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A B S T R A C T

Although model predictive control (MPC) has been widely implemented in in-
dustry and shown to have significant economic benefit, currently no systematic
method exists to assess if these controllers are performing optimally or to mon-
itor their performance over time. Here we address this problem by proposing a
benchmark called the key performance index (KPI), which is the expectation of
the stage cost. Since the MPC regulator minimizes the stage cost, this benchmark
inherently matches the controller’s objective. For a linear, unconstrained system,
the stage cost is a quadratic form of a normal variable and therefore has a gener-
alized chi-squared distribution. The plant KPI is calculated as the time average of
the stage cost and is shown to have a normal distribution. The mean and the vari-
ance of the stage cost and plant KPI are calculated from knowledge of the process
model, controller, and disturbance model.

Calculation of the KPI requires accurate knowledge of the disturbances affect-
ing the system. An accurate disturbance model also is necessary for designing
an optimal estimator. The autocovariance least squares (ALS) method estimates
these disturbance covariances from data using a modified least-squares problem.
However, the standard ALS methods are not easily applicable to industrial data.
The large-dimensional models used in industrial systems, which often contain
poorly observable states, result in large optimization problems that are poorly
conditioned and have a large number of unknowns. Directly solving these large
optimization problems is computationally inefficient. In addition, because the
original ALS formulation weights the least squares problem with the identity ma-
trix, the resulting estimates may have a large variance.

We resolve the first of these challenges by reducing the model based on a
singular value decomposition of the observability matrix to contain only the nec-
essary observable states. As the optimal weighting for the least squares problem
cannot be calculated in practice, a feasible generalized least squares technique
is developed to estimate the optimal weighting from data. Application of the
improved ALS method to an industrial data set demonstrates that the resulting
covariances produce an optimal estimator. These improvements reduce the com-
putational time and produce more reliable estimates as compared to the original
ALS method.

As an alternative to the ALS method, a maximum likelihood estimation (MLE)
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method is proposed. Whereas the ALS method requires estimating the optimal
weighting from data, the MLE method does not have this requirement. Instead,
the process and measurement noise covariances are estimated by maximizing the
probability of observing the measured outputs. Thus this optimization problem
has a more sound theoretical basis. Sufficient conditions for the existence of a
solution to the MLE problem are given. The conditions for uniqueness are com-
pared to those of the ALS method. Although the computational burden is large
compared to the ALS method, the MLE method was applied to several small-scale
examples and shown to maximize the likelihood compared to the ALS method.

Further research in applying the improved ALS method to performance mon-
itoring, developing statistical tests to detect changes in the KPI, and adapting the
MLE method to larger-scale systems is recommended.
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1
I N T R O D U C T I O N

1.1 motivation

Model predictive control (MPC) is a common form of advanced process control

and play an essential role in process operation in the chemical industry and other

areas (García, Prett, and Morari, 1989; Qin and Badgwell, 2003; Bauer and Craig,

2008). MPC is especially advantageous on systems that are difficult to control due

to constraints and interaction among variables. By directly using a process model

within the controller, MPC chooses the optimal strategy to control these difficult

systems and therefore improves overall operation and profitability of the plant

compared to more basic control methods.

Although MPC provides many advantages, numerous factors, including a

poor process model or a poor disturbance model, can inhibit the MPC controller

from achieving its optimal performance and thus reduce its economic benefits.

These factors may be present from the startup of the control system, or they may

arise as the process conditions or equipment change over time. A controller perfor-

mance monitoring system compares the achieved performance of each controller

to an optimal benchmark and identifies those controllers that are not performing
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well. Monitoring the performance of the controllers over time would alert the

operators and control engineers when controller performance has degraded. A

diagnosis step then identifies the cause of performance degradation so that the

operators and engineers can resolve the problem. Even when the system is per-

forming optimally given the constraints and disturbances, MPC monitoring can

indicate what factors are limiting the performance: for example, the benefit of

relaxing a constraint or adjusting the process to reduce the effects of a certain

disturbance.

While controller performance monitoring has been a popular subject in the

literature since the work of Åström (1970), MPC performance monitoring remains

an open area of research. The size and complexity of the systems, as well as the

more complicated controller objective function, limit the use of standard controller

performance monitoring on MPC systems.

In order to assess the performance of any controller, there must be a bench-

mark for acceptable performance. While a type of benchmark could be deter-

mined purely from past data recorded during a period of satisfactory perfor-

mance, a theoretical benchmark provides the most information about the optimal

controller performance. A prerequisite for calculating such a benchmark is a dis-

turbance model of the system. Without understanding the disturbances facing

the system, it is impossible to judge how well the controller responds to these

disturbances.

A disturbance model must be general enough to account for all the numerous

disturbances that may affect the process. The standard approach of modeling all

these unknown disturbances as white noise is justified by the central limit theo-

rem. As this basic noise model does not guarantee that the controlled variables

will achieve their setpoints, an additional stochastic term must be included, usu-

ally in the form of integrated white noise. Under this general structure, the dis-

turbance identification problem becomes a question of identifying the covariances
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for each of the noise terms. Accurately identifying each noise covariance is also

necessary for estimator design — without knowing the extent of the random ef-

fects, unmeasured states of the system cannot be accurately estimated. Therefore,

identifying the disturbance model not only allows the performance monitoring

benchmark to be calculated, but also may improve controller performance by im-

proving the estimator.

1.2 goals

To address these challenges to MPC performance monitoring, we focus on the

three major goals of this work:

1. Propose a realistic benchmark for MPC performance monitoring and estab-

lish the distribution of this benchmark.

2. Present a modified autocovariance least squares method for identifying the

disturbance model and illustrate this method on industrial data.

3. Formulate a maximum likelihood method for disturbance model identifica-

tion and establish necessary conditions for the existence and uniqueness of

the optimal solution.

1.3 notation

We summarize the parts of the model predictive controller in Figure 1.1. In this

work, we assume that the plant is described by the following discrete time linear

model:

x+ = Ax + Bu + Gw

y = Cx + v
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Target Selector

Plant

Estimator

Regulator

x̂
State
Estimate

d̂
Disturbance Estimate

Values

Setpoints
ysp, usp

Stage cost

xs, us
Target

Control
move

u y
Output

Q, R, S

(model (A, B, C))

(model (A, B, C))

(model (A, B, C))

Disturbance
model

Bd, Cd

Figure 1.1: Diagram summarizing the key elements of an MPC controller.

in which the state, x ∈ Rn, is an unmeasured vector of quantities describing the

system, u ∈ Rm is the manipulated input, w ∈ Rg is the process noise (which

affects the states), y ∈ Rp is the measured output, and v ∈ Rp is the measurement

noise. The process model or deterministic system consists of the state transition

matrix, A ∈ Rn×n, the input matrix, B ∈ Rn×m, and the output matrix, C ∈

Rn×p. The noise model or stochastic part of the system refers to the noise-shaping

matrix, G ∈ Rn×g, and the covariances of w and v, which are denoted as Qw

and Rv, respectively. The noises w and v are assumed to be zero mean, normally

distributed white noises and are assumed to be independent of each other.

The role of the estimator is to estimate the unmeasured state from the mea-

sured output (and input) data. For a linear system, the estimator is called the

Kalman filter and takes the form:

x̂(k + 1|k) = Ax̂(k|k) + Bu(k)

x̂(k|k) = x̂(k|k− 1) + Lε(k)

ε(k) = y(k)− Cx̂(k|k− 1)



5

in which x̂(k|k− 1) denotes the prediction of x(k) given the data up to time k− 1

and x̂(k|k) indicates the estimate of x(k) given the data up to time k. To obtain

only the estimate x̂(k|k− 1), we alternately write the Kalman predictor as

x̂(k + 1|k) = Ax̂(k|k− 1) + Bu(k) + ALε(k)

We refer to L as the filter gain, and AL as the predictor gain. For simplicity, we

use x̂(k) to denote x̂(k|k− 1).

We refer to ε as the innovation. When the filter is optimal, ε is a white noise, i.e.

ε(k) and ε(k + j) are uncorrelated for j 6= 0. We use the term L-innovation to refer

to the innovation when the filter gain is not necessarily optimal; the L-innovations

may not be white. The optimal filter gain is calculated from the noise covariances

Qw and Rv.

We often augment the model with an integrating disturbance model so that it

takes the form

x

d


+

=

A Bd

0 I


x

d

+

B

0

 u +

G 0

0 Gd


 w

wd


y =

[
C Cd

] x

d

+ v

We refer to this system as the augmented system. We can also write the Kalman

filter for the augmented system. The estimator then provides both the state esti-

mate, x̂, and the disturbance estimate, d̂.

For an augmented system, the disturbance model also includes the matri-

ces Bd and Cd, a second noise-shaping matrix, Gd, and the combined variance

of
[

w′ w′d

]′
.

The target selector uses the disturbance estimate d̂ and the setpoints for y

and u to choose steady-state targets xs and us for the state and input. When
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more outputs than inputs are present, not all outputs can be controlled to their

setpoints, so we choose a subset of the outputs to be controlled to their setpoints.

When more inputs than outputs are present, the target selector also seeks to keep

the inputs near their setpoint values. The target selector is described in more

detail in Appendix 3.A of Chapter 3.

The regulator chooses the optimal sequence of inputs u = {u(0), u(1), . . . u(N)}

to bring the state and input to their target values. Only the first input u(0) is ap-

plied to the system, as the regulator finds a new optimal sequence of inputs at

the next time step. For the linear, unconstrained system, we often use the linear

quadratic regulator. In the infinite horizon case (u = {u(0), . . . u(∞)}) the linear

quadratic regulator solves the problem

min
u

V (x(0), u) =
∞

∑
k=0

`(k)

subject to `(k) =
1
2

(
(x(k)− xs)

′ Q (x(k)− xs) + (u(k)− us)
′ R (u(k)− us)

+ (u(k + 1)− u(k))′ S (u(k + 1)− u(k))
)

x(k + 1) = Ax(k) + Bu(k) k = 0, 1, . . . ∞

We refer to the function `(k) as the stage cost. The matrices Q, R, and S are weights

chosen by the user; the choice of these tuning parameters is a tradeoff between

keeping the states near their target values, keeping the inputs near their target

values, and limiting the rapid change of inputs. The Kalman filter or predictor is

used in place of x(0), since the true state is unknown. This regulator results in a

control law of the form

u(k) = K

 x̂(k)− xs

u(k)− us

+ us

The linear quadratic Gaussian (LQG controller) refers to the MPC controller
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with the estimator and regulator defined by the Kalman filter and linear quadratic

regulator. A more detailed explanation of the LQG controller is given in Rawlings

and Mayne (2009, Ch. 1).

1.4 dissertation overview

This dissertation is organized as follows:

In Chapter 2 a review of the controller performance monitoring literature is

presented. The standard controller performance monitoring method, the mini-

mum variance benchmark, is presented in the framework of state space MPC.

In Chapter 3, a performance monitoring benchmark that accurately reflects the

objectives of the controller is presented. An analytical formula is derived for the

theoretical benchmark for a linear unconstrained controller. The distribution of the

benchmark is derived based on this analytical formula. The analytical formula

is extended to include a general deterministic disturbance and is modified for

models in innovation form.

In Chapter 4, a literature review is presented for disturbance model identifi-

cation, and a brief derivation and explanation of the ALS method is given. The

conditions under which the ALS problem has a unique solution are discussed.

Methods for assessing the accuracy of the ALS solution are presented.

In Chapter 5, the use of integrating disturbance models is discussed and an

alternative double integrator disturbance model is presented.

In Chapter 6, two methods are presented to make the ALS approach more ap-

plicable to industrial data: reducing the state space model by removing weakly

observable states and using a feasible generalized least squares approach by es-

timating the optimal weighting from data. These method are demonstrated on

simple examples.

In Chapter 7, the modified ALS method is applied to industrial data.



8

In Chapter 8, disturbance model identification is posed as a maximum like-

lihood estimation problem. The existence and uniqueness of solutions to the

MLE problem are discussed, and the MLE problem is compared to the ALS prob-

lem with optimal weighting. Several recommendations to reduce the computa-

tion time are presented, and the MLE method is demonstrated on several low-

dimensional examples. The advantages and disadvantages of the MLE and ALS

methods are compared

In Chapter 9, the major contributions of this work are summarized and areas

of future research are presented.
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2
P E R F O R M A N C E M O N I T O R I N G B A C K G R O U N D

2.1 review of controller performance monitoring

the minimum variance benchmark. The minimum variance method de-

veloped by Harris (1989) marks a starting point for controller performance moni-

toring. This method uses closed-loop data to estimate the minimum output vari-

ance possible for a specific system under any controller and compares this vari-

ance to the actual output variance. The groundwork for the minimum variance

method was developed earlier by Åström (1970), who gave an expression for the

minimum variance control law (the sequence of inputs that minimizes the out-

put variance of a single-input single-output (SISO) system). Åström predicted the

application of this concept to performance monitoring: since the order of the min-

imum variance output is determined by the time delay, the order of the controller

error can be used to determine whether or not the system is under optimal control.

Harris’s primary contribution comes from estimating the minimum variance from

closed-loop data without a priori knowledge of a process or disturbance model.

Whereas Åström’s derivation relies on a time series model of the process and dis-

turbance, Harris’s method uses standard techniques to fit a time series model to
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routine operating data and uses this closed-loop model to estimate the minimum

variance. With Harris’s method, no a priori process knowledge is needed except

for the time delay. Since only routine operating data is required, assessing the con-

troller does not interrupt process operation. The minimum variance benchmark

was normalized by Desborough and Harris (1992) to range from 0 to 1, while Qin

(1998) related it to standard PID controllers.

extensions of the minimum variance benchmark. Despite the appeal-

ing simplicity of Harris’s method, the minimum variance benchmark required

much development before it could be widely applied in practice, including extend-

ing the benchmark to multiple-input multiple-output (MIMO) systems, automati-

cally identifying of a closed-loop process model, handling constrained processes,

diagnosing causes of poor performance, and integrating the minimum variance

technique with other signal processing tools (Harris, Seppala, and Desborough,

1999).

Investigation into extending the minimum variance method to MIMO systems

occupies a prominent place in monitoring research. While knowing the SISO

time delay is simple, the multivariate time delay matrix, called the interactor,

cannot be determined solely from the time delays of each input-output pair (Har-

ris, Boudreau, and MacGregor, 1996a). The complexity of the MIMO benchmark

further increases when the covariances between the interacting outputs are con-

sidered (Qin and Yu, 2007). Following the direct extension to MIMO systems by

Harris et al. (1996a), the algorithm of Huang, Shah, and Kwok (1997) reduces

the amount of process knowledge needed, as well as the computational require-

ments. In the case of an unknown interactor, Kamrunnahar, Fisher, and Huang

(2004) used a combined parametric and non-parametric model. Huang, Ding, and

Thornhill (2005) estimated a suboptimal benchmark from the largest delay in the

interactor. Huang, Ding, and Thornhill (2006) and Yu and Qin (2009) examined
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systems with a diagonal interactor, which require less process knowledge.

Since the minimum variance benchmark does not represent a realistic bench-

mark for many processes, alternative benchmarks allow greater flexibility in how

the optimal performance is defined. Huang and Shah (1998), Xu, Lee, and Huang

(2006), and Horch and Isaksson (1999) added a user-defined component to the

minimum variance output. Yuan, Lennox, and McEwan (2009) developed bounds

for a MIMO user-defined benchmark. Rather than changing the desired output,

Bezergianni and Georgakis (2000, 2003) and Yuan and Lennox (2009) defined a

new benchmark that also incorporated the open-loop variance. Grimble (2002)

estimated a generalized minimum variance benchmark with weighting on the in-

put variance. For processes with step-disturbances, Eriksson and Isaksson (1994)

modified the minimum variance benchmark to encourage integral control. Hugo

(2006) accounted for the simplified disturbance models used by controllers, while

Liu, Huang, and Wang (2011) considered several user-specified performance re-

quirements.

A natural extension to the minimum variance benchmark, the linear-quadratic-

Gaussian (LQG) benchmark identifies the minimum output variance possible pro-

vided that the input variance does not exceed a certain threshold (Huang and

Shah, 1999, chap. 13). This benchmark uses a trade-off curve between the output

and input variances. A suboptimal controller lies above the trade-off curve, while

an optimal controller lies on the trade-off curve. Performance is measured by the

distance between the current variances and the ideal curve. Since this benchmark

requires a complete process model, Kadali and Huang (2002) and Dai and Yang

(2004) developed methods to calculate the model using subspace identification.

As the minimum variance benchmark was designed for unconstrained, lin-

ear time invariant processes under feedback control, other research relaxed these

conditions. Desborough and Harris (1993) expanded the minimum variance con-

trol law to feed-forward/feedback systems. Huang (2002), Olaleye, Huang, and



12

Tamayo (2004), and Xu, Huang, and Tamayo (2008) applied minimum variance

control to different linear time variant cases. Bergh and MacGregor (1987) and

Harrison and Qin (2009) developed expressions for constrained minimum vari-

ance. Ko and Edgar (2001) developed a monitoring system for the constrained

case by using simulations to estimate the constrained minimum variance bounds.

alternatives to minimum variance. Due to the limitations of the min-

imum variance benchmark as previously discussed, data-driven methods were

developed as alternate ways to assess controller performance. These methods are

based on analysis of the data with subspace-based or statistical techniques. Sub-

space projections provide a means to identify the directions with poorest perfor-

mance and isolate the effects of measured and unmeasured disturbances (McNabb

and Qin, 2003, 2005). Yu and Qin (2008a,b) extracted the directions with changes

in control performance through generalized eigenvalue analysis and identified the

responsible loops by calculating the contribution of each loop to these directions.

Xie, Kruger, Lieftucht, Littler, Chen, and Wang (2006) developed a method to re-

move auto- and cross-correlation between the outputs before applying principal

component analysis. Rather than a subspace-based method, Salsbury (2005) used

the autocorrelation of the error signal to assess performance during step-wise load

changes. Similarly, Badwe, Gudi, Patwardhan, Shah, and Patwardhan (2009) used

the partial correlations between model residuals and inputs to identify the parts

of the model that need re-identification. The normalized multivariate impulse

response curve of Shah, Patwardhan, and Huang (2002) and the closed-loop po-

tential plots used by Huang et al. (2006) and Zhao, Chu, Su, and Huang (2010)

measure the decay rate of the output predictability, but rely on the user analysis

of individual plots.

Fault detection methods have also been proposed as monitoring tools. Kesavan

and Lee (1997) modeled possible causes of poor performance by creating a fault
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parameter vector and then formulated an estimation problem to detect the true

cause. However, this estimation problem requires a defined list of faults with

prior probabilities. Ge, Yang, Song, and Wang (2008) used least-squares support

vector regression to remove the effects of external variables before using statistical

methods to determine if a fault occurred. Performance monitoring was formulated

as a hypothesis testing problem by Tyler and Morari (1996) to determine if the

closed-loop impulse response coefficients violated a desired bound and by Huang

and Tamayo (2000) to determine if a new model better fit the process than did the

old model.

statistics of performance metrics. Understanding the statistics of the

performance metrics is necessary to compare accurately the achieved and theoret-

ical performance measures. Harris (1989) analyzed the sampling properties of the

minimum variance estimate in order to determine the number of samples needed

for a good estimate. Desborough and Harris (1992) computed the mean, variance,

and kernel density estimates of the normalized minimum variance benchmark

and showed that the variance depends both on the number of samples and the

autocorrelation of the process. In addition, they discussed the need to choose a

sample length that balances susceptibility to outliers, distribution of the metric,

and ability to detect changes in the metric. Harris (2004) provided a more general

discussion of statistics of performance metrics by recognizing that many perfor-

mance indices are expressed as quadratic forms or as a ratio of quadratic forms.

He focused specifically on a minimum variance type metric that is expressed as a

ratio of quadratic forms. Since closed-form probability distributions do not exist

for this metric, an iterative method as well as several approximate methods are

developed to compute its confidence intervals.

model predictive control monitoring. MPC performance monitoring

is more complicated than the monitoring of simpler controllers, since MPC loops
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tend to have many variables and constraints. In addition, since the process model

is used directly by the controller, improving performance might require re-identifying

the process model rather than simply adjusting the controller tuning parameters.

Patwardhan (1999) proposed using the MPC design objective as the performance

measure. Using this concept, Julien, Foley, and Cluett (2004) developed plots of

the best achievable MPC performance. They used closed-loop data to re-identify

the model and plotted performance curves first based on the new model and old

controller, then based on the new model with the proposed new controller. This

comparison shows the potential benefits of re-identifying the model used by the

controller. Schafer and Cinar (2004) used a ratio of historic and achieved per-

formance to detect changes in controller performance and diagnosed the cause of

any changes by using a ratio of achieved and designed performance. Tsakalis

and Dash (2007) proposed a design-based benchmark using robust stability con-

ditions determined from the controller design. However, this method relies on

using external excitation and suffers from false alarms.

An alternate method in Dumont, Kammer, Allison, Ettaleb, and Roche (2002)

compared the controller prediction error to the open-loop output, since both sig-

nals are realizations of the same stochastic process under a perfect model. Using

a similar idea, Sun, Qin, Singhal, and Megan (2013) compared the prediction error

to the open-loop disturbance innovations, which are estimated through a projec-

tion method. Xu, Huang, and Akande (2007) and Lee, Tamayo, and Huang (2010)

assessed the potential economic benefit of relaxing constraints or reducing the

variability of certain variables. However, this method is valid only with perfect

models.

Other research focused on diagnosing the underlying causes of poor MPC per-

formance. Patwardhan and Shah (2002) gave bounds on the effects of constraints,

modeling uncertainty, disturbance uncertainty, and nonlinearity on MPC perfor-

mance. Badwe, Patwardhan, Shah, Patwardhan, and Gudi (2010) determined the
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effect of model-plant mismatch by estimating relationships between the model

and the plant from closed-loop data. To isolate the performance degradation

caused by changes in the process/controller (as opposed to changes in the dis-

turbances), Rato and Reis (2010) developed a modified index based on historic

data. Tian, Chen, and Chen (2011) diagnosed performance by identifying the sub-

spaces affected by each possible cause. Despite this research on MPC monitoring,

a complete automated monitoring and diagnosis scheme has yet to be developed.

industrial applications. Before implementing a monitoring scheme on in-

dustrial processes, factors such as ease of use for engineers/operators and clear

connections between the controller benchmark and economic objectives must be

considered (Desborough and Miller, 2001). To increase the ease of use, Thorn-

hill, Oettinger, and Fedenczuk (1999) calculated parameters for use in monitoring

according to the general loop type. In contrast, Ingimundarson and Hagglund

(2005) recommended choosing such parameters based on the tuning of the con-

troller, not the type of loop. They also discussed the challenge of using filtered and

smoothed archived industrial data. Wang, Huang, and Chen (2007) developed a

MIMO minimum variance method for systems with different rates of input and

output sampling. To integrate all steps of monitoring, Ahsan, Grosvenor, and

Prickett (2004) focused on combining controller monitoring with process monitor-

ing by using a distributed architecture to share data. Shardt, Zhao, Qi, Lee, Yu,

Huang, and Shah (2011) highlighted the integration of monitoring schemes for all

regulatory loops, along with the supervisory loops that provide the setpoints for

the regulatory loops.

Several studies have examined the implementation of monitoring systems in

industry. Harris, Seppala, Jofriet, and Surgenor (1996b) and Paulonis and Cox

(2003) implemented plant-wide monitoring of SISO loops in a newsprint mill and

chemical plants, respectively. Other studies on commercial software for perfor-
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mance monitoring also focused on SISO PID controllers (Badmus, Banks, Vish-

nubhotla, Huang, and Shah, 1998; Bonavita, Bovero, and Martini, 2004). Haarsma

and Nikolaou (2000) used the MIMO minimum variance benchmark on a snack

food frying process, but the applicability of the benchmark was severely limited

due to constraints on the process. Huang, Kadali, Zhao, Tamayo, and Hanafi

(2000) successfully assessed and diagnosed a model predictive controller for an

industrial combined gas oil coker. However, since their method requires individ-

ually examining a number of plots, it is not effective for automatically monitoring

a large number of MPC loops. Gao, Patwardhan, Akamatsu, Hashimoto, Emoto,

Shah, and Huang (2003) evaluated the performance of two MPC loops. They

used a variety of methods on the first controller, including the MIMO minimum

variance benchmarks described in Huang and Shah (1999) and the normalized im-

pulse response curve from Shah et al. (2002). However, they simply compared the

performance with and without MPC, rather than evaluating the controller perfor-

mance based on an ideal benchmark. On the second controller, setpoint settling

time, a historical benchmark, and prediction error analysis indicated that the per-

formance deteriorated after a load change, but these methods failed to identify

why the controller could not compensate for this change.

2.2 mpc and minimum variance control

2.2.1 Minimum variance as a form of MPC

The minimum variance controller was derived by Åström based on a time series

model and was presented as a theoretical controller, which may not be realizable

in practice. In order to better understand how the minimum variance benchmark

can be used in MPC performance monitoring and how it relates to other MPC

monitoring techniques, we look at past studies to discuss how a model predictive

controller can be designed to achieve minimum output variance. Kwong (1991)
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determined the minimum variance control law for the SISO state space system and

showed that this control law is equivalent to that of Åström (1970). McNabb and

Qin (2003) further discuss minimum variance control of a MIMO MPC controller.

Here, we use the results of Kwong (1991) to develop a simplified form of the

control law and to write an expression for the output under minimum variance

control.

Rather than using a state space model, Åström developed the minimum vari-

ance controller using a linear, time-invariant SISO time-series model, written as

y(k) =− a1y(k− 1)− a2y(k− 2)− · · · − any(k− n)

+ b1u(k− 1) + b2u(k− 2) + · · ·+ bnu(k− n)

+ e(k) + c1e(k− 1) + c2e(k− 2) + · · · cne(k− n). (2.1)

The parameters ai and bi describe the system dynamics, the parameters ci describe

the noise dynamics, and n is the order of the system.

We convert a SISO state space system to the time series model as follows. We

begin with the general state space model as defined in Section 1.3:

x+ = Ãx + B̃u + G̃w

y = C̃x + v (2.2)

in which m = p = 1. Provided that (A, C) is observable, we can transform this

system into the observable canonical form (Callier and Desoer, 1991, p. 312, Chen,

1999, p. 187-189):

x+ = Ax + Bu + Gw

y = Cx + v
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in which

A =



−a1 1 0 · · · 0

−a2 0 1 · · · 0
...

−an−1 0 0 · · · 1

−an 0 0 · · · 0


B =



b1

b2

...

bn


C =

[
1 0 ... 0

]

Letting L be the optimal gain of the Kalman predictor, we write the system

(2.2) in innovation form as

x̂(k + 1) = Ax̂(k) + Bu(k) + Le(k)

y(k) = Cx̂(k) + e(k) (2.3)

Defining ci coefficients so that

L =



c1 − a1

c2 − a2

· · ·

c3 − a3


(2.3) is equivalent to the time series model in (2.1). When L is the optimal filter

gain, then the innovation, e, is white noise and distributed as N(0, Re).

Using an infinite horizon linear quadratic regulator, the control action is cho-

sen by solving the optimization problem

min
u

V (x(0), u) =
1
2

∞

∑
k=0

(
x(k)′Qx(k) + u(k)′Ru(k)

+ (u(k + 1)− u(k))′ S (u(k + 1)− u(k))
)

subject to x(k + 1) = Ax(k) + Bu(k) k = 0, 1, . . . ∞ (2.4)
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in which u is the sequence of inputs, u(0), u(1), . . . u(∞). The matrices Q, R, and S

are weights chosen by the user. To achieve minimum variance control, we choose

Q = C′C and R = S = 0, so that V(x(0), u) = 1
2 ∑∞

k=0 y(k)′y(k) is minimized by

the controller. The control law takes the form

u(k) = Kx(k) K = −
(

B′ΠB
)−1 B′ΠA

in which Π solves the Riccati equation

Π = C′C + A′ΠA− A′ΠB
(

B′ΠB
)−1 B′ΠA (2.5)

This Riccati equation has the solution

Π =
d−1

∑
i=0

((
Ai
)′

C′CAi
)

(2.6)

in which d is the overall delay of the system (bi = 0 for i =< d in (2.1)). A delay

of d means that the input u(k) affects y(k + d) but not y(k) . . . y(k + d − 1). In

the SISO state space model, the first d− 1 rows of B are zero. Since we assume

a causal system, y(k) can only be affected by previous inputs, and we must have

d ≥ 1.

Due to the location of zeros in C and B, the following relations hold, as pre-

sented in Kwong (1991):

CAj−1B =

 0 j < d

bd j = d
(2.7)

With Π defined by (2.6), we derive the following relationships based on (2.7):

B′ΠB = b2
d B′ΠA = bdCAd
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Thus the optimal control law has the form

u(k) = −CAd

bd
x(k) (2.8)

Since the true state, x(k), is unknown, we use the optimal estimator for x(k) in

(2.8). For the linear system, this estimate comes from the Kalman filter. Note

that x̂(k) as defined in (2.3) is the Kalman predictor, not the Kalman filter, so

x̂(k) = x̂(k|k− 1) does not include any information about the measurement y(k).

We obtain a better estimate of x(k) by using the Kalman filter, x̂(k|k) = x̂(k) +

L f (y(k)− Cx̂(k)). L f is the Kalman filter gain; for A invertible we have L f =

A−1L, where L is the Kalman predictor gain. We are guaranteed to have A invert-

ible in this formulation, provided that an 6= 0 (the system order is minimal). Then

we write the Kalman filter for x(k) as

x̂(k|k) = x̂(k) + A−1Le(k)

and the control law as

u(k) = −CAd

bd
x̂(k)− CAd−1L

bd
e(k) (2.9)

We then write x̂(k + d) and y(k + d) as

x̂(k + d) = Ad x̂(k) +
d−1

∑
i=0

Ad−i−1Bu(k + i) +
d−1

∑
i=0

Ad−i−1Le(k + i)

y(k + d) = CAd x̂(k) + C
d−1

∑
i=0

Ad−i−1Bu(k + i) + C
d−1

∑
i=0

Ad−i−1Le(k + i)

+ e(k + d) (2.10)
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Due to the time delay, CAiB = 0 for all i < d− 1, and therefore (2.10) reduces to

y(k + d) = CAd x̂(k) + CAd−1Bu(k) + C
d−1

∑
i=0

Ad−i−1Le(k + i) + e(k + d) (2.11)

Letting u(k) be the minimum variance control law in (2.9) and noting that

CAd−1B
bd

= 1, then we rewrite the second term in (2.11) as

CAd−1Bu(k) = −CAdx(k)− CAd−1Le(k)

From (2.11), shifting the time index to k rather than k + d, we write the output

under minimum variance control as

y(k) := ymv(k) = C
d−1

∑
i=1

Ad−i−1Le(i) + e(k) (2.12)

The variance of ymv, σ2
mv, is the minimum output variance possible under any

feedback control law and has the form

σ2
mv = Re

d−1

∑
i=1

(
CAd−1−iLL′A′d−1−iC′

)
+ Re (2.13)

in which Re := var(e).

2.2.2 Feedback invariant perspective

Harris’s approach views the minimum variance output as a feedback invariant

term: a portion of the output that cannot be affected by any feedback controller

due to the time delays of the system. Many extensions of the minimum variance

benchmark have also been based on the concept of identifying the feedback in-

variant portion of the output. Here, we derive the minimum variance control law

from the feedback invariant perspective.

We begin by examining the output as written in (2.11). Since at time k, we have



22

no information about e(k + i) for i > 0, we cannot use the input u(k) to remove

these disturbances from y(k + d). Therefore, the best possible output we could

obtain is

ymv(k) = C
d−1

∑
i=1

Ad−i−1Le(i) + e(k)

Note that this output is the same as in (2.12). In order to achieve this output, we

must have the remaining terms in (2.11) equal to zero:

CAdx(k) + CAd−1Bu(k) + CAd−1Le(k) = 0.

Noting that CAd−1B = bd and solving for u(k), we arrive at the control law

u(k) = −CAd

bd
x(k)− CAd−1G

bd
v(k)

which is identical to the control law in (2.9) derived from the Riccati equation.

2.2.3 Lower bound on minimum variance

From (2.13), we observe that the minimum variance is always greater than or equal

to the variance of the innovation, Re. We write the variance of the innovation in

terms of the process and measurement noise:

Re = P11 + Rv P = APA′ − APC′(P11 + Rv)
−1CPA′ + Qw

in which P11 is the (1, 1) element of P defined by the Riccati equation above. We

make the following observations:

1. If d = 1, then ymv = e(k) and σ2
mv = Re

2. If d = 1 and Qw = 0, then the minimum variance equals to the measurement

noise.
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3. If d > 0, then in general we expect that the additional terms in (2.13) be

strictly positive and σ2
mv > Re (although given free choice of Qw and Rv, we

could choose a specific noise model such that σ2
mv = Re).

2.2.4 Non-invertible zeros

Thus far, the stability of the closed-loop system has not been discussed. In state

space form, the system is closed-loop stable if every eigenvalue of A + BK has

magnitude less than one. In the time series equation, stability is determined by

the zeros of polynomials written from the coefficients. In the time series form, the

minimum variance control law given in Åström (1970) leads to a stable closed-loop

system if and only if the polynomial defined by the bi coefficients

b1zn−1 + b2zn−2 + · · ·+ bn − 1z + bn

has all its roots within the unit circle. If any roots lie outside the unit circle, the

minimum variance control law is not be stable (Åström and Wittenmark, 1984).

If the state space model is written for such a time series equation, the solution

to the Riccati equation given by (2.6) no longer produces a stabilizing control

law (Kwong, 1991). A unique stabilizing solution to the Riccati equation may still

exist; however, the control law based on this solution always results in a variance

greater than Re, even for a unit time delay (Hewer, 1971, 1973).
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3
P E R F O R M A N C E M O N I T O R I N G B E N C H M A R K A N D

D I S T R I B U T I O N 1

3.1 key concepts for lqg monitoring

Controller performance monitoring for a linear quadratic Gaussian (LQG) system

can be summarized by the following three fundamental relationships:

central limit theorem =⇒ normal distribution

normal + linear system =⇒ normal distribution

normal + quadratic stage cost =⇒ chi-squared distribution

Control engineers implicitly use the first relationship to develop the noise model

for the system by assuming that the disturbances affecting the process and mea-

surement have a normal distribution. It is necessary to assume a distribution for

these noises in order to calculate the distribution of any signals of the system.

If the process and measurement disturbances are the result of many unmodeled

random effects, then the central limit theorem justifies the choice of a normal dis-

1Portions of this chapter have been published in Zagrobelny, Ji, and Rawlings (2013)



25

tribution. The common choice of a linear input to output process model is based

mainly on user convenience and the expectation that the controller can success-

fully maintain the process close to some desired operating point. Near this point,

the linear model may provide a good approximation, even while the system may

be non-linear over a wider range of operating conditions. The identification of this

linear model from data usually justifies assuming the normally distributed distur-

bances are zero mean. If non-stationary disturbances are present, they cannot be

approximated well by the central limit theorem. Therefore, these disturbances

must be known or approximated in order to determine the distribution of any

signals in the system.

The second fundamental relationship states that for a linear process model

with normally distributed noises, any signal generated by this system also has

a normal distribution. This step follows directly from the property that a linear

transformation of a normally distributed random variable is also normal. This

relationship is powerful because it gives us knowledge of the distribution of all

signals in the system (output, input, innovation, state, state estimate, etc.). When

the system is stable, the signals also have time-independent distributions and finite

variances.

Finally, the third fundamental relationship allows us to characterize the reg-

ulator’s stage cost, i.e., the function of the system’s variables that the controller

optimizes. When the stage cost is a quadratic form of normal signals from the

process, the stage cost has a generalized chi-squared distribution. We use the ex-

pectation of the stage cost as the performance metric to monitor the controller.

By understanding its distribution, we can develop confidence intervals and make

more accurate comparisons between the ideal and achieved performances.
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3.2 performance benchmark statistics

We refer to the controller performance benchmark as the key performance index,

or KPI. To derive the expressions for KPI expectation and variance, we follow the

steps below:

1. Write general expressions for the state/disturbance and their estimates.

2. Express the input, u, in terms of the state and estimate (by assuming a linear

control law).

3. Write a closed loop expression for the state/disturbance and their estimates

in which the only external input is the random noise affecting the system.

4. Derive a probability distribution for the state/disturbance and their esti-

mates.

5. Derive a probability distribution for the signal used in KPI calculation.

6. Derive the probability distribution for the KPI.

3.2.1 Closed-loop expression for the linear system

We begin by expressing the the system and its estimator in state space form as

x+ = Ax + Bu + Bdd + Gw x̂+ = Ax̂ + ALxε + Bu + Bdd̂

+ BdLdε

d+ = d + Gdwd d̂+ = d̂ + Ldε

y = Cx + Cdd + v ε = y− Cx̂− Cdd̂ (3.1)

in which the state x is augmented to include the past input. This augmented

state is convenient for including the rate-of-change penalty in the regulator. We
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assume that the process noise w and the measurement noise v are independent,

zero mean, and normally distributed with variances Qw and Rv. The integrating

disturbance d, affected by white noise wd, is added to achieve the desired zero-

offset properties. We denote the variance of
[

w′ w′d

]′
as QW . We discuss how

to estimate the variances QW and Rv from data in Chapters 4-8. The estimator in

(3.1) should match what is currently used by the controller and does not need to

be optimal.

The following steps utilize the fact that all signals for the linear system are

distributed normally. We also take Gd = 0 to ensure that the variance of the

disturbance d is bounded.

We augment the system so that both the state and disturbance are treated as

a single vector. Defining the augmented state and its estimate, X := [x′ d′]′,

X̂ := [x̂′ d̂′]′, we have:

X+ = AaugX + Baugu + GaugW X̂+ = AaugX̂ + AaugLaugε + Baugu

y = CaugX + v ε = y− CaugX̂

in which W :=

 w

wd

, Aaug :=

A Bd

0 I

, Baug :=

B

0

, Gaug :=

G 0

0 Gd

, Caug :=

[
C Cd

]
, and Laug :=

Lx

Ld

. When a linear feedback control law is applied, the

closed-loop system remains linear, and we can express this control law as

u(k) = KaugX̂ + KaugLaugCaugX̃ + KaugLaugv + ud

in which X̃ := X − X̂. Kaug and ud are defined in (3.13) in Appendix 3.A. ud is

the constant term in every input and is only nonzero when nonzero setpoints are
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present. We eliminate u from the system and write the closed-loop equation as

z+ = Ãz + G̃w̃ + zd

in which

z :=



x̂

d̂

x̂− x

d̂− d


w̃ :=


w

wd

v

 zd :=

Baug

0

 ud

Ã :=

Aaug + BaugKaug (Aaug + BaugKaug)LCaug

0 Aaug − AaugLaugCaug


G̃ :=

 0 (Aaug + BaugKaug)L

Gaug −AaugL

 (3.2)

The matrices Ã and G̃ depend on the system matrices, as well as the estimator and

regulator gains. The constant zd depends on the solution to the target tracking

problem and is nonzero for a nonzero setpoint in y or u. More details of this

derivation are provided in Zagrobelny et al. (2013).

Since the only external input to z is the normally distributed vector w̃ and

the constant term zd, z is also a normally distributed vector (provided z(0) is

also normal). Letting Qw̃ = diag (QW , Rv) be the covariance of w̃, then z(k) ∼

N(m(k), S(k)) in which m and S satisfy the dynamic equations

m+ = Ãm + zd

S+ = ÃSÃ′ + G̃Qw̃G̃′

Assuming that the system is stable1 once the sample time is large enough to re-

1 Ã is stable as long as (A, B) is controllable and (A, C) is detectable; therefore (I − Ã) is also
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move effects of the distribution of z(0), z converges to the asymptotic distribution

z ∼ N (m∞, S∞), with expectation and variance

m∞ = (I − Ã)−1zd

S∞ = ÃS∞ Ã′ + G̃Qw̃G̃′

Any signal from the system can be derived as a linear transformation of z and

therefore also has a normal distribution.

3.2.2 Distribution of stage cost and plant KPI

We choose the stage cost as

`(k) := ` (x(k), u(k)) = |y(k)− ysp|2Qy
+ |u(k)− usp|2R + |u(k)− u(k− 1)|2S

Since the regulator is designed to minimize this stage cost, `(k) serves as a natural

choice for the controller performance metric. The ideal stage cost can be compared

to the time-averaged stage cost from the controller data:

〈`(k)〉 = 1
k

k−1

∑
j=0

`(j) (3.3)

We refer to both the expectation of the stage cost (from the model) and sample

average of the stage cost (from the data) as the key performance index (KPI). Based

on the linear model of the process and the normal distribution of the signals, we

derive an analytical expression of the expectation of the stage cost, E(`(k)). When

the controller is performing optimally, 〈`(k)〉 converges to this value.

invertible and m∞ and S∞ exist.
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The stage cost is equivalently expressed as the quadratic form

`(k) = f (k)′Q̃ f (k) (3.4)

f (k) :=


y(k)− ysp

u(k)− usp

(u(k)− u(k− 1))

 Q̃ := diag(Qy, R, S)

in which Q̃ := diag(Qy, R, S). The vector f (k) is simply a linear transformation of

the modified state, z, and measurement noise, v:

f (k) = F1z(k) + F2v(k) + F3ud −msp

in which

F1 =


Caug Caug

Kaug KaugLaugCaug

Kaug − h1 KaugLaugCaug − h1

 F2=


I

KaugLaug

KaugLaug

 F3 =


0

I

I

 (3.5)

and

h1 =

[
0m×n Im 0m×p

]
msp =

[
y′sp u′sp 0

]′

Therefore, f (k) has the distribution

f (k) ∼ N(m̃(k), P(k))

m̃(k) = F1m(k) + F3ud −msp

P(k) = F1S(k)F′1 + F2RvF′2

When m∞ and S∞ exist, then we calculate the time-invariant mean and variance
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of f as

m̃∞ = F1m∞ + F3ud −msp

P∞ = F1S∞F′1 + F2RvF′2

As the quadratic form of a normal variable, the stage cost has a generalized

chi-squared distribution, whose parameters are the matrix of the quadratic form,

Q̃; the mean of the signal, m̃; and variance of the signal, P (Cacoullos and Koutras,

1984). Although the generalized chi-squared distribution does not have a simple

explicit expression, from (3.4) we calculate the mean and variance of the stage cost

at time k as

E(`(k)) = tr(Q̃P(k)) + m̃(k)′Q̃m̃(k) (3.6)

var(`(k)) = 2tr(Q̃P(k)Q̃P(k)) + 4m̃(k)′Q̃P(K)Q̃m̃(k). (3.7)

If the conditions are satisfied for z to have a time-independent distribution, then

the distribution of ` is also time independent. The time-independent expressions

for the expectation of the stage cost and variance take the same form, but m̃(k)

and P(k) are replaced by m̃∞ and P∞:

E(`∞) = tr(Q̃P∞) + m̃′∞Q̃m̃∞ (3.8)

var(`∞) = 2tr(Q̃P∞Q̃P∞) + 4m̃′∞Q̃P∞Q̃m̃∞ (3.9)

in which `∞ denotes the steady-state stage cost (Searle, 1971 p.55–57, Mathai and

Provost, 1992 chap. 3-4). While (3.6) and (3.8) hold true regardless of the distribu-

tion of z, the expression for the variance given in (3.7) and (3.9) requires that the

signal be normally distributed.

The plant KPI is the sample average of the stage cost, so by the central limit

theorem, as the number of samples increases, the variance of the plant KPI ap-
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proaches a normal distribution. Letting K denote the plant KPI,

K =
1
T

T

∑
k=1

`(k)

in which T samples of the stage cost are used. The mean of the KPI is equal to the

mean of the stage cost:

E(K) = 1
T

T

∑
k=1

E(`(k)) = tr(Q̃P∞) + m̃′Q̃m̃

If the samples of the stage cost were independent, then the variance would be

equally simple:

var(K) = var

(
1
T

T

∑
k=1

`(k)

)
=

1
T2

T

∑
k=1

var (`(k)))

=
1
T
(
2tr(Q̃P∞Q̃P∞) + 4m̃′Q̃P∞Q̃m̃

)
However, in reality, each `(k) and `(k + j) are correlated, since each f (k) and

f (k + j) are correlated. Noting that

f (k) = F1z(k) + F2v(k) + constant

f (k + j) = F1Ãjz(k) + F1

j−1

∑
i=0

Atj−i−1G̃w̃(k + i) + F2v(k + j) + constant

we see that the correlation between f (k) and f (k + j) has two contributions:

(1) z(k) affects both f (k) and f (k + j)

(2) v(k) affects f (k) directly and affects f (k + j) through the noise term w̃(k)
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Accounting for these correlations, the variance of the KPI is written as

var(K) = 2
T

tr(Q̃P∞Q̃P∞) +
4
T
(
m̃′Q̃P∞Q̃m̃

)
+

4
T2

(
T−1

∑
j=1

(T − j)tr(Q̃(S f j + Swj)Q̃(S f j + Swj)
′)

)

+
8

T2

T−1

∑
j=1

(T − j)
(
m̃′Q̃(S f j + Swj)Q̃m̃

)
(3.10)

in which S f j := F1S∞(Ã′)jF′1 and Swj := F2 IwQ̃wG̃′(Ã′)j−1F′1. Note that S f j and Swj

depend on the index j and therefore cannot be factored out of the sum in (3.10).

S f j and Swj correspond to the correlation between f (k) and f (k + j) due to z(k)

and v(k), respectively. (3.10) is derived in Appendix 3.B.

3.3 simulation of benchmark distribution

While no closed-form probability distribution can be written for the stage cost, we

use a simulation to demonstrate its distribution. A linear unconstrained system,

with a perfect model and no deterministic disturbances, was simulated to generate

a set of outputs and inputs. From these data points, the stage cost, `(k), was

calculated at each time step according to (3.4). The stage costs are presented as

a histogram in Figure 3.1, with the sample mean and variance indicated. The

histogram shows the asymmetric density of the stage cost. Because the density is

highest close to zero, only an upper limit should be necessary when estimating a

confidence interval. As shown in Table 3.1, the sample mean and variance agree

well with their theoretical values calculated from the analytical formulas.

We used the same example to illustrate the distribution of the plant KPI. To

compute this histogram, we performed 1000 independent simulations for the same

system. In each simulation, we calculated `(k) at each time step k, and then found

the time average, 〈`(k)〉. A histogram of these sample averages is plotted in Figure
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Figure 3.1: Histogram of the stage cost, `(k) for 10000 samples. The solid green
line indicates the sample mean (achieved KPI) and is close to the theoretical expec-
tation (solid blue line). The thick dashed blue lines show two standard deviations
from the mean (using the theoretical values), and the thin dashed green lines lines
indicate the bins that contain 95% of the points.

3.2. The histogram shows that despite the fact that `(k) is distributed according

to the generalized chi-squared distribution, the sample average approaches a nor-

mal distribution. We overlay two normal probability density functions on the

histogram. Both densities use the theoretical mean for the KPI. The first density

uses the theoretical variance calculated under the (false) assumption that `(k) and

`(j) are independent. This variance is clearly too small compared to the histogram

data. The second normal distribution uses the theoretical variance given in (3.10),

Table 3.1: Sample and theoretical mean and variance for the stage cost example.

Mean Variance

Sample 2.52 11.39

Theoretical 2.56 11.55
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which correctly accounts for the correlations between `(k) and `(j). This second

density provides an excellent fit for the data in the histogram.
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Figure 3.2: Histogram of the time-averaged stage cost (plant KPI) for 1000 simu-
lations. The data looks approximately normally distributed and is compared to
theoretical probability density functions for two normal distributions. The dashed
green line uses the theoretical variance that does not account for correlations be-
tween the stage cost samples, and therefore is too narrow. The blue line uses the
theoretical variance that correctly accounts for the correlations; this density has an
excellent fit to the histogram data.

3.4 benchmark calculation with unmodeled deterministic distur-

bances

Zagrobelny et al. (2013) derive the theoretical KPI for the case when there is an

unmodeled deterministic disturbance corrupting the output, i.e.:

y = Cx + p + v

Here we generalize this derivation for the case of a deterministic disturbance that
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may affect both the input and the output:

x+ = Ax + Bu + Bp p + Gw y = Cx + Cp p + v

Although p affects y in a manner analogous to d, we treat p in a deterministic

manner, i.e. we assume that we know or can approximate p, rather than trying

describing this disturbance through a probability distribution. If we know or can

approximate the deterministic disturbance, p, for a limited number of samples

(0, T), the theoretical KPI can be compared with the actual plant KPI averaged

over a much longer time period, by the assuming the disturbance is periodic. The

KPI expectation in the presence of p represents the best performance achievable

given that the plant is affected by this disturbance.

The dynamic model including the disturbance p is written as

z+ = Ãz + B̃p p + G̃w̃ + zd

in which

B̃p =

(Aaug + BaugKaug
)

LCp

Bp,aug − AaugLCp

 Bp,aug =

Bp

0

 (3.11)

Bp,aug is the augmented version of Bp, and Ã, G̃, and zd have the same form as

previously given in (3.2). In Zagrobelny et al. (2013), B̃p takes the form

B̃p =

(Aaug + BaugKaug
)

Laug

−AaugLaug


which is equivalent to (3.11) when we assume an output disturbance model (Bp =

0 and Cp = I).
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Because p is deterministic, it affects the expectation of z but not its variance:

m+ = Ãm + B̃p p + zd

S+
∞ = ÃS∞ Ã′ + G̃Qw̃G̃′

We rewrite signal of interest, f (k) as

f (k) = F1z(k) + F2Cp p(k) + F2v(k) + F3ud −msp

in which F1, F2, F3, and msp are as previously defined in (3.5). This signal still has

a normal distribution, with the time varying mean and variance expressed as

m̃(k) = F1m(k) + F2Cp p(k) + F3ud −msp

P(k) = F1S(k)F′1 + F2RvF′2

Assuming that we know (or can estimate) the disturbance for T time points, we

write the expectation of the stage cost at time k as

E (`∞) =
1
T

T

∑
k=1

E (`(k))

Since the variance of z converges to a constant value, we write this expectation as

E (`∞) = tr
(
Q̃P
)
+

1
T

T

∑
k=1

E
(
m̃(k)′Q̃m̃(k)

)
The first term accounts for the effects of the white process and measurement

noises, whereas the second term accounts for the effects of the deterministic dis-

turbances.

The KPI for deterministic disturbances may also be useful for performance

monitoring during plant transitions, as changes in setpoints can be considered as

deterministic disturbances. In this case, the “disturbance” is known exactly and
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need not be approximated.

3.5 benchmark calculation from the innovation form of the model

As discussed in Section 4.1, several methods for disturbance model identification

focus on estimating the optimal filter gain and corresponding innovation variance,

rather than estimating the process and measurement noises Qw and Rv. Thus, we

seek to derive the KPI for the system in innovation form, which is written as

x+ = Ax + Bu + Bdd + Mxe

d+ = d + Mde

y = Cx + Cdd + e

in which e is white noise with zero mean and variance Re. Mx and Md denote the

optimal gains for the Kalman predictor, which we distinguish from the estimator

gains currently used by the controller, Lx and Ld. Lx and Ld may be suboptimal,

and therefore ε defined below may not be white. We write the current estimator

for the system as before:

x̂+ = Ax̂ + Bu + Bdd̂ + Lxε

d̂+ = d̂ + Ldε

ε = y− Cx̂− Cdd̂

Again we define the augmented state X :=
[

x′ d′
]′

and let X̃ = X− X̂. Then we

write the augmented system as

X = AaugX + Baugu + Mauge X̂ = AaugX̂ + AaugLaugCaugε

Y = CaugX + e ε = y− CaugX̂
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in which Aaug, Baug, and Laug are defined in (3.2) and Maug =

[
M′x M′d

]′
. Note

that we must have Md = 0 for the system to be stable. The input has essentially

the same form as before:

u = KaugX̂ + KaugLaugCaugX̃ + KaugLauge + ud

in which Kaug and ud are as defined in (3.13) in Appendix 3.A.

Again, letting z =

[
X̂′ X̃′

]′
we write the closed-loop system as

z+ = Ãz + M̃e + zd M̃ =

(Aaug + BaugKaug
)

Laug

Maug − AaugCaug


in which Ã and zd are as previously defined. Once again we define

m+ = Ãm + zd S+ = ÃSÃ′ + M̃Re M̃′

Note that the Lyapunov equation for S has changed slightly to account for the

different noise model. Using this definition of S, we derive the distribution of the

signal of interest and of the KPI in the same manner as before, replacing v(k) with

e(k) and Rv with Re as necessary.

3.6 benchmark calculation with plant model mismatch

Zagrobelny et al. (2013) also derive the KPI expectation for a system with plant

model mismatch. In this derivation, (Ap, Bp, Cp) denotes the true plant behavior

and (Am, Bm, Cm) denotes the model behavior. We do not repeat the derivation here

but suggest another application for it (in addition to giving a better theoretical

understanding of the behavior under plant model mismatch). Suppose the model

(Am, Bm, Cm) is currently used in the controller, but a more accurate model for the



40

system has been identified, which we call (Am2, Bm2, Cm2). We would not expect

the plant KPI to equal the theoretical KPI using the m-model, as this model does

not accurately describe the system. Neither would we expect the theoretical KPI

with the m2-model to match the plant KPI, as the m2-model is not used in the

controller. Instead, we propose using the mismatch formulas to calculate the KPI

given that the system is described by the m-model and the controller uses the

m2-model. This theoretical KPI corresponds to the expected performance of the

current controller. Since the KPI calculated from the m2-model corresponds to the

theoretical performance when the model used by the controller has been updated,

comparing the theoretical m/m2 KPI with the KPI using m2 alone would give an

idea as to the benefit implementing the new model in the controller.

3.7 constrained and nonlinear mpc monitoring

In addition to the LQG monitoring problem, the monitoring of constrained and

nonlinear MPC controllers is necessary in industrial applications. The previously

established fundamental relationships no longer apply because the second rela-

tionship is no longer true:

central limit theorem =⇒ normal distribution

normal + nonlinear system 6=⇒ normal distribution

Therefore we no longer have a distribution for the signals of the system and cannot

calculate the expectation or variance of the monitoring benchmark.

When we have systems with constraints or nonlinear systems, we cannot take

advantage of convenient analytical formulas in calculating metrics or describing

their statistics. In place of these formulas, however, we can use simulations and

Monte Carlo methods to estimate the metrics. By simulating the model, we can use

the sample average of the simulation stage cost as our theoretical KPI. Zagrobelny
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et al. (2013)) shows that the average stage cost for a linear, constrained system still

converges to a constant value, despite the more complicated nature of the system.

The simulated KPI serves as a theoretical benchmark based on the process model.

We can also use Monte Carlo methods to estimate the variance and confidence

intervals for the KPI. These confidence intervals allow comparison between the

simulated ideal KPI and the plant KPI.

3.8 appendices

3.a Steady-state target problem

We derive the linear control law that was used in Section 3.2.1 by defining the

target selector problem as

min
(xs,us)

1
2
(|us − usp|2Rs

+ |Cxs + Cdd̂s − ysp|2Qs
) (3.12)

s.t.

I − A −B

HC 0


xs

us

 =

 Bdd̂s

rsp − HCdd̂s


ysp and usp are the external setpoints provided to the controller, and xs and us are

the target values for the state and input given to the regulator. d̂s is the estimated

steady-state value for the disturbance, which is approximated as d̂ + Ldε. In the

case that we have more outputs than inputs, we select a subset of the outputs

(equal to the number of inputs), r = Hy, to control to the setpoint. If the number

of outputs is less than or equal to the number of inputs, we choose r = y. Using

the method of Lagrange multipliers, we solve (3.12) to express xs and us as

xs

us

 = T1


rsp

ysp

usp

+ T2d̂s
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in which T1 and T2 are given by

T1 =

I 0 0 0

0 I 0 0




C′QsC 0 −(I − A′) −C′H′

0 Rs B′ 0

I − A −B 0 0

HC 0 0 0



−1 

0 C′Qs 0

0 0 Rs

0 0 0

I 0 0



T2 =

I 0 0 0

0 I 0 0




C′QsC 0 −(I − A′) −C′H′

0 Rs B′ 0

I − A −B 0 0

HC 0 0 0



−1 

−C′QsCd

0

Bd

−HCd


Then we write u as

u = KaugX̂ + KaugLCaugX̃ + KaugLv + ud

ud =

([
0 I

]
− K

)
T1


rsp

ysp

usp


Kaug =

[
K Kd

]
, Kd =

([
0 I

]
− K

)
T2 (3.13)

ud is the constant term in every input and is only nonzero when nonzero set-

points are present. The inclusion of Kd is necessary to reject disturbances. See

Zagrobelny et al. (2013) for a more detailed derivation.



43

3.b Derivation of KPI variance

Before deriving the variance of the KPI, we note that for a vector x ∼ N(0, P), a

vector y that is independent of x, and constant matrices A and B,

E(x′Ayy′By) = 0 (3.14)

E(x′Axx′By) = 0 (3.15)

E(x′Axx′Bx) = tr(AP)tr(BP) + 2tr(APBP) (3.16)

The first equality follows from the expectation of x. The second and third equa-

tions are derived from Theorems 3.2d.2 and 3.2d.3 of Mathai and Provost (1992),

respectively, by considering the special case where the normal variable is zero

mean.

We begin our derivation by defining the signals

f (k) = F1z(k) + F2v(k) + fd z(k + 1) = Ãz(k) + G̃w̃(k) + zd

We assume that f (k) and z(k) have time-invariant distributions:

f ∼ N (m̃, P) z ∼ N (m, S)

in which we neglect the ∞ subscript on the variances. Note that v(k) and w̃(k) are

correlated. Letting Iw :=
[

0 0 I

]
, then v(k) = Iww̃(k).

The stage cost, `, is a quadratic form of the signal f and the KPI, K, is the time

average of `

`(k) = f (k)′Q̃ f (k) K =
1
T

T

∑
k=1

`(k)
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We write the variance of K as

var(K) = E(K2)−E(K)2 = E(K2)−
(
tr(Q̃P) + m̃′Q̃m̃

)2 (3.17)

From the definition of K,

E(K2) =
1

T2

T

∑
k=1

T

∑
j=1

E(`(k)`(j)) (3.18)

Since `(K) is a scalar, `(k)`(j) = `(j)`(k), and since the distribution of f (and `) is

time independent, `(k + i)`(k) = `(j + i)`(j). Therefore, we rewrite (3.18) as

E(K2) =
1
T

E
(
`(k)2)+ 2

T2

[
T−1

∑
j=1

(T − j)E(`(k)`(k + j))

]
(3.19)

Let f̄ (k) = f (k) − m̃ and z̄(k) = z − m, so that these signals are zero mean.

Then z̄+ = Ãz̄ + G̃w̃ and

` =
(

f̄ + m̃
)′ Q̃ ( f̄ + m̃

)
= ¯̀ + 2 f̄ ′Q̃m̃ + m̃′Q̃m̃

in which ¯̀ = f̄ ′Q̃ f̄ . To simplify our notation, we drop the time index (k) and use

the subscript j to denote the index (k + j).

We next evaluate the term E(``j) appearing in (3.19):

E(``j) = E
(

¯̀ ¯̀ j + 2¯̀ f̄ ′j Q̃m̃ + ¯̀m̃′Q̃m̃ + 2 f̄ ′Q̃m̃ ¯̀ j + 4 f̄ ′Q̃m̃ f̄ ′j Q̃m̃ + 2 f̄ ′Q̃m̃m̃′Q̃m̃

+m̃′Q̃m̃ ¯̀ j + 2m̃′Q̃m̃ f̄ ′j Q̃m̃ + (m̃′Q̃m̃)2
)

(3.20)

From (3.14), E( f̄ ′Q̃m̃m̃′Q̃m̃) = E(mt′Q̃m̃ f̄ ′j Q̃m̃) = 0, since E( f̄ ) = E( f̄ j) = 0. By

writing out the terms E( ¯̀ f̄ ′j Q̃m̃) and E( f̄ ′Q̃m̃ ¯̀ j) in terms of z and wj (which we

do not show for the sake of brevity), we see that these terms are also zero, by
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(3.14) and (3.15). Since E( ¯̀) = E( ¯̀ j), (3.20) reduces to

E(``j) = E( ¯̀ ¯̀ j) + 2E( ¯̀)m̃′Q̃m̃ + 4m̃′Q̃E( f̄ ′ f̄ ′j )Q̃m̃ +
(
m̃′Q̃m̃

)2 (3.21)

Further, since

f̄ = F1z̄ + F2v f̄ j = F1Ãj z̄ + F1

j−1

∑
i=0

Ãj−i−1G̃w̃i + F2vj

then

E( f̄ f̄ ′j ) = F1E(z̄z̄′)(Ã′)jF′1 + F2 IwE(w̃w̃′)G̃′(Ã′)j−1F′1

= F1S(Ã′)jF′1 + F2 IwQ̃wG̃′(Ã′)j−1F′1

Let S f j := F1S(Ã′)jF′1 and Swj = F2 IwQ̃wG̃′(Ã′)j−1F′1. Then E( f̄ f̄ ′j ) = S f j + Swj.

Since E(`) = tr(Q̃P), we write (3.21) as

E(``j) = E( ¯̀ ¯̀ j) + 2tr(Q̃P)m̃′Q̃m̃ + 4m̃′Q̃S f jQ̃m̃ + 4m̃′Q̃SwjQ̃m̃ + (m̃Q̃m̃)2

E(``) = E( ¯̀ ¯̀) + 2tr(Q̃P)m̃′Q̃m̃ + 4m̃′Q̃PQ̃m̃ + (m̃′Q̃m̃)2

From these expressions and the fact that 1
T + 2

T2

(
∑T−1

j=1 (T − j)
)

= 1, (3.19)

reduces to

E(K2) =
1
T

E
( ¯̀2)+ 4

T
(
m̃′Q̃PQ̃m̃

)
+

2
T2

(
T−1

∑
j=1

(T − j) ¯̀ ¯̀ j

)

+
8

T2

T−1

∑
j=1

(T − j)tr
(
Q̃(S f j + Swj)Q̃m̃m̃′

)
+ 2tr(Q̃P)m′Q̃m + (m̃′Q̃m̃)2 (3.22)

To further reduce (3.22), we find E( ¯̀ ¯̀ j). Letting ω̃ = ∑
j−1
i=0 Ãj−i−1G̃w̃, we write
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¯̀ and ¯̀ j as

¯̀ = z̄′F′1Q̃F1z̄ + 2z̄′F′1Q̃F2 Iww̃ + w̃′ I′wF′2Q̃F2 Iww̃

¯̀ j = z̄′(Ã′)jF′1Q̃F1Ãj z̄ + 2z̄′(Ã′)jF′1Q̃F1ω̃ + 2z̄′(Ã′)jF′1Q̃F2vj + ω̃′F′1Q̃F1ω̃

+ 2ω̃F′1Q̃F2vj + v′jF
′
2Q̃F2vj

Then we have

E( ¯̀ ¯̀ J) = E
(

z̄′F′1Q̃F1z̄z̄′(Ã′)jF′1Q̃F1Ãj z̄
)

︸ ︷︷ ︸
q1

+E
(
z̄′F′1Q̃F1z̄ω̃′F′1Q̃F1ω̃

)︸ ︷︷ ︸
q2

+ E
(

z̄′F′1Q̃F1z̄v′jF
′
2Q̃F2vj

)
︸ ︷︷ ︸

q3

+4 E
(

z̄′F′1Q̃F2 Iww̃z̄′(Ãj)′F′1Q̃F1ω̃
)

︸ ︷︷ ︸
q4

+ E
(

w̃′ I′wF′2Q̃F′2 Iww̃z̄(Ã′)jF′1Q̃F1z̄Ãj z̄
)

︸ ︷︷ ︸
q5

+E
(
w̃′ I′wF′2Q̃F2 Iww̃ω̃′F′1Q̃F1ω̃

)︸ ︷︷ ︸
q6

+ E
(

w̃′ I′wF′2Q̃F′2 Iww̃v′jF
′
2Q̃F2vj

)
︸ ︷︷ ︸

q7

(3.23)

We reduce the odd terms as

q1 = tr((Ã′)jF′1Q̃F1ÃjS)tr(F1Q̃F1S) + 2tr(F′1Q̃F1S(Ã′)jF′1Q̃F1ÃjS)

q3 = tr(F′1Q̃F1S)tr(F′2Q̃F2Rv)

q5 = tr(F′2Q̃F2Rv)tr((Ã′)jF′1Q̃F1ÃjS)

q7 = tr2(F′2Q̃F2Rv)

To simplify q2, we begin with

E(ω̃ω̃′) =
j−1

∑
i=0

Ãj−i−1G̃Q̃wG̃′(Ã′)j−i−1 =
j−1

∑
i=0

ÃjG̃Q̃wG̃′(Ã′)j = S− ÃjS(Ã′)j

in which the last step follows from the Lyapunov equation for S. Then q2 reduces
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as follows:

q2 = tr(F′1Q̃F1S)tr(F′1Q̃F1E(ω̃ω̃′)) = tr2(F′1Q̃F1S)− tr(F′1Q̃F1S)tr(F′1Q̃F1SÃjS(Ã′)j)

q4 reduces according to

q4 = E
(

z̄′F′1Q̃F2 Iww̃z̄′(Ãj)′F′1Q̃F1ω̃
)
= E

(
z̄′F′1Q̃F2 Iww̃ω̃′F′1Q̃F1Ãj z̄

)
= tr(F′1Q̃F2 IwQ̃wG̃′(Ã′)j−1F′1Q̃F1ÃjS)

To simplify q6, first we separate the term of the form w̃′A′w̃w̃′Bw̃ from the terms

of the form w̃′Aw̃wt′jBw̃j. These last terms simplify easily since w̃ and w̃j are

independent:

q6 = E
(
w̃′ I′wF′2Q̃F2 Iww̃ω̃′F′1Q̃F1ω̃

)
= E

(
w̃′ I′wF′2Q̃F2 Iww̃w̃′G̃′(Ã′)j−1F′1Q̃F1Ãj−1G̃w̃

)
+ tr(F′2Q̃F2Rv)

j−1

∑
i=1

tr(F′1Q̃F1Ãj−i−1G̃Q̃wG̃′(Ã′)j−i−1)

We write out the first term using (3.16):

q6 = 2tr
(

I′wF′2Q̃F2 IwQ̃wG̃′(Ã)′j−1F′1Q̃F1Ãj−1G̃Q̃w

)
+ tr(F′2Q̃F2Rv)tr((Ã)′j−1F′1Q̃F1Ãj−1G̃Q̃wG̃′)

+ tr(F′2Q̃F2Rv)
j−2

∑
i=0

tr(F′1Q̃F1ÃiG̃Q̃wG̃′(Ã′)i)

We further simplify q6 based on the Lyapunov equation for S:

q6 = 2tr
(

I′wF′2Q̃F2 IwQ̃wG̃′(Ã)′j−1F′1Q̃F1Ãj−1G̃Q̃w

)
+ tr(F′2Q̃F2Rv)tr(F′1Q̃F1S)− tr(F′2Q̃F2Rv)tr(F′1Q̃F1ÃjS(Ã′)j)
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Next we replace each qi term in (3.23). As we do so, note that the first term in

q1 cancels with the second term in q2 and q5 cancels with the last term in q6. Then

we have

E( ¯̀ ¯̀ J) = 2tr(F′1Q̃F1S(Ã′)jF′1Q̃F1ÃjS) + 4tr(F′1Q̃F2 IwQ̃wG̃′(Ã′)j−1F′1Q̃F1ÃjS)

+ 2tr
(

I′wF′2Q̃F2 IwQ̃wG̃′(Ã)′j−1F′1Q̃F1Ãj−1G̃Q̃w

)
+ tr2(F′1Q̃F1S)

+ tr(F′2Q̃F2Rv)tr(F′1Q̃F1S) + tr(F′1Q̃F1S)tr(F′2Q̃F2Rv) + tr2(F′2Q̃F2Rv)

The last four terms simplify to tr2(F′1Q̃F1S + F′2Q̃F2Rv) = tr2(Q̃P) from the defini-

tion of P. Therefore,

E( ¯̀ ¯̀ j) = 2tr(F′1Q̃S f jQ̃F1ÃjS) + 4tr(F′1Q̃SwjQ̃F1ÃjS) + 2tr(I′wF′2Q̃SwjQ̃F1Ãj−1G̃Q̃w)

+ tr2(Q̃P)

= 2tr(Q̃(S f j + Swj)Q̃(S f j + Swj)
′) + tr2(Q̃P)

Since E( ¯̀2) = E
(

f̄ ′Q̃ f̄ f̄ ′Q̃ f̄
)
= 2tr(Q̃PQ̃P) + tr2(Q̃P), (3.22) simplifies to

E(K2) =
2
T

tr(Q̃PQ̃P) +
4
T
(
m̃′Q̃PQ̃m̃

)
+

4
T2

(
T−1

∑
j=1

(T − j)tr(Q̃(S f j + Swj)Q̃(S f j + Swj)
′)

)

+
8

T2

T−1

∑
j=1

(T − j)
(
m̃′Q̃(S f j + Swj)Q̃m̃

)
+ tr2(Q̃P) + 2tr(Q̃P)m′Q̃m + (m̃′Q̃m̃)2 (3.24)
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and from (3.17), we have the variance of the plant KPI:

var(K) = 2
T

tr(Q̃PQ̃P) +
4
T
(
m̃′Q̃PQ̃m̃

)
+

4
T2

(
T−1

∑
j=1

(T − j)tr(Q̃(S f j + Swj)Q̃(S f j + Swj)
′)

)

+
8

T2

T−1

∑
j=1

(T − j)
(
m̃′Q̃(S f j + Swj)Q̃m̃

)
(3.25)
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4
D I S T U R B A N C E M O D E L I D E N T I F I C AT I O N B A C K G R O U N D

4.1 review of disturbance model identification

Methods for identifying noise covariances fall into the categories of Bayesian es-

timation, maximum likelihood estimation, covariance matching, correlation tech-

niques (including the ALS method), and subspace ID methods. Before reviewing

the other methods, we discuss subspace ID techniques, which have recently gained

popularity. These methods are primarily designed for process model identifica-

tion but also identify the noise statistics (Ljung, 1999; Qin, 2006). Subspace ID

methods use least-squares regression to identify a characteristic subspace of the

input-output data; the system matrices and noise statistics are then extracted from

this subspace (Van Overschee and De Moor, 1995). Originally designed for open-

loop data, these ID methods have been modified for use on closed-loop data (Qin,

2006). Because subspace ID methods identify the system matrices as well as the

noise statistics, the input must be persistently exciting in order to accurately iden-

tify the input matrix B (Ljung, 1999). Rather than finding the driving process and

measurement noises, these methods identify the innovation covariance and the

optimal estimator gain (Qin, 2006). While this noise model can be used in perfor-
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mance monitoring (as discussed in Section 3.5) and provides the optimal Kalman

filter, knowledge of the process and measurement noise covariances provides a

more inherent understanding of the disturbances affecting the system. There-

fore, finding these noise covariances allows more flexibility in estimator design

and provides more information towards performance monitoring (Rajamani and

Rawlings, 2009). In addition, subspace ID methods have not been used to identify

the disturbance model for a system containing integrators. Such a method would

require using a grey-box model to identify the system matrices.

Like subspace ID methods, the general Bayesian estimation problem presented

by Mehra (1972) may also include both unknown deterministic and unknown

stochastic parameters. However, this method is easily reduced to the case in which

the only unknowns are the elements of Qw and Rv. Implementing this method in

practice is challenging both because of the a priori knowledge required, as the

user must choose prior probabilities for Qw and Rv, and because of the computa-

tional requirements, as the method requires integration over a large dimensional

space. Matisko and Havlena (2013) proposed a Bayesian method in which Qw and

Rv are the only unknown parameters. In this method, a grid of possible (Qw, Rv)

pairs is created, and the Kalman filter is designed for each (Qw, Rv) pair. Then

state estimation is performed using each Kalman filter, and the likelihood and

posterior probability are computed. The covariance estimates are chosen as either

the maximum a posteriori estimate or the mean-square estimate. The authors pro-

posed using a Monte Carlo method to generate a (Qw, Rv) grid with more density

near the highest probability.

Unlike Bayesian estimation, maximum likelihood methods do not rely on

knowledge of a prior distribution. Like subspace ID methods, several early max-

imum likelihood methods also focus on finding filter parameters (Mehra, 1969,

1972; Kashyap, 1970). The process and measurement noise covariances are then

extracted from these results (under certain conditions). Mehra (1969) wrote the



52

likelihood for a SISO system in terms of the optimal innovation, which is maxi-

mized with respect to unknown deterministic parameters, the optimal filter gain,

and the innovation variance. He proposed using correlation techniques to find the

initial guess for the MLE problem. Kashyap (1970) proposed a three part max-

imum likelihood estimation scheme for a multivariable time series system. First

the deterministic parameters are estimated, then the optimal filter parameters are

estimated using these results, and finally the noise covariances are estimated from

the optimal filter parameters (under certain identifiability assumptions). Likewise,

in the maximum likelihood method of Mehra (1972) first finds the Kalman filter

and innovation variance are estimated for a state space model, and then Qw and

Rv are found when uniqueness conditions are met.

More recently, Bohlin and Graebe (1995) and Kristensen, Madsen, and Jør-

gensen (2004) used maximum likelihood or Bayesian estimation to estimate pa-

rameters in a grey-box model. The general grey-box model has a known structure

but some parameters, which can include the noise covariances, are unknown. The

system discussed is a set of stochastic ordinary differential equations linearized

using the extended Kalman filter.

Since direct maximum likelihood methods require solving a nonlinear opti-

mization problem, Shumway and Stoffer (1982) proposed an iterative method us-

ing the expectation maximization (EM) technique. In the EM method, an initial

guess of the unknown parameters is chosen, and the states are estimated from the

current parameter estimate via the Kalman smoother. Then the unknown param-

eters are updated by maximum likelihood estimation assuming that the states are

equal to the smoother estimates. Since the states are known, this maximization

step simplifies to simple algebraic equations. This process of estimating the states

using the Kalman smoother and optimizing the parameters using MLE is repeated

until the parameters converge.

Bavdekar, Deshpande, and Patwardhan (2011) developed both a direct max-



53

imum likelihood method and an EM method for nonlinear systems, based on

the extended Kalman filter. The direct maximum likelihood method is written

in terms of the innovations, which are calculated at each iteration of the opti-

mizer. Since the innovations are white under the optimal estimator, the likelihood

for the entire data set can be separated into the likelihoods for each innovation.

This MLE method assumes that the deterministic system parameters are known.

Like the direct MLE method, the EM method also only estimates Qw and Rv,

whereas Shumway and Stoffer (1982) estimated the state transition matrix, A, as

well as the noise covariances. Both the maximum likelihood and expectation max-

imization methods of Bavdekar et al. (2011) accurately identified Qw and Rv in

simulation and led to improved estimation for laboratory data. They applied both

methods to systems with measurements sampled at multiple rates. Li and Badg-

well (2014) applied the EM method of Bavdekar et al. (2011) to linear systems and

expanded this method to cases in which the noise-shaping matrix G is known.

Several examples demonstrated that this method reduces the variance of the esti-

mates compared to the ALS method.

The maximum likelihood estimation problem is discussed in detail in Chap-

ter 8. By assuming that the deterministic system matrices are known, we reduce

the maximum likelihood problem to estimation of parameters affecting the co-

variance of a normally distributed signal. The estimation of the covariance of a

normal distribution when the entire covariance matrix is unknown is discussed

in detail in Anderson and Olkin (1985). Whereas Anderson and Olkin (1985) as-

sumed complete freedom in the covariance matrix, Magnus (1978) studied the

case in which the covariance matrix is a function of some number of unknown

parameters. He derived first and second order conditions for the maximum like-

lihood estimator of the mean and covariance. An iterative method was proposed

for the case when these equations cannot be solved analytically.

Covariance matching techniques are less computationally expensive than Bayesian
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or maximum likelihood estimation. In these methods, the disturbance model is

identified by matching the covariances of the optimal innovations with their theo-

retical values (Myers and Tapley, 1976). The iterative method proposed in Myers

and Tapley (1976) is not guaranteed to converge or to produce semidefinite re-

sults. Odelson (2003) presents a more detailed analysis of these techniques, which

shows that they produce biased results, as the covariances do not provide enough

information to estimate the noise matrices. In more recent modifications to this

method, the measurement noise covariance is assumed to be known, and only the

process noise covariance matrix is estimated (Valappil and Georgakis, 2000; Tzou

and Lin, 2001).

Rather than considering only the covariances of the innovations, in the correla-

tion techniques of Mehra (1970, 1972), the noise model is chosen to fit the autocor-

relations (or autocovariances) of the innovations at different lags. By considering

different lags, these techniques extracts more information from the measurement

than does covariance matching. These methods need not be iterative, although

using the optimal estimator gain may reduce the variance of the results (Mehra,

1972). While the original method involved multiple steps, the ALS technique

reduces the correlation-based method to a single least-squares problem (Odelson,

Rajamani, and Rawlings, 2006; Rajamani and Rawlings, 2009). The covariances are

forced to be positive semidefinite by using a log-barrier penalty method (Odelson

et al., 2006). The resulting optimization problem is convex, although the objective

is no longer quadratic (Odelson et al., 2006). When there is not enough informa-

tion to estimate the full process noise covariance matrix, the problem is modified

to find the solution with the fewest number of independent noises (Rajamani and

Rawlings, 2006). The ALS approach is also used to estimate the optimal noises

for integrating disturbances used to provide offset-free control (Rajamani, Rawl-

ings, and Qin, 2009). The ALS method is described in more detail in the following

section.
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4.2 summary of the als method

Letting x̂(k) denote the Kalman predictor of x(k), we define the state estimate

error x̂ and L-innovation Y as

ε(k) := x(k)− x̂(k) Y (k) := y(k)− Cx̂(k)

Then we write the evolution of these errors as

ε(k + 1) = Āε(k) + Gw(k)− ALv(k) Y = Cε(k) + v(k)

in which Ā := A− ALC. Letting P be the covariance of ε, the autocovariances of

Y are

E
(
Y (k)Y (k)′

)
= CPC′ + R

E (Y (k + j)Y (k)) = CĀjPC′ − CĀj−1ALRv

We combine the autocovariances from lag 0 to lag N − 1 into a single equation:

E


Y (k)Y (k)′

...

Y (k + N − 1)Y (k)′

 = OPC′ + ΓRv (4.1)

in which

O =



C

CĀ
...

CĀN−1


Γ =



Ip

−CAL
...

−CĀN−2AL


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P is related to Qw and Rv through the Lyapunov equation

P = ĀPĀ′ + GQwG′ + ALRvL′A′ (4.2)

Next we rewrite (4.1) in terms of vec(Qw) and vec(Rv), in which the vec operator

stacks the column of a matrix. In doing so, we use the identity

vec (AXB) =
(

B′ ⊗ A
)

vec(X)

in which ⊗ denotes the Kronecker product. To eliminate P from (4.1), we vectorize

(4.2), solve for vec(P), and substitute this value of vec(P) into the vectorized form

of (4.1). Thus we obtain the equation

b := vec

E


Y (k)Y (k)′

...

Y (k + N − 1)Y (k)′


 = A

(Qw)ss

(Rv)ss



in which

A =

[
A1 A2

]
A1 = (C⊗O) (In2 − Ā⊗ Ā)

−1
(G⊗ G)Dn

A2 =
(
(C⊗O) (In2 − Ā⊗ Ā)

−1
(AL⊗ AL) +

(
Ip ⊗ Γ

))
Dp

and (Qw)ss denotes the vector containing the lower-triangular elements of Qw.

For a symmetric matrix, (Qw)ss completely describes Qw. The duplication Dn is

defined such that it satisfies vec(Qw) = Dn(Qw)ss (Magnus and Neudecker, 1999,

p.49).

The matrix A is completely known from the state space model and estimator.

We use the model and estimator to calculate the state estimate x̂ and then find
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Y = y− Cx̂. We calculate estimate b using the sample autocovariances of Y ; we

refer to this estimate as b̂. Then we solve the least-squares problem

min
Qw,Rv
‖A

(Qw)ss

(Rv)ss

− b̂‖2
W

The choice of the weight W has significant impact on the variance of the estimates;

choosing this weight is discussed in Section 6.2.

The estimator that we use to calculate Y does not need to be same estimator

that the controller is currently using, provided that the same estimator is used to

calculate both Y and A . When the estimator used by the controller is unknown,

or when the autocovariances of the innovations decay too slowly, we recommend

choosing a different initial estimator for the ALS problem.

We add semidefinite constraints to this problem in order to guarantee that

Qw and Rv are feasible. As discussed in more detail in Section 4.3, the problem

has a unique solution if and only if A is full rank. In the case that A loses

rank, Rajamani and Rawlings (2009) suggest seeking the minimum number of

independent process noises by penalizing tr(Qw). This method uses trace as a

substitute for rank in order to maintain a convex problem. The complete ALS

problem is then written as

min
Qw,Rv
‖A

(Qw)ss

(Rv)ss

− b̂‖2
W + tr(Qw) subject to Qw ≥ 0, Rv ≥ 0

4.3 uniqueness conditions for the als method

The necessary conditions for the ALS estimate to be unique are discussed in

both Odelson et al. (2006) and Rajamani and Rawlings (2009). Here we offer a

more complete discussion especially as concerns unobservable systems. Before
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we begin this discussion, we note that for any given system, the full matrix ALS

problem has a unique solution if and only if there is a unique solution to the

single matrix ALS column, as shown in Appendix 4.A. Because of this property,

the uniqueness conditions discussed below hold true for both formulations of the

ALS problem. We also note that for A to be full rank, then both A1 and A2 must

be full column rank (although the converse does not necessarily hold). Therefore,

if a condition is necessary for A1 to be full column rank, then that condition is

necessary for A to be full column rank.

Before discussing the conditions for uniqueness given in the literature, we

note that a unique solution to the ALS problem exists only if the following two

necessary conditions are satisfied:

1. G is full column rank. (Note that this condition implies g ≤ n.)

2. g(g+1)
2 ≤ np

To prove Condition 1, we first observe that if G is not full column rank, then

G ⊗ G has a non-zero null space. Further, from Hua (1990, Theorem 2), if G

is not full column rank, there exists a symmetric matrix X 6= 0 such that (G ⊗

G)vec(X) = 0. Therefore, (X)ss lies in the null space of A1, and the ALS problem

does not have a unique solution.

Condition 2 holds because A1 is the product of three matrices and therefore its

rank is less than or equal to the rank of each of those matrices:

rank(A1) ≤ min
(
rank(C⊗O), rank(In2 − Ā⊗ Ā), rank((G⊗ G)Dg)

)
For n ≥ p, this condition simplifies to

rank(A1) ≤ min
(
np, n2, g(g + 1)/2

)
= min (np, g(g + 1)/2)

Since the number of columns in A1 equals the number of unknowns in Qw, g(g +
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1)/2, if this quantity is larger than np, the matrix A1 is not full column rank and

the ALS estimates are not unique. Although these conditions are necessary, they

are not sufficient, as shown in the following discussion.

In the correlation-based method in Mehra (1970), the following conditions are

assumed:

A. (A, C) is observable.

B. (A, G) is controllable.

C. A is full rank.

D. The number of unknowns in Qw is less than or equal to np.

Odelson et al. (2006) further examined these conditions and demonstrated that

they are not sufficient.

The condition that (A, C) be observable is necessary in the case when the noise

shaping matrix G is unknown, as is disccused in more detail in Section 6.1.1. How-

ever, if G is known, then (A, C) need not always be observable because the process

noise covariance may be estimated from the observable states alone (Odelson et al.,

2006).

The condition that (A, G) be controllable is not necessary for the ALS problem

to have a unique solution. As a counter example, consider

A =

0.1 0

0 0.2

 G =

2

1

 C =

[
1 2

]

Although (A, G) is uncontrollable, the ALS matrix is still full rank. In general, hav-

ing (A, G) uncontrollable may mean that there are fewer independent unknowns

to consider, and so we can more easily solve the problem.

The condition that A be full rank allows the conditions for uniqueness to be

greatly simplified as in Rajamani and Rawlings (2009). As mentioned in Rajamani



60

and Rawlings (2009), if A is singular, then the singular modes can be removed,

and the system can be redefined with a non-singular A. If G is unknown and A

is singular, the ALS estimate is not unique, as discussed in Theorem 1 in Section

6.1.1.

Note that Mehra’s Condition D is the same as Condition 1 above and is there-

fore necessary. When G is unknown, we apply more stringent condition on the

number of unknowns given in Lemma 13 of Rajamani and Rawlings (2009), which

implies that the solution is not unique whenever n > p. This more strict condition

is also given in (Mehra, 1972). From this condition, it follows that whenever p ≤ n

in the non-augmented system and integrators are added to the states, there is not a

unique solution to the ALS problem (when G is unknown). Odelson (2003) claims

the condition n > p is unnecessary; however, his counter-example was based on

the assumption that Qw is known to be diagonal.

As mentioned in Odelson et al. (2006), Conditions A-D are not sufficient.

Whether or not the ALS problem has a unique solution depends also on the struc-

ture of the matrices A, C, and G. For example, consider the system

A =



0.09

0.27

0.08

0.05


C =

3 4 0 0

0 0 1 7



with two different noise-shaping matrices,

G1 =



0.3 0 0

0 0.9 0

0 0 0.5

0 0 1


G2 =



0.3 0 0

0 0.9 0

−1 0 0.5

0 0 1


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In both cases, (A, C) is observable, (A, G) is controllable, and A is full rank. The

condition on the number of unknowns is satisfied for both systems since np = 8

and g(g + 1)/2 = 6. However, we have a unique ALS solution when we use G2,

but not when we use G1. Therefore, the uniquess of the solution depends both

on the structure of the system and on the number of unknowns relative to the

number of outputs.

4.4 methods to assess the als results

When using the ALS method in practice, it is necessary to evaluate the accuracy

of the solution before implementing any changes to the controller or using the co-

variances in MPC monitoring. In some simple simulations, the estimated values

of Qw and Rv can be compared to their true values. However, whenever determin-

istic disturbances are present (even in simulation), we deliberately introduce plant

model mismatch by approximating these disturbances as integrated white noise.

Therefore, we no longer have a “true” value of Qw against which to compare the

ALS results. When using industrial data sets, we also do not know the true noise

covariances. Therefore, we propose two methods to assess the accuracy of the ALS

results:

1. Assess the goodness-of-fit of the least-squares problem.

2. Assess the performance of the redesigned estimator.

4.4.1 Assess the goodness-of-fit of the least-squares problem

In the ALS algorithm, we first calculate the sample autocovariances of the L-

innovations, which form the vector b̂. Let

bALS := A

(Qw)ss

(Rv)ss





62

In the ALS method, we choose Qw and Rv such that bALS is as close to b̂ as possible

in a least-squares sense. One way to qualitatively assess this result is to plot the

elements of b̂ and the elements of bALS on the same axis and compare the two

curves. To make the plots easier to view, we separate b̂ and bALS into the autoco-

variances of each output and cross-covariances between each pair of outputs. We

create a p× p grid of plots. The diagonal plots show the autocovariances of each

output. The plot in the (i, j)th position shows the cross-covariance between Y (i)

and Yin(j), cov(Yi(k), Yj(k− l)). The x-axis of each plot is the lag l.

An example of the autocovariance plots is shown in Figure 4.1. The top four

subplots show the sample autocovariances and fits produced by the ALS method

using a perfect model. In each of the four plots, the curves are in good agreement

with each other, indicating that the ALS solution has fit the data well. The bottom

set of plots shows the results of the ALS problem with a large amount of model

mismatch; in this case, the fit is poor for the cross-covariances. The theoretical

autocovariances at lag zero also do not fit the sample autocovariances (seen in

the diagonal plots). Note that when studying these plots, we only consider is

whether the theoretical and sample autocovariances match each other well; we

do not consider whether or not the estimator is behaving optimally. Since we

use the suboptimal initial estimator to form these plots, we would not expect to

see optimal estimator behavior. We discuss the optimal estimator behavior in the

following section.

4.4.2 Assess the performance of the redesigned estimator

We also assess the quality of the ALS results by using these results to design a

new estimator and then assessing the quality of the estimator performance. In

the absence of plant-model mismatch, when the noises are white and the noise

covariances are known accurately, the Kalman filter produces white innovations.

The innovations are white because the filter extracts all the useful information
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Figure 4.1: Example of plots to assess the goodness-of-fit for the ALS method. The
top four plots show that the theoretical autocovariances using the ALS estimates
match the sample autocovariances from data. In the bottom four plots, plant
model mismatch has caused significant error in the ALS estimates. The theoretical
autocovariances no longer match the sample autocovariances.
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from the measurements but does not over-predict based on the random noises

corrupting the measurements. Therefore, we assess the accuracy of the ALS esti-

mates by determining if they produce a Kalman filter with white innovations. To

do so, we tune the Kalman filter based on the estimates Qw and Rv, process the

data using this estimator, and study the autocovariances of the resulting innova-

tions. In procesing the data, we can consider either the same data set that was

used to estimate Qw and Rv or a new data set from the same process.

When processing the data, we compute the new innovations, YALS(k) = y(k)−

Cx̂ALS(k), where the state estimates come from the new Kalman filter. We then

calculate the autocovariances and cross-covariances at different lags. For the ideal

estimator, any auto- or cross-covariance may be nonzero at lag zero, but should

be zero for all higher lags.

When estimator gain is optimal, this optimality does not guarantee that Qw

and Rv are correct. For example, the estimator gain remains constant when both

noise covariances are scaled by the same factor. However, assessing the goodness-

of-fit as described in the previous section ensures that the measurement noise is

on the correct order of magnitude. We further discuss optimal estiamtor behavior

in the following section.

4.4.3 Guide to autocovariance plots

To understand how to interperet the autocovariance plots, we study Figure 4.2,

which shows ideal estimator behavior for the system

A =



0.5 0 0 0

0 0.5 0.1 0

0 0.1 0.5 0

0 0 0 0.15


C = I4 G =



1 0

0 1

0 1

0 −0.15


Qw = I2 Rv = 0.5I4
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In the determinstic part of the system, (A, C), y1 and y4 are completely in-

dependent from the other outputs, whereas y2 and y3 are correlated with each

other. The measurement noises corrupting each output are uncorrelated with

each other. Two process noises affect the system, w1 and w2, corresponding to the

two columns of G. The noise w1 affects the first state but not the other states (due

to the structure of A). Thus, since y1 = x1, w1 affects only the output y1. Likewise,

the noise w2 affects states y2, y3, and y4 but not y1.

In Figure 4.2, the plots along the main diagonal in the figure show the autoco-

variances of each innovation with itself. For each innovation, there is significant

autocovariance at lag zero, but the autocovariances are zero at higher lags. The

cross-covariances between y1 and the other outputs (the plots in the first column

and the first row) remain within the confidence intervals at all lags, including lag

zero. This complete lack of correlation indicates that y1 is independent from all of

the other outputs.

In this system, y2 and y3 are identical to each other except for the measurement

noise. The strong correlation is evident in the cross-covariance plots between y2

and y3 (the plots in the (2,3) and (3,2) positions). These cross-covariances are non-

zero at lag zero, but again the covariances are zero at higher lags. Although in the

deterministic system, y4 is independent from the other outputs, it is correlated to

y2 and y3 through the process noise. Since the correlation is negative (as can be

seen from the matrix G), the cross-covariance between y4 and y2 or y3 is negative.

As in all the plots, the correlation is only present at lag zero, indicating that the

estimator is optimal.

Note that the autocovariances at higher lag are not symmetric. To illustrate

this point, consider the cross-covariances between y1 and y4. The plot in the (1,4)

position shows the covariances between Y1(k) and Y4(k − j) and the plot in the

(4,1) position shows the covariances between Y4(k) and Y1(k − j). These two

covariances are identical at lag zero but differ at higher lags.
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Figure 4.2: Example of autocovariances for an optimal estimator. The auto- and
cross-covariances are non-zero only at lag zero.
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Figure 4.3: Output and disturbance for the simple example.

Next we illustrate suboptimal estimator behavior by studying a small model

consisting of one state and one output with an integrating disturbance added to

the output. The true system is affected by a repeated step disturbance, which

can be estimated well by the integrated disturbance model. The output and dis-

turbance are shown in Figure 4.3. We compare the performance of the optimal

estimator with suboptimal estimators. This comparison gives a qualitative idea of

the autocovariance patterns that result from different incorrect noise models.

The top plot shows the optimal behavior for the estimator (as determined from

the ALS results), in which the only significant autocovariance is at lag zero. The

second row shows the effect of having an incorrect measurement noise. When

the measurement noise is too large, the effect of the measurement is undermod-

eled, i.e. the estimator makes little use of the current measurement. As a result,

correlation remains present at higher lags. When Rv is too small, we are essen-

tially overmodeling the effect of the measurement. The measurement noise is not

adequately filtered and has too strong of an effect on the state estimate, result-

ing in the negative autocovariance at lag one. When Qw is too large, we also

see this characterstic negative autocovariance at lag one, since the filter treats the

measurements as being more accurate than they are in reality. In addition, the au-

tocovariances do not decay to zero, because the integrator is hardly used. When
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Qw is too small, the autocovariances are slightly oscillatory, as the information

from the measurements is not being fully used. The autocovariances when Qd is

too large look similar to those when Rv is too small, but they also rise to zero more

slowly after lag one. When Qd is too small, the autocovariances are characterized

by a very slow decay to zero at higher lags.

From inspection of the autocovariance plots we obtain some idea as to what

errors are present. However, it would be difficult to develop an accurate noise

model by inspection alone. Even with the simple example above, many errors

in the noise model have similiar effects (for example when Rv is too small and

when Qd is too large). For larger systems with many states and outputs, the

numerous variance and covariances would be impossible to identify by inspecting

the autocovariances alone.

4.5 appendices

4.a Proof of equivalence between single column and full matrix ALS techniques

We define the autocovariance matrix as

R(N) =


YkY

′
k . . . YkY

′
k+N−1

...
. . .

...

Yk+N−1Y
′

k . . . YkY
′

k

 =

[
R1(N) R2(N) . . . RN(N)

]

which vectorizes to

vec (R(N)) =

[
vec(R1(N))′ vec(R2(N))′ . . . vec(RN(N))′

]′

= Afull

vec(Qw)

vec(Rv)


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Figure 4.4: Autocovariances under different noise model mismatch scenarios.
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in which A f ull is the matrix A for the full matrix ALS method as defined in Odel-

son et al. (2006). Since the autocovariances in R2 . . . RN are duplicates of the

autocovariances in R1, we can write each vec(Ri(N)) as a linear combination of

the elements of vec(R1(N)):

vec (R(N)) =



INp2

J2

...

JN


vec(R1(N)) =



INp2

J2

...

JN


A

vec(Qw)

vec(Rv)



in which A is the matrix for the single column ALS method. Therefore, the

matrices for the full matrix and single column ALS methods are related as

A f ull =



INp2

J2

...

JN


A

Since the matrix
[

INp2 J′2 . . . J′N

]′
is always full column rank, Afull is full col-

umn rank if and only if A is full column rank.
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5
I N T E G R AT I N G D I S T U R B A N C E M O D E L S

5.1 purpose of integrating disturbance models

Although the Kalman filter (with correct noise covariances) calculates optimal

state estimates in the presence of zero-mean white noises, it does not accurately

estimate the states in the presence of non-zero mean disturbances. As a result, the

regulator is not able to remove the effect of these disturbances. To obtain offset-

free control in the presence of unmeasured disturbances, we need to estimate the

disturbances as well as the state. We account for these disturbances in the model

by augmenting the system with integrators as described in Rawlings and Mayne

(2009) and Pannocchia and Rawlings (2003). Without these integrators, the con-

troller would not compensate for any non-zero disturbances or model mismatch.

We write the augmented system as

X+ =

A Bd

0 I

X + W y =

[
C Cd

]
X + v
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in which X :=
[

x′ d′
]′

. The augmented noise matrix W :=
[

w′ w′d

]′
is dis-

tributed as

W ∼ N (0, QW) QW =

Qw Qwd

Q′wd Qd


We then design the Kalman filter for the augmented system; this tuning of the

estimator depends on the variance of the augmented covariance matrix QW .

This disturbance model is not meant to model accurately the disturbances en-

tering the system. In fact, since the variance of d is always growing, if the plant

faced a true integrated white noise disturbance, the variance of the input or output

would become unbounded in response to this disturbance. Thus, by incorporat-

ing this disturbance model, we are deliberately adding introducing plant model

mismatch because we are adding a disturbance that does not occur in the plant.

Despite the mismatch caused by the integrating disturbance model, we choose

to use this model because it is simpler than estimating a more detailed disturbance

model. By using this simple form, we can apply the same disturbance model to

a variety of systems; we only need to choose an appropriate augment process

noise covariance. We also are able to keep the same disturbance model for a given

system even though the disturbance does not remain completely constant.

In the absence of the integrating disturbance model, any non-zero mean distur-

bance or plant model mismatch causes offset in the controlled variables. With the

integrating disturbance model, we obtain offset-free control by using the Kalman

filter for the augmented system. Since d does not decay in the integrator model,

the disturbance estimate d̂ remains non-zero to compensate for the disturbance.

The noise term wd allows d̂ in the augmented Kalman filter to respond to changes

in the disturbances.

As discussed in Rajamani et al. (2009), if we create two augmented systems

by augmenting the same original state space model with two disturbance mod-

els, (Bd1, Cd1) and (Bd2, Cd2), the augmented systems are similarity transforms of
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each other (provided that we add p integrators and that each augmented system

is detectable). Therefore, the choice of (Bd, Cd) is not critical to obtain good esti-

mator behavior, provided that the augmented process noise covariance is chosen

appropriately, such as by using the ALS method.

We find the augmented process noise covariance by solving the ALS problem

using the augmented model (Rajamani et al., 2009). Although Aaug is unstable,

an estimator can always be chosen such that the closed loop Āaug is unstable

(provided the augmented system is observable).

We also use the augmented model in calculating the theoretical KPI. Since the

KPI depends both on the disturbance as well as the disturbance estimate error,

the integrated white noise must be assumed to have zero variance. If the variance

were non-zero, the plant would be responding to a growing disturbance, and the

KPI would be infinite. In order to account for these non-zero mean disturbances,

we must have a deterministic estimate of them to use in the KPI calculation, as

discussed in Section 3.4.

5.2 step disturbances

The integrator model estimates step disturbances well because step disturbances

and integrated white noise have similar autocovariances. We demonstrate this

property by examining the system whose true dynamics are y(k) = d(k), in which

d(k) is a repeated step disturbance. When we model the system as an integrator,

the estimator has the form

d̂+ = d̂ + LdYd Yd = y− d̂

When no measurement noise is present, the optimal estimator gain is Ld = 1,

which gives the disturbance estimate d̂(k) = y(k− 1).

The output, innovation, and innovation autocovariance for this system are
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shown in Figure 5.1. This figure compares the behavior of the step disturbance to

an actual integrated white noise. Although the disturbances and innovations are

clearly different, the innovation autocovariances are nearly identical. The only dif-

ference is that whereas the innovation of the integrated white noise is completely

white, the step disturbance has a non-zero autocovariance at lags corresponding

to the frequency of the step. If these larger lags are not considered, the autocovari-

ances of both systems are identical. Hence, if the maximum lag used in the ALS

problem is smaller than the time between the step changes, then the ALS method

fits the autocovariances of the step disturbance perfectly by using an integrated

white noise model. Therefore, integrated white noise is a good stochastic model

to use in approximating the step disturbance.
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Figure 5.1: Disturbance (top), innovations (middle), and autocovariances (bottom)
for a repeated step disturbance (left) and integrated white noise (right).

Further, the covariance of the driving noise, Qd, (and therefore the integrator

gain) is related to the frequency and magnitude of the step disturbance. From the
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equation for the integrator, we write the variance as Qd = var (d(k)− d(k− 1)).

Since the innovation is equal to d(k) − d(k − 1) in the absence of measurement

noise, Qd is also the variance of the innovation. For the step disturbance (without

noise), the sample variance of the innovations is proportional to the frequency of

the step changes and to the square of the magnitude of the step change. Thus, the

ALS estimate of Qd for the step disturbance is also proportional to the frequency of

the step and the magnitude squared. We use the relationship between Qd and the

step disturbance to calculate the optimal estimator gain. When no noise is present

in the system, L = 1 is the best estimator gain for this model type, regardless of the

value of Qd. When measurement noise is present, the optimal gain is 0 < Ld < 1,

and its precise value depends on the measurement noise variance as well as the

size and frequency of the step.

To illustrate the optimal Qd for a step disturbance, Figure 5.2 compares the

step disturbances of different magnitudes and frequencies. Identical measure-

ment noises with Rv = 0.5 were been added to each step disturbance. The plots

in the top row show the noisy step disturbances as well as the predictions from

the optimal estimator. The middle plots show the innovations, and the bottom

plots show the autocovariances. The sample autocovariances for the step distur-

bance are plotted along with the theoretical autocovariance for an integrated white

noise. The ALS results, as well as the optimal estimator gain for each disturbance

sequence, are summarized in Table 5.1. As the magnitude or frequency of the

step disturbance increases, the estimator gain also increases. This change allows

the estimator to respond more quickly to the step changes. The cost of this quick

response is that the innovations are larger during the flat periods where no steps

occur.
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Figure 5.2: Disturbance and estimate (top), innovations (middle), and autocovari-
ances (bottom) for steps of different magnitudes and frequencies. Compared to
the plots on the left, the step disturbance in the middle plots has a larger mag-
nitude and the step disturbance in the right plots has a higher frequency. As
the magnitude and frequency increase, the sample autocovariance at lag zero also
increases.
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Table 5.1: ALS estimates and estimator gain for each step disturbance shown in
Figure 5.2.

Magnitude Frequency Q̂ R̂ L̂

5 1/25 1.02 0.48 0.74

10 1/25 4.01 0.49 0.90

5 1/10 2.45 0.52 0.85

5.3 ramp disturbances and double integrator models

Although the integrated white noise model is a good approximation for a step

disturbance, this model does not adequately account for all disturbances that may

affect the plant. To illustrate a case when this model is inadequate, we consider a

ramp-type disturbance as shown in Figure 5.3. When we estimate this disturbance

with the integrator model, our estimates always differ from the true value by

the slope of the ramp, as shown in Figure 5.3. We can tune the estimator by

decreasing the gain but this tuning only makes the approximation worse, as it

uses less information from the data. Our system is undermodeled — the integrator

model does not allow us to capture the slope of the ramp. As a result, although

the innovations are zero-mean, they remain above or below zero for significant

periods of time. The resulting autocovariances have a clear trend, indicating that

the system is undermodeled.

To eliminate this undermodeling, we propose a double integrator disturbance

model to approximate the ramp:

y1 =

[
1 0

] d1

d2

+ v

d1

d2


+

=

1 1

0 1


d1

d2

+

w1

w2


In this model the slope is approximated as a single integrator, d2. In the case of

a pure ramp, the only “noise” in the system is due to the change in slope, so
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Figure 5.3: Disturbance and prediction (top), innovations (middle), and autoco-
variances (bottom) for the ramp disturbance modeled as a single integrator. The
disturbance is clearly undermodeled.

Qd =

0 0

0 Qd2

. As there is no measurement noise, the estimator gain for the

double integrator model is L =

[
1 1

]′
. Figure 5.4 shows the optimal prediction

for the ramp disturbance using a double integrator model. As shown in this figure,

the innovations follow the same pattern as the innovations for step disturbances

(with a single integrator model), and the autocovariance looks white at low lags.

Since the slope of the ramp is a step disturbance and is being modeled as a single

integrator, the double integrator is a good model for the ramp disturbance. For

comparison, a true double integrator system is shown on the right of Figure 5.4.

Most disturbances affecting a system cannot be clearly classified as steps or
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Figure 5.4: Disturbance and prediction (top), innovations (middle), and autoco-
variances (bottom) for the ramp disturbance modeled as a double integrator (left)
and for a double integrator (right). The ramp disturbance is well modeled, and
therefore the innovations appear white at low lags.

ramps. Figure 5.5 shows an example of a disturbance estimated from plant data.

We apply the ALS method to this disturbance using both single and double in-

tegrator disturbance models and process the data using the “optimal” estimators

from the ALS results. The double integrator model, shown in the left plots, works

well; there is no clear trend in the innovations, and the autocovariances show that

the estimator is approximately optimal. In contrast, the innovations from the sin-

gle integrator model appear to be non-white. The autocovariances confirm that

the single integrator model does not adequately model this disturbance. These

autocovariances decay very slowly, indicating undermodeled dynamics. The pre-

dictions from each model are compared for part of the disturbances in Figure 5.6.

As with the ramp disturbance, the single integrator model is not able to account
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Figure 5.5: Disturbance estimated from plant data (top), innovations (middle), and
autocovariances (bottom). The double integrator model (left plots) produces white
innovations and is a significant improvement over the single integrator model
(right plots).

for the slope of the constantly changing disturbance.

When the noise model includes double integrators, the augmented system

takes the form

Aaug =

A Bd

0 Ad

 Baug =

B

0

 Caug =

[
C Cd

]

In this system, Ad is a block diagonal matrix with dimension nd× nd, p ≤ nd ≤ 2p.

The blocks of Ad are either double or single integrators . We choose Cd and Bd

such that the system is observable. When double integrators are added, we choose

the Cd and Bd to have a zero column corresponding to d2 of the double integrator.

For example, suppose p = 2 and we choose to add a single integrator to the first
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output and a double integrator to the second output. Then Bd = 0 and

Ad =


1 0 0

0 1 1

0 0 1

 Cd =


1 0 0

0 1 0

0 0 0



5.4 cautions on double integrator models

Although double integrators are better able to estimate ramps and other distur-

bances, we should avoid using double integrators when the are unnecessary, for

several reasons:

1. Lack of steady state target: With the single integrator model, the target selec-

tor portion of the controller chooses a steady state target for u and x based

on the setpoints for the system and the disturbance estimate. The regulator

then chooses the control action based on these steady state values. However,

the double integrator only has a steady state solution for x and u when the

slope is zero. Therefore, the controller must use a different method to re-

ject the disturbances, such as choosing a steady slope for the disturbance, or
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using the setpoints and the disturbance estimates directly in the regulator.

2. Lack of similarity transform: Using a single integrator disturbance model,

the tuning of the estimator can compensate for misassigned disturbances (Ra-

jamani et al., 2009). In other words, with appropriate tuning, an estimator

that treats the disturbance as entering through the output behaves optimally

even when the disturbance enters through the input, and vice-versa. This

property is due to the fact that the input and output disturbance models are

related through a similarity transform. For double integrator disturbance

models, such a similarity transform no longer exists. Therefore, an inap-

propriate choice of Bd and Cd may lead to suboptimal estimator behavior,

although this property has not been studied extensively.

3. Additional noise covariance elements: The double integrator has three noise

elements to be obtained via the ALS problem, whereas the single integrator

has only a single driving noise. When the correlations between all the states

and disturbances are included, the double integrator model adds signifi-

cantly more noise elements. As we already do not have enough information

in general to obtain a unique ALS solution for the single integrator model,

we do not want to add more unknowns to the ALS problem without good

reason.

Users also should be cautious to avoid complicating the noise model when in

reality the process model needs to be adjusted. In model assessment and identi-

fication, it is difficult but necessary to distinguish disturbance dynamics from the

plant dynamics. Without a proper disturbance model, disturbances affecting the

system may be accounted for as model error in the u-y model, when the error ac-

tually lies in the disturbance model. However, the opposite problem may occur as

well — a complicated disturbance model may be created to account for a poor u-y

model. The ALS technique assumes that the process model is known accurately,
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but distinguishing between plant and disturbance dynamics is a difficult task and

remains an active area of research.
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6
I M P R O V E M E N T S T O T H E A L S M E T H O D 1

6.1 applying the als method to unobservable and weakly observ-

able systems

6.1.1 Unobservable systems

In industrial settings, the use of large models with many unobservable or poorly

observable states limits the applicability of the ALS method. Since the noises

affecting unobservable states have no effect on the outputs, intuitively we expect

that when G is unknown, an unobservable system does not have a unique ALS

solution. Here we prove that this intuition is correct. We define the ALS problem

as

min
Qw,Rv

φ = ‖A

(Qw)ss

(Rv)ss

− b̂‖2 subject to Qw ≥ 0, Rv ≥ 0 (6.1)

1Portions of this chapter will be published in Zagrobelny and Rawlings (2014a)
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in which

A =

[
A1 A2

]
A1 = (C⊗O) (In2 − Ā⊗ Ā)

−1
(G⊗ G)Dg

A2 =
(
(C⊗O) (In2 − Ā⊗ Ā)

−1
(AL⊗ AL) +

(
Ip ⊗ Γ

))
Dp

O =



C

CĀ
...

CĀN−1


Γ =



Ip

−CAL
...

−CĀN−2AL


The ALS problem was derived in Section 4.2; here the identity matrix is used to

weight the least-squares term.

The matrix O in the ALS problem is the extend observability matrix. Provided

that N ≥ n, O has rank n (full column rank) when the system is observable, and

loses rank when the system is unobservable.

Theorem 1. Assume that Ā is stable. When G is a square matrix of rank n, the ALS

problem has a unique solution (A is full column rank) if and only if (A, C) is observable,

A is non-singular, and rank(C) = n.

Proof. Before proving this theorem, we show that we can restrict our attention to

the case in which G = I. When G 6= I, we take a similarity transformation of the

original system, so that it is written in terms of the transformed state x̃ = G−1x.

The transformed system is described by the matrices Ã = G−1AG, B̃ = G−1B, C̃ =

CG, L̃ = G−1L, and G̃ = I. The same noises w and v affect both the original and

transformed systems. Since the matrix A is identical in both cases, the original

system has a unique ALS solution if and only if the transformed system has a

unique solution. Therefore, we limit our discussion to the case when G = I. The
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proof that these conditions lead to a unique ALS estimate is given in Corollary

3.1 of Rajamani (2007) and is repeated here. From Lemma 7 in Rajamani and

Rawlings (2009), when (A, C) is observable, A is non-singular, and G = In, the

null space of A is equal to the null space of M = (C⊗ In) A†Dn, in which A† =

(In2 − Ā⊗ Ā)
−1. Since A† is always full rank (for Ā stable) and (C⊗ In) is also

full column rank when C is full column rank (rank(C) = n), the rank of M is the

rank of Dn, or n(n + 1)/2. Since Dn is full column rank, then M and therefore A

are also full column rank.

Next we prove that (A, C) observable, A non-singular, and rank(C) = n are

necessary conditions. We utilize the fact that A loses rank if A1 loses rank. First,

we prove the necessity of A being non-singular. (Hua, 1990, Corollary 3) implies

that (C⊗ A) (In2 − Ā⊗ Ā)
−1 is full rank only if r = rank

([
A′ C

])
= n and

rank(A) = r. These conditions can only be satisfied when A is full rank. A more

detailed proof is presented in Appendix 6.A.

Next we examine the rank condition on C. Let (A, C) be observable and let

rank(C) = p̄. From Lemma 13 of Rajamani and Rawlings (2009)1,

dim [Null(A )] ≥ (n− p̄)(n− p̄ + 1)/2

Thus for n > p̄, the dimension of the null space of A is greater than zero, and

therefore the ALS problem does not have a unique solution. This condition is

proved in more detail in Appendix 6.A.

Finally consider the case where (A, C) is unobservable. Let no and nu be the

number of observable and unobservable modes, respectively. We transform the

1The cited lemma assumes that p̄ = p. Here we also cover the case in which the measurements

are not linearly independent (p > p̄). From Hua (1990, Corollary 2), which was used to derive the

cited lemma, we can substitute p̄ for p in the rank condition.
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system into observability canonical form:

(C⊗O) =

[
C1 ⊗O 0Np2×nnu

]
Ā⊗ Ā =

Ā11 ⊗ Ā 0no⊗nu

Ā21 ⊗ Ā Ā22 ⊗ Ā


Since (In2 − Ā⊗ Ā)

−1 has a zero block in the same location as (Ā⊗ Ā), then we

have

A1 =
[
(C⊗O) (In2 − Ā⊗ Ā)

−1
]
Dn =

[
A11 0Np2×nnu

]
Dn

which loses column rank. Note that although multiplication by Dn reduces the

number of columns, the matrix remains rank deficient. This fact can be clearly

seen since the last column of Dn is
[

0 . . . 0 1

]′
which forces the last column of

A1 to be 0. Thus, a unique solution does not exist.

Note: The assumption that Ā is stable in Theorem 1 is always necessary to

ensure that (I2
n − Ā⊗ Ā) is invertible. However, for any detectable (A, C), we can

always choose L such that Ā is stable.

We can always reduce an unobservable system to an equivalent observable

subsystem by first removing the unobservable states. Applying the ALS method

to the observable subsystem gives the noise model with the fewest number of

independent noises, as no noises affect the unobservable modes. Rajamani and

Rawlings (2009) proposed the following optimization problem to find the solution

with the smallest number of independent process noises:

min
Qw,Rv

φ + ρtr(Qw) subject to Qw ≥ 0, Rv ≥ 0 (6.2)

in which φ is the least-squares objective funtion defined in (6.1). Here we show

that for any ρ > 0, the optimization problem (6.2) is equivalent for the full model

and the observable subsystem.

Theorem 2. For an unobservable system (A, B, C), let T be an orthogonal transformation
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matrix such that

Ã = TAT′ =

A11 0

A21 A22

 B̃ = TB =

B1

B2

 C̃ = CT′ =
[

C1 0

]

Let ρ be any strictly positive scalar. Then the optimization problem in (6.2) using the

reduced model (A11, B1, C1) and that using the original model (A, B, C) have the same

objective function values and solutions Rv for the measurement noise. The optimal process

noise covariances are related as

TQw,optT′ =

Q11,opt 0

0 0


Proof. First we note that there exists an orthogonal T to transform the system

into observability canonical form. We can construct an invertible transformation

matrix T =

[
T1 T2

]′
by choosing the no columns of T1 so that they form a basis

for the range of O ′ and by choosing the nu columns of T2 so that they form a

basis for null(T′1) (or equivalently, a basis for null(O)) (Aplevich, 2000, Ch. 9).

Since we can choose T1 and T2 as orthogonal bases, we can produce an orthogonal

transformation for any unobservable system.

Next we note the equivalence of the two systems

x+ = Ax + Bu + w (6.3a)

y = Cx + v (6.3b)

x̃+ = Ãx̃ + B̃u + w̃ (6.4a)

ỹ = C̃x̃ + ṽ (6.4b)

Let w̃(k) = Tw(k) and ṽ(k) = v(k) for k ≥ 0. Provided that x̃(0) = Tx(0), then

x̃(k) = Tx(k) and y(k) = ỹ(k) for all k ≥ 0. The covariance for process the noise

of the transformed system is

cov(w̃) = cov(Tw) = TQwT′ =

Q11 Q12

Q21 Q22

 cov(ṽ) = cov(v) = Rv
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As discussed in Rajamani et al. (2009), if L̃ = TL, then the state estimates for (6.3)

and (6.4) are also related through the similarity transform.

Since the unobservable states in (6.4) do not affect y, we equivalently write the

system as

x+1 = A11x1 + B1u + w̃1 (6.5a)

y = C1x1 + v (6.5b)

in which w̃1 ∼ N(0, Q11).

Define the matrices

Q∗w = T′Q̃wT Q̃∗w =

Q11 Q12

Q21 Q22

 Qo
w = T′Q̃o

wT Q̃o
w =

Q11 Q̂12

Q̂21 Q̂22


in which (Q∗w, R∗v) minimizes (6.1). Since the system is unobservable, Q12 and

Q22 have no effect on y and therefore A1 (Q∗w)ss = A1 (Qo
w)ss. Thus there exist an

infinite number of Qo
w such that (Qo

w, R∗v) minimizes (6.1).

Consider instead the solution to (6.2) for ρ > 0. Since Qw and Q̃w are similar

matrices, they have the same trace (Lancaster and Tismenetsky, 1985). Since we

require Q22 ≥ 0, any solution Qw that minimizes (6.2) is a transformation of Q̃w =Q11 0

0 0

, as choosing some Q22 > 0 would increase tr(Qw) without decreasing

φ. The optimization problem (6.2) therefore reduces to

min
Qw,Rv

φ + ρtr(Q11) subject to Q11 ≥ 0, Rv ≥ 0, Q12 = 0, Q22 = 0.

Alternatively, we apply the ALS method to the reduced system (6.5). As the

L-innovations (and therefore their autocovariances) are identical for the full and
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the reduced systems, we have

˜A1(Q11)ss + ˜A2(Rv)ss = A1(Qw)ss +A2(Rv)ss

in which ˜A1 and ˜A2 are formed using the reduced model. Thus both the least-

squares part of the objective φ and the tr(Qw) penalty are equal for the two sys-

tems. Both forms of the ALS problem have identical objective values and yield the

same solution Q11 and Rv.

Note on the choice of transformation: Even with the constraint of orthogo-

nality, the choice of T is not unique (unless no = nu = 1). Therefore, there are

multiple systems (A11, B1, C1) that we can use to represent (A, B, C). Each system

has a different optimal Q11, but the process noise covariances are all similarity

transformations of each other, and the systems have identical objective function

values.

6.1.2 Weakly observable systems

As discussed above, the unobservable states have no effect on the output. How-

ever, many industrial models include some states that have little effect on the

output relative to the other states, and thus are difficult to observe from the out-

puts. We refer to these systems (states) as weakly observable systems (states). We

identify these systems and states through the observability matrix. Whereas O

loses rank for the unobservable system (has at least one zero singular value), in

the weakly observable case, O is poorly conditioned and has at least one singu-

lar value that is close to zero. The weakly observable modes correspond to those

singular values that are near zero.

We transform the system into observability canonical form as follows. Let

O = USV ′ be the singular decomposition of the observability matrix, and choose

T = V ′. Then the observability matrix of the transformed system is Õ = OT′ =
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US. Since the singular values are ordered largest to smallest, the norm of the

columns of Õ decrease from left to right, and the modes of the transformed system

go from most observable to least observable. The transformed system takes the

form

Ã = TAT′ =

A11 δA12

A21 A22

 B̃ = TB =

B1

B2

 C̃ = CT′ =
[

C1 δC2

]
(6.6)

in which the magnitude of the scalar δ ≥ 0 depends upon the magnitude of the

singular values corresponding to weakly observable modes. If δ = 0, then the

system is unobservable. By choosing an orthogonal transformation, the singular

values and condition number are unaffected by transforming the system.

Lima, Rawlings, Rajamani, and Soderstrom (2013) also discuss applying the

ALS method on systems with unobservable or weakly observable states by remov-

ing these states before solving the ALS problem. However, they do not discuss in

detail how to transform the system. They also do not compare the ALS problem

for the full and reduced models, and they only consider an example where G is

known and there are few independent process noises (g ≤ 3).

Note on systems with integrated disturbances

When the system is augmented with integrating disturbances to ensure offset free

control, it is essential that the integrator modes are maintained when the system

is reduced. Although these modes are unaffected by similarity transforms (which

maintain the same eigenvalues), there is a possibility of the integrators being lost

when the weakly observable states are removed from the transformed model. To

avoid this problem, we recommend reducing the non-augmented system and then

adding the integrators to the reduced model i.e. find (A11, B1, C1) from the unaug-
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mented (A, B, C), and then form

Aaug =

A11 Bd

0 I

 Caug =

[
C1 Cd

]

In addition, we recommend penalizing the trace of the unaugmented process noise

covariance rather than that of the entire augmented covariance matrix to ensure

that the integrators contain adequate noise.

Applying the ALS method to weakly observable systems

We summarize the method for applying the ALS method to poorly observable

systems in the following steps:

1. Use SVD on the observability matrix to obtain the transformation matrix

T = V ′, and then transform the system into observability canonical form.

2. Generate reduced models with the number of observable states ranging from

no = p to no = n, and augment the reduced models with integrators.

3. Solve the ALS problem on each augmented reduced model without penaliz-

ing the trace and without including the semi-definite constraints.2

4. Choose a reduced model that has a well conditioned observability matrix

but does not significantly increase the objective function value compared to

the full model.

5. Using this reduced model, solve the ALS problem with semidefinite con-

straints and penalizing tr(Qw) as necessary.

2We recommend solving the simpler problem here rather than the complete ALS problem as

described in (6.2) to reduce the computation time.
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6. Write the noise model for the full transformed model by assuming that no

noise affects the unobservable states.3

7. Calculate the estimator gain for the full transformed system and convert to

the original coordinates (or transform the process noise covariance matrix to

the original coordinates and then calculate the estimator gain).

These steps are illustrated in the example in Section 6.3.1.

6.2 feasible generalized als technique

The standard ALS method, which we refer to as the “ordinary” ALS method

uses the identity matrix to weight the least-squares problem. However, as noted

in Rajamani and Rawlings (2009), this weighting is chosen for practical reasons,

and it does not produce minimum variance estimates for Qw and Rv. The mini-

mum variance estimates are obtained from the generalized least-squares problem,

where the variance of b̂ is used as the weighting (Magnus and Neudecker, 1999,

Section 13.5; Schmidt, 1976, Section 2.5). However, computing this variance has

two major barriers (Rajamani and Rawlings, 2009). First, calculating the variance

is intractable for large sets of data, even if the dimensions of the state and output

are small. This challenge arises because the fourth moment of the entire vec-

tor
[
Y (1)′ . . . Y (Nd)

′
]′

must be computed. Secondly, calculating this variance

requires knowledge of Qw and Rv, the unknowns to be found. Rajamani and Rawl-

ings (2009) propose iteratively solving the ALS problem for Qw and Rv, updating

the weighting based on these values, and resolving the ALS problem. However,

this iterative scheme is not guaranteed to converge. Therefore, rather than ad-

3Because the reduced model may not be sufficiently accurate for predictions over a longer hori-

zon, it is recommended to continue to use the original model in the regulator. The question of

whether or not the original model contains unnecessary states for the regulator problem is outside

of the scope of this work.
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dressing the tractability of computing the optimal weighting, we propose using a

feasible generalized least-squares method to approximate it. Feasible generalized

least-squares refers to the method in which an approximation of the variance is

used to weight the least-squares problem (Schmidt, 1976, Section 2.5). We apply

feasible generalized least-squares to the ALS approach as follows.

Let S denote the covariance of b̂ and W = S−1 be the optimal weighting for

the least squares problem.

We estimate S by the steps:

1. Let t = 2N and Ns =
Nd−N+1

t . Then let

Y1 =



Y1 Y2N+1 . . . YNd−3N

Y2 Y2N+2 . . . YNd−3N+1
...

...
...

...

YN Y3N . . . YNd−2N+1



Y2 =



Y2 Y2N+2 . . . YNd−3N+1

Y3 Y2N+3 . . . YNd−3N+2
...

...
...

...

YN+1 Y3N+1 . . . YNd−2N+2


...

Yt =



Y2N Y4N . . . YNd−N+1

Y2N+1 Y4N+1 . . . YNd−N+2
...

...
...

...

Y3N−1 Y5N−1 . . . YNd



Since we assume that Yk and Yk+N+i are uncorrelated for i ≥ 0, each Yi is

composed of columns that are approximately independent.

2. Let P̂y,i be the sample variance of the columns of Yi. Then each P̂y,i gives an
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approximately unbiased approximation for Py := var

([
Y ′k . . . Y ′k+N−1

]′)
with the only bias due to the slight correlations between the columns. We

approximate Py as P̂y = 1
Ns

∑Ns
i=1

(
P̂y,i
)
.

3. Let P0 = var (Yk) and Py,0 = cov




Yk
...

Yk+N−1

 , Yk

. Then we approximate

P̂0 as the first p× p submatrix of P̂y and P̂y,0 as the first p columns of P̂y.

4. Based on the Wishart distribution, we calculate Ŝ as

Ŝ = cov(b̂) =
1

Ns

((
P̂0 ⊗ P̂y

)
+ Kp,p̃

(
P̂y,0 ⊗ P̂′y,0

))
(6.7)

and find Ŵ as the inverse of Ŝ. (6.7) is derived in Appendix 6.B.

We require at least N columns in each Yi to compute the sample variance.

Therefore, we need the number of data points to satisfy Nd ≥ 2N2 p + N − 1.

An alternative method to approximate S would be to divide the data into several

smaller samples of length Ns < Nd, calculate b̂i for each sample, and let Ŝ be the

sample variance of b̂i. However, this approximation requires the number of data

points to be on the order of N2 p2 and does not produce independent samples of

b̂. Simulations indicate that this approximation is less effective at decreasing the

variance of the ALS estimates compared to the approximation method outlined

above.
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6.3 examples
1

6.3.1 Example: Weakly observable systems and model reduction

We demonstrate the benefit of reducing the model to include only observable
states by studying the system

A =



4.2× 10−17 0.15 0 0 0 0 0

−0.1 0.84 0 0 0 0 0

0 0 −4.2× 10−17 0.15 0 0 0

0 0 −0.1 0.84 0 0 0

0 0 0 0 0.8 0 0

0 0 0 0 0 −1.1× 10−16 0.64

0 0 0 0 0 −1 1.6



B =



−0.78 0

0.28 0

0 0.39

0 −0.14

0.2 0

0 0.017

0 −0.019


C =

 0 1 0 1 0 0 0

0 0 0 0 1 0 1



The observability matrix has condition number

σ =

[
6.6 2.4 1.3 0.14 0.000 58 3.5× 10−7 1.4× 10−17

]

The mode corresponding to the smallest singular value is clearly unobservable,
but the singular values alone do not indicate whether any additional modes can
be removed from the system. Using SVD, we transformed the system into observ-

1The ALS toolbox for Octave or Matlab was used in these examples and is available online

at http://jbrwww.che.wisc.edu/software/als/. This toolbox has been updated to include the

feasible generalized ALS method.

http://jbrwww.che.wisc.edu/software/als/
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Figure 6.1: Simulated inputs and outputs used in the examples. The plots of the
outputs show the deviation from set point.

ability canonical form:

Ã =



1 8.6e-18 -0.062 4.1e-17 -3.1e-18 -2.1e-08 -3.4e-19

2.6e-17 0.83 -6.6e-18 0.034 -2.5e-05 4e-23 2.1e-17

0.95 -8e-18 0.56 2.1e-17 -2e-17 2.2e-07 -7.9e-19

-2.6e-17 -0.22 -1.3e-18 0.0093 -0.0033 2.5e-17 6.1e-17

4.6e-17 -0.001 -2.1e-17 -0.0032 0.82 -9.4e-18 1.7e-15

-1.3 -2.4e-15 0.32 -1.5e-14 3.8e-12 0.8 1.2e-11

-1.9e-11 0.00016 4.9e-12 0.001 -0.25 1.2e-11 0.018


C̃ =

 -1.3e-17 -1.4 3.5e-17 0.11 6.2e-06 -1.9e-23 -2.8e-17

0.92 2.5e-17 1.1 6.9e-18 4.2e-17 -1.6e-07 -1e-17



and augmented the model with integrators on the inputs. We generated the data

shown in Figure 6.1 by simulating the system in closed-loop control against white

noise disturbances added to the states and outputs as well as repeated step dis-

turbances to the inputs.

Next we formed reduced models from the canonical form, letting no range

from p = 2 to n = 7. Using the simulated data, we compared the condition

number of the observability matrix and the ALS objective for each of the models,
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Figure 6.2: Condition number of the observability matrix and ALS objective func-
tion value vs. the number of states. As more states are included in the model,
the condition number of the observability matrix increases and the ALS objective
function value decreases.

as shown in Figure 6.2.

The condition number increases as we include more states, with the most dra-

matic change when we increase the number of states from six to seven, as is

expected from the singular values of the full observability matrix. The ALS ob-

jective function value decreases significantly when we include three states. It also

decreases slightly for four states, but adding the last three states has no noticeable

effect on the objective value. This behavior is also consistent with the singular

values of the observability matrix.

Figure 6.2 illustrates that adding the semidefinite constraints does not affect

the choice of reduced model size, as including these constraints does not affect
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the trend in the ALS objective function curve. However, we did use the feasible-

generalized ALS method in order to avoid placing too much emphasis on match-

ing zero covariances. The full ALS problem, including penalizing tr(Q) and the

semidefinite constraints, was solved after the model size was chosen.

We further illustrate the effect of including more states on the quality the ALS

estimates by plotting the estimated autocovariances (calculated from the data)

alongside the theoretical autocovariances (calculated from the model and the ALS

estimates of Qw and Rv). This comparison is discussed in Section 4.4.1. Fig-

ures 6.3-6.5 show these fits for differently sized models. Since these plots use the

original estimator, we did not consider whether or not the estimator performs op-

timally. Instead, we looked for a model that is sufficiently accurate, so that the

estimated and theoretical covariances match each other well. As shown in Figures

6.3 and 6.4, increasing the number of states from two to four leads to a better fit

of the data. However, there is no clear difference between the plots with four and

seven states (Figures 6.4 and 6.5), indicating that the last three states are poorly

observable and need not be included in the model. This conclusion is consistent

with the singular value decomposition and also with the plot of the ALS objective

function versus the number of states in Figure 6.2.

We next compared the accuracy of the noise covariances estimated from the

models with no = 2, 4, and 7. Because of the step disturbances, we do not have a

true theoretical value for Qw against which to compare the ALS estimate. Instead,

we examined the quality of the estimator produced by the ALS estimates. We first

designed a new estimator from Q̂w and R̂v and computed the innovations using

this estimator. We then studied whether these innovations are white (meaning

that the auto- and cross-covariances of the innovations are significantly greater

than zero only at lag zero), as would be the case for an optimal estimator.

As shown in Figure 6.6, the autocovariances of the two-state model remain

significantly above zero for lags greater than zero. This behavior indicates that the
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Figure 6.3: Sample and theoretical autocovariances for the two-state model, with-
out semidefinite constraints. The theoretical autocovariances do not fit the data
well, indicating that the model is inadequate.
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Figure 6.4: Sample and theoretical autocovariances for the four-state model, with-
out semidefinite constraints. The theoretical autocovariances agree well with the
data.
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Figure 6.5: Sample and theoretical autocovariances for the seven-state model,
without semidefinite constraints. There is no noticeable change in the autoco-
variances compared to those of the four-state model.
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Figure 6.6: Autocovariances calculated using estimators designed from the ALS
results for each model. The two-state model leads to suboptimal estimator behav-
ior. The four- and seven-state models both lead to optimal estimators.

system is undermodeled. In contrast, the estimators for no = 4 and no = 7 both

behave optimally. The estimator performance is unchanged when all seven states

are included rather than only four states.

Finally we compare Q̂w and R̂v for each of the three models, shown in Table

6.1. The four- and seven-state models produce approximately the same results.

In the seven-state model, the elements of Q̂w corresponding to the three poorly

observable modes are approximately zero. In contrast to the four and seven state

solutions, the two-state model produces completely different results for both Q̂w

and R̂v.

Altough the four- and seven-state models produce identical results, the advan-

tage of using the smaller obsevable model lies in the computational time required
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Table 6.1: Q̂w and R̂v estimated by the ALS method for models containing two,
four, and seven states. (Note that the bolded elements in the seven-state Q̂w are
the same as Q̂w for four states, while the remaining seven-state elements are near
zero.)

no = 2

Q̂w =


6.59e-02 -1.09e-02 1.96e+00 3.58e+00

-1.09e-02 1.43e-02 -1.50e+00 -3.06e+00

1.96e+00 -1.50e+00 1.69e+02 3.39e+02

3.58e+00 -3.06e+00 3.39e+02 6.81e+02


R̂v =

[
6.81e-10 3.95e-19

3.95e-19 8.08e-03

]

no = 4

Q̂w =


3.19e-03 3.50e-03 2.16e-03 -3.37e-03 1.76e-02 1.99e-02

3.50e-03 1.01e-02 3.18e-03 -4.75e-03 -8.03e-03 -2.32e-02

2.16e-03 3.18e-03 1.67e-03 -2.59e-03 4.10e-03 1.50e-02

-3.37e-03 -4.75e-03 -2.59e-03 4.05e-03 -6.46e-03 -2.65e-02

1.76e-02 -8.03e-03 4.10e-03 -6.46e-03 4.08e-01 -2.13e-02

1.99e-02 -2.32e-02 1.50e-02 -2.65e-02 -2.13e-02 1.01e+00


R̂v =

[
1.90e-02 4.24e-17

4.24e-17 2.74e-02

]

no = 7

Q̂w =

3.15e-03 3.48e-03 2.16e-03 -3.39e-03 -1.10e-05 7.41e-09 1.49e-18 1.77e-02 2.02e-02
3.48e-03 1.01e-02 3.21e-03 -4.81e-03 -8.37e-06 3.59e-08 8.51e-18 -7.82e-03 -2.22e-02
2.16e-03 3.21e-03 1.69e-03 -2.64e-03 -3.91e-06 2.57e-08 2.06e-18 4.25e-03 1.54e-02
-3.39e-03 -4.81e-03 -2.64e-03 4.15e-03 5.58e-06 -4.31e-08 -3.01e-18 -6.72e-03 -2.75e-02
-1.10e-05 -8.37e-06 -3.91e-06 5.58e-06 1.15e-06 5.39e-10 -1.74e-21 -2.17e-04 1.42e-04

7.41e-09 3.59e-08 2.57e-08 -4.31e-08 5.39e-10 1.01e-06 4.07e-20 -8.32e-07 1.14e-06

1.49e-18 8.51e-18 2.06e-18 -3.01e-18 -1.74e-21 4.07e-20 1.01e-06 -2.49e-17 -3.30e-17

1.77e-02 -7.82e-03 4.25e-03 -6.72e-03 -2.17e-04 -8.32e-07 -2.49e-17 4.09e-01 -2.09e-02
2.02e-02 -2.22e-02 1.54e-02 -2.75e-02 1.42e-04 1.14e-06 -3.30e-17 -2.09e-02 1.01e+00


R̂v =

[
1.90e-02 -1.28e-16

-1.28e-16 2.74e-02

]
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to solve the ALS problem. By reducing the model from seven to four states, the

computational time was reduced from 96.73 seconds to 42.89 seconds. Simula-

tions indicate that the time to solve the ALS problem depends on the conditioning

of the observability matrix as well as the number of states. An ill-conditioned

problem also makes it difficult to choose appropriate stopping criteria for the

optimizer; as a result, the optimizer may terminate before the true minimum is

reached. A better conditioned system is less susceptible to this problem. For larger

systems, model reduction can eliminate hours of computational time.

6.3.2 Example: Comparison of the ordinary ALS and feasible generalized ALS methods

In the previous example, we used the feasible generalized ALS method. Here, we

compare the feasible generalized ALS method to the ordinary ALS method using

the four-state model of the system. We generate multiple sets of data and apply

both the feasible generalized ALS and ordinary ALS methods to each dataset. For

simplicity in presenting the results, we show only the diagonal elements of Q̂w

and R̂v (although Q̂w is non-diagonal) for the reduced four-state model. Note

that Q̂w includes the noises on the integrating disturbances. Figure 6.7 shows the

diagonal elements of the noise covariance matrices estimated from each data set;

their variances are presented in Table 6.2. These results show that the feasible

generalized ALS technique significantly reduces the variance of the estimates.
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Figure 6.7: Noise variances estimated from the feasible generalized ALS and or-
dinary ALS methods. The variance is noticeably reduced by using the feasible
generalized ALS method.

Table 6.2: Variance of each diagonal element of Q̂w and R̂v using the feasible
generalized and ordinary ALS methods.

Feasible Generalized ALS Ordinary ALS

Q̂w(1, 1) 3.04× 10−6 9.90× 10−6

Q̂w(2, 2) 4.92× 10−5 8.04× 10−5

Q̂w(3, 3) 2.29× 10−5 4.34× 10−5

Q̂w(4, 4) 5.08× 10−5 1.47× 10−4

Q̂w(5, 5) 9.30× 10−3 1.10× 10−1

Q̂w(6, 6) 4.53× 10−2 2.12× 10−1

R̂v(1, 1) 2.55× 10−5 5.31× 10−5

R̂v(2, 2) 2.23× 10−5 4.10× 10−5
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6.4 appendices

6.a Necessity of full rank A and C in Theorem 1

Assume that G = I. From the simplification of equation (A.3) in Rajamani and

Rawlings (2009, Appendix A), if qN lies in the null space of A1, then

(
Ip ⊗O1A

)
(C⊗ In) (In2 − Ā⊗ Ā)

−1
DnqN = 0

in which O1 =

[
C′ . . . (CĀN−2)′

]′
. We rewrite this condition as

(C⊗O1A) (In2 − Ā⊗ Ā)
−1

DnqN = 0

Let na be the dimension of the null space of A and V2 ∈ Rn×na be the null space of

A. Following the logic in Hua (1990), for na > 0, we choose a full rank, symmetric

matrix Z ∈ Rna×na and construct a symmetric matrix XN = V2ZV ′2. Since AXN =

0, vec(XN) lies in the null space of (C⊗O1A). Letting QN = XN − ĀXN Ā, then

vec(QN) = (I − Ā⊗ Ā)vec(XN). Since QN is symmetric, qN = (QN)ss lies in the

null space of A1. Since Z is full rank and V2 is full column rank, XN and qN are

non-zero. Therefore, for G = I, A1 is full rank only if A is full rank.

Likewise, let p̄ be the rank of C and V3 ∈ Rn×n− p̄ be the null space of C. Then

for p̄ < n, choose a full rank, symmetric matrix Y ∈ Rn− p̄×n− p̄ and construct a

symmetric matrix WN = V3YV ′3. Since WNC′ = 0, vec(WN) lies in the null space

of (C⊗O1A). Letting QN = WN + ĀWN Ā, then vec(QN) = (I − Ā⊗ Ā)vec(WN).

Since QN is symmetric, qN = (QN)ss lies in the null space of A1. Since Y is full

rank and V3 is full column rank, WN and qN are non-zero. Therefore, for G = I,

A1 is full rank only if rank(C) = n.
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6.b Derivation of formula for S = cov(b̂)

Let

b̂ =

(
1

Ns

Ns

∑
i=1

(
Yiyi(1)′

))
s

in which Yi =

[
yi(1)′ . . . yi(N)′

]′
are independent and identicallly distributed

normal variables with zero mean and variance Py =

 P0 P′y,0

Py,0 Py2

. In this appendix,

we show that the variance of b̂ is

cov(b̂) =
1

Ns

((
P0 ⊗ Py

)
+ Kp,p̃

(
Py,0 ⊗ P′y,0

))
(6.8)

where p is the dimension of y and p̃ = Np is the dimension of Y. Defining Yi

and yi appropriately in (6.8), we arrive at (6.7). To derive (6.8), we begin by noting

that the sample variance of Yi, P̂y = 1
Ns

∑Ns
i=1 (YiY′i ), is distributed according to the

Wishart distribution with pdf

p(P̂y|P, Ns + 1) =
|P̂y|

1
2 (Ns− p̃) exp

(
− 1

2 tr
(

P−1
y P̂y

))
2

1
2 (Ns+1) p̃|Py|

Ns+1
2 π

p̃( p̃−1)
4 ∏

p
i=1 Γ

(
Ns−i

2

)
(Anderson, 2003; Ghosh and Sinha, 2002). As a result,

var((P̂y)s) =
1

Ns

(
Ip̃2 + K p̃,p̃

)
(Py ⊗ Py) (6.9)

(Magnus and Neudecker, 1979). The estimated variance of b̂ is the pp̃× pp̃ matrix

in the upper-left corner of var((P̂y)s). From (6.9), we can write this submatrix as

cov(b̂) =
1

Ns

((
P0 ⊗ Py

)
+ Kp,p̃

(
Py,0 ⊗ P′y,0

))
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which is the formula in (6.8). Note that the denominator in (6.9) and (6.8) is Ns

rather than Ns − 1 because the mean of Yi is known to be zero.
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7
A P P L I C AT I O N O F T H E A L S M E T H O D T O A N I N D U S T R I A L

D ATA S E T 1

7.1 noise covariance estimation

In this chapter, we apply the ALS method to an air separation unit operated by

Praxair, Inc. We analyze a subset of the variables included in the MPC, consisting

of three outputs, four inputs, and one feed-forward variable. When solving the

ALS problem, the feed-forward variable is handled in the same manner as the

manipulated variables (since we have measurements available for both variable

types).

The MPC controller uses an FIR model for the system. To obtain a state space

model, transfer functions were fit to each input-output step response. These trans-

fer functions were discretized, converted into state space, and combined to pro-

duce a single state space model for the system.

The variances of the outputs are different orders of magnitude; the variance of

y2 and y3 are on the order of 104, where as y1 has a variance around 1. Therefore,

we normalized the data by dividing each output and each row of C by the stan-

1Portions of this chapter will be published in Zagrobelny and Rawlings (2014a)
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dard deviation of yi. The state, input, and process noise remain the same in the

normalized model. The ALS estimate of Q̂w is consistent for both the normalized

and original data, and the estimate of R̂v corresponds to the normalized outputs.

Since we assume Rv is diagonal, we can easily convert the estimated covariance

back to the original scaling by multiplying each diagonal entry by the variance of

the original output.

The scaled state space model was then augmented with integrated distur-

bances to the outputs. However, analysis of the data showed that this disturbance

model is insufficient for the ALS results to produce an optimal estimator for y1.

Instead, a double integrator model of the form

d+ =

1 1

0 1

 d + wd y1 = C1x +

[
1 0

]
d

was added to y1. The use of double integrator disturbance models is discussed in

5.3.

The full state space model contains 31 states and is unobservable, with a con-

dition number of 3.24× 1015. Figure 7.1 shows the condition number and ALS

objective function value versus the number of states. Although the general trend

is as expected, the shape of the curve does not give an obvious choice as to the

number of states that should be retained. We compared the model with no = 7,

which corresponds to a flattening in both curves before the condition number

rises again, to the model with no = 18, which corresponds to the number of states

after which φ no longer drops. The condition numbers are 611 and 9.67× 103,

respectively.

We first compared these two models by plotting the estimated autocovariances

(calculated from the data) alongside the theoretical autocovariances (calculated

from the model and the ALS estimates of Qw and Rv). Since these plots use the

original estimator, we considered whether or not the estimated and theoretical
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Figure 7.1: Condition number of the observability matrix and ALS objective value
vs. the number of states. The seven-state model was chosen as a trade-off between
the condition number, the number of states, and the ALS objective function value.
The 18-state model was also examined.
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Figure 7.2: Sample and theoretical autocovariances for the seven-state model,
without semidefinite constraints. The seven-state model adequately fits the data.

autocovariances match well and did not examine whether or not the estimator is

performing optimally. Figures 7.2 and 7.3 show that the ALS estimates fit the data

well in both models. The 18-state model does fit the cross-covariance terms with

more accuracy, but as these terms are near zero, such an accurate fit may not be

necessary. Therefore, we also compare the optimal estimator performance of the

models.

To compare the optimal estimator performance, we solved the ALS problem

for both models and designed an estimator based on the results for each model.

We processed the data with each of these estimators and computed the autoco-

variances. Figure 7.4 shows that both estimators have near-optimal performance.

However, the computation time increased from 19.2 seconds to 465 seconds as the

number of states increased. Therefore, the seven-state model was selected, as it

gives nearly the same results in a much shorter time.
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Figure 7.5: Autocovariances for the feasible generalized and ordinary ALS meth-
ods. The feasible generalized ALS method results reduces the covariance of Y1
and whitens the cross-correlations of Y1 with Y2 and Y3.

Using the seven-state model, we compared the feasible generalized ALS tech-

nique with the ordinary ALS technique by using each method on three data sets.

The three sets overlap in the manner shown in Figure 7.8. As seen in Figure 7.5,

using the feasible generalized ALS method reduces the variance of the innovations

for y1 and also reduces the cross-correlation between y1 and the other outputs at

higher lags.

Finally, we examined the consistency of the ALS results. The data studied is

shown in Figure 7.6. First we considered the data at the start of year 1 and divided

this data into 20 sets of 1500 data points. We applied the feasible generalized ALS

method to the first of these subsets and used the results to design an estimator,

which we call L1. We then processed the rest of the data using L1 and calcu-

lated the L1-innovation autocovariances. As shown in Figure 7.7, the estimator
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Figure 7.6: Industrial data analyzed in this work.

performed optimally on most (13 out of 20) of the data sets.

Three data sets in the middle of the time period are affected by a large distur-

bance that is not characteristic of the process (such a disturbance never reappears

in several months of data). As a result, the innovations have large spikes (shown

in Figure 7.8) and significant correlation remains in the L1-innovations (shown in

Figure 7.9). Solving the ALS problem for these sets of data does not produce an

optimal estimator, as disturbances of this magnitude are not repeated in the data.

In addition to these data sets, the data at the end of the first time period

exhibit different disturbance characteristics than the rest of the data. This change

is most clearly visible in the y1 data, where the variance decreases. As a result, the

estimator L1 is no longer optimal, as shown in Figure 7.10, although its behavior

may still be considered acceptable. After applying the ALS method to one of
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Figure 7.7: Autocovariances for the data from the first time period, using an ALS-
based estimator. The estimator was calculated from data set 1 and applied to all
the data sets. It performs optimally on the 13 out of 20 data sets from this time
period.
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Figure 7.10: Autocovariances for data sets 17-20 in the first time period. The
data were processed using the estimator from data set 1; this estimator is slightly
suboptimal for these data.

these data sets, we produced a new estimator L2. When we process the data

with L2, the innovations are white (Figure 7.11). Thus we conclude that the ALS

method works well on these data sets but the disturbances affecting the system

have changed slightly.

Finally, we obtained data for the same process from six months later and one

year later. The data from each time period were divided into six data sets and

processed with L1. The resulting innovation autocovariances are shown in Figures

7.12 and 7.13. Again, the estimator produces near optimal results on all data

sets. The results indicate that the disturbances to the system remain relatively

constant over an extended time period, since the disturbance model identified at

the beginning of the year produces an estimator that is nearly optimal throughout

the year. We expect that the same disturbance model would also be reliable for use
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Figure 7.11: Autocovariances for data sets 17-20 in the first time period using a re-
identified noise model. The estimator was designed from the ALS results on data
set 18. The noise model is more accurate, and the estimator behaves optimally.



123

0

0.003

0.006

0 2 4 6 8 10 12 14

Y
1(

k)

Y1(k− j)

-1

-0.5

0

0.5

1

0 2 4 6 8 10 12 14

Y2(k− j)

-0.4

0

0.4

0.8

0 2 4 6 8 10 12 14

Y3(k− j)

-0.3

0

0.3

0 2 4 6 8 10 12 14

Y
2(

k)

0

4000

8000

0 2 4 6 8 10 12 14

-500

0

500

1000

0 2 4 6 8 10 12 14

-0.6

-0.3

0

0.3

0.6

0 2 4 6 8 10 12 14

Y
3(

k)

Lag (j)

-500

0

500

1000

0 2 4 6 8 10 12 14

Lag (j)

0

5000

10000

0 2 4 6 8 10 12 14

Lag (j)

6 months later
Data set 1

Figure 7.12: Autocovariances for the data sets collected six months later. The
estimator from data set 1 (of the first time period) is nearly optimal for the later
data. For comparison, the autocovariances for data set 1 are plotted with pink
squares.

in calculating performance monitoring benchmarks although such an illustration

is beyond the scope of this work.

7.2 closed-loop simulation

We performed a simulation study to compare the performance of the optimal ALS

disturbance model to a DMC-type disturbance model in a closed-loop controller.

The ALS-based disturbance model contains a double integrator on y1 and single

integrators on the other two outputs; the ALS estimates are used as the process

and measurement noise covariances. In the DMC-type disturbance model, a single

integrator is placed on each of the three outputs. Measurement noise is included
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Figure 7.13: Autocovariances for the data sets collected one year later. Again, the
estimator from data set 1 (of the first time period) performs nearly optimally on
these data. Slightly better performance is achieved when a new noise model and
estimator are identified. For comparison, the autocovariances for data set 1 are
plotted with pink squares.

as DMC-type controllers often filter the output, but no process noise (except that

on the integrators) is added. The ratio of measurement noise to integrator noise

was chosen based on the ALS results to give the best possible performance for

that disturbance model type. We designed estimators using both the ALS-based

and the DMC-type disturbance models.

To compare the closed-loop performance of the estimators, we simulated the

plant assuming no model mismatch. We added white noise disturbances with co-

variances equal to the ALS results. We also added deterministic disturbances,

which were estimated from the plant data, to each of the outputs. We used

three different schemes for the regulator: minimum variance, approximately equal
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penalties on y and ∆u, and very high penalty on ∆u. We assessed the performance

of the controllers by using the KPI as defined in Chapter 3. In addition to show-

ing the total plant KPI in Table 7.1. Note that the KPIs are weighted based on the

regulator tuning.

To further compare the disturbance models, we plot the outputs and inputs for

each of the controllers. Note that the fifth input in each plot is the feed-forward

variable and is not manipulated by the controller. We also plot the deterministic

disturbances and the integrator estimates. Since the disturbances affect the output

directly and the integrators are added to the outputs, we expect the integrators

to track the disturbances, so we plot the estimates along with the disturbances.

(When there is a mismatch in the disturbance location, the integrators track a

transformation of the disturbances, so these plots would not be informative). We

also plot the estimate of the slope of the disturbance in the double integrator case.

Under minimum variance tuning, the ALS-based controller yields much better

closed-loop performance than does the DMC-type controller, as shown in Figure

7.14. Because the ALS-based estimator provides better state and disturbance esti-

mates, the regulator rejects the disturbances more completely, and the controller

achieves a much lower output variance, as compared to the controller with the

DMC-type disturbance model. The lower output variance comes at the cost of

increased use of the inputs (Figure 7.15). However, under this control strategy,

reducing the output variance is far more important than reducing the input vari-

ance.

Figures 7.17-7.19 depict the behavior for a more realistic regulator, in which

both the output variance and the rate of change of inputs are minimized. For this

regulator tuning, the DMC-type and ALS-based controllers behave much more

similarly, although the ALS estimator still results in improved performance.

The last control strategy, shown in Figures 7.20-7.22, has high move suppres-

sion. Therefore, the inputs move little and the outputs are highly correlated with
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Table 7.1: Performance metrics for the ALS-based and DMC-type estimators in
closed-loop simulations.

KPIy KPI∆u KPI
ALS DMC ALS DMC ALS DMC

Minimum variance 0.190 0.240 9.62e-8 9.70e-9 0.190 0.239

Balanced 0.317 0.423 0.0182 0.106 0.335 0.434

High move suppression 1.15 1.19 0.665 0.547 1.82 1.74

the deterministic disturbances, which are not rejected well. In this case, there is

essentially no difference in the performance of the two controllers because the

estimate has little effect on the control action.

In these simulations, the double integrator model was used only in the estima-

tor, not in the regulator. The regulator chose the control action based on steady-

state targets for the state and input, but these targets were calculated under the

assumption that the slope of the double integrator is zero. The performance would

have a greater improvement if the regulator properly accounted for the estimated

slope of the disturbance.
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Figure 7.14: Outputs under minimum variance control, using the ALS-based and
DMC-type disturbance models. The ALS-based disturbance model significantly
reduces the variance of y1.
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Figure 7.17: Outputs under the second regulator tuning, using the ALS-based and
DMC-type disturbance models. The ALS-based disturbance model consistently
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Figure 7.18: Inputs under the second regulator tuning, using the ALS-based and
DMC-type disturbance models. The inputs are similar, although the ALS-based
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Figure 7.19: Disturbances and estimates under the second regulator tuning, using
the ALS-based and DMC-type disturbance models. The ALS-based disturbance
model gives improved performance.
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Figure 7.20: Outputs under high move suppression, using the ALS-based and
DMC-type disturbance models. The controllers give nearly identical performance.
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Figure 7.21: Inputs under high move suppression, using the ALS-based and DMC-
type disturbance models. The controllers give nearly identical performance.
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Figure 7.22: Disturbances and estimates under high move suppression, using the
ALS-based and DMC-type disturbance models. The disturbance estimates have
little effect on the performance under this controller tuning.
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8
M A X I M U M L I K E L I H O O D E S T I M AT I O N 1

8.1 forming the mle problem

In this chapter, we propose a maximum likelihood estimation method for estimat-

ing the process and measurement noise covariances from data. As discussed in

greater detail in Section 8.7, this method has a stronger theoretical basis and a

simpler derivation compared to the ALS method.

We begin with the state space model

x+ = Ax + w

y = Cx + vw

v

 ∼ N

0,

Qw 0

0 Rv




in which x, w ∈ Rn, y, v ∈ Rp, and w and v are uncorrelated in time. We seek max-

imum likelihood estimates of the unknown covariance matrices Qw and Rv given

1Portions of this chapter will be published in Zagrobelny and Rawlings (2014b)
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the system matrices A and C and a sequence of measurements y(0), . . . , y(N− 1):

max
Qw,Rv

ln py(y(0) . . . y(N − 1)|Qw, Rv)

subject to Qw, Rv ≥ 0

To derive an expression for the likelihood, we write all the measurements in a

single vector and relate them to the noises entering the system and an initial state

x(0):



y(0)

y(1)
...

y(Ñ − 1)


=



C

CA
...

CAÑ−1


x(0) +



v(0)

v(1)
...

v(Ñ − 1)



+



0 0 . . . 0

C 0 . . . 0

. . .
. . .

...

CAÑ−2 CAÑ−3 . . . C





w(0)

w(1)
...

w(Ñ − 2)


(8.1)

in which Ñ = N + K.

For simplicity of presentation, we assume that A is stable1 and choose K such

that |Ai| ≤ δ, ∀i ≥ K for some small scalar threshold δ > 0. Then all the mea-

surements y(K + i) (for i > 0) are approximately independent of the initial state,

as well as many of the past noises. Considering only the measurements at time K

1In the case that A is unstable, the MLE problem for an observable system can be formulated by

choosing a stable estimator with gain L and posing the problem in terms of the matrix A− ALC

and the L-innovations, y(k)− Cx̂(k|k), rather than the outputs. The covariance of the vector of L-

innovations is slightly more complicated than that of the outputs as the past measurement noises

affect the current innovation, but the MLE problem is analogous to the problem presented here.



138

or later, (8.1) simplifies to



y(K)

y(K + 1)
...

y(Ñ − 1)


≈



v(K)

v(K + 1)
...

v(Ñ − 1)



+



CAK−1 . . . C 0 . . . 0

0 CAK−1 . . . C . . . 0
...

. . .
...

0 . . . 0 CAK−1 . . . C


︸ ︷︷ ︸

O



w(0)

w(1)
...

w(Ñ − 2)


(8.2)

Since all of the noises are normally distributed,
[

y(K)′ . . . y(Ñ − 1)′
]′

also has

a normal distribution. As the indices in (8.2) are arbitrary, we have the distribution

Y :=



y(0)

y(1)
...

y(N − 1)


∼ N (0, P)

P = O


Qw

. . .

Qw

O′ +


Rv

. . .

Rv

 (8.3)

Note that we can also write P as

P =
N+K−1

∑
i=1

OiQwO′i +
N

∑
j=1

IjRvI′j (8.4)

in which Oi is the ith pN × n block column of O and Ii is the ith pN × p block
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column of INp. Finally, we write the maximum likelihood problem as

min
Qw,Rv

φ(Qw, Rv) = ln det P + Y′P−1Y

subject to Qw, Rv ≥ 0 (8.5)

in which P is defined in (8.3) and (8.4). Note that φ(Qw, Rv) is equal to−2 ln pY(Y|Qw, Rv)

without the constant term.

8.2 existence of the solution

We next consider under what conditions a solution to the maximum likelihood

optimization problem in (8.5) exists. To better motivate the results that follow, we

first consider a more standard case in which we have N independent samples of a

normally distributed variable with an unknown covariance. In the following two

propositions, we show that the maximum likelihood estimate for this covariance

exists with probability one.

Proposition 3. Let R ∈ Rp×p be positive definite and matrix Y ∈ Rp×N have rank p

with its column partitioning denoted by

Y =

[
y1 y2 · · · yN

]

with yi ∈ Rp and N ≥ p. Define f (R) as

f (R) := N ln det R +
N

∑
i=1

y′iR
−1yi

Then f (R)→ ∞ if either λi(R)→ 0+ for any eigenvalue or R→ ∞.

Proof. Since R is positive definite, it has eigenvalue decomposition R = WΛW ′ in

which W ∈ Rp×p is orthogonal and Λ ∈ Rp×p is diagonal with positive diagonal
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elements, λi > 0, i = 1, 2, . . . p. Evaluating f gives

f (R) = N
p

∑
j=1

ln(λi) +
N

∑
i=1

y′iWΛ−1W ′yi

Partitioning W by its columns, W =

[
w1 w2 · · · wp

]
, we express the second

term as

N

∑
i=1

y′iWΛ−1W ′yi =
N

∑
i=1

y′i

( p

∑
j=1

1
λj

wjw′j

)
yi = ∑

j

1
λj

∑
i

y′iwjw′jyi

= ∑
j

1
λj

∑
i

w′jyiy′iwj = ∑
j

1
λj

w′jYY′wj

=
p

∑
j=1

1
λj

r′jrj

in which rj := Y′wj. Since Y has full row rank and wj 6= 0 for j = 1, 2, . . . , p,

we must have rj 6= 0. Therefore, a2
j := r′jrj are positive scalars for j = 0, 1, . . . , p.

Substituting this result into f gives

f (R) =
p

∑
j=1

bj bj := N ln(λj) +
a2

j

λj

We next consider the behavior of f as λi(R)→ 0+ and R→ ∞:

1. λi(R)→ 0+. Note that for any a2
j > 0, limλj→0+ ln(λj)+ a2

j /λj → ∞, i.e., 1/λj

goes to ∞ faster than ln λj goes to −∞. Therefore, as any λj → 0+, bj → ∞.

For the eigenvalues that remain positive, bj has a finite value. Therefore we

conclude that limR→0+ f (R)→ ∞ and the first limit is established.

2. R→ ∞. Let λ1 be the largest eigenvalue of R. The condition R→ ∞ implies

that λ1 → ∞, although some eigenvalues may tend to zero as well. As any

eigenvalue goes to infinity, the corresponding bi → ∞, due to the log term.

As we just showed, if any λj → 0, bj → ∞. The remaining bi terms, which

correspond to strictly positive and finite eigenvalues, remain finite. Since at
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least λ1 → ∞, then at least one bi → ∞. Since no bi → −∞, f (R) → ∞ as

R→ ∞.

Proposition 4. Given Y and f (R) as defined in Proposition 3, a solution to the maximum

likelihood problem minR>0 f (R) exists.

Proof. Choose some R1 > 0 such that f (R) = α is finite. Then define the set

L := {R | R ≥ 0, f (R) ≤ α}

L is a non-empty subset of the feasible region. Since f (R) > α for any feasible

R that is not in L, the solution to the MLE problem, if it exists, lies in L. f (R) is

continuous on L and the set L is closed and bounded. Therefore, by the Weier-

strass theorem, the problem minR∈L f (R) has a solution. This solution also solves

minR>0 f (R)

Next we return to the maximum likelihood problem defined in (8.5). The

propositions above do not directly apply because we have only one sample of the

Np-vector Y. As each yi is correlated, we must treat Y as a single vector. In addi-

tion P has a known structure in terms of Qw and Rv, whereas R in Proposition 3 is

entirely unknown. First we consider the behavior of φ(Qw, Rv) on the boundary

as P becomes semi-definite or P→ ∞.

Proposition 5. Let the data Y ∈ RNp be generated from a normal distribution with mean

zero and covariance P∗ > 0 (strictly positive definite), so that
[

y1 . . . yN

]
is rank p

with probability one. Assume also (A, C) observable and N ≥ n. Then φ(Qw, Rv) → ∞

if either any eigenvalue λi(P)→ 0+ or P→ ∞.

Proof. Since P is symmetric, it has eigendecomposition P = WΛW ′. Then

Y′P−1Y = Y′WΛ−1W ′Y = a′Λ−1a = ∑
i=1

a2
i

λi
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in which the scalar ai is the ith element of the vector a := W ′Y.

Then we write the objective function as

φ(Qw, Rv) =
Np

∑
i=1

bi bi := ln(λi) +
a2

i
λi

If λi is finite, then bi is finite as well. As λi → ∞, bi → ∞ because the first term

goes to infinity and the second to zero. As λi → 0, ln(λi) → −∞. When ai 6= 0,

then a2
i

λi
→ ∞ faster than ln(λi)→ −∞, so bi → ∞.

In this case we are no longer guaranteed that ai 6= 0. However, due to the

structure of P, as one eigenvalue of P tends to zero, then N eigenvalues of P tend

to zero at the same rate, as explained below. Let λ1 . . . λN be the eigenvalues of

P that go to zero. Then φ → ∞ as long as at least one of a1 . . . aN is non-zero. In

other words, φ→ ∞ as long as W ′0Y 6= 0, where W0 is the null space of P.

Next we show that W ′0Y 6= 0 with probability one. We write P as

P = PQ + PR PQ = O


Qw

. . .

Qw

O′ PR =


Rv

. . .

Rv

 (8.6)

Since P ≥ 0, W ′i PWi = 0 implies that Wi is in the null space of P. As PQ and PR

are both positive semidefinite, then we must have W ′i PQWi = W ′i PRWi = 0 for any

Wi in the null space of P. In other words, Wi is in the null space of P if and only

if it is in the null space of both PQ and PR.

Consider the block-diagonal structure of PR. Let one eigenvalue of Rv go to

zero and let v1 be the corresponding eigenvector. We write the null space of PR as

WR0 =


v1 0

. . .

0 v1


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Due to the structure of PQ, either WR0 lies in the null space of PQ, in which

case W0 = WR0, or else no non-zero vector lies in both null spaces, in which case

P is non-singular (see Appendix 8.A).

Since W0 = WR0, then (W ′0Y)j = v′1yj and W ′0Y = v′i

[
y1 . . . yn

]
. Since

[
y1 . . . yn

]
is full row rank with probability one, we are guaranteed that W ′0Y 6= 0. Further,

since the dimension of W0 is either zero or N, then if one eigenvalue of P tends to

zero, N eigenvalues of P approach zero at the same rate.

Next we consider the case in which multiple eigenvalues of Rv tend to zero.

Let Rm denote a matrix in which the first m eigenvalues of Rv tend to zero. Then

we perturb Rm slightly:

Rmr = Rm + rWRdiag
([

0 1 1
2 . . . 1

m−1 0 . . . 0

])
W ′R (8.7)

in which WR contains the eigenvectors of R and r is a positive scalar. The per-

turbed matrix Rmr has only one zero eigenvalue.

Let Qr denote Q with a zero eigenvalue such that PQ and PR have the same

null space. As shown above, as (Qw, Rv)→ (Qr, Rmr), then φ(Qr, Rmr)→ ∞. Since

we can choose any positive r for the perturbation in (8.7), Rm is arbitrarily close to

Rmr. Since φ is continuous in Q and R and Rmr is continuous in r, then φ(Qr, Rmr)

is also continuous in r. Thus φ(Qr, Rm)→ ∞ as well.

Therefore, as any eigenvalue of P goes to infinity or zero, φ(Qw, Rv)→ ∞.

Proposition 6. Given that the assumptions in Proposition 5 are satisfied, a solution exists

to the maximum likelihood problem defined in (8.5).

Proof. As Qw or Rv → ∞, P → ∞ (see Appendix 8.B) and φ → ∞ (by Proposition

5). As Qw → 0 or Rv → 0, either P is positive definite and φ(Qw, Rv) is finite, or

else P → 0 and φ(Qw, Rv) → ∞ (see Appendix 8.B and Proposition 5). Let Ω :=

{(Qw, Rv) | Qw ≥ 0, Rv ≥ 0} be the feasible region of (Qw, Rv). Choose a feasible

point (Q1, R1) ∈ Ω such that P(Q1, R1) is non-singular and let φ1 = φ(Q1, R1).
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Then define

L := {(Qw, Rv) | Qw ≥ 0, Rv ≥ 0, φ(Qw, Rv) ≤ φ1}

L is a non-empty subset of Ω. Since any (Qw, Rv) that lies in Ω but not in L must

have φ > φ1, the solution to (8.5), if it exists, lies in L.

Since φ(Qw, Rv) is continuous on L and the set L is closed and bounded the

problem

min
Qw,Rv

φ(Qw, Rv) subject to (Qw, Rv) ∈ L

has a solution by the Weierstrass theorem. Therefore, a solution to (8.5) exists.

Note that Propositions 3-6 rely on the assumption that
[

y1 . . . yN

]
is full row

rank. As shown in Appendix 8.C, this condition is satisfied with probability one

when Y is generated from a normal distribution with a positive definite covariance

matrix.

8.3 uniqueness of the solution

We find first and second differentials of φ(P) = φ(Qw, Rv) defined in (8.5). Several

matrix differentials, which are given in Appendix 8.D, are used in these deriva-

tions. From (8.4), we write dP as

dP =
N+K−1

∑
i=1

Oi (dQw)O′i +
N

∑
i=1

Ii (dRv) I′i (8.8)

We then write dφ as

dφ = tr
(
(dP) P−1 (P−YY′

)
P−1

)
(8.9)
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Using dP as defined in (8.8), we write dφ as:

dφ = tr

(
(dQw)∑

i
O′iP

−1(P−YY′)P−1Oi

)

+ tr

(
(dRv)∑

i
I′iP
−1(P−YY′)P−1Ii

)

Any solution to (8.5) on the interior of the region Qw, Rv ≥ 0 must satisfy dφ = 0

for all dQw and dRv and therefore satisfies the equations

∑
i

O′iP
−1(P−YY′)P−1Oi = 0

∑
i

I′iP
−1(P−YY′)P−1Ii = 0

Note that we cannot choose P̂ = YY′, as that choice of P would exceed our degrees

of freedom and result in P singular.

We have for the second differential

d2φ = tr((dP) P−1 (dP) P−1)

− 2tr
(
(dP) P−1 (dP) P−1(P−YY′)P−1

)
(8.10)

We can write d2φ in terms of dQw and dRv, but the equation quickly becomes very

complicated.

Any minimum on the interior satisfies dφ = 0 and d2φ > 0. For any P > 0

and dP 6= 0, the first term in (8.10) is strictly positive. However, the sign of

the second term remains unknown, even at a stationary point. The number of

stationary points is also unknown. Therefore, we cannot easily establish when the

MLE problem has a unique solution from looking at the differentials. In addition,

although we cannot have a solution on the boundary P → 0+, we may still have

solutions on the boundary Qw → 0+ or Rv → 0+. In the next section, we gain

further insight on the conditions for uniqueness by comparing this problem with



146

the ALS problem.

8.4 connection to the als technique

Here we follow the derivation as in Rajamani (2007). For simplicity, we assume

that L = 0 in both the MLE and ALS problems.

We rewrite the MLE first order condition in (8.9) as

tr
(

P−1 (dP)
(

IpN − P−1YY′
))

= 0 (8.11)

Let In := vec(In). Noting that for any n × n matrix A, tr(A) = I ′nvec(A), we

rewrite (8.11) as

I ′Np

((
IpN −YY′P−1

)
⊗ P−1

)
vec(dP) = 0 (8.12)

Note that there was an error in (Rajamani, 2007, p. 128), which is fixed here. Next

we write (8.12) in terms of dQw and dRv. Starting with Y in terms of x(0) as in

(8.1) and defining

O =



C

CA
...

CAN−1


Γ f =



0 0 . . . 0 0

C 0 . . . 0 0

. . .
. . .

...

CAN−1 CAN−2 . . . C 0


we write P as

P = OPxO
′ + Γ f

N⊕
i=1

QwΓ′f +
N⊕

i=1

Rv (8.13)

in which Px = cov(x) = APx A + Qw and
⊕N

i=1 A indicates the direct sum. Using
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the Lyapunov equation for Px, we vectorize (8.13) to obtain

vec(P) =
[
A1 A2

] vec(Qw)

vec(Rv)

 (8.14)

A1 = (O ⊗O)(In2 − A⊗ A)−1 + (Γ f ⊗ Γ f )Jn,N

A2 = Jp,N

in which the permutation matrix Jm,N satisfies the relationship vec
(⊕N

i=1 A
)
=

Jm,Nvec(A) (for a m× m matrix A). Apart from the approximation AK ≈ 0, the

formula for P here is equivalent to that in the previous sections. We simply choose

to write P in terms of x(0) rather than including additional past noise terms.

Letting A0 = I ′Np
((

IpN −YY′P−1)⊗ P−1) and using (8.14) in (8.12), we write

the first order condition as

A0

[
A1 A2

]
=

[
0 . . . 0

]
(8.15)

We rewrite A0 as

A0 = vec(P−1)′ − 1
2

vec(YY′)′
(

I(pN)2 + K(pN)(pN)

) (
P−1 ⊗ P−1

)

in which the commutation matrix Kij is such that vec(A) = Kijvec(A′) where A

has dimensions i× j. Then, taking the transpose of (8.15), we write the first order

condition for the maximum likelihood problem as

0 =

A′1
A′2

 vec(P−1)− 1
2

A′1
A′2

 (P−1 ⊗ P−1
) (

I(pN)2 + K(pN)(pN)

)
vec(YY′) (8.16)

We compare this condition to the first order condition for the ALS problem,

which forms a least-squares optimization problem for the elements of Qw and Rv.
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For the full matrix, unconstrained, weighted ALS problem, when N = Nd (i.e.

the number of autocovariances is equal to the number of data points), the ALS

solution satisfies the first order conditionA′1
A′2

W†
[
A1 A2

] vec(Qw)

vec(Rv)

−
A′1
A′2

W†vec(YY′) (8.17)

We define W and its psuedoinverse as

W =
1
2

(
I(pN)2 + K(pN)(pN)

)
(P⊗ P)

W† =
1
2

(
P−1 ⊗ P−1

) (
I(pN)2 + K(pN)(pN)

)

Using this value of W† in (8.17) and utilizing the fact that

vec(P−1) =
1
2

(
P−1 ⊗ P−1

) (
I(pN)2 + K(pN)(pN)

)
vec(P)

then the ALS first order condition is identical to (8.16).

From equation (18) in Rajamani and Rawlings (2009), W is the covariance of

vec(YY′) when N = Nd, and therefore it is the minimum variance weighting for

the ALS problem. Thus, the MLE method is equivalent to the optimally-weighted

full matrix ALS method with N = Nd (neglecting the semidefinite constraints).

This conclusion allows us to make several observations:

1. Since W depends on the unknown Qw and Rv, solving the optimally-weighted

ALS problem requires either nonlinear optimization or an iterative proce-

dure as suggested in Rajamani and Rawlings (2009).

2. From (8.14), when
[
A1 A2

]
is not full rank, more than one (Qw, Rv) maps

to any given P. Since the likelihood depends on Qw and Rv only through P,

there is not a unique solution to the MLE problem.
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3. As this rank condition is necessary for the unweighted ALS problem to have

a unique solution, when there is not a unique ALS solution, there cannot be

a unique MLE solution.

4. It does not necessarily follow that there is a unique MLE solution when there

is a unique ALS solution.

5. It is particularly worthwhile to note that, in the case when G is unknown,

both the following conditions are necessary for either the ALS or the MLE

problem to have a unique solution:

(a) (A, C) observable

(b) rank(C) = n

(c) rank(A) = n

8.5 solving the mle problem

One limitation of the maximum likelihood method is that it requires the compu-

tation, storage, and manipulation of very large matrices used in the likelihood.

Here we suggest several methods to reduce the computation time:

1. Sparsity: P and the matrices from which it is composed are sparse, as seen

in (8.2) and (8.3). By treating these matrices as sparse, we reduce both the

storage requirements and the computation time.

2. Cholesky Decomposition: Computing ln det(P) for large P presents chal-

lenges in both numerical accuracy and computation time. If P has many

eigenvalues that are less than one, computing the log determinant directly

may return an answer of minus infinity, while in reality this term has a fi-

nite value. Calculating the log determinant via the eigenvalues produces

a more accurate numerical result in Octave and Matlab. However, finding
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the eigenvalues may be computationally expensive, and Octave and Matlab

do not utilize sparsity in this step. A faster method is to compute the log

determinant via Cholesky factorization. The positive definite matrix P is

decomposed uniquely into P = LL′ in which L is lower-triangular. The log

determinant of P is computed as log det(P) = 2 ∑i log(Lii) in which Lii are

the diagonal entries of L.

3. Solving Linear System of Equations: Directly inverting P to calculate Y′P−1Y

is computationally expensive, and the computation time is not reduced for

sparse matrices. To avoid computing the inverse directly, we first find the

vector X which solves the equation PX = Y and then calculate Y′P−1Y =

Y′X. In Octave and Matlab, the “mldivide” function (abbreviated by the

\ symbol) uses efficient algorithms, based on the structure of P, to solve

PX = Y.

We also recommend optimizing over Q̃ and R̃, in which Qw = Q̃Q̃′ and

Rv = R̃R̃′ rather than optimizing directly over Qw and Rv, as this decomposi-

tion enforces both the positive definite and the symmetry constraints of Qw and

Rv.

8.5.1 Optimal innovations MLE method

The MLE method proposed by Bavdekar et al. (2011) utilizes the fact that the

innovations, y(k)− ŷ(k|k− 1), are white under an optimal estimator. This method

reduces the computational time because the objective function is written in terms

of the independent innovations rather than the correlated outputs. The optimal



151

innovations MLE problem is written as

min
Qw,Rv

N ln(det(Σe)) +
N−1

∑
i=0

(y(k)− ŷ(k|k− 1))′ Σ−1
e (y(k)− ŷ(k|k− 1))

subject to: Kalman filter equations

Qw, Rv ≥ 0

in which Σe is the covariance of the innovation. This method was designed for

nonlinear systems using the extended Kalman filter. We apply it to a linear time

invariant system using the following steps in each iteration of the optimizer:

1. Calculate the steady-state predictor gain and innovation covariance (Σe) from

the estimator Riccati equation, using the current values of Qw and Rv.

2. Calculate the innovations using the Kalman filter equations.

3. Calculate the block diagonal matrix P = IN ⊗ Σe; use sparsity to reduce the

storage space of P.

4. Calculate the objective function as φ = N log det(Σe)+Y′inn(P\Yinn) in which

the Np-vector Yinn contains all the innovations2.

Since calculating the innovations requires a value for x̂(0), we also optimize over

this parameter.

For this method, P is block diagonal, so Y′innP−1Yinn is computed more quickly

than Y′P−1Y in the output based-method. Computing the log determinant is also

significantly faster, as only the determinant of the p× p matrix Σe is calculated,

rather than the determinant of the Np× Np matrix P. These advantages come at

the cost of computing the innovations within the optimizer at each iteration, since

Qw and Rv are updated. However, for larger systems, the optimal innovation

2In the examples studied, it is faster to compute the term Y′inn(P\Yinn) than to calculate and add

the individual terms (y(k)− ŷ(k|k− 1))′ Σ−1
e (y(k)− ŷ(k|k− 1))
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MLE method significantly reduces the computational time. Both formulations of

the MLE problem lead to the same estimates of Qw and Rv.

8.6 examples

8.6.1 Scalar example

Consider the example

A = 0.600 C = 0.483 Qw = 7 Rv = 3

We use N = 1000 data points and K = 23 (placing a threshold of 10−5 on the

norm of A). We solve the MLE problem in Octave using the built-in function sqp.

We also solve the ALS problem for comparison, in which the optimal weighting

is approximated from the data and the window is fixed at NALS = 15. The results

are summarized in Table 8.1 and are compared to the sample variances of the

process and measurement noises used in the simulation. These sample variances

would be the best estimate for Qw and Rv if the sequence of noises were known.

Both the MLE and ALS method achieve similar results, but the MLE solution

produces the lowest objective value compared to the ALS solution and the sample

variances. Figure 8.1 plots the objective function vs. Qw and Rv; we see that the

objective function does indeed have a unique minimum and tends to infinity on

the boundaries of P. For N = 1000, the computation times for the MLE and ALS

methods are comparable. However, when N = 10000, the ALS technique is faster

by two orders of magnitude. Unlike in the MLE method, the computation time

in the ALS method has little dependence on the number of data points, since the

size of the optimization problem is unchanged.
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Table 8.1: MLE and ALS results for the scalar example.

N = 1000
Qw Rv φ Time (s)

MLE 8.69 2.74 2656.85 2.86

ALS 8.66 2.65 2657.09 1.36

Sample Var. 6.79 3.07 2660.04

N = 10000
Qw Rv φ Time (s)

MLE 6.76 3.07 26277.25 178

ALS 6.64 3.10 26277.39 1.88

Sample Var. 6.93 3.04 26277.52
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Figure 8.1: MLE objective function value vs. Qw and Rv for the scalar example
with N = 1000 data points. The objective has a unique minimum and goes to
infinity on the boundaries of P.
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Table 8.2: Mean and variance of the estimates, average objective value, and average
CPU time for the ALS, MLE, and EM methods.

E(Q̂w) E(R̂v) var(Q̂w) var(R̂v) 〈φ〉 〈CPU Time (s)〉
ALS 6.699 2.916 1.306 0.113 2617.9279 0.903
MLE 6.944 2.988 1.208 0.105 2617.2499 2.756
EM 6.909 3.002 1.161 0.103 2617.2544 11.965
Sample Var. 7.044 2.969 0.099 0.027 2618.8098

8.6.2 Comparison to the expectation maximization approach

Using the same scalar example, we compare the MLE and ALS methods to the

expectation maximization (EM) approach described in Li and Badgwell (2014)

and Bavdekar et al. (2011). We simulate 50 instances of the problem and calcu-

late Qw and Rv using all three approaches. Figure 8.2 plots Q̂w and R̂v for each

approach. The estimates for all the methods are centered around the true mean

values, and the variances of the estimates are similar. The MLE and EM methods

produce nearly identical results.

We summarize the results in Table 8.2. The estimates from all three meth-

ods have similar means and variances, although the MLE and EM methods lead

to slightly lower variances than does the ALS technique. Since the MLE and

EM methods produce approximately the same results at each iteration, they have

nearly the same objective function values. Therefore, the EM estimates approx-

imate the maximum likelihood solution more accurately than do the ALS esti-

mates. For this problem, the ALS method is the fastest of the three options. The

EM method is slower than either the ALS or MLE methods, as it performs Kalman

filtering and smoothing at each iteration. However, the EM method may scale bet-

ter as the amount of data or system dimensions increase. Li and Badgwell (2014)

successfully applied the EM method to a larger problem on which the ALS method

ran out of memory.
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Figure 8.2: Noise variance estimates for the ALS, MLE, and EM methods. The
estimates from each method have a similar mean and variance. The EM and MLE
methods produce approximately the same results.
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Table 8.3: Computation time for steps in the MLE method (in seconds of CPU
time).

Quantity Method Full Sparse

P 11.2 0.0436

log(det(P)) Eigenvalues 4.97 5.01

Cholesky 0.418 0.0113

Y′P−1Y Inverse 74.9 77.4
Left Division 0.503 0.0169

8.6.3 Example: p = n = 2

In this example, we illustrate how the methods mentioned in Section 8.5, including

utilizing sparse matrices, significantly reduce the computation time. We consider

the example

A =

0.600 0

0 0.338

 C =

0.887 0.309

0.238 0.732


Qw =

17.9 10.5

10.5 6.99

 Rv =

6.62 0

0 5.22


Table 8.3 summarizes the time spent in each step. By using efficient numerical

methods, the computational time for each iteration is reduced from approximately

91s to 0.072s.

We also show the computational time for the optimal innovation MLE method

proposed by Bavdekar et al. (2011) in Table 8.4. In this table, the time to compute

Y′P−1Y includes the time to calculate the innovations; left division was used to

avoid directly inverting P. Comparing Table 8.3 to Table 8.4, we see that the

optimal innovation method requires additional time to compute the innovations

but reduces the computational time for the other steps in each iteration.

In Table 8.5 we compare the solutions and solution time of the “slow MLE”
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Table 8.4: Computation time for steps in the optimal innovations MLE method (in
seconds of CPU time).

Quantity Full Sparse

P 0.0137 0.0118

log(det(P)) 7.30× 10−5 7.30× 10−5

Y′P−1Y 0.550 0.0518

Table 8.5: MLE and ALS results for the two-state example.

Qw diag(Rv) φ Time (s)

“Slow”
MLE

[
16.9 10.8
10.8 6.88

] [
7.12
5.08

]
7326.5 17953

“Fast”
MLE

[
16.9 10.8
10.8 6.88

] [
7.12
5.08

]
7326.5 49.3

Optimal
Innovation

MLE

[
16.9 10.8
10.8 6.90

] [
7.13
5.07

]
7326.5 43.9

ALS
[

17.2 10.6
10.6 6.47

] [
6.82
4.95

]
7327.5 1.86

Sample
Cov.

[
17.9 10.4
10.4 6.91

] [
6.63
4.92

]
7328.4

(full matrices, eigenvalues, and inverse), “fast MLE” (sparse matrices, Cholesky

factorization, and left division), optimal innovations MLE, and ALS techniques

for N = 1000. All MLE methods give identical results, however, the “fast” MLE

and optimal innovations MLE techniques decrease the computation time from

several hours to less than a minute. The ALS method gives similar results with the

smallest computation time (around 1s) but has a slightly higher objective value.
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8.6.4 Example: p = n = 5

In this example we consider a larger system, with 5 states and outputs. The data

are generated using

Qw =



8.92 9.12 14.44 5.82 12.54

9.12 13.07 14.90 10.41 17.13

14.44 14.90 25.11 11.32 21.50

5.82 10.41 11.32 11.98 14.73

12.54 17.13 21.50 14.73 24.20


Rv = diag

([
1.51 2.10 1.39 3.78 1.11

])

We use two initial conditions to solve the MLE problem: (1) Qw = Rv = I

and (2) the ALS estimates. The MLE solution yields a lower objective value than

the ALS solution and the sample covariances of the noises. Changing the initial

condition has a negligible effect on the MLE results but reduces the computation

time. We also solve the MLE problem using the optimal innovations method,

starting from each initial condition. For this example, the optimal innovations

MLE method significantly reduces the computation time by more than a factor of

five and reaches the same solution as the output MLE method.
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Table 8.6: MLE and ALS results for the five-state example.

Method Results

MLE
Q0 = I

Qw =



8.50 8.19 9.97 2.84 10.31

8.19 14.29 17.02 10.40 18.45

9.97 17.02 28.58 10.92 21.76

2.84 10.40 10.92 11.19 14.29

10.31 18.45 21.76 14.29 24.48


diag(Rv) =

[
1.53 1.90 1.58 2.99 0.801

]
φ = 15375

Time (min) = 34.8

MLE
Q0 = Q̂ALS

Qw =



8.34 8.32 10.02 2.85 10.32

8.32 14.25 17.06 10.35 18.45

10.02 17.06 28.60 10.86 21.75

2.85 10.35 10.86 11.25 14.26

10.32 18.45 21.75 14.26 24.25


diag(Rv) =

[
1.52 1.91 1.57 3.00 0.822

]
φ = 15375

Time (min) = 20.5
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MLE
Optimal

Innovations
Q0 = I

Qw =



8.36 8.31 9.99 2.81 10.29

8.31 14.17 17.03 10.43 18.47

9.99 17.03 28.56 10.84 21.70

2.81 10.43 10.84 11.14 14.19

10.29 18.47 21.70 14.19 24.17


diag(Rv) =

[
1.53 1.91 1.57 3.00 0.818

]
φ = 15375

Time (min) = 6.75

MLE
Optimal

Innovations
Q0 = Q̂ALS

Qw =



8.36 8.31 9.99 2.81 10.29

8.31 14.18 17.04 10.43 18.47

9.99 17.04 28.56 10.84 21.70

2.81 10.43 10.84 11.14 14.19

10.29 18.47 21.70 14.19 24.18


diag(Rv) =

[
1.53 1.90 1.57 3.00 0.817

]
φ = 15375

Time (min) = 4.22

ALS

Qw =



6.42 7.28 6.25 1.58 7.73

7.28 14.55 16.80 7.11 15.47

6.25 16.80 25.01 6.48 16.42

1.58 7.11 6.48 8.78 9.54

7.73 15.47 16.42 9.54 17.48


diag(Rv) =

[
1.38 1.70 1.14 2.33 0.94

]
φ = 15465

Time (min) = 0.173
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Sample
Covariances

Qw =



8.32 8.48 13.59 5.50 11.70

8.48 12.51 13.97 10.21 16.32

13.59 13.97 23.82 10.70 20.16

5.50 10.21 10.69 11.85 14.21

11.70 16.32 20.16 14.21 22.92


diag(Rv) =

[
1.40 2.05 1.34 3.88 1.07

]
φ = 15387

8.7 comparison of the mle and als approaches

The maximum likelihood approach to disturbance identification is preferable to

the ALS method in several ways. From a theoretical point of view, the MLE esti-

mates have a clear statistical meaning, whereas the ALS estimates do not. The ALS

problem becomes increasingly arbitrary as we approximate the optimal weighting

and choose a penalty to place on tr(Qw). In addition, the derivation of the MLE

problem is more simple and straightforward.

However, from a practical point of view, the ALS technique is much better

equipped to handle industrial data than is the MLE technique. Numerical meth-

ods have not been developed to solve the MLE problem on large systems, and the

computational time increases significantly when more data is added. The MLE

method also has not been developed for the case when the solution is not unique.

In this case, some effort must be made to ensure a realistic solution is reached, for

example, using the ALS solution as the starting point. Overall, solving the MLE

problem requires more computational time and memory than does solving the

ALS problem, even when the semidefinite constraints, trace penalty, and approx-

imate weighting are added to the ALS objective. Whereas we have demonstrated

the MLE approach only on small simulated systems, we have successfully applied

the ALS method to industrial data sets, using the improvements discussed in this
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dissertation. Therefore, we recommend using ALS on industrial data sets or on

any large systems until the MLE method has been improved. However, given the

power of modern computers and the efficiency of many algorithms, the MLE ap-

proach has the potential to become useful in practice. In these results we have

already shown how choosing efficient computational methods can decrease the

time significantly; with more effort this method can be made increasingly more

efficient.

8.8 appendices

8.a Null space of PQ

Proposition 7. Given PQ and PR as defined in (8.6), then either (1) null(PR) ∈ null(PQ)

and null(P) = null(PR), or (2) null(PR) ∈ range(PQ) and null(P) = {0}.

Proof. To prove the proposition, first we show that V ∈ null(PR) is in the null

space of PQ if and only if wj := (A′)K−jC′v1 is in the null space of Qw for all

1 ≤ j ≤ K.

We write any (non-zero) vector in the null space of PR as

V =



α1v1

α2v1
...

αNv1


in which α1 . . . αN are scalars. αi may be zero, but at least one αi must be non-zero.

If V ∈ null(PQ), we must have X = O′V in the null space of (I ⊗ Qw). Note
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that O′ takes the form

O′ =



(A′)K−1C′

... (A′)K−1C′

C′
...

C′
. . . (A′)K−1C′

...

C′



Let X =

[
x′1 . . . x′N+K−1

]′
. If X is in the null space of (I ⊗ Qw), then each xi

must be in the null space of Qw.

To prove that wj ∈ null(Qw) implies V ∈ null(PQ), note that each xi is a linear

combination of the wj. Therefore, if all wj are in the null space of Qw, each xi is in

the null space of Qw, and V is in the null space of Qw.

To prove that V ∈ null(PQ) implies wj ∈ null(Qw), assume V is in the null

space of PQ. Define the index m such that αj = 0 for j = 1, . . . , m− 1 and αm 6= 0.

Then xi = 0 for i < m, and xm = αmw1. Therefore, w1 is in the null space of Qw.

We write each xm+j as xm+j = αmwj+1 + αm+1wj + · · ·+ αm+jw1, for all j = 0...K.

If wi is in the null space of Qw for all 1 ≤ i ≤ j, then wj+1 must also be in the null

space of Qw. Since w1 is in the null space of Qw, by induction every wj must lie in

the null space of Qw.

Therefore, Vi is in the null space of PQ if and only if all the wi are in the null

space of Qw. Since this condition is true for any vector in the null space of PR, it

must be true for all vectors in the null space. Thus, the null space of PQ either

contains the null space of PR, or else the null spaces have no non-zero vectors in

common.

Since the null space of P is the intersection of the null spaces of PQ and PR, it

is equal to the null space of PR when v1 is in the null space of Rv and Qw(A′)iC′
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for 0 ≤ i < K, or else the null space of P contains only the zero element.

8.b Relationship between (Qw, Rv) and P on the boundary

Proposition 8. Given C full rank, (A, C) observable, and N ≥ n,

1. P > 0 if Rv > 0

2. P > 0 if Qw > 0

3. P→ ∞ if and only if Qw → ∞ or Rv → ∞

Proof. From (8.6), P = PQ + PR. Each term in P is positive semidefinite, so P is

strictly positive definite provided that PQ or PR is positive definite. If R > 0, then

PR = (IN ⊗ Rv) > 0, so P > 0. Due its structure, O is full row rank provided

C is full row rank. To see that O is full row rank, we shot that O′Y = 0 only if

Y = 0. Since the last block row of O′ is
[

0 . . . 0 C′
]

, for C full row rank, the

last p elements of Y must be zero. Likewise, the last 2p elements of Y must be zero

to enforce that the last two block rows of O′ are zero, and the pattern continues.

Therefore, since (IN+K−1 ⊗Qw) > 0 when Qw > 0, PQ = O (IN+K−1 ⊗Qw)O′ > 0

for Qw > 0. Note that (A, C) observable is not required for these conditions.

We say that P → ∞ if and only if ‖P‖2 → ∞, which implies that the largest

eigenvalue of P goes to infinity. To prove that P → ∞, it is sufficient to show that

there exists some finite x such that x′Px → ∞.

P > 0 implies x′Px > 0 for all x 6= 0. From (8.4),

x′Px = ∑
i

x′OiQwO′ix + ∑
j

x′IjRvI′jx (8.18)

Let αk be (one of) the eigenvalues of Qw that goes to infinity and vk be the cor-

responding normalized eigenvector. Then v′kQwvk = αk → ∞. Since OK con-

tains the observability matrix when N ≥ n, it is full rank when (A, C) is ob-
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servable. Therefore, we can always find some x such that vk = O′Kx. Then

x′OKQwO′Kx = v′kQwvk = αk → ∞. Since (at least) one term in (8.18) tends to

infinity and the other terms are non-negative, x′Px → ∞ and therefore P → ∞.

By the same logic, P→ ∞ if Rv → ∞.

To prove that P → ∞ only if Qw or Rv → ∞, we choose a finite x such that

x′Px → ∞. Then at least one term in (8.18) tends to infinity. By eigenvalue

decomposition, we see that no term can go to infinity unless one of the eigenvalues

of Qw or Rv also goes to infinity.

8.c Rank of the data matrix

Proposition 9 (Full rank of data matrix). Let the random variable y ∈ Rp be dis-

tributed as N(0, R) with R ∈ Rp×p positive definite, and let yi, i = 1, 2, . . . , N be N

independent samples of y with N ≥ p. Arrange the samples as the columns in the data

matrix Y :=
[

y1 y2 · · · yN

]
. Then rank(Y) = p with probability one.

Proof. Consider first a data matrix with one or more rows of zeros so that it has

rank less than p. Assume without loss of generality that the elements of y are

ordered so that the last row of Y is zero. We note that there is probability zero

of achieving this matrix by sampling y. In order to zero the pth component in all

the samples, one must have a singular normal in which the unit vector ep is an

eigenvector of R with corresponding eigenvalue λp = 0. For such a semi-definite

R, there is probability one of having a zero last row in Y. For positive definite R,

however, the probability of a zero row is zero.

To prove the proposition, we consider the (reduced) SVD of Y

Y = UΣV ′

with U ∈ Rp×p, Σ ∈ Rp×p, V ∈ RN×p, in which U is orthonormal, Σ is diagonal,

and V has orthonormal columns. Assume for contradiction that Y has rank less
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than p. Then consider the transformed random variable z := U′y, which has

distribution z ∼ N(0, R̃) with R̃ = U′RU. Since U is nonsingular and R is positive

definite, R̃ is also positive definite. If we form the data matrix from zi = U′yi, we

have

Z = U′Y = ΣV ′

Since Y has rank less than p, we know that its smallest singular value, σp, equals

zero. Therefore the last row of Z is zero, and, combined with R̃ being positive

definite, that is a contradiction and the proposition is established.

In Propositions 5 and 6, the samples of yi are not independent, so Proposition

9 does not directly apply. However, by the same logic, Y has full rank when

Y =

[
y′1 . . . y′N

]′
is generated from a normal distribution with mean zero and

covariance P∗ > 0.

8.d Matrix differentials

The following matrix differentials come from Magnus and Neudecker (1999):

d(det(X)) = det(X)tr
(

X−1 (dX)
)

X ∈ Rn×n,invertible

d(tr(AX)) = tr (A (dX)) X real

dX−1 = −X−1(dX)X−1 X ∈ Rn×n,invertible
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9
C O N C L U S I O N S

9.1 contributions

mpc performance monitoring We approach MPC performance monitor-

ing by using to be the expectation of the regulator’s stage cost as our monitoring

benchmark. We show that the stage cost is the quadratic form of a normal variable

and therefore has a generalized chi-squared distribution. We derive the expecta-

tion of the stage cost, as well as its variance, from the analytical formulas for the

closed-loop system. This expectation serves as the ideal benchmark. As a time-

average of the stage cost, the plant KPI approaches a normal distribution by the

central limit theorem. We derive an expression for the variance of the plant KPI

that accounts for the correlations between the stage cost samples. We illustrate

the distributions of the stage cost and plant KPI with a simulation example. We

further extend the analytical KPI formulas to account for a general deterministic

disturbance and for systems in innovation form.

autocovariance least-squares We present two major improvements to

autocovariance least-squares: reducing the model to include only the fully ob-

servable states and approximating the optimal weighting from data. We use the
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singular value decomposition of the observability matrix to identify the least ob-

servable states and then use the unconstrained ALS objective function value to

choose the model order for the reduced system. By using this reduced model, we

significantly improve the computational time for ALS. Using the optimal weight-

ing for the least-squares portion of the ALS objective would reduce the variance

of the ALS estimates, but the optimal weighting cannot be computed in practice.

Therefore, we present a feasible-generalized ALS method in which this weighting

is estimated from data. The feasible-generalized ALS method leads to significant

reduction in the variance of the ALS estimates for a simulation example.

We apply the improved ALS method to industrial data. We significantly reduce

the model to have a well-conditioned observability matrix. The reduced model has

a faster computational time than a larger model and still results in an estimator

that is approximately optimal. We use a double integrator model to estimate bet-

ter the disturbances affecting one of the outputs. The feasible generalized ALS

method shows significant improvement over ordinary ALS. The disturbances af-

fecting the process remain largely consistent over a year-long period, and, through

the results of ALS, we identify when changes in the disturbance dynamics occur.

maximum likelihood estimation We propose an alternative method for

identifying the disturbance model using maximum likelihood estimation. By as-

suming the deterministic system is known, we present a direct maximum likeli-

hood estimation problem in which the noise covariances are the only parameters

being estimated. We prove that a solution to the MLE problem exists, since the

data matrix is full rank with probability one. We also relate the maximum likeli-

hood problem to the optimally-weighted ALS problem and thus relate the unique-

ness conditions of the two methods. We reduce the computational time by using

sparse matrices, computing the log determinant via Cholesky decomposition, and

avoiding the direct computation of the matrix inverse. We apply the MLE method
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to several small-scale examples.

9.2 future work

Due to the advances presented in this dissertation, several areas lie open for future

research in MPC performance monitoring and disturbance identification:

mpc performance monitoring Since the theoretical monitoring benchmark

is highly dependent upon the noise covariances, the improved ALS method should

be applied to MPC monitoring. For both simulated and industrial systems, the

noise covariances should be estimated using the improved ALS techniques, and

the theoretical benchmark should be calculated using the ALS estimates.

In order to implement a monitoring scheme in practice, we require a statistical

test for whether or not the plant KPI is significantly above its ideal benchmark.

Therefore, the theoretical distribution of the plant KPI (which we derived) should

be used to develop confidence intervals. An appropriate window size for calculat-

ing the KPI should be determined. The window should be large enough that the

plant KPI is well-approximated by a normal distribution and is not susceptible to

outliers, but small enough that the plant KPI responds quickly to changes in the

controller performance. Once an appropriate window has been developed, a test

should be designed to continuously monitor the controller performance and alert

operators when a significant change in performance has occurred.

For linear systems, the analytical KPI formula should be extended to include

feed-forward variables. For nonlinear and constrained systems, simulations should

be performed to demonstrate the accuracy of Monte Carlo methods in estimating

the optimal benchmark; this technique should be verified on industrial data.

When calculating the KPI for industrial data, the precise control law may

be unknown. This problem is especially likely when industries rely on vendor-

supplied software. This lack of knowledge inhibits the calculation of a theoretical
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KPI. Therefore, another area of research is to identify the control law from data,

i.e. fit a y → u model. The KPI calculations can then be modified to incorporate

the estimated control law.

autocovariance least-squares While the ALS technique (with our im-

provements) has been successfully applied to industrial data, this method needs

to be further developed in order to become more automated. Currently, the ALS

method requires the user to specify many decisions: initial estimator gain, model

size, trace penalty, etc. Thus the user must study each system in detail, rather than

easily applying the ALS method to a large number of industrial systems. In ad-

dition, ALS techniques on non-linear and time varying systems should be further

developed.

maximum likelihood estimation The computational algorithms for the

MLE method require significant development before this method will be widely

applicable to industrial data. These improvements may be as simple as using dif-

ferent software with more efficient methods to solve the optimization problem,

or we may need to find more efficient algorithms to compute the likelihood. As

these computational methods are developed, we should always maintain the goal

of producing software that is simple to implement in practice.

The maximum likelihood method presented here was based on the open-loop

problem, i.e. it was written in terms of the outputs rather than innovations. This

MLE method should be compared in more detail to the MLE method based on

the optimal innovations, which is faster to solve for larger systems. In particular,

further research should demonstrate that a solution to the optimal innovations

MLE problem exists and that the same necessary conditions for uniqueness apply.

Studying a third MLE formulation written in terms of L-innovations that are fixed

during the optimization may help connect the first two MLE methods.

We restricted our study here to problems with the same number of states and
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outputs, as this condition is necessary for uniqueness. The MLE method should

expanded to handle systems that do not have a unique solution. It is of note that

since the problem is solved in terms of the factors of Q and R, this formulation

naturally leads itself to restricting the rank of these noise matrices. Some study

should be made as to how to choose the best initial guess and how sensitive the

solution is to the initial guess. Once these problems have been addressed, other

issues such as applicability to non-linear systems should be studied.
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