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Abstract

In non-life insurance, a loss reserve represents the insurer’s best estimate of outstanding

liabilities for losses that occurred on or before a valuation date. The accurate prediction

of outstanding liabilities is key to setting reserves and calibrating insurance rates, which

are two interconnected primary functions of actuaries. For instance, inadequate reserves

could lead to deficient rates and thereby increase solvency risk. Also, excessive reserves

could increase the cost of capital and regulatory scrutiny. Therefore, reserving accuracy

is essential for insurers to meet regulatory requirements, remain solvent, and stay

competitive.

The loss reserve prediction in non-life insurance is usually based on macro-level models

that use aggregate loss data summarized in a run-off triangle. The main strengths

of the macro-level models are that they are easy to implement and interpret. But,

the limited ability to handle heterogeneity among triangle cells and changes to the

business environment may lead to inaccurate predictions. Recently, micro-level reserving

techniques have gained traction as they allow an analyst to use the information on

the policy, the individual claim, and the development process to predict outstanding

liabilities. Granular covariate information allows environmental changes to be captured

naturally to improve reserve predictions.

In non-life insurance, the payment history can be predictive of the timing of a settlement

for individual claims. Ignoring the association between the payment process and the

settlement process could bias the prediction of outstanding payments. To address this

issue, In this dissertation, I introduce into the literature of micro-level loss reserving
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a joint modeling framework that incorporates longitudinal payments of a claim into

the intensity process of the claim settlement. I discuss statistical inference and focus

on the prediction aspects of the model. I demonstrate applications of the proposed

model in the reserving practice and identify scenarios where the joint model outperforms

macro-level reserving methods using simulated data. Moreover, I present a detailed

empirical analysis using data from a property insurance provider. I fit the joint model

to a training dataset and use the fitted model to predict the future development of

open claims. The prediction results using out-of-sample data show that the joint model

framework outperforms existing reserving models that ignore the payment-settlement

association.

In pricing insurance contracts for non-life insurers, current methods often only consider

the information on closed claims and ignore open claims. In case of a shift in the insurer’s

book risk profile, open claims could reflect the change in a timely manner compared to

closed claims. This dissertation presents an intuitive ratemaking model by employing a

marked Poisson process framework. The framework ensures that the multivariate risk

analysis is done using the information on all reported claims and makes an adjustment

for incurred but not reported claims based on the reporting delay distribution. Using

data from a property insurance provider, I show that by determining rates based on

current data, the proposed ratemaking framework leads to better alignment of premiums

with claims experience. Among other things, accurate risk pricing suggests that all

market participants, insurers, and customers, bear reasonable costs for risks assumed.
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Chapter 1

Introduction

Chapter Preview. In the loss reserving literature for non-life insurance, there are two

main classes of reserving techniques: Macro-level models, which are sometimes called

aggregate models, and micro-level models, also referred to as individual-level models.

In this chapter, I review the strengths and limitations of these classes of reserving

techniques. In claims management, actuarial analysts commonly encounter situations

where settlement duration is positively associated with the size of payments for individual

claims. This chapter also describes the features of insurance claims data that motivate

the joint modeling of the payment and settlement processes to account for the association

between them.

Section 1.1 discusses the concept of reserving. Section 1.2 then elaborates on macro-level

and micro-level reserving techniques by discussing their strengths and limitations. Section

1.3 describes the property insurance claims dataset and its important characteristics

that motivate the joint modeling framework. The chapter concludes by explaining

the contribution of this dissertation to the loss reserving, joint model, and ratemaking

literatures in Section 1.4.
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1.1 The Concept of Loss Reserving

A loss reserve represents the insurer’s best estimate of outstanding liabilities for losses

that occurred on or before a valuation date. The process of estimating the outstanding

liabilities is called loss reserving. In addition to loss reserves, non-life insurers make

provisions for unearned premiums. The unearned premium reserve is the money insurers

hold for premiums received, but for which coverage has yet to be provided hence a

claim has not yet occurred. The sum of these two classes of reserves makes up the

most substantial liability on a non-life insurer’s balance sheet. The central focus of this

dissertation, however, is on loss reserves. For more on unearned premium reserves, see

Werner and Modlin (2016).

Substantial errors in predicting unpaid losses can have important business consequences.

Inaccurate prediction of unpaid losses may lead to under-reserving (inadequate reserves)

or over-reserving (excessive reserves), which influences the insurer’s key financial metrics

that further feeds into the decision making of management, investors, and regulators

(Petroni, 1992). For example, over-reserving could increase the cost of capital. Further,

as will be discussed in Chapter 5, in pricing insurance products through a process known

as ratemaking, the accurate prediction of unpaid losses is of great value. For instance,

under-reserving could lead to deficient insurance rates and thus increase solvency risk.

Therefore, reserving accuracy is essential for insurers to meet regulatory requirements,

remain solvent, and stay competitive. An expansive list of the importance of accurately

estimating unpaid losses can be found in the first chapter of Friedland (2010).

At a valuation date, which is the date at which historical payment transactions are

used to evaluate outstanding liabilities, a claim can be Incurred But Not Reported

(IBNR), Reported But Not Settled (RBNS), or settled. Reserve estimates are then

provided for IBNR, and RBNS claims to cover outstanding liabilities. The development

process of a single non-life claim is illustrated in Figure 1.1. In the figure, the claim that

occurred at time Tocc is notified to the insurer at time Trep. After the claim is reported,

it may take several payment transactions made at times T1, T2 and T3 (sometimes just
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one payment transaction) for the claim to be settled at time Tset. In this scenario,

the claim is an IBNR claim at the valuation date τ1, a RBNS claim at the valuation

date τ2, and a settled claim at the valuation date τ3. The reporting delay, which is

the difference between the reporting date and the occurrence date, can be affected by

a number of factors. For example, usually big claims are easily noticeable hence are

reported quicker than small claims. Also, the settlement delay, which is the difference

between the settlement date and the reporting date, is affected by the time it takes to

evaluate the whole size of the claim. As a result, the settlement delay is generally longer

for claims with disputes which have to be settled in court.

Figure 1.1: Timeline for the development of a non-life claim.

1.2 Literature

In the literature, there are two main classes of reserving techniques: Macro-level models,

and micro-level models. This section reviews the strengths and limitations of these

classes of reserving techniques.
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1.2.1 Macro-Level Reserving Models

The macro-level models are based on aggregate losses data summarized in a run-off

triangle. The run-off triangle, which is also called the loss development triangle, sums

up losses using two time axes, claim occurrence period i and development period j,

as shown in Figure 1.2. Here, the period can be years, half-years, quarters, months,

etc., yet time is typically treated in a discrete manner. The data can be summarized as

incremental payments Xi,j defined as payments for claims in cell {i, j} or cumulative

payments defined as Ci,j = ∑j
k=0Xi,k. The upper triangle is what we observe as the

development of the losses is censored at the most recent accident period I. In the figure,

it is assumed that the last development period is J . The observed data can be the paid

losses, which are the amount paid out for claims or the reported losses, which refer to

the cumulative paid losses plus the amount expected to be paid by claim adjusters. The

lower triangle is made up of predicted amounts. An estimate for the total outstanding

liabilities (combined RBNS and IBNR reserves) is obtained by subtracting the total paid

(reported) losses from the predicted ultimate paid (reported) losses. Also, an estimate

for only the RBNS reserve component can be obtained by organizing the run-off triangle

using the reporting period and observation period instead of the occurrence period and

development period.

Figure 1.2: Loss run-off triangle.
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1.2.1.1 Distribution-Free Models

The distribution-free macro-level models do not specify any distribution for the observed

data in the upper triangle. The reserve is estimated using the chain-ladder (CL) method

and its extensions. Before 1975, the actuarial literature explains the CL method as

an algorithm for estimating loss reserves as a point estimate (Taylor, 2014). After

then, the CL method has been motivated based on a stochastic model. The CL

method links successive cumulative losses with appropriate link ratios, and Mack (1993)

provides the first distribution-free stochastic model that underlies the CL algorithm.

The distribution-free CL method assumes there exist f0, ..., fJ−1 > 0 such that for all

0 ≤ i ≤ I and all 1 ≤ j ≤ J we have :

E[Ci,j|Ci,0, ..., Ci,j−1] = E[Ci,j|Ci,j−1] = fj−1Ci,j−1. (1.1)

From (1.1), the conditional expected ultimate loss can be obtained. Thus, for all

1 ≤ i ≤ I,

E[Ci,J |DI ] = E[Ci,J |Ci,I−i] = Ci,I−ifI−i...fJ−1, (1.2)

where DI is the observed data in the upper triangle, and the factors fj are called the link

ratios, development factors, CL factors, or age-to-age factors. The predicted outstanding

liabilities for each accident year would then be given by E[Ci,J |DI ] − Ci,I−i. The CL

algorithm is characterized by (1.2) and involves the following steps: (1) calculating

loss development factors; (2) selecting tail factors to bring losses to ultimate when

development for the last development period is greater than 1; (3) calculating cumulative

loss development factors (4) projecting the ultimate losses. To evaluate the variability in

the reserve estimate from the CL method, Mack’s model specified the first two moments

of the underlying aggregate data and provided a formula for the prediction errors.

For accurate estimation of the development factors, the CL method relies on a stable
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environment where there are no significant changes in the insurer’s business that can

affect loss reserving, for example, underwriting practices, claims processing, mix of

products, and so forth. In an unstable environment or when data is not available because

an insurer enters a new line of business, actuaries rely on expected loss techniques to

estimate outstanding liabilities. An expected loss technique assumes that the actuary

using their judgment can provide a better estimate of the total unpaid losses than using

the observed losses experience.

The Bornhuetter-Ferguson (BF) technique (Bornhuetter and Ferguson, 1972), which is

a combination of the CL technique and expected loss technique, allows the projection of

ultimate losses based on actuaries’ prior estimates. The BF method can be interpreted

in a Bayesian framework, as experience matures more weight is given to actual losses,

and judgments become less critical. The BF method becomes useful when there is

instability in the proportion of ultimate losses paid in early development years, which

could result in large reserve errors. Another deficiency in the CL model is that the

ultimate loss entirely depends on the last observation on the diagonal (Wüthrich and

Merz, 2008). If the last observation is an outlier, the outlier is projected to the ultimate

loss. One way to deal with this is to make the diagonal observations more robust using

the Cape-Cod method, which is also a combination of the CL technique and the expected

loss technique. For more on the distribution-free macro-level models, see Friedland

(2010).

To understand what reserving methods actuaries use to provide point estimates for

reserves and model reserve variability, an ASTIN Working Party on Non-Life Reserving

Practices conducted a survey on non-life reserving practices worldwide. ASTIN (2016)

provides results from the survey, which show that the chain ladder is the most commonly

used macro-level model for point estimates, followed by the BF method and the Cape-Cod

method.
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1.2.1.2 Parametric Stochastic Models

Another important family of macro-level models is the parametric stochastic models that

assume a distribution for the aggregate data in a run-off triangle. Early stochastic models

focused on reproducing reserve estimates as the chain-ladder technique; Hachemeister

and Stanard (1975) shows that the Poisson model leads to chain-ladder estimates for

reserves. Kremer (1982) specifies a log-normal distribution for the incremental losses.

Mack (1991) proposes using gamma distribution for the distribution of incremental

losses. Renshaw and Verrall (1998) implements an over-dispersed Poisson (ODP) model

for incremental losses. Allowing for over-dispersion does not affect the estimation of

parameters but increases standard errors. The ODP method cannot be applied if the

column sum of incremental losses for any development period is negative. Verrall (2000)

suggests a normal distribution whose support is not restricted to the positive real line for

incremental losses with negative values. An overview of stochastic macro-level models

can be found in England and Verrall (2002) and Wüthrich and Merz (2008).

In the literature, the mean square error of prediction (MSEP), also known as the

prediction error, has been used as a measure of uncertainty in reserve estimates. The

MSEP can be considered as the sum of two components, process variance which is as a

result of variability in the data and estimation variance which comes from the uncertainty

in the estimation of parameters of the reserving model (England and Verrall, 2002). In

recent years, the full predictive distribution of reserve estimates with bootstrapping or

Bayesian techniques has received considerable attention. With the predictive distribution,

other information such as the skewness or risk measures of interest can be obtained.

England and Verrall (1999) provides details on using bootstrapping to provide prediction

errors for a GLM which reproduce reserve estimates of the chain-ladder technique. The

results from the survey conducted by an ASTIN Working Party on non-life reserving

practices worldwide also show the bootstrapping technique is the most used technique

for reserve variability for macro-level models, followed by Mack’s model (ASTIN, 2016).

Practicing actuaries find it relatively easy to implement the macro-level models as it
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is less computationally challenging; hence, recent research has focused on addressing

issues related to the CL method. Kuang et al. (2008) and Kuang et al. (2011) extended

the chain-ladder model to deal with changes in the economic environment that affect

policies for all accident years. Verrall et al. (2010), Martínez-Miranda et al. (2011),

and Martínez-Miranda et al. (2012) propose a double chain-ladder method that uses

the run-off triangle of paid losses and also the number of reported losses. Verrall et al.

(2010) uses the compound Poisson framework that provides a clear split of estimates

for IBNR and RBNS reserve. Further, it’s expected that the additional information of

the count triangle should lower the volatility of estimated reserves. Martínez-Miranda

et al. (2011) based on the model developed in Verrall et al. (2010), constructs bootstrap

estimates of the predictive distributions for the total reserve that splits into RBNS and

the IBNR reserves. Martínez-Miranda et al. (2012) generalizes the model in Verrall

et al. (2010) and Martínez-Miranda et al. (2011), to allow for loss inflation effect in the

underwriting year direction. Martínez-Miranda et al. (2013) reformulates the triangular

data as a histogram and proposes a continuous chain-ladder model through the use of a

kernel smoother.

1.2.1.3 Limitations

There are three primary inherent limitations of macro-level models that cannot be

addressed within the aggregate data framework. They are: (1) the limited ability to

handle heterogeneity, (2) the limited ability to address environmental changes, and (3)

issues of small sample size as a result of data aggregation.

An essential assumption of the macro-level models is that the losses aggregated in the

run-off triangle are homogeneous. When practicing actuaries believe that the losses are

heterogeneous, then they are often segmented by specific discrete characteristics and

compiled into multiple triangles. This approach to addressing heterogeneity becomes

problematic when the source of heterogeneity is not clear or is a continuous variable.

Further, the reduction in the number of claims in each portfolio can lead to credibility
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issues.

The limited ability to handle environmental changes is also one of the most significant

drawbacks of the chain-ladder method and its extensions. For instance, Friedland (2010)

examined the effects of environmental changes on reserve prediction and found that the

chain-ladder type methods are appropriate only in a steady-state (stable environment).

In the case of environmental changes, some of the commonly-used macro-models can

generate a reserve estimate without material errors. To handle environmental changes,

macro-level methods consider either expected loss techniques that allow actuaries to

incorporate a priori reserve estimate or trending techniques that treat environmental

change as a trend to adjust the development projections (Berquist and Sherman, 1977).

However, highly dependent on actuaries’ judgments, both techniques could lead to

problematic reserve estimates (Thorne, 1978).

Moreover, another inherent issue with aggregation is that the observed data in the

upper triangle is small. Concerns on fitting stochastic models on small sample size data

in the run-off triangle were raised in Wright (1990), because it may lead to the poor

choice of model. The small sample size could lead to a prediction error that could be

disappointingly large (England and Verrall, 2002).

1.2.2 Micro-Level Reserving Models

In contrast to macro-level models that use aggregate data summarized in a run-off triangle

to estimate outstanding liabilities, micro-level models use the information on the policy,

the individual claim, and the development process to predict outstanding liabilities for

each claim. As a result, the micro-level reserving techniques provide a Big Data approach

to address the limitations of macro-level models. In recent years, following the general

trend in analytics to look into detailed data, interests in micro-level techniques have

spiked mostly because of their ability to leverage individual loss development to predict

outstanding liabilities. Granular covariate information allows one to account for both

claim and policy specific effects, and thus naturally captures the environmental changes.
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Hence, reserve predictions from micro-level models are generally more accurate than

those computed from aggregate data under non-homogeneous environmental conditions.

For example, Guszcza and Lommele (2006) discusses the use of covariates to improve

reserve estimates using claim-level data and illustrates the CL method’s problems under

a changing product mix with simulated data. Their results show that adding covariates

to calculate the link factors captures the heterogeneous loss development patterns to

improve predictions.

The use of individual-level data is not new to the insurance industry. For example, the

individual-level approach is the norm in the life industry for pricing and reserving. Also,

Parodi (2012) points out that non-life insurers use individual-level data for rate-making,

but reserving is based on aggregate data though results from both pricing and reserving

are needed to produce an overall model of the risk of an insurer. Therefore using

micro-level modeling provides an opportunity for a consistent framework for both

reserving and ratemaking in the non-life insurance industry.

1.2.2.1 Marked Poisson Process

The literature has made efforts to provide evidence for the advantages of loss reserving

using individual claim data. The most studied method is the marked Poisson process

framework introduced by Arjas (1989), Jewell (1989), Norberg (1993), and Norberg

(1999). The marked Poisson process (MPP) represents events, such as claims or claim

payments, as a collection of time points on a timeline with some additional features

(called marks) measured at each point. This collection of randomly occurring time points

can be represented using a specific type of stochastic process known as a counting process.

The counting process of the events at the time points follows a non-homogeneous Poisson

process, and the marks are also random variables that may have a time-dependent

probability distribution. I provide a detailed description of the MPP framework below.

Let claims occur at times Vi satisfying 0 ≤ V1 ≤ V2 ≤ · · ·. The associated counting

process {N(v), 0 ≤ v} is Poisson and records the cumulative number of claims that the
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process generates. Specifically, N(v) = ∑∞
i=1 I(Vi ≤ v) gives the number of claims in the

interval [0, v]. Denote H(v) = {N(s) : 0 ≤ s < v} to be the history of the process at

time v. For simplicity, it is assumed that two claims cannot co-occur for claims occurring

on a continuous-time. The intensity function gives the instantaneous probability of a

claim occurring at v, conditional on the process history. For example, in cases where

there are no covariates, and only v determines the intensity, we have:

ρ(v|H(v)) = lim
∆v↓0

Pr{∆N(v) = 1|H(v)}
∆v = lim

∆v↓0

Pr{∆N(v) = 1}
∆v = ρ(v), (1.3)

where ρ(v) is a non-negative integrable function and ∆N(v) represents the number of

claims in the short interval [v, v + ∆v). The Poisson process is seen in (1.3) as the

intensity function is not affected by the process history at time v. When the intensity

varies with v, the process is referred to as non-homogeneous; otherwise, it is said to be

homogeneous.

For a Poisson process, the joint probability density for having n claims occur at times

V1 = v1, V2 = v2, . . . , Vn = vn in a fixed interval [0, τ ] is given by:

Pr(N = n, V1 = v1, V2 = v2, . . . , Vn = vn) = exp
(
−
∫ τ

0
ρ(v)dv

) n∏
i=1

ρ(vi), (1.4)

where n ≥ 0. The Poisson process is the most common claim number process because

it has attractive mathematical properties for insurance applications. For example, the

finite-dimensional distribution of a Poisson process has a simple structure (Mikosch,

2009). The marginal probability of n claims can be shown to be given by:

Pr(N = n) = ψ(τ)ne−ψ(τ)

n! , n = 0, 1, . . . , (1.5)

which is a Poisson distribution with mean parameter ψ(τ) =
∫ τ
0 ρ(v)dv. In applications,

ρ(v) can be specified using a parametric model, and the common models include the
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exponential, e.g. ρ(v) = exp(α0 + α1t) and a piecewise-constant model.

We may include external covariates x(v), which do not depend on the history of the

counting process but may depend on time v, to account for the heterogeneities among

the policyholders by specifying an intensity function of the form:

ρ(v|xv) = ρ0(v) exp(x′(v)β), (1.6)

where xv = {x(s) : 0 ≤ s ≤ v} is the covariate history. ρ0(v) is the baseline function

that relates to policyholders for whom x(v) = 0 for all v, and β is a vector of regression

coefficients for the covariates. Including internal covariates such as time since the most

recent claim occurrence or the number of previous claim occurrences in (1.6) means the

process is no longer Poisson but often referred to as modulated Poisson process (Cook

and Lawless, 2007). When there is inter-policyholder variation even after conditioning on

the external covariates, incorporation of unobserved random effects uj can be considered

for policyholders j = 1, . . . J . Then the process {Nj(v), 0 ≤ v} is Poisson with intensity

function:

ρ(v|xvj , uj) = ujρ0(v) exp(x′j(v)β), (1.7)

where u1, . . . uJ is taken to be i.i.d. with a distribution that satisfies E(uj) = 1.

Formally, for a marked Poisson process in [0, τ ], the probability density that n claims

occur at times V1 = v1, V2 = v2, . . . , Vn = vn, with marks Z1 = z1, Z2 = z2, . . . , Zn = zn

is given by:

Pr[N = n, (Vi, Zi)) = (vi, zi), i = 1, 2, . . . , n] = exp
(
−
∫ τ

0
ρ(v)dv

)( n∏
i=1

ρ(vi)PZ|vi(zi)
)
,

(1.8)
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where the claim occurrence counting process N(v) is a Poisson process with intensity

function ρ(v). The distribution of the marks PZ|v is conditional on ∆N(v) = 1.

The MPP framework allows for the modeling of the entire claim process, including

occurrence, reporting, and development after reporting. Let Zi = (Ui,Wi), with

Ui and Wi denoting the reporting delay and the claim development process after

reporting, respectively. Wi includes transaction payments and settlement indicators.

Then, PZ|v = PU |v × PW |v,u. The claims are random elements in the claim space

C = [0,∞)×Z = [0,∞)× [0,∞)×W with intensity measure:

ρ(dv)× PU |v(du)× PW |v,u(dw), (v, u, w) ∈ C. (1.9)

The MPP framework is sufficiently general to handle the different classes of claims

involved in the loss reserving problem. With respect to the valuation time τ , claims can

be decomposed into two subclasses, reported and IBNR claims, i.e. {C = Crep, Cibnr}.

With reported claims, Crep = ((v, u, w) ∈ C|v + u ≤ τ), the full or partial development

process is observed . But the development process is totally unobserved for IBNR claims,

i.e. Cibnr = ((v, u, w) ∈ C|v ≤ τ, v + u > τ). The disjoint subclasses decomposed from a

marked Poisson process are also independent marked Poisson processes (Wüthrich and

Merz, 2008). Then, the occurrence of reported claims follows an independent Poisson

process with intensity function ρ(v)FU |v(τ − v) and that of IBNR claims also follows an

independent Poisson process with intensity function ρ(v)(1− FU |v(τ − v)). More details

on the MPP framework appear in Section 7.4.2.

Various special cases of this general setting have arisen in the actuarial literature. Jewell

(1989) models the number of IBNR claims using a marked Poisson process, where the

claim occurrence is assumed to follow a homogeneous Poisson process and the reporting

delay treated as marks. In Arjas (1989), the development of losses is viewed as a marked

Poisson process where the occurrence of transactions follow a non-homogeneous Poisson

process, and transaction payment amounts are treated as marks. Norberg (1993; 1999)

handle loss reserving in non-life insurance using the marked Poisson process, where
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claims are assumed to occur by following a non-homogeneous Poisson process, and other

stochastic characteristics about the claims are treated as the time-dependent marks.

The set of all claims is divided into settled, reported-not-settled, incurred-not-reported,

and covered-not-reported (corresponding to unearned premium reserve). It was asserted

that claims from these subgroups will follow an independent marked Poisson process.

Moreover, Larsen (2007) specifies a discrete model that divides claims by occurrence year,

reporting delay in years, and discrete characteristics. The claims in each subgroup are

assumed to follow an independent marked Poisson process, and the likelihood function

for each subgroup is specified. The paper illustrated the parameter estimation process

and presented prediction results based on a small case study with data from a Marine

insurance portfolio. Antonio and Plat (2014) provided the first detailed empirical study

with data from a personal-line general liability insurance portfolio. The claim occurrence

times are taken as the points and follow a Poisson process with non–homogeneous

intensity. The marks are considered to be the reporting delay, transaction times,

transaction types, and payment amounts. They provide a detailed routine to predict

future loss development, and their results show that the micro-level model outperforms

the results obtained with traditional loss reserving methods for aggregate data. Verrall

and Wüthrich (2016) specifies a non-homogeneous Poisson process so that the model

for the number IBNR can cope with trends and with seasonal patterns. They consider

weekly periodic patterns and the reporting delay distribution is allowed to depend on

the weekday of the occurrence of the claims. Their model was calibrated to a property

and casualty insurance datasets, and their results show that the individual-level model

performs better than the chain-ladder model.

1.2.2.2 Marked Cox Process

A Cox process, or doubly stochastic Poisson process, extends a Poisson process by

modeling the intensity as a non-negative stochastic process. Avanzi et al. (2016) proposes

a model to predict the number of IBNR claims by modeling the claim arrival process
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along with its reporting delays as a marked Cox process to allow for overdispersion and

serial dependency. The paper notes that even though the Poisson process increases the

flexibility that accurately represents the nature of claim frequencies, the deterministic

intensity function under the Poisson process does not allow for the serial dependency of

claims counts. The shot noise intensity was used with a filtering algorithm to filter out

the underlying intensity process and estimate the parameters accurately.

Badescu et al. (2016b) and Badescu et al. (2016a) proposed a marked Cox process to

model the temporal dependence exhibited in the claim arrival process. They provide a

generalized expectation-maximization (EM) algorithm which guarantees the efficiency

of the estimators unlike the moment estimation methods widely used in estimating Cox

processes. They show that the marked Cox process performs better than predictions

from the ODP model.

1.2.2.3 Generalized Linear Models

Another family of research using individual-level data employs generalized linear models

(GLMs) in conjunction with survival analysis to incorporate settlement time as a

predictor for ultimate losses. Using the GLM enables the investigation and modeling of

many features of the data responsible for the violation of CL conditions.

The Generalized Linear Models (GLMs) extend stochastic modeling from Gaussian

distribution to distributions from the exponential family. Various outcomes can be

modeled using the GLM framework, e.g., binary, counts and skewed outcomes. To define

the GLM, let Y1, . . . , Yn be independent random variables with a distribution from the

exponential family; the general formulation is given by:

f(yi) = exp
(
yiθi − ψ(θi)

φ
+ S(yi, φ)

)
, (1.10)

where ψ(·) and S(·) are known functions, and θi and φ are the natural and dispersion
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parameters respectively. It can be shown that:

µi = E[Yi] = ψ′(θi) and V ar[Yi] = φψ′′(θi) = φV (µi), (1.11)

where derivatives are with respect to θ and V (·) is the variance function. With GLMs,

a transformation of the mean is modeled as a linear combination of covariates via a link

function g(·). This gives:

ηi = g(µi) = x′iβ (1.12)

Here, xi are the vectors of covariates, and β is the regression coefficients to be estimated.

For reserving applications, Yi may denote the ultimate loss for claim i and xi is the

characteristics of claim i, which include the settlement times Ti. Then the estimated

model may be used to predict the ultimate loss for currently open claims. Because the

data used to fit the model only contains closed claims, this approach does not utilize

information from the longitudinal payment trajectory and makes it impossible to model

each claim’s dynamic development.

An estimate of the settlement times is required to predict the ultimate loss for open

claims using the GLM model. A natural approach to estimating the settlement time

is survival analysis, and a popular framework is the proportional hazards model (Cox,

1972). These models assume covariates have a multiplicative effect on the hazard

function of settlement time Ti given by:

hi(t|wi) = h0(t) exp{γ′wi}, (1.13)

where wi is a vector covariate assumed to be associated with the hazard of each claim

with a corresponding vector of regression coefficients γ. The baseline hazard function

h0(t) relates to the hazard function of a claim that has γ′wi = 0. The baseline hazard

function may take parametric and non-parametric forms. For more on the analysis of

event time data, see Rizopoulos (2012) and Elashoff et al. (2016).
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Several forms of individual claim model based on the GLM approach for loss reserving

has been proposed in the loss reserving literature. Taylor and Campbell (2002) proposes

GLMs and survival analysis for predicting case estimates with specific examples using

data from a worker’s compensation insurance. Taylor and McGuire (2004) modeled the

total amount paid per finalized claim with GLMs. Taylor et al. (2008) models individual

claims with GLMs and categorized covariates into three groups: covariates like the type

of vehicle that do not change, covariates like development periods that predictably vary

over time, and unpredictable dynamic covariates like health condition of a claimant that

unpredictably change over time. Inclusion of the unpredictable dynamic covariates will

require another model to predict these uncertain quantities. The paper employed the

proportional hazards model for estimating the settlement times. Their results showed

that the individual models exhibited higher predictive efficiency than aggregate models.

1.2.2.4 Machine Learning Algorithms

The individual-level models discussed so far assume a fixed structural form. Recently,

another stream of research for individual-level reserving focuses on using machine

learning algorithms. According to Wüthrich (2018a), machine learning algorithms have

become popular because they are highly flexible and can deal with any structured

and unstructured claim information. Machine learning algorithms may provide better

prediction accuracies than linear models because they take advantage of non-linear forms

that provide a data-driven approach. Commonly used statistical learning methods that

exploit non-linear relationship and interaction among features include decision trees,

bagging, random forest, boosting, neural networks, and support vector machines. See

Hastie et al. (2009) for more on these methods.

Wüthrich (2018a) paper illustrates the use of regression trees for individual-level

reserving and focuses on modeling the number of payments in a discrete-time setting by

incorporating both dynamic and static covariates. Results using the regression tree were

compared to a ‘homogeneous’ estimate, which does not consider any feature information,
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and the results show that the feature consideration is relevant for individual losses

prediction. Baudry and Robert (2019) proposed a flexible approach for estimating the

individual IBNR and RBNS losses separately using the ExtraTrees machine learning

algorithm. De Felice and Moriconi (2019) presents a compound frequency-severity model

for reserve prediction based on regression trees, and Duval and Pigeon (2019) proposes

models for non-life individual-level loss reserving using the gradient boosting algorithm.

Another machine learning algorithm that has been studied in the loss reserving literature

is the neural networks. Wüthrich (2018b) extends the CL method using neural networks

by incorporating heterogeneous individual claims feature information in modeling the CL

factors. This extended model allows for capturing environmental changes. ASTIN (2017)

summarizes the work accomplished by a team of people that met within the scope of an

ASTIN working party named Individual Claim Development with Machine Learning.

The goal of the working party was to research the field of machine learning in connection

with reserving as traditional actuarial work. Their work focused on using artificial neural

networks (ANN) and was implemented in a cascading triangular way. The prediction

results were compared with results achieved by classical reserving methods. Their results

show that, if a line of business is not homogeneous, ANN performs better than the

chain-ladder technique. Poon (2019) also presents a granular machine learning model

framework to predict loss development using neural networks.

1.3 Motivation

1.3.1 Accurate Estimation of Reserves

As discussed earlier, though the CL technique is easy to implement in practice, it comes

with a risk of inaccurate predictions. To show that the aggregation of data leads to

information loss that can impact outstanding liabilities predictions, I use data from

the Wisconsin Local Government Property Insurance Fund (LGPIF), which provides

property coverage for local government units such as counties, cities, towns, villages,
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school districts, library boards, etc. More on the background and description of the

LGPIF can be found in Section 4.1. Here, the data used in the CL model calibration

is restricted to the building and contents coverage, and to claims that have occurred

and were reported between January 1, 2006, and December 31, 2009. It is assumed

that at the end of this time window on December 31, 2009, (which is considered to be

the valuation date), the Fund sets capital aside to cover future payments related to the

reported claims. The actual development of the RBNS and IBNR claims is contained in

the validation sample, which is from January 1, 2010, to December 31, 2013.

Based on data in the training dataset, Table 1.1 summarizes the distribution of the

continuous covariates and the two outcomes of interest, i.e., the ultimate loss and the

settlement duration (closed date minus the reported date plus one day). The significant

associations between the continuous covariates and the outcomes of interest, as shown

by the Spearman correlations (ρS), suggest that they will be useful for predicting

outstanding payments. The Spearman correlation (ρS) between the ultimate losses and

settlement times is 0.49. The positive association indicates that bigger claims take a

longer time to settle; more on the association between the payment size and settlement

is discussed in Section 1.3.2.

Table 1.1: Summary statistics for closed claims.
Min. Median Mean Max. Ultimate Settlement

Loss Time
(ρS) (ρS)

Ultimate Loss 25 2,203 14,133 2,633,822 - 0.49
Settlement Time (Days) 1 38 66 861 0.49 -
Deductible 500 1,000 12,297 100,000 -0.28 -0.21
Initial Estimate 30 2,500 9,545 1,000,000 0.93 0.51
Reporting Delay (Days) 0 28 66 864 -0.29 -0.55

The Kaplan-Meier estimate of survival probabilities of the School, City, and miscellaneous

(Misc) entities is provided in Figure 1.3. The miscellaneous entity type includes fire

stations. The survival probabilities at time t represent the probability that claims are

not settled at that time. It seems that the claims from Schools have slightly higher

survival probabilities than the other entity types.

The left panel of Figure 1.4 shows the number of claims that occurred in each quarter
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Figure 1.3: Survival probability plot by Entity type (Kaplan-Meier estimate).

from January 2006 to December 2009. Similar seasonal fluctuations are observed over

each year, with the lowest occurrence in the winter season. The right panel of Figure

1.4 shows the distribution of the reporting delays in quarters. Approximately 75% of

the claims are reported within the first quarter of the accident occurrence, but the

distribution appears to be highly skewed to the right. Note that a reporting delay of zero

corresponds with reporting on the day of occurrence. Also, the low number of reported

claims in the year 2009, as seen in the left panel of Figure 1.4, is due to IBNR claims.

Other supporting figures and tables are provided in Appendix 7.1. Figure 7.1 shows

claims in the LGPIF data by region. It can be seen that there are some variabilities in

the number of claims by region.

To use the CL approach to predict the total liabilities, which is the sum RBNS and

IBNR reserve estimates, the individual paid losses data is aggregated in a run-off triangle

using two time axes, claim occurrence quarter, and development quarter. Here, I employ

the Mack CL model (Mack, 1993), and the analysis was performed in R following the
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Figure 1.4: Left Panel: Number of claims occurred in each quarter from January 2006
to December 2009. Right Panel: Reporting Delay.

ChainLadder package (Carrato et al., 2020). Furthermore, to use the CL approach for

the estimate of RBNS reserve, I employ a modified version of the run-off triangle where

the individual losses data is aggregated using the reporting quarter and observation

quarter instead of the occurrence quarter and development quarter. Then projections

made from these developments factors give us RBNS reserve estimates.

Table 1.2: Prediction performance using the CL approach.
RBNS Total Liabilities

Estimate Error % Estimate Error %
True Reserve 4,511,490 6,298,298
Chain-Ladder Error 1,261,332 27.96 3,064,504 48.66

Table 1.2 presents the prediction performance using the CL approach for both RBNS

and total liabilities. The percentage error for the estimate of the RBNS reserve liabilities

is 27.96%, and that of the total unpaid liabilities is 48.66%. The results show the

chain-ladder method did not perform well in estimating the total outstanding liabilities

and RBNS reserve. One possible reason is the limitations of the aggregated data. As

seen, the LGPIF data is heterogeneous and necessary information to control for the

loss development process, i.e., covariate information about the policy, policyholder, and

the claim is available only on the individual claim level. Therefore, to improve on the
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predictions from the chain-ladder algorithm, an individual-level reserving model may be

useful.

1.3.2 Association of Payment History and Settlement

In claims management, it is common that small claims are settled faster than large

claims, because large and complicated claims naturally require experienced adjusters,

demand special expertise, involve multiple interested parties, and are more likely to be

litigated. As a result, the duration of settlement and size of payments for individual

claims are often positively correlated. To illustrate, Figure 1.5 shows such a relationship

using data from the LGPIF. I plot the distribution of ultimate payments against the

settlement time in quarters (days/366 × 4) for a random sample of claims from the

building and contents coverage. The solid line in the right panel is the fit of the loess

scatterplot smoother. Both plots suggest a strong positive relation between ultimate

payment and settlement time, i.e., it takes longer time periods to close larger claims. The

insight provided from the payment-settlement association plot in Figure 1.5 suggests that

we can do a better job in reserve prediction by incorporating the payment-settlement

association in the prediction process as the development of payment may yield early

indications of an impending settlement.

The payment-settlement association has important implications for the loss reserving

practice. In loss reserving, actuaries predict the outstanding liabilities based on the

claim history that is only observed up to a valuation date. When the settlement time

and claim size are correlated and not accounted for, the historical claims that actuaries

use for model building will not be representative of future payments, because large

claims with longer settlement times will be more likely to be censored (not settled) by

the valuation date, a type of selection bias. Specifically, when larger claims take more

time to settle, outstanding payments will be underestimated if the selection bias in the

sampling procedure is not accounted for. Similarly, one would expect overestimation of

future payments if the claim size and settlement time were negatively correlated.
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Figure 1.5: Distribution of ultimate payments by settlement time using data from a
property insurer.

Further, the payment-settlement association means that payment history may help

predict settlement time, which in turn feeds back into the prediction of unpaid losses.

Then the relation between the two processes allows for the dynamic prediction of

outstanding liabilities. The prediction is dynamic because, at a future date, when more

information becomes available, the settlement time and ultimate payment predictions

can be updated. The dynamic prediction entails two steps; the first step involves using

the payment history and the fact that the claims are open at the valuation date to update

the settlement time’s prediction. For the second step, with the updated settlement time

and the payment history, more accurate predictions for the ultimate payment can be

made.
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1.4 Contribution to Literature

1.4.1 Capture Payment-Settlement Association

The main goal of this dissertation is to establish a micro-level loss reserving method that

leverages claim level granular information while accounting for the payment-settlement

association, and thus improves accuracy in loss prediction. In doing so, I employ a joint

modeling framework developed in the statistical literature for longitudinal outcomes and

time-to-event data. The joint model for reserving purposes consists of two submodels, a

longitudinal submodel that governs the payment process for a given claim and a survival

submodel that concerns the settlement process of the claim. The two components are

joined via shared latent variables. The joint model has a natural interpretation in the

reserving context, where the historical payments affects the instantaneous settlement

probability and the settlement intensity determines whether there are further payments.

The joint model framework provides a novel solution to the sample selection issue that

is due to the association between the size of claims and time of settlement.

1.4.2 Improvement of Existing Reserving Models

The joint model framework improves the accuracy in loss prediction compared to

macro-level models by leveraging claim level granular information to control for

heterogeneity and environmental changes. In this dissertation, I identify several

scenarios of unstable environments where the standard chain-ladder method fails,

while the joint model demonstrates superior performance. Similarly, the joint model

framework offers an improvement over the existing individual-level reserving models by

explicitly accounting for the payment-settlement association, hence addressing the issue

of selection bias.



25

1.4.3 RBNS Prediction Using the Joint Model Framework

Properties of the joint model have been well-developed in the biomedical literature in

clinical studies (Ibrahim et al., 2010) and non-clinical studies (Liu, 2009). But, the

existing literature has primarily focused on the estimation aspect of inference. For

statistical inference of the joint model, I discuss both estimation and prediction with

the focus on the latter. The properties of estimators are investigated using extensive

simulation studies in Chapter 3. Because of the predictive nature of loss reserving, I

investigate the joint model’s predictive performance using extensive simulation studies

and a detailed empirical study, which enriches the existing statistical literature.

1.4.4 Detailed Empirical Analysis

In this dissertation, I present a detailed empirical analysis of the joint model framework

using data from a property insurance provider with the focus on RBNS reserve prediction

in Chapter 4. I fit the joint model to a training dataset, and the association between

the payment history and settlement time is captured, which helps to accurately predict

the settlement time and the ultimate amount of unsettled losses. The RBNS prediction

performance of the joint model is compared to existing reserving models using an

out–of–sample data. Further, because of the time dimension involved with the RBNS

reserve prediction, the traditional cross-validation techniques cannot be used to evaluate

the robustness of the prediction results. Thus, I introduce a novel form of cross-validation

for longitudinal data that I call double cross-validation.

RBNS reserves are essential to actuaries. Generally, for occurrence-based policies, where

coverage is triggered by date the claim occurred, RBNS reserves make up a more

significant portion of the total reserves for fast-reporting lines like auto and homeowners,

which is true for this dataset. Also, for claims-made policies, where coverage is triggered

by date claim is reported, insurers are only responsible for the claims reported during

the year, which is known by the end of the year. Hence, IBNR reserves are usually not
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required for claims-made policies. Though the analysis focuses on RBNS reserves, in

Section 4.3.4, I provide a discussion on how to apply the joint model framework for

IBNR reserves.

1.4.5 Bridging the Gap Between Reserving and Ratemaking

In Chapter 5 of this dissertation, I provide a framework to improve insurance pricing

using the marked Poisson process (MPP) framework. As described in Section 1.2.2, the

MPP framework has primarily been used for individual-level reserving. Therefore, by

implementing it in a ratemaking exercise, I bridge the gap between the two processes.

Chapter 5 contributes to the ratemaking literature in two main ways. First, the proposed

framework ensures that the multivariate risk analysis is done using the information

on both open and closed claims in a more efficient way leading to better alignment of

premiums to claims experiences. Second, by automatically accounting for the expected

cost relating to both RBNS and IBNR claims without using a separate reserving model,

the proposed framework makes the ratemaking process complete and balanced for

individual risks.

Plan for Remaining Chapters: Chapter 2 introduces the joint model framework for

individual-level loss reserving. In Chapter 3, a simulation study is conducted to

investigate the estimation and prediction performance of the joint model framework. I

find that the joint model displays superior outstanding liabilities prediction performance

over the standard chain-ladder method under several scenarios of unstable environments.

Further, the results show that micro-level models that ignore the payment-settlement

association produce biased parameter estimates and inaccurate outstanding liabilities

predictions, even under stable environmental conditions. Chapter 4 implements the joint

model using claims data from a property insurance provider to evaluate its performance

using real-world data. I focus on RBNS reserve prediction. The results show that

accounting for the payment-settlement association leads to better prediction accuracy

and lower reserve uncertainty than models that ignore it. Chapter 5 employs the
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marked Poisson process framework to improve insurance pricing. The framework allows

the optimal use of information on all reported claims hence promotes equity in the

ratemaking process. Chapter 6 provides concluding remarks.
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Chapter 2

Joint Model for Claim Payment and

Settlement

Chapter Preview. In this chapter, the joint model framework is introduced to the loss

reserving problem, focusing on a subset of selection models called shared-parameter

models. In shared-parameter models, a latent random effects bi is used to capture the

association between the longitudinal and the time-to-event outcomes (Rizopoulos, 2012).

Section 2.1 reviews the literature on joint models for longitudinal and time-to-event data.

Section 2.2 introduces the joint modeling framework for individual-level loss reserving.

Sections 2.3 and 2.4 describe the specifications for the longitudinal submodel of claim

payments and the survival submodel of claim settlement, respectively. To conclude,

Section 2.5 discusses estimation and prediction for the joint model.
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2.1 Background on Joint Longitudinal-Survival

Models

The existing micro-level reserving methods do not explicitly capture the dependence

between the payment history and settlement process. I further extend the literature by

introducing the joint longitudinal-survival model (JM) framework to allow for such an

association.

The joint model has been proposed in the medical statistics literature for modeling

longitudinal and survival outcomes when the two components are correlated (Elashoff

et al., 2016). DeGruttola and Tu (1994) model the progression of CD4-lymphocyte count

and the relationship between different features of this progression and survival time

using joint models. The paper considers random-effects models for repeated measures

of CD4-lymphocyte count among AIDS patients receiving treatment with zidovudine

(ZDV). Because many such patients do not survive throughout the study period, and

the probability of death is related to the CD4-lymphocyte count, models for progression

must take into account the missing CD4-lymphocyte counts caused by attrition. Their

results show that the joint modeling framework provides efficient and unbiased estimates

in contrast to biased estimate obtained from a two-stage model (Tsiatis et al., 1995).

Furthermore, joint models have been applied in studies involving cancer patients. Chi

and Ibrahim (2006) proposed a joint model that was motivated by a clinical trial

conducted by the International Breast Cancer Study Group (IBCSG) to capture the

unique features in the data set.

In a non-clinical setting, Liu (2009) proposes a joint random-effects model of longitudinal

medical cost data and survival, taking into account the semi-continuous nature of medical

costs. As a result of the semi-continuous nature of the medical cost, the paper employs

a two-part model for the longitudinal medical costs, and the random effects from the

two-part model are incorporated into the survival hazard model. The assumption here

is that the mortality risk is correlated with both the frequency of hospital visits and
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the amount of cost for medical treatment. That is, a sicker patient who is at a greater

risk of death tends to seek medical treatment more often (thus have higher odds of

positive monthly cost) and receive more intensive care when treated, resulting in a

higher amount of monthly expenditure. Tsiatis and Davidian (2004), Yu et al. (2004),

and Verbeke et al. (2010) give excellent overviews of joint models. Besides, Rizopoulos

(2010) and Rizopoulos (2016) develop R packages for joint models.

Two general frameworks have received extensive attention, the pattern mixture model,

and the selection model (Little, 2008). Let Ti be the time-to-event, and Yi be a vector

of longitudinal measurements for subject i; these two frameworks differ in the way the

joint distribution fYi,Ti(yi, ti) is factorized and are discussed further in the following

subsections.

2.1.1 Pattern Mixture model

For pattern mixture models, the joint distribution of the longitudinal and survival

outcomes is specified using the marginal distribution of time-to-event outcome and

the conditional distribution of longitudinal outcomes given the time-to-event outcome,

i.e. fYi,Ti(yi, ti) = f(yi|ti)f(ti). Thus, the marginal distribution of the measurements

can be viewed as a mixture of distributions (Little, 1993). As discussed earlier, the

GLM approach employed in Taylor et al. (2008) follows a pattern mixture model.

2.1.2 Selection Model

In contrast, the joint distribution in selection models is specified using models for

the marginal distribution of longitudinal outcomes and the conditional distribution of

time-to-event outcome given longitudinal outcomes i.e., fYi,Ti(yi, ti) = f(yi)f(ti|yi).

The name for the selection models comes from Heckman (1976) from the economic

literature. The conditional distribution f(ti|yi) is viewed as a probability that the

subject self-selects to either continue or drop-out of study. Diggle and Kenward (1994)
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was first to apply selection models to non-random drop-out in longitudinal studies by

allowing the drop-out probabilities to depend on the history of measurement process up

to the drop-out time.

2.2 General Framework

For the loss reserving application of the joint modeling framework, the sequence of

payments from a reported claim forms the longitudinal outcomes, and the settlement time

of the claim is the time-to-event outcome of interest. The development of claim payments

may yield early indications of impending settlement, which introduces associations

between the longitudinal and survival outcomes.

In this study, the reporting time is set as the time origin for a claim. For the ith claim

(i = 1, . . . , N), I denote T ∗i and ci as the settlement time and valuation time, respectively.

Assuming ci is independent of T ∗i , define Ti = min(T ∗i , ci) and ∆i = I(T ∗i < ci), where

I(A) = 1 when A is true and I(A) = 0 otherwise. The pair (Ti,∆i) makes up

the observable time-to-settlement outcomes for claim i, where ∆i indicates whether

the claim has been closed by the valuation time; if so, Ti indicates the settlement

time. Let {Yi(t) : 0 ≤ t ≤ T ∗i } be the payment process, and Y∗i = {Yit, t ∈ τ ∗i }

be the vector of the complete cumulative payments for claim i with n∗i payments

at times τ ∗i = {tij; j = 1, . . . , n∗i }. Assume there are ni payments by the time of

valuation, define τi = {tij; j = 1, . . . , ni} as the observable payment times and denote

Yi = {Yit, t ∈ τi} the vector of cumulative payments at observed time of payments.

Further denote Y+
i = {Yit, t ∈ τ+

i } the vector of cumulative payments at future times

τ+
i = {tij; j = ni + 1, . . . , n∗i } after the valuation time. Let bi be the vector of random

effects that account for the claim-specific unobserved heterogeneity. Then the joint

distribution fY∗i ,T
∗
i
(y∗i , t∗i ) is given by:

fY∗i ,T
∗
i
(y∗i , t∗i ) =

∫
f(y∗i |bi)f(t∗i |bi)dF (bi). (2.1)
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Figure 2.1: Graphical illustration of the cumulative payment process from the time of
reporting to settlement.

Figure 2.1 provides a graphical illustration of the cumulative payment process that

experiences jumps at the time of each payment from the time of reporting to settlement.

The left panel presents a closed claim where the entire development process of the claim

is observed before the valuation time, i.e. (∆i = 1, ni = n∗i ). The right panel provides

an example of an open claim where only a part of the development process of the claim

is observed at the valuation time, i.e. (∆i = 0, ni ≤ n∗i ).

2.3 Longitudinal Submodel of Claim Payments

The cumulative payments Yit is specified using generalized linear mixed effect models (see,

for instance, Frees (2004) and Molenberghs and Verbeke (2006) for details). Conditional

on the random effects bi, the cumulative payment Yit is assumed to be from the

exponential family

f(yit|bi) = exp
(
yitθit − ψ(θit)

φ
+ S(yit, φ)

)
, (2.2)
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where ψ(·) and S(·) are known functions, and θit and φ are the natural and dispersion

parameters respectively. It can be shown that:

µit = E[Yit|bi] = ψ′(θit) and V ar[Yit|bi] = φψ′′(θit) = φV (µit), (2.3)

where V (·) is the variance function. The conditional mean is specified as a linear

combination of covariates via a link function g(·), i.e.

ηit = g(µit) = x′itβ + z′itbi. (2.4)

Here, xit and zit are the vectors of covariates in the fixed and random effects, respectively,

and β is the regression coefficients to be estimated. In this model, it is assumed Yit

are independent conditional on random effects bi. In addition, bi are independent and

follow a multivariate normal distribution, i.e., bi ∼ N(0,D). D is the covariance matrix

for the random effects with unknown parameters ν.

2.4 Survival Submodel of Claim Settlement

The time-to-settlement outcome of a claim is modeled using a proportional hazards

model. The hazard function of T ∗i is specified as:

hi(t) = h0(t) exp{γ′wit + αηit}, (2.5)

where h0(t) is the baseline hazard, wit is a vector of covariates and γ is the vector of

corresponding regression coefficients. The covariates wit may be time-independent or

time-dependent. From (2.5), the survival function of T ∗i is

Si(t) = exp
(
−
∫ t
0 h0(s) exp{γ′wis + αηis}ds

)
. (2.6)
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In this model, the association between the claim payment process and the settlement

process is introduced through the effects of ηit on the hazard of settlement that is

measured by α. A positive α indicates a negative payment-settlement relation, i.e. larger

payments will accelerate the settlement, and vice versa. For the baseline hazard in (2.5)

both the Weibull model and an approximation based on splines are considered. The

Weibull baseline is given by:

h0(t) = λktk−1, (2.7)

where λ is the scale parameter, and k is the shape parameter. When k = 1, h0(t) reduces

to an exponential baseline function. The Weibull model is commonly used because of

its simplicity and easy interpretability. However, with only two parameters, the Weibull

model has limited flexibility for fitting different baseline hazard functional forms. A

more flexible model is to approximate the baseline hazard using splines. Splines are

piecewise polynomials satisfying continuity constraints at the knots joining the pieces

(Gray, 1992). Specifically, consider:

log h0(t) = λ0 +
K∑
k=1

λkBk(t, q). (2.8)

Here, Bk(·) is a B-spline basis function, q denotes the degree of the B-spline basis

function, K = q +m; where m is the number of interior knots, and λ = (λ0, λ1, · · · , λK)

are the spline coefficients. The spline provides great flexibility as the number of knots

increases. But, preferences of the number of knots and their locations are important

to the overall fit. For convenience, I denote ω to be the unknown parameters in the

baseline hazard model.
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2.5 Statistical Inference

2.5.1 Estimation

The parameters of the joint model are estimated using likelihood-based methods. Denote

θ = (θ1, θ2), where θ1 summarizes the parameters of the longitudinal submodel including

both regression coefficients β and variance components (ν, φ), and θ2 summarizes

the parameters of the survival submodel that includes baseline hazard ω, regression

coefficients γ, and association between claim payment and settlement α. The likelihood

function for the observables (ti, δi,yi) of claim i is shown as:

L(θ; ti, δi,yi) =
∫
f(yi|bi; θ)f(ti, δi|bi; θ)dF (bi; θ).

=
∫ [∏

t∈τi f(yit|bi; θ)
]
f(ti, δi|bi; θ)f(bi; θ)dbi,

(2.9)

where

f(ti, δi|bi; θ) = (hi(ti|bi; θ))δi Si(ti|bi; θ)

= (h0(ti) exp{γ′witi + αηiti})
δi exp

(
−
∫ ti

0 h0(s) exp{γ′wis + αηisds}
)
.

(2.10)

Given data collected on N individual claims, the MLE of model parameters are obtained

by:

θ̂ = arg max
θ

N∑
i=1

logL(θ; ti, δi,yi). (2.11)

The variance of θ̂ is estimated using the inverse of the observed Information matrix,

i.e. V ar(θ̂) = [I(θ̂)]−1, where

I(θ̂) = −
N∑
i=1

∂2 logL(θ; ti, δi,yi)
∂θ∂θ′

∣∣∣∣
θ=θ̂

, (2.12)
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and the second order derivative is approximated by the numerical Hessian matrix. I

employ a normal random effects in the joint model. Song et al. (2002) proposed an

estimation procedure that does not require normality assumption for random effects and

showed that estimation under normal normal assumption is robust to misspecification.

In addition, Rizopoulos et al. (2008) showed that misspecification of the random effects

distribution has a minimal effect in parameter estimation that wanes when the number

of repeated measurements increases.

Evaluation of the likelihood function is computationally difficult because of the integral

in the likelihood function (2.9) and the integral in the survival density function (2.10).

Numerical integration techniques such as Gaussian quadrature (Song et al., 2002), Monte

Carlo (Henderson et al., 2000) and Laplace approximations (Rizopoulos et al., 2009)

have been applied in the joint modeling framework. Maximization approaches include

the EM algorithm that treats the random effects as missing data (Wulfsohn and Tsiatis,

1997) and a direct maximization of the log-likelihood using a quasi-Newton algorithm

(Lange, 2004). In this study, the Gaussian quadrature numerical techniques is employed

to evaluate the likelihood function.

For claim specific predictions, in addition to the joint model’s MLE estimates θ̂, an

estimate of the random-effects is needed. The random-effects estimate b̂i is obtained

using Bayesian methods with posterior distribution:

f(bi|ti, δi,yi; θ̂) = f(ti, δi|bi; θ̂)f(yi|bi; θ̂)f(bi|θ̂)
f(ti, δi,yi; θ̂)

. (2.13)

Then the empirical Bayes estimate is obtained using the mean b̂i of the posterior

distribution given by;

b̂i =
∫

bif(bi|ti, δi,yi; θ̂)dbi. (2.14)



37

2.5.2 Prediction

For the prediction of unpaid losses, the focus is on open claims at the valuation time.

An open claim at valuation time is characterized by time since reporting ci, longitudinal

claim history Yi(ci) = {yit, 0 ≤ t ≤ ci} and implies that the settlement time T ∗i > ci.

With the fitted joint model, the RBNS reserve prediction for the ith claim at the valuation

time, R̂RBNS
i (ci), can be obtained using the following steps which are elaborated in

Algorithm 1:

a) Predict the future time when the ith claim will be settled, ûi, given T ∗i > ci and

Yi(ci) using (2.19) from Section 2.5.2.1

b) Predict the ultimate payment, Ŷ ULT
i (ûi), given Yi(ci) and T ∗i > ci using (2.20)

from section 2.5.2.2.

c) With the cumulative payment for the ith claim at valuation time, Yi(ci), then:

R̂RBNS
i (ci) = Ŷ ULT

i (ûi)− Yi(ci). (2.15)

Let m be the number of open claims at the valuation time, i.e. m = ∑N
i=1 I(δi = 0).

Then the total RBNS reserve amount is given by:

R̂RBNS(c) =
m∑
i=1

R̂RBNS
i (ci). (2.16)

2.5.2.1 Prediction of Time-to-Settlement

To predict the time-to-settlement for a RBNS claim, given that the claim survived (not

settled) up to the valuation time, we are interested in estimating the conditional survival

probability:

πi(u|ci) = Pr(T ∗i ≥ u|T ∗i > ci,Yi(ci); θ) = Si (u|ηiu,wiu; θ)
Si (ci|ηici ,wici ; θ)

, (2.17)

where Si(·) is given by (2.6), and u > ci. wiu and wici are covariates at times u and
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ci. πi(u|ci) gives the probability that there are further payments at future time u.

Here, the probability prediction is dynamic because πi(u|ci) depends on the expected

claims amounts at valuation time ci and future time u given by ηici and ηiu, respectively.

Then the predictions can be updated as more data becomes available. Using the MLE

estimates θ̂ and the empirical Bayes estimate b̂i, an estimate of πi(u|ci) is given by:

π̂i(u|ci) =
Ŝi
(
u|η̂iu,wiu; θ̂

)
Ŝi
(
ci|η̂ici ,wici ; θ̂

) , (2.18)

where η̂iu = x′iuβ̂ + z′iub̂i and η̂ici = x′ici β̂ + z′icib̂i. The time-to-settlement for a RBNS

claim, ûi = E(T ∗i |T ∗i > ci,Yi(ci)) is given by:

ûi =
∫ ∞
ci

π̂i(u|ci)du. (2.19)

2.5.2.2 Prediction of Future Claim Payments

For the future claim payments prediction of an open claim at the valuation time, we are

interested in the expected cumulative payments at future time u > ci for the ith claim

conditional on longitudinal claim history Yi(ci), E [Yi(u)|T ∗i > ci,Yi(ci)], given by:

Ŷi(u) = g−1(x′iuβ̂ + z′iub̂i). (2.20)

Here, g−1(·) is the inverse of the link function, {xiu, ziu} are covariates, and β̂ are the

maximum likelihood estimates. When ûi is the estimated time-to-settlement for ith

claim, Ŷi(ûi) is the predicted ultimate amount of the claim.

An algorithm for predicting the loss reserve using the joint model is given in Algorithm

1.
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Algorithm 1 Reserve prediction routine for JM.

Input:
Valuation time ci, observed data (ti, δi,yi,wici ,xici , zici), MLE θ̂, ˆV ar(θ̂),
empirical Bayes estimate b̂i, cumulative amount paid Yi(ci), future time u,
covariates at time u (wiu,xiu, ziu), and number of draws K.

Output:
{
R̂RBNS
i (ci); i = 1, ...,m

}
;

1: for i = 1, ...,m do
2: Calculate η̂ici = x′ici β̂ + z′icib̂i;
3: Calculate Ŝi(ci) = exp

(
−
∫ ci

0 ĥ0(s) exp{γ̂′wis + α̂η̂is}ds
)
;

4: for k = 1, ..., K do
5: Generate π̂i(u|ci) = U ∼ Uniform(0, 1);
6: Calculate uik = Ĥ−1

i (− log(U × Ŝi(ci))); Ĥi(u) =
∫ u

0 ĥ0(s) exp{γ̂′wis + α̂η̂is}ds;
7: end for
8: return {uik; k = 1, ..., K};
9: Calculate ûi = K−1∑K

k=1 uik;

10: Generate Ŷ ULTl
i (ûi) = g−1(η̂iûi); η̂iûi = x′iûi β̂ + z′iûib̂i;

For parameter uncertainty.

11:
Generate Ŷ ULTl

i (ûi) ∼ f
(
g−1(η̂iûi); θ̂

)
;

For parameter and process uncertainty.
12: Calculate R̂RBNS

i (ci) = Ŷ ULT
i (ûi)− Yi(ci);

13: return
{
R̂RBNS
i (ci); i = 1, ...,m

}
;

14: end for
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Chapter 3

Evaluating the Joint Model

Framework Using Simulated Data

Chapter Preview. To better understand the strengths and limitations of the joint model

framework, this chapter investigates the estimation and prediction performance of the

joint model framework described in Chapter 2 using simulated data.

Section 3.1 describes the design for the simulation study. Section 3.2 emphasizes the

importance of the joint model on parameter estimation, and Section 3.3 evaluates the

prediction performance of the joint model. Section 3.4 identifies environmental changes

where the joint model outperforms macro-level reserving methods. Section 3.5 discusses

the parameter and process uncertainty components of the prediction distribution of the

joint model. Section 3.6 concludes.

3.1 Simulation Design

In the simulation, the longitudinal submodel is assumed to be a gamma regression with

dispersion parameter 1/σ. The conditional mean is further specified as
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ηit = g(E[Yit|bi]) = x′itβ + z′itbi = β10 + tβ11 + xi1β12 + xi2β13 + bi0. (3.1)

The survival submodel is a proportional hazards model with an exponential base hazard.

Specifically, the conditional hazard function is:

hi(t|ηit,wit) = h0(t) exp{γ1xi1 + γ2xi2 + αηit} and h0(t) = λ, (3.2)

where xit = {t, xi1, xi2} and wit = {xi1, xi2}. The random effects are generated from a

normal distribution N (0, ν).

The parameters used in data generation are summarized in Table 3.1. The payment times

are assumed to be exogenous and are set at t = 0, 1, 2, ..., 9. I assume x1 ∼ Bernouli(0.5),

representing a discrete predictor and x2 ∼ Normal(1, 0.5), corresponding to a continuous

predictor. The claims are evenly and independently distributed among ten accident

years, and the censoring time is the end of calender year ten. Based on the work of

Sweeting and Thompson (2011), I employ Algorithm 2 to construct the training and

validation data in the simulation study, and a sample R code is given in Appendix 7.3.

3.2 Parameter Estimates

The main results on parameter estimation are summarized in Table 3.1. I consider

different sample sizes (number of claims) and report the results for N=500, 1000, and

1500. For each simulated sample, the parameter estimates and the associated standard

error are obtained using the likelihood-based method describe in Section 2.5.1. The

results reported in Table 3.1 are based on S=150 replications.

I show in the table the average bias (Bias) and the average standard error (SE) of

the estimates. In addition, I calculate the nominal standard deviation of the point

estimates (SD), and report the standard deviation of the average bias calculated as
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Algorithm 2 Data-generating process for JM.

Input: Parameters {β10, β11, β12, β13, ν, σ} from the payments submodel, and
{γ1, γ2, λ, α} from the settlement submodel.

Output:
Training datasets DP

T = {(yit, t, xi1, xi2); 0 ≤ t ≤ ti, i = 1, ..., N}, and
DS
T = {(ti, δi, xi1, xi2); i = 1, ..., N}; Validation dataset for open claims

DV = {yit; ci < t ≤ t∗i , i = 1, ...,m}.
1: for Claim i = 1, ..., N do
2: Generate xi1 ∼ Bernouli(0.5), xi2 ∼ Normal(1, 0.5);
3: Generate bi = bi0 ∼ N (0, ν);
4: for Payment time t = 0, ..., 9 do
5: yit ∼ Gamma

(
exp(ηit)

σ
, σ
)
; ηit = β10 + tβ11 + xi1β12 + xi2β13 + bi0;

6: end for
7: return {yit; t = 0, ..., 9};
8: Generate Si(t) = U ∼ Uniform(0, 1);
9: Calculate t∗i = H−1

i (− log(U)); where Hi(t) =
∫ t

0 λ exp{γ1xi1 + γ2xi2 + αηis}ds;
10: Generate accident year AYi ∈ [(1, . . . , 10)− 1];
11: Generate ci = 9− AYi + Uniform(0, 0.5);
12: DP

T i = {(yit, t, xi1, xi2); 0 ≤ t ≤ ti}; where ti = min(t∗i , ci);
13: DS

T i = {ti, δi, xi1, xi2}; where δi = I(t∗i < ci);
14: DV i = {yit; ci < t ≤ t∗i , δi = 0};

15: return DP
T =

{
DP
T i; i = 1, ..., N

}
; DS

T =
{
DS
T i; i = 1, ..., N

}
; and

DV = {DV i; i = 1, ...,m}; where m = ∑
I(δi = 0);

16: end for
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SD/
√
S. As anticipated, both estimate and uncertainty of the average bias decrease as

sample size increases. The average standard error is comparable to the nominal standard

deviation, indicating the accuracy of variance estimates. Lastly, the standard errors are

consistent with
√
n convergence. The estimation results in Table 3.1 show that the bias

in estimating parameters from the joint model is negligible.

Table 3.1: Estimation results for JM for different sample sizes (number of claims).
S=150 Bias SD/

√
S SE

Parameter N=500 1000 1500 500 1000 1500 500 1000 1500
Longitudinal submodel(GLMM)

β10=1.0 0.003 0.001 -0.008 0.005 0.005 0.004 0.059 0.056 0.051
β11=0.3 0.001 0.002 0.001 0.001 0.001 0.001 0.011 0.010 0.010
β12=0.2 -0.008 -0.001 0.001 0.004 0.003 0.004 0.053 0.039 0.042
β13=0.4 -0.002 -0.002 0.006 0.004 0.003 0.003 0.044 0.042 0.039
ν=0.09 0.000 -0.001 0.000 0.001 0.001 0.001 0.018 0.015 0.016
σ=1.5 0.004 0.001 0.005 0.005 0.004 0.003 0.055 0.043 0.038

Survival submodel
γ1=0.5 0.000 -0.004 0.000 0.008 0.007 0.007 0.101 0.085 0.081
γ2=0.3 0.007 -0.001 0.000 0.009 0.007 0.006 0.106 0.079 0.078
log(λ)=-1.139 -0.036 -0.021 -0.012 0.015 0.012 0.013 0.181 0.148 0.153
α=-0.25 0.010 0.011 0.005 0.007 0.005 0.006 0.083 0.066 0.078

To emphasize the importance of joint estimation, I explore two additional estimation

strategies, independent and two-stage estimations. The former estimates the longitudinal

and survival submodels separately ignoring the association between the two components,

i.e., setting α = 0 in the survival submodel. The latter estimates the parameters in

the longitudinal submodel in the first stage, and then estimates the parameters in the

survival submodel in the second stage holding the longitudinal model parameters fixed.

See Appendix 7.2 for details on these estimation techniques. It turns out that both

estimation strategies introduce significant bias in the parameter estimates. Estimation

results based on sample size N=1000 and S=150 replications are reported in Table 3.2

and Table 3.3, respectively, for the longitudinal and survival submodels. I show in the

table the average bias (Bias), the average standard error (SE) of the estimates, and

the standard deviation of the average bias calculated as SD/
√
S. For comparison, I

reproduce the estimates for the joint model from Table 3.1.

It is critical to note that both estimation strategies induce substantial bias into parameter
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estimates. For the independence method, I emphasize that it is different from the usual

multivariate regression where ignoring the association among multiple outcomes pays

no price in terms of consistency, but only hampers the efficiency. The bias in the

longitudinal submodel is due to the sample selection under independence assumption

and the bias in the survival submodel is due to the omitted variable. For the two-stage

estimation, the selection bias in the longitudinal submodel is carried over to the survival

submodel. Therefore, model parameters cannot be consistently estimated although the

association between the two processes is taken into account.

Table 3.2: Estimation results for the longitudinal submodel.
N=1000, S=150 JM Independence and Two-stage
Parameter Bias SD/

√
S SE Bias SD/

√
S SE

β10=1.0 0.001 0.005 0.056 -0.035 0.005 0.056
β11=0.3 0.002 0.001 0.010 0.008 0.001 0.010
β12=0.2 -0.001 0.003 0.039 0.001 0.003 0.040
β13=0.4 -0.002 0.003 0.042 -0.001 0.003 0.042
ν=0.09 -0.001 0.001 0.015 0.002 0.001 0.017
σ=1.5 0.001 0.004 0.043 0.092 0.006 0.072

Table 3.3: Estimation results for the survival submodel.
N=1000, S=150 JM Two-Stage Independence
Parameter Bias SD/

√
S SE Bias SD/

√
S SE Bias SD/

√
S SE

γ1=0.5 -0.004 0.007 0.085 -0.004 0.007 0.086 -0.026 0.007 0.089
γ2=0.3 -0.001 0.007 0.079 -0.004 0.007 0.080 -0.084 0.007 0.081
log(λ)=-1.139 -0.021 0.012 0.148 -0.075 0.012 0.140 -0.420 0.009 0.116
α=-0.25 0.011 0.005 0.066 0.020 0.005 0.063 - - -

3.3 RBNS Prediction

This section focuses on the prediction performance of the proposed joint model in

different scenarios. The prediction from the joint model is compared with results from

the independent and two-stage estimation techniques. The results presented in this

section are based on a sample size of N = 1000 and S = 150 replications. The predictive

routine used for the joint model is elaborated in Algorithm 1; the predictive routine for

the independent and two-stage techniques is similar to that of the joint model.
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3.3.1 High Frequency Versus Low Frequency Payments

In this scenario, I investigate the effect of payment frequency from individual claims on

the prediction accuracy. The payment frequency is defined as the number of payments

per unit time period. The high-frequency payment case corresponds to the base model

described in Section 3.1 where the maximum number of payments for each claim is ten,

and payments are at times t = 0, 1, 2, ..., 9. In the low-frequency payment case, the

maximum number of payments is reduced by half, and payment times are t = 0, 2, 4, 6, 8.

Note that the payment frequency does not alter the settlement process, and it only

affects the number of observations generated from the longitudinal submodel.

Figure 3.1 illustrates the timeline of the payment times for the low-frequency and

high-frequency payment scenarios. It is seen that claims in the high-frequency scenario

are likely to have more payment transactions than those in the low-frequency scenario.

For instance, a claim that is to be settled at t = 1.5 will be closed with a single

transaction under the low-frequency payment scenario. However, a claim with the same

settlement time will be closed with two transactions under the high-frequency payment

scenario.

Figure 3.1: Payment times for low-frequency and high-frequency payment scenarios.

One can think of the low-frequency payment scenario as a representation of short-tail

business lines such as personal automobile collision insurance, where claims, once

reported, are typically settled with a single payment within a relatively short period of

time. In contrast, the high-frequency payment scenario mimics long-tail business lines

such as workers’ compensation insurance, where claim settlement is usually accompanied
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by more payment transactions than the short-tail lines.

Table 3.4 shows the true RBNS reserve, the reserve error (estimated RBNS reserve

minus the actual unpaid losses), the error as a percentage of actual unpaid losses, and

the standard error of prediction divided by the number of replications (SE/
√
S). For

the high-frequency scenario simulation, it is seen that JM performs better than the

independent and the two-stage estimation techniques with the smallest percentage error

of 0.55%. The performance of the two-stage technique and independent technique in

comparison to the JM model emphasizes the point that when the endogenous nature

of the cumulative payments and the association between cumulative payments and

settlement process are ignored, it leads to biased estimates and consequently inaccurate

predictions of unpaid losses.

For the low-frequency simulation, JM with the percentage error of 1.16% again performs

better than the other estimation techniques. The slight increase in the percentage

reserve error for the two-stage and the joint model compared to the high-frequency

model indicates that the reduction in payment transactions reduces the accuracy of

the individual claim random effects estimate used for the reserve predictions. Also,

compared to the high-frequency model, the percentage reserve error for the independent

model has reduced to -20.58%, which implies that the advantages of the joint model are

significant for long-tail lines of business.

Table 3.4: RBNS prediction results under high and low frequency payments.
N=1000, S=150 High-Frequency Low-Frequency

Mean Error % SE/
√
S Mean Error % SE/

√
S

True Reserve 6,062 71 4,412 49
JM Error 33 0.55 74 51 1.16 55
Two-Stage Error 206 3.39 77 208 4.72 59
Independent Error -1,583 -26.12 57 -908 -20.58 45



47

3.3.2 Model Misspecifications

Correct model specification is crucial to accurate reserving prediction. This section

examines the prediction performance of the joint model when either the longitudinal

submodel or the survival submodel is misspecified. In particular, I study the impact

of the misspecification of the payment trend in the longitudinal submodel and the

misspecification of the baseline hazard in the survival submodel.

To investigate the effects of misspecification of the longitudinal submodel on the

prediction performance of the JM, a longitudinal cumulative payments with quadratic

payment trend is simulated. The simulated data is fitted assuming a linear trend. That

is, the true cumulative payment model is ηit = β10 + tβ11 + t2β1∗ + xi1β12 + xi2β13 + bi0

and the misspecified fitted payment model is ηit = β10 + tβ11 + xi1β12 + xi2β13 + bi0.

The left panel of Figure 3.2 shows the true cumulative trend and fitted trend. The true

payment model has the same parameters from the base model in Table 3.1, and also

contains an extra term for the square of the payment time variable (t2) with coefficient

β1∗ = −0.003. The survival submodel also has the same parameters from the base model

in Table 3.1.

I also investigate the impact of misspecification of the baseline hazard in the survival

submodel on the prediction performance of the joint model. Here, the true baseline

hazard function follows a Weibull distribution from (2.7) where k = 1.1 but the fitted

model assumes an exponential baseline with k = 1. The longitudinal submodel and

regression coefficients of the survival submodel has the same parameters from the base

model in Table 3.1. The right panel of Figure 3.2 shows the true and misspecified

baseline hazard.

Table 3.5 shows the prediction results when there is misspecification of the payment

trend in the longitudinal submodel and also misspecification of the baseline hazard in

the survival submodel. Using a linear trend in the misspecified longitudinal submodel

as seen in Figure 3.2 will lead to more significant ultimate claim amount prediction,

hence overstate the reserve prediction, and that is confirmed in Table 3.5.
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Figure 3.2: Misspecification of longitudinal and survival submodels.

Table 3.5: RBNS prediction results with model misspecifications.
Misspecified Misspecified

N=1000, S=150 longitudinal submodel survival submodel
Mean Error % SE/

√
S Mean Error % SE/

√
S

True Reserve 4,623 54 4,306 52
JM Error 576 12.45 62 -618 -14.35 60
Two-Stage Error 715 15.46 66 -599 -13.92 64
Independent Error -769 -16.63 48 -1070 -24.85 52
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For this specific example, the misspecification of the longitudinal submodel’s payment

trend produced a prediction error of 12.45%. This performance underscores the

importance of the correct specification of the underlying longitudinal submodel. The

results imply that for application on real-world data, the joint model diagnostics should

focus not only on the underlying distribution of the longitudinal submodel but also on

the payment trend. Dean (2014) discusses several statistics for comparing nested and

non-nested models.

In the same way, the poor prediction performance under the misspecification of the

baseline hazard in the survival submodel emphasizes the importance of the correct

specification of the underlying submodels. For real-world data applications, to evaluate

the goodness of fit of the survival function, the Cox-Snell residuals ri can be employed.

The Cox-Snell residual is calculated as the value of cumulative hazard function H(Ti)

evaluated at the observed event time Ti and given by

ri =
∫ Ti

0
hi(s)ds. (3.3)

Here, the Kaplan-Meier estimate of the survival function of ri is compared to the survival

function of unit exponential distribution (Rizopoulos, 2012), i.e., if the model fits the

data well, ri is expected to have a unit exponential distribution. Given, Ti ∼ S(ti) then

S(Ti) ∼ Uniform(0,1), and ri = H(Ti) = − log(S(Ti)) ∼ Exponential (1). The survival

model in Figure 3.3 was simulated using a Weibull baseline hazard model. The solid

line is the Kaplan-Meier estimate of the survival function of ri, and the dashed line is

the survival function of the unit exponential distribution. It can be seen that both the

Weibull and spline baseline fits the data very well. This shows that the spline baseline

model is flexible.
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Figure 3.3: Evaluation of the survival model fit using Cox-Snell residuals.

3.4 Environmental Changes

This section investigates the effects of environmental changes on reserving prediction.

It is well known that the industry benchmark chain-ladder method relies on a stable

environment, and is expected to fail when the insurer undergoes significant operational

changes that change the claim development pattern. In contrast, individual-level

reserving methods leverage granular claims level data and are thus capable of capturing

such changes and reflecting them in predicting unpaid losses. I show that the proposed

joint model can easily accommodate environmental changes that affect reserving

prediction. I consider various examples of environmental changes including changes in

the underwriting criteria, claim processing, and product mix.

I also provide results using trended chain-ladder techniques based on the recommendation

from Berquist and Sherman (1977). The trending techniques treat environmental changes

as a trend to adjust the development projections. Berquist and Sherman (1977) presented

case studies using a portfolio of U.S. medical malpractice insurance and selected trends

to adjust for changes in operations based on a review of the insurer and industry’s

historical experience. Here, I use a simple trending algorithm, following the work of Jin
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(2014), to estimate the trend rate and use the estimated trend rate to make appropriate

adjustments prior to the application of traditional development techniques. Because

the trending techniques are ad hoc and highly dependent on actuaries’ judgments, I

provide results using two trending techniques. The first approach assumes that the

actuaries are sure of the type of trend that they are dealing with; hence the trending

technique accurately captures the environmental changes. Further, the second approach

assumes actuaries are not sure of the trend and, therefore, do not accurately capture

the environmental changes. See Appendix 7.3.2 for details on the trending techniques.

In the simulation studies, the steady-state is generated from the base model described in

Section 3.1. Environmental changes are implemented by using appropriate covariates in

either the longitudinal submodel or the survival submodel or both. Table 3.6 provides

a brief description of the scenarios that I consider in the numerical experiments. All

the prediction results in this section are based on sample size N = 1000 and S=150

replications.

Table 3.6: Description of environmental changes and covariates used to implement
changes.
Environmental Change Description Covariate
Underwriting Practices Insurer either tightens or loosens its under- Accident year effects in

writing criteria due to either changes in the longitudinal submodel.
insurer’s underwriting guidelines or changes
in regulations.

Claims Processing Insurer either speeds up or slows down the Calendar year effects in
claim settlement due to either exterior or survival submodel.
interior reasons.

Product Mix Insurer changes its business mix by increasing Accident year effects
or decreasing exposure in long-tail lines of in both longitudinal
business. and survival submodels.

Table 3.7 shows the average of the mean (Mean) and standard deviation (SD) of

both settlement time and ultimate paid losses by accident year. As expected in the

steady-state, the distribution of both outcomes are stable over time. The results

of reserving prediction from both the chain-ladder method and the joint model are

displayed in Table 3.8. Not surprisingly, the chain-ladder method performs well under

the steady-state with the percentage error of 4.30%, although the joint model produced

a superior percentage error of 0.55%. Despite the point prediction from the chain-ladder
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and joint model are close, it is worth stressing the difference in the predictive uncertainty

from the two models. To illustrate this, I present in the top left panel of Figure 3.4 the

predictive distribution of reserve errors. The data aggregation in the chain-ladder leads

to information loss, which explains the higher predictive uncertainty compared to the

joint model.

Table 3.7: Average of the mean (Mean) and standard deviation (SD) of settlement times
and ultimate amount paid under steady-state.

N=1000, S=150 Accident Year
1 2 3 4 5 6 7 8 9 10

Settlement Time Mean 3.08 3.10 3.12 3.12 3.13 3.10 3.07 3.13 3.11 3.11
SD/
√
S 0.25 0.26 0.26 0.26 0.26 0.26 0.25 0.26 0.26 0.26

Ultimate Payment Mean 16.32 15.90 15.99 15.79 16.53 16.03 16.07 16.36 16.08 16.16
SD/
√
S 2.47 2.32 2.35 2.29 2.47 2.37 2.36 2.39 2.37 2.41

Table 3.8: RBNS prediction results under steady-state.
N=1000, S=150 Mean Error % SE/

√
S

True Reserve 6,062 71
JM Error 33 0.55 74
Chain-Ladder Error 261 4.30 192

3.4.1 Change in Underwriting Practices

The first scenario of environmental changes that I consider is due to changes in

underwriting practices. Insurers use underwriting to evaluate exposures of potential

risks, and decide whether the risk is acceptable and how much coverage to provide. The

underwriting practice could change due to either changes in the insurer’s underwriting

guidelines or changes in the regulation. The change in underwriting practice only affects

new risks but not existing risks, leading to a shift in the risk profile of the insurer’s book.

In the reserving context, one would expect a change in loss ratios across accident years.

To implement the change in underwriting practice in simulation, I modify the mean

structure of the longitudinal submodel by adding an additional covariate x3, so that

ηit = g(E[Yit|bi]) = x′itβ + z′itbi = β10 + tβ11 + xi1β12 + xi2β13 + xi3β14 + bi0. (3.4)
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The covariate x3 is a binary variable that captures the change in the loss ratio across

accident years. In the experiment, I set x3 = 0 for accident years 1-5, and x3 = 1

for accident years 6-10, i.e. the shift in loss ratio occurs in accident year 6. The

regression coefficient β14 controls the direction of the change. A positive (negative)

value corresponds to a loosened (tightened) underwriting criteria and thus an increase

(decrease) in the loss ratio.

I report the prediction results for β14 = 1. Table 3.9 shows the descriptive statistics

of ultimate paid losses and settlement time by accident year. A structural change in

the loss amount and the corresponding change in the settlement process over time are

observed. Table 3.10 compares the reserve prediction from the chain-ladder method

and the joint model. The chain-ladder method does not capture the deteriorating loss

ratio in most recent accident years, and thus the projection based on the lower loss

ratio significantly underpredicts unpaid losses. In this specific simulation setting, the

chain-ladder prediction error is -21.10% . In contrast, actuaries can easily incorporate

the information of the change in underwriting in the specification of the joint model and

thus adjust for such environmental change in the reserving prediction. Also, though the

trended chain-ladder technique (Approach 1), which assumes the actuary is sure of the

trend they are dealing with, improved the point estimate, it increased the prediction

uncertainty. As expected, the trended chain-ladder technique (Approach 2), which

assumes the actuary is not sure of the trend they are dealing with, did not improve the

point estimate. The predictive distribution of reserve errors is presented in Figure 3.4,

where one observes the bias and high uncertainty in the basic chain-ladder prediction

and a higher uncertainty in the trended chain-ladder (Approach 1) prediction.

Table 3.9: Average of the mean (Mean) and standard deviation (SD) of settlement times
and ultimate amount paid under change in underwriting practices.

N=1000, S=150 Accident Year
1 2 3 4 5 6 7 8 9 10

Settlement Time Mean 3.08 3.10 3.12 3.12 3.13 3.86 3.83 3.89 3.87 3.87
SD/
√
S 0.25 0.26 0.26 0.26 0.26 0.29 0.29 0.29 0.29 0.29

Ultimate Payment Mean 16.32 15.90 15.99 15.79 16.53 55.65 55.54 57.19 54.98 55.50
SD/
√
S 2.47 2.32 2.35 2.29 2.47 7.95 7.89 8.08 7.80 7.81

I also investigate the case β14 = −0.5 as a result of tightening underwriting criteria. As
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Table 3.10: RBNS prediction results under change in underwriting practices.
N=1000, S=150 Mean Error % SE/

√
S

True Reserve 19,361 190
JM Error 96 0.50 209
Chain-Ladder Error -4,085 -21.10 404
Trended CL (Approach 1) Error 324 1.68 748
Trended CL (Approach 2) Error -3,905 -20.17 419

reported in Table 3.11, the chain-ladder method overestimates the unpaid losses, as

anticipated.

Table 3.11: RBNS prediction results under change in underwriting practices (tightening
underwriting criteria).

N=1000, S=150 Mean Error % SE/
√
S

True Reserve 3,712 52
JM Error 204 5.50 51
Chain-Ladder Error 652 17.56 146
Trended CL (Approach 1) Error 316 8.52 161
Trended CL (Approach 2) Error 610 16.44 147

3.4.2 Changes in Claims Processing

Another common scenario of environmental change relates to the claim service. How

claims are handled could be quite different from one insurer to another. Any change in

the operation of claim management that affects the speed claims are settled will have a

impact on reserving prediction. Such operational changes could be due to both internal

or external reasons. For example, a catastrophic loss event could cause a backlog of

claims due to short of staffing and thus lead to slowdown in the claim settlement, or an

adoption of new information system or technology to streamline claim management that

speeds up claim settlement. Another important reason is simply the philosophy in claim

processing, for instance, claims could be prioritized based on either their sizes or the

order they arrive, and claim adjusters could be assigned based on either the workload

or the experience of adjusters.

To reflect the change in claim processing and thus the claim settlement speed, I modify

the survival submodel in the data generating process by adding a covariate to indicate
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the change. It is worth noting the subtle difference in the effects of change in claim

processing and change in underwriting criteria. The difference is in the timing. In a

run-off triangle, the change in claim processing affects claims along calender years while

the change in underwriting criteria affects claims along accident years; this is because

the former applies to both existing and new policies and the latter only applies to new

policies. I consider the survival submodel:

hi(t|ηit,wit) = h0(t) exp{γ1xi1 + γ2xi2 + γ3xi3t + αηit}, (3.5)

where xi3t = 0 if the payment time t is in calendar years 1-5, and xi3t = 1 if the payment

time t is in calendar years 6-10. The coefficient γ3 measures the effects on the settlement

speed, with a negative value indicating slowdown and a positive value speedup.

To illustrate the change of claim processing, I report in Table 3.12 the descriptive

statistics of ultimate paid losses and settlement delay by accident year when setting

γ3 = 0.5. One observes that the change affects the settlement time, with a negligible

impact on the ultimate payments for claims. Table 3.13 reports the corresponding

prediction error for RBNS reserves for both chain-ladder and the joint model. Because

the chain-ladder assumes the same settlement speed even when the claims are actually

closed faster, it overestimates the unpaid losses provided payment pattern stays the

same. Again, the trended chain-ladder technique (Approach 1) improved the point

estimate and increased the prediction uncertainty. The bottom left panel of Figure 3.4

provides the predictive distributions of reserve errors for the two models and shows a

lower predictive uncertainty for the joint model.

Table 3.12: Average of the mean (Mean) and standard deviation (SD) of settlement
times and ultimate amount paid under change in claims processing.

N=1000, S=150 Accident Year
1 2 3 4 5 6 7 8 9 10

Settlement Time Mean 2.90 2.81 2.70 2.52 2.28 1.88 1.86 1.90 1.89 1.88
SD/
√
S 0.23 0.22 0.21 0.19 0.18 0.18 0.17 0.18 0.18 0.17

Ultimate Payment Mean 14.39 13.64 12.77 11.78 10.72 9.72 9.33 9.58 9.51 9.62
SD/
√
S 2.03 1.90 1.72 1.62 1.50 1.37 1.28 1.29 1.27 1.32
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Table 3.13: RBNS prediction results under change in claims processing.
Mean Error % SE/

√
S

True Reserve 2,256 36
JM Error -4 -0.19 35
Chain-Ladder Error 1,351 59.90 125
Trended CL (Approach 1) Error 27 1.22 129
Trended CL (Approach 2) Error 1,074 47.62 124

3.4.3 Changes in Product Mix

In the last scenario, I consider the effects of a change in the product mix in the insurer’s

book on the reserving prediction. Insurance products vary by the nature of the covered

risks that could affect both the outstanding payments and the settlement delay. The

product mix of an insurer’s portfolio could change due to the change in the target markets.

For instance, an insurer who provides workers’ compensation could shift from low-risk

to high-risk occupation class; or a property insurer could decide to expand to write

liability insurance; or an insurer could switch target customers from one geographical

region to another, etc.

In the simulation, I focus on a situation where the insurer increases exposure in long-tail

businesses and reduces exposure in short-tail businesses. Because long-tail lines of

business are usually associated with longer settlement and higher losses, I postulate that

the change in exposure will increase both outstanding payments and time-to-settlement.

To implement this change in the simulation, I use an indicator x3 to indicate the timing

of the change in both the longitudinal and survival submodels as below:

ηit = g(E[Yit|bi]) = x′itβ + z′itbi = β10 + tβ11 + xi1β12 + xi2β13 + xi3β14 + bi0. (3.6)

hi(t|ηit,wit) = h0(t) exp{γ1xi1 + γ2xi2 + γ3xi3 + αηit}. (3.7)

The regression coefficients β14 and γ3 quantify the effects on the losses and settlement

delay, respectively. Assuming the exposure change takes place in the sixth year, I set

x3 = 0 for accident years 1-5, and x3 = 1 for accident years 6-10. Further I set β14 = 1

and γ3 = −0.5 to reflect the expectation of larger ultimate losses and longer settlement



57

time due to increasing exposure in long-tail lines of business.

Table 3.14 summarizes the average of the mean and standard deviation for both ultimate

losses and settlement time by accident year. Because of the change in product mix, I

observe an increase in both ultimate payments and settlement time starting from the

sixth accident year. Note that for simplicity I implement the change as an exogenous

shock, i.e. the insurer’s new portfolio is formed in the 6th year and is fixed afterwards.

A gradual transition to the steady-state of the new portfolio could be easily handled

using an interaction with the time trend.

Reserve predictions from the chain-ladder method and the joint model are reported in

Table 3.15. Once again, reserving error of the chain-ladder prediction is substantial.

Specifically, the chain-ladder underestimates the unpaid loss considerably, because it

applies the loss development pattern of short-tailed lines to the business with long-tails

without adjustment for the change in the product mix. The trended chain-ladder

technique (Approach 1) accurately captures the development pattern changes, hence

producing an improved reserve prediction. Because of the limitations of the trending

technique, the reserve uncertainty increased significantly. The proposed joint model

offers a framework to explicitly accommodate such changes in the model building stage,

and thus makes the correction for the product mix change in the reserving prediction as

illustrated in the predictive distribution of reserve errors in the bottom right panel of

Figure 3.4.

Table 3.14: Average of the mean (Mean) and standard deviation (SD) of settlement
times and ultimate amount paid under change in product mix.

N=1000, S=150 Accident Year
1 2 3 4 5 6 7 8 9 10

Settlement Time Mean 3.08 3.10 3.12 3.12 3.13 5.50 5.47 5.53 5.52 5.51
SD/
√
S 0.25 0.26 0.26 0.26 0.26 0.33 0.33 0.34 0.33 0.33

Ultimate Payment Mean 16.32 15.90 15.99 15.79 16.53 86.50 85.43 86.57 85.09 84.603
SD/
√
S 2.47 2.32 2.35 2.29 2.47 10.85 10.66 10.61 10.53 10.24
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Table 3.15: RBNS prediction results under change in product mix.
N=1000, S=150 Mean Error % SE/

√
S

True Reserve 33,365 234
JM Error 454 1.36 400
Chain-Ladder Error -16,551 -49.60 446
Trended CL (Approach 1) Error -1,626 -4.87 1,171
Trended CL (Approach 2) Error -15,877 -47.59 419

Figure 3.4: Reserve distribution under a steady-state and changes in environmental
conditions.
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3.5 Parameter and Process Uncertainty

In the previous section, the reserve prediction uncertainty for the joint model was

compared to that of the CL method under various scenarios of environmental changes,

and the joint model produces lower prediction uncertainty. But so far, the reserve

prediction distributions only allowed for parameter uncertainty. As discussed in the

first chapter, the mean squared error prediction (MSEP), which provides a measure

of the prediction uncertainty, can be decomposed into the parameter uncertainty and

the process uncertainty. The parameter uncertainty comes from the uncertainty in the

estimation of parameters, and the process uncertainty is the result of the randomness of

the development of the claim (England and Verrall, 2002). This section provides the

predictive distribution considering both components of the uncertainty.

Figure 3.5 provides the predictive distribution of reserve errors after incorporating

both parameter and process uncertainties. For the joint model, the process uncertainty

is introduced by simulating the ultimate payment for open claims from a Gamma

distribution, as shown in Algorithm 1. For the CL method, to introduce process

uncertainty, I use the ODP model and simulate future development from the estimated

ODP distribution. There are two important insights from Figure 3.5. First, the CL

method still produced biased reserve predictions under unstable environmental conditions

as confirmed in tables 3.16 to 3.19. Second, though the joint model produces accurate

mean reserve predictions, the reserve uncertainty is higher after incorporating the

process uncertainty. The process uncertainty is higher for the joint model because the

longitudinal submodel is based on cumulative payments.

Table 3.16: RBNS prediction results under steady-state, after incorporating both
parameter and process uncertainty.

N=1000, S=150 Mean Error % RMSEP√
S

True Reserve 6,062
JM Error 65 1.07 636
Chain-Ladder Error 141 2.33 201

Further, Figures 3.6 and 3.7 compare the parameter and process uncertainty for the
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Figure 3.5: Reserve distribution incorporating both parameter and process uncertainty
under a steady-state and changes in environmental conditions.

Table 3.17: RBNS prediction results under change in underwriting practices, after
incorporating both parameter and process uncertainty.

N=1000, S=150 Mean Error % RMSEP√
S

True Reserve 19,361
JM Error 126 0.65 1,800
Chain-Ladder Error -4,591 -23.71 420
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Table 3.18: RBNS prediction results under change in claims processing, after
incorporating both parameter and process uncertainty.

Mean Error % RMSEP√
S

True Reserve 2,256 36
JM Error 8 0.04 268
Chain-Ladder Error 1,577 69.90 395

Table 3.19: RBNS prediction results under change in product mix, after incorporating
both parameter and process uncertainty.

N=1000, S=150 Mean Error % RMSEP√
S

True Reserve 33,365 234
JM Error 628 1.88 2,952
Chain-Ladder Error -16,611 -49.79 476

joint model and CL method, respectively, and show that the process uncertainty is a

small proportion of reserve uncertainty of the CL method but a significant component

of the joint model. The parameter uncertainty is a significant component of the CL

predictive distribution because of the limited sample size from the aggregation of data.

3.6 Conclusion

In this chapter, I have demonstrated that failing to incorporate the correlation between

the payment processes and the settlement processes could lead to significant error

in reserving prediction. Specifically, ignoring the positive (negative) correlation will

underpredict (overpredict) the unpaid losses.

In addition, I showed that the proposed joint model could easily accommodate

environmental changes such as change in underwriting criteria, business mix, and claim

processing among others. Using carefully designed simulation studies, I showed that

the industry benchmark chain-ladder method without adjusting for the environmental

changes produced substantial error in reserving prediction.
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Figure 3.6: Comparing parameter and process uncertainty for the JM under a
steady-state and changes in environmental conditions.
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Figure 3.7: Comparing parameter and process uncertainty for the CL method under a
steady-state and changes in environmental conditions.
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Chapter 4

Empirical Analysis of the Joint

Model Framework

Chapter Preview. In this chapter, the joint model (JM) is applied to claims data from a

property insurance provider with the focus on RBNS reserve prediction. The joint model

is fitted to a training dataset, and I show that accounting for the payment-settlement

association helps to accurately predict the settlement time and the ultimate amount of

unsettled losses. The RBNS prediction performance of the JM is compared to existing

reserving models using an out–of–sample data. Because of the time dimension involved

with the RBNS reserve prediction, the traditional cross-validation techniques cannot be

used to assess the prediction error of micro-level models. Thus, I introduce a novel form

of cross-validation for longitudinal data that I call double cross-validation.

Section 4.1 gives more background information about the data from the Wisconsin Local

Government Property Insurance Fund (LGPIF) used in this study. Section 4.2 provides

estimation results from the joint model using a training dataset. Section 4.3 evaluates

the quality of prediction from the joint model using a hold-out sample and presents a

comparison to results from other micro-level techniques and the chain-ladder method.

Section 4.4 concludes.
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4.1 Data

The data analyzed in this chapter are from the LGPIF, which was established to make

property insurance available for local government units. The LGPIF offers three major

types of coverage for local government properties: building and contents, inland marine

(construction equipment), and motor vehicles. The Fund closed in 2017. When it was

operational, on average, it wrote approximately $25 million in premiums and $75 billion

in coverage each year; and it insured over a thousand entities.

Exposure information is available from January 1, 2006, to December 31, 2013, and I

focus on claims from the building and contents coverage. The training data contain

claims that have occurred and were reported between January 1, 2006, and December

31, 2009, as shown in Figure 4.1. 87% of the claims in the training dataset are settled

with a single payment. As seen in Table 7.1, there are three different types of payment

transactions during the development process of claims in the training data. These are

intermediate payments, payments to the settlement of a claim (this can be a single

payment to settlement or a payment to settlement after several intermediate payments),

and payments after claims are reopened. Other important features of the data are

discussed in Section 1.3.1. The data set from January 1, 2010, to December 31, 2013,

is the validation dataset. The validation dataset contains the actual unpaid losses

used to evaluate the quality of the reserve predictions from the fitted models. The

training sample contains 3,393 reported claims including 129 claims reported but with no

payment transaction by the valuation date. The total RBNS reserve from the validation

sample is $4,511,490 from 163 claims.

Figure 4.1: Timeline for model fit and prediction.
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Table 4.1: Description of variables in the LGPIF data.
Variable Description

Claim/Transaction Covariates
LnInitialEst Initial estimates for reported claims in logarithmic of dollars
ReportDelay Reporting delay
LossYear Year of claim occurrence
LossQtr Quarter in the year of claim occurrence
CauseCode A code to identify the peril type of each claim
TimeToPayment Time from reporting to payment (Development period)

Policy/Policyholder Covariate
EntityType Categorical variable that is one of six types: Village, City,

County, Misc, School, or Town
CountyCode A code to identify which of the 72 counties the entity belongs to
Region Categorical variable which identifies region the county belongs to:

Northern,Northeastern, Southeastern, Southern,or Western
LnPolicyDed Deductible for the policy in logarithmic of dollars

Table 4.1 describes the covariate information about the policy, policyholder, claim, and

transactions used in the model building. From Table 1.1, it is seen that the ultimate claim

severity, deductible, and initial estimate distributions are right-skewed. To handle the

skewness, I will utilize logarithmic transformations of deductibles and initial estimates.

4.2 Estimation Results

The joint longitudinal-survival framework is applied to the micro-level reserving problem

using the property data from the Wisconsin LGPIF. I begin by fitting a base model

where for the longitudinal submodel, the observed cumulative payments is assumed to

follow a Log-Normal distribution, i.e. yit ∼ Lognormal(ηit, σ2), and fit a proportional

hazard model with a Weibull baseline hazard for the survival submodel. Also, a random

intercept longitudinal submodel is assumed where the random effects follow a normal

distribution, N (0, ν). See Table 7.5 in the Appendix for the estimation results for the

base joint model.
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Figure 4.2: Evaluating the goodness of fit for survival submodel.

4.2.1 Evaluation of Survival Submodel Fit

From Section 3.3.2, the correct specification of the survival submodel is necessary to

obtain accurate prediction results. In Table 7.5, the baseline hazard function assumes

a Weibull model. In this section, the overall survival submodel fit using the Weibull

baseline hazard model is compared to a more flexible survival submodel with a spline

baseline hazard model. The spline baseline model was fitted with equally-spaced five

internal knots in the quantiles of the observed event times.

To examine the survival model’s overall fit, I compare the Kaplan-Meier estimate of the

Cox-Snell residuals from both survival submodels to the function of the unit exponential

distribution graphically (Rizopoulos, 2012). Figure 4.2 plots the fit for the survival

submodel with a Weibull and spline baseline hazard functions and assumes a Log-Normal

distribution for the longitudinal submodel. The solid line is the Kaplan-Meier estimate

of the survival function of the Cox-Snell residuals, and the dashed line is the survival

function of the unit exponential distribution. It can be seen that both the Weibull and

spline baseline fits the data very well. But I choose the Weibull model because it is

easier to interpret its components.
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4.2.2 Evaluation of Longitudinal Submodel Fit

For the evaluation of the longitudinal submodel fit in the base model, I first investigate

whether the fit of the longitudinal submodel can be improved by assuming a Gamma

regression with dispersion parameter 1/σ and a log-link. The AIC and BIC for the joint

model with Log-Normal distribution with linear trend are 74,117 and 74,488, respectively,

and that of the Gamma model with linear trend are 73,887 and 74,258, respectively.

Therefore, a comparison using AIC and BIC suggests the Gamma model offers a better

fit.

I also investigate whether the fit of the longitudinal submodel can be improved by using

a non-linear payment trend in the systematic component of the Gamma model. The

left panel of Figure 4.3 plots the observed trend overlayed with the fitted linear trend,

and the right panel plots the observed trend overlayed with the fitted non-linear trend

using B-spline basis function with an internal knot at payment time 5 (payment time in

quarters). The AIC and BIC are 73,850 and 74,240 for the non-linear payment trend

using splines. The AIC and BIC suggest a slightly better fit with the non-linear trend,

and since the correct specification of the payment trend plays a critical role in the

prediction of unpaid losses, I choose the model with the non-linear payment trend.

The estimation results for the final fitted joint model, where yit follows a Gamma

distribution with a non-linear payment trend and log link in the longitudinal submodel

and a Weibull baseline hazard in the survival submodel, are given in Table 4.2. I

present the parameter estimates and standard errors of the continuous covariates. For

the categorical covariates, I present their likelihood ratio test statistic, the degrees of

freedom, and p-value to test the importance of the categorical variable in each submodel.

For the survival submodel, the association parameter α = −0.407, and it measures

the percentage reduction in hazard or risk of the settlement while expected payments

increases by one percent. Note that α is highly significant at a 5% significance level and

being negative in the hazard model means that the association between the settlement

time and payment size is positive.
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Figure 4.3: Evaluation of payment trend under the longitudinal submodel.

4.3 Out-of-Sample Validation

With the validation data that spans from January 1, 2010, to December 31, 2013, the

actual future development trajectory of the RBNS claims after the valuation date can

be followed and compared to the predictions from the joint model and other reserving

models. In this section, I provide the prediction results for the Independent and

Two-Stage estimation techniques. I also provide prediction results from an estimation

technique that employs a GLM model for ultimate payments in the payment submodel

and a survival submodel that is modeled separately, setting α = 0. Further, I present

results from the MPP model; after reporting, the transaction occurrence times, the type

of transaction, and the transaction’s payment amount are considered to be the marks.

Different models are specified for each component of the MPP model. In addition, I

provide results from the chain-ladder model.
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Table 4.2: Estimation results for final joint model: Assuming Gamma distribution with
a log link and non-linear payment trend for the longitudinal submodel and a Weibull
baseline hazard for the survival submodel.

Longitudinal submodel Survival submodel
Variable Estimate Std. Error Variable Estimate Std. Error
(Intercept) 0.704 0.108 LnInitialEst -0.069 0.060
B1 -0.118 0.089 LnPolicyDed 0.010 0.013
B2 1.876 0.168 ReportDelay 0.351 0.019
B3 1.561 0.291
B4 2.465 0.343
LnInitialEst 0.894 0.009
LnPolicyDed 0.029 0.007
ReportDelay -0.012 0.014 α(association) -0.407 0.067

Variance Components Weibull Baseline Hazard
shape (σ) 5.276 λ 50.159
ν(1/2) 0.417 k 1.459

Number of Payments 3,891 Number of Claims 3,264
Categorical Variables

Variable LRT df (p-value) Variable LRT df (p-value)
CauseCode 93.550 9 (<0.0001) CauseCode 93.430 9 (<0.0001)
Region 24.100 4 (0.0001) Region 59.860 4 (<0.0001)
EntityType 9.720 5 (0.0837) EntityType 64.840 5 (<0.0001)
LossQtr 4.120 3 (0.2486) LossQtr 25.090 3 (0.0001)
LossYear 11.860 3 (0.0079) LossYear 23.600 3 (<0.0001)

4.3.1 Point Prediction

To get the RBNS reserve estimate from the fitted joint model, I follow the prediction

routine in section 2.5.2. Given that the B-splines is been used in the longitudinal

submodel, prediction for the ultimate losses is continued linearly for predicted settlement

times greater than the largest observed payment times. The Gamma distribution is

assumed for the longitudinal submodel for the JM, Independent, the Two-Stage, and

the GLM approach. Further, the prediction routine for the Independent, the Two-Stage,

and the GLM techniques is similar to that of the joint model. For the MPP, a discrete

survival model with piece-wise constant hazard rates is specified for the transaction

occurrence, a logit model is specified for the transaction type, and a Gamma regression

is specified for the incremental payments. Detailed discussions on the MPP is provided

in Appendix 7.4.2. I follow the prediction routine for the RBNS reserve in Antonio
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and Plat (2014). The prediction routine simulates the next transaction’s exact time,

the transaction type (payment to a settlement, or intermediate payment), and the

corresponding payment. For the chain-ladder, I employ a modified version of Mack

model (Mack, 1993), where claims in the run-off triangle are aggregated using reporting

quarter and observation quarter instead of the occurrence quarter and development

quarter. Then projections made from these development factors give us RBNS reserve

estimates.

Table 4.3 presents the reserve error, which is the expected RBNS reserve minus the

actual unpaid losses and the error as a percentage of the actual unpaid losses for JM and

other models. For all models except the chain-ladder model, the estimated micro-level

model is used to predict the RBNS estimate of each open claim and then aggregated to

obtain the reserve estimate for the portfolio. In the out-of-sample data, I consider two

claims as “unusual claims” because they had payments totaling over a million dollars at

the valuation date. These claims were caused by hail damage to buildings of a school in

the year 2007 and a roof collapse of a building in the year 2008 with total payments at

the valuation date of $5, 398, 051 and $1, 802, 742, respectively. Further, the ultimate

amounts of these claims are $6, 615, 117 and $1, 842, 242, respectively. At the valuation

date, the average total payment of open claims, including the unusual claims, is $60, 668,

and that of open claims without the unusual claims is $16, 696. Naturally, the analyst

will remove these unusual claims before any prediction exercise, but as a robustness

check, I provide the prediction results with and without the unusual claims.

From the results, JM produced the least percentage reserve error at 0.41% without the

unusual claims and a very competitive percentage error of -7.24% with unusual claims.

The results from the MPP are also competitive compared to JM. The performance of the

Two-Stage and Independent estimation techniques, in comparison to the JM, emphasizes

that when the association between the payment process and settlement process and the

endogenous nature of the payments process is ignored, it leads to inaccurate prediction

of unpaid losses. Without any surprise, the GLM estimation technique, which only

utilizes the ultimate payment and ignores the payment-settlement association, did not
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perform well. The results also show the chain-ladder method did not perform well in

estimating the unpaid losses with the unusual claims but was very competitive without

the unusual claims.

Table 4.3: RBNS reserve point prediction results for the validation sample.
Without unusual claims With unusual claims

RBNS Estimate Error % RBNS Estimate Error %
True Reserve 3,254,924 4,511,490
JM Error 13,505 0.41 -326,721 -7.24
MPP Error 450,747 13.85 57,901 1.28
Two-Stage Error 74,910 2.30 451,714 10.01
Independent (JM with α = 0) Error 725,206 22.28 -506,418 -11.23
GLM (Closed claims) Error 1,937,817 59.53 3,187,220 70.65
Chain-Ladder Error 262,232 8.06 1,261,332 27.96

The left panel of Figure 4.4 shows the comparison of the distribution of actual ultimate

losses and predicted ultimate losses from JM over time. It can be seen that JM provides

accurate predictions over time. Another advantage of the joint model is that it can

be used to predict the time to settlement for open claims, which will be particularly

useful in the run-off operation of an insurer. For example, in a run-off situation for

a workers compensation insurer, losses for which claimants would not take an offered

settlement usually involves regular payments until death (Kahn, 2002). Therefore

accurately predicting the settlement time or remaining months to live is important in

the reserving exercise. The right panel of Figure 4.4 provides a comparison of actual

settlement times and predicted settlement times using the joint model. The joint model

accurately predicts the settlement times with a Spearman correlation coefficient of 83%.

4.3.2 Predictive Distribution

Here, I am not only interested in the expected value of prediction but also the variability

in prediction. As a measure of reserve uncertainty, I provide the standard error, which

is the standard deviation of the predictive distribution accounting for only parameter

uncertainty and the root mean squared error of prediction (RMSEP), which is the

standard deviation of the predictive distribution after accounting for both parameter
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Figure 4.4: Left Panel: Distribution of the true and predicted ultimate payment over
time (with unusual claims). Right Panel: Comparison of actual settlement times and
predicted settlement times using JM (with unusual claims).

and process uncertainty (England and Verrall, 2002). All the prediction results in this

section are based on 10, 000 replications.

4.3.2.1 Predictive Distribution of the Expected Unpaid Losses

The predictive distribution of the expected outstanding payments is obtained by

incorporating only the parameter uncertainty. For the joint model, I assume that

the parameter estimates can be approximated by a multivariate normal distribution with

the maximum likelihood estimates θ̂ as mean and covariance matrix V̂ ar(θ̂). The routine

for the distribution of the expected outstanding payments is elaborated in Algorithm 3.

The total RBNS liability for each replication is obtained by adding the RBNS prediction

for all claims.

The predictive distribution routine for the Independent, the Two-Stage, and the GLM

estimation techniques follow a similar procedure as the JM. For the MPP, I repeat the

prediction routine to predict RBNS reserve in (Antonio and Plat, 2014), and I take the

expected values for the payment amounts model. To obtain the predictive distribution of
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the expected values of unpaid losses for the CL, I employ the bootstrapping algorithm in

England and Verrall (2002) and implemented in the ChainLadder R package (Carrato

et al., 2020).

Table 4.4 presents the standard error for the out-of-sample data without the unusual

claims. Not surprisingly, the joint model produced a significantly lower standard error

than that of the chain-ladder. The higher predictive uncertainty of the chain-ladder is

due to the loss of information from data aggregation. Also, building the reserving model

with only information from closed claims, as seen with the GLM method, leads to a

higher predictive uncertainty as well. The standard error from the MPP is higher than

the joint model because the MPP model is composed of three submodels containing

more parameters than two submodels from the joint model. By accurately accounting for

the payment-settlement association, the joint model produced slightly higher standard

error compared to the Independent and Two-Stage techniques. Figure 4.5 presents an

illustration of the predictive distribution of the expected reserve estimates focusing on

the out-of-sample data without unusual claims, and it can be seen that the JM provides

both accurate mean prediction and low predictive uncertainty.

Table 4.4: RBNS reserve predictive distribution results for the validation sample (without
unusual claims).

Estimate SE RMSEP
True Reserve 3,254,924
JM 3,268,429 430,847 2,078,825
MPP 3,705,671 630,956 1,381,430
Two-Stage 3,329,834 336,761 2,084,256
Independent (JM with α = 0) 3,980,130 343,737 2,261,560
GLM (Closed claims) 5,192,741 791,364 4,849,763
Chain-Ladder 3,517,156 987,054 1,334,597

4.3.2.2 Predictive Distribution of Losses

For the predictive distribution of losses, in addition to the parameter uncertainty, the

process uncertainty is introduced to match the randomness of the development of losses.

The ultimate payments are generated using the process distribution in the longitudinal
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Figure 4.5: Predictive distribution of expected reserve estimates (without unusual
claims).
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submodel at each replication. I repeat the steps in Algorithm 3 for introducing parameter

uncertainty and introduce process uncertainty by simulating the ultimate payments

from the process distribution of the longitudinal submodel given each simulated set of

parameters. The RBNS liability is then calculated for each simulated ultimate loss, and

the total RBNS liability for each replication is obtained by adding the RBNS prediction

for all claims. Again, the predictive distribution for the Independent, Two-Stage, and

GLM techniques follow a similar procedure as JM. For the MPP, the process uncertainty

is introduced by simulating payments from Gamma distribution. I account for the

process uncertainty in the CL method by simulating payments in the future cells in the

run-off triangle from the over-dispersed Poisson (England and Verrall, 2002).

Table 4.4 also presents the RMSEP for the out-of-sample data without the unusual claims,

and Figure 4.6 shows the predictive distribution after accounting for both parameter

and the process uncertainty from the JM and other models. It can be seen that the

joint model is associated with a higher process variance hence higher RMSEP compared

to the MPP and the chain-ladder. As discussed in Section 3.5, the process variance

from the joint model is higher because it is implemented using cumulative payments

in the longitudinal submodel. The MPP and the chain-ladder are implemented on the

incremental payments.

4.3.3 Double Cross-Validation

In this subsection, I quantify the prediction error of different individual reserving methods

using a novel out-of-sample validation method, which I call double-cross validation. The

novelty of this approach comes from the longitudinal nature of the claims payment

process, which makes it impossible to utilize traditional cross-validation techniques.

Here, on the time dimension, I split the data by the valuation date. On the cross-section

dimension, I split the data by the reporting date. So the training data contains payment

from claims that have been reported by the valuation date. Then, the out-of-sample

data comprises two parts. The first part contains payments made after the valuation
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Figure 4.6: Predictive distributions (Parameter + Process Uncertainty) of the total
RBNS reserve (without unusual claims).
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date on claims reported before the valuation date; I call this the validation dataset. The

second part contains payments from newly reported claims during the out-of-sample

period, and I call this the test dataset. The routine for a K-fold double cross-validation

technique is outlined in Algorithm 4. See Figure 4.7 for an example of 10-fold double

cross-validation.

The prediction error percentages are obtained from both the validation and test datasets,

and Table 4.5 provides the mean percentage error from the 10-fold double cross-validation

for the JM and other micro-level models. The results for the CL method is not provided

because the cross-validation technique cannot be applied to macro-level models. Overall,

the mean prediction percentage error for JM in the validation and test datasets are

better than the results from other models, which emphasizes the robustness of the

model.

Figure 4.7: 10-fold double cross-validation technique.

4.3.4 Discussion on IBNR Reserving

This chapter focuses on RBNS claims, so the practicing actuary would need to combine

the joint model approach with a method for estimating IBNR claims to obtain the IBNR
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Algorithm 3 Reserve predictive distribution for JM using Monte Carlo simulation.

Input:

Valuation time ci, observed data at valuation (ti, δi,yi,wici ,xici , zici),
covariates at future time u (wiu,xiu, ziu), ML estimates θ̂, V ar(θ̂),
cumulative amount paid Yi(ci), and empirical Bayes estimate b̂i,
number of draws K, and number of replications L.

Output:
{
R̂RBNSl
i (ci), l = 1, ..., L

}
;

1: for l = 1, ..., L do
2: Generate θl ∼ N (θ̂, V ar(θ̂));
3: Generate bli ∼ f(bi|ti, δi,yi; θl);

4:
Calculate Sli(ci) = exp

(
−
∫ ci

0 hl0(s) exp{γ′lwis + αlηlis}ds
)
;

where ηlis = x′isβl + z′isbl
i and {αl, γl, βl} ∈ θl;

5: for k = 1, ..., K do
6: Generate π̂i(u|ci) = Uk ∼ Uniform(0, 1);

7:
Calculate ulik = H−1

i (− log(Uk × Sli(ci)));
where Hi(u) =

∫ u
0 h

l
0(s) exp{γ′lwis + αlηlis}ds;

8: end for
9: return

{
ulik; k = 1, ..., K

}
;

10: Calculate ûli = K−1∑K
k=1 u

l
ik;

11:

Generate Ŷ ULTl
i (ûli) = exp(η̂iûli); For parameter uncertainty.

Generate Ŷ ULTl
i (ûli) ∼ Gamma

(
exp(η̂

iûl
i
)

σl
, σl
)
; For parameter and process uncertainty.

where η̂iûli = x′
iûli
βl + z′

iûli
bli and {βl, σl} ∈ θl;

12: Calculate R̂RBNSl
i (ci) = Ŷ ULTl

i (ûi)− Yi(ci);
13: return

{
R̂RBNSl
i (ci), l = 1, ..., L

}
;

14: end for

Algorithm 4 Double cross-validation technique.

Input: Valuation time c and full dataset Dt = {DTt ,DVt }; where DTt is the training
dataset, DVt is the validation dataset and t represent claim payment times;

Output:
{
ψVk , k = 1, ..., K

}
and

{
ψTk , k = 1, ..., K

}
;

1: Split Dt into K groups, Dt = {Dkt }Kk=1;
2: for k = 1, ..., K do
3: Generate model building dataset DSt = {Dkt }k 6=k;
4: Generate hold-out dataset DHt = {Dkt }k=k;
5: Fit the model using training dataset DSTt = {DSt }t≤c;
6: Generate validation dataset DSVt = {DSt }t>c;
7: Generate test dataset DHTt = {DHt }t>c;
8: Calculate prediction error percentage ψVk using DSVt ;
9: Calculate prediction error percentage ψTk using DHTt ;

10: return
{
ψVk , k = 1, ..., K

}
and

{
ψTk , k = 1, ..., K

}
;

11: end for
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Table 4.5: Mean percentage error from 10-fold double cross validation (without unusual
claims).

Validation data error % Test data error %
JM 3.99 -17.74
MPP 47.72 -12.26
Two-Stage 26.59 -44.92
Independent (JM with α = 0) 47.66 -25.25
GLM (Closed Claims) 83.92 87.32

reserves. The general framework for estimating IBNR reserves can be broken down into

two stages. The first stage involves modeling the number of IBNR claims and their

reporting delays with chain-ladder type strategies; for example, see Martínez-Miranda

et al. (2012) and Wüthrich (2018a). Further, Crevecoeur et al. (2019) proposes a

granular approach to model the number of IBNR claims due to the heterogeneity of

the reporting delay based on claim occurrence day and calendar day effects such as

weekday and holiday effects. The second stage involves modeling the development of

the predicted IBNR claims with the proposed joint model fitted using accident date and

reporting delay as covariates.

4.4 Conclusion

In claims management, the settlement duration is usually positively associated with the

size of the claim. The payment-settlement association means settlement times will be

impacted by paid losses, which affects the reserve prediction of open claims. Therefore,

ignoring the payment-settlement association could lead to inaccurate predictions of

outstanding payments.

In this chapter, to incorporate the correlation between the payment and the settlement

processes, the joint longitudinal-survival model (JM) framework was applied to the

reserving problem using data from a property insurance provider. The prediction results

from the joint model is compared to existing reserving models, and the results show that

accounting for the payment-settlement association leads to better prediction accuracy



81

and lower reserve uncertainty compared to models that ignore it.

I also introduced a novel cross-validation technique named double cross-validation

as a result of the time dimension involved with claim development. The double

cross-validation technique provides two datasets (validation and test datasets) for the

evaluation of the robustness of the models. The validation dataset contains outstanding

payments for claims reported by the valuation date. The test data contains payments

from newly reported claims during the out-of-sample period. Again, the joint model

displayed superior prediction accuracy using both datasets compared to models that

ignore the payment-settlement association, which highlights the robustness of the model.
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Chapter 5

Improving Ratemaking Using

Micro-Level Loss Prediction

Techniques

Chapter Preview. In pricing insurance contracts for non-life insurers, the literature has

mainly focused on using detailed information from policies and closed claims. Information

regarding RBNS and IBNR are usually ignored during ratemaking. This chapter employs

a micro-level reserving technique to incorporate open claims in insurance pricing.

Section 5.1 introduces the problem, and Section 5.2 provides information about the

ratemaking data that inspires the proposed modeling framework. Section 5.3 presents the

marked Poisson process model and its application to ratemaking. Section 5.4 provides

the model fitting results from the marked Poisson process model using a training dataset.

Section 5.5 evaluates the quality of prediction from the marked Poisson process model

using out-of-sample data. Section 5.6 concludes.
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5.1 Introduction

In non-life insurance, premiums are set to cover the expected future cost and also allow

for the earmarked underwriting profit through a process known as ratemaking. The

pure premium method and the loss ratio method are the traditional techniques for

ratemaking, and these techniques are focused on whether the total premiums will cover

the total costs. See Werner and Modlin (2016) for details on these techniques. Accurate

risk pricing is expected to provide stronger incentives for more caution, resulting in lower

claim frequencies and reductions in insurance loss costs (Cummins, 2002). To better

align premiums with expected costs, actuaries develop rates by employing multivariate

risk classification techniques based on information from the policy and the claim history.

The multivariate risk classification techniques make it possible to account for several risk

factors simultaneously. The generalized linear models (GLMs) and machine learning

algorithms are two popular techniques for multivariate risk classification (Werner and

Modlin, 2016).

The frequency-severity model and the Tweedie GLM are two popular approaches used

to model the claim frequency and payments arising from the closed claims. See Frees

(2014) for details and application of these models. An observation from the ratemaking

literature is that the data used in the multivariate analysis is often based on closed

claims, where the ultimate amount paid for all claims is known. This observation

is not surprising as there is a natural friction between using only closed claims from

older policy years and using the information on all reported claims, which will include

information on open claims. With closed claims, all uncertainties in information on open

claims are eliminated. In contrast, the information on open claims can reflect shifts in

the distribution of the expected claim payments better than closed claims. Therefore,

ignoring open claims during the ratemaking process may lead to biased estimates and,

consequently, inaccurate premiums. Practicing actuaries are well aware of these biases,

so they make ad hoc adjustments to address them. But, by their very nature, these

adjustments depend on the ability of the actuary. The profession is better served by
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having formal procedures to make adjustments.

This chapter presents an intuitive framework for ratemaking that ensures that the

multivariate risk analysis is done using the information on claims that have been closed,

and payments on open claims. To model the complete development of claims for

ratemaking purposes, I employ the marked Poisson process (MPP) framework with four

hierarchical building blocks. Three of the building blocks drive the expected cost based

on reported claims by modeling the number of claims per policy in a policy year, the

conditional number of payment transactions for a claim, and the conditional payment

sizes for each transaction. One advantage of the MPP is that the likelihood of the

claims process can be decomposed into independent blocks, which allows each block to

be maximized in isolation (Larsen, 2007). As a result, the parameters of each block are

estimated with the appropriate GLMs. For RBNS claims, the number of transactions

is censored at the ratemaking date, which is duly addressed. I use policy covariates

that are readily available for new and existing policyholders for an observation period.

The fourth building block accounts for the expected future cost relating to IBNR claims

through a unique feature of the MPP framework by analyzing the reporting delay

distribution of claims.

As discussed in Section 1.2.2, the MPP framework, which was introduced by Arjas

(1989), Jewell (1989), Norberg (1993), and Norberg (1999) has been widely used for

individual-level loss reserving. For example, Antonio and Plat (2014) and Verrall and

Wüthrich (2016) apply the marked Poisson process for non-life insurance loss reserving

where claims occurrences are assumed to follow a non-homogeneous Poisson process, and

stochastic characteristics about the claims are treated as marks. The MPP framework’s

hierarchical makeup also provides flexibility in modeling different events and their

features in the ratemaking process. In insurance pricing, hierarchical models are not

new. For example, the frequency-severity model forms a two-level hierarchical pricing

model. Frees and Valdez (2008) and Frees et al. (2009) extended the frequency-severity

model to a hierarchical model with three building blocks relating to the frequency,

type, and severity of claims. Shi et al. (2016) provides a hierarchical framework for
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modeling insurance loss cost with a complex structure and proposes a copula regression

to accommodate various sources of dependence.

5.2 Empirical Motivation

The data I use for the ratemaking exercise in this chapter is from the Wisconsin Local

Government Property Insurance Fund (LGPIF) described in Section 4.1. Though the

LGPIF data spans from January 1, 2006, to December 31, 2013, I focus on the dataset

from effective years 2006-2011, where all claims are marked as closed as of December

31, 2013. Here, I use data from the policy, claim, and transaction databases. Table

5.1 shows the summary statistics, at the policy and claim level, from effective years

2006-2011. High variability across years in the average claim frequencies and severity is

observed at the policy level, highlighting the importance of using current information

in claim modeling for ratemking purposes. Further, from the summary statistics at

the claim level, the average number of payments transactions to settlement per claim

is gradually reducing, and the average payment per transaction is increasing. This

observation suggests a change in claims processing of the LGPIF. As discussed in Section

3.4, environmental changes affect the distribution of future losses, and using current

information on open claims allows to capture such changes promptly.

Table 5.1: Summary statistics at the policy and claim level for building and contents
coverage.

Policy Level Claim Level
Effective Average Average Average Number of Average No. Average Payment

Year Frequency Severity Coverage Policies of Transaction Per Transaction
(Million)

2006 0.734 10,083 32.363 1,159 1.276 9,554
2007 0.925 7,095 35.143 1,143 1.291 8,946
2008 0.746 6,730 37.150 1,130 1.245 7,991
2009 0.924 4,864 40.275 1,114 1.206 9,864
2010 1.088 20,827 41.123 1,114 1.123 17,152
2011 0.948 8,367 42.426 1,096 1.173 17,156

Table 5.2 describes the rating variables considered in this chapter. Tables 7.6 and 7.7 in

the Appendix 7.5 show that the rating variables are correlated with the claim frequency



86

and severity at the policy level, and with the transaction frequency and severity at

the claim level, which indicates that they will be significant predictors to claims in the

ratemaking model.

Table 5.2: Description of rating variables.
Variable Description
EntityType Categorical variable that is one of six types: Village, City,

County, Misc, School, or Town
Region Categorical variable which identifies region the county of an entity

belongs to: Northern,Northeastern, Southeastern, Southern,or Western
LnPolicyDed Deductible for the policy in logarithmic of dollars
LnPolicyCov Total building and contents coverage for the policy in

logarithmic millions of dollars
AlarmCredit Categorical variable that is one of five types:(0%, 5%, 10%,15%,

or a combination of credits), for automatic smoke alarms in main rooms

For the ratemaking exercise, the data from effective years 2006-2009 are used as the

training sample to calibrate the MPP model. Here, I assume that by December 31, 2009,

policyholders’ rates have to be updated for the policy year 2010. The rating factors

from the calibrated MPP model are then applied to the 2010 rating variables to predict

2010 claim scores. Table 5.3 provides a summary of the number of closed, RBNS, and

IBNR claims as of December 31, 2009. As expected, the very recent effective year 2009

is associated with the highest RBNS and IBNR claims. Therefore, ratemaking models

that rely on only closed claims will lose current information needed to produce accurate

premiums. The table also summarizes the average payments for reported claims (closed

and RBNS claims) as of December 31, 2009. It is seen that the average payments across

years for RBNS claims are more significant than closed claims indicating that bigger

claims take a longer time to settle. Hence, the payments on the RBNS claims can reflect

the change in the risk profile of the Fund in a timely manner compared to closed claims.

For robustness checks, I also present an analysis of the MPP framework using the

effective years 2007-2010 as the training sample. I compare the claims scores from this

new model to the out-of-sample data from 2011.
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Table 5.3: Summary statistics for closed, RBNS, and IBNR claims as of December 31,
2009.

Number of claims Average payments
Effective Year Closed RBNS IBNR Total Closed RBNS Total
2006 785 1 0 786 16,501 5,398,051 23,348
2007 987 6 4 997 13,281 376,109 15,473
2008 747 20 10 777 13,509 51,165 14,491
2009 478 136 184 798 5,631 8,904 6,356
Total 3,230 163 198 3,591 14,133 60,668 16,368

5.3 Claim Modeling

5.3.1 Marked Poisson Process

Figure 5.1 elaborates on the timeline for claim occurrence at times V1 = v1, V2 =

v2, . . . , Vn = vn and transaction occurrence at times S1 = s1, S2 = s2, . . . , Sm = sm in a

fixed period [0, τ ]. In this chapter, τ represents the ratemaking date. From the figure,

it is clear there are two counting processes, one relating to claims occurrence and the

other the transaction occurrence after reporting.

Figure 5.1: Claim occurrence and payment development process.
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As described in Section 1.2.2, the associated counting process {N(v), 0 ≤ v} of the claim

occurrence process in Figure 5.1 is Poisson and records the cumulative number of claims

that the process generates. I denote H(v) = {N(u) : 0 ≤ u < v} to be the history of

the claims occurrence process at time v. Then the intensity function, determined only

by v, for the claim occurrence process as defined in (1.3) is

ρ(v|H(v)) = lim
∆v↓0

Pr{∆N(v) = 1|H(v)}
∆v = lim

∆v↓0

Pr{∆N(v) = 1}
∆v = ρ(v). (5.1)

Further, observable covariates x(v) that affects claim occurrence may be incorporated

in the model by including the covariate information in the process history. Thus, the

heterogeneities among the policyholders can be accounted for by specifying the intensity

function of the form:

ρ(v|xv) = ρ0(v) exp(x′(v)β), (5.2)

where xv = {x(u) : 0 ≤ u ≤ v} is the covariate history. ρ0(v) is the baseline function

that relates to policyholders for whom x(v) = 0 for all v, and β is a vector of regression

coefficients for the covariates.

The marked Poisson process (MPP) framework discussed in Section 1.2.2 is employed for

the claims modeling for insurance pricing. Stating the main points again, for a marked

Poisson process in [0, τ ], the likelihood that n claims occur at times V1 = v1, V2 =

v2, . . . , Vn = vn, with marks Z1 = z1, Z2 = z2, . . . , Zn = zn is given by:

Pr[N = n, (Vi, Zi)) = (vi, zi), i = 1, 2, . . . , n] =
(

n∏
i=1

ρ(vi)PZ|vi(zi)
)

exp
(
−
∫ τ

0
ρ(v)dv

)
.

(5.3)

Here, the claim occurrence counting process N(v) is a Poisson process with intensity

function ρ(v). The distribution of the marks PZ|v is conditional on ∆N(v) = 1. After
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claim occurrence, the marks can be further broken down into the reporting delay Ui
and the claim development process after reporting Wi, i.e., Zi = (Ui,Wi). As seen in

Figure 5.1, Wi includes payment transactions occurrence times Sik and the severity of

each transaction Pik. Where k = 1, . . . ,mi index payment transactions for the ith claim.

Then the distribution of the marks PZ|v is specified as PZ|v = PU |v × PW |v,u.

The reporting delay distribution U given occurrence time v, PU |v, can be modeled using

various distributions from survival analysis, but I specify a mixed distribution comprising

of a discrete distribution for a reporting delay below or equal to r days, and a Weibull

distribution for reporting delays above r days with density function fU . The likelihood

for the reporting delay is given by:

d∑
r=0

qr1(U = r) + (1−
d∑
r=0

qr)fU |U>r(u), (5.4)

where the probability mass for a reporting delay of r days is given by qr. Specifically, I

use d = 0, i.e., a probability mass for a reporting delay of zero days (reporting in the

same day of occurrence, q0). To incorporate the policyholder characteristics xj that may

impact the reporting delay distribution of claim i, I specify a Weibull distribution with

the scale parameter θi that depends on the policyholder characteristics and a constant

shape parameter κ given by:

fU |U>r(ui;κ, θ) ∼
κuκ−1

i

θi
κ exp[−(ui/θi)κ], θi = exp(x′jγ). (5.5)

The other component of PZ|v is the distribution of the claim development process

after reporting, PW |v,u. I assume the occurrence of transactions for claim i also follow a

non-homogeneous Poisson process in [0, τ ], and transaction payment amounts are treated

as marks. Then the likelihood that mi transactions occur at times Si1 = si1, Si2 =

si2, . . . , Simi = simi , with marks Pi1 = pi1, Pi2 = pi2, . . . , Pimi = pimi is given by:
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Pr[Mi = mi, (Sik, Pik)) = (sik, pik), k = 1, 2, . . . ,mi] = (∏mi
k=1 λi(sik)fP (pik))

× exp (−
∫ τ
0 λi(s)ds) .

(5.6)

Here, the transaction occurrence counting process Mi(s) is a Poisson process with

intensity function λi(s), and k applies to all payments in [0, τ ]. fP (pik) denotes the

density function for the payment severity.

5.3.2 Estimating Parameters

5.3.2.1 Data Structure

Let j = 1, . . . , J represent the index for policies in the portfolio, and t = 1, . . . , Tj
represent the policy years observed for each policy, then the observable responses at the

ratemaking date are:

• Njt, the number of claims reported within a policy year.

• Mjt,i, the number of transactions for each claim, where i = 1, . . . , Njt is the claim

index. For open claims, Mjt,i is censored; then denote δjt,i = 1 when claim is

closed or δjt,i = 0 otherwise.

• Pjt,ik, the payment amount per transaction. Where the payment transaction index

is k = 1, . . . ,Mjt,i.

The exposure ejt is measured as a fraction of years, which provides the length of time in

the policy year as of the ratemaking date. For the explanatory covariates, policy-level

characteristics represented by xjt and described in Table 5.2 are used. Additionally, Ujt,i
is the reporting delay variable (the difference between claim occurrence and reporting

times) for claim i reported in the {jt} observation period. Then the data available can

be summarized as:
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{ejt, Njt, Ujt,i, (Mjt,i, δjt,i), Pjt,ik, xjt; t = 1, . . . , Tj, j = 1, . . . , J}. (5.7)

5.3.2.2 Reported Claims Modeling

At the ratemaking time τ , as shown in Table 5.3, there are reported claims whose full or

partial development process is observed i.e. Crep = ((v, u, w) ∈ C|v + u ≤ τ), and IBNR

claims whose development process is totally unobserved i.e. Cibnr = ((v, u, w) ∈ C|v ≤

τ, v + u > τ). Then, the occurrence of reported claims follows an independent Poisson

process with intensity function ρ(v)FU |v(τ − v) and that of IBNR claims also follows an

independent Poisson process with intensity function ρ(v)(1− FU |v(τ − v)) (Wüthrich

and Merz, 2008).

It follows that the observed likelihood of the claims process is given by:

L =
 ∏
i:vi+ui≤τ

ρ(vi)FU |v(τ − vi)
 exp

(
−
∫ τ

0
ρ(v)FU |v(τ − v)dv

)
× f τ−vi−uiW |v,u (wi), (5.8)

where f(·) and F (·) denotes a pdf and a cdf, respectively. The superscript in the claim

development term (last term in (5.8)) represents that a claim that occurred at vi and

with reporting delay ui is censored at τ − vi−ui time units after reporting. As discussed

earlier, given the occurrence time v and the reporting delay u, the claim development

process W can be decomposed into the payment transactions occurrence times S and

the severity of each transaction P . Then, the observed likelihood in (5.8) becomes:

L =
(∏

i:vi+ui≤τ ρ(vi)FU |v(τ − vi)
)

exp
(
−
∫ τ

0 ρ(v)FU |v(τ − v)dv
)

×∏i:vi+ui≤τ (∏k λi(sik) exp (−
∫ τi
0 λi(s)ds))

×∏i:vi+ui≤τ
∏
k fP (pik).

(5.9)

Here, k applies to all payments in [0, τi], where τi = min(τ − vi − ui, Si). Si is the total
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waiting time from reporting to settlement of claim i. I emphasize that in addition to the

claim occurrence counting process N(v) with intensity function ρ(v), the transaction

occurrence counting process Mi(s) is also a Poisson process with intensity function λi(s).

Considering the ratemaking data is organized by the {jt} observation period, where

j = 1, . . . , J index policyholders, and t = 1, . . . , Tj index the policy years for each claim;

let the intensity function for the counting process of claim occurrence Njt(v) be ρjt(v)

and that of counting process of transaction occurrence Mjt,i(s) be λjt,i(s). Then, the

likelihood for the observed claims process in (5.9) becomes:

L = ∏J
j=1

∏Tj
t=1

(∏njt
i=1 ρjt(vjt,i)FU |v(τ − vjt,i) exp

(
−
∫ t
t−1wjt(v)ρjt(v)FU |v(τ − v)dv

))
×∏J

j=1
∏Tj
t=1

∏njt
i=1

(∏mjt,i
k=1 λjt,i(sjt,ik) exp

(
−
∫ τjt,i

0 λjt,i(s)ds
))

×∏J
j=1

∏Tj
t=1

∏njt
i=1

∏mjt,i
k=1 fP (pjt,ik),

(5.10)

where τ ∈ [Tj − 1, Tj], njt denote the number of reported claims that occur in the {jt}

observation period, and mjt,i is the number of transactions for claim i reported in the

{jt} observation period. With regards to the ratemaking application, the number of

transactions to settlement is of interest. But for RBNS claims, the number of transactions

is censored at the ratemaking date τ . Therefore, I denote, δjt,i = I(Sjt,i ≤ τjt,i) to

indicate whether the claim has been closed by the valuation time. Note that, Sjt,i is the

total waiting time from reporting to settlement of claim i reported in the {jt} observation

period. Thus, δjt,i = 1 for closed claims, and δjt,i = 0 for RBNS claims at τ . Additionally,

given that Sjt,i > τjt,i for RBNS claims, it means that Mjt,i(Sjt,i) ≥Mjt,i(τjt,i) = mjt,i.

The likelihood in (5.10) for reported claims can be broken down into three building blocks:

the number of claims per policy in a policy year, the conditional number of payment

transactions for a claim, and the conditional payment sizes for each transaction. The

likelihood is decomposed into independent blocks, which can be maximized in isolation.

But, the MPP is a continuous-time model, and the data on the claims occurrence and

transaction occurrence recorded and available for statistical inference are discrete. Thus,
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I assume a piece-wise constant specification for the intensity functions that allow the

use of the recorded number of claims and the number of transactions per claim for

estimation. Each block is discussed below.

Poisson process for claim frequency Njt: The first line in the likelihood in (5.10) relates

to the occurrence of reported claims. A multiplicative form of the intensity function is

assumed where ρjt(v) = ρ0(v;α) exp(x′jtβ). Here, xjt are the rating variables described

in Table 5.2, and {α, β} are parameters to be estimated. To estimate ρjt(v), I assume the

claim occurrence follows a Poisson process with a non-homogeneous piece-wise constant

intensity ρjt, such that the baseline rate function is given by:

ρ0(v;α) = αt at−1 < v ≤ at. (5.11)

Here, t = 1, . . . T , and T is the most recent policy effective year. α = (α1, . . . , αT ) are

parameters of the baseline rate function, and a0 < a1 < · · · , aT are the cut-points of

the intervals for the baseline function where a0 = 0 and aT = T . Then, the occurrence

of reported claims follows an independent Poisson process with intensity function

ρjtFU |v(τ − v). The corresponding likelihood for the occurrence of reported claims is

given by:

L =
J∏
j=1

Tj∏
t=1

(
ρ
njt
jt ×

njt∏
i=1

FU |v(τ − vjt,i) exp
(
−ejtρjt

∫ t

t−1
FU |v(τ − v)dv

))
, (5.12)

where ρjt = αt exp(x′jtβ), and ejt =
∫ τ
0 wjt(u)du is the exposure time in (ak−1, ak] for

policyholder j. To optimize ρjt, the likelihood in (5.12) can be expressed without the

reporting delay distribution function as a product of Poisson likelihoods shown as:

L =
J∏
j=1

 Tj∏
t=1

(αt exp(x′jtβ))njt exp
(
−ejtαt exp(x′jtβ)

) . (5.13)

Then, the likelihood in (5.13) can be maximized using a Poisson regression with a log
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link where ψjt = ejt exp(logαt + x′jtβ) is the mean of the response Njt. Here, ln(ejt) is

specified as an offset variable to account for the exposure as at the ratemaking date.

Poisson process for transaction frequency Mjt,i: The second line in the likelihood in

(5.10) relates to transaction occurrence conditional on having at least a claim. The

transaction counting process Mjt,i(s) is also Poisson with intensity measure λjt,i(s) =

λ0(s; b) exp(x′jtπ). Again, a piece-wise constant intensity λjt,i is assumed such that the

baseline rate function is given by:

λ0(s; b) = bt at−1 < s ≤ at, (5.14)

where, b = (b1, . . . , bT ) are parameters of the baseline rate function. Then following a

similar approach to that in (5.13), the likelihood for the transaction occurrence can be

specified as a product of Poisson likelihoods shown as:

L =
J∏
j=1

Tj∏
t=1

(njt∏
i=1

(bt exp(x′jtπ))mjt,i exp
(
−bt exp(x′jtπ)

))
. (5.15)

For RBNS claims, Mjt,i(Sjt,i) ≥ mjt,i, then the likelihood in (5.15) can be maximized

using censored Poisson regression with a log link where λjt,i = exp(log bt + x′jtπ) is the

mean of the response Mjt,i. The likelihood for the censored Poisson is given by:

Pr(mjt,i, δjt,i) = [f(mjt,i)]δjt,i
1−

mjt,i−1∑
k=0

f(k)
1−δjt,i

, (5.16)

where f(·) is a Poisson density function and δjt,i = 1 if the claims is closed or δjt,i = 0 if

open.

Transaction severity Pjt,ik: The conditional severity block describes the claim payment

size per transaction. I assume Pjt,ik are i.i.d., and I specify a gamma regression with

logarithmic link function and conditional mean µjt,ik = exp(x′jtφ). Though I opted to
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use the gamma GLM because it is frequently used in insurance pricing to model payment

sizes (Henckaerts et al., 2018), other distributions can be used based on the data. In

addition, following Antonio and Plat (2014), different models can be built for the first

transaction payments and the later transaction payments.

5.3.2.3 IBNR Claims Modeling

The IBNR modeling block is considered as an additional building block of the MPP

process. To account for the expected IBNR claims cost, I rely on a unique feature of

the MPP model and define an IBNR factor:

IBNR factor = E[N(τ)]
E[N rep(τ)] , (5.17)

where N(τ) is the number of claims that occurred in an observation period [0, τ ] and

N rep(τ) is the number of claims that occurred and reported by the valuation date τ .

Then, under the Poisson process assumption, (5.17) becomes:

IBNR factor =
∫ τ

0 ρ(v)dv∫ τ
0 ρ(v)FU|v(τ−v)dv

=
∫ τ

0 ρ(v)FU|v(τ−v)dv+
∫ τ

0 ρ(v)(1−FU|v(τ−v))dv∫ τ
0 ρ(v)FU|v(τ−v)dv

= 1 +
∫ τ

0 (1−FU|v(τ−v))dv∫ τ
0 FU|v(τ−v)dv .

(5.18)

Further, with the piece-wise constant intensity ρjt for the {jt} observation period used

in estimating the parameters in (5.13), the IBNR factor to account for all exposure for

policyholder j is given by:

IBNR factorj =
Tj∏
t=1

(
1 +

∫ t
t−1(1− FU |v(τ − v))dv∫ t

t−1 FU |v(τ − v)dv

)
. (5.19)

An estimate of the IBNR factor is obtained by fitting the reporting delay distribution

in (5.4).
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5.3.2.4 How to Use the MPP for Ratemking

A rating formula based on the MPP ratemaking framework will be achieved by the

product of the IBNR factor and the exponentiated estimates from the claim frequency

model, transaction frequency model, and the severity model. The following rating

formula calculates the predicted claims score:

Premium = ej exp(log α̂T + x′jβ̂)× exp(log b̂T + x′jπ̂)× exp(x′jφ̂)× IBNR factorj
= Exposure× Expected number of claims

×Expected number of transaction per claim

×Expected payment per transaction× IBNR adjustment.
(5.20)

Where ej is the exposure variable and xj are rating factors for the new contact. {α̂T , b̂T}

are the fitted baseline parameters from the most recent policy year for the claim and

transaction frequency models. Also, {β̂, π̂, φ̂} are the fitted parameters for rating

variables from the claim frequency model, transaction frequency model, and the severity

model building blocks. The loss reserves are automatically accounted for by using the

information on open claims and adjusting for the IBNR claims. In this rating algorithm,

the cumulative IBNR factor for new customers is one since there was no exposure in

past years.

5.4 Estimation Results

In this section, I present the estimation results from the four building blocks in the MPP

framework fitted using maximum likelihood. The training data contains observations

from effective years 2006-2009, but I also show the parameter estimates using only data

from the recent effective year 2009.
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5.4.1 Claim Frequency Model

Table 5.4 presents the estimation results for the claim frequency Poisson model. The

exposure variable is used as an offset, and the rating variables used are described in

Table 5.2. The baseline parameters and the rating variables with parameter estimates

that are not significant are not shown. When using all the training data, as expected,

the coefficient for LnPolicyDed is negative, meaning higher deductible is associated with

lower claim frequency, but the coefficient switches to positive and significant when using

only observations from the effective year 2009. Also, the coefficients for the LnPolicyCov

is positive and significant in both results. Compared to the reference category “Village,”

all entity types experience lower claims frequency except “Town” in both results. In

addition, based on the Region rating factor, there are significant differences in claim

frequency driven by the geographical location.

Table 5.4: Poisson claim frequency model parameter estimates.
Effective Year 2009 Effective Years 2006-2009

Estimate Std. Error Estimate Std. Error
(Intercept) -5.090 0.272 -2.599 0.129
LnPolicyDed 0.214 0.035 -0.164 0.014
LnPolicyCov 1.148 0.049 1.110 0.021
TypeCity -0.681 0.195 -0.535 0.076
TypeCounty -0.892 0.206 -0.456 0.084
TypeSchool -1.450 0.197 -1.005 0.076
TypeTown 0.050 0.474 0.415 0.149
TypeMisc -2.349 0.364 -1.801 0.150
RegionNorthern -0.280 0.180 0.151 0.084
RegionSoutheastern -1.335 0.126 0.263 0.055
RegionSouthern 0.142 0.107 0.717 0.055
RegionWestern -0.386 0.142 0.230 0.065
AlarmCredit(0%) - - -0.076 0.063
AlarmCredit(5%) - - -0.382 0.169
AlarmCredit(10%) - - -0.306 0.132
AlarmCredit(15%) - - 0.008 0.046
-2 Log L 2,186 10,000
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5.4.2 Transaction Frequency Model

From Table 7.7 in Appendix 7.5, the transaction frequency did not vary much across

the categorical variables, and that was confirmed in the censored Poisson transaction

frequency model results in Table 5.5 as most of the parameter estimates were not

statistically significant. Just like the claim frequency model, the LnPolicyDed is negative

and significant when all the training data was used in the model building.

Table 5.5: Censored Poisson transaction frequency model parameter estimates.
Effective Year 2009 Effective Years 2006-2009

Estimate Std. Error Estimate Std. Error
(Intercept) 0.097 0.042 0.290 0.045
LnPolicyDed - - -0.024 0.009
-2 Log L 1,040 6,971

5.4.3 Payment Severity Model

The estimation results for the Gamma severity model using a logarithmic link function

is given in Table 5.6. The dependent variable is the observed transaction payments

Pjt,ik and the results show a significant difference in claim transaction payments based

on geographical location. The results from all three building blocks show that some

rating variables have a positive parameter estimate in one building block, but a negative

parameter estimate in another. For example, using all the training dataset, the parameter

estimate for LnPolicyDed is negative in the claim frequency model (-0.164), negative in

the transaction frequency model (-0.024), and positive in the payment model (0.240).

In this case, the overall effect can be interpreted as positive.

5.4.4 IBNR factor

The reporting delay is a key driver of IBNR claims. Figure 5.2 shows the distribution

of the reporting delays in months overlayed with the fitted mixed distribution with a

probability mass for a reporting delay of zero and a Weibull distribution for reporting
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Table 5.6: Gamma severity model for average transaction payment.
Effective Year 2009 Effective Years 2006-2009

Estimate Std. Error Estimate Std. Error
(Intercept) 11.662 0.435 7.822 0.138
LnPolicyDed -0.426 0.045 0.290 0.020
LnPolicyCov - - -0.208 0.021
RegionNorthern 0.966 0.317 0.759 0.119
RegionSoutheastern 1.920 0.187 0.332 0.080
RegionSouthern 0.583 0.194 0.156 0.080
RegionWestern 0.583 0.251 0.041 0.093
-2 Log L 9,826 71,543

delays above zero. From the plot, the fitted mixed distribution seems to fit the observed

reporting delay data reasonably well. Table 5.7 provides the IBNR factors based

on (5.19) for each policy year without incorporating any covariates in the reporting

delay distribution. From the results, using all the training data, the IBNR factor for

the effective year 2009 is 1.210, and it means that (1.210 − 1) × 100 = 21% of the

reported claims are expected to be IBNR. The IBNR factors may vary depending on the

policyholder characteristics; therefore, I expand the Weibull distribution for reporting

delay to include the entity types. Table 5.8 shows the parameter estimates of the fitted

Weibull model in (5.5).

Table 5.7: Estimates for IBNR factors without covariates.
Effective Year 2009 Effective Years 2006-2009

IBNR factor IBNR factor
2009 1.227 1.210
2008 - 1.006
2007 - 1.001
2006 - 1.000

Table 5.8: Weibull model parameter estimates for reporting delay.
Estimate Std.Error

(Intercept) 3.428 0.077
TypeCity 0.620 0.089
TypeCounty 0.979 0.089
TypeSchool 0.314 0.089
TypeTown 0.314 0.120
TypeMisc 0.908 0.198
log(κ) -0.285 0.014
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Figure 5.2: Observed reporting delay distribution overlayed with a fitted mixture of
probability mass and Weibull Distributions (using all observations in the training data).
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5.5 Out-of-Sample Performance

This section provides the claim score prediction based on the marked Poisson model

fitted in Section 5.4. The predictions were generated based on the 2010 out-of-sample

rating variables, and I compare the predictions to the 2010 out-of-sample claims. In

addition, I compare the out-of-sample results to that of a frequency-severity model

that uses only closed claims in the estimation of parameters named FreqSevClosed and

another that uses all reported claims in the model building, named FreqSevAll. For the

open claims in the FreqSevAll model, I use the incurred payment (amount paid plus loss

reserve) as an estimate for the ultimate payment amount. In both frequency-severity

models, the Poisson model is used to model the claim frequency and a gamma GLM

with a logarithmic link is used to model the average payments using the number of

claims as weights (Frees, 2014).

The Gini index measure developed in Frees et al. (2011) is employed to aid in the

comparison of claim score predictions between the different models, and the out-of-sample

claims. The Gini index is a measure of profit and defined as twice the average covariance

between the predicted outcome and the rank of the predictor. Therefore, insurers that

adopt a rating structure with a larger Gini index are more likely to enjoy a profitable

portfolio. I show that the MPP framework helps align premium with the underlying risk

better than the frequency-severity approach, consequently leading to a more profitable

portfolio.

Table 5.9 presents the Gini index results. When the ratemaking model was built using

data from the effective year 2009, the results show a smaller Gini index from the

FreqSevClosed model as compared to the MPP framework. The results mean that the

MPP framework promotes equity in pricing because it uses information on all reported

claims and accounts for IBNR claims. The FreqSevAll model, which uses information

on all reported claims, also performs better than the FreqSevClosed, highlighting the

impact of information from open claims. Table 5.10 shows the differences in the Gini

index for the models. It can be seen that the difference between the Gini indices between
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the MPP framework and the FreqSevClosed model is small when the data from effective

years 2006-2009 is used in the model building, which is because the proportion of closed

claims increased.

Table 5.9: Gini indices of predictive claim scores.
Effective Year 2009 Effective Years 2006-2009

Gini Index Gini Index
FreqSevClosed 30.86% 68.86%
FreqSevAll 56.81% 68.31%
MPP 61.73% 67.39%

Table 5.10: Difference in Gini indices among scores.
Effective Year 2009

FreqSevAll MPP
FreqSevClosed 25.95% 30.87%
FreqSevAll 4.92%

Effective Years 2006-2009
FreqSevAll MPP

FreqSevClosed -0.55% -1.32%
FreqSevAll -0.92%

Table 5.11 presents the Spearman correlations among predicted claim scores, and the

out-of-sample claims. The MPP framework produced the highest correlation of 48.39%

and 43.82% with the out-of-sample claims when models are based on data from the

effective year 2009, and all the training dataset, respectively. This means that the MPP

framework performs better than the frequency-severity models.

Table 5.11: Spearman correlations among scores and out of sample claims.
Effective Year 2009

FreqSevClosed FreqSevAll MPP
FreqSevAll 93.53%
MPP 87.74% 86.42%
Claims 38.49% 35.74% 48.39 %

Effective Years 2006-2009
FreqSevClosed FreqSevAll MPP

FreqSevAll 99.43%
MPP 98.30% 98.01%
Claims 42.87% 40.73% 43.82 %

Figure 5.3 shows the scatter plot between the out-of-sample claims and the predicted

claim scores using logarithmic scaling. Each point on the plot represents a policyholder.
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Figure 5.3: Comparison of claim scores (using data from the effective year 2009) to
out-of-sample claims for 2010.

Because they are less spread out, the plot between the claims scores from the MPP model

and the out-of-sample claims suggests higher correlations than the frequency-severity

models.

Table 5.12 provides a robustness check for the results in Table 5.9. Here I use data from

effective years 2007-2010 as the training dataset and use observations from the effective

year 2011 as the hold-out-sample. Again, the Gini index using the MPP model is higher

than using only the information on closed claims, which emphasizes the point that the

MPP model promotes equity in rates and hence will lead to a more profitable portfolio.

Table 5.12: Gini indices of predictive claim scores for robustness check.
Effective Year 2010 Effective Years 2007-2010

Gini Index Gini Index
FreqSevClosed 58.77% 61.30%
FreqSevAll 56.88% 60.43%
MPP 66.67% 66.10%
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5.6 Conclusion

Through the ratemaking process, insurance rates are set to cover the total future expected

cost, which includes liabilities from both RBNS and IBNR claims. Actuaries develop

rates by employing multivariate risk classification techniques based on information

from the policy and the claim history to promote better alignment of premiums with

claims experience. But the observation from the literature is that the data used in the

multivariate analysis is usually based on closed claims, where the ultimate amount paid

for all claims is known, leaving out open claims. Ignoring the information from open

claims could lead to inaccurate rates because the ratemaking data lacks the current

information that may capture shifts in the insurer’s book risk profile.

This chapter employs the marked Poisson process (MPP) framework for ratemaking

purposes by modeling four hierarchical building blocks. Three of the building blocks

drive the expected cost based on reported claims by modeling the number of claims

per policy in a policy year, the conditional number of payment transactions for a claim,

and the conditional payment sizes for each transaction. Each block is modeled with the

appropriate GLMs. The fourth building block account for the IBNR claims by deriving

an IBNR factor based on the reported delay distribution. The results using data from a

property insurance provider shows that the proposed framework promotes equity in the

ratemaking algorithm.
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Chapter 6

Summary and Concluding Remarks

This dissertation concerns using the individual-level claims prediction for insurance

loss reserving and ratemaking. For loss reserving, complex cases can be both more

expensive in terms of claims and take longer to settle, suggesting that the payment

process is correlated with the settlement process for individual claims. In this case,

knowledge of paid losses may help predict settlement time, which in turn feeds back

into the prediction of unpaid losses. Further, when the settlement time and claim size

are correlated, the historical claims that actuaries use for model building will not be

representative of future payments, because large claims with longer settlement times

will not be observed due to censoring by the valuation date, a type of selection bias.

I introduced a joint model framework to the individual-level loss reserving literature to

accommodate such correlation. The joint model consists of a longitudinal submodel for

the cumulative payment process and a survival submodel for the settlement process, and

the correlation between the two components is induced via a shared parameter model.

Macro-level reserving models like the chain-ladder technique are easy to implement,

but they come with a risk of inaccurate predictions mainly because of their limited

ability to handle claims heterogeneity and environmental or economic changes. However,

the joint model incorporates both observed and unobserved heterogeneity into the two

sub-processes, which is desired when one is interested in the prediction at the individual
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claim level. Similarly, the joint model framework offers an improvement over the

existing micro-level reserving models by explicitly accounting for the payment-settlement

association, hence addressing the issue of selection bias.

To better understand the strength and limitations of the joint model for reserving

applications, I present a detailed analysis using both simulated data and empirical data

from a property insurance provider with the focus on RBNS claims. For the simulation

study, I demonstrated that ignoring the payment-settlement association could lead to

significant errors in reserving prediction. Further, I showed that the joint model could

easily accommodate environmental changes such as a change in underwriting criteria,

business mix, and claim processing, among others. However, the industry benchmark

chain-ladder method without adjusting for the environmental changes produced a

substantial error in reserving prediction. Moreover, I find that the advantages of the

joint model are more pronounced for long-tail lines of business. In the empirical study, I

provide a detailed analysis, which will make it easy for actuarial analysts to replicate the

work. The prediction results from the joint model are compared to existing reserving

models, and the results show that accounting for the payment-settlement association

leads to better prediction accuracy. Because of the predictive nature of loss reserving,

this dissertation enriches the existing statistical literature on joint models that have

primarily focused on the estimation aspect of inference.

Historically, one main argument against micro-level models like the joint model over the

years is that they are more difficult to implement in practice. However, with the growth

in computing power in this era of big data analytics, insurance companies will enjoy

a lesser burden with regards to implementation. Particularly, large companies with

sophisticated personnel who are comfortable handling complex machine learning/AI

type algorithms can implement and take advantage of micro-level models.

This dissertation concludes by employing the marked Poisson process (MPP) framework,

which has primarily been used for micro-level reserving, to improve on insurance pricing.

The MPP framework specified ensures that the multivariate risk analysis is done using
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the information on claims that have been closed by the ratemaking date, payments on

claims not yet closed, and reporting times to assess those claims that are IBNR. This

work will be the first to provide a formal approach to incorporate information on open

claims that have the ability to reflect shifts in the distribution of the expected claim

payments. From an empirical study using data from a property insurance provider, I

find that by allowing for current information, the proposed framework promotes equity

in pricing and leads to a more profitable portfolio.

With the insurance industry experiencing a rapid pace of product innovation and intense

competition, traditional ratemaking approaches that only employ closed claims from

older policy years are inadequate. Further, the world is changing, and actuaries want to

use the most recent information. In these pandemic times, change is everywhere. Recent

experience means employing what information they can from open claims. By using the

information on all reported claims, the proposed approach will also provide actuaries

and regulators a more disciplined method of ascertaining promptly if rate increases are

necessary.
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Chapter 7

Appendix

7.1 Appendix to Chapter 1

7.1.1 Claims by Region

The 72 counties in Wisconsin are grouped into five regions using classifications from the

Wisconsin Department of Health Services. Figure 7.1 shows claims by the region. It is

seen that there are some variabilities in the number of claims and region.

7.1.2 Summary of Type of Payment Transactions

Table 7.1 summarizes the different payment transaction types in the training data.

Table 7.1: Type of payment transactions.
Transaction Type Count
Payment Partial 323
Payment To Close 3,167
Payment After Close 4,01
Total 3,891
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Figure 7.1: Claims by Region.
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7.1.3 Loss Triangle from LGPIF Data for RBNS prediction

Table 7.2 summarizes the cumulative amounts paid arising out of building and contents

coverage from the LGPIF data that occurred and were reported between January 1,

2006, and December 31, 2009, organized by reporting quarters and observation quarters.

Then projections made from the developments factors give us RBNS reserve estimates.

Table 7.3 provides the loss triangle without unusual claims.

Table 7.2: Observed historical cumulative claims Ci,j organized by reporting quarters
and observation quarters for RBNS prediction.
Reporting Observation Quarter
Quarter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2006 Q1 1,264,447 1,682,188 1,682,188 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561
2006 Q2 2,009,311 3,370,260 4,761,115 5,174,541 5,873,088 6,559,705 6,818,143 6,818,143 7,003,825 7,003,825 7,003,825 7,003,825 7,003,825 7,003,825 7,003,825
2006 Q3 1,402,769 2,406,855 2,482,578 2,523,994 2,615,403 2,670,567 2,670,567 2,670,567 2,670,567 2,670,567 2,670,567 2,670,567 2,670,567 2,670,567
2006 Q4 806,480 1,207,453 1,239,388 1,572,304 4,227,033 4,227,033 4,227,033 4,481,423 4,481,423 4,481,423 4,481,423 4,481,423 4,481,423
2007 Q1 1,135,006 1,788,184 1,917,445 2,123,798 2,590,466 2,654,564 2,654,564 2,720,276 2,720,276 2,720,276 2,720,276 2,720,276
2007 Q2 705,146 1,350,025 1,841,137 2,010,819 6,004,549 6,232,118 6,619,945 6,696,295 8,035,846 8,035,846 8,035,846
2007 Q3 1,100,841 1,854,040 2,193,211 2,234,338 2,612,670 2,637,070 2,637,070 2,637,070 2,671,639 2,744,121
2007 Q4 1,893,020 2,951,579 3,380,631 3,725,657 3,756,556 3,758,990 3,765,436 3,953,195 3,976,862
2008 Q1 1,488,889 2,944,819 3,234,739 3,675,551 3,696,906 3,812,083 4,787,062 5,041,970
2008 Q2 1,516,620 3,537,807 4,642,772 5,173,249 5,209,948 5,249,361 5,249,361
2008 Q3 1,375,480 2,860,584 3,612,216 3,762,930 3,792,355 3,796,699
2008 Q4 1,046,145 1,537,226 1,805,164 1,956,216 1,956,216
2009 Q1 1,277,018 1,779,555 1,971,026 2,058,902
2009 Q2 816,927 1,625,055 1,810,738
2009 Q3 1,396,415 1,816,822
2009 Q4 450,633

Table 7.3: Observed historical cumulative claims Ci,j organized by reporting quarters
and observation quarters for RBNS prediction (without unusual claims).
Reporting Observation Quarter
Quarter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2006 Q1 1,264,447 1,682,188 1,682,188 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561 1,722,561
2006 Q2 2,009,311 3,370,260 4,761,115 5,174,541 5,873,088 6,559,705 6,818,143 6,818,143 7,003,825 7,003,825 7,003,825 7,003,825 7,003,825 7,003,825 7,003,825
2006 Q3 1,402,769 2,406,855 2,482,578 2,523,994 2,615,402 2,670,566 2,670,566 2,670,566 2,670,566 2,670,566 2,670,566 2,670,566 2,670,566 2,670,566
2006 Q4 806,480 1,207,453 1,239,388 1,572,304 4,227,033 4,227,033 4,227,033 4,481,423 4,481,423 4,481,423 4,481,423 4,481,423 4,481,423
2007 Q1 1,135,006 1,788,184 1,917,445 2,123,798 2,590,466 2,654,564 2,654,564 2,720,276 2,720,276 2,720,276 2,720,276 2,720,276
2007 Q2 601,388 1,246,267 1,570,116 1,739,799 2,107,930 2,335,498 2,335,498 2,411,848 2,637,794 2,637,794 2,637,794
2007 Q3 1,100,841 1,854,040 2,193,211 2,234,338 2,612,670 2,637,070 2,637,070 2,637,070 2,671,639 2,744,121
2007 Q4 1,893,020 2,951,579 3,380,631 3,725,657 3,756,556 3,758,989 3,765,435 3,953,195 3,976,862
2008 Q1 1,488,889 2,363,739 2,653,659 3,094,471 3,115,826 3,231,003 3,239,227 3,239,227
2008 Q2 1,516,620 3,537,807 4,642,772 5,173,249 5,209,948 5,249,361 5,249,361
2008 Q3 1,375,480 2,860,584 3,612,216 3,762,930 3,792,355 3,796,699
2008 Q4 1,046,145 1,537,226 1,805,164 1,956,216 1,956,216
2009 Q1 1,277,018 1,779,555 1,971,026 2,058,902
2009 Q2 816,927 1,625,055 1,810,738
2009 Q3 1,396,415 1,816,822
2009 Q4 450,633

7.1.4 Loss Triangle from LGPIF Data for Total Liabilities

Prediction

Table 7.4 summarizes the cumulative amounts paid arising out of building and contents

coverage from the LGPIF data that occurred and were reported between January 1,

2006, and December 31, 2009, organized by accident quarters and development quarters.

Then projections made from the development factors give us the total reserve estimates.
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Table 7.4: Observed historical cumulative claims Ci,j organized by accident quarters
and development quarters for total liabilities prediction.
Accident Development Quarter
Quarter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2006 Q1 785,132 1,596,392 1,876,498 2,016,610 2,042,924 2,070,222 2,076,592 2,076,592 2,076,592 2,076,592 2,082,121 2,082,121 2,082,121 2,082,121 2,082,121 2,082,121
2006 Q2 399,367 2,721,031 4,777,790 5,321,127 6,124,351 6,236,634 6,910,455 7,140,728 7,140,728 7,326,411 7,326,411 7,326,411 7,326,411 7,326,411 7,326,411
2006 Q3 389,923 1,849,309 2,505,428 2,669,470 2,759,763 2,881,102 2,881,102 2,881,102 2,883,678 2,883,678 2,883,678 2,883,678 2,883,678 2,883,678
2006 Q4 81,824 603,722 917,238 1,183,285 1,609,461 4,131,248 4,131,248 4,385,639 4,385,639 4,385,639 4,385,639 4,385,639 4,385,639
2007 Q1 260,093 1,364,663 1,647,783 1,826,755 2,209,008 2,381,272 2,436,895 2,436,895 2,502,607 2,502,607 2,502,607 2,502,607
2007 Q2 184,181 809,595 1,358,734 1,997,094 5,979,528 6,303,318 6,788,504 6,864,854 7,090,801 8,204,405 8,204,405
2007 Q3 316,584 1,579,128 2,050,476 2,132,666 2,600,897 2,639,768 2,639,768 2,639,768 2,639,768 2,746,819
2007 Q4 452,496 2,259,561 3,296,680 3,462,907 3,804,200 3,898,454 3,906,732 3,914,956 4,126,383
2008 Q1 384,822 2,406,894 2,937,926 3,519,804 3,573,898 3,689,991 3,959,055 4,911,882
2008 Q2 235,470 2,934,045 4,484,925 5,965,053 6,144,670 6,196,276 6,239,803
2008 Q3 282,890 2,063,774 2,958,419 3,109,119 3,181,833 3,205,751
2008 Q4 146,419 936,693 1,276,588 1,426,504 1,512,838
2009 Q1 106,139 1,022,974 1,407,795 1,738,040
2009 Q2 415,360 1,084,856 1,792,756
2009 Q3 344,604 1,663,680
2009 Q4 214,008

7.2 Appendix to Chapter 2

In this section, alternative estimating strategies for the joint model are discussed. It is

shown in Tables 3.2 and 3.3 that significant bias will be induced using these techniques.

7.2.1 Independent Estimation

The independent estimation ignores the payment-settlement association. Specifically,

setting α = 0 in the survival submodel, and the longitudinal and survival submodel are

estimated separately. The hazard function of time-to-settlement outcome T ∗i of a claim

is modeled using a proportional hazards model specified as:

hi(t) = h0(t) exp{γ′wit}, (7.1)

where h0(t) is the baseline hazard function, and wit is a vector of covariates with a

corresponding vector of regression coefficients γ. Under this independent estimation,

the longitudinal process is modeled using the GLMM specification in (2.4).
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7.2.2 Two-Stage Estimation

The two-stage approach attempts to incorporate the payment-settlement association.

The first stage estimates the longitudinal submodel, and the second stage estimates

the survival submodel holding parameter estimates from the first stage fixed. Then

the hazard function of time-to-settlement outcome T ∗i of a claim is modeled using a

proportional hazards model specified as:

hi(t) = h0(t) exp{γ′wit + αηit}, (7.2)

The effect longitudinal cumulative payments on the risk of settlement is given by the

parameter α. Just like the independent estimation, the longitudinal process is modeled

using the GLMM specification in (2.4).

7.3 Appendix to Chapter 3

7.3.1 Sample R Code for Joint Model Simulation, Estimation

and Prediction

This code is based on work by Sweeting and Thompson (2011).

# Simulate a joint model assuming a Linear Mixed-effects

# for the longitudinal model and a Cox proportional

# hazard model with an exponential baseline function

# for the survival submodel.

library(JM)

library(MASS)

library(Hmisc)
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library(foreign)

library(flexsurv)

library(devtools)

#install_github("jwdink/tidysurv")

library(tidysurv)

library(data.table)

library(stringi)

#Parameters

n<-1000 # Number of claims

k<-11 # Number of payment times for each claim

Sigma<-1.5 # Random effect sd

beta<-c(1,0.5) # Time intercept and slope payment trend

beta3<-0.4 # effect of X1 ( a binary variable) on long. submodel

beta4<-0.3 # effect of X2 ( a continous variable) on long. submodel

sigma0<-1.5 # standard error for longitudinal model

shape<-1 # shape for weilbull ( exponential) - baseline hazard

rate<-0.4 # scale for weilbull - baseline hazerd

alpha<--0.25 # association parameter

gam1<-0.5 # effect of X1 on survival submodel

gam2<-0.3 # effect of X2 on survival submodel

seed=1231 # seed for reproducibility

max.time=10 # maximum time simulated

# Function for simulation

## Baseline survival function

sc<-function(times=NULL){

exp(-rate * times^shape)}

## hazard ratio
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hr<-function(times=NULL){

mu<-function(t){ cbind(1,t)%*%t(t(beta)) + b[i]+

beta3*data.surv$X1[i]+

beta4*data.surv$X2[i]}

exp(alpha*(mu(times))+gam1*(data.surv$X1[i])+gam2*(data.surv$X2[i]))

}

## Step 1: Simulate longitudinal cumulative dataset

set.seed(seed)

data.long <- data.frame(id = rep(1:n, each = k),

time = rep(seq(0, max.time, length=k), n),

X1=rep(rbinom(n, 1, 0.5), each = k),

X2=rep(rnorm(n,1,0.5), each = k))

b <-rnorm(n, 0, Sigma)

data.long$AccTime<-trunc((data.long$id-1)/100)

data.long$CurTime<-data.long$AccTime+data.long$time

data.long$y <- rnorm(n*k,

mean = cbind(1,data.long$time)%*%t(t(beta)) +

b[data.long$id]+

beta3*data.long$X1+

beta4*data.long$X2,

sd = sigma0)

##Step 2: Simulate time to settlement for each claim

data.surv<-data.frame(id=1:n,

random.cens=runif(n,0,10),

X1=data.long$X1[ !duplicated(data.long$id) ],

X2=data.long$X2[ !duplicated(data.long$id) ])

data.longsub<-subset(data.long,select = c(id,AccTime))



115

data.longsub<-data.longsub[!duplicated(data.longsub$id, fromLast = T), ]

data.surv<-merge(data.surv,data.longsub, by="id", all.x = T)

data.surv$true.time<-NA

rint<-function(n) surv(n,what='int')

rcon<-function(n) surv2(n,what='control')

for(i in 1:n){

surv<-Quantile2(sc,hr,mplot=1000,tmax=11,pr=FALSE)

data.surv$true.time[i]<-rint(1)

}

data.surv$true.time<-as.numeric(data.surv$true.time)

data.survSub<-subset(data.surv,select = c(id,true.time))

data.long<-merge(data.long,data.survSub, by="id", all.x = T)

data.long$random.cens<-ifelse(data.long$AccTime==0,9,

ifelse(data.long$AccTime==1,8,

ifelse(data.long$AccTime==2,7,

ifelse(data.long$AccTime==3,6,

ifelse(data.long$AccTime==4,5,

ifelse(data.long$AccTime==5,4,

ifelse(data.long$AccTime==6,3,

ifelse(data.long$AccTime==7,2,

ifelse(data.long$AccTime==8,1,

ifelse(data.long$AccTime==9,0,NA))))))))))

data.long$random.cens<-data.long$random.cens+rep(runif(n,0,0.5),each= k)

data.surv<-subset(data.surv,select = -c(random.cens))

data.longsub<-subset(data.long,select = c(id,random.cens))

data.longsub<-data.longsub[!duplicated(data.longsub$id, fromLast = T), ]

data.surv<-merge(data.surv,data.longsub, by="id", all.x = T)

data.surv$event<-ifelse(data.surv$random.cens<data.surv$true.time,0,1)

data.surv$event.time<-pmin(data.surv$random.cens,data.surv$true.time)

data.survSub<-subset(data.surv,select = c(id,event.time))
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data.long<-merge(data.long,data.survSub, by="id", all.x = T)

##Step 3: Remove longitudinal data with time of payments

## greater than min(settlement time,valuation time)

data.longU<-subset(data.long,data.long$time>data.long$event.time)

data.long<-subset(data.long,data.long$time<=data.long$event.time)

## Remove claims from survival data-set whose event time is zero

data.surv<-subset(data.surv,data.surv$event.time!=0)

data.long<-subset(data.long,data.long$id %in% data.surv$id )

## Adding stopping times for interval data (for two-stage modeling)

data.long$stop<-c(data.long$time[-1],0)

data.long$stop[data.long$stop==0]<-data.long$event.time[data.long

$stop==0]

### Event indicator for longitudinal data (for two-stage modeling)

data.long$event<-0

data.long$event[unlist(by(data.long,factor(data.long$id),

function(i){i$time==max(i$time)}))]<-data.surv$event

# Estimation

## Independent model

### Longitudinal submodel: LMM with randam intercept

LMEfit<-lme(y~time + X1+X2,random=~1|id,data=data.long,method="ML")

### Parmetric Cox survival model with exponentail baseline

marginal.surv <-flexsurvreg(Surv(event.time, event) ~ X1+X2 ,

data = data.surv,dist = "exp")
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## Two stage

### Stage 1 : LMM with randam intercept

LMEfit<-lme(y~time + X1+X2,random=~1|id,data=data.long,method="ML")

data.long$y_pred<-predict(LMEfit)

### Stage 2: Extended Cox model with exponentail baseline

marginal.survTS<- flexsurvreg(Surv(time, stop, event) ~ X1+X2 + y_pred,

data = data.long,dist = "exp")

## Joint model assuming Normal distribution for longitudinal dataset

## and an exponential baseline survival model (scale=1)

# Provide starting values for longitudinal submodel

LMEfit<-lme(y~time + X1+X2,random=~1|id,data=data.long,method="ML")

# Provide starting values for survival submodel

marginal.survJM<-survreg(Surv(event.time, event) ~ X1+X2,

data = data.surv, x = TRUE,scale=1)

marginal.survJM$y<-as.matrix(cbind(log(as.numeric(ifelse(

stri_sub(marginal.survJM$y,-1)=="+",stri_sub(

marginal.survJM$y,1,-2),stri_sub(marginal.survJM$y,1,-1))

)),as.numeric(ifelse(stri_sub(marginal.survJM$y,-1)

=="+",0,1))))

## Joint Model Estimation Using JM package in R

jointModel_fit<-jointModel(LMEfit,marginal.survJM,

timeVar="time",method="weibull-PH-GH",scale=1)
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# Prediction

## Create validation dataset containing open claims for prediction

data.survT<-data.surv

data.survT$time<-ifelse(data.survT$true.time<1,0,

ifelse(data.survT$true.time>=1 & data.survT$true.time<2,1,

ifelse(data.survT$true.time>=2 & data.survT$true.time<3,2,

ifelse(data.survT$true.time>=3 & data.survT$true.time<4,3,

ifelse(data.survT$true.time>=4 & data.survT$true.time<5,4,

ifelse(data.survT$true.time>=5 & data.survT$true.time<6,5,

ifelse(data.survT$true.time>=6 & data.survT$true.time<7,6,

ifelse(data.survT$true.time>=7 & data.survT$true.time<8,7,

ifelse(data.survT$true.time>=8 & data.survT$true.time<9,8,

ifelse(data.survT$true.time>=9 & data.survT$true.time<10,9,9

))))))))))

data.survT<-subset(data.survT,event==0&AccTime!=0 )

data.longT<-subset(data.long,data.long$id %in% data.survT$id )

data.survTUlt<-subset(data.survT,select = c(id,time))

colnames(data.survTUlt)<-c("id","timeUlt")

data.longU<-subset(data.longU,data.longU$id %in% data.survT$id )

data.longU<-merge(data.longU,data.survTUlt, by="id", all.x = T)

data.longU<-subset(data.longU,data.longU$time==data.longU$timeUlt)

data.longU$yUlt<-data.longU$y

data.survT<-subset(data.survT,data.survT$id %in% data.longU$id )

data.longU<-subset(data.longU,select = c(id,yUlt))

data.survT<-merge(data.survT,data.longU, by="id", all.x = T)

data.longT<-subset(data.longT,data.longT$id %in% data.longU$id )

data.survTsub<-subset(data.survT, select = c(id,yUlt))

data.longT<-merge(data.longT,data.survTsub, by="id", all.x = T)
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## Independent model

if(class(LMEfit)!="try-error" & class(marginal.surv)!="try-error"){

simulTimeInd <- function(survmodel, data, SurvCen)

{

ND=data

rate<- exp(survmodel$coefficients[1])

gam1<- survmodel$coefficients[2]

gam2<- survmodel$coefficients[3]

shape=1

SurvCen=SurvCen

set.seed(5)

v <- runif(n=10000)

v<-v*SurvCen

Tlat <- (- log(v) / (rate * exp(gam1*(ND$X1[1])

+gam2*(ND$X2[1]))))^(1 / shape)

return(Tlat)

}

data.longT1<-data.longT[!duplicated(data.longT$id, fromLast = T), ]

N<-dim(data.longT1)[1]

TestRBNSPaidPredZ=data.frame(cbind(rep(0,N),rep(0,N),rep(0,N),

rep(0,N)))

colnames(TestRBNSPaidPredZ)<-c("id","Pred","TrueTime","PredTime1")

TestRBNSPaidPredZ$id<-data.longT1$id

TestRBNSPaidPredZ$yUlt<-data.longT1$yUlt

RanEff=data.frame(cbind(rep(0,dim(data.surv)[1]),

rep(0,dim(data.surv)[1])))

colnames(RanEff)<-c("id","ranefInt")

RanEff$id<-data.surv$id

RanEff$ranefInt<-ranef(LMEfit)
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uniq <- unique(unlist(TestRBNSPaidPredZ$id))

for (i in 1:length(uniq)){

ND <- subset(data.longT1, id == uniq[i])

NDcum<-ND[!duplicated(ND$id, fromLast = T), ]

CumLast<-NDcum$y

survTimes<-seq(ND$random.cens[1],11, length.out = 35)

intervals <- data.frame(id=rep(ND$id, 35), time=survTimes)

covs <- ND[ c("X1", "X2","true.time")]

ND<-data.frame(covs, intervals, row.names = NULL)

# survival probability at censoring/valuation time

predSurvZProb<-predict(marginal.surv,

newdata=ND[1,], ND$time[1], type = "survival")

SurvCen<-predSurvZProb

# conditional survival distribution after censoring/valuation time

TlatPred <- simulTimeInd(survmodel=marginal.surv,

data=ND,SurvCen=SurvCen)

# Predicted settlement time

Times<-mean(TlatPred,na.rm=T)

Times<-ifelse(is.na(Times),9,Times)

Times<-ifelse(Times>=9,9,Times)

True.time<-ifelse(ND$true.time[1]>=9,9,ND$true.time[1])

ND$time<-Times

raneffi<-as.numeric(RanEff[which(RanEff[,1]==uniq[i]),2])

raneff=raneffi

# Ultimate payment prediction

lfit <- predict(LMEfit, newdata = ND, level = 0)[1]

mean<-lfit+raneff

TestRBNSPaidPredZ[i,2]<-mean
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TestRBNSPaidPredZ[i,3]<- True.time

TestRBNSPaidPredZ[i,4]<- Times

}

data.longTsub<-data.longT[!duplicated(data.longT$id, fromLast = T), ]

data.longTsub<-subset(data.longTsub,select = c(id,y))

colnames(data.longTsub)<-c("id","y_t")

TestRBNSPaidPredZ<-merge(TestRBNSPaidPredZ,data.longTsub, by="id")

TestRBNSPaidPredZ$Reserve<-TestRBNSPaidPredZ$Pred-

TestRBNSPaidPredZ$y_t

TestRBNSPaidPredZ$ActReserve<-TestRBNSPaidPredZ$yUlt-

TestRBNSPaidPredZ$y_t

TotalReserve<-sum(TestRBNSPaidPredZ$ActReserve)

ErrorInd<-sum(TestRBNSPaidPredZ$Reserve)-

sum(TestRBNSPaidPredZ$ActReserve)

} else {

data.longT1<-data.longT[!duplicated(data.longT$id, fromLast = T), ]

N<-dim(data.longT1)[1]

TestRBNSPaidPredZ=data.frame(cbind(rep(0,N),rep(0,N)))

colnames(TestRBNSPaidPredZ)<-c("id","Pred")

TestRBNSPaidPredZ$id<-data.longT1$id

TestRBNSPaidPredZ$yUlt<-data.longT1$yUlt

data.longTsub<-data.longT[!duplicated(data.longT$id, fromLast = T), ]

data.longTsub<-subset(data.longTsub,select = c(id,y))

colnames(data.longTsub)<-c("id","y_t")

TestRBNSPaidPredZ<-merge(TestRBNSPaidPredZ,data.longTsub, by="id")

TestRBNSPaidPredZ$ActReserve<-TestRBNSPaidPredZ$yUlt-

TestRBNSPaidPredZ$y_t

TotalReserve<-sum(TestRBNSPaidPredZ$ActReserve)

ErrorInd<-NA

}
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## Two stage

PredSurvTS <- function(longmodel,survmodel, data, raneffi,ranefft)

{

ND=data

beta1<- fixed.effects(longmodel)[1]

betat<-fixed.effects(longmodel)[2]

sigma0<-longmodel$sigma

shape<-1

rate<- survmodel$res[1,1]

alpha<-survmodel$res[4,1]

beta3<-fixed.effects(longmodel)[3]

beta4<-fixed.effects(longmodel)[4]

gam1<- survmodel$res[2,1]

gam2<- survmodel$res[3,1]

b0<-raneffi

bt<-ranefft

time=ND$time

first<- rate*(exp((gam1*(ND$X1[1])+gam2*(ND$X2[1]))

+alpha*(beta1+b0+beta3*ND$X1[1]+beta4*ND$X2[1])))

second<-alpha*(betat+bt)

third<- (exp(time*(alpha*(betat+bt))))-1

CumHaz<- (first/second)*third

Surv<-exp(-CumHaz)

return(Surv)

}

simulTimeTS <- function

(longmodel,survmodel, data, raneffi,ranefft, SurvCen)
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{

ND=data

beta1<- fixed.effects(longmodel)[1]

betat<-fixed.effects(longmodel)[2]

sigma0<-longmodel$sigma

shape<-1

rate<- survmodel$res[1,1]

alpha<-survmodel$res[4,1]

beta3<-fixed.effects(longmodel)[3]

beta4<-fixed.effects(longmodel)[4]

gam1<- survmodel$res[2,1]

gam2<- survmodel$res[3,1]

b0<-raneffi

bt<-ranefft

SurvCen=SurvCen

set.seed(5)

v <- runif(n=10000)

v<-v*SurvCen

first<- -log(v)*(alpha*(betat+bt))

second<- rate*(exp((gam1*(ND$X1[1])+gam2*(ND$X2[1]))

+alpha*(beta1+b0+beta3*ND$X1[1]+beta4*ND$X2[1])))

third<- alpha*(betat+bt)

Tlat <- (log((first/ second)+1))/third

return(Tlat)

}

if(class(LMEfit)!="try-error"){

data.long$y.cen_pred<-predict(LMEfit)

marginal.survTS<- try(flexsurvreg(Surv(time, stop, event) ~ X1+X2
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+ y.cen_pred, data = data.long,dist = "exp"))

if(class(marginal.survTS)!="try-error"){

data.longT1<-data.longT[!duplicated(data.longT$id, fromLast = T), ]

N<-dim(data.longT1)[1]

TestRBNSPaidPredZ=data.frame(cbind(rep(0,N),rep(0,N),rep(0,N),

rep(0,N)))

colnames(TestRBNSPaidPredZ)<-c("id","Pred","TrueTime","PredTime1")

TestRBNSPaidPredZ$id<-data.longT1$id

TestRBNSPaidPredZ$yUlt<-data.longT1$yUlt

RanEff=data.frame(cbind(rep(0,dim(data.surv)[1]),rep(0,

dim(data.surv)[1])))

colnames(RanEff)<-c("id","ranefInt")

RanEff$id<-data.surv$id

RanEff$ranefInt<-ranef(LMEfit)

uniq <- unique(unlist(TestRBNSPaidPredZ$id))

for (i in 1:length(uniq)){

ND <- subset(data.longT1, id == uniq[i])

NDcum<-ND[!duplicated(ND$id, fromLast = T), ]

CumLast<-NDcum$y

lasttime=ND$random.cens

survTimes<-seq(ND$random.cens[1],11, length.out = 35)

intervals <- data.frame(id=rep(ND$id, 35), time=survTimes)

covs <- ND[ c("X1", "X2","true.time")]

ND<-data.frame(covs, intervals, row.names = NULL)

ND$y.cen_pred<-predict(LMEfit, newdata = ND)

raneffi<-as.numeric(RanEff[which(RanEff[,1]==uniq[i]),2])

# survival probability at censoring/valuation time

predSurvZProb<-PredSurvTS(longmodel=LMEfit,
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survmodel=marginal.survTS, data=ND[1,],

raneffi= raneffi,ranefft= 0)

SurvCen<-predSurvZProb

# conditional survival distribution after censoring/valuation

# time

TlatPred<-simulTimeTS(longmodel=LMEfit,survmodel=marginal.survTS,

data=ND[1,], raneffi= raneffi,

ranefft= 0, SurvCen=SurvCen)

# Predicted settlement time

Times<-mean(TlatPred,na.rm=T)

Times<-ifelse(is.na(Times),9,Times)

Times<-ifelse(Times>=9,9,Times)

ND<-ND[!duplicated(ND$id, fromLast = T), ]

True.time<-ifelse(ND$true.time[1]>=9,9,ND$true.time[1])

ND$time<-Times

raneffi<-as.numeric(RanEff[which(RanEff[,1]==uniq[i]),2])

raneff=raneffi

# Ultimate payment prediction

lfit <- predict(LMEfit, newdata = ND, level = 0)[1]

mean<-lfit+raneff

TestRBNSPaidPredZ[i,2]<-mean

TestRBNSPaidPredZ[i,3]<- True.time

TestRBNSPaidPredZ[i,4]<- Times

}

data.longTsub<-data.longT[!duplicated(data.longT$id, fromLast = T),]

data.longTsub<-subset(data.longTsub,select = c(id,y))

colnames(data.longTsub)<-c("id","y_t")

TestRBNSPaidPredZ<-merge(TestRBNSPaidPredZ,data.longTsub, by="id")

TestRBNSPaidPredZ$Reserve<-TestRBNSPaidPredZ$Pred-

TestRBNSPaidPredZ$y_t
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TestRBNSPaidPredZ$ActReserve<-TestRBNSPaidPredZ$yUlt-

TestRBNSPaidPredZ$y_t

Error2S<-sum(TestRBNSPaidPredZ$Reserve)-

sum(TestRBNSPaidPredZ$ActReserve)

} else {

Error2S<-NA

}

}else {

Error2S<-NA

}

## Joint model

if(class(jointModel_fit)!="try-error"){

H <- jointModel_fit$Hessian

ev <- eigen(H, symmetric = TRUE, only.values = TRUE)$values

if (!all(ev >= 1e-08 )|any(is.na(H) | !is.finite(H))){

ErrorJM<-NA

} else {

PredSurvJM <- function(model, data, raneffi,ranefft)

{

ND=data

beta1<- model$coefficients$betas[1]

betat<-model$coefficients$betas[2]

sigma0<-model$coefficients$sigma

shape<-1

rate<- exp(model$coefficients$gammas[1])

alpha<-model$coefficients$alpha

beta3<-model$coefficients$betas[3]
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beta4<-model$coefficients$betas[4]

gam1<- model$coefficients$gammas[2]

gam2<- model$coefficients$gammas[3]

b0<-raneffi

bt<-ranefft

time=ND$random.cens[1]

first<- rate*(exp((gam1*(ND$X1[1])+gam2*(ND$X2[1]))+

alpha*(beta1+b0+beta3*ND$X1[1]+beta4*ND$X2[1])))

second<-alpha*(betat+bt)

third<- (exp(time*(alpha*(betat+bt))))-1

CumHaz<- (first/second)*third

Surv<-exp(-CumHaz)

return(Surv)

}

simulTime <- function(model, data, raneffi,ranefft, SurvCen)

{

ND=data

beta1<- model$coefficients$betas[1]

betat<-model$coefficients$betas[2]

sigma0<-model$coefficients$sigma

shape<-1

rate<- exp(model$coefficients$gammas[1])

alpha<-model$coefficients$alpha

beta3<-model$coefficients$betas[3]

beta4<-model$coefficients$betas[4]

gam1<- model$coefficients$gammas[2]

gam2<- model$coefficients$gammas[3]

b0<-raneffi

bt<-ranefft
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SurvCen=SurvCen

set.seed(5)

v <- runif(n=10000)

v<-v*SurvCen

first<- -log(v)*(alpha*(betat+bt))

second<- rate*(exp((gam1*(ND$X1[1])+gam2*(ND$X2[1]))+

alpha*(beta1+b0+beta3*ND$X1[1]+beta4*ND$X2[1])))

third<- alpha*(betat+bt)

Tlat <- (log((first/ second)+1))/third

return(Tlat)

}

data.longT1<-data.longT[!duplicated(data.longT$id, fromLast = T), ]

N<-dim(data.longT1)[1]

TestRBNSPaidPredZ=data.frame(cbind(rep(0,N),rep(0,N),rep(0,N),

rep(0,N)))

colnames(TestRBNSPaidPredZ)<-c("id","Pred","TrueTime","PredTime1")

TestRBNSPaidPredZ$id<-data.longT1$id

TestRBNSPaidPredZ$yUlt<-data.longT1$yUlt

RanEff=data.frame(cbind(rep(0,dim(data.surv)[1]),rep(0,

dim(data.surv)[1])))

colnames(RanEff)<-c("id","ranefInt")

RanEff$id<-data.surv$id

RanEff$ranefInt<-ranef(jointModel_fit)

uniq <- unique(unlist(TestRBNSPaidPredZ$id))

for (i in 1:length(uniq)){

ND <- subset(data.longT, id == uniq[i])

NDcum<-ND[!duplicated(ND$id, fromLast = T), ]

CumLast<-NDcum$y
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if(dim(ND)[1] == 1){

ND$time<-0.1

}

if( ND$random.cens[1] == 0){

ND$random.cens<-0.1

}

lasttime=ND$random.cens[1]

raneffi<-as.numeric(RanEff[which(RanEff[,1]==uniq[i]),2])

# survival probability at censoring/valuation time

SurvCen<-PredSurvJM(model=jointModel_fit, data=ND[1,],

raneffi=raneffi,ranefft=0)

# conditional survival distribution after censoring/valuation

# time

TlatPred <- simulTime(model=jointModel_fit, data=ND,

raneffi=raneffi,ranefft=0, SurvCen=SurvCen)

# Predicted settlement time

Times<-mean(TlatPred,na.rm=T)

Times<-ifelse(is.na(Times),9,Times)

Times<-ifelse(Times>=9,9,Times)

True.time<-ifelse(ND$true.time[1]>=9,9,ND$true.time[1])

ND$time<-Times

raneffi<-as.numeric(RanEff[which(RanEff[,1]==uniq[i]),2])

raneff=raneffi

# Ultimate payment prediction

lfit <-predict(jointModel_fit, newdata = ND[1,],

idVar = "id",type= "Marginal", interval= "conf", FtTimes=Times)

mean<-lfit$pred+raneff

TestRBNSPaidPredZ[i,2]<-mean

TestRBNSPaidPredZ[i,3]<- True.time



130

TestRBNSPaidPredZ[i,4]<- Times}

data.longTsub<-data.longT[!duplicated(data.longT$id, fromLast= T),]

data.longTsub<-subset(data.longTsub,select = c(id,y))

colnames(data.longTsub)<-c("id","y_t")

TestRBNSPaidPredZ<-merge(TestRBNSPaidPredZ,data.longTsub, by="id")

TestRBNSPaidPredZ$Reserve<-TestRBNSPaidPredZ$Pred-

TestRBNSPaidPredZ$y_t

TestRBNSPaidPredZ$ActReserve<-TestRBNSPaidPredZ$yUlt-

TestRBNSPaidPredZ$y_t

ErrorJM<-sum(TestRBNSPaidPredZ$Reserve)-

sum(TestRBNSPaidPredZ$ActReserve)

}

} else {

ErrorJM<-NA

}

#TotalReserve

#ErrorJM

#Error2S

#ErrorInd

7.3.2 Trending Techniques

For each replication, the simulated claims are evenly and independently distributed

among ten accident years, and the last development year is the end of the calendar year

ten. The run-off triangle is obtained by aggregating the individual claims by accident

and development year. Let Ci,j denote the cumulative payments in cell {i, j}, the the

matrix for the loss triangle is given by:
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

C1,1 C1,2 · · · C1,10

C2,1 C2,2 · · · 0
... ... . . . ...

C10,1 0 · · · 0


. (7.3)

Here, the zeros represent the unobservable cells as a result of censoring by the valuation

date. Using the loss triangle matrix in (7.3), define the individual development factors

as Fij = Ci,j+1/Ci,j. Then the matrix for the Fij is given by:



F1,1 F1,2 · · · F1,9

F2,1 F2,2 · · · 0
... ... . . . ...

F9,1 0 · · · 0

0 · · · · · · 0


. (7.4)

Under a changing environment, the observed development patterns are affected by

the environmental changes, which results in inaccurate predictions from the basic

chain-ladder method because it relies on a stable environment. Trending techniques

which are ad hoc in nature and highly dependent on actuaries’ judgments are employed

to treat environmental changes as a trend to adjust the development projections. To

show the results can differ significantly depending on the trending algorithm used, I

discuss two different algorithms based on the partitioning of the matrix for the individual

development factors in (7.4) and shown in Figure 7.2.

7.3.2.1 Approach 1

For the first approach, as illustrated in the left panel of Figure 7.2, the matrix for

the individual development factors Fij in (7.4) is partitioned into 5 areas given by

A1 = {(i, j) : i ≤ 5, j ≤ 4}, A2 = {(i, j) : i ≤ 5, 5 ≤ j ≤ 10− i}, A3 = {(i, j) : 6 ≤ i ≤

9, j ≤ 10−i}, A4 = {(i, j) : i ≤ 5, 11−i ≤ j ≤ 9}, and A5 = {(i, j) : 6 ≤ i ≤ 10, 11−i ≤
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Figure 7.2: Trending algorithms based on the partitioning of matrix for the individual
development factors. Each partition is defined by the columns numbers on top and row
numbers on the left.

j ≤ 9}. Thus, the observed Fij is made up of {A1, A2, A3} and the unobserved portion

of Fij is made up of {A4, A5}.

To make projections, estimates for {A4, A5} needs to be obtained. The projection of

the Fs in A4 is based on the Fs in A2. Hence, A4 is set to equal the column averages

based on A2. It has to be noted that A2 was not impacted by the environmental changes

under the underwriting practices and policy mix scenarios but was impacted under the

claims processing scenario. Then for A4, we have:

Fij = F̄j, (i, j) ∈ A4, (7.5)

where,

F̄j =
10−j∑
i=1

Fi,j/(10− j), j = 5, . . . , 9. (7.6)

The basic chain-ladder algorithm is applied to project the future development on A4. To

complete the projections, estimates for the partition A5 are also needed. But due to the

environmental changes, the observed historical development on A1 and A2 needs to be

adjusted, which is done by estimating the magnitude of the impact of the environmental
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changes with a rate r. Here, we have:

r = 1
4

4∑
j=1

F̄ ∗j
F̄j

(7.7)

where F̄j, the column averages of Fs in A1, is given by

F̄j =
5∑
i=1

Fi,j
5 , j = 1, 2, 3, 4, (7.8)

and F̄ ∗j , the column averages of Fs in A3, is given by

F̄ ∗j =
10−j∑
i=6

Fi,j
5− j , j = 1, 2, 3, 4. (7.9)

r is then used to make adjustments to A1 and A2 to take the development factors to

the level after the environmental changes, shown as:

F̄ ∗i,j = r · F̄i,j, (i, j) ∈ A1 ∪ A2. (7.10)

With the adjusted Fs in A1 and A2, A5 can be set to be the column averages of A1, A2

and A3. Then, the basic chain-ladder algorithm can be applied to project the future

development on A5. This trending algorithm assumes that the actuaries are sure of the

type of “trend” that they are dealing with; hence the prediction results are accurate.

7.3.2.2 Approach 2

For the second approach which is illustrated in the right panel of Figure 7.2, the matrix

for the individual development factors Fij in (7.4) is partitioned into 3 areas given by

A1 = {(i, j) : i+ j ≤ 6, A2 = {(i, j) : 7 ≤ i+ j ≤ 10}, A3 = {(i, j) : i+ j ≥ 11}. Here,

the observed Fij is made up of {A1, A2} and the unobserved portion of Fij is given by
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A3.

To make projections in A3, only the Fs on A2 is used. Hence, A3 is set to equal the

column averages based on A2. We have:

Fij = F̄j, (i, j) ∈ A3, (7.11)

where

F̄j =


∑10−j
i=7−j

Fi,j
4 for j = 1, . . . , 6,∑10−j

i=1
Fi,j

10−j for j = 7, 8, 9
(7.12)

It has to be noted that this trending approach will not be accurate in adjusting the

development factors affected by the environmental changes described in Section 3.4.

The results using this approach illustrate that when actuaries are not sure of the type

of “trend” that they are dealing with, it could lead to inaccurate predictions.

7.4 Appendix to Chapter 4

7.4.1 Estimation Results for Base Joint Model

Estimation results for the fitted joint model where yit follows a Log-Normal distribution,

with a Weibull baseline hazard for the survival submodel, is given in Table 7.5. All

the continuous covariates in the longitudinal submodel and survival submodels are

significant at a 5% significance level, except the deductible variable under the survival

submodel. For the survival submodel, the association parameter α = −0.086, though

barely significant at a 5% significance level.
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Table 7.5: Estimation results for base joint model: Assuming Log-Normal distribution
with a linear payment trend for the longitudinal submodel and a Weibull baseline
survival submodel.

Longitudinal submodel Survival submodel
Variable Estimate Std. Error Variable Estimate Std. Error
(Intercept) 0.808 0.124 LnInitialEst -0.349 0.041
TimeToPayment 0.288 0.012 LnPolicyDed -0.003 0.012
LnInitialEst 0.853 0.010 ReportDelay 0.348 0.018
LnPolicyDed 0.028 0.008
ReportDelay 0.029 0.014 α(association) -0.086 0.044

Variance Components Weibull Baseline Hazard
σ 0.425 λ 35.449
ν(1/2) 0.478 k 1.397

Number of Payments 3,891 Number of Claims 3,264
Categorical Variables

Variable LRT df (p-value) Variable LRT df (p-value)
CauseCode 90.500 9 (<0.0001) CauseCode 95.050 9 (<0.0001)
Region 35.370 4 (<0.0001) Region 51.500 4 (<0.0001)
EntityType 3.920 5 (0.5610) EntityType 67.330 5 (<0.0001)
LossQtr 2.490 3 (0.4772) LossQtr 27.420 3 (0.0001)
LossYear 17.05 3 (0.0007) LossYear 19.95 3 (<0.0002)

7.4.2 Details for Marked Poisson Process for RBNS

Under the Marked Poisson Process framework, the likelihood for the full development

process of a claim is given by (Jin, 2014):

L = fV × fU |v × fW |v,u = fV × fU |v × fS|v,u × fE|v,u,s × fP |v,u,s,e, (7.13)

where V and U represent the claim occurrence times and reporting delay respectively.

However, with the focus on RBNS reserve prediction, I am interested in the claim

development process W given by

fW |v,u = fS|v,u × fE|v,u,s × fP |v,u,s,e. (7.14)

Where S denotes the transaction occurrence times, E denotes the type of transaction,

and P denotes the payment amount of the transaction. The transaction occurrence
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times S are modeled by a discrete survival model with piecewise constant hazard rates.

Following Jin (2014) and Antonio and Plat (2014), the first transactions are modeled

with a hazard rate g(s), and the later transactions are modeled with a different hazard

rate h(s). Let [0, aR] and [0, bL] be the interval for first and later transactions. Then we

have:

g(s) =
R∑
r=1

gr1{ar−1 < s ≤ ar} (7.15)

h(s) =
L∑
l=1

hl1{bl−1 < s ≤ bl} (7.16)

With cumulative hazard rates given by:

G(s) =
∫ s

0
g(t)dt (7.17)

H(s) =
∫ s

0
h(t)dt (7.18)

Then the cumulative density functions of transaction occurrence times are given by:

Pr(S1 ≤ s) = 1− exp(−G(s)) (7.19)

Pr(Sk ≤ s) = 1− exp(−H(s)), k > 1 (7.20)

Let aR = N1 be regarded as the maximum waiting time to the first transaction, and

bL = N2 is regarded as the maximum settlement delay. Then under these additional

assumptions, the probability that the first transaction occurs at time r, r = 1, 2, ..., N1 is

Pr(S1 = r|S1 ≤ N1) = exp{−G(r − 1)} − exp{−G(r)}
1− exp{−G(N1)} (7.21)
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And given the occurrence time of the first transaction, Sk−1 = c, the probability that

transaction k occurs at time r, r = c+ 1, c+ 2, ..., N2 is

Pr(Sk = r|Sk−1 = c, Sk ≤ N2) = exp{−H(r − 1)} − exp{−H(r)}
exp{−H(c)} − exp{−H(N2)} (7.22)

For the Wisconsin LGPIF training dataset, the maximum waiting time for the first

transaction is 17 months, and the maximum settlement delay is 27 months. It is assumed

that there is at most one transaction in each month, and the transactions can only occur

at the end of a month. As noted in Jin (2014), this discrete setup is consistent with the

fact that many insurers aggregate transactions on a monthly basis by the end of each

month. Therefore, the piecewise-constant hazard rates is defined to have jumps every

month, i.e. a1 = 0, a2 = 1, · · · , a17 = 17 and b1 = 0, b2 = 1, · · · , b27 = 27.

Furthermore, for the type of transactions E, I consider two types for claim i at time

S = s; a payment transaction that leads to settlement (eis = 1) and an intermediate

payment transaction (eis = 0). With an intermediate transaction, the claim development

process continues. Given a transaction at time s, the transaction type is determined

by a logit model that accommodates heterogeneity by incorporating random effects

ai.The probabilities also depend on the time of the transaction and covariates xis given by:

Pr(eis = 1|ai) = π(x′isβ + ai) = 1
1 + exp(−(x′isβ + ai))

. (7.23)

To model the incremental payments P , a Generalized Linear Mixed-Effects Model is

specified.
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7.5 Appendix to Chapter 5

7.5.1 Summary statistics at the policy and claim level

Table 7.6 summarizes the distribution of the claim frequency and severity, which are

the two continuous outcomes of interest at the policy level. The Spearman correlation

coefficient shows that the two outcomes are correlated. The table also shows that the

coverage and deductible distributions are right-skewed, and I deal with the skewness by

taking logarithmic transformations on these variables. The high correlation coefficient

for coverage suggests it will be a significant predictor in the claim frequency and severity

model. In addition, the table summarizes the transaction frequency to the settlement of

a reported claim and the average payment amounts; the Spearman correlation coefficient

shows that they are correlated. Moreover, the correlation coefficient between deductible

and the transaction frequency and severity indicates it may be used as a predictor.

Table 7.6: Summary statistics for outcomes at the policy level (claim frequency and
severity) and claim level (transaction frequency and severity), and continuous covariates
(deductibles, and coverages).

Policy Level
Min. Median Average Max. Claim Claim

Frequency Severity
(ρS) (ρS)

Claim Frequency 0 0 0.893 231 - 0.964
Claim Severity 0 0 9,649 12,922,218 0.964 -
Deductible 500 1,000 3,407 100,000 0.051 0.090
Coverage(000’S) 0.4 11,493 11,493 2,444,797 0.404 0.396

Claim Level
Min. Median Average Max. Transaction Transaction

Frequency Payment
(ρS) (ρS)

Transaction Frequency 1 1 1.221 11 - 0.301
Transaction Payment 8.2 2,609 11,757 1,174,293 0.301 -
Deductible 500 1,000 6,739 100,000 0.095 0.132
Coverage(000’S) 102.3 58,046 295,660 2,444,797 -0.019 -0.079

Table 7.7 shows the summary statistics of the claim frequency and severity at the policy

level and the transaction frequency and severity at the claim level for the categorical

variables in the dataset. The table suggests a high variation in the claim frequency and
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average severity of the claims across the categorical variables at the policy level. At the

claim level, the transaction frequency does not vary much, but there is a substantial

variation with the average severity.

Table 7.7: Summary statistics at the policy and claim level by categorical variables.
Policy Level Claim Level

Variable Average Average Average Average
Frequency Severity Frequency Severity

Entity Type
Village 0.349 2,977 1.196 7,776
City 1.607 12,015 1.222 9,276
County 3.330 17,453 1.169 13,089
Misc 0.172 4,110 1.127 14,328
School 0.931 25,963 1.231 15,604
Town 0.092 1,204 1.126 6,351
Region
Northeastern 0.561 7,835 1.189 12,840
Northern 0.410 10,682 1.229 13,879
Southeastern 1.389 30,123 1.206 15,605
Southern 1.196 5,820 1.263 7,921
Western 0.483 5,210 1.216 7,989
Alarm Credit
No Alarm Credit 0.226 2,427 1.237 7,873
Alarm Credit 5% 0.290 3,508 1.183 10,566
Alarm Credit 10% 0.275 3,016 1.165 10,250
Alarm Credit 15% 1.059 15,869 1.212 11,326
Alarm Credit (Combination) 2.212 29,923 1.233 14,476
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