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Abstract 
 Advanced compression ignition strategies like reactivity controlled compression ignition (RCCI) 

and gasoline compression ignition (GCI) have received substantial interest over the past few years. This is 

due to their potential to achieve reduced emissions, and higher efficiency, relative to conventional diesel 

combustion. However, most of the benefits seen in past research from these strategies were demonstrated 

under mid-load conditions. For these strategies to be implemented practically, similar benefits must be 

demonstrated across the drive cycle. Two particularly challenging areas of operation are high-load-low-

speed and low-load-high-speed. Very limited research has been done with advanced compression ignition 

strategies in these points of the engine operating map. The reason for this is, at these operating conditions, 

there exists a mismatch between engine and chemistry time scales. The time scale mismatch results in either 

increased pressure rise rates or high levels of incomplete combustion, both of which make it difficult to 

operate. The work presented in this dissertation attempts to fill in these research gaps by using a 

combination of computational fluid dynamics modeling and genetic algorithm optimization.  

 Initially, targeting high-load-low-speed conditions, a computational optimization study was 

performed at 20 bar indicated mean effective pressure and 1300 rev/min. with RCCI and GCI combustion 

strategies. The study was performed on a low compression ratio (12:1) piston with a “bathtub” geometry, 

since it was found to be well suited for high-load operation in earlier studies. The optima from the two 

combustion strategies were compared in terms of combustion characteristics, combustion control, and 

sensitivity to operating parameter variations. The results showed that both the strategies have similar 

combustion characteristics, including a two-stage heat release. A near top dead center injection initiated the 

combustion and its injection timing could be used to control the combustion phasing for both the strategies. 

Both the strategies required elevated levels of exhaust gas recirculation (EGR) (~55%) at a near 

stoichiometric global equivalence ratio to control the peak pressure rise rate. This resulted in high sensitivity 

to variations in EGR. To address this issue, high-load strategies at reduced EGR levels were investigated.  

A constraint analysis was performed using the optimization data to identify the constraints 

preventing operation at lower EGR levels. Results showed that operation at lower EGR rates was 
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constrained by NOx emissions. Relaxing the NOx constraint enabled lower EGR operation with significant 

efficiency improvement. Allowing NOx emissions to increase to acceptable levels for selective catalytic 

reduction after treatment yielded an optimum at a moderate (~45%) level of EGR and a globally lean 

equivalence ratio of 0.8. This optimum case had near zero soot emissions and a higher net fluid efficiency 

(which accounted for the pumping loop work and the diesel exhaust fluid mass required to reduce the NOx 

emissions) compared to the earlier high EGR optima. Furthermore, the optimum case with NOx 

aftertreatment was compared with the high EGR optima in terms of combustion control and stability to 

operating condition fluctuations. The optimum with NOx aftertreatment retained the excellent combustion 

control seen with the high EGR optima, while reducing the sensitivity to operating parameter variations. 

The improved stability was attributed to operation at a reduced global equivalence ratio (from 0.93 to 0.8), 

which decreased the sensitivity to fluctuations in EGR rate. 

After addressing the issues at the high-load-low-speed operating condition, a low-load-high-speed 

operating point of 2 bar and 1800 rev/min. was simulated on the same engine used for the high-load studies. 

The results showed poor thermal efficiency for the low-load point.  The poor efficiency was found to be 

due to an elevated level of incomplete combustion, which was a result of the low compression ratio piston 

used for the study. This result suggested that an optimum compression ratio should be identified considering 

the performance at the low-load and high-load conditions simultaneously. In addition, past optimization 

studies performed at low-load conditions have shown that the optimum bowl and injector design are very 

different compared to the high-load conditions. Accordingly, an optimization study was performed, 

considering performance at low- and high-load simultaneously. The optimum from the study was a stepped 

bowl geometry, with a compression ratio of 13.1:1, which resulted in a gross indicated efficiency of ~46% 

at both the loads.  The study showed that the optimum design obtained from prioritizing one load 

deteriorates the performance at the other load. The results highlight the importance of considering multiple 

modes of the drive cycle simultaneously, when optimizing the engine design for advanced combustion 

strategies. 
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It was shown that multiple modes of the drive cycle should be considered in optimization studies 

for advanced combustion strategies; however, the optimization with just two operating points took three 

months to complete. To consider all the modes of a drive cycle in the optimization, the computational time 

must be reduced. To address this issue, machine learning through Gaussian process regression was coupled 

with a genetic algorithm optimization to speed up the optimization process. Including machine learning 

within the optimization process reduced the computational time of optimization by 62%. The optimization 

process was further improved by using the Gaussian process regression model to check for the sensitivity 

of the designs to operating parameter variations during the optimization. The approach was tested with 

existing optimization data and it was shown that adding the stability check resulted in a reliable and stable 

optimum solution. 
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approximated resulting in uncertainty in the CFD predictions. The study presented in this publication uses 

GPR to quantify the uncertainty arising from each input and helps identify the key input variables the CFD 

model is sensitive to for a combustion strategy, which provides a pathway to using machine learning with 
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Chapter 1 Introduction 
1.1 Motivation and Background 

CO2 emissions regulations are becoming increasingly stringent. Figure 1-1 [1] shows a trend of 

CO2 emissions regulations for light- and heavy-duty vehicles in the United States from the years 2014 to 

2026. By 2025, the trend shows an expected reduction in CO2 emissions of ~33% and 7%, for light- and 

heavy-duty vehicles, respectively. There also exist stringent standards on criteria pollutants, imposed by 

the US Environmental Protection Agency (EPA). Table 1-1 [2] shows the Tier-3 emissions standards of 

non-methane organic gases and nitrogen oxides combined (NMOG+NOx) and particulate matter (PM) for 

light-duty vehicles. Compared to current standards, the NMOG and NOx tailpipe standards represent an 

80% reduction on a fleet average basis and the PM standards represent a 70% reduction per-vehicle. For 

the heavy-duty, on-highway engine, the regulations for NOx and PM are currently 0.2 g/bhp-hr and 0.001 

g/bhp-hr, respectively. In 2013, the California Air Resources Board (CARB) established an optional low-

NOx heavy-duty standard of 0.02 g/bhp-hr (i.e., 90% below the current regulated levels) [3]. While these 

standards are currently optional, it is expected that they will become the new standards in the future. These 

strict emissions regulations have motivated research into developing clean and efficient engines. 

Additionally, the demand for transportation energy continues to increase and projections show that the 

increase is skewed towards heavy-fuels (i.e., the demand for diesel fuel is expected to increase, and the 

demand for gasoline is expected to remain constant or decrease [4]). To simultaneously address the 

transportation fuel imbalance and the need for engines with high efficiencies that meet the emissions 

standards, several researchers have proposed gasoline compression ignition (GCI) combustion as a solution.  

 
Figure 1-1. CO2 emissions standard for light and heavy-duty vehicles in the USA from the years 2014 to 2026. 
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Table 1-1. Tier 3 emissions standards of criteria pollutants for light-duty vehicles. 

 NMOG+NOx (g/mi) PM (g/mi) 

Test Cycle FTP SFTP FTP SFTP 

2016 160 200 10 10 

2025 30 50 3 6 

% Reduction 81.25 75 70 40 

GCI combustion is a low temperature combustion (LTC) strategy that uses gasoline or other light-

fuels in a compression ignition (CI) application. Unlike diesel fuel, the low cetane number of gasoline 

allows for early cycle injections and higher fuel premixing (dilute mixture). This gives it the potential to 

achieve high efficiencies with low NOx and soot emissions. Although GCI combustion has its benefits, 

several researchers (e.g., Liu et al. [5]) have shown that the low auto-ignition quality of gasoline makes it 

challenging to achieve combustion at the low-load and cold-start conditions.  

An alternative to allowing the use of light-fuels in high efficiency CI engines, while retaining cold-

start performance, is the use of dual-fuel engines. Diesel fuel, with its superior auto-ignition qualities 

compared to gasoline makes combustion at low-loads easily achievable. In a dual-fuel LTC strategy like 

reactivity controlled compression ignition (RCCI) combustion [6], a blend of low reactivity fuel (e.g., 

gasoline) and a high reactivity fuel (e.g., diesel fuel) is created in-cylinder. The blend is adjusted, based on 

the operating condition, to control the combustion phasing. By doing this, the RCCI strategy enables the 

use of light-fuels in CI engines, while addressing the low-load challenges. In a study comparing RCCI and 

conventional diesel combustion (CDC) strategies, Kokjohn and Reitz [7] used a design of experiments 

(DOE) to optimize RCCI combustion in a light-duty engine. They showed that RCCI offers a 4% 

improvement in fuel consumption and a 7.3% reduction in total fluid consumption. However, the mode 

weighted gasoline percentage was only 58%. That is, on a full drive cycle, the RCCI engine would consume 

nearly equal proportions of gasoline and diesel fuel. This result shows that the RCCI strategy might be 

infeasible for passenger car applications, as it would require two equal sized fuel tanks on board. Also, to 

achieve operation across the drive cycle, high-load operation must be demonstrated. Several researchers [8, 

9, 10] have demonstrated strategies to achieve high-load RCCI operation at loads exceeding 20 bar 

indicated mean effective pressure (IMEP). These strategies used a low compression ratio (CR) piston, in 
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combination with a mixing controlled combustion strategy (combination of a premixed combustion event 

and a mixing controlled combustion event), at high intake pressure and exhaust gas recirculation (EGR). 

However, the use of a low CR piston could affect the efficiencies at low-load and mid-load conditions. 

Additionally, with the mixing-controlled combustion strategy, the classic tradeoff between soot and NOx 

emissions was observed. Furthermore, the use of high intake pressure and EGR increases the pumping 

losses, which could reduce the gross indicated efficiency (GIE). Based on this discussion, operation at high-

load remains a challenge with the RCCI strategy.  

From the above discussion, it is understood that despite the benefits shown with advanced 

combustion strategies like GCI and RCCI combustion, to enable their use in practical engines, challenges 

at the low-load (~2 bar IMEP) and high-load (~20 bar IMEP) conditions should be addressed.  Mainly, at 

high-loads and low-speeds, or vice versa, there exists a mismatch between the chemistry and the engine 

time scales (i.e., when one timescale becomes short, the other becomes long based on the load and speed 

combination). This makes operation under these conditions even more challenging. Accordingly, this 

dissertation will focus on addressing the challenges of operating with the advanced combustion strategies 

at the points on an engine operating map where the time scale mismatch exists. A combination of detailed 

computational fluid dynamics (CFD) modeling and genetic algorithm (GA) optimization will be used to 

perform the study. 

The optimization approaches currently followed are based on the approaches used for the CDC 

strategy. Several improvements need to be made in the optimization procedure to get the best possible 

results for advanced combustion strategies. The optimization procedure needs to be modified to enable 

optimization of multiple operating conditions simultaneously. This is because, unlike the CDC strategy, the 

advanced combustion strategies are extremely sensitive to CR. As a result, the optimal CR could be 

completely different at different operating conditions. However, performing optimizations considering 

multiple operating conditions will be computationally expensive and time-consuming. Therefore, the 

optimization approach needs to be modified to reduce the computational time and expense. The advanced 

combustion strategies have also shown higher sensitivity to operating parameter variations relative to CDC 
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strategies. Hence, it is essential to verify the stability of the optima to fluctuations in operating conditions 

to ensure reliable and stable optima are obtained. The improvements suggested in the above discussion will 

be implemented and discussed in more detail in the coming chapters.  

1.2 Key Contributions 

There are four key contributions from the research presented in this thesis. This section outlines 

those contributions and the chapters in which they are presented. 

1. Identifying feasible operating strategies with advanced combustion strategies for high-load-low-speed 

(Chapter 4, Chapter 5, Chapter 6) and low-load-high-speed operation (Chapter 6, Appendix-A).  

2. Modifying the optimization approach, to simultaneously optimize multiple modes of the drive cycle 

(Chapter 6). 

3. Reducing the computational time of optimization using a combination of machine learning and CFD 

modeling (Chapter 7). 

4. Using machine learning in optimization, to check for the stability of the designs to operating parameter 

variations (Chapter 7).  
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Chapter 2 Literature Review 
2.1. Advanced Combustion Strategies  

With the regulations on CO2 emissions becoming increasingly stringent, diesel engines have 

become important, due to their superior efficiency potential. However, diesel combustion has issues with 

controlling soot and NOx emissions, simultaneously [11]. Current diesel engines use after-treatment 

solutions like lean NOx traps (LNT) [12], selective catalytic reduction (SCR) [13], or a combination of both 

[14, 15] to reduce NOx emissions. Similarly, diesel particulate filters (DPF) [13] are used to reduce soot 

emissions. However, these devices either add to the cost of the engine or cause additional fuel consumption 

[12, 13]. This has motivated research into advanced combustion strategies that aim to eliminate the need 

for after-treatment devices by reducing the NOx and soot in-cylinder, while achieving diesel-like 

efficiencies or higher. Most of these advanced combustion strategies can be lumped into one group called 

LTC. The common theme of LTC strategies is, firstly, to give sufficient time for the premixing of fuel and 

air. This prevents the formation of fuel rich zones (peak equivalence ratio (Φ) < 2) and avoids soot 

formation. Secondly, combustion is controlled such that the peak combustion temperatures are low enough 

(Tpeak < 2000 K) to avoid NOx formation.  Lastly, the combustion temperatures must be maintained above 

1400 K, to avoid low combustion efficiencies.  

Several researchers (e.g., [16, 17, 18]) have investigated LTC using diesel fuel. Researchers at Lund 

University [18] performed an EGR sweep at three different load points of 8 bar, 12 bar and 15 bar IMEP 

with a partially premixed combustion (PPC) strategy using diesel fuel. They found that a minimum EGR 

of 70% was needed, in combination with a low CR of 12.5:1, to simultaneously reduce the NOx and soot 

emissions. The low CR and high EGR percentage resulted in increased incomplete combustion and poor 

overall efficiency. The high level of EGR and low CR were necessary to keep the diesel fuel from igniting 

prematurely due to its high reactivity. In addition, due to its low volatility, diesel fuel could cause wall 

wetting if injected early in the cycle. Due to its high reactivity and low volatility, diesel fuel may not be the 

most suitable fuel for LTC strategies. In comparison to diesel fuel, gasoline has higher volatility and lower 

reactivity, which makes it a very suitable fuel for LTC operation. Additionally, the increase in transportation 
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demand is skewed towards heavier fuels like diesel fuel [4]. Exploring advanced combustion strategies with 

gasoline could provide a pathway to addressing this transportation fuel imbalance. 

Strategies that use gasoline in CI engines can be grouped under a single name called GCI. The most 

basic GCI strategy is homogenous charge compression ignition (HCCI) combustion [19]. In HCCI 

combustion, the fuel is completely premixed with air, before it is inducted into the cylinder, to achieve a 

homogeneous, fuel lean mixture. Upon induction, the charge is compressed until auto-ignition occurs. Since 

the entire fuel-air mixture is at nearly the same equivalence ratio and temperature, combustion occurs 

throughout the combustion chamber at nearly the same time, resulting in a short combustion duration. Due 

to the fuel lean mixtures, the combustion temperatures are low, which reduces the wall heat transfer losses. 

The short combustion duration, in combination with the reduced wall heat transfer losses, has been shown 

to yield high efficiencies. Dec et al. [20] demonstrated operation with a boosted HCCI strategy, in a load 

range of ~5 bar to 16 bar IMEP, with a peak indicated thermal efficiency of ~47%, while meeting the US-

2010 NOx and PM standards. They found that a maximum load of 9 bar IMEP could be achieved with the 

HCCI strategy without the use of EGR. Further increases in load were constrained by PPRR and required 

the use of EGR. To extend the load range to 16 bar IMEP, high levels of EGR (~60%) had to be used to 

control the PPRR. Such high levels of EGR are feasible in a lab environment but may not be suitable in 

production applications where transient operation is required. In addition, HCCI combustion is difficult to 

control in practical engines because there is no direct, in-cycle control over the combustion phasing.  

To address the challenges of combustion control seen with the HCCI strategy, researchers have 

investigated partial fuel stratification (PFS) strategies [21, 22]. In the PFS strategy, local equivalence ratio 

stratification is used to control the heat release rate. Dec et al. [21] repeated their earlier study [20], but, 

rather than operating fully premixed, injected a portion of the fuel as a direct-injection (DI) to introduce in-

cylinder equivalence ratio stratification. The fraction of the fuel injected as a DI and the injection timing of 

this injection were varied to control the stratification level. They found that increasing the stratification 

resulted in reduced ringing intensity (RI). For the same RI, the PFS strategy showed an improvement in 

IMEP of ~1.5 bar compared to the HCCI strategy. However, the EGR required to achieve high-load 
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operation remained near 60%. The PFS strategy was also implemented by Marriot et al. [23]. They studied 

the effect of charge stratification by performing a start of injection (SOI) timing sweep. They showed that 

the efficiency increased with increasing charge stratification (i.e., injection timing retard); however, if the 

injection timing was retarded beyond -150 °aTDC, NOx and PM increased rapidly.  

Kalghatgi et al. [24, 25] used a strategy similar to the CDC strategy with a high pressure, near top 

dead center (TDC) injection of gasoline, in combination with high levels of EGR. The low auto-ignition 

quality of gasoline, combined with the high levels of EGR, enabled operation with low NOx and soot 

emissions at an IMEP of 14.9 bar.  Kalghatgi et al. [26] also demonstrated that adding an early gasoline 

injection reduces the maximum heat release for a given IMEP. They were able to operate the engine at ~16 

bar IMEP with very low soot and NOx emissions. Ra et al. [27, 28] performed a numerical study of multiple 

injection gasoline sprays, in a heavy-duty CI engine, at 16 bar IMEP and 2500 rev/min. They found that 

improved mixing before ignition reduces the carbon monoxide (CO) and unburnt hydrocarbon (UHC) 

emissions. Furthermore, splitting the fuel into multiple injections was effective at reducing PPRR.  

Though GCI combustion has shown benefits at the mid- to high-load conditions, to be implemented 

in production engines, operation with similar benefits over the full load range needs to be demonstrated. 

Researchers [5, 29] have shown that the poor auto-ignition qualities of gasoline can make it difficult to 

achieve combustion at low-load conditions. Sellnau et al. [30, 31] used a combination of exhaust 

rebreathing, intake air heating, and supercharging, to enable light-load operation. With this setup, they 

demonstrated operation over the full load-speed range of a light-duty cycle with diesel-like efficiencies. 

While the strategy is promising, the thermal management system to heat the intake air adds to the cost and 

complexity of the engine. In addition, the use of a supercharger requires substantial energy addition, which 

reduces the efficiency.   

The previous discussion has shown that, though GCI combustion has several advantages, the low 

auto-ignition quality of gasoline makes operation at low-load conditions challenging. In contrast to 

gasoline, the high reactivity of diesel fuel makes it easier to achieve combustion under low-load conditions. 

However, diesel fuel has difficulty controlling combustion phasing at increased loads, as was explained 
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earlier. This led to research into exploring LTC operation with fuel blends. Bessonette et al. [32] found that 

the best fuel for HCCI operation may have auto-ignition qualities between that of diesel fuel and gasoline. 

Additionally, they showed that the optimal auto-ignition quality changes with operating condition. Inagaki 

et al. [33] implemented a dual fuel premixed compression ignition (PCI) strategy with port-injected gasoline 

and direct-injected diesel fuel and was able to achieve 12 bar IMEP with NOx less than 10 ppm and soot 

less than 0.1 FSN. Based on the work of Bessonette et al. [32] and Inagaki et al., [33] Kokjohn et al. [34, 

35, 36] developed a dual-fuel PCI strategy using in-cylinder fuel blending of gasoline and diesel fuel (low 

and high reactivity, respectively). They named this strategy, RCCI combustion [6]. In this combustion 

mode, two fuels with different auto-ignition characteristics are blended in-cylinder. By controlling the fuel 

blend, they were able to achieve combustion phasing control. The in-cylinder fuel blending allows spatial 

stratification of the fuel reactivity in the cylinder and enables control over the combustion duration. Several 

studies were done with RCCI combustion to demonstrate operation over the full load-speed range. Kokjohn 

and Reitz [7] compared RCCI combustion and CDC over the most heavily weighted portions of the light-

duty cycle (i.e., loads ranging from 2 bar to 9 bar IMEP). They found that RCCI combustion can improve 

the thermal efficiency by over 10%, while yielding an order of magnitude reduction in NOx and soot 

emissions. However, at the lightest load condition, they found that a diesel LTC strategy offered better 

efficiency than RCCI combustion. The reason for the lower efficiency with RCCI combustion was high 

levels of CO and UHC emissions from the over-lean mixture of premixed gasoline. Reverting to a diesel 

LTC strategy at the lightest load caused the mode weighted gasoline percentage to be only 58%. Due to the 

need to manage two fuel systems (i.e., monitor and fill two fuel tanks), this solution is not ideal for 

passenger car applications.  

Splitter et al. [37] proposed a “single fuel” RCCI strategy. Instead of using diesel fuel, gasoline 

doped with a small quantity of di-tertiary butyl peroxide (DTBP) was used as the high reactivity DI fuel. 

The strategy used port-fuel-injection (PFI) of gasoline and DI of gasoline doped with 0.75%, 1.75%, and 

3.5% DTBP by volume, which accounts for ~0.2% of the total fueling. At the mid-load condition, they 

achieved a peak GIE of ~57%, while meeting the US-2010 standards for NOx and PM emissions. Hanson 
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et al. [38] compared single and dual fuel RCCI strategies at low-load conditions of 2 bar and 4.5 bar IMEP, 

with the engine speed varied from 800 rev/min. to 1700 rev/min. The single fuel RCCI strategy used 3.5% 

by volume of 2-ethyl hexyl nitrate (2-EHN) to increase the reactivity of gasoline. Both the strategies 

resulted in low NOx and soot emissions across all the engine speeds, but the thermal efficiency reduced 

with increased engine speed due to increased levels of incomplete combustion.  

Kokjohn et al. [6] demonstrated RCCI combustion on a heavy-duty engine in the load range of 4.5 

bar IMEP to 14.5 bar IMEP. The study resulted in a peak GIE of 56%, at a mid-load condition of 9 bar and 

1300 rev/min. They found that, at the lightest loads, operation bordered on the lean limit for the premixed 

gasoline, with complete oxidation of UHC and CO being difficult. At higher engine loads, they had near 

stoichiometric operation, where the DI event had to be carefully controlled to avoid rich regions and 

incomplete combustion due to insufficient oxygen. This result suggested the use of increased intake 

pressure for load extension. 

Focusing on load limit extension, Wang et al. [39] performed an experimental parametric study of 

operating parameters to study the limiting factors for extension of upper and lower load limits of RCCI 

combustion.  Similar to Kokjohn et al. [7], they found that, at the lower load limits, a high fraction of diesel 

fuel was required to achieve good combustion efficiency. The upper load limits required a combination of 

high gasoline fraction, an early diesel injection, and high levels of EGR to avoid excessive pressure rise 

rates from premature combustion. The combination of high EGR and early SOI timing resulted in 

challenges controlling combustion phasing.  

Zhang et al. [40] demonstrated operation on a heavy-duty engine over loads ranging from 5 bar to 

11 bar brake mean effective pressure (BMEP) at an engine speed of 1200 rev/min. using a gasoline-diesel 

fuel RCCI strategy. They compared two injection strategies; one with an early injection of diesel fuel and 

the other with a late injection of diesel fuel. For both the strategies, the upper load limit was constrained at 

11 bar BMEP due to the PPRR constraint. They repeated the study by using an 85% ethanol-15% gasoline 

blend (E85) as the premixed fuel. With E85, they achieved load extension up to 19 bar BMEP. The lower 
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reactivity of E85 relative to gasoline resulted in a wider spread in reactivity stratification, which was 

effective in achieving the load extension.  

Dempsey and Reitz [41] used a low CR (11.7:1) piston to demonstrate operation in the load range 

of 4 bar IMEP at 800 rev/min. to 23 bar IMEP at 1800 rev/min. Their study considered operating conditions 

ranging from low-load-low-speed to high-load-high-speed. They performed computational optimizations 

with a gasoline-diesel fuel RCCI strategy. Using a split injection of diesel fuel, they achieved a maximum 

load of 23 bar IMEP with near zero NOx and soot emissions. 

Benajes et al. [42] explored the potential of the RCCI strategy across a wide range of loads and 

speeds, ranging from idle to full load and 900 rev/min. to 1800 rev/min., respectively. Using a piston with 

CR of 14.4:1, they were able to operate up to 50% of full load with ultra-low NOx and soot emissions. As 

the load increased, they were limited by a tradeoff between noise and soot emissions. By reducing the CR 

to 11:1, they were able to operate at full load. However, the use of the low CR piston resulted in poor 

combustion efficiency (~70%) at the low-load conditions. 

Figure 2-1 shows a summary of the operating conditions covered in the RCCI studies described in 

the previous discussion. From the figure, it is seen that most of the research is focused in the mid-load range 

of 4 bar to 14 bar IMEP. There is very limited research performed at the low-load-high-speed and high-

load-low-speed conditions, as highlighted by the two boxes overlaid on the figure. The limited research at 

high-load-low-speed used a low CR piston to achieve high-load extension, resulting in in poor combustion 

efficiency at the low-load-high-speed operating condition. Alternately, when a high CR piston was used it 

improved the low-load combustion efficiency, but resulted in high PPRR at the high-load-low-speed 

condition. Clearly, more work is required to understand the key tradeoffs in these areas.  
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Figure 2-1. Summary of operating conditions covered in earlier RCCI studies. 

 Similar results were also seen from a study performed by Curran et al. [43]. They explored RCCI 

operation with gasoline and diesel fuel over a wide load-speed range in a light-duty multi-cylinder diesel 

engine. This led to the creation of an RCCI engine map, which is shown in Figure 2-2. The map was 

developed under the constraints of PPRR of 10 bar/deg. and a CO limit of 5000 ppm. The maximum brake 

thermal efficiency (BTE) was at a mid-load condition of 8 bar BMEP. At 8 bar BMEP, the BTE was 5% 

better and the NOx emissions were an order of magnitude lower than the CDC case. Despite the benefits 

seen at mid-load conditions, it is clear from the map that operation became increasingly challenging as they 

approached high-load-low-speed or vice versa. This was due to the difficulty in meeting the constraints on 

PPRR at high-load-low-speed and CO emissions (i.e., incomplete combustion) at low-load-high-speed 

conditions. At the high-load-low-speed conditions, the chemistry timescales are short due to the pressure 

and equivalence ratio sensitivity of typical hydrocarbons and the engine timescales are long due to the slow 

rotational speed. This mismatch in timescales causes difficulties in controlling the combustion phasing to 

avoid excessive PPRR. Conversely, at the low-load-high-speed conditions, the opposite situation presents 

a challenge. That is, the chemistry timescales are long due to the low intake pressures and low equivalence 

ratios, while the engine timescales are short, due to high rotational speed. This leads to issues with high 
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levels of incomplete combustion. Due to these challenges, there is very limited advanced combustion 

research in these operating points of the engine map. 

 

Figure 2-2. RCCI operating map developed by Curran et al. [43] 

From the previous discussion, it is clear that GCI and RCCI strategies have several benefits, but to 

demonstrate operation over the entire load range, challenges at the low-loads (~2 bar IMEP) and high-loads 

(~20 bar IMEP) need to be addressed. This challenge will be addressed using CFD modeling in combination 

with GA optimization to identify feasible operating strategies at these operating conditions. 

2.2. GA for Engine Optimization 
Engine design involves numerous fuel system, air system, and geometric variables. Accordingly, 

the design space is often too large to fully cover using traditional design of experiments techniques. To 

address this challenge, evolutionary search algorithms (e.g., GAs) techniques are useful due to their ability 

to efficiently cover a large design space. Wickman et al. [44] used a single objective GA to optimize a 

heavy-duty diesel engine at high-load conditions. Their optimization study included design parameters for 

bowl design, injector design, injection strategy, and air handling. The optimum design from the study 

coupled a shallow bowl geometry, small nozzle holes, and high injection pressure. The optimal SOI timing 

and EGR rate were found to be sensitive to the NOx constraint used. Kim et al. [45] also used a single 

objective GA to optimize the injection strategy and air handling for a heavy-duty diesel engine at mid-load 

conditions. Their study showed that the GA preferred early injections with high EGR rates to achieve 

simultaneously low NOx and soot emissions. Since combustion optimizations have multiple objectives 

(e.g., efficiency, emissions, noise, etc.). Single objective GA studies require the use of a merit function. 
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This function encompasses the effects of the multiple objectives through a weight assigned to each of the 

objectives. Though the above-mentioned studies have shown satisfactory results, other authors [46, 47] 

have found the single objective GA results to be extremely sensitive to the choice of the merit function and 

the weights assigned to the objectives.  

To avoid these issues, multi objective GA (MOGA) methods were explored for engine optimization 

studies [48, 49, 50]. To identify the best MOGA method, Shi and Reitz [51] compared different MOGA 

methods, in optimizing a heavy-duty diesel engine, under high-load conditions. Upon comparison, they 

found that the non-dominated sorting GA (NSGA-II) performed the best.  Using the MOGA with NSGA-

II, optimal combinations of bowl geometry, spray-targeting, and swirl ratio were identified to 

simultaneously minimize the NOx and soot emissions. MOGA optimization with NSGA-II has also been 

used to optimize advanced combustion strategies. Kokjohn et al. [52] used NSGA-II to optimize the 

injection strategy for RCCI combustion. Non-reacting simulations were performed at 11 bar IMEP to 

identify the strategy that yields the most homogenous charge. The optimum strategy identified had a low 

pressure first injection at -67 °aTDC, which conditioned the squish, and a high pressure second injection at 

-33 °aTDC, that was targeted into the bowl. The optimal SOI timings were such that, the fuel was optimally 

distributed between the bowl and the squish regions, to minimize the inhomogeneity. Dempsey and Reitz 

[53] used NSGA-II to optimize gasoline PCI operation in a heavy-duty engine at mid- and high-load 

conditions. They achieved a GIE of ~50%, but at the high-load conditions, controlling soot emissions and 

PPRR was found to be a challenge. Lim et al. [9] performed an optimization with NSGA-II and 

demonstrated operation with the RCCI strategy at 21 bar IMEP using gasoline and diesel fuel. The optimum 

strategy indicated that, by injecting a part of the low-reactivity fuel (gasoline) into the squish region, the 

temperatures in that region can be lowered due to evaporative cooling of the fuel.  This thermal stratification 

led to reduced PPRR. 

In a more recent study, Klos and Kokjohn [54] found that, as the number of design variables 

increased, the convergence rate of NSGA-II decreased. When the number of variables was 12 or higher, 

they found that the NSGA-II did not converge to an optimum. To address this issue, Klos and Kokjohn [54] 
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developed a new single objective GA, called the DK-GA. This GA blends the broad search coverage of a 

MOGA with the rapid convergence of a single objective GA. It has been shown to efficiently work with a 

large number of design variables. The performance of the DK-GA was compared with the NSGA-II for a 

design problem with 12 variables and it was found that the DK-GA significantly outperformed the NSGA-

II. This is contrary to the results seen in the previous studies [47, 48], where the MOGA was found to be 

beneficial compared to the single objective GA’s. There are two primary differences between the DK-GA 

and the earlier single objective GA’s. The first difference is the objective function. In previous single 

objective GA techniques, a merit function, combining the effect of all the outputs of interest, was used as 

the objective function. As a result, by optimizing the merit function, the GA was effectively attempting to 

optimize all the outputs simultaneously. In doing this, this approach was found to be sensitive to the weight 

assigned to each output in the merit function.  However, in the DK-GA, there is only one output or objective 

function (e.g., efficiency or fuel consumption), that is optimized. The rest of the outputs (e.g., NOx, PPRR 

etc.,) are included in the optimization as constraints. The DK-GA ensures that these outputs meet their 

corresponding constraints, through a penalty function imposed on the objective. Even with the DK-GA, 

weights in the form of a harshness factor are assigned to each output, in the penalty function. The harshness 

factor would determine the strictness of the constraint imposed on the output. However, since the DK-GA 

is only ensuring that the outputs meet the constraints, rather than aiming to optimize them simultaneously, 

this approach was not as sensitive to the assigned weights or harshness factors, as the earlier single objective 

GA’s.   

The second difference is in the coverage of the design space. Previous single objective GA’s used 

fixed mutation rates to force the GA to target an optimum solution as quickly as possible. This was 

necessary due to the limited amount of computing resources available when these GA’s were applied (early-

to-mid 2000’s). Recent advances in high throughput computing makes it possible to easily run hundreds of 

simulations simultaneously. Accordingly, Klos and Kokjohn [54] proposed the use of a variable mutation 

rate. The mutation rate is very high during early generations to fully cover the design space and decreases 
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in later generations to force convergence. Using this approach, they were able to achieve design space 

coverage similar to a MOGA with convergence rates similar to a single-objective GA.  

Klos and Kokjohn [54] used the DK-GA to optimize the bowl design, injector design, injection 

strategy, and air handling for high-load RCCI combustion. The optimum design had a hemispherical bowl, 

with a low CR of 12:1. The GA picked a case with the maximum intake pressure and EGR rate as the 

optimum strategy. The study resulted in a high GIE of 48.7%, with near zero NOx and soot emissions.  

In the above discussion, though several different GA optimization studies were mentioned, one 

common aspect among all these studies is that they were all performed at a single load point. Practically, it 

would be of more interest to have optimizations performed across multiple load points. That is, the optimal 

design obtained at one operating condition may not be suitable for a different operating condition. For 

example, when bowl design optimizations are performed separately at different operating conditions, it is 

likely that a different optimal bowl geometry would be found for each operating condition. In practice, this 

is not a useful solution since the bowl geometry cannot be changed with operating condition. To tackle this 

issue, Shi and Reitz [55] repeated their earlier high-load optimization study [51] at low-load conditions. 

They found that, unlike the high-load operating condition, the low-load results were insensitive to the bowl 

and injector geometry variations. Based on these results, they suggested an approach where, firstly, the 

hardware design is optimized at the high-load conditions. Using this hardware, the controllable design 

parameters (e.g., fueling strategy and air handling) are optimized at low-load and high-load conditions, 

separately. With this approach, they demonstrated simultaneous reduction in fuel consumption, NOx, and 

soot emissions at both the load conditions. Similar results were demonstrated by Ge et al. [56]. It is to be 

noted that both these studies were performed using a CDC strategy, which is relatively insensitive to 

changes in CR, due to the lack of premixed fuel.  

For advanced combustion strategies, this approach may not be suitable because the premixed 

charge is extremely sensitive to changes in CR. Secondly, at low-load conditions, over-mixing is often a 

limiting factor for advanced combustion strategies. Accordingly, using DI and a bowl geometry that 

contains the fuel from the DI in one location to create a locally rich mixture may be the key to improving 
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the low-load combustion efficiency. However, using the same bowl geometry at high-load conditions may 

inhibit mixing and result in high soot emissions. This indicates that, unlike the CDC studies mentioned 

above, the optimal advanced combustion bowl geometry may have equal importance at multiple load 

conditions. Furthermore, previous studies [57] have shown that advanced combustion strategies are 

significantly more sensitive to operating parameter variations than the CDC strategy. Hence, in addition to 

the commonly explored objectives (i.e., efficiency, emissions, and noise), the sensitivity to variations in 

operating conditions, should also be minimized, to ensure that a stable and reliable optimum is obtained.  

The above discussion highlights the improvements that need to be made in the optimization 

approach to achieve practical and robust solutions for advanced combustion strategies. Firstly, a new 

approach will have to be developed such that the bowl geometry can be optimized considering the low-load 

and high-load conditions simultaneously. Secondly, the GA optimization will have to be modified to check 

for the stability of the designs to operating condition fluctuations and ensure a reliable optimum is obtained.   

2.3. Machine Learning in Engine Optimization 
An issue that was not mentioned in the previous discussion is the large amount of data from the 

optimization studies that is wasted. Usually, the focus is on the optimum obtained from the GA; however, 

the rest of the data generated has useful information on interactions between the design variables and the 

outputs across the entire design space. Most of this data remains unused. Kavuri and Kokjohn [58, 59] have 

shown that using machine learning techniques to perform non-parametric regression analysis with the GA 

data, is one way of isolating these interactions and identifying the response functions of the objectives as a 

function of the design parameters.  

In the simplest sense, machine learning relies on training an analytical model to enable a computer 

to make a data-driven decision. As the amount of data increases, the model is refined and becomes more 

accurate. While machine learning is not a new technique, substantial advancements have been made in 

recent years. These advancements have been driven by the need, and potential value, to analyze and make 

decisions based on large quantities of data made available by online activities (e.g., consumer preferences 

for online shopping [60]). 
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A non-parametric regression technique used in previous engine optimization studies [51, 58, 59] is 

a method called component selection and smoothing operator (COSSO). COSSO is based on the smoothing 

spline analysis of variance (SS-ANOVA) model [61]. The COSSO method was used in the earlier GA 

studies to estimate the response surfaces for the objectives as a function of the design parameters and to 

perform additional parametric studies on the optimum design.  

There are several other machine learning techniques that can be used with non-parametric data sets. 

Ge et al. [62] used the k-nearest neighbor’s method [63] to analyze the GA data from a heavy-duty diesel 

engine optimization.  With this approach, the trends between the outputs and inputs were isolated with 

similar success as the COSSO method. The response functions were then used to study the sensitivity of 

engine performance to the design parameters of interest. Kodavasal et al. [64] used another machine 

learning technique, the random forest method [65], to predict the variation in peak cylinder pressure (PP) 

due to cycle-to-cycle variations, in a spark ignited (SI) engine. Data from large eddy simulation (LES) of 

123 cycles was split into training and test data sets. 85% of the data was assigned to training and the rest 

assigned to test the model. The training data was used to train the random forest model and estimate the 

correlation between PP and the 10 metrics chosen to represent PP. Verification with the test data showed 

that the random forest model was capable of predicting the highs and lows in PP as a function of the cycle 

number.  

Bin and Wenlai [66] used an approach called Gaussian Process Regression (GPR) [67], to estimate 

the correlation between thermal comfort index and design parameters including activity level, clothing 

insulation, air temperature, air relative humidity, air velocity, and mean radiant temperature. They found 

that the GPR approach showed good agreement with the analytical results. Additionally, they compared the 

performance of the GPR approach with other machine learning approaches, including neural networks and 

support vector machines. They found that the GPR approach showed superior performance and resulted in 

higher fitting precision than the other two approaches. Richardson et al. [68] used the GPR approach to 

predict the state of health and useful life, remaining in a lithium ion battery. In their work, they explain that 

battery degradation modeling is a challenge due to the complex interactions between the design parameters. 
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The large amount of data available from several cycles of lithium ion battery degradation was used to train 

the GPR model. They compared different GPR kernel functions, including matern 3/2, matern 5/2, squared 

exponential, and periodic kernel functions. They showed that the matern 3/2 kernel yielded superior 

performance among the various kernel functions investigated.  

Shi and Reitz [69] compared four different machine learning techniques; k-nearest neighbors [63], 

kriging (or GPR) [67], neural networks [70], and radial basis functions [71] with the aim of using machine 

learning to substitute few of the CFD runs during the optimization. They initially ran a GA with 50 

generations, which had design parameters for bowl design, injector angle, and swirl ratio. Upon the 

completion of the GA, the GA data was used to compare the machine learning approaches. They used the 

machine learning models trained with the GA data to predict the outputs for every 10th generation of the 

GA, and compared the error between the machine learning outputs and the actual CFD predicted outputs 

from the GA. They found that the k-nearest neighbor and the kriging approaches performed the best, among 

the four approaches studied. Though the approach showed promise, they were unable to implement it 

because, as the number of generations increased (i.e., as the trained data set size increased), the learning 

process took nearly as much time as the CFD simulation. Furthermore, they did not have a verification 

approach to identify which cases should be predicted using machine learning and which cases should use 

CFD. Addressing these issues, could provide a pathway to implementing machine learning in GA 

optimization, which has the potential to reduce the optimization time significantly.  

2.4. Problems Identified from Past Research 
The literature review summarized the potential of advanced combustion strategies, like RCCI and 

GCI combustion, in meeting the stringent emissions and fuel consumption targets expected in the coming 

years. However, several challenges were also identified, limiting the practical application of these 

strategies. The key issue highlighted was the lack of research, in the low-load-high-speed and high-load-

low-speed regions of the drive cycle with the advanced combustion strategies. This section will provide a 

brief summary of the challenges faced at these two operating conditions. GA optimization will be used in 

combination with CFD, to address the challenges with advanced combustion strategies. The literature 
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review also covered the issues with the existing optimization approaches followed for advanced combustion 

strategies. Accordingly, this section will also summarize those issues. 

2.4.1. Issues at Low-Load-High-Speed Operating Condition 
 At low-load-high-speed operating condition, the over-lean mixtures of premixed gasoline resulted 

in elevated levels of incomplete combustion.  Resorting to a CDC strategy at low-load conditions has shown 

to improve the combustion efficiency, but it reduced the cycle-averaged gasoline percentage. This is mainly 

a concern for light-duty passenger vehicles, due to the need to monitor and fill two fuel tanks. Investigating 

strategies with direct-injected gasoline, could reduce the over-lean zones in the combustion chamber, and 

improve the low-load combustion efficiency. This would provide a pathway to improving the cycle-

averaged gasoline percentage. 

2.4.2. Issues at High-Load-Low-Speed Operating Condition 
At the high-load-low-speed operating condition, controlling the combustion to avoid high PPRR, 

was found to be challenging. Optimization studies performed at high-load-low-speed operating conditions, 

suggested operation at the maximum intake pressure and EGR rate, allowed within the optimization study. 

However, the use of high intake pressure and EGR rate, could increase the pumping loop work, and reduce 

the net efficiency. Since the optimization study was performed over a closed cycle (i.e., from intake valve 

closure (IVC) to exhaust valve opening (EVO)), the pumping loop work was not accounted for in the 

efficiency calculations. Additionally, the use of excessive EGR rate, poses challenges during transient 

operation. This motivates the need to perform a thorough investigation of air-handling requirements, under 

high-load-low-speed conditions. Understanding the constraints on high-load-low-speed operation, at 

reduced EGR rates, could provide a solution to reducing the EGR burden during high-load operation.  

It was also pointed out during the literature review that gasoline is well suited for high-load 

operation, due to its low reactivity. This makes it of interest to compare RCCI and GCI strategies under 

high-load-low-speed conditions to understand if having a diesel injection provides any benefits or if a 

complete GCI strategy is preferable under these conditions. 
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2.4.3. Issues with Optimization Techniques 
From the literature review on GA optimization for engine applications, the main issue highlighted 

was the need to perform optimization studies considering multiple operating conditions simultaneously.  

This is particularly important for advanced combustion strategies, when optimizing the bowl design, 

considering the high sensitivity of premixed fuel to CR. Furthermore, the advanced combustion strategies 

have shown higher sensitivity to operating parameter variation than CDC strategies. Accordingly, the 

optimization approach should also be modified to check for the stability of the operating strategy to 

variations in inputs. Lastly, it was observed that engine optimizations generate large data sets, but the focus 

is usually on the optimum design. As a result, the majority of the GA data is not used. Machine learning 

techniques have shown potential to simplify large non-parametric data sets, like the GA data.  

2.5. Objectives and Approach 
The objective of the research presented in this thesis, is to address the challenges of advanced 

combustion strategies, at high-load-low-speed and low-load-high-speed operating conditions. This would 

fill in the research gaps existing in the literature for advanced combustion strategies and provide a pathway 

to practical implementation of these strategies. In this thesis, the focus will be on RCCI and GCI combustion 

strategies since they have shown significant benefits over CDC in previous studies. Furthermore, the 

optimization approach currently followed for advanced combustion strategies will be improved, to better 

suit these strategies.  

 In this thesis, CFD modeling is primarily used to perform the research. Therefore, to achieve 

confidence in the CFD model predictions, a thorough model-validation is performed. Experimental data 

from CDC, RCCI and GCI combustion strategies, across a range of operating conditions, will be used to 

validate the CFD model. The model-validation study will be presented in Chapter 3. Upon completing 

model-validation, a combination of CFD modeling and GA optimization will be used to address the 

challenges of advanced combustion strategies that were summarized in the previous section. It is necessary 

to perform an optimization study because the number of input variables and the design space of interest are 

too large to be covered manually to find a suitable operating strategy.  Initially, optimizations targeting 

high-load-low-speed condition will be performed, since the challenges at this operating condition could 
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potentially cause structural damage to the engine. This study will investigate the effects of air-handling on 

high-load-low-speed operation with RCCI and GCI strategies. A detailed comparison of the two strategies, 

in terms of combustion characteristics, combustion control and operating parameter sensitivity will be 

presented. Operating constraints preventing operation at reduced EGR rates will be studied. Eventually, 

feasible operating strategies at various levels of EGR rates will be presented and their respective benefits 

and tradeoffs will be explained. The research performed at high-load-low-speed conditions will be shown 

in Chapter 4 and  Chapter 5..  

Upon completing the high-load study, the optimization approach is modified to optimize multiple 

operating conditions simultaneously. From this study, feasible operating strategies for both the low-load-

high-speed and high-load-low-speed operating conditions will be presented. This study will be shown in 

Chapter 6. It is to be noted that all the studies mentioned so far will be performed on a heavy-duty engine. 

A separate study focusing solely on the light-duty drive cycle was also performed. The goal of that study 

was to investigate the potential of gasoline direct-injection to improve the combustion efficiency of light-

load RCCI combustion. This is important, particularly for light-duty applications, as it would increase the 

drive-cycle gasoline percentage and provide a pathway for practical implementation of the RCCI strategy. 

The details of this study are shown in Appendix-A.  

Lastly, machine learning techniques will be implemented in GA-based optimization to reduce the 

computational time and to evaluate the robustness of the selected designs. These studies will be presented 

in Chapter 7. 
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Chapter 3 Setup and Model Validation 
3.1. Engine Specifications 

The engine modeled in this study is a single cylinder version of a Caterpillar C-15, 15-L. six-

cylinder engine. The C-15 is typical of a heavy-duty size-class diesel engine with a bore of 137 mm and a 

stroke of 171 mm. The work presented in this thesis uses two pistons. One is the stock piston with a CR of 

16.4:1 and the other is a “bathtub-type” piston with a CR of 12:1. The “bathtub-type” piston was used to 

allow high-load premixed operation. A custom cylinder head was cast to allow the use of two identical 

Bosch CRIN II common-rail fuel injectors, for high-pressure DI of two fuels. The injector tips have seven 

141-micron holes with included angles of 148°. Table 3-1 shows a summary of the engine and injector 

specifications. 

Table 3-1. Engine and injector specifications. 

Parameter Stock Bathtub 

Engine Specifications 

Displacement [L/cylinder] 2.5 2.5 

Bore x Stroke [mm] 137 x 171 137 x 171 

Compression Ratio [-] 16.4:1 12:1 

Swirl Ratio [-] 0.7 0.7 

IVC [°ATDC] -154 -154 

EVO [°ATDC] 113 113 

Bosch Common Rail Injectors 

Number of holes 7 

Hole Diameter [mm] 0.141 

Included Spray Angle [°] 148 

In the experiments, though there are two independent injectors delivering gasoline and diesel fuel, 

the simulations assumed that both injectors were at the axis of the cylinder. This allowed the use of a sector 

mesh to reduce the computational burden. This simplification was validated in a previous study [72], and 

the results were found to be a good match with the experiments. Figure 3-1 shows the computational grid 

representing the stock piston. The grid represents a 51.42° sector mesh which includes one spray hole from 

the injector. The grid is made up of 34,634 cells at bottom dead center (BDC), with a cell size of 2 mm in 

the axial and vertical directions and 2º in the azimuthal direction. The study presented in Appendix-D uses 

the stock piston. 
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Figure 3-1. Computational mesh for the stock piston shown at top dead center (TDC). 

The studies presented in Chapter 4, Chapter 5, Chapter 7, and Appendix-B use the “bathtub” piston. 

Figure 3-2 shows the computational grids used for this piston. The coarse grid has 16,258 cells at BDC, 

with an average mesh size of 3 mm. The fine grid has 39,647 cells at BDC, with an average mesh size of 1 

mm. A mesh sensitivity study [73] for this bowl showed that the trends in the results remain unchanged 

with the mesh size for a cell size of 3 mm or smaller, although, differences in magnitudes exist. For cell 

size less than or equal to 1 mm, the results were found to be independent of the mesh size with variation in 

magnitudes reducing to less than five percent. Considering the large number of cases involved, the GA 

optimization study presented in Chapter 4 and Chapter 5 used the coarse mesh. The optimum cases 

identified from this study were re-run on the fine mesh. For the GA optimization, since the trends in the 

outputs are more important than the actual magnitudes, this approach was considered acceptable. The 

studies presented in Chapter 7 and Appendix-B used the fine mesh.  

 
Figure 3-2. Computational mesh for the bathtub piston shown at TDC.  

3.2.  Model Description 
Computational modeling was performed using the KIVA-3v release 2 code, which includes 

improved physical and chemistry models developed at the Engine Research Center (ERC) [74]. This section 

provides an overview of the physical models essential to the present study.  
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3.2.1. Combustion Model 

 The chemistry calculations were performed using a sparse analytical Jacobian solver coupled to 

the code, called SpeedChem [75]. It has been shown to perform calculations three to four times faster than 

CHEMKIN-II without significant changes in the combustion and emissions predictions [76]. The following 

study uses four fuels; diesel fuel, 93 AKI gasoline, 87 AKI gasoline, and 91E10 gasoline. The physical 

properties of diesel fuel are represented using tetradecane (C14H30), and the chemical kinetics are 

represented using n-heptane (nC7H16). For the 93 AKI gasoline, iso-octane (iC8H18) is used as the physical 

and the chemical surrogate. 87 AKI gasoline is represented as a blend of 13% n-heptane and 87% iso-

octane. The physical and the chemical properties of the 91E10 gasoline are represented using four 

surrogates; iso-octane with a mass fraction of 0.576, n-heptane with a mass fraction of 0.110, toluene (C7H8) 

with a mass fraction of 0.213, and ethanol (C2H6O) with a mass fraction of 0.101. The mass fractions of the 

surrogates were estimated by minimizing the relative error between the surrogate fuel properties and the 

reference fuel properties. A reduced reaction mechanism consisting of 80 species and 349 reactions [77] is 

used to model the fuel chemistry for the work presented in all the chapters, except for the high-load 

optimization study presented in Chapter 4 and Chapter 5. The high-load optimization study used a reduced 

reaction mechanism consisting of 47 species and 142 reactions [78]. Both the mechanisms had similar base 

primary reference fuel (PRF) chemistry, but the new mechanism [77] had polycyclic aromatic hydrocarbon 

(PAH) chemistry added up to pyrene formation. The new mechanism [77] was used to improve the 

predictions of soot formation. 91E10 gasoline was used for the study presented in Appendix-D. This study 

required ethanol chemistry to be added to the mechanism to model the combustion of the ethanol content 

in the fuel. Hence, ethanol chemistry from another reaction mechanism [79] was added to form a new 

reduced mechanism having 87 species and 412 reactions. This mechanism was used solely for the study 

presented in Appendix-D. 

3.2.2. Emissions Model 

NOx is predicted using a 12-reaction NOx mechanism based on the Gas Research Institute (GRI) 

NO mechanism [80]. The two-step phenomenological soot model based on the approach of Hiroyasu, 



25 

 

predicts the soot formation and oxidation [81]. The rate of change of soot mass within a computational cell, 

𝑀𝑠
̇ , is given by the competition between the soot formation rate, 𝑀𝑠𝑓 ,̇  and the soot oxidation rate, 𝑀𝑠𝑜

̇ , as 

 𝑀𝑠
̇ =  𝑀̇𝑠𝑓 − 𝑀̇𝑠𝑜, ( 1) 

The soot formation rate is given by the Arrhenius expression 

 𝑀𝑠𝑓
̇ =  𝐴𝑠𝑓𝑀𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑃0.5𝑒

−𝐸𝑠𝑓

𝑅𝑇 , ( 2) 

where 𝑀𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 is the mass of the inception species1 in the computational cell, 𝑃 is the pressure, 𝑅 is the 

ideal gas constant, and 𝑇 is the cell temperature. 𝐴𝑠𝑓 and 𝐸𝑠𝑓 are the soot formation pre-exponential, and 

the activation energy for soot formation respectively. The soot oxidation rate is given by the carbon 

oxidation model of Nagle and Strickland-Constable [82]. The oxidation rate is discussed by Liu et al. [83], 

and given by 

 
𝑀𝑠𝑜

̇ =  𝐴𝑠𝑜

6𝑀𝑠

𝜌𝑠𝐷𝑠
𝑅𝑡𝑜𝑡𝑎𝑙𝑀𝑊𝐶 , 

( 3) 

where 𝐴𝑠𝑜 is an empirical constant, 𝑀𝑠  is the mass of soot in each computational cell, and 𝑅𝑡𝑜𝑡𝑎𝑙 is the net 

reaction rate. The soot density, 𝜌𝑠, and soot particle diameter, Ds, are taken as 2 g/cm3 and 0.025 micron, 

respectively. 𝑀𝑊𝐶 is atomic weight of carbon atom. The soot model constants for each inception species 

are shown in Table 3-2. Discussion of the selection of inception species is described in §3.4.2.  

Table 3-2. Soot model constants used based on the inception species.  

Inception Species C2H2 C16H10 

Asf [1/s.bar0.5] 30 500 

Esf [cal/gmol] 1250 1250 

Aso [-] 1 0.5 

                                                      
1 Initially, acetylene (C2H2) was used as the inception species for the soot model. But, later in a study focused on soot 

emissions (shown in the Model Validation section), it was found that using a PAH species like pyrene resulted in 

improved soot predictions. Using pyrene as the inception species gave good predictions across a range of operating 

conditions, without the need for adjusting the soot model constants. Accordingly, pyrene (C16H10) was used as the 

inception species for the soot model in all the chapters, except for Chapter 4, where acetylene (C2H2) was used as the 

inception species. 
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3.2.3. Spray Model 

The spray model uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach where liquid fuel 

is treated as Lagrangian parcels, and the gas is discretized into Eulerian cells. The Lagrangian fuel parcels 

and the Eulerian gas phase are coupled using source terms in the mass, momentum, and energy conservation 

equations. In a grid dependency study of spray models for diesel engines, Abraham [84] found that the 

minimum grid size required would be of the order of the injector nozzle radius, which is approximately 0.1 

mm. Performing the large number of calculations presented in this work, on a mesh that large (~ 1 million 

cells), would be highly impractical. Abani et al. [85] found that most of the grid dependence arises from 

the momentum exchange between the liquid and the gas phases near the injector nozzle. When a coarse 

mesh is used, the computational cell volume is significantly larger than the actual volume of influence of 

the spray. This extra volume increases the drag force on the liquid parcels due to the surrounding gas phase, 

leading to an underprediction of the spray penetration. To allow accurate spray simulation on a coarse grid, 

Abani et al. [85, 86] developed the Gasjet model. The Gasjet model assumes that the relative velocity 

between the liquid droplet and the gas phase is equal to the relative velocity between the liquid droplet and 

a turbulent gas jet which, has the same mass and momentum of the injected liquid fuel. This approach 

imposes an axial component for the gas phase velocity, as a function of the distance from the nozzle, which 

is used in the droplet acceleration equation given by 

 

𝑑𝑈

𝑑𝑡
=  

3

8
𝐶𝐷

𝜌𝑔

𝜌𝑙𝑟𝑑
|𝑈 − 𝑉𝑔𝑎𝑠|(𝑈 − 𝑉𝑔𝑎𝑠), 

( 4) 

where U is the droplet velocity vector, CD is the droplet drag coefficient, which is a function of the Reynolds 

number, 𝜌𝑔 and 𝜌𝑙 are the gas and liquid phase densities respectively; 𝑟𝑑 is the droplet radius, and 𝑉𝑔𝑎𝑠 is 

the gas phase velocity vector given as 𝑉𝑔𝑎𝑠 = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧). The velocity components perpendicular to the 

spray axis (i.e., 𝑉𝑦 and 𝑉𝑧) are obtained from the Eulerian gas phase solution, and the axial component, 𝑉𝑥, 

of the gas phase velocity, is found from gas–jet theory as 
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𝑉𝑥 = min [𝑈𝑖𝑛𝑗,

3𝑈𝑖𝑛𝑗𝑑𝑛𝑜𝑧√
𝜌𝑙
𝜌𝑔

𝐾𝑒𝑛𝑡𝑟𝑥
(

1

(1+
12𝑟2

𝐾𝑒𝑛𝑡𝑟
2𝑥2)

2)], 
 (5) 

where 𝑈𝑖𝑛𝑗 is the injection velocity, 𝑑𝑛𝑜𝑧 is the nozzle diameter, 𝐾𝑒𝑛𝑡𝑟 is a model constant taken to be 0.7 

as suggested by Abani et al. [85], x is the position downstream of the nozzle on the spray axis, and r is the 

radial position. Accordingly, to reduce the grid size dependency of the LDEF spray model, the Gasjet model 

of Abani et al. [85, 86] is used to model the relative velocity between the droplets and gas phase in the near 

nozzle region. 

Spray breakup is modeled using the Kelvin Helmholtz–Rayleigh Taylor (KH-RT) model described 

by Beale and Reitz [87]. The Kelvin Helmholtz (KH) instability model is used to predict the primary 

breakup of the initially injected fuel parcels, and the secondary breakup is modeled using a competition 

between the KH and the Rayleigh-Taylor (RT) instabilities. The primary breakup process is evaluated to 

occur after a breakup time predicted by the KH model as 

 
𝜏𝐾𝐻 =  

3.726𝐵1𝑟

Ω𝐾𝐻Λ𝐾𝐻
, 

( 6) 

where Ω𝐾𝐻 and Λ𝐾𝐻 are the calculated frequency and wavelength of the fastest growing wave respectively, 

B1 (called cnst22 in KIVA) is an adjustable parameter used to adjust the breakup time. In the current study, 

a B1 value of 80 is used. The radius of the child parcel resulting from the primary breakup is predicted using 

the KH model as 

 
𝑟𝑐 =  𝐵0Λ𝐾𝐻 , 

( 7) 

B0 (called balpha in KIVA) is an adjustable parameter, which is given a constant value of 0.6. The RT 

model is used to predict secondary breakup beyond a breakup length from the injector tip, which is 

estimated as 

 𝐿𝑏 =  𝐶𝑏𝑑0√
𝜌𝑓𝑢𝑒𝑙

𝜌𝑎𝑖𝑟
, ( 8) 
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where d0 is the parent parcel diameter and Cb (called distant in KIVA) is another adjustable parameter, 

which is given a value of 1.9. The radius of the child parcel resulting from the secondary breakup is 

predicted using the RT model as 

 
𝑟𝑐 =  

𝜋𝐶𝑅𝑇

𝐾𝑅𝑇
, 

( 9) 

where KRT is the calculated wave number and CRT is an adjustable constant set to 0.1. These values of spray 

parameters have been shown to predict spray penetration and mixture distributions accurately for diesel jets 

(see Chuahy and Kokjohn [88]). 

The renormalization group (RNG) k–ε model modified by Han and Reitz [89] for compressible 

flows, is used for the turbulent flow calculation. The droplet collision model is based on O’Rourke’s model, 

and a radius of influence method is used to determine the collision partners to reduce the mesh dependency. 

Additionally, the model was expanded by Munnanur [90] to include a complete list of collision outcomes 

that consider the effects of bounce, coalescence, fragmenting, and non-fragmenting separations. A wall film 

sub model was used to model droplet interaction with the wall [91], which includes the effects associated 

with splash, film spreading, and motion due to inertia.  

3.3. Genetic Algorithm Optimization 
Optimization was performed using a GA, which is a search technique inspired by the theory of 

evolution. Initially, for the high-load optimization study presented in Chapter 4 and Chapter 5, a MOGA 

was used. However, later Klos and Kokjohn [54] found that the MOGA does not work efficiently when 

there are more than 12 input variables, as explained in Chapter 2. Consequently, they developed a GA called 

the DK-GA, which works efficiently for optimizations with a large number of variables, and verified its 

improved performance over the MOGA. Accordingly, this GA was used for the optimizations presented in 

the later chapters. Both the GA approaches will be explained in detail in this section. 

3.3.1. MOGA (NSGA-II) 

  The MOGA used for the high-load optimization study has multiple objective functions. It generates 

a range of optimal solutions called the Pareto solutions, to identify the ideal design space of operation. From 

this set of Pareto solutions, the optimum point was identified by applying a set of filters which are explained 
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later in Chapter 4. Shi and Reitz [51] explored several MOGA techniques and have shown that the NSGA-

II proposed by Deb et al. [92] is well suited for engine optimizations. Hence, NSGA-II was coupled to the 

CFD code and used for the optimization presented in Chapter 4.  The NSGA-II code randomly populates 

the citizens for the first generation and uses crossover and mutation to populate the next generation. From 

the second generation onwards, crowding tournament selection is used to compare the results from the two 

generations and populate the further generations. Citizens having a higher rank are given preference, and if 

two citizens have the same rank, a citizen is chosen such that the crowding of citizens is avoided. In this 

way, the GA aims to achieve diverse solutions.  

Before performing the high-load optimization study, considering the large number of cases 

involved (see Chapter 4), an optimization study was performed to identify the optimum number of citizens 

required per generation. The optimum was chosen as the number of citizens required to achieve an optimum 

between the convergence speed and the computational expense. Optimization was performed by varying 

the number of citizens per generation in steps of 32 from 32 to 192 and the convergence rates were 

compared. Optimization convergence was monitored using the convergence metric proposed by Shi and 

Reitz [51]. The metric calculates the minimum normalized Euclidean distance, 𝑑𝑖, of each Pareto solution 

from the current generation, 𝑓𝑘(𝑖), to the Pareto solutions from the pool of all the previous generations, 

𝑓𝑘(𝑗), for each objective, 𝑘, as 

  𝑑𝑖 = 𝑚𝑖𝑛
𝑗=1

√∑ (
𝑓𝑘(𝑖) − 𝑓𝑘(𝑗)

𝑓𝑘
𝑚𝑎𝑥 − 𝑓𝑘

𝑚𝑖𝑛 
)

2𝑀

𝑘=1

, ( 10) 

where 𝑓𝑘
𝑚𝑎𝑥 and 𝑓𝑘

𝑚𝑖𝑛 are the maximum and minimum values of the k-th objective in the pool of Pareto 

solutions and 𝑀 is the number of objectives. The convergence metric is then calculated by averaging the 

normalized distance for all the Pareto solutions and normalizing it by the maximum average distance to 

keep the convergence metric between 0 and 1. Figure 3-3 shows the convergence metric as a function of 

generation number for the citizen sweep study. The case with 96 citizens converges much faster than the 

32 and 64 citizen cases. However, increasing the citizen number beyond 96 adds to the computational cost, 
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but does not improve the convergence rate. Hence, 96 citizens per generation was chosen as the optimum 

number and used for the high-load optimization study in Chapter 4.  

 
Figure 3-3. Convergence metric vs. generation for different number of citizens per generation. 

3.3.2. Single Objective GA (DK-GA) 

Most engine optimization problems can be considered constrained minimizations, where fuel 

consumption is minimized, subject to emissions and mechanical constraints. Accordingly, Klos and 

Kokjohn [54] developed a new single-objective GA with a penalty function for the constraints, which they 

called the DK-GA. They verified its improved performance over the NSGA-II with several objective 

functions. DK-GA differs from the NSGA-II in three key aspects.  

1. Cross breeding of parents to select a new generation is done by a Punnett square technique.  In this 

technique, the top n designs from the previous generations become the parents of the new generation. 

Each parent has a child with every other parent twice and once with themselves, producing a new 

generation of n2 children.  

2. Once the new generation is created, mutation occurs for each variable of each child. In DK-GA, the 

mutation rate is not constant. A normally distributed random number with its mean set to the current 

value and standard deviation set by a decaying time constant is generated to add mutations to the 

system. As the GA progresses, the time constant that dictates the mutation rate exponentially decays. 

The rate at which it decays is defined as 
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  𝜏𝐺𝐴,𝑖 = 𝜏𝐺𝐴,0 ∗ exp (−𝜎𝐺𝐴

𝑖

𝑛𝑒𝑛𝑑
), ( 11) 

where 𝜏𝐺𝐴,𝑖 is the time constant at the 𝑖𝑡ℎ generation, 𝜏𝐺𝐴,0 is the user specified initial time constant, 

𝜎𝐺𝐴 is the standard deviation, and 𝑛𝑒𝑛𝑑 is the user specified total number of generations. This approach 

allows the GA to fully explore the design space in the early generations but then forces the GA to 

converge to a solution in the later generations. For the studies involving DK-GA, presented in Chapter 

6 and Chapter 7, 𝜏𝐺𝐴,0 of 0.6 and 𝜎𝐺𝐴 of 4 are used.  

3. The fitness function involves minimizing (e.g., indicated specific fuel consumption (ISFC)) or 

maximizing (e.g., GIE) any one output. A penalty function is used to penalize the fitness value based 

on the constraints set for the other outputs (e.g., soot emissions, PPRR, etc.). This way it ensures that, 

while the chosen output is being optimized the other outputs also meet the set constraint values. The 

penalties are estimated based on a penalty function given by 

 

𝑃𝑗 =
1

(max (1,1 + 𝑠𝑖𝑔𝑛(𝐻𝑗) ∗ (
𝑦𝑗 − 𝑐𝑗

|𝑐𝑗|
)))

𝐻𝑗

 

, 
( 12) 

where 𝑃𝑗 is the penalty, 𝑦𝑗 is the CFD calculated value of the 𝑗𝑡ℎ output, 𝑐𝑗 is the user specified 

constraint value for the 𝑗𝑡ℎ output, and 𝐻𝑗 is a user specified harshness factor. The magnitude of 𝐻𝑗 

determines how severely the constraint should be enforced and the sign defines if the output needs to 

be higher or lower than the constraint value (i.e., if the harshness variable is positive, the output 

value must be less than the constraint and vice versa). Once the penalties are estimated for all the 

outputs, all the penalties are multiplied together to create the total penalty. The total penalty is then 

multiplied by the optimization variable to create the final fitness function. This function will be 

maximized or minimized based on the problem definition. 

3.4. Model Validation 
The primary focus of the present work is to use the computational tools to investigate advanced 

combustion at conditions where it is difficult to investigate experimentally without prior knowledge of the 
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desired injection and air handling (e.g., intake pressure and EGR) strategies. Accordingly, the model 

validation effort focuses on ensuring the models are predictive over a wide range of operating conditions. 

The models used in the present study have been extensively validated and applied for low-load and mid-

load operation using RCCI, GCI and CDC strategies. For example, Kokjohn et al. [6] showed good 

agreement between simulations and experiments of RCCI combustion at loads spanning from 4 to 14 bar 

IMEP. Dempsey et al. [93] have shown accurate prediction of mid-load GCI combustion. The authors early 

work (see Kavuri et al. [50]) investigated model performance at loads spanning from 2 bar IMEP to 14 bar 

IMEP in CDC, RCCI, and GCI modes in a light-duty engine. Accordingly, the present effort will focus on 

high-load model validation in a heavy-duty engine. Experimental data for the present test engine (see Table 

3-1) was available for CDC, RCCI, and GCI combustion at near 20 bar IMEP. These will be discussed in 

the coming sub-sections. Further model validation efforts are performed later in the study after the models 

have been exercised to identify relevant operating conditions. These studies are described in the coming 

chapters (see §4.2.1, §4.2.2.2, §B.2, §D.2).  

3.4.1. Model Validation with CDC 
The operating conditions for the CDC model validation experiments are shown in Table 3-3. The 

experimental data for these studies was obtained from Caterpillar. The data provided was for a diesel SOI 

sweep where the SOI timing of the diesel injection was varied from -18 °aTDC to 6 °aTDC at a fixed diesel 

fuel mass of 244.25 mg. This resulted in a variation in IMEP in the range of 15 bar to 20 bar. The study 

was performed at a fixed engine speed of 1800 rev/min. The measured injection rate profile and the IVC 

species composition corresponding to the EGR rate used in the experiments were provided and used in the 

CFD simulations. 

Table 3-3. Operating conditions for model validation with the CDC strategy. 

Parameter Input 
Fuel Diesel Fuel 

IMEP [bar] 15 to 20 
Engine Speed [rev/min] 1800 
Fuel Mass [mg/cycle] 244.25 
SOI-Diesel [°aTDC] -18 to 6 

Pinj [bar] 1490 
EGR [%] 20 
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Figure 3-4 shows the in-cylinder pressure and apparent heat release rate (AHRR) comparison 

between the experiments and CFD. The SOI timing for each case is shown on the corresponding plot. The 

peak AHRR is slightly under-predicted at the early SOI timings but matches well with the experiments as 

the SOI timing is retarded. This was found to be due to under-prediction of CO oxidation at the early SOI 

timings, which could be happening due to differences in the mixing field between the experiments and 

CFD. Despite the differences at the early SOI timings, there is a reasonable agreement between the 

experiments and simulations across the SOI sweep. 

   

   

   
Figure 3-4. In-cylinder pressure and AHRR comparison between the experiments and simulations for the 

operating conditions shown in Table 3-3. 

Figure 3-5 shows a comparison of the NOx emissions between experiments and CFD. The NOx 

emissions were normalized to set the range between zero and one. As seen from the figure, there is a good 

agreement in the trends and magnitudes of NOx emissions between the experiments and simulations. A 

comparison of soot emissions is not shown because the experimental data for soot emissions was not 

provided.  
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Figure 3-5. Comparison of NOx emissions between experiments and simulations for the operating conditions 

shown in Table 3-3. 

3.4.2. Model Validation with RCCI Combustion 
The first set of RCCI model validation experiments [94] were performed at 20 bar gross IMEP and 

1800 rev/min. with a single- and split-injection strategy for the diesel fuel. The gasoline was injected during 

the intake stroke in the experiments but was modeled as a homogenous mixture at IVC in the simulations. 

Both cases used over 50% EGR. Table 3-4 shows the operating conditions. Figure 3-6 shows a comparison 

of the in-cylinder pressure and AHRR between the experiments and CFD. For both strategies, there is a 

reasonable agreement in ignition delay, combustion duration, and peak AHRR between the simulations and 

experiments. Figure 3-7 shows the NOx and soot emissions comparison between the experiments and 

simulations. For both the NOx and soot emissions, the trends and magnitudes were predicted reasonably 

well between the two cases shown in Table 3-4.  

Table 3-4. First set of operating conditions for model validation with the RCCI strategy. 

Parameter 
20 bar 1800 rev/min 

(Single Inj.) 

20 bar 1800 rev/min 

(Split Inj.) 

IMEP [bar] 20 20 

Engine Speed [rev/min.] 1800 1800 

Premix Mass [mg/cycle] 217 225 

Mass in Inj-1 [mg/cycle] 24 17.85 

Mass in Inj-2 [mg/cycle] N/A 16.15 

SOI-1 [°aTDC] -74 -74 

SOI-2 [°aTDC] N/A -8 

EGR [%] 57 52 

Inj. Pressure [bar] 741 741 

IVC Pressure [bar] 3.96 3.96 
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Figure 3-6. In-cylinder pressure and AHRR comparison between the experiments (-) and simulations (- -) for 

the operating conditions shown in Table 3-4. 

 

Figure 3-7. Comparison of NOx and soot emissions between experiments and simulations for the operating 

conditions shown in Table 3-4. 

The operating conditions for the experimental data [71, 94] used as the second set of model 

validation data for RCCI combustion are shown in Table 3-5. In these experiments, performed at 13 bar 

and 1300 rev/min., a premixed charge of gasoline and n-heptane was created using injections during the 

intake stroke. The quantity of gasoline and n-heptane was set to reach a load of 10 bar gross IMEP from 
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the premixed fuel alone. A load extension injection consisting of 46 mg of gasoline was added at -10 °aTDC 

to reach a load of 13 bar gross IMEP. The ratio of gasoline and n-heptane in the premixed fuel was adjusted 

to set the 50 percent burn location of the premixed heat release to TDC. The load extension injection was 

swept from -10 °aTDC to +30 °aTDC in steps of 5 °CA while holding all other parameters constant. The 

study was performed at various levels of EGR and injection pressure. Although the data-set is for a mid-

load condition of 13 bar IMEP, where the model was thoroughly validated in earlier studies, it was still 

used for model-validation because it has a premixed (low temperature, locally lean) and a mixing-controlled 

(high temperature, locally rich) combustion event occurring in the same cycle. Such mixed-mode strategies 

were not validated in earlier studies, which makes this data-set unique. The broad range of local equivalence 

ratios and temperatures covered during the two combustion events makes it an idea data-set for model-

validation. Achieving good agreement with these experiments would give us high confidence in the model 

predictions. 

Table 3-5. Second set of operating conditions for model validation with the RCCI strategy. 

Parameter\Effect Investigated Load Extension SOI EGR 
Inj. 

Pressure 

Nominal gross IMEP (bar) 13 

Speed (rev/min) 1300 

Intake Temp (°C) 60 

Intake Pressure (bar) 2.31 

Load Extension SOI Timing (°ATDC) -10 to +30 

Load Extension Mass (mg/cycle) 46 

Total Gasoline Mass (mg/cycle) 158 160, 158 158 

Total n-heptane Mass (mg/cycle) 17 5,17 17 

EGR Rate (%) 46 30, 46 46 

Inj. Pressure (bar) 1000 1000 1000, 1500 

Figure 3-8 shows the soot emissions comparison between the experiments and the model, as a 

function of the load extension SOI timing, for the 46% EGR case and injection pressure of 1000 bar. For 

these results, acetylene was used as the inception species for the soot model. Figure 3-8 (a) shows the soot 

trends for an initial set of soot constants (Asf = 500, Esf = 1250). With these values of soot constants, the 

soot is overpredicted across the SOI sweep. The soot constants were then adjusted to Asf of 25 and Esf of 
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2000, to match the soot magnitude of the experiments for SOI of 25 °aTDC. The same soot constants were 

used to simulate the remaining SOI timings in the study, and the resulting trends are shown in Figure 3-8 

(b). As illustrated, the soot is significantly under-predicted for the SOI timings before TDC. The same study 

was then repeated by adjusting the soot constants to Asf of 1900 and Esf of 2000, to match the soot 

magnitude of the SOI of -10 °aTDC case. However, when these constants were used, soot was grossly 

overpredicted for the SOI timings later than TDC (see Figure 3-8 (c)). These results show that using 

acetylene as the inception species a common set of soot constants which gave a good agreement across the 

SOI sweep, could not be found. 

 

Figure 3-8. Measured (○) and model-predicted (△) soot emissions for EGR-46% and an injection pressure of 

1000 bar as a function of load extension injection SOI timing with acetylene(C2H2) as inception species for 

soot model and soot constants of (a) Asf = 500 and Esf = 1250, (b) Asf = 25 and Esf = 2000, and (c) Asf = 1900 

and Esf = 2000. 

In addition to the soot model constants, the soot inception species is another input to the two-step 

soot model, which could be modified to improve the soot predictions. Previous studies [95, 96] have 

identified that soot inception is very closely represented by PAH growth. PAH growth starts from merging 

of smaller aliphatics of which acetylene is a key contributor. PAH growth continues through the “H-

abstraction-C2H2-addition” (HACA) mechanism, which is initiated by H-atom abstraction from a reactive 

radical. This is followed by the addition of an acetylene molecule to the radical site. After a certain size, 

PAH species begin to collide and stick to each other while individual PAH’s continue to increase in size 

via the HACA process. This combination of molecular chemical growth reactions and physical collisions 

leads to the formation of soot particles. Since acetylene plays a key role in the inception process, it is 

commonly used as the inception species in the two-step soot model. This is done to avoid having reaction 
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chemistry with higher carbon chains, which saves computational time. However, including PAH formation 

and growth in the reduced chemistry mechanism represents soot inception more accurately and might give 

a closer prediction compared to using acetylene as the inception species. During the time of this research, 

Wang et al. [77] developed a reduced PRF mechanism considering PAH chemistry up to pyrene formation. 

Accordingly, this mechanism was investigated and pyrene was used as the inception species in the two-step 

soot model. Figure 3-9 shows the NOx and soot emissions comparison between the experiments and 

simulations. When the soot model was modified to use pyrene as the inception species instead of acetylene, 

a common set of soot constants that gave good agreement with the experimental soot emissions could be 

identified, as shown in Figure 3-9.  

 

Figure 3-9. NOx and soot emissions comparison between model and experimental data. 

Figure 3-10 shows the AHRR comparison between the model and the experiments for this data. 

Since the primary and secondary heat releases have different scales, they are shown on separate plots to 

highlight the agreement of the model predictions with the experiments for the secondary heat release rate. 

The experimental AHRR curves are an ensemble average of 250 cycles. The peak heat release rate is 

overpredicted for the cases with 30% EGR in the simulations, but the combustion duration agrees well with 

the experiments for all the cases. Despite the differences in peak heat release rate, the model does a decent 

job of predicting the combustion characteristics over the range of SOI timings for both EGR rates. 
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Figure 3-10. AHRR comparison between model and experiments. The AHRR is separated into primary (top) 

and secondary (bottom) heat release rate to highlight the agreement of the model predictions with the 

experiments for the secondary heat release rate. 

3.4.3. Model Validation with GCI Combustion 
The operating conditions for the experimental data used for model validation with GCI strategy are 

shown in Table 3-6.  

Table 3-6. Operating conditions for model validation with the GCI strategy. 

Parameter \ Injection Strategy 
No Post 

Injection 

Post Inj. w/ no 

Premix Fuel 

Post Inj. w/ 

Premix Fuel 

Fuel 91E10 

Nominal gross IMEP [bar] 16 to 21 

Engine Speed [rev/min.] 1300 

Intake Temperature [°C] 65 

Intake Pressure [bar] 2.85 

EGR [%] 0 

Injection Pressure [bar] 1360 

Main Inj. SOI Timing [°aTDC] -8 

Total Fuel Mass [mg/cycle] ~ 215 to 290 

Premixed Fuel Mass [mg/cycle] 0 0 68 

Main Inj. Fuel Mass [mg/cycle] ~ 215 to 290 215 147 

Post Inj. Fuel Mass [ mg/cycle] 0 ~ 0 to 75 ~ 0 to 75 

Post Inj. SOI Timing [ºaTDC] N/A 16, 25, 40 12, 25, 40 

The injection strategy for this data set has premixed fuel, a main injection, and a post TDC injection. 

Like the earlier data-set, this set of experiments also covers a wide range of operating conditions and 
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combustion characteristics, but at high-load conditions. The premixed fuel results in a primary heat release 

which undergoes combustion under locally lean equivalence ratios and is controlled by the chemical 

kinetics of the fuel. On the contrary, the main and the post-injection combust in a mixing-controlled heat 

release. Among them, the main injection combusts close to TDC where the oxygen levels are reasonably 

high, and the post-injection combusts late in the cycle in an oxygen-depleted environment. Achieving good 

agreement with the experimental results from this data-set would validate the model under various 

combustion modes and in-cylinder conditions. Furthermore, this data-set includes the range of operating 

conditions that will be covered during the optimization studies performed in the later chapters. This makes 

it an ideal data-set for model validation, to instill confidence in using this model in the later chapters for 

performing the optimization studies.  

Figure 3-11, Figure 3-12, and Figure 3-13 show the experimental and CFD predicted in-cylinder 

pressure and AHRR trends for the post-injection strategy with premixed fuel, the post-injection strategy 

without the premixed fuel, and the no post-injection strategy respectively. The main and the post-injection 

duration for each case are shown on the corresponding plots. There is good agreement between the 

measured and the predicted profiles across all the operating conditions. 
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Post SOI = 12 ºaTDC Post SOI = 25 ºaTDC Post SOI = 40 ºaTDC 

   

   

   

   

   
Figure 3-11. Comparison of cylinder pressure and AHRR for the post-injection strategy with the premixed 

fuel across all the operating conditions studied. 
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Post SOI = 16 ºaTDC Post SOI = 25 ºaTDC Post SOI = 40 ºaTDC 

   

   

   

   

   
Figure 3-12. Comparison of cylinder pressure and AHRR for the post-injection strategy without the 

premixed fuel across all the operating conditions studied. 
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No Post Inj. 

 

 

 

 

 
Figure 3-13. Comparison of cylinder pressure and AHRR for the ‘no post injection’ strategy across all the 

operating conditions studied. 

Figure 3-14 shows the experimental and CFD predicted trends of GIE, NOx, and soot emissions at 

all the operating conditions for the three post injection strategies studied. Similar to the in-cylinder pressure 

and AHRR, a good agreement is seen between the measured and the CFD predicted GIE, NOx, and soot 

emissions in terms of trends and magnitudes. It is seen once again that, using pyrene as the inception 

species, the two-step soot model does an excellent job at predicting the soot trends and magnitudes without 

having to adjust the soot constants. 
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Post Inj. w/ Premix Post Inj. w/ No Premix No Post Inj. 

   

   

   
Figure 3-14. Comparison of GIE, NOx and soot emissions for the three injection strategies across all the 

operating conditions studied. 

3.4.4. Summary of Model Validation  
In the previous discussion, a wide range of operating conditions was covered during model-

validation, over which the model has shown good agreement. To concisely demonstrate the efficiency of 

the CFD model in predicting the experimental results, Figure 3-15 shows the trends of the CFD predicted 

results versus the experimental results. Trends of GIE, NOx, and soot emissions are shown for operating 

conditions ranging from low-load to high-load that were covered during the model-validation study. A 

straight line with a slope of one would indicate a perfect match.  Firstly, the range of the axis for the three 

outputs shows that a broad range of operating conditions was covered during the study. Secondly, looking 

at the R2 values for the three outputs, it is seen that the model does a decent job at predicting the outputs 

over the wide range covered. The agreement shown in Figure 3-15 provides high confidence in the model 
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predictions. Accordingly, the model will be used to perform the optimization studies and to identify 

operating strategies for high-load-low-speed and low-load-high-speed conditions.  

 

Figure 3-15. CFD predicted results vs. the experimental results over the range of operating conditions 

covered during model validation. 
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Chapter 4 Optimization Targeting High-Load-Low-Speed Operation 
Experimental investigation of advanced combustion at high-load-low-speed conditions is 

challenging due to the high in-cylinder pressures. That is, if the operating conditions are selected 

incorrectly, the experimental setup could be damaged. Accordingly, this point was selected for the initial 

computational optimization to guide the complementary experimental effort. Optimizations were 

performed using the heavy-duty engine with a CR of 12:1 (specifications shown in Table 3-1), targeting a 

high-load low-speed condition of 20 bar and 1300 rev/min., with the RCCI and GCI strategies. All the 

studies presented in this chapter and the coming chapters will focus on this heavy-duty engine. A complete 

optimization study focused solely on a light-duty engine can be found in Appendix-A. 

4.1. Operating Conditions and Optimization Setup 
Past high-load optimization studies [54] with RCCI and GCI strategies have shown that the GA 

tends to pick the highest EGR point as the optima. This is because the closed cycle optimizations have 

minimal penalties for using EGR. However, to thoroughly evaluate the effects of air handling (e.g., EGR 

and intake pressure), the injection strategy must be fully optimized at each condition. Accordingly, instead 

of varying the intake pressure and EGR within the GA, a full factorial DOE of GA optimizations was setup 

at 20 bar IMEP and 1300 rev/min. for three fixed values of EGR (30%, 45%, and 55%) and equivalence 

ratio (Ф) (0.8, 0.9, and 1.0). Throughout this dissertation, EGR rate is defined as the ratio between the intake 

CO2 and exhaust CO2 concentration with the assumption of complete combustion of fuel. To get the intake 

charge composition, first, the temperature and pressure at IVC are used to calculate the density at IVC. The 

calculated density along with the premixed mass of fuel and the EGR rate is used to iteratively solve for 

the mole fractions at IVC. EGR is assumed to consist of complete combustion products (O2, N2, CO2, and 

H2O) only. The equivalence ratio for each case was set by the corresponding EGR and IVC pressure, as 

shown in Table 4-1. Though optimizations were performed at various combinations of EGR and Ф, the 

present discussion only focuses on the peak efficiency point. A more detailed analysis on the performance 

across the EGR and Ф space studied will be shown in Chapter 5 and can also be found in Kavuri et al. [58]. 

The injection strategies used for the optimization study are shown in Figure 4-1. The GA was allowed to 
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vary four design parameters each for the RCCI and GCI strategies. For the RCCI cases, the design 

parameters were 

1. Fraction of the total gasoline that is premixed (Premix Gas. Frac), 

2. Fraction of the total fuel that is gasoline; this includes premix and DI gasoline (Gas. Frac), 

3. SOI of gasoline (SOI-Gas.), 

4. SOI of diesel fuel (SOI-Diesel). 

For the GCI cases, the design parameters were 

1. Fraction of the total fuel that is premixed (Premix Frac); 

2. Fraction of the total direct-injected fuel that is in the first injection (DI Frac); 

3. SOI of first gasoline injection (SOI1-Gasoline); 

4. SOI of second gasoline injection (SOI2-Gasoline); 

The ranges for each design parameter are shown in Table 4-2. Optimizations were performed using the 

NSGA-II code with the aim of minimizing four objectives; ISFC, NOx, soot, and PPRR. 

Table 4-1. Ф-EGR matrix for optimization setup. The values shown at each Ф-EGR location are the 

corresponding IVC pressures in bar. 

Ф [-] \ EGR [%] 30 45 55 

0.8 2.93 3.76 4.6 

0.9 2.61 3.35 4.12 

1.0 2.36 3.03 3.72 

 
Figure 4-1. Injection strategy for RCCI and GCI combustion used in the optimization study. 
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Table 4-2. Range of variation allowed for each design parameter in the optimization study. 

 

RCCI Strategy 

Design Parameter Range 

Premix Gas. Frac [-] 0 to 1.00 

Gas. Frac [-] 0 to 1.00 

SOI-Gas. [°aTDC] -100 to +40 

SOI-Diesel [°aTDC] -100 to +40 

 

GCI Strategy 

Design Parameter Range 

Premix Frac [-] 0 to 1.00 

DI Frac [-] 0 to 1.00 

SOI1-Gas. [°aTDC] -100 to +40 

SOI2-Gas. [°aTDC] -100 to +40 

To fill the four-dimensional Pareto front, the GA’s were setup to run for 50 generations with 96 

citizens per generation at each Ф-EGR combination. For the matrix shown in Table 4-1, the total CFD 

calculations are 86,400 for the two combustion strategies combined with each run taking ~12 hrs.  

4.2. Results and Discussion 
The solutions for each Ф-EGR combination were filtered for cases with low emissions (NOx ≤ 

2g/kg-f, Soot ≤ 2g/kg-f) and acceptable pressure rise rates (PPRR ≤ 20 bar/deg). From these results, the 

cases with the maximum net indicated efficiency (NIE) were selected. The pumping loop work for the cases 

selected was estimated using a thermodynamic model, prepared in CANTERA [97], to allow the calculation 

of NIE. The details of the thermodynamic model are given in Appendix-C. Figure 4-2 shows contours of 

GIE and NIE in Ф-EGR space generated as a result of gridded interpolation between the optimum cases at 

each Ф-EGR combination. GIE increases with increasing intake pressure (decreasing Ф) and increasing 

EGR for both strategies. The high levels of EGR help in extending the chemistry timescales and achieving 

the optimal combustion phasing.  The high intake pressure in combination with the high EGR helps achieve 

leaner mixtures. This provides enough oxygen to combust the fuel, thereby maintaining nearly 100% 

combustion efficiency. Hence, with increasing intake pressure and EGR, GIE is maximized. However, with 

increasing intake pressure, the pumping loop penalty also increases. At the lower EGR rates (30% EGR), 

the intake pressures are low, resulting in minimal pumping losses. As the EGR increases, to achieve the 

same equivalence ratios, higher intake pressures are needed, resulting in higher pumping losses. Despite 
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the increased pumping losses, the trends in NIE remained similar to those of GIE until an EGR rate of 55% 

and equivalence ratio of 0.9 for both the strategies. That is, the increase in GIE outweighed the increase in 

pumping losses. Operating at an EGR of 55% with an equivalence ratio leaner than 0.9 resulted in reduced 

NIE as the increase in pumping losses began to outweigh the increase in GIE. The tradeoff between 

increased intake pressure and losses from pumping work yields an optimum operating range that maximizes 

NIE while meeting the NOx, soot, and PPRR constraints. For the RCCI strategy, this range contains 

equivalence ratios from 0.8 to 0.93 and EGR rates from 43% to 55%. For the GCI strategy, the optimum 

space includes equivalence ratios from 0.85 to 0.92 and EGR rates from 53% to 55%. Though the optimum 

operating spaces are different for the GCI and RCCI strategies, within the range of equivalence ratios from 

0.8 to 0.98 and EGR rates of 43% to 55%, the efficiencies differ by less than 1%. This is within the range 

of uncertainty for the gridded interpolation method used to generate the operating space maps. Similar 

contour plots were generated for the input parameters as well and the trends were explained using the 

COSSO tool [61]. The details of this study can be found in Kavuri et al. [58].  

 
Figure 4-2. Comparison of contours of GIE and NIE generated from the best cases for RCCI and GCI 

strategies at each Ф-EGR combination. 

To select a single optimum operating point for comparison of the RCCI and GCI strategies, the 

COSSO tool was used. COSSO fits a response surface model to the GA data from all the runs combined. 

From the model, the response surface equations for each objective were generated and used to predict the 
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output for a given set of input parameters. This allowed EGR and intake pressure to be used as inputs to the 

model in addition to the parameters shown in Table 4-2, thereby enabling coverage of the entire Ф-EGR 

design space. The COSSO models were exercised using a DOE approach to identify the cases with 

maximum NIE, NOx ≤ 2g/kg-f, soot ≤ 2g/kg-f, and PPRR ≤ 20 bar/deg. Table 4-3 shows the operating 

conditions for the optimum points chosen from the COSSO DOE study for the RCCI and GCI strategies. 

The optimum points were simulated with the KIVA code using the fine mesh shown in Figure 3-2 to verify 

the COSSO results. Figure 4-3 shows a comparison of the COSSO predicted and KIVA simulated results 

of the optimum points for the RCCI and GCI strategies. The COSSO model gives a good agreement in 

trends with the KIVA simulated results for both the combustion strategies. The magnitudes differ slightly 

between the COSSO and KIVA results, but the trends are consistent. The optimum strategies for the RCCI 

and GCI cases are similar. Most of the fuel (~70%) is introduced early into the combustion chamber in the 

form of premixed fuel and an early injection at -100 °aTDC and -78 °aTDC for the GCI and RCCI strategies 

respectively. The rest of the fuel is injected as a stratified injection close to TDC at -14 °aTDC and -12 

°aTDC for the GCI and RCCI strategies respectively. The optimums for both the strategies were similar in 

terms of air handling as well. Both required an EGR of 55%, with the RCCI optimum having a slightly 

higher intake pressure. It is to be noted that the optimum points fall in the optimum EGR and equivalence 

ratio range observed in Figure 4-2 for the RCCI strategy. However, for the GCI strategy, the equivalence 

ratio is slightly outside the range. This could be because Figure 4-2 was generated as an approximation 

based on a gridded interpolation of the best cases at each EGR and equivalence ratio combination. These 

results show that the upper limit of optimum operation range of equivalence ratio extends up to 0.98, rather 

than 0.92, as pointed out earlier from Figure 4-2, for the GCI strategy.  

 

 

 



51 

 

Table 4-3. Comparison of optimum points for the RCCI and GCI strategies. 

INPUTS 

Design Parameter RCCI Optimum GCI Optimum 

Premix Gas. Frac (-) 0.63 - 

Gas. Frac (-) 0.72 - 

SOI-Gas. (°aTDC) -78 - 

SOI-Diesel (°aTDC) -12 - 

Premix Frac (-) - 0.56 

DI Frac (-) - 0.46 

SOI-Gas.1 (°aTDC) - -100 

SOI-Gas.2 (°aTDC) - -14 

EGR (%) 55 55 

Ф (-) 0.93 0.98 

IVC-Pressure (bar) 3.97 3.79 

OUTPUTS 

GIE (%) 46.3 45.6 

NIE (%) 43.8 44.1 

NOx (g/kg-f) 0.3 0.08 

Soot (g/kg-f) 1.78 0.17 

PPRR (bar/deg) 19.91 17.1 

 
Figure 4-3. Comparison of COSSO predicted and KIVA simulated results for the optima. 

4.2.1. Experimental Validation 

The optimum points from the DOE study were verified with single cylinder engine experiments 

run by Jordan Paz [49]. Figure 4-4 shows the measured and model predicted in-cylinder pressure and AHRR 

for the RCCI and GCI optimum points.  
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Figure 4-4. Measured and CFD predicted cylinder pressure and apparent heat release rate for the RCCI and 

GCI optimum points. 

For both combustion strategies, the model predicts the combustion duration reasonably well. The peak heat 

release is accurately predicted for the GCI strategy while it is slightly under-predicted for the RCCI strategy. 

This difference in peak heat release for the RCCI strategy could be due to mixing effects since the 

combustion from the diesel fuel injection for this strategy is mixing-controlled. For the GCI strategy, the 

model predicted start of combustion matches accurately with the experiments. Whereas, for the RCCI 

strategy, there are slight differences in the rising part of the heat release. 

 
Figure 4-5. Comparison of measured and CFD predicted results for RCCI and GCI optimum points. 
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Figure 4-5 shows a comparison of the measured and model predicted GIE, PPRR, soot, and NOx 

emissions for the RCCI and GCI optimum points. For both the combustion strategies, the model agreement 

with experiments, for all the outputs, is considered acceptable. Soot magnitudes are slightly under-predicted 

by the model, but the model accurately predicts the trends in soot shown by the two combustion strategies. 

Note that the soot model parameters were held constant for this study. Despite the slight differences, the 

model does a decent job of predicting the overall combustion characteristics of the two combustion 

strategies studied. Accordingly, the model will be used to explain the sources of the differences and 

similarities in combustion and emissions characteristics of the two strategies. 

4.2.2. RCCI-GCI Comparison 

With the validated optimum points, the combustion characteristics of the two strategies were 

compared using the CFD model. Further analysis was performed to identify the input parameters that 

provide control over combustion for the two strategies. Finally, an operating condition sensitivity study was 

performed. In this analysis, the sensitivity to fluctuations in operating conditions on each output was 

studied. The results from these studies are shown in the following sections. 

4.2.2.1. Combustion Characteristics 

From Figure 4-4, it can be seen that the AHRR profiles are similar for the two strategies, but the 

RCCI strategy has a significantly shorter ignition delay than the GCI strategy. To explain the combustion 

characteristics, Figure 4-6 shows a comparison of the in-cylinder evolution of several key species for the 

RCCI and GCI strategies. The heat release rate, average in-cylinder temperature, and injection velocity are 

also shown to explain the species trends. Figure 4-7 and Figure 4-8 show cut planes colored by temperature, 

equivalence ratio, mass fractions of iso-octane, n-heptane (RCCI only), formaldehyde (CH2O), and OH for 

the RCCI and GCI combustion strategies respectively. The species profiles of the two strategies are very 

similar. For both the strategies, formaldehyde starts forming around -30 °aTDC, which coincides with the 

low temperature consumption of iso-octane from the first gasoline injection. In Figure 4-7 and Figure 4-8, 

at -9 °aTDC and 6 °aTDC respectively, there is a high concentration of iso-octane in the squish region. This 

is from the first gasoline injection for both the strategies. The location of this concentration of iso-octane 
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coincides with the location of the peak concentration of formaldehyde. This indicates that the low 

temperature consumption of gasoline (represented in the simulations by iso-octane) from the first injection, 

is the source of formaldehyde formation. The near TDC injections have an ignition delay period (longer for 

GCI than RCCI) during which the formaldehyde mass fraction continues to increase. This is from the low 

temperature consumption (the heat release is still close to zero, and the in-cylinder temperatures are less 

than 1000 K) of n-heptane and iso-octane for the RCCI and GCI strategies respectively. For the RCCI 

strategy, once the thermal ignition of n-heptane occurs, which is marked by the sharp increase in in-cylinder 

temperature, the iso-octane consumption speeds up considerably. Iso-octane consumption tracks with 

formaldehyde consumption and OH accumulation, which does not occur until the high temperature ignition 

of n-heptane. This indicates that the near TDC diesel fuel injection initiates the combustion for the RCCI 

strategy. This can also be seen from Figure 4-7 at -4 °aTDC and 0 °aTDC, where the consumption of n-

heptane causes the increase in temperature leading to the consumption of iso-octane present in the bowl. 

The locations of iso-octane consumption correspond with the locations of increasing OH and reducing 

formaldehyde concentration. The energy release spreads into the squish to consume the iso-octane from the 

first gasoline injection. These clearly results show the two-staged combustion for the RCCI strategy 

initiated by the near TDC diesel fuel injection. 

 
Figure 4-6. In-cylinder evolution of key species for RCCI and GCI optimum strategies. 
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Figure 4-7. In-cylinder temperature, equivalence ratio, mass fraction of iso-octane, formaldehyde, and OH 

contours for the optimum RCCI point. 

A similar fuel distribution in the combustion chamber as the RCCI case is seen for the GCI strategy 

as well, as shown in Figure 4-8. For the GCI strategy, when the near TDC gasoline injection at -14 °aTDC 

is introduced, the local equivalence ratio in the combustion chamber increases. The equivalence ratio 

contours in Figure 4-8 show a fuel rich region formed in the center of the bowl with regions of Ф equal to 

unity along the edge of the fuel rich region. These regions are a result of the interaction of DI gasoline with 

the premixed fuel present in the bowl. This region initiates the combustion. This can be seen from the 

temperature contours at 6 °aTDC and 8 °aTDC where a gradient in temperature is visible around the fuel 

rich region, with the regions of Ф equal to unity having the highest temperatures. Two crank angles later, 

at 10 °aTDC, the rest of the DI fuel mass combusts. The energy release from this combustion event 

progresses throughout the combustion chamber rapidly, igniting the fuel in the squish and the rest of the 

premixed fuel in the bowl. Similar to the RCCI strategy, the high temperature consumption of iso-octane is 

marked by a simultaneous increase in OH concentration and reduction in formaldehyde concentration, as 
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shown in Figure 4-6. However, this does not occur until the thermal ignition of the near TDC gasoline 

injection. In Figure 4-8, comparing the regions of high temperature (formed from the ignition of the near 

TDC gasoline ignition) with the locations of formaldehyde consumption and OH accumulation, it is seen 

that they occur at the same locations. This indicates that similar to the RCCI strategy, a two-staged 

combustion occurs for the GCI strategy as well, with the near TDC gasoline injection initiating the 

combustion event. 

Temperature [K] 
Equivalence 

Ratio [-] 
Iso-octane [-] Formaldehyde [-] OH [-] 

 
    

 
    

 
    

 
    

 
    

     
Figure 4-8. In-cylinder temperature, equivalence ratio, mass fraction of iso-octane, formaldehyde, and OH 

contours for the optimum GCI point. 

Though slight differences exist in the heat release rates, the overall combustion characteristics are 

very similar, with the near TDC injection initiating the combustion for both the strategies. Soot emissions 

are the primary difference between the optimum RCCI and GCI strategies. The difference in soot emissions 
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between the two strategies is explained by investigating the state of the in-cylinder charge in equivalence 

ratio – temperature (Ф-T) coordinates. Ф is the local equivalence ratio, evaluated as 

 Φ =
4[𝐶] + [𝐻]

2[𝑂]
, ( 13) 

where [C], [H], and [O] are the moles of carbon, hydrogen, and oxygen respectively. Figure 4-9 shows the 

Ф-T diagrams for the optimum RCCI and GCI cases at several crank angles after the start of combustion 

(°ASOC). The regions producing NOx and soot in Ф-T space, identified from HCCI simulations of mixtures 

of gasoline and air, are overlaid on the plot. The outer most contour of each region shows soot and NOx of 

2 g/kg-f.  

 
Figure 4-9. Ф-T plots of the in-cylinder mixture at various crank angles after start of combustion (°ASOC) 

for the optimum RCCI and GCI combustion strategies. The symbols show the equivalence ratio, and 

temperature in each computational cell and the lines show NOx (lower right on each diagram) and soot 

(upper right on each diagram) islands. 

Though the SOI timings of the near TDC injection are very similar for both the combustion 

strategies, the more prolonged ignition delay of gasoline compared to diesel fuel, delays the start of 

combustion for the GCI strategy. The ignition delays of the RCCI and GCI case are 6 °CA and 16 °CA 

respectively. The shorter ignition delay of diesel fuel causes combustion to occur during the injection event 

for the RCCI strategy.  At 10 °ASOC (near the 50% burn location for both cases), the final diesel fuel 

injection of the RCCI case is ~60% complete, and this case has regions in the combustion chamber with 

equivalence ratios above 3. In contrast, the final gasoline injection of the GCI case has been finished for 7 

°CA, and post injection mixing has reduced the peak equivalence ratio to ~1.2. The higher local equivalence 
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ratios during combustion results in higher soot formation for the RCCI strategy in comparison to the GCI 

strategy. The high EGR levels result in peak temperatures of 2242 K and 2056 K, for the RCCI and GCI 

cases respectively. The low peak temperatures explain the low NOx emissions. 

4.2.2.2. Control Parameters 

Though the optimum points indicate good performance for both the combustion strategies, 

combustion control can be a challenge for highly premixed strategies. To evaluate the control of combustion 

phasing, a parametric simulation study was performed for both the combustion strategies where every input 

was varied fixing the rest of the inputs at the optimum value. The range of variation of the inputs is shown 

in Table 4-4. EGR was not chosen as an input for the parametric study because the timescale for EGR 

changes is long (on the order of 10 engine cycles), making it a poor control variable. Figure 4-10 shows the 

variation in combustion phasing (CA50) with each control parameter, for the RCCI and GCI strategies. A 

steeper slope indicates better control over combustion phasing. For the RCCI strategy, it is evident that the 

SOI of diesel fuel is the primary control parameter. The response of SOI-Diesel is 0.56° CA50 per degree 

SOI-Diesel. CA50 is insensitive to the rest of the inputs for the RCCI strategy. It is interesting to see that, 

gasoline fraction, which was found to be a strong control parameter in earlier RCCI studies [98, 99], shows 

little control over combustion (0.13° CA50 per percent of gasoline fraction) under the operating conditions 

of the parametric study. This could be because, under these conditions, the ignition delay of diesel fuel is 

so short that it combusts immediately upon injection irrespective of the quantity of diesel fuel being 

injected.  

Table 4-4. Range of variation of inputs for the RCCI and GCI parametric study. 

RCCI Strategy 

Design Parameter Range Step Size Optima 

Premix Gas. Frac (-) 0.4 to 0.7 0.01 0.63 

Gas. Frac (-) 0.5 to 0.8 0.01 0.72 

SOI-Gas. (°ATDC) -95 to -65 2 -78 

SOI-Diesel (°ATDC) -30 to 0 2 -12 

GCI Strategy 

Design Parameter Range Step Size Optima 

Premix Frac (-) 0.4 to 0.7 0.01 0.56 

DI Frac (-) 0.3 to 0.7 0.01 0.46 

SOI1-Gas. (°ATDC) -100 to -65 5 -100 

SOI2-Gas. (°ATDC) -30 to 0 2 -14 
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Figure 4-10. Combustion phasing (CA50) as a function of inputs for the RCCI and GCI strategies. 

Premix Fraction = 0.4 Premix Fraction = 0.5 Premix Fraction = 0.7 
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Figure 4-11. In-cylinder temperature and equivalence ratio contours for the GCI strategy at three different 

premix fraction values. 

For the GCI strategy, the premix fraction and the SOI of the second gasoline injection provide 

similar control over combustion phasing. Although the premix fraction gives a higher slope than SOI2-

Gasoline, excessively high PPRR (>20 bar/deg) was observed at premix fractions greater than 0.5. This 

makes premix fraction a less desirable control parameter than SOI2-Gasoline. To explain the rapid increase 

in PPRR with increasing premixed fraction, Figure 4-11 shows the in-cylinder temperature and equivalence 

ratio contours for the GCI strategy, at three different premix fraction values. The figure shows a transition 

to homogenous combustion at a premix fraction of 0.7, where the entire combustion chamber combusts at 
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once. Therefore, SOI2-Gasoline is considered the preferable control parameter. The response of SOI2-

Gasoline is 0.13° CA50 per degree SOI2-Gasoline.  

Additional engine experiments were performed by Jordan Paz [49] for both the combustion 

strategies, at two SOI timings, one degree before and after the optimum SOI value, to verify the control of 

RCCI and GCI combustion at high-load-low-speed conditions. Advancing or retarding the SOI timing more 

than one degree from the optimum value caused excessively high soot emissions and PPRR respectively. 

This limited the range of SOI timing for the experimental study, unlike the simulations, where a more 

extensive range of SOI timings was studied. Figure 4-12 shows the experimental and model predicted CA50 

as a function of SOI-Diesel and SOI2-Gasoline, for the RCCI and GCI strategies respectively. Good 

agreement is seen between the experimental and simulated CA50 for both the strategies. Comparing the 

two strategies, the RCCI strategy shows stronger control over combustion phasing than the GCI strategy. 

This is directly related to the close coupling between SOI-Diesel and the start of combustion. In contrast, 

the longer ignition delay of the GCI case reduces the level of control over combustion phasing. Recall that 

the short ignition delay of the RCCI case resulted in significantly higher soot emissions than the GCI case. 

This comparison highlights a tradeoff in soot emissions and combustion phasing control. 

 
Figure 4-12. Experimental and model predicted CA50 as a function of SOI-Diesel and SOI2-Gasoline for the 

RCCI and GCI strategies. 

4.2.2.3. Operating Condition Sensitivity 

The previous sections showed that controllable RCCI and GCI operation is achievable at 20 bar 

IMEP and 1300 rev/min. However, other work has shown that cycle-to-cycle variation can be problematic 

for PCI strategies [57]. Cycle-to-cycle variability may stem from bulk fluctuations in charge conditions 

(e.g., operating parameter variations) and fueling rates or local fluctuations in the mixture conditions due 
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to turbulence. The present work focuses on identifying potential sources due to sensitivity to fluctuations 

in charge conditions and fueling rates.  

A sensitivity analysis was performed by running full factorial DOE’s about the optimum RCCI and 

GCI conditions. The baseline value and the DOE range of each operating condition are shown in Table 4-5. 

The rest of the inputs are fixed at the values shown in Table 4-3. The results from the DOE were used to 

build a response surface model (RSM) as described in Klos et al. [57]. A full quadratic response surface 

model with linear, squared, and interaction terms was used. All variables had R2 values higher than 0.98 

and maximum errors less than 3%, indicating that the RSM model is very accurate in the range of conditions 

considered in Table 4-5. The details of the model coefficients and the term each coefficient multiplies can 

be found in Kavuri et al. [49]. The sensitivity analysis is then performed by taking the partial derivative of 

the RSM equations of each objective with respect to each input parameter.  

Table 4-5. Baseline value and the range of fluctuation of each operating condition. 

Operating Condition Baseline RCCI Baseline GCI Range 

Tivc (K) 406 406 ±   3 

Pivc (bar) 3.97 3.79 ± 0.05 

EGR (%) 55 55 ±   2 

Premix Fuel Mass (mg/cycle) 108 135 ±   4 

DI Fuel Mass (mg/cycle) 133 106 ±   4 

The results of this analysis are shown in Figure 4-13. The first observation that can be made is that 

both the strategies are very sensitive to fluctuations in EGR. This is in contrast with the study performed 

by Klos et al. [57] at a mid-load condition where they found the RCCI strategy to be insensitive to EGR. 

Notice that the GCI strategy is more sensitive to EGR than the RCCI strategy. The global equivalence ratio 

of the GCI strategy is 0.98 (i.e., nearly stoichiometric), causing it to be very sensitive to oxygen 

concentration. An increase in EGR from 55% to 56% leads to fuel rich operation, which causes a substantial 

decrease in GIE, as shown in Figure 4-13. In comparison, for the RCCI strategy, the global equivalence 

ratio is 0.93, which makes the sensitivity to EGR slightly lower than that of the GCI strategy. In addition 

to EGR, IVC temperature and pressure also affect the combustion phasing considerably for the GCI 

strategy, whereas, the RCCI strategy is relatively insensitive to these fluctuations. Like EGR, fluctuations 

in IVC pressure also affect oxygen concentration, which explains the sensitivity of the GCI strategy to IVC 
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pressure. To explain the difference in IVC temperature sensitivity, Figure 4-14 shows calculated constant 

volume ignition delays for stoichiometric mixtures of gasoline and diesel fuel, with air and EGR, at 80 bar 

(i.e., similar to the TDC pressure of the two cases). The relevant range of temperatures near TDC for both 

the cases is in the range of 850 K to 1000 K. The combustion phasing of the GCI and RCCI strategies are 

controlled by the ignition delay of the near TDC injected gasoline and diesel fuel respectively. Figure 4-14 

shows that, in the relevant temperature range, the sensitivity of gasoline ignition delay to temperature is 

0.043 ms/K. On the other hand, due to the NTC behavior of diesel fuel, the sensitivity of diesel fuel is 0.002 

ms/K. Accordingly, the GCI strategy is sensitive to fluctuations in the IVC temperature while the RCCI 

strategy shows minimal sensitivity.   

 
Figure 4-13. Sensitivity of outputs to changes in inputs for RCCI and GCI strategies. 

 
Figure 4-14. Ignition delay vs. 1000/T from constant volume simulations. 

4.2.3. Conclusions 

In this chapter, RCCI and GCI combustion strategies were compared at a high-load-low-speed 

operating condition of 20 bar IMEP and 1300 rev/min. GA optimizations were performed for the two 

combustion strategies, and the respective optimums were compared in terms of combustion and 
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performance characteristics. Further analysis was done to study the effect of input and operating condition 

variation on combustion control, performance, and combustion stability. The results showed that both 

combustion strategies have similar combustion characteristics with a near TDC injection initiating and 

controlling the combustion phasing. However, the RCCI strategy was found to have better control over 

combustion phasing than the GCI strategy. The increased control was found to be due to the shorter ignition 

delay of diesel fuel compared to gasoline. This benefit, however, comes at the expense of increased soot 

emissions, as the combustion event occurs during the near TDC injection event. The longer ignition delay 

of the GCI strategy results in less control over combustion phasing but enables near-zero soot emissions. 

In terms of other performance parameters, both strategies were found to have high GIE (47%) with near 

zero NOx emissions. The RCCI strategy was found to have a higher PPRR than the GCI strategy due to 

advanced combustion phasing, but it was still within reasonable operation level (PPRR ≤ 20 bar/deg) for 

high-load operation in a heavy-duty engine. The sensitivity analysis showed that both strategies were most 

sensitive to fluctuations in EGR with the GCI strategy being more sensitive than the RCCI strategy. 
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Chapter 5 Constraint Analysis on High-Load-Low-Speed Operation with 

RCCI Combustion 
In the previous chapter, feasible operating strategies were identified for RCCI and GCI combustion 

at high-load-low-speed conditions. However, due to operation at a high EGR rate and near stoichiometric 

global Ф, both the strategies showed strong sensitivity to EGR fluctuations, which makes these strategies 

difficult to implement in production applications. Furthermore, operation under high EGR rate is a burden 

on the air handling system, and it would be preferable to operate at a reduced EGR rate. Both these points 

motivate the need to identify high-load operating strategies that work at reduced EGR rates and leaner 

global Ф’s.  

In the high-load optimization study shown in Chapter 4, the optimum operating strategy was 

identified as the case with the maximum NIE that met the constraints of NOx ≤ 2g/kg-f, Soot ≤ 2g/kg-f and 

ringing intensity (RI) ≤ 5 MW/m2. Operating under these constraints could have negatively affected the 

efficiency at the low and moderate levels of EGR. The RI constraint is a necessity to prevent the structural 

damage of the engine parts. However, the constraints on NOx and soot emissions could be relaxed by using 

after-treatment devices if it offers significant efficiency benefits. Accordingly, in the present study, the 

effect of removing these constraints on the efficiency in EGR-Ф operating space is investigated. The 

constraints on NOx and soot emissions are removed alternatively while keeping the other two constraints 

fixed (i.e., when the NOx constraint is removed, the soot and RI constraints are fixed and vice versa). The 

motivation of the study is to investigate if removing either of these constraints improves the efficiency in 

the low and moderate EGR operation range while meeting the remaining constraints. This could enable 

high-load operation at lower levels of EGR than the GA optima shown in Chapter 4. If significant benefits 

are observed from removing either the NOx or the soot constraint, the highest efficiency point upon 

removing the constraint shall be identified. This case shall be compared with the high EGR optimum 

operating point from Chapter 4 in terms of combustion characteristics, combustion control and stability. 

Investigation of high-load-low-speed operating strategies at reduced EGR rates keeping all the constraints 

intact was also performed. The details of this study can be found in Kavuri et al. [100]. 
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In Chapter 4, RCCI and GCI combustion were shown to be similar in terms of combustion 

characteristics at high-load-low-speed conditions. However, the RCCI strategy had superior control over 

combustion phasing and higher stability to operating parameter variations compared to the GCI strategy. 

Since these factors are essential for the practical implementation of any advanced combustion strategy, it 

can be said that the RCCI strategy is better suited than the GCI strategy for high-load-low-speed operation. 

Accordingly, the constraint analysis presented in this chapter will focus solely on the RCCI strategy.  

5.1. Results 

As explained in the previous section, the constraints on NOx and soot emissions were removed 

while keeping the other two constraints intact. From this data-set, the highest efficiency point was chosen 

at each EGR and Ф combination to see if it results in an efficiency benefit in the lower EGR regions. Figure 

5-1 shows a comparison of the GIE and NIE for the cases with no NOx constraint (only the soot and RI 

constraints), no soot constraint (only the NOx and RI constraints), and with all constraints (NOx, Soot, and 

RI constraints) intact at each EGR and Ф combination.  

 

Figure 5-1. Comparison of GIE and NIE for cases with all constraints (NOx, soot, and RI) intact, no NOx 

constraint and no Soot constraint at each EGR and Ф combination. 
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Figure 5-1 shows that removing the NOx constraint results in a significant improvement in GIE 

and NIE at EGR of 30% and 45%. The maximum increases in efficiency are seen at the leanest Ф (Ф = 0.8) 

(or the highest intake pressure) cases. The improvement in efficiency reduces as EGR or Ф increases. 

Eventually, at an EGR of 55%, removing the NOx constraint does not result in any improvement in 

efficiency.  On the contrary, removing the soot constraint results in the opposite trends. Without the soot 

constraint, increases in efficiency are seen mainly at the high EGR (45% and 55%) and high Ф (0.9 and 

1.0) operating points. The improvement in efficiency increases with increasing EGR and Ф when the soot 

constraint is removed.   

Contour plots of NIE were generated to identify the regions in EGR and Ф operating space where 

an efficiency benefit is seen from removing the NOx and soot constraints. The contour plots are the result 

of a gridded interpolation performed between the optimum cases shown in Figure 5-1. From these results, 

a percentage increase in NIE (ΔNIE %) is estimated as 

 ∆𝑁𝐼𝐸 % =  
𝑁𝐼𝐸𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝑑−𝑁𝐼𝐸𝐴𝑙𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝐼𝑛𝑡𝑎𝑐𝑡

𝑁𝐼𝐸𝐴𝑙𝑙𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝐼𝑛𝑡𝑎𝑐𝑡
 ,  ( 14) 

Figure 5-2 shows the contour plots of NIE and the ΔNIE% as a function of EGR and Ф, compared 

between the cases with all constraints intact, no NOx constraint, and no Soot constraint. Removing the NOx 

constraint resulted in increased NIE over the majority of EGR and Ф operating space for EGR rates less 

than 50%.  A substantial increase (≥ 5%) in NIE is seen in the EGR and Ф range of 30% to 45% and 0.8 to 

0.94, respectively. A peak increase in NIE of 10% occurs at 30% EGR and Ф of 0.8. Removing the NOx 

constraint results in a maximum NIE of 44.71%, and this occurs at an EGR of 45% and Ф of 0.8. 

Interestingly, this value is higher than the peak NIE (43.8%) observed from the high EGR (55%) optima at 

the same high-load-low-speed operating condition. Removing the soot constraint does not result in as 

significant an increase in NIE as removing the NOx constraint. This is evident from the ΔNIE% plot shown 

in Figure 5-2. Without the soot constraint, a reasonable increase (~5 %) in NIE is seen in the EGR and Ф 

range of 50%-55% and 0.96-1 respectively.  
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Figure 5-2. Comparison of contour plots of NIE and ΔNIE% between the cases with all constraints intact, no 

NOx constraint and no Soot constraint. 

Based on the results seen in Figure 5-2, the key constraining factors across the EGR and Ф space 

were identified. Figure 5-3 shows a plot highlighting the dominant constraints and the bounds within which 

removing these constraints resulted in an improvement in NIE in the EGR and Ф space.  The boundary 

lines for the constraining regions were estimated from the ΔNIE% plots shown in Figure 5-2 by identifying 

the contour lines with boundaries at ΔNIE% > 0. From the plot, it is observed that operation at high EGR 

is mainly constrained by the RI constraint. This explains the reason for the GA picking a high EGR 

operating point as the optima in the high-load optimization study presented in Chapter 4, where all the 

constraints had to be met. As the EGR reduces, NOx starts becoming a dominant constraint, with the low 

EGR (≤ 45%) regions primarily constrained by NOx emissions. In the near stoichiometric regions, either 

at extremely low EGR’s (~ 30%) or extremely high EGR’s (~ 55%), soot emissions seem to be the primary 
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constraining factor. However, in the low EGR (≤ 45%) regions which are the focus of the current study, 

removing the soot constraint did not result in as significant a benefit as removing the NOx constraint. 

 

Figure 5-3. Plot showing the dominant constraining factors and the boundaries within which removing the 

constraint results in an improved NIE in the EGR and Ф operating space. 

Based on the previous discussion, removing the NOx constraint and using SCR after-treatment 

seems to be a viable solution to enable low EGR operation at high efficiencies under high-load-low-speed 

conditions. Accordingly, further discussion will focus on the cases with the NOx constraint removed.  

5.1.1. Diesel Exhaust Fluid (DEF) Consumption Estimation 

Removing the NOx constraint resulted in an efficiency benefit, but it also resulted in a simultaneous 

increase in NOx emissions. Hence, NOx after-treatment using SCR would be required to bring the NOx 

emissions down to acceptable tailpipe levels. Reducing the NOx emissions using SCR will result in an 

efficiency penalty from consumption of DEF in the SCR.  In the present section, the DEF mass required to 

bring the NOx emissions to zero is estimated for the cases shown in Figure 5-1, which have the NOx 

constraint removed. Equations 15 and 16 show the reactions for ammonia (NH3) and urea (CO(NH2)2) 

consumption involved in reducing the NOx emissions.  

 4NO + 4NH3 + O2 → 4N2 + 6H2O ( 15) 

 CO(NH2)2 + H2O → 2NH3 + CO2 ( 16) 
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The reactions show that one mole of ammonia is required to reduce one mole of NO and half a 

mole of urea is consumed to produce that one mole of ammonia. Converting it to a mass basis, 30 g of NO 

(one mole) requires 30 g of urea (half a mole) to reduce it (i.e., 1 g of NO would require 1 g of urea to 

reduce it). Accordingly, based on the NOx emissions, the urea mass can be estimated as 

 𝑚𝑢𝑟𝑒𝑎 =  
𝑚𝑁𝑂𝑥

(𝑀𝑊𝑁𝑂2
𝑀𝑊𝑁𝑂⁄ )

 , ( 17) 

where 𝑚𝑢𝑟𝑒𝑎 is the mass of urea, 𝑚𝑁𝑂𝑥
 is the mass of NOx emissions, 𝑀𝑊𝑁𝑂2

 is the molecular weight of 

NO2, and 𝑀𝑊𝑁𝑂 is the molecular weight of NO. Since the NOx emissions are expressed in terms of NO2, 

the ratio of molecular weight of NO2 to NO is used in equation 17 to convert the NOx mass to NO mass. 

Since the DEF is 32.5% urea solution, from the mass of urea, the DEF mass is calculated as 

 𝑚𝐷𝐸𝐹 =  
𝑚𝑢𝑟𝑒𝑎

0.325
 , ( 18) 

where 𝑚𝐷𝐸𝐹 is the mass of DEF. Using the mass of fuel (𝑚𝑓𝑢𝑒𝑙) and the mass of DEF, the net fluid 

efficiency (NFE) is estimated as 

 𝑁𝐹𝐸 = (
𝑁𝐼𝐸 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑚𝑓𝑢𝑒𝑙 + 𝑚𝐷𝐸𝐹
) ∗ 100, ( 19) 

In estimating NFE, the DEF and diesel fuel are assumed to have the same cost. The cost equivalency can 

be demonstrated using the following set of equations. The total fluid cost C can be calculated as 

 𝐶 = 𝑚𝑓𝑢𝑒𝑙𝐶𝑓𝑢𝑒𝑙 + 𝑚𝐷𝐸𝐹𝐶𝐷𝐸𝐹 , ( 20) 

where 𝐶𝑓𝑢𝑒𝑙 is the cost of the fuel and 𝐶𝐷𝐸𝐹 is the cost of the DEF. The equivalent fuel mass (𝑚𝑒𝑞) that 

could have been purchased with equal cost can be evaluated as 

 𝑚𝑒𝑞𝐶𝑓𝑢𝑒𝑙 = 𝑚𝑓𝑢𝑒𝑙𝐶𝑓𝑢𝑒𝑙 + 𝑚𝐷𝐸𝐹𝐶𝐷𝐸𝐹, ( 21) 

Solving for 𝑚𝑒𝑞 gives 

 𝑚𝑒𝑞 = 𝑚𝑓𝑢𝑒𝑙 + 𝑚𝐷𝐸𝐹

𝐶𝐷𝐸𝐹

𝐶𝑓𝑢𝑒𝑙
 , ( 22) 

The NFE is defined as 

 𝑁𝐹𝐸 = (
𝑁𝐼𝐸 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑚𝑒𝑞
) ∗ 100, ( 23) 
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Substituting for the equivalent fuel mass (from equation 22) in equation 23 results in 

 𝑁𝐹𝐸 = (
𝑁𝐼𝐸 ∗ 𝑚𝑓𝑢𝑒𝑙

𝑚𝑓𝑢𝑒𝑙 + 𝑚𝐷𝐸𝐹
𝐶𝐷𝐸𝐹
𝐶𝑓𝑢𝑒𝑙

) ∗ 100, ( 24) 

Finally, assuming equal cost on a mass basis between DEF and diesel fuel, it results in equation 19. 

Estimating the efficiency this way ensures that the cases with unreasonably high NOx emissions are 

penalized for high DEF consumption. Figure 5-4 shows a comparison of the contours of NFE between the 

cases with all the constraints intact and the cases with the NOx constraint removed.   

 

Figure 5-4. Contours of NFE compared between cases with all constraints intact and cases with no NOx 

constraint. 

Results show that even after accounting for the DEF consumption, removing the NOx constraint 

resulted in an improvement in efficiency. The peak efficiency remains at an EGR of 45% and Ф of 0.8. 

However, as EGR is reduced below 45%, the penalty of DEF consumption on efficiency becomes more 

evident. To quantify this penalty, Figure 5-5, shows the contours of the efficiency lost to DEF consumption 

estimated as a percentage change between NFE and NIE for the cases with no NOx constraint. The contours 

of NOx and DEF mass consumed are also shown in Figure 5-5 to explain the trends. As the EGR is reduced 

below 45%, the DEF consumption increases due to an increase in the NOx emissions. This results in an 

increased loss in efficiency to DEF consumption at the low EGR rates (< 45%), as shown in Figure 5-5. 

Near an EGR of 45%, there is near zero loss in efficiency to DEF consumption, making it an optimal zone 
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for operation. In other words, operating at moderate EGR rates (~45%) results in a significant improvement 

in efficiency for a minor increase in NOx emissions and, therefore, helps in realizing the maximum benefit 

from using the SCR.   

 
Figure 5-5. Contours of NOx, DEF mass consumed and the % efficiency lost to DEF consumption for the 

cases with no NOx constraint. 

5.1.2. Effect of removing the NOx constraint on the Optimum at the same EGR Level  

From the data-set, an optimum case was picked, to understand how the optimum strategy changes 

when the NOx constraint is removed. The optimum was chosen as the case with the highest NFE that meets 

the constraints of soot ≤ 2 g/kg-f and RI ≤ 5 MW/m2. The results of this case were compared with the best 

case (highest NFE) at the same EGR level, but with the NOx constraint intact (i.e., NOx ≤ 2 g/kg-f, soot ≤ 

2 g/kg-f, and RI ≤ 5 MW/m2). Table 5-1 shows a comparison of these two cases.  

Table 5-1. Best cases without the NOx constraint and with the NOx constraint at a similar level of EGR. 

INPUTS 

Design Parameter 
Best Case  

(no NOx constraint) 

Best Case  

(with NOx constraint) 

Premix Gas. Frac [-] 0.68 0.78 

Gas. Frac [-] 0.63 0.602 

SOI-Gas. [°aTDC] -83.2 -63.2 

SOI-Diesel [°aTDC] -17.3 -6 

EGR [%] 45 45 

Ф [-] 0.8 0.8 

IVC-Pressure [bar] 3.76 3.76 

OUTPUTS 

GIE [%] 47.2 44.8 

NIE [%] 44.7 41.9 

NFE [%] 44.4 41.8 

NOx [g/kg-f] 3.04 1.52 

Soot [g/kg-f] 0.81 1.71 

PPRR [bar/deg] 14.49 7.29 

PP [bar] 199.78 162.09 

RI [MW/m2] 4.98 1.47 
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The key difference between the two points compared in Table 5-1 is the SOI of diesel fuel. The 

diesel fuel injection is significantly advanced from -6 ºaTDC to -17.3 ºaTDC upon removing the NOx 

constraint. Figure 5-6 shows the NFE, NOx, and soot emissions as a function of the SOI of diesel fuel for 

the case with NOx constraint shown in Table 5-1. Across the SOI sweep there exists the classical tradeoff 

between soot and NOx emissions. When the NOx constraint was intact, the SOI of diesel fuel had to be 

delayed closer to TDC to keep the NOx emissions below the constraint. This results in an increase in soot 

emissions and a simultaneous reduction in NFE. Hence an optimum SOI timing of -6 ºaTDC was chosen 

since it is the earliest SOI for diesel fuel injection that results in simultaneously low (≤ 2g/kg-f) NOx and 

soot emissions. Removing the NOx constraint allows the near TDC diesel fuel injection to be advanced 

significantly, resulting in an improvement in NFE of ~6% and a reduction in soot emissions of ~53%.  

 

Figure 5-6. NFE, NOx and soot emissions as a function of SOI-Diesel for the case with the NOx constraint 

shown in Table 5-1. 

Figure 5-7 shows the NFE, DEF mass consumed, and PP as a function of the SOI of diesel fuel for 

the case without the NOx constraint shown in Table 5-1. Advancing the SOI of diesel fuel results in an 

increase in NFE. However, as the injection is advanced beyond -17 ºaTDC, the DEF consumption penalty 

starts to increase due to increased NOx emissions causing the NFE to decrease. Additionally, we can see 

that the in-cylinder PP also increases as the injection is advanced. Hence, PP also acts as an additional 

constraint on how advanced the diesel fuel injection can be while operating without the NOx constraint. 

While experimentally running the engine that was modeled in the current study, the operation is usually 



73 

 

restricted to a maximum PP of 200 bar to avoid structural damage. Accordingly, from the SOI sweep, the 

optimum SOI timing of -17.3 ºaTDC was chosen as the SOI timing for which, the peak NFE of 44.4% is 

achieved while having a PP ≤ 200 bar.  

 

Figure 5-7. NFE, DEF mass consumed and PP as a function of SOI-Diesel for the case without the NOx 

constraint shown in Table 5-1. 

To explain the improvement in NFE for the case with the NOx constraint removed, Figure 5-8 

shows a comparison of the in-cylinder pressure and the AHRR for the two cases shown in Table 5-1. For 

both the cases the diesel fuel injection combusts in a mixing-controlled fashion, which explains the strong 

tradeoff that was seen between the soot and NOx emissions in Figure 5-6. When the NOx constraint is 

removed, since the SOI of diesel fuel is advanced, it results in an advancement in start of combustion (SOC) 

(identified by the CA at which 10% of the total heat release occurs) from 1.2 ºCA to -6.7 ºCA. It also results 

in a simultaneous reduction in combustion duration (estimated as the absolute difference between the SOC, 

and the CA at which 90% of the total heat release occurs) from 27.2 ºCA to 19 ºCA. Due to the combination 

of advanced SOC and shortened burn duration, there is a higher percentage of combustion occurring closer 

to TDC for the case with the NOx constraint removed. Combustion closer to TDC has a higher potential to 

perform work, due to an improved utilization of the expansion stroke. 
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Figure 5-8. Comparison of in-cylinder pressure and AHRR for the two best cases shown in Table 5-1. 

To quantify the improvement in expansion stroke utilization, the effective expansion ratio (EER) 

was defined as 

 𝐸𝐸𝑅 =  
∫ 𝐻𝑅𝑅(𝜃) ∗ (

𝑉𝐵𝐷𝐶

𝑉(𝜃)
) 𝑑𝜃

𝐸𝑂𝐶

𝑆𝑂𝐶

𝑚𝑓𝑢𝑒𝑙 ∗ 𝐿𝐻𝑉𝑓𝑢𝑒𝑙
 , ( 25) 

where 𝐻𝑅𝑅(𝜃) is the chemical heat release rate at each CA, 𝑉𝐵𝐷𝐶 is the cylinder volume at BDC, and 𝑉(𝜃) 

is the volume of the cylinder at each CA. The closer the EER is to the geometric CR (12:1 for the engine 

modeled in the current study), the higher is the work extraction potential. Figure 5-9 shows a comparison 

of the EER for the two cases shown in Table 5-1.  

 

Figure 5-9. Comparison of EER for the two best cases shown in Table 5-1. 
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The case without the NOx constraint has a higher EER of 9.8 compared to the case with the NOx constraint 

which has an EER of 7.3. Removing the NOx constraint allowed the SOI timing of diesel fuel to be 

advanced, resulting in an improvement in EER of ~34.25%. The improvement in expansion stroke 

utilization explains the improved NFE when the NOx constraint is removed. 

5.1.3. Comparison of Optimum Strategy at Moderate (45%) and High (55%) EGR 

The best case with the NOx constraint removed (shown in Table 5-1) is compared with the high 

EGR (55%) RCCI optima from the high-load GA optimization study shown in Chapter 4. The two cases 

were compared in terms of combustion characteristics, combustion control, and stability to operating 

condition fluctuations. The motivation of this study is, firstly, to understand the difference between the two 

optima in terms of combustion characteristics and performance. Secondly, to verify if the benefits of high 

combustion control seen with the high EGR GA optima are retained at the reduced EGR operation. Lastly, 

to see if the issues of high soot emissions and sensitivity to EGR fluctuations observed with the high EGR 

GA optima are eliminated by operating at a reduced EGR rate. Table 5-2 shows a comparison of the best 

case from the cases with no NOx constraint compared with the high EGR GA optima from Chapter 4.  

Table 5-2. Comparison of the best case from the cases with no NOx constraint and the high EGR GA optima 

from Chapter 4. 

INPUTS 

Design Parameter 
Best Case  

(no NOx constraint) 

GA Optima 

Premix Gas. Frac [-] 0.68 0.63 

Gas. Frac [-] 0.63 0.72 

SOI-Gas. [°aTDC] -83.2 -78 

SOI-Diesel [°aTDC] -17.3 -12 

EGR [%] 45 55 

Ф [-] 0.8 0.93 

IVC-Pressure [bar] 3.76 3.97 

OUTPUTS 

GIE [%] 47.2 46.3 

NIE [%] 44.7 43.8 

NFE [%] 44.4 43.8 

NOx [g/kg-f] 3.04 0.3 

Soot [g/kg-f] 0.81 1.78 

PPRR [bar/deg] 14.49 19.91 

PP [bar] 199.78 194.9 

RI [MW/m2] 4.98 6.59 
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The operating strategy remains very similar for the two cases compared in Table 5-2. Most of the 

fuel is gasoline, which is introduced early into the combustion chamber in the form of premixed fuel and 

an early DI. The SOI timing of the gasoline injection is -83.2 °aTDC and -78 °aTDC for the best case with 

no NOx constraint and the GA optima respectively. The rest of the fuel is injected as a stratified injection 

close to TDC at -17.3 °aTDC and -12 °aTDC for the best case with no NOx constraint and the GA optima 

respectively. The two cases differ mainly in terms of the air handling. Removing the NOx constraint allows 

operation at a reduced EGR rate of 45% and a relatively lean global Ф of 0.8. This results in a minor increase 

in NFE from 43.8% to 44.4%. It also results in a significant reduction (~54.5%) in soot emissions from 1.78 

g/kg-f to 0.81 g/kg-f.  

To explain the improvement in efficiency for the case with no NOx constraint, Figure 5-10 shows 

a comparison of the energy balance for the two cases shown in Table 5-2. Though the GA optimum has 

reduced wall heat transfer and reduced exhaust losses, it also has higher combustion losses which offset the 

benefits, resulting in a lower GIE.   

 

Figure 5-10. Comparison of energy flow for the two best cases shown in Table 5-2. 

Figure 5-11 shows a comparison of the in-cylinder pressure and AHRR for the two cases compared 

in Table 5-2. The SOI of diesel fuel is at -17.3 ºaTDC for the case with no NOx constraint, which is slightly 

early relative to the SOI of diesel fuel for the GA optima occurring at -12 ºaTDC. This results in an advanced 

SOC of -6.73 ºCA for the case with no NOx constraint relative to the SOC of the GA optima which occurs 

at -2.99 ºCA. The advanced SOC leads to reduced combustion losses and an improved GIE. From Figure 
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5-11, it is also seen that the case with no NOx constraint has a higher mass (longer injection duration) in 

the near TDC diesel fuel injection that is combusting in a mixing-controlled fashion. However, 

interestingly, this case yields lower soot emissions than the GA optima. To explain this result, Figure 5-12 

shows the in-cylinder contours of temperature, Ф, and soot mass fraction at various crank angles for the 

two cases compared in Figure 5-11.  

 

Figure 5-11. Comparison of in-cylinder pressure and AHRR for the two best cases shown in Table 5-2. 

Firstly, it is seen that both cases are very similar in combustion characteristics with the near TDC 

diesel fuel injection acting as the ignition source and causing the rest of the fuel in the combustion chamber 

to ignite. For the case with no NOx constraint, the larger fuel mass in the diesel fuel injection results in 

higher soot formation, as seen in Figure 5-12 at CA timings of 20 ºaTDC and 30 ºaTDC. However, the best 

case with no NOx constraint has a global Ф of 0.8 at a moderate EGR rate of 45% which is much leaner 

compared to the GA optima having a global Ф of 0.93 at a higher EGR rate of 55%.  This results in a leaner 

background Ф in the bowl, for the case with no NOx constraint, as seen in Figure 5-12 at all the crank 

angles. This causes more oxygen to be available later in the cycle. Figure 5-13 shows the mass of soot (solid 

line) and O2 (dashed line) as a function of crank angle. The difference in O2 mass between the two cases is 

evident until EVO. Due to the higher availability of oxygen, the case with no NOx constraint has a higher 

soot oxidation rate, which is evident from the steeper slope of the falling part of the soot mass curve during 

the expansion stroke.  This higher soot oxidation rate eventually results in lower soot emissions at EVO for 

the case with no NOx constraint relative to the GA optima. This is seen from the reduced soot mass fractions 
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at a CA of 50 ºaTDC and 60 ºaTDC in Figure 5-12 and from the soot mass trend shown in Figure 5-13. A 

detailed discussion of soot formation and oxidation for near TDC and post-injections under advanced 

combustion conditions is shown in Appendix-B and in Kavuri et al. [73]. The soot study was not included 

in the main text for brevity and continuity. 

Best Case (no NOx Constraint) GA Optima 

      

      

      

      

      

      

      

      

      
Figure 5-12. Comparison of in-cylinder contours of temperature, Ф, and soot mass fraction at various CA for 

the two best cases shown in Table 5-2. 
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Figure 5-13. Soot (-) and O2 (--) mass as a function of CA for the two best cases shown in Table 5-2. 

5.1.4. Control Parameters  

To verify that the combustion control seen with the GA optima is retained in the lower EGR optima 

with no NOx constraint, a parametric study was performed for the optima with no NOx constraint. Each 

input (excluding EGR) was varied individually fixing the rest of the inputs at the optimum value shown in 

Table 5-2. The results from the sweep were compared to the results from a similar parametric study 

performed on the GA optima (details shown in §4.2.2.2). Table 5-3 shows the range of variation of inputs 

for the combustion control parametric study. 

Table 5-3. Range of variation of inputs for the combustion control parametric study of the two cases shown in 

Table 5-2. 

Best Case (no NOx Constraint) 

Design Parameter Range Step Size Optima 

Premix Gas. Frac [-] 0.6 to 0.9 0.01 0.68 

Gas. Frac [-] 0.5 to 0.8 0.01 0.63 

SOI-Gas. [°aTDC] -95 to -65 2 -83.2 

SOI-Diesel [°aTDC] -30 to 0 2 -17.3 

GA Optima 

Design Parameter Range Step Size Optima 

Premix Gas. Frac [-] 0.4 to 0.7 0.01 0.63 

Gas. Frac [-] 0.5 to 0.9 0.01 0.72 

SOI-Gas. [°aTDC] -100 to -60 2 -78 

SOI-Diesel [°aTDC] -30 to 0 2 -12 

Figure 5-14 shows the variation in CA50 with each control parameter for the two cases shown in 

Table 5-2. A steeper slope indicates better control over combustion phasing. For both the cases, it is evident 

that SOI of diesel fuel is the primary control parameter. The response of SOI-Diesel is 0.62º and 0.58° 

CA50 per degree SOI-Diesel for the case with no NOx constraint and the GA optima respectively. The 
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strong control over combustion was found to be due to the short ignition delay of the mixing-controlled 

diesel fuel injection, as was explained in §4.2.2.2. CA50 is insensitive to the rest of the inputs for both the 

strategies. These results indicate that, similar to the GA optima, there is an excellent control over 

combustion phasing for the case with no NOx constraint. However, removing the NOx constraint allows 

operation at a leaner global Ф, which results in significantly lower soot emissions. Therefore, operating at 

reduced EGR rates with SCR after-treatment addresses the tradeoff between combustion control and soot 

emissions observed with high EGR GA optimum (in Chapter 4). 

 

Figure 5-14. CA50 as a function of inputs for the two best cases compared in Table 5-2. 

5.1.5. Operating Condition Sensitivity 

One of the motivations for investigating the reduced EGR strategies was to see if operating at a 

lower EGR rate reduces the sensitivity to variations in EGR observed with the high EGR GA optima. 

Accordingly, the current section shows a comparison of the sensitivity of the outputs to variations in charge 

conditions and fueling rates for the two cases shown in Table 5-2. To perform the sensitivity analysis, a 

similar procedure as explained in §4.2.2.3 is followed. Initially a full factorial DOE is run about the 

optimum cases shown in Table 5-2. The baseline value and the range of fluctuation for each operating 

condition are shown in Table 5-4. The rest of the inputs are fixed at the values shown in Table 5-2. The 

results from the DOE were used to build a full quadratic RSM with linear, squared, and interaction terms. 

The sensitivity analysis is then performed by taking a partial derivative of the RSM equations of each 

objective with respect to each input parameter.  
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Table 5-4. Baseline value and the range of fluctuation of each operating condition, for the two cases shown in 

Table 5-2. 

Operating Condition 
Best Case 

(no NOx Constraint) 

GA Optima Range 

Tivc [K] 406 406 ±   3 

Pivc [bar] 3.76 3.97 ± 0.05 

EGR [%] 45 55 ±   2 

Premix Mass [mg/cycle] 103 108 ±   4 

DI Mass [mg/cycle] 138 133 ±   4 

Figure 5-15 shows a comparison of the results from the sensitivity study for the two cases shown 

in Table 5-2. For the GA optima, all the outputs are significantly more sensitive to EGR than the other 

inputs. This was found to be due to operating at a near stoichiometric global Ф of 0.93, where an increase 

in EGR was causing the global Ф to increase beyond 1, resulting in a rapid drop in PPRR and GIE. 

Removing the NOx constraint resulted in an optimum operating strategy that has a significantly leaner 

global Ф of 0.8. This reduces the sensitivity to EGR substantially, as seen in Figure 5-15. To give an 

example to explain the improved stability, an increase in EGR rate from 55% to 56% for the GA optimum 

results in a change in CA50 of 0.97 deg. To achieve the same change in CA50 for the best case without a 

NOx constraint, the EGR rate would have to increase to 58%. Therefore, removing the NOx constraint and 

using SCR after-treatment resulted in a high-load-low-speed operating strategy with improved stability.  

 

Figure 5-15. Comparison of results from the operating condition sensitivity study for the two cases shown in 

Table 5-2. 

The results in this chapter have shown that removing the NOx constraint and using SCR after-

treatment results in a feasible high-load-low-speed RCCI operating strategy that addresses the issues of 

high soot emissions and sensitivity to operating condition (EGR) fluctuations observed with the high EGR 

operating strategy in Chapter 4. 
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5.2. Conclusions 

The study presented in this chapter investigated operating strategies at reduced (< 50%) EGR levels 

for high-load-low-speed operation with RCCI combustion. A constraint analysis was performed to identify 

the constraints preventing operation at lower EGR levels. It was found that the lower EGR regions are 

mainly constrained by NOx emissions. Removing the NOx constraint resulted in increased efficiency at the 

lower EGR rates, but had a simultaneous tradeoff with increased NOx emissions. This led to increased 

consumption of the DEF mass required for SCR after-treatment. By optimizing between the efficiency and 

the DEF consumption, it was identified that operating at moderate EGR rates (~ 45%) helps in realizing the 

maximum benefit of using SCR after-treatment.  An optimum case without the NOx constraint was 

identified, which had a moderate EGR rate of 45% and a globally lean Ф of 0.8. In terms of performance, 

the optimum case had a NFE of 44.4% and near zero soot emissions. The improved efficiency upon 

removing the NOx constraint was identified to be due to advancing the diesel fuel injection which resulted 

in a more optimal combustion phasing and led to a better utilization of the expansion stroke. 

 Furthermore, the optimum operating strategy was compared with the high EGR (~55%) optimum 

shown in Chapter 4. It was found that the optimum with SCR after-treatment resulted in similar combustion 

control as the high EGR optima without the tradeoff of high soot emissions. This was found to be due to 

the increased oxygen availability from operating under globally lean conditions, which resulted in improved 

soot oxidation rates and lower soot emissions. Comparing the two strategies in terms of stability to operating 

parameter variation showed that the optimum with SCR after-treatment was significantly more stable 

compared to the GA optima. The improved stability was found to be due to the reduced sensitivity to EGR 

fluctuations from operating at a leaner global Ф.  These results indicate that removing the NOx constraint 

and using SCR after-treatment addresses the issues of high soot emissions and sensitivity to EGR 

fluctuations while retaining the excellent combustion control observed with the high EGR GA optimum, 

under high-load-low-speed conditions. 
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Chapter 6 Optimization considering Low-load and High-load Efficiency 
The results presented in Chapter 4 and Chapter 5 identified several approaches to enable RCCI and 

GCI combustion at high-load-low-speed conditions. Recall, however, that these studies used a piston with 

a CR of 12:1. Preliminary simulations at the low-load-high-speed condition were performed using this 

piston. The operating strategy (e.g., injection schedule) used was based on a light-duty optimization 

performed at low-load-high-speed conditions (see Appendix-A). Note that the study presented in Appendix-

A used a CR of 16.7:1, a re-entrant piston bowl, and a narrow angle injector. Applying this strategy to the 

present heavy-duty engine, with a wide-angle injector and a CR of 12:1, resulted in a GIE of only 39.1%. 

The poor efficiency was attributed to the combination of low CR piston, open bowl geometry, and wide-

angle injector. This set of hardware works well at high load conditions, but at low load, the geometry 

extends the already long chemistry time scales, leading to high levels of incomplete combustion. This result 

indicates that the optimal hardware set may be different when low-load and high-load are taken into 

consideration.  

Accordingly, to get a feasible solution that works at both the loads, a common optimization that 

accounts for the performance at low-load and high-load conditions should be performed. In this chapter a 

computational optimization will be presented, that considers the performance at low-load-high-speed (2 

bar, 1800 rev/min.) and high-load-low-speed (20 bar, 1300 rev/min.) operating conditions simultaneously. 

The motivation of this study is to demonstrate an approach that can identify optimal solutions that work 

across the drive cycle. The two operating conditions were chosen based on the earlier optimization studies 

performed separately at each of these operating conditions. Choosing similar operating conditions allows 

us to compare the optimization approaches and isolate any difference in the results due to the modified 

optimization approach. 

6.1. Optimization Setup 

GA optimizations were setup at 2 bar, 1800 rev/min. and 20 bar, 1300 rev/min. targeting low-load-

high-speed and high-load-low-speed operating modes, respectively. 28 design inputs were varied in the 

optimization which includes parameters for defining bowl geometry, injector design, air-handling, and 
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fueling strategy. The complete list of the inputs and the range of variation allowed for each input is shown 

in Table 6-1.  

Table 6-1. Range of variation allowed for each design parameter in the optimization study. 

Design Parameter 
Low-Load 

(2 bar, 1800 rev/min.) 

High-Load 

(20 bar, 1300 rev/min.) 

 

Bowl Design 

CR [-] 9 to 22 

Point 1 [-] -0.1 to 0.99 

Point 2 to Point 3 [-] 0.01 to 0.99 

Point 4 [-] -0.18 to 0.99 

Point 5 to Point 15 [-] 0.01 to 0.99 

 

Injector Design 

Tiltxz-Gas. [º] 5 to 85 

Tiltxz-Diesel[º] 5 to 85 

dnoz-Gas. [µm] 100 to 400 

dnoz-Diesel [µm] 100 to 400 

 

Fueling Strategy 

Gas. Frac. [-] 0 to 1 0 to 1 

Premix Gas. Frac. [-] 0 to 1 0 to 1 

SOI-Gas. [ºATDC] -100 to 40 -100 to 40 

SOI-Diesel [ºATDC] -100 to 40 -100 to 40 

Pinj-Gas. [bar] 500 to 2500 500 to 2500 

Pinj-Diesel [bar] 500 to 2500 500 to 2500 

 

Air-handling  

Pivc [bar] 1 to 1.5 2.36 to 4.5 

EGR [%] 0 to 60 0 to 60 

For every generation and every citizen of the GA, it was ensured that the inputs generated for bowl 

geometry and injector design parameters shown in Table 6-1 would remain the same for the two operating 

modes. The inputs for air-handling and fueling strategy can be controlled at each operating condition and 

could be different at the two operating modes. This ensures that the best fueling strategy possible at each 

mode is identified for a bowl geometry and injector configuration that is optimized considering the 

performance at both the operating modes.  
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To define the bowl geometry, a bowl geometry code developed by Lopez et al. [101] was used. The 

code uses six control points that make up a Bezier spline to define the piston geometry. The six control 

points are defined by 15 variables (shown as Point1 to Point 15 in Table 6-1), which can be varied to 

generate a wide variety of geometries ranging from re-entrant bowls to open bowls. Figure 6-1 shows 

examples of a few bowl geometries that can be generated by varying each of the 15 bowl parameters.  

 

Figure 6-1. Examples of bowl geometries that can be generated using the bowl geometry code of Lopez et al. 

[101]. 
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The injection strategy shown in Figure 6-2 was used for the optimization study. The SOI of DI 

gasoline (SOI-Gas.) and diesel fuel (SOI-Diesel) and their corresponding injection pressures (Pinj) are 

varied in the GA. Additionally, the fraction of the total gasoline that is premixed (Premix Gas. Frac) and 

the fraction of the total fuel that is gasoline (Gas. Frac) are also varied in the GA. Similar to the earlier 

chapters, the premixed gasoline was modeled as a homogenous mixture at IVC.  

 

Figure 6-2. Injection strategy used for the optimization study. 

The injector included half angle (Tiltxz) and the injector nozzle diameters (dnoz) for the gasoline 

and diesel injectors were varied independently. The injectors were modeled as having seven holes each and 

were assumed to be centrally mounted. This allowed the simulations to be performed on a 51.42º sector 

mesh. For any bowl profile generated in the GA a computational mesh with approximately 40,000 cells at 

BDC and an average cell size of 1 mm was used. The variation in intake pressure was represented by 

varying the pressure at intake valve closure (Pivc). The amount of EGR used was also varied.  

Optimizations were performed with the aim of maximizing the mode-weighted NFE while having 

constraints on soot emissions, PPRR, and PP. The constraint value assigned to each output and the harshness 

factors used are mentioned in Table 6-2.  

Table 6-2. Constraint value and harshness factor assigned to each output. 

Output Constraint Harshness Coefficient 

Soot [g/kg-f] 2 0.5 

PPRR [bar/deg] 15 0.5 

PP [bar] 200 1 

In Chapter 5, removing the constraint on NOx emissions and using SCR after-treatment was found to be 

beneficial for high-load-low-speed operation. Accordingly, for the current study, there was no direct 

constraint on NOx emissions. As shown in Chapter 5, accounting for the DEF consumption in the NFE 
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calculation indirectly constraints the NOx emissions from being unreasonably high. Once the NFE is 

estimated for every citizen of a generation in the GA at low-load and high-load conditions, the mode-

weighted NFE is estimated as 

 𝑁𝐹𝐸𝑡𝑜𝑡𝑎𝑙 = (1 − 𝑊𝑚𝑜𝑑𝑒) ∗ 𝑁𝐹𝐸𝐿𝐿 + 𝑊𝑚𝑜𝑑𝑒 ∗ 𝑁𝐹𝐸𝐻𝐿 , ( 26) 

where 𝑁𝐹𝐸𝑡𝑜𝑡𝑎𝑙 is the mode-weighted NFE, 𝑁𝐹𝐸𝐿𝐿 and 𝑁𝐹𝐸𝐻𝐿 are the NFE at low-load and high-load 

respectively for every citizen, and 𝑊𝑚𝑜𝑑𝑒 is the mode weighting factor. For the current study 𝑊𝑚𝑜𝑑𝑒 is set 

to 0.5 (i.e., the two modes were equally weighted). In a later section of this chapter, the effect of varying 

this weighting factor on the optimization results will be discussed. The GA was run for 40 generations with 

250 citizens per generation. This sums to 20,000 CFD calculations for the two operating modes. The 

optimum design was chosen as the citizen with the highest mode-weighted NFE that meets the constraints 

on soot emissions, PPRR, and PP.  

6.2. Results 

Upon completion of the GA, the optimized points for low-load and high-load were identified, and 

their corresponding design variables are listed in Table 6-3.  

Table 6-3. Optimized design variables for low-load and high-load 

Design Parameter 
Low-Load 

(2 bar, 1800 rev/min.) 

High-Load 

(20 bar, 1300 rev/min.) 

Bowl and Injector Design 

CR [-] 13.1 

Tiltxz-Gas. [º] 73.05 

Tiltxz-Diesel[º] 55.14 

dnoz-Gas. [µm] 115 

dnoz-Diesel [µm] 106 

Fueling Strategy 

Gas. Frac. [-] 0.15 0.92 

Premix Gas. Frac. [-] 0.05 0.66 

SOI-Gas. [ºATDC] -15 15 

SOI-Diesel [ºATDC] -45 -7 

Pinj-Gas. [bar] 881 2154 

Pinj-Diesel [bar] 537 1541 

Air-handling  

Pivc [bar] 1 3.69 

EGR [%] 40 46 
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Figure 6-3. CR as a function of the run number. 

The optimum piston geometry with the optimum spray included half angles of the gasoline and 

diesel injectors is shown in Figure 6-4. The piston geometry has two distinctive regions in the lower and 

the upper part of the bowl. Figure 6-5 shows the evolution of injector parameters.  

 

Figure 6-4. Optimum piston geometry.  
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Figure 6-5. Injector design parameters as a function of the run number. 

The GA eliminated extremely wide or narrow spray included half angles for the diesel fuel injector 

and finally converged to a spray angle near the middle of the design space. For the gasoline spray included 

half angle, the GA converged very quickly to a wide spray angle. The optimum gasoline injector had an 

included half angle of 73.1º. The diesel fuel injector had a narrow included half angle of 55.1º. Interestingly, 

the optimum included half angles are such that the gasoline spray is targeted into the upper region while 

the diesel fuel spray is targeted into the lower region of the bowl.  Both the injectors converge to relatively 

small nozzle diameters. The optimum configuration had nozzle diameters of 115 µm and 106 µm for the 

gasoline and diesel fuel injectors, respectively.  

Figure 6-6 shows the evolution of the fueling strategy and air-handling design parameters for the 

low-load operating condition. The GA immediately converges to a low quantity of premixed gasoline to 

minimize the incomplete combustion resulting from the over-lean and low reactivity premixed fuel 

commonly seen at low-loads. As mentioned earlier, at the low-load-high-speed conditions, the chemistry 

timescales are long while the engine timescales are short. One way to shorten the chemistry time scale and 

address the mismatch would be to use a high percentage of the higher reactive fuel (i.e., diesel fuel in the 

current study). Accordingly, the GA converges to low levels of gasoline fraction very quickly. Interestingly, 

the GA does not settle on neat diesel fuel operation and prefers having a small, but non-negligible 
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percentage of gasoline. Of the total fuel mass, 15% was gasoline, most of which is direct-injected. The 

premixed fuel mass was only 5% of the gasoline mass, which is 0.55% of the total fuel mass. The GA 

converges to an early SOI timing for the diesel fuel injection with an optimum SOI timing of -45 ºaTDC. 

The gasoline injection converged to a near TDC injection timing with an optimum SOI of -15 ºaTDC. The 

optimal SOI timings for low-load were such that the fuel spray is matched with the bowl geometry to create 

a sufficiently high local Ф (~0.4 to 0.5) mixture that is favorable for combustion at low-load conditions. 

The injection pressure for the diesel fuel injection converges to 537 bar. The gasoline injection pressure has 

two species progressing into the final generations. However, considering that there is very little fuel in the 

gasoline injection, the results were insensitive to the gasoline injection pressure at the low-load condition. 

The optimum design chosen had a gasoline injection pressure of 881 bar.   

 

Figure 6-6. Fueling and air-handling parameters as a function of run number for low-load. 

The intake pressure converges to a naturally aspirated condition of 1 bar absolute. Two EGR species 

progress to the final generation with optimal EGR rates of 36% and 42%. The two species have NFE within 

0.5% of each other. The species with the lower EGR rate has higher combustion efficiency, but also higher 

engine-out NOx, requiring higher DEF consumption. Conversely, the higher EGR case has lower 

combustion efficiency, but a lower DEF penalty. Since the NFE of the two species are nearly the same, the 

higher EGR case was preferred due to its ability to meet NOx targets without relying on SCR after treatment 
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at low-loads. Practically, this is preferred to minimize the complications of low exhaust temperature (~650 

K) which may result in reduced SCR efficiency.  

Figure 6-7 shows the evolution of the fueling strategy and air-handling design parameters for the 

high-load operating condition. The GA converged to high premixed gasoline fraction values and eventually 

settled at an optimum value of 0.66 (i.e., 66% of the total gasoline mass is premixed). This mass is the 

maximum amount of fuel that could be premixed while meeting the constraints on PPRR and PP. The GA 

converged rapidly to operation on 92% gasoline. Contrary to the low-load case, at high-load-low-speed 

conditions, the chemistry timescales are short, and the engine time scales are long. Operating at high 

gasoline fractions helps extend the chemistry time scales because of the low reactivity of gasoline. The 

diesel fuel SOI timing has two species evolving into the final generations. One species has a diesel fuel SOI 

timing around -50 ºaTDC which is representative of the classical RCCI strategy seen in past research. The 

second species has SOI timing close to TDC. Eventually, the species with a near TDC injection dominates 

and progresses to the final generations. The optimal case has a diesel fuel SOI timing of -7 ºaTDC. The 

gasoline SOI timing converges quickly to a value after TDC. If gasoline is to be introduced before TDC, it 

is preferable to premix the gasoline. However, a further increase in premixed fuel mass is constrained by 

PPRR and PP. Accordingly, the rest of the gasoline mass is injected in the post TDC injection to achieve 

the necessary load. The GA converges to an optimum gasoline SOI timing of 15 ºaTDC. This is the closest 

to TDC that the gasoline injection can occur to maximize the efficiency while meeting the soot constraint. 

That is, early post-injection timings resulted in increased soot emissions. A detailed analysis on soot 

emissions from post-injections can be found in Appendix-B and Appendix-D. Considering that there is 

substantial fuel mass in both the direct-injections and since the SOI timings are in the near TDC region, the 

GA converges to high injection pressures for both the injections. The gasoline injection has an optimum 

injection pressure of 2154 bar and the diesel fuel has an optimum injection pressure of 1541 bar. The higher 

injection pressure for the gasoline injection could be because of the significantly larger fuel quantity in the 

gasoline injection compared to the diesel fuel injection. Also, as will be shown later in this chapter, the 

gasoline injection is the primary source of soot emissions for the high-load case. The higher injection 
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pressure is essential to keep the soot emissions low as it enables better air entrainment and a longer residence 

time in the high-temperature regions. This improves the soot oxidation rates and results in reduced soot 

emissions at EVO.  

IVC pressure and EGR converge to values near the middle of the design space for each variable. 

EGR converges to an optimum value of 46%. IVC pressure has two species with values of 3.41 bar and 

3.69 bar progressing to the final generations. The combination of IVC pressure and EGR results in global 

Ф of 0.82 and 0.93 for the 3.69 bar and 3.41 bar cases respectively. Both species ended up having NFE 

within 2% of each other at similar levels of NOx (0.08 g/kg-f difference) and soot emissions (0.2 g/kg-f 

difference). The globally leaner case achieved higher GIE but suffered from higher pumping losses due to 

the higher intake pressure. The near stoichiometric cases had lower pumping losses, but also lower GIE due 

to the reduced availability of oxygen. Eventually, the species with the higher IVC-pressure of 3.69 bar was 

picked as the optimum as it ended up having a slightly higher efficiency. Also, the results presented in 

Chapter 4 have shown near stoichiometric operation to be extremely sensitive to variations in the EGR rate. 

Hence, the globally leaner operating condition was preferred as the optimum.    

 

Figure 6-7. Fueling and air-handling parameters as a function of run number for high-load. 

The outputs for the optimum design are shown in Table 6-4. The optimum designs met the 

constraints on all the outputs for both the loads as shown in Table 6-4.  



93 

 

Table 6-4. Outputs for the optimized design at low-load and high-load 

Output 
Low-Load 

(2 bar, 1800 rev/min.) 

High-Load 

(20 bar, 1300 rev/min.) 

GIE [%] 46.5 44.7 

NFE [%] 41.9 41.6 

NOx [g/kg-f] 0.18 0.31 

Soot [g/kg-f] 0.00 1.88 

CO [g/kg-f] 112.23 33.36 

UHC [g/kg-f] 10.29 2.64 

PPRR [bar/deg] 2.45 14.69 

PP [bar] 42.05 194.58 

CA50 [ºATDC] -0.25 -0.38 

Figure 6-8 shows the evolution of the constrained outputs as a function of run number for the 

low-load operating condition. The initial generations have a few points that are above the constraint 

value for soot emission. However, within a few generations, the GA converges to soot emissions less 

than 2 g/kg-f. There was no constraint set on NOx emissions, but as the generations progress, the GA 

minimizes the NOx emissions to reduce the DEF consumption penalty and maximize the NFE. The 

PPRR and PP outputs were well below the constraint value for the low-load cases. The low-load 

optimum case yielded a GIE of 46.5% and NFE of 41.9%. It is to be noted that the NOx emissions are 

near zero for this case indicating that the difference between the GIE and NFE is due to pumping losses. 

 

Figure 6-8. Outputs as a function of run number for low-load. 
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Figure 6-9 shows the evolution of constrained outputs for the high-load operating condition. 

Unlike the low-load cases, most of the high-load cases exceeded the constraints in the early 

generations. The soot emissions, PPRR, and PP outputs eventually converge to their respective 

constraint values and remain around the constraint value until the final generation. This indicates that 

all three outputs are limiting factors on achieving the maximum possible efficiency for the high-load-

low-speed operating condition. Notice that the optimum cases had NOx emissions of 0.18 g/kg-f and 

0.31 g/kg-f for the low-load and high-load optimum respectively. This indicates that, although SCR 

was considered in the optimization, the optimum strategies do not require the use of SCR. The high-

load optimum case had a GIE of 44.7% and NFE of 41.6%. Similar to the low-load optimum case, the 

difference between the GIE and NFE is due to pumping losses.  

 

Figure 6-9. Outputs as a function of run number for high-load. 

6.2.1. Combustion Characteristics 

Once the optimum points were identified, in-cylinder visualization was used to understand the 

combustion characteristics for the low-load and the high-load optimum operating strategies. 

6.2.1.1. Low-Load Combustion Characteristics 

Figure 6-10 shows the in-cylinder pressure, AHRR and Figure 6-11 shows the contours of in-

cylinder Ф, temperature, and PRF number at several crank angles before and after the combustion event for 

the low-load optimum case.  
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Figure 6-10. In-cylinder pressure (- -) and apparent heat release rate (-) for the low-load optimum point. 

 

Figure 6-11. In-cylinder Ф, temperature and PRF contours at different crank angles before and after the 

combustion event for the low-load optimum point. 

As discussed in Chapter 2, a primary challenge of low-load RCCI combustion is the high levels of 

incomplete combustion that result from the over lean and low reactive premixed fuel. This explains why 

the GA picked a case with nearly zero premixed fuel as the optimum strategy. Having a narrow angle and 
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an early SOI timing for the high reactivity diesel fuel ensures that the diesel fuel is contained within the 

bowl. This is evident from the high Ф and low PRF regions in the bowl at CA of -10 ºaTDC in Figure 6-11. 

The injection pressure of the diesel fuel injection is only 537 bar to minimize mixing and overly lean 

regions. Though the gasoline injector has a wide spray angle, the optimum SOI timing is such that it sprays 

into the fuel rich zones created by the diesel fuel injection. The injection pressure of the gasoline injection 

was also low (881 bar) to avoid overmixing. Ignition occurs in the piston bowl at -2 ºaTDC. Comparing the 

location of the ignition site with the Ф and PRF contours, we see that ignition occurs in the fuel rich region 

in the bowl with the highest reactivity (lowest local PRF). Progressing into the expansion stroke, the richer 

regions in the center of the bowl continue to combust at high temperatures. Conversely, the leaner regions 

close to the center of the piston bowl combust at lower temperatures and end up as sources of UHC.  

From the images, it is expected that lower UHC emissions would have been achieved if no gasoline 

were used. This makes it of interest to understand why the GA picked 15% of the fuel to be gasoline as the 

optimum strategy. Accordingly, a parametric study of gasoline fraction and EGR was performed. Figure 

6-12 shows the results of the study where the gasoline fraction and EGR were varied with all other inputs 

fixed at the optimum value. When the gasoline fraction is reduced from the optimal value of 0.15 to 0, to 

achieve similar combustion phasing (CA50) as the optimal case (-0.25 ºaTDC), a higher percentage of EGR 

(48%) was required. The increased EGR results in increased levels of incomplete combustion causing the 

NFE to decrease. Having a part of the fuel as gasoline helps achieve the optimal combustion phasing at 

lower levels of EGR. This reduces the incomplete combustion and increases the NFE. However, when the 

gasoline fraction is increased from the optimum of 0.15 to 0.3, the EGR must be reduced from 40% to 22% 

to maintain the optimal CA50. The reduction in EGR results in an increase in NOx emissions which causes 

a reduction in the NFE due to excessive DEF consumption. Accordingly, a gasoline fraction of 0.15 in 

combination with an EGR of 40% was chosen as the optimum because it maximizes the NFE by minimizing 

incomplete combustion while keeping the NOx emissions to levels that do not require after-treatment.  
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Figure 6-12. CA50, the percentage of energy in incomplete combustion, NOx emissions, and NFE as a 

function of EGR for the low-load optimum point. 

6.2.1.2. High-Load Combustion Characteristics 

To explain the combustion characteristics of the high-load optimum case, Figure 6-13 shows the 

in-cylinder evolution of several key species, the in-cylinder pressure, and AHRR. Figure 6-14 shows cut 
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planes colored by temperature, Ф, and mass fractions of isooctane, n-heptane, formaldehyde (CH2O), and 

OH for the high-load optimum case.  

 

Figure 6-13. In-cylinder evolution of key species, in-cylinder pressure (- -) and apparent heat release rate (-) 

for the high-load optimum case. 

Temperature [K] Ф [-] Iso-octane [-] n-heptane [-] Formaldehyde [-] OH [-] 

      

      

      

      

      

      

Figure 6-14. In-cylinder temperature, Ф, mass fraction of iso-octane, n-heptane, formaldehyde and OH 

contours for the high-load optimum case. 
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Formaldehyde (CH2O) starts forming around -35 ºaTDC from the low-temperature consumption of 

premixed iso-octane. From the heat release plot shown in Figure 6-13, two distinct peaks are visible. The 

first peak occurs at -4 ºaTDC from ignition of the premixed gasoline triggered by the DI of diesel fuel. 

Notice that the second stage combustion (signaled by the appearance of OH) occurs approximately 3° after 

the diesel fuel injection, on the edge of the diesel fuel jet, as shown in Figure 6-14. Two crank angles later, 

at -2 ºaTDC, the second peak in heat release occurs due to the mixing-controlled combustion of diesel fuel 

(n-heptane).  

The gasoline DI is introduced during the expansion stroke and combusts as soon as it is introduced 

due to the high temperatures from the primary heat release. The late gasoline injection was identified as the 

main source of the soot emissions for the high-load case. This can be seen from Figure 6-15, which shows 

the in-cylinder evolution of soot emissions as a function of crank angle. The profiles for oxygen 

concentration, peak in-cylinder temperature, average in-cylinder temperature, and injection velocity are 

also shown to help explain the soot trend. The first peak in soot is from the combustion of the initial mixing-

controlled diesel fuel combustion. The soot formed from this is mostly oxidized as the temperatures are 

high and there is sufficient oxygen availability. However, by the time the post-injection occurs, the 

combustion chamber is severely oxygen-depleted due to the oxygen consumption from the primary heat 

release. Notice that the oxygen mass fraction after the primary heat release is only ~0.07. Additionally, the 

injection and combustion event continue late into the expansion stroke (~43 ºaTDC and ~60 ºaTDC, 

respectively). During this period the temperatures remain high enough (> 1500 K) to favor soot formation, 

as can be seen from the peak temperature plot. Soot continues to increase until approximately 60 ºaTDC.  

By this point, the oxygen mass fraction has decreased to 0.04. The low temperatures and low oxygen 

concentrations do not favor additional soot formation or oxidation and hence cause the soot curve to freeze. 
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Figure 6-15. In-cylinder evolution of soot emissions, oxygen, average and peak temperature, and injection 

velocity profiles for the high-load optimum case. 

From the in-cylinder visualizations, it was observed that the premixed gasoline was undergoing 

low-temperature combustion prior to the injection of diesel fuel near TDC. This suggests that the diesel 

fuel may not be needed to achieve ignition. To understand the importance of the diesel fuel injection and 

why a completely gasoline operated strategy was not chosen as the optimum, two additional cases were 

simulated that were completely gasoline operated. In the first case, the diesel fuel mass from the DI was 

removed and added to the premixed gasoline mass. In the second case, the diesel fuel mass was added to 

the gasoline DI fuel mass. The rest of the inputs were fixed at the values for the optimum case. Figure 6-16 

shows a comparison of the PPRR and NFE from the optimum case with the two additional cases. When the 

diesel fuel mass was added to the premixed fuel mass, it increases the PPRR from 14.7 bar/deg. to 21.8 
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bar/deg. The mixing-controlled near TDC diesel fuel combustion event decreases the PPRR without 

decreasing the thermal efficiency. When the diesel fuel mass was added to the post TDC gasoline injection 

mass, the thermal efficiency decreases due to a reduction in the expansion stroke utilization. Therefore, the 

diesel fuel near TDC is necessary to maximize NFE and control PPRR.  

 

Figure 6-16. Comparison of NFE and PPRR of the optimum case with Case-1 (DI-Diesel added to premixed 

gasoline) and Case-2 (DI-Diesel added to DI-Gasoline). 

Since the late gasoline injection decreases thermal efficiency, it is of interest to understand what 

has limited the GA from picking an optimum case that had a higher fuel mass in the diesel fuel injection. 

An additional parametric study was performed where the gasoline fraction was varied while fixing the fuel 

mass in the premixed fuel at the optimum value.  Since the premixed fuel mass is kept constant, varying 

the gasoline fraction will vary the fuel mass in the gasoline and diesel fuel direct-injections by keeping the 

total DI fuel mass constant. The rest of the inputs were held fixed at the values of the optimum case. Figure 

6-17 shows the NFE and soot emissions as a function of the gasoline fraction. The soot constraint chosen 

for the optimization study is also overlaid on the plot. The results show that, as the diesel fuel mass is 

increased, the NFE increases since more fuel is combusting close to TDC. However, increasing fuel in this 

high temperature mixing-controlled combustion also increases the soot emissions. The maximum NFE 

possible while meeting the soot constraint is obtained in the gasoline fraction range of 0.9 to 0.92, which 

agrees with the optimum value selected by the GA. 
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Figure 6-17. NFE and soot emissions as a function of gasoline fraction for a fixed premixed fuel mass. 

6.2.2. Mid-Load Operating Condition (9 bar, 1300 rev/min.) 

In addition to the low-load and high-load cases, a mid-load operating condition of 9 bar gross IMEP 

and engine speed of 1300 rev/min. was simulated with the optimum bowl and injector design. The purpose 

of simulating this case was to ensure that the efficiency and emissions benefits seen with RCCI strategy at 

mid-load conditions in past research are retained using the selected configuration. The fueling strategy and 

air-handling inputs for the mid-load operating condition were based on Kokjohn et al. [6] and are shown in 

Table 6-5. The injection strategy was very similar to the injection strategy considered for the current study, 

but both the direct-injections used diesel fuel. The gasoline fraction, which is the main control handle for 

this operating condition was adjusted to achieve the optimal CA50 on the current design. The results from 

the mid-load simulation are shown in Table 6-5. The mid-load case achieved a GIE of 50.1% and NFE of 

47.2% with near zero NOx and soot emissions. This result indicates that the benefits seen with the RCCI 

strategy at mid-load conditions are retained using the optimized design.  

Figure 6-18 shows a comparison of energy flow as a function of IMEP to explain the differences 

in efficiency seen at the three operating conditions studied. Compared to the mid-load condition, the low-

load case has lower exhaust losses and higher wall heat transfer. These two losses offset each other and do 

not contribute to the efficiency differences. The difference in efficiency is primarily due to the higher 

incomplete combustion at the low-load operating condition. At high-load, the wall heat transfer and 
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incomplete combustion are almost the same as the mid-load condition, but the exhaust losses are 

significantly higher (increase by ~7%). The gasoline injection at 15 ºaTDC combusting late into the cycle 

is the cause of the high exhaust losses for the high-load condition.  

Table 6-5. Design inputs and results for the mid-load condition of 9 bar and 1300 rev/min. 

DESIGN INPUTS 

 

Fueling Strategy 

Gas. Frac. [-] 0.92 

Premix Gas. Frac. [-] 1.00 

SOI 1-Diesel. [ºaTDC] -58 

SOI 2-Diesel [ºaTDC] -37 

Pinj 1-Diesel. [bar] 800 

    Pinj 2-Diesel [bar] 800 

 

Air-handling  

Pivc [bar] 2.1 

EGR [%] 45 

OUTPUTS 

GIE [%] 50.1 

NFE [%] 47.2 

NOx [g/kg-f] 0.07 

Soot [g/kg-f] 0.00 

CO [g/kg-f] 5.78 

UHC [g/kg-f] 4.96 

PPRR [bar/deg] 10.99 

PP [bar] 114.73 

CA50 [ºaTDC] -2.38 

 

Figure 6-18. Energy Flow vs. IMEP for the optimum cases. 
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6.2.3. Mode Weighting Factor Effect 

The results shown from the optimization study were achieved by equally weighting the efficiencies 

of the low-load and high-load operating conditions (i.e., by setting the mode weighting factor (Wmode) to 

0.5). In the current section, the effect of varying Wmode on the optimization results will be shown. By setting 

Wmode to 0 (only the low-load NFE will be maximized), we can find a design that is optimized solely for 

the low-load operating condition. Similarly, by setting Wmode to 1 (only the high-load NFE will be 

maximized), we can find a design optimized exclusively for the high-load operating condition. The results 

from this study will be compared with the optimization results shown in the earlier section. The purpose of 

this study is to demonstrate the importance of considering the efficiencies of both the loads when 

performing an optimization study.  

 

Figure 6-19. Comparison of COSSO predicted output (y-axis) to KIVA output (x-axis). 
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To perform this study, the COSSO tool [61] was used to fit a response surface model to the GA 

data. The COSSO model is then used to predict the output for a given set of input parameters. To have 

confidence in the results predicted by COSSO, the COSSO results were validated with the CFD simulation 

data from the GA at each load. Figure 6-19 shows the COSSO predicted output versus the CFD (KIVA) 

simulated output. A straight line with a slope of one would indicate a perfect match. As seen from the 

figure, all the outputs are predicted suitably for both the combustion strategies over the design space 

considered for the optimization study.  

DK-GA was used for the current optimization study, but instead of using CFD simulations to 

generate the outputs, the response surface equations generated from COSSO were used to predict the 

outputs. In the current study, when Wmode is set to either 0 or 1, not only the bowl geometry and injector 

design parameters, but also the fueling strategy and air-handling parameters of only one operating condition 

(either low-load or high-load based on the value of Wmode) are optimized. Since it does not make sense to 

use the same air-handling and injection strategies for both high-load and low-load, the following procedure 

was used:  

1. Assuming Wmode is set to 0, the optimization routine is performed to obtain a bowl geometry and injector 

design that is optimized for the low-load operating condition.  

2. Keeping the bowl geometry and injector design inputs fixed at the optimum values, the optimization 

study is repeated by changing Wmode to 1-Wmode (i.e., from 0 to 1 for this example). Thus, for every 

citizen of every generation, the bowl geometry and injector design inputs remain fixed at the low-load 

optima values while the fueling strategy and air-handling inputs are varied. However, since Wmode is 

modified from 0 to 1, the efficiency of the high-load condition is being considered as the objective. 

3. Following this procedure ensures that the GA is choosing the best low-load and high-load operating 

strategy possible on a bowl geometry and injector design that is optimized for low-load conditions (or 

high-load when Wmode is 1). 

The procedure shown above is assuming Wmode is set to 0. A similar procedure is followed when 

Wmode is set to 1, to optimize for the best low-load and high-load operating strategies on a bowl geometry 
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and injector design optimized for high-load conditions. Table 6-6 and Table 6-7 show a summary of the 

design parameters and the outputs for the optimum points chosen from this study respectively. The optimum 

points were simulated with the KIVA code to validate the COSSO results.  

Table 6-6. Optimized inputs for low-load and high-load at different Wmode values. 

 Wmode = 0 Wmode = 1 

DESIGN INPUTS 

 

 

Low-Load 

(2 bar, 

1800 

rev/min.) 

Mid-Load (9 

bar, 1300 

rev/min.) 

High-Load 

(20 bar, 

1300 

rev/min.) 

Low-Load 

(2 bar, 

1800 

rev/min.) 

Mid-Load (9 

bar, 1300 

rev/min.) 

High-Load 

(20 bar, 

1300 

rev/min.) 

Bowl and Injector Design 

 

CR 15.7 11.8 

Tiltxz-Gas. 

[º] 
81.81 66.91 

Tiltxz-

Diesel[º] 
58.95 25.51 

dnoz-Gas. 

[µm] 
100 100 

dnoz-

Diesel 

[µm] 

100 100 

Fueling Strategy 

 

Gas. Frac. 

[-] 
0.1 0.9 0.88 0.01 0.92 0.995 

Premix 

Gas. Frac. 

[-] 

0.02 1 0.42 0.03 1 0.71 

SOI-Gas. 

[ºATDC] 
-14 - 14.2 -20.2 - -5 

SOI-Diesel 

[ºATDC] 
-35 -58/-37 -54 -38.4 -58/-37 -44.4 

Pinj-Gas. 

[bar] 
850 - 2419 500 - 2500 

Pinj-Diesel 

[bar] 
651 800/800 1569 500 800/800 1750 

Air-handling 

 

Pivc [bar] 1 2.1 3.13 1 2.1 4.25 

EGR [%] 30 45 45.2 0 41 35 
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Table 6-7. Optimized outputs for low-load and high-load at different Wmode values 

 Wmode = 0 Wmode = 1 

 

Low-Load 

(2 bar, 

1800 

rev/min.) 

Mid-Load (9 

bar, 1300 

rev/min.) 

High-Load 

(20 bar, 

1300 

rev/min.) 

Low-Load 

(2 bar, 

1800 

rev/min.) 

Mid-Load (9 

bar, 1300 

rev/min.) 

High-Load 

(20 bar, 

1300 

rev/min.) 

GIE [%] 48.4 49.5 35.6 38.1 49.1 47.6 

NFE [%] 43.2 46.4 33.8 32.0 46.3 43.0 

NOx 

[g/kg-f] 
8.32 2.27 0.06 16.3 0.34 6.53 

Soot 

[g/kg-f] 
0.00 0.01 1.73 0.00 0.00 1.16 

PPRR 

[bar/deg] 
6.86 9.03 13.54 3.93 4.67 15.13 

PP [bar] 55.86 105.4 199.36 33.12 90.54 198.3 

Figure 6-20 shows a comparison of the COSSO predicted and KIVA simulated results of the optima 

for Wmode of 0 and 1. Considering the wide range of the design space for the current study, the COSSO 

model gives a reasonable agreement in trends and magnitudes with the KIVA simulated results for both the 

mode weights. 

 

Figure 6-20. Comparison of COSSO predicted and KIVA simulated results for the optima for Wmode of 0 and 

1. 

Investigating the optimum design parameters shows that, when the low-load operating condition is 

heavily weighted, the optimum converges to a reasonably high CR of 15.7. Conversely, giving the high-
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load operating condition, a higher weight leads to a low CR of 11.8 as the optimum value. These two mode 

weights provide the bounds on the upper and lower limit on CR. Interestingly, when an equal mode 

weighting was given to both the operating conditions the optimum CR (CR = 13.1) chosen is close to the 

average of these two CR’s. The optimum injector design remained similar across different mode weights. 

The optimal configuration had a narrow spray angle for the diesel fuel injection and a wide spray angle for 

gasoline injection with a small nozzle diameter of 100 microns for both the injectors. Figure 6-21 shows 

the optimum bowl geometries for all the three mode weights studied.  

 

Figure 6-21. Optimum bowl geometries for the three mode weights. 

The optimal fueling strategies also were very similar at different mode weights. The low-load 

optimum at both the mode weights had a diesel LTC strategy with a small amount of fuel being gasoline 

(~2-3%), like the optimum shown in Table 6-3. The high-load optimums were also similar to the optima 

shown in Table 6-3, where the majority of the fuel is gasoline. However, for Wmode of 1, the SOI timings of 

gasoline and diesel fuel are before TDC and relative early compared to the optima for Wmode of 0.5 (shown 

in Table 6-3) where the gasoline injection was post TDC. Since the optimum CR for Wmode of 1 is lower 
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than the optimum CR for Wmode of 0.5, it was possible to have relatively early SOI timings while meeting 

the PPRR and PP constraints.  

From the outputs in Table 6-7, it is evident that when low-load is given a higher priority (Wmode of 

0), though the low-load case has an excellent efficiency, the high-load optimum ends up having a poor 

efficiency. A similar result is seen for Wmode of 1 with the low-load operating condition having a poor 

efficiency. Figure 6-22 shows GIE and NFE as a function of IMEP for the three values of Wmode studied.  

 

Figure 6-22. GIE and NFE vs. IMEP for different Wmode values. 

The figure shows that giving preference to one operating condition (low-load or high-load) over 

the other benefits only the operating condition that was prioritized in the optimization and has a negative 

impact on the performance at the other operating condition. Giving equal weight to both operating 

conditions yields an optimum design with efficiencies close to the best possible efficiency at both the loads 
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and shows good performance across all points considered. It is also interesting to note that the mid-load 

operating point, 9 bar IMEP and 1300 rev/min., is insensitive to the selected bowl geometry or injector 

design. This result highlights the importance of considering multiple modes of the drive cycle 

simultaneously when optimizing the engine design. 

6.3. Conclusions 

In this chapter, a computational optimization study was performed for RCCI combustion 

considering the performance at low-load-high-speed (2 bar, 1800 rev/min.) and high-load-low-speed (20 

bar, 1300 rev/min.) operating conditions simultaneously. The optimization study considered 28 design 

inputs which included parameters for piston bowl geometry, injector design, air-handling and fueling 

strategy. When both conditions were equally weighted, the optimization study resulted in an optimum CR 

of 13.1 with a stepped piston bowl geometry that had two distinctive regions.  Results also showed that a 

narrow spray angle for diesel fuel and a wide spray angle for gasoline would be necessary to target the two 

regions of the bowl. The optimal fueling strategy had a diesel LTC strategy at low-load with very little 

premixed fuel and a low gasoline percentage (~15% of the total fuel mass). At high-load, the optimum 

strategy was a mixed mode combustion strategy with 92% of the fuel being gasoline and most it being 

premixed. The small quantity of diesel fuel present was injected close to TDC and this along with the 

premixed fuel contributed to the primary heat release. The rest of the gasoline was injected as a load 

extension injection after TDC to achieve the necessary load.  

The COSSO response surface model was fit to the GA data and was used to study the effect of 

weighting the efficiencies on the GA results. It was found that when low-load is given a higher weight, a 

reasonably high CR piston (CR ~ 15.7) is preferred as the optimum. Conversely, giving a higher weight to 

high-load results in a low CR (CR ~ 11.8) piston as the optimum. Results also showed that prioritizing one 

load highly over the other would yield a bowl geometry that affects the performance negatively at the other 

load condition.  The study highlighted the importance of considering multiple loads simultaneously during 

optimization studies to achieve a realistic optimal design that yields good performance across a range of 

operating conditions. 
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Chapter 7 Machine Learning in Genetic Algorithm Optimization 
In the previous chapter, it was shown that engine design should be optimized considering multiple 

operating modes simultaneously to achieve an optimum design that works across the drive cycle. Therefore, 

to thoroughly optimize an engine design, it would be ideal to perform an optimization considering all the 

modes of a drive cycle. However, the GA took an extremely long time (~ 3 months) to complete the 

optimization of two operating points. If the optimization were to be setup considering all the modes of a 

drive cycle, the optimization process must be made faster to finish the GA in a reasonable time. One 

approach to address this issue would be to implement machine learning in GA optimizations. 

The GA optimizations generate large amounts of data after every generation. For example, the 

multi-mode GA optimization presented in Chapter 6 generated 25,000 data points upon the completion of 

the GA. Most of this data is unused because the focus is usually on the optimum point or trends near the 

optimum point. However, the rest of the data has useful information about the interactions between the 

inputs and the outputs over the entire design space studied. As shown in Chapter 4 and Chapter 6, non-

parametric regression analysis can be used to run additional DOEs and optimization studies within the 

design space in a much shorter time (less than a day) than the multidimensional CFD code. Nevertheless, 

so far, non-parametric regression analysis was performed with the GA data only upon completion of the 

GA. If a similar approach could be used within the GA after every generation, then the regression model 

could be used instead of the CFD code to predict the outputs.  This would reduce the optimization time 

significantly. However, to perform this study, it is essential to find a regression model that works efficiently 

with non-parametric data, generates the response function and predicts the response in a short time (ideally, 

less than an hour).  

In the previous chapters, the COSSO tool [61] was used to perform non-parametric regression 

analysis with the GA data. Though it has worked well in the earlier studies, the COSSO tool has several 

shortcomings. Firstly, the COSSO tool takes a long time to generate the response function. The time taken 

to generate the response increases with the number of design variables and the number of training data 

points. For example, for the multi-mode GA data, when all the 20,000 data points were used, the COSSO 



112 

 

tool took more than a day to generate the response function for each output of interest. Hence, the GA data 

had to be filtered to 2,000 useful points to reduce the estimation time to a day for each output. Even for the 

high-load GA in Chapter 4, which had only six design variables, the dataset had to be filtered to 2,000 

useful points to ensure that the response function for each output is generated within a day. This is not 

preferred since the majority of the design space is eliminated upon filtering the dataset. Secondly, the 

COSSO tool requires the specification of a center point design. When using the COSSO tool with the GA 

data, the center point design is usually chosen as the optimum point. Hence, the response functions 

generated can be perceived as a sensitivity analysis about the optimum point. Since a high weight is given 

to the center point design, the magnitude of the COSSO predictions agree well with the CFD results close 

to the center point design. However, as the test point deviates from the center point design, sometimes, the 

COSSO predicted magnitudes deviate from the CFD results. Figure 7-1, shows an example [49] of the 

COSSO and the KIVA predicted results for NOx and soot emissions as a function of SOI of diesel fuel. 

The center point design is highlighted on each plot. For both the outputs, the trends predicted by COSSO 

agree well with the KIVA predicted results. In terms of magnitudes, close to the center point design, there 

is a good agreement between COSSO and KIVA. However, as the SOI timing moves further away from 

the SOI of the center point design, the difference increases.  

 

Figure 7-1. COSSO and KIVA predicted results of NOx and Soot emissions as a function of SOI-Diesel. The 

blue box highlights the center point design used to generate the COSSO response function. 

The previous discussion has shown that, although the COSSO tool has worked well with the GA 

data in the previous studies, due to its shortcomings, it cannot be used within the GA to speed up the 

optimization process. This motivates the need to find a model generation approach that is fast and works 

well with large non-parametric datasets like the GA data. Several machine learning approaches that have 
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been shown to work well with non-parametric datasets were discussed in the literature review (Chapter 2). 

In previous studies [62, 63] comparing machine learning approaches for non-parametric datasets, the GPR 

approach has shown superior performance. Accordingly, in the current study, the GPR approach will be 

used to analyze the GA data.  

7.1.  Gaussian Process Regression (GPR) 
GPR [67] is a non-parametric regression technique that can be applied to any dataset where the 

functional form is unknown. This approach is named as GPR since the response function has the functional 

form of a Gaussian (or normal) distribution. Past literature [66, 68] has shown GPR to be a reliable and fast 

approach for performing non-parametric regression analysis. The reason for the superior performance of 

the GPR approach is due to the functional form of the response function, also called the kernel function. 

The most commonly used kernel function for GPR is the exponential kernel, which has a functional form 

given by 

 𝑓(𝑥𝑗) = ∑ 𝜎𝑓
2

𝑛

𝑖=1

exp(−𝑟) , (27) 

 𝑟 =  √ ∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)2

𝜎𝑚
2

𝑑

𝑚=1

 , (28) 

where n is the total number of training data points, d is the total number of input variables, and like COSSO, 

the kernel parameters 𝜎𝑓 and 𝜎𝑚 are estimated by minimizing the residual function given by 

 𝑅 =
1

𝑛
∑[(𝑦𝑖 − 𝑓(𝑥𝑖))2]

𝑛

𝑖=1

+ 𝜆𝐽(𝑓) , (29) 

where 𝑦𝑖 is the CFD result of the current objective to be fit. The GPR approach works efficiently because 

the influence of a training data point (xi) on a test data point (xj) is based on the distance between the two 

points. The exponential factor in the kernel function is a function of the distance between the two points. 

When the two points are close to each other (i.e., xi ~ xj), the exponential value tends to 1. This indicates 

that the training data point has the maximum influence on the test data point. Conversely, when the two 

points are far from each other (i.e., xi - xj ~ ∞) the exponential value tends to 0, indicating that the training 
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data point has no influence on the test data point. Therefore, through the response function, each training 

data point gets a weightage. The training data points that are closest to the test data point are given a high 

weightage. As the distance between the training and the test data point increases, the weightage decreases 

exponentially. This causes the training algorithm to converge significantly faster than the COSSO approach 

where the functional form is a spline and all the training data points are given equal weightage.  

For the response function to be smooth, the output values at neighboring data points must be alike, 

and the distant data points should have negligible effect. The kernel parameter 𝜎𝑚 controls the impact of a 

data point 𝑥𝑖 on the response function, based on the distance between 𝑥𝑖 and 𝑥𝑗. To demonstrate the effect 

of changing 𝜎𝑚, Figure 7-2 shows 𝑓(𝑥𝑗) evaluated for different values of 𝜎𝑚 with 𝑥𝑗 varied from 0 to 10 

in steps of 0.1, while 𝑥𝑖 is set to zero and 𝜎𝑓 is set to one. As seen from the figure, for a small value of  𝜎𝑚, 

a minor change in 𝑥𝑗 (i.e., distance between 𝑥𝑖 and 𝑥𝑗 increases) causes a rapid decrease in the response 

function. This indicates that the corresponding input variable has a large effect on the response function. 

As the value of 𝜎𝑚 increases, the function starts to respond more gradually to variations in 𝑥𝑗. 

 

Figure 7-2. Response function of the exponential kernel evaluated at different values of the kernel parameter 

𝝈𝒎. 

The kernel parameter, 𝜎𝑓, gives an estimate of the maximum value the function can have. By 

adjusting 𝜎𝑓, the magnitude of the GPR response function is adjusted to match the desired output for a given 

training data point. To demonstrate the effect 𝜎𝑓 has on the response function, Figure 7-3 shows 𝑓(𝑥𝑗) 
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evaluated for different values of 𝜎𝑓 with 𝑥𝑗 varied from 0 to 10 in steps of 0.1 while 𝑥𝑖 is set to 0 and 𝜎𝑚 is 

set to 1. As seen from the figure, by adjusting 𝜎𝑓 , the maximum value of the response function can be 

modified.  

 

Figure 7-3. Response function of the exponential kernel evaluated at different values of the kernel parameter 

𝝈𝒇. 

There are several kernel functions explored in literature for GPR analysis [68]. All the kernel 

functions have a Gaussian response with the two kernel parameters 𝜎𝑓 and 𝜎𝑚, which are used to control 

the shape of the response function. To verify the performance of the GPR approach with GA data, the high-

load data from the multi-mode GA was used. The dataset was split up into training and test data with 80% 

of the data points allocated randomly for training and the remaining 20% for the test data. Various kernel 

functions were trained with the same training data, and their performance was evaluated with the test data. 

Table 7-1 shows the various kernel functions explored, their functional forms, and the R2 values for GIE, 

NOx, Soot and PP outputs. The R2 values are estimated for a linear fit between the GPR predicted outputs 

and the CFD predicted outputs (available from the GA data) of the test data. Results show that all the kernel 

functions performed reasonably well with R2 values greater than 0.92 across all the outputs. All the kernel 

functions investigated took ~15 minutes individually to generate the response function for each output and 

to estimate the output values for the test data. In comparison, the COSSO approach took more than a day 

to perform the same task. This study demonstrates the superior efficiency of the GPR compared to the 
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COSSO approach for non-parametric regression analysis. Of all the response functions explored, the matern 

3/2 kernel showed the best agreement with the highest R2 values for all the outputs. Accordingly, the matern 

3/2 kernel will be used for performing further analysis. 

Table 7-1. Kernel functions explored, their functional forms and the R2 values for the fits between the GPR 

and the CFD predictions for the GIE, NOx, Soot and PP outputs. 

Kernel 

Function 
Functional Form GIE NOx Soot PP 

Exponential 𝑘(𝑥𝑖, 𝑥𝑗) =  𝜎𝑓
2exp (−𝑟) 0.92 0.95 0.92 0.97 

Squared 

Exponential 
𝑘(𝑥𝑖, 𝑥𝑗) =  𝜎𝑓

2exp (−𝑟2) 0.92 0.95 0.92 0.97 

Matern 3/2 𝑘(𝑥𝑖, 𝑥𝑗) =  𝜎𝑓
2(1 + √3 𝑟) exp (−√3 𝑟) 0.95 0.96 0.94 0.98 

Matern 5/2 𝑘(𝑥𝑖, 𝑥𝑗) =  𝜎𝑓
2(1 + √5 𝑟 +

5

3
 𝑟2)exp (−√5 𝑟) 0.94 0.96 0.94 0.98 

7.2.  GPR in GA Optimization 
The previous section has shown that the GPR approach with the Matern 3/2 kernel works efficiently 

with non-parametric datasets and performs regression analysis in a short time. Hence, this approach can be 

used within the GA to try and speed up the optimization process. Figure 7-4 shows the flow chart outlining 

the procedure used to speed up the GA optimization.  

 

Figure 7-4. Flowchart outlining the CFD+GPR approach for GA optimization. 
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Before starting the GA, a Latin hypercube DOE dataset of 1000 data points within the input range 

used for the GA, is simulated in KIVA. This dataset will be used to verify the performance of the GPR 

model within the GA. Once the DOE runs are complete, the GA is initiated. The first generation is run 

entirely with KIVA. The data generated from the first generation is used to train the GPR model and 

generate the response functions for all the outputs of interest. The performance of the GPR model is 

evaluated using the Latin hypercube DOE dataset generated prior to initializing the GA. From the DOE 

dataset, the closest point to each citizen of the new generation is estimated. These closest DOE data points 

will be used to verify the performance of the GPR model. It is reasonably assumed that if the GPR model 

performs well for the neighboring points of a test citizen, then it is expected to perform well for the test 

citizen. To identify the closest DOE data point to each citizen, the Euclidean distance from the new 

generation dataset of the GA to every point in the DOE dataset is estimated. From the estimated distances, 

the DOE data point with the minimum distance is picked as the closest DOE data point. It is to be noted 

that prior to estimating the distance, the DOE and the GA data should be normalized to a range between 

zero and one for all the input variables. This is done to ensure that the relative magnitudes of the inputs do 

not impact the distance estimation. Upon identifying the closest points from the DOE dataset, the GPR 

response functions are used to evaluate the outputs for each of these closest DOE data points. However, 

since the DOE cases were run in KIVA prior to starting the GA, the CFD predicted output for these cases 

is available. By using the CFD result and the GPR estimated result, a percentage error is estimated for each 

of the closest DOE data points. If the GPR predicted output for the closest DOE data point has an error of 

less than 2%, then the output for the corresponding citizen is predicted using the GPR model (i.e., KIVA is 

not run). On the contrary, if the GPR prediction for the closest DOE data point exceeds an error of 2%, then 

the corresponding citizen will be simulated in KIVA.  

It is to be noted that the GPR model is trained at the start of every new generation. That is, for every 

new generation, the data from all the previous generations is used to train the GPR model. Therefore, as the 

number of generations increase and the design space is more thoroughly covered by the GA, it is expected 

that the number of runs predicted by the GPR model will also increase. As the number of GPR evaluations 
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increases, the overall time taken for the optimization process reduces. This approach will be referred to as 

the CFD+GPR approach in the rest of the thesis. The validation of the CFD+GPR approach with GA data 

will be shown in the next section. 

7.2.1. Validation of CFD + GPR Optimization Approach 

To validate the approach, initially, an optimization was run completely with CFD (in KIVA) using 

the DK-GA. Later, the GA was repeated with the CFD+GPR approach to see if a similar optimum as the 

GA run solely with CFD is obtained. Figure 7-5 shows the injection strategy used for the GA. Table 7-2 

shows the design parameters and their corresponding ranges used in the GA. The optimization was 

performed at a nominal load of 20 bar gross IMEP and engine speed of 1300 rev/min. with a fixed IVC-

pressure of 3.96 bar. 

 

Figure 7-5. Injection strategy used for the GA optimization study used to evaluate the potential of combining 

the GA with the GPR approach. 

Table 7-2. Range of variation allowed for each design parameter in the optimization study used to evaluate 

the potential of combining the GA with the GPR approach. 

Input Range 

Premix Gas. Frac. [-] 0 to 1 

Gas. Frac. [-] 0 to 1 

SOI-Gas. [°aTDC] -100 to 40 

SOI-Diesel [°aTDC] -100 to 40 

EGR [%] 30 to 60 

Both the GA’s were run with 100 citizens per generation for 50 generations. Prior to running the 

GA with the CFD+GPR approach, as explained earlier, a Latin hypercube DOE dataset of 1000 data points 

within the input ranges shown in Table 7-2, was simulated in KIVA. To ensure that the matern 3/2 kernel 

is performing as expected with the new dataset, the data obtained from running the GA completely with 

KIVA was used to train the GPR model with a matern 3/2 kernel. Then the GPR model was tested using 
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the Latin hypercube DOE dataset. Figure 7-6 shows the agreement between the CFD and the GPR predicted 

outputs for the DOE dataset.   

   

  
Figure 7-6. Comparison of GPR predicted output (y-axis) to KIVA predicted output (x-axis) for the Latin 

hypercube DOE dataset. 

The results show good agreement between the CFD and GPR predicted results. This study indicates 

that the GPR model with the matern 3/2 kernel does a reasonable job at predicting the CFD results over the 

wide design space covered for the GA. Upon the completion of the GA with the CFD+GPR approach, the 

optimum design was identified, and the results were compared with the optimum from the GA run 

completely with CFD. Table 7-3 shows a comparison of the optimum points from the two GA’s. The results 

show a very good agreement between the optimum designs of the GA with the CFD and the CFD+GPR 

approaches. A similar optimum injection strategy is predicted from both the approaches. The optimum 

fueling quantities were predicted within a maximum error of 0.4%. Though the optimum gasoline SOI 

timing was different from the two approaches, the overall injection strategy remains similar. Furthermore, 

since ~99% of the gasoline is premixed, the DI gasoline has negligible fuel mass causing it to have a 

minimal effect on the performance of the optimum strategy. In terms of the outputs, the optimum cases 

from both the approaches had an error of less than 2% across all the outputs of interest. To ensure that the 

GPR predictions were accurate, the optimum point from the CFD+GPR approach was re-run in KIVA and 

the results from the KIVA run are shown in the last column of Table 7-3. As seen from the table, there is a 
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good agreement between the GPR and the KIVA results for the optimum point from the GA with the 

CFD+GPR approach with an error of less than 3% across all the outputs.  

Table 7-3. Comparison of the optimum points from the GA with CFD and GA with the CFD+GPR 

approaches. 

Parameter CFD CFD+GPR 
CFD+GPR 

(KIVA Validation) 

INPUTS 

Premix Gas. Frac [-] 0.994 0.991 0.991 

Gas. Frac. [-] 0.96 0.964 0.964 

SOI-Gas. [°aTDC] 37.2 19.8 19.8 

SOI-Diesel [°aTDC] 1.53 0.04 0.04 

EGR [%] 59.5 59.5 59.5 

OUTPUTS 

GIE [%] 45.54 45.27 45.13 

NOx [g/kg-f] 0.002 0.001 0.002 

Soot [g/kg-f] 0.012 0.015 0.018 

PPRR [bar/deg] 14.96 14.98 15.31 

PP [bar] 163.45 164.79 165.5 

Figure 7-7 shows the evolution of the fraction of total runs that were evaluated with CFD and with 

the GPR model for the GA with the CFD+GPR approach. The initial generations have few runs with GPR 

model and are dominated by CFD evaluations. This is expected since the design space is not yet thoroughly 

populated by the GA, causing the GPR model to perform poorly in the regions that were not covered by the 

GA. However, as the generations increase, the GA explores the design space more thoroughly causing the 

fraction of runs evaluated with GPR model to increase. By the 20th generation, there is a crossover point 

with the GPR model evaluations overtaking the CFD evaluations. Eventually, by the 31st generation, the 

CFD evaluations reduce to 0. Beyond the 31st generation, the GA is run completely with the GPR model.  

 

Figure 7-7. Fraction of total runs that were estimated with CFD and with the GPR model for the GA with the 

CFD+GPR approach. 
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To understand how much reduction in optimization time, if any, was achieved by using the 

CFD+GPR approach, Figure 7-8 shows a comparison of the time taken to complete the 50 generations of 

the GA with the two approaches. The GA run completely with CFD took ~50 days to complete with one 

day for each generation. However, when the same GA was repeated with the CFD+GPR approach, the GA 

took ~19 days to complete. This includes the time taken to run the Latin hypercube DOE used for 

verification within the GA. Using the GPR model in GA optimization has reduced the computational time 

of optimization by 62%. This reduction in computational time is substantial because the time taken for the 

GPR runs remains independent of the CFD code being used. Since more than half of the optimization is 

evaluated by the GPR model, similar optimization studies can be run using higher fidelity approaches (e.g., 

LES) with suitable computational expense. The results shown in Chapter 6 highlighted the importance of 

considering multiple modes of a drive cycle simultaneously in optimization studies. However, the primary 

constraint on such studies was found to be the excessive time taken to complete the optimization. Using the 

CFD+GPR approach in GA optimizations provides a scope for performing such optimizations within a 

reasonable time without having to increase the computational expense, which makes this result very useful.  

 

Figure 7-8. Comparison of the time taken to complete the 50 generations of the GA between the GA run 

completely with CFD and the GA run with the CFD+GPR approach. 

Since the GPR model with the matern 3/2 kernel has shown to work efficiently within the GA 

optimization, using it to further improve the optimization process would help realize its full potential. There 

are two other areas where regression analysis can be used in optimizations. Firstly, to perform uncertainty 

quantification, which identifies the input parameters to which the combustion strategy is most sensitive. 
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Based on this study, the key input parameters that need to be included in an optimization study can be 

highlighted. Secondly, the GPR model can be used to check for the sensitivity of the designs to operating 

parameter variations during the optimization process. This would help achieve a reliable and stable 

optimum. These applications of the GPR model will be discussed in more detail in the coming sections. 

7.3.  Uncertainty Quantification using GPR 
Engine simulation codes, like KIVA used for the work presented in this thesis, have several sub-

models used to model the complex physics involved in IC engine combustion, including spray, turbulence, 

chemistry, etc. In the simulation code, each of these sub-models has several input parameters, some of 

which are numerical parameters, like model constants (e.g., breakup model constants, soot model constants, 

etc.). These inputs can be tuned to match the model predictions with the experimental data. The remainder 

of the inputs are physical parameters obtained from experimental data (e.g., SOI, injection pressure, etc.). 

Uncertainty in CFD predictions arises from errors in the sub-models, the user’s choice of these input 

parameters, and how sensitive the outputs of the CFD model are to these inputs. Assumptions and 

simplifications need to be made sometimes when choosing the input parameters. For example, when an 

experimental injection rate profile is not available, it is common practice in CFD studies to use a trapezoidal 

injection rate profile. Similarly, when running large computational studies, compromises are made on the 

grid resolution to work efficiently with the available computational resources, as was seen in the 

optimization studies presented in earlier chapters. These assumptions and simplifications in the choice of 

model input parameters can cause uncertainty in CFD model predictions. Understanding the sensitivity of 

the CFD model predictions to the model input parameters could help to establish the relative importance of 

inputs and model parameters. This will provide insight into the key parameters that must be accurately 

known and provide guidance for efforts needed in model development and improvement. That is, it does 

not make sense to invest resources in improving sub-models if their impact on the results of the simulation 

is limited.  
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Table 7-4. Summary of the input parameters in the DOE for CDC, RCCI, and GCI strategies. 

Input Parameter 
CDC RCCI GCI 

Mean Range Mean Range Mean Range 

Spray Model (KH-RT Breakup) 

balpha [-] 0.6 0.5 to 0.7 0.6 0.5 to 0.7 0.6 0.5 to 0.7 

cnst1 [-] 0.18 0.17 to 0.19 0.18 0.17 to 0.19 0.18 0.17 to 0.19 

cnst22 [-] 80 10 to 80 80 10 to 80 80 10 to 80 

cnst3rt [-] 0.55 0.1 to 1 0.55 0.1 to 1 0.55 0.1 to 1 

cnst2b [-] 0.55 0.1 to 1 0.55 0.1 to 1 0.55 0.1 to 1 

distant [-] 5.2 0.5 to 10 5.2 0.5 to 10 5.2 0.5 to 10 

Cd [-] 0.9 0.85 to 0.95 0.75 0.7 to 0.8 0.75 0.7 to 0.8 

Soot Model (Hiroyasu NSC) 

Asf [s-1.bar-0.5] 500 400 to 600 500 400 to 600 500 400 to 600 

Esf [cal/mol] 1750 1250 to 2250 1750 1250 to 2250 1750 1250 to 2250 

Operating Conditions 

Engine Speed [rev/min.] 1800 1790 to 1810 1300 1290 to 1310 1300 1290 to 1310 

Tcyl.wall [K] 440 430 to 450 450 440 to 460 450 440 to 460 

Tcyl.head [K] 575 565 to 585 475 465 to 485 475 465 to 485 

Tpiston [K] 635 625 to 645 500 490 to 510 500 490 to 510 

SOI1-Gas. [°aTDC] - - -78 -79 to -77 -100 -101 to -99 

SOI2-Gas. [°aTDC] - - - - -14 -15 to -13 

SOI-Diesel [°aTDC] 0 -1 to 1 -12 -13 to -11 - - 

DOI1-Gas. [°CA] - - 13 11 to 15 10.4 8.4 to 12.4 

DOI2-Gas. [°CA] - - - - 12.2 10.2 to 14.2 

DOI-Diesel [°CA] 30 28 to 32 13.4 11.4 to 15.4 - - 

Premix Gas. Mass [mg] - - 109 105 to 113 135 131 to 139 

DI1-Gas. Mass [mg] - - 64 62 to 66 49 47 to 51 

DI2-Gas. Mass [mg] - - - - 57 55 to 59 

DI-Diesel Mass [mg]   67 65 to 69 - - 

Geometry 

CR [-] 16.4 16 to 17 12.4 12 to 13 12.4 12 to 13 

tiltxz [°] 65 63 to 67 65 63 to 67 65 63 to 67 

cone [°] 10 8 to 12 12 10 to 14 12 10 to 14 

dnoz [µm] 242 240 to 244 250 248 to 252 250 248 to 252 

smr [µm] 121 120 to 122 125 124 126 125 124 to 126 

drnoz [µm] 300 280 to 320 300 280 to 320 300 280 to 320 

noz.protrude [mm] 3 2.8 to 3.2 2.1 1.9 to 2.3 2.1 1.9 to 2.3 

Initial Conditions 

Tivc [K] 400 395 to 405 395 390 to 400 395 390 to 400 

Pivc [bar] 3.4 3.3 to 3.5 3.97 3.87 to 4.07 3.79 3.69 to 3.89 

EGR [%] 20 18 to 22 55 53 to 57 55 53 to 57 

Fuel Temperature [K] 333 323 to 343 333 323 to 343 333 323 to 343 

tkei 2 1 to 3 2 1 to 3 2 1 to 3 

scli 1 0.5 to 1.5 1 0.5 to 1.5 1 0.5 to 1.5 

swirl [-] 0.7 0.5 to 1.5 0.7 0.5 to 1.5 0.7 0.5 to 1.5 

Numerical Parameters 

dtmax [s] 1e-5 1e-4 to 1e-6 1e-5 1e-4 to 1e-6 1e-5 1e-4 to 1e-6 

rpr [-] 1.3 1.1 to 1.5 1.3 1.1 to 1.5 1.3 1.1 to 1.5 

rsc [-] 1.3 1.1 to 1.5 1.3 1.1 to 1.5 1.3 1.1 to 1.5 

tnparc [-] 2000 1000 to 3000 2000 1000 to 3000 2000 1000 to 3000 

dS [mm] 2 2 to 4 2 2 to 4 2 2 to 4 

dTheta [°] 4 3 to 5 4 3 to 5 4 3 to 5 

CAaccord [°CA] -50 -60 to -40 -50 -60 to -40 -50 -60 to -40 
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To perform this study, a large DOE consisting of a combination of numerical and physical input 

parameters was setup in KIVA. The study was performed with the three combustion modes that are studied 

in this thesis: CDC, RCCI, and GCI. The DOE for each combustion strategy had a total of 1200 runs. Table 

7-4 shows a summary of the input parameters, their baseline value, and the range of variation for each input 

parameter in the DOE. The GPR model with the matern 3/2 kernel will be used to perform the uncertainty 

quantification study.  

CDC RCCI GCI 

   

   

   

   

Figure 7-9. Comparison of GPR predicted output (y-axis) to KIVA predicted output (x-axis). 
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To have confidence in the results predicted by the GPR model, the results were validated with the 

KIVA predicted results for the DOE data. Figure 7-9 shows the KIVA simulated output versus the GPR 

predicted output; a straight line with a slope of one indicates a perfect match. All the outputs were accurately 

predicted for all the three combustion strategies over the design space considered for the study indicating 

that the GPR model can be used to perform the uncertainty quantification study. 

For the uncertainty quantification study, a parameter (i.e., sensitivity constant or SC) is calculated 

for each output and is used to quantify the importance of an input variable in relation to that output variable. 

SC is estimated as 

 SCj =  
σtotalji

∑ σtotalji

n
i=1

 , 
(

(30) 

 σtotali
=  ∑ σji

n

i=1

+  ∑ σji,k

n

i≠k

 , 
(

(31) 

where j is the output (e.g., GIE, NOx, etc.), n is the number of input variables, and σ is the standard deviation 

of the output estimated over the total number of data points. The σtotal of each output for each input variable 

is the sum of the standard deviations resulting from the main effect (i.e., where the input variable alone is 

varied, keeping the rest of the variables fixed at the baseline value), and the two-way interaction effect (i.e., 

where the input variable in combination with every other input variable is varied while keeping the rest of 

the variables fixed at the baseline value) of the input variable. To estimate the standard deviation from the 

main and the total effects, the GPR model is used to run Latin hypercube DOEs while varying the inputs 

within their corresponding input range, as explained, while fixing the rest at the baseline value. For the 

current study, each Latin hypercube DOE had data points equivalent to 20 times the number of variables 

(e.g., in the RCCI case, which has 42 inputs, the Latin hypercube had 840 runs). To cover the main and 

two-way interactions for each variable, there were 35,280 runs per input variable (i.e., 840 runs for main 

effect and 840×41 for the two-way interaction effect) for the RCCI strategy. In considering similar runs for 

all input variables, the RCCI strategy entailed a million runs, which were evaluated in approximately 45 

minutes with the GPR model, which shows the potential of this approach. Upon estimating the σtotal for 
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each output with respect to each input variable variation, the SC of the input variable is estimated as the 

ratio of the σtotal of that input variable to the sum of the σtotal of all the input variables. Therefore, the 

larger the SC of an input variable, the more significant the variation in the output due to the variation of the 

input, thus indicating that the output is sensitive to the input variable.  

 A similar approach was used in few earlier studies [102, 103, 104] done in Sibendu Som’s group 

at Argonne National Lab. They used an approach called global sensitivity analysis with a sparse regression 

technique [105] to estimate the sensitivity constants.  Pei et al. [102] performed a sensitivity study for CDC 

at a mid-load condition on a heavy-duty engine. Kodavasal et al. [103] repeated a similar study for GCI 

combustion at low-load conditions on a light-duty engine. Pal et al. [104] also performed a sensitivity study 

with GCI combustion, but at mid-load conditions on a heavy-duty engine with low octane (RON70) 

gasoline.  

The uncertainty quantification study presented in this section differs from the earlier studies in 

several aspects. Firstly, in the present study, along with CDC, sensitivity analysis was performed with 

advanced combustion strategies like RCCI and GCI as well. Furthermore, a comparison of the sensitivities 

of the three combustion strategies was presented. Secondly, the number of parameters included in the 

present study is significantly higher compared to the earlier studies. Though GCI combustion has been 

explored in earlier studies, the current study differs in terms of operating conditions (i.e., high-load 

operation) and includes interactions effects which could have a significant effect on the results from the 

study.  Despite the larger number of input parameters, the inclusion of interaction effects was possible 

because the GPR model was used to perform the sensitivity analysis in the current study. Due to the 

computational speed of the GPR model, the design space could be thoroughly explored within the range of 

variation of all the input variables.  

The approach discussed earlier was followed to estimate the SCs for CDC, RCCI, and GCI 

combustion strategies. The SCs are sorted in descending order, and the top five variables to which the output 

is sensitive are highlighted for each output, for all the three combustion strategies.  
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7.3.1. GIE Sensitivity Constants 

Figure 7-10 shows the plot of input variables corresponding to the top five SCs of GIE for CDC, 

RCCI, and GCI combustion strategies.  The GIE for the CDC and RCCI strategies was found to be most 

sensitive to the primary breakup time constant (i.e., cnst22) and the duration of the near TDC diesel fuel 

injection. For the GCI strategy as well, GIE was found to be sensitive to cnst22 and the near TDC gasoline 

injection duration, but was not as sensitive as the RCCI or CDC strategies. The GCI strategy was found to 

be more sensitive to EGR and CR. Additionally, the CDC strategy had a relatively high degree of sensitivity 

to swirl ratio (similar to that of the near TDC diesel fuel injection duration). Additionally, there was some 

minor sensitivity seen with the computational cell size (dS) and the discharge coefficient (Cd). For the RCCI 

strategy, the sensitivity to EGR was similar to that of the near TDC diesel fuel injection duration. 

Furthermore, for the RCCI strategy, GIE was also found to be sensitive to the mesh resolution in the squish 

region (i.e., CAaccord) and to CR. 

  

 
Figure 7-10. Input variable corresponding to the top five SCs of GIE for (a) CDC, (b) RCCI, and (c) GCI 

combustion strategies. 

To verify the performance of the GPR model, the main effects of the top four SCs of GIE for each 

combustion strategy were simulated in KIVA, and the results were compared with the GPR model trends. 

(a) (b) 

(c) 
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Figure 7-11 shows a comparison of the trends of GIE from the GPR model and KIVA for the top four SCs 

of the three combustion strategies. As seen from the figure, there is an excellent agreement in magnitude 

and trends between the GPR model and CFD. 

  

 
Figure 7-11. Trends of GIE from the GPR model and CFD for the top four SCs of (a) CDC, (b) RCCI, and (c) 

GCI combustion strategies. 

From Figure 7-11, for all three combustion strategies, we see a similar trend of GIE as a function 

of cnst22. At low cnst22, the GIE drops sharply, and as the cnst22 increases, GIE increases. After a cut off 

cnst22, the GIE becomes constant. This is contrary to what we would expect because reducing cnst22 

reduces the primary breakup time, which results in smaller droplets and improved fuel vaporization. This 

is expected to result in faster fuel-air mixing and improved GIE. However, we see the opposite trend here, 

where low cnst22 yields low GIE. To explain the trend with respect to cnst22, Figure 7-12 shows the Ф 

contours at various crank angles after the start of injection (ºaSOI) compared between cnst22 of 10 and 

cnst22 of 80 for the CDC, RCCI, and GCI combustion strategies.  

 

(a) (b) 

c) 
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CDC RCCI GCI 

cnst22 = 10 cnst22 = 80 cnst22 = 10 cnst22 = 80 cnst22 = 10 cnst22 = 80 

      

      

      

      

      

  
    

  
    

   
Figure 7-12. Ф contours at various crank angles after SOI (ºaSOI) compared between cnst22 of 10 and cnst22 

of 80 for the three combustion strategies. 

As expected, for the smaller cnst22 of 10, the primary breakup time is short, which results in smaller 

fuel droplets. However, as the droplet size reduces, so does the spray momentum which results in reduced 

spray penetration. This is evident from the Ф contours for all the three strategies at crank angles of 4 ºaSOI 

and 8 ºaSOI, where the cnst22 of 80 case exhibits higher spray momentum and larger spray penetration 

relative to the cnst22 of 10 case. Due to the reduced spray momentum at low cnst22, the fuel does not 

spread in the combustion chamber and results in an increase in the fuel rich regions (Ф > 1) in the 
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combustion chamber. This is clear from the Ф contours at 16 ºaSOI and 32 ºaSOI for the cnst22 of 10 cases. 

Due to the low spray penetration, the fuel accumulates in the bowl in the CDC case, near the nozzle in the 

RCCI case, and along the cylinder axis in the bowl in the GCI case. However, for the larger cnst22 of 80, 

due to the increased spray penetration, the fuel hits the piston bowl with greater spray momentum and is 

better distributed in the combustion chamber. This can be seen from the Ф contours of cnst22 of 80 at the 

crank angles of 16 ºaSOI and 32 ºaSOI. Eventually, at a crank angle of 60 ºaSOI, the difference between 

the cnst22 of 10 and 80 becomes very noticeable. Focusing on the Ф contours, for the cnst22 of 10 case, 

the fuel rich regions are seen to be significantly higher compared to the cnst22 of 80 case. 

From these results, it becomes apparent that at low values of cnst22, the spray penetration effect 

supersedes the vaporization effect, consequently resulting in relatively poor mixing as compared to the 

higher cnst22 cases. The poor mixing causes increased levels of incomplete combustion for the low values 

of cnst22, thus leading to the sudden drop in GIE. Figure 7-13 shows the percentage of total fuel energy 

lost to incomplete combustion as a function of cnst22 for CDC, RCCI, and GCI combustion strategies. The 

sharp increase in incomplete combustion percentage at low cnst22 values is evident. As the cnst22 

increases, the GIE and the incomplete combustion percentage eventually reach saturation because the spray 

penetration has reached its maximum and no further increase in mixing is seen due to the increase in cnst22. 

 

Figure 7-13. Incomplete combustion [%] as a function of cnst22 [-] for CDC, RCCI, and GCI strategies. 

From Figure 7-13, it is also apparent that RCCI and GCI strategies have nearly the same response 

to varying cnst22, but cnst22 had a higher SC for RCCI relative to GCI. This indicates that the difference 
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in the SC of cnst22 is not due to the reduced impact of cnst22 on GIE of the GCI strategy, but due to the 

increased impact of EGR and CR on GIE for the GCI strategy relative to the RCCI strategy. To understand 

this result, Figure 7-14 shows trends of GIE and CA50 as a function of EGR and CR for the RCCI and GCI 

strategies.   

  

  

Figure 7-14. GIE and CA50 as a function of EGR and CR for the RCCI and GCI strategies. 

From the GIE trends, it is seen that the GCI strategy is significantly more sensitive to EGR and CR 

relative to the RCCI strategy. Particularly at the high EGR values and low CR values, a rapid drop in GIE 

is observed for the GCI strategy. Comparing the CA50 trends for the RCCI and GCI strategies, at the 

baseline EGR of 55% and baseline CR of 12.4, it is apparent that the CA50 for both strategies is after TDC. 

Increasing the EGR or reducing the CR decreases the oxygen concentration or reduces the in-cylinder 

pressure and temperature respectively, both of which lead to an increase in ignition delay. This causes the 

CA50 to be moved further away from TDC, resulting in the reduction in GIE for both strategies. However, 

the GCI strategy was found to be more sensitive to this effect because, for the same level of EGR, the GCI 

strategy is operated at a lower IVC pressure (3.79 bar) relative to the RCCI strategy (3.97 bar). Thus, the 
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GCI strategy has a near stoichiometric global Ф of 0.98, which is higher relative to the RCCI strategy that 

has a global Ф of 0.93. Increasing the EGR increases the global Ф beyond stoichiometric for the GCI 

strategy, causing a sharp rise in incomplete combustion, which reduces the GIE rapidly. For the RCCI 

strategy, despite the increase in EGR, the global Ф remains relatively lean. Therefore, it is not as 

significantly affected as the GCI strategy due to the EGR reduction. Similarly, the GCI strategy has a CA50 

of 10 °aTDC, which is relatively late compared to the RCCI strategy, which has a CA50 of 4 °aTDC. As a 

result, reducing the CR delays the CA50 late into the expansion stroke where temperatures drop rapidly and 

increase the level of incomplete combustion causing a steep reduction in GIE.  

All the three combustion strategies were also found to be sensitive to the duration of the near TDC 

injection where an increase in the injection duration resulted in a reduction in GIE. This is because, for all 

the three strategies, the near TDC injection initiates the combustion and burns in a mixing-controlled heat 

release. Hence, increasing the duration of the injection increases the combustion duration of the mixing-

controlled heat release, causing a larger portion of the total fuel mass to burn away from the TDC. This 

reduces the EER and results in a reduction in GIE.   

7.3.2. NOx Sensitivity Constants 

Figure 7-15 shows the plot of input variables corresponding to the top five SCs of NOx emissions 

for CDC, RCCI, and GCI combustion strategies. For all three combustion strategies, NOx emissions were 

found to be sensitive to EGR as expected. However, in the CDC case, NOx emissions were found to be 

more sensitive to the reciprocal Schmidt number (rsc) and the reciprocal Prandtl number (rpr). NOx 

emissions were also found to be sensitive to cnst22, and some slight sensitivity was seen with the duration 

of the near TDC injection. For the RCCI and GCI strategies, NOx emissions were significantly more 

sensitive to EGR as compared to all other inputs.  



133 

 

  

 
Figure 7-15. Input variable corresponding to the top five SCs of NOx emissions for (a) CDC, (b) RCCI, and 

(c) GCI combustion strategies. 

To verify the performance of the GPR model, the trends from the main effects of the top four SCs 

of NOx emissions for each combustion strategy were compared between the GPR model and CFD. As seen 

from Figure 7-16, there is an excellent agreement in magnitude and trends between the GPR model and 

CFD. From Figure 7-16, firstly, for the RCCI and the GCI strategies, it is seen that NOx emissions are near 

zero and are significantly lower as compared to the CDC case. The reason for this is the use of high EGR 

(55%) for the baseline case. Due to the use of high EGR, the RCCI and GCI strategies were found to be 

insensitive to any input variation other than EGR. With respect to EGR, we see a familiar trend where 

reducing the EGR results in an increase in NOx emissions. Nevertheless, the increase in NOx emissions is 

almost negligible since the lower limit of EGR used (53%) is also high enough to keep the NOx emissions 

close to zero.  

(a) 
(b) 

(c) 
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Figure 7-16. Trends of soot emissions from the GPR model and CFD for the top four SCs of (a) CDC, (b) 

RCCI, and (c) GCI combustion strategies. 

For the CDC case, while NOx emissions are high, we see a similar trend with EGR as expected. 

However, for the CDC case, it is interesting to note that NOx emissions were more sensitive to the reciprocal 

Prandtl number (rpr) and the reciprocal Schmidt number (rsc). NOx emissions were found to increase with 

increasing rsc and reduce with increasing rpr. To explain the trends with respect to rsc, Figure 7-17 shows 

a comparison of the contours of Ф, temperature, and mass fraction of NOx emissions at various crank angles 

for rsc of 1.1 and rsc of 1.5 for the CDC strategy. Increasing the rsc increases mass diffusivity, which results 

in leaner local Ф’s. In the initial crank angles during the injection event, the difference in Ф’s between the 

two rsc cases is not evident. However, upon completion of injection, towards the later part of the expansion 

stroke at crank angles of 54 °aTDC and 60 °aTDC, the difference in Ф between the two rsc cases becomes 

more visible. At these crank angles, the fuel distribution in the combustion chamber for both cases is similar, 

but the rsc of 1.5 case has relatively leaner Ф regions compared to rsc of 1.1. The Ф scale is set to the range 

in which NOx formation is expected to occur, and it is seen that the lean Ф regions of rsc of 1.5 correspond 

(a) (b) 

(c) 
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to a near stoichiometric Ф. This results in higher in-cylinder temperatures for the rsc of 1.5 case relative to 

the rsc of 1.1 case. The higher in-cylinder temperatures for the rsc of 1.5 case are clearly visible at all crank 

angles shown in Figure 7-17. The increased in-cylinder temperatures result in higher NOx emissions for 

the rsc of 1.5 case relative to the rsc of 1.1 case. This is seen from the NOx emission contours in Figure 

7-17, where the rsc of 1.5 case has higher NOx emissions relative to the rsc of 1.1 case at every crank angle. 

Furthermore, the regions of higher NOx emissions correspond to the regions of higher temperature. 

rsc = 1.1 rsc = 1.5 

      

      

      

      

      

      

      

Figure 7-17. Contours of Ф, temperature and mass fraction of NOx emissions for rsc of 1.1 and rsc of 1.5 

cases for the CDC strategy. 

To explain the trend with respect to rpr, Figure 7-18 shows contours of temperature and mass 

fraction of NOx emissions at various crank angles for rpr of 1.1 and rpr of 1.5 cases for the CDC strategy.  
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rpr = 1.1 rpr = 1.5 

    

    

    

    

Figure 7-18. Contours of temperature and mass fraction of NOx emissions for rpr of 1.1 and rpr of 1.5 cases 

for the CDC strategy. 

Since the fuel distribution remains the same as shown in Figure 7-17, contours are shown only for 

the crank angles in the expansion stroke after the injection event. Increasing rpr increases the thermal 

diffusivity, which in turn increases local heat transfer and prevents pockets of sharp temperature rise. 

Similar to the rsc cases, the fuel distribution remains the same for both the rpr cases, but the lower in-

cylinder temperatures for the rpr of 1.1 case are evident at all the crank angles shown in Figure 7-18. The 

reduced in-cylinder temperatures result in lower NOx emissions for the rpr of 1.5 case relative to the rpr of 

1.1 case. The lower NOx emissions for the rpr of 1.5 case are noticeable from the mass fraction of NOx 

contours shown in Figure 7-18. 

7.3.3. Soot Sensitivity Constants 

Figure 7-19 shows the plot of input variables corresponding to the top five SCs of soot emissions 

for CDC, RCCI, and GCI combustion strategies. The soot emissions for CDC, RCCI, and GCI strategies 

were found to be sensitive to cnst22. RCCI and GCI strategies were found to be sensitive to the duration of 

the near TDC injection, and some minor sensitivity was seen with CR. For the CDC case, soot emissions 

were most sensitive to cnst22, and some minor sensitivity was seen with the computational cell size (dS). 
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For all three combustion strategies, although there were additional inputs to which soot emissions were 

sensitive, they had significantly lower SCs as compared to the top two variables  

  

 
Figure 7-19. Input variable corresponding to the top five SCs of soot emissions for the (a) CDC, (b) RCCI, 

and (c) GCI combustion strategies. 

To verify the performance of the GPR model, the trends from the main effects of the top four SCs 

of soot emissions for each combustion strategy were compared between the GPR model and CFD. As seen 

in Figure 7-20, there is a very good agreement in magnitude and trends between the GPR model and CFD. 

Figure 7-20 shows that soot emissions for CDC, RCCI, and GCI strategies decrease as cnst22 increases. 

This is due to the higher spray penetration with increased cnst22. As was shown in Figure 7-12, as the 

cnst22 increases, the droplet size becomes larger, and the spray has greater momentum, leading to a longer 

spray penetration. This causes the fuel to be better distributed in the combustion chamber and reduces the 

number of fuel rich mixture (Ф ≥ 2) zones, resulting in reduced soot emissions. The effect of cnst22 on the 

local Ф was shown in Figure 7-12. The soot emissions for the RCCI and GCI strategies were also found to 

be sensitive to the duration of the near TDC injection. As the duration of the near TDC injection increases, 

soot emissions increase for both strategies. For the RCCI and GCI strategies, the near TDC injection 

initiates the combustion and burns in a mixing-controlled heat release. As the duration of this injection 

(a) (b) 

(c) 
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increases, there is more fuel combusting at locally rich Ф’s, thus resulting in soot formation. Additionally, 

the RCCI and GCI strategies are operated at a high EGR of 55% with near stoichiometric global Ф’s of 

0.93 and 0.98, respectively. The reduced oxygen availability lowers the rate of soot oxidation and, 

combined with the increased soot formation, results in increased soot emissions with increased duration of 

the near TDC injection. However, the magnitudes of soot emissions for the GCI strategy are significantly 

less due to the lower reactivity of gasoline relative to diesel fuel. The low reactivity of gasoline increases 

the ignition delay prior to the mixing-controlled heat release and reduces the locally rich mixtures during 

combustion. This results in lower soot formation and reduced soot emissions at EVO for the GCI strategy 

as compared to the RCCI strategy. 

  

 
Figure 7-20. Trends of soot emissions from the GPR model and CFD for the top four SCs of the (a) CDC, (b) 

RCCI, and (c) GCI combustion strategies. 

Interestingly, for the RCCI strategy, soot emissions were observed to reduce with increasing EGR. 

This is contrary to the expected trend because increasing EGR results in the reduced availability of oxygen, 

which should result in increased soot emissions. To explain this result, Figure 7-21 shows the Ф-T plots of 

(a) (b) 

(c) 
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the in-cylinder charge at various crank angles for the RCCI cases with EGR of 53% and EGR of 57%. For 

the higher EGR case, although the available oxygen reduces, so does the in-cylinder temperature. Under 

the operating conditions studied, the reduced temperature effect of EGR dominates the reduce oxygen 

availability effect. This can be seen from Figure 7-21 where at all the crank angles shown, the charge from 

the EGR of 53% case reaches higher temperatures and closer to the soot formation regions as compared to 

the EGR of 57% case. This results in higher soot formation for the EGR of 53% case. 

   

   

Figure 7-21. Ф-T plots of in-cylinder charge for EGR of 53% and EGR of 57% for the RCCI case. Soot 

islands are shown at the top right corner of the plot in red, and the NOx islands are shown at the bottom right 

corner of the plot in blue. 

In the CDC case, in addition to cnst22, soot emissions were also found to be sensitive to the 

computational cell size (dS). Increasing the cell size resulted in increased soot emissions, as shown in Figure 

7-20. To explain this trend, Figure 7-22 shows the in-cylinder contours of Ф and mass fraction of soot 

emissions at various crank angles for the CDC cases with dS of 2 mm and 4 mm. As the value of dS 

increases, the spray penetration is under-predicted due to the decrease in the spray momentum. This is a 

result of using a coarse mesh due to which the CFD cell volume ends up being quite different from the 

actual volume of influence of the spray. Consequently, the momentum transfer to the surrounding gas phase 

due to drag forces on the liquid droplets is dampened. Ultimately, the gas phase momentum and the liquid 

droplet penetration are both under-predicted. This is realized from comparing the Ф contours of the two 
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cases shown in Figure 7-20, in which the dS of 2 mm case has a higher spray momentum. This causes better 

fuel-air mixing in the dS of 2 mm case. This can be observed from comparing the Ф contours from crank 

angles of 40 °aTDC to 60 °aTDC, where the dS of 4 mm case has a relatively higher number of locally rich 

regions as compared to dS of 2 mm. This results in increased soot emissions for the dS of 4 mm case. The 

increase in soot emissions for the dS of 4 mm case is evident from the soot mass fraction contours at crank 

angles of 40 °aTDC to 60 °aTDC. 

dS = 2 mm dS = 4 mm 

    

    

    

    

    

    

    
Figure 7-22. Contours of Ф and mass fraction of soot emissions for the dS of 2 mm and dS of 4 mm cases for 

the CDC strategy. 

7.3.4. PPRR Sensitivity Constants 

Figure 7-23 shows the plot of input variables corresponding to the top five SCs of PPRR for CDC, 

RCCI, and GCI combustion strategies. 
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Figure 7-23. Input variable corresponding to the top five SCs of PPRR for the (a) CDC, (b) RCCI, and (c) 

GCI combustion strategies. 

The PPRR for the CDC, RCCI, and GCI combustion strategies was found to be sensitive to CR. 

The RCCI and GCI strategies were additionally sensitive to EGR while the CDC strategy was sensitive to 

IVC pressure (Pivc). There was some sensitivity shown to IVC temperature and cnst22 as well for the RCCI 

and GCI strategies, but it was relatively insignificant as compared to the sensitivity shown to CR and EGR.  

To verify the performance of the GPR model, the trends from the main effects of the top four SCs 

of PPRR for each combustion strategy were compared between the GPR model and CFD. As seen from 

Figure 7-24, there is a very good agreement in magnitude and trends between the GPR model and CFD. 

Figure 7-24 shows that PPRR increases with increasing CR for CDC, RCCI, and GCI cases. Secondly, the 

magnitude of PPRR is significantly lower for the CDC strategy relative to the RCCI and GCI strategies. 

For the RCCI and GCI strategies, PPRR was extremely sensitive to CR variation where a unit increase in 

CR results in 8 bar/deg and 38 bar/deg increase in PPRR for the RCCI and GCI strategies, respectively. 

The RCCI and GCI strategies were also found to be very sensitive to EGR with the GCI strategy being 

significantly more sensitive to EGR relative to the RCCI strategy.  

(a) (b) 

(c) 
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Figure 7-24. Trends of PPRR from the GPR model and CFD for the top four SCs of the (a) CDC, (b) RCCI, 

and (c) GCI combustion strategies. 

Firstly, for all the three strategies, the increase in PPRR with increasing CR is a result of increased 

in-cylinder pressure and temperature. It leads to shortened ignition delay and advanced combustion phasing, 

which in turn causes higher PPRR. For the CDC strategy, the PPRR was mainly sensitive to CR, but in 

comparison to the RCCI and GCI strategies, the magnitude of PPRR and the variation in PPRR with CR 

was relatively small. Moreover, there is no premixed fuel in the CDC strategy, and the entire diesel fuel 

mass combusts in a mixing-controlled heat release. The high levels of fuel stratification prevent sharp 

increases in the heat release rate and result in a low PPRR. Therefore, although there was an increase in 

PPRR with increasing CR, the magnitude of increase was a small value of 1 bar/deg. However, the RCCI 

and GCI strategies have premixed gasoline with an ignition delay that is extremely sensitive to variations 

in temperature and pressure. Consequently, these strategies were more sensitive to CR variations. Secondly, 

the results shown in Figure 7-24 highlight the importance of using a low CR and high EGR combination 

for the baseline cases of RCCI and GCI strategies. It is seen that a small increase in CR or a minor reduction 

(a) (b) 

(c) 
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in EGR increases the PPRR to unacceptable values. The increased sensitivity of the GCI strategy to 

variations in CR and EGR compared to the RCCI strategy was explained in §7.3.1 from Figure 7-14. The 

sensitivity of the GCI strategy to EGR and CR also explains why a significantly delayed combustion 

phasing of 10 °aTDC was used for the baseline case for the GCI strategy. That is, advancing the CA50 

closer to TDC would require reducing the EGR or increasing the CR, which results in unreasonably high 

PPRR as shown from the PPRR trends for the GCI strategy in Figure 7-24.    

To summarize this section, Table 7-5 shows the input variables with the maximum SCs for each 

output for the CDC, RCCI, and GCI strategies. The results of CA50 and PP are shown in Table 7-5, but 

were not explained in detail, as the results were similar to the GIE and PPRR results. From the comparison, 

it is seen that for high-load CDC operation, it is vital to get the correct injection profile and the mixing field 

(i.e., breakup and transport) to get reliable CFD predictions. For high-load RCCI and GCI strategies, it is 

essential to have accurate measurements of CR and intake conditions (i.e., Pivc, Tivc, EGR, etc.), as even 

the slightest error would result in large variations of cylinder pressure and emission predictions. It should 

be noted that these results are specific to the operating conditions studied. Notwithstanding, the main take 

away from this study is the potential of the GPR model to predict the results from a million simulations 

accurately in a short time which makes it possible to perform the uncertainty quantification analysis.  

Table 7-5. Input variables with the maximum sensitivity constants for each output for the CDC, RCCI and 

GCI strategies. 

Output CDC Sensitivity RCCI Sensitivity GCI Sensitivity 

GIE cnst22, doi, swirl, dS cnst22, doi2, EGR, CAaccord EGR, CR, cnst22, Pivc 

NOx rsc, rpr, EGR, cnst22 EGR EGR 

Soot dS, cnst22, rsc, rpr cnst22, doi2, EGR, CR cnst22, doi2, EGR, CR 

PPRR CR, Pivc CR, EGR, doi2 EGR, CR, Pivc, Tivc 

PP CR, Pivc, SOI CR, EGR, doi2, cnst22 CR, EGR, Pivc, Tivc 

CA50 cnst22, doi, SOI, swirl CR, EGR, doi2, Pivc CR, EGR, Pivc, Tivc 

7.4. Stability Analysis in GA Optimization using GPR 
In the previous section, baseline cases for high-load RCCI and GCI strategies were shown to be 

extremely sensitive to EGR. These baseline cases were the result of a high-load optimization study, as 

shown earlier in Chapter 4. Similar results were demonstrated in Chapter 4 as well where RSM, which is 
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also a form of regression analysis, was used to compare the stability of the optimum RCCI and GCI high-

load strategies to fluctuations in operating conditions. It was concluded from that study that both the 

strategies showed high sensitivity to EGR fluctuations and the optimum obtained from the GA was not a 

stable optimum. If unstable optima were to be discouraged during the optimization process, it would avoid 

such outcomes from the GA and would result in a more reliable optimum strategy. Earlier, this could not 

be done, since the stability analysis was performed using RSM methodology, which does not work 

efficiently with non-parametric data. Therefore, a full factorial DOE was run on the final optima to perform 

this analysis. The COSSO tool worked well with non-parametric data, but could not be used due to the 

excessive time it takes to generate the response function. However, with the GPR model using the matern 

3/2 kernel, stability analysis can be performed during the optimization process, since it overcomes the issues 

with the earlier regression approaches.  

Figure 7-25 shows a flowchart outlining the procedure implemented to perform the stability 

analysis for each citizen of the GA. To summarize the flowchart, from every citizen of the GA, the input 

variables prone to cycle-to-cycle fluctuations or uncertainty (e.g., EGR, IVC Pressure, etc.) are identified. 

The expected fluctuation is estimated either from the experimental data or by intuition for each of these 

input variables. Within this fluctuation range, a Latin hypercube DOE dataset of 500 points (or more, based 

on the number of input variables) is generated. The input variables in each citizen that do not fluctuate 

cycle-to-cycle (e.g., CR, nozzle diameter, etc.) are set to the baseline value, which is the input value used 

in the citizen. Using the GPR model, the output variables are estimated for each data point of the DOE 

dataset. Based on the outputs at all the data points of the DOE, the standard deviation for each output 

variable is estimated. Similar to the constraints set for each output variable in the GA, constraints are set 

for the standard deviations as well, and a corresponding harshness factor is assigned. If the standard 

deviation of any output variable exceeds the constraint value, the objective function will be penalized based 

on the assigned harshness factor. Details on how the objective function is penalized with a harshness factor 

were explained in detail in Chapter 3 when explaining the GA methodology. The study is repeated 

individually for all the citizens of the GA. It should be noted that the stability analysis is performed only 
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on citizens evaluated with the GPR model in the GA. For those citizens simulated in KIVA, there is no 

penalty applied with respect to the stability constraints. This assumption is reasonable because these citizens 

if passed to future generations, will eventually be evaluated by the GPR model (i.e., once the GA covers 

the design space sufficiently). At this point, they will go through the stability check and be eliminated in 

future generations if they turn out to be unstable.  

 

Figure 7-25. Flowchart outlining the stability analysis in GA optimization. This procedure is applied 

individually to every citizen of the GA. 
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To validate the approach, the optimization study shown in §7.2.1 was repeated with the stability 

constraints added. Since the motivation of this study was to test the potential of this approach, instead of 

using CFD, the optimization was run entirely with the GPR model. A combination of the optimization data 

from the study shown in §7.2.1 and the Latin hypercube data-set used in that study was used to train the 

GPR model. Based on the results shown in Figure 7-6, where the GPR model trained with the GA data 

predicted the outputs for a new data-set reasonably well, it is expected that the GPR model will perform 

efficiently (instead of CFD) in the current optimization. The optimization study was performed with and 

without the stability constraints, and the results from the two studies were compared. Though the 

optimization without the stability constraints was done earlier, it is repeated to estimate the standard 

deviations of the output variables (to input variable fluctuation) for every generation. This is necessary to 

perform a comparison and verify the effectiveness of adding the stability constraints in the optimization in 

achieving an optimum point with improved stability.  

Table 7-6 shows the fluctuation assigned for each input variable and the constraint value chosen 

(for the optimization performed with stability constraints) for the standard deviation of each output variable.  

Table 7-6. Fluctuations set for each input variable and the constraints set for the standard deviation of each 

output variable. 

Parameter Fluctuation/Constraint 

INPUTS 

 

Premix Gas. Mass [mg] ± 4 

DI-Gas. Mass [mg] ± 2 

DI-Diesel Mass [mg] ± 2 

SOI-Gas. [°aTDC] ± 1 

SOI-Diesel [°aTDC] ± 1 

EGR [%] ± 2 

OUTPUTS 

 

Std. GIE [%] 0.5 

Std. NOx [g/kg-f] 0.2 

Std. Soot [g/kg-f] 0.2 

Std. PPRR [bar/deg] 1 

Std. PP [bar] 4 

The constraint values were chosen randomly to test the approach. Reasonably low values of constraints 

were chosen so that the strategy can be considered stable. The ideal approach would be to choose these 
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values based on experimental CDC data. This approach shall be implemented in future studies. A harshness 

factor of 1 was assigned to each constraint to ensure that the GA meets the stability criteria. Although the 

GA does not cover essential input parameters (e.g., IVC temperature or pressure, wall temperatures, etc.), 

which are more prone to cycle-to-cycle fluctuations, it is to be noted that this study is a preliminary scoping 

study to verify the procedure. A more comprehensive GA inclusive of all the important variables will be 

explored in the future if this approach shows potential. Table 7-7 shows a comparison of the optima from 

the GA with and without the stability constraints.  

Table 7-7. Comparison of the optimum value from the GA without and with the stability check. 

Parameter 
GA without stability 

check 

GA with stability 

check 

GA with stability 

check (KIVA 

Validation) 

INPUTS  

Premix Gas. Frac [-] 0.99 0.91 0.91 

Gas. Frac. [-] 0.96 0.72 0.72 

SOI-Gas. [°aTDC] 19.61 -100 -100 

SOI-Diesel [°aTDC] -0.43 22.33 22.33 

EGR [%] 59.6 46.4 46.4 

Global Ф [-] 0.99 0.75 0.75 

OUTPUTS  

GIE [%] 45.63 44.68 44.26 

NOx [g/kg-f] 0.002 0.006 0.005 

Soot [g/kg-f] 0.003 1.97 1.86 

PPRR [bar/deg] 14.98 14.31 13.4 

PP [bar] 165.4 199.99 194.2 

Firstly, it is observed that, though the GPR model was used to perform the optimization, the final 

optimum obtained without the stability constraints is similar to the optimum presented in Table 7-3. This 

shows that the GPR model trained with the GA and Latin hypercube data-sets did a good job at replicating 

the CFD model over the design space covered in the GA. Removing the stability constraint resulted in a 

completely different optimum point. The optimum strategy with the stability check is a “mixed-mode” 

combustion strategy, which is a combination of gasoline PPC and a post TDC load extension injection. 

Similar operating strategy was found to be optimum for the high-load-low-speed operating point in Chapter 

6 and was studied in detail in Appendix-B. Since the optimum obtained for the GA with the stability check 

was different from the optimum seen in Table 7-3, it was re-run in KIVA to validate the prediction of the 
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GPR model. As seen from Table 7-7, there is a reasonable agreement between the GPR and KIVA predicted 

outputs.   

GA without the Stability Check GA with the Stability Check 

  

  

  

  

  

Figure 7-26. Evolution of the standard deviation of all the outputs of interest as a function of the run number 

for the GA (left) without and (right) with the stability check. 
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Figure 7-26 shows a comparison of the evolution of standard deviation as a function of the run 

number through the optimization for the GA with and without the stability check. The constraint value set 

for the standard deviation of each output variable is also shown on its corresponding plot. The optimum 

without the stability check is found to be highly unstable, which is evident from the large values of standard 

deviation in GIE, PPRR, and PP. Adding the stability constraints reduces the variation in the outputs 

significantly and ensures that all the output variables meet the stability criteria. To understand the source 

of instability for the optimum from the GA with the stability check, Figure 7-27 shows a comparison of the 

standard deviations for the optimum points from the two GA’s with respect to each input variable variation 

included in Table 7-6.  The standard deviation with respect to each input variable fluctuation was estimated 

based on the approach presented in §7.3.  

 

Figure 7-27. Standard deviation of the output variables with respect to fluctuations in the input variables for 

the optimizations (top) without and (bottom) with the stability check. 
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As seen from the figure, when the stability check was not included, the optimum was mainly unstable to 

fluctuations in EGR rate. From Table 7-7, it is seen that for the optimum without the stability check, the 

global Ф is ~1. The high sensitivity to EGR rate is due to operating at a near stoichiometric Ф. A similar 

observation was made previously as well with the high-load-low-speed optimum point in Chapter 4. 

Fluctuations (increases) in the EGR rate increases the global Ф beyond stoichiometric leading to fuel-rich 

operation. This results in a rapid increase in incomplete combustion and a drastic drop in GIE, PPRR, and 

PP. This trend with EGR fluctuation is shown in Figure 7-28, which clearly shows the sensitivity to positive 

fluctuations in EGR rate. The results presented in Figure 7-28 are from CFD simulations performed on the 

optimum point.  

 

Figure 7-28. GIE, Incomplete Combustion, and PPRR as a function of EGR fluctuation.  

When the stability check was added, the standard deviations reduced significantly (seen in Figure 

7-27), and the operating strategy became relatively more stable. Since there was a substantial reduction in 

standard deviations, a plot with rescaled y-axis is also overlaid on the original plot in Figure 7-27 for the 

case with the stability check. As seen, the standard deviations for all the outputs are within the constraints 

used. However, the sensitivity of soot emissions increases relative to the optimum without the stability 

check. The differences in stability can be explained by comparing the operating strategies of the two optima. 

Both the strategies differ in terms of air-handling. The optimum with the stability check has a reduced EGR 

rate of 46.4% which results in a lean global Ф of 0.75. This reduces the sensitivity to EGR fluctuations 
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significantly. However, due to operating at a lower EGR rate, the chemistry timescales shorten. 

Consequently, the gasoline fuel mass (premixed and early DI) is reduced, to ensure that the constraints on 

PPRR and PP are met. Since the PPC combustion event is constrained by noise, the diesel fuel is injected 

as a load extension injection post TDC (after the PPC combustion event) to meet the load requirement. The 

SOI timing of the load-extension injection is constrained by soot emissions. That is, the SOI timing of the 

load-extension injection is as advanced as possible (upon the completion of the primary heat release), to 

maximize the efficiency while meeting the soot constraint. Similar results were also demonstrated in Kavuri 

et al. [100] where a detailed analysis on the constraining factors was presented while investigating mixed-

mode combustion strategies as a pathway to enable stable high-load operation at reduced EGR rates.  

Lastly, it is seen that including the stability check resulted in an operating strategy that has increased 

the sensitivity of soot emissions to input variable fluctuations. This is due to the increased DI fuel mass in 

the diesel fuel injection. Since the diesel fuel injection is combusting in a mixing-controlled heat release, it 

is prone to soot emissions. A detailed study on soot emissions from load extension injection was performed 

in Appendix-B. In this study, it was found that soot emissions are highly sensitive to the load-extension 

SOI timing. A similar observation is made in the current study as well. Secondly, it is also seen that soot 

emissions are sensitive to EGR fluctuations. This is contradictory to the results observed in Appendix-B 

where soot emissions in the post-TDC region were found to be independent of oxygen availability and were 

shown to be solely dependent on in-cylinder temperatures. To explain this result, Figure 7-29 shows the 

soot emissions response to fluctuations in EGR rate for the case with the stability check. It is observed that 

soot emissions are reducing with increased EGR rate. This shows that the temperature effect of EGR is 

dominating the oxygen availability effect, similar to the explanation provided earlier in Figure 7-21, in 

§7.3.3. Therefore, the results seen in this study align with the results shown in Appendix-B. 

In summary, based on the results shown in this section, using the GPR model to perform the 

stability analysis within the GA optimization seems to be a potential approach to achieve stable and reliable 

optima from the GA optimizations. 
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Figure 7-29. Soot emissions vs. EGR fluctuation for the optimum case with the stability check. 

7.5. Conclusions 
In this chapter, the potential of a GPR machine learning approach was tested in terms of its handling 

of large non-parametric datasets generated from the GA. Four different kernel functions for the GPR 

approach were compared, and the matern 3/2 kernel was shown to perform the best. Accordingly, the GPR 

approach with the matern 3/2 kernel was used to demonstrate three different applications of machine 

learning. The first was to speed up the GA optimization process. A new approach called the CFD+GPR 

approach was developed such that the GPR model could substitute some of the CFD runs and reduce the 

computational time. GA optimization was performed with the CFD+GPR approach and compared with the 

results from the GA run entirely with CFD. The CFD+GPR approach was shown to result in a similar 

optimum as the GA run completely with CFD while reducing the optimization time by 62%.  

The GPR approach was then used to perform uncertainty quantification which identifies the input 

variables causing maximum uncertainty in the CFD model predictions for a combustion strategy. A total of 

39 input variables, comprising of numerical and physical inputs, were considered and the uncertainty 

quantification study was performed with CDC, RCCI, and GCI strategies under high-load conditions. The 

results of this study showed that for high-load CDC operations, it is essential to have the correct injection 

profile and the mixing field (i.e., breakup and transport) to arrive at a reliable CFD prediction. For the high-

load RCCI and GCI strategies, it is essential to take accurate measurements of CR and intake conditions 
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(i.e., Pivc, Tivc, EGR, etc.), as even the slightest error can result in result in significant variations in in-

cylinder pressure and emission predictions. 

Lastly, the GPR approach was used to further improve the optimization procedure by adding 

constraints on the stability of outputs to variations in inputs to ensure that the GA results in a stable and 

reliable optimum. The approach was verified by comparing the results from a GA that was run with and 

without the stability constraints. The results showed that adding the stability constraints reduces the 

standard deviations in all the outputs and results in an optimum with significantly improved stability to 

operating parameter variations.  
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Chapter 8 Summary and Future Work 
The current study addresses the challenges of operating with advanced compression ignition 

combustion strategies at low-load-high-speed conditions and high-load-low-speed conditions of the engine 

operating map. A combination of CFD modeling, GA optimization, and machine learning was used to 

perform this study. 

8.1. Addressing the challenges at High-Load Low-Speed Operating Condition 
8.1.1. Optimization at High-Load-Low-Speed Conditions 

 Initially, targeting high-load-low-speed conditions, a GA optimization study was performed at 20 

bar IMEP and 1300 rev/min. to identify feasible operating strategies at this load. The study was performed 

on a heavy-duty engine with a CR of 12:1 and a “bathtub” shaped piston geometry. In this study, RCCI and 

GCI combustion strategies were compared. The optimum operating strategies for RCCI and GCI cases were 

found to be similar. Most of the fuel (~70%) was introduced early into the combustion chamber in the form 

of premixed fuel and an early injection at -100 °aTDC and -78 °aTDC for the GCI and RCCI strategies, 

respectively. The rest of the fuel was injected as a stratified injection close to TDC at -14 °aTDC and -12 

°aTDC for the GCI and RCCI strategies, respectively. The optimum air-handling parameters were also 

similar. Both required an EGR of 55% with the RCCI optimum having a slightly higher intake pressure.  

The optimums were compared in terms of combustion and performance characteristics. Further 

analysis studied the effect of input and operating condition variation on combustion control, performance, 

and combustion stability. The results showed that both combustion strategies have similar combustion 

characteristics with a near TDC injection initiating and controlling the combustion. However, the RCCI 

strategy was found to have more control over combustion phasing than the GCI strategy. The increased 

control was found to be due to the shorter ignition delay of diesel fuel than gasoline. This benefit, however, 

comes at the expense of increased soot emissions as the combustion event occurs during the near TDC 

injection event. The longer ignition delay of the GCI strategy results in less control over combustion phasing 

but enables near-zero soot emissions. In terms of other performance parameters, both strategies were found 

to have high GIE (47%) with near zero NOx emissions. The RCCI strategy was found to have a higher 

PPRR than the GCI strategy due to advanced combustion phasing. Nevertheless, it was still within 



155 

 

reasonable operation level (PPRR ≤ 20 bar/deg) for high-load operation in a heavy-duty engine. From the 

stability analysis, it was identified that both the strategies were most sensitive to variations in EGR, with 

the GCI strategy being more sensitive than the RCCI strategy. The high sensitivity to EGR was a result of 

operating at a high EGR level of 55% and near stoichiometric global Ф. Furthermore, achieving high EGR 

levels at high intake pressures in practice might be challenging due to the heavy burden it places on the air-

handling equipment. These issues with high EGR operation motivated the need to investigate high-load 

operating strategies that work at reduced EGR rates and leaner global Ф. However, the results from the 

optimization study showed that the efficiency of the optimum strategy reduces as the EGR late is lowered. 

In the high-load-low-speed optimization study, the optimum strategies were identified under the constraints 

of NOx ≤ 2g/kg-f, Soot ≤ 2g/kg-f, and RI ≤ 5 MW/m2. Operating under these constraints could have 

negatively affected the efficiency at the low and moderate levels of EGR. The RI constraint is a necessity 

to prevent the structural damage of the engine parts. But, the constraints on NOx and soot emissions could 

be relaxed by using after-treatment devices if it offers significant efficiency benefits. Accordingly, the effect 

of removing these constraints on the efficiency in EGR-Ф operating space was investigated.  

8.1.2. Constraint Analysis of High-Load-Low-Speed Operation with RCCI strategy 

The NOx and soot emission constraints were removed while keeping the other constraints fixed, 

and the effect of removing the constraints on the optimum operating strategy and performance was studied.  

Results showed that the operation at low to moderate EGR levels (< 50%) was mainly constrained by the 

NOx emissions. Relaxing the NOx constraint enabled lower EGR operation with significant efficiency 

improvement. Allowing NOx emissions to increase to acceptable levels for SCR after-treatment, yielded 

an optimum at a moderate (~45%) level of EGR and a lean global Ф of 0.8.  The optimum case had near-

zero soot emissions and a relatively higher NFE compared to the high EGR optima. The improved 

efficiency upon removing the NOx constraint was identified to be due to advancing the diesel fuel injection 

which resulted in a more optimal combustion phasing. Further comparison with the high EGR optima in 

terms of combustion control showed that the optimum with SCR after-treatment resulted in similar 

combustion control as the high EGR optima. However, due to operation at a reduced EGR rate and a leaner 
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global Ф, the optimum with SCR after-treatment resulted in significantly lower soot emissions compared 

to the high EGR strategy. Therefore, removing the NOx constraint and using SCR after-treatment addressed 

the tradeoff between combustion control and soot emissions. Lastly, comparison was made with the high 

EGR optimum in terms of stability to operating condition fluctuations. The optimum with SCR after-

treatment was significantly more stable compared to the high EGR optimum. The improved stability was 

found to be due to the reduced sensitivity to EGR fluctuations from operating at a leaner global Ф.  These 

results indicate that removing the NOx constraint and using SCR after-treatment addresses the issues of 

high soot emissions and sensitivity to EGR fluctuations while retaining the excellent combustion control 

observed with the high EGR GA optimum, under high-load-low-speed conditions. 

8.2. Multi-Mode Optimization 
Upon completing investigation of the high-load, low-speed operating conditions, the low-load, 

high-speed operating condition was targeted. When operation at 2 bar and 1800 rev/min. was investigated 

on the low CR engine used for the high-load study, it resulted in a poor efficiency. This was because of the 

low CR engine used for the high-load study, which was designed to perform well under high-load 

conditions. This shows that the optimum CR could be different when both loads are taken into 

consideration. In addition, the optimal injector configuration, bowl geometry, and air-handling could all be 

very different considering the vast difference in fuel mass associated with the low- and high-load operating 

conditions. Accordingly, a computational optimization study was performed using detailed CFD modeling 

in combination with a GA considering the performance at low-load-high-speed (2 bar, 1800 rev/min.) and 

high-load-low-speed (20 bar, 1300 rev/min.) operating conditions, simultaneously. The optimization study 

had 28 design inputs, which included parameters for piston bowl geometry, injector design, air-handling, 

and fueling strategy. When both conditions were equally weighted, the optimization study resulted in an 

optimum CR of 13.1 with a stepped piston bowl geometry that had two distinctive regions.  Results also 

showed that a narrow spray angle for diesel fuel and a wide spray angle for gasoline would be necessary to 

target the two regions of the bowl. The optimal fueling strategy at low load was similar to diesel LTC. This 

strategy used very little premixed fuel and a low gasoline percentage (~15% of the total fuel mass). At high-
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load, the optimum strategy was a mixed mode combustion strategy with 92% of the fuel being gasoline 

with most of it premixed. The small quantity of diesel fuel present was injected close to TDC. The diesel 

fuel injection along with the premixed fuel contributed to the primary heat release. The rest of the gasoline 

was injected as a load extension injection after TDC to achieve the necessary load. Thus, from this study, 

feasible operating strategies were identified for both the low-load-high-speed and high-load-low-speed 

operating conditions. 

The COSSO response surface model was fit to the GA data and was used to study the effect of 

varying the weight assigned to each operating mode on the GA results. It was found that, when low-load is 

given a higher weight, a higher CR piston (CR ~ 15.7) was preferred as the optimum. Conversely, when 

giving a higher weight to high-load, a lower CR (CR ~ 11.8) piston was selected as the optimum. Results 

also showed that prioritizing one load highly over the other yielded a bowl geometry that affects the 

performance negatively at the other load condition. The results from the study indicated that advanced 

combustion optimizations must consider multiple loads simultaneously to achieve a realistic optimal design 

that yields good performance across a range of operating conditions. The multi-mode optimization study 

performed in this dissertation outlines the procedure for performing such studies.  

8.3. RCCI Operating Strategy vs. Load 
Based on previous research and the work presented in this dissertation, Figure 8-1 shows a 

summary of how to run a heavy-duty RCCI engine at different operating conditions.  In the figure, fuel 

injected prior to IVC is classified as premixed fuel, fuel injected after IVC with the end of injection 

separated from the start of combustion is classified as a stratified injection, and the fuel injected close to 

TDC which combusts in a mixing-controlled heat release is classified as mixing-controlled injection. The 

aim of any advanced combustion strategy for a given load is to maximize the premixed fuel and to have 

any fuel injections as early in the cycle as possible. This is preferred because it increases the dilution and 

maximizes the efficiency while minimizing the NOx and soot emissions. Accordingly, for the operating 

strategy at every load, the factors limiting the advancement of the SOI timing (shown in green) and the 

factors limiting the increase in the fuel mass (shown in red) for each injection are highlighted in the figure.  
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Figure 8-1. Summary of RCCI strategies as a function of nominal gross IMEP. 

At the mid-load conditions in the range of 4 bar to 12 bar, the traditional RCCI strategy 

demonstrated by Kokjohn et al. [6] can be implemented. The gasoline fuel mass in this strategy is 

constrained by the RI limit. The early diesel fuel injection is targeted into the squish region and is used for 

conditioning the squish area. The diesel fuel mass in this injection is constrained by the UHC emissions 

from fuel deposited into the crevice region at the low-load conditions and gradually transitions to the RI 

limit as the load increases. The second diesel fuel injection can be early enough such that it is targeted into 

the bowl region. This injection acts as the ignition source. The fuel mass in this injection is constrained by 

the NOx emissions.  

To explain why the same strategy cannot be used for loads less than 4 bar, Figure 8-2 shows the 

global Ф as a function of IMEP. As seen from the figure, at loads lower than 4 bar, the global Ф becomes 

overly lean, which causes high levels of incomplete combustion when the fuel is premixed. Hence, at loads 

less than 4 bar, the gasoline is direct-injected after the diesel fuel injection. This strategy was identified 

from the multi-mode optimization study presented in Chapter 6. The fuel mass in the DI gasoline is 
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constrained by NOx limit as was shown in Chapter 6. Since at loads less than 4 bar, it is preferred to delay 

the SOI timings as late as possible to achieve locally rich mixtures, it is of interest to know the limiting 

factor on retarding the SOI timing. Though, it is not shown in Figure 8-1, delaying the SOI timings of the 

two DI injections is constrained by NOx emissions. Since retarding the SOI timings increases the local Ф, 

it results in an increase in the peak combustion temperatures and consequently increases NOx emissions. 

 

Figure 8-2. Global Ф as a function of IMEP. 

To extend the load beyond 12 bar IMEP with the RCCI strategy proposed by Kokjohn et al. [6] 

would require excessively high EGR rates (~57%). Load extension at a reduced EGR rate with this strategy 

is not possible since it is constrained by the RI limit. The load can be extended from 13 bar to 15 bar IMEP 

by delaying the mid stratified diesel injection and injecting it as a near TDC mixing-controlled injection. 

The premixed gasoline can be split up into premixed gasoline and an early stratified DI gasoline. This 

strategy was demonstrated at a load of 13 bar IMEP in Kavuri et al. [100]. Adding the early DI gasoline 

has shown to reduce the impact of the RI constraint on load extension. That is, with the early DI gasoline 

added, a similar load as using the premixed fuel alone can be achieved at a relatively lower RI. The load 

that can be added from the mixing-controlled injection is constrained by soot emissions. The earliest the 

fuel can be injected is constrained by either the NOx or RI limit based on other operating parameters like 

EGR and IVC pressure.  

Lastly, to achieve higher loads, a load extension injection of gasoline can be added post TDC to 

extend the load range from 15 bar to 20 bar IMEP, as was demonstrated in Chapter 6 and in Kavuri et al. 
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[100]. The earliest the load-extension injection can be injected is constrained by the soot emissions. The 

load that can be added through this injection is constrained by several factors like GIE, exhaust temperature, 

etc. Thus, the current study fills in the research gaps that exist in the low-load and the high-load operating 

regime by suggesting operating strategies at loads lower than 4 bar gross IMEP and in the high-load range 

of 13 bar to 20 bar gross IMEP.  

8.4. Machine Learning in GA Optimization 
Though the multi-mode optimization study showed the importance of considering multiple 

operating conditions during optimization to achieve the best output, it took nearly 3 months to complete the 

GA with two operating conditions. To consider all the points of a drive cycle, it would take significantly 

longer. This motivated the need to investigate ways to reduce the computational time of the GA 

optimization. To address this issue, machine learning through GPR with a Matern 3/2 kernel, was used in 

combination with CFD in GA optimizations, to speed up the optimization process. The approach was tested 

on a GA run with five input parameters. After every generation of the GA, the data from the prior 

generations was used to train the GPR model and then the GPR model was used to predict the outputs for 

the latest generation. To ensure that the GPR predictions are reliable, the data from a Latin hypercube DOE 

that was run prior to starting the GA was used. When the GA was run solely with CFD, the optimization 

took 50 days to complete. With the CFD and GPR approach, the computational time of optimization was 

reduced by 62%, and the optimization was completed in 19 days.   

Additional applications of the GPR model were also demonstrated. One application was to perform 

uncertainty quantification. In this study, the GPR model was used to identify the key inputs which could 

contribute to uncertainty in the CFD model predictions. This study helps identify the inputs that should be 

chosen accurately to get reliable CFD predictions. It can also be used as a scoping study to identify the key 

operating variables that should be considered when optimizing a combustion strategy. An uncertainty 

quantification study was performed using the GPR model with CDC, RCCI, and GCI combustion modes 

under high-load conditions. The results of this study showed that for high-load CDC operation, it is essential 

to have the correct injection profile and the mixing field (i.e., breakup and transport) to achieve reliable 
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CFD predictions. For the high-load RCCI and GCI strategies, it was identified that it is important to take 

accurate measurements of CR and the intake conditions (i.e., Pivc, Tivc, EGR, etc.), as even the slightest 

error can result in result in significant variations in in-cylinder pressure and emission predictions. 

The GPR model was also used to further improve the optimization process where it was used to 

check for the stability of the designs to operating parameter variations during the optimization. The 

approach was tested on the same GA used to verify the CFD+GPR approach. However, the optimization 

was run completely with the GPR model. The GA data from the earlier optimization study as well as the 

Latin hypercube DOE data-set used in the CFD+GPR approach, were used to train the GPR model. Initially, 

the GA was run without the stability constraint. Then the optimization was repeated with the CFD+GPR 

approach with the stability constraints added. Results from the study showed that adding the stability check 

resulted in a reliable and stable optimum.  

8.5. Future Work 
8.4.1. Machine Learning in Soot Modeling 

With the two-step soot model used in the current study, the main concern is with changing operating 

conditions, though it predicts the trends accurately, the magnitudes are not always accurately predicted, and 

the soot formation constant has to be adjusted based on operating condition. The soot formation constant is 

a scaling factor for soot emissions. It is well known that soot emissions are a function of the local Ф and 

temperature. Hence, instead of using a global soot formation constant, what if the soot formation constant 

could be estimated and varied locally in each cell based on the local Ф and temperature, to predict the soot 

emissions in each cell. This would improve the soot predictions without having to adjust the soot formation 

constant manually. Constant volume soot data under different operating conditions for a variety of fuels is 

available from the engine combustion network (ECN) data provided by Sandia National Laboratory. The 

constant volume experiments can be modeled using CFD by using a randomly chosen set of soot constants. 

Obviously, the model predictions will not match with the experimental data completely. But, by comparing 

the images of soot contours from the experiments and CFD, we can know by how much the soot formation 

constant in each computational cell (each pixel of the image) should be scaled by. By scaling the global 

soot formation constant used with the scaling factor for each computational cell, we get the soot formation 
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constant for each computational cell. Similarly, the Ф and temperature in each computational cell can also 

be estimated from their respective contour images. This gives us a combination of Ф, temperature and the 

soot formation constant of each computational data. This data can be used to train the GPR model to predict 

the local soot formation constant in each computational cell based on the local Ф and temperature. 

Combining the data from multiple operating conditions could result in a robust GPR model for soot 

predictions.  

8.4.2. Machine Learning in CFD Modeling 
The applications of machine learning could also be extended to CFD modeling. For example, in 

engine CFD modeling, the majority of the computational expense is due to the expensive (refined) 

computational grids that are used to predict the spray structure and the momentum exchange between the 

liquid and gas phase. If the GPR model can be used instead to predict the in-cylinder spray evolution, it 

would save a lot of computational time and expense.  Direct numerical simulation (DNS) data of diesel fuel 

sprays can be used to train the GPR model. The first step would be to compute the curvature and surface 

area of the interface between the gas and liquid phase present in each cell from the DNS data. This data at 

different time steps can be used to train the GPR model to predict the spray evolution. The GPR results 

could then be imposed into the Lagrangian framework to force the Lagrangian spray evolution to follow 

the GPR results. A simple approach would be to set the number of droplets in each spray parcels such that 

the GPR predicted interfacial area is captured.  

8.4.3. Improving Engine Optimization  
In the current study, existing optimization approaches were improved in several ways like 

considering multiple modes in optimizations, using machine learning to speed up the optimization and 

adding stability as a constraint to get stable and reliable optima. One other major concern with engine 

optimizations is the uncertainty in the model predictions. Having an error band on the optimization results 

and minimizing these error bands (uncertainties) in the results will give more confidence in the optimization 

predictions. This can be done by using the uncertainty analysis presented in Chapter 7. The top 4 model 

parameters that cause maximum uncertainty for each output can be included as input parameters in the GA 

optimization, and the uncertainty or standard deviation can be estimated with respect to each input. This 
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uncertainty can be used as an error on the optima presented and by setting a constraint value (to a low value) 

on the uncertainty, it can be minimized as the GA progresses, since the response to these variables changes 

as the operating strategy changes. Hence as the GA progresses the size of the error bands is expected to 

reduce, and the final optimum is expected to have a minimal error.  

8.4.4. Optimization Study Considering Fuel Effects 
Although most of the optimization studies shown so far were done with gasoline and diesel fuel, 

RCCI is a fuel flexible strategy and has been demonstrated on a wide range of fuels. Even in the present 

study, we found that using 87 AKI gasoline benefited combustion at low-load and aided in achieving higher 

efficiency relative to 93 AKI gasoline, which was used by Kokjohn et al. [7] at the same load conditions. 

However, at the higher loads, a higher-octane gasoline like 93 AKI gasoline would be preferred as the 

higher loads desire the additional ignition delay achievable with, the higher-octane gasoline. Accordingly, 

93 AKI gasoline was used for the high-load optimization study. This clearly shows the impact fuel 

properties have on the optimum injection strategy at a given load condition. Fixing the fuels in the 

optimization process could be constraining the GA from arriving at strategies that would achieve higher 

efficiencies than what was seen in this study. Similar to gasoline there are other fuels like E10, E85, natural 

gas, etc. that can be used in RCCI combustion as alternatives to gasoline.  A new optimization study can be 

setup, where the fuel in each injection can be varied within the chosen set of fuels. 
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Appendix-A Light-Duty Cycle Optimization 
In the literature review presented in Chapter 2, one of the main challenges identified with RCCI 

combustion was the low mode weighted gasoline percentage. Kokjohn and Reitz [7] investigated RCCI 

operation over a light-duty drive cycle and estimated that the RCCI engine would consume nearly equal 

proportions of gasoline and diesel fuel across the drive cycle. This is mainly an issue for light-duty 

applications since the need for two fuel tanks limits the practical application of the RCCI strategy. The high 

diesel quantity was primarily due to the lightest load operating point (2.3 bar IMEP and 1500 rev/min.) 

because the over-lean premixed charge of gasoline resulted in high UHC emissions. Marriott and Reitz [22] 

showed that low-load UHC emissions in a GCI engine could be reduced by stratifying the gasoline using 

late direct-injections. Accordingly, the present work will investigate the potential of direct-injection of 

gasoline and diesel fuel in improving the low-load combustion efficiency with RCCI combustion. The study 

performed by Kokjohn and Reitz [7] will be repeated by adding a DI gasoline to the injection strategy. A 

combination of CFD modeling and GA optimization will be used to identify the optimum operating strategy 

at each mode of the light-duty drive cycle. The goal of the study is to use direct-injection of gasoline to 

improve the mode weighted gasoline percentage of RCCI strategy. Addressing this issue could provide a 

pathway to practical implementation of RCCI engines. 

A.1. Light-Duty Engine 

In the following study, the engine modeled for the light-duty cycle optimization is the single 

cylinder version of the GM 1.9 L. four-cylinder light-duty engine. The modeling considered an injector 

capable of delivering two fuels through a single injector body, similar to the injector developed by 

QuantLogic Corporation [106]. The engine and injector specifications are shown in Table A-1. The 

computational grid used for the light-duty cycle simulations is shown in Figure A-1. The grid represents a 

90° sector mesh, which includes two of the narrow-angle holes and one wide angle hole. The grid is made 

up of 34,080 cells at bottom dead center (BDC) with a cell size of 1.4 mm in the axial and the vertical 

directions and 1.5° in the azimuthal direction.  
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Table A-1. Engine and injector specification for the light-duty cycle optimization study. 

Engine Specifications 

Displacement [L/cylinder] 0.48 

Bore x Stroke [mm] 82 x 90.4 

Connecting Rod [mm] 145.4 

Compression Ratio [-] 16.7:1 

Swirl Ratio [-] 1.5-4 

IVC [°ATDC] -132 

EVO [°ATDC] 112 

Gasoline Injections 

Number of holes 8 

Hole Diameter [mm] 0.120 

Included Spray Angle [°] 90 

Diesel Injections  

Number of holes 4 

Hole Diameter [mm] 0.100 

Included Spray Angle [°] 140 

 
Figure A-1. Computational grid used for the light-duty cycle simulations. 

A.2. Operating Conditions 

 The five operating points used by the ad hoc fuels working group [107] to evaluate fuel effects 

were chosen for the current study to approximate the light-duty drive cycle. The speed, load, and the relative 

weighting for drive cycle estimates of each mode are shown in Table A-2. 

Table A-2. Operating conditions and the relative weights of each mode chosen for study. 

Mode Speed (rev/min.) IMEP (bar) Mode Weight 

1 1500 2.3 400 

2 1500 3.9 600 

3 2000 3.3 200 

4 2300 5.5 200 

5 2600 9 75 
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A.3. Optimization Setup 

The Adaptive Dual Fuel (ADF) injector enables stratification of the gasoline; however, it is not 

expected that gasoline stratification will always be desired. Therefore, the injection strategy was considered 

in the optimization by performing two sets of optimizations at each of the five operating modes. The 

injection strategies for both optimizations are shown in Figure A-2. The gasoline used for the study was 87 

AKI gasoline. The design parameters for the optimization study are:  

1. Fraction of the total fuel that is premixed (Premix);  

2. Ratio of fuel injected in the first pulse to fuel injected in the second pulse (Inj1Frac) (Split Gasoline 

Injection Optimization Only); 

3. Start of injection of the diesel injection (SOI-1); 

4. Dwell time between the start of the diesel fuel injection and the start of the second gasoline injection 

(SOI-delta) (Split Gasoline Injection Optimization Only); 

5. Exhaust gas re-circulation percent (EGR).  

The ranges for each design parameter are shown in Table A-3. The ranges for SOI timings and 

EGR were chosen based on previous RCCI combustion research [7]. Note that the single gasoline injection 

RCCI optimization is a subset of the split gasoline injection RCCI optimization. That is, the split gasoline 

injection RCCI optimization parameters were allowed to vary across the design space such that all of the 

gasoline was premixed. This method of duplicating optimizations was chosen to ensure full coverage of the 

design space and enable comparisons between the optimum configurations for each injection strategy.  

The engine parameters of Table A-3 were optimized at each of the five modes given in Table A-2 

using the NSGAII code with the aim of minimizing six objectives: ISFC, NOx, soot, CO, UHC, and PPRR. 

The operating conditions are given in Table A-4. To fill the six-dimensional Pareto front, the GA’s were 

allowed to run for 50 generations with 32 citizens per generation at each mode for each optimization. 
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Figure A-2. Injection strategies considered in the two RCCI drive cycle optimizations. The simulations 

considered the port-injected or valve overlap injected fuel fully premixed at intake valve closure. 

Table A-3. Range of variation allowed for each design parameter used in the GA optimization. 

 Range 

Design Parameter 
Single Gasoline 

Injection RCCI 

Split Gasoline 

Injection RCCI 

Premix (-) 0 to 1.00 0.25 to 1.00 

Inj1Frac (-) N/A 0.00 to 1.00 

SOI-1 (ATDC) -40 to 0 -50 to -30 

SOI-delta (CA) N/A 10 to 30 

EGR (%) 0 to 50 0 to 45 

A.4. Results and Discussion 

A.4.1. Light-Duty Drive Cycle Modes 

The solutions for each injection strategy were combined, and the best cases were chosen as the 

cases with the lowest gross ISFC that meet the soot, NOx, and PPRR targets. NOx targets of 0.04, 0.1, 0.06, 

0.24 and 0.32 g/kW-hr were chosen for modes 1-5, respectively, based on the work of Cooper et al. [108]. 

Unlike the NOx targets, soot targets in g/kW-hr were not available in the literature; thus, the optimum 

solutions were selected to have equal or lower soot values than the baseline CDC cases. For PPRR, from 

modes 1 to 3, a value of 5 bar/deg. was used as the upper limit and for modes 4 and 5, a PPRR of 10 bar/deg. 

was used as the upper limit. Based on these filters, an optimum case was chosen at each mode. The optimum 

cases were compared with the CDC cases from Kokjohn and Reitz [7]. The full comparisons are shown in 

Table A-4.  
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At mode 1 (2 bar IMEP and 1500 rev/min.) the split gasoline injection case (stratified gasoline) 

shows higher GIE than the single gasoline injection case (premixed gasoline). At modes 2 (3.9 bar IMEP 

and 1500 rev/min.) and 3 (3.3 bar IMEP and 2000 rev/min.), similar results are achieved using a single and 

a split gasoline injection. In the interest of simplicity, a single gasoline injection strategy is preferable for 

modes 2 and 3. At mode 4 (5.5 bar IMEP and 2300 rev/min.), the single gasoline injection strategy shows 

higher GIE and lower NOx emissions than the split injection strategy. At mode 5 (9 bar IMEP and 2600 

rev/min.), both strategies show similar GIE, but the single gasoline injection strategy shows an order of 

magnitude lower NOx and soot emissions. These results suggest that the gasoline should be stratified at the 

lightest load conditions (mode 1) and made homogenous at higher loads. 

Table A-4. Summary of best results from the optimization and comparison of the optimum RCCI results with 

CDC results of the corresponding mode. The emissions are shown on a gross indicated basis, and the GIE is 

defined as the (gross indicated work) / (fuel energy). 
 Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 

 
Single 

Gas. 

RCCI 

Split 

Gas. 

RCCI 

CDC 

Single 

Gas. 

RCCI 

Split 

Gas. 

RCCI 

CDC 

Single 

Gas. 

RCCI 

Split 

Gas. 

RCCI 

CDC 

Single 

Gas. 

RCCI 

Split 

Gas. 

RCCI 

CDC 

Single 

Gas. 

RCCI 

Split 

Gas. 

RCCI 

CDC 

Speed (rev/min.) 1500 1500 1500 1500 1500 1500 2000 2000 2000 2300 2300 2300 2600 2600 2600 

IMEP (bar) 2 2 2 3.9 3.9 3.9 3.3 3.3 3.3 5.5 5.5 5.5 9 9 9 

Total Fuel (mg/inj.) 5.3 5.3 5.3 9.6 9.6 9.6 8.8 8.8 8.8 14.5 14.5 14.5 20.9 20.9 20.9 

Gasoline (Mass %) 65.3 86.2 0 92.1 90.9 0 95.8 92.5 0 89.4 92.6 0 93.0 71.6 0 

Diesel Fuel (Mass %) 34.7 13.8 100 7.9 9.1 100 4.2 7.5 100 10.6 7.4 100 7.0 28.4 100 

Premixed gasoline mass 

% 
65.3 28 0 92.1 85.9 0 95.8 87.8 0 89.4 62.6 0 93.0 67.4 0 

Gasoline DI SOI 

(°ATDC) 
N / A -30.9 N / A N / A -30.8 N / A N / A -39.8 N / A N / A -36.7 N / A N / A -30.5 N / A 

Diesel DI SOI (°ATDC) -38.7 -14.6 
-5.8/ 

1.6 
-38.5 -20.8 

-7.2/ 

0 
-11.7 -22.2 

-8.2/ 

1.6 
-23.9 -7.26 

-11.7/ -

0.1 
-1.57 -6.89 

-15.4/ -

2.6 

Inj1Frac N / A 0.822 0.34 N / A 0.358 0.16 N / A 0.388 0.15 N / A 0.801 0.1 N / A 0.278 0.05 

Inj. Pressure (bar) 330 330 330 400 400 400 500 500 500 500 500 780 500 500 1100 

Intake Pressure (bar) 1 1 1 1.06 1.06 1.06 1.16 1.16 1.16 1.3 1.3 1.3 1.6 1.6 1.6 

EGR (%) 17.5 31 47 41.5 41.9 45 20 16.4 46 48.5 43.9 29 48.2 44.4 19 

RESULTS 

GIE (%) 41.2 44.1 35.2 49.8 49.5 34.9 49.8 49.7 37.8 51.3 48.7 40.2 48.2 49.7 40 

NOx (g/kW-hr) 0.01 0.04 0.74 0.02 0.04 0.23 0 0.01 0.56 0.18 0.3 2.06 0.04 0.3 3.89 

Soot (g/kW-hr) 0.01 0.01 0.04 0.01 0.01 0.04 0.01 0.01 0.02 0.01 0.01 0.05 0.04 0.59 0.15 

CO (g/kW-hr) 27.3 19.8 22.7 5.58 7.39 38 8.04 9.89 24.1 4.28 13.25 10.6 7.66 7.09 3.2 

HC (g/kW-hr) 17.5 16.8 15.4 8.09 9.59 18.6 9.63 11.4 12.3 6.56 12.42 4.75 10.1 6.07 0.32 

PPRR(bar/deg) 2.84 2.52 1.29 4.96 4.88 2.16 4.43 4.62 1.86 5.99 8.74 4.56 2.8 7.04 5.42 
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At the conditions studied, the primary benefit of DI gasoline is found at mode 1; thus, the discussion 

will focus on explaining the source of the benefit of stratified gasoline at the mode 1 conditions. Figure A-

3 shows the GIE and combustion efficiency as a function of NOx emissions at mode 1 for the single and 

split injection cases. Direct-injecting part of the gasoline improves the combustion efficiency-NOx tradeoff. 

That is, at equal NOx levels, the combustion efficiency of the split gasoline injection case is 2% to 4% 

higher than the single gasoline injection case. Similarly, the GIE of the split gasoline injection case is ~4% 

higher than the single gasoline injection case at equal NOx levels.  

 
Figure A-3. GIE and combustion efficiency – NOx tradeoff for the optimization at Mode 1 (2 bar IMEP and 

1500 rev/min.). 

To evaluate the source of the efficiency improvement of split gasoline injection case at mode 1, the 

optimum mode 1 cases of the two RCCI strategies were analyzed. Figure A-4 shows the fuel energy flow 

for the two optimized cases. The optimum split injection strategy has a GIE of 44.2%, and the optimum 
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single injection strategy has a GIE of 41.2%. Both cases have identical incomplete combustion, but the split 

injection strategy has significantly lower wall heat transfer (WHT) losses than the single gasoline injection 

strategy. Thus, it appears that the improved GIE of the split gasoline injection case is at least partially due 

to reduced heat transfer losses.  

 
Figure A-4. Energy flow diagram for the optimum cases at Mode 1 (2 bar IMEP and 1500 rev/min.) with a 

single gasoline injection and split gasoline injection. All cases use DI of diesel fuel. The operating conditions 

are shown in Table A-4. 

Figure A-5 shows the in-cylinder pressure and AHRR for the optimized cases. The optimum single 

gasoline injection strategy has a CA50 of -11.5 °aTDC and the optimum split gasoline injection strategy 

has a CA50 of -1.75 °aTDC. The advanced combustion phasing of the single injection strategy resulted in 

higher heat transfer losses and decreased work extraction efficiency (i.e., increased compression work). Of 

course, the combustion phasing of the single gasoline injection case could be retarded by increasing the 

gasoline percent to reduce heat transfer losses. To evaluate this approach, a third case was simulated where 

the operating conditions were set equal to the split gasoline injection case, but the DI gasoline was 

premixed. The in-cylinder pressure and AHRR for this case are included in Figure A-5. When the direct-

injected gasoline is premixed, ignition occurs at the same time as the split gasoline injection case. However, 

the premixed gasoline does not achieve complete combustion, and the results show a GIE of only 30% with 

a combustion efficiency of 55% (i.e., near misfire). These results show that when the gasoline is fully 

premixed, the combustion phasing must be advanced to yield temperatures high enough to oxidize the over-

lean (Φ = 0.15) premixed gasoline. This overly advanced combustion phasing causes a fuel efficiency 
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penalty. Conversely, when the gasoline is stratified, the local Φ is high enough to achieve similar 

combustion efficiency at an optimal combustion phasing.  

 

Figure A-5. Mode 1 in-cylinder pressure and AHRR for the optimum single gasoline injection case, optimum 

split gasoline injection case, and split gasoline injection case with the direct-injected gasoline premixed. 

Figure A-6 shows the contours of in-cylinder Ф at several times prior to ignition for the single 

gasoline injection and split gasoline injection RCCI cases.  

 

Figure A-6. Contours of in-cylinder Ф for the single gasoline injection and split gasoline injection RCCI cases 

at Mode 1. The contours are shown on a cut-plane coincident with the spray axis. 

For the split injection case, the gasoline direct-injection begins at -30.9 °aTDC and ends at -25.8 

°aTDC. The first image, -25 °aTDC, shows the gasoline injection event. Direct-injecting the gasoline with 

the narrow spray angle helps keep the gasoline within the piston bowl, forming a mixture rich enough to 

achieve complete combustion. At around -15 °aTDC, the diesel fuel injection event occurs and acts as the 
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ignition source. The late injection timings of both the gasoline and diesel fuel create relatively high Ф zones 

and ensure stable combustion. For the single gasoline injection case, the gasoline is fully premixed at a Ф 

of ~0.15. The diesel fuel injection at -38.7 °aTDC serves as an ignition source. However, the overly lean 

charge resulting from the high level of premixed fuel requires overly advanced combustion phasing to 

oxidize the premixed fuel, reducing thermal efficiency. 

In addition to improved GIE, the optimum split injection strategy uses a much higher gasoline 

percentage than the optimum single injection strategy (86.2% and 65.3%, respectively). As discussed in 

Chapter 2, utilizing a high gasoline percentage is favorable to offset the transportation energy imbalance. 

To understand this trend, the impact of gasoline percentage on the optimum results was evaluated using the 

COSSO method [61]. Figure A-7 shows the effects of gasoline percentage on GIE, combustion efficiency, 

and NOx emissions. For both cases, the gasoline mass percentage has a strong impact on GIE due to its 

impact on combustion phasing. That is, increasing the gasoline percentage retards combustion phasing and 

decreasing the gasoline percentage advances combustion phasing. As the combustion phasing is retarded 

by increasing the gasoline percentage, NOx emissions, and combustion efficiency decrease. The optimum 

gasoline percentage at this operating condition is a balance between NOx emissions and combustion 

efficiency. The relatively low gasoline quantity for the single gasoline injection case is due to the need to 

advance combustion phasing to increase in-cylinder temperatures to enable oxidation of CO and UHC. 

Recall that the combustion phasing of the optimum single gasoline injection case is -11.5 °aTDC. If the 

combustion phasing is retarded beyond this value, the combustion efficiency deteriorates. Adding 

stratification by direct-injecting a portion of the gasoline (split gasoline injection), increases the optimum 

gasoline percentage to near 90%. The higher gasoline percentage is made possible by the improved 

combustion efficiency resulting from the stratified gasoline charge. That is, by confining the gasoline to the 

piston bowl, the gasoline quantity can be set to a higher value than the single injection case. This allows 

operation with combustion phasing near TDC because overly advanced combustion phasing is not required 

anymore to oxidize CO and UHC. 
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Figure A-7. Effect of gasoline mass on GIE, combustion efficiency, and NOx emissions at Mode 1 calculated 

using the COSSO method. The lines show COSSO predicted response and the symbols show the optimum 

solutions from the CFD study. 

A.4.2. Cycle Averaged Emissions 

Cycle averaged emissions and GIE are calculated from the optimum ADF-RCCI cases and 

compared to the baseline CDC case. As discussed, the optimum ADF-RCCI case uses a split gasoline 

injection at mode 1 and a single gasoline injection at modes 2 through 5. Cycle averaged emissions and 

GIE are calculated using a weighted average given by 

 
𝐸𝑐𝑦𝑐𝑙𝑒 =  

∑ 𝐸𝑖𝑚𝑜𝑑𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑚𝑜𝑑𝑒
5
𝑖𝑚𝑜𝑑𝑒=1

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑚𝑜𝑑𝑒
5
𝑖𝑚𝑜𝑑𝑒=1

,     (32) 

where Ecycle is the cycle-averaged value of emissions or performance, Eimode is the value of emissions or 

performance at each operating mode, and Weightimode is the mode-weighting factor shown in Table A-2. 

Figure A-8 shows the comparison of cycle averaged GIE, NOx, and soot emissions for the optimum ADF-

RCCI and CDC cases. Compared to CDC, the ADF-RCCI strategy gives a cycle-averaged improvement of 

33% in GIE, and a reduction in NOx and soot emissions of 95% and 75%, respectively.  
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Figure A-8. Cycle averaged performance and emissions for RCCI combustion using DI gasoline (ADF-RCCI) 

and diesel fuel and the baseline conventional diesel combustion case. 

The cycle averaged gasoline percentage for the optimized ADF-RCCI case of the present work, 

and the optimum case of Kokjohn and Reitz [7] were compared. The cycle averaged gasoline percent of the 

present work is increased from 58% to 91% by using a lower octane gasoline and by direct-injecting the 

gasoline at the light-load condition. The importance of enabling RCCI operation on a high gasoline 

percentage must be discussed. Therefore, we will assume a vehicle operating at an average of 50 miles per 

gallon over the light-duty drive cycle. With 91% by mass of the fuel supplied as gasoline, the total diesel 

fuel consumed over 5,000 miles of driving is approximately 8.4 gallons. Thus, if a standard sized diesel 

fuel tank were used, the diesel fuel would only need to be filled at oil change intervals. In comparison, if 

the vehicle operated with the same efficiency with a gasoline percentage of 58% by mass, the diesel fuel 

tank would need to be over 40 gallons or filled between oil changes. Further, Splitter et al. [37] and Kaddatz 

et al. [109] demonstrated RCCI combustion by doping DI gasoline with ~3% by volume of a cetane-

improving additive. When operating under the conditions specified in this work, the additive tank size for 

a 5,000-mile fill interval would be only 0.27 gallons. 
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A.4.3. High-Speed-High-Load Optimization 

The previous section demonstrated high efficiency and low emissions over conditions 

representative of a light-duty drive cycle; however, the engine must be able to achieve low emissions 

operation at full load conditions to be a viable combustion system. Accordingly, another optimization was 

performed at a high-speed-high-load (16 bar, 2500 rev/min.) condition. Because GCI combustion has 

shown promising results at high-load conditions [26], a GCI strategy was chosen for this load point. The 

operating conditions were selected based on the GCI model validation experiments [110]. The ranges of 

each input parameter for the study are shown in Table A-5.  

Table A-5. Range of variation allowed for each design parameter in the high-load GCI optimization. 

Design Parameter Range 

Premix (-) 0 to 1.00 

Inj1Frac (-) 0 to 1.00 

SOI-1 (ATDC) -50 to 0 

SOI-2 (ATDC) -50 to 0 

EGR (%) 0 to 50 

 From the optimization results, a best case was chosen as the case with the lowest gross ISFC with 

NOx below the mode 5 NOx target of 0.32 g/kW-hr and a PPRR below 15 bar/deg. Table A-6 shows the 

design parameters and results for the optimum case. The optimum case has a GIE of 46.4% with soot and 

NOx emissions of 0.08 g/kW-hr and 0.02 g/kW-hr, respectively, while meeting the PPRR constraint of 15 

bar/deg. The high amount of premixed gasoline and EGR helps maintain the soot and NOx emissions to 

low values while achieving a high GIE. Thus, operation over the entire load range was demonstrated by 

blending the benefits of RCCI at low-load and mid-load with the benefits of GCI at full load conditions. 

Table A-6. Optimum operating conditions for GCI combustion 16 bar IMEP and 2500 rev/min. 

Design Parameter Optimum 

Premix (-) 0.865 

Inj1Frac (-) 0.454 

SOI-1 (ATDC) -44.68 

SOI-2 (ATDC) -13.23 

EGR (%) 49.45 

Results 

GIE (%) 46.37 

NOx (g/kW-hr) 0.02 

Soot (g/kW-hr) 0.08 

PPRR (bar/deg) 14.62 
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A.5. Conclusions 

RCCI combustion using premixed gasoline and DI diesel fuel has shown promising results over a 

wide range of operating conditions. However, operation at low-loads has proven difficult. The results shown 

in this appendix address this issue by using an adaptive dual-fuel injector capable of direct-injecting 

gasoline and diesel fuel in a single cycle. A computational optimization study was conducted to identify 

the optimum fueling strategies for RCCI combustion at conditions representative of the light-duty drive 

cycle. The results showed that DI of gasoline is preferable at the lightest load conditions, but no benefit is 

found at mid-load conditions. The benefit of DI gasoline at light load conditions was shown to be due to 

the avoidance of overly lean regions that require overly advanced combustion phasing to achieve complete 

combustion. At light load conditions, direct-injecting gasoline improved the peak GIE from 41% to over 

44%. A light-duty drive cycle RCCI strategy was demonstrated that enables operation on a drive cycle 

weighted average of 91% gasoline. In comparison, previous RCCI research [7] showed a drive cycle 

weighted average of 58% gasoline. The high drive cycle averaged gasoline quantity enables the second fuel 

(diesel fuel in the present work) to be treated as an additive with the potential to be filled at oil change 

intervals. At high-load conditions, direct-injecting gasoline enables a transition to GCI operation, enabling 

full load range coverage with high efficiency and low NOx and soot emissions. Enabling dual fuel operation 

at a high gasoline percentage provides a pathway to address the transportation fuel imbalance and achieve 

high efficiency, low emissions combustion. 

 

  

 

 

 

 

 

 



185 

 

Appendix-B Investigation of Soot Production from a Load Extension 

Injection 
In Chapter 6, an optimization study was performed considering low-load-high-speed and high-load-

low-speed operating conditions simultaneously. The study yielded feasible operating strategies for both the 

operating conditions. However, for the optimum operating strategy at high-load-low-speed, soot emissions 

were found to be reasonably high (~2 g/kg-f). The AHRR was a combination of a premixed main heat 

release (premixed gasoline ignited by a diesel fuel injection) followed by a mixing-controlled heat release 

from a load extension injection of gasoline. Investigation of the combustion characteristics of this ‘mixed 

mode’ strategy revealed that the main source of soot emissions was the load-extension injection. 

Accordingly, this appendix section will focus on understanding the soot formation and mitigation 

mechanisms from the load-extension injection of the mixed mode combustion strategy.  

The mixed mode strategy at the high load operating condition resulted in high soot emissions. 

Consequently, this study will be performed at a mid-load condition of 13 bar and 1300 rev/min. so that the 

entire design space of interest for the load-extension injection can be covered, without causing issues of 

clogging in the soot filter. A detailed CFD analysis applying the results found in this study to high-load-

low-speed conditions can be found in Kavuri et al. [100]. 

B.1. Operating Conditions and Computational Study Setup 
The study uses engine experiments and CFD modeling to understand the effects of load extension 

injection SOI timing, EGR rate, and injection pressure on soot emissions. The engine experiments presented 

in this study were performed by Mike Tiry [94] and were guided by the CFD effort presented here. The 

operating conditions and parameters are shown in Table B-1.  

For each parametric study, a premixed charge of gasoline and n-heptane was created using 

injections during the intake stroke. The quantity of gasoline and n-heptane was set to reach a load of 10 bar 

gross IMEP from the premixed fuel alone. A load extension injection consisting of 46 mg of gasoline was 

added at -10 °aTDC to reach a load of 13 bar gross IMEP. The ratio of gasoline and n-heptane in the 

premixed fuel was adjusted to set the 50 percent burn location of the premixed heat release to TDC. The 

load extension injection timing was swept from -10 °aTDC to +30 °aTDC in steps of 5 °CA while holding 
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all other parameters constant. The SOI timing mentioned is the start of the injector current and not the actual 

start of fuel delivery. Rate of injection bench measurements show a delay of 5 °CA between the start of 

injector current and the start of fuel delivery at these conditions.  

Table B-1. Operating conditions for each parametric study. 

Parameter \ Effect 

Investigated 

Load Extension 

SOI 
EGR 

Injection 

Pressure 

Nominal gross IMEP (bar) 13 

Speed (rev/min.) 1300 

Intake Temperature (°C) 60 

Coolant Temperature (°C) 90 

EGR Temperature (°C) 60 

Intake Pressure (bar) 2.31 

Load Extension SOI 

Timing (°ATDC) 
-10 to +30 

Load Extension Mass 

(mg/cycle) 
46 

Total Fuel Mass (mg/cycle) 175 175, 165 175 

EGR Rate (%) 46 30, 46 46 

Total Fuel Energy 

(kJ/cycle) 
7.53 7.53, 7.10 7.53 

Load Extension Fuel 

Energy (kJ/cycle) 
1.97 1.97 1.97 

Mole Fraction (O2, N2, 

CO2, H2O) 

0.11, 0.76, 

0.057, 0.064 

(0.11,0.76, 0.057,0.064), (0.17, 

0.77, 0.026, 0.029) 

0.11, 0.76, 

0.057, 0.064 

Injection Pressure (bar) 1000 1000 1000, 1500 

Mass Fraction of n-C7H16 

Premixed Fuel 
0.1435 0.1435, 0.0279 0.1435, 0.1219 

Total Gasoline Mass 

(mg/cycle) 
158 158, 160 158, 161 

Total n-heptane Mass 

(mg/cycle) 
17 17, 5 17, 14 

B.2. Results 
In this section, the results from the experimental study will be presented. The CFD model will be 

used to explain the experimentally observed results. Thorough validation of the CFD model with the 

experimental data from this study can be found in Chapter 3. 

B.2.1. Effect of Load Extension SOI Timing 

The effect of the load-extension injection SOI timing is evaluated for each parametric study. 

However, the general trends are found to be similar for all EGR, injection pressure, and fuel combinations. 

Accordingly, only the 46% EGR case at an injection pressure of 1000 bar is examined in detail. Figure B-



187 

 

1 shows the measured and model predicted soot trends for this case as a function of load extension SOI 

timing.2  

 

Figure B-1. Measured (○) and model predicted (△) soot emissions for EGR-46% and an injection pressure of 

1000 bar using E0 fuel as a function of load extension injection SOI timing. The measured and simulation 

data are shown in symbols, and the lines show spline interpolation. The error bars are based on a 97.5% 

confidence interval from multiple repeats for the experiments with EGR- 30% and an injection pressure of 

1000 bar. 

The model accurately captures the trends and magnitudes of soot emissions across the range of SOI 

timings. Though there was no measured soot data between -5 °aTDC and +20 °aTDC, simulations were 

performed at these intermediate SOI timings, and the results confirm that the experimental trend line shown 

is a reasonable approximation. The trend follows a downward parabola type profile. At the early SOI 

timings, soot increases as the injection timing is moved closer to TDC. It is known that soot formation is 

strongly dependent on the local Ф and temperature. Accordingly, the trends in soot are explained by 

investigating the state of the in-cylinder charge in Ф-T coordinates.  

Figure B-2 shows the Ф-T diagrams for the cases with SOI timings of -10 °aTDC and -5 °aTDC at 

several crank angles after the start of injection (°ASOI). For the case with SOI at -10 °aTDC, the ignition 

delay is ~5 °CA. However, when the SOI timing is retarded to -5 °aTDC, the ignition delay shortens to ~0 

°CA due to the elevated temperature and pressure resulting from the energy release of the premixed fuel. 

                                                      
2 Note that measurements from SOI timings between -5 °aTDC and +20 °aTDC at this EGR and injection pressure 

could not be collected due to excessively high soot emissions that resulted in damage to laboratory equipment.  
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The longer ignition delay for the SOI of -10 °aTDC case allows more air to be entrained and forms a charge 

that is better mixed than the SOI of -5 °aTDC case. The increased air entrainment lowers the Ф and causes 

a shorter residence time in the soot formation zone and, thus, produces lower soot than the SOI of -5 °aTDC 

case. This analysis shows that the soot production for the early load extension SOI timings (i.e., SOI’s of -

10 °aTDC and -5 °aTDC) is highly dependent on mixing time. Increasing the mixing time increases the air 

entrainment, leading to lower soot levels. 

 

Figure B-2. Ф-T plots of the in-cylinder mixture at various crank angles after start of injection (°ASOI) for 

two load extension injection SOI timings at EGR-46% and injection pressure of 1000 bar. The symbols show 

the equivalence ratio, and temperature in each computational cell and the lines show NOx (lower right on 

each diagram) and soot (upper right on each diagram) islands calculated using HCCI simulations at the 

operating conditions of the present study. 

The second trend that is noticed from Figure B-1 is that, as the load-extension injection timing is 

delayed beyond 20 °aTDC, the soot emissions begin to decrease. Figure B-3 shows the Ф-T diagrams for 
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the load-extension SOI timings of 20 °aTDC and 30 °aTDC for an EGR of 46% at several crank angles 

after the start of combustion (°ASOC) of the premixed fuel.  

 

Figure B-3. Ф-T diagrams of the in-cylinder mixture at various crank angles after start of combustion 

(°ASOC) of premixed fuel for two load extension injection SOI timings at EGR-46% and an injection 

pressure of 1000 bar. The symbols show the equivalence ratio, and temperature in each computational cell 

and the lines show NOx (lower right on each diagram) and soot (upper right on each diagram) islands 

calculated using HCCI simulations at the operating conditions of the present study. 

The crank angle location of 10% of total heat release (CA10) was used as a definition for start of 

combustion. As the injection event is delayed after the primary heat release, the in-cylinder temperature 

begins to decrease. For the case with an SOI of 30 °aTDC, though the in-cylinder Ф’s are high, the charge 

does not enter the soot formation zone due to the low combustion temperature. Advancing the SOI timing 

to 20 °aTDC results in higher temperatures and causes the charge to enter the soot formation zone. This 
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discussion explains the trend of increasing soot with advancing SOI timing for the cases with SOI timings 

well after TDC.  

The trends in soot emissions with load extension SOI timing are further explained by examining 

the soot formation and oxidation. Figure B-4 shows the mass of soot formed and oxidized for the load-

extension injection SOI timing sweep at an EGR rate of 46% and an injection pressure of 1000 bar.  

 

Figure B-4. Soot mass formed and oxidized for the load-extension injection SOI timing sweep at EGR-46% 

and an injection pressure of 1000 bar. 

For the case with an SOI timing at -10 °aTDC, soot is rapidly formed during the combustion event 

(i.e., in the crank angle interval between TDC and 10 °aTDC) and soot formation ends around 10 °aTDC. 

Soot oxidation begins shortly after the initial soot formation, but proceeds at a slower rate and continues 

until approximately 60 °aTDC. When the injection timing is retarded to -5 °aTDC, more soot is formed 

during the combustion event due to the shorter ignition delay and higher local Ф. The higher mass of soot 

formed leads to more soot mass oxidized. However, the increase in soot oxidation does not make up for the 
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increase in soot formed resulting in an increase in the net soot mass (i.e., the mass of soot formed minus 

the mass of soot oxidized) (see Figure B-4). As the injection timing is further delayed into the expansion 

stroke, the mass of soot formed decreases due to the decreased temperature. However, because the primary 

combustion event consumes much of the available oxygen and the temperatures are low, most of the soot 

formed for the later SOI timings persists till the end of the cycle. Though load extension injections with late 

SOI timings have less access to oxygen and lower soot oxidation rates, they end up having lower net soot 

emissions than the load-extension injections with early SOI timings. This result indicates that the soot 

emissions of the late SOI cases do not depend on oxygen availability, but solely on the in-cylinder 

temperature.   

 

Figure B-5. In-cylinder images of soot, Ф, and temperature for the load-extension injection SOI timings of -10 

°aTDC, 20 °aTDC and 25 °aTDC at EGR-46% and injection pressure of 1000 bar. 

Figure B-5 shows in-cylinder images of soot, Ф, and temperature for the load-extension injection 

SOI timings of -10 °aTDC, 20 °aTDC, and 25 °aTDC at 46% EGR and injection pressure of 1000 bar. The 

images for soot and Ф are shown at a crank angle location of 60 °aTDC to show the correlation between 
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the location of soot and high Ф zones. The temperature contours are shown at 5 °CA after start of injection 

(°ASOI) to show the impact of temperature during the secondary combustion event. For all three SOI 

timings, soot is formed in the fuel rich zones. However, as the SOI timing is delayed beyond TDC, the in-

cylinder soot produced decreases despite the presence of regions with Ф higher than the case with SOI 

timing before TDC. Comparing the temperature contours for the corresponding cases, it is seen that, for the 

SOI timings of 20 °aTDC and 25 °aTDC, the in-cylinder temperatures during combustion are significantly 

lower than the SOI of -10 °aTDC case. Hence, despite the existence of fuel-rich regions, these post TDC 

injection cases do not form as much soot as the pre-TDC injection case because the low temperatures inhibit 

soot formation. This reconfirms the result that soot emissions of the late SOI cases do not depend on oxygen 

availability, but solely on the in-cylinder temperature.   

B.2.2. Effect of EGR 

Figure B-6 shows the measured and predicted soot emissions as a function of the load-extension 

injection SOI timing for 30% and 46% EGR cases at an injection pressure of 1000 bar.  

 

Figure B-6. Measured (○,◊) and predicted (△,□) soot emissions for EGR-46% and EGR-30% using E0 fuel as 

a function of load extension SOI timing at an injection pressure of 1000 bar. The measured and simulation 

data are shown in symbols, and the lines show spline interpolation. The error bars show 97.5% confidence 

intervals for the EGR-30% from randomly ordered repeats on different days. 

Decreasing the EGR from 46% to 30% resulted in an order of magnitude reduction in soot 

emissions at the early SOI timings. The magnitude of the soot reduction with decreased EGR decreases as 

the SOI timing is delayed beyond TDC. As shown earlier, the soot emissions for early and middle SOI 
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timings are dependent on oxygen availability. Due to the increased oxygen availability at 30% EGR, the 

soot formation reduces significantly, resulting in lower soot emissions than the 46% EGR cases. To 

illustrate this, Figure B-7 shows the CFD predictions of soot mass formed and oxidized for the 30% and 

46% EGR cases. The reduced formation and increased oxidation rates at the lower EGR rate are evident. 

 

Figure B-7. Soot mass formed and oxidized for the load-extension injection SOI timing sweep at EGR-46%  

and EGR-30% at an injection pressure of 1000 bar. 

At SOI timings of 20 °aTDC and later, the soot emissions are almost the same for both the EGR 

cases. In fact, for the cases with SOI timings of 25 °aTDC and 30 °aTDC, soot emissions for 30% EGR are 

slightly higher than those for 46% EGR. As mentioned earlier, the soot emissions for the late SOI timings 

are solely temperature dependent. For the 46% EGR case, the low availability of oxygen at the late SOI 

timings (3.53% at the start of the secondary heat release) reduces the peak combustion temperatures of the 

secondary heat release, causing near zero soot formation and oxidation. For the 30% EGR case, the higher 

oxygen availability (10.2% at the start of the secondary heat release) causes higher combustion temperatures 

from the secondary heat release. As a result, it forms slightly higher soot compared to the 46% EGR case. 
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This reconfirms the fact that the soot emissions of the late SOI timings are primarily controlled by 

temperature. 

B.2.3. Effect of Injection Pressure 

Figure B-8 shows the measured and predicted soot emissions for 46% EGR at injection pressures 

of 1000 bar and 1500 bar. At the early load extension injection timings, using a higher injection pressure 

reduces the soot emissions.  

 

Figure B-8. Measured (○,◊) and predicted (△,□) soot emissions for injection pressures of 1000 bar and 1500 

bar for EGR-46% using E0 fuel. The measured and simulation data are shown in symbols, and the lines show 

spline interpolation. The error bars are based on a 97.5% confidence interval from multiple repeats for the 

experiments with EGR-30% and an injection pressure of 1000 bar. 

Figure B-9 shows the Ф-T diagrams for both injection pressures at an SOI timing of -10 °aTDC 

and 46% EGR. The increased mixing of the higher injection pressure increases air entrainment and reduces 

the soot formation. It can be seen in Figure B-9 that, at every crank angle location, the higher injection 

pressure case has a slightly leaner charge than the lower injection pressure case. The leaner mixtures for 

the 1500 bar injection pressure cause the charge to exit earlier from the soot formation region than the 1000 

bar injection pressure case; thereby resulting in lower soot emissions. However, for SOI timings of 20 

°aTDC and later, the higher injection pressures show slightly higher soot emissions. The reason for the 

slight increase is due to increased temperature.  
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Figure B-9. Ф-T diagrams of the in-cylinder mixture at various crank angles after start of injection (°ASOI) 

for injection pressures of 1000 bar (left) and 1500 bar (right) at EGR-46% and SOI = -10 °ATDC. The 

symbols show the equivalence ratio, and temperature in each computational cell and the lines show NOx 

(lower right on each diagram) and soot (upper right on each diagram) islands calculated using HCCI 

simulations at the operating conditions of the present study. 

Figure B-10 shows a comparison of the residence time in crank angles of the in-cylinder charge, in 

various temperature ranges, for the 46% EGR case at injection pressures of 1000 bar and 1500 bar and a 

SOI timing of 25 °aTDC. As can be seen from the figure, the shorter injection duration and increased 

mixing due to the higher injection pressure causes the fuel to reside in the high-temperature zones for a 

longer time than the lower injection pressure case. Hence, the higher injection pressure cases end up forming 

more soot at the late SOI timings than the lower injection pressure cases. 
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Figure B-10. Residence time (CA) of the in-cylinder charge in various temperature ranges for the EGR-46% 

case and E0 fuel at injection pressures of 1000 bar and 1500 bar and SOI = 25 °aTDC. 

B.2.4. Feasible Operating Space for Load Extension Injection 

The previous results showed that air entrainment has a significant impact on soot emissions for SOI 

timings near TDC. At these injection timings, oxygen concentration and injection pressure can effectively 

be used to control the soot emissions. However, as the injection timing is delayed beyond TDC, the effect 

of air entrainment reduces, and temperature becomes the dominant factor controlling soot emissions. As 

the SOI timing is delayed sufficiently late beyond the primary heat release, soot formation becomes 

dependent solely on temperature.  

To summarize the results, Figure B-11 shows contours of GIE, NOx, and soot emissions as a 

function of EGR and SOI timing at an injection pressure of 1500 bar, generated from experimental data at 

EGRs of 30%, 38%, and 46%. The trends show that GIE is the highest at the earliest injection timings, with 

a maximum efficiency of 45%, and steadily decreases to just under 40% at the late injection timings. The 

decrease in GIE for the late SOI timings is mainly due to the expansion losses resulting from the late 

combustion phasing. High NOx levels are observed at injection timings before TDC at the lower EGRs. As 

the SOI timing is delayed beyond TDC, NOx levels decrease, but soot emissions begin to increase. With 

further delay in SOI timing, soot production peaks and eventually falls off. Combustion efficiency was 

fairly constant at 99.1% until the SOI timing was retarded beyond 20°aTDC. Since the study was performed 

at a fixed quantity of premixed fuel, the PPRR was fairly constant. Accordingly, the trends of PPRR are 



197 

 

not shown. Additional CFD studies were performed studying the effect of premixed fuel variation on the 

results from the mixed-mode strategy. The results of this study can be found in Kavuri et al. [100]. 

 

Figure B-11. Contours of GIE, NOx, and soot emissions as a function of EGR and SOI timing at an injection 

pressure of 1500 bar using E0 fuel. 

These trends indicate two tradeoffs: the well-known soot-NOx tradeoff and a secondary tradeoff 

between soot and GIE. This offers two potential regions of operation that enable load extension. Figure B-

12 shows the two regions in EGR-SOI operating space where the load-extension injection can be added to 

achieve low emissions (NOx and soot ≤ 2 g/kg-f) and reasonably high efficiencies (GIE ≥ 40%). At EGRs 
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below 40%, the operating space for load extension injections is relatively wide. That is, SOI timings 

between -5 °aTDC and 10 °aTDC show low NOx and soot emissions and high efficiency. Injection timings 

later than 20 °aTDC can also be used; however, thermal efficiency decreases. Therefore, splitting the load-

extension injection into two separate injections in the two feasible regions can mitigate the soot emissions 

without compromising on the load.   

 

Figure B-12. Regions in EGR-SOI operating space which meet constraints of NOx < 2 g/kg-f, FSN < 2 and 

GIE > 40%. The regions are colored by contours of GIE. 

B.3. Conclusions 
The present work investigated soot formation and mitigation mechanisms using a combination of 

engine experiments and computational fluid dynamics modeling to help identify a pathway to enable 

efficient PCI load extension while minimizing soot emissions. A PCI combustion event was achieved using 

a premixed charge of gasoline and n-heptane to control combustion phasing, and a load extension injection 

of gasoline was added near top dead center. Detailed experiments were used to investigate the effects of 

load extension injection SOI timing, exhaust gas recirculation rate, injection pressure, and fuel type on soot 

emissions.  

The results showed a strong impact of oxygen concentration and injection pressure for injection 

timings near top dead center; however, as the load-extension injection event was delayed beyond the end 

of the PCI heat release, the soot formation decreased and became independent of EGR. At these conditions, 
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the CFD modeling showed that soot formation is dependent solely on temperature. This analysis was then 

summarized to indicate potential regions of operation with high efficiency and low NOx and soot emissions. 

The results show that the operating space yielding high efficiency and low NOx and soot emissions 

increases as the EGR is decreased. At EGRs lower than 40%, a range of load extension SOI timings between 

-5° and 10° ATDC (near TDC injection) result in high efficiency and low emissions. Further reductions in 

NOx and soot are possible at injection timings later than 20° ATDC (late post-injection); however, thermal 

efficiency decreases. Therefore, by the splitting the load-extension injection into a near TDC (oxygen 

controlled) and a late post-injection (temperature controlled), soot emissions can be mitigated without 

reducing the load (fueling). 
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Appendix-C Thermodynamic Model – Open Cycle Work Calculation 
A simple thermodynamic model was developed using Cantera [97] to estimate the pumping loop 

work required for each EGR and Ф combination. Figure C-1 shows a layout of the key components 

involved.  

 

Figure C-1. Layout of the air-handling system for open cycle work calculation. Known values are shown in 

red font. 

Compressor and turbine efficiencies of 70% were assumed, resulting in a combined turbomachinery 

efficiency of 49%. Isentropic compressor and turbine calculations were used with the specified turbine and 

compressor efficiencies to calculate the required exhaust backpressure for each operating condition. 

C.1. Compressor Calculations 
All the known states prior to starting the calculations are shown in red in Figure C-1. The inlet 

pressure for the compressor is assumed 4 kPa less than the ambient pressure of 100 kPa, considering 

pressure drop for piping. The inlet temperature is assumed to be at ambient temperature. From the pressure 

and temperature, the enthalpy and entropy at the inlet of the compressor can be calculated assuming intake 

air as an ideal gas. The pressure drop across the intercooler was assumed to be 15 kPa. The pressure and 

volume at IVC are known from the values initialized in KIVA, from which the entropy can be estimated. 

Considering isentropic compression from BDC to IVC gives 

 𝑆𝐼𝑉𝐶 = 𝑆𝐵𝐷𝐶  , ( 33) 
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where, 𝑆𝐼𝑉𝐶 and 𝑆𝐵𝐷𝐶 are the entropies at IVC and BDC respectively. The volume at BDC is known from 

the engine geometry which in combination with SBDC can be used to estimate the pressure at BDC. The 

pressure at the outlet of the compressor can be calculated from the following equations: 

 𝑃𝑜𝑢𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 = 𝑃𝐵𝐷𝐶 , ( 34) 

 𝑃𝑖𝑛𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 − 𝑃𝑜𝑢𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 = 15 𝑘𝑃𝑎, ( 35) 

 𝑃𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑖𝑛𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 , ( 36) 

where 𝑃𝑜𝑢𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 , 𝑃𝑖𝑛𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 are the pressures at the outlet and inlet of the intercooler and 

𝑃𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the pressure at the outlet of the compressor. Considering isentropic compression for the 

compressor yields 

 𝑆𝑖𝑛𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 = 𝑆𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 , ( 37) 

where 𝑆𝑖𝑛𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 , 𝑆𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 are the entropies at the inlet and outlet of the compressor. From 

𝑆𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 and 𝑃𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 the temperature at the outlet of the compressor can be calculated. Since 

ideal gas was assumed, from the temperature at the compressor outlet, the enthalpy at the outlet of the 

compressor can be estimated. Finally, the compressor power is calculated as 

 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 =  𝑚̇𝑖𝑛 (
ℎ𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑠 − ℎ𝑖𝑛𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟

𝜂𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
), ( 38) 

where 𝑚̇𝑖𝑛 is the mass flow rate at IVC, ℎ𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑠  is the isentropic enthalpy at the outlet of the 

compressor, ℎ𝑖𝑛𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the enthalpy at the inlet of the compressor and 𝜂𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the compressor 

efficiency. 

C.2. Turbine Calculations 
At the turbine exit, a pressure drop of 12 kPa was assumed across the after-treatment devices. The 

exhaust from the after-treatment exits to the atmosphere. Hence, the pressure at the outlet of the turbine can 

be calculated from the following equations: 

 𝑃𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒 = 𝑃𝑖𝑛𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 , ( 39) 

 𝑃𝑖𝑛𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑃𝑜𝑢𝑡𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 12 𝑘𝑃𝑎, ( 40) 
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 𝑃𝑜𝑢𝑡𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 100 𝑘𝑃𝑎, ( 41) 

where, 𝑃𝑖𝑛𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝑃𝑜𝑢𝑡𝐴𝑓𝑡𝑒𝑟𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 are the pressure at the inlet and outlet of the after treatment 

device and 𝑃𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒 is the pressure at the outlet of the turbine. From the KIVA closed cycle simulation, 

the pressure, temperature, and mixture composition at EVO are known. From this, the entropy at EVO can 

be estimated. Assuming isentropic expansion from EVO to turbine inlet and from turbine inlet to turbine 

outlet gives 

 𝑆𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒 = 𝑆𝑖𝑛𝑇𝑢𝑟𝑏𝑖𝑛𝑒 , ( 42) 

 𝑆𝑖𝑛𝑇𝑢𝑟𝑏𝑖𝑛𝑒 = 𝑆𝐸𝑉𝑂, ( 43) 

where, 𝑆𝑖𝑛𝑇𝑢𝑟𝑏𝑖𝑛𝑒, 𝑆𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒 and 𝑆𝐸𝑉𝑂 are the entropies at the inlet, outlet of the turbine and at EVO 

respectively. Since the pressure and entropy at the outlet of the turbine are known, the temperature and 

enthalpy at the turbine outlet can be estimated. As the compressor and turbine are run on the same shaft, 

equating the power of compressor and turbine gives 

 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑜𝑤𝑒𝑟𝑇𝑢𝑟𝑏𝑖𝑛𝑒 , ( 44) 

 𝑃𝑜𝑤𝑒𝑟𝑇𝑢𝑟𝑏𝑖𝑛𝑒 = 𝜂𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑚̇𝑒𝑥ℎ(ℎ𝑖𝑛𝑇𝑢𝑟𝑏𝑖𝑛𝑒 − ℎ𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒,𝑠), ( 45) 

where, 𝑚̇𝑒𝑥ℎ is the mass flow rate from EVO after deducting the EGR flow rate, ℎ𝑖𝑛𝑇𝑢𝑟𝑏𝑖𝑛𝑒 is the enthalpy 

at the inlet of the turbine, ℎ𝑜𝑢𝑡𝑇𝑢𝑟𝑏𝑖𝑛𝑒,𝑠 is the isentropic enthalpy at the outlet of the turbine, and 𝜂𝑇𝑢𝑟𝑏𝑖𝑛𝑒 

is the turbine efficiency. Using these two equations, the enthalpy and the temperature at the inlet of the 

turbine can be estimated. Now that the entropy and the temperature are known, the pressure at the inlet of 

the turbine can be calculated. Finally, the pumping loop work is evaluated as 

 𝑊𝑝𝑢𝑚𝑝𝑖𝑛𝑔 = (𝑃𝑖𝑛𝑇𝑢𝑟𝑏𝑖𝑛𝑒 − 𝑃𝑜𝑢𝑡𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟) ∗ (𝑉𝐵𝐷𝐶 − 𝑉𝑇𝐷𝐶), ( 46) 

This approach avoids the complexity of turbo-machinery matching, by assuming that a turbine and 

compressor combination can be developed to achieve 49% combined efficiency at each EGR/intake 

pressure combination. Selecting specific hardware is beyond the scope of the work presented in this 

dissertation. It is assumed that the engine uses an intercooler and the intake temperature is fixed at 60 °C. 
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Appendix-D Post-Injection Strategies under High-Load Conditions 
Based on the results seen in Chapter 4, with the objective of identifying high-load operating 

strategies that work at moderate EGR rates, Paz et al. [111] investigated high-temperature GCI operation 

at reduced EGR rates (< 30 %). They investigated a mixing-controlled CDC like strategy, but with gasoline. 

Due to the high fuel stratification resulting from the mixing-controlled injection, the PPRR was well 

controlled despite operating at a reduced EGR rate. However, combustion at locally rich Ф’s and high 

temperatures resulted in the classical tradeoff between soot and NOx emissions. They compared the GCI 

strategy with CDC under high-load conditions. Results from this study showed that operating with a relaxed 

NOx constraint at NOx emission levels suitable for production applications (~10 g/kg-f) yields significantly 

lower soot emissions (~ 1 FSN) at a higher efficiency (~42%) relative to CDC (~3 FSN, 40%) operation at 

similar levels of NOx emissions (~10 g/kg-f). However, even with gasoline, soot emissions were 

approximately 1 FSN, which remains to be higher than acceptable levels for no soot after treatment. Past 

research [112, 113, 114] in mixing-controlled strategies has shown post-injections as a viable mechanism 

to reduce soot emissions. However, most of these studies were done at low- to mid-load conditions. The 

current study adds to this research by investigating the use of post-injections to reduce soot emissions under 

high-load conditions in the range of 16 bar to 20 bar IMEP. A combination of experiments and CFD 

modeling will be used to isolate and understand the role of premixed, main, and post-injections on soot 

emissions. The effect of SOI timing and injection duration of the post-injection on soot emissions will also 

be investigated.  

D.1. Operating Conditions 

The study was performed using 91E10 gasoline. The engine was operated at 1300 rev/min. at a 

fixed intake pressure of 2.85 bar and 0% EGR rate. The three injection strategies investigated in the current 

study are shown in Figure D-1.   
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Figure D-1. Summary of the injection strategies investigated in the current study. 

Initially, the baseline injection strategy was established which had just the main injection (named 

as No Post Injection in Figure D-1). The SOI timing of the main injection was fixed at -8 ºaTDC, and the 

duration of the main injection was adjusted to vary the load in the range of 16 bar to 21 bar IMEP. For the 

second injection strategy (named as Post Inj. w/ no Premix in Figure D-1), the study was repeated by adding 

a post-injection. The duration of the main injection was fixed to achieve a load of 16 bar IMEP and load 

was varied by adjusting the duration of the post-injection to achieve a similar load range as the baseline 

strategy. The study was performed for three post-injection SOI timings of 16 ºaTDC, 25 ºaTDC, and 40 

ºaTDC. The earliest post-injection SOI was chosen to achieve the minimal dwell time between the main 

and post-injection while avoiding overlap with the main injection. For the final injection strategy (named 

as Post Inj. w/ Premix in Figure D-1), the same study was repeated by removing a part of the fuel from the 

main injection and adding it as premixed fuel. The premixed fuel is introduced into the combustion chamber 

as an early cycle injection, such that the combined load from the premixed and the main injection was 16 

bar IMEP. The post-injection duration was once again varied to achieve the same load range as the baseline 

strategy. For this strategy, the earliest post-injection SOI timing was advanced from 16 ºaTDC to 12 ºaTDC. 

Since premixing a portion of the main injection fuel reduced the duration of the main injection, the post-

injection could be advanced without overlapping with the main injection. The other two post-injection SOI 
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timings investigated remain the same as the second strategy. A detailed summary of the operating 

conditions for each injection strategy is shown in Table D-1. 

Table D-1. Summary of operating conditions for the injection strategies shown in Figure D-1. 

Parameter \ Injection Strategy 
No Post-

injection 

Post Inj. w/ no 

Premix Fuel 

Post Inj. w/ 

Premix Fuel 

Fuel 91E10 

Nominal gross IMEP [bar] 16 to 21 

Engine Speed [rev/min.] 1300 

Intake Temperature [°C] 65 

Intake Pressure [bar] 2.85 

EGR [%] 0 

Injection Pressure [bar] 1360 

Main Inj. SOI Timing [°aTDC] -8 

Total Fuel Mass [mg/cycle] ~ 215 to 290 

Premixed Fuel Mass [mg/cycle] 0 0 68 

Main Inj. Fuel Mass [mg/cycle] ~ 215 to 290 215 147 

Post Inj. Fuel Mass [ mg/cycle] 0 ~ 0 to 75 ~ 0 to 75 

Post Inj. SOI Timing [ºaTDC] N/A 16, 25, 40 12, 25, 40 

The results from the three strategies were compared to first understand the role of premixed, main, 

and post-injections on soot emissions. Next, to study the effect of varying the SOI timing and injection 

duration of the post-injection on soot emissions. 

D.2. Soot Trends 

Figure D-2 shows the experimental and the simulation results of soot emissions as a function of the 

gross IMEP for the three injection strategies studied.  

 

Figure D-2. Experiment and CFD predicted soot emissions vs. gross IMEP for all the cases studied. Post-

injection cases with premixed fuel shown as solid lines with filled markers and post-injection cases without 

premixed fuel shown as dashed lines with unfilled markers. 
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In the figure, early post refers to SOI of 12 ºaTDC for post-injection cases with premixed fuel and 

16 ºaTDC for post-injection cases without premixed fuel. Mid post refers to SOI of 25 ºaTDC, and late post 

refers to 40 ºaTDC cases. No post refers to the cases without post-injections. The post-injection cases with 

premixed fuel are shown in solid lines with filled markers. The post-injection cases without premixed fuel 

are shown in dashed lines with unfilled markers.  

From the experimental trends, firstly it is seen that for both the post-injection strategies, as the post-

injection SOI timing is delayed (i.e., the dwell time between the main and the post-injection increases), for 

the same gross IMEP, the soot emissions increase. Secondly, at each post-injection SOI timing, for the same 

gross IMEP, the cases with the premixed fuel have lower soot emissions than the cases without the premixed 

fuel. Lastly, comparing the post-injection strategies to the baseline strategy (no post) at the same gross 

IMEP, it is observed that adding post-injections does not give any benefit in terms of soot reduction. This 

is inferred since the post-injection strategy with the least soot emissions (i.e., the post-injection strategy 

with premixed fuel and SOI of 12 ºaTDC), gives the same or slightly higher soot emissions relative to the 

baseline strategy.  

Comparing the experimental trends with the CFD predicted trends, it is seen that there is a good 

agreement between the two. CFD does a decent job in predicting the experimental soot emissions in terms 

of trends and magnitude across the three injection strategies studied. All the trends observed in the 

experiments are observed to be intact in the CFD predictions as well. Accordingly, the CFD results will be 

used to explain the three experimental trends that were highlighted in the above discussion.  

D.2.1. Effect of Dwell Time 
The first trend that was highlighted from Figure D-2 was the effect of dwell time between main and 

post-injection SOI timings on soot emissions. It was found that for both the post-injection strategies, for the 

same gross IMEP, increasing the dwell time between the main and post-injection SOI timings increased the 

soot emissions. To explain this trend, the three post-injection SOI timings at a gross IMEP of ~18.5 bar are 

chosen from the post-injection cases with the premixed fuel. Figure D-3 shows the CFD predicted trends 

highlighting the cases that will be used to explain the trends. 
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Figure D-3. CFD predicted trends for the post-injection cases with premixed fuel. The blue box highlights the 

cases that will be used to explain the soot trends as a function of the dwell time. 

Figure D-4 shows the Ф and soot contours for the three cases highlighted in Figure D-3. For all the 

three cases, the fuel from the main injection hits the bowl and eventually ends up in the squish region due 

to the spray momentum. This is seen from the Ф contours from 24 ºaTDC to 40 ºaTDC where fuel-rich 

regions are visible in the squish region for the SOI of 40 ºaTDC cases, and the post-injection is yet to be 

introduced. As a result, the soot emissions formed from the main injection which are yet to be oxidized also 

end up in the squish region. This is observed from the soot contours at the same crank angle locations of 24 

ºaTDC to 40 ºaTDC for the SOI of 40 ºaTDC case. Now focusing on the post-injections, for the SOI of 12 

ºaTDC case, it is seen from the Ф contours at 16 ºaTDC that the entire fuel mass from the post-injection is 

targeted into the bowl. Eventually, this results in the fuel mass from the main and the post-injection being 

split up between the bowl and the squish region. This is evident from the two distinct fuel-rich regions in 

the Ф contours from 50 ºaTDC to 70 ºaTDC for the SOI of 12 ºaTDC case. However, for the post-injection 

SOI timing of 25 ºaTDC, a significant portion of the post-injection fuel mass is targeted into the squish 

region. Similarly, for the post-injection SOI timing of 40 ºaTDC, the entire post-injection fuel mass is 

targeted into the squish region where it accumulates with the main injection fuel mass. This is seen from 

the Ф contours from 50 ºaTDC to 70 ºaTDC where the post-injection SOI timings of 25 ºaTDC and 40 

ºaTDC have significantly richer regions in the squish relative to the post-injection SOI timing of 12 ºaTDC. 
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SOI = 12 ºaTDC SOI = 25 ºaTDC SOI = 40 ºaTDC 

      

      

      

      

      

      

      

      

      

      

Figure D-4. Ф and soot emissions contours for the three cases highlighted in Figure D-3. 
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These results indicate that as the post-injection is delayed later into the expansion stroke, a larger 

portion of the fuel from the post-injection gets accumulated in the same region as the main injection fuel 

mass. Conversely, when the post-injection is early, the fuel mass from the two injections ends up in two 

distinct locations in the combustion chamber. Therefore, the earlier the post-injection, the better distributed 

the fuel is in the combustion chamber. Accordingly, the earliest post-injection SOI timing of 12 ºaTDC 

results in the least soot emissions as it provides better access to oxygen for the main and the post-injections, 

resulting in improved soot oxidation rates. This is visible from the soot mass fraction contours from 50 

ºaTDC to 70 ºaTDC for the post-injection SOI of 12 ºaTDC cases, where most of the soot formed at the 

earlier crank angles gets oxidized. As the post-injection is delayed later into the expansion stroke, a larger 

portion of the post-injection is targeted into the squish region, leaving the majority of the oxygen in the 

bowl unused. Thus, the soot formed from the late post-injections gets accumulated with the soot formed 

from the main injection fuel mass, resulting in increased net soot emissions as the post-injection is delayed.  

This is evident from the soot mass fraction contours from 50 ºaTDC to 70 ºaTDC where, as the post-

injection SOI timing is delayed, there is a higher soot mass fraction that does not get oxidized and ends up 

in the squish region.   

Thus, the post-injection cases with a shorter dwell time with respect to the main injection result in 

lower soot emissions. This is because the fuel from the post-injection gets targeted into a different region 

of the combustion chamber relative to the main injection fuel which gives better access to oxygen to both 

the injections; thereby resulting in lower soot emissions.  

D.2.2. Effect of Premixed Fuel 
The second trend that was observed from Figure D-2 was that the post-injection cases where a 

portion of the main injection fuel is premixed resulted in lower soot emissions than the cases without the 

premixed fuel. To explain this trend, the cases at a gross IMEP of ~18.5 bar and post-injection SOI timing 

of 25 ºaTDC were chosen from the two post-injection strategies. Figure D-5 shows the CFD predicted 

trends highlighting the cases that will be used to explain the trends.  
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Figure D-5. CFD predicted trends for the post-injection SOI timing of 25 ºaTDC cases with and without the 

premixed fuel. The blue box highlights the cases that will be used to explain the soot trends as a function of 

the dwell time. 

Figure D-6 shows the Ф and the soot emissions contours for the two cases highlighted in Figure D-

5. Not having premixed fuel creates a leaner background Ф when the main injection is introduced. This is 

seen from comparing the Ф contours at 0 ºaTDC, in Figure D-6. When a portion of the main injection fuel 

is premixed, though the background Ф increases, the premixed fuel is well mixed and is locally lean during 

combustion. For the post-injection cases without the premixed fuel, though there is more oxygen available, 

not premixing the fuel increases the fuel quantity in the main injection which eventually combusts in a 

mixing-controlled heat release. Hence, not premixing the fuel increases the amount of locally rich regions 

in the combustion chamber during the mixing-controlled combustion of the main injection; thereby forming 

higher soot emissions. This is seen by comparing the Ф contours for crank angles locations of 8 ºaTDC to 

24 ºaTDC. Similar to the cases shown in Figure D-4 the fuel from the main injection is targeted into the 

bowl and ends up in the squish. But when a portion of the fuel is premixed it reduces the fuel rich regions 

formed in the squish. This eventually results in less soot formation as is seen from comparing the soot 

emission contours at the crank angle locations of 8 ºaTDC to 24 ºaTDC. As a result, when the post-injection 

fuel is injected, there are relatively lower soot emissions in the combustion chamber for the case with 

premixed fuel. This is seen from comparing the soot emissions contours at 32 ºaTDC. For the post-injection 

SOI timing of 25 ºaTDC considered in Figure D-6, the fuel from the post-injection is split between the bowl 
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and the squish regions as observed from the Ф contours at crank angles of 40 ºaTDC and 50 ºaTDC. The 

soot formed from the post-injection fuel targeted into the bowl gets oxidized almost completely as it 

accesses the oxygen present in the bowl. This is evident from the soot emissions contours where there is 

soot formed in the bowl at crank angles from 40 ºaTDC to 50 ºaTDC, but gets oxidized eventually by 70 

ºaTDC. The post-injection fuel that is targeted into the squish forms soot that gets accumulated with the 

soot mass from the main injection which is yet to be oxidized. This is seen from the soot emissions contours 

at 40 ºaTDC and 50 ºaTDC. Both the post-injection cases have the same fuel mass in the post-injection and 

end up forming nearly the same amount of soot from the post-injection eventually. This is observed by 

comparing the soot emissions contours for the two cases at 70 ºaTDC. It is seen that there is nearly the same 

amount of soot from the post-injection that does not get oxidized and ends up in the squish region close to 

the crevice. However, for the case without the premixed fuel, there is additional soot mass that did not get 

oxidized. This soot mass ended up in the squish region close to the cylinder head as seen from the soot mass 

fraction contours at 70 ºaTDC for the case without the post-injection. This is due to the additional fuel mass 

in the main injection which was not premixed and resulted in soot formation. This additional soot formed 

does not get oxidized and eventually ends up in the squish region close to the cylinder head.  

The same result is shown quantitatively in Figure D-7, which shows a comparison of the trends of 

soot formation, soot oxidation, and soot production as a function of crank angle for the two cases compared 

in Figure D-6. The trends for the case with the premixed fuel are shown in solid lines while the trends for 

the case without the premixed fuel are shown in dashed lines. As seen from the figure, the peak soot 

produced prior to the post-injection is higher for the case without the premixed fuel. This is because at the 

peak soot location which occurs at in a crank angle range of ~12 ºaTDC to 15 ºaTDC, the soot mass oxidized 

is nearly the same for the two cases while the soot mass formed is significantly higher for the case without 

the premixed fuel. This difference in soot mass exists until late in the expansion stroke, resulting in higher 

soot emissions at EVO for the case without the premixed fuel.  
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Post Inj. w/ Premix Fuel Post Inj. w/ No Premix Fuel 

    

    

    

    

    

    

    

    

    

    

Figure D-6. Ф and soot emissions contours for the two cases highlighted in Figure D-5. 
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Figure D-7. Trends of soot formation, oxidation and production as a function of CA for the post-injection 

cases with (-) and without (- -) premixed fuel compared in Figure D-6. 

D.2.3. Effect of Post-Injection 
The last trend that was highlighted in Figure D-2 was that adding the post-injection did not result 

in any significant reduction in soot emissions relative to the baseline injection strategy. To explain this 

result, cases at a gross IMEP of ~18.5 bar are chosen from the no post-injection cases and the post-injection 

cases without premixed fuel having an SOI timing of 16 ºaTDC. The post-injection case without the 

premixed fuel was chosen instead of the case with the premixed fuel, to isolate the effect of adding the post-

injection. The earliest post-injection timing was chosen to make the comparison since it resulted in the least 

soot emissions. Figure D-8 shows the CFD predicted trends while highlighting the cases that will be used 

to explain the trends. 

 

Figure D-8. CFD predicted trends for the post-injection SOI timing of 16 ºaTDC cases without the premixed 

fuel and the cases without the post-injection. The blue box highlights the cases that will be used to explain the 

soot trends as a function of the dwell time. 
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Post Inj. w/ no Premix Fuel No Post-injection 

    

    

    

    

    

    

    

    

    

    

Figure D-9. Ф and soot emissions contours for the two cases highlighted in Figure D-8. 
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Figure D-9 shows the Ф and the soot emissions contours for the two cases highlighted in Figure D-

8. The no post-injection case has a larger fuel mass in the main injection compared to the post-injection 

case. Hence, there are more locally rich regions during combustion for the no post-injection case. This is 

seen from comparing the Ф contours for the two cases in Figure D-9 at crank angle location of 16 ºaTDC. 

This results in higher soot formation from the main injection fuel for the no post-injection case relative to 

the case with the post-injection. This can be observed from comparing the soot mass fraction contours for 

the two cases at crank angle location of 16 ºaTDC. Figure D-10 shows the trends of soot formation, soot 

oxidation, and soot production for the two cases compared in Figure D-9. The trends for the case without 

the post-injection are shown in solid lines while the trends for the post-injection case without the premixed 

fuel are shown in dashed lines.  

 

Figure D-10. Trends of soot formation, oxidation, and production as a function of CA for the no post-

injection case (-) and the post-injection case without premixed fuel (- -) compared in Figure D-9. 

From the soot formation trends, it is seen that of the two cases compared, the case without the post-

injection forms more soot. However, there is abundant availability of oxygen, and since the combustion 

temperatures are high close to TDC, it results in high soot oxidation rates for both the cases. Hence most of 

the soot formed is oxidized, resulting in nearly the same amount of soot emissions for both the cases by 20 

ºaTDC, which is when the main injection for the no post-injection case ends. This can be visualized in 

Figure D-10 by comparing the soot production trends for the two cases around the crank angle timing of 20 

ºaTDC. Similar to the earlier cases, the soot formed from the main injections ends up in the squish region 

close to the cylinder head. As the expansion stroke proceeds, the soot formation reaches saturation for the 
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no post-injection case. However, the soot oxidation rate continues to increase and oxidizes the soot formed 

from the main injection in the squish region. 

Conversely, for the post-injection case, soot formation increases at 20 ºaTDC from the combustion 

of the post-injection fuel. Due to the high-load (~18.5 bar) operating condition the post-injection has a 

reasonably long duration (~ 7 ºCA). This results in the soot formation continuing to increase till 30 ºaTDC 

beyond which it reaches saturation. This is seen from the soot emissions contours at 24 ºaTDC and 32 

ºaTDC for the post-injection case in Figure D-9 and from the soot formation trends in Figure D-10. 

However, at this point in the expansion stroke, the temperatures are decreasing quickly, and the oxygen 

concentration has reduced due to combustion of the main injection fuel. This slows down the soot oxidation 

rate, which is seen from the reduction in the slope of the soot oxidation curve in Figure D-10 beyond 20 

ºaTDC. Due to this the soot formed from the post-injection does not get oxidized completely. This is visible 

from the soot mass fraction contours at crank angle locations of 60 ºaTDC and 70 ºaTDC where the soot 

emissions formed in the bowl due to the post-injection are not completely oxidized. The amount of soot 

from the main injection that did not get oxidized ends up being nearly the same as the case with the no post-

injection. Furthermore, it is found to occur in the same location of the squish region as the no post-injection 

case.  

Hence, the post-injection cases do not give any benefit at high-load conditions due to the long 

duration of the post-injections which causes soot to form late in the cycle.  At these late CA timings, the 

temperatures drop rapidly slowing down the soot oxidation rates and cause most of the soot from the post-

injection to not get oxidized. This eventually results in increased soot emissions at EVO. Though the long 

main injections (where there is no post-injection) form more soot, since the soot is formed early in the cycle, 

the combustion temperatures are high and favorable for soot oxidation. As a result, most of the soot formed 

is oxidized. Therefore, based on the current study, it can be inferred that, when operating at high-load 

conditions close to 20 bar IMEP, post-injections will not be useful in reducing soot emissions.  
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The results seen from the post-injection study are contradictory to the results seen in literature 

where post-injections were found to be effective in reducing soot emissions.  There are two differences 

between the studies in the literature and the present study. Firstly, most of the studies in literature were 

focused on the low- to mid-load conditions and secondly, they were performed with diesel fuel. Hence, to 

understand if the lack of benefits of post-injections in the present study was a result of changing these 

factors, a similar study was repeated under low- to mid-load conditions with diesel fuel using the validated 

CFD model. Validation of the model over a range of low to mid-load operating conditions with diesel fuel 

can be found in Kavuri et al. [50].  

D.2.4. Effect of Post-Injection at Low to Mid-Load Conditions 
The study at low to mid-load conditions was performed with the same engine and injector 

configuration that was used for the high-load study. The operating conditions were chosen from the study 

performed by O’Connor et al. [115]. This is because, in their study, they have shown post-injections to be 

beneficial for soot reduction and the setup of their study is very similar to the high-load study performed in 

the earlier section of this appendix.  Both these factors make it an ideal data set to perform this study and 

compare with the results from the earlier high-load study.  The operating conditions are shown in Table D-

2. 

Table D-2. Operating conditions for the study at low to mid-load conditions. 

Parameter \ Injection Strategy 
No Post-

injection 

Post Inj. w/ no 

Premix Fuel 

Fuel Diesel 

Nominal gross IMEP [bar] 4 to 8 

Engine Speed [rev/min.] 1200 

Intake Pressure [bar] 1.61 

EGR [%] 0 

Injection Pressure [bar] 1200 

Main Inj. SOI Timing [°aTDC] -13 

Total Fuel Mass [mg/cycle] ~ 62 to 124 

Main Inj. Fuel Mass [mg/cycle] ~ 62 to 124 62 

Post Inj. Fuel Mass [ mg/cycle] 0 ~ 0 to 43 

Post Inj. SOI Timing [ºaTDC] N/A 6 
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For the baseline strategy, which has no post-injection, the main injection duration was adjusted to 

achieve a load range of 4 bar to 8 bar gross IMEP. The study was then repeated with the post-injection 

strategy where the main injection fuel mass was fixed to achieve a load of 4 bar gross IMEP, and the post-

injection duration was varied to achieve the same load range as the baseline strategy. Understandably, the 

post-injection strategy with premixed fuel was not explored since the study was being performed with diesel 

fuel. Figure D-11 shows a comparison of the soot emissions results from the baseline and the post-injection 

strategy of the current study and the results from the study performed by O’Connor et al. [115]. 

 

Figure D-11. Soot emissions results from the baseline and the post-injection strategy of the current study and 

the results seen from the study by O’Connor et al. [115]. 

From the results shown in Figure D-11, the current study yields similar results as seen from the 

original study by O’ Connor et al. [115]. In both the studies, increasing load through post-injection resulted 

in a soot benefit initially. As the load is increased further, the soot emissions of the post-injection strategy 

eventually approached the soot emissions levels from the baseline strategy. The cases highlighted by the 

red box in Figure D-11 shall be used to understand why a soot benefit is seen from using post-injections at 

the low- to mid-load conditions. Figure D-12 shows the Ф and the soot mass fraction contours for the two 

cases highlighted in Figure D-11. Similar to the high-load cases, not having the post-injection increases the 

fuel mass in the main injection and therefore increases the amount of locally rich regions during 

combustion. This is seen from comparing the Ф contours of the two cases at 0 ºaTDC and 6 ºaTDC in 

Figure D-12. This results in increased soot emissions from the main injection fuel for the case with no post-

injection. This is observed from comparing the soot mass fraction contours at 6 ºaTDC between the two 

cases in Figure D-12. Similar to the high-load cases, due to the shape of the bowl and the spray momentum, 
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the majority of the main injection fuel is targeted into the squish region forming a fuel rich mixture in that 

region. Accordingly, the soot emissions formed from the main injection fuel also gets accumulated in the 

squish region. This is visible from the Ф and soot mass fraction contours for the no post-injection case at 

24 ºaTDC. However, for the post-injection case, the fuel from the post-injection is targeted into the bowl 

region. This causes the fuel from the two injections to be distributed between the bowl and the squish region. 

This is evident from the Ф contours at 12 ºaTDC for the post-injection case, where the post-injection is 

targeted into the bowl region and from 12 ºaTDC to 40 ºaTDC the fuel from the two injection is distributed 

between the bowl and squish region. Since the main and the post-injection fuels are distributed between the 

squish and the bowl, the main injection has relatively higher oxygen availability in the squish region 

compared to the no post-injection case and the fuel in the post-injection that is targeted into the bowl utilizes 

the oxygen in the bowl that was otherwise unused. Since both the injections are getting better access to 

oxygen, the overall fuel mixture is better mixed in the post-injection case relative to the case without the 

post-injection. This was also seen in the high-load case where adding an early post-injection resulted in a 

better distributed and well-mixed fuel-air mixture. However, unlike the high-load case, we see that adding 

the post-injection results in a soot reduction here. This is because, in addition to reducing the soot emissions 

from the main injection, the soot formed from the post-injection also gets oxidized completely. This is seen 

from the soot mass fraction contours of the post-injection case in Figure D-12 at crank angle locations of 

40 ºaTDC to 70 ºaTDC. The reason for this is the shorter injection durations of the main and the post-

injection at low-load conditions. The fuel mass is relatively low compared to the high-load case. Hence, the 

injection duration of the post-injection (~ 3 ºCA) is shorter compared to the high-load case (~ 7 ºCA). 

Furthermore, since the main injection duration is also shorter, the post-injection is injected closer to TDC 

(SOI = 6 ºaTDC) relative to the high-load post-injection (SOI = 12 ºaTDC). The reduced fuel mass results 

in lower soot formation from the post-injection case and this reduction in soot formation combined with the 

early injection timing causes the soot formation to reach saturation relatively early in the cycle compared 

to the high-load case. This provides sufficient residence time in the high temperature regions to oxidize the 

soot formed from the post-injection completely.  
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Post Inj. w/ no Premix Fuel No Post-injection 

    

    

    

    

    

    

    

    

    

Figure D-12. Ф and soot emissions contours for the two cases highlighted in Figure D-11. 

Hence, similar to the results seen in literature, using a post-injection at low- to mid-load conditions 

helps in reducing soot emissions. However, the reason for the soot benefit was not attributed to the enhanced 

mixing of main injection or the enhanced late cycle temperatures. It was found to be due to spray targeting. 

At low- to mid-load conditions, targeting the fuel from the post-injection at a different region in the 
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combustion chamber relative to the main injection provides better access to the oxygen to both the main 

and the post-injections. Additionally, since the duration of the main and the post-injection is shorter relative 

to the high-load conditions, it allows the SOI timing of the post-injection to be advanced closer to TDC 

without overlapping with the main injection. The combination of the advanced post-injection SOI timing 

and the shorter duration of the post-injection causes the fuel to be delivered sufficiently early in the cycle. 

All these factors combined provide an adequate residence time in the high temperature regions to oxidize 

the soot formed from the post-injection completely; thereby resulting in reduced soot emissions compared 

to the case without the post-injection. 

D.3. Conclusions 

In this appendix, the efficacy of post-injections under high-load operating conditions of 16 bar to 

21 bar gross IMEP with GCI combustion was investigated. Results showed that minimizing the dwell time 

between the main and the post-injection resulted in the least soot emissions from the post-injection 

strategies. This is because the spray targeting allowed the fuel from the main and post-injections to be better 

distributed within the combustion chamber. Premixing a portion of the main injection fuel helped in further 

reducing the soot emissions for the post-injection cases. The well-mixed premixed fuel did not form any 

soot emissions and thereby reduced the soot that was otherwise being formed from the main injection. 

However, when compared to the soot levels from the baseline strategy which does not use a post-injection; 

it was found that adding the post-injection was not effective in reducing the soot emissions under high-load 

conditions. The reason for this is the increased fuel mass at high-load conditions, which caused the post-

injection to end late in the cycle. At these late CA timings, the temperatures are rapidly decreasing, slowing 

the soot oxidation rates. Hence the soot formed from the post-injection was not oxidized completely. Not 

having the post-injection resulted in increased soot formation from the main injection, but since combustion 

was happening early in the cycle, the soot emissions formed have a longer residence time in the high 

temperature regions that favor soot oxidation. This caused most of the soot formed to be oxidized; thereby 

resulting in lower soot emissions than the post-injection cases.  
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Since these results were contrary to the results seen in literature at low to mid-load conditions, a 

similar study was repeated at lower load conditions of 4 bar to 8 bar gross IMEP with diesel fuel. At the 

low- to mid-load conditions, it was found that post-injections show a benefit in reducing soot emissions. 

This was because similar to the high-load conditions, targeting the fuel from the post-injection at a different 

region in the combustion chamber relative to the main injection provided better access to the oxygen to 

both the main and the post-injections. However, since the duration of the main and the post-injection is 

shorter relative to the high-load conditions, it allowed the SOI timing of the post-injection to be advanced 

closer to TDC without overlapping with the main injection. A combination of the advanced post-injection 

SOI timing and the shorter duration of the post-injection, caused the fuel to be delivered sufficiently early 

in the cycle. This provided an adequate residence time in high temperature regions to oxidize the soot 

formed from the post-injection completely; thereby resulting in reduced soot emissions compared to the 

case without the post-injection. 


