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abstract

Instability-driven turbulence is ubiquitous in astrophysical and laboratory

plasmas, where it is an important component to how these systems transport

energy, momentum, particles, etc. This thesis is concerned with how two

instabilities drive and interact with magnetohydrodynamic turbulence.

The magnetorotational instability (MRI) is the best candidate for driving

turbulence in well-ionized accretion disks. In this thesis, the turbulence

driven by the MRI is studied with a particular focus on how it compares

to strong, driven, incompressible MHD turbulence. High-resolution, high-

Reynolds number setups are analyzed to determine the existence and char-

acter of an inertial range of scales where a nonlinear cascade dominates the

dynamics.

In contrast to previous studies, systems with an imposed magnetic field—

that activate the linear MRI—provide evidence for the existence of an

inertial range when one considers the dynamics perpendicular to a strong,

large-scale axial magnetic field that develops in the system. The outer scale

of the turbulence is determined by balance between the linear shear, present

at all scales, and the turbulent shear.

In the case of a system without an imposed magnetic field—where the

MRI dynamo is subcritical—evidence is found for self-sustained turbulence

at magnetic Prandtl number Pm = 1. Previous work was not able produce

such turbulence for systems at lower Reynolds numbers. A turbulent state

is found to be easier to self-sustain in these systems in high-aspect-ratio

domains, with angular momentum transport also highly dependent on aspect

ratio. Vertically-extended domains exhibit higher transport. Azimuthally-

extended domains show increased transport until a certain aspect ratio,

beyond which the transport decreases. A phenomenological explanation is

proposed by which the separation of toroidal magnetic flux vertically allows

for increased transport and drive of the subcritical MRI dynamo; as the
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toroidal dimension is extended, the tearing mode acts to break up such large

scale flux, reducing transport.

Additionally, two-dimensional MHD turbulence is studied in order to

test the predictions of new theories that hypothesize competition between

the tearing mode and turbulent fluctuations in flows with high Lundquist

number. A method is introduced to simulate evolution of single, critically-

balanced eddy, thereby allowing the direct investigation of this competition.

Results demonstrate the disruption of the correlated eddy structure on the

shorter of the Alfvén or tearing time. Steepening of the energy spectrum is

observed, while decreased alignment is not. Generally, these results support

the proposed theory, with further investigation warranted.
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1 introduction

Astrophysical systems are characterized by their enormous size, which has

two important consequences. First, when compared to systems of smaller

size, the role played by gravity changes from being minor to major, even

central, to describing the problem. Second, the size can lead to a separation

of scales of many orders of magnitude between the microphysical scales

associated with individual particle interactions and the linear dimension

of the whole system. Because of the first of these, objects such as stars or

astrophysical disks have large reservoirs of gravitational potential energy

that can be converted into other forms of energy—kinetic, magnetic, heat—

through some mechanism. That mechanism often comes in the form of some

instability.

In general, when an equilibrium configuration can easily rearrange itself

to release free energy, an instability will tend to drive the system away

from that equilibrium, toward another. For example, the Rayleigh-Taylor

instability occurs when a heavier fluid is balanced on top of a lighter fluid.

Naturally, the system is at a lower potential energy state when the heavier

fluid is on bottom and, thus, a disturbance from equilibrium will drive it in

this direction.

Because of the large scale-separation in natural plasma systems, such

as the interstellar medium, the solar corona, solar wind, accretion disks,

etc., instabilities can drive turbulence that spans a very broad range of

scales (e.g., Biskamp, 2003). This affects important phenomena like plasma

heating, particle acceleration and scattering (e.g., Chen, 2016), as well as

the affecting the fundamental dynamics of a system, such as in accretion

disks (Shakura and Sunyaev, 1973).

At scales larger than the ion kinetic scales, the plasma dynamics can be

modeled in the framework of magnetohydrodynamics (MHD) (e.g., Biskamp,

2003; Chen, 2016; Tobias et al., 2013; Davidson, 2017; Chen and Boldyrev,



2

2017). In MHD, the nonlinear interaction of fluid eddies results in the

transfer of energy from the driving scale to the dissipation scales through

a scale-by-scale “cascade.”1 Because instabilities are frequently present at

large scales to drive flows in astrophysical systems, there exists a richness of

phenomena in astrophysics described by instability-driven turbulence, whose

ultimate source is gravitational energy.

In this thesis, we study magnetohydrodynamic turbulence driven by and

competing with local instabilities. First, we will study the local turbulence

in accretion disks driven by the magnetorotational instability (MRI) by

using the “shearing-box,” or “shearing-sheet,” equations (Goldreich and

Lynden-Bell, 1965; Hawley et al., 1995; Umurhan and Regev, 2004). Second,

we will investigate the effects of the tearing instability on MHD turbulence,

motivated by recent theoretical models of “tearing-mediated turbulence.”

The primary method of investigation will be the analysis of large-scale

computations of fully nonlinear solutions to the MHD equations.

The remainder of this chapter will provide background and motivational

material for the work contained in subsequent chapters. Section 1.1 will

review thin accretion turbulence. Section 1.2 will describe the linear mag-

netorotational instability. Section 1.3 will discuss magnetohydrodynamics

and turbulence phenomenology, including the new tearing-mediated regime.

Section 1.4 will describe the shearing box model used in this thesis. Section

1.5 will describe the numerical methods used.

1.1 Turbulence in accretion disks

Black holes, compact objects from which even light cannot escape, are

observable electromagnetically from their interaction with the matter that

surrounds them (Event Horizon Telescope Collaboration et al., 2019). This

1This is best understood in the fluid context, but generalizations do exist (e.g.,
Schekochihin et al., 2009).
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matter will accrete onto the black hole forming a disk—unless there is no

rotation in the system, a situation known as Bondi accretion—the precise

shape of which depends on relative strengths of gravity, pressure, and

rotation (e.g., Abramowicz and Fragile, 2013). In the process of falling

toward the event horizon, matter can be heated or even ejected in the form

of jets. Radiation from the accelerated and heated gas in the disk is emitted

over a broad range of the electromagnetic spectrum and can be observed

from these very luminous objects, e.g. active galactic nuclei (AGN). As the

best candidate for driving the turbulence and angular momentum transport

responsible for accretion onto black holes, the MRI is an essential component

in what is one of the most energetic, efficient energy-conversion processes in

the universe (e.g., Abramowicz and Fragile, 2013).

Based on work by (Shakura and Sunyaev, 1973), black holes were pre-

dicted to be strongly luminous objects of X-ray radiation due to the heating

of gas in the hot, central regions of a thin, rotating disk around the black

hole. The luminosity is directly connected to the matter inflow rate of mass

accreting onto a disk around the black hole. Because the gas comprising the

disk is in Keplerian or near-Keplerian orbit with an effective potential due

to its angular momentum, this rate of accretion is dependent on the outward

flow of angular momentum. If one assumes diffusion of angular momentum

due to fluid elements interacting through viscous stresses, then the accre-

tion rate calculated is much smaller than what is observed, indicating the

operation of some other mechanism. In Shakura and Sunyaev (1973), it was

proposed that instead of a molecular viscosity, models should use a turbulent

viscosity. Additionally, the exact process responsible need not be understood,

and the efficiency of angular momentum transport could be parameterized

by a dimensionless α. This transport parameter is proportional to Reynolds

and Maxwell stresses within the disk.

Given the small viscosities of these disks, the corresponding Reynolds

numbers are large (Spitzer, 1962), high enough that one would expect
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the flow to be turbulent should there be some driving mechanism such

as an instability. However, it can be shown that disks with Keplerian

and nearly Keplerian profiles are hydrodynamically stable. Therefore, the

turbulence must be driven by either a subcritical hydrodynamic instability

or a magnetohydrodynamic instability.

Balbus and Hawley (1991) rediscovered a linear instability in magnetized,

rotating fluids, critically connecting it to the evolution of accretion disks.

Originally derived by Velikhov (1959) and Chandrasekhar (1960), what is

known as the magnetorotational instability is active in differentially rotating

plasmas or conducting fluids with a weak magnetic field. Besides accretion

disks, it has been studied in the context of the solar dynamo (Kagan and

Wheeler, 2014) and the geodynamo (Petitdemange et al., 2008). Additionally,

the MRI is a prototype of subcritical magnetic dynamo action (Rincon et al.,

2007; Herault et al., 2011; Riols et al., 2013).

Many analytic, numerical, and laboratory studies have been devoted to

the onset of the instability and the resulting magnetic turbulence (e.g., Sisan

et al., 2004; Gissinger et al., 2011; Seilmayer et al., 2014; Flanagan et al.,

2015; Meheut et al., 2015; Latter et al., 2015). Systems exhibiting the MRI

are dynamically complex, as they incorporate the effects of stratification,

global geometry, boundary conditions, etc. Therefore, it is not currently

possible to address the full-scale natural dynamics. While the MRI may be

important for global angular momentum transport and accretion, it is a local,

incompressible instability and can be studied by the use of local, reduced

models. The shearing box is one such model that isolates the principal

ingredients required for the MRI (e.g., Goldreich and Lynden-Bell, 1965;

Hawley et al., 1995; Fromang et al., 2007; Longaretti and Lesur, 2010; Lesur

and Longaretti, 2011; Riols et al., 2015). In the framework of the shearing

box, the local and fundamental properties of MRI-driven turbulence may be

studied. Modeling of the small-scale dynamics proves useful by producing

values for the angular momentum transport coefficient α that can be used
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in global modeling of the disk, star, or planet interior (e.g., Shakura and

Sunyaev, 1973; Lesur and Ogilvie, 2010).

1.2 Magnetorotational instability

Consider a differentially rotating flow of an electrically conducting fluid

or plasma that is threaded by a magnetic field. When nearby orbiting

fluid elements connected by this magnetic field are displaced slightly, the

magnetic field acts as a spring pulling them toward each other. For a strong

field, magnetic tension will be strong enough to pull the fluid elements

back together and they will circle each other at the epicyclic frequency

κ2 = 2Ω2(2 − q). For a weak field, the magnetic tension is not enough

to restore the displacement and, instead, destabilizes the configuration by

allowing the two elements to exchange angular momentum. This reduces

the angular momentum of the inner element and increases that of the outer

element, causing them to spiral further inward and outward, respectively.

See the diagram in Figure 1.1.

If one considers a local, Cartesian coordinate system, rotating in a disk

with radial coordinate x, azimuthal coordinate y, vertical coordinate z, and

magnetic field B = Bẑ, then the MRI system can be described by the

simple system of equations

ẍ = 2Ωẏ + 3Ω2x− ω2
Ax, (1.1)

ÿ = −2Ωẋ︸ ︷︷ ︸
Coriolis

︸ ︷︷ ︸
tidal

− ω2
Ay︸ ︷︷ ︸

spring

, (1.2)

where Ω is the disk rotation rate, and ωA ≡ k‖vA = k · B√
4π%

is the Alfvén

frequency. One can see that in this equation the magnetic field acts as

a spring or restoring force, while the Coriolis force exchanges momentum

between components, and the tidal force accelerates the fluid element.
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Figure 1.1: Cartoon diagram of MRI, showing the fluid elements in blue and
the connecting magnetic field in red. On the left, the disk is seen from above,
and the magnetic field, acting like a spring between the two fluid elements,
causes the inner fluid element to move radially inward and the outer fluid
element to move radially outward. On the right, the disk is seen from the
side emphasizing that the most unstable mode of the instability—and most
important when considering net vertical flux—is a small kz mode.
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ω
2
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MRI growth rates

Figure 1.2: Solutions to the MRI dispersion relation with complex frequency
ω plotted versus Alfvén frequency ωA. The purple line is the stable branch
while the teal line is the unstable branch, with a range of unstable modes.
For ω2

A/Ω
2 > 3, the magnetic field is strong enough that there are no longer

any unstable modes.
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Figure 1.3: Resistive MRI growth rates γ plotted versus Alfvén frequency ωA

for solutions to the dispersion relation (lines) and numerical measurements
from snoopy (points). For small Λ, one can see growth rates are reduced
and shifted to smaller k (ωA).

The resulting dispersion relation is

ω4 − ω2(Ω2 + 2ω2
A) + ω2

A(ω2
A − 3Ω2) = 0. (1.3)

Plotting the solution in Figure 1.2, we see that there are a range of unstable

modes and that the fastest growing mode ωmax = 3/4Ω is comparable

to the rotation rate. For large ωA, the instability is quenched by the

magnetic field, which prevents bending on scales smaller than a critical

scale 2πk−1
‖ = vA/3Ω. Practically, this means that given a magnetic field,

a system—real or simulated—must be thick enough to contain the MRI-

unstable long-wavelength modes.
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Resistive MRI

In a resistive system, the dispersion relation above is modified by the

replacement ω 7→ ωe = ω + iηk2, introducing a new parameter the Elsasser

number Λ ≡ B2
0/(ηΩ), which measures the relative strength of the resistivity.

For Λ� 1, the growth rates are near ideal. However, for Λ ≤ 1, the growth

rates are reduced and the fastest growing mode is shifted toward longer

wavelengths. This is important to consider when one wants to compare

ideal growth rates with those from a resistive MHD simulation of the MRI.

One must set the magnetic diffusivity low enough to not affect the results.

See Figure 1.3 for theoretical growth rates along with those measured from

fully nonlinear computations produced by the code snoopy, described in

Section 1.5.

Azimuthal MRI

While the MRI is often discussed in the case where a vertical magnetic field

component is present, Balbus and Hawley (1992) also found an instability in

the case of a purely azimuthal magnetic field. This instability is particularly

important for the self-generation of magnetic fields within accretion disks

through a non-linear dynamo process (e.g. Rincon et al., 2007). The details

of this instability are not as straightforward as the vertical case, but we will

summarize. In order to consider nonaxisymmetric perturbations to the flow,

one transforms to coordinates shearing with the flow

r′ = r, (1.4)

φ′ = φ− Ω(r)t, (1.5)

z′ = z. (1.6)
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d ln r

(k · vA)2

Figure 1.4: A diagram of the instability region of the azimuthal MRI
(recreated from Balbus and Hawley (1992)). The field with a particular
wavenumber k will experience periods of growth due a linear instability if
k · vA < dΩ2

d ln r
. Above this critical value, all solutions are stable.

Fields are expected to have the form ei(k
′
rr

′+m′φ′+k′zz
′). Therefore, the effect

of the transformation is to introduce a time-dependent wavevector:

kr = kr(t) = k′r −mt
∂Ω

∂r
. (1.7)

In this frame, the azimuthal magnetic field continually grows in time, but

in such a way that k ·B (both variables time-dependent) remains constant.

This means that the ratio k/kz is time-dependent.

Balbus and Hawley found that there is an unstable region of the solution

space, but that the shear causes a particular wavevector to move back and

forth from the stable to unstable region. While we and others will refer

to this as an instability, it is actually a transient amplification, one with

exponential growth over a time scale of tens of orbits. Figure 1.4 shows the

instability region and the path that a wavector traces through it.



10

1.3 Magnetohydrodynamics

This thesis is concerned with plasmas that are well described by the fluid

model of incompressible magnetohydrodynamics (MHD). While plasmas

are completely described by a distribution function governed by the Vlasov-

Maxwell system of equations, fluid models can be constructed from comput-

ing moments of the distribution function and making suitable approximations

and closures. When the plasma is well ionized and the length scales and time

scales of associated with plasma microphysics are much smaller than the

scales of interest in the system, the plasma can be treated as a conducting

fluid of a single species. Furthermore, for flows with characteristic frequen-

cies much less than the inverse sound-wave crossing time, the flow can be

treated as incompressible, leading to a further simplification of the equations

from MHD to incompressible MHD. In the end, one has the incompressible

MHD equations. They are

∂tv = −v · ∇v − 1

%
∇P +B · ∇B + ν∇2v + f , (1.8)

∂tB = ∇× (v ×B) + η∇2B + g, (1.9)

∇ · v = 0, ∇ ·B = 0, (1.10)

where v is the velocity, B is the magnetic field in velocity units,2 P is the

total pressure,3 ν is the kinematic viscosity, η is the magnetic diffusivity,

and g,f are generic forcing functions.

2One can define the Alfvén speed vA ≡ B√
4π%

and use this as the unit of the magnetic

field.
3We can redefine the pressure as P ≡ p+B2/4π for the incompressible MHD equations

because the divergence of the first equation gives you Laplace’s equation for P

0 = ∇2P = ∇2

(
p+

B2

4π

)
(1.11)

where the role of the fluid pressure p is to adjust itself so that this equation is always
satisfied. Because p never enters the dynamical equations by itself, the values of the fluid
and magnetic pressure terms individually are irrelevant.
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Hydrodynamic turbulence

The most studied turbulent system and that from which the plasma commu-

nity has drawn much intuition is that of hydrodynamic turbulence. Concepts

such as the cascades of ideally conserved quantities like energy, correlated

flow structures known as “eddies,” and intermittency were borrowed from

the hydrodynamics community (e.g., Richardson, 1922; Frisch, 1995).

Magnetohydrodynamic turbulence

Magnetohydrodynamic turbulence shares similarities with its hydro coun-

terpart, including a forward cascade of energy and an inertial range with a

constant energy transfer rate. However, it differs in many key components.

Without the presence of a magnetic field, one can perform a Galilean trans-

formation of the coordinates to a frame with zero mean velocity where the

fluctuations of the flow are distributed isotropically. This is not possible

with a magnetic field, and this symmetry breaking provides a preferred

direction for the system. Along the magnetic field direction, shear Alfvén

waves propagate and interact, bending the field lines as if they were strings

under tension. These waves are the building blocks of MHD turbulence.

By introducing the Elsasser variables z± = v ±B, one can transform

the MHD equations to the form

∂tz
± ∓ vA · ∇z± + z∓ · ∇z± = −∇P +

ν + η

2
∇2z±, (1.12)

∇ · z± = 0. (1.13)

One can see from the equations that z± nonlinearly couples only with z∓.

Because z± correspond to Alfvén waves that are propagating or counter-

propagating along the magnetic field direction, only waves that are propa-

gating in opposite directions can interact with each other.
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Magnetohydrodynamic turbulence phenomenology

Since Kolmogorov’s landmark papers (Kolmogorov, 1941a,b, 1962) on hy-

drodynamic turbulence, several phenomenological models for the inertial

range of MHD have been proposed. The common feature of these models is

that by neglecting the dissipation and forcing terms in the equations, one

has an equation that describes the flow on scales between where the energy

is injected and where it is removed. This “inertial range” is dominated

by the inertial terms in the equations. By assuming a constant energy

transfer rate through all scales, one can obtain the dependence of velocity

and magnetic field fluctuations δvλ, δbλ on the scale λ. The particular form

of the dependence is determined by the model.

Iroshnikov (1963) and Kraichnan (1965) proposed a model of weak4

turbulence in which an “eddy” (correlated δvλ and δbλ) is distorted by

counter-propagating eddies over the course of many interactions. One can

estimate the change from one interaction in the Iroshnikov-Kraichnan (IK)

model by assuming that the eddy decorrelates on the field-parallel length

scale λ. Then, equation 1.12 gives the estimate ∆δvλ ∼ (δv2
λ/λ)(λ/δvλ).

Because these are disturbances are assumed random, many interactions are

required to remove the energy of an eddy, transferring it to smaller scales,

specifically N ∼ (δvλ/∆δvλ)
2. A energy transfer time can be estimated by

finding the time for N individual interactions

τIK ∼ Nλ/vA ∼ λ/δvλ(vA/δvλ). (1.14)

A constant energy transfer rate δv2
λ/λ produces fluctuations δvλ ∝ λ1/4 and

the energy spectrum

EIK(k) = |δv2
k|k2 ∝ k−3/2. (1.15)

4δv ∼ δb� vA
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In light of results for systems with weaker magnetic fields that indicate

an energy spectrum closer to the Kolmogorov E(k) ∝ k−5/3, Goldreich

and Sridhar (1995) (GS95) developed a framework that accounts for the

anisotropy produced by the presence of a magnetic field. They introduced

the concept of “critical balance” wherein the nonlinear and linear advection

terms are balanced |vA · ∇z±| ∼ |z∓ · ∇z±|. This is also a consequence of

causality: information about a perpendicular disturbance δbλ can only be

propagated a distance l ∼ vAδbλ/λ along a magnetic field line.

It is worth noting here that the GS95 theory is a theory of strong

turbulence, in contrast with IK theory. In fact, Sridhar and Goldreich (1994)

and others (Montgomery and Matthaeus, 1995; Ng and Bhattacharjee, 1996;

Goldreich and Sridhar, 1997; Galtier et al., 2000) realized that not only was

IK theory formally inconsistent with strong turbulence, by assumption, but

also it failed as a description of weak turbulence. Ultimately, the energy

spectrum was shown to be E(k⊥) ∼ k−2.

While systems with weaker magnetic fields exhibited the GS95 spectrum,

those with a strong field were closer the IK spectrum. Motivated by this

discrepancy, Boldyrev (2005, 2006) introduced a model that in the limit

of strong guide field reproduces the energy spectrum scaling of IK. In

this model, anisotropic turbulent eddies have three characteristic scales—

compared to two in GS95 and one in IK—and “scale-dependent dynamic

alignment” governs the strength of the nonlinear interaction. An eddy δbλ,

of length l and transverse scale λ, distorts the magnetic field lines by an

amount ξ ∝ δbλl, and these three scales become the length, thickness, and

width, respectively, of an eddy. The alignment of velocity and magnetic

perturbations is given by the ratio of these last two scales θλ ∼ λ/ξ. By

assuming that the the eddies try to maximally align δvλ and δbλ at each

scale, the resulting alignment angle scales as θλ ∼ λ1/4 Consequently, there
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is greater alignment at smaller scales, and the eddy dimensions scale as

l ∼ λ1/2, (1.16)

ξ ∼ λ3/4, (1.17)

Velocity fluctuations then scale as δvλ ∼ λ1/4, producing an energy spectrum

E(k⊥) ∝ k
−3/2
⊥ , (1.18)

where k⊥ is the wavenumber in the plane perpendicular to the magnetic

field.

A consequence of the dynamic-alignment (DA) theory is that eddies

become progressively more ribbon-like at smaller scales, indicating that

strong5 MHD turbulence tends to produce current sheets. This is unlike

hydrodynamic turbulence which creates not vortex sheets but filaments (e.g.,

Biskamp, 2003; Maron and Goldreich, 2001; Mallet et al., 2016). These

current sheets will be the sites of energy dissipation, with a log-normal

model describing well the intermittent process Zhdankin et al. (2013, 2014).

If the inertial range is long enough, i.e. the Lundquist number is large,

then these current sheets can become unstable to the tearing mode before

reaching the dissipation range.

In order to resolve this consequence of DA theory, Loureiro and Boldyrev

(2017) and Mallet et al. (2017a) separately developed phenomenological

theories that describe this “tearing-mediated” regime. They propose a new

range that exists between a critical “disruption” scale λcr ∼ S
−4/7
L and

a new dissipation scale λc ∼ S
−6/7
L , where SL is the Lundquist number

associated with an outer scale L. The disruption scale is found by equating

the tearing time and nonlinear interaction time, and the dissipation scale

is set by the critical Lundquist number at which a current sheet becomes

5“Strong” here refers to turbulence that is critically balanced at the outer scale and,
therefore, all smaller scales.
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violently unstable to the plasmoid instability Loureiro et al. (2007). As

the tearing mode tends to create isotropic magnetic field structures from

magnetic shear, Boldyrev and Loureiro (2017) predict that the turbulence

becomes progressively less aligned at smaller scales.

The exact scaling of the energy spectrum and alignment depend on

a parameter within the model and on what shape one assumes for the

current sheets, either hyperbolic-tangent shaped or sine shaped (Boldyrev

and Loureiro, 2017). Whatever the details, the spectrum becomes steeper

and the alignment increases at smaller scales.

Numerical studies of MHD turbulence have previously been used to

identify the properties associated with inertial range of DA turbulence (e.g.,

Perez and Boldyrev, 2010a; Mason et al., 2012; Perez et al., 2014b) However,

the Lundquist number necessary to observe this tearing-mediated regime is

roughly SL � 107, which is currently prohibitive for fully three-dimensional

computations. Two-dimensional setups provide the best hope at this point

for testing this theory. Our work on this problem (Walker et al., 2018)—

presented in an extended form in this thesis—and that of Dong et al. (2018)

both reported results that displayed some of the characteristics predicted by

the theory. These included the measuring power laws with spectral indices

close to theoretical predictions, as well qualitative features such as extended

current sheet structures with plasmoid chains.

Finally, let us note that in this thesis we may at times use the terminology

“standard MHD turbulence” to refer to the well-studied setup comprising

incompressible MHD with strong guide field (B0), randomly forced such that

B0/Brms ≥ 5 and vrms ∼ Brms ∼ vA. This setup produces strong turbulence

exhibiting the characteristics of the DA theory and will be the benchmark

to which other systems are compared.
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1.4 Shearing Box

Parts of this dissertation will be concerned with the numerical simulation

of local accretion disk turbulence as described by MHD and the so-called

“shearing-box” approximation. This approximation allows the local properties

of turbulence in the mid-plane of the disk to be studied while neglecting

large-scale effects such as stratification and stream-line curvature (Goldreich

and Lynden-Bell, 1965; Hawley et al., 1995; Umurhan and Regev, 2004;

Fromang et al., 2007; Longaretti and Lesur, 2010; Lesur and Longaretti, 2011;

Riols et al., 2015). The dynamics studied in the shearing box are therefore

not only applicable to accretion disks but also to other astrophysical and

laboratory systems possessing rotating, shearing flows (e.g., Kagan and

Wheeler, 2014; Petitdemange et al., 2008; Ji and Balbus, 2013).

A summary of this model will be given, along with references to deriva-

tions in the literature. First we will summarize the results, and then we will

derive them in later sections.

One expands linearly in the ratio of box width ∆ to fiducial radius ro

of a point in the disk to construct a small box rotating with the flow. By

keeping only linear terms in ∆/r0, curvature is ignored, and the Cartesian

coordinates of the this box correspond to global coordinates by

r̂ → x̂, φ̂→ ŷ, ẑ → ẑ. (1.19)

A system of equations is obtained for deviations v from a steady background

flow

Dtv = −v · ∇v − 1

%
∇P +B · ∇B + ν∇2v − 2Ω0 × v + qΩ0vxŷ, (1.20)

DtB =∇× (v ×B) + η∇2B − qΩ0Bxŷ, (1.21)

∇ · v = 0, (1.22)

∇ ·B = 0, (1.23)
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where Dt ≡ ∂t−qΩ0x∂y is the modified time derivative due to the background

flow, Ω0 = Ω0ẑ = Ω(r0)ẑ is the angular velocity at the fiducial radius, and

q is the shearing rate (equal to 3/2 in Keplerian disks).

The shearing rate is defined by the parameter

q ≡ −
(

d ln Ω(r)

d ln r

)
r0

=
2A

Ω0

, (1.24)

where A is the Oort constant, and Ω0 = ΩK(r0) is the Keplerian angular

velocity at r0.

Derivation of shearing box equations

We start from the MHD equations for a Cartesian box in a Keplerian orbit,

∂u

∂t
+ u · ∇u = −1

%
∇P +B · ∇B + ν∇2u− 2Ω0 × u+ 2qΩ2

0xx̂, (1.25)

∂B

∂t
+ u · ∇B −B · ∇u = η∇2B, (1.26)

notating that the last two terms of equation 1.25 are the Coriolis and

centrifugal terms, respectively. These appear because the box represents a

non-inertial, rotating frame. Identifying that a steady solution w = −qΩ0xŷ

exists, we make the substitution u = w+ v = −qΩ0xŷ+ v to get equations

1.20 and 1.21. To eliminate the explicit spatial dependence, we transform to

shearing coordinates defined by:

t′ = t, X = x, Y = y − qΩ0xt, z = z, (1.27)

∂

∂t
=

∂

∂t′
− qΩX ∂

∂Y
,

∂

∂x
=

∂

∂X
− qΩt′ ∂

∂Y
,

∂

∂y
=

∂

∂Y
,

∂

∂z
=

∂

∂Z
.

(1.28)

and make the identification ∇′ − qΩt ∂
∂Y
x̂→ ∇(t). This produces a set of

equations that is equivalent to incompressible MHD with Coriolis and shear,
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with a time-dependent gradient,

∂u

∂t′
+ u · ∇′u− St′uX

∂

∂Y
u = −1

%
(∇′ − St′ ∂

∂Y
)P (1.29)

+B · ∇′B + ν∇′2u− 2Ω0 × u− SuX ŷ, (1.30)

∂B

∂t′
+ u · ∇′B −B · ∇′u = η∇′2B, (1.31)

where S = −qΩ0.

In this shearing frame, the coordinates (X, Y, Z) are periodic, but now

the derivatives are time-dependent. We would like to remove the terms that

explicitly depend on time. Because all field are now periodic in the (X, Y, Z)

frame, one can simply express each through a Fourier expansion in the new

phase space k′ = (kX , kY , kZ). For example, the scalar variable ξ would

have the expansion

ξ(X) =
∑
k′

ξk′eik
′·X , (1.32a)

=
∑
k(t)

ξk(t)e
ik(t)·x. (1.32b)

This relation implicitly defines the time-dependent wavevectors,

kx(t) = kX − qΩtkY , (1.33a)

ky = kY , (1.33b)

kz = kZ . (1.33c)

The key step to removing the time-dependent terms from Eq. 1.30 is

to use the expansions in Eq.1.33. There are two equivalant ways of doing

this. The first is to use Eq. 1.32a directly and then collect the terms

kx(t) = kX − StkY . The second is to use Eq. 1.32b, which is an expansion

with respect to the unsheared coordinates and formally transform back to

the unsheared coordinates by the substitution ∇′ − St′ ∂
∂Y
x̂→ ∇.
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A consequence of this representation is that any mode of a field with

nonzero ky will gradually shift in kx due to the shear. If continued indefinitely,

large-scale structures will be sheared until they reach the dissipation scale.

Instead, a remapping procedure is applied that periodically remaps the fields

in order to continue resolving these structures.

Remapping procedure

In order to continue resolving large-scale structures that would be sheared

away due to finite resolution, a periodic remapping of the fields is performed.

Let us explain this procedure and its rationale.6

Consider a structure concentrated in phase space of the non-shearing co-

ordinates (x, y) around some mode (kx, ky) = (l,m) at t0. We can transform

to the shearing frame ξ(x, y, t)→ ξ(X, Y, T ), where T = t− t0 is the time

in the shearing frame the reference time t0. This transformation results in

the relation

ξ(x, y, t) = ξl,me
ilx+imy = ξl,me

i(l−STm)X+imY = ξ(X, Y, T ). (1.34)

At T = 0, the amplitude ξl,m corresponds to the same mode in either frame.

In the shearing frame, at some later time T , the energy has been transferred

to a mode (kX , kY ) = (l − STm,m). We see that this wavenumber grows

without bound as T .

For a given resolution Nx, the maximum wavenumber that can be repre-

sented is kmax = Nx/2− 1. Therefore, a mode (k0,m) can be resolved for

maximum time of

Tres =
kmax

S|m|
+

l

Sm
. (1.35)

In other words, information will be permanently lost due to the shearing

coordinates after a time Tres.

6See also Umurhan and Regev (2004) for a detailed explanation.
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This can be prevented by noting that after a remap time Trm in the

sheared frame, we can map back to the unsheared frame by the inverse

transformation of Eq. 1.34

ξ(X, Y, Trm)→ ξ(x, y, t0 + Trm). (1.36)

That is the information that was initially in (l,m) has been remapped to

that position. Now, we reset the refrence time t0 → t0 + Trm = t′0, reset

T = t− t′0 and map back

ξ(x, y, t′0)→ ξ(X, Y, T ). (1.37)

The choice of this remap time is arbitrary, but there is natural choice

in choosing the time when the box is exactly periodic with respect to the

non-sheared coordinates, that is

Trm =

∣∣∣∣ LySLx

∣∣∣∣ (1.38)

For a well-resolved simulation, high m modes are sitting in the dissipation

range anyway, or in the anti-aliasing cutoff regime. The primary is concern

is how to continue resolving modes at the largest scales (low l0). This choice

of remap time does that.

Domain of applicability

The shearing-box approximation is local in nature. By using periodic

boundary conditions, one is assuming that the domain is not interacting

with any nearby elements of the disk. Obviously, this will only hold for

short time and length scales. The units of time, length, and velocity are the

inverse angular frequency τ = Ω−1
0 , box size L, and orbit velocity v0 = LΩ0,

respectively. This means that the crossing time of the box is the box width
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divided by typical radial (x) velocity vx,rms, L/vx,rms ∼ τ . Based upon

this, one might say that using the shearing-box for times longer than τ is

unphysical because the box would have interacted with its environment after

this amount of time. However, for steady-state runs where averages are taken

over the course of a long simulation, one is not simulating the long-time

behavior of the turbulence. One is gathering data for statistical analysis

of the short-time behavior of turbulence in such a system. It is useful to

think of the steady-state shearing-box simulations of disk turbulence as an

ensemble of different instances of local, MRI-generated turbulence.

Conservation laws

It is instructive to compare the conservation laws of Equations (1.8)-(1.9),

with those of MHD. In non-rotating systems, the incompressible MHD

equations conserve the quadratic integrals of energy, cross helicity, and

magnetic helicity if external energy supply and energy dissipation are absent

(e.g., Biskamp, 2003; Tobias et al., 2013). In the shearing-box model, energy

is supplied to the system by the instability and through the turbulent

Reynolds and Maxwell stresses. This energy is sourced from the background

shear and, in disks, ultimately from gravity. From Eqs. 1.20 and 1.21 one

then derives for the energy Eq. 2.3

d

dt

〈
v2

2
+
B2

2

〉
= q〈vxvy −BxBy〉 − ν〈ω2〉 − η〈j2〉, (1.39)

where the angular brackets denote a spatial average over the domain. The

conservation law of cross helicity has to be modified in the shearing box as

d

dt
〈v ·B〉 = (q − 2)〈Ω0 ·A〉 − (ν + η)〈ω · j〉, (1.40)
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while the conservation law for magnetic helicity remains unchanged:

d

dt
〈B ·A〉 = −2η〈j2〉. (1.41)

In these equations we introduce the vorticity ω = ∇ × v, the current

density j = ∇ × B, and the vector potential A, where B = ∇ × vecA.

In the presence of the magnetorotational instability and in the absence of

dissipation, the energy grows while the cross helicity and magnetic helicity

do not. Note, the cross helicity becomes gauge-dependent, like the magnetic

helicity.

1.5 Numerical method

Snoopy

All of the computational results presented in this thesis were produced by

the publicly available code snoopy written by Geoffroy Lesur (Lesur and

Longaretti, 2007). It uses a pseudospectral method to represent functions

on a Cartesian grid using a Fourier basis in two or three dimensions. Time

integration is performed by a low-storage third-order Runga-Kutta scheme,

and dissipation terms are handled implicitly. By default, fields are fully

dealiased using the “3/2-rule”(Canuto et al., 2006). Transforms are handled

by the fftw3 library (Frigo and Johnson, 2005), and parallelization is

achieved using the Message Passing Interface (MPI) and OpenMP standards.

snoopy solves the compressible MHD equations with additional effects

included modularly, such as rotation, shear, and Hall effect. In particular,

the code implements the shearing-box model by solving equations in the

shearing frame. As discussed in Umurhan and Regev (2004), the flow needs

to be periodically remapped inside the shearing box in order to prevent large-

scale structures from being sheared to such small wavenumbers that they

are no longer effectively resolved. snoopy carefully performs this remap

http://fftw.org/
https://www.mpi-forum.org/
https://www.openmp.org/
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procedure so that minimal energy is lost when the flow is fully resolved. In

other words, zeroed wavenumbers are deep in the dissipation range.

The work of this thesis employs incompressible MHD, with and without

several of the effects listed above. Each specific section will note which

equations are being solved, in how many dimensions, etc. Note, both velocity

and magnetic field are represented in velocity units.

1.6 Thesis outline

The remainder of the thesis is organized as follows. Chapter 2 will present

our work on turbulence driven by the linear MRI in the case where a net,

magnetic flux is present in the system. Chapter 3 contains the analysis

of our computational results on zero-net-flux shearing-box simulations of

the MRI dynamo. Chapter 4 examines results of our model of simulating

tearing-mediated turbulence through the use of a two-dimensional, critically

balanced eddy. Finally, Chapter 5 will summarize the results and discuss

potential future research avenues.
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2 mri-driven turbulence: net flux

Prior numerical studies of the shearing-box model revealed nontrivial prop-

erties of the resulting magnetic turbulence. In the case of zero net magnetic

flux through the system, it was found that turbulence was sustained for

magnetic Prandtl numbers exceeding unity, while it was observed to eventu-

ally decay for smaller values (Fromang et al., 2007; Balbus and Henri, 2008;

Riols et al., 2013, 2015). Larger Reynolds numbers seem to facilitate the

MRI dynamo action by lowering the Prandtl number threshold, however,

present numerical limitations do not allow one to establish whether this

dependence persists at asymptotically large Reynolds numbers. In the case

of nonzero net magnetic flux, it was found that the steady state is eventually

reached that depends on the value of the flux and also on the magnetic

Prandtl number (Longaretti and Lesur, 2010).

In order to understand the behavior exhibited by numerical simulations,

it is instructive to understand the properties of the magnetic turbulence

that develops in the system. This the goal of the present chapter, which

presents in an extended form the results of Walker et al. (2016). It was mo-

tivated by several puzzling results obtained in previous works. In particular,

previous studies did not find a power-law scaling of the energy spectrum

of magnetorotational turbulence (Lesur and Longaretti, 2011). It remained

unknown whether such a system develops a turbulent cascade similar to

that found in forced MHD turbulence (e.g., Perez et al., 2012; Mason et al.,

2012), and whether there is any universality among the turbulent states

corresponding to different parameter regimes.

As discussed in Section 1.3, MHD turbulence is characterized by highly

anisotropic eddies at scales λ much smaller than the driving scale L. The

anisotropy is three-dimensional. One dimension l (length) is along the guide

field, whether that be a strong constant field or some large scale field that

appears locally constant. The other two dimensions λ, ξ (thickness and
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width, respectively) are in a plane perpendicular to the guide field. For a

fully developed turbulent flow comprising many eddies, the distribution of

these fluctuations is isotropic in the perpendicular plane; that is, there is no

preferred direction. Therefore, one typically considers the energy spectrum

of strong, driven MHD turbulence as a function of parallel and perpendicular

wavenumbers, i.e. E = E(k‖, k⊥). When you have a system that has three

distinct directions at all scales, reflected in the shear and Coriolis terms, it

is not a priori clear that the turbulence that develops will have the same

characteristics as it would without these effects.

We have found that in the cases when a steady or quasi-steady turbulent

field is observed, it develops two distinct components. The first component

consists of strong magnetic fluctuations, almost in the direction of the shear.

The spectrum of this component declines as k−2; therefore, this component

is concentrated at large scales. The remainder of the fluctuations comprise

the second, small-scale component that exhibits a turbulent cascade with the

shallower spectrum of −3/2, similar to that of standard MHD turbulence.

The large-scale component of the turbulence plays the role of the guide

field for the small-scale component. We observe that the intensity of the

resulting turbulence depends on the net magnetic flux. However, there is

remarkable universality among all the observed turbulent regimes—the level

of turbulence and its outer scale are adjusted in such a way as to ensure

that the rate of non-linear interaction is proportional to the shear rate of

the background flow.

In this chapter we will present results from shearing-box simulations of

MRI-driven turbulence, compare them with those from standard MHD turbu-

lence and DA theory, and present a phenomenological picture that explains

the observations. Section 2.1 will describe the setup used. Section 2.2 will

present the numerical results. Section 2.3 will propose a phenomenological

picture. Finally, Section 2.4 will provide conclusions and a discussion.
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2.1 Methodology

We use the shearing-box approximation as described in Section 1.4, with the

parameters Ω0 = 1, q = 3/2, % = 1, for the rotation rate, shear, and density,

respectively. The variables are non-dimensionalized using the inverse of the

rotation rate of the disk t0 = Ω−1
0 as the unit of time, the box height Lz as

the unit of length, Ω0Lz as the unit of velocity. The magnetic field B will

be expressed in velocity units. We will consider systems with an imposed

uniform field B0 = B0ẑ, and define the fluctuating part of the magnetic

field b according to B = B0 + b.

The relevant dimensionless quantities are the Reynolds number Re =

Ω0L
2
z/ν, the magnetic Reynolds number Rm = Ω0L

2
z/η, the Elsasser number

Λη = B2
0/Ω0η, and the parameter β = Ω2

0L
2
z/B

2
0 , which measures the strength

of the imposed magnetic field and mimics the plasma β in vertically stratified

disks. The Reynolds numbers are chosen to be equal so that the magnetic

Prandtl number Pm = ν/η is unity. We also introduce the dimensionless

transport coefficient

α ≡ 〈vxvy − bxby〉/Ω2
0L

2
z, (2.1)

and the energy injection rate

α̃ ≡ q〈vxvy − bxby〉, (2.2)

where 〈·〉 denotes an average performed over the entire volume. From Eqs.

1.20 and 1.21, the energy balance equation has the form (Longaretti and

Lesur, 2010):

d

dt

〈
v2

2
+
b2

2

〉
= −ν

〈
(∇× v)2

〉
− η
〈
(∇× b)2

〉
+ α̃. (2.3)

In this work, we consider the simulation box with dimensions (Lx, Ly, Lz) =
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(2, 4, 1)1 and numerical resolution of Nx × Ny × Nz = 1024 × 1024 × 512.

All cases have a kinematic viscosity ν = 1/45000 such that the nominal

Reynolds number is Re = 45000. Each setup is then evolved over approxi-

mately 50t0 to achieve a steady state from which to calculate averages of

various quantities. We will consider three steady-state net-flux cases and

one zero-net-flux case. The latter will be discussed more in Chapter 3, but

it will be illustrative to consider this setup when understanding the level of

saturation and outer scale of the turbulence in the net-flux setups.

Case I has a mean field of B0 = 0.03, corresponding to β ≈ 1100. The

initial conditions are large-scale random fluctuations in both v and B. Case

I is this steady state after the initial growth period, with averages performed

over the final approximately 50t0.

Case II is another steady-state case that has a weaker mean field of B0 =

0.010 and used a snapshot of Case I as its initial condition. After the steady

state was reached, averages were performed over the final approximately

20t0.

Case III corresponds to a very weak net flux of B0 = 0.005. To initiate

this run, the a magnetic field was added to the simulations of our zero-net-

flux setup—Case IV below—such that Λη ≈ 1. This was so that the linear

MRI, which is quenched at high wavenumbers for Λη < 1, would be excited

with a minimal injection of energy. We observe that the turbulence reaches

a new, lower-energy steady state in this case. Averages were performed over

the final approximately 100t0.

Case IV is a zero-net-flux case that used as its initial condition a snapshot

of Case I in which the mean field was manually zeroed. This initial condition

was chosen in order to kill the linear MRI but begin with a fully turbulent

state. We observe that in this case the energy declines very slowly, on the

1Bodo et al. (2008) showed that boxes with Lx > Lz will allow more “parasitic modes”
(secondary instabilities) that feed off of the primary MRI “channel mode” and control
saturation Therefore a box elongated in the radial direction will not include channel mode
solutions that saturate at unphysically high amplitudes. In Chapter 3, we will explore
the effects of changing the aspect ratio in the case of zero net flux.
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Case B0 nmax ncut nalias Λη

I 0.030 5.1 9 170 40.5
II 0.010 15.4 27 170 4.5
III 0.005 30.8 55 170 1.125

Table 2.1: Linearly unstable MRI modes for cases I, II, and III. Unstable
modes range from n = 1 to ncut, with the fastest growing (ideal) mode at
nmax, where n = kz

Lz

2π
. Due to dealiasing, the highest mode represented by

the grid is nalias.

time scale of about 100t0, consistent with the fact that the energy injection

and dissipation rates nearly balance each other (see Fig. 2.1). This suggests

that the role of the imposed field and the associated magnetorotational

instability in the steady-state Cases I-III is merely to compensate for the

very slight mismatch between the non-linear energy injection and dissipation

rates.

We note that each setup includes a range of linearly unstable MRI modes

near the fastest growing mode. While this is true for Cases II and III, the

growth rates are reduced and the maximal wavenumber is shifted because

of the small value of Λη (see Sec. 1.2). These properties of the linear MRI

for each setup are gathered in Table 2.1.

2.2 Results

In all turbulent states, the spectra of total energy do not display good

power-law scaling (see, e.g., Fig. 2.2). This is consistent with previous

studies (e.g., Fromang, 2010; Lesur and Longaretti, 2011), where it was also

found that while the total energy spectrum does not have good scaling, the

kinetic spectrum exhibits the scaling somewhat close to k−3/2.

We find, however, that a more informative analysis can be performed

if the field by is separated from the total energy spectrum. As seen in

Fig. 2.3, the energy in by is larger than in the rest of the fields; it is peaked
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Figure 2.1: Time history of Case IV showing energy E, energy injection rate
α̃, and energy dissipation rate ε.

at large scales and it rapidly declines with decreasing scale. Indeed, due to

the Ω-effect, fluctuations of magnetic field in a sheared flow become more

aligned with the shear, enhancing the strength of the field in the shear

direction (see Fig. 2.4). The energy spectrum of the by fields scales closely

to k−2 which is possibly related to the domain structure seen in Fig. 2.4,

with sharp boundaries between the domains where the direction of the field

reverses2.

The large-scale field by is also responsible for the energy supply through

the Maxwell stress 〈bxby〉. This stress dominates over the Reynolds stress

〈vxvy〉, while both are concentrated at large scales (see Figs. 2.5 and 2.6).

In the latter figure, we define the cumulative energy injection function as

C(k) =

∫∞
k
α̃(k)dk∫∞

1
α̃(k)dk

, (2.4)

2The Fourier spectrum of a step function goes as k−2.
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Figure 2.2: From Case I, energy spectra for the total energy, kinetic energy,
and magnetic energy, all compensated by k3/2.

which measures the fraction of energy contributed at wavenumbers greater

than or equal to k. Because the stresses are concentrated at the largest

scales, this allows for a separation of scales and possibility of an inertial

range, where the stresses are unimportant.

The field by plays the role of a background “guiding” field for the

remaining small-scale fluctuations, whose energy spectrum is close to k−3/2

in the interval k ≈ 4− 20. Indeed, this scaling is consistent with the inertial

range of large-scale, driven, steady-state, MHD turbulence3 (e.g., Maron and

Goldreich, 2001; Haugen et al., 2004; Müller and Grappin, 2005; Mininni

and Pouquet, 2007; Chen et al., 2011; Mason et al., 2006, 2008; Perez and

Boldyrev, 2010b; Perez et al., 2012; Chandran et al., 2015). This was found

in both the net-flux and zero-net-flux cases. The energy spectra are shown

in Figs. 2.3, 2.7, and 2.8, for Cases I, II, and III, respectively. Cases I and

3In the studies of driven MHD turbulence (e.g., Perez et al., 2012), one typically uses
the Reynolds number based on the velocity fluctuations. In our Case I, this would give
Rerms = vrms(Lz/2π)/ν ≈ 4000.
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Table 2.2: Steady-state cases I, II, and III, and decaying case IV. The last
two columns show best fits of the exponents of E(k)− 0.5 b2

y(k) ∝ k−ζ⊥ and

0.5 b2
y(k) ∝ k−ζ‖ over the range k ∈ [4, 20]. For Case IV, the spectra are

computed for t/t0 ∈ [20, 50].

Case B0 E α̃ ε/E ζ⊥ ζ‖
I 0.030 0.71 0.37 0.52 1.50± 0.03 1.95± 0.02
II 0.010 0.41 0.22 0.54 1.51± 0.03 1.96± 0.03
III 0.005 0.072 0.039 0.54 1.13± 0.08 1.45± 0.12
IV 0.0 - - 0.54 1.48± 0.04 1.95± 0.04

II are very similar, while Case III had much less energy and, therefore, no

discernible inertial range. See Table 2.2. This suggests that the observed

spectral behavior is independent of a net flux or of the overall level of

turbulence, and that, instead, it is an inherent property of the shearing,

rotating flow.

Further insight in the MRI-driven turbulence can be gained from Case IV,
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k
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Figure 2.3: From Case I, energy spectra for the total energy, total without
by, and by, all compensated by k3/2.
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Figure 2.4: Snapshot during Case I of by, showing elongation of structures
in y direction and regions of strong, counter-aligned by field.
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Figure 2.5: The Reynolds and Maxwell stresses at wavenumber k, from
Case I.
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Figure 2.6: The cumulative energy injection rate at wavenumbers ≥ k. Over
70% of the energy supplied comes from wavenumbers k < 4.

where no magnetic flux is imposed, and, in our case of Pm = 1, turbulence

intensity declines, even if initiated at a high level. The decline is, however,

very slow, on the order of 100t0; so the system is observed to go through

a sequence of quasi-steady states. In these states, as seen in Fig. 2.1, the

energy injection rate α̃ nearly balances the rate of energy dissipation ε,

and, therefore, the rate of energy cascade due to turbulence. The scaling

of the turbulence energy spectrum does not noticeably change during this

evolution, while both the turbulent energy E and the energy injection rate α̃

slowly decay with time. An interesting property of such evolution is that

the ratios ε/E and α̃/ε remain nearly constant, as seen in Fig. 2.1 and in

Table 2.2. This indicates that the energy cascade time at the outer scale of

turbulence is the same for all the observed quasi-steady states.

A similar behavior is observed in the steady-state, MRI-driven cases,

which we now analyze in greater detail. We compare the three steady-state

cases I-III, whose parameters and results are summarized in Table 2.2.
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Similarly to the decaying case, we observe that while energy, dissipation

and injection rates all change with the the imposed flux, the ratios ε/E and

α̃/ε remain constant. For a quantitative analysis of this phenomenon, in

Fig. 2.9 we plot the auto-correlation function of the fluctuations R(x) =

〈v(r + xx̂) · v(r) + b(r + xx̂) · b(r)〉. The width of the auto-correlation

function gives the typical scale (i.e., the outer scale) of the fluctuations,

while its amplitude R0 = 〈v2〉+ 〈b2〉4 gives their typical strength.

We observe from the lower panel of Fig. 2.9 that the auto-correlation

functions become remarkably similar if their spatial scales are renormalized

by Rςx
0 . The best fit is given by ςx ≈ 0.43, which is close to the value ςx = 0.5

expected for the constant non-linear interaction rate of large-scale turbulent

fluctuations. Indeed, a simple phenomenological consideration estimates

this rate as v0/λ0, where v0 = R
1/2
0 is the intensity of fluctuations. A slight

4〈·〉 here and in the definition of R(x) indicates a spatial average over each snapshot
and an additional average over several snapshots.

10−1

100

1 10 100

k−3/2

k−5/3

k−2

k
3
/
2
E

k L
2π

E

E − Eby
Eby

Figure 2.7: From Case II, energy spectra for the total energy, total without
by, and by, all compensated by k3/2.
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discrepancy between the two scalings may be related to the limited Reynolds

numbers currently available to our analysis. For larger Reynolds numbers,

we expect the form of the renormalized correlation function to be largely

independent of Reynolds number.

2.3 Phenomenology

We propose the following phenomenological explanation for this observation.

Under the sole action of the orbital shear in equations (1.20, 1.21) the

energy is supplied to the system and transferred in the direction of large

wavenumbers. From Eq. 1.33, we see that the long time behavior is k(t) ∼ t.

Under the sole action of non-linear interaction the energy is removed from

all the scales by a turbulent cascade, lowering the energy at the peak

wavenumber. See Fig. 2.10. The rate of non-linear interaction increases with

the wavenumber while the orbital-shear rate remains constant. Therefore, the
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Figure 2.8: From Case III, energy spectra for the total energy, total without
by, and by, all compensated by k3/2.
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Figure 2.9: Upper panel: correlation functions for steady-state Cases I,
II and III, each scaled to its respective maximum. Lower panel: the x-axis is
rescaled by Rςx

0 , where ςx ≈ 0.43 minimizes the distance between the curves.
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Figure 2.10: Left: Under the sole action of the shear, the energy spectrum
is shifted toward higher wavenumbers. Right: Without constant energy
injection, the turbulent cascade transfers energy to smaller scales where it
is removed from the system by viscous and resistive dissipation.

orbital shear dominates at small k, while the non-linear interaction dominates

at large k. At small wavenumbers where the orbital shear dominates, the

energy is shifted in the phase space toward large k. This shift continues

until the wavenumbers are reached where the rate of non-linear interaction

competes with the orbital-shear rate and the energy is removed from large

scales by a turbulent cascade. Therefore the scale λ0 where the orbital shear

is comparable to the rate of non-linear interaction,

v0

λ0

∼ r
dΩ

dr
, (2.5)

becomes the outer scale of the resulting turbulence. See Fig. 2.11.

log E

log k

t

1/�0

Figure 2.11: Linear shear and non-linear advection compete to set the
outer scale λ0 at the point where S−1 ∼ λ−1

0 v0, where the shear rate
S = −qΩ0 = r d Ω

d r
|Ω=Ω0 .
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This condition constrains possible turbulent states in the shearing box.

According to our consideration, the particular state may depend on the

parameters of the system, such as the net magnetic flux. As we see in

Table 2.2, however, all such states satisfy the constraint formulated above .5

2.4 Conclusions

The shearing-box model provides a simplified but highly nontrivial descrip-

tion of local turbulence in shearing, rotating flows. The mathematical

properties of MRI-driven turbulence of such a “minimal” model are not fully

understood. Although a rigorous mathematical description of shearing-box

turbulence is not currently available, we have proposed a phenomenological

picture of MRI-driven turbulence. We have shown that, first, the spectrum

of MRI turbulence is independent of the mean field and may be understood

in the framework of standard driven MHD turbulence Second, the outer

scale of MRI turbulence adjusts so that the turnover time is a constant

fraction of the large scale shear. We believe that these invariant features will

be the founding principles of a future predictive model for MRI turbulence.

5It may seem that more detailed study of this phenomenology could be performed
by varying the orbital shearing rate. We note, however, that varying the shearing rate
alone, without changing other dimensionless parameters of the system, is a nontrivial
task. Changing the shearing rate would imply changing the Rossby number (ratio of
shear to rotation) which in turn would change the intensity of the resulting turbulence
(e.g., Pessah and Chan, 2008).
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3 mri-driven turbulence: zero net flux

In this chapter, we concentrate on the case when the net magnetic flux

through any cross-section of the box is zero. In this zero-net-flux case, a

linear instability is not possible, but the flow may become unstable for

a finite initial perturbation (subcritical instability) (Balbus and Hawley,

1992; Rincon et al., 2007; Lesur and Ogilvie, 2008; Herault et al., 2011;

Riols et al., 2013; Squire and Bhattacharjee, 2014; Riols et al., 2016). It

is not well understood under which conditions the turbulence within this

system is self-sustained and driven by some reinforced subcritical instability,

with different physical parameters (e.g. Pm) and simulation parameters (e.g.

aspect ratio, viscosity) leading to different results (e.g., Lesur and Longaretti,

2007; Fromang and Papaloizou, 2007; Fromang et al., 2007; Nauman and

Pessah, 2016).

Net-flux simulations we discussed in Chapter 2 concentrated on the case

of unit magnetic Prandtl number and used a “short” shearing box (Lz < Lx),

following the prescription of Bodo et al. (2008). A similar zero-net-flux

setup was evolved for a long time (case IV in that chapter). We did not

find dynamo action1 for a magnetic Reynolds numbers several times larger

than those required for the dynamo action in a non-shearing, non-rotating

box. This observation cast doubt on the existence of MRI dynamo action

for Pm ≤ 1, in a stark contrast with the non-shearing, non-rotating case

where the dynamo action is expected to exist for any given Pm as long as

the magnetic Reynolds number is large enough (e.g., Boldyrev and Cattaneo,

2004; Boldyrev et al., 2005; Iskakov et al., 2007; Malyshkin and Boldyrev,

2010). A different outcome of the shearing-box dynamo simulations was,

however, reported in (Shi et al., 2016; Nauman and Pessah, 2016) who used

the “tall” shearing boxes (Lz > Lx), that is, boxes that vertical sizes exceed

1We use the term “dynamo action” to refer to the self-sustained turbulence that
results from the subcritical MRI instability that, in turn, reinforces the magnetic field.
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the radial sizes. Quite interestingly, they observed that the critical Prandtl

number for dynamo action is reduced as long as Lz/Lx & 2.5.

In order to understand the different outcomes of these studies, we have

performed a series of direct numerical simulations of incompressible MHD

for varying aspect ratios of the zero-net-flux shearing box. We found that,

in agreement with (Shi et al., 2016) and (Nauman and Pessah, 2016), the

dynamo action is sensitive to the aspect ratio of the box. In our case of

Pm = 1, tall boxes rapidly exhibit dynamo action. To explain these results

we propose that the turbulent eddies caused by the dynamo, efficiently fold

the magnetic field lines in the radial (x) direction. As a consequence, in the

short box the x-scale of the generated By component of the magnetic field

is always comparable to the scale of the turbulent eddies. In contrast, in the

tall box the flux of By can spread in the vertical direction over the distances

exceeding the scales of the turbulent eddies, which are constrained by the

short x dimension of the box. The vertical mixing of the By field is thus

suppressed in tall boxes. As a result, different vertical sections of the tall

box are permeated by large-scale nonzero fluxes of the azimuthal field By,

leading to the instability.

The similarity and the universality of behavior of small scales in MRI

turbulence and in driven MHD turbulence lend support to the suggestion

in (Fromang et al., 2007) that the higher Rm-number threshold for the

dynamo action observed in the low Pm-number, magnetorotational case

may be related to the similar effect observed in driven, isotropic turbulence.

Analytic consideration (e.g., Boldyrev and Cattaneo, 2004; Malyshkin and

Boldyrev, 2010) and numerical simulations (e.g., Iskakov et al., 2007) suggest

that the turbulent magnetic dynamo action has a higher-threshold magnetic

Reynolds number in low-Prandtl-number systems. While in the case of

magnetohydrodynamic turbulence the Rm-threshold value saturates as Pm

decreases (e.g., Kraichnan and Nagarajan, 1967; Vainshtein and Kichatinov,

1986; Boldyrev and Cattaneo, 2004; Malyshkin and Boldyrev, 2010), it



41

remains to be seen whether a similar behavior holds in the magnetorotational

case.

Early results from our simulation of turbulent system indicated that the

MRI dynamo was nonexistent for Rm = 45 000. This Reynolds number

is about 8 times larger than the critical Reynolds number required for

the dynamo action at Pm = 4 (Fromang et al., 2007). This indicates

that the MRI dynamo action at Pm ≤ 1, if possible at all, is much more

difficult to obtain than the magnetic dynamo action in isotropic, non-rotating

turbulence, for which the threshold at Pm� 1 is only about 3 times higher

compared to the threshold at Pm > 1 (Iskakov et al., 2007).

This phenomenological picture motivated us to review the results from

our previous work (Walker et al., 2016, case IV). In that work, we simulated

a short box with (Lx, Ly, Lz) = (2, 4, 1) and Rm = 45 000. The initial

large-scale fluctuations kept decaying for more than 200 shearing times.

During this decay, the scale of the turbulence kept decreasing as well, as

to maintain the balance between the linear and turbulent shear rates. For

the large Reynolds number that we used, the turbulence would decay to

progressively smaller scales. In this case, however, the scale of the turbulent

fluctuations should eventually become sufficiently smaller than the vertical

extent of the box Lz, so that according to our phenomenological picture, the

dynamo should become possible. To check this hypothesis, we significantly

extended the running time of simulations (Walker et al., 2016, case IV), and

after about 600 shearing times did observe the possible onset of the dynamo

action.

This may reconcile the available numerical results. Based on our findings,

we suggest that the dynamo action is always possible, no matter what the

aspect ratio of the box is. However, the short boxes require significantly

larger Reynolds number and (assuming large scale of the initial fluctuations)

significantly longer running time in order to observe the dynamo action. We

have also established that the dynamo action leads to a quite intermittent
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distribution of the azimuthal magnetic fluxes, in agreement with the proposed

phenomenological picture.

3.1 Methodology

We will again solve the equations of the shearing-box model 1.20–1.23 and

use numerical implementation of the snoopy code, as discussed in Section

1.5.

In our work, we consider three simulation boxes with the following dimen-

sions (Lx, Ly, Lz) ∈ {(1, 4, 4), (1, 4, 16), (2, 4, 1)}. The numerical resolution

in the first two cases is 128 points per unit length of Lx and Lz, and 64

points per unit length of Ly. In the third case, there are 512 points per unit

length of Lx and Lz, and 256 points per unit length of Ly. Thus, the first

and last cases have the same number of points in the vertical direction and

are comparable after rescaling the unit of length. The first two cases have a

viscosity of ν = 1/5000. The third case has a viscosity of ν = 1/45000. Cases

I and II were initialized with B0 = (0, 0, B0 cos(2πx/Lx)) and a large-scale,

white-noise velocity configuration, and then evolved until a steady state

is reached. Case III is the continuation of the zero-net-flux simulations

discussed in the previous chapter (case IV, there).

A summary of the cases studied is given in Table 3.1. Note that the energy

and transport parameter reported are volume densities of these quantities.

The turbulent transport parameter is defined as α = 〈vxvy − bxby〉/(Ω0L)2.

Viscous transport is reported in the table as αν = νS
ΩL

. The values shown in

the table are averages over some time intervals in the steady states (cases I,

II, and IIIb), and over a short time interval in the decaying case IIIa, where

the energy is approximately constant.

2These values are different than those reported in Walker and Boldyrev (2017)
because of normalization. In that article, all values of stress were normalized by α =
〈vxvy − bxby〉/(qΩ0Lz)

2. However, Cases I and II use the velocity unit LxΩ instead of
LzΩ. Thus a more appropriate normalization is α = 〈vxvy − bxby〉/(Ω0Lx)2 for Cases I



43

Case Lx × Ly × Lz ν−1 E α (×10−2) αν (×10−2)
I 1× 4× 4 5000 0.015 0.53 0.03
II 1× 4× 16 5000 0.15 4.7 0.03

IIIa (t = 222) 2× 4× 1 45000 0.017 0.28 0.003
IIIb (t > 800) 2× 4× 1 45000 0.0015 0.0037 0.003

Table 3.1: Setups examined in this study. The final case (III) is decaying
until t ≈ 600, and the numbers given for E and α are the values averaged
over short time intervals around the indicated times.2

In the analysis presented below, one-dimensional energy spectra are

computed from the three-dimensional Fourier components by summing over

the other two dimensions. For example, for a field f , the energy spectrum

E(f)kx is computed as

E(f)kx =
1

2

∑
ky ,kz

|fkx,ky ,kz |2, (3.1)

giving the total energy in f for all modes with a specific kx.

3.2 Results

Consistent with previous simulations (Nauman and Pessah, 2016), we find

that our boxes with the aspect ratio Lz/Lx ≥ 4 (cases I and II) are turbulent.

They rapidly reach a steady state and maintain it for the extent of the

simulation, while E and α fluctuate around a mean value. Case III, which

is a continuation of (Walker et al., 2016, case IV), exhibits very slowly

decaying turbulence until t ≈ 600, and appears to reach a steady state at

later times (see Fig. 3.1).

In an attempt to explain these results, we find it useful to study the

behavior of the azimuthal magnetic field by. As was noted in Chapter 2,

this field is concentrated at relatively large scales, and plays the role of the

and II and α = 〈vxvy − bxby〉/(Ω0Lz)
2 for Case III, as adopted here.
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Figure 3.1: Time history for case III, showing the kinetic energy Ev, magnetic
energy Eb, Reynolds stress αv ≡ 〈vxvy〉/(Ω0Lz)

2, and Maxwell stress αb ≡
〈−bxby〉/(Ω0Lz)

2.

guide field for the remaining fluctuations. We found, however, an important

difference in the distribution of this field in tall and short boxes. The net

flux of the by field is zero in the dynamo case. Given some significant initial

perturbation of the magnetic field, the flow is subject to a sub-critical,

transient growth, referred to as the “azimuthal MRI” (See Sec. 1.2). This

leads to stretching and folding of the magnetic field lines in the x–y plane

as the resulting flow distorts the magnetic field. The constant shearing

flow then increases the strength of the by field. An important observation,

however, is that the x-scale of the resulting folds of the by field is always

on the x-scale of the fluctuating velocity field. In the box extended in the

x-direction (case III), this means that both the by and the vx fields are still

concentrated at comparable scales. This is seen in the spectra shown in

Fig. 3.2.

The situation is qualitatively different in a box extended in the vertical
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Figure 3.2: Energy spectra for case IIIa in the x-direction (upper panel)
and z-direction (lower panel).
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direction (case II). It turns out that in this case the flux of by can spread

in the vertical direction over the scales much larger than the scales of the

velocity field. This is seen in Fig. 3.3, where the vz component of the velocity

field is concentrated at the scale comparable to the small horizontal box size

Lx, while the by magnetic field is concentrated at the larger scale Lz. The

structure of the by field is shown in Fig. 3.4, which also reveals separation of

the regions of positive and negative azimuthal magnetic flux in the vertical

direction. This is in contrast to Fig. 3.5 where by is more homogeneous,

due to large-scale turbulent mixing. Fig. 3.6 shows case I, an intermediate

between cases II and III.

Levels of transport

In contrast to the relatively consistent values reported in the literature

for the case with a net flux, transport within the zero-net-flux box vary

considerably with the parameters of simulation used. For example, Shi et al.

(2016) reported values of α ≈ 0.002 − −0.2. Here, we find that the taller

boxes exhibit higher levels of transport, as can be seen in Table 3.1. From

case I to case II, a quadrupling of the height of the box resulted in ten

times the value of transport. In the case of our short box, the transport

is only α = 3.7 × 10−5 and, in fact, is comparable with the viscous stress

αν = 3×10−5. This indicates that for a system with solutions restricted more

in the vertical direction than the radial direction (Lx > Lz) the turbulence

transports no more angular momentum than viscous stresses. Disk models

generally assume that turbulent stresses are orders of magnitude higher

than viscous stresses. Possible conclusions are that either the disks cannot

self-magnetize, since the magnetic fields generated are not enough to drive

disk-creation, or the incompressible, periodic shearing box is missing key

physics that lead to sustained turbulence with high levels of transport.

Another explanation is that the Reynolds numbers are not high enough to

distinguish between the outerscale and the viscous scale, that we have found
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Figure 3.3: Energy spectra for case II in the x-direction (upper panel) and
z-direction (lower panel).
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Figure 3.7: PDFs of flux Φy computed for each of the cases studied. Each
data set has been rescaled by the full width at half maximum Φ1/2.

a marginal state. Because a turbulent disk that has zero net flux will have

regions that contain a flux, this result demonstrates, at the very least, that

the regions without a flux will contribute negligibly to the overall transport.

In order to quantify this flux intermittency and to compare it with the

other cases, we subdivided y = const cross-sections of the simulation boxes

into small 1/16× 1/16 squares and calculated azimuthal magnetic fluxes for

each of these squares. We then plotted histograms of the obtained fluxes

Φy. The results are shown in Fig. 3.7. The flux intermittency is smallest

in case IIIa, larger in case I, and the largest in the tallest box of case II.

The increased flux intermittency implies more favorable conditions for the

dynamo action.

We are now in a position to answer why our case III did not exhibit

dynamo action until the turbulence decayed to very small amplitudes (see

Fig. 3.1). The matter is that when the energy of fluctuations declines, so

does the scale of the turbulence (see Fig. 3.5, upper panel). In our work
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(Walker et al., 2016) this is explained by the necessity to maintain the

balance between the linear and nonlinear shearing rates of the turbulence.

When the x-scale of the turbulence was relatively large compared to the

box size Lz, the dynamo did not operate strongly enough to self-sustain

turbulence. When the x-scale of the turbulence decreased to become smaller

than the Lz size of the box, in analogy with cases II and I, the dynamo action

became possible. Consistent with our discussion above, the intermittency of

the magnetic flux also increased in this regime (see Fig. 3.7).

Although the dynamo action seems to operate in case IIIb, we should

exercise caution in claiming that a true steady state is observed. As pointed

out in (Rempel et al., 2010) it may be possible in such a case that the

system is described by a super-transient state and may ultimately decay

if integrated long enough3. Also, unlike the other dynamo cases in this

study, IIIb has developed, in addition to the small-scale fluctuations, a

large-scale vy(x) zonal flow resulting from geostrophic balance (Johansen

et al., 2009) (see Fig. 3.8). Comparing the spectra of case III from early

times in Fig. 3.2 with those from late times in Fig. 3.9, we see that this

zonal flow is long-lived, or at least steadily reinforced. The possibility of

such a flow may be related to the long radial extent of the box. This flow,

however, is practically uncorrelated with the small-scale fluctuations; for

instance, it does not contribute to the transport coefficient αv in Fig. (3.1).

3.3 Conclusions

We have found in incompressible MHD simulations of the shearing box that

the properties of the zero-net-flux dynamo action depend intimately on the

relation between the scale of the turbulence and the vertical aspect ratio of

the box. For a given set of physical parameters, transport is sustained and

dynamo action rapidly sets in in systems with high Lz/Lx aspect ratio, while

3Although, with Rm = 45000, the expected lifetime is O(1032Ω).
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in the opposite case of small aspect ratio, dynamo action is not observed

until the scale of the turbulence significantly decreases. This is the despite

the size of the box being much greater than the dissipative scale of turbulence

in both cases.

Based on our results we suggest the following explanation for this phe-

nomenon. We propose that an inherent property of the shearing-box turbu-

lence is its tendency to build up local regions of nonzero by flux, separated

in the vertical direction z. This may be related to the fact that the con-

figurations b = (0, by(z), 0), v = (vx(z, t), vy(z, t), 0) are exact solutions of

the ideal equations (e.g., Goodman and Xu, 1994). Those sub-regions with

nonzero by fluxes are MRI-unstable. The resulting turbulent eddies, on the

other hand, are trying to mix and homogenize the by field. The size of the

turbulent eddies is always comparable to the size of the folds of the by field

in the x-direction. Indeed, such eddies are caused by the MRI instability

of the by field. In “short” boxes, the eddies caused by an initially unstable

large-scale perturbation have a typical length-scale larger than the vertical
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extent of the box, and they are able to effectively mix the field in that

direction, thus reducing the by fluxes and effectively reducing the rate of

the instability as compared to the rate of turbulent energy dissipation. The

resulting turbulence will therefore decay, until the scale of the turbulence

becomes smaller than the vertical size of the box, at which point the vertical

flux separation enhances the efficiency of the instability. In “tall” boxes, on

the other hand, the eddies are always smaller than the vertical extension of

the box. This allows oppositely-directed by fluxes to build up in vertically

separated regions, allowing the instability to win.

This poses a broader question to what extent the shearing-box results

describe the natural MRI turbulence. The shearing-box model suggests that

the scale of the MRI-dynamo-driven turbulence should be smaller than the

thickness of the disc and that the resulting transport coefficients are very

small. We, however, notice that the vertical limitations in real accretion disks

are never as severe as the periodic boundary conditions of the shearing-box

simulations. Allowing the flux of the by magnetic field to partially escape

the box in the vertical direction, for instance, will facilitate the dynamo

action rather than impede it. This indicates that the shearing-box model

with periodic boundary conditions may not allow one, at least at the present

level of understanding, to realistically simulate the scale and the transport

properties of the MRI-dynamo-driven turbulence at low magnetic Prandtl

numbers. What seems to be a robust feature of the MRI-dynamo-driven

turbulence, however, is its tendency to separate the regions of positive and

negative by fluxes, leading to highly intermittent azimuthal magnetic flux

patches. In a stratified disk, these magnetic flux tubes can then buoy above

the surface, forming an intermittently magnetized corona (e.g. Galeev et al.,

1979). Non-periodic large-scale conditions (e.g., stratification, flux escape,

etc.) need to be incorporated in the shearing-box model in order to provide

a more realistic description.
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4 influence of tearing instability on

magnetohydrodynamic turbulence

In the previous chapters, we were focused on turbulence driven by a constant

shear and instability at the outer scale. In this chapter, we will be interested

in the effect of magnetic shear and instabilities generated by the turbulent

cascade itself.

As discussed in Sec. 1.3, the dynamic-alignment theory of MHD tur-

bulence predicts as the scale decreases, increasingly anisotropic eddies are

produced. Alfvénic eddies become progressively more ribbon-like at smaller

scales, assuming the shape of current sheets. Given a very large Lundquist

number, the ribbon-like eddies in the inertial interval of MHD turbulence

may become affected by the tearing instability.

Carbone et al. (1990) first addressed this question in the framework of

the Iroshnikov-Kraichnan (IK) model of MHD turbulence (Iroshnikov, 1963;

Kraichnan, 1965). The tearing mode considered in Carbone et al. (1990) was

essentially isotropic, which fit an assumption of the IK model1that MHD

turbulence consists of isotropic (characterized by a single size) weakly inter-

acting Alfvén waves at each scale. Moreover, the tearing mode considered

in Carbone et al. (1990) required the presence of a significant velocity shear

tuned to the magnitude and scale of the magnetic field (Hoffman, 1975;

Dobrowolny et al., 1983; Einaudi and Rubini, 1986). The growth rate of

this mode depended on the velocity shear, and it reduced to the standard

Furth-Killeen-Rosenbluth (FKR) result Furth et al. (1963) as the velocity

shear decreased Einaudi and Rubini (1986).

Loureiro et al. (2007) considered, instead, highly anisotropic current

sheets of the kind found in models of reconnection. Apparently, these current

1The IK model has since been demonstrated to be incorrect, since weak MHD
turbulence has the energy spectrum −2, not −3/2 proposed in the IK model (e.g., Ng
and Bhattacharjee, 1996; Goldreich and Sridhar, 1997; Galtier et al., 2000).
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sheets are unstable to a tearing instability with a maximum growth rate that

scales as γ ∼ S1/4. An important consideration is that MHD turbulence, as

described by DA theory and observed numerically, will naturally produce

such anisotropic, current-sheet-like structures. The tearing rate of these

structures grows with the anisotropy and can eventually be comparable to

the eddy turnover time. Loureiro and Boldyrev (2017) and Mallet et al.

(2017a) proposed that MHD turbulence should rather be modified at small

scales by highly anisotropic tearing modes, which are beyond the FKR

regime.

It was estimated that such a regime becomes relevant if the Lundquist

number of turbulence becomes very large S & 106 (e.g., Boldyrev and

Loureiro, 2017).2 Due to this severe computational constraint, direct numer-

ical evidence in support of the tearing-mediated turbulence regime does not

exist. It has been observed previously that the tearing instability initiated in

a thin laminar current layer eventually leads to a broad range of non-linearly

interacting and seemingly turbulent fluctuations (Huang and Bhattacharjee,

2016; Hu et al., 2018). In those works, however, the reconnection layer did

not possess Alfvénic turbulence.

In this chapter, we present a method for studying anisotropic MHD

turbulence in the tearing-mediated interval with a two-dimensional setup

that models the transverse dynamics of a current sheet. Our method is

somewhat analogous to the reduced-MHD (RMHD) approach in simulations

of MHD turbulence (e.g., Kadomtsev and Pogutse, 1974; Strauss, 1976;

Biskamp, 2003; Tobias et al., 2013). The RMHD equations apply when the

simulation domain (a rectangular box) is permeated by a strong background

magnetic field B0, say in the z-direction. Assume that the rms values of

magnetic and velocity fluctuations are normalized to unity, vrms ∼ brms ∼ 1.

2We assume that at the outer scale the magnetic fluctuations are comparable to the
velocity fluctuations and to the background magnetic field. We also assume that the fluid
viscosity and magnetic diffusivity are on the same order, so the Lundquist, Reynolds, and
magnetic Reynolds numbers are on the same order as well.



58

For the turbulence to be critically balanced at the largest scale, one needs to

elongate the box in the z-direction proportionally to the value of B0. In the

case B0 � brms, the fluctuations of the z-components of the magnetic and

velocity fields can then be neglected, and the MHD system is approximated

by the reduced-MHD equations (see also (Oughton et al., 2017; Zhdankin

et al., 2017)).

The novelty of our approach is that instead of studying turbulence driven

at large scales, we study the evolution of a particular highly anisotropic eddy

that is expected to exist at scales much smaller than the outer scale of the

turbulence. For that we stretch the box in the x-direction as compared to

the y-direction, Lx � Ly. For the eddy to be critically balanced, we need

the following conditions at the box scale: Lz/B0 ∼ Lx/bx ∼ Ly/by, where

bx ∼ vx and by ∼ vy are typical fields in the x and y directions. The box-sized

eddies in such turbulence are effectively very anisotropic current sheets. It

is important to note that such eddies cannot be in a steady state; they are

destroyed by nonlinear interaction on their Alfvénic time scale τA ∼ Lx/bx.

During their lifetime, however, they tend to develop small-scale turbulence

inside them that, for a sufficiently large Reynolds number, should resemble

regular, although very anisotropic, MHD turbulence.

If we increase the resistivity, however, the large-scale magnetic fluctua-

tions will become subject to tearing instability (e.g., Furth et al., 1963; Coppi

et al., 1976; Loureiro et al., 2007). The analysis of (Boldyrev and Loureiro,

2017) shows that the fastest-growing tearing mode in such an eddy has the

growth rate γt ∼ (bx/Ly)S
−3/7, where the local, eddy-scale Lundquist num-

ber is defined as S = bxLy/η and the magnetic field is measured in Alfvénic

units.3 In order for the tearing rate to become comparable to the eddy

turnover rate γ ∼ 1/τA ∼ bx/Lx, we need to require S = Sc ∼ (Lx/Ly)
7/3.

Therefore, if we need to perform computations with a large Lundquist

3Here we use the fact that the reconnecting magnetic field in our numerical setup
has a sine profile. For a tanh-profile, the exponent 3/7 should be replaced by 1/2, which
does not qualitatively change the results.
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number S, we have to choose a very anisotropic box.

On the other hand, in order to reliably measure the scaling properties of

the turbulence, the Reynolds number should be large. The local Reynolds

number measuring the strength of the nonlinear interaction is defined as

Re = byLy/η. It is smaller than the Lundquist number. For critically

balanced fluctuations by ∼ bx(Ly/Lx), the Reynolds number corresponding

to Sc would thus be Rec ∼ (by/bx)Sc ∼ (Lx/Ly)
4/3. The Alfvénic evolution

time τA of such an eddy increases with the box elongation. If we assume

that in order to resolve the inertial interval we need at least Re ∼ 2000,

and Ny = 512 grid points in the shortest, Ly direction (see, e.g., (Perez

et al., 2012)), we encounter prohibitively strong limitations for the numerical

simulations, in both the number of grid points and the running time.

In an attempt to overcome these limitations, we use a simplified, two-

dimensional setup. Although two-dimensional MHD is different from its

three-dimensional counterpart, there are certain similarities between strong

turbulence in the two cases. As observed numerically (e.g., Politano et al.,

1998; Biskamp and Schwarz, 2001; Ng and Bhattacharjee, 2007; Wan et al.,

2013), two-dimensional turbulence tends to form sheet-like magnetic struc-

tures at small scales, and its energy spectrum is close to −3/2, similar to the

three-dimensional case. The eddy turnover rate should therefore scale in the

same way as in three-dimensional turbulence. We believe that this should

suffice for our study of the interplay of tearing and Alfvénic dynamics, at

least on a qualitative level.

4.1 Methodology

We solve the incompressible MHD equations in a two-dimensional anisotropic

periodic box with the pseudospectral code snoopy Lesur and Longaretti
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(2007). The equations are

∂tv = −(v · ∇)v −∇P +B · ∇B + ν∇2v + f , (4.1)

∂tB =∇× (v×B) + η∇2B, (4.2)

where v(x, y, t) is the velocity field, B(x, y, t) = b0 sin(2πy + φ)x̂+ b(x, y, t)

is the magnetic field, P is the pressure, and f(x, y, t) is the external force.

The magnetic field is measured in Alfvénic units. The large-scale magnetic

field b0 sin(2πy+φ)x̂ is not an exact solution of the resistive MHD equations,

therefore the kyLy/(2π) = ±1 components of the magnetic field can change

in time. We, however, update these particular components at each time

step to ensure that the amplitude b0 does not change. While this could be

achieved self-consistently through forcing these modes with dynamically-

tuned amplitudes, we find that our ad hoc method is very simple and

effective. For simplicity, we choose Pm = ν/η = 1. We normalize the

variables in such a way that Ly = 1, and b0 ≈ 1. The time is measured in

units of Ly/b0.

Currently, the exact dynamics of current sheet formation in MHD turbu-

lence is not well understood.4 The fluctuations inside our anisotropic eddy,

therefore, are excited from zero level by an eddy-scale driving force. The

amplitude of the anisotropic, solenoidal random force f(x, y, t) is chosen

to ensure vx ∼ vrms . b0; the box anisotropy requires fy ∼ fx(Ly/Lx). The

force is applied in Fourier space. We force the modes kxLx/(2π) = ±1,±2,

kyLy/(2π) = ±1,±2, with amplitudes drawn from a normal distribution and

refreshed independently on average every τf ∼ 1 (a time short compared to

the Alfvénic time of the eddy).

We simulate a strongly anisotropic eddy with dimensions Lx×Ly = 64×1.

Note that in isotropically driven MHD turbulence, such structures are

expected to exists at scales approximately 107 times smaller than the outer

4A mechanism of selective decay, related to the cross-helicity conservation may
however be at play (e.g., Tobias et al., 2013).



61

scale of turbulence. We choose the numerical resolution of Nx × Ny =

32768 × 512 grid points. As discussed above, in order for the tearing-

instability rate to match the eddy-turnover rate, the local Lundquist number,

defined as S = b0Ly/η, should satisfy S ∼ (Lx/Ly)
7/3 ∼ 14000, while

for S � 14000, the turbulence is expected to resemble standard MHD

turbulence (Boldyrev and Loureiro, 2017).

4.2 Results

We performed three simulations which differ only in the value of the

Lundquist number: S = 64000, 16000, and 4000. It is important to note

that if tearing were irrelevant the Lundquist number would not affect the

time it takes to disrupt the eddy.

Consider, first, the case of the largest Lundquist number S = 64000. As

seen in Fig. 4.1 (first panel), the anisotropic eddy is gradually destroyed by

growing fluctuations of the by and vy fields. The growth is slow, with a time

scale comparable to the Alfvénic time scale, τA ∼ 64. This time is shorter

than the tearing time estimated as τt ∼ (Ly/b0)S3/7 ∼ 115. It is, therefore,

expected that the tearing effects are not important, and indeed the spectrum

of the turbulence developing inside the eddy during the eddy evolution is

more consistent with that observed in Alfvénic turbulence (−3/2) (e.g.,

Maron and Goldreich, 2001; Haugen et al., 2004; Müller and Grappin, 2005;

Mininni and Pouquet, 2007; Chen et al., 2011; Mason et al., 2006, 2008;

Perez and Boldyrev, 2010b; Perez et al., 2012; Chandran et al., 2015; Perez

et al., 2014a) than with the prediction for the tearing-dominated turbulence

(−19/9), as is shown in Fig. 4.2. Typical current structures in this case are

shown in Fig. 4.3. Plasmoid-like structures are not very common. Even when

they appear, they do not have a chance to survive or grow to large scales.

This is consistent with the expectation that the shearing flows associated

with Alfvénic fluctuations tend to impede the tearing activity.
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Figure 4.1: Time history of energy components. Top panel: S = 64000,
middle: S = 16000, bottom: S = 4000. The fluctuating vy and by fields
are initially generated by the driving force at the level corresponding to
1/64 of their x-components. They grow due to nonlinear energy redistri-
bution and/or tearing instability until they reach the magnitude of the
x-components, at which point the anisotropic eddy is destroyed.
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Figure 4.2: Compensated energy spectrum for the setup with S = 64000,
shown at several instances of the eddy evolution. At the latest time interval
the eddy has been destroyed by the nonlinear interaction. The spectrum at
this stage is close to the spectrum of steady-state Alfvénic MHD turbulence.

The scaling of the alignment angle between the magnetic and velocity

fluctuations, defined as

θλ = sin−1

(
〈δvλ × δbλ〉
〈|δvλ||δbλ|〉

)
(4.3)

(see, e.g., (Mason et al., 2008) for more details), is also broadly consistent

with MHD turbulence, even though its overall magnitude changes during

the eddy evolution, as shown in Fig. 4.4.

The case of S = 4000 is shown in the bottom panel of Fig. 4.1. The

Lundquist number is small enough so that the tearing time, τt ∼ 35, is

shorter than the Alfvénic time. Therefore, we would expect the eddy to be

disrupted faster than in the top panel (S = 64000), due to the action of the

tearing instability. This observation is consistent with the conjecture (and
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the flow; when present they do not fully develop, due to Alfvénic shearing
flows.

may serve as proof of the principle) put forward in Loureiro and Boldyrev

(2017); Mallet et al. (2017a); Boldyrev and Loureiro (2017) that the tearing

instability can compete with the Alfvénic evolution of very anisotropic

eddies. The spectra and alignment angle do not display a power-law scaling

associated with the inertial range (see Figs. 4.5 and 4.6).

Finally, in the middle panel of Fig. 4.1 we show the case S = 16000

where the Alfvénic and tearing times are comparable. The energy evolution

is similar to that in the case of S = 64000, although the saturation of the

growing y-components seems to start at a slightly earlier time, in accordance

with the increasing importance of the tearing process. This case is especially

important for our consideration. The energy spectrum of the fluctuations is

shown in Fig. 4.7 for several different instances during the eddy evolution.
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Figure 4.4: Alignment angle as a function of the short coordinate y for the
setup S = 64000 averaged over different periods of the eddy’s evolution.

We observe that as the turbulence is developing inside the eddy, its spectrum

broadens in k-space and approaches a slope close to −19/9, consistent with

the prediction for the tearing-mediated turbulence (Boldyrev and Loureiro,

2017). In this case, the tearing instability has a better chance to compete

with the Alfvénic fluctuations. The more pronounced plasmoid-like current

structures observed in this case—see Fig. 4.8—strengthen this interpretation.

At the very late stages of the eddy evolution, when the anisotropic eddy is

destroyed, the spectrum of the resulting steady-state fluctuations seems to

be approaching the shallower −3/2 spectrum of regular MHD turbulence.

The alignment angle measured for the case of S = 16000 however shows

a difference with the predictions of (Boldyrev and Loureiro, 2017). Fig. 4.9

shows that the alignment angle does not increase at small scales, as predicted

in (Boldyrev and Loureiro, 2017). The reason for that is presently not clear.

It may be related to the principal differences between the 2D and 3D cases,

to the limited Reynolds number, or it may indicate that the assumption
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Figure 4.5: Compensated energy spectrum for setup S = 4000 for several
intermediate moments during the eddy evolution. An inertial range power
law is not observed, as this case has both a smaller Reyndolds number and
is dominated by the tearing mode.

of Alfvénization of tearing-mediated turbulence made in (Boldyrev and

Loureiro, 2017) is incorrect.

4.3 Conclusions

It has been proposed in (Loureiro and Boldyrev, 2017; Mallet et al., 2017a;

Boldyrev and Loureiro, 2017) that tearing instability can play a significant

role in the inertial interval of magnetic turbulence at small scales. Very

recently, detailed analytical and observational studies of this phenomenon

have been conducted (Mallet et al., 2017b; Loureiro and Boldyrev, 2017;

Comisso et al., 2018; Vech et al., 2018). In this work, we have presented

a numerical study of an interplay between non-linear Alfvénic interactions

and tearing instabilities in MHD turbulence. Our results indicate that the
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tearing instability can indeed modify the dynamics of highly anisotropic

turbulent eddies. In agreement with the analytic predictions, this process

can lead to a new regime of MHD turbulence at scales larger than the

dissipation scale.
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5 conclusion

This thesis explored the turbulence generated by magnetic instabilities

in systems with a large-scale shear. Specifically, we examined the local

turbulence produced as a result of the nonlinear saturation of the MRI

and the effect that the tearing instability has on strongly-sheared Alfvénic

eddies in the MHD cascade. By using large-scale numerical computations,

we characterized the turbulence in these systems and compared results with

phenomenological models. We were able to identify key features that either

validate current models or provide a basis for future models.

5.1 MRI-driven turbulence with a net

magnetic flux

We characterized the turbulence driven by the MRI and compared it with

both computations and theory of strong, driven (externally forced) MHD

turbulence. In contrast with the incompressible, resistive MHD equations in

a non-rotating, non-shearing frame, the shearing-box (SB) model includes

extra terms that a priori cannot be neglected in the analysis of the turbulence.

Particularly, a constant, linear shear term—a consequence of differential

rotation in the systems modeled by the SB equations—exists in both the

momentum and induction equations and is responsible for injecting energy

on a broad range of scales.

This work demonstrated that for a range of scales smaller than the

system size, this shear is, in fact, a minor source of the energy. The main

source of energy is the nonlinear transfer. Therefore, one can rely again

on phenomological arguments of scale-by-scale energy transfer. This was

validated by evidence of a power-law spectrum for the energy that was very

close to E(k) ∼ k−3/2.
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The shearing-box system sources energy from the shear stresses men-

tioned above as well as the unstable modes of the MRI. In order to determine

the outer scale of the turbulence, one cannot rely on a forcing scale. We

were able to identify the outer scale as that scale where the linear shear and

the turbulent shear are balanced, i.e.

λ0

v0

∼ r
d Ω

d r
. (5.1)

This outer scale adjusts itself with the imposed magnetic field strength such

that the turbulence at scales below this outer scale is self-similar.

These results all point toward the similarity of the inertial range dynamics

of the net-flux, MRI-driven shearing box with those of the DA theory,

allowing the reuse of much of what was understood previously.

5.2 MRI dynamo and self-sustained

turbulence

We investigated the conditions under which the dynamo effect present in

the zero-net-flux shearing box is strong enough to self sustain a turbulent

state with positive angular momentum transport. Unlike the case of forced

MHD, it was not estabilished that a turbulent dynamo would exist for any

magnetic Prandtl number as long as the Reynolds number were sufficiently

high. Work that we performed indicates that what is important is that

sufficiently anisotropic modes can exist and interact nonlinearly.

In numerical solutions without a net flux, we found that the transport

α depends significantly on the aspect ratio of the box. For “tall” shearing

boxes (Lz > Lx), the subcritical MRI dynamo more easily operates, and the

transport is increased. We proposed that this is because by constraining

the size of eddies to the radial extent of the box, turbulent mixing of the

azimuthal magnetic field is prevented. This allows the system to vertically
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separate large amounts of magentic flux, effectively creating smaller regions

of net flux, where the MRI can operate. In the case of “short” shearing

boxes (Lz < Lx), the eddy size is not constrained by the small radial

extent. Instead, the outer scale of the turbulence—as we determined in early

work—sets the relevant eddy size. We were able to support this explanation

with a numerical computation of a short box that exhibited self-sustained

turbulence on small scales.

5.3 Tearing mode competition with

Alfvénic dynamics

In an effort to study the deep inertial range of MHD turbulence, we proposed

a method for simulating the two-dimensional dynamics of a highly anisotropic

eddy. Such an eddies are predicted by the DA theory, and in plasma systems

with S > 107, are predicted to become unstable to the tearing mode at scales

smaller than a critical scale. Our method was to produce a critically-balanced

eddy at the box scale and drive turbulence at smaller scales.

An eddy in the inertial range will live for its turnover time: in this

case, the Alvfén crossing time of the box. However, if the timescale of a

tearing mode in this box is shorter than the eddy crossing time, the tearing

mode can decorrelate the eddy on this time scale instead. By varying the

resistivity of the system we were able demonstrate that such an instability

can indeed compete with the turbulence of the system. As resistivity was

increased, the eddy was disrupted on time scales shorter than the Alfvén

time.

We were further able to establish that when the two time scales are

comparable that the energy spectrum displays a power-law scaling that is

close to what is predicted by recent theories of “tearing-mediated turbulence.”

Other characteristics of this regime were not supported, such as the reduction

of alignment at smaller scales.
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5.4 Future research

MRI and dynamo in the shearing box

Our work understanding the turbulunce within the shearing box suggests

further work, particulary in understanding the dynamo mechanism within

systems zero net-flux.

The system was found to be very sensitive to the anisotropy of the box.

A natural question to answer is whether an asymptotic regime is reached

with respect to this aspect ratio. That is, should the box be stretched further

in a particular dimension, will the mean measure of turbulent transport α

and the size of structures in the box no longer depend on the box size?

Given that the magnetic structures created by the constant shear are

strong and elongated in the azimuthal direction, could the tearing instability

become important in the fully nonlinear regime? Could this explain the

additional difficulty in establishing the dynamo effect for Pm < 1?

Another area that remains unexplored is the role of helicity in the

dynamo process. We briefly tested the idea that adding or removing helicity

from the solutions would affect whether the MRI would be able to support

self-sustained turbulence through the dynamo effect, but our results were

inconclusive. Boundary conditions that would allow the escape of helicity

could also be used to study this effect. A more thorough investigation of

this effect is warranted.

Tearing-mediated turbulence

Our work and that of Dong et al. (2018) provided evidence in two dimensions

for the new tearing-mediated regime of MHD turbulence. However, the work

is far from conclusive. The range of the power law is short, and its precise

exponent hasn’t been determined. Also, the alignment angle scaling doesn’t

match theory.
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The clearest next steps would be to attempt another set of these two-

dimensional computations with more anisotropic boxes at higher S. Another

option is to use an isotropic two-dimensional setup that starts from the

outer scale of turbulence—similar to the method of Dong et al. (2018). This

would allow further confirmation of at least the spectral scaling.

It may be that a three-dimensional setup is required to produce all of the

features of this regime. Unfortunately, the computing resources available

currently are orders of magnitude less than what is needed in order to

simulate this regime in three dimensions starting from the outer scale. An

alternative, would be to extend our method to three dimensions. Even then,

the costs are currently prohibitive.

Our work and its theoretical underpinnings point toward the intimate

connection between magnetic reconnection and turbulence. Both turbulence

and reconnection have been proposed as mechanisms for particle acceleration

and heating. This has implications for understanding and modeling these

mechanisms in plasma systems. Our setup is very similar to those of fluid

models of reconnection and could be used along with particle tracking or

with kinetic models to determine the dominant acceleration mechanisms.
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