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Abstract  
 
 Microtubules in neurons form a highly organized array. They provide mechanical 

support for the neurons and serve as the highways for molecular motors and cargos to achieve 

highly efficient and directional delivery. The neuronal cargos being trafficked using this 

microtubule-motor system are involved in every part of neuronal function and development. 

The central feature of neuronal microtubules, also the key to provide the delivery guidance for 

the cargos, is microtubules’ distinct polarity in the axons and dendrites. Although important, 

there are still many unanswered questions regarding to how such polarized structures are 

established and maintained in the different neuronal compartments.  

 In Chapter 1, I aimed to provide a broad overview of neuronal microtubule polarity: 

first, a discussion on the basis of microtubule polarity; second, our current understanding of 

microtubule-making machineries in neurons; and finally, an integrated view of how different 

mechanisms that shape the cytoskeleton collectively make polarized microtubule cytoskeleton 

over neuronal development. In chapter 2, I focused on the discussion on Golgi’s role in 

microtubule organization. My research has uncovered that, Golgi outposts, a putative 

microtubule organizing center (MTOC) in neurons, may not be essential to dendrite 

microtubule cytoskeleton; however, depending on its compartmentalization, Golgi may have 

the capacities to influence both dendritic and axonal microtubule polarity. In chapter 3, I 

highlighted the importance of my findings and point out old and new challenges in the study of 

neuronal microtubule organizations.  
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Chapter I: Building the polarized microtubule architecture in neurons 
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Introduction 
 

Sorting proteins, mRNAs, organelles, and vesicles to the right cellular destinations is 

essential to every cell’s survival and function. In neurons, the signal-sending axon and the 

signal-receiving dendrites can extend processes over long distances. They connect to different 

targets and develop utterly different morphologies. As a result, neuronal cargos that aim for 

different intracellular destinations need to navigate within these diverse and complex neuronal 

compartments to reach their targets. Thus, the molecular machinery that is responsible for 

such tasks needs to be both efficient and specific. Microtubules form highly organized arrays 

that serve as the highways for the directional trafficking of molecular cargos (Bentley & Banker, 

2016; Kelliher et al., 2019). These molecular cargos participate in every facet of cellular 

activities, regulating ion flow, replenishing or retrieving cellular membranes, and balancing 

global and local energy supplies. These cellular activities consequently allow neurons to 

respond to internal and external signals, extend and regenerate neuronal processes, and make 

dynamic connections with their neighbors (Blanquie & Bradke, 2018; Penazzi et al., 2016). For 

this reason, building neuronal microtubule architecture is the equivalent of constructing the 

neurons’ lifelines.  

 

The basis of neuronal microtubule polarity  

Microtubules are tubular protein structures made of protofilaments assembled from a- 

and b- tubulin heterodimers. The head-to-tail association of the dimers results in two distinct 

ends that have disparate biophysical and biochemical properties (Brouhard & Rice, 2018). As a 

consequence, in cells, these two ends interact with different pools of proteins and exhibit 
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different dynamics. The a-tubulin-exposed end, also known as the minus-end, is normally 

capped or stabilized in cells. The b-tubulin-exposed plus-end, in contrast, interacts with plus-

end-tracking proteins (+TIPs) that modulate microtubule growth, and is the more dynamic end 

(Figure 1) (Akhmanova & Steinmetz, 2015).  

The importance of microtubule polarity to intracellular transport is exemplified by the 

direction-specific microtubule and motor interactions. Kinesin and dynein are the two major 

molecular motor families that walk along microtubules. Cytoplasmic dynein generally walks to 

the microtubule minus-end. Conversely, the majority of the kinesin family members move 

towards the microtubule plus-end (Kelliher et al., 2019; Tas et al., 2017). In this way, 

microtubule polarity provides an integral guidance indicator for motors that determines the 

direction they will traffic their cargo (Figure 1). Therefore, understanding how neuronal 

microtubule polarity is essential to the understanding of polarized trafficking in neurons.  

 

Figure 1. Direction-specific interaction between molecular motors and microtubules; 
distinct microtubule dynamics at the two microtubule ends.   
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To study neuronal microtubule organization, visualizing microtubule polarity is key. 

Microtubules are 25nm in diameter and are densely bundled in neuronal processes (Kapitein & 

Hoogenraad, 2015). Direct visualization of their orientation is a very challenging task. Early 

approaches utilized a "hook" assay to detect microtubule orientation by electron microscopy. In 

this approach, samples were treated with special tubulin buffers that allow new tubulin sheets 

to form on the side of the existing microtubules. The cross sections of these specially treated 

microtubules were then examined by electron microscopy to uncover the orientation of the 

curved newly added tubulin sheet, whose hook-like appearance was used as to read-out 

orientation (Heidemann & McIntosh, 1980). The sample preparation for this protocol is very 

lengthy, and the output is relatively low. As a result, while this assay provided the first 

knowledge of microtubule orientations in developing neurons, it is no longer a widely used 

protocol for detecting microtubule polarity.  

Instead, live imaging of fluorescently tagged proteins that bind to the microtubule plus-

ends, called +TIP proteins, has become the most popular tools to assay microtubule orientation. 

This approach takes advantage of the different dynamics at the two microtubule ends. 

Microtubule growth primarily occurs at the plus-end, which displays a significantly higher 

growth rate than the minus-end (Dammermann et al., 2003; Mitchison & Kirschner, 1984). 

+TIPs such as members of the End-binding protein family (e.g. EB3 in mammals and EB1 in flies) 

interact specifically with growing microtubule ends that contain unhydrolyzed GTP tubulin 

(Maurer et al., 2012). As the microtubule grows, the fluorescently tagged EB forms 

distinguishable comet trajectories that indicate microtubule orientation (Kleele et al., 2014; 

Rolls et al., 2007; Stepanova et al., 2010). In addition to the +TIPs, proteins that interact with 
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microtubule minus-ends, such members of the conserved CAMSAP family (del Castillo et al., 

2015) and, in flies, a chimeric kinesin-1- Nod fusion protein (Clark et al., 1997; Wang et al., 

2019; Zheng et al., 2008), have also been used to assay microtubule orientation. Consequently, 

microtubule orientation can be easily examined in neurons in primary cultures and in tissues in 

vivo that are accessible to live-imaging.  

 

Figure 2. Drosophila Class IV da neuron has primarily minus-end-distal microtubules in 
proximal dendrites (green) and uniformly aligned plus-end-distal microtubules in the 
axon (red).  
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microtubule polarity; the proportions of minus-end-distal microtubules is dependent on the 

location within the dendritic arbor, developmental stage, and neuronal type (Baas et al., 1989; 

Yau et al., 2016). A group of Drosophila sensory neurons, called the ddaC neurons, for instance, 

contains almost exclusively minus-end-distal microtubules in the proximal dendrite arbor 

(Figure 2) (Ori-McKenney et al., 2012). Mammalian dendrites, in contrast, contain almost equal 

plus-end- and minus-end-distal microtubule populations (Baas et al., 1988).  

 

Microtubule-making machineries in neurons  

Making new microtubules de novo in cells requires nucleators, which lower the kinetic 

barrier for tubulin dimer addition as the cellular concentration of tubulin dimers is relatively 

low and insufficient for self-assembly (Wiese & Zheng, 2006). Additional help may be provided 

by factors that stabilize nascent microtubules (Goodwin & Vale, 2010), enrich local tubulin 

concentration (Woodruff et al., 2017), or promote microtubule growth (Akhmanova & 

Steinmetz, 2015). These proteins, which may be present in different combinations in cells, are 

enriched on cellular structures known as the microtubule organizing centers (MTOCs) (Sanchez 

& Feldman, 2017). The identity, localization, activity, and geometric orientation of these MTOCs 

enable the generation of diverse microtubule organizations and polarities that are found in 

different cell types or in cellular compartments within a cell. For this reason, understanding 

what cellular structures may serve MTOCs in neurons, and how their activities are regulated, is 

likely to provide the keys to understanding how the neuronal cytoskeleton is constructed. 

Therefore, an important first step is to identify neuronal MTOCs.  
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The centrosome is the first and best characterized MTOC. In interphase and mitotic 

cells, radially organized microtubules emanate from the centrosome(s), making it one of the 

most obvious MTOCs. This membraneless organelle has structured proteinaceous layers on 

which MAPs and microtubule nucleators, such as the g-tubulin ring complex (g-TuRC), are 

concentrated (Magescas et al., 2019; Paz & Lüders, 2018; Wu & Akhmanova, 2017). However, 

emerging evidence suggests that in highly differentiated cells like neurons, the centrosome’s 

function as an MTOC is compromised (Muroyama & Lechler, 2017; Sanchez & Feldman, 2017). 

Microtubule nucleation factors, like g-tubulin, are depleted from the centrosome over 

development (Leask et al. 1997; Stiess 2019). Moreover, genetic and physical ablation of the 

centrosome does not significantly perturb microtubule organization in developing neurons 

(Nguyen et al., 2011; Stiess et al. 2010). For these reasons, microtubules in neurons and other 

highly differentiated cells are believed to originate from centrosome-independent sources.  

While the centrosome has proved non-essential for neuronal microtubule organization, 

studying it has set up the basic guidelines for finding other organelle-based MTOCs. Putative 

organelle-based MTOCs are likely to: (1) be enriched with factors that promote microtubule 

nucleation, e.g. g-tubulin; and (2) anchor and/or stabilize microtubule minus-ends. Based on 

these criteria, many cellular structures in a variety of cell types or at specific developmental 

stages were found to potentially have MTOC activity. The growing list of these cellular 

structures includes Golgi (mammalian RPE cells, mouse astrocytes, mouse and fly muscles, and 

fly neurons) (Efimov et al., 2007; Ori-McKenney et al., 2012; Rivero et al., 2009; Zhu & Kaverina, 

2013), mitochondria (Drosophila spermatids) (Chen, Buchwalter, Kao, & Megraw, 2017), and 

endosomes (Drosophila and C. elegans neurons) (Liang et al., 2020; Weiner et al., 2020). This 
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list of acentrosomal MTOCs provides the next candidate reservoir for identifying neuronal 

MTOCs.  

The Golgi apparatus is well characterized as a non-centrosomal MTOC in mammalian 

fibroblast and muscle cells (Chabin-Brion et al., 2001; Rivero et al., 2009). The Golgi in these 

cells recruits g-tubulin on the cis-Golgi membrane through AKAP450, a g-TuRC adaptor that 

normally found on the centrosome (Rivero et al., 2009). Super-resolution imaging reveals that 

microtubule minus-ends are anchored on Golgi membranes (Wu et al., 2016). These findings 

prompted the examination of Golgi’s MTOC potential in neurons. In the soma of a neuron, Golgi 

forms unlinked mini-stacks; in dendrites, decentralized Golgi satellite structures, termed ‘Golgi 

outposts’, can be found in dendritic shafts and branch points (Liu et al., 2017; Ye et al., 2007). In 

Drosophila ddaC neurons, the Golgi outposts, particularly ones comprised of multiple 

compartments, coincide with sites of microtubule growth initiation (i.e. the start sites of EB1-

GFP comets) (Ori-McKenney et al., 2012; Zhou et al., 2014). Elimination of g-tubulin and peri-

centrin-protein (plp), the fly ortholog of AKAP450, is found to disrupt such coincidence (Ori-

McKenney et al., 2012). These findings provide initial support for Golgi as MTOC in neurons. 

Consistent with this model, centrosomin (cnn; which is the fly ortholog of CDK5RAP2), an 

activator of g-tubulin-mediated microtubule nucleation (Choi et al., 2010), is also found to 

localize to Golgi outpost membranes (Yalgin et al., 2015). However, this model is challenged by 

a few observations. First, in fly sensory neurons, fluorescently labeled g-tubulin (both 

endogenous and transgenic) is not consistently found on Golgi outposts in dendrites 

(Mukherjee et al., 2019; Nguyen et al., 2014). Second, delocalizing Golgi by fusing an integral 

Golgi protein with kinesin motor and dragging Golgi to unconventional sites does not affect g-
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tubulin localization (Nguyen et al., 2014). As such, whether Golgi and Golgi outposts function as 

MTOCs in neurons is still debatable. My work in Chapter 2 will provide a detailed examination 

of Golgi outposts' role in neuronal microtubule organization.  

Recently, endosomes have risen to be another MTOC candidate in neurons. In C. 

elegans PVD neurons, endogenous g-tubulin is found concentrated at the dendrite tip, localizing 

to early endosomes marked by Rab6 and Rab11. Elimination of g-tubulin in these neurons 

reduces the proportion of minus-end-distal microtubules in dendrites (Liang et al., 2020). This 

finding echoes a recent observation in Drosophila ddaE neurons. Axin, which is a Wnt signaling-

related protein that is present on endosomes, may serve as an adapter protein for g-tubulin 

(Weiner et al., 2020). These studies support a link between g-tubulin and endosomes.  

While organelle-based MTOCs were the focus of the initial searches, decentralized 

MTOCs, such as augmin-mediated formation of microtubules from the sides of pre-existing 

microtubules (sometimes referred to as "microtubule branching"), gradually emerged for their 

importance in making microtubules in a variety of cell types, including neurons. The interaction 

between the augmin complex and g-TuRC has been well characterized biochemically through in 

vitro microtubule branching assays with purified g-TuRC and augmin components (Goshima et 

al., 2008; Kamasaki et al., 2013; Petry et al., 2013b). In cultured mammalian neurons, 

elimination of the augmin complex reduces microtubule density (Sánchez-Huertas et al., 2016). 

These and other data have led to the model that augmin recruits g-tubulin ring complex to 

existing microtubules to allow the formation of new microtubules that align with pre-existing 

ones, thus reinforcing the polarity of the existing microtubule cytoskeleton (Cunha-Ferreira et 

al., 2018; Sánchez-Huertas et al., 2016).  
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 Identifying neuronal MTOCs is only the very first step of understanding the ways in 

which the microtubule cytoskeleton is constructed. Such processes involve a complex and 

dynamic coordination between different MTOCs. How different MTOCs may collectively 

construct the microtubule cytoskeleton, and how different MTOCs at a particular stage or 

location may be activated or deactivated are important future questions.  

 

Establishing and maintaining polarized microtubules in neurons 

The central feature of the neuronal microtubule cytoskeleton is the distinct microtubule 

polarities in dendrites and the axon. In vitro and in vivo studies suggest that young neurites 

contains microtubules of mixed microtubule polarity, which implies that the observed 

microtubule polarity in different neuronal compartments of a mature neuron is established 

during development (del Castillo et al., 2015; Lu, Fox, Lakonishok, Davidson, & Gelfand, 2013; 

Yau et al., 2016). Once the initial microtubule polarity is established, maintaining the formed 

microtubule polarity would require molecular machineries, e.g. MTOCs, in the dendrites and 

the axon, which favor the accumulation of microtubules in a particular direction.  

In current models, microtubules in undifferentiated neurites are thought to be 

generated from centrosomes or other unidentified sources, and transported to the neurites 

through a molecular motor-dependent sliding mechanism (Winding, Kelliher, Lu, Wildonger, & 

Gelfand, 2016; W. Yu, Centonze, Ahmad, & Baas, 1993). In S2 cells and isolated Drosophila brain 

primary cultures, photo-switchable EOS labeled microtubules are photoactivated in the cell 

body and the labeled microtubules can be subsequently tracked into neurites in a motor 

depended manner (Lu et al., 2013; Winding et al., 2016). Such activity is thought to be active in 
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the early stages of neurite development. In neuronal cultures, this type of microtubule sliding 

activity is ceased within 1h post plating (Del Castillo, Lu, Winding, Lakonishok, & Gelfand, 2015; 

Lu et al., 2013).  

Microtubule polarity is established as the neurites acquire molecular feature of 

dendrites or axons. In this phase, molecular motor continues playing crucial roles. In Drosophila 

and mammalian neuronal models, compromised dynein activity alters axonal microtubule 

polarity (del Castillo et al., 2015; Rao et al., 2017). Reduced kinesin-1 or other plus-end-directed 

motor activity in C. elegans and cultured neurons, on the other hand, fail to establish dendritic 

microtubule polarity (Yan et al. 2013; Yu et al. 2000). These observations together with 

molecular motor’s sliding capability lead to the following model: plus-end-directed motors, like 

kinesin-1, are responsible for sliding/transporting minus-end-distal microtubules to the 

developing dendrite and sorting out plus-end-distal microtubules from it. The minus-end-

directed motor, dynein, does the opposite, accumulating plus-end-distal microtubules in the 

axon. The important distinction between this polarity establishment period and the initial 

neurite extension phase may lie in the differential localization or activation of different motor 

proteins in dendrites and axons. For instance, local activation of dynein at the axon initial 

segment (AIS) is thought to regulate its compartment-specific activity (Klinman, Tokito, & 

Holzbaur, 2017). However, it is unknown whether such regulation occurs at initial axon 

developing stages and whether dendrite possess similar regulation mechanisms for the 

activation of kinesin motors.   

While motor-dependent lateral transport of microtubules plays an important role during 

the initial neurite extension and polarization, de novo generation of microtubules from other 
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pathways, like g-TuRC-mediated microtubule nucleation, are also crucial for this process. In 

mouse, g-tubulin is continuingly expressed in the nervous system over the course of 

development (Sánchez-Huertas et al., 2016), and g-tub depletion reduces neuronal microtubule 

density (Sánchez-Huertas et al., 2016).  

However, one important question is: how de novo generation of microtubules 

contributes to microtubule polarity in dendrites and axons? Such a model relies on the 

microtubule generating mechanisms that favor the accumulation of microtubules in a particular 

direction within the respective neuronal compartments. In the case of nucleation, g-tub or g-

TuRC complex, which have limited nucleation activity by themselves, are free floating in the 

neuronal cytosol (Choi et al., 2010; Sánchez-Huertas et al., 2016); additional nucleation 

promoting factors could concentrate on a particular MTOC, which is arranged in certain 

location and geometry, to allow restricted generation of microtubules in certain direction. In 

axons, augmin complex is thought to interact with microtubules, recruiting g-TuRC and 

stimulating microtubule nucleation in a paralleled direction to the existing plus-end-distal 

microtubule (Cunha-Ferreira et al., 2018; Sánchez-Huertas et al., 2016). Consistent with this 

model, elevated g-TuRC activity by increasing CDK5Rap2, a g-TuRC activator, alters axonal 

microtubule polarity (Sánchez-Huertas et al., 2016). Similarly, expression of g-tubulin 

hypermorph alleles also cause altered microtubule polarity in Drosophila axons (Nguyen et al., 

2014). In dendrites, such a mechanism is yet to be characterized. In chapter 2, I have examined 

whether Golgi outposts, a potential MTOC candidate, may be responsible for minus-end-distal 

microtubules in dendrites.  
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Chapter 2: Golgi outposts locally regulate microtubule orientation in neurons but are not 

required for the overall polarity of the dendritic cytoskeleton 
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Abstract 

Microtubule-organizing centers (MTOCs) often play a central role in organizing the 

cellular microtubule networks that underlie cell function. In neurons, microtubules in axons and 

dendrites have distinct polarities. Dendrite-specific Golgi outposts, in particular multi-

compartment outposts, have emerged as regulators of acentrosomal microtubule growth, 

raising the question of whether outposts contribute to establishing or maintaining the overall 

polarity of the dendritic microtubule cytoskeleton. Using a combination of genetic approaches 

and live imaging in a Drosophila model, we found that dendritic microtubule polarity is 

unaffected by eliminating known regulators of Golgi-dependent microtubule organization 

including the cis-Golgi matrix protein GM130, the fly AKAP450 ortholog pericentrin-like protein 

(plp), and centrosomin (cnn). This indicates that Golgi outposts are not essential for the 

formation or maintenance of a dendrite-specific cytoskeleton. However, the over-expression of 

GM130, which promotes the formation of ectopic multi-compartment units, is sufficient to alter 

dendritic microtubule polarity. Axonal microtubule polarity is similarly disrupted by the 

presence of ectopic multi-compartment Golgi outposts. Notably, multi-compartment outposts 

alter microtubule polarity independently of microtubule nucleation mediated by the γ-tubulin 

ring complex (γ-TuRC). Thus, although Golgi outposts are not essential to dendritic microtubule 

polarity, altering their organization correlates with changes to microtubule polarity. Based on 

these data, we propose that the organization of Golgi outposts is carefully regulated to ensure 

proper dendritic microtubule polarity. 
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Introduction 

Proper neuronal structure and function depends on the underlying microtubule 

cytoskeleton, which is uniquely organized in axons and dendrites. The compartment-specific 

orientation of microtubules is thought to contribute to the specific morphologies and functions 

of these compartments. In axons, microtubules are uniformly oriented with their plus-ends 

positioned distal to the cell body. In contrast, microtubule polarity in dendrites is mixed to 

varying degrees, and the percentage of microtubules of a particular orientation differs locally 

within the dendritic arbor. How the distinctly organized cytoskeletons in axons and dendrites 

are created and maintained remains an open question. Microtubules are often generated at 

and organized by cellular structures called microtubule-organizing centers (MTOCs) that anchor 

and stabilize microtubules and support microtubule nucleation (SANCHEZ AND FELDMAN 2017; WU 

AND AKHMANOVA 2017). The centrosome is one example of a well-studied MTOC. Although 

neurons have a centrosome, recent work indicates that the neuronal centrosome does not have 

a major role in either generating or anchoring dendritic or axonal microtubules (STIESS et al. 

2010; NGUYEN et al. 2011; SANCHEZ-HUERTAS et al. 2016). The centrosome, however, is not the 

only organelle that functions as an MTOC (SANCHEZ AND FELDMAN 2017; WU AND AKHMANOVA 2017). 

The Golgi apparatus and non-conventional Golgi structures such as Golgi elements and Golgi 

outposts have emerged as potential MTOCs in several cell types, including epithelia, muscles, 

and neurons (RIOS 2014; SANDERS AND KAVERINA 2015; MARTIN AND AKHMANOVA 2018). Unlike 

centrosomes, which support the nucleation of microtubules radially, Golgi-based microtubule 

nucleation can create asymmetric microtubule arrays (EFIMOV et al. 2007; ZHU AND KAVERINA 

2013). Such asymmetric Golgi-derived microtubule arrays have also been shown to contribute 
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to cell polarity (ZHU AND KAVERINA 2013; RIOS 2014). Thus, Golgi in neurons have the potential to 

shape the polarity of the microtubule cytoskeleton, and influence neuronal polarity, by 

selectively seeding or stabilizing microtubules in a particular orientation. 

In developing flies and mammals, many neurons have Golgi in the form of mini stacks 

called "outposts" that localize specifically to dendrites and have a different structure than the 

somatic Golgi (GARDIOL et al. 1999; PIERCE et al. 2001; HORTON AND EHLERS 2003; YE et al. 2007; LIU 

et al. 2017; RAO et al. 2018; TANN AND MOORE 2019). The term Golgi outposts is used to refer 

generally to a heterogenous population of dendritic Golgi composed of one or more 

compartments. In studies using fluorescently tagged End-binding 1 (EB1::GFP), which marks 

growing microtubule ends, Golgi outposts have been shown to correlate with microtubule 

growth initiation sites in developing dendrites (ORI-MCKENNEY et al. 2012; ZHOU et al. 2014; 

YALGIN et al. 2015). Decreasing the levels of proteins involved in microtubule nucleation, such as 

γ-tubulin and its interactors centrosomin (cnn, the fly ortholog of CDK5RAP2) and pericentrin-

like protein (plp, the Drosophila ortholog of AKAP450), disrupts the correlation between 

microtubule growth initiation sites and outposts and perturbs dendrite branch growth (ORI-

MCKENNEY et al. 2012; YALGIN et al. 2015). This correlation has led to the model that Golgi 

outposts function as MTOCs that support acentrosomal nucleation and the directional growth 

of microtubules during dendrite branch formation (DELANDRE et al. 2016). These studies have 

focused on the connection between Golgi outposts, microtubule growth, and dendrite growth, 

leaving unanswered the broader question of whether outposts have a role in creating and/or 

maintaining the distinct polarity of the dendritic microtubule cytoskeleton. Notably, the link 

between microtubule growth and Golgi outposts relies on the compartmental organization of 
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outposts: multi-compartment dendritic Golgi outposts are more likely than single-compartment 

outposts to correlate with microtubule growth start sites (ZHOU et al. 2014) and dragging 

individual Golgi compartments into the axon is not sufficient to alter axonal microtubule 

organization (NGUYEN et al. 2014). The dendrite-specific localization of Golgi outposts and their 

MTOC potential raises the possibility that Golgi outposts, and in particular multi-compartment 

outposts, may play a role in establishing and/or maintaining the unique polarity of the dendritic 

microtubule cytoskeleton; this idea, however, has not been tested.  

Here we investigated whether Golgi outposts are necessary for the compartment-

specific orientation of dendritic microtubules. In particular, we asked whether outposts are 

necessary for the formation of the minus-end-distal microtubules that are specific to the 

dendritic cytoskeleton. To test this notion, we leveraged a combination of genetics and live 

imaging and used the class IV dendritic arborization (da) neurons in Drosophila as a model. In 

the class IV da neurons, dendritic microtubules are predominately oriented with their minus-

ends distal to the cell body, providing an advantageous paradigm to detect changes in 

microtubule orientation. If Golgi outposts regulate the overall polarity of the dendritic 

microtubule cytoskeleton, then blocking the MTOC activity of Golgi should disrupt the 

stereotyped minus-ends-distal orientation of dendritic microtubules. We targeted the cis-Golgi 

matrix protein GM130, which has two key roles: first, work done in mammalian cells has shown 

that GM130 recruits AKAP450, which in turn recruits protein complexes that nucleate, tether, 

and stabilize microtubules (RIVERO et al. 2009; HURTADO et al. 2011; ROUBIN et al. 2013; WU AND 

AKHMANOVA 2017). Second, GM130 is needed for proper Golgi structure and connects Golgi 

compartments to form multi-compartment units, including outposts (NAKAMURA et al. 1995; 
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BARR et al. 1997; KONDYLIS et al. 2005; ZHOU et al. 2014; LIU et al. 2017; LOWE 2019). We found 

that the global orientation of dendritic microtubules is unaffected by the loss of GM130 or the 

fly AKAP450 ortholog plp. Cnn, which is proposed to orient Golgi outpost-associated 

microtubule growth (YALGIN et al. 2015), is also dispensable. This suggests that Golgi outposts 

do not have an essential role in establishing the overall polarity of the dendritic microtubule 

cytoskeleton. Our studies of GM130 over-expression, however, reveal that inducing the 

formation of ectopic multi-compartment units correlates with a disruption in microtubule 

polarity. This suggests that compartment connectedness is critical to the microtubule 

organization capacity of outposts. Interestingly, the ability of multi-compartment outposts to 

organize microtubules is independent of γ-TuRC-mediated microtubule nucleation, which 

suggests that outposts can regulate microtubule polarity via microtubule anchoring or 

stabilizing. 
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Results 

Golgi outposts are not essential to the overall polarity of the dendritic microtubule 

cytoskeleton 

To determine whether Golgi outposts play a critical role in determining the unique 

polarity of the dendritic microtubule cytoskeleton, we turned to the class IV da neurons in 

Drosophila as a model. The da neurons are an ideal model as they are easily accessible for live 

imaging, the orientation of microtubules in the dendritic microtubule cytoskeleton is well-

defined, and there is a wealth of tools for labeling and manipulating Golgi, microtubules, and 

microtubule regulators. In the class IV da neurons, Golgi compartments are present in the cell 

body and throughout the dendritic arbor, but most are found close to the cell body (Figure 1, A-

C). Indeed, GalNacT2-positive trans Golgi compartments are seldom present beyond 95 µm of 

the cell body. Next, we quantified the number of multi-compartment outposts in the arbor. 

Consistent with previous work, we defined multi-compartment Golgi outposts as units with at 

least two compartments (ZHOU et al. 2014). Here, we used markers of the medial and trans 

Golgi, namely ManII::GFP and GalNacT2::TagRFP, respectively. Fewer than half of the ManII-

positive Golgi outposts colocalized with GalNacT2, indicating ManII::GFP predominantly labels 

single-compartment Golgi outposts (Figure 1D). In contrast, the majority of GalNacT2-positive 

outposts colocalized with ManII::GFP (Figure 1D), which suggests that most multi-compartment 

Golgi outposts cluster relatively close to the cell body. Given that Golgi-associated microtubule 

growth correlates predominantly with multi-compartment outposts (ZHOU et al. 2014), this 

suggests that outposts in the proximal arbor may be most likely to regulate microtubule 

organization. 
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To determine whether Golgi outposts function to create or maintain the dendrite-

specific orientation of microtubules, we analyzed microtubule polarity in neurons in which we 

eliminated the cis-Golgi matrix protein GM130. GM130 both recruits the protein machinery for 

MTOC activities (microtubule nucleation, anchoring, and stabilization) and contributes to 

forming multi-compartment Golgi units (NAKAMURA et al. 1995; BARR et al. 1997; KONDYLIS et al. 

2005; ZHOU et al. 2014; SANDERS AND KAVERINA 2015; LIU et al. 2017; MARTIN AND AKHMANOVA 2018; 

LOWE 2019). We found that the percentage of multi-compartment outposts decreases when 

GM130 is absent, which supports the model that GM130 participates in connecting Golgi 

compartments in neurons (Figure 1D)(ZHOU et al. 2014). The loss of GM130 also reduces the 

number of ManII- and GalNacT2-positive Golgi outposts, consistent with previous reports (LIU et 

al. 2017). To read-out microtubule orientation, we used EB1::GFP, whose binding to growing 

microtubule ends produces a comet-like trajectory. The majority of microtubule growth occurs 

at plus-ends, which also grow faster than minus-ends, enabling a clear distinction of plus- and 

minus-end growth and thus microtubule polarity (FENG et al. 2019). As previously reported, in 

control neurons dendritic microtubules are oriented predominantly minus-ends-distal (Figure 

1E). Strikingly, eliminating GM130 had no effect on the overall polarity of microtubules within 

the proximal dendritic arbor where multi-compartment Golgi outposts clustered (Figure 1E). 

The overall frequency of microtubule growth was also unaffected by the loss of GM130 (Figure 

1F). In mammalian cells, GM130 affects microtubule organization through the recruitment of 

AKAP450, whose fly ortholog is plp (MARTINEZ-CAMPOS et al. 2004; RIOS 2014; SANDERS AND 

KAVERINA 2015; MARTIN AND AKHMANOVA 2018). Plp in fly neurons has likewise been implicated in 

the MTOC activity of Golgi outposts (ORI-MCKENNEY et al. 2012). Similar to the loss of GM130, 
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eliminating plp had no effect on dendritic microtubule polarity (Figure 1E). Plp is proposed to 

regulate microtubule growth at Golgi outposts in conjunction with cnn and γ-tubulin, the latter 

of whose activity is controlled by the γ-tubulin ring complex (γ-TuRC) (ORI-MCKENNEY et al. 2012; 

YALGIN et al. 2015). Eliminating either cnn or the γ-TuRC component dGrip75 does not alter 

dendritic microtubule polarity (Figure 1E). Thus, the results of our experiments provide 

compelling evidence that Golgi outposts do not play an essential role in creating or maintaining 

the overall polarity of the dendritic microtubule cytoskeleton.  

 

Loss of GM130 significantly reduces misoriented microtubules in nudE- axons 

The results of our GM130 loss-of-function experiments in da neurons suggest that the 

overall polarity of the dendritic microtubule cytoskeleton does not depend on Golgi outposts. 

Microtubule polarity, however, varies within the dendritic arbors of da neurons (STONE et al. 

2008), and it is possible that Golgi outposts are nevertheless sufficient to locally influence 

microtubule polarity as previously reported (ORI-MCKENNEY et al. 2012; YALGIN et al. 2015; 

DELANDRE et al. 2016). To test the idea that outposts have the capacity to affect microtubule 

polarity, we used a paradigm in which Golgi outposts are ectopically localized to axons, a 

compartment from which outposts are normally excluded and in which microtubules are 

uniformly oriented with their plus-ends distal. If Golgi outposts are capable of regulating 

microtubule organization, we reasoned that their ectopic presence in axons should disrupt the 

uniform plus-ends-distal array of axonal microtubules. To ectopically localize Golgi outposts to 

axons, we relied on mutations that disrupt the activity of the molecular motors dynein and 

kinesin-1, which transport outposts (YE et al. 2007; ZHENG et al. 2008; ARTHUR et al. 2015; LIN et 
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al. 2015; KELLIHER et al. 2019). While disrupting the activity of either motor results in Golgi 

outposts invading axons, we and others have previously shown that these ectopic outposts do 

not always correlate with a change in axonal microtubule polarity (YE et al. 2007; NGUYEN et al. 

2014; KELLIHER et al. 2019). Analyzing these different motor mutants and the outposts in their 

axons enables us to determine whether Golgi outposts are sufficient to affect microtubule 

polarity and to then identify the factors that are essential for this activity.  

The loss of dynein activity alters both Golgi outpost localization and axonal microtubule 

polarity (ZHENG et al. 2008; ARTHUR et al. 2015; DEL CASTILLO et al. 2015; KLINMAN et al. 2017; RAO 

et al. 2017). We first asked whether the misoriented microtubules in the axons of dynein loss-

of-function neurons depend on the ectopic Golgi outposts. The multi-subunit dynein motor 

complex has several cofactors that are important for its activity (RECK-PETERSON et al. 2018); in 

Drosophila neurons, this includes the conserved cofactor nudE (ARTHUR et al. 2015). In the 

absence of nudE, axons are infiltrated by multi-compartment Golgi outposts (Figure 2, A and 

B)(ARTHUR et al. 2015). In the axons of these nudE39A/Df mutant neurons, EB1::GFP comets travel 

both anterograde and retrograde, which indicates a disruption in axonal microtubule polarity 

(Figure 2, C and D). Although EB1::GFP can also bind to slowly growing microtubule minus-ends 

(FENG et al. 2019), the speed of the retrograde comets in the nudE39A/Df mutant axons is 

indicative of microtubule plus-end growth (Figure 2E). Thus, the ectopic axonal Golgi outposts 

in the nudE39A/Df mutant neurons correlate with a change in axonal microtubule polarity. 

To determine whether ectopic Golgi outposts might contribute to the alteration in 

axonal microtubule polarity in nudE39A/Df mutant axons, we eliminated GM130. By itself, the loss 

of GM130 did not affect either the orientation of axonal microtubules or the localization of 
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Golgi outposts (Figure 2, A-D). However, eliminating GM130 significantly reduced the number 

of misoriented minus-end-distal microtubules in nudE39A/Df mutant axons (Figure 2, C and D). 

ManII-positive Golgi were still present in the nudE39A/Df GM130�23/Df double-mutant axons, but, 

strikingly, the loss of GM130 suppressed the axonal mislocalization of GalNacT2-positive 

outposts in nudE39A/Df mutant neurons (Figure 2, A and B). A little over half of the ManII-positive 

outposts in the nudE39A/Df mutant axons were multi-compartment, but there were virtually no 

multi-compartment outposts in the axons of nudE39A/Df GM130�23/Df double-mutant neurons, 

likely because the loss of GM130 suppressed the axonal mislocalization of the GalNacT2-

positive compartments. These data suggest that microtubule polarity may be affected by multi-

compartment, but not single-compartment, Golgi outposts. 

Notably, the loss of GM130 did not completely suppress the appearance of misoriented 

microtubules. This may be due to the "microtubule gatekeeper" role that dynein is proposed to 

play in maintaining axonal microtubule polarity. In addition to carrying cargo, dynein also 

transports, or slides, microtubules (RAO AND BAAS 2018). Dynein anchored in the proximal axon 

translocates microtubules into or out of the axon and prevents the entry of minus-end-distal 

microtubules (DEL CASTILLO et al. 2015; RAO et al. 2017; RAO AND BAAS 2018). Our data suggest that 

dynein also maintains axonal microtubule polarity by excluding Golgi outposts that have the 

capacity to induce changes in microtubule organization. 

The presence of ectopic Golgi outposts in the nudE39A/Df mutant axons also correlates 

with the formation of ectopic axonal branches (ARTHUR et al. 2015). The axons of neurons 

lacking nudE develop multiple fine branches that run parallel to the main axon but terminate 

before reaching the ventral nerve cord; occasionally ectopic branches even extend back toward 
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the cell body and dendrites (Figure 2, F and G). Since dendritic Golgi outposts have been 

correlated with dendrite branch formation and stability and loss of GM130 decreases branch 

number (YE et al. 2007; ORI-MCKENNEY et al. 2012; ZHOU et al. 2014; YALGIN et al. 2015; LIU et al. 

2017), we tested whether Golgi outposts might be implicated in the formation of ectopic 

branches that sprout from the nudE39A/Df mutant axons. We found that loss of GM130 

suppressed the axonal morphology defects of the nudE39A/Df mutant axons, implicating the 

mislocalized Golgi outposts in the growth of ectopic axonal branches (Figure 2, F and G). 

Together, these data suggest that the ectopic Golgi outposts may be a key contributing factor 

to both the cytoskeletal and morphological defects of the nudE39A/Df mutant axons. Thus, Golgi 

outposts are likely capable of inducing changes both in the microtubule cytoskeleton and 

neurite branching. 

 

Golgi outposts affect microtubule polarity independently of γ-TuRC-mediated microtubule 

nucleation 

Dendritic Golgi outposts have been reported to serve as platforms for oriented 

microtubule growth during dendrite branch extension (ORI-MCKENNEY et al. 2012; YALGIN et al. 

2015). This suggests that Golgi outposts might influence microtubule polarity by controlling 

microtubule nucleation. Therefore, we tested whether the misoriented microtubules in the 

nudE39A/Df mutant axons resulted from ectopic nucleation at Golgi outposts. Microtubule 

nucleation at Golgi membranes is templated by γ-tubulin whose nucleation activity is regulated 

by additional proteins, including cnn and γ-TuRC components (SANDERS AND KAVERINA 2015; 

MARTIN AND AKHMANOVA 2018; TANN AND MOORE 2019). In dendrites, cnn has been implicated in 
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regulating the directional growth of Golgi-derived microtubules during branching (YALGIN et al. 

2015). Thus, we focused on whether γ-TuRC-mediated microtubule nucleation might mediate 

the Golgi-induced change in microtubule polarity in nudE39A/Df mutant axons. 

We have previously shown that reducing γ-tubulin does not suppress the appearance of 

minus-end-distal microtubules in nudE39A/Df mutant axons (ARTHUR et al. 2015). Nonetheless, we 

followed-up our earlier findings by testing the γ-tubulin regulator cnn and the γ-TuRC 

component GCP4, known as dGrip75 in Drosophila (VEROLLET et al. 2006). Consistent with our 

prior report, we found that eliminating either cnn (cnnHK21/Df) or dGrip75 (dGrip75175/Df) does 

not suppress the formation of misoriented microtubules in nudE39A/Df mutant axons (Figure 3, A 

and B). Altogether, our results suggest that the ectopic Golgi outposts have the capacity to 

affect microtubule polarity but do so through a pathway that is independent of γ-TuRC-

mediated microtubule nucleation. 

 

Elevating GM130 levels increases the number of multi-compartment Golgi and alters 

microtubule polarity 

Our manipulations of GM130 in nudE39A/Df mutant neurons indicate that ectopic multi-

compartment, but not single-compartment, Golgi outposts disrupt axonal microtubule polarity 

(Figure 2, A and B). As previously mentioned, GM130 is implicated in both the MTOC activity of 

Golgi and in promoting the formation of multi-compartment Golgi units (ZHOU et al. 2014; 

MARTIN AND AKHMANOVA 2018). Connectedness between Golgi compartments may be important 

to the coordinated regulation of microtubules by protein complexes that are present on the cis 

and trans Golgi compartments (RIOS 2014; SANDERS AND KAVERINA 2015). Thus, our results and the 
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work of others suggests that the ability of Golgi to regulate microtubule polarity may depend 

on the formation of multi-compartment units. We asked whether increasing GM130 levels 

would be sufficient to increase the number of multi-compartment Golgi outposts and to alter 

microtubule polarity in dendrites. We found that GM130 over-expression increased the number 

of multi-compartment outposts in dendrites as previously reported (ZHOU et al. 2014) and that 

these additional outposts were more prevalent in dendrite branches than branch points (Figure 

4A). Thus, our results provide additional support to the idea that GM130 is integral to the 

connectedness of Golgi compartments in neurons (ZHOU et al. 2014; LIU et al. 2017); this is 

significant given that the role of GM130 in Golgi stack formation in other cell types has been 

debated (KONDYLIS AND RABOUILLE 2003; PUTHENVEEDU et al. 2006; MARRA et al. 2007; BASCHIERI et al. 

2014; TORMANEN et al. 2019). Notably, this increase in multi-compartment units within branches 

correlated with an increase in anterograde EB1::GFP comets that originated within branches 

(there was also a mild but significant increase in the anterograde comets that originated from 

the cell body; Figure 4B). There was no significant increase in anterograde comets that 

originated at branch points and the frequency of comets that changed direction at branch 

points was also unaffected (Figure 4B). Others have suggested that multi-compartment Golgi 

outposts are prime sites of EB1::GFP comet initiation (ZHOU et al. 2014), leading us to propose 

that the additional anterograde EB1::GFP comets we observe in the neurons over-expressing 

GM130 originate from ectopic multi-compartment outposts. Altogether, these data are 

consistent with the model that the formation of ectopic multi-compartment outposts is 

sufficient to alter microtubule polarity in dendrites. 
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To further test the idea that Golgi compartmentalization correlates with an effect on 

microtubule polarity, we turned to a mutation in Kinesin heavy chain (KhcE177K) that enhances 

kinesin-1 activity by disrupting motor autoinhibition (KELLIHER et al. 2018). Golgi outposts 

mislocalize to KhcE177K mutant axons; however, unlike in nudE39A/Df mutant axons, the polarity of 

axonal microtubules is not significantly affected (KELLIHER et al. 2018). Our results indicate that 

the compartmental organization of Golgi outposts is key to their ability to affect microtubule 

polarity in dendrites. This led us to characterize the compartmental organization of the ectopic 

Golgi outposts in the KhcE177K and nudE39A/Df mutant axons to determine whether the 

differences in axonal microtubule polarity in the two mutants might correlate with differences 

in Golgi compartmentalization. More specifically, we reasoned that there may be a higher 

number of multi-compartment Golgi outposts in nudE39A/Df mutant axons, which have altered 

axonal microtubule polarity, than in the KhcE177K mutant axons, which do not. 

We analyzed the distribution of ManII::GFP and GalNacT2::TagRFP in KhcE177K and 

nudE39A/Df mutant axons. Consistent with the idea that compartment connectedness enables 

Golgi to influence microtubule polarity, we found that there was a higher percentage of multi-

compartment Golgi outposts in the nudE39A/Df mutant axons than the KhcE177K/27 mutant axons 

(Figure 5, A and B). Notably, KhcE177K/27 mutant axons contained equal numbers of GalNacT2-

positive outposts and more ManII-positive outposts than nudE39A/Df mutant axons (Figure 5B). 

This indicates that the KhcE177K/27 mutant axons have just as many Golgi compartments as the 

nudE39A/Df mutant axons, but that the compartments are not as connected. Correspondingly, 

microtubule polarity is largely normal in KhcE177K/27 mutant axons, which is in contrast to the 

nudE39A/Df mutant axons (Figure 5C). Combined, these results suggest that nudE (and dynein 
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activity) are needed for the proper localization, but not the formation, of multi-compartment 

Golgi outposts. In contrast, enhancing kinesin-1 activity both perturbs Golgi localization and 

antagonizes the connectedness of Golgi compartments. 

We then asked whether increasing GM130 might alter the polarity of axonal 

microtubules in the KhcE177K/27 mutant axons, which contain predominantly single-compartment 

Golgi outposts. In control neurons, the over-expression of GM130 alone did not affect axonal 

microtubule polarity (Figure 5D). The over-expression of GM130 in KhcE177K/27 mutant neurons 

both increased the percentage of multi-compartment outposts and resulted in the appearance 

of ectopic minus-end-distal microtubules (Figure 5, A and D). Altogether, our data support the 

idea that multi-compartment Golgi outposts have the capacity to remodel microtubule polarity 

locally even if they are not essential to the overall polarity of the dendritic cytoskeleton.  
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Discussion 

Microtubules in axons and dendrites have distinct polarities. In a variety of cell types 

microtubule orientation is regulated by MTOCs, raising the question of whether neurons have 

MTOCs that carry out a similar function. In dendrites, Golgi outposts are likely candidates (ORI-

MCKENNEY et al. 2012; ZHOU et al. 2014; YALGIN et al. 2015). The compartmental organization of 

Golgi outposts and their correlation with microtubule growth initiation sites were recently 

shown to depend on the cis-Golgi matrix protein GM130, the fly AKAP450 ortholog plp, and cnn 

(ORI-MCKENNEY et al. 2012; ZHOU et al. 2014; YALGIN et al. 2015). We found that the elimination 

of these factors does not affect the predominantly minus-end-distal orientation of microtubules 

in class IV da neuron dendrites, suggesting that Golgi outposts are not necessary for the unique 

polarity of the dendritic microtubule network. This raises the question of whether Golgi 

outposts might have any capacity to affect microtubule orientation. Our analysis of outposts in 

dendrites and outposts mislocalized to axons suggests that ectopic multi-compartment Golgi 

outposts are sufficient to alter microtubule polarity and likely do so independently of 

microtubule nucleation. We propose that the unique polarity of the dendritic microtubule 

cytoskeleton is established and maintained independently of Golgi outposts, but that multi-

compartment Golgi outposts may have the capacity to locally influence microtubule polarity 

during events such as dendrite branch extension. 

Studies carried out in mammalian cells have shown that Golgi serve as platforms for 

microtubule nucleation, anchoring, and stabilization (SANDERS AND KAVERINA 2015; MARTIN AND 

AKHMANOVA 2018; FU et al. 2019). These activities arise from distinct protein complexes, whose 

recruitment to the cis Golgi depends on GM130. Golgi are generally thought to anchor and 
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stabilize microtubules that have been generated at Golgi membranes, although the molecular 

mechanism by which Golgi would selectively capture these microtubules is unclear (ZHU AND 

KAVERINA 2013; MARTIN AND AKHMANOVA 2018). Our studies indicate that γ-TuRC-mediated 

microtubule nucleation is dispensable for Golgi outposts to affect microtubule polarity. 

Consistently, a new study indicates that γ-tubulin only rarely associates with outposts 

(MUKHERJEE et al. 2019). One possibility is that microtubules are nucleated at Golgi 

independently of γ-tubulin. For example, it was recently reported that the mammalian tubulin 

polymerization promoting protein (TPPP) nucleates microtubules at Golgi outposts 

independently of γ-tubulin; however, TPPP is enriched in glia cells, not neurons, in the 

mammalian nervous system (FU et al. 2019). Another possibility is that Golgi outposts may be 

able to capture and stabilize microtubules that are growing in the vicinity of outposts in the 

relatively confined spaces of dendrites (and axons). For example, in the nudE mutant axons, 

ectopic multi-compartment Golgi outposts may alter microtubule polarity by stabilizing nearby 

misoriented microtubules that would otherwise be eliminated. Thus, outposts may influence 

microtubule polarity by tethering and stabilizing microtubules that are not generated at Golgi. 

Our results raise the question of what molecular players may organize microtubules at 

Golgi outposts in neurons. A key component of the complexes that tether and stabilize 

microtubules on Golgi in vertebrate cells is myomegalin (ROUBIN et al. 2013; WANG et al. 2014; 

WU et al. 2016). However, there is no clear Drosophila ortholog of myomegalin, making it 

difficult to directly test this model. The most closely related family member in flies is cnn, which 

is implicated in activating γ-tubulin-templated microtubule assembly (CHOI et al. 2010; ROUBIN et 

al. 2013) and which we have shown is not necessary for Golgi outposts to alter axonal 
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microtubule polarity. Moreover, new findings call into question whether cnn strongly associates 

with Golgi in fly neurons (MUKHERJEE et al. 2019). Another component of the Golgi-associated 

complex that anchors and stabilizes microtubules is the microtubule minus-end-binding protein 

CAMSAP2, whose fly ortholog is Patronin. Recent studies using da neurons have shown that 

Patronin is needed for minus-end-distal microtubules in dendrites, and likely acts by 

antagonizing the kinesin-13 microtubule depolymerase KLP10A (FENG et al. 2019; WANG et al. 

2019). Our preliminary analysis of Patronin localization, however, makes it unclear whether 

Patronin localizes to or functions at Golgi outposts. In work using mitotic mammalian cells, 

GM130 has also been implicated in the stabilization of microtubules on Golgi through a 

mechanism that depends on the microtubule-associated protein TPX2; however, TPX2 structure 

and function are likely not conserved between mammals and flies (GOSHIMA 2011; HAYWARD et 

al. 2014; WEI et al. 2015). Thus, additional studies are needed to identify the molecular players 

that tether and stabilize microtubules on Golgi in Drosophila neurons. 

The organization of the Golgi apparatus into a multi-compartment stack gives it a 

morphological and functional polarity. Correspondingly, microtubules associated with Golgi are 

proposed to be oriented in a particular direction relative to the Golgi compartments (EFIMOV et 

al. 2007; ZHU AND KAVERINA 2013; MARTIN AND AKHMANOVA 2018). In da neurons, the correlation 

between microtubule polarity and Golgi compartment organization is supported by findings 

that microtubule growth typically initiates in a single direction from an outpost (ORI-MCKENNEY 

et al. 2012; YALGIN et al. 2015). This suggests a relationship between the polarity of the Golgi 

stack and the associated microtubules. Thus, the relative orientation of the Golgi outpost stack 

likely influences the polarity of Golgi-associated microtubules (DELANDRE et al. 2016). Our finding 
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that elevated GM130 levels altered microtubule polarity in dendrites may suggest that GM130 

instigated the formation of misoriented Golgi stacks that in turn stabilized misoriented 

microtubules. Given the potential of multi-compartment outposts to influence microtubule 

polarity, it will be interesting to determine how Golgi outpost compartmentalization in 

dendrites is controlled to ensure proper dendritic microtubule polarity.  
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Fig. 1. Global dendritic microtubule polarity does not depend on Golgi outposts. 

(A) Cartoon showing the compartmental distribution of GM130, ManII and GalNacT2 in a Golgi 

stack. (B-D) ManII::GFP-positive outposts are present throughout the class IV da neuron dendritic 

arbor, but fewer than half of these outposts are multi-compartment units (B, D). Multi-

compartment outposts are defined as those that have overlapping ManII::GFP and 

GalNacT2::TagRFP signal. In contrast to ManII::GFP-positive outposts, GalNacT2::TagRFP-positive 

outposts cluster in the proximal arbor and nearly all GalNacT2::TagRFP-positive outposts are 

multi-compartment (C, D). Eliminating GM130 reduces the overall number of Golgi outposts and 

the percentage of outposts that are multi-compartment in the proximal arbor. The proximal 

arbor (prox) encompasses a radius of 95 µm from the cell body; distal (dist) is beyond this radius. 

Red arrowheads indicate Golgi outposts. The left side of each graph represents the fraction of 

ManII::GFP-positive outposts that are multi-compartment and the right side of each graph 

represents GalNacT2::TagRFP-positive outposts that are multi-compartment (D). *P=0.05–0.01, 

**P=0.01–0.001, and ****P<0.0001; Student’s unpaired t tests. (E) Dendritic microtubule 

polarity is not affected by the loss of GM130, plp, cnn, or dGrip75. Antero = anterograde. n.s.=not 

significant, Mann-Whitney test. (F) EB1::GFP comet frequency is normal in the dendrites of 

neurons lacking GM130. n.s.=not significant, Student's unpaired t-test. Microtubule polarity and 

EB1::GFP comet frequency were quantified in the proximal dendritic arbor, which contained the 

majority of multi-compartment outposts. Scale bars: 25 µm. All data are mean ± standard 

deviation. 
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Fig. 2. Misoriented microtubules in nudE mutant axons are significantly reduced when GM130 

is eliminated. 

(A,B) Golgi outposts (marked by ManII::GFP and GalNacT2::RFP; arrowheads) mislocalize to axons 

in nudE39A/Df mutant neurons. In nudE39A/Df mutant neurons, the loss of GM130 does not affect 

the mislocalization of ManII-positive Golgi outposts, but suppresses the mislocalization of 

GalNacT2-positive outposts; as a result, the percentage of multi-compartment ManII-positive 

outposts is dramatically reduced. n.s.=not significant, ***P=0.001–0.0001, and ****P<0.0001, 

one-way ANOVA with Tukey's post-hoc analysis. Scale bar: 10 µm. (C,D) In the absence of nudE, 

axonal microtubule polarity is perturbed. Eliminating GM130 reduces the number of misoriented 

microtubules in nudE39A/Df mutant axons. Cell body is to the left; yellow arrow indicates the 

direction of anterograde comet movement. n.s.=not significant, ***P=0.001–0.0001, and 
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****P<0.0001, Kruskal-Wallis with post-hoc Dunn's multiple comparison analysis (% retro comets) 

and one-way ANOVA with Tukey's post-hoc analysis (% axons). Scale bars: 10 µm (x-axis) and 30 

sec (y-axis). Antero = anterograde, retro = retrograde. (E) The speed of EB1::GFP comets in control 

and nudE39A/Df mutant axons is consistent with microtubule plus-end growth, indicating nudE39A/Df 

mutant axons indeed contain microtubules with mixed polarity (comets moving at speeds below 

the dotted line would be consistent with microtubule minus-end growth). ****P<0.0001, Mann-

Whitney test. (F,G) The ectopic branches that sprout from nudE39A/Df mutant axons are 

suppressed by removing GM130. n=16 (control), 27 (GM130Δ23/Df), 59 (nudE39A/Df), and 41 

(GM130Δ23/Df; nudE39A/Df) axons in replicates as indicated (G). n.s.=not significant and **P=0.01–

0.001, one-way ANOVA with Tukey's post-hoc analysis. Scale bar: 10 µm. All data are mean ± 

standard deviation. 
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Fig. 3. Appearance of misoriented microtubules in nudE mutant axons does not depend on 

microtubule nucleation machinery.  

(A,B) Eliminating either dGrip75 (A) or cnn (B) does not affect the microtubule polarity phenotype 

of nudE39A/Df mutant axons. n=23 (control), 22 (dGrip75175/Df), 34 (nudE39A/Df), and 33 

(dGrip75175/Df; nudE39A/Df) axons (A) and n=16 (control), 16 (cnnHK21/Df), 18 (nudE39A/Df), and 24 

(cnnHK21/Df; nudE39A/Df) axons (B) in replicates as indicated. n.s.= not significant, **P=0.01–0.001, 

and ***P=0.001–0.0001, Kruskal-Wallis with post-hoc Dunn's multiple comparison analysis. 

n.s.=not significant, Mann-Whitney test. All data are mean ± standard deviation. 
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Fig. 4. Multi-compartment Golgi are sufficient to alter microtubule polarity. 

(A) The over-expression of GM130 increases the number of multi-compartment Golgi outposts 

within dendrite branches but not branch points. Scale bar: 25 µm. n.s.=not significant and 

*P=0.05–0.01, Student’s unpaired t tests. (B) The percentage of anterograde comets increases in 

the dendrites of neurons over-expressing GM130. The percentage of anterograde comets that 

originate from within branches increases, paralleling the increase in multi-compartment outposts 

within branches. The graph on the right represents the number of anterograde comets that fall 

into a designated category divided by the total number of comets in the dendrite segment (% 

total comets). n.s.=not significant, *P=0.05–0.01, and **P=0.01–0.001, Mann-Whitney test. All 

data are mean ± standard deviation. 
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Fig. 5. Inducing the formation of multi-compartment Golgi alters microtubule polarity in the 

axons of Khc mutant neurons. (A,B) Axons of KhcE177K/27 mutant neurons contain fewer multi-

compartment Golgi outposts than nudE39A/Df mutants, despite have similar or more numbers of 

ManII- and GalNacT2-positive compartments. Over-expressing GM130 increases the percentage 

of multi-compartment outposts in KhcE177K/27 mutant axons. n.s.=not significant, *P=0.05–0.01, 

**P=0.01–0.001, ***P=0.001–0.0001 and ****P<0.0001; Kruskal-Wallis with post-hoc Dunn's 

multiple comparison analysis (% multi-compartment Golgi outposts) and one-way ANOVA with 

Tukey's post-hoc analysis (# outposts). Scale bar: 10 µm. Closed arrowheads indicate multi-
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compartment outposts and open arrowheads indicate single compartments. (C) In contrast to 

nudE39A/Df mutants, KhcE177K/27 mutant axons have normal microtubule polarity. n.s.=not 

significant, *P=0.05–0.01, ***P=0.001–0.0001 and ****P<0.0001; Kruskal-Wallis with post-hoc 

Dunn's multiple comparison analysis. (D) The increase in multi-compartment Golgi outposts in 

KhcE177K/27 mutant axons that results from the over-expression of GM130 is accompanied by an 

increase in misoriented axonal microtubules. n.s.=not significant and **P=0.01–0.001, Kruskal-

Wallis with post-hoc Dunn's multiple comparison analysis. All data are mean ± standard deviation. 
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Materials and methods  

Fly stocks 

The following alleles and transgenic fly strains from the Bloomington Drosophila Stock 

Center (BDSC) and individual laboratories were used as follows: cnnHK21 (MEGRAW et al. 1999; 

VAIZEL-OHAYON AND SCHEJTER 1999) (BDSC 5039), which produces a drastically truncated ~106 

amino acid-long protein that is not detectable by western blot, and Df(2R)BSC306 (BDSC 23689) 

were used to eliminate cnn; GM130Δ23, a protein null allele (ZHOU et al. 2014) (BDSC 65255), and 

Df(2R)Exel7170 (BDSC 7901) were used to eliminate GM130; UAS-GM130::eBFP (ZHOU et al. 

2014) (BDSC 65254) and ppk-Gal4 (BDSC 32079) were used to over-express GM130; dGrip75175 

(SCHNORRER et al. 2002) (Conduit lab, University of Cambridge; Raff lab, University of Oxford) and 

Df(2L)Exel7048 (BDSC 7999) were used to eliminate dGrip75; KhcE177K (KELLIHER et al. 2018) was 

used in trans to the null allele Khc27 (BRENDZA et al. 1999) (Saxton lab, UC-Santa Cruz); nudE39A 

(WAINMAN et al. 2009) (Goldberg lab, Cornell University), a protein null allele, and Df(3L)BSC673 

(BDSC 26525) were used eliminate nudE; plp5 (BDSC 9567)(MARTINEZ-CAMPOS et al. 2004), an 

EMS-induced loss-of-function allele that strongly reduces plp levels, and Df(3L)Brd15, pp (BDSC 

5354) were used to eliminate plp activity; ppk-ManII::GFP (JENKINS et al. 2017) and UAS-

GalNacT2::TagRFP (ZHOU et al. 2014) (Ye lab, University of Michigan) were used to label medial 

and trans Golgi compartments, respectively; ppk-CD4::GFP (BDSC 35842, BDSC 35843) and ppk-

CD4::tdTom (HAN et al. 2011) (BDSC 35844, BDSC 35845) were used to visualize neuron 

morphology; ppk-EB1::GFP (ARTHUR et al. 2015) was used to analyze microtubule polarity and 

dynamics. 

Live imaging 
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Fly crosses for live imaging were set up using 5-8 virgin females and 4-6 young males; 

larvae were collected in 12-h intervals and aged to the desired developmental stage (larvae 

produced in the first 24-48 h after mating were not used). Larvae of the desired genotype were 

washed with 1X phosphate-buffered saline (PBS), mounted in a 50:50 1X PBS:glycerol solution 

on a slide between two strips of vacuum grease, and immobilized by pressing on a coverslip 

mounted on top of the larva and vacuum grease spacers. The dorsal class IV ddaC neurons 

within abdominal segments 2-4 were imaged with a 40x1.3 NA oil immersion objective. All 

imaging was performed on a Leica SP5 (Leica Microsystems) using HyD photodetectors.  

 

Microtubule polarity and growth analysis 

Microtubule polarity and growth were analyzed by scoring EB1::GFP comets within 150 

µm of the cell body in dendrites or axons. EB1::GFP comet trajectories were captured at a 

resolution of 1024 x 512 pixels and a rate of 0.86s per frame for 5-7min. One or two ddaC 

neurons per larva were imaged at 96 -120 h after egg laying (AEL). Videos were stabilized with 

the stabilizer plugin in FIJI ImageJ (ImageJ; National Institutes of Health); kymographs were 

generated in Metamorph (Molecular Devices). Movies that did not contain at least two comets 

were excluded. Comet trajectories were manually traced, and the position and time 

coordinates were recorded to calculate comet direction (microtubule orientation) and 

frequency. A comet trajectory was included only if it could be clearly traced in at least 12 

continuous frames (~11s). Anterograde comets traveled away from the cell body whereas 

retrograde comets traveled toward the cell body. The frequency of EB1::GFP comets was 

calculated as the number of comets present in a 100 µm segment (axons) per minute. To 
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calculate microtubule polarity in dendrites, EB1::GFP comets were scored in a segment ≥ 30 µm 

between two branchpoints. To identify the origin of anterograde EB1::GFP comets in dendrites, 

dendrite segments within 100 µm of the cell body that contained at least one comet were 

selected for analysis. Comet trajectories were identified in kymographs, and any anterograde 

comets were then traced back to their origin in the corresponding movie. 

 

Axon branching analysis  

Axon morphology was visualized at late 3rd instar (120-144h AEL) using CD4::GFP and 

CD4::Tomato. Images were captured at 1024x1024 resolution and 1 µm z-steps (5-15 steps 

total). Analysis was performed on axons within 150 µm of the cell body. Z-stacks 5-15 µm thick 

were max projected for analysis. Axon branching was assessed manually by determining 

whether an axon split into one or more branches. 

 

Golgi compartment analysis  

Images of ManII::GFP and GalNacT2::TagRFP puncta in the dendrites and axons of 

neurons in 96-120h AEL larvae were captured at a resolution of 1024 x 1024 pixels and 0.75 µm 

z-steps over 5-15 µm. Analysis of Golgi outposts in axons included outposts within 100 µm of 

the cell body. For dendrite analysis, Golgi outposts throughout the entire arbors were included 

and split into two groups: (1) those within a radius of 95 µm of the cell body and (2) those 

outside this radius. One to two ddaC neurons were imaged per larva. Analysis was performed 

on the max-projected images. Signal outside the regions of interest (ROI) in axons and dendrites 

were masked. Masked images were subjected to a threshold gray value of 100 for 
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segmentation. The segmented signals were quantified with the ImageJ particle analysis function 

with the size cutoff of 0.10-15 µm2. Puncta outlines were saved as ROIs. The resulting particle 

numbers and sizes were exported to Excel for analysis. For multi-compartment analysis, 

overlapping compartments were manually scored by overlaying the puncta outlines from each 

channel, namely ManII::GFP and GalNacT2::TagRFP. Golgi units were scored as multi-

compartment when the ManII::GFP and GalNacT2::TagRFP signal overlapped. 

 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism8. The Anderson-Darling and 

Shapiro-Wilk tests were used to determine whether data were normally distributed. For 

normally distributed data, Student’s unpaired t tests were used to compare two groups; one-

way ANOVA with post hoc Tukey was used for multiple comparisons. For non-normally 

distributed data, a Mann-Whitney test was used to compare two groups and Kruskal-Wallis test 

followed by post hoc Dunn’s was used for multiple comparisons. Fisher’s Exact test was used 

for comparing proportions. P=0.05 was used as a cutoff for significance. Significance levels are 

represented as: *P=0.05–0.01, **P=0.01–0.001, ***P=0.001–0.0001 and ****P<0.0001. 

n.s.=not significant. 

 

Data Availability 

All strains are available upon request. The authors affirm that all data necessary for 

confirming the conclusions of the article are represented fully within the article and its figures. 
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Introduction 

Microtubule cytoskeleton in neurons are highly organized and polarized. The 

cytoskeleton not only provides mechanical support for neurons; it is also fundamentally 

important for guiding motor-cargo machineries to achieve polarized cargo delivery. With 

increasing imaging capacity, the intricate details of the neuronal cytoskeleton are being 

revealed through electron microscopy and super-resolution microscopy (Kapitein & 

Hoogenraad, 2015; Leterrier et al., 2017; Tas et al., 2017). In vitro biophysical and biochemical 

assays provide insight into the details of microtubule assembly and reveal their dynamic 

interaction with MAPs (Brouhard & Rice, 2018). However, we still know very little about how 

such structures are made in neurons. The challenge is how a particular microtubule-making 

mechanism is capable of promoting the accumulation of microtubules of a particular 

orientation to result in the distinct dendritic and axonal microtubule polarities.  

 

Current challenges and limitations in the search of neuronal MTOCs 

Organelle-based microtubule organizing centers (MTOCs) have been the main focus of 

past searches. The centrosome, the earliest known and best characterized MTOC in many cell 

types, has been the model. It emanates microtubules, whose minus-ends are anchored at the 

centrosome, and is enriched in factors that promote microtubule nucleation, stabilization, and 

polymerization. Although the centrosome is not essential for building neuronal microtubules, 

these characteristics of a centrosome are used as a guideline for finding other MTOCs 

(Dammermann et al., 2003; Woodruff et al., 2017). 
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In practice, these criteria can be difficult to use to identify other MTOCs. First of all, 

while microtubule filaments can be visualized by super-resolution microscopy in cultured 

neurons, visualizing the ends of individual microtubule is still challenging. Super-resolution 

imaging still has limited axial resolution; thus, continuous sampling of an entire microtubule 

filament in a neuronal process to identify a microtubule end can be difficult. On the other hand, 

looking for enrichment of the microtubule nucleator g-tubulin is also not an easy task. g-tubulin 

is free floating in the cytosol in its inactive form and may not have the same level of enrichment 

on a non-centrosomal MTOC as on the centrosome (Sánchez-Huertas et al., 2016).  

For these reasons, the search for non-centrosomal MTOCs has been approached in less 

directed ways. For example, in one common approach, microtubules are eliminated with cold 

or nocodazole treatment that depolymerizes microtubules; during the subsequent recovery 

period microtubule regrowth is monitored to reveal sites at which microtubule growth initiates. 

The Golgi’s MTOC potential was discovered through such an assay (Rivero et al., 2009). 

However, it is important to note that this type of approach is usually not able to clear all the 

microtubules; therefore, the regrowth could potentially occur from the ends of residual 

microtubules, rather than de novo growth seeded from a microtubule nucleator. Also, under 

such treatment, the peri-nucleus Golgi stacks are dismantled into Golgi fragments, making it 

unclear whether Golgi has remained its original identity. In neurons, this assay can have 

additional difficulty, as some neuronal microtubules are exceptionally stable (Yamada & 

Hayashi, 2019). Therefore, alternative assays have been developed and used to search for 

neuronal MTOCs. For example, putative microtubule nucleation sites have been identified using 

fluorescently labeled +TIP markers such as EB1::GFP and identifying the initiation sites of 
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EB1::GFP comets. However, EB1 does not only track microtubule growth from sites of 

nucleation; it also tracks microtubule growth that results from microtubule catastrophe and 

rescue events. Consequently, there is inherently ambiguity in such assays. For this reason, 

although Golgi outposts in dendrites are found to coincide with EB1::GFP initiation hotspots in 

dendrites, its status as a neuronal MTOC was still under debate.  

 

Heterogeneous Golgi population in neurons have different capacities to influence 

microtubule organization 

My thesis work examines the role of Golgi outposts in neuronal microtubule 

organization and its potential function as a neuronal MTOC. My research has revealed that 

while Golgi outposts support microtubule growth during dendrite development, they are 

surprisingly dispensable for the overall polarity of the dendritic cytoskeleton. I was able to show 

that, using multiple ways to disrupt Golgi outposts’ compartmental structure and its potential 

MTOC activity, dendrite microtubule polarity is unaffected. Despite that Golgi outposts are not 

essential for dendritic cytoskeleton, my work shows that ectopic Golgi outposts have the 

capacities to locally influence dendritic and axonal microtubule polarity. In genetic backgrounds 

that induce formation of ectopic Golgi in the axons and dendrites, we have found 

multicompartmental Golgi outposts correlate with appearance of mis-oriented microtubules 

(Figure 1). Importantly, we also found that Golgi’s ability to impact local microtubule polarity is 

independent of g-TuRC, the microtubule nucleation complex. These findings suggest that 

neurons have a heterogenous population of Golgi, differentiated by their localization and/or 

compartmentalization, can have different abilities to impact local microtubule organization. The 
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heterogeneity of Golgi as well as its g-TuRC independent MTOC nature provides explanations 

for the contradictory findings in the previous studies.  

 

            

Fig. 1. Golgi is not required for dendrite microtubule polarity but its ectopic localization in 

dendrites and axons locally impact microtubule organization.  

Disruption of Golgi outposts compartmentalization and MTOC pathway by depleting GM130 does 

not impact microtubule organization in the dendrites. Ectopic Golgi outposts in axons with 

reduced dynein activity and dendrites with GM130 overexpression induced local microtubule 

change in axons and dendrites respectively.  

 

A recent research that focused on visualizing fluorescently labeled endogenous g-tubulin 

found complementary evidences to support differential MTOC capacities of distinct Golgi 
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populations in neurons (Mukherjee, 2019). When g-tubulin is examined in relative to Golgi 

markers in Drosophila sensory neurons, colocalization is only found on somatic Golgi but not 

consistently on dendritic Golgi outposts. If g-tubulin-mediated microtubule nucleation is 

necessary for Golgi’s MTOC activity, this result would again support that lacking g-tubulin, Golgi 

outposts in dendrites are not essential for dendritic microtubule organization. One important 

unresolved question from this study is whether g-tubulin is necessary for Golgi-based MTOC 

activity.  

An important question that arises from our study is that if Golgi outposts are not 

essential for dendritic microtubule organization, what else may perform this function. A recent 

new study in C. elegans PVD neurons may shed light on this question. In developing dendrite, 

tip localized endosome is found colocalize with g-tubulin, and elimination of g-tubulin in this 

neuron is sufficient to perturb dendritic microtubule polarity (Liang et al., 2020). This 

observation made endosome a new candidate MTOC for making minus-end-distal microtubules 

in the dendrites. The endosome markers used in this study partially overlap with trans-Golgi 

network (TGN). It would be interesting to examine the relative localization of endosome 

compartments with different Golgi populations, so as to see whether the Golgi that has MTOC 

activity is also overlap with endosomes.  

 

Diverse pathways of microtubule-making: g-tubulin is not the only key 

Most studies seek to identify a MTOC by looking for its colocalization with the canonical 

microtubule nucleator g-tubulin. However, it is important to recognize that such criteria will 

miss two potential types of MTOCs: first, MTOCs that do not concentrate g-tubulin at one 
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particular site (Augmin-mediated microtubule growth is such an example (Cunha-Ferreira et al., 

2018; Sánchez-Huertas et al., 2016); Augmin-anchored g-TuRC are scattered at different 

positions along microtubules); second, MTOCs that use microtubule-making pathways that are 

independent of g-tubulin. Accumulating evidences suggest that elimination of g-tubulin, using a 

variety of knockdown methods, does not strongly deplete microtubules in Drosophila and 

mammalian neurons (Liang et al., 2020; Nguyen et al., 2014; Ori-McKenney et al., 2012; 

Sánchez-Huertas et al., 2016). Such observation is not unique to neurons. Knocking down g-

tubulin in C. elegans intestinal epithelium similarly does not deplete majority of microtubules, 

despite causing an elevated microtubule dynamics (Sallee et al., 2018). These findings 

collectively suggest that other microtubule-making pathways may exist to compensate for loss 

of g-tubulin.  

TPPP (tubulin polymerization promoting protein) in oligodendrocytes, by recruiting and 

enriching local tubulin concentration, is recently found as a nucleation-competent protein (Fu 

et al., 2019). While TPPP may not function as a microtubule nucleator in neuron, it opens up the 

possibility of finding pathways that nucleate microtubules independent of g-tubulin. 

Microtubule stabilizing enzyme CAMSAPs and severing proteins, such as Katanin and Spastin, 

represent another important category of microtubule interacting proteins that may create and 

modify the cytoskeleton (Tang et al., 2020; Wang et al., 2019). Altering the cellular level of 

these proteins individually is sufficient to affect neuronal cytoskeleton polarity. The exact 

mechanisms by which these proteins may impact on microtubule polarity is still unknown.  
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Outlook 

Building a highly organized cellular microtubule architecture in neurons or in any cell is a 

complex process. It is a result of actions from likely a combination of different MTOCs that 

make microtubules, together with microtubule interacting proteins that stabilize, anchor and 

sever microtubules over the course of development. Finding the components that fall in these 

categories would be an important first step. To fully understand how microtubules are built in 

neurons, we would like to know how these pathways that generate and modify microtubules 

are turned on or off; how these pathways cross-talk with one another; and, finally, how these 

factors may collectively contribute to the overall cytoskeleton. 
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Appendix. A. Visualizing EB1 and Grasp65 at endogenous level with tissue-

specific reconstituted splitGFP 
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Introduction  

Microtubule-based cargo trafficking in neurons is essential to neuron’s function and 

survival. Visualization of the key components involved in this process is crucial to our 

understanding of how polarized and highly efficient cargo delivery is achieved. Microtubule, the 

highway and asymmetrically distributed organelle cargo, such as Golgi, are such key 

components. While these structures were previously visualized by antibody staining or 

transgenically expressed protein fused to fluorescent tags, examining endogenous state of 

these proteins will provide more precise information about their localization and dynamics.  

Using CRISPR, we edited the gene locus that encode for +TIP EB1 and Golgi matrix 

protein GRASAP65 by adding the splitGFP11 sequence at 3’ end of the last exon (Figure A.2). To 

reconstitute GFP signal in a specific tissue, in Class IV da neurons for instance, we expressed the 

GFP11 counterpart GFP1-10 under pickpocket (ppk) promoter (Figure A.1). As such, we are able 

to track dynamic endogenous EB1 comet as well as visualize endogenous Golgi structure. These 

engineered EB1 and Golgi marker provide great new tools to visualize endogenous microtubule 

and Golgi dynamics. This also exemplifies application of CRISPR and split fluorophore in 

visualizing endogenous protein.  

 

Preliminary results 

Dynamic EB1 comets are visualized with reconstituted split-GFPs.  

We tested the splitGFP tagged endogenous EB1 alleles by reconstituting it with GFP1-10 

that expressed in Drosophila Class IV sensory neurons. The reconstituted EB1 has a cytosolic 

distribution in dendrite, axon and the cell body (Figure A.2B). In dendrites, its signal is brighter 
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in the major branches, and much weaker in terminal dendrites. To analyze its dynamic 

property, we also performed time-lapse live imaging in dendrites and axons (Figure A.2B). Like 

transgenic EB1::GFP, the reconstitute EB1::GFP11 and GFP1-10 forms very dynamic comets; 

these comets move at comparable rate as the EB1::GFP transgenic construct. Similar to 

previously found, the reconstituted EB1 comets in dendrites move in the retrograde direction, 

and oppositely in the axons (Figure A.2B).  

 

GRASP65 tagged with reconstituted split-GFP localize to branch point and soma  

We examined edited GRAPSP65 allele by testing reconstituted GFP signal in the Class IV 

da neurons. The reconstituted GRASP65 GFP signal localize to branch point and soma (Figure 

A2.D), which is similar to the localization of GM130, a cis-Golgi matrix protein that directly 

interact with GRASP65 .  
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Materials and Methods 

Generation of GFP11 labeled EB1 and Grasp65 loci 

The tagged EB1 and Grasp65 locus were generated in a two-step fashion (Figure A.3): CRISPR-

Cas9-mediated genome editing is used to introduce linker-GFP11x7-pBac-3xP3-dsRED-pBac at 

the end of the respective loci; the screening marker is excised with piggyBac transposase. To 

generate the initial CRISPR-Cas9 edited loci, guideRNA expression plasmid (pBSK-U63) and 

respected repair template are injected to nos-Cas9 fly (BDSC: 78782) embryos by BestGene; the 

progenies that has 3xP3 DsRed markers are considered as hits and were subsequently crossed 

to transposase fly line to excise the pBac flanked sequences. The targeted loci were fully 

sequenced.  

 

Sequences 

 

 

 

 

 

 

 

EB1 guide sequence 5’TAATACTCCTCGTCCTCTGG3’ 
Grasp65 guide sequence 5’GCAGGCAACGACGAACTATC3’ 

linker sequence 5‘GGCGGATCCGGCGGA3’ 

GFP11 x 7 

5'CGTGACCACATGGTCCTTCATGAGTATGTAAATGCTGCTGGGATTACAGGTGGCTCTGGAGGTAGAGATCAT
ATGGTTCTCCACGAATACGTTAACGCCGCAGGCATCACTGGCGGTAGTGGAGGACGCGACCATATGGTACTAC
ATGAATATGTCAATGCAGCCGGAATAACCGGAGGGTCCGGAGGCCGGGATCACATGGTGCTGCATGAGTATG
TGAACGCGGCGGGTATAACTGGTGGGTCGGGCGGACGAGACCATATGGTGCTTCACGAATACGTAAACGCAG
CTGGCATTACTGGCGGATCAGGTGGCAGGGATCACATGGTACTCCATGAGTACGTGAACGCTGCTGGAATCAC
AGGCGGTAGCGGCGGTCGGGACCATATGGTCCTGCACGAATATGTCAATGCTGCCGGTATCACC 3'
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Figure A.1: Basic strategies to visualize proteins at endogenous level with tissue-specific split-

fluorescent protein reconstitution. Protein of interest is modified at endogenous locus to add  

single or multiple copies of fluorescent fragments of GFP11. The complementary GFP1-10  is 

expressed in a selective tissue under the respective tissue-specific promoter. The fluorophore is 

only excitable when it has both peptide fluorophore pieces, which enables tissue-specific 

visualization of targeted protein at its endogenous level with the reconstituted fluorescent 

proteins.  
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Figure A.2: Reconstituted GFP labels EB1 and Grasp65 at their endogenous level. A) and C) 

Sequences that encode for seven copies of GFP11(GFP11 x7) are added to EB1 and GRASP65 

transcripts at the end of the last axon, respectively. B) Reconstituted EB1 signal in Class IV da 

neuron. Z-stack taken over the whole arbor. Scale bar = 50µm. Kymographs of reconstituted 

EB1::GFP signal in an axon and a dendrite segments. D) Reconstituted GRASP65 signal in Class IV 

da neuron. Scale bar = 50µm.  
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Appendix. B. Generating Grip75KO-attp allele for expediated genetic manipulation 
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Introduction 

Generating microtubules in cells is crucially dependent on the g-TuRC complex, which is 

so far the only well-characterized microtubule nucleator. This multi-component complex 

assembles into a cone-shaped structure, providing a stable platform for tubulin dimer addition. 

The g-TuRC is made of two subcomplex, g-TuSC, composed of GCP1,GPC2 and GCP3, and g-TuRC 

specific components GCP4, 5, and 6. The g-TuSCs form the direct interface between g-TuRC and 

incoming tubulin dimers. The g-TuRC-specific components regulate the overall structural 

integrity as well as the activity and localization of the g-TuRC complex. While this complex has 

been intensively studied in in vitro we know little about this complex’s location and regulation 

in vivo. 

Here, we have taken advantage of CRISPR-mediated genome editing to generate an 

allele of the Drosophila GCP4/Grip75 in which the original Grip75 gene sequence is replaced by 

an attP site. This manipulation of the site will allow the easy and rapid generation of tagged 

Grip75 and mutant Grip75 alleles to visualize its localization and manipulate its activity, 

respectively.   
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Materials and Methods 

Generation of Grip75KO-attP locus with CRISPR-Cas9  

CRISPR-Cas9 was used to generate the Grip75KO-attP locus. The endogenous Grip75 gene and the 

flanking intergenic regions are replaced with attP-DsRed-pBac through homologous 

recombination using a donor template. The donor template contains  homology arms, which 

facilitates knock-in of new Grip75 alleles, and CRISPR selection marker 3xP3-DsRed. This will 

result in the deletion of the entire Grip75 gene and part of the overlapping Cog4 gene.   

 

Sequences 

 

 

 

 

 

 

Grip75 guide1 5'GGTGCAAGGGGATGTCCTCG3'
Grip75 guide2 5'gAAAAATGTGCGAACTTCGTT3' ( an additional g is added to enhance guideRNA transcription)
Homology arm 1 5' TTAACGTTAAAAATGTGCGAACCTCATTA - (961bp)- AGTGCGTTCACAAAATCAC 3' (T-C mutation*)
Homology arm 2 5' AAGGACTGTAAGACCACATTT - (951bp) - GGTGCAAGGGGATGTCC 3' 

* mutation in repair template to prevent recursive editing events
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Figure B.1: Engineering the Grip75 gene to facilitate knock-in of Grip75 alleles. A) CRISPR-Cas9 

in combination with homologous recombination was used to replace the endogenous Grip75 

gene with attP, DsRed and pBac sequences. B) Knock-in template that carries attB-Grip75 alleles 

and pBac was injected Grip75KO-attP-DsRed embryos expressing ϕC31 integrase, which mediates 

recombination between attP and attB. The pBac sequences from the Girp75 KO allele and the 

knock-in template would facilitate the removal of attR and DsRed and additional exogenous 

plasmid sequences post integration.  
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