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Abstract

We study the size of the Szegő kernel on the boundary of unbounded domains defined by

convex polynomials. Given a convex polynomial b : Rn → R such that its mixed terms

are dominated by its pure terms, we consider the domain Ωb = {z ∈ Cn+1 : Im[zn+1] >

b(Re[z1], . . . ,Re[zn])}.

Given two points (x,y, t) and (x′,y′, t′) in ∂Ωb, define b̃(v) = b
(
v + x+x′

2

)
−∇b

(
x+x′

2

)
·

v− b
(
x+x′

2

)
; δ(x,x′) = b(x) + b(x′)−2b

(
x+x′

2

)
; and w = (t′− t) +∇b

(
x+x′

2

)
· (y′−y).

We obtain the following estimate for the Szegő kernel associated to the domain Ωb :

|S ((x,y, t); (x′,y′, t′))| . 1√
δ2 + b̃(y − y′)2 + w2

∣∣∣∣{v : b̃(v) <
√
δ2 + b̃(y − y′)2 + w2

}∣∣∣∣2 ,
where the constant depends on the degrees of the highest order pure terms of b and the

dimension of the space, but is independent of the two given points.

This is a generalization of the one-dimensional result by Nagel [23].
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Chapter 1

Introduction

1.1 The Szegő kernel

1.1.1 Definitions

The Szegő projection was first introduced by Gabor Szegő in 1921 in the paper Über

orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören [30].

Almost concurrently, Stefan Bergman introduced the Bergman projection as part of his

doctoral dissertation. Since then, these projections have been extensively studied.

The Bergman projection associated to a domain Ω ⊂ Cn is the orthogonal projec-

tion of L2(Ω) onto the space A2(Ω) = {f ∈ L2(Ω) | f is holomorphic in Ω}. If T is the

Bergman projection and f ∈ L2(Ω), then there exists a function B(· , ·) ∈ C∞(Ω × Ω)

such that

Tf(z) =
∫

Ω
B(z, w)f(w)dµ,

where dµ is the volume measure and B(z, w) is holomorphic in z and antiholomorphic

in w. This function B(· , ·) ∈ C∞(Ω× Ω) is called the Bergman kernel.

There are several (equivalent) ways of defining the Szegő kernel for bounded domains
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Ω ⊂⊂ Cn (see, e.g., [18]). The purpose of this thesis, however, is to obtain a bound for

the Szegő kernel on a class of unbounded domains Ω ⊂ Cn+1, n ≥ 1, defined by convex

polynomials. Given a convex polynomial b : Rn → R, consider the domain

Ωb = {(z1, . . . , zn+1) ∈ Cn+1 : Im[zn+1] > b(Re[z1], . . . ,Re[zn])}.

For these domains, it is convenient to define the Szegő projection as in [13]. We can

identify the boundary ∂Ωb with Cn × R so that a point (z, t) ∈ Cn × R corresponds to

(z, t+ ib(Re[z1], . . . ,Re[zn])) ∈ ∂Ωb.

Let O(Ωb) be the set of holomorphic functions in Ωb. Given F ∈ O(Ωb) and ε > 0,

set

Fε(z, t) = F (z, t+ ib(Re[z1], . . . ,Re[zn]) + iε).

The Hardy space H2(Ωb) is defined as

H2(Ωb) =
{
F ∈ O(Ωb) : sup

ε>0

∫
Cn×R

|Fε(z, t)|2 dz dt ≡ ||F ||2H2 <∞
}
.

Now let ρ be a defining function for the domain, i.e., Ωb = {x ∈ Cn+1 : ρ(x) < 0}

where ρ ∈ C∞(Cn+1) is such that ∇ρ 6= 0 when ρ = 0. A Cauchy-Riemann operator is

an operator of the form

L =
n+1∑
j=1

aj
∂

∂zj
.

We say that L is tangential if in addition L(ρ) = 0 (notice that writing L = (a1, . . . , an+1)

the condition L(ρ) = 0 can actually be written as < L, ∂ρ >= 0, where < ·, · > is the

Hermitian inner product).
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For a class of convex polynomials b : Rn → R we will define the Szegő projection

S : L2(∂Ωb) → H2(Ωb) to be the orthogonal projection from L2(∂Ωb) to the closed

subspace of functions f ∈ L2(∂Ωb) that are annihilated in the sense of distributions by

all tangential Cauchy-Riemann operators on ∂Ωb. To show that such a map exists, some

work is required. We will present a brief outline of the basic facts leading up to this

definition.

For this derivation to hold, it does not suffice to simply require that the polynomials

b : Rn → R that define the domains be convex. In particular, the result does not

follow for convex polynomials that are flat along some directions (for example, consider

the convex polynomial b(x1, x2) = x2
1 in R2). We introduce a growth condition via the

following definition:

Definition 1.1. Let m1, . . . ,mn be positive integers. We will say that a polynomial

p : Rn → R is of “combined degree” (m1, . . . ,mn) if it is of the form

p(x) =
∑
α

cαx
α,

where each index α = (α1, . . . , αn) satisfies

1. α1
2m1

+ . . .+ αn
2mn ≤ 1;

2. α1
2m1

+ . . .+ αn
2mn = 1 if and only if there exists some j such that αj = 2mj;

and the exponents of its pure terms of highest order are 2m1, . . . , 2mn respectively.

Example 1.2. The polynomial p(x1, x2) = x2
1 + x1x2 + x2

1x
2
2 + x4

1 + x6
2 is of “combined

degree” (2, 3). However, the polynomial p̃(x1, x2) = x2
1 + x1x2 + x2

1x
3
2 + x4

1 + x6
2 is not.
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Throughout the rest of this work we will assume that

Ωb = {(z1, . . . , zn+1) ∈ Cn+1 : Im[zn+1] > b(Re[z1], . . . ,Re[zn])},

where b : Rn → R is a convex polynomial of “combined degree” (m1, . . . ,mn).

There are two key steps needed to justify that the Szegő kernel as given above is

well-defined: that the space H2(Ωb) is a closed subspace of L2(∂Ωb), and that H2(Ωb)

is equivalent to the space of functions on L2(∂Ωb) that are annihilated in the sense

of distributions by the tangential Cauchy-Riemann operators. The first follows as in

Lemma A.5. in [13].

Lemma. Let F ∈ H2(Ωb). Then there exists F b ∈ L2(∂Ωb) with the following proper-

ties.

a) For almost every (z, t) ∈ Cn × R, limε→0+ F (z, t + ib(Re[z1], . . . ,Re[zn]) + iε) =

F b(z, t+ ib(Re[z1], . . . ,Re[zn]));

b) ||F b||L2(∂Ωb) = ||F ||H2(Ωb);

c) limε→0+ ||Fε − F b||L2(∂Ωb) = 0;

d) There is a constant C0 independent of F with ||N0[F ]||L2(∂Ωb) ≤ C0||F ||H2(Ωb), where

N0[F ](z, t) = supε>0 |F (z, t+ ib(Re[z1], . . . ,Re[zn]) + iε)|;

e) The boundary function F b is annihilated (in the sense of distributions) by all tangen-

tial Cauchy-Riemann operators on ∂Ωb.

f) For any compact subset K ⊂ Ωb there is a positive constant C(K) independent of F

such that
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sup
z∈K
|F (z)| ≤ C(K)||F ||H2(Ωb).

This result does not require the growth condition imposed on the polynomials b. However,

this condition is used in the proposition that follows.

Define the partial Fourier transform F : L2(R2n+1)→ L2(R2n+1) by the integral

F [f ](x,y, t) = f̂(x,η, τ) =
∫

Rn+1

e−2πi(y·η+tτ)f(x,y, t) dy dt.

Then, as in Proposition 2.5 in [13], one can show the following:

Proposition. Let f ∈ L2(∂Ωb). Then

a) the function f is annihilated by the tangential Cauchy-Riemann operators on Cn×R

in the distributional sense if and only if for all 1 ≤ j ≤ n the partial Fourier transform

F [f ] = f̂ satisfies

∂

∂xj

(
e−2π[η·x−b(x)τ ]f̂(x,η, τ)

)
= 0

on R2n+1 in the sense of distributions;

b) if f is annihilated by the tangential Cauchy-Riemann operators in the distributional

sense, then f̂(x,η, τ) = 0 almost everywhere when τ < 0. In particular, if we set

hs(x,η, τ) = e−2πτsf̂(x,η, τ), then hs ∈ L2(R2n+1) for s ≥ 0;
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c) if f is annihilated by the tangential Cauchy-Riemann operators in the distributional

sense and if

F (z, zn+1) = F (z, t+ ib(Re[z1], . . . ,Re[zn]) + is) = F−1[hs](x,y, t),

then F ∈ H2(Ωb) and F b = f.

The proof of this proposition is analogous to that in [13]. We have included an appendix

where a detailed explanation can be found. It follows from these propositions that the

set of functions f ∈ L2(∂Ω) such that there exists F ∈ H2(Ω) with F b = f is the set

of functions that are annihilated in the sense of distributions by the tangential Cauchy-

Riemann operators.

Furthermore, starting from the projection onto the null space of the operators
{

∂
∂xj

}
on the weighted space L2(R2n+1, e4π[η·x−b(x)τ ]dx dη dτ ) we are able to retrieve the Szegő

projection. We show in the Appendix that for f ∈ L2(∂Ω), the Szegő projection is given

by

Π[f ](x,y, t) =
∫
R2n+1

f(x′,y′, t′)S ((x,y, t); (x′,y′, t′)) dx′ dy′ dt′,

where

S((x,y, t); (x′,y′, t′)) =

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]


∫

Rn

e2πη·[x+x′−i(y′−y)]∫
Rn
e4π[η·v−b(v)τ ] dv

dη

 dτ

is the Szegő kernel.
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1.1.2 A survey of the literature

For very simple domains, such as the unit ball, the Bergman and Szegő kernels can be

computed explicitly. In fact, if D ⊂ Cn is the unit ball, then the Bergman kernel is

given by

B(z, ξ) = n!
πn

1
(1− z · ξ)n+1

and the Szegő kernel is given by

S(z, ξ) = (n− 1)!
2πn

1
(1− z · ξ)n

.

A derivation of these formulas can be found, e.g., in [29].

Even for some more complex domains closed formulas have been obtained. Greiner

and Stein [12] compute an explicit formula for the Szegő kernel in domains of the type

Ωk = {(z, z1) ∈ C2 : Im[z1] > |z|2k} for any positive integer k. They show that for

ξ = (z, t+ i(|z|2k + µ)) and ω = (w, s+ i(|w|2k + ν)), with µ, ν > 0,

S(ξ, ω) = 1
4π2

[(
i

2[s− t] + |z|
2k + |w|2k

2 + µ+ ν

2

)
− zw

]−2

× 1
4π2

[
i

2[s− t] + |z|
2k + |w|2k

2 + µ+ ν

2

] 1−k
k

.

Díaz [8] shows that for these domains, the Szegő Projection is bounded in Lp, for 1 <

p <∞.

Francsics and Hanges [10] generalized this result to domains in Cn. They compute an

explicit formula for the Szegő kernel in domains of the type Ω = {(z, ξ, w) ∈ Cn+m+1 :

Im[w] > ||z||2 + ||ξ||2p}. They show that
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S(z, ξ, t; z′, ξ′, t′) =
n+1∑
k=1

ck
(A− z · z′)

k
p
−n−1

[(A− z · z′)
1
p − ξ · ξ′]m+k

, (1.1)

where A = 1
2 [||z||2 + ||z′||2 + ||ξ||2p + ||ξ′||2p − i(t− t′)].

More recently, Park obtains closed formulas for the Bergman kernel in domains of

the form {(z1, z2) ∈ C2 : |z1|
4
q1 + |z2|

4
q2 < 1} for any positive integers q1 and q2 in

[26] and for domains of the form {(z1, z2, z3) ∈ C3 : |z1|4 + |z2|4 + |z3|4 < 1} and

{(z1, z2, z3) ∈ C3 : |z1|4 + |z2|4 + |z3|2 < 1} in [27]. Furthermore, he shows [26] that

among the domains {(z1, z2) ∈ C2 : |z1|2p1 + |z2|2p2 < 1} with p = (p1, p2) ∈ N2, the

Bergman kernel is represented in terms of closed forms if and only if p = (p1, 1), (1, p2)

or (2, 2).

Since for most domains it is not feasible to obtain closed formulas for the Szegő kernel,

one of the main questions in the field is whether one can obtain an estimate for these

kernels in terms of the geometry of the domains defining them. Much progress has been

done in the case of bounded domains. In fact, if Ω is a bounded strongly pseudoconvex

domain, complete asymptotic expressions for the Bergman and Szegő projections are

known from the work of Fefferman [9] (see also [3]). Even though no such results are

known if the domain is only weakly pseudoconvex, there has been much work showing

that in special cases one can obtain estimates for these kernels in terms of the geometry

of the domains.

Machedon [19] shows that the magnitude of the Szegő kernel for smooth bounded

pseudoconvex domains of finite type in Cn with one degenerate eigenvalue is bounded by

the reciprocal of the volume of the non-isotropic ball defined by the domain (a discussion
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on balls defined by non-isotropic distances given in terms of vector fields can be found

in [25]).

McNeal [20] obtains sharp upper bounds for the Bergman kernel for smoothly bounded

convex domains Ω of finite type in Cn in terms of the volumes of polydiscs fitting inside

∂Ω. More precisely, if Ω is convex in some neighborhood U of a point p ∈ ∂Ω of finite

typeM then there exists a defining function r for U ∩Ω such that the sets {r : r(z) < η}

are convex on η for some range −η0 < η < η0, η0 > 0. For q ∈ Ω near p, he defines

a set of coordinates (z1, . . . , zn) and distances τ1(q, ε), . . . , τn(q, ε) by extremizing the

distance from q to the level set {z ∈ U : r(z) = r(q) + ε} and defines the polydisc

Pε(q) = {z ∈ U : |z1| < τ1(q, ε), . . . , |zn| < τn(q, ε)}. McNeal shows that there exists a

constant C so that for all q1, q2 ∈ U ∩ Ω

|K(q1, q2)| ≤ C

|Pδ(q1)| ,

where K(q1, q2) is the Bergman kernel and δ = |r(q1)|+|r(q2)|+inf{ε > 0 : q2 ∈ Pε(q1)}.

By integrating this result along “normal directions”, McNeal and Stein [21] obtain a

bound for the Szegő kernel S(z, w) for these domains in terms of the smallest “tent” in

∂Ω containing z and w. That is, they show that for smoothly bounded convex domains of

finite type in Cn, there exists a constant C so that for all z, w ∈ Ω×Ω\{diagonal in ∂Ω},

|S(z, w)| ≤ C

|T (z, γ)| .

Here T (z, γ) = Pγ(π(z)) ∩ Ω; the projection π : U → ∂Ω is a smooth map such that if

b ∈ ∂Ω, π(b) = b and π−1(b) is a smooth curve, transversally intersecting ∂Ω at b; and

γ = |r(z)| + |r(w)| + inf{ε > 0 : w ∈ T (z, ε)}. Similar estimates are obtained in both
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papers for the derivatives of these kernels.

Although no general results have been obtained for the kernels defined over un-

bounded convex domains, some particular classes of domains have been studied. In the

last section of [23], Nagel studies the Szegő kernel on the boundary of domains of the

kind Ω = {z ∈ C2 : Im[z2] > φ(Re[z1])}, where φ is a subharmonic, non-harmonic

polynomial with the property that ∆φ(z) = ∆φ(x + iy) is independent of y. He shows

that in this case the Szegő kernel is bounded by |B|−1, where |B| is the volume of the

non-isotropic ball. That is, for ((x, y, t), (r, s, u)) ∈ ∂Ω× ∂Ω,

|S((x, y, t); (r, s, u))| ≤ C|B((x, y, t); δ)|−1,

where δ is the non-isotropic distance between (x, y, t) and (r, s, u). Nagel, Rosay, Stein

and Wainger [24] generalize this result to domains of the form Ω = {(z1, z2) ∈ C2 :

Im[z2] > P (z1)}, where P is a subharmonic, non-harmonic polynomial in C.

Halfpap, Nagel and Wainger [13] study the singular behavior of the Bergman and

Szegő kernel in domains of this kind, i.e., domains of the form Ω = {(z1, z2) ∈ C2 | Im[z2] >

b(Re[z1])}, but where b ∈ C∞ belongs to a particular class of convex functions (a model

example of which is b(r) = exp(−|r|−a) for |r| small, and b(r) = r2m for |r| large, with

a, m > 0). They show that if ∆ ⊂ ∂Ω × ∂Ω is the diagonal of the boundary, then if

0 < a < 1 the Bergman and Szegő kernels extend smoothly to Ω×Ω \∆, while if a ≥ 1,

the kernels are singular at points on Ω× Ω \∆.

The Szegő kernel has also been studied in some non-pseudoconvex domains of this

type, i.e., domains of the kind Ω = {z ∈ C2 : Im[z2] > b(Re[z1])}, but where the function
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b is not convex. In [5], Carracino studies a domain given by a particular choice of a non-

convex b, and shows that there are singularities not only on the diagonal (which is true in

the pseudoconvex case), but also off the diagonal. In [11], Gilliam and Halfpap consider

domains where b is a non-convex quartic polynomial with positive leading coefficient,

and show that there are points off the diagonal of ∂Ω× ∂Ω at which the Szegő kernel is

infinite, as well as points on the diagonal at which it is finite.

Haslinger studies the Szegő kernel in domains of the kind Ω = {z ∈ C2 : Im[z2] >

p(z1)}, for functions p : C → R+. In [14] he finds an integral expression for the Szegő

kernel in terms of the Bergman kernel and in [15] he computes an asymptotic expansion

for the Szegő kernel when p(z1) = |Re[z1]|α, where α > 4
3 . He then uses this result to

study the singularities on the diagonal of ∂Ω× ∂Ω.

By definition the Szegő projection is bounded in L2. It is a relevant question in the

field, however, to study the Lp boundedness of this operator for p 6= 2. Estimates for the

Szegő kernel in terms of the volumes of non-isotropic balls can be used to obtain such

bounds. Bonami and Lohoué [2] show that the Szegő projection defined over domains of

the kindDα = {z ∈ Cn : |z1|
2
α1 +. . .+|zn|

2
αn < 1} where 0 < αj < 1 for all j is weak type

(1, 1) and strong type (p, p) for 1 < p <∞. Phong and Stein [28] obtain Sobolev bounds

for the Bergman and Szegő projections for smoothly bounded strongly pseudoconvex

domains in Cn, n ≥ 2. Christ [6] shows that if M is a compact pseudoconvex real

3-dimensional C∞ Cauchy-Riemann manifold of finite type and the associated first-

order differential operator ∂b has closed range, then the Szegő projection extends to an

operator bounded in Lp(M) for 1 < p < ∞. Mitchell [22] proves Lp estimates for the

Szegő projection for a class of bounded symmetric domains; and McNeal and Stein [21]
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generalize this result to smoothly bounded convex domains of finite type, showing that

the Szegő projection maps Lps(∂Ω) to Lps(∂Ω) for 1 < p <∞ and s ∈ N.

1.2 Convexity

There is much that can be said about convexity, but we will limit our discussion to

a few classical results that we use repeatedly throughout our work. The proof of our

main theorem relies heavily on the fact that given a compact convex set, one can find

a maximal ellipsoid (called a John ellipsoid) that can be inscribed in said body. We

will begin this section by giving a brief summary of the history of this result. We will

then go on to describe two lemmas by Bruna, Nagel and Wainger on their paper Convex

Hypersurfaces and Fourier Transforms [4] which describe the size of convex polynomials

and their derivatives relative to the absolute value of their coefficients. In the course

of this thesis we will repeatedly use these two results together, since applying John’s

results to these two lemmas yields absolute bounds for the coefficients of compact convex

polynomials of the form we study. On section 2 we generalize the result by Bruna, Nagel

and Wainger to several variables. We will finish the discussion of convexity by deriving

an estimate for sets defined by convex functions that will be relevant to our study.

1.2.1 Loewner-John Ellipsoids

Since antiquity mathematicians have estimated the size of regions in terms of simple

geometric shapes of similar size. In particular, on the mid 20th century, the ellipsoids

(i.e., the images under invertible linear transformations of the unit ball) that can be

inscribed and circumscribed in compact convex bodies were extensively studied. We
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will restrict our discussion to the question of uniqueness of the inscribed ellipsoid of

maximal volume (called a John ellipsoid) and the circumscribed ellipsoid of minimal

volume (called a Loewner ellipsoid), as well as the ratio between their volumes. For a

more complete exposition of the development and applications of this problem see, e.g.,

[16].

In his paper Über die kleinste umbeschriebene und die größte einbesehriebene Ellipse

eines konvexen Bereichs [1], Behrend shows that given a convex body in R2 there exists

a unique maximal inscribed ellipse and a unique minimal circumscribed ellipse. This

result was generalized to n dimensions by Danzer, Laugwitz and Lenz [7] as well as by

Zaguskin [31].

In 1948, in his paper Extremum problems with inequalities as subsidiary conditions

[17], John used an application of Lagrange multipliers (or rather, an extension of La-

grange multipliers where the constraints are given by inequalities) to study the volume

of these ellipsoids. In particular, he showed that the ratio between these ellipsoids is

independent of the given convex body, and depends only on the dimension of the space.

More precisely, let K be a compact convex body in Rn, Bn be the unit ball and E

be the minimal circumscribed ellipsoid to K. Notice that there exists a t ∈ Rn and an

invertible linear transformation T ∈ Rn×n such that E = t + TBn. By John, it follows

that

t+ 1
n
TBn ⊆ K ⊆ t+ TBn.

Furthermore, if K has a center of symmetry (i.e., there exists a c ∈ Rn such that
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K = c−K = {c− y : y ∈ K}), then the ratio can be improved to 1√
n
. That is to say,

for a symmetric compact convex body K, the containment can be sharpened to

t+ 1√
n
TBn ⊆ K ⊆ t+ TBn.

1.2.2 Coefficients of convex polynomials of one variable

Bruna, Nagel and Wainger obtained estimates on [4] for convex polynomials of one

variable in terms of the absolute values of their coefficients. We generalize these results

to polynomials of several variables in Section 2.

The one-dimensional results (which can be found on Section 2, page 338, of the

aforementioned paper) are as follows:

Let C(m,T ) denote the space of polynomials

P (t) =
m∑
j=0

ajt
j

which satisfy:

1. The degree of P is no bigger than m;

2. P (0) = a0 = 0; P ′(0) = a1 = 0;

3. P is convex for 0 ≤ t ≤ T.

Lemma 2.1. There is a constant Cm, independent of T , so that if P ∈ C(m,T ),

P (t) = ∑m
j=2 ajt

j, then
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P (t) ≥ Cm
m∑
j=2
|aj|tj (1.2)

for 0 ≤ t ≤ T. In particular, since a0 = a1 = 0,

P (t) ≥ Cmt
m

m∑
j=2
|aj| if 0 ≤ t ≤ 1, and

P (t) ≥ Cmt
2
m∑
j=2
|aj| if 1 ≤ t ≤ T.

Remark 1.3. Notice that since Cm
∑m
j=2 |aj|tj ≤ P (t) ≤ ∑m

j=2 |aj|tj it follows that

Cm ≤ 1.

Lemma 2.2. There is a constant Cm, independent of T , so that if P ∈ C(m,T ),

P (t) = ∑m
j=2 ajt

j, then

P ′(t) ≥ Cm
m∑
j=2
|aj|tj−1

for 0 ≤ t ≤ T. In particular,

P ′(t) ≥ Cmt
m−1

m∑
j=2
|aj| if 0 ≤ t ≤ 1, and

P ′(t) ≥ Cmt
m∑
j=2
|aj| if 1 ≤ t ≤ T.

1.2.3 An estimate for sets defined by convex functions

The third and last topic we would like to cover in this overview of convexity is the

following estimate, which plays a crucial role in the proof of one of our lemmas.
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Proposition 1.4. If f : Rn → R is a convex function such that f(0) = 0 and ∇f(0) = 0

then

I =
∫
Rn
e−f(w) dw ≈ |{w : f(w) ≤ 1}|.

In the proof of the above estimate, we will use the following inequality:

Claim 1.5. Let f : Rn → R be a convex function such that f(0) = 0. Given x > 0, let

Ax = {w ∈ Rn : f(w) ≤ x}.

Then for any constant 0 ≤ λ ≤ 1, vol(Aλx) ≥ λnvol(Ax).

Proof. By convexity of f, for any vectors w and u in Rn, and any constant 0 ≤ λ ≤ 1,

f(λw + (1− λ)u) ≤ λf(w) + (1− λ)f(u).

In particular, taking u = 0, and since by hypothesis f(0) = 0, it follows that f(λw) ≤

λf(w).

Thus, if w ∈ Ax, then f(λw) ≤ λf(w) ≤ λx. That is, λ · Ax ⊆ Aλx. It follows that

vol(Aλx) ≥ vol(λ · Ax) = λnvol(Ax).

The proof of Proposition 1.4 is as follows:
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Proof. Without loss of generality we can assume f 6≡ 0.

Notice that under these hypothesis f(v) ≥ 0 ∀v ∈ Rn. In fact, by the Fundamental

Theorem of Calculus we can write

f(u+ v)− f(u) = −
∫ 1

0
∇f(u+ vt) · v

(
d

dt
(1− t)

)
dt.

And integrating by parts, we have that

∫ 1

0
∇f(u+ tv) · v dt = −∇f(u+ tv) · v(1− t)

∣∣∣∣∣
1

0

+
∫ 1

0

d

dt
[∇f(u+ tv) · v] (1− t) dt.

But

d

dt
[∇f(u+ tv) · v] =

n∑
i,j=1

fij(u+ tv)vivj.

It follows that

f(u+ v)− f(u) = ∇f(u) · v +
∫ 1

0

n∑
i,j=1

fijvivj(1− t) dt. (1.3)

Letting u = 0 we have by convexity that

f(v) =
∫ 1

0

n∑
i,j=1

fijvivj(1− t) dt ≥ 0. (1.4)

A lower bound for I can be easily obtained, since

∫
Rn
e−f(w) dw ≥

∫
{w : f(w)≤1}

e−f(w) dw ≥ 1
e
|{w : f(w) ≤ 1}|.
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To obtain an upper bound we can write

∫
Rn
e−f(w) dw =

∫
{w : f(w)≤1}

e−f(w) dw +
∞∑
j=1

∫
{w : j≤f(w)≤j+1}

e−f(w) dw. (1.5)

But

∫
{w : j≤f(w)≤j+1}

e−f(w) dw ≤ e−j |{w : f(w) ≤ j + 1}|.

But by Claim 1.5, and taking λ = 1
j+1 and x = j + 1, it follows that

|{w : f(w) ≤ j + 1}| ≤ (j + 1)n|{w : f(w) ≤ 1}|.

Hence, by equation (1.5), we have that

I ≤ |{w : f(w) ≤ 1}|
1 +

∞∑
j=1

e−j(j + 1)n
 .

Since the sum converges we get the desired upper bound.

1.3 Main results

The purpose of this thesis is to study the size of the Szegő kernel on the boundary of

certain convex domains in Cn+1. We consider domains of the kind

Ωb = {z ∈ Cn+1 : Im[zn+1] > b(Re[z1], . . . ,Re[zn])}

for convex polynomial functions b : Rn → R of “combined degree” (refer to definition

on page 3). We generalize Nagel’s one-dimensional size estimate for the Szegő kernel
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established in [23] to several variables. Throughout this paper we will let zj = xj + iyj,

and we will use boldfonts to denote vectors x = (x1, . . . , xn) in Rn.

It can be shown, as in [23], that the Szegő kernel for the domains under consideration

can be written as an integral formula.

Proposition A.1. The Szegő kernel on Ωb is given by

S((x,y, t); (x′,y′, t′)) =

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]


∫

Rn

e2πη·[x+x′−i(y′−y)]∫
Rn
e4π[η·v−b(v)τ ] dv

dη

 dτ,
(1.6)

where (x,y, t) and (x′,y′, t′) are points in ∂Ωb.

We have included an Appendix with the proof of this proposition. Our estimates will

all follow from a study of this integral expression for the Szegő kernel.

Perhaps one of the most striking differences between the one-dimensional case studied

in [23] and the n-dimensional case I study is the fact that in the former it is enough

to assume that b is a convex polynomial, whereas in the latter that assumption is not

enough. Convexity alone will not ensure that
∫
Rn e

η·v−τb(v) dv converges in Rn for n ≥ 2

(in fact, for n = 2 consider the polynomial b(x1, x2) = x2
1). The “combined degree”

condition ensures that the class of convex polynomials under consideration satisfy that

the set R = {v ∈ Rn : b(v) ≤ 1} is compact. This guarantees the convergence of the

denominator integral.

We devote the second section to a study of the coefficients of convex polynomials in

several variables. In the one-variable case it was shown by Bruna, Nagel and Wainger
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(as we explained in detail in the previous subsection) that the absolute value of the

coefficients of a convex polynomial with no constant or linear terms can be bounded

by the value of the polynomial at 1. It is not possible to obtain such a bound in more

variables, since the polynomial might be growing in some directions but not along others.

However, we show that the absolute value of the coefficients can be bounded by the

average of the polynomial over a circle of arbitrary positive radius. We obtain the

following result:

Proposition 2.1. Let Γ(M) = {(α1, . . . , αn) ∈ Nn : 2 ≤ |α| ≤ M}. Let S(M) be the

set of convex polynomials g(v) = ∑
α∈Γ(M) cαv

α. Then for any fixed a > 0, there exists

a positive constant C(M,a) that depends only on M and the constant a such that if

g ∈ S(M),

∑
α∈Γ(M)

|cα| ≤ C(M,a)
∫
|σ|=a

g(σ) dσ.

Remark 1.6. Notice that with Γ(M) defined as above, polynomials of the form g(v) =∑
α∈Γ(M) cαv

α are such that the degree of g is no bigger thanM ; g(0) = 0; and ∇g(0) = 0.

In Sections 3 and 4 we present the proof of our main result. That is, we derive an

estimate for the size of the Szegő kernel in terms of the geometry of the domain that

defines it.

Our goal is to obtain a geometric bound for the Szegő kernel from a study of the

integral expression in equation (1.6). One of the main technical difficulties comes from

handling the denominator integral. After some manipulation, this denominator integral

can be expressed as a function that we will denote as θ(η). In the following lemma we

show that θ(η) is a Schwartz function.
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Lemma 3.1. Let g : Rn → R be a convex polynomial such that

i) g(0) = 0;

ii) ∇g(0) = 0;

iii) there exists a constant 0 < A < 1 such that {v : |v| ≤ A} ⊆ {v : g(v) ≤ 1} ⊆

{v : |v| ≤ 1}; and

iv) there exist positive integers m1, . . . ,mn such that the “combined degree” of g is

(m1, . . . ,mn).

Then

θ(η) =
 ∫

Rn
eη·v−g(v) dv

−1

is a Schwartz function. Moreover, its decay depends only on the constant A and the

exponents {m1, . . . ,mn}.

We devote an entire section to the study of the decay of θ(η), rather than incorporat-

ing it in the proof of the main theorem, which is discussed in Section 4. The estimates

for convex polynomials of several variables obtained in Section 2 will play a crucial role

in the proof of this lemma. The bound obtained for the coefficients of the polynomials

combined with the compactness requirement (given by hypothesis (iii)) ensure that the

decay of θ(η) is independent of the coefficients of g.

Our main result is the following:

Main Theorem. Let b : Rn → R be a convex polynomial of “combined degree”

(m1, . . . ,mn). Define Ωb = {z ∈ Cn+1 : Im[zn+1] > b(Re[z1], . . . ,Re[zn])} and let (x,y, t)

and (x′,y′, t′) be any two points in ∂Ωb. Define
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b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)
;

δ(x,x′) = b(x) + b(x′)− 2b
(
x+ x′

2

)
;

and

w = (t′ − t) +∇b
(
x+ x′

2

)
· (y′ − y).

We obtain the following estimate for the Szegő kernel associated to the domain Ωb :

|S ((x,y, t); (x′,y′, t′))| . 1√
δ2 + b̃(y − y′)2 + w2

∣∣∣∣{v : b̃(v) <
√
δ2 + b̃(y − y′)2 + w2

}∣∣∣∣2 .
Here the constant depends on the exponents {m1, . . . ,mn} and the dimension of the

space, but is independent of the two given points.

Remark 1.7. Notice that since b is convex, δ(x,x′) ≥ 0. It is convenient to think of

δ as a measure of the curvature between x and x′. The more curved the domain is, the

larger the value of δ.

The proof of the main theorem is discussed in Section 4. The proof is, at its core,

an application of John’s ellipsoids. We introduce a change of variables in the integral

expression for the Szegő kernel comprised of factors defined by the length of the axes

of the unique maximal inscribed ellipsoid associated to a symmetrization of the convex

body R =
{
v : b̃(v) < 1

τ

}
.
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Chapter 2

Coefficients of convex polynomials

of several variables

In this section we obtain bounds for the absolute value of the coefficients of convex

polynomials of several variables. We begin by showing that for polynomials whose

constant and linear terms are zero, the sum of the absolute value of the coefficients can

be bounded (up to a universal constant) by the average of the polynomial on a sphere

of arbitrary positive radius. We then consider convex polynomials g : Rn → R with no

constant or linear terms such that there exist some positive constants A,B so that the

set {v : g(v) ≤ 1} contains the ball of radius A and is contained in the ball of radius

B. For these, we show that the sum of the absolute value of the coefficients is bounded

by a universal constant. Moreover, we show that the absolute value of the coefficients is

bounded (up to a universal constant) by the value of g at any point on the boundary of

the ball of radius A.

These results are needed for the proof of the geometric bound for the Szegő kernel on

the domains we study. In particular, we will use these results in Section 3 to show that

the decay of the function θ(η) (which arises naturally from a study of the denominator

integral of the expression for the Szegő kernel obtained in Proposition A.1) does not

depend on the coefficients of the polynomial which defines it.
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Proposition 2.1. Let Γ(M) = {(α1, . . . , αn) ∈ Nn : 2 ≤ |α| ≤ M}. Let S(M) be the

set of convex polynomials g(v) = ∑
α∈Γ(M) cαv

α. Then for any fixed a > 0, there exists

a positive constant C(M,a) that depends only on M and the constant a such that if

g ∈ S(M),

∑
α∈Γ(M)

|cα| ≤ C(M,a)
∫
|σ|=a

g(σ) dσ. (2.1)

Remark 2.2. This is a generalization of the result in one variable by Bruna, Nagel and

Wainger in [4] (Lemma 2.1).

Proof. Let a > 0 be a fixed positive constant and let |Γ(M)| denote the cardinality of

the set of indices Γ(M). We identify the space S(M) with R|Γ(M)| via the identification

g(v) =
∑

α∈Γ(M)
cαv

α ∈ S(M)↔ (c1, . . . , c|Γ(M)|) ∈ R|Γ(M)|,

where we have ordered all the α ∈ Γ(M) so that cj corresponds to the coefficient cα for

the jth element α with this ordering.

Let

ΣM = {g(v) =
∑

α∈Γ(M)
cαv

α ∈ S(M) :
∑

α∈Γ(M)
|cα| = 1}. (2.2)

We claim that ΣM is a compact subset of S(M). In fact, let {cn}n∈N in R|Γ(M)| be

a sequence of tuples associated to a sequence of polynomials {qn}n∈N in ΣM . Since

{cn}n∈N is a sequence contained in the compact set BM = {(c1, . . . , c|Γ(M)|) ∈ R|Γ(m)| :∑
1≤j≤|Γ(M)| |cj| = 1}, it has a convergent subsequence {cni}ni∈N . Let c be the limit of
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this subsequence, and let q be the polynomial associated to this tuple. We claim that

q is an element of ΣM . In fact, the identification preserves the degree of the polynomial

and the fact that there are no constant or linear terms. Also, since c is an element of

BM , it satisfies that
∑

1≤j≤|Γ(M)| |cj| = 1. Thus, is suffices to show that q is convex. This

follows easily, since given any polynomial qni associated to an element of the convergent

subsequence {cni}ni∈N, we have that qni(αx + (1 − α)y) ≤ αqni(x) + (1 − α)qni(y) for

all 0 ≤ α ≤ 1 and for all points x,y in Rn. Thus, and since qni(αx + (1 − α)y) →

q(αx+ (1− α)y); αqn1(x)→ αq(x); and (1− α)qni(y)→ (1− α)q(y), the convexity of

q follows immediately.

Let

ΦI(g) = 1
ωn(a)

∫
|σ|=a

g(σ) dσ,

where ωn(a) is the surface area of the sphere of radius a in Rn and

ΦII(g) =
∑

α∈Γ(M)
|cα|.

Notice that these functions are continuous on S(M), and that ΦII(g) = 1 on ΣM .

We claim that ΦI(g) is strictly positive on ΣM . In fact, since g is convex, g(0) = 0

and ∇g(0) = 0 it follows that g is nonnegative (see, e.g., the proof of Proposition 1.4).

Moreover, on ΣM at least one of the coefficients of g must be different from zero, so g can

not be the zero polynomial. Thus g must be positive almost everywhere. In particular,

the average over the circle of radius a must be strictly positive.

Therefore, and since ΦI(g) is continuous as a function of g, it attains a minimum in

ΣM , and this minimum is strictly positive. Thus, and since ΦII(g) = 1 on ΣM , there

exists a constant C > 0 such that for any g ∈ ΣM ,
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ΦI(g) ≥ C = CΦII(g).

That is,
1

ωn(a)

∫
|σ|=a

g(σ) dσ ≥ CΦII(g) = C
∑

α∈Γ(M)
|cα|,

as desired.

Consider now a polynomial g(v) = ∑
α∈Γ(M) cαv

α ∈ S(M), but which is not neces-

sarily in ΣM . Then let h(v) = ∑
α∈Γ(M) bαv

α where

bα = cα∑
β∈Γ(M) |cβ|

so that ∑α∈Γ(M) |bα| = 1 and h(v) ∈ ΣM . It follows from the previous case that

1
ωn(a)

∫
|σ|=a

h(σ) dσ ≥ C.

That is,

1
ωn(a)

∫
|σ|=a

g(σ)∑
β∈Γ |cβ|

dσ ≥ C.

This gives the desired inequality.

Corollary 2.3. Let g(v) = ∑
α cαv

α be a convex polynomial such that g(0) = 0 and

∇g(0) = 0. Suppose there exist two positive constants A and B such that

{v : |v| ≤ A} ⊆ {v : g(v) ≤ 1} ⊆ {v : |v| ≤ B}. (2.3)

Then there exists a constant that depends only on A and the degree of g such that
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∑
α

|cα| ≤ C. (2.4)

Moreover, for any point x = (x1, . . . , xn) on the boundary of the circle of radius A, there

exist constants C1 > 0, C2 > 0 that depend only on A, B and the degree of g such that

g(x) ≥ C1 ≥ C2
∑
α

|cα|. (2.5)

Remark 2.4. The bound given by equation (2.4) can be obtained using just the left

containment, i.e, the existence of a constant A > 0 such that {v : |v| ≤ A} ⊆ {v :

g(v) ≤ 1}. The second bound, however, requires the existence of both an inner and an

outer ball.

Proof. The first result follows immediately from the previous claim. In fact, we showed

that

∑
α

|cα| ≤ C
∫
|σ|=A

g(σ) dσ.

But by (2.3) we have that g(σ) ≤ 1 for all σ such that |σ| = A. The result follows.

Observe that the bound g(x) ≥ C2
∑
α |cα| will be an immediate consequence of the

above bound on the coefficients once we show that g(x) ≥ C1.

The proof of equation (2.5) requires the use of Lemma 2.1 on the paper Convex

hypersurfaces and Fourier Transforms by Bruna, Nagel and Wainger [4]. The lemma

states that given a convex polynomial of one variable of degree M of the form

p(t) =
M∑
j=2

ajt
j
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there exists a constant CM > 0 that depends only on M such that

CM
M∑
j=2
|aj|tj ≤ p(t) ≤

M∑
j=2
|aj|tj ∀t ≥ 0. (2.6)

In particular, this result implies that for any λ > 1 and t ≥ 0,

p(λt) ≤
M∑
j=2
|aj|λjtj ≤ λM

M∑
j=2
|aj|tj ≤

λM

CM
p(t). (2.7)

Given a point x on the boundary of the circle centered at the origin of radius A, we

will let

p(t) = g(tx).

Notice that this defines a convex polynomial of one variable for which the bounds in

equation (2.6) apply.

Taking t = 1 and λ = B
A

(where A and B are the radius of the inner and outer ball

respectively) in equation (2.7), we have that

p(1) ≥ CM
λM

p
(
B

A

)
.

That is,

g(x) ≥ CM
AM

BM
g
(
Bx

A

)
. (2.8)

Since x is a point on the boundary of the inner circle, the point Bx
A

is on the border of

the outer circle (the circle of radius B). Thus, by hypothesis, it follows that



29

g
(
Bx

A

)
≥ 1.

This together with equation (2.8) implies the desired result.

Remark 2.5. Notice that the convexity of g implies that

g(x) ≥ C1 ≥ C2
∑
α

|cα|.

for any point x such that |x| ≥ A.
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Chapter 3

Decay of θ(η)

In this section we study the decay of the function θ(η) =
 ∫

Rn
eη·v−g(v) dv

−1

, where g is

a convex polynomial. This function arises naturally from the study of the denominator

integral of the integral expression obtained for the Szegő kernel in Appendix A. We show

that θ(η) is a Schwartz function. This implies, in particular, that
∫
Rn θ(η) dη converges.

We use this fact in the proof of the geometric bound for the Szegő kernel in Section 4.

Lemma 3.1. Let

g(v) =
∑
α∈Γ

cαv
α (3.1)

be a convex polynomial in Rn such that

i) g(0) = 0;

ii) ∇g(0) = 0;

iii) there exists a constant 0 < A < 1 such that {v : |v| ≤ A} ⊆ {v : g(v) ≤ 1} ⊆

{v : |v| ≤ 1}; and

iv) there exist positive integers m1, . . . ,mn such that the “combined degree” of g is

(m1, . . . ,mn) (refer to definition on page 3).
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Then

θ(η) =
 ∫

Rn
eη·v−g(v) dv

−1

is a Schwartz function. Moreover, its decay depends only on the constant A and the

exponents {m1, . . . ,mn}.

Remark 3.2. Notice that under these assumptions, the coefficients of the polynomial

g(v) = ∑
α∈Γ cαv

α satisfy ∑α∈Γ |cα| ≤ C, where C depends only on the constant A, on

the degree of the polynomial and on the dimension of the space. This was shown in

Corollary 2.3 on page 26.

Let I =
∫
Rn e

η·v−g(v) dv. We will show that I grows at an exponential rate. We can

write

I = eh(v0)
∫
Rn
eh(v)−h(v0) dv, (3.2)

where h(v) = η · v − g(v) and v0 is the point where h(v) attains its maximum (notice

that η = ∇g(v0)).

We will show that the dominant term, eh(v0), grows at an exponential rate in η. This

term will provide the desired decay for I−1. We will then show that
∫
eh(v)−h(v0) dv does

not decrease too fast, that is, that it does not annul the growth of the dominant term.

Notice that h(v0) = L(η) = supv {η · v − g(v)} is the Legendre Transform of g.
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3.1 The dominant term

We begin by studying the growth of the term eh(v0), where h(v) = η · v − g(v) and v0

is the point where h(v) attains its maximum. We show that eh(v0) grows exponentially

as a function of η. Moreover, we claim that the growth is independent of the choice of

g, but rather depends only on the constant A, on the “combined degree” of g and on

the dimension of the space. More precisely, we show that there exist positive constants

C, C̃ which depend only on the “combined degree” of g, the dimension of the space and

the constant A, such that

eh(v0) ≥ exp
[
C̃
(
|η1|

2m1
2m1−1 + . . .+ |ηn|

2mn
2mn−1

)
− C

]
. (3.3)

We begin by showing that the polynomial g is dominated, independently of its coef-

ficients, by its pure terms of highest order.

Claim 3.3. If g(v) is as in the statement of Lemma 3.1, then there exists a constant

C > 0 that depends only on the constant A, on the “combined degree” of the polynomial

and on the dimension of the space such that

g(v) ≤ C(1 + v2m1
1 + . . .+ v2mn

n ).

Proof. Let

r(v) = v2m1
1 + . . .+ v2mn

n .

Notice that for any v ∈ Rn,
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vα1
1 · · · vαnn ≤ r(v)

α1
2m1

+···+ αn
2mn . (3.4)

In fact, if any of the components of v are zero, the statement is trivial. Otherwise,

dividing equation (3.4) by vα1
1 · · · vαnn , it suffices to show that

1 ≤ r(v)
α1

2m1

vα1
1

· · · r(v)
αn

2mn

vαnn
=
(
r(v)
v2m1

1

) α1
2m1
· · ·

(
r(v)
v2mn
n

) αn
2mn

.

That is, it suffices to show that

1 ≤
(

1 +
(
v2m1

2

v2m1
1

)
+ · · ·+

(
v2mn
n

v2m1
1

)) α1
2m1

· · ·
((

v2m1
1
v2mn
n

)
+ · · · +

(
v

2mn−1
n−1
v2mn
n

)
+ 1

) αn
2mn

.

This last inequality is trivial, since each factor in the right hand size is larger than 1.

Furthermore, since g is a convex function such that g(0) = ∇g(0) = 0, we have that

g ≥ 0. This was discussed on page 17, equation (1.4). Thus,

g(v) = |g(v)| =

∣∣∣∣∣∣
∑
α∈Γ

cαv
α1
1 · · · vαnn

∣∣∣∣∣∣
≤

∑
α∈Γ
|cα| |vα1

1 · · · vαnn |

≤
∑
α∈Γ
|cα|

∣∣∣∣ r(v)
α1

2m1
+···+ αn

2mn

∣∣∣∣ .
(3.5)

Moreover, recall that since g is of “combined degree” (m1, . . . ,mn), any index α ∈ Γ

satisfies that

α1

2m1
+ . . .+ αn

2mn

≤ 1.
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Hence,

r(v)
α1

2m1
+···+ αn

2mn ≤ 1 + r(v). (3.6)

Thus, and since ∑
α∈Γ
|cα| ≤ C, it follows from equations (3.5) and (3.6) that

g(v) ≤
∑
α∈Γ
|cα|(1 + r(v)) ≤ C(1 + r(v)).

This finishes the proof of Claim 3.3

Since this estimate does not depend on the coefficients of g, it is now easy to obtain

a lower bound for h(v0) in terms of η which does not depend on the choice of g.

Claim 3.4. The Legendre Transform of g(v) where v ∈ Rn is large for large values of

|η|. More precisely,

L(η) ≥ C̃
(
|η1|

2m1
2m1−1 + . . .+ |ηn|

2mn
2mn−1

)
− C,

where C and C̃ are positive constants that depend only on the constant A, on the “com-

bined degree” of g and on the dimension of the space.

Proof. It follows from the previous claim that

L(η) = sup
v

{η · v − g(v)}

≥ sup
v

{η · v − C − C|v1|2m1 − . . .− C|vn|2mn}

=− C + sup
v1

{η1v1 − C|v1|2m1}+ . . .+ sup
vn

{ηnvn − C|vn|2mn}



35

But given w ∈ R, the Legendre Transform of B
2k |w|

2k is B̃|η|
2k

2k−1 , where

B̃ = B
−1

2k−1

(
2k − 1

2k

)
.

Thus,

L(η) ≥ C̃
(
|η1|

2m1
2m1−1 + . . .+ |ηn|

2mn
2mn−1

)
− C,

where C̃ = min
{
B

−1
2m1−1
1

(
2m1−1

2m1

)
, . . . , B

−1
2mn−1
n

(
2mn−1

2mn

)}
, and Bj = C2mj.

This finishes the proof that the dominant term, eh(v0), grows at an exponential rate

in η, independently of the coefficients of g. More precisely, we have shown that

eh(v0) ≥ exp
[
C̃
(
|η1|

2m1
2m1−1 + . . .+ |ηn|

2mn
2mn−1

)
− C

]
. (3.7)

3.2 A polynomial bound for the remaining terms

It suffices now to show that J =
∫
Rn e

h(v)−h(v0) dv is not too small to obtain the desired

decay for I−1. Recall that

J =
∫
Rn
eη·(v−v0)+g(v0)−g(v) dv.

In order to estimate this integral, we will approximate it by an area by using Claim

1.5. Recall that if f : Rn → R is a convex function such that f(0) = 0 and ∇f(0) = 0

then
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∫
Rn
e−f(w) dw ≈ |{w : f(w) ≤ 1}|.

This was discussed in the introduction (page 16).

We must start by rewriting J as stated in the above result. Since η = ∇g(v0), and

making the change of variables w = v − v0, we can write

J =
∫
Rn
e−f(w) dw,

where

f(w) = −∇g(v0) ·w − g(v0) + g(v0 +w). (3.8)

Clearly f(0) = 0 and ∇f(0) = 0. Also, since g is convex, so is f. Thus, it follows by

Claim 1.5 that

J ≈ |{w : f(w) ≤ 1}|. (3.9)

That is,

I =
∫
Rn
eη·v−g(v) dv ≈ eh(v0)|{w : f(w) ≤ 1}|. (3.10)

Our goal is to show that as |η| grows, this area decreases slower than the rate of

growth we obtained for eh(v0). We begin by obtaining an upper bound for f that is

independent of the choice of g, but rather that depends only on its “combined degree”,

on the dimension of the space and on the constant A. To do so we will write f as an

integral in terms of the quadratic form associated to the Hessian of g. In Claim 3.5
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we obtain an upper bound for this quadratic form in terms of a polynomial that is

independent of the coefficients of g. In Claim 3.6 we use this estimate to obtain the

desired bound for f.

Claim 3.5. The quadratic form associated to the Hessian of g is bounded in terms

of a polynomial that depends on the “combined degree” of g, but which is otherwise

independent of the choice of g. More precisely,

n∑
i,j=1

gij(v)wiwj . (1 + r(v)) |w|2,

where r(v) = v2m1
1 + . . .+ v2mn

n and gij(v) = ∂2g
∂vi∂vj

(v).

Proof. Let L be the Hessian matrix of g. That is,

L =



g11 g12 · · · g1n

g21 g22 · · · g2n

... ... . . . ...

gn1 gn2 · · · gnn



so that wT Lw = ∑n
i,j=1 gijwiwj. Since L is symmetric, it has n linearly independent

eigenvectors. Let ui, i = 1, . . . , n be the eigenvectors of L, and λi, i = 1, . . . , n be the

corresponding eigenvalues. Since g is convex, the matrix L is positive definite, so its

eigenvalues are positive.

Let P = Tr(L)I, where Tr(L) = λ1 + . . . + λn is the trace of the matrix L and I is

the identity matrix.
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Let Q = P − L. We claim that Q is positive definite, and hence that L ≤ P as

quadratic forms. In fact, notice that for i = 1, . . . , n

Qui = Pui − Lui = Tr(L)ui − λiui = (Tr(L)− λi)ui =
∑

1≤j≤n
j 6=i

λjui.

Thus, for i = 1, . . . , n, ui is an eigenvector of Q, with eigenvalue

µi =
∑

1≤j≤n
j 6=i

λj.

Notice that for i = 1, . . . , n, µi is positive. Also, since P is a diagonal matrix and L

is symmetric, Q is symmetric. Thus, since Q is a symmetric matrix whose eigenvalues

are all positive, Q is positive definite.

Hence, since

P = Tr(L)I =



g11 + . . .+ gnn 0 · · · 0

0 g11 + . . .+ gnn · · · 0
... ... . . . ...

0 0 · · · g11 + . . .+ gnn



and wT Lw ≤ wT P w, it follows that

0 ≤
n∑

i,j=1
gij(v)wiwj

≤ (g11(v) + . . .+ gnn(v))|w|2

≤ (|g11(v)|+ . . .+ |gnn(v)|) |w|2.
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Notice that each gjj(v) is a polynomial of the form ∑
β
c̃βv

β where the indexes β

satisfy

β1

2m1
+ · · ·+ βn

2mn

≤ 1− 1
mj

< 1.

In particular, this implies that

r(v)
β1

2m1
+···+ βn

2mn ≤ 1 + r(v).

Moreover, recall that, as was shown on equation (3.4) on page 33,

vβ1
1 · · · vβnn ≤ r(v)

β1
2m1

+···+ βn
2mn .

It follows that

|gjj(v)| ≤
∑
β

|c̃β|
∣∣∣vβ1

1 · · · vβnn
∣∣∣

≤
∑
β

|c̃β| r(v)
β1

2m1
+···+ βn

2mn

≤
∑
β

|c̃β| (1 + r(v)) .

Furthermore, the coefficients c̃β are constant multiples of the cα, where the factors

are bounded by a factorial of the degree of the polynomial. Since ∑α∈Γ |cα| ≤ C, the

coefficients c̃β are bounded by a constant that does not depend on the choice of g, but

rather on the “combined degree” of g. Then, and by the previous inequality, we have

that

|g11(v)|+ . . .+ |gnn(v)| ≤ C(1 + r(v)).
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for a universal constant C.

That is,

n∑
i,j=1

gij(v)wiwj . (1 + r(v))|w|2.

Using this result it is now possible to obtain an upper bound for f which is indepen-

dent of the choice of g. We do so in the following claim.

Claim 3.6. If

r(v) = v2m1
1 + . . .+ v2mn

n

and

f(w) = −∇g(v0) ·w − g(v0) + g(v0 +w)

then,

f(w) . |w|2(1 + r(v0) + r(w)),

where the constant depends only on the constant A, the “combined degree” of g and the

dimension of the space.

Proof. We begin by rewriting f as an integral in terms of the quadratic form associated

to the Hessian, so that we can apply our previous estimate.
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We can write

g(v0 +w)− g(v0) = ∇g(v0) ·w +
∫ 1

0

n∑
i,j=1

gij(v0 + tw)wiwj(1− t) dt.

This was shown in detail on page 17 (equation (1.3)). It follows that

f(w) =
∫ 1

0

n∑
i,j=1

gij(v0 + tw)wiwj(1− t)dt. (3.11)

In particular, by convexity of g we have that f ≥ 0.

We can now use the bound for the Hessian obtained in Claim 3.5. It follows that

f(w) .
∫ 1

0
(1 + r(v0 + tw))|w|2(1− t) dt. (3.12)

We would like to get rid of the dependence on t of the term r(v0 + tw). To do so, we

use a triangle inequality. We claim that given vectors u and v, the function r satisfies

r(u+ v) ≤ C[r(u) + r(v)],

where the constant C depends on the exponents {m1, . . . ,mn}. In fact, by convexity it

follows that for j = 1, . . . , n

(uj + vj)2mj = 22mj
(
uj + vj

2

)2mj
≤ 22mj

u2mj
j

2 +
v

2mj
j

2

 = 22mj−1
(
u

2mj
j + v

2mj
j

)
.

Thus,

r(u+ v) = (u1 + v1)2m1 + . . .+ (un + vn)2mn

≤ max{22m1−1, . . . , 22mn−1} [r(u) + r(v)] .
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Applying this inequality to r(v0 + tw), and since 0 ≤ t ≤ 1, we have that

r(v0 + tw) . r(v0) + r(tw) ≤ r(v0) + r(w).

Hence, it follows from equation (3.12) that

f(w) . |w|2(1 + r(v0) + r(w)).

Recall that we are studying the decay of I−1, where I ≈ eh(v0)|{w : f(w) ≤ 1}|.

Thus far we have shown that the dominant term, eh(v0), grows at an exponential rate

in η (where by definition η = ∇g(v0)). Our goal is to show that |{w : f(w) ≤ 1}| is

not too small. More precisely, that it does not decay exponentially, so that it does not

annul the growth of the dominant term. In the next three claims we show that there is

a polynomial P and a constant C depending only on the degrees {m1, . . . ,mn} so that

|{w : f(w) ≤ 1}|−1 ≤ C(1 + P (|η|))n2 .

In Claim 3.7 we show that |{w : f(w) ≤ 1}|−1 is bounded by a polynomial in terms of

r(v0), and in Claim 3.8 we compare the sizes of |v0| and |η|. In Claim 3.9 we conclude

that r(v0) grows at most at a polynomial rate in |η|.

Claim 3.7. If f(w) . |w|2(1 + r(v0) + r(w)), then

|{w : f(w) ≤ 1}| & (1 + r(v0))−n2 .
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Proof. Let C be such that f(w) ≤ C|w|2(1 + r(v0) + r(w)) and let

T (w) = C|w|2(1 + r(v0) + r(w)).

Then,

|{w : f(w) ≤ 1}| ≥ |{w : T (w) ≤ 1}|.

Let Σ = {u : T (u) = 1} and let m = min{ |u| : u ∈ Σ}. Choose wT such that

T (wT ) = 1 and |wT | = m. Then the set |{w : T (w) ≤ 1}| is bounded from below by

the volume of the ball of radius |wT |. That is,

|{w : T (w) ≤ 1}| ≥ Cn|wT |n,

where Cn = π
n
2

Γ(n2 +1) .

Let a = 1 + r(v0). Our goal is to show that |wT |n & a−
n
2 . If |wT |2 ≥ 1

2Ca , then

|wT |n & a−
n
2 , as desired. Otherwise, we have that |wT |2 < 1

2Ca . Since 1 = T (wT ) =

C|wT |2(1 + r(v0) + r(wT )) it follows that

a|wT |2 + |wT |2r(wT ) = 1
C
.

But since |wT |2 < 1
2Ca , it follows that

1
2C < |wT |2r(wT ). (3.13)

Also, since a ≥ 1, we have that |wT |2 < 1
2C . Thus, w

2
Tj <

1
2C for every 1 ≤ j ≤ n.

Hence,
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r(wT ) <
( 1

2C

)m1

+ · · ·+
( 1

2C

)mn
.

Using this in equation (3.13) we have that

1
2C < |wT |2

(( 1
2C

)m1

+ · · ·+
( 1

2C

)mn)
.

Thus, and since a ≥ 1, it follows that

|wT |2 > Λ ≥ Λ
a
,

where Λ = 1
2C

((
1

2C

)m1 + · · ·+
(

1
2C

)mn)−1
is a strictly positive constant.

Therefore,

|{w : f(w) ≤ 1}| & |wT |n & a−
n
2 .

This finishes the proof of Claim 3.7.

It follows from the estimate for the dominant term as well as from this bound for

|{w : f(w) ≤ 1}| that

θ(η) = I−1 . exp
[
−C

(
|η1|

2m1
2m1−1 + . . .+ |ηn|

2mn
2mn−1

)]
(1 + r(v0))n2 ,

where the constants only depend on A, the “combined degree” of g and the dimension

of the space. We must show that r(v0) is not too large as a function of η in order to

obtain the desired decay.
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Claim 3.8. There exist positive constants β1 and β2 such that

|v0| ≤ β1|η|+ β2.

The constants depend only on m1, . . . ,mn and the dimension of the space.

Proof. Recall that by definition ∇g(v0) = η, and that by hypothesis

{v : g(v) ≤ 1} ⊆ {v : |v| ≤ 1}.

The statement is trivial if |v0| ≤ 1, so we will assume that |v0| > 1.

Let G(t) = g
(
tv0
|v0|

)
. Then

G′(t) = ∇g
(
tv0

|v0|

)
·
(
v0

|v0|

)
.

Thus, since ∇g(0) = 0 by hypothesis, G′(0) = ∇g(0) ·
(
v0
|v0|

)
= 0. Also, notice that since

g is convex, so is G. Thus, G′(t) > 0 if t > 0.

By Cauchy-Schwarz,

|G′(t)| ≤
∣∣∣∣∣∇g

(
tv0

|v0|

)∣∣∣∣∣ .
Evaluating at t = |v0| we have that

|G′(|v0|)| ≤ |∇g(v0)| = |η|.

But since |v0| > 0, it follows that
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G′(|v0|) = |G′(|v0|)| ≤ |η|. (3.14)

It suffices now to obtain a polynomial lower bound for G′(|v0|) in terms of |v0|.

Nagel, Bruna and Wainger proved in [4] (Lemma 2.2) that given a convex polynomial

of one variable of the form

P (t) =
m∑
j=2

ajt
j

there exists a constant Cm such that for t ≥ 0,

P ′(t) ≥ Cm
m∑
j=2
|aj|tj−1.

In particular, if t ≥ 1,

P ′(t) ≥ Cmt
m∑
j=2
|aj|. (3.15)

Notice that G(t) is a convex polynomial of one variable such that G(0) = G′(0) = 0,

so we can use the aforementioned result. Write

G(t) =
m∑
j=2

ajt
j.

Since we are considering |v0| > 1, it follows from equations (3.14) and (3.15) that

|v0|
m∑
j=2
|aj| . G′(|v0|) ≤ |η|. (3.16)
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It suffices now to obtain a lower bound for ∑m
j=2 |aj|, which must be independent of

the choice of g. To do so, we use the fact that

{v : g(v) ≤ 1} ⊆ {v : |v| ≤ 1}.

In particular, if |v| = 1, it must follow that g(v) ≥ 1. Thus, evaluating at t = 1, it

follows that

G(1) = g

(
v0

|v0|

)
≥ 1.

But G(1) = ∑m
j=2 aj ≤

∑m
j=2 |aj|. This implies that

1 ≤
m∑
j=2
|aj|.

Using this last bound on equation (3.16) yields |v0| . |η|. This finishes the proof of

Claim 3.8.

Claim 3.9. (1 + r(v0)p)n2 is at most of polynomial growth in |η|.

Proof. The proof is trivial. In fact, since |v0| ≤ β1|η| + β2, it is clear that r(v0) =

v2m1
01 + . . . + v2mn

0n ≤ |v0|2m1 + . . . + |v0|2mn is bounded from above by a polynomial in

|η|. We will call this polynomial P (|η|).

Recall that we had shown that

I−1 . exp
[
−C

(
|η1|

2m1
2m1−1 + . . .+ |ηn|

2mn
2mn−1

)]
(1 + r(v0))n2 .
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It follows from this last claim that there exists a polynomial P (|η|), which does not

depend on the choice of g, such that

θ(η) = I−1 . exp
[
−C

(
|η1|

2m1
2m1−1 + . . .+ |ηn|

2mn
2mn−1

)]
(1 + P (|η|))n2 .

This finishes the proof that θ(η) decays at an exponential rate. Moreover, this decay

is independent of the coefficients of the polynomial g that defines it.

We must now show that the same is true of all the derivatives of θ(η).

3.3 Decay of the derivatives

Claim 3.10. The derivatives of θ(η) consist of sums of terms of the form

C
[∫

Rn e
ηv−g(v)v

i1,1
1 · · · vin,1n dv

]a1 · · ·
[∫

Rn e
ηv−g(v)v

i1,r
1 · · · vin,rn dv

]ar
[
∫
Rn e

ηv−g(v) dv]d
, (3.17)

where i1,1, . . . , in,r, a1, . . . , ar, d ∈ N and a1 + . . .+ ar + 1 = d.

Remark 3.11. The fact that a1 + . . .+ar−d < 0 is crucial. As before (equation (3.2)),

we can factor out a term eh(v0) for each of these integrals. That is, we will factor out(
eh(v0)

)a1+...+ar−d = e−h(v0). This term will provide the desired decay.

Proof. We will prove it by induction. We have that for any j = 1, . . . , n,

∂θ

∂ηj
(η) = −

∫
Rn e

ηv−g(v)vj dv

[
∫
Rn e

ηv−g(v) dv]2

is of this form.
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Suppose ∂kθ
∂η
c1
1 ···∂η

cn
n

(η) is of this form. Then, for any j = 1, . . . , n, ∂k+1θ
∂ηj∂η

c1
1 ···∂η

cn
n

(η)

consists of sums of terms of the form

∂

∂ηj

C
[∫

Rn e
ηv−g(v)v

i1,1
1 · · · vin,1n dv

]a1 · · ·
[∫

Rn e
ηv−g(v)v

i1,r
1 · · · vin,rn dv

]ar
[
∫
Rn e

ηv−g(v) dv]d

 .
Let fs(η) =

[∫
Rn e

ηv−g(v)v
i1,s
1 · · · vin,sn dv

]as and γ(η) =
[∫

Rn e
ηv−g(v) dv

]d
. By the quotient

rule we have that

∂

∂ηj

C
[∫

Rn e
ηv−g(v)v

i1,1
1 · · · vin,1n dv

]a1 · · ·
[∫

Rn e
ηv−g(v)v

i1,r
1 · · · vin,rn dv

]ar
[
∫
Rn e

ηv−g(v) dv]d


consists of sums of terms of the form

Cf1 · · · fs−1
∂fs
∂ηj
fs+1 · · · fr

γ
(3.18)

and

C(f1 · · · fr)( ∂γ∂ηj )
γ2 . (3.19)

But

∂fs
∂ηj

(η) = as

[∫
Rn
eηv−g(v)v

i1,s
1 · · · vin,sn dv

]as−1 [∫
Rn
eηv−g(v)v

i1,s
1 · · · vin,sn vj dv

]
,

and

∂γ

∂ηj
(η) = d

[∫
Rn
eηv−g(v) dv

]d−1 [∫
Rn
eηv−g(v)vj dv

]
.
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Thus, a generic term of the form given in equation (3.18) is given by

[ ∫
Rn

eηv−g(v)v
i1,1
1 · · · vin,1n dv

]a1

· · ·
[ ∫
Rn

eηv−g(v)v
i1,s
1 · · · vin,sn dv

]as−1 [ ∫
Rn

eηv−g(v)v
i1,1
1 · · · vin,1n vj dv

]
[ ∫
Rn

eηv−g(v) dv

]d

×

 ∫
Rn

eηv−g(v)v
i1,1
1 · · · vin,1n dv

as+1

· · ·

 ∫
Rn

eηv−g(v)v
i1,1
1 · · · vin,1n dv

ar .

The sum of the exponents of the numerator is a1 + a2 + . . .+ as−1 + (as− 1) + 1 + as+1 +

. . .+ ar = a1 + . . .+ ar = d− 1. Thus this term has the desired form.

In the same way, a generic term of the form given in equation (3.19) is given by

([ ∫
Rn
eηv−g(v)v

i1,1
1 · · · vin,1n dv

]a1

· · ·
[ ∫
Rn
eηv−g(v)v

i1,r
1 · · · vin,rn dv

]ar)
[ ∫

Rn
eηv−g(v) dv

]d2

×


∫
Rn
eηv−g(v) dv

d−1 ∫
Rn
eηv−g(v)vj dv


 .

The sum of the exponents of the numerator is a1 + a2 + . . .+ ar + (d− 1) + 1 = 2d− 1.

Since the exponent of the denominator is 2d, this term also has the desired form. This

completes the proof of Claim 3.10.

By the previous claim, in order to understand the decay of the derivatives of θ(η)

we need to study integrals of the form
∫
Rn e

ηv−g(v)vi11 · · · vinn dv.
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Claim 3.12. ∫
Rn
eηv−g(v)vi11 · · · vinn dv . eh(v0)Hf [|v0|],

where

Hf [|v0|] =
i1∑

s1=0
· · ·

in∑
sn=0

(
i1
s1

)
· · ·

(
in
sn

)
|v0|i1+...+in−s

×
(
|{w : f(w) ≤ 1}| (1 + |v0|sB) + Θ

)
;

Θ is a constant that depends only on the “combined degree” of g and the dimension of

the space; s = s1 + · · ·+ sn; and B = 4 max{m1, . . . ,mn}.

Proof. As before (equation (3.2)), we can write

Ĩ =
∫
Rn
eηv−g(v)vi11 · · · vinn dv = eh(v0)

∫
Rn
eh(v)−h(v0)vi11 · · · vinn dv, (3.20)

where h(v) = η · v − g(v) and v0 is the point where h(v) attains its maximum; and

J̃ =
∫
Rn
eh(v)−h(v0)vi11 · · · vinn dv =

∫
Rn

(w1 + v01)i1 · · · (wn + v0n)ine−f(w) dw,

where f(w) is as in equation (3.8). That is,

f(w) = g(v0 +w)− g(v0)−∇g(v0) ·w.

But (wj + v0j)l = ∑l
s=0

(
l
s

)
vl−s0j w

s
j . Thus, we can write

J̃ =
i1∑

s1=0
· · ·

in∑
sn=0

(
i1
s1

)
· · ·

(
in
sn

)
vi1−s1

01 · · · vin−sn0n

∫
Rn
ws1

1 · · ·wsnn e−f(w) dw.

It follows that
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|J̃ | ≤
i1∑

s1=0
· · ·

in∑
sn=0

(
i1
s1

)
· · ·

(
in
sn

)
|v0|i1+...+in−(s1+...+sn)

∫
Rn
|w|s1+...+sne−f(w) dw.

Let s = s1 + · · ·+ sn and Js =
∫
Rn |w|se−f(w) dw. Write

Js =
∫
{w∈Rn : |w|≤1}

|w|se−f(w) dw +
∫
{w∈Rn : |w|>1}

|w|se−f(w) dw = Js1 + Js2 . (3.21)

Then

Js1 ≤
∫
Rn
e−f(w) dw ≈ |{w : f(w) ≤ 1}|. (3.22)

Given v0, we can estimate the size of Js2 by splitting the integral into the two

following regions:

Js2 =
∫
|w|>1

|w|≤λ|v0|B

|w|se−f(w) dw +
∫
|w|>1

|w|>λ|v0|B

|w|se−f(w) dw, (3.23)

for some large constant λ yet to be determined and B = 4 max{m1, . . . ,mn}. Then

∫
|w|>1

|w|≤λ|v0|B

|w|se−f(w) dw ≤ λs|v0|sB
∫
Rn
e−f(w) dw ≈ λs|v0|sB|{w : f(w) ≤ 1}|. (3.24)

In order to estimate
∫
{w : |w|>1,|w|>λ|v0|B} |w|

se−f(w) dw, we will find a lower bound in

this region for f(w) in terms of |w|2 and we will then bound the integral by a constant.

Recall that

f(w) = g(v0 +w)− g(v0)−∇g(v0) ·w.
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Thus (and since f ≥ 0),

f(w) ≥ |g(v0 +w)| − |g(v0)| − |∇g(v0) ·w|. (3.25)

We will show that g(v0 + w) is bounded from below by a constant multiple of |w|2.

It will then suffice to show that the remaining terms in the above expression can be

dominated by this bound.

Let

F (t) = g

(
t(v0 +w)
|v0 +w|

)
,

where t ∈ R. Then F (t) is a convex polynomial in one variable, such that F (0) = F ′(0) =

0. We will write

F (t) =
M∑
j=2

ajt
j.

By Lemma 2.1 of the paper by Bruna Nagel and Wainger [4], we know that there exists

a constant CM > 0 that depends only on the degree of F such that for all t ≥ 1,

F (t) ≥ CM t
2

M∑
j=2
|aj|. (3.26)

Thus,

F (|v0 +w|) ≥ CM |v0 +w|2
M∑
j=2
|aj|.

Furthermore, we claim that ∑M
j=2 |aj| ≥ 1 so that F (|v0 + w|) ≥ CM |v0 + w|2. In

fact, by hypothesis
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{v : g(v) ≤ 1} ⊆ {v : |v| ≤ 1}.

It follows that

F (1) = g

(
v0 +w
|v0 +w|

)
.

Thus, since the vector v0+w
|v0+w| is on the unit sphere and g is convex,

F (1) = g

(
v0 +w
|v0 +w|

)
≥ 1.

Therefore,

M∑
j=2
|aj| ≥

M∑
j=2

aj = F (1) ≥ 1.

Notice that

g(v0 +w) = F (|v0 +w|) ≥ CM |v0 +w|2. (3.27)

Also, since in the region we are considering |w| > λ|v0|B (i.e., −|v0| > − |w|
1
B

λ
1
B

) and

|w| > 1, and since B = 4 max{m1, . . . ,mn} > 1, it follows that

|v0 +w| ≥ |w| − |v0| > |w| −
|w| 1

B

λ
1
B

≥ |w| − |w|
λ

1
B

≥ |w|
(

1− 1
λ

1
B

)
. (3.28)

Thus, by equations (3.27) and (3.28) it follows that

g(v0 +w) ≥ CM |v0 +w|2 ≥ CM |w|2
(

1− 1
λ

1
B

)2
.
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Choosing λ >
( √

2√
2−1

)B
, it follows that

g(v0 +w) ≥ CM |w|2

2 . (3.29)

We would now like to obtain an upper bound for |g(v0)|. Recall that by Claim 3.3,

for any v ∈ Rn we have that g(v) ≤ C(1+r(v)). Thus, and since max{2m1, . . . , 2mn} =
B
2 < B,

|g(v0)| ≤ C(1 + r(v0)) = C(1 + v2m1
01 + . . .+ v2mn

0n )

≤ C(1 + |v0|2m1 + . . .+ |v0|2mn)

≤ C(1 + (1 + |v0|B) + . . .+ (1 + |v0|B))

= C(1 + n+ n|v0|B)

< C

(
1 + n+ n|w|

λ

)
.

But since |w| ≤ |w|2 + 1, it follows that

|g(v0)| ≤ C

(
1 + n+ n

λ
+ n|w|2

λ

)
.

For λ > 8Cn
CM

, it follows that

|g(v0)| ≤ C
(

1 + n+ n

λ

)
+ Cn|w|2

λ
≤ C

(
1 + n+ n

λ

)
+ CM |w|2

8 . (3.30)

It now suffices to obtain an upper bound for |∇g(v0) · w|. Notice that for each

1 ≤ j ≤ n, the jth entry of ∇g is a polynomial whose exponents satisfy
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2α1

B
+ · · ·+ 2αn

B
≤ α1

2m1
+ · · ·+ αn

2mn

≤ 1− 1
2mj

< 1.

That is, α1 + . . . + αn <
B
2 . Thus, we can bound each entry of |∇g(v0)| by a constant

multiple of 1 + |v0|
B
2 . The coefficients of each of these entries are multiples of the coeffi-

cients of g, where the factors depend only on the degree of g. Thus, since ∑α∈Γ |cα| ≤ C,

there exists a constant C1 that depends only on C and the degree of g such that

|∇g(v0)| ≤ C1(1 + |v0|
B
2 ).

Hence, in the region under consideration we have

|∇g(v0)| ≤ C1

1 + |w|
1
2

λ
1
2

 .
It follows that

|∇g(v0) ·w| ≤ |∇g(v0)||w| ≤ C1

1 + |w|
1
2

λ
1
2

 |w| = C1

|w|+ |w| 32
λ

1
2

 .
But given x > 0, 0 ≤ j < d, and any constant A > 0, it follows that

xj ≤ 1
A
xd + Ad. (3.31)

Hence, |w| ≤ 1
A
|w|2 +A2 for an arbitrary constant A > 0. Also, |w| 32 ≤ |w|2 + 1. Thus,

|∇g(v0) ·w| ≤ C1

(
1
A
|w|2 + A2 + |w|

2

λ
1
2

+ 1
λ

1
2

)
.

Then for A > 16C1
CM

and λ >
(

16C1
CM

)2
it follows that
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|∇g(v0) ·w| ≤ C1

(
A2 + 1

λ
1
2

)
+ CM |w|2

8 . (3.32)

Therefore, by equations (3.29),(3.30) and (3.32), and taking

λ > max


( √

2√
2− 1

)B
,
8Cn
CM

,
(16C1

CM

)2


it follows that

f(w) ≥ |w|2
(
CM
2 −

CM
8 −

CM
8

)
− E = CM |w|2

4 − E, (3.33)

where E is a constant that depends on the “combined degree” of g and the dimension

of the space, but is otherwise independent.

Recall that our goal is to obtain an upper bound for

Is =
∫
|w|>1

|w|>λ|v0|B

|w|se−f(w) dw.

Using the lower bound for f(w) obtained in equation(3.33) we have that

Is .
∫
|w|>1

|w|>λ|v0|B

|w|se
−CM |w|

2
4 dw .

∫ ∞
0

rse
−CMr2

4 dr.

Since CM is a strictly positive constant, the above integral converges. This finishes the

proof of Claim 3.12.

It follows from Claim 3.10, equation (3.10) and Claim 3.12 that the derivatives of

θ(η) are bounded from above by a sum of terms of the form
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Hf [|v0|]d−1

eh(v0)|{w : f(w) ≤ 1}|d .

Moreover, by Claim 3.12 these terms can be bounded by terms of the form

q(|v0|)
eh(v0)|{w : f(w) ≤ 1}|k ,

where q : R→ R is a polynomial, and k ∈ [1, d]×Z. By Claim 3.8 it follows that q(|v0|)

is bounded by a polynomial in |η|. Furthermore, by Claim 3.7, |{w : f(w) ≤ 1}|−k .

(1+r(v0)) kn2 . By Claim 3.9 this latter bound is at most of polynomial growth in |η|. Thus,

the derivatives of θ(η) are bounded by sums of terms of the form e−h(v0)q̃(|η|), where q̃

grows at a polynomial rate. Finally, by equation (3.7) e−h(v0) decays at an exponential

rate in |η|. This finishes the proof that the derivatives of θ(η) decay exponentially. Thus,

θ is a Schwartz function. Moreover, it follows from the previous computations that its

decay is independent of the coefficients of g.

�
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Chapter 4

A Geometric Bound for the Szegő

kernel

In this section we present the proof of our main result. We consider convex unbounded

domains of the kind Ωb = {z ∈ Cn+1 : Im[zn+1] > b(Re[z1], . . . ,Re[zn])}, where b : Rn →

R are convex polynomials of “combined degree” (m1, . . . ,mn) (refer to definition on page

3).

Let Ωb be one such domain, and let (x,y, t) and (x′,y′, t′) be any two points in ∂Ωb.

Define

b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)
;

δ(x,x′) = b(x) + b(x′)− 2b
(
x+ x′

2

)
;

and

w = (t′ − t) +∇b
(
x+ x′

2

)
· (y′ − y).

We obtain the following estimate for the Szegő kernel associated to the domain Ωb :
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|S ((x,y, t); (x′,y′, t′))| . 1√
δ2 + b̃(y − y′)2 + w2

∣∣∣∣{v : b̃(v) <
√
δ2 + b̃(y − y′)2 + w2

}∣∣∣∣2 .
Here the constant depends on the exponents {m1, . . . ,mn} and the dimension of the

space, but is independent of the two given points.

Notice that since

b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)

we can write

b̃(v) = f(v)− L(v),

where f(v) = b
(
v + x+x′

2

)
and L is the tangent hyperplane to f at v = 0. Thus, given

any M > 0, |{v : b̃(v) ≤M}| is depicted in the following figure:

Figure 4.1.

W
L

We obtain these bounds by estimating the integral expression for the Szegő kernel

obtained in Appendix A. That is, we study
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S((x,y, t); (x′,y′, t′)) =

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]


∫

Rn

e2πη·[x+x′−i(y′−y)]∫
Rn
e4π[η·v−b(v)τ ] dv

dη

 dτ.

The proof is in essence an application of John ellipsoids. Recall that by John [17], given

a symmetric convex compact region, there exists a maximal inscribed ellipsoid E in that

region (centered at the center of symmetry) such that
√
nE contains the region, where

n is the dimension of the space. The key step of our proof consists in introducing factors

µ1(x,x′, τ), . . . , µn(x,x′, τ) via a change of variable so that

µ1 · · ·µn ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ .
These factors are chosen to be the length of the axis of the John ellipsoid associated to

a symmetrization of the convex region
{
v : b̃(v) ≤ 1

τ

}
.

4.1 Construction of the factors µ1 . . . , µn

We will begin by discussing how to construct these factors µ1 . . . , µn. Let

R =
{
v : b̃(v) ≤ 1

τ

}
.

Notice that since b is convex, so is b̃, and the region R is convex. In order to be able

to use John’s bounds, we need to show that the set R is also compact. We do so in the

following claim.
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Claim 4.2. Let b : Rn → R be a convex polynomial of “combined degree” (m1, . . . ,mn).

Let

b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)
.

Then for any M > 0, the set {v : b̃(v) ≤M} is compact.

Proof. Notice that if b is a convex polynomial of “combined degree” (m1, . . . ,mn), so is

b̃. Also, since b̃(0) = 0 and ∇b(0) = 0, it follows that b̃ ≥ 0 (this was already shown in

equation (1.4) on page 17). Observe that b̃ is not the zero polynomial, since by definition

of “combined degree”, b̃ is of strictly positive degree.

Fix M > 0. Since b̃ is continuous and {v : b̃(v) ≤M} ⊂ Rn, it suffices to show that

this set is bounded. Suppose that this is not so.

We claim that if {v : b̃(v) ≤ M} is unbounded, then there exists a x ∈ Rn such

that ∀c > 0, b̃(cx) ≤M. In particular, since b̃(0) = 0 and b̃ is convex, ∀c > 0, b̃(cx) ≡ 0.

In fact, if the set is unbounded, then there exists a sequence {vi}i∈N in Rn such that

|vi| > i and b̃(vi) ≤ M. Define yi = vi
|vi| . Let x be any limit point of {yi}i∈N. Notice

that since {yi}i∈N is a sequence in the unit ball, which is compact, it has a convergent

subsequence, and so there exists at least one suitable x.

Let c be given and let N ∈ N so that N > c. Then b̃(cyi) ≤M for all i ≥ N. In fact,

cyi = c
|vi| · vi, but the sequence {vi}i∈N was chosen so that i

|vi| < 1, so c
|vi| ≤

i
|vi| < 1.

Thus, it follows from the convexity of b̃ that b̃(cyi) ≤ b̃(vi) ≤M.
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Furthermore, if {yij} is a subsequence of {yi} which converges to x, then, and since

b̃ is continuous, b̃(cyij) converges to b̃(cx). But since b̃(cyij) ≤ M for all ij ≥ N, it

follows that b̃(cx) ≤M for all c > 0.

Moreover, from the above and the convexity of b̃, it follows that b̃(cx) ≡ 0. In fact,

suppose there exists 0 < r ≤ M such that b̃(cx) = r. Then by convexity, b̃(λcx) ≥

λb̃(cx) = λr for all λ > 1. In particular, taking λ = M+1
r

it follows that b̃
(
M+1
r
cx
)
≥

M+1
r
r = M + 1. This contradicts the fact that b̃(cx) ≤M for all c > 0.

Now let x = (x1, . . . , xn) be as above, and define w(t) = t · (x1, . . . , xn). Then since

b̃(cx) ≡ 0 for all c > 0, it follows that b̃(w(t)) ≡ 0, and so the polynomial of one variable

b̃ ◦w is the zero polynomial.

On the other hand, if cα(tx1)α1 · · · (txn)αn is a term of b̃(w(t)), then the corresponding

term in b̃ ◦ w is of degree |α| = α1 + · · · + αn, and its coefficient is cαxα1
1 · · ·xαnn .

Thus, the maximal degree terms in b̃ correspond to the maximal degree terms in b̃ ◦w.

But since b̃ is of “combined degree,” its highest order term (or terms) corresponds to

one of the pure terms. That is, the highest degree term of b̃(w(t)) is of the form

cα(txi)2mi (or a sum of terms of this form). It is easy to check that the coefficients

of the highest degree pure terms of b̃ are positive. This follows from the fact that

b̃(0, . . . , 0, txi, 0, . . . , 0) : Rn → R+. Since for these terms the αi are even, it follows that

the coefficient of the highest degree term of b̃ ◦w is positive. Thus, b̃ ◦w is not the zero

polynomial.

This yields the desired contradiction. It follows that {v : b̃(v) ≤ M} is bounded,

and therefore compact.
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Recall that by construction b̃(0) = 0, so the region R contains the origin. We would

now like to show that there exists an ellipsoid E centered at the origin such that

E ⊆ R ⊆ CE,

for some independent positive constant C. If this were the case, we could choose µ1 to

be the length of the largest semi–axis of E, µ2 to be the length of the second largest

semi–axis of E, etc. It would follow that

µ1 · · ·µn ≈ V ol(E) ≈ V ol(R).

That is, we would have found factors µ1, . . . , µn such that

µ1 · · ·µn ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ .
The existence of such an ellipsoid would follow immediately by John if the region

were symmetric (with the origin as center of symmetry). However, we have made no

symmetry assumptions on our domain. Nevertheless, we can show the following:

Claim 4.3. Let L be any line through the origin (recall the the origin is contained in

the set R). This line L will intersect R in two points. Let d1 be the shortest distance

along L from the origin to the boundary of R, and let d2 be the largest distance. Then

there exist constants m, M depending only on the degree of the polynomial b such that
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0 < m ≤ d2

d1
≤M < +∞.

Proof. Let h(v) = τ b̃(v). Along the line L, the polynomial h(v) is a polynomial of one

variable which we will call hL(t). This polynomial satisfies hL(0) = h′L(0) = 0. Write

hL(t) =
N∑
j=2

cjt
j.

Then there exists some 2 ≤ k ≤ N such that

hL(d1) ≤
N∑
j=2
|cj|dj1 ≤ (N − 1)|ck|dk1.

On the other hand, it follows from Lemma 2.1 on [4] (refer to page 15) that there

exists a constant 0 < CN ≤ 1 such that

hL(d2) ≥ CN
N∑
j=2
|cj|dj2.

For k as above, it follows that

CN |ck|dk2 ≤ CN
N∑
j=2
|cj|dj2 ≤ hL(d2).

Moreover, hL(d1) = hL(d2) = 1, since d1 and d2 where chosen as the distances where L

intersects the boundary of the region R = {v : h(v) ≤ 1}. Thus,

CN |ck|dk2 ≤ hL(d2) = 1 = hL(d1) ≤ (N − 1)|ck|dk1.

Therefore,
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d2

d1
≤
(
N − 1
CN

) 1
k

.

On the other hand, since d1 is the shortest distance along L from R to the origin and

d2 is the largest, it follows that d1 ≤ d2.

Choosing M = max2≤k≤N

{(
N−1
CN

) 1
k

}
and m = 1 it follows that

m ≤ d2

d1
≤M.

This finishes the proof of Claim 4.3.

We have shown that even though the region R is not symmetric, the ratio between

rays passing through the origin is bounded by universal constants that only depend on

the degree of b. In the following lemma we will show that this is enough to guarantee the

existence of an ellipsoid centered at the origin contained in R and such that a dilation

by a universal constant contains R.

Lemma 4.4. Let R =
{
v : b̃(v) ≤ 1

τ

}
and R̃ = {x : −x ∈ R}. Let E be the maximal

inscribed ellipsoid in the region R ∩ R̃. Then

E ⊆ R ⊆M
√
nE

where M is as in Claim 4.3, and n is the dimension of the space.
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Proof. By definition, the set R∩ R̃ is symmetric. Moreover, since R and R̃ are compact

and convex, their intersection is also compact and convex. It follows from John that

there exists an ellipsoid E centered at the origin such that

E ⊆ R ∩ R̃ ⊆
√
nE.

It is clear that E ⊆ R. We would like to show that there is a dilation of E which

contains R. Let x be any point in R. Then, if −x ∈ R, it follows by definition that

x ∈
√
nE. Now suppose that −x /∈ R. Let L be the line that goes through the origin

and x. Using the notation of the previous claim, we have that |x| ≤ d2. We would like

to find a constant ρ > 0 such that −ρx ∈ R.

Given M as in Claim 4.3, let 0 < ρ ≤ 1
M
. Then | − ρx| ≤ ρd2 ≤ ρMd1 ≤ d1. But

since d1 is the minimum distance from the boundary of R to the origin along line L, it

follows that −ρx ∈ R.

It follows that given any point x ∈ R the point − 1
M
x is also contained in R. That

is, 1
M
x ∈ R ∩ R̃ ⊆

√
nE. Thus,

E ⊆ R ⊆M
√
nE.

This finishes the proof of Lemma 4.4.

It follows from the previous lemma that

V ol(E) ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ .
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Thus, choosing µ1 to be the length of the largest semi–axis of
√
nME, µ2 to be the

length of the second largest semi–axis of
√
nME, etc., we have that

µ1 · · ·µn ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ . (4.1)

Remark 4.5. The reason we have chosen the components of µ to be the lengths of the

axes of
√
nME rather than those of E will become apparent in the proof of the Main

Theorem. This normalization will be used to construct a function satisfying hypothesis

(iii) in Lemma 3.1.

4.2 Proof of the Main Theorem

We are now ready to present the proof of the Main Theorem. For the reader’s conve-

nience, we have divided the proof into three subsections, corresponding to a bound in

terms of δ, a bound in terms of b̃(y − y′) and a bound in terms of w. We finish by

combining all three bounds to obtain the estimate stated in the Main Theorem. It will

be convenient in the course of the proof of all three bounds to rearrange the terms of

the integral expression for the Szegő kernel obtained in Theorem A.1 as follows:

Making the change of variables v → v + x
2 + x′

2 to get rid of the term e2πη·(x+x′) in

the original expression obtained for the Szegő kernel given by

S((x,y, t); (x′,y′, t′)) =

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]


∫

Rn

e2πη·[x+x′−i(y′−y)]∫
Rn
e4π[η·v−b(v)τ ] dv

dη

 dτ
it follows that
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S =

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]

∫
Rn

e2πiη·(y−y′)∫
Rn
e

4π
[
η·v−τb

(
v+x+x′

2

)]
dv

dη dτ.

We will modify the denominator integral so as to change it into an integral of the

form [θ(η)]−1, where θ is the function studied in Section 3.

In particular, the exponent of our integral must be of the form η · v − g(v), where

g(0) = 0 and ∇g(0) = 0. Since

∇
[
τb

(
v + x+ x′

2

)]∣∣∣∣∣
{v=0}

= ∇b
(
x+ x′

2

)
τ

we can make the change of variables η → η +∇b
(
x+x′

2

)
τ. Then,

S =

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]e
4πτ b

(
x+x′

2

)
e

2πiτ∇b
(
x+x′

2

)
·(y−y′)

×

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη dτ,

where

b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)

and the term b
(
x+x′

2

)
has been added so that b̃(0) = 0.

Letting

δ(x,x′) = b(x) + b(x′)− 2b
(
x+ x′

2

)

and
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w = (t′ − t) +∇b
(
x+ x′

2

)
· (y′ − y)

it follows that

S =

∫ ∞

0

e−2πτδe−2πτiw

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη dτ. (4.2)

Notice that since b is convex, τ b̃ is also convex. Moreover, if b is of “combined degree”

(m1, . . . ,mn), so is τ b̃. Thus, τ b̃ is a convex polynomial satisfying conditions (i), (ii) and

(iv) of Lemma 3.1. It remains to renormalize τ b̃ so that it also satisfies condition (iii).

With µ1, . . . , µn chosen as in equation (4.1), let

g(v) = τ b̃(µv). (4.3)

Notice that since

E ⊆
{
v : τ b̃(v) ≤ 1

}
⊆
√
nME

and letting A = (
√
nM)−1 condition (iii) of Lemma 3.1 is satisfied. That is,

{v : |v| ≤ A} ⊆ {v : g(v) ≤ 1} ⊆ {v : |v| ≤ 1}. (4.4)

By making the change of variables v → µv so as to introduce the factors µ1, . . . , µn

in the denominator integral of equation (4.2), as well as the change of variables η → η
µ

we have that
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S =

∫ ∞

0

e−2πτδe−2πτiw

µ2
1 · · ·µ2

n

∫
Rn

e
2πiη·

(
y−y′
µ

)
∫
Rn
e4π[η·v−τ b̃(µv)] dv

dη dτ. (4.5)

The term e−2πτδ will provide the necessary decay to obtain the bound in terms of δ.

However, to obtain the bound in terms of b̃(y−y′) and the bound in terms of w we will

need to use the oscillation of the terms e2πiη·
(
y−y′
µ

)
and e−2πτiw respectively.

4.2.1 The bound in terms of δ

Proposition 4.6. Let b : Rn → R be a convex polynomial of “combined degree” (m1, . . . ,mn).

Let (x,y, t) and (x′,y′, t′) be any two points in ∂Ωb. Define

b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)
;

and

δ(x,x′) = b(x) + b(x′)− 2b
(
x+ x′

2

)
. (4.6)

Then,

|S ((x,y, t); (x′,y′, t′))| . 1
δ|{v : b̃(v) < δ}|2

,

where the constant may depend on the “combined degree” of b and the dimension of the

space, but is independent of the two given points.

Remark 4.7. Notice that since b is convex, δ(x,x′) ≥ 0.
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Proof. It follows from equation (4.5) that

|S| ≤

∫ ∞

0

e−2πτδ

µ2
1 · · ·µ2

n

∫
Rn

1∫
Rn
e4π[η·v−τ b̃(µv)] dv

dη dτ.

But

µ1 · · ·µn ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ .
Thus, it follows that

|S| .

∫ ∞

0

e−2πτδ∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2
∫

Rn

1∫
Rn
e4π[η·v−g(v)] dv

dη dτ. (4.7)

We showed in Lemma 3.1 that

θ(η) =
 ∫

Rn
e4π[η·v−g(v)] dv

−1

decays at an exponential rate, where the decay is independent of the coefficients of g. In

particular, the decay does not depend on τ. Thus,
∫
Rn θ(η) dη converges. Hence,

|S| .

∫ ∞

0

e−2πτδ∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2 dτ.
We can write∫ ∞

0

e−2πτδ∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2 dτ =
∞∑

j=−∞

∫ τδ=2j+1

τδ=2j

e−2πτδ∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2 dτ.
Thus,
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|S| .
∞∑

j=−∞

e−2π2j∣∣∣{v : b̃(v) ≤ δ
2j+1

}∣∣∣2
∫ τ=2j+1δ−1

τ=2jδ−1

dτ =
∞∑

j=−∞

2je−2π2j

δ
∣∣∣{v : b̃(v) ≤ δ

2j+1

}∣∣∣2 .

In order to get rid of the dependence on j of
∣∣∣{v : b̃(v) ≤ δ

2j+1

}∣∣∣ we can write

|S| .
∑

−∞≤j<0

e−2π2j2j

δ|{v : b̃(v) ≤ δ}|2
+

∑
0≤j≤∞

e−2π2j2j

δ
∣∣∣{v : b̃(v) ≤ δ

2j+1

}∣∣∣2 . (4.8)

But by Claim 1.5 on page 16, for j ≥ 0 we have that

|{v : b̃(v) ≤ δ}| ≤ 2n(j+1)
∣∣∣∣∣
{
v : b̃(v) ≤ δ

2j+1

}∣∣∣∣∣ .
Thus, it follows that

|S| . 1
δ|{v : b̃(v) ≤ δ}|2

 ∑
−∞≤j<0

e−2j+1π2j +
∑

0≤j≤∞
e−2j+1π22n(j+1)+j

 .
Since both sums converge, we obtain the desired estimate. That is,

|S| . 1
δ|{v : b̃(v) ≤ δ}|2

.

This finishes the proof Proposition 4.6.

4.2.2 The bound in terms of b̃(y − y′)

Proposition 4.8. Let b : Rn → R be a convex polynomial of “combined degree” (m1, . . . ,mn).

Let (x,y, t) and (x′,y′, t′) be any two points in ∂Ωb. Define
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b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)
.

Then

|S ((x,y, t); (x′,y′, t′))| . 1
b̃(y − y′)|{v : b̃(v) < b̃(y − y′)}|2

,

where the constant may depend on the “combined degree” of b and the dimension of the

space, but is independent of the two given points.

Proof. We had shown in equation (4.5) on page 71 that

S =

∫ ∞

0

e−2πτδe−2πτiw

µ2
1 · · ·µ2

n

∫
Rn

e
2πiη·

(
y−y′
µ

)
∫
Rn
e4π[η·v−τ b̃(µv)] dv

dη dτ.

Thus, and since δ ≥ 0,

|S| ≤

∫ ∞

0

1
µ2

1 · · ·µ2
n

∣∣∣∣∣∣∣∣
∫

Rn

e
2πiη·

(
y−y′
µ

)
∫
Rn
e4π[η·v−τ b̃(µv)] dv

dη

∣∣∣∣∣∣∣∣ dτ.
But by Lemma 3.1,

θ(η) =
[∫

Rn
e4π[η·v−τ b̃(µv)] dv

]−1

is Schwartz. Moreover, its decay is independent of τ and the coefficients of b. The same

is true of its Fourier transform, θ̂. We can write

|S| ≤
∫ ∞

0

1
µ2

1 · · ·µ2
n

∣∣∣∣∣θ̂
(
y − y′

µ

)∣∣∣∣∣ dτ.
Recall that the factors µj were chosen so that
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µ1 · · ·µn ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ .
Hence,

|S| .

∫ ∞

0

1∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2
∣∣∣∣∣θ̂
(
y − y′

µ

)∣∣∣∣∣ dτ.

Let u = y−y′. We can split the integral into integrals defined over smaller intervals

in the following way:

∫ ∞

0

1∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2
∣∣∣∣∣θ̂
(
y − y′

µ

)∣∣∣∣∣ dτ =
∞∑

j=−∞

∫ 2j+1

b̃(u)

2j

b̃(u)

1∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2
∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ.
But if

b̃(u)
2j+1 ≤

1
τ
≤ b̃(u)

2j ,

then

∣∣∣∣∣
{
v : b̃(v) ≤ b̃(u)

2j+1

}∣∣∣∣∣ ≤
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ .
It follows that

|S| .
∞∑

j=−∞

∫ 2j+1

b̃(u)

2j

b̃(u)

1∣∣∣∣{v : b̃(v) ≤ b̃(u)
2j+1

}∣∣∣∣2
∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ.

Splitting the sum for positive and negative values of j, we can write
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|S| .
∑

−∞≤j<0

∫ 2j+1

b̃(u)

2j

b̃(u)

1∣∣∣∣{v : b̃(v) ≤ b̃(u)
2j+1

}∣∣∣∣2
∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ

+
∑

0≤j≤∞

∫ 2j+1

b̃(u)

2j

b̃(u)

1∣∣∣∣{v : b̃(v) ≤ b̃(u)
2j+1

}∣∣∣∣2
∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ.

But for j < 0 we have that b̃(u) ≤ b̃(u)
2j+1 , so

∣∣∣∣∣
{
v : b̃(v) ≤ b̃(u)

2j+1

}∣∣∣∣∣
−1

≤
∣∣∣{v : b̃(v) ≤ b̃(u)

}∣∣∣−1
.

On the other hand, for j ≥ 0, we can use Claim 1.5 on page 16 to show that

∣∣∣∣∣
{
v : b̃(v) ≤ b̃(u)

2j+1

}∣∣∣∣∣
−1

≤ 2n(j+1)
∣∣∣{v : b̃(v) ≤ b̃(u)

}∣∣∣−1
.

Hence,

|S| .
∑

−∞≤j<0

1∣∣∣{v : b̃(v) ≤ b̃(u)
}∣∣∣2
∫ 2j+1

b̃(u)

2j

b̃(u)

∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ

+
∑

0≤j≤∞

22n(j+1)∣∣∣{v : b̃(v) ≤ b̃(u)
}∣∣∣2
∫ 2j+1

b̃(u)

2j

b̃(u)

∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ.

The term 2j that will com from the bounds of integration will be enough to obtain

the convergence of the first sum. Thus, for the first sum it suffices to bound |θ̂| by a

universal constant. It follows that



77

∑
−∞≤j<0

1∣∣∣{v : b̃(v) ≤ b̃(u)
}∣∣∣2

∫ 2j+1

b̃(u)

2j

b̃(u)

∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ . ∑
−∞≤j<0

1∣∣∣{v : b̃(v) ≤ b̃(u)
}∣∣∣2

∫ 2j+1

b̃(u)

2j

b̃(u)

dτ

=
∑

−∞≤j<0

2j

b̃(u)
∣∣∣{v : b̃(v) ≤ b̃(u)

}∣∣∣2 ≈
1

b̃(u)
∣∣∣{v : b̃(v) ≤ b̃(u)

}∣∣∣2 .

We would like to obtain a similar bound for the second sum. The main obstacle is

obtaining decay in j to counteract the growth of the term 22n(j+1), thus ensuring the

convergence of the series. Our goal is to show that

∫ 2j+1

b̃(u)

2j

b̃(u)

∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ . 1
2Kj b̃(u)

,

for some arbitrarily large constant K. Notice that in this interval,

1
τ b̃(u)

≤ 1
2j .

Also,

∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ . 1∣∣∣1 +
∣∣∣p (u

µ

)∣∣∣∣∣∣N
for any polynomial p. Thus, it suffices to show that there exists some polynomial p such

that τ b̃(u) ≤ 1 +
∣∣∣p (u

µ

)∣∣∣ . In fact, it would follow that

∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ . 1∣∣∣τ b̃(u)
∣∣∣N ≤

1
2Nj ,

so that
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∞∑
j=0

22n(j+1)∣∣∣{v : b̃(v) ≤ b̃(u)
}∣∣∣2
∫ 2j+1

b̃(u)

2j

b̃(u)

∣∣∣∣∣θ̂
(
u

µ

)∣∣∣∣∣ dτ
≤
∞∑
j=0

2j22n(j+1)

2Nj b̃(u)
∣∣∣{v : b̃(v) ≤ b̃(u)

}∣∣∣2 .
For sufficiently large N, the series converges, and we would obtain the desired estimate.

We will now find a polynomial p such that τ b̃(u) ≤ 1 +
∣∣∣p (u

µ

)∣∣∣ . Letting s = u
µ
, we

can write the above requirement as τ b̃(µs) ≤ 1 + |p (s) |. Recall that by equation (4.4),

there exists a universal constant A < 1 such that

{v : |v| ≤ A} ⊆ {v : τ b̃(µv) ≤ 1} ⊆ {v : |v| ≤ 1}. (4.9)

Then the polynomial g(s) = τ b̃(µs) satisfies all the hypothesis of Lemma 3.1. In par-

ticular, Claim 3.3 on page 32 holds. Thus, there exists a universal constant such that

τ b̃(µs) ≤ C(1 + s2m1
1 + . . .+ s2mn

n ).

This finishes the proof of Proposition 4.8.

4.2.3 The bound in terms of w

Proposition 4.9. Let b : Rn → R be a convex polynomial of “combined degree” (m1, . . . ,mn).

Let (x,y, t) and (x′,y′, t′) be any two points in ∂Ωb. Define

b̃(v) = b

(
v + x+ x′

2

)
−∇b

(
x+ x′

2

)
· v − b

(
x+ x′

2

)
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and

w = (t′ − t) +∇b
(
x+ x′

2

)
· (y′ − y).

Then,

|S ((x,y, t); (x′,y′, t′))| . 1
|w| |{v : b̃(v) < |w|}|2

,

where the constant may depend on the “combined degree” of b and the dimension of the

space, but is independent of the two given points.

The derivation of this last bound is rather long and technical. Before giving all the

technical details, however, we shall begin by briefly outlining the main ideas behind the

proof. It follows from equation (4.2) on page 70 that

S =
∫ π
|u|

0
e−iuτF (τ) dτ +

∫ ∞
π
|u|

e−iuτF (τ) dτ. (4.10)

where u = 2π
[
(t′ − t) +∇b

(
x+x′

2

)
· (y′ − y)

]
and

F (τ) = e−2πτδ

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη. (4.11)

The integral for 0 ≤ τ ≤ π
|u| in equation (4.10) yields the desired estimate by using

similar techniques as those detailed in the proof of the previous two bounds. Thus, the

main difficulty lies in estimating the integral for π
|u| ≤ τ ≤ ∞. In particular, we must

show that the integral converges. To do so, we will take advantage of the oscillation of

the term e−iuτ . Integrating the latter by parts N times, for an arbitrary positive integer

N, we obtain formally an equation of the form
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∫ ∞

π
|u|

e−iuτ

|u|N
F (N)(τ) dτ.

We then show that after introducing the factors µ as in the two previous bounds,

every derivative of F (τ) yields a factor of 1
τ
times a bounded function, so that

∣∣∣∣∣∣∣
∫ ∞

π
|u|

e−iuτ

|u|N
F (N)(τ) dτ

∣∣∣∣∣∣∣ ≈
1
|u|N

∫ ∞

π
|u|

1
µ2

1 · · ·µ2
n

· 1
τN

dτ

≈ 1
|u|N

∫ ∞

π
|u|

1∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2 ·
1
τN

dτ.

Finally, using Claim 1.5, we show that this last integral is bounded by an expression

of the form

1
|u|N

∣∣∣{v : b̃(v) ≤ |u|
}∣∣∣2
∫ ∞

π
|u|

|u|2nτ 2n

τN
dτ,

yielding the desired estimate for large enough values of N.

Before presenting a rigorous proof of Proposition 4.9, we discuss three technical

results that will be used in the course of the proof. In Claim 4.10 we obtain an upper

bound for
∫∞

0 e−iuτF (τ) dτ in terms of the N + 1th derivative of F. The method we use

is analogous to integration by parts, but does not yield boundary terms, making the

computation slightly simpler. In Claim 4.11 we compute the N th derivative of F. In

Claim 4.12 we show that, after introducing the factors µ, the N th derivative of F is

dominated by 1
τN

times a bounded function.

Claim 4.10. Let t ∈ R and
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I(t) =
∫ ∞

0
e−itτF (τ) dτ,

where F ∈ C∞(R). Then given N > 0 there exist positive coefficients c1, . . . , cN+1 such

that

|I(t)| ≤
N+1∑
j=0

cj

∣∣∣∣∣
∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ

∣∣∣∣∣
+ cN+1

∣∣∣∣∣
∫ ∞
π
|t|

e−itτ
∫ π
|t|

0
· · ·

∫ π
|t|

0
F (N+1)(τ + s1 + . . .+ sN+1) ds1 · · · dsN+1 dτ

∣∣∣∣∣ .
(4.12)

Proof. We can write

I(t) =
∫ π
|t|

0
e−itτF (τ) dτ +

∫ ∞
π
|t|

e−itτF (τ) dτ = S + L. (4.13)

Introducing a factor of ei sgn(t)π, we can split L as follows:

L = 1
2

[∫ ∞
π
|t|

e−itτF (τ) dτ −
∫ ∞
π
|t|

ei sgn(t)πe−itτF (τ) dτ
]

= 1
2

[∫ ∞
π
|t|

e−itτF (τ) dτ −
∫ ∞
π
|t|

e−it(τ−
π
|t|)F (τ) dτ

]

= 1
2

[∫ ∞
π
|t|

e−itτF (τ) dτ −
∫ ∞

0
e−itτF

(
τ + π

|t|

)
dτ

]
.

Writing F
(
τ + π

|t|

)
=
[
F
(
τ + π

|t|

)
− F (τ)

]
+ F (τ), we have that

L = 1
2

(∫ ∞
π
|t|

e−itτF (τ) dτ −
∫ ∞

0
e−itτ

[
F

(
τ + π

|t|

)
− F (τ)

]
dτ −

∫ ∞
0

e−itτF (τ) dτ
)

= 1
2

(
−
∫ π
|t|

0
e−itτF (τ) dτ −

∫ ∞
0

e−itτ
[
F

(
τ + π

|t|

)
− F (τ)

]
dτ

)
.
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Using this last expression in equation (4.13), it follows that

I(t) = 1
2

(∫ π
|t|

0
e−itτF (τ) dτ −

∫ ∞
0

e−itτ
[
F

(
τ + π

|t|

)
− F (τ)

]
dτ

)
.

Now let F1(τ) = F
(
τ + π

|t|

)
− F (τ) and let

I1(t) =
∫ ∞

0
e−itτ

[
F

(
τ + π

|t|

)
− F (τ)

]
dτ =

∫ ∞
0

e−itτF1(τ) dτ.

Then, by the same argument, it follows that

I1(t) = 1
2

(∫ π
|t|

0
e−itτF1(τ) dτ −

∫ ∞
0

e−itτ
[
F1

(
τ + π

|t|

)
− F1(τ)

]
dτ

)
.

After N times of repeating this process, we would have that

IN(t) =
∫ ∞

0
e−itτFN(τ) dτ

= 1
2

(∫ π
|t|

0
e−itτFN(τ) dτ −

∫ ∞
0

e−itτ
[
FN

(
τ + π

|t|

)
− FN(τ)

]
dτ

)
,

where FN(τ) = FN−1
(
τ + π

|t|

)
− FN−1(τ).

Letting

Sj(t) =
∫ π
|t|

0
e−itτFj(τ) dτ

for 1 ≤ j ≤ N − 1, it follows that
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I(t) = 1
2 [S(t)− I1(t)]

= 1
2

[
S(t)− 1

2 [S1(t)− I2(t)]
]

...

= 1
2

[
S(t)− 1

2

[
S1(t)− 1

2

[
S2(t) · · · − 1

2 [SN−1(t)− IN(t)]
]]]

.

That is,

I(t) = 1
2S(t)− 1

22S1(t) + 1
23S2(t) + . . .+ (−1)N−1

2N SN−1(t) + (−1)N
2N IN(t)

= 1
2S(t) +

N∑
k=1

(−1)k
2k+1

∫ π
|t|

0
e−itτFk(τ) dτ + (−1)N+1

2N+1

∫ ∞
0

e−itτFN+1(τ) dτ.

Notice that after expanding and rearranging terms, we can write for 1 ≤ k ≤ N

Fk(τ) =
k−1∑
j=0

(−1)k+j+1
(
k − 1
j

)[
F

(
τ + (j + 1)π

|t|

)
− F

(
τ + jπ

|t|

)]
.

It follows that

I(t) = 1
2S(t) +

N∑
k=1

k−1∑
j=0

(
k − 1
j

)
(−1)j+1

2k+1

∫ π
|t|

0
e−itτ

[
F

(
τ + (j + 1)π

|t|

)
− F

(
τ + jπ

|t|

)]
dτ

+
N∑
j=0

(−1)j+1

2N+1

(
N

j

)∫ π
|t|

0
e−itτ

[
F

(
τ + (j + 1)π

|t|

)
− F

(
τ + jπ

|t|

)]
dτ

+ (−1)N+1

2N+1

∫ ∞
π
|t|

e−itτFN+1(τ) dτ.

Changing the order of summation, it follows that
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I(t) = 1
2S(t) +

N−1∑
j=0

N∑
k=j+1

(
k − 1
j

)
(−1)j+1

2k+1

∫ π
|t|

0
e−itτF

(
τ + (j + 1)π

|t|

)
dτ

+
N−1∑
j=0

N∑
k=j+1

(
k − 1
j

)
(−1)j
2k+1

∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ

+
N∑
j=0

(−1)j+1

2N+1

(
N

j

)∫ π
|t|

0
e−itτF

(
τ + (j + 1)π

|t|

)
dτ

+
N∑
j=0

(−1)j
2N+1

(
N

j

)∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ + (−1)N+1

2N+1

∫ ∞
π
|t|

e−itτFN+1(τ) dτ.

That is,

I(t) = 1
2S(t) +

N∑
j=1

N∑
k=j

(
k − 1
j − 1

)
(−1)j
2k+1

∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ

+
N−1∑
j=0

N∑
k=j+1

(
k − 1
j

)
(−1)j
2k+1

∫ π
|t|

0
e−itτF

(
τ + jπ

t

)
dτ

+
N+1∑
j=1

(−1)j
2N+1

(
N

j − 1

)∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ

+
N∑
j=0

(−1)j
2N+1

(
N

j

)∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ + (−1)N+1

2N+1

∫ ∞
π
|t|

e−itτFN+1(τ) dτ.

Let

c0 = 1
2 +∑N

k=1
1

2k+1 + 1
2N+1 ;

cj = ∑N
k=j

(
k−1
j−1

)
1

2k+1 +∑N
k=j+1

(
k−1
j

)
1

2k+1 +
(
N
j−1

)
1

2N+1 +
(
N
j

)
1

2N+1 for 1 ≤ j ≤ N − 1;

cN = N+2
2N+1 ; and

cN+1 = 1
2N+1 .

Then it follows that
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|I(t)| ≤
N+1∑
j=0

cj

∣∣∣∣∣
∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ

∣∣∣∣∣+ 1
2N+1

∣∣∣∣∫ ∞
0

e−itτFN+1(τ) dτ
∣∣∣∣ . (4.14)

It suffices now to show that

FN+1(τ) =
∫ π
|t|

0
· · ·

∫ π
|t|

0
F (N+1)(τ + s1 + . . .+ sN+1) ds1 · · · dsN+1,

where

FN+1(τ) =
N∑
j=0

(−1)N+j
(
N

j

)[
F

(
τ + (j + 1)π

|t|

)
− F

(
τ + jπ

|t|

)]

=
N∑
j=0

(−1)N+j
(
N

j

)∫ π
|t|

0
F ′
(
τ + s+ jπ

|t|

)
ds.

(4.15)

Using the identity

(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
,

it follows that for any integer M > 0 and for any function h,

M∑
j=0

(−1)M+j
(
M

j

)
h(j)

= h(M) + (−1)Mh(0) +
M−1∑
j=1

(−1)M+j
((

M − 1
j

)
+
(
M − 1
j − 1

))
h(j)

= h(M)− h(M − 1) +
M−2∑
j=1

(−1)M+j
(
M − 1
j

)
h(j)

+
M−2∑
j=1

(−1)M+j+1
(
M − 1
j

)
h(j + 1) + (−1)M+1h(1) + (−1)Mh(0).

That is,
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M∑
j=0

(−1)M+j
(
M

j

)
h(j) =

M−1∑
j=0

(−1)M+j+1
(
M − 1
j

)
[h(j + 1)− h(j)] . (4.16)

Let h(j) =
∫ π
|t|

0 F ′
(
τ + s+ jπ

|t|

)
ds and M = N. Notice that we can write

h(j + 1)− h(j) =
∫ π
|t|

0
F ′
(
τ + s+ jπ

|t|
+ π

|t|

)
− F ′

(
τ + s+ jπ

|t|

)
ds

=
∫ π
|t|

0

∫ π
|t|

0
F ′′

(
τ + s1 + s2 + jπ

|t|

)
ds1 ds2.

(4.17)

It follows from equations (3.8), (4.16) and (4.17) that

FN+1(τ) =
N−1∑
j=0

(−1)N+j+1
(
N − 1
j

)∫ π
|t|

0

∫ π
|t|

0
F ′′

(
τ + s1 + s2 + jπ

|t|

)
ds1 ds2.

Now let h(j) =
∫ π
|t|

0
∫ π
|t|

0 F ′′
(
τ + s1 + s2 + jπ

|t|

)
ds1 ds2 and M = N − 1, and use equa-

tion (4.16) once more. Since

h(j + 1)− h(j) =
∫ π
|t|

0

∫ π
|t|

0

∫ π
|t|

0
F ′′′

(
τ + s1 + s2 + s3 + jπ

|t|

)
ds1 ds2 ds3

it follows that

FN+1(τ) = −
N−2∑
j=0

(−1)N+j
(
N − 2
j

)∫ π
|t|

0

∫ π
|t|

0

∫ π
|t|

0
F ′′′

(
τ + s1 + s2 + s3 + jπ

|t|

)
ds1 ds2 ds3.

Repeating this process N − 2 more times, we obtain

FN+1(τ) =
∫ π
|t|

0
· · ·

∫ π
|t|

0
F (N+1) (τ + s1 + . . .+ sN+1) ds1 · · · dsN+1.
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Thus, it follows from equation (4.14) that

|I(t)| ≤
N+1∑
j=0

cj

∣∣∣∣∣
∫ π
|t|

0
e−itτF

(
τ + jπ

|t|

)
dτ

∣∣∣∣∣
+ 1

2N+1

∣∣∣∣∣
∫ ∞

0
e−itτ

∫ π
|t|

0
· · ·

∫ π
|t|

0
F (N+1) (τ + s1 + . . .+ sN+1) ds1 · · · dsN+1(τ) dτ

∣∣∣∣∣ .
This finishes the proof of Claim 4.10.

Claim 4.11. The N th derivative of

F (τ) = e−2πτδ

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη (4.18)

consists of sums of terms of the form

C(τδ)N−ke−2πτδ

τN

∫
Rn

e2πiη·(y−y′)f1(τ) · · · fk(τ)
γ(τ) dη,

where

fs(τ) =
 ∫

Rn
(τ b̃(v))se4π[η·v−τ b̃(v)] dv

as ;

γ(τ) =
 ∫

Rn
e4π[η·v−τ b̃(v)] dv

d ;

a1, . . . , ak, k, d ∈ N; 0 ≤ k ≤ N ; a1 + . . .+ ak = d− 1; and a1 + 2a2 + . . .+ kak = k.

Proof. We will begin by showing by induction that the kth derivative of
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J(τ) =

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη

consists of sums of terms of the form

C

∫
Rn

e2πiη·(y−y′)
[ ∫

Rn
b̃(v)e4π[η·v−τ b̃(v)] dv

]a1

· · ·
[ ∫

Rn
b̃(v)ke4π[η·v−τ b̃(v)] dv

]ak
[ ∫

Rn
e4π[η·v−τ b̃(v)] dv

]d dη,

where a1 + . . .+ ak = d− 1; and a1 + 2a2 + . . .+ kak = k.

Notice that

J ′(t) = 4π

∫
Rn

e2πiη·(y−y′)
[ ∫

Rn
b̃(v)e4π[η·v−τ b̃(v)] dv

]
[ ∫

Rn
e4π[η·v−τ b̃(v)] dv

]2 dη

is of this form.

Suppose J (k)(τ) is of this form. We will show that J (k+1)(τ) is of this form. Let

gs(τ) =
 ∫

Rn
b̃(v)se4π[η·v−τ b̃(v)] dv

as ;

and

γ(τ) =
 ∫

Rn
e4π[η·v−τ b̃(v)] dv

d .
Then, by the quotient rule, d

dτ

[
J (k)(τ)

]
consists of sums of terms of the form

C

∫
Rn

e2πiη·(y−y′)g1 · · · gs−1
d
dτ

(gs)gs+1 · · · gk
γ

dη (4.19)
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or

C

∫
Rn

e2πiη·(y−y′)g1 · · · gk d
dτ

(γ)
γ2 dη. (4.20)

But

d

dτ
(gs) = −4πas

[ ∫
Rn
b̃(v)se4π[η·v−τ b̃(v)] dv

]as−1 [ ∫
Rn
b̃(v)s+1e4π[η·v−τ b̃(v)] dv

]
,

and

d

dτ
(γ) = − 4πd

[ ∫
Rn
e4π[η·v−τ b̃(v)] dv

]d−1 ∫
Rn
b̃(v)e4π[η·v−τ b̃(v)] dv

= − 4πdγ
d−1
d

∫
Rn
b̃(v)e4π[η·v−τ b̃(v)] dv.

Thus, a generic term of the form given in equation (4.19) is given by

C

∫
Rn

e2πiη·(y−y′)g1 · · · gk
γ

[ ∫
Rn
b̃(v)se4π[η·v−τ b̃(v)] dv

]−1 [ ∫
Rn
b̃(v)s+1e4π[η·v−τ b̃(v)] dv

]
dη.

(4.21)

Let hj = gj for j 6= s, s+1; hs =
[ ∫

Rn
b̃(v)se4π[η·v−τ b̃(v)] dv

]ãs
, where ãs = as−1; and

hs+1 =
[ ∫

Rn
b̃(v)s+1e4π[η·v−τ b̃(v)] dv

]ãs+1

, where ãs+1 = as+1 + 1. Then equation (4.21)

can be written as

C

∫
Rn

e2πiη·(y−y′)h1 · · ·hk
γ

dη.

For this term to have the desired form, the exponents must satisfy a1 + . . .+ as−1 + ãs +

ãs+1+as+2+. . .+ak = d−1, and a1+. . .+(s−1)as−1+sãs+(s+1)ãs+1+(s+2)as+2+. . .+
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kak = k+1. The former holds, since by inductive hypothesis a1 + . . .+as−1 + ãs+ ãs+1 +

as+2 + . . .+ak = a1 + . . .+as−1+as+1+ . . .+ak = a1 + . . .+ak = d−1. The latter also

holds, since by inductive hypothesis, a1+. . .+(s−1)as−1+sãs+(s+1)ãs+1+(s+2)as+2+

. . .+kak = a1 + . . .+(s−1)as−1 +sas−s+(s+1)as+1 +s+1+(s+2)as+2 + . . .+kak =

a1 + . . .+ kak + 1 = k + 1.

In the same way, a generic term of the form given in equation (4.20) is given by

C

∫
Rn

e2πiη·(y−y′)g1 · · · gk
∫
Rn
b̃(v)e4π[η·v−τ b̃(v)] dv[ ∫

Rn
e4π[η·v−τ b̃(v)] dv

]d+1 dη. (4.22)

Let hj = gj for j 6= 1, and h1 =
[ ∫

Rn
b̃(v)e4π[η·v−τ b̃(v)] dv

]ã1

, where ã1 = a1 + 1 so

that equation (4.22) can be written as

C

∫
Rn

e2πiη·(y−y′)h1 · · ·hk[ ∫
Rn
e4π[η·v−τ b̃(v)] dv

]d+1 dη.

For this term to have the desired form, the exponents must satisfy ã1 +a2 + . . .+ak = d,

and ã1 + 2a2 + . . . + kak = k + 1. The former holds, since by inductive hypothesis,

ã1 + a2 + . . .+ ak = a1 + . . .+ ak + 1 = (d− 1) + 1 = d. The latter also holds, since by

inductive hypothesis ã1 + 2a2 + . . .+ kak = a1 + 2a2 + . . .+ kak + 1 = k + 1.

It follows that for any k ∈ N, the kth derivative of J(τ) consists of sums of terms of

the form

C

∫
Rn

e2πiη·(y−y′)
[ ∫

Rn
b̃(v)e4π[η·v−τ b̃(v)] dv

]a1

· · ·
[ ∫

Rn
b̃(v)ke4π[η·v−τ b̃(v)] dv

]ak
[ ∫

Rn
e4π[η·v−τ b̃(v)] dv

]d dη,
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where a1 + . . .+ ak = d− 1; and a1 + 2a2 + . . .+ kak = k.

Since F (τ) = e−2πτδJ(τ), the N th derivative of F is given by

F (N)(τ) =
N∑
k=0

(
N

k

)(
e−2πτδ

)(N−k)
J (k)(τ).

But
(
e−2πτδ

)(N−k)
= CδN−ke−2πτδ. Thus, the N th derivative of F consists of sums of

multiples of terms of the form

δN−ke−2πτδ

∫
Rn

e2πiη·(y−y′)
[ ∫

Rn
b̃(v)e4π[η·v−τ b̃(v)] dv

]a1

· · ·
[ ∫

Rn
b̃(v)ke4π[η·v−τ b̃(v)] dv

]ak
[ ∫

Rn
e4π[η·v−τ b̃(v)] dv

]d dη,

where a1 + . . .+ ak = d− 1 and a1 + 2a2 + . . .+ kak = k.

Finally, writing for 1 ≤ s ≤ k,

 ∫
Rn
b̃(v)se4π[η·v−τ b̃(v)] dv

as = 1
τ sas

 ∫
Rn

(τ b̃(v))se4π[η·v−τ b̃(v)] dv

as

yields the desired expression. This finishes the proof of Claim 4.11.

Claim 4.12. Let

∆µ
N+1,k(τ) = (τδ)N+1−ke−2πτδ

∫
Rn

e2πi η
µ
·(y−y′)fµ1 (τ) · · · fµk (τ)

γµ(τ) dη, (4.23)

where

fµs (τ) =
 ∫

Rn
(τ b̃(µv))se4π[η·v−τ b̃(µv)] dv

as ;
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γµ(τ) =
 ∫

Rn
e4π[η·v−τ b̃(µv)] dv

d ;

a1, . . . , ak, k, d ∈ N; 0 ≤ k ≤ N + 1; a1 + . . .+ ak = d− 1; and a1 + 2a2 + . . .+ kak = k.

Then there exists a constant C that depends only on N, k, the “combined degree” of

b and the dimension of the space such that

|∆µ
N+1,k(τ)| ≤ C.

Proof. It is easy to check that (τδ)N+1−ke−2πτδ is bounded. In fact, for x > 0 and

A > 0, define h(x) = xAe−x. Then h′(x) = xA−1e−x(A− x). It follows that h(x) attains

its maximum at x = A. That is, h(x) ≤ AAe−A. It follows that

(τδ)N+1−ke−2πτδ ≤ (N + 1− k)N+1−ke−(N+1−k)

(2π)N+1−k .

Thus, it suffices to show that∫
Rn

fµ1 (τ) · · · fµk (τ)
γµ(τ) dη

is bounded.

We will begin by studying integrals of the form

fµs (τ) =
 ∫

Rn
(τ b̃(µv))se4π[η·v−τ b̃(µv)] dv

as .
By Claim 3.3 on page 32 there exists a universal constant such that

τ b̃(µv) ≤ C(1 + v2m1
1 + . . .+ v2mn

n ).

Thus, we must study the behavior of integrals of the form
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Ls =
∫
Rn
ps(v)eηv−g(v) dv,

for polynomials ps : Rn → R with non-negative coefficients and g(v) = τ b̃(µv).

As usual (see, e.g., equation (3.2) on page 31), we can write

Ls = eh(v0)
∫
Rn
eh(v)−h(v0)ps(v) dv,

where h(v) = η · v− g(v) and v0 is the point where h(v) attains its maximum. Making

the change of variables v = w + v0, it follows that

Ls = eh(v0)
∫
Rn
e−f(w)ps(w + v0) dw,

where f(w) is as in equation (3.8). That is,

f(w) = g(v0 +w)− g(v0)−∇g(v0) ·w.

Since the coefficients of p are non-negative, it follows that

ps(w1 + v01, . . . , wn + v0n) ≤ ps(|w|+ |v0|, . . . , |w|+ |v0|).

This last polynomial is now a polynomial of just one variable, and after expanding and

regrouping all the terms, it consists of sums of terms of the form |w|js |v0|is for indices

is and js. Hence, there exist positive coefficients cis,js such that

Ls ≤ eh(v0) ∑
is,js

cis,js |v0|is
∫
Rn
|w|jse−f(w) dw.

Let
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Jjs =
∫
Rn
|w|jse−f(w) dw.

This integral is identical to the one studied in equation (3.21) in Claim 3.12 on page 52.

Thus,

Jjs . |{w : f(w) ≤ 1}| (1 + |v0|jsB) + Θ,

where Θ is a constant that depends only on m1, . . . ,mn and the dimension of the space;

and B = 4 max{m1, . . . ,mn}. It follows that

Ls . eh(v0) ∑
is,js

cis,js|v0|is
[
|{w : f(w) ≤ 1}| (1 + |v0|jsB) + Θ

]
.

That is,

Ls . eh(v0) [ |{w : f(w) ≤ 1}|φs(|v0|) + ψs(|v0|) ] ,

for some polynomials φs : R→ R+, ψs : R→ R+.

On the other hand, by equation (3.10)

∫
Rn
e4π[η·v−τ b̃(µv)] dv ≈ eh(v0)|{w : f(w) ≤ 1}|.

Therefore, there exists some polynomial qj : R→ R+ such that

∫
Rn

fµ1 (τ) · · · fµk (τ)
γµ(τ) dη .

[eh(v0)]a1+...+ak
(∑a1+...+ak

j=0 |{w : f(w) ≤ 1}|jqj(|v0|)
)

[eh(v0)]d|{w : f(w) ≤ 1}|d .

But a1 + . . .+ ak = d− 1, so
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∫
Rn

fµ1 (τ) · · · fµk (τ)
γµ(τ) dη . e−h(v0)

d−1∑
j=0
|{w : f(w) ≤ 1}|j−dqj(|v0|)

 .
Moreover, by Claim 3.7,

|{w : f(w) ≤ 1}| & (1 + r(v0))−n2 .

where r(v) = v2m1
1 + . . .+ v2mn

n . Thus, and since j − d < 0,∫
Rn

fµ1 (τ) · · · fµk (τ)
γµ(τ) dη . e−h(v0)

d−1∑
j=0

(1 + r(v0))
n(d−j)

2 qj(|v0|)
 .

By Claims 3.9 and 3.8, ∑d−1
j=0(1 + r(v0))

n(d−j)
2 qj(|v0|) is at most of polynomial growth

in |η|. On the other hand, by equation (3.7), e−h(v0) decays exponentially in |η|. Hence,

∫
Rn

fµ1 (τ) · · · fµk (τ)
γµ(τ) dη

is bounded. This finishes the proof of Claim 4.12.

We are now ready to present the proof of Proposition 4.9.

Proof. We had shown in equation (4.2) on page 70 that

S =

∫ ∞

0

e−2πτδe−2πi(t′−t)τe
2πiτ∇b

(
x+x′

2

)
·(y−y′)

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη dτ.

Letting u = 2π
[
(t′ − t) +∇b

(
x+x′

2

)
· (y′ − y)

]
we have that
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S =

∫ ∞

0

e−iuτe−2πτδ

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη dτ.

Let

F (τ) = e−2πτδ

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη (4.24)

so that

S =
∫ ∞

0
e−iuτF (τ) dτ.

Then by Claim 4.10 it follows that

|S| ≤
N+1∑
j=0

cj

∣∣∣∣∣
∫ π
|u|

0
e−iuτF

(
τ + jπ

|u|

)
dτ

∣∣∣∣∣
+ 1

2N+1

∣∣∣∣∣
∫ ∞
π
|u|

e−iuτ
∫ π
|u|

0
· · ·

∫ π
|u|

0
F (N+1) (τ + s1 + . . .+ sN+1) ds1 · · · dsN+1 dτ

∣∣∣∣∣ .
We will begin by obtaining the desired bound for the terms of the form

Ij(u) =
∫ π

|u|

0
e−iuτF

(
τ + jπ

|u|

)
dτ.

We can write

|Ij| ≤

∫ π
|u|

0

∣∣∣∣∣F
(
τ + jπ

|u|

)∣∣∣∣∣ dτ =

∫ π
|u|

0

∣∣∣∣∣∣∣∣∣∣
e−2πδ(τ+ jπ

|u|)
∫

Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−(τ+ jπ

|u|)b̃(v)] dv
dη

∣∣∣∣∣∣∣∣∣∣
dτ.
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Making the change of variables s = τ + jπ
|u| as well as η → η

µ
and v → µv, where

µ = (µ1, . . . , µn) are chosen as in equation (4.1) on page 68, it follows that

|Ij(u)| ≤

∫ (j+1)π
|u|

jπ
|u|

e−2πδs

µ2
1 · · ·µ2

n

∫
Rn

1∫
Rn
e4π[η·v−sb̃(µv)] dv

dη ds.

By Lemma 3.1, ∫
Rn

1∫
Rn
e4π[η·v−sb̃(µv)] dv

dη

converges. Also, by convexity of b, δ ≥ 0. Thus,

|Ij(u)| .
∫ (j+1)π

|u|

jπ
|u|

1
µ2

1 · · ·µ2
n

ds.

Since the factors µj were chosen so that

µ1(τ) · · ·µn(τ) ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣
it follows that

|Ij(u)| .

∫ (j+1)π
|u|

jπ
|u|

1∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2 dτ.
But since we are considering τ ≤ (j+1)π

|u| , then

{
v : b̃(v) ≤ |u|

π(j + 1)

}
⊆
{
v : b̃(v) ≤ 1

τ

}
.

Thus,
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|Ij(u)| .
∫ (j+1)π

|u|

jπ
|u|

1∣∣∣{v : b̃(v) ≤ |u|
π(j+1)

}∣∣∣2 dτ = π

|u|
∣∣∣{v : b̃(v) ≤ |u|

π(j+1)

}∣∣∣2 .
Let w = u

2π =
[
(t′ − t) +∇b

(
x+x′

2

)
· (y′ − y)

]
. Then,

|Ij(w)| . 1
|w|

∣∣∣{v : b̃(v) ≤ 2|w|
(j+1)

}∣∣∣2 .
Since

{
v : b̃(v) ≤ |w|

}
⊆
{
v : b̃(v) ≤ 2|w|

}
it follows that

|I0(w)| . 1
|w|

∣∣∣{v : b̃(v) ≤ |w|
}∣∣∣2 .

The same bound is obtained trivially for j = 1. For j > 1, we can use Claim 1.5 on page

16 to show that

∣∣∣{v : b̃(v) ≤ |w|
}∣∣∣ ≤ (j + 1)n

2n

∣∣∣∣∣
{
v : b̃(v) ≤ 2|w|

(j + 1)

}∣∣∣∣∣ .
Hence,

|Ij(w)| . (j + 1)2n

|w|
∣∣∣{v : b̃(v) ≤ |w|

}∣∣∣2 .
Since the sum over j is finite, it follows that

|S| . 1
|w|

∣∣∣{v : b̃(v) ≤ |w|
}∣∣∣2

+ 1
2N+1

∣∣∣∣∣
∫ ∞
π
|u|

e−iuτ
∫ π
|u|

0
· · ·

∫ π
|u|

0
F (N+1) (τ + s1 + . . .+ sN+1) ds1 · · · dsN+1 dτ

∣∣∣∣∣ .
(4.25)

We must now bound the term
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∣∣∣∣∣
∫ ∞
π
|u|

e−iuτ
∫ π
|u|

0
· · ·

∫ π
|u|

0
F (N+1) (τ + s1 + . . .+ sN+1) ds1 · · · dsN+1 dτ

∣∣∣∣∣
We showed in Claim 4.11 that the (N + 1)th derivative of

F (τ) = e−2πτδ

∫
Rn

e2πiη·(y−y′)∫
Rn
e4π[η·v−τ b̃(v)] dv

dη.

consists of sums of terms of the form

C(τδ)N+1−ke−2πτδ

τN+1

∫
Rn

e2πiη·(y−y′)f1(τ) · · · fk(τ)
γ(τ) dη,

where

fs(τ) =
 ∫

Rn
(τ b̃(v))se4π[η·v−τ b̃(v)] dv

as ;

γ(τ) =
 ∫

Rn
e4π[η·v−τ b̃(v)] dv

d ;

a1, . . . , ak, k, d ∈ N; 0 ≤ k ≤ N + 1; a1 + . . .+ ak = d− 1; and a1 + 2a2 + . . .+ kak = k.

We can write these terms as C
τN+1 ∆N+1,k(τ), where

∆N+1,k(τ) = (τδ)N+1−ke−2πτδ

∫
Rn

e2πiη·(y−y′)f1(τ) · · · fk(τ)
γ(τ) dη.

Thus, we must study integrals of the form

J =
∫ ∞

π
|u|

e−iuτ

τN+1

∫ π
|u|

0
· · ·

∫ π
|u|

0
∆N+1,k (τ + s1 + . . .+ sN+1) ds1 · · · dsN+1 dτ.

With µ1, . . . , µn chosen as in equation (4.1) on page 68 we can make the changes of

variable η → η
µ
and v → µv. We obtain an integral of the form
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J =
∫ ∞

π
|u|

(µ1 · · ·µn)a1+...+ak

τN+1(µ1 · · ·µn)d+1

∫ π
|u|

0
· · ·

∫ π
|u|

0
∆µ
N+1,k (τ + s1 + . . .+ sN+1) ds1 · · · dsN+1 dτ,

where now

∆µ
N+1,k(τ) = (τδ)N+1−ke−2πτδ

∫
Rn

e2πi η
µ
·(y−y′)fµ1 (τ) · · · fµk (τ)

γµ(τ) dη; (4.26)

fµs (τ) =
 ∫

Rn
(τ b̃(µv))se4π[η·v−τ b̃(µv)] dv

as ;

and

γµ(τ) =
 ∫

Rn
e4π[η·v−τ b̃(µv)] dv

d .
But by Claim 4.12, |∆µ

N+1,k(τ)| ≤ C. It follows that

|J | .
∫ ∞

π
|u|

(µ1 · · ·µn)a1+...+ak

|u|N+1τN+1(µ1 · · ·µn)d+1 dτ.

Also, a1 + . . .+ ak = d− 1. Thus,

|J | . 1
|u|N+1

∫ ∞

π
|u|

1
τN+1(µ1 · · ·µn)2 dτ.

Since µ was chosen so that

µ1(τ) · · ·µn(τ) ≈
∣∣∣∣{v : b̃(v) ≤ 1

τ

}∣∣∣∣ ,
and taking w = u

2π as before, it follows that
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|J | . 1
|w|N+1

∫ ∞

1
2|w|

1
τN+1

∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣2 dτ.
Notice that on the interval under consideration, (2|w|τ)−1 ≤ 1. Using Claim 1.5, it

follows that

∣∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣∣ =
∣∣∣∣∣
{
v : b̃(v) ≤ 2|w|

2|w|τ

}∣∣∣∣∣ ≥ 1
(2|w|τ)n

∣∣∣{v : b̃(v) ≤ 2|w|
}∣∣∣ .

Also, as mentioned earlier,

∣∣∣{v : b̃(v) ≤ 2|w|
}∣∣∣ ≥ ∣∣∣{v : b̃(v) ≤ |w|

}∣∣∣
It follows that

∣∣∣∣{v : b̃(v) ≤ 1
τ

}∣∣∣∣ ≥ 1
(2|w|τ)n

∣∣∣{v : b̃(v) ≤ |w|
}∣∣∣ .

Thus, taking N ≥ 2n+ 1,

|J | . |w|
2n

|w|N+1

∫ ∞

1
2|w|

τ 2n

τN+1
∣∣∣{v : b̃(v) ≤ |w|

}∣∣∣2 dτ
≈ 1
|w|N+1−2n

∣∣∣{v : b̃(v) ≤ |w|
}∣∣∣2 · τ 2n−N

∣∣∣∣∣
∞

1
2|w|

.

That is,

|J | . 1
|w|

∣∣∣{v : b̃(v) ≤ |w|
}∣∣∣2 .

It follows from equation (4.25) that
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|S| . 1
|w|

∣∣∣{v : b̃(v) ≤ |w|
}∣∣∣2 .

This finishes the proof of our third and last bound.

We have shown that

|S ((x,y, t); (x′,y′, t′))| . min {A,B,C},

where

A = 1
δ|{v : b̃(v) < δ}|2

;

B = 1
b̃(y − y′)|{v : b̃(v) < b̃(y − y′)}|2

;

and

C = 1
|w| |{v : b̃(v) < |w|}|2

.

Thus, to conclude the proof of the Main Theorem, it suffices to show that

min{A,B,C} . 1√
δ2 + b̃(y − y′)2 + w2

∣∣∣∣{v : b̃(v) <
√
δ2 + b̃(y − y′)2 + w2

}∣∣∣∣2 .

Without loss of generality, suppose that δ ≤ b̃(y − y′) ≤ |w|. Then, and since b̃ is

non-negative,
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{v : b̃(v) < δ} ⊆ {v : b̃(v) < b̃(y − y′)} ⊆ {v : b̃(v) < |w|}.

It follows that

1
|w| |{v : b̃(v) < |w|}|2

≤ 1
b̃(y − y′)|{v : b̃(v) < b̃(y − y′)}|2

≤ 1
δ|{v : b̃(v) < δ}|2

,

so

|S| . 1
|w| |{v : b̃(v) < |w|}|2

.

Moreover, since δ ≤ b̃(y − y′) ≤ |w|, then
√
δ2 + b̃(y − y′)2 + w2 ≤

√
3w2. That is,

1
|w|
≤

√
3√

δ2 + b̃(y − y′)2 + w2
.

and

{
v : b̃(v) <

√
δ2 + b̃(y − y′)2 + w2

}
⊆
{
v : b̃(v) <

√
3|w|

}
.

But by Claim 1.5,

∣∣∣{v : b̃(v) <
√

3|w|
}∣∣∣2 ≤ (

√
3)2n

∣∣∣{v : b̃(v) < |w|
}∣∣∣2 .

Therefore,

|S| . 1
|w| |{v : b̃(v) < |w|}|2

≤ (
√

3)2n+1√
δ2 + b̃(y − y′)2 + w2

∣∣∣∣{v : b̃(v) <
√
δ2 + b̃(y − y′)2 + w2

}∣∣∣∣2 .
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This finishes the proof of the Main Theorem.
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Appendix A

An integral expression for the Szegő

kernel

In this appendix we derive an integral expression for the Szegő kernel for a class of

unbounded domains defined by convex polynomials.

Proposition A.1. The Szegő kernel on the boundary of domains of the kind Ω = {z ∈

Cn+1 : Im[zn+1] > b(Re[z1], . . . ,Re[zn])} where b : Rn → R is a convex function of

“combined degree” is given by

S((x,y, t); (x′,y′, t′)) =

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]


∫

Rn

e2πη·[x+x′−i(y′−y)]∫
Rn
e4π[η·v−b(v)τ ] dv

dη

 dτ,
(A.1)

where (x,y, t) and (x′,y′, t′) are any two points on ∂Ω.

Let Ω = {z ∈ Cn+1 : Im[zn+1] > b(Re[z1], . . . ,Re[zn])} and

ρ(z1, . . . , zn+1) = b(Re[z1], . . . ,Re[zn])− Im[zn+1]

= b
(
z1 + z1

2 , . . . ,
zn + zn

2

)
− zn+1 − zn+1

2i

(A.2)



106

be a defining function for our domain. Recall that the Szegő Projection is the orthog-

onal projection Πb : L2(∂Ω) → H2(∂Ω), where H2(∂Ω) = {f ∈ L2(∂Ω) : L(f) =

0 as a distribution, for all tangential Cauchy-Riemann operators L}. We begin by find-

ing a base for the tangential Cauchy-Riemann operators. We can let

Zj = 2
(
∂

∂zj
+ Aj(z1, . . . , zn) ∂

∂zn+1

)
j = 1, . . . , n.

For these operators to be tangential they must satisfy Zj(ρ) = 0. Thus,

Zj = 2
(
∂

∂zj
− i ∂b

∂xj
(x) ∂

∂zn+1

)
j = 1, . . . , n

are a basis for the space of tangential Cauchy-Riemann operators for our domain in

Cn+1.

We can identify ∂Ω with Cn × R via the map

(z1, . . . , zn, t) ∈ Cn × R↔ (z1, . . . , zn, t+ ib(Re[z1], . . . ,Re[zn])) ∈ ∂Ω.

Our operators Zj are operators in Cn+1. The restriction of these operators to Cn ×R is

Zj = ∂

∂xj
+ i

(
∂

∂yj
− ∂b

∂xj
(x) ∂

∂t

)
. (A.3)

Lemma A.2. Let

M[g](x,η, τ) = e−2π[η·x−b(x)τ ]g(x,η, τ),

and define the partial Fourier transform

F [f ](x,y, t) = f̂(x,η, τ) =
∫

Rn+1

e−2πi(y·η+tτ)f(x,y, t) dy dt.
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Then

M : L2(R2n+1, dxdη dτ )→ L2(R2n+1, e4π[η·x−b(x)τ ]dx dη dτ )

is an isometry, and

Zj[f ] = F−1M−1 ∂

∂xj
MF [f ] j = 1, . . . n.

Proof. It is easy to check thatM is an isometry in this weighted L2 space, in fact

||M[g]||2L2(e4π[η·x−b(x)τ ]) =
∫

R2n+1

∣∣∣g(x,η, τ)e−2π[η·x−b(x)τ ]
∣∣∣2 e4π[η·x−b(x)τ ]dx dη dτ

=
∫

R2n+1

|g(x,η, τ)|2 dx dη dτ .

Also,

Zj[f ] =ZjF−1(f̂)

=
∫

Rn+1

e2πi(y·η+tτ)

∂f̂(x,η, τ)
∂xj

− 2πηj f̂(x,η, τ) + ∂b

∂xj
(x)2πτ f̂(x,η, τ)

 dη dτ

=
∫

Rn+1

e2πi(y·η+tτ)e2π[ηx−b(x)τ ] ∂

∂xj

(
e−2π[η·x−b(x)τ ]f̂(x,η, τ)

)
dη dτ

=F−1M−1 ∂

∂xj
MF [f ].

Since F and M are isometries, instead of projecting onto the null space of the

tangential Cauchy-Riemann operators we can project onto the null space of the operators{
∂
∂xj

}
. That is, we project onto functions f̂(x,η, τ) ∈ L2(R2n+1, e4π[η·x−b(x)τ ]dx dη dτ )

such that the {xj} are constants. Let Π̂ be this projection. Then the Szegő projection

is given by Π[f ] = F−1M−1Π̂MF [f ].
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Remark A.3. i) Notice that for these functions f̂ to be in L2(R2n+1, e4π[η·x−b(x)τ ]dx dη dτ)

one must have that
∫

Rn+1

|f̂ |2
 ∫

Rn
e4π[η·x−b(x)τ ] dx

 dη dτ <∞.

The inner integral
∫
Rn
e4π[η·x−b(x)τ ] dx diverges if τ ≤ 0 because of the growth hypothesis

on b. Thus we set Π̂f̂(x,η, τ) ≡ 0 if τ ≤ 0.

ii) Notice that under these hypothesis the constant functions belong to

L2(Rn, e4π[η·x−b(x)τ ]dx ).

Since the basis for the null space of the operators
{

∂
∂xj

}
is just the constant function,

the projection Π̂ for τ > 0 is given by

Π̂[g] = < g, 1 > 1
< 1, 1 > =

∫
Rn
g(x′,η, τ)e4π[η·x′−b(x′)τ ] dx′∫

Rn
e4π[η·v−b(v)τ ] dv

=

∫
Rn
g(x′,η, τ)

 e4π[η·x′−b(x′)τ ]∫
Rn
e4π[η·v−b(v)τ ] dv

 dx′ .

The Szegő Projection, then, is given by

Π[f ](x,y, t) = F−1M−1Π̂MF [f ](x′,y′, t′)

= F−1M−1Π̂M
∫
Rn+1

e−2πi(y′·η+t′τ)f(x′,y′, t′) dy′ dt′

= F−1M−1Π̂e−2π[η·x′−b(x′)τ ]
∫
Rn+1

e−2πi(y′·η+t′τ)f(x′,y′, t′) dy′ dt′

= F−1M−1

∫
Rn
e−2π[η·x′−b(x′)τ ]

∫
Rn+1

e−2πi(y′·η+t′τ)f(x′,y′, t′)e4π[η·x′−b(x′)τ ]∫
Rn
e4π[η·v−b(v)τ ] dv

dy′ dt′ dx′
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= F−1 e2π[η·x−b(x)τ ]

∫
Rn
e−2π[η·x′−b(x′)τ ]∫

Rn+1

e−2πi(y′·η+t′τ)f(x′,y′, t′)e4π[η·x′−b(x′)τ ]∫
Rn
e4π[η·v−b(v)τ ] dv

dy′ dt′ dx′

=

∫ ∞

0

∫
Rn
e2πi(y·η+tτ)e2π[η·x−b(x)τ ]

∫
Rn
e−2π[η·x′−b(x′)τ ]∫

Rn+1

e−2πi(y′·η+t′τ)f(x′,y′, t′)e4π[η·x′−b(x′)τ ]∫
Rn
e4π[η·v−b(v)τ ] dv

dy′ dt′ dx′ dη dτ

=

∫
R2n+1

f(x′,y′, t′)

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]


∫

Rn

e2πη·[x+x′−i(y′−y)]∫
Rn
e4π[η·v−b(v)τ ] dv

dη

 dτdx′ dy′ dt′.

Therefore, the Szegő kernel is given by

∫ ∞

0

e−2πτ [b(x′)+b(x)+i(t′−t)]


∫

Rn

e2πη·[x+x′−i(y′−y)]∫
Rn
e4π[η·v−b(v)τ ] dv

dη

 dτ.

This finishes the proof of Proposition A.1. �



110

Bibliography

[1] F. Behrend, Über die kleinste umbeschriebene und die größte einbeschriebene El-

lipse eines konvexen Bereichs, Math. Ann., 115 (1938), pp. 379–411.

[2] A. Bonami and N. Lohoué, Projecteurs de Bergman et Szegő pour une classe

de domaines faiblement pseudo-convexes et estimations Lp, Compositio Math., 46

(1982), pp. 159–226.

[3] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de

Bergman et de Szegő, in Journées: Équations aux Dérivées Partielles de Rennes

(1975), Soc. Math. France, Paris, 1976, pp. 123–164. Astérisque, No. 34–35.

[4] J. Bruna, A. Nagel, and S. Wainger, Convex hypersurfaces and Fourier

transforms, Ann. of Math. (2), 127 (1988), pp. 333–365.

[5] C. Carracino, Estimates for the Szegö kernel on a model non-pseudoconvex do-

main, Illinois J. Math., 51 (2007), pp. 1363–1396.

[6] M. Christ, Regularity properties of the ∂b equation on weakly pseudoconvex CR

manifolds of dimension 3, J. Amer. Math. Soc., 1 (1988), pp. 587–646.

[7] L. Danzer, D. Laugwitz, and H. Lenz, Über das Löwnersche Ellipsoid und

sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden, Arch. Math.

(Basel), 8 (1957), pp. 214–219.

[8] K. P. Diaz, The Szegő kernel as a singular integral kernel on a family of weakly

pseudoconvex domains, Trans. Amer. Math. Soc., 304 (1987), pp. 141–170.



111

[9] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex

domains, Invent. Math., 26 (1974), pp. 1–65.

[10] G. Francsics and N. Hanges, Explicit formulas for the Szegő kernel on certain

weakly pseudoconvex domains, Proc. Amer. Math. Soc., 123 (1995), pp. 3161–3168.

[11] M. Gilliam and J. Halfpap, The Szegő kernel for certain non-pseudoconvex

domains in C2, Illinois J. Math., 55 (2011), pp. 871–894 (2013).

[12] P. Greiner and E. Stein, On the solvability of some differential operators of

type �b, Proc. Internat. Conf. (Cortona, Italy, 1976-1977), (1978), pp. 106–165.

[13] J. Halfpap, A. Nagel, and S. Wainger, The Bergman and Szegő kernels near

points of infinite type, Pacific J. Math., 246 (2010), pp. 75–128.

[14] F. Haslinger, Szegő kernels for certain unbounded domains in C2, Rev. Roumaine

Math. Pures Appl., 39 (1994), pp. 939–950. Travaux de la Conférence Internationale

d’Analyse Complexe et du 7e Séminaire Roumano-Finlandais (1993).

[15] , Singularities of the Szegő kernel for certain weakly pseudoconvex domains in

C2, J. Funct. Anal., 129 (1995), pp. 406–427.

[16] M. Henk, Löwner-John ellipsoids, Doc. Math., (2012), pp. 95–106.

[17] F. John, Extremum problems with inequalities as subsidiary conditions, in Stud-

ies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948,

Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204.

[18] S. G. Krantz, Function theory of several complex variables, AMS Chelsea Pub-

lishing, Providence, RI, 2001. Reprint of the 1992 edition.



112

[19] M. Machedon, Szegő kernels on pseudoconvex domains with one degenerate eigen-

value, Ann. of Math. (2), 128 (1988), pp. 619–640.

[20] J. D. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math.,

109 (1994), pp. 108–139.

[21] J. D. McNeal and E. M. Stein, The Szegő projection on convex domains, Math.

Z., 224 (1997), pp. 519–553.

[22] J. Mitchell, Two-sided Lp-estimates (p > 1) for the Szegő kernel in matrix spaces

with application to a mapping theorem, Complex Variables Theory Appl., 18 (1992),

pp. 73–77.

[23] A. Nagel, Vector fields and nonisotropic metrics, in Beijing lectures in harmonic

analysis (Beijing, 1984), vol. 112 of Ann. of Math. Stud., Princeton Univ. Press,

Princeton, NJ, 1986, pp. 241–306.

[24] A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the

Bergman and Szegő kernels in certain weakly pseudoconvex domains, Bull. Amer.

Math. Soc. (N.S.), 18 (1988), pp. 55–59.

[25] A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector

fields. I. Basic properties, Acta Math., 155 (1985), pp. 103–147.

[26] J.-D. Park, New formulas of the Bergman kernels for complex ellipsoids in C2,

Proc. Amer. Math. Soc., 136 (2008), pp. 4211–4221.

[27] , Explicit formulas of the Bergman kernel for 3-dimensional complex ellipsoids,

J. Math. Anal. Appl., 400 (2013), pp. 664–674.



113

[28] D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections

on strongly pseudo-convex domains, Duke Math. J., 44 (1977), pp. 695–704.

[29] E. M. Stein, Boundary behavior of holomorphic functions of several complex vari-

ables, Princeton University Press, Princeton, N.J., 1972. Mathematical Notes, No.

11.

[30] G. Szegő, Über orthogonale Polynome, die zu einer gegebenen Kurve der kom-

plexen Ebene gehören, Math. Z., 9 (1921), pp. 218–270.

[31] V. L. Zaguskin, Circumscribed and inscribed ellipsoids of extremal volume, Uspehi

Mat. Nauk, 13 (1958), pp. 89–93.


