC2 was
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reported by the MC transport code, DAG-MCNP5. A mapping, at y = -20 cm plane,
of RSDR,MC2 is shown in Fig. (6.10). It can be seen that RSDR,MC2 is well below 4%
inside the sector near the FW and goes up to ∼ 10% behind the SR. The lowest
RSDR,MC2 occurs in the plasma region where there’s vacuum and due to facing the
highest photon emission density at FW, and the highest is behind the SR. RSDR,MC2

is > 25% behind the VV and LT shield where fewer photons are able to traverse the
sector where the LiPb region cause attenuation of the flux. This is expected since
the shield and VV contain ferritic steel and lead resulting in effective shielding
against photons. The high uncertainty of the SDR behind the VV is of no concern
in this study since the main focus is on the SDR inside the VV.

Figure 6.10: Relative Error of the SDR from Photon Transport (RSDR,MC2) over a
14× 14× 14 cm3 Mesh

6.6 SDR Uncertainty Quantification

In literature [12], the uncertainty of the SDR from the photon transport step was
considered as being representative of the the total uncertainty given that the neutron
spectrum used to obtain the photon source had low enough uncertainty. In chapter
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5, this has been shown to be missing a component of the total uncertainty. The
total uncertainty of the obtained SDR of the sector was estimated by combining
both the uncertainty from the photon transport step, RSDR,MC2, with the calculated
uncertainty from the neutron transport step, RSDR,MC1. Since in chapter 4 a method
was introduced to quantify the minimum and maximum uncertainty of the photon
source, both were combined individually with RSDR,MC2 and the bounds of the total
SDR uncertainty, RminSDR,Total & RmaxSDR,Total, were calculated. Figure (6.11) shows
a mapping, at y = -20 cm plane, of the minimum total uncertainty, RminSDR,Total,
which was obtained using RSDR,MC2 and RminSDR,MC1. To show the difference between
RminSDR,Total and RSDR,MC2, the ratio between the two, R

min
SDR,Total
RSDR,MC2

, is shown in Fig.
(6.12). The figure shows that in many of the mesh voxels on the OB region RminSDR,MC1

amounts to at least ∼ 10% of RSDR,MC2.

Figure 6.11: RminSDR,Total of the SDR over a 14× 14× 14 cm3 Mesh

In the same way described in the previous paragraph, Fig. (6.13) shows a
mapping, at y = -20 cm plane, of the maximum total uncertainty, RmaxSDR,Total, which
was obtained using RSDR,MC2 and RmaxSDR,MC1. The noticeable increase in RmaxSDR,Total

over RminSDR,Total occurs near the stabilizing shells and in the LiPb cooling channels
where the photon source is high. This is to say that the photon emission density
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Figure 6.12: Ratio of RminSDR,Total to RSDR,MC2 of the SDR over a 14 × 14 × 14 cm3

Mesh

contributes the most to the uncertainty of the SDR due to the high emission density
in those regions that has an associated high uncertainty. This can be shown by
consulting Fig. (6.8) where the uncertainty is high in the LiPb cooling channels
and at the kink shell near the SR. To show the difference between RmaxSDR,Total and
RSDR,MC2, the ratio between the two, R

max
SDR,Total
RSDR,MC2

, is shown in Fig. (6.14). The figure
shows that in most of the mesh voxels on the OB region RmaxSDR,MC1 amounts to at
least ∼ 10% of RSDR,MC2. Although that is comparable to the ratio in Fig. (6.12),
it can be seen that more voxels are now missing that ratio in case RSDR,MC2 was
taken to be the total uncertainty of the SDR. Although the total uncertainty is well
below the accepted limits, being < 10%, this could be significant in other complex
irradiation scenarios or for different material compositions.

Figures (6.15) & (6.16) show a plot of the SDR, RminSDR,Total, RmaxSDR,Total, RSDR,MC2,
RminSDR,MC1, and RmaxSDR,MC1 for mesh voxels at z = 8 cm along the mid-plane half
way between sector side walls. It can be seen that the SDR is high in the LiPb
cooling channels compared to the surrounding regions and decreased by many
orders of magnitude in regions behind the VV. RminSDR,Total and RmaxSDR,Total are close
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Figure 6.13: RmaxSDR,Total of the SDR over a 14× 14× 14 cm3 Mesh

Figure 6.14: Ratio of RmaxSDR,Total to RSDR,MC2 of the SDR over a 14 × 14 × 14 cm3

Mesh
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to RSDR,MC2 in nearly all regions along the line of mesh voxels except in the LiPb
and plasma regions where there’s a noticeable difference due to a high contribution
from the uncertainty of the high photon source.

Figure 6.15: SDR [µ Sv/hr] for Mesh Voxels at z = 8 cm along Mid-plane over a
14× 14× 14 cm3 Mesh

Figure 6.16: RminSDR,Total, RmaxSDR,Total, RSDR,MC2, RminSDR,MC1, and RmaxSDR,MC1 of the SDR
for Mesh Voxels at z = 8 cm along Mid-plane over a 14× 14× 14 cm3 Mesh
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6.7 Conclusions

In this chapter, the method for uncertainty quantification of the photon source and
SDR, introduced in chapters 3 & 5, were applied to the FNSF facility. First, neutron
transport simulation was performed and the obtained neutron flux distribution
was used to produce the photon emission density distribution in the facility. The
bounds of R of the photon source were calculated and the photon emission density
distribution was used as a source for the photon transport step. The bounds of the
total R of the SDR were then calculated. It has been demonstrated that using the
value of R reported by MC codes in the photon transport step as being representative
of the total R of the SDR results in an underestimation of at least 10 % in some mesh
voxels, in the cases studied.
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7 conclusions and future work

7.1 Conclusions

In this work, a method to estimate the uncertainty of the photon emission density
due to the statistical uncertainty of the neutron flux distribution in the R2S workflow
has been developed. Following that, a method to propagate the uncertainty of the
photon source to the SDR was also developed. For the uncertainty quantification of
the photon source, the developed method has been demonstrated to be efficient in
estimating the upper and lower bounds of the uncertainty. An approximation to the
covariance between the neutron fluxes in different energy groups has been studied
and can be utilized to estimate the uncertainty of the photon emission density. The
method has also been applied to a variation of the R2S workflow that utilizes scaling
of a photon source obtained over a coarse spatial mesh by the total neutron flux
over a fine mesh. The method has also been demonstrated to be useful for mesh
sensitivity analysis, which would lead to an optimization of the meshing scheme
to minimize the photon source uncertainty. For the uncertainty quantification of
the SDR, the new method utilizes random sampling to estimate the contribution of
the photon source uncertainty to the total uncertainty of the SDR. Both methods
has been demonstrated on simple problems as well as a production-level facility
design.

In chapter 3, the standard error propagation formula was applied to an expres-
sion of the photon emission density yielding an expression for the uncertainty
of the photon emission density that results from the statistical uncertainty of the
neutron flux distribution in MC simulations of FES. Analyses have been conducted
to study the correlation between the neutron fluxes at different energy groups and
it yielded some approximations of the correlation coefficients. The approxima-
tions where studied to facilitate the quantification of the uncertainty of the photon
emission density. While the derived formula for the photon emission uncertainty
can be efficiently used to estimate the upper and lower bounds, analyses were
performed to show that the correlation matrices for different elements/mixtures
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can be obtained separately and used to estimate the uncertainty over a mesh and
that was found to be an acceptable approximation to the correlation coefficients.
The approximation of the correlation coefficients builds on the dependence of the
correlation coefficients on the nuclear cross section of the material constituents.
A best estimate of the correlation coefficients was found to be one where all the
neutron energy groups are populated which is often obtained by calculating the
correlation coefficients over a simple problem with reflective BCs. The developed
method has been demonstrated on a simple cylindrical problem using the neutron
spectrum over two different mesh configurations.

In chapter 4, the method developed in Ch. 3 was applied to a new version of
the R2S workflow, that aimed at reducing the number of activation calculations
while maintaining high resolution of the photon source. It has been shown that
scaling a photon source obtained using a neutron spectrum over a coarse spatial
mesh by the total neutron flux over the desired fine spatial mesh alters the photon
emission density distribution. This is due to imposing the local spectrum in each
coarse spatial mesh on every fine spatial mesh that it constitutes. A test problem
has been studied where the effects were prominent in the photon flux but didn’t
affect the SDR. The reason for that could be related to the relative importance of
photons at different energy groups to the SDR, in other words the changes in the
photon flux were in groups that are less important to SDR. The method has also
been utilized for mesh sensitivity analysis. It has been shown that the modified
workflow produces source distributions with lower uncertainties compared to the
original workflow. This is true only if the neutron spectrum used to obtain the
source distribution was over a coarse mesh that is small enough to resolve the flux
gradients in the problem. The method has been demonstrated to be effective and
simple to apply to quantify the uncertainty of the photon emission density using a
demonstration problem.

In chapter 5, a method was developed to estimate the contribution of the un-
certainty of the photon emission density distribution to the total uncertainty of
the SDR. Random sampling is used to propagate the uncertainty of the photon
emission density to the SDR. The approach has been demonstrated on simple non-
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transport toy problems consisting of different PDFs with different uncertainties.
The behavior of the estimated uncertainty of sampling the position was studied and
convergence was confirmed. The method was then applied to a simple cylindrical
transport problem. It has been shown that in some regions of the problem domain,
taking the uncertainty of the SDR reported by MC codes in the photon transport
step, RSDR,MC2, as being representative of the total uncertainty, RSDR,Total, under-
estimates the total uncertainty of the SDR. This was found to be more important
in regions with high photon emission density and a high associated uncertainty
which are often found in regions far from the source with material composition
that dominates the photon yield compared to surrounding regions.

In chapter 6, the method for uncertainty quantification of the photon source
and SDR, introduced in chapters 3 & 5, were applied to a production-level problem.
The model was for the FNSF facility and the irradiation time considered was 2.75
years. First, neutron transport simulation was performed and the obtained neutron
flux distribution was used to produce the photon emission density distribution
in one sector from the facility. The upper and lower bounds of R of the photon
source were calculated and the photon emission density distribution was used as a
source for the photon transport step. The upper and lower bounds of RSDR,Total

were calculated. It has been demonstrated that using RSDR,MC2, reported by MC
codes in the photon transport step, as being representative of RSDR,Total resulted
in an underestimation of at least 10 % in some mesh voxels, in the case studied.

7.2 Future Work

This work has demonstrated the efficacy of newly developed methods for the
quantification of the uncertainty of both the photon emission density and the SDR
in the R2S workflow applied to FES. The developed methods provide tools that
open the doors for more potential research topics, as will be introduced below.
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7.2.1 Mesh Sensitivity and Optimization

As a result of the methods developed in this work it is now possible to study the
effect of changing the meshing scheme on the uncertainty of the photon emission
density. This could lead to mesh optimization that lowers the photon source uncer-
tainty to acceptable limits. One research topic would be to perform a sweep analysis
of the uncertainty of the photon source over a variation of material compositions,
such as those typically found in FES applications, and for different irradiation and
decay times. This would lead to an optimized meshing scheme that is suitable for
each irradiation and decay time to minimize the uncertainty of the photon source.

Another possible research topic would be a comparative study of different
meshing schemes and workflows that would potentially lead to an optimization of
computing resources for FES simulations. By performing mesh sensitivity analysis
it is possible to estimate the optimum meshing scheme that is suitable for different
simulation scenarios and problem configurations/settings, potentially avoiding
spending too much computing resources on a fine mesh when a coarse mesh could
achieve similar results with a reasonable payoff, considering the photon source
uncertainty.

7.2.2 Correlation Matrix

The tools provided in this work to study the correlation between the neutron flux in
different energy groups give insight to some potential properties of the correlation
matrix. A possible research topic would be a thorough analysis of the correlation
matrix by applying more advanced statistical tools that could potentially shed more
light on the nature of the correlation matrix and its properties. By performing
analysis on the correlation matrix for different problem settings (material composi-
tions, BCs, and source type & spectrum) it could lead to analytic expression for the
correlation. By expanding the preliminary analysis performed in this work it could
become possible to obtain an analytic expression of the correlation between the
neutron fluxes in different energy groups as a function of problem settings. Such an
expression, although not easy to be developed, would lead to an exact calculation
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of uncertainties of the photon sources and the SDR in FES systems.

7.2.3 Error Propagation via Random Sampling

In this work a method was developed to obtain the component of the total un-
certainty of the SDR that comes from the photon source uncertainty. Although
demonstrated to be efficient enough for the applications that were the subject of this
work, there is still room for improvement. One possible improvement would be to
modify the tallying and source sampling scheme in MCNP such that both the SDR
and its total uncertainty, a component of which is calculated via random sampling
on a separate dedicated simulation, could be obtained in a single simulation.
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a appendices

A.1 Correlation Coefficient Decomposition

The correlation coefficient between neutron fluxes at two energy groups is a function
of the underlying distribution of histories scores. As a result, more insight on
the effect of changes in the problem settings can be gained by decomposing the
correlation coefficient. Changes in the problem settings; boundary conditions,
nuclear cross-sections, source spectrum, etc. will have a direct impact on the neutron
population at different regions of the space-energy phase-space. Assuming we
have a reference problem with arbitrary settings and the neutron flux distributions
at two different energy groups obtained using MC codes. With the neutron flux, x̂,
at an energy group defined as the mean of histories scores, xi, at that energy group,
the correlation between the neutron fluxes at two different energy groups is then;

Corr(x̂, ŷ) = Cov(x̂, ŷ)
σx̂σŷ

=
E[x̂ŷ] − E[x̂]E[ŷ]

σx̂σŷ
, x̂ =

1
N− 1

N∑
i=1

xi (A.1)

where x̂ & ŷ are the neutron fluxes at two different energy groups and σx̂ & σŷ

are their respective standard deviations. Corr(x̂, ŷ) and Cov(x̂, ŷ) are the Pearson
correlation coefficient and the covariance between x̂ & ŷ, respectively. N is the
number of histories in the problem.

Assuming now a change has been introduced in the problem settings, such as a
change in the BCs or changes in the materials. Such changes will result in a change
in histories scores at different energy groups. The correlation coefficient in A.1 will
now be;

Corr(x̂+δx̂, ŷ+δŷ) = Cov(x̂+ δx̂, ŷ+ δŷ)

σx̂+δx̂σŷ+δŷ
=
E[(x̂+ δx̂)(ŷ+ δŷ)] − E[x̂+ δx̂]E[ŷ+ δŷ]

σx̂+δx̂σŷ+δŷ
(A.2)

where δx̂ & δŷ are the means of changes in the histories scores due to changes in
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the problem settings. The numerator on the right hand side can be expressed as;

E[(x̂+ δx̂)(ŷ+ δŷ)] − E[x̂+ δx̂]E[ŷ+ δŷ] = (E[x̂ŷ] − E[x̂]E[ŷ]) + (E[x̂δŷ]

− E[x̂]E[δŷ)]) + (E[δx̂ŷ] − E[δx̂]E[ŷ]) + (E[δx̂δŷ] − E[δx̂]E[δŷ])

= Cov(x̂, ŷ) + Cov(x̂, δŷ) + Cov(δx̂, ŷ) + Cov(δx̂, δŷ) (A.3)

Multiplying and dividing each term on the right hand side by its respective product
of standard deviations of the fluxes, we end up with;

Corr(x̂+ δx̂, ŷ+ δŷ) = Corr(x̂, ŷ) σx̂σŷ

σx̂+δx̂σŷ+δŷ
+ Corr(x̂, δŷ) σx̂σδŷ

σx̂+δx̂σŷ+δŷ

+ Corr(δx̂, ŷ) σδx̂σŷ

σx̂+δx̂σŷ+δŷ
+ Corr(δx̂, δŷ) σδx̂σδŷ

σx̂+δx̂σŷ+δŷ
(A.4)

The above relation decomposes the correlation coefficient for the two energy groups
into its constituent correlation coefficients. The first term contains Corr(x̂, ŷ) which
is the correlation coefficient of the fluxes at the two groups before the change in
the problem settings, reference correlation. The second and third terms contain
correlation coefficients between the reference fluxes and the changes introduced
due to the change in the problem settings. The last term, Corr(δx̂, δŷ), contains
the correlation coefficient between the changes in the two groups. By examining
each term, we can deduce that the terms are just re-normalization of the respective
correlation coefficients by the new standard deviations of the fluxes at the two
energy groups after the changes in the problem settings were made. It can also be
deduced that the first and last terms are more important than the other two as the
correlation between the score in one flux in the reference problem and the change
in the other group in the changed problem should be low.

In case the flux normalization in the reference and new problem setting are
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different, A.4 becomes;

Corr(x̂+δx̂, ŷ+δŷ) = Corr(x̂, ŷ) σx̂σŷ

σx̂+δx̂σŷ+δŷ

M2
new

M2
ref

+Corr(x̂, δŷ) σx̂σδŷ

σx̂+δx̂σŷ+δŷ

Mnew

Mref

+ Corr(δx̂, ŷ) σδx̂σŷ

σx̂+δx̂σŷ+δŷ

Mnew

Mref

+ Corr(δx̂, δŷ) σδx̂σδŷ

σx̂+δx̂σŷ+δŷ
(A.5)

where Mref & Mnew are the reference and new neutron flux normalizations, re-
spectively.

A.2 Constructed Mesh-Based Fluxes

The neutron flux in MCNP is calculated as the mean of the scores of many histories
and should be treated carefully when dividing or multiplying. According to the
mean value theorem [8], as the number of histories gets large enough the distribu-
tion of the means of histories from repeated independent runs assumes a Normal
distribution around the true mean. That concept can be used to judge whether the
estimator of the mean for the constructed fluxes is biased or not and derive the
corrected formula in case of a biased estimator.

Assume we have three sets ofN independent scores; {x1, x2, ..., xN} , {y1,y2, ...,yN}
, {z1, z2, ..., zN} and we need to estimate the quantity

r̂ =
x̂ŷ

ẑ
, where x̂ =

1
N

N∑
i

xi and 〈x̂〉 = mx > 0 (A.6)

wheremx is the true mean for random variable x and similarly for y and z. Now let
f(x̂, ŷ, ẑ) be a multivariate Normal distribution where N >> 1 such that the mean
value theorem is applicable. f is itself Normal in the direction of each random
variable in accordance with the mean value theorem which is true if each variable
mean has a low standard deviation following N >> 1. The quantity defined in Eq.
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(A.6) can be calculated as:

〈r̂〉 =
∫∫∫∞

−∞ dx̂dŷdẑr̂f(x̂, ŷ, ẑ) =
∫∫∫∞

−∞ dx̂dŷdẑ
x̂ŷ

ẑ
f(x̂, ŷ, ẑ) (A.7)

x̂ can be written as x̂ = mx[ x̂−mx

mx
+ 1] and similarly for ŷ and ẑ. Eq. (A.7) becomes

〈r̂〉 = mxmy

mz

∫∫∫∞
−∞ dx̂dŷdẑ

[ x̂−mx

mx
+ 1][ ŷ−my

my
+ 1]

[ ẑ−mz

mz
+ 1]

f(x̂, ŷ, ẑ) (A.8)

Because N >> 1, so | ẑ−mz

mz
| << 1. Expressing the denominator using the binomial

theorem with a real variable and truncating at the second order term we end up
with

〈r̂〉 = mxmy

mz

∫∫∫∞
−∞ dx̂dŷdẑ

[
x̂−mx
mx

+ 1
] [
ŷ−my
my

+ 1
]
·[

1 −

(
ẑ−mz
mz

)
+

(
ẑ−mz
mz

)2
]
f(x̂, ŷ, ẑ) (A.9)

which evaluates to

〈r̂〉 = mxmy

mz

[
1 +

Vx̂,ŷ

mxmy
−

Vŷ,ẑ

mymz
−

Vx̂,ẑ

mxmz
+
V2
ẑ

mz2

]
(A.10)

where Vx̂,ẑ is the covariance between x̂ and ẑ and V2
ẑ is the variance of variable

ẑ. It is clear that the estimator of the product given in Eq. (A.6) is biased and a
correction should be applied. The unbiased estimator can be written as

r̂unbiased =
x̂ŷ

ẑ

[
1 −

Covx̂,ŷ

x̂ŷ
+
Covŷ,ẑ

ŷẑ
+
Covx̂,ẑ

x̂ẑ
−
Varẑ

ẑ2

]
(A.11)

A similar procedure could be followed for the variance of r̂ and the unbiased
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variance is given by

Varr̂unbiased =

(
x̂ŷ

ẑ

)2 [
Varx̂

x̂2 +
Varŷ

ŷ2 +
Varẑ

ẑ2 + 2Covx̂,ŷ

x̂ŷ
− 2Covŷ,ẑ

ŷẑ

−2Covx̂,ẑ

x̂ẑ

]
(A.12)

which also shows the covariance terms are necessary for a correct derivation of
variance of r̂ based on the variances of x̂, ŷ, and ẑ.

A.3 The Statistical Error of the Ratio of Two Random
Variables

In a similar way to the derivation in appendix A.2, the unbiased estimator and
the corrected statistical uncertainty of the ratio of two random variables could
be derived. Assume we have two sets of N independent scores; {x1, x2, ..., xN},
{z1, z2, ..., zN} and we need to estimate the quantity

r̂ =
x̂

ẑ
, where x̂ =

1
N

N∑
i

xi and 〈x̂〉 = mx > 0 (A.13)

where mx is the true mean for random variable x and similarly for z. Now let
f(x̂, ẑ) be a bi-variate Normal distribution where N >> 1 such that the mean value
theorem is applicable. f is itself Normal in the direction of each random variable in
accordance with the mean value theorem which is true if each variable mean has a
low standard deviation following N >> 1. The quantity defined in Eq. (A.13) can
be calculated as:

〈r̂〉 =
∫∫∞

−∞ dx̂dẑr̂f(x̂, ẑ) =
∫∫∞

−∞ dx̂dẑ
x̂

ẑ
f(x̂, ẑ) (A.14)
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x̂ can be written as x̂ = mx[ x̂−mx

mx
+ 1] and similarly for ẑ. Eq. (A.14) becomes

〈r̂〉 = mx

mz

∫∫∞
−∞ dx̂dẑ

[ x̂−mx

mx
+ 1]

[ ẑ−mz

mz
+ 1]

f(x̂, ẑ) (A.15)

Because N >> 1, so | ẑ−mz

mz
| << 1. Expressing the denominator using the binomial

theorem with a real variable and truncating at the second order term we end up
with

〈r̂〉 = mx

mz

∫∫∞
−∞ dx̂dẑ

[
x̂−mx
mx

+ 1
] [

1 −

(
ẑ−mz
mz

)
+

(
ẑ−mz
mz

)2
]
f(x̂, ẑ) (A.16)

which evaluates to
〈r̂〉 = mx

mz

[
1 −

Vx̂,ẑ

mxmz
+
V2
ẑ

mz2

]
(A.17)

where Vx̂,ẑ is the covariance between x̂ and ẑ and V2
ẑ is the variance of variable

ẑ. It is clear that the estimator of the quotient given in Eq. (A.13) is biased and a
correction should be applied. The unbiased estimator can be written as

r̂unbiased =
x̂

ẑ

[
1 +

Covx̂,ẑ

x̂ẑ
−
Varẑ

ẑ2

]
(A.18)

A similar procedure could be followed for the variance of r̂ and the unbiased
variance is given by

Varr̂unbiased =

(
x̂

ẑ

)2 [
Varx̂

x̂2 +
Varẑ

ẑ2 − 2Covx̂,ẑ

x̂ẑ

]
(A.19)

which also shows the covariance terms are necessary for a correct derivation of
variance of r̂ based on the variances of x̂ and ẑ.
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A.4 Derivation of the Condition Under Which
Correction Terms Could Be Ignored in the
Constructed Flux Formula

Using the results of the derivation from appendix A.2 (Eqs. (A.11) & (A.12)), an
expression for the corrected formula of constructed flux and its relative error is
given by Eqs. (A.20a) & (A.20b), respectively.

φ(rf,Enf ) =
φ(rf,Enc )φ(rc,Enf )

φ(rc,Enc )

[
1 − R2(rc,Enc ) −

Cov[φ(rf,Enc ),φ(rc,Enf )]
φ(rf,Enc )φ(rc,Enf )

+
Cov[φ(rf,Enc ),φ(rc,Enc )]
φ(rf,Enc )φ(rc,Enc )

+
Cov[φ(rc,Enf ),φ(rc,Enc )]
φ(rc,Enf )φ(rc,Enc )

+O(3)
]

(A.20a)

R2(rf,Enf ) =
[
R2(rf,Enc ) + R2(rc,Enf ) + R2(rc,Enc ) + 2Cov[φ(rf,E

n
c ),φ(rc,Enf )]

φ(rf,Enc )φ(rc,Enf )

−2Cov[φ(rf,E
n
c ),φ(rc,Enc )]

φ(rf,Enc )φ(rc,Enc )
− 2Cov[φ(rc,E

n
f ),φ(rc,Enc )]

φ(rc,Enf )φ(rc,Enc )
+O(3)

]
(A.20b)

where R(rc,Enc ) is a relative error for φ(rc,Enc ) and is defined as in Eq. (A.21) and
σφ(rc,Enc ) is the standard deviation of φ(rc,Enc ).

R(rc,Enc ) =
σφ(rc,Enc )

φ(rc,Enc )
(A.21)

From Eq. (A.20a) we have,

1 − R2(rc,Enc ) −
Cov[φ(rf,Enc ),φ(rc,Enf )]
φ(rf,Enc )φ(rc,Enf )

+
Cov[φ(rf,Enc ),φ(rc,Enc )]
φ(rf,Enc )φ(rc,Enc )

+
Cov[φ(rc,Enf ),φ(rc,Enc )]
φ(rc,Enf )φ(rc,Enc )

+O(3) > 0 (A.22)

and the correction terms - all terms other than 1 - can be ignored only if the following
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condition is satisfied,

R2(rc,Enc ) +
Cov[φ(rf,Enc ),φ(rc,Enf )]
φ(rf,Enc )φ(rc,Enf )

−
Cov[φ(rf,Enc ),φ(rc,Enc )]
φ(rf,Enc )φ(rc,Enc )

−
Cov[φ(rc,Enf ),φ(rc,Enc )]
φ(rc,Enf )φ(rc,Enc )

−O(3) = ε (A.23)

where ε << 1.
From Eq. (A.20b) we have,

R2(rf,Enc ) + R2(rc,Enf ) + R2(rc,Enc ) + 2Cov[φ(rf,E
n
c ),φ(rc,Enf )]

φ(rf,Enc )φ(rc,Enf )

− 2Cov[φ(rf,E
n
c ),φ(rc,Enc )]

φ(rf,Enc )φ(rc,Enc )
− 2Cov[φ(rc,E

n
f ),φ(rc,Enc )]

φ(rc,Enf )φ(rc,Enc )
+O(3) > 0 (A.24)

and the correction terms - covariance terms and O(3) term - can be ignored only if
the following condition is satisfied,

R2(rf,Enc ) + R2(rc,Enf ) + R2(rc,Enc ) >> −2
[
Cov[φ(rf,Enc ),φ(rc,Enf )]
φ(rf,Enc )φ(rc,Enf )

−
Cov[φ(rf,Enc ),φ(rc,Enc )]
φ(rf,Enc )φ(rc,Enc )

−
Cov[φ(rc,Enf ),φ(rc,Enc )]
φ(rc,Enf )φ(rc,Enc )

+O(3)
]

(A.25)

By substituting Eq. (A.23) into Eq. (A.25) we end up with,

R2(rf,Enc ) + R2(rc,Enf ) + R2(rc,Enc ) >> −2
[
ε− R2(rc,Enc ) +O(3)

]
= −2ε+ 2R2(rc,Enc ) −O(3) (A.26)

which could be further simplified to

R2(rf,Enc ) + R2(rc,Enf ) + 2ε+O(3) >> R2(rc,Enc ) (A.27)

If we considered the acceptable uncertainty by MCNP standards, we have
R(rf,Enc ) < 10% and R(rc,Enf ) < 10%. The term O(3) encapsulates information
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about high order moments of the flux such as the skewness, etc. and was found to
be << 0 and by ignoring ε as ε << 1, we end up with the final condition given by

10
√

2% >> R(rc,Enc ) (A.28)
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