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ABSTRACT

Microwave inverse scattering shows promise for meeting important clinical needs in breast

imaging that arise due to drawbacks in traditional imaging technologies. The dielectric contrast

between different breast tissue types, the 3-D nature of various inverse scattering algorithms, as

well as microwave technology’s relative safety and low cost motivate a microwave-based approach.

However, challenges remain for this type of imaging technique, as it requires solving a linear sys-

tem that is ill-posed and underdetermined, thus making it sensitive to noise, interference, and

mismatch between the assumed and actual properties of the propagation environment. In this doc-

ument, we report a series of studies performed with the goal of mitigating the effect of these types

of signal errors on the imaging results. We conduct a numerical feasibility study to demonstrate the

efficacy of microwave breast imaging using an enclosed array of miniaturized, multi-band patch

antennas designed to account for the ill-posed nature of the imaging problem. We then conduct

several experimental studies with an array prototype, wherein we characterize the sensitivity of the

array to model error as well as create experimental reconstructions of both geometrically-simple

objects and an MRI-derived 3-D-printed breast phantom. Lastly, we incorporate a beamforming-

enhancement into the imaging algorithm with the goal of making it less sensitive to signal error.
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Chapter 1

Introduction

Breast cancer is a very frequently diagnosed disease and a common cause of death for women.

It has the highest incidence rate among cancers for women in the United States. The incidence

rate for the next most frequently diagnosed cancer (lung cancer) is less than one half the incidence

rate for breast cancer. The average woman has an estimated 12.2% lifetime risk of developing

the disease and a 2.8% lifetime risk of dying from it [2]. Breast cancer is therefore a significant

public health concern and motivates development of improved techniques for both screening and

prevention.

Early detection allows for earlier intervention and thus more positive outcomes. X-ray mam-

mography is the dominant technique for breast cancer screening. Numerous studies have shown it

to decrease the mortality rate from breast cancer [3–5]. Despite its benefits, X-ray mammography

has several well-known drawbacks. It uses ionizing radiation and uncomfortable breast compres-

sion, which might deter some patients from regular screening. It creates two-dimensional (2-D)

projections of breast density, as opposed to approximations of the three-dimensional (3-D) tissue

structure. The mammographic appearance of tumors is sometimes similar to the appearance of be-

nign lesions [6]. Thus, X-ray mammography suffers from a high rate of false positives (i.e., it has

low specificity). A study by Elmore et al. [7] showed that 24% of women experienced a false pos-

itive over a ten-year span of regular mammography screenings. False positives have both physical

costs, due to the need for follow-up examinations that may include invasive biopsies, and psycho-

logical costs [8]. Mammography also has a significant false-negative rate ranging from 10% to
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25% [9] (i.e., it has low sensitivity). High breast density is considered a major complicating factor

leading to false negatives [10].

Several other modalities are sometimes used as complements to X-ray mammography. Mag-

netic Resonance Imaging (MRI) can create highly detailed tomographic breast images, and thus

can detect some tumors that are missed by mammography. However, MRI has a higher false

positive rate. MRI is also relatively time-consuming and expensive. Ultrasound sonography is

often used as a follow-up procedure after a mammogram has detected a possible tumor. It can

sometimes differentiate between tumors and benign lesions. However, sonography operates in real

time, is very user-dependent, and also has a high false positive rate. Neither MRI nor sonography

are recommended as stand-alone techniques for breast cancer screening [11].

While imaging techniques have long played a role in screening and diagnosis of breast can-

cer, breast imaging ultimately may also play a larger role in individualized risk assessment and

therefore preventative intervention. Quantitative breast density evaluation in particular shows

promise due to the correlation between breast density and breast cancer risk. Numerous stud-

ies have suggested that high breast density increases the risk for breast cancer between four and

six times [12, 13]. Furthermore, an increase in breast density over time is associated with an in-

crease with breast cancer risk, whereas a decrease in breast density is associated with a decrease

in risk [14, 15]. Routine breast density evaluation and tracking could thus serve as the basis for

decisions on influencing breast density via hormonal treatment for at-risk patients.

Breast density is typically evaluated via the X-ray mammogram, either through visual inspec-

tion or with the aid of computer-assisted planimetry. Quantitative evaluation of breast density

involves estimating the percentage of the breast consisting of epithelial or connective tissue, col-

lectively referred to as fibroglandular tissue, as opposed to adipose tissue. Ambiguity in density

evaluation with the mammogram arises due to the inherent limitations in estimating a 3-D volu-

metric density from a 2-D projection. Routine use of conventional 3-D modalities, such as MRI,

for density evaluation are constrained due to cost.

Microwave imaging via inverse scattering has the potential to address the clinical needs in

breast imaging that arise due to the weaknesses in X-ray mammography and other traditional
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imaging techniques. This modality involves using an array of microwave antennas to transmit

low-power electric fields into the breast volume. The array records the fields transmitted through

and reflected from the breast and processes them via an inverse scattering algorithm in order to

create a 3-D quantitative estimation of the breast’s distribution of dielectric properties. The di-

electric contrast between adipose tissue, fibroglandular tissue, and malignant tissue serves as the

basis for a microwave-based approach. Microwave images of the 3-D tissue structure could be

used for monitoring breast density, screening and diagnosis of breast cancer (perhaps using con-

trast agents), or monitoring of breast cancer treatment. Microwave breast imaging would operate

comfortably (without breast compression) and at low power while using a non-ionizing portion of

the electromagnetic spectrum.

A major challenge in microwave imaging via inverse scattering is that it involves solving a sys-

tem of linear equations that is ill-posed and underdetermined. Small perturbations in the recorded

signal can cause the imaging algorithm to either diverge or converge to an incorrect solution. The

fidelity of a dielectric reconstruction is strongly influenced by the electric field spatial sampling

density, the number of discrete frequencies used for a solution, and the extent to which noise, in-

terference, or model error is allowed to corrupt the scattered field vector [16, 17]. There is thus

interest in developing antenna arrays that are designed taking the above considerations into ac-

count, as well as in improving existing imaging algorithms in order to make them more robust to

scattered field corruption.

Aguilar et al. [18] have previously introduced an enclosed array of miniaturized, multi-band

patch antennas. The array is shielded on all sides by conducting ground planes in order to isolate

the imaging region from outside interference. The array elements are designed in order to radiate

efficiently at multiple bands of interest while maintaining a small footprint, thus allowing for a

dense antenna population. The array has the additional benefit in that it fits into the interstitial

space of an MRI patient support platform, allowing for a microwave data acquisition to proceed

directly after an MR scan so that the resulting microwave image can be co-registered and compared

unambiguously to the MR benchmark image. The favorable features of the array motivate pre-

clinical imaging studies in order to more robustly validate feasibility.
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Further mitigation of the ill-posed nature of the inverse problem may be achieved through the

addition of focusing techniques into the imaging algorithm. Focusing on transmit and receive

lessens the influence of noise on the dielectric reconstruction, as signal is added coherently, while

noise is not, which leads to an increase in the effective signal-to-noise ratio (SNR) of the system.

Incorporating beamforming techniques [19] into the imaging algorithm allows this focusing to be

accomplished based on the assumed propagation environment of the imaging domain.

This document reports the results of a series of studies conducted with the goal of develop-

ing approaches that mitigate the effects of the ill-posed nature of microwave breast imaging via

inverse scattering. These studies encompass pre-clinical imaging studies using an array of minia-

turized, multi-band patch antennas, as well as the incorporation and evaluation of transmit-receive

beamforming techniques into the microwave imaging algorithm. To this end, the studies fulfill five

specific aims:

1. Microwave imaging of numerical breast phantoms using an enclosed array of minia-

turized, multi-band patch antennas. Dielectric reconstructions of MRI-derived numerical

phantoms are created based on a simulated data acquisition. The reconstructions compare

favorably with previous reconstructions using idealized arrays. This study demonstrates the

theoretical feasibility of using such an array for microwave breast imaging.

2. Characterization of model error for an experimental array prototype. The mismatch

between the assumed and actual properties of the propagation environment of the array,

or its model error, is characterized by comparing simulated and measured signals for the

empty array. A sensitivity study is then performed, wherein various features of the array are

perturbed in simulation in order to determine which sorts of array imperfections are most

likely to lead to significant signal corruption.

3. Preliminary experimental imaging of simple objects using an array of miniaturized

multi-band patch antennas. Reconstructions of glycerol solution tubes and a 3-D-printed
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square cylindrical phantom are reported. The results demonstrate the ability of the exper-

imental imaging hardware and algorithm to accurately reconstruct target distributions of

varying size and configuration.

4. Development and experimental imaging of an MRI-derived 3-D-printed breast phan-

tom. Such a phantom provides an imaging test object with a more complicated and anatomi-

cally relevant geometry. The method for construction of the phantom is discussed. Promising

experimental imaging results are then reported. These results demonstrate the ability of the

imaging system to reconstruct dielectric profiles derived from realistic and complex tissue

distributions.

5. Numerical investigation of beamforming-enhanced microwave breast imaging. The

incorporation of transmit-receive beamforming into the inverse scattering algorithm is de-

scribed. Numerical breast phantoms are imaged from simulated data acquisition for varying

SNR using both the beamforming-enhanced and standard inverse scattering algorithms. The

beamforming-enhanced algorithm is shown to be less sensitive to scattered signal corruption.

The remainder of this document is organized as follows. Chapter 2 describes the background

and significance of microwave breast imaging, including its theoretical formulation as well as past

work. Chapters 3 through 7 report the results of studies performed in support of Aims 1 through 5,

respectively. Lastly, Chapter 8 proposes future work.
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Chapter 2

Background and Significance of Microwave Breast Imaging

Non-invasive medical imaging has progressed greatly in the past century. However, the most

widely-used imaging techniques, such as magnetic resonance imaging (MRI), ultrasound sonogra-

phy, computed tomography (CT), proton emission tomography (PET), and X-ray mammography

each have well-documented limitations. These limitations include high cost (in the cases of MRI,

CT and PET) and lack of specificity (in the cases of X-ray mammography, MRI, and ultrasound

sonography for breast imaging). There is thus a clinical need for competing low-cost medical

imaging technologies.

There has been interest in microwave-based approaches as possible complements or replace-

ments to current techniques in recent years. Microwaves are attractive for medical imaging because

of the variance in water content between different types of tissues, which allows for microwave

scattering and thus differentiation between anatomical structures. Microwave wavelengths are rel-

evant for the medical imaging regime. Electromagnetic waves are non-ionizing in the microwave

regime, and thus relatively safe at low power. Lastly, microwave technology is widely available

and low-cost, as compared to imaging techniques such as MRI.

While microwave imaging is thus very promising, it also poses several important challenges.

Microwaves propagating in the human body undergo multiple (and thus non-linear) scattering.

Biological tissue is often lossy, so penetration is limited for small wavelengths. Reflection from

the skin is substantial and must be considered in the imaging process.

Microwave imaging has been explored for a number of different medical applications, such as

brain imaging for stroke management [20,21], cardiac imaging for monitoring infarctions [22,23],
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bone imaging for mineralization evaluation [24], and imaging of the lungs [25] and breast for can-

cer screening. Microwave breast imaging in particular has received a great deal of attention due

to several properties of the breast that are convenient for microwave imaging. The breast lies out-

side the body cavity, which facilitates microwave penetration. The breast is relatively electrically

small at microwave frequencies, which makes it easier to numerically simulate for the purpose of

algorithmic development. A major component of the breast is adipose tissue, which is low-loss at

microwave frequencies. The dielectric contrast between adipose tissue and the structural compo-

nents of the breast, which are made up of fibroglandular tissue, is significant. Studies have also

shown a dielectric contrast between healthy and malignant breast tissue. These contrasts in dielec-

tric properties allow for discrimination between different tissue structures on a microwave image,

and thus form the physical basis for imaging the breast in the microwave regime.

2.1 Dielectric properties of breast tissue

The electric field scattered by the breast volume is a function of its spatial distribution of

dielectric properties (i.e., its dielectric profile.) Microwave imaging algorithms attempt to create

a mapping of the dielectric profile in the imaging region (either quantitatively or qualitatively) by

acting on the scattered field. The dielectric properties of the breast are relevant to breast imaging

because the dielectric properties of biological tissue are highly correlated with water content, and

thus tissue density.

The dielectric properties of a material are commonly described by its complex electric per-

mittivity, ε∗. Assuming an ejωt time dependence in the electric field, the electric permittivity at

frequency ω can be written as ε∗(ω) = ε0εr(ω)− jσeff(ω)/ω, where ε0 is the permittivity of free

space, εr is the relative permittivity (sometimes referred to as the dielectric constant, or simply

the permittivity) which is related to the ability of the material to be electrically polarized, σeff is

the effective conductivity, which determines the electric field propagation loss of the material, and

j =
√
−1.

Numerous studies have reported a large measured contrast between the dielectric properties of

cancerous breast tissue and the dielectric properties of normal tissue [26–31]. This measured large
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Figure 2.1: (a) Dielectric constant and (b) conductivity for breast tissue types, from the Cole-

Cole models given in [1]. Solid line: 75th percentile fibroglandular tissue. Dash-dot line: 25th

percentile fibroglandular tissue. Dash-dash line: 75th percentile adipose tissue. Dot-dot line: 25th

percentile adipose tissue.

contrast, which ranged roughly from 2:1 to 10:1, was an encouraging indicator for the feasibility for

microwave imaging for breast cancer. Unfortunately, the studies published prior to 2007 suffered

from numerous deficiencies. Only one study measured dielectric properties above 3.2 GHz. The

studies didn’t measure many different types of tissues found in the breast, and were conducted

using a limited number of subjects.

The large-scale study by Lazebnik et al. published in 2007 [32] measured the dielectric prop-

erties of breast tissue from over 100 subjects obtained following breast cancer surgery. Measure-

ments were conducted from 0.5 to 20 GHz for adipose, fibroglandular, benign, and malignant

tissue. Dielectric constant and conductivity for various breast tissue types, as given by Cole-Cole

dispersion curves from [1] fitted to the data from [32], are shown in Fig. 2.1. The study showed

that the dielectric properties of breast tissue varied greatly according to the amount of adipose

tissue in the sample. The dielectric properties of high-adipose tissue (fatty tissues) showed an

order-of-magnitude difference from the dielectric properties of low-adipose tissues (fibroglandular

tissues). In addition, the study reported a mean contrast of 10:1 between malignant and healthy
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adipose tissue and a mean contrast of 1.1:1 between malignant and healthy fibroglandular tissue.

This latter contrast is important since most tumors originate in fibroglandular tissue.

Breast tissue at microwave frequencies is dispersive. The frequency dependence of the dielec-

tric parameters must be taken into account when implementing a microwave imaging algorithm

for the breast. The dispersive complex permittivity of a material can be modeled as a function of

frequency ω by a multi-pole Debye model:

ε∗/ε0 = ε∞ + (εs − ε∞)

N
∑

n=1

1

1 + jωτn
+

σs

jωε0
(2.1)

The infinite permittivity ε∞ is the high frequency limit of the dielectric constant, whereas εs is

the low-frequency limit. The number of Debye poles is N , the relaxation time for the nth pole is

τn, and the static conductivity σs is the low-frequency limit of conductivity. The expression εs−ε∞

can be combined into a single term, ∆ε, the delta permittivity. It is common for multi-pole Debye

models to use a separate delta permittivity term for each Debye pole; however, in this document

we will use models with the same ∆ε for all poles. In Chapters 3 and 7, the dispersive dielectric

profiles of the objects under test will be estimated by reconstructing the Debye parameters ε∞,

∆ε, and σs at each voxel in the imaging domain, while in Chapters 5 and 6, only ε∞ and ∆ε are

reconstructed.

2.2 Prior work in microwave breast imaging

Two main types of active microwave techniques have been explored for the breast imaging

application: radar-based techniques and inverse-scattering techniques. Radar-based techniques

approximate the locations of strong scatterers in the breast. These algorithms assume that the

propagation environment is linear and that tumors are strong scatterers at microwave frequencies.

The goal of radar-based microwave imaging of the breast is not to quantitatively reconstruct the

dielectric profile of the breast, but is instead to create a qualitative mapping of strong scatterers.

Several different types of radar-based algorithms have been explored for the breast. Confocal

microwave imaging (CMI) uses a delay-and-sum (DAS) technique to compensate for propagation

time from various foci in the imaging region and locate strong scatterers [33–41]. Time-reversal
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techniques use back-propagation of received signals to locate scatterers [42]. Beamforming tech-

niques improve upon CMI by taking into account dispersion and suppressing clutter [43–49].

Radar-based approaches generated enthusiasm due to their ability to locate tumors in breast

phantoms. Early studies, however, mostly used phantoms with interiors that were either homoge-

neous (with the exception of the tumor) or varied in their dielectric properties by less than 20%.

The tumors in these studies also typically had higher contrasts with their surrounding tissue (of-

ten 5:1 or greater) than would be expected based on the wide-scale study by Lazebnik et al. [32].

Bond et al. [43] tested their space-time beamforming technique on numerical breast phantoms for

a variety of malignant-to-healthy dielectric contrasts and found that they were unable to discern

tumor response from clutter response for the low-contrast case of 1.1:1. Klemm et al. [49] applied

their radar-based algorithm to experimental phantoms of varying complexity and concluded from

the results that the most significant limiting factor for radar-based breast imaging was the degree

of heterogeneity of the breast.

Inverse scattering approaches to microwave breast imaging differ from radar approaches in that

they use full-wave equations governing electromagnetic scattering in the breast in order to build a

quantitative estimate of the dielectric profile. These approaches are usually iterative and account

for nonlinear propagation that arises from the heterogeneity of fibroglandular tissue in the breast.

Unlike radar-based techniques, inverse scattering techniques attempt to image not only a possible

tumor, but also the surrounding structural tissue, and thus may be used for breast density evaluation

and treatment monitoring in addition to cancer screening. These benefits come at the expense of a

higher computational cost.

A research group at Dartmouth University led by Dr. Paul Meaney has led the field in clinical

microwave inverse scattering for the breast. They were the first to publish quantitative image results

from human subjects using an inverse scattering technique [50, 51]. They used a circular array of

monopole antennas immersed in a saline bath for data acquisition. Each subject laid prone with

her breast hanging pendant into the saline bath. The monopole array was translated to a number of

different elevation planes in the tank, where data was acquired at seven frequencies up to 3 GHz.

The data were used to create single-frequency tomographic reconstructions of the dielectric profile
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in each elevation plane. The results were auspicious, as the outline of the breast was apparent

in the slices, although little interior detail could be seen. The average dielectric properties in the

reconstructions correlated well with the radiological breast density categorizations for the subjects’

breasts. Meaney et al. have since made a number of improvements to their technique, including

the incorporation of multiple frequency data [16] and expansion to 3-D [52].

Various studies have created dielectric reconstructions of numerical domains based on simu-

lated data acquisitions. Such studies are useful for algorithm development and feasibility evalua-

tion, as they allow the reconstructed domains to be compared directly to the known exact dielectric

profile. Most used simple breast phantoms with unrealistic interiors and inclusions [16, 53–56].

Beginning in 2008, researchers began using MRI-derived numerical breast phantoms (e.g., [1])

which acted as more realistic test domains for numerical experiments. Such phantoms are created

by mapping pixel intensity from MR images of human subjects to permittivity and conductivity in

a 3-D numerical breast model. They are therefore anatomically realistic in their distributions of

adipose and fibroglandular tissue.

MRI-derived numerical breast phantoms have been imaged using several different inverse scat-

tering algorithms. Shea et al. [57] used the distorted Born iterative method (DBIM) [58] to cre-

ate 3-D multi-frequency dielectric reconstructions of breast phantoms from four different density

classes. The reconstructions accurately showed the shape and location of the fibroglandular tissue

structures for all four classes. They later published a study [59] in which they added artificial

tumors into the same four phantoms and then performed a simulated data acquisition both with

and without assumed contrast enhancements from exogeneous injection of carbon nanotubes and

air microbubbles [60, 61]. Differential imaging led to the tumors being accurately identified and

located in the resulting microwave image.

Reconstructions of 2-D profiles formed from cross-sections of 3-D MRI-derived phantoms have

been performed with accurate results using the contrast-source inversion (CSI) method [21] and

the Forward-Backward Time-Stepping (FTBS) method [62]. FTBS has also been used to create

3-D reconstructions of breast phantoms with 5-10 mm tumors [63]. The FBTS method was able to

locate tumors of size 10 mm well, but had more difficulty finding smaller tumors and converged to



12

an inaccurate solution when the dielectric contrast between the tumor and the surrounding tissue

was reduced to 1.5:1.

The simulated work described above resulted in reconstructions that were of largely high qual-

ity; however, it used dense arrays of highly idealized antennas, such as small dipoles or line

sources. Obtaining similar experimental performance will require an array of physically realizable

antennas that have a small footprint, multiple frequencies of operation, and efficiency in radiation.

These requirements are necessary in order to counteract the ill-posed nature of the system equa-

tions that is created by the imaging algorithm. The construction of this linear system, as well as

other details on the inverse scattering algorithm, are described in the following section.

2.3 The Inverse scattering algorithm

For the general inverse scattering problem, L antennas are located around a volume V to be

imaged. Both V and the array are located within a volume of interest D. The complex permittivity

profile for all points r in D is given by ε∗(r) = ε∗b(r)+ o(r)ε0, where ε∗b(r) is a known background

complex permittivity profile that can be either homogeneous or heterogeneous, and o(r) is the

complex permittivity contrast. Outside V , o(r) = 0. Inside V , o(r) is unknown; the goal of the

inverse scattering problem is to create an estimate of the unknown dielectric contrast o(r) for all

points r in V .

Each antenna in the array sequentially transmits an electric field pulse into V . For a given

transmit antenna, let Ei(r) be the incident electric field, defined as the electric field in D assuming

ε∗(r) = ε∗b(r) for all r. Let Et(r) be the total electric field, defined as the electric field in D

assuming ε∗(r) = ε∗b(r) + o(r)ε0. The incident field Ei(r) is known (i.e., can be computed) for all

r, while the total field Et(r) is unknown in V and is measured at all antenna locations in the array.

Let Es(r) be the scattered field, given by Es(r) = Et(r) − Ei(r). Using the volume equivalence

theorem and the integral form of the Helmholtz equation, the scattered field at antenna location

rrec resulting from transmission of an electric field pulse from antenna location rsrc can be written

Es(rsrc, rrec) = Et(rsrc, rrec)− Ei(rsrc, rrec) = ω2µ0ε0

∫

V

Ḡb(r′, rrec)E
t(rsrc, r

′)o(r′)d3r′ (2.2)
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where Ḡb(r′, rrec) is the background dyadic Green’s function relating the field at rrec due to a unit

current density at r′, Et(rsrc, r
′) is the total field at r′ resulting from transmission of the electric

field pulse at rsrc, E
t(rsrc, rrec) is the measured total field at source location rrec due to transmission

of an electric field pulse from rsrc, E
i(rsrc, rrec) is the corresponding incident field obtained via

numerical simulation of the background permittivity, and µ0 is the magnetic permeability of free

space. For single polarization antennas, Es(rsrc, rrec) reduces to a scalar, Es(rsrc, rrec).

Collection of scattered fields from numerous transmit-receive channels results in a system of

integral equations of the form of (2.2), which are non-linear in the unknown contrast, as the total

field in the integrand is a function of o(r′). Inverse scattering generally involves using a non-

linear optimization technique to find an estimate to o(r′) which minimizes Es over the set of

antenna transmit-receive pairs. Numerous optimization algorithms exist for solving this problem.

The remainder of this section describes the distorted Born iterative method (DBIM), which is

equivalent to the Gauss-Newton (GN) method [64]. Other inverse scattering algorithms include

the Born iterative method (BIM) and contrast source inversion (CSI).

DBIM involves first linearizing (2.2) by replacing Et with Ei in the integrand, a step which is

known as the Born approximation, and which is valid for small contrasts. The imaging region V is

then discretized into K voxels. A system of linear equations in the form b = Ax is created, where

x is the vector of unknown dielectric contrast at each voxel. For a single-pole Debye parameter

reconstruction, x is of size 3K × 1 and is given by

x = [oε∞(r′1) . . . oε∞(r′K) o∆ε(r
′
1) . . . o∆ε(r

′
K) oσ(r

′
1) . . . oσ(r

′
K)]

T (2.3)

where r′1 . . . r
′
K are the locations of each imaging region voxel, oε∞ is the contrast in ε∞, o∆ε is

the contrast in ∆ε, and oσ is the contrast in σs at each voxel. The 2M × 1 vector b is the vector

of scattered electric fields for each antenna transmit-receive pairs, where M is the total number of
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pairs. It is given by

b =





























ℜ
{

Es(rrec(1), rsrc(1))
}

...

ℜ
{

Es(rrec(M), rsrc(M)))
}

ℑ
{

Es(rrec(1), rsrc(1)))
}

...

ℑ
{

Es(rrec(M), rsrc(M))
}





























(2.4)

where ℜ and ℑ are the real and imaginary parts, respectively. Let the submatrix A0 be of size

M × K, where the mth row of A0 is formed by discretizing the kernel of the integral equation

(2.2) for the mth transmit-receive pair. The m− k component of A0 is then given by

A0
mk = ∆3ω2µ0ε0Ḡb(r′k, rrec(m))E

i(rsrc(m), r
′
k)p̂ (2.5)

In (2.5), ∆3 is the volume of one voxel in the imaging region and p̂ is the unit vector representing

the polarization direction of the antennas. The matrix A is then given by

A =





ℜ{A0} ℜ {c∆}ℜ {A0} − ℑ{c∆}ℑ {A0} −ℑ{cσ}ℑ {A0}
ℑ {A0} ℑ {c∆}ℜ {A0}+ ℜ{c∆}ℑ {A0} +ℑ{cσ}ℜ {A0}



 , (2.6)

where c∆ = (1 + jωτ)−1 and cσ = (jωε0)
−1. The size of A is 2M × 3K. It is equivalent to the

Jacobian matrix used by GN. Multiple frequency reconstructions may be performed by creating b

and A for each frequency and then vertically concatenating.

Since the background dielectric profile is known, the Green’s function and incident field quanti-

ties in (2.5) may be found via full-wave electromagnetic simulation of the background profile using

a technique such as the finite-difference time-domain (FDTD) or finite-element (FEM) methods.

Such simulation techniques solve the Helmholtz equation

∇2Ei + ω2µ0ε
∗
bE

i = jωµ0J (2.7)

for the incident field due to the source current density, J. This simulation step is commonly referred

to as the forward solution, and is often computationally expensive. The incident field is typically

computed at each voxel in the imaging domain for every transmit antenna. The Green’s function
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for every voxel and receive antenna combination can then be computed from the incident field and

source conditions using the integral form of the Helmholtz equation,

Ei(rsrc, r
′) = −jωµ0

∫

Ḡb(r′, rrec)Jd
3r′, (2.8)

where the integration is over the source volume.

Once A and b are formed, then the system may be solved for an estimate for the unknown

contrast x, a step commonly referred to as the inverse solution. In general, there will be many

more unknown elements of x then there are channel measurements. The system of linear equations

is ill-posed and underdetermined, and thus requires a regularized optimization technique to find a

proper solution. Regularization puts constraints on the inversion in order to force the solution to

have certain favorable qualities, which helps avoid convergence to an incorrect solution. This often

takes the form of penalizing solutions with a large L2 norm. An example of an inverse solution,

which will be used for the studies in the following chapters, is conjugate gradient least squares

(CGLS), an iterative solver that is regularized by termination prior to convergence.

After an estimate for the dielectric contrast, ô(r′), is found, it is used to update the back-

ground profile. The background profile for DBIM iteration i + 1 is thus given by ε∗b(i+1)(r
′) =

ε∗b(i)(r
′) + ô(r′)ε0. The DBIM iterates between forward and inverse solutions until convergence in

the scattered field is achieved.

2.4 Conclusion

Microwave imaging for the breast is promising due to its ability to differentiate between high-

density and low-density tissue. The ill-posed nature of inverse scattering remains a significant

challenge. Existing techniques may be significantly improved by making them less sensitive to

noise, interference, and model error. Such improvements can be algorithmic in nature, such as

introducing transmit-receive beamforming. They can also be hardware based, such as introducing

a fully-enclosed imaging environment and using efficient miniaturized antennas. The work to be

done to incorporate these techniques will be both computational and experimental. The following

chapters describe research completed towards accomplishing these important goals.
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Chapter 3

Quantitative Microwave Imaging of Realistic Numerical Breast

Phantoms Using an Enclosed Array of Multi-band, Miniaturized

Patch Antennas

3.1 Introduction

In order to fully realize the benefits of microwave imaging for the breast, it is critical to use

antenna arrays designed with the goal of counteracting the ill-posed nature of the linear system that

must be solved as part of the imaging algorithm. This means using antennas with a small physical

footprint, allowing for dense spatial sampling of electric fields. It also requires antennas that can

collect electric fields at multiple discrete frequencies in the range 0.5 - 3.5 GHz. This frequency

range balances the increased penetration depth and stabilizing effects of low frequencies [16] with

the higher resolution from higher frequencies. Lastly, it is necessary to isolate the imaging region

from the outside environment so that the measured electric fields are not corrupted by interference

or clutter that can’t be modeled in the forward solver.

The above requirements may be met through the use of electrically small dipoles, monopoles,

or simple patches. These types of antennas may be impedance matched across a wide band of

frequencies (thus allowing for multiple-frequency data to be collected) by immersing them in a

lossy medium. The loss of the medium may also significantly attenuate signals from clutter outside

This chapter is partially adapted from M. Burfeindt, N. Behdad, B. Van Veen, and S. Hagness. “Quantitative

Microwave Imaging of Realistic Numerical Breast Phantoms Using an Enclosed Array of Multi-band, Miniaturized

Patch Antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1626 - 1629. c© 2012 IEEE [65].
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Figure 3.1: An illustration of a 32-element antenna array enclosing a Class 2 numerical breast

phantom. The substrates and ground planes on the four lateral panels are not shown to enable

visualization of the interior. Axes are in centimeters. c© 2012 IEEE.

the imaging region. However, this is done at the cost of decreasing the efficiency of the antennas

and greatly attenuating signals that travel the entire span of the array, which perhaps leads to a loss

of valuable scattered field data. There is thus interest in using antenna arrays that accomplish dense

spatial sampling, multiple frequency operation, and imaging region isolation by other means.

Fig. 3.1 shows our proposed array of multi-band, miniaturized patch antennas surrounded by a

conducting enclosure. The breast of the prone patient extends through the opening in the top panel

of the array. An enclosed configuration is attractive, as it shields the imaging environment from

outside interference and clutter. This shielding also simplifies the model of the array environment

in the forward solution of the imaging algorithm. A few single-frequency enclosed arrays have

been reported (e.g., [66, 67]); however, the slot-loaded patch antennas composing our array are

designed to radiate at multiple resonant frequencies within the range relevant to microwave breast

imaging while maintaining a relatively small physical footprint and thus a dense source population

[68]. Arrays using this type of antenna are relatively straightforward to model on a Cartesian grid,

which further simplifies the forward solution.
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The proposed array fits within the interstitial space of an MRI patient-support platform and

thus also allows for co-registration of microwave breast images with MRI [18]. This setup, to-

gether with a tissue-immobilizing thermoplastic mesh [69], allows microwave data to be acquired

immediately following an MR scan while the breast remains stationary. This configuration permits

a rigorous validation of microwave imaging as a viable clinical tool for breast imaging.

While the factors above highlight the advantages of our approach, it is important to validate

imaging feasibility prior to clinical imaging trials. In this chapter, we report a computational

study of microwave imaging with our proposed array. Simulated electric field data is acquired

for heterogeneous, anthropomorphic testbeds of known dielectric distributions–namely, four MRI-

derived numerical breast phantoms ranging in density from mostly fatty to extremely dense. We

show that the reconstructed dielectric profiles are very faithful to the true dielectric profiles of the

phantoms. This successful imaging of anatomically realistic breast phantoms demonstrates the

feasibility of microwave breast imaging using an enclosed array of miniaturized, multi-band patch

antenna.

3.2 Antenna array

The microwave antenna array used in this study is in the form of a rectangular cavity. Con-

ducting ground planes enclose the cavity on six sides. The ground plane of the top panel has an

elliptical hole through which the pendant breast phantom descends. This hole conforms to the

base of each breast phantom. The interior sides of the four lateral panels are coated with a 60 mil

substrate with dielectric properties εr = 6.15 and σ = 2.1 mS/m. These properties are similar to

those of Rogers RO4360 substrate.

The interior volume of the enclosed array is filled with an immersion medium whose dielectric

properties are given by the Debye model parameters ε∞ = 2.24, ∆ε = 0.73, σs = 0, and τ = 5 ps.

This Debye model is similar to the dielectric dispersion of the biocompatible immersion medium

of safflower oil over the frequency range 0.5 - 3.5 GHz [68].

Each of the four lateral array panels is populated with an eight-element sub-array of slot-loaded

patch antennas. The slot-loading approach is similar to that presented in [70]. The antennas are
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arranged in three rows, in a staggered 3-2-3 configuration that reduces the mutual coupling between

vertically adjacent antennas [18, 71]. Vertical spacing and horizontal spacing between antennas

(center-to-center) are both 48 mm. The patch antennas are of height 30 mm and width 28 mm.

Slots are placed 2 mm from both radiating (i.e., top and bottom) edges of the patch antenna. The

dimensions of the slots are 24 mm by 2 mm. The function of the slots is to move the lowest three

transverse magnetic (TM) resonances of the antenna into the frequency range 0.5 - 3.5 GHz while

maintaining a relatively small antenna footprint. The antenna feed is offset from the center of

the patch by 3 mm in the vertical direction. The first three resonances of the antenna are at 1.6,

2.2, and 3.0 GHz. These resonances correspond to the TM100, TM200, and TM300 modes of the

antenna, respectively. Note that the patch antenna has vertical polarization in these three modes.

We determined the resonant frequencies of the antenna via finite-difference time-domain (FDTD)

simulation.

3.3 Data acquisition simulation

The heterogeneous, anthropomorphic numerical breast phantoms used in this study are derived

from MR scans of human subjects as described in detail in [1] (see [57] for modifications). We use

one phantom from each of the four breast density classes as defined by the American College of

Radiology, ranging from Class 1, or mostly fatty, to Class 4, or extremely dense.

Data acquisition is performed by simulating each numerical testbed via FDTD formulated for

simulating dispersive media described by single-pole Debye models, as in [57]. FDTD simulations

are performed using the Acceleware FDTD library (Acceleware, Calgary, Alberta, Canada.) We

use three grid cells to capture the thickness of the substrate. A graded mesh is used to increase the

grid discretization to 1 mm in the interior of the array. Using this grid, the transverse features of

the patch antennas, as well as the breast phantom features, are modeled with a 1-mm discretization.

The side and bottom boundaries of the computational domain are terminated with perfectly electri-

cally conducting (PEC) planes. The top of the domain is terminated with a convolutional perfectly

matched layer (CPML) absorbing boundary. An eight-cell buffer region is introduced between the

CPML boundary and the PEC cap at the top of the array. The breast phantom is extended upwards
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through the elliptical hole into the eight-cell buffer region. The rest of the buffer is filled with free

space.

The 32 antenna feeds are modeled as one-cell-long lumped-element resistive voltage sources.

The resistive voltage sources occupy the substrate grid cell closest to the ground plane. Two cells

of PEC are used to connect each voltage source to the patch surface.

Each source sequentially transmits a modulated Gaussian pulse with a bandwidth covering

0.5 to 3.5 GHz. The resulting time-domain electric fields are recorded at all antenna feeds and

converted to phasor form at the TM100, TM200, and TM300 resonant frequencies of the patch

antennas via discrete Fourier transform.

3.4 Imaging technique

Estimates of the dielectric profiles of the numerical breast phantoms are computed using the

multi-frequency, Debye parameter formulation of the distorted Born iterative method (DBIM) [58]

as described in Chapter 2 and [57]. The forward solution is computed via FDTD on the same grid

as was used for data acquisition. We avoid the inverse crime by adding Gaussian white noise to

the simulated array measurements at a level corresponding to a signal-to-noise ratio (SNR) of 30

dB. SNR is defined here as the ratio between the total received signal power across all channels

to the total noise power across all channels. As in [57], the inverse solution is constrained via the

projected restart method such that the reconstructed Debye parameters are roughly proportional.

We use the scalar formulation of the algorithm, in which the scattered electric field, incident electric

field, and dyadic Green’s function are replaced with their corresponding co-polarized (in this case,

vertical) components. The scalar approximation is only used for the purposes of the imaging

algorithm; all FDTD simulations compute the full vector field quantities.

The DBIM requires computation of the heterogeneous background Green’s function at each

iteration of the algorithm. We calculate the Green’s function from the incident field (which is

computed in the forward solution of the algorithm) via the relationship

Gb(r) =
−jRsE

i(r)

ωµ0ℓsvs
, (3.1)
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Figure 3.2: Class 1 (mostly fatty) phantom: Coronal cross-sections through the true (top row)

and reconstructed (bottom row) profiles for the Debye parameter ∆ε. Adjacent cross-sections are

separated vertically by 2 cm. c© 2012 IEEE.

Figure 3.3: Class 2 (scattered fibroglandular) phantom: Coronal cross-sections through the true

(top row) and reconstructed (bottom row) profiles for the Debye parameter ∆ε. Adjacent cross-

sections are separated vertically by 1 cm. c© 2012 IEEE.

where Ei is the FDTD-computed incident electric field, Gb is the Green’s function, ℓs is the length

of the lumped element resistive voltage source, vs is the source voltage phasor, and Rs is the

source resistance. The computed Green’s function takes into account multiple scattering within

the enclosed array, as well as the characteristics of the antennas.



22

It is assumed that the dielectric properties of the breast voxels in the buffer region are unknown

at each iteration of the DBIM algorithm. When the background profile is simulated in the forward

solution, the row of voxels at the base of the breast phantom background profile is extended into

the buffer region. The rest of the buffer region is again filled with free space.

As in [57], the imaging region in this study comprises all points interior to the phantom skin

layer; thus, the skin is assumed known and is part of the background profile. Techniques have been

developed for creating estimates of the breast surface using microwave backscatter measurements

[72], and the dielectric properties of skin are well-characterized [73]. The initial guess in the

phantom interior is homogeneous with dielectric properties corresponding to the volumetric mean

of the exact profile.

The inverse solution is performed via conjugate-gradient least-squares (CGLS). Regularization

is achieved by terminating CGLS after five conjugate gradient iterations. The DBIM is terminated

when the norm of the residual vector b has changed by less than one percent of the initial residual

norm, which occurs after five or six DBIM iterations.

3.5 Results and discussion

Figs. 3.2-3.5 show sequences of coronal cross-sections through the true and estimated 3-D

dielectric profiles for each phantom. In each case, the profiles are depicted in terms of Debye

parameter ∆ε. The three Debye parameters are highly correlated in both the true and estimated

profiles, so ε∞ and σs are not shown. Adjacent cross-sections are separated vertically by 2 cm for

the Class 1 phantom (the largest of the four phantoms) and 1 cm for Class 2 through Class 4.

The reconstructed profile is visually faithful to the true profile for each phantom. The low-level

dielectric properties in the reconstructions correspond to fatty tissue. The reconstructed fibrog-

landular regions of tissues are accurate in location and basic shape. As in studies using idealized

dipoles or line sources, the resolution is limited by the highest frequency used for the reconstruc-

tion. This contributes to the moderate blurring and underestimation of fibroglandular tissue dielec-

tric properties in the reconstructions.
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Figure 3.4: Class 3 (heterogeneously dense) phantom: Coronal cross-sections through the true

(top row) and reconstructed (bottom row) profiles for the Debye parameter ∆ε. Adjacent cross-

sections are separated vertically by 1 cm. c© 2012 IEEE.

We also report results in terms of the performance metric cos(φ) introduced in [57], where φ

is the angle between the true permittivity vector describing V and the corresponding estimated

permittivity vector. Let r′1 . . . r
′
K be the locations of the K voxels in the imaging domain. Let the

3K × 1 vector y be the true permittivity vector, given by

y = [ε∞(r′1) . . . ε∞(r′K) ∆ε(r′1) . . .∆ε(r′K) σs(r
′
1) . . . σs(r

′
K)]

T
(3.2)

and let ŷ be the corresponding estimated permittivity vector. Then,

cos(φ) =
yTŷ

||y||2||ŷ||2
(3.3)

The quality metric quantifies the similarity in spatial distribution of dielectric properties be-

tween the actual and reconstructed profiles. A perfect reconstruction would have cos(φ) = 1. For

this study, we obtained cos(φ) = 0.8157, 0.8408, 0.7972, and 0.7447, for the Class 1, 2, 3, and

4 phantoms, respectively. These values are comparable to the performance metrics for the recon-

structions created by Shea, et al. using an idealized dipole array (see Fig. 8 in [57]). The somewhat

diminished accuracy for the denser classes (3, 4) is likely due to higher attenuation associated with

an increased percentage of fibroglandular tissue.
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Figure 3.5: Class 4 (extremely dense) phantom: Coronal cross-sections through the true (top row)

and reconstructed (bottom row) profiles for the Debye parameter ∆ε. Adjacent cross-sections are

separated vertically by 1 cm. c© 2012 IEEE.

The optimal choices for substrate, slot-loaded patch antenna, resonant frequencies, and con-

figuration of antennas in each sub-array remain open questions. Potential improvements could

be realized by using a slot-loaded patch antenna with more resonant frequencies in the 0.5-3.5

GHz range, though this may result in a loss of gain. Alternate array configurations may affect the

radiation pattern inside the cavity, possibly leading to further performance improvement.

3.6 Conclusion

This study presents results of imaging anatomically-realistic, MRI-derived numerical breast

phantoms using an enclosed array of miniaturized patch antennas and a 3-D, multi-frequency for-

mulation of the distorted Born iterative method. Visual qualitative agreement between the true

phantom profiles and the 3-D reconstructed profiles is evident in all coronal cross-sections for all

four phantom density classes. The performance metric cos(φ) for each reconstruction is com-

parable to the corresponding metric for the idealized dipole array reconstructions despite using

fewer and higher frequencies. Thus, an enclosed array of multi-band patch antennas has excellent

potential for microwave breast imaging.
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Chapter 4

The Prototype Microwave Imaging Array: Experimental Data

Acquisition and Model Error Characterization

4.1 Introduction

The promising numerical results from the preceding chapter motivate development of an ex-

perimental microwave imaging prototype. Experimental microwave imaging via inverse scattering

poses the additional challenge of mismatch between the true propagation environment in the an-

tenna array and the simulated propagation environment of the forward solution. Sources of such

model error include numerical dispersion, imperfect array construction, and ambiguity in the di-

electric properties of the immersion medium. With such imperfections present, the difference

between the measured and simulated received electric fields Es = Et − Ei will contain an ad-

ditional unwanted signal error that is distinct from noise or external interference. The imaging

algorithm will attempt to compensate for this error, leading to aberrations in the resulting dielec-

tric reconstruction. The magnitude of these aberrations will depend on the severity of the model

error.

In this chapter, we characterize an experimental microwave imaging array of the type intro-

duced in Chapter 3. The procedure for performing an experimental data acquisition and calibrating

the resulting measurements is described. We then quantify the signal error between measurement

and simulation of the array filled only with the immersion liquid. We then perform a sensitivity

This work was performed in collaboration with J. Shea, T. Colgan, R. Mays, N. Behdad, B. Van Veen, and S.

Hagness.
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(a) (b)

Figure 4.1: Photographs of the enclosed array of patch antennas. a) An exterior view. b) An

interior view, prior to attachment of the top panel. The safflower oil immersion isn’t present for

visualization purposes.

analysis, wherein we perturb various array parameters in simulation and quantify the degree to

which it changes the resulting array signals. This sensitivity analysis helps us to identify features

of the array which are most likely to introduce error into array signals.

4.2 The Prototype array and data acquisition system

Fig. 4.1a is a photograph of the prototype array of miniaturized, multi-band patch antennas. As

in Chapter 3, the array consists of 30 mm high by 28 mm wide slot-loaded patch antennas. Slots

of size 26 mm wide by 2 mm high are placed 2 mm from each radiating edge. The antenna feed

is located 5 mm vertically off-center. There are a total of 36 patch antennas in the array. Each

lateral panel is of size 156 mm high by 164 mm wide. These dimensions would allow the array to

accommodate a majority of human subjects, based on the distributions of breast dimensions given

in [74]. Each panel has a sub-array of eight antennas arranged in a 3-2-3 configuration. Antenna

horizontal spacing is 48 mm, center-to-center. Vertical spacing is 46 mm between the bottom and

middle rows and 48 mm between the middle and top rows. The bottom panel has a sub-array of

four antennas, as pictured in Fig. 4.1b. Each array panel is formed from 60 mil (about 1.524 mm)

Rogers RO4360 substrate backed by copper. The top array panel has a hole of diameter 125 mm.
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For data acquisition, we fill the array with the biocompatible immersion medium of safflower

oil. This immersion medium is convenient in that it decreases the dielectric contrast of the imaging

object with the propagation medium of the array while also closely matching the dielectric prop-

erties of conformable thermoplastic mesh that will be used in clinical trials [69]. This match in

properties obviates the need for accounting for the thermoplastic mesh in the forward solution of

the imaging algorithm.

Data acquisition is performed via an Agilent two-port E8364A programmable network analyzer

(PNA). The PNA interfaces with the antenna array through a 2 × 36 switch. The two PNA ports

are connected to the input ports of the switch, while the switch output ports are connected to

the antenna terminals via 36 secondary cables. Data acquisition automation is accomplished via

LabView. For each transmit-receive antenna pair, the PNA outputs the 2× 2 scattering matrix, i.e.,

the S-parameters of the antenna pair. The components of a scattering matrix are given by

Sij =
v−i
v+j

∣

∣

∣

∣

∣

v+
i6=j

=0

, (4.1)

that is, the ratio of the outgoing voltage wave from the ith port to the incoming voltage wave at the

jth port, assuming there is no incoming voltage waves at any other ports. For this study, as well as

for the imaging studies in the following chapters, we will be concerned with the bistatic antenna

channels, wherein the transmitting antenna is distinct from the receive antenna. The bistatic signals

are given by the off-diagonal S-parameters.

The two PNA terminals are calibrated to the input ports of the switch. The measured S-

parameters thus include signal contributions from the switch paths and the secondary cables, which

is undesirable. Removing the effects of the switch paths and the secondary cables is made more

convenient by converting from a scattering matrix formulation to a transmission matrix formula-

tion, as transmission matrices for different hardware components of the data acquisition system can

be cascaded together in order to represent the transmission matrix for the system as a whole. This

cascading technique makes it relatively simple to remove the effects of the unwanted components

from the signal before converting back to a scattering matrix formulation.
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For a given antenna pair, the PNA-measured scattering matrix can be converted into a 2 × 2

transmission matrix, TPNA, and vice-versa via a set of simple relations [75]. The transmission

matrix between the feeds of the antennas, Tantennas, can then be related to TPNA via the simple

equation

Tantennas = B−1
2 TPNAB

−1
1 . (4.2)

where B1 is the transmission matrix between the first switch input and the output of the secondary

cable connected to the first antenna and B2 is the transmission matrix between the second switch

input and the output of the secondary cable connected to the second antenna. We determine B1 and

B2 for each antenna pair by first measuring the S-parameters for every switch path and secondary

cable via the PNA. We then remove the signal contributions from the switch and secondary cables

by applying (4.2) to the PNA measured signal for each antennas pair. The effective S-parameters

between the two antenna terminals, free of the effects of the cables or switch paths, are then

computed by application of the relations from [75] to Tantennas.

4.3 Simulation of the antenna array

The prototype array is simulated via FDTD in the manner described in Chapter 3. A two-

pole Debye model of the form in (2.1) is used to model the dispersive dielectric properties of

the safflower oil, with parameters ε∞ = 2.35, ∆ε = 0.33, σs = 0, τ1 = 20 ps, and τ2 = 202

ps. This model closely matches the dispersion of safflower oil measured with the Agilent 85070

high-temperature probe.

A one-grid-cell layer of substrate is placed above the top PEC layer in order to model the

substrate on the top array panel. The slight mismatch (1 mm versus 1.524 mm) in the simulated

versus experimental thickness of the substrate of the top panel is assumed to provide negligible

corruption of the forward solution signal, as the interior of the array is shielded from reflections

from the substrate by the conductor of the top panel. Modeling the top panel in this manner

allows us to avoid grading the FDTD mesh vertically into the array hole, which would require

non-uniformly sized imaging region voxels.
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Figure 4.2: Histograms for (a)-(b) magnitude and (c)-(d) angle errors between experiment and

measurement. Left column: 1.61 GHz. Right Column: 3.06 GHz. The histogram in (b) neglects

an outlier channel with an error of 24 dB.

The simulation is terminated after 40 ns of simulation time, after which the received time-

domain voltages have decayed to about -40 dB referenced to their peak. The received time-domain

simulated voltages at all antenna feeds are converted to frequency-domain via DFT. Bistatic scat-

tering matrix parameters can be calculated from the current and voltage phasors at each port using

the relations given in [76]. For the case where the source port is excited by a matched resistive

voltage source and all receiving ports are terminated with a matched load, these relations reduce to

S = 2v/vs, (4.3)
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where v is the voltage phasor recorded at the antenna feed in question and vs is the source voltage

phasor. For a system not excited by a resistive voltage source, vs is the Thevenin equivalent voltage

source at the source port. We use (4.3) to convert the simulated voltage phasors at each port to S-

parameters.

4.4 Results and discussion

We first compare the measured and simulated S-parameters for the prototype array in order to

compute the degree of model error in the forward solution. An angle offsets exists between exper-

imental and simulated S-parameter phasors at each frequency, most likely due to stray uncompen-

sated electrical lengths from connectors. We correct for this effect by subtracting the median angle

offset across channels from the measured phasors. Fig. 4.2 shows histograms for the magnitude

and phase errors between measurement and simulation. The histograms include channels formed

by transmitting with five antennas on one panel and receiving with all 32 antennas on the four

lateral panels. The five transmit antennas are chosen so that all geometrically unique channels on

the lateral panels are included. A magnitude and phase histogram is shown for both the TM100

resonance at 1.61 GHz and the TM300 resonance at 3.06 GHz. For the lower band, 90% of the

channels have a magnitude error of less than 3 dB, and 91% have a phase error of less than 30

degrees. For the upper band, 67% have a magnitude error of less than 3 dB, and 70% have an angle

error of less than 30 degrees.

The overall degree of model error may also be quantified using the perturbation metric

γ =
|S|

|S − S0|
, (4.4)

where S is the perturbed (in this case, measured) signal phasor and S0 is a baseline (in this case,

simulated) signal. The metric γ is akin to a signal-to-noise ratio (SNR), where the denominator is

the perturbation in signal due to model error as opposed to noise. For the lower band, γ = 15 dB

for the median channel, while for the upper band, γ =7 dB. This is consistent with the histograms

in Fig. 4.2. The degree of model error is considerably greater for the upper frequency band than for

the lower frequency band. These results suggest that the upper frequency band is more sensitive to
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small imperfections in array construction or ambiguities in dielectric properties of array materials.

The higher degree of model error in the higher frequency band suggests that creating accurate

multi-band reconstructions will require emphasizing the lower frequency data more in the inverse

system.

Assuming a conservative noise floor of -70 dB referenced to source power and a median re-

ceived signal at around -30 dB, a median SNR of 40 dB is a reasonable estimate for an experimental

microwave data acquisition system. Based on the signal-to-model-error ratios given by the metric

γ above, the corruption of the scattered field signal due to model error is more pernicious than

instrument noise by several orders of magnitude. This suggests that model error is among the most

important challenges in experimental microwave imaging.

We also perform a sensitivity analysis in order to identify which features of the array are most

likely to cause mismatch between measurement and forward solution if perturbed. We make a

series of small changes to the simulated antenna array and compare the resulting simulated signals

to the baseline simulated signals. The metric γ is then reported, where S is considered to be

the signal from the perturbed simulation and S0 is the signal from the baseline simulation. For

perturbations that resulted in a small shift in resonant frequency of the antenna, such as changing

dielectric properties of materials in the array, we sample S at the perturbed resonance and S0 at the

unperturbed resonance.

Table 4.1 lists the various perturbations included in this study. The perturbation of ±0.15 was

chosen for the substrate dielectric constant in order to match the reported tolerances for the Rogers

substrate. Perturbations of 2 mm for the panel dimensions and 10 mm for the hole diameter were

chosen to represent larger than expected aberrations. For perturbation 17, the lateral boundaries

of the computational domain were changed to CPML from PEC. A buffer of 5 cells was placed

between the CPML and the lateral ground planes on all sides. This change was made so that there

were no lateral PEC planes above the array top cap, which corresponds to the experimental setup.

For perturbation 18, the substrate above the top panel was changed in thickness from 1 to 1.5 mm.

The FDTD grid was graded vertically into the hole in order to accomplish this. A perturbation of

10% was chosen for the rest of the features.
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Table 4.1: List of perturbations for the sensitivity analysis and resulting γ for the median channel

γ (dB) γ (dB)

Perturbation number Description TM100 TM300

1 Increase substrate dielectric constant from 6.15 to 6.3 24 35

2 Decrease substrate dielectric constant from 6.15 to 6.0 24 35

3 Increase substrate conductivity by 10% 23 21

4 Decrease substrate conductivity by 10% 24 21

5 Increase panel width by 2 mm 27 20

6 Decrease panel width by 2 mm 27 20

7 Increase panel height by 2 mm 27 19

8 Decrease panel height by 2 mm 27 20

9 Increase hole diameter by 10 mm 23 17

10 Decrease hole diameter by 10 mm 23 18

11 Decrease grid sample spacing to 0.5 mm 20 29

12 Increase grid sample spacing to 2 mm 17 17

13 Increase oil dielectric constant by 10% 14 10

14 Decrease oil dielectric constant by 10% 14 9

15 Increase oil conductivity by 10% 23 22

16 Decrease oil conductivity by 10% 22 21

17 Remove lateral PEC boundaries above top plate 22 21

18 Model substrate of top panel with 1.5-mm thickness 52 36

Table 4.1 also gives the results of the sensitivity study for both the TM100 and TM300 frequency

bands. For most perturbations, γ was around 20 dB or more, signifying that the signal was rel-

atively insensitive to most aberrations in array feature dimensions or dielectric properties. The

signal was particular insensitive to the thickness of the substrate above the top panel and (for the

upper frequency) lateral substrate dielectric properties. The signal was most significantly changed
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when the permittivity of the oil immersion was perturbed. This is most likely because the signal un-

dergoes progressively larger change as it travels across the width of the antenna array in a slightly

different immersion medium. Signal changes were generally greater for the higher frequency band.

This result is consistent with the higher frequency band being more sensitive to small construction

errors.

4.5 Conclusion

This chapter introduced the experimental prototype enclosed array of miniaturized, multi-band

patch antennas. The experimental data acquisition process was described, as well as the process

for acquiring simulated scattering matrix parameters. These two techniques will be used in the

proceeding two chapters for experimental imaging with the prototype array. A comparison between

simulation and measurement showed a significantly higher degree of model error for the TM300

mode as opposed to the TM100 mode of the antenna, suggesting that higher frequencies are more

easily corrupted by imperfections in array construction or ambiguities in dielectric properties. For

both bands, the signal perturbation caused by model error is significantly larger than what would

be expected due to instrument noise alone, which suggests that model error is among the most

significant challenges for microwave breast imaging. A sensitivity study in which we perturbed

various features of the simulated array suggested that the array is moderately insensitive to small

errors in array feature dimensions and very sensitive to errors in the dielectric properties of the

immersion medium.
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Chapter 5

Preliminary Experimental Imaging of Simple Objects with the

Prototype Array

5.1 Introduction

This chapter reports the results of reconstructing the dielectric profiles of a series of simple

objects based on experimental data acquisition using the enclosed array of miniaturized, multi-

band patch antennas described in Chapter 4. These imaging cases allow the evaluation of the

ability of the imaging system to reconstruct the dielectric profiles for targets of varying size and

configuration. Successful experimental imaging of simple objects also provide a baseline with

which to judge the effectiveness of experimentally imaging more complex or anatomically realistic

domains.

The following section describes the geometrically simple test objects used in this study. The

method of applying experimental data to the imaging algorithm is then given in detail, including the

reformulation of the scattered field integral equation for measured scattering matrix parameters and

modifications to the algorithm for overcoming the corrupted nature of the scattered signals caused

by noise or model error. The reconstructed profiles are then reported, with the result that each

test object was accurately imaged in terms of the basic shape and location of its high-permittivity

regions.

Sec. 5.2 is partially adapted from M. Burfeindt, T. Colgan, R. Mays, J. Shea, N. Behdad, B. Van Veen, and S.

Hagness. “MRI-derived 3-D-printed Breast Phantom for Microwave Breast Imaging Validation,” IEEE Antennas and

Wireless Propagation Letters, vol. 11, pp. 1610 - 1623. c© 2012 IEEE [77]. The work in the remaining sections was

also performed in collaboration with the same co-authors.
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Figure 5.1: A photograph of the 3-D-printed square cylindrical phantom.

5.2 Phantoms for experimental data acquisition

The square cylinder phantom used in this study is composed of acrylonitrile butadiene styrene

(ABS) plastic and is pictured in Fig. 5.1. It was printed using a Dimension Elite 3-D Printer

(Dimension, Inc., Eden Prairie, MN) and has outer dimensions of 90 × 70 × 70 mm. There is a

void in the phantom into which a liquid can be poured in order to provide a high-contrast target

within the plastic. The void is also in the shape of a square cylinder and has dimensions 80×40×40

mm. There is a 5-mm-thick slab at the top of the phantom that is used to suspend it through the

hole in the top panel of the antenna array.

Knowledge of the dielectric properties of the materials constituting the phantom is important

for quantitative evaluation of the resulting microwave images. We characterized the dielectric

properties of the 3-D-printed ABS plastic using the technique described in [69]. First, we 3-D-

printed a slab of ABS plastic of dimensions 200 × 100 × 2 mm. We then fabricated a microstrip

transmission line of length 200 mm and width 6 mm on the plastic slab. SMA connectors were

soldered to both ends of the transmission line and S−parameter measurements were made using

an Agilent E8364 vector network analyzer. Agilent’s commercial software package Advanced De-

sign System (ADS) was then used to create a simulated microstrip transmission-line model. The

permittivity and loss tangent of the simulated microstrip line were optimized in ADS at 0.5 GHz
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Figure 5.2: Measured dielectric constant and effective conductivity for 3-D-printed ABS plastic.

c© 2012 IEEE.

intervals to obtain a good match between simulation and measurement. The process was repeated

for five different transmission lines. The resulting estimated dielectric constant and effective con-

ductivity are plotted in Fig. 5.2 over the frequency range of interest for quantitative microwave

breast tomography (0.5-3.5 GHz). Data points correspond to the mean over the five transmission

lines and error bars span the maximum and minimum values. The dielectric constant is around

2.25 across the entire frequency range, while the effective conductivity ranges from a minimum of

1.7 mS/m at 0.75 GHz to a maximum of 5.9 mS/m at 3.25 GHz.

We fill the void of the 3-D-printed phantom first with Triton X-100 surfactant and then with a

90%-10% solution of glycerol and deionized water. The dielectric properties of these materials at

the TM100 and TM300 frequency bands, as measured by the Agilent 805070 slim-form probe, are

given in Table 5.1.

We also acquire data from suspended test tubes filled with 80%-20% solutions of glycerol and

deionized water. The measured dielectric properties of 80%-20% glycerol-water solutions are also

given in Table 5.1. Test tubes of two different sizes are used: 13 mm in diameter and 25 mm in

diameter. The test tubes are suspended into the array by embedding them in a bridge of styrofoam
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Table 5.1: Dielectric properties of glycerol-water solutions

Phantom material εr, 1.6 GHz εr, 3.0 GHz σeff (S/m), 1.6 GHz σeff (S/m), 3.0 GHz

Triton X-100 4.6 4.1 0.10 0.15

90% glycerol-10% water 10.7 8.1 0.9 1.0

80% glycerol-20% water 19.0 12.6 1.5 2.0

Figure 5.3: Experimental setup for data acquisition from a 25-mm test tube of 80% glycerol

that straddles the hole of the hole in the top array panel, as shown in Fig. 5.3. For both sizes, an

80-mm length of tube is allowed to descend into the array.

5.3 The Imaging algorithm applied to experimental data

For the experimental imaging case, the goal of the imaging algorithm is to reconstruct the di-

electric profile of the imaging region based on the measured S-parameters. Following the nomen-

clature of Sec. 2.3, let the measured S-parameter phasor from a given transmit receive pair be

St(rsrc, rrec), and let the corresponding S-parameter phasor resulting from simulating the back-

ground profile be Si(rsrc, rrec). We can write the difference between these two phasors using (4.3)

as

St(rsrc, rrec)− Si(rsrc, rrec) =
2vt

vs
− 2vi

vs
, (5.1)

where vi is the simulated voltage phasor at the feed of the receiving antenna, vt is the corresponding

effective measured voltage phasor, and vs is the source voltage phasor. For the incident field vs
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is the source phasor used in the forward solution, where for the total field vs is the Thévenin

equivalent for the source of the data acquisition system. The voltages may be converted to electric

fields by multiplying by ℓs, the length of the lumped element resistor. This step assumes that the

voltage measured by the data acquisition system is equivalent to the voltage that would be measured

across a resistor of length ℓs across the antenna terminals. The S-parameter equivalent to the

scattered field integral equation (2.2) can then be written using the scalar and Born approximations

as

St(rsrc, rrec)− Si(rsrc, rrec) =
2ω2µ0ε0ℓs

vs

∫

V

Gb(r′, rrec)E
i(rsrc, r

′)o(r′)d3r′. (5.2)

Eq. (5.2) serves as the basis for the experimental imaging algorithm. The specifics of implementa-

tion of the experimental algorithm are given in the following subsections.

Application of a Window to the Forward Solution and Data Acquisition

The forward solution of the DBIM is performed in the manner described in Chapter 4. Due

to the low-loss and resonant nature of the array cavity, many reflections occur in the antenna

array before all electric fields dissipate. The most useful scattered field data occurs in the early

reflections. Thus, we terminate the forward solution prior to complete dissipation of the recorded

time-domain signals. This is equivalent to using a rectangular window in the time domain and

convolving with a sinc window in the frequency domain. We accordingly apply the appropriate

sinc window to the measured S−parameter data.

It is necessary to know the effect of the window on the integral equation in order to formulate

the linear equation to be solved. The effect of the window can be determined by first considering

the Helmholtz equation for the electric field E resulting from source current density J

∇2E(r′) + ω2µ0ε
∗E(r′) = jωµ0J (5.3)

and the corresponding equation for the Green’s function,

∇2G(r′, r) + ω2µ0ε
∗G(r′, r) = −δ(r− r′), (5.4)

where δ(r) is the Dirac delta distribution. Let W be the frequency domain sinc window, ⊗ denote

frequency domain convolution, Ĕ = W ⊗ E, and Ğ = W ⊗G. Then, applying the sinc window
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to (5.3) and (5.4) results in

∇2Ĕ+ ω2µ0ε
∗Ĕ = jωµ0J̆ (5.5)

and

∇2Ğ+ ω2µ0ε
∗Ğ = −δ(r − r′). (5.6)

In (5.5) and (5.6), we have used the approximation W ⊗ ω2E ≈ ω2W ⊗ E, or equivalently in

the time domain W (t) ∂2

∂t2
E(t) ≈ ∂2

∂t2
W (t)E(t), which is a good approximation when W (t) is a

rectangular window. Multiplying (5.5) by Ğ and (5.6) by Ĕ leads to

Ğ∇2Ĕ+ ω2µ0ε
∗ĞĔ = jωµ0ĞJ̆ (5.7)

and

Ĕ∇2Ğ+ ω2µ0ε
∗ĔĞ = −Ĕδ(r− r′). (5.8)

Subtracting (5.7) from (5.8) and integrating over the entire volume gives

∫

Ĕδ(r− r′)d3r′ = Ĕ(r)

= −jωµ0

∫

ĞJ̆ d3r′ +

∫

(

Ĕ∇2Ğ− Ğ∇2Ĕ
)

d3r′. (5.9)

The last integral in (5.9) can be set to zero using Green’s second identity, leading to

Ĕ(r) = −jωµ0

∫

ĞJ̆ d3r′. (5.10)

Using the volume equivalence theorem, the Helmholtz equation for the windowed scattered

field can be written

∇2Ĕs + ω2µ0ε
∗
bĔ

s = jωµ0J̆eq, (5.11)

where the equivalent current density is

J̆eq = jωε0o(r
′)Ĕt. (5.12)

Using (5.10), (5.12), and the Born approximation, we are left with

Ĕs(r) = ω2µ0ε0

∫

V

Ğb(r, r′)Ĕi(r′)o(r′)d3r′, (5.13)
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which is equivalent to the Born-approximated (2.2) wherein the Green’s function and incident

field in the kernel are in their windowed form. The windowed Green’s function may be written

in terms of the windowed incident field via (5.10) in order to obtain the relation similar to (3.1),

where the non-windowed quantities have been replaced with their windowed quantities. This step

requires the approximation J̆ ≈ J, which is valid assuming the time-domain span of the source

function is shorter than the time-domain rectangular window. This analysis shows that the incident

field at the antennas and the field quantities in the integral kernel can be computed and windowed

simply by terminating the forward solution at the end of the rectangular window. In the following

sections, use of a window will be assumed, and so the breve notation on windowed quantities will

be neglected.

Linear system of equations

Eqs. (2.4) and (2.5) can then be written as

b =





























ℜ
{

St(rsrc(1), rrec(1))− Si(rsrc(1), rrec(1))
}

...

ℜ
{

St((rsrc(M), rsrc(M))− Si(rsrc(M), rsrc(M))
}

ℑ
{

St(rsrc(1), rrec(1))− Si(rsrc(1), rrec(1))
}

...

ℑ
{

St(rsrc(M), rsrc(M))− Si(rsrc(M), rsrc(M))
}





























(5.14)

and

A0
mk =

2∆3ω2µ0ε0ℓs
vs

Gb(r′k, rrec(m))E
i(rsrc(m), r

′
k). (5.15)

All field and S-parameter quantities in (5.14) and (5.15) refer to the quantities obtained after ap-

plying the appropriate sinc window.

Two types of dielectric reconstructions are performed in this study. In the first, only frequencies

from a single frequency band are used, and parameters εr and σeff for the frequency band of interest

are reconstructed for each imaging region voxel. Eq. (2.6) is then written

A =





ℜ{A0} −ℑ{cσ}ℑ {A0}
ℑ {A0} +ℑ{cσ}ℜ {A0}



 , (5.16)
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where cσ has the same meaning as in Chapter 2. In the second case, frequencies from both the

TM100 and TM300 mode are used, which requires a parameterized reconstruction. The materials

to be imaged in this chapter can each be well-characterized using two-pole Debye models with

σs = 0. Thus, we assume σs = 0 for all voxels in the imaging domain and reconstruct only Debye

parameters ε∞ and ∆ε. Eq. (2.6) is then written as

A =





ℜ{A0} ℜ {c∆}ℜ {A0} − ℑ{c∆}ℑ {A0}
ℑ {A0} ℑ {c∆}ℜ {A0}+ ℜ{c∆}ℑ {A0}



 , (5.17)

where c∆ = 1/(1 + jωτ1) + 1/(1 + jωτ2). A reconstruction of this type requires that all materials

in the imaging domain can be well-modeled using the same τ1 and τ2. As described in Chapter 2,

the multiple-frequency linear system is created by forming A and b for each frequency and then

vertically concatenating. For a reconstruction with F frequencies, let b′ represent the 2MF × 1

multi-frequency residual vector and let A′ represent the 2MF × 2K multi-frequency A matrix.

Row and Column Weighting

We apply row and column weighting to the linear system in order to address challenges inherent

to experimental imaging of the materials described above. Let R be a 2MF × 2MF diagonal

matrix, where the mth diagonal component represents the weight for the mth row. Likewise, let C

be a 2K × 2K diagonal matrix whose kth diagonal component is the weight for the kth column.

The linear system can then be written

RA′xC = RA′z = Rb′C, (5.18)

where z = xC. An estimate ẑ is then solved for, allowing computation of the estimate for the

unknown contrast x̂ = ẑC−1.

We apply row weighting in this study to account for the higher degree of model error in the

TM300 frequency band, as described in Chapter 4. The lower frequency band of the antenna is

narrower than the higher band, which causes the lower band data to decrease more in amplitude

than the upper band data following convolution with the sinc window. We first correct for this

effect by setting the weight for each row to be equal to the inverse of St for the corresponding
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channel. We then multiply the row weights for the frequencies in the upper band by a factor of

1/5. By applying row weights in this fashion, we force the inverse solver to give more emphasis to

the less-corrupted lower frequency data while still allowing the upper frequency data to contribute

useful higher spatial frequency data to the solution.

We apply column weighting to the system in order to keep the scaling of the ε∞ and ∆ε

parameters comparable. We choose the weights for columns corresponding to the ∆ε parameter

to be the ratio between ε∞ and ∆ε for the material of highest permittivity in the imaging region.

Correcting for the differences in scale between the two Debye parameters leads to a better-behaved

inversion.

The Inverse Solution

The linear system is constructed using three frequencies in each band chosen for the reconstruc-

tion. Thus, F=3 for a reconstruction using only the TM100 mode, and F=6 for a reconstruction

using both the TM100 and TM300 modes. Previous studies have used multiple frequencies in a

single band [78]. This practice allows us to partially overcome the greater-than-desired corruption

of the scattered signals. The three frequencies chosen are centered at the resonant frequency for

the band and separated by 20 MHz.

The inverse solution is performed on a Cartesian 2-mm basis; this coarser basis allows us to

decrease the memory needed to solve the system of linear equations. Conjugate-gradient least-

squares with five conjugate gradient iterations is once again used to solve the linear system. We

use the projected restart algorithm in order to achieve a desired proportionality between the re-

constructed Debye parameters at each imaging region voxel. Using this algorithm, the estimated

Debye parameters for a multi-band reconstruction are constrained to closely match a linear rela-

tionship based on a priori knowledge of the Debye parameters of the two materials in the imaging

region, such that

α0β
(

ε∞ − ε0∞
)

≤ ∆ε ≤ α1β
(

ε∞ − ε0∞
)

. (5.19)
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In (5.19), β is the slope of the line constraining the relationship between ∆ε and ε∞, given by

β =
∆ε1 −∆ε2
ε∞,1 − ε∞,2

, (5.20)

where ∆ε1 and ∆ε2 are the delta permittivities for the first and second materials in the imaging

region, respectively, and ε∞,1 and ε∞,2 are similarly the infinite permittivities for the two materials.

The parameter ε0∞ is the infinite permittivity corresponding to a delta permittivity of zero, given by

ε0∞ = −∆ε1/β + ε∞,1. (5.21)

The parameters α0 and α1 determine how far the estimated parameters are allowed to deviate from

the linear model. We choose α0 = 0.8 and α1 = 1.2. For a single-band reconstruction, (5.19)-

(5.21) are reformulated for dielectric parameters εr and σeff .

Applying the projected restart algorithm using (5.19)-(5.21) requires knowledge of the Debye

parameters for each material in the imaging region. Table 5.2 gives the assumed Debye parameters

for each material used in this study. The parameters were chosen so that the resulting Debye mod-

els closely matched the dielectric dispersion measured with the Agilent 85070 slim-form probe

high-temperature probe. For the case of imaging test tubes of glycerol solution, the safflower oil

immersion is part of the imaging region and must therefore be reconstructed. The Debye parame-

ters for the oil outside the imaging region are assumed to be the parameters given in the previous

chapter for the purposes of the forward solution. The Debye parameters of the oil in the imaging

region are assumed to be those given in Table 5.2, which gives a slightly less accurate match while

allowing the oil to be modeled with the same relaxation time constants as the glycerol solutions.

For the case of the 3-D printed phantom filled with glycerol solution, the plastic is assumed to be

non-dispersive.

Initial and Termination Conditions

As in Chapter 3, the initial guess for the DBIM is chosen as the volumetric mean for the Debye

parameters. The initial guess parameters for each imaging case are given in Table 5.3. The DBIM

is terminated after four iterations. At this point, the change in residual is around a few percent

of the residual for the initial guess. Running the DBIM past this point will likely lead to greater
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Table 5.2: Debye parameters assumed for reconstructions

Phantom material ε∞ (or εr) ∆ε σs (or σeff ) (S/m) τ1 (ps) τ2 (ps)

3-D-printed ABS plastic 2.25 0 0.0035

Triton X-100 4.5 0.11

90%-10% glycerol-water solution 6.6 17.6 0 187 744

80%-20% glycerol-water solution 8.1 24.4 0 118 492

safflower oil (in V only) 2.6 0.3 0 118 492

Table 5.3: Initial guess for each reconstruction

Imaging case ε∞ (or εr) ∆ε σs (or σeff ) (S/m)

Plastic phantom with Triton X-100 2.9 0.033

Plastic phantom with 90% glycerol 3.5 5.1 0

25-mm test tube of 80% glycerol 3.1 2.7 0

13-mm test tube of 80% glycerol 2.8 1.0 0

Four 25-mm test tubes of 80% glycerol 3.2 6.3 0

error in the resulting image, as a great proportion of the residual vector is composed of model error

contributions to the scattered signal.

5.4 Results and discussion

We first report the results from imaging the 3-D-printed plastic phantom filled with Triton X-

100. For this case, the immersion medium of the array is air, instead of safflower oil. This moves

the TM100 and TM300 frequency bands to 1.69 GHz and 3.16 GHz, respectively. We apply only

the lower-band data to the reconstruction. Creating reconstructions of this type allow us to test the

effect of the window on the imaging results for a relatively less-challenging imaging case, wherein

the contrast between the constituent materials is small (which makes the Born approximation more
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Table 5.4: Median γ between empty-array measurement and simulation for an air immersion (dB)

Window span (ns) 1.67 GHz 1.69 GHz 1.71 GHz

10 14.1 14.2 14.6

20 14.6 16.5 12.4

30 12.1 15.2 5.9

40 8.0 13.6 2.6

accurate), there is no ambiguity in immersion properties, and the more corrupted upper frequency

band is excluded.

The bottom row of antennas on the lateral array panels do not have coverage of the phantom,

and so are not used for the reconstruction. Likewise, the antennas on the bottom panel are also not

used. This leaves the antennas in the top two rows, for a total of 20 active antennas. This same

subset of antennas are active in all subsequent experimental imaging cases in this chapter.

We create reconstructions based on both the experimental data acquisition and a simulated data

acquisition. Windows of 10, 20, 30, and 40 ns are used. For all cases, the boundaries of the imaging

region V are coincident with the outer boundaries of the plastic phantom.

Table 5.4 reports the perturbation between measurement and simulation of the empty array

using (4.4) for each of the frequencies used in the reconstruction and for each of the chosen win-

dow spans. The most even performance across the three frequencies are for the 10 ns and 20 ns

windows. Increasing the length of the window increases the amount of model error between simu-

lation and measurement. The increase in the degree of model error for longer windows may be due

to compounding errors that occur with each reflection in the array. Alternatively, convolving with

the sinc function may lead to signal components in adjacent frequency bins being summed coher-

ently, while model error components in adjacent bins being summed non-coherently, effectively

increasing the ratio between true signal and model error corruption.

Fig. 5.4 shows cross-sections through reconstructions of the plastic phantom filled with Triton

X-100. Reconstructions from both the experimental and simulated data acquisition are shown

using a variety of different window spans. The reconstructed dielectric constant is shown. As
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(a) (b)

Figure 5.4: (a) A cross-section through the assumed exact profile for the 3-D-printed plastic phan-

tom filled with Triton X-100. (b) Cross-sections through 3-D reconstructions of the phantom. Top

row: reconstructions from experimental data. Bottom row: reconstructions from simulated data.

The window spans used are (left to right) 10 ns, 20 ns, 30 ns, and 40 ns. Colorbar is εr.

described in the previous section, the reconstructed σeff is constrained to be highly correlated with

the reconstructed εr, and is thus not shown. The simulated-data reconstructions commit the inverse

crime, in which the data acquisition has no noise added to it and operates on the same grid as

the forward solution, therefore avoiding any model error between the total and incident fields.

Comparing experimental-data to simulated-data reconstructions is helpful in that it shows how

much effect scattered signal corruption through noise, interference, or model error has on the

experimental image. Each simulated-data reconstruction is very similar, suggesting that the span of

the time-domain window applied to the data has little effect on the reconstruction for the case where

there is no signal corruption. The experimental-data reconstructions are moderately over-estimated

in comparison to the simulated-data reconstructions. The shape of the reconstructed regions in the

simulated and experimental case are very similar for the 10 ns window. As the length of the window

increases, progressively greater aberrance occurs in the shape of the experimentally-reconstructed

regions. This result is consistent with the results in Table 5.4 and suggests that using a relatively
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Figure 5.5: Top row: cross-sections through the assumed exact profile of the plastic phantom

filled with an 90%-10% glycerol-water solution. Bottom row: cross-sections through the 3-D

experimental Debye-parameter reconstruction. Both are shown in terms of εr at 1.6 GHz. Adjacent

cross-sections are separated vertically by 1 cm.

short window is crucial in experimentally imaging with the enclosed array. The remainder of the

reconstructions in this chapter will make use of a 10 ns window.

We next attempt a more challenging imaging scenario with the plastic phantom, in which the

liquid in the phantom void is switched to the 90%-10% glycerol-water solution. The glycerol

solution provides an 5:1 contrast in permittivity with the printed plastic. This is significantly

greater than the 2:1 contrast between Triton X-100 and the printed plastic, and therefore makes the

Born approximation less accurate. We also switch to a safflower oil immersion in order to match

the eventual clinical imaging scenario. Lastly, we also introduce the experimental data from the

upper frequency band.

Fig. 5.5 shows cross-sections through the experimental 3-D dielectric reconstruction of the

plastic phantom filled with the glycerol solution. Debye parameters ε∞ and ∆ε are reconstructed

at each voxel. The resulting dielectric constant at 1.6 GHz is pictured. As in Fig. 5.4, the recon-

structed dielectric parameters are constrained to be highly correlated, and so the reconstructed σeff

is not shown. The reconstruction is visually very faithful to the exact dielectric profile. The higher
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spatial frequencies of the scattered fields used for the reconstruction, which result from both the

higher-permittivity immersion medium and the addition of the upper frequency band, cause the

reconstructed liquid-filled void region to better approximate the square shape of the true phantom

void cross-section. The vertical length of the liquid-filled void is also well-approximated. A small

amount of aberrance is present in the reconstruction, most likely due to the more challenging sce-

nario presented by the higher-contrast liquid in the void. These results demonstrate the ability of

the experimental imaging system to successfully perform a high-contrast Debye-parameters recon-

struction using multiple frequency bands and the desired immersion medium for eventual clinical

imaging.

We next report the results of imaging test tubes of 80%-20% glycerol-water solution immersed

in safflower oil. This imaging set allows us to demonstrate the robustness of the imaging system to

high-contrast objects of various sizes and configurations. It also allows us to create reconstructions

wherein both materials in the imaging region are dispersive. For this test set, the imaging region V

is a square cylindrical region of dimensions 90 mm long by 70 mm wide, centered laterally in the

array and descending downward from the hole in the top panel. Thus, V is of the same size and

shape as the cylindrical phantom used in the imaging sets previously described.

We create images for four different test cases. The first is for the 13-mm-diameter tube centered

laterally in the array. The second is for the 25-mm-diameter tube in the same position. These two

cases allow us to show the effect of different sizes of target on the resulting image. The third case is

for the 25-mm-diameter tube offset from center by 2 cm. The last case is for four 25-mm-diameter

tubes arranged in a square formation. These final two cases allow us to show the effect of different

target position and configuration on the resulting image.

Fig. 5.6 shows cross-sections through the experimental 3-D dielectric reconstructions of the

various test tube configurations. In all four cases, there is substantial visual agreement between

the reconstructions and the assumed exact profile. The reconstructed glycerol regions are accu-

rately located, and their cross-sectional areas are very similar to the true cross-sectional area of

the test objects. The reconstructed glycerol region for the 13-mm tube is significantly underesti-

mated, which is to be expected, given its small cross-sectional area. The reconstructions of the
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Figure 5.6: Top row: cross-sections through the assumed exact profile of several imaging cases

using various configurations of test tubes filled with an 80%-20% glycerol-water solution. Bot-

tom row: cross-sections through the resulting 3-D experimental Debye-parameter reconstructions.

Both are shown in terms of εr at 1.6 GHz.

single 25-mm tube achieve permittivities that are very close to the measured properties of 80%

glycerol. For the case of the four 25-mm tubes, each tube is identifiable in the image, although the

high-permittivity parts of the reconstruction bleed into one another to some extent. These results

demonstrate the ability of the imaging algorithm to reconstruct dielectric profiles for high-contrast

targets of varying size and position, as well as its ability to discriminate between multiple targets

in the imaging region.

5.5 Conclusion

In this chapter, we acquired experimental data from a series of simple objects using the en-

closed array of miniaturized, multi-band patch antennas described previously. We described the

modifications to the imaging algorithm that were made for experimental reconstruction, including

row and column weighting and windowing. The dielectric reconstruction results for each test ob-

ject were reported. Applying a relatively short (10 ns) window to the signals from measurement
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and forward solution led to a decreased overall degree of model error and therefore scattered sig-

nal corruption, which resulted in more accurate reconstructions. A 3-D-printed square cylindrical

phantom filled with different liquids for contrast was successfully imaged, as were test tubes of

glycerol solution with different sizes and configuration. The basic shape and position for all target

objects were accurately reconstructed.
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Chapter 6

Construction and Experimental Imaging of an MRI-derived 3-D-

printed Breast Phantom

6.1 Introduction

Image validation is crucial for both development and performance evaluation of microwave

breast imaging strategies. It involves comparing the estimated dielectric profile with the profile of

the imaging testbed in order to ascertain accuracy in both the reconstructed dielectric properties

and the reconstructed interior structure. Clinical imaging with human subjects [50, 52] provides

the most faithful test domain; however, validation of clinical microwave images is challenging, as

the true in vivo dielectric distribution is unknown. Alternatively, numerical studies using MRI-

derived numerical phantoms [57, 63], are a powerful tool for evaluating imaging strategies, as the

reconstructed dielectric profiles can be compared directly and unambiguously to the true testbed,

which is realistic in both dielectric properties and interior structure. Numerical studies do not,

however, introduce the complications inherent in experimental imaging, such as imperfect antenna

modeling and environmental interference. Anthropomorphic, heterogeneous experimental breast

phantoms will therefore play a critical role in pre-clinical imaging studies.

Several previous studies have reported experimental phantoms that have anthropomorphic ex-

terior surfaces and are constituted by synthetic materials that approximate (to varying degrees of

Sections 6.1 and 6.2 are partially adapted from M. Burfeindt, T. Colgan, R. Mays, J. Shea, N. Behdad, B. Van

Veen, and S. Hagness. “MRI-derived 3-D-printed Breast Phantom for Microwave Breast Imaging Validation,” IEEE

Antennas and Wireless Propagation Letters, vol. 11, pp. 1610 - 1623. c© 2012 IEEE [77]. The work in the remaining

sections was performed in collaboration with the same co-authors.



52

accuracy) the dielectric properties of skin, fibroglandular, and adipose tissue. These phantoms have

interiors that are either homogeneous (e.g., adipose-tissue simulant enclosed by a thin layer of skin

simulant) [72], homogeneous except for a target inclusion (e.g., malignant-tissue simulant) [79,80],

or heterogeneous [49,81,82]. Heterogeneity is achieved by distributing fibroglandular tissue simu-

lants non-uniformly in the phantom interior. In the examples of [81,82], a high degree of dielectric

properties realism is achieved through the use of tissue-mimicking oil-in-gelatin dispersions [83].

However, it is difficult to use the phantom construction methods of [81]- [82] to distribute fibrog-

landular tissue simulants throughout the adipose-tissue simulant in such a way as to realistically

mimic the structural complexity of the interior of the breast. Experimental phantoms that provide

a more accurate representation of the interior breast structure, even if at the expense of dielec-

tric properties accuracy, will play an important complementary role in validating the ability of

microwave imaging strategies to resolve realistic structural features of breast tissue.

Recent advances in three-dimensional (3-D) rapid prototyping technology allow the printing of

highly complex plastic objects from precise computer models. In this chapter, we describe an MRI-

derived 3-D-printed breast phantom for experimental validation of microwave breast imaging. The

portion of the model that is printed in plastic corresponds to locations of adipose tissue, while the

void in the model corresponds to locations of fibroglandular tissue. Both the exterior and interior

of the model are derived from an MRI of a human subject. Thus the exterior is anthropomorphic

while the interior spatial layout of the void within the plastic is correlated strongly with a realistic

distribution of fibroglandular tissue surrounded by adipose tissue. The 3-D-printed phantom is

thus a promising test object for validating microwave inverse scattering techniques and systems

designed for microwave breast imaging.

In the following sections, we first describe the procedure for constructing the 3-D-printed breast

phantom. We then fill the phantom void with a liquid that provides a biologically-relevant dielectric

contrast with the plastic – one that mimics the contrast between fibroglandular and adipose tissue.

An experimental data acquisition for the phantom is then performed using the enclosed array of

miniaturized patch antennas. The experimental imaging algorithm described in the last chapter

is then applied to the data, and the resulting images are compared to the phantom model. The
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Figure 6.1: Cross-sections through (top row) the 3-D profile of εs for a Class 3 (heterogeneously

dense) numerical breast phantom, (middle row) the blurred 3-D distribution, and (bottom row)

the thresholded 3-D binary model. For the binary model, black corresponds to the portion to be

printed in plastic and white corresponds to the void. Adjacent cross-sections are separated by 1

cm. c© 2012 IEEE.

reconstructed dielectric profile is shown to be very visually similar to the exact phantom profile,

which demonstrates the ability of the array and algorithm for imaging targets with biologically-

relevant contrast and complexity.

6.2 Phantom construction

The 3-D-printed breast phantom was derived from a heterogeneously dense (Class 3 in terms

of BI-RADS density) numerical breast phantom in the University of Wisconsin Computational

Laboratory (UWCEM) breast phantom repository [1]. The numerical phantom is MRI-derived,

and is thus anthropomorphic and heterogeneous with realistic interior tissue structure. Coronal

cross-sections through the dielectric profile of the numerical phantom are shown in Fig. 6.1 (top

row).

Constructing the printed phantom model involves creating a volumetric binary mask that dif-

ferentiates between solid plastic and air void regions. This requires removing the numerical phan-

tom’s skin layer and segmenting the fibroglandular regions from the adipose regions. However,
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simply thresholding the numerical phantom to identify regions of fibroglandular tissue may lead

to the erroneous creation of non-contiguous solid regions that fall out of the phantom, and/or non-

contiguous isolated voids that cannot be filled with liquid.

We avoided this problem by convolving the distribution of Debye parameter εs (static permit-

tivity) with a spherical Gaussian blurring function of variance 25 mm2 and support radius of 4.5

mm. Fig. 6.1 (middle row) shows cross-sections through the blurred dielectric distribution. We

then thresholded the blurred numerical phantom at εs = 15. Voxels below the threshold (that is,

voxels nearest to adipose tissue in dielectric properties) were designated as belonging to the solid

part of the model, while voxels above the threshold (that is, voxels nearest to fibroglandular tis-

sues in dielectric properties) were designated as belonging to the void. Cross sections through the

resulting binary phantom model are shown in Fig. 6.1 (bottom row). The binary model is very

heterogeneous; the void regions preserve the location and shape of fibroglandular tissue structures

in the original phantom, albeit with a slightly reduced spatial resolution. All void regions are

contiguous, allowing them to be filled with a single liquid solution.

A slab of dimensions 170×170×5 mm was added to the posterior base of the model. The slab

enables positioning the printed breast phantom in the enclosed array of miniaturized, multi-band

patch antennas.

3-D printers typically require computer models in the form of a series of 2-D facets that de-

scribe the surfaces composing the object to be printed. We used the volumetric binary breast model

(e.g., bottom of Fig. 6.1) to generate a series of surface facets representing both the outer surface

of the phantom and the surface of the interior void. The facet model was then exported to a Di-

mension Elite 3-D Printer (Dimension, Inc., Eden Prairie, MN), which printed the phantom using

acrylonitrile butadiene styrene (ABS) plastic. The nominal spatial resolution of the 3-D printer

is between 0.178 mm and 0.254 mm, which is at least two orders of magnitude smaller than the

wavelength in the UHF band. The printing process took approximately 36 hours. Photographs of

the resulting 3-D-printed breast phantom prior to filling the air voids with liquid are shown in Fig.

6.2.
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(a) (b) (c)

Figure 6.2: Photographs of the 3-D-printed breast phantom (prior to filling the fibroglandular void

regions with liquid). (a) Side view shows the anthropomorphic exterior of the phantom with a

support slab on top. (b)-(c) Top views show the openings in the top slab which reveal the het-

erogeneous interior (voids in regions corresponding to fibroglandular tissue, and plastic in regions

corresponding to adipose tissue).

To create a contrast between the phantom void and the 3-D-printed plastic, we fill the void

with a solution of 90% glycerol and 10% deionized water. The measured dielectric properties of

this solution are given in Table 5.1. The magnitude of the ratio of intrinsic impedance between the

glycerol solution and the printed plastic is about 0.4 at 2 GHz. This is comparable to the magnitude

of the ratio of intrinsic impedance between 25th percentile fibroglandular tissue and 75th percentile

adipose tissue at 2 GHz, which is 0.45 using the Cole-Cole models reported in [1].

6.3 Imaging results and discussion

We acquired experimental microwave data from the MRI-derived phantom filled with 90%

glycerol using the enclosed array of miniaturized antennas from previous chapters. The immersion

medium was safflower oil. We applied the experimental data to the DBIM imaging algorithm as

described in Chapter 5 in order to create a Debye parameter recontruction in terms of ε∞ and ∆ε.

The 20 antennas in the top two rows of the array are active. A 10 ns rectangular time-domain win-

dow was applied to all forward solution electric fields, and the corresponding frequency-domain

sinc function window was convolved with the experimental data acquisition data. Frequencies
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Figure 6.3: Coronal cross-sections through (top row) the printed phantom model and (bottom

row) the 3-D Debye parameter reconstruction based on an experimental data acquisition. Both are

shown in terms of εr at 1.6 GHz. Adjacent cross-sections are vertically separated by 1 cm.

from the TM300 band were penalized by a factor of five using row weighting. The two Debye

parameters at each voxel in the reconstruction domain were constrained to be highly correlated via

the projected restart algorithm. The imaging region V was chosen to comprise all interior points

of the phantom. This required a priori knowledge of the phantom’s outer surface.

Fig. 6.3 shows cross-sections through the 3-D reconstruction resulting from applying the imag-

ing algorithm to the experimental data acquisition. Blue regions correspond to plastic regions,

while orange corresponds to the fluid-filled void. Visual fidelity between the reconstruction and

the phantom model is evident in all cross-sections. The glycerol regions are reconstructed accu-

rately in terms of their basic shape and location. Resolution is moderate, but smaller details of

some features can still be identified. These results demonstrate that the algorithm applied to exper-

imental data acquisition from the enclosed array of miniaturized, multi-band patch antennas can

effectively image target distributions of biologically-relevant complexity.

Higher resolution images may be accomplished by making modifications to the antennas in the

array. The TM300 band at 3.06 GHz is high enough to achieve sufficient resolution. However, this

band is significantly more corrupt due to model error, as was reported in Chapter 4. The degree
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of model error may in general increase with higher frequencies. Thus, using a miniaturized patch

antenna with a lower TM300 band may lead to a lesser degree of model error, which would neces-

sitate less severe frequency penalties and allow higher spatial frequencies into the reconstruction.

Previous work using simulated data acquisition from an array of ideal dipole antennas has accom-

plished higher resolution using a maximum frequency of 2.5 GHz [57]. Moving the higher band

of the patch antenna to a lower frequency may be accomplished through the addition of more slots

on the patch surface [68,84]. This would likely result in a loss of gain in the antenna; however, this

tradeoff would be beneficial, as the increased degree of noise corruption due to the lower antenna

gain would likely still be several orders of magnitude below the degree of model error corruption

of the scattered signal.

6.4 Conclusion

We proposed an MRI-derived, 3-D-printed breast phantom for use in microwave breast imag-

ing experiments. The interior structure of the phantom is very similar to a realistic distribution of

fibroglandular and adipose tissue. Microwave images can be compared directly to the 3-D binary

model used for printing the phantom, permitting unambiguous co-registration between the phan-

tom interior structure and the reconstructed dielectric profile. The void of the 3-D-printed model

was filled with a dispersive liquid in order to provide a biologically-relevant dielectric contrast

with the printed plastic. We acquired experimental data from the phantom using an enclosed array

of miniaturized patch antennas and reconstructed the phantom dielectric profile using the DBIM.

The resulting image was very similar to the exact dielectric profile of the phantom, demonstrating

the effectiveness of the imaging system to experimentally reconstruct target distributions with bi-

ologically relevant complexity. A higher degree of anatomical realism may be achieved in future

studies by coating the outside of the phantom with a skin-mimicking material, while a small object

may be suspended in the liquid to approximate the presence of a tumor in fibroglandular tissue.
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Chapter 7

Beamforming-Enhanced Inverse Scattering for Microwave Breast

Imaging

7.1 Introduction

For a given data acquisition system, a degree of signal corruption is unavoidable. The sensi-

tivity of the microwave imaging algorithm to signal corruption may be improved through the in-

corporation of focal transmit-receive beamforming techniques into the data acquisition process. In

the context of antenna arrays, transmit beamforming involves modifying the magnitude and phase

of the signal fed to each antenna in such a way as to achieve constructive interference, and thus

stronger transmitted signal, in a desired propagation direction. Likewise, receive beamforming is

accomplished by modifying the magnitude and phase of the received signal in order to emphasize

reception from a desired direction. Modifying the magnitude and phase of the outgoing or incom-

ing signal is accomplished by multiplying the complex signal phasor in each channel by a complex

beamforming weight. Beamforming can lead to an increase to the effective signal-to-noise ratio

(SNR), as signal from targets in the desired propagation direction is summed coherently, whereas

noise is assumed to be non-correlated and is thus summed non-coherently. Non-focal beamform-

ing for the inverse scattering problem has been reported by Abubakar et al [85] for the purpose

of decreasing the computational cost of the inverse solution. This work used the singular vectors

This chapter is partially adapted from M. Burfeindt, B. Van Veen, and S. Hagness. “Beamforming-Enhanced

Inverse Scattering for Microwave Breast Imaging,” USNC-URSI National Radio Science Meeting, Boulder, CO, Jan.

2012.
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of the matrix of scattered fields from the antenna array as beamforming weights. By discarding

scattered field data corresponding to the smallest singular values, the size of the linear system to

be solved was decreased. Discarding enough data also led to an improvement in the performance

of the algorithm when applied to noisy data. The boost in noise performance was observed for

simulated data experiments that used a very large number of antennas (160), perhaps leading to a

large amount of redundant scattered field data that could safely be discarded.

In this study, we formulate a focal beamforming-enhanced version of the distorted-Born iter-

ative method (DBIM) with the goal of decreasing the noise sensitivity of the imaging algorithm.

This approach involves designing beamforming weights for a series of foci in the imaging volume

such that the SNR for the signal from each focus is maximized. In this way, improvements in

noise performance can be achieved without discarding valuable scattered field data. In this study,

we apply both the beamforming-enhanced and standard DBIM algorithms to simulated electric

field data to create 3-D reconstructions of the dielectric profiles of two MRI-derived, anatomically

realistic numerical breast phantoms. We evaluate the performance of the beamforming-enhanced

DBIM algorithm relative to the standard algorithm for a wide range of SNR and show that the

beamforming-enhanced reconstructions are significantly more faithful to the true dielectric pro-

files than are the standard reconstructions for SNR below 15 dB. These results demonstrate the

advantages of focal beamforming when signal corruption is significant and suggest that further

study is warranted.

7.2 Numerical domains for data acquisition simulations

The heterogeneous, anthropomorphic numerical breast phantoms used in this study are derived

from MR scans of human subjects as described in detail in [1]. The range of dielectric properties

for each tissue type is defined according to the large-scale study conducted by Lazebnik et al. [32].

As in [57], the dispersive dielectric properties at each voxel in the breast volume are modeled using

a single-pole Debye model with relaxation constant τ = 15 ps.

Simulated electric field data was acquired from the Class 2 (scattered fibroglandular) and Class

3 (heterogeneously dense) breast phantoms. The phantoms were surrounded by a 40-element array
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of 14-mm dipoles, in the same manner as in [57]. The dipoles were distributed across five elliptical

rings of eight elements each. The major and minor axes of each ring were scaled so that there is a

minimum 1-mm spacing between each element and the breast surface. Adjacent rings were rotated

by 22.5o. The phantoms and the arrays are immersed in a lossless, non-dispersive coupling medium

with dielectric constant of 2.6.

Data acquisition was performed via FDTD on a 0.5-mm uniform grid. Transmitting antennas

were gap-fed with a vertical (z-oriented) current source density. Received electric field data were

collected at 1, 1.5, 2, and 2.5 GHz and converted to phasor form via discrete Fourier transform

(DFT).

7.3 Transmit-receive beamforming-enhanced DBIM

We assume an imaging setup of the same form as is given in Sec. 2.3. Using the Born approx-

imation and the scalar approximation, we can simplify (2.2) to

Es(rsrc, rrec) = Et(rsrc, rrec)−Ei(rsrc, rrec) = ω2µ0ε0

∫

V

Gb(r′, rrec)E
i(rsrc, r

′)o(r′)d3r′ (7.1)

The latter simplification assumes that the co-polarized electric field component dominates the

cross-polarized components in the reconstruction region V . Using the relation

Ei = −jωµ0ε0ℓsi(ω)G
b(r′, rrec), (7.2)

where i(ω) is the source current and ℓs is the source length, (7.1) can be written

Es(rsrc, rrec) = −jω3µ2
0ε0ℓsi(ω)

∫

V

Gb(rrec, r
′)Gb(rsrc, r

′)o(r′)d3r′. (7.3)

Eq. (7.2) differs from (3.1) in that it is written in terms of a source current, as opposed to a resistive

voltage source. Eq. (7.3) forms the basis for standard DBIM.

Transmit-receive Beamforming

Each antenna has associated with it a complex channel transmit weight that modifies the phase

and amplitude of i(ω) before transmission. The weights are designed at a specific frequency, ω, to
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achieve a focus at location r′f . The channel transfer weights are represented in vector form as

wt(r
′
f , ω) = [wt1(r

′
f , ω)wt2(r

′
f , ω) . . . wtL(r

′
f , ω)]

H
(7.4)

where wti(r
′
f , ω) represents the complex channel weight for the ith antenna and ‘H’ denotes the

conjugate transpose. Let the Green’s function vector be

gb(r
′, ω) =

[

Gb(r1, r
′)Gb(r2, r

′) . . . Gb(rL, r
′)
]T

, (7.5)

where r1 . . . rL are the locations of the L antennas. Let the incident field at r′f due to transmit

beamforming with weight vector wt(r
′
f , ω) be denoted Ẽi(r′, r′f), given by

Ẽi(r′, r′f) = −jωµ0ε0ℓsi(ω)w
H
t (r

′
f , ω)gb(r

′, ω). (7.6)

Let Ẽs(rrec) be the scattered field seen at rrec due to transmit beamforming with weight vector

wt(r
′
f , ω). From (7.1) and (7.6), we obtain the relation

Ẽs(rrec) = −jω3µ2
0ε0ℓsi(ω)

∫

V

Gb(rsrc, r
′)wH

t (r
′
f , ω)gb(r

′, ω)o(r′)d3r′. (7.7)

Each antenna has associated with it a complex channel receive weight that modifies the phase

and amplitude of the received signal resulting from the scattered field in (7.7). The channel weights

are designed to receive electric fields from focus location r′f . Let the receive channel weight vector

be denoted wr(r
′
f , ω). The modified received signals are summed to form the beamformer output

signal s(r′f , ω), given by

s(r′f , ω) = −jω3µ2
0ε0ℓsi(ω)

∫

V

wH
r (r

′
f , ω)gb(r

′, ω)wH
t (r

′
f , ω)gb(r

′, ω)o(r′)d3r′

= wH
t (r

′
f , ω)D(ω)w∗

r(r
′
f , ω), (7.8)

where ‘*’ denotes the complex conjugate and D(ω) is the L×L bistatic scattering matrix given by

Dmn = Es(rrec, rsrc). Eq. (7.8) shows that transmit-receive beamforming can be accomplished by

acquiring D, designing the weights wt and wr, and multiplying. Returns from multiple foci can

be obtained in post-processing by designing wt and wr for each focus. Thus, it is not necessary

to design and implement beamforming hardware such as delay lines for measurement from each

focus location.
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It is generally desired to exclude monostatic data, wherein the same antenna acts as transmitter

and receiver, from the microwave inversion [57]. Monostatic data may be removed from (7.8) by

replacing the diagonal components of D with zeros and subtracting the term

ζ(r′f , r
′) = (wt(r

′
f , ω)⊙wr(r

′
f , ω))

H
(gb(r

′, ω)⊙ gb(r
′, ω)) (7.9)

from the integrand, where ⊙ is pointwise vector multiplication.

In general, wt and wr may be different. For this study, we choose for the transmit and receive

weights to be identical. For a focus location r′f , the weights are chosen to satisfy the maximum

SNR criterion [19], given by

w(r′f , ω) = arg max
w(r′

f
,ω)

wH(r′f , ω)gb(r
′
f , ω)g

H
b (r

′
f , ω)w(r′f, ω)

wH(r′f , ω)Σw(r′f, ω)
, (7.10)

where Σ is the noise covariance matrix. The solution to (7.10) is w(r′f , ω) = αΣ−1gb(r
′
f , ω),

where α is an arbitrary constant. For Gaussian white noise, Σ is the identity matrix. We choose

α = 1/||gb(r
′
f , ω)||2 for this study.

The Imaging Algorithm

The goal of both the standard DBIM algorithm and the beamforming-enhanced DBIM algo-

rithm is to reconstruct the unknown dielectric profile in the imaging region V . The standard DBIM

operates on (7.3), while the beamforming-enhanced DBIM operates on (7.8).

The forward solution is performed via FDTD on a uniform 2-mm grid. The incident electric

fields are recorded at all antenna feed locations and at all voxels in V . Incident fields are converted

to Green’s functions via (7.2). They are then converted to phasor form via DFT.

The difference in grid resolution between the data acquisition and forward solution simulations

leads to model mismatch which can introduce error in the recorded scattered fields. We counter-

act this mismatch using a calibration procedure wherein we simulate an empty antenna array on

both the 0.5- and 2-mm grids. For each transmit-receive channel, we compute a complex multi-

plicative calibration constant by dividing the electric field in the fine grid by the electric field in

the coarse grid. The electric field phasors from the breast phantom data acquisition simulation
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are then calibrated by dividing them on a channel-by-channel basis by the empty-array calibration

constants.

Following calculation of the relevant field phasors, the L× L bi-static scattering matrix D(ω)

is formed for each frequency of interest. Also formed are the background Green’s function vectors

for each voxel in V , given by gb(r
′
k, ω), where r′k is the location of the kth voxel in V .

For the mth focus location both the transmit and receive weights are chosen according to (7.10)

to achieve w(r′fm, ω) = gb0(r
′
fm, ω)/||gb0(r

′
fm, ω)||2, where gb0(r

′
fm, ω) is the background Green’s

function of the dielectric profile of the initial guess, i.e., the first DBIM iteration. The beamformer

weights could be updated at each iteration to reflect the new background permittivity, but this

approach is not used here. Foci are placed on a uniform grid in V , with a spacing given by ∆f .

The vectors and matrices described above are used to form the inverse system b = Ax used

to solve for the unknown contrast. The unknown contrast vector x is given by (2.3). The single-

frequency residual vector b is given by

b =





























ℜ
{

wH
t (r

′
f1, ω)D(ω)w∗

r(r
′
f1, ω)

}

...

ℜ
{

wH
t (r

′
fM , ω)D(ω)w∗

r(r
′
fM , ω)

}

ℑ
{

wH
t (r

′
f1, ω)D(ω)w∗

r(r
′
f1, ω)

}

...

ℑ
{

wH
t (r

′
fM , ω)D(ω)w∗

r(r
′
fM , ω)

}

,





























(7.11)

where the monostatic data has been removed from D. The submatrix A0 is formed via discretiza-

tion of (7.8) and is given by

A0
mk = −j∆3ω3µ2

0ε0ℓsi(ω)
{

wH
t (r

′
fm, ω)gb(r

′
k, ω)g

T
b (r

′
k, ω)w

∗
r(r

′
fm, ω)− ζ(rfm, r

′
k)
}

. (7.12)

The matrix A is formed from A0 via (2.6). As in Chapter 2, the multiple-frequency inverse

system is formed by creating b and A for each frequency and vertically concatenating.

The beamforming-enhanced DBIM algorithm reduces to the standard DBIM algorithm as de-

scribed in Chapters 2 and 3 when the weights used are the standard real basis functions. Let the

jth standard basis function be denoted ej = [e1 e2 . . . eL]
T, where eh=j = 1, eh 6=j = 0. For a
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Figure 7.1: Quality metric cos(φ) versus SNR for (a) the Class 2 and (b) Class 3 breast phantoms.

Solid line: Standard DBIM. Dash-dot line: Beamforming-enhanced DBIM, ∆f = 1 cm. Dash-dash

line: Beamforming-enhanced DBIM, ∆f = 2 cm. Dot-dot line: Beamforming-enhanced DBIM,

∆f = 3 cm

channel formed by transmitting at the nth source and receiving at the mth source, wr = en, while

wt = em. In this case, M is the number of channels instead of the number of foci. If all bistatic

channels are used, excluding those formed by reciprocal antenna pairs, then M = (L)(L− 1)/2.

The inverse solution is performed via CGLS. Regularization is achieved by terminating CGLS

early via the L-curve method [86]. As in Chapter 3, the projected restart algorithm is used to

constrain the three Debye parameters to be roughly proportional at each voxel.

The DBIM algorithm is considered to have converged in this study based on the convergence

of the norm of the residual vector, b. Let b(i) be defined as the residual vector b at the ith DBIM

iteration. Termination of the DBIM algorithm occurs when one of three conditions have been

reached: 1) When ten DBIM iterations are performed; 2) when ||b(i)||2−||b(i−1)||2 < 0.01||b(1)||2;
or 3) when ||b(i)||2 > ||b(i−1)||2 > ||b(i−2)||2. In the latter case, performing further iterations is

unlikely to improve the quality of the reconstruction.
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Figure 7.2: Top row: Exact dielectric profile of the Class 2 (scattered fibroglandular) phantom in

terms of ∆ε. Second and third rows: Standard DBIM reconstruction at 30 dB and 10 dB SNR,

respectively. Fourth and fifth rows: Beamforming-enhanced reconstruction with ∆f = 1 cm at 30

dB SNR and 10 dB SNR, respectively. Adjacent cross-sections are separated vertically by 1 cm.

7.4 Results and discussion

In this section we report the results from applying both the standard DBIM algorithm and

the beamforming-enhanced DBIM algorithm to the synthetic data acquired from the numerical

testbeds as described in Sec. 7.2. We report the results by displaying quantitative images of the

Debye parameter reconstructions and by using the numerical quality metric cos(φ) introduced in

Chapter 3.
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Figure 7.3: Top row: Exact dielectric profile of the Class 3 (heterogeneously dense) phantom in

terms of ∆ε. Second and third rows: Standard DBIM reconstruction at 30 dB and 10 dB SNR,

respectively. Fourth and fifth rows: Beamforming-enhanced reconstruction with ∆f = 1 cm at 30

dB SNR and 10 dB SNR, respectively. Adjacent cross-sections are separated vertically by 1 cm.

For each phantom class, reconstructions were created after Gaussian white noise was added to

the data acquisition measurements. The SNR (referenced to received power) was varied from 35

dB to 5 dB in decrements of 5 dB. SNR is defined here as the ratio of the total received power across

all channels to the total noise power across all channels. Four independent noise instances were

generated for both phantom classes. At each designated SNR level, each noise instance was scaled

appropriately and reconstructions were performed. The beamforming-enhanced reconstructions
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were performed for ∆f = 1, 2, and 3 cm. Thus, four standard reconstructions and 12 beamforming-

enhanced reconstructions were performed for each SNR level.

Fig. 7.1 is a plot of cos(φ) as a function of SNR for the standard algorithm and the beamforming-

enhanced algorithm for all choices of ∆f . One plot is shown for both the Class 2 and Class 3

breast phantoms. The quality metric cos(φ) is averaged across the four noise instances. For both

phantoms, the performance of the standard algorithm is nearly identical to the performance of the

beamforming-enhanced algorithm with ∆f = 1 cm for high SNR, as both quality curves converge

asymptotically to a value between 0.8 and 0.83. As SNR decreases, the quality of the standard

beamforming reconstruction degrades more than the quality of the beamforming-enhanced recon-

struction. This results in a significant quality difference at SNR below 15 dB. The beamforming-

enhanced algorithm performs progressively worse for all values of SNR as the focal spacing is

increased from 1 cm to 3 cm.

Figs. 7.2 and 7.3 show coronal cross-sections through the exact and reconstructed dielectric

profiles for the Class 2 and Class 3 phantoms, respectively. The top row in each figure shows cross

sections through the exact profile. The second and third rows show standard DBIM reconstructions

at 30 dB and 10 dB SNR, respectively. The fourth and fifth rows show beamforming-enhanced

reconstructions with ∆f = 1 cm for 30 dB an 10 dB SNR, respectively. Each profile is depicted

in terms of Debye parameter ∆ε, which is highly correlated with ε∞ and σs for both the exact and

reconstructed profiles. Low-dielectric regions in the profiles correspond to adipose tissue. Both the

standard and beamforming-enhanced reconstructions are very visually similar to the exact profiles

for 30 dB SNR in that they are accurate in basic shape and location of fibroglandular regions. For

the 10 dB SNR case, the standard DBIM reconstructions have degraded considerably. Significant

portions of fibroglandular tissue have disappeared in the low-SNR reconstruction for the Class

2 phantom, whereas the fibroglandular regions in the low-SNR reconstructions of the Class 3

phantom have completely changed in shape for several cross-sections. Conversely, the low-SNR

beamforming-enhanced reconstructions are very similar to the high-SNR reconstructions for both

phantom classes.
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Table 7.1: Total number of foci for each choice of ∆f

∆f = 1 cm ∆f = 2 cm ∆f =3 cm

Class 2 500 57 22

Class 3 306 34 14

The superior fidelity of the beamforming-enhanced algorithm for SNR below 15 dB is signif-

icant, as the experimental signal-to-model-error ratio γ as given in Chapter 4 for the miniaturized

patch antenna array was comparable to 15 dB for the lower frequency band and significantly less

than 15 dB for the upper band. The beamforming-enhanced algorithm thus shows promise for

improving the accuracy of experimental microwave dielectric reconstructions. In order to design

beamforming weights for the experimental imaging case with the goal of decreasing the sensitivity

of the algorithm to model error, it may be necessary to characterize the model-error covariance

matrix for the set of signal channels from each transmit antenna.

Table 7.1 gives the total number of foci for each choice of ∆f . Fig. 7.4 shows cross-sections

through the beamforming-enhanced DBIM reconstruction for the Class 2 phantom at 30 dB SNR

using ∆f =1, 2, and 3 cm. As the focal spacing increases, some fibroglandular features are not

resolved, leading to a degradation of the accuracy of the reconstruction. Improving the quality

of the beamforming-enhanced reconstructions comes at the cost of a larger computational burden

for the inverse solver. However, the number of foci for the densest attempted focal distribution is

still significantly smaller than the number of channels used for the standard algorithm. Thus, for

a focal spacing of 1 cm, the beamforming-enhanced algorithm offers superior noise performance

while requiring a smaller computational cost.

Improvements to the beamforming-enhanced results could hypothetically be achieved by an

even denser distribution of foci. However, it is reasonable to assume that there will come a point

of diminishing returns to noise insensitivity as focal spacing is decreased. Further improvements

may be achieved by using a non-uniform distribution of foci or by implementing row weighting

into the algorithm in order to give more or less emphasis in the reconstruction to various regions

in the breast.
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Figure 7.4: Cross-sections through beamforming-enhanced DBIM reconstructions of the Class 2

phantoms. Left: ∆f = 1 cm. Middle: ∆f = 2 cm. Right: ∆f = 3 cm. Debye parameter ∆ε is

shown. The SNR is 30 dB.

7.5 Conclusion

In this study, a transmit-receive beamforming technique was incorporated into the DBIM al-

gorithm for microwave breast imaging. Beamforming-enhanced DBIM reconstructions of 3-D

anatomically-realistic breast phantoms were created and compared to reconstructions using the

standard DBIM algorithm. The beamforming-enhanced reconstructions were less sensitive to ad-

ditive Gaussian white noise. For an SNR of 15 dB or below, the fidelity of the beamforming-

enhanced reconstructions were considerably more faithful to the true phantoms. The superior

performance of the beamforming-enhanced algorithm in the presence of noise is significant, as

the ill-posedness of the inverse system makes it very sensitive to perturbations in the measured

signal. Application of the beamforming-enhanced algorithm to experimental data may lead to sig-

nificant improvements in experimental imaging based on the experimental signal-to-model-error

ratios measured in Chapter 4.
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Chapter 8

Future Work and Conclusion

8.1 Future work

The results from the previous chapters highlight the promise of mitigating the effect of the

ill-posed nature of the microwave breast imaging algorithm using an enclosed array of miniatur-

ized, multi-band patch antennas as well as the beamforming-enhanced inverse scattering algorithm.

Challenges remain, however, largely due to degree of model error between measurement and for-

ward solution. In particular, the high degree of model error in the upper frequency band limits the

high spatial frequency components that can be incorporated into a dielectric reconstruction, putting

an unnecessary limit on the amount of detail that can be seen on an experimental image.

Future work in microwave breast imaging with enclosed arrays of multi-band antennas will ad-

dress the challenge of model error through research on both hardware and algorithm implementa-

tion. Important research directions include the use of alternative slot-loaded patch antenna designs,

model error correction through calibration, and experimental implementation of the beamforming-

enhanced DBIM.

Exploration of the effects of different slot-loaded patch antenna designs

The results from Chapter 4 show that frequencies in the upper band show a greater degree of

mismatch between experimentally acquired signals and simulated signals from the forward solu-

tion. It may be that higher frequencies are more prone to model error in general. Errors in array

construction, such as bowing of the array panels, may be more significant for shorter wavelengths.

Imperfect knowledge of the dielectric properties of the materials in the array, which can change
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the overall electrical length of a radiation path in the array cavity, could similarly have more of an

effect for shorter wavelengths.

Benefits to the reconstruction may be obtained through using an antenna with resonant bands

that are lower in frequency. This may be accomplished by introducing a larger number of slots on

the patch antenna surface. In [68, 84, 87], resonant frequencies are shifted downward through the

addition of a slot at the center of the antenna, meandering slots on the non-radiating antenna edges,

and spirals to the already extant slots along the radiating edges. The lower frequencies are obtained

at the expense of progressively more complexity to the patch surface. This added complexity may

or may not make modeling the antenna more difficult, thus perhaps partially counteracting the

benefits of the lower frequencies. In order to determine to what extent this trade-off exists, it will

be necessary to fabricate an array that incorporates one of the more complex antennas and compare

experimental versus simulated data in the same fashion as in Chapter 4.

The increase in the number of slots on the patch surface may decrease the gain of the antenna.

For a given noise power in the receive channels, this would have the effect of decreasing the SNR.

However, the degree of model error already present represents a much larger perturbation in the

received signal than would be expected from instrument noise corruption. The trade-off of lower

SNR for decreased model error is thus likely a good one. Preliminary reconstructions of breast

phantoms from simulated data acquired using different patch antennas suggest that the decrease in

gain concomitant with an antenna with more slots doesn’t significantly degrade the quality of the

resulting image assuming a noise floor that is reasonable for an experimental system [88].

Model error correction through calibration

A degree of model error will be unavoidable due to finite tolerances or subtle user error in

construction of the array. It may then be necessary to perform a calibration procedure in order to

remove aberrance from the measured signal. Calibration in this manner typically involves acquir-

ing both experimental and simulated data while a known dielectric properties distribution is present

in the array. Correction of the measured data from the object to the imaged (i.e., the breast) is then
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performed based on the difference between the measured and simulated signals of the known cal-

ibration domain. In Chapter 7, calibration between the fine mesh of the data acquisition and the

coarse mesh of the forward solution is accomplished by acquiring empty-array data from both

meshes. A complex correction factor for each channel is then formed from the ratio of the signals

in the different meshes, and the phasors formed by acquiring data from the imaging object are then

corrected by multiplying by these complex ratios. This procedure was also used for simulated-data

breast imaging studies [57, 59] using an open array of idealized dipoles. A similar procedure has

been applied to experimental data in imaging studies using an open array of monopole antennas

(e.g., [89]).

Calibrating in this manner is effective assuming a linear scattering environment. Using a cavity-

type array, this assumption is less accurate due to the many reflections that occur between the object

under test and the conducting ground planes. Thus, an empty array calibration is ineffective for the

enclosed array described previously. The array may be effectively calibrated by using a calibration

domain other than the empty array. This requires data collection from calibration test objects

whose dielectric profiles are known precisely. Array calibrations of this sort have been performed

in [90].

For calibration with a test object, it is desired for the fields in the array under the calibration

data acquisition to be somewhat similar to the fields in the array when the imaging object is present.

This may require the calibration object itself to be somewhat similar to the imaging object. Linear

scattering between the two cases is a better approximation in this scenario. For the breast imaging

case, a calibration object could be formed following data acquisition from the patient using the

thermoplastic mesh, which has conformed to the breast of the human subject. A bag of fluid could

then be placed in the thermoplastic mesh for the calibration data acquisition. The fluid could be a

solution of water and glycerol or Triton X-100 with a concentration chosen to mimic the assumed

average dielectric properties of the breast interior.

Pre-clinical evaluation of the calibration technique could be performed by computing the per-

turbation metric (4.4) between simulated data and calibrated experimental data acquired from an
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imaging object of known dielectric properties, such as the MRI-derived 3-D-printed breast phan-

tom from Chapter 6. The calibration test object in this case would be the conformal thermoplastic

mesh filled with a bag of fluid whose dielectric properties represented the mean properties of the

3-D-printed phantom. If γ for the calibrated case is significantly higher than for the uncalibrated

case, this would suggest that the calibration procedure is effective. Imaging with the calibrated

data (perhaps without using penalties for the upper frequency band) would then be used to evalu-

ate whether the calibration technique leads to higher-quality images.

Experimental implementation of beamforming-enhanced DBIM

The results from Chapter 7 demonstrate that adding the beamforming-enhancement to the

DBIM leads to significant imaging improvement when Gaussian white noise is added to the sim-

ulated data acquisition measurements at levels corresponding to the levels of model error pertur-

bation from Chapter 4. Applying the beamforming-enhanced DBIM to experimental data may

therefore lead to decreased sensitivity to model error. The beamforming weights may be designed

using (7.10). The noise covariance matrix Σ may be initially assumed to be the identity matrix.

However, the model error in various channels may in fact be correlated. Estimating this correla-

tion, and therefore estimating Σ, may then be necessary to optimize performance. This may be

accomplished by acquiring experimental and simulated data for several objects of known dielectric

properties distribution. The experimental beamforming-enhanced DBIM could then be used to im-

age the simple objects from Chapter 5 or the printed breast phantom from Chapter 6 to determine

whether the beamforming enhancement leads to better image quality in the presence of significant

model error.

8.2 Conclusion

Microwave breast imaging remains a promising alternative modality for breast density evalu-

ation, breast cancer screening, and treatment monitoring. Overcoming challenges due to the sen-

sitivity of the imaging technique to modest signal corruption requires advancements in hardware
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and algorithm design. This document reported a series of studies completed with these goals in

mind.

In Chapter 3, a numerical imaging study was performed using an enclosed array of slot-loaded

patch antennas. The array elements were designed in order to provide dense spatial sampling of

electric fields at multiple frequencies of interest while maintaining efficient transmission. These

factors help to decrease the degree of ill-posedness of the linear system of equations which must be

solved to find an estimate for the unknown dielectric profile of the target. The conducting ground

planes on each array panel shield the imaging environment from outside interference. Success-

ful reconstruction of anatomically realistic numerical breast phantoms demonstrate the theoretical

feasibility of microwave breast imaging with such an array.

In Chapter 4, an experimental array prototype was characterized in order to quantify the degree

to which model error corrupts the array’s scattered signals. The results showed that the degree of

model error was more significant than the degree to which instrument noise is expected to corrupt

the measured signals. A sensitivity study was also performed, in which various array features were

perturbed in simulation in order to determine which features were most likely to lead to significant

model error. Immersion medium dielectric properties were shown to have the most corrupting

effect.

A series of geometrically simple objects were imaged based on experimental data acquisition

with the array prototype in Chapter 5. The resulting dielectric reconstructions were very faithful to

the actual dielectric profiles of the targets. The results demonstrated the basic soundness of imaging

with the array prototype, and also showed the importance of windowing late-time reflections from

the data acquisition to create a quality image.

Chapter 6 described the procedure for constructing a 3-D-printed breast phantom from an MRI-

derived numerical breast phantom. The phantom serves as a pre-clinical intermediate imaging case,

in which the dielectric distribution of the target is derived from a realistic distribution of tissue. The

phantom was then successfully imaged, demonstrating the ability of the array to accurately image

targets that achieve a biologically relevant complexity while sacrificing a degree of realism in

constituent dielectric properties.
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Lastly, a beamforming enhancement to the DBIM was implemented and evaluated in Chapter

7. The goal of the beamforming technique was to synthetically focus the measured signal in order

to decrease the effect of signal corruption on the resulting image. Performance was evaluated by

imaging numerical breast phantoms from a simulated data acquisition with both the beamforming-

enhanced and standard DBIM. The results showed that the beamforming-enhanced algorithm is

much less sensitive to noise in an SNR regime that is comparable to the level of signal corruption

expected from model error from the prototype array.

Future work on microwave inverse scattering for the breast will involve decreasing the impact

of model error. Exploring different slot-loaded patch antenna designs and calibration techniques

may yield important benefits in this regard. Experimental implementation of the beamforming-

enhanced algorithm may make the algorithm less sensitive to model error, as well. This enhance-

ment may require characterization of the correlation between model error phasors for different

transmit-receive channels of the array.
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