

The University of Wisconsin press bulletin.

Vol. 31, No. 48 Sept. 1, 1937

Madison, Wisconsin: University of Wisconsin, Sept. 1, 1937

<https://digital.library.wisc.edu/1711.dl/6QB7XCS4C4BKC8L>

This material may be protected by copyright law (e.g., Title 17, US Code).

For information on re-use, see

<http://digital.library.wisc.edu/1711.dl/Copyright>

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

To Editor.—The news in this bulletin is prepared especially for the press, and is released for publication on the date below. Please address exchange copies to Editor, 711 Langdon Street

THE UNIVERSITY OF WISCONSIN

PRESS BULLETIN

The purpose of this Bulletin is to bring to the newspapers of Wisconsin and their readers—the people of the state—pertinent news and information concerning their State University. The University Press Bureau will gladly furnish any special news or feature stories to editors. Address letters to R. H. Foss, editor, Press Bureau, University of Wisconsin.

Release Wednesday, Sept. 1, 1937

MADISON, WISCONSIN

Vol. 31, No. 48

Start Running Ultracentrifuge Machine Soon

Powerful New Machine Has Speed of 60,000 Revolutions Per Minute

Installation of the powerful velocity ultracentrifuge machine, a gift to the University of Wisconsin from the Rockefeller foundation, is now being completed by State University scientists and will be placed in operation in September.

A "laboratory fortress" constructed with hundreds of tons of iron and concrete has been built on the Wisconsin campus to house the new velocity ultracentrifuge machine, which weighs five tons and is used to obtain important information regarding molecular weights and other fundamental scientific data otherwise difficult to measure accurately.

Sent from Sweden

Parts of the new machine arrived during the summer from Upsala, Sweden, where it was built under the supervision of its inventor, Prof. Theo Svedberg, professor of chemistry at the University of Upsala. Prof. Svedberg was in 1923 a member of the Wisconsin chemistry department, and it was at that time that he first conceived the idea of an ultracentrifuge and built the first model.

The velocity ultracentrifuge is housed in a heavy reinforced concrete laboratory which has been built at the rear of the chemistry building on the Wisconsin campus. Another machine, a smaller equilibrium centrifuge with a normal operating speed of 18,000 revolutions per minute, has been set up in an adjoining laboratory of the chemistry building. The large velocity ultracentrifuge machine has a normal operating speed of 60,000 to 70,000 revolutions per minute, and produces centrifugal forces up to 350,000 times the force of gravity.

Exerts Huge Pressure

The mountainous pressure exerted by the huge ultracentrifuge as it runs at such terrific speed is the reason why the State University's newest laboratory had to be built like a fortress. It is also reinforced to prevent accidents in case of an explosion.

More than 300 tons of reinforced concrete have been used to build the foundations, walls and ceiling of the new laboratory, a building 11 feet wide, 36 feet long, and nine feet high. The heavy velocity ultracentrifuge rests on a huge cement block which extends into the ground for 10 feet below the floor of the laboratory. The machine is fastened to the block with six heavy bolts sunk eight feet into the concrete.

Only Six Such Machines

The ultracentrifuge machine which has been installed in this laboratory is one of only six such machines in existence throughout the world, and the only one in any American university. There is only one other such machine in this country, owned by the DuPont laboratories in Wilmington, Delaware. Of the others, two are in England and two in Sweden.

The machine will be used at the State University to aid researches in a number of departments and divisions of the University, including agriculture, biochemistry, chemistry, endocrinology, immunology, medicine, and plant physiology. In operating the machine, nearly an hour is required to attain normal speed, and the same time is required for it to come to rest.

At normal speed of 60,000 revolutions per minute, the rotor of the machine turns over about 15 times as fast as the crankshaft of an automobile running at top speed, and has a peripheral or surface velocity of more than 20 miles per minute, which is about one and one-half times the muzzle velocity of an ordinary 22-calibre bullet. This tremendous speed of rotation is produced by oil-driven turbines integral with the rotor shaft.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

The University of Wisconsin's hydraulic and sanitary engineering department aids in keeping the state's lakes and streams free from industrial waste and pollution, thus helping to conserve Wisconsin's natural resources.

U. of W. Men Use 2,700,000-Volt Lightning Bolt to Bust Atoms

A generator giving a bolt of lightning at 2,700,000 volts, which is the highest steady voltage that has ever been attained and actually used in atomic disintegration, has been developed by University of Wisconsin physicists recently for experiments on atom busting, it was revealed today by Raymond G. Herb, research associate in physics at the State University.

Using a new type Van de Graaff electrostatic generator, which was recently developed at Wisconsin, Mr. Herb and two other Wisconsin physicists, D. W. Kerst and D. B. Parkinson, are using their new high voltage to impart a high velocity to protons.

These protons, which can be considered as tiny electrical bullets, are strongly propelled by the high voltage and are shot at a terrific velocity through a 12-foot molded porcelain tube or proton gun at a target of whatever element is to be disintegrated. Already several research laboratories, including the Westinghouse Electric company, have adopted the new electrostatic generator for their own use.

Make Accidental Discovery

Mr. Herb revealed today that he had discovered a way in which to obtain the higher voltages in quite an accidental manner. He explained that one day he was using a small generator in an experiment, and the generator seemed to be running poorly. He thought that the belt attached to the generator was dirty and decided to clean it off. Spying a small bottle of carbon-tetrachloride, a liquid substance often used for cleaning clothes, he used it to clean the belts and put them back on the generator.

Immediately the generator worked very well, for a while at extremely high voltage. Tests followed, and the discovery was made that the cleaning substance was responsible for the high voltage. Today, by using the carbon-tetrachloride in the University's huge atom-busting tank, the physicists are able to obtain the world's highest

steady voltage yet used in atom-busting work.

Both the new electro-static generator and a 12-foot proton gun are housed in the large 20-foot steel tank, five and one-half feet in diameter. Near the center of the tank, at the breach of a discharging gun, is a large steel cylinder into which electrostatic charges are fed by means of a rubberized cloth belt through a tunnel-like row of aluminum hoops.

The cylinder is one of the basic parts of the equipment for building up the high voltages needed in the successful busting of the mysterious but powerful atoms. In the interior of this cylinder charges are removed from the belt and surge to the outside of the cylinder and thus build up the high voltages needed.

Find Gamma Rays

A separate high voltage unit inside the cylinder is used to provide the protons, which are merely positively charged particles of electricity. These protons, or "electrical bullets," are shot through the proton gun at the terrific speed of about 15,000 miles per second, smashing with almost irresistible force into the element being disintegrated.

Along with their atom-busting experiments, which are being carried on to gain information concerning the nucleus or core of the atom, the Wisconsin physicists are also using their equipment to delve into the action of the nucleus or core of the atom. The Wisconsin physicists are also using their equipment to delve into the action of the nucleus or core of the atom.

In their experiments so far, the Wisconsin physicists have found gamma rays when the element fluorine is bombarded by protons at 2,000,000 volts. These rays are extremely hard X-rays, of very high intensity. This radiation is even harder than the radiation from radium and of such intensity that it might be of great value in certain fields of medical science.

Journalism School Grads Find Jobs

Additional placements of graduates, mainly since last June Commencement, are announced by the school of journalism of the University of Wisconsin. These do not include several juniors placed in summer positions on Wisconsin weekly newspapers. The records for the 1937 class are not complete, because a number of graduates have not notified the school concerning the jobs they finally took.

On Wisconsin newspapers: Frank Chokel, 1937, **Milwaukee**, on Iowa County Democrat, Mineral Point; Harold F. Heidmann, 1937, **Algoma**, on Algoma Record Herald; Paul Kratowich, 1937, **Mazomanie**, on Shawano Daily Leader; David Levine, 1937, New York, on Sheboygan Times; William Muenchow, 1937, **Milwaukee**, on Park Falls Herald; Leo W. Roethe, 1937, **Fennimore**, on Jefferson County Union, Ft. Atkinson; John W. Wynaard, 1937, **Madison**, capitol correspondent for Appleton Post-Crescent and Green Bay Press-Gazette; John J. Schuele, 1938, **Milwaukee**, on South Milwaukee Journal; Elaine Zimmer, 1937, **Milwaukee**, club editor, Milwaukee Sentinel.

On newspapers in other states: Lester H. Ahlsweide, 1937, **Oshkosh**, on Decatur (Ill.) Herald; Helen Firstbrook, 1937, **Asbury**, New Jersey, resort correspondent for New York Sun, Herald-Tribune, and World-Telegram; Herbert O. Kubly, 1937, **New Glarus**, on Pittsburgh (Pa.) Sun-Telegraph; Margaret Van Aken, 1936, Ridgeway, Pa., on Erie (Pa.) Times; Gordon W. Wilson, 1938, Brookings, South Dakota, on Ironwood (Mich.) Daily Globe.

On magazines or trade papers: Franklin Bump, 1920, **Sheboygan**, editor of Fox and Fur Breeders Magazine, Wausau; Jack Hand, 1938, **Lady-smith**, editorial assistant, Furniture Index, Jamestown, N. Y.; Blair Torgerson, 1937, **Madison**, on Washington Business Barometer, Washington, D. C.; Virginia B. Van Brunt, 1937, **Horicon**, on Vogue, New York.

In advertising positions: Wallace Drew, 1937, **Wausau**, radio writing, Pennsylvania Tobacco Co., Wilkes-Barre; Jack W. Eigel, 1937, **Wauwatosa**, Four-Wheel Drive Co., Clintonville, Wis.; Charles L. Fleming, 1937, **Madison**, Sears-Roebuck, Chicago; Margaret M. Green, 1937, **Oshkosh**, advertising, Hills Dept. Store, Fond du Lac.

Others: Jean Tate, 1937, Washington, D. C., now Mrs. Blair Torgerson, secretary to Senator Lonergan, Washington, D. C.; Ellen Sorge, 1937, **Madison**, graduate fellowship, University of Wisconsin.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor are corresponding windows or peepholes.

By directing a beam of light through the windows, an observer can note the effects of the centrifugal force. In order to obtain exact measurements, the camera is used to take photographs at intervals, and from the photographs the rate of settling of the dissolved substance can be calculated and the size of the particles or molecules which make up the liquid can be determined as a further aid to solving scientific research problems.

Use 18-Foot Camera

From the massive concrete ceiling of the new laboratory are suspended heavy iron beams to damp out vibrations and support a large 18-foot camera. This camera is used to take photographs of the sedimentation process in solutions containing large molecules. In operating the ultracentrifuge, the liquid material to be studied is placed in a small cell inserted in the rotor. This cell has transparent quartz windows, and in the big steel chamber which encloses the rotor