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ABSTRACT

Although model predictive control (MPC) has been widely implemented in in-
dustry and shown to have significant economic benefit, currently no systematic
method exists to assess if these controllers are performing optimally or to mon-
itor their performance over time. Here we address this problem by proposing a
benchmark called the key performance index (KPI), which is the expectation of
the stage cost. Since the MPC regulator minimizes the stage cost, this benchmark
inherently matches the controller’s objective. For a linear, unconstrained system,
the stage cost is a quadratic form of a normal variable and therefore has a gener-
alized chi-squared distribution. The plant KPI is calculated as the time average of
the stage cost and is shown to have a normal distribution. The mean and the vari-
ance of the stage cost and plant KPI are calculated from knowledge of the process
model, controller, and disturbance model.

Calculation of the KPI requires accurate knowledge of the disturbances affect-
ing the system. An accurate disturbance model also is necessary for designing
an optimal estimator. The autocovariance least squares (ALS) method estimates
these disturbance covariances from data using a modified least-squares problem.
However, the standard ALS methods are not easily applicable to industrial data.
The large-dimensional models used in industrial systems, which often contain
poorly observable states, result in large optimization problems that are poorly
conditioned and have a large number of unknowns. Directly solving these large
optimization problems is computationally inefficient. In addition, because the
original ALS formulation weights the least squares problem with the identity ma-
trix, the resulting estimates may have a large variance.

We resolve the first of these challenges by reducing the model based on a
singular value decomposition of the observability matrix to contain only the nec-
essary observable states. As the optimal weighting for the least squares problem
cannot be calculated in practice, a feasible generalized least squares technique
is developed to estimate the optimal weighting from data. Application of the
improved ALS method to an industrial data set demonstrates that the resulting
covariances produce an optimal estimator. These improvements reduce the com-
putational time and produce more reliable estimates as compared to the original
ALS method.

As an alternative to the ALS method, a maximum likelihood estimation (MLE)



method is proposed. Whereas the ALS method requires estimating the optimal
weighting from data, the MLE method does not have this requirement. Instead,
the process and measurement noise covariances are estimated by maximizing the
probability of observing the measured outputs. Thus this optimization problem
has a more sound theoretical basis. Sufficient conditions for the existence of a
solution to the MLE problem are given. The conditions for uniqueness are com-
pared to those of the ALS method. Although the computational burden is large
compared to the ALS method, the MLE method was applied to several small-scale
examples and shown to maximize the likelihood compared to the ALS method.

Further research in applying the improved ALS method to performance mon-
itoring, developing statistical tests to detect changes in the KPI, and adapting the
MLE method to larger-scale systems is recommended.

xi



INTRODUCTION

1.1 MOTIVATION

Model predictive control (MPC) is a common form of advanced process control
and play an essential role in process operation in the chemical industry and other
areas (Garcia, Prett, and Morari, 1989; Qin and Badgwell, 2003; Bauer and Craig,
2008). MPC is especially advantageous on systems that are difficult to control due
to constraints and interaction among variables. By directly using a process model
within the controller, MPC chooses the optimal strategy to control these difficult
systems and therefore improves overall operation and profitability of the plant
compared to more basic control methods.

Although MPC provides many advantages, numerous factors, including a
poor process model or a poor disturbance model, can inhibit the MPC controller
from achieving its optimal performance and thus reduce its economic benefits.
These factors may be present from the startup of the control system, or they may
arise as the process conditions or equipment change over time. A controller perfor-
mance monitoring system compares the achieved performance of each controller

to an optimal benchmark and identifies those controllers that are not performing



well. Monitoring the performance of the controllers over time would alert the
operators and control engineers when controller performance has degraded. A
diagnosis step then identifies the cause of performance degradation so that the
operators and engineers can resolve the problem. Even when the system is per-
forming optimally given the constraints and disturbances, MPC monitoring can
indicate what factors are limiting the performance: for example, the benefit of
relaxing a constraint or adjusting the process to reduce the effects of a certain
disturbance.

While controller performance monitoring has been a popular subject in the
literature since the work of Astrém (1970), MPC performance monitoring remains
an open area of research. The size and complexity of the systems, as well as the
more complicated controller objective function, limit the use of standard controller
performance monitoring on MPC systems.

In order to assess the performance of any controller, there must be a bench-
mark for acceptable performance. While a type of benchmark could be deter-
mined purely from past data recorded during a period of satisfactory perfor-
mance, a theoretical benchmark provides the most information about the optimal
controller performance. A prerequisite for calculating such a benchmark is a dis-
turbance model of the system. Without understanding the disturbances facing
the system, it is impossible to judge how well the controller responds to these
disturbances.

A disturbance model must be general enough to account for all the numerous
disturbances that may affect the process. The standard approach of modeling all
these unknown disturbances as white noise is justified by the central limit theo-
rem. As this basic noise model does not guarantee that the controlled variables
will achieve their setpoints, an additional stochastic term must be included, usu-
ally in the form of integrated white noise. Under this general structure, the dis-

turbance identification problem becomes a question of identifying the covariances



for each of the noise terms. Accurately identifying each noise covariance is also
necessary for estimator design — without knowing the extent of the random ef-
fects, unmeasured states of the system cannot be accurately estimated. Therefore,
identifying the disturbance model not only allows the performance monitoring
benchmark to be calculated, but also may improve controller performance by im-

proving the estimator.

1.2 GOALS

To address these challenges to MPC performance monitoring, we focus on the

three major goals of this work:

1. Propose a realistic benchmark for MPC performance monitoring and estab-

lish the distribution of this benchmark.

2. Present a modified autocovariance least squares method for identifying the

disturbance model and illustrate this method on industrial data.

3. Formulate a maximum likelihood method for disturbance model identifica-
tion and establish necessary conditions for the existence and uniqueness of

the optimal solution.

1.3 NOTATION

We summarize the parts of the model predictive controller in Figure 1.1. In this
work, we assume that the plant is described by the following discrete time linear

model:

xt = Ax 4+ Bu + Guw

y=Cx+o



Stage cost

QRS
\l/ Control
Reoul move Output
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& L Plant Yy
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Disturb
(model (A4, B,C)) < is urdarlme
Disturbance Estimate mode

Bd,CdJP L Ysps Usp
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Figure 1.1: Diagram summarizing the key elements of an MPC controller.

in which the state, x € R”, is an unmeasured vector of quantities describing the
system, u € R" is the manipulated input, w € IR¢ is the process noise (which
affects the states), y € IR? is the measured output, and v € R” is the measurement
noise. The process model or deterministic system consists of the state transition
matrix, A € R"*", the input matrix, B € R"*™, and the output matrix, C €
R"*P. The noise model or stochastic part of the system refers to the noise-shaping
matrix, G € R"*¢, and the covariances of w and v, which are denoted as Q
and Ry, respectively. The noises w and v are assumed to be zero mean, normally
distributed white noises and are assumed to be independent of each other.

The role of the estimator is to estimate the unmeasured state from the mea-
sured output (and input) data. For a linear system, the estimator is called the

Kalman filter and takes the form:

2(k +1]k) = AZ(K|K) + Bu(k)
2(klk) = 2(klk — 1) + Le(k)

e(k) =y(k) — Cx(klk—1)



in which #(k|k — 1) denotes the prediction of x(k) given the data up to time k — 1
and £(k|k) indicates the estimate of x(k) given the data up to time k. To obtain

only the estimate £(k|k — 1), we alternately write the Kalman predictor as

2(k+1]k) = A%(k|k — 1) + Bu(k) + ALe(k)

We refer to L as the filter gain, and AL as the predictor gain. For simplicity, we
use % (k) to denote £(k|k —1).

We refer to ¢ as the innovation. When the filter is optimal, ¢ is a white noise, i.e.
e(k) and e(k + j) are uncorrelated for j # 0. We use the term L-innovation to refer
to the innovation when the filter gain is not necessarily optimal; the L-innovations
may not be white. The optimal filter gain is calculated from the noise covariances
Qw and R,

We often augment the model with an integrating disturbance model so that it

takes the form

+
X A Byl |x B G 0 w
= + u-+
d 0 I d 0 0 Gd wy
X
]/Z[C Cd:| +0
d

We refer to this system as the augmented system. We can also write the Kalman
filter for the augmented system. The estimator then provides both the state esti-
mate, £, and the disturbance estimate, d.

For an augmented system, the disturbance model also includes the matri-
ces B; and /Cd, a second noise-shaping matrix, G;, and the combined variance
of [w/ w;] .

The target selector uses the disturbance estimate d and the setpoints for y

and u to choose steady-state targets x; and u; for the state and input. When



more outputs than inputs are present, not all outputs can be controlled to their
setpoints, so we choose a subset of the outputs to be controlled to their setpoints.
When more inputs than outputs are present, the target selector also seeks to keep
the inputs near their setpoint values. The target selector is described in more
detail in Appendix 3.A of Chapter 3.

The regulator chooses the optimal sequence of inputs u = {u(0),u(1),...u(N)}
to bring the state and input to their target values. Only the first input #(0) is ap-
plied to the system, as the regulator finds a new optimal sequence of inputs at
the next time step. For the linear, unconstrained system, we often use the linear
quadratic regulator. In the infinite horizon case (u = {u(0),...u(o0)}) the linear
quadratic regulator solves the problem

min  V (x(0),u) = iﬂ(k)

u

0
subjectto  £(k) = 1 ((x(k) —x5) Q (x(k) — x5) + (u(k) — us)" R (u(k) — us)

We refer to the function ¢(k) as the stage cost. The matrices Q, R, and S are weights
chosen by the user; the choice of these tuning parameters is a tradeoff between
keeping the states near their target values, keeping the inputs near their target
values, and limiting the rapid change of inputs. The Kalman filter or predictor is
used in place of x(0), since the true state is unknown. This regulator results in a

control law of the form

The linear quadratic Gaussian (LQG controller) refers to the MPC controller



with the estimator and regulator defined by the Kalman filter and linear quadratic
regulator. A more detailed explanation of the LQG controller is given in Rawlings

and Mayne (2009, Ch. 1).

1.4 DISSERTATION OVERVIEW

This dissertation is organized as follows:

In Chapter 2 a review of the controller performance monitoring literature is
presented. The standard controller performance monitoring method, the mini-
mum variance benchmark, is presented in the framework of state space MPC.

In Chapter 3, a performance monitoring benchmark that accurately reflects the
objectives of the controller is presented. An analytical formula is derived for the
theoretical benchmark for a linear unconstrained controller. The distribution of the
benchmark is derived based on this analytical formula. The analytical formula
is extended to include a general deterministic disturbance and is modified for
models in innovation form.

In Chapter 4, a literature review is presented for disturbance model identifi-
cation, and a brief derivation and explanation of the ALS method is given. The
conditions under which the ALS problem has a unique solution are discussed.
Methods for assessing the accuracy of the ALS solution are presented.

In Chapter 5, the use of integrating disturbance models is discussed and an
alternative double integrator disturbance model is presented.

In Chapter 6, two methods are presented to make the ALS approach more ap-
plicable to industrial data: reducing the state space model by removing weakly
observable states and using a feasible generalized least squares approach by es-
timating the optimal weighting from data. These method are demonstrated on
simple examples.

In Chapter 7, the modified ALS method is applied to industrial data.



In Chapter 8, disturbance model identification is posed as a maximum like-
lihood estimation problem. The existence and uniqueness of solutions to the
MLE problem are discussed, and the MLE problem is compared to the ALS prob-
lem with optimal weighting. Several recommendations to reduce the computa-
tion time are presented, and the MLE method is demonstrated on several low-
dimensional examples. The advantages and disadvantages of the MLE and ALS
methods are compared

In Chapter 9, the major contributions of this work are summarized and areas

of future research are presented.



PERFORMANCE MONITORING BACKGROUND

2.1 REVIEW OF CONTROLLER PERFORMANCE MONITORING

THE MINIMUM VARIANCE BENCHMARK. The minimum variance method de-
veloped by Harris (1989) marks a starting point for controller performance moni-
toring. This method uses closed-loop data to estimate the minimum output vari-
ance possible for a specific system under any controller and compares this vari-
ance to the actual output variance. The groundwork for the minimum variance
method was developed earlier by Astrém (1970), who gave an expression for the
minimum variance control law (the sequence of inputs that minimizes the out-
put variance of a single-input single-output (SISO) system). Astrém predicted the
application of this concept to performance monitoring: since the order of the min-
imum variance output is determined by the time delay, the order of the controller
error can be used to determine whether or not the system is under optimal control.
Harris’s primary contribution comes from estimating the minimum variance from
closed-loop data without a priori knowledge of a process or disturbance model.
Whereas Astrém’s derivation relies on a time series model of the process and dis-

turbance, Harris’s method uses standard techniques to fit a time series model to



routine operating data and uses this closed-loop model to estimate the minimum
variance. With Harris’s method, no a priori process knowledge is needed except
for the time delay. Since only routine operating data is required, assessing the con-
troller does not interrupt process operation. The minimum variance benchmark
was normalized by Desborough and Harris (1992) to range from o to 1, while Qin

(1998) related it to standard PID controllers.

EXTENSIONS OF THE MINIMUM VARIANCE BENCHMARK. Despite the appeal-
ing simplicity of Harris’s method, the minimum variance benchmark required
much development before it could be widely applied in practice, including extend-
ing the benchmark to multiple-input multiple-output (MIMO) systems, automati-
cally identifying of a closed-loop process model, handling constrained processes,
diagnosing causes of poor performance, and integrating the minimum variance
technique with other signal processing tools (Harris, Seppala, and Desborough,
1999).

Investigation into extending the minimum variance method to MIMO systems
occupies a prominent place in monitoring research. While knowing the SISO
time delay is simple, the multivariate time delay matrix, called the interactor,
cannot be determined solely from the time delays of each input-output pair (Har-
ris, Boudreau, and MacGregor, 1996a). The complexity of the MIMO benchmark
further increases when the covariances between the interacting outputs are con-
sidered (Qin and Yu, 2007). Following the direct extension to MIMO systems by
Harris et al. (1996a), the algorithm of Huang, Shah, and Kwok (1997) reduces
the amount of process knowledge needed, as well as the computational require-
ments. In the case of an unknown interactor, Kamrunnahar, Fisher, and Huang
(2004) used a combined parametric and non-parametric model. Huang, Ding, and
Thornhill (2005) estimated a suboptimal benchmark from the largest delay in the

interactor. Huang, Ding, and Thornhill (2006) and Yu and Qin (2009) examined
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systems with a diagonal interactor, which require less process knowledge.

Since the minimum variance benchmark does not represent a realistic bench-
mark for many processes, alternative benchmarks allow greater flexibility in how
the optimal performance is defined. Huang and Shah (1998), Xu, Lee, and Huang
(2006), and Horch and Isaksson (1999) added a user-defined component to the
minimum variance output. Yuan, Lennox, and McEwan (2009) developed bounds
for a MIMO user-defined benchmark. Rather than changing the desired output,
Bezergianni and Georgakis (2000, 2003) and Yuan and Lennox (2009) defined a
new benchmark that also incorporated the open-loop variance. Grimble (2002)
estimated a generalized minimum variance benchmark with weighting on the in-
put variance. For processes with step-disturbances, Eriksson and Isaksson (1994)
modified the minimum variance benchmark to encourage integral control. Hugo
(2006) accounted for the simplified disturbance models used by controllers, while
Liu, Huang, and Wang (2011) considered several user-specified performance re-
quirements.

A natural extension to the minimum variance benchmark, the linear-quadratic-
Gaussian (LQG) benchmark identifies the minimum output variance possible pro-
vided that the input variance does not exceed a certain threshold (Huang and
Shah, 1999, chap. 13). This benchmark uses a trade-off curve between the output
and input variances. A suboptimal controller lies above the trade-off curve, while
an optimal controller lies on the trade-off curve. Performance is measured by the
distance between the current variances and the ideal curve. Since this benchmark
requires a complete process model, Kadali and Huang (2002) and Dai and Yang
(2004) developed methods to calculate the model using subspace identification.

As the minimum variance benchmark was designed for unconstrained, lin-
ear time invariant processes under feedback control, other research relaxed these
conditions. Desborough and Harris (1993) expanded the minimum variance con-

trol law to feed-forward/feedback systems. Huang (2002), Olaleye, Huang, and
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Tamayo (2004), and Xu, Huang, and Tamayo (2008) applied minimum variance
control to different linear time variant cases. Bergh and MacGregor (1987) and
Harrison and Qin (2009) developed expressions for constrained minimum vari-
ance. Ko and Edgar (2001) developed a monitoring system for the constrained

case by using simulations to estimate the constrained minimum variance bounds.

ALTERNATIVES TO MINIMUM VARIANCE. Due to the limitations of the min-
imum variance benchmark as previously discussed, data-driven methods were
developed as alternate ways to assess controller performance. These methods are
based on analysis of the data with subspace-based or statistical techniques. Sub-
space projections provide a means to identify the directions with poorest perfor-
mance and isolate the effects of measured and unmeasured disturbances (McNabb
and Qin, 2003, 2005). Yu and Qin (2008a,b) extracted the directions with changes
in control performance through generalized eigenvalue analysis and identified the
responsible loops by calculating the contribution of each loop to these directions.
Xie, Kruger, Lieftucht, Littler, Chen, and Wang (2006) developed a method to re-
move auto- and cross-correlation between the outputs before applying principal
component analysis. Rather than a subspace-based method, Salsbury (2005) used
the autocorrelation of the error signal to assess performance during step-wise load
changes. Similarly, Badwe, Gudi, Patwardhan, Shah, and Patwardhan (2009) used
the partial correlations between model residuals and inputs to identify the parts
of the model that need re-identification. The normalized multivariate impulse
response curve of Shah, Patwardhan, and Huang (2002) and the closed-loop po-
tential plots used by Huang et al. (2006) and Zhao, Chu, Su, and Huang (2010)
measure the decay rate of the output predictability, but rely on the user analysis
of individual plots.

Fault detection methods have also been proposed as monitoring tools. Kesavan

and Lee (1997) modeled possible causes of poor performance by creating a fault
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parameter vector and then formulated an estimation problem to detect the true
cause. However, this estimation problem requires a defined list of faults with
prior probabilities. Ge, Yang, Song, and Wang (2008) used least-squares support
vector regression to remove the effects of external variables before using statistical
methods to determine if a fault occurred. Performance monitoring was formulated
as a hypothesis testing problem by Tyler and Morari (1996) to determine if the
closed-loop impulse response coefficients violated a desired bound and by Huang
and Tamayo (2000) to determine if a new model better fit the process than did the

old model.

STATISTICS OF PERFORMANCE METRICS. Understanding the statistics of the
performance metrics is necessary to compare accurately the achieved and theoret-
ical performance measures. Harris (1989) analyzed the sampling properties of the
minimum variance estimate in order to determine the number of samples needed
for a good estimate. Desborough and Harris (1992) computed the mean, variance,
and kernel density estimates of the normalized minimum variance benchmark
and showed that the variance depends both on the number of samples and the
autocorrelation of the process. In addition, they discussed the need to choose a
sample length that balances susceptibility to outliers, distribution of the metric,
and ability to detect changes in the metric. Harris (2004) provided a more general
discussion of statistics of performance metrics by recognizing that many perfor-
mance indices are expressed as quadratic forms or as a ratio of quadratic forms.
He focused specifically on a minimum variance type metric that is expressed as a
ratio of quadratic forms. Since closed-form probability distributions do not exist
for this metric, an iterative method as well as several approximate methods are

developed to compute its confidence intervals.

MODEL PREDICTIVE CONTROL MONITORING. MPC performance monitoring

is more complicated than the monitoring of simpler controllers, since MPC loops
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tend to have many variables and constraints. In addition, since the process model
is used directly by the controller, improving performance might require re-identifying
the process model rather than simply adjusting the controller tuning parameters.
Patwardhan (1999) proposed using the MPC design objective as the performance
measure. Using this concept, Julien, Foley, and Cluett (2004) developed plots of
the best achievable MPC performance. They used closed-loop data to re-identify
the model and plotted performance curves first based on the new model and old
controller, then based on the new model with the proposed new controller. This
comparison shows the potential benefits of re-identifying the model used by the
controller. Schafer and Cinar (2004) used a ratio of historic and achieved per-
formance to detect changes in controller performance and diagnosed the cause of
any changes by using a ratio of achieved and designed performance. Tsakalis
and Dash (2007) proposed a design-based benchmark using robust stability con-
ditions determined from the controller design. However, this method relies on
using external excitation and suffers from false alarms.

An alternate method in Dumont, Kammer, Allison, Ettaleb, and Roche (2002)
compared the controller prediction error to the open-loop output, since both sig-
nals are realizations of the same stochastic process under a perfect model. Using
a similar idea, Sun, Qin, Singhal, and Megan (2013) compared the prediction error
to the open-loop disturbance innovations, which are estimated through a projec-
tion method. Xu, Huang, and Akande (2007) and Lee, Tamayo, and Huang (2010)
assessed the potential economic benefit of relaxing constraints or reducing the
variability of certain variables. However, this method is valid only with perfect
models.

Other research focused on diagnosing the underlying causes of poor MPC per-
formance. Patwardhan and Shah (2002) gave bounds on the effects of constraints,
modeling uncertainty, disturbance uncertainty, and nonlinearity on MPC perfor-

mance. Badwe, Patwardhan, Shah, Patwardhan, and Gudi (2010) determined the



effect of model-plant mismatch by estimating relationships between the model
and the plant from closed-loop data. To isolate the performance degradation
caused by changes in the process/controller (as opposed to changes in the dis-
turbances), Rato and Reis (2010) developed a modified index based on historic
data. Tian, Chen, and Chen (2011) diagnosed performance by identifying the sub-
spaces affected by each possible cause. Despite this research on MPC monitoring,

a complete automated monitoring and diagnosis scheme has yet to be developed.

INDUSTRIAL APPLICATIONS. Before implementing a monitoring scheme on in-
dustrial processes, factors such as ease of use for engineers/operators and clear
connections between the controller benchmark and economic objectives must be
considered (Desborough and Miller, 2001). To increase the ease of use, Thorn-
hill, Oettinger, and Fedenczuk (1999) calculated parameters for use in monitoring
according to the general loop type. In contrast, Ingimundarson and Hagglund
(2005) recommended choosing such parameters based on the tuning of the con-
troller, not the type of loop. They also discussed the challenge of using filtered and
smoothed archived industrial data. Wang, Huang, and Chen (2007) developed a
MIMO minimum variance method for systems with different rates of input and
output sampling. To integrate all steps of monitoring, Ahsan, Grosvenor, and
Prickett (2004) focused on combining controller monitoring with process monitor-
ing by using a distributed architecture to share data. Shardt, Zhao, Qi, Lee, Yu,
Huang, and Shah (2011) highlighted the integration of monitoring schemes for all
regulatory loops, along with the supervisory loops that provide the setpoints for
the regulatory loops.

Several studies have examined the implementation of monitoring systems in
industry. Harris, Seppala, Jofriet, and Surgenor (1996b) and Paulonis and Cox
(2003) implemented plant-wide monitoring of SISO loops in a newsprint mill and

chemical plants, respectively. Other studies on commercial software for perfor-
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mance monitoring also focused on SISO PID controllers (Badmus, Banks, Vish-
nubhotla, Huang, and Shah, 1998; Bonavita, Bovero, and Martini, 2004). Haarsma
and Nikolaou (2000) used the MIMO minimum variance benchmark on a snack
food frying process, but the applicability of the benchmark was severely limited
due to constraints on the process. Huang, Kadali, Zhao, Tamayo, and Hanafi
(2000) successfully assessed and diagnosed a model predictive controller for an
industrial combined gas oil coker. However, since their method requires individ-
ually examining a number of plots, it is not effective for automatically monitoring
a large number of MPC loops. Gao, Patwardhan, Akamatsu, Hashimoto, Emoto,
Shah, and Huang (2003) evaluated the performance of two MPC loops. They
used a variety of methods on the first controller, including the MIMO minimum
variance benchmarks described in Huang and Shah (1999) and the normalized im-
pulse response curve from Shah et al. (2002). However, they simply compared the
performance with and without MPC, rather than evaluating the controller perfor-
mance based on an ideal benchmark. On the second controller, setpoint settling
time, a historical benchmark, and prediction error analysis indicated that the per-
formance deteriorated after a load change, but these methods failed to identify

why the controller could not compensate for this change.

2.2 MPC AND MINIMUM VARIANCE CONTROL

2.2.1  Minimum variance as a form of MPC

The minimum variance controller was derived by Astrom based on a time series
model and was presented as a theoretical controller, which may not be realizable
in practice. In order to better understand how the minimum variance benchmark
can be used in MPC performance monitoring and how it relates to other MPC
monitoring techniques, we look at past studies to discuss how a model predictive

controller can be designed to achieve minimum output variance. Kwong (1991)
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determined the minimum variance control law for the SISO state space system and
showed that this control law is equivalent to that of Astrom (1970). McNabb and
Qin (2003) further discuss minimum variance control of a MIMO MPC controller.
Here, we use the results of Kwong (1991) to develop a simplified form of the
control law and to write an expression for the output under minimum variance
control.

Rather than using a state space model, Astrém developed the minimum vari-

ance controller using a linear, time-invariant SISO time-series model, written as

y(k) = —ay(k —1) —azy(k = 2) — - - - —any(k — n)
+byu(k—1) + bou(k —2) + - - - + byu(k — n)

+e(k)+cre(k—1)+coe(k —2)+ - - cpe(k — n). (2.1)

The parameters a; and b; describe the system dynamics, the parameters c; describe
the noise dynamics, and 7 is the order of the system.
We convert a SISO state space system to the time series model as follows. We

begin with the general state space model as defined in Section 1.3:

xt = Ax+ Bu+ Gw

y=Cx+v (2.2)

in which m = p = 1. Provided that (A,C) is observable, we can transform this

system into the observable canonical form (Callier and Desoer, 1991, p. 312, Chen,

1999, p. 187-189):

xT = Ax+ Bu+ Gw

y=Cx+o
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in which
[ 4, 10 - 0] -
b
—a, 01 --- 0
by
A=| B=| CZ[l 0 .. o}
4,4 0 0 --- 1 '
by,
4 00 - 0 -

Letting L be the optimal gain of the Kalman predictor, we write the system

(2.2) in innovation form as

®(k+1) = A%(k) + Bu(k) + Le(k)

Defining c; coefficients so that

1 —a

Cr —ap
L =

C3 — a3

(2.3) is equivalent to the time series model in (2.1). When L is the optimal filter
gain, then the innovation, e, is white noise and distributed as N (0, R,).
Using an infinite horizon linear quadratic regulator, the control action is cho-

sen by solving the optimization problem

min  V (x(0),u) = % Y (x(k)Qx(k) + u(k) Ru(k)

+ (uk+1) = u(k)'S (u(k+1) — u(k)) )

subject to  x(k+1) = Ax(k) + Bu(k) k=0,1,...00 (2.4)
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in which u is the sequence of inputs, 1(0), #(1),...u(c0). The matrices Q, R, and S
are weights chosen by the user. To achieve minimum variance control, we choose
Q=CCand R =S =0, so that V(x(0),u) = 3 ¥, y(k)'y(k) is minimized by

the controller. The control law takes the form
u(k) = Kx(k) K = — (B'TIB) ' B'IIA
in which IT solves the Riccati equation
I1=C'C + A'TIA — A'TIB (BTIB) ' B'TIA (2.5)

This Riccati equation has the solution

(s ',/ i
H:E%QA)CCA) (2.6)

in which d is the overall delay of the system (b; = 0 for i =< d in (2.1)). A delay
of d means that the input u(k) affects y(k + d) but not y(k)...y(k+d —1). In
the SISO state space model, the first d — 1 rows of B are zero. Since we assume
a causal system, y(k) can only be affected by previous inputs, and we must have
d>1.

Due to the location of zeros in C and B, the following relations hold, as pre-
sented in Kwong (1991):

0 j<d

CAI71B = (2.7)
by j=d

With IT defined by (2.6), we derive the following relationships based on (2.7):

B'TIB = b3 B'TIA = b,CA"
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Thus the optimal control law has the form
u(k) = ———x(k) (2.8)

Since the true state, x(k), is unknown, we use the optimal estimator for x(k) in
(2.8). For the linear system, this estimate comes from the Kalman filter. Note
that £(k) as defined in (2.3) is the Kalman predictor, not the Kalman filter, so
%(k) = £(k|k — 1) does not include any information about the measurement y/(k).
We obtain a better estimate of x(k) by using the Kalman filter, £(k|k) = %(k) +
Ls (y(k) — C#(k)). Lf is the Kalman filter gain; for A invertible we have Ly =
A~'L, where L is the Kalman predictor gain. We are guaranteed to have A invert-

ible in this formulation, provided that a, # 0 (the system order is minimal). Then

we write the Kalman filter for x(k) as
2(k|k) = £(k) + A" 'Le(k)

and the control law as

CA® CAL

u(k) = _de(k) i

e(k) (2.9)
We then write £(k +d) and y(k +d) as

d—1 ‘ d—1 ‘
2(k+d) = A%%(k)+ Y A" Bu(k+i)+ Y AT Le(k + i)
i=0 i=0

d—1 ‘ d—1 ,
y(k+d) = CA%(k)+ C Y A" 'Bu(k+i)+CY_ A" 'Le(k +1)
i=0 i=0

+e(k+d) (2.10)
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Due to the time delay, CA’B = 0 for all i < d — 1, and therefore (2.10) reduces to

i1
y(k+d) = CA'%(k) + CA* 'Bu(k) + C Y A" 'Le(k+i) +e(k+d) (2.11)
i=0

Letting u(k) be the minimum variance control law in (2.9) and noting that

d—1 . .
%dB = 1, then we rewrite the second term in (2.11) as

CA1Bu(k) = —CA%x (k) — CA“ " Le(k)

From (2.11), shifting the time index to k rather than k + d, we write the output

under minimum variance control as

-1
y(k) == ymv(k) =C Z AT e (i) + e(k) (2.12)

i=1

: 2
The variance of vy, 05

v/

is the minimum output variance possible under any

teedback control law and has the form
d-1 . ,
2 =R Y (CAd—l—ZLL/A’d—l—lc’) +Re (2.13)
i=1
in which R, := var(e).
2.2.2  Feedback invariant perspective

Harris’s approach views the minimum variance output as a feedback invariant
term: a portion of the output that cannot be affected by any feedback controller
due to the time delays of the system. Many extensions of the minimum variance
benchmark have also been based on the concept of identifying the feedback in-
variant portion of the output. Here, we derive the minimum variance control law
from the feedback invariant perspective.

We begin by examining the output as written in (2.11). Since at time k, we have
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no information about e(k + i) for i > 0, we cannot use the input u(k) to remove
these disturbances from y(k + d). Therefore, the best possible output we could

obtain is

Yo (k) = cdf A1 Le(i) 4 e(k)
i=1

Note that this output is the same as in (2.12). In order to achieve this output, we

must have the remaining terms in (2.11) equal to zero:
CA%x(k) + CA? 'Bu(k) + CA® 'Le(k) = 0.

Noting that CAY~!B = b, and solving for u(k), we arrive at the control law

which is identical to the control law in (2.9) derived from the Riccati equation.

2.2.3 Lower bound on minimum variance

From (2.13), we observe that the minimum variance is always greater than or equal
to the variance of the innovation, R,. We write the variance of the innovation in

terms of the process and measurement noise:
R, = Pj1 + Ry P = APA' — APC'(P;; + R,) 'CPA’ + Qq

in which Py is the (1,1) element of P defined by the Riccati equation above. We
make the following observations:

1. If d = 1, then vy, = e(k) and 02, = R,

2. If d =1and Qy = 0, then the minimum variance equals to the measurement

noise.
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3. If d > 0, then in general we expect that the additional terms in (2.13) be
strictly positive and (T,%w > R, (although given free choice of Q, and R,, we

could choose a specific noise model such that 02, = R,).

2.2.4 Non-invertible zeros

Thus far, the stability of the closed-loop system has not been discussed. In state
space form, the system is closed-loop stable if every eigenvalue of A + BK has
magnitude less than one. In the time series equation, stability is determined by
the zeros of polynomials written from the coefficients. In the time series form, the
minimum variance control law given in Astrom (1970) leads to a stable closed-loop

system if and only if the polynomial defined by the b; coefficients
biz" N+ by P 4 by — 124 by

has all its roots within the unit circle. If any roots lie outside the unit circle, the
minimum variance control law is not be stable (Astrém and Wittenmark, 1984).
If the state space model is written for such a time series equation, the solution
to the Riccati equation given by (2.6) no longer produces a stabilizing control
law (Kwong, 1991). A unique stabilizing solution to the Riccati equation may still
exist; however, the control law based on this solution always results in a variance

greater than R,, even for a unit time delay (Hewer, 1971, 1973).
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PERFORMANCE MONITORING BENCHMARK AND
DISTRIBUTION'!

3.1 KEY CONCEPTS FOR LQG MONITORING

Controller performance monitoring for a linear quadratic Gaussian (LQG) system

can be summarized by the following three fundamental relationships:

central limit theorem — normal distribution
normal + linear system = normal distribution

normal + quadratic stage cost = chi-squared distribution

Control engineers implicitly use the first relationship to develop the noise model
for the system by assuming that the disturbances affecting the process and mea-
surement have a normal distribution. It is necessary to assume a distribution for
these noises in order to calculate the distribution of any signals of the system.
If the process and measurement disturbances are the result of many unmodeled

random effects, then the central limit theorem justifies the choice of a normal dis-

'Portions of this chapter have been published in Zagrobelny, Ji, and Rawlings (2013)



tribution. The common choice of a linear input to output process model is based
mainly on user convenience and the expectation that the controller can success-
fully maintain the process close to some desired operating point. Near this point,
the linear model may provide a good approximation, even while the system may
be non-linear over a wider range of operating conditions. The identification of this
linear model from data usually justifies assuming the normally distributed distur-
bances are zero mean. If non-stationary disturbances are present, they cannot be
approximated well by the central limit theorem. Therefore, these disturbances
must be known or approximated in order to determine the distribution of any
signals in the system.

The second fundamental relationship states that for a linear process model
with normally distributed noises, any signal generated by this system also has
a normal distribution. This step follows directly from the property that a linear
transformation of a normally distributed random variable is also normal. This
relationship is powerful because it gives us knowledge of the distribution of all
signals in the system (output, input, innovation, state, state estimate, etc.). When
the system is stable, the signals also have time-independent distributions and finite
variances.

Finally, the third fundamental relationship allows us to characterize the reg-
ulator’s stage cost, i.e., the function of the system’s variables that the controller
optimizes. When the stage cost is a quadratic form of normal signals from the
process, the stage cost has a generalized chi-squared distribution. We use the ex-
pectation of the stage cost as the performance metric to monitor the controller.
By understanding its distribution, we can develop confidence intervals and make

more accurate comparisons between the ideal and achieved performances.
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3.2 PERFORMANCE BENCHMARK STATISTICS

We refer to the controller performance benchmark as the key performance index,
or KPI. To derive the expressions for KPI expectation and variance, we follow the

steps below:
1. Write general expressions for the state/disturbance and their estimates.

2. Express the input, u, in terms of the state and estimate (by assuming a linear

control law).

3. Write a closed loop expression for the state/disturbance and their estimates

in which the only external input is the random noise affecting the system.

4. Derive a probability distribution for the state/disturbance and their esti-

mates.
5. Derive a probability distribution for the signal used in KPI calculation.

6. Derive the probability distribution for the KPL

3.2.1  Closed-loop expression for the linear system

We begin by expressing the the system and its estimator in state space form as

xT = Ax+Bu+Byd+Gw £ =A%+ ALye+ Bu+ Byd

—|—Bde€
d+:d—|—ded dA+IdA—|—Ld€
y=Cx+Cyd+v £:y—C9?—Cdci (3.1)

in which the state x is augmented to include the past input. This augmented

state is convenient for including the rate-of-change penalty in the regulator. We



assume that the process noise w and the measurement noise v are independent,
zero mean, and normally distributed with variances Q, and R,. The integrating
disturbance d, affected by white noise wy, is added to achieve the desired zero-
offset properties. We denote the variance of [w’ w;]/ as Qw. We discuss how
to estimate the variances Qw and R, from data in Chapters 4-8. The estimator in
(3.1) should match what is currently used by the controller and does not need to
be optimal.

The following steps utilize the fact that all signals for the linear system are
distributed normally. We also take G; = 0 to ensure that the variance of the
disturbance d is bounded.

We augment the system so that both the state and disturbance are treated as
a single vector. Defining the augmented state and its estimate, X := [x' d']/,

A

X:=[#" d), we have:

X" = AaugX + Bauglt + GaugW X" = AqugX + AaugLaugé + Bauglt

N

Y= CagX+0 e =Y — CaugX
) ) w A By B G 0
in which W := , Aaug 1= , Baug := , Gaug 1= , Caug :=
Wy 0 I 0 0 Gd

L
[C Cd} ,and Layg = *|. When a linear feedback control law is applied, the
Ly

closed-loop system remains linear, and we can express this control law as
(k) = KaugX + KaugLaugCaug X + KaugLaug? + g

in which X := X — X. Kaug and u, are defined in (3.13) in Appendix 3.A. uy is

the constant term in every input and is only nonzero when nonzero setpoints are
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present. We eliminate 1 from the system and write the closed-loop equation as

7t = Az + G+ z4

in which
x
a w
d ~ Baug
X —x 0
a v
d—d
o Aaug + BaugKaug (Aaug + BaugKaug)LCaug
0 Aaug - AaugLaugcaug
< 0 (Aaug + BaugKaug)L
©= (3-2)

Gaug _AaugL

The matrices A and G depend on the system matrices, as well as the estimator and
regulator gains. The constant z; depends on the solution to the target tracking
problem and is nonzero for a nonzero setpoint in y or u. More details of this
derivation are provided in Zagrobelny et al. (2013).

Since the only external input to z is the normally distributed vector @ and
the constant term z;, z is also a normally distributed vector (provided z(0) is
also normal). Letting Qg = diag (Qw, R,) be the covariance of @, then z(k) ~

N(m(k),S(k)) in which m and S satisfy the dynamic equations

mt = Am+ z,

St = ASA' + GQuzG’

Assuming that the system is stable’ once the sample time is large enough to re-

1A is stable as long as (A, B) is controllable and (4, C) is detectable; therefore (I — A) is also
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move effects of the distribution of z(0), z converges to the asymptotic distribution

z ~ N (M, Seo ), With expectation and variance

Any signal from the system can be derived as a linear transformation of z and

therefore also has a normal distribution.

3.2.2  Distribution of stage cost and plant KPI

We choose the stage cost as

0(k) = € (x(k), u(k)) = |y (k) = ysplty, + (k) — usplR + |u(k) — u(k —1)[3

Since the regulator is designed to minimize this stage cost, £(k) serves as a natural
choice for the controller performance metric. The ideal stage cost can be compared

to the time-averaged stage cost from the controller data:
(£0) = ¢ () (3

We refer to both the expectation of the stage cost (from the model) and sample
average of the stage cost (from the data) as the key performance index (KPI). Based
on the linear model of the process and the normal distribution of the signals, we
derive an analytical expression of the expectation of the stage cost, E(¢(k)). When

the controller is performing optimally, (¢(k)) converges to this value.

invertible and me, and S exist.
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The stage cost is equivalently expressed as the quadratic form

0(k) = f(k)'Qf (k) (3-4)
y(k) = ysp
f(k) = M(k) - usp Q = diag<ny R’S)

(u(k) —u(k—1))

in which Q := diag(Qy, R, S). The vector f(k) is simply a linear transformation of

the modified state, z, and measurement noise, v:

f(k) = F1Z<k) + le)(k) —+ F3Md — Msp

in which
Caug Caug I 0
Fi=| Kaug KaugLaugCaug F= | KaugLaug EB=1|1| (35)
Kaug - hl KaugLaugCaug - hl KaugLaug I
and
!
h = Omxn  Im 0m><p Msp = |:yép uép 0]

Therefore, f(k) has the distribution

f(k) ~ N(rm(k), P(k))
7’71(]() = Flm(k) + Fuy — Msp

P(k) = FiS(k)F, + BRoE

When ms and S., exist, then we calculate the time-invariant mean and variance



of f as

Moo = Fieo + F3uy — Msp

As the quadratic form of a normal variable, the stage cost has a generalized
chi-squared distribution, whose parameters are the matrix of the quadratic form,
Q; the mean of the signal, 171; and variance of the signal, P (Cacoullos and Koutras,
1984). Although the generalized chi-squared distribution does not have a simple

explicit expression, from (3.4) we calculate the mean and variance of the stage cost

at time k as

E(((k)) = tr(QP(k)) + (k) Qs (k) (3.6)
var(((k)) = 2tr(QP(k)QP (k)) + 4 (k)' QP(K)Qrit (k). (37)

If the conditions are satisfied for z to have a time-independent distribution, then
the distribution of ¢ is also time independent. The time-independent expressions
for the expectation of the stage cost and variance take the same form, but (k)

and P(k) are replaced by #iis and Pe:

E(lo) = tr(QPs) + 1715, Qtftes (3.8)
_|_

477~1</>oQ~P00Q~"~100 (3.9)

in which /., denotes the steady-state stage cost (Searle, 1971 p.55-57, Mathai and
Provost, 1992 chap. 3-4). While (3.6) and (3.8) hold true regardless of the distribu-
tion of z, the expression for the variance given in (3.7) and (3.9) requires that the
signal be normally distributed.

The plant KPI is the sample average of the stage cost, so by the central limit

theorem, as the number of samples increases, the variance of the plant KPI ap-
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proaches a normal distribution. Letting K’ denote the plant KPI,

in which T samples of the stage cost are used. The mean of the KPI is equal to the

mean of the stage cost:

Y E(L(k)) = tr(QPx) + ' Qrit

If the samples of the stage cost were independent, then the variance would be

equally simple:

var (K —Var< ZE > ;ZZVal’(f(k)))

(2tr(QPaQPo) + 41’ QPo Qi)

H\H

However, in reality, each ¢(k) and ¢(k + j) are correlated, since each f(k) and

f(k+j) are correlated. Noting that

f(k) = Fiz(k) + F,o(k) + constant

. -
fk+7j)=FAz(k)+F Y AV " 'Gw(k+i) + Fo(k+j) + constant
i=0

we see that the correlation between f (k) and f(k + j) has two contributions:
(1) z(k) affects both f(k) and f(k + j)

(2) v(k) affects f(k) directly and affects f(k + j) through the noise term @ (k)
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Accounting for these correlations, the variance of the KPI is written as

T-1
% Y (T — j)tr(Q(Ssj + Swj) Q(Sfj + Swj)/)>

T—
Sy (T (!

Q(Sf] + Sw])Qm) (3-10)
in which Sy := Flsoo(A’)fP{ and Sy := lewaG/(A/)f_lF{. Note that S¢; and S;
depend on the index j and therefore cannot be factored out of the sum in (3.10).
S¢j and Sy correspond to the correlation between f (k) and f(k + j) due to z(k)

and v(k), respectively. (3.10) is derived in Appendix 3.B.

3.3 SIMULATION OF BENCHMARK DISTRIBUTION

While no closed-form probability distribution can be written for the stage cost, we
use a simulation to demonstrate its distribution. A linear unconstrained system,
with a perfect model and no deterministic disturbances, was simulated to generate
a set of outputs and inputs. From these data points, the stage cost, ¢(k), was
calculated at each time step according to (3.4). The stage costs are presented as
a histogram in Figure 3.1, with the sample mean and variance indicated. The
histogram shows the asymmetric density of the stage cost. Because the density is
highest close to zero, only an upper limit should be necessary when estimating a
confidence interval. As shown in Table 3.1, the sample mean and variance agree
well with their theoretical values calculated from the analytical formulas.

We used the same example to illustrate the distribution of the plant KPI. To
compute this histogram, we performed 1000 independent simulations for the same
system. In each simulation, we calculated ¢(k) at each time step k, and then found

the time average, (¢(k)). A histogram of these sample averages is plotted in Figure
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Figure 3.1: Histogram of the stage cost, ¢(k) for 10000 samples. The solid green
line indicates the sample mean (achieved KPI) and is close to the theoretical expec-
tation (solid blue line). The thick dashed blue lines show two standard deviations
from the mean (using the theoretical values), and the thin dashed green lines lines
indicate the bins that contain 95% of the points.

3.2. The histogram shows that despite the fact that ¢(k) is distributed according
to the generalized chi-squared distribution, the sample average approaches a nor-
mal distribution. We overlay two normal probability density functions on the
histogram. Both densities use the theoretical mean for the KPI. The first density
uses the theoretical variance calculated under the (false) assumption that ¢(k) and
£(j) are independent. This variance is clearly too small compared to the histogram

data. The second normal distribution uses the theoretical variance given in (3.10),

Table 3.1: Sample and theoretical mean and variance for the stage cost example.

Mean Variance

Sample 2.52 11.39
Theoretical 2.56 11.55
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which correctly accounts for the correlations between ¢(k) and (). This second

density provides an excellent fit for the data in the histogram.

4 ' ' -V\II/ out correlations - -

5.5 | R w/ correlations |
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2.5 e .
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Figure 3.2: Histogram of the time-averaged stage cost (plant KPI) for 1000 simu-
lations. The data looks approximately normally distributed and is compared to
theoretical probability density functions for two normal distributions. The dashed
green line uses the theoretical variance that does not account for correlations be-
tween the stage cost samples, and therefore is too narrow. The blue line uses the
theoretical variance that correctly accounts for the correlations; this density has an
excellent fit to the histogram data.

3.4 BENCHMARK CALCULATION WITH UNMODELED DETERMINISTIC DISTUR-

BANCES

Zagrobelny et al. (2013) derive the theoretical KPI for the case when there is an

unmodeled deterministic disturbance corrupting the output, i.e.:

y=Cx+p+vo

Here we generalize this derivation for the case of a deterministic disturbance that



may affect both the input and the output:
x* = Ax+ Bu+ Byp+ Gw y=Cx+Cyp+v

Although p affects y in a manner analogous to d, we treat p in a deterministic
manner, i.e. we assume that we know or can approximate p, rather than trying
describing this disturbance through a probability distribution. If we know or can
approximate the deterministic disturbance, p, for a limited number of samples
(0, T), the theoretical KPI can be compared with the actual plant KPI averaged
over a much longer time period, by the assuming the disturbance is periodic. The
KPI expectation in the presence of p represents the best performance achievable
given that the plant is affected by this disturbance.

The dynamic model including the disturbance p is written as
zt =Az+ Byp+ G +z4

in which

< (Aaug + BaugKaug) LCp By

p= Byaug =
Bpaug — AaugLCp

(3.11)

Bpaug is the augmented version of By, and A, G, and z; have the same form as

previously given in (3.2). In Zagrobelny et al. (2013), Bp takes the form

~ (Aaug + BaugKaug) Laug
Bp -
_AaugLaug

which is equivalent to (3.11) when we assume an output disturbance model (B, =

Oand C, = 1I).
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Because p is deterministic, it affects the expectation of z but not its variance:

We rewrite signal of interest, f (k) as

f(k) = Flz(k) + chpp(k) + FZU(k) + Fsuy — Msp

in which F;, F,, F3, and ms, are as previously defined in (3.5). This signal still has

a normal distribution, with the time varying mean and variance expressed as

m(k) = Fim(k) + BCpp(k) + Fug — mgp

P(k) = FiS(k)F, + E:R,E,

Assuming that we know (or can estimate) the disturbance for T time points, we

write the expectation of the stage cost at time k as

E ((o) =

~| =

T
Y E (¢(k))
k=1

Since the variance of z converges to a constant value, we write this expectation as
T ~
E (£e) = tr (QP) + = Y ((k)'Qin(k))

The first term accounts for the effects of the white process and measurement
noises, whereas the second term accounts for the effects of the deterministic dis-
turbances.

The KPI for deterministic disturbances may also be useful for performance
monitoring during plant transitions, as changes in setpoints can be considered as

deterministic disturbances. In this case, the “disturbance” is known exactly and

37



38
need not be approximated.

3.5 BENCHMARK CALCULATION FROM THE INNOVATION FORM OF THE MODEL

As discussed in Section 4.1, several methods for disturbance model identification
focus on estimating the optimal filter gain and corresponding innovation variance,
rather than estimating the process and measurement noises Q,, and R,. Thus, we

seek to derive the KPI for the system in innovation form, which is written as

xT = Ax + Bu + Byd + Mye
d+:d+Md€

y=Cx+Cyd+e

in which e is white noise with zero mean and variance R.. M, and M, denote the
optimal gains for the Kalman predictor, which we distinguish from the estimator
gains currently used by the controller, L, and L;. Ly and L; may be suboptimal,
and therefore ¢ defined below may not be white. We write the current estimator

for the system as before:

£t = A%+ Bu + Byd + Lye
CZA+:6ZA+Ld€

e=y—Ct—Cyd

/
Again we define the augmented state X := [x/ d’] and let X = X — X. Then we

write the augmented system as

X = AqugX + Baygit + Mauge X = AaugX + AaugLaugCauge

A

Y =CagX te e =y — CaugX



/
in which Aaug, Baug, and Layg are defined in (3.2) and Mayg = [ M., MZi] . Note
that we must have M; = 0 for the system to be stable. The input has essentially

the same form as before:
U= Kang + KaugLaugCang + KaugLauge +ug

in which Ky,g and u, are as defined in (3.13) in Appendix 3.A.
/

Again, letting z = [X/ X’] we write the closed-loop system as

~ - - Aaug + BaugK L
2t — Az 4 Me + 2 N = ( aug aug aug) aug
Maug - Aaugcaug

in which A and z, are as previously defined. Once again we define
mt = Am+ zy ST = ASA' + MR, M’

Note that the Lyapunov equation for S has changed slightly to account for the
different noise model. Using this definition of S, we derive the distribution of the
signal of interest and of the KPI in the same manner as before, replacing v(k) with

e(k) and R, with R, as necessary.

36 BENCHMARK CALCULATION WITH PLANT MODEL MISMATCH

Zagrobelny et al. (2013) also derive the KPI expectation for a system with plant
model mismatch. In this derivation, (A, By, Cy) denotes the true plant behavior
and (A, By, Cin) denotes the model behavior. We do not repeat the derivation here
but suggest another application for it (in addition to giving a better theoretical
understanding of the behavior under plant model mismatch). Suppose the model

(Am, B, Cy) is currently used in the controller, but a more accurate model for the
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system has been identified, which we call (A2, B2, Cin2). We would not expect
the plant KPI to equal the theoretical KPI using the m-model, as this model does
not accurately describe the system. Neither would we expect the theoretical KPI
with the m2-model to match the plant KPI, as the m2-model is not used in the
controller. Instead, we propose using the mismatch formulas to calculate the KPI
given that the system is described by the m-model and the controller uses the
m2-model. This theoretical KPI corresponds to the expected performance of the
current controller. Since the KPI calculated from the m2-model corresponds to the
theoretical performance when the model used by the controller has been updated,
comparing the theoretical m/m2 KPI with the KPI using m2 alone would give an

idea as to the benefit implementing the new model in the controller.

3.7 CONSTRAINED AND NONLINEAR MPC MONITORING

In addition to the LQG monitoring problem, the monitoring of constrained and
nonlinear MPC controllers is necessary in industrial applications. The previously
established fundamental relationships no longer apply because the second rela-

tionship is no longer true:

central limit theorem = normal distribution

normal + nonlinear system =% normal distribution

Therefore we no longer have a distribution for the signals of the system and cannot
calculate the expectation or variance of the monitoring benchmark.

When we have systems with constraints or nonlinear systems, we cannot take
advantage of convenient analytical formulas in calculating metrics or describing
their statistics. In place of these formulas, however, we can use simulations and
Monte Carlo methods to estimate the metrics. By simulating the model, we can use

the sample average of the simulation stage cost as our theoretical KPI. Zagrobelny
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et al. (2013)) shows that the average stage cost for a linear, constrained system still
converges to a constant value, despite the more complicated nature of the system.
The simulated KPI serves as a theoretical benchmark based on the process model.
We can also use Monte Carlo methods to estimate the variance and confidence
intervals for the KPI. These confidence intervals allow comparison between the

simulated ideal KPI and the plant KPI

3.8 APPENDICES

3.A Steady-state target problem

We derive the linear control law that was used in Section 3.2.1 by defining the

target selector problem as

.1 R
min = (|us — usp]%gs + |Cxs + Cyds — yspygs) (3.12)
(xs,15) 2
I—A —B| |x Bds
s.t. = X
HC 0 Us rsp — HCyds

Ysp and ugy are the external setpoints provided to the controller, and xs and u; are
the target values for the state and input given to the regulator. d, is the estimated
steady-state value for the disturbance, which is approximated as d + Lze. In the
case that we have more outputs than inputs, we select a subset of the outputs
(equal to the number of inputs), r = Hy, to control to the setpoint. If the number
of outputs is less than or equal to the number of inputs, we choose r = y. Using

the method of Lagrange multipliers, we solve (3.12) to express x; and us as

41



42

in which T; and T, are given by

C'QC 0 —(I-A) —CH 0 C'Qs 0
. I1 000 0 R, B 0 0 0 R,
1 pr—
0I 0O0||I-A -B 0 0 0 0 0
HC 0 0 0 I 0 0
— - =1 ~ -
C'QsC 0 —(I-A) —CH —C'QsCy
1 000 0 R, B 0 0
T, =
0 I 0O0||I-A -B 0 0 B,
HC 0 0 0 —HC,
Then we write u as
1 = KaugX + KaugLCaugX + KaugLv + 14
Ug = <|:0 ]:| —K) T1 ysp
usp
Kaug = [K Kd], Ky = ([0 1] —K> T, (3-13)

ug is the constant term in every input and is only nonzero when nonzero set-
points are present. The inclusion of Kj; is necessary to reject disturbances. See

Zagrobelny et al. (2013) for a more detailed derivation.
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3.8 Derivation of KPI variance

Before deriving the variance of the KPI, we note that for a vector x ~ N(0,P), a

vector y that is independent of x, and constant matrices A and B,

E(x"Ayy'By) =0 (3.14)
E(x'Axx'By) =0 (3.15)
E(x’Axx'Bx) = tr(AP)tr(BP) + 2tr(APBP) (3.16)

The first equality follows from the expectation of x. The second and third equa-
tions are derived from Theorems 3.2d.2 and 3.2d.3 of Mathai and Provost (1992),
respectively, by considering the special case where the normal variable is zero
mean.

We begin our derivation by defining the signals
f(k) = Fiz(k) + Fo(k) + f4 z(k+1) = Az(k) + Gw(k) + z4
We assume that f(k) and z(k) have time-invariant distributions:
f ~ N (m,P) z~ N(m,S)

in which we neglect the co subscript on the variances. Note that v(k) and @ (k) are
correlated. Letting I, := [0 0 1] , then v(k) = L,@(k).
The stage cost, ¢, is a quadratic form of the signal f and the KPI, K, is the time

average of /



We write the variance of C as

var(K) = E(K?) — E(K)? = E(K?) — (tr(QP) + ' Qiit)’ (3.17)
From the definition of K,
1 T T
E(K?) = = ) ) E((k)E())) (3.18)
k=1j=1

Since ¢(K) is a scalar, ¢(k)¢(j) = £(j)¢(k), and since the distribution of f (and /) is
time independent, ¢(k +i)¢(k) = £(j +i)£(j). Therefore, we rewrite (3.18) as

T-1
E(C?) = 2B (40F) + g7 |5 (T—)ECWIG+)| 619
L

Let f(k) = f(k) —m and z(k) = z — m, so that these signals are zero mean.

Then z+ = Az + G@ and
0= (f+m) Q(f+m) =0+2f Qm +m' Qi

in which Z = f'Qf. To simplify our notation, we drop the time index (k) and use
the subscript j to denote the index (k + ).

We next evaluate the term [E(£/;) appearing in (3.19):

E(¢j) =E (sz + 20 Qi + i’ Qi + 2f' Qiinl; + Af' Qe f{ Qi + 2 f Quivait’ Qi
it Qi+ 201’ Qi f1 Qi + (it Vﬂ)z) (3.20)
From (3.14), E(f' Qrivit’ Qrit) = lE(mt'me].’Qm) = 0, since E(f) = E(f;) = 0. By

writing out the terms E(Zf] Q) and E(f'Qml;) in terms of z and w; (which we

do not show for the sake of brevity), we see that these terms are also zero, by
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(3.14) and (3.15). Since E(¢) = E(¥;), (3.20) reduces to
E(04;) = E(24;) + 2E (D) Qi + 4 QE(F' f1) Qi + (1w’ Q) (3.21)
Further, since

_ . =t
f=FRz+Fo fi=RAz+R Y A 'Gw; + Ky
i=0

then

E(ff}) = RE@z)(A')VE + BLE@a)C/(A) F

= RS(A")F| + K1,0,G (A" 'F,

Let S5; := FS(A')F and Sy = BlLQuwG'(A')'F. Then E(ff]) = Sg; + Suj.
Since E(¢) = tr(QP), we write (3.21) as

E(0¢;) = E(2¢;) + 2tr(QP)ri' Qri + 41’ QS ;Qtit + 4’ QS,j Ot + (11 Qrin)?

E(¢0) = E(070) + 2tr(QP) ' Qrit + 41t

@)
)
~
O
N
+
=
@)
2

From these expressions and the fact that % + % ( =T - ])) =1, (3.19)

reduces to

+ 2tr(QP)m' Qm + (11’ Qrin)? (3.22)

To further reduce (3.22), we find E(¢¢;). Letting @ = Z{:;(l) AI7i=1Gw, we write
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¢ and /; as

U =Z'FQFz + 27 F|QF:I,@ 4+ @' I, FsQF, L, @
tj =z (A'VFQFR Az + 22 (A'YFQR® + 22 (A')Y F{QFv; + @'F{QF &

+ 2CZ)F1/Q~F2'U]‘ + U;FZ/Qszj
Then we have

E(77)) = (z F/OF 27 (A )JP1QP1AJZ> +E (ZFQFRz0'FOR @)

M 12

+E (z/F{QFlzv;FZ’Qszj) H4E (z’F{Q”Fzzwwz’(Af)’P{QFlw)

q3 q4

+E (w’I;UPgQPZ’Iwwz( AN F{QPlefz) +E (@' I, QR L@@ FjOR @)

gs e

+E ( @' I, SO L@’ FZQF20]> (3.23)

q7

We reduce the odd terms as

q1 = tr((A'YF QR AS)tr(F QR S) + 2tr(F{QFR S(A') QR AJS)
q3 = tr(FlQFls)tr(FzQFzRv)
g5 = tr(FQF:R,)tr((A") F{QF, AlS)

g7 = tr’(F,QFRR,)

To simplify g2, we begin with

E(o@") ZAfllGQG it = ZAfQG AN =5 — AIS(A")

in which the last step follows from the Lyapunov equation for S. Then g, reduces
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as follows:
g2 = tr(F QR S)tr(FQRE(0@)) = tr*(F{QRS) — tr(F QR S)tr(FFQRSAIS(A')])
g4 reduces according to

s =E (ZF Qb I,z (A F,QF,@) = E (2 F,QF:I,w@'FLQF, Alz
q 1 1 1 1

= tr(F{QF:1,Q.G'(A'Y 'FQF A/S)

To simplify g, first we separate the term of the form @' A'@@'B® from the terms
of the form @' Azbwt}Bwj. These last terms simplify easily since @ and @; are

independent:

96 = E (@', F;Q5 L, 0&'F{QF @)
—E (w/lgqu’QFZIwww’G’(A’)J‘*lFl’ QR A" Ga)
j—1

+tr(FORR,) Y tr(FQF A 16 Q, G/ (A') 1)
i1

We write out the first term using (3.16):

g6 = 2tr (I;UFZ'QPZIWQW@(AWF{Qa;u'flégw)

+tr(FQFR,)tr((A) T F QR AI71GQ,G)
j=2 o

+tr(FORR,) Y tr(FORA'GQLG'(A))
i=0

We further simplify g4 based on the Lyapunov equation for S:

ge = 2tr (IZ’UFZ’QFQIWQWG’(A)’f’lF{QFlflj’lGQw)

+ tr(F;QFR ) tr (F{QF S) — tr(F,QFR, ) tr(F{ QR AIS(A'))



Next we replace each g; term in (3.23). As we do so, note that the first term in
q1 cancels with the second term in g, and g5 cancels with the last term in g. Then

we have

E(¢7;) = 2tr(F{QF S(A"Y F{QF, AIS) + 4tr(F]QF:1,Q G (A" "' F|QF, A/S)
4ot (1’ E,OF: 1,0 G/ (A)1 - EL QR A~ 1GQw) + tr2(FLOFS)

+tr(F,QF:R, )tr(F{QF:S) + tr(F{QF S )tr(F,QF:Ry, ) + tr* (F,QF2R,)

The last four terms simplify to tr?(F;QF S + F;QFR,) = tr*(QP) from the defini-

tion of P. Therefore,

E(27;) = 2tr(F{QS f]-QplAJ‘S) + 4tr(F{0S.j QR A'S) + 2tr (I, F;QS.,jQF A1 GQy)

+ tr*(QP)

Since E(#?) = E (f'OQff'Qf) = 2tr(QPQP) + tr*(QP), (3.22) simplifies to

+ tr?(QP) + 2tr(QP)m' Qm + (1’ Q1) (3.24)
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and from (3.17), we have the variance of the plant KPI:

(3-25)
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DISTURBANCE MODEL IDENTIFICATION BACKGROUND

4.1 REVIEW OF DISTURBANCE MODEL IDENTIFICATION

Methods for identifying noise covariances fall into the categories of Bayesian es-
timation, maximum likelihood estimation, covariance matching, correlation tech-
niques (including the ALS method), and subspace ID methods. Before reviewing
the other methods, we discuss subspace ID techniques, which have recently gained
popularity. These methods are primarily designed for process model identifica-
tion but also identify the noise statistics (Ljung, 1999; Qin, 2006). Subspace ID
methods use least-squares regression to identify a characteristic subspace of the
input-output data; the system matrices and noise statistics are then extracted from
this subspace (Van Overschee and De Moor, 1995). Originally designed for open-
loop data, these ID methods have been modified for use on closed-loop data (Qin,
2006). Because subspace ID methods identify the system matrices as well as the
noise statistics, the input must be persistently exciting in order to accurately iden-
tify the input matrix B (Ljung, 1999). Rather than finding the driving process and
measurement noises, these methods identify the innovation covariance and the

optimal estimator gain (Qin, 2006). While this noise model can be used in perfor-
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mance monitoring (as discussed in Section 3.5) and provides the optimal Kalman
filter, knowledge of the process and measurement noise covariances provides a
more inherent understanding of the disturbances affecting the system. There-
fore, finding these noise covariances allows more flexibility in estimator design
and provides more information towards performance monitoring (Rajamani and
Rawlings, 2009). In addition, subspace ID methods have not been used to identify
the disturbance model for a system containing integrators. Such a method would
require using a grey-box model to identify the system matrices.

Like subspace ID methods, the general Bayesian estimation problem presented
by Mehra (1972) may also include both unknown deterministic and unknown
stochastic parameters. However, this method is easily reduced to the case in which
the only unknowns are the elements of Q, and R,. Implementing this method in
practice is challenging both because of the a priori knowledge required, as the
user must choose prior probabilities for Q, and Ry, and because of the computa-
tional requirements, as the method requires integration over a large dimensional
space. Matisko and Havlena (2013) proposed a Bayesian method in which Q, and
Ry are the only unknown parameters. In this method, a grid of possible (Qy, Ry)
pairs is created, and the Kalman filter is designed for each (Qy, Ry) pair. Then
state estimation is performed using each Kalman filter, and the likelihood and
posterior probability are computed. The covariance estimates are chosen as either
the maximum a posteriori estimate or the mean-square estimate. The authors pro-
posed using a Monte Carlo method to generate a (Qq, R,) grid with more density
near the highest probability.

Unlike Bayesian estimation, maximum likelihood methods do not rely on
knowledge of a prior distribution. Like subspace ID methods, several early max-
imum likelihood methods also focus on finding filter parameters (Mehra, 1969,
1972; Kashyap, 1970). The process and measurement noise covariances are then

extracted from these results (under certain conditions). Mehra (1969) wrote the
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likelihood for a SISO system in terms of the optimal innovation, which is maxi-
mized with respect to unknown deterministic parameters, the optimal filter gain,
and the innovation variance. He proposed using correlation techniques to find the
initial guess for the MLE problem. Kashyap (1970) proposed a three part max-
imum likelihood estimation scheme for a multivariable time series system. First
the deterministic parameters are estimated, then the optimal filter parameters are
estimated using these results, and finally the noise covariances are estimated from
the optimal filter parameters (under certain identifiability assumptions). Likewise,
in the maximum likelihood method of Mehra (1972) first finds the Kalman filter
and innovation variance are estimated for a state space model, and then Q, and
Ry are found when uniqueness conditions are met.

More recently, Bohlin and Graebe (1995) and Kristensen, Madsen, and Jor-
gensen (2004) used maximum likelihood or Bayesian estimation to estimate pa-
rameters in a grey-box model. The general grey-box model has a known structure
but some parameters, which can include the noise covariances, are unknown. The
system discussed is a set of stochastic ordinary differential equations linearized
using the extended Kalman filter.

Since direct maximum likelihood methods require solving a nonlinear opti-
mization problem, Shumway and Stoffer (1982) proposed an iterative method us-
ing the expectation maximization (EM) technique. In the EM method, an initial
guess of the unknown parameters is chosen, and the states are estimated from the
current parameter estimate via the Kalman smoother. Then the unknown param-
eters are updated by maximum likelihood estimation assuming that the states are
equal to the smoother estimates. Since the states are known, this maximization
step simplifies to simple algebraic equations. This process of estimating the states
using the Kalman smoother and optimizing the parameters using MLE is repeated
until the parameters converge.

Bavdekar, Deshpande, and Patwardhan (2011) developed both a direct max-
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imum likelihood method and an EM method for nonlinear systems, based on
the extended Kalman filter. The direct maximum likelihood method is written
in terms of the innovations, which are calculated at each iteration of the opti-
mizer. Since the innovations are white under the optimal estimator, the likelihood
for the entire data set can be separated into the likelihoods for each innovation.
This MLE method assumes that the deterministic system parameters are known.
Like the direct MLE method, the EM method also only estimates Q, and Ry,
whereas Shumway and Stoffer (1982) estimated the state transition matrix, A, as
well as the noise covariances. Both the maximum likelihood and expectation max-
imization methods of Bavdekar et al. (2011) accurately identified Q, and R, in
simulation and led to improved estimation for laboratory data. They applied both
methods to systems with measurements sampled at multiple rates. Li and Badg-
well (2014) applied the EM method of Bavdekar et al. (2011) to linear systems and
expanded this method to cases in which the noise-shaping matrix G is known.
Several examples demonstrated that this method reduces the variance of the esti-
mates compared to the ALS method.

The maximum likelihood estimation problem is discussed in detail in Chap-
ter 8. By assuming that the deterministic system matrices are known, we reduce
the maximum likelihood problem to estimation of parameters affecting the co-
variance of a normally distributed signal. The estimation of the covariance of a
normal distribution when the entire covariance matrix is unknown is discussed
in detail in Anderson and Olkin (1985). Whereas Anderson and Olkin (1985) as-
sumed complete freedom in the covariance matrix, Magnus (1978) studied the
case in which the covariance matrix is a function of some number of unknown
parameters. He derived first and second order conditions for the maximum like-
lihood estimator of the mean and covariance. An iterative method was proposed

for the case when these equations cannot be solved analytically.
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or maximum likelihood estimation. In these methods, the disturbance model is
identified by matching the covariances of the optimal innovations with their theo-
retical values (Myers and Tapley, 1976). The iterative method proposed in Myers
and Tapley (1976) is not guaranteed to converge or to produce semidefinite re-
sults. Odelson (2003) presents a more detailed analysis of these techniques, which
shows that they produce biased results, as the covariances do not provide enough
information to estimate the noise matrices. In more recent modifications to this
method, the measurement noise covariance is assumed to be known, and only the
process noise covariance matrix is estimated (Valappil and Georgakis, 2000; Tzou
and Lin, 2001).

Rather than considering only the covariances of the innovations, in the correla-
tion techniques of Mehra (1970, 1972), the noise model is chosen to fit the autocor-
relations (or autocovariances) of the innovations at different lags. By considering
different lags, these techniques extracts more information from the measurement
than does covariance matching. These methods need not be iterative, although
using the optimal estimator gain may reduce the variance of the results (Mehra,
1972). While the original method involved multiple steps, the ALS technique
reduces the correlation-based method to a single least-squares problem (Odelson,
Rajamani, and Rawlings, 2006; Rajamani and Rawlings, 2009). The covariances are
forced to be positive semidefinite by using a log-barrier penalty method (Odelson
et al., 2006). The resulting optimization problem is convex, although the objective
is no longer quadratic (Odelson et al., 2006). When there is not enough informa-
tion to estimate the full process noise covariance matrix, the problem is modified
to find the solution with the fewest number of independent noises (Rajamani and
Rawlings, 2006). The ALS approach is also used to estimate the optimal noises
for integrating disturbances used to provide offset-free control (Rajamani, Rawl-
ings, and Qin, 2009). The ALS method is described in more detail in the following

section.
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4.2 SUMMARY OF THE ALS METHOD

Letting £(k) denote the Kalman predictor of x(k), we define the state estimate

error ¥ and L-innovation % as

Then we write the evolution of these errors as

e(k+1) = Ae(k) + Gw(k) — ALv(k) @ = Ce(k) + (k)

in which A := A — ALC. Letting P be the covariance of ¢, the autocovariances of

% are

E (# (k)% (k)') = CPC' +R

E (% (k+ )% (k)) = CAIPC' — CAI"'ALR,

We combine the autocovariances from lag o to lag N — 1 into a single equation:

Y (k)7 (k)
E : = 6PC' +TR, (4.1)

in which
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P is related to Q, and R, through the Lyapunov equation
P — APA/ + GQZUG/ + ALRUL/A/ (4.2)

Next we rewrite (4.1) in terms of vec(Qy) and vec(Ry), in which the vec operator

stacks the column of a matrix. In doing so, we use the identity
vec (AXB) = (B'®@ A) vec(X)

in which ® denotes the Kronecker product. To eliminate P from (4.1), we vectorize
(4.2), solve for vec(P), and substitute this value of vec(P) into the vectorized form

of (4.1). Thus we obtain the equation
b:=vec|E : =

in which

v o
d=(C®0)(I,—A®A) " (G®G)D,

o =((C®0)(la— A2 A) " (AL® AL) + (I, ®T)) 9,

and (Qu)ss denotes the vector containing the lower-triangular elements of Q.
For a symmetric matrix, (Qy)ss completely describes Q. The duplication 2, is
defined such that it satisfies vec(Qy) = Z,(Qu)ss (Magnus and Neudecker, 1999,
P-49)-

The matrix &7 is completely known from the state space model and estimator.

We use the model and estimator to calculate the state estimate £ and then find



% =y — CX. We calculate estimate b using the sample autocovariances of #; we

refer to this estimate as b. Then we solve the least-squares problem

min ||/ ( = bl
] (Ro)ss
The choice of the weight W has significant impact on the variance of the estimates;
choosing this weight is discussed in Section 6.2.

The estimator that we use to calculate % does not need to be same estimator
that the controller is currently using, provided that the same estimator is used to
calculate both %" and /. When the estimator used by the controller is unknown,
or when the autocovariances of the innovations decay too slowly, we recommend
choosing a different initial estimator for the ALS problem.

We add semidefinite constraints to this problem in order to guarantee that
Qw and R, are feasible. As discussed in more detail in Section 4.3, the problem
has a unique solution if and only if & is full rank. In the case that </ loses
rank, Rajamani and Rawlings (2009) suggest seeking the minimum number of
independent process noises by penalizing tr(Q,). This method uses trace as a
substitute for rank in order to maintain a convex problem. The complete ALS

problem is then written as

min ||.o7 (Qu)ss — 13||%,V +tr(Qyw) subjectto Qy >0, R, >0

Qu,Ry (RU ) ss

4.3 UNIQUENESS CONDITIONS FOR THE ALS METHOD

The necessary conditions for the ALS estimate to be unique are discussed in
both Odelson et al. (2006) and Rajamani and Rawlings (2009). Here we offer a

more complete discussion especially as concerns unobservable systems. Before
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we begin this discussion, we note that for any given system, the full matrix ALS
problem has a unique solution if and only if there is a unique solution to the
single matrix ALS column, as shown in Appendix 4.A. Because of this property,
the uniqueness conditions discussed below hold true for both formulations of the
ALS problem. We also note that for <7 to be full rank, then both ¢ and @ must
be full column rank (although the converse does not necessarily hold). Therefore,
if a condition is necessary for .27 to be full column rank, then that condition is
necessary for 7 to be full column rank.

Before discussing the conditions for uniqueness given in the literature, we
note that a unique solution to the ALS problem exists only if the following two

necessary conditions are satisfied:

1. G is full column rank. (Note that this condition implies g < n.)

5. g(g2+1) <

np

To prove Condition 1, we first observe that if G is not full column rank, then
G ® G has a non-zero null space. Further, from Hua (1990, Theorem 2), if G
is not full column rank, there exists a symmetric matrix X # 0 such that (G®
G)vec(X) = 0. Therefore, (X)ss lies in the null space of <, and the ALS problem
does not have a unique solution.

Condition 2 holds because .27 is the product of three matrices and therefore its

rank is less than or equal to the rank of each of those matrices:
rank (% ) < min (rank(C ® &), rank(l,» — A ® A),rank((G ® G) %))
For n > p, this condition simplifies to
rank(#4) < min (np,n? g(g+1)/2) = min (np,g(g+1)/2)

Since the number of columns in @ equals the number of unknowns in Qy, (g +
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1)/2, if this quantity is larger than np, the matrix 4 is not full column rank and
the ALS estimates are not unique. Although these conditions are necessary, they
are not sufficient, as shown in the following discussion.

In the correlation-based method in Mehra (1970), the following conditions are

assumed:

A. (A,C) is observable.

B. (A, G) is controllable.

C. Ais full rank.

D. The number of unknowns in Q, is less than or equal to np.

Odelson et al. (2006) further examined these conditions and demonstrated that
they are not sufficient.

The condition that (A, C) be observable is necessary in the case when the noise
shaping matrix G is unknown, as is disccused in more detail in Section 6.1.1. How-
ever, if G is known, then (A, C) need not always be observable because the process
noise covariance may be estimated from the observable states alone (Odelson et al.,
2006).

The condition that (A, G) be controllable is not necessary for the ALS problem

to have a unique solution. As a counter example, consider
01 0 2

Although (A, G) is uncontrollable, the ALS matrix is still full rank. In general, hav-
ing (A, G) uncontrollable may mean that there are fewer independent unknowns
to consider, and so we can more easily solve the problem.

The condition that A be full rank allows the conditions for uniqueness to be

greatly simplified as in Rajamani and Rawlings (2009). As mentioned in Rajamani



and Rawlings (2009), if A is singular, then the singular modes can be removed,
and the system can be redefined with a non-singular A. If G is unknown and A
is singular, the ALS estimate is not unique, as discussed in Theorem 1 in Section
6.1.1.

Note that Mehra’s Condition D is the same as Condition 1 above and is there-
fore necessary. When G is unknown, we apply more stringent condition on the
number of unknowns given in Lemma 13 of Rajamani and Rawlings (2009), which
implies that the solution is not unique whenever n > p. This more strict condition
is also given in (Mehra, 1972). From this condition, it follows that whenever p < n
in the non-augmented system and integrators are added to the states, there is not a
unique solution to the ALS problem (when G is unknown). Odelson (2003) claims
the condition n > p is unnecessary; however, his counter-example was based on
the assumption that Q, is known to be diagonal.

As mentioned in Odelson et al. (2006), Conditions A-D are not sufficient.
Whether or not the ALS problem has a unique solution depends also on the struc-

ture of the matrices A, C, and G. For example, consider the system

0.09
0.27 3400
A — =
0.08 0017
0.05
with two different noise-shaping matrices,
03 0 0 03 0 0
0 09 0 0 09 O
0 0 05 -1 0 05
0 0 1 0 0 1
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In both cases, (A, C) is observable, (A, G) is controllable, and A is full rank. The
condition on the number of unknowns is satisfied for both systems since np = 8
and g(g +1)/2 = 6. However, we have a unique ALS solution when we use G,
but not when we use G;. Therefore, the uniquess of the solution depends both
on the structure of the system and on the number of unknowns relative to the

number of outputs.

4.4 METHODS TO ASSESS THE ALS RESULTS

When using the ALS method in practice, it is necessary to evaluate the accuracy
of the solution before implementing any changes to the controller or using the co-
variances in MPC monitoring. In some simple simulations, the estimated values
of Qy and R, can be compared to their true values. However, whenever determin-
istic disturbances are present (even in simulation), we deliberately introduce plant
model mismatch by approximating these disturbances as integrated white noise.
Therefore, we no longer have a “true” value of Q, against which to compare the
ALS results. When using industrial data sets, we also do not know the true noise
covariances. Therefore, we propose two methods to assess the accuracy of the ALS

results:

1. Assess the goodness-of-fit of the least-squares problem.

2. Assess the performance of the redesigned estimator.

4.4.1  Assess the goodness-of-fit of the least-squares problem

In the ALS algorithm, we first calculate the sample autocovariances of the L-

innovations, which form the vector b. Let

bars :=
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In the ALS method, we choose Q,, and R, such that b1 g is as close to b as possible
in a least-squares sense. One way to qualitatively assess this result is to plot the
elements of b and the elements of bars on the same axis and compare the two
curves. To make the plots easier to view, we separate b and bus into the autoco-
variances of each output and cross-covariances between each pair of outputs. We
create a p x p grid of plots. The diagonal plots show the autocovariances of each
output. The plot in the (i,j) position shows the cross-covariance between % (i)
and Yin(j), cov(%;(k), #%;(k —1)). The x-axis of each plot is the lag I.

An example of the autocovariance plots is shown in Figure 4.1. The top four
subplots show the sample autocovariances and fits produced by the ALS method
using a perfect model. In each of the four plots, the curves are in good agreement
with each other, indicating that the ALS solution has fit the data well. The bottom
set of plots shows the results of the ALS problem with a large amount of model
mismatch; in this case, the fit is poor for the cross-covariances. The theoretical
autocovariances at lag zero also do not fit the sample autocovariances (seen in
the diagonal plots). Note that when studying these plots, we only consider is
whether the theoretical and sample autocovariances match each other well; we
do not consider whether or not the estimator is behaving optimally. Since we
use the suboptimal initial estimator to form these plots, we would not expect to
see optimal estimator behavior. We discuss the optimal estimator behavior in the

following section.

4.4.2 Assess the performance of the redesigned estimator

We also assess the quality of the ALS results by using these results to design a
new estimator and then assessing the quality of the estimator performance. In
the absence of plant-model mismatch, when the noises are white and the noise
covariances are known accurately, the Kalman filter produces white innovations.

The innovations are white because the filter extracts all the useful information
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Figure 4.1: Example of plots to assess the goodness-of-fit for the ALS method. The
top four plots show that the theoretical autocovariances using the ALS estimates
match the sample autocovariances from data. In the bottom four plots, plant
model mismatch has caused significant error in the ALS estimates. The theoretical
autocovariances no longer match the sample autocovariances.
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from the measurements but does not over-predict based on the random noises
corrupting the measurements. Therefore, we assess the accuracy of the ALS esti-
mates by determining if they produce a Kalman filter with white innovations. To
do so, we tune the Kalman filter based on the estimates Q, and R,, process the
data using this estimator, and study the autocovariances of the resulting innova-
tions. In procesing the data, we can consider either the same data set that was
used to estimate Q,, and R, or a new data set from the same process.

When processing the data, we compute the new innovations, #x1s(k) = y(k) —
Cxars(k), where the state estimates come from the new Kalman filter. We then
calculate the autocovariances and cross-covariances at different lags. For the ideal
estimator, any auto- or cross-covariance may be nonzero at lag zero, but should
be zero for all higher lags.

When estimator gain is optimal, this optimality does not guarantee that Qy,
and R, are correct. For example, the estimator gain remains constant when both
noise covariances are scaled by the same factor. However, assessing the goodness-
of-fit as described in the previous section ensures that the measurement noise is
on the correct order of magnitude. We further discuss optimal estiamtor behavior

in the following section.

4.4.3 Guide to autocovariance plots

To understand how to interperet the autocovariance plots, we study Figure 4.2,

which shows ideal estimator behavior for the system

05 0 O 0 1 0
0 05 01 O 0 1
A= C:I4 G= Qw:IQ Ry:0514
0 01 05 O 0 1
0 0 0 015 0 -0.15
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In the determinstic part of the system, (A, C), y; and ys4 are completely in-
dependent from the other outputs, whereas y> and y3 are correlated with each
other. The measurement noises corrupting each output are uncorrelated with
each other. Two process noises affect the system, w; and w,, corresponding to the
two columns of G. The noise w; affects the first state but not the other states (due
to the structure of A). Thus, since y; = x1, w; affects only the output y;. Likewise,
the noise w;, affects states y», y3, and y4 but not y;.

In Figure 4.2, the plots along the main diagonal in the figure show the autoco-
variances of each innovation with itself. For each innovation, there is significant
autocovariance at lag zero, but the autocovariances are zero at higher lags. The
cross-covariances between y; and the other outputs (the plots in the first column
and the first row) remain within the confidence intervals at all lags, including lag
zero. This complete lack of correlation indicates that y; is independent from all of
the other outputs.

In this system, y» and y3 are identical to each other except for the measurement
noise. The strong correlation is evident in the cross-covariance plots between 1,
and y3 (the plots in the (2,3) and (3,2) positions). These cross-covariances are non-
zero at lag zero, but again the covariances are zero at higher lags. Although in the
deterministic system, y4 is independent from the other outputs, it is correlated to
y2 and y3 through the process noise. Since the correlation is negative (as can be
seen from the matrix G), the cross-covariance between y4 and y; or y3 is negative.
As in all the plots, the correlation is only present at lag zero, indicating that the
estimator is optimal.

Note that the autocovariances at higher lag are not symmetric. To illustrate
this point, consider the cross-covariances between y; and y4. The plot in the (1,4)
position shows the covariances between % (k) and #4(k — j) and the plot in the
(4,1) position shows the covariances between #;(k) and #(k — j). These two

covariances are identical at lag zero but differ at higher lags.
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Figure 4.2: Example of autocovariances for an optimal estimator. The auto- and
cross-covariances are non-zero only at lag zero.
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Figure 4.3: Output and disturbance for the simple example.

Next we illustrate suboptimal estimator behavior by studying a small model
consisting of one state and one output with an integrating disturbance added to
the output. The true system is affected by a repeated step disturbance, which
can be estimated well by the integrated disturbance model. The output and dis-
turbance are shown in Figure 4.3. We compare the performance of the optimal
estimator with suboptimal estimators. This comparison gives a qualitative idea of
the autocovariance patterns that result from different incorrect noise models.

The top plot shows the optimal behavior for the estimator (as determined from
the ALS results), in which the only significant autocovariance is at lag zero. The
second row shows the effect of having an incorrect measurement noise. When
the measurement noise is too large, the effect of the measurement is undermod-
eled, i.e. the estimator makes little use of the current measurement. As a result,
correlation remains present at higher lags. When R, is too small, we are essen-
tially overmodeling the effect of the measurement. The measurement noise is not
adequately filtered and has too strong of an effect on the state estimate, result-
ing in the negative autocovariance at lag one. When Q, is too large, we also
see this characterstic negative autocovariance at lag one, since the filter treats the
measurements as being more accurate than they are in reality. In addition, the au-

tocovariances do not decay to zero, because the integrator is hardly used. When



Qu is too small, the autocovariances are slightly oscillatory, as the information
from the measurements is not being fully used. The autocovariances when Q; is
too large look similar to those when R, is too small, but they also rise to zero more
slowly after lag one. When Q; is too small, the autocovariances are characterized
by a very slow decay to zero at higher lags.

From inspection of the autocovariance plots we obtain some idea as to what
errors are present. However, it would be difficult to develop an accurate noise
model by inspection alone. Even with the simple example above, many errors
in the noise model have similiar effects (for example when R, is too small and
when Qy is too large). For larger systems with many states and outputs, the
numerous variance and covariances would be impossible to identify by inspecting

the autocovariances alone.

4.5 APPENDICES

4.A  Proof of equivalence between single column and full matrix ALS techniques

We define the autocovariance matrix as

U TN
Z(N) = : : = [ﬁl(N) Z(N) ... %N(N)}
YN .. HKY

which vectorizes to

vec (Z(N)) = |vec(%(N)) vec(%(N)) ... vec(,@N(N))’]

vec(Quw)

=
vec(Ry)
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Figure 4.4: Autocovariances under different noise model mismatch scenarios.
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in which &7, is the matrix &/ for the full matrix ALS method as defined in Odel-
son et al. (2006). Since the autocovariances in %, ... %N are duplicates of the
autocovariances in %), we can write each vec(Z%;(N)) as a linear combination of

the elements of vec(#;(N)):

_Isz_ _Isz_
vee (@) = | 2 | vecmy) = | 7 | | VEE(Q)
: vec(Ry)

N ] | N ]

in which < is the matrix for the single column ALS method. Therefore, the

matrices for the full matrix and single column ALS methods are related as

INPZ
J2
Dy = o
| v ]
/
Since the matrix Iy o IN is always full column rank, <% is full col-

umn rank if and only if .7 is full column rank.



INTEGRATING DISTURBANCE MODELS

5.1 PURPOSE OF INTEGRATING DISTURBANCE MODELS

Although the Kalman filter (with correct noise covariances) calculates optimal
state estimates in the presence of zero-mean white noises, it does not accurately
estimate the states in the presence of non-zero mean disturbances. As a result, the
regulator is not able to remove the effect of these disturbances. To obtain offset-
free control in the presence of unmeasured disturbances, we need to estimate the
disturbances as well as the state. We account for these disturbances in the model
by augmenting the system with integrators as described in Rawlings and Mayne
(2009) and Pannocchia and Rawlings (2003). Without these integrators, the con-
troller would not compensate for any non-zero disturbances or model mismatch.

We write the augmented system as

N A By
X" = X+ W y:[c Cd]X-I-v
0 I
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/ /
in which X := [x/ d’] . The augmented noise matrix W := {w’ w;} is dis-

tributed as
Qw de

Q;,d Qd

W~N(@OQw) Qw=

We then design the Kalman filter for the augmented system; this tuning of the
estimator depends on the variance of the augmented covariance matrix Q.

This disturbance model is not meant to model accurately the disturbances en-
tering the system. In fact, since the variance of d is always growing, if the plant
faced a true integrated white noise disturbance, the variance of the input or output
would become unbounded in response to this disturbance. Thus, by incorporat-
ing this disturbance model, we are deliberately adding introducing plant model
mismatch because we are adding a disturbance that does not occur in the plant.

Despite the mismatch caused by the integrating disturbance model, we choose
to use this model because it is simpler than estimating a more detailed disturbance
model. By using this simple form, we can apply the same disturbance model to
a variety of systems; we only need to choose an appropriate augment process
noise covariance. We also are able to keep the same disturbance model for a given
system even though the disturbance does not remain completely constant.

In the absence of the integrating disturbance model, any non-zero mean distur-
bance or plant model mismatch causes offset in the controlled variables. With the
integrating disturbance model, we obtain offset-free control by using the Kalman
filter for the augmented system. Since d does not decay in the integrator model,
the disturbance estimate d remains non-zero to compensate for the disturbance.
The noise term w, allows d in the augmented Kalman filter to respond to changes
in the disturbances.

As discussed in Rajamani et al. (2009), if we create two augmented systems
by augmenting the same original state space model with two disturbance mod-

els, (Bs1,Cy1) and (Byy, Cypp), the augmented systems are similarity transforms of
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each other (provided that we add p integrators and that each augmented system
is detectable). Therefore, the choice of (By, C;) is not critical to obtain good esti-
mator behavior, provided that the augmented process noise covariance is chosen
appropriately, such as by using the ALS method.

We find the augmented process noise covariance by solving the ALS problem
using the augmented model (Rajamani et al., 2009). Although Aaug 18 unstable,
an estimator can always be chosen such that the closed loop A,y is unstable
(provided the augmented system is observable).

We also use the augmented model in calculating the theoretical KPI. Since the
KPI depends both on the disturbance as well as the disturbance estimate error,
the integrated white noise must be assumed to have zero variance. If the variance
were non-zero, the plant would be responding to a growing disturbance, and the
KPI would be infinite. In order to account for these non-zero mean disturbances,
we must have a deterministic estimate of them to use in the KPI calculation, as

discussed in Section 3.4.

5.2 STEP DISTURBANCES

The integrator model estimates step disturbances well because step disturbances
and integrated white noise have similar autocovariances. We demonstrate this
property by examining the system whose true dynamics are y(k) = d(k), in which
d(k) is a repeated step disturbance. When we model the system as an integrator,

the estimator has the form
At =d+ L% Yy=y—d

When no measurement noise is present, the optimal estimator gain is Ly = 1,
which gives the disturbance estimate d(k) = y(k — 1).

The output, innovation, and innovation autocovariance for this system are
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shown in Figure 5.1. This figure compares the behavior of the step disturbance to
an actual integrated white noise. Although the disturbances and innovations are
clearly different, the innovation autocovariances are nearly identical. The only dif-
ference is that whereas the innovation of the integrated white noise is completely
white, the step disturbance has a non-zero autocovariance at lags corresponding
to the frequency of the step. If these larger lags are not considered, the autocovari-
ances of both systems are identical. Hence, if the maximum lag used in the ALS
problem is smaller than the time between the step changes, then the ALS method
tits the autocovariances of the step disturbance perfectly by using an integrated
white noise model. Therefore, integrated white noise is a good stochastic model

to use in approximating the step disturbance.
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Figure 5.1: Disturbance (top), innovations (middle), and autocovariances (bottom)
for a repeated step disturbance (left) and integrated white noise (right).

Further, the covariance of the driving noise, Q;, (and therefore the integrator

gain) is related to the frequency and magnitude of the step disturbance. From the



equation for the integrator, we write the variance as Q; = var (d(k) —d(k —1)).
Since the innovation is equal to d(k) — d(k — 1) in the absence of measurement
noise, Qy is also the variance of the innovation. For the step disturbance (without
noise), the sample variance of the innovations is proportional to the frequency of
the step changes and to the square of the magnitude of the step change. Thus, the
ALS estimate of Q for the step disturbance is also proportional to the frequency of
the step and the magnitude squared. We use the relationship between Q; and the
step disturbance to calculate the optimal estimator gain. When no noise is present
in the system, L = 1 is the best estimator gain for this model type, regardless of the
value of Q;. When measurement noise is present, the optimal gainis 0 < Ly < 1,
and its precise value depends on the measurement noise variance as well as the
size and frequency of the step.

To illustrate the optimal Q, for a step disturbance, Figure 5.2 compares the
step disturbances of different magnitudes and frequencies. Identical measure-
ment noises with R, = 0.5 were been added to each step disturbance. The plots
in the top row show the noisy step disturbances as well as the predictions from
the optimal estimator. The middle plots show the innovations, and the bottom
plots show the autocovariances. The sample autocovariances for the step distur-
bance are plotted along with the theoretical autocovariance for an integrated white
noise. The ALS results, as well as the optimal estimator gain for each disturbance
sequence, are summarized in Table 5.1. As the magnitude or frequency of the
step disturbance increases, the estimator gain also increases. This change allows
the estimator to respond more quickly to the step changes. The cost of this quick
response is that the innovations are larger during the flat periods where no steps

occur.
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Table 5.1: ALS estimates and estimator gain for each step disturbance shown in
Figure 5.2.

Magnitude Frequency Q R L

5 1/25 1.02 048 0.74
10 1/25 4.01 0.49 0.90
5 1/10 245 0.52 0.85

5.3 RAMP DISTURBANCES AND DOUBLE INTEGRATOR MODELS

Although the integrated white noise model is a good approximation for a step
disturbance, this model does not adequately account for all disturbances that may
affect the plant. To illustrate a case when this model is inadequate, we consider a
ramp-type disturbance as shown in Figure 5.3. When we estimate this disturbance
with the integrator model, our estimates always differ from the true value by
the slope of the ramp, as shown in Figure 5.3. We can tune the estimator by
decreasing the gain but this tuning only makes the approximation worse, as it
uses less information from the data. Our system is undermodeled — the integrator
model does not allow us to capture the slope of the ramp. As a result, although
the innovations are zero-mean, they remain above or below zero for significant
periods of time. The resulting autocovariances have a clear trend, indicating that
the system is undermodeled.

To eliminate this undermodeling, we propose a double integrator disturbance

model to approximate the ramp:

+
dl dl 11 dl w1
b

dZ dz 0 1 dz (%)

nh=

In this model the slope is approximated as a single integrator, d,. In the case of

a pure ramp, the only “noise” in the system is due to the change in slope, so
P P y Y g P
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Figure 5.3: Disturbance and prediction (top), innovations (middle), and autoco-
variances (bottom) for the ramp disturbance modeled as a single integrator. The
disturbance is clearly undermodeled.

0 0

0 Qm

Qa . As there is no measurement noise, the estimator gain for the

double integrator model is L = [1 1] ,. Figure 5.4 shows the optimal prediction
for the ramp disturbance using a double integrator model. As shown in this figure,
the innovations follow the same pattern as the innovations for step disturbances
(with a single integrator model), and the autocovariance looks white at low lags.
Since the slope of the ramp is a step disturbance and is being modeled as a single
integrator, the double integrator is a good model for the ramp disturbance. For
comparison, a true double integrator system is shown on the right of Figure 5.4.

Most disturbances affecting a system cannot be clearly classified as steps or



1.2 .
' Disturbance 4 Distlurbanlce '
0.8 Predictio, 2k Prediction
= =
0'4 0 .
0
1 1 1 1 _2 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
0.1 T T T T 0-05 T T T T
0.05 ¢ A 8 0.025 |+ i
D 0 D o
-0.05 | v v . -0.025 F -
-0.1 Il Il Il Il _0‘05 Il Il Il Il
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
‘= 0.0003 T T T T , “— 0.0003 T T T T
| 0.0002 | 0.0002 -
= 0.0001 J = 0.0001 -
D ° D °
= -0.0001 | {1 = -0.0001 | -
= -0.0002 | 1 = -0.0002 .
S -0.0003 ! ! ! ! S -0.0003 ! . . .
=~ 0 10 20 30 40 50 7 0 10 20 30 40 50
Lag Lag

Figure 5.4: Disturbance and prediction (top), innovations (middle), and autoco-
variances (bottom) for the ramp disturbance modeled as a double integrator (left)
and for a double integrator (right). The ramp disturbance is well modeled, and
therefore the innovations appear white at low lags.

ramps. Figure 5.5 shows an example of a disturbance estimated from plant data.
We apply the ALS method to this disturbance using both single and double in-
tegrator disturbance models and process the data using the “optimal” estimators
from the ALS results. The double integrator model, shown in the left plots, works
well; there is no clear trend in the innovations, and the autocovariances show that
the estimator is approximately optimal. In contrast, the innovations from the sin-
gle integrator model appear to be non-white. The autocovariances confirm that
the single integrator model does not adequately model this disturbance. These
autocovariances decay very slowly, indicating undermodeled dynamics. The pre-
dictions from each model are compared for part of the disturbances in Figure 5.6.

As with the ramp disturbance, the single integrator model is not able to account
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Figure 5.5: Disturbance estimated from plant data (top), innovations (middle), and
autocovariances (bottom). The double integrator model (left plots) produces white
innovations and is a significant improvement over the single integrator model
(right plots).

for the slope of the constantly changing disturbance.

When the noise model includes double integrators, the augmented system

takes the form

A By B
Baug:
0 Ay 0

Aaug = Caug = |:C Cd:|

In this system, A, is a block diagonal matrix with dimension ny x ng, p < ng < 2p.
The blocks of A, are either double or single integrators . We choose C; and By
such that the system is observable. When double integrators are added, we choose
the C; and Bj to have a zero column corresponding to d; of the double integrator.

For example, suppose p = 2 and we choose to add a single integrator to the first

8o
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Figure 5.6: Comparison of the single and double integrator model estimates for
the disturbance from plant data. The double integrator model shows noticeable
improvement over the single integrator model, which cannot account for the slope
of the disturbance.
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5.4 CAUTIONS ON DOUBLE INTEGRATOR MODELS

Although double integrators are better able to estimate ramps and other distur-
bances, we should avoid using double integrators when the are unnecessary, for

several reasons:

1. Lack of steady state target: With the single integrator model, the target selec-
tor portion of the controller chooses a steady state target for # and x based
on the setpoints for the system and the disturbance estimate. The regulator
then chooses the control action based on these steady state values. However,
the double integrator only has a steady state solution for x and u when the
slope is zero. Therefore, the controller must use a different method to re-

ject the disturbances, such as choosing a steady slope for the disturbance, or



using the setpoints and the disturbance estimates directly in the regulator.

2. Lack of similarity transform: Using a single integrator disturbance model,
the tuning of the estimator can compensate for misassigned disturbances (Ra-
jamani et al., 2009). In other words, with appropriate tuning, an estimator
that treats the disturbance as entering through the output behaves optimally
even when the disturbance enters through the input, and vice-versa. This
property is due to the fact that the input and output disturbance models are
related through a similarity transform. For double integrator disturbance
models, such a similarity transform no longer exists. Therefore, an inap-
propriate choice of B; and C; may lead to suboptimal estimator behavior,

although this property has not been studied extensively.

3. Additional noise covariance elements: The double integrator has three noise
elements to be obtained via the ALS problem, whereas the single integrator
has only a single driving noise. When the correlations between all the states
and disturbances are included, the double integrator model adds signifi-
cantly more noise elements. As we already do not have enough information
in general to obtain a unique ALS solution for the single integrator model,
we do not want to add more unknowns to the ALS problem without good

reasomn.

Users also should be cautious to avoid complicating the noise model when in
reality the process model needs to be adjusted. In model assessment and identi-
fication, it is difficult but necessary to distinguish disturbance dynamics from the
plant dynamics. Without a proper disturbance model, disturbances affecting the
system may be accounted for as model error in the u-y model, when the error ac-
tually lies in the disturbance model. However, the opposite problem may occur as
well — a complicated disturbance model may be created to account for a poor u-y

model. The ALS technique assumes that the process model is known accurately,
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but distinguishing between plant and disturbance dynamics is a difficult task and

remains an active area of research.
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IMPROVEMENTS TO THE ALS METHOD!

6.1 APPLYING THE ALS METHOD TO UNOBSERVABLE AND WEAKLY OBSERV-

ABLE SYSTEMS

6.1.1  Unobservable systems

In industrial settings, the use of large models with many unobservable or poorly
observable states limits the applicability of the ALS method. Since the noises
affecting unobservable states have no effect on the outputs, intuitively we expect
that when G is unknown, an unobservable system does not have a unique ALS
solution. Here we prove that this intuition is correct. We define the ALS problem
as

min ¢ = ||.&/ (Qu)s — lA7||2 subject to Q, > 0,R, >0 (6.1)

wsNo
v )ss

'Portions of this chapter will be published in Zagrobelny and Rawlings (2014a)
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in which

o=
A =(C20)(lp,—A2A) (G G),

o= ((C®0) (L, - A2 &) (AL® AL) + (I, ®T)) 2,

CA —CAL
ﬁ — r =
CAN-1 —CAN—2AL

The ALS problem was derived in Section 4.2; here the identity matrix is used to
weight the least-squares term.

The matrix &' in the ALS problem is the extend observability matrix. Provided
that N > n, 0 has rank n (full column rank) when the system is observable, and

loses rank when the system is unobservable.

Theorem 1. Assume that A is stable. When G is a square matrix of rank n, the ALS
problem has a unique solution (<7 is full column rank) if and only if (A, C) is observable,

A is non-singular, and rank(C) = n.

Proof. Before proving this theorem, we show that we can restrict our attention to
the case in which G = I. When G # I, we take a similarity transformation of the
original system, so that it is written in terms of the transformed state ¥ = G~ lx.
The transformed system is described by the matrices A = G'AG, B =G 'B,C =
CG, L = G™'L, and G = I. The same noises w and v affect both the original and
transformed systems. Since the matrix ./ is identical in both cases, the original
system has a unique ALS solution if and only if the transformed system has a

unique solution. Therefore, we limit our discussion to the case when G = I. The
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proof that these conditions lead to a unique ALS estimate is given in Corollary
3.1 of Rajamani (2007) and is repeated here. From Lemma 7 in Rajamani and
Rawlings (2009), when (A, C) is observable, A is non-singular, and G = I, the
null space of &7 is equal to the null space of M = (C® I,,) A?*9,, in which AT =
(I, — A® A)"'. Since A" is always full rank (for A stable) and (C ® I,) is also
full column rank when C is full column rank (rank(C) = n), the rank of M is the
rank of %, or n(n +1)/2. Since 2, is full column rank, then M and therefore &/
are also full column rank.

Next we prove that (A, C) observable, A non-singular, and rank(C) = n are
necessary conditions. We utilize the fact that &7 loses rank if <7 loses rank. First,
we prove the necessity of A being non-singular. (Hua, 1990, Corollary 3) implies
that (C® A) ([p — A® A)fl is full rank only if » = rank ([A/ C}) = n and
rank(A) = r. These conditions can only be satisfied when A is full rank. A more
detailed proof is presented in Appendix 6.A.

Next we examine the rank condition on C. Let (A,C) be observable and let

rank(C) = p. From Lemma 13 of Rajamani and Rawlings (2009)*,
dim [Null(«)] > (n—p)(n—p+1)/2

Thus for n > p, the dimension of the null space of .7 is greater than zero, and
therefore the ALS problem does not have a unique solution. This condition is
proved in more detail in Appendix 6.A.

Finally consider the case where (A, C) is unobservable. Let 1, and n, be the

number of observable and unobservable modes, respectively. We transform the

'The cited lemma assumes that = p. Here we also cover the case in which the measurements
are not linearly independent (p > p). From Hua (1990, Corollary 2), which was used to derive the

cited lemma, we can substitute 7 for p in the rank condition.
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system into observability canonical form:

- |[Au®A  Ouen,
(C®ﬁ):[c1®ﬁ oszX,mu] Ao |fmEA Onen
A @A ApRA
Since (I, — A® A) " has a zero block in the same location as (A @ A), then we

have

o = [(C ®0)(Ip—A® A)fl} Dn = [42711 ONPZXMJ Dn

which loses column rank. Note that although multiplication by %, reduces the

number of columns, the matrix remains rank deficient. This fact can be clearly
!/

seen since the last column of %, is [0 .0 1} which forces the last column of

<71 to be 0. Thus, a unique solution does not exist. ]

Note: The assumption that A is stable in Theorem 1 is always necessary to
ensure that (I2 — A ® A) is invertible. However, for any detectable (A, C), we can
always choose L such that A is stable.

We can always reduce an unobservable system to an equivalent observable
subsystem by first removing the unobservable states. Applying the ALS method
to the observable subsystem gives the noise model with the fewest number of
independent noises, as no noises affect the unobservable modes. Rajamani and
Rawlings (2009) proposed the following optimization problem to find the solution

with the smallest number of independent process noises:

mil?gb + ptr(Qw) subject to Qy > 0,R, >0 (6.2)

wrNv

in which ¢ is the least-squares objective funtion defined in (6.1). Here we show
that for any p > 0, the optimization problem (6.2) is equivalent for the full model

and the observable subsystem.

Theorem 2. For an unobservable system (A, B, C), let T be an orthogonal transformation
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matrix such that

. Aun 0 < B: <
A =TAT = B=TB = C:CT':[C1 0]
Ay Ax B,
Let p be any strictly positive scalar. Then the optimization problem in (6.2) using the
reduced model (A11,B1,C1) and that using the original model (A, B, C) have the same

objective function values and solutions R, for the measurement noise. The optimal process

noise covariances are related as

Qll,opt 0
0 0

TQw,opt T, ==

Proof. First we note that there exists an orthogonal T to transform the system
into observability canonical form. We can construct an invertible transformation
matrix T = [Tl Tz], by choosing the 7, columns of T; so that they form a basis
for the range of ¢’ and by choosing the n, columns of T, so that they form a
basis for null(T]) (or equivalently, a basis for null(¢&)) (Aplevich, 2000, Ch. 9).
Since we can choose T and T, as orthogonal bases, we can produce an orthogonal
transformation for any unobservable system.

Next we note the equivalence of the two systems
xT =Ax+Bu+w (6.3a) FT =A%+ Bu+w (6.4a)

y=Cx+0v (6.3b) 7=Cx+0 (6.4b)

Let @(k) = Tw(k) and 3(k) = v(k) for k > 0. Provided that %(0) = Tx(0), then
%(k) = Tx(k) and y(k) = (k) for all k > 0. The covariance for process the noise
of the transformed system is

Qu Qn

cov(@) = cov(Tw) = TQyT' = cov(9) = cov(v) =R,

Q21 Qx



As discussed in Rajamani et al. (2009), if L = TL, then the state estimates for (6.3)
and (6.4) are also related through the similarity transform.
Since the unobservable states in (6.4) do not affect y, we equivalently write the

system as

xi’_ = A11X1 + Blu + (65a)
y=Cix1+0o (6.5b)
in which ZTJl ~ N(O, Qll)-
Define the matrices
. < ~ Qu Quw < « Qu Qn
Qw = T,QwT Qu = QZ} = T,QZ}T qu i .
Q21 Q» Q21 Q»

in which (Qj, R}) minimizes (6.1). Since the system is unobservable, Qq, and
Q2 have no effect on y and therefore % (Q},)., = # (QY ). Thus there exist an
infinite number of QY such that (QY,, R}) minimizes (6.1).

Consider instead the solution to (6.2) for p > 0. Since Q,, and Q, are similar
matrices, they have the same trace (Lancaster and Tismenetsky, 1985). Since we

require Qz > 0, any solution Qy, that minimizes (6.2) is a transformation of Qu =

Qu 0

, as choosing some Q2 > 0 would increase tr(Q;) without decreasing
0 0

¢. The optimization problem (6.2) therefore reduces to

millgl(p + ptr(Qu) subject to Q11 > 0,R, > 0,Q12 =0,Q2 = 0.

wsiN

Alternatively, we apply the ALS method to the reduced system (6.5). As the

L-innovations (and therefore their autocovariances) are identical for the full and
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the reduced systems, we have

JZJfl(Qll)ss + JZ{E(RU)SS = JZ{l(Qw)ss + %(Rv)ss

in which 4 and <% are formed using the reduced model. Thus both the least-
squares part of the objective ¢ and the tr(Qy) penalty are equal for the two sys-
tems. Both forms of the ALS problem have identical objective values and yield the

same solution Q11 and R. O

Note on the choice of transformation: Even with the constraint of orthogo-
nality, the choice of T is not unique (unless n, = n, = 1). Therefore, there are
multiple systems (A1, By, C1) that we can use to represent (A, B, C). Each system
has a different optimal Qj;, but the process noise covariances are all similarity
transformations of each other, and the systems have identical objective function

values.

6.1.2  Weakly observable systems

As discussed above, the unobservable states have no effect on the output. How-
ever, many industrial models include some states that have little effect on the
output relative to the other states, and thus are difficult to observe from the out-
puts. We refer to these systems (states) as weakly observable systems (states). We
identify these systems and states through the observability matrix. Whereas &
loses rank for the unobservable system (has at least one zero singular value), in
the weakly observable case, ¢ is poorly conditioned and has at least one singu-
lar value that is close to zero. The weakly observable modes correspond to those
singular values that are near zero.

We transform the system into observability canonical form as follows. Let
0 = USV’ be the singular decomposition of the observability matrix, and choose

T = V'. Then the observability matrix of the transformed system is & = 0T’ =
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US. Since the singular values are ordered largest to smallest, the norm of the
columns of & decrease from left to right, and the modes of the transformed system
go from most observable to least observable. The transformed system takes the
form

A—rar— Ml g [P e_cer o [Cl 5c2] (6.6)

Ay Ap B,

in which the magnitude of the scalar § > 0 depends upon the magnitude of the
singular values corresponding to weakly observable modes. If § = 0, then the
system is unobservable. By choosing an orthogonal transformation, the singular
values and condition number are unaffected by transforming the system.

Lima, Rawlings, Rajamani, and Soderstrom (2013) also discuss applying the
ALS method on systems with unobservable or weakly observable states by remov-
ing these states before solving the ALS problem. However, they do not discuss in
detail how to transform the system. They also do not compare the ALS problem
for the full and reduced models, and they only consider an example where G is

known and there are few independent process noises (g < 3).

Note on systems with integrated disturbances

When the system is augmented with integrating disturbances to ensure offset free
control, it is essential that the integrator modes are maintained when the system
is reduced. Although these modes are unaffected by similarity transforms (which
maintain the same eigenvalues), there is a possibility of the integrators being lost
when the weakly observable states are removed from the transformed model. To
avoid this problem, we recommend reducing the non-augmented system and then

adding the integrators to the reduced model i.e. find (A11, By, C1) from the unaug-

91



mented (A, B, C), and then form

An By
Aaug = Caug = [Cl Cd:|

In addition, we recommend penalizing the trace of the unaugmented process noise
covariance rather than that of the entire augmented covariance matrix to ensure

that the integrators contain adequate noise.

Applying the ALS method to weakly observable systems

We summarize the method for applying the ALS method to poorly observable

systems in the following steps:

1. Use SVD on the observability matrix to obtain the transformation matrix

T = V’/, and then transform the system into observability canonical form.

2. Generate reduced models with the number of observable states ranging from

n, = p to n, = n, and augment the reduced models with integrators.

3. Solve the ALS problem on each augmented reduced model without penaliz-

ing the trace and without including the semi-definite constraints.

4. Choose a reduced model that has a well conditioned observability matrix
but does not significantly increase the objective function value compared to

the full model.

5. Using this reduced model, solve the ALS problem with semidefinite con-

straints and penalizing tr(Q,,) as necessary.

>We recommend solving the simpler problem here rather than the complete ALS problem as

described in (6.2) to reduce the computation time.
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6. Write the noise model for the full transformed model by assuming that no

noise affects the unobservable states.3

7. Calculate the estimator gain for the full transformed system and convert to
the original coordinates (or transform the process noise covariance matrix to

the original coordinates and then calculate the estimator gain).

These steps are illustrated in the example in Section 6.3.1.

6.2 FEASIBLE GENERALIZED ALS TECHNIQUE

The standard ALS method, which we refer to as the “ordinary” ALS method
uses the identity matrix to weight the least-squares problem. However, as noted
in Rajamani and Rawlings (2009), this weighting is chosen for practical reasons,
and it does not produce minimum variance estimates for Q, and R,. The mini-
mum variance estimates are obtained from the generalized least-squares problem,
where the variance of b is used as the weighting (Magnus and Neudecker, 1999,
Section 13.5; Schmidt, 1976, Section 2.5). However, computing this variance has
two major barriers (Rajamani and Rawlings, 2009). First, calculating the variance
is intractable for large sets of data, even if the dimensions of the state and output
are small. This challenge arises because the fourth moment of the entire vec-
tor (o (1) ... #(Ny) , must be computed. Secondly, calculating this variance
requires knowledge of Q,, and R,, the unknowns to be found. Rajamani and Rawl-
ings (2009) propose iteratively solving the ALS problem for Q, and R,, updating
the weighting based on these values, and resolving the ALS problem. However,

this iterative scheme is not guaranteed to converge. Therefore, rather than ad-

3Because the reduced model may not be sulfficiently accurate for predictions over a longer hori-
zon, it is recommended to continue to use the original model in the regulator. The question of
whether or not the original model contains unnecessary states for the regulator problem is outside

of the scope of this work.
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dressing the tractability of computing the optimal weighting, we propose using a
feasible generalized least-squares method to approximate it. Feasible generalized
least-squares refers to the method in which an approximation of the variance is
used to weight the least-squares problem (Schmidt, 1976, Section 2.5). We apply
feasible generalized least-squares to the ALS approach as follows.

Let S denote the covariance of b and W = S~ be the optimal weighting for
the least squares problem.

We estimate S by the steps:

1. Lett = 2N and N; = w Then let

P PNy - D3N
% PNy2 - N3N+
Y =
N BN - DN—aN+
% PNz - DNg3NH1
% N3 - INgaN2
Y, =
| IN+1 DaN+1 - NN
%N YN .. NN
YN+l ZaNe1r - INg-N+2
Y; =
| N-1 DEN-1 - N, |

Since we assume that % and %, y.; are uncorrelated for i > 0, each Y; is

composed of columns that are approximately independent.

2. Let PW- be the sample variance of the columns of Y;. Then each 15%1- gives an
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/
approximately unbiased approximation for P, := var ( [gz/k/ e YN 1] )
with the only bias due to the slight correlations between the columns. We

approximate Py as P, = - 1, (B,;).

,

3. Let Py = var (%) and P,o = cov : ,% |. Then we approximate

PhiN-1
Py as the first p x p submatrix of P, and P, ¢ as the first p columns of P,.

4. Based on the Wishart distribution, we calculate $ as

§ = cov(b) = ; (P& By) +Kpp (Bro @ Blo)) 6.7)

and find W as the inverse of S. (6.7) is derived in Appendix 6.B.

We require at least N columns in each Y; to compute the sample variance.
Therefore, we need the number of data points to satisfy N; > 2N?p + N — 1.
An alternative method to approximate S would be to divide the data into several
smaller samples of length N; < Nj, calculate b, for each sample, and let S be the
sample variance of b;. However, this approximation requires the number of data
points to be on the order of N?p? and does not produce independent samples of
b. Simulations indicate that this approximation is less effective at decreasing the
variance of the ALS estimates compared to the approximation method outlined

above.
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6.3 EXAMPLES'

6.3.1 Example: Weakly observable systems and model reduction

We demonstrate the benefit of reducing the model to include only observable
states by studying the system

42 %1077 015 0 0 0 0 0
-0.1 0.84 0 0 0 0 0
0 0 —42x107Y7 015 0 0 0
A= 0 0 —0.1 084 0 0 0
0 0 0 0 0.8 0 0
0 0 0 0 0 -—-11x1071 (.64
i 0 0 0 0 0 -1 1.6
[ —o078 o |
0.28 0
0 0.39
01 0 1 0 0 O
B= 0 —0.14 C=
00 0 0 1 0 1
0.2 0
0 0.017
0 —0.019

The observability matrix has condition number

c=166 24 13 014 0.00058 35x107 14x10"1

The mode corresponding to the smallest singular value is clearly unobservable,
but the singular values alone do not indicate whether any additional modes can
be removed from the system. Using SVD, we transformed the system into observ-

'The ALS toolbox for Octave or Matlab was used in these examples and is available online
at http://jbrwww.che.wisc.edu/software/als/. This toolbox has been updated to include the

feasible generalized ALS method.


http://jbrwww.che.wisc.edu/software/als/
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Figure 6.1: Simulated inputs and outputs used in the examples. The plots of the
outputs show the deviation from set point.

ability canonical form:

1 8.6e-18 -0.062 4.1e-17  -3.1e-18  -2.1e-08  -3.4e-19

2.6e-17 0.83 -6.6e-18 0.034 -2.5€-05 4e-23 2.1e-17

0.95 -8e-18 0.56 2.1e-17 -2e-17 2.2e-07  -7.9e-19

A= -2.6e-17 -0.22 -1.3e-18 0.0093 -0.0033 2.5e-17 6.1e-17

4.6e-17 -0.001 -2.1e-17  -0.0032 0.82 -9.4e-18  1.7e-15

-1.3 -2.4e-15 0.32 -1.5e-14  3.8e-12 0.8 1.2e-11

| -1.9e-11  0.00016  4.9e-12 0.001 -0.25 1.2e-11 0.018 |

oo [ -1.3e-17 -1.4 3.5e-17 0.11 6.2e-06  -1.9e-23  -2.8e-17
0.92 2.5e-17 1.1 6.9e-18  4.2e-17  -1.6e-07 -1e-17

and augmented the model with integrators on the inputs. We generated the data
shown in Figure 6.1 by simulating the system in closed-loop control against white
noise disturbances added to the states and outputs as well as repeated step dis-
turbances to the inputs.

Next we formed reduced models from the canonical form, letting n, range
from p = 2 to n = 7. Using the simulated data, we compared the condition

number of the observability matrix and the ALS objective for each of the models,
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Figure 6.2: Condition number of the observability matrix and ALS objective func-
tion value vs. the number of states. As more states are included in the model,
the condition number of the observability matrix increases and the ALS objective
function value decreases.

as shown in Figure 6.2.

The condition number increases as we include more states, with the most dra-
matic change when we increase the number of states from six to seven, as is
expected from the singular values of the full observability matrix. The ALS ob-
jective function value decreases significantly when we include three states. It also
decreases slightly for four states, but adding the last three states has no noticeable
effect on the objective value. This behavior is also consistent with the singular
values of the observability matrix.

Figure 6.2 illustrates that adding the semidefinite constraints does not affect

the choice of reduced model size, as including these constraints does not affect
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the trend in the ALS objective function curve. However, we did use the feasible-
generalized ALS method in order to avoid placing too much emphasis on match-
ing zero covariances. The full ALS problem, including penalizing tr(Q) and the
semidefinite constraints, was solved after the model size was chosen.

We further illustrate the effect of including more states on the quality the ALS
estimates by plotting the estimated autocovariances (calculated from the data)
alongside the theoretical autocovariances (calculated from the model and the ALS
estimates of Q, and Ry). This comparison is discussed in Section 4.4.1. Fig-
ures 6.3-6.5 show these fits for differently sized models. Since these plots use the
original estimator, we did not consider whether or not the estimator performs op-
timally. Instead, we looked for a model that is sufficiently accurate, so that the
estimated and theoretical covariances match each other well. As shown in Figures
6.3 and 6.4, increasing the number of states from two to four leads to a better fit
of the data. However, there is no clear difference between the plots with four and
seven states (Figures 6.4 and 6.5), indicating that the last three states are poorly
observable and need not be included in the model. This conclusion is consistent
with the singular value decomposition and also with the plot of the ALS objective
function versus the number of states in Figure 6.2.

We next compared the accuracy of the noise covariances estimated from the
models with n, = 2,4, and 7. Because of the step disturbances, we do not have a
true theoretical value for Q,, against which to compare the ALS estimate. Instead,
we examined the quality of the estimator produced by the ALS estimates. We first
designed a new estimator from Qw and R, and computed the innovations using
this estimator. We then studied whether these innovations are white (meaning
that the auto- and cross-covariances of the innovations are significantly greater
than zero only at lag zero), as would be the case for an optimal estimator.

As shown in Figure 6.6, the autocovariances of the two-state model remain

significantly above zero for lags greater than zero. This behavior indicates that the
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Figure 6.3: Sample and theoretical autocovariances for the two-state model, with-
out semidefinite constraints. The theoretical autocovariances do not fit the data
well, indicating that the model is inadequate.
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Figure 6.4: Sample and theoretical autocovariances for the four-state model, with-
out semidefinite constraints. The theoretical autocovariances agree well with the
data.
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Figure 6.5: Sample and theoretical autocovariances for the seven-state model,
without semidefinite constraints. There is no noticeable change in the autoco-
variances compared to those of the four-state model.
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Figure 6.6: Autocovariances calculated using estimators designed from the ALS
results for each model. The two-state model leads to suboptimal estimator behav-
ior. The four- and seven-state models both lead to optimal estimators.

system is undermodeled. In contrast, the estimators for n, = 4 and n, = 7 both
behave optimally. The estimator performance is unchanged when all seven states
are included rather than only four states.

Finally we compare Ow and R, for each of the three models, shown in Table
6.1. The four- and seven-state models produce approximately the same results.
In the seven-state model, the elements of Qw corresponding to the three poorly
observable modes are approximately zero. In contrast to the four and seven state
solutions, the two-state model produces completely different results for both Qw
and R,.

Altough the four- and seven-state models produce identical results, the advan-

tage of using the smaller obsevable model lies in the computational time required



Table 6.1: Q, and R, estimated by the ALS method for models containing two,
four, and seven states. (Note that the bolded elements in the seven-state Q,, are
the same as Q, for four states, while the remaining seven-state elements are near
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to solve the ALS problem. By reducing the model from seven to four states, the
computational time was reduced from 96.73 seconds to 42.89 seconds. Simula-
tions indicate that the time to solve the ALS problem depends on the conditioning
of the observability matrix as well as the number of states. An ill-conditioned
problem also makes it difficult to choose appropriate stopping criteria for the
optimizer; as a result, the optimizer may terminate before the true minimum is
reached. A better conditioned system is less susceptible to this problem. For larger

systems, model reduction can eliminate hours of computational time.

6.3.2  Example: Comparison of the ordinary ALS and feasible generalized ALS methods

In the previous example, we used the feasible generalized ALS method. Here, we
compare the feasible generalized ALS method to the ordinary ALS method using
the four-state model of the system. We generate multiple sets of data and apply
both the feasible generalized ALS and ordinary ALS methods to each dataset. For
simplicity in presenting the results, we show only the diagonal elements of Q,
and R, (although Oy is non-diagonal) for the reduced four-state model. Note
that Q,, includes the noises on the integrating disturbances. Figure 6.7 shows the
diagonal elements of the noise covariance matrices estimated from each data set;
their variances are presented in Table 6.2. These results show that the feasible

generalized ALS technique significantly reduces the variance of the estimates.
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Figure 6.7: Noise variances estimated from the feasible generalized ALS and or-
dinary ALS methods. The variance is noticeably reduced by using the feasible
generalized ALS method.

Table 6.2: Variance of each diagonal element of O and R, using the feasible

generalized and ordinary ALS methods.

Feasible Generalized ALS Ordinary ALS

Qu(1,1) 3.04 x 107° 9.90 x 10~°
Qu(2,2) 492 x 107° 8.04 x 107°
0w (3,3) 2.29 x 107° 434 x 1075
Quw(4,4) 5.08 x 107> 1.47 x 1074
Qw(5,5) 9.30 x 1073 1.10 x 1071
Qu(6,6) 453 x 1072 212 x 1071
R,(1,1) 2.55 x 107° 531 x 107°
R,(2,2) 223 x107° 410 x107°
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6.4 APPENDICES

6.A Necessity of full rank A and C in Theorem 1

Assume that G = I. From the simplification of equation (A.3) in Rajamani and

Rawlings (2009, Appendix A), if gy lies in the null space of <7, then

(I, 1 A) (CO L) (Ip— A® A) " Dugn =0

/
in which &, = |’ ... (C AN *2)’ . We rewrite this condition as

(C®1A) (I~ A® A)" Zygn =0

Let n, be the dimension of the null space of A and V, € R"*" be the null space of
A. Following the logic in Hua (1990), for n, > 0, we choose a full rank, symmetric
matrix Z € R"*" and construct a symmetric matrix Xy = V,ZVj. Since AXy =
0, vec(Xy) lies in the null space of (C ® €1A). Letting Qn = Xy — AXNA, then
vec(Qn) = (I — A® A)vec(Xy). Since Qy is symmetric, gy = (Qn)ss lies in the
null space of «7;. Since Z is full rank and V; is full column rank, Xy and gy are
non-zero. Therefore, for G = I, o is full rank only if A is full rank.

Likewise, let p be the rank of C and V3 € R"*"7 be the null space of C. Then
for p < n, choose a full rank, symmetric matrix Y € R""7*"~7 and construct a
symmetric matrix Wy = V3YV}. Since WyC’ = 0, vec(Wy) lies in the null space
of (C® 01 A). Letting Qn = Wy + AWNA, then vec(Qn) = (I — A® A)vec(Wy).
Since Qy is symmetric, gy = (Qn)ss lies in the null space of .2%. Since Y is full
rank and V3 is full column rank, Wy and gy are non-zero. Therefore, for G = I,

4 is full rank only if rank(C) = n.



6.8 Derivation of formula for S = cov(b)

Let
N 1 N@ ,
b=+ L (Yiwi(1))
s j=1 s
/
in which Y; = yi(1) ... yi(N)’] are independent and identicallly distributed
PO P/ 0
normal variables with zero mean and variance P, = Y71 In this appendix,
Py Pp
we show that the variance of b is
~ 1
cmmw::Ri(ub@ugy+KnﬁQyo®f?0) 6.8)

where p is the dimension of y and f = Np is the dimension of Y. Defining Y;
and y; appropriately in (6.8), we arrive at (6.7). To derive (6.8), we begin by noting
that the sample variance of Y;, Py = N% Zlstl (Y;Y!), is distributed according to the

Wishart distribution with pdf

|py|%(stﬁ) exp (—%tr (Pglpy))

L(N.+1)7 Nst+1 p(p=1) —p Ny—i
2:(NHDP|Py |75 S T, T (N

p(D,|P,N; +1) =

(Anderson, 2003; Ghosh and Sinha, 2002). As a result,

var(B)s) = - (I +Kpp) (B, @ By) (6.9)

S

(Magnus and Neudecker, 1979). The estimated variance of b is the pj x pp matrix

in the upper-left corner of var((B,)s). From (6.9), we can write this submatrix as

cmmmzzgi(ub®1@y+KnﬁQyo®f?O)
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which is the formula in (6.8). Note that the denominator in (6.9) and (6.8) is N;

rather than N; — 1 because the mean of Y; is known to be zero.



APPLICATION OF THE ALS METHOD TO AN INDUSTRIAL
DATA SET!

7.1 NOISE COVARIANCE ESTIMATION

In this chapter, we apply the ALS method to an air separation unit operated by
Praxair, Inc. We analyze a subset of the variables included in the MPC, consisting
of three outputs, four inputs, and one feed-forward variable. When solving the
ALS problem, the feed-forward variable is handled in the same manner as the
manipulated variables (since we have measurements available for both variable
types).

The MPC controller uses an FIR model for the system. To obtain a state space
model, transfer functions were fit to each input-output step response. These trans-
fer functions were discretized, converted into state space, and combined to pro-
duce a single state space model for the system.

The variances of the outputs are different orders of magnitude; the variance of
y2 and y3 are on the order of 10*, where as y1 has a variance around 1. Therefore,

we normalized the data by dividing each output and each row of C by the stan-

'Portions of this chapter will be published in Zagrobelny and Rawlings (2014a)
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dard deviation of y;. The state, input, and process noise remain the same in the
normalized model. The ALS estimate of Q,, is consistent for both the normalized
and original data, and the estimate of R, corresponds to the normalized outputs.
Since we assume R, is diagonal, we can easily convert the estimated covariance
back to the original scaling by multiplying each diagonal entry by the variance of
the original output.

The scaled state space model was then augmented with integrated distur-
bances to the outputs. However, analysis of the data showed that this disturbance
model is insufficient for the ALS results to produce an optimal estimator for y;.

Instead, a double integrator model of the form
dt = d+wy y1:C1x+[1 0:|d

was added to y;. The use of double integrator disturbance models is discussed in
5.3.

The full state space model contains 31 states and is unobservable, with a con-
dition number of 3.24 x 10'°. Figure 7.1 shows the condition number and ALS
objective function value versus the number of states. Although the general trend
is as expected, the shape of the curve does not give an obvious choice as to the
number of states that should be retained. We compared the model with n, = 7,
which corresponds to a flattening in both curves before the condition number
rises again, to the model with 7, = 18, which corresponds to the number of states
after which ¢ no longer drops. The condition numbers are 611 and 9.67 x 10,
respectively.

We first compared these two models by plotting the estimated autocovariances
(calculated from the data) alongside the theoretical autocovariances (calculated
from the model and the ALS estimates of Q, and R;). Since these plots use the

original estimator, we considered whether or not the estimated and theoretical
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Figure 7.1: Condition number of the observability matrix and ALS objective value
vs. the number of states. The seven-state model was chosen as a trade-off between
the condition number, the number of states, and the ALS objective function value.
The 18-state model was also examined.
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Figure 7.2: Sample and theoretical autocovariances for the seven-state model,
without semidefinite constraints. The seven-state model adequately fits the data.

autocovariances match well and did not examine whether or not the estimator is
performing optimally. Figures 7.2 and 7.3 show that the ALS estimates fit the data
well in both models. The 18-state model does fit the cross-covariance terms with
more accuracy, but as these terms are near zero, such an accurate fit may not be
necessary. Therefore, we also compare the optimal estimator performance of the
models.

To compare the optimal estimator performance, we solved the ALS problem
for both models and designed an estimator based on the results for each model.
We processed the data with each of these estimators and computed the autoco-
variances. Figure 7.4 shows that both estimators have near-optimal performance.
However, the computation time increased from 19.2 seconds to 465 seconds as the
number of states increased. Therefore, the seven-state model was selected, as it

gives nearly the same results in a much shorter time.
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Figure 7.3: Sample and theoretical autocovariances for the 18-state model, without
semidefinite constraints. The model fits the data well; increasing the number of
states improves the fits of the cross-correlations.
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Figure 7.4: Autocovariances for the seven- and 18-state models, using estimators
designed from the ALS results. Both models produce excellent estimators.
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Figure 7.5: Autocovariances for the feasible generalized and ordinary ALS meth-
ods. The feasible generalized ALS method results reduces the covariance of #;
and whitens the cross-correlations of %4 with % and %;.

Using the seven-state model, we compared the feasible generalized ALS tech-
nique with the ordinary ALS technique by using each method on three data sets.
The three sets overlap in the manner shown in Figure 7.8. As seen in Figure 7.5,
using the feasible generalized ALS method reduces the variance of the innovations
for 11 and also reduces the cross-correlation between y; and the other outputs at
higher lags.

Finally, we examined the consistency of the ALS results. The data studied is
shown in Figure 7.6. First we considered the data at the start of year 1 and divided
this data into 20 sets of 1500 data points. We applied the feasible generalized ALS
method to the first of these subsets and used the results to design an estimator,
which we call L;. We then processed the rest of the data using L; and calcu-

lated the Li-innovation autocovariances. As shown in Figure 7.7, the estimator
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Figure 7.6: Industrial data analyzed in this work.

performed optimally on most (13 out of 20) of the data sets.

Three data sets in the middle of the time period are affected by a large distur-
bance that is not characteristic of the process (such a disturbance never reappears
in several months of data). As a result, the innovations have large spikes (shown
in Figure 7.8) and significant correlation remains in the L;-innovations (shown in
Figure 7.9). Solving the ALS problem for these sets of data does not produce an
optimal estimator, as disturbances of this magnitude are not repeated in the data.

In addition to these data sets, the data at the end of the first time period
exhibit different disturbance characteristics than the rest of the data. This change
is most clearly visible in the y; data, where the variance decreases. As a result, the
estimator L; is no longer optimal, as shown in Figure 7.10, although its behavior

may still be considered acceptable. After applying the ALS method to one of
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Figure 7.7: Autocovariances for the data from the first time period, using an ALS-
based estimator. The estimator was calculated from data set 1 and applied to all
the data sets. It performs optimally on the 13 out of 20 data sets from this time
period.
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Figure 7.10: Autocovariances for data sets 17-20 in the first time period. The
data were processed using the estimator from data set 1; this estimator is slightly
suboptimal for these data.

these data sets, we produced a new estimator L,. When we process the data
with Ly, the innovations are white (Figure 7.11). Thus we conclude that the ALS
method works well on these data sets but the disturbances affecting the system
have changed slightly.

Finally, we obtained data for the same process from six months later and one
year later. The data from each time period were divided into six data sets and
processed with L;. The resulting innovation autocovariances are shown in Figures
7.12 and 7.13. Again, the estimator produces near optimal results on all data
sets. The results indicate that the disturbances to the system remain relatively
constant over an extended time period, since the disturbance model identified at
the beginning of the year produces an estimator that is nearly optimal throughout

the year. We expect that the same disturbance model would also be reliable for use
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Figure 7.11: Autocovariances for data sets 17-20 in the first time period using a re-
identified noise model. The estimator was designed from the ALS results on data
set 18. The noise model is more accurate, and the estimator behaves optimally.
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Figure 7.12: Autocovariances for the data sets collected six months later. The
estimator from data set 1 (of the first time period) is nearly optimal for the later
data. For comparison, the autocovariances for data set 1 are plotted with pink
squares.

in calculating performance monitoring benchmarks although such an illustration

is beyond the scope of this work.

7.2 CLOSED-LOOP SIMULATION

We performed a simulation study to compare the performance of the optimal ALS
disturbance model to a DMC-type disturbance model in a closed-loop controller.
The ALS-based disturbance model contains a double integrator on y; and single
integrators on the other two outputs; the ALS estimates are used as the process
and measurement noise covariances. In the DMC-type disturbance model, a single

integrator is placed on each of the three outputs. Measurement noise is included
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Figure 7.13: Autocovariances for the data sets collected one year later. Again, the
estimator from data set 1 (of the first time period) performs nearly optimally on
these data. Slightly better performance is achieved when a new noise model and
estimator are identified. For comparison, the autocovariances for data set 1 are
plotted with pink squares.

as DMC-type controllers often filter the output, but no process noise (except that
on the integrators) is added. The ratio of measurement noise to integrator noise
was chosen based on the ALS results to give the best possible performance for
that disturbance model type. We designed estimators using both the ALS-based
and the DMC-type disturbance models.

To compare the closed-loop performance of the estimators, we simulated the
plant assuming no model mismatch. We added white noise disturbances with co-
variances equal to the ALS results. We also added deterministic disturbances,
which were estimated from the plant data, to each of the outputs. We used

three different schemes for the regulator: minimum variance, approximately equal
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penalties on y and Au, and very high penalty on Au. We assessed the performance
of the controllers by using the KPI as defined in Chapter 3. In addition to show-
ing the total plant KPI in Table 7.1. Note that the KPIs are weighted based on the
regulator tuning.

To further compare the disturbance models, we plot the outputs and inputs for
each of the controllers. Note that the fifth input in each plot is the feed-forward
variable and is not manipulated by the controller. We also plot the deterministic
disturbances and the integrator estimates. Since the disturbances affect the output
directly and the integrators are added to the outputs, we expect the integrators
to track the disturbances, so we plot the estimates along with the disturbances.
(When there is a mismatch in the disturbance location, the integrators track a
transformation of the disturbances, so these plots would not be informative). We
also plot the estimate of the slope of the disturbance in the double integrator case.

Under minimum variance tuning, the ALS-based controller yields much better
closed-loop performance than does the DMC-type controller, as shown in Figure
7.14. Because the ALS-based estimator provides better state and disturbance esti-
mates, the regulator rejects the disturbances more completely, and the controller
achieves a much lower output variance, as compared to the controller with the
DMC-type disturbance model. The lower output variance comes at the cost of
increased use of the inputs (Figure 7.15). However, under this control strategy,
reducing the output variance is far more important than reducing the input vari-
ance.

Figures 7.17-7.19 depict the behavior for a more realistic regulator, in which
both the output variance and the rate of change of inputs are minimized. For this
regulator tuning, the DMC-type and ALS-based controllers behave much more
similarly, although the ALS estimator still results in improved performance.

The last control strategy, shown in Figures 7.20-7.22, has high move suppres-

sion. Therefore, the inputs move little and the outputs are highly correlated with
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Table 7.1: Performance metrics for the ALS-based and DMC-type estimators in
closed-loop simulations.

KPI, KPIy, KPI
ALS DMC ALS DMC ALS DMC
Minimum variance 0.190 0.240 9.62e-8 9.70e-9 0.190 0.239
Balanced 0.317 0.423 0.0182 0.106 0.335 0.434

High move suppression 1.15 1.19 0.665 0.547 182  1.74

the deterministic disturbances, which are not rejected well. In this case, there is
essentially no difference in the performance of the two controllers because the
estimate has little effect on the control action.

In these simulations, the double integrator model was used only in the estima-
tor, not in the regulator. The regulator chose the control action based on steady-
state targets for the state and input, but these targets were calculated under the
assumption that the slope of the double integrator is zero. The performance would
have a greater improvement if the regulator properly accounted for the estimated

slope of the disturbance.
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Figure 7.14: Outputs under minimum variance control, using the ALS-based and
DMC-type disturbance models. The ALS-based disturbance model significantly

reduces the variance of y;.
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Figure 7.15: Inputs under minimum variance control, using the ALS-based and
DMC-type disturbance models. Since it better reduces the output variance, the
ALS-based disturbance model has significantly higher input variance than does
the DMC-type disturbance model.
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Figure 7.18: Inputs under the second regulator tuning, using the ALS-based and

DMC-type disturbance models. The inputs are similar, although the ALS-based
disturbance model has slightly higher input variance.
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model gives improved performance.
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MAXIMUM LIKELIHOOD ESTIMATION'!

8.1 FORMING THE MLE PROBLEM

In this chapter, we propose a maximum likelihood estimation method for estimat-
ing the process and measurement noise covariances from data. As discussed in
greater detail in Section 8.7, this method has a stronger theoretical basis and a
simpler derivation compared to the ALS method.

We begin with the state space model

xT=Ax+w
y=Cx+v

w 0
~nlo Qu

v 0 R,

in which x,w € R", y,v € R?, and w and v are uncorrelated in time. We seek max-

imum likelihood estimates of the unknown covariance matrices Q, and R, given

'Portions of this chapter will be published in Zagrobelny and Rawlings (2014b)
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the system matrices A and C and a sequence of measurements y(0),...,y(N —1):

énalg( Inpy(y(0)...y(N —1)|Qu, Ry)

subject to Qu, Ry > 0

To derive an expression for the likelihood, we write all the measurements in a
single vector and relate them to the noises entering the system and an initial state

x(0):

y(0) C v(0)
y) | _| ¢4 £(0) 1 v(1)
y(N-1)| |caN1| (N -1),
i 0 o] [ wo) ]
. C .o o w('l) )
(CAN=2 CAN-3 C| |[w(N-2)

in which N = N + K.

For simplicity of presentation, we assume that A is stable’ and choose K such
that |A’| < §, Vi > K for some small scalar threshold é > 0. Then all the mea-
surements y(K + i) (for i > 0) are approximately independent of the initial state,

as well as many of the past noises. Considering only the measurements at time K

'In the case that A is unstable, the MLE problem for an observable system can be formulated by
choosing a stable estimator with gain L and posing the problem in terms of the matrix A — ALC
and the L-innovations, y(k) — C£(k|k), rather than the outputs. The covariance of the vector of L-
innovations is slightly more complicated than that of the outputs as the past measurement noises

affect the current innovation, but the MLE problem is analogous to the problem presented here.



or later, (8.1) simplifies to

v || e ]
y(K+1) v(K+1)

Q

y(N—1) o(N—-1)

lcak-1 C 0 ... 0 w(0)
0 cAK-1 . c ... 0 w(1)
+ ) ) ) ) (8.2)
0 0 CAK-1 cl |w(F-2)
o)
!/
Since all of the noises are normally distributed, y(K)' ... y(N -1y also has

a normal distribution. As the indices in (8.2) are arbitrary, we have the distribution

y(0)
1
Y= y('> ~ N (0,P)
(N —1)]
Qu Ry
P=0 O + (8.3)
QZU RU
Note that we can also write P as
N+K-1 N
P = Z (DiQw(Df + Z II]'RUII; (8.4)
i=1 =1

in which O; is the i pN x n block column of O and I; is the i pN x p block
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column of Iyy. Finally, we write the maximum likelihood problem as

éni]lgqb(Qw, R,) =1IndetP +Y'P~ly

subject to Q, Ry > 0 (8.5)

in which P is defined in (8.3) and (8.4). Note that ¢(Qw, Ry) is equal to —21In py (Y|Quw, Ro)

without the constant term.

8.2 EXISTENCE OF THE SOLUTION

We next consider under what conditions a solution to the maximum likelihood
optimization problem in (8.5) exists. To better motivate the results that follow, we
tirst consider a more standard case in which we have N independent samples of a
normally distributed variable with an unknown covariance. In the following two
propositions, we show that the maximum likelihood estimate for this covariance

exists with probability one.

Proposition 3. Let R € RP*? be positive definite and matrix Y € RP*N have rank p

with its column partitioning denoted by

with y; € RP and N > p. Define f(R) as

N
f(R) := NIndetR+ Y} yiR™ 'y,
i=1

Then f(R) — oo if either A;(R) — 07 for any eigenvalue or R — oo.

Proof. Since R is positive definite, it has eigenvalue decomposition R = WAW' in

which W € RP*? is orthogonal and A € RP*7 is diagonal with positive diagonal



elements, A; > 0,i =1,2,...p. Evaluating f gives

P N
f(R)=NY In(A)+ Y yiWA™'Wy;
j=1 i=1
Partitioning W by its columns, W = [wl Wy - - wp] , we express the second

term as

N B N P 1 1
Y YIWATIWYy; = X;yi- < Z; AJ,W?) vi= L A LYy
i= j= j i

i=1

in which = Y’wj. Since Y has full row rank and w; #O0forj=12...,p

/

we must have r; # 0. Therefore, ajz =7

r; are positive scalars for j = 0,1,...,p.

Substituting this result into f gives

4 az
f(R) =Y b bj == NIn(A;) + 5
j=1 j

We next consider the behavior of f as A;(R) — 0" and R — oo:

1. Aj(R) — 07. Note that for any a]2. > 0, limy, o+ In(A;) + ajz/)\j — 0o,ie, 1/A;
goes to oo faster than In A; goes to —oo. Therefore, as any A; — 0, bj — oo.
For the eigenvalues that remain positive, b; has a finite value. Therefore we

conclude that limg_,o+ f(R) — oo and the first limit is established.

2. R — oo. Let A1 be the largest eigenvalue of R. The condition R — co implies
that Ay — oo, although some eigenvalues may tend to zero as well. As any
eigenvalue goes to infinity, the corresponding b; — o, due to the log term.
As we just showed, if any A; — 0, b; — oo. The remaining b; terms, which

correspond to strictly positive and finite eigenvalues, remain finite. Since at
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least A — oo, then at least one b; — 0. Since no b; — —oo, f(R) — oo as

R — oo.

O

Proposition 4. Given Y and f(R) as defined in Proposition 3, a solution to the maximum

likelihood problem ming~¢ f(R) exists.

Proof. Choose some R; > 0 such that f(R) = « is finite. Then define the set
L:={R|R>0,f(R) <a}

L is a non-empty subset of the feasible region. Since f(R) > « for any feasible
R that is not in L, the solution to the MLE problem, if it exists, lies in L. f(R) is
continuous on L and the set L is closed and bounded. Therefore, by the Weier-
strass theorem, the problem minge; f(R) has a solution. This solution also solves

minR>o f(R) Il

Next we return to the maximum likelihood problem defined in (8.5). The
propositions above do not directly apply because we have only one sample of the
Np-vector Y. As each y; is correlated, we must treat Y as a single vector. In addi-
tion P has a known structure in terms of Q,, and Ry, whereas R in Proposition 3 is
entirely unknown. First we consider the behavior of ¢(Qx, Ry) on the boundary

as P becomes semi-definite or P — oco.

Proposition 5. Let the data Y € RN? be generated from a normal distribution with mean
zero and covariance P* > 0 (strictly positive definite), so that [yl yN} is rank p
with probability one. Assume also (A, C) observable and N > n. Then ¢(Qx, Ry) — 00

if either any eigenvalue A;(P) — 07 or P — oo.

Proof. Since P is symmetric, it has eigendecomposition P = WAW'. Then

N

a;

Y'Ply = YWA WY =d A~ 1a = i
i=1""
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in which the scalar 4; is the i element of the vector a := W'Y.

Then we write the objective function as

Np

(P(Qw, Rv) = Zbi b, .= ln()\i) +

i=1

X
<o

=

If A; is finite, then b; is finite as well. As A; — oo, b; — oo because the first term
goes to infinity and the second to zero. As A; — 0, In(A;) — —oo. When a; # 0,
then i—i — oo faster than In(A;) — —o0, so b; — co.

In this case we are no longer guaranteed that a; # 0. However, due to the
structure of P, as one eigenvalue of P tends to zero, then N eigenvalues of P tend
to zero at the same rate, as explained below. Let A;... Ay be the eigenvalues of
P that go to zero. Then ¢ — co as long as at least one of a; ...ay is non-zero. In
other words, ¢ — oo as long as W)Y # 0, where W is the null space of P.

Next we show that W)Y # 0 with probability one. We write P as

Qu Ry
P:PQ—I-PR PQ:O o’ Pr = (8.6)

Qu R,

Since P > 0, W/PW; = 0 implies that W; is in the null space of P. As Py and Pg
are both positive semidefinite, then we must have W/ PoW; = W/PrW; = 0 for any
W; in the null space of P. In other words, W; is in the null space of P if and only
if it is in the null space of both Py and Pg.

Consider the block-diagonal structure of Pr. Let one eigenvalue of R, go to

zero and let v; be the corresponding eigenvector. We write the null space of P as

U1 0

Wgro =
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Due to the structure of Py, either Wgq lies in the null space of Py, in which
case Wy = Wpy, or else no non-zero vector lies in both null spaces, in which case
P is non-singular (see Appendix 8.A).

Since Wy = Wgo, then (WéY)j = vjy;and W)Y =7 [yl N 'yn] . Since [yl N .yn}
is full row rank with probability one, we are guaranteed that WY # 0. Further,
since the dimension of Wj is either zero or N, then if one eigenvalue of P tends to
zero, N eigenvalues of P approach zero at the same rate.

Next we consider the case in which multiple eigenvalues of R, tend to zero.
Let R,;, denote a matrix in which the first m eigenvalues of R, tend to zero. Then
we perturb R, slightly:

Rmr:Rm‘f’VWRdiag([O I ...ODWIQ (87)

m—1

in which Wg contains the eigenvectors of R and r is a positive scalar. The per-
turbed matrix R, has only one zero eigenvalue.

Let Q, denote Q with a zero eigenvalue such that Py and Pr have the same
null space. As shown above, as (Qu, Ry) = (Qy, Ryr), then ¢(Qy, Ryny) — 0. Since
we can choose any positive r for the perturbation in (8.7), R,, is arbitrarily close to
Ry Since ¢ is continuous in Q and R and Ry, is continuous in 7, then ¢(Q;, Ryy)
is also continuous in r. Thus ¢(Q;, R;,) — oo as well.

Therefore, as any eigenvalue of P goes to infinity or zero, ¢(Qy, Ry) — o0. [

Proposition 6. Given that the assumptions in Proposition 5 are satisfied, a solution exists

to the maximum likelihood problem defined in (8.5).

Proof. As Qy or R, — o0, P — co (see Appendix 8.B) and ¢ — oo (by Proposition
5). As Qu — 0 or R, — 0, either P is positive definite and ¢(Qq, R,) is finite, or
else P — 0 and ¢(Qw, Ry) — oo (see Appendix 8.B and Proposition 5). Let Q) :=
{(Quw,Ry) | Quw > 0,R, > 0} be the feasible region of (Q, Ry). Choose a feasible
point (Q1,R1) € Q such that P(Q1,R;) is non-singular and let ¢ = ¢(Q1, Rq).
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Then define

L:={(Quw,R0) | Qu >0,Ry > 0,¢(Qu,Ry) < 1}

L is a non-empty subset of ). Since any (Qx, R,) that lies in Q) but not in L must
have ¢ > ¢y, the solution to (8.5), if it exists, lies in L.
Since ¢(Quw, Ry) is continuous on L and the set L is closed and bounded the

problem

gﬁl{l $(Qw,Ry) subject to (Qu,Ry) € L

has a solution by the Weierstrass theorem. Therefore, a solution to (8.5) exists. [

Note that Propositions 3-6 rely on the assumption that []/1 . _yN} is full row
rank. As shown in Appendix 8.C, this condition is satisfied with probability one
when Y is generated from a normal distribution with a positive definite covariance

matrix.

83 UNIQUENESS OF THE SOLUTION

We find first and second differentials of ¢(P) = ¢(Qu, Ry) defined in (8.5). Several
matrix differentials, which are given in Appendix 8.D, are used in these deriva-

tions. From (8.4), we write dP as

N+K-1 N
i=1 i=1

We then write d¢ as

dp = tr ((dp) P~ (P—YY') p—l) (8.9)
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Using dP as defined in (8.8), we write d¢ as:

1

dp = tr ((de) Y op(p— YY’)Plt[)i)
+tr ((de) Z]I;P—l(P - YY’)P‘1]Ii>

Any solution to (8.5) on the interior of the region Q,, R, > 0 must satisfy d¢ = 0

for all dQ, and dR, and therefore satisfies the equations

Y op'(P-YY)P'O; =0
i

Y I P (P—-YY)P'I; =0
i

Note that we cannot choose P = YY’, as that choice of P would exceed our degrees
of freedom and result in P singular.

We have for the second differential

d*¢ = tr((dP) P~ (dP) P71)

—otr ((dP) P~ (dP)P}(P - YY/)P”) (8.10)

We can write d2q> in terms of dQ,, and dR,, but the equation quickly becomes very
complicated.

Any minimum on the interior satisfies dp = 0 and d?>¢ > 0. For any P > 0
and dP # 0, the first term in (8.10) is strictly positive. However, the sign of
the second term remains unknown, even at a stationary point. The number of
stationary points is also unknown. Therefore, we cannot easily establish when the
MLE problem has a unique solution from looking at the differentials. In addition,
although we cannot have a solution on the boundary P — 07, we may still have
solutions on the boundary Q, — 0" or R, — 07. In the next section, we gain

further insight on the conditions for uniqueness by comparing this problem with



the ALS problem.

84 CONNECTION TO THE ALS TECHNIQUE

Here we follow the derivation as in Rajamani (2007). For simplicity, we assume
that L = 0 in both the MLE and ALS problems.

We rewrite the MLE first order condition in (8.9) as
tr (P*l (dP) (IPN - P*lw’)) =0 (8.11)

Let Z, := vec(I,). Noting that for any n x n matrix A, tr(A) = Z,vec(A), we

rewrite (8.11) as
4, ((IPN - YY’P*l) ® P*l) vec(dP) = 0 (8.12)

Note that there was an error in (Rajamani, 2007, p. 128), which is fixed here. Next
we write (8.12) in terms of dQ,, and dR,. Starting with Y in terms of x(0) as in

(8.1) and defining

C 0 0 0 0
CA C 0 ... 00
CAN-1 CAN-1 caAN-2 C 0
we write P as
N N
P=0P0"+ TP Qul's + PRy (8.13)

i=1 i=1

in which P, = cov(x) = AP,A + Q, and @Y, A indicates the direct sum. Using
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the Lyapunov equation for Py, we vectorize (8.13) to obtain

)= [, ] | -

A =(020)L,—ARA) "+ (T TN

AZ - jp,N

in which the permutation matrix 7, n satisfies the relationship vec ( N, A) =
JImnvec(A) (for a m x m matrix A). Apart from the approximation AX ~ 0, the
formula for P here is equivalent to that in the previous sections. We simply choose
to write P in terms of x(0) rather than including additional past noise terms.
Letting Ao = II/\TP ((Ln =YYP ) ® P‘l) and using (8.14) in (8.12), we write

the first order condition as

aofa 4=l 013

We rewrite Ag as
Ao = vee(PY — tvec(yY') (T + K Pl@ P!
0 = vec(P1) 2Vec( ) Lpnye (pN)(pN)

in which the commutation matrix Kj; is such that vec(A) = Kjjvec(A’) where A
has dimensions i x j. Then, taking the transpose of (8.15), we write the first order
condition for the maximum likelihood problem as
Ay Sy LAY e
0=|"Mvee(P) =5 | (P @P ) (Ipnp + Knygny ) vee(YY') (8.16)
A A
We compare this condition to the first order condition for the ALS problem,

which forms a least-squares optimization problem for the elements of Q; and R,.
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For the full matrix, unconstrained, weighted ALS problem, when N = Ny (ie.
the number of autocovariances is equal to the number of data points), the ALS

solution satisfies the first order condition

Ar
A

W [Al AZ] vectQol 1A tvec(yy) (8.17)
vec(Ry) A

We define W and its psuedoinverse as

W= (%N)Z + Ky ) (PEP)

wt = (P*1 ® P*1> (I(pN)2 + K(pN)(pN))

NI = N =

Using this value of W' in (8.17) and utilizing the fact that

vec(P71) = % <P_1 ® P_1> (I(pN)Z + K(pN)(pN)) vec(P)
then the ALS first order condition is identical to (8.16).

From equation (18) in Rajamani and Rawlings (2009), W is the covariance of
vec(YY’) when N = Ny, and therefore it is the minimum variance weighting for
the ALS problem. Thus, the MLE method is equivalent to the optimally-weighted
full matrix ALS method with N = N; (neglecting the semidefinite constraints).

This conclusion allows us to make several observations:

1. Since W depends on the unknown Q and Ry, solving the optimally-weighted
ALS problem requires either nonlinear optimization or an iterative proce-

dure as suggested in Rajamani and Rawlings (2009).

2. From (8.14), when [,41 _,42] is not full rank, more than one (Qy, R,) maps
to any given P. Since the likelihood depends on Q, and R, only through P,

there is not a unique solution to the MLE problem.



3. As this rank condition is necessary for the unweighted ALS problem to have
a unique solution, when there is not a unique ALS solution, there cannot be

a unique MLE solution.

4. It does not necessarily follow that there is a unique MLE solution when there

is a unique ALS solution.

5. It is particularly worthwhile to note that, in the case when G is unknown,
both the following conditions are necessary for either the ALS or the MLE

problem to have a unique solution:

(a) (A,C) observable
(b) rank(C) =n

(c) rank(A) =n

85 SOLVING THE MLE PROBLEM

One limitation of the maximum likelihood method is that it requires the compu-
tation, storage, and manipulation of very large matrices used in the likelihood.

Here we suggest several methods to reduce the computation time:

1. Sparsity: P and the matrices from which it is composed are sparse, as seen
in (8.2) and (8.3). By treating these matrices as sparse, we reduce both the

storage requirements and the computation time.

2. Cholesky Decomposition: Computing Indet(P) for large P presents chal-
lenges in both numerical accuracy and computation time. If P has many
eigenvalues that are less than one, computing the log determinant directly
may return an answer of minus infinity, while in reality this term has a fi-
nite value. Calculating the log determinant via the eigenvalues produces

a more accurate numerical result in Octave and Matlab. However, finding
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the eigenvalues may be computationally expensive, and Octave and Matlab
do not utilize sparsity in this step. A faster method is to compute the log
determinant via Cholesky factorization. The positive definite matrix P is
decomposed uniquely into P = LL’ in which L is lower-triangular. The log
determinant of P is computed as logdet(P) = 2 ;log(L;;) in which L;; are

the diagonal entries of L.

3. Solving Linear System of Equations: Directly inverting P to calculate Y'P~1Y
is computationally expensive, and the computation time is not reduced for
sparse matrices. To avoid computing the inverse directly, we first find the
vector X which solves the equation PX = Y and then calculate Y/P~1Y =
Y'X. In Octave and Matlab, the “mldivide” function (abbreviated by the
\ symbol) uses efficient algorithms, based on the structure of P, to solve

PX =Y.

We also recommend optimizing over Q and R, in which Q,, = QQ’ and
R, = RR’ rather than optimizing directly over Q;, and R, as this decomposi-
tion enforces both the positive definite and the symmetry constraints of Q, and

Rv'

8.5.1  Optimal innovations MLE method

The MLE method proposed by Bavdekar et al. (2011) utilizes the fact that the
innovations, y(k) — §(k|k — 1), are white under an optimal estimator. This method
reduces the computational time because the objective function is written in terms

of the independent innovations rather than the correlated outputs. The optimal



innovations MLE problem is written as

N
min N In(det(Z,)) + . (y(k) —9(klk — 1)) 2 (y(k) — g(klk — 1))

|
-

1

subject to: Kalman filter equations

QH)/ RU Z 0

in which ¥, is the covariance of the innovation. This method was designed for
nonlinear systems using the extended Kalman filter. We apply it to a linear time

invariant system using the following steps in each iteration of the optimizer:

1. Calculate the steady-state predictor gain and innovation covariance (X,) from

the estimator Riccati equation, using the current values of Q, and R,.
2. Calculate the innovations using the Kalman filter equations.

3. Calculate the block diagonal matrix P = Iy ® X; use sparsity to reduce the

storage space of P.

4. Calculate the objective function as ¢ = Nlogdet(X,) + Y/

inn

(P\Yinn) in which

the Np-vector Yinn contains all the innovations?.

Since calculating the innovations requires a value for £(0), we also optimize over
this parameter.

For this method, P is block diagonal, so Y/

! P"Winn is computed more quickly
than Y’P~1Y in the output based-method. Computing the log determinant is also
significantly faster, as only the determinant of the p x p matrix X, is calculated,
rather than the determinant of the Np x Np matrix P. These advantages come at

the cost of computing the innovations within the optimizer at each iteration, since

Qw and R, are updated. However, for larger systems, the optimal innovation

2In the examples studied, it is faster to compute the term Y] (P\Yiy,) than to calculate and add

the individual terms (y(k) — 7(k|k —1))" 271 (y(k) — 9(k|k — 1))
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MLE method significantly reduces the computational time. Both formulations of

the MLE problem lead to the same estimates of Q, and R,.

8.6 EXAMPLES

8.6.1 Scalar example

Consider the example

A =0.600 C =0483 Qu=7 Ry, =3

We use N = 1000 data points and K = 23 (placing a threshold of 107> on the
norm of A). We solve the MLE problem in Octave using the built-in function sqp.
We also solve the ALS problem for comparison, in which the optimal weighting
is approximated from the data and the window is fixed at Nars = 15. The results
are summarized in Table 8.1 and are compared to the sample variances of the
process and measurement noises used in the simulation. These sample variances
would be the best estimate for Q, and R, if the sequence of noises were known.
Both the MLE and ALS method achieve similar results, but the MLE solution
produces the lowest objective value compared to the ALS solution and the sample
variances. Figure 8.1 plots the objective function vs. Q, and R,; we see that the
objective function does indeed have a unique minimum and tends to infinity on
the boundaries of P. For N = 1000, the computation times for the MLE and ALS
methods are comparable. However, when N = 10000, the ALS technique is faster
by two orders of magnitude. Unlike in the MLE method, the computation time
in the ALS method has little dependence on the number of data points, since the

size of the optimization problem is unchanged.



Table 8.1: MLE and ALS results for the scalar example.

N = 1000
Qu Ry ¢ Time (s)
MLE 8.69 2.74 2656.85 2.86

ALS 8.66 2.65 2657.09 1.36
Sample Var. 6.79 3.07 2660.04

N = 10000
Quw Ry ¢ Time (s)
MLE 6.76 3.07 26277.25 178
ALS 6.64 3.10 26277.39 1.88
Sample Var. 6.93 3.04 26277.52

3600 - 2630
3400 + 2685
200 | 2680

¢ 3 2675
3000 F 2670
2665

2660

2655

2650

Figure 8.1: MLE objective function value vs. Q, and R, for the scalar example
with N = 1000 data points. The objective has a unique minimum and goes to
infinity on the boundaries of P.
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Table 8.2: Mean and variance of the estimates, average objective value, and average
CPU time for the ALS, MLE, and EM methods.

154

E(Qw) E(R,) var(Qu) var(Ry,) (¢) (CPU Time (s))

ALS 6.699 2916 1.306 0.113  2617.9279 0.903
MLE 6.944 2988 1.208 0.105  2617.2499 2.756
EM 6.909  3.002 1.161 0.103  2617.2544 11.965

Sample Var. 7.044  2.969 0.099 0.027  2618.8098

8.6.2  Comparison to the expectation maximization approach

Using the same scalar example, we compare the MLE and ALS methods to the
expectation maximization (EM) approach described in Li and Badgwell (2014)
and Bavdekar et al. (2011). We simulate 50 instances of the problem and calcu-
late Q, and R, using all three approaches. Figure 8.2 plots QAw and R, for each
approach. The estimates for all the methods are centered around the true mean
values, and the variances of the estimates are similar. The MLE and EM methods
produce nearly identical results.

We summarize the results in Table 8.2. The estimates from all three meth-
ods have similar means and variances, although the MLE and EM methods lead
to slightly lower variances than does the ALS technique. Since the MLE and
EM methods produce approximately the same results at each iteration, they have
nearly the same objective function values. Therefore, the EM estimates approx-
imate the maximum likelihood solution more accurately than do the ALS esti-
mates. For this problem, the ALS method is the fastest of the three options. The
EM method is slower than either the ALS or MLE methods, as it performs Kalman
filtering and smoothing at each iteration. However, the EM method may scale bet-
ter as the amount of data or system dimensions increase. Li and Badgwell (2014)
successfully applied the EM method to a larger problem on which the ALS method

ran out of memory.
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Figure 8.2: Noise variance estimates for the ALS, MLE, and EM methods. The
estimates from each method have a similar mean and variance. The EM and MLE
methods produce approximately the same results.
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Table 8.3: Computation time for steps in the MLE method (in seconds of CPU
time).

Quantity =~ Method Full  Sparse
P 11.2  0.0436
log(det(P)) Eigenvalues 4.97 5.01

Cholesky 0.418 0.0113

_ Inverse 74.9  77.4
! 1
Py Left Division 0.503 0.0169

8.6.3 Example: p=n =2

In this example, we illustrate how the methods mentioned in Section 8.5, including
utilizing sparse matrices, significantly reduce the computation time. We consider

the example

0.600 0 0.887 0.309
A - C =
0 0.338 0.238 0.732
17.9 105 6.62 0
Qw = Ry =
10.5 6.99 0 522

Table 8.3 summarizes the time spent in each step. By using efficient numerical
methods, the computational time for each iteration is reduced from approximately
91s to 0.072s.

We also show the computational time for the optimal innovation MLE method
proposed by Bavdekar et al. (2011) in Table 8.4. In this table, the time to compute
Y'P~1Y includes the time to calculate the innovations; left division was used to
avoid directly inverting P. Comparing Table 8.3 to Table 8.4, we see that the
optimal innovation method requires additional time to compute the innovations
but reduces the computational time for the other steps in each iteration.

In Table 8.5 we compare the solutions and solution time of the “slow MLE”
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Table 8.4: Computation time for steps in the optimal innovations MLE method (in
seconds of CPU time).

Quantity  Full Sparse

P 0.0137 0.0118
log(det(P)) 7.30x 107> 7.30 x 10~°

Y'P7lY o550 0.0518

Table 8.5: MLE and ALS results for the two-state example.

Quw diag(R,) ¢ Time (s)

“Slow”  [169 108]  [712] .
MLE (108 688 |5.08] 73**° 17933
“Fast’  [169 108]  [712]
MLE (108 688 |5.08] 73> 493
gﬁgi“ai‘ilon 169 108] 73] oo
w08 6% 507

172 106]  [6.82]
ALS 106 647]  |aos| 7375 186
Sample [17.9 10.4] [6.63] ,8
Cov.  |104 691| [492] 73%%4

(full matrices, eigenvalues, and inverse), “fast MLE” (sparse matrices, Cholesky
factorization, and left division), optimal innovations MLE, and ALS techniques
for N = 1000. All MLE methods give identical results, however, the “fast” MLE
and optimal innovations MLE techniques decrease the computation time from
several hours to less than a minute. The ALS method gives similar results with the

smallest computation time (around 1s) but has a slightly higher objective value.



8.6.4 Example:p=n=>5

In this example we consider a larger system, with 5 states and outputs. The data

are generated using

i 892 912 1444 582 12.54_

9.12 13.07 1490 1041 17.13
Quw= {1444 1490 2511 11.32 21.50
582 1041 11.32 1198 14.73

1254 17.13 21.50 14.73 24.20

Rz;:diag([l.Sl 210 139 3.78 1.11})

We use two initial conditions to solve the MLE problem: (1) Qw = Ry = I
and (2) the ALS estimates. The MLE solution yields a lower objective value than
the ALS solution and the sample covariances of the noises. Changing the initial
condition has a negligible effect on the MLE results but reduces the computation
time. We also solve the MLE problem using the optimal innovations method,
starting from each initial condition. For this example, the optimal innovations
MLE method significantly reduces the computation time by more than a factor of

five and reaches the same solution as the output MLE method.
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Table 8.6: MLE and ALS results for the five-state example.

Method

Results

MLE
Qo=1

diag(Ry,) = {1.53 1.90 1.58 2.99

[ 8.50
8.19
9.97
2.84

10.31

8.19
14.29
17.02
10.40
18.45

9.97
17.02
28.58
10.92
21.76

¢ = 15375
Time (min) = 34.8

2.84

10.40
10.92
11.19
14.29

10.31]
18.45
21.76
14.29

24.48|

0.801

Qw:

ML]AE
Qo = Qars

[ 8.34
8.32
10.02
2.85

10.32

8.32
14.25
17.06
10.35
18.45

10.02
17.06
28.60
10.86
21.75

2.85
10.35
10.86
11.25
14.26

1032
18.45
21.75
14.26

24.25)

diag(Ry) = [1.52 1.91 157 3.00 0.822

¢ = 15375
Time (min) = 20.5
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(836 831 999 281 10.29]
831 1417 17.03 1043 1847
Qw= 1999 17.03 28.56 10.84 21.70

MLE
Optimal 281 1043 10.84 11.14 14.19
Innovations
Q=1 1029 1847 21.70 14.19 24.17

diag(Ry,) = |1.53 1.91 157 3.00 0.818
¢ = 15375
Time (min) = 6.75
(836 831 999 281 10.29]
831 14.18 17.04 1043 18.47
= |o. 04 2856 10.84 21.7

MLE Quw 9.99 17.04 2856 10.8 0
Optimal 281 1043 10.84 11.14 14.19
Innovations
Qo = Ours 1029 1847 21.70 14.19 24.18]

diag(R,) = [1.53 1.90 1.57 3.00 0.817
¢ = 15375
Time (min) = 4.22
(642 728 625 158 773
728 1455 16.80 7.11 15.47
Quw= 625 1680 25.01 6.48 16.42
158 7.11 648 878 9.54
ALS
773 1547 1642 9.54 17.48)

diag(R,) = [1.38 1.70 1.14 233 0.94

¢ = 15465
Time (min) = 0.173




_8.32 8.48 13.59 5.50 11.70_
8.48 1251 1397 10.21 16.32

Qw = |13.59 13.97 23.82 10.70 20.16
Sample

Covariances 550 10.21 10.69 11.85 14.21

1170 16.32 20.16 14.21 2292

diag(R,) = [1.40 2.05 1.34 3.88 1.07
¢ = 15387 '

87 COMPARISON OF THE MLE AND ALS APPROACHES

The maximum likelihood approach to disturbance identification is preferable to
the ALS method in several ways. From a theoretical point of view, the MLE esti-
mates have a clear statistical meaning, whereas the ALS estimates do not. The ALS
problem becomes increasingly arbitrary as we approximate the optimal weighting
and choose a penalty to place on tr(Qy ). In addition, the derivation of the MLE
problem is more simple and straightforward.

However, from a practical point of view, the ALS technique is much better
equipped to handle industrial data than is the MLE technique. Numerical meth-
ods have not been developed to solve the MLE problem on large systems, and the
computational time increases significantly when more data is added. The MLE
method also has not been developed for the case when the solution is not unique.
In this case, some effort must be made to ensure a realistic solution is reached, for
example, using the ALS solution as the starting point. Overall, solving the MLE
problem requires more computational time and memory than does solving the
ALS problem, even when the semidefinite constraints, trace penalty, and approx-
imate weighting are added to the ALS objective. Whereas we have demonstrated
the MLE approach only on small simulated systems, we have successfully applied

the ALS method to industrial data sets, using the improvements discussed in this
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dissertation. Therefore, we recommend using ALS on industrial data sets or on
any large systems until the MLE method has been improved. However, given the
power of modern computers and the efficiency of many algorithms, the MLE ap-
proach has the potential to become useful in practice. In these results we have
already shown how choosing efficient computational methods can decrease the
time significantly; with more effort this method can be made increasingly more

efficient.

8.8 APPENDICES

8.A  Null space of Pg

Proposition 7. Given Py and Py as defined in (8.6), then either (1) null(Pr) € null(Pg)
and null(P) = null(PR), or (2) null(Pg) € range(Pg) and null(P) = {0}.

Proof. To prove the proposition, first we show that V € null(Pg) is in the null
space of Pg if and only if w; := (A’)*7/C'v; is in the null space of Q, for all
1<j<K

We write any (non-zero) vector in the null space of Pr as

X101

X201

ANT1

in which «; ... ay are scalars. a; may be zero, but at least one &; must be non-zero.

If V € null(Py), we must have X = O’V in the null space of (I ® Q). Note
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that O’ takes the form

(A/)K—lc/
(A/)Kflcl
O = ¢
C/ (A/)K—lcl
C/
!/
Let X = |} kol If X is in the null space of (I ® Qy), then each x;

must be in the null space of Q.

To prove that w; € null(Q,) implies V' € null(Pg), note that each x; is a linear
combination of the w;. Therefore, if all w; are in the null space of Qy, each x; is in
the null space of Q,, and V is in the null space of Q.

To prove that V € null(Pg) implies w; € null(Qy), assume V is in the null
space of Pg. Define the index m such that a; =0 for j=1,...,m —1 and ay, # 0.
Then x; = 0 for i < m, and x,, = a,,w;. Therefore, w; is in the null space of Q.
We write each x4 as Xy = @nWji1 + &) + - - - + @y jws, for all j = 0..K.
If w; is in the null space of Qy, for all 1 <i < j, then w;;1 must also be in the null
space of Qy. Since w; is in the null space of Qy, by induction every w; must lie in
the null space of Q.

Therefore, V; is in the null space of Pg if and only if all the w; are in the null
space of Q. Since this condition is true for any vector in the null space of Py, it
must be true for all vectors in the null space. Thus, the null space of Py either
contains the null space of Pg, or else the null spaces have no non-zero vectors in
common.

Since the null space of P is the intersection of the null spaces of Py and Pg, it

is equal to the null space of Pz when v; is in the null space of R, and Q,,(A’)'C’
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for 0 <i < K, or else the null space of P contains only the zero element.

8. Relationship between (Qq, Ry) and P on the boundary

Proposition 8. Given C full rank, (A, C) observable, and N > n,
1. P>0if R, >0
2. P>0ifQyu >0
3. P — oo if and only if Qu — o0 or Ry, — oo

Proof. From (8.6), P = Pg + Pgr. Each term in P is positive semidefinite, so P is
strictly positive definite provided that Py or Pg is positive definite. If R > 0, then
Pr = (IN® Ry) > 0, so P > 0. Due its structure, O is full row rank provided
C is full row rank. To see that O is full row rank, we shot that O'Y = 0 only if
Y = 0. Since the last block row of O’ is [0 .0 C’] , for C full row rank, the
last p elements of Y must be zero. Likewise, the last 2p elements of Y must be zero
to enforce that the last two block rows of O are zero, and the pattern continues.
Therefore, since (IN1x—1 ® Qw) > 0 when Qi > 0, P = O (Iy4k-1 ® Qu) O’ >0
for Q > 0. Note that (A, C) observable is not required for these conditions.

We say that P — oo if and only if |P|| — oo, which implies that the largest
eigenvalue of P goes to infinity. To prove that P — oo, it is sufficient to show that
there exists some finite x such that x’Px — oo.

P > 0 implies x'Px > 0 for all x # 0. From (8.4),
x'Px =) x'0;Q.,0jx + Zx’IIjRU]I;x (8.18)
i j

Let ay be (one of) the eigenvalues of Q, that goes to infinity and v be the cor-
responding normalized eigenvector. Then v;,Q,vr = ar — oo. Since Ok con-

tains the observability matrix when N > #, it is full rank when (A,C) is ob-



servable. Therefore, we can always find some x such that vy = O}x. Then
x'OxQuOkx = v,Quvr = & — co. Since (at least) one term in (8.18) tends to
infinity and the other terms are non-negative, x’Px — oo and therefore P — co.
By the same logic, P — oo if R, — o0.

To prove that P — oo only if Qy or R, — oo, we choose a finite x such that
x'Px — co. Then at least one term in (8.18) tends to infinity. By eigenvalue
decomposition, we see that no term can go to infinity unless one of the eigenvalues

of Qy or Ry also goes to infinity. O

8.c  Rank of the data matrix

Proposition g (Full rank of data matrix). Let the random variable y € RP be dis-
tributed as N(0,R) with R € RP*P positive definite, and let y;, i = 1,2,...,N be N
independent samples of y with N > p. Arrange the samples as the columns in the data

matrix Y = [yl vy - yN]. Then rank(Y) = p with probability one.

Proof. Consider first a data matrix with one or more rows of zeros so that it has
rank less than p. Assume without loss of generality that the elements of y are
ordered so that the last row of Y is zero. We note that there is probability zero
of achieving this matrix by sampling y. In order to zero the p' component in all
the samples, one must have a singular normal in which the unit vector e, is an
eigenvector of R with corresponding eigenvalue A, = 0. For such a semi-definite
R, there is probability one of having a zero last row in Y. For positive definite R,
however, the probability of a zero row is zero.

To prove the proposition, we consider the (reduced) SVD of Y
Y = Uuxv’

with U € RP*P, Y. € RP*P,V € RN*P, in which U is orthonormal, ¥ is diagonal,

and V has orthonormal columns. Assume for contradiction that Y has rank less
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than p. Then consider the transformed random variable z := U’y, which has
distribution z ~ N(0, R) with R = U’RU. Since U is nonsingular and R is positive
definite, R is also positive definite. If we form the data matrix from z; = U'y;, we
have

z=UY=%xV

Since Y has rank less than p, we know that its smallest singular value, 0p, equals
zero. Therefore the last row of Z is zero, and, combined with R being positive

definite, that is a contradiction and the proposition is established. O

In Propositions 5 and 6, the samples of y; are not independent, so Proposition

9 does not directly apply. However, by the same logic, Y has full rank when
/

Y = [y’l . yg\]} is generated from a normal distribution with mean zero and

covariance P* > 0.

8.0 Matrix differentials

The following matrix differentials come from Magnus and Neudecker (1999):

d(det(X)) = det(X)tr (X*1 (dX)> X € R"" invertible
d(tr(AX)) = tr (A (dX)) X real

dX 1= —xtax)x! X € R™" invertible
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CONCLUSIONS

9.1 CONTRIBUTIONS

MPC PERFORMANCE MONITORING We approach MPC performance monitor-
ing by using to be the expectation of the regulator’s stage cost as our monitoring
benchmark. We show that the stage cost is the quadratic form of a normal variable
and therefore has a generalized chi-squared distribution. We derive the expecta-
tion of the stage cost, as well as its variance, from the analytical formulas for the
closed-loop system. This expectation serves as the ideal benchmark. As a time-
average of the stage cost, the plant KPI approaches a normal distribution by the
central limit theorem. We derive an expression for the variance of the plant KPI
that accounts for the correlations between the stage cost samples. We illustrate
the distributions of the stage cost and plant KPI with a simulation example. We
further extend the analytical KPI formulas to account for a general deterministic

disturbance and for systems in innovation form.

AUTOCOVARIANCE LEAST-SQUARES We present two major improvements to
autocovariance least-squares: reducing the model to include only the fully ob-

servable states and approximating the optimal weighting from data. We use the
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singular value decomposition of the observability matrix to identify the least ob-
servable states and then use the unconstrained ALS objective function value to
choose the model order for the reduced system. By using this reduced model, we
significantly improve the computational time for ALS. Using the optimal weight-
ing for the least-squares portion of the ALS objective would reduce the variance
of the ALS estimates, but the optimal weighting cannot be computed in practice.
Therefore, we present a feasible-generalized ALS method in which this weighting
is estimated from data. The feasible-generalized ALS method leads to significant
reduction in the variance of the ALS estimates for a simulation example.

We apply the improved ALS method to industrial data. We significantly reduce
the model to have a well-conditioned observability matrix. The reduced model has
a faster computational time than a larger model and still results in an estimator
that is approximately optimal. We use a double integrator model to estimate bet-
ter the disturbances affecting one of the outputs. The feasible generalized ALS
method shows significant improvement over ordinary ALS. The disturbances af-
fecting the process remain largely consistent over a year-long period, and, through

the results of ALS, we identify when changes in the disturbance dynamics occur.

MAXIMUM LIKELIHOOD ESTIMATION We propose an alternative method for
identifying the disturbance model using maximum likelihood estimation. By as-
suming the deterministic system is known, we present a direct maximum likeli-
hood estimation problem in which the noise covariances are the only parameters
being estimated. We prove that a solution to the MLE problem exists, since the
data matrix is full rank with probability one. We also relate the maximum likeli-
hood problem to the optimally-weighted ALS problem and thus relate the unique-
ness conditions of the two methods. We reduce the computational time by using
sparse matrices, computing the log determinant via Cholesky decomposition, and

avoiding the direct computation of the matrix inverse. We apply the MLE method
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to several small-scale examples.

9.2 FUTURE WORK

Due to the advances presented in this dissertation, several areas lie open for future

research in MPC performance monitoring and disturbance identification:

MPC PERFORMANCE MONITORING Since the theoretical monitoring benchmark
is highly dependent upon the noise covariances, the improved ALS method should
be applied to MPC monitoring. For both simulated and industrial systems, the
noise covariances should be estimated using the improved ALS techniques, and
the theoretical benchmark should be calculated using the ALS estimates.

In order to implement a monitoring scheme in practice, we require a statistical
test for whether or not the plant KPI is significantly above its ideal benchmark.
Therefore, the theoretical distribution of the plant KPI (which we derived) should
be used to develop confidence intervals. An appropriate window size for calculat-
ing the KPI should be determined. The window should be large enough that the
plant KPI is well-approximated by a normal distribution and is not susceptible to
outliers, but small enough that the plant KPI responds quickly to changes in the
controller performance. Once an appropriate window has been developed, a test
should be designed to continuously monitor the controller performance and alert
operators when a significant change in performance has occurred.

For linear systems, the analytical KPI formula should be extended to include
feed-forward variables. For nonlinear and constrained systems, simulations should
be performed to demonstrate the accuracy of Monte Carlo methods in estimating
the optimal benchmark; this technique should be verified on industrial data.

When calculating the KPI for industrial data, the precise control law may
be unknown. This problem is especially likely when industries rely on vendor-

supplied software. This lack of knowledge inhibits the calculation of a theoretical



KPI. Therefore, another area of research is to identify the control law from data,
ie. fitay — u model. The KPI calculations can then be modified to incorporate

the estimated control law.

AUTOCOVARIANCE LEAST-SQUARES While the ALS technique (with our im-
provements) has been successfully applied to industrial data, this method needs
to be further developed in order to become more automated. Currently, the ALS
method requires the user to specify many decisions: initial estimator gain, model
size, trace penalty, etc. Thus the user must study each system in detail, rather than
easily applying the ALS method to a large number of industrial systems. In ad-
dition, ALS techniques on non-linear and time varying systems should be further

developed.

MAXIMUM LIKELIHOOD ESTIMATION The computational algorithms for the
MLE method require significant development before this method will be widely
applicable to industrial data. These improvements may be as simple as using dif-
ferent software with more efficient methods to solve the optimization problem,
or we may need to find more efficient algorithms to compute the likelihood. As
these computational methods are developed, we should always maintain the goal
of producing software that is simple to implement in practice.

The maximum likelihood method presented here was based on the open-loop
problem, i.e. it was written in terms of the outputs rather than innovations. This
MLE method should be compared in more detail to the MLE method based on
the optimal innovations, which is faster to solve for larger systems. In particular,
further research should demonstrate that a solution to the optimal innovations
MLE problem exists and that the same necessary conditions for uniqueness apply.
Studying a third MLE formulation written in terms of L-innovations that are fixed
during the optimization may help connect the first two MLE methods.

We restricted our study here to problems with the same number of states and
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outputs, as this condition is necessary for uniqueness. The MLE method should
expanded to handle systems that do not have a unique solution. It is of note that
since the problem is solved in terms of the factors of Q and R, this formulation
naturally leads itself to restricting the rank of these noise matrices. Some study
should be made as to how to choose the best initial guess and how sensitive the
solution is to the initial guess. Once these problems have been addressed, other

issues such as applicability to non-linear systems should be studied.

171



BIBLIOGRAPHY

Q. Ahsan, R. I. Grosvenor, and P. W. Prickett. Distributed control loop performance

monitoring architecture. In Proceedings of Control 2004, 2004.

T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley &

Sons, New York, third edition, 2003.

T. W. Anderson and I. Olkin. Maximum-likelihood estimation of the parameters

of a multivariate normal distribution. Linear Algebra Appl., 70:147-171, 1985.

J. D. Aplevich. The Essentials of Linear State-Space Systems. John Wiley & Sons, Inc.,

New York, 2000.

K. J. Astrom. Introduction to Stochastic Control Theory. Academic Press, San Diego,

California, 1970.

K. J. Astrom and B. Wittenmark. Computer Controlled Systems: Theory and Design.

Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

O. Badmus, D. Banks, A. Vishnubhotla, B. Huang, and S. L. Shah. Performance
assessment: a requisite for maintaining your APC assets. In Dynamic Modeling

Control Applications for Industry Workshop, 1998. IEEE Industry Applications 1998,
pages 54 —58, 1998.

A. S. Badwe, R. D. Gudi, R. S. Patwardhan, S. L. Shah, and S. C. Patwardhan.
Detection of model-plant mismatch in MPC applications. |. Proc. Cont., 19(8):

1305—-1313, 2009.

172



A. S. Badwe, R. S. Patwardhan, S. L. Shah, S. C. Patwardhan, and R. D. Gudi.
Quantifying the impact of model-plant mismatch on controller performance. J.

Proc. Cont., 20(4):408-425, 2010.

M. Bauer and I. K. Craig. Economic assessment of advanced process control-A

survey and framework. J. Proc. Cont., 18(1):2-18, 2008.

V. A. Bavdekar, A. P. Deshpande, and S. C. Patwardhan. Identification of process
and measurement noise covariance for state and parameter estimation using

extended Kalman filter. J. Proc. Cont., 21:585-601, 2011.

L. G. Bergh and ]J. F. MacGregor. Constrained minimum variance controllers:

internal model structure and robustness properties. Ind. Eng. Chem. Res., 26:
1558-1564, 1987.

S. Bezergianni and C. Georgakis. Controller performance assessment based on

minimum and open-loop output variance. Control Eng. Pract., 8(7):791—797, 2000.

S. Bezergianni and C. Georgakis. Evaluation of controller performance - use of

models derived by subspace identification. Int. ]. Adaptive Cont. Signal Proc., 17
(7-9):527-552, 2003.

T. Bohlin and S. F. Graebe. Issues in nonlinear stochastic grey box identification.

Int. J. Adaptive Cont. Signal Proc., 9:465-490, 1995.

N. Bonavita, J. C. Bovero, and R. Martini. Control loops: Performance and diag-

nostics. In Proceedings of the ANIPLA Conference, 2004.

T. Cacoullos and M. Koutras. Quadratic forms in spherical random variables:

Generalized noncentral x? distribution. Naval Res. Logist. Quart., 31(3):447-461,

1984.

E. M. Callier and C. A. Desoer. Linear System Theory. Springer-Verlag, New York,

1991.

173



C.-T. Chen. Linear System Theory and Design. Oxford University Press, third edition,

1999.

C. Dai and S. H. Yang. Controller performance assessment with a LQG benchmark

obtained by using the subspace method. In Proceedings of Control, 2004.

L. Desborough and T. Harris. Performance assessment measures for univariate

feedback control. Can. J. Chem. Eng., 70:1186-1197, 1992.

L. Desborough and T. Harris. Performance assessment measures for univariate

feedforward feedback control. Can. J. Chem. Eng., 71:605-616, 1993.

L. Desborough and R. Miller. Increasing customer value of industrial control per-
formance monitoring - Honeywell’s experience. In Chemical Process Control-VI:
Sixth International Conference on Chemical Process Control, pages 153-186. AIChE

Symposium Series, Volume 98, Number 326, 2001.

G. A. Dumont, L. Kammer, B. J. Allison, L. Ettaleb, and A. A. Roche. Control per-
formance monitoring: New developments and practical issues. In Proccedings of

the IFAC World Congress, 2002.

P.-G. Eriksson and A. J. Isaksson. Some aspects of control loop performance mon-
itoring. In Control Applications, 1994., Proceedings of the Third IEEE Conference on,

volume 2, pages 1029 —1034, Aug. 1994.

J. Gao, R. Patwardhan, K. Akamatsu, Y. Hashimoto, G. Emoto, S. L. Shah, and
B. Huang. Performance evaluation of two industrial MPC controllers. Control

Eng. Pract., 11(12):1371-1387, 2003.

C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and

practice—a survey. Automatica, 25(3):335-348, 1989.

Z. Ge, C. Yang, Z. Song, and H. Wang. Robust online monitoring for multimode

174



175

processes based on nonlinear external analysis. Ind. Eng. Chem. Res., 47(14):

4775-4783, 2008.

M. Ghosh and B. K. Sinha. A simple derivation of the Wishart distribution. Amer.

Statist., 56(2):100-101, 2002.

M. J. Grimble. Controller performance benchmarking and tuning using gener-

alised minimum variance control. Automatica, 38(12):2111—2119, 2002.

G. Haarsma and M. Nikolaou. Multivariate controller performance monitoring:
Lessons from an application to snack food processes, 2000. URL http://www.

chee.uh.edu/faculty/nikolaou/FryerMonitoring.pdf.

T. J. Harris. Assessment of control loop performance. Can. J. Chem. Eng., 67:856—

861, 1989.

T. J. Harris. Statistical properties of quadratic-type performance indices. J. Proc.

Cont., 14(8):899 — 914, 2004.

T. J. Harris, F. Boudreau, and J. F. MacGregor. Performance assessment of multi-

variate feedback controllers. Automatica, 32(11):1505-1518, 1996a.

T. J. Harris, C. T. Seppala, P. J. Jofriet, and B. W. Surgenor. Plant-wide feedback
control performance assessment using an expert-system framework. Control

Eng. Pract., 4(9):1297-1303, 1996b.

T.]J. Harris, C. T. Seppala, and L. D. Desborough. A review of performance mon-
itoring and assessment techniques for univariate and multivariate control sys-

tems. J. Proc. Cont., 9(1):1-17, 1999.

C. A. Harrison and S. J. Qin. Minimum variance performance map for constrained

model predictive control. J. Proc. Cont., 19(7):1199-1204, 2009.

G. Hewer. Analysis of a discrete matrix Riccati equation of linear control and

Kalman filtering. |. Math. Anal. Appl., 42(1):226-236, 1973.


http://www.chee.uh.edu/faculty/nikolaou/FryerMonitoring.pdf
http://www.chee.uh.edu/faculty/nikolaou/FryerMonitoring.pdf

G. A. Hewer. Iterative technique for computation of steady state gains for discrete

optimal regulator. IEEE Trans. Auto. Cont., AC16(4):382—384, 1971.

A. Horch and A. J. Isaksson. A modified index for control performance assess-

ment. J. Proc. Cont., 9(6):475-483, 1999.

D. Hua. On the symmetric solutions of linear matrix equations. Linear Algebra

Appl., 131:1-7, 1990.

B. Huang. Minimum variance control and performance assessment of time-variant

processes. J. Proc. Cont., 12(6):707-719, 2002.

B. Huang and S. L. Shah. Practical issues in multivariable feedback control per-

formance assessment. J. Proc. Cont., 8(5-6):421-430, 1998.

B. Huang and S. L. Shah. Performance Assessment of Control Loops. Springer-Verlag,
London, 1999.

B. Huang and E. C. Tamayo. Model validation for industrial model predictive

control systems. Chem. Eng. Sci., 55(12):2315-2327, 2000.

B. Huang, S. L. Shah, and E. K. Kwok. Good, bad or optimal? Performance

assessment of multivariable processes. Automatica, 33(6):1175-1183, 1997.

B. Huang, R. Kadali, X. Zhao, E. C. Tamayo, and A. Hanafi. An investigation
into the poor performance of a model predictive control system on an industrial

CGO coker. Control Eng. Pract., 8(6):619—631, 2000.

B. Huang, S. X. Ding, and N. Thornhill. Practical solutions to multivariate feed-
back control performance assessment problem: reduced a priori knowledge of

interactor matrices. J. Proc. Cont., 15(5):573—-583, 2005.

B. Huang, S. X. Ding, and N. Thornhill. Alternative solutions to multi-variate

control performance assessment problems. J. Proc. Cont., 16(5):457-471, 2006.

176



A.J. Hugo. Performance assessment of single-loop industrial controllers. J. Proc.

Cont., 16(8):785-794, 2006.

A. Ingimundarson and T. Hagglund. Closed-loop performance monitoring using

loop tuning. J. Proc. Cont., 15(2):127-133, 2005.

R. H. Julien, M. W. Foley, and W. R. Cluett. Performance assessment using a model

predictive control benchmark. J. Proc. Cont., 14(4):441-456, 2004.

R. Kadali and B. Huang. Estimation of the dynamic matrix and noise model for
model predictive control using closed-loop data. Ind. Eng. Chem. Res., 41:842—

852, 2002.

M. Kamrunnahar, D. G. Fisher, and B. Huang. Performance assessment and ro-
bustness analysis using an ARMarkov approach. J. Proc. Cont., 14(8):915-925,

2004.

R. L. Kashyap. Maximum likelihood identification of stochastic linear systems.

IEEE Trans. Auto. Cont., 15(1):25-34, 1970.

P. Kesavan and J. H. Lee. Diagnostic tools for multivariable model-based control

systems. Ind. Eng. Chem. Res., 36(7):2725-2738, 1997.

B. Ko and T. F. Edgar. Performance assessment of constrained model predictive

control systems. Proc. Sys. Eng., 47(6):1363-1371, 2001.

N. R. Kristensen, H. Madsen, and S. B. Jorgensen. Parameter estimation in stochas-

tic grey-box models. Automatica, 40:225-237, 2004.

R. H. Kwong. On the linear quadratic Gaussian problem with correlated noise

and its relation to minimum variance control. SIAM J. Cont. Opt., 29(1):139-152,

1991.

P. Lancaster and M. Tismenetsky. The Theory of Matrices: With Applications. Com-

puter Science and Applied Mathematics. Academic Press, 1985.

177



178

K. H. Lee, E. C. Tamayo, and B. Huang. Industrial implementation of controller

performance analysis technology. Control Eng. Pract., 18(2, SI):147-158, 2010.

W. Li and T. A. Badgwell. Structured covariance estimation for state prediction.
Accepted for publication in 53rd IEEE Conference on Decision and Control,

2014.

E. V. Lima, J. B. Rawlings, M. R. Rajamani, and T. A. Soderstrom. Covariance and
state estimation of weakly observable systems: Application to polymerization

processes. IEEE Trans. Cont. Sys. Tech., 21(4):1249-1257, July 2013.

C. Liu, B. Huang, and Q. Wang. Control performance assessment subject to multi-
objective user-specified performance characteristics. IEEE Trans. Cont. Sys. Tech.,

19(3):682—691, 2011.

L. Ljung. System Identification - Theory for the User. Prentice Hall, New Jersey,

second edition, 1999.

J. R. Magnus. Maximum likelihood estimation of the GLS model with unknown

parameters in the disturbance covariance matrix. J. Econometrics, 7(3):281-312,
1978.

J. R. Magnus and H. Neudecker. The commutation matrix: Some properties and

applications. Ann. Stat., 7(2):381-394, March 1979.

J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in

Statistics and Econometrics. John Wiley, New York, 1999.

A. Mathai and S. B. Provost. Quadratic Forms in Random Variables: Theory and

Applications. Marcel Dekker, Inc., 1992.

P. Matisko and V. Havlena. Noise covariance estimation for Kalman filter tuning

using Bayesian approach and Monte Carlo. Int. J. Adaptive Cont. Signal Proc., 27

(11):957-973, 2013.



C. A. McNabb and S. J. Qin. Projection based MIMO control performance moni-

toring: I-covariance monitoring in state space. J. Proc. Cont., 13(8):739—757, 2003.

C. A. McNabb and S. J. Qin. Projection based MIMO control performance mon-
itoring: II-measured disturbances and setpoint changes. . Proc. Cont., 15(1):

89-102, 2005.

R. K. Mehra. Identification of stochastic linear dynamic systems. In 1969 IEEE

Symposium on Adaptive Processes (8th) Decision and Control, 1969.

R. K. Mehra. On the identification of variances and adaptive Kalman filtering.

IEEE Trans. Auto. Cont., 15(12):175-184, 1970.

R. K. Mehra. Approaches to adaptive filtering. IEEE Trans. Auto. Cont., 17:903—908,

1972.

K. A. Myers and B. D. Tapley. Adaptive sequential estimation with unknown noise

statistics. IEEE Trans. Auto. Cont., 21:520-523, 1976.

B. J. Odelson. Estimating Disturbance Covariances From Data for Improved Control

Performance. PhD thesis, University of Wisconsin-Madison, 2003.

B. J. Odelson, M. R. Rajamani, and J. B. Rawlings. A new autocovariance least-
squares method for estimating noise covariances. Automatica, 42(2):303-308,

February 2006.

E. B. Olaleye, B. Huang, and E. Tamayo. Feedforward and feedback controller

performance assessment of linear time-variant processes. Ind. Eng. Chem. Res.,

43:589-596, 2004.

G. Pannocchia and J. B. Rawlings. Disturbance models for offset-free MPC control.

AICKE ., 49(2):426-437, 2003.

179



R. S. Patwardhan. Studies in Synthesis and Analysis of Model Predictive Con-
trollers. PhD thesis, University of Alberta, Fall 1999. URL http://www.

collectionscanada.ca/obj/s4/£2/dskl/tape8/PQDD_0016/NQ46902.pdf.

R. S. Patwardhan and S. L. Shah. Issues in performance diagnostics of model-

based controllers. |. Proc. Cont., 12(3):413—427, 2002.

M. A. Paulonis and J. W. Cox. A practical approach for large-scale controller
performance assessment, diagnosis, and improvement. J. Proc. Cont., 13(2):155—

168, 2003.

S. J. Qin. Controller performance monitoring — a review and assessment. Comput.

Chem. Eng., 23:173-186, 1998.

S. J. Qin. An overview of subspace identification. Comput. Chem. Eng., 30:1502—

1513, 2006.

S.J. Qin and T. A. Badgwell. A survey of industrial model predictive control

technology. Control Eng. Pract., 11(7):733—764, 2003.

S.J. Qin and ]. Yu. Recent developments in multivariable controller performance

monitoring. J. Proc. Cont., 17(3):221-227, 2007.

M. R. Rajamani. Data-based Techniques to Improve State Estimation in Model Predictive
Control. PhD thesis, University of Wisconsin-Madison, October 2007. URL

http://jbrwww.che.wisc.edu/theses/rajamani.pdf.

M. R. Rajamani and J. B. Rawlings. Estimation of noise covariances and distur-
bance structure from data using least squares with optimal weighting. In Pro-

ceedings of AIChE Annual Meeting, San Francisco, California, November 2006.

M. R. Rajamani and J. B. Rawlings. Estimation of the disturbance structure from
data using semidefinite programming and optimal weighting. Automatica, 45:

1424AS-148, 2009.

180


http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0016/NQ46902.pdf
http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0016/NQ46902.pdf
http://jbrwww.che.wisc.edu/theses/rajamani.pdf

M. R. Rajamani, J. B. Rawlings, and S. J. Qin. Achieving state estimation equiv-
alence for misassigned disturbances in offset-free model predictive control.

AIChE |., 55(2):396—407, February 2009.

T. J. Rato and M. S. Reis. Statistical monitoring of control loops performance: An
improved historical-data benchmark index. Qual. Reliab. Eng. Int., 26(8):831-844,

2010.

J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory and Design. Nob

Hill Publishing, Madison, WI, 2009. 576 pages, ISBN 978-0-9759377-0-9.

T. L. Salsbury. A practical method for assessing the performance of control loops

subject to random load changes. J. Proc. Cont., 15(4):393—405, 2005.

J. Schafer and A. Cinar. Multivariable MPC system performance assessment, mon-

itoring, and diagnosis. |. Proc. Cont., 14(2):113-129, 2004.
P. Schmidt. Econometrics. Marcel Dekker, Inc, 1976.
S. R. Searle. Linear Models. John Wiley & Sons, Inc., 1971.

S. L. Shah, R. Patwardhan, and B. Huang. Multivariable controller performance
analysis: methods, applications and challenges. Chem. Proc. Cont., 98:190-207,

2002.

Y. Shardt, Y. Zhao, F. Qi, K. Lee, X. Yu, B. Huang, and S. Shah. Determining the
state of a process control system: Current trends and future challenges. Can. J.

Chem. Eng., 2011.

R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and

forecasting using the EM algorithm. J. Time Series Anal., 3:253—264, 1982.

Z. Sun, S. J. Qin, A. Singhal, and L. Megan. Performance monitoring of model-
predictive controllers via model residual assessment. J. Proc. Cont., 23(4):473 —

482, 2013.

181



N. F. Thornhill, M. Oettinger, and P. Fedenczuk. Refinery-wide control loop per-

formance assessment. J. Proc. Cont., 9(2):109—-124, 1999.

X. Tian, G. Chen, and S. Chen. A data-based approach for multivariate model
predictive control performance monitoring. Neurocomputing, 74(4):588 — 597,

2011.

K. Tsakalis and S. Dash. Multivariable controller performance monitoring using

robust stability conditions. J. Proc. Cont., 17(9):702—714, 2007.

M. L. Tyler and M. Morari. Performance monitoring of control systems using

likelihood methods. Automatica, 32(8):1145-1162, 1996.

H. K. Tzou and Y. T. Lin. The tracking of a manoeuvring object by using an
adaptive Kalman filter. Proceedings of the Institute of Mechanical Engineers, 215(2):

125-130, 2001.

J. Valappil and C. Georgakis. Systematic estimation of state noise statistics for

extended Kalman filters. AICKE J., 46(2):292—308, 2000.

P. Van Overschee and B. De Moor. A unifying theorem for three subspace system

identification algorithms. Automatica, 31(12):1853-1864, December 1995.

X. Wang, B. Huang, and T. Chen. Multirate minimum variance control design and
control performance assessment: a data-driven subspace approach. IEEE Trans.

Cont. Sys. Tech., 15(1):65-74, 2007.

L. Xie, U. Kruger, D. Lieftucht, T. Littler, Q. Chen, and S. Q. Wang. Statistical
monitoring of dynamic multivariate processes-Part 1. Modeling autocorrelation

and cross-correlation. Ind. Eng. Chem. Res., 45(5):1659-1676, 2006.

F. Xu, K. H. Lee, and B. Huang. Monitoring control performance via sructured
closed-loop response subject to output variance/covariance upper bound. J.

Proc. Cont., 16(9):971-984, 2006.

182



183

F. Xu, B. Huang, and S. Akande. Performance assessment of model pedictive
control for variability and constraint tuning. Ind. Eng. Chem. Res., 46(4):1208—-

1219, 2007.

E. Xu, B. Huang, and E. C. Tamayo. Performance assessment of MIMO control
systems with time-variant disturbance dynamics. Comput. Chem. Eng., 32(9):

21442154, 2008.

J. Yu and S. J. Qin. Statistical MIMO controller performance monitoring. Part I:

Data-driven covariance benchmark. J. Proc. Cont., 18(3—4):277—296, 2008a.

J.Yu and S. J. Qin. Statistical MIMO controller performance monitoring. Part II:

performance diagnosis. J. Proc. Cont., 18(3—4):297-319, 2008b.

J. Yu and S. J. Qin. MIMO control performance monitoring using left/right diag-

onal interactors. J. Proc. Cont., 19(8):1267-1276, 2009.
Q. Yuan and B. Lennox. Control performance assessment for multivariable sys-
tems based on a modified relative variance technique. J. Proc. Cont., 19(3):489—

497, 2009.

Q. Yuan, B. Lennox, and M. McEwan. Analysis of multivariable control perfo-

mance assessment techniques. J. Proc. Cont., 19(5):751-760, 2009.

M. A. Zagrobelny and J. B. Rawlings. Practical improvements to autocovariance

least-squares. In Preparation, 2014a.

M. A. Zagrobelny and J. B. Rawlings. Identification of disturbance covariances

using maximum likelihood estimation. In Preparation, 2014b.

M. A. Zagrobelny, L. Ji, and J. B. Rawlings. Quis custodiet ipsos custodes? Annual

Rev. Control, 37:260—270, 2013.

Y. Zhao, J. Chu, H. Su, and B. Huang. Multi-step prediction error approach for

controller performance monitoring. Control Eng. Pract., 18(1):1-12, 2010.



	Title
	Copyright
	Dedication
	Acknowledgments
	Contents
	 List of Figures 
	 List of Tables 
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Notation
	1.4 Dissertation Overview

	2 Performance Monitoring Background
	2.1 Review of Controller Performance Monitoring
	2.2 MPC and Minimum Variance Control
	2.2.1 Minimum variance as a form of MPC
	2.2.2 Feedback invariant perspective
	2.2.3 Lower bound on minimum variance
	2.2.4 Non-invertible zeros


	3 Performance Monitoring Benchmark and Distribution
	3.1 Key Concepts for LQG Monitoring
	3.2 Performance Benchmark Statistics
	3.2.1 Closed-loop expression for the linear system
	3.2.2 Distribution of stage cost and plant KPI

	3.3 Simulation of Benchmark Distribution
	3.4 Benchmark Calculation with Unmodeled Deterministic Disturbances
	3.5 Benchmark Calculation from the Innovation Form of the Model
	3.6 Benchmark Calculation with Plant Model Mismatch
	3.7 Constrained and Nonlinear MPC Monitoring
	3.8 Appendices
	3.A Steady-state target problem
	3.B Derivation of KPI variance


	4 Disturbance Model Identification Background
	4.1 Review of Disturbance Model Identification
	4.2 Summary of the ALS Method
	4.3 Uniqueness Conditions for the ALS Method
	4.4 Methods to Assess the ALS Results
	4.4.1 Assess the goodness-of-fit of the least-squares problem
	4.4.2 Assess the performance of the redesigned estimator
	4.4.3 Guide to autocovariance plots

	4.5 Appendices
	4.A Proof of equivalence between single column and full matrix ALS techniques


	5 Integrating Disturbance Models
	5.1 Purpose of Integrating Disturbance Models
	5.2 Step Disturbances
	5.3 Ramp Disturbances and Double Integrator Models
	5.4 Cautions on Double Integrator Models

	6 Improvements to the ALS Method
	6.1 Applying the ALS Method to Unobservable and Weakly Observable Systems
	6.1.1 Unobservable systems
	6.1.2 Weakly observable systems

	6.2 Feasible Generalized ALS Technique
	6.3 Examples
	6.3.1 Example: Weakly observable systems and model reduction
	6.3.2 Example: Comparison of the ordinary ALS and feasible generalized ALS methods

	6.4 Appendices
	6.A Necessity of full rank A and C in Theorem 1
	6.B Derivation of formula for S = cov()


	7 Application of the ALS Method to an Industrial Data Set
	7.1 Noise Covariance Estimation
	7.2 Closed-Loop Simulation

	8 Maximum Likelihood Estimation
	8.1 Forming the MLE Problem
	8.2 Existence of the Solution
	8.3 Uniqueness of the Solution
	8.4 Connection to the ALS Technique
	8.5 Solving the MLE Problem
	8.5.1 Optimal innovations MLE method

	8.6 Examples
	8.6.1 Scalar example
	8.6.2 Comparison to the expectation maximization approach
	8.6.3 Example: p = n = 2
	8.6.4 Example: p = n = 5

	8.7 Comparison of the MLE and ALS Approaches
	8.8 Appendices
	8.A Null space of PQ
	8.B Relationship between (Qw,Rv) and P on the boundary
	8.C Rank of the data matrix
	8.D Matrix differentials


	9 Conclusions
	9.1 Contributions
	9.2 Future Work


