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ABSTRACT 

The accurate detection and efficient prognosis of faults in engineering systems are of great 

practical importance. The systems concerned encompass a broad spectrum of human-made 

structures and processes, including civil, mechanical and aerospace structures and various 

manufacturing processes. The precise detection of faults involved in the systems is critical in 

avoiding structure deterioration, performance degradation, productivity loss and even loss of lives. 

Prognosis is the ability to predict accurately the future condition of the systems, such as 

degradation status and remaining useful life. The prognosis helps to carry out the optimal 

maintenance scheduling for structures and smart operation management of manufacturing 

processes.  

The rapid development of sensor techniques makes it possible for data collection in a quick 

and accurate manner. Quantitative analysis based on physical model or statistical model applying 

on the large amount of collected data provide great opportunities for achieving precise fault 

detection and prognosis. However, significant and fundamental challenges exist in fully exploiting 

the available data to achieve this goal. For example, the identifiability of a fault based on collected 

data is essential and should be addressed before any fault identification efforts. Specifically, the 

commonly used finite element model (FEM) has not been validated for its identifiability in the 

application of structural damage identification. The induced bias due to linearization is often 

ignored for damage estimation, which may lead wrong fault identification. Also, efficient methods 

to predict the progression of structural properties based on finite element models are lacking. 

Furthermore, various data types require specific data modelling and analysis techniques for fault 

detection beyond the traditional statistical monitoring methods in manufacturing processes. These 

issues are being studied in this dissertation.  
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Specific contributions of this thesis are made in fault identification and prognosis in 

mechanical structures and manufacturing processes.  

In mechanical structures, the identifiability of FEM, the bias reduction by measurements selection 

and the prognosis of structural property degradation are addressed. In specific: 

• A quantitative framework is proposed to address the identifiability of structural damage 

identification based on finite element models.  

• A measurement selection algorithm is proposed for bias reduction in damage estimation. 

• A hierarchical Bayesian degradation model is proposed to efficiently estimate the trend of 

damage growth in structures.  

In manufacturing processes, two specific methods are proposed for fault identification of 

untraditional data type. Specifically,  

• Defects with specific spatial patterns on semiconductor wafer are recognized by converting 

the original pattern recognition problem as point matching problem using Hough 

Transformation.  

• Variations of acoustic attenuation curves are being quantified by linear mixed effect model 

and permutation tests to provide the guidelines on the quality inspection in nanocomposites 

manufacturing. 

Besides the aforementioned challenges, there are other issues need to be addressed. For 

example, the integration of piezoelectric transducer circuitry network into mechanical structures 

enhances the performance of frequency-shift-based damage identification method. However, a 

quantitative analysis on the tuning variable of the network is lacking of studies. The quantitative 

study will not only enhance the understanding of such integrated network, but also provide 
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guidelines on tunings to achieve the optimal fault identification. Also, the location of the integrated 

network significantly influences the performance of the fault identification. Analysis on the 

optimal allocation of the transducers leads the most sensitive system response due to the structural 

damages, in which provides the most accurate fault detection.  
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1. Introduction  

1.1  Background 

Fault management in engineering systems is the integration of fault detection, fault 

identification and fault prediction. Fault detection monitors the engineering systems to identify the 

occurrence of faults. The simplest way is to calculate the significance of differences in monitoring 

signals before and after the damages. Fault identification is to further quantify any existed 

damages, e.g., type, location and severities. Physical models are often utilized for such tasks. Fault 

prediction is a natural extension of fault detection and identification. It attempts to forecast system 

performance by assessing the current condition of the system.  

Fault management plays critical roles in both engineering structures and processes. Generally, 

fault management provides knowledge on conditions of engineering systems for smart decision 

making. In engineering structures, the early detection of damages ensures the safety of mechanical, 

aerospace and civil structures, which saves money and even lives. Accurate identification of 

damages leads precise fault correction for economical purposes. Most types of damage or 

structural weakness in structures cannot be observed directly and are caused by the changes in 

structural properties. Revealing such evolving path of structural damage is highly desirable in 

practice for prognosis and maintenances scheduling. In manufacturing process, the early detection 

of nonconforming parts or products with low qualities leads early corrective actions to ensure 

consistent delivery of a quality product and to avoid productivity loss. Forecasting the future 

conditions of manufacturing process provides guidelines for smart operation managements. 
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Due to the practical importance of fault management, huge amount of systematical studies has 

been done over decades. Comprehensive references on different methods for fault management 

can be found in [1-5]. These methods can be roughly categorized into either pure physical models 

or pure data-driven methods. Pure physical models describe the dynamics of the engineering 

systems using differential equations based on physical principles. System properties are quantified 

by the equations, where types of faults can be easily classified. For examples, analyses of fatigue 

damage and life prediction in structures are based on physical models in [3]. Paris’ law is widely 

used for crack growth estimation [6,7]. The multistage manufacturing processes is being modeled 

and diagnosed using state space model [8]. State space model is also adopted for modelling 

variation propagation of assembly systems in [9]. However, physical models are highly specific 

and not compatible among different models, and are generally costly in computation. Pure data-

driven methods reveal the natures of engineering systems by exploiting the sensing data measured 

from systems. The rapid development of sensor techniques makes it possible for data collection in 

a quick and accurate manner. Generic statistical models are applied to make the models applicable 

to various systems. For instances, a popular category of data driven methods is to model the sensing 

signal directly using stochastic process or degradation path model [10]. Hidden Markov models 

(HMM) have been adopted for damage prognosis of a pre-stressed concrete bridge [11] and is used 

for prediction of gear failures [12]. Root cause diagnosis of process variations is identified using 

Bayesian network [13]. Compared with physical models, most data-driven methods suffer from 

lacking support of physical principles, which may result in inaccurate or even misleading 

interpretation of data. Another drawback of data-driven methods is the inefficient utilization of 

data. For example, traditional statistical monitoring methods [14-15] are often adopted for 

monitoring manufacturing processes. Alarms are raised for abnormal changes. However, the 
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traditional monitoring techniques are not adequate for many data types, such as spatial patterns or 

functional data. Even if these data can be quantified into the framework of the traditional methods, 

valuable information contained in the original data (e.g., the pattern or the functional relationship) 

is missed. In this dissertation, a combined method which takes advantage from both physical model 

data-driven approach is proposed to fill the gap. Data are interpreted based on fundamental 

physical laws in statistical manners. Data are fully exploited to provide insight knowledge of the 

structures and lead better identification and prediction results. Besides, specific data analytics 

methods are proposed for fault detection in manufacturing processes to fully utilize specific data 

types. In the following, discussions fall into two categories, fault management in structures and 

fault detection in manufacturing processes.  

1.2  Fault Identification and Prognosis in Structures  

In this section, challenges together with proposed solutions are introduced for fault 

identification and prognosis in structures. 

1.2.1 Identifiability issue in fault detection by FEM 

Although FEM has made its success in damage identification over decades by formulating 

the complicated structures into small elements, very limited studies exist on analyzing the 

identifiability of the FEM used in such applications. Most existing works adopt some types of 

optimization algorithms to minimize the error function and expect the achieved result is a global 

optimal solution. However, the optimization procedure cannot always guarantee to converge to the 

global optimal values and in some cases, even a unique global optimal solution does not exist. 

Indeed, a non-unique model parametrization of FEM might result in an ill-posed identification 

problem. For example, if FEM returns the same system response for different damage locations in 
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a structure, then the damage locations cannot be uniquely identified no matter what method we are 

using. Thus, the identifiability study, i.e., the investigation of the existence of a one-to-one relation 

between the input-output behavior of the model and the parameters, is a critically important step 

before the actual parameter estimation procedure is carried out based on FEM. 

To address the identifiability issue in fault detection by FEM, a quantitative framework is 

adopted. FEM of structures are formulated into a state space model representing linear time 

invariant (LTI) dynamic system, where the definitions of the identifiability of a dynamic system 

can be applied to address the problem.  

1.2.2 Induced bias in damage estimation due to linearization   

Linearization of the eigenvalue problem has been widely used in the damage detection based 

on the change of natural frequencies. However, the linearization method introduces bias in the 

estimation of damage parameters. Moreover, the commonly employed regularization method may 

cause the estimation different from the true underlying solution. These issues cause wrong 

estimation in the damage severities and even wrong damage locations. Limited work has been 

done on addressing these issues. 

We find that particular combinations of natural frequencies will result in less biased estimation 

using linearization approach. Thus, a measurement selection algorithm to select an optimal set of 

natural frequencies for damage identification is proposed. The proposed algorithm adopts 𝐿8- norm 

regularization with iterative matrix randomization for estimation of damage parameters. The 

selection is based on the estimated bias using the least square method. Numerical studies are 

conducted to validate the effectiveness of the method. 
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1.2.3 Efficient structural damage growth prediction  

Both physic-based approach and data-based approach suffer from their inherent weakness 

in tackling damage prognosis issue in structures. Physical models are generally case specific, 

which limit their application to broad types of structures. Second, these methods assume that an 

accurate mathematical model is available and the model requires specific mechanistic knowledge 

and theories relevant to the systems under consideration. In practice, it is very difficult to build 

such a good physical model. Furthermore, physics based methods often ignore the uncertainties in 

the system structure and the measurements. Computational load is general heavy in physical 

models. Data-driven methods, on the other hand, limits attentions only on explaining data. 

Stochastic process is able to model the degradation signals well without revealing the change of 

structural properties. HMM and other state space models require tons of historical data for model 

training before usage. Also, since degradation status is classified into discrete states as an 

approximation of the underlying true continuous state, the prognosis in a long term could be 

unreliable. Thus, a method that integrates both the advantages of physical model and data-driven 

method is desired.  

To fulfill an efficient structural damage growth prediction, a dynamic data-driven 

hierarchical Bayesian degradation model, which takes advantage of both the physical finite 

element model and the data driven Bayesian framework, is proposed. 

1.3  Fault Detection in manufacturing processes 

In this section, two specific data analysis methods are introduced for spatial point pattern and 

functional data in manufacturing processes, respectively. 

1.3.1 Surface Defects in Semiconductor Manufacturing 
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Defects on semiconductor wafer usually distribute as spatial point patterns, which may 

contain the information of root cause. Traditional control charts monitor the total number of defects 

as a criteria of alarm. However, the information of specific spatial patterns is missing. A new 

method based on Hough transform is proposed, where point pattern detection problem is converted 

into a simple point matching problem. Thus, specific spatial patterns can be recognized to indicate 

the existence of defects. 

1.3.2 Acoustic Attenuation Curves in Nanocomposite Manufacturing  

The variation of ultrasonic attenuation curves are flexible indicators for the quality 

inspection of A206-Al2O3 Metal Matrix Nanocomposites (MMNCs) by ultrasonic testing. Most 

control charts are developed for monitoring point values. Even if multivariate control charts are 

designed for vector data, assumptions often cannot be validated in practice. Thus, new methods on 

dealing with functional data are desired. The new method is based on linear mixed effect (LME) 

model and permutation test. LME model is adopted to characterize the variation of ultrasonic 

attenuation curves. Further, permutation test is employed to classify the quality of samples, where 

no assumptions of distribution are needed. 

1.4  Outline of the Dissertation 

The remainder of the dissertation is organized as follows: Chapter 2 addresses the 

identifiability issue in fault detection by FEM. In this chapter, the detailed quantitative framework 

is introduced. The analysis of the transfer function in dynamic system is applied to a beam 

structure. It is theoretically proved that damage severity at a given location in a uniform beam is 

identifiable. A numerical algorithm is adopted for checking the identifiability issue of multiple 

damage locations. In Chapter 3, the hierarchical model which integrates the FEM and Bayesian 
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framework is introduced. The stiffness loss is the target damage progression being analyzed by the 

proposed model. The trend of the stiffness loss can be efficiently and accurately estimated by 

Gibbs sampling. Chapter 4 and 5 provides the specific data analysis method for spatial point pattern 

in semiconductor wafer and acoustic attenuation curves in MMNCs, respectively. In Chapter 4, 

the original point patter detection problem is converted into point matching problem by using 

Hough Transformation. Compared with the existing point pattern matching methods, the proposed 

method does not require training data and is relatively easy to implement and compute. Chapter 5 

introduces the linear mixed effect model on quantifying the variation of ultrasonic attenuation 

curves by ultrasonic testing. Permutation test is further employed for quality inspection. In 

addition, a microstructure modelling and wave propagation simulation method to simulate 

ultrasonic attenuation characteristic for A206-Al2O3 MMNCs are proposed to enhance the 

understanding of the wave-microstructure interaction and also address the difficulty in fabricating 

nanocomposites of different microstructural features in practice. Chapter 6 summarizes the 

contributions of this dissertation and discusses the future work.  

  



8 
 

2. Identifiability Analysis of Finite Element Models for Vibration-
Response Based Structural Damage Detection in Elastic Beams* 

 In this chapter, the identifiability of FEM-based structural damage detection is investigated 

for undamped elastic beams. We theoretically proved that damage severity at a given location in a 

uniform beam is identifiable by reformulating the FEM into a linear time invariant (LTI) system. 

A numerical algorithm is also proposed for checking the identifiability issue of multiple damage 

locations. Numerical case studies are provided to validate the effectiveness and usefulness of the 

proposed framework.  

2.1  Literature Review  

Structural health monitoring and damage detection to assure the structure safety and 

reliability is an important area in civil, mechanical and aerospace engineering fields. Structural 

vibration response has been used extensively in structural damage detection. The basic idea is that 

the occurrence of damage in a structure will lead to changes in its vibration characteristics (e.g., 

natural frequencies, mode shapes, modal curvatures, etc). By checking such changes we often can 

infer the location and severity of the damage. Finite element model (FEM) is a broadly used 

numerical tool in structural analysis to quantitatively check the changes and conduct the inference.  

In the literature, many FEM-based damage detection methods have been proposed. 

Essentially, in these methods, the structure damages have been commonly modeled as element-

wise property (e.g., mass density or stiffness) change in the finite element model. The damage 

severity parameters and damage location parameters are estimated by minimizing an error 

                                                             
*This chapter is based on the paper: Liu, Yuhang, Shiyu Zhou, and Jiong Tang. "Identifiability 
Analysis of Finite Element Models for Vibration Response-Based Structural Damage Detection in 
Elastic Beams." Journal of Dynamic Systems, Measurement, and Control 138.12 (2016): 121006. 
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function, which expresses the difference between experimental modal analysis data and the 

corresponding FEM model prediction. The error functions can be used to measure the changes in 

natural frequencies, the mode shape, the modal curvatures, or directly the parameters in FEM. It 

has been shown that the damage estimated based on the FEM are consistent with the experimental 

results. For example, damage detection methods are developed based on the natural frequency 

change computed using FEM [16-19]. Methods for model error localization based on the mode 

shape changes characterized by FEM have been proposed in [20,21]. Natural frequencies and mode 

shapes are jointly used for damage detection in [22-24]. Pandey, et. al [25] demonstrated that 

absolute changes in mode shape curvature can be a good indicator of damage for beam FEM 

structure. Chen and Garba [25,27] presented a method for minimizing the norm of the model 

property perturbations with a zero modal force error constraint on a truss FEM structure. Sanayei 

and Onipede [28,29] presented a technique for updating the stiffness parameters of a FEM using 

the results of a static load-displacement test.  

Despite the large amount of works on FEM-based vibration response analysis for structural 

damage detection, very limited studies exist on analyzing the identifiability of the FEM used in 

such applications. Most existing works adopt some type of optimization algorithms to minimize 

the error function and expect the achieved result is a global optimal solution. However, the 

optimization procedure cannot always guarantee to converge to the global optimal values and in 

some cases, even a unique global optimal solution does not exist. Indeed, a non-unique model 

parametrization of FEM might result in an ill-posed identification problem. For example, if FEM 

returns the same system response for different damage locations in a structure, then the damage 

locations cannot be uniquely identified no matter what method we are using. Thus, the 

identifiability study, i.e., the investigation of the existence of a one-to-one relation between the 
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input-output behavior of the model and the parameters, is a critically important step before the 

actual parameter estimation procedure is carried out based on FEM. 

The uniqueness of the relationship between structural parameters and the system response 

has been studied analytically for simple beam structures. Chang and Guo [37] prove that the 

density and the flexural rigidity of the Euler-Bernoulli beam in class 𝐶} can be uniquely 

determined from input and output functions. Frederick and Mehmet [38] show that the 

perturbations in individual modal frequencies are governed uniquely by the intensity of the damage 

and its location in a fracture structure, where the crack damages are modeled as hinged springs in 

the model. To our best knowledge, limited work has been done in investigating the identifiability 

issue in FEM. The most related work is [30]. It is shown that the solution of element properties 

(e.g., mass and stiffness) to minimize the error function related to the modal force of a truss 

structure is unique and globally minimal if sufficient modal data are available. However, the 

uniqueness is interpreted from the view point of optimizing a quadratic error function, not from 

the relationship between model parameter changes and the model responses. The relation between 

structural parameters and the system response in FEM is not yet investigated. 

In this chapter, we present a quantitative framework to address the identifiability issue in 

FEM-based structural damage detection. We are trying to answer, whether the element property 

changes in the FEM based method can be uniquely identified through a given set of input and 

output measurements. In this study, we use a Euler-Bernoulli beam as the representative structure. 

The damage at certain location is modeled as a reduction in the stiffness of the element at the 

corresponding location in the FEM. This way of modeling damage has been commonly used in 

existing damage detection methods [31-37]. In this framework, FEM of a beam structure is re-

formulated into a state space model representing Linear Time Invariant (LTI) dynamic system. 
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With this formulation, the definitions of the identifiability of a dynamic system [39] can be applied 

to our problem. Some existed work [40-44] related to the identifiability problem focus on finding 

sufficient measurements of system input and output such that all system parameters can be 

identified. However, the focus of this research is the damage parameters (e.g., severities and 

locations) identifiability based on a given set of measurements. Furthermore, the different 

mathematical formulation also distinguishes our study from these existed works. By using the 

properties of an inverse of a block diagonal matrix, we then analyzed the uniqueness of the system 

transfer function and proved that different severity level of damages at the same location of the 

structure will result in different system responses. Thus, those damages are theoretically 

identifiable in the FEM of a beam structure. Further, through checking the changes in structural 

natural frequencies, we established a sufficient condition for the identifiability of multiple damages 

at different locations. This sufficient condition can be numerically checked and validated for a 

given structural FEM. With this checking procedure, we showed that damages at two different 

locations will only result in the same transfer function under some very restrictive symmetric 

conditions. In other words, two damages at different locations will be differentiable in most cases. 

We also conducted several representative case studies to demonstrate the effectiveness and 

usefulness of the proposed framework of providing a theoretical guideline on the damage 

identifiability.  

The rest of the chapter is organized as follows. In Section 2.2, formulations of FEM into 

LTI system is presented for a beam structure. The analysis of the relationship between damage at 

a given location and the structural response function is presented in Section 2.3. The sufficient 

condition and the numerical checking scheme for multiple damages are discussed in Section 2.4. 

Numerical case studies are presented in Section 2.5. Conclusions are summarized in Section 2.6. 
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2.2  Mathematical formulation of damage identifiability in FEM of beam 

structure 

In this section, FEM of a beam structure is formulated into a LTI system and the damage 

identifiability is investigated under the theoretical framework of dynamic systems. For the sake of 

clarity, we shall briefly review the representation of a LTI system and the definition of parameter 

identifiability first. 

2.2.1 Review of LTI system and parameter identifiability 

Linear time invariant system in state space representation can be expressed as [39, 45]: 

d𝐳(𝑡)
dt = 𝐀(𝛉)𝐳(𝑡) + 𝐁(𝛉)𝐮(𝑡) 

𝐲(𝑡) = 𝐂(𝛉)𝐳(𝑡) + 𝐃(𝛉)𝐮(𝑡)                                              (2.1) 

where 𝐳 ∈ 𝑅�, 𝐮 ∈ RW, 𝐲 ∈ R� and 𝛉 ∈ R�, represent the state (e.g., displacement), the input (e.g., 

a force vector), the output measurement (e.g., displacement and velocity) and the parameters of 

the system respectively, and 𝐀 is the system matrix, 𝐁 is the input matrix, 𝐂 is the output matrix 

and 𝐃 is the feed-through matrix with size 𝐀:𝑅� → 𝑅�×�, 𝐁: 𝑅� → 𝑅�×�, 𝐂: 𝑅� → 𝑅�×�,𝐃: 𝑅� →

𝑅�×�.  

The identifiability problem of a LTI system is that whether the damage parameter 𝛉 can be 

uniquely estimated based on the input and output of the system. In order to deal with this problem, 

LTI system is expressed in the frequency domain for a more compact formulation by taking 

Laplace transformation, which leads to: 

𝐘(𝒔) = 𝐇(𝒔)𝐔(𝒔) 
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where 𝐘(𝒔) and 𝐔(𝒔) are the output and input in the frequency domain, respectively and 𝐇(𝒔) =

𝐂(𝐬𝐈 − 𝐀)�𝟏𝐁 + 𝐃 is the transfer function. Note that, if 𝑚 = 1 and 𝑟 = 1, i.e., 𝐂, 𝐃 are row vectors 

and 𝐁 is column vector, the transfer function is a single function, otherwise, it is a transfer function 

matrix. In the article, 𝐇(𝒔) is used for a transfer function matrix, while 𝐻(𝒔) is reserved for a 

single transfer function. 

A formal definition of parameter identifiability is given based on the transfer function [39].  

Definition Let (𝐀,𝐁, 𝐂, 𝐃)(𝛉) be a parametrization of the system matrices (𝐀,𝐁, 𝐂, 𝐃). This 

parametrization is said to be parameter-identifiable if 

𝐂(𝛉𝟏)�𝐬𝐈 − 𝐀(𝛉𝟏)�
�𝟏
𝐁(𝛉𝟏) + 𝐃(𝛉𝟏) = 𝐂(𝛉𝟐)�𝐬𝐈 − 𝐀(𝛉𝟐)�

�𝟏
𝐁(𝛉𝟐) + 𝐃(𝛉𝟐)  

for all 𝒔 ∈ ℂ, implying 𝛉𝟏 = 𝛉𝟐. 

The condition in the definition is equivalent to the statement: if 𝛉𝟏 ≠ 𝛉𝟐, then there exists 

a 𝑠 ∈ ℂ, such that two transfer functions corresponding 𝛉𝟏 and 𝛉𝟐, respectively, are different. The 

parameter identifiability implies a unique relation between the transfer function 𝐇(𝑠) and 

parameters 𝛉, which provides a way to check the parameter identifiability of LTI system. It should 

be pointed out that the above definition guarantees the identifiability “in principles”. In other 

words, if a system is deemed non-identifiable based on above definition, then no matter what 

methods we use, we will not be able to uniquely identify the parameter. On the other hand, if a 

system is identifiable, then it means in theory, the parameters can be estimated from system inputs 

and outputs. However, in practice, limited by the measurement system and noise contamination, 

the identification results may not be satisfactory. Nevertheless, the identifiability analysis provides 

us important insights to the system and should be conducted before the parameter estimation step. 
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2.2.2 Formulate FEM of a beam structure into LTI system  

In the context of FEM, the vibration behavior of an undamped or lightly damped beam 

structure can be described by the equation 

𝐌𝐱̈(𝑡) + 𝐊𝐱(𝑡) = 𝐅(𝑡)                                                 (2.2) 

where 𝐌 ≻ 𝟎 and 𝐊 ≽ 𝟎 are the global mass and stiffness matrices, respectively, 𝐱 and 𝐅 contain 

the nodal displacements and nodal forces, respectively. The assumption of undamped or lightly 

damped system is commonly used in structural analysis for simplicity. However, we would like to 

point out that the results in the work are also held for the commonly assumed proportional damping 

system, where the damping matrix 𝐂𝐝 is a linear combination of 𝐌 and 𝐊.  

For a one-dimensional Euler–Bernoulli beam discretized into 𝑛 elements as shown in Fig.2-

1, 𝐱𝐓 = (𝑑8, 𝛼8, 𝑑Z, 𝛼Z, … 𝑑�«8, 𝛼�«8), where 𝑑¬ and 𝛼¬ represent the translational displacement 

and the bending rotation of the 𝑖®¯ node respectively. 𝐌 and 𝐊 are symmetric block diagonal 

matrices with size 2(𝑛 + 1) assembled by 𝑛 element mass matrices 𝐌𝐢 and element stiffness 

matrices 𝐊𝐢 on the diagonal. A detailed assembling procedure from element wise matrices to global 

matrices 𝐌 and 𝐊 can be found in [46]. 
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Fig 2-1 An example of finite element representation of a beam structure with 𝑛 elements and 𝑛 +

1	nodes. 

The occurrence of damage is assumed to cause the reduction of the stiffness of element. 

Thus, the global stiffness matrix 𝐊 regarding the damages can be represented as 𝐊(𝐩, 𝛄), where 𝐩 

and 𝛄 are the vectors with the same length representing the damage locations and damage severities 

in the elements respectively. The components of 𝐩 take non-duplicated integer values from 1 to 𝑛 

and the components of 𝛄 range from 0 to 1. For example, if 𝐩 and 𝛄 take scalar values 𝐩 = 𝑝 and 

𝛄 = 𝛾, then the 𝑝®¯  element stiffness matrix has the form 

𝐊𝐩 = 𝛾 × 𝐸𝐼

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
12
𝑙¹

6
𝑙Z −

12
𝑙¹

6
𝑙Z

4
𝑙 −

6
𝑙Z

2
𝑙

12
𝑙Z −

6
𝑙Z

𝑠𝑦𝑚
4
𝑙 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝛾 ∈ [0,1] 

where 𝐸 and 𝐼 are the density, Young modulus of elasticity and second moment of inertia 

respectively.𝛾 = 0 indicates a complete stiffness loss in the 𝑝®¯  element and 𝛾 = 1 indicates no 

stiffness loss in the element.  

Define 𝐳 = (𝒙𝑻, 𝒙̇𝑻)𝑻,  then an 𝑛-element beam described by Eq.(2.2) can be formulated 

into LTI system with matrices 𝐀, 𝑩, 𝑪 and 𝐃 explicitly expressed as: 

𝐀 = Ç𝐀𝟏𝟏 𝐀𝟏𝟐
𝐀𝟐𝟏 𝐀𝟐𝟐

È = Ç 𝟎 𝐈
−𝐌�𝟏𝐊(𝐩,𝛄) 𝟎È                                    (2.3a) 

Finite Element Model of a Beam Structure
1 2 3 n… …

1 2 3

Element
Node 𝒅𝒊 𝜶𝒊$𝟏	𝒍 n+1
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𝐁 = Ç𝐁𝟏𝟏𝐁𝟐𝟏
È = Ç 𝟎

𝐌�𝟏𝐄𝐁
È                                                    (2.3b) 

𝐂 = [𝐂𝟏𝟏	𝐂𝟏𝟐] = [𝐄𝐂, 𝟎𝐓]                                                  (2.3c) 

𝐃 = 𝟎                                                                    (2.3d) 

where 𝐈 is the identity matrix with size 2(𝑛 + 1). The undamped vibration leads 𝐀𝟐𝟐 = 𝟎. Without 

loss of generality, we assume𝐃 = 𝟎. 𝐄𝐁 and 𝐄𝐂 are matrices that specify the input and output 

locations in 	𝐱𝐓 = (𝑑8, 𝛼8, 𝑑Z, 𝛼Z, … 𝑑�«8, 𝛼�«8). For example, if 𝐄𝐁 = 𝐞𝐢 is a zero column vector 

of length 2(𝑛 + 1) with its 𝑖th component equal to 1, then the input is excited through the 𝑖th 

component of 𝐱. Similarly, if 𝐄𝐂 = 𝐞𝐤𝐓, the output is measured from the 𝑘th component of 𝐱. If two 

or more components of 𝐱 are excited and measured at the same time, the matrices 𝐄𝐁 and 𝐄𝐂 can 

be formed accordingly using vector 𝐞s. For instance, the translational displacement 𝑑 and bending 

rotation 𝛼 of a single node 𝑗 are excited or measured simultaneously in most cases. Thus, 𝐄𝐁 =

[𝐞𝟐𝐣�𝟏; 𝐞𝟐𝐣] and 𝐄𝐂 = Ð
𝐞𝟐𝐣�𝟏𝐓

𝐞𝟐𝐣𝐓
Ñ for a single node 𝑗. 

The parameters 𝛉 = (𝐩, 𝛄) in the LTI system are the damage locations 𝐩 and the damage 

severities 𝛄. Note that the parameters only appear in the system matrix 𝐀. In order to check the 

parameter identifiability of 𝛉 = (𝐩, 𝛄) in FEM by definition, the transfer function of the LTI 

system can be obtained as 𝐇(𝑠) = 𝐂�𝐬𝐈 − 𝐀(𝐩, 𝛄)�
�𝟏
𝐁 = 𝐄𝐜(−𝐬𝟐𝐌 + 𝐊)�𝟏𝐄𝐁. In most cases, the 

matrices 𝐄𝐂 and 𝐸𝐁 are just selector matrices that select the components in the matrix 

(−𝐬𝟐𝐌 + 𝐊)�𝟏 that correspond to the input force and the measurement locations. Thus, 𝐇(𝑠) is 

often either a submatrix of or include multiple components of (−𝐬𝟐𝐌 + 𝐊)�𝟏. Based on the 

definition of identifiability, the parameters 𝛉 = (𝐩,𝛄) are identifiable if the transfer function 𝐇(𝑠) 
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is different for (𝐩𝟏, 𝛄𝟏) ≠ (𝐩𝟐, 𝛄𝟐). In the next section, a FEM beam structure is discussed for its 

parameter identifiability. 

2.3  Identifiability of the Severity of Damage at a Given Location 

In this section, the damage severity identification is studied for a collocated structure in 

FEM, where the actuator and the sensor are placed at the same node. The actuator and the sensor 

are assumed to excite and measure both the translational displacement and bending rotation of the 

same node, respectively. Thus, the damage severity at a given element is identifiable if the 

following 2 × 2 transfer function matrix 𝐇Ô(𝑠) is different for different values of damage severity. 

𝐇Ô(𝑠) = Ð
𝐻ZÔ�8,ZÔ�8(𝑠) 𝐻ZÔ�8,ZÔ(𝑠)
𝐻ZÔ,ZÔ�8(𝑠) 𝐻ZÔ,ZÔ(𝑠)

Ñ                                          (2.4) 

where 𝐻Õ,Ö(𝑠) represents the k,lth element of the matrix (−𝐬𝟐𝐌 + 𝐊)�𝟏. In fact,  𝐇Ô(𝑠) is the 𝑗®¯  

block matrix in the main diagonal of (−𝐬𝟐𝐌 + 𝐊)�𝟏 for this system.  

Through the following lemma, we can prove that the damage severity at a given element 

is identifiable for all collocated sensor and actuator locations in the FEM beam structure.  

Lemma 𝐇𝐣|(𝑝, 𝛾8) ≠ 𝐇𝐣|(𝑝, 𝛾Z) if 𝛾8 ≠ 𝛾Z for 𝑝 = 1,2,…𝑛 and 𝑗 = 1,2, , … 𝑛 + 1, where 

𝐇Ô|(𝑝, 𝛾8) represents the matrix 𝐇Ô given parameters (𝑝, 𝛾8).  

The proof of the lemma utilizes the following property of a block diagonal matrix, which 

has been studied in literature [47-51]. 

Define 𝐕 as a symmetric block diagonal matrix which is specified as: 
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𝐕 =

⎣
⎢
⎢
⎢
⎡ 𝐑𝟏−𝐐𝟐

−𝐐𝟐𝐓
𝐑𝟐
⋱
−𝐐𝟑𝐓
⋱

−𝐐𝐧
⋱
𝐑𝐧

−𝐐𝐧«𝟏	
−𝐐𝐧«𝟏	𝐓

𝐑𝐧«𝟏	 ⎦
⎥
⎥
⎥
⎤

 

where 𝐑¬s and 𝐐Ô	s are block. Define 𝚫𝐢 and 𝚺𝐢 by the following recursive relationship: 

                                          à
𝚫𝟏 = 𝐑𝟏,

𝚫𝐢 = 𝐑𝐢 − 𝐐𝐢𝚫𝐢�𝟏�𝟏 𝐐𝐢𝐓,
											 à

𝚺𝐧«𝟏 = 𝐑𝐧«𝟏,
𝚺𝐢 = 𝐑𝐢 − 𝐐𝐢«𝟏𝐓 𝚺𝐢«𝟏�𝟏 𝐐𝐢«𝟏.

      (2.5) 

Note that, the direction of recursion is forward from 𝐑𝟏 to 𝐑𝐧«𝟏 for 𝚫𝐢𝑠, and backwards from 𝐑𝐧«𝟏 

to 𝐑𝟏 for 𝚺¬𝑠. Define 𝛀𝐣 using 𝚫𝐢 and 𝚺𝐢 as 

â
𝛀𝐢 = 𝚫𝐢, 𝐢 < 𝐣	
𝛀𝐢 = 𝚺𝐢, 𝐢 > 𝐣	
𝛀𝐣 = 𝚫𝐣 + 𝚺𝐣 − 𝐑𝐣

 

One important property of the inverse of a block diagonal matrix 𝐕 is given in [47] as  

ä
𝐕𝐣�𝟏 = 𝛀𝐣�𝟏	

𝐕𝐣�𝐥�𝟏 = 𝚫𝐣�𝐥�𝟏𝐐𝐣�𝐥«𝟏𝐓 𝚫𝐣�𝐥«𝟏�𝟏 ⋯𝚫𝐣�𝟏�𝟏 𝐐𝐣𝐓𝛀𝐣�𝟏, 𝐥 = 𝟏… 𝐣 − 𝟏
𝐕𝐣«𝐥�𝟏 = 𝚺𝐣«𝐥�𝟏𝐐𝐣«𝐥𝚺𝐣«𝐥�𝟏�𝟏 ⋯𝚺𝐣«𝟏�𝟏 𝐐𝐣«𝟏𝛀𝐣�𝟏, 𝐥 = 𝟏…𝐧 + 𝟏 − 𝐣

              (2.6) 

where 𝑗 represents the 𝑗®¯  block column of the inverse of 𝐕. Thus, 𝐕𝐣�𝟏 is the 𝑗®¯  block matrix in 

the main diagonal of 𝐕�𝟏. 

For a FEM beam model, if we let 𝐕(𝐬) = (−𝑠Z𝐌 + 𝐊(𝐩, 𝛄)), then 𝐕�𝟏(𝑠) will be the 

complete system transfer function matrix. Since both 𝐌 and 𝐊 are symmetric block diagonal 

matrices, 𝐕(𝐬) is also a symmetric block diagonal matrix. Thus, Eq.(2.6) can be utilized to 

calculate the transfer function matrix 𝐇Ô(𝑠) without directly inverting the entire matrix 𝐕(𝐬). 
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Moreover, for a uniform beam structure, 𝐑¬s and 𝐐Ô	s are 2 × 2 block matrices satisfying 

the condition 𝐐𝟐 = 𝐐𝟑 = ⋯ = 𝐐𝐧«𝟏 and 𝐑𝟐 = 𝐑𝟑 = ⋯ = 𝐑𝐧, and both 𝐑¬𝑠 and 𝐐Ô𝑠 are non-

singular matrices. The following proposition states one important property of 𝚫𝐢 and 𝚺𝐢 based on 

the 𝐑¬s and 𝐐Ô	s.  

Proposition The recursion of matrices 𝚫𝐢 in Eq.(2.5) of a uniform beam under the LTI expressed 

in Eq.(2.3) follows that 𝚫𝐢(𝐩, 𝛄𝟏) = 	𝚫𝐢(𝐩, 𝛄𝟐) for 𝑖 < 𝑝	and	𝚫𝐢(𝐩, 𝛄𝟏) ≠ 	𝚫𝐢(𝐩, 𝛄𝟐)	for 𝑖 ≥ 𝑝 if 

𝛄𝟏 ≠ 𝛄𝟐, where 𝑝 is the damage location and 𝛾 is the damage severity.  

A similar result holds for 𝚺𝐢 in the backward recursion. For a uniform beam, 𝚫𝐢 and 𝚺𝐢 are 

positive definite matrices [63,64] in the recursions. A direct calculation shows that 𝚫𝐢(𝐩, 𝛄𝟏) =

	𝚫𝐢(𝐩, 𝛄𝟐) for 𝑖 ≥ 𝑝 if and only if 𝛄𝟏 = 𝛾Z following a general condition of 𝚫𝐩�𝟏 ≻ 𝟎. Based on 

the proposition, the outline of the proof is summarized as follows. Suppose the damage occurs at 

the 𝑝®¯  element with different damage parameters 𝛾, which will lead to the changes in block 

matrices 𝐑𝐩,𝐑𝐩«𝟏,𝐐𝐩«𝟏 and 𝐐𝐩«𝟏𝐓  in 𝐕. Suppose the 𝑗®¯  node is collocated for excitation and 

measurement. Then we have the following cases:  

(1) For 𝑗 > 𝑝 + 1, 𝚫𝐣(𝛄) results in different values for different 𝛾s based on the proposition. 𝚺𝐣 

remains the same for different 𝛾s, since the backward recursions have not passed the 𝑝®¯  element 

with damage yet. Thus, 𝛀𝐣 = 𝚫𝐣 + 𝚺𝐣 − 𝐑𝐣 will be different due to 𝚫𝐣. Similar results hold for 𝑗 ≤

𝑝 − 1 by interchanging 𝚫𝐣 and 𝚺𝐣. 

(2) For 𝑗 = 𝑝	𝑜𝑟	𝑝 + 1, the differences in 𝛀𝐣 = 𝚫𝐣 + 𝚺𝐣 − 𝐑𝐣 come from all three terms and a direct 

calculation shows that 𝛀𝐣 is different for different 𝛾s. The details of the tedious symbolic 
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calculations are omitted here. As a result, 𝛀𝐣 will be different in all three cases regardless of the 

collocated position 𝑗, and 𝐇Ô = 𝛀𝐣�𝟏 will be different, which proves the lemma. 

 The lemma states that different severities at the same location are identifiable for all 

collocated sensor and actuator locations. That is, at least one component in the matrix 𝐇Ô will differ 

for different 𝛾s. Once the location of damage is known, the system response provides a unique 

mapping to the damage severity which can be used to monitor the health condition.  

2.4  Identifiability of Damage Location  

In previous section, the damage severity is shown to be always identifiable at a fixed 

element for all collocated excitation and measurement locations in FEM. In this section, a more 

general identifiability problem, i.e., the identifiability of damage location, is investigated. The 

problem we want to address is that: assume we have a damaged element in the FEM, can we 

uniquely identify its location? Mathematically, this problem can be formulated as: 

Given a FEM based uniform beam under the LTI expressed in Eq.(2.3), will there be two 

pairs of parameters (𝐩𝟏, 𝛄𝟏)	and	(𝐩𝟐, 𝜸𝟐), such that 𝐇𝐣|(𝐩𝟏, 𝛄𝟏) = 𝐇𝐣|(𝐩𝟐, 𝜸𝟐) for some 𝑗?  

Intuitively, we can guess that for the perfect symmetric situation, i.e., we have the same 

boundary condition at both ends of a uniform beam, the collocated sensor and excitation input 

location is in the middle at the beam, and the two elements are symmetric according to the 

collocated location, we will not be able to distinguish the two elements. Mathematically, this 

situation can be stated as: for a FEM based uniform beam with the same boundary condition on 

two ends under the LTI expressed in Eq.(2.3), 𝐇𝐧/𝟐|(𝑝, 𝛾) = 𝐇𝐧/𝟐|(𝑛 + 1 − 𝑝, 𝛾) for an even 
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number of elements 𝑛. In Fig.2-2, examples of the same boundary condition and different 

boundary conditions on two ends of a beam are presented. 

 

Fig 2-2 Two different experimental beam setups. (a) Fixed-fixed: both ends of the beam are fixed 

such that the ends can no longer move or rotate. (b) Fixed-free: one end is fixed and the other one 

is free to move and rotate. In (a), the collocated node for excitation and measurement is at the 

middle of the beam and the symmetric damage locations are shaded. 

Indeed, this intuitive guess can be formally proven to be true utilizing the property of the 

inverse of block diagonal matrix as shown in Section 2.2.3. If the collocated sensor and excitation 

location is at the middle of the beam, then the transfer function matrix can be expressed as 

𝐇𝐧/𝟐|(𝐩, 𝛄) = 𝛀𝐧/𝟐�𝟏 = �𝚫𝐧/𝟐(𝐩, 𝛄) + 𝚺𝐧/𝟐 − 𝐑𝐧/𝟐�
�𝟏

 for a damage at the 𝑝®¯  element on the left 

of the center and 𝐇𝐧/𝟐|(𝐧 + 𝟏 − 𝐩, 𝛄) = 𝛀𝐧/𝟐�𝟏 = �𝚫𝐧/𝟐 + 𝚺𝐧/𝟐(𝐧 + 𝟏 − 𝐩, 𝛄) − 𝐑𝐧/𝟐�
�𝟏

 for a 

damage at the symmetric (𝑛 + 1 − 𝑝)®¯  element on the right of the center. The forward recursion 

in Eq.(2.5) passes the 𝑝®¯  element with damage, so that 𝚫𝐧/𝟐(𝐩,𝛄) is influenced by parameters 

(𝐩, 𝛄). A similar process holds for 𝚺𝐧/𝟐(𝐧 + 𝟏 − 𝐩, 𝛄). Since both ends of the beam have the same 

boundary condition, 𝐑𝟏 = 𝐑𝟐 = ⋯ = 𝐑𝐧�𝟏, for all the 𝑛 − 1 blocks. Clearly the recursion 

calculation in Eq.(2.2) of 𝚫𝐢 and 𝚺𝐢 lead 𝚫𝐢 = 𝚺𝐧�𝐢. Thus, 𝚺𝐧/𝟐 = 𝚫𝐧/𝟐 and 𝚫𝐧/𝟐(𝐩, 𝛄) =

𝚺𝐧/𝟐(𝐧 + 𝟏 − 𝐩, 𝛄), which leads to identical transfer functions and thus proves this intuitive result. 

(a) (b)
Input

Output𝒑 𝒏 + 𝟏 − 𝒑
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It is easy to track the changes in the recursive functions in Eq.(2.5) for the calculation of 

the transfer function for symmetric cases. However, if any of the symmetric conditions do not 

hold, the comparison of recursive functions and hence the analytical transfer function matrix can 

be messy and untraceable. As a result, the location identifiability cannot be analytically checked 

in a general setting. To overcome the difficulty, we propose a numerical method to check a 

sufficient condition of location identifiability for general settings. 

The inverse of a large scale block diagonal matrix (−𝑠Z𝐌 + 𝐊(𝐩, 𝛄))�𝟏 involving 

frequency variable 𝑠 and parameters (𝐩, 𝛄) is difficult to be calculated analytically in practice. In 

order to check the differences of the transfer function for different values of (𝐩, 𝛄), we utilize the 

following property of a scalar transfer function 𝐻(𝑠). A transfer function 𝐻(𝑠) can be written as 

𝐻(𝑠) =
𝑐8
𝑐Z
(𝜆 − 𝑧8)(𝜆 − 𝑧Z)(𝜆 − 𝑧¹)⋯ (𝜆 − 𝑧��8)(𝜆 − 𝑧�)
(𝜆 − 𝜆8)(𝜆 − 𝜆Z)(𝜆 − 𝜆¹)⋯ (𝜆 − 𝜆��8)(𝜆 − 𝜆�)

 

where 𝜆 = 𝑠Z, 𝑐8and 𝑐Z are constant values, 𝑧¬s and 𝜆¬s are the zeros and poles of the transfer 

function, respectively. It is known that 𝑐Z ∏ (𝜆 − 𝜆¬) = det	(−𝜆𝐌 + 𝐊(𝐩, 𝛄))¬  [52]. Thus, 𝜆¬s are 

also the eigenvalues of the matrix product 𝐌�𝟏𝐊(𝐩, 𝛄) for the generalized eigenvalue problem 

det(−𝜆𝐌 + 𝐊(𝐩,𝛄)) = 0. Moreover, the natural frequencies 𝑓¬s of the beam given 𝐌 and 𝐊(𝐩,𝛄) 

are the square roots of 𝜆¬s, i.e., 𝑓¬ = ñ𝜆¬ [52]. 

Based on the above property, a sufficient condition to check the damage location 

identifiability is to examine the change of natural frequencies. As long as 𝑓¬s are different for 

different (𝐩, 𝛄), then the denominators of the transfer functions are different and hence the transfer 

functions are different. A numerical procedure can be established to check if a FEM beam structure 

satisfies this sufficient condition or not. The basic idea of the checking is straightforward: we try 
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to check if multiple elements (more than one) with certain amount of damage will lead to the same 

set of natural frequencies. If no, then it is sufficient to say that the damage location is identifiable. 

If yes, then the damage location is not identifiable from the natural frequency point of view. 

However, we cannot claim it is not identifiable in general because we cannot conclude the transfer 

functions are the same if only their denominators are the same. Further analysis of other criteria 

such as the mode shapes can be utilized to fulfill the identifiability checking besides natural 

frequencies. The rational we use natural frequencies is that natural frequencies depend on the 

global properties of the system and are easy to be measured in practice while enjoying a higher 

accuracy compared with mode shapes [53,54]. Define 𝑓¬
(𝐩,𝛄) the 𝑖®¯ natural frequency (sorted from 

smallest to largest) for parameters (𝐩, 𝛄) and 𝑆Õ = min
𝛄
∑ ö÷ø

(𝐩∗,𝛄∗)�÷ø
�𝐩𝐤,𝛄�

÷ø
(𝐩∗,𝛄∗) ö¬∈ℒ  is the minimum sum 

of relative frequency difference between the given parameter (𝐩∗, 𝛄∗) and the 𝑘®¯ selection of 

damage locations 𝐩𝐤 by adjusting 𝛄. ℒ is the set of the index of natural frequencies being used in 

the calculation. For example, if only the first five natural frequencies are used, ℒ = {1,2,3,4,5}. 

Further define 𝑆Õ
(Ô) is the 𝑗®¯  smallest value among all 𝑆Õ𝑠. The numerical algorithm for scalar 

valued 𝑝 and 𝛾 is presented in Table 2-1 for an 𝑛-element FEM based beam structure with global 

mass matrix 𝐌 and stiffness matrix 𝐊. 

Table 2-1. Numerical Algorithm of Location Identifiability of Scalar Valued 𝑝 and 𝛾  

1 Input (𝑝∗, 𝛾∗), and update 𝐊(𝑝∗, 𝛾∗),  
2 Compute 𝑓¬

(1∗,þ∗),by taking the square root the eigenvalues of 𝐌�𝟏𝐊(𝑝∗, 𝛾∗),  
3 Define the set ℒ and a threshold 𝑡 
4 For 𝑘 = 1: 𝑛 
         𝑝Õ = 𝑘 and compute 𝑆Õ   
   End 
5 Sort 𝑆Õ  in the ascending order as 𝑆Õ

(Ô), i.e., 𝑆(8) ≤ 𝑆(Z) ≤ ⋯ ≤ 𝑆(�) 
6 If 𝑆(Z) − 𝑆(8) > 𝑡, claim the parameter (𝑝∗, 𝛾∗) is identifiable,  
   otherwise	(𝑝∗, 𝛾∗) is not identifiable in the sense of natural frequency. 
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We’d like to mention that: First, the calculation of eigenvalues of matrices product is important in 

the algorithm. In this research, a beam structure is utilized as an example for identifiability issue 

in FEM. Any classical eigenvalue solver [55-58] provides accurate and stable results. For a 

complicated structure which requires high degree of freedom, there exists many efficient and 

accurate methods for such computation [59-62]. Second, step 6 is critical to examine the 

identifiability of parameters (𝑝∗, 𝛾∗). The (𝑝∗, 𝛾∗) is said to be identifiable if and only if the 

difference between 𝑆(Z) and 𝑆(8) is greater than the threshold 𝑡. Note that, 𝑆1∗
(8) = 0 should be the 

smallest 𝑆Õ  for 𝑘 = 𝑝∗ theoretically. The set ℒ can either be the full set, i.e., ℒ = {1	to	2n + 1} or 

some selected natural frequencies. In practice, only a few natural frequencies can be measured. 

The threshold 𝑡 is chosen based on the noise level and the range of the measured natural 

frequencies. Intuitively, a large 𝑡 should be assigned for a high noise level, which will reduce the 

ability of identifying the parameters (𝑝∗, 𝛾∗). For a fixed threshold 𝑡, the identifiability increases if 

a large range of natural frequencies are measured. Also note, the proposed algorithm is capable for 

both uniform and non-uniform beams.  

 For multiple damage locations, i.e., 𝐩∗ and 𝛄∗ are vectors, the algorithm is extended by 

modifying its step 4. For example, if 𝐩∗ has two components, a search of all combinations for two 

damage locations leads a modified step 4 as: 

4 For 𝑘 = 1:CZ� 
         𝐩Õ = non-repeated combination of two locations, and compute 𝑆Õ   
   End 

where CZ� =
�!

Z!(��Z)!
 is the binomial coefficient expressing the total number of non-repeated 

combination of any two locations from 1 to 𝑛. 
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Note that, step 4 searches all possible locations in order to uniquely identify 𝒑∗ in a complete 

space. However, in practice, based on the engineering experience of experts, only limited candidate 

places can cause the similar changes in observations due to damages, such that, the work load to 

examine all possible locations can be reduced. 

2.5  Numerical case studies 

In this section, numerical examples are presented to illustrate the identifiability analysis 

procedure. The uniform beam used in the simulation has 𝐸 = 2.1 × 10$	kPa, 𝐿 = 2.54m, 𝐼 =

3.47 × 10�$	m},𝐴 = 6.45 × 10�}	mZ and 𝜌 = 0.013	kg	sZ/m. The non-uniform beam case is 

also studied in this section. The non-uniform beam assumes to have an increasing 𝐸𝐼 values from 

0.5𝐸𝐼 to 1.5𝐸𝐼 across the 60 elements, while other parameters are the same as the uniform beam. 

Two different experimental setups are considered, fixed-fixed beam (Fig 2-2a) and fixed-free beam 

(Fig 2-2b). Total 60 elements are used in the finite element model to approximate the beam 

structure. The comparisons of the first three modes (natural frequencies) between analytical results 

and finite element model of non-damaged beam for both setups are presented in Table 2-2. The 

comparisons show a good agreement between the analytical model and finite element model. To 

further reduce the error, the increasing of the number of elements will lead a convergence to the 

true natural frequencies. However, as a tradeoff, this will incur a high computational cost. In our 

experience, the number of elements in the order of hundreds promises good results for a structure 

with simple geometry (e.g., the beam structure). 
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Table 2-2. Comparisons of the first three modes between analytical results and finite element 

model of the non-damaged uniform beam in different setups. Units are in circular frequencies. 

 Fixed-fixed Beam Fixed-free Beam 
 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

Analytical 131.0599 360.9997 707.9573 20.5951 128.7195 360.9997 
FEM 130.9033 360.8279 707.3383 20.5717 128.9180 360.9615 

Error% 0.12 0.05 0.09 0.11 -0.15 0.01 

2.5.1 Damage severity identifiability at a given location 

Based on the property of the transfer function 𝐻(𝑠) described in Section 2.4, as long as the 

eigenvalues of the matrix product 𝐌�𝟏𝐊(𝑝, 𝛾) for a fixed location 𝑝 are different for various 𝛾s, 

the transfer function 𝐻(𝑠) is severity identifiable.  

We investigate the change of natural frequencies 𝑓¬s (square root of eigenvalues) as a function 𝛾 

for a fixed location 𝑝 = 23 in Fig 2-3 for two different beam setups. The curves in the plots 

represent different normalized natural frequencies, i.e. 𝑓¬(𝛾)/max�𝑓¬(𝛾)�. The horizontal axis is 

the values of 𝛾 ranging from 0.1 to 1. Each natural frequency is observed as a monotonic increasing 

function of 𝛾 in both setups for uniform and non-uniform beams. One critical feature is that the 

natural frequencies increase as a function 𝛾. This observation is consistent with the experimental 

results reported in [65-69]. The damage of the structure will lead the downward shifting of all 

natural frequencies.  

This feature can be explained by the eigenvalue perturbation analysis. The generalized 

eigenvalue problem of the beam structure is governed by the relation: 

(𝐊 − 𝜆¬𝐌)𝛟¬ = 0 

where 𝜆¬ = 𝑠¬Z is the 𝑖®¯ eigenvalue and 𝛟𝐢 is the corresponding eigenvector. The eigenvalues 𝜆¬ 

can be solved by an iterative method in solving the minimization problem of a Rayleigh quotient 



27 
 

[70]. However, the trend of change in eigenvalues is not directly obtained. Instead, a simple 

derivation through perturbation analysis reveals the insight of the changes. Small changes 𝚫𝐊 (due 

to stiffness loss) in 𝐊 produce small changes in 𝜆¬ and 𝛟¬ , for this perturbed system, we have: 

[(𝐊 + 𝚫𝐊) − (𝜆¬ + Δ𝜆¬)𝐌](𝛟𝐢 + 𝚫𝛟𝐢) = 0 

 

Fig 2-3 Normalized natural frequencies computed from matrix product 𝐌�𝟏𝐊(𝑝, 𝛾	) for a fixed 

location 𝑝 = 23 vs damage parameter 𝛾 in two different beam setups. (a) fixed-fixed uniform 

beam, (b) fixed-free uniform beam, (c) fixed-fixed non-uniform beam, (d) fixed-free non-uniform 

beam. 

by expanding this equation and neglecting second-order terms [71], we have: 
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where 𝐆 is a zero matrix except the 𝑝th block matrix in the main diagonal has structure  

𝐆1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
12
𝑙¹

6
𝑙Z −

12
𝑙¹

6
𝑙Z

4
𝑙 −

6
𝑙Z

2
𝑙

12
𝑙Z −

6
𝑙Z

𝑠𝑦𝑚
4
𝑙 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

≽ 0 

which is a positive semidefinite matrix. Since the global mass matrix 𝐌 is a positive definite matrix 

and 𝛾 ∈ [0,1], Δ𝜆¬ is always non-positive, i.e. Δ𝜆¬ ≤ 0, which means the eigenvalues will not 

increase for the existence of damage. Several notes from the eigenvalue perturbation analysis are: 

1) The change of natural frequencies Δ𝑓¬ is also non-increasing, since 𝑓¬ = ñ𝜆¬. 

2) In practice, the term 𝛟𝐢
𝐓𝐆𝛟𝐢 rarely goes to zero, which leads a decrease in all eigenvalues. 

3) The derivation is for a non-damaged beam with stiffness matrix 𝐊. A similar derivation for 

a damaged beam 𝐊(𝑝, 𝛾8) has a similar result. Assume a further stiffness loss at element 𝑝 

with 𝛾Z < 𝛾8, the change of eigenvalues will be Δ𝜆¬ = (𝛾Z − 𝛾8)𝐸𝐼 ×
𝛟𝐢
𝐓𝐆𝛟𝐢

𝛟𝐢
𝐓𝐌𝛟𝐢

< 0 in 

practice. From this analysis, all eigenvalues will decrease as long as 𝛾 is decreasing for a 

fixed location 𝑝, which is consistent with the observation in Fig 2-3. 

2.5.2 Location identifiability 

The location identifiability is based on the difference between 𝑆(Z) and 𝑆(8). The ability to 

uniquely identify (𝒑∗, 𝜸∗) increases for a large difference. The following two examples validate 

the effectiveness of the proposed numerical checking algorithm.  
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In the first example, a single element with damage is considered. The natural frequencies 

𝑓¬
(1∗,þ∗) are calculated for the beam with (𝑝∗, 𝛾∗) = (23,0.4). The uniform beam is used for the 

illustration. In Fig 2-4, the horizontal axis is the location parameter 𝑝 and the vertical axis is 𝑆Õ  

obtained at each corresponding location. 𝑆1∗
(8) = 0 in this noise-free situation. Thus, the difference 

𝑆(Z) − 𝑆(8) = 𝑆(Z). Three different ℒs are used in the calculation of 𝑆Õ . (1) ℒ = {1}, only the 

smallest natural frequency is used, (2) ℒ = {1,2,3,4,5}, the first five natural frequencies are used, 

and (3) ℒ = {1	to	the		2n + 1}, all the natural frequencies are used.  

Due to the symmetry in the fixed-fixed beam setup, 𝑆¹$ = 𝑆1∗ = 0 in all three cases. It 

means	(𝑝∗, 𝛾∗) = (23,0.4) can not be uniquely identified only based on the natural frequencies 

𝑓¬
(1∗,þ∗) in the symmetric beam setup. In other words, parameters (𝑝∗, 𝛾∗) can only be identified in 

pairs in the perfect symmetric situation. For case (1) in the fixed-fixed setup, since many locations 

(besides 𝑝 = 38) have 𝑆Õ < 0.002, the (𝑝∗, 𝛾∗) is not location identifiable if the threshold 𝑡 takes 

value larger than 0.002 For case (2) in the fixed-fixed setup, since more natural frequencies are 

utilized, 𝑆(Z) = 0.013. For case (3), the value of 𝑆(Z) takes value up to 0.4, when all natural 

frequencies are used, which makes (𝑝∗, 𝛾∗)	easier to be identified. Similar results can be obtained 

for the fixed-free beam setup, except that 𝑆¹$ ≠ 𝑆1∗ = 0, which leads a unique location 

identification of (𝑝∗, 𝛾∗) once 𝑆(Z) > 𝑡. 
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Fig 2-4 The plot 𝑆Õ  as a function of damage locations in different boundary conditions of a uniform 

beam. Three different ℒs are used in the calculation of 𝑆Õ . 

Similarly, the plot 𝑆Õ  of a non-uniform beam is presented in Fig.2-5. Note that, since the beam has 

various 𝐸𝐼 values across the elements, the perfect symmetric situation does not hold. Thus, the 

plot 𝑆Õ  in the fixed-fixed beam setup is not symmetric. 

0 20 40 600

0.01

0.02

0.03

0.04

0.05

0.06
0 20 40 600

0.002

0.004

0.006

0.008

0.01

0.012

0 20 40 600

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 20 40 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

𝓛 = {𝟏}

𝓛 = {𝟏: 𝟓}

𝓛 = {𝟏: 𝐚𝐥𝐥}

0 20 40 600

0.1

0.2

0.3

0.4

0.5

𝑆+

𝑘



31 
 

 

Fig 2-5 The plot 𝑆Õ  as a function of damage locations in different boundary conditions of a non-

uniform beam. Three different ℒs are used in the calculation of 𝑆Õ . 

In the second example, two elements with damages are considered. The natural frequencies 

𝑓¬
(1∗,þ∗) are calculated for the beam with 𝒑∗ = (7,23),𝜸∗ = (0.1,0.4). The plots of 𝑆ÕC|ÕE  for 

uniform and non-uniform beam are presented in Figure 2-6 and Figure 2-7, respectively. 𝑆ÕC|ÕE is 

the minimum sum of relative frequency difference by adjusting the second element location 𝑘Z for 

a fixed damage location 𝑘8. For example, if 𝑘8 = 7, then 𝑆ÕC|ÕE = 0 for 𝑘Z = 23. Similarly, if 

𝑘8 = 23, then 𝑆ÕC|ÕE = 0 for 𝑘Z = 7. In other words, in the plot 𝑆ÕC|ÕE as a function 𝑘8, 𝑆ÕC|ÕE takes 
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locations have 𝑆ÕC|ÕE = 0, 1) 𝑘8 = 54 which is the symmetry of 𝑘8 = 7, 2) 𝑘8 = 38 which is the 

symmetry of 𝑘8 = 23. The phenomenon has been shown in Figure 2-7, in which four locations 

reach 0 in the fixed-fixed beam. As a result, 𝒑∗ = (7,23) can not be uniquely identified due to its 

symmetric pair 𝒑 = (54,38). 

 

Fig 2-6 The plot 𝑆ÕC|ÕE as a function of damage location 𝑘8 in different boundary conditions of a 

uniform beam. Three different ℒs are used in the calculation of 𝑆Õ . 
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Fig 2-7 The plot 𝑆ÕC|ÕE as a function of damage location 𝑘8 in different boundary conditions of a 

non-uniform beam. Three different ℒs are used in the calculation of 𝑆Õ . 

From the above numerical studies, the ability to uniquely identify the damage location (or 

in pairs in the fixed-fixed uniform beam setup) enhances when the number of nature frequencies 

in the calculation of 𝑆Õ  increases. Even if only a small range of natural frequencies can be measured 

in practice, the use of the first five smallest natural frequencies can lead an easy location 

identifiability due to a large 𝑆(Z).  
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2.6  Conclusion 

In this chapter, a quantitative framework to address the identifiability issue in FEM-based 

beam structure is presented. FEM of a beam structure is re-formulated into a state space model 

representing LTI dynamic system in Eq.(2.3). By using the properties of an inverse of a block 

diagonal matrix, the uniqueness of the system transfer function is proven for different severity 

level of damages at the same location. That is, the damages are theoretically identifiable in the 

FEM for a given damage location of a beam structure. Moreover, a sufficient condition for the 

identifiability of multiple damages at different locations is established based on the natural 

frequencies. A numerical algorithm is proposed to numerically check and validate the location 

identifiability of scalar valued damage location. With this checking procedure, we showed that 

damages at two different locations will only result in the same transfer function under the 

symmetric conditions. In other words, two damages at different locations will be differentiable in 

most cases. The algorithm can be extended for vector valued damage. Several representative case 

studies are conducted to demonstrate the effectiveness and usefulness of the proposed framework 

for providing a theoretical guideline on the damage identifiability by using FEM-based vibration 

analysis.  
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3. Measurements Selection for Bias Reduction in Structural Damage 
Identification1

* 

In this chapter, we propose a measurement selection algorithm to select an optimal set of 

natural frequencies for damage identification. The proposed algorithm adopts 𝐿8- norm 

regularization with iterative matrix randomization for estimation of damage parameters. The 

selection is based on the estimated bias using the least square method. Numerical studies are 

conducted to validate the effectiveness of the method. 

3.1  Introduction 

The timely and accurate identification of damage conditions in structures using real-time, 

online sensor measurements plays a critical role in ensuring the secure and sustainable operations 

of various structural systems in aerospace, marine, transportation and infrastructure, and energy 

and power industries.  Among different structural damage identification techniques, the vibration-

based methods [175] have been widely used. The basic idea of vibration-based methods is that the 

structural properties (e.g., mass, stiffness, etc.) will change due to damages in structures and such 

changes will result in the vibration properties including natural frequencies [176], mode shapes 

[177] and their variants such as curvature [178], flexibility [179]. Typically, natural frequencies 

can be measured directly with high accuracy and thus are broadly used in practice [180].  

In natural frequencies based damage detection methods, damages are identified by solving the 

eigenvalue problem with linear approximation [181]. The linearization provides the simplicity and 

efficiency in the problem solving process. With the linearization, the unknown damage parameters 

Δ𝛂 can be estimated by the linear equation Δ𝛌 = 𝐒Δ𝛂, where 𝐒 is the first order sensitivity matrix 

                                                             
*This chapter is based on the paper: Liu, Yuhang, Shiyu Zhou, Yong Chen and Jiong Tang. " 
Measurements Selection for Bias Reduction in Structural Damage Identification." Journal of 
Dynamic Systems, Measurement, and Control (to be submitted) 
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and Δ𝛌 is the measured difference of the eigenvalues between healthy and damaged structures. In 

practice, the linear equation provides the foundation for damage identification. Based on the finite 

element model of the structure, the sensitivity matrix 𝐒 and the baseline natural frequencies of the 

structure can be obtained. Then with the real measurement of the natural frequencies and 

comparing it with the baseline natural frequencies, we can obtain Δ𝛌. And finally, we can solve 

for Δ𝛂 from the linear relationship. 

However, there are generally two major challenges in damage identification based on the 

linearized relationship between Δ𝛌 and Δ𝛂. First, 𝐒 is usually a “fat” matrix, i.e., the number of 

possible damaged elements are much larger than the number of available natural frequencies, i.e., 

the number of columns of 𝐒 is much larger than the number of rows. Thus, the linear system is a 

highly underdetermined system. Second, the linear relationship is just an approximation of the true 

underlying relationship between Δ𝛌 and Δ𝛂. Thus, there will be bias in the solution obtained based 

on the linear relationship. 

In the literatures, research works are available trying to address these two challenges in 

structural damage identification. To relieve the impact caused by the system underdetermination, 

one approach is to enlarge the number of the measurements in the system. Typically, natural 

frequencies are only guaranteed to be measured accurately for the low order ones due to the 

limitation of sensors. Thus, the number of available natural frequencies are often enlarged through 

physical modification of structures. For examples, a mass addition technique is explored in [176] 

to enrich the modal measurements. In this approach, the known masses are added to the structure 

and thus new modal data is achieved. Similar ideas on adding mass or stiffness to extract additional 

natural frequencies can be found in [177]. One disadvantage of this type of physical modification 

is the difficulty to implement in practice due to many physical restrictions. Another type of 
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physical modification adopts piezoelectric transducers integration onto the structure. The 

integrated structure is an electro-mechanical system with tunable piezoelectric circuits. The 

tunable inductance can introduce additional natural frequencies. Examples on such type of electro-

mechanical system can be found in [178]. The limitation of physical modification approach is that 

the number of unknown possible damage elements are often still much larger than the available 

number of measurements even with physical modification.  

Another approach addressing the underdetermination issue is to work with the 

underdetermined system and try to obtain a sparse solution. The rationale of this strategy is that 

structural faults typically occur only at a limited number of locations simultaneously. In [182], the 

authors propose a pre-screening strategy to address the underdetermination issue. The fault 

locations are ranked according to the likelihoods and the locations with small likelihoods are 

discarded in order to reduce the fault parameter space. There are two limitations of such approach. 

The first is the underlying assumption of the distribution in the likelihood function. The 

independent and identically distributed (i.i.d.) assumption of errors is not generally true in the 

structural damages. The simplification of the error terms may lead the ranking results unreliable. 

Also, the cut-off threshold in the ranking procedure is ad hoc and may vary in different systems. 

Another technique in obtaining the sparse solution is by regularization. In regularization, the 𝐿8 

norm of the solution is often added to the objective function as a penalty and it often returns 

solution with sparsity, i.e., estimates most of the unknown variables to be 0.  𝐿8 regularization is 

the most commonly used penalty method in the structural damage identification. For example, the 

authors apply the 𝐿8 norm on the number of the damage locations in [175]. The results are sparse 

with the true damage locations are recovered. However, it is found that applying 𝐿8 regularization 

directly often cannot guarantee the solution quality in the sense of solution uniqueness and 
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consistency. Moreover, the bias induced by the linear approximation may further reduce the 

accuracy of damage estimation. 

In the literature, discussions on the bias in damage estimation caused by the linearization error 

is limited. The linearization between the structural parameters and the system response is 

introduced in [183]. The higher order terms in the Taylor’s expansion are ignored to achieve the 

simplification in the equation. The latter research and application follow the similar routine for 

fault identification in various structural systems. However, there are no thorough discussions on 

how to address the bias issue, where such bias may lead to large errors in damage identification. 

In available studies, adding nonlinear higher order terms has been proposed to reduce the impact 

of bias in the analysis [178]. It should be pointed out that such approach is not recommended in 

general due to the loss of the linear property in the equation, where we will have serious issue with 

the resulting underdetermined nonlinear system. Also, the improvements in the solution quality 

may not be worth the loss of the simplicity and the efficiency in the solution process. In recent 

studies of structural damage identification, applying deep neural network (DNN) to the problem 

becomes a new trend [184]. DNN generates reasonable results with high quality training data and 

well designed network structures, e.g., the choice of activation functions and the layer of the 

network. It is expected that the bias can be reduced by applying multiple layers of linear functions. 

However, the DNN is a black box approach and may be ad hoc when selecting the network 

structure.  

From the above review, we can see that the underdetermination issue and the identification 

bias issue are addressed separately in the existing literature. In this work, we propose a systematic 

scheme that can reduce the bias in damage identification through a measurement selection method. 

We find that particular combinations of available natural frequencies can significantly reduce the 
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estimation bias compared with using all available ones. The proposed algorithm contains three 

sub-algorithms. In the first algorithm, 𝐿8- norm regularization is adopted with iterative random 

matrix multiplication and majority voting. The idea of matrix randomization is to multiply random 

Gaussian matrix to the linear system to achieve 1) matching of correlation structures of error terms 

and 2) unique solution of 𝐿8 minimization. The majority voting process helps to estimate the 

damage severities from multiple iterations. In the second algorithm, the estimated damage 

locations are updated by removing locations with negligible damage severities. The estimated 

errors of natural frequencies are derived based on the estimated damage parameters, and are further 

adopted for natural frequency selection by a least squares method in the third algorithm. There are 

several advantages of the proposed the algorithm. First, the regular 𝐿8- norm regularization is 

modified to enhance the quality of damage estimation for measurement selection. Second, since 

the algorithm requires no additional physical modification (e.g., added mass or integrated 

piezoelectric circuits) of the structures, it can be used in many practical scenarios. It is worth 

mentioning that the proposed algorithm can also be extended for natural frequencies selection in 

the physical modified structures for better damage estimation. Third, the proposed algorithm is 

easy to implement without deriving high order terms in the approximation. Thus, it is 

computationally friendly for practical uses.  

The rest of the chapter is organized as follows. Section 3.2 introduces the linear approximation 

of the eigenvalue problem. Section 3.3 introduces the 𝐿8- norm regularization with iterative 

random matrix multiplication and majority voting. Section 3.4 introduces the proposed algorithm 

for bias reduction through measurement selection. Section 3.5 presents the numerical study to 

validate the proposed method. Section 3.6 further discusses the factors that influence the 

performance of the algorithm.  



40 
 

3.2  Problem Formulation  

For the sake of clarity, we shall first introduce the linear approximation of the eigenvalue 

problem in the damage identification. Without the loss of generality, in this research, we are 

concerned with the structural damages that induces the change of structural stiffness [185]. Also, 

it is assumed that only a very small number of damages occur in the structure simultaneously to 

meet the most of damage scenarios in practice.   

The dynamics of an un-damped structural system can be described by the linear equation 

𝐌𝐱̈(𝑡) + 𝐊𝐱(𝑡) = 𝐅(𝑡)                                                 (3.1) 

where 𝐌 and 𝐊 are the global mass and stiffness matrices, respectively,	𝐱 and 𝐅 contain the nodal 

displacements and nodal forces, respectively. The eigenvalue problems associated with the healthy 

structure and damaged structure are in Eq. (3.2) and (3.3), respectively: 

(𝐊 − 𝜆¬𝐌)𝛟¬ = 0                                                        (3.2) 

�𝐊- − 𝜆¬-𝐌�𝛟¬
- = 0,                                                      (3.3) 

where 𝜆¬ and 𝛟¬ are the 𝑖th eigenvalue (squared of the ith natural frequency) and eigenvector of 

the healthy structure, and 𝜆¬- and 𝛟¬
- are the 𝑖th eigenvalue and eigenvector of the damaged 

structure, respectively. The damages are only induced by the loss of stiffness, so the mass matrix 

𝐌 is the same for both structures. The stiffness matrix 𝐊- of the damaged structure can be 

expressed as the increment Δ𝐊 from 𝐊 in the healthy structure: 

𝐊- = 𝐊 + Δ𝐊                                                           (3.4) 

Similarly, the change in eigenvalues and eigenvectors can be expressed as: 

𝜆¬- = 𝜆¬ + Δ𝜆¬                                                          (3.5) 

𝛟¬
- = 𝛟¬ + Δ𝛟¬                                                        (3.6) 
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Substituting Eq. (3.4)-(3.6) in to Eq. (3.3) and neglecting the high order terms, the first order 

(linear) approximation of the mapping from stiffness to natural frequencies is: 

Δ𝜆¬ ≈
𝛟ø
/0𝐊𝛟ø
𝛟ø
/𝐌𝛟ø

                                                            (3.7) 

In most cases, the eigenvectors are mass normalized, thus, 𝛟¬
1𝐌𝛟¬ = 1.  

The increment Δ𝐊 is expressed as the summation of elemental stiffness matrix change: 

Δ𝐊 = ∑ Δ𝛼Ô�
Ô28 𝐊Ô

(3),                                                (3.8) 

where 𝐊Ô
(3) is the 𝑗th elemental stiffness matrix, and Δ𝛼Ô is the damage parameter ranging in 

[−1, 0] indicating the percentage change of stiffness of the 𝑗th element, where zero means no 

stiffness loss and −1 means the complete stiffness loss at the element, respectively. 𝑛 is the number 

of elements in the finite element model.  

Combining Eq. (3.7) and (3.8), the matrix formulation of the linear approximation can be 

expressed as: 

Δ𝛌 ≈ 𝐒Δ𝛂                                                         (3.9) 

where Δ𝛌 = [Δ𝜆8, Δ𝜆Z, …Δ𝜆�]1 is the set of eigenvalue difference between the damaged structure 

and the healthy structure. The number 𝑚 indicates the number of available natural frequencies in 

the measurement. Δ𝛂 = [Δ𝛼8, Δ𝛼Z,…Δ𝛼�]1 is the set of 𝑛 damage parameters. 𝐒 is the sensitivity 

matrix representing the sensitivity of eigenvalues to the changes in stiffness loss. The components 

in 𝐒 are: 

𝐒(𝑖, 𝑗) =
𝛟¬
1𝐊Ô

(3)𝛟¬

𝛟¬
1𝐌𝛟¬

 

In general, the number of columns, 𝑛, is much larger than the number of rows, 𝑚, i.e., 𝑛 ≫ 𝑚.  
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In practice, Eq. (3.9) provides the foundation for damage identification. However, as 

mentioned in the introduction section, there are two major challenges in damage identification 

based on (3.9). First, 𝐒 is a “fat” matrix so that Eq. (3.9) is an underdetermined system. Second, 

Eq. (3.9) is just a linear approximation of the true underlying relationship 

Δ𝛌 = 𝐒Δ𝛂+ 𝐞(Δ𝛂)                     (3.10) 

where 𝐞(Δ𝛂)	is the error in the linearization. Please note that e is generally a function of the current 

structural damage. As a result, there will be bias in the solution obtained using Eq. (3.9). We 

propose two techniques to addresses these challenges, which are described in Section 3.3 and 3.4, 

respectively. 

3.3 𝑳𝟏 Penalty with Iterative Random Matrix Multiplication and Majority 

Voting Process 

We follow the common idea in the literature to address the underdetermined system, i.e., apply 

a penalty of 𝐿8 norm of Δ𝛂 to the solution. Instead of directly solving Eq. (3.9), we focus on the 

following optimization problem: 

min‖Δ𝛌 − 𝐒Δ𝛂‖Z + 𝛽‖Δ𝛂‖8                                           (3.11) 

where 𝛽 is the regularization parameter controlling the weight of the penalty. In practice, Eq. (3.11) 

is often solved by the following equivalent expression [12]: 

min‖Δ𝛂‖8 , s. t. ‖Δ𝛌 − 𝐒Δ𝛂‖Z 	≤ 𝜖                                    (3.12) 

where 𝜖 indicates the error tolerance and plays the equivalent role of 𝛽. 

There are many algorithms to solve the optimization problem in Eq. (3.12) efficiently. 

However, solutions to Eq. (3.12) may not be unique [188] or sparse enough [189] to recover the 

true non-zero damage locations. The uniqueness of the solution to Eq. (3.12) is of critical 
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importance for damage identification. By the findings in [188], there is either a unique or infinite 

many solutions to Eq. (3.12). Unfortunately, the uniqueness is not guaranteed when 𝑛 > 𝑚, which 

will lead to unreliable estimation of the damages. In other words, even if adding 𝐿8 penalty results 

in sparse solution, the solution may be still “abundant” compared to the underlying truth. In 

practice, an iterative reweighed 𝐿8 minimization algorithm [189] is often adopted to enhance the 

sparsity. For reader’s convenience, we quote the algorithm from [189] in Table 3A-1 in the 

appendix. There are several remarks of the algorithm: (1) Instead of minimizing Eq. (3.12), the 

algorithm adopts the weighted objective function. The hope is by properly adjusting the weights, 

the algorithm can recover the underlying sparsity correctly. And (2) The weights are updated 

iteratively in step 3. The update equation can adopt different forms as discussed in [189]. The 

general idea of this algorithm is to increase the weights for variables estimated with small absolute 

values in order to push these variables to be 0 in future iterations. In this paper, we adopt the similar 

scheme of this idea but with different approaches as described in Algorithms 1 and 2 below.  

Instead of Eq. (3.12), we solve the following problem iteratively in our proposed algorithm: 

min‖Δ𝛂‖8 , s. t. TΔ𝛌8 − 𝐒9Δ𝛂TZ 	≤ 𝜖                                           (3.13) 

where Δ𝛌8 = 𝚽	Δ𝛌 and 𝐒9 = 𝚽𝐒 and 𝚽 is an 𝑚×𝑚 random matrix, whose components are 

independent and identically distributed samples from a Gaussian distribution. There are two 

benefits in solving (3.13) instead of solving (3.12) directly.  

(1) The correlated structure of the error terms in the linear relationship is addressed.  

It is known that the optimization problems in Eq. (3.12) and Eq. (3.11) are equivalent. If we ignore 

the penalty term in Eq. (3.11), then the objective function of Eq. (3.11) is identical to the objective 

function for a regular least squares problem. In other words, if we ignore the penalty term in Eq. 
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(3.11), then the solution to (3.11) will be the regular least squares solution. One important 

assumption on regular least squares method is that the error term in the model is homogeneous, 

i.e., the covariance of the term 𝐞 is a diagonal matrix and the diagonal elements are the same. This 

is certainly an unrealistic assumption because the term 𝐞(Δ𝛂) includes both measurement error 

and the systematical error in the linear approximation. It is known that regular least squares method 

will lead to systematic bias in the solution for a system with heterogeneous errors [187]. In the 

proposed algorithm, the objective function Eq. (3.13) ignoring the penalty term is equivalent to 

�Δ𝛌8 − 𝐒9Δ𝛂�
𝐓�Δ𝛌8 − 𝐒9Δ𝛂�=(𝚫𝛌 − 𝐒Δ𝛂)𝐓(𝚽𝐓𝚽)(𝚫𝛌 − 𝐒Δ𝛂), which is in the form of the 

objective function of a generalized least square (GLS) problem [190] assuming the covariance 

matrix of 𝐞 is (𝚽𝐓𝚽)�𝟏. GLS is an effective way to adjust the solution of linear systems to reduce 

the bias when we have heterogeneous errors. In practice, (𝚽𝐓𝚽)�𝟏 will not be exactly the true 

covariance of 𝐞 and further, the solution of Eq. (3.13) is not obtained through GLS method, but 

rather through the optimization with the penalty term. However, the above intuitive understanding 

can provide some justification on the proposed algorithm, i.e., iteratively solving Eq. (3.13) with 

different random matrices 𝚽s followed by the majority voting process. The underlying intuition is 

that when (𝚽𝐓𝚽)�𝟏 is close to the true covariance structure of the error term, then the solution of 

Eq. (13) will be consistent and close to the true underlying value. On the other hand, when 

(𝚽𝐓𝚽)�𝟏 is far from the true covariance structure of the error term, the solution will be scattered 

around. As a result, if we repeatedly try different 𝚽s, then the solutions that are close to the true 

underlying value will stand out in the followed majority voting process. Indeed, similar idea has 

been reported in the literature when solving a sparse system [175]. 

(2) The uniqueness of the solution can be largely improved.  
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For 𝑛 > 𝑚, the uniqueness of Eq. (3.12) is not guaranteed unless several non-trivial conditions are 

satisfied [14]. However, it is found that if 𝐒 has entries drawn from a continuous probability, the 

solution to Eq. (3.12) has very high probability to be unique regardless of 𝑛 and 𝑚 [188]. 𝐒9 in Eq. 

(3.13) is close to a random matrix with Gaussian entries, such that Eq. (3.13) is more likely to 

generate the unique solution compared to Eq. (3.12). Through multiple iterations, the unique 

solution will likely stand out as the majority solution in the multiple voting process.  

Note that, the reweighed 𝐿8 minimization algorithm in Table 3A-1 still applies the standard 𝐿Z 

norm, and thus the solution to the reweighed 𝐿8 minimization may be less reliable due to the 

heterogeneous errors. We summarize the ideas of iterative random matrix multiplication and the 

majority voting procedure in Algorithm 1 in Table 3-1. The iterative random matrix multiplication 

step returns an estimated matrix ;𝛥𝜶8 >
�×?, whose column (i.e., Δ𝛂8 .,Ö) is the estimated damage under 

each random matrix 𝚽Ö . The row of ;𝛥𝜶8 >
�×?  (i.e., Δ𝛂8 ¬,.) records the estimations for each element 

through 𝐿 iterations. Based on our experiences, a 𝐿 of several hundreds is sufficient to achieve 

good results while balancing the computational time.  

In the majority voting step, 𝑃�Δ𝛂8 ¬,. ≥ 	−0.05� is the probability that the estimated damage of 

the 𝑖th element is no less than -0.05 (i.e., a light damage). The “if” condition states that if 95% of 

the estimated damage severity 𝛥𝛼8 ¬,Ö is larger than -0.05 among 𝐿 iterations, the 𝑖th element is 

treated as a healthy element and is then set to be 0 (i.e., Δ𝛼U¬ = 0 ). In practice, only the stiffness 

loss larger than 5% (i.e., Δ𝛼¬ < −0.05) is treated as damage [177]. The threshold 95% is the 

confidence to reject the hypothesis that the element has stiffness loss larger than 5% at level 0.05, 

which is a commonly used criterion in practices [191]. Damaged elements have the majority of 



46 
 

Δ𝛂8 ¬,. significantly differ from 0 and the distribution of Δ𝛂8 ¬,. often forms a unimodal shape. The 

mean value of all iterations are used as the estimation of damage severity. 

Table 3-1. Algorithm 1: Iterative Random Matrix Multiplication and Majority Voting 

Iterative Random Matrix Multiplication 
  For 𝑙 = 1,2,… , 𝐿 
    Generate random matrix 𝚽Ö  and compute Δ𝛌8 = 𝚽ÖΔ𝛌 and 𝐒9 = 𝚽Ö𝐒 
    Solve Eq. (13) and record the estimation Δ𝛂8 .,Ö = ;Δα88,Ö , Δα8Z,Ö , … Δα8�,Ö>

1
   

  End 
Majority Voting 
  Define Δ𝛂8 ¬,. = ;Δα8 ¬,8, Δα8 ¬,Z, … Δα8 ¬,?> and Δ𝛂U = [Δ𝛼U8,Δ𝛼UZ, … , Δ𝛼U�] 
  For	𝑖 = 1,2,… , 𝑛 
      if 𝑃�Δ𝛂8 ¬,. ≥ 	−0.05� ≥ 95% 
        Δ𝛼U¬ = 0  
      else 
         Δ𝛼U¬ = mean(Δ𝛂8 ¬,.) 
       end 
   End 
Return Δ𝛂U  and the locations 𝐋(Δ𝛂U) for Δ𝛼U¬ = 0 

Besides the estimation Δ𝛂U , Algorithm 1 also returns the locations of zero elements in Δ𝛂U , 

represented by 𝐋(Δ𝛂U). In order to recover the damage locations accurately, an iterative procedure 

is proposed as Algorithm 2 in Table 3-2.  

Table 3-2. Algorithm 2: Damage Location Identification Algorithm 

1. Set the iteration count 𝑞 = 0, 𝐋(�) = 	𝐋�Δ𝛂U(�)�	and	𝐋(𝟎) = 𝜙  
2. Run Algorithm 1with constrains 𝛥𝛼𝐋(E) = 𝟎	 in Eq. (13), return Δ𝛂U(�«8) 
3. Update the sparsity 

𝐋(�«8) = 	𝐋�Δ𝛂U(�«8)� 
4. Terminate if 𝐋(�«8) = 	𝐋(�) or 𝑞 attains the maximum number. Otherwise, increment 𝑞 and go to 

step 2. 
5. Return Δ𝛂U  and 𝐋�Δ𝛂U� from the last iteration	

 

In most cases, it takes 𝑞 = 2 or 3 to terminate the algorithm. The Δ𝛂U  of the last iteration is used 

as the final estimation of the damage parameters with the sparsity shown in 𝐋�Δ𝛂U�. We name such 
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estimation Δ𝛂U  as 𝐿8-IMR (iteratively matrix randomization). In general, the 𝐿8-IMR estimation 

achieves better solution quality compared with the pure 𝐿8 regularization by Eq. (12). We use the 

𝐿8-IMR estimation for natural frequency selection in the next section.   

It is interesting to compare Algorithm 2 with the reweighed 𝐿8 minimization algorithm in Table 

3A-1 in the appendix to see the analogy. In fact, by adding constrains 𝛥𝛼𝐋(E) = 𝟎	 in Eq. (3.13) 

when run Algorithm 1 is equivalent to have the weight update equation in the reweighed 𝐿8 

minimization algorithm as: 

𝑤¬
(�«8) = G 1, Δ𝛼U 𝑖

(𝑞) ≠ 0
∞, Δ𝛼U 𝑖

(𝑞) = 0
 

In this updating step, all zero valued elements will retain as 0 in the following iterations, while all 

non-zero valued elements will be estimated with equal weight of 1. The condition 𝑤¬
(�«8) =∞, 

	for	Δ𝛼U¬
(�) = 0 is equivalent to set 𝛿 = 0	in the original weight update equation in Table 3A-1. The 

key difference between Algorithm 2 and the reweighed 𝐿8 minimization algorithm is in step 2. 

Instead of solving the 𝐿8 minimization problem once, Algorithm 1 solve the problem multiple 

times with different random matrices. The benefits of such approach are discussed above.   

3.4  Measurement Selection for Bias Reduction 

Even if Algorithms 1 and 2 enhance the solution quality for damage identification, the bias 

introduced by the linear approximation in Eq. (3.9) is not addressed. We find that some subsets of 

available natural frequencies can return less biased estimation compared with that using all 

available natural frequencies. Thus, a natural frequencies selection is desired to reduce the bias in 

the damage estimation.  
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Mathematically, we want to find a subgroup of natural frequencies that minimize the following 

𝐿Z- norm 

𝑑(Õ) = TΔ𝛂U(Õ) − Δ𝛂VWXVYTZ                                                  (3.14) 

where Δ𝛂VWXVY is the underlying truth of the damage and Δ𝛂U(Õ) is the damage estimation based on 

the 𝑘th combination of selected natural frequencies by solving min‖Δ𝛂‖8 , s. t. TΔ𝛌(𝐤) −

𝐒(𝐤)Δ𝛂TZ 	≤ 𝜖. Δ𝛌(Õ) and 𝐒(Õ) are the eigenvalue difference and sensitivity matrix corresponding 

to the 𝑘th combination of selected natural frequencies, respectively. In other words, Δ𝛌(Õ) and 𝐒(Õ) 

are the sub-vector and sub-matrix of Δ𝛌 and 𝐒 by retaining the rows corresponding to the 𝑘th 

combination of selected natural frequencies. For example, if 𝐒 has dimension 7 × 20 (i.e., 7 

measurements and 20 elements), the submatrix 𝐒(Õ) may have less rows but the same number of 

columns, say 4 × 20. Please note for 𝑚 available natural frequencies, there are total 2� − 1 

different combinations.  

The challenges in this problem are from the following aspects. First, the underlying truth 

Δ𝛂VWXVY is unknown. Thus, Eq. (3.14) cannot be used directly for bias comparison. Second, since 

the sensitivity matrix 𝐒 is obtained from the linear approximation, the following optimization 

problems are not equivalent, 

argÕ minTΔ𝛌(Õ) − 𝐒(Õ)Δ𝛂TZ ⇎ argÕ	minTΔ𝛂U(Õ) − Δ𝛂VWXVYTZ 

A reasonable approach is to derive an estimation of the incomputable quantity 𝑑(Õ). Such  

estimation is named as 𝑏(Õ) and derived as follows. 

First note, the eigenvalue difference Δ𝛌 can be expressed with the underlying damages Δ𝛂VWXVY 

and the error term 𝐞: 
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Δ𝛌 = 𝐒Δ𝛂VWXVY + 𝐞                                                        (3.15) 

Similarly, the eigenvalue difference for the 𝑘th combination is: 

Δ𝛌(Õ) = 𝐒(Õ)Δ𝛂VWXVY + 𝐞(Õ)                                               (3.16) 

where 𝐞(Õ) measures the error in the eigenvalue difference corresponding to the 𝑘th combination. 

Please note Eq. (3.15) and (3.16) are exact without approximations. 

Intuitively, if 𝐞(Õ) → 𝟎, solving Δ𝛌(Õ) = 𝐒(Õ)Δ𝛂 returns the unbiased estimation of Δ𝛂VWXVY.  

Thus, it is reasonable to select the natural frequencies with small magnitudes in 𝐞 to form the 

combination. However, such approach does not take the structure of the sensitivity matrix into 

consideration. An ill-conditioned sensitivity matrix may result in large estimation errors. In fact, 

the sensitivity matrix 𝐒 can be simplified with less columns 𝐒 by Algorithm 2, where 𝐒 is the 

submatrix of 𝐒	by removing columns corresponding to the zero elements in Δ𝛂U , represented by 

𝐋�Δ𝛂U�.  For example, if 𝐒 has dimension 7 × 20, the submatrix 𝐒 can be 7 × 2 by removing all 

columns that correspond to the healthy elements. Eq. (3.15) and (3.16) can be re-written as: 

Δ𝛌 = 𝐒Δ𝛂VWXVY + 𝐞                                                        (3.17) 

and 

Δ𝛌(Õ) = 𝐒(Õ)Δ𝛂VWXVY + 𝐞(Õ)                                               (3.18) 

where Δ𝛂VWXVY is the subset of Δ𝛂VWXVY with non-zero valued components and 𝐒(Õ) is the submatrix 

of 𝐒(Õ) by removing the columns corresponding to zero elements in Δ𝛂VWXVY. Following the 

previous examples, if 𝐒(Õ) has dimension 4 × 20, then 𝐒(Õ) is 4 × 2. We would like to point out 

that the number of selected natural frequencies should be larger than the number of nonzero 



50 
 

elements in Δ𝛂VWXVY so that 𝐒(Õ) will be a square or tall matrix. In this way, Eq. (3.18) will not be 

an underdetermined system.  

According to Eq. (3.18) and the least squares method, the closed form solution of Δ𝛂VWXVY is: 

Δ𝛂VWXVY = h𝐒(Õ)𝐓𝐒(Õ)p
�8
𝐒(Õ)𝐓(Δ𝛌(Õ) − 𝐞(Õ))                                (3.19) 

Similarly, the estimation of the damages upon the 𝑘th combination of natural frequencies can be 

solved from Δ𝛌(Õ) = 𝐒(Õ)Δ𝛂 (i.e., the approximation of Eq. (3.18)) by the least square method as: 

Δ𝛂U(Õ) = h𝐒(Õ)𝐓𝐒(Õ)p
�8
𝐒(Õ)𝐓(Δ𝛌(Õ))                                        (3.20) 

Considering Eqs. (3.19) and (3.20), we have  

TΔ𝛂U(Õ) − Δ𝛂VWXVYTZ = Kh𝐒(Õ)𝐓𝐒(Õ)p
�8
𝐒(Õ)𝐓𝐞(Õ)K

Z
      (3.21)   

This derivation inspires us to use Kh𝐒(Õ)𝐓𝐒(Õ)p
�8
𝐒(Õ)𝐓𝐞(Õ)K

Z
 as the criteria for natural 

frequency selection. Specifically, we define Kh𝐒(Õ)𝐓𝐒(Õ)p
�8
𝐒(Õ)𝐓𝐞(Õ)K

Z
  as 𝑏(Õ) and the optimal 

combination of natural frequencies can be chosen as 𝑘∗ = argA min 𝑏(Õ). We would like to point 

out that 𝑏(Õ) is just an approximation of 𝑑(Õ) in Eq. (3.14) because Δ𝛂U(Õ) in Eq. (3.14) is often 

different from Δ𝛂U(Õ) obtained in Eq. (3.20). In fact, the accuracy of Δ𝛂U(Õ) is often higher than 

Δ𝛂U(Õ) and the above derivation Eqs. (3.19-21) are only used to obtain an approximation of 𝑑(Õ).  

To compute 𝑏(Õ), we also need the value of the error term 𝐞.  The value of e can be estimated 

by 𝐞L = Δ𝛌− 𝐒Δ𝛂U , where Δ𝛂U  is the output from Algorithm 2. To summarize, the proposed natural 

frequency selection algorithm is shown as Algorithm 3 in Table 3-3. 
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Table 3-3. Algorithm 3: Natural Frequency Selection Algorithm for Bias Reduction  

RUN Algorithm 2 
CALCULATE the estimated error 𝐞L = Δ𝛌− 𝐒Δ𝛂U  
For 𝑘 = 1,2, … , 2� − 1  
  CALCULATE the estimated bias 𝑏H(Õ) 
End 
Return 𝑘∗ = argA min 𝑏H(Õ)	 as the final combination 

 

There are several remarks on Algorithm 3. First, Δ𝛂U  is pre-computed in Algorithm 2, so that 

the computational load does not explode for exhausting all possible measurement combinations. 

In fact, as we mentioned earlier, the number of the selected natural frequency needs to be larger 

than the number of non-zero elements in Δ𝛂U . Thus, the actual number of combinations is further 

reduced. For example, if 𝐒 has dimension 7 × 2, the combination should contain at least 2 natural 

frequencies. Second, the proposed algorithm will not guarantee the selected combination 𝑘∗ is the 

optimal one that minimize Eq. (3.14) because the criteria used 𝑏(Õ) is just an approximation of 

𝑑(Õ). Detailed numerical studies and discussions will be conducted to illustrate the performance of 

the proposed algorithms in Section 3.5 and 3.6. 

3.5 Numerical Study and Illustration 

In this section, the proposed algorithm is validated using a fixed-free beam setup. The system 

parameters are summarized in Table 3-4.  

Table 3-4. Parameters of the Beam Structure 

Material Young’s Modulus Density Length Width Thickness 𝑚 𝑛 

Aluminum 7.1 × 108f N/𝑚Z 2700kg/𝑚¹ 0.4184m 0.0381m 3.175mm 7 20 
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The beam consists 20 elements and the first 7 modes are available for measurements. Thus, there 

are total 127 different combinations of natural frequencies. In the first example, we are considering 

the beam with two faulty elements, where the stiffness loss occurs at elements 8 and 17 with Δ𝛼$ =

−0.3 and Δ𝛼8M = −0.1, respectively.  

Figure 3-1 presents the bias 𝑑(Õ) = TΔ𝛂U(Õ) − Δ𝛂VWXVYTZin Eq. (3.14) as a function of the 

combination index	𝑘 = 1,2,3,… ,127. The combination is ordered from the single natural 

frequency to all seven natural frequencies, i.e., 

{1,2,3, … , (1,2), (1,3),… , (1,2,3), (1,2,4),… , (1,2,3,4,5,6,7)}. Δ𝛂U(Õ) is calculated by 

min‖Δ𝛂‖8 , s. t. TΔ𝛌(𝐤) − 𝐒(𝐤)Δ𝛂TZ 	≤ 𝜖 with 𝜖 = 10�N . 

 
Figure 3-1. The bias of the estimated damages for different combinations of natural frequencies 

It is clearly shown in Figure 3-1 that the combination of all seven natural frequencies (the 127th 

combination) does not result in the smallest bias. In this damage scenario, the smallest bias is 

obtained by the 26th combination of the fifth and sixth natural frequencies, i.e., (5, 6). From Figure 

3-1, it can be seen that the bias has relatively large values for the first seven combinations. Since 
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the first seven combinations are all single natural frequencies, the linear system is underdetermined 

with two faulty elements. Also, there is a jump at 𝑘 = 18, (the combination of the second and the 

seventh natural frequencies), which is due to the correlated structure of the second and the seventh 

rows in 𝐒. As discussed in section 3.4, the ill-posed sensitivity matrix may result in large errors 

even with regularization.  

Figure 3-2 presents the results of the histogram of the severity estimation of 20 elements from 

Algorithm 1.  

 

Figure 3-2. Damage parameter histogram of 20 elements with Algorithm 1. True damages of each 

element are labeled using dash lines. 

In Figure 3-2, the true damage locations, i.e., elements 8 and 17, have histograms around the 

underlying true damages -0.3 and -0.1. Most of other elements have density concentrate exactly at 

0 as expected, e.g., elements 2, 6 and 10. Elements 1, 4, 9 and 18 have the majority of the density 

concentrate at 0 with a light tail spreading to negative values. Element 13 has density concentrate 
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both at 0 and -0.2. It can be seen that true damage locations have densities apparently differ from 

0, while non-damaged locations tend to have most density distributed at 0. These locations are set 

to ΔαO = 0 in the majority voting process. 

Results after Algorithm 2 are shown in Figure 3-3. In Figure 3-3, the only two non-zero 

distributed elements are the element 8 and 17 with density concentrated around the true damage 

magnitudes. The estimated damage parameters are Δ𝛼U$ = −0.33 and Δ𝛼U8M = −0.11 with all other 

Δ𝛼U¬P$	bW	8M = 0.  

 

Figure 3-3. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 

element are labeled using dashed lines 

The estimated bias 𝑏H(Õ) for 𝑘 = 8, 9,… ,127 are presented in Figure 3-4. It can be seen that 

𝑏H(Õ) has very similar trend compared to TΔ𝛂U(Õ) − Δ𝛂VWXVYTZ. By Algorithm 3, we get 𝑘∗ = 26 and 

the result is consistent with the smallest bias combination as shown in Figure 3-1. Thus, only the 
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fifth and sixth natural frequencies are suggested to be included in the estimation of damage 

parameters to reduce the estimation bias. Please note that the comparison between the estimated 

bias 𝑏H(Õ) and the TΔ𝛂U(Õ) − Δ𝛂VWXVYTZis only shown for 𝑘 ≥ 8. Two elements are identified as 

stiffness loss by Algorithm 2. In order to apply the least square method in Eq. (3.19), 	𝐒(Õ) should 

consist at least two rows, i.e., combination of at least two natural frequencies. Thus, 𝑘 ≥ 8 because 

the first 7 combinations only contain one natural frequency. 

 

Figure 3-4. Plots of 𝑏H(Õ) and 𝑑(Õ)  for 𝑘 = 8, 9,… ,127. 

Figure 3-5 presents the comparison results of the damage parameter estimation using different 

methods.  
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Figure 3-5. Comparison of damage parameter estimation using different approaches. 

The 𝐿8- Norm method adopts Eq. (3.12), and the 𝐿8-IMR adopts the proposed method with 

iterative matrix randomization, i.e., Δ𝛂U  by Algorithm 2. The 𝐿Z- Norm adopts Eq. (3.12) but 

without 𝐿Z penalty. It can be seen from the comparison, the 𝐿8-IMR returns the most accurate 

estimation both for the damage locations and damage severities. The 𝐿8- norm method returns 

comparable results at the true damage locations, but also has estimation with small magnitudes on 

a few healthy elements. The 𝐿Z- norm performs the worst among all three methods with distributed 

estimation along elements.  

In the following, the proposed algorithm is adopted for a scenario with three faulty elements, 

where	Δ𝛼¹ = −0.1, Δ𝛼8f = −0.2	and	Δ𝛼8$ = −0.2.	 The histogram of elements after Algorithm 

2 is presented in Figure 3-6. Similar to the case with two faulty elements, the true damage locations 

are identified correctly. 
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Figure 3-6. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 

element are labeled using dash lines 

The comparison between 𝑏H(Õ) and the TΔ𝛂U(Õ) − Δ𝛂VWXVYTZ is presented in Figure 3-7. Since 

three damage locations are identified, at least three natural frequencies are needed, i.e., 𝑘 ≥ 29. 

By Algorithm 3, 𝑘∗ = 43 with the first, the sixth and the seventh natural frequencies is the 

combination with the smallest bias in the estimation. The jumpy peaks for some 𝑏H(Õ)s are due to 

the correlated structure of 𝐒(A). In Figure 3-8, the comparison of damage parameter estimation is 

presented. The proposed 𝐿8-IMR has the best estimation.  
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Figure 3-7. Plots of 𝑏H(Õ) and the TΔ𝛂U(Õ) − Δ𝛂VWXVYTZ for 𝑘 = 29, 30,… ,127. 

 
Figure 3-8. Comparison of damage parameter estimation using different approaches 

In Table 3-5 we present the overall performance of the proposed algorithm in a comprehensive 

study. The study adopts the same beam structure in previous two examples (i.e., Table 3-2) and 

exhausts all possible combinations between damage locations and damage severities for −0.4 ≤

Δ𝛼 ≤ −0.05 with increment 0.05. In most cases, 5% decrease in natural frequencies can be 

referred to a severe damage in the structure [192-193]. According to the finite element model, the 

5% reduction in natural frequencies is roughly equivalent to Δ𝛼 = −0.4.  
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Table 3-5. Performance of the Proposed Algorithm in Different Damage Scenarios 

 Single Fault Two Faults Three Faults 
𝑘∗ = argÕ min𝑑(Õ) 94.3% 83.5% 80.2% 
𝑑(Õ∗) ≤ 𝑑(8ZM) 97.1% 94.7% 91.5% 
# simulations 160 12160 583680 

In the simulation study, we consider three fault scenarios, single fault, two faults and three 

faults. The performance is measured in two ways. 1) 𝑘∗ = argÕ min𝑑(Õ) indicates the selected 

combination 𝑘∗ by Algorithm 3 is the optimal combination that minimizes the bias. It can be seen 

the proposed algorithm can detect the optimal combination above 80 percentage in all three 

damage scenarios. 2) 𝑑(Õ∗) ≤ 𝑑(8ZM) indicates that the selected combination 𝑘∗ has smaller bias 

compared with the case when all natural frequencies are used. It can be seen that the selected 

combination by the proposed algorithm can achieve smaller bias than using all seven natural 

frequencies over 90 percentage in all three damage scenarios. It is not surprising to see the single 

fault scenario has the best performance, in which case the Eq. (3.19) is reduced to the scalar 

calculation without any matrix inversion.  

3.6 Factors that Influence the Estimation Performance  

In this section, we discuss the factors that influence the performance of the proposed algorithm. 

The proposed algorithm is effective on selection of natural frequencies to reduce the estimation 

bias. However, it does not eliminate the bias. In Figure 3-9, we present the accuracy of linear 

approximation of natural frequency compared with the underlying truth. The beam is set up as that 

in Table 3-4 with stiffness loss only at element 8.  

Figure 3-9(a) presents the linear approximation of the first order natural frequency. The solid 

line is the underlying truth and the dashed line is the linear approximation. Since Taylor’s 

expansion is conducted at the healthy condition, the difference between the linear approximation 
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and the underlying truth is getting larger as Δ𝛼 → −1. Figure 3-9(b) summarizes the accuracy of 

the linear approximation of the first seven modes in terms of the difference in percentage, i.e., 

0+�𝐒(Q)0𝜶RSTRU

0+
. 

 

Figure 3-9. Accuracy of linear approximation in natural frequencies 

It can be seen that the accuracy is about 60% for Δ𝛼 = −0.4. As the comprehensive simulation 

study indicated in Section 3.4, the proposed algorithm performs well at such accuracy level. It is 

worth noting that the performance of the algorithm gets worse for severe stiffness loss. Under mild 

damage conditions, the histogram of Δ𝛼s are close to the underlying truth but with small 

differences (e.g., Figure 3-3 and 3-5). For severe damage loss, such differences can be large or 

even the identified damage locations can be wrong. In Figure 3-10, we present an example of the 

histogram of Δ𝛼s after Algorithm 2 for a severe damage case Δ𝛼¹ = −0.9, Δ𝛼8f =

−0.9	and	Δ𝛼8$ = −0.2.	  

Underlying Truth 
Linear Approx.

a) b)



61 
 

 

Figure 3-10. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each 

element are labeled using dashed lines 

All three true damage locations are identified but with an additional element 14 wrongly 

identified. The magnitude of stiffness loss at element 18 is estimated much smaller than the truth 

due to the additional element. Thus, the results of the proposed algorithm will not be informative 

on the selection of natural frequencies as shown in Figure 3-11. 
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Figure 3-11. Plots of 𝑏H(Õ) with TΔ𝛂U(Õ) − Δ𝛂VWXVYTZ for 𝑘 = 29, 30,… ,127 with severe damage 

Figure 3-11(a) is similar to Figure 3-4 or 3-7 showing the comparison between 𝑏H(Õ) and 

TΔ𝛂U(Õ) − Δ𝛂VWXVYTZ. Since they have quite difference scales, the normalized comparison is shown 

in Figure 3-11(b). As expected, the two trends are different. For such severe damage scenario, the 

inaccuracy of the linear approximation causes the overall estimated damage parameters biased 

from the underlying truth as shown in Figure 3-11(c).  Figure 3-11(c) presents the bias 𝑑(Õ).  It can 

be seen the average bias for this severe damage case is around 1.7, which is roughly 17 times large 

than the bias shown in Figure 3-1.  

In practice, it is more important to estimate mild damage conditions. Severe damages not only 

reduce natural frequencies significantly, but also cause visible changes in structures. However, 

mild damages can be hidden from simple visual inspection. Thus, it is more important to identify 

mild damages accurately for preventive repair or correction.  

3.7 Conclusion 

In this paper, we propose a natural frequency selection algorithm to reduce the bias in the 

estimation of damage parameters using linear approximation under mild damage scenarios. The 

selected combination of natural frequency has high probability to be the optimal combination 

which leads to the smallest bias in the estimation among all the possible combinations. The 

algorithm consists three sub-algorithms. In the first algorithm, the 𝐿8- norm regularization with 

iterative matrix randomization  is adopted for estimation of damage parameters followed by a 

majority voting process. In the second algorithm, the damage locations are identified by sequential 

updating. The improved estimation  𝐿8- IMR helps to choose the best combination of 
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measurements in the third algorithm. The effectiveness of the proposed method is validated 

through numerical studies. Factors that influence the performance of the method are also discussed.  

The proposed algorithm is flexible in dealing with natural frequencies, thus has potential to be 

extended to the structures with physical modification, e.g., modification through mass addition or 

tunable sensing systems. The proposed algorithm can be applied to select measurements among 

different setups of the structure (i.e., different mass additions or tunable inductances), which may 

provide a better estimation than combining all available modes from all setups. We will investigate 

along this direction and report our findings in the near future. 

3.8 Appendix 

Table 3A-1 Iterative Reweighted 𝐿8 Minimization Algorithm [15] 

1. Set the iteration count 𝑙 = 0 and 𝑤¬
(V) = 1, 𝑖 = 1,2, …𝑛  

2. Solve the weighted 𝐿8 minimization problem: 
           𝐱(Ö) = argminT𝐖(Ö)𝐱T1 	 , subject	to	‖𝐲 − 𝐀𝐱‖2 	≤ 𝜖 
3. Update the weights for 𝑖 = 1,2, …𝑛 

𝑤¬
(Ö«8) =

1

Y𝑥¬
(Ö) + 𝛿Y

 

4. Terminate on convergence or 𝑙 attains the maximum number. Otherwise, increment 𝑙 and go to 
step 2. 
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4. Prognosis of Structural Damage Growth Via Integration of 
Physical Model Prediction and Bayesian Estimation* 

In this chapter, we propose a dynamic data-driven hierarchical Bayesian degradation 

model, which takes advantage of both the physical finite element model and the data driven 

Bayesian framework, to tackle the structural damage growth prediction. The damage growth trend 

can be efficiently and accurately estimated by Gibbs sampling. Systematic case analyses are 

performed to validate and demonstrate the effectiveness of the proposed method. 

 4.1 Introduction 

Damage diagnosis and prognosis play an important role in ensuring the safety of mechanical, 

aerospace, and civil structures. Most types of damage or structural weakness cannot be observed 

directly. Rather, damage will cause the change in structural properties (e.g., local stiffness, 

damping ratio) and then in turn impact on the dynamic responses of the structure. Studies on 

inversely estimating the structural properties using observed response signals are mostly limited 

to detection in a static sense, in which only a snap-shot of data within a short time window are 

used to get a point value estimate of the damage [72,73]. However, revealing the evolving path of 

structural damage is highly desirable in practice, because the damage future evolving path can 

provide more accurate information regarding the remaining useful life (RUL) of the structure. 

Physic-based approach is a popular way to predict the structural damage evolving over time. 

Such methods are mostly based on deterministic differential equations for the damage growth rate 

                                                             
*This chapter is based on the paper: Liu, Yuhang, Qi Shuai, Shiyu Zhou, and Jiong Tang. 
"Prognosis of Structural Damage Growth Via Integration of Physical Model Prediction and 
Bayesian Estimation." IEEE Transactions on Reliability 66, no. 3 (2017): 700-711. 
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[74]. In these methods, the model is tuned for prognosis by minimizing residuals which are the 

difference between the real measurements and the outputs of a mathematical model. For instance, 

an integrated prognostic process based on data collected from model-based simulations under 

nominal and degraded conditions is proposed in [75]. A defect propagation model by mechanistic 

modeling approach for RUL estimation of bearings is introduced in [76]. Paris’ law is widely used 

for crack growth estimation [6,7]. There are some inherent drawbacks of the physical models. 

First, the physical models are generally case specific, which limit their application to broad types 

of structures. Second, these methods assume that an accurate mathematical model is available and 

the model requires specific mechanistic knowledge and theories relevant to the systems under 

consideration. In practice, it is very difficult to build such a good physical model. Furthermore, 

physics based methods often ignore the uncertainties in the system structure and the measurements. 

Most recent research along the physic-based approach introduces the randomness by adding 

random disturbances [77], random parameters [78] to the differential equation, or directly making 

the growth rate a random process [14,79-81]. As a trade-off for such modification, modelling 

incurs heavy computational load.  

Different from physic-based approach, data-based or data-driven methods adopt generic 

statistical models to describe the damage progression. Temporal and spatial data recorded by 

sensors inherently carries the physical information of the system and such information can be 

utilized to elucidate the relationship between system status and the observed data. In data-driven 

approaches, the statistical analysis can be less dependent on physical principles and easily applied 

to different systems with relatively low computational cost. A popular category of data driven 

methods is to model the sensing signal directly using stochastic process or degradation path model 

[82]. The prognosis is based on the prediction of the future trend of the signals conditioned on the 
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existing data. For example, Wiener process is adopted for degradation data analysis with 

measurement errors in [83]. A good review on degradation path models with simulation 

comparisons can be found in [82]. These approaches leave the prognosis on the data level without 

further revealing the change in structural properties. State space model is a type of method capable 

of characterizing the underlying status of structure as different states. Hidden Markov model 

(HMM) is one of the state space approaches, where the unobservable degradation status is defined 

as hidden states. HMM have been adopted for damage prognosis of a pre-stressed concrete bridge 

[11] and is used for prediction of gear failures [12]. Typically, a large amount of historical data is 

needed for training HMM and the assumptions in HMM are often not realistic in many cases. Also, 

since degradation status is classified into discrete states as an approximation of the underlying true 

continuous state, the prognosis in a long term could be unreliable. One major disadvantage of pure 

data-driven based methods is that although they can provide a trend estimate for the observed data, 

they often cannot reveal the root cause or the structural damage that causes the data trend directly. 

As a result, currently available data-driven method often performs poorly when trying to classify 

the type of changes in the structural properties compared to the physical models. 

In this chapter, we propose a dynamic data-driven hierarchical Bayesian degradation model, 

which takes advantage of both the physical finite element model (FEM) for response prediction 

and the data driven Bayesian framework. This hierarchical model is capable to recover the 

evolving path of the structural damages over time or load cycles efficiently based on temporal 

sensing data. FEM is an effective numerical tool for modelling structural dynamics [84]. In our 

model, FEM is adopted to approximate the mapping from the structural properties to the observed 

data, i.e., natural frequencies. Bayesian framework or Bayesian updating provides a powerful 

parameter estimation method from noisy data by assigning appropriate prior distributions and 
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likelihood functions [85,86]. Our proposed model is a hierarchical Bayesian model consisting of 

two levels. In the first level, the observed data is assumed to follow a Gaussian distribution with a 

mean function related to structural properties. In the second level, the evolving path of the 

structural properties is described using polynomials with uncertainties. Conjugate prior 

distributions are assigned for each unknown parameter for the sake of simplifying the derivation 

in posteriors distribution. All the unknown parameters are estimated using Markov Chain Monte 

Carlo (MCMC) sampling technique. Akaike’s Information Criterion is adopted for choosing the 

most appropriate degree of polynomial in fitting the underlying trend of the damage evolving path. 

This work provides an efficient damage growth estimation framework by combining physics-based 

and data-driven based methods. Note that, the work focuses on the estimation and prediction of 

the evolving trend of structural properties instead of the traditional RUL prediction [87]. 

The rest of the chapter is organized as follows. Section 4.2 introduces the mathematical 

formulation of the dynamic data-driven hierarchical Bayesian degradation model followed by 

parameter estimation and model selection. Systematic case analyses are performed to validate the 

effectiveness of the proposed method in Sections 4.3 and 4.4. Finally, the chapter ends with 

conclusion in Section 4.5. 

4.2 Dynamic Data-Driven Hierarchical Bayesian Degradation Model 

In this section, the mathematical formulation of the dynamic data-driven hierarchical Bayesian 

degradation model is presented followed by parameter estimation procedure and model selection 

process.  

4.2.1 Model Formulation 
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In the context of the finite element model (FEM), the dynamics of an undamped structural 

system can be described by the linear equation 

𝑴𝒛̈(𝑡) + 𝑲𝒛(𝑡) = 𝑮(𝑡)                                                 (4.1) 

where 𝑴 and 𝑲 are the global mass and stiffness matrices, respectively, 𝒛 and 𝑮 contain the nodal 

displacements and nodal forces, respectively. The characteristic features of the system are the 

circular natural frequencies 𝜔¬ (rad/s) and mode shapes 𝝓𝒊, which can be calculated from the 

eigenvalue problem (𝑲− 𝜔¬Z𝑴)𝝓𝒊 = 0 with eigenvalue 𝜆¬ = 𝜔¬Z. Therefore, the changes of 

material properties in 𝑴 or 𝑲 lead to the changes of system features 𝜔¬ and 𝝓𝒊. In practice, the 

damage of a structure is often characterized as the stiffness loss in elements [88-90], i.e., the values 

change in 𝑲, and causes the reduction in natural frequencies 𝑓 = b
Zc

 (Hz), which is commonly used 

for assessing system stiffness loss for its high accuracy and easiness in measurements. Damage 

assessment based on natural frequencies can be found in a large amount of literatures (e.g., [91]).  

In this chapter, 𝜃® is used to describe the percentage of stiffness left at an element in the 

structural system along time 𝑡, thus 𝜃® ranges from 1 to 0. Without loss of generality, we assume 

the location of the damaged element has been determined and we will focus on estimating the 

evolution of the magnitude of the damage along time. For a system under regular load cycles, we 

assume the parameter 𝜃® follows a degradation path which cannot be observed directly. The 

proposed model takes natural frequencies 𝑓®¬ 	as the observed data to estimate such degradation 

path, where 𝑓®¬  denotes the 𝑖®¯ natural frequency measured at time 𝑡. Even if 𝑓®¬ can be measured 

accurately, small perturbations can be involved in the measurements. To accommodate such 

uncertainties in 𝑓®¬, it is assumed that 𝑓®¬  follows a normal distribution with mean 𝜂¬(𝜃®) and 

variance 𝜎÷Z, that is 𝑓®¬~𝒩�𝜂¬(𝜃®),𝜎÷Z�, where 𝜂¬(𝜃®) defines the mean value of 𝑓®¬  for given 
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parameter 𝜃®. Variance 𝜎÷Z can be chosen to be small to reflect the high accuracy in natural 

frequency measurements.  

In the proposed model, the mean function 𝜂¬(𝜃®) is specified as a linear function 𝜂¬(𝜃®) =

𝑢¬ + 𝑣¬𝜃® with coefficients 𝑢¬ and 𝑣¬ for 𝜃® ∈ [𝑙2, 𝑢2], where 𝑙2 and 𝑢2 are the boundaries of 𝜃. 

Please note that in theory, the mean values of 𝑓®¬  does not follow an exact linear function of 𝜃®. 

However, linear approximation can be used to describe the relationship in some regions of 𝜃®. This 

can be shown as follows. By eigenvalue perturbation theory [92], 

Δ𝜆¬ ≈
𝝓𝒊
𝑻𝚫𝑲𝝓𝒊

𝝓𝒊
𝑻𝐌𝝓𝒊

= Δ𝜃 × 𝐸𝐼 ×
𝝓𝒊
𝑻𝑮𝝓𝒊

𝝓𝒊
𝑻𝑴𝝓𝒊

 

where 𝐸 and 𝐼 are the Young modulus of elasticity and second moment of inertia, respectively. 

Δ𝜃 = 𝜃8 − 𝜃Z is the difference of the percentage of stiffness. 𝑮 is a constant matrix containing the 

information of the given damage location. Note that Δ𝜆 = 𝑓Z(𝜃8) − 𝑓Z(𝜃Z), we can see that the 

change in natural frequencies can be approximated by  

Δ𝑓 = 𝑓(𝜃8) − 𝑓(𝜃Z) =
Δ𝜃 × 𝑐𝑜𝑛𝑠𝑡
𝑓(𝜃8) + 𝑓(𝜃Z)

≈
Δ𝜃 × 𝑐𝑜𝑛𝑠𝑡

𝑓(𝜃8) + 𝑓(𝜃8) + 𝑓j(𝜃8) × (𝜃Z − 𝜃8)
 

where 𝑓(𝜃Z) is expanded around 𝜃8 using Taylor’s theorem neglecting higher order terms. 

Applying Taylor series expansion of Δ𝑓 around Δ𝜃 = 0, we have Δ𝑓 ≈ 02×kV�l®
Z÷(2E)

. Thus, the natural 

frequency is approximately linear with respect to the change in the system stiffness if the change 

is in a relatively small region.  

In the proposed approach, we further model the evolving path of the damage 𝜃® by a 

polynomial function 𝛾(𝑡) = 𝜷𝑻𝒙𝒕, where 𝜷 is the coefficient vector of the polynomial terms 𝒙𝒕 =

[1, 𝑡, 𝑡Z, … ]1. The underlying growth of damage could follow different function form [93], so it is 

infeasible to describe 𝜃® using a fixed function structure. Polynomial approximation is a robust 
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and flexible curve fitting technique so we adopt a polynomial function structure for the evolving 

path of 𝜃®. However, 𝜃® cannot be assumed to follow 𝛾(𝑡) exactly because there are always 

modeling errors. Instead, a normal distribution is assigned to 𝜃®, that is 𝜃®~𝒩(𝛾(𝑡),σ2Z), where 

σ2Z  is the variance to capture modelling errors.  

The proposed model is summarized as a 2-level hierarchical model as follows.  

Level 1 

𝑓®¬~𝒩(𝜂¬(𝜃®),𝜎÷Z),                                                         (4.2) 

                         𝑖 = 1,2… ,𝑁÷, 𝑡 = 1,2, . . , 𝑇 

𝜂¬(𝜃®) = 𝑢¬ + 𝑣¬𝜃®, with 𝑢¬ + 𝑣¬ = 𝑓f¬ 

Level 2 

𝜃®~𝒩(𝛾(𝑡),σ2Z)                                                            (4.3) 

𝛾(𝑡) = 𝜷𝑻𝒙𝒕, with 𝒙𝒕 = [1, 𝑡, 𝑡Z,… ]1 

In Level 1, the measurement of natural frequencies 𝑓®¬s are assumed following a normal 

distribution with mean structure 𝜂¬(𝜃®) = 𝑢¬ + 𝑣¬𝜃® and variance 𝜎÷Z. 𝑢¬ and 𝑣¬ are further relaxed 

to be unknown parameters except that their summation equals to 𝑓f¬, which is the natural 

frequencies under health condition. In Level 2, the weakness growth 𝜃® is assumed to follow a 

normal distribution with mean structure 𝛾(𝑡) in polynomial form with variance 𝜎2	Z . In this model, 

we have unknown parameters 𝜷, 𝑢¬,	𝜎÷	Z and 𝜎2	Z  to be estimated in order to recover the evolving 

path of 𝜃® based on the observed temporal data 𝑓®¬ .  

4.2.2 Model parameter estimation 

In order to utilize Bayesian framework for estimation, prior distributions need to be assigned 

to the unknown parameters to represent the initial guess of these parameters. Here, we set the prior 
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distributions as 𝜷~ℳ𝒩�𝒃,𝜎sZ𝑰�, 𝑢¬~𝒩(𝜏¬ ,𝜎vZ), 𝜎÷Z~𝒯𝒢�𝑎÷,𝑏÷� and 𝜎2Z~𝒯𝒢(𝑎2,𝑏2),where 𝜷 

follows multivariate distribution with mean vector 𝒃 and covariance matrix 𝜎sZ𝑰. 𝑢¬s are 

independently follow normal distribution with different mean values 𝜏¬s and a common variance 

𝜎vZ. 𝜎÷Z and 𝜎2Z has Gamma distribution as priors. All the prior distributions are chosen as the 

conjugate priors, such that the posterior distributions are in the same distribution family of the 

prior distribution. The conjugate priors offer great computational convenience. Prior distributions 

play an important role in the Bayesian framework [94]. The prior distributions should reflect the 

available prior knowledge on the distribution parameters. However, when no prior knowledge is 

available, non-informative priors should be assigned in order to reduce the impact of the chosen 

priors on the parameters updating. For example, we could set 𝜎sZ to be a very large value so that 

the multivariate prior normal distribution of 𝜷 will be like a flat hyper-plane to reflect the non-

preference in pre-choosing 𝜷 in its support. In this chapter, we consider the general case where no 

specific prior information is available to us. As a result, proper values of 𝜎sZ,	𝜎vZ, (𝑎÷, 𝑏÷) and 

(𝑎2, 𝑏2) need to be assigned to achieve non-informative priors.  

In the Bayesian framework, the estimation of a parameter is often the mean of its marginal 

posterior distribution, which can be calculated by integrating out other parameters in the joint 

posterior distribution given by Bayes’ Theorem [95]. In the research, the joint posterior distribution 

of all the unknown model parameters is: 

𝑝�𝚯,𝜷,𝜎÷Z,𝜎2Z,𝑼|𝓕� ∝ 𝑝�𝓕|𝚯,𝜎÷Z,𝑼� × 𝑝�𝚯|𝜷,𝜎2Z� × 𝑝(𝜷|𝒃,𝜎sZ) × 𝑝(𝜎÷Z) × 𝑝(𝜎2Z) × 𝑝(𝑼)     (4.4) 

where 𝓕`��� = [𝐅8j; 𝐅Zj ; … ; 𝐅j ], and 𝐅𝐭 = �𝑓®8,𝑓®Z, . . 𝑓®���
j
, 𝚯 = [𝜃8, 𝜃Z, … 𝜃1]j  𝜼 = �𝜂8, … 𝜂���

j
, 

and 𝑼 = �𝑢8,𝑢Z, . .𝑢���. The explicit formulations of each term in the posterior distribution are: 
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𝑝�𝓕|𝚯,𝜎÷Z,𝑼� = ∏ 𝑝�𝐅𝐭|𝜃®,𝜎÷Z�1
®28 ∝ ∏ exp	[1

®28
�𝐅𝐭�𝜼(2�)�

��𝐅𝐭�𝜼(2�)�
�Z��

C ]

𝑝�𝚯|𝜷,𝜎2Z� ∝ ∏ exp	[1
®28

�2��𝜷𝑻𝒙𝒕�
𝟐

�Z��
C ]

𝑝(𝜷|𝒃,𝜎sZ) ∝ 	exp	[
(𝜷�𝒃)�(𝜷�𝒃)

�Z��
C ]

𝑝(𝜎÷Z) ∝ �𝜎÷Z�
���«8exp	(���

��
C )

𝑝(𝜎2Z) ∝ �𝜎2Z�
���«8exp	(���

��
C )

𝑝(𝑼|𝜏¬ ,𝜎vZ) ∝ ∏ exp	[��
¬28

(vø��ø)𝟐

�Z	��C
]

                                            (4.5) 

To estimate parameter 𝜷, the marginal posterior distribution of	𝜷, 𝑝(𝜷|𝓕), can be evaluated by 

integrating as follows: 

𝑝(𝜷|𝓕) =⨌𝑝�𝚯,𝜷,𝜎÷Z,𝜎2Z,𝑼|𝓕�𝑑𝚯𝑑𝜎÷Z𝑑𝜎2Z𝑑𝑼		 

With the marginal posterior distribution, we can further compute the mean value of the parameters 

as follows as an estimate of the parameter values. 

𝐸(𝜷|𝓕) = ∫ 𝑝(𝜷|𝓕)𝑑𝜷 

The concept is simple but in practice the multiple integrals can be very difficult to compute 

for high dimensional variables. To avoid such computational issue in finding  𝑝(𝜷|𝓕), a Gibbs 

sampling technique is adopted. Gibbs sampling, a Markov Chain Monte Carlo algorithm, is an 

effective method for high dimensional parameters estimation [96]. The algorithm is summarized 

in Table 4-1. 
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Table 4-1. Illustration of Gibbs Sampling Algorithm 

Initialize 𝜃®
(f),𝜷(𝟎),𝜎÷Z

(f),𝜎2Z
(f),𝑢¬

(𝟎) 
For 𝑘 in iteration 1:𝐾 

𝜃®
(Õ)~𝑝 h𝜃®Y𝚯�V

(𝒌�𝟏),𝜷(𝒌�𝟏),𝜎2Z
(Õ�8),𝜎÷Z

(Õ�8),𝑼(𝒌�𝟏),𝓕p 

𝜷(𝒌)~𝑝 h𝜷Y𝚯(𝐤),𝜎2Z
(Õ�8),𝜎÷Z

(Õ�8),𝑼(𝒌�𝟏),𝓕p 

𝜎÷Z
(Õ)~𝑝 h𝜎÷ZY𝚯(𝐤),𝜎2Z

(Õ�8),𝜷(𝒌),𝑼(𝒌�𝟏),𝓕p 

𝜎2Z
(Õ)~𝑝 h𝜎2ZY𝚯(𝐤),𝜎÷Z

(Õ),𝜷(𝒌),𝑼(𝒌�𝟏),𝓕p 

𝑢¬
(𝒌)~𝑝 h𝑢¬Y𝚯(𝐤),𝜎2Z

(Õ),𝜎÷Z
(Õ),𝜷(𝒌), 𝐔�¬

(𝒌�𝟏),𝓕p 
End 

where 𝜃®
(Õ) is the 𝑘®¯ sample of 𝜃® drawing from the conditional posterior distribution 

𝑝 h𝜃®Y𝚯�V
(𝒌�𝟏),𝜷(𝒌�𝟏),𝜎2Z

(Õ�8),𝜎÷Z
(Õ�8),𝑼(𝒌�𝟏),𝓕p. The other terms in the algorithms have the 

same interpretations. For a sufficient large number 𝐾, the samples of each parameter can be 

regarded as the samplings from the marginal posterior distribution [97]. For example, samples 𝜷(𝒌) 

can be viewed as generated from  𝑝(𝜷|𝓕). With these samples, the sample mean can be used as the 

estimation of parameters, i.e., 𝜷� = 8
�
∑ 𝜷(𝒌)Õ , where the ~ sign indicates the values calculated from 

samples statistics generated by Gibbs sampling algorithm. Standard deviation can also be 

evaluated from samples to construct the confidence interval of the estimation.   

In the hierarchical Bayesian degradation model, the conditional posterior distribution for each 

parameter in Table 4-1 can be derived using the properties of conjugate priors as follows. With 

these conditional posterior distributions, Monte Carlo sampling can be implemented. 

a) The conditional posterior distribution of 𝜃® is a normal distribution with mean 𝜇® and 

variance 𝜎�®
Z.  

𝑝�𝜃®|𝚯�V,𝜷,𝜎2Z,𝜎÷Z,𝑼,𝓕� ∝ 𝑝�𝐅𝐭|𝜃®,𝜎÷Z,𝑼� × 𝑝�𝜃®|𝜷,𝜎2Z�		 

	∝ exp �
�𝐅𝐭 − 𝜼(𝜃®)�

j�𝐅𝐭 − 𝜼(𝜃®)�
−2𝜎÷Z

�× exp �
(𝜃® − 𝜷𝑻𝒙𝒕)𝟐

−2𝜎2Z
� 
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= exp Ð− 8
Z
�
�ø�E
�� 	(÷�ø�vø� ø2�)C

��
C + �2��𝜷𝑻𝒙𝒕�

𝟐

��
C �Ñ ∝ exp Ç(2����)

C

�Z�¡�
C È~𝒩(𝜇®,𝜎�®

Z)                              

where 𝜇® =
�ø�E
�� �ø�ø«k-

�ø�E
�� �ø

C«-C
, 𝜎�®

Z =
��
C��

C

�ø�E
�� �ø

C«-C
, with 𝑎¬ = 𝜎2(𝑓®¬ − 𝑢¬), 𝑏¬ = 𝜎2𝑣¬, 𝑐 = 𝜎÷𝜷𝑻𝒙𝒕 and 𝑑 =

𝜎÷. 

Note that, if 𝜂¬(∙) takes non-linear form of 𝜃®, the above derivation may result in a very complicated 

formulation, in which case, slice sampling [98] can be used to sample from this density function. 

b) The conditional posterior distribution of 𝜷 is derived as: 

𝑝�𝜷|𝚯,𝜎2Z,𝜎÷Z,𝑼,𝓕� ∝ 𝑝�𝚯|𝜷,𝜎2Z� × 𝑝(𝜷|𝒃,𝜎sZ) 

∝¢ exp	[
1

®28

(𝜃® − 𝜷𝑻𝒙𝒕)𝟐

−2𝜎2Z
] × 	exp	[

(𝜷− 𝒃)j(𝜷− 𝒃)
−2𝜎sZ

]~ℳ𝒩(𝒃𝒏𝒆𝒘 , 𝚺𝜷) 

where 𝒃𝒏𝒆𝒘 = 𝚺𝜷(
𝐗𝑻𝚯
��
C +

𝒃
��
C) and 𝚺𝜷 = §𝜎s�Z𝐈¹×¹ +

𝐗/𝐗
��
C ¨

�8
. 

c) The conditional posterior distribution of 𝜎÷Z is also a Gamma distribution with 𝑎÷�©ª and 

𝑏÷�©ª . 

𝑝�𝜎÷Z|𝚯,𝜎2Z,𝜷,𝑼,𝓕� ∝ 𝑝�𝓕|𝚯,𝜎÷Z,𝑼� × 𝑝�𝜎÷Z� 

	∝¢𝜎÷
���exp	[

1

®28

�𝐅𝐭 − 𝜼(𝜃®)�
j�𝐅𝐭 − 𝜼(𝜃®)�

−2𝜎÷Z
] × �𝜎÷Z�

���«8exp	(
−𝑏÷
𝜎÷Z

) 

=¢𝜎÷
���

1

®28

exp �−
1
2
«
Σ¬28
�� 	(𝑓®¬ − 𝑢¬ − 𝑣¬𝜃®)Z

𝜎÷Z
­� × �𝜎÷Z�

���«8 exp �
−𝑏÷
𝜎÷Z

�~𝒯𝒢�𝑎÷�©ª ,𝑏÷�©ª� 

where 𝑎÷�©ª = 𝑎÷ +
��1
Z

 and 𝑏÷�©ª = 𝑏÷ + �
���E/ �ø�E

�� 	(÷�ø�vø� ø2�)C

Z
�. 

d) The conditional posterior distribution of 𝜎2Z has form: 

𝑝�𝜎2Z|𝚯,𝜎÷Z,𝜷,𝑼,𝓕� ∝ 𝑝�𝚯|𝜷,𝜎2Z� × 𝑝�𝜎2Z� 
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∝¢𝜎2�8exp	[
1

®28

(𝜃® − 𝜷𝑻𝒙𝒕)𝟐

−2𝜎2Z
] × �𝜎2Z�

���«8exp	(
−𝑏2
𝜎2Z

)~𝒯𝒢(𝑎2�©ª , 𝑏2�©ª) 

where 𝑎2�©ª = 𝑎2 +
1
Z
 and 𝑏2�©ª = 𝑏2 + �

���E/ �2��𝜷𝑻𝒙𝒕�
𝟐

Z
�. 

e) The conditional posterior distribution of 𝑢¬ is derived as: 

𝑝�𝑢𝐢|𝚯,𝜎2Z,𝜎÷Z,𝜷,𝑼�𝐢,𝓕� ∝ 𝑝�𝓕|𝚯,𝜎÷Z,𝑢𝐢� × 𝑝(𝑢𝐢) =¢ 𝑝�𝑭𝒕|𝜃®,𝜎÷Z, 𝑢𝐢� × 𝑝(𝑢𝐢)
1

®28

 

∝¢ exp	[
1

®28

�𝐅𝐭𝐢 − 𝜂¬(𝜃®)�
Z

−2𝜎÷Z
] × 	exp	[

(𝒖𝒊 − 𝝉𝒊)Z

−2𝜎vZ
]~𝒩(𝝁𝒖¬,𝜎vø

Z ) 

where 𝝁𝒖¬ =
��C ∑ (8�2�)(𝐅𝐭𝐢�÷,ø2�)/

��E «𝝉𝒊��
C

��C ∑ (8�2�)C«/
��E ��

C  and 𝜎vø
Z =

��C��
C

��C ∑ (8�2�)C«/
��E ��

C. 

4.2.3 Determination of the Degree of Polynomials in 𝛾(𝑡) 

The unknown parameters can be effectively estimated by Gibbs sampling if the model 

structure is given. Thus, the proper degree of polynomials in 𝛾(𝑡) needs to be decided, in order to 

recover the underlying evolving path of structural damage. The determination of the degree can be 

viewed as a model selection problem. Various model selection criteria have been developed for 

comparisons among different models. The most famous ones are Akaike’s Information Criterion 

(AIC) [99], Bayesian Information Criterion (BIC) [100], and Bayes factor (BF) [101]. Among 

these selection criteria, we adopt AIC for selecting the best degree of polynomials for reasons to 

be explained below. The AIC value of a model is: 

AIC(𝑀¬) = −2 log𝐿(𝑀¬|𝒚) + 2𝑘(𝑀¬) 

where log𝐿(𝑀¬|𝒚) is the log likelihood given data 𝒚, 𝑀¬ is the 𝑖®¯ model and 𝑘(𝑀¬) is the number 

of parameters in 𝑀¬. The AIC takes the negative value of the log likelihood and penalize on the 

size of the model, thus the model with the minimum AIC value is selected. 
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Compared with BF, AIC and BIC do not depend on the choice of priors and penalize 

overfitting of the model, which makes the model selection more robust. The difference between 

AIC and BIC is the penalty level. In general, BIC is more stringent than AIC. Consequently, BIC 

tends to favor simpler models than AIC. From a practical perspective, AIC is advocated if the 

primary goal of modelling is for prediction, i.e., the model is built for effectively predict new 

outcomes. On the other hand, BIC tends to be advocated for descriptive purpose of the existing 

data [102]. The proposed model is used for predicting the stiffness loss along time. Thus, AIC is 

chosen for model selection.  

The likelihood function of all unknown parameters is : 

𝐿�𝜷,𝜎2Z,𝜎÷Z,𝑼|𝓕� = · 𝑝�𝓕|𝚯,𝜎÷Z,𝑼� × 𝑝�𝚯|𝜷,𝜎2Z�d𝚯 

= Ç(2π)�
��
Z (2π)�

8
Z(𝜎2Z)

�8ZÈ
1
·¢ exp	[

1

®28

�𝐅𝐭 − 𝜼(𝜃®)�
j�𝐅𝐭 − 𝜼(𝜃®)�

−2𝜎÷Z
]exp	[

(𝜃® − 𝜷𝑻𝒙𝒕)𝟐

−2𝜎2Z
]d𝚯 

= Ç(2π)�
��
Z (2π)�

8
Z(𝜎2Z)

�8ZÈ
1
¢· exp	[

�𝐅𝐭 − 𝜼(𝜃®)�
j�𝐅𝐭 − 𝜼(𝜃®)�

−2𝜎÷Z
]exp	[

(𝜃® − 𝜷𝑻𝒙𝒕)𝟐

−2𝜎2Z
]d𝜃®

1

®28

 

= Ç(2π)�
��
Z (2π)�

8
Z(𝜎2Z)

�8ZÈ
1
¢(2𝜋)

8
Z

1

®28

(𝜎�®
Z)
8
Z × 𝐶® 	= Ç(2π)�

��
Z (𝜎2Z)

�8Z(𝜎�®
Z)
8
ZÈ
1
¢𝐶®
1

®28

		 

where 𝐶® = exp º
(�ø�E
�� �ø

C«kC)§�ø�E
�� �ø

C«-C¨�§�ø�E
�� �ø�ø«k-¨

C

�Z��
C��

C(�ø�E
�� �ø

C«-C)
». The log likelihood function is derived by 

taking the logarithm. We have 

log§𝐿h𝜷�,𝜎2Z8 ,𝜎÷Z8 ,𝑼�Y𝓕p¨ 

= 𝑇 ¼−��
Z
log(2𝜋) − 8

Z
logh𝜎2Z8p + 8

Z
log h𝜎�®

Z8 p½+ ∑ log	(1
®28 𝐶®� )                       (4.6) 
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4.3  Numerical Study and Illustration 

In this section, simulation studies are used first to validate the effectiveness of the proposed 

hierarchical model. Two scenarios are considered. In the first scenario, the underlying trend of the 

parameter 𝜃® is a second degree polynomial. The second scenario takes a beta function as the 

underlying damage growth curve. For the first case, the proposed model can perfectly recover 

evolving path, while for the second case, we will have a modeling error. AIC is used for model 

selection in both cases. The impact of the amount of data samples is also discussed. 

In this numerical study, a fixed-fixed uniform beam with 60 elements is set up in FEM for 

calculating the natural frequencies. The beam has properties 𝐸 = 2.1 × 10$	kPa, 𝐿 = 2.54m, 𝐼 =

3.47 × 10�$	m},𝐴 = 6.45 × 10�}	mZ and 𝜌 = 0.013	kg	sZ/m. The stiffness loss is assumed to 

happen in the first element and the first three natural frequencies are used as the observed data, 

i.e., 𝑁÷ = 3.  

All natural frequencies decreases along the reduction in the weakness parameter 𝜃®, which is 

commonly observed and has been reported in many experimental studies [103]. In most cases, 5% 

decrease in natural frequencies can be referred to a severe damage in the structure [104]. According 

to the calculation by FEM, the 5% reduction in natural frequencies happens around 𝜃 = 0.4. Thus, 

in the numerical study, we only consider the cases that the local stiffness of the first element is left 

above 40% level, i.e., 𝜃® ≥ 0.4. In other words, we are trying to recover the trend of the damage 

growth in an early stage before the damage becomes severe. We also treat 𝜃 = 0.4 as the failure 

threshold of stiffness. Once the 𝜃 value drops to 0.4, the structure is considered as failed and not 

safe in the sense of stiffness reduction. The values of parameters in the hierarchical model are 

summarized in Table 4-2. The model takes the first three natural frequencies up to 𝑡 = 80 as the 

temporal data input, where 𝑡 is the time index or the load cycles. Without any knowledge on the 
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prior distribution parameters, values are assigned to make the priors non-informative to reduce the 

impact of prior choices.  

Table 4-2. Summary of Parameters in the Model 

 ℳ𝒩�𝒃,𝜎sZ𝑰� 𝒯𝒢�𝑎÷,𝑏÷� 𝒯𝒢(𝑎2, 𝑏2) 𝒩(𝜏¬ ,𝜎vZ) 
𝑁÷  𝜎sZ 𝒃 𝑎÷  𝑏÷ 𝑎2 𝑏2 𝜏¬  𝜎vZ 

3 108Z 
0 

1 1 1 1 
0 

108Z 0 0 
0 0 

4.3.1 Polynomials as Underlying Damage Growth Function 

In the first scenario, the parameter 𝜃® follows a second degree polynomial 𝛾(𝑡) = 𝜷𝑻𝒙𝒕 =

1 − 9.375 × 10�¾𝑡Z. It is assumed that there is no stiffness loss at the beginning and we only 

consider the case for 𝜃® ≥ 0.4 up to 𝑡 = 80. The polynomial trend and the simulated data are 

summarized in Fig.4-1. 

 

Fig 4-1 Summary plots of the first scenario. a) the polynomial trend of 𝜃. b) the relationship 

between 𝜃 and 𝑓¬. c) the measurements of natural frequencies 𝑓¬ 

In Fig. 4-1 a), 𝜃 is plotted following the second degree polynomial. The squares in the same 

plot represent the 𝜃 perturbed by noise in Level 2 with σ2Z = 0.001Z. Since the variance is very 

small, the squares are nearly lying on 𝛾(𝑡). In Fig. 4-1 b), the first three noise-free natural 

frequencies, i.e., 𝑓8, 𝑓Z and 𝑓¹, are plotted against 𝜃. These natural frequencies are obtained from 
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the FEM. The reduction of natural frequencies is about 5%. In Fig. 3-1 c), white noise with σ÷Z =

1 is added to the measurements of natural frequencies for an illustration purpose. In practice, 

natural frequencies can be measured accurately with noise around 0.1%. In the simulation, 

different levels of noise are added to the measurements of natural frequencies to test the 

effectiveness of the hierarchical model. 

The perturbed natural frequencies in Fig. 4 -1 c) are the temporal data input of the hierarchical 

model. The Gibbs sampling algorithm runs 𝐾 = 60,000 times and the first 30,000 iterations are 

considered as warm-up and are discarded. The samples that are generated in the warm-up period 

of the algorithm may follow different distributions before the convergence of the sampling process. 

In Fig. 4-2, plots for different values of 𝑇 are presented. The detailed comparisons of parameters 

are summarized in Table 4-3.  

In Fig. 4-2, 𝑇 indicates the amount of the temporal data used in the model estimations. For 

example, 𝑇 = 10 means only the first 10 observations of each natural frequency are being used in 

the estimation. The solid curve in each plot is the true underlying trend 𝛾(𝑡) and the dotted curve 

is the estimated trend 𝛾(𝑡)	¿with 95% confidence interval shown as dash curves. As the plots 

suggested, the estimation 𝛾(𝑡)	¿ recovers the underlying truth better for a larger	𝑇, i.e., for more data 

being used in the estimation process, which is not surprising. 
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Fig 4-2 Plots of 𝛾(𝑡) and 𝛾(𝑡)	¿  for different amount of input data. Solid curves are the underlying 

truth 𝛾(𝑡) and dotted curves are the estimation 𝛾(𝑡)	¿  for different 𝑇s with 95% confidence interval 

shown as dash curves. 

Table 4-3. Comparison of coefficients estimation for different 𝑇s 

 𝑇 = 10 𝑇 = 30 𝑇 = 80 
Δ𝛽8, 𝑠(𝛽88) 1.24 × 10�Z, 1.56 × 10�Z 3.8 × 10�¹, 6.1 × 10�¹ 2.3 × 10�¹, 4.0 × 10�¹ 
Δ𝛽Z, 𝑠(𝛽Z8) 1.31 × 10�Z, 6.8 × 10�¹ 1.9 × 10�¹, 1.0 × 10�¹ 2.6 × 10�}, 2.1 × 10�} 
Δ𝛽¹, 𝑠(𝛽¹8) 1.08 × 10�¹, 5.7 × 10�} 2.3 × 10�¾, 3.5 × 10�¾ 1.8 × 10�¾, 2.8 × 10�À 
𝑢8, 𝑠(𝑢8Á) 128.15, 2.57 	128.38, 2.13 123.94, 0.17 
𝑢Z, 𝑠(𝑢ZÁ) 398.41, 16.02 345.87, 3.77 342.66, 0.37 
𝑢¹, 𝑠(𝑢¹Á) 744.65, 17.23 682.18, 8.01 674.73, 0.61 
𝜎2Z8 , 𝑠(𝜎2Z8) 1.0 × 10�}, 9.8 × 10�M 1.0 × 10�}, 1.0 × 10�À 1.0 × 10�}, 1.0 × 10�À 
𝜎÷Z8 , 𝑠(𝜎÷Z8) 1.06 × 10�Z, 1.0 × 10�¹ 1.1 × 10�Z, 1.0 × 10�¹ 1.0 × 10�Z, 9.2 × 10�} 
𝑀𝐸1  1.77 0.017 0.001 
𝑑1  46.2 2.7 0.23 

In Table 4-3, the detailed comparisons of each parameter are presented for different values of 𝑇. 

Δ𝛽¬ = |𝛽9¬ − 𝛽¬| is the absolute difference between the estimated coefficient	𝛽�¬ and the true value 

𝛽¬. 𝑠(𝛽9¬) is the standard derivation of the estimation	𝛽9¬. 𝑀𝐸1 =
8
$f
∑ |$f
®28 𝛾(𝑡) − 𝛾(𝑡)	¿ | is the mean 

absolute difference between 𝛾(𝑡) and 𝛾(𝑡)	¿  up to 𝑡 = 80	for a given 𝑇. Note that, 𝑀𝐸1 computes 

the average difference of the entire curve, while 𝛾(𝑡)	¿  is only approximated by the observed data 

up to time 𝑇. 𝑑1 	calculates the absolute difference between estimated failure time and the true 
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failure time if we use threshold 𝜃 = 0.4, i.e., 𝑑1 = |𝛾�8(0.4)¿ − 𝛾�8(0.4)|, where 𝛾�8 is the 

inverse function of 𝛾 mapping from 𝜃 to 𝑡.  

It can be seen that the estimations of 𝛽¬s become more accurate with smaller standard 

derivations with larger sample size, which also leads to smaller values of 𝑀𝐸1 and 𝑑1. The 

estimations of the 𝜎2Z and 𝜎÷Z remain the same level of accuracy regardless the amount of observed 

data, since all the data shares the same 𝜎2Z and 𝜎÷Z along time and the Gibbs sampling is able to 

return the true values of the variation in the system.	

In Table 3-4, we present the results of model selection using AIC for different degrees of 

polynomials. The values of AIC indicate the second degree polynomial should be selected among 

4 different models, which is consistent with the underlying truth 𝛾(𝑡), for both cases, 𝜎÷Z = 1Z and 

𝜎÷Z = 0. 01Z.  

Table 4-4. AIC Comparison for Different Models in First Scenario 

 𝜎÷Z = 1Z 𝜎÷Z = 0. 01Z 
Degree of 

Polynomials Log-Likelihood AIC Log-Likelihood AIC 

1 -531.65 1067.30 -83.67 171.34 
2 -525.42 1056.84 -78.18 162.36 
3 -526.86 1061.72 -79.47 166.94 
4 -527.23 1064.46 -80.05 170.10 

4.3.2 Beta Function as Underlying Damage Growth Function 

In the second scenario, we consider the case when the parameter 𝜃® follows a beta function. 

Again, we assume there is no stiffness loss at the beginning and we only consider the case for 𝜃 ≥

0.4 up to 𝑡 = 80. We summarize the second scenario in Fig. 3-3. 
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Fig 4-3 Summary plots of the second scenario. a) the beta function trend of 𝜃. b) the relationship 

between 𝜃 and 𝑓¬. c) the measurements of natural frequencies 𝑓¬ 

Fig.4-3 b) is the same as Fig 4-1 b), since the two scenarios share the same relationship 

between nature frequencies and weakness parameter 𝜃®. The difference is the underlying trend of  

𝜃®. In previous case, it is assumed the weakness grows gradually along time. However, in this 

example, we consider a non-uniform degradation rate, where 𝜃® decreases slowly at the beginning 

and drops rapidly at the end as shown in Fig.4-3 a). Such decreasing pattern is also reflected in the 

natural frequencies in Fig. 4-3c). The natural frequencies oscillate around the similar mean for a 

long time before they reduce quickly at the end. Plots for different values of 𝑇 are presented in 

Fig. 4-4 and detailed comparisons of parameters are summarized in Table 4-5.  

Similar results can be obtained from Fig. 3-4 and Table 3-5 compared with those in Fig. 4-2 

and Table 3-3. It is obvious that more data will lead a better estimation of the underlying truth. 

The estimation 𝛽9¬𝑠 are reported in Table 3-5 instead of the Δ𝛽¬, since there is no true values of 𝛽¬s 

in this case. 
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Fig 4-4 Plots of 𝛾(𝑡) and 𝛾(𝑡)	¿  for different amount of input data. Solid curves are the underlying 

truth 𝛾(𝑡) and dotted curves are the estimation 𝛾(𝑡)	¿  for different 𝑇s with 95% confidence interval 

shown as dash curves. 

Table 4-5. Comparison of coefficients estimation for different 𝑇 

 𝑇 = 10 𝑇 = 30 𝑇 = 80 
𝛽88, 𝑠(𝛽88) 1.2, 1.9 × 10�Z 1.33,6.8 × 10�¹ 1.13, 5.3 × 10�¹ 
𝛽Z8, 𝑠(𝛽Z8) 0.03, 1.5 × 10�Z −1.5 × 10�¹, 1.4 × 10�¹ −1.7 × 10�Z, 5.1 × 10�} 
𝛽¹8, 𝑠(𝛽¹8) −5.7 × 10�}, 3.1 × 10�¹ 0.97 × 10�}, 7.2 × 10�¾ −3.9 × 10�¹, 3.2 × 10�¾ 

𝛽}8, 𝑠(𝛽}8) −5.2 × 10�¾, 2.3 × 10�} −1.4 × 10�À, 1.38 × 10�À −6.2 × 10�À, 2.1 × 10�M 
𝑢8, 𝑠(𝑢8Á) 129.9, 3.27 128.2, 1.83 124.7, 0.72 
𝑢Z, 𝑠(𝑢ZÁ) 397.0, 12.24 381.47, 4.25 344.07, 1.03 
𝑢¹, 𝑠(𝑢¹Á) 746.6, 14.11 715.68, 6.8 677.20, 1.81 
𝜎2Z8 , 𝑠(𝜎2Z8) 1.0 × 10�}, 1.0 × 10�À 1.0 × 10�}, 1.0 × 10�À 1.0 × 10�}, 1.1 × 10�À 
𝜎÷Z8 , 𝑠(𝜎÷Z8) 0.009, 1.3 × 10�¹ 1.0 × 10�Z, 7.5 × 10�} 6.3 × 10�¹, 5.2 × 10�} 
𝑀𝐸1  3.2 0.073 0.017 
𝑑1  57.4 14.3 5.7 

AIC comparison table is shown in Table 4-6. The 3rd degree polynomial is chosen for its minimum. 

Table 4-6. AIC Comparison for Different Models in Second Scenario  

 𝜎÷Z = 1Z 𝜎÷Z = 0. 01Z 
Degree of 

Polynomials Log-Likelihood AIC Log-Likelihood AIC 

1 -546.55 1097.1 -113.58 231.16 
2 -538.17 1082.34 -93.46 192.92 
3 -536.42 1080.84 -87.15 182.3 
4 -535.91 1081.82 -86.24 182.48 
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4.3.3 Performance vs Amount of sample data 

In the 1st and the 2nd scenarios, we investigate the effectiveness of the proposed model for 

different weakness growths. 𝑀𝐸1 is used to compare the difference between 𝛾(𝑡) and 𝛾(𝑡)	¿under 

different amount of observed temporal data. In this section, we further explore the impact of the 

amount of data on the performance of the estimation procedure. We summarize the results in Fig. 

4-5. 

 

Fig 4-5 Plots of 𝑀𝐸1 for different 𝑇s in both polynomial and beta-function cases. a) Polynomial 

scenario, b) beta-function scenario. 

It can be seen from Fig. 4-5 that mean error drops rapidly as data accumulating. Such feature 

enables us to recover or approximate the underlying damage growth accurately at an early stage 

before damages become severe. It is not surprised to observe that 𝑀𝐸1 decrease even faster with 

smaller values in the polynomial case compared with that in the beta-function case, since the 

polynomial structure is adopted to estimate 𝛾(𝑡) in the hierarchical model.  

4.4  Case Study Using Experimental Modal Analysis Data 

In this section, our proposed model is tested using real data obtained from experimental modal 

analysis.  A fixed-fixed aluminum beam is the structure used in the experiment. The parameters of 
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the beam are summarized in Table 4-7. A FEM with 51 elements is set up according to the beam 

parameters.  

Table 4-7. Parameters of the Beam Structure  

Material Young’s Modulus Density Length Width Thickness 
Aluminum 68.9Gpa 2700kg/𝑚¹ 510 mm 19.05𝑚𝑚 4.76𝑚𝑚 

 

To simulate the stiffness loss, small masses are added on the middle of the beam and an 

accelerometer is used to along with modal hammer test to acquire the natural frequencies.  

Mathematically, adding small masses while keeping the stiffness unchanged has equivalent effect 

with respect to inducing stiffness reduction while keeping the mass unchanged. An illustration is 

shown in Fig. 4-6. Each small mass unit weights 2.9g, and a total of 9 masses are added. In Table 

4-8, we report the measured natural frequencies under 9 different masses, the equivalent stiffness 

parameter 𝜃 and the assigned time 𝑡 for each 𝜃. The 0-mass case stands for the healthy condition 

of the beam. The relationship between natural frequencies and 𝜃	is approximated using linear 

function as shown in Fig. 4-7. The R-squared values indicate good explanations of the measured 

natural frequencies by linear functions. The values of 𝑢¬ and 𝑣¬ are labeled in each plot in Fig. 4-

7. Note that, 𝜃 = 1.0 is not considered in the plot, since the linear approximation can only be 

adopted for a small region. Thus, the degradation is assumed to start from 𝜃 = 0.46 in the case 

study. 
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Fig 4-6 Masses are added on the middle of the beam to simulate the stiffness reduction with an 

accelerometer located near one end of the beam. 

Table 4-8. Natural Frequencies under Different Masses with Stiffness Estimation (Hz) 

#mass 								𝑓8 									𝑓Z  										𝑓¹  								𝜃 							𝑡 
0 92 498 1219 1  
1 89.5 489 1200 0.46 0 
2 87.5 481 1180 0.30 74 
3 85 473 1161 0.22 75 
4 83 466 1151 0.17 76 
5 82 463 1145 0.14 77 
6 80 457 1134 0.12 78 
7 79 455 1123 0.11 79 
8 76 448 1117 0.10 80 

 

 

Fig 4-7 Linear approximations of the mappings from 𝜃 to 𝑓¬s 

In the experimental setting, the impact of the added masses on the natural frequency change 

can be viewed as equivalent to the impact caused by stiffness loss. Thus, the added masses are 

converted to the equivalent stiffness. The experimental data provide a static mapping between a 
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given stiffness loss and the measured natural frequency. In order to test and validate the proposed 

method for estimating the growth of the damage, we assigned time instances (last column in Table 

4-8) to the experimental cases of different added masses. The time instances are assigned in such 

a way that the equivalent stiffness loss follows a beta-function trend. The proposed hierarchical 

model is adopted to approximate the damage growth using 2nd degree polynomial. 𝜃 = 0.1	is used 

as the failure threshold of stiffness in the case study. The results are summarized in Fig. 3-8 and 

Table 3-9. It can be seen from both the plot and table that the proposed method can successfully 

approximate data using 2nd degree polynomial. The AIC comparison table is summarized in Table 

4-10. The estimation of 𝜷 has small standard deviation indicating a convergence of the Gibbs 

sampling algorithm. 𝑢¬𝑠 and 𝜎2Z are estimated accurately. Note that, in the case study, 𝜎2Z =

1.0 × 10�} is used to represent the modelling error of 𝜃.  

 

Fig 4-8 Plots of data 𝜃 and 𝛾(𝑡)	¿ . 𝜃s are represented in circles and dotted curves are the estimation 

𝛾(𝑡)	¿  with 95% confidence interval shown as dash curves. 
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Table 4-9. Coefficients estimation for real experimental data 

𝛽88, 𝑠(𝛽88) 0.4604, 0.013 
𝛽Z8, 𝑠(𝛽Z8) 0.0448, 0.0025 
𝛽¹8, 𝑠(𝛽¹8) −6.0 × 10�}, 3.2 × 10�¾ 
𝑢8, 𝑠(𝑢8Á) 76.56, 0.47 
𝑢Z, 𝑠(𝑢ZÁ) 446.0, 0.73 
𝑢¹, 𝑠(𝑢¹Á) 1108.3, 0.93 
𝜎2Z8 , 𝑠(𝜎2Z8) 1.0 × 10�}, 1.0 × 10�À 
𝜎÷Z8 , 𝑠(𝜎÷Z8) 0.72, 0.29 
𝑀𝐸®  0.21 
𝑑1  1.3 

 

Table 4-10 AIC Comparison for Different Models in the Experimental Study 

Degree of 
Polynomials 

Log-
Likelihood AIC 

1 -167.19 338.37 
2 -135.11 276.21 
3 -134.27 276.53 
4 -135.32 280.64 

 

4.5  Conclusion  

This research presents a dynamic data-driven hierarchical Bayesian degradation model for 

estimating the evolving path of stiffness loss based on the measured natural frequencies. The model 

adopts a two level hierarchical structure. In the first level, the observed natural frequencies are 

assumed to be generated from a normal distribution with given stiffness. In the second level, the 

evolving path of stiffness is described using polynomial functions. The unknown parameters in the 

model are described by conditional posterior distribution in Bayesian framework and estimated by 

Gibbs sampling method. Numerical studies and results are used to validate the model for different 

evolving path of stiffness loss. The model performed efficiently in all cases.  
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One possible limitation of the proposed method is that the damage growth path is described 

by a polynomial function. Although polynomial function is flexible and relatively easy to use, it 

may cause some modeling errors when the underlying damage growth path cannot be well 

represented by a polynomial. For example, in practice, the system degradation often follows a 

beta-function like evolving path along time or load cycles. The system degradation state stays flat 

before rapid dropping at the end. The ability to detect the changing point quickly and accurately 

before the rapid drop can lead a better maintenance strategy, which enhances the safety of 

structures. However, such trend may not well described by a low order polynomial function. One 

idea is to use piecewise polynomial functions that consist of multiple low-order polynomials and 

change points as the damage growth model. Effective change detection technique will be needed.  
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5 Detecting Point Pattern of Multiple Line Segments Using Hough 
Transformation* 

 In Chapter 2, 3 and 4, quantitative analyses are applied on damage identifiability, bias 

reduction and damage prognosis in mechanical structures. In Chapter 5 and 6, two specific data 

analysis methods are adopted for spatial point pattern and functional data types, respectively. 

In this chapter, we present a new method to detect the point patterns that consist of multiple 

line segments. The basic idea is that by using the Hough transformation, we convert the point 

pattern detection problem into a simple point matching problem. Compared with the existing point 

pattern matching methods, the proposed method does not require training data and is relatively 

easy to implement and compute. The details of the detection algorithm are presented and the 

parameter selection and performance evaluation of this method are investigated. Case studies are 

presented to validate the effectiveness of this method. 

5.1  Introduction  

A spatial point pattern (SPP) is a set of locations randomly distributed within a designated 

2D or 3D space. SPP represents critical quality characteristics in various manufacturing processes. 

For example, surface defects on many products such as hot rolled steel bar and slab [105], 

semiconductor wafer [106], and glass [107] critically impact the product quality and process yield. 

In the emerging micro/nano processes, the particulate defects, which refer to nano/micro scale 

particles on the product surface that cause open or short circuit, is the important limiting factor of 

the process yield [108]. In composite fabrication, the distribution of the reinforced particles in the 

                                                             
* This chapter is based on the paper: Liu, Yuhang, and Shiyu Zhou. "Detecting Point Pattern of 
Multiple Line Segments Using Hough Transformation." IEEE Transactions on Semiconductor 
Manufacturing 28.1 (2015): 13-24. 
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base material directly impacts the mechanical property of the product [109,110]. Because SPP is 

a crucial indicator of quality in many processes, it is highly desirable to establish systematic quality 

control methodologies directly based on modeling and analysis of SPP data. 

 Generally, surface defects can be categorized into two types [111,112]: 1) globally 

scattered random defects, which are also known as background noise, caused by natural variation 

of manufacturing processes,  and 2)  locally clustered defects due to certain assignable causes. For 

example, the line segments on wafers can be caused by scratches during material handling and 

edge ring on wafer surface may be due to chemical stains. Since the assignable causes normally 

generate defects systematically, the detection of specific patterns of surface defects can often 

provide valuable information about the root causes. In the conventional quality control approaches, 

analysis of SPP data has been limited to high-level summary statistics.  For example, statistical 

monitoring is realized by using various control charts based on the total count of defects on a 

surface area. For instance, 𝑐 chart is often used to monitor the total number of defects with the 

underlying assumption that the number of defects follows Poisson distribution. An alarm will be 

raised when the number of defects falls outside the control limit [113, 114]. Control charts are 

conceptually intuitive and convenient to use, but they cannot provide information about specific 

spatial patterns of the defects since only the count data are used as monitoring statistics.   

 Beyond the statistical process control approaches, some techniques have been developed 

to detect the clustering and/or specific geometric patterns in the distribution of surface defects. 

These methods can be categorized into two types: (1) Spatial statistic based methods.  In these 

methods, spatial statistic theory is adopted to model and analyze the nonrandom clustering patterns 

of defects. For example, Friedman et al [115] developed a model free estimation method to detect 

any clustering of surface defects on wafer. Jeong et al [116] developed an automatic identification 
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method based on spatial correlogram and dynamic time warping. The presence of clusters of 

defects can be detected in all of these methods. However, these methods are not designed to 

distinguish specific spatial patterns. In other words, they lack the ability to identify the geometric 

shape of a defect pattern. (2) Data mining methods. Neural networks, classification, fuzzy rule-

based inferences and clustering methods are the most commonly used techniques in this category 

[117-126]. In these methods, the template pattern is learned from a training dataset and then the 

learned rules are used to detect the template pattern in the newly collected surface defects data. 

One issue of these methods is that they typically need a relatively large training dataset that 

contains the specific template patterns. However, such training datasets are often costly to obtain 

in practice. Zhou et al. [127] recently proposed a control chart method to detect the existence of 

simple geometric patterns in surface defects by using the conventional Hough Transform. 

However, that method requires that the patterns can be described by a simple analytic function, 

such as a line or circle. It lacks the ability to detect arbitrarily complex defect patterns. 

In this chapter, we propose a new detection method to detect the existence of an arbitrary 

template consisting of multiple line segments in a SPP based on the Hough Transformation (HT).    

The HT is a commonly used feature extraction technique for analytical shapes, such as lines, circles 

and ellipses. The traditional HT method can only detect an object that can be described by an 

analytic equation. The Generalized Hough Transformation (GHT) is further developed based on 

the HT to detect arbitrary shapes [130].  The way the GHT works is to construct an R-table to store 

parameters (𝜙, 𝑟, 𝛼) of every edge point (𝑋,𝑌) on an arbitrary pattern according to an arbitrarily 

selected reference point (𝑋k ,𝑌k), where 𝜙 is the tangent angle of the edge point, 𝑟 is the length 

between (𝑋,𝑌) and (𝑋k ,𝑌k), and 𝛼 is the angle between the line segment with endpoints (𝑋k ,𝑌k) 

and (𝑋,𝑌) and the horizontal line. Based on the R-table, the observed defect points can generate 
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votes to different potential reference locations (𝑋k ,𝑌k)s. The one with the highest vote will be 

determined as the detected reference location. Once the reference point is located, the position of 

the shape is determined and detected. The detailed algorithm of GHT can be found in [130]. Even 

though the GHT has played an important role in generalized shape detection since it was 

developed, it has the limitation for its substantial computational and storage requirements [129]. 

The limitation becomes acute when object orientation and scale have to be considered, since the 

rotation angle and the scaling factor are two more parameters that need to be decided by trying all 

possible situations. In general, the GHT needs to construct an R-table and go through a four 

dimensional matrix (two dimensions for the position of a reference point and the other two are 

referred to rotation and scaling) to detect the existence of the shape, which requires a large storage 

space and extensive computation for a 2D arbitrary shape. To overcome the limitation of the GHT, 

we propose a HT-based pattern detection technique without the construction of the R-table. 

Instead, for both of the given template and the observed defect point pattern, the HT is used to 

extract information about the Hough parameters, i.e., information about angles and distances for 

each line segment. Then the parameters from the template and that from the observed defect point 

pattern are compared and matched through two key steps: angle matching and distance matching. 

This method can also detect any transformation of the defect pattern, i.e., shifting, scaling and 

rotation from the position of the template. Compared to existing techniques, this method has the 

following characteristics: (i) It focuses on detecting a specific spatial pattern with a given template 

shape instead of only detecting the existence of defect clusters. (ii) The method has the capability 

to detect any irregular patterns consisting of multiple line segments. In this chapter, we also 

provide a design procedure for easy implementation and performance evaluation. 
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The rest of the chapter is organized as follows. Section 5.2 states the problem formulation 

and a brief introduction of the HT. A fundamental lemma is also presented in this section. Section 

5.3 presents the detailed algorithm of the proposed method. Section 5.4 provides a performance 

evaluation. Section 5.5 presents a case study to illustrate and validate the method. Section 4.6 

concludes the chapter. 

5.2 Problem formulation and the basic matching principle 

For the sake of clarity, we shall introduce some terminologies first. A template is an 

arbitrary shape formed by solid lines. An example of a 4-edged polygon template is presented in 

Figure 5-1(a). Note that a template is not necessarily to be a closed polygon. A defect map is a 

binary image consisting of randomly distributed black points (i.e., defects) on a white background. 

The points could be globally scattered random points, known as background noise, and locally 

clustered points, known as defective regions. In Figure 5-1(b) and 5-1(c), two defect maps 

corresponding to the 4-edeged template with different sizes and rotation angles are shown. Without 

loss of generality, we assume the points in the background noise and the defective region are 

completely random distributed with density parameter 𝜆f and 𝜆8, respectively, where the density 

can be viewed as the number of points in a unit area. Furthermore, the width of the defective region 

is denoted as 𝑤 as shown in Figure 4-1. 
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Fig 5-1 Examples of a template with two defect maps: (a) template; (b) defect map 1; (c) defect 

map 2. 

The problem can be formulated as follows. Assume there is an 𝑛-edged template. We want 

to determine if there are defective regions in a defect map that are identical to the shape of the 

template with an arbitrary transformation 𝑻 including rotation, scaling and shifting. 

Mathematically, the transformation of a point located at (𝑥, 𝑦) can be described as: 

𝑻(𝑥, 𝑦) = �
1 0 Δ𝑥
	0	 1 Δ𝑦
0 0 1

� �
𝑠 0 0
0 𝑠 0
0 0 1

� �
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼 0
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0
0 0 1

� Ð
𝑥
𝑦
1
Ñ, 

where 𝛼 is the rotation angle around the original point,	𝑠 is the scaling factor and  𝑣 = (Δ𝑥, Δ𝑦) is 

the translation vector. Thus, 𝑻	can be denoted as 𝑻Ä,l,𝒗. For example, the defective regions in 

Figure 5-1(b) and 1(c) are geometrically identical to the template in Figure 5-1(a) with different 

angle rotations and scaling factors. The problem is to detect the existence and to identify the best 

line segments in the defect map for a given template.  
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 The basic idea of the proposed method is based on the Hough Transformation, since it has 

a strong capability in detecting lines. Therefore, we shall briefly introduce the principles of the HT 

for line detection in Section 5.2.1. 

5.2.1 Introduction of the Hough Transformation for Line Detection 

The Hough Transformation transfers a point from the physical domain to a curve in its 

parameters’ domain. A line in 𝑥 − 𝑦 plane can be uniquely defined by its distance  𝜌 from the 

origin and the angle 𝜃	of its norm as 

𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 = 𝜌                                                 (5.1) 

where 𝜃 is restricted within [0, 𝜋]. This parameterization maps every line in 𝑥 − 𝑦 plane to a 

unique point in 𝜃 − 𝜌 plane. For a point 𝑃f	at	(𝑥f, 𝑦f), it will be mapped to the parameter plane as 

a sinusoidal curve defined as: 

        𝑥f𝑐𝑜𝑠𝜃	 + 𝑦f𝑠𝑖𝑛𝜃 = 𝜌. 

Therefore, for points lying on the same line in 𝑥 − 𝑦 plane, their corresponding sinusoidal curves 

in 𝜃 − 𝜌 plane will pass through a common point, which is the parameters of the line. Based on 

this mapping relationship, a voting process can be designed to detect collinear points in 𝑥 − 𝑦 

plane, i.e., to detect any line patterns in the physical domain. In 𝜃 − 𝜌 plane, the 𝜃-axis and 𝜌-axis 

are divided into small intervals with equal length δ𝜃 and δ𝜌 respectively. Thus, the voting score 

of each pair of parameter (𝜃, 𝜌) is equivalent to the number of intersections of sinusoidal curves 

in each cell. A Hough matrix is then defined based on this voting process and peak value is defined 

as the highest voting score of each element in the matrix. In 𝑥 − 𝑦 plane, the voting score of (𝜃, 𝜌) 

is equivalent to count how many points are in a strip with width 	δ𝜌,  where the strip is located in 
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𝑥 − 𝑦 plane with a distance 𝜌  and an angle 𝜃. A strip in 𝑥 − 𝑦 plane with parameters (𝜃, 𝜌) is 

called a Hough strip in this chapter. An example of this voting process is illustrated in Figure 4-2.  

 

Fig 5-2 Line detection by the HT. (a) Accumulator array. (b) Defect map with a Hough strip 

 

5.2.2 Basic principles for template matching based on the Hough transformation 

Mathematically, the HT-based template matching problem can be stated as follows. Let 

(𝜽𝟎,𝝆𝟎) be the set of parameters of the template with 𝑛 line segments, where 𝜽𝟎 = (𝜃8f, 𝜃Zf,… 𝜃�f) 

are the angle parameters and 𝝆𝟎 = (𝜌8f, 𝜌Zf, … , 𝜌�f) are the distance parameters. Similarly, (𝜽,𝝆) is 

the set of parameters of the detected line segments in the defect map, where 𝜽 = (𝜃8, 𝜃Z	, . . 𝜃�) 

are the angle parameters and 𝝆 = (𝜌8, 𝜌Z, … , 𝜌�) are the distance parameters. Without loss of 

generality, we assume 𝑛 ≤ 𝑚. The problem is to find a subset (𝜽𝒔,𝝆𝒔) of size 𝑛 in 𝜽	and 𝝆 such 

that the parameters set (𝜽𝟎,𝝆𝟎) can be matched under an arbitrary transformation 𝑻.  To solve this 

problem, we need the following lemma. 

Lemma 5-1 . A template under transformation 𝑻Ä,l,𝒗 will result in its HT parameters (𝜽𝟎,𝝆𝟎) 

changing as follows: 
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⎢
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𝜃¬f′ 𝜌¬f′
: :
𝜃�f′ 𝜌�f′⎦

⎥
⎥
⎥
⎤

 

where (L1) 𝜃¬f
j = 𝜃¬f − 𝛼 for a clockwise rotation,  and (L2) 𝜌¬f′ = 𝑠𝜌¬f + Δ𝑥 cos(𝜃¬f′) +

Δ𝑦𝑠𝑖𝑛(𝜃¬f
j).  

Proof.  

Assume the rotation is in the clockwise direction. We define (𝑥¬, 𝑦¬) is the intersection point 

between the orthogonal line of the 𝑖th edge going through the original point and the 𝑖th edge. Thus, 

we have 

𝑡𝑎𝑛𝜃¬f = 𝑦¬/𝑥¬.																																																																										(5.2)	

An 𝛼 rotation will result in the position changing from (𝑥¬, 𝑦¬) to (𝑥¬′, 𝑦¬′), i.e.: 

Ç𝑥¬′𝑦¬′
È 		= 			 � 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼�	�
𝑥¬
𝑦¬�		 

where 𝑥¬j = 𝑥¬𝑐𝑜𝑠𝛼 + 𝑦¬𝑠𝑖𝑛𝛼 and 𝑦¬j = −𝑥¬𝑠𝑖𝑛𝛼 + 𝑦¬𝑐𝑜𝑠𝛼. We have 

tan(𝜃¬f − 𝛼) =
Î]Ï�2ø

,�Ä�
ÐbÎ�2ø

,�Ä�
= Î]Ï 2ø

,kVlÄ�kVl2ø
,l¬�Ä

ÐbÎ2ø
,kVlÄ«l¬�2ø

,l¬�Ä
. 

Multiply this equation by  Ñø
kVl2ø

,, we have 

tan(𝜃¬f − 𝛼) =
Òø
�

Ñø
� .   

For the case 𝑥¬ = 0, i.e.,𝜃¬f = 90°, we have 𝑥¬j = 𝑦¬𝑠𝑖𝑛𝛼 and 𝑦¬j = 𝑦¬𝑐𝑜𝑠𝛼, equivalently, we have  



99 
 

tan(90° − 𝛼) = cot(𝛼) = Òø
�

Ñø
� . 

Note that, the scaling and shifting process have no impact on angles, i.e.,  tan	(𝜃¬f′) =
Òø
�

Ñø
�. Thus, 

(L1) is proved.  

To see (L2), considering one line from Eq. (5.1), we have 

𝑦 = − kVl2
l¬�2

𝑥 + 3
l¬�2

, for 𝜃	 ≠ 0. 

The equation has the following structure: 

𝑦 − Δ𝑦 = − ÐbÎ(2«Ä)
Î]Ï(2«Ä)

(𝑥 − Δ𝑥) + l3
l¬�(2«Ä)

                            (5.3) 

after the transformation 𝑻. Regroup Eq. (5.3), we get 

𝑦 = − ÐbÎ	(2«Ä)
l¬�(2«Ä)

𝑥 + l3«0Ñ ÐbÎ(2«Ä)«0Òl¬�(2«Ä)
l¬�(2«Ä)

. 

Thus, the new distance after transformation equals to: 

𝜌j = 𝑠𝜌 + Δ𝑥 cos(𝜃 + 𝛼) + Δ𝑦𝑠𝑖𝑛(𝜃 + 𝛼) = 𝑠𝜌 + Δ𝑥 cos(𝜃j) + Δ𝑦𝑠𝑖𝑛(𝜃j). 

This derivation can be applied to every line of the template. Thus (L2) is proved. ∎ 

 Based on Lemma 5-1, two steps (i.e., the angle matching based on L1 and the distance 

matching based on L2) for the template matching can be designed as follows. 

• Angle Matching 

 A subset of 𝑛 elements satisfying (L1) needs to be selected from 𝜽. One possible way is to 

try all possible rotation angles 𝛼. However, this method is time consuming. An easy result can be 

derived based on (L1), that is 𝜃¬f − 𝜃Ôf = 𝜃¬f
j − 𝜃Ôf

j, ∀𝑖, 𝑗. This invariant property can be used to 
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select sets of candidates in the parameter set (𝜽,𝝆). To achieve this, we first sort the template 

angles 𝜽𝟎 as 𝜽𝟎 = h𝜃f(8), 𝜃f(Z), … , 𝜃f(�)p, with 𝜃f(8) ≤ 	𝜃f(Z) ≤ ⋯ ≤ 𝜃f(�), and then an angle 

difference vector can be defined as 𝚫𝜽𝟎 = h𝜃f(8) −	𝜃f(Z), 𝜃f(Z) −	𝜃f(¹), … , 𝜃f(�) − 𝜃f(8)p. 

Further, we can obtain the differences between any two elements of 𝜽 and put them in the matrix 

𝑴𝜽 as, 

𝑴𝜽 = Ö

0 𝜃8 − 𝜃Z ⋯ 𝜃8 − 𝜃�
𝜃Z − 𝜃8 ⋱ ⋯ 𝜃Z − 𝜃�

⋮ ⋮ ⋱ ⋮
𝜃� − 𝜃8 𝜃� − 𝜃Z ⋯ 0

Ø

�×�

 

Please note that we do not need to sort 𝜽 to obtain 𝑴𝜽. The 𝑗th candidate set 𝜽𝒋 ⊆ 𝜽 is then defined 

as 𝜽𝒋 = (𝜃8
Ô, 𝜃Z

Ô , … , 𝜃�
Ô)			with 	𝚫𝜽𝟎 − 𝑡2 ≤ 𝚫𝜽𝒋 ≤ 𝚫𝜽𝟎 + 𝑡2 , where 𝚫𝜽𝒋 = �𝜃8

Ô − 𝜃Z
Ô, 𝜃Z

Ô −

𝜃¹
Ô ,… , 𝜃�

Ô − 𝜃8
Ô�,  𝜃Õ

Ô  is the 𝑘th element of 𝜽𝒋, and 𝑡2  is an allowance parameter. The reason of 

using an allowance parameter in the matching is that because of the random distribution of points, 

it is impossible for an exact match. The rotation angle of the 𝑗th set can be estimated as 𝛼Ô =

8
�
	ΣA28� (𝜃Õ

Ô − 𝜃Õf). The details of the angle matching algorithm is presented as follows. 
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Table 5-1. Pseudocode for angle matching 

Input : 𝜽𝟎,𝜽 
Sort 𝜽𝟎 and 𝜽 in an ascending order  

 Calculate 𝚫𝜽𝟎 
 Calculate 𝑴𝜽𝒎×𝒎 of 𝜽 
 Define a 𝑚 ×𝑚 zero matrix 𝑩 
      for i=1:m, j=1:m 

if 𝑴𝜽(𝑖, 𝑗) in [𝚫𝜽𝟎 − 𝑡2, 𝚫𝜽𝟎 + 𝑡2] 
 𝑩(𝑖, 𝑗) = 1 
end 

 end 
 for all nonzero element in 𝑩 

if 	𝑩(𝑖8, 𝑖Z) = 𝑩(𝑖Z, 𝑖¹) = ⋯ = 𝑩(𝑖�, 𝑖8) = 𝟏 for 𝑖Õ ≠ 𝑖Ö 
if 𝑴𝜽(𝑖Õ, 𝑖Õ«8) in [𝚫𝜽𝟎(𝑘) − 𝑡2, 𝚫𝜽𝟎(𝑘) + 𝑡2] for k=1,2,…,n-1 
A candidate set (𝜃¬E, 𝜃¬C	, … , 𝜃¬Ü) from 𝜽 is determined 
A rotation angle 𝛼 is calculated as 𝛼 = 8

�
	ΣA28� (𝜃¬Q − 𝜃Õ

f) 
end 

  end 
 end  
 return all candidate sets 

 

After the angle matching procedure, if there is no candidate set being selected, we can 

claim the non-existence of the template pattern in the defect map. If multiple candidate sets survive 

the angle matching, then a checking based on the property (L2), called the distance matching, can 

be carried out as follows. 

• Distance Matching 

 Assume the set 𝜽Ô is selected after angle matching. The corresponding set of distance 

parameters is denoted as 𝝆𝒋 = (𝜌8
Ô, 𝜌Z

Ô,… , 𝜌�
Ô), where (𝜃Õ

Ô, 𝜌Õ
Ô) is a pair of parameters of a detected 

line in the defect map by the HT. Because the rotation angle  𝛼 of each candidate set has been 

estimated in the angle matching procedure, the other two transformation parameters 𝑠 and 𝒗 can 
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be determined for 𝑻Ä,l,𝒗 by minimizing the difference in the origin-line distance between the 

template and the detected line segments as:  

𝑑Ô∗ = 	𝑚𝑖𝑛𝒛𝒋 			||𝝆𝒋 −𝑫𝒋𝒛𝒋||                                                            (5.4) 

where 𝑫𝒋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡cos(𝜃8

fÔ) 𝑠𝑖𝑛 h𝜃8f
Ôp 𝜌8f

⋮ ⋮ ⋮
cos(𝜃¬f

Ô) sin h𝜃¬f
Ôp 𝜌¬f

⋮ ⋮ ⋮
cos(𝜃�f

Ô) sin h𝜃�f
Ôp 𝜌�f⎦

⎥
⎥
⎥
⎥
⎥
⎤

	 ,  𝒛Ô = º
Δ𝑥Ô
Δ𝑦Ô	
𝑠Ô

» and  𝜃¬f
Ô = 𝜃¬f + 𝛼Ô for the 𝑗th 

candidate set.  By (L2) in Lemma 5-1, the new distance 𝜌¬f
Ôafter 𝑻ÄÞ ,lÞ,𝒗𝒋 has the form 𝜌¬f

Ô =

𝑠Ô𝜌¬f + Δ𝑥Ô cos h𝜃8f
Ôp + Δ𝑦Ô𝑠𝑖𝑛(𝜃8f

Ô) for all 𝑖. The goal is to find a transformation 𝑻ÄÞ,lÞ,𝒗𝒋 that 

minimize the sum of squares of the differences, i.e.,  Σ¬ h𝜌¬
Ô − 𝜌¬f

Ôp
Z
, which has an equivalent 

matrix form as shown in Eq. (5.4).  

Since this is a standard least square optimization problem, a closed form solution of the 

optimal 𝒛𝒋can be obtained by  𝒛𝒋 = (𝑫𝒋𝑻𝑫𝒋�𝟏)𝑫𝒋𝑻𝝆𝒋, where 𝑫𝒋𝑻 and 𝑫𝒋�𝟏are the transpose and 

inverse of the matrix 𝑫𝒋 respectively.  Thus, we can apply this optimization procedure to all the 

candidate sets that survive the angle matching and return the smallest value among all 𝑑Ô∗s. If the 

returned value is smaller than a threshold 𝑡3, then we claim a matching is found. Intuitively, the 

distance matching is to check the ‘fitness’ between the candidate shape and the template which is 

under scaling and shifting. 

 In this section, we presented basic principles of two critical matching steps, the angle 

matching and the distance matching. To successfully implement this pattern matching strategy, 
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several parameters such as 𝑡2 , 𝑡3 need to be selected. The complete implementation of the 

algorithm and the parameters design issues are discussed in details in the following section. 

5.3  Parameter selection for the pattern matching algorithm 

In this section, we first present the entire flow of the pattern matching algorithm as shown 

in Figure 5-3. The template and the defect map are the inputs to the algorithm. For both images, 

The HT is used to detect the line segments in the template and the defect map. To apply the Hough 

transformation, we need to select the HT parameters (𝛿𝜃, 𝛿𝜌) for the template and the defect map, 

respectively. Because the template is formed by solid lines, it is straightforward to identify all the 

line segments in the template with parameters (𝜽f,𝝆f). However, for the defect map, we need to 

establish a couple of thresholding parameters, i.e., 𝑝+,and 𝑡1, to detect the line segments. 

Particularly, if the highest voting score 𝐻1 in the Hough matrix is smaller than a threshold 𝑝+,, we 

claim the defect map containing background noise only. To further reduce the influence of 

background noise, if the voting score of a cell at (𝜃, 𝜌)	is higher than 𝑡1, then we treat the 

corresponding line with parameters (𝜃, 𝜌) as a candidate. The parameters (𝜽,𝝆) formed by all the 

candidates will be used in the angle matching and the distance matching. As discussed in Section 

5.2, thresholding parameters 𝑡2  and 𝑡3 are used in these two matching steps. We claim the existence 

of the template pattern in the defect map if there are candidates surviving these matching steps.  
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Fig 5-3 Pattern Matching Algorithm. The angle matching and  the distance matching are 

sequentially applied to (𝜽,𝝆) and (𝜽𝒐,𝝆𝒐) after the HT. 

Strategies of how to select the parameters used in the algorithm are discussed in details in 

the following subsections. For the illustration purposes, we will use a pattern matching example 

as shown in Figure 4-1 throughout the discussion. In this example, the template is a 4-edged 

polygon as shown in Figure 4-1(a) and two defect maps with parameters (𝜆f = 500, 𝜆8 =

6000,𝑤 = 0.02) as shown in Figure 4-1(b,c), which contain the template with different rotation 

angles (30°	and	50°) and scaling factors (0.8	and	0.5), respectively. 

5.3.1 Selection of the parameters (𝛿𝜃 and 𝛿𝜌) for the Hough transformation 

Because the template is given in the form of solid line segments without background noise, 

it is straightforward to choose the HT parameters for the template and these parameters will not 

significantly impact on the resulting detected line segments in the template. Thus, we will focus 

on the HT parameter selection for the line detection in the defect map. The selection of the HT 

parameters for the defect map needs more consideration for the following reasons: (1) If 𝛿𝜃 and 

𝛿𝜌 are too small, then the Hough matrix will be large, which will in turn lead to a large matrix 

𝑴𝜽𝒎×𝒎 in the angle matching step. Roughly, the angle matching step needs ���� calculations to 

detect all possible candidate sets. When 𝑚 is getting larger, the computational cost increases 
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dramatically. (2) On the other hand, if 𝛿𝜃 and 𝛿𝜌 are too large, then the resolution of the line 

detection will be low and a misdetection of the template may happen.  

It is very difficult, if not impossible, to identify the optimal values for 𝛿𝜃 and 𝛿𝜌 for general 

line detection scenarios. Here we provide some heuristic guidelines on the HT parameters 

selection. Intuitively, if a Hough strip (as illustrated in Figure 4-2(b)) that corresponds to a single 

cell in Hough domain passes the defective region and overlaps with the defective region in the 

largest possible way, then the value difference in the corresponding cells between the case with 

the defective region and that without the defective region will be large. As a result, the defective 

region will be easier to detect. Furthermore, it can be expected that the orientation of a Hough strip 

that has a large overlapping region with the defective region will be aligned better with the 

defective region than that of partially overlapped Hough strips. As a result, the orientation of the 

defect region can be detected more accurately, which will in turn lead to more accurate detection. 

In other words, for the defect pattern that indeed matches with the template, then we will have 

higher detection rate; while for a defect pattern that does not match with the template, it becomes 

easier for us to reject. The parameters (𝛿𝜃 and 𝛿𝜌) determine all the possible locations and 

orientations of the Hough strips. Based on the above intuition and noting that the defective region 

is completely randomly distributed, we can obtain the approximated upper bounds for 𝛿𝜃 and 𝛿𝜌.  

We define a Hough strip is fully overlapped with a defective region if the upper and lower 

bounds of the strip are crossing the short edges of the rectangular defective region. The extreme 

of the fully overlapped case is when a strip passes through the corners of a defective region as 

shown in Figure 4-4(a). We define the angle between the strip and the defective region in this 

extreme case as	𝛽 (a geometry illustration in Figure 4-4(a)), and we can obtain 𝛽 =
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𝑎𝑟𝑐𝑠𝑖𝑛 ª

àªC«ÖC
− 𝑎𝑟𝑐𝑠𝑖𝑛	 á3

àªC«ÖC
. Note that the angle between the defective region and any fully 

overlapped Hough strips is no larger than 𝛽. With this angle 𝛽, we can identify the parameters 

𝛿𝜌, 𝛿𝜃 such that at least one Hough strip is fully overlapped with a given defective region that is 

arbitrarily located. First note that, for a given 𝛿𝜃, the minimal absolute difference between the 

exact angle value 𝜃	of a defective region and the quantization value 𝑘𝛿𝜃 can be as large as á2
Z

, for 

integer 𝑘 = 0,1,2…, i.e.,  

min
Õ
	| 𝜃 − 𝑘𝛿𝜃| 		≤ 	 á2

Z
	, 

since 𝜃	 ∈ [	𝑘𝛿𝜃, (𝑘 + 1)𝛿𝜃] for a value  𝑘,  the minimal value |𝜃 − 𝑘𝛿𝜃| is no larger than á2
Z

.  

Define the optimal 𝑘 value to be 𝑘∗.  

  

Fig 5-4 Examples of a fully overlapped strip and a non-fully overlapped strip. 𝛽 is the angle 

between a Hough strip and the defective region in the extreme case as shown in (a). 

Then we have the following Lemma. 

Lemma 5-2. For a defective region with length 𝑙 and width 𝑤 and its centerline is arbitrarily 

located at (𝜌, 𝜃), a sufficient condition to have a fully overlapped Hough strip with the defective 

region is : 

𝛿𝜌	 ≤ ªkVl(|2�Õ∗á2|)�Ö l¬�(|2�Õ∗á2|)
Z

.                                        (5.5) 
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Proof. 

The proof is illustrated directly by the Figure 4-5. If two parallel lines which have the minimal 

absolute angle difference, i.e.,  |𝜃 − 𝑘∗𝛿𝜃| with the defective region, are crossing the diagonal 

corners of the defective region, then the distance between the two parallel lines equals to  (𝑤 − 𝑙 ∙

𝑡𝑎𝑛(|𝜃 − 𝑘∗ ∙ 𝛿𝜃|) cos(|𝜃 − 𝑘∗ ∙ 𝛿𝜃|) = 𝑤 ∙ 𝑐𝑜𝑠(|𝜃 − 𝑘∗ ∙ 𝛿𝜃|) − 𝑙 ∙ 𝑠𝑖𝑛(|𝜃 − 𝑘∗ ∙ 𝛿𝜃|) as shown 

in Figure 5-5. Thus, if 𝛿𝜌 is no larger than half of the distance, then there will be at least one Hough 

strip which is fully overlapped with this defective region regardless the position of the defective 

region.  ∎ 

 

Fig 5-5 Illustration of Lemma 4-2. 𝛿𝜌 needs to be smaller than half of the distance between the 

two parallel lines as shown in the figure. 

Remarks 

(1)The function 𝑤 ∙ 𝑐𝑜𝑠(𝑥) − 𝑙 ∙ 𝑠𝑖𝑛(𝑥) is a decreasing function both of 𝑥 in range [0, á2
Z
] and of 

𝑙,  so we can chose 𝛿𝜌 as: 

𝛿𝜌	 ≤
ªkVlhâ�C p��ã�ø { Öø}l¬�h

â�
C p

Z
, 

where i is the index of the defective regions in the template. This will guarantee that we will have 

fully overlapped Hough strips for any of the defective regions in the template.  
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(2)|𝜃 − 𝑘∗𝛿𝜃| ≤ 𝛽. By the inequality in (4.5), 𝛿𝜌 is smaller than half of the distance between the 

two parallel lines. Thus, the angle |𝜃 − 𝑘∗𝛿𝜃| between the defective region and its fully overlapped 

Hough strip with width 𝛿𝜌 is not extremely fully overlapped. 

(3)We can see that lim
á2→f

|𝜃 − 𝑘∗𝛿𝜃| = 0. This means that the sufficient condition of a fully 

overlapped strip with the defective region becomes 𝛿𝜌	 ≤ ä
Z

 as 𝛿𝜃 → 0. This is consistent with the 

intuitive observation. Note if 𝛿𝜃 is chosen to be 1°, the absolute angle difference |𝜃 − 𝑘∗𝛿𝜃| will 

be no larger than 0.5°. In most practical cases, this is regarded as a small angle. Thus, we can 

approximately select 𝛿𝜌 ≤ ª
Z
  for the parameter 𝛿𝜌 when 𝛿𝜃 ≤ 1°. In the example and the 

following simulation discussion, we select δ𝜃 = 1° and 𝛿𝜌 = 𝑤/2. 

5.3.2 Selection of the thresholds (𝑝+,and	𝑡1) for line detections in defect map 

As described at the beginning of this section, we employed a two-step procedure in order 

to select a candidate set of detected lines for the following angle matching and distance matching. 

In the first step, we check if there are lines in the defect map. To achieve this, we follow the 

common practice in the HT-based line detection approach [121]: we check if the peak value 𝐻1	of 

the Hough matrix of the defect map is larger than a threshold value 𝑝+,. If not, then we claim that 

the voting scores in the Hough matrix are due to the background noise and there are no lines in the 

map. The value of 𝑝+, can be identified as follows. We denote 𝐻f as the peak value of the Hough 

matrix when there is only background noise with parameter 𝜆f in the defect map. It is clear that 

𝐻f is a random variable. The distribution of 𝐻f	can be obtained through Monte Carlo simulations. 

With the distribution of 𝐻f, we can determine 𝑝+, as the 𝛼th quantile of 𝐻f, i.e., 𝑃�𝐻f ≥ 𝑝+f� =

1 − 𝛼.	Typically we select 𝛼 as a small number, say 0.1.  
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 In the second step, we check the number of lines in the defect map. It is obvious that the 

long defective region is easier to be detected compared to the short ones because the long defective 

region corresponds to a large voting score in the Hough matrix. Thus, in this step, we should make 

sure that the short defective regions in the template can be detected with high probability. To 

achieve this, we establish a threshold value 𝑡1 such that if ℎ2ø,3ø ≥ 𝑡1, then we say the line with 

parameters (𝜃¬, 𝜌¬) exists in the defective map. Here (𝜃¬, 𝜌¬) is the 𝑖th pair of parameters after the 

HT and ℎ2ø,3ø is the voting score of (𝜃¬, 𝜌¬) in the Hough matrix.  The value of 𝑡1 is determined in 

a relative sense as 𝑡1 = 𝑟𝐻1, where 𝐻1 is the peak value of the Hough matrix and 𝑟	is a constant. 

The value of 𝑟 is selected such that the shortest line in the template can be detected with a high 

probability. Specifically, assume (𝜃¬, 𝜌¬) and (𝜃Ô, 𝜌Ô) are the parameters for the longest and 

shortest line segment in the template, respectively and ℎ2ø,3ø  and  ℎ2Þ,3Þ are the Poisson random 

variables that correspond to the voting scores in the Hough matrix. Then 𝑟 can be selected as  

𝑟 = 𝑠𝑢𝑝{𝑐:𝑃 hℎ2Þ,3Þ > 𝑐 ∙ ℎ2ø,3ø	p ≥ 0.9}.                                          (5.6) 

Based on Eq. (5.6) and setting 𝑡1 = 𝑟 ∙ 𝐻1 , we will have at least 90% chance to detect the shortest 

line segment in the template. The probability function in Eq. (4.6) does not have a closed form. 

However, a straightforward Monte Carlo simulation can be used to identify the value of 𝑐. 

Specifically, we can generate random values through Monte Carlo simulation for ℎ2ø,3ø	 and  ℎ2Þ,3Þ  

according to their Poisson distribution parameters 𝑙¬𝑠𝑤𝜆8 and 𝑙Ô𝑠𝑤𝜆8 respectively, and calculate 

the ratio ℎ2Þ,3Þ/ℎ2ø,3ø	, here 𝑠 is the scaling factor. A distribution plot of the ratio can be achieved 

and 𝑐 can be determined from the plot. Please note that, since 𝜆8 ≫ 𝜆f, the background noise has 

little effect on the final result of 𝑟. 
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Considering the example given in Figure 4-1. The empirical probability mass function of 

𝐻f is obtained through 1000 runs of Monte Carlo simulation and is given in Figure 5-6(a). Based 

on this probability function, we can find the 0.1th quantile value of 𝐻f to be 13. Furthermore, the 

function of 𝑃 hℎ2Þ,3Þ > 𝑐 ∙ ℎ2ø,3ø	p is obtained through 1000 runs of Monte Carlo simulation. From 

this function, we can determine 𝑟 to be 0.26. Finally, we can determine 𝑝+, = 13  and 𝑡1 = 0.26 ∙

𝐻1 for this example problem. 

  

Fig 5-6 (a) Density diagram of 𝐻f. (b) Distribution plot of 	𝑃 hℎ2Þ,3Þ > 𝑐 ∙ ℎ2ø,3ø	p. 

5.3.3 Selection of 𝑡2  and 𝑡3 in the angle and distance matching 

Because the defect map is formed by random points, it is impossible to have a perfect match 

in the angle and distance parameters between the template and the observed defect map. Thus, 

allowances are needed for the angle and distance matching.  

The following lemma can be used to determine the threshold of the allowance 𝑡2  in the 

angle matching.  
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Lemma 5-3. For two defective regions with centerlines located at (𝜃8, 𝜌8) and (𝜃Z, 𝜌Z), and any 

two Hough strips that are fully overlapped with the two defective regions, respectively,  the angle 

difference between these two Hough strips is no larger than: 

			(𝜃8 − 𝜃Z) + 2𝛽                                                               (5.7)                         

where 𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛 ª

àªC«ÖC
− 𝑎𝑟𝑐𝑠𝑖𝑛	 á3

àªC«ÖC
 is the angle between the shorter defective region 

and the fully overlapped strip in the extreme case. 

Proof.  

Without loss of generality, we can assume the two Hough strips have the angle values of 𝜃8 +

|𝜃8 − 𝑘8∗𝛿𝜃| and 𝜃Z − |𝜃Z − 𝑘Z∗𝛿𝜃|, respectively. We have 

(𝜃8 + |𝜃8 − 𝑘8∗𝛿𝜃|) − (𝜃Z − |𝜃Z − 𝑘Z∗𝛿𝜃|) = (𝜃8 − 𝜃Z) + (|𝜃8 − 𝑘8∗𝛿𝜃| + |𝜃Z − 𝑘Z∗𝛿𝜃|), 

with the term |𝜃8 − 𝑘8∗𝛿𝜃| + |𝜃Z − 𝑘Z∗𝛿𝜃|: 

|𝜃8 − 𝑘8∗𝛿𝜃| + |𝜃Z − 𝑘Z∗𝛿𝜃| ≤ 2max{ |𝜃8 − 𝑘8∗𝛿𝜃|, |𝜃Z − 𝑘Z∗𝛿𝜃|	}. 

However, from the remark (2) of Lemma 5-2, we know max{ |𝜃8 − 𝑘8∗𝛿𝜃|, |𝜃Z − 𝑘Z∗𝛿𝜃|	} ≤ 𝛽. 

Thus, the lemma is proved.     ∎ 

From Lemma 5-3, we can see that 2𝛽 is likely the largest difference between the true angle 

difference and the detected angle difference of two defective regions, because intuitively the 

Hough strips that are fully overlapped with the defective regions are likely to be detected. Thus, 

for a template with multiple defective regions, we can select the threshold 𝑡2 = 2max
¬
𝛽¬, where 𝑖 

is the index of defective regions.	 
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 It is quite difficult to derive the threshold 𝑡3 in the distance matching. Because the distance 

is measured from the original point, the difference between the true distance and the detected 

distance of a defective region is related with the location of the defective region in the defect map. 

For the sake of simplicity, here we ignore the errors in the detected angle of the defective region. 

Thus, for a defective region, the maximum difference between the true distance and the detected 

distance can be as large as 𝑤/2. Further, since 𝑡3 is the threshold for the accumulated distance 

detection error for all the defective regions in the template, we can select 𝑡3 = √𝑛𝑤/2, where 𝑛 is 

the number of defective regions in the template. 

Note that 𝑡2  depends on the length of edges in the template and  𝑡3 depends on the number 

of edges and the width of the defective region. For a template with the larger number of edges, its 

threshold 𝑡3 is larger. In the example in Figure 4-1, we select the threshold 𝑡2 = 6° and 𝑡3 = 0.02 

according to the above guidelines. 

 In the example in Figure 4-1(b,c), the two defect maps have the same densities  𝜆8 =

6000, 𝜆Z = 500	𝑎nd	the	common	width	𝑤 = 0.02 with different rotation angles 𝛼 =

30°, 50°and scaling factors 𝑠 = 0.8, 0.5, respectively. The HT parameters used in the detection are 

𝛿𝜃 = 1°, 𝛿𝜌 = ª
Z
= 0.01, 𝑡1 = 11, 𝑝+, = 13, 𝑡2 = 6°	and	𝑡3 = 0.02. The numerical results are 

shown in the following table and the final graphical detections are in Figure 5-7. 

Table 5-2. Numerical results of the example. 

 



113 
 

𝑑∗ and 𝑠∗ are the minimal distance difference and the optimal scaling factor calculated in the 

distance matching process. 𝛼∗ is the rotation angle calculated in the angle matching process. The 

results validate the accurate detection of the pattern detection algorithm. In the next section, a 

performance evaluation is presented. 

 

Fig 5-7 Detection results of the examples in Figure 4-1.  

5.4 Numerical Study and Performance Evaluation 

In this section, we first present the performance evaluation results for the proposed point 

pattern detection method. For a pattern detection algorithm, the performance is often evaluated 

through Type I error probability and the Type II error probability, where Type I error probability 

refers to the false alarms (i.e., the probability that we claim the existence of a template pattern in 

the defect map when in fact the template pattern does not exist) and Type II error probability refers 

to the misdetection (i.e., the probability that we do not detect the truly existing template pattern in 

the defect map). Besides Type I and Type II error probabilities, detection power is also used to 

evaluate the performance of a pattern detection algorithm. The detection power refers to the 

probability that we detect a truly existing template in the defect map. Clearly, detection power is 

actually 1 − 𝑇𝑦𝑝𝑒	II	error	probability.  
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The factors that influence the detection performance and the comparison between the 

proposed method and the GHT on the detection of arbitrary shapes will also be discussed in this 

section. 

5.4.1 Type I error and the detection power of the proposed method 

Due to the complexity of the algorithm and the random distribution of the template and 

defect map, it is intractable to establish closed form expression of evaluation indices for a given 

scenario. Here we use an extensive numerical study to illustrate the performance of the algorithms 

and the impacts of various factors on the performance. In the numerical study, the Type I error and 

the detection power of the algorithm are investigated for the various templates with 𝑛 = 4,6,8 

edges and with scaling factor 𝑠 = 0.5, 0.8 and different𝜆f𝑠, 𝜆8𝑠. The detailed simulation procedure 

is showed below: 

Table 5-3. Numerical study procedure for performance evaluation 

(1) Input: 𝑛	(4	𝑜𝑟	6	𝑜𝑟	8), 𝑠	(0.5	𝑜𝑟	0.8), 𝜆f, 𝜆8, 𝑤 = 0.02 
(2) Randomly generate an 𝑛-edged template in a 1 × 1 unit square with the shortest edge no 

smaller than 0.3. Save length 𝑙 of each edge. Save it as the template image.  
(3) Randomly generate a rotation angle : 𝛼 
(4) Rotate the template with 𝛼 and scale it by 𝑠 
(5) Generate random points in a rectangle with size 𝑤 × 𝑙¬ × 𝑠 along each edge of the 

template from step (4). The points are uniformly distributed in each rectangle and the 
number of points are following Poisson distribution with parameter 𝜆8 × 𝑤 × 𝑙¬ × 𝑠.  

(6) Background noise is added to the unit square with the number of points following 
Poisson distribution with parameter 𝜆f.  Remove solid lines and save it as the defect 
map. 

(7) Run Pattern Matching Algorithm  
(8) Estimate the detection power and the Type I error probability 

For detection power: 
Repeat  (2) – (7) 𝑀 = 1000 times 
Count the number of detection of existence of template, denoted as 𝑚 
Report estimated detection power as 𝑚/𝑀 
For Type I error probability: 
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Modify Step (2) as (2j), where two random templates are generated, one used to generate 
defect regions in the defect map and one used in the pattern detection algorithm as the 
template pattern 
Repeat (2j) – (7) 𝑀 times and count the number of detection of existence of template as 
m 
Report Type I error probability as 𝑚/𝑀 

One point we would like to mention that in Step (2), we require the minimum length of the 

edges of the template to be at least 0.3. The reason is that if the edge length is too small, it is 

difficult for the Hough transformation to detect that edge at the first place. In simulation study, the 

template and the input parameters can be designed easily. In practice, the template shape and the 

values of 𝑙,𝑤, 𝜆8	𝑎𝑛𝑑	𝜆f can be decided by looking at typical defect patterns in the historical data 

or by physical analysis of the fault modes based on engineering experiences. For example, it is 

known that some optical system errors in a semiconductor manufacturing process will cause 

specific defect patterns on a wafer. Another example is that chattering in a metal cutting process 

will leave specific waviness patterns on the finished workpiece. So with physical understanding of 

the fault modes of a process, the template pattern could be established. Furthermore, the values of 

𝑙,𝑤, 𝜆8	𝑎𝑛𝑑	𝜆f can also be obtained by looking at the historical data. 𝜆8	and	𝜆f are the densities 

of the defective regions and the background noise. They can be calculated by using the number of 

defect points divided by the area of defective regions and the entire defect map respectively. For 

𝑙	and	𝑤, they can be measured from the template identified from the historical data. 

Through extensive simulation, we can obtain the following Type I error probability and the 

detection power for various parameter combinations.  
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Table 5-4.  Type I error and the detection power 

  

From these results, we have the following remarks. 

(1) Regarding the detection power  

It is not surprising that the detection power is directly related with the difference between 

𝜆8 and 𝜆f. The larger the difference, the higher the power. This is certainly expected because the 

higher value of the rate 𝜆8, the more significant contrast between the defective region and the 

background noise. Figure 4-8 includes several defect maps with different 𝜆f𝑠 and 𝜆8s, which 

clearly illustrates the above point. Besides 𝜆f and 𝜆8, the detection power is also influenced by the 

number of edges in the template and the scaling factor. As the number of edges increases, the 

detection power decreases. This is not surprising because if 𝑝¬ is the probability of detecting the 

𝑖th edge of the template, then ∏ 𝑝¬¬  is roughly the probability to detect all the edges of the template. 

As 𝑛 gets larger, this probability gets smaller. The detection power increases as the scaling factor 

𝑠 gets larger. The reason is that in general, a larger defective region is easier to be detected.  

(2) Regarding the Type I error probability  

The numerical study results show that the Type I error probability is quite small for all 

cases. We investigate the numerical results in more detail and find that about 90% of the defect 

maps that do not contain the template are rejected at the angle matching step, i.e., there are no 

angles in the detected 𝜽 parameters that can form a vector containing 𝑛 components such that 𝚫𝜽 ∈

λ1 λ0 Power Type I error Power Type I error Power Type I error 
6000 500 93.18%/92.17% 0.4%/0.7% 88.42%/83.34% 0.7%/0.4% 79.45%/68.10% 0.2%/0.5%
6000 100 93.62%/91.14% 0.2%/0.4% 90.28%/87.17% 0.3%/0.4% 83.24%/75.31% 0.3%/0.1%
3000 250 86.08%/76.25% 0.5%/0.3% 70.12%/54.38% 0.2%/0.7% 53.22%/36.58% 0.4%/0.4%
3000 500 78.75%/59.34% 0.3%/0.2% 65.23%/42.15% 0.8%/0.3% 45.12%/28.50% 0.9%/0.2%
1500 125 58.47%/41.91% 0.4%/0.6% 42.18%/27.56% 1.2%/0.8% 21.50%/11.12% 0.5%/0.7%

n=4(s=0.8/s=0.5) n=6(s=0.8/s=0.5) n=8(s=0.8/s=0.5)
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[𝚫𝜽𝟎 − 𝑡2, 𝚫𝜽𝟎 + 𝑡2]. For any candidates that pass the angle matching step, the distance matching 

is also an effective step to differentiate the shape of the defective regions and the template pattern. 

For example, Figure 4-9 shows a case that a defect map passes the angle matching step but fails at 

the distance matching step. In Figure 4-9, thin lines represent the template’s shape and thick lines 

are the shape of defective regions. Since for each thin line, there is a thick line which is almost 

parallel with it, the thick lines can pass the angle matching step. However, these two shapes can’t 

be fitted very well for any transformation value 𝑠 and 𝑣 due to the fact that they are not in a similar 

shape. To be more specific, two shapes are the same if one of them can be transformed into another 

shape by a translation, rotation, and scaling transformation with the same scaling factor in both x 

and y directions. Thus, a large distance difference value will be obtained between two different 

shapes even they share the same interior angles. 
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Fig 5-8 Impact of densities of  𝜆f, 𝜆8. The defective region is more difficult to be differentiated 

from the background as 𝜆8 decreasing. Thus, the power of detection is decreasing. 

  

Fig 5-9 Shape variation. Thick lines are the shape of defective regions and thin lines are the pattern 

of the template. Due to the different shapes, the defective regions rarely pass the distance matching 

process. 

5.4.2 Discussion of other influential factors  

 Variations of other parameters besides 𝜆8	and	𝜆f will also influence the performance of 

the proposed detection method. In this subsection, the impacts of the scaling factors 𝑠Ñ 	and	𝑠Ò on 

the x and y axis respectively and the width 𝑤 of defective regions are discussed.  

(1) Influence of different scaling factors on x and y axis 
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 In subsection 5.4.1, the performance evaluations are conducted for the same scaling factor 

𝑠 in both the x and y directions. In order to investigate the impact of the scaling factor, a further 

simulation study has been conducted with the scaling factor of x axis 𝑠Ñ  fixed to be 0.8 and the 

scaling factor of y axis 𝑠Ò chosen as 0.8,0.75, 0.7, 0.6 and 0.5. The defect pattern will be regarded 

different from the template when 𝑠Ò ≠ 0.8. Examples are shown in the Figure 4-10. As we can see 

from these examples, the shape of defect pattern with 𝑠Ò = 0.75 has very little difference 

compared to that with 𝑠Ò = 0.8. The differences are becoming more obvious as 𝑠Ò decreasing. 

Based on this observation, it’s reasonable to expect that the Type I error of the detection will 

decrease as 𝑠Ò getting smaller from 𝑠Ñ. The simulation results (see Table 5-5) verify our 

expectation and indicate that the Type I error is reasonably small when 𝑠Ò < 0.7. Note that, when 

𝑠Ò = 𝑠Ñ = 0.8, the Type I error becomes the detection power because the defect pattern in fact 

matches the template in this case. In this simulation study, simulation parameters 𝜆8 = 6000, 𝜆f =

500, 𝑛 = 4,6	𝑎𝑛𝑑	𝑤 = 0.02 are used.  



120 
 

 

Fig 5-10 Examples of different scaling factors on y-axis. 

Table 5-5. Simulation results of Type I error of different scaling factors for y axis.  

 
Note that, the scaling factor 𝑠 or (𝑠Ñ , 𝑠Ò) are all smaller than 1 in the simulation studies. In 

practice, we can always scale the defect map first to make it small before we apply the detection 

method. So we only discussed the case of 𝑠 < 1 in the chapter for the sake of simplicity.  The 

situation of 𝑠 > 1 will not cause any extra issue for the algorithm. 

(2) Discussion of the Influence of the widths of defective regions 

 In previous simulation studies, the width 𝑤 are fixed to be 0.02 for all defective regions for 

the sake of convenience. On average, the number of defect point in each defective region is 𝑠𝑙𝑤𝜆8. 

As 𝑤 decreasing, the number defect points due to the defect region gets smaller and the defect 

region will just looks like the background (this is similar to the case when 𝜆8 is decreasing). Thus, 

we shall expect a lower detection power with a smaller value of 𝑤. In fact, if 𝑤 is extremely small, 
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then the detection method will not be able to differentiate the defective region with the background 

noise. On the other hand, if 𝑤 is very large, then the defective regions will cover a large space in 

the defect map with density 𝜆8, which will benefit the detection power. However, this will lead to 

a large Type I error. This is not surprising because with a larger defect region, a larger number of 

line segments will be detected and will lead to larger number of false alarms in the pattern detection 

step. A simulation with parameters 𝜆8 = 6000, 𝜆f = 500, 𝑠 = 0.8, and	𝑛 = 4 is conducted to 

investigate the impact of this scenario. In the simulation, 𝑤 is taken value as 0.01, 0.05 and 0.1. 

The simulation results are presented in Table 5-6. 

Table 5-6. Performance comparison with different w𝑠. 

 

The result is consistent with the intuition. There could also be a situation that the widths of the 

edges of the defect pattern are different. In section 4.3, 𝛿𝜌	is		desgined	to	be	no	larger	than	𝑤/2 

in order to guarantee that at least one Hough strip is fully overlapped with each defective region. 

If the widths of defective regions are different, in order to reach the above criteria, we need to have 

𝛿𝜌 = min(𝑤¬) /2 to insure the defective region with the smallest width being fully overlapped 

with a Hough strip. Since 𝛿𝜌 is selected to accommodate the defective region with the smallest 

width, there may be multiple Hough strips with width 𝛿𝜌 fully overlapped with defective regions 

that have larger widths. Thus, one can expect multiple patterns with small variations from each 

other will be detected by the proposed detection method.  

5.4.3 Comparison with the Generalized Hough Transform (GHT)  

w Power Type I error
0.01 82.50% 0.13%
0.02 93.18% 0.40%
0.05 94.77% 1.05%
0.1 97.15% 4.87%
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In this subsection, the proposed detection method is compared with the GHT, which is a 

popular method in detecting arbitrary shapes. The details of the GHT algorithm can be found in 

[130]. The comparison results are presented in Table 4-7.  

Table 5-7. The comparison between the proposed detection method and GHT  

 

From these comparison results, we can see that the proposed method has higher detection 

power and has a faster speed than GHT in detecting patterns consisting of multiple line segments. 

In addition, in this comparison, the scaling and rotation are not considered in the GHT (i.e., 𝑠 =

1, and	𝛼 = 0V). If these two transformations are involved, the detection power of GHT will further 

decrease and the average running time will increase due to that two more parameters 𝑠	and	𝛼 need 

to be calculated in the detection. 

5.5 Case Study for Wafer Defect Pattern Detection 

In this section, we shall use a case study for wafer defect pattern detection to demonstrate 

the effectiveness of the proposed method. Wafer defect distributions and yield patterns are an 

important source of information about the performance of a wafer production line [117]. Under 

normal working condition, the spatial distribution of the defects on the wafer is typically pure 

random and does not exhibit any systematic pattern. The systematic distribution pattern often 

indicates the existence of an abnormal condition. For example, the defects may distribute in a 

circular or semi-circular region near the edge of the wafer [117]. The potential root cause of this 

pattern is the damage of the die during yielding. In this section, we apply the proposed pattern 

Power Type I error Power Type I error Power Type I error Power Type I error
6000 500 93.18% 0.40% 88.42% 0.70% 81.75% 0.70% 78.31% 1.50%
3000 250 86.08% 0.50% 70.12% 0.20% 66.20% 0.60% 59.42% 0.50%
1500 125 58.47% 0.40% 42.18% 1.20% 27.52% 0.40% 22.47% 1.70%

Average Running Time 0.9395s 1.0328s 1.9206s 3.5309s

Proposed Detection Method Generalized Hough Transform
n=4(s=0.8) n=6(s=0.8) n=4(s=0.8) n=6(s=0.8)

𝜆" 𝜆#
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detection method to detect such pattern. We would like to point out that although the true template 

is circular in shape, we can certainly use multiple line segments to approximate the shape and use 

the approximation line segments as the template. Actually we can significantly expand the 

applicable field of the proposed method through this approximation.  

The defect maps used in this case study is shown in Figure 4-11. Figure 4-11(a) is generated 

using a real defect map from [117]. Figure 4-11(b,c) are generated numerically through simulation 

based on the characteristics of the observed distribution characteristics in practice [118]. 

Specifically, in generating the defect maps, we set the background noise 𝜆f = 50 in a 1𝑥1 unit 

square, the defective rate 𝜆8 = 500 for the circular defective region with width 𝑤 = 0.10. In this 

case, the total points in Figure 4-11(b,c) are 139 and 120 respectively compared with the 117 points 

in the Figure 4-11(a). To detect the defect pattern, we create a template consisting 5 line segments 

with the same length 𝑙 = 0.5 to approximate the semi-circular pattern. The template is shown in 

Figure 4-11(d).  

The numerical results of the pattern detection are the following. Based on the parameter 

selection method discussed in Section 4.3, the HT parameters of the detection are designed as δ𝜃 =

1° and δ𝜌 = ª
Z
= 0.05. The threshold 𝑡1 of the peak value equals to 𝑡1 = 𝑟𝐻1 = 0.61 × 27 ≈ 17, 

i.e., pairs (𝜃, 𝜌) with voting score smaller than 17 will be not be considered. The threshold 𝑡2 =

10° and 𝑡3 = 0.11. The final results have distance differences 𝑑∗ =0.082, 0.079 and 0.081 with 

rotation angles 𝛼 = −73°, −15°and 65°from the template, respectively. The one that passes the 

angle test and is with the smallest distance difference is chosen as the final result, and the graphical 

result is presented in Figure 5-12(a). Similarly, Figure 5-12(b,c) are the graphical results of the 

two simulated cases. 
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The results show that the proposed pattern detection algorithm can effectively detect ring 

patterns in wafer defect maps. 

  

Fig 5-11 Wafer defects. (a) is a real wafer defect map. (b) and (c) are generated by simulation. (d) 

is the template being used in all three cases. 

  

Fig 5-12 Detection results of three defect maps. The lines in each figure are the detected pattern. 

In the above case study, a 5-line segment template is used to approximate the ring defects 

pattern. However, we could also use smaller number of line segments, e.g., 4 or larger number of 

line segments, e.g., 8, to approximate the original template. A tradeoff needs to be considered in 

determining the number of line segments used. The tradeoffs contains the following two aspects. 

On one hand, it is obvious that to accurately approximate a continuous pattern, we need large 

number of line segments with small length. For example, in this case, an 8 line segment 

approximation will give us better approximation to the ring-type of defect pattern. On the other 

hand, a template with large number of short lines will impact on the detection power. As we have 

discussed in section 4.4.1, a shorter edge will contain relatively less defects which will increase 
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the difficulty in detection. Furthermore, as the number of edges increases, the detection power 

decreases. From this detection power point of view, an approximation using smaller number of 

line segments is better.  

A simulation is conducted to confirm this understanding. In this simulation, we present 

three alternative template approximation for the circular defects with 5, 4 and 8 edges respectively. 

Simulation parameters 𝜆8 = 500, 𝜆f = 50,𝑤 = 0.1	and	𝑠 = 1 are used. The results of the 

simulation are presented in Table 4-8. 

Table 5-8. Performance comparison among the three alternative templates 

 
From the results, we see the template with 5-line segments has a higher detection power than the 

8-line segments template, while lower than that of the 4-line segments template. 

Due to the above mentioned trade-off, if the precise shape of the template is not critical 

(e.g., for the cases that different fault modes lead to quite different fault patterns), then a rough 

approximation with small number of line segments is preferred. However, if the precision shape 

is required, then a careful analysis should be conducted to approximate the shape to a required 

accuracy level with smallest number of line segments. This is an interesting topic and a further 

research on this tradeoff is needed in the future.  

 

 

 

Power Type I error
n=5 54.21% 1.10%
n=4 60.93% 1.50%
n=8 33.28% 0.70%
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5.6 Conclusion 

In this chapter, we proposed a HT-based method to detect point patterns that consist of 

arbitrary line segments. The basic idea is to convert the line pattern detection problem in physical 

domain into the problem of detecting multiple points in Hough domain. The detection is attained 

through two critical steps, the angle matching and the distance matching, which allows arbitrary 

rotation, scaling, and translation of the pattern. Based on the simple intuition that a line is most 

likely to be detected if a Hough strip fully overlaps with the defective region, a detailed discussion 

on how to select tuning parameters of the algorithm, such as 𝛿𝜃, 𝛿𝜌, 𝑡1,𝑡2, 𝑡3, and	𝑝+, are provided. 

An extensive numerical study shows that the detection method performance well in terms of both 

Type I error and the detection power if the defective region has reasonable size and the contrast 

between the defective region and the background noise is reasonably large. 
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6 Microstructure Modelling and Ultrasonic Wave Propagation 
Simulation of A206-Al2O3 Metal Matrix Nanocomposites for 
Quality Inspection * 

The research in this chapter is motivated by the complexity of the wave-microstructure 

interaction, and the difficulty in fabricating nanocomposites of different microstructural features 

in ultrasonic testing. It is very challenging to build reliable relationships between ultrasonic testing 

results and nanocomposites quality. In this chapter, we propose a microstructure modelling and 

wave propagation simulation method to simulate ultrasonic attenuation characteristic for A206-

Al2O3 metal matrix nanocomposites (MMNCs). In particular, a modified Voronoi diagram is used 

to reproduce the microstructures and the numeric method elastodynamic finite integration 

technique (EFIT) is used to simulate the wave propagation through the generated microstructures. 

Linear mixed effects model (LME) is used to quantify the between-curve variation of ultrasonic 

attenuation from both experiment and simulation. Permutation test is employed to quantify the 

similarity of the quantified variation between experiment and simulation. This research supports 

the experimental results through the simulation approach and provides an efficient way for quality 

inspection of MMNCs. 

6.1  Introduction 

A206-Al2O3 metal matrix nanocomposites (MMNCs), where lightweight A206 alloys (93.5% 

-95.3%Al, 4.2%-5.0% Cu) are reinforced with nanosized Al2O3 particles, have been intensively 

studied recently because of their significantly enhanced mechanical properties, such as high 

strength, ductility, long fatigue life, and excellent hot tearing resistance [131-134]. It can be 

                                                             
* This chapter is based on the paper: Liu, Y., Wu, J., Zhou, S., & Li, X. (2016). Microstructure 
Modeling and Ultrasonic Wave Propagation Simulation of A206–Al2O3 Metal Matrix 
Nanocomposites for Quality Inspection. Journal of Manufacturing Science and Engineering, 
138(3), 031008. 
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fabricated by dispersing Al2O3 nanoparticles into the molten A206 using ultrasonic cavitation 

assisted casting technologies [135, 136]. Well dispersed Al2O3 nanoparticles in A206 have strong 

nucleation potency and can significantly reduce the grain size of the primary Al phase and break 

the Al2Cu intermetallic network [131, 133], thus leading to significantly reduced hot-tearing 

susceptibility and enhanced mechanical properties. To facilitate the scale-up production, a fast yet 

effective quality inspection technique is critically important to ensure the quality of nanoparticle 

dispersion and morphology modification. Currently, the standard quality inspection method is to 

use microscopic images of nanocomposites microstructures, which are very time-consuming and 

costly to obtain. It is highly desirable to develop alternative simpler and effective quality inspection 

techniques.  

Ultrasonic testing is one of the most popular nondestructive evaluation techniques. It has been 

intensively investigated and widely used in size measurement, flaw detection [137], structural 

health monitoring (SHM) [138], and materials and biological tissue characterization [139-143] etc. 

Ultrasonic attenuation is one of the most commonly used ultrasonic parameters in the ultrasonic 

testing applications. It refers to the decaying rate of the acoustic wave as it propagates through 

materials, which can be measured using the spectral ratio analysis technique [144], as shown in 

Fig 6-, where the two successive echoes reflected from the back wall of the sample are extracted 

and ratio of the spectrum amplitude is used to calculate the attenuation curves. The ultrasonic 

attenuation is highly dependent on the material properties and microstructural features, e.g., elastic 

constant, grain size, grain boundaries, inclusions, porosity and dislocations. Therefore, ultrasonic 

testing is promising to be an economical and effective method to characterize the microstructural 

configurations and material properties.  
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Fig 6-1 Illustration of the ultrasonic testing using ultrasonic attenuation curves [133]. 

Recently, Wu et al [133] discovered an important relationship between acoustic attenuation 

profiles and the microstructural characteristics of A206-Al2O3 nanocomposites. For 

nanocomposites with satisfactory microstructures (i.e., small grain size, dissolved Al2Cu phase 

and well dispersed Al2O3 nanoparticles), the between-curve variation of attenuations measured at 

different locations is much lower than that of bad quality nanocomposites. This study provided 

useful guidelines to establish a new quality inspection technique for A206-Al2O3 MMNCs. 

However, there still exist several issues that need to be addressed in order to develop a reliable 

quality inspection method: 1) there are multiple microstructural features (e.g., grain size, Al2Cu 

morphology) affecting the variation of ultrasonic attenuation. However, due to the complexity of 

the interaction between the microstructural configuration and wave propagation, how each feature 

contributes to the variation is still unknown; 2) the nanocomoposites samples and experimental 

data are quite limited because of the high experimental cost and the difficulty in fabricating 

samples with planned microstructural features, which makes it difficult to build a quantitative 

relationship between the attenuation curve and microstructural features.  

For the reasons given above, numerical simulations of ultrasonic wave propagation in A206-
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Al2O3 MMNCs are needed to support the experimental tests by generating alternative data under 

different microstructural features, leading to a better understanding of the relationship between the 

microstructural configurations and attenuations. Numerical simulation of ultrasonic wave 

propagation have attracted intense interest for its promising in solving problems that may be 

inaccessible to direct experimental study or too complicated for theoretical analysis. It allows easy 

control of each experimental parameter independently, which enhances the understanding of wave 

propagation in complex systems. The most common techniques used to solve the wave propagation 

equations include the finite difference methods (FDM) [145-147], the elastodynamic finite 

integration technique (EFIT) [148], the finite element method (FEM) [149, 150], and the spectral 

finite element method (SFEM) [151]. Acoustic wave simulation has gained more popularities in 

many areas in recent years for the progress in computational power and availability. For instance, 

assessing the stability of an implant is difficult due to the complex heterogeneous nature of bone 

in ultrasonic bone and biological implant characterization. The use of numerical simulation enable 

researchers to understand the wave propagation phenomena occurring in prototype titanium 

cylindrical implants and to investigate the sensitivity of the ultrasonic response to variations of the 

biomechanical properties of surround tissues, which are determinant for the implant stability [143, 

147, 152]. Another example is the area of structural health monitoring (SHM). SHM for the 

detection of damage in aerospace materials is an important engineering area. Experimental signals 

of complicated flaw geometries may be difficult to interpret. With the help of numerical 

simulation, scientists are able to investigate ultrasound scattering from flaws in materials and to 

develop optimized experimental SHM techniques [153]. Ultrasonic wave propagation simulation 

has also been applied in materials characterization [154, 155], however, very limited simulation 

work has been done on lightweight alloy based nanocomposites.  
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In this study, the simulation approach to model the microstructural features of A206-Al2O3 

MMNCs in 2D space is developed and the ultrasonic wave propagation on the generated 

nanocomposites is simulated to study the relationship between the microstructural properties and 

ultrasonic attenuations. To simulate the MMNCs microstructure, a Voronoi diagram is first 

generated, and then the edges of the generated diagram is modified to describe different 

morphologies of Al2Cu intermetallic phase. In the wave propagation simulation, the EFIT is 

selected for the following reasons: 1) EFIT naturally requires staggered spatial and temporal grids, 

which leads to stability; 2) boundary conditions are easily incorporated into EFIT; 3) the 

mathematical analysis is straight-forward and leads to equations that are easy to implement in any 

programming language. The simulated acoustic attenuations are consistent with the experimental 

measurements, which then can be used to further investigate the relationship between the 

microstructural properties and ultrasonic attenuations and to develop statistical quality control 

methods for scale-up production.  

The rest of this chapter is organized as follows. In Section 5.2, the Al2O3 nanoparticle based 

morphology modification mechanism is first introduced. Then the microstructure of A206-Al2O3 

MMNCs is simulated based on the microscopic images and the morphology modification 

mechanism. In Section 5.3, the EFIT is briefly introduced. The simulation and experimental results 

are presented in Section 5.4. The statistical similarity testing between the simulation results and 

the experimental ultrasonic measurements is given in Section 5.5. Section 5.6 presents the 

conclusion. 

6.2  Modelling and Simulating Microstructure of A206-Al2O3 

In this section we first introduce the microstructural features of the A206 alloys and Al2O3 

reinforced nanocomposites, and the morphology modification mechanisms. Based on these 
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features, we propose a new microstructure modelling method. Three experimental samples are 

used in this chapter to show the microstructural features and measured attenuations curves: the 

A206 alloy, the A206-Al2O3 MMNCs with 1wt.% and 5wt.% of Al2O3 nanoparticles. These 

samples are fabricated using the ultrasonic cavitation based casting technology [133]. The 

experimental setup of ultrasonic processing in the casting of A206–AlZO¹ MMNCs consists of a 

resistance heating furnace, an ultrasonic cavitation based processing system (Misonic Sonicator 

3000) with a niobium probe of 12.7 mm in diameter and 92 mm in length, a temperature control 

system and a gas protection system. A graphite crucible with an inner diameter of 88.9 mm and a 

height of 101.6 mm was used for melting. The ultrasonic probe vibrates with the operating 

frequency of 20 KHz and power of 4.0 KW. A206 alloy was first melted in the graphite crucible 

under the protection of argon gas with temperature controlled at 700℃. The 𝛾-AlZO¹ nanoparticles 

with a diameter of 50 nm were then added into the molten melt with ultrasonic cavitation turned 

on for 15 minutes. Then the molten melt was heated up to 740℃ and poured into a steel permanent 

mold with a preheated temperature of 400℃. The casted samples are polished for ultrasonic testing. 

The attenuations were measured using the Olympus Epoch 1000 series NDT device using 

transducer D785-RP with a nominal central frequency of 2.25 MHz.  

6.2.1 Microstructures and Morphology Modification 

The left panel in Fig 6- shows the representative optical micrographs (top) and polarized light 

micrographs (bottom) of pure A206 and A206-1wt.%Al2O3 nanocomposite [133], and the right 

panel shows the simulated microstructures. The pure A206 alloy exhibits large dendritic primary 

α-Al surrounded by continuous θ-Al2Cu phases. The θ-Al2Cu phases are distributed along the 

boundaries of primary aluminum grains and have the morphology of long continuous network. For 

the nanocomposites with 1wt.% Al2O3 nanoparticles, the α-Al dendrites becomes small equiaxed 
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crystals and the intermetallic θ-Al2Cu phases turn to be smaller, thinner and much less continuous. 

It indicates that the Al2O3 nanoparticles can reduce the grain size of α-Al phase and break or refine 

the θ-Al2Cu phase.  

 

Fig 6-2 Microstructures for pure A206 and A206-Al2O3 MMNCs. Left panel: experimental 

micrographs. Right panel: simulated microstructures. 

The formation mechanism of the continuous network of θ-Al2Cu in A206 and the morphology 

modification mechanism by Al2O3 in A206-Al2O3 nanocomposites have been well studied [131, 

134, 156, 157]. For the pure A206 alloys, due to the high percentage of Al content, the primary α-

Al phases nucleate first and then grow to large dendritic structure during the solidification process. 

The Cu solute is pushed out of the α-Al phases into the remaining liquid phase due to the high 

super-cooling of the θ-Al2Cu nucleation. As the temperature decreases and the content of Cu 

increases in the remaining liquid, the θ-Al2Cu phase is finally able to nucleate and grow between 

α-Al dendrites. At last, the θ-Al2Cu phase will form a layer in-between the α-Al dendrites, which 

is called the divorced eutectic microstructure. 

Experimental Microstructure

Pure A206 A206+1wt% Al2O3

Pure A206 A206+1wt% Al2O3

θ-Al2Cu θ-Al2Cu

Simulated Microstructure
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For the A206-Al2O3 nanocomposites, however, the eutectic formation mechanism is modified 

with the existence of Al2O3 nanoparticles. Similarly, the primary α-Al phases first nucleate and 

grow in the melt, pushing most of the Al2O3 nanoparticles and Cu to the remaining liquid. The 

Al2O3 nanoparticles have good nucleant potency and they can serve as effective nucleation sites 

for θ-Al2Cu to nucleate and grow before the remaining liquid reaches the eutectic composition. 

While the θ-Al2Cu phases are growing, the liquid surrounding the θ-Al2Cu is enriched with Al due 

to the depletion of Cu. Consequently, the α-Al phase nucleates and grows on the edges and tips of 

the θ-Al2Cu, which blocks the growth of θ-Al2Cu. Finally, the partially divorced eutectic phase is 

formed and both α-Al phase and θ-Al2Cu phase are refined.  

6.2.2 Microstructure Modelling Using Voronoi Diagram 

To achieve successful simulations of the ultrasonic wave propagation and reproduce the 

comparable attenuation curves, the key step is to generate microstructures that can sufficiently 

capture the microstructural features of A206-Al2O3 MMNCs. The most common method to 

generate polycrystalline material structure in the computational materials science is the Voronoi 

diagram or Voronoi tessellation [158-161]. It assigns the same number of points to the space as 

the desired number of grains, and the space is subsequently divided into many polyhedral based 

on the closeness to these points. Fig 6- shows a representative Voronoi diagram where the space 

is partitioned to 20 cells based on the 20 randomly generated points.  
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Fig 6-3 Example of Voronoi diagram with 20 random points. 

Based on the micrographs of A206-Al2O3 MMNCs (Fig 6- left panel) and the morphology 

modification mechanism, we know that the intermetallic network is broken and become thinner 

and less continuous with the introduction of Al2O3 nanoparticles. The extent to which the 

intermetallic phase is modified is positively correlated with the amount of Al2O3 nanoparticles 

[133]. To model this microstructural feature, we first generate a Voronoi diagram with an 

appropriate number of grains 𝑁, and then modify the edges by: 1) randomly selecting some edges, 

2) shortening these selected edges, and 3) randomly assigning the width of the remaining edges. 

After these operations, we obtain a modified Voronoi diagram with edges denoting the 

intermetallic θ-Al2Cu phase and the inner space denoting the primary α-Al phase. The rationale of 

this strategy to model the nanocomposites for ultrasonic wave propagation simulation is based on 

the following considerations and simplifications: 1) It is known that when the grain or inclusion 

size is less than 1/1000 of the wavelength, its scattering effects on the acoustic wave are negligible 

[162]. Since the sizes of the dispersed nanoparticles are significantly smaller than the ultrasonic 

wave length (2~3mm), we neglect the wave scattering by nanoparticles and do not consider 

nanoparticles in the microstructure simulations; 2) The acoustic scattering arises at the boundaries 

between grains or inclusions due to the change of material properties. The neighboring α-Al grains 

have slightly different material properties because of their different crystal orientations. Therefore 
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the boundaries between α-Al grains can scatter acoustic waves and contribute to ultrasonic 

attenuations. However, their scattering effects are negligible compared with those between α-Al 

grain and θ-Al2Cu phase. Therefore, to simplify the modeling process, the grain boundaries 

between α-Al grains are not considered.  

To implement the first two operations in the edge modification process, we introduce another 

two parameters: 1) α, the percentage of edges in the Voronoi diagram to be dissolved, and 2) β, 

the percentage of length left after dissolving. For example, if there are total 100 edges in the 

diagram, α = 0.3 and β = 0.7 means 30 edges are randomly selected and each of the selected 

edges is dissolved to 70% of its original length. Fig (b) shows a result of applying α and β to the 

initial Voronoi diagram in Fig (a). A well fabricated nanocomposites is featured by small grain 

size and short intermetallic phases. Therefore we can select large	𝑁, large α and small 𝛽 to model 

the microstructures of the good samples. For the experimental microstructures, the thickness of the 

intermetallic is not constant. To model this, we add random widths to each edge after the edge 

dissolving step (Fig (b)) using the following way (shown in Fig (d)). We first select 𝑚 points with 

equal interval for each edge, and then assign two points for each selected point along two sides at 

the same horizontal location with uniformly distributed distances in the vertical direction. After 

that these assigned points are connected to form a polygon and finally the space within each 

polygon is used to denote the intermetallic phase. In this width assigning step, the number of 

middle points 𝑚 and the distribution parameters of the random distance can be changed to capture 

various microstructures. Note that we do not keep the amount of intermetallic phase constant in 

the morphology modification process. The reason is that the dissolved part of the intermetallic 

phase is very small in size and has negligible effects on the acoustic attenuation. For simplicity, 
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we do not consider this aspect in the microstructure modeling process. In summary, the 

microstructure generation procedure is listed in Table 6-1. 

Table 6-1. The microstructure generation procedure. 

Input 𝑵 

1) Generate 𝑁 random points. 

2) Partition the pace using ordinary Voronoi diagram based on 𝑁 generated points. 

3) Index all edges in the diagram. 

Input 𝛼, 𝛽 

4) Randomly select 𝛼 percentage edges among all edges. 

5) Shorten the selected edges to 𝛽 percentage of their original lengths.  

Input 𝒎, 𝒖𝒍 and 𝒖𝒖 

6) Evenly select 𝑚 middle points for each edge 

7) Generate one point above each selected point with vertical distance following 

uniform distribution 𝑈(𝑢Ö, 𝑢v). 

8) Generate one point below each selected point with random distance following 

uniform distribution 𝑈(𝑢Ö, 𝑢v). 

9) Connect the generated points to form polygons. 

10) Fill polygons with black color representing the θ-Al2Cu phase 

Fig shows the overall microstructure modeling process and Fig 6- (right panel) shows four 

generated microstructures to simulate pure A206 and A206-Al2O3 MMNCs. In Fig, we present 

several simulated microstructures with different parameters	𝛼, 𝛽 and 𝑁. Typically, a small N and 

a large 𝛽will be chosen for pure A206 and a large N and a small 𝛽for A206-Al2O3. By adjusting 

these parameters, we can generate microstructures that are similar to the observed microstructures. 

For example, the modified Voronoi diagrams are visually similar to observed microstructures in 

Fig 6-. The similarity can also be roughly quantified. In Fig. 6-2, the microstructure of pure A206 
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(Fig. 2a and 2c) and the composite with 1wt% Al2O3 (Fig. 6-2b and 2d) are simulated using 

parameter combinations N=800, β=0.9,α=1.0 (Fig. 5- 2e and 2g) and N=1200, β=0.7,α=1.0 (Fig. 

5-2f and 2h), respectively. Through a simple image processing and measure of the optical image, 

we found that the average grain sizes are ~1936 𝜇𝑚Z and ~1309 𝜇𝑚Z and the percentage of the 

dark phase that corresponds to AlZCu are 10.75% and 5.13% for pure A206 and the composite with 

1wt% Al2O3, respectively. In the corresponding simulated microstructure, the average grain sizes 

are ~1849	𝜇𝑚Z and ~1156 𝜇𝑚Zand the percentage of the dark phase are 10.02% and 5.05%, 

respectively. We can see that these measures are close between the observed and the simulated 

microstructure.  

The simulated microstructures will be used as the input in the wave propagation simulation. In 

the next section, we introduce the EFIT, the acoustic attenuation simulation in details. 

 

(a) (b) (c)

(d)
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Fig 6-4 The microstructure modeling process: (a) initial Vononoi diagram, (b) after edge 

dissolving step controlled by 𝜶 and 𝜷, (c) after assigning random thickness to each edge, (d) the 

random thickness assigning process. 

6.3  Wave Propagation Simulation using EFIT 

The EFIT is a very stable and efficient numerical scheme to model wave propagation in 

homogeneous and heterogeneous, isotropic and anisotropic elastic media. It was first developed 

by Fellinger et al [148], and since then it has been widely used to explore elastic wave behaviors 

in a variety of applications [153, 163]. The EFIT uses velocity-stress formalism on a staggered 

spatial and temporal grid. It discretizes the following first-order equations:  

∭ 𝝏
𝝏𝒕
𝐩(𝐫, 𝐭)𝐝𝑽 =∯ 𝐧 ∙ 𝐓�𝐫, 𝒕�𝐝𝑺+∭ 𝐟�𝐫, 𝒕�𝐝𝑽𝐯 ,𝑺𝐯                         (6.1) 

∭ 𝝏
𝝏𝒕
𝐒(𝐫, 𝐭)𝐝𝑽 =∯ 𝐬𝐲𝐦{𝐧	𝐯�𝐫, 𝒕�}𝐝𝑺+∭ 𝐡�𝐫, 𝒕�𝐝𝑽.𝐯𝑺𝐯                      (6.2) 

𝐩 is the momentum density vector, 𝐓	the stress second rank tensor, 𝐒 is the strain second rank 

tensor, v is the particle velocity vector, 𝐟	 is the source of force density, 𝐡 is the source of 

deformation rate second rank tensor,	𝐧 is the outward normal unit vector of 𝑆 and 𝐬𝐲𝐦{𝐧	𝐯�𝐫, 𝒕�} 

denotes the symmetric part of the dyad	{𝐧	𝐯�𝐫, 𝒕�}. More detailed explanation of (1) and (2) can 

be found in [164].  
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Fig 6-5 Microstructures generated using different parameters	𝜶, 𝜷 and 𝑵. 

In our research, we employ the existing code Visco-Elastodynamic Finite Integration Wave 

Solver (VEFIT) [165], which is written in C with interface with MATLAB. The VEFIT uses EFIT 

equations (see Appendix A for details) to solve wave propagation in media. The VEFIT requires 

a user-defined phantom (i.e., a 2D geometry which can be homogeneous or inhomogeneous), the 

phantom parameters (i.e., the density of material, the normal and shear velocity of the ultrasonic 

wave in the media, the bulk viscosity and shear viscosity) and the transducer parameters including 

the position and size of transducers and the excitation signals as the inputs. The outputs include 

the stress, the velocity, the acceleration at any selected locations, and the transducers outputs 

recording the velocity received by transducers at each time step. The transducer outputs will be 

(a) (b) (c)

𝛼 = 0.1, 𝛽 = 0.1, 𝑁 = 800 𝛼 = 0.5, 𝛽 = 0.1, 𝑁 = 800 𝛼 = 0.9, 𝛽 = 0.1, 𝑁 = 800

𝛼 = 0.1, 𝛽 = 0.9, 𝑁 = 800

𝛼 = 0.5, 𝛽 = 0.5, 𝑁 = 1200 𝛼 = 0.9, 𝛽 = 0.5, 𝑁 = 1200

𝛼 = 0.5, 𝛽 = 0.9, 𝑁 = 1200 𝛼 = 0.9, 𝛽 = 0.9, 𝑁 = 1600

𝛼 = 0.1, 𝛽 = 0.5, 𝑁 = 800

(d) (e) (f)

(g) (h) (i)
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used to calculate the acoustic attenuation. Example of input phantom, the wave propagation and 

the transducers output generated by VEFIT are presented in Fig.  

In Fig 5-6, the transducer output shows the waveforms of initial pulse and received echo. The 

two waveforms are extracted using a rectangular window with the same size. The frequency 

spectra are obtained by performing the fast Fourier transform (FFT) on the extracted signals. The 

attenuation can be calculated using the spectral ratio analysis technique [166] as: 

𝑨(𝒇) = 𝟏
𝟐𝒅
(𝐥𝐧 | 𝑺𝟏(𝒇)

𝑺𝟐(𝒇)
|)	,                                                      (6.3) 

where 𝐴(𝑓) is the attenuation coefficient at frequency 𝑓, 𝑑 is the thickness of the media, 𝑆¬(𝑓) is 

the frequency spectra calculated using FFT on the extracted signals. 𝑆8(𝑓) is calculated from the 

incident wave 𝑆8(𝑡) and 𝑆Z(𝑓) is from the first bounced back wave 𝑆Z(𝑡).  

 

Fig 6-6 Examples of input phantom, wave propagation snapshots and transducer output by VEFIT. 

The overall simulation procedure is presented in Fig 6-7. The material properties in the 

phantom need to be determined. For Al-Cu alloy A206, the main chemical compositions are Al 
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(93.5%-95.3%) and Cu (4.2%-5.0%). The acoustic properties are calculated based on its elastic 

properties i.e., Young’s modulus, Poisson's ratio and density, which are found in [173, 174]. The 

phantom parameters are summarized in Table 5-2. In the wave propagation simulation, the 

transducer is placed in the middle of the left side of the microstructure, as shown in Fig 5-7. The 

size of the microstructure is selected as 1.2mm× 1.2mm and the size of the transducer is selected 

as one sixth of the length of left side of the microstructure. The central frequency of the excitation 

signals is set to be 2.25MHz, the same as used in the experiment [133]. The boundaries are 

specified to be absorbing in the top and bottom sides and reflective in the left and right sides. In 

the next section, the simulation results will be discussed and compared with experimental data.  

 

Fig 6-7 Simulation procedure using VEFIT and attenuation measurement. 
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Table 6-2. Phantom parameters of 𝐀𝐥𝟐𝐂𝐮 and Al 

 Density 
(g/mm3) 

Normal 
velocity(m/s) 

Shear 
velocity(m/s) 

Bulk 
viscosity 

shear 
viscosity 

AlZCu 0.00436 5945 2892 0 0 

Al 0.0027 6420 3040 0 0 

 
6.4  Simulation and Experimental Results 

In the first set of simulation, we fix 𝛼 = 1.0, i.e., we dissolve all edges of the initial Voronoi 

diagram. The number 𝑁 of cells ranges from 800 to 1600. 𝑁 = 800 is approximately the number 

of grains in pure A206 in the space of 1.2mm× 1.2	mm. 𝑁 = 1600 is roughly the number of 

grains in A206 nanocomposites of the same dimension size with 5wt.% Al2O3 nanoparticles. 𝛽 is 

chosen from 0.9, 0.7 and 0.5. For every combination of 𝑁 and 𝛽, 20 microstructures are randomly 

generated for wave propagation simulation. Since the Voronoi diagram is regenerated for each 

simulation, we expect different attenuation curves for each replication.  
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Fig 6-8 The comparison of experimental attenuation curves and the simulated attenuation curves 

with different simulation parameters (attenuation units: dB/mm, frequency unit: MHz). 

Fig 5-8 shows the experimentally measured attenuation curves from [133] and the simulated 

attenuation curves using different microstructural parameters. In Fig. 6-8, (a), (b) and (c) show 

experimental attenuation curves measured at 20 randomly selected locations on each sample using 

the Olympus Epoch 1000 series NDT device with transducer D785-RP of 6mm in diameter and of 

2.25MHz in nominal central frequency. Based on the experimental results, Wu et al [133] stated 

that there are three sources that influence the material homogeneity and cause the between-curve 

variations, the large α-Al dendrites, the long and continuous intermetallic Al2Cu phases, and the 

non-fully dispersed Al2O3 clusters. Well dispersed Al2O3 nanoparticles can enhance the nucleation 

of both α-Al and Al2Cu phases, resulting in more homogeneous materials. In the simulation we do 

not consider Al2O3 clusters. Only the grain size of α-Al phase and morphology of Al2Cu phase 
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influence the attenuation curves. From Fig we can see that increasing 𝑁 or decreasing 𝛽 can reduce 

the variation of attenuation curves, which is consistent with the experimental results, for that larger 

𝑁 or smaller 𝛽 indicates a more homogeneous material. Besides, the trend and mean value of the 

attenuation curves are also quite similar to the experimentally measurements. For the pure A206 

alloy, the attenuation decreases with frequency, while for the Al2O3 reinforced nanocomposites, 

the attenuation is more severe for acoustic wave of higher frequency. Therefore, the simulation 

approach is capable of reproducing the characteristics of the attenuation measurements.  

To investigate the influence of parameters 𝛼 and 𝛽 on the attenuation curves, we fix 𝑁 =

1200 and run the simulation with different 𝛼 and 𝛽, as shown in Fig. From the simulation results 

we observe the following phenomenon: 1) For a fixed 𝛽, as 𝛼 increases from 0 to 1, the attenuation 

curves tend to be more uniform. This is what we expect. Since 𝛼 controls the percentage of edges 

being dissolved, more edges dissolved as 𝛼 increasing result in the more homogenous 

microstructures; 2) For a larger value 𝛽, increasing 𝛼 will change the attenuation curves less 

significantly. In the extreme case, if there is no dissolving at all, i.e., 𝛽 = 1.0, then the change of 

𝛼 will not influence the attenuation curves. Similarly, for a smaller 𝛼, the change of 𝛽 can hardly 

influence the attenuation curves; 3) For fixed 𝛼 or 𝛽, the decreasing of 𝛽 or increasing of 𝛼 will 

result in the down shift of the attenuation curves. It is because the decreasing of 𝛽 or increasing of 

𝛼 for fixed 𝛼 or 𝛽 will reduce the amount of the intermetallic phase in the microstructure, thus 

reducing the wave scattering effects. In the next section, we will investigate the similarity of the 

between-curve variation between experimental and simulated attenuation curves. 
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Fig 6-9 The influence of 𝛼 and 𝛽 on the attenuation curves (N=1200). 

6.5  Statistical Comparison of Experimental and Simulated Attenuation 

Both the experiment and simulation show that the between-curve variation can be used to 

measure the homogeneity of the A206-Al2O3 MMNCs. Therefore it is important to quantify this 

variation and compare it between experiment and simulation for future statistical quality control 

tool development. From Fig and Fig we can see that all the attenuation curves of each sample share 

the similar characteristics (e.g.,slope, intercept). On the other hand, the variation from curve to 

curve also exist for each sample. Therefore, it is natural to select the linear mixed-effects model 

[167] to describe the population-level features and also model the variation among replicated 

attenuation curves.  
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Let 𝑦¬Ô  denote the acoustic attenuation coefficient for 𝑖-th curve at 𝑗-th frequency 𝑓Ô . 𝑎 and 𝑏 

represent the fixed intercept and slope of the regression line respectively. The linear mixed effects 

model with first order polynomial in the fixed effects can be written as: 

                              𝑦¬Ô = 𝑎 + 𝑏𝑓Ô + 𝑎¬ + 𝑏¬𝑓Ô + 𝜖¬Ô , 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2,… ,𝑚,                   (6.4) 

where 𝑎¬ and 𝑏¬ are random effects of the intercept and slope for 𝑖-th curve with the assumption 

�
𝑎¬
𝑏¬
�~𝑁(𝟎, 𝚺), 𝚺 = Ç 𝜎8Z 𝜌𝜎8𝜎Z

𝜌𝜎8𝜎Z 𝜎ZZ
È, and 𝜖¬Ô~𝑁(0,𝜎Z) is the error term which is used to model 

the measurement error or model inadequacy, and is assumed to be independently and identically 

distributed for all attenuation curves. In this model there are two parts, fixed effects and random 

effects. Fixed-effects term 𝑎 + 𝑏𝑓 is the conventional linear regression part used to describe the 

population-level mean attenuation curve. The random-effects term 𝑎¬ + 𝑏¬𝑓 is associated with 

individual measurement 𝑖 and is used to describe its deviation from the mean attenuation curve. 

Note that we can alternatively use higher order polynomial in the linear mixed effects model. 

However, this may result in over-fitting issue. The attenuation curves in Fig and Fig show a good 

linear relationship with frequency	𝑓, therefore first order polynomial is sufficient in the model 

fitting.  

The model parameters can be estimated using maximum likelihood estimation (MLE) method. 

Suppose 𝒚¬ = (𝑦¬8, 𝑦¬Z … , 𝑦¬�). Denote 𝜷 = (𝑎,𝑏)1, 𝒃𝒊 = (𝑎¬, 𝑏¬)1, and 𝜣 = (𝜷,𝜎Z,𝜮), then the 

likelihood function is  

𝐿(𝜣|𝒚8, …𝒚�) = 𝑝(𝒚8, …𝒚�|𝜣) =¢ 𝑝(𝒚¬|𝜣)
�

¬28
=¢· 𝑝(𝒚¬|𝜣,𝒃𝒊)𝑝(𝒃𝒊|𝜣)

�

¬28

𝑑𝒃𝒊 

where  

𝑝(𝒚¬|𝜣,𝒃𝒊) = (2𝜋𝜎Z)�
�
Z exp §−

1
2𝜎Z

‖𝒚¬ − 𝑿¬(𝜷+ 𝒃𝒊)‖Z¨
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𝑝(𝒃𝒊|𝜣) = (2𝜋)�8|𝜮|�
8
Z exp(−𝒃𝒊1𝜮�𝟏𝒃𝒊/2) 

𝑿𝒊 = [1,1,… ,1; 𝑓8, 𝑓Z, … , 𝑓�]1 

By integrating out 𝒃𝒊 we can get  

𝐿(𝜣|𝒚8, …𝒚�) =¢ (2𝜋)
�
Z |𝑿¬𝜮𝑿¬1 + 𝜎Z𝑰|

�8Z exp �−
1
2
(𝒚¬ − 𝑿𝒊𝜷)1�𝑿𝒊𝚺𝑿𝒊𝑻 + 𝜎Z𝑰�

�8(𝒚𝒊 − 𝑿𝒊𝜷)�
�

¬28
 

By maximizing 𝐿(𝜣|𝒚8, …𝒚�) with respect to 𝜷 and 𝜮, we can obtain the MLE estimated model 

parameters. The optimization details can be found in [168].    

Table 6-3 shows the fitting results for the experimental measurement of A206-5wt.%Al2O3 

and attenuation curves shown in Fig (c3). We select the attenuation curves in Fig (c3) here as an 

example due to its visual similarity to the experimental measurements of A206-5wt.%Al2O3. From 

this table we can see that the fitted results for the simulation data are quite close to the experimental 

data.  

Table 6-3. Fitting results for experimental attenuation curves of A206-5wt.%Al2O3 and 

attenuation curves shown in Fig (c3). “Lower” and “Upper” are the lower and upper bound of the 

95% confidence interval. 

Experimental measurements of A206+5 wt.% AlZO¹ 

Fixed  Estimate S.E p-value Lower Upper Random  std corr 

𝑎	 -1.00 0.024 ≈ 0 -1.05 -0.96 𝑎¬ 0.095  

𝑏  0.55 0.011 ≈ 0 0.53 0.58 𝑏¬ 0.044 -0.996 

Simulation data shown in Fig (c3) 

Fixed Estimate S.E. p-value Lower Upper Random std corr 

𝑎	 -0.92 0.015 ≈ 0 -0.95 -0.88 𝑎¬ 0.069  

𝑏 0.49 0.007 ≈ 0 0.48 0.51 𝑏¬ 0.034 -0.997 
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The histograms of the fitted random effects and the residuals are shown in Fig. The fitted 𝑎¬, 𝑏¬ 

and 𝜖¬ approximately follow normal distribution, which validates the model assumption of 𝑎¬ and 

𝑏¬. From these histograms, we see the linear mixed effects model can model the attenuation curves 

well. 

 

Fig 6-10 Histograms of the fitted random effects and residuals for the experimental measurements 

of A206-5wt.% Al2O3 (top) and simulated attenuation curves shown in Fig (c3) (bottom). 

To test the similarity between the simulation and the experimental measurement in terms of 

the non-uniformity of the acoustic attenuation, we need to compare the covariance matrix 𝜮(𝒔) and 

𝜮(𝒓) calculated in the model fitting, where 𝜮(𝒔) is for the simulation and 𝚺(𝐫) is for the experimental 

measurement. Testing if the covariance matrices of different groups of dataset are equal has been 

well studied, where the likelihood ratio test is the most commonly used methodology [169]. 

However, these studies focus on the covariance matrices of the observations, whose dimension 

would be very high for attenuation curves. Instead, we focus on the covariance matrix of model 
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parameters (𝑎¬, 𝑏¬)1 with significantly reduced dimension. Therefore the likelihood ratio test 

cannot be directly applied in this study. We employ the permutation test [170], a non-parametric 

and computationally efficient method to tackle this issue. Intuitively, if two sets of data (e.g., the 

acoustic attenuation curves from simulation and experimental measurements) are similar enough 

to each other, i.e., they come from the same distribution, then by randomly shuffling the data 

components between the two data sets, we expect to see the similar statistics (e.g., the difference 

of means or variances between the original two sets and the sets after random shuffling). We may 

now test how similar the two datasets by comparing the statistics before and after the random 

permutation. To make the comparison more rigorous, repeat the permutation process many times 

to get the sample distribution of the test statistic and calculate the 𝑝 value for the statistic of the 

original data sets. An example of permutation test on testing means of two data sets is presented 

in Fig. Suppose we want to test if the means are equal for two datasets X8 and XZ, which are 

generated from the same uniform distribution. The values in each set are randomly generated just 

for illustration purpose. By randomly shuffling the components in the two sets, we obtain X8∗ and 

XZ∗ . The difference of the mean of the new sets is calculated. Repeat the permutation 1000 times to 

get the sample distribution of |X8∗""" − XZ∗"""|. Calculate the p-value of test statistic of the original data 

sets. Here the p-value is the percentage of the generated 1000 samples that satisfy	|X8∗""" − XZ∗"""| ≥

|X8""" − XZ"""|. If the p-value is very small, it is likely that X8 and XZ have different means. In Fig the 

p-value is about 0.9, therefore the two means are likely to be equal.  
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Fig 6-11 Illustration of permutation test on population means of two data sets. 

In our case, the null hypothesis is 𝐻f: 𝚺(Î) = 𝜮(W), which is equivalent to 𝐻f: 𝜎8
(l) =

𝜎8
(�),𝜎Z

(l) = 𝜎Z
(�), and	𝜌(l) = 𝜌(�). In this testing there are simultaneously three components to be 

tested. To avoid the inconvenience of multiple testing problems [171], we reformulate it to an 

identical hypothesis testing 𝐻f: 𝑇 = max ¼Y𝜎8
(l) − 𝜎8

(�)Y, Y𝜎Z
(l) − 𝜎Z

(�)Y	, |𝜌(l) − 𝜌(�)|½ = 0. In other 

words, the hypothesis testing of equality of the two covariance matrices is performed by testing if 

the maximum difference of the matrix entries is zero. Considering that the sample variances of the 

three absolute differences in the testing statistic 𝑇 may be different in the permutation test, it is 

necessary to standardize these three terms first by dividing their standard deviations (SD). 

Therefore the hypothesis test can be expressed as  

𝐻f:	𝑇 = maxâ
Y𝜎8

(l) − 𝜎8
(�)Y

𝑆𝐷Y�E(É)��E($)Y
,
Y𝜎Z

(l) − 𝜎Z
(�)Y

𝑆𝐷Y�C(É)��C($)Y
	 ,
|𝜌(l) − 𝜌(�)|
𝑆𝐷|3(É)�3($)|
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𝐻8: 𝑇 ≠ 0 

The permutation test can be summarized as: (1) random shuffle curves between the simulation 

set and the experimental measurement set and fit the linear mixed effects model to each new dataset 

to get 𝚺𝒑
(𝐬) and 𝚺𝒑

(𝐫); (2) calculate the absolute differences of 𝜎8, 𝜎Z and 𝜌 between the two 

covariance matrices; (3) repeat (1) and (2) 𝑁l times to obtain the three sets of samples for 

Y𝜎8
(l) − 𝜎8

(�)Y, Y𝜎Z
(l) − 𝜎Z

(�)Y and |𝜌(l) − 𝜌(�)|; (4) calculate their standard deviations and 

standardize these samples; (5) calculate the 𝑇 statistic for these samples to obtain a set of samples 

{𝑇8, … , 𝑇�É}; (6) calculate the standardized T statistic for the observations (i.e., simulation set and 

experimental measurement before random shuffle) 𝑇V; (7) calculate the p-value (the percentage of 

𝑇 samples that are larger than 𝑇V) for the observations. If the p-value is smaller than a certain 

threshold, e.g., 0.1, then reject the null hypothesis	𝐻f, i.e., 𝚺(Î) ≠ 𝜮(W).  

Fig shows two examples of the permutation test, where we compare the covariance matrices 

between Fig (c) (A206+5wt.% Al2O3) and Fig (c3), Fig (b) (A206+1wt.% Al2O3) and Fig (c3). 

The p-values for these two tests are 0.99 and 0.08 respectively. If we select the 0.1 as the testing 

threshold, then we can conclude that the variation of attenuation curves in Fig (b) is statistically 

different from Fig (c3), and Fig (c) is quite similar to Fig (c3) in terms of the between-curve 

variation. Also, we can use the p-value to evaluate the similarity of the covariance matrices of two 

sets of attenuation curves. The higher the p-value, the closer the two sets of attenuation curves. On 

the other hand, small p-values (≤0.1) indicate a large difference between simulated attenuation 

curves and the experimental measurements due to mismatched microstructures. The p-value are 

0.24, 0.71 and 0.99 for the comparisons between Fig (a) and Fig (a1), Fig (b) and Fig (b2), Fig (c) 
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and Fig (c3), respectively. These large p-values (>0.1) indicate that the simulated microstructures 

can well reproduce the attenuation variation. 

 

Fig 6-12 Illustration of the permutation test. (a) and (b): Fig (c) VS. Fig (c3), p-value=0.99; (c) 

and (d): Fig (b) VS. Fig (c3), p-value=0.06. The vertical dashed lines denote the observed test 

statistics. 

Note that, the permutation test of 𝑇 statistic calculated by LME can be applied for quality 

inspection of MMNCs. Because the consistency of the simulation results has been validated, the 

simulated acoustic attenuation curves are ready to be set as reference profiles. For example, the 

attenuation curves in Fig. 6-8 (c3) can be used as the reference of MMNCs with high quality. The 

measured attenuation curves from samples with low quality (e.g., Fig. 6-8 (b)) can be significantly 

identified by permutation test as shown in Fig. 6-12 (c) and (d).  
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6.6  Discussion and Conclusion 

In this research, we propose a microstructure modelling and wave propagation simulation 

method to generate the microstructures and to simulate the ultrasonic attenuation curves for A206-

Al2O3 MMNCs. Based on the micrographs and morphology modification mechanism of the 

nanocomposites, a modified Voronoi diagram is developed to simulate 2D microstructures and 

capture the microstructural features, where three key parameters are used to control the grain size 

of the primary phases and the morphology modification of the intermetallic phases. The numeric 

method EFIT is used to simulate the wave propagation through the generated microstructures. The 

attenuation curves are calculated by performing the fast Fourier transform (FFT) on the extracted 

signals from the outputs of EFIT. The simulated acoustic attenuation curves are quite consistent 

with the experimental measurements. 

The linear mixed effects model is used to model the attenuation curves. A permutation test 

based on the maximum difference of each matrix entry is developed to test the equality of the 

covariance matrices from the simulated and experimental attenuation curves. The hypothesis tests 

show that by adjusting the microstructural parameters of the simulation, the simulated attenuation 

curves are able to closely match the experimental measurement in terms of the between-curve 

variations. 

This research directly supports the experimental results and findings in [133] through the 

simulation approach. It helps us better understand the phenomenon of the non-uniformity of the 

attenuation curves and how the microstructural features influence this non-uniformity. In the 

future, the quantitative model will be conducted to infer the microstructural features based on the 

experimental and simulation database of different microstructures and the corresponding 

attenuations. Using that model, the statistical process control (SPC) charts will be developed to 
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control the quality of A206-Al2O3 MMNCs based on the attenuation profiles or inferred 

microstructural features. Although 2D simulation has been commonly used, it may be not as 

accurate as 3D simulations. Therefore it is desirable to extend the simulation to three dimensions 

to better represent the experimental microstructures and wave propagation processes, which will 

also be our future work. 

6.7 Appendix : EFIT equations and resolution conditions 

The 2D EFIT equations of (5.1) and (5.2) are presented as 

𝑣Ñ,¬,Ô� = 𝑣Ñ,¬,Ô��8 + 0®
0Ñ
𝐵Ñ �𝜏ÑÑ,¬«8,Ô

��EC − 𝜏ÑÑ,¬,Ô
��EC + 𝜏ÑÒ,¬,Ô

��EC − 𝜏ÑÒ,¬,Ô�8
��EC �,              (6.5)  

 𝑣Ò,¬,Ô� = 𝑣Ò,¬,Ô��8 + 0®
0Ñ
𝐵Ò �𝜏ÑÒ,¬,Ô

��EC − 𝜏ÑÒ,¬�8,Ô
��EC + 𝜏ÒÒ,¬,Ô«8

��EC − 𝜏ÒÒ,¬,Ô
��EC �,             (6.6) 

                             𝜏ÑÑ,¬,Ô
�«EC = 𝜏ÑÑ,¬,Ô

��EC + 0®
0Ñ
{(𝜆 + 2𝜇);𝑣Ñ,¬,Ô� − 𝑣Ñ,¬�8,Ô� >+ 𝜆;𝑣Ò,¬,Ô� − 𝑣Ò,¬,Ô�8� > 

																+(𝜂 + 2𝜙);𝑣̇Ñ,¬,Ô� − 𝑣̇Ñ,¬�8,Ô� >+ 𝜂;𝑣̇Ò,¬,Ô� − 𝑣̇Ò,¬,Ô�8� >,                         (6.7) 

                            𝜏ÒÒ,¬,Ô
�«EC = 𝜏ÒÒ,¬,Ô

��EC + 0®
0Ñ
{(𝜆 + 2𝜇);𝑣Ò,¬,Ô� − 𝑣Ò,¬�8,Ô� >+ 𝜆;𝑣Ñ,¬,Ô� − 𝑣Ñ,¬,Ô�8� > 

																+(𝜂 + 2𝜙);𝑣̇Ò,¬,Ô� − 𝑣̇Ò,¬�8,Ô� >+ 𝜂;𝑣̇Ñ,¬,Ô� − 𝑣̇Ñ,¬,Ô�8� >,                         (6.8) 

              𝜏ÑÒ,¬,Ô
�«EC = 𝜏ÑÒ,¬,Ô

��EC + 0®
0Ñ
{𝜇ÑÒ;𝑣Ñ,¬,Ô«8� − 𝑣Ñ,¬,Ô� + 𝑣Ò,¬«8,Ô� − 𝑣Ò,¬,Ô� > 

          																			+𝜐ÑÒ;𝑣̇Ñ,¬,Ô«8� − 𝑣̇Ñ,¬,Ô� + 𝑣̇Ò,¬«8,Ô� − 𝑣̇Ò,¬,Ô� >,                                        (6.9) 

where the velocities (𝑣Ñ , 𝑣Ò) at time 𝑛 are calculated using the sum of the velocities at time 𝑛 − 1 

and a linear combination of the stresses (𝜏ÑÑ , 𝜏ÒÒ , 𝜏ÑÒ) in the spatial coordinates 𝑖, 𝑗 and the half 

step time 𝑛 − 8
Z
. Similarly, the stresses (𝜏ÑÑ , 𝜏ÒÒ , 𝜏ÑÒ) at time 𝑛 + 8

Z
 are calculated by adding the 



156 
 

stresses at 𝑛 − 8
Z
 and the linear combination of velocities multiplied by the lame constants 𝜆 and 𝜇 

for the elastic factor and the viscous factor 𝜂 and 𝜙 multiplied by the rate of change in velocities 

(denoted as (𝑣̇Ñ , 𝑣̇Ò)	). Δ𝑥 and Δ𝑡 represent spatial step and time step respectively. 𝐵Ñ and 𝐵Ò are 

the effective buoyancies defined as : 

𝐵Ñ =
2

𝜌¬«8,Ô + 𝜌¬,Ô
, 

𝐵Ò =
2

𝜌¬,Ô«8 + 𝜌¬,Ô
, 

where 𝜌 is the mass density for the spatial coordinates 𝑖, 𝑗. 𝜇ÑÒ  and 𝜐ÑÒ  are the effective rigidity 

defined as : 

𝜇ÑÒ =
4

1
𝜇¬,Ô

+ 1
𝜇¬«8,Ô

+ 1
𝜇¬Ô«8

+ 1
𝜇¬«8.Ô«8

, 

𝜐ÑÒ =
4

1
𝜙¬,Ô

+ 1
𝜙¬«8,Ô

+ 1
𝜙¬Ô«8

+ 1
𝜙¬«8.Ô«8

. 

The spatial resolution Δ𝑥 and the time resolution Δ𝑡 must be chosen small enough to provide 

sufficiently smooth representations of the computed filed. However, these two resolutions cannot 

be chosen independently, they must satisfy the Courant’s stability condition, that is: 

Δ𝑡 ≤
Δ𝑥

𝑐��Ñ 	√𝑑
, 

where 𝑑 is the space dimension (𝑑 = 2 is used for our simulation) and 𝑐��Ñ is the largest wave 

speed in the media. Δ𝑥 is recommended ranging from (
$
 to (

Zf
 for the wavelength λ [172]. 
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7 Conclusion and Future Work 
 

Fault detection and prognosis play important role in the engineering systems. In structures 

an early detection of faults in mechanical structures ensures the safety and avoids any potential 

damages. Precise prognosis of the fault progression make the timely maintenance and reparation 

possible. In manufacturing processes, early detection of nonconforming parts or products with low 

qualities leads early corrective actions to ensure consistent delivery of a quality product and to 

avoid productivity loss. The research presented in this dissertation aimed to quantitatively address 

several fundamental and significant issues that remain in the areas of structural fault detection and 

prognosis, and fault detection of specific data types in manufacturing process. 

In the study of mechanical structures, the identifiability issue of FEM, the measurement 

selection algorithm for bias reduction and structural property degradation are investigated. 

Specifically,  

1) The identifiability issue in FEM for fault detection is addressed by a quantitative 

framework. FEM of a beam structure is re-formulated into a state space model representing LTI 

dynamic system. By using the properties of an inverse of a block diagonal matrix, the uniqueness 

of the system transfer function is proven for different severity level of damages at the same 

location. That is, the damages are theoretically identifiable in the FEM for a given damage location 

of a beam structure. Moreover, a sufficient condition for the identifiability of multiple damages at 

different locations is established based on the natural frequencies. A numerical algorithm is 

proposed to numerically check and validate the location identifiability of scalar valued damage 

location. With this checking procedure, it is showed that damages at two different locations will 

only result in the same transfer function under the symmetric conditions. In other words, two 
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damages at different locations will be differentiable in most cases. The algorithm can be extended 

for vector valued damage. Several representative case studies are conducted to demonstrate the 

effectiveness and usefulness of the proposed framework for providing a theoretical guideline on 

the damage identifiability by using FEM-based vibration analysis. 

2) A natural frequency selection algorithm is proposed to reduce the bias in the estimation of 

damage parameters using linear approximation under mild damage scenarios. The selected 

combination of natural frequency has high probability to be the optimal combination which leads 

to the smallest bias in the estimation among all the possible combinations. The algorithm consists 

three sub-algorithms. In the first algorithm, the 𝐿8- norm regularization with iterative matrix 

randomization  is adopted for estimation of damage parameters followed by a majority voting 

process. In the second algorithm, the damage locations are identified by sequential updating. The 

improved estimation  𝐿8- IMR helps to choose the best combination of measurements in the third 

algorithm. The effectiveness of the proposed method is validated through numerical studies. 

Factors that influence the performance of the method are also discussed.  

3) The progression of stiffness loss is predicted by the dynamic data-driven hierarchical 

Bayesian degradation model. The model adopts a two level hierarchical structure. In the first level, 

the observed natural frequencies are assumed to be generated from a normal distribution with given 

stiffness. In the second level, the evolving path of stiffness is described using polynomial 

functions. The unknown parameters in the model are described by conditional posterior 

distribution in Bayesian framework and estimated by Gibbs sampling method. Numerical studies 

and results are used to validate the model for different evolving path of stiffness loss. The model 

performed efficiently in all cases. 
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For two specific data types in manufacturing process, the following data analytics models 

and methods are adopted for fault detection. 

1) A HT-based method to detect point patterns that consist of arbitrary line segments is 

proposed for detecting defects distributed as spatial point pattern in semiconductor wafers. The 

basic idea is to convert the line pattern detection problem in physical domain into the problem of 

detecting multiple points in Hough domain. The detection is attained through two critical steps, 

the angle matching and the distance matching, which allows arbitrary rotation, scaling, and 

translation of the pattern. Based on the simple intuition that a line is most likely to be detected if a 

Hough strip fully overlaps with the defective region, a detailed discussion on how to select tuning 

parameters of the algorithm are provided. An extensive numerical study shows that the detection 

method performance well in terms of both Type I error and the detection power if the defective 

region has reasonable size and the contrast between the defective region and the background noise 

is reasonably large. 

2) Linear mixed effect model and permutation test are adopted to analyze the variation of 

acoustics attenuation curves for quality inspection of A206-Al2O3 MMNCs. The acoustic 

attenuation curves are characterized by linear mixed effect model, where the model parameters are 

estimated using MLE method. The variance model parameters are formed as 𝑇 statistic to test the 

null hypothesis by permutation test. In addition, a microstructure modelling and wave propagation 

simulation method to generate the microstructures and to simulate the ultrasonic attenuation curves 

for A206-Al2O3 MMNCs is proposed, where the microstructures are modelled by Voronoi 

diagram and wave propagation is simulated by numerical calculation of EFIT. The statistical 

analysis shows the consistency of the simulation results with the experimental results. By such 
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simulation model, the understanding of the wave-microstructure interaction is enhanced, while 

providing a flexible platform for further quantitative analysis. 

Future work will focus on fault identification based on the framework of integrating 

piezoelectric transducer circuitry (PTC) network into mechanical structures. The PTC enhances 

the performance of frequency-shift-based damage identification method. However, a quantitative 

analysis on the tuning variable of the network is lacking of studies. For instance, how to tune the 

inductance in the circuit to make the most sensitive damage detection and how to quantify the 

accuracy of detection results as function of the amount of tuning variables. These issues are 

planned to be investigated before the final defense.  

Some potential future directions are summarized in the following. 

1) On-line change point detection in structural monitoring: As discussed in Chapter 3, the trend 

of structural property degradation may follow beta function trend, where the rapid decrease of 

structural property happens at certain time point. It is important to detect such changing time 

point accurately and quickly to prevent further potential damages of the structures. 

2) Adaptive fault identification methodology: The monitoring signals carry the information of 

engineering systems under certain environmental factors. The environmental factors may 

influence the systems in a dramatic way, in which case, the analysis of signals ignoring the 

environmental effects leads unreliable results. Methods that incorporate the impacts of the 

environment are needed for precise fault identification.  
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