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ABSTRACT

The accurate detection and efficient prognosis of faults in engineering systems are of great
practical importance. The systems concerned encompass a broad spectrum of human-made
structures and processes, including civil, mechanical and aerospace structures and various
manufacturing processes. The precise detection of faults involved in the systems is critical in
avoiding structure deterioration, performance degradation, productivity loss and even loss of lives.
Prognosis is the ability to predict accurately the future condition of the systems, such as
degradation status and remaining useful life. The prognosis helps to carry out the optimal
maintenance scheduling for structures and smart operation management of manufacturing

processes.

The rapid development of sensor techniques makes it possible for data collection in a quick
and accurate manner. Quantitative analysis based on physical model or statistical model applying
on the large amount of collected data provide great opportunities for achieving precise fault
detection and prognosis. However, significant and fundamental challenges exist in fully exploiting
the available data to achieve this goal. For example, the identifiability of a fault based on collected
data is essential and should be addressed before any fault identification efforts. Specifically, the
commonly used finite element model (FEM) has not been validated for its identifiability in the
application of structural damage identification. The induced bias due to linearization is often
ignored for damage estimation, which may lead wrong fault identification. Also, efficient methods
to predict the progression of structural properties based on finite element models are lacking.
Furthermore, various data types require specific data modelling and analysis techniques for fault
detection beyond the traditional statistical monitoring methods in manufacturing processes. These

issues are being studied in this dissertation.



Specific contributions of this thesis are made in fault identification and prognosis in

mechanical structures and manufacturing processes.

In mechanical structures, the identifiability of FEM, the bias reduction by measurements selection

and the prognosis of structural property degradation are addressed. In specific:

e A quantitative framework is proposed to address the identifiability of structural damage
identification based on finite element models.

e A measurement selection algorithm is proposed for bias reduction in damage estimation.

e A hierarchical Bayesian degradation model is proposed to efficiently estimate the trend of

damage growth in structures.

In manufacturing processes, two specific methods are proposed for fault identification of

untraditional data type. Specifically,

e Defects with specific spatial patterns on semiconductor wafer are recognized by converting
the original pattern recognition problem as point matching problem using Hough
Transformation.

e Variations of acoustic attenuation curves are being quantified by linear mixed effect model
and permutation tests to provide the guidelines on the quality inspection in nanocomposites

manufacturing.

Besides the aforementioned challenges, there are other issues need to be addressed. For
example, the integration of piezoelectric transducer circuitry network into mechanical structures
enhances the performance of frequency-shift-based damage identification method. However, a
quantitative analysis on the tuning variable of the network is lacking of studies. The quantitative

study will not only enhance the understanding of such integrated network, but also provide



guidelines on tunings to achieve the optimal fault identification. Also, the location of the integrated
network significantly influences the performance of the fault identification. Analysis on the
optimal allocation of the transducers leads the most sensitive system response due to the structural

damages, in which provides the most accurate fault detection.
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1. Introduction

1.1 Background

Fault management in engineering systems is the integration of fault detection, fault
identification and fault prediction. Fault detection monitors the engineering systems to identify the
occurrence of faults. The simplest way is to calculate the significance of differences in monitoring
signals before and after the damages. Fault identification is to further quantify any existed
damages, e.g., type, location and severities. Physical models are often utilized for such tasks. Fault
prediction is a natural extension of fault detection and identification. It attempts to forecast system

performance by assessing the current condition of the system.

Fault management plays critical roles in both engineering structures and processes. Generally,
fault management provides knowledge on conditions of engineering systems for smart decision
making. In engineering structures, the early detection of damages ensures the safety of mechanical,
aerospace and civil structures, which saves money and even lives. Accurate identification of
damages leads precise fault correction for economical purposes. Most types of damage or
structural weakness in structures cannot be observed directly and are caused by the changes in
structural properties. Revealing such evolving path of structural damage is highly desirable in
practice for prognosis and maintenances scheduling. In manufacturing process, the early detection
of nonconforming parts or products with low qualities leads early corrective actions to ensure
consistent delivery of a quality product and to avoid productivity loss. Forecasting the future

conditions of manufacturing process provides guidelines for smart operation managements.



Due to the practical importance of fault management, huge amount of systematical studies has
been done over decades. Comprehensive references on different methods for fault management
can be found in [1-5]. These methods can be roughly categorized into either pure physical models
or pure data-driven methods. Pure physical models describe the dynamics of the engineering
systems using differential equations based on physical principles. System properties are quantified
by the equations, where types of faults can be easily classified. For examples, analyses of fatigue
damage and life prediction in structures are based on physical models in [3]. Paris’ law is widely
used for crack growth estimation [6,7]. The multistage manufacturing processes is being modeled
and diagnosed using state space model [8]. State space model is also adopted for modelling
variation propagation of assembly systems in [9]. However, physical models are highly specific
and not compatible among different models, and are generally costly in computation. Pure data-
driven methods reveal the natures of engineering systems by exploiting the sensing data measured
from systems. The rapid development of sensor techniques makes it possible for data collection in
a quick and accurate manner. Generic statistical models are applied to make the models applicable
to various systems. For instances, a popular category of data driven methods is to model the sensing
signal directly using stochastic process or degradation path model [10]. Hidden Markov models
(HMM) have been adopted for damage prognosis of a pre-stressed concrete bridge [11] and is used
for prediction of gear failures [12]. Root cause diagnosis of process variations is identified using
Bayesian network [13]. Compared with physical models, most data-driven methods suffer from
lacking support of physical principles, which may result in inaccurate or even misleading
interpretation of data. Another drawback of data-driven methods is the inefficient utilization of
data. For example, traditional statistical monitoring methods [14-15] are often adopted for

monitoring manufacturing processes. Alarms are raised for abnormal changes. However, the



traditional monitoring techniques are not adequate for many data types, such as spatial patterns or
functional data. Even if these data can be quantified into the framework of the traditional methods,
valuable information contained in the original data (e.g., the pattern or the functional relationship)
is missed. In this dissertation, a combined method which takes advantage from both physical model
data-driven approach is proposed to fill the gap. Data are interpreted based on fundamental
physical laws in statistical manners. Data are fully exploited to provide insight knowledge of the
structures and lead better identification and prediction results. Besides, specific data analytics
methods are proposed for fault detection in manufacturing processes to fully utilize specific data
types. In the following, discussions fall into two categories, fault management in structures and

fault detection in manufacturing processes.

1.2 Fault Identification and Prognosis in Structures

In this section, challenges together with proposed solutions are introduced for fault

identification and prognosis in structures.
1.2.1 Identifiability issue in fault detection by FEM

Although FEM has made its success in damage identification over decades by formulating
the complicated structures into small elements, very limited studies exist on analyzing the
identifiability of the FEM used in such applications. Most existing works adopt some types of
optimization algorithms to minimize the error function and expect the achieved result is a global
optimal solution. However, the optimization procedure cannot always guarantee to converge to the
global optimal values and in some cases, even a unique global optimal solution does not exist.
Indeed, a non-unique model parametrization of FEM might result in an ill-posed identification

problem. For example, if FEM returns the same system response for different damage locations in



a structure, then the damage locations cannot be uniquely identified no matter what method we are
using. Thus, the identifiability study, i.e., the investigation of the existence of a one-to-one relation
between the input-output behavior of the model and the parameters, is a critically important step

before the actual parameter estimation procedure is carried out based on FEM.

To address the identifiability issue in fault detection by FEM, a quantitative framework is
adopted. FEM of structures are formulated into a state space model representing linear time
invariant (LTI) dynamic system, where the definitions of the identifiability of a dynamic system

can be applied to address the problem.

1.2.2 Induced bias in damage estimation due to linearization

Linearization of the eigenvalue problem has been widely used in the damage detection based
on the change of natural frequencies. However, the linearization method introduces bias in the
estimation of damage parameters. Moreover, the commonly employed regularization method may
cause the estimation different from the true underlying solution. These issues cause wrong
estimation in the damage severities and even wrong damage locations. Limited work has been

done on addressing these issues.

We find that particular combinations of natural frequencies will result in less biased estimation
using linearization approach. Thus, a measurement selection algorithm to select an optimal set of
natural frequencies for damage identification is proposed. The proposed algorithm adopts L, - norm
regularization with iterative matrix randomization for estimation of damage parameters. The
selection is based on the estimated bias using the least square method. Numerical studies are

conducted to validate the effectiveness of the method.



1.2.3 Efficient structural damage growth prediction

Both physic-based approach and data-based approach suffer from their inherent weakness
in tackling damage prognosis issue in structures. Physical models are generally case specific,
which limit their application to broad types of structures. Second, these methods assume that an
accurate mathematical model is available and the model requires specific mechanistic knowledge
and theories relevant to the systems under consideration. In practice, it is very difficult to build
such a good physical model. Furthermore, physics based methods often ignore the uncertainties in
the system structure and the measurements. Computational load is general heavy in physical
models. Data-driven methods, on the other hand, limits attentions only on explaining data.
Stochastic process is able to model the degradation signals well without revealing the change of
structural properties. HMM and other state space models require tons of historical data for model
training before usage. Also, since degradation status is classified into discrete states as an
approximation of the underlying true continuous state, the prognosis in a long term could be
unreliable. Thus, a method that integrates both the advantages of physical model and data-driven

method is desired.

To fulfill an efficient structural damage growth prediction, a dynamic data-driven
hierarchical Bayesian degradation model, which takes advantage of both the physical finite

element model and the data driven Bayesian framework, is proposed.
1.3 Fault Detection in manufacturing processes

In this section, two specific data analysis methods are introduced for spatial point pattern and

functional data in manufacturing processes, respectively.

1.3.1 Surface Defects in Semiconductor Manufacturing



Defects on semiconductor wafer usually distribute as spatial point patterns, which may
contain the information of root cause. Traditional control charts monitor the total number of defects
as a criteria of alarm. However, the information of specific spatial patterns is missing. A new
method based on Hough transform is proposed, where point pattern detection problem is converted
into a simple point matching problem. Thus, specific spatial patterns can be recognized to indicate

the existence of defects.

1.3.2 Acoustic Attenuation Curves in Nanocomposite Manufacturing

The variation of ultrasonic attenuation curves are flexible indicators for the quality
inspection of A206-A1203 Metal Matrix Nanocomposites (MMNCs) by ultrasonic testing. Most
control charts are developed for monitoring point values. Even if multivariate control charts are
designed for vector data, assumptions often cannot be validated in practice. Thus, new methods on
dealing with functional data are desired. The new method is based on linear mixed effect (LME)
model and permutation test. LME model is adopted to characterize the variation of ultrasonic
attenuation curves. Further, permutation test is employed to classify the quality of samples, where

no assumptions of distribution are needed.

1.4 Outline of the Dissertation

The remainder of the dissertation is organized as follows: Chapter 2 addresses the
identifiability issue in fault detection by FEM. In this chapter, the detailed quantitative framework
is introduced. The analysis of the transfer function in dynamic system is applied to a beam
structure. It is theoretically proved that damage severity at a given location in a uniform beam is
identifiable. A numerical algorithm is adopted for checking the identifiability issue of multiple

damage locations. In Chapter 3, the hierarchical model which integrates the FEM and Bayesian



framework is introduced. The stiffness loss is the target damage progression being analyzed by the
proposed model. The trend of the stiffness loss can be efficiently and accurately estimated by
Gibbs sampling. Chapter 4 and 5 provides the specific data analysis method for spatial point pattern
in semiconductor wafer and acoustic attenuation curves in MMNC:s, respectively. In Chapter 4,
the original point patter detection problem is converted into point matching problem by using
Hough Transformation. Compared with the existing point pattern matching methods, the proposed
method does not require training data and is relatively easy to implement and compute. Chapter 5
introduces the linear mixed effect model on quantifying the variation of ultrasonic attenuation
curves by ultrasonic testing. Permutation test is further employed for quality inspection. In
addition, a microstructure modelling and wave propagation simulation method to simulate
ultrasonic attenuation characteristic for A206-A1203 MMNCs are proposed to enhance the
understanding of the wave-microstructure interaction and also address the difficulty in fabricating
nanocomposites of different microstructural features in practice. Chapter 6 summarizes the

contributions of this dissertation and discusses the future work.



2. Identifiability Analysis of Finite Element Models for Vibration-
Response Based Structural Damage Detection in Elastic Beams®

In this chapter, the identifiability of FEM-based structural damage detection is investigated
for undamped elastic beams. We theoretically proved that damage severity at a given location in a
uniform beam is identifiable by reformulating the FEM into a linear time invariant (LTI) system.
A numerical algorithm is also proposed for checking the identifiability issue of multiple damage
locations. Numerical case studies are provided to validate the effectiveness and usefulness of the

proposed framework.
2.1 Literature Review

Structural health monitoring and damage detection to assure the structure safety and
reliability is an important area in civil, mechanical and aerospace engineering fields. Structural
vibration response has been used extensively in structural damage detection. The basic idea is that
the occurrence of damage in a structure will lead to changes in its vibration characteristics (e.g.,
natural frequencies, mode shapes, modal curvatures, etc). By checking such changes we often can
infer the location and severity of the damage. Finite element model (FEM) is a broadly used

numerical tool in structural analysis to quantitatively check the changes and conduct the inference.

In the literature, many FEM-based damage detection methods have been proposed.
Essentially, in these methods, the structure damages have been commonly modeled as element-
wise property (e.g., mass density or stiffness) change in the finite element model. The damage

severity parameters and damage location parameters are estimated by minimizing an error

“This chapter is based on the paper: Liu, Yuhang, Shiyu Zhou, and Jiong Tang. "Identifiability
Analysis of Finite Element Models for Vibration Response-Based Structural Damage Detection in
Elastic Beams." Journal of Dynamic Systems, Measurement, and Control 138.12 (2016): 121006.



function, which expresses the difference between experimental modal analysis data and the
corresponding FEM model prediction. The error functions can be used to measure the changes in
natural frequencies, the mode shape, the modal curvatures, or directly the parameters in FEM. It
has been shown that the damage estimated based on the FEM are consistent with the experimental
results. For example, damage detection methods are developed based on the natural frequency
change computed using FEM [16-19]. Methods for model error localization based on the mode
shape changes characterized by FEM have been proposed in [20,21]. Natural frequencies and mode
shapes are jointly used for damage detection in [22-24]. Pandey, et. al [25] demonstrated that
absolute changes in mode shape curvature can be a good indicator of damage for beam FEM
structure. Chen and Garba [25,27] presented a method for minimizing the norm of the model
property perturbations with a zero modal force error constraint on a truss FEM structure. Sanayei
and Onipede [28,29] presented a technique for updating the stiffness parameters of a FEM using

the results of a static load-displacement test.

Despite the large amount of works on FEM-based vibration response analysis for structural
damage detection, very limited studies exist on analyzing the identifiability of the FEM used in
such applications. Most existing works adopt some type of optimization algorithms to minimize
the error function and expect the achieved result is a global optimal solution. However, the
optimization procedure cannot always guarantee to converge to the global optimal values and in
some cases, even a unique global optimal solution does not exist. Indeed, a non-unique model
parametrization of FEM might result in an ill-posed identification problem. For example, if FEM
returns the same system response for different damage locations in a structure, then the damage
locations cannot be uniquely identified no matter what method we are using. Thus, the

identifiability study, i.e., the investigation of the existence of a one-to-one relation between the
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input-output behavior of the model and the parameters, is a critically important step before the

actual parameter estimation procedure is carried out based on FEM.

The uniqueness of the relationship between structural parameters and the system response
has been studied analytically for simple beam structures. Chang and Guo [37] prove that the
density and the flexural rigidity of the Euler-Bernoulli beam in class C* can be uniquely
determined from input and output functions. Frederick and Mehmet [38] show that the
perturbations in individual modal frequencies are governed uniquely by the intensity of the damage
and its location in a fracture structure, where the crack damages are modeled as hinged springs in
the model. To our best knowledge, limited work has been done in investigating the identifiability
issue in FEM. The most related work is [30]. It is shown that the solution of element properties
(e.g., mass and stiffness) to minimize the error function related to the modal force of a truss
structure is unique and globally minimal if sufficient modal data are available. However, the
uniqueness is interpreted from the view point of optimizing a quadratic error function, not from
the relationship between model parameter changes and the model responses. The relation between

structural parameters and the system response in FEM is not yet investigated.

In this chapter, we present a quantitative framework to address the identifiability issue in
FEM-based structural damage detection. We are trying to answer, whether the element property
changes in the FEM based method can be uniquely identified through a given set of input and
output measurements. In this study, we use a Euler-Bernoulli beam as the representative structure.
The damage at certain location is modeled as a reduction in the stiffness of the element at the
corresponding location in the FEM. This way of modeling damage has been commonly used in
existing damage detection methods [31-37]. In this framework, FEM of a beam structure is re-

formulated into a state space model representing Linear Time Invariant (LTI) dynamic system.
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With this formulation, the definitions of the identifiability of a dynamic system [39] can be applied
to our problem. Some existed work [40-44] related to the identifiability problem focus on finding
sufficient measurements of system input and output such that all system parameters can be
identified. However, the focus of this research is the damage parameters (e.g., severities and
locations) identifiability based on a given set of measurements. Furthermore, the different
mathematical formulation also distinguishes our study from these existed works. By using the
properties of an inverse of a block diagonal matrix, we then analyzed the uniqueness of the system
transfer function and proved that different severity level of damages at the same location of the
structure will result in different system responses. Thus, those damages are theoretically
identifiable in the FEM of a beam structure. Further, through checking the changes in structural
natural frequencies, we established a sufficient condition for the identifiability of multiple damages
at different locations. This sufficient condition can be numerically checked and validated for a
given structural FEM. With this checking procedure, we showed that damages at two different
locations will only result in the same transfer function under some very restrictive symmetric
conditions. In other words, two damages at different locations will be differentiable in most cases.
We also conducted several representative case studies to demonstrate the effectiveness and
usefulness of the proposed framework of providing a theoretical guideline on the damage

identifiability.

The rest of the chapter is organized as follows. In Section 2.2, formulations of FEM into
LTI system is presented for a beam structure. The analysis of the relationship between damage at
a given location and the structural response function is presented in Section 2.3. The sufficient
condition and the numerical checking scheme for multiple damages are discussed in Section 2.4.

Numerical case studies are presented in Section 2.5. Conclusions are summarized in Section 2.6.
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2.2 Mathematical formulation of damage identifiability in FEM of beam

structure

In this section, FEM of a beam structure is formulated into a LTI system and the damage
identifiability is investigated under the theoretical framework of dynamic systems. For the sake of
clarity, we shall briefly review the representation of a LTI system and the definition of parameter

identifiability first.
2.2.1 Review of LTI system and parameter identifiability

Linear time invariant system in state space representation can be expressed as [39, 45]:

dz(tt) — A(@)z(t) + B(®)u(t)
y(t) = C(0)z(t) + D(0)u(t) 2.1)

where z € R",u € R',y € R™ and 0 € RY, represent the state (e.g., displacement), the input (e.g.,
a force vector), the output measurement (e.g., displacement and velocity) and the parameters of
the system respectively, and A is the system matrix, B is the input matrix, C is the output matrix

and D is the feed-through matrix with size A: R? - R™",B: R - R™",C:R? - R™* " D: R -

RmXT

The identifiability problem of a LTI system is that whether the damage parameter 0 can be
uniquely estimated based on the input and output of the system. In order to deal with this problem,
LTI system is expressed in the frequency domain for a more compact formulation by taking

Laplace transformation, which leads to:

Y(s) = H(s)U(s)
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where Y(s) and U(s) are the output and input in the frequency domain, respectively and H(s) =
C(sI — A)~1B + D is the transfer function. Note that, ifm = 1 andr = 1, i.e., C, D are row vectors
and B is column vector, the transfer function is a single function, otherwise, it is a transfer function
matrix. In the article, H(s) is used for a transfer function matrix, while H(s) is reserved for a

single transfer function.
A formal definition of parameter identifiability is given based on the transfer function [39].

Definition Let (A,B,C,D)(0) be a parametrization of the system matrices (A, B, C,D). This

parametrization is said to be parameter-identifiable if

C(8,)(s1 — A(8,)) 'B(8,) + D(8;) = C(0,)(sI — A(8;))” 'B(0,) + D(8,)
for all s € C, implying 6, = 0,.

The condition in the definition is equivalent to the statement: if @; # 0,, then there exists
a s € C, such that two transfer functions corresponding 04 and 0,, respectively, are different. The
parameter identifiability implies a unique relation between the transfer function H(s) and
parameters 0, which provides a way to check the parameter identifiability of LTI system. It should
be pointed out that the above definition guarantees the identifiability “in principles”. In other
words, if a system is deemed non-identifiable based on above definition, then no matter what
methods we use, we will not be able to uniquely identify the parameter. On the other hand, if a
system is identifiable, then it means in theory, the parameters can be estimated from system inputs
and outputs. However, in practice, limited by the measurement system and noise contamination,
the identification results may not be satisfactory. Nevertheless, the identifiability analysis provides

us important insights to the system and should be conducted before the parameter estimation step.
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2.2.2 Formulate FEM of a beam structure into LTI system

In the context of FEM, the vibration behavior of an undamped or lightly damped beam

structure can be described by the equation
Mx(t) + Kx(t) = F(t) (2.2)

where M > 0 and K > 0 are the global mass and stiffness matrices, respectively, X and F contain
the nodal displacements and nodal forces, respectively. The assumption of undamped or lightly
damped system is commonly used in structural analysis for simplicity. However, we would like to
point out that the results in the work are also held for the commonly assumed proportional damping

system, where the damping matrix Cq is a linear combination of M and K.

For a one-dimensional Euler—Bernoulli beam discretized into n elements as shown in Fig.2-
1, xT = (dy,ay,dy, @y, ...dyiq, i), where d; and a; represent the translational displacement
and the bending rotation of the i*" node respectively. M and K are symmetric block diagonal
matrices with size 2(n + 1) assembled by n element mass matrices M; and element stiffness
matrices K; on the diagonal. A detailed assembling procedure from element wise matrices to global

matrices M and K can be found in [46].
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Finite Element Model of a Beam Structure

Element 1 2 3 . N
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ ] [ ]
Node 1 2 3 *-->

n+1l
l di¢ X1

Fig 2-1 An example of finite element representation of a beam structure with n elements and n +
1 nodes.

The occurrence of damage is assumed to cause the reduction of the stiffness of element.
Thus, the global stiffness matrix K regarding the damages can be represented as K(p,y), where p
and y are the vectors with the same length representing the damage locations and damage severities
in the elements respectively. The components of p take non-duplicated integer values from 1 to n
and the components of y range from 0 to 1. For example, if p and y take scalar values p = p and

= v, then the p" element stiffness matrix has the form
Y=Y p

12 6 12 6 -
BB
4 6 2
K, =y x EI Lo L eq0a]
p =Y 12 e|VED
JEEE
4
| sym 7]

where E and [ are the density, Young modulus of elasticity and second moment of inertia

respectively.y = 0 indicates a complete stiffness loss in the pt" element and y = 1 indicates no

stiffness loss in the element.

Define z = (x7,xT)T, then an n-element beam described by Eq.(2.2) can be formulated

into LTI system with matrices A, B, C and D explicitly expressed as:

_ 0 I

A=l a2]=|-mkom o (2-3)

AZl AZZ
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_ Bll _ 0
8= |bst] = [mig, (2.30)
C = [C11 C12] = [E(, 0"] (2.3¢)
D=0 (2.3d)

where I is the identity matrix with size 2(n + 1). The undamped vibration leads A,, = 0. Without
loss of generality, we assumeD = 0. Eg and E¢ are matrices that specify the input and output
locations in XT = (dy, @, d,, @y, ... dyyq, Anyq). For example, if Eg = e; is a zero column vector
of length 2(n + 1) with its ith component equal to 1, then the input is excited through the ith
component of X. Similarly, if Ec = ef, the output is measured from the kth component of x. If two
or more components of X are excited and measured at the same time, the matrices Eg and E can
be formed accordingly using vector es. For instance, the translational displacement d and bending

rotation a of a single node j are excited or measured simultaneously in most cases. Thus, Eg =

T
€2j-1
T

[eZi_l; eZi] and EC = l l for a single nOdej.

The parameters @ = (p,y) in the LTI system are the damage locations p and the damage
severities y. Note that the parameters only appear in the system matrix A. In order to check the

parameter identifiability of @ = (p,y) in FEM by definition, the transfer function of the LTI

system can be obtained as H(s) = C(sl — A(p, y))_lB = E.(—s2M + K)~1Eg. In most cases, the
matrices E¢ and Eg are just selector matrices that select the components in the matrix
(—s2M + K) ™! that correspond to the input force and the measurement locations. Thus, H(s) is
often either a submatrix of or include multiple components of (—s*M + K)~1. Based on the

definition of identifiability, the parameters @ = (p,y) are identifiable if the transfer function H(s)



17

is different for (p1,v1) # (P2, Y2). In the next section, a FEM beam structure is discussed for its

parameter identifiability.
2.3 Identifiability of the Severity of Damage at a Given Location

In this section, the damage severity identification is studied for a collocated structure in
FEM, where the actuator and the sensor are placed at the same node. The actuator and the sensor
are assumed to excite and measure both the translational displacement and bending rotation of the
same node, respectively. Thus, the damage severity at a given element is identifiable if the

following 2 X 2 transfer function matrix H;(s) is different for different values of damage severity.

Hj(s) _ sz—1,2j—1(5) sz—1,2j(5) (2.4)

B H2j,2j—1(5) H2j,2j (s)

where H, ;(s) represents the £, /th element of the matrix (=s*M + K) L. In fact, H;(s) is the j th

block matrix in the main diagonal of (—s?M + K)~1 for this system.

Through the following lemma, we can prove that the damage severity at a given element

1s identifiable for all collocated sensor and actuator locations in the FEM beam structure.

Lemma H;|(p,v1) # H;l(p,y2) if y1 #y, for p=12,..n and j=12,,..n+ 1, where

H;|(p, y1) represents the matrix H; given parameters (p, y1).

The proof of the lemma utilizes the following property of a block diagonal matrix, which

has been studied in literature [47-51].

Define V as a symmetric block diagonal matrix which is specified as:
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_QZ RZ _Qg

_Qn R“ _Q§+1
_Qn+1 Rn+1

V=

where R;s and Q; s are block. Define A; and E; by the following recursive relationship:

{ A; =Ry, { Zo+1 = Rpye, 2.5)

A; = R — QA4 Q] % = R — Q1271 Qisr-

Note that, the direction of recursion is forward from R4 to R, 1 for A;s, and backwards from R, 1

to Ry for ¥;s. Define ; using A; and %; as

Qi:Ail i<]
.Qi=Zi, i>]

One important property of the inverse of a block diagonal matrix V is given in [47] as

-1 _ -1
Vit=9
Vi =A0Q A - ARQI LI =1 -1 (2.6)
vi_} — zi_-lrllQini_-lrll—l zi_+11Qi+1'Qi_1'l =1.n+1-—j
where j represents the j* block column of the inverse of V. Thus, Vi_1 is the j®* block matrix in

the main diagonal of V™1,

For a FEM beam model, if we let V(s) = (—s?M + K(p,v)), then V~1(s) will be the
complete system transfer function matrix. Since both M and K are symmetric block diagonal
matrices, V(s) is also a symmetric block diagonal matrix. Thus, Eq.(2.6) can be utilized to

calculate the transfer function matrix H;(s) without directly inverting the entire matrix V(s).
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Moreover, for a uniform beam structure, R;s and Q; s are 2 X 2 block matrices satisfying
the condition Q; = Q3 = *** = Qu41 and R, = R3 = --- = Ry, and both R;s and Q;s are non-

singular matrices. The following proposition states one important property of A; and X; based on

the R;s and Q; s.

Proposition The recursion of matrices A; in Eq.(2.5) of a uniform beam under the LTI expressed
in Eq.(2.3) follows that A;(p,y1) = Ai(p,Y2) for i < pand A;j(p,v1) # Ai(p,y) fori = p if

Y1 # Y2, where p is the damage location and y is the damage severity.

A similar result holds for ¥; in the backward recursion. For a uniform beam, A; and X; are
positive definite matrices [63,64] in the recursions. A direct calculation shows that A;(p,y1) =
A;(p,Yy2) fori = p if and only if y; = y, following a general condition of A,_; > 0. Based on
the proposition, the outline of the proof is summarized as follows. Suppose the damage occurs at
the p'" element with different damage parameters y, which will lead to the changes in block
matrices Ry, Rp41,Qp4q and Qg +1 in V. Suppose the j* node is collocated for excitation and

measurement. Then we have the following cases:

(1) For j > p + 1, A;(y) results in different values for different ys based on the proposition. X;
remains the same for different ys, since the backward recursions have not passed the p** element
with damage yet. Thus, Q; = A; + X; — R; will be different due to A;. Similar results hold for j <

p — 1 by interchanging A; and X;.

(2) Forj = p or p + 1, the differences in Q; = A; + X; — R; come from all three terms and a direct

calculation shows that €; is different for different ys. The details of the tedious symbolic
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calculations are omitted here. As a result, Q; will be different in all three cases regardless of the

collocated position j, and H; = €y 1 will be different, which proves the lemma.

The lemma states that different severities at the same location are identifiable for all

collocated sensor and actuator locations. That is, at least one component in the matrix H; will differ
for different ys. Once the location of damage is known, the system response provides a unique

mapping to the damage severity which can be used to monitor the health condition.

2.4 Identifiability of Damage Location

In previous section, the damage severity is shown to be always identifiable at a fixed
element for all collocated excitation and measurement locations in FEM. In this section, a more
general identifiability problem, i.e., the identifiability of damage location, is investigated. The
problem we want to address is that: assume we have a damaged element in the FEM, can we

uniquely identify its location? Mathematically, this problem can be formulated as:

Given a FEM based uniform beam under the LTI expressed in Eq.(2.3), will there be two

pairs of parameters (p4,y1) and (pz,¥2), such that H;|(p4,y1) = H;|(p2, ¥2) for some j?

Intuitively, we can guess that for the perfect symmetric situation, i.e., we have the same
boundary condition at both ends of a uniform beam, the collocated sensor and excitation input
location is in the middle at the beam, and the two elements are symmetric according to the
collocated location, we will not be able to distinguish the two elements. Mathematically, this
situation can be stated as: for a FEM based uniform beam with the same boundary condition on

two ends under the LTI expressed in Eq.(2.3), Hy/2|(p, V) = Hy2|(n + 1 —p,y) for an even
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number of elements n. In Fig.2-2, examples of the same boundary condition and different

boundary conditions on two ends of a beam are presented.

(a) (b)

Input v

HEEEEEEEREN HENEEEEEEEEEEEEE

p Outputl ntl-p

Fig 2-2 Two different experimental beam setups. (a) Fixed-fixed: both ends of the beam are fixed
such that the ends can no longer move or rotate. (b) Fixed-free: one end is fixed and the other one
is free to move and rotate. In (a), the collocated node for excitation and measurement is at the

middle of the beam and the symmetric damage locations are shaded.

Indeed, this intuitive guess can be formally proven to be true utilizing the property of the
inverse of block diagonal matrix as shown in Section 2.2.3. If the collocated sensor and excitation

location is at the middle of the beam, then the transfer function matrix can be expressed as
-1
H,,|(p,y) = Q;/lz = (4, 2(PY) +Z,2 — Ry /2) for a damage at the p*"* element on the left

of the center and Hy,z|(n +1—p,y) = Q;/lz = (An/Z +2,2n+1-p,y) — Rn/z)_1 for a
damage at the symmetric (n + 1 — p)*"* element on the right of the center. The forward recursion
in Eq.(2.5) passes the p®" element with damage, so that A, ,2(p,y) is influenced by parameters
(p,Y)- A similar process holds for £, »(n + 1 — p,y). Since both ends of the beam have the same
boundary condition, Ry = R, ==+ = R,,_4, for all the n —1 blocks. Clearly the recursion
calculation in Eq.(2.2) of A; and ZX; lead A; = Z,_;. Thus, Z,,; = Ay, and Ay, 2(p,y) =

Z,/2(n + 1 — p,y), which leads to identical transfer functions and thus proves this intuitive result.
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It is easy to track the changes in the recursive functions in Eq.(2.5) for the calculation of
the transfer function for symmetric cases. However, if any of the symmetric conditions do not
hold, the comparison of recursive functions and hence the analytical transfer function matrix can
be messy and untraceable. As a result, the location identifiability cannot be analytically checked
in a general setting. To overcome the difficulty, we propose a numerical method to check a

sufficient condition of location identifiability for general settings.

The inverse of a large scale block diagonal matrix (—s?M + K(p,y))™! involving
frequency variable s and parameters (p,y) is difficult to be calculated analytically in practice. In
order to check the differences of the transfer function for different values of (p,y), we utilize the

following property of a scalar transfer function H(s). A transfer function H(s) can be written as

_a(A=z2)A=-2)A—23) (A =z )(A — 2Zp)

) U= 2 A= 2~ A= 2 ) A=)

where A = s2, c;and ¢, are constant values, z;s and A;s are the zeros and poles of the transfer
function, respectively. It is known that ¢, [[;(1 — 4;) = det (—AM + K(p,y)) [52]. Thus, 4;s are
also the eigenvalues of the matrix product M~1K(p,y) for the generalized eigenvalue problem

det(—AM + K(p,y)) = 0. Moreover, the natural frequencies f;s of the beam given M and K(p,y)

are the square roots of 4;s, i.e., f; = \/Tl [52].

Based on the above property, a sufficient condition to check the damage location
identifiability is to examine the change of natural frequencies. As long as f;s are different for
different (p,y), then the denominators of the transfer functions are different and hence the transfer
functions are different. A numerical procedure can be established to check if a FEM beam structure

satisfies this sufficient condition or not. The basic idea of the checking is straightforward: we try
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to check if multiple elements (more than one) with certain amount of damage will lead to the same
set of natural frequencies. If no, then it is sufficient to say that the damage location is identifiable.
If yes, then the damage location is not identifiable from the natural frequency point of view.
However, we cannot claim it is not identifiable in general because we cannot conclude the transfer
functions are the same if only their denominators are the same. Further analysis of other criteria
such as the mode shapes can be utilized to fulfill the identifiability checking besides natural
frequencies. The rational we use natural frequencies is that natural frequencies depend on the

global properties of the system and are easy to be measured in practice while enjoying a higher

accuracy compared with mode shapes [53,54]. Define fi(p’Y) the i" natural frequency (sorted from

.(P*,Y*) _fl(pk'Y)

L 1s the minimum sum

smallest to largest) for parameters (p,y) and S, = min ;. f(P*V’t)
Y i

of relative frequency difference between the given parameter (p,,Yy,) and the k" selection of
damage locations py by adjusting y. £ is the set of the index of natural frequencies being used in

the calculation. For example, if only the first five natural frequencies are used, £ = {1,2,3,4,5}.
Further define S,Ej ) is the jt" smallest value among all S;s. The numerical algorithm for scalar
valued p and y is presented in Table 2-1 for an n-element FEM based beam structure with global

mass matrix M and stiffness matrix K.

Table 2-1. Numerical Algorithm of Location Identifiability of Scalar Valued p and y

1 Input (p., y.), and update K(p., y.),
2 Compute fi(p*’y*)’by taking the square root the eigenvalues of M_lK(p*, Vo),
3 Define the set £ and a threshold ¢t

4Fork =1:n
pr = k and compute Sy,
End

5 Sort Sy, in the ascending order as S,Ej), ie,SW<s@ <... < 5M
6IfS@ — s > ¢ claim the parameter (p,,¥.) is identifiable,
otherwise (p,, 7.) is not identifiable in the sense of natural frequency.
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We’d like to mention that: First, the calculation of eigenvalues of matrices product is important in
the algorithm. In this research, a beam structure is utilized as an example for identifiability issue
in FEM. Any classical eigenvalue solver [55-58] provides accurate and stable results. For a
complicated structure which requires high degree of freedom, there exists many efficient and
accurate methods for such computation [59-62]. Second, step 6 is critical to examine the
identifiability of parameters (p,,y.). The (p,,¥.) is said to be identifiable if and only if the
difference between S® and S( is greater than the threshold t. Note that, Sz()i) = 0 should be the
smallest S, for k = p, theoretically. The set L can either be the full set, i.e., L = {1 to 2n + 1} or
some selected natural frequencies. In practice, only a few natural frequencies can be measured.
The threshold t is chosen based on the noise level and the range of the measured natural
frequencies. Intuitively, a large t should be assigned for a high noise level, which will reduce the
ability of identifying the parameters (p,,y.). For a fixed threshold t, the identifiability increases if
a large range of natural frequencies are measured. Also note, the proposed algorithm is capable for

both uniform and non-uniform beams.

For multiple damage locations, i.e., p, and y, are vectors, the algorithm is extended by
modifying its step 4. For example, if p, has two components, a search of all combinations for two

damage locations leads a modified step 4 as:

4 For k = 1:C}
pr = non-repeated combination of two locations, and compute Sy,
End
where C} = ” (:12)' is the binomial coefficient expressing the total number of non-repeated

combination of any two locations from 1 to n.
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Note that, step 4 searches all possible locations in order to uniquely identify p, in a complete
space. However, in practice, based on the engineering experience of experts, only limited candidate
places can cause the similar changes in observations due to damages, such that, the work load to

examine all possible locations can be reduced.

2.5 Numerical case studies

In this section, numerical examples are presented to illustrate the identifiability analysis
procedure. The uniform beam used in the simulation has E = 2.1 X 108 kPa, L = 2.54m,[ =
347 x 1078 m* A = 6.45 x 107* m? and p = 0.013 kg s?/m. The non-uniform beam case is
also studied in this section. The non-uniform beam assumes to have an increasing EI values from
0.5E1 to 1.5ET across the 60 elements, while other parameters are the same as the uniform beam.
Two different experimental setups are considered, fixed-fixed beam (Fig 2-2a) and fixed-free beam
(Fig 2-2b). Total 60 elements are used in the finite element model to approximate the beam
structure. The comparisons of the first three modes (natural frequencies) between analytical results
and finite element model of non-damaged beam for both setups are presented in Table 2-2. The
comparisons show a good agreement between the analytical model and finite element model. To
further reduce the error, the increasing of the number of elements will lead a convergence to the
true natural frequencies. However, as a tradeoff, this will incur a high computational cost. In our
experience, the number of elements in the order of hundreds promises good results for a structure

with simple geometry (e.g., the beam structure).
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Table 2-2. Comparisons of the first three modes between analytical results and finite element

model of the non-damaged uniform beam in different setups. Units are in circular frequencies.

Fixed-fixed Beam Fixed-free Beam
Model Mode2 Mode3 Model Mode2 Mode3
Analytical 131.0599 360.9997 707.9573 20.5951 128.7195 360.9997
FEM 130.9033 360.8279 707.3383 20.5717 128.9180 360.9615
Error% 0.12 0.05 0.09 0.11 -0.15 0.01

2.5.1 Damage severity identifiability at a given location

Based on the property of the transfer function H(s) described in Section 2.4, as long as the
eigenvalues of the matrix product M~*K(p, y) for a fixed location p are different for various ys,

the transfer function H (s) is severity identifiable.

We investigate the change of natural frequencies f;s (square root of eigenvalues) as a function y
for a fixed location p = 23 in Fig 2-3 for two different beam setups. The curves in the plots
represent different normalized natural frequencies, i.e. f;(y)/ max( fi (y)). The horizontal axis is
the values of y ranging from 0.1 to 1. Each natural frequency is observed as a monotonic increasing
function of ¥ in both setups for uniform and non-uniform beams. One critical feature is that the
natural frequencies increase as a function y. This observation is consistent with the experimental
results reported in [65-69]. The damage of the structure will lead the downward shifting of all

natural frequencies.

This feature can be explained by the eigenvalue perturbation analysis. The generalized

eigenvalue problem of the beam structure is governed by the relation:
K-24Mo¢; =0

where A; = s? is the i*" eigenvalue and ¢; is the corresponding eigenvector. The eigenvalues A;

can be solved by an iterative method in solving the minimization problem of a Rayleigh quotient
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[70]. However, the trend of change in eigenvalues is not directly obtained. Instead, a simple
derivation through perturbation analysis reveals the insight of the changes. Small changes AK (due

to stiffness loss) in K produce small changes in A; and ¢;, for this perturbed system, we have:

[(K+ AK) — (4; + A2)M](d; + Ad;) =0
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Fig 2-3 Normalized natural frequencies computed from matrix product M~1K(p,y ) for a fixed
location p = 23 vs damage parameter y in two different beam setups. (a) fixed-fixed uniform
beam, (b) fixed-free uniform beam, (c) fixed-fixed non-uniform beam, (d) fixed-free non-uniform
beam.

by expanding this equation and neglecting second-order terms [71], we have:

¢i Go;
¢ Md;

_ GfAKe;
C dIMe;
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where G is a zero matrix except the pth block matrix in the main diagonal has structure

12 6 12 6
Bz B2

4 6 2

l 12 l

G, = 12 ks 0

12 12

4
sym 7

which is a positive semidefinite matrix. Since the global mass matrix M is a positive definite matrix
and y € [0,1], A4; is always non-positive, i.e. AA; < 0, which means the eigenvalues will not

increase for the existence of damage. Several notes from the eigenvalue perturbation analysis are:

1) The change of natural frequencies Af; is also non-increasing, since f; = \//1_1 .

2) In practice, the term ¢ G rarely goes to zero, which leads a decrease in all eigenvalues.
3) The derivation is for a non-damaged beam with stiffness matrix K. A similar derivation for

a damaged beam K(p, y;) has a similar result. Assume a further stiffness loss at element p

T
with y, < y;, the change of eigenvalues will be AA; = (y, —y1)EI X i &

bi .
o Vo, <0 in
practice. From this analysis, all eigenvalues will decrease as long as y is decreasing for a
fixed location p, which is consistent with the observation in Fig 2-3.

2.5.2 Location identifiability

The location identifiability is based on the difference between S and S™. The ability to

uniquely identify (p*,y*) increases for a large difference. The following two examples validate

the effectiveness of the proposed numerical checking algorithm.
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In the first example, a single element with damage is considered. The natural frequencies

fi(p*’y*) are calculated for the beam with (p,,y.) = (23,0.4). The uniform beam is used for the

illustration. In Fig 2-4, the horizontal axis is the location parameter p and the vertical axis is Sk
obtained at each corresponding location. Szgf) = 0 in this noise-free situation. Thus, the difference

§@ — s = 5@ Three different Ls are used in the calculation of S,. (1) £ = {1}, only the
smallest natural frequency is used, (2) £ = {1,2,3,4,5}, the first five natural frequencies are used,

and (3) £ = {1 to the 2n + 1}, all the natural frequencies are used.

Due to the symmetry in the fixed-fixed beam setup, Sz5 = S.

b, = 0 in all three cases. It

means (p,,¥.) = (23,0.4) can not be uniquely identified only based on the natural frequencies

fi(p*’y*) in the symmetric beam setup. In other words, parameters (p,, y,) can only be identified in

pairs in the perfect symmetric situation. For case (1) in the fixed-fixed setup, since many locations
(besides p = 38) have S, < 0.002, the (p,,y.) is not location identifiable if the threshold t takes
value larger than 0.002 For case (2) in the fixed-fixed setup, since more natural frequencies are
utilized, S@® = 0.013. For case (3), the value of S®) takes value up to 0.4, when all natural
frequencies are used, which makes (p,, y,) easier to be identified. Similar results can be obtained

for the fixed-free beam setup, except that S35 # S, = 0, which leads a unique location

identification of (p.,y.) once S > t.
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Fig 2-4 The plot Sj, as a function of damage locations in different boundary conditions of a uniform

beam. Three different Ls are used in the calculation of Sj,.

Similarly, the plot S, of a non-uniform beam is presented in Fig.2-5. Note that, since the beam has
various EI values across the elements, the perfect symmetric situation does not hold. Thus, the

plot S, in the fixed-fixed beam setup is not symmetric.
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Fig 2-5 The plot S;, as a function of damage locations in different boundary conditions of a non-
uniform beam. Three different Ls are used in the calculation of Sj,.

In the second example, two elements with damages are considered. The natural frequencies
fi(p*’y*) are calculated for the beam with p, = (7,23),y. = (0.1,0.4). The plots of Sy, ,, for
uniform and non-uniform beam are presented in Figure 2-6 and Figure 2-7, respectively. Sy, is

the minimum sum of relative frequency difference by adjusting the second element location k, for

a fixed damage location k;. For example, if k; = 7, then Sy, x, = 0 for k, = 23. Similarly, if
ki = 23, then Sy, |, = 0 for k; = 7. In other words, in the plot Sy, |, as a function ky, S, |, takes

value 0 exactly at k; = 7 and k; = 23. In the symmetric case of a uniform beam, two additional
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locations have Sy, ,, = 0, 1) k; = 54 which is the symmetry of k; = 7, 2) k; = 38 which is the
symmetry of k; = 23. The phenomenon has been shown in Figure 2-7, in which four locations

reach 0 in the fixed-fixed beam. As a result, p, = (7,23) can not be uniquely identified due to its

symmetric pair p = (54,38).
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Fig 2-6 The plot Sy, |k, as a function of damage location k, in different boundary conditions of a

uniform beam. Three different Ls are used in the calculation of Sj,.
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Fig 2-7 The plot S, |k, as a function of damage location k, in different boundary conditions of a

non-uniform beam. Three different Ls are used in the calculation of Sj,.

From the above numerical studies, the ability to uniquely identify the damage location (or
in pairs in the fixed-fixed uniform beam setup) enhances when the number of nature frequencies
in the calculation of S), increases. Even if only a small range of natural frequencies can be measured
in practice, the use of the first five smallest natural frequencies can lead an easy location

identifiability due to a large S@.
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2.6 Conclusion

In this chapter, a quantitative framework to address the identifiability issue in FEM-based
beam structure is presented. FEM of a beam structure is re-formulated into a state space model
representing LTI dynamic system in Eq.(2.3). By using the properties of an inverse of a block
diagonal matrix, the uniqueness of the system transfer function is proven for different severity
level of damages at the same location. That is, the damages are theoretically identifiable in the
FEM for a given damage location of a beam structure. Moreover, a sufficient condition for the
identifiability of multiple damages at different locations is established based on the natural
frequencies. A numerical algorithm is proposed to numerically check and validate the location
identifiability of scalar valued damage location. With this checking procedure, we showed that
damages at two different locations will only result in the same transfer function under the
symmetric conditions. In other words, two damages at different locations will be differentiable in
most cases. The algorithm can be extended for vector valued damage. Several representative case
studies are conducted to demonstrate the effectiveness and usefulness of the proposed framework
for providing a theoretical guideline on the damage identifiability by using FEM-based vibration

analysis.
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3. Measurements Selection for Bias Reduction in Structural Damage
Identification”

In this chapter, we propose a measurement selection algorithm to select an optimal set of
natural frequencies for damage identification. The proposed algorithm adopts L;- norm
regularization with iterative matrix randomization for estimation of damage parameters. The
selection is based on the estimated bias using the least square method. Numerical studies are

conducted to validate the effectiveness of the method.

3.1 Introduction

The timely and accurate identification of damage conditions in structures using real-time,
online sensor measurements plays a critical role in ensuring the secure and sustainable operations
of various structural systems in aerospace, marine, transportation and infrastructure, and energy
and power industries. Among different structural damage identification techniques, the vibration-
based methods [175] have been widely used. The basic idea of vibration-based methods is that the
structural properties (e.g., mass, stiffness, etc.) will change due to damages in structures and such
changes will result in the vibration properties including natural frequencies [176], mode shapes
[177] and their variants such as curvature [178], flexibility [179]. Typically, natural frequencies

can be measured directly with high accuracy and thus are broadly used in practice [180].

In natural frequencies based damage detection methods, damages are identified by solving the
eigenvalue problem with linear approximation [ 181]. The linearization provides the simplicity and
efficiency in the problem solving process. With the linearization, the unknown damage parameters

Aa can be estimated by the linear equation AL = SAa, where S is the first order sensitivity matrix

“This chapter is based on the paper: Liu, Yuhang, Shiyu Zhou, Yong Chen and Jiong Tang. "
Measurements Selection for Bias Reduction in Structural Damage Identification." Journal of
Dynamic Systems, Measurement, and Control (to be submitted)
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and AA is the measured difference of the eigenvalues between healthy and damaged structures. In
practice, the linear equation provides the foundation for damage identification. Based on the finite
element model of the structure, the sensitivity matrix S and the baseline natural frequencies of the
structure can be obtained. Then with the real measurement of the natural frequencies and
comparing it with the baseline natural frequencies, we can obtain AA. And finally, we can solve

for Aa from the linear relationship.

However, there are generally two major challenges in damage identification based on the
linearized relationship between AA and Aa. First, S is usually a “fat” matrix, i.e., the number of
possible damaged elements are much larger than the number of available natural frequencies, i.e.,
the number of columns of S is much larger than the number of rows. Thus, the linear system is a
highly underdetermined system. Second, the linear relationship is just an approximation of the true
underlying relationship between AA and Aa. Thus, there will be bias in the solution obtained based

on the linear relationship.

In the literatures, research works are available trying to address these two challenges in
structural damage identification. To relieve the impact caused by the system underdetermination,
one approach is to enlarge the number of the measurements in the system. Typically, natural
frequencies are only guaranteed to be measured accurately for the low order ones due to the
limitation of sensors. Thus, the number of available natural frequencies are often enlarged through
physical modification of structures. For examples, a mass addition technique is explored in [176]
to enrich the modal measurements. In this approach, the known masses are added to the structure
and thus new modal data is achieved. Similar ideas on adding mass or stiffness to extract additional
natural frequencies can be found in [177]. One disadvantage of this type of physical modification

is the difficulty to implement in practice due to many physical restrictions. Another type of
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physical modification adopts piezoelectric transducers integration onto the structure. The
integrated structure is an electro-mechanical system with tunable piezoelectric circuits. The
tunable inductance can introduce additional natural frequencies. Examples on such type of electro-
mechanical system can be found in [178]. The limitation of physical modification approach is that
the number of unknown possible damage elements are often still much larger than the available

number of measurements even with physical modification.

Another approach addressing the underdetermination issue is to work with the
underdetermined system and try to obtain a sparse solution. The rationale of this strategy is that
structural faults typically occur only at a limited number of locations simultaneously. In [182], the
authors propose a pre-screening strategy to address the underdetermination issue. The fault
locations are ranked according to the likelihoods and the locations with small likelihoods are
discarded in order to reduce the fault parameter space. There are two limitations of such approach.
The first is the underlying assumption of the distribution in the likelihood function. The
independent and identically distributed (i.i.d.) assumption of errors is not generally true in the
structural damages. The simplification of the error terms may lead the ranking results unreliable.
Also, the cut-off threshold in the ranking procedure is ad hoc and may vary in different systems.
Another technique in obtaining the sparse solution is by regularization. In regularization, the L,
norm of the solution is often added to the objective function as a penalty and it often returns
solution with sparsity, i.e., estimates most of the unknown variables to be 0. L; regularization is
the most commonly used penalty method in the structural damage identification. For example, the
authors apply the L; norm on the number of the damage locations in [175]. The results are sparse
with the true damage locations are recovered. However, it is found that applying L, regularization

directly often cannot guarantee the solution quality in the sense of solution uniqueness and
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consistency. Moreover, the bias induced by the linear approximation may further reduce the

accuracy of damage estimation.

In the literature, discussions on the bias in damage estimation caused by the linearization error
is limited. The linearization between the structural parameters and the system response is
introduced in [183]. The higher order terms in the Taylor’s expansion are ignored to achieve the
simplification in the equation. The latter research and application follow the similar routine for
fault identification in various structural systems. However, there are no thorough discussions on
how to address the bias issue, where such bias may lead to large errors in damage identification.
In available studies, adding nonlinear higher order terms has been proposed to reduce the impact
of bias in the analysis [178]. It should be pointed out that such approach is not recommended in
general due to the loss of the linear property in the equation, where we will have serious issue with
the resulting underdetermined nonlinear system. Also, the improvements in the solution quality
may not be worth the loss of the simplicity and the efficiency in the solution process. In recent
studies of structural damage identification, applying deep neural network (DNN) to the problem
becomes a new trend [184]. DNN generates reasonable results with high quality training data and
well designed network structures, e.g., the choice of activation functions and the layer of the
network. It is expected that the bias can be reduced by applying multiple layers of linear functions.
However, the DNN is a black box approach and may be ad hoc when selecting the network

structure.

From the above review, we can see that the underdetermination issue and the identification
bias issue are addressed separately in the existing literature. In this work, we propose a systematic
scheme that can reduce the bias in damage identification through a measurement selection method.

We find that particular combinations of available natural frequencies can significantly reduce the
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estimation bias compared with using all available ones. The proposed algorithm contains three
sub-algorithms. In the first algorithm, L,- norm regularization is adopted with iterative random
matrix multiplication and majority voting. The idea of matrix randomization is to multiply random
Gaussian matrix to the linear system to achieve 1) matching of correlation structures of error terms
and 2) unique solution of L; minimization. The majority voting process helps to estimate the
damage severities from multiple iterations. In the second algorithm, the estimated damage
locations are updated by removing locations with negligible damage severities. The estimated
errors of natural frequencies are derived based on the estimated damage parameters, and are further
adopted for natural frequency selection by a least squares method in the third algorithm. There are
several advantages of the proposed the algorithm. First, the regular L;- norm regularization is
modified to enhance the quality of damage estimation for measurement selection. Second, since
the algorithm requires no additional physical modification (e.g., added mass or integrated
piezoelectric circuits) of the structures, it can be used in many practical scenarios. It is worth
mentioning that the proposed algorithm can also be extended for natural frequencies selection in
the physical modified structures for better damage estimation. Third, the proposed algorithm is
easy to implement without deriving high order terms in the approximation. Thus, it is

computationally friendly for practical uses.

The rest of the chapter is organized as follows. Section 3.2 introduces the linear approximation
of the eigenvalue problem. Section 3.3 introduces the L;- norm regularization with iterative
random matrix multiplication and majority voting. Section 3.4 introduces the proposed algorithm
for bias reduction through measurement selection. Section 3.5 presents the numerical study to
validate the proposed method. Section 3.6 further discusses the factors that influence the

performance of the algorithm.



40

3.2 Problem Formulation

For the sake of clarity, we shall first introduce the linear approximation of the eigenvalue
problem in the damage identification. Without the loss of generality, in this research, we are
concerned with the structural damages that induces the change of structural stiffness [185]. Also,
it is assumed that only a very small number of damages occur in the structure simultaneously to

meet the most of damage scenarios in practice.
The dynamics of an un-damped structural system can be described by the linear equation

Mx(t) + Kx(t) = F(t) (3.1)
where M and K are the global mass and stiffness matrices, respectively, X and F contain the nodal
displacements and nodal forces, respectively. The eigenvalue problems associated with the healthy

structure and damaged structure are in Eq. (3.2) and (3.3), respectively:

(K-A4M)¢p; =0 (3.2)

(K? = 2¢M){ =0, (3.3)

where A; and ¢; are the ith eigenvalue (squared of the ith natural frequency) and eigenvector of
the healthy structure, and ¢ and ¢¢ are the ith eigenvalue and eigenvector of the damaged
structure, respectively. The damages are only induced by the loss of stiffness, so the mass matrix
M is the same for both structures. The stiffness matrix K¢ of the damaged structure can be

expressed as the increment AK from K in the healthy structure:

K% = K+ AK (3.4)
Similarly, the change in eigenvalues and eigenvectors can be expressed as:

A4 =2 + AN (3.5)

df = d; + Ad; (3.6)
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Substituting Eq. (3.4)-(3.6) in to Eq. (3.3) and neglecting the high order terms, the first order

(linear) approximation of the mapping from stiffness to natural frequencies is:

_ bl MK,
AR = g (3.7)

In most cases, the eigenvectors are mass normalized, thus, ¢! M¢p; = 1.

The increment AK is expressed as the summation of elemental stiffness matrix change:

AK = 37, Ao K, (3.8)

where K@ is the jth elemental stiffness matrix, and Aq; is the damage parameter ranging in
j ] j gep ging

[—1, 0] indicating the percentage change of stiffness of the jth element, where zero means no
stiffness loss and —1 means the complete stiffness loss at the element, respectively. n is the number

of elements in the finite element model.

Combining Eq. (3.7) and (3.8), the matrix formulation of the linear approximation can be

expressed as:

AA = SAa (3.9)
where AL = [AA;, AA,, ... A, T is the set of eigenvalue difference between the damaged structure
and the healthy structure. The number m indicates the number of available natural frequencies in
the measurement. Aa = [Aay, Aay, ... Aa, )7 is the set of n damage parameters. S is the sensitivity
matrix representing the sensitivity of eigenvalues to the changes in stiffness loss. The components
in S are:

7KV ¢,

D =g,

In general, the number of columns, n, is much larger than the number of rows, m, i.e., n > m.
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In practice, Eq. (3.9) provides the foundation for damage identification. However, as
mentioned in the introduction section, there are two major challenges in damage identification
based on (3.9). First, S is a “fat” matrix so that Eq. (3.9) is an underdetermined system. Second,

Eq. (3.9) is just a linear approximation of the true underlying relationship

AA = SAa + e(Aa) (3.10)
where e(Aa) is the error in the linearization. Please note that e is generally a function of the current
structural damage. As a result, there will be bias in the solution obtained using Eq. (3.9). We
propose two techniques to addresses these challenges, which are described in Section 3.3 and 3.4,

respectively.

3.3 L, Penalty with Iterative Random Matrix Multiplication and Majority

Voting Process

We follow the common idea in the literature to address the underdetermined system, i.e., apply
a penalty of L; norm of A« to the solution. Instead of directly solving Eq. (3.9), we focus on the

following optimization problem:

min||AA — SAal|, + Bl|Aall; (3.11)
where [ is the regularization parameter controlling the weight of the penalty. In practice, Eq. (3.11)

is often solved by the following equivalent expression [12]:

min]JAa]l;,s.t. |AL — SAall, <€ (3.12)

where € indicates the error tolerance and plays the equivalent role of £.

There are many algorithms to solve the optimization problem in Eq. (3.12) efficiently.
However, solutions to Eq. (3.12) may not be unique [188] or sparse enough [189] to recover the

true non-zero damage locations. The uniqueness of the solution to Eq. (3.12) is of critical
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importance for damage identification. By the findings in [188], there is either a unique or infinite
many solutions to Eq. (3.12). Unfortunately, the uniqueness is not guaranteed when n > m, which
will lead to unreliable estimation of the damages. In other words, even if adding L, penalty results
in sparse solution, the solution may be still “abundant” compared to the underlying truth. In
practice, an iterative reweighed L; minimization algorithm [189] is often adopted to enhance the
sparsity. For reader’s convenience, we quote the algorithm from [189] in Table 3A-1 in the
appendix. There are several remarks of the algorithm: (1) Instead of minimizing Eq. (3.12), the
algorithm adopts the weighted objective function. The hope is by properly adjusting the weights,
the algorithm can recover the underlying sparsity correctly. And (2) The weights are updated
iteratively in step 3. The update equation can adopt different forms as discussed in [189]. The
general idea of this algorithm is to increase the weights for variables estimated with small absolute
values in order to push these variables to be 0 in future iterations. In this paper, we adopt the similar

scheme of this idea but with different approaches as described in Algorithms 1 and 2 below.
Instead of Eq. (3.12), we solve the following problem iteratively in our proposed algorithm:
min||Aal|;,s.t. || A — §Aa||2 <e (3.13)

where AL = ® AA and S = ®S and @ is an m X m random matrix, whose components are
independent and identically distributed samples from a Gaussian distribution. There are two

benefits in solving (3.13) instead of solving (3.12) directly.
(1) The correlated structure of the error terms in the linear relationship is addressed.

It is known that the optimization problems in Eq. (3.12) and Eq. (3.11) are equivalent. If we ignore
the penalty term in Eq. (3.11), then the objective function of Eq. (3.11) is identical to the objective

function for a regular least squares problem. In other words, if we ignore the penalty term in Eq.
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(3.11), then the solution to (3.11) will be the regular least squares solution. One important
assumption on regular least squares method is that the error term in the model is homogeneous,
i.e., the covariance of the term e is a diagonal matrix and the diagonal elements are the same. This
is certainly an unrealistic assumption because the term e(Aa) includes both measurement error
and the systematical error in the linear approximation. It is known that regular least squares method
will lead to systematic bias in the solution for a system with heterogeneous errors [187]. In the
proposed algorithm, the objective function Eq. (3.13) ignoring the penalty term is equivalent to
(A% — SAq)" (A — SAq)=(AX — SA@)T(®T®)(AA — SA), which is in the form of the
objective function of a generalized least square (GLS) problem [190] assuming the covariance
matrix of e is (@T®)~1. GLS is an effective way to adjust the solution of linear systems to reduce
the bias when we have heterogeneous errors. In practice, (@Td)~1 will not be exactly the true
covariance of e and further, the solution of Eq. (3.13) is not obtained through GLS method, but
rather through the optimization with the penalty term. However, the above intuitive understanding
can provide some justification on the proposed algorithm, i.e., iteratively solving Eq. (3.13) with
different random matrices ®s followed by the majority voting process. The underlying intuition is
that when (@Td)~1 is close to the true covariance structure of the error term, then the solution of
Eq. (13) will be consistent and close to the true underlying value. On the other hand, when
(®@Td)~1 is far from the true covariance structure of the error term, the solution will be scattered
around. As a result, if we repeatedly try different ®s, then the solutions that are close to the true
underlying value will stand out in the followed majority voting process. Indeed, similar idea has

been reported in the literature when solving a sparse system [175].

(2) The uniqueness of the solution can be largely improved.
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For n > m, the uniqueness of Eq. (3.12) is not guaranteed unless several non-trivial conditions are
satisfied [14]. However, it is found that if S has entries drawn from a continuous probability, the
solution to Eq. (3.12) has very high probability to be unique regardless of n and m [188]. S in Eq.
(3.13) is close to a random matrix with Gaussian entries, such that Eq. (3.13) is more likely to
generate the unique solution compared to Eq. (3.12). Through multiple iterations, the unique

solution will likely stand out as the majority solution in the multiple voting process.

Note that, the reweighed L, minimization algorithm in Table 3A-1 still applies the standard L,
norm, and thus the solution to the reweighed L; minimization may be less reliable due to the
heterogeneous errors. We summarize the ideas of iterative random matrix multiplication and the
majority voting procedure in Algorithm 1 in Table 3-1. The iterative random matrix multiplication

step returns an estimated matrix [Z&c]nxL, whose column (i.e., Ex.,l) is the estimated damage under
each random matrix ®;. The row of [Z\?{]nxL (i.e., Exi,.) records the estimations for each element

through L iterations. Based on our experiences, a L of several hundreds is sufficient to achieve

good results while balancing the computational time.

In the majority voting step, P(Exi,. > —0.05) is the probability that the estimated damage of
the ith element is no less than -0.05 (i.e., a light damage). The “if” condition states that if 95% of
the estimated damage severity Z\Ei,l is larger than -0.05 among L iterations, the ith element is
treated as a healthy element and is then set to be 0 (i.e., Aa; = 0). In practice, only the stiffness
loss larger than 5% (i.e., Aa; < —0.05) is treated as damage [177]. The threshold 95% is the
confidence to reject the hypothesis that the element has stiffness loss larger than 5% at level 0.05,

which is a commonly used criterion in practices [191]. Damaged elements have the majority of
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Exi,. significantly differ from 0 and the distribution of Exi,. often forms a unimodal shape. The

mean value of all iterations are used as the estimation of damage severity.

Table 3-1. Algorithm 1: Iterative Random Matrix Multiplication and Majority Voting

Iterative Random Matrix Multiplication
Forl=1,2,..,L
Generate random matrix ®; and compute AX = ®;AX and S = ®;S
Solve Eq. (13) and record the estimation Exul = [E&Ll, 5&2,1, E&n,l]T
End
Majority Voting
Define Aw, = [Ad, 1, At .. Ay ] and A& = [Ady Ady, ..., Aty ]
Fori=1,2,..,n
if P(Aa; = —0.05) > 95%

Aai =0
else
Aa; = mean(ﬂxi,.)
end
End

Return Aa and the locations L(Aa) for Aa; = 0
Besides the estimation Aa, Algorithm 1 also returns the locations of zero elements in Aa,

represented by L(Aa). In order to recover the damage locations accurately, an iterative procedure

is proposed as Algorithm 2 in Table 3-2.

Table 3-2. Algorithm 2: Damage Location Identification Algorithm

1. Set the iteration count g = 0, L@ = L(A/(\x(q)) and L@ = 0]
2. Run Algorithm Iwith constrains Aa; ;) = 0 in Eq. (13), return Aala+D
3. Update the sparsity
L@+ = L(Za@+D)
4. Terminate if L@+ = L@ or g attains the maximum number. Otherwise, increment g and go to
step 2.
5. Return Aa and L(A/(\x) from the last iteration

In most cases, it takes ¢ = 2 or 3 to terminate the algorithm. The A« of the last iteration is used

as the final estimation of the damage parameters with the sparsity shown in L(Aa). We name such
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estimation Aa as L;-IMR (iteratively matrix randomization). In general, the L;-IMR estimation
achieves better solution quality compared with the pure L; regularization by Eq. (12). We use the

L;-IMR estimation for natural frequency selection in the next section.

It is interesting to compare Algorithm 2 with the reweighed L; minimization algorithm in Table
3A-1 in the appendix to see the analogy. In fact, by adding constrains 4da; @ = 0 in Eq. (3.13)
when run Algorithm 1 is equivalent to have the weight update equation in the reweighed L,

minimization algorithm as:

— (@
W-(q+1) _ 1, Aai =0

L —
w, Aa?” =0

In this updating step, all zero valued elements will retain as 0 in the following iterations, while all
non-zero valued elements will be estimated with equal weight of 1. The condition Wi(q+1) = 0o,

for @i(q)

= 0 is equivalent to set § = 0 in the original weight update equation in Table 3A-1. The
key difference between Algorithm 2 and the reweighed L; minimization algorithm is in step 2.

Instead of solving the L; minimization problem once, Algorithm 1 solve the problem multiple

times with different random matrices. The benefits of such approach are discussed above.

3.4 Measurement Selection for Bias Reduction

Even if Algorithms 1 and 2 enhance the solution quality for damage identification, the bias
introduced by the linear approximation in Eq. (3.9) is not addressed. We find that some subsets of
available natural frequencies can return less biased estimation compared with that using all
available natural frequencies. Thus, a natural frequencies selection is desired to reduce the bias in

the damage estimation.
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Mathematically, we want to find a subgroup of natural frequencies that minimize the following

L,-norm

d® = [|Aa® — patrh]| (3.14)

where Aa™ ™ is the underlying truth of the damage and Aa® is the damage estimation based on

the kth combination of selected natural frequencies by solving min||Aa||1,s.t.||Al(k) —

S(k)A(X”Z < €. AA® and S™ are the eigenvalue difference and sensitivity matrix corresponding

to the kth combination of selected natural frequencies, respectively. In other words, AL and S
are the sub-vector and sub-matrix of AA and S by retaining the rows corresponding to the kth
combination of selected natural frequencies. For example, if S has dimension 7 X 20 (i.e., 7
measurements and 20 elements), the submatrix S® may have less rows but the same number of
columns, say 4 X 20. Please note for m available natural frequencies, there are total 2™ — 1

different combinations.

The challenges in this problem are from the following aspects. First, the underlying truth
Aa™™ is unknown. Thus, Eq. (3.14) cannot be used directly for bias comparison. Second, since
the sensitivity matrix S is obtained from the linear approximation, the following optimization

problems are not equivalent,

arg, min|[AA09) — S(")Aoc”2 & arg; min||Aa® — Aatruth”Z
A reasonable approach is to derive an estimation of the incomputable quantity d. Such
estimation is named as b and derived as follows.

First note, the eigenvalue difference AA can be expressed with the underlying damages Aa™"th

and the error term e:
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AA = SAat™Uth + e (3.15)
Similarly, the eigenvalue difference for the kth combination is:

Al(k) — S(k)Aatru'Ch + e(k) (3.16)

where e(®) measures the error in the eigenvalue difference corresponding to the kth combination.

Please note Eq. (3.15) and (3.16) are exact without approximations.

Intuitively, if e® — 0, solving AA®) = S Aq returns the unbiased estimation of Aa™™ut™h,

Thus, it is reasonable to select the natural frequencies with small magnitudes in e to form the
combination. However, such approach does not take the structure of the sensitivity matrix into
consideration. An ill-conditioned sensitivity matrix may result in large estimation errors. In fact,
the sensitivity matrix S can be simplified with less columns S by Algorithm 2, where S is the
submatrix of S by removing columns corresponding to the zero elements in Aa, represented by
L(EX). For example, if S has dimension 7 X 20, the submatrix S can be 7 X 2 by removing all

columns that correspond to the healthy elements. Eq. (3.15) and (3.16) can be re-written as:

AL = SAQ™Hh + e (3.17)
and

Al(k) — §(k)Agtruth + e(k) (3.18)

where Aa'™ ™ is the subset of Aa'™™ with non-zero valued components and S® is the submatrix
of S by removing the columns corresponding to zero elements in Aa™"™. Following the
previous examples, if S¥ has dimension 4 x 20, then S® is 4 x 2. We would like to point out

that the number of selected natural frequencies should be larger than the number of nonzero
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truth

elements in Aa so that S will be a square or tall matrix. In this way, Eq. (3.18) will not be

an underdetermined system.

According to Eq. (3.18) and the least squares method, the closed form solution of A« is:

T -1 T
Actruth — (§(k) S(k)) S (AR — el (3.19)
Similarly, the estimation of the damages upon the kth combination of natural frequencies can be
solved from AL = S Aq (i.e., the approximation of Eq. (3.18)) by the least square method as:
Ao = (§(R)T§(k))_1 §(k)T(Al(k)) (3.20)
Considering Egs. (3.19) and (3.20), we have

[8a® — aatruth|| = ”(S(")TS("))_lS(")Te“‘) (3.21)

2

-1
(§(")T§(")) §(")Te(") as the criteria for natural

2

This derivation inspires us to use

-1
(§(")T§(")) §(")Te(") as b and the optimal

2

frequency selection. Specifically, we define

combination of natural frequencies can be chosen as k* = arg;, min b®). We would like to point
out that b is just an approximation of d® in Eq. (3.14) because Aa® in Eq. (3.14) is often
different from Aa® obtained in Eq. (3.20). In fact, the accuracy of Aa® is often higher than

Aa® and the above derivation Eqs. (3.19-21) are only used to obtain an approximation of d®).

To compute b¥), we also need the value of the error term e. The value of e can be estimated
by & = AA — SAa, where Aa is the output from Algorithm 2. To summarize, the proposed natural

frequency selection algorithm is shown as Algorithm 3 in Table 3-3.
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Table 3-3. Algorithm 3: Natural Frequency Selection Algorithm for Bias Reduction

RUN Algorithm 2
CALCULATE the estimated error & = AA — SAa
Fork=12,..,2m -1
CALCULATE the estimated bias b®)
End
Return k* = arg, min b®) as the final combination

There are several remarks on Algorithm 3. First, A« is pre-computed in Algorithm 2, so that
the computational load does not explode for exhausting all possible measurement combinations.
In fact, as we mentioned earlier, the number of the selected natural frequency needs to be larger
than the number of non-zero elements in Aa. Thus, the actual number of combinations is further
reduced. For example, if S has dimension 7 X 2, the combination should contain at least 2 natural
frequencies. Second, the proposed algorithm will not guarantee the selected combination k* is the
optimal one that minimize Eq. (3.14) because the criteria used b®) is just an approximation of
d®) . Detailed numerical studies and discussions will be conducted to illustrate the performance of

the proposed algorithms in Section 3.5 and 3.6.

3.5 Numerical Study and Illustration

In this section, the proposed algorithm is validated using a fixed-free beam setup. The system

parameters are summarized in Table 3-4.

Table 3-4. Parameters of the Beam Structure

Material Young’s Modulus Density Length Width ~ Thickness m n

Aluminum 7.1 X 101° N/m?  2700kg/m3 0.4184m 0.038lm 3.175Smm 7 20
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The beam consists 20 elements and the first 7 modes are available for measurements. Thus, there
are total 127 different combinations of natural frequencies. In the first example, we are considering
the beam with two faulty elements, where the stiffness loss occurs at elements 8 and 17 with Aag =

—0.3 and Aa;; = —0.1, respectively.

Figure 3-1 presents the bias d® = [|Aa® — Aatruth”Zin Eq. (3.14) as a function of the

combination index k = 1,2,3,...,127. The combination is ordered from the single natural
frequency to all seven natural frequencies, ie.,
{1,2,3, ..., (1,2),(1,3),..,(1,2,3),(1,2,4), ..., (1,2,3,4,5,6,7)}. Aa®™ is calculated by
min|Aall;,s.t. [|[AA%) — s®Aal|, < e withe = 1079
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Figure 3-1. The bias of the estimated damages for different combinations of natural frequencies

It is clearly shown in Figure 3-1 that the combination of all seven natural frequencies (the 127%
combination) does not result in the smallest bias. In this damage scenario, the smallest bias is
obtained by the 26" combination of the fifth and sixth natural frequencies, i.e., (5, 6). From Figure

3-1, it can be seen that the bias has relatively large values for the first seven combinations. Since
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the first seven combinations are all single natural frequencies, the linear system is underdetermined
with two faulty elements. Also, there is a jump at k = 18, (the combination of the second and the
seventh natural frequencies), which is due to the correlated structure of the second and the seventh
rows in S. As discussed in section 3.4, the ill-posed sensitivity matrix may result in large errors

even with regularization.

Figure 3-2 presents the results of the histogram of the severity estimation of 20 elements from

Algorithm 1.
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Figure 3-2. Damage parameter histogram of 20 elements with Algorithm 1. True damages of each

element are labeled using dash lines.

In Figure 3-2, the true damage locations, i.e., elements 8 and 17, have histograms around the
underlying true damages -0.3 and -0.1. Most of other elements have density concentrate exactly at
0 as expected, e.g., elements 2, 6 and 10. Elements 1, 4, 9 and 18 have the majority of the density

concentrate at 0 with a light tail spreading to negative values. Element 13 has density concentrate
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both at 0 and -0.2. It can be seen that true damage locations have densities apparently differ from
0, while non-damaged locations tend to have most density distributed at 0. These locations are set

to Aa = 0 in the majority voting process.

Results after Algorithm 2 are shown in Figure 3-3. In Figure 3-3, the only two non-zero
distributed elements are the element 8 and 17 with density concentrated around the true damage
magnitudes. The estimated damage parameters are Aag = —0.33 and Aa;, = —0.11 with all other

Adjzgor17 = 0.
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Figure 3-3. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each

element are labeled using dashed lines

The estimated bias b for k = 8,9, ...,127 are presented in Figure 3-4. It can be seen that

b has very similar trend compared to ||E?x(k) — Agtruth ||2 By Algorithm 3, we get k* = 26 and

the result is consistent with the smallest bias combination as shown in Figure 3-1. Thus, only the
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fifth and sixth natural frequencies are suggested to be included in the estimation of damage
parameters to reduce the estimation bias. Please note that the comparison between the estimated
bias b®) and the ||Aa® — Aat“‘th”Zis only shown for k > 8. Two elements are identified as
stiffness loss by Algorithm 2. In order to apply the least square method in Eq. (3.19), $® should

consist at least two rows, i.e., combination of at least two natural frequencies. Thus, k > 8 because

the first 7 combinations only contain one natural frequency.
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Figure 3-4. Plots of b® and d® fork = 8,9, ...,127.

Figure 3-5 presents the comparison results of the damage parameter estimation using different

methods.
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Figure 3-5. Comparison of damage parameter estimation using different approaches.

The L;- Norm method adopts Eq. (3.12), and the L;-IMR adopts the proposed method with
iterative matrix randomization, i.e., Aa by Algorithm 2. The L,- Norm adopts Eq. (3.12) but
without L, penalty. It can be seen from the comparison, the L;-IMR returns the most accurate
estimation both for the damage locations and damage severities. The L;- norm method returns
comparable results at the true damage locations, but also has estimation with small magnitudes on
a few healthy elements. The L,- norm performs the worst among all three methods with distributed

estimation along elements.

In the following, the proposed algorithm is adopted for a scenario with three faulty elements,
where Aa; = —0.1, Aa;o = —0.2 and Aa;g = —0.2. The histogram of elements after Algorithm
2 is presented in Figure 3-6. Similar to the case with two faulty elements, the true damage locations

are identified correctly.
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Figure 3-6. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each

element are labeled using dash lines

The comparison between b and the ||Aa® — A(xtr“th”2 is presented in Figure 3-7. Since

three damage locations are identified, at least three natural frequencies are needed, i.e., k = 29.

By Algorithm 3, k* = 43 with the first, the sixth and the seventh natural frequencies is the

combination with the smallest bias in the estimation. The jumpy peaks for some b5 are due to

the correlated structure of S®. In Figure 3-8, the comparison of damage parameter estimation is

presented. The proposed L;-IMR has the best estimation.
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In Table 3-5 we present the overall performance of the proposed algorithm in a comprehensive

study. The study adopts the same beam structure in previous two examples (i.e., Table 3-2) and

exhausts all possible combinations between damage locations and damage severities for —0.4 <

Aa < —0.05 with increment 0.05. In most cases, 5% decrease in natural frequencies can be

referred to a severe damage in the structure [192-193]. According to the finite element model, the

5% reduction in natural frequencies is roughly equivalent to Aa = —0.4.
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Table 3-5. Performance of the Proposed Algorithm in Different Damage Scenarios

Single Fault Two Faults Three Faults
k* = arg, mind® 94.3% 83.5% 80.2%
d*) < d(127) 97.1% 94.7% 91.5%
# simulations 160 12160 583680

In the simulation study, we consider three fault scenarios, single fault, two faults and three
faults. The performance is measured in two ways. 1) k* = arg, mind® indicates the selected
combination k* by Algorithm 3 is the optimal combination that minimizes the bias. It can be seen
the proposed algorithm can detect the optimal combination above 80 percentage in all three
damage scenarios. 2) d*? < d(127) indicates that the selected combination k* has smaller bias
compared with the case when all natural frequencies are used. It can be seen that the selected
combination by the proposed algorithm can achieve smaller bias than using all seven natural
frequencies over 90 percentage in all three damage scenarios. It is not surprising to see the single
fault scenario has the best performance, in which case the Eq. (3.19) is reduced to the scalar

calculation without any matrix inversion.

3.6 Factors that Influence the Estimation Performance

In this section, we discuss the factors that influence the performance of the proposed algorithm.
The proposed algorithm is effective on selection of natural frequencies to reduce the estimation
bias. However, it does not eliminate the bias. In Figure 3-9, we present the accuracy of linear
approximation of natural frequency compared with the underlying truth. The beam is set up as that

in Table 3-4 with stiffness loss only at element 8.

Figure 3-9(a) presents the linear approximation of the first order natural frequency. The solid
line is the underlying truth and the dashed line is the linear approximation. Since Taylor’s

expansion is conducted at the healthy condition, the difference between the linear approximation
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and the underlying truth is getting larger as Aa — —1. Figure 3-9(b) summarizes the accuracy of

the linear approximation of the first seven modes in terms of the difference in percentage, i.e.,
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Figure 3-9. Accuracy of linear approximation in natural frequencies

It can be seen that the accuracy is about 60% for Aa = —0.4. As the comprehensive simulation
study indicated in Section 3.4, the proposed algorithm performs well at such accuracy level. It is
worth noting that the performance of the algorithm gets worse for severe stiffness loss. Under mild
damage conditions, the histogram of Aas are close to the underlying truth but with small
differences (e.g., Figure 3-3 and 3-5). For severe damage loss, such differences can be large or
even the identified damage locations can be wrong. In Figure 3-10, we present an example of the
histogram of Aas after Algorithm 2 for a severe damage case Aa; = —0.9, Aa;o =

_0.9 and Aalg = _0.2.
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Figure 3-10. Damage parameter histogram of 20 elements after Algorithm 2. True damages of each

element are labeled using dashed lines

All three true damage locations are identified but with an additional element 14 wrongly

identified. The magnitude of stiffness loss at element 18 is estimated much smaller than the truth

due to the additional element. Thus, the results of the proposed algorithm will not be informative

on the selection of natural frequencies as shown in Figure 3-11.

N
1 A4 o o d(k)z T
® Co & % °9 o o [
0 ) 09 %0 ° °o © 1.9 o
b = 008 00 o o © !:9 %o o o °
— o 00, o (2] o
<> 800 — Aatrueh]| 155 08| o, ® o B & B 0 ° & oo o
o » Y ° 0 o o
-gw 2 652? S o ° 17 o ® o ©
© o ® o o ‘ % %o
o o o ° © o ®
S o F o Co
= os 16 . w0 % o F
o «Q ° @ o c o® °°é o
05 154
8 og%’ °o
Boa 14 ce° °
= 0. ® o
2 ° ¥ °
€ s 13 o ° ° o
= o o o o
) o o o
Z 02 12
4 o
11
1

Combination Index k



62

Figure 3-11. Plots of b with ||Aa® — A(xtruth”Z for k = 29,30, ...,127 with severe damage

Figure 3-11(a) is similar to Figure 3-4 or 3-7 showing the comparison between h® and

||E?x(k) — Aatruth ||2 Since they have quite difference scales, the normalized comparison is shown

in Figure 3-11(b). As expected, the two trends are different. For such severe damage scenario, the
inaccuracy of the linear approximation causes the overall estimated damage parameters biased
from the underlying truth as shown in Figure 3-11(c). Figure 3-11(c) presents the bias d . It can
be seen the average bias for this severe damage case is around 1.7, which is roughly 17 times large

than the bias shown in Figure 3-1.

In practice, it is more important to estimate mild damage conditions. Severe damages not only
reduce natural frequencies significantly, but also cause visible changes in structures. However,
mild damages can be hidden from simple visual inspection. Thus, it is more important to identify

mild damages accurately for preventive repair or correction.

3.7 Conclusion

In this paper, we propose a natural frequency selection algorithm to reduce the bias in the
estimation of damage parameters using linear approximation under mild damage scenarios. The
selected combination of natural frequency has high probability to be the optimal combination
which leads to the smallest bias in the estimation among all the possible combinations. The
algorithm consists three sub-algorithms. In the first algorithm, the L;- norm regularization with
iterative matrix randomization is adopted for estimation of damage parameters followed by a
majority voting process. In the second algorithm, the damage locations are identified by sequential

updating. The improved estimation L;- IMR helps to choose the best combination of
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measurements in the third algorithm. The effectiveness of the proposed method is validated

through numerical studies. Factors that influence the performance of the method are also discussed.

The proposed algorithm is flexible in dealing with natural frequencies, thus has potential to be
extended to the structures with physical modification, e.g., modification through mass addition or
tunable sensing systems. The proposed algorithm can be applied to select measurements among
different setups of the structure (i.e., different mass additions or tunable inductances), which may
provide a better estimation than combining all available modes from all setups. We will investigate

along this direction and report our findings in the near future.

3.8 Appendix

Table 3A-1 Iterative Reweighted L; Minimization Algorithm [15]

1. Set the iteration count [ = 0 and Wl.(o) =1,i=12,..n
2. Solve the weighted L; minimization problem:
x® =arg min”W(”x”1 ,subjectto |ly — Ax|l, <€
3. Update the weights fori = 1,2,..n
WD (1)1
x; +46 |
4. Terminate on convergence or [ attains the maximum number. Otherwise, increment [ and go to
step 2.
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4. Prognosis of Structural Damage Growth Via Integration of
Physical Model Prediction and Bayesian Estimation”

In this chapter, we propose a dynamic data-driven hierarchical Bayesian degradation
model, which takes advantage of both the physical finite element model and the data driven
Bayesian framework, to tackle the structural damage growth prediction. The damage growth trend
can be efficiently and accurately estimated by Gibbs sampling. Systematic case analyses are

performed to validate and demonstrate the effectiveness of the proposed method.
4.1 Introduction

Damage diagnosis and prognosis play an important role in ensuring the safety of mechanical,
aerospace, and civil structures. Most types of damage or structural weakness cannot be observed
directly. Rather, damage will cause the change in structural properties (e.g., local stiffness,
damping ratio) and then in turn impact on the dynamic responses of the structure. Studies on
inversely estimating the structural properties using observed response signals are mostly limited
to detection in a static sense, in which only a snap-shot of data within a short time window are
used to get a point value estimate of the damage [72,73]. However, revealing the evolving path of
structural damage is highly desirable in practice, because the damage future evolving path can
provide more accurate information regarding the remaining useful life (RUL) of the structure.

Physic-based approach is a popular way to predict the structural damage evolving over time.

Such methods are mostly based on deterministic differential equations for the damage growth rate

"This chapter is based on the paper: Liu, Yuhang, Qi Shuai, Shiyu Zhou, and Jiong Tang.
"Prognosis of Structural Damage Growth Via Integration of Physical Model Prediction and
Bayesian Estimation." IEEE Transactions on Reliability 66, no. 3 (2017): 700-711.
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[74]. In these methods, the model is tuned for prognosis by minimizing residuals which are the
difference between the real measurements and the outputs of a mathematical model. For instance,
an integrated prognostic process based on data collected from model-based simulations under
nominal and degraded conditions is proposed in [75]. A defect propagation model by mechanistic
modeling approach for RUL estimation of bearings is introduced in [76]. Paris’ law is widely used
for crack growth estimation [6,7]. There are some inherent drawbacks of the physical models.
First, the physical models are generally case specific, which limit their application to broad types
of structures. Second, these methods assume that an accurate mathematical model is available and
the model requires specific mechanistic knowledge and theories relevant to the systems under
consideration. In practice, it is very difficult to build such a good physical model. Furthermore,
physics based methods often ignore the uncertainties in the system structure and the measurements.
Most recent research along the physic-based approach introduces the randomness by adding
random disturbances [77], random parameters [78] to the differential equation, or directly making
the growth rate a random process [14,79-81]. As a trade-off for such modification, modelling
incurs heavy computational load.

Different from physic-based approach, data-based or data-driven methods adopt generic
statistical models to describe the damage progression. Temporal and spatial data recorded by
sensors inherently carries the physical information of the system and such information can be
utilized to elucidate the relationship between system status and the observed data. In data-driven
approaches, the statistical analysis can be less dependent on physical principles and easily applied
to different systems with relatively low computational cost. A popular category of data driven
methods is to model the sensing signal directly using stochastic process or degradation path model

[82]. The prognosis is based on the prediction of the future trend of the signals conditioned on the
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existing data. For example, Wiener process is adopted for degradation data analysis with
measurement errors in [83]. A good review on degradation path models with simulation
comparisons can be found in [82]. These approaches leave the prognosis on the data level without
further revealing the change in structural properties. State space model is a type of method capable
of characterizing the underlying status of structure as different states. Hidden Markov model
(HMM) is one of the state space approaches, where the unobservable degradation status is defined
as hidden states. HMM have been adopted for damage prognosis of a pre-stressed concrete bridge
[11] and is used for prediction of gear failures [12]. Typically, a large amount of historical data is
needed for training HMM and the assumptions in HMM are often not realistic in many cases. Also,
since degradation status is classified into discrete states as an approximation of the underlying true
continuous state, the prognosis in a long term could be unreliable. One major disadvantage of pure
data-driven based methods is that although they can provide a trend estimate for the observed data,
they often cannot reveal the root cause or the structural damage that causes the data trend directly.
As a result, currently available data-driven method often performs poorly when trying to classify
the type of changes in the structural properties compared to the physical models.

In this chapter, we propose a dynamic data-driven hierarchical Bayesian degradation model,
which takes advantage of both the physical finite element model (FEM) for response prediction
and the data driven Bayesian framework. This hierarchical model is capable to recover the
evolving path of the structural damages over time or load cycles efficiently based on temporal
sensing data. FEM is an effective numerical tool for modelling structural dynamics [84]. In our
model, FEM is adopted to approximate the mapping from the structural properties to the observed
data, i.e., natural frequencies. Bayesian framework or Bayesian updating provides a powerful

parameter estimation method from noisy data by assigning appropriate prior distributions and
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likelihood functions [85,86]. Our proposed model is a hierarchical Bayesian model consisting of
two levels. In the first level, the observed data is assumed to follow a Gaussian distribution with a
mean function related to structural properties. In the second level, the evolving path of the
structural properties is described using polynomials with uncertainties. Conjugate prior
distributions are assigned for each unknown parameter for the sake of simplifying the derivation
in posteriors distribution. All the unknown parameters are estimated using Markov Chain Monte
Carlo (MCMC) sampling technique. Akaike’s Information Criterion is adopted for choosing the
most appropriate degree of polynomial in fitting the underlying trend of the damage evolving path.
This work provides an efficient damage growth estimation framework by combining physics-based
and data-driven based methods. Note that, the work focuses on the estimation and prediction of
the evolving trend of structural properties instead of the traditional RUL prediction [87].

The rest of the chapter is organized as follows. Section 4.2 introduces the mathematical
formulation of the dynamic data-driven hierarchical Bayesian degradation model followed by
parameter estimation and model selection. Systematic case analyses are performed to validate the
effectiveness of the proposed method in Sections 4.3 and 4.4. Finally, the chapter ends with

conclusion in Section 4.5.

4.2 Dynamic Data-Driven Hierarchical Bayesian Degradation Model

In this section, the mathematical formulation of the dynamic data-driven hierarchical Bayesian
degradation model is presented followed by parameter estimation procedure and model selection
process.

4.2.1 Model Formulation
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In the context of the finite element model (FEM), the dynamics of an undamped structural
system can be described by the linear equation
Mz(t) + Kz(t) = G(t) (4.1)
where M and K are the global mass and stiffness matrices, respectively, z and G contain the nodal
displacements and nodal forces, respectively. The characteristic features of the system are the
circular natural frequencies w; (rad/s) and mode shapes ¢p;, which can be calculated from the
eigenvalue problem (K — w?M)¢; = 0 with eigenvalue A; = w?. Therefore, the changes of
material properties in M or K lead to the changes of system features w; and ¢;. In practice, the
damage of a structure is often characterized as the stiffness loss in elements [88-90], i.e., the values

change in K, and causes the reduction in natural frequencies f = % (Hz), which is commonly used

for assessing system stiffness loss for its high accuracy and easiness in measurements. Damage
assessment based on natural frequencies can be found in a large amount of literatures (e.g., [91]).

In this chapter, 8, is used to describe the percentage of stiffness left at an element in the
structural system along time t, thus 6, ranges from 1 to 0. Without loss of generality, we assume
the location of the damaged element has been determined and we will focus on estimating the
evolution of the magnitude of the damage along time. For a system under regular load cycles, we
assume the parameter 6, follows a degradation path which cannot be observed directly. The
proposed model takes natural frequencies f;; as the observed data to estimate such degradation
path, where f;; denotes the i*" natural frequency measured at time t. Even if f;; can be measured
accurately, small perturbations can be involved in the measurements. To accommodate such
uncertainties in f;;, it is assumed that f;; follows a normal distribution with mean 71;(6;) and

variance of, that is fo;~N (m(Gt),afz), where 1;(6,) defines the mean value of f;; for given
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parameter 8,. Variance afz can be chosen to be small to reflect the high accuracy in natural
frequency measurements.

In the proposed model, the mean function 1;(6;) is specified as a linear function n;(6,) =
u; + v;0, with coefficients u; and v; for 8, € [lg, uy], where lg and uy are the boundaries of 6.
Please note that in theory, the mean values of f;; does not follow an exact linear function of 6,.
However, linear approximation can be used to describe the relationship in some regions of 6;. This

can be shown as follows. By eigenvalue perturbation theory [92],

_OTAKy GG,

AL~ 2T
" ¢{M¢; ¢ Mo,

where E and I are the Young modulus of elasticity and second moment of inertia, respectively.
A@ = 6, — 6, is the difference of the percentage of stiffness. G is a constant matrix containing the
information of the given damage location. Note that AA = f2(6,) — f2(6,), we can see that the

change in natural frequencies can be approximated by

AB X const AB X const

F6D) +f(8,)  f(B) + f(By) + f/(6:) X (6, — 6,)

Af =f(6,) — f(6,) =

where f(6,) is expanded around 6, using Taylor’s theorem neglecting higher order terms.

ABxconst

TR Thus, the natural

Applying Taylor series expansion of Af around A@ = 0, we have Af =

frequency is approximately linear with respect to the change in the system stiffness if the change
is in a relatively small region.

In the proposed approach, we further model the evolving path of the damage 6, by a
polynomial function y(t) = BTx,, where B is the coefficient vector of the polynomial terms x, =
[1,¢,t2, ...]7. The underlying growth of damage could follow different function form [93], so it is

infeasible to describe 8, using a fixed function structure. Polynomial approximation is a robust
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and flexible curve fitting technique so we adopt a polynomial function structure for the evolving
path of 6;. However, 8, cannot be assumed to follow y(t) exactly because there are always
modeling errors. Instead, a normal distribution is assigned to 6;, that is 8, ~N (y(t), 05), where
o is the variance to capture modelling errors.

The proposed model is summarized as a 2-level hierarchical model as follows.

Level 1
fei~N(1:(6), Ufz)a (4.2)
i=12..,Nyt=12,..,T
n:(0:) = u; + v;0,, withu; + v; = fy;
Level 2

0:~N (y(t),05) (4.3)
y(©) = BTx,, withx, = [1,¢,t2,..]7

In Level 1, the measurement of natural frequencies f;;s are assumed following a normal
distribution with mean structure 1;(6;) = u; + v;6, and variance afz. u; and v; are further relaxed
to be unknown parameters except that their summation equals to f,;, which is the natural
frequencies under health condition. In Level 2, the weakness growth 6; is assumed to follow a
normal distribution with mean structure y(t) in polynomial form with variance 6 . In this model,
we have unknown parameters 8, u;, afz and 0§ to be estimated in order to recover the evolving

path of 8, based on the observed temporal data f;.

4.2.2 Model parameter estimation
In order to utilize Bayesian framework for estimation, prior distributions need to be assigned

to the unknown parameters to represent the initial guess of these parameters. Here, we set the prior
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distributions as B~MN (b, GEI), u;~N(1;,02), af2~Tg(af, bf) and 03~TG(ag, bg),where B
follows multivariate distribution with mean vector b and covariance matrix aﬁl . u;s are

independently follow normal distribution with different mean values 7;s and a common variance
o2. afz and o4 has Gamma distribution as priors. All the prior distributions are chosen as the
conjugate priors, such that the posterior distributions are in the same distribution family of the
prior distribution. The conjugate priors offer great computational convenience. Prior distributions
play an important role in the Bayesian framework [94]. The prior distributions should reflect the
available prior knowledge on the distribution parameters. However, when no prior knowledge is
available, non-informative priors should be assigned in order to reduce the impact of the chosen
priors on the parameters updating. For example, we could set aﬁ to be a very large value so that
the multivariate prior normal distribution of f will be like a flat hyper-plane to reflect the non-
preference in pre-choosing f in its support. In this chapter, we consider the general case where no
specific prior information is available to us. As a result, proper values of aﬁ, o5, (ag, by) and
(ag, bg) need to be assigned to achieve non-informative priors.

In the Bayesian framework, the estimation of a parameter is often the mean of its marginal
posterior distribution, which can be calculated by integrating out other parameters in the joint
posterior distribution given by Bayes’ Theorem [95]. In the research, the joint posterior distribution

of all the unknown model parameters is:

p(0,B,07,04,U|F) « p(F|@,07,U) x p(@|B,05) x p(BIb,03) X p(af) X p(a5) X p(U)  (4.4)
where Fryn, = [Fi; F2; ... Fr], and Fy = [ftl,ftZ'--fth] , 0=1[04,6,,..07]" n= [771' ---UNf] >

and U = |uq, U,,..uy.|. The explicit formulations of each term in the posterior distribution are:
1, Uz N¢ p p
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p(T|@, afz' U) = [t p(Ft|9t: ) o« [TF., exp [(F‘_"(gf)) (Ft_"(gt))]

952
Zaf

p(©|B,02) o« [TF-; exp [M]

p(Blb,d}) o exp [w] s
p(af) « (of)” f“exp ("’f)
p(0§) x (‘79) -2 )

p(UIT,_, ) o 1_[1. 1eXp [(U—L 1) ]

To estimate parameter 8, the marginal posterior distribution of B, p(B|F), can be evaluated by
integrating as follows:
p(BIF) = [[[[p(®, B,07, 05, U|F)d®da}f dojdU
With the marginal posterior distribution, we can further compute the mean value of the parameters
as follows as an estimate of the parameter values.
E(BIF) = [ p(BIF)dp

The concept is simple but in practice the multiple integrals can be very difficult to compute
for high dimensional variables. To avoid such computational issue in finding p(B|F), a Gibbs
sampling technique is adopted. Gibbs sampling, a Markov Chain Monte Carlo algorithm, is an
effective method for high dimensional parameters estimation [96]. The algorithm is summarized

in Table 4-1.
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Table 4-1. Illustration of Gibbs Sampling Algorithm

Initialize Ht(O), B, of (O), a4 ©

For k in iteration 1: K
Ht(k)Np (9t|0(_kt_1)l B(k_l)’ 0-92(k_1)p O-fz(k_l)i U(k—l)’ T)

B*~p (B0, o2 o247, D, F)
sz(k)Np (Ufz |@(k)’ 062("‘1)’ B, U(k—l)’;;')
2%y (0_62|@(k)’0.f2(k)’ﬁ(k)’ U(k—l)’;;')
u®p (ui |@(k)' o2 ®, Ufz(")’p(k), U(_"l.‘l),T)

A

End

where Ht(k) is the k™ sample of 6, drawing from the conditional posterior distribution
p (9t|0(_";_1),ﬁ(k_1),agz(k_l),afz(k_l), U(k_l),?). The other terms in the algorithms have the
same interpretations. For a sufficient large number K, the samples of each parameter can be
regarded as the samplings from the marginal posterior distribution [97]. For example, samples 8
can be viewed as generated from p(B|F). With these samples, the sample mean can be used as the
estimation of parameters, i.e., f = %Zk B where the ~ sign indicates the values calculated from
samples statistics generated by Gibbs sampling algorithm. Standard deviation can also be
evaluated from samples to construct the confidence interval of the estimation.

In the hierarchical Bayesian degradation model, the conditional posterior distribution for each
parameter in Table 4-1 can be derived using the properties of conjugate priors as follows. With
these conditional posterior distributions, Monte Carlo sampling can be implemented.

a) The conditional posterior distribution of 8, is a normal distribution with mean y, and

variance 0, %.
t

p(6.|0_. B, o5,0¢,U, F) « p(F|6,, o7, U) x p(6:|B,02)

_ "(F. — _ 2
 exp (Ft U(Ht)) (Ft U(Ht))] X exp ((Ht B x,) )

—Zafz —204
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N
T (Fri—ui—vi6¢)? —BTx,)*
— exp l_1<2l=1 (fti 1211 v;6¢) + (6: fz Xt) )l « exp [%] ~N (U, o #t)

2 o 9 Wy
N
f 2 2
X, ,aibit+cd 0f0y
where p, = “52——, 0,2 = L2—, with a; = 65 (fy; —w), b; = 69v;, ¢ = o;fTx, and d =
st vzeaz’ Mt 5 S p2ea?’
O'f.

Note that, ifn; (+) takes non-linear form of 6;, the above derivation may result in a very complicated
formulation, in which case, slice sampling [98] can be used to sample from this density function.
b) The conditional posterior distribution of 8 is derived as:

p(B|®,04,07,U,F) x p(@|B,5) x p(BIb, o)

T T b
< 1_[ exp [#] X exp [(B )2(()5 )]"’MN(bnew'zB)

t=1
xTo xTx\ !
where byey, = Xp(— - ) and Xp = (aﬁ I35 + ) .
c¢) The conditional posterior distribution of afz is also a Gamma distribution with asp,,, and

bfnew'

p(a |0 ag,ﬁ U, ?) ocp(?|@ af,U) Xp(a )

on F,—n(8,)) (. — n(8, _ag+1 b
0(1—[ ; (F=m(8)) (F.—n( ))]X(O_fz) / exp(?zf)

o exp [ “og2
t=1 f
T
—N (f - ’UH) +1 _b
=T x| -3 =20 s (7)™ exp (L)~ e )
t=1 ! 2 af

N
Z?ﬂzizfl (fri—ui—UiQr)2>
5 .

N¢T
where arpey = ar + % and brpey = by + (

d) The conditional posterior distribution of g3 has form:

p(0§]@,0%,B,U,F) « p(0|B,0;) x p(0§)
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T

_ (9 - BTx )Z —ag+1 —bg
X 1_[ ] 1eXp [ : —2 2 : ] X (0-92) ? €xp (_z)NTg(aBnew' anew)
t=1 % %

2

&@@3

where agpew = ag + g and bgpew = bg + (

e) The conditional posterior distribution of u; is derived as:

T
p(]®, 04, 07,8,U 1, F) o p(F|0,07,us) x pw) = | [ p(Fel6r, o7, w) x p(un)
t=1

T 2
(Fg —n:(6) (u; — 7;)?
oc | Jexp 55 X exp [y~ (ki 02)
t=1 f u
where gt = 06 Xi=1(1-6¢) (Fi—f0i0t) +7i0} and 2, = ofio}

0-121 Z?=1(1_9t)2+0?‘ 0-121 Z?=1(1_9t)2+0?"

4.2.3 Determination of the Degree of Polynomials in y(t)

The unknown parameters can be effectively estimated by Gibbs sampling if the model
structure is given. Thus, the proper degree of polynomials in ¥ (t) needs to be decided, in order to
recover the underlying evolving path of structural damage. The determination of the degree can be
viewed as a model selection problem. Various model selection criteria have been developed for
comparisons among different models. The most famous ones are Akaike’s Information Criterion
(AIC) [99], Bayesian Information Criterion (BIC) [100], and Bayes factor (BF) [101]. Among
these selection criteria, we adopt AIC for selecting the best degree of polynomials for reasons to
be explained below. The AIC value of a model is:

AIC(M;) = —2logL(M;|y) + 2k(M;)
where log L(M;|y) is the log likelihood given data y, M; is the i*" model and k(M;) is the number
of parameters in M;. The AIC takes the negative value of the log likelihood and penalize on the

size of the model, thus the model with the minimum AIC value is selected.
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Compared with BF, AIC and BIC do not depend on the choice of priors and penalize
overfitting of the model, which makes the model selection more robust. The difference between
AIC and BIC is the penalty level. In general, BIC is more stringent than AIC. Consequently, BIC
tends to favor simpler models than AIC. From a practical perspective, AIC is advocated if the
primary goal of modelling is for prediction, i.e., the model is built for effectively predict new
outcomes. On the other hand, BIC tends to be advocated for descriptive purpose of the existing
data [102]. The proposed model is used for predicting the stiffness loss along time. Thus, AIC is
chosen for model selection.

The likelihood function of all unknown parameters is :

1(8,9%,97.U[%) = | p(#]0,07,0) x p(0]B,0§)d0

[ 1 T [ _ "(p _ _ pT 2
= [enZFen36h 2 f “—[exp[(Ft n6) (Fo-n(), - O=B'x) o

—207 —204
- SRNE SN L F,—n(6,) (F, — n(6, Tx
= -(Z‘IT)_N?(ZT[)_E(O'QZ)_E— rbfexp [( n z)Zc(sz n ))]exp [#]det

= [enFen 20" ] ﬂ(2n>2(a )X G, —[(zn) 2 (09)2(0,) H_[c

W azeen(s v )51, )2
(Z; 2 ai+cH)| 2,2, bi+d 2. ajbj+cd . . . . .
- . The log likelihood function is derived by

where C; = exp

Ny 2
~20f05 (2,2 b7 +d?)

taking the logarithm. We have

log<L(E oz, ? U|?))

= { 10g(2n)——10g(09)+ log( )} Yi-1log (Cp) (4.6)
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4.3 Numerical Study and Illustration

In this section, simulation studies are used first to validate the effectiveness of the proposed
hierarchical model. Two scenarios are considered. In the first scenario, the underlying trend of the
parameter 6, is a second degree polynomial. The second scenario takes a beta function as the
underlying damage growth curve. For the first case, the proposed model can perfectly recover
evolving path, while for the second case, we will have a modeling error. AIC is used for model
selection in both cases. The impact of the amount of data samples is also discussed.

In this numerical study, a fixed-fixed uniform beam with 60 elements is set up in FEM for
calculating the natural frequencies. The beam has properties E = 2.1 X 108 kPa, L = 2.54m,[ =
347 x 1078 m* A = 6.45 x 10~* m? and p = 0.013 kg s?/m. The stiffness loss is assumed to
happen in the first element and the first three natural frequencies are used as the observed data,
ie., Ny = 3.

All natural frequencies decreases along the reduction in the weakness parameter 6,, which is
commonly observed and has been reported in many experimental studies [103]. In most cases, 5%
decrease in natural frequencies can be referred to a severe damage in the structure [ 104]. According
to the calculation by FEM, the 5% reduction in natural frequencies happens around 8 = 0.4. Thus,
in the numerical study, we only consider the cases that the local stiffness of the first element is left
above 40% level, i.e., 6; = 0.4. In other words, we are trying to recover the trend of the damage
growth in an early stage before the damage becomes severe. We also treat 8 = 0.4 as the failure
threshold of stiffness. Once the 6 value drops to 0.4, the structure is considered as failed and not
safe in the sense of stiffness reduction. The values of parameters in the hierarchical model are
summarized in Table 4-2. The model takes the first three natural frequencies up to t = 80 as the

temporal data input, where ¢ is the time index or the load cycles. Without any knowledge on the
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prior distribution parameters, values are assigned to make the priors non-informative to reduce the
impact of prior choices.

Table 4-2. Summary of Parameters in the Model

MmN (b,ozl)  TG(ag, by) TG(ag, by) N (i, 08)
Nf 0'32 b ar bf ag bg Ti 0'1%
0 0
3| 102 0 1 1 1 1 0 10'?
0 0

4.3.1 Polynomials as Underlying Damage Growth Function
In the first scenario, the parameter 6, follows a second degree polynomial y(t) = BTx, =
1—9.375 x 107°t2. It is assumed that there is no stiffness loss at the beginning and we only

consider the case for 8; > 0.4 up to t = 80. The polynomial trend and the simulated data are

summarized in Fig.4-1.

fi fi

13 1 130%
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2% . . : : : 130

Fig 4-1 Summary plots of the first scenario. a) the polynomial trend of 8. b) the relationship
between 6 and f;. c) the measurements of natural frequencies f;

In Fig. 4-1 a), 0 is plotted following the second degree polynomial. The squares in the same
plot represent the 6 perturbed by noise in Level 2 with 65 = 0.0012. Since the variance is very
small, the squares are nearly lying on y(t). In Fig. 4-1 b), the first three noise-free natural

frequencies, i.e., fi, f> and f3, are plotted against 8. These natural frequencies are obtained from
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the FEM. The reduction of natural frequencies is about 5%. In Fig. 3-1 c), white noise with 013 =

1 is added to the measurements of natural frequencies for an illustration purpose. In practice,
natural frequencies can be measured accurately with noise around 0.1%. In the simulation,
different levels of noise are added to the measurements of natural frequencies to test the
effectiveness of the hierarchical model.

The perturbed natural frequencies in Fig. 4 -1 ¢) are the temporal data input of the hierarchical
model. The Gibbs sampling algorithm runs K = 60,000 times and the first 30,000 iterations are
considered as warm-up and are discarded. The samples that are generated in the warm-up period
of the algorithm may follow different distributions before the convergence of the sampling process.
In Fig. 4-2, plots for different values of T are presented. The detailed comparisons of parameters
are summarized in Table 4-3.

In Fig. 4-2, T indicates the amount of the temporal data used in the model estimations. For
example, T = 10 means only the first 10 observations of each natural frequency are being used in
the estimation. The solid curve in each plot is the true underlying trend y(t) and the dotted curve
is the estimated trend y(t) with 95% confidence interval shown as dash curves. As the plots
suggested, the estimation y (t) recovers the underlying truth better for a larger T, i.e., for more data

being used in the estimation process, which is not surprising.
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Fig 4-2 Plots of y(t) and y(t) for different amount of input data. Solid curves are the underlying

truth y(t) and dotted curves are the estimation y(t) for different T's with 95% confidence interval

shown as dash curves.

Table 4-3. Comparison of coefficients estimation for different T's

T=10

T =30

T =80

86, 5By)
ABy, s(B2)
ABs, s(Bs)
uy, s (i)
Uy, s(Uz)
()
o (5}
af,s(0f)
ME,
dr

1.24 x 107%,1.56 x 1072
1.31x1072,6.8 x 1073

1.08 X 1073,5.7 x 10™*

128.15,2.57
398.41,16.02
744.65,17.23

1.0x107%,9.8 x 1077
1.06 X 1072,1.0 x 1073

1.77
46.2

3.8%x1073,6.1 x 1073

1.9x%x1073,1.0x 1073

2.3x1075,3.5x 1075
128.38,2.13

345.87,3.77
682.18,8.01

1.0x107%,1.0 x 107°
1.1x1072,1.0x 1073
0.017

2.7

2.3%x1073,4.0 x 1073

2.6x107%,2.1x 107

1.8 107°,2.8 x 107
123.94,0.17

342.66,0.37
674.73,0.61

1.0x107%,1.0 x 107°
1.0x1072,9.2x 10™*

0.001
0.23

In Table 4-3, the detailed comparisons of each parameter are presented for different values of T.

AB; = |B; — ;| is the absolute difference between the estimated coefficient B; and the true value

B;. s(B;) is the standard derivation of the estimation f;. ME;

1 e .
52?21 |y (t) — y(t) | is the mean

absolute difference between y(t) and y(t) up to t = 80 for a given T. Note that, ME; computes

the average difference of the entire curve, while y(t) is only approximated by the observed data

up to time T. dy calculates the absolute difference between estimated failure time and the true
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failure time if we use threshold 6 = 0.4, i.c., dr = |[y~1(0.4) — y~1(0.4)|, where y~! is the
inverse function of y mapping from 6 to t.

It can be seen that the estimations of f5;s become more accurate with smaller standard
derivations with larger sample size, which also leads to smaller values of ME; and dr. The
estimations of the o7 and afz remain the same level of accuracy regardless the amount of observed
data, since all the data shares the same ¢ and afz along time and the Gibbs sampling is able to
return the true values of the variation in the system.

In Table 3-4, we present the results of model selection using AIC for different degrees of
polynomials. The values of AIC indicate the second degree polynomial should be selected among

4 different models, which is consistent with the underlying truth y(t), for both cases, afz =12 and

afz =0.012.
Table 4-4. AIC Comparison for Different Models in First Scenario
of =1° of =0.01?
poceree of | [ og-Likelihood AIC Log-Likelihood AIC
olynomials
1 -531.65 1067.30 -83.67 171.34
2 -525.42 1056.84 -78.18 162.36
3 -526.86 1061.72 -79.47 166.94
4 -527.23 1064.46 -80.05 170.10

4.3.2 Beta Function as Underlying Damage Growth Function
In the second scenario, we consider the case when the parameter 6, follows a beta function.
Again, we assume there is no stiffness loss at the beginning and we only consider the case for 8 >

0.4 up to t = 80. We summarize the second scenario in Fig. 3-3.
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Fig 4-3 Summary plots of the second scenario. a) the beta function trend of 8. b) the relationship
between 6 and f;. c) the measurements of natural frequencies f;

Fig.4-3 b) is the same as Fig 4-1 b), since the two scenarios share the same relationship
between nature frequencies and weakness parameter 8,. The difference is the underlying trend of
6;. In previous case, it is assumed the weakness grows gradually along time. However, in this
example, we consider a non-uniform degradation rate, where 6, decreases slowly at the beginning
and drops rapidly at the end as shown in Fig.4-3 a). Such decreasing pattern is also reflected in the
natural frequencies in Fig. 4-3c). The natural frequencies oscillate around the similar mean for a
long time before they reduce quickly at the end. Plots for different values of T are presented in
Fig. 4-4 and detailed comparisons of parameters are summarized in Table 4-5.

Similar results can be obtained from Fig. 3-4 and Table 3-5 compared with those in Fig. 4-2
and Table 3-3. It is obvious that more data will lead a better estimation of the underlying truth.
The estimation f;s are reported in Table 3-5 instead of the Af;, since there is no true values of ;s

in this case.
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Fig 4-4 Plots of y(t) and y(t) for different amount of input data. Solid curves are the underlying

truth y(t) and dotted curves are the estimation y(t) for different T's with 95% confidence interval

shown as dash curves.

Table 4-5. Comparison of coefficients estimation for different T

T =10 T =30 T =80
B, s(B) 1.2,1.9 x 1072 1.33,6.8x 1073 1.13,5.3x 1073
B s(B) 0.03,1.5 x 1072 -1.5%x1073,1.4x 1073 | —-1.7x107%,5.1x 10™*
Bs,s(B3) -57%x107%3.1x1073 | 097x107%,72x1075 | —-3.9%x1073,3.2x 1075
Bar s(By) —52%x1075,23x107* | —1.4x1076,1.38 x107¢ | —6.2x1076,2.1 x 1077
uy, s(i7) 129.9,3.27 128.2,1.83 124.7,0.72
Uy, s (i) 397.0,12.24 381.47,4.25 344.07,1.03
Uus, s (i) 746.6,14.11 715.68,6.8 677.20,1.81
aZ,s(02) 1.0 x 107%,1.0 x 1076 1.0 x 107%,1.0 x 1076 1.0 x 107%,1.1 x 1076
o?,5(a7) 0.009,1.3 x 1073 1.0 X 1072,7.5 x 10~ 6.3 1073,5.2 x 1074

ME, 3.2 0.073 0.017

dy 57.4 14.3 5.7

AIC comparison table is shown in Table 4-6. The 3™ degree polynomial is chosen for its minimum.

Table 4-6. AIC Comparison for Different Models in Second Scenario

of =1° of =0.01?
Degree of 1 1 o 1 ikelihood AIC Log-Likelihood AIC
Polynomials
1 -546.55 1097.1 -113.58 231.16
2 -538.17 1082.34 -93.46 192.92
3 -536.42 1080.84 -87.15 182.3
4 -535.91 1081.82 -86.24 182.48
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4.3.3 Performance vs Amount of sample data

In the 1% and the 2™ scenarios, we investigate the effectiveness of the proposed model for
different weakness growths. ME; is used to compare the difference between y (t) and y (t) under
different amount of observed temporal data. In this section, we further explore the impact of the

amount of data on the performance of the estimation procedure. We summarize the results in Fig.

4-5.

ME?® b)

0.5

20 50 60 70 80 %520 30 40 50 60 70 8o

Fig 4-5 Plots of ME; for different T's in both polynomial and beta-function cases. a) Polynomial
scenario, b) beta-function scenario.

It can be seen from Fig. 4-5 that mean error drops rapidly as data accumulating. Such feature
enables us to recover or approximate the underlying damage growth accurately at an early stage
before damages become severe. It is not surprised to observe that M E; decrease even faster with
smaller values in the polynomial case compared with that in the beta-function case, since the

polynomial structure is adopted to estimate y(t) in the hierarchical model.

4.4 Case Study Using Experimental Modal Analysis Data

In this section, our proposed model is tested using real data obtained from experimental modal

analysis. A fixed-fixed aluminum beam is the structure used in the experiment. The parameters of
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the beam are summarized in Table 4-7. A FEM with 51 elements is set up according to the beam

parameters.
Table 4-7. Parameters of the Beam Structure
Material  Young’s Modulus Density Length Width Thickness
Aluminum 68.9Gpa 2700kg/m® 510mm  19.05mm  4.76mm

To simulate the stiffness loss, small masses are added on the middle of the beam and an
accelerometer is used to along with modal hammer test to acquire the natural frequencies.
Mathematically, adding small masses while keeping the stiffness unchanged has equivalent effect
with respect to inducing stiffness reduction while keeping the mass unchanged. An illustration is
shown in Fig. 4-6. Each small mass unit weights 2.9g, and a total of 9 masses are added. In Table
4-8, we report the measured natural frequencies under 9 different masses, the equivalent stiffness
parameter 6 and the assigned time t for each 6. The 0-mass case stands for the healthy condition
of the beam. The relationship between natural frequencies and 6 is approximated using linear
function as shown in Fig. 4-7. The R-squared values indicate good explanations of the measured
natural frequencies by linear functions. The values of u; and v; are labeled in each plot in Fig. 4-
7. Note that, 8 = 1.0 is not considered in the plot, since the linear approximation can only be
adopted for a small region. Thus, the degradation is assumed to start from 8 = 0.46 in the case

study.
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Fig 4-6 Masses are added on the middle of the beam to simulate the stiffness reduction with an

accelerometer located near one end of the beam.

Table 4-8. Natural Frequencies under Different Masses with Stiffness Estimation (Hz)

#mass fi 15 fa 6 t

0 92 498 1219 1

1 89.5 489 1200 0.46 0
2 87.5 481 1180 0.30 74
3 85 473 1161 0.22 75
4 83 466 1151 0.17 76
5 82 463 1145 0.14 77
6 80 457 1134 0.12 78
7 79 455 1123 0.11 79
8 76 448 1117 0.10 80
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Fig 4-7 Linear approximations of the mappings from 8 to f;s
In the experimental setting, the impact of the added masses on the natural frequency change
can be viewed as equivalent to the impact caused by stiffness loss. Thus, the added masses are

converted to the equivalent stiffness. The experimental data provide a static mapping between a
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given stiffness loss and the measured natural frequency. In order to test and validate the proposed
method for estimating the growth of the damage, we assigned time instances (last column in Table
4-8) to the experimental cases of different added masses. The time instances are assigned in such
a way that the equivalent stiffness loss follows a beta-function trend. The proposed hierarchical
model is adopted to approximate the damage growth using 2"¢ degree polynomial. 8 = 0.1 is used
as the failure threshold of stiffness in the case study. The results are summarized in Fig. 3-8 and
Table 3-9. It can be seen from both the plot and table that the proposed method can successfully
approximate data using 2" degree polynomial. The AIC comparison table is summarized in Table
4-10. The estimation of f has small standard deviation indicating a convergence of the Gibbs
sampling algorithm. u;s and o7 are estimated accurately. Note that, in the case study, of =

1.0 x 10~* is used to represent the modelling error of 6.
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Fig 4-8 Plots of data 8 and y(t) . 8s are represented in circles and dotted curves are the estimation

y(t) with 95% confidence interval shown as dash curves.
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Table 4-9. Coefficients estimation for real experimental data

B1,s(By) 0.4604,0.013
Ba,s(B2) 0.0448,0.0025
Bs,s(Bs) —6.0x107%,3.2x10°5
uq, s(Uy) 76.56,0.47
Uy, s(Uz) 446.0,0.73
Uz, s(U3) 1108.3,0.93
02,5(ad) 1.0 X 1074,1.0 x 106
sz,s(afz) 0.72,0.29

ME, 0.21

dy 1.3

Table 4-10 AIC Comparison for Different Models in the Experimental Study

Degree of Log-
Polynomials | Likelihood AlC
1 -167.19  338.37
2 -135.11  276.21
3 -134.27  276.53
4 -135.32  280.64

4.5 Conclusion

This research presents a dynamic data-driven hierarchical Bayesian degradation model for
estimating the evolving path of stiffness loss based on the measured natural frequencies. The model
adopts a two level hierarchical structure. In the first level, the observed natural frequencies are
assumed to be generated from a normal distribution with given stiffness. In the second level, the
evolving path of stiffness is described using polynomial functions. The unknown parameters in the
model are described by conditional posterior distribution in Bayesian framework and estimated by
Gibbs sampling method. Numerical studies and results are used to validate the model for different

evolving path of stiffness loss. The model performed efficiently in all cases.
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One possible limitation of the proposed method is that the damage growth path is described
by a polynomial function. Although polynomial function is flexible and relatively easy to use, it
may cause some modeling errors when the underlying damage growth path cannot be well
represented by a polynomial. For example, in practice, the system degradation often follows a
beta-function like evolving path along time or load cycles. The system degradation state stays flat
before rapid dropping at the end. The ability to detect the changing point quickly and accurately
before the rapid drop can lead a better maintenance strategy, which enhances the safety of
structures. However, such trend may not well described by a low order polynomial function. One
idea is to use piecewise polynomial functions that consist of multiple low-order polynomials and

change points as the damage growth model. Effective change detection technique will be needed.
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S Detecting Point Pattern of Multiple Line Segments Using Hough
Transformation®

In Chapter 2, 3 and 4, quantitative analyses are applied on damage identifiability, bias
reduction and damage prognosis in mechanical structures. In Chapter 5 and 6, two specific data

analysis methods are adopted for spatial point pattern and functional data types, respectively.

In this chapter, we present a new method to detect the point patterns that consist of multiple
line segments. The basic idea is that by using the Hough transformation, we convert the point
pattern detection problem into a simple point matching problem. Compared with the existing point
pattern matching methods, the proposed method does not require training data and is relatively
easy to implement and compute. The details of the detection algorithm are presented and the
parameter selection and performance evaluation of this method are investigated. Case studies are

presented to validate the effectiveness of this method.
5.1 Introduction

A spatial point pattern (SPP) is a set of locations randomly distributed within a designated
2D or 3D space. SPP represents critical quality characteristics in various manufacturing processes.
For example, surface defects on many products such as hot rolled steel bar and slab [105],
semiconductor wafer [106], and glass [107] critically impact the product quality and process yield.
In the emerging micro/nano processes, the particulate defects, which refer to nano/micro scale
particles on the product surface that cause open or short circuit, is the important limiting factor of

the process yield [108]. In composite fabrication, the distribution of the reinforced particles in the

* This chapter is based on the paper: Liu, Yuhang, and Shiyu Zhou. "Detecting Point Pattern of
Multiple Line Segments Using Hough Transformation." IEEE Transactions on Semiconductor
Manufacturing 28.1 (2015): 13-24.
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base material directly impacts the mechanical property of the product [109,110]. Because SPP is
a crucial indicator of quality in many processes, it is highly desirable to establish systematic quality

control methodologies directly based on modeling and analysis of SPP data.

Generally, surface defects can be categorized into two types [111,112]: 1) globally
scattered random defects, which are also known as background noise, caused by natural variation
of manufacturing processes, and 2) locally clustered defects due to certain assignable causes. For
example, the line segments on wafers can be caused by scratches during material handling and
edge ring on wafer surface may be due to chemical stains. Since the assignable causes normally
generate defects systematically, the detection of specific patterns of surface defects can often
provide valuable information about the root causes. In the conventional quality control approaches,
analysis of SPP data has been limited to high-level summary statistics. For example, statistical
monitoring is realized by using various control charts based on the total count of defects on a
surface area. For instance, ¢ chart is often used to monitor the total number of defects with the
underlying assumption that the number of defects follows Poisson distribution. An alarm will be
raised when the number of defects falls outside the control limit [113, 114]. Control charts are
conceptually intuitive and convenient to use, but they cannot provide information about specific

spatial patterns of the defects since only the count data are used as monitoring statistics.

Beyond the statistical process control approaches, some techniques have been developed
to detect the clustering and/or specific geometric patterns in the distribution of surface defects.
These methods can be categorized into two types: (1) Spatial statistic based methods. In these
methods, spatial statistic theory is adopted to model and analyze the nonrandom clustering patterns
of defects. For example, Friedman et al [115] developed a model free estimation method to detect

any clustering of surface defects on wafer. Jeong et al [116] developed an automatic identification
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method based on spatial correlogram and dynamic time warping. The presence of clusters of
defects can be detected in all of these methods. However, these methods are not designed to
distinguish specific spatial patterns. In other words, they lack the ability to identify the geometric
shape of a defect pattern. (2) Data mining methods. Neural networks, classification, fuzzy rule-
based inferences and clustering methods are the most commonly used techniques in this category
[117-126]. In these methods, the template pattern is learned from a training dataset and then the
learned rules are used to detect the template pattern in the newly collected surface defects data.
One issue of these methods is that they typically need a relatively large training dataset that
contains the specific template patterns. However, such training datasets are often costly to obtain
in practice. Zhou et al. [127] recently proposed a control chart method to detect the existence of
simple geometric patterns in surface defects by using the conventional Hough Transform.
However, that method requires that the patterns can be described by a simple analytic function,

such as a line or circle. It lacks the ability to detect arbitrarily complex defect patterns.

In this chapter, we propose a new detection method to detect the existence of an arbitrary
template consisting of multiple line segments in a SPP based on the Hough Transformation (HT).
The HT is a commonly used feature extraction technique for analytical shapes, such as lines, circles
and ellipses. The traditional HT method can only detect an object that can be described by an
analytic equation. The Generalized Hough Transformation (GHT) is further developed based on
the HT to detect arbitrary shapes [130]. The way the GHT works is to construct an R-table to store
parameters (¢, 7, a) of every edge point (X,Y) on an arbitrary pattern according to an arbitrarily
selected reference point (X, Y;), where ¢ is the tangent angle of the edge point, r is the length
between (X,Y) and (X,,Y.), and « is the angle between the line segment with endpoints (X,,Y,)

and (X,Y) and the horizontal line. Based on the R-table, the observed defect points can generate
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votes to different potential reference locations (X.,Y;)s. The one with the highest vote will be
determined as the detected reference location. Once the reference point is located, the position of
the shape is determined and detected. The detailed algorithm of GHT can be found in [130]. Even
though the GHT has played an important role in generalized shape detection since it was
developed, it has the limitation for its substantial computational and storage requirements [129].
The limitation becomes acute when object orientation and scale have to be considered, since the
rotation angle and the scaling factor are two more parameters that need to be decided by trying all
possible situations. In general, the GHT needs to construct an R-table and go through a four
dimensional matrix (two dimensions for the position of a reference point and the other two are
referred to rotation and scaling) to detect the existence of the shape, which requires a large storage
space and extensive computation for a 2D arbitrary shape. To overcome the limitation of the GHT,
we propose a HT-based pattern detection technique without the construction of the R-table.
Instead, for both of the given template and the observed defect point pattern, the HT is used to
extract information about the Hough parameters, i.e., information about angles and distances for
each line segment. Then the parameters from the template and that from the observed defect point
pattern are compared and matched through two key steps: angle matching and distance matching.
This method can also detect any transformation of the defect pattern, i.e., shifting, scaling and
rotation from the position of the template. Compared to existing techniques, this method has the
following characteristics: (7) It focuses on detecting a specific spatial pattern with a given template
shape instead of only detecting the existence of defect clusters. (i) The method has the capability
to detect any irregular patterns consisting of multiple line segments. In this chapter, we also

provide a design procedure for easy implementation and performance evaluation.
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The rest of the chapter is organized as follows. Section 5.2 states the problem formulation
and a brief introduction of the HT. A fundamental lemma is also presented in this section. Section
5.3 presents the detailed algorithm of the proposed method. Section 5.4 provides a performance
evaluation. Section 5.5 presents a case study to illustrate and validate the method. Section 4.6

concludes the chapter.

5.2 Problem formulation and the basic matching principle

For the sake of clarity, we shall introduce some terminologies first. A template is an
arbitrary shape formed by solid lines. An example of a 4-edged polygon template is presented in
Figure 5-1(a). Note that a template is not necessarily to be a closed polygon. A defect map is a
binary image consisting of randomly distributed black points (i.e., defects) on a white background.
The points could be globally scattered random points, known as background noise, and locally
clustered points, known as defective regions. In Figure 5-1(b) and 5-1(c), two defect maps
corresponding to the 4-edeged template with different sizes and rotation angles are shown. Without
loss of generality, we assume the points in the background noise and the defective region are
completely random distributed with density parameter A, and 4,, respectively, where the density
can be viewed as the number of points in a unit area. Furthermore, the width of the defective region

is denoted as w as shown in Figure 4-1.
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Fig 5-1 Examples of a template with two defect maps: (a) template; (b) defect map 1; (c) defect

map 2.

The problem can be formulated as follows. Assume there is an n-edged template. We want
to determine if there are defective regions in a defect map that are identical to the shape of the
template with an arbitrary transformation T including rotation, scaling and shifting.

Mathematically, the transformation of a point located at (x, y) can be described as:

1 0 Ax s cosa sina O
T(x,y) = 1 Ay —sina  cosa 0 lyl
0 O O O 1 111

where « is the rotation angle around the original point, s is the scaling factor and v = (Ax, Ay) is
the translation vector. Thus, T can be denoted as T, ;,,. For example, the defective regions in
Figure 5-1(b) and 1(c) are geometrically identical to the template in Figure 5-1(a) with different
angle rotations and scaling factors. The problem is to detect the existence and to identify the best

line segments in the defect map for a given template.
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The basic idea of the proposed method is based on the Hough Transformation, since it has
a strong capability in detecting lines. Therefore, we shall briefly introduce the principles of the HT

for line detection in Section 5.2.1.
5.2.1 Introduction of the Hough Transformation for Line Detection

The Hough Transformation transfers a point from the physical domain to a curve in its
parameters’ domain. A line in x — y plane can be uniquely defined by its distance p from the

origin and the angle 0 of its norm as
xcos0 + ysinf = p 5.1

where 0 is restricted within [0, rr]. This parameterization maps every line in x — y plane to a
unique point in @ — p plane. For a point Py at (x,, y,), it will be mapped to the parameter plane as

a sinusoidal curve defined as:
Xoc0s0 + y,sinf = p.

Therefore, for points lying on the same line in x — y plane, their corresponding sinusoidal curves
in 8 — p plane will pass through a common point, which is the parameters of the line. Based on
this mapping relationship, a voting process can be designed to detect collinear points in x — y
plane, i.e., to detect any line patterns in the physical domain. In 8 — p plane, the -axis and p-axis
are divided into small intervals with equal length 86 and 6p respectively. Thus, the voting score
of each pair of parameter (0, p) is equivalent to the number of intersections of sinusoidal curves
in each cell. A Hough matrix is then defined based on this voting process and peak value is defined
as the highest voting score of each element in the matrix. In x — y plane, the voting score of (8, p)

is equivalent to count how many points are in a strip with width 6p, where the strip is located in
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x — y plane with a distance p and an angle 6. A strip in x — y plane with parameters (6, p) is

called a Hough strip in this chapter. An example of this voting process is illustrated in Figure 4-2.

(a) (b)

Fig 5-2 Line detection by the HT. (a) Accumulator array. (b) Defect map with a Hough strip

5.2.2 Basic principles for template matching based on the Hough transformation

Mathematically, the HT-based template matching problem can be stated as follows. Let
(8%, p°) be the set of parameters of the template with n line segments, where 8° = (89,62, ...69)
are the angle parameters and p° = (p?, p?, ..., pQ) are the distance parameters. Similarly, (8, p) is
the set of parameters of the detected line segments in the defect map, where 8 = (64,6, ,..6,,)
are the angle parameters and p = (p4, p2, ..., Pm) are the distance parameters. Without loss of
generality, we assume n < m. The problem is to find a subset (6, ps) of size n in 8 and p such
that the parameters set (8%, p®) can be matched under an arbitrary transformation T. To solve this

problem, we need the following lemma.

Lemma 5-1 . A template under transformation T ,, will result in its HT parameters (6°, p°)

changing as follows:
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9;‘2 Pn 9;?’ p
where (L1) Hiol =02 —a for a clockwise rotation, and (L2) p?' = sp? + Ax cos(6") +
Aysin(62").
Proof.

Assume the rotation is in the clockwise direction. We define (x;,y;) is the intersection point
between the orthogonal line of the ith edge going through the original point and the ith edge. Thus,

we have
tanf? = y; /x;. (5.2)

An a rotation will result in the position changing from (x;, y;) to (x;’, i), i.e.:

14 .
[xi] _ [ cosa sma] [xi]
v —sina cosal LY
where x; = x;cosa + y;sina and y; = —x;sina + y;cosa. We have
sin(6?-a sin 82 cosa—cosO?sina
tan(0) — a) = (00-a) _ L L

cos(Blp —a) cos Blpcosa+sin9lpsina'

Xi

Multiply this equation by we have

cos6?’
y.’
tan(0) — a) = =
L

For the case x; = 0, i.e.,8) = 90°, we have x{ = y;sina and y; = y;cosa, equivalently, we have



tan(90° — @) = cot(a) = 2% .

!
i
!
X
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!
Note that, the scaling and shifting process have no impact on angles, i.e., tan (6" = % Thus,

(L1) is proved.
To see (L2), considering one line from Eq. (5.1), we have

__C059 P
y = x+sin9,for9 * 0.

sinf

The equation has the following structure:

_ cos(6+a) _ sp
sin(6+a) (x Ax) + sin(6+a)

y—Ay=
after the transformation T. Regroup Eq. (5.3), we get

cos (0+a) X + sp+Ax cos(0+a)+Aysin(0+a)
sin(8+a) sin(0+a) )

y:

Thus, the new distance after transformation equals to:

p' =sp+ Axcos(6 + a) + Aysin(6 + @) = sp + Ax cos(0') + Aysin(6").

This derivation can be applied to every line of the template. Thus (L2) is proved. m

4

(5.3)

Based on Lemma 5-1, two steps (i.e., the angle matching based on L1 and the distance

matching based on L2) for the template matching can be designed as follows.

o Angle Matching

A subset of n elements satisfying (L1) needs to be selected from 8. One possible way is to

try all possible rotation angles @. However, this method is time consuming. An easy result can be

derived based on (L1), that is 6 — 6} = 60" — 9]-0', Vi, j. This invariant property can be used to
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select sets of candidates in the parameter set (6, p). To achieve this, we first sort the template
angles 8° as 6° = (90(1),90(2), ...,Ho(n)), with 89 < 99@ < ... < Ho(n), and then an angle

difference vector can be defined as AQ? = (90(1) — 90(2),90(2) - 90(3)'"”90(71) —90(1)).

Further, we can obtain the differences between any two elements of @ and put them in the matrix

Mg as,

O 91_92 i 91_9771

Me — 92 T 91 ':. -'-. 92 _. Hm

Hm_gl Hm_gz i O

mxm

Please note that we do not need to sort 8 to obtain M. The jth candidate set @ € @ is then defined
as 0/ = (6], 6],..,6]) with A8° —t, < A®/ < AB° +ty, where AO/ = (6] —6],6] -
93{ ) ee) 9,{ — 911' ), 9,{ is the kth element of @, and tg is an allowance parameter. The reason of

using an allowance parameter in the matching is that because of the random distribution of points,

it is impossible for an exact match. The rotation angle of the jth set can be estimated as a/ =

% Z{(l=1(9,{ — 02). The details of the angle matching algorithm is presented as follows.
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Table 5-1. Pseudocode for angle matching

Input : 6°,0
Sort 8° and @ in an ascending order
Calculate AQ°
Calculate My of 0
Define a m X m zero matrix B
for i=1:m, j=1:m
if My(i,j) in [A0° — ty,A0° + tg]

B(i,j) =1
end
end
for all nonzero element in B
if B(iy, i) = B(iy, i3) = = B(in, i1) = 1fori, # i;
if Mg(iy,ixsq1) in [AB°(K) — ty, AB° (k) + to] for k=1,2,...,n-1
A candidate set (6;,,0,, , ..., 0; ) from 6 is determined
A rotation angle « is calculated as a = % Ti=1(6;, — o)
end
end
end

return all candidate sets

After the angle matching procedure, if there is no candidate set being selected, we can
claim the non-existence of the template pattern in the defect map. If multiple candidate sets survive
the angle matching, then a checking based on the property (L2), called the distance matching, can

be carried out as follows.
e Distance Matching

Assume the set @/ is selected after angle matching. The corresponding set of distance
parameters is denoted as p/ = (p{ , pg, s p,];), where (Hj , p,];) is a pair of parameters of a detected
line in the defect map by the HT. Because the rotation angle a of each candidate set has been

estimated in the angle matching procedure, the other two transformation parameters s and v can
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be determined for T, ¢, by minimizing the difference in the origin-line distance between the

template and the detected line segments as:

d; = min, ||p) — Diz|| (5.4)

[cos(8Y) sin(H{’j) p?]
' ’ ’ Ax

where DJ = |cos(8%’) sin (Hioj) p°| ., 2/ =|Ay’ [and 67 =69 + o for the jth
. . . g

_cos(H,?j) sin (Hﬂj) pr ]
candidate set. By (L2) in Lemma 5-1, the new distance p} T after T, iy has the form p?j =

s/p? + Ax/ cos (Hfj ) + Ay’ sin(8°”) for all i. The goal is to find a transformation T ,i that

alst,
. ) ) ; i\ 2 ) )
minimize the sum of squares of the differences, i.e., X; (pl] —p? ) , which has an equivalent

matrix form as shown in Eq. (5.4).

Since this is a standard least square optimization problem, a closed form solution of the
optimal 2/can be obtained by z/ = (D "pi _I)Dj ij , where D/ " and D/ are the transpose and
inverse of the matrix D/ respectively. Thus, we can apply this optimization procedure to all the
candidate sets that survive the angle matching and return the smallest value among all d;'s. If the
returned value is smaller than a threshold ¢,, then we claim a matching is found. Intuitively, the

distance matching is to check the ‘fitness’ between the candidate shape and the template which is

under scaling and shifting.

In this section, we presented basic principles of two critical matching steps, the angle

matching and the distance matching. To successfully implement this pattern matching strategy,
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several parameters such as tg, t, need to be selected. The complete implementation of the

algorithm and the parameters design issues are discussed in details in the following section.

5.3 Parameter selection for the pattern matching algorithm

In this section, we first present the entire flow of the pattern matching algorithm as shown
in Figure 5-3. The template and the defect map are the inputs to the algorithm. For both images,
The HT is used to detect the line segments in the template and the defect map. To apply the Hough
transformation, we need to select the HT parameters (86, 6p) for the template and the defect map,
respectively. Because the template is formed by solid lines, it is straightforward to identify all the
line segments in the template with parameters (8°, p®). However, for the defect map, we need to
establish a couple of thresholding parameters, i.e., p; and t,, to detect the line segments.
Particularly, if the highest voting score H,, in the Hough matrix is smaller than a threshold p, , we
claim the defect map containing background noise only. To further reduce the influence of
background noise, if the voting score of a cell at (6, p) is higher than t,, then we treat the
corresponding line with parameters (6, p) as a candidate. The parameters (0, p) formed by all the
candidates will be used in the angle matching and the distance matching. As discussed in Section
5.2, thresholding parameters tg and t, are used in these two matching steps. We claim the existence

of the template pattern in the defect map if there are candidates surviving these matching steps.
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Template Pattern Matching Algorithm
| HT ©%p"
—>(60° 5p%) > Angle Distance Exist
’ 0 Matching Matching Template
aT 6,p) (t ) p Pattern
— 560.60.t . (te) P Yes
(66, 9p, 1) Yes
Defect Map No No
Ao, A1,
(Ao, A1, w) No
Template
Pattern

Fig 5-3 Pattern Matching Algorithm. The angle matching and the distance matching are

sequentially applied to (0, p) and (6°, p°) after the HT.

Strategies of how to select the parameters used in the algorithm are discussed in details in
the following subsections. For the illustration purposes, we will use a pattern matching example
as shown in Figure 4-1 throughout the discussion. In this example, the template is a 4-edged
polygon as shown in Figure 4-1(a) and two defect maps with parameters (1, = 500,4; =
6000,w = 0.02) as shown in Figure 4-1(b,c), which contain the template with different rotation

angles (30° and 50°) and scaling factors (0.8 and 0.5), respectively.
5.3.1 Selection of the parameters (66 and Jp) for the Hough transformation

Because the template is given in the form of solid line segments without background noise,
it is straightforward to choose the HT parameters for the template and these parameters will not
significantly impact on the resulting detected line segments in the template. Thus, we will focus
on the HT parameter selection for the line detection in the defect map. The selection of the HT
parameters for the defect map needs more consideration for the following reasons: (1) If §6 and
6p are too small, then the Hough matrix will be large, which will in turn lead to a large matrix
My

., in the angle matching step. Roughly, the angle matching step needs (Tg) calculations to

mxXx

detect all possible candidate sets. When m is getting larger, the computational cost increases
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dramatically. (2) On the other hand, if §6 and §p are too large, then the resolution of the line

detection will be low and a misdetection of the template may happen.

It is very difficult, if not impossible, to identify the optimal values for §6 and §p for general
line detection scenarios. Here we provide some heuristic guidelines on the HT parameters
selection. Intuitively, if a Hough strip (as illustrated in Figure 4-2(b)) that corresponds to a single
cell in Hough domain passes the defective region and overlaps with the defective region in the
largest possible way, then the value difference in the corresponding cells between the case with
the defective region and that without the defective region will be large. As a result, the defective
region will be easier to detect. Furthermore, it can be expected that the orientation of a Hough strip
that has a large overlapping region with the defective region will be aligned better with the
defective region than that of partially overlapped Hough strips. As a result, the orientation of the
defect region can be detected more accurately, which will in turn lead to more accurate detection.
In other words, for the defect pattern that indeed matches with the template, then we will have
higher detection rate; while for a defect pattern that does not match with the template, it becomes
easier for us to reject. The parameters (66 and 8p) determine all the possible locations and
orientations of the Hough strips. Based on the above intuition and noting that the defective region

is completely randomly distributed, we can obtain the approximated upper bounds for 66 and §p.

We define a Hough strip is fully overlapped with a defective region if the upper and lower
bounds of the strip are crossing the short edges of the rectangular defective region. The extreme
of the fully overlapped case is when a strip passes through the corners of a defective region as
shown in Figure 4-4(a). We define the angle between the strip and the defective region in this

extreme case asf (a geometry illustration in Figure 4-4(a)), and we can obtain f =
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. w . ép
arcsin—— — arcsin
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overlapped Hough strips is no larger than . With this angle 5, we can identify the parameters

. Note that the angle between the defective region and any fully

6p, 60 such that at least one Hough strip is fully overlapped with a given defective region that is

arbitrarily located. First note that, for a given §6, the minimal absolute difference between the

: : o 56
exact angle value 6 of a defective region and the quantization value k86 can be as large as > for
integer k = 0,1,2 ..., i.e.,

min |6 — ks6| < 22,
k 2

since 6 € [ k66, (k + 1)60] for a value k, the minimal value |8 — k66| is no larger than 52—9.

Define the optimal k value to be k*.

a) Extreme fully overlap

b) Non-fully overlap

Fig 5-4 Examples of a fully overlapped strip and a non-fully overlapped strip. S is the angle

between a Hough strip and the defective region in the extreme case as shown in (a).

Then we have the following Lemma.

Lemma 5-2. For a defective region with length | and width w and its centerline is arbitrarily
located at (p, 8), a sufficient condition to have a fully overlapped Hough strip with the defective

region is :

wcos(|0-k*80|)—-1sin(|60-k*50))

op < 5

(5.5)
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Proof.

The proof is illustrated directly by the Figure 4-5. If two parallel lines which have the minimal
absolute angle difference, i.e., |6 —k*660| with the defective region, are crossing the diagonal
corners of the defective region, then the distance between the two parallel lines equals to (w —1[-
tan(|0 — k* - 660]) cos(|60 — k* - 66|) = w - cos(|0 —k* - 56|) — 1 -sin(|6 — k* - §56]) as shown
in Figure 5-5. Thus, if §p is no larger than half of the distance, then there will be at least one Hough
strip which is fully overlapped with this defective region regardless the position of the defective

region. W

|6 — k*50)|

wcos(|6 — k*66|) — Lsin(|6 — k*56|)
Fig 5-5 Illustration of Lemma 4-2. 6p needs to be smaller than half of the distance between the

two parallel lines as shown in the figure.
Remarks

(1)The function w - cos(x) — [ - sin(x) is a decreasing function both of x in range [0, 52—9] and of

[, so we can chose dp as:

where i is the index of the defective regions in the template. This will guarantee that we will have

fully overlapped Hough strips for any of the defective regions in the template.
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(2)|6 — k*86| < B. By the inequality in (4.5), 8p is smaller than half of the distance between the
two parallel lines. Thus, the angle |8 — k*§6| between the defective region and its fully overlapped

Hough strip with width §p is not extremely fully overlapped.

(3)We can see that (Sleimolg — k*560| = 0. This means that the sufficient condition of a fully

overlapped strip with the defective region becomes 6p < % as 66 — 0. This is consistent with the

intuitive observation. Note if 6 is chosen to be 1°, the absolute angle difference |8 — k*86| will
be no larger than 0.5°. In most practical cases, this is regarded as a small angle. Thus, we can

for the parameter §p when 66 < 1°. In the example and the

approximately select 6p S%

following simulation discussion, we select 88 = 1" and §p = w/2.
5.3.2  Selection of the thresholds (p, and t,) for line detections in defect map

As described at the beginning of this section, we employed a two-step procedure in order
to select a candidate set of detected lines for the following angle matching and distance matching.
In the first step, we check if there are lines in the defect map. To achieve this, we follow the
common practice in the HT-based line detection approach [121]: we check if the peak value H,, of
the Hough matrix of the defect map is larger than a threshold value py, . If not, then we claim that
the voting scores in the Hough matrix are due to the background noise and there are no lines in the
map. The value of p,  can be identified as follows. We denote Hj as the peak value of the Hough
matrix when there is only background noise with parameter A, in the defect map. It is clear that
H, is a random variable. The distribution of H, can be obtained through Monte Carlo simulations.
With the distribution of Hj, we can determine p,  as the ath quantile of Hy, i.e., P (HO > PAO) =

1 — a. Typically we select a as a small number, say 0.1.
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In the second step, we check the number of lines in the defect map. It is obvious that the
long defective region is easier to be detected compared to the short ones because the long defective
region corresponds to a large voting score in the Hough matrix. Thus, in this step, we should make
sure that the short defective regions in the template can be detected with high probability. To

achieve this, we establish a threshold value t,, such that if hy, , = t,, then we say the line with
parameters (6;, p;) exists in the defective map. Here (6;, p;) is the ith pair of parameters after the
HT and hy, ,, is the voting score of (6;, p;) in the Hough matrix. The value of t;, is determined in
a relative sense as t, = rH,, where H,, is the peak value of the Hough matrix and r is a constant.

The value of 7 is selected such that the shortest line in the template can be detected with a high
probability. Specifically, assume (6;,p;) and (8}, p;) are the parameters for the longest and

shortest line segment in the template, respectively and hg, ,,. and hgj,pj are the Poisson random

variables that correspond to the voting scores in the Hough matrix. Then r can be selected as
r = sup{c: P (hg,p, > - hg,p, ) 2 0.9, (5.6)

Based on Eq. (5.6) and setting t,, = r * H,,, we will have at least 90% chance to detect the shortest
line segment in the template. The probability function in Eq. (4.6) does not have a closed form.
However, a straightforward Monte Carlo simulation can be used to identify the value of c.
Specifically, we can generate random values through Monte Carlo simulation for hg, , and hgj,pj
according to their Poisson distribution parameters [;swA; and [;swA; respectively, and calculate
the ratio hgj,pj /ha,p, » here s is the scaling factor. A distribution plot of the ratio can be achieved
and ¢ can be determined from the plot. Please note that, since 4; > A, the background noise has

little effect on the final result of .
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Considering the example given in Figure 4-1. The empirical probability mass function of
H, is obtained through 1000 runs of Monte Carlo simulation and is given in Figure 5-6(a). Based
on this probability function, we can find the 0.1th quantile value of H, to be 13. Furthermore, the

function of P (hgj, pj > C hg,p, ) is obtained through 1000 runs of Monte Carlo simulation. From

this function, we can determine r to be 0.26. Finally, we can determine p, = 13 and ¢, = 0.26 -

H,, for this example problem.
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Fig 5-6 (a) Density diagram of H,. (b) Distribution plot of P (hgj,pj >c-hg,p, )

5.3.3 Selection of ty5 and t, in the angle and distance matching

Because the defect map is formed by random points, it is impossible to have a perfect match
in the angle and distance parameters between the template and the observed defect map. Thus,

allowances are needed for the angle and distance matching.

The following lemma can be used to determine the threshold of the allowance tg in the

angle matching.
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Lemma 5-3. For two defective regions with centerlines located at (64, p1) and (05, p,), and any
two Hough strips that are fully overlapped with the two defective regions, respectively, the angle

difference between these two Hough strips is no larger than:

(6, —6;) + 2B (5.7)
where B = arcsin-——— — arcsin % s the angle between the shorter defective region
/WZHZ /WZHZ

and the fully overlapped strip in the extreme case.
Proof.

Without loss of generality, we can assume the two Hough strips have the angle values of 8; +

|6, —kid0| and 6, — |8, — k;50|, respectively. We have
(61 + 16, = k186]) — (6, — |02 — k2686]) = (6, — ;) + (161 — k166| + |6, — k366]),
with the term |0; — k1660| + |0, — k340|:
|0; — ki1660| + |0, — k380| < 2max{ |0, — k166,160, — k;56] }.
However, from the remark (2) of Lemma 5-2, we know max{ |6; — k180|, |0, — k;86|} < B.
Thus, the lemma is proved. =

From Lemma 5-3, we can see that 2 is likely the largest difference between the true angle
difference and the detected angle difference of two defective regions, because intuitively the
Hough strips that are fully overlapped with the defective regions are likely to be detected. Thus,

for a template with multiple defective regions, we can select the threshold ty = 2 max f;, where i
l

is the index of defective regions.
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It is quite difficult to derive the threshold ¢, in the distance matching. Because the distance
is measured from the original point, the difference between the true distance and the detected
distance of a defective region is related with the location of the defective region in the defect map.
For the sake of simplicity, here we ignore the errors in the detected angle of the defective region.
Thus, for a defective region, the maximum difference between the true distance and the detected

distance can be as large as w/2. Further, since t, is the threshold for the accumulated distance
detection error for all the defective regions in the template, we can select t, = Vnw/2, where n is

the number of defective regions in the template.

Note that ty depends on the length of edges in the template and ¢, depends on the number
of edges and the width of the defective region. For a template with the larger number of edges, its
threshold ¢, is larger. In the example in Figure 4-1, we select the threshold tg = 6" and t, =0.02

according to the above guidelines.

In the example in Figure 4-1(b,c), the two defect maps have the same densities 4; =
6000,4, = 500 and the common widthw = 0.02 with different rotation angles a =

30°,50%and scaling factors s = 0.8, 0.5, respectively. The HT parameters used in the detection are

50 =1°, op = % =0.01,t, = 11,py, = 13,t9 = 6" and t, = 0.02. The numerical results are

shown in the following table and the final graphical detections are in Figure 5-7.

Table 5-2. Numerical results of the example.

a* a* s* a S
(b) 0.016 30 0.79 30 0.8
() 0.017 52 0.62 50 0.5
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d* and s* are the minimal distance difference and the optimal scaling factor calculated in the
distance matching process. a* is the rotation angle calculated in the angle matching process. The
results validate the accurate detection of the pattern detection algorithm. In the next section, a

performance evaluation is presented.
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Fig 5-7 Detection results of the examples in Figure 4-1.

5.4 Numerical Study and Performance Evaluation

In this section, we first present the performance evaluation results for the proposed point
pattern detection method. For a pattern detection algorithm, the performance is often evaluated
through Type I error probability and the Type II error probability, where Type I error probability
refers to the false alarms (i.e., the probability that we claim the existence of a template pattern in
the defect map when in fact the template pattern does not exist) and Type II error probability refers
to the misdetection (i.e., the probability that we do not detect the truly existing template pattern in
the defect map). Besides Type I and Type II error probabilities, detection power is also used to
evaluate the performance of a pattern detection algorithm. The detection power refers to the
probability that we detect a truly existing template in the defect map. Clearly, detection power is

actually 1 — T'ype Il error probability.
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The factors that influence the detection performance and the comparison between the
proposed method and the GHT on the detection of arbitrary shapes will also be discussed in this

section.

5.4.1 Typel error and the detection power of the proposed method

Due to the complexity of the algorithm and the random distribution of the template and
defect map, it is intractable to establish closed form expression of evaluation indices for a given
scenario. Here we use an extensive numerical study to illustrate the performance of the algorithms
and the impacts of various factors on the performance. In the numerical study, the Type I error and
the detection power of the algorithm are investigated for the various templates with n = 4,6,8
edges and with scaling factor s = 0.5, 0.8 and differentA,s, 1, s. The detailed simulation procedure

1s showed below:

Table 5-3. Numerical study procedure for performance evaluation

(1) Input: n (4 or 6 or 8), s (0.5 or 0.8), Ay, A, w = 0.02

(2) Randomly generate an n-edged template in a 1 X 1 unit square with the shortest edge no
smaller than 0.3. Save length [ of each edge. Save it as the template image.

(3) Randomly generate a rotation angle : a

(4) Rotate the template with a and scale it by s

(5) Generate random points in a rectangle with size w X [; X s along each edge of the
template from step (4). The points are uniformly distributed in each rectangle and the
number of points are following Poisson distribution with parameter 4; X w X [; X s.

(6) Background noise is added to the unit square with the number of points following
Poisson distribution with parameter 1,. Remove solid lines and save it as the defect
map.

(7) Run Pattern Matching Algorithm

(8) Estimate the detection power and the Type I error probability
For detection power:
Repeat (2) —(7) M = 1000 times
Count the number of detection of existence of template, denoted as m
Report estimated detection power as m/M
For Type I error probability:
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Modify Step (2) as (2"), where two random templates are generated, one used to generate
defect regions in the defect map and one used in the pattern detection algorithm as the
template pattern

Repeat (2") — (7) M times and count the number of detection of existence of template as
m

Report Type I error probability as m/M

One point we would like to mention that in Step (2), we require the minimum length of the
edges of the template to be at least 0.3. The reason is that if the edge length is too small, it is
difficult for the Hough transformation to detect that edge at the first place. In simulation study, the
template and the input parameters can be designed easily. In practice, the template shape and the
values of [, w, 1; and A, can be decided by looking at typical defect patterns in the historical data
or by physical analysis of the fault modes based on engineering experiences. For example, it is
known that some optical system errors in a semiconductor manufacturing process will cause
specific defect patterns on a wafer. Another example is that chattering in a metal cutting process
will leave specific waviness patterns on the finished workpiece. So with physical understanding of
the fault modes of a process, the template pattern could be established. Furthermore, the values of
[,w, 4, and A, can also be obtained by looking at the historical data. A; and 4, are the densities
of the defective regions and the background noise. They can be calculated by using the number of
defect points divided by the area of defective regions and the entire defect map respectively. For

[ and w, they can be measured from the template identified from the historical data.

Through extensive simulation, we can obtain the following Type I error probability and the

detection power for various parameter combinations.
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Table 5-4. Type I error and the detection power

n=4(s=0.8/s=0.5) n=6(s=0.8/s=0.5) n=8(s=0.8/s=0.5)

Al AO Power Type | error Power Type | error Power Type | error
6000 500 93.18%/92.17% 0.4%/0.7% 88.42%/83.34% 0.7%/0.4% | 79.45%/68.10% 0.2%/0.5%
6000 100 93.62%/91.14% 0.2%/0.4% 90.28%/87.17% 0.3%/0.4% | 83.24%/75.31% 0.3%/0.1%
3000 250 86.08%/76.25% 0.5%/0.3% 70.12%/54.38% 0.2%/0.7% | 53.22%/36.58% 0.4%/0.4%
3000 500 78.75%/59.34% 0.3%/0.2% 65.23%/42.15% 0.8%/0.3% | 45.12%/28.50% 0.9%/0.2%
1500 125 58.47%/41.91% 0.4%/0.6% 42.18%/27.56% 1.2%/0.8% | 21.50%/11.12% 0.5%/0.7%

From these results, we have the following remarks.

(1) Regarding the detection power

It is not surprising that the detection power is directly related with the difference between
A, and A,. The larger the difference, the higher the power. This is certainly expected because the
higher value of the rate 4;, the more significant contrast between the defective region and the
background noise. Figure 4-8 includes several defect maps with different 4yps and A;s, which
clearly illustrates the above point. Besides A, and 1, the detection power is also influenced by the
number of edges in the template and the scaling factor. As the number of edges increases, the
detection power decreases. This is not surprising because if p; is the probability of detecting the
ith edge of the template, then [[; p; is roughly the probability to detect all the edges of the template.
As n gets larger, this probability gets smaller. The detection power increases as the scaling factor

s gets larger. The reason is that in general, a larger defective region is easier to be detected.

(2) Regarding the Type I error probability

The numerical study results show that the Type I error probability is quite small for all
cases. We investigate the numerical results in more detail and find that about 90% of the defect
maps that do not contain the template are rejected at the angle matching step, i.e., there are no

angles in the detected @ parameters that can form a vector containing n components such that A@ €
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[AB° — ty, AG° + tg]. For any candidates that pass the angle matching step, the distance matching
is also an effective step to differentiate the shape of the defective regions and the template pattern.
For example, Figure 4-9 shows a case that a defect map passes the angle matching step but fails at
the distance matching step. In Figure 4-9, thin lines represent the template’s shape and thick lines
are the shape of defective regions. Since for each thin line, there is a thick line which is almost
parallel with it, the thick lines can pass the angle matching step. However, these two shapes can’t
be fitted very well for any transformation value s and v due to the fact that they are not in a similar
shape. To be more specific, two shapes are the same if one of them can be transformed into another
shape by a translation, rotation, and scaling transformation with the same scaling factor in both x
and y directions. Thus, a large distance difference value will be obtained between two different

shapes even they share the same interior angles.
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(a) Template (b) 44 = 6000,4, = 100 (c) A4 = 6000, 4, = 500

(d) 2, = 3000, 29 = 500 (e) A4 = 3000, 2 = 250 (f) Ay = 1500, 2 = 125
Fig 5-8 Impact of densities of Ay, 4. The defective region is more difficult to be differentiated

from the background as A4; decreasing. Thus, the power of detection is decreasing.

0.9

0.8

Fig 5-9 Shape variation. Thick lines are the shape of defective regions and thin lines are the pattern
of the template. Due to the different shapes, the defective regions rarely pass the distance matching

process.

5.4.2 Discussion of other influential factors

Variations of other parameters besides 1; and A, will also influence the performance of

the proposed detection method. In this subsection, the impacts of the scaling factors s, and s,, on

the x and y axis respectively and the width w of defective regions are discussed.

(1) Influence of different scaling factors on x and y axis
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In subsection 5.4.1, the performance evaluations are conducted for the same scaling factor
s in both the x and y directions. In order to investigate the impact of the scaling factor, a further
simulation study has been conducted with the scaling factor of x axis s, fixed to be 0.8 and the
scaling factor of y axis s, chosen as 0.8,0.75, 0.7, 0.6 and 0.5. The defect pattern will be regarded
different from the template when s,, # 0.8. Examples are shown in the Figure 4-10. As we can see
from these examples, the shape of defect pattern with s, = 0.75 has very little difference
compared to that with s,, = 0.8. The differences are becoming more obvious as s, decreasing.
Based on this observation, it’s reasonable to expect that the Type I error of the detection will
decrease as s, getting smaller from s,. The simulation results (see Table 5-5) verify our
expectation and indicate that the Type I error is reasonably small when s,, < 0.7. Note that, when

s, = S, = 0.8, the Type I error becomes the detection power because the defect pattern in fact

y

matches the template in this case. In this simulation study, simulation parameters 4, = 6000, 1, =

500,n = 4,6 and w = 0.02 are used.
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Fig 5-10 Examples of different scaling factors on y-axis.
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Table 5-5. Simulation results of Type I error of different scaling factors for y axis.

Power Type | error
sy=0.8 sy=0.75 sy=0.7 sy=0.6 sy=0.5
sx=0.8 n=4 92.17% 17.13% 5.22% 1.89% 0.70%
n=6 83.07% 9.85% 1.61% 0.58% 0.63%

Note that, the scaling factor s or (s, sy) are all smaller than 1 in the simulation studies. In

practice, we can always scale the defect map first to make it small before we apply the detection

method. So we only discussed the case of s < 1 in the chapter for the sake of simplicity. The

situation of s > 1 will not cause any extra issue for the algorithm.

(2) Discussion of the Influence of the widths of defective regions

In previous simulation studies, the width w are fixed to be 0.02 for all defective regions for

the sake of convenience. On average, the number of defect point in each defective region is slwA;.

As w decreasing, the number defect points due to the defect region gets smaller and the defect

region will just looks like the background (this is similar to the case when A, is decreasing). Thus,

we shall expect a lower detection power with a smaller value of w. In fact, if w is extremely small,
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then the detection method will not be able to differentiate the defective region with the background
noise. On the other hand, if w is very large, then the defective regions will cover a large space in
the defect map with density 1,, which will benefit the detection power. However, this will lead to
a large Type I error. This is not surprising because with a larger defect region, a larger number of
line segments will be detected and will lead to larger number of false alarms in the pattern detection
step. A simulation with parameters 4; = 6000,1, = 500,s = 0.8,and n = 4 is conducted to
investigate the impact of this scenario. In the simulation, w is taken value as 0.01, 0.05 and 0.1.

The simulation results are presented in Table 5-6.

Table 5-6. Performance comparison with different ws.

w Power Type | error
0.01 82.50% 0.13%
0.02 93.18% 0.40%
0.05 94.77% 1.05%

0.1 97.15% 4.87%

The result is consistent with the intuition. There could also be a situation that the widths of the
edges of the defect pattern are different. In section 4.3, §p is desgined to be no larger than w/2
in order to guarantee that at least one Hough strip is fully overlapped with each defective region.
If the widths of defective regions are different, in order to reach the above criteria, we need to have
6p = min(w;) /2 to insure the defective region with the smallest width being fully overlapped
with a Hough strip. Since dp is selected to accommodate the defective region with the smallest
width, there may be multiple Hough strips with width §p fully overlapped with defective regions
that have larger widths. Thus, one can expect multiple patterns with small variations from each

other will be detected by the proposed detection method.

5.4.3 Comparison with the Generalized Hough Transform (GHT)
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In this subsection, the proposed detection method is compared with the GHT, which is a
popular method in detecting arbitrary shapes. The details of the GHT algorithm can be found in

[130]. The comparison results are presented in Table 4-7.

Table 5-7. The comparison between the proposed detection method and GHT

Proposed Detection Method Generalized Hough Transform
n=4(s=0.8) n=6(s=0.8) n=4(s=0.8) n=6(s=0.8)

A Ao Power Type | error Power Typelerror| Power Typelerror Power Typelerror
6000 500 93.18% 0.40% 88.42% 0.70% 81.75% 0.70% 78.31% 1.50%
3000 250 86.08% 0.50% 70.12% 0.20% 66.20% 0.60% 59.42% 0.50%
1500 125 58.47% 0.40% 42.18% 1.20% 27.52% 0.40% 22.47% 1.70%

Average Running Time 0.9395s 1.0328s 1.9206s 3.5309s

From these comparison results, we can see that the proposed method has higher detection
power and has a faster speed than GHT in detecting patterns consisting of multiple line segments.
In addition, in this comparison, the scaling and rotation are not considered in the GHT (i.e., s =
1,and a = 0°). If these two transformations are involved, the detection power of GHT will further
decrease and the average running time will increase due to that two more parameters s and a need

to be calculated in the detection.

5.5 Case Study for Wafer Defect Pattern Detection

In this section, we shall use a case study for wafer defect pattern detection to demonstrate
the effectiveness of the proposed method. Wafer defect distributions and yield patterns are an
important source of information about the performance of a wafer production line [117]. Under
normal working condition, the spatial distribution of the defects on the wafer is typically pure
random and does not exhibit any systematic pattern. The systematic distribution pattern often
indicates the existence of an abnormal condition. For example, the defects may distribute in a
circular or semi-circular region near the edge of the wafer [117]. The potential root cause of this

pattern is the damage of the die during yielding. In this section, we apply the proposed pattern
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detection method to detect such pattern. We would like to point out that although the true template
is circular in shape, we can certainly use multiple line segments to approximate the shape and use
the approximation line segments as the template. Actually we can significantly expand the

applicable field of the proposed method through this approximation.

The defect maps used in this case study is shown in Figure 4-11. Figure 4-11(a) is generated
using a real defect map from [117]. Figure 4-11(b,c) are generated numerically through simulation
based on the characteristics of the observed distribution characteristics in practice [118].
Specifically, in generating the defect maps, we set the background noise 4, = 50 in a 1x1 unit
square, the defective rate .; = 500 for the circular defective region with width w = 0.10. In this
case, the total points in Figure 4-11(b,c) are 139 and 120 respectively compared with the 117 points
in the Figure 4-11(a). To detect the defect pattern, we create a template consisting 5 line segments
with the same length [ = 0.5 to approximate the semi-circular pattern. The template is shown in
Figure 4-11(d).

The numerical results of the pattern detection are the following. Based on the parameter

selection method discussed in Section 4.3, the HT parameters of the detection are designed as 68 =

w

1" and 8p = 5= 0.05. The threshold t,, of the peak value equals to t,, = rH, = 0.61 X 27 = 17,

i.e., pairs (6, p) with voting score smaller than 17 will be not be considered. The threshold ty =

10° and t, = 0.11. The final results have distance differences d* =0.082, 0.079 and 0.081 with

rotation angles @ = —73°, —15"and 65 from the template, respectively. The one that passes the
angle test and is with the smallest distance difference is chosen as the final result, and the graphical
result is presented in Figure 5-12(a). Similarly, Figure 5-12(b,c) are the graphical results of the

two simulated cases.
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The results show that the proposed pattern detection algorithm can effectively detect ring

patterns in wafer defect maps.

(a) (b) © (d
Fig 5-11 Wafer defects. (a) is a real wafer defect map. (b) and (c) are generated by simulation. (d)

is the template being used in all three cases.

Fig 5-12 Detection results of three defect maps. The lines in each figure are the detected pattern.
In the above case study, a 5-line segment template is used to approximate the ring defects
pattern. However, we could also use smaller number of line segments, e.g., 4 or larger number of
line segments, e.g., 8, to approximate the original template. A tradeoff needs to be considered in
determining the number of line segments used. The tradeoffs contains the following two aspects.
On one hand, it is obvious that to accurately approximate a continuous pattern, we need large
number of line segments with small length. For example, in this case, an 8 line segment
approximation will give us better approximation to the ring-type of defect pattern. On the other
hand, a template with large number of short lines will impact on the detection power. As we have

discussed in section 4.4.1, a shorter edge will contain relatively less defects which will increase
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the difficulty in detection. Furthermore, as the number of edges increases, the detection power
decreases. From this detection power point of view, an approximation using smaller number of

line segments is better.

A simulation is conducted to confirm this understanding. In this simulation, we present
three alternative template approximation for the circular defects with 5, 4 and 8 edges respectively.
Simulation parameters A, = 500,4, = 50,w =0.1ands =1 are used. The results of the

simulation are presented in Table 4-8.

Table 5-8. Performance comparison among the three alternative templates

Power Type lerror
n=5 54.21% 1.10%
n=4 60.93% 1.50%
n=8 33.28% 0.70%

From the results, we see the template with 5-line segments has a higher detection power than the

8-line segments template, while lower than that of the 4-line segments template.

Due to the above mentioned trade-off, if the precise shape of the template is not critical
(e.g., for the cases that different fault modes lead to quite different fault patterns), then a rough
approximation with small number of line segments is preferred. However, if the precision shape
is required, then a careful analysis should be conducted to approximate the shape to a required
accuracy level with smallest number of line segments. This is an interesting topic and a further

research on this tradeoff is needed in the future.
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5.6 Conclusion

In this chapter, we proposed a HT-based method to detect point patterns that consist of
arbitrary line segments. The basic idea is to convert the line pattern detection problem in physical
domain into the problem of detecting multiple points in Hough domain. The detection is attained
through two critical steps, the angle matching and the distance matching, which allows arbitrary
rotation, scaling, and translation of the pattern. Based on the simple intuition that a line is most
likely to be detected if a Hough strip fully overlaps with the defective region, a detailed discussion
on how to select tuning parameters of the algorithm, such as §6, 8p, t,,ty, t,, and p,  are provided.
An extensive numerical study shows that the detection method performance well in terms of both
Type I error and the detection power if the defective region has reasonable size and the contrast

between the defective region and the background noise is reasonably large.
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6 Microstructure Modelling and Ultrasonic Wave Propagation
Simulation of A206-Al2O3 Metal Matrix Nanocomposites for
Quality Inspection *

The research in this chapter is motivated by the complexity of the wave-microstructure
interaction, and the difficulty in fabricating nanocomposites of different microstructural features
in ultrasonic testing. It is very challenging to build reliable relationships between ultrasonic testing
results and nanocomposites quality. In this chapter, we propose a microstructure modelling and
wave propagation simulation method to simulate ultrasonic attenuation characteristic for A206-
AlO3 metal matrix nanocomposites (MMNC:s). In particular, a modified Voronoi diagram is used
to reproduce the microstructures and the numeric method elastodynamic finite integration
technique (EFIT) is used to simulate the wave propagation through the generated microstructures.
Linear mixed effects model (LME) is used to quantify the between-curve variation of ultrasonic
attenuation from both experiment and simulation. Permutation test is employed to quantify the
similarity of the quantified variation between experiment and simulation. This research supports
the experimental results through the simulation approach and provides an efficient way for quality

inspection of MMNC:s.

6.1 Introduction

A206-A1>03 metal matrix nanocomposites (MMNCs), where lightweight A206 alloys (93.5%
-95.3%Al, 4.2%-5.0% Cu) are reinforced with nanosized Al>O; particles, have been intensively
studied recently because of their significantly enhanced mechanical properties, such as high

strength, ductility, long fatigue life, and excellent hot tearing resistance [131-134]. It can be

" This chapter is based on the paper: Liu, Y., Wu, J., Zhou, S., & Li, X. (2016). Microstructure
Modeling and Ultrasonic Wave Propagation Simulation of A206-Al203 Metal Matrix

Nanocomposites for Quality Inspection. Journal of Manufacturing Science and Engineering,
138(3), 031008.
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fabricated by dispersing Al,O3 nanoparticles into the molten A206 using ultrasonic cavitation
assisted casting technologies [135, 136]. Well dispersed Al>O3 nanoparticles in A206 have strong
nucleation potency and can significantly reduce the grain size of the primary Al phase and break
the AlCu intermetallic network [131, 133], thus leading to significantly reduced hot-tearing
susceptibility and enhanced mechanical properties. To facilitate the scale-up production, a fast yet
effective quality inspection technique is critically important to ensure the quality of nanoparticle
dispersion and morphology modification. Currently, the standard quality inspection method is to
use microscopic images of nanocomposites microstructures, which are very time-consuming and
costly to obtain. It is highly desirable to develop alternative simpler and effective quality inspection
techniques.

Ultrasonic testing is one of the most popular nondestructive evaluation techniques. It has been
intensively investigated and widely used in size measurement, flaw detection [137], structural
health monitoring (SHM) [138], and materials and biological tissue characterization [139-143] etc.
Ultrasonic attenuation is one of the most commonly used ultrasonic parameters in the ultrasonic
testing applications. It refers to the decaying rate of the acoustic wave as it propagates through
materials, which can be measured using the spectral ratio analysis technique [144], as shown in
Fig 6-, where the two successive echoes reflected from the back wall of the sample are extracted
and ratio of the spectrum amplitude is used to calculate the attenuation curves. The ultrasonic
attenuation is highly dependent on the material properties and microstructural features, e.g., elastic
constant, grain size, grain boundaries, inclusions, porosity and dislocations. Therefore, ultrasonic
testing is promising to be an economical and effective method to characterize the microstructural

configurations and material properties.
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Fig 6-1 Illustration of the ultrasonic testing using ultrasonic attenuation curves [133].

Recently, Wu et al [133] discovered an important relationship between acoustic attenuation
profiles and the microstructural characteristics of A206-AlOs nanocomposites. For
nanocomposites with satisfactory microstructures (i.e., small grain size, dissolved Al,Cu phase
and well dispersed Al,Os nanoparticles), the between-curve variation of attenuations measured at
different locations is much lower than that of bad quality nanocomposites. This study provided
useful guidelines to establish a new quality inspection technique for A206-AlO3 MMNCs.
However, there still exist several issues that need to be addressed in order to develop a reliable
quality inspection method: 1) there are multiple microstructural features (e.g., grain size, ALCu
morphology) affecting the variation of ultrasonic attenuation. However, due to the complexity of
the interaction between the microstructural configuration and wave propagation, how each feature
contributes to the variation is still unknown; 2) the nanocomoposites samples and experimental
data are quite limited because of the high experimental cost and the difficulty in fabricating
samples with planned microstructural features, which makes it difficult to build a quantitative
relationship between the attenuation curve and microstructural features.

For the reasons given above, numerical simulations of ultrasonic wave propagation in A206-
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Al03 MMNCs are needed to support the experimental tests by generating alternative data under
different microstructural features, leading to a better understanding of the relationship between the
microstructural configurations and attenuations. Numerical simulation of ultrasonic wave
propagation have attracted intense interest for its promising in solving problems that may be
inaccessible to direct experimental study or too complicated for theoretical analysis. It allows easy
control of each experimental parameter independently, which enhances the understanding of wave
propagation in complex systems. The most common techniques used to solve the wave propagation
equations include the finite difference methods (FDM) [145-147], the elastodynamic finite
integration technique (EFIT) [148], the finite element method (FEM) [149, 150], and the spectral
finite element method (SFEM) [151]. Acoustic wave simulation has gained more popularities in
many areas in recent years for the progress in computational power and availability. For instance,
assessing the stability of an implant is difficult due to the complex heterogeneous nature of bone
in ultrasonic bone and biological implant characterization. The use of numerical simulation enable
researchers to understand the wave propagation phenomena occurring in prototype titanium
cylindrical implants and to investigate the sensitivity of the ultrasonic response to variations of the
biomechanical properties of surround tissues, which are determinant for the implant stability [ 143,
147, 152]. Another example is the area of structural health monitoring (SHM). SHM for the
detection of damage in aerospace materials is an important engineering area. Experimental signals
of complicated flaw geometries may be difficult to interpret. With the help of numerical
simulation, scientists are able to investigate ultrasound scattering from flaws in materials and to
develop optimized experimental SHM techniques [153]. Ultrasonic wave propagation simulation
has also been applied in materials characterization [154, 155], however, very limited simulation

work has been done on lightweight alloy based nanocomposites.
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In this study, the simulation approach to model the microstructural features of A206-A1203
MMNCs in 2D space is developed and the ultrasonic wave propagation on the generated
nanocomposites is simulated to study the relationship between the microstructural properties and
ultrasonic attenuations. To simulate the MMNCs microstructure, a Voronoi diagram is first
generated, and then the edges of the generated diagram is modified to describe different
morphologies of AI2Cu intermetallic phase. In the wave propagation simulation, the EFIT is
selected for the following reasons: 1) EFIT naturally requires staggered spatial and temporal grids,
which leads to stability; 2) boundary conditions are easily incorporated into EFIT; 3) the
mathematical analysis is straight-forward and leads to equations that are easy to implement in any
programming language. The simulated acoustic attenuations are consistent with the experimental
measurements, which then can be used to further investigate the relationship between the
microstructural properties and ultrasonic attenuations and to develop statistical quality control
methods for scale-up production.

The rest of this chapter is organized as follows. In Section 5.2, the A1203 nanoparticle based
morphology modification mechanism is first introduced. Then the microstructure of A206-A1203
MMNCs is simulated based on the microscopic images and the morphology modification
mechanism. In Section 5.3, the EFIT is briefly introduced. The simulation and experimental results
are presented in Section 5.4. The statistical similarity testing between the simulation results and
the experimental ultrasonic measurements is given in Section 5.5. Section 5.6 presents the

conclusion.

6.2 Modelling and Simulating Microstructure of A206-Al,03

In this section we first introduce the microstructural features of the A206 alloys and Al,Os

reinforced nanocomposites, and the morphology modification mechanisms. Based on these
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features, we propose a new microstructure modelling method. Three experimental samples are
used in this chapter to show the microstructural features and measured attenuations curves: the
A206 alloy, the A206-Al203 MMNCs with 1wt.% and 5wt.% of AlO; nanoparticles. These
samples are fabricated using the ultrasonic cavitation based casting technology [133]. The
experimental setup of ultrasonic processing in the casting of A206—Al,0; MMNC:s consists of a
resistance heating furnace, an ultrasonic cavitation based processing system (Misonic Sonicator
3000) with a niobium probe of 12.7 mm in diameter and 92 mm in length, a temperature control
system and a gas protection system. A graphite crucible with an inner diameter of 88.9 mm and a
height of 101.6 mm was used for melting. The ultrasonic probe vibrates with the operating
frequency of 20 KHz and power of 4.0 KW. A206 alloy was first melted in the graphite crucible
under the protection of argon gas with temperature controlled at 700°C. The y-Al, 03 nanoparticles
with a diameter of 50 nm were then added into the molten melt with ultrasonic cavitation turned
on for 15 minutes. Then the molten melt was heated up to 740°C and poured into a steel permanent
mold with a preheated temperature of 400°C. The casted samples are polished for ultrasonic testing.
The attenuations were measured using the Olympus Epoch 1000 series NDT device using

transducer D785-RP with a nominal central frequency of 2.25 MHz.

6.2.1 Microstructures and Morphology Modification

The left panel in Fig 6- shows the representative optical micrographs (top) and polarized light
micrographs (bottom) of pure A206 and A206-1wt.%Al,03 nanocomposite [133], and the right
panel shows the simulated microstructures. The pure A206 alloy exhibits large dendritic primary
a-Al surrounded by continuous 8-AlCu phases. The 8-Al.Cu phases are distributed along the
boundaries of primary aluminum grains and have the morphology of long continuous network. For

the nanocomposites with 1wt.% Al>O3 nanoparticles, the a-Al dendrites becomes small equiaxed
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crystals and the intermetallic 8-Al>Cu phases turn to be smaller, thinner and much less continuous.
It indicates that the Al,O3 nanoparticles can reduce the grain size of a-Al phase and break or refine

the 68-AlxCu phase.

Experimental Microstructure Simulated Microstructure
‘PureA206 = (a) A206+1wt% Al203 | (b)
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Fig 6-2 Microstructures for pure A206 and A206-Al.O3 MMNCs. Left panel: experimental

micrographs. Right panel: simulated microstructures.

The formation mechanism of the continuous network of 8-Al,Cu in A206 and the morphology
modification mechanism by Al>Os in A206-Al,O3 nanocomposites have been well studied [131,
134, 156, 157]. For the pure A206 alloys, due to the high percentage of Al content, the primary a-
Al phases nucleate first and then grow to large dendritic structure during the solidification process.
The Cu solute is pushed out of the a-Al phases into the remaining liquid phase due to the high
super-cooling of the 8-Al>Cu nucleation. As the temperature decreases and the content of Cu
increases in the remaining liquid, the 8-Al>Cu phase is finally able to nucleate and grow between
a-Al dendrites. At last, the 8-Al,Cu phase will form a layer in-between the a-Al dendrites, which

1s called the divorced eutectic microstructure.
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For the A206-Al1,03 nanocomposites, however, the eutectic formation mechanism is modified
with the existence of AlO3; nanoparticles. Similarly, the primary a-Al phases first nucleate and
grow in the melt, pushing most of the Al2O3 nanoparticles and Cu to the remaining liquid. The
Al>203 nanoparticles have good nucleant potency and they can serve as effective nucleation sites
for 8-Al>,Cu to nucleate and grow before the remaining liquid reaches the eutectic composition.
While the 8-Al.Cu phases are growing, the liquid surrounding the 8-Al>Cu is enriched with Al due
to the depletion of Cu. Consequently, the a-Al phase nucleates and grows on the edges and tips of
the 8-Al,Cu, which blocks the growth of 8-Al>Cu. Finally, the partially divorced eutectic phase is

formed and both a-Al phase and 8-Al>Cu phase are refined.

6.2.2 Microstructure Modelling Using Voronoi Diagram

To achieve successful simulations of the ultrasonic wave propagation and reproduce the
comparable attenuation curves, the key step is to generate microstructures that can sufficiently
capture the microstructural features of A206-Al,0; MMNCs. The most common method to
generate polycrystalline material structure in the computational materials science is the Voronoi
diagram or Voronoi tessellation [158-161]. It assigns the same number of points to the space as
the desired number of grains, and the space is subsequently divided into many polyhedral based
on the closeness to these points. Fig 6- shows a representative Voronoi diagram where the space

is partitioned to 20 cells based on the 20 randomly generated points.
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Fig 6-3 Example of Voronoi diagram with 20 random points.

Based on the micrographs of A206-Al,03 MMNCs (Fig 6- left panel) and the morphology
modification mechanism, we know that the intermetallic network is broken and become thinner
and less continuous with the introduction of AlO; nanoparticles. The extent to which the
intermetallic phase is modified is positively correlated with the amount of Al,O3; nanoparticles
[133]. To model this microstructural feature, we first generate a Voronoi diagram with an
appropriate number of grains N, and then modify the edges by: 1) randomly selecting some edges,
2) shortening these selected edges, and 3) randomly assigning the width of the remaining edges.
After these operations, we obtain a modified Voronoi diagram with edges denoting the
intermetallic 8-Al>Cu phase and the inner space denoting the primary a-Al phase. The rationale of
this strategy to model the nanocomposites for ultrasonic wave propagation simulation is based on
the following considerations and simplifications: 1) It is known that when the grain or inclusion
size is less than 1/1000 of the wavelength, its scattering effects on the acoustic wave are negligible
[162]. Since the sizes of the dispersed nanoparticles are significantly smaller than the ultrasonic
wave length (2~3mm), we neglect the wave scattering by nanoparticles and do not consider
nanoparticles in the microstructure simulations; 2) The acoustic scattering arises at the boundaries
between grains or inclusions due to the change of material properties. The neighboring a-Al grains

have slightly different material properties because of their different crystal orientations. Therefore
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the boundaries between o-Al grains can scatter acoustic waves and contribute to ultrasonic
attenuations. However, their scattering effects are negligible compared with those between a-Al
grain and 0-Al>Cu phase. Therefore, to simplify the modeling process, the grain boundaries
between a-Al grains are not considered.

To implement the first two operations in the edge modification process, we introduce another
two parameters: 1) a, the percentage of edges in the Voronoi diagram to be dissolved, and 2) 3,
the percentage of length left after dissolving. For example, if there are total 100 edges in the
diagram, o = 0.3 and 3 = 0.7 means 30 edges are randomly selected and each of the selected
edges is dissolved to 70% of its original length. Fig (b) shows a result of applying a and 3 to the
initial Voronoi diagram in Fig (a). A well fabricated nanocomposites is featured by small grain
size and short intermetallic phases. Therefore we can select large N, large a and small  to model
the microstructures of the good samples. For the experimental microstructures, the thickness of the
intermetallic is not constant. To model this, we add random widths to each edge after the edge
dissolving step (Fig (b)) using the following way (shown in Fig (d)). We first select m points with
equal interval for each edge, and then assign two points for each selected point along two sides at
the same horizontal location with uniformly distributed distances in the vertical direction. After
that these assigned points are connected to form a polygon and finally the space within each
polygon is used to denote the intermetallic phase. In this width assigning step, the number of
middle points m and the distribution parameters of the random distance can be changed to capture
various microstructures. Note that we do not keep the amount of intermetallic phase constant in
the morphology modification process. The reason is that the dissolved part of the intermetallic

phase is very small in size and has negligible effects on the acoustic attenuation. For simplicity,
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we do not consider this aspect in the microstructure modeling process. In summary, the

microstructure generation procedure is listed in Table 6-1.

Table 6-1. The microstructure generation procedure.

Input N

1) Generate N random points.
2) Partition the pace using ordinary Voronoi diagram based on N generated points.
3) Index all edges in the diagram.

Input a,

4) Randomly select a percentage edges among all edges.
5) Shorten the selected edges to [ percentage of their original lengths.

Input m, u; and u,,

6) Evenly select m middle points for each edge

7) Generate one point above each selected point with vertical distance following
uniform distribution U (u;, u,,).

8) Generate one point below each selected point with random distance following
uniform distribution U (u;, u,,).

9) Connect the generated points to form polygons.

10) Fill polygons with black color representing the 8-Al.Cu phase

Fig shows the overall microstructure modeling process and Fig 6- (right panel) shows four
generated microstructures to simulate pure A206 and A206-Al,0; MMNCs. In Fig, we present
several simulated microstructures with different parameters a, f and N. Typically, a small N and
a large fwill be chosen for pure A206 and a large N and a small ffor A206-A1>O;. By adjusting
these parameters, we can generate microstructures that are similar to the observed microstructures.
For example, the modified Voronoi diagrams are visually similar to observed microstructures in

Fig 6-. The similarity can also be roughly quantified. In Fig. 6-2, the microstructure of pure A206



138

(Fig. 2a and 2c) and the composite with 1wt% AlO3z (Fig. 6-2b and 2d) are simulated using
parameter combinations N=800, f=0.9,0=1.0 (Fig. 5- 2e and 2g) and N=1200, =0.7,0=1.0 (Fig.
5-2f and 2h), respectively. Through a simple image processing and measure of the optical image,
we found that the average grain sizes are ~1936 um? and ~1309 um? and the percentage of the
dark phase that corresponds to Al,Cu are 10.75% and 5.13% for pure A206 and the composite with
Iwt% ALOs, respectively. In the corresponding simulated microstructure, the average grain sizes
are ~1849 um? and ~1156 um?and the percentage of the dark phase are 10.02% and 5.05%,
respectively. We can see that these measures are close between the observed and the simulated

microstructure.

The simulated microstructures will be used as the input in the wave propagation simulation. In

the next section, we introduce the EFIT, the acoustic attenuation simulation in details.
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Fig 6-4 The microstructure modeling process: (a) initial Vononoi diagram, (b) after edge
dissolving step controlled by a and B, (c) after assigning random thickness to each edge, (d) the
random thickness assigning process.

6.3 Wave Propagation Simulation using EFIT

The EFIT is a very stable and efficient numerical scheme to model wave propagation in
homogeneous and heterogeneous, isotropic and anisotropic elastic media. It was first developed
by Fellinger et al [148], and since then it has been widely used to explore elastic wave behaviors
in a variety of applications [153, 163]. The EFIT uses velocity-stress formalism on a staggered

spatial and temporal grid. It discretizes the following first-order equations:

IS, sp@odv =g n-T(xt)ds+ [ff, f(re)dv, 6.1)

IS, =S vdv = ¢ sym{ny(r,¢)}ds + [ff, h(xt)dv. (6.2)

p is the momentum density vector, T the stress second rank tensor, S is the strain second rank
tensor, v is the particle velocity vector, f is the source of force density, h is the source of

deformation rate second rank tensor, n is the outward normal unit vector of S and sym{n g([, t)}

denotes the symmetric part of the dyad {n g([, t)}. More detailed explanation of (1) and (2) can

be found in [164].
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a= i)i,ﬁ - 0.9, N = 800
Fig 6-5 Microstructures generated using different parameters a, # and N.

In our research, we employ the existing code Visco-Elastodynamic Finite Integration Wave
Solver (VEFIT) [165], which is written in C with interface with MATLAB. The VEFIT uses EFIT
equations (see Appendix A for details) to solve wave propagation in media. The VEFIT requires
a user-defined phantom (i.e., a 2D geometry which can be homogeneous or inhomogeneous), the
phantom parameters (i.e., the density of material, the normal and shear velocity of the ultrasonic
wave in the media, the bulk viscosity and shear viscosity) and the transducer parameters including
the position and size of transducers and the excitation signals as the inputs. The outputs include
the stress, the velocity, the acceleration at any selected locations, and the transducers outputs

recording the velocity received by transducers at each time step. The transducer outputs will be
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used to calculate the acoustic attenuation. Example of input phantom, the wave propagation and
the transducers output generated by VEFIT are presented in Fig.

In Fig 5-6, the transducer output shows the waveforms of initial pulse and received echo. The
two waveforms are extracted using a rectangular window with the same size. The frequency
spectra are obtained by performing the fast Fourier transform (FFT) on the extracted signals. The

attenuation can be calculated using the spectral ratio analysis technique [166] as:

GEFCTEE (6.3)

where A(f) is the attenuation coefficient at frequency f, d is the thickness of the media, S;(f) is
the frequency spectra calculated using FFT on the extracted signals. S; (f) is calculated from the

incident wave S; (t) and S, (f) is from the first bounced back wave S, (t).
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Fig 6-6 Examples of input phantom, wave propagation snapshots and transducer output by VEFIT.

The overall simulation procedure is presented in Fig 6-7. The material properties in the

phantom need to be determined. For Al-Cu alloy A206, the main chemical compositions are Al
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(93.5%-95.3%) and Cu (4.2%-5.0%). The acoustic properties are calculated based on its elastic
properties i.e., Young’s modulus, Poisson's ratio and density, which are found in [173, 174]. The
phantom parameters are summarized in Table 5-2. In the wave propagation simulation, the
transducer is placed in the middle of the left side of the microstructure, as shown in Fig 5-7. The
size of the microstructure is selected as 1.2Zmm X 1.2mm and the size of the transducer is selected
as one sixth of the length of left side of the microstructure. The central frequency of the excitation
signals is set to be 2.25MHz, the same as used in the experiment [133]. The boundaries are
specified to be absorbing in the top and bottom sides and reflective in the left and right sides. In

the next section, the simulation results will be discussed and compared with experimental data.
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VEFIT
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*  Material densities » Excitation signals
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Fig 6-7 Simulation procedure using VEFIT and attenuation measurement.
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Table 6-2. Phantom parameters of Al Cu and Al

Density Normal Shear Bulk shear
(g/mm?) velocity(m/s) velocity(m/s) viscosity viscosity
Al,Cu 0.00436 5945 2892 0 0
Al 0.0027 6420 3040 0 0

6.4 Simulation and Experimental Results

In the first set of simulation, we fix @ = 1.0, i.e., we dissolve all edges of the initial Voronoi
diagram. The number N of cells ranges from 800 to 1600. N = 800 is approximately the number
of grains in pure A206 in the space of 1.2mm X 1.2 mm. N = 1600 is roughly the number of
grains in A206 nanocomposites of the same dimension size with Swt.% Al>O; nanoparticles. f is
chosen from 0.9, 0.7 and 0.5. For every combination of N and £, 20 microstructures are randomly
generated for wave propagation simulation. Since the Voronoi diagram is regenerated for each

simulation, we expect different attenuation curves for each replication.
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Fig 6-8 The comparison of experimental attenuation curves and the simulated attenuation curves
with different simulation parameters (attenuation units: dB/mm, frequency unit: MHz).

Fig 5-8 shows the experimentally measured attenuation curves from [133] and the simulated
attenuation curves using different microstructural parameters. In Fig. 6-8, (a), (b) and (c) show
experimental attenuation curves measured at 20 randomly selected locations on each sample using
the Olympus Epoch 1000 series NDT device with transducer D785-RP of 6mm in diameter and of
2.25MHz in nominal central frequency. Based on the experimental results, Wu et al [133] stated
that there are three sources that influence the material homogeneity and cause the between-curve
variations, the large a-Al dendrites, the long and continuous intermetallic AlCu phases, and the
non-fully dispersed Al,Os clusters. Well dispersed Al,O3 nanoparticles can enhance the nucleation
of both a-Al and Al>Cu phases, resulting in more homogeneous materials. In the simulation we do

not consider Al,Oj3 clusters. Only the grain size of a-Al phase and morphology of Al,Cu phase
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influence the attenuation curves. From Fig we can see that increasing N or decreasing  can reduce
the variation of attenuation curves, which is consistent with the experimental results, for that larger
N or smaller 8 indicates a more homogeneous material. Besides, the trend and mean value of the
attenuation curves are also quite similar to the experimentally measurements. For the pure A206
alloy, the attenuation decreases with frequency, while for the Al>O3 reinforced nanocomposites,
the attenuation is more severe for acoustic wave of higher frequency. Therefore, the simulation

approach is capable of reproducing the characteristics of the attenuation measurements.

To investigate the influence of parameters a and f on the attenuation curves, we fix N =
1200 and run the simulation with different a and £, as shown in Fig. From the simulation results
we observe the following phenomenon: 1) For a fixed £, as a increases from 0 to 1, the attenuation
curves tend to be more uniform. This is what we expect. Since a controls the percentage of edges
being dissolved, more edges dissolved as a increasing result in the more homogenous
microstructures; 2) For a larger value f, increasing a will change the attenuation curves less
significantly. In the extreme case, if there is no dissolving at all, i.e., § = 1.0, then the change of
a will not influence the attenuation curves. Similarly, for a smaller a, the change of f can hardly
influence the attenuation curves; 3) For fixed a or [, the decreasing of § or increasing of a will
result in the down shift of the attenuation curves. It is because the decreasing of § or increasing of
a for fixed a or  will reduce the amount of the intermetallic phase in the microstructure, thus
reducing the wave scattering effects. In the next section, we will investigate the similarity of the

between-curve variation between experimental and simulated attenuation curves.
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Fig 6-9 The influence of @ and B on the attenuation curves (N=1200).
6.5 Statistical Comparison of Experimental and Simulated Attenuation

Both the experiment and simulation show that the between-curve variation can be used to
measure the homogeneity of the A206-A1O; MMNC:s. Therefore it is important to quantify this
variation and compare it between experiment and simulation for future statistical quality control
tool development. From Fig and Fig we can see that all the attenuation curves of each sample share
the similar characteristics (e.g.,slope, intercept). On the other hand, the variation from curve to
curve also exist for each sample. Therefore, it is natural to select the linear mixed-effects model
[167] to describe the population-level features and also model the variation among replicated

attenuation curves.
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Let y;; denote the acoustic attenuation coefficient for i-th curve at j-th frequency f;. a and b
represent the fixed intercept and slope of the regression line respectively. The linear mixed effects
model with first order polynomial in the fixed effects can be written as:

yij=a+bfj+a;+bf+e;i=12.,nj=12,..,m, (6.4)
where a; and b; are random effects of the intercept and slope for i-th curve with the assumption

2
01 po,102

2

, and €;;~N(0,0?) is the error term which is used to model
pPO,102 02

[Zi] ~N(0,%),Z =

the measurement error or model inadequacy, and is assumed to be independently and identically
distributed for all attenuation curves. In this model there are two parts, fixed effects and random
effects. Fixed-effects term a + bf is the conventional linear regression part used to describe the
population-level mean attenuation curve. The random-effects term a; + b;f is associated with
individual measurement i and is used to describe its deviation from the mean attenuation curve.
Note that we can alternatively use higher order polynomial in the linear mixed effects model.
However, this may result in over-fitting issue. The attenuation curves in Fig and Fig show a good
linear relationship with frequency f, therefore first order polynomial is sufficient in the model
fitting.

The model parameters can be estimated using maximum likelihood estimation (MLE) method.
Suppose V; = (Vi1, Viz -, Vim)- Denote B = (a,b)T, b; = (a;, b;)T, and @ = (B,02, X), then the
likelihood function is

n

L®lyy, . yn) =p(y1, - ¥nl@) = | | 1P(yilﬂ) = nfp(yilﬂ, bi)p(b;|0) db;
= i=1

L

where

m 1
p(3118,b) = (210?) % exp (= 553 Iy~ Xu(B + BI?)
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p(bi|@) = (2m)~*|Z| 2 exp(—b; Z™'b;/2)

Xi = [111: ---11; fl'fZ' '"'fm]T

By integrating out b; we can get
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n m _1 1 -1
LOly, ..¥,) = 1_[ 1(271) 2|X;ZXT + o%I| Zexp <_E (y; = X" (XZXT + 0%1) (y; — Xl-ﬁ))
1=

By maximizing L(@|y,, ...y,) with respect to B and X, we can obtain the MLE estimated model

parameters. The optimization details can be found in [168].

Table 6-3 shows the fitting results for the experimental measurement of A206-5wt.%Al>0;

and attenuation curves shown in Fig (c3). We select the attenuation curves in Fig (c3) here as an

example due to its visual similarity to the experimental measurements of A206-5wt.%Al0;. From

this table we can see that the fitted results for the simulation data are quite close to the experimental

data.

Table 6-3. Fitting results for experimental attenuation curves of A206-5wt.%Al>03 and

attenuation curves shown in Fig (c3). “Lower” and “Upper” are the lower and upper bound of the

95% confidence interval.

Experimental measurements of A206+5 wt.% Al, 05

Fixed Estimate S.E p-value Lower Upper | Random  std corr
a -1.00 0.024 ~ 0 -1.05 -0.96 a; 0.095
b 0.55 0.011 ~ 0 0.53 0.58 b; 0.044 -0.996
Simulation data shown in Fig (c3)
Fixed Estimate S.E. p-value Lower Upper | Random  std corr
a -0.92 0.015 ~ 0 -0.95 -0.88 a; 0.069
b 0.49 0.007 ~ 0 0.48 0.51 b; 0.034 -0.997
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The histograms of the fitted random effects and the residuals are shown in Fig. The fitted a;, b;
and €; approximately follow normal distribution, which validates the model assumption of a; and
b;. From these histograms, we see the linear mixed effects model can model the attenuation curves

well.
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Fig 6-10 Histograms of the fitted random effects and residuals for the experimental measurements

of A206-5wt.% Al,Os (top) and simulated attenuation curves shown in Fig (c3) (bottom).

To test the similarity between the simulation and the experimental measurement in terms of
the non-uniformity of the acoustic attenuation, we need to compare the covariance matrix £ and
2™ calculated in the model fitting, where £() is for the simulation and £ is for the experimental
measurement. Testing if the covariance matrices of different groups of dataset are equal has been
well studied, where the likelihood ratio test is the most commonly used methodology [169].
However, these studies focus on the covariance matrices of the observations, whose dimension

would be very high for attenuation curves. Instead, we focus on the covariance matrix of model
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parameters (a;, b;)T with significantly reduced dimension. Therefore the likelihood ratio test
cannot be directly applied in this study. We employ the permutation test [170], a non-parametric
and computationally efficient method to tackle this issue. Intuitively, if two sets of data (e.g., the
acoustic attenuation curves from simulation and experimental measurements) are similar enough
to each other, i.e., they come from the same distribution, then by randomly shuffling the data
components between the two data sets, we expect to see the similar statistics (e.g., the difference
of means or variances between the original two sets and the sets after random shuffling). We may
now test how similar the two datasets by comparing the statistics before and after the random
permutation. To make the comparison more rigorous, repeat the permutation process many times
to get the sample distribution of the test statistic and calculate the p value for the statistic of the
original data sets. An example of permutation test on testing means of two data sets is presented
in Fig. Suppose we want to test if the means are equal for two datasets X; and X,, which are
generated from the same uniform distribution. The values in each set are randomly generated just
for illustration purpose. By randomly shuffling the components in the two sets, we obtain X and

X3. The difference of the mean of the new sets is calculated. Repeat the permutation 1000 times to

get the sample distribution of |X_I — X3|. Calculate the p-value of test statistic of the original data

sets. Here the p-value is the percentage of the generated 1000 samples that satisfy |X_I -X;| =
|X; — X,|. If the p-value is very small, it is likely that X; and X, have different means. In Fig the

p-value is about 0.9, therefore the two means are likely to be equal.
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Fig 6-11 Illustration of permutation test on population means of two data sets.

In our case, the null hypothesis is Hy:Z®) = £ which is equivalent to Ho:al(s) =

0,6 = 6{”,and p® = p@™ . In this testing there are simultancously three components to be

tested. To avoid the inconvenience of multiple testing problems [171], we reformulate it to an

o

' |O_2(s) . O_Z(r)

identical hypothesis testing Hy: T = max{ al(s) - ) | p® — p® |} = 0. In other

words, the hypothesis testing of equality of the two covariance matrices is performed by testing if
the maximum difference of the matrix entries is zero. Considering that the sample variances of the
three absolute differences in the testing statistic T may be different in the permutation test, it is
necessary to standardize these three terms first by dividing their standard deviations (SD).

Therefore the hypothesis test can be expressed as

|O_2(s) . O_Z(r)

|O-1(S) - 0_1(7') |p(s) — p(r)|

D)o o) SPloa0| " SPIp9-p0)

Hy: T = max 0
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Hi:T #0

The permutation test can be summarized as: (1) random shuffle curves between the simulation

set and the experimental measurement set and fit the linear mixed effects model to each new dataset
to get Zf,s) and Zf,r); (2) calculate the absolute differences of o;, o, and p between the two

covariance matrices; (3) repeat (1) and (2) N times to obtain the three sets of samples for

© — 6|, |08 = 0"
1) 2

o1

and |p(s) — p(r)|; (4) calculate their standard deviations and

standardize these samples; (5) calculate the T statistic for these samples to obtain a set of samples

{T1, ..., Ty, }; (6) calculate the standardized T statistic for the observations (i.e., simulation set and

experimental measurement before random shuffle) T, ; (7) calculate the p-value (the percentage of
T samples that are larger than T,) for the observations. If the p-value is smaller than a certain
threshold, e.g., 0.1, then reject the null hypothesis Hy, i.e., £ # £®,

Fig shows two examples of the permutation test, where we compare the covariance matrices
between Fig (¢) (A206+5wt.% AlO3) and Fig (c3), Fig (b) (A206+1wt.% Al>Os3) and Fig (c3).
The p-values for these two tests are 0.99 and 0.08 respectively. If we select the 0.1 as the testing
threshold, then we can conclude that the variation of attenuation curves in Fig (b) is statistically
different from Fig (c3), and Fig (c) is quite similar to Fig (c3) in terms of the between-curve
variation. Also, we can use the p-value to evaluate the similarity of the covariance matrices of two
sets of attenuation curves. The higher the p-value, the closer the two sets of attenuation curves. On
the other hand, small p-values (<0.1) indicate a large difference between simulated attenuation
curves and the experimental measurements due to mismatched microstructures. The p-value are

0.24, 0.71 and 0.99 for the comparisons between Fig (a) and Fig (al), Fig (b) and Fig (b2), Fig (c)
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and Fig (c3), respectively. These large p-values (>0.1) indicate that the simulated microstructures

can well reproduce the attenuation variation.
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Fig 6-12 Illustration of the permutation test. (a) and (b): Fig (c) VS. Fig (c3), p-value=0.99; (c)
and (d): Fig (b) VS. Fig (c3), p-value=0.06. The vertical dashed lines denote the observed test
statistics.

Note that, the permutation test of T statistic calculated by LME can be applied for quality
inspection of MMNCs. Because the consistency of the simulation results has been validated, the
simulated acoustic attenuation curves are ready to be set as reference profiles. For example, the
attenuation curves in Fig. 6-8 (c3) can be used as the reference of MMNCs with high quality. The
measured attenuation curves from samples with low quality (e.g., Fig. 6-8 (b)) can be significantly

identified by permutation test as shown in Fig. 6-12 (¢) and (d).
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6.6 Discussion and Conclusion

In this research, we propose a microstructure modelling and wave propagation simulation
method to generate the microstructures and to simulate the ultrasonic attenuation curves for A206-
Al,O3 MMNCs. Based on the micrographs and morphology modification mechanism of the
nanocomposites, a modified Voronoi diagram is developed to simulate 2D microstructures and
capture the microstructural features, where three key parameters are used to control the grain size
of the primary phases and the morphology modification of the intermetallic phases. The numeric
method EFIT is used to simulate the wave propagation through the generated microstructures. The
attenuation curves are calculated by performing the fast Fourier transform (FFT) on the extracted
signals from the outputs of EFIT. The simulated acoustic attenuation curves are quite consistent
with the experimental measurements.

The linear mixed effects model is used to model the attenuation curves. A permutation test
based on the maximum difference of each matrix entry is developed to test the equality of the
covariance matrices from the simulated and experimental attenuation curves. The hypothesis tests
show that by adjusting the microstructural parameters of the simulation, the simulated attenuation
curves are able to closely match the experimental measurement in terms of the between-curve
variations.

This research directly supports the experimental results and findings in [133] through the
simulation approach. It helps us better understand the phenomenon of the non-uniformity of the
attenuation curves and how the microstructural features influence this non-uniformity. In the
future, the quantitative model will be conducted to infer the microstructural features based on the
experimental and simulation database of different microstructures and the corresponding

attenuations. Using that model, the statistical process control (SPC) charts will be developed to
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control the quality of A206-Al,03 MMNCs based on the attenuation profiles or inferred

microstructural features. Although 2D simulation has been commonly used, it may be not as

accurate as 3D simulations. Therefore it is desirable to extend the simulation to three dimensions

to better represent the experimental microstructures and wave propagation processes, which will

also be our future work.

6.7Appendix : EFIT equations and resolution conditions

The 2D EFIT equations of (5.1) and (5.2) are presented as

vl = vl + B, ST J S 6.5)
xLj — xU xx,i+1,j xXx,1,j xy,i,j xy,i,j—1 |’ :
n-t n-t n-t n-2
n — n 1 2 2 2 _ 2
Vyij = Vyij + B ( Txyij ~ Cxyi-1j + Tyyij+1 Tyy.i.j)' (6.6)
n+% n—% n
xxij = Cxxij _{(/1‘*'2“)[ Vyij ~ Vxi- 11] + Al Vy,ij vy.i.j—l]
+(n + 2¢) [} Vyi,j vyrcl,i—l,j] + Tl[ﬁ;l,i,j - ﬁ;l,i,jq]' (6.7)
n+1 n—l At
2 2
Tyy,i,j - Tyy,i,j + E{(A + 2[1) [v;l,i,j - vyl 11] + A[ Vxi,j vyrcl,i,j—l]
+(Tl + 2¢) [ﬁ;l,i,j vyl 11] + Tl[ XL] vyrcl,i,j—l]' (6'8)
n+> n-2
2 2 at n n
Txy,i,j  Yxy,ij Ax {ﬂxy [vx,i,j+1 XL] + vy i+1,j vy,i,j]
Tlxy [ﬁarcl,i,jﬂ Uiyt Vyiesj v;l,i,j]' (6.9)

where the velocities (v,

v)) at time n are calculated using the sum of the velocities at timen — 1

and a linear combination of the stresses (Tyy, Tyy, Txy) in the spatial coordinates i, j and the half

step time n — % Similarly, the stresses (Tyx, Tyy, Txy) at time n + % are calculated by adding the



156

stresses at n — % and the linear combination of velocities multiplied by the lame constants A and p

for the elastic factor and the viscous factor n and ¢ multiplied by the rate of change in velocities
(denoted as (¥, Uy) ). Ax and At represent spatial step and time step respectively. B, and B,, are

the effective buoyancies defined as :

2
Pi+1j + Pij

X

2
B, =——,
Pij+1 t+ Pij

where p is the mass density for the spatial coordinates i,j. Uy, and vy, are the effective rigidity

defined as :
_ 4
ﬂxy _L 1 1 + 1 )
Hijj  Hiv1j  Hij+1 Hi+1j+1
4
Ury = 1 1 1
+ + +
bij  biv1j  Pij+1 Pirrj+r

The spatial resolution Ax and the time resolution At must be chosen small enough to provide
sufficiently smooth representations of the computed filed. However, these two resolutions cannot

be chosen independently, they must satisfy the Courant’s stability condition, that is:

Ax
Cmax \/E'

At <

where d is the space dimension (d = 2 is used for our simulation) and c,,4, is the largest wave

speed in the media. Ax is recommended ranging from% to % for the wavelength A [172].
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7 Conclusion and Future Work

Fault detection and prognosis play important role in the engineering systems. In structures
an early detection of faults in mechanical structures ensures the safety and avoids any potential
damages. Precise prognosis of the fault progression make the timely maintenance and reparation
possible. In manufacturing processes, early detection of nonconforming parts or products with low
qualities leads early corrective actions to ensure consistent delivery of a quality product and to
avoid productivity loss. The research presented in this dissertation aimed to quantitatively address
several fundamental and significant issues that remain in the areas of structural fault detection and

prognosis, and fault detection of specific data types in manufacturing process.

In the study of mechanical structures, the identifiability issue of FEM, the measurement
selection algorithm for bias reduction and structural property degradation are investigated.

Specifically,

1) The identifiability issue in FEM for fault detection is addressed by a quantitative
framework. FEM of a beam structure is re-formulated into a state space model representing LTI
dynamic system. By using the properties of an inverse of a block diagonal matrix, the uniqueness
of the system transfer function is proven for different severity level of damages at the same
location. That is, the damages are theoretically identifiable in the FEM for a given damage location
of a beam structure. Moreover, a sufficient condition for the identifiability of multiple damages at
different locations is established based on the natural frequencies. A numerical algorithm is
proposed to numerically check and validate the location identifiability of scalar valued damage
location. With this checking procedure, it is showed that damages at two different locations will

only result in the same transfer function under the symmetric conditions. In other words, two
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damages at different locations will be differentiable in most cases. The algorithm can be extended
for vector valued damage. Several representative case studies are conducted to demonstrate the
effectiveness and usefulness of the proposed framework for providing a theoretical guideline on

the damage identifiability by using FEM-based vibration analysis.

2) A natural frequency selection algorithm is proposed to reduce the bias in the estimation of
damage parameters using linear approximation under mild damage scenarios. The selected
combination of natural frequency has high probability to be the optimal combination which leads
to the smallest bias in the estimation among all the possible combinations. The algorithm consists
three sub-algorithms. In the first algorithm, the L;- norm regularization with iterative matrix
randomization is adopted for estimation of damage parameters followed by a majority voting
process. In the second algorithm, the damage locations are identified by sequential updating. The
improved estimation L,- IMR helps to choose the best combination of measurements in the third
algorithm. The effectiveness of the proposed method is validated through numerical studies.

Factors that influence the performance of the method are also discussed.

3) The progression of stiffness loss is predicted by the dynamic data-driven hierarchical
Bayesian degradation model. The model adopts a two level hierarchical structure. In the first level,
the observed natural frequencies are assumed to be generated from a normal distribution with given
stiffness. In the second level, the evolving path of stiffness is described using polynomial
functions. The unknown parameters in the model are described by conditional posterior
distribution in Bayesian framework and estimated by Gibbs sampling method. Numerical studies
and results are used to validate the model for different evolving path of stiffness loss. The model

performed efficiently in all cases.
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For two specific data types in manufacturing process, the following data analytics models

and methods are adopted for fault detection.

1) A HT-based method to detect point patterns that consist of arbitrary line segments is
proposed for detecting defects distributed as spatial point pattern in semiconductor wafers. The
basic idea is to convert the line pattern detection problem in physical domain into the problem of
detecting multiple points in Hough domain. The detection is attained through two critical steps,
the angle matching and the distance matching, which allows arbitrary rotation, scaling, and
translation of the pattern. Based on the simple intuition that a line is most likely to be detected if a
Hough strip fully overlaps with the defective region, a detailed discussion on how to select tuning
parameters of the algorithm are provided. An extensive numerical study shows that the detection
method performance well in terms of both Type I error and the detection power if the defective
region has reasonable size and the contrast between the defective region and the background noise

is reasonably large.

2) Linear mixed effect model and permutation test are adopted to analyze the variation of
acoustics attenuation curves for quality inspection of A206-A1203 MMNCs. The acoustic
attenuation curves are characterized by linear mixed effect model, where the model parameters are
estimated using MLE method. The variance model parameters are formed as T statistic to test the
null hypothesis by permutation test. In addition, a microstructure modelling and wave propagation
simulation method to generate the microstructures and to simulate the ultrasonic attenuation curves
for A206-A1203 MMNCs is proposed, where the microstructures are modelled by Voronoi
diagram and wave propagation is simulated by numerical calculation of EFIT. The statistical

analysis shows the consistency of the simulation results with the experimental results. By such
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simulation model, the understanding of the wave-microstructure interaction is enhanced, while

providing a flexible platform for further quantitative analysis.

Future work will focus on fault identification based on the framework of integrating
piezoelectric transducer circuitry (PTC) network into mechanical structures. The PTC enhances
the performance of frequency-shift-based damage identification method. However, a quantitative
analysis on the tuning variable of the network is lacking of studies. For instance, how to tune the
inductance in the circuit to make the most sensitive damage detection and how to quantify the
accuracy of detection results as function of the amount of tuning variables. These issues are

planned to be investigated before the final defense.

Some potential future directions are summarized in the following.

1) On-line change point detection in structural monitoring: As discussed in Chapter 3, the trend
of structural property degradation may follow beta function trend, where the rapid decrease of
structural property happens at certain time point. It is important to detect such changing time
point accurately and quickly to prevent further potential damages of the structures.

2) Adaptive fault identification methodology: The monitoring signals carry the information of
engineering systems under certain environmental factors. The environmental factors may
influence the systems in a dramatic way, in which case, the analysis of signals ignoring the
environmental effects leads unreliable results. Methods that incorporate the impacts of the

environment are needed for precise fault identification.
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