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abstract

As programmable GPUs have become increasingly general-purpose, they are
increasingly used by a wide variety of applications that leverage them for ac-
celerated computing. This has resulted in them outgrowing their traditional
use as accelerators attached to CPUs. Although GPUs continue to be used for
streaming, data-parallel applications such as gaming, video editing, graphics
rendering, and data mining they have now become the default platform for an
ever-growing list of applications such as big data processing, deep learning, and
graph analytics. However, workloads that traditionally ran on these systems have
different characteristics than these newer workloads. For example, traditional
workloads generally assume threads access independent data and synchronize
infrequently. Accordingly, accelerators such as GPUs use simple, software-driven
coherence protocols that tradeoff heavyweight synchronization operations for
improved efficiency when synchronization is not required. To help reduce this
overhead, accelerators also use scoped memory consistency models. Scopes
enable cheap, local synchronization if the synchronizing threads are in the same
thread block, but when this is not the case, heavyweight operations are performed
to ensure correctness.

While this approach worked well for traditional applications, many modern
applications that run on GPUs frequently share data across threads and utilize fine
grained-synchronization. Thus, inefficient synchronization support is a significant
bottleneck for running them on these accelerators. Thus, a holistic approach
is required to tackle the inefficiencies in how synchronization is used in both
single- and Multi-GPU systems. We propose hardware-software frameworks
that use knowledge of the GPU memory hierarchy and algorithmic properties
of applications to improve the efficiency of GPU global synchronization. First
we target bottlenecks in explicit global synchronization resulting from the use of
atomics for global memory updates. To resolve this bottleneck, we propose to
cache commutative atomic updates locally using a novel buffering mechanism



x

that exploits locality in atomics and reduces their serialization penalty, which
reduces network traffic to the LLC and improves performance. Programmers
also use global synchronization to ensure correctness with software synchroniza-
tion primitives. However, existing GPU synchronization primitives either scale
poorly or suffer from livelock or deadlock issues because of heavy contention
between threads accessing shared synchronization objects. We overcome these
inefficiencies by designing more efficient, scalable GPU synchronization prim-
itives. Finally, we handle performance degradation that results from implicit
global synchronization that takes place at kernel boundaries. GPU vendors are
pivoting to chiplet-based designs where the global memory ordering point has
moved from the L2 to the L3 or global memory. This necessitates bulk cache
invalidations/writeback of the L2 caches in these chiplets, leading to a loss of
potential inter-kernel data reuse. We propose an intelligent producer-consumer
dependency tracking mechanism called CPCoh that reduces the number of bulk
coherence maintenance operations required, thereby increasing inter-kernel reuse
and improving performance. Overall we advance the state of the art for global
synchronization in GPUs resulting in performance and energy improvements
across a plethora of modern GPU applications.
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1 introduction

Traditionally general-purpose programmable accelerators such as GPUs were used
for streaming, data parallel workloads with limited data reuse, or data sharing with
coarse-grained synchronization that usually only happened at kernel boundaries.
Recently, general-purpose GPUs (GPGPUs) have become the accelerator of choice
for a wide range of applications including machine learning, graph analytics,
computational biology and data mining. These newer GPGPU applications rely on
fine-grained synchronization and data sharing for higher performance. However,
GPU’s massively parallel processing cores coupled with simple, software-driven
coherence protocols and scoped consistency models provide challenges for efficient
synchronization at various granularities. Unlike multi-core CPUs, which have
significant OS support and complex coherence protocols that make synchronization
relatively cheap, GPUs have limited OS support and simple, software-driven
coherence protocols which make synchronization expensive. GPUs tradeoff
inefficient synchronization support for more efficient regular data accesses. This
tradeoff negatively affects performance when synchronization becomes more
frequent, as it requires heavyweight actions at synchronization points to ensure
correctness [6, 73, 81, 118, 203, 204, 206]. To partially reduce this overhead,
GPU memory consistency models utilize scoped synchronization, which allows
programmers to specify the scope at which threads must synchronize [67, 85–
87, 136]. Scopes allow synchronization and coherence to be contained within
a narrow subset of the memory hierarchy, where the level of the scope impacts
the synchronization cost. For example in a scope-based memory consistency
model, if the synchronizing threads belong to the same thread block (TB), then
the synchronization occurs locally with reduced overhead. However, expensive
global synchronization is still required if the synchronizing threads are in different
TBs, which is often the case for these workloads. Global synchronization in
GPUs has a variety of different use cases, which expose different challenges
with its efficiency. This work takes a holistic look at global synchronization
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and proposes solutions to mitigate most of the important inefficiencies that
result from it. In particular, we focus on three key types of synchronization:
device-scoped relaxed atomics, software synchronization primitives, and implicit
kernel-boundary synchronization.

• Global synchronization through device-scoped atomics: Many modern
GPU applications utilize device-scope relaxed atomics – relaxed atomics
imply no ordering on other memory accesses to update shared global
variables. Device-scope accesses go to the first common ordering point,
which for monolithic GPUs is the L2 cache. However, since L2 accesses
in modern GPUs take over 100 cycles (Section 3.3), even relaxed, device-
scope atomics are expensive which makes their use to update shared
global variables inefficient. Recent work has shown that these atomic
updates are a large source of inefficiency in ML training [125] and graph
analytics [4, 226]. To overcome this inefficiency we use hardware-software
co-design to reduce atomic latency, data movement, and energy [46]. At
the software level, we exploit algorithmic properties; recent work identified
these graph application use commutative atomics: the order of commutative
atomics does not matter since the program does not read the updated
values until all updates have completed [5, 27, 204, 242]. Exploiting this
commutativity, at the hardware level we buffer partial device-scope atomic
updates locally at each SM in a small local atomic buffer (LAB), before
sending coalesced updates to the shared L2 later. This enables LAB to
coalesce commutative atomic updates across all TBs on an SM, alleviating
the impact of global atomic updates and improving performance by 28%,
energy by 19%, and network traffic by 19% on average over the baseline
GPU architecture while also outperforming state-of-the-art techniques such
as hLRC [6] and PHI [146]. This work was published in the International
Symposium on High-Performance Computer Architecture (HPCA)
2022 [46].
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• Global synchronization through explicit software primitives: Some
GPU algorithms cannot rely on relaxed atomics to shared global variables
and need stronger ordering guarantees at synchronization points. Thus,
these applications rely on other forms of explicit synchronization, including
barriers and semaphores, to avoid data races and ensure correctness when
threads in different thread blocks or work groups are accessing the same
data [78, 205, 208, 212] to avoid data races and ensure correctness. However,
device-wide synchronization is prohibitively expensive and is often a
bottleneck for emerging workloads that utilize it (discussed further in
Section 4.4). Consequently, as GPU algorithms scale to thousands of
threads, existing GPU synchronization primitives either scale poorly or
suffer from livelock or deadlock issues because of heavy contention between
threads accessing shared synchronization objects. We seek to overcome
these inefficiencies by designing more efficient, scalable GPU barriers and
semaphores. In particular, we show how multi-level sense reversing barriers
and priority mechanisms for semaphores can be designed with the GPUs
unique processing model in mind to improve the performance and scalability
of GPU synchronization primitives. Overall, across three modern GPUs the
proposed barrier algorithm improves performance by an average of 33% over
a GPU tree barrier algorithm and improves performance by an average of
34% over CUDA Cooperative Groups [78] for five full-sized benchmarks at
high contention levels; the new semaphore algorithm improves performance
by an average of 83% compared to prior GPU semaphores. This work was
published in IEEE Transactions on Parallel and Distributed Systems
(TPDS 2022) [45].

• Implicit global synchronization at kernel boundaries: Some applications
explicitly synchronize (e.g., with atomics) in application phases to ensure
correctness when multiple threads are accessing shared data. However, all
applications, even those that do not need explicit synchronization, must
implicitly synchronize at kernel boundaries. During implicit synchroniza-
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tion, private caches must be invalidated and at the end of kernels, all dirty
data must be written back. In monolithic GPUs, the L2 was a common
synchronization point across all SMs because it was the LLC. Thus, implicit
synchronization only needed to be performed on the L1 caches. However
with a recent shift of commercial GPU architectures towards chiplet-based
designs [189, 198], there is a need to bulk invalidate/writeback L2 caches
that are private to a chiplet and are no longer the common synchronization
point. This eliminates the potential for inter-kernel reuse from the L2 cache
which GPU applications often rely on for higher performance [105, 239].
The reuse now can only be gained from the L3 cache, making it more
expensive. To mitigate this performance impact there is a need to retain
data in L2 caches across kernels. Thus, we seek to reduce the need for
bulk L2 cache invalidations/writeback operations by proposing CPCoh.
CPCoh splits the Command Processor, the interface between the host and
the accelerator (Section 2.2.1) into local and global components to improve
scalability, then augments them to track producer-consumer dependencies
and kernel scheduling information. To do this, CPCoh adds a chiplet
coherency table inside the Global Command Processor that has access to
both the access modes and the kernel scheduling information that CPCoh
requires to operate (discussed further in Chapter 5). This allows applications
to retain more data in caches locally, improving average performance by
13% and 14%, energy consumption by 14% and 11%, and network traffic
by 19% and 17%, respectively, over current approaches and HMG [189].
This work is in submission at this thesis was published [47, 48].

Next we provide background for our work and then go into detail about
our solutions to each of the three pieces of global synchronization that have
been discussed here. Overall, all our optimizations combined advance the state
of the art for the implementation of global synchronization in general-purpose
programmable accelerators.
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2 background and related work

This chapter reviews the necessary background materials for the rest of this dis-
sertation. Section 2.1 presents a high-level view of the modern GPU architecture,
while Section 2.2 summarizes GPU consistency and coherence, and introduces
the Command Processor.

2.1 GPU Architecture

A GPU application starts on the host CPU which launches work on the GPU in
the form of kernels. Every time the kernel function is called, CPU will launch it
onto the GPU through a software framework such as CUDA [158], HIP [13], or
OpenCL [211]. GPU programs consist of one or more kernels of thousands of
threads. The thread hierarchy is shown in Figure 2.2. A group of threads that
are executed in lockstep and scheduled as a unit is referred to as a warp or a
wavefront multiple warps combine to make a thread block or TB (AMD refers
to them as work groups [1]). A grid of these thread blocks is used to execute
a kernel. Figure 2.1 gives a simplified view of the GPU architecture it consists
of Streaming Multiprocessors (SM) (also known as Compute Units) with their
own L1 data caches and shared memories. The L2 cache serves as the common
ordering point for all SMs which then interfaces with the main memory. Threads
within a thread block can communicate via an on-chip scratchpad memory called
the shared memory in CUDA (or local data store in OpenCL), and can synchronize
via hardware barriers. The SM cores on a GPU access a shared last-level cache
and off-chip DRAM memory through an on-chip interconnection network. From
a programming perspective, GPU memory is divided into several spaces, each
with its own characteristics in terms of performance and semantics. For example,
data that is shared only by the threads of a thread block can be stored in the shared
memory, while data that is shared by multiple thread blocks must be stored in the
global memory.
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HBM

L2 Cache

…

Command Processor

CU 0

L1/Scratch

CU 1

L1/Scratch

CU N-1

L1/Scratch

Figure 2.1: Simplified monolithic GPU architecture

Figure 2.2: GPU thread hierarchy

2.2 GPU Coherence and Consistency

Since GPUs traditionally ran massively data-parallel, streaming applications with
coarse-grained synchronization and little to no data reuse, GPU architectures
used simple, software-driven Valid-Invalid (VI)-style coherence protocols [118,
189, 203, 204]. Unlike CPU coherence protocols, these protocols did not have
ownership requests, downgrade requests, writer-initiated invalidations, state bits,
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snoopy buses or directories [206].
Typically, GPU L1 caches either use a write through or write no-allocate

approach for global memory writes [104, 206]. To improve performance, these
writes may be buffered and coalesced until the next store release [81]. When a
store release occurs (the end of the kernel or a release synchronization operation),
all prior stores must complete and the data is written to the next level of the
memory hierarchy, which is usually shared between SMs. Thus, fine-grained
synchronization that uses load acquires and/or store releases provides ordering
between data and atomic requests from TBs on multiple SMs. For example,
sequentially consistent (SC) atomics orders both data and atomic accesses. As
GPU coherence protocols do not obtain ownership for written data or atomics,
they must perform synchronization accesses (atomics) at the LLC (usually L2),
they must flush all dirty data from the store buffer on releases, and they must
self-invalidate the entire cache on acquires to ensure a consistent view of memory
for variables being accessed by multiple TBs. Atomics are sometimes used as
relaxed atomics. Relaxed atomics act neither as an acquire nor a release, they
imply no ordering on other memory accesses, and they can be reordered with
other data and atomic accesses. As a result, relaxed atomics are cheaper. However,
since L2 accesses in modern GPUs take over 100 cycles (Section 3.3), even
relaxed, device-scope atomics are expensive. In contrast, CPUs often obtain
ownership for written data and atomics (e.g., in MOESI-style coherence), which
makes synchronization points cheap; however, these protocols are a poor fit for
GPUs [81, 206].

Instead GPU consistency models utilize scopes to reduce synchronization
overhead, as part of sequentially consistent for heterogeneous-race-free (SC-for-
HRF) based consistency models [67, 85–87, 136]. Programs which properly
identify both memory accesses as data or synchronization and each synchronization
accesses’ scope are guaranteed to be SC-for-HRF. Although SC-for-HRF has
multiple scopes, we focus on the two most widely used variants: local and device.
Locally scoped atomics are only guaranteed to be visible to other threads in the



8

…

Graphics 
Queue

…
Stream 0 Stream 1 Stream N

… … …
Compute Queues

Packet Processor

Queue Scheduler

Dispatcher / WG Scheduler

CP Memory

…

…

Compute Units

Figure 2.3: GPU Command Processor

same TB, while device-scoped atomics are visible to all threads across the GPU.
Thus, locally scoped synchronization is significantly cheaper since it does not
invalidate all valid L1 data on acquires nor writes through dirty data on releases.

2.2.1 GPU Command Processors

Figure 2.3 shows a simplified diagram of the overall Command Processor (CP) [10,
73].1 For GPUs, the programmable CP interfaces between the software, via the
driver and runtime (e.g., AMD’s ROCm [15] stack), and the hardware. Since
CPs are programmable, vendors can adjust their functionality without changing
hardware. Once a user has written their GPU program [14, 158, 211], the
underlying GPU driver and runtime create software queues and enqueue the
program’s GPU kernels, along with any memory management and inter-kernel
synchronization, as packet(s).

Next, the CP’s packet processor maps each packet onto one of its hardware
compute queues using the queue scheduler. The CP’s queue scheduler’s goal is to
map t kernels to M processing units while maximizing resource utilization. To

1Without loss of generality, we use AMD terminology when discussing CPs. NVIDIA utilizes
embedded RISC cores for similar purposes [1, 159].
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meet this goal, GPUs support multiple hardware queues [10, 131, 156, 182] to
manage independent work submitted asynchronously with GPU streams [14, 135,
163], which allow programmers to enqueue work that may be executed in parallel
with another stream on the GPU. Normally, each stream is mapped to a queue
and each queue holds multiple kernels from a single stream. The CP maintains
inter-kernel dependencies between kernels in the same stream but allows kernels
from different streams to execute asynchronously. Within a queue, a queue entry
describes a separate kernel launch and includes details such as the dimension of
threads, register usage, scratchpad size, and pointers to arrays (or other kernel
arguments) being accessed. The CP’s Work-Group (WG) scheduler reads these
fields to dispatch WGs to CUs. Generally, WG schedulers issue all WGs from
one kernel before switching to issue WGs from a different kernel. Moreover, WG
schedulers will do this in round-robin fashion [182] across the available CUs.



10

3 only buffer when you need to: reducing
on-chip gpu traffic with reconfigurable local
atomic buffers

3.1 Motivation

Applications such as machine learning and graph analytics leverage massive
parallel computation available on GPUs to improve their performance. Unlike
tradition GPGPU applications, many of these applications rely on data sharing
across TB, and in some cases they require fine-grained synchronization. Thus
synchronization is necessary to ensure correctness and avoid data races. In
GPUs threads in different TBs must use global-scoped atomics that are performed
at the shared last level cache (LLC, usually the L2) to perform these updates
(Section 2.2). However, since GPUs do not efficiently support atomics, this limits
scalability (discussed further in Section 2.2). Recent work has shown that these
atomic updates are a large source of inefficiency in ML training [125] and graph
analytics [4, 226].

To validate these claims, we profiled histograms, graph analytics, and ML
training applications (described further in Section 3.3). Figure 3.1 shows that
device-scoped atomics make up a significant fraction (29% on average) of their
global memory accesses. Thus they can become a bottleneck for the overall
system as atomics are relatively expensive operations. However, atomics used
in these programs do not imply ordering on surrounding accesses because they
are commutatively updating shared variables. Thus, they can safely use lower
overhead relaxed atomics (discussed further in Section 2.2). Nevertheless, relaxed
atomics are still expensive. Moreover, although applications like BC (Betweenness
Centrality) have fewer atomics, these accesses are often a bottleneck because they
are serialized [58] – multiple threads from the same TB concurrently, atomically
update the same address, which serializes the accesses (discussed further in
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Figure 3.1: Percent of device-scope commutative atomics for histograms (blue),
graph analytics (green), and ML training (gray) on a Titan V GPU.

Section 3.2.1). Given the importance of ML Training and graph analytics, prior
work has proposed customized solutions for graph analytics [34, 75, 236, 244] and
ML training [38, 96, 126, 155, 184, 235]. However, GPUs still remain the most
widely used computing platform for these applications due to their availability and
ease of programming. Recent work on optimizing ML training on GPUs includes
reducing the width and/or number of memory accesses [90, 225, 248], utilizing
compression [192], or rewriting code to frequently perform memory accesses in
the register file or shared memory [54, 59, 108, 164, 246]. However, Figure 3.1
shows that many of the remaining memory requests are atomics that update shared
locations. Accordingly, these atomics represent a significant overhead.

To overcome this inefficiency we propose a hardware-software co-design
approach that reduces atomic latency, data movement, and energy. At the software
level, we exploit algorithmic properties; recent work identified that graph analytics
algorithms often use commutative relaxed atomics – i.e., although the accesses
must be performed atomically to ensure correctness, the order of the atomics does
not matter since the program does not view the updated values until all updates
have completed [5, 27, 204, 242]. We find that this property also holds for ML
training weight updates: the updated weights are not used until subsequent layers.
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Moreover, other, non-commutative relaxed atomics with similar properties can
benefit from our approach. At the hardware level, we exploit the commutativity
of these atomic updates to buffer partial device-scope atomic updates locally at
each SM in a small local atomic buffer (LAB), before sending coalesced updates
to the shared L2 later. We propose to extend the partitioning of the unified local
memory [68] to include the LAB. This enables LAB to coalesce commutative
atomic updates across all TBs on an SM, and improves performance, energy, and
network traffic by reducing both the latency for atomic accesses and the number
of commutative atomic accesses sent to the L2.

Prior work (discussed in more detail in Section 3.6) also exploits commutativity
to improve performance and reduce energy [61]. In particular, recent research like
DeNovo and hLRC cache device-scoped atomics in GPU L1 caches [6, 203, 204].
However, they require significant coherence protocol or consistency model changes.
Similarly, in multi-core CPUs AIM, CCache, Coup, and PHI exploit commutativity
by adding an additional coherence state or in-cache buffers [5, 24, 146, 242].
Although these approaches exploit similar insights, since GPUs use lightweight,
software-driven coherence protocols [118, 203, 206] and have high L1 cache
contention, our results show these solutions are not ideal fits for GPUs. Instead,
LAB shows that using the existing reconfigurable SRAM to separately buffer
atomics improves performance and energy efficiency relative to PHI and hLRC
(Section 3.4), requires minor software changes (annotating commutative atomic
accesses), and does not require coherence protocol or consistency model changes.
Thus, LAB provides similar or better benefits than hLRC and PHI, without their
downsides.

Overall, across 15 graph analytics and ML training workloads, a small,
reconfigurable, per SM LAB improves performance by 28%, reduces energy by
19%, and reduces on-chip traffic by 19% on average, respectively. Moreover,
LAB improves on state-of-the-art solutions like hLRC and PHI. Additionally,
our results show that reconfiguring 8 KB or less of the SM’s local SRAM into a
LAB is often sufficient. Finally, LAB does not affect applications that do not use
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commutative atomics, unlike other state-of-the-art solutions.
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Listing 3.1: Pseudo-code of GPU histogram kernel [141].
i f ( t i d <= (N − 1 ) ) {

l o c = a r r [ t i d ] ;
/ / a tomicAdd (& h i s t [ l o c ] , 1 , mem_order_comm ) ;
atomicAdd(& h i s t [ l o c ] , 1 ) ; / / commuta t i ve

}

Listing 3.2: Pseudo-code from key PageRank kernel [37].
end = ( ( t i d +1) < numNodes ? row [ t i d +1] : numEdges ) ;
f o r ( edge = row [ t i d ] ; edge < end ; ++ edge ) {

nodeID = c o l [ edge ] ;
i n c = pR1 [ t i d ] / ( f l o a t ) ( end − s t a r t ) ;
/ / a tomicAdd (&pR2 [ nodeID ] , inc , mem_order_comm ) ;
atomicAdd(&pR2 [ nodeID ] , i n c ) ; / / commuta t i ve

}

SIMT Core

Shared Memory L1 D$ LAB

Local SRAM

L2 Cache

Main Memory

Atomics

(a) (b)

…

…

Local SRAM Data
0 N-1

Mux (Shar. Mem./L1 D$/LAB)

…

Cache/LAB Tags

…

0 N-1

…

0 N-1

…

0 N-1

Mux (L1 D$/LAB)

Figure 3.2: Proposed design (a) including LAB (in green) and (b) local SRAM.

3.2 Design and Implementation of the LAB
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3.2.1 LAB Hardware Support

Figure 3.2a shows our proposed addition of the LAB to the GPU memory hierarchy.
Physically, the LAB is similar to the L1 data cache; as shown in Figure 3.2b we
exploit the reconfigurability of the unified local memory [68] to partition it into
L1 data cache, shared memory, and LAB. This requires an additional 2:1 mux
for the tag array to avoid duplication and determine if a tag belongs to the cache
or LAB; the data array already has a 4:1 mux which previously had one unused
input [68].1 Like some GPU L1 caches, the LAB has 128 byte lines, broken into
four 32-byte sectors.

Since LAB is intended to be small, we make it associative. LAB also utilizes
a portion of the local SRAM’s data and tag arrays (via the muxes in Figure 3.2b).
The data array holds partial values for a given address, while the metadata holds
address, replacement, and atomic. Since we are only storing an update to the
overall global variable, we use an allocate on fill write miss policy, where the
variable is allocated the initialized with the value of the first update to that address.
Next, we discuss LAB’s operation.

3.2.1.1 Evictions

When the LAB is full, we use an LRU replacement policy to determine which
entry to evict. However, evictions can be done off the critical path, since the
commutative atomics do not imply any ordering on other memory accesses.
Accordingly, as soon as the message is sent to the L2, we reuse the entry. When
the evicted atomic request reaches the L2, it updates the appropriate addresses’
value.2

1It is also possible to implement LAB inside the L1 cache using techniques such as way
partitioning [43]. However, way partitioning also requires additional muxes and may increase
conflict misses. Thus, we focus on partitioning the SRAM, which also decouples data and atomic
accesses.

2Like prior work [6, 118, 203], we assume the GPU has an ALU co-located with the L1 cache.
If this is not the case, then Figure 3.2 and the overall area (Section 3.4.6) would need to include
this.
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3.2.1.2 Coalescing

Like L1 cache and shared memory accesses, the GPU coalescer coalesces accesses
before sending them to the LAB. Thus, threads within the same warp are coalesced
and LAB can use the same number of read and write ports as the L1 cache.

3.2.1.3 Handling Uncoalesced Accesses

Some programs have divergent, uncoalesced memory accesses where every
thread may access a unique cache line. Although we only observed up to 38%
divergence (12 unique cache lines/warp), LAB still supports these accesses. On
an uncoalesced access, the GPU (and LAB) treats each requested line as a unique
request. Consequently, LAB handles them as they arrive. If the number of requests
exceed the LAB’s size, then requests evict entries from the same uncoalesced
access.

3.2.1.4 Behavior at Ordering Points

Although atomics using the LAB are relaxed and thus do not imply ordering
on other memory requests, at ordering points we flush all LAB entries to the
L2. Thus, at all kernel boundaries or at software enforced ordering points (e.g.,
CUDA’s threadfence or barriers, mutexes, and semaphores) all LAB entries are
evicted. None of our benchmarks had software ordering points, so flushes only
happened at kernel boundaries.

3.2.1.5 Atomics with Ordering Requirements

Since LAB stores partial atomic updates, it cannot be used for atomics with
ordering requirements (e.g., SC atomics) without causing significant delays. Thus,
our software requirements (Section 3.2.2) ensure that only commutative atomics
use the LAB. Non-commutative atomics must be performed at the appropriate
level defined by their scope. We discuss LAB’s implications on GPU coherence
and consistency further in Section 3.2.3.
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3.2.1.6 Serialization of Atomics

Atomic serialization occurs due to two primary factors: atomic collisions and
centralized resources. Intra-warp atomic collisions occur when multiple threads in
a warp attempt to update the same memory location concurrently, while inter-warp
and inter-TB atomic collisions occur when multiple threads from different warps
(or different TBs) attempt to update the same address concurrently. When this
happens, one request must be issued before the other. Atomic serialization can
also occur at a centralized destination such as the L2 cache. Since device-scoped
atomics are performed at the L2 (which is ≈6X more expensive than GPU L1
accesses, Section 3.3), this serialization can be very expensive, especially when
combined with L2 queuing delay and potentially backpressure from interconnect
stalls. Since LAB performs all commutative, device-scope atomics locally, LAB
reduces the serialization penalty due to atomic collisions. Moreover, LAB’s
decentralized updates (one LAB per SM) also reduces atomic serialization from
centralized resources, since only the combined requests are sent to the L2.

3.2.1.7 Identifying Atomic Function

CUDA supports multiple types of atomics, some of which are not commutative
with each other. Thus, the LAB must track what atomic function is being
performed for each line. Since CUDA has fewer than 16 atomic functions [165],
we use 4 bits per LAB line to identify the atomic operation. If a LAB hit occurs
but the atomic function does not match, we flush the entry.

3.2.1.8 Benefits Over Software Solutions

Since the atomic operations are commutative and are not read before all updates
complete, programmers could either use per-TB shared memory to accumulate
updates locally or use L1 data cache with private variables. In this situation, a
per-TB global atomic performs the final global memory update. However, for most
of our applications this would require large, sparsely accessed shared memory
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allocations that limit the number of TBs per SM. In contrast, LAB only holds
frequently accessed atomic addresses and their values, without requiring large
allocations.

Overall, LAB effectively enables per-SM intra-warp, inter-warp, and inter-TB
reuse in the same kernel invocation. For example, when threads in Listings 3.1
and 3.2 on the same SM (inter- or intra-TB) access the same address atomically,
they can be reused in the LAB. Moreover, when atomic reuse is minimal, LAB’s
decentralized design still reduces the serialization penalty (3.2.1.6).

Although the LAB may increase the burstiness of the atomic traffic in the
worst case, we have not observed significant increases in queuing delay due to
LAB’s coalescing benefits and because SMs usually flush at different times (as
shown in Section 3.4). Moreover, the atomics sent to the L2 by the LAB will be
performed off the critical path, except at kernel boundaries where the LAB is
flushed in parallel with the caches, since instructions complete upon reaching the
LAB. This lessens the observed impact of burstiness (Figure 3.8).

3.2.2 Software Support

Distinguishing Atomic Operations: LAB relies on identifying which atomic
accesses can be buffered locally (e.g., commutative atomics). To identify which
accesses are commutative atomics, we leverage recent work that proposed addi-
tional memory orderings: SC-for-Data Race Free Relaxed (or SC-for-DRFrlx)
introduced a new memory ordering, memory_order_comm, to identify commuta-
tive accesses [204]. However, since we do not need the additional complexity for
other, non-commutative relaxed atomics that SC-for-DRFrlx proposes, we use a
SC-for-HRF consistency model with the additional commutative memory ordering.
Programmers or compilers can instrument software to use this new memory order-
ing to indicate commutative atomics to the hardware, analogous to how C, C++,
HSA, and OpenCL specify other memory orderings [27, 86, 87]. For example,
Listing 3.1 and 3.2, show how the programmer would label the atomicAdd’s (the
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commented-out versions) as commutative atomics. Non-commutative atomics
bypass LAB.

3.2.3 Impact on Consistency and Coherence

The key ideas that allow the LAB to batch atomic updates without affecting
consistency and coherence guarantees are:

3.2.3.1 Commutativity

The order of commutative Read-Modify-Write updates to a shared variable can
be arbitrary without affecting correctness. Since these updates race, they must
use atomics to conform to the SC-for-HRF consistency model (Section 2.2).
However, since reordering updates still produces correct results, programs often
use relaxed atomics for the updates [204]. Thus, caching relaxed commutative
atomics in the LAB should not affect the final results. By perturbing the order of
atomics, LAB may cause small rounding errors for floating point commutative
atomics, but this is already a problem on real GPUs, where the atomic order
is not deterministic [40, 42, 52]. Although we only observed minor impacts
on the final results (less than 1% for all the micro-benchmarks and full-sized
benchmarks studied in this chapter), if complete determinism is desired we could
adopt DAB [40] or Reproducible FP [52] at the cost of additional area.

3.2.3.2 Interaction with Data Accesses

Like C++ [27], HSA [87], and OpenCL [109], by default we assume that atomically
updated shared variables are always accessed atomically. Thus, if a program
uses properly labeled and synchronized commutative atomics, there will never
be data accesses to the same variable and SC results are guaranteed (which also
ensures that the program does not view the updated values until all updates have
completed) [204]. As a result, data accesses and non-commutative atomics do not
need to check the LAB, since the commutative atomics do not order other accesses
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and all accesses to a commutative address are atomic. However, although CUDA
is moving towards similar requirements [166], currently it allows a variable to be
accessed by both atomic and data accesses in the same kernel. If this happens
for accesses using memory_order_comm, a commutative race may occur [204]
and, like other DRF-based consistency models, threads may access a stale value
and SC results are not guaranteed (e.g., since data accesses do not check the
LAB). However, if the data accesses occur in separate kernels, since the LAB
is flushed at the end of each kernel, the data accesses will see any previously
buffered LAB updates. If strong atomicity is to be violated or the assumption
that a value is not read before the next kernel is broken, the LAB design does not
provide any correctness guarantees. In such cases, the programmer will need to
insert appropriate fences to ensure that the output produced is functionally correct.
The LAB will evict all its entries whenever a fence instruction is issued by the
program ( 3.2.1.4).

3.2.3.3 Coherence

As discussed in Section 2.2, GPU coherence relies on data-race-freedom and
software invalidations to ensure that there is no stale data in the local caches.
Adding the LAB does not impact the GPU coherence protocol, since it only
aggregates updates for commutative, atomically accessed global addresses. Ac-
cordingly, LAB does not require any changes to the existing coherence protocol
and additional fences are not required because the commutative updates do not
need to be ordered with one another.
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GPU Feature Configuration (Size, Access Latency)
SMs 80

# Registers / SM 64 KB
LI Instruction Cache / SM 128 KB

LI Data Cache / SM 32 KB (max 128 KB), 28 cycles
L2 Cache 4.6 MB, 148 cycles

MSHR 256 (L1) and 192 (L2) Entries
Shared Memory Size / SM 96 KB (max 128 KB), 19 cycles

Memory 16 GB HBM2, 248 cycles
Table 3.1: Simulated baseline GPU parameters

Operation Energy (pJ)
Non-Memory Operation 3.7
L1D (32 KB) Read/Write 1.4097, 1.7044
L1I (132 KB) Read/Write 5.6387, 6.8177
L2 (4.6 MB) Read/Write 193.59, 234.0675
LAB (Size 8) Read/Write 0.0881, 0.1065
LAB (Size 16) Read/Write 0.1762, 0.2131
LAB (Size 64) Read/Write 0.3524, 0.4261

LAB (Size 128) Read/Write 0.7048, 0.8522
LAB (Size 256) Read/Write 1.4097, 1.7044
LAB (Size Inf) Read/Write 45.1097, 54.5417

NOC 254
Main Memory 501

Table 3.2: Per-access energies used [44, 77, 172].

3.3 Methodology

3.3.1 Simulation Environment & Parameters

To evaluate LAB’s impact, we added LAB to GPGPU-Sim v4.0.0 [23, 104, 129,
130, 186], which has been shown in previous work to provide high accuracy for
modern NVIDIA GPUs, including when running ML workloads [104, 129, 130].

Table 3.1 summarizes the key system parameters, which is based on a NVIDIA
Titan V GPU [168]. Additionally, we assume support for performing atomics at
the LAB. We use CUDA 8 and cuDNN v7.1.3 for the ML training benchmarks,
because these are the latest versions of CUDA and cuDNN that embed the PTX
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in the libraries – which is necessary to run cuDNN in GPGPU-Sim [130]3 For
all other benchmarks (Table 3.3), we use CUDA 11.2. Although GPGPU-Sim
has an integrated energy model [128], it has not been validated for post-Fermi
architectures and is not representative for modern GPUs.4 Thus, we use a
per-access energy model (Table 3.2) based on recent work [44, 77, 172].

To label commutative atomics (Section 3.2.2), like prior work [204] we use
software flags to find and simulate these accesses.

3.3.2 Configurations
Since the LAB is physically located in the unified local SRAM, configuring part
of the SRAM to be LAB reduces the size of the L1 data cache or shared memory.
Hence, we examine varying the size of the L1 data cache and shared memory.
Overall, we use the following configurations:

• Baseline: The baseline GPU configuration without an LAB, with a 32
KB L1 data cache and 96 KB shared memory, and which performs all
device-scoped atomics at the shared L2.

• Cache-8KB: Models the Baseline configuration with 8 KB less cache,
which is representative of a 64-entry LAB.

• Cache+8KB: Baseline configuration with 8 KB more cache instead of
using LAB.

• Cache*2: Like Cache+8KB, except doubles the cache size.

• hLRC: hLRC [6] obtains ownership for atomics, enabling it to cache them
locally. Since hLRC has not been publicly released, we implemented and
validated it in GPGPU-Sim.

3Accel-Sim [106] introduced the capability of directly simulating SASS code, enabling the
use of newer versions of CUDA and cuDNN but it was not available until after this work was
published.

4Accel-Wattch now provides a validated GPU energy model for modern GPUs, but was not
available until after this work was published [99].
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• PHI: PHI [146] buffers atomics in write allocate L1 caches (fetch on
write); we implemented and extended PHI for GPUs (only cache lines with
commutative atomics are buffered updates). We also extended PHI to use a
lazy fetch on read scheme, which has a 6% difference but did not affect the
takeaways. Although PHI was designed for MESI-like CPU coherence, we
optimistically ignore invalidation and downgrade overheads – otherwise
PHI is worse.

• LAB i: We vary LAB’s size to examine its sensitivity: LAB i represents
i LAB entries per SM: 8, 16, 32, 64, 256, and Infinite. Each statically
reconfigures the cache, shared memory, and LAB proportions based on
LAB size before kernel launch, similar to CUDA’s existing cache/shared
memory flag. Although some configurations require significant SRAM, we
include them to examine larger LAB performance. For context, a 64-entry
LAB uses approximately 8 KB of local SRAM. For all LABs except infinite,
we take space from the cache since the applications were less sensitive to
cache size and changing shared memory size affected utilization.

We also tried studying additional configurations of the local SRAM to
determine if existing caching mechanisms could be used to achieve some of
LAB’s gains. Increasing shared memory size per SM had no effect. Moreover,
although weights currently do not use shared memory, cuDNN uses shared
memory for other arrays (from inspecting disassembled binaries [222]). However,
since the TBs per SM are limited by register file size [180], increasing shared
memory per SM did not increase the TBs per SM. Since cuDNN is closed source,
we tried modifying cuTLASS [103] instead. However, cuTLASS lacked the
corresponding kernels.

Finally, to isolate LAB’s serialization and coalescing benefits, we implemented
a LAB variant that performs atomics locally but does not store data in the LAB,
preventing reuse and separating the coalescing and serialization benefits. Since it
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Benchmark Input
Microbenchmarks

Histogram[141] (H) 256K (30720x17280 pixels)
Histogram_Shared[141] (HS) 256K (30720x17280 pixels)
Backward Conv[56] (BWC) NCHW = 128,3,256,256

Graph Analytics (’_’ denotes different utilization levels)
BC[_100, _75, _50, _25][37] CT, NH,

VT, AK[53]
CCA[_100, _75, _50, _25][199] amazon, olesnik0,

wing, emailEnron[199]
CC[199, 223] flower.txt[199]
CLR[199], MIS[199], or2010, nd2010,

nv2010, nh2010[22]PR[37], SSSP[199] [_100, _75, _50, _25]
ML Training

AlexNet[56] (AN) NCHW = 16,3,227,227
VGG-19[56] (VGG) NCHW = 16,3,112,112
SqueezeNet[56] (SN) NCHW = 16,3,224,224
Tiny YOLO[188] (TY) NCHW = 16,3,416,416
ResNet[80] (RN) NCHW = 16,3,256,256

GPGPU
Backprop[35] 64K
B+Tree[35] mil.txt
BFS[35] graph1MW_6.txt
DWT2D[35] 1Kx1K
gaussian[35] 1Kx1K
Heartwall[35] test.avi
Hotspot[35] 512x512
huffman[35] 1024
HybridSort[35] 218
KMeans[35] kdd_cup
LavaMD[35] boxes1D
Leukocyte[35] testfile.avi
LUD[35] 512
MummerGPU[35] NC_003997
Myocyte[35] 100
NN[35] lat 30, long 90
NW[35] 8Kx8K
Pathfinder[35] 1Mx100x20
ParticleFilter[35] 128x128, 4K particles
SRAD[35] 2Kx2K
Streamcluster[35] 8K

Table 3.3: Benchmarks and inputs.
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is difficult to isolate serialization from reducing backpressure and interconnect
stalls, this provides a minimum bound on LAB’s serialization reductions. We also
isolated the burstiness overheads by turning off the end-of-kernel LAB flushes
and measuring its impact (shown using a separate bar in Figure 3.8).

3.3.3 Benchmarks

Table 3.3 summarizes the workloads we use. To study performance for GPGPU
applications, we analyze Rodinia [35, 36] with inputs sized to fully utilize the
GPU.5 We also analyze two histogram [141] variants each with 256 bins: an ideal
use case for LAB where most accesses are device-scoped atomics, similar to
Listing 3.1, and another that uses shared memory to bin updates locally before
sending a single atomic update per bin to global memory [204].

We also use popular graph analytics and ML training workloads: BC, CCA,
CC, CLR, MIS, SSSP, PR, AlexNet, VGG-19, SqueezeNet, Tiny YOLO, and
ResNet. We selected these benchmarks because they cover a wide variety of use
cases, and have been shown to be high performance in prior work [199, 209]. The
larger benchmarks are unable use similar software optimizations to the histograms.
Since the graph analytics algorithms are input dependent, we study multiple input
graphs that utilize varying amounts of the GPU.6

For all DNNs we extend DNNMark [56] to model the networks and run
them for one iteration since CNN iterations have similar behavior [243, 247].
Moreover, to study the training kernels that use atomics in isolation, we also run
microbenchmarks such as BWC and ResNet (1 Layer).

5We do not use CFD because it has issues with GPGPU-Sim 4.0 [106].
6Except for CC, which only has one publicly available input size.
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3.4 Results

Figures 3.3-3.6 show the performance improvement, interconnect traffic reduction,
miss rate, and energy consumption, respectively, for all microbenchmarks and
benchmarks, across the configurations described in Section 3.3. We divide
energy into multiple components based on source: ALU, shared memory, L1,
L2, interconnect, LAB, and main memory. Broadly, the smaller and larger cache
configurations show no appreciable change in performance due to the mostly
streaming, read only nature of the application’s data loads. Thus, we do not show
the additional cache configurations in Figure 3.6, as the energy impact follows
a similar trend. In comparison, LAB yields significant benefits. With LAB, an
application’s performance is closely tied to the ratio of global atomic requests
to the total number of global memory requests (ATGR), the application’s spatial
and temporal locality for atomic transactions, and the application’s ratio of LAB
size to atomic’s working set size. Since these properties vary per application,
LAB’s benefits vary. LAB’s coalescing benefits tap into the locality that exists
within atomic transactions, while the serialization benefits (Section 3.2) result
from performing atomics locally at the LAB rather than at the L2. Without LAB,
overlapping, device-scoped relaxed atomics are sent to the L2, increasing queuing
delay and interconnect buffer stalls. Coalescing these atomics in the LAB reduces
these overheads, and helps LAB rival Figure 3.1 (since Figure 3.1 profiles real
GPUs, it cannot include LAB reuse). Overall, across all non-infinite LAB sizes,
on average LAB improves performance by 28%, reduces energy by 19%, and
reduces interconnect traffic by 19%, while also improving on state-of-the-art
techniques like PHI and hLRC.

3.4.1 Graph Analytics Workloads
GPU Utilization Study: Figure 3.7 shows how the graph analytics algorithms
perform for different input graphs that utilize 25%, 50%, 75%, and 100% of the
GPU, respectively, averaged across LAB sizes 8-256. As utilization increased, the
graphs provide additional reuse opportunities, but also increased contention that
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Figure 3.3: Execution time for different cache configurations, LAB sizes, hLRC,
and PHI, normalized to the baseline configuration without LAB from Table 3.1.

Figure 3.4: Interconnect traffic reduction for different cache configurations, LAB
sizes, hLRC, and PHI, normalized to the baseline configuration without LAB
from Table 3.1.

Figure 3.5: LAB miss rate for different LAB sizes and cache configurations,
normalized to the baseline configuration without LAB from Table 3.1.

may increase LAB misses. For benchmarks with High ATGR, the connectivity of
the graphs played impacts performance improvement. For example, in PR_75 24%
of all nodes are strongly connected, while PR_50’s graph has less connectivity:
only 5% of the nodes are strongly connected. As a result, LAB provides more
reuse for PR_75 than PR_50, and further improves performance. For CCA,
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Figure 3.6: Energy consumption normalized to the baseline without an LAB
from Table 3.1. For each application, left to right is the baseline (B), LAB-8
(8), LAB-16 (16), LAB-32 (32), LAB-64 (64), LAB-128 (128), LAB-256 (256),
LAB-Inf (Inf), hLRC (H), and PHI (P).

Figure 3.7: Execution time for the graph analytics workloads with different
utilization levels, averaged across LAB-8 to LAB-256, normalized to the baseline
configuration without an LAB from Table 3.1.

both CCA_75 and CCA_100 have a few very strongly connected nodes. Thus,
LAB captures most of the reuse even for smaller LAB sizes and enables them
to outperform CCA_25 and CCA_50. However, CCA_75 slightly outperforms
CCA_100 because it has less contention. The lower utilization graphs also
outperform by the higher utilization graphs in a few other cases. For BC and
SSSP, which generally have low locality, the majority of LAB’s benefits come
from reducing the serialization benefit. As a result, performance is similar for
all utilization levels. However, for benchmarks with Moderate ATGR such as
CLR and MIS, higher utilization levels consistently increase performance slightly.
This happens because the larger working sets in the higher utilization graphs of
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Figure 3.8: Isolating serialization and coalescing benefits for the graph analytics
workloads. ANBF: average without bursty flush. ML workloads not included due
to space constraints.

CLR and MIS dominate compared to the additional reuse they offer. Nevertheless,
since these differences are small and the overall performance gains are similar for
all four utilization levels, we focus on the full (100%) utilization graphs in the
remaining analysis.
High Locality & ATGR: As shown in Figure 3.1, PR (0.72) and CCA (0.84)
have high ATGRs ratio and many commutative atomics. For CCA, a small subset
of vertices are very strongly connected. Thus, even a small LAB significantly
improves performance: across all LAB sizes, PR improves performance up to
74% (42% on average) and CCA up to 95% (92% on average), with similar
improvements in energy consumption, interconnection traffic, and miss rate. As
LAB size increases, LAB buffers more atomics locally, but also reduces L1
cache space. However we observed that for both CCA and PR (especially CCA)
the average reuse distance often decreases for increasingly strongly connected
nodes: CCA and PR’s average reuse distance decreases by 96% for the most
strongly connected nodes). Moreover, larger LAB sizes are tolerant to higher
reuse distances and hence capture more reuse and further improve performance.
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Reducing the cache size has less effect because the load locality is relatively lower.
The interconnect traffic reduction follows similar trends: a maximum reduction of
89% for LAB-Inf for PR and 88% for CCA. Finally, the overall energy trends are
directly proportional to interconnect traffic since device-scoped atomics dominate:
on average, energy is reduced by 16% (max 79%) for PR and by 48% for CCA.

LAB also improves CCA’s and PR’s performance by decreasing serialization
cost. As shown in Figure 3.8, since small LABs (min results) have fewer
coalescing opportunities, the serialization cost reduction provides 15% of PR’s
benefits. However, as LAB size increases (average and max results), coalescing
opportunities increase and progressively make up a larger percentage of PR’s and
CCA’s improvements.
Low ATGR & Locality: BC’s (0.05) and SSSP’s (0.19) ATGRs are significantly
lower than CCA and PR. However, as also observed in prior work [58], these
atomic accesses cause bottlenecks in BC and SSSP due to serialization. As a
result, across all LAB sizes on average performance improves by 30% for BC and
21% for SSSP. Nevertheless, since there are few atomics, even with an infinite
LAB, energy and network traffic gains are small (e.g., 3% less network traffic
for BC with up to 1% less energy). Interestingly, although BC and SSSP have
less locality than CCA and PR, their average reuse distance is 82% lower than
PR and CCA for weakly connected nodes. Consequently, all LAB sizes capture
similar amounts of reuse, resulting in smaller differences in miss rate until the
data completely fits in the LAB (LAB-Inf). Since BC and SSSP have fewer
coalescing opportunities, unsurprisingly the vast majority of LAB’s benefits come
from reducing serialization latency (Figure 3.8).
Moderate ATGR & Locality: CC, CLR, and MIS have fewer device-scope
atomics than CCA and PR but more than BC and SSSP. Although CC, CLR, and
MIS have similar ATGR and locality, they have different access patterns. Some
of CC’s kernels are streaming with little or no reuse; in these kernels most of
LAB’s benefits come from reducing serialization costs. Nevertheless, most of
CC’s kernels have moderate to good reuse; in these kernels LAB provides more



31

benefits from coalescing. Like BC and SSSP, the kernels in CC that have at least
moderate reuse have small average reuse distances, enabling even small LABs to
provide good performance. CLR (ATGR: 0.24) initially performs device-scoped
atomics on many cache lines, then reduces the working set as the application
proceeds. Thus, all LAB sizes perform similarly once working set decreases.
Furthermore, when the working set is large, larger LABs reduce more atomic
traffic, but the reduced cache size also increases cache misses. However, again
LAB’s benefits outweigh the reduced cache locality, although the reduce cache
hits reduce the performance difference between the LABs. Somewhat similar to
CLR, MIS (ATGR: 0.43) has a large device-scoped atomic working set. Thus,
a larger LAB is needed to capture the possible reuse. Accordingly, reducing
serialization provides most (69%) of the benefit for small LABs, but a smaller
portion (47%) for larger LABs. Moreover, the burstiness of the flushing the LAB
is small (Figure 3.8): 0.5% (BC) - 5% (MIS) on average, and outweighed by
LAB’s overall gains. Overall, on average performance increases by 37% for CC,
14% for CLR, and 16% for MIS.

3.4.2 ML Training Workloads

Overall, on average across all DNN workloads LAB improves performance by
18%, energy by 11%, and interconnect traffic by 19%. However, different training
algorithms exhibit different trends in terms of benefits, especially as the number
of layers, parameters, and batch sizes vary. For the ML benchmarks LAB’s gains
are larger for deeper networks and bigger batch sizes – trends that are expected
to continue in next generation ML workloads. However, the overall gains are
sometimes limited because CNNs are largely compute bound on modern GPUs.
Nevertheless, given the significant efforts to optimize compute for CNNs, the
memory system will become more of a bottleneck, increasing LAB’s utility.
AlexNet, Tiny YOLO: AlexNet (AN) and Tiny YOLO (TY) have relatively low
ATGRs because, like other CNNs, they are compute bound [70]. Thus, LAB
improves interconnect traffic and performance for kernels with atomics, but
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the overall gains are smaller. AN is relatively unaffected by increasing LAB
size (9% average performance improvement). Here, reducing cache size while
incrementing LAB size is sometimes detrimental: performance declines a little
when using a larger LAB due to reduced cache locality. Although AN and TY have
a similar number of layers, TY spends more time in kernels with device-scoped
atomics (85% compared to 74% for AN). Thus, LAB improves TY’s performance
more than AN’s. On average LAB improves performance by 10%, decreases
interconnect traffic by 18%, and decreases energy by 12% for AN and TY.

Moreover, AN’s reuse pattern is different for bwd_filter and bwd_data.
Bwd_filter is similar to RN, where addresses only exhibit temporal reuse af-
ter a certain number of accesses to unique addresses. Thus, the overall reuse
depends on batch size and layer parameters. Bwd_data has a lower ATGR
than bwd_filter, but more temporal reuse since a small subset of addresses are
repeatedly reused. Thus, miss rate decreases as LAB size increases: LAB 64
captures an average of 71% of the reuse for the most heavily accessed addresses,
while LAB 16 only provides 28% of the same reuse.
VGG19, SqueezeNet: VGG19 (VGG) and SqueezeNet (SN) are deeper networks,
and VGG has a larger batch size (64). Thus, they have more device-scoped
atomics than smaller networks like AN, and accordingly larger improvements
from LAB: for VGG performance improves up to 24% (16% average), energy
decreases up to 22% (19% average), and interconnect traffic decreases up to 61%
(29% average). Similarly, more of SN’s bwd_filter and bwd_data kernels have
ATGR > 30%. As a result, SN has better average performance improvements
(13%) than AN, but smaller improvements than VGG, which has a larger batch
size and thus more device-scoped atomics. Similar to the other DNNs, on average
LAB reduces interconnect traffic by 21% and energy by 18%. Although VGG
and SN see additional benefits from larger LABs, due to more temporal reuse in
the bwd_data kernels and to a lesser extent in bwd_filter kernels, a size 16 LAB
again provides the majority of the benefits, for the same reasons as previously
described networks.
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3.4.3 Comparison to hLRC
hLRC improves reuse and reduces the serialization penalty by obtaining ownership
for atomics. However, hLRC struggles for large working sets and high contention
because atomics and data accesses contend for L1 cache entries. Moreover,
when multiple SMs perform atomics on the same cache line, hLRC must forward
ownership to remote L1s, adding additional overhead. Although hLRC performed
well for smaller graphs in prior work [6], our larger graphs have more frequent
remote L1 ownership requests, larger working sets, and higher contention. Con-
sequently, hLRC performs poorly for them, especially for CCA, MIS, PR, and
Histogram which have high inter-SM contention for atomics. In Histogram and
CCA this is amplified by heavy contention across a small subset of addresses,
significantly increasing network traffic due to remote invalidations and further
hurting performance. Conversely, most ML workloads have less contention or
perform atomics in a small window, reducing remote invalidations and enabling
more reuse. Consequently, hLRC provides similar performance to LAB for ML
workloads, especially for small LAB sizes. However, as LAB size increases (e.g.,
64+ entries for AN and VGG), LAB batches more updates without evictions than
hLRC. Overall for the full sized benchmarks, compared to the baseline hLRC
reduces performance by 76% (3% performance improvement without CCA and
Histogram), energy by 72% (12% reduction without CCA and Histogram), and
network traffic by 102% (20% reduction without CCA and Histogram). Thus,
LAB outperforms hLRC by enabling multiple SMs to update local copies before
sending out partial updates.

3.4.4 Comparison to PHI

Overall, PHI outperforms hLRC and the baseline. Although, like hLRC, PHI
caches atomic updates locally, it does not suffer from remote invalidations [146].
This helps for Histogram, PR, and CCA, which have numerous commutative
atomics that PHI buffers locally, significantly reducing network traffic and improv-
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ing its performance and energy versus hLRC. Furthermore, avoiding expensive
remote invalidations also helps PHI outperform hLRC for some applications with
moderate or low ATGR and locality like SSSP, CLR, and MIS. However, hLRC
outperforms PHI for CC and ML workloads. In the ML workloads hLRC has
fewer remote invalidations since SMs usually update their own fixed set of weights.
Unlike PHI, hLRC also must wait for ownership for atomics, which reduces these
workload’s contention and stalls compared to PHI.

Although PHI provides some of LAB’s benefits, and offers the second best
performance of all configurations, overall LAB outperforms PHI (on average
20.94% better performance, 0.2% better on network traffic and 3% better on
energy, and , respectively, for LAB-64; 20% performance, 1.5% energy, and 0.3%
network traffic for LAB-Inf). For the histograms, AN, CCA, and SSSP, PHI
provides most or all of LAB’s benefits because their working set fits in the cache.
Moreover, PHI outperforms LAB for BC by better leveraging BC’s limited locality
across atomics, since PHI can evict either a regular data read or an atomic when
an atomic misses, unlike LAB. However, PHI significantly increases L1 cache
stalls due to increased L1 contention, which usually occurs when PHI utilizes all
the MSHRs for pending data read misses that are evicted by interspersed atomics.
Thus, while PHI reduces network traffic for some benchmarks, like LAB, in others
it increases stalls and contention between reads and writes. Accordingly, PHI
cannot provide all of LAB’s benefits in applications with large working sets that
cause frequent L1 cache evictions (e.g., CC, CLR, MIS, SN, and VGG). Although
these workloads sometimes evict data loads or stores with limited locality, in other
situations PHI’s co-mingling of data and atomic accesses increases stalls and
limits atomic reuse. As a result, LAB provides more consistent improvements than
either hLRC or PHI, by both explicitly exploiting commutativity and decoupling
where data and atomic accesses are stored.
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3.4.5 Traditional GPU Workloads

In Figure 3.9 we evaluate the baseline’s, LAB’s, PHI’s, and hLRC’s performance for
more traditional GPGPU workloads. We allocate LAB space only for applications
that have atomics (Huffman and HybridSort). Thus, we use LAB-0 for all other
applications in Figure 3.9 (adjusted for LAB-0’s overheads, see Section 3.4.6),
and LAB-64, which was big enough for other applications, for Huffman and
HybridSort. Since Huffman and HybridSort perform histograms, unsurprisingly
both PHI and LAB improve performance by 24% and 26% respectively, while
hLRC again suffers from inter-SM contention. Since the other applications do not
use atomics, both LAB and hLRC perform similar to the baseline: all were within
1.2% of the baseline. However, PHI again increases contention between reads
and writes, hurting performance for Backprop, BFS, DWT2D, MummerGPU,
and SRAD. PHI also performs worse for NW, NN, pathfinder and particlefilter,
though the performance degradation is smaller, either because these applications
have fewer writes or because their read locality is low enough that writes taking
up cache space does not significantly impact performance. Conversely, PHI
does better for LUD, gaussian and b+tree, which have write locality. Overall, on
average PHI is 14% worse and LAB is 0.9% better than the baseline. This further
highlights the importance of decoupling data and atomics in GPUs, like LAB,
whose reconfigurability allows it to work well across both synchronization-heavy
and traditional streaming GPGPU workloads, unlike PHI.

3.4.6 Area

Although LAB dynamically partitions the local SRAM, LAB does have some
small overheads within the reconfigured SRAM block. Each LAB line requires 4
additional bits (e.g., 32 bytes in total for an LAB of size 64) to identify the atomic
operation. Additionally, LAB also adds a 2-1 mux (Section 3.2.1) and a 4 bit
comparator to ensure the atomic operation matches. In total, this requires 4 caches
lines of overhead in a 128 KB L1 GPU cache, and our results in Section 3.4.5 show
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Figure 3.9: GPGPU results for PHI, hLRC and LAB, normalized to baseline.

this has minimal impact on performance. Alternatively, to avoid extra storage, we
can exploit the fact that the atomic values did not require all of the data bits, and
instead use 4 data bits per line for this.
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3.5 Discussion

Software vs. Hardware: Histogram obtains significant benefits from using
shared memory to exploit commutativity. However, as discussed in Sections 5.4.4
and 3.3.3, the larger graph analytics and ML training workloads cannot use shared
memory for their vertices (graph analytics) and weights (ML training) because
GPUs must statically allocate the entire array in shared memory – even if a given
TB only accesses a small subset of the locations. Moreover, these large arrays
exceed the maximum shared memory size per TB. To demonstrate this effect,
we increased the number of histogram bins from 256 to 8192. Since Histogram
Shared creates partial histograms for each TB, using more bins reduces how many
TBs can run simultaneously from 8 to 3 TBs per SM, hurting performance.

In comparison, Histogram has no such limitation. Thus, it outperforms
Histogram Shared by at least 3X for 8192 bins with LAB as shown in Figure 3.10.
Moreover, as histogram bins increase, Histogram Shared eventually cannot run
even 1 TB per SM. Thus, using GPU software optimizations like shared memory
can improve performance, but only when the working set is sufficiently small. In
comparison, LAB dynamically retains the most highly used locations, improving
reuse even for applications with large working sets. For example, on average
AlexNet’s weight array size is 466540 bytes, which requires ∼1900 KB of storage –
whereas modern GPUs only allow up to 192 KB of shared memory per SM. Finally,
for graph analytics algorithms, the vertex updates are not predictable at compile
time and hence it is difficult to use shared memory to improve performance.

It is also possible to virtualize and manage shared memory allocations
manually in software [8, 43, 115]. This enables programs with large shared
memory requirements to run. However, this requires programmers to handle
issues such as evictions, significantly increasing overhead (especially from thread
divergence), and prior work has shown that such approaches provide mixed results
for CPUs [113].
Applicability to Other ML Training Algorithms: Our results focused on CNN
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Figure 3.10: Performance improvement with respect to Histogram Global (HS_G)

training algorithms (Section 3.3.3). However, LAB is also applicable to other
ML training algorithms: any ML training algorithm that atomically updates
shared weights at the end of a training iteration, which is common in data parallel
training, could utilize a similar approach. Similar to DAB [40], we attempted
to examine recurrent neural network (RNN) training. Like DAB, we found that
current versions of cuDNN do not use atomics for weight updates in RNN training.
Nevertheless, we expect that other ML training algorithms such as Reinforcement
Learning and GANs would obtain similar benefits to CNNs.
Simplicity: Although our proposed additions are relatively simple, LAB still
provides significant benefits by intelligently exploiting algorithmic properties.
Moreover, LAB seamlessly fits in the existing, per-SM reconfigurable SRAM,
which allows programmers to utilize the LAB only when it is useful (unlike
prior approaches). Prior approaches (Section 3.6) provide some of the same
benefits as LAB, but often require more invasive coherence protocol or consistency
model changes [6, 24, 203, 242] or suffer from cache contention [5, 146]. Thus,
LAB’s simplicity is a strength and demonstrates how the additional complexity
of prior approaches is unnecessary, while also improving efficiency over the
state-of-the-art (Section 3.4).
Simplicity: Although our proposed additions are relatively simple, LAB still
provides significant benefits by intelligently exploiting algorithmic properties.
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Moreover, LAB seamlessly fits in the existing, per-SM reconfigurable SRAM,
which allows programmers to utilize the LAB only when it is useful (unlike
prior approaches). Prior approaches (Section 3.6) provide some of the same
benefits as LAB, but often require more invasive coherence protocol or consistency
model changes [6, 24, 203, 242] or suffer from cache contention [5, 146]. Thus,
LAB’s simplicity is a strength and demonstrates how the additional complexity
of prior approaches is unnecessary, while also improving efficiency over the
state-of-the-art (Section 3.4).
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Feature hLRC[6] DeNovo[203] COUP[242] PHI[146] RMOs[71, 200] TS[190, 216] LAB
No coherence protocol change X X X ✓ ✓ X ✓
No memory consistency model change X ✓ ✓ ✓ ✓ ✓ ✓
Low degree of atomic L2 traffic ✓ ✓ ✓ ✓ X X ✓
Reduces atomic serialization penalty ✓ ✓ ✓ ✓ X X ✓
No overhead for remote invalidations
or ownership requests X X ✓ ✓ ✓ ✓ ✓

Decouple data & atomic accesses X X X X X X ✓
Applied to GPUs ✓ ✓ X X ✓ ✓ ✓

Table 3.4: Comparing LAB to prior work.

3.6 Related Work

Table 3.4 compares LAB to prior work.
Remote Memory Operations [71, 114, 200, 229]: RMOs send and perform
update operations to a fixed memory location or memory controller, and have
been used in Cray T3E, NYU Ultra, SGI Origin, and NVIDIA’s Fermi GPUs.
RMOs avoid contention for cache lines since updates are sent to a fixed, shared
memory location. However, this approach increases memory traffic, which hurts
performance, and sometimes require programmers to explicitly allocate shared
memory locations. In comparison, LAB buffers commutative atomics locally and
does not increase network traffic.
Coherence Protocol or Consistency Model Changes [6, 7, 24, 65, 203, 242]:
Other work exploited commutativity by extending or modifying the coherence
protocol or memory consistency model. Sinclair, et al. extended DeNovo
to CPU-GPU systems and showed how obtaining ownership for written data
reduced global memory traffic for atomics [7, 203, 204]. Subsequently, hLRC
extended DeNovo to only obtain ownership for atomics [6]. Coup [242] and
CCache [24] apply similar concepts to CPU coherence protocols and software.
Although these approaches provide some of LAB’s features, LAB outperforms
hLRC (Section 3.4.3), and they significantly change the coherence protocol or
consistency model. Moreover, GPU coherence protocols differ significantly
from CPU coherence protocols [81, 82, 206], which makes adopting CPU
coherence-based techniques like Coup or CCache on GPUs difficult. Similarly,
AtomicCoherence makes caching GPU atomics in the L1 easier, but requires
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coherence and interconnect changes [65]. Finally, GPU timestamp (TS)-based
protocols [190, 206, 216] improve efficiency, especially for streaming GPGPU
workloads. However, these protocols are write-through or write-no-allocate for
stores (and atomics) and block further accesses to the addresses that are written
through to the L2, limiting intra- and inter-TB reuse opportunities.
Add Buffers to Caches: AIM uses special instructions to perform aggregation
for commutative updates throughout the memory hierarchy [5]. However, similar
to hLRC, AIM uses coherence to transfer aggregation updates between remote
caches. For workloads with large working sets and high contention, this will hurt
performance as discussed in Section 3.4.3. PHI [146] improves commutative
access performance without changing the coherence or consistency by buffering
and coalescing updates in the cache. As shown in Section 3.4.4, LAB outperforms
PHI, since the buffered and data lines are not partitioned, contention from other
GPU memory accesses can evict buffered lines prematurely and increase stalls,
reducing coalescing and increasing in global memory traffic. In comparison,
since LAB utilizes a separate space it is unaffected by data accesses, and thus
increases reuse. Additionally, PHI requires both a buffered update bit and bits to
identify the atomic operation for the entire cache, whereas the LAB only needs
atomic operation bits (Section 3.4.6).
Avoiding Collisions [58]: Egielski, et al. reduced GPU atomic collisions
with software optimizations to coalesce atomics [58]. Although this reduces
serialization, LAB targets an orthogonal problem: performing atomics locally
to reduce serialization. Moreover, their approach could further improve LAB’s
performance by increasing hits.
ML Training: Prior work also optimized ML training. However, unlike
our work, most of this work optimizes the width or number of memory ac-
cesses [90, 225, 248], utilizing compression [192], optimizing synchronization
in distributed training [240], or rewriting code to keep memory accesses in the
register file or shared memory [54, 108, 164, 246]. In comparison, we focus on
a different bottleneck – fine-grained synchronization. Moreover, these works
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are complementary because applying them removes other sources of inefficiency
and makes fine-grained synchronization even more important. Prior work also
converted fine-grained synchronization into data accesses [49, 154]. This removes
atomics, but potentially increases convergence time. In comparison, we make
device-scoped atomic accesses cheaper without increasing iterations.
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3.7 Conclusion

As GPGPU applications increasingly use fine-grained synchronization, improving
device-scoped atomics support is imperative. We exploit the insight that atomic
accesses in graph analytics and ML training are commutative, and utilize recent
work to identify commutative atomics. Next, we introduce a small, per-SM
buffer (LAB) that combines commutative atomics and utilizes reconfigurability to
avoid hurting applications that do not use commutative atomics. LAB improves
locality for commutative atomics, reduces serialization costs, overall it improves
performance 28% energy consumption 19%, and on-chip memory traffic 19%
compared to state-of-the-art solutions. Moreover, as GPU vendors move to chiplet-
based designs (Section 5), GPU cache hierarchies will get deeper. Consequently,
device-scope GPU atomics to globally shared variables will be even more
expensive. Thus, LAB will become even more important in these designs.
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4 improving the scalability of gpu
synchronization primitives

4.1 Motivation

Chapter 3 showed that programmers can leverage relaxed atomics for global
synchronization in certain situations. However, in other use cases it is either not
possible or more efficient to use device-wide synchronization primitives such as
mutex locks, semaphores, and global barriers [78, 205, 208, 212]. For example,
recent work in scientific and high performance computing (including machine
learning) use GPUs for persistent kernels [54, 108, 246], buddy allocation [69], and
particle partitioning [31] while other work fuses GPU kernels [2, 74, 147] and uses
concurrent streams [12, 162]. Unlike traditional, streaming, data parallel GPGPU
applications, these applications repeatedly access shared data in global memory
across threads from different TBs. Thus, they use device-wide synchronization
primitives such as mutex locks, semaphores, and global barriers to avoid data
races and ensure correctness. One common HPC algorithm that uses device-wide
synchronization is reduction [98]. Listing 4.1 shows a high-level example of how
parallel reductions use global barriers for device-wide synchronization, which we
use as an exemplar of how GPU applications use device-wide synchronization.
This algorithm (discussed further in Section 4.4) iteratively reduces data by
assigning each TB on each streaming multiprocessor a subset of the data, which
the TB performs a partial reduction on using shared memory (line 4). As the TBs
complete their partial reductions, they update the corresponding global output
array with the reduced value (line 9). Although each TB reduces an independent
portion of the input data, if additional reduction steps remain (line 1), in the next
loop iteration TBs will often access on data produced from a different TB in the
previous iteration (line 17). Thus, to ensure the updated data is visible to all TBs
before the next iteration, a global barrier (discussed further in Section 4.2.1.1)



45

Listing 4.1: High level example for performing a parallel reduction using explicit
device-wide synchronization.
whi le ( a d d i t i o n a l R e d u c t i o n S t e p s ) {

/ / pe r fo rm l o c a l r e d u c t i o n : read from
/ / g l o b a l memory , w r i t e t o sh ar ed memory
perTB_sharedMem_reduc t ion ( g l o b a l _ i n p u t D a t a , s h a r A r r ) ;
_ _ s y n c t h r e a d s ( ) ;

/ / w r i t e reduced o u t p u t t o g l o b a l memory
i f ( t i d == 0) {

g l o b a l _ o u t p u t D a t a [ b l o c k I d ] = s h a r A r r [ 0 ] ;
}
_ _ s y n c t h r e a d s ( ) ;
/ / Ensure a l l TBs have f i n i s h e d t h e i r p o r t i o n
/ / o f t h e r e d u c t i o n
g l o b a l B a r r i e r ( ) ;

/ / Swap p o i n t e r s f o r n e x t r e d u c t i o n s t e p
swap ( g l o b a l _ i n p u t D a t a , g l o b a l _ o u t p u t D a t a ) ;

}

must be performed to ensure all TBs reach this point before subsequent iterations
operate on the data (line 14). Threads generate repeated accesses to these
synchronization primitives, and many of the accesses contend with one another.
Thus we refer to this as fine-grained synchronization. Although prior CPU
work classifies global barriers as coarse-grained synchronization [193], we use
fine-grained synchronization to distinguish from the standard GPU definition
of coarse-grained synchronization, which often refers to synchronizing via an
implicit CPU-side global barrier at the end of a kernel [203, 208, 212, 233].

As discussed in Chapter 1 fine-grained synchronization is an expensive
operation for GPUs. Thus it is often a bottleneck for workloads that utilize it
(discussed further in Section 4.4). Additionally, synchronization overheads are
exacerbated by the level of parallelism on GPUs: GPUs typically run kernels
with thousands of threads or more. Thus, synchronization variables are heavily
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contended, even after common optimizations such as using one master thread
per TB to perform the synchronization. Accordingly, it is important to improve
support for fine-grained GPU synchronization, especially at high contention levels.

Recent work has also improved software synchronization support. For exam-
ple, NVIDIA proposed CUDA Cooperative Groups (CCG) [78], a hierarchy of
synchronization methods with support ranging from small groups of threads to
multi-GPU devices. CCG is tightly integrated with CUDA and performs well,
especially at low contention levels. However, as we show in Section 4.5, CCG
suffers from high contention for shared synchronization variables as the number
of threads the synchronization is performed across increases [241]. NVIDIA
also introduced libcu++, which provides fully compatible C++ synchronization
support [166]. Researchers have also developed device-wide software barriers,
which either use global counters with atomic operations, lock-free synchroniza-
tion [233], or portable atomics to implement GPU barriers [208]. However, these
approaches limit the number of TBs that can be launched on an SM to avoid
deadlock. Another popular open source device-wide barrier is HeteroSync’s tree
barrier [218]. However, HeteroSync uses two consecutive barriers in order to
properly support context switching, which significantly increases global atomics
to update the shared counter variables [205]. We discuss related work further in
Section 4.6.

However, these existing techniques are inefficient as contention increases.
Thus we propose optimizations for both global barriers and semaphores. First, we
design a multi-level sense-reversing tree barrier (SRB). Although tree barriers
and SRBs are widely used in CPUs [83, 218], in Section 4.5 we show that naively
applying CPU SRB concepts to GPUs performs poorly. Instead, like prior work
on Xeon Phi’s [195], GPU SRB algorithms must be designed to fit the GPU’s
processing model in order to successfully meet scalability demands. Accordingly,
our multi-level SRB naturally conforms to the GPU memory hierarchy and scoped
consistency model (as discussed in Section 2.2). As a result, most threads use
cheap, locally scoped atomics, improving scalability. Second, we optimize GPU
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reader-writer semaphores to remove scalability bottlenecks. For example, when
a writer attempts to exit the semaphore and multiple readers attempt to enter it
simultaneously, the contention causes current semaphores to scale poorly and
frequently livelock. Thus, we propose a priority mechanism that favors TBs
exiting the semaphore. Overall, we make the following contributions:

1. We propose a two-level GPU SRB that reduces atomic transactions required
by 50% compared to HeteroSync’s two-level tree barrier.

2. We propose a priority mechanism for GPU semaphores, which reduces
the time spent on synchronization and eliminates livelock compared to the
HeteroSync’s reader-writer semaphores, thereby improving scalability.

3. We first evaluate our optimized synchronization primitives across several
microbenchmarks. Compared to CPU-style SRBs and HeteroSync, our
work improves average performance by 34% on Volta, 38% on Turing,
and 27% on Ampere GPUs for barriers, and by 89% for Volta, 68% for
Turing, and 90% for Ampere GPUs for semaphores. Moreover, for five
larger benchmarks that utilize global barriers on average G-SRB improves
performance by 36% on Volta, 34% on Turing, and 32% on Ampere at
medium and high contention levels (i.e. greater than threads joining the
barrier per SM, where each thread joining the barrier is a master thread per
TB) compared to CUDA’s CCG. G-SRB also outperforms an optimized
CPU-style SRB by 12% on Volta, 7% on Turing, and 8% on Ampere for
medium and high contention levels, showing the need for intelligently
designing SRBs for GPUs – especially as contention increases.

4. We also propose a hybrid GPU barrier that combines the best of CCG and
G-SRB to deliver high performance at all levels of contention.1

1We have released our code at: https://github.com/hal-uw/. The results in this chapter can be
reproduced using code and instructions are available at: https://zenodo.org/record/7264009
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Figure 4.1: Baseline Two-Level Tree Barrier [205] where a per-SM leader TB
joins the global barrier.

4.2 Background
4.2.1 GPU Synchronization Primitives
Several recent projects sought to develop a common set of GPU synchronization
primitives. For example, Synchronization Primitives (SyncPrims) released a set
of mutexes, barriers, and semaphores focused on GPU atomic performance [212].
HeteroSync extended SyncPrims to model memory accesses that required fine-
grained synchronization,2 improve the algorithms, and added both local and
globally scoped versions of most algorithms [205]. NVIDIA also introduced
CCG [78] and libcu++ [166], which allows kernels to dynamically organize
groups of threads across all levels of granularity from a small group of threads
in a GPU to a multi-GPU device. These primitives enable new patterns of
cooperative parallelism within CUDA, including producer-consumer parallelism.
Thus, we next describe HeteroSync’s barrier and semaphore and CCG’s barrier
implementations.

4.2.1.1 Barriers

Figure 4.1 illustrates HeteroSync’s two-level centralized tree barrier, which uses
a hybrid local-global scope. In a centralized barrier, TBs increment a shared

2SyncPrims’ critical section memory accesses used local scratchpads, and thus did not require
synchronization to ensure ordering.
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1 __shared__ bool done_local = false;

2 numTBsThisSM = gridDim.x / NUM_SM;

3 __threadfence_block();

4 if (threadIdx == (0,0,0)) { // leader thread

5 // perSMBarr = localBarr1 or localBarr2

6 // inc by 1 with wraparound

7 atomicInc(&perSMBarr, 0x7FFFFFFF);

8 while (!done_local) {

9 if (atomicCAS(&perSMBarr,numTBsThisSM,0) 

== numTBsThisSM) {

10 __threadfence_block();

11 done_local = true;

12 } } } 

13 __syncthreads(); // other threads wait here

(a) Baseline per SM local barrier.

1 __shared__ bool done = false;

2 numJoin = (gridDim.x < NUM_SM) ? gridDim.x :
NUM_SM;

3 __threadfence();

4 if (threadIdx == (0,0,0)) { // leader thread

5    // inc by 1 with wraparound

6 atomicInc(&globBarr, 0x7FFFFFFF);

7 while (!done) {

8 // globBarr = globalBarr1 or globalBarr2

9 if (atomicCAS(&globBarr,numJoin,0)==numJoin) {

10 __threadfence();

11 done = true;

12 } } } 

13 __syncthreads(); // other threads wait here

14 if (!done) { DoBackoff(); }

(b) Baseline GPU global barrier.
1  localBarrier(localBarr1[smID]); // Part A

2 localBarrier(localBarr2[smID]); // Part A

3 if (perSMLeaderTB) {

4    globalBarrier(globalBarr1);   // Part B

5    globalBarrier(globalBarr1);   // Part B

6 }

7  localBarrier(localBarr1[smID]); // Part A

8  localBarrier(localBarr1[smID]); // Part A

(c) Overall baseline tree barrier.
Figure 4.2: Pseudo-code for components of baseline GPU two-level tree bar-
rier [205].

counter as they reach the barrier and spin until the counter indicates that all
TBs are present. HeteroSync also includes a decentralized, two-level lock-free
barrier, which extends a prior decentralized, single-level lock-free barrier [233].
Decentralized barriers trade off increased memory consumption for reduced
contention, improved efficiency, and improved scalability. However, unlike our
approach (and CCG), they consume significantly more memory. In HeteroSync’s
implementation all TBs on a SM access unique data before joining a local barrier
(lines 1-2, Figure 4.2c). In each TB, assuming no races between threads in the
same TB, a single leader thread joins the local barrier (line 4, Figure 4.2a). Next
each TB spins (using a per-TB scratchpad variable, done_local) until all TBs on
the SM join the local barrier (lines 8-11, Figure 4.2a). Once all TBs have reached
the local barrier, a statically designated leader TB from each SM proceeds to join
the global barrier (Figure 4.2b), while all other TBs join a second group of local
barriers (line 7, Figure 4.2c).

However, in order to ensure correctness across potential context switches [3,
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174, 220, 227, 228, 231, 234], HeteroSync’s tree barrier uses a second barrier
(lines 2, 5, 8, Figure 4.2c), similar to a sense-reversing barrier. To do this,
HeteroSync passes unique variables for the counts of the two barriers from
Figure 4.2a to Figure 4.2c (localBarr1 and localBarr2 per SM are passed
to perSMBarr) and Figure 4.2b (globalBarr1 and globalBarr2 are passed to
globBarr). Without these unique variables, if a TB i was context switched out
after it joined a barrier and not scheduled again until after the barrier completed,
the barrier may deadlock since TB i would not be able to distinguish the next
barrier from the one it joined previously. Once the expected number of leader
TBs reach the global barrier (numJoin), these leader TBs join their respective
second group of local barriers (line 7, Figure 4.2c, where other TBs from the
same SM are spinning). Unfortunately, this approach significantly increases the
number of atomics, which adversely impacts performance. Using a tree barrier
partially mitigates this overhead by making many of the atomics locally scoped,
but tree barriers do not completely mitigate the overhead.

Although CCG is closed source, and thus not all of its implementation details
are known, we used NVIDIA’s NVBit to disassemble and study the SASS for
a Volta grid_group.sync() (barrier) [161, 222]. Based on the SASS, CCG
appears to use multiple different barrier implementations. Although we could
not determine when each barrier is dynamically selected, all of them use a
single-level global memory barrier. Specifically, the barrier CCG selected for our
configurations (Section 4.4) is an aggressive, single-level global memory barrier,
similar to open source barrier implementations [208, 212]. Like HeteroSync,
each TB elects a leader thread and the remaining threads spin waiting for the
barrier to complete. CCG also uses a sense direction counter that exploits integer
overflow to avoid requiring a second barrier to ensure correctness in the presence
of context switches. Interestingly, CCG does not appear to perform any backoff,3
likely because it may increase latency at low contention levels. However, this

3Backoff represents a period of time where, after an access fails, a thread waits before
attempting to perform the access again. This can significantly improve scalability by reducing
contention [17].
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Figure 4.3: Baseline Semaphore Implementation [205].

(a) Post routine of the baseline GPU
semaphore

(b) Wait routine of the baseline GPU
semaphore

Figure 4.4: Pseudo-code for baseline GPU semaphore

approach struggles when contention increases (e.g., as the number of threads or
TBs joining a barrier increase) [241].

4.2.1.2 Semaphores

Figure 4.3 provides a high-level overview of HeteroSync’s reader-writer semaphores.
Each SM has one writer TB that tries to write all the data, and N− 1 reader
TBs that try to read a subset of the data. When a TB tries to enter the critical
section (CS, Figure 4.4a post sub-routine), it first acquires a mutex lock and
checks to see if there is enough capacity in the semaphore for the TB (line 8,
Figure 4.4a). If there is capacity, the TB updates the semaphore and releases the
lock. Similarly, when a TB leaves the CS (the wait sub-routine), it acquires the
mutex lock and updates the semaphore (lines 8-9, Figure 4.4b) to remove itself
from the semaphore before releasing the lock. When the size of the semaphore is
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greater than one, multiple reader TBs can enter the CS simultaneously. Unlike on
CPUs, which have better OS support, both the post and wait sub-routines must
utilize a lock to ensure ordering for accesses to the semaphore count (semSize,
lines 4-9 in Figure 4.4a and lines 4-10 in Figure 4.4b. Thus, as the number of
TBs increases, the mutex lock is a bottleneck and causes contention for reader and
writer TBs trying to enter and exit the semaphore simultaneously. For example, a
TB leaving the semaphore may not be able to exit if it cannot access the mutex
variable because other TBs are repeatedly trying to enter the semaphore. To
reduce contention, we can add backoff to make the TBs wait for a short period of
time between each unsuccessful acquire.

SyncPrims [212] also contains a lock-free GPU semaphore (“SleepSem”)
that eschews a mutex. In reader-only semaphores like SyncPrims’ studied, this
approach had races, but did not affect correctness since all data was read-only.
However, the lack of load linked store conditional (LLSC)-type mechanisms in
GPUs made this version very livelock-prone for reader-writer semaphores like
the ones we are studying. In a reader-writer semaphore, each thead attempting to
join the semaphore must a) check if there is space in the semaphore and, once
there is space b) update the semaphore to indicate that it has joined. Without
GPU LLSC-type memory accesses or a single, combined atomic operation [57],
these two operations in a lock-free semaphore must be performed separately.
Consequently, the accesses may be repeatedly interleaved such that another thread
(thread B) may update (and fill) the semaphore in between thread A’s a) and b)
operations – thus preventing forward progress. Accordingly, we do not include a
lock-free semaphore in our study.

4.3 Design

4.3.1 Sense Reversing Barriers

As discussed in Section 4.2.1.1, in HeteroSync’s atomic tree barrier every TB
joins the local barrier twice (Figure 4.2c). Although HeteroSync’s second
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Figure 4.5: Overview of GPU Sense Reversing Barrier design with statically
elected per-SM leader that joins the global barrier and flips the sense.

(a) Local (per SM) phase of G-SRB. (b) Global phase of G-SRB.

(c) Overall G-SRB design.
Figure 4.6: Pseudo-code for components of proposed G-SRB

barrier is necessary for correctness, it causes significant overhead (as we show
in Section 4.5). To overcome this we design G-SRB, a hierarchical SRB [83].
Although SRBs already exist in CPUs, in Section 4.5 we show that directly
applying CPU SRB concepts to GPUs results in performance and scalability
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issues. This also differs from CCG, which uses aggressive, single-level barriers
without backoff – which exploit integer overflow to avoid needing a second global
barrier (like HeteroSync), but which do not scale well because of high contention
for the single, shared global variable. Thus, our key insight is how to design SRBs
while taking the GPU’s unique memory hierarchy and higher level of parallelism
into account (also discussed in Section 4.7).

Figure 4.5 shows a high-level overview of G-SRB. Like HeteroSync, G-SRB
utilizes a tree barrier to reduce contention (Figure 4.6). We chose two levels for
our tree barrier because this naturally conforms to the memory hierarchy and
scoped synchronization of modern GPUs – locally scoped atomics avoid frequent,
expensive cache invalidations and flushes for the local, per SM barriers, while the
more expensive globally scoped atomics are only necessary for the second level,
global barrier [58, 60, 65, 73, 85, 106, 130, 170]. Like Figure 4.2c, G-SRB has
two parts: a local barrier per SM (Figure 4.6a) and a global barrier across all SMs
(Figure 4.6b). Moreover, like CCG and HeteroSync (Section 4.2.1.1), we elect a
leader thread per TB to join the global barrier to reduce contention (Figure 4.6b).
Local Barrier: All TBs on a SM share a sense variable (sense) initialized to
false the first time the barrier is called. Moreover, each TB also has a local sense
variable (s) initialized to the inverse of sense and stored in the scratchpad to
reduce latency. TBs spin until sense’s value matches s (line 9, Figure 4.6a). As
in CPU SRBs, sense matches (i.e., is flipped) when all TBs on a SM join the
local barrier. Afterwards, like HeteroSync (lines 4-7, Figure 4.2c), a statically
designated leader TB (lines 2-4, Figure 4.6) proceeds to the global barrier. The
remaining TBs on each SM wait for the global barrier to complete (lines 6-9,
Figure 4.6c). sense and done_local (Figure 4.2a) are used to identify when
the local barrier is complete. However, in combination with s, sense serves an
additional purpose, similar to SRBs in CPUs. If TB i is context switched out after
it joins the local barrier and is rescheduled after the other TBs on this SM join
and exit another local barrier (and flip sense), TB i’s local copy of s will match
sense. As a result, TB i can immediately progress, without causing deadlock as
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in Section 4.2.1.1.
Global Barrier: All leaders increment a global counter for the global barrier
across TBs. When this count reaches the total number of active SMs, all leader
TBs have reached the global barrier and the global sense (global_sense) is
flipped (line 10, Figure 4.6b – like sense global_sense is initialized to false
the first time the barrier is called). Next, these TBs advance to their final local,
per-SM barriers (line 5, Figure 4.6c), and the overall barrier completes. Like the
local SRB, the global SRB’s global_sense variable serves a similar purpose to
done from Figure 4.2b – identifying when all the leader TBs per SM have joined
the global barrier. However, by tracking sense and global_sense separately,
any TB that is context switched out will see that sense and global_sense now
match (line 7, Figure 4.6b) and proceed to the next barrier. Moreover, if the other
TBs have advanced to the next barrier, as in CPU SRBs, they must wait for this
TB to arrive at the corresponding barrier before they can proceed. Thus, unlike
HeteroSync G-SRB does not require a second set of barriers to ensure correctness
on context switches (Figure 4.6c). Furthermore, G-SRB retains the benefits of
HeteroSync’s tree barrier by keeping most thread’s atomics locally scoped.

4.3.1.1 Hybrid Barrier

G-SRB’s two-level barrier and use of locally scoped atomics helps reduce
contention as the number of threads joining the barrier scale. However, at low
contention levels G-SRB requires additional atomics relative to a single-level
global barrier like the one CCG uses. Conversely, CCG’s single-level global
barrier does not scale very well as the the number of threads or TBs in the program
increases [241], because a single level barrier without backoff can result in added
contention, especially when many threads or TBs join the barrier. Although
some optimizations, such as eliding G-SRB’s local barriers when there is a single
thread (from a single TB) per SM, are simple, a more general approach is needed.
Accordingly, since each design is optimized for different design points, we also
create a hybrid global barrier implementation that uses CCG at low contention
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Figure 4.7: Overview of proposed priority semaphore.

levels and G-SRB at medium and high contention levels to examine the benefits
of integrating our design into future libraries.

4.3.1.2 Over-subscription

Our proposed algorithms require that all synchronizing TBs must be scheduled
on the GPU simultaneously. If that is not the case (e.g., because the GPU is
oversubscribed), the algorithms would need to be adjusted. For example, the grid
would need to be divided into chunks of TBs that can run simultaneously on the
GPU, and these TBs would need to all synchronize before the next chunk of work
could run. However, we leave this as future work.

4.3.2 Semaphores

Semaphores allow multiple TBs to enter the CS simultaneously based on the
semaphore size. Typically, to avoid data races semaphores either require each
thread to access unique data or only allow readers in the semaphore simultaneously.
As discussed in Section 4.2.1.2, due to the lack of OS and hardware support
in modern GPUs, current semaphore implementations often use mutex locks
to prevent multiple threads from updating the semaphore count simultaneously.
However, this centralized mutex is highly contented in GPU programs and creates
a bottleneck for threads attempting to exit the semaphore, since they contend with
threads acquiring the lock while trying to enter the semaphore. We demonstrate
that this approach livelocks when the number of threads accessing the semaphore
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(a) Post routine of the proposed GPU priority
semaphore

(b) Wait routine of the proposed GPU priority
semaphore

Figure 4.8: Pseudo-code for baseline GPU semaphore
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scaled beyond 32 or 64 (Section 4.5.2).4 Even software backoff does not solve this
livelock, because it does not guarantee that threads trying to exit the semaphore
can obtain the lock in a timely fashion.

Thus, we propose to add a priority mechanism to prioritize threads exiting
the semaphore (PriorSem). This helps ensure forward progress and reduces
the serialization penalty resulting from multiple attempts at acquiring the lock
variable by a group of TBs in which some are trying to exit while others enter the
semaphore. Although this approach temporarily favors threads exiting the CS, it
does not cause starvation or unfairness in the long run because it is solely focused
on releasing already held resources, not acquiring them – by prioritizing threads
exiting the semaphore, other threads are able to enter the semaphore sooner.
Figure 4.7 shows a high-level overview of the proposed design, and Figures 4.8a
and 4.8b show the post and wait components of the proposed priority semaphore,
respectively. Prioritizing the threads exiting the CS does not impact the TB or
warp schedulers. Instead, our priority mechanism has other threads perform
backoff instead of attempting to enter the CS (lines 5-8, Figure 4.8a. Once at least
one thread exits the CS (lines 16-19, Figure 4.8b, the semaphore is no longer full
so the priority flag is unset, and the other threads resume attempting to enter the
CS again (lines 4-13, Figure 4.8a). These changes are the key differences from
Section 4.2.1.2.

4.4 Methodology

4.4.1 System Setup

We study our proposed algorithms (Section 5.3) on three NVIDIA GPUs: Titan
V [168], RTX 2080Ti [160], and RTX 3090 [119] We focus on desktop-class
GPUs because they have significant parallelism and are widely used. Table 4.1

4Recent work uses similar GPU reader-writer semaphores [144]. Although we have not
found significant differences in their post and wait routines compared to Figures 4.4b and 4.8a, it
scales to more GPU threads. However, our approach still improves performance over this style of
reader-writer semaphore (Section 4.5.2).
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GPU Feature Titan V RTX 2080Ti RTX 3090
Architecture Volta Turing Ampere
# SMs 80 68 82
# CUDA Cores/SM 64 128 128
Max TBs/SM 32 16 32
Process 12 nm 12 nm FFN 8 nm

Table 4.1: GPUs used with their relevant system parameters.

lists the system configurations. We use CUDA 11 for all experiments [157]. Since
GPUs do not have a dedicated, low latency OS, all of our algorithms are written
at the user-level and do not involve the OS. We ran all benchmarks repeatedly
with different input sizes to empirically ensure deadlock did not occur. Moreover,
to ensure correctness we also check the outputs of each benchmark.

4.4.2 Benchmarks

We use barrier and semaphore microbenchmarks and benchmarks to evaluate
our proposed algorithms. The microbenchmarks allow us to easily compare
different algorithms and CS sizes (represented by number of instructions). This
version of the paper does not show results for the variation of CS sizes. For the
baseline microbenchmarks, we use HeteroSync’s tree barrier and semaphores
with and without exponential software backoff, as described in Section 4.2. Since
HeteroSync extends SyncPrims, we do not include a separate comparison against
SyncPrims [212]. Table 4.2 lists the synchronization primitive microbenchmarks
and benchmarks used in the experiments.
Barriers: We compare against CCG’s barrier5 and a CPU-style SRB: G-CPUSRB,
which we optimize to reduce contention by electing a leader thread per TB to
join the global SRB (having all threads join the global SRB, like CPU algorithms
do, resulted in extremely poor performance). Thus, the main difference between

5We also compared against libcu++’s barrier implementations but found that CCG always
provided equivalent or better performance. After discussing this finding with one of the developers,
we believe CCG outperforms libcu++ because libcu++ focuses on full compatibility with C++,
and thus cannot always optimize GPU code as well as CCG.
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Applications Description
Microbenchmarks

Barriers
atomTreeBarr[205] (Baseline) Two-level atomic tree barrier.
G-SRB Proposed two-level tree SRB.
G-CPUSRB Two-level CPU-style tree SRB.
CCG[78] NVIDIA’s CCG barrier.
Hybrid CCG (low); G-SRB (medi-

um/high contention).
Semaphores

SpinSem1, 10, 120[205] Semaphore with size [1, 10, 120].
SpinSemEBO1, 10, 120[205] SpinSem* with exponential soft-

ware backoff.
PriorSem1, 10, 120 SpinSem* extended with pro-

posed priority flag.
PriorSemEBO1, 10, 120 PriorSem* with exponential soft-

ware backoff.
Benchmarks

BFS[29] Graph traversal algorithm.
PageRank[29] Ranks search engine website re-

sults.
Parallel Scan[201] Element i is sum of all elements

up to i.
Reduce[98] Reduces array elements into one

result.
SSSP[29] Computes shortest path of each

node from a source node.

Table 4.2: Microbenchmarks and benchmarks studied.
G-SRB and G-CPUSRB is that all TBs per SM join the global barrier in G-
CPUSRB, where in G-SRB we select a leader TB per SM to join the global barrier.
Finally, we also compare against a hybrid global barrier (Hybrid), as discussed in
Section 4.3.1.1.

We also compare the performance of each barrier for five modern GPGPU
benchmarks [29, 32], which are representative of larger GPU programs that use
barriers. BFS, SSSP, and PageRank are widely use in graph analytics, which
often utilize GPUs [6, 29, 37, 171, 204, 226]. Since prior work has shown
that different graph analytics algorithms provide the best GPU performance
in different situations [112, 199, 209], we focus on implementations for these
algorithms that require explicit synchronization. Similarly, performing Scan
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and Parallel Reduce on GPUs are foundational building blocks in Computing
Aided Engineering (CAE), including computational fluid dynamics (CFD) [138],
finite element analysis [110], multibody dynamics [137, 176, 219], and granular
dynamics (GD) [139, 175]. Many CAE simulations repeatedly compute the
norm-i of a vector, be it norm-1, norm-2 (Euclidean), or infinite norm, which are
all Parallel Reduce operations. For instance, computing the kinetic energy of a
granular system in its flow or the largest value of the residual in the momentum
balance equation in the Finite Element Analysis method require a Parallel Reduce
operation via the “+” or “max” operator, respectively. Likewise, any collision
detection task in GD simulation requires a Scan operation at each time step (in
one second of physics, there are approximately one million scans performed,
which are sometimes performed on arrays as large as 50 million entries). Any
Lagrangian method used for CFD also requires a Scan operation to determine the
number of neighbors each fluid particle interacts with. Finally, both Scan and
Parallel Reduce operations are used in gaming, performed in many cases at each
time step of the simulation. Thus, Scan and Parallel Reduce are two of the most
common operations done in CAE and gaming, and these operations often utilize
GPUs to take advantage of their parallelism. For Scan and Parallel Reduce we
use the CUDA Samples implementations as references, but replace the implicit
CPU-side barrier with explicit grid synchronization [32]. As Zhang, et al. also
observed, we saw comparable performance between the two methods [241].

Each thread in the barrier microbenchmarks accesses unique memory locations.
To model various contention levels (TB/SM discussed in Section 4.4.3) we use a
variety of input graphs [22, 29, 53, 196] for BFS, SSSP, and PageRank: bgg.gr
(abbreviated 1-bgg, 1 TB/SM), USA-road-d.NY (2-NY, 2 TBs/SM), soc-academia
(4-SA, 4 TBs/SM), USA-road-d.FLA (4-FLA, 4 TBs/SM), USA-road-d.W (8-W,
8 TBs/SM), web-google (8-WG, 8 TBs/SM), CoAuthorsDBLP (8-CO, 8 TBs/SM),
and USA-road-dUSA-road-d.USA (16, 16 TBs/SM). Similarly, for Scan and
Parallel Reduce, for maximum contention we use 163840 elements and halve the
elements for each lower contention level.
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Semaphores: Although some GPU workloads have started using semaphores [69],
to the best of our knowledge they are not publicly available. Thus, we compare the
baseline HeteroSync semaphores against our proposed semaphores (PriorSem).
We also attempted to compare against libcu++’s semaphores, but its binary
and counting semaphores do not support reader-writer semaphores. For all
semaphores, the readers each access a fraction (1/N) of the global memory data,
while the writers write all N memory locations.

4.4.3 Configurations

For all experiments, we report steady state behavior by running the benchmarks
in Table 4.2 ten times and averaging the results. The number of threads per
TB varies across benchmarks. However, since all variants we study (including
the CCG barriers we used) use an optimization where a single thread per TB
joins the barrier or semaphore, we express contention in terms of the number of
TBs per SM (TBs/SM). As the number of TBs/SM increase, contention for the
synchronization primitives also increases, regardless of number of threads per
TB. We set the maximum exponential backoff to 1024 for all results, because we
empirically found this provided a good balance of reduced contention without
sleeping too long.6 Moreover, to ensure each SM has the same number of TBs,
we utilize NVIDIA’s RR scheduler arbitration scheme to schedule TBs across
SMs.

For the barrier implementations, these accesses use the barriers to ensure
there are no data races, while for the semaphores these accesses are all performed
in the CS. Although our primary focus is high contention cases, we also use
weak scaling [72] to examine the effect of contention. Here, we hold the CS size
constant (at 100 global loads and stores) and vary the number of TBs from 1
TB/SM to 32 TBs/SM for Volta, and from 1 TB/SM to 16 TBs/SM for Turing
since Turing allows a maximum of 16 TBs/SM. We show the runtime for 10
iterations of the micro-benchmark across all data points.

6We also examined inlined assembly with CUDA’s nanosleep PTX instruction. The results
showed < 2% improvement over software backoff.
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For the semaphore, we compare the baseline’s (with and without exponential
backoff) and proposed implementation’s (with and without exponential backoff)
execution times across different contention levels. We create these different
contention levels by varying either the semaphore size, number of TBs/SM, or
number of load and store instructions while keeping the other two constant. For
example, we use semaphore sizes of 1 (single reader or writer in CS), 10 (up to
10 readers or 1 writer in CS), and 120 (up to 120 readers or 1 writer in CS), as in
prior work [205, 212], to model different reader-writer ratios.

Finally, we evaluated synchronization and non-synchronization breakdown
for all the microbenchmarks, to analyze how well our optimizations reduce the
number of atomics and global synchronization for the barriers, and the degree of
CS contention for the semaphores. To estimate this percentage we measured the
number of clock cycles spent in the synchronization call relative to the number of
clock cycles spent in the entire kernel, averaged across all TBs.

4.5 Evaluation

4.5.1 Barriers

Microbenchmarks: Figure 4.9 compares the barrier’s execution times as the
number of TBs vary. Overall, CCG and our sense reversing barrier (G-SRB)
significantly outperform the baseline. The CPU-style SRB (G-CPUSRB) also
outperforms the baseline but is less efficient than CCG and G-SRB, especially
at high contention levels. On average, G-SRB improves performance by 34%
on Volta, 38% on Turing, and 27% on Ampere while G-CPUSRB improves
performance by 15% on Volta, 26% on Turing, and 3% on Ampere respectively,
compared to the baseline. By removing the second barrier call, G-SRB significantly
reduces the number of atomic accesses versus the baseline by over 50%. G-
SRB’s gains over the baseline also increase as contention increases; although the
baseline also uses a tree barrier, its additional atomics (relative to G-SRB) hurt
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(a) Volta Architecture

(b) Turing Architecture

(c) Ampere Architecture
Figure 4.9: Execution time for barrier microbenchmarks as contention increases.
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Figure 4.10: Sync versus non-sync time for Volta barriers.

performance. Thus, G-SRB improves scalability. To further examine why G-SRB
improves on the baseline, Figure 4.10 breaks down their execution time into
synchronization and non-synchronization time for the Titan V GPU. On average,
G-SRB reduces synchronization time by 78% over the baseline. Moreover, non-
synchronization time only increases a little for G-SRB as contention increases.
Thus, the synchronization time reduction is not replaced by power-hungry active
waiting.

CCG also provides significant benefits over the baseline. Notably, CCG
outperforms G-SRB at lower contention levels because at low contention levels G-
SRB’s software backoff and hierarchical design offer less benefit (Section 4.3.1.1).
Although Ampere provides better hardware support for barriers, this support
focuses on barriers that can use shared memory [167], which our barriers cannot use
since they synchronize across multiple TBs which are often running on different
SMs. G-CPUSRB also provides similar benefits at lower contention levels.
However, as contention increases, G-SRB’s more scalable design approaches and
then outperforms CCG and G-CPUSRB. Thus, Hybrid, which utilizes CCG at low
contention levels and G-SRB at medium and high contention levels, provides high
performance regardless of contention level. We set Hybrid’s threshold in between
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selecting CCG and G-SRB at 8 TBs/SM, as it provides a good transition point to
switch between the two approaches. Moreover, since CCG, G-CPUSRB, G-SRB,
and Hybrid significantly outperform the baseline, we focus on these barriers for
the full-sized benchmarks.
Benchmarks: Figure 4.11 examines the barrier’s normalized performance as
contention varies for the five full-sized benchmarks. Although Figures 4.9 and
4.10 used absolute execution time in – to demonstrate how the performance scaled
as contention increased, Figure 4.11 uses normalized performance because each
benchmark’s runtime differs significantly. Similar to the microbenchmarks, at
lower contention levels CCG often outperforms G-SRB. However, unlike the
microbenchmarks G-SRB consistently outperforms CCG and G-CPUSRB at much
lower levels of contention (e.g., 8 TBs/SM). This happens because G-SRB’s locally
scoped atomics reduce the number of global flushes and invalidations, which
improves performance relative to CCG, which must globally flush and invalidate
more frequently due to its single-level design. As discussed in Section 4.2.1.1,
every atomic in CCG performs a threadfence that flushes and invalidates
(Section 4.2). In comparison, in G-SRB only one TB per SM that takes part
in the second level barrier (Figure 4.6b) must perform a threadfence, and the
remaining TBs can perform the cheaper threadfence_block at the local, per-SM
barriers (Figure 4.6a). This difference is further magnified since CCG does not
perform backoff. Thus, as contention increases, G-SRB reduces unnecessary
accesses to the shared global synchronization variables – which is magnified
by the degree of synchronization in some workloads. For example, usually the
gains were slightly lower for social media and similar for web networks and road
networks at the same contention level because the social media networks require
less synchronization.

For all five benchmarks, G-SRB’s performance improvement over CCG is
closely tied to the percentage of total execution time spent performing global
synchronization (Section 5.4.3). As expected, global synchronization is a major
component in Reduce and Scan where on average 90% and 82%, respectively, of
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(a) Volta Architecture

(b) Turing Architecture

(c) Ampere Architecture

Figure 4.11: Benchmark’s with barriers performance as contention varies, nor-
malized to CCG. NA’s denote configurations the benchmark cannot run due to
input size. Since Baseline is much worse for the microbenchmarks we do not
include it here.
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kernel runtime is spent synchronizing at the maximum contention level. As a
result, G-SRB outperforms CCG by an average of 62% and 49%, respectively,
for Reduce and Scan at contention levels ⩾ 8 TBs/SM. In contrast, on average
PageRank spends only 3% of kernel time synchronizing. Consequently, G-SRB
only improves performance by 0.1% on average over CCG. BFS and SSSP
represent a middle point between Reduce, Scan, and SSSP: they spend 36%
and 47%, respectively, of their time synchronizing at maximum contention. As
a result, CCG mostly performs better than G-SRB for lower contention levels
(e.g., 3% and 8% better for BFS and SSSP, respectively, on average at contention
levels < 8 TBs/SM). For these lower contention levels G-CPUSRB also does
worse than CCG but is slightly better than G-SRB. Since G-CPUSRB has a more
centralized design, at lower contention levels, scalability is less important, so G-
SRB’s additional local barriers add overhead relative to G-CPUSRB. However, as
contention increases, G-SRB’s improved scalability again enable it to outperform
CCG and G-CPUSRB: at contention levels ⩾ 8 TBs/SM G-SRB is 19% and 19%
better than CCG on average across the three GPUs, respectively, for BFS and SSSP.
Interestingly, for high contention levels G-CPUSRB also often outperforms CCG.
Finally, Hybrid again gives the best performance in almost every case, effectively
blending CCG and G-SRB. Note that the full-sized benchmarks utilize a wide
variety of input sizes, including ones that cause higher contention. Moreover, we
expect that input sizes will continue to increase in the future. Thus, identifying
more scalable synchronization solutions is important.

4.5.2 Semaphores

Microbenchmarks: Figures 4.12 shows the execution times of semaphore
algorithms across different contention levels ranging from 1 TB/SM to the
maximum TB/SM across different GPU architectures (Table 4.1). We create
these different contention points by either varying the number of TBs/SM, or
number of load and store instructions while keeping the other two constants.
Overall, on average for semaphore of size 1 our proposed implementation improves
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(a) Volta Architecture (b) Turing Architecture

(c) Ampere Architecture

Figure 4.12: Size 1 semaphore’s execution time as contention increases, normal-
ized to PriorSem1. X’s denote deadlocks.

(a) Volta Architecture (b) Turing Architecture

(c) Ampere Architecture

Figure 4.13: Size 10 semaphore’s execution time as contention increases, normal-
ized to PriorSem1. X’s denote deadlocks.
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(a) Volta Architecture (b) Turing Architecture

(c) Ampere Architecture

Figure 4.14: Size 120 semaphore’s execution time as contention increases,
normalized to PriorSem1. X’s denote deadlocks.

Figure 4.15: Semaphore sync versus non-sync time for 1 TB/SM.

performance by 89% over the baseline implementation on the Volta, 70% on
the Turing GPU, and 90% on Ampere GPU. The baseline implementation with
exponential backoff shows much better performance and is only 5% slower on the
Volta GPU for a semaphore of size 1. However, SpinSem livelocks as contention
increases for its centralized semaphore on the Volta and Turing GPUs, and is so
significant that it always deadlocks on the Ampere GPU. As a result, we were
only able to obtain SpinSem data for 1 TB/SM on the Volta and Turing GPUs.
Although SpinSemEBO reduces contention compared to SpinSem, it also livelocks
for ⩾ 1 TB/SM. In comparison, PriorSem and PriorSemEBO avoid livelock for
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(a) Volta Architecture (b) Turing Architecture

(c) Ampere Architecture

Figure 4.16: Semaphore’s execution time as CS size varies. The labels show the
microbenchmark name suffixed with the CS size. We do not include the baseline
semaphores because they deadlock beyond 1 TB/SM.

Figure 4.17: GPU kernel profile for the baseline semaphore.

Figure 4.18: GPU kernel profile for the priority semaphore.



72

Feature HeteroSync Tree Barrier [204] CPU-style SRBs CCG [78] G-SRB
Scalable, low contention synch variables ✓ ✓ X ✓
Optimized for GPU processing model ✓ X ✓ ✓
Efficient context switching support X ✓ ✓ ✓

Table 4.3: Comparing G-SRB to prior work.

all the evaluated data points. Thus, the priority mechanism successfully prevents
TBs entering the semaphore from stopping TBs trying to exit the semaphore and
ensures forward progress. Moreover, the GPU kernel activity profiles (Figures 4.17
and 4.18) show that the priority mechanism also reduces redundant attempts to
acquire the lock, reducing the overall synchronization time from 12% in baseline
to 5% in PriorSem. Further, Figure 4.15 shows the priority mechanism also
reduces CS synchronization time by 88% over the baseline.
Varying CS Size: Finally, like G-SRB, we evaluate the semaphores across different
CS sizes and for different numbers of TBs/SM. The semaphores (Figure 4.16)
and G-SRB have similar trends: as CS size increases the overall gains decrease
because the percentage of time spent in synchronization decreases as we increase
the size of the CS. Overall, these results show that our proposed modifications
improve performance and avoid livelock.

4.6 Related Work
CPU Synchronization Primitives: CPUs have long utilized efficient synchro-
nization primitives for fine-grained synchronization, including centralized and
decentralized mutexes [17, 140, 142, 177, 178, 197], ticket locks [79, 121],
barriers [83, 218], and semaphores [55]. Modern OSs often support these
synchronization primitives [63]. For example, a simple realization of a CPU
mutex is a spin lock implemented with atomics [191, 194, 217]. However, these
synchronization primitives often do not scale well on GPUs because GPUs do not
have robust OS support and most CPU spin lock primitives are implemented using
linked data structures which causes warp divergence [232]. Further, as threads
increase these mutexes heavily use globally scoped atomics that degrade perfor-
mance (Section 2). Moreover, GPU applications traditionally use fine-grained
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synchronization sparingly, and the level of GPU parallelism necessitates simpler
coherence protocols and less OS involvement.
GPU Synchronization Primitives: SyncPrims and HeteroSync developed GPU
synchronization primitives microbenchmarks, including locally and globally
scoped atomic variants [204, 212]. However, as shown in Section 4.5, Het-
eroSync’s barrier and semaphore implementations scale poorly and suffer from
livelock. The proposed approaches address these shortcomings, scale better,
and perform significantly fewer atomics. Prior work has also shown that ticket
locks can be used instead of mutex locks in some GPU algorithms to improve
scalability [151, 152, 205]. However, we focus on mutex locks because they are
more commonly used in GPU applications and because ticket locks imply an
ordering on when a TB accesses the CS that was not implied in either CCG or the
benchmarks. Nevertheless, this is an interesting alternative for future work.

Other prior work dynamically estimates a GPU kernel’s occupancy for
barriers [208]. This approach restricts the number of TBs based on a discovery
protocol estimate but guarantees fair scheduling and ensures deadlock-freedom.
Finally, GPU manufactures such as AMD and NVIDIA have started to add
hardware support for inter-block synchronization [11, 119, 127, 167]. However,
this hardware support is limited in scope and does not significantly impact our
results on NVIDIA GPUs.

Overall, Table 4.3 compares G-SRB to prior work on synchronization primi-
tives across three key metrics: scalability of accessing synchronization variables
as contention increases, compatibility with the GPU’s processing model, and
efficient support for context switching. As discussed above, HeteroSync was
designed both for the GPU’s processing model and with scalability in mind, but
requires two barriers to support context switches. In contrast, CPU-style SRBs
efficiently support context switching and scale efficiently, but perform poorly
when applied to GPUs (as we show in Section 4.5). Finally, CCG is designed
explicitly for GPUs and efficiently supports context switches (Section 4.2.1.1),
but suffers scalability issues as the number of TBs joining the barrier increase
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(Section 4.5).
Accelerator Synchronization Primitives: Other prior work has also explored
how to design optimized barriers for Xeon Phi co-processors [195]. Like our
work, Rodchenko, et al. identify the importance of designing multi-level barrier
algorithms with the accelerator’s memory hierarchy in mind. However, designing
barriers for Xeon Phi’s and GPUs requires different considerations because the
accelerators have different memory hierarchies, coherence protocols, consistency
models, and access patterns. For example, Xeon Phi barrier algorithms must
consider inter-core communication since atomics may be performed locally. In
comparison, both locally- and globally-scoped GPU atomics must be performed at
the last level cache. Thus, GPU barrier algorithms utilize different optimizations.
Moreover, unlike our work, Rodchenko, et al. did not explore semaphore
optimizations.

4.7 Discussion & Conclusion

Modern GPU applications increasingly utilize fine-grained synchronization.
However, existing solutions scale poorly or suffer from livelock at high contention
levels. We propose optimizations to state-of-the-art GPU barriers and semaphores.
Although our techniques extend well known approaches like SRBs, we demonstrate
how utilizing these concepts on GPUs requires careful consideration of the GPU
memory hierarchy, coherence protocol, consistency models, and threading model.
Directly applying CPU-style SRBs is sub-optimal, especially as contention
increases. We show how synchronization primitives should be designed with
the GPU’s parallelism, memory hierarchy, and consistency models in mind. We
design G-SRB accordingly, utilizing a two-level barrier that scales efficiently
by mirroring the GPU’s memory hierarchy and exploiting the GPU’s scoped
consistency to frequently perform synchronization locally. We also utilize the
GPU’s shared memory to spin on local, per-TB variables to improve performance
– without affecting SM utilization because each thread only store a couple of
booleans (e.g., Figure 4.6a) in the shared memory.
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Overall, our algorithms significantly improve the performance and scalability
of GPU barriers and semaphores for Volta, Turing, and Ampere GPUs, and avoid
livelocks. On average our proposed techniques improve performance by 36%
relative to the baseline tree barrier and 79% relative to the baseline semaphore.
Since our barrier scales better than CCG and CPU-style SRBs, at levels of
contention ⩾ 8 TBs/SM, for five full-sized benchmarks, it outperforms CCG by
36% on Volta, 34% on Turing, and 32% on Ampere; likewise it outperforms
CPU-style SRBs by 12% on Volta, 7% on Turing, and 8% on Ampere GPUs.
Collectively, this makes a case for G-SRB to replace CCG for higher levels of
contention. Moreover, although we focus on single GPU synchronization, the
ideas are also easily extensible to multi-GPU and multi-chiplet setups by adding
an additional hierarchy level to keep most synchronization local per GPU.
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5 cpcoh: efficient multi-chiplet gpu coherence
via dependency tracking

5.1 Motivation

Thus far we have seen bottlenecks with explicit fine-grained synchronization using
software primitives in Chapter 3 and Chapter 4. However, implicit fine-grained
synchronization is another important aspect that comes with its own sets of
bottlenecks. These bottlenecks have gotten even worse as GPUs have continued
to evolve. The search for more computer power on the device while still meeting
modern technology constraints has led GPU vendors to redesign the memory
hierarchy, however, this redesign introduces new sets of challenges that need to be
addressed to ensure optimal performance. Newer GPU architectures introduce
additional levels of cache hierarchy in the system while also making some caches
that were shared (L2 cache) now private to a subset of CUs. However, this
increases the performance impact of implicit global synchronization that happens
at kernel boundaries. GPU’s simple software-driven coherence protocols rely
on acquire/release semantics at kernel boundaries to maintain coherence. The
more levels of private cache in the device, the greater the impact of implicit
synchronization on application performance. Performance is affected because
inter-kernel reuse becoming more difficult. For example, in monolithic GPUs
application could reuse data across kernels from the L2 cache. However, in chiplet-
based designs, L2 caches are private. Thus, they are also subject to invalidation
(acquire) and writeback (release) due to implicit synchronization – eliminating
inter-kernel reuse from the L2 caches and hurting application performance.

For decades transistor scaling allowed vendors to fit an order of magnitude
more transistors on a die per technology generation. For example, modern GPUs
often have a hundred compute units (CUs) per GPU, quadruple the number of CUs
from the previous decade [105], and run applications with millions or billions
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Figure 5.1: Overall heterogeneous system.

of threads. However, continuing to scale performance and energy efficiency for
future heterogeneous systems is hampered by technology scaling and Moore’s
Law slowing [102]. General-purpose CPUs and accelerators also often have
different timing, density, and bandwidth requirements. Thus, integrating them on
a single die is difficult. Moreover, cost, die, and yield limitations make designing
larger, monolithic systems difficult [20, 101, 105, 173].

Recent research has combined multiple smaller chips into a large, aggregated
system, an approach known as multi-chip modules (MCMs) or chiplets [20,
21, 66, 105, 143, 202, 221], as shown in Figure 5.1. Likewise, industry has
demonstrated how chiplet-based CPUs (e.g., AMD’s Epyc [148]) can continue
scaling performance. Since the chiplets are smaller, they do not face the same
die and yield challenges as monolithic systems. Moreover, combining multiple
chiplets together (e.g., using interposers [94, 100, 101, 133] or other packaging
technologies [198]) into a single, larger system improves memory bandwidth,
memory capacity, and I/O scalability [91, 92, 105, 169, 207, 221]. This enables
closer integration of components than was previously possible, without the
technology integration challenges monolithic designs faced.

However, chiplet-based heterogeneous systems introduce an additional layer of
hierarchy, causing indirection and non-uniform access latency (NUMA) effects that
significantly hurt performance. In particular, two key bottlenecks are bandwidth
limited inter-chiplet links [189] and more expensive inter-kernel reuse caused
by additional cache levels being subject to implicit synchronization [105, 239].
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To examine these issues we focus on chiplet-based GPUs [92, 179, 198, 221]
because GPUs have become the general-purpose accelerator of choice due to
their wide availability and ease of programming. Nevertheless, the issues also
apply to other accelerators including DSPs [41, 185], NPUs [9], TPUs [97],
Apple’s accelerators [18], and the Heterogeneous Systems Architecture (HSA)
Foundation [87] (discussed further in Section 5.6).

As shown in Figure 5.1b, multi-chiplet GPUs have an additional level of
cache. Thus, GPU L2 caches are now shared across CUs within a chiplet, and
the L3 cache is a shared LLC across all chiplets. As a result, synchronization
operations are even more expensive in multi-chiplet GPUs than monolithic GPUs
(discussed further in Section 2.2). Although most GPU applications only have
coarse-grained synchronization at kernel boundaries, they still must invalidate all
valid data from local caches at kernel launches (similar to an implicit acquire) and
write through all dirty data from local caches (similar to an implicit release) when
a kernel completes to ensure correctness [67, 85, 136]. In monolithic GPUs, this
overhead was relatively small because the L2 cache was shared across all CUs,
and GPU L1 caches typically used write-through or write-no-allocate policies.
However, in chiplet-based GPUs the L3 is the shared ordering point across chiplets.
Thus, the per-chiplet L2 caches must also be invalidated and flushed at kernel
boundaries. This increased indirection hurts performance: unlike monolithic
GPUs, chiplet-based GPUs cannot exploit inter-kernel locality at the L2.

Prior work has shown that the impact of bandwidth limited inter-chiplet
links and the loss of inter-kernel shared L2 reuse is significant: 29%-45%
average performance loss [189, 239]. We confirmed these results and found
performance is hurt by 54% on average for a subset of the applications we study
(Section 5.4). Consequently, efficiently moving data is challenging in chiplet-
based heterogeneous systems – a challenge that will become even more acute as
systems scale to more chiplets.

To address this inefficiency we propose CPCoh. CPCoh leverages the key
insight that, although current systems do not exploit it (Section 2.2.1), the GPU’s
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Command Processor (CP) has a global view of what data is being accessed in each
chiplet at a given time. As shown in Figure 5.1a, modern, monolithic GPUs often
utilize a centralized, integrated programmable processor, a Command Processor
(CP), to interface between the programmable accelerator and software. Since CPs
are programmable, vendors can update them without requiring hardware changes
or user-level programmer involvement. However, currently these CPs are largely
limited to parsing work contexts and latency-blind scheduling (discussed further in
Section 5.2). We propose to redesign the CP to utilize this information, in concert
with software information (from the compiler or programmer) to determine the
state of data structures in caches. Given this, CPCoh generates the appropriate
per-chiplet acquire and release operations at kernel launch time to ensure that
data is invalidated and/or flushed right before it will be needed by another chiplet.
Effectively, CPCoh converts conservative, per-kernel, GPU-wide implicit acquire
and release operations into aggressive, chiplet-specific, on demand acquire and
release operations – increasing reuse and reducing the synchronization penalty.

However, modern CPs view the accelerators monolithically, even though
accelerators are often distributed across multiple chiplets. Thus, we propose
to partition the global, centralized CP’s responsibilities between a global CP
and local, per-chiplet CPs (Figure 5.1b). The local CPs have access to dynamic,
micro-second scale information about their chiplet, which they communicate to
the global CP. Likewise, the global CP has a global view of the behavior of all
accelerators, including synthesizing the information from the local CPs, and what
work is being assigned to the GPU. Additionally, since the global CP has access
to the GPU’s kernel objects’ metadata [87], it knows which data structure(s)
each kernel accesses, as well as what chiplet(s) each kernel will be assigned
to. The global CP also knows what data structure(s) subsequent kernel(s) will
access and which chiplet(s) those kernel(s) will be scheduled on. Thus, the global
CP has a complete picture of what data may still be in the chiplet’s L1 and L2
caches. CPCoh uses the global CP’s complete picture to track, at a data structure
granularity, which data structures are being accessed in different kernels and issue
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Figure 5.2: Current CP versus Proposed CP for chiplet-based systems.

the appropriate per-chiplet synchronization operations.
Prior work has also examined how to improve performance for chiplet-based

GPUs. In particular, HMG [189] extends the existing, VI-like GPU coherence
protocol from monolithic GPUs (Section 2.2) to be hierarchical. For Multi-
GPU (MGPU) systems, Halcone [145] extends timestamp-based monolithic GPU
coherence protocols using a timestamp store unit placed in shared physical memory
to maintain coherence in MGPU systems. However, our results (Section 5.5) show
that HMG’s complexity is unnecessary and, in some cases, hurts performance.
Shadow tags could be added to reduce the overhead of invalidating valid data [215].
However, there is a sizable overhead to store the shadow tags, the latency to access
the shadow tag structure affects the critical path, and flushing per-chiplet dirty
data at kernel boundaries would still be expensive. We further discuss related
work related to CPCoh in Section 5.7.

Overall, across 22 benchmarks from traditional GPGPU, graph analytics, ML,
and HPC workloads, on average CPCoh improves performance by 13% and 14%
(17% and 20% for workloads with moderate or higher inter-kernel reuse), energy
by 14% and 11%, and network traffic by 19% and 17%, over the baseline 4-chiplet
GPU and the state-of-the-art HMG, respectively. Furthermore, for applications
without significant reuse CPCoh provides equivalent performance to the baseline.
To the best of our knowledge, CPCoh is the first to leverage CP information to
mitigate synchronization overheads in multi-chiplet GPUs. Moreover, CPCoh
effectively monitors intra- and inter-chiplet behavior without hardware changes.
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5.2 Background

5.2.1 Multi-Chiplet GPU Architecture
Each GPU chiplet has dedicated CUs, each with a private L1 cache, and a L2
cache shared between its CUs (Figure 5.1b). In some setups each L2’s banks are
coherent within a single chiplet but incoherent with the rest of the system [189],
while in others all banks are coherent with the entire system [198, 221, 238].
Chiplet-based also GPUs introduce an additional level to the memory hierarchy:
an LLC which acts as a common shared ordering point across all CUs, although
LLC banks are also divided across chiplets, similar partitioning is also done for
device’s HBM. Moreover, a multi-chiplet GPU’s memory subsystem is NUMA
and its inter-chiplet links do not provide full aggregated LLC/HBM bandwidth
to each chiplet [20] as shown in Figure 5.3. As a result, accesses to another
chiplet’s memory incur additional latency. Accordingly, inter-chiplet bandwidth
is limited [189] and bulk flush and invalidation operations are expensive. Thus,
chiplet-based designs have a choice when accessing data that was modified by
a thread on another chiplet: a) incur additional latency to access a remote bank
of a shared cache [189] or b) perform store releases to flush dirty data from the
producer chiplet such that a consumer chiplet can subsequently fetch the data from
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a shared LLC or global memory [198]. Since both approaches incur significant
overhead, we investigate alternatives that retain more data in each chiplet’s L2
cache.

5.3 Design

5.3.1 Proposed CPCoh Architecture
Figure 5.4 shows CPCoh’s overall architecture. To track memory accesses
from data structures (e.g., arrays) across chiplets, CPCoh implements a Chiplet
Coherence Table in the global CP’s private memory. This table has 4 fields per
row: data structure (e.g., array base address), address range(s) per chiplet, access
mode, and a bit vector indicating which chiplets are accessing this data structure
and the access state (Section 5.3.2). Each entry is 25 bytes. Since all work
dispatched to the GPU goes through the global CP (Section 2.2.1), the global CP
has a global view of what data is being accessed in each chiplet at a given time.
The global CP gets this information for the kernel argument via the metadata
retrieved from kernel packets. Next, when the global CP dispatches the WGs
to chiplets, it updates the Chiplet Coherence Table for each data structure the
kernel accesses. However, the kernel packets do not always provide all of the
needed information. For example, some GPU programming languages (OpenCL)
provide detailed information about access mode, other languages (CUDA, HIP)
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Listing 5.1: Marking array access modes via new API calls.
/ / Square Ke rn e l w i t h Array A ( R ) as
/ / i n p u t and Array C ( R /W) as o u t p u t
hipSetAccessMode ( squa re , C_d , ’R /W’ ) ;
h ipSetAccessMode ( squa re , A_d , ’R ’ ) ;
hipLaunchKernelGGL ( squa re , . . . , C_d , A_d , N ) ;

do not. Thus, to ensure CPCoh has the necessary information regardless of
GPU programming language, we utilize software information (either from the
programmer or the compiler) about access mode and address ranges that each
chiplet is going to access (Section 5.3.2). Given this information, the global CP
has a conservative estimate of what data may still be in the chiplet’s L1 and L2
caches at the end of a given kernel. Accordingly, instead of performing implicit
acquires and releases on all chiplets at each kernel boundary, CPCoh uses the
Chiplet Coherence Table’s information to generate the appropriate per-chiplet
acquire and release operations to invalidate and/or flush data shortly before it will
be needed by another chiplet.

5.3.2 Proposed Changes
CPCoh requires several key changes:
Command Processor (CP): Figure 5.2a illustrates some of the details of a
simplified CP implementation on modern monolithic GPUs [73]. As discussed
in Section 2.2.1, the CP serves as the interface between the software and the
GPU hardware. Figure 5.2b shows our redesigned CP, which separates the CPs
functionality into two levels: (1) a global CP and (2) a local CP per chiplet. The
local CP controls local scheduling decisions (e.g., which CU on the chiplet to
schedule a given WG) and passes runtime information back to the global CP.
Conversely, the global CP interfaces with the host, dispatches work across chiplets,
issues CPCoh’s acquires and releases, and stores CPCoh’s Chiplet Coherence
Table inside the CP’s private memory.
Labeling Memory Accesses: To identify each global memory data structure,
similar to prior work [7, 39, 146, 203, 204] we label each data structure and their
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Listing 5.2: Marking both access modes and address ranges for data structures
via new API calls. Note that while the programmer does not know which chiplets
the kernel will map to the number of chiplets it will use can be configured.

/ / numSchedChip : # c h i p l e t s t o s c h e d u l e k e r n e l on
t y p e d e f t u p l e <Addr_t , Addr_t , L o g i c a l c h i p l e t I D >
r a n g e C h i p l e t ;
/ / Ke rne l t o be l a u n c h e d on 2 c h i p l e t s
/ / Each c h i p l e t s works on h a l f o f i n p u t & o u t p u t
v e c t o r < r a n g e C h i p l e t > C_ranges ( numSchedChip ) =

{ make_ tup le ( C_d [ s t a r t ] , C_d [ mid ] , 0 ) ,
make_ tup le ( C_d [ mid + 1] , C_d [ end ] , 1 ) } ;

v e c t o r < r a n g e C h i p l e t > A_ranges ( numSchedChip ) =
{ make_ tup le ( A_d [ s t a r t ] , A_d [ mid ] , 0 ) ,

make_ tup le ( A_d [ mid +1] , A_d [ end ] , 1 ) } ;
h ipSetAccessModeRange ( squa re , C_d , ’R /W’ , C_ranges ) ;
h ipSetAccessModeRange ( squa re , A_d , ’R ’ , A_ranges ) ;
hipLaunchKernelGGL ( squa re , . . . , C_d , A_d , N ) ;

access mode: Read-Only (R) or Read/Write (R/W). Although monolithic GPUs
generally only need R and R-W labels [118, 203], chiplet-based GPUs must also
know where these accesses are scheduled. Without scheduling information it is
unknown which chiplets have the most up-to-date copy and thus the system must
conservatively generate additional acquire-releases.

Although there are several ways for the compiler or programmer to pass
this information to the CP, Listing 5.1 shows an example of we propose to
modify HIP’s open source ROCm [15] to add new API calls for this purpose.
Specifically, for each data structure in the kernel, the programmer uses our new
hipSetAccessMode call to specify if the data structure will be R or R/W in
the corresponding kernel. ROCm adds this information to the kernel packet,
allowing the global CP’s packet processor to access this information. Optionally,
programmers can use our new hipSetAccessModeRange API call to provide
both access mode and address ranges within a data structure that chiplet(s) will
be operating on (Listing 5.2). This allows software to specify finer-granularity
data structure access patterns. Although the programmer/compiler should be
able to determine most GPU access patterns statically, when this is not possible,
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Listing 5.1’s mode-only version should be used. In case the access pattern can
be completely determined statically, the responsibility of marking these regions
could be added as a feature in the compiler reducing the programming burden.
For example, if a kernel accesses different data structures depending on control
flow, the programmer must specify all regions that may be accessed by the
kernel. Similar to GPU consistency models, this requires that the programmer
(or compiler) correctly mark the ranges. If the ranges are incorrect, incorrect
outputs may be produced. Moreover, if no information is provided by the
programmer/compiler, CPCoh will devolve to baseline behavior and generate
conservative acquire and releases.
Tracking Accesses in the CP: Figure 5.4 shows how CPCoh uses a 2n-bit
bit-vector (where n represents the number of chiplets) to track which arrays are
accessed, their mode (R, R/W), and by what chiplets. Each table row tracks an
array, and the columns specify the virtual address ranges for different chiplets,
the access mode, and the 2n-bit bit-vector tracks what state the array will be in
(discussed next) after a particular kernel has completed on the different chiplets.
For the GPU applications we studied (Section 5.4), access mode across chiplets
for a particular data structure is the same. Thus, we leverage this to generate one
chiplet vector per data structure. If this is not true in other applications, CPCoh
can be reprogrammed to have a chiplet vector per address range. CPCoh can track
up to 8 data structures per kernel; beyond this we coarsen the labels.
Coarsening Data Structure Labels: As in prior work, we find that GPU programs
generally access 8 or fewer data structures [120, 222]. However, if this changes
in the future, since CPs are programmable the data structure tracking can be
increased (at the cost of additional CP memory). Nevertheless, if a kernel accesses
more than 8 data structures, then CPCoh will coarsen the information for before
adding it to the Chiplet Coherence Table. We first search the table to find if any
data structures are contiguous in memory. If any are found, CPCoh combines
their entries such that both data structures can be indexed with this entry. The
combined entry tracks all chiplets any of these data structures were assigned to,
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and its data structure identifier in the chiplet vector stores the more conservative
of the states to ensure correctness. For example, if one data structure is R and the
other is R/W, the combined state of the chiplet vector will be R/W. However, if no
such structure is found, we then coarsen the data structures closest to one another
in memory. Although this approach causes more acquire/releases than required,
since the memory between them is not accessed, it ensures correctness.
States: Each Chiplet Coherence Table entry has four possible states, represented
by 2 bits per chiplet in the chiplet vector:

• Not Present (00): This state indicates that the data structure does not exist
in chiplet i’s L2 cache.

• Valid (01): After a given kernel that only reads (access mode R) the data
structure, if its data is in the chiplet i’s L2 cache, its values will be Valid.
Thus, if later chiplet j wants to write this data structure, chiplet i’s copy
must be either invalidated or marked as Stale.

• Dirty (10): After a given kernel that reads or writes (access mode R/W) a
data structure, if its data remains in chiplet i’s L2 cache its values may be
Dirty. Thus, if later chiplet j wants to access this data, we must first flush it
from chiplet i.

• Stale (11): The Stale state indicates when the data structure might be in
chiplet i’s cache, but its values are not the most up-to-date. Thus, the data
needs to be invalidated from chiplet i before it is safe for it to access them
again.

Figure 5.5 shows CPCoh’s state diagram, which tracks the state of each data
structure in the Chiplet Coherence Table. In the table, each Chiplet Vector entry
represents the state at a particular chiplet for one data structure.1 Unlike most

1Although we did not observe it, if an application accesses different parts of a data structure
in different modes and software cannot statically determine their ranges, CPCoh would create a
chiplet vector per range.
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Figure 5.5: Internal state tracking mechanism for a data structure in the CPCoh
Table for a given chiplet.

coherence protocols, CPCoh does not need transient states since it is not waiting
for operations to complete – instead it denotes how the data is being accessed
in each chiplet. The transitions show how a Chiplet Coherency Table entries’
state changes when different events like Acquires, Releases, Reads, or Writes
occur. This state may or may not be the same as the actual state of the cache
lines associated with the data structure in the cache since table entries’ state is
a conservative coarse-grained estimate of the overall state of a data structure in
a given chiplet’s L2. Moreover, the state transitions in the table occur at kernel
launches. For example if a data structure was Valid in chiplet 0’s cache at the
end of kernel 1, and chiplet 0 now receives a kernel that will write the same
data structure, the state for this data structure transitions to Dirty in the table for
chiplet 0, even though the kernel itself has not started. Next, we describe some of
Figure 5.5’s key state transitions:
Valid −→ Stale: When the address range on a chiplet i will be modified by another
chiplet j in a soon-to-be-launched kernel, CPCoh marks i’s entry as Stale for this
data structure. Thus, chiplet i’s data in its L2 is now incoherent. However, CPCoh
guarantees it will be invalidated before subsequent uses.
Dirty −→ Stale: When an address range on a chiplet i will be written by another
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chiplet j in a soon-to-be-launched kernel, in order to ensure correctness we
must flush the dirty data from chiplet i’s L2 cache before chiplet j can access
it. Accordingly, CPCoh issues a flush (store release) for the dirty data, then
transitions to the Stale state. Also, since the baseline coherence protocol keeps the
a clean copy of the line in chiplet i’s L2 cache, if this address will be subsequently
read by chiplet i then CPCoh generates a further invalidate and transitions to
Invalid to ensure no stale data is accessed.
Stay in Valid on remote accesses: CPCoh elides unnecessary invalidations by
allowing caches to retain clean copies if other chiplets are also only reading data
from a given address range.
Stay in Dirty: Since CPCoh supports software-range based tracking, it retains
more data within chiplets. For example, when a chiplet i continues to work on
the same data structures across kernels, it is unnecessary to flush the dirty data
from i. Instead, CPCoh elides this release operation, increasing reuse.
Lazy Acquire/Release: Monolithic GPUs perform release operations at the end of
kernels. Instead CPCoh lazily performs releases as needed based on information
the CP receives about subsequent kernel(s). Additionally, with CPCoh we perform
the release after the memory acquire associated with the start of a subsequent
kernel but before the next kernel issues any memory accesses. In the baseline
coherence protocol when a fully dirty line is written back, the cache retains a
clean copy of the line and transitions to a shared state. Delaying the release helps
CPCoh retain the lines written by the previous kernel. Moreover, this change still
produces SC-compliant results for programs with no heterogeneous races (i.e.,
programs that are SC-for-HRF), since it ensures that no subsequent accesses are
performed before any necessary release (flush) and acquire (invalidation) of these
operations are completed.
Impact on Memory Consistency Model: We assume the standard SC-for-HRF
consistency model. Thus, like current GPUs, any correctly synchronized, simul-
taneously executing threads either will not be writing the same address or must
explicitly synchronize to guarantee correctness. These explicit synchronization
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operations do not impact the CP’s tracking of implicit acquires and releases:
even in current programs with explicit synchronization, implicit synchronization
operations must still be performed at kernel boundaries.

5.3.3 Functionality

Launching Kernels: Since CPCoh removes the implicit acquire and release
operations at kernel boundaries, we adjust how kernels are launched by the
global CP. First, when launching a new kernel the global CP must inspect all
data structures the kernel accesses, then check its table to determine what state
these data structures are in on all chiplets. If any prior kernels accessed the
same data structure(s), the global CP must determine if acquire and/or release
operations are necessary to ensure that the data accessed by those kernel(s) is
flushed or invalidated from the chiplets that accessed it. For any data structures that
were accessed by the prior kernels, the global CP will generate synchronization
operations for the appropriate chiplet(s) to ensure coherence and consistency are
maintained across kernels. These synchronization operations are sent from the
global CP to the local CP, which distributes them to its CUs – these requests
are then sent to the CU’s corresponding L1 and L2 caches to invalidate or flush
data. Finally, the local CPs will not launch WGs from the next kernel until the
appropriate acknowledgments for acquires and releases are received by the global
CP, which then sends a “launch enable” message to the local CPs. Waiting for
acknowledgments for acquires/releases and transmitting the final launch signal
is on the critical path. Thus, we factor this overhead into our experiments
(Section 5.4). Finally, once the acquires and releases are complete, the global CP
resets the appropriate bit-vector value to 00 (Not Present) to avoid generating
further acquires/releases for the same data structure. Once all entries for a given
kernel are 00, then we remove that entry.
Generating Release Requests: CPCoh sends out a release (flush) request only
when a data structure will be accessed in a new kernel and that kernel will be
scheduled on either multiple chiplets or a chiplet other than the one in which it is
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present in a Dirty state. This ensures a chiplet can never read a stale value either
from its own cache or the shared LLC. However, if the next kernel accessing this
data is scheduled on the same set of chiplets as the previous kernel, CPCoh elides
the release if the WGs access the same address ranges in a data structure, on the
same chiplets, that they did previously.
Generating Acquire Requests: CPCoh sends out an acquire (invalidation)
request only when a data structure will be written to in a new kernel and the new
kernel will be scheduled on a chiplet(s) that has the data structure in Stale. This
ensures that a chiplet does not read stale values, without requiring implicit acquire
requests across all chiplets before each kernel.
Removing Entries: When CPCoh generates an acquire or release, CPCoh also
updates the chiplet vectors according to the state diagram in Figure 5.5. If the
chiplet vector’s state is Not Present (00) for all chiplets, we remove the entry from
the table. Consequently, if an acquire and release are generated for all chiplets,
then all entries from the table will be removed.
Indirect Accesses: Some GPU applications use irregular or pointer-based
accesses. For irregular accesses, CPCoh’s software information identifies how
a data structure will be accessed in a given kernel. However, for pointer-based
accesses, if this information cannot be determined statically, CPCoh devolves to
the baseline and conservatively performs implicit acquires and releases at kernel
boundaries.

5.3.4 Putting It All Together

Figure 5.6 shows an example of two kernel launches and how CPcoh generates
release/acquire operations for them:

1. At the launch of kernel 1, the CPCoh table is empty. Hence, at this time the
data structure information (address range and chiplet vectors) is added to
the table with no rel/acq ops generated. Ranges are stored for every chiplet.
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Figure 5.6: CPCoh example operation

2. The two data structures accessed in kernel 1 are A in R mode and B in R/W
mode. Since the kernel being scheduled on chiplets 0 and 1, A is in the
valid state while B is in the dirty state for these chiplets.

3. Next, kernel 2 is launched. It accesses both array A and B in R mode, while
writing to a third array C in R/W mode.

4. The address range for B for chiplet 0 changes and is a superset of its previous
range, while the range for chiplet 1 is a subset that decreases and is a subset
of the previous range. Thus, a release must be generated for chiplet 1. No
coherence action is needed for chiplet 0, since it can continue to read the
values it produced while getting the values chiplet 1 produced from main
memory. CPCoh also retains reuse from array A in both chiplets.

5.4 Methodology

5.4.1 Baseline GPU Architecture

We model a tightly coupled CPU-GPU architecture with a unified shared memory
address space and coherent caches. The system connects all CPU cores and
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GPU Feature Configuration (Size, Access Latency)
CPU Parameters

Num CPUs 1
CPU Clock 4000 MHz

GPU Parameters
GPU Clock 1801 MHz

Total Num CUs 120,240
Num CUs per Chiplet 60

Num Complexes per Chiplet 1
Num Chiplets 2, 4

Num SIMD units / CU 4
Max WF/SIMD unit 10

Vector Register File Size / CU 256 KB
Scalar Register File Size / CU 12.5 KB

Num Compute Queues 256
LI Instruction Cache / 4 CU 16 KB, 64B line, 8 way

LI Scalar Cache / 4 CU 16 KB, 64B line, 8 way
L1 Data Cache / CU 16 KB, 64B line, 16 way

L1 Latency 140 cycles
L1 Scalar Latency 41 cycles

LDS Size / CU 64 KB
LDS Latency 65 cycles

L2 Cache per chiplet 8 MB, 64B line, 32 way
L2 Latency 269-390 cycles

L2 Write policies Write-back with write allocate
L3 Size 16 MB, 64B line, 16 way

L3 Latency 330 cycles
Main Memory 16 GB HBM, 4H stacks, 1000 MHz

Inter-chiplet Interconnect BW 768 GB/s

Scheduling policy Static Kernel Partitioning

Table 5.1: Simulated baseline GPU parameters

GPU CUs via the L3, which also acts as the directory. Figure 5.1 illustrates our
baseline GPU in this system, which is similar to prior work [189, 198]. Each GPU
chiplet has an L1 cache and LDS per CU, and an L2 cache that is shared across
the chiplet’s CUs. The private L2 caches are connected via inter-chiplet links
using a crossbar [189]. Each address is assigned a home chiplet according to a
First Touch page policy (Section 5.4.3.1), and subsequent requests to that address
are sent to the home chiplet via an inter-chiplet link. Although it is possible to
study CPCoh in the context of Multi-GPU systems, where each GPU has multiple
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chiplets, we focus on a single GPU because there is significant performance being
lost (29%-54%) within a single chiplet-based GPU [105, 239]. However, CPCoh
could be extended hierarchically to study Multi-GPU systems.

5.4.2 System Setup
Although CPCoh could be implemented in existing GPUs by re-programming
the CP, GPU vendors have not disclosed an API [123, 124, 237]. Thus, we use
gem5 [73] to simulate CPCoh, which recent work extended to support multiple
chiplets [238]. Although other simulators also support modern GPUs [25, 106,
214], we chose gem5 because it has the most detailed CP model. Specifically, we
use gem5 v21.1 [26, 134], which we extended to model local and global CPs, and
implemented CPCoh in the global CP. gem5 v21.0 supports ROCm 1.6 [15]. We
modified the workloads to label the address ranges and access modes similar to
the Section 5.3.2 examples.

Table 5.1 summarizes the common key system parameters, which is based on an
AMD Radeon VII GPU. This configuration was validated using microbenchmarks
to tune latencies and bandwidths relative to real hardware by Jamieson, et al. [93]
and Ramadas, et al. [187]. Our simulated GPU has up to 4 chiplets connected to
each other via a fast, high bandwidth interconnect. Similar to prior work, each
chiplet has 768 GB/s of bidirectional bandwidth [181]. Finally, like prior work
we assume the latency between the local and global CPs is 2 µs [73, 153, 183].
The CPs frequency is 1.5 GHz [159] and the CPs private memory’s access latency
is 31 cycles [117]. Moreover, since our table uses 1.6 KB, they fit in the CP’s
private memory and do not change the GPU’s area. When measuring energy
consumption of the various configurations, we use the same methodology as
described in Section 3.

5.4.3 Configurations
We evaluate the following configurations:
Baseline: Baseline implements the multi-chiplet GPU described in Sections 5.2
and 5.4.1.
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CPCoh: Our proposed CPCoh approach as discussed in Section 5.3, which uses
Baseline’s underlying coherence protocol. HMG (NHCC): HMG [189] is a
state-of-the-art chiplet-based GPU coherence protocol. Since we study single
GPU systems with multiple chiplets, we compare against HMG’s NHCC variant.
HMG determines the home node (chiplet) for a given physical address using a
hash function. The home node always contains each memory location’s most
up-to-date value.

5.4.3.1 Design Decisions

We also made the following design choices for the different configurations
(Section 5.4.3):
Scheduler: We use static kernel-wide WG partitioning, which statically divides
the number of WGs in a grid into groups [20, 143]. These groups of WGs are then
sent to individual chiplets, where the local dispatcher (in the local CP) round robin
schedules them onto individual CUs. Although, LADM proposes more nuanced
compile-time static analysis of kernels, we use static kernel-wide partitioning
WG scheduling since it is most common and effectively schedules chiplet-based
GPUs [105]. Currently CPCoh does not interact with the scheduler. However,
CPCoh could also be used to affect the scheduler’s decisions to further improve
performance as discussed further in Section 5.7.
Page Placement Policy: We use the state-of-the-art First Touch page placement
policy for all configurations [20, 189] to isolate the effects of our work as much
as possible. However, sometimes this strategy is ineffective [62] and different
placement policies can skew performance.
Coherence Protocol: Baseline and CPCoh use gem5’s VIPER GPU coherence
protocol with writeback L2 caches, extended for chiplet-based GPUs [73].
Remote Access Allocation Policy: All configurations forward remote requests to
the node with the addresses’ data. However, Baseline and CPCoh write-through
remote stores and writeback local stores, while HMG caches entries in the home
node’s cache and sends it through to memory.
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Application Input
Moderate to high inter-kernel reuse

Hotspot3D [35] 512 8 20 power_512x8 temp_512x8
Hotspot [35] 512 2 20 temp_512 power_512
Pennant [122] noh.pnt
FW [37] 512_65536.gr
Color-max [37] AK.gr
LUD [35] 512.dat
BabelStream [50, 51] 524288
Lulesh [122] 1.0e-2 10
SSSP [37] AK.gr
RNN-GRU [149, 150] BS:4, TS:2, Hidden Layers: 256
Square [16, 28] 524288 1 2 2048 256
RNN-LSTM [149, 150] BS:4, TS:2, Hidden Layers: 256
Gaussian [35] 256x256
HACC [122] 0.5 0.1 512 0.1 2 N 12 rcb
Backprop [35] 65536
BFS [35] graph128k.txt

Low inter-kernel reuse
Pathfinder [35] 200000 100 20
CNN (Conv+Pool+FC) [56] 128x128x3, BS:4
DWT2d [35] rgb.bmp 4096x4096
SRAD_v2 [35] 2048 2048 0 127 0 127 0.5 2
NW [35] 8192 10
BTree [35] mil.txt

Table 5.2: Evaluated Benchmarks

5.4.4 Benchmarks
We examine 22 popular traditional GPGPU, graph analytics, HPC and ML
applications from gem5-resources [28]. Table 5.2 summarizes these workloads.
These workloads represent a wide variety of workloads modern and future GPUs
run, and have diverse memory access patterns. We excluded currently unsupported
applications in gem5 (e.g., Rodinia [35] ones requiring texture support). For
all applications, we configured their input sizes to ensure chiplet-based GPU
had reasonable occupancy and memory footprints [88]. Broadly, we grouped
the applications into two categories, similar to prior work [84, 88, 107]: (1)
applications with moderate to high inter-kernel reuse (2) applications with low to
no inter-kernel reuse.
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5.4.5 Sensitivity Studies
Number of Chiplets: To understand how performance is impacted with number
of chiplets, we evaluated all applications and configurations for a system with 2
and 4 chiplets. We use strong scaling – the amount of work is the same, but divide
it across the chiplets – because this is representative of an application running on
a chiplet-based GPU of a given size.
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5.5 Results

Figure 5.7 shows the Baseline’s, HMG’s and CPCoh’s normalized performance,
across all applications, for 2- and 4-chiplet GPUs. We subdivide this figure into
two groups: the group with moderate to high inter-kernel reuse and the group
with low inter-kernel reuse. We computed inter-kernel reuse by calculating the
reduction in miss rate due to reuse across kernels in a no flush/invalidation caching
scheme. Figure 5.8 shows how CPCoh’s L2 cache hit rates compare to Baseline.
Finally, Figure 5.9 shows the normalized network traffic for a 4-chiplet GPU,
measured in flits and divided into multiple components: L1-to-L2, L2-to-L3,
and remote. Overall, CPCoh improves performance, energy consumption, and
network traffic over both the Baseline and HMG, for both 2-and 4-chiplet GPUs.
For example, in 4-chiplet GPUs on average (arithmetic mean) CPCoh outperforms
Baseline by 17% and HMG by 20% for applications with moderate to high inter-
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kernel reuse. Moreover, for applications with limited inter-kernel reuse, CPCoh
and HMG provide similar performance to the Baseline. On average CPCoh also
reduces energy (14%, 11%) and network traffic (14%, 17%) relative to Baseline
and HMG. Thus, CPCoh does not hurt performance for applications without reuse,
and improves reuse, network traffic, and hit rate (by 29% on average), including
over the state-of-the-art HMG, for applications that have inter-kernel reuse.

5.5.1 4-Chiplet GPUs: CPCoh vs Baseline
Moderate-to-High Inter-Kernel Reuse: Figure 5.7 shows that CPCoh generally
improves performance for benchmarks with larger (> 15%) inter-kernel reuse
in 4-chiplet GPUs. Since these applications have significant inter-kernel reuse,
they benefit from CPCoh preserving their inter-kernel locality. However, the
results vary significantly based on the application’s access patterns. In particular,
applications (e.g., BabelStream and Square) with iterative GPU kernels and
uniform access patterns can easily divide WGs into chunks can be scheduled on
independent chiplets with limited remote accesses and their working sets fit into the
chiplet’s aggregate L2 capacity. As a result, CPCoh improves their performance
by 31% on average over Baseline. Likewise, the GRU and LSTM RNN’s reuse
input matrix weights across GEMM kernels and have producer-consumer style
reuse across kernels. CPCoh preserves this reuse, improving their performance
by 11% on average. Finally, Hotspot3D performs a memory bound 3D stencil
operation; inter-kernel L2 reuse for its read-only arrays helps CPCoh outperform
Baseline by 37%.

More irregular applications like Color, SSSP, and BFS have many read-only
memory accesses [89]. Thus, avoiding unnecessary acquires improves their
inter-kernel reuse and performance: 16% for Color, 14% for SSSP, and 6% for
BFS, which has less potential inter-kernel reuse. Similarly, Pennant and Lulesh
use indirect addressing or have unstructured data structures causing irregular
memory access patterns [122]. However, since these accesses are limited to a
subset of addresses that fit into the aggregate L2 capacity, CPCoh improves their
performance by 38% and 16%, respectively.
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GPU applications also frequently structure access patterns into three phases,
each separated by WG synchronization. First, the data is loaded into the LDS, next
it performs compute operations on the data, and finally the data is written back to
global memory. Here inter-kernel cache locality only helps for the first (read into
shared memory) and the last (write to global memory) phases. Thus, the benefits
for these applications depend on ratio between the three phases: compute-bound
applications see little benefit, whereas memory-bound applications with few ALU
operations benefit more: e.g., Backprop and LUD see 10% and 48% benefit
respectively.

For other applications inter-kernel reuse has a weak correlation with speed-up.
Hotspot and CNN are compute-bound with on-chip memory bandwidth being
sufficient to keep the CUs busy – hence CPCoh’s speedup for them is low. Hotspot
is bottlenecked by compute stalls. Thus, loading the LDS faster via more L2 hits
does little to alleviate this problem. Moreover, sometimes (e.g., FW, Gaussian,
HACC) there is sufficient memory-level parallelism to hide the L2 cache misses
caused by implicit kernel boundary synchronization. Thus, although CPCoh
improves their L2 inter-kernel reuse, other accesses must go to main memory.
Consequently, hitting more in the L2 cache does not significantly improve their
performance.
Low-to-No Inter-Kernel Reuse: Unsurprisingly, CPCoh and Baseline perform
similarly for workloads (e.g., Pathfinder, DWT2D, BTree and NW) with limited
or no inter-kernel reuse. Since these applications do not have significant reuse,
eliding acquires and releases does not significantly affect them.

5.5.2 4 Chiplet System: CPCoh vs HMG
Moderate-to-High Inter-Kernel Reuse: Figure 5.7 also compares CPCoh’s and
HMG’s performance. For applications with little to no remote accesses (e.g.,
BabelStream, Square), CPCoh elides all flushes and invalidations except the
final ones. However, since HMG uses write-through L2 caches, it always sends
writes through to memory, generating much more L2-L3 traffic than CPCoh. This
significantly slows down HMG compared to CPCoh: 37% for BabelStream and
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40% for Square. Compared to Baseline, HMG caches remote traffic, evicting
some local data from the cache and generating invalidation traffic. Consequently,
HMG performs slightly worse than Baseline, which cannot provide inter-kernel
reuse.

Likewise, graph analytics workloads like Color, SSSP, and FW have input-
dependent memory accesses which cause many remote accesses, since the
first-touch page policy is subpar when the access pattern is irregular [62]. HMG
caches all remote accesses at their home node. Thus when the data locality in
remote accesses is low, it generates considerable invalidation traffic, and reduces
space for that particular chiplet’s local reads and writes, exacerbating HMG’s
ability to tap into reuse for local data. Across the graph workloads, CPCoh is
26% faster than HMG on average. Baseline also outperforms HMG sometimes
for these workloads. Even though Baseline cannot provide inter-kernel reuse
(unlike HMG), it better leverages intra-kernel reuse in the L2 cache for local
reads and writes due to HMG caching data in the home node. Lulesh’s irregular
access patterns cause considerable HMG invalidation traffic, enabling CPCoh to
outperform HMG by 33%.

Pennant (38%) and LUD (48%) exhibit significant inter-kernel reuse. However,
CPCoh and HMG achieve similar performance for them, since both capture inter-
kernel reuse and their invalidation traffic is low in HMG. CPCoh and HMG
also perform similarly for compute-bound benchmarks (CNNs and Hotspot) and
benchmarks with limited inter-kernel reuse (Pathfinder, DWT2D and HACC). The
GRU and LSTM RNNs have good locality in remote reads from the shared input
weights and intermediate results, enabling HMG to perform slightly better (3%)
than CPCoh because CPCoh does not cache remote reads. HMG also outperforms
Baseline because it improves inter-kernel locality – like CPCoh, Baseline does
not provide intra-kernel locality for remote reads like HMG. Figure 5.9 shows that
for most applications both CPCoh and HMG reduce L2-L3 traffic versus Baseline.
Thus, to varying degrees both CPCoh and HMG preserve inter-kernel reuse.
However, CPCoh reduces L2-L3 traffic by 37% more than HMG because CPCoh
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does not cache remote data, which often has low locality. CPCoh also leverages
producer-consumer information without maintaining the directory’s sharer list
like HMG. HMG also generates 23% more remote traffic than CPCoh, due to
invalidations from tying four cache lines to one directory entry, which causes
unnecessary invalidations and evicting local data on remote accesses. Overall
CPCoh reduces network traffic by 17% over HMG.
Low-to-No Inter-Kernel Reuse: For applications with limited inter-kernel reuse
(e.g., BTree, SRAD_v2), HMG suffers from many directory evictions because
it binds four cache lines to one directory entry. These evictions also generate
considerable remote invalidation traffic, hurting its overall performance. Conse-
quently, Baseline outperforms HMG for these workloads by 15% on average, while
Baseline and CPCoh perform similarly. Although this was initially surprising,
recent work corroborated that HMG suffers in these situations [62]. Thus, while
HMG sometimes outperforms CPCoh, in aggregate CPCoh outperforms HMG by
intelligently eliding synchronization operations. HMG fares much better against
Baseline by leveraging inter-kernel reuse. However HMG’s write policy, remote
read caching, and binding 4 cache lines to one directory, sometimes hurt its
performance compared to Baseline.

5.5.3 Number of chiplets
Figure 5.7 also compares CPCoh and HMG for 2-chiplet GPUs. Generally, the
trends for 4-chiplet GPU also hold in 2-chiplet GPUs. However, there are some
exceptions. For example, CPCoh does not improve Backprop’s, Hotspot3D’s, and
SSSP’s performance in 2-chiplet systems since its aggregate L2 cache capacity
is insufficient for their larger memory footprint. HMG also fairs considerably
better for benchmarks like SRAD_v2 and DWT2D – since there are fewer places
for remote requests to go, there is less invalidation traffic and fewer directory
invalidations. HMG also improves performance for benchmarks which suffered
from low locality in remote reads, since fewer remote cache lines are cached
since there are fewer remote nodes. Thus, reuse from local cache lines increases.
Consequently, CPCoh’s overall improvement over HMG decreases by 6% relative
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to the 4-chiplet GPU. However, given that the number of chiplets per GPU are
likely to increase in the future, and that CPCoh’s gains increase as chiplets scale,
CPCoh provides better scalability.

5.6 Discussion
Chiplet-based GPU versus Multi-GPU systems: To the best of our knowledge,
CPCoh is the first to leverage CP information to mitigate synchronization overheads
in chiplet-based GPUs. As discussed in Section 5.4.1, it is also possible to study
CPCoh in multi-GPU systems, where each GPU has multiple chiplets. However,
we focused on a single GPU composed of multiple chiplets because there are
opportunities for improved reuse within a single GPU (Section 5.5). Our results
demonstrate that CPCoh improving multi-chiplet GPU performance can also
potentially help multi-GPU systems.
Fine-grained Hardware Range Based Flush: Although CPCoh uses range-based
tracking to determine which addresses to flush/invalidate, it must still send out
flushes or invalidates for the entire cache even if it was only necessary for some
of the addresses. To avoid flushing or invalidating the entire cache would require
additional address translation support: since CPCoh tracks accesses via software
hints about kernel arguments, it must track virtual addresses, while GPU L2
caches are physically addressed. Thus to perform hardware range-based flushes,
CPCoh would need to translate the virtual address ranges to physical addresses.
Since most GPU vendors use page-aligned array allocations, the flush/invalidation
of these address ranges can be broken down into page-wise requests. These
requests can then be sent to the core, where they would be translated into the
corresponding physical pages, and bypass the L1 cache (which must always be
flushed at synchronization points) to go to the L2 to perform more targeted flushes
there. This technique may require multiple cache walks depending on the address
range’s size. However, if the writeback time is greater than the cache walk time,
then critical path latency will not be affected. In return, this additional hardware
support can further improve inter-kernel reuse and performance.
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Comparison to Directories: Although CPCoh’s tracking mechanism bears some
similarity to directory-style coherence protocols, they serve different purposes
and are complementary. Directory protocols are primarily concerned with fine-
grained, cache line granularity coherence ordering from request to request. In
comparison, CPCoh’s tracking mechanism is focused on coarse-grained tracking
of larger (often array-based) data structures. Additionally, CPCoh does not enforce
ordering on a request-by-request basis. Instead CPCoh enforces ordering only at
implicit synchronization points. Thus, CPCoh complements existing directory
protocols, focusing on when to perform and elide synchronization operations.
Multi-Stream Workloads: Although our workloads do not use multiple streams,
CPCoh will also be valuable for multi-stream workloads. In multi-stream
workloads independent kernels from different streams run simultaneously. Thus,
data movement and locality become even more challenging since concurrent
kernels may cause contention for shared caching resources. Accordingly, CPCoh’s
ability to track data placement and elide unnecessary implicit acquire and release
can further improve performance. Moreover, CPCoh’s information could influence
the WG scheduler’s scheduling decisions. For example, CPCoh’s information
could increase locality by scheduling WGs accessing the same data on the same
chiplet.
Kernel Fusion: GPU software frequently use optimizations such as kernel
fusion [54, 59, 64, 108, 210, 224, 246] to combine operations into a single
kernel to avoid reduce data movement and redundant global memory accesses.
However, kernel fusion can also increase register and LDS pressure and may
limit parallelism. Thus, while kernel fusion may improve data reuse, for larger
applications it may not scale and the overall application will still require implicit
synchronization. Moreover, kernel fusion can be difficult when the dependencies
between kernels are difficult to establish. CPCoh overcomes this problem by
only needing the programmer to define access modes, and then tracking the
dependencies itself in the Chiplet Coherency Table.
Other Coherence Protocols: We focused on applying CPCoh to the existing
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Feature HMG[189] Spandex[7, 203] hLRC[6] Halcone[145] SW DSM[95, 245] HW DSM[132, 230] CPCoh
No coherence protocol changes X X X X X X ✓
No L2 cache structure changes X X X X ✓ X ✓
Reduces Kernel Boundary synchronization overhead ✓ ✓ ✓ ✓ ✓ ✓ ✓
Avoids remote coherence traffic X X X ✓ X X ✓
Designed for chiplet-based systems ✓ X X X X X ✓
Access to scheduling information to reduce overhead X X X X X X ✓

Table 5.3: Comparing CPCoh to prior work
GPU coherence protocol and consistency model. However, since CPCoh targets
kernel boundary overheads, it can also be applied in conjunction with other
GPU coherence protocols. For example, CPCoh is compatible with HMG
and Halcone [145], and monolithic GPU coherence protocols like hLRC [6],
hUVM [118], DeNovo [203], or Spandex [7]. We expect that CPCoh’s benefits
will be strongly correlated with the cost of implicit synchronization at kernel
boundaries in the underlying coherence protocol.
Other Accelerators: Kernels are a GPU-specific way of partitioning work.
Other accelerators partition work into different types of phases and granularities.
Nevertheless, because CPCoh targets phase (kernel) boundary synchronization,
it can be applied to other accelerators using the same approach we use for
GPUs. However, since accelerators also access memory very differently and often
prefer different levels of integration [7], this may require using techniques like
CAPI [213], CHI [19], or Spandex [7] to present a flexible coherence interface for
accelerators. Importantly, many other accelerators [9, 18, 41, 87, 97, 185] also
use embedded microprocessors (like CPs) to dispatch work to accelerators.

5.7 Related Work
Table 5.3 compares CPCoh to prior work across several important metrics.
This prior work significantly advanced the field, but does not target implicit
synchronization like CPCoh, so they cannot provide all of the same benefits.
Chiplet-based GPU Coherence Protocols: Halcone [145] and HMG [189]
also designed chiplet-based GPU coherence protocols. HMG extends existing
monolithic GPU coherence protocols (Section 2.2) to be hierarchical. However,
as shown in Section 5.5, CPCoh outperforms HMG. Halcone [145] extends
timestamp-based monolithic GPU coherence protocols for multi-GPU systems by
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adding hierarchical timestamps. However, it is unclear how Halcone will work in
a multi-chiplet GPU and it assumes low bandwidth links between GPUs, which is
less important in a multi-chiplet GPU. Finally, although eliding implicit kernel
boundary synchronization bears some similarity to prior multi-core CPU work like
BulkSC [33] and DeNovo [39], neither examines implicit synchronization. Thus,
CPCoh provides benefits over the state-of-the-art and is the first to target kernel
boundary synchronization overheads in chiplet-based GPUs and redesign the CP to
track coherence information. Furthermore, since CPCoh targets kernel boundary
overheads, it is compatible with many GPU coherence protocols (Section 3.5).
Reducing NUMA Penalty in Chiplet-based GPUs: CARVE improves NUMA
GPU performance by extending the GPU cache hierarchies capacity [239], while
LADM uses static analysis to improve intra-kernel locality via better schedul-
ing [105]. Both CARVE and LADM corroborate that implicit synchronization
at kernel boundaries ruins the inter-kernel locality, hurting performance. Other
work optimized WG scheduling and/or placement algorithms [20, 111]. Intel-
ligent schedulers like these could be used in conjunction with CPCoh, which
has detailed information about where data is being accessed and tight coupling
with the WG scheduler. However, intelligent schedulers do not target implicit
synchronization. AMD propose an architecture where the LLC (the L3) and
HBM (High Bandwidth Memory) are logically shared across the chiplets, but are
physically sub-divided across them – each chiplet has a portion of the L3 and
the HBM [198]. This architecture makes CPCoh even more attractive: unlike
HMG, CPCoh will not incur remote latencies for non-local data. TD-NUCA
tracks and optimizes the placement of a block across the shared LLC banks [30].
Although this allows TD-NUCA to mitigate non-uniform latency effects, it does
not preserve inter-kernel reuse within private caches like CPCoh. To preserve
reuse in a chiplet-based GPU, run-time scheduling information is required, which
CPCoh leverages via the CP.
Extending the CP: Prior work added networking [123, 124] or priority-based
queue scheduling [183] support to CPs. However, our work solves different
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problems and is concerned with leveraging information available in the CP to
mitigate coherence overheads in chiplet-based GPUs.
Coarse-grained Tracking in Distributed Shared Memory: Software and
Hybrid DSM’s: CPCoh also shares some similarities with software and hybrid
Distributed Shared Memory (DSM), which also perform coarse-grained memory
tracking. In general, these approaches provide coherence in software, often at a
page granularity [116, 245]. Follow-on work used manual fine-tuning to reach the
performance levels of cache-coherent hardware counterparts [95]. Other DSMs
use compilers to eliminate unnecessary barrier calls [76]. However, because
they are at the software (or hybrid) level, they require additional support (e.g.,
duplicate page copies). Moreover, to accurately track states for data structures
(Section 5.3.2), run-time scheduling information is required – which is unavailable
at the compiler/software level. This information could be passed at run-time to the
host software by extending ROCm. However, there would be a significant latency
penalty waiting for the host software, which will hurt performance. In comparison,
CPCoh leverages lower level access and scheduling information available in
the CP to synchronize only when necessary, at different granularities, without
requiring additional copies, and without host-side software latency overheads.
Although CPCoh could also be enhanced by static compiler analysis [76, 105], it
is not always possible.
Hardware DSM’s: Hardware-based DSMs monitor the coherence status of large,
aligned memory regions in hardware to snoop external requests and provide region
snoop responses [132]. However, this requires a warm-up phase and can lead to
false sharing if the regions are not appropriately sized. This is unnecessary in
CPCoh, which leverages scheduling, access mode, and data range information
to make coherence decisions before a kernel starts. Other proposals such as
DirSW shift some of the coherence burden to software to identify independent
regions [230]. However, this is difficult in GPUs since many kernels use complex
data indexing mechanism leveraging multi-dimensional thread grid structures.
Most GPUs also lack OS support, which DirSW relies on, making it difficult to
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adopt DirSW in GPUs.

5.8 Conclusion

Modern systems are increasingly turning towards chiplet-based designs. However,
the additional level of hierarchy in chiplet-based heterogeneous systems clashes
with how accelerators like GPUs are designed: monolithic GPUs assume relatively
flat memory hierarchies with local, per CU L1 caches and shared L2 caches,
and software-driven coherence that flushes L1 caches at the end of kernels and
invalidates them at the beginning of kernels. Although this approach still works
in chiplet-based systems, the L2 cache is no longer shared across all CUs. Thus,
both the L1 and L2 must be flushed (releases) and invalidated (acquires) at
kernel boundaries – hurting inter-kernel reuse. To overcome this we propose
CPCoh, which redesigns GPU CPs to track which chiplets access specific memory
addresses. This allows CPCoh to intelligently elide implicit acquires and releases
– only performing them when needed and on the appropriate chiplets. Overall,
on average CPCoh improves performance by 13% and 19%, energy by 14% and
11%, and network traffic by 14% and 17% over current approaches, respectively,
without requiring hardware changes.
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6 conclusion

An increasingly wide spectrum of applications is utilizing modern GPUs to
improve their performance. However, the characteristics of these applications
differ from traditional GPGPU applications. In particular, these new applications
frequently perform fine-grained global synchronization, whereas traditional
GPGPU workloads synchronize infrequently. Thus, this presents new challenges
for efficiently performing global synchronization on GPUs. This thesis presents
work that creates more efficient ways to perform global synchronization in GPUs.
Though the core GPU principle of massive parallelism will continue to drive
their widescale use, modern GPU applications do much more than parallel
computing. Global synchronization forms a critical component of execution time
for these applications. Moreover, as GPU vendors continue to scale compute
power while battling technology constraints, deeper memory hierarchies will
cause increased NUMA effect. Consequently, synchronization will become
an even bigger component of total application time. This synchronization can
be either explicit through atomics or software primitives like locks, mutexes,
semaphores, and barriers, or implicit, taking place at kernel boundaries. We target
the bottlenecks that arise in synchronization from scaling and provide solutions
that benefit performance, energy, and network traffic.

First, to solve the bottleneck of inefficient global synchronization using
device-scoped atomics. As discussed in Chapter 3 modern applications in graph
analytics and ML training use commutative relaxed atomics to update globally
shared variables. We leverage recent work to identify these commutative atomics
in software. Then in the hardware, we introduce a small, per-SM buffer (LAB)
that combines commutative atomics locally and utilizes reconfigurability to avoid
hurting applications that do not use commutative atomics. Next, in Chapter 4 we
looked at the problem of GPU software synchronization primitives not scaling
well, and proposed more efficient, scalable GPU barriers and semaphores. This
demonstrates how building scalable synchronization primitives requires careful
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consideration of the GPU memory hierarchy, coherence protocol, consistency
models, and threading model. Lastly, in Chapter 5 we show how new chiplet-
based GPUs increase the penalty of implicit synchronization at kernel boundaries
due to loss of inter-kernel reuse from previously shared, now private L2 caches.
To overcome this performance penalty we propose CPCoh, which redesigns GPU
CPs to track which chiplets access specific memory addresses. This allows CPCoh
to intelligently elide implicit acquires and releases, only performing them when
needed and on the appropriate chiplet. The solutions we presented in this thesis
outperform state-of-the-art schemes. We also explain the future direction of this
work in the respective chapters, outlining how these schemes can be scaled as
GPUs move to more hierarchical designs.

6.1 Reflections

In this section, I share some opinions on GPU synchronization. These opinions
are based on five years of academic research on GPUs, and multiple internships at
Microsoft, AMD, and Meta. I base these observations solely on my experiences
and conversations I have had with fellow researchers in academia and industry.
Some of these can be considered conjectures about the future, these observations
are meant to provide a view of the world of GPU synchronization from my eyes. I
reserve the right to change my mind about them later.

6.1.1 GPU Synchronization Schemes Should Be Aligned With
GPU Architecture

Much of the hidden performance fruit for GPU synchronization hinges on
best-leveraging finer nuances of GPUs such as the GPU memory hierarchy,
coherence protocol, consistency models, and threading model. For example, GPU
synchronization has a huge interplay with memory scopes: as GPUs follow a
consistency-directed coherence protocol, synchronization penalties are associated
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with the scope of synchronization. The ability to leverage these scopes as
shown in the proposed G-SRB in Chapter 4, is key to performance and energy
benefits. The success of future schemes might be dependent on appropriate help
from software. Considering that GPU architecture is throughput-oriented and
many GPU applications do not have as much data sharing as CPUs, GPU-scoped
memory models can be improved to enable programmers to take a more aggressive
approach while specifying these scopes. This will increase the overall efficiency
of synchronization schemes that leverage different scopes for more performance
gains.

6.1.2 Scalability Is Critical To Adoption For GPU
Synchronization Schemes

GPU vendors have been changing the GPU memory hierarchy over generations to
better adapt to the needs of modern applications. In some cases introducing an
additional level of memory hierarchy increases the cost of global synchronization
substantially as shown in Chapter 5. Our solutions are easily extensible and
adaptable to the changes in the underlying architecture because the core principles
of their design are not tied to specific architectural properties. For example, to
apply LAB (Chapter 3) to Multi-GPU or chiplet-based architecture we suggest
a hierarchical design. Apart from all SMs having their own LAB, each chiplet
would have another level of LAB as part of the L2 cache to batch updates from all
LABs on different SMs on the same chiplet.

6.1.3 GPU Synchronization Optimizations Should Not Hurt
Data Parallel Streaming Applications

GPUs were traditionally designed for streaming data-parallel applications with
little to no fine-grained synchronization. Even though GPUs have now found
use in applications that have challenged these semantics and display data reuse
with the need for frequent global synchronization. Traditional GPU applications
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and some modern applications still bank on GPU’s massive parallelism and
consequent high throughput for performance. Any synchronization schemes that
impact the performance of these applications negatively are not a good fit as
shown in Section 3.4.5.
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[64] Fousek, Jan, Jiři Filipovič, and Matuš Madzin. 2011. Automatic Fusions
of CUDA-GPU Kernels for Parallel Map. SIGARCH Comput. Archit. News
39(4):98–99.

[65] Franey, Sean, and Mikko Lipasti. 2013. Accelerating Atomic Operations
on GPGPUs. In Seventh IEEE/ACM International Symposium on Networks-
on-Chip, 1–8. NoCS.

[66] Fu, Yaosheng, Evgeny Bolotin, Niladrish Chatterjee, David Nellans, and
Stephen W. Keckler. 2021. GPU Domain Specialization via Composable
On-Package Architecture. 2104.02188.

[67] Gaster, Benedict R., Derek Hower, and Lee Howes. 2015. HRF-Relaxed:
Adapting HRF to the Complexities of Industrial Heterogeneous Memory
Models. ACM Trans. Archit. Code Optim. 12(1):7:1–7:26.

[68] Gebhart, M., S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally.
2012. Unifying Primary Cache, Scratch, and Register File Memories in a
Throughput Processor. In MICRO, 96–106.

2104.02188


121

[69] Gelado, Isaac, and Michael Garland. 2019. Throughput-Oriented GPU
Memory Allocation. In Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming, 27–37. PPoPP.

[70] Google. 2017. Hot Chips 2017: A Closer Look At Google’s TPU v2.

[71] Gottlieb, Allan, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe,
Larry Rudolph, and Marc Snir. 1983. The NYU Ultracomputer—Designing
an MIMD Shared Memory Parallel Computer. IEEE Transactions on
Computers C-32(2):175–189.

[72] Gustafson, John L. 2011. Gustafson’s law. In Encyclopedia of parallel
computing, 819–825.

[73] Gutierrez, Anthony, Bradford M. Beckmann, Alexandru Dutu, Joseph
Gross, Michael LeBeane, John Kalamatianos, Onur Kayiran, Matthew
Poremba, Brandon Potter, Sooraj Puthoor, Matthew D. Sinclair, Michael
Wyse, Jieming Yin, Xianwei Zhang, Akshay Jain, and Timothy Rogers.
2018. Lost in Abstraction: Pitfalls of Analyzing GPUs at the Intermediate
Language Level. In IEEE International Symposium on High Performance
Computer Architecture, 608–619. HPCA.

[74] Hajj, I. E., J. Gomez-Luna, C. Li, L. Chang, D. Milojicic, and W. Hwu.
2016. KLAP: Kernel Launch Aggregation and Promotion for Optimizing
Dynamic Parallelism. In 49th Annual IEEE/ACM International Symposium
on Microarchitecture, 1–12. MICRO.

[75] Ham, T. J., L. Wu, N. Sundaram, N. Satish, and M. Martonosi. 2016.
Graphicionado: A high-performance and energy-efficient accelerator for
graph analytics. In 49th Annual IEEE/ACM International Symposium on
Microarchitecture, 1–13. MICRO.

[76] Han, Hwansoo, and Chau-Wen Tseng. 1998. Compile-time Synchronization
Optimizations for Software DSMs. In Proceedings of the first merged



122

international parallel processing symposium and symposium on parallel
and distributed processing, 662–669.

[77] Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. 2016. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. In Proceedings of the 43rd International
Symposium on Computer Architecture, 243–254. ISCA, Piscataway, NJ,
USA: IEEE Press.

[78] Harris, Mark, and Kyrylo Perelygin. 2017. Cooperative Groups: Flex-
ible CUDA Thread Programming. https://devblogs.nvidia.com/
cooperative-groups/.

[79] He, Bijun, William N. Scherer, and Michael L. Scott. 2005. Preemp-
tion Adaptivity in Time-Published Queue-Based Spin Locks. In High
Performance Computing, 7–18. HIPC.

[80] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
residual learning for image recognition. CoRR abs/1512.03385. 1512.
03385.

[81] Hechtman, B.A., Shuai Che, D.R. Hower, Yingying Tian, B.M. Beckmann,
M.D. Hill, S.K. Reinhardt, and D.A. Wood. 2014. QuickRelease: A
Throughput-Oriented Approach to Release Consistency on GPUs. In 20th
International Symposium on High Performance Computer Architecture,
189–200. HPCA.

[82] Hechtman, Blake A., and Daniel J. Sorin. 2013. Evaluating Cache Co-
herent Shared Virtual Memory for Heterogeneous Multicore Chips. In
International Symposium on Performance Analysis of Systems and Software,
118–119. ISPASS.

[83] Hensgen, Debra, Raphael Finkel, and Udi Manber. 1988. Two Algorithms
for Barrier Synchronization. Int. J. Parallel Program. 17(1):1–17.

https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/cooperative-groups/
1512.03385
1512.03385


123

[84] Hestness, Joel, Stephen W. Keckler, and David A. Wood. 2014. A Com-
parative Analysis of Microarchitecture Effects on CPU and GPU Memory
System Behavior. In IEEE International Symposium on Workload Charac-
terization, 150–160. IISWC.

[85] Hower, Derek R., Blake A. Hechtman, Bradford M. Beckmann, Bene-
dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A. Wood.
2014. Heterogeneous-race-free Memory Models. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, 427–440. ASPLOS, New York, NY,
USA: ACM.

[86] Howes, Lee, and Aaftab Munshi. 2015. The OpenCL Specification, Version
2.0. Khronos Group.

[87] HSA Foundation. 2015. HSA Platform System Architecture Specification.
http://www.hsafoundation.com/?ddownload=4944.

[88] Hu, B., and C. J. Rossbach. 2020. Altis: Modernizing GPGPU Benchmarks.
In IEEE International Symposium on Performance Analysis of Systems and
Software, 1–11. ISPASS.

[89] Huzaifa, Muhammad, Johnathan Alsop, Abdulrahman Mahmoud, Giordano
Salvador, Matthew D. Sinclair, and Sarita V. Adve. 2020. Inter-Kernel
Reuse-Aware Thread Block Scheduling. ACM Trans. Archit. Code Optim.
17(3).

[90] Jain, Animesh, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady
Pekhimenko. 2018. Gist: Efficient Data Encoding for Deep Neural Network
Training. In 45th ACM/IEEE Annual International Symposium on Computer
Architecture, 776–789. ISCA.

[91] James, Dave. 2018. AMD’s answer to Nvidia’s NVLink is xgmi, and it’s
coming to the new 7nm Vega GPU.

http://www.hsafoundation.com/?ddownload=4944


124

[92] ———. 2019. Nvidia has “de-risked” multiple chiplet GPU designs –
“now it’s a tool in the toolbox”. https://www.pcgamesn.com/nvidia/
graphics-card-chiplet-designs.

[93] Jamieson, Charles, Anushka Chandrashekar, Ian McDougall, and
Matthew D. Sinclair. 2022. GAP: gem5 GPU Accuracy Profiler. In
4th gem5 Users’ Workshop.

[94] Jerger, N. E., A. Kannan, Z. Li, and G. H. Loh. 2014. NoC Architectures
for Silicon Interposer Systems: Why Pay for more Wires when you Can
Get them (from your interposer) for Free? In 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 458–470. MICRO.

[95] Jiang, Dongming, Hongzhang Shan, and Jaswinder Pal Singh. 1997.
Application Restructuring and Performance Portability on Shared Virtual
Memory and Hardware-Coherent Multiprocessors. In Proceedings of the
Sixth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 217–229. PPOPP ’97, New York, NY, USA: Association
for Computing Machinery.

[96] Jouppi, Norman P., Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
Xiaoyu Ma, Nishant Patil, Sushma Prasad, Clifford Young, Zongwei
Zhou, and David Patterson. 2021. Ten Lessons from Three Generations
Shaped Google’s TPUv4i. In Proceedings of the 48th Annual International
Symposium on Computer Architecture. ISCA.

[97] Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Gotti Rajendra, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian

https://www.pcgamesn.com/nvidia/graphics-card-chiplet-designs
https://www.pcgamesn.com/nvidia/graphics-card-chiplet-designs


125

Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,
Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan
Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas
Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing,
Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. 2017. In-Datacenter Performance Analysis of a Tensor Processing
Unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, 1–12. ISCA, New York, NY, USA: ACM.

[98] Jradi, W. A. R., H. A. Dantas do Nascimento, and W. Santos Martins. 2018.
A Fast and Generic GPU-Based Parallel Reduction Implementation. In
Symposium on High Performance Computing Systems, 16–22. WSCAD.

[99] Kandiah, Vijay, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh
Manjunath, Timothy G. Rogers, Tor M. Aamodt, and Nikos Hardavellas.
2021. AccelWattch: A Power Modeling Framework for Modern GPUs. In
MICRO, 738–753.

[100] Kannan, Ajaykumar, Natalie Enright Jerger, and Gabriel H Loh. 2015.
Enabling Interposer-based Disintegration of Multi-core Processors. In
48th Annual IEEE/ACM International Symposium on Microarchitecture,
546–558. MICRO, IEEE.

[101] Kannan, Ajaykumar, Natalie Enright Jerger, and Gabriel H. Loh. 2016. Ex-
ploiting Interposer Technologies to Disintegrate and Reintegrate Multicore
Processors. IEEE Micro 36(3):84–93.



126

[102] Keckler, Stephen W. 2011. Life After Dennard and How I Learned to Love
the Picojoule. Keynote at MICRO.

[103] Kerr, Andrew, Duane Merrill, Julien Demouth, and John Tran. 2017.
CUTLASS: Fast Linear Algebra in CUDA C++. https://developer.
nvidia.com/blog/cutlass-linear-algebra-cuda/.

[104] Khairy, Mahmoud, Akshay Jain, Tor M. Aamodt, and Timothy G. Rogers.
2018. Exploring Modern GPU Memory System Design Challenges through
Accurate Modeling. CoRR abs/1810.07269. 1810.07269.

[105] Khairy, Mahmoud, Vadim Nikiforov, David Nellans, and Timothy G.
Rogers. 2020. Locality-Centric Data and Threadblock Management for
Massive GPUs. In 53rd Annual IEEE/ACM International Symposium on
Microarchitecture, 1022–1036. MICRO.

[106] Khairy, Mahmoud, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
2020. Accel-Sim: An Extensible Simulation Framework for Validated
GPU Modeling. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture, 473–486. ISCA.

[107] Khairy, Mahmoud, Mohamed Zahran, and Amr Wassal. 2017. SACAT:
Streaming-Aware Conflict-Avoiding Thrashing-Resistant GPGPU Cache
Management Scheme. IEEE Transactions on Parallel and Distributed
Systems 28(6):1740–1753.

[108] Khorasani, Farzad, Hodjat Asghari Esfeden, Nael Abu-Ghazaleh, and
Vivek Sarkar. 2018. In-Register Parameter Caching for Dynamic Neural
Nets with Virtual Persistent Processor Specialization. In Proceedings of
51st IEEE/ACM International Symposium on Microarchitecture. MICRO.

[109] Khronos OpenCL Working Group. 2021. The OpenCL Specifi-
cation. https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/pdf/OpenCL_API.pdf.

https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
1810.07269
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf


127

[110] Khude, N., I. Stanciulescu, D. Melanz, and D. Negrut. 2013. Efficient
Parallel Simulation of Large Flexible Body Systems With Multiple Contacts.
ASME Journal of Computational and Nonlinear Dynamics 8(4):041003–
041003.

[111] Kim, Hyojong, Ramyad Hadidi, Lifeng Nai, Hyesoon Kim, Nuwan Jayasena,
Yasuko Eckert, Onur Kayiran, and Gabriel Loh. 2018. CODA: Enabling
Co-Location of Computation and Data for Multiple GPU Systems. ACM
Trans. Archit. Code Optim. 15(3).

[112] Kim, Ji, and Christopher Batten. 2014. Accelerating Irregular Algorithms
on GPGPUs Using Fine-Grain Hardware Worklists. In MICRO, 75–87.

[113] Kim, W., S. Tavarageri, P. Sadayappan, and J. Torrellas. 2016. Architecting
and Programming a Hardware-Incoherent Multiprocessor Cache Hierarchy.
In IPDPS, 555–565.

[114] Klenk, B., N. Jiang, G. Thorson, and L. Dennison. 2020. An In-Network
Architecture for Accelerating Shared-Memory Multiprocessor Collectives.
In ISCA, 996–1009.

[115] Komuravelli, Rakesh, Matthew D. Sinclair, Johnathan Alsop, Muham-
mad Huzaifa, Prakalp Srivastava, Maria Kotsifakou, Sarita V. Adve, and
Vikram S. Adve. 2015. Stash: Have Your Scratchpad and Cache it Too. In
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 707–719. ISCA.

[116] Kontothanassis, Leonidas, Robert Stets, Galen Hunt, Umit Rencuzogullari,
Gautam Altekar, Sandhya Dwarkadas, and Michael L. Scott. 2005. Shared
Memory Computing on Clusters with Symmetric Multiprocessors and
System Area Networks. ACM Trans. Comput. Syst. 23(3):301–335.

[117] Kotra, Jagadish B, Michael LeBeane, Mahmut T Kandemir, and Gabriel H
Loh. 2021. Increasing GPU Translation Reach by Leveraging Under-



128

Utilized On-Chip Resources. In 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 1169–1181. MICRO.

[118] Koukos, Konstantinos, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras.
2016. Building Heterogeneous Unified Virtual Memories (UVMs) Without
the Overhead. ACM Trans. Archit. Code Optim. 13(1):1:1–1:22.

[119] Krashinsky, Ronny, Olivier Giroux, Stephen Jones, Nick Stam,
and Sridhar Ramaswamy. 2020. NVIDIA Ampere Architecture
In-Depth. https://developer.nvidia.com/blog/nvidia-ampere-
architecture-in-depth/.

[120] Kuper, Reese, Suchita Pati, and Matthew D. Sinclair. 2021. Improving GPU
Utilization in ML Workloads Through Finer-Grained Synchronization. In
3rd Young Architects Workshop. YArch.

[121] Lamport, Leslie. 1974. A New Solution of Dijkstra’s Concurrent Program-
ming Problem. Commun. ACM 17(8):453–455.

[122] Lawrence Livermore National Labs. 2020. CORAL-2 Benchmarks. https:
//asc.llnl.gov/coral-2-benchmarks.

[123] LeBeane, Michael, Khaled Hamidouche, Brad Benton, Mauricio Breternitz,
Steven K. Reinhardt, and Lizy K. John. 2018. ComP-Net: Command Pro-
cessor Networking for Efficient Intra-Kernel Communications on GPUs. In
Proceedings of the 27th International Conference on Parallel Architectures
and Compilation Techniques. PACT ’18, New York, NY, USA: Association
for Computing Machinery.

[124] LeBeane, Michael, Brandon Potter, Abhisek Pan, Alexandru Dutu, Vinay
Agarwala, Wonchan Lee, Deepak Majeti, Bibek Ghimire, Eric Van Tas-
sell, Samuel Wasmundt, Brad Benton, Mauricio Breternitz, Michael L.
Chu, Mithuna Thottethodi, Lizy K. John, and Steven K. Reinhardt. 2016.
Extended Task Queuing: Active Messages for Heterogeneous Systems.

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks


129

In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 933–944. SC.

[125] Lee, J. H., J. Sim, and H. Kim. 2015. BSSync: Processing Near Memory for
Machine Learning Workloads with Bounded Staleness Consistency Models.
In International Conference on Parallel Architecture and Compilation,
241–252. PACT.

[126] Lee, Jinsu, Juhyoung Lee, Donghyeon Han, Jinmook Lee, Gwangtae Park,
and Hoi-Jun Yoo. 2019. An energy-efficient sparse deep-neural-network
learning accelerator with fine-grained mixed precision of fp8–fp16. IEEE
Solid-State Circuits Letters 2(11):232–235.

[127] Lelbach, Bryce Adelstein, Olivier Giroux, JF Bastien, Detlef Vollmann,
and David Olsen. 2019. P1135R5: The C++20 Synchronization Li-
brary. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2019/p1135r5.html.

[128] Leng, Jingwen, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani,
Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013.
GPUWattch: Enabling Energy Optimizations in GPGPUs. In Proceedings
of the 40th Annual International Symposium on Computer Architecture,
487–498. ISCA, New York, NY, USA: Association for Computing Machin-
ery.

[129] Lew, Jonathan, Deval Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang,
Amruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D. Sinclair,
Timothy G. Rogers, and Tor M. Aamodt. 2018. Analyzing Machine Learn-
ing Workloads Using a Detailed GPU Simulator. CoRR abs/1811.08933.
1811.08933.

[130] ———. 2019. Analyzing Machine Learning Workloads Using a Detailed
GPU Simulator. In International Symposium on Performance Analysis of
Systems and Software. ISPASS.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1135r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1135r5.html
1811.08933


130

[131] Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym. 2008. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro 28(2):
39–55.

[132] Lipasti, M. H., B. Falsafi, J. F. Cantin, J. E. Smith, and A. Moshovos. 2006.
Coarse-Grain Coherence Tracking: RegionScout and Region Coherence
Arrays. IEEE Micro 26(01):70–79.

[133] Loh, Gabriel H., Natalie Enright Jerger, Ajaykumar Kannan, and Yasuko
Eckert. 2015. Interconnect-Memory Challenges for Multi-chip, Silicon
Interposer Systems. In Proceedings of the 2015 International Symposium
on Memory Systems, 3–10. MEMSYS ’15, New York, NY, USA: ACM.

[134] Lowe-Power, Jason, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
mussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce,
Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nico-
las Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan Fariborz,
Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi,
Dibakar Gope, Thomas Grass, Bagus Hanindhito, Andreas Hansson, Swap-
nil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell,
Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timo-
thy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza Khaleghzadeh,
Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard,
Andrea Mondelli, Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa
Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham, Pablo
Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sand-
berg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul
Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas,
Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil
Yoon, and Éder F. Zulian. 2020. The gem5 simulator: Version 20.0+.
2007.03152.

2007.03152


131

[135] Luitjens, Justin. 2014. CUDA Streams: Best Practices and Common
Pitfalls.

[136] Lustig, Daniel, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A
Formal Analysis of the NVIDIA PTX Memory Consistency Model. In
Proceedings of the twenty-fourth international conference on architectural
support for programming languages and operating systems, 257–270.
ASPLOS, New York, NY, USA: Association for Computing Machinery.

[137] Mazhar, H., T. Heyn, A. Tasora, and D. Negrut. 2015. Using Nesterov’s
Method to Accelerate Multibody Dynamics with Friction and Contact.
ACM Trans. Graph. 34(3):32:1–32:14.

[138] Mazhar, H., A. Pazouki, M. Rakhsha, P. Jayakumar, and D. Negrut. 2018.
A Differential Variational Approach for Handling Fluid-solid Interaction
Problems via Smoothed Particle Hydrodynamics. Journal of Computational
Physics 371:92–119.

[139] Mazhar, Hammad, Toby Heyn, and Dan Negrut. 2011. A Scalable Par-
allel Method for Large Collision Detection Problems. Multibody System
Dynamics 26:37–55. 10.1007/s11044-011-9246-y.

[140] Mellor-Crummey, John M., and Michael L. Scott. 1991. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors. ACM Trans.
Comput. Syst. 9(1):21–65.

[141] Merrill, Duane. 2020. NVIDIA CUB Library. https://nvlabs.github.
io/cub/.

[142] Metcalfe, Robert M., and David R. Boggs. 1976. Ethernet: Distributed
packet switching for local computer networks. Commun. ACM 19(7):
395–404.

https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/


132

[143] Milic, Ugljesa, Oreste Villa, Evgeny Bolotin, Akhil Arunkumar, Eiman
Ebrahimi, Aamer Jaleel, Alex Ramirez, and David Nellans. 2017. Be-
yond the Socket: NUMA-aware GPUs. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture, 123–135.
MICRO-50, New York, NY, USA: ACM.

[144] Miller, dePaul, Jacob Nelson, Ahmed Hassan, and Roberto Palmieri. 2021.
KVCG: A Heterogeneous Key-Value Store for Skewed Workloads. In
Proceedings of the 14th ACM International Conference on Systems and
Storage. SYSTOR ’21.

[145] Mojumder, Saiful A., Yifan Sun, Leila Delshadtehrani, Yenai Ma, Tri-
nayan Baruah, José L. Abellán, John Kim, David Kaeli, and Ajay Joshi.
2020. HALCONE: A Hardware-Level Timestamp-based Cache Coherence
Scheme for Multi-GPU systems.

[146] Mukkara, Anurag, Nathan Beckmann, and Daniel Sanchez. 2019. PHI:
Architectural Support for Synchronization- and Bandwidth-Efficient Com-
mutative Scatter Updates. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 1009–1022. MICRO, New
York, NY, USA: ACM.

[147] Munford, ML, VR Lima, TO Vieira, G Heinzelmann, TB Creczynski-Pasa,
and AA Pasa. 2005. AFM In-situ Characterization of Supported Phospho-
lipid Layers Formed by Vesicle Fusion. Microscopy and Microanalysis
11(S03):90–93.

[148] Naffziger, Samuel, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H.
Loh, Mahesh Subramony, and Sean White. 2021. Pioneering Chiplet
Technology and Design for the AMD EPYC™ and Ryzen™ Processor
Families : Industrial Product. In ACM/IEEE 48th Annual International
Symposium on Computer Architecture, 57–70. ISCA.



133

[149] Narang, Sharan. 2016. DeepBench. https://github.com/baidu-
research/DeepBench.

[150] Narang, Sharan, and Greg Diamos. 2017. An update to DeepBench
with a focus on deep learning inference. https://svail.github.io/
DeepBench-update/.

[151] Nelson, Jacob, dePaul Miller, and Roberto Palmieri. 2022. Don’t forget
about synchronization! Guidelines for using locks on graphics processing
units. Concurrency and Computation: Practice and Experience 34(2):
e5757.

[152] Nelson, Jacob, and Roberto Palmieri. 2019. Don’t Forget About Synchro-
nization!: A Case Study of K-Means on GPU. In Proceedings of the 10th
International Workshop on Programming Models and Applications for
Multicores and Manycores, 11–20. PMAM.

[153] Neugebauer, Rolf, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe
Performance for End Host Networking. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
327–341. SIGCOMM ’18, New York, NY, USA: Association for Computing
Machinery.

[154] Niu, Feng, Benjamin Recht, Christopher Re, and Stephen J. Wright.
2011. HOGWILD!: A Lock-free Approach to Parallelizing Stochastic
Gradient Descent. In Proceedings of the 24th International Conference on
Neural Information Processing Systems, 693–701. NeurIPS, USA: Curran
Associates Inc.

[155] Noh, Seock-Hwan, Jahyun Koo, Seunghyun Lee, Jongse Park, and Jaeha
Kung. 2022. Flexblock: A flexible dnn training accelerator with multi-mode
block floating point support. 2203.06673.

https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://svail.github.io/DeepBench-update/
https://svail.github.io/DeepBench-update/
2203.06673


134

[156] NVIDIA. 2013. CUDA HyperQ Example. http://developer.
download.nvidia.com/compute/DevZone/C/html_x64/6_
Advanced/simpleHyperQ/doc/HyperQ.pdf.

[157] ———. 2016. CUDA programming guide. CUDA Programming guide.

[158] ———. 2016. NVIDIA CUDA C Programming Guide v7.5. http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/. Accessed
August 6, 2016.

[159] ———. 2016. NVIDIA RISC-V Story. 4th RISC-V Workshop.

[160] ———. 2016. Pascal P100. https://www.nvidia.com/content/dam/
en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[161] ———. 2017. Cuda-gdb. http://docs.nvidia.com/cuda/cuda-gdb/
index.html/. Accessed Nov 15, 2017.

[162] ———. 2018. CUDA Stream Management. http://developer.
download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/
group__CUDART__STREAM.html.

[163] ———. 2018. Nvidia, cuda stream management.

[164] ———. 2018. NVIDIA cuDNN: GPU Accelerated Deep Learning. https:
//developer.nvidia.com/cudnn.

[165] ———. 2020. CUDA C++ Programming Guide. CUDA programming
guide.

[166] ———. 2020. libcu++: The C++ Standard Library for Your Entire System.
https://nvidia.github.io/libcudacxx/.

[167] ———. 2020. Split Arrive/Wait Barrier. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html.

http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-gdb/index.html/
http://docs.nvidia.com/cuda/cuda-gdb/index.html/
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__STREAM.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__STREAM.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__STREAM.html
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://nvidia.github.io/libcudacxx/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


135

[168] NVIDIA Corp. 2017. Inside Volta: The World’s Most Advanced Data
Center GPU. https://devblogs.nvidia.com/parallelforall/inside-volta/.

[169] ———. 2018. NVLink Fabric: A Faster, More Scalable Interconnect.
https://www.nvidia.com/en-us/data-center/nvlink/.

[170] Nyland, Lars, and Stephen Jones. 2013. Understanding and Using Atomic
Memory Operations. In Proceedings of GPU Technology Conference.
GTC.

[171] Orr, Marc S., Shuai Che, Ayse Yilmazer, Bradford M. Beckmann, Mark D.
Hill, and David A. Wood. 2015. Synchronization Using Remote-Scope
Promotion. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 73–86. ASPLOS, New York, NY, USA: Association for Computing
Machinery.

[172] O’Connor, Mike, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W. Keckler, and William J. Dally. 2017. Fine-Grained
DRAM: Energy-Efficient DRAM for Extreme Bandwidth Systems. In
MICRO, 41–54.

[173] Pal, Saptadeep, Daniel Petrisko, Matthew Tomei, Puneet Gupta, Subrama-
nian S. Iyer, and Rakesh Kumar. 2019. Architecting Waferscale Processors
- A GPU Case Study. In 25th IEEE International Symposium on High
Performance Computer Architecture, 250–263. HPCA.

[174] Park, Jason Jong Kyu, Yongjun Park, and Scott Mahlke. 2015. Chimera:
Collaborative Preemption for Multitasking on a Shared GPU. In Proceed-
ings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, 593–606. ASPLOS ’15.

[175] Pazouki, Arman, Michał Kwarta, Kyle Williams, William Likos, Radu
Serban, Paramsothy Jayakumar, and Dan Negrut. 2017. Compliant Contact

https://www.nvidia.com/en-us/data-center/nvlink/


136

Versus Rigid Contact: A Comparison in the Context of Granular Dynamics.
Physical Review E 96(4):042905.

[176] Pazouki, Arman, Hammad Mazhar, and Dan Negrut. 2012. Parallel Colli-
sion Detection of Ellipsoids with Applications in Large Scale Multibody
Dynamics. Mathematics and Computers in Simulation 82(5):879–894.

[177] Peterson, Gary L., and Michael J. Fischer. 1977. Economical Solutions for
the Critical Section Problem in a Distributed System (Extended Abstract).
In Proceedings of the ninth annual acm symposium on theory of computing,
91–97. STOC.

[178] Peterson, G.L. 1981. Myths about the Mutual Exclusion Problem. Infor-
mation Processing Letters 12(3):115–116.

[179] Pirzada, Usman. 2019. NVIDIA Next Generation Hopper GPU Leaked –
Based On MCM Design, Launching After Ampere. https://wccftech.
com/nvidia-hopper-gpu-mcm-leaked/.

[180] Pourghassemi, Behnam, Chenghao Zhang, Joo Hwan Lee, and Aparna
Chandramowlishwaran. 2020. On the Limits of Parallelizing Convolutional
Neural Networks on GPUs. In SPAA, 567–569.

[181] Pratheek, B., N. Jawalkar, and A. Basu. 2022. Designing Virtual Memory
System of MCM GPUs. In 55th IEEE/ACM International Symposium
on Microarchitecture, 404–422. MICRO, Los Alamitos, CA, USA: IEEE
Computer Society.

[182] Puthoor, Sooraj, Ashwin M. Aji, Shuai Che, Mayank Daga, Wei Wu,
Bradford M. Beckmann, and Gregory Rodgers. 2016. Implementing
Directed Acyclic Graphs with the Heterogeneous System Architecture. In
Proceedings of the 9th Annual Workshop on General Purpose Processing
Using Graphics Processing Unit, 53–62. GPGPU ’16, New York, NY,
USA: ACM.

https://wccftech.com/nvidia-hopper-gpu-mcm-leaked/
https://wccftech.com/nvidia-hopper-gpu-mcm-leaked/


137

[183] Puthoor, Sooraj, Xulong Tang, Joseph Gross, and Bradford M. Beckmann.
2018. Oversubscribed Command Queues in GPUs. In Proceedings of the
11th Workshop on General Purpose GPUs, 50–60. GPGPU-11, New York,
NY, USA: ACM.

[184] Qin, Eric, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan
Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma:
A sparse and irregular gemm accelerator with flexible interconnects for
dnn training. In 2020 ieee international symposium on high performance
computer architecture (hpca), 58–70. IEEE.

[185] Qualcomm. 2021. Qualcomm Hexagon DSP. https:
//developer.qualcomm.com/sites/default/files/docs/adreno-
gpu/developer-guide/dsp/dsp.html.

[186] Raihan, Md Aamir, Negar Goli, and Tor M. Aamodt. 2018. Modeling Deep
Learning Accelerator Enabled GPUs. CoRR abs/1811.08309. 1811.08309.

[187] Ramadas, Vishnu, Daniel Kouchekinia, Ndubuisi Osuji, and Matthew D.
Sinclair. 2023. Closing the GAP: Improving the Accuracy of gem5’s GPU
Models. In 5th gem5 Users’ Workshop.

[188] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016.
You Only Look Once: Unified, Real-time Object Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
779–788. CVPR.

[189] Ren, X., D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans. 2020.
HMG: Extending Cache Coherence Protocols Across Modern Hierarchical
Multi-GPU Systems. In International Symposium on High Performance
Computer Architecture, 582–595. HPCA.

https://developer.qualcomm.com/sites/default/files/docs/adreno-gpu/developer-guide/dsp/dsp.html
https://developer.qualcomm.com/sites/default/files/docs/adreno-gpu/developer-guide/dsp/dsp.html
https://developer.qualcomm.com/sites/default/files/docs/adreno-gpu/developer-guide/dsp/dsp.html
1811.08309


138

[190] Ren, Xiaowei, and Mieszko Lis. 2017. Efficient Sequential Consistency in
GPUs via Relativistic Cache Coherence. In International Symposium on
High Performance Computer Architecture, 625–636. HPCA, IEEE.

[191] Rhee, I. 1996. Optimizing a FIFO, scalable spin lock using consistent
memory. In 17th IEEE Real-Time Systems Symposium, 106–114. RTSS.

[192] Rhu, Minsoo, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun
Kwon, and Stephen W. Keckler. 2018. Compressing DMA Engine: Leverag-
ing Activation Sparsity for Training Deep Neural Networks. In International
Symposium on High Performance Computer Architecture, 78–91. HPCA.

[193] Rinard, Martin C. 1999. Effective Fine-Grain Synchronization for Automat-
ically Parallelized Programs Using Optimistic Synchronization Primitives.
ACM Transactions on Computer Systems 17(4):337–371.

[194] Rivas, M. A., and M. G. Harbour. 2003. Evaluation of new POSIX real-time
operating systems services for small embedded platforms. In Proceedings
of the 15th Euromicro Conference on Real-Time Systems, 161–168.

[195] Rodchenko, Andrey, Andy Nisbet, Antoniu Pop, and Mikel Luján. 2015.
Effective Barrier Synchronization on Intel Xeon Phi Coprocessor. In
Euro-par 2015: Parallel processing, ed. Jesper Larsson Träff, Sascha
Hunold, and Francesco Versaci, 588–600. Berlin, Heidelberg: Springer
Berlin Heidelberg.

[196] Rossi, Ryan A., and Nesreen K. Ahmed. 2015. The network data repository
with interactive graph analytics and visualization. In Aaai.

[197] Rudolph, Larry, and Zary Segall. 1984. Dynamic Decentralized Cache
Schemes for Mimd Parallel Processors. In Proceedings of the 11th Annual
International Symposium on Computer Architecture, 340–347. ISCA ’84.



139

[198] Saleh, Skyler J, Samuel Naffziger, Milind S Bhagavat, and Rahul Agarwal.
2020. GPU Chiplets Using High Bandwidth Crosslinks. US Patent App.
16/456,287.

[199] Salvador, Giordano, Wesley H. Darvin, Muhammad Huzaifa, Johnathan
Alsop, Matthew D. Sinclair, and Sarita V. Adve. 2020. Specializing
Coherence, Consistency, and Push/Pull for GPU Graph Analytics. In
ISPASS.

[200] Scott, Steven L. 1996. Synchronization and Communication in the T3E
Multiprocessor. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems,
26–36. ASPLOS, New York, NY, USA.

[201] Sengupta, Shubhabrata, Mark Harris, Yao Zhang, and John D. Owens.
2007. Scan Primitives for GPU Computing. In Siggraph/eurographics
workshop on graphics hardware, ed. Mark Segal and Timo Aila. The
Eurographics Association.

[202] Shao, Yakun Sophia, Jason Clemons, Rangharajan Venkatesan, Brian Zim-
mer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel
Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J.
Dally, Joel Emer, C. Thomas Gray, Brucek Khailany, and Stephen W.
Keckler. 2019. Simba: Scaling Deep-Learning Inference with Multi-Chip-
Module-Based Architecture. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 14–27. MICRO ’52, New
York, NY, USA: Association for Computing Machinery.

[203] Sinclair, Matthew D., Johnathan Alsop, and Sarita V. Adve. 2015. Efficient
GPU Synchronization without Scopes: Saying No to Complex Consistency
Models. In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture, 647–659. MICRO.



140

[204] ———. 2017. Chasing Away RAts: Semantics and Evaluation for Relaxed
Atomics on Heterogeneous Systems. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 161–174. ISCA.

[205] ———. 2017. HeteroSync: A Benchmark Suite for Fine-Grained Synchro-
nization on Tightly Coupled GPUs. In IEEE International Symposium on
Workload Characterization. IISWC.

[206] Singh, Inderpreet, Arrvindh Shriraman, Wilson W. L. Fung, Mike
O’Connor, and Tor M. Aamodt. 2013. Cache Coherence for GPU Architec-
tures. In 19th International Symposium on High Performance Computer
Architecture, 578–590. HPCA.

[207] Smith, Ryan. 2018. NVIDIA Develops NVLink Switch: NVSwitch, 18
Ports for DGX-2 & More.

[208] Sorensen, Tyler, Alastair F Donaldson, Mark Batty, Ganesh Gopalakrish-
nan, and Zvonimir Rakamarić. 2016. Portable Inter-Workgroup Barrier
Synchronisation for GPUs. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 39–58. OOPSLA.

[209] Sorensen, Tyler, Sreepathi Pai, and Alastair F. Donaldson. 2019. One Size
Doesn’t Fit All: Quantifying Performance Portability of Graph Applications
on GPUs. In IEEE International Symposium on Workload Characterization.
IISWC.

[210] Springer, Matthias, Peter Wauligmann, and Hidehiko Masuhara. 2017.
Modular Array-Based GPU Computing in a Dynamically-Typed Language.
In Proceedings of the 4th ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming, 48–55.
ARRAY 2017, New York, NY, USA: Association for Computing Machinery.



141

[211] Stone, John E., David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems. Computing
in Science & Engineering 12(3):66.

[212] Stuart, Jeff A., and John D. Owens. 2011. Efficient Synchronization
Primitives for GPUs. CoRR abs/1110.4623. 1110.4623.

[213] Stuecheli, J., B. Blaner, C. R. Johns, and M. S. Siegel. 2015. CAPI: A
Coherent Accelerator Processor Interface. IBM Journal of Research and
Development 59(1):7:1–7:7.

[214] Sun, Yifan, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong,
Shane Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent
Zhao, Harrison Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael
Ubal, José L. Abellán, John Kim, Ajay Joshi, and David Kaeli. 2019.
MGPUSim: Enabling Multi-GPU Performance Modeling and Optimiza-
tion. In Proceedings of the 46th International Symposium on Computer
Architecture, 197–209. ISCA ’19, New York, NY, USA: Association for
Computing Machinery.

[215] Sun Microsystems, Inc. 2008. OpenSparc T2 system-on-chip (SoC) mi-
croarchitecture specification. http://www.opensparc.net/opensparc-
t2/index.html.

[216] Tabbakh, A., X. Qian, and M. Annavaram. 2018. G-TSC: Timestamp
Based Coherence for GPUs. In HPCA, 403–415.

[217] Takada, H., and K. Sakamura. 1994. Predictable spin lock algorithms
with preemption. In Proceedings of 11th IEEE Workshop on Real-Time
Operating Systems and Software, 2–6.

[218] Tang, Peiyi, and Pen-Chung Yew. 1990. Software combining algorithms
for distributing hot-spot addressing. Journal of Parallel and Distributed
Computing 10(2):130–139.

1110.4623
http://www.opensparc.net/opensparc-t2/index.html
http://www.opensparc.net/opensparc-t2/index.html


142

[219] Tasora, A., R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann,
M. Taylor, H. Sugiyama, and D. Negrut. 2016. CHRONO: An open
source multi-physics dynamics engine. In High Performance Computing
in Science and Engineering – Lecture Notes in Computer Science, ed.
T. Kozubek, 19–49. Cham: Springer.

[220] Ukidave, Y., X. Li, and D. Kaeli. 2016. Mystic: Predictive Scheduling for
GPU Based Cloud Servers Using Machine Learning. In IEEE International
Parallel and Distributed Processing Symposium, 353–362. IPDPS.

[221] Vijayaraghavan, T., Y. Eckert, G. H. Loh, M. J. Schulte, M. Ignatowski, B. M.
Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang, A. Karunanithi,
O. Kayiran, M. Meswani, I. Paul, M. Poremba, S. Raasch, S. K. Reinhardt,
G. Sadowski, and V. Sridharan. 2017. Design and Analysis of an APU
for Exascale Computing. In Proceedings of the 23rd IEEE International
Symposium on High Performance Computer Architecture, 85–96. HPCA.

[222] Villa, Oreste, Mark Stephenson, David Nellans, and Stephen W. Keckler.
2019. NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA
GPUs. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 372–383. MICRO, New York, NY, USA:
Association for Computing Machinery.

[223] Vineet, V., and P. J. Narayanan. 2008. CUDA cuts: Fast graph cuts on the
GPU. In CVPR Workshops, 1–8.

[224] Wang, Guibin, YiSong Lin, and Wei Yi. 2010. Kernel Fusion: An
Effective Method for Better Power Efficiency on Multithreaded GPU. In
Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing
and Communications & Int’l Conference on Cyber, Physical and Social
Computing, 344–350. GREENCOM-CPSCOM ’10, USA: IEEE Computer
Society.



143

[225] Wang, Linnan, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon
Song, Zenglin Xu, and Tim Kraska. 2018. SuperNeurons: Dynamic GPU
Memory Management for Training Deep Neural Networks. In Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 41–53. PPoPP, New York, NY, USA: ACM.

[226] Wang, Yangzihao, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: A High-Performance Graph
Processing Library on the GPU. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPOPP.

[227] Wang, Z., J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. 2016.
Simultaneous Multikernel GPU: Multi-tasking Throughput Processors
via Fine-Grained Sharing. In IEEE International Symposium on High
Performance Computer Architecture, 358–369. HPCA.

[228] Wang, Zhenning, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang,
and Minyi Guo. 2017. Quality of Service Support for Fine-Grained Sharing
on GPUs. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, 269–281. ISCA, New York, NY, USA: ACM.

[229] Wittenbrink, C. M., E. Kilgariff, and A. Prabhu. 2011. Fermi GF100 GPU
Architecture. IEEE Micro 31(2):50–59.

[230] Wood, David A., Satish Chandra, Babak Falsafi, Mark D. Hill, James R.
Larus, Alvin R. Lebeck, James C. Lewis, Shubhendu S. Mukherjee,
Subbarao Palacharla, and Steven K. Reinhardt. 1993. Mechanisms for Co-
operative Shared Memory. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, 156–167. ISCA ’93, New York, NY,
USA: Association for Computing Machinery.

[231] Wu, Bo, Xu Liu, Xiaobo Zhou, and Changjun Jiang. 2017. FLEP: Enabling
Flexible and Efficient Preemption on GPUs. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming



144

Languages and Operating Systems, 483–496. ASPLOS, New York, NY,
USA: ACM.

[232] Xiang, Ping, Yi Yang, and Huiyang Zhou. 2014. Warp-level divergence in
GPUs: Characterization, impact, and mitigation. In 20th IEEE International
Symposium on High Performance Computer Architecture, 284–295. HPCA.

[233] Xiao, Shucai, and Wu Feng. 2010. Inter-Block GPU Communication
via Fast Barrier Synchronization. In IEEE International Parallel and
Distributed Processing Symposium, 1–12. IPDPS.

[234] Xu, Q., H. Jeon, K. Kim, W. W. Ro, and M. Annavaram. 2016. Warped-
Slicer: Efficient Intra-SM Slicing through Dynamic Resource Partitioning
for GPU Multiprogramming. In ACM/IEEE 43rd Annual International
Symposium on Computer Architecture, 230–242. ISCA.

[235] Yang, Dingqing, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub, Guy
Lemieux, and Mieszko Lis. 2020. Procrustes: a dataflow and accelerator
for sparse deep neural network training. In 2020 53rd annual ieee/acm
international symposium on microarchitecture (micro), 711–724. IEEE.

[236] Yang, Yifan, Zhaoshi Li, Yangdong Deng, Zhiwei Liu, Shouyi Yin, Shaojun
Wei, and Leibo Liu. 2020. GraphABCD: Scaling out Graph Analytics with
Asynchronous Block Coordinate Descent. In ISCA, 419–432.

[237] Yeh, Tsung Tai, Matthew D. Sinclair, Bradford M. Beckmann, and Tim-
othy G. Rogers. 2021. Deadline-Aware Offloading for High-Throughput
Accelerators. In 27th IEEE International Symposium on High Performance
Computer Architecture, 479–492. HPCA.

[238] Yogatama, Bobbi W., Matthew D. Sinclair, and Michael M. Swift. 2020.
Enabling Multi-GPU Support in gem5. In 3rd gem5 Users’ Workshop.

[239] Young, Vinson, Aamer Jaleel, Evgeny Bolotin, Eiman Ebrahimi, David
Nellans, and Oreste Villa. 2018. Combining HW/SW Mechanisms to



145

Improve NUMA Performance of Multi-GPU Systems. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture, 339–
351. MICRO.

[240] Zhang, Hao, Yuan Li, Zhijie Deng, and Xiaodan Liang. 2020. AutoSync:
Learning to Synchronize for Data-Parallel Distributed Deep Learning. In
Advances in Neural Information Processing Systems. NeurIPS.

[241] Zhang, Lingqi, Mohamed Wahib, Haoyu Zhang, and Satoshi Matsuoka.
2020. A Study of Single and Multi-device Synchronization Methods in
Nvidia GPUs. In IEEE International Parallel and Distributed Processing
Symposium, 483–493. IPDPS.

[242] Zhang, Guowei and Horn, Webb and Sanchez, Daniel. 2015. Exploiting
Commutativity to Reduce the Cost of Updates to Shared Data in Cache-
Coherent Systems. In 48th Annual IEEE/ACM International Symposium
on Microarchitecture, 13–25. MICRO.

[243] Zheng, Bojian, Nandita Vijaykumar, and Gennady Pekhimenko. 2020.
Echo: Compiler-Based GPU Memory Footprint Reduction for LSTM RNN
Training. In Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture, 1089–1102. ISCA ’20, IEEE Press.

[244] Zheng, Long, Jieshan Zhao, Yu Huang, Qinggang Wang, Zhen Zeng,
Jingling Xue, Xiaofei Liao, and Hai Jin. 2020. Spara: An energy-efficient
reram-based accelerator for sparse graph analytics applications. In 2020
ieee international parallel and distributed processing symposium (ipdps),
696–707. IEEE.

[245] Zhou, Yuanyuan, Liviu Iftode, and Kai Li. 1996. Performance Evaluation of
Two Home-Based Lazy Release Consistency Protocols for Shared Virtual
Memory Systems. In Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation, 75–88. OSDI ’96, New
York, NY, USA: Association for Computing Machinery.



146

[246] Zhu, Feiwen, Jeff Pool, Michael Andersch, Jeremy Appleyard, and Fung
Xie. 2018. Sparse Persistent RNNs: Squeezing Large Recurrent Networks
On-Chip. In Proceedings of 6th International Conference on Learning
Representations. ICLR.

[247] Zhu, Hongyu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Amar
Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. 2018. TBD:
Benchmarking and Analyzing Deep Neural Network Training. In IEEE
International Symposium on Workload Characterization. IISWC.

[248] Zhu, Maohua, Minsoo Rhu, Jason Clemons, Stephen W Keckler, and Yuan
Xie. 2016. Training Long Short-Term Memory With Sparsified Stochastic
Gradient Descent. https://openreview.net/forum?id=HJWzXsKxx.

https://openreview.net/forum?id=HJWzXsKxx

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background and Related Work
	GPU Architecture
	GPU Coherence and Consistency

	Only Buffer When You Need To: Reducing On-chip GPU Traffic with Reconfigurable Local Atomic Buffers
	Motivation
	Design and Implementation of the LAB
	Methodology
	Results
	Discussion
	Related Work
	Conclusion

	Improving the Scalability of GPU Synchronization Primitives
	Motivation
	Background
	Design
	Methodology
	Evaluation
	Related Work
	Discussion & Conclusion

	CPCoh: Efficient Multi-Chiplet GPU Coherence via Dependency Tracking
	Motivation
	Background
	Design
	Methodology
	Results
	Discussion
	Related Work
	Conclusion

	Conclusion
	Reflections

	References

