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Generalizations of NURBS and their applications in CAGD, and 
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Abstract 

Alireza H. Taheri 

Under the Supervision of Professor Krishnan Suresh 

At the University of Wisconsin – Madison 

 

Non-Uniform Rational B-Splines (NURBS) are one of the most popular curve and surface representations 

today. Besides forming the foundations of computer aided geometric design (CAGD), they are also 

extensively used in a variety of engineering applications including isogeometric analysis (IGA), shape 

optimization, topology optimization, material modeling, reverse engineering, G-code generation, bio-

engineering etc. The focus of this research is to improve the flexibility of NURBS, and particularly explore 

remedies for one of its long-lasting deficiencies, namely its inability to accurately capture discontinuities 

and steep local gradients in certain applications. This shortcoming reveals itself in many applications where 

NURBS is employed for the approximation of sharply varying fields or functions.  

The proposed improvement is achieved by developing various generalizations of NURBS, referred to as 

GNURBS, obtained through either explicit or implicit decoupling of the weights associated with basis 

functions along different physical coordinates. It will be seen that this simple, yet unexplored basic idea 

significantly improves the capability of NURBS in aforementioned applications. The theoretical properties 

of these variations for both curves and surfaces are investigated, and sound mathematical proofs are 

provided. Further, it is shown that these representations can be used for improved construction of certain 

class of curves and surfaces in Computer Aided Geometric Design (CAGD). To better demonstrate the 

behavior and abilities of GNURBS in comparison to NURBS, two interactive MATLAB toolboxes for 

curves and surfaces have been developed and introduced.  
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Nevertheless, the main focus of this thesis is exploring the application of GNURBS in isogeometric analysis 

for improved solution of boundary value partial differential equations. This is achieved by devising a novel 

adaptivity technique in isogeometric analysis, referred to as adaptive w-refinement. A natural extension of 

IGA based on GNURBS is introduced where the weights of the basis functions in geometry and solution 

space are decoupled. Considering the additional unknown control weights in the solution function space as 

design variables, we develop an adaptive algorithm to find these unknowns by solving an unconstrained 

optimization problem. This procedure leads to the optimal rational function space associated with the 

problem under study, while preserving the underlying geometry as well as its parameterization.  

We study the performance of this algorithm on elliptic problems with both smooth and rough solutions. 

Numerical results demonstrate significant improvement of accuracy as well as the convergence rate 

compared to classic NURBS-based IGA. Moreover, the proposed method enables the isogeometric method 

to solve problems, whose closed-form solutions lie in rational space, exactly, revealing a new crucial aspect 

of employing rational splines for analysis. The proposed adaptive w-refinement technique serves as a new 

powerful adaptive technique in IGA, and perhaps a competitive tool with hierarchical splines for alleviating 

the deficiencies of NURBS for analysis.  

The proposed ideas in this thesis open doors to further research in a wide range of applications of NURBS. 

Further, these ideas inspire the possibility of developing additional generalizations of NURBS. These 

additional applications and alternative generalizations are briefly discussed in the last part of this thesis. 
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L2-norm. ...................................................................................................................................................... 31 

Table 2.2. Error of approximating the rapidly varying function in Eq. (2.54) using NURBS versus 1st 

GNURBS in relative L2-norm. .................................................................................................................... 35 

Table 3.1. Assigned heights (zij) to the control points of the resulting degree-elevated isoparametric GR-

Bézier surface.............................................................................................................................................. 52 

Table 3.2. Error of approximating the height function of helical surface in Eq. (3.56) using R-Bézier 
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 Introduction 

 

1.1. Historical background of NURBS 

Non-Uniform Rational B-Splines (NURBS) are perhaps the most popular curve and surface 

representation method in Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM). 

They were first introduced in 1975 by Versprille [1] as rational extension of B-splines. NURBS 

form the backbone of CAD, and are considered the dominant technology for engineering design 

[2]; further, they have also been extensively used in several applications including isogeometric 

analysis (IGA) [3], NURBS-augmented finite element analysis [4], shape optimization [5,6], 

topology optimization [7,8], material modeling [9,10], reverse engineering [11], G-code 

generation [12] etc. 

Recent generalizations of NURBS-based technology include T-splines [13,14] which constitute a 

superset of NURBS, and provide the local refinement properties by allowing for some 

unstructured-ness. An alternative generalization of NURBS, referred to as Generalized 

Hierarchical NURBS (H-NURBS), were introduced in 2008 by Chen et al. [15] by extending the 

idea of hierarchical B-splines to NURBS. Similar to T-splines, H-NURBS primarily bring the 

possibility of local refinement with tensor-product surfaces. A novel shape-adjustable generalized 

Bézier curve with multiple shape parameters has been recently proposed by Hu et al. [16], and its 

applications to surface modelling in engineering has been studied. Most recent class of splines 

which removes the limitations of T-splines are Unstructured-splines (U-splines) that have been 

developed by Thomas [17]. 

Other generalizations of NURBS have also been suggested in the literature, even though these 

representations have not gained popularity. For instance, Wang et al. [18] propose a generalized 

NURBS curve and surface representation with the primary advantage of representing smooth 

surfaces with genus zero using only one surface patch. This also provides a new method to exactly 

generate conic curves and revolution surfaces. Further, it simplifies modelling local features such 

as creases and ruled patches. 

Historically, NURBS were primarily introduced to represent conical shapes precisely. This is the 

critical advantage of NURBS over other polynomial-based classes of splines, and the main reason 
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for its prevalence. This is achieved by the introduction of weights into the basis functions in a 

rational manner. The applications of this rational form, however, is not limited to precise 

construction of conics. According to the literature, there are other applications in CAGD where 

the weights have been employed as additional degrees of freedom for improved flexibility.  

For instance, the weights can be employed as additional design variables for interactive shape 

design so that one can utilize both control point movement, and weight modification to attain local 

shape control [19]. Many studies suggest employing the weights as additional design variables in 

data-fitting for better accuracy [11,20]. Carlson [20] develops a non-linear least square fitting 

algorithm based on NURBS, and discusses multiple methods for solving this problem. His 

numerical results demonstrate significant improvement in the accuracy of approximation 

compared to B-splines, especially in the case of rapidly varying data. This is in fact one of the 

other main advantages of NURBS over B-splines. While smooth piecewise polynomials such as 

B-splines are poor in the approximation of rapidly varying data and discontinuities, employing 

rational functions is an effective tool for addressing this class of problems [20]. In order to avoid 

solving a non-linear optimization problem, Ma [11,21] develops a two-step linear algorithm for 

data approximation using NURBS.  

1.2. Motivation for introducing Generalized NURBS (GNURBS) 

Despite being an effective technique for improving the performance of NURBS, there is a wide 

range of applications where treating the weights as extra design variables is either impossible or 

can be problematic. For instance, Dimas and Briassoulis [22] point out that a bad choice of weights 

in approximation can lead to poor curve/surface parameterization. Piegl [23] mentions that 

“improper application of the weights can result in a very bad parameterization, which can destroy 

subsequent surface constructions”. Further, there are numerous applications where employing the 

weights as additional design variables is essentially impossible. We will later discuss some of these 

applications in CAGD in Chapters 2 and 3, as well as in computational mechanics in Chapter 4.  

The focus of this thesis is to develop new generalizations of NURBS to primarily address this 

shortcoming. These proposed generalizations improve the performance of NURBS, and provide 

an alternative concept for removing the deficiencies of NURBS. It will be shown that, unlike T-

splines, these generalizations are only variations of classic NURBS, and do not constitute a new 

superset of NURBS, making it easy to integrate and deploy them in modern CAD/CAM systems. 



3 
 

1.3. Application of GNURBS in isogeometric analysis 

Isogeometric analysis (IGA) was introduced by Hughes et al. [3] as an innovative numerical 

methodology for the solution of boundary value problems. In contrast to classic Finite Element 

Method (FEM), IGA is more tightly integrated with the geometry, and circumvents the 

requirement for a conventional mesh generation process, via direct communication with CAD 

models. Moreover, it has been shown that, when deployed for analysis, higher-order smooth spline 

bases commonly used in CAGD yield superior results in terms of accuracy and robustness 

compared to standard C0 discretizations. This has been demonstrated in a variety of application 

areas such as structural, fluid, etc. [2].  

While offering many well-known advantages over classic FEM, the ultimate success of the method 

in integrating design and analysis is mainly contingent upon the development of modern spline 

technologies which sufficiently meet the demands of both analysis and design. Extensive research 

has been conducted towards this, and immense progress has been made in various aspects. A major 

difficulty which has attracted significant attention is the inability of piecewise smooth tensor 

product splines in solving problems with irregularities such as sharp layers or singularities. As will 

be discussed further below, the same concept of providing the possibility of local h-refinement in 

splines has been commonly pursued for alleviating this issue by the community so far.  

In the following sections, we provide an overview of these studies. We will later explore an 

alternative powerful technology that isogeometric analysis exclusively provides for addressing the 

above-mentioned problems. The proposed method provides the possibility of enrichment of 

function space without introducing additional basis functions. This novel adaptivity technique, 

which will be referred to as adaptive w-refinement, is established based on the proposed 

generalizations of NURBS.  

1.3.1. Refinement techniques in isogeometric analysis 

One of the most interesting aspects of using splines as the basis for analysis is the possibility of 

exploiting multiple elegant and efficient techniques that they provide for the enrichment of 

function space. Having an initial parameterization of computational model, a variety of refinement 

techniques can be used to improve the accuracy of approximation in IGA. One may classify these 
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techniques into two categories, namely, function space refinement, and control net refinement 

techniques described next.  

Function space refinement techniques attempt to enrich the function space while preserving the 

underlying geometry and its parameterization unchanged. The existing techniques in this class are 

h, p, and k refinements. The details of these algorithms can be found in [2]. While h and p 

refinements are common to both classic FEM and IGA, k-refinement is exclusive to IGA. This 

additional possibility of refinement is one of the key advantages of IGA over classic FEM as it 

provides higher order continuity by performing degree elevation followed by knot insertion in a 

special manner. Finally, we note here that these algorithms may be employed in combination for 

improved performance, usually in an adaptive manner, as in hp-adaptive refinement [24], etc.  

In contrast to function space refinement, the second class of control net refinement adaptively 

modifies an initial parameterization to improve the accuracy of approximation without enrichment 

of the function space while preserving the boundaries of the geometric domain. Strategies in this 

category are usually referred to as r-refinement [25,26]. This refinement is usually posed as an 

optimization problem which aims at minimization of an estimation of the error, obtained using a 

posteriori error estimation technique, by adaptively repositioning the interior control points; see 

e.g. [27]. For a review of these studies please see [25]. There are however many deficiencies in 

this method discussed below which makes it impractical, especially for large scale problems.  

For instance, the above-mentioned procedure leads to solving a heavily constrained non-linear 

optimization problem since the parameterization must remain valid (bijective) throughout the 

optimization process. This involves imposing a large number of constraints to ensure the positivity 

of Jacobian over the whole domain [27]. Another major shortcoming of these methods is that they 

are only applicable to problems which have an interior region and do not apply for problems with 

an arbitrary geometry such as free-form shells or curved beams.  Further, derivation of analytical 

sensitivities does not seem possible; hence, the existing studies, e.g. [27], rely on finite difference 

method which makes the algorithm prohibitively expensive. Finally, to the best of our knowledge, 

none of the existing studies in this class report a substantial improvement in the accuracy or rate 

of convergence.  
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1.3.2. The necessity for unstructured splines 

Despite providing the above-mentioned effective refinement techniques, in contrast to the standard 

nodal basis commonly used in FEA, a multivariate tensor-product spline basis, such as NURBS, 

does not provide a natural possibility for local mesh refinement. In fact, this was soon known as a 

fundamental limitation of IGA since the possibility of adaptive local mesh refinement is critical in 

FEA, and is commonly used to resolve local features such as internal and boundary layers in 

advection dominated flows and stress concentrations in structures [28].  

Eliminating this limitation by modifying the existing spline technologies or developing new 

variations of splines has perhaps been the most active area of research in IGA community over the 

last decade; see, for example, [28–35]. We do not intend to review these studies here; instead we 

refer to [36,37] for a comprehensive review. We suffice to mention here that the primary purpose 

of these studies is to open up the possibility of local h-refinement in splines by allowing for some 

unstructuredness. Various forms of T-splines [31,38–50], subdivision basis functions coupled with 

the truncation mechanism [51–53], LR-splines [54], (truncated) hierarchical B-splines [29,55,56], 

(R)PHT-splines [34,57], and most recently U-splines [17] are some of the popular technologies in 

this category. This concept has shown promising results for resolving local features and achieving 

an improved rate of convergence in problems with poor regularities that contain steep layers or 

singularities [28]. These techniques have also been incorporated with commercial FEM software 

such as Abaqus and LS-DYNA to support real engineering IGA applications [58]. 

In one of these studies, which is of particular interest to the current research, Atroshchenko et al. 

[59] suggest a generalization of IGA by weakening the tight coupling between geometry and 

solution space. This concept, which is referred to as Geometry-Independent Field approximaTion 

(GIFT) by its authors, allows for different spaces for the parameterization of the computational 

domain and approximation of the solution field. They argue that this method inherits the main 

advantage of IGA by preserving the original exact CAD representation of the geometry, such as 

NURBS, but allows for pairing it with an approximation space, such as T-splines, LR-splines, 

(truncated) hierarchical B-splines, or PHT-splines, which is more suitable/flexible for analysis 

[59]. In particular, it offers the advantage of adaptive local refinement without the need to 

reparametrize the domain, and therefore without losing the link with the CAD model. They study 

the performance of this method with different choices of geometry and field spaces and 
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demonstrate that, despite the failure of the standard patch test, the optimum convergence rate is 

achieved for non-nested spaces [59]. 

1.3.3. Adaptive w-refinement in GNURBS-based IGA 

Despite being an effective technique for improving the performance of NURBS in a variety of 

applications in CAGD, considering the literature of IGA, the application of NURBS as well as 

other rational splines surprisingly seems to be merely limited to precise representation of conical 

shapes in this area. In this thesis, by taking inspiration from the concept of GIFT [59], we study 

the application of GNURBS for improved solution of boundary value problems using IGA. It will 

be seen that this proposed refinement technique provides an alternative powerful tool for removing 

the deficiencies of NURBS for analysis. Detailed discussion of the proposed refinement technique 

will be provided in Chapter 4.  

1.4.  Organization of the thesis 

The remainder of this thesis is organized as follows: in Chapter 2, we introduce two different 

generalizations of NURBS for parametric curves, obtained via explicit or implicit decoupling of 

the weights along different physical coordinates, and develop their theoretical properties. We 

explore some of the applications of GNURBS curves in CAGD in this chapter, and compare their 

performance against classic NURBS. A developed interactive MATLAB toolbox for GNURBS 

curves, referred to as GNURBS-Lab will also be introduced here. 

In Chapter 3, similar generalizations of NURBS are developed for bi-variate parametric surfaces. 

Their theoretical properties are discussed and a few applications of these representations in the 

context of CAGD are investigated. These generalizations will form the basis for developing 

adaptive w-refinement which will be discussed in the proceeding chapter. An extension of 

GNURBS-Lab for surfaces, named GNURBS3D-Lab, has also been developed which will be 

introduced briefly at the end of this chapter.  

In Chapter 4, the application of GNURBS for improved solution of boundary value partial 

differential equations is investigated. This is achieved by developing a novel adaptive procedure 

in GNURBS-based IGA, referred to as adaptive w-refinement. We study the performance of this 

algorithm on elliptic problems with both smooth and rough solutions. Moreover, the performance 

of the proposed method in solving problems whose closed-form solutions lie in rational space is 
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investigated. It will be seen that the proposed adaptive w-refinement technique serves as a new 

powerful adaptive technique in IGA, and perhaps a competitive tool with hierarchical splines for 

alleviating the deficiencies of NURBS for analysis.  

Finally, Chapter 5 summarizes the main findings of this thesis. Moreover, further potential 

applications of GNURBS as well as other possible generalizations of NURBS are elaborated in 

this chapter.  
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  Generalizations of NURBS curves1 

 

In this chapter, we introduce two different generalizations of NURBS curves obtained by 

decoupling of the weights along physical coordinates in different manners. The theoretical 

properties of these representations in comparison to classic NURBS are thoroughly discussed. 

Further, the application of these generalizations for improved approximation of different class of 

functions is studied.  

 

2.1. Generalized NURBS Curves: non-isoparametric form via explicit decoupling of the 

weights 

We recall that the equation of a NURBS curve is parametrically defined as 

 ( ) ( ),

0

,
n

i p i

i

R a b  
=

=  C P   (2.1) 

where
 iP  are a set of 1n +  control points and , (i pR  ) are the corresponding rational basis functions 

associated with ith control point defined as 

 ( )
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=
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  (2.2) 

where iw  are the weights associated with control points, and , ( )i pN   are the B-spline basis 

functions of degree p , defined on a set of non-decreasing real numbers 0 1{ , , ..., }n p   +=Ξ  called 

knot vector. , ( )i pN   is recursively defined as: 
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( ) ( ) ( )
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− + −
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  (2.3) 

 
 

1 The presented materials in this chapter have been published in Engineering with Computers journal, ref. [78] 
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The NURBS curve in Eq. (2.1) is a vector equation which, assuming [ ]T

i i i ix y z=P , could be 

written in the following expanded form in 3D space  

 

( )

( )

( )

( ),

0

in

i p i

i

i

x x

y R y

zz



 


=

   
   

=   
   

  

   (2.4) 

As observed in the above equation, NURBS curves are isoparametric representations where all 

the physical coordinates are constructed by linear combination of the same set of scalar basis 

functions in parametric space. This is the case for all the other popular CAGD representations, e.g. 

all different types of splines; and ensures significant properties such as affine invariance and 

convex hull which are of interest in geometric modelling.  

We introduce here the concept of Generalized Non-Uniform Rational B-Splines (GNURBS) by 

the extension of the above equation as follows 
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   (2.5) 

where ( ) ( ) ( )
, , ,

[ , , ]
i p i p i p

x y z TR R R    is now a vector set of basis functions which is defined as 
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N w N w

R

R

N wR





  

  


= = =

  
  
   =
  
     
  

  (2.6) 

where ( ), ,x y z

i i iw w w  is the set of coordinate-dependent weights associated with 
thi control point. 

Denoting the vector set of basis functions in Eq. (2.6) by ( ) ( ) ( ) ( )
, , ,, [ , , ]

i p i p i p

x y z T

i p R R R   =R , 

the equation of a GNURBS curve can be written in the following compact form 

 ( ) ( ),

0

,
n

i p i

i

a b  
=

=  C R P   (2.7) 

where  denotes Hadamard (entry-wise) product of two vector variables.  
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Comparison of the above equation with that of classic NURBS shows that the main difference of 

the proposed generalized form is assigning independent weights to different physical coordinates 

of control points. As can be seen, the above leads to a non-isoparametric representation. This 

modification results in loss of properties such as strong convex hull and affine invariance. 

However, it will be established that GNURBS are only disguised forms of higher-order classic 

NURBS, i.e., all the properties of NURBS can be recovered through a suitable transformation, 

thus ensuring a strong theoretical foundation. In the following section, we develop the theory of 

GNURBS, and discuss how the properties of this non-isoparametric representation compare to 

those of NURBS.  

2.1.1. Theory and properties 

It can be easily shown that many properties of NURBS curves elaborated in [19] such as end-

points interpolation, continuity, etc. are similarly satisfied in GNURBS. However, when treated in 

the direct form, some of the NURBS properties will be modified or even violated. We first discuss 

these, and later show how a simple transformation can be applied to recover all NURBS properties. 

1. Affine invariance: Due to coordinate-dependence of the basis functions in GNURBS, 

applying an affine transformation directly to the control points will not result in the same 

curve as applying the same transformation to the curve; hence, this property is not satisfied.  

2. Strong convex hull: A GNURBS curve need not lie in the convex hull of its control points. 

We demonstrate this graphically in Figure 2.1 for a cubic curve ( 3p = ) constructed on the 

knot vector  0 1 9, ,...,  = =Ξ  1 2
3 30,0,0,0, , ,1,1,1,1 . Figure 2.1(a) shows a B-spline 

curve and a NURBS curve with    0 5,..., 1,5,1,1,1,1w w =  constructed using the same 

control polygon. As observed, by increasing 1w  the middle knot span 4 5[ , )    always 

lies within the convex hull of control points  1 2 3 4, , ,P P P P . Figure 2.1(b) illustrates an 

example where the same knot span of a cubic GNURBS curve constructed with the same 

control polygon but a decoupled set of weights    0 5,..., 1,5,1,1,1,1x xw w =  and 

   0 5,..., 1,1,1,1,1,1y yw w =  exits the convex hull of its control points. However, we prove 

that it satisfies a weaker condition referred to as “axis-aligned bounding box” property 

described below. 
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  (a) 

 
(b) 

Figure 2.1. (a) A NURBS knot-span lies inside the convex hull of its control points. (b) A GNURBS knot-

span need not lie inside the convex hull of its control points. 

The function spaces corresponding to Figure 2.1 are depicted in Figure 2.2. Observe that 

the function space associated with the NURBS curve in Figure 2.1(a) is identical for both 

x and y physical components, i.e. (R  ) . Nevertheless, in the case of GNURBS curve 

shown in Figure 2.1(b), the x-coordinate is constructed using the rational set of basis 



12 
 

functions (R  ) , while the y-coordinate is constructed using the set of B-spline basis 

functions (N  ) .  

     
Figure 2.2. Cubic function spaces corresponding to Figure 2.1: B-spline function space N(ξ), and NURBS 

function space R(ξ) with {w0, … , w5 }={1,5,1,1,1,1}. 

3. Axis-aligned bounding box (AABB): Every GNURBS knot span lies within the axis-

aligned bounding box of its corresponding control points. That is, if  )1,i i   + , then 

( )C  lies within the bounding box of the control points  ,...,i p i−P P . 

Proof: 

Eq. (2.5) can be easily written in the following form: 

 

( )

( )

( )

( ) ( ) ( )
, , ,

0 0 0

0 0

0 0

0 0
i p i p i p

in n n
x y z

i

i i i

i

x x

y R R y R

zz



   


= = =

       
       

= + +       
       

     

     (2.8) 

Accordingly, Eq. (2.7) could be written as 

 ( ) ( ) ( ) ( ) ,x y z a b    = + +  C C C C   (2.9) 

where ( )x C , ( )y C  and ( )z C  are simply classic NURBS curves. From a geometric 

standpoint, each of these curves is the projection of the original non-isoparametric curve 

onto the corresponding physical axis. The following figure shows a graphical 

representation of above equations for a 2D cubic curve constructed over the knot vector

 1 2
3 30,0,0,0, , ,1,1,1,1=Ξ .  
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Figure 2.3. Graphical representation of the bounding box property of a 2D cubic GNURBS curve with 

{wx
0, … , wx

5}={1,5,1,1,1,1} and {wy
0, … , wy

5}={1,1,1,1,1,1}. 

4. Since each of these curves is a classic NURBS curve, they satisfy the convex hull property. 

Therefore, the middle knot span of the curve which is marked in Figure 2.3, must lie within 

the convex hulls of its corresponding control points on both projected curves. That is, if 

)1 2,
3 3

 


, then (x  )C  lies within the convex hull of the control points  1 4,...,x x  

which is the region between the two vertical lines in Figure 2.3. Similarly, (y  )C  lies 

within the convex hull of the control points  1 4,...,y y  which is the area between the two 

horizontal lines in this figure. Consequently, ( )C  is contained in the intersection of these 

two convex hulls, which is the rectangular area shown in Figure 2.3, referred to as the 

bounding box of  1 4,...,P P .  

5. Local Modification: Similar to NURBS, one can show that, in GNURBS, if a control point 

iP  is moved, or if any of the weights ( , , )d
i d x y zw =  is changed, it affects only the curve 

segment over the interval 1[ , )i i p  + + . However, unlike NURBS, changing the weights will 

only affect the parameterization of the curve along the corresponding physical coordinate

d , while the curve parameterization in the other directions will be preserved. This is, in 
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fact, the key difference between GNURBS and NURBS which increases control. Assuming 

1[ , )i i p   + + , if 
d

iw is increased (decreased), the curve will move closer to (farther from) 

iP . Further, for a fixed  , a point on ( )C  moves along a horizontal (vertical) straight 

line as a weight ( )x y

i iw w  is modified; see Figure 2.1(b). This can be easily concluded from 

the proposed decomposition in Eq. (2.8) and the properties of classic NURBS curves.  

6. Variation Diminishing Property: Due to loss of convex-hull property, this property is also 

not preserved in the direct form of GNURBS; that is, since the curve does not need to lie 

within the convex hull of its control points, there can be a plane (line in 2D) which 

intersects the curve multiple times without having any intersections with the control 

polygon.  

7. NURBS Inclusion: If the weights in all directions are equal for each control point, then the 

GNURBS curve reduces to a NURBS curve. 

Having discussed the properties of GNURBS in the direct form, we now develop a transformation 

of GNURBS into an equivalent NURBS of a higher order. Towards this end, we first review two 

lemmas on the multiplication of Bézier, as well as B-spline functions. The proofs of these lemmas 

can be found in [60]. 

Lemma 1: 

Let ( )bf  and ( )bg  be two Bézier functions of degree p and q, respectively. Their product 

function ( )bh  is a Bézier function of degree p+q which can be computed as [61] 

 ( )
0

,( ) ( ) ( )
p q

b b b

k

b

k p q kh f g B h   
+

=

+= =   (2.10) 

where ( ),k p qB +  denotes kth Bézier basis function of degree p+q, and 

 
min( , )

max(0, )= −

−

  
  

−  

+ 
 
 

= 
p k

b

k

j k q

j k jh

p q

j k j
f g

p q

k

   (2.11) 

End of Lemma 1 
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Lemma 2: 

Let ( )f   and ( )g   be two univariate B-spline functions of degree p and q, respectively. Their 

product function ( )h   is a B-spline function of degree p+q, i.e. 

 ( )
0

,( ) ( ) ( )
hn

k

k p q kh f g N h   
=

+= =   (2.12) 

where kh  are the ordinates of the product B-spline function.  

End of Lemma 2 

Specific to Lemma 2, numerous algorithms have been proposed in the literature for evaluating the 

ordinates; see [62–65], for instance. In this paper, we will use a straightforward algorithm proposed 

by Piegl and Tiller [61] including three steps of 

- Performing Bézier extraction 

- Computation of the product of Bézier functions 

- Recomposition of the Bézier product functions into B-spline form using knot removal. 

The product of Bézier functions in the second step can be computed analytically employing 

Lemma 1. Further, one can construct the knot vector of (h  )  as described in [61]. A more 

advanced algorithm referred to as Sliding Windows Algorithm (SWA) recently proposed by Chen 

et al. could be found in [63].  

The decomposition in Eq. (2.8) together with the above two Lemmas lead to the following 

interesting theorem on the equivalence of NURBS and GNURBS. 

Theorem: Every GNURBS curve of degree p and dimension m  can be transformed exactly into a 

NURBS curve of degree m p .  

Proof. We provide the proof here for a 2D curve, however, it can easily be extended to any higher 

dimension. The proof relies on the lemma that the summation of two NURBS curves is a higher 

order NURBS curve [61]. We rewrite Eq. (2.8) for a 2D curve in the following form: 
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  (2.13) 

Extracting the common denominator leads to: 
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 (2.14) 

As can be observed, evaluation of Eq. (2.14) involves performing the multiplication of univariate 

B-spline functions. According to Lemma 2, the product functions in Eq. (2.14) are B-spline 

functions of degree 2p. Therefore, we can obtain the equivalent higher order NURBS 

representation of Eq. (2.13) in the following form 
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where 
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in which ( , , )i i iX Y W  are the coordinates and weights of the equivalent higher order NURBS curve, 

which can be obtained using the algorithm described in Lemma 2, and ˆ 1n +  is the number of 

control points.  

End of proof 

In the special case of Rational Bézier (R-Bézier) curves, one can obtain straightforward analytical 

expressions for the coefficients of the equivalent higher order R-Bézier curve in Eq. (2.15). For 

this case, Eqs. (2.15) and (2.16) can be written as 

 ( ),2

2

0

( )

( )
i p

p
i

i i

X

Y

x
R

y




 =

 


 
= 




 
   (2.17) 

where 
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Using relations (2.10) and (2.11) in Lemma 1, the weights and control points in these equations 

are obtained as 
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where 
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−  =
 
 
 

.  

Figure 2.4 shows a quadratic GNURBS curve, and its equivalent quartic NURBS curve obtained 

using the above theorem.  

 
Figure 2.4. Equivalence of a 2D quadratic GNRUBS curve with {wx

0, … , wx
3}={1, 2.5, 1.5, 3} and {wy

0, 

… , wy
3}={1, 1, 2.5, 2}, with a quartic NURBS curve with {w0, … , w7}={1.00, 1.75, 2.30, 3.19, 3.81, 

4.04, 5.25, 6.00}. 
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It needs to be pointed out that, despite the apparent violation of some properties of NURBS, the 

above theorem establishes that GNURBS are merely disguised form of higher order classic 

NURBS, thereby inheriting all the properties of NURBS indirectly. For instance, as can be seen in 

Figure 2.4, the curve violates the global convex-hull of the original control polygon of GNURBS, 

however, it does lie within the convex-hull of the control polygon associated with its equivalent 

higher order classic NURBS.  

2.1.2. Partial decoupling for 3D curves 

One can easily extend the above theorem and formulation to 3D curves with independent weights 

along all three physical directions. However, a more practical case, which will be the emphasis for 

the rest of this chapter, is to perform partial decoupling of the weights. In particular, in 3D, one 

can use the same set of weights in x and y directions, denoted by 
xyw , and a different set of weights 

in z direction 
zw . Accordingly, Eq. (2.5) could be written as  
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where  
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  (2.21) 

Observe that owing to this decoupling of the in-plane and out-of-plane weights, unlike in classic 

NURBS, one can now freely manipulate the weights along z direction, for instance, without 

perturbing the geometry or parameterization of the underlying curve in x-y plane. For better insight, 

we provide a graphical visualization of designing a 3D curve with an in-plane circular shape in 

Figure 2.5.  
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Figure 2.5. A 3D GNURBS curve with an underlying precise circular arc: {wxy
0, … , wxy

3}={1, 0.8536, 

0.8536, 1} and {wz
0, … , wz

3}={1, 1, 1, 1}. 

As can be clearly seen in Figure 2.5, treating the independent set of out of plane weights can 

provide better flexibility and control. As a simple example, one can use this representation as an 

intermediate interactive shape design tool, and finally convert it to a higher order classic NURBS, 

if desired, to recover affine invariance and other properties. In this study, we will focus on 

demonstrating superior approximation abilities of this representation in certain applications where 

a height function, field or set of data points need to be approximated over an underlying 2D curve.  

To derive the equivalent higher order NURBS representation of (2.20), we rewrite this equation in 

the following form 
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Following a very similar procedure as for 2D curves, we can easily derive the expressions for the 

equivalent higher order NURBS curve to the generalized form in Eq. (2.20) as 
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where 
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( , , , )i i i iX Y Z W  in these equations can be obtained using a similar algorithm as for 2D curves in the 

following form  
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where 
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. 

It should be noted here that the properties of classic NURBS which are lost in this proposed 

generalization are not critical or even of interest in many applications of NURBS. Nevertheless, 

in some applications, these properties can be crucial. In order to make GNURBS applicable to 

such applications, we develop an alternative variation of NURBS which can be directly derived 

from the generalization proposed above.  
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2.2. Generalized NURBS curves: isoparametric form via implicit decoupling of the weights  

Note that the equivalent higher order NURBS representation in Eq. (2.15) or (2.23) itself provides 

another variation of NURBS which can be directly employed as another alternative to NURBS 

with better flexibility in some applications.  

In order to clarify how these equations provide additional flexibility than classic NURBS, we first 

derive a more generic form of these equations via an alternative approach using an extension of 

order elevation technique.  

Assume a 2D R-Bézier curve of degree p is given as follows  
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  (2.27) 

In order to elevate the degree of this curve by q, we can simply multiply both numerator and 

denominator of this equation by any arbitrary expression in the following form 
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Recalling Lemma 1, we can obtain the higher order R-Bézier curve with q degree elevations as 
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where 
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in which n̂ p q= +  and ( ), ,i i iX Y W  can be obtained using Eqs. (2.31) and (2.32) 
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where ij

p q

j i j

p q

i



  
  

−  =
+ 

 
 

. 

Observe that this procedure can be seen as a trivial extension of the classic order elevation 

techniques in the literature [19,66]. In fact, one can simply recover the common order elevation 

algorithm by assigning 1,z

iw i=   in Eq. (2.28). We will refer to this procedure as generalized 

order elevation hereafter. Now suppose we intend to add another dimension to the representation 

in Eq. (2.29) in an isoparametric manner. Again, this extra dimension can be viewed as the height 

function of a parametric curve in 2D, or may represent a field or set of data points which needs to 

be approximated over a 2D curve. For this purpose, we extend Eq. (2.29) as 
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   (2.33) 

It is interesting to notice that, although Eq. (2.33) apparently seems to be a classic R-Bézier curve, 

it provides additional flexibility. Observe that in the above procedure,
z

iw  are arbitrary variables 

which can be freely chosen without perturbing the geometry or parameterization of the underlying 

curve in x-y plane.  

In order to better demonstrate the effect of these weights on the behavior of GNURBS curves, we 

generate a 3D quartic GR-Bézier curve by performing the above process with 2q =  on a quadratic 

R-Bézier circular arc and assigning the heights of control points as shown in Figure 2.6.  
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(a) 

 

(b) 

Figure 2.6. A 3D isoparametric GNURBS curve with (a) {wz
0, w

z
1, w

z
2}={1, 1, 1}, and (b) {wz

0, w
z
1, 

wz
2}={1, 2.5, 1}. 

The obtained results with    1 2 3 1,1,1z z zw ,w ,w = (classic order elevation) and  1 2 3

z z zw ,w ,w =  

 1,2.5,1  are represented in Figure 2.6(a) and (b), respectively. As observed, the heights of control 
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points in both cases are identical. For more clarity, the size of control points is plotted proportional 

to their weights. Further, the corresponding sets of basis functions are plotted in Figure 2.7.  

Comparing Figure 2.6(a) and (b), it can be noticed that by increasing 2

zw , the weights of the three 

interior control points are increased which results in out of plane deformation of the curve as 

depicted in Figure 2.6(b). However, as this figure shows, this leads to automatic in-plane re-

arrangement of control points in such a manner that the in-plane geometry of the curve (as well as 

its parameterization) remains unchanged.  

 

Figure 2.7. The function spaces corresponding to GNURBS curves in Figure 2.6. 

The above algorithm can be extended to NURBS in a straightforward manner using a similar three 

step algorithm explained in Lemma 2. That is, Eq. (2.33) also holds true for NURBS with the 

rational basis functions defined as 
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We here note that while the variables
z

iw in Eq. (2.33) or (2.34) can be directly treated as design 

variables for improved flexibility, the physical meaning and local support of the weights in this 

variation are lost. Hence, it might not be suitable for being used as an interactive shape design tool. 

However, as will be shown in the next section, it can still be effectively employed as an enhanced 

tool for approximation purposes where the decision on the optimal values of the weights is made 

by a numerical algorithm.  
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2.3. Applications 

The proposed generalizations of NURBS in Eqs. (2.20) and (2.33) provide alternative tools to 

NURBS which can be useful in certain applications such as IGA. In this section, we investigate 

function approximations as a simple application in the context of CAGD. Hereafter, we will 

persistently refer to Eq. (2.20) as the first generalization of NURBS or non-isoparametric 

GNURBS, while we will refer to Eq. (2.33) as the second generalization of NURBS or 

isoparametric GNURBS. 

Both these variations primarily provide the common and significant possibility of treating the out-

of-plane weights as additional design variables, without perturbing the underlying geometry or its 

parameterization. However, the difference between them should be clear since the first form is 

obtained via explicit decoupling of the weights along different physical coordinates resulting in a 

non-isoparametric representation with the properties elaborated in Section 2.1.1, while the second 

variation is obtained by implicit decoupling of the weights within the isoparametric set of basis 

functions; thereby preserving the properties of NURBS. As discussed above, the generation of 

these implicitly decoupled set of weights in the second variation requires order elevation a priori. 

Finally, we emphasize that although these new representations finally lie in the NURBS space, 

obtaining their results in certain class of applications by directly making use of NURBS does not 

seem possible.  

2.3.1. Approximation over curved domains 

There are various applications where the data or a function needs to be approximated over a 

parametric curved domain. For instance, there are numerous studies in the literature for the 

approximation of scattered data or functions on curved surfaces; see [67,68] for a rigorous review. 

A similar problem arises in other applications such as modelling helical curves and surfaces [69–

71], treating the non-homogenous essential boundary conditions in IGA [72–75] etc. In all these 

applications the limitation of preserving the underlying parameterization applies. Therefore, 

employing the weights as additional design variables is disallowed. In this section, we investigate 

the performance of GNURBS versus NURBS in this class of problems for two cases of 

approximating a smooth function as well as a rapidly varying one.   
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2.3.2. Least-square minimization using NURBS and GNURBS 

Suppose an in-plane circular arc is given in the following parametric form 

 ( ) cos( ),sin( ) 0 1
2 2

r
 

   
 

=   
 

C   (2.35) 

where r  is the radius of the circular arc. Eq. (2.35) can be precisely constructed using NURBS. 

Now, assume a height function ( )z   needs to be approximated over this arc with minimum error. 

This can be easily posed as a least-square approximation problem leading to optimal accuracy in 

L2-norm. Assuming  ( , , ) :s s s sx y z s →   is the set of ns collocation points, the error function 

f to be minimized is defined as 
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where ˆ( )z   is the approximated NURBS function, s  are the corresponding collocation points in 

the parametric space, 
s
 is the set of indices of non-zero basis functions at s and ( )s sz z = . 

In the case of NURBS, the only unknowns to consider are control variables Lz  and the problem 

leads to a linear least square problem in the following matrix form 

 

0 0 0 0 0

0

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

s s s n s s

s

s s

n s s n s n s n n s

R R R R z R

z

R R R R z R

    



    
 

    
    

=    
    
    

    (2.37) 

which can be solved for the 1n +  unknowns  0 ,..., nz z=λ  by proper choice of collocation points. 

To improve the accuracy of approximation, invoking the proposed variations of NURBS, we can 

treat the out-of-plane weights 
z

iw  as extra design variables without perturbing the geometry or 

parameterization of the underlying precise circular arc. We may refer to these variables as control 

weights hereafter. With the first generalization in Eq. (2.20), the vector of design variables 

becomes  0 0,..., , ,...,z z

n nz z w w=λ , where the positivity constraints on control weights ( 0,z

iw i 

) are often desired to be satisfied for numerical stability. Considering the new set of design 

variables, Eq. (2.37) now becomes a non-linear least-square problem which can be solved using 

any of the existing solvers such as Levenberg-Marquardt.  
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To avoid solving a non-linear problem, one can alternatively employ a two-step algorithm 

developed by Ma [11,21], which leads to two separate linear systems of equations; a homogenous 

system which yields the optimal control weights and a non-homogenous one that yields the 

corresponding optimal control variables. The development of this algorithm for GNURBS is 

provided next. 

Employing the concept of homogeneous coordinates, the third component of GNURBS curve in 

Eq. (2.20) can be written in the following matrix form 
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where the vector variables are defined as 
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We may refer to 
w

iz  in this equation as weighted control variables. Also, we have dropped the 

subscript p in denoting the B-spline basis functions, for brevity.  Eq. (2.38) can be written at the 

collocation points in the following form  

 ( ) ( ( )T w T z

s s sz s  = )  N z N w   (2.40) 

Denoting the set of data points and B-spline basis functions in the matrix forms of Eqs. (2.41) and 

(2.42), respectively 

  1,..., nsZ diag z z=   (2.41) 
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Eq. (2.40) can be written in the following compact form 

 w zN Z N=z w   (2.43) 

which can be re-written as  
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where 
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Eq. (2.44) is an over-determined system of equations and now represents a linear least-square 

problem. Multiplying the sides of this equation by AT  yields  
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It is possible to separate the control weights from the control variables by eliminating the lower 

left element of Eq. (2.46), which yields 
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where 

 2 1( )( ) ( )T T T TM N Z N N Z N N N N Z N−= −   (2.48) 

According to Eq. (2.47), the control weights are now decoupled from the control variables and can 

be obtained via solving the following homogeneous system of equations   

  
1

0z

n
M


=w   (2.49) 

Further details on different algorithms for solving Eq. (2.49) and extracting the optimal real or 

positive weights can be found in [21]. Once the unknown weights are found, the optimal control 

variables can be subsequently obtained via solving Eq. (2.43).  

With the second generalization in Eq. (2.33), however, the development of a linear algorithm does 

not seem easily possible. Therefore, a non-linear least square algorithm needs to be used to find 

the optimal set of design variables. Further, since the derivation of analytical Jacobian matrix 

becomes complicated in case of having internal knots, we limit our study to GR-Bézier. The vector 

of design variables for this simplified case becomes  0 0,..., , ,...,z z

n qZ Z w w=λ  where n p q= + . 

The imposition of the least square problem is quite straightforward; hence, we do not present it 

here. The derivation of Jacobian matrix components with respect to control weights, however, is 

non-trivial and requires evaluating the sensitivities using the following expressions  
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 The initial conditions for solving the least square problem are specified as follows 

 0

1 1

0,0,...,0,1,1,...,1

n q+ +

  
=  
  

λ   (2.51) 

As previously discussed, by changing 
z

iw  during the optimization process, the in-plane coordinates 

of control points also vary at each iteration. However, since the in-plane geometry and 

parameterization are always fixed, one may only re-evaluate and update these coordinates after the 

termination of the optimization process according to the obtained optimal set of isoparametric 

basis functions. It is important to note that this algorithm yields the combination of optimal weights 

and the corresponding arrangement of control points which results in the best approximation over 

a given parameterization. To our knowledge, no such investigation has been reported in the 

literature thus far.  

In the next section, we approximate various height functions over the circular arc in Eq. (2.35) 

modelled precisely with NURBS. In all cases, the interpolating end control points are prescribed 

to lie on the height function. Further, we employ 100 uniformly distributed sample points in the 

parametric space for setting up the least square problem. The numerical implementations are 

performed in MATLAB. Finally, the relative L2-norms of the error are calculated using the 

following relation  
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ˆ(z z d
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z d
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  (2.52) 

where the numerical integrations are calculated using Gaussian quadrature.  

2.3.3. A smooth function: helix modelling  

As the first numerical example, we consider approximating a smooth height function as 
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  (2.53) 

over the parametric curve in Eq. (2.35). In the above equation,   is the center angle of the circular 

arc in x-y plane and b is a constant. Eq. (2.53) together with (2.35) represent a segment of a helical 

curve, shown in Figure 2.8 for 1b = , and is a classic problem in geometric modelling. We here 

demonstrate how the proposed variations of NURBS can be useful for improved modelling of such 

type of problems.  

 

Figure 2.8. A smooth helical curve. 

Helical curves and surfaces do not have an exact representation in terms of polynomials or rational 

polynomials [76]. A high accuracy of approximation by NURBS using the minimal number of 

control points is of interest, and will make the helix more convenient to use in current CAD/CAM 

systems [70]. There is a large number of studies in the literature addressing this problem using R-

Bézier, NURBS or other parametric representations; see e.g. [69–71,77] for a review of these 

studies. Having examined these studies, it can be found that there are several considerations for a 

suitable approximation of helix such as the accuracy of normal angle, curvature, torsion and height, 

besides meeting certain geometric conditions at the end points of each segment [70]. However, we 

only focus here on approximating the height function with maximum accuracy, for simplicity. 

Further, it is desirable that the fitting curve precisely lies on the cylinder surface of the helix [71].  



31 
 

Since this is a geometric modelling problem, the properties of NURBS are important to be 

preserved for this particular application. Therefore, it is an ideal candidate for employing the 

second variation, i.e. isoparametric GR-Bézier, as the obtained optimal design is directly in the 

NURBS space. The obtained results using the above-discussed algorithm for different degrees of 

basis functions are presented in Table 2.1 for comparison.  

Table 2.1. Error of approximating the helix height function using R-Bézier versus GR-Bézier in relative 

L2-norm. 

Curve type 
Degree

( )n p q= +  
No. of control 

variables 

No. of control 

weights 
Error Error ratio 

R-Bézier 
2 3 

0 2.41E-2 
1.0 

2nd GR-Bézier 0 2.41E-2 

R-Bézier 
3 4 

0 1.50E-4 
1.0 

2nd GR-Bézier 2 1.50E-4 

R-Bézier 
4 5 

0 1.50E-4 
121.9 

2nd GR-Bézier 3 1.23E-6 

R-Bézier 
5 6 

0 2.30E-6 
209.1 

2nd GR-Bézier 4 1.10E-8 

 

As the table shows, the accuracy of approximation by GR-Bézier over R-Bézier increasingly 

improves by elevating the degree, as a larger number of control weights are added to the design 

space. In case of 3p = , however, no improvement in the accuracy is gained. This implies that the 

optimal values of the control weights for this case are equal to 1; that is, cubic R-Bézier obtained 

via order elevation is coincidentally optimal for the approximation of this height function.  

The initial and optimal sets of basis functions for approximation with different degrees are 

represented in Figure 2.9. As can be observed in this figure, in both cases, the optimal sets of basis 

functions are only slightly different than the initial ones; however, this small deviation results in 

dramatic improvement of the accuracy of approximation as reported in Table 2.1.  
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 (a)  (b) 

Figure 2.9. Initial and optimal basis functions for approximating the helix height function using 2nd GR-

Bézier with degree (a) n = 4 and (b) n = 5. 

We remind that in the case of isoparametric generalization (2nd GR-Bézier), the basis functions are 

identical along all physical coordinates. As previously explained, this leads to automatic re-

arrangement of the in-plane coordinates of control points, depicted in Figure 2.10, in such a manner 

that the in-plane geometry and its parameterization remain unchanged.   

      
(a)                                                                            (b) 
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(c)                                                                             (d) 

Figure 2.10. Initial and optimal control polygons for approximating the helix height function with (a) R-

Bézier of degree n = 2, and 2nd GR-Bézier of degree (b) n = 3 (c) n = 4 and (d) n = 5. 

We also investigate the performance of GNURBS compared to NURBS with respect to 

refining the knot sequence. For this experiment, we use the first variation (non-isoparametric), 

for simplicity and as it provides better flexibility.  

 

Figure 2.11. Convergence rate of 1st GNURBS versus NURBS for approximating the helix height 

function. 
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The obtained results for 2p =  are represented in Figure 2.11. As the figure shows, by including 

the control weights to the design space, the convergence rate is improved from 3.3 to 4.3, resulting 

in dramatic improvement in the accuracy especially when larger numbers of control points are 

employed. However, as previously mentioned, in the case of GNURBS there is an extra 

computational cost for obtaining the optimal weights via solving an additional homogenous system 

of equations.  

2.3.4. A rapidly varying function 

As the second example, we investigate the performance of the proposed variations of NURBS in 

capturing rapidly varying functions. We consider the problem of approximating a rapidly varying 

function as in Eq. (2.54) over the same circular arc 

 ( )
2 2( 0.5) ( 0.8)( 1 , ( )

2
z e e    
   − − − −) = + + =   (2.54) 

which is plotted in Figure 2.12 for 20 = .  

 

Figure 2.12. A rapidly varying function over a circular arc. 

Employing the first proposed variation of NURBS, we approximate the height function using 

different degrees of basis functions. The obtained results are presented in Table 2.2. All these 
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models are obtained by performing uniform knot insertion over an initial R-Bézier arc and 

therefore possess maximal continuity.  

Table 2.2. Error of approximating the rapidly varying function in Eq. (2.54) using NURBS versus 1st 

GNURBS in relative L2-norm. 

Curve type Degree (p) 
No. of control 

variables 

No. of control 

weights 
Error Error ratio 

NURBS 
2 18 

0 6.86E-2 
9.23 

1st GNURBS 18 7.43E-3 

NURBS 
3 19 

0 5.35E-2 
9.80 

1st GNURBS 19 5.46E-3 

NURBS 
4 20 

0 6.27E-2 
14.31 

1st GNURBS 20 4.38E-3 

NURBS 
5 21 

0 5.48E-2 
40.60 

1st GNURBS 21 1.35E-3 

 

According to the table, the accuracy of approximation using NURBS does not change noticeably 

by elevating the degree. On the other hand, the obtained results with GNURBS persistently 

improve by elevating the degree, which reveals the superiority of approximation of GNURBS over 

NURBS in capturing rapidly varying fields.  

The approximation results for 5p =  are plotted in Figure 2.13. The figure clearly shows the 

improvement of approximation in the case of GNURBS especially in the vicinity of existing sharp 

transitions in the field.  
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(a) (b) 

Figure 2.13. Approximation of the rapidly varying function with quintic (a) NURBS and (b) 1st 

GNURBS. 

Further, the corresponding basis functions are represented in Figure 2.14. It is interesting to note 

that, unlike the previous case of approximating a smooth function, there is a significant change 

between the initial and optimal basis functions here. As can be seen, this difference is more 

substantial for the basis functions effecting the behavior of the curve in the vicinity of existing 

sharp local gradients, implying that the corresponding weights tend to take the extreme values in 

these regions. 
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(a) (b) 

Figure 2.14. (a) Initial, and (b) optimal sets of quintic basis functions associated with Figure 2.13. 

 

2.4. MATLAB Toolbox: GNURBS Lab 

In order to facilitate understanding the behavior of GNURBS and further abilities they provide, a 

comprehensive interactive MATLAB toolbox, GNURBS Lab, has been developed. This toolbox is 

developed via the extension of an existing NURBS toolbox in MATLAB, Bspline Lab, available 

as an opensource package under GNU license at github.com.  

A snapshot of the GNURBS Lab environment is depicted in Figure 2.15, which demonstrates some 

of the available features in this software. The figure shows an example of designing a quadratic 

GNURBS curve with 5 control points constructed over a uniform knot-vector. Employing the 

provided tools, one can easily manipulate any defining parameter of the curve, including the 

locations of control points, knots or weight components, and observe the changes interactively in 

both the original GNURBS and its equivalent higher order counterpart, simultaneously.  
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Figure 2.15. A snapshot of GNURBS lab. 

The open-source toolbox is available at http://www.ersl.wisc.edu/software/GNURBS-Lab.zip  

Detailed instructions for using this toolbox is also available as an additional document Manual.pdf 

via the same link.  

  

http://www.ersl.wisc.edu/software/GNURBS-Lab.zip
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 Generalizations of NURBS surfaces2
 

 

In this chapter, we develop extensions of GNURBS for bi-variate parametric surfaces. We will 

demonstrate that GNURBS can be effectively used for improved approximation of certain class of 

surfaces such as helicoids, revolved surfaces and minimal surfaces. Further, these generalizations 

will establish the foundation for the proposed adaptivity technique in IGA which will be discussed 

in the next chapter.  

3.1.  Generalized NURBS surfaces: non-isoparametric form via explicit decoupling of the 

weights 

We recall that the equation of a NURBS surface is defined in the following parametric form 
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where
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corresponding rational basis functions associated with (i, j)th control point defined as 
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where ijw  are the weights associated with control points, and ( ) ( ),

, ,, ( )p q

ij i p j qN N N   =  are 

bivariate B-spline basis functions. , ( )i pN   and ( ),j qN   are the univariate B-spline basis functions 

of degree p and q defined on sets of non-decreasing real numbers 
10 1{ , , ..., }n p   +=Ξ  and 

20 1{ , , ..., }n q   +=Η , respectively, called knot vectors.  

According to Eq. (3.1), NURBS surfaces are isoparametric representations where all the physical 

coordinates are constructed by linear combination of the same set of scalar basis functions in 

parametric space. This is the case for all the other popular CAGD representations such as different 

 
 

2 The presented materials in this chapter have been submitted for publication at Engineering with Computers journal.  
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types of splines; and ensures critical properties such as affine invariance and convex hull which 

are of interest in geometric modelling [78].  

We extend here the concept of Generalized Non-Uniform Rational B-Splines (GNURBS) [78] to 

surfaces by modifying Eq. (3.1) as follows 
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= =
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S R P  (3.3) 

where  denotes Hadamard (entry-wise) product of two vector variables and 

( ) ( ) ( ) ( ), [ , , , , , ]
ij ij ij

x y z T

ij R R R       =R  is now a vector set of basis functions. Note that 

superscripts ,p q  have been omitted for brevity. Denoting an arbitrary coordinate in physical space 

by  , ,d x y z , the corresponding basis function in direction d can be written as  
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In above equations, ( ), ,x y z

ij ij ijw w w  represent the set of coordinate-dependent weights associated with 

(i, j)th control point.  

Comparison of the above equation with that of classic NURBS in Eq. (3.1) shows that the main 

difference of the proposed generalized form is assigning independent weights to different physical 

coordinates of control points. As can be seen, the above leads to a non-isoparametric 

representation. This representation demonstrates different geometric properties compared to 

NURBS which are discussed in detail in the following section. 

3.1.1. Theory and properties 

It can be shown that due to coordinate-dependence of basis functions, a GNURBS surface need 

not satisfy properties such as strong convex hull and affine invariance. We here demonstrate that 

most of the theoretical properties which were discussed for GNURBS curves in the previous 

chapter can be extended for GNURBS surfaces.  
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1. Local modification effect 

Similar to NURBS, one can show that, in GNURBS, if a control point ijP  is moved, or if any of 

the weights ( , )d

ijw d xy z=  is changed, it affects the surface shape only over the rectangle 

1 1[ , ) [ , )i ji p j q   + + + + . However, unlike NURBS, changing the weights will only affect the 

parameterization of the surface along the corresponding physical coordinate d , while the surface 

parameterization in the other directions will be preserved. This is, in fact, the key difference 

between GNURBS and NURBS which provides additional flexibility. In particular, assuming 

1 1( , [ , ) [ , )i ji p j q     + + + +)  , if 
d

iw  is increased (decreased), the surface will move closer to 

(farther from) ijP . Further, for a fixed ( , ) , a point on ( , ) S  moves along a straight line along 

d towards ijP  as a weight d

ijw  is modified. This can be directly concluded from Eq. (3.3) and the 

properties of classic NURBS. 

For better insight, we provide here a graphical representation of how this property differs in 

GNURBS compared to NURBS. For this purpose, we first generate a B-spline surface with linear 

in-plane parameterization using a net of 7 7  control points and quadratic basis functions in both 

parametric directions constructed over the knot vectors  0,0,0,0.2,0.4,0.6,0.8,1,1,1= =Ξ Η . The 

employed net of control points is illustrated in Figure 3.1. As the figure shows, the heights of all 

control points are set to zero except for 44z  which is raised to 1.  

 

Figure 3.1. Employed control net for construction of different NURBS surfaces. 
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The B-spline surface obtained by using this control net is depicted in Figure 3.2.  

 
Figure 3.2. The B-spline surface in physical space. 

Next, we increase 44w to 4 and plot the resulting NURBS surface in the physical space in Figure 

3.3.  

 
Figure 3.3. The NURBS surface with w44 = 4 in physical space. 

Finally, using Eq. (3.3), we construct a GNURBS surface by only setting 44

zw to 4, and maintaining 

all other weights at 1. The resulting surface is shown in Figure 3.4.  
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Figure 3.4. The GNURBS surface with wz

44 = 4 in physical space. 

Note that the depicted GNURBS surface in Figure 3.4 is obtained by using two different sets of 

basis functions. The in-plane coordinates are obtained using the B-spline basis functions, while 

the out of plane coordinate is constructed using rational basis functions.  

Comparing Figure 3.3 and Figure 3.4, one can clearly observe that modifying a weight in classic 

NURBS alters the parameterization of the surface in all physical directions, while in the case of 

GNURBS, the parameterization of the surface only changes in the direction of the varied 

directional weight (z-direction in Figure 3.4). It will be seen later that this property is critical for 

treating the weights as additional degrees of freedom in certain applications.  

2. Axis-aligned bounding box (AABB):  

Every GNURBS knot-element lies within the axis-aligned bounding box of its corresponding 

control points. That is, if ( )  ) )1 1, ,i i j j     + +
   , then ( , )S  lies within the bounding box 

of the control points klP , i p k i−    and j q l j−   . 

Proof: Eq. (3.3) can be easily written in the following form: 
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Accordingly, Eq. (3.5) could be written as 

 ( ) ( ) ( ) ( ), , , , ,x y z

a b

c d


       



 
= + + 

 
S S S S   (3.6) 

where ( ),x  S , ( ),y  S  and ( ),z  S  are simply classic NURBS surfaces. From a geometric 

standpoint, each of these surfaces is the projection of the original non-isoparametric surface onto 

the corresponding physical axes.  

The following figure shows a graphical representation of the above equations for a quadratic × 

cubic GNURBS surface constructed over the knot vectors  1 2
3 30,0,0, , ,1,1,1=Ξ  and 

 1 2
3 30,0,0,0, , ,1,1,1,1 = . Random weights in z-direction have been assigned to the control 

points and the control points are plotted proportional to these weights in size for better insight.  

 

Figure 3.5. Geometric representation of the bounding box property for a GNURBS surface. 

Since each of these projected surfaces is a classic NURBS surface, they satisfy the convex hull 

property. Therefore, the middle knot-element of the surface which is marked in Figure 3.5, must 

lie within the convex hulls of its corresponding control points on all three projected surfaces. That 

is, if ( ) ) )1 2 1 2, , ,
3 3 3 3

    
 

, then ( ),x  S  lies within the convex hull of the control points 
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( ),0,0klx , 1 3k   and 1 4l   which is the space between the two planes parallel to yz-plane. 

Similarly, ( ),y  S  lies within the convex hull of the control points ( )0, ,0kly , 1 3k   and 

1 4l   which is the area between the two planes parallel to xz-plane, and ( ),z  S  lies within 

the convex hull of the control points ( )0,0, klz , 1 3k   and 1 4l   which is the area between 

the two planes parallel to xy-plane. Consequently, ( ), S is contained in the intersection of these 

six planes, which is the highlighted box area shown in Figure 3.5, referred to as the axis-aligned 

bounding box of klP , 1 3k   and 1 4l  .  

3.2. Non-isoparametric 3D GNURBS surfaces with partial decoupling of the weights 

A more practical variation of GNURBS which will also later form the foundation for w-adaptivity 

in IGA, is obtained by partial decoupling of the weights. In particular, for 3D surfaces, one can 

use the same set of in-plane weights along x and y directions, denoted by 
xyw , and a different set 

of out-of-plane weights in z direction 
zw . Accordingly, Eq. (3.3) could be re-written in the 

following expanded form  
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where 
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Observe that owing to this decoupling of the in-plane and out-of-plane weights, unlike in classic 

NURBS, one can now freely manipulate the weights along z direction, for instance, without 

perturbing the geometry or parameterization of the underlying planer surface in x-y plane.  

3.3.  Equivalence with NURBS 

Despite losing some properties of NURBS which might be of interest in certain applications, we 

state here a theorem which establishes that GNURBS are nothing but disguised forms of higher-
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order classic NURBS. Therefore, all the properties of NURBS can be recovered through a suitable 

transformation and a strong theoretical foundation will be ensured. 

Theorem 1. A 3D GNURBS surface of degree ( ),p q  with partially decoupled set of weights 

( , )xy zw w , can be exactly transformed into a higher order NURBS surface of degree ( )2 ,2p q . 

We first review two lemmas on the multiplication of Bézier, as well as B-spline bivariate functions. 

The proofs of these lemmas can be found in [62] 

Lemma 1: 

Let ,( )bf   and ,( )bg   be two (p, q)th-degree bivariate Bézier functions defined as 
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 (3.9) 

Their product function ,( )bh   is a Bézier function of degree (2p, 2q) which can be computed as 
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where the ordinates of the product Bézier function are 
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Lemma 2: 

Let ( )f     and (g   )  be two (p, q)th-degree bivariate B-spline functions defined as 

 

1 2

1 2

,

0 0

,

0 0

( ) ( )

( )

,

, ( )

n n
p q

ij ij

i j

n n
p q

ij ij

i j

f N f

g N g

 

 



 

= =

= =

= 

= 




 (3.12) 

Their product function (h   )  is a B-spline function of degree (2p, 2q), that is 
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1 2
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= =
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where ijH  are the ordinates of the product B-spline function. 

Specific to this lemma, many algorithms have been proposed in the literature for evaluating the 

ordinates ijH ; see e.g. [62–65]. We will here use a straightforward algorithm proposed by Piegl 

and Tiller [61] including three steps of 

- Performing Bézier extraction 

- Computation of the product of Bézier functions 

- Recomposition of the Bézier product functions into B-spline form using knot removal. 

where the product of Bézier functions in the second step can be computed analytically employing 

Lemma 1. Further, the knot vector of (h  )  can be constructed as described in [61]. Alternatively, 

one may use a more advanced algorithm referred to as Sliding Windows Algorithm (SWA) 

recently proposed by Chen et al. [63].  

Proof. The proof relies on the lemma that the summation of two NURBS surfaces is a higher order 

NURBS surface [61]. We rewrite Eq. (3.7) in Section 3.2 in the following form: 
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Extracting the common denominator yields 
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where 
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As can be observed, evaluation of the above expressions involves performing the multiplication of 

bivariate B-spline functions. According to Lemma 2, all the product functions in Eq. (3.15) are B-

spline functions of degree (2p, 2q). Therefore, we can obtain the equivalent higher order NURBS 

representation of Eq. (3.14) in the following form 
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in which ( , , , )ij ij ij ijX Y Z W  are the coordinates and weights of the 1 2
ˆ ˆ( 1) ( 1)n n+  +  control points of 

the equivalent higher order NURBS surface, which can be obtained using any of the mentioned 

algorithms followed by Lemma 2.    

In the special case of Rational Bézier (R-Bézier) surfaces, one can obtain straightforward 

analytical expressions for the coefficients of the equivalent higher order R-Bézier surface in Eq. 

(3.17). For this case, Eqs. (3.17) and (3.18) can be written as 
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Using relations (3.10) and (3.11) in Lemma 1, the coordinates and weights of control points in 

these equations can be obtained as 
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where 
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. 

Figure 3.6(a) shows an example of a degree (2,3)th GNURBS surface with random directional 

weights assigned in z-direction. Its equivalent higher order NURBS surface obtained using the 

above theorem is depicted in Figure 3.6(b). Note that the size of control points in these figures are 

plotted proportional to their weights for better insight. 

 
(a) 
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(b) 

Figure 3.6. (a) A degree (2,3)th GNURBS surface with random weights assigned in z-direction, and (b) its 

equivalent (isoparametric) NURBS surface of degree (4,6). 

 

3.4.  Generalized NURBS surfaces: isoparametric form via implicit decoupling of the weights 

It is interesting to note that the equivalent higher order NURBS representation in (3.17) itself 

provides another variation of NURBS which can be directly employed as another alternative to 

NURBS with better flexibility in many applications.  

In order to clarify how this equation provides additional flexibility than classic NURBS, we first 

derive a more generic form of this equation via an alternative approach using an extension of order 

elevation technique. In this case, we limit our study to rational Bézier surfaces for simplicity.  

Assume a 2D R-Bézier surface of degree (p,q) is given as follows  
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In order to elevate the degree of this surface by (r, s), we can simply multiply both numerator and 

denominator of this equation by any arbitrary expression in the following form 
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Recalling Lemma 1, we can obtain the higher order R-Bézier surface with (r, s) degree elevations 

as 
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in which ˆ ˆ,p p r q q s= + = +  and ( ), ,ij ij ijX Y W  can be obtained using the following relations  
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Observe that this procedure can be seen as a trivial extension of the classic order elevation 

techniques in the literature [19,66]. In fact, one can simply recover the common order elevation 

algorithm by assigning 1, ( , )z

ijw i j=   in Eq. (3.23). We will refer to this procedure as generalized 

order elevation hereafter. Now assume we intend to add another dimension to the degree-elevated 

representation in Eq. (3.24) in an isoparametric manner. For this purpose, we extend this equation 

as 
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It is interesting to notice that, although Eq. (3.27) apparently seems to be a classic R-Bézier surface, 

it provides additional flexibility. Observe that in the above procedure, z

ijw  are arbitrary variables 

which can be freely chosen without perturbing the geometry or parameterization of the underlying 

surface in x-y plane. For better insight, we perform degree elevation on a circular annulus using 

the above procedure with different selections of z

ijw and discuss how it differs from classic degree 

elevation technique. 

For this purpose, we generate a 3D ˆ ˆ( , ) (3,2)p q =  isoparametric GR-Bézier surface by performing 

the above degree-elevation processes with ( ) ( ), 1,1r s =  on an initial quarter annulus modelled by 

a ( , ) (2,1)p q =  R-Bézier surface depicted in Fig. 6(a) and specifying the heights of control points 

of the degree-elevated surface as shown in Table 3.1.  

Table 3.1. Assigned heights (zij) to the control points of the resulting degree-elevated isoparametric GR-

Bézier surface. 

 i=0 i=1 i=2 i=3 

j=0 0 1 1 0 

j=1 0 1 1 0 

j=2 0 1 1 0 
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Figure 3.7. Configuration of the quarter annulus. 

 
Figure 3.8. Exact representation of the quarter annulus with normal parameterization using a (p, q)=(2,1) 

rational Bézier surface. 

The obtained results for classic order elevation, that is, assuming unit values for all isoparametric 

control weights as in the following equation: 

 11 12

21 22

1.0 1.0

1.0 1.0

z z

z z

w w

w w

   
=   
  

  (3.28) 
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are shown in Figure 3.9.  

 

(a) 

 

(b) 

Figure 3.9. Classic degree-elevated R-Bézier representation of the quarter annulus with control variables 

of Table 3.1: (a) top view, (b) 3D view. 

Moreover, the obtained results for generalized order elevation by assuming the following values 

for isoparametric control weights: 
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  (3.29) 

are depicted in Figure 3.10.  

 
(a) 

 
(b) 

Figure 3.10. Generalized degree-elevated R-Bézier representation of the quarter annulus with control 

variables of Table 3.1: (a) top view, (b) 3D view. 
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As can be clearly seen in these figures, in both cases, the in-plane representation of the annular 

ring as well as its parameterization has remained unchanged. However, the out of plane 

deformation of the annular ring in the two cases are not identical.  

While this variation of NURBS, which will be referred to as isoparametric GNURBS hereafter, 

similarly provides the same important possibility of treating the out of plane weights as additional 

degrees of freedom, it provides different advantages. In particular, unlike the first variation, it 

allows for introducing customized rationality for approximation, i.e. the number of coefficients to 

be considered as design variables in the denominator can be controlled here. Further, it directly 

lies in the NURBS space; hence, all the properties of NURBS are naturally satisfied.  

The above algorithm can also be extended to NURBS in a straightforward manner using a similar 

three step algorithm elaborated above. That is, Eq. (3.27) also holds true for NURBS:  
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with the rational basis functions defined as 

 ( )
( )

( )
1 2

ˆ ˆ,
ˆ ˆ,

ˆ
ˆ ˆ,

0 0

ˆ

,
,

,

p q
p q

ij ij
ij

n
p q

kl kl

k l

n

N W
R

N W

 
 

 
= =

=


 (3.31) 

The proposed generalizations of NURBS in Eqs. (3.7) and (3.30) can effectively improve the 

performance of NURBS in a wide area of applications. Exploring all these applications, however, 

is beyond the scope of this thesis. We limit our study here to a few classic examples in geometric 

modelling, that is the approximation of certain class of surfaces such as helical, revolved or 

minimal surfaces using GNURBS; and concisely point out some of their potential broader areas 

of applications. Finally, hereafter, we will persistently refer to Eq. (3.7) as the first generalization 

of NURBS or non-isoparametric GNURBS, while we will refer to Eq. (3.30) as the second 

generalization of NURBS or isoparametric GNURBS.  

3.5. Least-square surface approximation using NURBS versus GNURBS 

In this section, we demonstrate that the proposed generalizations of NURBS are able to provide 

superior approximation for certain class of surfaces compared to classic NURBS. We assume here 
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that a planar geometry with precise representation using NURBS, such as the annular ring in Figure 

3.8, is given as: 
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Next, we assume that an analytical height function ( , )z    is given and needs to be approximated 

with minimal error over the given planer surface. The problem can be posed as a least square 

approximation problem which leads to optimal accuracy in L2-norm. Considering 

( ) ( ) , , , :s s s s sx y z s  →   as a set of cn  chosen collocation points, the error function f  to be 

minimized is defined as 

 

2

21 1
ˆ( , ) ( , )

2 2 s

s s s L s s L s

s s L

f z z R z z   
  

= − = −     (3.33) 

where ˆ( , )z    is the approximated NURBS function, 
s
 is the set of indices of non-zero basis 

functions at ( ),s s  , ( , )s s sz z  = , and Lz  are the unknown control variables. For simplicity, the 

global index L is used for numbering which is defined as 1( 1) 1L j n i= + + +  for the basis ( , )i j .  

In the following, we provide the detailed formulation of this problem using NURBS as well as its 

different proposed generalizations.  

3.5.1. Linear least-square approximation using NURBS 

In the case of NURBS, the only unknowns to consider are control variables Lz . Taking the partial 

derivatives of f  with respect to the unknowns Lz , and setting them to zero yields  

 0, 1,..., T

k

f
k n

z


= =


  (3.34) 

 ( , ) ( , ) ( , ), 1,...,
s

k s s L s s L s k s s T

s sL

R R z z R k n     
 

= =     (3.35) 

where ( ) ( )1 21 1Tn n n= +  +  denotes the total number of control points. Eq. (3.35) could be written 

in the matrix form 
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1 1 1 1 1

1

( , ) ( , ) ( , ) ( , ) ( , )
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R R R R z R

         

         
 

    
    

=    
    

    

    (3.36) 

which represents a classic linear least square problem and can be easily solved for the Tn  

unknowns  1,..., Tnz z=λ  by proper choice of collocation points. 

3.5.2. Non-linear least-square approximation using non-isoparametric GNURBS 

In order to improve the accuracy of the above discussed NURBS-based approximation, we develop 

a non-linear least-square minimization algorithm using 1st GNURBS. Invoking the non-

isoparametric GNURBS surface with partial decoupling of the weights in Section 3.2, we can treat 

the out of plane weights 
z

Lw  as extra design variables without perturbing the geometry or 

parameterization of the underlying precise planar surface ( , )xy  S . We may refer to these 

variables as control weights hereafter.  

The objective function to be minimized could still be written as (3.33). However, the vector of 

design variables now changes to  1 1,..., , ,...,
T T

z z

n nz z w w =λ . Moreover, the following bounding 

constraints on control weights are often desired to be satisfied for numerical stability. 

 0, 1,...,z

k Tw k n =   (3.37) 

Eq. (3.33) with the new vector of design variables λ  establishes a non-linear least-square 

optimization problem which could be solved using different existing algorithms. Some of these 

algorithms, such as Levenberg-Marquardt, do not allow for the imposition of bounding constraints 

on design variables. In this case, one can easily apply an exponential transformation to control 

weights to ensure their positivity without the imposition of bounding constraints as in [20]. We 

will use here the trust-region-reflective algorithm which is available in MATLAB and allows for 

the imposition of bounding constraints on design variables.  

In order to solve the established problem, the Jacobian matrix is required. The Jacobian matrix J  

is composed of two parts  

 [ ]z w=J J J   (3.38) 
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where zJ  contains the partial derivatives of f  with respect to kz , while wJ  includes the partial 

derivatives of f  with respect to 
z

kw . Differentiating with respect to kz , zJ  will be easily derived 

as 

 

1 1 1 2 1 1 1 1

1 2 2 2 2 2 2 2

1 2

( , ) ( , ) ( , )
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n
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n n n n n n
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n

R R R

R R R

R R R

     

     

     

 
 
 

=  
 
  

J   (3.39) 

The other component of the Jacobian matrix can be obtained as 
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J   (3.40) 

In order to evaluate the partial derivatives with respect to weight design variables, we rewrite 

( )ˆ ,z    as 

 ( )
,

ˆ
(

,
,(

z


 


=
)

)
  (3.41) 

where ,(  )  and ,(  )  are 

 ( )
1

( , ,
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L L
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N w z  
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N w  
=
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Using these definitions, we can obtain 

 
( )

( )
ˆ , ( ,

ˆ , , 1,...,
( ,

z

k k
k Tz

k

z N w
z z k n

w

   
 

 

 )
= − =   )

  (3.44) 

Having the analytical Jacobian matrix components in Eqs. (3.39) and (3.40), we can now solve the 

established non-linear least-square optimization problem efficiently. We impose the initial 

conditions by setting all the control variables to zero and all the control weights to 1, i.e.  
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0 0,0,...,0,1,1,...,1

T Tn n

  
 =  

  

λ   (3.45) 

3.5.3. Non-linear least-square approximation using isoparametric GNURBS 

Since the derivation of analytical Jacobian matrix with this generalization becomes complicated 

in case of having internal knots, we limit our derivation here to GR-Bézier. Invoking the 

isoparametric GR-Bézier representation in Eq. (3.27), we can again establish the approximation 

problem as a non-linear least square problem with the objective function defined in Eq. (3.33) but 

with the new set of design variables  1 1,..., , ,...,
T d

z z

n nZ Z w w =λ  where ( ) ( )1 1dn r s= +  +  is the 

total number of isoparametric control weights, and ( ) ( )ˆ ˆ1 1Tn p q= +  +  is the total number of 

control points. The Jacobian matrix J  can again be divided into two components as in (3.38) where 

zJ  contains the partial derivatives of f  with respect to kZ , while wJ  includes the partial 

derivatives of f  with respect to 
z

lw . Differentiating with respect to kZ , zJ  will be easily derived 

as 
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Also, wJ  can be obtained as 
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J   (3.47) 

In order to evaluate the partial derivatives of ˆ(z  )  with respect to isoparametric control weights 

z

lw , we rewrite ( )ẑ   as 

 ( )
(

ˆ
(

z



 =

)

)
  (3.48) 
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where ( )  and ( )  are 

 ( )
1
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With these definitions, we can obtain the required derivatives as 
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The derivatives in above equation can be evaluated using the following expressions  
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Similar to previous case, we specify the initial conditions as follows 

 
0 0,0,...,0,1,1,...,1

T dn n

  
 =  

  

λ   (3.55) 

As previously discussed, by changing 
z

lw  during the optimization process, the in-plane coordinates 

of control points also vary at each iteration. However, since the in-plane geometry and 

parameterization are always fixed, one may only re-evaluate and update these coordinates after the 

termination of the optimization process according to the obtained optimal set of isoparametric 
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basis functions. It is important to note that this algorithm yields the combination of optimal weights 

and the corresponding arrangement of control points which result in the best approximation for a 

given in-plane parameterization. To our knowledge, no such investigation has been reported in the 

literature thus far.  

 

3.6. Numerical examples 

3.6.1. Test case 1: helicoid modelling 

As the first numerical example, we consider the approximation of a partial helical surface with the 

following equation: 

 ( ) ( )( )
0

2( cos( sin( , ,
0 1


      



 
 ) = + ) + )

 
S   (3.56) 

 

Figure 3.11. The helical surface in Eq. (3.56). 

As observed, the in-plane parameterization of this surface is a quarter annulus with the 

configuration already shown in Figure 3.7. Since this is a geometric modelling problem where 

preserving the properties of NURBS are of interest, it is an ideal candidate for employing 

isoparametric GNURBS. Accordingly, following the procedure discussed above in Section 3.5.3, 

we try to approximate the given height function in Eq. (3.56) and compare the obtained results 
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with classic NURBS. The obtained results for different degrees of basis functions are presented in 

Table 3.2. 

Table 3.2. Error of approximating the height function of helical surface in Eq. (3.56) using R-Bézier 

versus isoparametric GR-Bézier in relative L2-norm. 

Curve type 
Degree ( )ˆ ˆ,p q

( ),p r q s= + +  

No. of control 

variables 

No. of control 

weights 
Error Error ratio 

R-Bézier 
(2,1) 6 

0 2.68E-2 
1.0 

2nd GR-Bézier 0 2.68E-2 

R-Bézier 
(3,2) 12 

0 1.28E-4 
1.0 

2nd GR-Bézier 4 1.28E-4 

R-Bézier 
(4,3) 20 

0 1.28E-4 
109.4 

2nd GR-Bézier 9 1.17E-6 

R-Bézier 
(5,4) 30 

0 2.22E-6 
180.5 

2nd GR-Bézier 16 1.23E-8 

 

According to this table, by including larger numbers of control weights, better improvement of 

accuracy is achieved. This reveals superior approximation of rational functions especially when 

higher degrees of basis functions are employed. The results, however, show no improvement in 

accuracy for the first level of degree elevation, i.e. ( , ) (1,1)r s = . This implies that the optimal 

values of control weights for this particular level of degree elevation are unity. In other words, 

classic order elevation results in optimal accuracy for the approximation of helical height function 

using this particular degree of basis functions.  

3.6.2. Test case 2: Scherk minimal surface 

As the second numerical experiment, we consider the construction of a minimal surface model 

referred to as Scherk minimal surface over a square domain. The equation of this minimal surface 

is given as 

 
1.5 1.5cos(

( , ln ,
1.5 1.5cos(


   



  −   )
 ) =   

−  )  
S   (3.57) 

which is depicted in Figure 3.12.  
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Figure 3.12. Scherk minimal surface. 

As the figure shows, the surface features steep gradients near the boundaries. In this example, we 

use non-isoparametric GNURBS and compare its approximation properties with classic NURBS. 

The obtained results using various employed degrees of basis functions are shown in Table 3.3. 

As observed, the accuracy of approximation using 1st GNURBS in all cases is better than that of 

classic NURBS. Further, the increase in accuracy substantially improves when larger degrees of 

basis functions are used.  

Table 3.3. Error of approximating the Scherk minimal surface in Eq. (3.57) using NURBS versus 1st 

GNURBS in relative L2-norm. 

Curve type Degree (p,q) 
No. of control 

variables 

No. of control 

weights 
Error Error ratio 

NURBS 
(2, 2) 25 

0 1.52E-1 
18.76 

1st GNURBS 25 8.11E-3 

NURBS 
(3, 3) 36 

0 9.40E-2 
18.42 

1st GNURBS 36 5.10E-3 

NURBS 
(4, 4) 49 

0 5.02E-2 
142.21 

1st GNURBS 49 3.53E-4 

NURBS 
(5, 5) 64 

0 3.59E-2 
262.04 

1st GNURBS 64 1.37E-4 
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Moreover, for the case of quadratic basis functions, we also perform a convergence study where 

we persistently refine the knot sequence and compare the obtained accuracy of NURBS versus 

GNURBS. The obtained results are plotted in Figure 3.13. As the figure shows, the convergence 

rate of GNURBS is more than order faster than classic NURBS, resulting in substantial 

improvement of accuracy especially when larger numbers of control points are used.   

 

Figure 3.13. Convergence rate of quadratic NURBS versus GNURBS for the approximation of Scherk 

minimal surface. 

 

3.6.3. Test Case 3: Surface of revolution 

As the final numerical study, we consider the problem of the approximation of a surface of 

revolution defined using Eq. (3.58), which is depicted in Figure 3.14. 
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Figure 3.14. The surface of revolution in Eq. (3.58). 

As observed, the surface has an exponential behavior along the radial direction. In this example, 

we demonstrate how employing the second proposed variation of NURBS could be useful for 

improved approximation of these type of surfaces using the same number of control points. For 

simplicity, we only consider modelling a quarter of the surface, i.e. (0 4)   . Similar to the 

first numerical example, we start with the initial model of degree ( , ) (2,1)p q =  in Figure 3.8. Since 

the height function here only varies along the radial direction, we only elevate the degree along 

this direction ( )  and compare the obtained approximation results using Bézier (classic order 

elevation) with those of isoparametric GR-Bézier (optimal order elevation). The obtained results 

for ( , ) (0,0)r s =  up to ( , ) (0,3)r s =  are presented in Table 3.4.  

According to this table, the accuracy of approximation by using isoparametric GR-Bézier is 

significantly higher than that of classic Bézier, especially when higher order elevations are applied. 

These results clearly show the superiority of rational functions for the approximation of this class 

of surfaces.  
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Table 3.4. Error of approximating the height function of the surface of revolution in Eq. (3.58) using R-

Bézier versus isoparametric GR-Bézier in relative L2-norm. 

Case No. Surface type 
Degree ( )ˆ ˆ,p q

( ),p r q s= + +  

No. of 

control 

variables 

No. of 

control 

weights 

Error 
Error 

ratio 

1 R-Bézier 
(2,1) 6 

0 0.20E0 
1.0 

2 2nd GR-Bézier 0 0.20E0 

3 R-Bézier 
(2,2) 12 

0 3.42E-2 
45.25 

4 2nd GR-Bézier 4 7.55E-4 

5 R-Bézier 
(2,3) 20 

0 7.10E-3 
43.58 

6 2nd GR-Bézier 9 1.63E-4 

7 R-Bézier 
(2,4) 30 

0 1.12E-3 
1.26E4 

8 2nd GR-Bézier 16 8.90E-8 

 

Finally, the corresponding arrangements of control points for cases 3 to 8 are represented in Figure 

3.15. As observed, the arrangements of control points in all cases only differ along the radial 

direction. This was expected to be the case, since in this example, order elevation has only been 

performed along the radial direction.  

     

  (a) (b)  
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 (c) (d) 

     

 (e) (f) 

Figure 3.15. The resulting control net for the approximation of the surface of revolution in Eq. (3.58): (a) 

Case 3, (b) Case 4, (c) Case 5, (d) Case 6, (e) Case 7, and (f) Case 8. 

 

3.7. Extensions and further applications 

While, in this thesis, we limited our study to applying the proposed generalizations to NURBS, 

due to fundamental similarities between different variations of splines, similar generalizations 
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seem plausible to other rational forms of splines such as T-spline surfaces, Tri-angular Bézier 

surfaces etc.  

In addition to the discussed applications of GNURBS in CAGD, other applications of NURBS in 

this area can be found where employing the weights as additional design variables for better 

flexibility can be problematic or sometimes impossible. For instance, GNURBS may also help 

circumventing the difficulties of considering the weights as degrees of freedom in general surface 

fitting problems with arbitrary parameterization. As previously studied in [22,23], employing the 

weights as additional degrees of freedom in data approximation can deteriorate the surface 

parameterization, and lead to undesirable results, especially when approximating rapidly varying 

data. On the other hand, employing GNURBS, by including the control weights as design 

variables, one can create a good surface parameterization and preserve it during fitting without 

imposing any restrictions on the magnitude of variations of the weights.  

Furthermore, NURBS have been extensively used in other disciplines such as computational 

mechanics for the optimization of different fields of interest over a given computational domain. 

Considering these studies, we can find out that in this class of applications, the parameterization 

of the design domain needs to remain fixed throughout the optimization process; see [8,79–87], 

for instance. Hence, they are only able to treat the out-of-plane coordinates of control points as 

design variables, as the variation of weights alters the underlying parameterization which is 

disallowed. However, owing to the proposed GNURBS representations with decoupled weights, 

one can now treat the control weights as additional design variables while setting up the 

optimization problem and still preserve the underlying geometry as well as its parameterization. 

As elaborated in this research, this can lead to significant improvement in the obtained accuracy 

in both cases of smooth as well as rapidly varying fields. Exploring some of these applications is 

the subject of our future studies. 

 

3.8. MATLAB toolbox: GNURBS3D Lab 

In order to facilitate understanding the behavior of GNURBS surfaces and the additional abilities 

they serve, a comprehensive and fully interactive MATLAB toolbox, named GNURBS3D Lab, has 

been developed. This toolbox is developed via the extension of GNURBS Lab, a similar interactive 

MATLAB toolbox already developed for GNURBS curves [78]. Snapshots of different available 
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windows in GNURBS3D Lab are shown in Figure 3.16, which demonstrate the environment of the 

toolbox and numerous features that the software provides.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 3.16. Snapshots of different windows of GNURBS3D-Lab: (a) Main window, (b) 3D surface plot 

window, (c) in-plane equivalent NURBS window, and (d) 3D equivalent NURBS window. 

The figure shows an example of designing a 3D surface with an in-plane shape of a quarter annulus 

and a free-form out of plane shape using GR-Bézier. As demonstrated in Figure 3.16, the toolbox 

is enabled to evaluate the equivalent higher-order rational Bézier representations with the designed 

surface in 2D and 3D interactively. Employing the provided wide range of tools shown in Figure 

3.16(a), one can easily manipulate any defining parameter of the surface, including the locations 

of control points, or a variety of weight components, and observe the changes interactively in all 

four windows shown in Figure 3.16, simultaneously.  

The open-source toolbox is available at http://www.ersl.wisc.edu/software/GNURBS3D-Lab.zip  

Detailed instructions for using this toolbox are also provided in an additional document 

GNURBS3D_Manual.pdf accessible via the same link.  

 

  

http://www.ersl.wisc.edu/software/GNURBS3D-Lab.zip
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 Adaptive w-refinement in isogeometric analysis3 

 

4.1.  GNURBS-based IGA 

In this chapter, we consider the application of GNURBS in a proposed adaptive method for 

improved solution of boundary value problems. While the proposed adaptivity technique is 

potentially applicable to arbitrary boundary value problems, in this research, we limit our study to 

single variable elliptic problems. In particular, we focus on steady reactive-diffusive transport 

problem over a 2D domain 2  with the boundary D N =   , where D and \N D =    

are the partitions of boundary where Dirichlet and Neumann boundary conditions are specified, 

respectively. We recall that the strong form of this PDE can be expressed as 

 

( ) .( ) in ,
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. on

D D
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u D u u f

u u

D u h

 −  + = 

= 

 = n

 (4.1) 

where  denotes the reaction-diffusion operator, D  is the diffusion coefficient,   is the reaction 

coefficient and f  denotes the source term. Also, Du  and h  are the specified Dirichlet and 

Neumann (normal diffusive flux) boundary conditions, and n  denotes the unit outward normal 

along  .  

We recall that in 2D NURBS-based IGA, the geometry is constructed by a planar NURBS surface 
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 RPxx   (4.2) 

where  ,
T

x y=x . Following the conventional isoparametric concept, the unknown field variable 

of the PDE is also approximated by using the same set of NURBS basis functions: 

 ( ) ( ) ( )
1 2

0 0

, , ,
n n

h

ij ij

i j

u u R u     
= =

 = = Ru   (4.3) 

 
 

3 The presented materials in this chapter have been published in CMAME journal, ref. [112] 
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where u  is the unknown vector of degrees of freedom, whose components are referred to as control 

variables, and R denotes the vector of basis functions. This isoparametric concept is commonly 

used in Finite Element Analysis and provides well-known benefits in certain applications which 

are discussed in [2]. For instance, it ensures the ability to represent all affine motions (i.e., rigid 

translations and rotations, uniform stretchings and shearings) exactly [2]. 

However, by invoking the first proposed generalization of NURBS in the previous chapter as well 

as the concept of GIFT [59], we introduce a natural extension of isogeometric analysis where the 

field variable is approximated using a set of NURBS basis functions with independent weights of 

the underlying geometry. Accordingly, Eqs. (4.2) and (4.3) can be written as (4.4) and (4.5) 
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Observe that this decoupling of the weights in geometry and field variable space brings the critical 

possibility of treating the control weights u

ijw  as additional degrees of freedom without perturbing 

the exact underlying geometry or its parameterization. One can simply imagine that Eq. (4.4) 

together with Eq. (4.5) represent a GNURBS surface similar to Eq. (3.7), where the in-plane 

coordinates represents the exact planar geometry, while the out of plane coordinate can be viewed 

as the field primary variable, i.e. : , :G xy z uw w w w= = . 

It is noted here that the above non-isoparametric approximation with additional unknown control 

weights leads to an unknown function space in which the optimal solution of the PDE is sought. 

This makes formulating the problem by directly applying the standard variational formulation, or 

the method of weighted residuals commonly used in FEM/IGA difficult. To circumvent this 
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difficulty, in the next section, we devise an elegant adaptivity technique which yields the optimal 

values of control weights via an iterative process.  

Nevertheless, assuming that an initial guess of control weights is available, we shall proceed with 

the formulation of the problem to find the corresponding unknown control variables. Following a 

standard Galerkin formulation as described in [88], the equivalent discrete set of governing 

equation (4.1) can be obtained in the following form 

 ( )d r+ =K K u f   (4.8) 

where dK  and rK  are the diffusion and reaction components of the global stiffness matrix, 

respectively, and f is the force vector. These expressions can be obtained as  
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and 
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f h
 

= +   f R R   (4.10) 

where P denotes the index of a typical NURBS patch. Solving (4.8) will yield the unknown control 

variables such that the obtained solution is optimal in the energy sense.  

4.2.  Residual-based a posteriori error estimation 

The proposed adaptivity algorithm mainly relies on a posteriori error estimator. A variety of a 

posteriori error estimation techniques have been proposed in the literature; we refer to [89] for a 

comprehensive review. One can hypothetically use any of these techniques within the framework 

of adaptive w-refinement. In this research, we employ one of the most common techniques which 

is the residual-based a posteriori error estimation. Defining the interior and boundary residual 

terms of the reaction-diffusion PDE in Eq. (4.1) as Eqs. (4.11) and (4.12), respectively  

 ( ). in ,h hr f D u u K= +  −   (4.11) 

 . on ,h NR h D u K= −   n   (4.12) 

this estimator establishes that the energy norm of error 
( )h E

e


which is defined as 
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is restricted by the following upper bound [34] 
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where C  is an unknown constant, K  is the index of a knot-element with diameter of a maximal 

inscribed circle Kh  and   denotes the set of all knot-elements. The derivation of higher order 

derivatives in Eq. (4.11) is provided in Appendix A.  

4.3.  Formulation of adaptive w-refinement 

The problem could be simply posed as an optimization problem, where the objective function is 

the estimated error in a desired norm and the design variables are all or a subset of control weights. 

The optimization problem can be expressed in the following mathematical form  
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where χ  represents the vector of design variables with N elements and r d= +K K K . For 

simplicity, the global index L is used for numbering the design variables which is defined as 

1( 1) 1L j n i= + + +  for the basis ( , )i j . Further, minw and maxw denote the selected bounds on the 

design variables. We will later discuss how these bounds be chosen and how they may affect the 

performance of the algorithm. 

It should also be mentioned here that the equilibrium constraint in Eq. (4.15) is intrinsically 

satisfied and need not be externally imposed. In addition, most unconstrained optimization 

algorithms allow for the imposition of the simple bounds on design variables as required in Eq. 

(4.15). Hence, this problem can be regarded as an unconstrained optimization problem in practice.  

Moreover, we point out here that a variety of options exists for selecting the vector of design 

variables in Eq. (4.15). For instance, based on the type of differential operator ( )u  in Eq. (4.1) 

and expected behavior of the solution, one can decide to include all or a selective subset of control 
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weights as design variables. Obviously, including a larger number of control weights in Eq. (4.15) 

is expected to result in better accuracy as well as an increased computational cost. In this study, 

we will only perform global adaptivity. Further, numerous subtleties need to be undertaken for 

proper and efficient setup of this optimization problem; we will cover these details in the remainder 

of this paper.  

4.4.  Sensitivity analysis 

In order to efficiently solve the optimization problem in Eq. (4.15) using a gradient based 

algorithm, cost effective and accurate computation of sensitivities is critical. Fortunately, 

decoupling of control weights from the underlying geometric space provides the possibility of the 

derivation of these sensitivities analytically and in a very cost-effective fashion.   

Differentiating the right-hand side of Eq. (4.14) with respect to an arbitrary design variable 
u

Lw  

yields the sensitivities of the objective function as 
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where constant C  is assumed to be unity. As observed, evaluation of the above expression requires 

finding the derivatives of the interior as well as boundary residual terms with respect to control 

weights.  Using Eq. (4.11), the sensitivities of the interior residual term for a typical knot-element 

K becomes 
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which includes the gradients of 
hu as well as its first and second order spatial derivatives with 

respect to control weights. The derivation of these sensitivities is non-trivial and tedious. Hence, 

we have provided these derivations in Appendix B. 

On the other hand, the sensitivities of the boundary residual term are obtained as 
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Similarly, the detailed derivation of the required derivatives in Eq. (4.18) is provided in Appendix 

C. It is important to note that due to decoupling of control weights from the underlying geometry, 

the derivatives of Kh as well as d  and d  with respect to design variables vanish. Moreover, 

this substantially simplifies sensitivity derivation of the spatial derivatives of the field variable in 

above equations. These simplifications result in substantial reduction of the sensitivity analysis 

cost.  

4.5.  Driving the adaptivity process with exact error 

To verify the performance and effectiveness of the proposed w-adaptivity process, we will also 

run experiments on problems with existing closed-form solutions in which case the exact error can 

be calculated using Eq. (4.13) and be used instead of the estimated error ( )E χ  in Eq. (4.15) for 

driving the adaptivity process. The derivation of analytical sensitivities in this case is more 

straightforward as the sensitivities of the exact solution in Eq. (4.13) with respect to design 

variables vanish.  

4.6.  Treatment of boundary conditions 

One of the subtleties for proper implementation of adaptive w-refinement is appropriate treatment 

of boundary conditions. We remind that since the control weights do not lie in the function space 

of the geometry, we can freely manipulate these boundary control weights for improved accuracy. 

In fact, this is critical for obtaining monotone distribution of error throughout the computational 

domain and subsequently achieving optimal convergence rates. We discuss the treatment of 

Neumann (natural) and Dirichlet (essential) conditions separately here.  

4.6.1. Natural conditions 

Treatment of natural boundary conditions is more straightforward as they naturally arise in the 

variational formulation. Therefore, one can freely include the boundary control weights associated 

with Neumann boundaries in the vector of design variables when setting up the optimization 

problem (4.15). The only important point here is that, at each iteration of the optimization process 

followed by updating the design variables, the force vector associated with these (non-zero) 

boundary conditions need to be reevaluated with the new set of boundary control weights using 

Eq. (4.10). 
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4.6.2. Essential conditions 

On the other hand, the imposition of essential conditions during w-adaptivity is more intricate and 

needs precise attention. The strategy depends on whether these conditions are homogeneous or 

non-homogeneous. The homogeneous (or constant) Dirichlet conditions can be satisfied exactly 

by simple setting the respective boundary control variables to zero (or the given constant), 

irrespective of the values of their control weights. Note that in this case, variation of the 

corresponding boundary control weights does not affect the exact satisfaction of these conditions. 

Therefore, similar to natural boundary conditions, these boundary control weights can be freely 

included as design variables in Eq. (4.15), and their optimal values will be determined by the 

adaptivity algorithm. 

In contrast, finding the optimal boundary control weights of non-homogeneous essential 

conditions needs special treatment. We remind here that due to the non-interpolatory behavior of 

spline basis functions, the imposition of non-homogeneous essential boundary conditions in IGA 

is, in general, non-trivial.  

It has been found that direct imposition of these boundary conditions to control variables may lead 

to significant error and non-optimal rate of convergence [73–75]. Several strategies have been 

proposed for improved treatment of these conditions. These methods can be classified into two 

main types: ‘strong’ imposition by approximating the boundary profile in the NURBS space, and 

‘weak’ imposition via variational methods.  

Most common techniques for weakly imposition of these boundary conditions are Lagrange 

multiplier methods [72], Nitsche method [74,75,90,91], and penalty method [92]. On the other 

hand, strong approximation of boundary conditions includes least square fitting [93], collocation 

and transformation methods [73], quasi interpolation techniques [94], and coupling with Lagrange 

shape functions [95]. We refer to [92] for a rigorous review on these methods.  

One can possibly generalize any of the above techniques based on GNURBS and incorporate it in 

adaptive w-refinement. In the following section, we develop such an extension for least-square 

fitting method and elaborate how this technique could be properly incorporated in the proposed 

adaptive framework.  
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4.6.2.1. Least-square minimization using GNURBS 

Suppose a Dirichlet condition ( ,Du x y)  over an arbitrary boundary of the domain D  in Eq. (4.1) 

is specified. The problem can be simply posed as a curve fitting problem where a given height 

function Du  needs to be approximated with 
h

Du  defined in Eq. (4.19) over a fixed planar NURBS 

curve as in Eq. (4.20) 
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where      . This can be easily posed as a least-square approximation problem leading to 

optimal accuracy in L2-norm. Assuming  ,( , , ) :s s s D sx y u s →   is the set of sN  collocation 

points, the error function E to be minimized is defined as 

 

2

2

,

1 1
( ) ( ) ( ) ( )

2 2 s

h

D s D s L s L D s

s s L
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= − = −  λ  (4.21) 

where s  are the corresponding collocation points in the parametric space, 
s
 is the set of indices 

of non-zero basis functions at s , and , ( )D s D su u = . Unlike classic NURBS, the vector of design 

variables λ  here includes both boundary control variables as well as boundary control weights, 

i.e.  0 0,..., , ,...,u u

n nu u w w=λ , where similar bounding-box constraints on control weights as in Eq. 

(4.15) are to be satisfied. With this set of design variables, Eq. (4.21) becomes a constrained non-

linear least-square problem which can be solved using any of the existing solvers such as trust-

region-reflective available in MATLAB. Alternatively, to avoid solving a non-linear problem, one 

can employ the two-step linear algorithm developed in Chapter 2 via the extension of the original 

algorithm for NURBS approximation by Ma [11,21]. As previously discussed, this algorithm leads 

to two separate linear systems of equations; a homogenous system which yields the optimal control 

weights and a non-homogenous one that yields the corresponding optimal control variables. As 

the reported numerical results in Chapter 2 suggest, by including the control weights, in both cases 

of smooth and rapidly varying functions, a dramatic improvement in the accuracy can be achieved.  
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Another significant advantage of including the boundary control weights as additional design 

variables for the approximation of Dirichlet conditions is the possibility of exact satisfaction of 

these conditions for a wider range of functions compared to NURBS. In particular, any Dirichlet 

conditions specified as a function of the form 

 
( , )

( , )
( , )

D

f x y
u x y

g x y
=  (4.22) 

where f and g are arbitrary polynomials, can be exactly represented via solving Eq. (4.21) by 

appropriate choice of degrees of basis functions (p, q). We will provide a numerical example later 

and clarify why making direct use of NURBS-based IGA does not naturally allow for the exact 

imposition of the entire functions in this class.  

4.6.2.2. Incorporation in adaptive w-refinement 

We provide here further details on how to impose the obtained optimal boundary conditions from 

previous section on the problem. The process of imposing these conditions on Eq. (4.8) is quite 

similar to other classic ways of strongly imposing the Dirichlet conditions, apart from the subtle 

fact that, in the current case, one should first solve the problem in Eq. (4.21) and feed the obtained 

optimal boundary control weights to the basis functions used for defining the field variable 

function space in Eq. (4.5) prior to the construction of stiffness matrix in Eq. (4.8).  

Moreover, strictly speaking, these boundary control weights (associated with non-homogeneous 

essential boundary) must be excluded from the design variables in Eq. (4.15). We emphasize here 

that, while using any of the strong methods, discussed in Section 4.6.2, for the imposition of non-

homogeneous essential conditions, including these boundary control weights in Eq. (4.15) as 

design variables will result in erroneous results.  

Finally, it needs to be mentioned that merely imposing the optimal boundary conditions obtained 

by the above-discussed algorithm before executing w-adaptivity may not result in improved 

accuracy, or may even deteriorate the solution compared to imposing the Dirichlet conditions using 

classic linear least-square fitting. This could be attributed to the fact that these boundary basis 

functions are shared with the interior ones; hence, while improving the accuracy on the boundary 

(e.g. along  ), manipulating the control weights on the boundary may deteriorate the natural 
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balance between basis functions inward the domain (along  ). However, this issue will be fully 

resolved after performing w-adaptivity.  

4.7.  Numerical integrations  

Another significant aspect for effective implementation of w-refinement which should be carefully 

addressed is the employed quadrature rule. It is important to note that in order for w-adaptivity 

algorithm to perform effectively and lead to optimal solution, all the numerical integrations need 

to be performed with adequate accuracy. This includes integration of the stiffness matrix in (4.9), 

the load vector in (4.10), the estimated error in (4.14), as well as the sensitivity expressions in 

(4.17) and (4.18).  

Several studies have been carried out for the development of efficient quadrature rules in tensor 

product splines; see e.g. [96–101]. Nevertheless, to our knowledge, all these studies ignore the 

variation of the weight function in the denominator and devise quadrature rules which satisfy the 

exactness condition for the non-rational basis. The argument is that “often the weight appearing in 

the denominator of the NURBS basis functions changes slowly (compared to the polynomial 

numerator of the NURBS basis functions) because they are piecewise smooth functions on the 

initial coarse mesh where the geometry is exactly represented. Then, it is a common practice to 

select quadrature rules that give exact integration when the NURBS denominator is constant.” 

[101].   

Nonetheless, as will be seen later in numerical results, this assumption will not hold true in w-

adaptive IGA, especially when the adaptivity is applied to problems with sharply varying solutions. 

In the current work, we will simply use a finer quadrature globally in such cases, to make sure all 

the integrations are calculated with adequate accuracy. Although this does not seem to be an 

efficient way for addressing this issue, we emphasize here that devising an efficient quadrature 

rule for these highly rational tensor product splines has not been a concern of us here and is beyond 

the scope of this study. This is in fact an interesting subject for further research in w-adaptive IGA.  

On the other hand, another observation reported by Hughes et al. [3] is consistent with our 

experiments with w-adaptive IGA. To assess the validity of assuming NURBS as B-splines of the 

same polynomial order for deciding on the number of quadrature points, they perform tests in 

which they systematically increase the number of quadrature points. They report that “for 
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sufficiently fine meshes no differences in results were discernible. However, coarse meshes 

required more integration points due to large variations in the geometrical mapping. More 

research needs to be done to determine a robust strategy covering all situations.” [3] 

Similarly, our numerical experiments with w-adaptive IGA suggest that more quadrature points 

are required to achieve the same level of accuracy in integration when coarser meshes are used. 

However, in our case, this is mainly caused by large variations in the denominator of solution 

basis, that is  
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rather than in geometrical mapping. Therefore, even in cases where the geometrical mapping is 

constant, a larger number of quadrature points will be required when w-adaptivity is performed on 

coarse meshes. The details of selection of quadrature rule will be included for all the numerical 

studies in this thesis.  

4.8. Computer implementation aspects  

The flowchart in Figure 4.1 summarizes the process of adaptive w-refinement. The implementation 

of this procedure is quite straightforward and can be easily included in an existing IGA package. 

Certain details, however, should be considered for the efficient implementation of this algorithm. 

For instance, at the initialization step, one can evaluate and pre-store all the entities constructed 

using the basis functions of the geometry as these entities are invariant during the optimization 

process. Further, if non-homogeneous boundary conditions exist, they need to be evaluated only 

once at this stage. On the other hand, the solution basis functions as well as all their resultants, 

such as natural boundary conditions, change at each iteration and need to be evaluated iteratively 

prior to re-estimation of the error. Finally, as shown in Figure 4.1, we have included a particular 

step for the modification of quadrature followed by updating the control weights in the flowchart 

of adaptivity for the sake of completeness, even though as discussed in previous section, it has not 

been implemented in this work and will be studied in a future research.  
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Figure 4.1. The procedure of adaptive w-refinement. 

 

4.9. Analogy with other refinement techniques 

Recalling the definition of function space refinement techniques in Chapter 1, we can see that the 

proposed method conforms to this definition as it adaptively enriches the function space and 

improves the accuracy without perturbing the underlying geometry or its parameterization. 

However, unlike h and p refinements, this procedure preserves the number of basis functions and 

only changes their contribution to the function space by adjusting their weights. It is important to 

mention that since the solution space is always simply discretized by NURBS basis functions, 

during this adaptive procedure, all the properties of basis functions such as their linear 

independence and partition of unity are naturally preserved. The proof of linear independence of 

NURBS basis functions can be found in [102]. Further, since no additional basis functions are 

introduced, the structure of stiffness matrix remains unchanged in terms of sparsity and bandwidth. 

The condition number, however, will change and needs to be monitored. In the following 

numerical experiments, we will study the effect of performing w-adaptivity on the conditioning of 

the stiffness matrix in different types of problems.  



85 
 

Another important aspect of this adaptive method is that, unlike many of existing methods for 

addressing problems with irregularities such as DPG [103,104], anisotropic NURBS 

approximation [105] etc., it does not require any prior knowledge of the solution behavior. The 

proposed method is in some sense quite similar to r-refinement as both methods attempt to 

minimize an estimation of the error by solving an optimization problem. However, unlike r-

refinement, the design variables in proposed method are transferred to the solution space. This 

change of variable eliminates all the deficiencies of r-refinement discussed in Chapter 1 and makes 

it a competitive algorithm with existing adaptivity techniques.  

4.10.   Limitations 

It is clear that performing w-refinement provides a trade-off between the achieved improvement 

in accuracy and the extra computational cost for solving the adaptivity problem illustrated in 

Figure 4.1. Of course, the algorithm is fruitful when this trade-off is reasonable, i.e. when the 

obtained accuracy dominates the additional computational cost. We note here that this trade-off 

depends on multiple factors such as the type of governing PDE, the behavior of the solution 

(number and orientation of existing layers, in particular), the accuracy of an initial guess for control 

weights, the employed degree of basis functions, the efficiency of the employed non-linear 

optimization solver etc. Detailed investigation of all these factors is beyond the scope of this study. 

However, considering the flowchart of w-refinement in Figure 4.1, we can identify the main 

sources of the additional computational cost as discussed below.  

According to our numerical studies, the primary source of this additional cost is due to re-solving 

the governing PDE at each iteration followed by updating the control weights. Another major 

portion of the computational expense is due to re-evaluation of the objective function, i.e. 

estimated error in Eq. (4.14), as well as its sensitivities in Eqs. (4.16)-(4.18), repeatedly. We recall 

that the calculation of these expressions requires evaluating higher order derivatives of rational 

basis functions which are more complicated and expensive compared to polynomial basis 

functions. In the following numerical studies, we will show how these components of the algorithm 

contribute to the overall computational expense.  

Consequently, we can see that the cost of adaptive w-refinement directly depends on the number 

of optimization iterations, where the cost of each iteration mainly relies on the number of 

quadrature points as well as the employed number of design variables. Therefore, the key factors 



86 
 

for improving efficiency are to reduce the number of optimization iterations, the number of 

quadrature points, as well as the number of considered design variables. We will later suggest 

some preliminary ideas for improving these factors in Chapter 5.   

4.11. Numerical Experiments 

To demonstrate the performance of the proposed adaptivity technique, in this section, we apply 

this method to a variety of problems with different solution behaviors and compare the obtained 

results with those of NURBS-based IGA.  

The presented numerical results are obtained by the implementation of this adaptive algorithm in 

PGI Visual FORTRAN [106]. The conjugate gradient method with Incomplete Lower-Upper 

(ILU) preconditioner has been used for solving the system of equations. All the reported condition 

numbers of the stiffness matrix are measured in L1-norm. The optimization problem is solved by 

the BFGS method available in the Design Optimization Tool (DOT) [107]. The initial guess, 

bounding constraints on design variables, and termination criteria are selected as follows.  

Initial guess: It is well-known that in non-linear optimization problems, starting with a good initial 

guess can significantly improve the performance and efficiency of the algorithm. Not only can this 

make the algorithm converge faster, but also it increases the possibility of achieving the optimal 

results. Finding a suitable initial guess of control weights for a steady transport problem which is 

studied here, however, is non-trivial. In the following numerical experiments, unless stated 

otherwise, we will start the optimization process assuming unit values for all design variables, i.e. 

B-spline basis functions. Nevertheless, in certain cases, we will suggest effective ideas which can 

be used to obtain an improved initial guess.  

Bounding constraints: Theoretically, selecting an infinitesimal positive value for minw and an 

arbitrary larger value for maxw in Eq. (4.15) will cover the whole search space. However, these 

values affect the performance of the algorithm. In particular, selecting too small values for minw , 

if taken by design variables during adaptivity, will result in deterioration of the conditioning of the 

stiffness matrix which is not desired. Our experiments show that with the following suggested 

bounds on design variables, the algorithm works effectively  

 
410 3.0, 1,...,u

Lw L N−   =  (4.24) 
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Further research, however, is needed for finding the optimal bounds in different types of problems.  

Termination criteria: As illustrated in Figure 4.1, the optimization process is terminated whenever 

a convergence criterion is satisfied. The employed design optimization tool (DOT) uses several 

criteria to make the decision when to stop. These include: if a maximum number of 100 iterations 

is reached; Kuhn–Tucker conditions are satisfied ‘reasonably’, defined as when all components of 

the gradient of objective are less than 1e-3; and the so-called diminishing returns criterion when 

either the relative or absolute change in the objective between two consecutive iterations is less 

than the specified tolerance 1e-6. Further details on these criteria can be found in [107]. 

4.11.1.  Test Case 1- Poisson equation with a smooth solution 

In the first numerical experiment, we investigate the performance of w-adaptivity on problems 

with smooth solutions. For this purpose, we consider the following governing Poisson equation 

with homogeneous boundary conditions on all edges 

 
22   sin( ) sin( ), ( , ) [0,1] [0,

( ,0) ( ,1) (0, ) (1, ) 0
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D D D Du x u x u
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x

u

u y  − =  

= = = =
 (4.25) 

whose closed-form solution is given by:  

 ( , )  sin( ) sin( )u x y x y =  (4.26) 

which is illustrated in Figure 4.2.  

 
Figure 4.2. Exact solution of the Poisson equation in (4.26). 
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We perform a convergence study by starting with a mesh of 4 4  bi-quadratic elements with linear 

parameterization, and refining up to 64 64  elements. At each level of discretization, followed by 

h-refinement, we perform w-adaptivity and refer to this procedure as w-h-refinement. In all cases, 

we use a set of 4 4  quadrature points per element for integration. Further, to examine the 

reliability of the employed residual based a posteriori error estimator, we drive the adaptivity 

process with both the exact error in Eq. (4.13), as well as the estimator in Eq. (4.14). The obtained 

results are represented in Figure 4.3.  

 
(a) 
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(b) 

Figure 4.3. Convergence rates of h-refinement versus w-h-refinement in (a) energy norm, and (b) relative 

L2-norm. 

It is interesting to notice that, followed by performing w-adaptivity, the convergence rates have 

been improved by one order in both energy as well as L2 norms, indefinitely. We note here that 

these are representative results of our studies with different degrees of basis functions on a variety 

of second order elliptic PDEs with a smooth solution. Our numerical results suggest the optimal 

rate of convergence of NURBS basis with optimal weights are ( 2)p +  in L2 and ( 1)p +  in 

energy norm for these problems.   

Moreover, the figure shows a good agreement between the results obtained with guiding the 

adaptivity process by the exact error as well as the estimated error. As can be seen, this agreement 

improves as the resolution of the mesh increases. This is expected since the performance of 

estimator is directly related to the accuracy of solving the PDE. That is, the more accurate the PDE 

is solved, a better estimation of the error is provided by the estimator.  

The history of adaptivity process guided by the estimator is depicted in Figure 4.4 for the 4 4  

mesh. The plotted results are obtained by assuming the unknown constant 1C =  in Eq. (4.14). It 

is interesting to notice that by decreasing the objective function ( E ) at each iteration, the exact 

error h E
e also diminishes by a quite similar rate, which implies the reliability of the employed 
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residual based a posteriori estimator. Note that the offset between the estimated and exact error is 

unimportant and is caused by the assumption made for the unknown constant C. 

 
Figure 4.4. History of adaptivity process on the 4*4 mesh. 

Furthermore, the optimal variation of the denominator of solution (uW   )  is depicted in Figure 

4.5(a) and (b), for the 4 4  and 32 32  meshes, respectively. The adaptivity process is driven by 

the estimator in both cases.  

 
(a) 
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(b) 

Figure 4.5. Optimal variation of Wu(ξ, η) after performing w-adaptivity on the (a) 4*4 mesh, and (b) 

32*32 mesh. 

Comparing these figures, we can see that the optimal variation of denominator is converging 

towards a perfectly circular distribution, suggesting the possibility of existence of a closed-form 

expression. Moreover, we can see that in both cases the variation of the denominator is very small. 

This is expected to be always the case as long as the solution of the PDE is smooth.  

The condition numbers of the stiffness matrix before and after adaptivity are presented in Table 

4.1 for different mesh resolutions. As the table shows, no noticeable change in the condition 

number of the system of equations for any of the presented cases has occurred followed by 

performing w-adaptivity. 

Table 4.1. Condition number of the stiffness matrix for different meshes. 

Mesh IGA w-adaptive IGA 
-IGA

IGA

w
 

4 4   6.07E+00 6.48E+00 1.1 

32 32  1.86E+02 1.86E+02 1.0 

 

Finally, the relative amount of computational time consumed by different steps of the algorithm 

throughout the adaptivity process are shown in Table 4.2. The reported numbers are an average of 

the times calculated for different mesh resolutions.  
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Table 4.2. Relative computational times of different steps of w-refinement. 

Basis 
Objective & 

Sensitivities 
Analysis Other 

30% 20% 45% 5% 

 

According to this table, the largest computational time is consumed by the analysis step 

(construction of the stiffness matrix and solving the system of equations). The second time-

consuming part is the evaluation of the basis functions together with their higher order spatial 

derivatives. Sensitivity analysis and evaluation of the objective function are also the next major 

time-consuming component of the algorithm.  

4.11.2.  Test Case 2- Reaction-diffusion equation with a rough solution 

In this example, we examine the effectiveness of the proposed adaptive method on a problem with 

a rough solution. To this end, we consider a singularly perturbed reaction-diffusion equation with 

homogeneous essential boundary conditions on all edges 

 
2 , ( , ) [0,1] [0,1

( ,0) ( ,1) (0, ) (1, ) 0

]

D D D Du x

u u f x y

u x u y u y



= = =

−  + = 

=


 (4.27) 

where   is the diffusion parameter, and f  is determined by the exact solution 

 ( , ) sin( ) (1 ) (1 )xu x y y e x −= − −  (4.28) 

which is depicted in Figure 4.6 for  =  .  

 
Figure 4.6. Exact solution of reaction-diffusion equation in Eq. (4.28) for ε = 0.01. 
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As the figure shows, the solution features a steep boundary layer of width   near the left edge. 

Similar to the previous example, we study the convergence of h and w-h-refinement by performing 

w-adaptivity on different meshes of 4 4  to 32 32  elements. We employ sets of 

15 15,12 12,10 10    and 8 8  quadrature points per knot-element for integration on the coarsest 

to finest mesh, respectively. Our experiments show no discernible change in results with using 

finer quadratures. However, as discussed earlier, a more systematic way is needed for deciding on 

the appropriate number of quadrature points.  

In this example, we start the adaptivity process with an improved initial guess for control weights 

in the case of finer meshes, which is obtained by h-refining the optimal rational function space of 

the coarser mesh obtained by w-adaptivity. For this purpose, h-refinement is performed separately 

on the geometry and optimal solution function spaces of a coarser mesh. Our experiments indicate 

that this procedure leads to improved results and reduced number of iterations in problems with 

sharply varying solutions, such as the current example, where large variations in the denominator 

occur.  

The obtained convergence rates are represented in Figure 4.7(a) and (b) for bi-quadratic and bi-

cubic basis functions, respectively.  

 
(a) 
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(b) 

Figure 4.7. Convergence rates of h-refinement versus w-h-refinement in energy norm for (a) quadratic, 

and (b) cubic case. 

As observed, in both cases a considerable improvement in the accuracy of approximation has been 

achieved. The improvement of the convergence rate, however, is not persistent and also differs for 

different degrees. Comparing Figure 4.7(a) and (b), we can see that the improvement in the 

convergence rate with quadratic basis is more evident, although this improvement is not persistent 

for all levels of refinement. It is worth noting that this non-uniform behavior of the convergence 

rate is common in other types of adaptive methods such as adaptive local h-refinement; see e.g. 

[34]. Further study is required to better perceive the effect of w-adaptivity on the convergence rate 

in problems with sharp layers. It is interesting to notice that in both cases, the obtained accuracy 

on a 4 4  mesh, after performing w-adaptivity, is better than that of a 64 64  mesh with B-spline 

functions. However, we reiterate that there is an additional computational cost for solving the 

optimization problem in w-adaptive IGA.  

For better insight, the plots of approximated solution before and after adaptivity are depicted in 

Figure 4.8. Also, the corresponding distributions of error are represented in Figure 4.9.  
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 (a) (b) 

     
 (c) (d) 

Figure 4.8. Approximate solution of reaction-diffusion problem with a 4*4 mesh using (a) quadratic IGA, 

(b) cubic IGA, (c) quadratic w-adaptive IGA, and (d) cubic w-adaptive IGA. 

     
 (a) (b) 
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 (c) (d) 

Figure 4.9. Error distribution of solving the reaction-diffusion problem with a 4*4 mesh using (a) 

quadratic IGA, (b) cubic IGA, (c) quadratic w-adaptive IGA, and (d) cubic w-adaptive IGA. 

Having examined these figures, we can observe that after performing adaptivity, in both cases, the 

boundary layer has almost been completely resolved and a monotone distribution of error has been 

achieved.  

The variations of denominator function (uW   )  of the optimal solutions are demonstrated in 

Figure 4.10. It is interesting to notice that, unlike the previous example with a smooth solution, the 

variation of denominator in this case is very large. As the figure shows, the magnitude of this 

variation exceeds two orders of magnitude in the vicinity of the boundary layer. This experiment, 

in fact, reveals another significant aspect of using rational splines as a basis for analysis. While 

piecewise smooth polynomials are inherently poor for the approximation of fields with steep 

localized gradients, approximation with rational bases promises an effective tool for addressing 

this deficiency.  
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 (a) (b) 

Figure 4.10. Variation of solution denominator after w-adaptivity on the 4*4 mesh with (a) quadratic, and 

(b) cubic basis functions. 

The condition numbers of the stiffness matrix before and after adaptivity are presented in Table 

4.3 for different mesh resolutions. Comparing the condition numbers in Table 4.3 with those of 

the previous example in Table 4.1, we can observe moderate increase of the condition numbers in 

the current example.  

Table 4.3. Condition number of the stiffness matrix for different meshes. 

Mesh Degree IGA w-adaptive IGA 
-IGA

IGA

w
  

4 4  
2 5.65E+01 2.23E+02 3.9 

3 8.04E+02 1.79E+03 2.2 

32 32  
2 1.97E+01 3.14E+01 1.6 

3 1.77E+02 2.56E+02 1.4 

 

Our experiments indicate that the increase of condition number is related to the variation of 

solution denominator, that is, larger variations of the denominator result in further increase of the 

condition number. Nevertheless, despite having orders of magnitude variation in the denominator 

of basis functions in the current case, according to Table 4.3, the condition numbers have not 

increased by any more than 4 times for any of the presented experiments. Finally, it is worth noting 



98 
 

that for more complex problems with meshes of practical scale, the increase of condition number 

can possibly be larger. Suitable preconditioners perhaps need to be developed and employed in 

such scenarios. 

4.11.3.  Test Case 3- Poisson equation with a closed-form solution in rational space 

In this example, we attempt to reveal another crucial merit of w-adaptivity, which is its capability 

to solve problems whose exact solution lie in the rational space with machine precision, 

irrespective of how coarse the discretization is. Towards this goal, we consider the following 

Poisson equation over a quarter ring with Dirichlet conditions on all edges 

 
( , )

onD D

u f r

u u

− =

= 
 (4.29) 

where the source term f and boundary conditions Du  are specified by the closed-form solution (see 

Figure 4.11)  

 
2

cos( )
( , ) .u r

r


 =  (4.30) 

 
Figure 4.11. Exact solution of Poisson equation in Eq. (4.30). 

The configuration of the problem is illustrated in Figure 4.12.  
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Figure 4.12. Configuration and boundary conditions of the quarter ring. 

We construct a computational model with two bi-quadratic NURBS elements with normal 

parameterization as shown in Figure 4.13. The analytical values for the coordinates and weights 

of control points are provided in Table 4.4. Also, the knot-vectors are selected as 

 0,0,0,0.5,1,1,1=Ξ  and  0,0,0,1,1,1=Η . It can be shown that the exact solution in Eq. (4.30) 

can be recovered by using the analytical values shown in Table 4.4 for control variables and control 

weights. According to this table, one can clearly see that the control weights required for 

recovering the exact solution in Eq. (4.30) have nothing to do with those of the underlying 

geometry. This is trivial as these control weights are determined by the governing PDE in Eq. 

(4.29).  
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Figure 4.13. Control and physical mesh of the quarter ring with normal parameterization. 

Table 4.4. Analytical values for exact modelling and solution of the problem. 

L Lx  Ly  
G

Lw  Lu  
u

Lw  

1 1.0 0.0 1.0 1.0 a  

2 1.0 a  2b  1.0 0.5 c  

3 a  1.0 2b  a  0.5 c  

4 0.0 1.0 1.0 0.0 a  

5 1.5 0.0 1.0 0.5 2 a  

6 1.5 1.5 a  2b  0.5 c  

7 1.5 a  1.5 2b  0.5 a  c  

8 0.0 1.5 1.0 0.0 2 a  

9 2.0 0.0 1.0 0.25 4 a  

10 2.0 2 a  2b  0.25 2 c  

11 2 a  2.0 2b  0.25 a  2 c  

12 0.0 2.0 1.0 0.0 4 a  

tan( ), cos( ), cos( )
8 8 4

a b c
  

= = =  
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For better insight, the variation of denominator of the geometry as well as that of the field variable, 

obtained by the reported values in Table 4.4, are illustrated in Figure 4.14.  

 
(a) 

 
(b) 

Figure 4.14. The variation of denominator of the (a) geometry, and (b) field variable. 



102 
 

Comparing these figures, we can see that there is no meaningful relationship between the variations 

of these two functions. Now, we attempt to solve the problem by using classic NURBS-based IGA, 

where the control weights are assigned identical values with the weights of the geometry, as well 

as the proposed w-adaptive IGA. To ensure that all integrations are calculated with machine 

precision, in both cases, we use a set of 15 15  quadrature points per knot-element.  

In the case of IGA, we impose the essential boundary conditions by using classic least-square 

fitting. Note that the only remaining unknown control variables to be determined by analysis are 

6 7( , )u u . The obtained distribution of error of IGA solution is represented in Figure 4.15. As 

observed, the error is of order 210− over most regions of the domain. The energy norm of this error 

distribution is 1.62 1h E
e e= − . One may attempt to perform h-refinement to achieve a better 

accuracy with the expected optimal convergence rate of (2)  in energy norm, studied in test case 

1.  

 
Figure 4.15. Error distribution of NURBS-based IGA solution. 

Next, we study the performance of w-adaptivity for solving the same problem. In this case, the 

essential boundary conditions are imposed exactly by using the analytical values for boundary 

control variables and control weights, reported in Table 4.4, prior to performing the adaptivity. 

The only remaining unknowns to be determined by analysis here are 6 6( , )uu w  and 7 7( , )uu w . We 
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start the adaptivity process by the initial guess of assuming unit values for both unknown control 

weights, i.e.    0 6 7 0
, 1,1u uw w= =χ . The initial distribution of error prior to performing the 

adaptivity is indicated in Figure 4.16. The energy norm of error in this case is 1.05 1h E
e e= − , 

which is slightly better than the result of previous case with IGA due to exact satisfaction of 

boundary conditions on all edges here.  

 
Figure 4.16. Error distribution of the initial solution before performing w-adaptivity. 

Starting with this solution, we now execute the adaptivity process driven by the estimator. The 

history of estimated error as well as the exact error (in energy norm) during adaptivity are plotted 

in Figure 4.17. It is surprising to notice that although the adaptivity process has been guided by 

the estimator, the exact error has diminished to machine precision (1.54 13e − ) after 38 iterations, 

which implies the high reliability of the proposed adaptive framework.  
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Figure 4.17. The histories of estimated and exact error during w-adaptivity. 

The obtained optimal values of unknown control variables after adaptivity are presented in Table 

4.5, alongside their analytical values. Considering this table, we can see that the obtained optimal 

values are in agreements with the analytical ones within 12 digits after the decimal place.  

Table 4.5. The obtained optimal control weights by w-adaptivity together with the analytical values. 

Design variable Initial Optimal Analytical 

6

uw  1.0 0.707106781185937 0.707106781186548 

7

uw  1.0 0.707106781186656 0.707106781186548 

 

Finally, it must be mentioned here that inspired by Theorem 1, it might seem tempting that one 

would be able to achieve this accuracy simply by performing the analysis using a higher order 

basis. We emphasize here that although Theorem 1 establishes that GNURBS can always be 

transformed to higher order classic NURBS, obtaining these results by directly making use of 

NURBS-based IGA using any order of basis functions is not possible. The reader can consult [78] 

for more details on this apparent inconsistency. 
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4.11.4.  Test Case 4: Patch test 

As the last numerical experiment, we study the satisfaction of patch test by the proposed w-

adaptive isogeometric method. For this purpose, we consider the quarter annulus from previous 

example with a perturbed mesh as shown in Figure 4.18.  

 

Figure 4.18. The quarter ring with a perturbed mesh. 

We consider two cases of the standard patch test, as well as an extended patch test in rational space 

discussed below. In both cases, we use 12 12  quadrature points per knot-element for integration.  

4.11.4.1. Standard patch test 

We recall here that NURBS-based IGA satisfies the standard patch test as reported by Hughes et 

al. in [2,3]. This is in fact one of the key advantages of using an isoparametric basis. We investigate 

here if this test will also be satisfied by w-adaptive IGA. Towards this end, we consider a Poisson 

equation with Dirichlet boundary conditions on all edges 

 
onD D

u f

u u

− =

= 
 (4.31) 

where f and Du are specified by the following exact solution 

 ( , ) 2 1.u x y x y= + +  (4.32) 
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First, we assign the boundary control weights the same values with those of the geometry. This 

ensures satisfaction of all essential conditions exactly. The boundary control variables are obtained 

by using linear least square fitting and enforced strongly.  

Next, similar to previous example, we execute w-adaptivity with the initial guess of 

   0 6 7 0
, 1,1u uw w= =χ  for interior control weights. The history of adaptivity process is illustrated 

in Figure 4.19. As observed, the error is diminished to machine precision ( 3.26 13e − ) after 31 

iterations.  

 
Figure 4.19. History of w-adaptivity for standard patch test. 

Moreover, the obtained optimal values for control weights are presented in Table 4.6. According 

to this table, the obtained optimal values are in agreements with the analytical values, i.e. 6 7,G Gw w , 

within 12 digits after the decimal place.  

Table 4.6. The obtained optimal control weights by w-adaptivity as well as the analytical values for 

standard patch test. 

Design variable Initial Optimal Analytical 

6

uw  1.0 0.853553390593643 0.853553390593274 

7

uw  1.0 0.853553390592845 0.853553390593274 
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The results of this experiment are consistent with the assertions of Hughes et al. [3] regarding the 

fact that affine covariance, which is ensured by isoparametric concept, is an essential property for 

satisfying patch tests.   

4.11.4.2. Rational patch test 

As the final numerical experiment, we repeat the previous test on a Poisson problem with the 

following exact solution 

 
2

( , )
1

x y
u x y

x y

+
=

+ +
 (4.33) 

Dirichlet boundary conditions specified by the exact solution are assumed on all edges. The exact 

boundary control weights and control variables are obtained by solving Eq. (4.21) and enforced 

strongly. Note that in this case, due to rational structure of the exact solution, the optimal control 

weights, unlike previous case, have nothing to do with those of the geometry. Similar to previous 

case, we conduct w-adaptivity with the initial guess of    0 6 7 0
, 1,1u uw w= =χ  for interior control 

weights. The history of adaptivity process is depicted in Figure 4.20. As observed, the exact error 

is diminished to machine precision (1.49 14e − ) after 36 iterations.  

 

Figure 4.20. History of w-adaptivity for rational patch test. 
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This study reveals another significant fact about using rational splines for analysis, that is, over an 

arbitrary parameterization, w-adaptive IGA is able to reproduce the exact solution of a problem 

whose closed-form solution is a first order rational expression. The results of this experiment also 

lead to interesting questions for more studies on the correlation between isoparametric concept or 

affine-invariance and satisfaction of different patch tests. For instance, as mentioned earlier, 

Cottrell et al. [2] refer to affine-invariance, ensured by using an isoparametric basis, as an essential 

property for satisfying patch test. While this is consistent with our obtained results for the standard 

patch test, the devised experiment of rational patch test seems to be violating this necessity. 
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 Conclusions and future works 

 

5.1. GNURBS in CAGD 

We introduced two generalizations of NURBS, referred to as GNURBS, by decoupling of the 

weights associated with the control points along different physical coordinates. These 

generalizations were obtained via either explicit or implicit decoupling of the weights leading to 

non-isoparametric and isoparametric representations, respectively. As demonstrated, both these 

variations improve the flexibility of NURBS and circumvent its deficiencies by providing the 

possibility of treating the weights as additional design variables in special applications. It was 

proved that these representations are only variations of classic NURBS and do not constitute a new 

superset of NURBS. The superior approximation abilities of these variations for both smooth and 

rapidly varying functions were shown via simple examples in the context of CAGD in Chapters 2 

and 3 for curves and surfaces, respectively. It was shown that GNURBS can be effectively used 

for improved construction of various types of curves and surfaces such as helical curves and 

surfaces, minimal surfaces and surfaces of revolution using the same number of control points.  

Two comprehensive MATLAB toolboxes, named GNURBS-Lab and GNURBS3D-Lab, were 

developed and introduced for curves and surfaces, respectively, to demonstrate the behavior of 

GNURBS in a fully interactive manner. Overall, GNURBS was shown to provide a new powerful 

technology in CAGD with superior flexibility while including NURBS as a special case. 

 

5.2. GNURBS as an enhanced tool for analysis 

A novel adaptivity technique in isogeometric analysis, referred to as adaptive w-refinement, was 

introduced. The proposed adaptive method allows for the approximation of solution with optimal 

rational basis by treating the control weights as additional degrees of freedoms. It was shown that 

this procedure effectively alleviates the deficiencies of NURBS for analysis and leads to superior 

results at the expense of solving an unconstrained optimization problem. The performance of the 

proposed method on elliptic problems with smooth and sharp solutions was studied. It was 

observed that w-adaptive IGA results in one order faster convergence than classic IGA in the case 

of smooth problems, while significant improvement of accuracy is achieved in problems with 
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sharply varying solutions. Moreover, unlike classic IGA, the proposed adaptive method was 

demonstrated to be able to reproduce the exact solution of problems whose closed-form solutions 

lie in rational space, revealing a new critical aspect of using rational splines for analysis. Overall, 

the proposed adaptive w-refinement procedure provides a new effective technique for the 

enrichment of function space in isogeometric method and possibly a competitive tool with 

hierarchical splines.  

 

5.3. Extensions and further applications 

5.3.1. CAGD4 

While, in this thesis, we limited our study to applying the proposed generalizations to NURBS 

curves and surfaces, they can be similarly applied to tri-variate volumes. Moreover, due to 

fundamental similarities between different variations of splines, these generalizations seem 

plausible to all other rational forms of splines such as T-splines, Tri-angular Béziers, etc.  

In addition to the discussed applications in CAGD, there are other applications of NURBS where 

employing the weights as additional design variables for better flexibility can be problematic or 

sometimes impossible. For instance, while we mostly limited our numerical experiments to 

approximation over curved domains, GNURBS may also help circumventing the difficulties of 

considering the weights as degrees of freedom in general curve/surface fitting problems. As 

previously studied in [22,23], employing the weights as additional degrees of freedom in data 

approximation can deteriorate the surface parameterization, and lead to undesirable results. In this 

regard, existing studies suggest imposing bounding constraints on the variation of the weights 

explicitly or via regularization [11,20,21], to avoid this issue. However, this limits the obtained 

improvement in the accuracy of approximation, especially in the case of problems containing rapid 

variation in data or field where the weights tend to take extreme values.  

On the other hand, employing the suggested variations of NURBS, one can create a good 

parameterization and preserve it while including the control weights as design variables for fitting 

the curve/surface to 3D data points, without imposing any limitations on the values of the weights. 

 
 

4 The materials in this section have been published in Engineering with Computers journal, ref. [78] 
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Further potential applications in CAD where GNURBS can be exploited with improved flexibility 

include NURBS-based metamodeling [108], which is of significant interest in engineering design. 

5.3.2. Further improvements for analysis5 

The present study opens doors to multiple new areas of research in IGA. While the numerical 

results are promising, there are many challenges which require further research to be addressed. 

We review a few of these aspects in this section in view of providing insights for interested readers.  

Proof of convergence: While in this theis, we only numerically studied the rate of convergence of 

w-adaptive IGA, possible mathematical proofs of these results need to be developed. Specifically, 

in the case of second order elliptic PDEs with smooth solutions, the presented numerical results 

suggest that the NURBS basis of a particular degree with optimal weights has the same rate of 

convergence with the B-spline basis of one higher degree. To our knowledge, this has not been 

reported or proved in the literature. It also needs to be investigated if these results hold true for 

higher dimensions (3D) as well.  

Adaptive Quadrature: One of the main aspects which needs to be more systematically addressed 

is devising efficient quadrature rules for integration over the arising highly-rational elements in w-

adaptive IGA. In particular, two common strategies of devising a weighted quadrature rule [109], 

or employing an adaptive subdivision technique can be exploited for improved efficiency. 

Quadrature rules that restore variational consistency, or the so-called VCI domain integration 

methods which have been extended to IGA in [110], also provide an alternative promising 

technique for addressing this issue. An appropriate index, based on the total variation of 

denominator in Eq. (4.23) for instance, needs to be defined to identify elements where the 

quadrature needs to be improved.  

Localization: Another aspect which can help improving the efficiency of the proposed adaptive 

method is the selection of the vector of design variables in Eq. (4.15). Although we only studied 

global w-adaptivity in this paper, as discussed earlier, this is unnecessary. For instance, it seems 

plausible to only consider the control weights of the elements in selective regions of the domain 

 
 

5 The materials in this section have been published in CMAME journal, ref. [112] 
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as design variables especially in the case of problems with irregularities such as test case 2. Robust 

and effective marking techniques, however, need to be developed and studied for any localization.  

Stabilization: While the most promising scope of the proposed w-adaptive algorithm is perhaps on 

problems with sharp layers, instabilities may occur in many problems of this type with Galerkin 

approach [88]. Stabilization techniques, such as SUPG [111] need to be used in such scenarios. 

Incorporation of these techniques within the proposed w-adaptive framework, however, is non-

trivial and needs further research. 

Combination with other refinement techniques: Similar to other refinement techniques, the 

proposed w-refinement method can plausibly be combined with any of existing refinement 

methods for improved efficiency. Combination of this method with order elevation, in particular, 

requires employing an alternative generalization of NURBS, which is already introduced in [78] 

for performing optimal order elevation on parametric curves by the authors. In contrast to the 

introduced method in this paper, this combination will allow for introducing ‘customized 

rationality’ to the solution space which is expected to improve efficiency; please see [78] for more 

details.  

Application to other rational splines: Finally, although we only studied here the application of the 

proposed w-adaptive method to GNURBS-based IGA, it seems plausible to all other variations of 

IGA based on rational forms of splines such as T-splines, U-splines etc.  

5.3.3. Applications in structural optimization 

Owing to the inherent properties of NURBS, they have been extensively used in structural 

optimization for the optimization of different fields of interest over a computational domain. For 

instance, Qian [79] employs B-spline basis for the representation of density field in FEM-based 

topology optimization as an intrinsic filtering technique. Within the framework of IGA, numerous 

studies have been performed where the same NURBS based parameterization of computational 

domain has also been used for the representation of different fields which need to be optimized 

over the domain in various applications such as size optimization of curved beams [83–85], 

topology optimization [8,80–82], optimization of material distribution in functionally graded 

materials (FGMs) [86,87] etc.  
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Having examined these studies, it can be noticed that in this class of applications, the 

parameterization of the design domain must remain fixed throughout the optimization process. 

Moreover, many of them require linear parameterization of the design domain and achieve this by 

placing the control points at their Greville abscissae, see e.g. [79,86]. Hence, they are only able to 

treat the out-of-plane coordinates of control points as design variables, as the variation of weights 

alters the underlying parameterization which is disallowed.  

Owing to the proposed GNURBS representations with decoupled weights, one can now treat the 

out of plane weights as additional design variables while setting up the optimization problem and 

still preserve the underlying geometry as well as its parameterization unchanged. As the presented 

numerical results suggest, this idea can lead to significant improvement in the flexibility in both 

cases of smooth as well as rapidly varying fields. Exploring these applications is the subject of 

future studies. 

5.4. Further generalizations 

It is interesting to notice that in case of surfaces, an additional form of generalization is possible. 

This type of generalization is obtained by decoupling the weights with respect to parametric 

coordinates. This generalization could be applied to either classic NURBS surface, or either of the 

proposed non-isoparametric or isoparametric GNURBS surfaces. Any of these generalizations 

could potentially be useful in certain applications. We introduce here the following mathematical 

model as another possible generalization of NURBS surfaces  
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As observed, in this class of generalization, two different set of weights are associated with each 

basis, one of which is responsible for expanding the basis in   direction, while the other one 

expands the basis along   direction. It is important to note that the key obtained advantage in this 

formulation is that by changing the weights associated with a particular parametric direction, the 

parameterization of the surface in the other direction does not change. In other words, using this 
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formulation, one can create a parametric surface which is only rational in terms of one of the 

parametric coordinates while still remaining non-rational in terms of the other one.  

One can naturally combine the above generalization with other generalizations, introduced earlier, 

by assigning different weights to each parametric as well as physical coordinate as follows  
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for brevity in vector components. Denoting an arbitrary coordinate in physical space with 

 , , zd x y , the corresponding basis to d-coordinate could be written as  
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According to Eq. (5.3), a total of six independent weights has been assigned to each control point. 

Each of these weights are responsible to expand the surface in a certain parametric and physical 

direction.  

Figure 5.1 shows a GNURBS bivariate basis function in the parametric space. As the figure shows, 

by increasing the weight associated with a particular parametric direction, the basis only expands 

in that direction while it remains unchanged in the other direction. To illustrate this fact better, we 

have plotted the neighboring basis functions in both   and   directions in Figure 5.2 and Figure 

5.3, respectively. Comparing these figures, it can be clearly observed that the neighboring basis 

functions along  -direction have been contracted, while the ones along  -direction have 

remained unchanged as Bspline basis functions. The resulting GNURBS surface is depicted in 

Figure 5.4.  
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Figure 5.1. Bivariate GNURBS basis ß4,4 (ξ,η) with wξ

44 = 4  and wη
44 = 1 in parametric space. 

 
Figure 5.2. Bivariate neighboring GNURBS basis functions in ξ-direction: ß3,4 (ξ,η) and ß5,4 (ξ,η) with wξ

44 

= 4  and wη
44 = 1. 
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Figure 5.3. Bivariate neighboring GNURBS basis functions in η-direction: ß4,3 (ξ,η) and ß4,5 (ξ,η) with wξ

44 

= 4  and wη
44 = 1. 

 
Figure 5.4. GNURBS surface with wzξ

44 = 4 and wzη44 = 1 in physical space over the nonzero area. 

It is interesting to notice that this surface is rational in terms of  , while it is non-rational in terms 

of  . It can be shown that this property plays a crucial role in certain applications such as the 

treatment of nonhomogeneous essential boundary conditions in IGA etc, which will be the subject 

of future studies. 
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Finally, while we did not explore the theoretical properties of these additional generalizations in 

this thesis, successful application of these representations requires satisfaction of certain properties 

such as linear independence of basis functions and partition of unity. Exploring these theoretical 

properties is the subject of future studies.  
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Appendix A: Derivation of the second order derivatives of 

basis functions and field variable 

We recall the following relations for the transformation of the first and second order derivatives 

of an arbitrary variable  between physical and parametric coordinates: 
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Also, 

 ( )

22

, ,22

2 2
1

, ,

2 2

, ,2 2

II

x y
x yx

J x y
x y x y

x y
y x y

 

 

 



 



−

      − −  
     

        
= − −   

        
      

− −   
         

 (A.3) 
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Note that Eqs. (A.1) and (A.3) can be directly used for the calculation of spatial derivatives of the 

basis functions as well as the field variable. We will later use the above expressions for sensitivity 

analysis.  
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Appendix B: Derivation of sensitivity expressions 

For brevity, we first define the following simplified notations: 
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Having the above expressions, we can find the required sensitivities in (4.17) and (4.18) as 

described below. The sensitivities of the field variable simplify to 
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Further, the sensitivities of the first order spatial derivatives of the field variable can be derived as 
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By having the above relations, we can evaluate the sensitivities of the second order spatial 

derivatives of the field variable as follows 
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where the required sensitivities of the higher order parametric derivatives of the field variable can 

be computed using the following expressions 
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and  
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