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Abstract

The take-off point for this dissertation is the body of literature in finance and control theory which

involves stock-trading strategies based on technical analysis. A salient feature of the line of re-

search which we pursue is that neither a parameterized model for stock prices nor a behavioral

model involving “agents” is used. This class of trading methods is said to be model free. Many

papers in finance documenting the “efficacy” of such model-free trading methods are based on

backtesting using historical price data. This reliance on data in lieu of a formal theory explaining

successes and failures is one of the main reasons that many in the finance community have crit-

icized this method of trading. In addition, many of these strategies are heuristic in nature which

makes them difficult to carry out mathematical analysis. In direct contrast to the approaches above,

the main objective of this dissertation is to further the development of a relatively new line of re-

search emerging from control community: using simple ideas involving robust and adaptive control

to provide a theory explaining successes and failures of various classes of technically-based trading

strategies. In a sense, we seek to “demystify” model-free technical analysis.

Analysis here is carried out under the assumption of an “idealized market” which is similar to the

well-known concept of a “frictionless market” in finance. In our setting, the feedback controller

which determines the investment level is parameterized by a gain denoted by K and its gain-

loss performance is benchmarked using Geometric Brownian Motion (GBM), the most famous

price-generating process in the finance literature. In this GBM setting, one of our first results is

a new formula for the skewness of the probability distribution of the trading gains which is seen

to be an increasing function of the feedback gain K. The second result in the thesis is motivated

by the fact that a highly-skewed distribution often leads to a significant probability of loss and

large “drawdown,” a well-known measure of risk. With this is mind, we derive a formula for the

drawdown in the wealth when the strategy is again based on a linear feedback trading strategy.
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Following the initial results above, we study a so-called Proportional-Integral (PI) controller, a

generalization of our linear feedback controller to exploit memory. One of the main results is that

in an idealized market with stock price governed by a non-trivial GBM, a combination of two PI

controllers leads to a positive expected value for the trading gain. Since this holds independently of

the parameters underlying the GBM process, it is called the Robust Positive Expectation Property.

The theory is then extended to accommodate a variation of this PI controller which involves an

exponentially-weighting scheme to put more emphasize on recent performance and reduce the

impact of “old information” on the investment level.

While the results described above are for feedback-based trading in continuous time, we also con-

sider the discrete-time case which is apropos for a “low-frequency” trader such as a typical small

investor. In this setting, we consider a trading rule which involves a controller with delay and,

analogous to PI controller, is motivated by a desire to include weighting of recent performance

to obtain the investment level. Once introduced, it is proven that the Robust Positive Expectation

Property holds for this delay system.

The final results in the thesis are motivated by skewness considerations and are considered to be

an “off-shoot” of our research. In the presence of skew, classical mean-variance based analysis

can provide a distorted picture of the prospect for success. This can become even more crucial

in “mission-critical” applications with the possibility of “model distrust.” With these motivations

in place, we introduce a new “conservative” reward-risk pair which not only discounts long tail

of distribution but is also independent of individual’s risk-preference; i.e., utility function. To this

end, the Conservative Expected Value (CEV) and Conservative Semi-Variance (CSV) are formally

defined. They are calculated for some of famous probability distribution and some of their most

important properties are established.
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Chapter 1

Background and Overview of this Dissertation

The take-off point for this dissertation is a new line of research aimed at studying model-free stock

trading strategies based on concepts from control theory; e.g., see [1–14]. Motivation for our

study of this problem area is derived in part from the limited ability of existing models to predict

prices. The failure of these models is epitomized in the turbulent markets experienced in 2000

and 2008-2009. For example, the model used by Markowitz [15] relies on covariance consider-

ations in order to bring diversification to the portfolio. However, this model failed dramatically

in volatile days of 2008 and 2009 as price movements became excessively correlated. Given this

context, the so-called model-free trading strategies which we consider in this dissertation and their

associated buy and sell signals are based on gain-loss performance rather than any type of param-

eterized stock-price model or agent-based model. These trading rules fall under the umbrella of

“technical analysis,” for example, see [16–21].

In addition to the class of model-free strategies defining the scope of this thesis, there are other

“flavors” of technical analysis in the literature. For example, one method of technical analysis

includes consideration of agents, rational expectations, equilibria and information content in the

stock prices; e.g., see [22] and [23]. Yet a third type of technical analysis, some of which is in-

spired by control theory, focuses on trading strategies aimed at maximization of the trader’s “utility

function” or using a known model for dynamics; e.g., see [24–52]. The fact that model parameters

are assumed to be known is what differentiates this work from ours. Finally, we note that many

of these cited references are only tangentially related to the research described in this thesis in

that they deal with issues in financial markets other than the narrow focus here: trading a stock.

In the finance literature dedicated to the analysis of technically-based trading strategies, the use

of backtesting with historical price data has been the method of choice. Reference [53] provides

an excellent survey and bibliography covering this literature; see also [21, 54–59] for more de-

tail. While technical analysis is widely used by practitioners, many of the statistically-based per-

formance analyses in finance literature claiming “excess” profits have been challenged. Critics
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claim that these strategies have not demonstrated a significant “edge” over market benchmarks;

e.g., see [58,60–62]. Furthermore, many academics tend to be skeptical about the efficacy of tech-

nical analysis based on the belief that stock prices are unpredictable. As pointed out in [21], some

authors have gone so far as to refer to technical analysis as “voodoo finance.” In [63], techni-

cal analysis is referred to as “anathema.” One of main reasons underlying such skepticism is the

“Efficient Market Hypothesis,” originally described in [35,64–66], which indicates that there is no

“pattern” in asset prices which can be exploited in order to make excess profit.

In response to the type of criticism above, there is a large body of literature suggesting that tech-

nical analysis can be quite successful; e.g., see [19, 20, 54, 55, 67–74]. For example, in [54], the

case for the efficacy of technical analysis is made via a number of significant empirical studies in-

volving the use of statistics and historical data under a number of market conditions; e.g., see [21]

and [56]. In addition, it should also be noted that the use of technical analysis is quite popular in

many quarters of Wall Street. For example, nowadays, hedge funds as well as individual investors

often document their performance; e.g., see [75] and [76]. Finally, it should be mentioned that

some of this literature on the empirical performance of technically-based strategies has been chal-

lenged on the grounds that “data snooping” is suspected. For example, it is argued that the use of

a small data set exaggerates the performance of a strategy; e.g., see [77–80].

It is pointed out in [18] that the heuristic nature of many technically-based strategies makes it dif-

ficult to carry out mathematical analysis. In this regard, in a number of publications such as [18]

and [24], the possibility of a formal theoretical framework to analyze the performance of such

strategies has been raised. This dissertation concentrates on developing such a theoretical frame-

work. Beginning with the initial results from the control community in [1–5], we pursue theoretical

explanations for the performance of various model-free technically-based trading algorithms. That

is, instead of studying the efficacy of a trading strategy via statistical methods or use of a price

model, we develop a formal model-free theory based on feedback control considerations.

Given the context above, the main goal of this dissertation is to develop a proof-based theoretical

framework addressing some special cases of technical analysis — the hope being to open the

door to demystification of more general situations. The new strategies which we consider involve
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linear feedback and belong to a class of trend-following strategies; e.g., see [26, 81–83]. In this

setting, our controllers adapt the investment level in response to gains and losses as they evolve

over time; e.g., see [1–5]. It should be noted that the main point in this dissertation is not to develop

new “market-beating” algorithms. It is to develop a feedback-based theory which explains both

successes and failures of new and existing strategies.

In the remainder of this chapter, we provide an overview of the class of linear feedback strategies

being considered and some of the main dissertation results are previewed. The analysis is carried

out under the assumption of an “idealized market,” described in Section 1.2. Such a market is

closely related to the so-called “frictionless market” described in [84]. In our framework, for

the continuous-time case, the performance is benchmarked by driving the trading system using

prices obtained as sample paths of a Geometric Brownian Motion (GBM) process with drift µ and

volatility � which are unknown to the trader. This classical process is the most famous benchmark

in the finance literature and is used to test different strategies; e.g., see [85–89]. For the case of

discrete-time benchmarking, it is assumed that the returns ⇢(k) are independent and have common

mean E[⇢(k)] = µ. It is important to note that the model-free controllers which we consider use

no apriori information about the underlying parameters of the benchmark price process. Most

notably, we seek performance certification theorems which are robust with respect to sign of the µ;

i.e., performance is guaranteed even when the trend of the price is unknown. That is, we expect

the controller to perform well in both upward and downward trending markets.

1.1 Introduction to Trading via Model-Free Feedback Control
As stated above, in this work, no model for the price or the trader’s preference is used and no

parameter estimation is involved. Instead, the stock price p(t) is treated as an external uncontrolled

input and robust performance is sought. The stock-trading strategies which we consider in this

category use “patterns” in prices or the resulting gain-loss function g(t) to generate buy and sell

signals. The block diagram in Figure 1.1.1 shows a controller which uses the gain-loss performance

to modify the investment level.
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Uncontrolled Input
Stock Price p(t)

Controlled Input
Investment I(t)

Figure 1.1.1: Block Diagram of Model-Free Trading via Feedback Control

1.1.1 Linear Feedback: To provide a first example of a model-free strategy, we consider a trader

who modifies the amount invested via a linear feedback rule. More specifically, the instantaneous

investment I(t) is modulated in continuous time based on the cumulative trading gain or loss g(t)

over [0, t], where g(t) < 0 is understood to be loss. This continuous-time modulation of the

investment is consistent with the first assumption regarding “idealized markets” to be covered in

the next section. The classical linear time-invariant feedback trading rule we consider is given by

I(t) = I
0

+Kg(t)

where I
0

is the initial investment and K is the feedback gain. In the formulation above, with K > 0,

the variation of the investment I(t) is proportional to the variation of the trading gain or loss g(t);

that is, the investment follows the “trend” associated with the g(t); i.e., it is a trend-following

strategy of sorts.

When I(t) > 0, the investment is said to be “long” and when I(t) < 0, it is called “short.” A

trader with long investment owns shares hoping for the price to rise in order to obtain a profit. In

case of a short investment, the trader borrows shares from the broker and sells them in the open

market in the hope of a price drop. At any time, the trader can buy back the shares and return them

to the broker with either a realized gain or loss. The block diagram of the resulting linear feedback

system is shown in Figure 1.1.2.
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Dynamics

+

+

Figure 1.1.2: Block Diagram of Trading via Linear Feedback Control

1.2 The Notion of an Idealized Market

An idealized market is defined via a set of assumptions about the trading process. We describe these

assumptions below and indicate how they relate to a real market. Our view in this dissertation is

that proof-based analysis of a trading strategy in this idealized market accompanied by significant

backtesting against historical prices provides an indication of the prospect of success or failure. As

previously mentioned, the idealized market is similar to the so-called “frictionless market” in the

finance literature; e.g. see [84]. The notion of an idealized market is described as follows:

• Continuous Trading: It is assumed that the trader can react instantaneously to price changes

and continuously adjust the investment. This also allows the trader to hold a fractional

number of shares. The assumption of continuous trading is consistent with high-frequency

trading scenarios involving many transactions over short time intervals. This assumption

is classical in finance; e.g., see [34, 35] and is also used in the well-known Black-Scholes

model; see [89].

• Perfect Liquidity and Price-Taker Assumption: It is assumed that the trader can transact as

many shares as desired, at the instantaneous price p(t). In practical terms, this means that

the trader faces no “gap” between the bid and ask prices. It also means that the trader is

a price taker in the sense that the stock price remains constant at p(t) during the course of

the transaction. For example, this would be the case if the trader, at time t, is not buying

or selling “sufficiently large” blocks of stock so as to have an influence on the price. Note

that this assumption would be faulty in the case of a “large” hedge or mutual fund buying

or selling millions of shares per day. For example, if this large trader is a buyer, the price
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typically increases during the course of the transaction. As the demand-supply gap grows,

the “last” of these purchased shares becomes more costly to acquire than the earlier shares.

• Costless Trading: It is assumed that the trader incurs no transaction costs such as brokerage

commissions, margin costs or exchange fees. In practice, these costs are often negligible

for high-volume traders such as investment companies or hedge funds. Even for the smaller

trader, transaction costs have droppd dramatically in recent years.

• Adequate Resources: It is assumed that the trader has sufficient resources so that no trans-

action is “stopped” or no “liquidation” occurs due to failure to satisfy the broker’s collateral

requirement. For example, this assumption is satisfied if the trader’s account has a large cash

reserve or if the securities in the account, not bought on margin, provide adequate collateral.

1.3 Price Benchmarks
When it comes to evaluating a trading strategy, one obvious way to start is to work with theo-

retical benchmarks and historical data. In this regard, as previously mentioned, one of the most

well-known price processes, which is widely used in the finance literature is Geometric Brownian

Motion (GBM); e.g., see [88]. The GBM process is described by the stochastic equation

dp

p
= µdt+ �dZ,

where dp/p is the percentage change in price over the time increment [t, t+dt], µ is the drift, � � 0

is the volatility of the process and Z(t) is a standard Wiener process. The increment dZ can be

viewed as a zero-mean normal random variable with variance dt; that is, dZ ⇠ N (0, dt).

1.3.1 Discrete-Time Benchmark: In this thesis, we also consider feedback-based trading rules

in a discrete-time setting. The classes of stock-price process p(k) which we consider for these

strategies are described by their returns

⇢(k)
.
=

p(k + 1)� p(k)

p(k)
; k = 0, 1, 2, · · ·

which are assumed to be independent with common mean

E[⇢(k)] = µ.
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1.4 Existing Results Motivating Dissertation Research

In this section, we describe some existing results which provide motivation for this dissertation.

First, we consider the simple linear feedback trading strategy which was introduced in Subsec-

tion 1.1.1 and give formulae for the probability density function, the mean and the variance of the

associated gain-loss g(t), with the price driven by a GBM process. We similarly review results in

the literature for a modification of the linear feedback strategy which is called Simultaneous Long-

Short (SLS). This strategy, first introduced in [1], is aimed at achieving robustness with respect to

unknown stock price process parameters. In this setting, the model-free trader is agnostic about the

direction of stock price movement and volatility. This controller is introduced in Subsection 1.4.3.

Subsequently, in Theorem 1.4.4, we give formulae for the mean and variance of the gain-loss

function g(t) resulting from the SLS feedback control when the price is driven GBM process.

The description of existing results given in this section is rather detailed. There are two main rea-

sons for this detailed exposition: First, to illustrate the type of theoretical proof-based framework

we want to develop; i.e., to demonstrate what we mean by “performance certification theorems”

for feedback-based trading rules. The second reason is that these results were the take-off point of

this thesis leading to some of our initial research. More specifically, Theorem 1.4.2 was the starting

point of the research reported in Chapter 2. Also, the existing results described in Subsection 1.4.3

and Theorem 1.4.4 led to a more generalized theory we developed in Chapter 4.

1.4.1 Simple Linear Feedback Case: In this subsection, the formulae for the expected value,

the variance, and the probability density function of the trading gain-loss function g(t) are given

for the case when the linear feedback is employed. These results are derived under the assumption

of an idealized market with prices driven by a GBM process. It is important to note that the model-

free framework of this thesis dictates that the trader does not have apriori knowledge of the GBM

parameters µ and �. That is, the feedback gain K � 0 is not a function of µ and �. The following

theorem is a consequence of the analysis in [4].
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1.4.2 Theorem: Consider an idealized market with prices driven by a Geometric Brownian Mo-

tion process with drift µ and volatility �. With the long linear feedback investment controller

I(t)
.
= I

0

+Kg(t), with I
0

> 0 and K � 0, used to determine the investment level, at time t > 0,

the resulting gain-loss function g(t) has the lognormal probability density function

f
g

(x, t) =
1

�
p
2⇡t(I

0

+Kx)
⇥ e�

�

log(1+

Kx

I

0

)+0.5K

2

�

2

t�µKt

�

2

2K

2

�

2

t

for x > �I
0

/K. Furthermore, the mean and variance of g(t) are given by

E
�

g(t)
�

=

I
0

K

⇥

eµKt � 1

⇤

; var
�

g(t)
�

=

I2
0

K2

e2µKt

⇥

eK
2

�

2

t � 1

⇤

.

1.4.3 Simultaneous Long-Short Feedback Control Case: The ideas which we describe below

are generalized in Chapter 4 to handle PI controller and considered in the discrete-time in the

context of a controller with delay in Chapter 5. Indeed, the trader with long investment, following

the linear feedback strategy as described in the theorem above, typically makes profit when the

price rises. However, if the price falls, a loss is likely to occur. Motivated by a desire to hedge

against market declines, another strategy based on linear feedback control, introduced in [1], is

called Simultaneous Long-Short (SLS). The objective for a trader with no model for the price is

to benefit from price trends in either direction. This is accomplished by combining two linear

feedback controllers, one dedicated to a long trade and the other dedicated to a short trade. That

is, with I
0

> 0 and K > 0, the amount to invested in the long trade is given by

I
L

(t)
.
= I

0

+Kg
L

(t)

where g
L

(t) is the gain-loss function corresponding to this long trade. Similarly, we use the sub-

script “S” to denote the short position; i.e., for I
0

> 0 and K > 0, the short trade is given by

I
S

(t)
.
= �I

0

�Kg
S

(t)

where g
S

(t) is the gain-loss function associated with this short trade. As the gain g
S

(t) goes up,

the short investment I
S

(t) increases in magnitude; i.e., I
S

(t) becomes more negative. The trader

following the SLS strategy has the investment I
L

(t) long and I
S

(t) short with the overall investment

given by

I(t) = I
L

(t) + I
S

(t) = K
�

g
L

(t)� g
S

(t)
�

,
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and the overall gain-loss function is

g(t) = g
L

(t) + g
S

(t).

In practice, a broker typically implements the Simultaneous Long-Short trade by “netting out” the

two investments I
L

(t) and I
S

(t) rather than carrying two separate positions. At time t = 0, the

trade is “flat” since g
L

(0) = g
S

(0) = 0 implies that I(0) = 0. Then for t > 0, the controller adapts

to gains and losses. For example, if the long trading gain g
L

(t) is trending upward, the feedback

rules amplify I
L

(t) and attenuate I
S

(t). The exact opposite will occur in a declining market. That

is, the short side investment I
S

(t) will increase in magnitude becoming more negative and the long

side I
L

(t) decreases. Some of the main results in the literature for this strategy are provided below.

The theorem to follow, established in [4], provides formulae for the expected value, the variance

of gain-loss function g(t) under the assumption of an idealized market with the price driven by a

Geometric Brownian Motion.

1.4.4 Theorem: (Robust Positive Expectation) Consider an idealized market with price driven by

the Geometric Brownian Motion with the drift µ and volatility �. Then, for t � 0, the expectation

and variance of the gain-loss function g(t) resulting from the SLS feedback control are given by

E[g(t)] =

I
0

K
[eµKt

+ e�µKt � 2];

var[g(t)] =

I2
0

K2

�

e�
2

K

2

t � 1

��

e2µKt

+ e�2µKt

+ e�
2

K

2

t

�

.

Furthermore, for the non-trivial case µ 6= 0, we have

E[g(t)] > 0.

1.4.5 Remarks: The fact that E[g(t)] is positive and independent of the sign of µ justifies the

name Robust Positive Expectation Property above. Establishing this property for the feedback-

based controllers in this thesis will be one of the objectives in the chapters to follow. To conclude

this survey, we provide a sample of a more technical result demonstrating the depth of technical

analysis which is possible using the methods in this thesis. The notation and to follow can be

skipped by the less technically-minded reader without loss of continuity in the reading of this
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dissertation. The theorem to follow, established in [1] and [4], provides a closed-form for the

probability density function of the gain-loss function g(t) resulting from the use of SLS control

driven by Geometric Brownian Motion as described in the preceding subsections. Indeed, for

the SLS controller with initial investment I
0

and feedback gain K, using the GBM drift µ and

volatility �, at time t > 0, we introduce the notation

X±(x, t)
.
=

1

2

e
1

2

�

2

(K�K

2

)t

"

⇣K

I
0

x+ 2

⌘

±
r

⇣K

I
0

x+ 2

⌘

2

� 4e��

2

K

2

t

#

;

⌫
.
= µ� �2

2

; Z±(x, t)
.
=

logX
1

K

± (x, t)� ⌫t

�
p
t

;

A(x, t)
.
=

1

�I
0

p
2⇡t
q

(

K

I

0

x+ 2)

2 � 4e��

2

K

2

t

.

Using the notation above, the probability density function for g(t) is provided in the theorem below.

1.4.6 Theorem: Consider an idealized market with price driven by Geometric Brownian Motion

with the drift µ and volatility �. Then for t > 0, the probability density function f
g

(x, t) for the

gain-loss function g(t) when the Simultaneous Long-Short strategy is used, is given by

f
g

(x, t) = A(x, t)
�

e�
1

2

Z

2

+

(x,t)

+ e�
1

2

Z

2

�(x,t)

�

for x � g⇤(t) where

g⇤(t)
.
=

2I
0

K

⇥

e�
1

2

�

2

K

2

t � 1

⇤

.

1.4.7 Example: The plot of the probability density function for the gain-loss function g(t) of

SLS for various values of the drift µ is provided in Figure 1.4.1. The other parameters used are

� = 0.2, K = 4, t = 0.5 and I
0

= 1.

1.5 Dissertation Results at a Glance
In this section, a brief overview of the dissertation results is provided with the details relegated to

later chapters. In Subsection 1.5.1, the formula for the skewness of the probability density function

of trading gain-loss function g(t) given in Theorem 1.4.2 is obtained when a linear feedback strat-

egy is employed. As a consequence, we see how a highly-skewed distribution can result in a large
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Figure 1.4.1: Probability Density Function of g(0.5) for Various Values of µ

drawdown in the trader’s wealth. A formula for drawdown, a well-known and widely-used mea-

sure of risk, is given in Subsection 1.5.2. In Subsection 1.5.3, a modification of SLS controller is

proposed to include memory in the investment rule. This new controller, based on a Proportional-

Integral (PI) controller, is shown in Chapter 4 to have the Robust Positive Expectation Property.

This sort of result serves as an illustrative case for the type of analysis which is possible in our

control-theoretic setting.

In contrast to the results given for feedback-based trading in continuous time, Subsection 1.5.4

considers the discrete-time case. For a “low-frequency” trader such as a typical small investor,

discrete-time results are more realistic. In this regard, to demonstrate the style of analysis in

this setting, a new linear feedback strategy is introduced. This trading rule involves a controller

with delay and is motivated by a desire to include weighting of recent performance to obtain the

investment level. Once introduced, in Chapter 5, it is proven that the Robust Positive Expectation

Property holds for this delay system.

Finally, Subsection 1.5.5 overviews an interesting “offshoot” of our research involving a new risk

and reward pair, the Conservative Expected Value (CEV) and Conservative Semi-Variance (CSV)
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respectively. Much of the motivation for the development of this pair comes from the fact that use

of possibly-large feedback gains K often leads to a fat-tailed, highly-skewed probability distribu-

tion for the gain-loss function g(t). In this case, the analysis of a trade based on classical expected

value E[g(t)] can become unduly optimistic. Furthermore, in such cases, classical risk analysis

involving variance may further distort one’s overview of the risk at hand. That is, the variance

“penalizes” large positive profits which are desirable. In this regard, in finance, it is standard to use

a semi-variance measure, for example, see [90] and [91], and this motivates the definition of CSV.

As illustrated by examples in Chapter 6, we envision the (CEV,CSV) theory to be applicable in

different areas. Accordingly, the corresponding exposition in Chapter 6 is more general than the

“finance-flavored” focus of Chapters 1-5. These metrics are shown to have certain “promising”

properties and they are calculated for some of important, widely-used probability distributions.

1.5.1 Formula for Skewness and Efficiency Considerations: The first thesis contribution,

given in Chapter 2, is a formula for the skewness of the distribution of the gain-loss function g(t),

when the linear feedback rule

I(t) = I
0

+Kg(t)

is used and prices are driven by Geometric Brownian Motion. At any pre-specified time t, we

prove that skewness is given by the formula

S(K) =

⇣

eK
2

�

2

t

+ 2

⌘

p

eK2

�

2

t � 1.

Further, a similar approach is used to derive the formula of the skewness for the trading gain when

the Simultaneous Long-Short trading strategy, described in Section 1.4.3, is employed. It is also

shown that S(K) is a monotonically increasing function of the feedback gain K. This provides

a “warning” regarding the use of classical mean-variance analysis. That is, mean-variance based

measures of performance may be entirely inappropriate when a feedback control law is used.

1.5.2 Analysis of Drawdown: Depending on the size of feedback gain K > 0, the feedback-

induced probability distributions can have large right-sided skewness. This means that even with

a large positive expected gain, E[g(t)], the probability of loss can become significantly large and a

large drawdown may result. Attention to drawdown in wealth is one of the most important aspects
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of risk management; e.g., see [56,92–94]. For such situations and along the lines described earlier

in Subsection 1.5.1, a classical mean-variance analysis as in the celebrated work of Markowitz [15]

often does not suffice since higher order moments are in play. In this regard, measures of draw-

down have received considerable attention over recent years. The important results on stock price

drawdown in [92] and [95] strongly motivate our analysis in Chapter 3.

More formally drawdown is defined both in absolute and percentage terms. More specifically,

suppose V (t) represents a trader’s wealth (account value) for 0  t  T . Then the maximum

absolute drawdown is defined as

D
max

(V )

.
= max

0stT

V (s)� V (t)

and maximum percentage drawdown is defined as

d
max

(V )

.
= max

0stT

V (s)� V (t)

V (s)
.

In the Figure 1.5.1 these two quantities are shown for T = 10.

Time (t)
0 2 4 6 8 10 12

0

2

4

6

8

10

V(t)

dmax(V)

Dmax(V)

Figure 1.5.1: Maximum Absolute and Percentage Drawdown

With the price driven by Geometric Brownian Motion, we studied the random variable correspond-

ing to the maximum percentage drawdown in wealth. In Chapter 3, we provide an upper bound on
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the expected value of d
max

when linear feedback is used. Depending on the size of the feedback

gain K, it is seen that this upper bound has three different possibilities for its asymptotic behavior

as T gets large. In this regard, when the prices are driven by Geometric Brownian Motion, the

signal-to-noise ratio µ/� is seen to play an important role.

1.5.3 Generalization to Dynamic Controller: In Chapter 4, results on the Robust Positive Ex-

pectation Property are generalized to include a dynamic controller. To this end, we consider a

classical Proportional-Integral (PI) controller

I(t) = I
0

+K
P

g(t) +K
I

Z

t

0

g(⌧)d⌧.

The inclusion of the integral above means that “memory” of past performance is used to determine

the instantaneous investment; see Figure 1.5.2 below.

p(t)

I0 Dynamics
+

+ KP s + KI

s

Figure 1.5.2: Block Diagram of Trading via PI Controller

In this setting, we define a long-short version of the PI controller above. Indeed, with subscripts

“L” and “S” denoting the Long and Short components respectively, the investment components are

defined by

I
L

(t)
.
= I

0

+K
P

g
L

(t) +K
I

Z

t

0

g
L

(⌧)d⌧ ;

I
S

(t)
.
= �I

0

�K
P

g
S

(t)�K
I

Z

t

0

g
S

(⌧)d⌧

and we consider the case when a Geometric Brownian Motion (GBM) drives the stock price.

More specifically, for the non-trivial case of (K
P

, K
I

) 6= (0, 0) and the price drift µ 6= 0, at any

time t > 0, the main result in Chapter 4 is that

E[g(t)] > 0.
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The chapter also considers some practical considerations related to collateral requirements of the

broker. The results are generalized to an SLS version of the exponentially weighted moving aver-

age controller

I(t) = I
0

+K
P

g(t) +K
I

Z

t

0

e��(t�⌧)g(⌧)d⌧

where � � 0 is chosen by the trader.

1.5.4 Discrete-Time Controller With Delay: In Chapters 2-4, the trader modifies the invest-

ment level continuously in time. Despite the development of high-frequency trading platforms in

recent years, the assumption of trading continuously in time can be impractical, especially for a

typical small trader. Accordingly, Chapter 5 addresses discrete time while noting that the results

also apply to high-frequency trading as the discretization interval �t becomes very small. In this

setting, we demonstrate the type of analysis which is possible in our control-theoretic framework

by considering an SLS linear feedback controller with delay and prove that a discrete-time version

of the Robust Positive Expectation Property holds.

At stage k, this new controller focuses on recent performance via inclusion of the term g(k �m)

where m is some pre-specified look-back period. More specifically, at stage k, the long and short

components of the investment level are given by

I
L

(k)
.
= I

0

+K
�

g
L

(k)� g
L

(k �m)

�

;

I
S

(k)
.
= �I

0

�K
�

g
S

(k)� g
S

(k �m)

�

,

with the initial investment I
0

> 0 and K � 0 being the feedback gain. Notice that the investment

levels I
L

(k) and I
S

(k) are attenuated as the “winning power” goes away and gets rekindled if the

trade reverts to profitability.

In this setting, we consider the discrete-time price benchmark described in Subsection 1.3.1. More

specifically, we show that except for the trivial break-even case when either Kµ = 0 or N = 1, the

Robust Positive Expectation Property holds; that is, at any step N > 1,

E
⇥

g(N)

⇤

> 0.
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1.5.5 New Conservative Reward-Risk Pair: Recalling the discussion about highly-skewed

probability distributions in Section 1.5.1, the takeoff point for our CEV-CSV theory is a random

variable X for which larger values are preferred and the corresponding probability distribution is

highly skewed. For example, in the thesis framework, X represents the trading gain-loss func-

tion g(t) resulting from the use of linear feedback in which the possibility of a long fat-tailed

distribution can lead to an expected value, µ = E[X] which is unduly optimistic. This motivates

the definition of the Conservative Expected Value (CEV) and the associated Conservative Semi-

Variance (CSV).

To provide a quick overview of the CEV, we take the leftmost support-point of the cumulative

distribution function F
X

(x) for random variable X , denoted by ↵
X

, to be known and finite. This

assumption on the “worst-case” outcome is realistic in many applications: For example, the worst-

case loss of a linear feedback trading rule when the price is driven by Geometric Brownian Motion

is given in Theorem 1.4.6; that is ↵
X

= g⇤. Additional examples involve the price of a stock or the

lifetime of a component in a system which are both non-negative random variables; that is ↵
X

= 0.

To motivate the definition below, we imagine a mission-critical decision being made by a risk-

averse individual who is rewarded or penalized based on X . If this person has a “minimal ac-

ceptable target” for X , denoted by �, a conservative approach to the analysis of this gamble X

would be to shift the probability mass associated with X  � to ↵
X

, and to shift the probability

mass associated with X > � to �; see Chapter 6 for elaboration. This procedure maps the original

random variable to a Bernoulli random variable X
�

described by

X
�

.
=

8

>

<

>

:

↵
X

with probability P (X  �) = F
X

(�);

� with probability P (X > �) = 1� F
X

(�).

After this conservative procedure is carried out, one is left with a simple Bernoulli random vari-

able X
�

with expected value

E[X
�

] = ↵
X

F
X

(�) + �
�

1� F
X

(�)
�

and the Conservative Expected Value (CEV) is defined to be

CEV(X)

.
= sup

�

E[X
�

].
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Consequently, motivated by downside risk considerations, the associated Conservative

Semi-Variance (CSV) is also defined and we proceed to demonstrate the mathematical breath and

applicability of our new theory. That is, for many classical distributions, the (CEV,CSV) pair is

compared with their (µ, �2

) counterparts and many mathematical properties are established. We

also provide some numeric examples using real-world data to show the potential use in a number

of applications.

1.5.6 Concluding Remarks: In Chapter 7, we provide concluding remarks and directions for

future research. In particular, we introduce a new discrete-time feedback-based trading rule which

is triggered by moving average crossing, discuss the problem of choosing the controller parameters,

describe three new strategies and outline a research path to extend the analysis in this dissertation

to trading a portfolio of stocks.
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Chapter 2

On Skewness of the Trading Gain

In this chapter, we derive a formula for the skewness of gain-loss function g(t), when linear feed-

back is used to determine the level of investment.1 In classical finance, when a stochastic invest-

ment outcome is characterized in terms of its mean and variance, it is often implicitly taken for

granted that the underlying probability distribution is not heavily skewed. For example, in the

“perfect” case when outcomes are normally distributed, mean-variance considerations tell the en-

tire story. The main point of this chapter is that mean-variance based measures of performance

may be entirely inappropriate when a feedback control law, as described in Subsection 1.5.1, is

used instead of buy-and-hold to modulate one’s stock position as a function of time. For example,

with Geometric Brownian Motion generating prices, when using a feedback gain K to increment

or decrement one’s stock position, we see that the resulting skewness measure S(K) for the trading

gains or losses can easily become dangerously large.

In view of the above, we argue in this chapter that the selection of this gain K based on a classical

mean-variance based utility function can lead to a distorted picture of the prospects for success. To

this end, our analysis begins in an idealized market with prices generated by Geometric Brownian

Motion; see subsections 1.2 and 1.3 respectively. In addition to the “red flag” associated with

skewness, a controller efficiency analysis is also brought to bear. While all feedback gains K

lead to efficient (non-dominated, Pareto optimal) controllers, we show that the same does not hold

true when we use a return-risk pair which incorporates more information about the probability

distribution for profits and losses. To study the efficiency issue in an application context, the

chapter also includes a simulation Pepsico Inc. using the last five years of historical data.

Motivation for our work in this chapter is derived by first considering the classical buy-and-hold

strategy in lieu of linear feedback above. In this case, the trading gain or loss at the terminal

1The results reported in this chapter have been published in [7].
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time g(T ) is governed entirely by the log-normally distributed stock price with skewness given by

S = (e�
2

T

+ 2)

p

e�2

T � 1.

In practice, in financial markets, it is often the case that this leads to S-values which are sufficiently

small to justify reliance on mean-variance performance evaluation; for example, see [96]. Even

when a stock trades with annualized volatility as high as fifty percent, that is, � = 0.5, the resulting

skewness after one year, let T = 1, is S ⇡ 1.75, which is rather modest.

2.0.1 Classical Considerations: Many of the well-known tools in investment theory are based on

the statistics of the return such as the mean and variance; e.g., see [22,97,98]. Once such statistics

are available, various strategy options can be assessed using a number of different measures. More

generally, it is well-known that mean-variance considerations can be inadequate for various classes

of problems in finance; e.g., see [99] and more recent work such as [100] accounting for higher

order moments. Further to illustrate, the main point of this chapter is that mean-variance based

measures of performance may be entirely inappropriate when a feedback control law is used instead

of buy-and-hold to modulate one’s stock position as a function of time. For example, when using a

feedback gain K to increment or decrement one’s stock position, we see that the resulting skewness

measure S(K) for the trading gains or losses can easily become dangerously large. In fact, we see

in Section 2.1 that the skewness formula above, when modified by linear feedback, becomes

S(K) = (eK
2

�

2

T

+ 2)

p

eK2

�

2

T � 1.

This formula clearly shows that when K increases, the skew can get very large. For example, with

modest annualized volatility of 5% and feedback gain K = 10, with � =

p
0.05 and T = 0.4

above, we obtain S(10) ⇡ 23.73. In other words, it is arguable that the information contained in

the higher order moments cannot be neglected. To reiterate our motivation underlying this type of

demonstration, our hypothesis is the following: Given the high-frequency adjustment of a stock

position, the possibility of highly skewed probability density function for g(T ) can result from

linear feedback. While this type of hypothesis is self-evident to some degree, it is shown here by

examples that this skewing effect is actually realizable rather than just a mathematical possibility.
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2.0.2 Efficiency Considerations: The second issue which we consider, related to the first, is the is-

sue of “efficiency” which is central to modern finance; e.g., see [15] and [101]. First, we argue that

no matter what linear feedback gain K is used, the resulting risk-return pair (var(g(T )),E[g(T )])

is always efficient. In terms of the language used in the control literature, this can be understood to

mean that this pair is non-dominated or Pareto optimal. Our point of view is that all feedback gains

being deemed efficient is a distortion resulting from the inappropriate use of mean and variance

with a skewed distribution. Motivated by the efficiency and skewness considerations above, we

consider the possibility of alternative risk-return coordinates which implicitly include information

about the skewness. To this end, we propose an alternative risk-return pair and show via an exam-

ple that inefficiency occurs for a certain range of the feedback K. That is, a feedback K which is

efficient from the classical mean-variance point of view may no longer be efficient with the new

risk-return measure.

The remainder of the chapter is organized as follows: Section 2.1, devoted to the issue of skew and

includes a motivating example which illustrates the deleterious effects of feedback in this context.

Section 2.2 is also devoted to the study of skew using a different linear feedback scheme from

the literature, the so-called Simultaneous Long-Short (SLS) controller described in Section 1.4

and [3–5]. Section 2.3 concentrates on the efficiency and finally, in Section 2.4, a brief conclusion

is provided.

2.1 The Skewing Effect of Feedback
As mentioned above, if a linear feedback control with gain K � 0 is used, the resulting skew-

ness S(K) of the probability distribution for g(T ) can be so large as to render mean-variance

information of questionable worth. Consider the case in which the amount invested is

I(t) = I
0

+Kg(t).

For the sake of self-containment, we provide the reader with the definition of skewness which is

used. For the random variable g = g(T ), as shorthand, we denote its mean by M
g

and its standard

deviation by �
g

. Then, associated with the feedback gain K is the skewness

S(K) =

E[(g �M
g

)

3

]

�3

g

.
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Now, to demonstrate the skewing effect of feedback, we provide the following result.

2.1.1 Theorem: Consider the idealized GBM Market with drift µ, volatility � and linear feedback

controller with gain K. Then, at time T > 0, the resulting trading gain or loss g(T ) has a

probability density function with skewness which is independent of µ and given by

S(K) = (eK
2

�

2

T

+ 2)

p

eK2

�

2

T � 1.

Sketch of Proof: From the GBM model, we begin by noting that for any sample path p(·) for the

price, it is easy to show that the resulting trading gain at time T is given by

g(T ) =
I
0

K

"

a

✓

p(T )

p(0)

◆

K

� 1

#

where a
.
= e

1

2

�

2

(K�K

2

)T . It follows that the desired quantity S(K) is precisely equal to the skew-

ness of the log-normally random variable

X =

✓

p(T )

p(0)

◆

K

whose scale parameter is given by �
X

= K�
p
T . Now using the skew formula for the log-normal

random variable given in the beginning of the chapter, we obtain

S(K) = (eK
2

�

2

T

+ 2)

p

eK2

�

2

T � 1.

This completes the proof of the theorem. ⇤

2.1.2 Illustrative Example: To illustrate how feedback affects the skewness of the probability

distribution for g(T ), we consider Geometric Brownian Motion for the stock price with �2

= 0.05

which represents about a 22.36% annualized volatility. Taking T = 0.4 to represent a little over 100

trading days, in Figure 2.1.1 below, we provide a plot for the feedback-induced skew which results

when the probability distribution for the trading gain g(T ) is considered. The key point to note is

that for practical typical feedback gain values, say 0  K  10, the skew becomes unreasonably

large; e.g., as indicated in the introduction, S(10) ⇡ 23.73 which is an order of magnitude larger

than the skew S(1) ⇡ 0.4813 associated with buy and hold at time T = 0.4.
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Figure 2.1.1: Plot of Skew for Linear Feedback in GBM Market

2.1.3 Example Continued (Mean-Variance Optimization): To further drive home the point

that reliance on mean-variance with feedback may be inappropriate, we continue with the running

example above and include the drift parameter µ = 0.25 representing an annualized return of 25%.

To carry out our analysis, we make use of two formulae for mean and variance of the trading

gain-loss, which are easily derived from the results in [4] and were given earlier in Section 1.4.1.

Using these formulae, we now consider a classical mean-variance optimization, for example,

see [97], to find a so-called “optimal” feedback gain K. More specifically, to work on a per-

dollar basis we first set I
0

= 1 so that g(T ) corresponds to the rate of return. Now, with terminal

time T = 0.4 and risk aversion coefficient A � 0, we construct a classical quadratic objective

function as in the literature for our running example. Namely, we take

J(K) = E[g(T )]� 0.5A var
�

g(T )
�

=

1

K

⇣

e
K

10 � 1

⌘

� 0.5A

K2

e
K

5

⇣

e
K

2

50 � 1

⌘

to be maximized. For this case involving drift µ = 0.25, a trader seeing this upward trending bull

market might declare “risk on” and reasonably set A = 0.1 to capture as much of the stock gain as

possible without completely ignoring downside risk. For this case, from the resulting plot of J(K)
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below in Figure 2.1.2 we obtain optimal feedback K = K⇤, optimal cost J = J⇤ and resulting

skewness S⇤
= S(K⇤

) given by K⇤ ⇡ 9.81; J⇤ ⇡ 0.15; S⇤ ⇡ 21.42.
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Figure 2.1.2: Mean-Variance Based Performance in GBM Market

To demonstrate how misleading this mean-variance optimization can be, we construct the true cu-

mulative distribution function associated with the linear feedback controller. That is, via a lengthy

but straightforward calculation,

P (g(T )  �) = �

✓

log(I
0

+K�)� log(aI
0

)�Kµ
Y

K�
Y

◆

,

where �(·) is the cumulative distribution of the standard normal random variable N (0, 1) and

µ
Y

.
= (µ� 1

2

�2

)T ; �2

Y

.
= �2T.

Now, computing the mean and variance at the optimum feedback gain K⇤ ⇡ 9.81, we obtain

M⇤
g

.
= E[g(T )] ⇡ 0.1699; �⇤

g

.
= var

�

g(T )
�

⇡ 0.4327.

Using the normal distribution N (M⇤
g

, �⇤
g

), we can calculate the implied probability P (g(T ) � �),

which we call it P
N

(�). We compare this quantity with the true probability which we call P (�) and

consider rates of return � � 0. These two, cumulative distributions are provided in Figure 2.1.3
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Figure 2.1.3: Probability of Reaching a Target Return �

below. In the figure, the large differences between the two distribution functions is immediately

evident. For example, when a target return of 20% is sought, the normal distribution understates

the probability of success by nearly 50%. On the other hand, when a high target return such as 60%

is sought, the normal distribution overstates the probability of success by about 25%. To conclude,

mean-variance optimization provides a distorted view of a trader’s prospect for success.

2.2 Skewness Formula for Simultaneous Long-Short Feedback Controller
In this section, we provide an extension of the skew formula S(K) above which applies to another

type of linear feedback controller called Simultaneous Long-Short introduced in [1] and [4] and

pursued further in [3] and [5]. The description of strategy and the analysis of the probability density

function and its first two moments are summarized in Section 1.4.3. For this type of trading, a

formula for the resulting skew S(K) in the overall trading gain g(T ) is now provided. Similar to

the earlier analysis in Section 2.1, S(K) can become unreasonably large.
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2.2.1 Theorem: Consider the idealized GBM Market with drift µ, volatility � and SLS linear

feedback controller with gain K. Then, at time T > 0, the resulting trading gain or loss g(T ) has

probability density function with skewness given by

S(K) = C(K,µ, �, T )[A(K,µ, �, T )� B(K,µ, �, T )]

where

A(K,µ, �, T )
.
= [eKµT

+ e�KµT

]

2

(eK
2

�

2

T

+ 2);

B(K,µ, �, T )
.
= 3(e

K

2

�

2

T

2

+ e
�K

2

�

2

T

2

)

2

;

C(K,µ, �, T )
.
=

p
eK2

�

2

T � 1(eKµT

+ e�KµT

)

(e2µKT

+ e�2µKT

+ e��

2

K

2

T

⇤

3

2

.

Sketch of Proof: To simplify notation in the calculations to follow, we work with the scaled ran-

dom variable X
.
= p(T )/p(0) and define M

p

.
= E(XK

); M
n

.
= E(X�K

); a
.
= e

1

2

�

2

(K�K

2

)T and

c
.
= e

�1

2

�

2

(K+K

2

)T . Now using the fact that the stochastic differential equation for g is integrable,

for sample path p(·) we obtain

g(T ) =
I
0

K
(aXK

+ cX�K � 2).

Next, we use the fact that the GBM process leads to X being log-normal. More precisely, we have

logX ⇠ N (µ
Y

, �2

Y

) with K-th moment

E[XK

] = eKµ

Y

+

1

2

K

2

�

2

Y .

Now, a lengthy but straightforward computation leads to

M
g

=

I
0

K

�

aE(XK

) + cE(X�K

)� 2

�

=

I
0

K

�

eµKT

+ eµKT � 2

�

and denominator in the skewness given by

�3

g

=

I3
0

K3

⇥

(eK
2

�

2

T � 1)(e2µKT

+ e�2µKT

+ e��

2

K

2

T

)

⇤

3

2 .
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Next, to obtain the numerator in the skewness formula, we expand (g �M
g

)

3 and use the fact that

M
p

M
n

= (ac)�1. A lengthy calculation yields

E[(g �M
g

)

3

] =

I3
0

K3
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a3
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)� 3M
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+3a
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M
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+ 2M
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� 1
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Substituting for E(X2K

),E(X�2K

),E(X3K

),E(X�3K

) and in last step for µ
Y

and �
Y

leads to

E[(g �M
g

)

3

] = �3(e
1

2

K

2

�

2

T � e�
1

2

K

2

�

2

T

)

2

(eKµT

+ e�KµT

)

+(e3K
2

�

2

T � 3eK
2

�

2

T

+ 2)(e3KµT

+ e�3KµT

).

Then, dividing by the expression for �3

g

, and further simplifying we arrive at

S(K) = C(K,µ, �, T )[A(K,µ, �, T )� B(K,µ, �, T )].

This completes the proof of the theorem. ⇤

2.3 Controller Efficiency Considerations
In accordance with the discussion in the beginning of the chapter, we now look at efficiency issues.

The starting point for our analysis is that both the expected value and the variance of the trading

gain are increasing with respect to the feedback K. This is true for both of the linear feedback trad-

ing schemes discussed earlier in this chapter. As a consequence of this monotonicity, when the ex-

pected value is plotted against the variance as a function of K, no pair (var
�

g(T,K)

�

,E[g(T,K)])

dominates any other from a two-coordinate risk-return point of view. That is, all mean-variance

pairs are efficient.

Our hypothesis is that this “all-K efficient result” gives an erroneous impression about efficiency

because skew is neglected. When a different return-risk pair is used which incorporates more infor-

mation about the distribution of g(T ) beyond the second moment, our hypothesis is that feedback
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gains in certain ranges can be ruled out based on efficiency considerations. That is, even the trader

with a utility function reflecting very low risk aversion will limit the selection of the feedback K

to those values in the efficiency regime. Said another way, on an equal return basis, the classical

point of view is that all traders, independent of their utility functions, prefer less risk. Similarly,

on an equal risk basis, all traders, independent of their utility functions, prefer a higher return.

2.3.1 Preamble on Efficiency Basics: We quickly review the notion of efficiency which is stan-

dard in the finance literature, for example, see [15]. Efficiency considerations also arise occasion-

ally in the control literature in the context of Pareto optimality analysis. Indeed, we consider a

process with possible outcomes X 2 X ✓ R2 with components X
1

and X
2

representing some

measure of risk and return respectively. In finance and engineering, when dealing with an invest-

ment with gain or loss g, the most classical measure of risk is the variance, var(g) and the most

classical measure of return is the mean E[g].

Now, given a possible outcome X 2 X , it is said to be inefficient if there exists some X 0 2 X with

either X 0
1

 X
1

and X 0
2

> X
2

or alternatively, X 0
1

< X
1

and X 0
2

� X
2

. In other words, X 0 either

has a higher return than X with no additional risk or it has a lower risk than X with at least as much

return. We observe that X can be partitioned into a union of two disjoint sets: the inefficient set and

its complement, the efficient set. In the case where X is inefficient as demonstrated by X 0, under

some basic assumptions about utility functions, it can be argued that both investors will discard X

in favor of X 0.

2.3.2 Alternative Risk-Return Pair: As previously stated, the monotonicity of the mean and

variance of g(T ) with respect to feedback gain K implies that all feedback controllers are efficient.

The question we address in this section is the following: Might there be alternative risk-return

measures which lead to a different conclusion in the presence of skewness? The example which

we give below enables us to answer this question with a qualified “yes.” That is, for the idealized

GBM market and the alternative risk-return pair which we describe, we show via an example

that the linear feedback controller I(t) = I
0

+Kg(t) leads to risk-return combinations which are

inefficient for low values of K. That is, there exists some feedback gain K⇤ < 1 with the property

that feedback gain K < K⇤ has associated risk-return pair which is inefficient.
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2.3.3 Construction of Proposed Risk-Return Pair: We begin by fixing a target return � � 0

and take off from the fact that the idealized GBM market leads to a finite lower bound on the

support of the trading gain g(T ). We let W (K) denote the worst-case loss produced by the model

and let P
�

(K) = P (g(T ) � �); i.e., the probability of a successful trade. That is, instead of

variance and mean of g(T ), we envision a trader whose underlying utility function depends on

these new variables which are functions of the feedback gain K. Since � is a parameter, one can

vary this parameter and work with a family of curves which serve as a “menu” corresponding to

differing returns.

2.3.4 Example Demonstrating Realization of Inefficiency: To show how the efficiency issue

arises, we continue with the SLS trading scheme described in Section 2.2 using the parameters

given in Section 2.1. We consider the target return 10% described by � = 0.1. Via a lengthy

calculation we obtain the worst-case loss and the corresponding probability of a successful trade

W (K) =

2I
0

K

⇥

1� e�
1

2

�

2

K

2

t

⇤

;

P
�

(K) = 1� �

✓

y
+

� µ
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�
Y

◆

+ �

✓

y� � µ
Y

�
Y

◆

where �(·) denotes the cumulative distribution for the standard N (0, 1) random variable, µ
Y

, �
Y

and a are given in Section 2.1 and

y±
.
= log

"

1

2a
(2 +

K�

I
0

±
r

(2 +

K�

I
0

)

2 � 4ac

#

1

K

.

Examining the (W (K), P
�

(K)) plot in Figure 2.3.1, we note that the point where the worst-case

trading loss W (K) is maximized can readily be characterized. That is, by setting the deriva-

tive of W (K) to zero, it is straightforward to show that this point of maximality is characterized

by K⇤ ⇡ 8.91 and W (K⇤
) ⇡ 0.13.

Noting that the right side of the figure corresponds to low gain K, we see that there are many

(W (K), P
�

(K)) pairs which are inefficient. That is, the risk-return pair associated with feedback

gain K is inefficient because the same probability of success is guaranteed with some other gain K 0

with a lower level of risk.
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Figure 2.3.1: Demonstration of Inefficiency in SLS Trading

2.3.5 Numerical Example: The historical price for Pepsico Inc. (ticker PEP) over the 5 year

period February, 12, 2007 to February, 10, 2012 was selected to generate an empirical plot using

the new risk-return pair (W (K), P
�

(K)). We used a time interval T = 1 which was represented

by 252 trading days and carried out a number of back-tests using the SLS trading strategy. To

generate about 1000 one-year long sample paths, we used each of the days in the first four years as

a starting point. Using I
0

= 1 and � = 0.1, we generated empirical estimates of P
�

(K) and W (K)

and plot this pair as we increased K over the interval [0, 10]. As seen in Figure 2.3.2, a regime of

inefficiency was detected for K � 5.2 which corresponds to the maximum of W (K).

2.4 Conclusion and Further Research
In this chapter, the focal point was the skewing effects of feedback controller gains on the probabil-

ity distribution for the trading gain or loss g(T ). It is demonstrated that there are pitfalls associated

with reliance on mean-variance based measures of performance. That is, when the feedback leads

to a level of skewness S(K) which is large, performance metrics based on mean and variance

provide a distorted picture of the prospects for success.
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Figure 2.3.2: Efficiency Plot for Pepsico 2007-2012

Based on the work presented herein, one obvious question presents itself for consideration in future

research: What type of objective function J(K) should be used in carrying out an optimization

problem for selection of the feedback gain K? Based on our arguments that a classical mean-

variance utility function is inappropriate, one possibility would be to use a different risk-return

pair which includes information about higher order moments of g(T ). Utility functions which

capture higher moments especially the cubic utility function, have been discussed in portfolio

optimization such as [100], [102], and [103] can be extended to our framework with appropriate

risk aversion coefficients. Another possible example is when the issue of efficiency was considered,

we introduced the pair (W (K), P
�

(K)). For such pair, the natural alternative to the quadratic

objective would be

J(K) = P
�

(K)� AW (K)

where A � 0 is the risk aversion coefficient. Extending the skew analysis to a portfolio of stocks

when linear feedback is employed would be another possible path to pursue; see Chapter 7 for

further discussion along these lines.
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Chapter 3

Drawdown Analysis for Stock Trading Via Linear Feedback

In this chapter, we provide the analysis of drawdown for a stock-trading strategy which is based

on linear feedback control.1 Significant motivation for our analysis is derived from the fact that

drawdown is very important to stock traders and fund managers. That is, one typically monitors

“drops in wealth” over time from highs to subsequent lows and investors often shy away from

funds with a past history of large drawdowns. That is, when tracking a time-varying portfolio

value V (t), risk aversion dictates that drops from peaks to later valleys should not be too large.

Careful monitoring of drawdown in V (t) is one of the most important aspects of risk management;

e.g., see [56,92–94]. A large drawdown is associated with significant “tail risk” and large skewness

of the probability distribution for wealth. For such situations, a classical mean-variance analysis

as in the celebrated work of Markowitz [15] does not suffice.

To provide further context for this chapter, we note that over the last two decades, a significant

body of research has been involved in the development of new risk measures for financial markets.

Until 1999, perhaps the most widely used of these measures was the well-known “Value at Risk”

which is known as VaR; e.g., see [104]. In a seminal paper [105], the notion a of “coherent

risk measure” is introduced. To complete this extremely brief overview of risk measures, we

mention [104,106–108] which provide examples of other risk measures commonly used. Suffice it

to say, the drawdown measure is one of these and has received considerable attention over the past

ten years. In this regard, the important results on stock price drawdown in [92] strongly motivate

the research reported in this chapter.

With this motivation in mind, this chapter addresses the analysis of drawdown when a feedback

control is employed in stock trading in an idealized market with prices governed by Geometric

Brownian Motion. We begin with a result in the applied probability literature which is applicable

to cases involving buy-and-hold. Subsequently, after modifying this result via an Ito correction to

1The results reported in this chapter have been published in [8].
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account for geometric compounding of the daily stock price, we consider the effect on drawdown

when a simple pure-gain feedback control is used to vary the investment I(t) over time. That is,

letting V (t) denoting the trader’s account value at time t � 0, when a feedback control I = KV

is used to modify the amount invested, the buy-and-hold result no longer applies. Our first result

is a formula for the expected value for the maximum drawdown in logarithmic wealth log(V (t)).

This formula is given in terms of the feedback gain K, the price drift µ, the price volatility � and

terminal time T .

Subsequently, using a fundamental relationship between logarithmic and percentage drawdowns,

we obtain an estimate for the expected value of the maximum percentage drawdown of V (t). This

chapter also includes an analysis of the asymptotic behavior of this drawdown estimate as T ! 1

and Monte Carlo simulations aimed at validation of our estimates. These simulations are also used

to illustrate how drawdown behavior can be studied for other classes of controllers. To this end, we

also consider the Simultaneous Long-Short feedback trading strategy and give a brief discussion

of its expected maximum percentage drawdown.

A distinction between the stock price drawdown results cited above and our research involving

trading is important to make: When we use feedback to continuously modify the amount in-

vested I(t), drawdown in the account value V (t) can be dramatically different from drawdown

in the stock price p(t). They are only equivalent when I(t) corresponds to buy-and-hold with full

investment I(t) ⌘ V (t). In our case, when feedback is used, the result can be an account value

with a highly skewed probability distribution; this effect is quantified in Chapter 2 and [7]. Finally,

context for this chapter is provided by the emerging line of research on the use of feedback in

trading; e.g., see [2–8, 13, 26–28, 31, 36, 37, 40–44]. This chapter addresses the issue of drawdown

in this context. Although an investment may end up with a large gain at the terminal time, if there

is a large drawdown along the way, the performance may be deemed to be unsatisfactory.

3.0.1 The Starting Point: The starting point in this chapter is an idealized market, fully de-

scribed in Section 1.2, with stock price p, governed by the Geometric Brownian Motion (GBM),

as described in Section 1.3; that is,
dp

p
= µdt+ �dZ
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where µ is the drift, � is the volatility and Z(t) is a standard Wiener process. When a trader is

brought into the picture with investment I(t) for 0  t  T , the resulting stochastic increment for

the account value becomes

dV =

dp

p
I + r(V � I)dt

where r � 0 is the risk-free rate of return and for simplicity, we also take r as the margin rate. In

this setting, the issue of drawdown, formally defined in Section 3.1, arises.

Our analysis of drawdown begins by modifying the results in [92] to address dp/p instead of dp.

Subsequently, we generalize the existing results to analyze the drawdown in the account value V (t)

when the proportional-to-wealth investment scheme introduced earlier is used; that is, I = KV

with K > 0. This sort of investment scheme is rather classical in financial markets; e.g., see [109].

To this end, we obtain a formula for drawdown in V (t) which specializes to the existing result in

the literature for the special case of buy-and-hold which is obtained when K = 1.

3.0.2 Collateral Considerations: The results in this chapter apply to an “idealized market” as

introduced in Section 1.2. One of the assumptions in an idealized market is that the trader has

adequate collateral to make a trade when I(t) > V (t). In practice, when such trades are made,

margin interest is involved. Hence, in the sequel, we take r � 0 to be the margin interest rate which

will apply when K > 1; i.e., with I = KV , the trader pays interest on I � V = (K � 1)V . For

the case when K  1, we assume the same r to be the risk-free rate of return; more specifically, it

denotes interest accrued on V � I = (1�K)V . In practice, the margin interest rate and risk-free

rate of return are not equal, and this assumption is used to simplify the analysis.

3.0.3 The Governing Stochastic Equations: In an idealized GBM market with linear feed-

back I = KV , it is easy to show that the price p(t) induces a GBM on the account value V (t). To

see this, we begin with a closed loop stochastic differential equation for the account value. In view

of the discussion above, the stochastic increment for V satisfies

dV =

dp

p
I � r(I � V )dt =

dp

p
KV � r(K � 1)V dt

= [Kµ� r(K � 1)]V dt+K�V dZ.
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Hence, when we divide by V , the induced account value dynamics follows a GBM process

dV

V
= µ0dt+ �0dZ,

with modified drift µ0 and modified volatility �0 given by

µ0 .
= Kµ� r(K � 1); �0 .

= K�.

It is also important to note that logarithmic wealth log(V (t)) is also a quantity which is monitored

by traders. In this case, via straightforward application of Ito’s Lemma, for example see [88], we

modify the formulae above and obtain a standard Brownian Motion with increment

d(log V ) = µ⇤dt+ �⇤dZ

where �⇤
.
= �0

= K� and

µ⇤
.
= Kµ� r(K � 1)� 1

2

K2�2.

This result implies that the Brownian Motion is preserved when linear feedback on the account

value is used to determine the investment level.

3.1 Drawdown Definitions
For a given continuous function in time, V (t), we recall from Subsection 1.5.2 that the maximum

absolute drawdown is defined by

D
max

(V )

.
= max

0stT

V (s)� V (t).

When we replace V by log(V ) above, we obtain D
max

�

log(V )

�

, the logarithmic wealth version

of absolute drawdown. The maximum percentage drawdown of V is similarly defined as

d
max

(V )

.
= max

0stT

V (s)� V (t)

V (s)
.

Since increments dV are obtained as percentages of the current account value V (t) at time t,

the denominator in the definition of d
max

cannot vanish. Hence, this quantity is well defined.

Since V (t) cannot become zero, D
max

�

log(V )

�

is also well defined. As shown in Subsection 3.0.3,

V (t) is a GBM process and its sample paths are continuous; which makes the definition of the

maximum absolute drawdown and maximum percentage drawdown applicable to V (t).
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3.1.1 Absolute Versus Percentage Drawdown: When a maximum absolute drawdown occurs,

it is not necessarily the case that this corresponds to a maximum percentage drawdown and vice

versa. We recall the function V (t) shown in Figure 1.5.1 which is also provided below in Fig-

ure 3.1.1. It has two major drops: a drop from V (1) = 0.2 to V (2) = 0.05 and another drop

from V (10) = 10 to V (11) = 5. From the plot, we obtain D
max

(V ) = 5 and d
max

(V ) = 0.75.

Moreover, these drawdowns are different as far as their times of occurrence are concerned.

Time (t)
0 2 4 6 8 10 12

0

2

4

6

8

10

V(t)

dmax(V)

Dmax(V)

Figure 3.1.1: Maximum Drawdown Versus Maximum Percentage Drawdown

3.2 Main Result
In this section, we determine the formula for the expected maximum absolute drawdown of the

logarithmic wealth, log
�

V
�

, which is widely used in finance and also derive a formula for the

upper bound on the expected maximum percentage drawdown of wealth, V , using the formula

we obtained for logarithmic wealth. When the GBM model for the price generically has non-zero

volatility �, common sense reasoning dictates that a “gambler’s ruin” type of situation presents

itself. That is, when the terminal time T is sufficiently large, it becomes exceedingly likely that
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somewhere along the way, a drawdown which approaches 100% will occur. Furthermore, com-

mon sense also dictates that the larger the ratio µ/�, the longer we expect it to take before one

experiences a “bad run” with V (t) tending to zero. The results presented in this section are seen to

confirm this intuitive reasoning.

In the sequel, our plan is as follows: We present a preliminary lemma which connects d
max

(V (t))

to D
max

(log(V (t))) along sample paths of the closed loop system. Subsequently, we bring the

Q-functions, introduced in [92], into our analysis in two ways: First, we modify these functions

so that they apply in the feedback case rather than buy-and-hold. Second, we bring percentage

drawdown into the picture with the help of the preliminary lemma to follow. Note that the lemma

below can actually be given in a much more general form than what is used for our analysis. If V (t)

is any positive continuous on [0, T ] rather than GBM, the same proof can be used.

3.2.1 Preliminary Lemma: Given any sample path for the account value V (t), it follows that

d
max

(V ) = 1� e�D

max

(log(V )).

Proof: Recalling that the sample path V (t) is continuous and non-vanishing on [0, T ], log(V (t))

is continuous and hence, D
max

(log(V )) is well defined as a maximum rather than a supremum.

Now, for a sample path V (t), let (s⇤, t⇤) be any pair which achieves D
max

(log(V )); i.e.,

D
max

(log(V )) = log(V (s⇤))� log(V (t⇤)) = log

✓

V (s⇤)

V (t⇤)

◆

.

Now, since the log function is increasing, the same pair (s⇤, t⇤) maximizes V (s)

V (t)

and therefore

minimizes V (t)

V (s)

. In turn, this is equivalent to the pair (s⇤, t⇤) maximizing

1� V (t)

V (s)
=

V (s)� V (t)

V (s)
.

The last step is to recognize that

d
max

(V ) = 1� V (t⇤)

V (s⇤)
= 1� e� log

�

V (s

⇤
)

V (t

⇤
)

�

= 1� e�D

max

(log(V )). ⇤
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3.2.2 Introduction to Q Functions: In [92] and [110], a pair of real-valued functions Q
p

(x)

and Q
n

(x) are introduced in the analysis of absolute drawdown for the Brownian Motion given by

dp = µdt+ �dZ. These two functions involve rather complicated integrals which are numerically

computed and stored as a table of values. In Figure 3.2.1, plots are given which summarize the

data describing these two numerical functions.
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Figure 3.2.1: Plot of the Q Functions

For the special case when only the drawdown in price is concerned, as discussed in the begin-

ning of the chapter, this corresponds to buy-and-hold in our formulation with initial account value

V (0) = p(0) and feedback gain K = 1 and investment I(t) = V (t) = p(t). Hence, for this

special case, the results in [92] tell us that

E (D
max

(V )) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2�

2

µ

Q
p

⇣

µ

2

T

2�

2

⌘

if µ > 0;

1.2533�
p
T if µ = 0;

�2�

2

µ

Q
n

⇣

µ

2

T

2�

2

⌘

if µ < 0.
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In addition to handling arbitrary feedback gains, we want to address the case when prices follow

the more realistic percentage change model in dp/p rather an absolute change model given above

for p. These issues are addressed below.

3.2.3 Main Result: In the theorem below, for simplicity of notation, we assume margin and

interest rate r = 0. The more general case is discussed immediately after the theorem. We also

provide some remarks about the drawdown formula obtained and address the asymptotic case

when T ! 1. In Section 3.3 we address the tightness of the upper bound via Monte Carlo

analysis. This enables a comparison between our drawdown estimate and its true value.

3.2.4 Theorem: For the feedback control I = KV in the idealized GBM market with dynam-

ics dp/p = µdt + �dZ and r = 0, the maximum absolute drawdown of logarithmic wealth has

expected value

E (D
max

(log V )) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2K�

2

µ� 1

2

K�

2

Q
p

✓

(µ� 1

2

K�

2

)

2

T

2�

2

◆

if K < 2µ

�

2

;

1.2533K�
p
T if K =

2µ

�

2

;

� 2K�

2

µ� 1

2

K�

2

Q
n

✓

(µ� 1

2

K�

2

)

2

T

2�

2

◆

if K > 2µ

�

2

with corresponding maximum percentage drawdown satisfying the condition

E
�

d
max

(V )

�

 1� e�E
�

D

max

(log(V )

�

.

Proof: Recalling the analysis given in Section 3.1, the stochastic differential equation govern-

ing log V is a Brownian Motion with drift and volatility given by

µ⇤
.
= Kµ� 1

2

K2�2

; and �⇤
.
= K�.

Now, substitution of µ⇤ for µ, �⇤ for � and log V for V in E(D
max

(V )) above, we obtain

E (D
max

(log(V ))) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2�⇤2

µ⇤
Q

p

⇣

µ⇤2T
2�⇤2

⌘

if µ⇤ > 0;

1.2533�⇤
p
T if µ⇤ = 0;

�2�⇤2

µ⇤
Q

n

⇣

µ⇤2T
2�⇤2

⌘

if µ⇤ < 0.

Replacing µ⇤ and �⇤ with their corresponding values in terms of µ, � and K > 0, a straightforward

calculation leads to the formula given for E (D
max

(log(V ))). To complete the proof, we note the
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following: For an arbitrary sample path V (t), recalling the Preliminary Lemma 3.2.1, we have

d
max

(V ) = 1� e�D

max

(log(V )).

Now, since 1�e�x is concave, upon taking the expectation and using the Jensen’s inequality [111],

we obtain

E
�

d
max

(V )

�

 1� e�E
�

D

max

(log(V )

�

. ⇤

3.2.5 Non-Zero Margin and Interest Rates: For the case of non-zero margin and interest rates,

via a lengthy but straightforward computation, we can readily modify the results in the theorem.

We illustrate for K > 1, the case when margin arises. Indeed, let

µ⇤
.
= Kµ� r(K � 1)� 1

2

K2�2

;

K
p

.
=

(µ� r) +
p

(µ� r)2 + 2r�2

�2

.

If K
p

� 1, then there are again three regimes for the drawdown. With a simple calculation, the

small-K regime which corresponds to µ⇤ > 0 is equivalent to K 2 [1, K
p

] and leads to

E
�

D
max

(log(V ))

�

=

2K2�2

Kµ� r(K � 1)� 1

2

K2�2

⇥ Q
p

�

(Kµ� r(K � 1)� 1

2

K2�2

)

2T

2K2�2

�

.

In the second regime obtained with µ⇤ = 0 or K = K
p

,

E
�

D
max

(log(V ))

�

= 1.2533K�
p
T .

Finally, for the third regime when µ⇤ < 0 or K > K
p

,

E
�

D
max

(log(V ))

�

=

�2K2�2

Kµ� r(K � 1)� 1

2

K2�2

⇥ Q
n

�

(Kµ� r(K � 1)� 1

2

K2�2

)

2T

2K2�2

�

.

In contrast, if K
p

< 1, with K > 1 there is only one regime, µ⇤ < 0, which is exactly the third

regime above.
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3.2.6 Remarks and Asymptotic Behavior: In the drawdown formulae above, the three regimes

for the feedback gain K can be linked to a signal-to-noise type ratio µ/� for the underlying price

process. For a given feedback gain K, the smaller this ratio, the more drawdown we expect to

see. For fixed µ and �, if we allow K to increase, we expect to see larger and larger drawdowns.

It is also instructive to consider the asymptotic versions of the results given in the theorem which

are obtained as T ! 1. Analogous to the arguments used in the proof of the theorem, we can

readily modify the asymptotic analysis of functions Q
p

(x) and Q
n

(x) and apply these results to the

feedback control problem being considered here. Namely, beginning with the asymptotic estimates

Q
p

(x) ⇡ 1

4

log x+ 0.4988; Q
n

(x) ⇡ x+

1

2

,

for x suitably large, via a lengthy but straightforward calculation along the lines given in the proof

of the theorem, as T ! 1, the quantity E (D
max

(log(V ))) is estimated in three regimes as follows:

In the first regime, obtained with K < 2µ/�2,

E(D
max

(log(V )) ⇡ 4K�2

2µ�K�2

⇥ (0.63519 + 0.5 log T + log

µ� 0.5K�2

�
).

In the second regime, with critical value K = 2µ/�2,

E(D
max

(log(V )) ⇡ 1.2533K�
p
T .

Finally, in the third regime, obtained with K > 2µ/�2,

E(D
max

(log(V )) ⇡ �(µK � 0.5K2�2

)T � K�2

µ� 0.5K�2

.

For all three regimes of K, using the formulae in the theorem, as expected, we see

lim

T!1
E(D

max

(log(V )) = 1.

However, the specific value of K has a significant impact on the rate of convergence for this limit.

For the small-K regime, a rate of 1

T

is obtained from the formulae above. For the critical value

case, the rate is e�
p
T and finally, for the large-K regime, the rate becomes e�T .
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3.3 Numerical Examples with Simulations
In this section, we provide plots of the drawdown functions indicating how risk evolves as a func-

tion of the duration of the trade T . We recall that when we work with percentage, the theorem in

Section 3.2 provides an upper bound which arises when Jensen’s Inequality is invoked. Hence, it

is natural to ask whether the upper bound we obtain is “tight.” We conducted Monte Carlo simula-

tions in order to compare our upper bound with a Monte Carlo estimate of true drawdown. Indeed,

we considered a stock with GBM model with time t measured in years, T = 5, annualized drift

µ = 0.25 and annualized volatility � =

p
0.5 ⇡ 0.7071. These values were picked intentionally so

that the so-called critical value of K in the theorem is given by K⇤ .
=

2µ

�

2

= 1.

For our simulations, one value of K was used for each of the three regimes in the theorem. More

specifically, we took K = 0.1, K = 1 and K = 2 in our computations. For these three cases, the

Monte Carlo estimates of the E
�

d
max

(V )

�

along with the upper bounds are shown in Figure 3.3.1.

For each value of T , our Monte Carlo estimate for the expected value of d
max

was generated

using 5000 sample paths. Our estimates appear to have converged quite well in that we do not see

significant changes above the one thousand sample path level. In the three simulations below, we

see that the “error” between the upper bound in the theorem versus the Monte Carlo estimate is

different in each of the three regimes for K. In all cases, the error is at most a few percent.

3.3.1 Other Feedback Based Strategies: The drawdown concepts presented here not only apply

to the linear feedback I = KV but also to practically any other linear feedback control law which

one might imagine. To illustrate, we consider another known strategy which uses a combination

of two linear feedbacks, one long trade in combination with one short trade. We recall, this is the

so-called Simultaneous Long-Short (SLS) feedback law described earlier in Subsection 1.4.3 and

which has been studied in detail in [1–5,7,8]. Whereas this feedback control law in these papers is

a mapping on the trading gain g(t), so as to maintain consistency with the formulation considered

here, we study a version of SLS which operates on V (t).

Further recalling, this strategy can be viewed as the superposition of two independent trades as

follows: The trader holds both a long investment I
L

(t) > 0 and short investment position I
S

(t) < 0

at the same time. In practice, these two positions can be “netted out” so that the overall investment
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Figure 3.3.1: Bound on E
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d
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(V )

�

for Different Values of K

is given by I(t) = I
L

(t)+I
S

(t). Now, for feedback gain K > 0, these two investment components

are given by I
L

(t) = KV
L

(t) and I
S

(t) = �KV
S

(t) with initial conditions V
L

(0) = V
S

(0) = V
0

/2

and resulting account value evolving over time as V (t) = V
L

(t) + V
S

(t). For this SLS system, the

results in the literature, for example, see [4], [7] and Subsection 1.4.4 tell us that for all but the

degenerate case when µ = 0, the positive expectation condition E[V (T )] > V
0

is guaranteed; that

is, the Robust Positive Expectation Property holds. In addition, the mean, variance and skewness

of the probability density function of V (T ) are increasing functions of K. We now analyze the

drawdown of this scheme.

Since I
L

(t) and I
S

(t) are opposite in sign, it is natural to expect that the drawdown of V will be

smaller than the drawdowns of V
L

and V
S

separately. Hence, it is also natural to conjecture that

the SLS drawdown is always lower than the the one obtained in the simulation for the pure long

case I = KV above. Furthermore, as time goes on, a large “run-up” in one of these positions is

exceedingly probable. Hence we expect to see the drawdown for SLS behave much the same as the
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pure long case. That is, we conjecture that E
�

d
max

(V )

�

should go to 1 as time T tends to infinity.

Finally, in view of the reasoning given above, we expect to see the rate of convergence for this SLS

case to be slower than what we obtained with a purely long controller.

Indeed, a Monte Carlo simulation for the SLS controller was carried out for K = 2 using the

same parameters as in the pure-long simulation above. In Figure 3.3.2, we see that the result is

consistent with the conjectures given above. For T small, we see E(d
max

(V )) for the SLS case to

be significantly below that obtained for the pure long case with asymptotic behavior as predicted.
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3.4 Conclusion and Further Research
In the proof of the theorem in Section 3.2, we used Jensen’s inequality. The results in [92] suggest

an avenue of analysis which avoids introducing this inequality but may be computationally pro-

hibitive. That is, log(V ) is a standard Brownian motion, modifying the theory in [92] should make

it possible to construct the probability density function for D
max

(log(V )). As a practical matter,
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however, in lieu of finding an exact representation of the probability density function, it appears

much easier to carry out a Monte Carlo simulation and obtain a histogram to represent the density

function for D
max

(log(V )) or even d
max

(V ). This is illustrated in Figure 3.4.1 where the histogram

for d
max

(V ) is provided for the trading scenario described by the case µ = 0.5, � = 0.5, T = 0.4

and K = 1. The expected value of the maximum percentage drawdown for V is estimated to

be E (d
max

(V )) ⇡ 0.2558. In contrast, the upper bound given in the theorem in Section 3.2, is

approximately 0.27.
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Figure 3.4.1: Histograms of d
max

(V )

Finally, to conclude, we refer back to the discussion in the beginning of the chapter, involving the

ongoing line of research on risk measures. Analogous to the information provided by a conditional

value at risk measure, in the case of drawdown, a conservative investor might want to know how

large the downside can be if d
max

(V ) � E(d
max

(V )) is experienced. Hence, one can define a

conditional version of the percentage measure. That is, along a sample path V (t), let

D
max

(V )

.
= E

�

d
max

(V )|d
max

(V ) � E(d
max

(V ))

�

� E(d
max

(V )).

Finally, it would also be of interest to study the extent to which various measures of drawdown are

compatible with the theory of coherent risk measures; e.g., see [105].
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Chapter 4

PI Controllers: The Robust Positive Expectation Property

In this chapter, a generalization of the Simultaneous Long-Short (SLS) trading rule, described in

Section 1.4, is studied.1 This new strategy, called Initially Long-Short (ILS), involves a controller

which includes memory of the past performance. This is accomplished via use of an integrator

as in classical control theory. The dynamic compensator which results is called a Proportional-

Integral (PI) controller. More specifically, the main objective in this chapter is to generalize the

results of Section 1.4.4 from static to dynamic feedback. In the static case, in combination with a

“pure gain” which was the focal point of this thesis so far, the investment level at time t is given by

I(t) = I
0

+Kg(t),

where I
0

is the initial investment, K is the feedback gain and g(t) is the cumulative gain-loss

function up to time t; see 1.4.1 for details.

Our analysis begins by reducing the stochastic trading equations for the expectation of g(t) to a

classical second order system and finding the closed-form solution to prove that the Robust Positive

Expectation Property still holds. Later in the chapter, we also consider a number of other issues

such as the analysis of the variance of g(t) and the monotonic dependence of g(t) on the feedback

gains. In addition, we provide simulations showing how the PI controller performs on a backtest

with prices obtained from historical data. Finally, motivated by practical consideration described

in the section on simulation, we provide a more general theorem which includes a exponentially

weighting factor in the PI controller. More specifically, this new discounting scheme amounts to a

modification of the investment rule to more heavily emphasize recent data.

1The results reported in this chapter have been published in [9].
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4.0.1 The PI Controller and Issues we Address: To determine the investment level, we consider

a classical Proportional-Integral (PI) controller

I(t) = I
0

+K
P

g(t) +K
I

t

Z

0

g(⌧)d⌧,

where K
P

� 0 and K
I

� 0 are respectively the so-called proportional and integral gains. The

block diagram for this investment rule is provided in Figure 4.0.1.

p(t)

I0 Dynamics
+

+ KP s + KI

s

g(t)

Figure 4.0.1: Block Diagram of Trading via PI Controller

Note that we use differentiator-free dynamics to avoid problems associated with price signals

which typically include high-frequency components. Our goal is to analyze the behavior of the

mean and variance of g(t). Working with a long-short version of the PI controller above, our main

result is that the Robust Positive Expectation Property, E[g(t)] > 0 still holds except for the trivial

break-even case with either both feedback gains (K
P

, K
I

) = (0, 0) or the drift µ = 0.

In the setting above, we first show that when dealing with E[g(t)], the stochastic equations for

trading can be reduced to a classical second order differential equation. Hence, in addition to posi-

tivity of the expectation, many aspects of the behavior of E[g(t)] > 0 such as damping, overshoot,

oscillations and asymptotic convergence become straightforward to study. Finally, to demonstrate

the application of the main ideas in this chapter, using historical data, we provide simulations to

show how the controller performs in a real market when trades are conducted every two minutes.
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4.1 Derivation of Dynamics for Expectation
We now consider an idealized market with prices p(t) generated by the Geometric Brownian Mo-

tion (GBM) satisfying the stochastic differential equation

dp

p
= µdt+ �dZ

where Z(t) is a standard Wiener process, µ is the drift and � � 0 is the volatility.

4.1.1 Interaction of Prices and PI Controller: It is important to note that neither µ nor � is

known to the trader. Furthermore, as previously stated, the feedback control law underlying the

investment I(t) is model-free in the sense that no attempt is made to estimate µ and � on the

fly. In order to differentiate between long and short positions, we use subscripts “L” and “S”

for the investment function I(t) and trading gain g(t). Accordingly, with initial condition given

by I
L

(0) = I
0

> 0, PI trader who is initially long works with investment

I
L

(t) = I
0

+K
P

g
L

(t) +K
I

t

Z

0

g
L

(⌧)d⌧

where K
P

� 0 and K
I

� 0. Similarly, on the short side, the trader begins with I
S

(0) = �I
0

and investment

I
S

(t) = �I
0

�K
P

g
S

(t)�K
I

t

Z

0

g
S

(⌧)d⌧.

The theory to follow allows us to consider three scenarios: Initially Long, Initially Short and Ini-

tially Long-Short (ILS). Our use of the word “initially” in describing these trades is based on a fun-

damental difference between static versus dynamic trading. That is, in the static case with K
I

= 0,

as seen in earlier work [4] and described in Chapter 1, the signs of I
L

(t) and I
S

(t) remain invariant

over the course of the trade. However, when integrator action is included with K
I

6= 0, one can

end up with either I
L

(t) or I
S

(t) changing sign; e.g., the initially long position can be “morphed”

into a short. To conclude, in the ILS case, the control, being the sum of long and short positions,

reduces to

I(t) = K
P

(g
L

(t)� g
S

(t)) +K
I

t

Z

0

(g
L

(⌧)� g
S

(⌧))d⌧.
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Next, we consider the stochastic differential equation for the trading gain g
L

noting that a nearly

identical analysis applies to g
S

. Indeed, noting that the incremental trading gain or loss dg
L

is the

percentage change in price dp/p times the amount invested I
L

(t), we have

dg
L

=

dp

p
I
L

=(µdt+ �dZ)

✓

I
0

+K
P

g
L

(t) +K
I

Z

t

0

g
L

(⌧)d⌧

◆

.

4.1.2 State Space Representation: We now create a state-space representation using the two-

dimensional state vector

x(t)
.
=

2

4

R

t

0

g
L

(⌧)d⌧

g
L

(t)

3

5 ,

with initial condition x(0) = 0. Next, we reduce the gain dynamics to the first order stochas-

tic equation

dx
1

= x
2

dt;

dx
2

= (µdt+ �dZ) (I
0

+K
P

x
2

+K
I

x
1

) .

To more clearly see the structure of these equations, we view the initial investment as a unit step

input u(t) ⌘ I
0

for t � 0 and express the increment above in the classical form

dx = (Ax+ bu)dt+ (Cx+ du)dZ

with matrices having the structure

A
.
=

2

4

0 1

µK
I

µK
P

3

5

; b
.
=

2

4

0

µ

3

5

;

C
.
=

2

4

0 0

�K
I

�K
P

3

5

; d
.
=

2

4

0

�

3

5 .

This is a linear system with multiplicative noise; for example, see [112] and [113]. Although a

closed-form solution is generally not available, we see below that a tractable differential equation

describing the expectation of the state can nevertheless be obtained.
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4.1.3 Gain Expectation Dynamics: Denoting the unconditional expectation of the state, x(t), at

time t as

x̄(t)
.
= E[x(t)],

the differential equation for the expected-state dynamics is obtained by taking the expectation of

both sides of the stochastic differential equation for x(t). To accomplish this, a formal argument

requires commutation of derivative and expectation operations above, for example, see [88]. Ex-

ploiting the zero-mean property of the Wiener process to eliminate the term multiplied by dZ, we

arrive at

dx̄

dt
= Ax̄+ bu

=

2

4

0 1

µK
I

µK
P

3

5 x̄(t) +

2

4

0

µ

3

5 I
0

with output of interest y = E[g
L

(t)] given by

y = cT x̄ = [0 1]x̄.

The system above is now straightforward to analyze using the classical analysis for second-order

linear time-invariant systems. To this end, the transfer function from the investment to the trading

gain is immediately calculated to be

H(s) = cT (sI � A)�1b =
µs

s2 � µK
P

s� µK
I

,

with associated eigenvalues

�± =

µK
P

±
p

µ2K2

P

+ 4µK
I

2

.

The simplicity of the transfer function above makes it possible to analyze various scenarios. For

example, oscillation and damping are readily studied. As a second example, imagine a trader who

is initially long with µ < 0, K
I

> 0 and K
P

> 0, then despite being on the “wrong side of the

market,” it is easy to verify using the Final Value Theorem that lim
t!1E[g

L

(t)] = 0. That is, with

the integrator, an initially “bad trade” eventually turns into a break-even situation.
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4.2 Closed-Form Solution Possibilities
For the second order system above, the classical solution possibilities are readily enumerated and

closed-form solutions for E[g
L

(t)] can easily be obtained by considering two possibilities, µ > 0

or µ < 0 for the sign of the drift and for the discriminant, � .
= µ2K2

P

+ 4µK
I

, there are three

cases: � < 0,� = 0 and � > 0. We now demonstrate by showing the solution for two of the

most important cases and then provide a convenient compact formula which covers all cases in one

fell swoop.

4.2.1 The Oscillatory Case: Suppose µ < 0, � < 0, K
I

> 0 and K
P

� 0. Then using the

formulae above, the expected value of the trading gain is a damped harmonic; i.e., the damping

ratio ⇣ < 1 is given by

⇣ =

1

2

K
P

s

|µ|
K

I

,

the undamped natural frequency is !
n

=

p

|µ|K
I

, and, inverting the Laplace transform, we eas-

ily obtain

E[g
L

(t)] = �
✓

I
0

K
I

◆

!
n

p

1� ⇣2
e�⇣!

n

t

sin(!
n

p

1� ⇣2 t)

=

2µI
0

p

4|µ|K
I

� µ2K2

P

eµKP

t/2

sin

✓

q

(4|µ|K
I

� µ2K2

P

)

t

2

◆

.

Perhaps the most important feature of the solution above is that it adapts to the trader’s “error”

in the assessment of the market’s direction. By this, we mean the following: Suppose K
P

> 0

and the trader begins with a long position I
L

(0) = I
0

> 0 in a market which is drifting down-

ward with µ < 0. As losses build up, the integration action eventually forces I
L

(t) < 0. That

is, the trader finally “gets it right” in a falling market by switching from a long to a short posi-

tion. To see this effect more clearly, we calculate the expected value of the investment, and, via a

straightforward calculation, we obtain

E[I
L

(t)] =
I
0

p

1� ⇣2
e�⇣!

n

t

cos

⇣

!
n

p

1� ⇣2t+ ✓
⌘
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where

✓
.
= arctan

 

�⇣
p

1� ⇣2

!

.

The adaptation phenomenon described above is now seen in Figure 4.2.1 where E[g
L

(t)] and

E[I
L

(t)] are plotted using sample parameter values I
0

= 1, µ = �3, K
P

= .5 and K
I

= 4.

A key observation is that three times over the duration of the trade, I
L

(t) switches from long to

short and eventually, per discussion of the Final Value Theorem above, turns a losing trade into a

break-even situation.
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Figure 4.2.1: Trading Gain and Investment for the Oscillatory Case

4.2.2 The Purely Exponential Case: Continuing with the initially-long trader in a falling market

with µ < 0, when the discriminant � is positive, that is, µ2K2

P

+4µK
I

> 0, we obtain the solution

E[g
L

(t)] =
µI

0

2↵
eµKP

t/2

⇥

e↵t � e�↵t

⇤

where

↵
.
=

p

µ2K2

P

+ 4µK
I

2

.

We note that the initially-long trader is on the wrong side of the market but the controller adapts

by switching from long to short as losses increase and ultimately breaks even.
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4.2.3 Convenient Compact Solution Representation: The two cases considered above do not

cover all the solution possibilities. Rather than enumerating them all, we simply provide a compact

formula which covers all cases. Below, the understanding is that arguments under the square

root sign can be negative. In such cases, using de Moivre’s formula, we obtain the appropriate

interpretation in terms of harmonics. Furthermore, since it is easily verified that the expected gain

or loss is an even function of the drift µ, the formulae below are given for µ � 0. Accordingly, for

the case of PI control, we obtain

E[g
L

(t)] =
µI

0

↵
eµKP

t/2

sinh (↵t) ;

E[g
S

(t)] =
�µI

0

�
e�µK

P

t/2

sinh (�t)

where

�
.
=

p

µ2K2

P

� 4µK
I

2

.

4.2.4 Initially Long-Short (ILS) Controller: Motivated by results in the purely proportional

feedback case, see Section 1.4.3 and [3] and [4], we consider a trading strategy that implements

both a long and short version of the PI strategy, simultaneously. The expected gain from this

strategy is simply the sum of the gain from the long and short strategies which is found to be

E[g(t)] = µI
0

e�µK

P

t/2



eµKP

t

sinh (↵t)

↵
� sinh (�t)

�

�

.

Recalling the examples in the previous section, we know that a long controller which begins

with I
L

(0) = I
0

> 0, can eventually become a short over the course of the trade. Similarly,

the short side can switch to long. Hence, we refer to this as an Initially Long-Short (ILS) PI con-

troller. In earlier work with a static controller corresponding to the special case K
I

= 0, see [4],

this switch between long and short could not occur. Hence, this reference uses the terminology

Simultaneous Long-Short (SLS) to describe the controller.

As previewed in Chapter 1 and established in [4], the statis SLS feedback control strategy achieves

a positive expected trading gain under any GBM price process with Kµ 6= 0. It is reasonable to

ask whether this same robustness property holds in the ILS case for the PI controller. We can see
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immediately the potential for such a result in the ILS case by setting K
P

= 0. This is the so-called

the pure integrator case and we see that the compact solution representation for this special case is

E(g(t)) =

s

|µ|
K

I

I
0

h

sinh(

p

|µ|K
I

t)� sin(

p

|µ|K
I

t)
i

which is readily verified to be positive except for the trivial break-even case when µ = 0 or K
I

= 0.

In the section to follow, we establish that this Robust Positive Expectation Property holds in the

more general case when both K
P

and K
I

are in play. In addition we establish the monotonic

dependence of the expected value of g(t) on K
P

and K
I

.

4.3 Robust Positive Expectation Property for PI Controller
For the Initially Long-Short PI controller above, we now provide two theorems.

4.3.1 Theorem: (Robust Positive Expectation Property) Consider the ILS PI controller with

K
I

� 0 and K
P

� 0 in an idealized market with GBM prices. Then, except for the trivial

break-even case obtained when either µ = 0 or (K
P

, K
I

) = (0, 0), the expected gain E[g(t)] is

strictly increasing in t. Moreover, since E(g(0)) = 0, it follows that

E(g(t)) > 0

for all t > 0.

Proof: To establish that the expected return is increasing with respect to t, we use the compact

solution representation given in Section 4.2.4. Additionally, we use the notation,

f(x)
.
=

sinh(x)

x
.

Recalling that the expected gain is an even function of µ, without loss of generality we assume

that µ > 0. To prove that the expected gain is increasing in time, we will show that its derivative is

strictly positive. Indeed, differentiating with respect to time t and rearranging terms gives

dE(g(t))
dt

=

µ2K
P

I
0

te�µK

P

t/2

2

⇥

eµKP

tf(↵t) + f(�t)
⇤

+µI
0

e�µK

P

t/2

⇥

eµKP

t

cosh(↵t)� cosh(�t)
⇤
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where ↵ and � are defined in the previous section. To show that this quantity is strictly positive,

we consider the following two cases.

Case 1: � is real, that is µ2K2

P

� 4µK
I

� 0. Then using the following facts proves that the

derivative is positive:

1. f(x) � 0 for x � 0.

2. eµKP

t � 1.

3. ↵ > � and cosh is an increasing function.

Case 2: � is pure imaginary, that is µ2K2

P

� 4µK
I

< 0. Then � = �j where � =

p
4µK

I

�µ

2

K

2

P

2

.

Rewriting the derivative,

dE(g(t))
dt

=

µ2K
P

I
0

te�µK

P

t/2

2

⇥

eµKP

tf(↵t) + sinc(�t)
⇤

+µI
0

e�µK

P

t/2

⇥

eµKP

t

cosh(↵t)� cos(�t)
⇤

.

Again the following facts prove the time derivative of the expected return to be strictly positive in

this case:

1. eµKP

t > 1.

2. f(x) � 1 for x > 0.

3. |sinc(x)|  1 for all x.

4. cosh(x) � 1 for all x.

5. | cos(x)| < 1 for all x.

Since these two cases are mutually exclusive and exhaustive, this completes the proof. ⇤
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4.3.2 Theorem: (Monotonicity in the Control Parameters) Consider the ILS PI controller with

K
I

� 0 and K
P

� 0 in an idealized market with GBM prices. Then, except for the trivial break-

even case of µ = 0, for t > 0, the expected return E[g(t)] is increasing in K
P

and in K
I

.

Proof: We begin from the convenient compact solution provided in the previous section. Rear-

ranging, we obtain

E (g(t)) = µI
0

t
⇥

eµKP

t/2f(↵t)� e�µK

P

t/2f(�t)
⇤

.

Recalling that the expected gain is an even function of µ, without loss of generality we assume

µ > 0. Consider the function f(x) introduced in the proof of the previous theorem. Now writing

the Taylor expansion for this function, we obtain

f(x) =
1
X

n=0

x2n

(2n+ 1)!

; f 0
(x) =

1
X

n=1

2nx2n�1

(2n+ 1)!

.

Taking the derivative of the expected gain and replacing f(x) and f 0
(x) by the expressions above,

after further simplification and reordering of terms, we obtain

@E(g)
@K

I

= µ2I
0

t3e�µK

P

t/2

⇥
1
X

n=1

n

(2n+ 1)!

⇥

eµKP

t

(↵t)2n�2

+ (�t)2n�2

)

⇤

.

Noting that ↵2 � |�2| and the fact that eµKP

t > 1, one may verify that each term in the sum is

positive, and therefore, the derivative is positive. Similarly, for K
P

, we obtain

@E(g)
@K

P

=

µ2I
0

t2

2

e�µK

P

t/2

⇥
n

1
X

n=0

1

(2n+ 1)!

⇥

eµKP

t

(↵t)2n + (�t)2n
⇤

o

+

µ3I
0

K
P

t3

2

e�µK

P

t/2

⇥
n

1
X

n=1

n

(2n+ 1)!

⇥

eµKP

t

(↵t)2n�2 � (�t)2n�2

)

⇤

o

.

Again, using the same reasoning, each term in each of the sums is positive and therefore the

derivative is positive. ⇤
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4.3.3 Remark: Note that while the theorem shows that the expected gain increases with increased

parameter values, it does not address the issue of the variance of the gain or the increased risk

associated with larger parameter values. Thus, in the next section, we provide an analysis of the

covariance matrix that captures the risk and correlations between the long, short, and Initially

Long-Short PI strategies.

4.4 Analysis of the Covariance Matrix
In this section, we analyze the variance and covariance of the ILS PI strategy. To begin, we combine

the states for the initially-long and initially-short cases into

x
.
=

2

4

x
L

x
S

3

5

and write the combined dynamics for x as

dx = (Ax+ bu) dt+ (Cx+ du) dZ

with

A
.
=

2

6

6

6

6

6

6

4

0 1 0 0

µK
I

µK
P

0 0

0 0 0 1

0 0 �µK
I

�µK
P

3

7

7

7

7

7

7

5

; b
.
=

2

6

6

6

6

6

6

4

0

µ

0

�µ

3

7

7

7

7

7

7

5

;

C
.
=

2

6

6

6

6

6

6

4

0 0 0 0

�K
I

�K
P

0 0

0 0 0 0

0 0 ��K
I

��K
P

3

7

7

7

7

7

7

5

; d
.
=

2

6

6

6

6

6

6

4

0

�

0

��

3

7

7

7

7

7

7

5

.

4.4.1 Differential Equation for the Covariance Matrix: To analyze the covariance matrix of

the state x, we take

x̄(t)
.
= E[x(t)]
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and study the error e .
= x� x̄ and its covariance

P (t)
.
= E[e(t)eT (t)].

Now, similar to the previous initially-long analysis, a straightforward calculation leads to the

stochastic increment for the error

de = Aedt+ (Ce+ Cx̄+ du)dZ.

By Ito’s lemma, we can calculate deeT , which gives

deeT = AeeTdt+ eeTATdt

+(Ce+ Cx̄+ du)(Ce+ Cx̄+ du)Tdt

+((Ce+ Cx̄+ du)eT + e(Ce+ Cx̄+ du)T )dZ.

Taking the expectation of both sides leads to

dP

dt
= AP + PAT

+ CPCT

+ (Cx̄+ du)(Cx̄+ du)T .

This is a Lyapunov-type linear matrix differential equation in P (t) and thus can be easily solved.

In particular, we are interested in the variance of the individual components g
L

(t) and g
S

(t), P
22

and P
44

respectively, of the ILS strategy. In addition, using P (t) we obtain the variance of the

overall ILS trading gain g(t) = g
L

(t) + g
S

(t) as

var[g(t)] = hTP (t)h with h
.
= [0, 1, 0, 1]T .

The calculation of the variance, as prescribed above, is straightforward to implement numerically.

Given the emphasis here on the Robust Positive Expectation Property, we do not provide an illus-

trative plot but make note of the fact that variance of g(t) for the ILS strategy is lower than the sum

of the variances of g
L

and g
S

. This is due to the fact that g
L

and g
S

are negatively correlated.

4.5 A Simulation Using Historical Data
In this section, we illustrate the application of the ILS PI feedback control strategy using a data

set consisting of about 35, 000 price quotes for Apple (Ticker: AAPL) stock. The data covers 175
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days from June 18, 2012 to February 28, 2013 with each new price quote following its predecessor

by about two minutes.2 In Figure 4.5.1, the daily closing prices are plotted.
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Figure 4.5.1: Closing Prices for AAPL

To more closely approximate the idealized market conditions underlying the theory in this chapter,

we consider the case when the ILS position is initiated at the market open and vacated at the close;

i.e., the trader is entirely in cash overnight. This increases the likelihood that price paths are more

nearly continuous than would be the case if a position is carried overnight. Our interpretation is

that each day provides a 200-point sample path from some random process governing the price of

Apple. Figure 4.5.2 provides typical daily sample paths with the opening price normalized to $1.

The first scenario we consider is the following: The investor begins with initial account value

of $10, 000. Then, each day, the ILS position is initiated with I
0

= 10, 000. We further assume no

transaction costs and the ability to trade about every two minutes as a new data point arrives. In the

first set of simulations, we held the proportional gain K
P

= 2 fixed and varied the integrator gain

2The authors express their thanks to Mr. Amin Farmahini-Farahani for help with the acquisition and processing of

intraday stock prices.
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Figure 4.5.2: Sample Paths for AAPL

K
I

Ending Account Value Average Investment

0 $10,098 $335

0.2 $11,950 $3,005

0.5 $14,726 $7,025

1 $19,357 $13,630

2 $28,686 $26,406

Table 4.1: The Ending Account Value and Average Investment with K
p

= 2

in the interval 0  K
I

 2. The results are given in the table below. In Figure 4.5.3, the evolution

of g(t) is shown for K
I

= 2.

Looking at the investment levels in Table 4.1, we raise the possibility of a difference which might

arise between theory and practice. The trader may not have adequate cash reserves to fund the

required investment level I(t). For example, the gain K
I

= 2 leads to an average daily investment

of over $26,000. If the account value is much less than this investment level, there would be a
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requirement to pay margin interest or worse yet, a margin call by the broker could occur if the

account is not adequately collateralized.
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Figure 4.5.3: Cumulative Return for PI Controller

In view of these practical considerations, we also considered the case K
I

= K
P

= 2 taking the

account value (wealth) of the trader into account in restricting the admissible investment level. If

we denote the account value of the trader at time t by V (t), a simple but practical constraint would

be the following: Recalling that I(t) = I
L

(t) + I
S

(t) is the net investment, we impose the con-

straint |I(t)|  2V (t). In other words, if the ILS control algorithm dictates an investment level

no larger than 2V (t), we use the saturated control I
sat

(t)
.
= 2V (t)sign I(t). In Figure 4.5.3, with

saturation included, the trading gain is seen to evolve more modestly versus the unconstrained case.

4.6 PI Controller with Exponentially-Weighted Moving Average
The simulations in the previous section demonstrate the possibility that the ILS investment levels

can become “too large.” From a practical implementation point of view, the broker’s collateral re-

quirements may restrict investment levels along the lines described in Subsection 3.0.2. This effect
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is closely related to what is known as integral windup problem, see [114] for details. Motivated

by these practical considerations, in this section we provide an alternative discounting scheme. To

this end, an immediate direction involves generalizing the results to allow for more emphasis on

recent performance. In this regard, it is of interest to consider the so-called exponentially weighted

moving average with control

I(t) = I
0

+K
P

g(t) +K
I

Z

t

0

e��(t�⌧)g(⌧)d⌧

where � � 0 is chosen by the trader. Note that by choosing � = 0, we recover integral feedback.

The size of � � 0 affects the rate at which the past performance is discounted.

The analysis for this more general case begins in much the same way as the � = 0 case. That is,

we start with the state-space vector x defined as

x(t)
.
=

2

4

R

t

0

e��(t�⌧)g(⌧)d⌧

g(t)

3

5 ,

and use the GBM price dynamics to develop a differential equation for x̄ = E[x(t)]. We further

combine two components, one long and one short, to obtain the initially long-short controller

with exponentially weighted moving average. We show that with this new controller, the Robust

Positive Expectation Property holds for a non-trivial GBM price process with the drift µ 6= 0 and

with controller gains (K
P

, K
I

) 6= (0, 0).

4.6.1 The Feedback Controller and Overview of Main Result: Using the investment rule, I(t)

given in preceding section, we can extend it to define “long” and “short” components. To this end,

the long and short investment at time t are given by

I
L

(t) = I
0

+K
p

g
L

(t) +K
I

Z

t

0

e��(t�⌧)g
L

(⌧)d⌧ ;

I
S

(t) = �I
0

�K
p

g
S

(t)�K
I

Z

t

0

e��(t�⌧)g
S

(⌧)d⌧,

respectively. In the remainder of this chapter we analyze the expected value of the trading gain-

loss function g(t), resulting from the use of this new controller. More specifically, we start with

the initially long component, g
L

(t), and use state-space model under GBM to obtain E[g
L

(t)].

Then, we describe how this analysis can be modified to obtain E[g
S

(t)]. Finally, writing the total
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gain-loss function as the sum of the two components; i.e., g(t) = g
L

(t) + g
S

(t), we prove that the

Robust Positive Expectation Property still holds; that is,

E[g(t)] = E[g
L

(t) + g
S

(t)] > 0

as long as µ 6= 0 and (K
P

, K
I

) 6= 0.

4.7 Derivation of Dynamics for Expectation
The analysis provided here is carried out for the long component I

L

(t) while noting that a minor

change in signs leads to the result for the short component I
S

(t). The starting point is the definition

of the state as x(t) given in the preceding section with initial condition x(0) = 0. Assuming

Geometric Brownian Motion process for the price with drift µ and volatility �; we reduce the gain

dynamics to the first order stochastic equation

dx
1

= (��x
1

+ x
2

)dt;

dx
2

= (µdt+ �dZ) (I
0

+K
P

x
2

+K
I

x
1

) .

To simplify dx
1

, we use Leibniz rule to obtain

dx
1

= d
�

e��t

Z

t

0

e�⌧g
L

(⌧)d⌧
�

= ��e��tdt(

Z

t

0

e�⌧g
L

(⌧)d⌧) + e��te�tg
L

(t)dt

= (��x
1

� x
2

)dt.

In computing dx
1

above, we used the fact that differentiation involving the simple Lebesgue in-

tegral does not require any Ito correction. Now, with the initial investment as a unit step in-

put u(t) ⌘ I
0

, for t � 0 we express the increment above as

dx = (A
�

x+ bu)dt+ (Cx+ du)dZ

where

A
�

.
=

2

4

�� 1

µK
I

µK
P

3

5

; b
.
=

2

4

0

µ

3

5

;
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C
.
=

2

4

0 0

�K
I

�K
P

3

5

; d
.
=

2

4

0

�

3

5 .

Similar to the case of PI controller, we can now readily obtain the differential equation describing

the expectation of the state.

4.7.1 Gain Expectation Dynamics: Following an approach similar to Section 4.1 and noting that

the term (Cx+ du)dZ has no effect on the expectation dynamics, we obtain

˙x̄ = A
�

x̄+ bu

with output y(t) = E[g
L

(t)] given by

y = cT x̄ = [0 1]x̄.

The second-order system above is now straightforward to analyze using the classical analysis.

Indeed, the transfer function from the investment to the trading gain is immediately calculated to be

H(s) = cT (sI � A
�

)

�1b =
µ(s+ �)

s2 + (� � µK
P

)s� µ(K
I

+ �K
P

)

,

with associated eigenvalues

�± =

�(� � µK
P

)±
p

(� � µK
P

)

2

+ 4(µK
I

+ µK
P

�)

2

Now with the unit step input which is u = I
0

/s in frequency domain, we obtain

G
L

(s)
.
= [0 1](sI � A

�

)

�1b =
µ(s+ �)I

0

/s

s2 + (� � µK
P

)s� µ(K
I

+ �K
P

)

.

where G
L

(s)
.
= L{E[g

L

(t)]} is the Laplace transform of g
L

(t).

4.8 Closed-Form Solution Possibilities
A calculation similar to what we carried out in Section 4.2 leads to solutions for expected value of

gain-loss function, E[g
L

(t)] and expected investment level, E[I
L

(t)] for different scenarios. In the

sequel, we provide the calculations for the oscillatory case with the understanding that the other

cases are simple extensions of earlier results. The oscillatory case we consider occurs when

�

.
= (µK

p

+ �)2 + 4µK
I

< 0.

Once this case is studied, we give a general closed-form solution which covers all the scenarios.
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4.8.1 The Oscillatory Case: Suppose µ < 0, � < 0, � > 0, K
I

> 0 and K
P

� 0. Then taking

the inverse Laplace transform of G
L

(s) given above, we obtain the expected value of the trading

gain as the damped harmonic

E[g
L

(t)] = � �I
0

K
I

+ �K
P

� µrI
0

e�t

!
cos(!t+ ✓)

where

!
.
=

p

4|µ|K
I

� (µK
P

+ �)2

2

; �
.
=

µK
P

� �

2

;

r
.
=

s

K
I

�K
P

+K
I

; ✓
.
= arctan(

�2

+ w2

+ ��

w�
).

Perhaps the most important feature of the solution above is that it adapts to the trader’s “error” in

the assessment of the market’s direction. By this, we mean the following: The trader begins with a

long position I
L

(0) = I
0

> 0 in a market which is drifting downward with µ < 0. As losses build

up, the integration action eventually forces I
L

(t) to become negative after being initially positive.

That is, the trader finally “gets it right” in a falling market by switching from a long to a short

position. To see this effect more clearly, we calculate the expected value of the investment, and,

via a straightforward calculation, we obtain

E[I
L

(t)] =
I
0

!
r
2

e�t cos(!t+ ✓
2

)

where

r
2

.
=

p

|µ|K
I

; ✓
2

.
= � arctan(

µK
P

+ �

2!
).

Moreover, since � < 0 we obtain the asymptotic quantities

lim

t!1
E[g

L

(t)] = � �I
0

K
I

+ �K
P

; lim

t!1
E[I

L

(t)] = 0.

The adaptation phenomenon described above is now seen in Figure 4.8.1 where E[g
L

(t)] and

E[I
L

(t)] are plotted using sample parameter values I
0

= 1, µ = �3, K
P

= 0.5, K
I

= 4 and

� = 0.25. A key observation is that four times over the duration of the trade, I
L

(t) switches

from long to short and eventually, per discussion of the Final Value Theorem, the “initially long”

investment component vanishes.
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Time t
0 1 2 3 4 5 6 7

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E[gL(t)]
E[IL(t)]

Figure 4.8.1: Trading Gain and Investment for the Oscillatory Case

4.8.2 Closed-Form Solution For E[g(t)]: In this subsection, we provide a closed-form expres-

sion for the expected gain-loss function, E[g(t)] when a combination of long and short investment

are used. That is with the setting similar to 4.2.4, we obtain the closed-form solution for

E[g(t)] .
= E[g

L

(t) + g
S

(t)].

To this end, we first find the Laplace transform for the expected gain-loss function for the short

component E[g
S

(t)], which is

G
S

(s) =
�µ(s+ �)I

0

/s

s2 + (� + µK
P

)s+ µ(K
I

+ �K
P

)

.

Note that, for the special case of � = 0, we recover the expression for the PI controller as described

in Section 4.2. Similarly, we can find the Laplace transform for the expected gain-loss function for

the long component E[g
L

(t)].
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Then taking the inverse Laplace transform of G(s)
.
= G

L

(s) + G
S

(s) and further simplification

leads to

E[g(t)] = µI
0

h

e�t
sinh↵t

↵
� e⌘t

sinh �t

�

i

+�µI
0

"

e
�+↵

2

t

↵(�+ ↵)
sinh

✓

�+ ↵

2

t

◆

� e
⌘+�

2

t

�(⌘ + �)
sinh

✓

⌘ + �

2

t

◆

#

��µI
0

"

e
��↵

2

t

↵(�� ↵)
sinh

✓

�� ↵

2

t

◆

� e
⌘��

2

t

�(⌘ � �)
sinh

✓

⌘ � �

2

t

◆

#

.

where

↵
.
=

p

(µK
P

+ �)2 + 4µK
I

2

; �
.
=

p

(µK
P

� �)2 � 4µK
I

2

,

and

�
.
=

µK
P

� �

2

; ⌘
.
=

�µK
P

� �

2

.

For the special case when � = 0, it is easy to show that this formula reduces to the one given

in Section 4.2. Similar to the discussion in Section 4.2.3, rather than enumerating all the solution

possibilities, we simply provided a compact formula which covers all the cases. The understanding

is that arguments ↵ and � can be complex. In such cases, using de Moivre’s formula, we obtain

the appropriate interpretation of complex hyperbolic functions in terms of harmonics.

4.9 Robust Positive Expectation Property for Exponentially-Weighted Case
In this section, we prove that for the combination of long and short components with exponentially

weighting scheme with � � 0 and (K
P

, K
I

) 6= 0 leads to the Robust Positive Expectation Property

when a non-trivial Geometric Brownian Motion with drift µ 6= 0 is the governing price process.

4.9.1 Theorem (Robust Positive Expectation): Consider the PI controller with exponentially-

weighted moving average, with � > 0, K
I

� 0 and K
P

� 0 in an idealized market with

GBM price process. Then, except for the trivial break-even case obtained when either µ = 0

or (K
P

, K
I

) = (0, 0), the expected gain E[g(t)] is strictly increasing in t. Moreover, since

E(g(0)) = 0, it follows that for t � 0, we have

E(g(t)) > 0.
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Proof: We start of with rewriting the Laplace transform for E[g
L

(t)] as

G
L

(s) =
µI

0

s2 + (� � µK
P

)s� µ(K
I

+ �K
P

)

| {z }

.
=G

(1)

L

(s)

+

�µI
0

/s

s2 + (� � µK
P

)s� µ(K
I

+ �K
P

)

| {z }

.
=G

(2)

L

(s)

.

Similarly for the short component, we have

G
S

(s) =
�µI

0

s2 + (� + µK
P

)s+ µ(K
I

+ �K
P

)

| {z }

.
=G

(1)

S

(s)

+

��µI
0

/s

s2 + (� + µK
P

)s+ µ(K
I

+ �K
P

)

| {z }

.
=G

(2)

S

(s)

.

Defining

E[g(1)
L

(t)]
.
= L�1{G(1)

L

(s)}; E[g(2)
L

(t)]
.
= L�1{G(2)

L

(s)};

E[g(1)
S

(t)]
.
= L�1{G(1)

S

(s)}; E[g(2)
S

(t)]
.
= L�1{G(1)

S

(s)},

it is easy to use the Initial Value Theorem to show that

E[g(1)
L

(0)] = E[g(1)
S

(0)] = 0.

Then noting that 1/s in frequency domain corresponds to integration in time domain leads to

E[g(2)
L

(t)] = �

Z

t

0

E[g(1)
L

(⌧)]d⌧ ; E[g(2)
S

(t)] = �

Z

t

0

E[g(1)
S

(⌧)]d⌧.

Now rearranging the terms in E[g(t)] = E[g
L

(t)] + E[g
S

(t)] leads to

E[g(t)] = E[g(1)
L

(t)] + E[g(1)
S

(t)]
| {z }

I

+�

Z

t

0

E[g(1)
L

(⌧)] + E[g(1)
S

(⌧)]d⌧

| {z }

II

.

With this arrangement, it would suffice to show that I .
= E[g(1)

L

(t)] + E[g(1)
S

(t)] > 0 for all t > 0;

i.e., I positive forces the integrand in II positive as well. Taking the inverse Laplace transform

and using the simplification techniques in Section 4.3 yields

E[g(1)
L

(t)] + E[g(1)
S

(t)] = e��t/2

✓

µI
0

↵
eµKP

t/2

sinh(↵t)� µI
0

�
e�µK

P

t/2

sinh(�t)

◆

| {z }

III
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where

↵
.
=

p

(� � µK
P

)

2

+ 4µ(K
I

+ �K
P

)

2

=

p

(µK
P

+ �)2 + 4µK
I

2

;

�
.
=

p

(� + µK
P

)

2 � 4µ(K
I

+ �K
P

)

2

=

p

(µK
P

� �)2 � 4µK
I

2

.

The exponential term e��t/2 is trivially positive. The proof for the positivity of III is a straight-

forward modification of the proof for the case of � = 0 in Section 4.3 with the new ↵ and �

given above. ⇤

4.9.2 Asymptotic Behavior: In this subsection, we describe the asymptotic performance; i.e.,

when time t ! 1. Since E[g(t)] is an even function of µ, without loss of generality, we assume

µ > 0. Moreover, since � > 0, it is easy to show that the winning component of the gain-loss

function; which is E[g
L

(t)] in this case, will tend to +1. That is, since

↵ >
|µK

P

� �|
2

then E[g1
L

(t)] and E[g2
L

(t)] will both tend to +1 as t ! 1. In order to study the performance

of the losing side, the “short” component” in this case, we start with the Laplace transform of the

corresponding expected value of gain-loss function given by

G
S

(s) =
�µ(s+ �)I

0

/s

s2 + (� + µK
P

)s+ µ(K
I

+ �K
P

)

.

In order to use the Final Value Theorem, we can simply verify that roots of the denominator of

G
S

(s) has negative real parts and moreover (K
P

, K
I

) 6= (0, 0) and � > 0 rule out multiple poles

at the origin. Hence, we can apply the Final Value Theorem to obtain

lim

t!1
E[g

S

(t)] = lim

s!0

sG
S

(s) = � �I
0

K
I

+ �K
P

.

It is instructive to consider two special cases: First, when � ! 0, with K
I

> 0, E[g
S

(t)] ! 0

which is similar to the result we obtained for PI controller in Section 4.2. Second, when K
I

= 0

then E[g
S

(t)] ! �I
0

/K
P

which is the result in [3].
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4.10 Analysis of the Covariance Matrix
The analysis of the covariance is pretty similar to the one we carried out earlier in Section 4.4. In

fact, the same formula holds with the matrix A replaced with A
�

A
�

.
=

2

6

6

6

6

6

6

4

�� 1 0 0

µK
I

µK
P

0 0

0 0 �� 1

0 0 �µK
I

�µK
P

3

7

7

7

7

7

7

5

.

That is, we obtain the Lyapunov-type linear matrix differential equation

dP

dt
= A

�

P + PAT

�

+ CPCT

+ (Cx̄+ du)(Cx̄+ du)T ,

where C, d are defined earlier in 4.4 and u = I
0

. This differential equation can readily be solved

and the variance of the gain-loss function, g(t) = g
L

(t) + g
S

(t) is found using

var[g(t)] = hTP (t)h; h
.
= [0 1 0 1]

T .

4.11 Simulation Revisited
In this section, we revisit the simulation provided earlier in Section 4.5. In this section, we con-

sider the historical prices for Apple (Ticker: AAPL) again and apply the PI controller with ex-

ponentially moving average. Using the data in Section 4.5, similar to the previous simulation we

take I
0

= 10000, K
P

= 2. Moreover, the � = 0.01 is picked such that the ending account values

and average investments are comparable. The K
I

is varied again and the resulting average invest-

ments and ending account values are reported in Table 4.2. The discounting effect of exponentially

weighted average is clear from the smaller average investment levels as depicted in the table which

is deemed as a potential approach to address collateral requirement. However, less investment

implies less risk and hence smaller reward which is evident in the ending account values reported.

Another interesting possibility would be to study the effect of this exponentially discounting

scheme on the maximum percentage drawdown which was discussed earlier in Chapter 3. In Ta-

ble 4.3, the maximum percentage drawdown is reported for the PI controller with and without the

exponentially weighting. The use of the weighting scheme lead to smaller maximum percentage

drawdown which is desired.



70

K
I

Acc. Value � = 0.01 Acc. Value �=0 Avg. Invest. � = 0.01 Avg. Invest. � = 0

0 $10,098 $10,098 $335 $335

0.2 $11,087 $11,950 $1,918 $3,005

0.5 $12,569 $14,726 $4,320 $7,025

1 $15,031 $19,357 $8,282 $13,630

2 $19,912 $28,686 $15,934 $26,406

Table 4.2: The Ending Account Value and Average Investment with K
p

= 2

K
I

PI Controller With Exp. Weighted Average

0 0.36% 0.36%

0.2 2.65% 1.68%

0.5 5.03% 3.27%

1 7.36% 5.16%

2 11.43% 8.89%

Table 4.3: The Effect of Exponentially Weighting on Expected Drawdown

4.12 Conclusion and Further Research
In this chapter, we introduced memory into the feedback-based trading rule. The resulting PI

controller was analyzed and we proved that the Robust Positive Expectation Property still holds

for the benchmark of GBM price process. Motivated by practical considerations, we extended the

analysis to include an exponentially discounting in the PI controller. Again, we obtained a closed-

form solution for the expected gain-loss function, E[g(t)] and established positivity in a manner

similar to the one used for the classical PI controller.

The reader should not erroneously misconstrue the results in this chapter to mean that the Initially

Long-Short PI controller is necessarily a good strategy in practice. The main point of this chapter

is that the analysis is tractable using classical control-theoretic tools. A positive expected value

does not necessarily mean that the probability of winning is significant. In fact, based on previous

work for the static case, it is known that the probability density function for gains and losses can
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be highly skewed and that individual sample paths might exhibit significant drawdown; see [7]

and [8]. The positive expectation result is useful but in practice, it should also be counterbalanced

by including considerations of risk.

By way of future research, it would be of interest to formulate and solve an optimal gain selection

problem for K
P

and K
I

which takes both risk and return considerations into account. In other

words, we view the results in this chapter as analysis tools which will be helpful going forward as

opposed to a recipe for “winning” in the stock market. In the case of PI controller with exponen-

tially weighted moving average, the parameter � is also a design parameter which may be included

in any optimization. The issue of optimization of control parameters is pursued in the final chapter.
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Chapter 5

Discrete-Time Controller With Delay: The
Robust Positive Expectation Property

In contrast to the results given to date for feedback-based trading in continuous time, this chap-

ter considers the discrete-time case. For a “low-frequency” trader such as a typical small investor,

discrete-time results are more realistic. Note that discrete-time results also apply to high-frequency

trading because the discretization interval �t can be as small as we wish. Said another way, in the

discrete-time setting, the same method of analysis applies whether the trader updates the invest-

ment level once every second or once every month. Another reason for consideration of discrete

time is that a result in this domain readily lends itself to empirical backtesting using historical data.

In contrast, results obtained in continuous time need to be discretized before their use.

With the motivation above in mind, in this chapter, to demonstrate the type of analysis which is

possible in our control-theoretic setting, a new linear feedback type investment rule is introduced

and formulated in discrete time.1 This trading rule involves a controller with delay and is moti-

vated by a desire to include weighting of recent performance to obtain the investment level. Once

introduced, it is proven that the Robust Positive Expectation Property holds for this delay system;

e.g., see Section 1.4.5 where this property is introduced. Consequently, we further discuss that

this result can be reduced to the special case of controller with no delay which is essentially the

discrete-time version of Simultaneous Long-Short (SLS) controller. Finally, the strategy is back-

tested using historical price data.

5.1 Setup For Discrete-Time Formulation
Recalling the setup for the linear feedback controller in continuous time, see Section 1.1.1, the

discrete-time counterpart for the investment level at stage k is

I(k) = I
0

+Kg(k)

1Initial results of the work reported in this chapter have been published in [10].
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with I
0

> 0 being the initial investment, K � 0 the feedback gain and g(k) being the gain-loss

function satisfying g(0) = 0. In this setting, with p(k) being the price at stage k, the return on the

stock price is given by

⇢(k)
.
=

p(k + 1)� p(k)

p(k)

for k = 0, 1, 2, ..., N � 1. In a purely theoretical framework, these returns are typically generated

by some stochastic process such as Geometric Brownian Motion (GBM). For such an example, the

robustness framework of this thesis dictates that the trader does not have apriori knowledge of the

GBM parameters µ and �. That is, K � 0 above is not a function of µ or �.

Given that the single-stage gain or loss is obtained by multiplying the percentage change in the

stock price, the return ⇢(k), by the amount invested, we obtain

g(k + 1) = g(k) + I(k)⇢(k).

For the case of linear feedback, this dynamic equation in g(k) is solvable in closed form;

e.g., see [10] and [115]. That is, beginning from initial condition g(0) = 0 and linear feedback I(k)

above, a lengthy but straightforward calculation leads to sample path solution

g(k) =
I
0

K

"

k�1

Y

i=0

(1 +K⇢(i))� 1

#

.

The associated investment is then readily obtained as

I(k) = I
0

k�1

Y

i=0

(1 +K⇢(i)).

It is important to note that similar to the case of PI controller described in Section 4.1.1, the invest-

ment can change sign during the course of the trade. That is, unlike the static case in continuous

time, as seen in earlier work [4], in which the sign of investment remains invariant, the invest-

ment can change sign in the discrete-time setting. For example, with I
0

> 0, the initially-long

investment, I(k) above, can be “morphed” into a short.

More specifically, this happens at stage k if 1 +K⇢(k) < 0. That is a trader who is too “aggres-

sive” using a gain K which is too high compared to ⇢(k) can be switched into a short position

with I(k + 1) < 0. A similar switching phenomenon can occur from short to long. With this

consideration in mind, depending on the sign of I
0

, similar to the convention used in Chapter 4, we

refer to I(k) as either Initially-Long or Initially-Short.
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5.1.1 Investment, Interest and Collateral Considerations: With linear feedback I(k) above

and V (k) being the account value at stage k, if I(k) < V (k), the trader receives interest on excess

cash at the so-called risk-free rate of return. Another possibility is that I(k) > V (k). In this

case, the trader borrows money from the broker and will be charged margin interest. The results

presented in this chapter are for the idealized case obtained when the risk-free interest and margin

interest rates are taken to be zero. Accordingly, for a single stock, we have V (k) = V
0

+ g(k). By

way of future work, we envision a modification of the analysis similar to that in [5] to account for

non-zero interest rates. Note that for cases when a trader uses no leverage, the formulae which are

obtained for g(k) represent a lower bound for the case when interest on idle cash is included.

5.1.2 Idealized Frictionless Markets: Similar to other results obtained throughout this thesis,

the analysis in this chapter assumes an “idealized frictionless market.” To briefly summarize, in

such a market, there is “perfect liquidity” allowing the trader to transact as many shares as desired

at the instantaneous price p(k). The trader is a price taker in the sense that the stock price remains

constant at p(k) during the course of the transaction. In this market, it is also assumed that no

transaction costs such as brokerage commissions and exchange fees are imposed and that the trad-

ing strategy meets collateral requirements of the broker so that all trades are admissible; i.e., no

transactions are “stopped” and no liquidation occurs due to a failure to meet margin requirements;

see Section 1.2 for more details.

In practice, the broker generally imposes a restriction on the allowed size of I(k) based on the

assets in the account. To illustrate, one way to model this restriction is to incorporate a constraint

|I(k)|  �V (k) into the formulation with � = 2 being rather typical. In carrying out the analysis

to follow, we assume that the trader has adequate resources which can be deployed so that this

trading restriction is not encountered.

5.2 Controller Delay Problems
The motivation for the study of a controller with delay is derived from the fact that the previously

described linear feedback controller I(k) = I
0

+Kg(k) may react rather slowly to a market losing

its trend with prices moving “sideways.” To elaborate, we consider the following scenario: Imagine
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a bull market with a large “run-up” in the price p(k) from p(0) = p
0

to p(k⇤)
.
= p⇤ for some k⇤ > 0.

We now take g⇤
.
= g(k⇤) to be the trading gain which results at this bull market high and imagine

the market “stalling” for k � k⇤. For simplicity, say p(k) = p⇤ for some period beyond k = k⇤.

In the scenario above, the key point to note is that for k � k⇤, with price fixed at p⇤, the linear

feedback controller maintains the bull market “high” investment level I(k) = I
0

+Kg⇤ even when

the market fails to progress and g(k) remains constant. The motivation for the new controller

described below is that many investors would argue that I(k) should not be maintained at an

“undeservedly high” level when the market moves sideways over an extended period of time.

After some “waiting period,” some investors might consider it time to “lighten up” on investment

level I(k) as price p(k) begins to stall .

In order to be more responsive to the considerations above, in this chapter, we propose a new

linear feedback trading rule to address this type of issue; i.e., at stage k, we consider a controller

which focuses on recent performance via inclusion of a delay element. The controller includes a

term g(k � m) where m is some pre-specified look-back period. Then, at time k, the investment

level is given by

I(k) = I
0

+K [g(k)� g(k �m)] .

Notice that the investment level I(k) is attenuated as the “winning power” goes away; i.e., as g(k)

ceases to increase. In addition, if the market reverts to profitability, the controller will respond

to this change and begin increasing I(k). Later in this chapter, we will generalize the analysis to

follow to the SLS case.

5.2.1 Trading Dynamics for the Delay System: Beginning with the gain-loss equation

g(k + 1) = g(k) + I(k)⇢(k),

from Section 5.1, upon substitution of the controller above, using a standard “ploy” which is com-

mon for delay systems, we can derive a linear time-varying state equation to describe the dynamics.
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That is, defining state vector

x(k)
.
=

2

6

6

6

6

6

6

6

6

6

4

g(k)

g(k)� g(k � 1)

g(k � 1)� g(k � 2)

...

g(k �m+ 1)� g(k �m)

3

7

7

7

7

7

7

7

7

7

5

,

after some algebra, the gain-loss dynamics reduce to

x(k + 1) = A(⇢(k))x(k) + b⇢(k)I
0

where the matrix A(⇢(k)) has dimension (m+ 1)⇥ (m+ 1) and is given by

A(⇢(k))
.
=

2

6

6

6

4

1 K⇢(k) K⇢(k) . . . K⇢(k) K⇢(k)

0 K⇢(k) K⇢(k) . . . K⇢(k) K⇢(k)

0
(m�1)⇥1

I
(m�1)⇥(m�1)

0
(m�1)⇥1

3

7

7

7

5

and

b
.
=

h

1 1 0 0 0 · · · 0

i

T

.

Now, using initial conditions g(0) = g(�1) = · · · = g(�m) = 0, a lengthy but straightforward

calculation leads to solution at time k = N given by

x(N) =

N�2

X

k=0

 

⇣

N�k�2

Y

i=0

A(⇢(N � i� 1))

⌘

b⇢(k)I
0

!

+ b⇢(N � 1)I
0

.

Beginning with the formula above, in order to get a handle on the expected gains or losses, we

assume a stochastic process which governs the returns ⇢(k) and that these random variables are

independent with common mean

E(⇢(k)) = µ.

Then, since x(N) is obtained by multiplication of independent matrices A(⇢(i)), it is easy to verify

that it will be a sum of products of independent random variables leading to

E(x(N)) =

 

N�1

X

k=0

Ak

(µ)

!

bµI
0

,
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where

A(µ)
.
= A(⇢(k))|

⇢(k)=µ

.

That is, the matrix A(µ) is the matrix A(⇢(k)) with returns ⇢(k) replaced by µ = E[⇢(k)]. In the

sequel, an extension of the formula above, combining a long and a short component, is used to

obtain a robust positive expectation property result for an SLS-type controller with delay.

5.3 Robust Positive Expectation Property for Delay System
The Initially Long-Short (ILS) feedback controller with delay is the focus of this section. Below,

we provide the main result in this chapter: a robust positive expectation theorem for the class

of delay systems under consideration. In this setting, for a pre-specified delay of m > 0, the

investment for the two components at step k are given by

I
L

(k)
.
= I

0

+K
�

g
L

(k)� g
L

(k �m)

�

;

I
S

(k)
.
= �I

0

�K
�

g
S

(k)� g
S

(k �m)

�

,

where I
0

> 0 is the initial investment in dollars, K � 0 is the feedback gain and g(k) is the trading

gain-loss function at stage k. The subscripts “L” and “S” denote the initially-long and initially-

short investment and gain-loss components respectively. The total gain-loss function given by

g(k) = g
L

(k) + g
S

(k)

with dynamics for these components described by

g
L

(k + 1) = g
L

(k) + ⇢(k)I
L

(k); g
S

(k + 1) = g
S

(k) + ⇢(k)I
S

(k).

5.3.1 Theorem: (Robust Positive Expectation) Consider the ILS feedback controller with de-

lay m > 0 as described above. Assume further that the returns ⇢(k) are independent with common

expected value E
�

⇢(k)
�

= µ for all k. Then, except for the break-even case obtained when ei-

ther Kµ = 0 or N = 1, at any stage N > 1 we have

E
�

g(N)

�

> 0,

and E
�

g(N)

�

is an increasing function of |µ|.
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Proof: For the degenerate break-even case Kµ = 0, using the updates for g
L

(k) and g
S

(k), it is

straightforward to show that by induction that E
�

g(k)
�

= 0 for all k. Also for the case of N = 1,

since the net investment at time zero is I(0) = I
L

(0) + I
S

(0) = 0, it follows that E
�

g(1)
�

= 0.

Henceforth, we assume that Kµ 6= 0 and N > 1 in the remainder of the proof.

To complete the proof, it suffices to show that E
�

g(N)

�

is a polynomial in µ2 with positive coeffi-

cients which is not constant with respect to µ. Starting with the state vector for the long component

and noting the formula for E
�

x(N)

�

in Section 5.2.1, we have

E
�

x
L

(N)

�

=

 

N�1

X

k=0

Ak

(µ)

!

bµI
0

.

Similarly for the case of initially-short trade, by replacing I
0

with �I
0

and K with �K in

the E
�

x(N)

�

formula, we obtain

E
�

x
S

(N)

�

= �
 

N�1

X

k=0

Ak

(�µ)

!

bµI
0

.

Now since E
�

g(N)

�

is the first entry of E
�

x
L

(N) + x
S

(N)

�

, letting

c
.
=

h

1 0 0 0 0 · · · 0

i

T

,

we obtain

E
�

g(N)

�

= cT E
�

x
L

(N) + x
S

(N)

�

= cT

 

N�1

X

k=0

Ak

(µ)� Ak

(�µ)

!

bµI
0

.

Now letting Ak

i,j

(µ) denote the (i, j)-th entry of the matrix Ak

(µ), the expression above reduces to

E
�

g(N)

�

=

 

N�1

X

k=0

Ak

1,1

(µ)� Ak

1,1

(�µ)

!

µI
0

+

 

N�1

X

k=0

Ak

1,2

(µ)� Ak

1,2

(�µ)

!

µI
0

. (⇤)

Claim: For all k, the first column of Ak

(µ) is ak(µ) = c.

Proof: By induction, since the case k = 0 is trivial, we now assume that this claim holds for k � 1

and must prove that it holds for k + 1. Indeed, writing

Ak+1

(µ) = A(µ)⇥ Ak

(µ)
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and noting that both A(µ) and Ak

(µ) have c as their first columns, it follows that Ak+1

(µ) does too.

By the claim above, we have Ak

1,1

(µ) = 1 for all k and a straightforward use of change of variables

leads to Ak

1,1

(�µ) = 1 too. Now using Ak

1,1

(µ) = Ak

1,1

(�µ) in (⇤) above, we have

E
�

g(N)

�

=

 

N�1

X

k=0

Ak

1,2

(µ)� Ak

1,2

(�µ)

!

µI
0

.

To further reduce E
�

g(N)

�

, we note that entries of the matrix A(µ) are affine in µ with non-

negative coefficients. This implies that the entries of the matrix Ak

(µ), such as Ak

1,2

(µ) which

is of interest, are polynomials in µ with non-negative coefficients. Hence, Ak

1,2

(�µ) is also a

polynomial in µ with the same even part and oppositely-signed odd part. Putting the facts together,

we conclude that Ak

1,2

(µ) � Ak

1,2

(�µ) is a polynomial in µ with non-negative coefficients and

only odd degrees of µ present for all k � 0. After the multiplication by the extra µI
0

term in

the E
�

g(N)

�

formula, we are left with a polynomial with non-negative coefficients and with only

even powers of µ present. In other words, E
�

g(N)

�

is a polynomial in µ2 with non-negative

coefficients. To prove that this polynomial is not constant with respect to µ, recalling that for

N > 1 and Kµ 6= 0, we use the fact that E
�

g(N)

�

is lower-bounded by the sum of the first two

polynomial terms which is easily obtained to be 2Kµ2I
0

. Then, we have

E
�

g(N)

�

� 2Kµ2I
0

> 0.

This not only completes the proof for the Robust Positive Expectation Property but also shows that

E
�

g(N)

�

is an increasing function of |µ|. ⇤

5.3.2 Remark: Recalling the discussion in Section 5.1, the two investment components, labeled

as “long” and “short,” can switch signs as trade progresses. To demonstrate that this is possible we

consider the initially-long investment I
L

(N). Now with

e
.
=

h

0 1 1 1 1 · · · 1

i

T

,
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we calculate

I
L

(N) = I
0

+K
�

g
L

(N)� g
L

(N �m)

�

= I
0

+KeTx
L

(N)

= I
0

 

1 +KeT
N�2

X

k=0

⇣

N�1

Y

i=k+1

A(⇢(i))b⇢(k)
⌘

+ b⇢(N � 1)

!

where x
L

(N) is the state vector for the long component as defined in the beginning of the proof of

the theorem above. Now, the intended long investment I
L

(N) will be morphed to short

if g
L

(N)� g
L

(N �m) < �I
0

/K. Indeed, an equivalent condition in terms of the returns ⇢(i), can

be obtained using the last equation above. The following example demonstrates this possibility.

5.3.3 Example (Morphing of Investment): Consider the long investment given above with ini-

tial investment I
0

= 1, feedback gain K = 2 and delay m = 1. Moreover, suppose we encounter

the 3-stage sample path given by ⇢(0) = 0.1 and ⇢(1) = �0.8. Then the corresponding investment

level will be I
L

(0) = 1, I
L

(1) = 1.2, I
L

(2) = �1.12. For this case with N = 2 and m = 1 we

have g
L

(2) � g
L

(1) = �1.06 which is less than I
0

/K = �0.5 and accounts for the morphing of

an initially-long position into a short position.

5.3.4 Discrete-Time Version of Simultaneous Long-Short Result: The focal point of this sec-

tion is the discrete-time SLS-type controller with no delay along the lines of [10] and [115]. Our

objective is to establish discrete-time results presented in this chapter reduce to SLS analogous of

existing results in the literature such as [1] and [4].

To see that the Robust Positive Expectation Property for this delay-free case can be established,

using Theorem 5.3.1, we assume Kµ 6= 0 and N > 1 and take the delay amount to be m = N .

Taking note that initial conditions g(�N) = g(�N+1) = · · · = g(0) = 0 are used in the theorem,

we obtain the desired result.

It is also possible to obtain this result without resorting to delay systems. Starting with the same

set of assumptions; i.e., returns ⇢(k) being independent with common expected value E[⇢(k)] = µ,

and combining the closed-form solution for the long and short components of the gain-loss function
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using the formulae in Section 5.1, [10] and [115] with K � 0, we obtain

E
�

g(N)

�

= E
�

g
L

(N) + g
S

(N)

�

=

I
0

K

⇥

(1 +Kµ)N + (1�Kµ)N � 2

⇤

.

Expanding the powers above and noting cancellations of odd-order terms, it follows that E
�

g(N)

�

is a polynomial in µ2 with positive coefficients. Hence, except for the break-even cases when

either N = 1 or µK = 0, the Robust Positive Expectation Property, E
�

g(N)

�

> 0, holds.

Per our earlier discussion in Sections 5.1 and 5.3.2, it is important to note that in the setting above,

the investment components can change signs during the course of the trade. Consistent with the

convention used in Chapter 4 and earlier in this section, in discrete-time, we refer to this sort of

strategy as Initially Long-Short (ILS).

5.4 Backtesting Using SPDR S&P 500 Trust ETF
This section is dedicated to backtesting of the ILS controller with delay using historical prices.

In the backtest to follow, we consider the exchange-traded fund with ticker SPY which tracks the

S&P 500 index. In order to study performance under both bullish and bearish market trends, we

consider the eight-year period beginning January, 1, 2003 and ending on December, 31, 2010.

More specifically, we use the bi-weekly, dividend-adjusted price for this ETF shown in Fig-

ure 5.4.1. As seen in the figure, this time period covers both the major bull market high in 2007

and the period of the “crash” in 2008 and 2009.

5.4.1 The Simulation: Beginning with the controller in Section 5.3 with investment level

I
L

(k) = I
0

+K [g
L

(k)� g
L

(k �m)] ;

I
S

(k) = �I
0

�K [g
S

(k)� g
S

(k �m)] ,

in the simulations to follow, we take initial investment I
0

= 1, delay m = 10 and feedback

gain K = 2. Assuming the investor has no initial idle cash on hand at k = 0, the initial account

value is V
0

= V (0) = 1. Then, as time evolves, the total account value V (k) is obtained by

summing the contributions of the “long” and “short” components. That is, the gains and losses are

summed up and we obtain

V (k) = V
0

+ g
L

(k) + g
S

(k).
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Figure 5.4.1: Price for (SPY) from 2003 to 2011

In the plots below, we compare our results to the performance of the ILS linear feedback controller

with no delay which uses the same gain K and the same initial investment. In Figure 5.4.2, the

resulting account values are shown. As seen in the figure, the controller with delay suffers a lower

percentage loss during the crash which occurs around k = 120 and bounces back more quickly

when the market rebounds around k = 160.

In Figure 5.4.3, the net investment level, I(k) = I
L

(k)+I
S

(k) is provided. As shown, the controller

with delay responds more quickly to the market crash by becoming negative. It also rebounds faster

when the new bull market returns around k = 160. Finally, Figure 5.4.4 shows the so-called “Log-

Investment Ratio.” This quantity is the natural logarithm of the ratio of absolute net investment

for the controller with delay to the absolute net investment for the controller with no delay. This

quantity being negative for more than 88% of the time means the strategy with delay is putting less

money at risk. Moreover, the spike around k = 150, the crash period, is attributable to the fact that

the controller with no delay is almost out of the trade while the controller with delay is making

profit by taking short position; see Figure 5.4.3.
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Figure 5.4.2: Account Values: With and Without Delay
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Figure 5.4.4: Logarithm of Invest. Ratio of With Delay to No Delay

5.5 Conclusion and Further Research
In this chapter, we considered a discrete-time stock trading strategy including both delay and lin-

ear feedback. We proved that an Initially Long-Short (ILS)-type version of the controller with

delay has the Robust Positive Expectation Property. We also showed that this result reduces to a

“standard” type of SLS controller with no delay.

There are many possibilities for building upon the results in this chapter. One important direc-

tion involves consideration of various performance metrics beyond the expected value. Another

research possibility involves studying the dynamics of a more general two-gain controller given by

I(k) = I
0

+K
1

g(k) +K
2

g(k �m).

Notice when K
1

= �K
2

= K, we recover delay analysis in Section 5.2 and when K
2

= 0,

we recover a “classical” linear feedback. Even more generally, one can consider an ARMA-like

dynamic controller with multiple delays given by

I(k) = I
0

+

m

X

i=0

K
i

g(k � i).

Note that in this case, when the discretization interval is suitably small with all K
i

equal, this

approximates a PI controller; see Chapter 4 for details.
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Chapter 6

When the Expected Value is not Expected: Problems
Requiring Emphasis on Conservatism

Our research in this thesis has resulted in some interesting “offshoots.” One of them is the de-

velopment of a new reward-risk pair which we called Conservative Expected Value (CEV) and

Conservative Semi-Variance (CSV) and are the focus of this chapter.1 Much of the motivation for

development of this pair comes from the fact that a highly-skewed probability distribution for the

gain-loss function g(t) might result when feedback is used. We envision the theory to follow to

be applicable to areas other than stock trading. Accordingly, the exposition in this chapter is more

general than the “finance-flavored” focus of Chapters 1-5.

The takeoff point in this chapter is a random variable X for which large positive values are desired.

When its probability distribution is highly skewed, the possibility of a long fat-tailed distribution

can lead to an expected value, µ = E[X], which is unduly optimistic. For the reverse case when

small values of X are desired, the ideas in this chapter are applied to �X . This issue of over-

optimism in the expected value is particularly important when a mission-critical random variable

is involved. For example, when considering earthquake intensity or flood levels, reporting an

understated expected value to a technically unsophisticated general public would be considered by

many as highly undesirable.

The Conservative Expected Value of X , denoted by CEV(X) is a new definition provided in this

chapter. It is a new metric which we argue is particularly useful when risk aversion must be highly

emphasized. When E[X] does not represent what can reasonably be expected, then CEV(X),

while being conservative, is defined in such a way so as not to be unduly pessimistic. In classical

analysis, enhancement of a calculation often includes the variance �2

= var(X). However, when

large X-values are desired, this may further distort one’s overview of the risk at hand; e.g., if X

is profit, values above the mean should not be penalized. For example, this is the case for the

1The results reported in this chapter have been published in [116] and [117].
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gain-loss function; i.e., X = g(t) resulting from trading via linear feedback; e.g., see Chapter 2.

With these one-sidedness considerations in mind, we introduce as new reward-risk pair, the CEV

and the so-called Conservative Semi-Variance of X , denoted by CSV(X). Whereas the CEV defi-

nition is entirely new, the CSV definition is similar in flavor to various risk metrics used in finance;

e.g., see [105] and [118]. More specifically, in finance, it is standard to use a semi-variance mea-

sure to penalize downside variations; e.g., see [90] and [91]. This measure motivates the definition

of the CSV.

In this chapter, we also illustrate calculation of the (CEV,CSV) pair for a number of classical

probability distributions and we describe a number of properties of these metrics which suggest

that this new theory is mathematically rich. Finally, we demonstrate the potential for application

via three examples, first example is motivated by the skewing effect in trading via feedback-based

trading rule which was the focal point in Chapter 2 and the other two are numerical examples

coming from real-world data.

6.1 Introduction
The focal point in this chapter is a random variable X for which large positive values are desirable

and downside risk is of paramount concern. As previously stated, the results to follow are also

applicable when “smallness” of X is considered to be the desirable outcome. In this case, we apply

the results to follow to the negated random variable �X . For example, if the random variable of

interest corresponds to earthquake magnitude, see Section 6.2.3, the smaller its value, the better.

For a random variable X , the first focal point in this chapter is the classical expected value, denoted

by µ = E[X]. For cases when the underlying probability distribution for X is either highly skewed

or untrustworthy in nature, the expected value may be unduly optimistic and should not be viewed

as “expected.” In such a scenario, a long, possibly fat tail for the distribution can make E[X]

so different from what one can reasonably expect so as to make this measure misleading and of

questionable worth. In many cases, it may be exceedingly probable that the outcome will be much

worse than E[X]. Returning to the earthquake example, when “expected magnitude” is reported to

a technically unsophisticated public, given that protective measures are taken in proportion to the
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perceived risk, it is important to provide measures which are both simple to understand and which

emphasize conservatism.

Another motivating example comes from finance literature, see [119–121] where extreme, unlikely

“crash” events are studied in the context of investment and conservatism is of paramount concern.

Similar issues also arise in large deviation theory, see [122], where such events are studied. With

the above providing initial context, the first main objective in this chapter is to introduce a new

measure, called the Conservative Expected Value which we denote by CEV(X). Essentially, this

metric discounts the classical expected value by including heavy emphasis on downside risk which

is important for the type situations we have in mind. At the same time, as explained in the sequel,

while the CEV is intended to be conservative in nature, it is defined in such a way as to avoid

being unduly pessimistic. Given the preferences for large X versus small, there is a danger that

complementing any analysis by introducing the classical variance, �2

= var(X), will distort the

picture of the risk at hand. For example, an investor with very high risk aversion may get a distorted

picture of risk because large positive values of trading gains X , while contributing to the variance,

are considered to be good outcomes. It is only the downside risk associated with large negative X

which is of major concern.

With all of the considerations above in mind, this chapter departs from the voluminous body of

literature dealing with the classical mean-variance paradigm; e.g., see classical work such as [15]

and [98] in finance, [123–125] in signal processing and [126] in network analysis. To summarize,

our aim in the sequel is to provide a conservative alternative to classical return-risk analysis which

uses the pair (µ, �2

). To get a meaningful characterization of the likely reward versus risk, we do

not deal with the technical complexities associated with higher order moments or the entire proba-

bility distribution for X; e.g., see [102] and [127]. When providing summarizing information, our

goal is to provide new measures which are intended to be simple surrogates for the classical mean

and variance and which address situations when a conservative assessment is essential.2

2Another motivation for this work is derived from “distributional robustness” considerations. In this situation, even

in the absence of skew, the need for discounting the classical mean-variance pair is derived from the fact that the

underlying probability density function fX(x) for X may not be well known. For example, one might envision a

sphere of uncertainty in an appropriate vector space centered on fX ; e.g., see [128]. Without a parameterization for

this distribution, discounting must be based entirely on the “nominal” distribution for X as done in this chapter.
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The type of situation described above is epitomized by the celebrated St. Petersburg Paradox first

pointed out by Bernoulli as early 1738; see [129] where his work was reprinted. A probability

mass function for payoff X , say in dollars, is described by X = 2

k with probability 1/2k+1 and k

ranging over the non-negative integers. While the expected value E[X] is readily verified to be

infinite, the probability of receiving a specified “large” payoff is very small. Furthermore, even

when variance considerations are introduced, the unboundedness of the risk leads to an ambiguous

characterization of the bet at hand. In this regard, many authors after Bernoulli have argued that

no rational individual would pay more than two or three dollars for a ticket to play such a game;

e.g., see [130–132]. Simply put, in many cases the expected value appears to be an “unrealistic

expectation.”

The inconsistency between the information provided by the expected value and decision-based

behavior, presumably based on maximization of utility, has been studied in the literature; e.g., see

Allias, [133] and Ellsberg, [134], where scenarios of the sort described above are studied from

both a mathematical and behavioral point of view. In the presence of skewness, the probability

that X is far below E[X] can be very high. Hence, E[X] can be quite misleading as a predictor of

the way a “bet” might be assessed by individuals making decisions. For example, if using flood

data to provide guidelines on how high above sea level to locate one’s home, given the potential

catastrophe involved, a conservative expected value for the flood level may be better suited for

risk-averse individuals versus the standard expected value. Another class of problems where these

considerations are paramount involves component reliability [135] for so-called mission-critical

systems; e.g., assessment of lifetime for components in a nuclear plant. To summarize, the starting

point in this chapter involves situations for which the expected value is arguably not expected and

it may be very costly to act on unduly optimistic information.

6.1.1 Risk Considerations: As already indicated, any discussion along the lines above would be

incomplete without bringing risk metrics into the picture. In other words, to simply assess whether

a probability distribution is attractive or not, it does not suffice to look solely at the expected

value E[X]. Even after adjustment for skewness, a bet with a large expected value may neverthe-

less be deemed unattractive based on risk considerations. For example, imagine a hedge fund man-

ager providing summarizing portfolio gain-loss prospects to a group of technically unsophisticated
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investors via the moments of a highly-skewed probability distribution; e.g., see [7, 99, 136, 137].

The information provided should be easy to understand leading to a simple picture of the risk and

rewards, and, analogous to the classical (µ, �2

) pair, it should be independent of utility considera-

tions; i.e., each user of the information can apply their own utility functions in making judgments

about attractiveness of the situation and associated random variables under consideration.

6.1.2 Salient Features of Our Work: With the scenarios above providing motivation, our goal

in this chapter is to develop a new alternative to the classical mean-variance pair. To this end, the

applications which we have in mind are characterized by some salient features: First, as previously

stated, we assume that larger values of X are preferred to smaller values. Second, we assume that

a worst-case value ↵
X

for X is finite. For example, when considering the lifetime of a hardware

component in an engineering system, it would be reasonable to take ↵
X

= 0 since X cannot be

negative. It is also important to note that the theory to follow is readily adapted to cases when

smaller values of X are preferred to larger values. For example, when we deal with earthquake

intensity in the section to follow, with X representing earthquake intensity, we apply our theory

to �X . The third salient feature, as already stated, is that a high degree of risk aversion is in play.

For example, when a mission-critical hardware component’s lifetime is involved, a simple system

maintenance policy based on the classical expected value might lead to insufficient frequency of

replacement. In order to “robustify” against skew and possible inaccuracies in the probability dis-

tribution, a conservative analysis which addresses risk aversion demands discounting the classical

expected value — better safe than sorry when the cost of failure is high. The fourth and final salient

feature in the theory to follow involves a distinction between downside and upside risk. The risk

measure which we develop does not penalize possible outcomes which are larger than what is ex-

pected. Motivated by the work of Sortino and others, see [90, 91, 138], we define a semi-variance

type measure which only penalizes X-values which are below what is expected.

6.1.3 Plan For the Sequel: In Section 6.2, for a random variable X with finite worst-case

value ↵
X

, we define the so-called Conservative Expected Value which is denoted by CEV(X).

Once defined, some elaborative remarks are provided and we provide a motivating example which

is illustrative of the applications we have in mind. In Section 6.3, the CEV is calculated for some
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classical probability distributions and results are compared to their classical expected-value coun-

terparts. On the risk side of the analysis, in Section 6.4, we define the so-called Conservative

Semi-Variance, denoted by CSV(X) which, for some of the classical probability distributions, is

compared to the classical variance in Section 6.5. These new measures are obtained using a dis-

counting mechanism leading to the resulting (CEV(X),CSV(X)) pair more accurately reflecting

the degree of “attractiveness” of the reward-risk situation when high skew may be present. In Sec-

tion 6.6, we describe a byproduct of the CEV framework — a tightening of the classical Markov

and Chebyshev inequalities. Noting that our definition leads to CEV(X)  E[X], given ✏ > 0,

instead of the classical Markov inequality P (X > ✏)  E[X]/✏, we obtain the tighter version

P (X > ✏)  CEV(X)

✏
.

Also seen in Section 6.6, the basic risk metrics defined by CEV and CSV are not sub-additive

and hence can not be coherent; see [105, 118, 139]. In Section 6.7, we consider the application of

CEV and CSV analysis most closely related to the theme of this thesis — namely stock trading via

linear feedback. Subsequently, more application examples involving S&P 500 stock index returns

and household income data are also provided to demonstrate how the new theory can be used for

probability distributions estimated from real-world data. Finally, in Section 6.8, a discussion of

possible future research directions is provided.

6.2 The Conservative Expected Value
As discussed earlier in Section 6.1, for a random variable X for which large values are desired,

the possible long, fat right-sided tail can be problematic. For such a scenario the highly-skewed

distribution may result in a large expected value, µ = E[X], which can be deemed an unduly

optimistic indicator of performance. When the probability is small that X exceeds E[X], it is

arguable that the expected value is not expected. Furthermore, enhancing the analysis to include

the classical variance, �2

= var(X), can add to this confusion because this measure penalizes the

variation of random variable X in both directions even though upside variation is desirable.

In the analysis to follow, we take the leftmost support-point of probability distribution for random

variable X , denoted by ↵
X

, to be known and finite. That is, with F
X

(x) denoting the cumulative
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distribution function for random variable X , we assume

↵
X

.
= inf{x : F

X

(x) > 0} > �1.

This assumption on the “worst-case” outcome is realistic in many applications: For example, the

worst-case loss of a linear feedback trading rule when the price is driven by Geometric Brownian

Motion is given in Theorem 1.4.6; that is ↵
X

= g⇤. Additional examples involve the price of a

stock or the lifetime of a component in a system which are both non-negative random variables;

that is ↵
X

= 0.

To motivate the definition to follow, we imagine a risk-averse individual who is rewarded or pe-

nalized based on X . If this person has a “minimal acceptable target” for X , denoted by �, a

conservative approach to the analysis of this gamble X would be to shift the probability mass as-

sociated with X  � to ↵
X

, and to shift the probability mass associated with X > � to �. This

procedure maps the original random variable to a Bernoulli random variable X
�

described by

X
�

.
=

8

>

<

>

:

↵
X

with probability P (X  �) = F
X

(�);

� with probability P (X > �) = 1� F
X

(�).

In the sequel, we let f
X

(x) be the probability density function for X . Then, this mass-shifting,

shown in Figure 6.2.1, lessens the effect of large skewness by discounting the long possibly-fat tail.

Figure 6.2.1: Mapping of Random Variable X to Bernoulli Random Variable X
�

After this conservative procedure is carried out, one is left with a simple Bernoulli random vari-

able X
�

with expected value

E[X
�

] = ↵
X

F
X

(�) + �
�

1� F
X

(�)
�

.
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This user-dependent mass-shifting procedure forces

E[X
�

]  E[X].

In the definition of the CEV to follow, the user-dependence on � is reduced via a maximization

process which we now explain.

Maximizer of E[X
�

]: Suppose � = �⇤ is a maximizer of E[X
�

]. Then, we claim that any � < �⇤

is “inefficient” in the following sense: Since E[X
�

]  E[X
�

⇤
], it follows that the pair

�

�,E[X
�

]

�

is dominated by
�

�⇤,E[X
�

⇤
]

�

. Hence for � < �⇤, it is arguable that even individuals with differing

utility functions will reject � in favor of �⇤. Said another way, � < �⇤ is too conservative. On

the other hand, for an individual seeking a � > �⇤, there is a trade-off between the minimal

acceptable target and the expected outcome. In addition to inefficiency considerations, as we see

in Section 6.4, the choice of �⇤ will lead to the most conservative downside risk assessment.

6.2.1 Conservative Expected Value Definition: Given the random variable X , the Conservative

Expected Value (CEV) is defined to be

CEV(X)

.
= sup

�

E[X
�

].

Equivalently,

CEV(X) = sup

�

↵
X

F
X

(�) + �(1� F
X

(�))

= sup

��↵

X

� + (↵
X

� �)F
X

(�).

6.2.2 Remark: Since we already know that E[X
�

]  E[X], by taking the supremum with respect

to �, it is immediate that

CEV(X)  E[X].

In summary, for reasons previously given, the CEV “discounts” the classical expected value.

Rather than beginning with a structured utility function, CEV(X) is based on the idea that the

value ↵
X

is known and that an individual wants to discount the misleading effect of long, fat-tailed

probability distribution as part of conservative analysis. This point of view is similar to the ap-

proach taken to define wins and losses in the celebrated paper on Prospect Theory by Kahneman

and Tversky in [130].
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6.2.3 Motivating Example Illustrating Need For Conservatism: This example comes from an

important line of research in the Geophysical Systems literature which is dedicated to predictive

modeling of earthquakes; e.g., see [140–143]. In this setting, a widely-used measure for earthquake

intensity is the moment magnitude which is denoted by m
W

. The larger the value of m
W

, the more

severe the damage is expected to be. Given the potential catastrophes involved, one issue in the

literature involves the extent to which existing models understate the risk to the public. This is

important because it has an effect on the development of safety policies and insurance rates; e.g.,

see [141]. In this regard, decisions based on the “expected” magnitude, E[m
W

], of a earthquake

has been blamed for recent tragic failures; e.g., see [144] and [145] where this issue is studied for

the case of Tohoku earthquake and Tsunami in 2011. One approach, model improvement, involves

finding a “robust” estimate of the magnitude; e.g., see [146]. Below, we consider the handling of

this issue using the CEV. To provide a first illustration of our theory, recalling that our random

variable X is such that large outcomes are desirable, we take X
.
= �m

W

. Therefore, if m
max

denotes the maximum possible magnitude obtained from historical data, we take ↵
X

= �m
max

in

the calculation to follow.

6.2.4 CEV Analysis Example: In this example, we use the historical data for earthquake magni-

tudes, m
W

which occurred in California between 1800 and 1985. This data, reported in logarith-

mic scale, is obtained from [147] and includes about 57, 000 measurements. Using the histogram

representing this data in Figure 6.2.2, the expected value, variance and skewness of the resulting

empirical distribution are

E[m
W

] ⇡ 5.08; var(m
W

) = 1.35; S(m
W

) ⇡ 0.35

respectively. Interestingly, even though logarithmic data is often used in statistical analysis to

remove the skewness, for example, see [148], as evidence by our calculation, there still appears

to be considerable “leftover” skewness which we claim can lead to “understatement” of expected

earthquake magnitude.

Using the data, it is easy to obtain P
�

m
W

> E[m
W

]

�

⇡ 0.49. Basically, this says that there is a

nearly 50-50 chance that earthquake intensity will exceed 5.08. Given that distributions of earth-

quake magnitude is arguably not trustworthy, we now calculate our more conservative estimate
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Figure 6.2.2: Distribution of Earthquake Magnitude in California

working with the random variable X = �m
W

. Indeed, since a closed-form expression is gen-

erally not available for data-based distributions, the CEV is found by performing a �-sweep and

plotting E[X
�

]; see Figure 6.2.3. Selecting the maximizing point �⇤ ⇡ �5.60, we obtain

CEV(X) = E[X⇤
�

] ⇡ �6.37.

In other words, our more conservative estimate for the expected earthquake intensity is 6.37 rather

than 5.08. In addition we compute

P
�

m
W

> 6.37
�

⇡ 0.12.

In summary, for this mission-critical application which includes model distrust, our conservative

approach leads to intensity exceeding the CEV only 12% versus 49% of the time using classi-

cal analysis.

6.2.5 Geometric Interpretation of CEV: In this subsection, a geometric interpretation of the

new measure, CEV(X), is provided to show how it is related to classical expected value E[X].

Without loss of generality, we assume that ↵
X

= 0 in the remainder of this subsection. Now

given the random variable X and its cumulative distribution function F
X

(x), we begin with the
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Figure 6.2.3: E[X
�

] Versus � for the Earthquake Problem

well-known fact, for example, see [87], that

E[X] =

Z 1

0

¯F
X

(x)dx,

where ¯F
X

(x)
.
= 1 � F

X

(x) is the so-called complementary cumulative distribution function. The

formula above implies that the area under the plot of ¯F
X

(x) gives E[X]. Now expressing the

CEV as

CEV(X) = sup

�

� ¯F
X

(�),

we note that � ¯F
X

(�) is the area of a rectangle with base [0, �] and height ¯F
X

(�). Since ¯F
X

(�) is

a non-increasing function of �, this rectangle will be below the plot for ¯F
X

(�). In other words,

CEV(X) is obtained as the area of the largest possible “inscribed” rectangle under the comple-

mentary CDF.

This geometry is illustrated in Figure 6.2.4 for X uniformly distributed on [0, 1] with ¯F
X

(x) = 1�x

for x 2 [0, 1]; the area of shaded rectangle is CEV(X) = 0.25 while the sum of the shaded
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and striped area is E[X] = 0.5. Similarly for an exponential distribution with complemen-

tary CDF ¯F
X

(x) = e�x for x � 0, the maximally inscribed rectangle in Figure 6.2.5 has area

CEV(X) = e�1 whereas E[X] = 1.

Figure 6.2.4: Expected Value (Area of Triangle) and CEV (Shaded Area) for Unif[0, 1]

Figure 6.2.5: Expected Value (Area under Curve) and CEV (Shaded Area) for Exp(1)
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6.3 Examples of CEV
In this section, the CEV is calculated for some classical probability distributions and results are

compared with the classical expected value E[X]. Beginning with the trivial case when X is itself

a Bernoulli random variable, it follows immediately from the definition that CEV(X) = E[X].

6.3.1 Uniform Distribution: For X uniformly distributed in [0, 1], a straightforward calculation

leads to

E [X
�

] =

8

>

<

>

:

� � �2

; 0  �  1;

0; � > 1.

Hence, E[X
�

] is maximized at � = 0.5 and we obtain CEV(X) = 0.25 which compares with

classical expected value, E[X] = 0.5. This generalizes to X uniformly distributed over [↵
X

, b].

For this case, we obtain

CEV(X) =

3↵
X

+ b

4

which compares with E[X] = (↵
X

+ b)/2.

6.3.2 Weibull Random Variable: For the random variable X , a generalization of the exponential

distribution often used in reliability studies, having cumulative distribution function

F
X

(x) = 1� e�(�x)

↵

with ↵, � > 0 and for x � 0, a straightforward calculation leads to

E[X
�

] = �e�(��)

↵

for � � 0. Then, the maximizer of E[X
�

], obtained by differentiation, is �⇤
= (1/↵)1/↵/�, and

this leads to

CEV(X) =

(1/↵)1/↵

�
e�1/↵.

Comparing this to classical expected value

E[X] =

1

�
�

⇣

1

↵
+ 1

⌘

,

one can consider the percentage discounting, PD(X) of E[X]; i.e.,

PD(X)

.
=

E[X]� CEV(X)

E[X]

= 1� (1/↵)1/↵e�1/↵

�

⇣

1

↵

+ 1

⌘ .
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which is shown in Figure 6.3.1. The exponential random variable, obtained as a special case

α
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0.3

0.4
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0.6

0.7

0.8

0.9

1
PD(X)

Figure 6.3.1: Percentage Discounting for Weibull Random Variable

with ↵ = 1 above, with skewness S = 2, has

CEV(X) =

e�1

�
,

which compares to E[X] = 1/�. A Rayleigh random variable, another special case, is now found

with ↵ = 2 and � = 1/(
p
2�) which has skewness S = 0.63. Via a lengthy calculation to

maximize E[X
�

] we obtain

CEV(X) =

�p
e
' 0.60�

which compares with E[X] =

p

⇡

2

� ⇡ 1.25�.

6.3.3 Pareto Random Variable: For ↵
X

> 0, � > 1 and x > ↵
X

, beginning with

F
X

(x) = 1�
⇣↵

X

x

⌘

�

,

with undefined skewness for � 2 [2, 3] and possibly high skewness given by

S =

2(1 + �)

� � 3

s

� � 2

�
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for � > 3, we calculate

E[X
�

] = ↵
X

"

1�
✓

↵
X

�

◆

�

#

+ �

✓

↵
X

�

◆

�

.

Then, differentiation with respect to � leads to the maximizer

�⇤
=

�↵
X

� � 1

,

and

CEV(X) =

�↵
X

� � 1

"

1 +

�

1� 1

�

�

� � 1

�

#

which compares with

E[X] =

�↵
X

� � 1

.

6.3.4 Log-Normal Random Variable: With � being the cumulative distribution function for the

standard normal random variable N (0, 1), we consider the random variable X having cumulative

distribution function

F
X

(x) = �

⇣

ln x� µ

�

⌘

,

for x � 0, � > 0 with skewness given by

S = (e�
2

+ 2)

p

e�2 � 1.

A straightforward calculation leads to

E[X
�

] = �

✓

1� �

⇣

ln � � µ

�

⌘

◆

whose supremum is found via a single-variable line-search over � 2 [0,1). For example, when

µ = � = 1, with skewness S ⇡ 6.18, this calculation leads to maximizer �⇤ ⇡ 3.59 and

CEV(X) ⇡ 1.40 which compares to E[X] ⇡ 4.48. For the special case when � =

p

2/⇡, with

skewness S ⇡ 3.67, the optimization problem can be solved analytically giving �⇤
= eµ. Putting

back to the formula for E[X
�

] yields to CEV(X) = 0.5eµ which compares to ordinary expected

value E[X] = e1/⇡eµ ⇡ 1.37eµ. In this case, we see more than 63% discounting of the ordinary

expected value.
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6.3.5 Remark: For a � 0, it is easy to see that CEV(aX) = aCEV(X); see also Subsec-

tion 6.6.3. Accordingly, suppose the CEV of X
1

⇠ lognormal(0, �) is found through a line-search.

Then, it is easy to show that X ⇠ lognormal(µ, �) has CEV(X) = eµCEV(X
1

).

6.4 Risk Considerations and Conservative Semi-Variance
Recalling in the introduction, we now describe a companion risk metric for the CEV which ad-

dresses one-sidedness; i.e., since large positive values of X are desirable, we only penalize down-

side variations. This concept of one-sidedness arises in many applications, most notably in the

context of finance where risk metrics are studied; e.g., see [105] and [118]. Perhaps the most

popular risk metric which is common in many fields such as engineering, finance and statistics is

the variance; e.g., see [15] and [124]. For problems with asymmetric probability distributions, it

is standard in the literature to consider higher order moments; e.g., see [123] and [99]. Since the

variance is “blind” to the direction of the variation, in many applications such as finance where

one-sided deviations from the expected value can be good, it is standard to use a semi-variance

measure; e.g., see [90] and [91]. This motivates the definition below.

6.4.1 Conservative Semi-Variance Definition: Given a target value �, the semi-variance for the

random variable X is defined as

SV (X, �)
.
=

Z

x<�

(x� �)2f
X

(x)dx = E
⇥

(X � �)21{X<�}
⇤

,

where the “1” denotes the indicator function

1{X<�}(x)
.
=

8

>

<

>

:

0 if X � �;

1 if X < �.

The semi-variance looks at the downside variance; i.e., the deviation in “bad direction.” Given

the previously defined CEV, we make the natural choice for � = CEV(X) above and obtain the

Conservative Semi-Variance;

CSV(X)

.
= SV

�

X,CEV(X)

�

.
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6.4.2 Remark: Our view is that a “worse-than-expected” outcome is one which is

below CEV(X). Hence, variation below this quantity counts toward the risk. The definition above

is further substantiated by the fact that the SV (X, �) is an increasing function of �. Accordingly,

the choice of � = �⇤ maximizes the SV (X,E[X
�

]) and therefore results CSV(X) a conservative

risk assessment.

6.5 Examples of CSV
In this section, the CSV is calculated and compared with the classical variance for the probability

distributions considered earlier in Section 6.3. Beginning again with the trivial case when X is

itself a 0 � 1 Bernoulli random variable P (X = 1) = p, we obtain CSV(X) = p(1 � p)2 which

compares with var(X) = p(1�p). Recalling that CEV(X) = E[X] for this extreme case, we have

CSV(X) < var(X) due to the one-sided emphasis on downside risk.

6.5.1 Uniform Distribution: For random variable X uniformly distributed on [0, 1], starting with

CEV(X) = 0.25 previously found, we obtain

CSV(X) =

Z CEV(X)

0

�

x� CEV(X)

�

2

dx =

1

192

,

which compares with var(X) = 1/12. For the more general case with X uniformly distributed

over [↵
X

, b], we obtain

CSV(X) =

(b� ↵
X

)

2

192

,

which compares with var(X) = (b� ↵
X

)

2/12.

6.5.2 Weibull Random Variable: For the Weibull random variable X of Subsection 6.3.2, we

now use parameters ↵ = � = 2. Beginning with CEV(X) ⇡ 0.21, a straightforward calculation

leads to CSV(X) ⇡ 0.001, which compares with var(X) ⇡ 0.05. For the special case with ↵ = 1,

X is an exponential random variable and CEV(X) = e�1/�. Then, writing the definition of

CSV gives

CSV(X) =

Z

e

�1

/�

0

�

x� e�1

�

�

2

�e��xdx ⇡ 0.015

�2

.

which is comparable to var(X) = 1/�2. Another special case, called Rayleigh distribution, is

obtained with ↵ = 2 and � = 1/(
p
2�). Now beginning with CEV(X) ⇡ 0.60�, a lengthy



102

calculation yields

CSV(X) = �2

⇣

e�1 � 2e�1/(2e) � 2

r

2⇡

e
�(e�0.5

) +

r

2⇡

e
+ 2

⌘

' 0.011�2,

which is comparable to variance var(X) ' 0.43�2.

6.5.3 Pareto Random Variable: For the Pareto random variable with ↵
X

> 0 and � > 1,

beginning with CSV(X) obtained in Subsection 6.3.3, a lengthy calculation leads to

CSV(X) =

8

>

<

>

:

(2 log

5

4

� 7

32

)↵2

X

⇡ 0.01↵2

X

for � = 2,
h

�2(r

2���1)

�(1��)(2��)

+

(r�1)

2

�

+

2(r�1)

�(1��)

i

�↵2

X

for � 2 (1,1) \ {2}.

where

r
.
=

�

� � 1

⇥

1 +

�1 +

�

1� 1

�

�

�

�

⇤

,

and CSV compares to

var(X) =

8

>

<

>

:

1 for � 2 (1, 2],

�↵

2

X

(��1)

2

(��2)

for � > 2.

In Figure 6.5.1, the CSV is compared with the variance when ↵
X

= 1 and � varying.

6.5.4 Log-Normal Random Variable: For the log-normal random variable X ⇠lognormal(µ, �)

in Subsection 6.3.4, using � =

p

2/⇡ for illustrative purposes, a lengthy calculation of CSV

yields CSV(X) ⇡ 0.007e2µ which compares to var(X) ' 1.6823e2µ. Similar to the remark in

Subsection 6.3.4, it is trivial to see that for a � 0, we have CSV(aX) = a2CSV(X), see also

Subsection 6.6.3. Hence for the more general random variable X ⇠ lognormal(µ, �), we obtain

CSV(X) = e2µCSV(X
1

) where X
1

⇠ lognormal(0, �).

6.6 Properties of the CEV and CSV
In this section, a number of basic properties of the CEV and CSV are established.

6.6.1 Bounds on the CEV and CSV: In the lemma below, simple bounds on the CEV(X) and

CSV(X) are given. Regarding the tightness of the given bounds, one can verify that the lower

bound on CEV is achieved by a uniform random variable and upper bound is achieved by a

Bernoulli random variable.



103

var(X)
0 5 10 15 20

×10-3

0

2

4

6

8
CSV(X)

Figure 6.5.1: CSV(X) versus var(X) for Pareto Random Variable with ↵
X

= 1

6.6.2 Lemma: Let X be a random variable with finite leftmost support point ↵
X

. Then

median(X) + ↵
X

2

 CEV (X)  E (X) ,

and

0  CSV (X)  var(X).

Proof: The upper bound on CEV(X) was obtained in Section 6.2. The lower bound is obtained

using the special choice � = median (X) in combination with the fact that F
X

(�) = 0.5 for this

case. The lower bound on the CSV follows from the definition. For the upper bound, we introduce

the function

g(�)
.
=

Z

�

↵

X

(x� �)2f
X

(x)dx

and take the derivative to obtain

dg

d�
= 2

Z

�

↵

X

(� � x)f
X

(x)dx � 0.

Now, since CEV(X)  µ
.
= E[X], we can write

CSV(X) = g
�

CEV(X)

�

 g(µ),
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and noting that

g(µ) =

Z

µ

↵

X

(x� µ)2f
X

(x)dx 
Z 1

↵

X

(x� µ)2f
X

(x)dx = var(X),

the proof is complete. ⇤

6.6.3 Affine Linearity: In the following lemma, it is shown that CEV(X) has an affine linear-

ity property.

6.6.4 Lemma: Given constants a � 0 and b, for a random variable X with finite leftmost support

point ↵
X

, the CEV satisfies

CEV (aX + b) = aCEV (X) + b

and the CSV satisfies

CSV (aX + b) = a2CSV (X) .

Proof: It suffices to prove that CEV (aX) = aCEV (X) and CEV (X + b) = CEV (X) + b.

Indeed for random variable Y
.
= aX , noting that the left support point is ↵

Y

= a↵
X

;

CEV (Y )

.
= sup

�

E (Y
�

)

= sup

�

{� + (↵
Y

� �)F
Y

(�)}

= sup

�

{� + (a↵
X

� �)F
X

(�/a)}

= sup

✓

{a✓ + a (↵
X

� ✓)F
X

(✓)}

= aCEV (X) .

For the second part of the proof, we now take Y .
= X+ b with leftmost support point ↵

Y

= ↵
X

+ b

CEV (Y )

.
= sup

�

E (Y
�

)

= sup

�

{� + (↵
Y

� �)F
Y

(�)}

= sup

�

{� + (↵
X

+ b� �)F
X

(� � b)}

= sup

✓

{✓ + (↵
X

� ✓)F
X

(✓)}+ b

= CEV (X) + b.
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For the CSV, starting with the definition and using the affine linearity of CEV above,

CSV(aX + b) = E
h

�

aX + b� CEV(aX + b)
�

2

1{aX+b<CEV(aX+b)}

i

= E
h

a2
�

X � CEV(X)

�

2

1{X<CEV(X)}

i

= a2CSV(X). ⇤

6.6.5 Remark: Using the affine linearity property for the CEV, it is easy to see that the percentage

discounting, introduced in Section 6.3.2, is invariant to scaling; that is, for a random variable X

and any scalar a > 0

PD(aX) =

E[aX]� CEV(aX)

E[aX]

=

aE[X]� aCEV(X)

aE[X]

= PD(X).

This result is consistent with the fact that the skewness is also independent of scaling. Two ex-

amples illustrating this invariance are the Weibull random variable considered in Subsection 6.3.2

with scaling parameter � and the Pareto random variable in Subsection 6.3.3 with scaling fac-

tor ↵
X

. Finally, if random variable X is log-normally distributed, see Subsection 6.3.4, then the

percentage discounting is a function of � only and is independent of the parameter µ.

6.6.6 Average of i.i.d Random Variables: In the theorem to follow, we consider the average X
n

of n independent and identically distributed (i.i.d.) random variables, and show that the CEV(X
n

)

tends to the common expected value, µ, as n ! 1.

6.6.7 Theorem: For positive integers k, let X
k

be a sequence of i.i.d. random variables with

finite mean E (X
k

) = µ, finite variance �2 and finite leftmost support point, ↵
X

k

= ↵
X

. Then,

with partial sum averages given by

X
n

.
=

1

n

n

X

k=1

X
k

,

it follows that

lim

n!1
CEV(X

n

) = µ

and

lim

n!1
CSV(X

n

) = 0.
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Proof: For each n, we first note that ↵
X

must be the leftmost support point of X
n

. Now, noting

Lemma 6.6.4, since CEV(X
n

� ↵
X

) = CEV(X
n

) � ↵
X

, without loss of generality, we assume

that ↵
X

= 0 and µ � 0 in the remainder of the proof. Now, along the sequence X
n

, recalling

Lemma 6.6.2,

CEV(X
n

)  E(X
n

) = µ.

Next, we construct a lower bound for CEV(X
n

) using a one-sided Chebyshev inequality. Indeed,

since X
n

has finite mean µ and bounded variance �2

n

= �2/n, for ✏ > 0 and each n, the Cheby-

shev inequality

P (X
n

 (1� ✏)µ)  �2

n

�2

n

+ ✏2µ2

is satisfied. Hence, for any � 2 [0, µ), letting ✏ = (µ � �)/µ and noting that ✏ > 0, via the

inequality above, we obtain

P (X
n

> �) � (µ� �)2

�2

n

+ (µ� �)2
.

Using this inequality leads to a lower bound for the CEV; i.e.,

CEV(X
n

) = sup

�

�P (X
n

> �) � sup

�2[0,µ)
�

(µ� �)2

�2

n

+ (µ� �)2
.

For large enough n such that µ > (1/n)0.25, for the specific choice � = µ� (1/n)0.25,

sup

�

�
(µ� �)2

�2

n

+ (µ� �)2
�
⇣

µ�
✓

1

n

◆

0.25

⌘

.

1p
n

�2

n

+

1p
n

Since µ is an upper bound for CEV(X
n

) and further noting that �2

n

= �2/n; for large enough n,

we can combine the inequalities above to obtain

µ � CEV(X
n

) �
⇣

µ�
✓

1

n

◆

0.25

⌘

1

�

2p
n

+ 1

.

Now letting n ! 1, it is easy to show that the right-hand side tends to µ and hence,

lim

n!1
CEV(X

n

) = µ.

The proof of the second part is straightforward. Using the bounds in Lemma 6.6.2,

0  CSV(X
n

)  var(X
n

) =

�2

n
.

Now letting n ! 1, this inequality forces CSV(X
n

) ! 0. ⇤
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6.6.8 Convexity Property of CEV: Consider a random variable X whose probability density

function is a convex combination of the probability density functions of n random variables,

X
1

, X
2

, . . . , X
n

; i.e.,

f
X

(x) =

n

X

i=1

�
i

f
X

i

(x)

where �
i

� 0,
P

n

i=1

�
i

= 1 and f
X

i

(x) is the probability density function for X
i

. To illustrate

how the situation above arises, consider the case for the random variable describing the output of

a system which can switch among n different states. Suppose, the state is modelled by a random

variable ✓ such that P (✓ = i) = �
i

, for values of i = 1, 2, . . . , n and further assume that the output

of the system, X , conditioned on the state is modelled by a set of random variables X
i

; that is,

f
X

(x|✓ = i)
.
= f

X

i

(x).

This implies that, the probability density function for X is a convex combination of the f
X

i

given

above. In the lemma below, an upper bound on the CEV of X is given in terms of the convex

combination of the CEV(X
i

).

6.6.9 Lemma: Let the probability density function f
X

of the random variable X be the convex

combination of the probability density functions f
X

i

of the n random variables X
1

, X
2

, . . . , X
n

.

Then X has a conservative expected value satisfying

CEV(X) 
n

X

i=1

�
i

CEV(X
i

).

Proof: Without loss of generality, we assume that ↵
X

1

 ↵
X

2

 . . .  ↵
X

n

. Using the definition

of X , it is easy to show that ↵
X

= ↵
X

1

. Now we calculate

CEV(X) = sup

�

� + (↵
X

� �)F
X

(�)

= sup

�

� + (↵
X

� �)

n

X

i=1

�
i

F
X

i

(�)


n

X

i=1

sup

�

�
i

(� + (↵
X

i

� �)F
X

i

)

=

n

X

i=1

�
i

CEV (X
i

). ⇤
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6.6.10 Finiteness of the CEV: To begin, we note that the inequality CEV(X)  E[X] allows

for the possibility that CEV(X) can be finite even though E[X] is infinite. This is indeed the case

for the well-known St. Petersburg Paradox discussed in Section 1. For the random variable X

with probability density function given by X = 2

k with probability p = 1/2k+1 for non-negative

integers k, we recall that E[X] = 1 even though studies suggest that $3 is the “ticket price” one

might reasonably pay to play this game; see [131]. The shortcoming of expected value is due

to the fat tail of the probability distribution. We now argue that the CEV provides more realistic

assessment of the situation at hand.

Now, to calculate CEV(X), for k � 0 and � 2 [2

k, 2k+1

), noting that ↵
X

= 1, a simple calculation

yields

E[X
�

] = 1 +

� � 1

2

k+1

We see that E[X
�

] varies linearly from 1.5 � 1/2k+1 to 2 � 1/2k+1. It is now easy to show

that CEV(X) = 2 is attained as � tends to infinity. In addition it is also straightforward to obtain

the CSV(X) = 0.5.

In view of the example above, it is natural to ask if the CEV can ever be infinite. Indeed the

answer is “yes” and this is illustrated by the random variable X with probability density function

f
X

(x) = 1/(2x
3

2

) for x � 1. For � � 1, straightforward calculation leads to

E[X
�

] =

p
� � 1

p
�
� 1,

Now as � ! 1, we obtain E[X
�

] ! 1 which implies that CEV(X) = 1.

6.6.11 CEV and Improvement of Markov Inequality: For a non-negative random variable X

and a given ✏ > 0, the classical Markov inequality tells us that

P (X > ✏)  E[X]

✏
.

In the lemma below, we see that this bound still holds with E[X] replaced by CEV(X). Since

CEV(X)  E[X], our new bound is tighter than the Markov inequality.

6.6.12 Lemma: For a non-negative random variable X and given constant ✏ > 0, it follows that

P (X > ✏)  CEV(X)

✏
.
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Proof: Since the result trivially holds for ✏  CEV(X), we henceforth assume that ✏ � CEV(X).

For simplicity, we first consider the case where ↵
X

= 0 and later generalize to ↵
X

� 0. Now since

↵
X

= 0, for any ✏ > 0

CEV(X) = sup

�

�P (X > �) � ✏P (X > ✏).

Equivalently,

P (X > ✏)  CEV(X)

✏

which completes the proof. Now, more generally, if ↵
X

> 0, by defining Y
.
= X � ↵

X

, for

✏ > CEV(X), we will have

P (X > ✏) = P (Y > ✏� ↵
X

)  CEV(Y )

✏� ↵
X

=

CEV(X)� ↵
X

✏� ↵
X

 CEV(X)

✏
,

where the last inequality holds because ↵
X

> 0 and

f(x)
.
=

CEV(X)� x

✏� x

is a decreasing function of x when ✏ > CEV(X). ⇤

6.6.13 Remark: The same approach can be taken to improve the upper bound given by Cheby-

shev inequality, a generalization of the Markov inequality. That is; for a given random variable X

with expected value µ, it can be shown that

P (|X � µ| > ✏)  CEV[(X � µ)2]

✏2
.

In Figures 6.6.1-6.6.3, the actual probability and the upper bounds given by Markov inequality and

the one introduced above is shown for different random variables. The tightness of the new bound

is evidenced by the fact that it touches the actual probability at a point.

The improved bound above can also be related to the Percentage Discounting PD(X) introduced

in Section 6.3. Letting ✏ = E[X] and assuming ↵
X

= 0 for simplicity, we observe that

P (X > E[X])  CEV(X)

E[X]

= 1� PD(X).

This inequality implies that if the discounting in calculation of CEV(X) is heavy; that is if

PD(X) ! 1, then the probability of the random variable X exceeding the expected value is very

small. That is, expected value E[X] is an unduly optimistic indicator.
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Figure 6.6.1: The Bounds on P (X > ✏) when X Uniformly Distributed
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Figure 6.6.2: The Bounds on P (X > ✏) when X is Exponential with � = 1
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Figure 6.6.3: The Bounds on P (X > ✏) when X is Weibull(4, 1.5)

6.6.14 CEV and CSV as Risk Metrics: For a given random variable X , the function ⇢(X)

defined as ⇢(X)

.
= �CEV(X) satisfies the conditions to be a risk measure; that is, ⇢(0) = 0,

⇢(X + r) = ⇢(X) � r for all r 2 R and for any two random variable X
1

and X
2

such that

X
1

 X
2

then ⇢(X
2

)  ⇢(X
1

). However, similar to widely-used measures such as Value-at-

Risk, it is not sub-additive and hence not coherent; see [105] for details. That is, the inequality

⇢(X + Y )  ⇢(X) + ⇢(Y ) fails to be satisfied for some combinations of random variables X and

Y ; e.g., take X and Y both to be 0� 1 Bernoulli random variable with probability p = 0.5.

Another possibility for a metric is D(X)

.
=

p

CSV(X), which we call it Conservative Semi-

Deviation, which satisfies all but one of the conditions to be a Deviation Risk Measure; see [139]

for details. More specifically, we have D(X + r) = D(X) for any r 2 R, D(�X) = �D(X) for

any � > 0, D(0) = 0, and D(X) > 0 for all non-constant X while D(X) = 0 for any constant X .

Although, simple examples are available to show that sub-additivity can not be guaranteed, it

is interesting to note that the sub-additivity inequality for D(X) using a specific pair (X, Y ) is

satisfied whenever the same inequality is violated for ⇢(X).
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6.7 Potential for Application
In this section, to further demonstrate potential for application for our new theory, we provide three

examples. The first example is motivated by the “skewing effects” related to the use of feedback

when trading in financial markets as described in Chapter 2; see [6] and [7] for more details. In

Subsection 6.7.1, we compare the classical expected value with the CEV of the resulting gain-loss

function g(t) when the price benchmark is the Geometric Brownian Motion.

The other two examples involve real data which are rather skewed. Working with such skewed

distributions arises in different applications such as system reliability [135], finance [7], statis-

tics [149] and psychology [150] where a similar approach based on CEV and CSV may be helpful

to carry out the analysis. Per discussion in Section 6.2.3, since a closed-form expression is gener-

ally not available for data-based distributions, the CEV and CSV are found using a �-sweep which

is straightforward to implement.

6.7.1 Example: Use of Linear Feedback: Given the discussion in Chapter 2 and earlier in this

chapter, suffice it to say, when a feedback control is used to modify an investment position, the re-

sulting probability distribution for profits and losses can be highly skewed. For example, if K > 0

is the gain of a linear stock-trading controller, the resulting skewness S(K) for profits and losses

can increase dramatically with K and can easily become so large as to render many existing forms

of risk-return analysis of questionable worth. Said another way, the long tail of the resulting highly-

skewed distribution can lead to a large expected profit but the probability of an “adequate” profit

may be quite small. Another negative associated with high skew is that there can be a significant

probability of large drawdown in an investor’s account; e.g., see Chapter 3 and reference [8].

To provide a concrete illustration of the issues raised above, we consider the following linear

feedback controller described in Section 1.4.2. The amount invested I(t), at time t, is given by

I(t) = I
0

+Kg(t),

where I
0

is the initial investment, K is the feedback gain and g(t) is the cumulative gain-loss up

to time t. When Geometric Brownian Motion (GBM) is used to drive the stock prices, the random

variable g(t) turns out to be a shifted and scaled log-normal distribution which can be highly

skewed with an expected value which may be misleading in terms of the prospect for success.
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To illustrate the scenario above, suppose time t = 1 represents one year and assume GBM process

parameters µ = 0.25 and � = 0.5, where µ is the annualized drift and � is the annualized volatility.

Furthermore, assume initial investment I
0

= 1 representing one dollar and feedback gain K = 4.

Then, via a simple modification of the results in [4] and Section 1.4.2, the probability density

function for the gains and losses, g(t), at t = 1, is given by

f(x) =
1

p

⇡

2

(1 + 4x)
e�

�

log(1+4x)+1

�

2

8

for x > �0.25; see Figure 6.7.1.
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E(g(1)) =  0.43

Figure 6.7.1: Trading Profit-Loss: The Probability Density Function

As seen in this figure, the expected value is E[g(1)] ⇡ 0.43 which is shown via the vertical

dashed line. This expected value represents a raw return of 43% on an investment of one dollar.

However, as seen in the figure, the probability of loss, the shaded area, is pLOSS ⇡ 0.70. In other

words, the expected return is quite attractive but it is highly probable that a losing trade will occur.

To this end, the CEV is obtained to be CEV
�

g(1)
�

⇡ �0.12. This negative value indicates an

expectation of loss from a conservative perspective. Comparing CEV to the classical expected

value, E[g(1)] ⇡ 0.43, shows how the long tail of the distribution is discounted. On the risk side,

the Conservative Semi-Deviation is obtained to be D
�

g(1)
�

⇡ 0.07 while the standard deviation is

approximately 4.97.
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6.7.2 Example: Annual Return for Standard and Poor’s 500 Stock Index: As a second ex-

ample, we begin with the empirical distribution of the annual percentage return for the S&P 500

stock index. The histogram in Figure 6.7.2 is obtained using the dividend-adjusted daily closing

values, available at [151], in conjunction with a 252-day sliding window so as to obtain annual

returns. From the data, we obtain E[X] ⇡ 0.14 with probability of exceeding E[X] slightly greater

than 0.5. That is P (X > 0.14) ⇡ 0.53.

Annual Return in Percentage
-10 -5 0 5 10 15 20 25 30 35
0

10

20

30

40

50

60
Number of Annual Returns

Figure 6.7.2: Histogram of Annual Returns for S&P 500, 2010-2015

One scenario under which a more conservative estimate of the mean is desirable occurs when

conservative investors are reliant on index funds to either generate fixed-income in retirement

or plan for the future. In this case, it is of interest to modify the expected value to obtain the

CEV which is arguably a more realistic expectation for one who is risk-averse. Carrying out a

�-sweep, using the plot of E[X
�

] shown in Figure 6.7.3, we obtain CEV(X) ⇡ 0.06. In addition

we obtain P (X > 0.06) ⇡ 0.8. That is, the CEV analysis indicates that a conservative investor

should expect only a 6% return. In contrast to the standard deviation � ⇡ 0.08, for this data, the

Conservative Semi-Deviation is found to be D(X) ⇡ 0.02. Hence, our estimate is “tighter” and

more reliable for investors not interested in delving into the details related to one-sided risk.
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Figure 6.7.3: E[X
�

] Versus � for the Annual Return Problem

Period E[X] CEV(X) �
p

CSV(X)

1-day 0.1427 -3.9230 0.1510 0.04

5-day 0.1393 -1.6123 0.1414 0.0346

1-month 0.1383 -0.5135 0.1208 0.0361

6-month 0.1401 -0.0184 0.1005 0.0361

1-year 0.1369 0.0571 0.0781 0.02

Table 6.1: Statistics of the Returns of S&P 500 for Different Time Horizons, 2010-2015

The same sliding window approach which was used above can be used to find the returns for

different time horizons; i.e., daily, weekly, monthly, etc. For example, considering Table 6.1,

where statistics are reported using the same data with different time horizons, it is interesting to

note that the CEV is positive only for the case of annual returns. This can be interpreted as a

warning to a conservative investor: In order to reasonably expect a positive return, it is better to

own the stocks for a year or more.
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6.7.3 Example: U.S. Household Annual Income 2011: The distribution of household annual

income for 2011, according to US Census data given in [152], is shown in Figure 6.7.4. The

statistical sample covers 121,084 households and is reported in each income bracket. The two

isolated “spikes” at levels $220,171 and $426,271 correspond to wider income brackets used for

high-income individuals. This distribution with its high skew, S ⇡ 2.89, makes this scenario a

candidate for application of our theory. By way of additional motivation for use of the Conservative

Expected Value, in this case, we note that “mean household income” is widely reported to the

public at large.

The issue which we consider here is the extent to which the mean household income of $69,677 is

reflective of what is to be expected. In this regard, the histogram indicates that only about 35% of

the households have incomes which exceed this mean level. This raises a question whether such

reporting of this mean level to a technically unsophisticated population is “fair.” As an alternative,

we calculate the CEV by carrying out a �-sweep to maximize E[X
�

]. Indeed, from Figure 6.7.5,

we obtain CEV(X) ⇡ 26, 919 and our analysis further indicates that there is a 75% chance of

exceeding the CEV. At first glance, upon seeing this 75% probability, there is a temptation to

conclude that CEV analysis produces an overly conservative result for this example. That is, if we

view exceeding the expected value more like a 50-50 proposition, then one might argue that CEV

theory produces a result which is unreasonably low; i.e., a technically unsophisticated “worker” is

being provided with a prospect which is too grim.

However, when we enhance the analysis to include Conservative Semi-Variance considerations,

we claim that for this application, it becomes more difficult to dismiss the CEV out of hand.

That is, taking one-sidedness income risk into account, we enhance the CEV number with the

Conservative Semi-Deviation to obtain D(X) =

p

CSV(X) ⇡ 7, 539. When comparing D(X)

with the classical standard deviation � =

p

var(X) ⇡ 73, 103, our much smaller number points

to a trade-off between risk aversion and the estimate of expected income. Analogous to the editing

phase in Prospect Theory [130], the appropriateness of application will depend on the extent to

which one emphasizes downside risk.
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Figure 6.7.4: Histogram of US Household Income for 2011
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Figure 6.7.5: E[X
�

] Versus � for the Household Income Problem
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6.8 Conclusion and Further Research
In this chapter, we considered a random variable X for which high skew may be present and for

which large positive values are desirable and argue that the classical expected value may be an

unduly optimistic indicator of performance in that it can overstate what one might expect for the

realization of X . It was also argued that this issue of over-optimism in the expected value is particu-

larly important when a mission-critical random variable is involved. In addition, we considered the

case when distrust in the underlying probability distribution may also be a concern as epitomized

by our earthquake example in Section 6.2.3. We highlighted mission-critical applications with the

need for a high degree of conservatism. To address such situations we defined the (CEV,CSV)

reward-risk pair and developed a number of theoretical properties, interpretations and illustrative

examples involving both theoretical distributions and data-generated histograms. This new theory

appears to be mathematically rich and potentially useful in a number of applications. Given the

analysis to date, many new research directions suggest themselves: One possible direction would

be to modify the CEV and CSV definitions to accommodate the case of random variable X with

unbounded leftmost support point; i.e., ↵
X

= �1.

A second new research direction begins with the fact that the CEV and CSV are defined without

recourse to utility theory. Our view is that this new pair, analogous to mean and variance, may

be useful in application where “conservatism” is desired and risk versus return must be carefully

balanced. With regard to these considerations, one possible application might be appropriately

called Conservative Portfolio Selection. In the spirit of [15] and [99], given n stocks with asso-

ciated weights w
i

being the fraction of wealth invested in each stock, a conservative version of

the celebrated Markowitz problem [15], using semi-variance along the line of Harlow [91] could

involve a CSV minimization with a constraint that the CEV exceed some prescribed target level.
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Chapter 7

Directions for Future Work

At a high level, the focal point of this thesis has been a new line of research aimed at development

of a theoretical framework to study the performance of a class of stock-trading strategies which

are based on technical analysis. In direct contrast to many papers in the finance literature which

are aimed at studying the profitability of such strategies via statistical analysis of backtests using

historical price data, see [53] for an excellent survey and extensive bibliography, our approach

here is based on theory. The strategies which we consider here involve linear feedback and can be

viewed as a form of trend following; e.g., see [26, 81–83].

One interesting possible future path in this research area is the study of discrete-time feedback-

based trading strategies. The controller with delay, described in Chapter 5, is an example of such

trading strategy. We have dedicated a significant part of this chapter, Section 7.1, to introduce a

new discrete-time feedback-based trading strategy which is triggered by moving average crossing.

The moving average crossing is well known in finance; e.g., see [24, 54, 56, 57, 73, 153] and is

often used time the market. In contrast, our new controller is motivated by the desire to enhance

the performance of such moving average crossing algorithm via inclusion of feedback control. We

formulate and study the performance via simulation using historical price data. The theoretical

aspect of the research is briefly outlined and left for future work.

In this chapter, we also describe some other open research problems which are motivated by our

work to date. In this regard, in Section 7.2, we discuss the problem of optimizing the parameters

involved in the controllers under consideration. In Section 7.3, we briefly motivate and propose

three new feedback controllers. Since the results provided in this thesis has been developed for the

case of trading a single stock, in Section 7.4, we describe a research path to extend the analysis

to the case of trading a portfolio of stocks. Finally, the focus of Section 7.5 is further work on

Conservative Expected Value (CEV) and Conservative Semi-Variance (CSV) in finance.
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7.1 Moving Average Crossing Problems
In this section, we describe a new direction of research involving a discrete-time linear feedback

controller which is triggered by moving average crossings with the goal being to use feedback to

improve upon the well-known results in finance; e.g., see [24, 54, 56, 57, 73, 153]. As a first step

in this research direction, we carry out some backtesting on historical price data. The theoretical

analysis is relegated to future research.

The description of our new controller begins with a classical algorithm summarized as follows: At

each time instant k, the current price p(k) is compared to an n-day moving average price

p
av

(k) =
1

n

k

X

i=k�n+1

p(i)

where n is selected by the trader based on considerations such as the volatility of the stock and

its perceived drift. Now, assuming for simplicity that only long positions are allowed, if the

price p(k) crosses this moving average from below, a buy signal is generated. This suggests

that an upward price trend is forming and dictates going long in the stock. Subsequently, if a

crossing of the moving average occurs from above, the upward trend is deemed to be in doubt

and a sell signal is generated. After selling the stock, the trader “lies in wait” holding cash un-

til the next crossing from below occurs. This entry-exit process continues up to some terminal

time k = N . Once the first crossing from below occurs, the investment for the trader who is either

“fully invested” or “fully out” is given by

I(k) =
1

2

V (k)
�

sign
�

p(k)� p
av

(k)
�

+ 1

�

where V (k) is the account value at stage k.

7.1.1 Illustration of Crossings: Before we proceed to our new feedback-based version of the

strategy, we illustrate the ideas above using adjusted daily closing prices for Xerox (Ticker: XRX)

stock. The price data is shown in Figure 7.1.1 and n = 200 is used for the moving average. The

data covers the five-year time period, January 1, 2005 until December 31, 2009 which includes

both the major bull market high in 2007 and the period of the “crash” in 2008 and 2009.

Calculating the moving average over the given time period, as seen in Figure 7.1.1, we obtain

fourteen buy signals which dictate entering the trade, and thirteen sell signals which force exiting
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the trade. Using the investment rule given above leads to the account value shown in Figure 7.1.2.

It is clear that the use of moving average timing keeps the trader out of the trade during the crash

of 2008� 2009; i.e., during the period associated with 750  k  1180.
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Figure 7.1.1: Price and 200-Day Moving Average for XRX

7.1.2 Inclusion of Linear Feedback: With the definition of classical moving average crossing in

place, in this section, we now introduce a new trading rule which is triggered by moving average

crossings but also includes a linear feedback controller aimed at enhancement of performance. For

this new trading rule, the investment level at step k is given by

I(k) =
1

2

(I
0

+Kg(k))
�

sign
�

p(k)� p
av

(k)
�

+ 1

�

where I
0

is the initial investment, K � 0 is the feedback gain and g(k) is trading gain-loss function.

It is important to note that the factor corresponding to the moving average crossing determines the

entries and exits; i.e., the market-timing. In contrast, the factor corresponding to linear feedback

determines modification of the investment based on the performance g(k).
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Figure 7.1.2: Account Values: With and Without Moving Average Timing

The dynamics of the account value for the fully-invested case is given by V (k) = I
0

+ g(k). This

implies that the classical moving average crossing strategy described in the previous section is a

special case of the controller introduced here with K = 1.

We note that this investment rule can result in the trade size exceeding the account value. To

this end, a full-blown analysis of the ideas below could be expanded to include margin interest

considerations for cases when I(k) > V (k). In the following subsection, we refer to this Linear

Feedback controller with Moving Average Timing as LF-MAT for short.

7.1.3 Backtesting the LF-MAT Controller: To backtest the LF-MAT controller, we consider

an S&P portfolio which is now described: Among the 500 stocks in the current S&P 500 index,

neglecting the possibility of “survivorship bias,” we consider a portfolio consisting of 480 of them

which were present in the index during the five-year time period January 1, 2005 until Decem-

ber 31, 2009. The list of these stocks can be found in [151]. In the simulation to follow, using

adjusted closing prices, we apply LF-MAT controller to each of these stocks. We consider initial

account value V (0) = 1 and an initial investment I
0

= 1/480 in dollars in each stock. Similar to

our earlier approach in Subsection 5.1.1, the risk-free interest and margin interest rates are taken to
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be zero. Then, taking g
i

(k) to be the cumulative gain or loss at stage k for stock i, the total account

value V (k), is obtained by summing the contributions of each of the stocks. That is,

V (k) = V
0

+

480

X

i=1

g
i

(k).

Taking a feedback gain of K = 2 in each LF-MAT controller, we compare our results with the

“fully invested” moving average case which corresponds to K = 1 and the so-called “pure” linear

feedback case with K = 2 and no moving average considerations.

In Figure 7.1.3, the resulting account values are shown. As seen in the figure, during the crash

of 2008-2009, i.e., 850  k  1100, the use of pure linear feedback leads to maximum percentage

drawdown of about 63%. In comparison, the LF-MAT strategy results in a smaller drawdown

of 32% and the moving average strategy leads to 22% drawdown. This larger drawdown for the

pure linear feedback strategy is explained by the use of feedback gain K = 2 which implies taking

more risk than K = 1 by investing a larger percentage of the account value.

For all these strategies, the plot of the leverage L(k) .
= I(k)/V (k), is shown in Figure 7.1.4. In the

figure, we see that the pure linear feedback controller is the most aggressive in terms of leverage.

Arguably, this is to be expected because this strategy is always in the market. In contrast, the

leverage for both the moving average and LF-MAT strategies goes down to almost zero during the

crash; i.e., in the period 900  k  1050. During the bull markets covering 200  k  800 and

1100  k  1250, the use of linear feedback results in the use of more leverage as larger profits

are captured. The inclusion of the moving average can “save” the trader during the crash by halting

the trade while the inclusion of linear feedback is used to add to the degree of aggressiveness when

bull markets are present.

This simulation suggests that there are many possibilities for further research on the use of mov-

ing averages in conjunction with feedback. These include expansion of the formulation above to

include short selling and development of a theory, perhaps adaptive in nature, to select the window

length n. With smaller window length, there would typically be more buy and sell signals gen-

erated and associated risk-return studies could readily be conducted to determine what trade-offs

are worthwhile.
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Figure 7.1.3: Account Values: Effect of Moving Average and Linear Feedback
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Figure 7.1.4: Leverage: Effect of Moving Average and Linear Feedback
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7.2 Choice of Controller Parameters
In this thesis, we studied different trading rules motivated by various feedback control considera-

tions and proved that the Robust Positive Expectation Property holds. Since this property does not

depend on what positive feedback gains are used, many open research problems can be considered

regarding the choice of these gains. For example, in Section 1.1, how should one pick the gain K?

Similarly, in using PI controller with exponentially weighting scheme, see Chapter 4, there are

open problems of interest regarding the choice of the parameters K
P

, K
I

and the discounting fac-

tor �. Finally, for the controller with delay in Chapter 5, a possible optimization presents itself

with respect to the values of feedback gain K and delay amount m.

With regard to the considerations above, there are many research directions to pursue. One obvious

direction involves use of a “training data set” to optimize the parameters; i.e., we simulate the trade

on historical price data using different values of parameters to obtain the best performing values.

To accomplish the above using training data, one can consider an optimization problem which

uses no price model and is driven by the data. That is, the training data is directly used to find

the best performing controller values which is in direct contrast with the model-based approach in

which training data is initially used to find the “best-fit” price model and then the model is used

to determine the controller values. For example, a classical mean-variance utility function can

be maximized; e.g., see [15]. However, since the skewness effect studied in Chapter 2, suggests

that reliance on such mean-variance based measures of performance can provide a distorted pic-

ture of the prospects for success, one possibility would be to use a different risk-return pair which

includes information about higher order moments of g(t). Alternatively, utility functions which

capture higher-order moments, especially the cubic utility function, have been discussed in port-

folio optimization literature such as [100, 102, 103] and can be extended to our framework with

appropriate risk aversion coefficients. Finally, another possibility would be to include drawdown

considerations in the optimization problems above. This can be important based on our discussion

in Chapter 3 where we argued that the use of a large feedback gain K can lead to a highly-skewed

probability distribution for gain-loss function. In turn, this can lead to a large drawdown in wealth.
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7.3 Some New Possibilities for Feedback Control
In this section, we briefly describe some new possibilities for feedback controllers. We begin with

a new linear negative-K rule and then discuss a class of nonlinear feedback controllers.

7.3.1 Use of Negative Feedback Gain K: Thus far, all of the results provided in this thesis rely

on the assumption K � 0 in the trading rule. Consideration of negative K-values is motivated

by the SLS analysis in Chapter 2: Despite the positive expected value for the gain-loss function,

due to the large skewness, the probability of loss can be so large as to make the trade undesirable.

Our finding is that SLS with feedback gain K > 0 is best suited for a market with a trend; i.e., a

consistent upward or downward price movement. The “negative K” ideas to follow are aimed at

sideways markets. With no specific direction for the price movement, the probability of loss using

the SLS controller with positive feedback gain K > 0 is high.

Sideways Markets: There are various ways to describe sideways markets using classical price

models. For example, one can consider a Geometric Brownian Motion with the drift µ = 0

or a Vasicek process; e.g., see [154]. An important research direction involves development of

new trading strategies which provide higher probability of winning in sideways markets while

preserve SLS-type performance in a trending market. Our initial approach to development of such

strategies leads us to consider the analysis of trading systems with negative feedback gain K < 0.

Interestingly, the analysis leads to results which are quite different from the K > 0 case.

To begin, with positive initial investment I
0

> 0 and feedback gain K < 0, it is easy to show that

the gain-loss function resulting from the use of SLS trading rule is an odd function of K. That is,

denoting the dependence on K by writing g(t,K); at time t, we have g(t,�K) = �g(t,K).

Hence, in the case of sideways markets where positive-gain SLS with K > 0 incurs a loss,

negative-K version of SLS makes profit. Furthermore, we have

P
�

g(t,K) > �
�

= P
�

g(t,�K) < ��
�

; E[g(t,K)] = �E[g(t,�K)].

Considering all of the above, a trader who believes the market is moving sideways may opt to give

up the Robust Positive Expectation Property for positive-gain SLS to enjoy a large probability of

winning using the negative-K version of the controller. That is, in such cases, the properties above

suggest that use of negative feedback gain is more likely to lead to a profit.
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7.3.2 Incorporating Volume Information: One of the important quantities which is used in

technical analysis is the trading volume; e.g., see [23]. This corresponds to the number of shares

which are traded during a pre-specified period of time. When the volume is low, traders typically

interpret this to mean that market reaction is “tepid” and stock price changes are less “trustworthy.”

Conversely, when volume is high, this is interpreted to mean traders view a price change as more

significant. One possible path for future research involves use of this volume information in the

controller.1 For example, denoting the volume by v, suppose a smooth function of volume, �(v),

is used to modulate the SLS investment rule; i.e., with

I
L

(t) = �(v)
�

I
0

+Kg
L

(t)
�

, I
S

(t) = �(v)
�

� I
0

�Kg
S

(t)
�

the dynamics at time t become

dg
L

dt
= �(v)

�

I
0

+Kg
L

(t)
�

⇢(t),
dg

S

dt
= �(v)

�

� I
0

�Kg
S

(t)
�

⇢(t).

and, for smooth prices, this can lead to “arbitrage” theorems similar to results given in [3].

7.3.3 Alternative Nonlinear Feedback Rules: Another possibility of future work is to consider

classes of more complicated feedback controllers; e.g. controllers depending nonlinearly on mea-

sured variables. In this regard, for the case of feedback on g(t), the focal point of this thesis, we

now allow the investment to be a nonlinear function of g; i.e., I = f(g). Associated with this

controller, we define the degree of aggressiveness along trajectories to be

a(t)
.
=

@f

@g

�

�

�

g=g(t)

.

For a feedback-based strategy, a(t) quantifies the degree of aggressiveness of an investment rule

based on changes in the gain-loss function. At time t � 0, it is the amount of investment level

change per dollar of profit. This concept is closely related to the evaluation of gain and losses

as described in Prospect Theory, e.g., see [130]. For the special case of linear feedback with

f(g) = I
0

+ Kg, the degree of aggressiveness reduces to a(t) = K. That is, we increase or

decrease the investment by K dollars for every dollar of profit or loss.

1The content of this subsection is based on the communication between Professor B. Ross Barmish, Professor James

A. Primbs and me and is a part of an ongoing collaboration.
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One possibility for future work is to consider more complicated nonlinear investment rules with

degree of aggressiveness coefficients which are not constant with respect to g(t). For example

consider the investment rule

f(g) =
q

I2
0

+ 2g.

For this controller the initial investment is I
0

and the degree of aggressiveness coefficient is

a(t) =
@f

@g

�

�

�

g=g(t)

=

1

p

I2
0

+ 2g(t)
.

The two investment rules, the linear feedback controller with feedback gain K = 1, and controller

with square-root, are shown in Figure 7.3.1 as function of trading gain-loss g(t). While both

of these controllers have equal initial investment I
0

= 1, and initial degree of aggressiveness

of a(0) = 1, the controller with square-root is more risk averse; that is, in case of a loss, g < 0,

it dictates a lower investment; i.e., taking out money faster, and in case of a win; that is g > 0,

it pumps in less money. Including this sort of considerations in developing different controllers

would be of interest.
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Figure 7.3.1: Linear Feedback Controller Versus Square-Root Controller
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7.4 Extension of Analysis to Portfolio
An important future research direction involves extending the analysis in this thesis from trading a

single stock to a portfolio of stocks. There are a variety of different ways to introduce performance-

driven trading rules in rebalancing a portfolio. An interesting research direction involves combin-

ing the Markowitz portfolio optimization methods with our model-free feedback based-scheme as

described below.

Indeed, we assume that each element w
i

in vector W indicates the fraction of investment in stock i,

for i = 1, 2, · · · , n. Then, the portfolio optimization under Markowitz framework is given by

minimize
W

W T

⌃W

subject to E
�

R
P

(W )

�

= R⇤
P

;

n

X

i=1

w
i

= 1

where ⌃ is the covariance matrix for the returns of the stocks and R⇤
P

is a user-defined, pre-specified

target expected return; see [101] for details. To set up this optimization problem, historical data

is typically used to estimate E
�

R
P

(W )

�

and ⌃. The goal is to obtain a portfolio which gives the

targeted expected return with minimum variance.

Taking off from the Markowitz formulation, one idea for future research involves incorporating the

nice trend-following properties of the SLS controller with the Markowitz analysis above. In this

regard, one interesting research path would be to study the following two-step strategy: (i) Given

the historical prices for the stocks, implement the Markowtiz portfolio optimization to obtain the

optimum weights W ⇤. (ii) Once W ⇤ is obtained, treat the resulting portfolio as a single stock and

trade it via SLS controller. That is, the dynamics for the long component is given by

I
L

(k) = I
0

+Kg
L

(k);

g
L

(k + 1) = g
L

(k) + ⇢(k)I
L

(k)

where

⇢(k)
.
=

n

X

i=1

w⇤
i

⇢
i

(k).

and ⇢
i

(k) is the return of stock i at stage k. The short component of SLS is obtained by turning I
0

and K to �I
0

and �K respectively in the formulation above.
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It is important to note that this formulation differs from the model-free approach pursued through-

out this thesis. The proposed strategy above involves a mean-variance model in the first phase. By

this strategy we “feedback-enhance” the Markowitz method which is essentially aimed at robusti-

fication of performance.

7.5 Further Research on CEV and CSV
The focus of Chapter 6 was the development of a new reward-risk pair: The Conservative Ex-

pected Value (CEV) and the Conservative Semi-Variance (CSV). The development of this pair was

an “offshoot” of our research with the motivation coming from evaluation of highly-skewed proba-

bility distribution for trading gain-loss function g(t) based on feedback control. The properties we

developed for the CEV and CSV suggest that this new theory is mathematically rich. One possible

direction for future work involves modifying the definitions of CEV and CSV in order to accom-

modate the case when the random variable X has unbounded leftmost support point, ↵
X

= �1;

i.e., the worst case is unbounded. Another possibility for extension of these definitions involves

consideration of vector random variables.

New research directions also include the following: First, it would be of interest to extend the

Markov-Chebyshev inequality improvements of Section 6.6.11 to other concentration-type in-

equalities such as the Chernoff bound. A second possibility involves formulation and solution of

a new problem which might appropriately be called Conservative Portfolio Selection. In the spirit

of [15] and [99], if we consider n stocks with associated weights w
i

being the fraction of wealth

invested in each stock, then a conservative version of the celebrated Markowitz problem [15], using

semi-variance along the line of Harlow [91] could involve some sort of CSV minimization with

constraints that the CEV exceed some prescribed level.
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[132] A. Martin-Löf, “A Limit Theorem Which Clarifies the ‘Petersburg Paradox’,” Journal of
Applied Probability, vol. 22, no. 3, pp. 634–643, 1985.

[133] M. Allais, “Le Comportement de l’homme Rationnel Devant le Risque: Critique des Pos-
tulats et Axiomes de l’école Américaine,” Econometrica: The Journal of the Econometric
Society, vol. 21, no. 4, pp. 503–546, 1953.

[134] D. Ellsberg, “Risk, Ambiguity, and The Savage Axioms,” The Quarterly Journal of Eco-
nomics, vol. 75, no. 4, pp. 643–669, 1961.

[135] M. Rausand and A. Hoyland, System Reilability Theory Models and Statistical Methods.
John Wiley & Sons, 2004.

[136] W. T. Ziemba, “The Symmetric Downside-Risk Sharpe Ratio,” The Journal of Portfolio
Management, vol. 32, no. 1, pp. 108–122, 2005.

[137] H. S. Marmer and F. L. Ng, “Mean-Semivariance Analysis of Option-Based Strategies: A
Total Asset Mix Perspective,” Financial Analysts Journal, vol. 49, pp. 47–54, May 1993.

[138] P. C. Fishburn, “Mean-Risk Analysis with Risk Associated with Below-Target Returns,” The
American Economic Review, vol. 67, no. 2, pp. 116–126, 1977.

[139] R. T. Rockafellar, S. P. Uryasev, and M. Zabarankin, “Deviation Measures in Risk Analysis
and Optimization,” tech. rep., 2002.

[140] T. Yegulalp and J. Kuo, “Statistical Prediction of The Occurrence of Maximum Magnitude
Earthquakes,” International Journal of Rock Mechanics and Mining Sciences & Geome-
chanics, vol. 11, no. 10, pp. 393–414, 1974.



140

[141] E. H. Field and WGCEP Members of the 2014, “UCERF3: A New Earthquake Forecast
for Californias Complex Fault System,” Bulletin of the Seismological Society of America,
vol. 104, pp. 1122–1180, 2014.

[142] A. Kijko, “Estimation of The Maximum Earthquake Magnitude, m
max

,” Pure and Applied
Geophysics, vol. 161, no. 8, pp. 1655–1681, 2004.

[143] T. C. Hanks and H. Kanamori, “A Moment Magnitude Scale,” Journal of Geophysical Re-
search, vol. 84, no. B5, pp. 2348–2350, 1979.

[144] T. Lay, Y. Fujii, E. Geist, K. Koketsu, J. Rubinstein, T. Sagiya, and M. Simons, “Intro-
duction to the Special Issue on the 2011 Tohoku Earthquake and Tsunami,” Bulletin of the
Seismological Society of America, vol. 103, no. 2B, pp. 1165–1170, 2013.

[145] F. Tajima, J. Mori, and B. L. N. Kennett, “A Review of The 2011 Tohoku-Oki Earthquake
(Mw 9.0): Large-Scale Rupture Across Heterogeneous Plate Coupling,” Tectonophysics,
vol. 586, no. 2013, pp. 15–34, 2013.

[146] A. Stork, J. Verdon, and J. M. Kendall, “The Robustness of Seismic Moment and Magni-
tudes Estimated Using Spectral Analysis,” Geophysical Prospecting, vol. 62, no. 4, pp. 862–
878, 2014.

[147] “National Centers For Environmental Information, Data Available to Download at:
http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=35&d=35.”

[148] J. W. Osborne, “Notes on the Use of Data Transformations,” Practical Assessment, Research
& Evaluation, vol. 8, no. 6, pp. 1–6, 2002.

[149] J. W. Osborne and A. Overbay, “The Power of Outliers (and Why Researchers Should Al-
ways Check for Them),” Practical Assessment, Research & Evaluation, vol. 9, no. 6, pp. 1–
12, 2004.

[150] T. Micceri, “The Unicorn, the Normal Curve, and Other Improbable Creatures,” Psycholog-
ical Bulletin, vol. 105, no. 1, pp. 156–166, 1989.

[151] “S&P 500, Data Available at: http://us.spindices.com/indices/equity/sp-500.”

[152] “US Census Bureau; Income, Poverty, and Health Insurance Coverage in the United States:
Year 2011, Data Available to Download at:
http://www.census.gov/hhes/www/cpstables/032012/hhinc/toc.htm.”

[153] F. E. James, “Monthly Moving Averages–An Effective Investment Tool?,” Journal of Finan-
cial and Quantitative Analysis, vol. 3, no. 3, pp. 315–326, 1968.

[154] O. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of Financial
Economics, vol. 5, pp. 177–188, 1977.


