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CONSISTENCY ANALYSIS BETWEEN LUMPED AND DISTRIBUTED
PARAMETER MODELS

Randi Wang

Under the supervision of Professor Vadim Shapiro
At the University of Wisconsin-Madison

The system-level design represented by lumped parameter models (LPM) usually
comes first for the high-value engineering design innovation at the functional
level, followed by a geometric design represented by the distributed parameter
models (DPM). Nevertheless, the non-unique mapping from lumped parameters
to distributed shape and material properties leads to an ill-posed design problem.
Before solving this problem, it is critical to have a well-defined concept of the
"consistency" between LPM and DPM and find a systematic way to check the
consistency.

The simulations of LPM and DPM start from different model specifications
whose correspondence is difficult to be established but is indispensable for compar-
ing simulation results. Simulating these two models usually results in solutions
that have different state dimensions hence cannot be directly compared. The only
reliable way nowadays to compare model solutions is a posterior testing through
point-to-point comparison of the solved variables, however, it is unfavorable due to
the high computational cost for large-scale models, unstable and non-convergent
simulation solutions, etc. In addition, lumped modeling languages such as Model-
ica, Simulink, etc. differ in syntax and informal semantics, which sets a barrier to
find a unified way for model consistency analysis.

We propose a general model consistency analysis framework to establish the
correspondence of model specifications and solutions between LPM and DPM,
which is independent of any modeling languages and tools, numerical methods
and supports different types of physical models. The common semantics of the
lumped parameter system is proposed and it can be in principle extended to spatially
distributed systems. A simulation-free scheme is proposed to compare LPM and



x

spatially-discretized DPM, where only the model specifications are used to provide a
priori guarantees of the simulations. The scheme supports any spatial discretization
methods in principle. In particular, a model order reduction technique that a priori
guarantees the accuracy, stability, and convergence is adapted by the scheme to
resolve the high time cost issue caused by large model scales. We demonstrate the
validity, time efficacy, and generality of the scheme by applying it to analyze the
model consistency of different single- and multi-physics problems.
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1 introduction

1.1 Motivation
Lumped and distributed parameter models are commonly used to model physi-
cal systems and are key to engineering design. Determining consistency between
underlying models of the system-level design (e.g. Modelica models [38]) and
the geometric design (e.g. Computer-Aided Design (CAD) models [86]) is critical
for the integration of these two design activities [39, 46, 113]. System-level design
concentrates designers on functional aspects of the system, in which geometric
aspects of the system are abstracted by a discrete set of lumped parameters such as
spring stiffness, thermal conduction and electrical resistance, etc. This abstraction
enables approximating the spatially continuous and distributed behavior. Lumped
parameter models (LPMs) can capture such approximation by encapsulating the
spatially distributed nature of engineering systems into a network of lumped com-
ponents. The behavior of LPMs is governed by a system of ordinary differential
equations (ODEs) whose state variables are functions of time [69]. In contrast,
distributed parameter models (DPMs) explicitly account for the geometric and
material properties of engineering systems, whose behavior is governed by a sys-
tem of partial differential equations (PDEs) where state variables are functions of
both time and space [82]. These PDEs can be approximated by a typically large
system of ODEs using numerical discretization methods [14], whose solution could
be prohibitive due to large time/memory requirements, especially for assemblies
consisted of many geometric parts. System-level design often comes first for the
high-value design innovations at a conceptual and functional level. To enable such
innovations, designers have to search extremely high-dimensional design spaces,
which is challenging enough even in a finite-dimensional state space with lumped
parameters. Adding spatial degrees of freedom (e.g., arbitrary part shapes and ma-
terial distributions) on top of that would make the problem completely intractable.
Once the system-level design is obtained through searching the more manageable
lumped parameter design space, the next step is the geometric design. However,



2

since the mapping from lumped parameters to distributed shape and material
properties is not unique, we have an ill-posed design problem. Before we look for
approaches to solve this problem, it is critical to have a well-defined notion of the
concept of “consistency” between LPM and DPM. Informally, it represents a test
to check if we succeeded in realizing a geometric design based on a system-level
design. To the best of our knowledge, there is a lack of a formal framework to
systematically establish the consistency between LPMs underlying the system-level
design and DPMs underlying the geometric design. We propose to fill this gap in
this thesis.

Figure 1.1 shows a process of the geometric design of an automobile based on
its system-level design. The process starts from a system model built in Modelica
[38], which consists of connected lumped components such as springs, electrical
resistors, thermal resistors, etc. In the geometric design based on this system model,
lumped components will be realized by geometric parts to satisfy the functional
requirements. As shown in the upper left of the figure, the mechanical stiffness/-
damping and thermal conductivity of automobile components are modeled by
springs/dampers and conductors in the system model, regardless of their precise
geometric realizations. For each component above, two options of geometric parts
are provided to realize the component. For each selected geometric part, designers
need to check if it can behave as intended by its corresponding lumped component
( 1 in the figure). This check is usually conducted by manually adding initial
and boundary conditions to each selected geometric part, simulating it then com-
paring the simulation result with that of the corresponding lumped component.
Nevertheless, in such manual checks, different engineers usually have different
interpretations of the lumped source terms (e.g. forces, voltage sources) and initial
conditions, which leads to different translated initial and boundary conditions
added to the geometric part, hence resulting in different DPM simulation results
and comparison results. For example, suppose there is a lumped force added to the
lumped spring-damper component ( 1 in the figure). The force could be translated
into pressure multiplied by a boundary area of the geometric absorber. However,
the decision of which portion of the geometric boundary to add the pressure and
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which spatial distribution (uniform, sine, and cosine, etc.) that the pressure should
follow differ from person to person. In addition, the component-by-component replace-
ment may not guarantee consistency at the system level. For instance, the geometric
sub-assembly of the front suspension system at the upper right of the figure is
obtained by component-by-component replacement from part of the system model,
however, their behaviors are usually not consistent. There are several common
reasons for such inconsistent behaviors, such as inappropriate mating conditions
used in assembling the geometric parts, new auxiliary parts added for assembling
geometric parts, and unignorable new contact problem between two connected
geometric parts, etc. Therefore, the consistency between the geometric assembly
and the system model cannot be naturally derived from the consistency at the
component level. The geometric design process will end with finding at least one
geometric design whose behavior is consistent with the system design behavior
( 2 in the figure).

Figure 1.1: Consistency analysis in the process of system-to-geometric design

There are several challenges in checking the consistency between system and
geometric designs. The first challenge is that lumped modeling languages (linear
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graphs [104], bond graphs [69], Modelica [38], Simulink [33], etc.) differ in syntax,
informal semantics, and in the methods by which the governing equations are gen-
erated and simulated, which has become a barrier to develop a unified framework
for systematically establishing the consistency between LPMs and DPMs created
by different languages and simulation tools. For example, in Simulink, components
exchange numeric information uni-directionally and are not subject to conservation
laws; by contrast, the energy flow between components is bi-directional in other
languages such as linear graph, bond graph, and Modelica, satisfying conservation
laws. Parallel and serial junctions in a bond graph do not specify the ordering of
branches in the junctions, which implies that every bond graph in fact corresponds
to a family of (dynamically) equivalent graph-based models in other languages.
Many languages generate state equations using efforts and flows as variables, but
their integral forms may also be used, for example in bond graphs. Furthermore,
the challenge is compounded by the difference of distributed parameter modeling
tools in geometric representations (e.g. boundary representation and function or
implicit representation, etc.), spatial discretizations and numerical schemes used
for computations (finite difference [80, 82], finite element [14], and finite volume
[82] methods, etc.). The first goal of this thesis is to establish formal correspon-
dence between concepts and constructs in distinct lumped modeling languages
and tools to pave the way for developing a unified framework for systematically
establishing consistency between LPMs and DPMs created in different languages
and simulation tools.

The simulations of LPM and DPM start from different pre-known model speci-
fications, for instance, the initial conditions and lumped sources of LPM and the
initial and boundary conditions of DPM. A correct correspondence of specifications
is the prerequisite for comparing simulation results afterward, which is a necessary
condition for determining model consistency. The second challenge is systemat-
ically establishing the correspondence of specifications between LPM and DPM.
For example, DPMs have boundary conditions but they do not exist in LPMs since
there is no spatial boundary in LPMs. How to systematically map the boundary
conditions of DPMs to physical quantities of the LPM is nontrivial. Figure 1.2 shows
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such an example, where an LPM and a DPM of a suspension system are given. The
DPM has a Dirichlet boundary condition of displacement u = u0 at boundary ∂Ω2

and a Neumann boundary condition pressure p = p0 at boundary ∂Ω1. How to
systematically map these two types of boundary conditions to physical quantities
of the LPM needs to be explored. In addition, the simulation of LPMs and DPMs
usually lead to different solutions (e.g. different number of states) that are not
directly comparable. After simulation, for example, the unknown displacement
field “u =?” of the DPM in Figure 1.2 is usually represented by thousands of states
but the number of the solved displacement states of LPM is only three. How to
map and compare these two sets of states in a time-efficient way is nontrivial. The
second goal of this thesis is to systematically establish the correspondence for both
specifications and solutions for a wide variety of physical systems.

Figure 1.2: The correspondence of specifications between LPM and DPM is non-
trivial

The third challenge is that the only reliable way nowadays to compare model
solutions is a posterior testing by point-to-point comparison of lumped and dis-
tributed model “variables” after simulating both, which is not favorable for several
reasons such as the low computational efficiency for large-scale models, unstable
and nonconvergent simulation solutions, etc. The third goal of this thesis is to
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present a simulation-free scheme for comparing model solutions such that it can
a priori compute difference between two model solutions solely from comparing
lumped and distributed model “parameters", without resorting to simulations.
Admittedly, it is generally not possible to have a scheme that could provide strong
a priori guarantees of consistency between any types of LPM and DPM without
simulating both models and directly comparing the results. Nonetheless, it is im-
portant to understand to what extent such a priori analyses are possible and quantify their
limitations.

1.2 Approach
In the present study, a general framework (shown in Figure 1.3) is proposed to
check the consistency between system and geometric designs, which supports
establishing the correspondence of model specifications and solutions between
LPM and DPM created in different languages and simulation tools.

In the framework, to establish the formal correspondence between concepts and
constructs in distinct lumped modeling languages and tools, we use tools from
algebraic topology and well-known classification of physical theories developed
over the years by Tonti [111, 112], Roth [102], Branin [26], Kron [72], and others.
Specifically, Tonti diagrams classify a variety of physical theories in terms of physical
laws (topological and constitutive) and could be used to describe LPMs [112]. Such
diagrams are independent of any specific linguistic constructs, implementation
assumptions, or numerical simulation schemes, and hence could become common
semantic description for models built by Modelica [38], Simulink [33], linear graphs
[104] and bond graphs [92], etc. Importantly, the classification generalizes to higher-
dimensional physical models, suggesting that the proposed algebraic topological
semantics can be extended to include spatially-distributed models represented by
three-dimensional solid models [107], PDEs, and finite element methods [14].

In the framework, we propose to establish the correspondence of model spec-
ifications and solutions between LPMs and DPMs at three levels, namely, the
correspondence at (1) model structure level (2) physical quantity type level (3)
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Figure 1.3: A framework to check the consistency between system and geometric
designs

physical quantity magnitude level. Specifically, (1) accounts for the condition that
the correspondence of physical quantities must be established between the lumped
component and its own geometric realization. For example, in the design process, if
the lumped spring (connected to the ground) in Figure 1.2 is realized by the tire in
the DPM, then the displacement of the lumped spring can only correspond to the
displacement field of the tire, not some other geometric parts (e.g. the absorber).
This restriction guarantees the unification between the correspondence of physical
quantities and the correspondence of model structures in the system and geometric
designs. Notably, this restriction opens up an opportunity to automatically add
initial and boundary conditions to the geometric design, provided the system de-
sign and design principle (e.g. component-to-component realization). (2) and (3)
account for the condition that any two corresponding physical quantities of LPM
and DPM must have the same physical dimension and magnitude after a certain
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functional mapping. For example, the Neumann boundary condition of the DPM
in Figure 1.2 is a pressure p, which is generally corresponded to a lumped force
source F though integral

∫
S
dS, a linear functional, where S represents the pressure

area. In particular, the relationship between any two physical variables associated
with the same time and space elements in the Tonti diagram of LPM and the Tonti
diagram of DPM of the same physical type can be used to define and search such
functional mappings, which provides a solid foundation for automatically adding
appropriate initial and boundary conditions to the geometric design of different
physical systems. For example, the DPM model in Figure 1.2 can be described by the
Tonti diagram of elastodynamics [112], where the Neumann boundary condition
(i.e., imposed tractions on the boundary) is associated with the dual time and
surface elements. By contrast, the lumped mass-spring-damper model in Figure 1.2
can be described by the Tonti diagram of transnational mechanical system [112],
where the physical quantity associated with the dual time and surface elements
is the lumped force source. The difference of the physical dimension between the
traction and the lumped force source is L2 so it is natural to relate them with a
Reimann integral

∫
S
dS.

We propose a simulation-free scheme to check if a given LPMMl and a given
spatially-discretized DPM Md have similar simulation solution values. In the
scheme, spatial discretization techniques are required to project infinite-dimensional
state space of PDEs of the DPM to the finite-dimensional subspace of ODEs or
DAEs, and model order reduction (MOR) techniques are adapted to accelerate
the computation process and hence the procedure has a high time-efficiency for
the large-scale model. The function of the scheme is to compute a priori error
bound ε between the given LPM Ml and spatially-discretized DPM Md that are
represented in terms of their transfer function matrices obtained from a Laplace
transform of the ODEs/DAEs. However, computing such error bound will be slow
if the model scale is too large (e.g. in terms of the common H2 norm). To reduce
the time cost, we will first use a MOR method that can provide a priori error bound
to reduce the large-scale1 semi-discretized DPMMd to a small-scale surrogate LPM

1In this thesis, the given LPMMl is supposed to be small-scale, otherwise, we need one more
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Mr. Suppose the obtained a priori error bound is ε1. Then we compute the error ε2

between transfer functions of the surrogate LPMMr and the given LPMMl, which
is usually rapid because of the small model scale. After that, the a priori error ε
between transfer functions of the given LPM Ml and the semi-discretized DPM
Md satisfies ε 6 ε1+ε2, which is obtained from the triangular inequality.

Figure 1.4: Compute a priori error bound by using triangular inequality

In particular, examples of spatial discretization techniques that can be applied
to the DPM are finite difference [80, 82], finite element [14], finite volume [82],
spectral basis [55], isogeometric analysis [65], and other methods that fall under
Galerkin projections using conforming or non-conforming mesh and meshfree
methods (e.g. particle-based methods) [105, 67, 78]. We illustrate our scheme with
an embodiment that uses finite element analysis (FEA); however, the MOR method
to be used afterward is not limited nor affected by the choice of numerical meth-
ods. The adapted MOR method to illustrate the scheme is CUmulative REduction
(CURE) scheme [88], where many model reduction algorithms could be embed-
ded, such as iterative rational Krylov algorithm (IRKA)[60], stability-preserving,
adaptive rational Krylov (SPARK) algorithm [88], etc. The CURE scheme can
seamlessly, systematically, automatically, and rapidly generates a family of different
orders of ROMs by applying rigorous upscaling to the full-order models (FOMs).
Importantly, it provides relatively tight a priori error bounds for all generated ROMs
step to reduce its order as we do to the semi-discretized DPMMd.
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and therefore opens the way for the procedure to fast evaluate the a priori error
between the surrogate LPMMr and spatially-discretized DPMMd.
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1.3 Contributions
The thesis introduces a framework for model consistency determination between
LPMs and DPMs. It has four major contributions as follows:

1. Unified semantics for lumped parameter systems, which provides a basis
for interoperability in systems modeling. Such semantics provides a single
neutral format that can be translated to/from models in different lumped
parameter modeling languages such as Modelica, Simulink, bond graphs, and
linear graphs. Importantly, the study paves the way to go beyond LPM to
DPM, meaning that the proposed formal semantic model could in principle
be extended to spatially distributed models, which would eliminate the need
for customized consistency analysis between LPMs and DPMs created in
different modeling languages and tools.

2. A framework for establishing the correspondence of model specifications and
solutions between LPMs and DPMs, which is independent of any modeling
languages and tools, numerical methods, and supports a variety of different
types of physical models. The framework provides a solid theoretical basis
for developing an automatic model consistency analysis tool.

3. A scheme to compare LPM and spatially-discretized DPMs before simulations,
where only model specifications are used to provide upfront guarantees of
the simulations. The scheme can in principle be used alongside any spatial
discretization methods. Particularly, a MOR technique that a priori guaran-
tees accuracy, stability, and convergence is adapted to address the low time
efficiency problem caused by large model scales.

4. We show the application of this framework to determine the consistency
between LPMs and DPMs of different single- and multiple-physics systems,
which lays a solid foundation for automation of the system-to-geometric
design.
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1.4 Outline
The rest of this thesis is organized as follows. Chapter 2 is a detailed survey of pre-
vious efforts related to the consistency between lumped and distributed parameter
models. In Section 2.1, we introduce the significance of the LPM and the DPM in
physical modeling and simulations, the difference of their solution forms, and the
commonly-used physical modeling languages and tools for lumped and distributed
parameter models. After that, previous works on the system-to-geometric design
are investigated in Section 2.2. Results of these works contribute to the motivation
of this thesis because none of them proposed a standard or systematic approach
to evaluate the validity of the geometric design with respect to the given system
design. Nevertheless, the comparison of solutions between LPMs and DPMs can
be found in many published papers. In Section 2.3, we summarize and compare
different strategies adapted in these papers and point out the reason why they
cannot be directly used for solving the model consistency problem formulated in
this thesis.

Chapter 3 is an illustration of the general framework for model consistency anal-
ysis. In Section 3.1, we define a few critical terminologies to scope our proposed
model consistency problem, namely the LPM, the DPM, initial condition correspon-
dence, boundary condition correspondence, field correspondence, the behavior
of LPM, the behavior of DPM, and model consistency, followed by formulating
the problem using these definitions. The framework to systematically check the
consistency between a given LPM and a given DPM is introduced in Section 3.2,
where we first propose the strategy of using common semantics of physical models
to avoid expensive customized model consistency analysis of LPMs and DPMs
created in different physical modeling languages and tools, then introduce how to
systematically establish the correspondence of model specifications and solutions.
After that, we propose a simulation-free scheme in Section 3.2.3 to compare LPMs
and semi-discretized DPMs.

The main results of the thesis are contained in Chapters 4 and 5. The common
semantics for lumped parameter systems is introduced in Chapter 4. The distinct



13

semantics issue of lumped parameter modeling languages and tools is introduced
in Section 4.1. We summarize the well-known algebraic topological model of
physical systems in Section 4.2; this model serves as the basis for Tonti diagrams
that classify physical variables, laws, and theories [112]. Single-domain lumped
parameters systems are examined in detail in Section 4.3. Because all such models
are isomorphic in terms of their physical variables, laws, and Tonti diagrams, we
only discuss the models of electrical systems – with the understanding that the
discussion also applies to lumped parameter models in other physical domains. In
particular, we show that paths over the corresponding Tonti diagram correspond to
all possible ways to generate state equations for an electrical network, including well-
known node-potential and mesh-current methods that date to Maxwell [81]. While
the discussion and the semantics proposed in Section 4.3 apply to any one single-
domain lumped-parameter system model, we consider the more general multi-
domain systems in Section 4.4 (that may combine electrical, mechanical, hydraulic,
thermal, and other single-domain subsystems). We show that all such systems
may be represented by an algebraic topological model in terms of generalized state
variables associated with Tonti diagrams.

In Chapter 5, we introduce the approaches underlying the proposed simulation-
free scheme to compare a given LPM and a given DPM, followed by applying
the scheme to different mechanical and thermal problems. Spatial discretization
methods that can be used to generate the numerical equation of the DPM are
first introduced in Section 5.1.1, followed by a brief comparison of the highlighted
properties of different commonly-used MOR approaches in Section 5.1.2, among
which the CURE scheme proposed in [88] is selected to accelerate generating
the a priori guarantee between the given LPM and DPM. The CURE scheme has
many rigorous properties, such as ensuring a priori error guarantees, stability,
convergence, and automatic model order decision. In Appendix A.1 mentioned in
this Section, we introduce how this CURE scheme is gradually evolved from the
classical Krylov subspace MOR approach, whose MOR principle is to enforce the
first several Taylor expansion terms of the transfer functions to be the same between
FOM and ROM. Nevertheless, the classical Krylov subspace MOR approach cannot
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provide a priori error guarantees and automatically select the expansion points.
Many advanced rigorous MOR methods are proposed based on the same principle
afterward yet have more rigorous pragmatic properties. The CURE scheme is one
of them.

In Section 5.2, our proposed framework is applied to check the model consistency
for several pairs of given LPMs and DPMs from mechanical and thermal domains,
where both single and multiple domains problems are included. We show that if
the order (i.e., the number of variables in the governing equation) of the discretized
DPM is larger than a certain value, comparing two model solutions using our
scheme will be faster than using the numerical simulation, and a high comparison
accuracy is guaranteed. In our examples, this value is around several thousand
but slightly different problem by problem. Importantly, the improvement of the
time efficiency accelerates with respect to the increase of the discretized DPM order.
At the end of each example, we use simulation results to show the validity and
tightness of the obtained a priori error bound between the given LPM and DPM.
We conclude in Chapter 6 with consequences of the proposed semantic unification
for lumped parameter models, the framework for model consistency analysis, and
open issues.
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2 related works

2.1 Lumped and distributed parameter system
modeling

Informally, the significance of LPMs can be attributed to two main factors. First,
LPMs are the simplest models of system behavior (usually, but not always dynamic)
that encapsulate and abstract away all detailed geometric information. This allows
modeling behavior of systems without dealing with a detailed embodiment of such
systems – either because these details are too complex to simulate or not known (for
example in early design stages). Secondly, the LPM provides a common ODE based
framework to model many different engineering systems (mechanical, thermal,
electrical, fluid, etc.) without dealing with their differences when it comes to spa-
tial/geometric modeling. Paynter’s work [92] originally focused on methodology
for use of lumped parameters models for design and analysis of engineering systems
and culminated in the language of bond graphs. He described a systematic method
of converting a general system to a simplified LPM by a process of “reticulation”
(creating a network model through discretization of a spatially-distributed system)
and developed a symbolic language of bond graphs for describing such models.
A major conceptual and practical significance of bond graphs is that they model
all lumped parameter systems in terms of a small number of abstract generalized
variables: efforts, flows, their derivatives, integrals, and constitutive relationships.
This allowed bond graphs to represent LPMs of complex physically heterogeneous
systems that are coupled using the abstract transformer and gyrator elements and
can be easily translated into a system of ordinary differential equations.

Arguably, all LPMs and languages are based on concepts similar to those used
in bond graphs and are now a standard textbook material [69, 104]. LPMs abstract
a spatially and temporally distributed system by a network of components. The
purpose of the network is to model the flow of energy through the system’s com-
ponents as a function of time; the detailed geometry of the system is accounted
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for by integral properties of the components. Formally, the LPM is described in
terms of differential-algebraic equations with variables that are specific to physical
phenomena modeled by the network. However, all such models are isomorphic
based on the well-known “analogies” between different physical theories [69]. In
each physical domain, the power is a product of two generalized variables that are
classified as across or through (in the case of Modelica and linear graph models), or
effort and flow (in case of bond graphs). The network includes abstract sources of
these variables, and transforms the energy by storing or dissipating in three types
of elements that are commonly described by analogy with electrical networks as
generalized resistors, inductances, and capacitors. In addition, the energy may be
transformed between different physical domains using the transformer and gyrator
components in the network. More general components with complex behavior may
be incorporated into the network, but all such components may be modeled as a
composition of these basic components listed above [92]. The formal reason for
these analogies is the common underlying algebraic topological structure that we
will discuss in Section 4.2.

The differences between various modeling languages stem from their approach
to describing the basic components, their connectivity in the network, and the
method by which the governing system of equations is generated. Thus, the bond
graph uses 0 and 1 junctions to respectively represent parallel and serial connec-
tions of components; the linear graph uses directed edges to connect components
(nodes), while Modelica/Simulink uses connectors to link library components. The
behavior of components is described in terms of state variables that are related by
constitutive relations: bond graph associates effort, flow, and constitutive relation-
ships to 1-ports; linear graph associates across and through variables to directed
edges, while Modelica and Simulink associate these variables with blocks. The
governing equation of the LPM is a system of ODEs (or more generally DAEs) that
are generated from such descriptions by methods that differ in the choice of state
variables and generation algorithms and all such equations describe the identical
dynamical behavior of the modeled system that is determined by initial conditions.

By contrast, DPMs are developed for describing both spatial and temporal be-



17

haviors of physical systems [77]. Such models are commonly used in modeling a
number of important physical phenomena such as deformation of flexible structure
[12], thermal conduction [91], fluid dynamics [23], electromagnetism [47], and
their combinations. The behavior of such models is usually described by the solu-
tion of a system of PDEs, with the consideration of initial and boundary conditions
of interest, that are subjected to numeral analysis [80]. A critical step of the numer-
ical analysis is reformulating the equations to the discrete representation, a system
of ODEs that can be solved by modern computers. Such discretization is generally
accompanied by loss of information about the original continuous equations. FEM
[14], FVM [40], and FDM [82] are three commonly-used numerical methods for
solving PDEs [6] which differ in the ways of discretization of PDEs. Specifically,
FEM converts the PDEs to the variational form and restricts it to finite-dimensional
subspaces. FVM converts the PDEs to integral form and expresses the conservation
law in terms of integral variables on the control volume. FDM approximates the
partial differential operators by linear combinations of function values at the grid
points. ANSYS [2], Comsol [84], and Abaqus [1] are commonly-used commer-
cial software for distributed parameter modeling and analysis, where different
numerical methods are adopted. Being an important step of the product design and
analysis, distributed parameter modeling and simulation is critical for predicting
the performance of geometric designs, which could dramatically reduce the product
development cost due to prototyping [110].

2.2 System to geometric design
The system-to-geometric design represents a design procedure where a system-
level design is firstly built using LPMs, followed by a geometric design at the level
of details of an engineering drawing. As remarked by Ulrich [113], this design
strategy can reduce the complexity and clarify the procedure of solving the de-
sign problem. Most approaches developed for the system-to-geometric design
are based on the one-to-one correspondence between the lumped component in
the LPM and the geometric part in the repository of solid models. Particularly,
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bond graphs are commonly adapted in these approaches to build the system-level
design. For example, Finger and Rinderle proposed a component database that
contains the correspondence between ports of bond graphs and geometric parts
for a limited class of mechanical designs [46]. Engelson developed an integrated
environment that combines geometric design tools and system modeling tools
to assist engineers to construct and verify large, moving rigid-body assemblies
[39]. However, these two approaches may result in unrealistic design due to ig-
noring functional-sharing. Ulrich’s work is an exception [113], where a single
geometric part simultaneously implements several functions. His approach is char-
acterized as a design-and-debug process, where geometric parts are first selected
based on the component-to-component realization using the lumped components
in LPM and then reconfigure the selected geometric parts for function sharing.
However, the approach is only valid for single-input and single-output systems.
By contrast, the approach proposed by Prabhu and Taylor in [97] provides a basis
for the synthesis of multiple-input and multiple-output systems whose specifica-
tions containing spatial orientations and positions, in which the augmented bond
graphs are used by introducing new 2-ports representing orientation and posi-
tion transformers, however, functional-sharing is not considered in this approach.
Functional-sharing is critical for realizing realistic design and product evolution.
Potential ways to deal with function-sharing include but are not limited to the
methods introduced in [56, 57, 71], where parts having relative motions can be
combined into monolithic compliant mechanisms. However, none of the above
works of the system-to-geometric design introduce how to establish the correspon-
dence between specifications of the system and geometric designs in the design
process and none of them introduce an approach to evaluate the validity of the
geometric design.
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2.3 Comparison of simulation solutions between
different physical models

The comparison of model specifications and solutions between LPM and DPM can
be found in two research areas. The first one is the model conversion which refers
to the process of converting the spatially-discretized DPM to the LPM, in which the
dimension of the state space before and after the conversion is not changed. The
second is the MOR [3, 20, 94, 87] ,whose goal is to simplify the large-scale LPM
or spatially-discretized DPM to a small-scale system of ODEs that have a smaller
dimension of state space. Previous works related to the model conversion and
reduction and how model simulation solutions are compared before and after the
conversion and reduction will be respectively reviewed below.

Model conversion techniques are widely used in computer graphics where the
deformable objects such as skin, cloth fabrics, soft tissue, etc. can be automatically
converted to lumped mass-spring model to realize fast deformable object simulation
owing to the simplicity and computational efficiency of LPMs [83, 73, 13, 66]. For
example, Gelder [51] derived a lumped-spring element consisted of three lumped
springs linked end to end in a series connection from the geometric angle and length
information of the two-dimensional linear triangular element. Authors in [16, 15]
extend Gelder’s work to rectangular elements. They use the linear rectangular finite
element as the reference to generate the lumped mass-spring element by using
the energy method and the least action principle [45]. The simulation results of
the converted lumped-spring model and the original finite element model were
compared in terms of each pair of the corresponding nodal displacement and
lumped mass displacement. Researchers in [85, 75] proposed to convert the finite
element model of 3-dimensional deformable objects to the corresponding lumped
mass-spring models by minimizing the difference of the stiffness matrices of these
two models. The difference of model behaviors before and after the conversion
is formulated as the spatial variation rate of the difference between the nodal
displacement in the finite element model and the corresponding lumped mass
displacement. All the converted lumped mass-spring models in the literature have
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the same number of displacement states as the given finite element model. The
strategy for comparing model simulation results adapted in model conversion
techniques cannot be directly used to solve the model solution comparison problem
between the system-level design and geometric design that is proposed in this
thesis because the number of state variables of the system-level design is usually
much smaller than that of the spatially-discretized geometric model. There is no
one-to-one correspondence between these two sets of state variables as we have in
the model conversion problems.

In contrast to model conversion, the comparison of different dimensional be-
haviors exist in MOR, which is usually used in reducing the number of states of
several classes of mathematical models of large-scale dynamic systems such as
first-order linear time-invariant (LTI) systems [3, 9, 21, 52, 58, 59], second-order LTI
systems [106, 32, 5, 20], port-Hamiltonian (LTI) systems [94, 54], parametric (LTI)
systems [42, 87, 76], and nonlinear (time-invariant) systems [34, 50, 101], etc., aim-
ing to find a good approximation of the full order model (FOM) that is numerically
efficient and stable and simultaneously preserves certain system properties, for
instance, preserving the number of inputs and outputs for first-order LTI systems,
the definiteness of constitutive matrices (e.g. mass, spring and damping matrices)
for second-order LTI systems, the port-Hamiltonian structure for port-Hamiltonian
LTI systems, and parameter dependency for parametric LTI systems. Large-scale
dynamic systems generally come from spatially discretized DPMs cite spatial dis-
cretization methods [82, 14, 40] or large-scale LPMs consisted of a large number of
lumped components [5]. Because of different used principles, which method can
give us the best approximation is case by case. For example, the balanced truncation
method [32, 99, 109] removes the states that have both weak controllability and
observability while the rational Krylov subspace method [9, 10, 48, 59] matches
several most significant terms of the Tayler series expansion of the ROM transfer
function, expanded around carefully selected frequencies, to those of the FOM. So,
on one hand, if we use different MOR methods for accelerating a posterior model
solution comparison, then the answer for the solution similarity may swing between
yes and no; on the other hand, the strategy for model solution comparison before



21

and after MOR cannot be directly used for the model solution comparison problem
between the system-level and geometric designs proposed in this thesis. The reason
is that the correspondence between state variables before and after model reduction
is automatically derived by the approach. However, such correspondence in our
proposed model consistency analysis problem is not pre-known and has to be
determined by users, which varies with respect to different design principles and
model application scenarios.
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3 general framework for model consistency analysis

In this chapter, we will introduce the framework for model consistency analysis
between lumped and distributed parameter models. The challenges underlying the
model consistency analysis were briefly introduced in the motivation section, but
critical terminologies such as LPM, DPM, and model behaviors, etc. still have not
well-defined. Definitions of these terminologies are necessary to propose the model
consistency problem. Although such definitions can be found in many literature,
those definitions are either too broad or narrow for the topic of this thesis so they
will be re-defined in the context of model consistency analysis. Below, we will
first introduce the definition of these terminologies, then formulate the problem
in terms of these definitions, and after that propose the framework for solving the
problem.

3.1 Definitions and problem formulation
Before formulating the problem of model consistency analysis between lumped
and distributed parameter models, we will introduce several related definitions,
namely LPM, DPM, initial and boundary conditions correspondence, field correspondence,
behavior of LPM, and behavior of DPM.

• DPM is a mathematical model of the well-posed initial and boundary value
problem, whose specification is (i) the PDE, (ii) the region of space-time on which
the PDE is required to be satisfied, and (iii) initial and boundary conditions to be
met [74]. The PDE of the DPM can be symbolically represented as follows:

F
(
x,y, z, t,∂xu, ...,∂tu,∂2

xxu,∂2
xyu, ...,∂nx...tu;µ

)
= 0, (3.1)

where u is a dependent variable that depends on the independent space variables
x,y, z and time variables t. F involves derivatives of uwith respect to at least one of
the independent variables. µ is a set of time and/or space-dependent parameters
that generally have certain physical meanings such as mass density, fluid viscosity,
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and thermal conductivity, etc. The solution of interest of F = 0 is generally required
in some region of space and time and there are boundary conditions (i,e, Dirichlet,
Neumann and Robin conditions [74]) and initial conditions (e.g. u (x,y, z, 0) = 0)
to be satisfied. For example, Figure 3.1a shows a DPM of the automobile suspension
system, whose governing equation is the Eq.3.2, expressed by components with
respect to the rectangular Cartesian coordinate system (Oxyz).

µui,jj + (λ+ µ)ui,ij + f = ρüi, (3.2)

where the material is assumed to be isotropic and homogeneous. ui represents the
displacement and the comma represents the partial differentiation with respect
to the coordinates. ρ is the density of material, λ is Lamé’s first parameter, µ is
the shear modulus, and f is the body force. The geometric domain is where the
equation to be satisfied in space. The displacement u = u0 and pressure p = p0 are
respectively Dirichlet and Neumann boundary conditions and the velocity u̇ = v0

is the initial condition.

(a) DPM (b) LPM

Figure 3.1: Examples of DPM and LPM of a suspension system
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• LPM is a mathematical model of the well-posed initial value problem, which
can be used to model the lumped parameter system consisted of a network of
connected lumped components such as lumped springs, electrical resistors, and
thermal conduction, etc. The specification of the LPM is (i) a system of ODEs,
(ii) the region of time on which the ODEs are required to be satisfied, and (iii)
initial conditions. The ODEs of the lumped parameter model can be symbolically
represented as follows:

G (t, w, wt, ...;θ) = 0, (3.3)

where w is a vector of a finite number of state variables that depend on the time vari-
ables t. θ is a set of time-dependent parameters that generally have certain physical
meanings such as lumped spring stiffness, voltage source, hydraulic capacitance,
and thermal resistance, etc. The solution of interest of G = 0 is generally required
in some time intervals of interest hence there will be some initial conditions (e.g.
w (0) = 0) to be satisfied. For example, Figure 3.1b shows an LPM of the automobile
suspension system, whose governing equation is as follows:

mẅ + dẇ + kw = F, (3.4)

where w is a n× 1 vector of displacement (with respect to reference) where n is the
number of states; F is a n× 1 vector of lumped force source and F = [0, 0, 0, F0]

T in
this example; m, d and k are n× n lumped mass, damping and stiffness matrices,
respectively; w1=w0 is the displacement reference; t ∈ (0,+∞) is the time domain
where the ODEs to be satisfied; ẇ3 = q0 is the initial condition representing the
initial velocity of the lumped mass.

Below we will introduce definitions of the correspondence of the initial and
boundary conditions and the field of interest between a pair of given LPM and
DPM, where they are supposed to model the same physical system.

• Initial conditions correspondence between the LPM and the DPM is a functional TI
that maps the initial conditions of DPM to the initial conditions of LPM.
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Figure 3.2: The correspondences of initial conditions TI, boundary conditions TB,
and fields Tf between LPM and DPM of the suspension system

TI : u
(i) (x,y, z, 0)→ w(i) (0) , (3.5)

where i represents the order of time derivative. An example of TI is shown in Figure
3.8, where it maps the initial velocity of the tire barycenter to the initial velocity of
the lumped mass u̇→ ẇ3.

• Boundary conditions correspondence between the LPM and the DPM is a functional
set TB consisted of two functionals: Td that maps the Dirichlet boundary conditions
of DPM to state variables w (t) and Tn that maps the Neumann boundary condi-
tions of DPM to lumped source parameters θs (t) ∈ θ of the LPM, for example,
lumped force source in mechanical mass-spring-damper model and lumped volt-
age source in electrical resistor-capacitor-inductor model. The form of these two
functionals are given as follows:
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Td : u (x̄, ȳ, z̄, t)→ w (t) , (x̄, ȳ, z̄) ∈ ∂Ω (3.6)

Tn :
∂u (x̃, ỹ, z̃, t)

∂n
→ θs (t) , (x̃, ỹ, z̃) ∈ ∂Ω, (3.7)

where ∂Ω represents the boundary of the spatial domainΩ. The examples of Td
and Tn are shown in Figure 3.8. Specifically, Td maps the displacement of contact
surface of the DPM between tire and ground to the displacement of lumped spring
connecting to the ground in LPM u (x̄, ȳ, z̄, t)→ w1 (t) and Tn maps the pressure on
the top surface of absorber to the lumped force added to the lumped spring-damper
component in LPM p (x̃, ỹ, z̃, t)→ F4(t).

• Field correspondence between LPM and DPM is a functional Tf that maps the field
of DPM to state variables of LPM.

Tf : u (x,y, z, t)→ w (t) (3.8)

An example of Tf is given in Figure 3.8, where Tf maps the unknown displacement
of the top surface of absorber in the DPM to the absolute displacement of lumped
spring-damper component in the LPM u (x̂, ŷ, ẑ, t)→ w4(t).

• Behavior of DPM Bd is the exact solution u = ū (x,y, z, t) obtained by solving the
DPM, i.e., the PDE (Eq.3.1) that satisfies the region of space-time and initial and
boundary conditions.

• Behavior of LPM Bl is the exact solution w = w̄ (t) obtained by solving the LPM,
i.e., the ODEs (Eq.3.3) that satisfy the region of time and initial conditions.

•A LPM and a DPM have consistency if the norm1 of difference between the behavior
of DPM Bd after mapping Tf and the behavior of LPM Bl is less than a positive real
number ε > 0, providing TI and TB. Symbolically,

‖Tf (u) − w (t)‖ 6 ε (3.9)
1The norm could be any type of vector norms. The commonly-used norms are L1, L2, and L∞.
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Since the exact solution of most DPMs cannot be obtained, the spatial discretiza-
tion schemes such as FEM [14], FVM [40], and FDM [82], etc. are usually used
to generate a system of ODEs whose solution is an approximation of the exact
solution. The spatial discretization resolution of the DPM to generate a system
of ODEs is usually determined by the user based on practical experience. Gener-
ally, the finer discretization, the better approximation. However, there is always a
trade-off between the computational efficiency and the accuracy of the numerical
result. We suppose herein the spatial discretization resolution selected by the user
is sufficiently fine to obtain a good approximation u′ of the exact solution u. In other
words, the error between u and u′ caused by spatial discretization is supposed to be
small and has little effect on the model consistency determination result2. Based on
this supposition and all the above definitions, we formulate the problem of model
consistency determination between the LPM and the DPM as follows.
Problem formulation: given a LPM Ml, a DPM Md, the correspondences TI, TB,
and Tf between Ml and Md, and the spatial discretization of Md, determine if
‖Γf (u ′) − w(t)‖ is smaller than a positive real number ε ′ > 0, such that the LPM
Ml and the DPMMd have consistency.

Figure 3.3: Problem formulation

The problem formulation can be described by a diagram shown in Figure 3.3,
where the blue parts are pre-known and the red part is what to estimate. The

2In practice, the error between the exact and the numerical solution that is generated from a fine
spatial discretization could be covered by moderately loosening the user-defined error threshold.
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behavior of DPM is discretized in space and Γf is the dicrete form (in space) of Tf.
If the norm ‖Γf (u ′) − w(t)‖ is less than a user-defined real number ε′ > 0, then
Ml andMd have consistency, otherwise, they are inconsistent. Notably, if any of
the provided correspondences TI and TB is incorrect (i.e., the values or physical
dimensions before and after the mapping are not the same), Ml and Md will be
instantly determined to be inconsistent. Below we will introduce a simulation-free
scheme to compute the a priori upper bound of Γf (u ′) − w(t) in terms of the L∞
norm.

3.2 Framework for model consistency analysis
We aim to develop a general framework for model consistency analysis, where two
technical challenges need to be solved. The first challenge is that the framework
must be general, meaning that it can be used to check the consistency between
lumped and distributed parameter models of different physical problems, support-
ing different physical modeling languages and tools. The second challenge is how to
systematically establish the correspondence of specifications and solutions between
lumped and distributed parameter models. In this section, we will introduce the
approaches to solve these two challenges.

3.2.1 Unified semantic model of lumped parameter systems

To eliminate the need for a customized framework for the consistency analysis be-
tween DPMs and LPMs that are created in different modeling languages, we aim to
propose a unified semantic model of lumped parameter systems such that we only
need to develop the consistency analysis framework for the unified semantic model
and it would naturally work for the other lumped parameter models. Lumped
modeling languages such as Modelica [38], Simulink [33], bond graphs [69], and
linear graphs [104] differ in syntax, informal semantics, and in the methods by
which governing equations are generated and simulated. The unified semantic
model we proposed for lumped parameter systems using standard notions from
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algebraic topology. In particular, Tonti diagrams classify all physical theories in
terms of topological and constitutive laws and could be used to describe different
types of lumped parameter systems, supporting the algorithmic generation of all
possible forms of the governing equations. This semantic model is independent of
specific implementation assumptions, coordinates, linguistic constructs, or numer-
ical simulation schemes. Notably, our proposed semantics of lumped parameter
systems can be extended to include DPMs. Chapter 4 is our study results of such a
common semantic model. Figures 3.4 and 3.5 illustrate the relation between the
common semantic LPM and DPM represented by Tonti diagrams and the LPM and
DPM created by different modeling languages and tools, for instance, Modelica,
Simulink, linear graphs, and bond graphs for LPMs and Comsol, Abaqus, ANSYS
and Nastran for DPMs. All the other physical models can be in principle translated
from/to Tonti diagrams of certain types.

Figure 3.4: Common semantic LPM described by the Tonti diagram of network
theory

Recall the LPM and the DPM examples of a suspension system in the problem
formulation above. The LPM is a lumped mass-spring-damper model and the DPM
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Figure 3.5: Common semantic DPM represented by Tonti diagrams of field theories

is an elastodynamic model, whose common semantic models described by the Tonti
diagram are respectively shown in Figures 3.6 and 3.7, where symbols in circles
represent the physical variables, the boxes on the vertical arrows represent topo-
logical/differential operators in time and space, and the other boxes represent the
initial/boundary conditions or constitutive relations. The constitutive parameters
in two Tonti diagrams are g (gravity acceleration), ρ (mass density), C (stiffness
tensor), H(damping tensor), M (lumped mass matrix), K (lumped stiffness matrix)
and R (lumped damping matrix). Importantly, by following paths over these two
Tonti diagrams, the governing equations of these two models can be automatically
generated, details of which can be found in Sections 4.3.

3.2.2 Establishing correspondence of model specifications and
solutions

The correspondence of specifications and solutions between LPM and DPM of the
same physical system will be established at three levels, which are the correspon-
dences at (1) model structure level (2) physical quantity type level (3) physical
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Figure 3.6: Semantic model of lumped mass-spring-damper models

Figure 3.7: Semantic model of elastodynamic models

quantity magnitude level. We will introduce these three levels of correspondences
one by one below.

(1) Correspondence at model structure level
As mentioned in the motivation, the system-to-geometric design is based on

the component-by-component realization design principle, which means for each
lumped component, we find a geometric part to realize it. Therefore, the corre-
spondence TI, TB, and Tf between Ml and Md must be built according to such
realization. Specifically, suppose we have a system-level design, if the initial condi-
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tion/lumped source/state is on a certain lumped component p of the LPM, then
it must be mapped from the initial/boundary condition/field on the geometric
part Gp of the DPM that corresponds to p via the functional TI/TB/Tf, as shown
in the example of suspension system in Figure 3.8, copied below. Moreover, the
particular spatial region of Gp to add initial/boundary condition/field is supposed
to be determined by the function of Gp, i.e., how Gp would be used. At the model
structure level, building correspondence TI, TB and Tf could be automated as long
as the spatial region of Gp to add initial/boundary condition/field are pre-set on
every geometric part in the library based on their functions. In the examples of this
thesis, they are supposed to be given. For example, in Figure 3.8, to correspond
to the lumped force F4(t) = F0 added to the lumped absorber (spring-damper)
component, a pressure p (x,y, z, t) = p0 is added to the top surface of the geometric
part of the absorber.

Figure 3.8: The correspondences of initial conditions TI, boundary conditions
TB, and fields Tf between LPM and DPM of the suspension system at the model
structure level
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Figure 3.9: The correspondences of initial conditions TI, boundary conditions TB,
and fields Tf between LPM and DPM of any mechanical systems at the physical
quantity type level

(2) Correspondence at physical quantity type level
In Figure 3.8, how do we know the physical quantity added to the geometric

part of the absorber that corresponds to the lumped force F4(t) = F0 should be
the pressure p (x,y, z, t), rather than other physical quantities, e.g. acceleration
or momentum? This question seems easy to answer for people who are familiar
with mechanical models. However, if the model is from other physical domains,
similar questions might not be easy to answer. For example, suppose we have an
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LPM of the electrical system where there is a lumped current source, what physical
quantity would be used as the boundary condition added to the DPM? In fact,
both questions above could be answered by using the Tonti diagrams of LPMs
and DPMs. Particularly, the correspondence between physical quantities that are
associated with the same time and space element3 of Tonti diagrams describing the
same physical system can be used to search such corresponding physical quantity
and the functional mapping between them.

For example, the above question about the correspondence between F4(t) in Ml

and p (x,y, z, t) inMd can be answered if we know the position of correspondences
TI, Td, Tn, and Tf in relating physical quantities in the Tonti diagram of lumped mass-
spring-damper models and the Tonti diagram of elastodynamic models, as shown
in Figure 3.9. Since these two diagrams are describing the same physical system -
a suspension system, there are correspondences between physical quantities that
associated with the same space and time element. Note that Tn links the force
source of the lower Tonti diagram and its counterpart, the prescribed traction
(e.g. pressure) in the upper Tonti diagram, which explains the reason for using
pressure as the boundary condition in DPM to correspond to the lumped source in
LPM. Moreover, the commonly-used form of the Tn is the integral

∫
s
dS, where S

represents the surface area where the prescribed traction acts. The form of Tn can
be customized as long as it guarantees the physical dimension consistency between
the functional mapping and two related physical quantities.

Importantly, unlike the sketch of the suspension system example shown in Fig-
ure 3.8, where T∗ represents the correspondence of physical quantities for only one
specific example, the linked Tonti diagrams in Figure 3.9 represent such correspon-
dences between a wide class of mechanical LPMs and DPMs.
(3) Correspondence at physical quantity magnitude level

Since the LPM Ml and the DPM Md model the same physical system, the
magnitude of the physical quantities before and after the functional mapping TI
and TB must be the same and before and after the functional mapping Tf must
be similar. Take the Tn in Figure 3.8 for example, we need to guarantee Tnp0 and

3The definition of time and space element can be found in [112]
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F0 have the same magnitude |Tnp0| = |F0|. Since the commonly-used Tn is
∫
S
dS,∣∣∫

S
p0dS

∣∣ = |F0| must be held to establish the correspondence of F0 and p0 at the
magnitude level. Below we will propose a simulation-free scheme to check if the
magnitudes of the physical quantities before and after the functional mapping Tf
are similar.

3.2.3 A priori guarantee for model solutions correspondence
establishment

Suppose we are given the LPM Ml, the DPM Md and established correspondences
TI and TB, below we will introduce a scheme to compute the a priori error between
LPMMl and spatially-discretized DPMMd after mapping Γf, where no simulation
of differential equations is needed. The visualized steps of this scheme are shown
in Figure 3.10.

With the given an LPM Ml and a DPM Md, we first generate the governing
equations of these two models, a system of second-order ODEs for LPM Ml and a
system of PDEs for DPMMd, which can be realized either using existing modeling
languages and tools or paths over corresponding Tonti diagrams, depending on
howMl andMd are represented. Then, applying the spatial discretization method
(e.g. FEM [14]) to the PDEs to generate a system of second-order ODEs for the
DPM Md. After that, we convert the obtained ODEs of LPM Ml and DPM Md

to their equivalent state-space form by linear transformation [7], with the results
shown in Eq.3.10 and 3.11.

Elẋl(t) = Alxl(t) + Blul(t)
yl(t) = Clxl(t) + Dlul(t)

(3.10)

Edẋd(t) = Adxd(t) + Bdud(t)
yd(t) = Cdxd(t) + Ddud(t)

(3.11)

Eq.3.10 is the state space form (El, Al, Bl, Cl, Dl) of LPMMl, usually having tens
to hundreds of state variables; Eq.3.11 is the state space form (Ed, Ad, Bd, Cd, Dd)
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Figure 3.10: Simulation-free scheme to compute a priori error between LPM Ml

and DPMMd

of the numerical model of DPM Md, usually comprising tens or hundreds of
thousands, if not millions, of state variables. In these two equations, x(t) is the
vector of state variables, y(t) is the vector of outputs of interest, u is the vector of
inputs, E is the descriptor matrix, A is the dynamic matrix, B is the input matrix,
C is the output matrix, and D is the feed-forward matrix. Particularly, C and D
are defined by the user based on the expected outputs of interest and D is usually
selected to be 0, which means the input will not directly affect the output without
going through the model.
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With the given TB, TI, Tf, and the spatial discretization of the DPM Md, we
have (1) Γnud = ul, where Γn is the discrete form of Neumann boundary condition
correspondence Tn (∈ TB) (2) ΓIxd (0) = xl (0), where ΓI is the discrete form of
initial conditions correspondence TI (3) Cd = Γf, which is the discrete form of
field correspondence Tf. With Cd = Γf, yd now represents the behavior B ′d of the
discretized DPMMd after mapping Γf and yl represents the behavior of LPM Bl.
Since Γnud = ul, substituting ul with Γnud in Eq.3.10 generates the state space
form (El, Al, B′l, Cl, D′l) as follows, where B′l = BlΓn and D′l = DlΓn. With such
substitution, Eq.3.10 is changed to its equivalent form Eq.3.12. It can be observed
that the Eq.3.11 of the discretized DPMMd and Eq.3.12 of the LPMMl have the
same inputs ud.

Elẋl(t) = Alxl(t) + B′lud(t)
yl(t) = Clxl(t) + D′lud(t)

(3.12)

Below, we will explain how to evaluate the difference between outputs yd and yl
with respect to the infinity norm. Generally, there are two approaches to compute
‖yd(t) − yl(t)‖∞. The first and also the commonly-used posterior approach is using
simulation to obtain yd(t) and yl(t) and then find out the maximum difference
in the whole time domain. Considering the model scale of the discretized DPM
Md, stability, and convergence issues, this strategy will not be considered. The
second approach is generating a tight a priori error guarantee for this infinity norm
without simulation. Below we will introduce the second approach.

It is well-known that the solutions of Eq.3.12 and 3.11 in the Laplace domain
have the form as follows [29]:

yl(s) =
(

Cl(sEl − Al)−1B ′l + D ′l
)

︸ ︷︷ ︸
Gl(s)

ud(s) (3.13)

yd(s) =
(

Cd(sEd − Ad)−1Bd + Dd

)
︸ ︷︷ ︸

Gd(s)

ud(s) (3.14)
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, where s stands for frequency; Gl(s) and Gd(s) respectively denote transfer function
of the LPM Ml and transfer function of the discretized DPM Md. The transfer
function is the input-output relationship between the input u and the output y in
the Laplace domain.

According to [4], the maximum difference between yd(t) and yl(t) of two
models that have the same input u(t) has an upper bound, which is the product of
‖Gd(s) − Gl(s)‖H2

and
√∫∞

0 ‖ud(t)‖2dt, as shown in Eq.3.15. Particularly, to satisfy
this inequality equation, ud must be a finite energy input (i.e.,

∫∞
0 ‖ud(t)‖

2
2 dt <∞).

A simple example of such input is that ud(t) is a positive constant real vector at the
time interval [0,1], but zero at the rest of the time domain.

max
t
‖yd(t) − yl(t)‖∞ 6 ‖Gd(s) − Gl(s)‖H2

·

√∫∞
0
‖ud(t)‖2dt (3.15)

It can be observed from Eq.3.15 that for a specific discretized DPMMd having a
finite energy input, the term

√∫∞
0 ‖ud(t)‖2dt is a fixed value. As long as the value

of term ‖Gd(s) − Gr(s)‖H2
approaches to zero, then term max

t
‖yd(t) − yl(t)‖∞

would approach to zero as well. In other words, the similarity between yd(t) and
yl(t) with respect to the infinity norm in the time domain is determined by the
similarity between Gd(s) and Gl(s) with respect to the H2 norm in the frequency
domain.

The advantage of computing the value of H2 norm of a transfer function is
that no numerical simulation of ODEs is needed; Instead, only a system of al-
gebraic Lyapunov equations is required to be solved [93, 62]. However, if the
model scale is large, as the Gd(s) − Gl(s) we have, then computing its H2 norm,
‖Gd(s) − Gr(s)‖H2

, is still time-consuming and requires a plenty of computational
effort. Panzer proposed a MOR method called CUmulative REduction (CURE)
scheme [88], which can fast compute a relatively tight H2 upper bound of the trans-
fer function between the FOM and its ROM. This scheme can be used to speed up
computing the upper bound ε̄ for ‖Gd(s) − Gl(s)‖H2

. Naturally, if ε̄ approaches
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zero, then ‖Gd(s) − Gl(s)‖H2
approaches zero, and so does max

t
‖yd(t) − yl(t)‖∞.

Below we will explain how to compute this upper bound ε̄.
We will first find a small-scale4 surrogate LPM Mr for the given discretized

DPM Md by using the CURE scheme such that their a priori H2 error ε̄1 (Eq.3.16a)
is guaranteed and then we compute the exact H2 error ε̄2 (Eq.3.16b) between the
surrogate LPM Mr and the given LPM Ml by solving a small-scale system of
algebraic Lyapunov equations, which generally can be realized in a few seconds.

‖Gd(s) − Gr(s)‖H2
6 ε̄1 (3.16a)

‖Gr(s) − Gl(s)‖H2
= ε̄2 (3.16b)

In Eq.3.16a and 3.16b, Gr(s) is the transfer function of the surrogate LPMMl,
whose state space form is shown in Eq.3.17.

Erẋr(t) = Arxr(t) + Brud(t)
yr(t) = Crxr(t) + Drud(t)

(3.17)

With the obtained a priori errors ε̄1 and ε̄2, the a priori error ε̄ of ‖Gd(t) − Gl(t)‖H2

can be directly obtained by using the triangular inequality, as shown in Eq.3.18.

‖Gd(s) − Gl(s)‖H2
= ‖Gd(s) − Gr(s) + Gr(s) − Gl(s)‖H2

6 ‖Gd(s) − Gr(s)‖H2
+ ‖Gr(s) − Gl(s)‖H2

6 ε̄1 + ε̄2 = ε̄

(3.18)

In practice, however, engineers are usually interested in restricting the relative
error. The relative upper bound ε̄rel for the difference between Gl(s) and Gd(s)

with respect to H2 norm is as follows:
4small-scale means the number of variables is tens to hundreds
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‖Gd(s)−Gl(s)‖H2
‖Gl(s)‖H2

=
‖Gd(s)−Gr(s)+Gr(s)−Gl(s)‖H2

‖Gl(s)‖H2

6
‖Gd(s)−Gr(s)‖H2
‖Gl(s)‖H2

+
‖Gr(s)−Gl(s)‖H2
‖Gl(s)‖H2

6 ε̄1+ε̄2
‖Gl(s)‖H2

= ε̄rel,

(3.19)

where the transfer function Gl(s) of the given LPM Ml is selected as the reference
because the DPMMd is built based on the LPM Ml in the system-based geometric
design. The computation of ‖Gl(s)‖H2

is rapid because the scale of the LPMMl is
small.

Suppose we obtained the relative error bound ε̄rel, as long as it is less than a user-
defined threshold, then the correspondence Tf at the physical quantity magnitude
level between the discretized DPMMd and the LPM is established and therefore
the LPM Ml and DPM Md are determined to have the weak consistency. Note that
if users want to further know the upper bound for max

t
‖yd(t) − yl(t)‖∞, then it

can be computed using Eq.3.15 and the relative error bound ε̄rel as follows:

max
t
‖yd(t) − yl(t)‖∞ 6 ε̄ ·

√∫∞
0
‖ud(t)‖2dt = ε̄rel · ‖Gl(s)‖H2

·

√∫∞
0
‖ud(t)‖2dt

(3.20)
The steps of the scheme are shown in Figure 3.10, where an LPM and a DPM

of the suspension system are used as examples. The blue symbols are the given
information, the red symbol is our aim and the rest is the intermediate results/steps.
The scheme can be summarized into four steps as listed below.

Step (i) generate ODEs of the LPMMl and PDEs of the DPMMd by any available
modeling languages and tools, then use spatial discretization schemes
(e.g. FEM) to convert the PDEs of DPMMd to a system of ODEs, and
after that convert ODEs of the LPM Ml and the discretized DPM Md to
their state-space form by linear transformation.

Step (ii) reduce the order of the discretized DPMMd by CURE scheme such that
it a priori guarantees the H2 error ε̄1 between the discretized DPMMd
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and its surrogate LPMMr.

Step (iii) solve Lyapunov equation to obtain the exact H2 error ε̄2 between the
surrogate LPMMr and the LPMMl

Step (iv) compute the a priori H2 relatively error ε̄rel between the DPMMd and
the LPM Ml using the triangular inequality and compare it with the
user-defined threshold.

3.3 Discussion
In this Chapter, we formulated the problem of model consistency analysis between
lumped and distributed parameter models as a process of checking if the given
LPM and DPM have correct correspondences between their initial and boundary
conditions and similar solutions after the field correspondence mapping. We intro-
duced a framework for model consistency analysis to solve two major underlying
issues: (1) the customized consistency analysis problem between models created
in different physical modeling languages and tools (2) the establishment of the
correspondences of model specifications and solutions.

The framework is proposed for developing software to realize automated system-
based geometric design, provided a system-level design and a library of geometric
components. Particularly, this automatic design procedure requires automatic
model consistency at both component and assembly level, where engineers need to
add appropriate ICs and BCs to the geometric parts candidates according to the
given ICs and lumped sources in the given system-level design. How to automati-
cally adding ICs and BCs is still an open but critical issue.

One potential solution could be that we first build a DPM library where geomet-
ric components are labeled with several common IC and BC types. Such a DPM
library example is shown in Figure 3.11, where a composition of common BC and
IC types is labeled to the geometric parts based on their functions. In addition, a
library of Tonti diagrams needs to be built for automatically searching the common
BC and IC types for different physical problems. Particularly in this library, the
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Figure 3.11: Automatic search geometric parts for design

Figure 3.12: Automatic search geometric assemblies for design

default functional forms (e.g. linear integral) mapping between BCs and ICs of
Tonti diagrams would be provided and users would have the authority to change
thees functional form with respect to different application scenarios. With these
two libraries and a given lumped component, the computer could automatically
add ICs and BCs to a geometric part and iteratively conduct the model consistency



43

analysis for all the geometric parts candidates until finding a consistent one. Simi-
larly, such automatic adding BCs and ICs to the geometric parts and iterative model
consistency analysis procedure at the component level could be naturally extended
to the system/assembly level as shown in Figure 3.12. Particularly, if the assembly
is assembled from the selected parts based on the consistency analysis result, then
the BCs and ICs added to the parts in the geometric assembly could be directly
inherited from BCs and ICs added to geometric parts in the consistency analysis at
the component level. Such inheritance will accelerate adding BCs and ICs to the
geometric assembly without the need to searching the Tonti diagram library again.
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4 unified semantics for lumped parameter system
modeling

This chapter introduces unified semantics for lumped parameter system model-
ing. The distinct semantics issue underlying different lumped parameter modeling
languages and tools will be first summarized in Section 4.1, followed by an intro-
duction of the algebraic topological model of lumped parameter systems in Section
4.2. After that, the extended and generalized Tonti diagrams of network theories
and how these Tonti diagrams can be used to describe single and multiple domain
lumped parameter models and generate governing equations will be illustrated in
Section 4.3 ∼ 4.4.

4.1 Distinct semantics issue of lumped parameter
modeling languages and tools

Lumped parameter models are commonly used to describe behaviors of many
engineering systems [70]. In such systems, spatially and temporally distributed
physical phenomena are approximated by a finite network of abstract components
that store, dissipate, or transform energy; the phenomena-specific constitutive prop-
erties of the components (e.g. generalized impedances) are estimated by domain
integrals from the actual system by a process of “reticulation”[92]. Bond graphs
[92], linear graphs [104], Modelica [38] and Simulink/Simscape [33] are commonly
used physical modeling languages for creating, editing, and simulating lumped pa-
rameter models. These languages may differ widely in their syntax, but have similar
(though not identical) semantics that specifies interconnectivity and constitutive
relations of individual components in a system; the resulting model of a system
created in such languages is then compiled into a system of state equations that may
be numerically solved to simulate the system’s dynamic response. Formally, the
dynamic behavior of a lumped parameter model is described by the state equations,
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a set of ordinary differential equations (ODEs) or differential algebraic equations
(DAEs), whose solutions depend on the initial conditions.

Generally speaking, all modeling languages can handle the same broad class of
problems but with non-trivial differences in system types, representations, state
equation derivation and simulation mechanisms [68, 104, 49, 115]. For example,
in Simulink, components exchange numeric information uni-directionally and are
not subject to conservation laws; by contrast, the energy flow between components
is bi-directional in other languages, satisfying conservation laws. While every
linear graph model may be represented by a bond graph, the converse statement
is not true [95]. Furthermore, parallel and serial junctions in a bond graph do
not specify ordering of branches in the junctions, which implies that every bond
graph in fact corresponds to a family of (dynamically) equivalent graph-based
models in other languages. Many languages generate state equations using efforts
and flows as variables, but their integral forms may also be used, for example in
bond graphs [69]. The above and other differences in syntax and semantics of
system modeling languages lead to challenges in construction of a unified model
consistency determination tool. Such interoperability difficulties are only likely to
increase due to ubiquitous and growing adoption of physical modeling languages
by industry and standards organizations.

Conceptually, there are two possible approaches to dealing with semantic in-
teroperability issues: “point-to-point” correspondence1 between models created
in different languages, or standardization on a single neutral format that can be
translated to/from models in any such languages. The first approach is more prac-
tical but is problematic because it requires O(n2) such translators, which is not
only expensive, but discourages development of new languages and simulation
solutions. The second approach is similar in spirit to STEP for product models,
which requires the neutral format to be formally defined and include the superset
of models present in any such language.

Irrespectively of the selected approach, semantic interoperability requires es-
tablishing formal correspondence between concepts and constructs in distinct

1Such correspondence may take a form of direct translation or using APIs.
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modeling languages. This is the main goal of this chapter. Our approach relies on
tools from algebraic topology and well known classification of physical theories
developed over the years by Tonti [111, 112], Roth [102], Branin [26], Kron [72],
and others. Importantly, this classification generalizes to higher-dimensional physi-
cal models, suggesting that the proposed framework could be extended to include
spatially-distributed models represented by three-dimensional solid models, par-
tial differential equations and numerical methods for solving partial differential
equations.

4.2 Algebraic topological models of lumped
parameter systems

Algebraic topological interpretations of LPMs and various types of electrical circuits
are well known in literature [26, 112] and are now a standard textbook material [11].
We now apply such an interpretation to LPMs and show that it provides a neutral
standard semantics for all such systems. Superficially, all algebraic topological
formulations are identical, but important semantic difference emerge in details. As
a starting point, we adopt Tonti’s classification [112] of physical theories in terms
of their algebraic topological models; however, specific requirements of the lumped
parameter system require significant extensions and modifications that we discuss
below. Strictly speaking, a proper setting for physical modeling is 4D spacetime.
But, most engineering models are set in space×time, where space and time models
are treated separately.

4.2.1 LPMs as cochains

In algebraic topological view of physics, physical properties are distributed in
spacetime over finite chunks of space called p-dimensional cells, or p-cells, (p =

0, 1, 2...) that fit together to form a cell complex that decomposes the undelying
physical space. Many choices of cells are possible; they can be open or closed, p-
simplicies, p-balls, or p-manifolds; specific choices are dictated by convenience and



47

applications and define the type of cell complex [61]. All cells are endowed with
orientation, or sense of direction, which becomes important in order to properly
assign signs to physical properties associated with cells.

As we already saw, all LPMs are formulated using 2-dimensional cells com-
plexes: 0-cells (nodes), 1-cells (edges), and 2-cells (cycles or “meshes”). These
complexes are abstract in the sense that geometric coordinates or shapes of the cells
are immaterial; only their connectivity carries important physical information.2

The distribution of physical properties is described by assigning their types and
quantities to the individual cells in this complex. The formal mechanism for doing
so requires discretizing the property g over p-cells epα as a p-cochain Cp, a formal
sum

Cp =

np∑
α=1

gαe
p
α (4.1)

For example, Figure 4.1 shows a 2-cell complex composed of 0-cells (P),1-cells
(L) and 2-cells (M) and the associated coefficients (real numbers) with 0-cells. The
coefficients typically represent discrete distributions of physical properties such as
temperature, electric potential, tip displacement, etc. The 0-cochain corresponding
to such a distribution is

C0 = −2.1P1 + 1.6P2 + 0.8P3 + 0P4 + 3.0P5

The relation between physical properties is governed by two types of fundamen-
tal laws: metric laws and topological laws. Metric laws usually involve measure-
ment while topological laws relate physical properties associated with space and
its boundary. Topological laws can be formulated using formal linear coboundary
δ operations on cochains. Specifically, coboundary δp operating on a p-cochain pro-
duces a (p+ 1)-cochain by transferring and adding the coefficient of the p-cochain

2This is in stark contrast to spatially distributed physical phenomena modeled governed by
partial differential equation where geometry of cells becomes critical.
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Figure 4.1: A 2-cell complex and coefficients associated with all 0-cells

to its cofaces (Eq.4.2). Formally,

δp(C
p) = δp

(
np∑
α=1

gαe
p
α

)
=

np+1∑
β=1

(
np∑
α=1

hαβ · gα

)
· ep+1
β , (4.2)

where np represents the number of cells in the p-cochain. The incidence coefficient
hαβ = [epα, ep+1

β ] ∈ {0,±1} is determined by relative orientation of p-cell epα and it
cofaces (p+1)-cell ep+1

β [112]. If ep+1
β is not a coface of epα, thenhαβ = 0; otherwise, if

the orientations of epα and ep+1
β are consistent, then hαβ = +1, otherwise, hαβ = −1.

If we denote the usual p-incidence matrix as A = [hβα], then the coboundary
operator δp is commonly represented by its transpose AT .

Figure 4.2: Example of the coboundary operation over a 0-cochain producing a
1-cochain

For example, suppose the coefficients associated with the 0-cells in Figure 4.2
are electric potentials, then the coboundary operation δ0 over 0-cochain electric
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potentials C0 would produce a 1-cochain voltage drops

C1 = δ0(C
0)

= (−(−2.1) + 1.6)L1 + (−1.6 + 0.8)L2 + (−(−2.1) + 0)L3

+(−0.8 + 0)L4 + (−0.8 + 3.0)L5 + (−0 + 3.0)L6

= 3.7L1 + (−0.8)L2 + 2.1L3 + (−0.8)L4 + 2.2L5 + 3.0L6 ,

where the coefficient associated with 1-cell Li is obtained by adding the two coef-
ficients that are respectively associated with its two cofaces (0-cells), with taking
into account the orientation consistency between Li and its cofaces.

Informally, the coboundary operations capture the essence of balance, equi-
librium, conservation, compatibility, and other topological laws. For cochains on
finite cell complexes, coboundary operators δp,p = 1, 2, 3 correspond to the usual
vector calculus operators of gradient, curl, and divergence respectively. The vector
calculus identities ∇× (∇φ) = 0, and ∇ · (∇× F) = 0 are simply instances of the
Poincare lemma stating that δp(δp−1()) = 0, where 0 denotes a null cochain. A
collection of cochains and coboundary operators on a cell complex form a cochain
complex[61].

4.2.2 Physical theories as Tonti diagrams

Every physical theory is conceptualized in terms of relationships between two types
of dual physical quantities that are referred to by various authors as configuration
/source [112], through/across [26], or effort/flow [68]. In what follows we will
adopt Tonti’s convention and distinguish between configuration type variables,
that are modeled as cochains on primary cell complex decomposition of space, and
source variables that are modeled as cochains on the dual cell complex decomposi-
tion of the same space. This notion is illustrated in Figure 4.8, where the primal
cell complex is shown in blue the dual cell complex is shown in black. (The actual
geometry of cells is irrelevant for this discussion.) Each p-dimensional cell in the
primal cell complex is dual to a unique (n − p)-dimensional cell in the dual cell
complex. By duality, it also follows that the coboundary operator δ̃p on the dual
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cell complex can be represented by the transpose of δp = AT , or simply A.
This conceptualization of physical quantities in terms cochains on dual cell

complexes is not arbitrary: it arises from first principles based on how the postulated
quantities are measured. In each case, the measurement process implies the intrinsic
dimension of the associated quantity (e.g., displacements are measured at a point,
currents are measured across the surface, voltage drop is measured along a path,
and so on). The decision whether a particular quantity belongs to the primal or dual
complex is determined by the oddness principle that requires change of sign under
change of orientation of the relevant cell. The primal cells are are endowed with
inner orientation, while the dual cells are oriented relative to the containing (outer)
space. The reader is referred to [112] for detailed discussion of these concepts.

Figure 4.3 shows the correspondence between the primal and dual cochains of
variables and naming conventions used by different authors and lumped-parameter
modeling systems. We note that the adopted classification in terms of primal and
dual cochains is consistent with the conventions in linear graphs [104], Modelica
[38], Simscape [33] and NIST models [24], but differs slightly from that in bond
graphs [70].

Physical laws (topological and metric) relate different types of variables within
each physical theory. Tonti proposed a systematic method for representing these
laws using a diagram that can be considered an evolved combination of the so-
called Roth diagrams [103] in terms of cochain sequences and “Maxwell house”
diagram to represent all topological and metric relationships in electromagnetism
[25]. A simple example of such a diagram is the Tonti diagram of electrical (static)
network theory is shown in (Figure 4.4). It describes the network systems that
satisfy Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) using a
pair of cochains complexes dual to each other [112].

The diagram consists of two vertical sequences corresponding to the primal
(left) and dual (right) cochain complexes, ordered by dimension. The vertical
arrows correspond to the coboundary operations, going down for primal cochains
and going up for dual cochains. Formally, the two sequences are exact3 and form

3The cochain sequence is exact if it satisfies δp ◦ δp−1 = 0 (p > 1)
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Figure 4.3: Categorization of physical variables category in different approaches to
physical modeling

Figure 4.4: Tonti Diagram of network theory - constitutive equations are modified
to account for voltage and current sources

two dual cochain complexes:

primal : e0 δ0−→ v1 δ1−→ 02 (4.3)
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dual : 02 δ̃1←− j1 δ̃0←− i0 (4.4)

The measured relationships between dual quantities are represented by the
horizontal links in the diagram. In the case of network theory, as shown in Figure
4.4, the primal variable are node potentials e associated with 0-cells, voltage drops
v and sources associated with 1-cells, and voltage drops associated with 2-cells
(meshes or cycles) that are identically 0 as the consequence of KVL. The cochains
of adjacent dimensions satisfy topological laws expressed by the corresponding
coboundary operations depicted as down-facing vertical arrows. Thus, 1-cochain
of voltage drops v1 = ATe0 is implied by the coboundary operation δ0 on 0-cochain
of node potentials e0; and KVL is just a restatement of the Poicare lemma. Similarly,
the dual source (current) variables: 0-cochain i, 1-cochains j, and 2-cochain 0
are indicated in the right branch of the diagram, related by the sequence of two
coboundary operations, indicated as arrows going up and expressing KCL.

The constitutive relation between 1-cochain of voltage drops v and 1-cochain
of currents j satisfies Ohm’s Law (or its inverse). The diagram also reveals two
(dual) methods of generating the governing state equations for network models,
depending on the choice of state variables. The two methods are indicated by
primal and dual ‘cycles’ which refer to two different ways of composing topological
and metric laws. For instance, in the primal cycle, 1-cochain voltage drop v is
obtained by coboundary operation on 0-cochain node potential e. Using the Ohm’s
law, v is converted to 1-cochain branch currents j in the dual cell complex, where
coboundary operation A on j equals zero. The physical meaning of the latter
coboundary operation A is that the algebraic sum of branch currents of a dual loop
equals zero, as required by KCL. Similarly, the dual cycle relies on KVL to generate
the dual state equations for the same system.

Even though the diagram in Figure 4.4 describes a static phenomena, the reader
will notice that the configuration and source variables are associated with time
instances: primal instances for source variables and dual instances for configuration
variables. This distinction becomes critical in dynamic physical models where, once
again, the primary time elements (0-dimensional instances and 1-dimensional
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intervals) are distinguished from the dual time elements based on the oddness
principle that requires sign change under reversal of motion [112]. Strictly speaking,
a proper setting for all physical models is a 4D spacetime, which we chose to
represent as direct product of space and time. In other words, for each type of
spatial variable, we can also consider its behavior in time which is represented by a
pair of dual 1-dimensional time complexes, as shown in Figure 4.5. Here 0-cells I∗
and 1-cells T∗ represent primal time instances and intervals, while 0-cells Ĩ∗ and
1-cells T̃∗ represent the dual time instances and intervals, respectively.

Figure 4.5: Cell complexes model of time

Figure 4.6: Tonti diagram of RLC circuit - only voltage sources are included

The introduction of time cell complexes in time has two consequences. First, it
identifies the usual time derivative with the corresponding coboundary operator
δt. Thus, if q is a 0-cochain of primal (or dual) time instances, then I (respectively,
Ĩ) is the 1-cochain of time intervals of q defined by δt0q (respectively δ̃t0q). On a
finite cell complex, δt0 become the time difference operation. Secondly, all space
Tonti diagrams now acquire an additional time dimension, giving rise to horizontal
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sections of the diagram. One such section is shown in Figure 4.6, which corresponds
to the Tonti diagram of RLC circuit systems [112]. Here, the usual differential
relations V = dΦ/dt and I = dQ/dt are consequence of topological relations
V = δ̃t0Φ and I = δt0Q, respectively, where Φ is magnetic flux and Q is electric
charge. Two new constitutive equations describe the capacitance relation between
electric chargeQ and voltage drop v and the inductance relation between magnetic
flow Φ and currents j. The second time derivative is the result of composition
of two first time derivatives. For instance, the second order equation differential
equation V = dΦ/dt =Ld (I)/dt =Ld2Q

/
dt2 in Figure 4.6 can be expressed as

V = δ̃t0Φ = Lδ̃t0I = δ̃t0Lδt0Q [112, 44]. Finally, we note that the vertical space
diagram in Figure 4.4 and the horizontal time diagram in Figure 4.6 can be combined
into a single three-dimensional diagram, as described in Section 4.3 and shown in
Figure 4.7a.

(a) Matrix operators on dual cell complexes (b) Topological and constitutive relationships
on a single cell complex

Figure 4.7: Extended Tonti diagram for RLC network system - with voltage and
current sources

In addition to physical quantities in Figure 4.4 and 4.6, the diagram in Figure
4.7a includes magnetic flux potential Ψ and mesh electric charge q that are related
by coboundary operators to magnetic flux Φ and electric charge Q respectively. In
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other words, the extended Tonti diagram includes two additional cochain complexes
defined by the two sequences:

primal : Ψ0 δ0−→Φ1 δ1−→ 02 (4.5)

dual : 02 δ̃1←− Q1 δ̃0←− q0 (4.6)

Additional horizontal arrows indicate the corresponding time coboundary
(derivative) operations. With the added constitutive, topological equations and
physical variables, the extended Tonti diagram includes all possible quantities, as
well as constitutive and topological laws of RLC electrical circuit systems. In the
following section, we explicitly distinguish between the constitutive and topological
laws as they are commonly used in practice in a single cell complex network model
that is shown in Figure 4.7b.

4.2.3 Dual cochain complexes on a single cell complex

The ultimate goal of physical modeling is numerical simulation which is usually
performed on a discretization of spacetime. If one were to accept that every physical
theory is formulated in terms of dual cochain complexes, it would be reasonable to
expect that most modeling and simulation tools are also formulated in terms of dual
discretizations (one for configuration variables and the other one for the source
variable) as illustrated in Figure 4.8 (on the left). In fact, such dual discretizations
are often advocated in literature as more natural and numerically stable alternatives,
for example, in mimetic discretization schemes [31], cell methods [112, 44], discrete
exterior calculus [64] and other modeling approaches. However, the vast majority
of numerical schemes appear to be based on a single discretization of space, which
supports evaluation of both primal and dual cochains. For example, in most finite
element, finite difference, and finite volume methods, all configuration and source
variables are associated with cells (often nodes) in the underlying mesh, and their
duality is hidden within the numerical scheme itself [79].

In LPMs, dual discretizations are particularly counter-intuitive, since all spatially
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distributed properties have already been integrated (lumped) and only connectivity
of the underlying cell complex remains visible. That connectivity often directly
corresponds to the physical embedding; for example, a single electrical network
carries both voltage and current information. Similarly, general network model is a
single cell complex where primal and dual cochains are represented. The mapping
of dual cochains on the primal cell complex is straightforward and is accomplished
by mapping the dual (n− p)-cells to their corresponding primal p-cells, as shown
in Figure 4.8. Consider how this mapping would work for the cochains in Figure
4.4. With this mapping, node potentials e, voltage drops v and sources, and voltage
drops of cycles 0 are still associated with primal 0-cells (e.g. A), 1-cells (e.g. L),
and 2-cells (e.g. M) respectively. However, the dual source (current) variables:
mesh currents i, branch currents j, and currents merging at nodes 0 which were
originally associated with dual 0-cells (e.g. a), 1-cells (e.g. l), and 2-cells (e.g. m)
are now associated with primal 2-cells (e.g. M), 1-cells (e.g. L), and 0-cells (e.g. A)
respectively.

Figure 4.8: Dual cochain complexes on a single cell complex

With this mapping, all (n− p)-coboundary operations in dual cell complexes
would become the p-boundary operations ∂ in the primal cochain complex, which
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operate on a p-cochains and produce a (p− 1)-cochains:

∂p(C
p) = ∂p(

np∑
α=1

gαe
p
α) =

np−1∑
β=1

(
np∑
α=1

hαβ · gα

)
· ep−1
β , (4.7)

which is similar to Eq.4.2, except that the coefficients are transferred from p-cells
to their (p − 1)-faces. This implies that the coboundary operation δ̃n−p on the
dual cells complex is mapped into the boundary operation ∂p on the primal cell
complex,4 i.e.,

∂p = δ̃n−p (4.8)

This explains, for example, why the KCL on the primal complex is described by
condition ∂1j1 = 0, stating that the branch currents must add up to zero at every
node.

The single complex network model is summarized by a new type of Tonti
diagram shown in Figure 4.7b. Here the dual (source) cochains have been mapped
to the corresponding cochains on the primal cell complex to form the dual cochain
complex with boundary ∂p operators replacing the original dual δ̃n−p coboundary
operators. In other words, the dual cochain sequences (4.4) and (4.6) become
respectively

i2 ∂2−→ j1 ∂1−→ 00 (4.9)

q2 ∂2−→ Q1 ∂1−→ 00 (4.10)

In the following sections, we will assume that an algebraic topological model of
a lumped parameter system is described by such single (primal) cell complex and a
corresponding Tonti diagram with four cochain complexes (correspong to the four
vertical ‘legs’ of the diagram) and all relationships between them.5 The two primal
cochain complex include: (1) 0-cochain node potentials e0, 1-cochain voltage drops

4This observation also justifies use of ∂p operator, usually reserved for p-chains, on p-cochains
5Strictly speaking, use ∂p operators give rise to chain complexes, but it should be clear that these

chain complexes on the primal cell complex are isomorphic to the cochain complexes over the dual
cell complex.
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v1, 2-cochain of mesh voltages (which is 0 by KVL); and (2) 0-cochain magnetic
flux potentials Ψ0, 1-cochain magnetic fluxesΦ1, and 2-cochain of mesh magnetic
fluxes and 2-cochain of mesh voltages (which is 0 by KVL). The cochains in each
complex are related by the spatial coboundary operators, while the corresponding p-
cochains in the two complexes are related by the time boundary operator. Similarly,
the two dual cochain complexes are: (1) 0-cochain of node currents (which is 0
by KCL), 1-cochain currents j1, 2-cochain mesh currents i2; and (2) 0-cochain of
node electric charges, 1-cochain electric charges Q1, 2-cochain mesh electric charges
q2. The cochains in each of the dual complexes related by the spatial boundary
operators, while the corresponding p-chains in the two dual complexes are related
by the time coboundary operators.

4.3 Single-domain lumped parameter systems
In this section, we will show how to use Tonti diagrams to describe lumped pa-
rameter systems and introduce an automated method of generating system state
equations. We will focus on LPMs of a single physical domain, exemplified by
classical RLC electrical circuit systems. Application to other physical domains is
immediate, since all such models are isomorphic.

4.3.1 Static systems

Classical single-domain RLC electrical circuits consist of five types of physical
elements: resistors, capacitors, inductors, voltage sources and current sources. We
will first consider a special case of static resistive circuits that contain only constant
resistors, as well as voltage and current sources; later we will extend the approach
to general dynamic electrical circuits. The algebraic topological structure of static
electrical circuits relies only on the two dual cochain complexes modeled over
a single cell complex. The primal cochain complex includes 0-cochain of node
potentials e0, 1-cochain of voltage drops v1, and 2-cochain of mesh voltages (which
is 0 by KVL), related by the coboboundry operators; the dual cochain complex
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consists of 0-cochain of node currents (which is 0 by KCL), 1-cochain of branch
currents j1, and 2-cochain mesh currents i2 related by the boundary operators.
The topological and constitutive relations between these cochains are given by the
diagram in Figure 4.4, and two methods of generating the equations are indicated
by primal and dual ‘cycles’ respectively in the diagram. In the context of the more
general model, these cycles correspond to red and blue paths in the extended Tonti
diagram as shown in (Figure 4.9). Each path is defined by a sequence of the arrows
in the diagram indicating composition of the corresponding physical laws.

Figure 4.9: Paths corresponding to primal and dual cycles in Figure 4.4

For example, if we use the red path in Figure 4.9, then the 0-cochain e0 is selected
as the state variable. The system state equation can be generated by composition of
three steps starting with a 0-cochain e0 of node potentials. First, the downward red
arrow indicates that the node potentials give rise to voltage drops associated with
incident branches using the coboundary operator v1 = δ0e0. The second lateral red
arrow correspond to the constitutive relation j1 = G

(
v1 + v1

f
)
+ j1

f , which accounts
for the contribution of 1-cochains of voltage sources v1

f and source currents j1
f in each

branch of the electrical network. Finally, the upward vertical red arrow indicates
the application of KCL ∂1j1 = 0 requiring that branch currents add up to zero. The
composition of the three laws yields:
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∂1
(
G
(
δ0e0 + v1

f
)
+ j1

f
)
= 0 (4.11)

Eq.4.11 is usually written in a more traditional form as

∂1
(
G
(
−δ0e0 − v1

f
)
+ j1

f
)
= 0 (4.12)

As explained in [112], the minus sign in front of δ0e0 is due to the largely
historical assumption that the vertices (0-cells) of the primal cell complex are
oriented as sinks. The second minus sign in front of v1

f signifies the fact that a
(positive) voltage source should be subtracted from the (positive) voltage drop in
every branch.

An alternative method for generating the system state equations follows the dual
blue path in Figure 4.9. The process starts with the dual 2-cochain of mesh currents
i2 selected as the state variable and amounts to composition of the analogous three
steps: boundary operator ∂2 applied to mesh currents in order to generate branch
currents, constitutive Ohm’s law R that relates the branch currents to voltage drops,
and coboundary operator δ1 applied to the voltage drops in accordance with KVL.
Taking into account the voltage and current sources, the process results in:

δ1
(
R(∂2i2 − j1

f
)
+ v1

f ) = 0 (4.13)

Collecting the terms with known voltage and current sources and moving them
to the right hand side, the system state equations Eq.4.12 and Eq.4.13 transform to
Eq.4.14 and Eq.4.15, respectively.

∂1Gδ0e0 = ∂1
(
j1
f − Gv1

f
)

(4.14)

δ1R∂2i2 = δ1
(
−v1

f + Rj1
f
)

(4.15)

When boundary and cobounadry operators are replaced by the corresponding
incidence matrices describing a cell complex underlying a specific lumped param-
eter system, the state equations become systems of linear equations that can be
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solved for the unknown state variables (node potentials e0 and mesh currents i2

respectively).

(a) An electrical circuit of pure resistance
(b) Topological structure

Figure 4.10: An electrical circuit of pure resistance and its topological structure

Example 1. We will use an example of static electrical circuit in Figure 4.10a to illustrate
the derivation of Eq.4.14 and Eq.4.15 in concrete setting. The shown electrical network
contains four constant resistors R1 = 6Ω, R2 = 3Ω, R3 = 2Ω, R4 = 4Ω, two constant
current sources C1

s = 3A, C4
s = 1A and two constant voltage sources V1

s = 8V , V4
s = 4V .

Topologically, the network is a 2-dimensional complex shown in Figure 4.10b and consisting
of three 0-cells (A,B,G), four 1-cells (L1,L2,L3,L4) and two 2-cells (M1,M2).

The algebraic topological model of the electrical circuit contains: primal 0-cochain node
potentials (e0 = eA ·A+eB ·B+eG ·G), primal 1-cochain voltage drops (v1 = V1 ·L1+V2 ·
L2+V3 ·L3+V4 ·L4), dual 1-cochain of branch currents (j1 = j1 ·L1+j2 ·L2+j3 ·L3+j4 ·L4),
dual 2-cochain of mesh currents (i2 = i1 ·M1 + i2 ·M2) and two cochains that are always
0: the dual 0-cochain of node currents and the primal 2-cochain of loop voltage drops. In
order to get unique solution of the state equations, we consider 0-cell G as the reference node,
implying the boundary condition of eG = 0. Following the red path on the Tonti diagram
generates equation Eq.4.14 with individual terms as follows:

∂1 =

 −1 −1 −1 0
0 0 +1 −1
+1 +1 0 +1

 (4.16)
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δ0 = ∂
T
1 (4.17)

G =


R−1

1 0 0 0
0 R−1

2 0 0
0 0 R−1

3 0
0 0 0 R−1

4

 =


1/6 0 0 0

0 1/3 0 0
0 0 1/2 0
0 0 0 1/4

 (4.18)

j1
f =

[
C1
s 0 0 −C4

s

]T
=
[

3 0 0 −1
]T

(4.19)

v1
f =

[
V1
s 0 0 V4

s

]T
=
[

8 0 0 4
]T

(4.20)

Substituting Eq.4.16 ∼ Eq.4.20 into Eq.4.14 we obtain a linear system of equations that
has the solution of e0 = [−1/2, 7/3, 0]T . Once the 0-cochain node potentials e0 is known,
it is easy to obtain 1-cochain voltage drops v1 and 1-cochain branch currents j1 by using the
topological equation v1 = −

(
δ0e0) and the constitutive equation j1 − j1

f = G
(
v1 − v1

f
)
.

Similarly following the blue path in the Tonti diagram, the generated system state
equation Eq.4.15 would involve:

δ1 =

[
−1 +1 0 0
0 −1 +1 +1

]
(4.21)

∂2 = δ1
T (4.22)

R =


R1 0 0 0
0 R2 0 0
0 0 R3 0
0 0 0 R4

 =


6 0 0 0
0 3 0 0
0 0 2 0
0 0 0 4

 (4.23)

Substituting Eq.4.19 ∼Eq.4.23 into Eq.4.15, we obtain another system of linear equations
that yields the solutions for the mesh currents i2 = [ −19/12 −17/12 ]T . The 1-cochain
branch currents j1 and 1-cochain voltage drops v1 are immediately obtained by applying the
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topological relation j1 = ∂2i2 and the constitutive equation v1 − v1
f = R

(
j1 − j1

f
)
.

4.3.2 Dynamic systems

In this section, we will extend the above approach to general dynamic electrical
circuits. The algebraic topological structure of dynamic electrical circuits relies
on cochains from all four cochain complexes modeled over a single cell complex.
The topological and constitutive relations between these cochains are given by
the diagram in Figure 4.7b and eight different methods of generating the state
equations are indicated by paths in the diagrams shown in Figure 4.11. Just as with
static systems, each path is a sequence of the arrows indicating composition of the
corresponding physical laws. In contrast to static systems, the middle horizontal
section of the diagram allows three alternative (pink, purple and blue) paths
relating the primal 1-cochain of voltage drops v1 and the dual 1-cochain of branch
currents j1 corresponding to capacitance, resistance, and inductance constitutive
relationship respectively. The presence of alternative paths indicate superposition
of the corresponding equations generated by each path.

For example, if we use the paths in Figure 4.11a to generate the state equations,
then the 0-cochain Ψ0 is selected as the state variable. The system state equation
can be generated by composition of five physical laws (two topological and three
constitutive) starting with a 0-cochain Ψ0. First, coboundary operator in space δ0

applied to potential magnetic fluxes Ψ0 in order to generate magnetic fluxes Φ1.
Now the path splits in two: the blue arrow corresponds to constitutive law L−1 (of
the inductor) that relates the magnetic fluxes to branch currents of inductors; the
pink arrow takes the magnetic fluxes to generate voltage drops v1 via the boundary
operator in time ∂t1. From here the path splits in two again: the purple arrow
corresponds to the constitutive Ohm’s law G that relates the voltage drops to branch
currents of resistors; continuing along the pink path, the constitutive capacitance
law C relates the voltage drops to electric charges Q1 of capacitors is followed by the
time coboundary operator δt0 applied to electric charges of capacitors to generate
branch currents of capacitors. Note that the three paths corresponding to the three
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(a) State variable: Ψ0 (b) State variable: q2 (c) State variable: e0 (d) State variable: i2

(e) State variable: j1 (f) State variable: Φ1 (g) State variable: Q1 (h) State variable: v1

Figure 4.11: State equation generation paths on the extended Tonti diagram

constitutive laws merge into a single 1-cochain of branch currents j1, which is then
transformed one more time by the upward green arrow corresponding to KCL
∂1j1 = 0. Taking into account the voltage and current sources, above processes
results in state equations Eq.4.24:

∂1
(
δt0C

(
−∂t1

(
δ0Ψ

0)− v1
f
)
+ R−1 (−∂t1 (δ0Ψ

0)− v1
f
)
+ L−1 (− (δ0Ψ

0)− δt0v1
f
)
+ j1

f
)
= 0

(4.24)
Collecting the terms with known voltage and current sources and moving them

to the right hand side, the system state equations Eq.4.24 can be written in a more
intuitive form as
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∂1

δt0C∂t1δ0Ψ
0︸ ︷︷ ︸

currents of C

+R−1∂t1δ0Ψ
0︸ ︷︷ ︸

currents of R

+ L−1δ0Ψ
0︸ ︷︷ ︸

currents of L

 = ∂1

 j1
f︸︷︷︸

current sources

−
(
δt0C + R−1 + L−1δt0

)
v1

f︸ ︷︷ ︸
equivalent current sources

generated from
voltage sources


(4.25)

Other methods for generating the system state equation follow the different
paths in Figure 4.11b - Figure 4.11h. For example, in Figure 4.11b, the process starts
with the dual 2-cochain of mesh charge q2 selected as the state variable and amounts
to another composition of the five physical laws indicated by the corresponding
paths. The blue, purple, and pink path corresponds to the three constitutive laws
(capacitance, resistance, and inductance respectively), relating the branch electric
charges to the branch voltage drops. The two green arrows correspond to the ∂2

operator transforming mesh charges q2 to branch charges Q1 and application of
KVL (δ1v1 = 0). Putting it all together and taking into account the voltage and
current sources, the composition procedures results in Eq.4.26, or in a more intuitive
form similar to Eq.4.25, as shown in Eq.4.27.

δ1
(
∂t1L

(
δt0∂2q2 − j1

f
)
+ R

(
δt0∂2q2 − j1

f
)
+ C−1 (∂2q2 − ∂t1j1

f
)
+ v1

f
)
= 0 (4.26)

δ1

 ∂t1Lδt0∂2q2︸ ︷︷ ︸
voltage drops of L

+ Rδt0∂2q2︸ ︷︷ ︸
voltage drops of R

+ C−1∂2q2︸ ︷︷ ︸
voltage drops of C

 = δ1

 −v1
f︸︷︷︸

voltage sources

+
(
∂t1L + R + C−1∂t1

)
j1
f︸ ︷︷ ︸

equivalent voltage drops
generated from
current sources


(4.27)

It can be observed that Eq.4.25 and Eq.4.27 respectively represent the current
and voltage equilibrium of the system. The generated system state equations may
be viewed as algebraic with coboundary operators interpreted as finite difference
operators on a finite cell complex. However, as we already observed, in lumped
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parameter systems space and time are treated separately, and discretization of time
is often delayed until a particular numerical integration scheme is chosen. In this
case, viewing boundary ∂t1 and coboundary δt0 operations as differentiation in time
syntactically transforms Eq.4.25 and Eq.4.27 to a more familiar form:

∂1

 Cδ0Ψ̈
0︸ ︷︷ ︸

currents of C

+ R−1δ0Ψ̇
0︸ ︷︷ ︸

currents of R

+ L−1δ0Ψ
0︸ ︷︷ ︸

currents of L

 = ∂1


j1
f︸︷︷︸

current sources

−

(
Cv̇1

f + R−1v1
f + L−1

∫
v1

fdt

)
︸ ︷︷ ︸

equivalent current sources
generated from
voltage sources


(4.28)

δ1

 L∂2q̈2︸ ︷︷ ︸
voltage drops of C

+ R∂2q̇2︸ ︷︷ ︸
voltage drops of R

+ C−1∂2q2︸ ︷︷ ︸
voltage drops of L

 = δ1


−v1

f︸︷︷︸
voltage sources

+Lj̇1
f + Rj1

f + C−1
∫

j1
fdt︸ ︷︷ ︸

equivalent voltage drops
generated from
current sources


(4.29)

(a) A simple RLC electrical circuit
(b) Topological structure

Figure 4.12: A simple RLC electrical circuit and its topological structure

Example 2. We will use a simple example of RLC electrical circuit (Figure 4.12a) to
illustrate the derivation of Eq.4.29. The electrical network contains one resistor R, one



67

capacitor C, one inductor L and one voltage source Vs. Topologically, the network is a
2-dimensional cell complex shown in Figure 4.12b and consists of three 0-cells (P1,P2,P3),
three 1-cells (L1,L2,L3) and one 2-cell (M1).

The algebraic topological model of the electrical circuit contains: primal 0-cochain node
potentials (e0 = e1 · P1 + e2 · P2 + e3 · P3), primal 0-cochain magnetic flux potentials
(Ψ0 = ψ1·P1+ψ2·P2+ψ3·P3), primal 1-cochain voltage drops (v1 = v1·L1+v2·L2+v3·L3),
primal 1-cochain magnetic fluxes (Φ1 = φ1 ·L1+φ2 ·L2+φ3 ·L3), dual 1-cochain currents
(j1 = j1 ·L1+j2 ·L2+j3 ·L3), dual 1-cochain electric charges (Q1 = Q1 ·L1+Q2 ·L2+Q3 ·L3),
dual 2-cochain mesh currents (i2 = i ·M1), dual 2-cochain mesh electric charges (q2 =

q ·M1), and four cochains that are always 0: 2-cochain loop voltage drops, 2-cochain loop
magnetic fluxes, 0-cochain node currents and 0-cochain of node electric charges. Following
the paths in Figure 4.11b generates Eq.4.29, with individual terms as follows:

δ1 =
[

1 1 1
]

(4.30)

∂2 = δ1
T (4.31)

L =

 0 0 0
0 L 0
0 0 0

 (4.32)

R =

 R 0 0
0 0 0
0 0 0

 (4.33)

C−1 =

 0 0 0
0 0 0
0 0 C−1

 (4.34)

v1
f =

[
−Vs 0 0

]T
(4.35)



68

j1
f =

[
0 0 0

]T
(4.36)

Substituting Eq.4.30 ∼ Eq.4.36 into Eq.4.29, we obtain the system state equations as
shown in Eq.4.37.

Lq̈+ Rq̇+ C−1q = Vs (4.37)

(a) An RLC electrical circuit (b) Topological structure

Figure 4.13: An RLC electrical circuit and its topological structure

Example 3. We will use another example of electrical circuit in Figure 4.13a to illustrate the
derivation of Eq.4.28. The shown electrical circuit contains one resistor R2, two capacitors
C1,C5, two inductors L3, L4, one current sourceCs and one voltage sourceVs. Topologically,
the network is a 2-dimensional cell complex shown in Figure 4.13b, and consisting of four
0-cells (A,B,C,G), five 1-cells(l1,l2,l3,l4,l5) and two 2-cells(M1,M2).

The algebraic topological model of the electrical circuit contains: primal 0-cochain
node potentials (e0 = eA · A + eB · B + eC · C + eG · G), primal 0-cochain magnetic
flux potentials (Ψ0 = ψA · A + ψB · B + ψC · C + ψG · G), primal 1-cochain voltage
drops (v1 = v1 · l1 + v2 · l2 + v3 · l3 + v4 · l4 + v5 · l5), primal 1-cochain magnetic fluxes
(Φ1 = φ1·l1+φ2·l2+φ3·l3), dual 1-cochain currents (j1 = j1·l1+j2·l2+j3·l3+j4·l4+j5·l5),
dual 1-cochain electric charges (Q1 = Q1 · l1 +Q2 · l2 +Q3 · l3 +Q4 · l4 +Q5 · l5), dual
2-cochain mesh currents (i2 = i1 ·M1 + i2 ·M2), dual 2-cochain mesh electric charges
(q2 = q1 ·M1 +q2 ·M2), and four cochains that are always 0: 2-cochain loop voltage drops,
2-cochain loop magnetic fluxes, 0-cochain node currents and 0-cochain of node electric
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charges. In order to get unique solution of the state equations, we consider 0-cell G as the
reference node, implying the boundary condition of eG = 0. Following the paths in Figure
4.11a, generates Eq.4.28, with individual terms as follows:

∂1 =


+1 +1 0 0 +1
−1 −1 −1 0 0
0 0 +1 −1 0
0 0 0 +1 −1

 (4.38)

δ0 = ∂
T
1 (4.39)

C =


C1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 C5

 (4.40)

R−1 =


0 0 0 0 0
0 1/R2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (4.41)

L−1 =


0 0 0 0 0
0 0 0 0 0
0 0 1/L3 0 0
0 0 0 1/L4 0
0 0 0 0 0

 (4.42)

v1
f =

[
Vs 0 0 0 0

]T
(4.43)

j1
f =

[
Cs 0 0 0 0

]T
(4.44)
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Substituting Eq.4.38 ∼ Eq.4.44 into Eq.4.28, we obtain the system state equations
Eq.4.45 as follows:

C1 + C5 −C1 0 −C5

−C1 C1 0 0
0 0 0 0

−C5 0 0 C5

 Ψ̈0
+


1/R2 −1/R2 0 0
−1/R2 1/R2 0 0

0 0 0 0
0 0 0 0

 Ψ̇0
+


0 0 0 0
0 1/L3 −1/L3 0
0 −1/L3 1/L3 + 1/L4 −1/L4

0 0 −1/L4 1/L4

Ψ0 =


Cs − V̇sC1

−Cs + V̇sC1

0
0


(4.45)

4.4 Multi-domain lumped parameter systems

4.4.1 Interactions of single-domain models

Engineering systems are usually constructed as compositions of single-domain
subsystems in order to perform complex engineering tasks. Representative exam-
ples include electric motors (electro-mechanical systems), ovens (electro-thermal
systems), hydraulic pumps (hydraulic-mechanical systems), etc. We will refer
to such systems as multi-domain systems, where lumped-parameter behavior of
each single-domain is governed by an extended Tonti diagram as described in the
previous section. It should be understood that multi-domain systems subsume the
special case of homogeneous systems where all single-domain systems are of the
same type, e.g. all electrical or all mechanical. Composition of two single-domain
systems is associated with the process of energy conversion between the two sys-
tems, also called transduction [69]. Specific means of transduction vary from system
to system, but common examples of transducers (devices the perform transduc-
tion) include gears and levers, electrical transformers, motors, piezoelectric devices,
hydraulic pumps, and so on.

Devices used to couple the same type variables of different physical domains are
usually called transformers (e.g. electrical transformers), while devices coupling
the dual type variables are called gyrators (e.g. electric motors). Physical transform-
ers and gyrators always have energy loss during the energy transduction, but if the
leakage is small enough then the energy loss is usually neglected during modeling.
Transformers and gyrators with no energy loss are called ideal transformers and
gyrators [69]. System modeling languages generally use ideal transformers and
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gyrators as abstract constructs in order to avoid modeling complex structures of
physical transformers and gyrators devices. For instance, bond graphs use abstract
2-port transformers and gyrators which can be used to connect any 1-ports. Figure
4.14 and Figure 4.15 show several transformer and gyrator models from different
system modeling languages.

(a) Schematic ideal electrical transformer (b) Bond graph model of transformers

(c) Modelica model of the ideal electrical
transformer (d) Linear graph model of transformers

Figure 4.14: Comparison of transformers of different modeling languages

Such abstract transformers and gyrators in each language can represent hun-
dreds of complex transformer and gyrator devices. For example, Figures 4.16 and
4.17 show two examples of multi-domain models represented by different model-
ing languages. Figure 4.16 is an example of a homogeneous multi-domain system,
where all sub-domains are electrical domains. Figure 4.17 is an example of a hetero-
geneous multi-domain system, where one electrical domain and one mechanical
domain are connected by a DC motor.

In our proposed combinatorial model of lumped parameter systems, physi-
cal transducer devices can be abstracted by additional relations between primal
and dual variables in each of the subsystems; such relations may be governed
by additional constitutive, interaction, or conservation constrains imposed on the
multi-domain system [112]. For example, consider the three-domain system con-
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(a) Schematic ideal electrical gyrator (b) Bond graph model of gyrators

(c) Modelica model of the ideal gyrator (d) Linear graph model of gyrators

Figure 4.15: Comparison of gyrators of different modeling languages

sisting of a hydraulic pump that is controlled by an electrical motor. Behaviors of
the subsystems (electrical, rotational motion, and hydraulic) are described by the
corresponding extended Tonti diagrams) that are further constrained as shown in
Figure 4.18.

In principle, such a representation is sufficient for capturing the behavior of a
multi-domain system. Each Tonti diagram corresponds to a system of ordinary
differential equations that are coupled by the transducer constraints. When the
constraints are algebraic, this representation corresponds to the usual system of
differential algebraic equations. More complex transducer relationships may involve
multiple physical variables as well as non-linear and differential constraints [108],
resulting in more complex models of behaviors.

However, this representation neither recognizes nor takes advantage of the fact
that all single-domain behaviors are isomorphic, which allows to treat the whole
multi-domain system as a collection of four constrained cochain complexes on a
single cell complex model. Below we will define such a model, which takes a form
of a generalized Tonti diagram. We then show that, in the presence of two most
common transducers: ideal transformers and gyrators, the governing equations for
such a model may be generated by following the paths on the generalized Tonti
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(a) A multi-domain RLC electrical circuit

(b) Bond graph model (c) Linear graph model

(d) Modelica model (e) Simulink model

Figure 4.16: Different models of a multi-domain RLC electrical circuit

diagram. This results extends the result of Section 4.3 to multi-domain lumped
parameter systems.
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(a) A schematic DC motor

(b) Bond graph model [69] (c) Linear graph model [104]

(d) Modelica model (e) Simulink model [8]

Figure 4.17: Different models of a DC motor

4.4.2 Generalized Tonti diagram for multi-domain systems

Since LPMs in different physical domain are isomorphic, so are their corresponding
Tonti diagrams. In this sense, a single Tonti diagram describes behavior of all
lumped parameter systems, provided that the variable of the same space-time type
are identified and generalized.

Two most common generalizations are mechanical (generalized displacement-
force model) and electrical (generalized voltage-current model). For the sake of
consistency with the discussion in Section 4.3, we will adopt the generalized elec-
trical model. For example, the electrical voltage, mechanical translational velocity
and hydraulic pressure difference are all considered to be of the same type called
the generalized voltage; the electrical resistors, mechanical dampers and hydraulic
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Figure 4.18: Behavior of three-domain system, a hydraulic pump driven by electrical
motor, is abstracted by relations between three interacting extended Tonti diagrams.
Commonly-used physical variables in the Tonti diagram of rotational mechanical networks: θ -
angle, θr - relative angle, ω - rotational velocity, ωr - relative rotational velocity, τ - torque, M -
angular momentum, K - rotational stiffness, D - rotational damping coefficient and J - moment of
inertia. Commonly-used physical variables in the Tonti diagram of hydraulic networks: h - potential
of hydraulic flux, flh - hydraulic flux, p - pressure, pr - pressure drop, Qh - flow of volume, f - flow
rate, Lh - hydraulic inductance, Rh - hydraulic resistance, Ch - hydraulic capacitance. ht and kt
are transformer modulus. kt is the ratio of relative rotational velocity of motor to voltage drop and
ht is the ratio of torque to current. hg and kg are gyrator modulus. kg is the ratio of flow rate to
relative rotational velocity of motor and hg is the ratio of pressure drop to torque.

resistors are all identified as generalized resistors, and so on. In order to emphasize
the generalized nature of all physical quantities and to distinguish them from the
actual physical electrical network model, we will choose a different set of sym-
bols. Specifically, the generalized Tonti diagram is defined by four exact cochain
sequences on a single cell complex:

primal : p0 δ0−→ a1 δ1−→ 02 (4.46)

d0 δ0−→ u1 δ1−→ 02 (4.47)

dual : s2 ∂2−→ t1 ∂1−→ 00 (4.48)

n2 ∂2−→ m1 ∂1−→ 00 (4.49)
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,where p0 is a 0-cochain generalized potentials, a1 is a 1-cochain generalized voltages,
d0 is a 0-cochain generalized potential magnetic fluxes, u1 is a 1-cochain generalized
magnetic fluxes, s2 is a 2-cochain generalized mesh currents, t1 is a 1-cochain
generalized currents, n2 is 2-cochain generalized mesh charges, and m1 is a 1-
cochain generalized electric charges. There are also four cochains that are always
0: 2-cochain of generalized mesh magnetic fluxes, 2-cochain of generalized mesh
voltages, 0-cochain of generalized node currents and 0-cochain of generalized node
electric charges.

With such a generalization, all the physical variables of the same space-time type
are replaced by their generalized counterparts, effectively transforming model of
the heterogeneous multi-domain system in an abstract (generalized) homogeneous
system. The behavior of this system is governed by the generalized Tonti diagram
shown in Figure 4.19. As before, the generalized primal and dual cochains are
related by (generalized) constitutive relations: resistance Rg, capacitance Cg, and
inductance Lg.

(a) Matrix operators on dual cell complexes (b) Topological operators on a single cell com-
plex

Figure 4.19: Generalized extended Tonti diagram for generalized RLC network
system

Furthermore, since all physical quantities are generalized, the actions of ideal
transformers and gyrators can be modeled simply as additional constraints on the
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cochains in the generalized Tonti diagram. Traditionally, a transformer is abstracted
as a linear transformation[

a1

t1

]
=

[
kt 0
0 1/kt

][
a2

t2

]
(4.50)

where kt is the transformer’s modulus measuring the ratio between two (gener-
alized) voltages a1 and a2, as well as the reciprocal ratio between the generalized
currents t1 and t2 in order to enforce energy balance a1t1 = a2t2. It is easy to see
that the same relationships may be enforced by a pair of linear constraints

[
1 −kt

]
·
[
a1 a2

]T
= 0[

1 −k−1
t

]
·
[
t1 t2

]T
= 0

(4.51)

Generalizing, every ideal transformer can be represented by a pair of linear con-
straints

kta = 0; k′tt = 0

on cochains of generalized voltages a and currents t. These constraints are indicated
on the generalized Tonti diagram in Figure 4.19 by two cycles.

Similarly, the effect of an abstract gyrator is usually described by a linear trans-
formation [

a1

a2

]
=

[
0 kg

kg 0

][
t1

t2

]
(4.52)

where the modulus kg relates the dual quantities in two interacting domains: gen-
eralized voltage a1 of the first domain is proportional to the generalized current t2

of the second domain, and vice versa, again satisfying the ideal energy balance law.
Equivalently, a generalized gyrator may be represented by a linear transformation
kg that relates the cochains of generalized voltages and currents, as indicated by a
dotted arrow in the Tonti diagram in Figure 4.19.
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4.4.3 System state equations of multi-domain systems

With all physical variables generalized, the heterogeneous multi-domain system
now becomes a homogeneous multi-domain system in terms of generalized physical
variables. Instead of multiple 2-cochain complexes associated with different types
of physical variables, the algebraic topological model of the multi-domain system
is now a set of 2-cochain complexes associated with the same (generalized) type of
physical variables that are defined over a single cell complex and are constrained
by abstract transformers and gyrators.

Eight different methods of generating the state equations are indicated by paths
in the generalized Tonti diagram shown in Figure 4.20. Just as with the single
domain systems, each path is a sequence of the arrows indicating composition of
the corresponding physical laws. In contrast to the single domain diagram, the
middle horizontal section of the generalized Tonti diagram allows an additional
alternative path relating the primal 1-cochain of generalized voltages a1 and the
dual 1-cochain of generalized currents t1 by gyrators as well as two alternative
cyclic paths (shown in red), which respectively constrain the generalized voltages
and currents of transformers.

For example, if we use the paths in Figure 4.20a to generate the state equations,
then the 0-cochain d0 is selected as the state variable. The system state equation
can be generated by composition of seven physical laws (two topological and five
constitutive) starting with a 0-cochain d0. First, coboundary operator in space δ0

applied to generalized potential magnetic fluxes d0 in order to generate generalized
magnetic fluxes u1. Now the path splits into two: the blue arrow corresponds to
constitutive law L−1

g that relates generalized magnetic fluxes to generalized currents
of generalized inductors; the pink arrow takes the generalized magnetic fluxes
to generate generalized voltages a1 via the boundary operator in time ∂t1. From
here the path splits into four: (1) the purple arrow corresponds to the constitutive
law R−1

g that relates generalized voltages to generalized currents of generalized
resistors; (2) the brown arrow corresponds to the constitutive law k−1

g that relates
generalized voltages to generalized currents of gyrators; (3) the left red cyclic
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(a) State variable: d0 (b) State variable: n2 (c) State variable: p0 (d) State variable: s2

(e) State variable: u1 (f) State variable: m1 (g) State variable: a1
(h) State variable: t1

Figure 4.20: State equation generation paths on the generalized extended Tonti
diagram

arrow corresponds to constitutive law kt that constrains the generalized voltages
of generalized transformers; (4) the pink arrow takes the generalized voltages to
generate generalized electric charge of generalized capacitors by using constitutive
law Cg, followed by taking the generalized electric charge to generate generalized
currents of generalized capacitors via the coboundary operator in time δt0. Note that
these four paths and the right red cyclic path6 corresponding to five constitutive
laws merge into a single 1-cochain of generalized through variables t1, which is
then transformed one more time by the upward green arrow corresponding to
KCL ∂1t1 = 0. Taking into account the generalized sources, collecting the terms
with known generalized sources and moving them to the right hand side, above

6Note that the generalized currents of transformers t1
T cannot be directly obtained from the

generalized voltages of transformers a1
T , so we treat them as additional unknown variables in the

system state equation.
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procedure results in the state equation Eq.4.53, with Eq.4.54 and Eq.4.55 being the
constraint equations generated from two cyclic red paths.

∂1

 δt0Cg∂t1δ0d0︸ ︷︷ ︸
generalized currents

of generalized C

+ R−1
g ∂

t
1δ0d0︸ ︷︷ ︸

generalized currents
of generalized R

+ L−1
g δ0d0︸ ︷︷ ︸

generalized currents
of generalized L

+ k−1
g ∂

t
1δ0d0︸ ︷︷ ︸

generalized currents
of gyrators

+ t1
T︸︷︷︸

generalized currents
of transformers



= ∂1

 t1
f︸︷︷︸

generalized currents
sources

−
(
δt0Cg + R−1

g + k−1
g + L−1

g δ
t
0
)

a1
f︸ ︷︷ ︸

equivalent generalized current
sources generated from

generalized voltage sources


(4.53)

kt
(
∂t1δ0d0 − a1

f
)
= 0 (4.54)

k′t
(
t1 − t1

f
)
= 0 (4.55)

Assuming that the number of state variables is N and the number of transform-
ers is M, then the system of equations Eq.4.53 has N+2M unknowns. The two
transformer’s constraints generate 2M constraint equations, while the other paths
generate N state equations. As expected, the number of unknowns equals to the
total number of state and constraint equations.

Other methods for generating the system state equation follow the different
paths in Figure 4.20b ∼ Figure 4.20h. For example, in Figure 4.20b, the process starts
with the dual 2-cochain of generalized mesh electric charges n2 selected as the state
variable and amounts to another composition of the seven physical laws indicated by
the corresponding paths. The blue, purple, pink and brown path corresponds to the
four generalized constitutive laws (generalized capacitance, resistance, inductance
and gyrator), relating the generalized currents to generalized voltages. The two
green arrows correspond to the ∂2 operator transforming n2 to generalized electric
charges m1 and application of KVL (δ1a1 = 0). The two red cyclic arrows correspond
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to the constitutive equations of transformers. Putting it all together and taking into
account the generalized sources, the composition procedures results in Eq.4.56,
with Eq.4.57 and Eq.4.58 being the constraint equations generated from two cyclic
red paths.

δ1

 ∂t1Lgδt0∂2n2︸ ︷︷ ︸
generalized voltages

of generalized L

+ Rgδt0∂2n2︸ ︷︷ ︸
generalized voltages

of generalized R

+ C−1
g ∂2n2︸ ︷︷ ︸

generalized voltages
of generalized C

+ kgδt0∂2n2︸ ︷︷ ︸
generalized voltages

of gyrators

+ a1
T︸︷︷︸

generalized voltages
of transformers



= δ1

 −a1
f︸︷︷︸

generalized voltages
sources

+
(
∂t1Lg + Rg + kg + C−1

g ∂
t
1
)

t1
f︸ ︷︷ ︸

equivalent generalized voltage
sources generated from

generalized current sources


(4.56)

k′t
(
δt0∂2n2 − t1

f
)
= 0 (4.57)

kt
(
a1 − a1

f
)
= 0 (4.58)

As with any dynamic system, interpreting boundary ∂t1 and coboundary δt0
operations as differentiation in time syntactically transforms Eq.4.53 ∼ Eq.4.55 and
Eq.4.56 ∼ Eq.4.58 to a more familiar form:
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∂1

 Cgδ0d̈0︸ ︷︷ ︸
generalized currents

of generalized C

+ R−1
g δ0ḋ0︸ ︷︷ ︸

generalized currents
of generalized R

+ L−1
g δ0d0︸ ︷︷ ︸

generalized currents
of generalized L

+ k−1
g δ0ḋ0︸ ︷︷ ︸

generalized currents
of gyrators

+ t1
T︸︷︷︸

generalized currents
of transformers



= ∂1


t1
f︸︷︷︸

generalized current
sources

−

(
Cgȧ1

f + R−1
g a1

f + k−1
g a1

f + L−1
g

∫
a1

fdt

)
︸ ︷︷ ︸

equivalent generalized current
sources generated from

generalized voltage sources


(4.59)

kt
(
δ0ḋ0 − a1

f

)
= 0 (4.60)

k′t
(
t1 − t1

f
)
= 0 (4.61)

δ1

 Lg∂2n̈2︸ ︷︷ ︸
generalized voltages

of generalized L

+ Rg∂2ṅ2︸ ︷︷ ︸
generalized voltages

of generalized R

+ C−1
g ∂2n2︸ ︷︷ ︸

generalized voltages
of generalized C

+ kg∂2ṅ2︸ ︷︷ ︸
generalized voltages

of gyrators

+ a1
T︸︷︷︸

generalized voltages
of transformers



= δ1


−a1

f︸︷︷︸
generalized voltages

sources

+Lgṫ1
f + Rgt1

f + kgt1
f + C−1

g

∫
t1
fdt︸ ︷︷ ︸

equivalent generalized voltage
sources generated from

generalized current sources


(4.62)

k′t
(
∂2ṅ2 − t1

f
)
= 0 (4.63)

kt
(
a1 − a1

f
)
= 0 (4.64)
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(a) A multi-domain electro-mechanical sys-
tem (b) Topological structure

Figure 4.21: An electro-mechanical system and its topological structure

Example 4. We will use an example of multi-domain electrical-mechanical system in Figure
4.21a to illustrate the derivation of Eq.4.59 and Eq.4.62 . The shown electrical-mechanical
system contains two resistors R1, R2, one capacitor C1, one inductor L1, one voltage source
Vs, one moment of inertia J, one external torque τ, one electrical transformer and one DC
motor. The transformer between two electrical domains is an ideal electrical transformer,
where the ratio of voltage drops (currents) equals the ratio (inverse ratio) of the winding
numbers N1/N2; the gyrator between the electrical and the mechanical domain is an ideal
DC motor, where the ratio (inverse ratio) of the voltage drop (current) and the rotational
velocity (torque) is a constant number kg. Topologically, the system is a 2-cell complex
shown in Figure 4.21b, and consisted of nine 0-cells (P1,P2,P3,P4,P5, P6,P7,P8,P9), nine
1-cells (LR1 ,LC1 ,LTL,LTR, LR2 ,LL1 , LGL,LGR,LJ) and three 2-cells (M1,M2,M3). We use
symbol -TF- to represent the abstract transformer and a symbol -GY- to represent the abstract
gyrator. These two symbols identify the cells where the energy transaction may occur.

The algebraic topological model of the system contians: primal 0-cochain generalized
potential magnetic fluxes (d0 = d1 ·P1+d2 ·P2+d3 ·P3+d4 ·P4+d5 ·P5+d6 ·P6+d7 ·P7+

d8 ·P8+d9 ·P9), primal 0-cochain generalized potentials (p0 = p1 ·P1+p2 ·P2+p3 ·P3+p4 ·
P4+p5 ·P5+p6 ·P6+p7 ·P7+p8 ·P8+p9 ·P9), primal 1-cochain generalized magnetic fluxes
(u1 = u1 ·LR1+u2 ·LC1+u3 ·LTL+u4 ·LTR+u5 ·LR2+u6 ·LL1+u7 ·LGL+u8 ·LGR+u9 ·LJ),
primal 1-cochain generalized voltages (a1 = a1 · LR1 + a2 · LC1 + aTL · LTL + aTR · LTR +
a5 · LR2 +a6 · LL1 +aGL · LGL+aGR · LGR+a9 · LJ), dual 1-cochain generalized currents
(t1 = t1·LR1+t2·LC1+tTL·LTL+tTR·LTR+t5·LR2+t6·LL1+tGL·LGL+tGR·LGR+t9·LJ),
dual 1-cochain generalized electric charges (m1 = m1 ·LR1 +m2 ·LC1 +mTL ·LTL+mTR ·
LTR+m5 ·LR2 +m6 ·LL1 +mGL ·LGL+mGR ·LGR+m9 ·LJ), dual 2-cochain generalized
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mesh electric charges n2 = n1 ·M1 + n2 ·M2 + n3 ·M3, dual 2-cochain generalized mesh
currents s2 = s1 ·M1 + s2 ·M2 + s3 ·M3 and four cochains that are always 0: 2-cochain
of generalized mesh magnetic fluxes, 2-cochain of generalized mesh voltages, 0-cochain
of generalized node currents and 0-cochain of generalized node electric charges. In order
to obtain unique solution of the state equations, we consider 0-cells P1, P7 and P9 as the
reference node. Following the paths shown in Figure 4.20a, generates Eq.4.59 ∼ Eq.4.61,
with individual terms as follows:

∂1 =



−1 0 +1 0 0 0 0 0 0
+1 −1 0 0 0 0 0 0 0
0 +1 −1 0 0 0 0 0 0
0 0 0 +1 −1 0 0 0 0
0 0 0 0 +1 −1 0 0 0
0 0 0 0 0 +1 −1 0 0
0 0 0 −1 0 0 +1 0 0
0 0 0 0 0 0 0 +1 −1
0 0 0 0 0 0 0 −1 +1


(4.65)

δ0 = ∂
T
1 (4.66)

Cg =



Cg1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.67)
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R−1
g =



0 0 0 0 0 0 0 0 0
0 R−1

g1
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 R−1

g2
0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.68)

L−1
g =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 L−1

g1
0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 L−1

g2


(4.69)

t1
T =

[
0 0 tTL tTR 0 0 0 0 0

]T
(4.70)

a1
f =

[
0 −af1 0 0 0 0 0 0 −af2

]T
(4.71)

t1
f = [0]9×1 (4.72)



86

k−1
g =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 k−1

g 0
0 0 0 0 0 0 k−1

g 0 0
0 0 0 0 0 0 0 0 0


(4.73)

kt =
[

0 0 1 −N1/N2 0 0 0 0 0
]

(4.74)

k ′t =
[

0 0 1 −N2/N1 0 0 0 0 0
]

(4.75)

Substitute Eq.4.65 ∼ Eq.4.75 to Eq.4.59 ∼ Eq.4.61, the generated system state equation
is as follows:
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Cg1 −Cg1 0 0 0 0 0 0 0
−Cg1 Cg1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


d̈0 +



0 0 0 0 0 0 0 0 0
0 R−1

g1
−R−1

g1
0 0 0 0 0 0

0 −R−1
g1

R−1
g1

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 R−1

g2
−R−1

g2
−k−1

g k−1
g

0 0 0 0 0 −R−1
g2

R−1
g2

k−1
g −k−1

g

0 0 0 0 0 −k−1
g k−1

g 0 0
0 0 0 0 0 k−1

g −k−1
g 0 0


ḋ0

+



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 L−1

g1
−L−1

g1
0 0 0 0

0 0 0 −L−1
g1

L−1
g1

0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 L−1

g2
−L−1

g2

0 0 0 0 0 0 0 −L−1
g2

L−1
g2


d0 +



tTL

0
−tTL

tTR

0
0

−tTR

0
0


=



0
−R−1

g1
af1

R−1
g1
af1

0
0
0
0

−L−1
g2

∫
af2dt

L−1
g2

∫
af2dt


(

ḋ0
(3) − ḋ0

(1)

)/(
ḋ0
(7) − ḋ0

(4)

)
= N1/N2

tTL/tTR = N2/N1
(4.76)

Similarly following the paths in Figure 4.20b, generates Eq.4.62 ∼ Eq.4.64, with indi-
vidual terms as follows:

kg =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 kg 0
0 0 0 0 0 0 kg 0 0
0 0 0 0 0 0 0 0 0


(4.77)
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Lg =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 Lg1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Lg2


(4.78)

Rg =



0 0 0 0 0 0 0 0 0
0 Rg1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 Rg2 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.79)

a1
T =

[
0 0 aTL aTR 0 0 0 0 0

]T
(4.80)

δ1 =

 +1 +1 +1 0 0 0 0 0 0
0 0 0 +1 +1 +1 +1 0 0
0 0 0 0 0 0 0 +1 +1

 (4.81)

∂2 = δ1
T (4.82)
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C−1
g =



C−1
g1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.83)

Substitute Eq.4.71, Eq.4.72, Eq.4.77 ∼ Eq.4.83 to Eq.4.62 ∼ Eq.4.64, the generated
system state equation is as follows:

 0 0 0
0 Lg1 0
0 0 Lg2

 n̈2 +

 Rg1 0 0
0 Rg2 kg

0 kg 0

 ṅ2 +

 C
−1
g1

0 0
0 0 0
0 0 0

n2 +

 aTL
aTR

0

 =

 af1

0
af2


aTL/aTL = N1/N2

ṅ2
(1)

/
ṅ2
(2) = N2/N1

(4.84)

4.5 Discussion
In this chapter, we proposed unified semantics for lumped parameter systems mod-
eling. The proposed semantics relies only on standard tools from algebraic topology
and known results in classification of physical theories and systems. The semantics
is effectively “representation free” in that it is independent of specific implemen-
tation assumptions, coordinates, linguistic constructs, or numerical simulation
schemes.

We first showed that single-domain lumped parameter systems can be rep-
resented as single extended Tonti diagrams of physical network systems while
multi-domain lumped parameter systems can be represented either as a collection
of interacting single-domain Tonti diagrams or a single Tonti diagram of phys-
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ical network systems of a generalized physical type where energy transduction
is represented by additional constraints. All possible ways of generating govern-
ing equations (ODEs/DAEs) by following paths over the diagrams are shown,
where LPMs of electrical circuit are used as prototypes. These equations could
be either symbolic or numerical depending on either symbolically or numerically
interpreting the topological and constitutive operators labeled on the edges of Tonti
diagrams.

Paving the way for eliminating the need to build customized point-to-point
model consistency analysis tools and achieving greater interoperability of phys-
ical modeling tools and languages were the main motivation for developing the
proposed canonical semantic lumped parameter model. The existence of common
semantics implies that all compliant models become fully interchangeable irrespec-
tive of specific syntax or modeling concepts adapted in a particular simulation tool.
The representation of this semantics using the corresponding Tonti diagrams can
serve as a formal neutral format for exchange of all such models. Furthermore, this
representation supports exchange not only of the system models but also of the
adapted simulation approaches in individual systems, now represented as paths in
the corresponding Tonti diagrams.

Even though lumped parameter systems are intrinsically two-dimensional and
devoid of geometry, both classification of physical theories and Tonti diagrams
span the entire spectrum of full-dimensional physical models and behaviors. This
implies that the proposed formal semantic model can be extended to all spatially
distributed models whose behavior is commonly described by integral and partial
differential equations. In fact, developing the semantics model for a DPM whose
behavior is described by a known Tonti diagram is a straightforward task that
would follow the development in Section 4.3. Different paths on such a diagram
would correspond to different methods to generate governing equations; replacing
symbolic operators by numerical approximations yields rich variety of standard
numerical simulation methods as introduced in [79, 41, 44].



91

5 application of simulation-free scheme for model
consistency analysis

In this chapter, the simulation-free scheme is used to determine the consistency
between LPMs and DPMs of several linear-time invariant (LTI) mechanical, thermal,
and thermo-mehcanical systems, where the correspondences of initial conditions
TI, boundary conditions TB, and the field of interest Tf are provided. We will first
introduce the spatial discretization method to be used to the DPM Md and the
CURE scheme to generate the surrogate LPM Mr of the DPM Md. Thereafter,
implementations of the proposed scheme to several mechanical, thermal, and
thermo-mechanical problems will be illustrated.

5.1 Introduction of selected methods and examples

5.1.1 Spatial Discretization

To spatially discretize the DPMMd, we will use linear-time invariant (LTI) models
and Finite Element Analysis (FEA) discretization [14] to illustrate the scheme, but
virtually every spatial discretization works as long as it generates a system of LTI
ODEs or DAEs. Commonly-used spatial discretization methods can be found in
[14, 105, 67, 78, 65, 55, 82]

Most spatial discretization schemes work by tessellating the domain geometry
into small pieces that represent the support of the basis/shape functions to ap-
proximate a spatio-temporal continuum field (representing distributed physical
quantities) by interpolation. The finite basis can be viewed as a projection from
the infinite-dimensional state-space of PDEs to the finite-dimensional subspace
of ODEs or DAEs, in which the spatio-temporal continuum fields are replaced
with a large number of temporal continuum signals (i.e., spatial variations are dis-
cretized with integral properties). The number of unknown states is generally tens
or hundreds of thousands, if not millions, based on the discretization resolution.
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Note that temporal discretization is not required for the sake of MOR procedure
thereafter, as the MOR method we will employ to generate the surrogate LPM of the
DPM are best described in terms of continuous and differentiable functions in time,
which is also true for most existing MOR methods. Temporal discretization comes
into play for numerical simulation (if required) of the ODE/DAE system (before or
after MOR) by finite time-stepping to approximate integration with given initial
conditions, i.e., inversion of time derivative statements. The resolution of the spatial
discretization of the DPM Md will be determined by users. We suppose herein
the discretization resolution provided by users is fine enough to approximate the
solution of the DPM if it is simulated.

5.1.2 Model Order Reduction

To obtain the surrogate LPM Mr of the spatially-discretized DPM Md in the
simulation-free scheme, the MOR needs to be adapted. There are numerous MOR
techniques, reviewed in [22], that can be applied to project the finite-dimensional
state-space to a much smaller principal subspace while minimizing the error. In the
simulation-free scheme, we use a Krylov subspace method based on CUmulative
REduction (CURE) scheme [88], which is a state-of-the-art MOR method that has
numerous advantages over other MOR techniques such as balanced truncation (BT)
method [32, 99, 109], rational Krylov subspace (RKS) method [9, 10, 48, 59], and
iterative rational Krylov algorithm (IRKA) [60] in terms of the numerical efficiency,
stability, convergence, a priori error guarantees, and automatic model order(MO)
decisions. Figure 5.1 compares the different MOR methods in terms of these five
properties. Specifically, the BT method reduces MO by removing states that are
both hard to control and observe. To obtain such states, one has to solve full-order
Lyapunov equations, which is a very time-consuming process and needs lots of com-
putational effort for large-scale models having more thanO(103) variables [22], so it
is not suitable for reducing the order of the DPM with fine resolution discretization.
By comparison, the RKS method aims to match a number of most-significant Taylor
series expansion terms (i.e., “moments”) of the model’s transfer function in the
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frequency-domain, obtained from a Laplace transformation of the ODEs or DAEs
[10]. This method only uses standard matrix decomposition and multiplication,
which can be implemented efficiently in parallel on multi-core CPU or many-core
GPU architectures. The RKS method is significantly faster than the BT method and
could be used to deal with large-scale numerical models. The IRKA and CURE
schemes are developed based on the same basic idea behind the RKS method, and
are both numerically efficient. Such development is summarized in the Appendix.
Notably, IRKA improves the convergence capability of RKS while CURE further
ensures stability, a priori error guarantees, and automatic MO decision. We choose
CURE for our implementation as it offers a modern approach optimized for the
most important properties.

Figure 5.1: Comparison of properties of four commonly-used MOR methods (CURE
is uniquely positioned)

5.1.3 Temporal Integration

In the examples below, to show the computed a priori error bound between the
DPM Md and the surrogate LPM Mr is sufficiently tight, we will compare it to
the a posterior error generated from the simulation. Specifically, we will use the
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backward Euler method for numerical integration [28] to simulate the temporal
response of the DPMMd and the surrogate LPMMr. We made this choice as the
backward Euler method is usually more time-efficient than higher-order numerical
integration methods, e.g., Runge-Kutta [27] and multi-step methods, e.g., Adams-
Bashforth [37] and further allows us to pick larger time steps compared to the
forward Euler method [28]. Nevertheless, any temporal integration method can be
used as long as it is independent of the spatial discretization and MOR.

5.1.4 Mechanical, thermal and thermo-mechanical examples

We illustrate the application of our proposed simulation-free scheme with four
geometric objects for DPMs (Figs. 5.2b, 5.15a, 5.15b,and 5.25b) with linear elastic
material properties undergoing dynamic mechanical and/or thermal loads. The
shapes are arbitrary and the scheme is applicable as long as the geometry can
be tessellated (i.e., conforming mesh). The boundary conditions of these DPMs
include fixed displacement at some surfaces, uniform pressure at other surfaces,
fixed temperature at some surfaces, and heat flux at other surfaces, but can be
anything in general. Particularly, we mainly use the hex-rod example to explain
the general idea behind our proposed scheme because it has a simple shape and
its closed-form response to uniform loading (i.e., the ground truth) is known and
intuitively well-understood. We also briefly present our results for the other three
examples (bracket, bike frame, and piston) with different boundary conditions. In
general, the simulation-free scheme works for arbitrary shapes, material properties,
and initial/boundary conditions. For LPMs, we will use simple lumped mass-
spring-damper models, lumped thermal resistance-capacitance models, and multi-
domain models consisted of these two models associated by transformers/gyrators,
whose number of states is no more than ten, but any complex LPM can be used in
general.
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5.2 Applications
Below, we illustrate the capability of our proposed simulation-free scheme with a
few results, where we compute the a priori error bound between the given LPM
and DPM. In each example, a LPMMl, a DPMMd, and the initial and boundary
conditions correspondences TI, TB will be given. In each example, our task is to
compute the a priori error bound of corresponding behaviors of interest between
the given LPM and DPM. Supposing the given correspondences are correct, the
error bound is the last "checkpoint" to determine the consistency between two given
models. As long as it is smaller than a sensible user-defined threshold, two models
would be determined as consistent. Particularly, the results of the hex-rod model
will be elaborated below, followed by a brief introduction of the results of other
models.

5.2.1 Hex-rod model results

5.2.1.1 Model specifications

In this section, we will show the results of computing the a prior error bound for
the correspondence Tf at the physical quantity magnitude level between a given
LPM and a given DPM. The LPM is a two degrees of freedom (dof) mass-spring-
damper model (Figure 5.2a), where m1 = 7.8284 × 108kg, m2 = 1.1422 × 105kg,
k1 = 1.6448 × 108N/m , k2 = 1.1996 × 105N/m, r1 = 9.0984 × 107Ns/m, r2 =

3.6580× 104Ns/m, and lumped force source f1 = 0.026N. The lower end of k2 and
r2 is fixed to the ground.

The geometry of the DPM is a hex rod with one end fixed to the ground (Figure
5.2b) and the other end bearing a constant unit pressure p0(t) = 1 (Figure 5.4a).
The correspondences of initial/boundary conditions TI, TB and fields Tf between
the given LPM and DPM is shown in Figure 5.3, where Tn : f1(t) = p0(t)S1; the
initial velocity of top surface S1 and middle surface Smid rod is zero, so are the
initial velocity ofm1 andm2, as represented by correspondence TI; the displacement
of the lower end of rod fixed to the ground u(S2, t) = 0 corresponds to (via Td)
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(a) LPM (b) DPM

Figure 5.2: The given DPM and LPM

the displacement of the end of k2 and r2 fixed to the ground wg(t) = 0. The field
correspondence of interest Tf is between the average displacement ū(S1, t) of S1

and the displacement w1(t) ofm1. With above given correspondences TI, Tn and
Td, our goal is to compute the a priori bound between ū(S1, t) and w1(t).

5.2.1.2 Surrogate LPM generation

As mentioned in the general framework in Section 3.2, the discretization resolution
of DPM will be determined by the user and as this resolution increases and reaches a
certain of fine level, computing the a priori guarantee using our proposed framework
would be faster than the behavior comparison using the numerical simulation. We
will show this statement in this example.

We discretize the hex rod using second-order tetrahedral finite elements with
eight different mesh resolutions (only one sketch is shown in Fig. 5.4b), from which
we generate eight groups of governing equations whose number of variables ranges
from around 2600 to 15,000. By applying the CURE framework embedded by the
SPARK algorithm, we obtain eight families of ROMs for each of the eight cases
starting from the lowest model order of k := 2 and iteratively increasing the model
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Figure 5.3: Initial, boundary, and field correspondences between LPM and DPM -
rod example

(a) Input signal of pressure (b) Mesh

Figure 5.4: Mesh and input signal of pressure

order until the relative a priori H2 error is less than 1%. To visualize the quality of
the ROMs, we simulate the FOM and all ROMs with the backward Euler method
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and the same solver1, whose simulation results are compared in Figure 5.5, where
the abscissa represents the simulation time and the ordinate represents the average
displacement of the surface S1 of the rod. Only a few ROM curves are labeled due to
the limited white space. Note that the solver used is built in the Matlab “sparse state
space (sss)” toolbox [63], which can be used to analyze dynamical systems with
state-space dimensions O(104) or higher. Particularly, the solver can preserve the
sparsity of large-scale models and take advantage of it for computations (e.g., using
sparse LU decompositions) that would otherwise be computationally expensive or
even infeasible [30].

In all eight cases in Figure 5.5, as the model order of ROM increases, the simu-
lated response of the ROM gradually approaches that of the FOM. In Figure 5.6,
Figure 5.7, and Figure 5.9, we show three different measures of the error caused by
the MOR process; namely, the relative H2−error of the transfer functions, the steady-
state error (SSE), and the root-mean-squared error (RMSE). The SPARK+CURE
does not provide rigorous a priori bounds on SSE and RMSE, nor does it guarantee
a strictly monotonic decay of these two errors by increasing the ROM order in the
cumulative reduction process, although an overall reduction pattern is commonly
observed.

5.2.1.3 Error Analysis

Exact Relative H2−Error

The exact relative H2−error is defined by the absolute H2−norm ‖G − Gr‖H2

divided by the H2−norm of transfer function of FOM ‖G‖H2 :

Exact relative H2 − error =
‖G − Gr‖H2

‖G‖H2

(5.1)

Figure 5.6 shows the exact relative H2−error for the first two cases, where the ab-
scissa represents the ROM order and the ordinate represents logarithmic error value.

1Note that the model comparison does not depend on the simulation results. The simulation is
for visualization purposes only
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(b) Case 2
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10-7 Outputs comparison of diff orders of models

simtime(FOM): 107.3974s
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10-7 Outputs comparison of diff orders of models

simtime(FOM): 285.9869s
simtime(largest ROM): 0.010514s
reduction time: 166.4797s
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(f) Case 6
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10-7 Outputs comparison of diff orders of models

simtime(FOM): 698.2715s
simtime(largest ROM): 0.0099707s
reduction time: 282.2531s
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(g) Case 7
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10-7 Outputs comparison of diff orders of models

simtime(FOM): 1276.0266s
simtime(largest ROM): 0.010015s
reduction time: 364.6967s

full-order model
order24
order26
order28
order30
order32
order34
order36
order38

(h) Case 8

Figure 5.5: Comparison of the simulation results between FOM and ROM of the
hex-rod example

It can be observed that as the ROM order increases, the exact relative H2−error
monotonically decreases. Particularly, as the ROM order reaches k = 34 and k = 42,
the exact relative H2−errors of the shown first two cases are below 10−2.645 ≈ 0.226%
and 10−4.3103 ≈ 0.00489%, respectively.
Steady-State Error (SSE)

Figure 5.7 shows the steady-state error (ERR), defined by:

Steady-State Error = lim
t→∞

‖y(t) − yr(t)‖2

‖y(t)‖2
, (5.2)

where ‖ · ‖2 is the regular (Euclidean) L2−norm of the output variables, whose
asymptotic values as t → ∞ are approximated by their values at a large enough
ts � 0. It can be seen that all the errors are below 1% when the ROM order is larger
than 30. Note that the relationship between the reduced model order and SSE value
is not strictly monotonic, unlike the case with the exact relative H2−error. Although
the SPARK+CURE does not come with theoretical guarantees concerning SSE, as
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(b) Case 2

Figure 5.6: H2 exact error between FOM and ROM for cases 1 and 2 of the hex-rod
example

long as the order of ROM is large enough, we can clearly see a downward trend in
SSE. As shown in Fig. 5.8a, as we increase the final ROM order from k = 34 to 120,
a clear overall reduction pattern is observed for the case 1.

Root-Mean-Squared Error (RMSE)

Figure 5.9 shows the root-mean-squared error (RMSE) of the overall output
time signal, defined as:

Root-Mean-Squarec Error =

(
1
|ts|

∫ ts
0
‖y(t) − yr(t)‖2 dt

) 1
2

, (5.3)

which is approximated by a Riemann sum over a large number of output values
sampled along the time axis. Once again, the CURE scheme does not come with
RMSE guarantees, although we can see from the results that as long as the ROM
order is large enough, the RMSE would beO(10−10) ∼O(10−9), which is a few orders
of magnitude smaller than the FOM output, which is O(10−7). In addition, similar
to the SSE, the relation between ROM order and RMSE is not strictly monotonic, but
as long as the ROM order is large enough, a clear downward trend can be observed
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(g) Case 7
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(h) Case 8

Figure 5.7: SSE of the hex-rod example
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(a) Downtrend channel of the SSE
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Figure 5.8: Downtrend channel of the SSE and the RMSE
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as shown in Figure 5.8b.

A Priori H2−Error Bound

A critical property of the CURE scheme is that it provides a priori absolute and
relative H2−error bounds [88]:

‖Ge(s)‖H2
6 ‖G⊥‖H2

·
∥∥G̃L

r (s)
∥∥
H∞ ·

∥∥G̃R
r (s)

∥∥
H∞ (5.4)

‖Ge(s)‖H2

‖G(s)‖H2

6
‖G⊥‖H2

·
∥∥G̃L

r (s)
∥∥
H∞ ·

∥∥G̃R
r (s)

∥∥
H∞

‖Gr(s)‖H2

(5.5)

meaning that the exact absolute (Eq.5.4) and relative (Eq.5.5) error between FOM
and ROM outputs are guaranteed to stay below a conservative (but tight) threshold,
hence there is no need to simulate FOM or ROM to evaluate the loss of accuracy
due to MOR. Figure 5.10 shows the a priori relative H2−error bounds for the afore-
mentioned eight cases. In these plots, the blue dashed line represents the a priori
relative H2−error bound. In the first two plots, the orange dashed line represents
the exact relative H2−error computed from simulations. It can be observed that
as the ROM order increases, the exact error monotonically decreases, and so does
the error bound and the error bound is always just above the exact error, i.e., it is
relatively tight (not overly conservative, hence useful). Importantly, computing
these error bounds comes at no extra computational cost, as they are a byproduct
of the MOR process. For cases the last six cases out of eight, we only plot the error
bounds without comparing to the exact error because the computation of the exact
error for these cases is too expensive due to the large order of the FOM. Particularly,
similar to the SSE and RMSE, as we increase the final ROM order from k = 34 to 120
for case 1, it can be observed that the error bound is always tight for all the ROMs.
Error analysis between LPM and surrogate LPM

We will select the largest-order ROM obtained from the case 8 as the surrogate
LPM of the given DPM because the mesh resolution in this case is the highest of all
the eight cases, with around 15000 variables in its governing equation. The order
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(g) Case 7 (h) Case 8

Figure 5.9: RMSE of the hex-rod example

of this ROM is 38, with the relative a priori H2 error guarantee 10−2.152 ≈ 0.705%
(Figure 5.10h) and a priori H2 error guarantee 1.9673 × 10−9, meaning that the
difference of transfer functions of the discretized DPM and the surrogate LPM is no
more than 1.9673× 10−9 with respect to the H2 norm (Eq.5.6). Since the surrogate
LPM and the given LPM are both small-scale models, the H2 error between their
transfer functions can be rapidly computed as shown in Eq.5.7.

ε̄1 = ‖Gd(s) − Gr(s)‖H2
= 1.9673× 10−9 (5.6)

ε̄2 = ‖Gr(s) − Gl(s)‖H2
= 1.6058× 10−9 (5.7)

Error analysis between LPM and DPM

With the obtained a prioir H2 error guarantee ε̄1 between the discretized DPM
and the surrogate LPM and ε̄2 between the surrogate LPM and the given LPM,
using the Eq.3.19 generates
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(d) Case 4
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Figure 5.10: A priori relatively H2−error bound of the hex-rod example
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Figure 5.11: A priori relatively H2−error bound of the hex-rod example - further
MOR of case 1

‖Gd(s) − Gl(s)‖H2

‖Gl(s)‖H2

6 0.0129 = ε̄rel (5.8)

If the upper bound value ε̄rel = 0.0129 can be tolerated, then the given LPM
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10-7 Comparison of behaviors

LPM
DPM

(a) Behavior comparison

0 5 10 15 20 25 30 35 40 45 50

Simulation time (s)

10-12

10-11

10-10

10-9

10-8

10-7

A
ve

ra
ge

 d
is

pl
ac

em
en

t e
rr

or
(m

)

Behavior difference between LPM and DPM

(0.8,4.4917e-09)

(b) Behavior difference

Figure 5.12: Behavior comparison between LPM and spatially-discretized DPM -
hex-rod example

and DPM are determined to be consistent. For the purpose of visualization, the
comparison of the simulation results between the discretized DPM and the given
LPM is shown in Figure 5.12a. Figure 5.12b shows the solution difference. It can
be seen that the maximum difference between the outputs of interest of these two
models over the whole time domain is less than 4.4917 × 10−9, which is two orders
of magnitude smaller than the model output O(10−7).

5.2.1.4 Computation time analysis

In addition, we find that if we directly simulate the LPM and the discretized DPM
and then compare their solutions, the relationship between the computation time
and the order of discretized DPM (i.e., the number of state variables) is a cubic
relation, shown by the black curve in Figure 5.13, which is obtained by polynomial
regression. However, if we use our proposed simulation-free scheme, such relation
would be quadratic, shown by the orange curve in Figure 5.13. Particularly, it is a
second-order polynomial with a small coefficient of the second-order term, meaning
that the linear property is dominant in the fitted polynomial.
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Figure 5.13: Comparison of time required between a posterior and a priori methods

The position of this cross-over point implies that if the order of the discretized
DPM is less than 5,838, then solution comparison by simulations has a higher time
efficiency; otherwise, our simulation-free scheme will have a higher time efficiency,
with at most 1% accuracy loss. Note that if the selected relative H2−error upper
bound is a smaller one (i.e., < 1%), then a new cross-over point (slightly shifted
towards larger FOM orders) would be found.

5.2.2 Results of two more complex mechanical examples

5.2.2.1 Model specifications

In addition to the hex-rod example, here we illustrate applying our simulation-free
scheme to compute a priori error bound between the given DPM and LPM of two
other mechanical systems as shown in Figures 5.14 and 5.15. The two given LPMs
are the same two-dof mass-spring-damper model as the one used in the hex rod
example (copied below in Figure 5.14), but with different parameters. Specifically,



111

in the bracket example, m1 = 3.8465 × 105kg, m2 = 3.512 × 103kg, k1 = 3.316 ×
104N/m , k2 = 4.688×103N/m, r1 = 1.4697×105Ns/m, r2 = 2.9052×103Ns/m, and
f1 = 0.005N; in the bike frame example,m1 = 7.997 × 105kg,m2 = 6.9139× 104kg,
k1 = 4.8561 × 108N/m , k2 = 2.2308 × 108N/m, r1 = 2.8102 × 107Ns/m, r2 =

1.5075× 105Ns/m, and f1 = 2186.56N.

Figure 5.14: Given LPM

The two given DPMs are two other geometric objects under dynamic mechanical
loads. The first one is a bracket model (Figure 5.15a) with two holes fixed while the
top surface bears a square wave pressure (Figure 5.17a). The second one is a bike
frame model (Figure 5.15b) with its three tube ends fixed while the top of the seat
tube bears a pressure that combines square and sine wave signal (Figure 5.17b).

The correspondences of initial and boundary conditions TI, TB, and field of
interest Tf between the given LPM and DPM of these two examples are respectively
shown in Figure 5.18 and 5.19, where Tn : f1(t) = p0(t)S1; the initial velocity of S1

and Smid is zero, the same as the initial velocity of m1 and m2, respectively; the
displacementsu(S2, t) = 0 andwg(t) = 0 are both zero. Our goal is to compute the a
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(a) DPM of bracket

(b) DPM of bike frame

Figure 5.15: Two given DPMs

(a) Mesh of bracket

(b) Mesh of bike frame

Figure 5.16: Meshes of bracket and bike frame

priori error bound between the average displacement ū(S1, t) and the displacement
w1(t) associated by the field correspondence Tf.
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(a) Pressure of bracket (b) Pressure of bike frame

Figure 5.17: Pressures of bracket and bike frame

Figure 5.18: Initial, boundary, and field correspondences between LPM and DPM -
bracket example

5.2.2.2 Surrogate LPM generation and error analysis

Similar to the hex-rod example, we discretize the geometry of the bracket using
tetrahedral finite elements with three different resolutions (only one sketch for
each example is shown in Figure 5.17), the geometry of the bike frame with one
resolution, and then use SPARK+CURE to generate a family of ROMs for each
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Figure 5.19: Initial, boundary, and field correspondences between LPM and DPM -
bike frame example

example and stop the model reduction when the a priori relative H2 error reaches
just below 1%. For each example, we simulate the FOM and all the generated ROM
and compare their results, as shown in Figure 5.20 and Figure 5.22a. As expected,
we find the cross-over point for the bracket example (Figure 5.20d), meaning that
if the FOM order is larger than 4637, using our proposed simulation-free scheme
for the solution comparison would be more time-efficient.

Since there is no obvious steady state after the non-zero pressure acts, we only
computed the RMSE and the relative H2−error bounds for the bracket example,
as shown in Figure 5.21. The RMSE is around O(10−9), which is two orders of
magnitude smaller than the FOM output ofO(10−7). The a priori H2− error bound
results show that if the ROM order is larger than 36, 38, and 34 in the three cases (of
different resolutions), their exact relative H2−error would be less than 10−2.1506 ≈
0.707%, 10−2.1859 ≈ 0.652% and 10−2.1797 ≈ 0.661%, respectively. In addition, we
computed the relative H2−error bounds for the bike frame example. The result
is given in Fig.5.22b. The a priori H2−error bound results show if the ROM order
is larger than 236, then the exact relative H2−error would be less than 10−2.0168 ≈
0.962%.

In the bracket example, we select the ROM of order 34 generated from case 3
as the surrogate LPM of the discretized DPM. Its corresponding a priori relative
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10-7 Outputs comparison of diff orders of models

simtime(FOM): 16.751s
simtime(largest ROM): 0.014983s
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10-7 Outputs comparison of diff orders of models

simtime(FOM): 37.3696s
simtime(largest ROM): 0.014869s
reduction time: 48.8647s
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(b) Case 2
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10-7 Outputs comparison of diff orders of models

simtime(FOM): 97.1414s
simtime(largest ROM): 0.014056s
reduction time: 63.4398s
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(c) Case 3
(d) Computation time comparison

Figure 5.20: Comparison of the simulation results and computation time between
FOM and ROM of the bracket example
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(d) Error bound of Case 1
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(e) Error bound of Case 2 (f) Error bound of Case 3

Figure 5.21: RMSE and a priori relative H2 error bound of the bracket example
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10-6 Outputs comparison of diff orders of models

simtime(largest ROM): 0.011425s
reduction time: 4776.6498s
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(a) Comparison of the simulation results
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Figure 5.22: Comparison of the simulation results between FOM and ROM of the
bike frame and the a priori relative H2 error bound

H2-error bound is 10−2.1797 ≈ 0.661%, with which we compute the a priori relative
H2-error bound between the discretized DPM and the given LPM and the result is
as follows:

‖Gd(s) − Gl(s)‖H2

‖Gl(s)‖H2

6
ε̄1 + ε̄2

‖Gl(s)‖H2

= 0.0069 + 0.0394 = 0.0463 = ε̄rel

(5.9)

If the user-defined threshold for the relative error is larger than 0.0463, then
the LPM and the DPM are determined to be consistent. The comparison of the
numerical solutions between discretized DPM and given LPM is shown in Figure
5.23a. Figure 5.23b shows the difference between their numerical solutions. It can
be seen that the maximum difference between the outputs of two models over the
whole time domain is less than 4.8197 × 10−8, which is one order of magnitude
smaller than the model maximum output O(10−6).

In the bike frame example, the largest order of the obtained ROMs is 236, whose
a priori relative H2-error bound is 10−2.0168 ≈ 0.962% as shown in Figure 5.21f. With
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10-7 Behavior comparison between DPM and LPM
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(b) Behavior difference

Figure 5.23: Behavior comparison between LPM and spatially-discretized DPM -
bracket example

this number, the a prioir H2 relative error error between the discretized DPM and
the LPM can be computed as follows:

‖Gd(s) − Gl(s)‖H2

‖Gl(s)‖H2

6
ε̄1 + ε̄2

‖Gl(s)‖H2

= 0.0017 + 0.8212 = 0.8229 = ε̄rel

(5.10)

If the user-defined threshold for the relative error is larger than 0.8229, then the
given LPM and DPM are consistent. The simulation results of the discretized DPM
and the given LPM are shown in Figure 5.24a, with the difference of simulation
results shown in Figure 5.24b. The maximum difference over the whole time domain
is less than 6.8039×10−6, which is almost half of the model maximum output value.
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10-6 Behavior comparison between DPM and LPM
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Figure 5.24: Behavior comparison between LPM and semi-discretized DPM - bike
frame example

5.2.3 Results of thermal examples

5.2.3.1 Model specifications

In addition to the above three mechanical examples, here we use our proposed
scheme to compute a priori error bound between a given DPM and a given LPM of
a thermal system as shown in Figure 5.25. The given LPM for the thermal problem
shown in Figure 5.25a is a lumped thermal model consisted of three thermal resistors
r1 = 3.3836× 103 (K/W), r2 = 1.6148× 103 (K/W), and r3 = 5.5828× 106 (K/W),
two thermal capacitors c1 = 2.0957 × 107 (Ws/K and c2 = 4.0062× 105 (Ws/K)),
and a heat source I(t) = 1.782 × 108 (W). The DPM of the thermal problem is a
piston under a thermal load (Figure 5.25b), where a constant heat flux is added
to the top surface of the piston crown, which is represented by small black pins
attached to the crown in the figure.

The correspondences of initial conditions TI, boundary conditions TB, and field
of interest Tf between the given LPM and DPM is shown in Figure 5.26, where
Tn : I(t) = h0(t)S1, which is the relation between the heat flux h0(t) added to S1
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(a) LPM of piston-thermal

(b) DPM of piston-thermal

Figure 5.25: LPM and DPM of thermal problems

and the lumped heat source I(t); the initial temperatures of surfaces S1, S2, and
S3 are zero, so are the initial temperature of each thermal lumped component, as
described by TI; The ambient temperature of two models are both zero, that is
Td : Tambient(t) = φ(t) = 0. The field correspondence Tf is between the average
temperature T̄ of the surface S1 and the temperature T1 associated to the left port of
the thermal resistor r1. With these correspondences, our goal is to compute the a
priori error bound between T̄ and T1.
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Figure 5.26: Initial, boundary, and field correspondences between LPM and DPM -
thermal piston example

5.2.3.2 Surrogate LPM generation and error analysis

We discretize the piston using tetrahedral finite elements with a user-defined reso-
lution (as shown in Figure 5.27), use SPARK+CURE to generate a family of ROMs,
and stop the MOR when the a priori relative H2-error reaches just below 1%. We
simulate both FOM and ROMs and compare their results, as shown in Figure 5.28a.

We compute the relative H2−error bounds for each order (Figure 5.28b). The a
priori H2−error bound results show if the ROM order is larger than 24, the exact
relative H2−error will be less than 10−2.0946 ≈ 0.804%. By using the values of this
error bound, ‖Gl(s)‖H2

, and ‖Gd(s) − Gl(s)‖H2
, we compute the a priori relative

error bound between the discretized DPM and the LPM. The result is as below:

‖Gd(s) − Gl(s)‖H2

‖Gl(s)‖H2

6
ε̄1 + ε̄2

‖Gl(s)‖H2

= 0.0072 + 0.0987 = 0.1059 = ε̄rel

(5.11)
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Figure 5.27: Mesh of piston

If ε̄rel is less than the user-defined threshold, then the given LPM and the given
DPM are consistent. Figure 5.29a shows the comparison of the numerical solutions
between the discretized DPM and the given LPM is shown and Figure 5.29b shows
the numerical solution difference. The maximum difference between simulation
results is less than 2.6485, which is around 6.6% of the maximum output.

5.2.4 Results of thermomechanical examples

5.2.4.1 Model specifications

In this section, the proposed scheme is used to compute a priori error bound
between a given DPM and a given LPM of a multiphysical (theraml + mechanical)
system as shown in Figure 5.30. The given LPM (Figure 5.25a) is a two-domain
LPM where a lumped mass-spring-damper model is connected to a lumped thermal
resistor-capacitor model by a transformer. The parameters of the thermal domain is
the same as those of the LPM in the thermal example above (Figure 5.25a) and the
parameters of the mechanical domain ism1 = 6.0966× 108kg,m2 = 8.6614× 104kg,
k1 = 1.2690 × 108N/m , k2 = 9.0967 × 104N/m, r1 = 6.7947 × 107Ns/m, r2 =

2.7739× 104Ns/m, and f = 12.659N.
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Figure 5.28: Comparison of the simulation results between FOM and ROM of the
thermal example of piston and the a priori relative H2 error bound
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Figure 5.29: Behavior comparison between LPM and spatially-discretized DPM -
thermal piston example
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The geometry and the thermal initial/boundary conditions of the given DPM
(Figure 5.30b) are the same as those used in the thermal example above. In addition,
the piston bears a mechanical load, a constant unit pressure, added to the top surface
and the rod of the piston is fixed.

(a) LPM of piston-thermomechanical

(b) DPM of piston-thermomechanical

Figure 5.30: LPM and DPM of the thermal and thermomechanical problem
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All the specification correspondences in the thermal domain are the same as
those used in the thermal example shown in Figure 5.31. For the specification corre-
spondences in the mechanical domain, we have Tn : f1(t) = p0(t)S1; Initial velocities
of S1 and Smid are zero, which are respectively the same as the initial velocity of
lumped massesm1 andm2; the displacements u(S2, t) = 0 and wg(t) = 0 are both
zero, as described by Td. Our goal is to compute the a priori error bound between
the average displacement ū(S1, t) and the displacementw1(t) associated by the field
correspondence Tf. Note that both of these two displacements are a superposition
of two displacements: (1) the displacement caused by the mechanical load (2) the
displacement caused by the thermal expansion because of the temperature change.

Figure 5.31: Initial, boundary, and field correspondences between LPM and DPM
- bracket example (only correspondence in the mechanical domain is shown for
clarity)



126

5.2.4.2 Surrogate LPM generation and error analysis

We use the same discretization as the one shown in the thermal example (Figure
5.27) and generate a family of ROMs with the SPARK+CURE with 1% being the a
priori relative H2 error threshold. We simulate both the FOM and the ROMs and
compare their results, as shown in Figure 5.32a.

The computed the a priori relative H2−error bounds for each ROM is shown
in Figure 5.32b, which shows if the ROM order is larger than 32, the exact relative
H2−error will be less than 10−2.5135 ≈ 0.307%. By using the value of this error
bound, ‖Gl(s)‖H2

, and ‖Gd(s) − Gl(s)‖H2
, we compute the a priori relative error

bound between the discretized DPM and the given LPM as follows:

‖Gd(s) − Gl(s)‖H2

‖Gl(s)‖H2

6
ε̄1 + ε̄2

‖Gl(s)‖H2

= 0.0030 + 0.0093 = 0.0124 = ε̄rel

(5.12)

If the threshold for the relative error is larger than 0.0124, then LPM and DPM
will be determined to be consistent. The comparison of the numerical simulation
results between the discretized DPM and the given LPM is shown in Figure 5.29a,
with their difference shown in Figure 5.29b. It can be observed that the maximum
difference is less than 1.3144×10−6, which is two orders smaller than the maximum
simulation output O(10−4).
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(a) Average displacement of piston under
mechanical and thermal loads (b) A priori relative H2 error bound

Figure 5.32: Comparison of the simulation results between FOM and ROM of the
thermomechanical example of piston and the a priori relative H2 error bound
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10-4 Behavior comparison between DPM and LPM

DPM
LPM

(a) Behavior comparison

0 0.5 1 1.5 2 2.5 3

Simulation time (s)

10-10

10-9

10-8

10-7

10-6

10-5

A
ve

ra
ge

 d
is

pl
ac

em
en

t e
rr

or
 (

m
) 

Behavior difference between LPM and DPM

(0.06,1.3144e-06)

(b) Behavior difference

Figure 5.33: Behavior comparison between LPM and spatially-discretized DPM -
thermomechanical piston example
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6 conclusion and open issues

Contributions We proposed a framework for consistency analysis between
lumped and distributed parameter models for facilitating the integration between
the system and geometric designs. In this framework, the common semantic rep-
resentation of lumped parameter systems is proposed to open the way to avoid
expensive customized consistency analysis software between models created in
different modeling languages and tools. Approaches to establishing the correspon-
dence of model specifications and solutions between LPMs and DPMs are proposed,
which are independent of any modeling languages and tools, numerical methods,
and supports a variety of different types of physical models.

Specifically, the proposed common semantics for lumped parameter systems
relies only on standard tools from algebraic topology and Tonti diagrams, a com-
plete classification of a variety of physical quantities, theories, and systems. The
semantics is independent of any specific implementation assumptions, coordinates,
linguistic constructs, or numerical simulation schemes. Particularly, paths over
Tonti diagrams correspond to all possible ways to generate governing equations.
The proposed semantics provides a single neutral format that can be translated
to/from models in different lumped parameter modeling languages such as Mod-
elica, Simulink, bond graphs, and linear graphs. We showed that extended Tonti
diagrams provide a canonical method for representing LPMs computationally.
Based on known classification of physical theories, behavior of any lumped param-
eter system may be described either as a collection of interacting single-domain
Tonti diagrams or as a single generalized Tonti diagram with energy transduction
represented by additional constraints. We demonstrated this representation sup-
ports algorithmic generation of all possible forms of the governing state equations
as paths in the (collection of) Tonti diagrams. The topological and constitutive
operators appear as labels on the edges of the diagram and may be interpreted
either symbolically, giving differential equations, or numerically (e.g. as finite
difference operators), corresponding to executable approximations of such models.
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Importantly, the proposed formal semantic model could be extended to DPMs
whose behavior is governed by PDEs, where different paths on the Tonti diagram
of field theories correspond to different methods to generate governing equations
and replacing symbolic operators by different numerical approximations would
lead to different standard numerical simulation methods. Our proposed semantics
for lumped parameter systems could be used to eliminate the need for customized
point-to-point consistency analysis tools for currently existing and prospective
physical modeling languages and tools.

Establishing the model consistency is defined as a process of checking the cor-
respondences of model specifications and solutions at three levels: (1) the model
structure level, which ensures the correspondences of initial/boundary conditions
and unknown field of interest between the LPM and the DPM obey the design prin-
ciple of the system-to-geometry design, for instance, the component-to-component
realization principle. (2) and (3) are respectively the physical quantity type and the
magnitude levels, which guarantees the physical quantities of model specifications
and solutions are identical after certain functional mappings (e.g. the integral) in
terms of the physical type and numeric values. Particularly, the correspondence at
the quantity type level is established using functional mappings between physical
quantities associated with the same time and space elements between the common
semantic models (Tonti diagrams) of the LPM and the DPM; the correspondence at
the physical quantity magnitude level is established by comparing the magnitude of
the physical quantities that are related by the correspondences of initial/boundary
conditions and unknown fields of interest.

Establishing the correspondence of the model solutions at the physical quan-
tity magnitude level requires checking if the solutions of interest of the governing
equations of LPM and DPM are similar. To avoid drawbacks of the numerical simu-
lation such as the low computational efficiency for large-scale models, unstable and
nonconvergent simulation solutions due to large time step sizes, etc., we proposed
a simulation-free scheme to compare LPM and spatially-discretized DPMs before
simulations, where only model specifications are used to provide upfront guar-
antees of the simulations. The scheme in principle supports all different spatial
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discretization methods. Importantly, the CURE scheme, a MOR method that a
priori guarantees the accuracy, stability, and convergence is adapted to address the
low time efficiency problem caused by large model scales.

The proposed scheme is applied to analyze the model consistency of single and
multi-domain mechanical and thermal models, where we demonstrated the CURE
scheme could be used to generate a family of different orders of surrogate LPMs of
the discretized DPM in a single MOR procedure and provide relatively tight H2

a priori error bounds for each of them. Both the exact H2 error and the H2 error
bound monotonically decrease with respect to the increase of the surrogate LPM
order, with the gap between them always being narrow. We also demonstrated
a strict downtrend of the exact SSE and RMSE with respect to the increase of the
surrogate LPM order. Significantly, if the order of the discretized DPM is larger
than a certain value (usually several thousand), the model solution comparison
using the proposed scheme would be more rapid than the comparison using the
numerical simulation.

Limitations and open issues There are several limitations of our proposed
framework. The first one is that the scheme to compare model solutions does not
consider the error between the exact and numerical solutions of the DPM caused by
the spatial discretization. We shift the responsibility for selecting a sufficiently good
spatial discretization for the DPM to users, with the understanding that the analytic
solution of the DPM will be never known. Nevertheless, there are several existing
formulas developed to compute a priori error bound of the solutions between the
numerical and the analytic DPMs of different PDE types, discretization resolutions,
and dimensions of physical field, etc. [53, 98, 43, 114], which could be combined
with our proposed scheme to give more complete and rigorous error bound between
the LPM and the DPM.

The second limitation is that the CURE scheme can only be used to reduce the
order of dissipative models and the computation of the rigorous a priori guarantees
by SPARK+CURE is only valid for LTI models. One possible way to extend our
proposed scheme beyond linear models to nonlinear models is dividing nonlinear
MOR models into piecewise linear MOR models and then using SPARK+CURE,
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similar to the strategy adapted by the Trajectory PieceWise Linear (TPWL) Method
[101]. The other possible solution is using MOR methods developed especially for
nonlinear models, for example, the Symplectic MOR methods [94], however, most
of these methods do not provide rigorous a priori guarantees.

The third limitation underlies the proposed semantics for lumped parameter
systems. Many such systems support numerous additional operations and con-
structs, such as signal flows and arbitrary mathematical transformations, that are
not necessarily based on first principles. Whether and how such constructs should
be included in the common semantics model is not entirely clear. In principle, they
could be treated as special cases of energetic processes (as, for example, is advo-
cated in bond graph literature), or they may require the introduction of additional
types of constraints to the underlying topological model.
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a appendix

A.1 Projection-Based MOR
The aim of model-order reduction (MOR) is to find a “good” approximate dynamic
model of the original system such that this approximation is numerically efficient,
stable, and preserves certain physical and numerical properties.

A.1.1 Linear Time-Invariant Systems

For LTI systems, the overall MOR process can be described with the diagram
shown in Fig. A.1, where a full-order model (FOM) parameterized by matrices
(E, A, B, C, D) represented in the state-space form comprising tens or hundreds
of thousands, if not millions, of variables is reduced to a reduced-order model
(MOR) parameterized by matrices (Er, Ar, Br, Cr, Dr) that usually have only tens
to hundreds of variables [35]. These two models represent a multi-input, multi-
output (MIMO) mapping from an array of input signals u(t) to an (observable)
array of output signals y(t). The state variables x(t) and input/outputs are all
semi-discretized (i.e., spatially discretized, temporally continuum) functions that
represent the temporal evolution of localized physical quantities.

The first system of ODE/DAE system Eẋ(t) = Ax(t) +Bu(t) represent the FOM
system dynamics, obtained by discretizing PDEs.1 A similar expression is written
for the ROM, as depicted in Figure A.1. The matrices (E, A, B, C, D) are independent
of time in an LTI system. Often times, the original equations are second- or higher-
order (due to the Newtonian dynamics) from which a state-space (i.e., first-order)
representation can be obtained by defining additional state variables that are first
or higher time derivatives of the original state variables.

The second system of equations y(t) = Cx(t) + Du(t) defines (observable)
quantities of interest (QoI) or outputs, as a function of state variables x(t) of the

1If E = I is an identity matrix, the DAEs reduce to ODEs, making their numerical simulation
much simpler.
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FOM and inputs u(t). A similar expression is written for the ROM, as depicted in
Figure A.1. The outputs are physical quantities whose accurate prediction is what
we ultimately care about, and with respect to which our error measures will be
defined.

Figure A.1: Model order reduction (MOR) can be viewed as a mapping between
the matrices used for state-space representations of FOM and ROM (time domain)

Figure A.1 illustrates the FOM and ROM as a MIMO relationship, constrained by
ODE/DAE systems. For LTI systems, such relationships are more easily captured
by a (matrix to matrix) transfer function in the frequency domain, as illustrated in
Figure A.2. The transfer functions G(s) of the FOM is an algebraic function that
maps the Laplace transform of the inputs û(t) = L[u(t)] to the Laplace transform
of the output ŷ(s) = L[y(t)], noting that differentiation in time domain is converted
to an algebraic multiplication in frequency domain [62]. A similar relationship
exists for the ROM in terms of the transfer function Gr(s), as illustrated in Figure
A.2. Because of the LTI nature of the systems, the linear Laplace transform com-
mutes with the matrix multiplications, leading to the simple algebraic relationship
depicted in Figure A.2.

A commonly-used approach for MOR is based on Petrov-Galerkin projection
[96], where the system matrices before and after MOR are related by:

Er = WTEV, Ar = WTAV, Br = WTB, Cr = CV, Dr = D (A.1)
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Figure A.2: Model order reduction (MOR) can be viewed as a mapping between
the matrices used for state-space representations of FOM and ROM (frequency
domain)

Particularly, the V is called the projection matrix whose column vectors are the
basis vectors for the reduced state space and the column vectors in W are the basis
vectors for the space that is orthogonal to the projection direction [35, 17]. How to
find a pair of V and W depends on specific MOR principles, which differ from one
method to another.

A.1.2 Rational Krylov Subspace (RKS) Method

Here, we briefly introduce the basic idea behind a classical MOR method based
on projection, called the rational Krylov subspace (KRS) method [10]. To obtain
a kth−order ROM that has similar output as the nth−order FOM with the same
input,2 the principle of this method is to match a number k� n of most significant
terms of the Tayler expansion series of the ROM transfer function, around specific
frequencies to those of the FOM. The coefficients of these terms are usually referred
to as “moments”, hence RKS is also called the “moment-matching” method.

To achieve moment matching, mathematicians found that if we let the column
vectors of V and W be the bases of the so-called input and output Krylov subspaces
Kk

(
(A − s0E)−1E, (A − s0E)−1B

)
andKk

(
(A − s0E)−TET , (A − s0E)−TCT

)
, respec-

tively, then the obtained ROM would have the moment matching property. The
Krylov subspace is defined in general as follows:

2The ”order” of a model is the number of state variables (and the number of ODEs) in the
state-space representation.
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Kk(M, v) = span
{

v, Mv, M2v, . . . , Mk−1v
}

. (A.2)

However, RKS has several drawbacks; for example, it does not guarantee preser-
vation of the model stability (i.e., even if FOM is stable, ROM may not be) and the
Taylor expansion frequencies have to be selected manually, among others.

A.1.3 Iterative Rational Krylov Algorithm (IRKA)

To overcome the above limitations of RKS, researchers have developed an improved
approach based on an iterative algorithm [60], which allows adaptively choosing
the expansion frequencies using mirror image of poles of the obtained ROM. This
algorithm is considered as the “gold standard” among the projection-based MOR
methods that minimize the norm of approximation error of ROM compared to
FOM for a given target model order r < n. In IRKA, the goal is to find a stable ROM
for which the H2−norm 3 of the difference between the transfer functions G(s) and
Gr(s) of FOM and ROM is minimized [18].

‖G − Gr‖H2 = min
G ′r∈G(k)

‖G − G ′r‖H2 , (A.3)

where G(k) represents the space of all stable rational transfer functions describing
dynamics of kth−order LTI systems, i.e., all functions that can be parameterized
as G ′r(s) = C ′r(A ′r − sE ′r)−1B ′r + D ′r by matrices (A ′r, B ′r, C ′r, D ′r, E ′r) as illustrated in
Figure A.2. IRKA gives the “optimal” transfer function Gr(s) = Cr(Ar−sEr)−1Br+
Dr, parameterized by optimal matrices (Ar, Br, Cr, Dr, Er). The transfer function is
stable if all of its poles sit to the left of the imaginary axis in the complex plane.

Particularly, given the FOM G(s) and a ROM Gr(s), the H2−error between them

3‖F‖Hp
=
(∫+∞

−∞ |F(iω)|p dω
) 1

p where p > 1 (most commonly p = 1, 2,∞)
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can be computed in terms of their poles and residues as follows:

‖G − Gr‖2
H2

=

n∑
i=1

φiG(−λi) − φiGr(−λi)

−

r∑
j=1

φ̃jG(−λ̃j) − φ̃jGr(−λ̃j), (A.4)

where λj and λ̃j represent the poles whereas φi(s) and φ̃i(s) represent the residues
of G(s) and Gr(s), respectively. The poles λi of a complex rational function G(s) are
defined as the roots (i.e., zeros) of the denominator polynomial in standard rational
representation of the function (i.e., as an irreducible ratio of polynomials). The
residue φi is obtained by removing the (s−λi) factor(s) from the denominator and
evaluating the remaining fraction of nonzero terms at s := λi. For example, if G(s)

is factorized as (s− z1)(s− z2) · · · (s− zm) · (s− λ1)
−1(s− λ2)

−1 · · · (s− λn)−1, then
φi = G(s)(s − λi)|s:=λi . Computationally, the poles of G(s) = C(sE − A)−1B + D
can be obtained from reachable and observable eigenvalues of E−1A. See [36] for
more details.

It has been showed that to minimize ‖G − G ′r‖2
H2

in Eq.A.3, the expansion
frequencies must be selected at the mirror image of the poles of the optimal ROM
[60]. However, since the optimal ROM is not known a priori, we start from a good
initial guess of these expansion frequencies and iteratively update them until we
arrive at the optimal set of poles.

In practice, one often uses the first k poles of the FOM with the largest residues
for the initial expansion. The reason for this choice is that it would make the first
sum in Eq.A.4 as small as possible at the beginning of the iterative process. The
poles can be obtained by computing the eigenvalues of E−1A, which is easy when
we are dealing with a system of ODEs, i.e., E = I is an identity matrix. For DAEs in
general, the inversion of E can be costly. The alternative approach is to compute the
roots of the polynomial det(E−1A − λI) or equivalently the generalized eigenvalues
of the matrix pair (E, A) [90]. The iterative process in IRKA is as follows:

Step 1: Select initial expansion frequencies s = {s1, s2, ..., sk} and fix a convergence
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tolerance tol > 0 for the change of pole locations .

Step 2: Initialize A← Ar and E← Er.

Step 3: While the magnitude of the relative change of si is larger than tol:

(3b) Let si ← −λi[E−1
r Ar], i.e., select the ith largest eigenvalue of E−1

r Ar as the
ith expansion frequency, for i = 1, . . . ,k.

(3c) Choose V and W for Petrov-Galerkin projection as the bases for the
following subspaces, respectively:

span
{
(A − s1E)−1B, (A − s2E)−1B, ..., (A − skE)−1B

}
, (A.5)

span
{
(A − s1E)−TCT , (A − s2E)−TCT , ..., (A − skE)−TCT

}
. (A.6)

(3a) Update Ar ←WTAV and Er ←WTEV.

Step 4: Compute Br ←WTB, Cr ← CV, and Dr ← D.

The flowchart in Fig. A.3 illustrates the IRKA.
Compared to RKS, the IRKA can automatically choose expansion frequencies by

iteration while maintaining the model stability. However, it can neither guarantee
monotonic decrease of the H2−error with every iteration, nor ensure that the error
converges to a local minimum, i.e., the final ROM is optimal as defined in Eq.A.4
[19].

A.1.4 CUmulative REduction (CURE) Scheme

In order to overcome the limitations of IRKA, researchers have developed the CURE
scheme [88], which not only allows adaptively choosing the expansion frequencies
using the poles of the obtained ROM (e.g., similarly to IRKA), but also enables
incrementally increasing the model order by cumulatively updating the ROM error
transfer function. Particularly, the H2−error of the obtained ROM monotonically
converges to zero (i.e., ROM converges to FOM) in the accumulation process. In
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Figure A.3: The flow chart of the iteration process of IRKA

addition, to maintain the model stability, a stability-preserving, adaptive rational
Krylov (SPARK) algorithm is developed, which is used to generate a stable ROM of
order 2. This algorithm is usually embedded in the CURE framework to generate a
family of ROMs with model orders 2, 4, . . . , 2k in k times of accumulation in one
MOR process.

The CURE scheme is built based on a decomposition of the transfer function
of FOM G(s) into a summation of the transfer function of ROM Gr(s) and the
transfer function of error model Ge(s) for the case of D := 0 hence G(s) = C(sE −

A)−1B, i.e., the dependence of the output QoI on the input is only through the
state variables.4 Particularly, in the projection-based MOR techniques, Ge(s) can
be rewritten as a product of two transfer functions G⊥(s) and G̃R

r (s) if we use one-
side reduction where we set W = V and V is the basis for input Krylov subspace
Kk

(
(A − s0E)−1E, (A − s0E)−1B

)
, the matrix representation (E, A, B, C, D) of the

4In the original CURE scheme in [88], the author assumes D = 0 in the state-space representation
of FOM. Nevertheless, the generalization to nonzero D is straightforward.
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three transfer functions are related as follows:[
Ee, Ae Be

Ce De

]
︸ ︷︷ ︸

Ge(s)

=

[
E, A B⊥

C 0

]
︸ ︷︷ ︸

G⊥(s)

·

[
Er, Ar Br

C̃r I

]
︸ ︷︷ ︸

G̃Rr (s)

, (A.7)

where

B⊥ = B − EVE−1
r Br (A.8)

C̃r =
(
BT
⊥

B⊥
)−1BT

⊥

(
AV − EVE−1

r Ar
)

. (A.9)

By contrast, if we set W = V and W is the basis for output Krylov subspace
Kk

(
(A − s0E)−TET , (A − s0E)−TCT

)
, then Ge(s) can be rewritten as a product of

two transfer functions G⊥(s) and G̃L
r (s), we obtain the following decomposition:[

Ee, Ae Be
Ce De

]
︸ ︷︷ ︸

Ge(s)

=

[
Er, Ar B̃r

Cr I

]
︸ ︷︷ ︸

G̃Lr (s)

·

[
E, A B
C⊥ 0

]
︸ ︷︷ ︸

G⊥(s)

, (A.10)

where

C⊥ = C − ETWE−T
r Cr, (A.11)

B̃r =
(
C⊥CT⊥

)−1CT⊥
(
ATW − EWE−T

r AT⊥
)

. (A.12)

The general idea of the CURE scheme is shown in Figure A.4, in which the first
three alternating MOR steps use one-side reduction with V, W, and V, respectively,
i.e., first step uses V, second step uses W, and third step uses V. Specifically, in the
first MOR step we compute the input-type error decomposition. Then we reduce
G⊥,1 in the second step by using W projection matrix and factorize the obtained G⊥,2

using output-type decomposition. The third reduction to G⊥,3 uses V projection
matrix. In the tth step (t > 1), the transfer function GΣ

r,t(s) of the obtained ROM
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can be computed by

GΣ
r,t(s) = GΣ

r,t−1(s) + G̃Σ,L
r,t−1(s) ·Gr,t(s) · G̃Σ,R

r,t−1(s). (A.13)

It can be observed that GΣ
r,t(s) is computed in an accumulated way at each step

and the order of ROM increases at each step. Specifically, the order of GΣ
r,t(s) is

the summation of the order of Gr,t(s) and GΣ
r,t−1(s) because GΣ

r,t−1(s), G̃Σ,L
r,t−1(s), or

G̃Σ,R
r,t−1 share the same poles. The reasons for improving GΣ

r,t−1(s) by performing
reduction on G⊥,t−1(s) are the following:

1. G⊥,t−1(s) contains the dynamics of FOM that has not been captured by the
ROM so far; and

2. G⊥,t−1(s) is of higher order than the previous ROM and offers the potential
to be approximated with other small-scale models G̃Σ,L

r,k−1(s) and G̃Σ,R
r,k−1(s).

The accumulation will stop until the a priori error bound is less than a user-defined
threshold or a user-defined ROM order is reached.

Using the Ge(s) formulas given in Eq.A.7 and Eq.A.10, the CURE scheme can
provide an a priori error bound, i.e., the following bound on the H2−norm of the
difference between the transfer functions of FOM and ROM:

‖Ge(s)‖H2 6 ‖G⊥(s)‖H2 · ‖G̃L
r (s)‖H∞ · ‖G̃R

r (s)‖H∞ (A.14)

A.1.5 Stability-Preserving, Adaptive Rational Krylov (SPARK)
Algorithm

In the CURE scheme, for each step we can use the IRKA to reduce the order of
G⊥,t(s), however, there is no guarantee that IRKA would converge at all in each
step [88]. The SPARK algorithm was developed to overcome this problem by an
adaptive rational Krylov subspace algorithm that can preserve the model stability
and can converge rapidly to the local minimum of the H2−error [89]. However,
SPARK is bound to generate ROMs of order 2 only. Even though such a low-order
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Figure A.4: Model order reduction procedure of the CURE Scheme (Figure taken
with slight modification from [88])

approximation may not be useful on its own, it can be useful when SPARK is
embedded into the CURE scheme where the overall ROM is incrementally built
with many low-order models. Before introducing SPARK, we need to define the
concept of an H2−pseudo-optimal approximant.

A ROM Gr(s) is called a H2−pseudo-optimal approximant of FOM G(s) if
〈Gr, Ge〉H2

= 〈Gr, G − Gr〉H2
= 0, or, equivalently, 〈Gr, G〉H2

= 〈Gr, Gr〉H2
, where

〈·, ·〉H2 is the H2−inner product.5 With this definition, the H2−error ‖Ge‖2
H2

is
5〈F, G〉 =

∫+∞
−∞ F(iω)G(iω) dωwhere G(iω) is complex-conjugate of G(iω).
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obtained as:

‖G − Gr‖2
H2

= ‖G‖2
H2

+ ‖Gr‖2
H2

− 2〈Gr, G〉H2
(A.15)

= ‖G‖2
H2

− ‖Gr‖2
H2

(A.16)

noting that 〈Gr, G〉H2
= 〈Gr, Gr〉H2

= ‖Gr‖2
H2

. The term ‖G‖2
H2

is independent
of the reduction. Hence, minimizing H2−norm ‖Ge‖2

H2
amounts to maximizing

‖Gr‖2
H2

.
The maximization process can be solved rapidly to find the optimal Gr(s) of

lowest order (k := 2). According to Corollary 4.2 in [88], if let s1,2 = a±
√
a2 − b

where a,b ∈ (0,∞), then the ROM defined by Er = I, Ar =

[
−3a 1
−3a2 b

]
, Br =[

−4a
−4a2

]
, and Cr = CV is an H2−pseudo-optimal approximant of the FOM among

all the stable models of order 2. With matrices Er, Ar, Br and Cr, the objective
function ‖Gr‖2

H2
can be directly expressed in terms of a and b as follows:

‖Gr‖2
H2

= CV
[

4a 4a2

4a2 4a
(
a2 + b

) ] (CV)T , (A.17)

where the output matrix C is given by user and the projection matrix V is a function
of a and b only, because it is a function of the expansion frequencies s1,2, Er, Ar
and Br, all of which are functions of a and b only. The projection matrix V will be
updated iteratively when we solve the minimization problem in terms of only two
variables a and b, which can be solved rapidly [88].

In practice, SPARK is usually embedded into the CURE scheme as follows:

Step 1: Find Gr(s) of order k := 2 by solving the two-variate constrained minimization
problem mentioned above.

Step 2: Update overall ROM according to CURE Scheme, described earlier.

Step 3: Repeat the cumulative reduction until the change in the objective function is
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smaller than a certain threshold.

However, the SPARK+CURE approach has several limitations: (1) the FOM
itself must be dissipative (hence stable) to begin with; (2) the resulting ROM does
not necessarily have a physical interpretation; and (3) the approach is only valid
for linear time-invariant (LTI) systems, although there are several ways in which
it can be generalized to nonlinear systems, for example, dividing nonlinear MOR
problems into piecewise linear MOR problems proposed in the Trajectory PieceWise
Linear (TPWL) Method [100].

To clarify the second point, remember that the state-space representation as
a system of first-order ODE/DAE is often derived from second- or higher-order
ODE/DAE obtained from spatial discretization of physics-based (e.g., Newtonian)
PDE/PDAE with an underlying topological structure (e.g., 2D or 3D spatial mesh,
electrical circuit, system model, and chemical reaction network). This structure is
lost once the system is represented in state-space form. After projection-based MOR,
it is not always possible to retrieve a topological, geometric, and generally physics-
based structure from the reduced first-order system of ODE/DAE. An alternative
class of MOR methods that preserve the physics-based (e.g., Hamiltonian) structure
of the FOM can remedy this issue, however to the best of our knowledge, a priori
error cannot be guaranteed in these MOR methods.
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