
DISCONTINOUS GALERKIN METHODS
FOR VLASOV MODELS OF PLASMA

By

David C. Seal

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2012

Date of final oral examination: May 30, 2012

The dissertation is approved by the following members of the Final Oral Committee:

James A. Rossmanith, Assistant Professor, Mathematics

Jean-Luc Thiffeault, Associate Professor, Mathematics

Carl R. Sovinec, Professor, Engineering Physics

Eftychios Sifakis, Assistant Professor, Computer Science

Fabian Waleffe, Professor, Mathematics

i

Abstract

The Vlasov-Poisson equations describe the evolution of a collisionless plasma, repre-

sented through a probability density function (PDF) that self-interacts via an electro-

static force. One of the main difficulties in numerically solving this system is the severe

time-step restriction that arises from parts of the PDF associated with moderate-to-large

velocities. The dominant approach in the plasma physics community for removing these

time-step restrictions is the so-called particle-in-cell (PIC) method, which discretizes the

distribution function into a set of macro-particles, while the electric field is represented

on a mesh. Several alternatives to this approach exist, including fully Lagrangian, fully

Eulerian, and so-called semi-Lagrangian methods. The focus of this work is the semi-

Lagrangian approach, which begins with a grid-based Eulerian representation of both

the PDF and the electric field, then evolves the PDF via Lagrangian dynamics, and

finally projects this evolved field back onto the original Eulerian mesh.

We present a semi-Lagrangian and a hybrid semi-Lagrangian method for solving

the Vlasov Poisson equations, based on high-order discontinuous Galerkin (DG) spatial

representations of the solution. The Poisson equation is solved via a high-order local

discontinuous Galerkin (LDG) scheme. The resulting methods are high-order accurate,

which is demonstrably important for this problem in order to retain the rich phase-space

structure of the solution; mass conservative; and provably positivity-preserving. We

argue that our approach is a promising method that can produce very accurate results

at relatively low computational expense. We demonstrate this through several examples

for the (1+1)D case, using both the hybrid as well as the full semi-Lagrangian method.

ii

In particular, the methods are validated on several numerical test cases, including the

two-stream instability problem, Landau damping, and the formation of a plasma sheath.

In addition, we propose a (2+2)D method that promises to be a productive avenue

of future research. The (2+2)D method incorporates local time-stepping methods on

unstructured grids in physical space and semi-Lagrangian time stepping on Cartesian

grids in velocity space. This method is again high-order, mass conservative, and provably

positivity-preserving.

iii

Acknowledgements

Professional Acknowledgements

I would first and foremost like to thank my adviser, James Rossmanith, for being my

guide throughout this difficult journey. James has been patient with me, and has always

been there to discuss matters with me, research or otherwise. He gave me plenty of

freedom to investigate problems on my own and at my own pace, while at the same time

having enough foresight to steer me towards problems that could produce results given

the limited time available during graduate school.

Secondly, I would like to thank my committee members, Jean-Luc Thiffeault, Carl

Sovinec, Eftychios Sifakis, and Fabian Waleffe, for their valuable feedback and com-

ments. I would also like to thank Jeff Hittinger, Jeff Banks, and Milo Dorr of Lawrence

Livermore National Laboratory for welcoming me into their research groups for two

consecutive summers.

Finally, I would like to thank the State of Wisconsin and the U.S. Federal Govern-

ment. Without the aid of public funds, this dissertation would have never happened.

Personal Acknowledgements

There is zero doubt that the most important person in my life, my wife, Gwendolyn

Miller Seal, deserves everything I can thank her for, and then some. I can honestly say

that if it weren’t for her, this dissertation would have never happened.

To that end, my parents, Carolee and Boyd deserve a thank you for the enduring

sacrifices they made for me. This includes, but is not limited to, a large amount of grey

iv

hair developed during my teen-age and college years, as well as providing a sanctuary

that I could always call home.

v

List of Figures

1 Plasma Pressure-Temperature Diagram 3

2 Solar Corona Picture . 4

3 Tokamak Design and Physical Picture . 4

4 HLLE Approximate Riemann Solver . 26

5 Illustration of 1D Shift+Project Method 39

6 Illustration of Forward-Backward Evolution of Semi-Lagrangian Scheme . 41

7 Illustration of Shift + Project Method for Quasi-1D Problem 46

8 The Two-Stream Instability Problem: Grid Refinement and Comparison

of Time Splitting Methods . 78

9 The Two-Stream Instability Problem: Grid Refinement, Comparison of

Time Splitting Methods; Vertical Cross-Sections. 79

10 The Two-Stream Instability Problem: Positivity-Preserving Limiter. . . . 80

11 The Two-Stream Instability Problem: Fine Grid Results 81

12 The Two-Stream Instability Problem: Conserved Quantities. 82

13 The Weak Landau Damping Problem: Decay of Electric Field. 83

14 The Weak Landau Damping Problem: Conserved Quantities. 84

15 The Strong Landau Damping Problem: Phase-Space Plots. 86

16 The Strong Landau Damping Problem: Decay of Electric Field. 87

17 The Strong Landau Damping Problem: Conserved Quantities. 88

18 Landau Damping Problem: Vertical Slices for Large Velocities. 89

vi

19 Plasma Sheath Problem: Phase-Space Plot. 92

20 Plasma Sheath Problem: Electric Field and Potential. 92

21 Landau Damping: HSLDG Results . 106

22 Weak Landau Damping: HSLDG Results 107

23 Bump on Tail: HSLDG Results . 111

24 Two-Stream Instability: HSLDG Grid Refinement 112

25 Illustration of 2D Evolution for Unstructured Grids 116

26 Unstructured Grid: Solid Body Rotation 120

vii

List of Tables

1 High-Order Runge-Kutta-Nyström Operator Split Coefficients 51

2 Relative L2-Norm Errors for Computing f ′(x) and f ′′(x) Using the Leg-

endre Coefficient Finite Difference Formulas 66

3 SLDG Convergence Study for the Linear Advection Equation 73

4 SLDG Convergence Study for the Forced Vlasov-Poisson Equation: Com-

parison of Two Operator Split Methods 76

5 HSLDG Convergence Study for the Linear Advection Equation. 103

6 HSLDG Convergence Study for the Forced Vlasov-Poisson Equation . . . 108

7 Comparison of Two High-Order Split Methods 109

8 Convergence Study on Unstructured Grids 118

9 Quadrature Weights and Points . 130

viii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Kinetic and Fluid Models in Plasma Physics 1

1.2 Vlasov Models of Plasma . 4

1.2.1 Vlasov-Maxwell . 5

1.2.2 Vlasov-Poisson . 6

1.2.3 Non-Dimensionalization of Vlasov-Poisson 7

1.2.4 Moments and Conserved Quantities 9

1.2.5 Known Theoretical Results for Vlasov-Poisson 13

1.3 Numerical Methods for Vlasov-Poisson 14

1.3.1 Numerical Challenges . 14

1.3.2 Numerical Methods . 15

1.4 Scope of This Work . 18

2 Discontinuous Galerkin Methods 20

2.1 1D Hyperbolic Conservation Laws . 22

2.1.1 HLLE approximate Riemann solver 25

2.1.2 High-Order Time Stepping . 28

2.2 2D Problems on Cartesian Grids . 29

ix

2.3 2D Problems on Unstructured Grids . 32

3 Semi-Lagrangian Methods for 1+1 Vlasov-Poisson 34

3.1 Introduction . 35

3.2 Cheng and Knorr Splitting . 35

3.3 SLDG Schemes for the Advection Equation 37

3.3.1 1D Constant Coefficient Problem 38

3.3.2 Quasi 1D Advection Equation . 43

3.3.3 Operator Split Methods . 48

3.3.4 Positivity-preserving limiter . 52

3.4 Semi-Lagrangian Vlasov Poisson . 57

3.4.1 1D Poisson solver . 58

3.4.2 High-order Electric Field . 62

3.5 Numerical examples . 70

3.5.1 Linear advection . 70

3.5.2 A forced problem: verifying order of accuracy 72

3.5.3 Two-stream instability . 75

3.5.4 Weak Landau damping . 77

3.5.5 Strong Landau damping . 83

3.5.6 Plasma Sheath . 87

4 Hybrid Semi-Lagrangian Methods for 1+1 Vlasov-Poisson 93

4.1 Extensions of SLDG to Higher Dimensions 93

4.2 Hybrid semi-Lagrangian Scheme . 94

4.2.1 Description of Hybrid Method . 95

x

4.2.2 Sub-Cycling for the Hybrid Scheme 99

4.2.3 Summary of the Hybrid (HSLDG) Method 101

4.3 Numerical Examples . 102

4.3.1 Linear advection . 102

4.3.2 A forced problem: verifying order of accuracy 104

4.3.3 Landau Damping . 105

4.3.4 Bump-on-Tail . 108

4.3.5 Two Stream Instability . 110

5 Towards a Hybrid Semi-Lagrangian Method for 2+2 Vlasov-Poisson 113

5.1 Basic Scheme . 114

5.2 Numerical Examples . 118

5.2.1 Periodic Advection . 118

5.2.2 Solid Body Rotation . 118

6 Conclusions and Future Work 121

6.1 Conclusions . 121

6.1.1 Semi-Lagrangian Discontinuous Galerkin 121

6.1.2 Hybrid Semi-Lagrangian Discontinuous Galerkin 122

6.1.3 Hybrid SLDG Methods for (2+2)D Unstructured Grids 123

6.2 Future Work . 123

A Numerical evaluation of conserved quantities 126

A.1 Relative L2-norm error in 1D . 127

A.2 Relative L2-norm error in 2D . 128

xi

B Numerical Integration 129

Bibliography 132

1

Chapter 1

Introduction

The purpose of this chapter is to provide context for the focus of this thesis, which is

novel work on semi-Lagrangian and hybrid discontinuous Galerkin (DG) methods for

the Vlasov-Poisson system. We begin with a brief description of plasma physics, and

then provide an introduction to the Vlasov equations. We then briefly review various

numerical methods that have been used for solving the Vlasov-Poisson equations.

Subsequent chapters deal with the specific numerical methods used in this work.

In particular, in Chapter 2 we describe classical discontinuous Galerkin (DG) methods

for solving hyperbolic problems. Chapters 3, 4, and 5 are the focus of this thesis, and

describe in detail our novel work on positivity-preserving, high-order, semi-Lagrangian,

discontinuous Galerkin methods for the Vlasov-Poisson equations.

1.1 Kinetic and Fluid Models in Plasma Physics

Plasma is the state of matter in which electrons are completely disassociated from their

ions. This state, often referred to as the fourth state of matter, is the most abundant form

of ordinary matter in the universe, and is typical of a state at high pressure, high tem-

perature or a combination of both. (c.f. Figure 1). Given its abundance, scientific and

engineering examples of plasma are numerous. Understanding the behavior of plasma is

2

central to studying astrophysical applications involving solar wind, solar corona, as well

as laboratory examples, including magnetic confinement for nuclear fission and fusion

prospects in laboratories and reactors (c.f. Figures 2 – 3).

Mathematical models of plasma can be roughly classified into two categories: fluid

models and kinetic models. The equations involved in a fluid description are generally

more complicated, but lower dimensional (i.e., 3-dimensional space), while the equations

involved in a kinetic description are simpler to write down, but much more computa-

tionally expensive because they describe a high-dimensional system (i.e., 6-dimensional

phase space).

Kinetic models of plasma are useful when a a plasma deviates significantly from

thermodynamic equilibrium, because they provide a complete phase-space description.

This can be the case, for example, when relatively few collisions occur. In the case of

the Vlasov-Poisson system, we will see that kinetic simulations, and especially high-

order kinetic simulations, reveal an incredibly rich solution structure for the phase-space

distribution function.

Fluid descriptions of plasma reduce the dimensionality of the kinetic description by

solving for moments of the distribution function (i.e., integrals of the distribution func-

tion against various powers of the velocity variables). One difficulty with this approach

is that the moment hierarchy never closes: the evolution of the kth moment involves

the (k + 1)st moment. In order to close the moment hierarchy we need to make some

assumptions about the higher moments of the distribution function. Therefore, the fluid

approach replaces the extra velocity variables with more equations involving physical

observables, but at the expense of losing a full phase-space description. In particular,

3

Figure 1: Plasma pressure-temperature diagram. Plasma is a state of matter that exists
at high temperature, large pressure, or a combination of the two.

one usually assumes that the velocity distribution does not deviate too much from ther-

modynamic equilibrium. In certain scenarios, such as in the case of ample collisions, the

fluid assumption is valid.

In summary, the trade-off between kinetic and fluid models of plasma are that: (1)

kinetic models are valid over a broad range of physical phenomena and make no as-

sumptions about being in or near thermodynamic equilibrium, but are computationally

expensive due their high-dimensionality; (2) fluid models are generally valid only near

thermodynamic equilibrium and require some closure assumptions, but are computa-

tionally less expensive due to their lower dimensionality. In this work we focus on pure

kinetic models and attempt to obtain efficient numerical schemes by using high-order

spatial and temporal discretizations and appealing to semi-Lagrangian time-stepping.

4

Figure 2: Solar corona and its interaction with the Earth’s magnetic field.

Figure 3: Tokamak design and physical picture.

1.2 Vlasov Models of Plasma

The Vlasov equation in its various incarnations (e.g., Vlasov-Maxwell, Vlasov-Darwin,

and Vlasov-Poisson) models the dynamics of collisionless plasma. Because plasma is a

mixture of interacting charged particles, it evolves though a variety of effects, including

electromagnetic interactions and particle-particle collisions. In the collisionless limit, the

mean free-path is much larger than the characteristic length scale of the plasma; and

therefore, particle-particle collisions are dropped from the mathematical model. Vlasov

models are widely used in both astrophysical applications (e.g., [8, 10, 55]), as well as

in laboratory settings (e.g., [14, 62, 48, 13, 40]).

The Vlasov system describes the evolution of a charge density function in phase

5

space:

f̃s(t̃, x̃, ṽ) : R
+ × R

d × R
d → R

S, (1.1)

which describes the relative number of particles of species s at time t, at location x̃, and

with velocity ṽ. Here, d = 1, 2, or 3, is the spatial dimension under consideration, and

S represents the number of plasma species.

1.2.1 Vlasov-Maxwell

Under the assumptions of a non-relativistic and collisionless plasma, this distribution

function for each species obeys the Vlasov equation, which is an advection equation in

(x̃, ṽ) phase space:

∂f̃s

∂t̃
+ ṽ · ∇x̃f̃s +

qs
ms

(

Ẽ+ ṽ × B̃
)

· ∇ṽf̃s = 0. (1.2)

The quantities presented here are mass of species s, ms, and charge of species s, qs. The

“particles” represented by this kinetic description do not interact through collisional

processes; rather they couple indirectly through the electromagnetic field Ẽ and B̃. In

general, the electromagnetic field satisfies Maxwell’s equations:

∂

∂t̃

B̃

Ẽ

+∇x̃ ×

Ẽ

−c2B̃

 =

0

−c2µ0J̃

 , (1.3)

∇x̃ · B̃ = 0, ∇x̃ · Ẽ =
σ̃

ǫ0
, (1.4)

where c is the speed of light in vacuum, ǫ0 is the vacuum permittivity, and µ0 is the

vacuum permeability. The charge density σ̃, the net current J̃, the number density ñ,

6

and the thermal velocity ũ are given by:

σ̃ =
∑

s

qsñs, J̃ =
∑

s

qsñsũs,

ñ =

∫

ṽ

f̃s dṽ, ũ =
1

ñ

∫

ṽ

ṽf̃s dṽ.

We note that every quantity participating in the evolution of Maxwell’s equations de-

pends only on time and spatial coordinates, x̃. Global coupling occurs through moment

integrals of f̃s.

1.2.2 Vlasov-Poisson

In this work we will not consider the full Vlasov-Maxwell system for a many species

plasma; and instead, we only consider the single-species Vlasov-Poisson equation. To

arrive at the Vlasov-Poisson system, we start with Vlasov-Maxwell and make two as-

sumptions. First, we assume that the charges are slow-moving in comparison to the

speed of light, and, in particular, we assume that ∇× E = 0. This allows us to replace

the full electromagnetic equations with electrostatics. Furthermore, we consider only

two-species: one dynamically evolving species, which we take, without loss of generality,

to have positive charge, and in addition, we assume a stationary background species

that has a charge of opposite sign to the dynamic species. Because the background

charge is stationary, we will only need to solve a single-species Vlasov equation. These

assumptions conspire to form the Vlasov-Poisson equations, and with SI units, these are

7

prescribed by:

f̃,t̃ + ṽ · f̃,x̃ −
q

m
∇x̃φ̃ · f̃,ṽ = 0, (1.5)

−∇2
x̃φ̃ =

q

mǫ0

(
ρ̃(t̃, x̃)− ρ̃0

)
, (1.6)

ρ̃(t̃, x̃) =

∫

ṽ

m f̃ dṽ, (1.7)

f̃(t̃ = 0, x̃, ṽ) = f̃0(x̃, ṽ), (1.8)

where φ̃ is the electric potential: Ẽ = −∇x̃φ̃, and − q
m
ρ̃0 is the stationary background

charge density.

1.2.3 Non-Dimensionalization of Vlasov-Poisson

In order to non-dimesionalize equations (1.5) – (1.8), for each independent and dependent

variable we introduce a scaling factor times a non-dimensional variable:

f̃ = Ff, t̃ = Tt, x̃ = Lx, ṽ =

(
L

T

)

v,

Ẽ = E0Ẽ, ρ̃ = mNρ, φ̃ = Φ0 φ.

Plugging in these scaled variables yields:

(
F

T

)

f,t +

(
L

T

)(
F

L

)

v · f,x +
q

m

(
FT

L

)

E0E · f,v = 0, (1.9)

(
E0

L

)

∇x · E =
q

mǫ0
(mN) (ρ− ρ0) , (1.10)

mNρ =
mFLd

T d

∫

Rd

f (t,x,v) dv. (1.11)

8

Simplifying this yields:

f,t + v · f,x +
(
qE0T

2

mL

)

E · f,v = 0, (1.12)

∇x · E =

(
qLN

ǫ0E0

)

(ρ− ρ0) , (1.13)

ρ =

(
FLd

NT d

)∫

Rd

f (t,x,v) dv. (1.14)

In order to simplify this problem, we strive to make the factors in parentheses in the

above formulas equal to one. We assume that the electron density variable, N , and the

length scale, L, are fixed. First we look at the constant in equation (1.13) and set it to

one:

(
qLN

ǫ0E0

)

= 1 =⇒ E0 =
qLN

ǫ0
. (1.15)

We continue by setting the parameters in (1.12) and (1.14) equal to one:

(
qE0T

2

mL

)

=

(
q2NT 2

ǫ0m

)

= 1 =⇒ T =

√
ǫ0m

q2N
; (1.16)

(
FLd

NT d

)

=
F

N

(
q2L2N

ǫ0m

) d
2

= 1 =⇒ F =
N

2−d
2 (ǫ0m)

d
2

qdLd
. (1.17)

Finally we note the following relationship between the electrostatic potential and the

electric field:

Ẽ = −∇x̃φ̃ =⇒ E = −
(

Φ0

E0L

)

∇xφ =⇒ Φ0 = E0L. (1.18)

After scaling, we arrive at (with non-dimensional units) what will henceforth be referred

to as the Vlasov-Poisson system,

f,t + v · f,x −∇xφ · f,v = 0, (1.19)

−∇2
xφ = ρ(t,x)− ρ0, (1.20)

9

where E = −∇xφ.

To summarize, for a given problem there are two free parameters to choose, N and

L. The parameters E0, T, F and Φ0 are then determined based on these two parameters.

In SI units, these two free parameters have units [N] = meters−d and [L] = meters.

For the bulk of this work, we consider the case of the 1+1 dimensional version of the

above equations with periodic boundary conditions in x. In this case, the Vlasov-Poisson

system on Ω = (t, x, v) ∈ R
+ × [0, L]× R is:

f,t + vf,x + E(t, x) f,v = 0, (1.21)

E,x = ρ(t, x)− ρ0. (1.22)

The total and background densities are

ρ(t, x) :=

∫ ∞

−∞
f(t, x, v) dv and ρ0 :=

1

L

∫ L

0

ρ(t = 0, x) dx. (1.23)

Note that ρ0 is determined at the start of the problem. However, in the case of a

periodic domain, conservation of mass implies that ρ0 =
1
L

∫ L

0
ρ(t, x) dx for all time. For

1D problems, we will use:

x := x1, v := v1, and E := E1,

and for 2D problems, we will use the shorthand notation:

x := (x1, x2), v = (v1, v2), E = (E1, E2).

1.2.4 Moments and Conserved Quantities

The Vlasov-Poisson system contains an infinite number of quantities that are conserved

in time. Any number of these can be used as diagnostics in a numerical discretization,

10

and in equations (1.50) – (1.52) we summarize the four conserved quantities we compute

with our numerical scheme. Although the probability density function (PDF) is not

itself a physical observable, moments of the PDF represent various physically observable

quantities and are necessary for describing conserved quantities. The first three moments

are defined as:

ρ(t,x) :=

∫

Rd

f dv, (mass density), (1.24)

ρu(t,x) :=

∫

Rd

v f dv, (momentum density), (1.25)

E(t,x) := 1

2

∫

Rd

‖v‖2 f dv, (energy density). (1.26)

In addition, there are infinitely many moment equations that the Vlasov-Poisson

equations satisfy. These are derived by multiplying the Vlasov equation (1.19) by in-

creasing powers of v, and integrating by parts. The first two evolution equations for

these moments are prescribed by:

ρ,t +∇ · (ρu) = 0, (1.27)

(ρu),t +∇ · E = ρE; E :=

∫

v

vvf dv. (1.28)

Conservation of Lp-norms

Equations (1.49) and (1.50) are the special case of p = 1 and p = 2 for conservation of

Lp norms. To derive these, we multiply the Vlasov equation (1.19) by pf p−1 and use the

product rule. This yields:

pf p−1f,t + v ·
(
pf p−1f,x

)
+ E ·

(
pf p−1f,v

)
= 0,

=⇒ (f p),t + v · (f p),x + E · (f p),v = 0,

=⇒ (f p),t +∇x · (vf p) +∇v · (Ef p) = 0.

11

If we integrate this equation over (x,v) ∈ R
d × R

d, and assume that f → 0 sufficiently

fast as ‖x‖, ‖v‖ → ∞ and note that f > 0 for all (t,x,v), we arrive at the conclusion

that the following quantity is constant in time for any p ≥ 1:

‖f‖Lp =

∫

Rd

∫

Rd

∣
∣f
∣
∣
p
dv dx. (1.29)

Energy conservation

Energy conservation starts with considering the next moment after (1.28). Multiplying

the Vlasov equation (1.19) by vv and integrating over all of v ∈ R
d yields the energy

tensor evolution equation:

E,t +∇ · F = ρ (uE+ Eu) . (1.30)

The scalar energy is defined as

E :=
1

2
tr (E) =

1

2

(
E

11 + E
22 + E

33
)
=

1

2

∫

Rd

‖v‖2f dv. (1.31)

Therefore, the evolution equation for the scalar energy is obtained by taking the trace

of the energy tensor evolution equation:

E,t +∇ · ~F − ρu · E = 0, (1.32)

where

F i :=
1

2

d∑

k=1

F
ikk. (1.33)

12

Next we take the time derivative of the divergence constraint on the electric field and

obtain:

∇ · E,t = ρ,t = −∇ · (ρu) , (1.34)

=⇒ E,t = −ρu+∇×C, (1.35)

=⇒ E · E,t = −ρu · E+ E · ∇ ×C, (1.36)

=⇒
(
1

2
‖E‖2

)

,t

− E · ∇ ×C = −ρu · E, (1.37)

=⇒
(
1

2
‖E‖2

)

,t

+∇ · (E×C)−C · ∇ × E = −ρu · E, (1.38)

=⇒
(
1

2
‖E‖2

)

,t

+∇ · (E×C) = −ρu · E. (1.39)

Adding this last result into the energy tensor evolution equation (1.32) results in the

following conservation law:

(

E + 1

2
‖E‖2

)

,t

+∇ ·
(

~F + E×C
)

= 0. (1.40)

From this we conclude that the following quantity, referred to as the total energy, is

constant in time:

∫

Rd

(

E + 1

2
‖E‖2

)

dx =
1

2

∫

Rd

∫

Rd

‖v‖2f dv dx+
1

2

∫

Rd

‖E‖2 dx. (1.41)

Entropy conservation

The Vlasov-Poisson equations also satisfy an entropy conservation property. Consider

the following identities:

(f log f),t = f,t + f,t log f = (1 + log f) f,t, (1.42)

(f log f),x = f,x + f,x log f = (1 + log f) f,x, (1.43)

(f log f),v = f,v + f,v log f = (1 + log f) f,v. (1.44)

13

Multiplying the Vlasov equation by (log f + 1) and using the above identities yields

(log f + 1)f,t + v · {(log f + 1)f,x}+ E · {(log f + 1) f,v} = 0, (1.45)

=⇒ (f log f),t + v · (f log f),x + E · (f log f),v = 0, (1.46)

=⇒ (f log f),t +∇x · (vf log f) +∇v · (Ef log f) = 0. (1.47)

If we integrate this equation over (x,v) ∈ R
d × R

d and assume that f log f → 0 suffi-

ciently fast as ‖x‖, ‖v‖ → ∞, we arrive at the conclusion that the following quantity,

referred to as the total entropy, is constant in time:

−
∫

Rd

∫

Rd

f log(f) dv dx. (1.48)

Summary

To summarize, we list the four quantities that will be used in diagnosing our proposed

scheme, all of which should remain constant in time:

‖f‖L1
:=

∫

Rd

∫

Rd

∣
∣f
∣
∣ dv dx, (1.49)

‖f‖L2
:=

(∫

Rd

∫

Rd

f 2 dv dx

) 1

2

, (1.50)

Total energy :=
1

2

∫

Rd

∫

Rd

‖v‖2f dv dx+
1

2

∫

Rd

‖E‖2 dx, (1.51)

Entropy := −
∫

Rd

∫

Rd

f log(f) dv dx. (1.52)

1.2.5 Known Theoretical Results for Vlasov-Poisson

The Vlasov system was first suggested by Anatoly Vlasov in 1938. Despite its age,

theoretical results are still an active area of research. Many modern results were proven

in the 70’s, 80’s, and 90’s. To date, the Vlasov system provides a rich source of research

14

problems. Indeed, Cédrik Villani [47] earned the prestigious 2010 Fields medal “for his

proofs of nonlinear Landau damping and convergence to equilibrium for the Boltzmann

equation.” An excellent review of known long-time existence results for the Vlasov-

Poisson system can be found in Chapter 4 of Glassey’s text on kinetic theory [32]. We

do not attempt to reproduce Glassey’s summary here, but simply point out that there are

several rigorous long-time existence results for Vlasov-Poisson. For example, Schaeffer

[54] proved the existence of global smooth solutions for the Vlasov-Poisson system in

3D.

1.3 Numerical Methods for Vlasov-Poisson

The Vlasov system is faced with a number of numerical challenges, and hence there are

a number of numerical schemes devised to overcome these challenges. In this section,

we describe what hurdles need to be overcome and we summarize popular numerical

schemes used to overcome these challenges.

1.3.1 Numerical Challenges

Below we briefly describe the three main challenges in the numerical solution of the

Vlasov system.

High dimensionality

The Vlasov system is a nonlinear and nonlocal advection equation in six phase space

dimensions (x ∈ R
3 and v ∈ R

3) and time – this is often referred to as 3 + 3 + 1

dimensions. Even though the Vlasov equation is in many ways mathematically simpler

15

than fluid models, the fact that it lives in a space of twice the number of dimensions

makes it computationally much more expensive to solve.

Conservation and positivity

In fluid models, conservation of mass, momentum, and energy are often relatively easy

to guarantee in a numerical discretization, since each of these quantities is a dependent

variable of the system. In Vlasov models it is generally more difficult to exactly maintain

these quantities in the numerical discretization. Exact positivity of the probability

density function is also not guaranteed by many standard discretizations of the Vlasov

system; therefore, additional work in choosing the correct approximation spaces is often

required.

Small time steps due to v ∈ R
3.

In the non-relativistic case, the advection velocity of the density function in phase space

depends linearly on the components of the velocity vector v ∈ R
3 (see equation (1.2) in

§1.2.2). Since it is in general possible to have “particles” in the Vlasov system that travel

arbitrarily fast, there will be a severe time-step restriction, relative to the dynamics of

interest, that arises from parts of the PDF associated with moderate-to-large velocities.

1.3.2 Numerical Methods

Several approaches have been introduced to try to solve some of these problems, including

particle-in-cell methods, Lagrangian particle methods, and grid-based semi-Lagrangian

methods. We briefly summarize each of these approaches below.

16

Particle-in-cell methods

Particle-in-cell (PIC) methods are ubiquitous in both astrophysical (e.g., [62]) and lab-

oratory plasma (e.g., [10]) application problems. The basic approach is outlined in the

celebrated textbooks of Birdsall and Langdon [9] and Hockney and Eastwood [39], both

of which appeared in the mid-to-late 1980s. Modern improvements to these methods

are still topics of current research (e.g., adaptive mesh refinement [62], very high-order

variants [42, 41], etc.). The basic idea is that the distribution function is discretized into

a set of macro-particles (Lagrangian representation), while the electromagnetic field is

represented on a mesh (Eulerian representation). The main advantages of this approach

are that positivity and mass conservation are essentially automatic, the small time step

restriction is removed due to the fact that the particles are evolved in a Lagrangian

framework, and the electromagnetic equations can be solved via standard mesh-based

methods. The main disadvantages of this method are: (1) numerical errors are intro-

duced due to the interpolations that must de done to exchange information between the

particles and fields, (2) error control is non-trivial since particles may either cluster or

generate rarefied regions during the evolution of the plasma, and (3) statistical noise

from sampling scales as O(1/
√
N), where N is the number of particles, which means

that an incredibly large number of particles needs to be sampled in order to drive this

error down.

Lagrangian particle methods

One possible alternative to the PIC methodology is to go to a completely Lagrangian

framework – this removes the need to interpolate between the particles and fields. Such

17

approaches are commonplace in several application areas such as many body dynamics

in astrophysics [4], vortex dynamics [45], as well as in plasma physics [15]. The key is

that the potential (e.g., gravitational potential, stream-function, or electric potential)

is calculated by integrating the point charges represented by the Lagrangian particles

against a Green’s function. Since the charges are point particles, evaluating this integral

reduces to computing sums over the particles. Naive methods would need O(N2) floating

point operations to evaluate all of these sums, where N is the number of particles, but

fast summation methods such as treecode methods [4, 45] and the fast multipole method

[34] can be used to reduce this to O(N logN). The main disadvantage of this approach

is that it relies on having a Green’s function, which for more complicated dynamics (i.e.,

full electromagnetism) may be difficult to obtain.

Semi-Lagrangian grid-based methods

Another alternative to PIC is to switch to a completely grid-based method. Such an

approach allows for a variety of high-order spatial discretizations, and can be evolved

forward in time via so-called semi-Lagrangian time-stepping. The basic idea is that the

PDF sits initially on a grid; the PDF is then evolved forward in time using Lagrangian

dynamics; and finally, the new PDF is projected back onto the original mesh. This

gives many of the advantages of particle methods (i.e., no small time-step restrictions),

but retains a nice grid structure for both the PDF and the fields, allowing extension

to very high-order accuracy. There have been several contributions to this approach

over the last few years. One of the first papers that developed a viable semi-Lagrangian

method was put forward by Cheng and Knorr [12]. More recent activity on this approach

includes the work of Parker and Hitchon [48], Sonnendrücker and his collaborators (see

18

for example [25, 30, 59, 22, 6, 24, 26, 5]), and Christlieb and Qiu [49].

1.4 Scope of This Work

The primary focus of this work is to develop a grid based, high-order, semi-Lagrangian

alternative to traditional particle-in-cell (PIC) methods, which is the predominant ap-

proach in the plasma physics community for Vlasov simulations. Much like other recent

work, e.g., [28, 43, 49], our high-order semi-Lagrangian method starts with the classical

Cheng and Knorr [12] operator splitting method. We attain high-order in space by us-

ing a discontinuous Galerkin spatial discretization for the proposed method, which we

review in Chapter 2. The heart of this thesis is located in Chapters 3 and 4, where we

describe novel work on semi-Lagrangian and hybrid semi-Lagrangian DG methods for

the Vlasov system. In particular, we describe a method that attains high-order accu-

racy in space and time, mass conservation, and positivity of the distribution function.

In these Chapters we include a number of standard test cases for the Vlasov-Poisson

system: the two-stream instability, bump on tail, and Landau damping. In addition, we

present results for a plasma sheath problem with non-periodic boundary conditions.

In Chapter 5 we present a forward looking view towards developing a full (2+2)D

Vlasov solver through a hybrid DG solver that is tested and developed in Chapter 4.

Currently, all of our Vlasov results full are in (1+1)D, however, we demonstrate that the

necessary tools are in place for extending this to (2+2)D. This extension will operate

on unstructured grids in physical space, have high-order accuracy, utilize sub-cycling to

alleviate strict CFL conditions, and retain positivity of the probability density function.

We note that there are currently very few research groups working with grid based

19

Vlasov solvers in high dimensions, e.g., [25, 58, 2, 38]; therefore, one of the chief goals of

the present work is a push towards that direction, retaining all the machinery developed

in this thesis relating to high-order, large time-steps, mass conservation, and positivity-

preservation.

In this thesis, we argue that our approach is a promising method that can produce

very accurate results at relatively low computational expense. We demonstrate this

through several examples for the (1+1)D case. We argue that our proposed method

for the (2+2)D problem proves to be a promising avenue of research. Through the

use of semi-Lagrangian time-stepping and unstructured grids, we hope that ultimately

the methods presented in this work will be viewed as a bridge between particle and

pure Eulerian methods, in the sense that we retain the ability to take large time-steps

(semi-Lagrangian) and can handle complex geometries (unstructured meshes).

20

Chapter 2

Discontinuous Galerkin Methods

The entirety of this chapter is dedicated to a review of classical discontinuous Galerkin

(DG) methods. The purpose is to provide the necessary background, as well as define

notation used throughout this dissertation.

DG methods offer a high-order mechanism for solving partial differential equations

(PDEs), and in particular, they excel at capturing rough data while maintaining a high-

order of accuracy. Hyperbolic problems often require methods that are able to capture

discontinuities (shocks) and are high-order elsewhere in order to maintain approximate

solution fidelity. DG schemes as well as their finite volume and finite difference coun-

terparts, WENO and ENO, are primarily reserved for working on hyperbolic problems

because of their abilities to perform all of the above. However, they do tend to be more

computationally expensive to run. The history of DG schemes dates back to 1973, where

Reed & Hill [50] invented the DG method as a method for solving a neutron transport

equation. Modern work solidified the theoretical background through a series of papers

by Bernardo Cockburn, Chi-Wang Shu, and their collaborators [21, 19, 18, 17, 20].

The use of the word ‘discontinuous’ when used in conjunction with ‘high-order’ de-

serves some explanation. The term discontinuous in DG refers to the fact that the

polynomial representations for the solution come from so-called broken finite element

21

spaces, which are defined later in (2.2) and (2.33). In these finite element spaces, the ba-

sis functions that are used for the representation (typically polynomials) are not forced

to be continuous across interfaces (points in 1D, edges in 2D, faces in 3D, etc. . .); and

therefore, the representation for the solution will have discontinuities. High-order means

that when an exact solution has enough regularity, the representation will be high-order

in Lp, with 1 ≤ p ≤ ∞. In the case of p = ∞, we see that an M th-order method will

produce a solution that is pointwise accurate to O(hM), where h refers to the mesh size.

In particular, this means that the size of a jump in the representation of the solution

across an interface has a magnitude O(hM).

One key difference between DG and WENO/ENO is the use of a localized stencil in

place of a broad stencil. Localized stencils are useful when trying to capture sharp gra-

dients or discontinuities in a solution; e.g., see Zhou, Tie and Shu [69] for a comparison.

One criticism of DG methods when compared to their counterparts is the large number

of unknowns required per element for high-order, especially in higher dimensions. While

WENO and ENO methods extend their stencils to attain high-order, DG, just as other

finite element approaches, increases the number of basis functions, and hence unknowns,

per grid cell. In particular, the number of unknowns for operating in d dimensions for an

M th order method grows as O(Md). In dimension d = 1, this is simplyM , and in d = 2,

the minimal number of unknowns is M(M +1)/2. In the case of d = 2 and M = 5 there

are 15 unknowns per element. In general, the exact formula for the minimal amount of

moments is given by
(
M+d−1

d

)
.

We begin by describing DG methods for a 1D hyperbolic problem, and then we

continue by describing a classical implementation of the DG method on a 2D grid, first

on a Cartesian mesh, then on a triangle-based unstructured mesh.

22

2.1 1D Hyperbolic Conservation Laws

Consider a generic 1D hyperbolic balance law of the form

q,t + f(q, x, t),x = ψ(q, x, t). (2.1)

Here, q : R+ × R
n → R

m is the unknown quantity, f is the flux function, and ψ is the

source term. Equation (2.1) is hyperbolic if and only if the flux Jacobian,

A(q, x, t) :=
∂f

∂q
(q, x, t)

is diagonalizable with real eigenvalues for all q, x and t in the domain of interest.

A DG solver starts by creating a grid on [a, b] with mx cells, each of whose width is

given by ∆x = (b − a)/mx. We denote the ith grid cell by Ti = [xi−1/2, xi+1/2], where

the cell edges are given by xi−1/2 = a+ (i− 1)∆x, for i = 1, 2, . . . ,mx + 1, and the

cell centers are given by xi = a+ (i− 1/2)∆x, for i = 1, 2, . . . ,mx. For simplicity of

exposition, we will restrict our attention to a uniform grid, however, DG methods can

certainly be written to accommodate non-uniform, 1D grids.

On this grid we define the broken finite element space

W h =
{
wh ∈ L∞(Ω) : wh|T ∈ P q, ∀T ∈ Th

}
, (2.2)

where h = ∆x. The above expression means that on each element T , wh will be a poly-

nomial of degree at most q, and no continuity is assumed across element edges. Each

element can be mapped to the canonical element ξ ∈ [−1, 1] via the linear transforma-

tion:

x = xi + ξ
∆x

2
. (2.3)

23

For each element, we construct a set of basis functions that are orthonormal with respect

to the following inner product:

〈

ϕ
(ℓ)
1D, ϕ

(k)
1D

〉

:=
1

2

∫ 1

−1

ϕ
(ℓ)
1D(ξ)ϕ

(k)
1D(ξ) dξ = δℓk,

where δℓk is the Kronecker delta function. Starting with ϕ
(1)
1D = 1, and proceeding via

the Gram-Schmidt process, these define what are called the Legendre basis functions.

Up to 5th order, the Legendre basis functions are given by:

ϕ
(ℓ)
1D =

{

1,
√
3 ξ,

√
5

2

(
3ξ2 − 1

)
,

√
7

2
(5ξ3 − 3ξ),

3

8

(
35ξ4 − 30ξ2 + 3

)

}

.

Of course other basis functions may be used; this is the ‘Galerkin’ part of DG.

We will look for approximate solutions of (2.1) that have the following form:

q̃h(t, x)
∣
∣
∣
Tij
:= qh(t, ξ) =

M∑

k=1

Q
(k)
i (t)ϕ

(k)
1D(ξ), (2.4)

where M is the desired order of accuracy in space.

The Legendre coefficients of the initial conditions at t = 0 are determined from the

L2-projection of qh(0, x) onto the Legendre basis functions:

Q
(k)
ij (0) :=

〈

qh(0, ξ), ϕ
(k)
1D(ξ)

〉

. (2.5)

In practice, these integrals can be evaluated to high-order using M standard Gaussian

quadrature points.

In order to determine the evolution of the coefficients of the basis functions, we

multiply (2.1) by a test function ϕ, and integrate by parts over grid cell Ti:
∂

∂t

1

∆x

∫ xi+1/2

xi−1/2

q(t, x)ϕ dx =
1

∆x

∫ xi+1/2

xi−1/2

f(t, x)ϕ,x dx

− 1

∆x

[
f ↓(t, xi+1/2)ϕ(xi+1/2)− f ↓(t, xi−1/2)ϕ(xi−1/2)

]

+
1

∆x

∫ xi+1/2

xi−1/2

ψ(q, x, t)ϕ(ξ(x)) dx

24

After setting ϕ = ϕ(k), this yields a large system of coupled differential equations:

d

dt

Q
(1)
i

Q
(2)
i

Q
(3)
i

Q
(4)
i

Q
(5)
i

=

0

N
(2)
i

N
(3)
i

N
(4)
i

N
(5)
i

− 1

∆x

(

Fi+ 1

2

− Fi− 1

2

)

√
3
(

Fi+ 1

2

+ Fi− 1

2

)

√
5
(

Fi+ 1

2

− Fi− 1

2

)

√
7
(

Fi+ 1

2

+ Fi− 1

2

)

3
(

Fi+ 1

2

− Fi− 1

2

)

+

Ψ
(1)
i

Ψ
(2)
i

Ψ
(3)
i

Ψ
(4)
i

Ψ
(5)
i

, (2.6)

for each i = 1, 2, . . . ,mx. Each N
(k)
i represents the interior integral, and after a change

of variables, can be evaluated on the canonical element via:

N
(k)
i =

1

∆x

∫ 1

−1

f (q (xi + ξ∆x/2))ϕ(k)(ξ),ξ dξ.

In terms of our Legendre polynomials, these are given by

N
(1)
i = 0, (2.7)

N
(2)
i =

√
3

∆x

∫ 1

−1

f (xi + ξ∆x/2) dξ, (2.8)

N
(3)
i =

3
√
5

∆x

∫ 1

−1

ξ f (xi + ξ∆x/2) dξ, (2.9)

N
(4)
i =

3
√
7

2∆x

∫ 1

−1

(
5 ξ2 − 1

)
f (xi + ξ∆x/2) dξ, (2.10)

N
(5)
i =

15

2∆x

∫ 1

−1

(
7 ξ3 − 3 ξ

)
f (xi + ξ∆x/2) dξ. (2.11)

The source terms Ψ
(k)
i are likewise given by

Ψ
(k)
i =

1

2

∫ 1

−1

ψ (xi + ξ∆x/2)ϕ(k)(ξ) dξ. (2.12)

Because q(t, xi+1/2) is discontinuous at the cell boundary, Fi+1/2 = f ↓(q(t, xi+1/2)) is

not defined, and therefore requires some care. These numerical fluxes Fi+1/2 are obtained

25

by solving an approximate Riemann problem between the following states:

Fi+ 1

2

= F (Qℓ, Qr) :

Qr = Q
(1)
i+1 −

√
3Q

(2)
i+1 +

√
5Q

(3)
i+1 −

√
7Q

(4)
i + 3Q

(5)
i ,

Qℓ = Q
(1)
i +

√
3Q

(2)
i +

√
5Q

(3)
i +

√
7Q

(4)
i + 3Q

(5)
i .

We note that the basis functions are always evaluated on the interior of the integral, and

cross communication between grid cells happens via the solution to a Riemann problem.

Usually, a local-Lax-Friedrichs or an HLLE-type numerical flux is used.

2.1.1 HLLE approximate Riemann solver

At each cell interface, xi, the discontinuous Galerkin method requires a numerical flux:

Fi. One approach for obtaining such a flux is to exactly solve the generalized Riemann

problem between the solution in grid cell Ti and Ti+1:

q,t + f(q, x),x = 0 in −∞ < x <∞, with (2.13)

qh(0, x) =

Qr x > xi+1/2,

Qℓ x < xi+1/2,

(2.14)

where Qr = qh|Ti+1
and Ql = qh|Ti . This is in general far too complicated due to the

spatial variations; and instead, one could approximate the spatially varying Qr and Qℓ

with constants:

Qr = Q
(1)
i+1 −

√
3Q

(2)
i+1 +

√
5Q

(3)
i+1 −

√
7Q

(4)
i+1 + 3Q

(5)
i+1, (2.15)

Qℓ = Q
(1)
i +

√
3Q

(2)
i +

√
5Q

(3)
i +

√
7Q

(4)
i + 3Q

(5)
i , (2.16)

thus arriving at what is usually referred to as the Riemann problem. Here Qr and Qℓ are

simply values of qh|Ti+1
and qh|Ti at x = xi+1/2, respectively. Although exactly solving the

26

Qℓ Qr

Q⋆

t

x

s(1)
s(2)

Figure 4: HLLE approximate Riemann solution. The two constant states, Qℓ and Qr

are connected to a single intermediate state Q⋆ by two shock waves moving at speeds
s(1) and s(2).

Riemann problem is far simpler than exactly solving the generalized Riemann problem,

for many applications this approach is still too computationally expensive.

An alternative to the exact Riemann solution is the approximate method of Harten,

Lax, and van Leer [35], which was slightly modified by Einfeldt [29], and hence, has since

been referred to in the literature as the HLLE approach. The idea is to approximate the

Riemann solution by two shockwaves that separate a single constant state, Q⋆, from the

constant states (2.15) and (2.16). We denote the speeds of the two shockwaves by s(1)

and s(2) and by convention we take s(1) < s(2). This scenario is depicted in Figure 4.

Conservation requires the following Rankine-Hugoniot condition be satisfied:

s(1) (Q⋆ −Qℓ) + s(2) (Qr −Q⋆) = f(Qr)− f(Qℓ). (2.17)

Solving this expression for the intermediate state Q⋆ yields

Q⋆ =
f(Qr)− f(Qℓ) + s(1)Qℓ − s(2)Qr

s(1) − s(2) . (2.18)

27

The resulting flux at the interface separating Qℓ and Qr is given by

Fi =

1
2

(
f(Qℓ) + f(Qr) + (s(1) + s(2))Q⋆

−s(1)Qℓ − s(2)Qr

)
if s(1) < 0 and s(2) > 0,

f (Qℓ) if s(1) ≥ 0 and s(2) > 0,

f (Qr) if s(1) < 0 and s(2) ≤ 0.

(2.19)

For stability, the shock speeds must to be chosen to enclose the shock structure of the

exact Riemann solution. In practice one takes

s(1) = min

{

min
p

{
λ(p)(Qℓ)

}
, min

p

{

λ(p)(Q̂)
}}

− ǫ, (2.20)

s(2) = max

{

max
p

{
λ(p)(Qℓ)

}
, max

p

{

λ(p)(Q̂)
}}

+ ǫ, (2.21)

where minp

{
λ(p)

}
is the minimum eigenvalue of the flux Jacobian, ∂f/∂q, and Q̂ is the

Roe average of states Qℓ and Qr [29]. In the above expression, ǫ is a small parameter

that in practice can be taken to be ǫ = 10−10.

In the scalar case, both the HLLE and local-Lax-Friedrichs (LLF) Riemann solvers

reduce to the upwind method. That is, at each interface where f ′(q) > 0, we set

F (Qℓ, Qr) = f(Qℓ), and when f ′(q) < 0, we set F (Qℓ, Qr) = f(Qr). In this work, all

equations we deal with are scalar equations, and hence an upwind method is sufficient

for our purposes.

This completes a method of lines (MOL) discretization for our PDE. The only re-

maining part is to evolve the discrete coefficients through time. This is usually performed

by explicit, high-order Runge-Kutta methods, resulting in a Runge-Kutta discontinuous

Galerkin (RKDG) method.

28

2.1.2 High-Order Time Stepping

For explicit Runge-Kutta integrators, one needs to obey a Courant–Friedrichs–Lewy [23]

(CFL) time step restriction when advancing the unknowns forward in time. For this 1D

problem, the CFL number is defined as the dimensionless quantity,

CFL := max
1≤i≤mx+1

∣
∣
∣
∣

si−1/2∆t

∆x

∣
∣
∣
∣
, (2.22)

where si−1/2 refers to the largest eigenvalue (wave speed) of the flux Jacobian present

at the interface located at i− 1/2. Popular time-integrators include recent, low storage

total variation diminishing (TVD) methods [33, 44]. TVD and strong stability preserving

(SSP) methods help prevent spurious oscillations from developing in the approximate

solution. Roughly speaking, the maximum allowable CFL number scales as 1/(2M − 1)

for an M th order method with a typical Runge-Kutta integrator. Time-stepping is most

often handled via total-variation diminishing Runge-Kutta (TVD-RK) methods. To

illustrate these methods, consider the initial value problem:

d

dt
u = L(u). (2.23)

The first order TVD-RK method is simply the forward Euler method:

Un+1 = Un +∆tL(Un). (2.24)

The second order accurate version is

U⋆ = Un +∆tL(Un), (2.25)

Un+1 =
1

2
Un +

1

2
U⋆ +

1

2
∆tL(U⋆). (2.26)

29

The third order accurate TVD integrator of Shu-Osher [57] is

U⋆ = Un +∆tL(Un), (2.27)

U⋆⋆ =
3

4
Un +

1

4
U⋆ +

1

4
∆tL(U⋆), (2.28)

Un+1 =
1

3
Un +

2

3
U⋆⋆ +

2

3
∆tL(U⋆⋆). (2.29)

2.2 2D Problems on Cartesian Grids

In this section we briefly review the DG method for a general two-dimensional conser-

vation law on a Cartesian mesh. This section will also serve as a continuation of our

introduction to notation used throughout the remainder of this dissertation.

Consider a general 2D conservation law of the form:

q,t + f(q, t,x),x + g(q, t,x),y = 0, in x ∈ Ω ⊂ R
2, (2.30)

with appropriate initial and boundary conditions. In this equation q(t,x) ∈ R
m is the

vector of conserved variables and f(q, t,x), g(q, t,x) ∈ R
m are the flux functions in the

x and y-directions, respectively. We assume that equation (2.30) is hyperbolic, meaning

that the family of m×m matrices defined by

A(q, t,x;n) = n ·
(
∂f

∂q
,
∂g

∂q

)T

(2.31)

are diagonalizable with real eigenvalues for all x and q in the domain of interest and for

all ‖n‖ = 1.

We construct a Cartesian grid over Ω = [ax, bx]× [ay, by], with uniform grid spacing

∆x and ∆y in each coordinate direction. Again, non-uniform meshes may certainly be

considered, however we choose to proceed with a uniform description in order to avoid

30

obfuscating our description of the underlying method. A uniform grid has mesh elements

centered at the coordinates

xi = ax +

(

i− 1

2

)

∆x and yj = ay +

(

j − 1

2

)

∆y, (2.32)

with 1 ≤ i ≤ mx and 1 ≤ j ≤ my.

On this grid we define the broken finite element space

W h =
{
wh ∈ L∞(Ω) : wh|T ∈ P q, ∀T ∈ Th

}
, (2.33)

where W h is shorthand notation for W∆x,∆y. The above expression means that on

each element T , wh will be a polynomial of degree at most q, and no continuity is

assumed across element edges. Each element can be mapped to the canonical element

(ξ, η) ∈ [−1, 1]× [−1, 1] via the linear transformation:

x = xi + ξ
∆x

2
, y = yj + η

∆y

2
. (2.34)

The normalized Legendre polynomials up to degree four on the canonical element can

be written as

ϕ(ℓ) =

{

1,
√
3 ξ,

√
3 η, 3 ξη,

√
5

2

(
3ξ2 − 1

)
,

√
5

2

(
3η2 − 1

)
,

√
15

2
η (3ξ2 − 1),

√
15

2
ξ (3η2 − 1),

√
7

2
(5ξ3 − 3ξ),

√
7

2
(5η3 − 3η),

√
21

2
η (5ξ3 − 3ξ),

√
21

2
ξ (5η3 − 3η),

5

4
(3ξ2 − 1)(3η2 − 1),

105

8
ξ4 − 45

4
ξ2 +

9

8
,

105

8
η4 − 45

4
η2 +

9

8

}

.

These basis functions are orthonormal with respect to the following inner product:

〈

ϕ(m), ϕ(n)
〉

:=
1

4

∫ 1

−1

∫ 1

−1

ϕ(m)(ξ, η)ϕ(n)(ξ, η) dξ dη = δmn. (2.35)

31

We will look for approximate solutions of (2.30) that have the following form:

qh(t, ξ, η)
∣
∣
∣
Tij
:=

M(M+1)/2
∑

k=1

Q
(k)
ij (t)ϕ(k)(ξ, η), (2.36)

where M is the desired order of accuracy in space. The Legendre coefficients of the

initial conditions at t = 0 are determined from the L2-projection of qh(0, x, y) onto the

Legendre basis functions:

Q
(k)
ij (0) :=

〈

qh(0, ξ, η), ϕ(k)(ξ, η)
〉

. (2.37)

In practice, these double integrals are evaluated using standard 2D Gaussian quadrature

rules involving M2 points. See appendix section B for explicit formulas.

In order to determine the Legendre coefficients for t > 0, we multiply conservation law

(2.30) by the test function ϕ(ℓ) and integrate over the grid cell Tij. After the appropriate

integrations-by-part, we arrive at the following semi-discrete evolution equations:

d

dt
Q

(ℓ)
ij = L(ℓ)

ij (Q, t) := N
(ℓ)
ij −

∆F (ℓ)
ij

∆x
−

∆G(ℓ)ij

∆y
, (2.38)

where the interior integral is given by

N
(ℓ)
ij =

1

2

∫ 1

−1

∫ 1

−1

[
1

∆x
ϕ
(ℓ)
,ξ f(q

h, t,x) +
1

∆y
ϕ(ℓ)
,η g(q

h, t,x)

]

dξ dη, (2.39)

and the boundary terms are given by,

∆F (ℓ)
ij =

[
1

2

∫ 1

−1

ϕ(ℓ) f(qh, t,x) dη

]ξ=1

ξ=−1

, (2.40)

∆G(ℓ)ij =

[
1

2

∫ 1

−1

ϕ(ℓ) g(qh, t,x) dξ

]η=1

η=−1

. (2.41)

The integrals in (2.39) can be numerically approximated via standard 2D Gaussian

quadrature rules involving (M − 1)2 points. The integrals in (2.40) and (2.41) can be

32

approximated with standard 1D Gauss quadrature rules involving M points. For each

of these 1D quadrature points, one needs to solve a 1D Riemman problem, where the

left and right states are evaluated by sampling q on the left and right hand side of

the integral. Test functions are always evaluated on the interior of the mesh element.

Equation 2.38 is again evolved through a method of lines (MOL) formulation via a

high-order integrator.

2.3 2D Problems on Unstructured Grids

We also briefly describe how to solve a hyperbolic balance law (2.30) on a polygonal

domain Ω with boundary ∂Ω. Let T h be a mesh with triangular elements Ω, where h is

the longest edge in T h. Consider an element Ti ∈ T h with nodes (xk, yk) for k = 1, 2, 3

centered at

x̄i =
1

3
(x1 + x2 + x3) and ȳi =

1

3
(y1 + y2 + y3) (2.42)

with area

|Ti| :=
1

2

[

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)
]

. (2.43)

Note that we assume that the nodes on each triangle are numbered in a counter-clockwise

fashion so that |Ti| > 0. We map this to the canonical element Tc centered at (ξ = 0, η =

0) with nodes:

(ξk, ηk) =

{(

−1

3
, −1

3

)

,

(
2

3
, −1

3

)

,

(

−1

3
,
2

3

)}

, (2.44)

via the following linear transformation:

x (ξ, η) = x̄i + ξ (x2 − x1) + η (x3 − x1) , (2.45)

y (ξ, η) = ȳi + ξ (y2 − y1) + η (y3 − y1) . (2.46)

33

Let µ(k)(ξ, η) be the set of monomials defined on the canonical element Tc. For example,

up to degree one these monomials are

µ(k)(ξ, η) = {1, ξ, η} . (2.47)

The monomials µ(k)(ξ, η) are converted to an orthonormal basis on Tc via the Gram-

Schmidt process. The result is the basis functions:

ϕ(ℓ)(ξ, η) :=
ℓ∑

k=1

Θℓk µ
(k)(ξ, η), (2.48)

where, again in the example of linear polynomials,

Θ =

1 0 0

0
√
18 0

0
√
6
√
24

. (2.49)

These basis functions are orthonormal with respect to the following inner product:

〈

ϕ(m), ϕ(n)
〉

:= 2

∫ 2

3

− 1

3

∫ 1

3
−ξ

− 1

3

ϕ(m)(ξ, η)ϕ(n)(ξ, η) dη dξ = δmn. (2.50)

Once we have established the basis functions, we proceed as in the Cartesian case.

We look for approximate solutions of (2.30) that have the following form:

qh
(

t, x (ξ, η) , y (ξ, η)
)∣
∣
∣
Ti
:=

M(M+1)/2
∑

k=1

Q
(k)
i (t)ϕ(k)(ξ, η), (2.51)

whereM is the desired order of accuracy in space. After multiplication by test functions

and integrations-by-part, we end up with a semi-discrete system of the form:

d

dt
Q

(ℓ)
i = N

(ℓ)
i −

3∑

e=1

F
(ℓ)
e i , (2.52)

where N
(ℓ)
i is again the contribution from the element interior and F

(ℓ)
e i are the numerical

flux contributions from the element boundary.

34

Chapter 3

Semi-Lagrangian Methods for 1+1

Vlasov-Poisson

In this chapter, we describe a semi-Lagrangian discontinuous Galerkin (SLDG) method

for the (1+1)D Vlasov-Poisson system. Our novel SLDG method simultaneously accom-

plishes all of the following:

1. Unconditionally stable;

2. Mass conservative;

3. Positivity-preserving;

4. 4th order accurate in time;

5. 5th order accurate in space.

Unconditional stability is attained by turning to semi-Lagrangian methods. High-order

spatial accuracy is accomplished by appealing to a DG representation for the solu-

tion. High-order time accuracy is accomplished through high-order split methods. Mass

conservation is essentially automatic because DG methods are a type of finite volume

method. In addition, a recent positivity preserving limiter [66] is modified to accommo-

date our method.

35

3.1 Introduction

Our method uses, as a starting point, the method developed by Cheng and Knorr for

solving the Vlasov equations. Cheng and Knorr [12] developed a second order accurate

scheme for Vlasov Poisson via Strang operator splitting [60]. Operator split methods

are described in §3.3.3, and the scheme developed by Cheng and Knorr is summarized

in Algorithm 3.1. Our result uses Cheng and Knorr’s method as its starting point.

We add in a high-order spatial representation via a DG framework, where each split

direction is described in §3.3. We also demonstrate that it is possible to achieve high-

order accuracy via high-order splitting methods, which are described in §3.3.3. These

high-order split methods necessitate a high-order method for expanding the electric field,

which is described in §3.4.2. In addition, we adapt a high-order positivity preserving

limiter, presented in section §3.3.4, to fit our method.

3.2 Cheng and Knorr Splitting

Cheng and Knorr realized that if we momentarily freeze the electric field in time, the

Vlasov equation (1.19) can be viewed as an advection equation of the following form:

f,t + a(v) · f,x + b(x) · f,v = 0. (3.1)

This equation can be handled very efficiently if split into the following two sub-problems:

Problem A: f,t + a(v) · f,x = 0,

Problem B: f,t + b(x) · f,v = 0.

The key benefit of this splitting is that each operator is now a constant coefficient

advection equation (i.e., the transverse coordinate acts only as a parameter), each of

36

which can be handled very simply with a variety of spatial discretization and semi-

Lagrangian time-stepping. The down side of this approach, of course, is the introduction

of splitting errors.

It is worth pointing out that the electric field computed in Step 2, En+ 1

2 , is second

order accurate in time, even though it is computed after advection in the x variables

only. This fact is often left out of papers that use this splitting scheme, which we now

prove.

Algorithm 3.1 Cheng and Knorr [12] operator split algorithm.

1. 1
2
∆t step on f,t + v · f,x = 0.

2. Solve −∇2φ = ρn+
1

2 − ρ0, and compute En+ 1

2 = −∇φ.

3. ∆t step on f,t + En+ 1

2 · f,v = 0.

4. 1
2
∆t step on f,t + v · f,x = 0.

Claim. Assuming that the current solution at time t = tn is known exactly, and that

each step in Algorithm 3.1 is carried out exactly in space, velocity, and time, the density

computed in Step 2 is second order accurate in time:

ρn+
1

2 = ρ

(

tn +
∆t

2
,x

)

+O
(
∆t2

)
.

This also implies that the electric field in Step 2 is second order accurate in time:

En+ 1

2 = E

(

tn +
∆t

2
,x

)

+O
(
∆t2

)
.

Proof. By assumption the PDF after the first step satisfies the following relationship:

f̃ (x,v) := f

(

tn,x− ∆t

2
v,v

)

.

37

We integrate this relationship in velocity to compute the density at time tn + ∆t
2
:

ρn+
1

2 :=

∫

v

f̃ (x,v) dv =

∫

v

f

(

tn,x− ∆t

2
v,v

)

dv

=

∫

v

f (tn,x,v) dv − ∆t

2
∇x ·

{∫

v

vf (tn,x,v) dv

}

+O(∆t2)

= ρn − ∆t

2
∇x · (ρn un) +O(∆t2).

Finally, we use the fact that

ρn,t = −∇x (ρ
nun) ,

in order to assert that

ρn+
1

2 = ρn +
∆t

2
ρn,t +O(∆t2) = ρ

(

t+
∆t

2
,x

)

+O(∆t2),

which proves the claim.

3.3 SLDG Schemes for the Advection Equation

At the heart of a semi-Lagrangian solver for the Vlasov-Poisson system lies a method of

solving a variable coefficient advection equation of the form,

f,t + a(v)f,x + b(t, x)f,v = 0. (3.2)

The correct building blocks for a full solver include a 1D constant coefficient solver, a

quasi-1D solver, splitting methods to glue the problems together, and finally, a method

for accommodating time dependence. Beyond that, Poisson solvers need to be developed,

and a method for evaluating the field, b(t, x) needs to be added. But first, a simpler

problem lies in creating a reliable solver for the 1D constant coefficient problem, to which

we presently turn.

38

3.3.1 1D Constant Coefficient Problem

The 1D constant coefficient advection equation is given by

f,t + uf,x = 0; f(0, x) = f0(x). (3.3)

The domain which we solve this problem on is (t, x) ∈ (R+,R). The initial condition is

prescribed by f(0, x) = f0(x), which is a known function. The exact, analytic solution

to this problem is simply f(t, x) = f0(x− ut). For simplicity of exposition, we assume

that u > 0; the extension to the case u < 0 is straightforward.

A simple, high-order accurate, and unconditionally stable algorithm to update this

solution can be developed based on the following two steps:

1. Exactly advect the initial condition over a time step ∆t:

f (t+∆t, x) = f (t, x− u∆t)

2. Project this solution back onto the mesh Ti.

This process is illustrated in Figure 5. Given a starting time tn and final time

tn+1 = tn +∆t, the unknowns are defined through:

F
(ℓ)
i

(
tn+1

)
=

1

∆x

∫ xi+1/2

xi−1/2

ϕ
(ℓ)
1D(ξ)f(t

n+1, x) dx

=
1

∆x

∫ xi+1/2

xi−1/2

ϕ
(ℓ)
1D(ξ)f(t

n, x− u∆t) dx.
(3.4)

In order to evaluate (3.4), we split the integral up into two parts. The numerical update

is then defined by:

F
(ℓ)
i =

1

2

M∑

k=1

F
(k)
i−1−j(t

n)

∫ −1+2ν

−1

ϕ
(k)
1D(ξ + 2− 2ν)ϕ

(ℓ)
1D(ξ) dξ

+
1

2

M∑

k=1

F
(k)
i−j(t

n)

∫ 1

−1+2ν

ϕ
(k)
1D(ξ − 2ν)ϕ

(ℓ)
1D(ξ) dξ,

(3.5)

39

(a) (b)

(c)

Figure 5: Illustration of the shift + project method for solving the constant coefficient
advection equation in 1D as described in §3.3.1. Panel (a) shows piecewise polynomial
initial data; Panel (b) shows the initial data shifted by some amount (i.e., the exact
evolution of the initial data); and finally, Panel (c) shows the solution after it has been
re-projected back onto the original piecewise polynomial basis.

where

j :=

⌊

u∆t

∆x

⌋

and ν :=
u∆t

∆x
− j. (3.6)

Here ⌊·⌋ denotes the floor operation1 and 0 ≤ ν < 1. By construction, update (3.5) is

unconditionally stable independent of the polynomial order of the spatial discretization.

The integrals in equation (3.5) can be evaluated exactly. For example, in the case of

piecewise constants and j = 0, (3.5) is nothing more than the first-order upwind scheme:

F
(1),n+1
i = F

(1),n
i − ν

(

F
(1),n
i − F (1),n

i−1

)

. (3.7)

In the case of piecewise linear polynomials and j = 0, the scheme can be written as

1This function takes a real input and rounds down to the largest integer that is smaller than or equal

to the input.

40

follows:

F
(1),n+1
i = F

(1),n
i − ν

([

F
(1),n
i +

√
3F

(2),n
i

]

−
[

F
(1),n
i−1 +

√
3F

(2),n
i−1

])

+
√
3 ν2

(

F
(2),n
i − F (2),n

i−1

)

,

(3.8)

F
(2),n+1
i = F

(2),n
i +

√
3 ν

([

F
(1),n
i −

√
3F

(2),n
i

]

−
[

F
(1),n
i−1 +

√
3F

(2),n
i−1

])

−
√
3 ν2

(

F
(1),n
i − F (1),n

i−1 − 2
√
3F

(2),n
i−1

)

+ 2ν3
(

F
(2),n
i − F (2),n

i−1

)

.

(3.9)

In order to compute the integrals presented in (3.5), one needs to know u,∆x and

∆t, because these determine how far information has shifted, as well as the location of

the discontinuity, ν. In the semi-Lagrangian literature, one often refers to a method as

either a forward, or a backward semi-Lagrangian method. We prefer to think of this as

both a forward, as well as a backward method, in the following sense: discontinuities

are propagated forwards in time, and function values are retraced backwards in time.

In order to formulate a quadrature rule which will integrate (3.5) exactly, the following

two steps need to be enacted:

1. Forward: Push the discontinuities in the solution forward in time, in order to

determine where the discontinuities lie for the projection step lie. After doing this

step, one may lay down a list of quadrature points. For anM th order method, this

requiresM points on the left half, ξL, andM on the right half, ξR with appropriate

weights, ωL and ωR.

2. Backward: After the quadrature points are known, solution values at each point

f(tn+1, ξL,R) can be determined by tracing characteristics backwards in time.

This process is illustrated in Figure 6.

We now describe exactly how the integrals presented in (3.5) can be exactly evalu-

ated using Gaussian quadrature. For ease of presentation, we will restrict ourselves to

41

Figure 6: Illustration of the forward and backward nature of the proposed semi-
Lagrangian scheme. First, the cell edges are propagated forward from their initial time
to their final time. Once these locations are known, Gauss-Legendre quadrature points
are placed between the old cell edges and the new cell edges. In order to find solution
values at these Gauss-Legendre points, we trace backwards along the characteristics to
the initial time.

describing the computation of:

Il :=

∫ −1+2ν

−1

ϕ(ξ)f(tn+1, x(ξ)) dξ and Ir :=

∫ 1

−1+2ν

ϕ(ξ)f(tn+1, x(ξ)) dξ. (3.10)

Let {ω1, ω2, . . . , ωM} denote M 1D quadrature weights, together with their associated

quadrature points, {ξ1, ξ2, . . . , ξM} ⊂ [−1, 1]. Both the left interval [−1,−1 + 2ν] and

right intervals, [−1 + 2ν, 1] can be transformed into the interval [-1,1] by defining left

and right quadrature points as:

ξLm = νξm + (−1 + ν); ξRm = (1− ν) ξm + ν (3.11)

together with their associated quadrature points:

ωL
m = νωm; ωR

m = (1− ν)ωm. (3.12)

We note that in the case of ν = 0, the left hand integral vanishes, and all left hand

quadrature points are at ξ = −1. In the case where ν = 1, i.e. a CFL number of 1,

42

the right hand integral vanishes, and each right hand quadrature point gets mapped to

ξ = 1. The single update formula, with exact integration becomes,

F
(k),n+1
i =

M∑

m=1

ωL
mϕ

(k)(ξLm)f(t
n+1, x(ξLm)) + ωR

mϕ(ξ
R
m)f(t

n+1, x(ξRm)). (3.13)

Function values are evaluated by tracing quadrature points back in time:

f(tn+1, x(ξRm)) = f(tn, x(ξRm)− u∆t) = f̃h
i−j(t

n, ξRm − 2ν), (3.14)

f(tn+1, x(ξLm)) = f(tn, x(ξLm)− u∆t) = f̃h
i−j−1(t

n, ξLm + 1(1− ν)). (3.15)

Here, we are using the notation f̃h(t, ξ) := fh(t, x)|Ti . Each of these values can be

computed by evaluating the basis functions with appropriate weights:

f̃h
i (t

n, ξ) =
M∑

k=1

F
(k),n
i ϕ(k) (ξ) . (3.16)

The index j and the CFL number ν refer to the index shift and how far information

has traveled; these two quantities have already been defined in (3.6). In terms of each

canonical grid cell, the location of the discontinuity for the new cell is ξ = −1 + 2ν.

When we plug in ξL = −1 + 2ν, the location of the old ξ is then ξ = +1, which is

expected because we are supposed to be evaluating f at the right hand endpoint of a

grid cell. When we plug in ξR = −1 + 2ν, the location of the old ξ is ξ = −1 which is

also expected, because we’re supposed to be evaluating f at the left half of a grid cell.

Time Dependent Velocities

We will shortly describe how this extends to a 2D problem, but first we would like to

describe how one can hand a time dependent velocity field. The case where the velocity

field, u = u(t) also depends on time can also be solved to high-order, using essentially

43

the same scheme. The key to high-order for this solver rests on being able to accurately

and efficiently retrace quadrature points forward and backwards in time. For example,

the exact solution to

f,t + u(t)f,x = 0, f(0, x) = f0(x), (3.17)

is no longer f(t, x) = f0(x − u(t)t), but rather f(t, x) = f0

(

x−
∫ t

0
u(s) ds

)

. In the

case where u(t) = u is constant, this reproduces the exact solution from earlier. In

practice, code written for the constant coefficient case can be recycled, provided the

correct definitions are placed. If we set ū := 1
∆t

∫ ∆t

0
u(s) ds, and take a single time step

using code written to handle (3.3), with ū in place of u, then this code will exactly trace

quadrature points backwards and forwards in time to their correct location. Of course,

we have delayed describing exactly how the velocity integral,
∫
u(s) ds is computed,

but one may choose to apply high-order quadrature if intermediate velocity values can

be computed, or in the case of a known function, this may be evaluated exactly. We

now turn towards describing how this method can be utilized to build a high-order, 2D

advection solver.

3.3.2 Quasi 1D Advection Equation

Extension of the exact integration formulas from the 1D problem to a 2D advection

equation is not necessarily straightforward with a DG spatial representation, and one of

the novel ideas presented by Rossmanith and Seal [53] is the spatial discretization for

the semi-Lagrangian problem. One difficulty encountered with a DG representation that

is different than that of Christlieb and Qiu [49] is that the basis functions also depend

on the transverse direction.

44

The next building block is a simple quasi-1D solver. This will create the basis for a

fully working 2D solver. Here, we define our ‘quasi-1D’ problem as:

f,t + u(v)f,x = 0; f(0, x, v) = f0(x, v), (3.18)

and the domain we solve this on is (t, x, v) ∈ R
+× [a, b]×R. In a DG representation, the

basis functions live on grid elements which depend on the variable being advected, x, as

well as the transverse variable, v, which defines the velocity field. As time is advanced,

each rectangular grid element will undergo shearing. This stands in stark contrast to the

1D problem, where grid cells experienced rigid translation. In the case of u(v) = v, this

is a linear shear, but for a more generic velocity field, this shear can take on a much more

complicated structure. We present our complete algorithm in Table 3.2, to which we

presently direct the reader. Observe that this algorithm accommodates generic shearing

for the velocity fields.

We now prove that the quasi-1D update (Algorithm 3.2) is mass conservative.

Theorem 1. The update for the quasi-1D problem is numerically mass conservative.

Proof. Let Tij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] denote a 2D mesh element, and let

Ci = [xi−1/2, xi+1/2] denote the corresponding 1D grid cell. Suppose {v1, v2, ...vM} and

{ω1, ω2, ...ωM} denote the 1D quadrature weights for evolving each row in the update.

For a fixed time t, the total mass in the jth row is given by

∫ vj+1/2

vj−1/2

∫ ∞

−∞
f(t, x, v) dx dv =

∑

i

∫∫

Tij
f(t, x, v) dx dv = ∆x∆v

∑

i

F
(1)
ij (t). (3.22)

The last equality follows by orthogonality of the basis functions. After dividing this by

45

Algorithm 3.2 Proposed method for solving quasi-1D problem (3.18).

0. Initial Projection: Start with the Galerkin representation of the solution. When
restricted to a single cell Tij, this is is simply

fh(t, x, v)|Tij =
M(M+1)/2

∑

k=1

F
(k)
ij ϕ

(k)(ξ, η),

where the coefficients F
(k)
ij are given by the projection provided in (2.37).

1. Convert to 1D Problems: For each row j, consider M lines defined by M
quadrature points {vj1, vj2, . . . , vjM}. For each of these lines, project 2D Legendre
moments onto 1D moments via

F
(l)
1D,ijk(t

n) :=
1

∆x

∫ xi+1/2

xi−1/2

ϕ
(l)
1D(ξ(x)) f

h(tn, x, vjk) dx. (3.19)

Each 1D integral can be evaluated exactly using M quadrature points because fh is
a polynomial of degree at most M − 1 when restricted to a single line, and φ

(k)
1D is

a polynomial of degree at most M − 1. (C.f. Figure 7 for a visual illustration for
M = 2).

2. Evolve 1D Problems: For each line, k = 1, 2, . . . ,M , take a step of length ∆t on
f,t+u(vjk)f,x = 0, using the 1D method and produce f̃ ∗

i,jk whose coefficients are given

by F
(l)
1D,ijk(t

n+1). In the case of VP, u(v) = v, however this algorithm is intentionally
written to accommodate generic shearing. Note that there are a total of mv ·M such
lines to advance, because each row j produces a total of M lines to advance.

3. Integrate 1D Problems: Integrate the 1D coefficients up to 2D coefficients.
This is accomplished through a tensor product of M2 quadrature points:

F
(ℓ)
ij (tn+1) =

M∑

k=1

ωk

2

∫ 1

−1

ϕ(ℓ)(ξ, ηk)f̃
∗
i,jk(ξ) dξ (3.20)

=
M∑

l=1

M∑

k,m=1

ωkωm

4
F

(l)
1D,ijk(t

n+1)ϕ(ℓ)(ξm, ηk)φ
(l)
1D(ξm) (3.21)

46

(a) (b)

Figure 7: Illustration of the shift + project method for solving the quasi-1D variable
coefficient advection equation in 2D as described in §3.3.2 . Panel (a) shows a depiction
of initial conditions using M = 2 slices of the solution. Each slice is represented via
1D polynomial moments. The top picture represents each slice, and the bottom picture
represents a top down view of the solution. Panel (b) shows the initial data shifted
by some amount (i.e., the exact evolution of the initial data); note that each equation
receives a different velocity speed, and hence the edge of each cell is distorted by some
amount. We note that this is a cartoon depiction of a shift where the CFL number is
less than one, but there is no reason that information can’t shift farther than that. C.f.
Figure 5 for the analogous 1D pictures; here we have exactly 2 of these problems to
solve. The next step in the algorithm is the projection step, back onto 1D basis function
followed by finally integrating the 1D problems back up to the 2D basis functions.

47

∆x∆v, total mass after a single update is then

∑

i

F
(1)
ij (tn+1) =

∑

i

1

∆x∆v

∫∫

Tij
fh(tn+1, x, v) dx dv (3.23)

=
∑

i,m

ωm

∆x

∫

Ci

fh(tn+1, x, vm) dx (3.24)

=
∑

i,m

ωm

∆x

∫

Ci

fh(tn, x, v) dx (3.25)

=
∑

i

1

∆x∆v

∫∫

Tij
fh(tn, x, v) dx dv (3.26)

=
∑

i

F
(1),n
ij . (3.27)

Line (3.24) follows because integrating ϕ(x, vm) along a fixed row specified by ym is exact

when using enough quadrature points. Line (3.25) follows because the 1D method with

a 1D update conserves mass. Lines (3.26) and (3.27) follow for the same reasons the

first two lines are true. That is, the method exactly integrates the sum of each row, and

the basis functions are orthogonal. If we sum (3.23) over all rows j, we obtain numerical

mass conservation, that is,

∫∫

x,v∈R
fh(tn+1, x, v) dx dv =

∫∫

x,v∈R
fh(tn, x, v) dx dv. (3.28)

Now that we have a method for updating a quasi-1D problem, we can now solve two

equations:

f,t + a(v)f,x = 0; f,t + b(x)f,v = 0. (3.29)

Obviously, the roles of x and v need to be swapped in algorithm 3.2, and the projection

step onto 1D problems is replaced by swapping the roles of ξ and η. Splitting methods

allow us to glue these two problems together.

48

3.3.3 Operator Split Methods

One of the goals of this work is to demonstrate that high-order splitting methods can

be applied to the Vlasov-Poisson system. Before presenting high-order split methods,

we first provide motivation for where these methods come from by reviewing simple, low

order split methods.

Consider a time-dependent problem where the right-hand side is written as the sum

of two differential operators A and B:

q,t = A(q) + B(q). (3.30)

We note that the advection equation, (3.2) is one such example, with A(q) = −a(v)f,x

and B(q) = −b(t, x)f,v. In order to analyze errors incurred in various splitting methods,

it will be useful to define the commutator of two operators as [A,B] = AB −BA which

is zero if and only if the operators commute.

Low Order Operator Splitting

The most basic splitting methods is that of Lie-Trotter [61], which is a two stage method,

and is first order accurate:

Stage 1: ∆t step on q,t = A (q) ,

Stage 2: ∆t step on q,t = B(q).

In the case where [A,B] = 0, then these operators commute and this method will produce

the exact solution, provided that each stage is integrated exactly. However, when the

operators do not commute, a splitting error is introduced.

49

The idea behind high-order splitting can be illustrated through analyzing where the

low order split methods come from. In the case where A and B are linear operators,

then the exact solution to (3.30) is simply q(t) = e(A+B)tq(0). Here, the exponential

operator is defined through its Taylor expansion:

eAt :=
∞∑

n=0

Antn

n!
; An = A ◦ A ◦ · · · ◦ A

︸ ︷︷ ︸

n-times

.

When one compares the series for e(A+B)t to that of the product of eAt and eBt, we see

that

e(A+B)∆t = I + (A+ B)∆t+ (A+ B)2 ∆t
2

2!
+O

(
∆t3

)
(3.31)

= I + (A+ B)∆t+
(
A2 +AB + BA+ B2

) ∆t2

2!
+O

(
∆t3

)
. (3.32)

Likewise, the product of eA∆t and eB∆t becomes:

eA∆teB∆t =

(

I +A∆t+A2∆t
2

2!
+O

(
∆t3

)
)(

I + B∆t+ B2∆t
2

2!
+O

(
∆t3

)
)

(3.33)

= I + (A+ B)∆t+
(
A2 + 2AB + B2

) ∆t2

2!
+O

(
∆t3

)
. (3.34)

If we subtract these two, we see that

eA∆teB∆t − e(A+B)∆t = (AB − BA) ∆t
2

2!
+O

(
∆t3

)
. (3.35)

By combining products of the two exponentials, we were able to knock out the ∆t term,

and end up with a first-order accurate method. The error incurred after a single time

step is dominated by [A,B]∆t2/2. In order to cancel the BA term, one needs to have a

B on the left side of an A. Through clever manipulation of time steps {s1, s2, . . . , sn},

it’s easy to envision constructing high-order split methods of the form:

e(A+B)∆t = eAs1∆teBs2∆teAs3∆t · · · eAsn∆t +O(∆tM+1). (3.36)

50

One such method is known as Strang splitting [60], with s1 = 1/2, s2 = 1 and s3 = 1/2.

This method is a second order and requires three stages:

Stage 1:
∆t

2
step on q,t = A (q) ,

Stage 2: ∆t step on q,t = B(q),

Stage 3:
∆t

2
step on q,t = A (q) .

High-order Operator Splitting

A fourth-order accurate operator splitting technique for such systems was developed by

Forest and Ruth [31] and by Yoshida [63, 64]. If we define the following two constants:

γ1 =
1

2− 21/3
≈ 1.351207191959658, (3.37)

γ2 = −
21/3

2− 21/3
≈ −1.702414383919315, (3.38)

then the fourth-order splitting approach of [31, 63, 64] can be written as a composition

of the following seven stages:

Stage 1:
γ1∆t

2
≈ 0.6756∆t step on q,t = A (q) ,

Stage 2: γ1∆t ≈ 1.3512∆t step on q,t = B(q),

Stage 3:
(γ1 + γ2)∆t

2
≈ −0.1756∆t step on q,t = A(q),

Stage 4: γ2∆t ≈ −1.7024∆t step on q,t = B(q),

Stage 5:
(γ1 + γ2)∆t

2
≈ −0.1756∆t step on q,t = A(q),

Stage 6: γ1∆t ≈ 1.3512∆t step on q,t = B(q),

Stage 7:
γ1∆t

2
≈ 0.6756∆t step on q,t = A (q) .

51

s1, s13 ≈ 0.0829844064174052

s2, s12 ≈ 0.245298957184271

s3, s11 ≈ 0.396309801498368

s4, s10 ≈ 0.604872665711080

s5, s9 ≈ −0.0390563049223486
s6, s8 ≈ −0.35017162289535098
s7 ≈ 0.11952419401315084

Table 1: Coefficients for a high-order Runge-Kutta-Nyström operator split method.
Each si refers to a multiple of ∆t from equation (3.36). The odd s’s are the stages
required for operator A, and the even s’s are the stages required for operator B. Note
that there are more stages here, but the negative time steps are smaller than those of
the Yoshida split method. We note that stages 6, 7 and 8 are explicitly defined by
s6 =

1
2
− (s2 + s4) and s7 = 1− 2 (s1 + s3 + s5).

We note that this splitting approach requires some steps larger than ∆t: Step 2 and

Step 6; as well as backward steps: Step 3, Step 4, and Step 5.

Other variants of high-order splitting methods exist; often they involve smaller time-

steps on sub-stages at the expense of adding more stages. One such method attributed

to Blanes and Moan [11], and recently investigated by Crouseilles [27] for the Vlasov-

Poisson equation, is a 13 stage method whose coefficients for equation (3.36) are pre-

sented in Table 1. By and large, these high order split methods have seen little attention

from the hyperbolic PDE community because of the negative time steps involved. In

fact, there are provably no methods with order larger than 2 which contain no nega-

tive time steps [56]. This can be seen by observing the order conditions necessary for

constructing high-order split methods.

52

3.3.4 Positivity-preserving limiter

In general, high-order methods do not guarantee that the approximate solution remains

positive, even though the exact solution is positive. The culprit for this violation is the

higher-order moments. That is, even if F
(1)
ij ≥ 0, the second moment F

(2)
ij can allow the

solution to reach negative values. After evolution, these negative values can poison the

cell average, and one may observe negative values. For our purposes, we attain positivity

in the mean via two steps:

1. Each advection-projection step maintains positivity in the mean, provided that

the solution is positive at a finite set of select points; and

2. A mechanism needs to be in place which guarantees that the solution is positive

at these points. In our application, this mechanism may be applied as a ‘pre-

processing’ step, and we are also guaranteed that this doesn’t destroy order of

accuracy.

The following theorem guarantees that the solution retains positivity in the mean,

and it also tells us exactly which collection of points need to be positive.

Theorem 2 (Positivity in the mean). Let M denote the spatial order of accuracy and

let

K :=

⌈
M

2

⌉

, (3.39)

where ⌈·⌉ denotes the ceiling operation2. Let fh(tn, x, v) be a function defined on the

broken finite element space (2.33) with q =M − 1, and let

f̃h
ij(t

n, ξ, η) := fh(tn, x, v)
∣
∣
∣
Tij
, (3.40)

2This function takes a real input and rounds up to the smallest integer that is larger than or equal

to the input.

53

where (ξ, η) ∈ [−1, 1]× [−1, 1] are the variables on the canonical element. Assume that

f̃h
ij(t

n, ξ, η) is non-negative at all of the following 2MK points:

(ξ, η) =
(
ξLℓjk, ηk

)
, where ξLℓjk := νjk (1− sℓ) + sℓ, (3.41)

(ξ, η) =
(
ξRℓjk, ηk

)
, where ξRℓjk := νjk (1 + sℓ)− 1, (3.42)

∀k = 1, . . . ,M and ∀ ℓ = 1, . . . , K. In the above expression, νjk is given by the fractional

CFL number for each 1D line. Specifically,

Ijk :=

⌊

u(vjk)∆t

∆x

⌋

and νjk :=
u(vjk)∆t

∆x
− Ijk. (3.43)

Each sℓ denotes the ℓ
th quadrature point in the standard 1D Gauss-Legendre rule with K

points, and ηk denotes the kth quadrature point in the standard 1D Gauss-Legendre rule

with M points.

If one time-step in one coordinate direction is taken using the semi-Lagrangian

scheme as described in Algorithm 3.2 with fh(tn, x, v) as the initial condition, then the

approximate solution at the end of this time-step will have a non-negative average in

every element (independent of the time step ∆t):

F
(1),new
ij ≥ 0, ∀ Tij ∈ Ωh.

Proof. Using the notation of Algorithm 3.2, the update for the mean-value in element

Tij can be written as

F
(1),new
ij (tn+1) =

M∑

k=1

ωk

2

∫ 1

−1

f̃ ∗
i,jk(ξ, ηk) dξ (3.44)

Because each ωm ≥ 0, it suffices to show that for all i, and each equation vjk, we have

∫ 1

−1

f̃ ∗
i,jk(ξ) dξ ≥ 0. (3.45)

54

We define the left and right polynomials by

PR
ijk(ξ) := f̃h

i−1−Ijk j(t
n, ξ + 2− 2νjk, ηk) for ξ ∈ [−1,−1 + 2νjk] ,

PL
ijk(ξ) := f̃h

i−Ijk j(t
n, ξ − 2νjk, ηk) for ξ ∈ [−1 + 2νjk, 1] .

Since PL
ijk(ξ) and P

R
ijk(ξ) are polynomials of degree at mostM−1, we can exactly evaluate

integrals of the above polynomials exactly via Gauss-Legendre quadrature rules using

K points (where K is defined in (3.39)). The update for the 1D problem on the kth

equation for the jth row simply involves evaluating the above polynomials over specified

quadrature points. That is,

∫ 1

−1

f̃ ∗
i,jk :=

∫ −1+2νjk

−1

PL
ijk(ξ) dξ +

∫ 1

−1+2νjk

PR
ijk(ξ) dξ.

Since PL
ijk(ξ) and P

R
ijk(ξ) are polynomials of degree at most M − 1, we can exactly

evaluate each of the above integrals via Gauss-Legendre quadrature rules using K points

(where K is defined in (3.39)):

F
(1),new
ij =

1

2

M∑

k=1

ωk

{
K∑

ℓ=1

̟ℓP
R
ijk

(
ξRℓjk

)
+

K∑

ℓ=1

̟ℓP
L
ijk

(
ξLℓjk

)

}

,

where the ̟ℓ’s are the standard quadrature weights for Gauss-Legendre quadrature with

K points.

To conclude our proof, we note that since all of the quadrature weights in the above

expression for F
(1),new
ij are strictly positive, and therefore we obtain positivity in the

mean,

F
(1),new
ij ≥ 0,

if f̃h
ij(t

n, ξ, η) is non-negative at all of the 2MK points defined in (3.41)–(3.42).

55

One of the key assumptions in the above proof of positivity in the mean is the fact

that solution prior to a time-step must be positive at all of points defined in (3.41)–(3.42).

We show in this subsection how to limit the solution, including the initial condition, so

that we achieve positivity at all of these points. The key piece of technology necessary

for achieving this positivity is a modification of the limiter of Zhang and Shu [66]. This

limiter is simple to implement and is completely local to each element.

The solution on some element T can be written as

fh(ξ, η) :=

M(M+1)/2
∑

ℓ=1

F (ℓ) ϕ(ℓ)(ξ, η), (3.46)

where M is the desired order of accuracy in space. We assume that the element average

is non-negative: F (1) ≥ 0. We sample this solution on a set of test points:

(ξi, ηi) ∈ [−1, 1]× [−1, 1] for i = 1, 2, . . . , P, (3.47)

and define:

m := min
i=1,...,P

fh(ξi, ηi). (3.48)

Note that m ∈ (−∞, F (1)].

The limited solution is defined as follows:

f̃h(ξ, η) := F (1) + θ ·
(
fh(ξ, η)− F (1)

)
(3.49)

where

θ = min

{

1,
F (1)

F (1) −m

}

. (3.50)

Because ϕ(1) = 1, the limited solution in (3.49) has an identical cell average to the non-

limited solution, regardless of θ. If write fh(ξ, η) through its Legendre expansion, we

see:

f̃h(ξ, η) = F (1) + θ ·

M(M+1)/2
∑

ℓ=2

F (ℓ)ϕ(ℓ)(ξ, η)

 . (3.51)

56

Note that 0 ≤ θ ≤ 1 and that

θ =

1 if 0 ≤ m ≤ F (1),

∈ [0, 1) if m < 0.

(3.52)

This means that if the solution is already non-negative at each of the test points, then

this limiter does not alter the solution. On the other hand, if the solution on the element

is negative at any of the test points, then the high-order corrections, which deviate from

being positive by at mostO(∆xM+1), are damped until the solution is again non-negative.

We are guaranteed that as θ → 0, which is only the case for extremely course grids and

very inaccurate solutions, the solution will eventually become non-negative on the entire

element since F (1) ≥ 0. In the case where fh ≥ 0 over the entire element, θ = 1 and

hence the limiter does absolutely nothing. One incredibly nice property of this limiter

is the fact that it doesn’t destroy order of accuracy.

We now state this theorem, attributed to Zhang & Shu [66, 67].

Theorem 3. Suppose fh is an approximate solution to f comprised of polynomials of

degree M − 1. The positivity preserving limiter expressed in equations (3.48) through

(3.50) does not affect order of accuracy. That is, provided ‖fh − f‖ = O
(
hM

)
, then

‖f̃h − f‖ = O
(
hM

)
, where f is the exact solution. Moreover, fh(xi, vj) ≥ 0 at each

point (xi, vj) that is sampled. Here, for simplicity, we choose to use the L∞ norm,

‖g‖ := max(x,v)∈Tij |g(x, v)|.

Proof. Here we present an outline the proof, which consists of three stages. For complete

details, see Lemma 2.3 in Zhang & Shu [67].

1. The computed value of θ is larger than the ‘ideal’ value which uses the exact

57

minimum of the approximate solution:

mex := min
(x,v)∈Tij

fh(x, v); θid = min

{

1,
F (1)

F (1) −mex

}

.

The ideal value θid changes the solution more than the computed value of θ, and

therefore it suffices to prove the theorem in the case where we have access to the

exact minimum of the solution.

2. The amount that the approximate solution deviates from positivity is at most

O(hM). This is because the approximate solution is high order accurate, and the

exact solution is non-negative. Applying the ideal value θid lifts the minimum

value up by the exact amount it needs to move, and no more. In fact, out of all

points that get moved up, this point moves the farthest.

3. The amount that any select point gets moved down is bounded by a constant,

depending only on the choice of the polynomial representation space, times the

largest amount that points get moved up.

3.4 Semi-Lagrangian Vlasov Poisson

Now that we have a full method for solving split problems, as well as a method for gluing

the solutions together via high-order splitting, we essentially have a full Vlasov solver.

The one necessary ingredient missing for a complete numerical scheme is a description

of a Poisson solver, and in addition, in order to accommodate high-order splitting, we

need a method of evaluating the electric field at intermediate time values. These two

ingredients are described in this section.

58

3.4.1 1D Poisson solver

We describe in this section how to efficiently solve the Poisson equation in Step 2 of

the operator splitting approach shown in Algorithm 3.1. Consider first the 1D Poisson

equation on x ∈ [a, b] with mixed boundary conditions:

−φ,x,x = ρ(x)− ρ0, −φ,x(a) = γ, φ(b) = β. (3.53)

We apply to the Poisson equation the so-called local discontinuous Galerkin method

(LDG) (see [1, 37] for two reviews of various approaches for solving Poisson equations

via the DG method), and rewrite it as a system of two equations:

E,x = ρ(x)− ρ0, (3.54)

−φ,x = E(x). (3.55)

We expand φ(x), E(x), and ρ(x) on each element as follows:

{

φh(x), Eh(x), ρh(x)− ρ0
}
∣
∣
∣
∣
Ti
=

M∑

k=1

{

Φ
(k)
i , E

(k)
i , P

(k)
i

}

ϕ
(k)
1D(ξ), (3.56)

where M is the desired order of accuracy.

We multiply (3.54) and (3.55) each by ϕ
(ℓ)
1D(ξ) and integrate from ξ = −1 to ξ = 1:

1

∆x

[

ϕ
(ℓ)
1DE

h
]1

−1
− 1

∆x

∫ 1

−1

ϕ
(ℓ)
1D,ξ E

h dξ = P
(ℓ)
i , (3.57)

− 1

∆x

[

ϕ
(ℓ)
1D φ

h
]1

−1
+

1

∆x

∫ 1

−1

ϕ
(ℓ)
1D,ξ φ

h dξ = E
(ℓ)
i . (3.58)

Next, we apply the following one-sided rules in order to evaluate φh and Eh at the grid

59

interfaces:

φh(−1) :=
M∑

k=1

ϕ
(k)
1D(−1)Φ

(k)
i =

M∑

k=1

(−1)k+1
√
2k − 1 Φ

(k)
i , (3.59)

φh(1) :=
M∑

k=1

ϕ
(k)
1D(−1)Φ

(k)
i+1 =

M∑

k=1

(−1)k+1
√
2k − 1 Φ

(k)
i+1, (3.60)

Eh(−1) :=
M∑

k=1

ϕ
(k)
1D(1)E

(k)
i−1 =

M∑

k=1

√
2k − 1 E

(k)
i−1, (3.61)

Eh(1) :=
M∑

k=1

ϕ
(k)
1D(1)E

(k)
i =

M∑

k=1

√
2k − 1 E

(k)
i . (3.62)

Using these definitions, (3.57) and (3.58) can be rewritten as follows:

M∑

k=1

√
2k − 1

√
2ℓ− 1

(

E
(k)
i + (−1)ℓ E(k)

i−1

)

− Sℓk E
(k)
i = ∆xP

(ℓ)
i , (3.63)

−
M∑

k=1

(−1)k+1
√
2k − 1

√
2ℓ− 1

(

Φ
(k)
i+1 + (−1)ℓΦ(k)

i

)

+ Sℓk Φ
(k)
i = ∆xE

(ℓ)
i , (3.64)

where S is an M ×M matrix with entries given by

Sℓk =

∫ 1

−1

ϕ
(ℓ)
1D,ξ ϕ

(k)
1D dξ. (3.65)

Note that the boundary conditions in (3.53) imply that

E
h(a) = γ =⇒

M∑

k=1

√
2k − 1E

(k)
0 = γ, (3.66)

φh(b) = β =⇒
M∑

k=1

(−1)k+1
√
2k − 1Φ

(k)
mx+1 = β, (3.67)

where mx is the number of grid elements.

60

Putting everything together, (3.63) and (3.64) can be written in matrix form:

1

∆x

A

B A

B A

.

B A

~E1

~E2

~E3

...

~Emx

=

~P1 − (−1)ℓ
√
2ℓ− 1 γ (∆x)−1

~P2

~P3

...

~Pmx

, (3.68)

1

∆x

C D

C D

C
. . .

. . . D

C

~Φ1

~Φ2

~Φ3

...

~Φmx

=

~E1

~E2

~E3

...

~Emx +
√
2ℓ− 1 β (∆x)−1

, (3.69)

where, for example,

~Ei =
(

E
(1)
i , . . . , E

(M)
i

)T

, (3.70)

and A, B, C, and D are M ×M matrices with entries given by:

Aℓk =
√
2k − 1

√
2ℓ− 1− Sℓk, (3.71)

Bℓk = (−1)ℓ
√
2k − 1

√
2ℓ− 1, (3.72)

Cℓk = (−1)k+ℓ
√
2k − 1

√
2ℓ− 1 + Sℓk, (3.73)

Dℓk = (−1)k
√
2k − 1

√
2ℓ− 1. (3.74)

The advantage of this formulation is that equations (3.68) and (3.69) are already in

lower and upper triangular forms, respectively, and therefore can be easily be solved.

The matrices A and C can be easily inverted once at the beginning of the calculation.

61

Dirichlet boundary conditions

The above method can easily be adapted to handle Dirichlet boundary conditions:

φ(a) = α, φ(b) = β, (3.75)

by noting that these boundary conditions are equivalent to the mixed BCs in (3.53) if

we carefully choose the parameter γ in (3.53). It can be shown that the correct choice

for γ is given by

γ =
β − α
a− b +

1

a− b

∫ b

a

(s− b)
(

ρ(s)− ρ0
)

ds

=
β − α
a− b +

∆x

a− b

mx∑

i=1

(xi − b)P(1)
i +

∆x2

2
√
3 (a− b)

mx∑

i=1

P
(2)
i ,

(3.76)

where mx is the number of grid elements.

Periodic boundary conditions

Periodic boundary conditions can also be readily handled:

φ(a) = φ(b), E(a) = E(b), (3.77)

by again noting that we need to carefully choose β and γ in (3.53). It can be shown

that the correct choice for γ is given by

γ =
1

a− b

∫ b

a

s
(

ρ(s)− ρ0
)

ds =
∆x

a− b

mx∑

i=1

xiP
(1)
i +

∆x2

2
√
3 (a− b)

mx∑

i=1

P
(2)
i , (3.78)

and β is arbitrary. Without loss of generality we simply take β = 0. By solving (3.53)

with γ given by (3.78) and with β = 0, we obtain a solution φ(x) with the property that

φ(a) = φ(b) = 0. (3.79)

62

3.4.2 High-order Electric Field

One difficulty with raising the temporal order of accuracy from two to four is the time-

dependence of the electric field. In other words, the Cheng and Knorr [12] method does

not completely reduce the Vlasov-Poisson to two constant coefficient problems, since

the electric field remains time-dependent. In the case of Strang splitting, it turned out

that one could easily generate a second order accurate representation of the electric

field at the half time step, tn + 1
2
∆t, as required in Step 3 of Algorithm 3.1, simply

by carrying out Steps 1 and 2 of Algorithm 3.1. Additional attention must be paid in

order to obtain temporally fourth-order accurate representations of the electric field. We

describe in this section some important implementation details needed to achieve this.

The resulting method will be summarized in Algorithm 3.3, but first some preliminary

details.

In order to avoid having to use the electric field at different points in time (i.e.,

a multi-step method, which we discovered has some stability issues), we construct the

fourth-order Taylor polynomial centered at t = tn:

Ē(t,x) := En + (t− tn)En
,t +

1

2
(t− tn)2En

,t,t +
1

6
(t− tn)3 En

,t,t,t. (3.80)

In this section, we first describe a method for computing time derivatives of the electric

field in (1+1)D, and then we describe how to extend this to multi-D.

High-Order (1+1)D Electric Field

The starting point for constructing high-order values for the electric field is to compute

the electric field at time level tn through the Poisson equation:

−φn
,x,x = En

,x = ρn − ρ0. (3.81)

63

The first time derivative is readily computed by:

E,t,x = ρ,t,x = − (ρu),x =⇒ En
,t = − (ρu)n + J0(t). (3.82)

In order to compute further time derivatives of E, we appeal to the first few moment

equations of the Vlasov-Poisson equation (1.19) which were presented in §1.2.4. The

(1+1)D version of those are:

ρ,t + (ρu),x = 0, (3.83)

(ρu),t + E,x = ρE, (3.84)

E,t + F,x = 2ρuE, (3.85)

where

ρ :=

∫

v

f dv, ρu :=

∫

v

vf dv, E :=

∫

v

v2f dv, and F :=

∫

v

v3f dv.

Using equation (3.82) and the above moment evolution equations, we can compute the

second and third time derivatives of the electric potential entirely in terms of spatial

derivatives:

E,t = −ρu+ J0, (3.86)

E,t,t = E,x − ρE + J̇0, (3.87)

E,t,t,t = 2 (ρuE),x −F,x,x + E (ρu),x + ρ2u− ρJ0 + J̈0, (3.88)

where the integration constant, J0(t), satisfies the following properties:

J0 =
1

L

∫ L

0

ρu dx, (3.89)

J̇0 =
1

L

∫ L

0

ρE dx, (3.90)

J̈0 = J0

(
1

L

∫ L

0

ρ dx− ρ0
)

. (3.91)

64

When we use periodic boundary conditions for φ, that is φ(t, 0) = φ(t, L), then J0 is

constant for all time. To see this, multiply (3.81) by E:

EE,x = ρE − ρ0E =⇒ ρE =

(
1

2

(
E2

)
− ρ0φ

)

,x

. (3.92)

Integrating (3.92) over the entire domain gives

J̇0 =
1

L

∫ L

0

ρE dx = 0, (3.93)

because E2 and φ are both periodic. Therefore, in equations (3.86) – (3.88), we need

only numerically compute this constant at the start of the problem.

It is clear from these expressions that in order to compute E,t,t and E,t,t,t, we need

to be able to compute first and second derivatives in space. One approach for doing

this in the discontinuous Galerkin framework is to multiply by a test function and then

integrate-by-parts. However, this approach will in general lead to a loss of accuracy.

Instead, the approach taken in this work is to apply central finite differences that work

directly on the Legendre coefficients of the function that needs to be differentiated.

Consider the L2-projection of the function f(x), where f : R→ R, onto the space of

piecewise polynomials of degree four on a uniform mesh of elements, Ti, that each have

width ∆x:

fh
∣
∣
∣
Ti
=

5∑

ℓ=1

F
(ℓ)
i ϕ

(ℓ)
1D(ξ). (3.94)

Therefore, fh represents the finite dimensional approximation of f(x). We can ap-

proximate the first and second derivatives of f(x) to O (∆x5) accuracy by computing

appropriate central finite differences of the Legendre coefficients F (ℓ). If we let Dxf
h and

Dxxf
h represent the finite dimensional approximations of f ′(x) and f ′′(x), respectively,

65

then the central finite difference formulas on the Legendre coefficients are

DxF
(1)
i

DxF
(2)
i

DxF
(3)
i

DxF
(4)
i

DxF
(5)
i

=
1

2∆x

∆1F
(1)
i − 2

√
5∆1F

(3)
i + 78∆1F

(5)
i

∆1F
(2)
i − 10

3

√
3
√
7∆1F

(4)
i

∆1F
(3)
i − 14

√
5∆1F

(5)
i

∆1F
(4)
i

∆1F
(5)
i

, (3.95)

DxxF
(1)
i

DxxF
(2)
i

DxxF
(3)
i

DxxF
(4)
i

DxxF
(5)
i

=
1

∆x2

∆2F
(1)
i −

√
5∆2F

(3)
i + 11∆2F

(5)
i

∆2F
(2)
i − 5

3

√
3
√
7∆2F

(4)
i

∆2F
(3)
i − 7

√
5∆2F

(5)
i

∆2F
(4)
i

∆2F
(5)
i

, (3.96)

where

∆1F
(k)
i := F

(k)
i+1 − F

(k)
i−1, (3.97)

∆2F
(k)
i := F

(k)
i+1 − 2F

(k)
i + F

(k)
i−1. (3.98)

To the best of our knowledge, this is the first time such formulas have been written

down in the context of discontinuous Galerkin methods. In Table 2 we verify the order

of accuracy by computing the first and second derivatives of f(x) = esin(2πx). The errors

in this table are computed using the relative L2 errors defined by equation (A.10) with

M = 5 and varying ∆x. See A.1 for more details.

66

Mesh f ′(x) error log2(Ratio) f ′′(x) error log2(Ratio)

25 1.747× 10−4 – 8.292× 10−5 –

50 5.543× 10−6 4.98 2.672× 10−6 4.96

100 1.738× 10−7 5.00 8.413× 10−8 4.99

200 5.437× 10−9 5.00 2.634× 10−9 5.00

400 1.699× 10−10 5.00 8.364× 10−11 4.98

Table 2: Relative L2-norm errors for computing f ′(x) and f ′′(x) using the Legendre
coefficient finite difference formulas (3.95) and (3.96), respectively. The example shown
here is for f(x) = esin(2πx) on a uniform mesh on 0 ≤ x ≤ 1. Periodic boundary conditions

are imposed to compute the derivative in the first and last elements: F
(k)
0 = F

(k)
M and

F
(k)
M+1 = F

(k)
1 for each k = 1, 2, 3, 4, 5.

Extensions to Multi-D

The starting point for the multi-D extension is identical to the previous section, where

we compute the electric field value En with the Poisson equation:

∇ · En = −∇2φn = ρn − ρ0. (3.99)

In this case, the first time derivative of the electric field is proportional to the momentum,

up to the curl of a vector field,

∇ · E,t = ρ,t = −∇ · (ρu) =⇒ En
,t = − (ρu)n +∇×C(t,x). (3.100)

In order to avoid navigating the integration constant, we suggest working with the

electric potential, φ in order to compute time derivatives of E:

E,t = −∇φ,t, E,t,t = −∇φ,t,t, E,t,t,t = −∇φ,t,t,t. (3.101)

Once we have a method for computing φ,t, φ,t,t, φ,t,t,t, (up to an arbitrary constant), we

can run three additional Poisson solves to compute the three required time derivatives

67

of E. In order to compute time derivatives of φ, we again need the evolution equations

for the first few moments of the Vlasov-Poisson equations. Here, we collect equations

(1.27), (1.28) and (1.30):

ρ,t +∇ · (ρu) = 0,

(ρu),t +∇ · E = ρE,

E,t +∇ · F = ρ (uE+ Eu) .

This time, the moments are multi-D tensors:

ρ :=

∫

v

f dv, ρu :=

∫

v

vf dv, E :=

∫

v

vvf dv, and F :=

∫

v

vvvf dv.

Using equation (3.99) and the above moment evolution equations, we can compute the

second and third time derivatives of the electric potential entirely in terms of spatial

derivatives:

−∇2 (φ,t) = −∇ · (ρu) , (3.102)

−∇2 (φ,tt) = ∇ · ∇ · E−∇ · (ρE) , (3.103)

−∇2 (φ,ttt) = −∇ · ∇ · ∇ · F+∇ · ∇ · (ρuE+ ρEu)

+∇ · (E∇ · (ρu))−∇ · (ρE,t) .

(3.104)

Again, one needs to be able to compute first, second and this time third derivatives in

order to attain a high-order electric field. The exact details for how to accomplish this

will be the subject of future work.

68

Time-Dependent Advection with the Electric Field

Once we have constructed an approximation to the time-dependent electric field, we are

faced with an advection equation with time-dependent coefficients:

f,t + Ē(t,x) · f,v = 0. (3.105)

This equation can be readily solved to high-order via the method of characteristics. The

key step in this approach is the evolution of the characteristics v as function of time:

dv

dt
= Ē(t,x) =⇒ v(tn +∆t) = v(tn) +

∫ tn+∆t

tn
Ē(t,x) dt, (3.106)

v(tn +∆t) = v(tn) + ∆tEn +
∆t2

2
En

,t +
∆t3

6
En

,t,t +
∆t4

24
En

,t,t,t. (3.107)

In other words, the semi-Lagrangian DG method as outlined in §3.3 remains largely

unaltered by the fact that the electric is time dependent. The only difference is that

interfaces and quadrature points are transported by equation (3.107) instead of the

simpler version of this equation when Ē is constant in time. In order to recycle existing

code, suppose a routine,

StepAdvec(f, b(x), ∆t)

has been written which takes a single step of length ∆t on:

f,t + b(x) · f,v = 0.

Suppose we wish to take a time step over the interval [t1, t2], and the time step length

is h = t2 − t1. If we define E∗(x) := 1
h

∫ t2
t1

Ē(s,x) ds, then running

StepAdvec(f, E∗(x), h)

will accommodate the exact translation and integration characteristics, assuming we

integrate Ē(t,x) exactly, which we can since it is a polynomial. This is identical to

69

what was presented in 3.3.1 for time dependant equations in 1D. We further note that

this will naturally accommodate negative time steps, because in this case a negative h

simply reversed the direction in which characteristics are traced, which is exactly what

it is supposed to do.

The complete fourth-order splitting method for the Vlasov-Poisson system is sum-

marized in Algorithm 3.3. We note that there, we describe a multi-D version of this

problem, but in this work, we are able to use equations (3.86) – (3.88) in place of the

Poisson solves listed in Step 2 of the algorithm.

Positivity Limiter

The limiter described in §3.3.4 is applied during the following steps:

1. During each of the stages labelled 3− 9 in Algorithm 3.3, we apply the positivity

limiter with the test points given by (3.41)–(3.42). For Algorithm 3.1, we apply

the limiter during stages 1, 3 and 4. In this case the number of points sampled per

element is P = 2MK, where M is the desired order of accuracy in space and K is

defined by (3.39). As proved in Theorem 2, this guarantees that in each stage the

approximate solution remains positive in the mean.

2. After all of the stages of Algorithm 3.3 have been carried out, we apply the posi-

tivity limiter one more time to the solution, this time with the test points taken

as the P = M2 Gauss-Legendre quadrature points on [−1, 1] × [−1, 1]. This final

limiting provides some additional positivity enforcement and allows us to compute

a variety of integrals of the form (A.1) with function values that are non-negative.

This is particularly useful in computing the L1-norm (A.3), the total energy (A.5),

70

and the entropy (A.6).

3.5 Numerical examples

Now that we have all of the basic pieces are in place for a full Vlasov Poisson solver (i.e.,

a semi-Lagrangian solver for each split-piece §3.3, and a Poisson solver §3.4.1), we apply

the full force of all the methods described in §3.3 and §3.4 to a variety of numerical test

cases. We begin in §3.5.1 by considering a linear advection equation with a velocity field

that produces solid body rotation. This example is primarily used to show the benefits

of switching from second to fourth-order operator splitting strategies. In §3.5.2 we verify

the order of accuracy of the method on a forced Vlasov-Poisson equation to which we

know the exact solution. In the subsequent three subsection we consider three standard

problems for the Vlasov-Poisson system: §3.5.3 the two-stream instability, §3.5.4 weak

Landau damping, and §3.5.5 strong Landau damping. In addition, we present a plasma

sheath problem in section §3.5.6 which demonstrates how to accommodate non-periodic

boundary conditions. Unless otherwise stated, all simulations in this Chapter are 5th

order in space and with the positivity-preserving limiters as described in §3.3.4 turned

on.

3.5.1 Linear advection

We first consider a linear advection under a divergence-free velocity field:

q,t + u · ∇q = 0. (3.108)

71

Algorithm 3.3 Fourth-order operator split algorithm for Vlasov-Poisson.

1. Solve −∇2φ = ρn − ρ0 and compute En = −∇φ.

2. Compute

En
,t = −∇φn

,t ; −∇2
(
φn
,t

)
= −∇ · (ρu)n ,

En
,t,t = −∇φn

,t,t ; −∇2 (φ,t,t) = ∇ · ∇ · En −∇ · (ρE)n ,

En
,t,t,t = −∇φn

,t,t,t;
−∇2 (φ,t,t,t) = −∇ · ∇ · ∇ · Fn +∇ · ∇ · (ρuE+ ρEu)n

+∇ · (En∇ · (ρu)n)−∇ · (ρE,t)
n ,

where the spatial derivatives are computed via (3.95) and (3.96).
Then construct

Ē(t,x) := En + (t− tn)En
,t +

1

2
(t− tn)2 En

,tt +
1

6
(t− tn)3 En

,ttt.

For the 1D method, we use equations (3.86)–(3.88) in place of computing
time derivatives of the potential.

3. γ1
2
∆t step on f,t + v · f,x = 0.

4. γ1∆t step on f,t + Ē (t,x) · f,v = 0, t ∈ tn +
[

0, γ1∆t
]

.

5. (γ1+γ2)
2

∆t step on f,t + v · f,x = 0.

6. γ2∆t step on f,t + Ē (t,x) · f,v = 0, t ∈ tn +
[

γ1∆t, (γ1 + γ2)∆t
]

.

7. (γ1+γ2)
2

∆t step on f,t + v · f,x = 0.

8. γ1∆t step on f,t + Ē (t,x) · f,v = 0, t ∈ tn +
[

(γ1 + γ2)∆t, (2γ1 + γ2)∆t
]

.

9. γ1
2
∆t step on f,t + v · f,x = 0.

72

We take the computational domain to be [0, 1]× [0, 1] and the velocity field to be solid

body rotation around (0.5, 0.5):

u = (u(y), v(x)) = (π (2y − 1) , π (1− 2x))T . (3.109)

The initial condition is taken to be a smooth, compactly supported bump that is centered

at (x0, y0) = (0.4, 0.5):

q(0, x, y) =

cos6
(
5π
3
r
)

if r ≤ 0.3,

0 otherwise,

(3.110)

where

r =
√

(x− x0)2 + (y − y0)2. (3.111)

This problem, just as the Vlasov-Poisson system, is solved via operator splitting on the

two operators:

Problem A: q,t + u(y) q,x = 0, (3.112)

Problem B: q,t + v(x) q,y = 0. (3.113)

We run the initial condition out to time t = 1, at which point it should return to its

initial state. The errors are computed using the relative L2 errors defined by equation

(A.14) with M = 5 and varying ∆x = ∆y. See A.2 for more details. Convergence

studies with Strang and the fourth-order operator splitting results are shown in Table

3.

3.5.2 A forced problem: verifying order of accuracy

Next we consider an example of a forced Vlasov-Poisson equation. By construction of

the source term, we can compare our approximate solution with the exact solution. The

73

Mesh SL2 Error log2(Ratio) SL4 Error log2(Ratio)

102 3.215× 10−1 – 5.679× 10−1 –

202 7.185× 10−2 2.16 3.113× 10−2 4.19

402 1.578× 10−2 2.19 1.691× 10−3 4.20

802 3.923× 10−3 2.01 1.010× 10−4 4.07

1602 9.890× 10−4 1.99 6.220× 10−6 4.02

3202 2.454× 10−4 2.01 3.843× 10−7 4.02

6402 6.136× 10−5 2.00 2.390× 10−8 4.01

Table 3: Convergence study for the linear advection equation. Shown are the relative
errors computed via (A.14) at time t = 1. All calculations were done with 5th order
accuracy in space using the positivity-preserving limiters and a CFL number of 5.00,
where CFL := ∆tmax {maxy |u(y)|/∆x, maxx |v(x)|/∆y}. SL2 refers to the Strang split
semi-Lagrangian scheme and SL4 to the fourth-order split semi-Lagrangian scheme.

forced Vlasov-Poisson system is

f,t + vf,x + Ef,v = ψ(t, x, v), (3.114)

E,x =

∫ ∞

−∞
f(t, x, v) dv −

√
π, (3.115)

on (t, x, v) ∈ [0,∞) × [−π, π] × (−∞,∞) with periodic boundary conditions in x. We

take the following source term:

ψ(t, x, v) =
1

2
sin(2x− 2πt)e−

1

4
(4v−1)2

{(
2
√
π + 1

) (
4v − 2

√
π
)

−
√
π (4v − 1) cos(2x− 2πt)

}

.

(3.116)

The exact solution in this case is

f(t, x, v) = {2− cos (2x− 2πt)} e− 1

4
(4v−1)2 , (3.117)

E(t, x) = −
√
π

4
sin (2x− 2πt) . (3.118)

74

The numerical scheme for this forced problem is the same as the one described in

§3.3 with two minor modifications. First, the two operators in the operator split scheme

are

Problem A: f,t + v f,x = ψ(t, x, v), (3.119)

Problem B: f,t + E(t, x) f,v = 0, (3.120)

which means that Problem A is slightly modified from the unforced Vlasov-Poisson

system. The modifiedA still has the same characteristics as the case with no source term;

the only difference is that the solution is no longer constant along the characteristics.

In order to advance f forward under the influence of operator A, we use the method of

characteristics and obtain the following solution:

f(tn+1, x, v) = f(tn, x− v∆t, v) +
∫ tn+1

tn
ψ(s, x+ v(s− tn+1), v) ds. (3.121)

The time integral in the above expression can be easily exactly evaluated; we omit the

details here.

The second modification comes from the fact that with a non-zero source term, it is

no longer true that E,t = −ρu. This means that the time interpolation described in §3.3

must be slightly modified. Instead of using E,t = −ρu, (3.87), and (3.88), we make use

of the following modified formulas:

E,t(t, x) = −ρu+ C1, (3.122)

E,tt(t, x) = E,x − ρE + C2, (3.123)

E,ttt(t, x) = (2ρuE),x − F,x,x + E (ρu),x + ρ2u+ C3, (3.124)

75

where

C1 :=

√
π

4
+

√
π

8
(4π − 1) cos(2x− 2πt), (3.125)

C2 :=
3
√
π + 4π − 16

√
π5

16
sin(−2x+ 2πt) +

π

16
sin(4x− 4πt), (3.126)

C3 := −
π

4
+

7
√
π + 16π − 64

√
π7

32
cos(2x− 2πt)− 3π

16
cos(4x− 4πt). (3.127)

In the above expression we used the shorthand notation:

x := x1, E := E1, u := u1, E := E
11, and F := F

111.

We run the initial condition out to time t = 1, at which point it should return to

its initial state. Convergence studies on various grids on the domain (x, v) ∈ [−π, π] ×

[−π, π] with Strang and the fourth-order operator splitting results are shown in Table

4. We compute the errors in an identical manner to the linear test problem presented in

the previous section using the relative L2 errors defined by equation (A.14) withM = 5.

See A.2 for more details.

3.5.3 Two-stream instability

The two-stream instability problem has become a standard benchmark to test numerical

Vlasov solvers, and has been used as such by several authors (e.g., [36, 3, 49, 30, 15, 12]).

We use the following initial distribution function

f(t = 0, x, v) =
v2√
8π

(

2− cos
(x

2

))

e−
v2

2 , (3.128)

and solve on the domain (x, v) ∈ [−2π, 2π] × [−2π, 2π]. Results for time t = 45 are

presented in Figure 8 for various mesh sizes. In Figure 9 we present cross-sections of the

solution taken at x = 0 for the same mesh sizes.

76

Mesh SL2 Error log2(Ratio) SL4 Error log2(Ratio)

102 5.210× 10−1 – 9.493× 10−1 –

202 1.433× 10−1 1.86 2.715× 10−1 1.81

402 1.640× 10−2 3.13 1.652× 10−2 4.04

802 3.438× 10−3 2.26 7.079× 10−4 4.55

1602 8.333× 10−4 2.04 3.434× 10−5 4.37

3202 2.068× 10−4 2.01 1.962× 10−6 4.13

6402 5.161× 10−5 2.00 1.203× 10−7 4.03

12802 1.290× 10−5 2.00 7.509× 10−9 4.00

Table 4: Convergence study for the forced Vlasov-Poisson equation, comparing two
operator split methods. All calculations presented here are 5th order in space and were
run with a CFL number of 5. Shown are the relative errors computed via (A.14) at time
t = 1. SL2 refers to the Strang split semi-Lagrangian scheme and SL4 to the fourth-order
split semi-Lagrangian scheme. Since the positivity-preserving limiters as described in
§3.3.4 don’t guarantee positivity in the mean in the presence of a source term, we have
turned them off for this convergence study only.

77

Figures 8 and 9 clearly demonstrate the ability of the discontinuous Galerkin method-

ology to approximate very rough data, something that is more difficult with methods

that act over larger stencils. The results shown in these figures indicate far more struc-

ture than what is shown in other recent work, including results from the WENO method

[49, 3] and an explicit DG method that uses a piecewise constant representation of the

distribution function, f , and a piecewise quadratic representation of the electric potential

φ [36].

In Figure 10 we demonstrate the effects of adding the positivity-preserving limiter.

We see that even without limiting, the base scheme already does a reasonable job of

not producing large negative values in the distribution function. With the positivity-

preserving limiters we are able to remove these small positivity violations. In Figure

12 we plot four quantities that are exactly conserved by the continuous Vlasov-Poisson

equation, but only approximately conserved in our numerical discretization: L1-norm of

f (1.49), L2-norm of f (1.50), total energy (1.51), and total entropy (1.52). In particular,

we use the numerical approximations to (1.49)–(1.52) as given by equations (A.3)–(A.6)

in §A. We note that it is difficult to obtain accurate values for the total entropy (1.52),

because there are many values where f becomes very small.

3.5.4 Weak Landau damping

Landau damping has been extensively studied both numerically [12, 36, 68] and analyt-

ically (e.g., the work of Mouhot and Villani [46, 47]). Just as the two-stream instability

problem, Landau damping has become a favorite standard test case. It is particularly

useful since the linear decay rates of the L2-norm of the electric field are well-known.

78

Figure 8: The two-stream instability problem. The panels in the left-hand column
are results using the 2nd order Strang splitting method. The panels in the right-hand
column are results using the 4th order splitting method. All simulations are 5th order
in space. The mesh sizes for the first, second and third rows are (mx,mv) = (65, 65),
(mx,mv) = (129, 129), and (mx,mv) = (255, 255), respectively. All solutions use the
positivity-preserving algorithm. The above figures were produced by plotting the nu-
merical solution at each of the 5× 5 Gaussian quadrature points in each mesh element.

79

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

Figure 9: The two-stream instability problem. The panels in the left-hand column are
results using the 2nd order Strang splitting method. The panels in the right-hand column
are results using the 4th order splitting method. All simulations are 5th order accurate
in space. The mesh sizes for the first, second and third rows are (mx,mv) = (65, 65),
(mx,mv) = (129, 129), and (mx,mv) = (255, 255), respectively. All solutions use the
positivity-preserving algorithm. Each figure above represents the numerical solution at
x = 0 and use 5 Gaussian quadrature points for each cell in the v-coordinate. The above
solutions were computed with an odd number of elements in each coordinate direction
in order to easily obtain a slice of the solution at x = 0.

80

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(t, x = 0.000,v) at t = 45

Figure 10: The two-stream instability problem. These panels demonstrate the effect
of the positivity preserving-limiter. The result on the left is the 4th order splitting
algorithm with limiters turned on, and the result on the right hand side is the same
algorithm with the limiters turned off. Both pictures represent a slice of the solution at
x = 0 and final time t = 45. Both results represent a mesh of size (mx,mv) = (129, 129)
and are 5th order accurate in space; an odd number of grid elements are used in order
to easily obtain function values. We further note that mini f(xi, vi) = −2.020 × 10−2

for the solution without the limiter and mini f(xi, vi) = 7.000 × 10−12 for the limited
solution, where the minimum is taken over all 5 × 5 Gaussian quadrature points over
every mesh element.

81

−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
f(x = 0.000,v,t) at t = 45 [DoGPack]

Figure 11: The two-stream instability problem. This figure represents a fine grid of size
(mx,mv) = (513, 513). This simulation is 5th order in space, 2nd order in time, and uses
the positivity-preserving algorithm. Left: phase-space plot. Right: vertical slice of the
solution at x = 0.0. An odd number of elements were used in order to easily obtain
a solution at the center. The above figures were produced by plotting the numerical
solution at each of the 5× 5 Gaussian quadrature points in each mesh element.

We use the following initial distribution function

f(t = 0, x, v) =
(

1 + α cos(kx)
)

fM(v); fM(v) =
1√
2π
e−

v2

2 , (3.129)

with α = 0.01 and k = 0.5 on the domain (x, v) ∈ [−2π, 2π]× [−2π, 2π]. Because α is a

small parameter, we expect to see results that closely agree with the linear theory, where

the electric field decays exponentially. In Figure 13 we present this decay provided by

log (‖E(t, ·)‖L2
) := log

√
∫ 2π

−2π

|E(t, x)|2 dx

versus time for two different mesh sizes. Our computed decay rate matches the linear

decay rate, γ = −0.1533. In Figure 14 we again plot the deviations of several quantities

that are conserved by the continuous Vlasov-Poisson system from their initial values:

‖f‖L1
, ‖f‖L2

, total energy, and entropy. We again use the numerical approximation to

these norms given by (A.3)–(A.6) in §A. Our results are comparable to what is reported

82

0 5 10 15 20 25 30 35 40 45
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−12 L
1
(f(t)) − L

1
(f(t=0))

SL2
SL4

0 5 10 15 20 25 30 35 40 45
−0.2

−0.15

−0.1

−0.05

0

0.05

L
2
(f(t)) − L

2
(f(t=0))

SL2
SL4

0 5 10 15 20 25 30 35 40 45
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Energy(t) − Energy(t=0)

SL2
SL4

0 5 10 15 20 25 30 35 40 45
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Entropy(t) − Entropy(t=0)

SL2
SL4

Figure 12: The two-stream instability problem. Shown in these panels are the deviations
of the L1 norm of f (top-left), L2 norm of f (top-right), total energy (bottom-left), and
total entropy (bottom-right) from their initial values. All simulations use a constant
CFL number of 2.0, and are obtained from a mesh of size (mx,mv) = (129, 129). The
domain for this problem is (x, v) ∈ [−2π, 2π] × [−2π, 2π]. We note that at time t = 0,
to within six digits of accuracy, the computed value for the L1 and L2 norms are,
‖f‖L1

= 12.5664, ‖f‖L2
= 2.99102, and the initial values for the total energy and total

entropy are total energy(t = 0) = 21.9911 and total entropy(t = 0) = 20.4161. Each
simulation is 5th order accurate in space and is positivity preserving.

83

0 5 10 15 20 25 30 35 40 45 50 55 60
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

L
2
(Electric Field)

SL2
SL4

0 5 10 15 20 25 30 35 40 45 50 55 60
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

L
2
(Electric Field)

SL2
SL4

Figure 13: The weak Landau damping problem. Shown in the panels are semi-log plots
of the L2-norm of the electric field. Simulations use a constant CFL number of 2.0 and
are 5th order accurate in space. All simulations use the positivity-preserving limiter.
The figure on the left represents a mesh of size (mx,mv) = (64, 128) and the result
on the right was represents a mesh of size (mx,mv) = (128, 256), both on the domain
(x, v) ∈ [−2π, 2π] × [−2π, 2π]. Both simulations match the theoretical decay rate of
γ = −0.1533, and to demonstrate this we plot the line defined by y = 0.06eγt. One
should note that the discrepancy in the two plots is due to the fact that twice as many
time points in the second plot as the first one.

for example by Qiu and Christlieb [49].

3.5.5 Strong Landau damping

The initial condition is again given by (3.129), this time with α = 0.5 and k = 0.5 on the

domain (x, v) ∈ [−2π, 2π] × [−2π, 2π]. The time evolution of the distribution function

is shown in the panels of Figure 15. These images are comparable to what is shown in

Qiu and Christlieb [49], but we are again able to capture more fine scale structure with

the discontinuous Galerkin approach.

A semi-log plot of the L2-norm of the electric field is provided in Figure 16, and

decay rates are computed by sampling the solution at data points. We find that the

initial linear decay rate is approximately γ1 ≈ −0.292 which is close to the value of

84

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−12 L
1
(f(t)) − L

1
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−12 L
1
(f(t)) − L

1
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60

−14

−12

−10

−8

−6

−4

−2

0

2

4

x 10
−9 L

2
(f(t)) − L

2
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60

−14

−12

−10

−8

−6

−4

−2

0

2

4

x 10
−9 L

2
(f(t)) − L

2
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60
−5

0

5

10

15
x 10

−7 Energy(t) − Energy(t=0)

SL2
SL4

0 10 20 30 40 50 60
−5

0

5

10

15
x 10

−7 Energy(t) − Energy(t=0)

SL2
SL4

0 10 20 30 40 50 60
−2

−1

0

1

2

3

4

5

6
x 10

−8 Entropy(t) − Entropy(t=0)

SL2
SL4

0 10 20 30 40 50 60
−2

−1

0

1

2

3

4

5

6
x 10

−8 Entropy(t) − Entropy(t=0)

SL2
SL4

Figure 14: The weak Landau damping problem. Shown in the panels are the deviations
of various quantities that are conserved by the exact equations from their initial values.
All simulations use a constant CFL number of 2.0, are 5th order accurate in space, and
are positivity preserving. The mesh size for the left hand column is (mx,mv) = (64, 128)
and the mesh size for the right hand column is (mx,mv) = (128, 256). We note that the
largest deviation for total energy for the 4th order algorithm is on the order of 10−10. The
initial conditions at time t = 0 were computed numerically for each run. For the coarser
solution, to within eight digits of accuracy, the computed value for the L1 and L2 norms
are, ‖f‖L1

= 12.692034, and ‖f‖L2
= 3.616160. The initial values for the total energy

and total entropy are Energy(t = 0) = 6.346017, and Entropy(t = 0) = 17.882927.

85

−0.243 computed by Zaki et al. [65], closer still to the value of −0.281 computed by

Cheng and Knorr [12], but much larger than the value of −0.126 computed by Heath

et. al [36]. In this same figure we also estimate the growth rate due to particle trapping

and find it to be approximately γ2 = 0.0815; this number also differs from the value

reported by Heath et al. [36]: γ2 = 0.0324. The initial linear decay was computed by

taking the maximum of the first two peaks located at t ≈ 2.45 and t ≈ 4.54. For the

particle trapping growth regime, we sampled the maximum of the solution at the two

peaks located at t ≈ 2.33 and t ≈ 2.84. We postulate that the difference between our

computed growth rates and those of Heath et al. [36] stems from the fact that we are

using piecewise quartic polynomials to represent the distribution function, while they

are using only piecewise constants. This issue should be further investigated.

In Figure 17 we again plot the deviations of several quantities that are conserved

by the continuous Vlasov-Poisson system from their initial values: ‖f‖L1
, ‖f‖L2

, total

energy, and entropy. In particular, we use the numerical approximations to (1.49)–(1.52)

as given by equations (A.3)–(A.6) in §A. Our results are comparable to what is reported

for example by Qiu and Christlieb [49].

Finally, we note that in both our weak and strong Landau damping simulations we

made Vmax = 2π instead of the more commonly used value of Vmax = 5. The reason

for this is that we noticed that between roughly v = 5 and v = 6 the distribution

function f(t, x, v) still had a non-negligible amplitude on the order of about 10−6; the

precise behavior of strong and weak Landau damping in this region is shown in Figure

18. Therefore, truncating at Vmax = 5 caused additional errors when tracking various

conserved quantities; we found improvements in these errors when taking Vmax = 2π.

86

Figure 15: The strong Landau damping problem. Shown in the panels are the distribu-
tion function at various points in time. This simulation was run with a constant CFL
number of 2.0 on a mesh of size (mx,mv) = (128, 256) using 5th order accuracy in space
and the positivity-preserving limiters. It is clear from these plots that the high-order
discontinuous Galerkin method is able to capture much of the fine-scale structure for
the solution.

87

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

L
2
(Electric Field) γ

1
 = −0.2952, γ

2
 = 0.0844

SL2
SL4

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

L
2
(Electric Field) γ

1
 = −0.2920, γ

2
 = 0.0815

SL2
SL4

Figure 16: The strong Landau damping problem. Shown in these panels are semi-log
plots of the L2 norm of the electric field with two different resolutions; the mesh size
for the the figure on the left is (mx,mv) = (64, 128) and the figure on the right is
(mx,mv) = (128, 256). Both simulations use the positivity preserving limiter, are 5th

order accuracy in space and use a constant CFL number of 2.0. In each panel, γ1 refers
to the slope of the initial decay, and γ2 refers to the growth rate between times t = 20
and t = 40.

3.5.6 Plasma Sheath

So far, all of the presented examples have periodic boundary conditions in x. However,

the SLDG method can easily be adapted to accommodate non-periodic boundary condi-

tions. One classical 1D example that is not periodic in x is the so-called plasma sheath

problem. The distribution function in dimensional units, f̃
(
t̃, x̃, ṽ

)
, represents the PDF

for electrons inside the region: 0 ≤ x̃ ≤ L. We will assume that no electrons can enter

this domain, meaning that we take zero-inflow boundary condition:

f̃(t̃, x̃ = 0, ṽ ≥ 0) = f̃(t̃, x̃ = L, ṽ ≤ 0) = 0. (3.130)

The electric potential is fixed to a constant value at x = 0 and x = L, which, without

loss of generality, can be taken to be zero: φ̃(t̃, x̃ = 0) = φ̃(t̃, x̃ = L) = 0.

The initial condition, written, at least for the moment, in dimensional form, is a

88

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−12 L
1
(f(t)) − L

1
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−12 L
1
(f(t)) − L

1
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

L
2
(f(t)) − L

2
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

L
2
(f(t)) − L

2
(f(t=0))

SL2
SL4

0 10 20 30 40 50 60
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Energy(t) − Energy(t=0)

SL2
SL4

0 10 20 30 40 50 60
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Energy(t) − Energy(t=0)

SL2
SL4

0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Entropy(t) − Entropy(t=0)

SL2
SL4

0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Entropy(t) − Entropy(t=0)

SL2
SL4

Figure 17: The strong Landau damping problem. Simulation results for the L1 norm
(first row), L2 norm (second row), energy (third row), and entropy (bottom row) for
strong Landau damping. All simulations use a constant CFL number of 2.0 and are 5th

order accurate in space. The mesh size for the left column is (mx,mv) = (64, 128) and
the mesh size for the right column is (mx,mv) = (128, 256). The initial conditions at time
t = 0 were computed numerically for each run. For the coarser solution, to within six
digits of accuracy, the computed value for the L1 and L2 norms are, ‖f‖L1

= 12.5664,
and ‖f‖L2

= 3.98802. The initial values for the total energy and total entropy are
Energy(t = 0) = 9.42478, and Entropy(t = 0) = 17.0186.

89

4.8 5 5.2 5.4 5.6 5.8 6 6.2
−1

0

1

2

3

4

5

6
x 10

−6 f(t, x = −0.005,v)

4.8 5 5.2 5.4 5.6 5.8 6 6.2
−1

0

1

2

3

4

5

6
x 10

−6 f(x = −0.005,v,t) [DoGPack]

Figure 18: A comparison of vertical slices for strong landau damping (left) and weak
Landau damping (right) at time t = 60. The simulations for each panel use a grid
resolution of (mx,mv) = (128, 256), each are 5th order accuracy in space, and each use
the positivity-preserving limiter. The CFL number for each simulation is 2.0. We note
that the solution is non-zero for |v| > 5 in both cases, although there is much more
activity in the case of strong Landau damping. The plots suggests that the commonly
used maximum velocity of |v| = 5 should be increased in order to get better accuracy in
conservation of the quantities (A.3)–(A.6).

stationary Maxwellian distribution with mass density ρ̃0 (units of meters−1) and tem-

perature θ̃0 (units of Kelvin):

f̃(0, x̃, ṽ) =
ρ̃0

√

2πmkθ̃0
exp

(

−mṽ
2

2kθ̃0

)

. (3.131)

In order to non-dimensionalize this initial condition, we introduce the following scaling

parameter:

θ̃ = Θ0 θ. (3.132)

After substituting this, along with the dimensional variables from §1.2.2, into the initial

90

condition, we arrive at the following:

f(0, x, v) =

(
qL√
ǫ0mN

)
mNρ0√

2πmkΘ0θ0
exp

(−mL2v2

2T 2kΘ0θ0

)

=

√

Nq2L2

ǫ0kΘ0

ρ0√
2πθ0

exp

(

−
(

mL2

T 2kΘ0

)
v2

2θ0

)

=

√

Nq2L2

ǫ0kΘ0

ρ0√
2πθ0

exp

(

−
(
Nq2L2

ǫ0kΘ0

)
v2

2θ0

)

.

(3.133)

We choose Θ0 to make the constants in the parenthesis equal to one:

Nq2L2

ǫ0kΘ0

= 1 =⇒ Θ0 =
Nq2L2

ǫ0k
. (3.134)

This yields a Maxwellian distribution that has been non-dimensionalized:

f(0, x, v) =
ρ0√
2πθ0

exp

(

− v2

2θ0

)

. (3.135)

The two free parameters are given by

ρ0 =

(
1

mN

)

ρ̃0, θ0 =

(
ǫ0k

Nq2L2

)

θ̃0,

Recall that in SI units, the Boltzmann constant, k, the electron mass, m, the electron

charge, q, and the permittivity of free space, ǫ0, are given by

k = 1.38064881× 10−23 kgm2

K sec2
,

m = 9.10938188× 10−31 kg,

q = 1.60217646× 10−19 C,

ǫ0 = 8.85418782× 10−12 sec
2 C2

kgm
.

91

For the simulation results presented here, we set

N = 1013 m−1,

L = 0.1m,

ρ̃0 = mN = 9.10938188× 10−18 kg

m
,

θ̃0 = 1
eV

k
= 1.160451897× 104 K.

The net results for all of the scaling parameters then becomes:

F = 5.605424055× 105
sec

m2
,

T = 5.605424055× 10−9 sec,

E0 = 1.809512620× 104
Volts

m
,

Φ0 = 1.809512620× 103 Volts,

Θ0 = 2.099852260× 107 K,

ρ0 = 1,

θ0 = 5.526350206× 10−4.

We note that our setup is identical to that presented in Christlieb et al. [16].

We solve the above initial and boundary conditions on a 256× 256 mesh on (x, v) ∈

[0, 1]× [−0.2, 0.2] out to t = 140. The solution at the final time is shown in Figures 19

and 20. In Figure 19 we show the full distribution function in phase space at the final

time in the simulation, as well as a slice through the data at x = 0.5 (i.e., the midpoint

in the simulation domain). In Figure 20 we show the electric field and electric potential

at the final time. In all plots the quantities are reported in dimensional form. Finally,

we note that our results are consistent with other results in the literature, such as those

reported in Christlieb et al. [16].

92

(a) (b)
−3 −2 −1 0 1 2 3

x 10
6

0

2

4

6

8

10
x 10

6 f(t, x = 0.050,v) at t = 7.8476e−07

Figure 19: Plasma sheath problem. Panel (a) shows a plot of the distribution function
in phase space. Panel (b) shows a vertical slice of the distribution function through
x = 0.5 (i.e., x̃ = 0.05m). Note that we are plotting the dimensional quantities.

(a) 0 0.02 0.04 0.06 0.08 0.1
−800

−600

−400

−200

0

200

400

600

800
E(t,x) at t = 7.8476e−07

(b) 0 0.02 0.04 0.06 0.08 0.1
−3

−2.5

−2

−1.5

−1

−0.5

0

φ(t,x) at t = 7.8476e−07

Figure 20: Plasma sheath problem. Panel (a) shows the electric field. Panel (b) shows
the electric potential. Note that we are plotting the dimensional quantities.

93

Chapter 4

Hybrid Semi-Lagrangian Methods

for 1+1 Vlasov-Poisson

In this chapter we describe a hybrid semi-Lagrangian discontinuous Galerkin (HSLDG)

approach for solving the (1 + 1)D Vlasov-Poisson equation on Cartesian meshes. This

method is not as efficient as the full semi-Lagrangian method described in Chapter 3,

but the purpose of implementing and running this method here is that it creates the

correct building blocks for constructing a (2+2)D Vlasov solver that will operate on

unstructured grids in physical space. We describe the full details of this extension to

unstructured grids in Chapter 5.

4.1 Extensions of SLDG to Higher Dimensions

The full SLDG scheme from Chapter 3 can certainly be extended to higher dimensions.

The simplest extension would come from dimensional splitting together with the operator

split technology discussed in §3.3.3. However, the SLDG method in its current form

would be restricted to operating on Cartesian grids. Extensions of SLDG methods to

unstructured grids in 2D has proven to be somewhat difficult, where the primary issue is

that exact integration of characteristics is difficult to come by, yet is necessary to obtain

94

stability.

We point out that Restelli, Bonaventura, and Sacco [51] have demonstrated that it

is certainly possible to run SLDG methods on unstructured grids, however their method

as described is unstable for structured grids. Qiu and Shu [43] demonstrated how to

adapt their method and make it stable for structured grids, however, their method of

extending 1D problems to 2D problems is identical to this work, and hence is currently

limited to working on Cartesian grids. Besse and Sönnendrucker [7] present a backwards

semi-Lagrangian scheme for unstructured grids, but they do not use a DG representation

for their solution, and we believe there is mileage to gain from switching to DG.

Our goal is to create a provably stable method that can handle unstructured physical

grids with high order accuracy, and is positivity preserving. In this chapter, we lay the

foundations for a hybrid, semi-Lagrangian discontinuous Galerkin (HSLDG) method

which will accomplish all of the above. The correct starting point for demonstrating its

efficacy is a (1+1)D Vlasov problem, and that is the subject of this chapter.

4.2 Hybrid semi-Lagrangian Scheme

Our hybrid method is a blend of classical Runge-Kutta discontinuous Galerkin (RKDG)

methods (see Chapter 2) together with the semi-Lagrangian discontinuous Galerkin

(SLDG) methods presented in Chapter 3. The operator splitting techniques presented

in §3.3.3 allow us to easily treat the space and velocity problems via different numerical

methods. The essential idea of the hybrid method is the following: use semi-Lagrangian

methods for advection over the velocity coordinates, and use Runge-Kutta time stepping

for advection over physical coordinates.

95

Resorting to explicit Runge-Kutta time stepping wakens unfortunate CFL limita-

tions, and in practice, the results of this hybrid method are nowhere near as efficient as

a full semi-Lagrangian method for structured grids. However, we reiterate that a simple,

(1+1)D problem provides the necessary framework for extensions to higher dimensions,

and in particular, to unstructured grids. In order to mitigate a globally restrictive CFL

condition, we utilize sub-cycling for the RKDG part of the problem which allows us to

take much larger time steps than would normally be allowed. The details of the proposed

sub-cycling method are presented in §4.2.2.

4.2.1 Description of Hybrid Method

Identical to the methods presented in the previous chapter, our hybrid method for the

Vlasov-Poisson system utilizes the exact same operator split technology (c.f. §3.3.3). To

remind the reader, we note that each stage in the split VP solver requires solving two

sub-problems:

Problem A: f,t + v · ∇xf = 0, (4.1)

Problem B: f,t + E(t,x) · ∇vf = 0. (4.2)

The full SLDG solver presented in Chapter 3 uses semi-Lagrangian time stepping for

both sub-problems. The hybrid method proposes to replace the solver used for “Problem

A” with a classical RKDG solver in lieu of semi-Lagrangian time stepping. The operator

split technology for Strang splitting as well as Yoshida splitting remains intact, but each

spot where we advect over the spatial coordinates, we choose to apply an RKDG method.

For clarity, in Table 4.2.1 we repeat the 2nd order Cheng and Knorr [12] split method,

but this time we specifically indicate which method is applied to each sub-problem.

96

Likewise, the fourth order split hybrid method is identical to that presented in Algorithm

3.3, but this time sub-problems are treated differently, that is, we replace the semi-

Lagrangian solver used in stages 3, 5, 7 and 9 with an RKDG solver. The high order

Lax-Wendroff expansion of the electric field from section §3.4.2 remains in place. Again,

we note that for either split method, high-order or second-order, we only require a single

Poisson solve per time step.

Algorithm 4.1 A 2nd order hybrid operator split algorithm.

1. 1
2
∆t RKDG step on f,t + v · f,x = 0.

2. Solve −∇2φ = ρn+
1

2 − ρ0, and compute En+ 1

2 (t,x).

3. ∆t SLDG step on f,t + En+ 1

2 · f,v = 0.

4. 1
2
∆t RKDG step on f,t + v · f,x = 0.

In order to complete the description of the method, we still need to address how to

run a RKDG solver for a quasi-1D problem (3.18). Here, we closely follow algorithm

3.2, by treating the quasi-1D advection equation as a set of many 1D problems. In

Algorithm 4.2 we present the proposed hybrid method for advancing f,t + u(v)f,x = 0

forward in time using RKDG technology. This algorithm is identical to that presented

in Algorithm 3.2, with on major exception: Step 2 of the quasi-1D solver is replaced

with a sub-cycled RKDG update.

In both algorithms, Step 1 produces a list of mv · M problems, where mv is the

number of grid elements in the v direction, and M denotes the order of accuracy. The

equation indexed by j and k is defined by the 1D advection equation:

f,t + vjkf,x = 0.

97

An RKDG solver produces new moments, F
(ℓ)
1D,ijk(t

n+1) at time level tn+1 using ini-

tial conditions prescribed by F
(ℓ)
1D,ijk(t

n). This completes the description of the hybrid

method for solving each quasi-1D problem because the complete details for advancing

1D problems was presented in Chapter 2 which involves a simple method of lines (MOL)

formulation plus a high order Runge-Kutta integrator. Here, we use an upwind Riemann

solver for each interface, which in the case of a scalar equation, is identical to the HLLE

approximate Riemman solver.

Algorithm 4.2 Hybrid DG Method for Quasi-1D Equations

0. Initial Projection: Construct all of the 2D moments:

F
(ℓ),n
ij ←− f(t = 0, x, v)

Here, the method is identical to the SLDG method.

1. Convert to 1D Problems: For each row, construct 1D moments:

F
(ℓ)
1D,ijk(t

n)←− F
(ℓ),n
ij

Here, the method is identical to the SLDG method.

2. Evolve 1D Problems: Here, we use sub-cycled RKDG time stepping in place of
semi-Lagrangian time stepping.

F
(ℓ)
1D,ijk(t

n+1)←− F
(ℓ)
1D,ijk(t

n)

This is the new part. These 1D moments form the coefficients for the initial projection
(2.5) on the equation f,t+ vjkf,x = 0. The spatial discretization happens via the weak
form (2.6).

3. Integrate 1D Problems: Integrate the 1D coefficients up to 2D coefficients:

F
(ℓ),n+1
ij ←− F

(ℓ)
1D,ijk(t

n+1)

Here, the method is identical to the SLDG method.

98

We note that the order in which the splitting takes place is the same as the original

Cheng & Knorr method presented in Algorithm 3.1. This may seem counter intuitive

given that the expensive part of the problem is now advection over the velocity coordi-

nates, and so it sounds reasonable to swap the roles of the two operators, A and B in

order to reduce the number of advection equations over the velocity variables. However,

stages 1 and 4 only require a time step of length ∆t/2, and so solving two of these prob-

lems is essentially identical, in terms of computational cost, to solving a single problem

with time step of length ∆t. In terms of high-order splitting, more care needs to be

considered in terms of efficiency, especially because we have lost part of what semi-

Lagrangian schemes gave us: unconditional stability. In the case of Yoshida splitting

(c.f. §3.3.3) the time steps required for operators A and B are approximately:

Operator A time steps: ≈ [0.6756∆t,−0.1756∆t,−0.1756∆t, 0.6756∆t];

Operator B time steps: ≈ [1.3512∆t,−1.7024∆t, 1.3512∆t].

The sum of each of these time steps is obviously ∆t, but more interesting is that from

the viewpoint of an explicit RK integrator, one is much more expensive than the other.

Given that there are negative time steps involved, the proper way to measure the expense

incurred by running an explicit integrator here is to sum the absolute values of every

time step for each operator. In terms of Yoshida splitting, this yields:

Total cost of operator A ≈ 1.7024∆t.

Total cost of operator B ≈ 4.4048∆t.

Therefore, with Yoshida splitting, we actually save computational cost by running the

RKDG method on the operator that incurs more stages, which saves us a factor of

99

roughly 2.5. Ultimately, the total cost of running a high-order operator split method

will always be larger than ∆t. This is because all high-order operator split methods

require the use of negative time steps. One should tailor the choice of which operator

to apply to the explicit part based on total cost.

We note that the CFL condition for a monolithic update would normally be given

by

∆t ≤ CFL
∆x

|vmax|
, (4.3)

but since each of these problems are completely decoupled, we can utilize sub-cycling in

order to reduce the number of expensive RK solves. That is, the CFL restriction for the

mth equation, is simply

∆t ∼ CFL
∆x

|vm|
≫ CFL

∆x

|vmax|
, (4.4)

which, for the Vlasov-Poisson system, is essentially always much larger than the single

row that is responsible for the largest velocity, and hence the smallest time step.

4.2.2 Sub-Cycling for the Hybrid Scheme

Sub-cycling can be accomplished by adaptively choosing a local CFL condition. Let ∆t

be the macro time step desired for stepping f,t+vf,x = 0 forward in time. Because there

are a total of M equations per row, and a total of mv rows, there are a total of Mmv

equations, all in 1D that need to be evolved. Operator splitting completely decouples

each of these N equations. Suppose that the advection speed for the mth equation is

given by |vm| ≪ vmax. (Here, in order to cut down on the number of indices, we use m

to refer to single a row which is indexed by both j and k.) We now choose a micro-step

h for this equation. Suppose that the CFL restriction is given by ν, that is, the micro

100

step must obey h ≤ ν ∆x
|vm| . One such choice that accomplishes this while at the same

time maximizing h is by setting

h = ∆t

/

max

{

1,

⌈ |vm|∆t
ν∆x

⌉}

. (4.5)

Here ⌈·⌉ denotes the ceiling operation.1 In the case where vm = 0, or is small, this simply

sets h = ∆t, which is the largest possible time step available. For large velocities, this

method takes exactly

N =

⌈ |vm|∆t
ν∆x

⌉

(4.6)

steps of length h on the mth equation. To see why this choice of h doesn’t violate the

local CFL condition, first observe that

max

{

1,

⌈ |vm|∆t
ν∆x

⌉}

≥
⌈ |vm|∆t
ν∆x

⌉

≥ |vm|∆t
ν∆x

,

and hence,

h = ∆t

/

max

{

1,

⌈ |vm|∆t
ν∆x

⌉}

≤ ∆t

/ |vm|∆t
ν∆x

=
ν∆x

|vm|
.

After taking N time steps of length h, we then have a collection of 1D moments

at time level tn+1 = tn + ∆t, which can then be integrated up into 2D weights. In

practice, we don’t choose a different h for each equation. Rather, we choose h based on

the largest speed present in the jth row. This makes parallelization somewhat easier,

given that after updating all M equations for the jth row, one needs to integrate these

equations up to the 2D moments. If we make row assignments to each thread, then a

single thread can advance, integrate and therefore update 2D moments, independent of

every other thread.

1This function takes a real input and rounds up to the largest integer that is greater than or equal

to the input.

101

In some sense, sub-cycling accomplishes exactly what it’s meant to do. That is, the

macro time-step, ∆t, can be arbitrarily large, and hence this update is ‘unconditionally

stable’, just like a semi-Lagrangian update would be. However, this isn’t the whole truth,

because the sub-problems need to obey a local CFL condition, yet the same idea is still

captured in spirit. We note that as an alternative to sub-cycling, one could proceed

with an implicit method, which may be the subject of future work. However, it’s not

clear that an implicit method, which in principle should provide unconditional stability,

will actually be a winning venture. The reasons are twofold. First, large CFL numbers

produce matrices with increasing condition numbers. Hence, the number of iterations

required to take a large time step increases with the CFL number. Second, there do not

appear to be many high-order implicit methods that are able to accommodate purely

hyperbolic problems.

4.2.3 Summary of the Hybrid (HSLDG) Method

This completes the description of the hybrid semi-Lagrangian method. The details

concerning how one proceeds via a RKDG method on 1D problems is described in §2.1,

and the details concerning transferring moments between 1D and 2D problems is outlined

in §3.3.2. The key difference between the full SLDG method and this hybrid method is

simply how the 1D problems are advanced forward in time. There, the only difference

is the fact that advancing the unknown variables on physical space is replaced with a

sub-cycled RKDG method. One advantage of RKDG methods is that they can operate

on unstructured grids, which is described in the following chapter. At present, we now

show results of this hybrid method on (1+1)D Vlasov problems. The full method has

102

been implemented in DogPack [52], and the code has been written with shared memory

OpemMP threads for each of the split directions. Specifically, threads are created before

each quasi-1D step, and merged afterwards. This amounts to effectively chopping the

domain into many rows for advection in the x-direction, and many columns for advection

in the v-direction.

4.3 Numerical Examples

4.3.1 Linear advection

Here, we repeat the problem already presented in §3.5.1, but this time with the hybrid

method in place. The problem is a linear advection under a divergence-free velocity

field:

q,t + u · ∇q = 0. (4.7)

We take the computational domain to be [0, 1]× [0, 1] and the velocity field to be solid

body rotation around (0.5, 0.5):

u = (u(y), v(x)) = (π (2y − 1) , π (1− 2x))T . (4.8)

The initial condition is taken to be a smooth, compactly supported bump that is centered

at (x0, y0) = (0.4, 0.5):

q(0, x, y) =

cos6
(
5π
3
r
)

if r ≤ 0.3,

0 otherwise,

(4.9)

where

r =
√

(x− x0)2 + (y − y0)2. (4.10)

103

Mesh HSL2 Error log2(Ratio) HSL4 Error log2(Ratio)

102 3.380× 10−1 – 6.984× 10−1 –

202 7.635× 10−2 2.146 3.440× 10−2 4.344

402 1.789× 10−2 2.093 1.943× 10−3 4.146

802 4.308× 10−3 2.054 1.173× 10−4 4.050

1602 1.075× 10−3 2.002 7.181× 10−6 4.029

3202 2.664× 10−4 2.013 4.455× 10−7 4.011

Table 5: Convergence study for the linear advection equation. Shown are the
relative errors computed via (A.14) at time t = 1. All calculations were done
with 4th order accuracy in space and a CFL number of 5.19, where CFL :=
∆tmax {maxy |u(y)|/∆x, maxx |v(x)|/∆y}. Each advection equation for the RK time
stepping was run with a local maximum CFL number of 0.10. HSL2 refers to the Strang
split hybrid semi-Lagrangian scheme and HSL4 to the fourth-order split hybrid semi-
Lagrangian scheme.

This problem, just as the Vlasov-Poisson system, is solved via operator splitting on the

two operators:

Problem A: q,t + u(y) q,x = 0, (4.11)

Problem B: q,t + v(x) q,y = 0. (4.12)

We run the initial condition out to time t = 1, at which point it should return to its initial

state. The errors are computed using the relative L2 errors defined by equation (A.14)

with M = 5 and varying ∆x = ∆y. See A.2 for more details. Convergence studies with

Strang and the fourth-order operator splitting results for the proposed hybrid method

are shown in Table 5. For time stepping on the 1D RKDG problems, we used classical

RK4 with a local CFL number of 0.1.

104

4.3.2 A forced problem: verifying order of accuracy

The linear advection equation from §4.3.1 indicates we get the correct convergence rates

for a problem where the coefficients are non-constant, and it has the added benefit that

two operators do not commute, so we are able to observe a splitting error. However, a

stronger test is to run the same problem already presented in §4.3.2, that exercises the

expansion of the electric field, as well as the full RK time stepping on the sub-problems.

For convenience, we repeat the statement of the problem here:

f,t + vf,x + Ef,v = ψ(t, x, v), (4.13)

E,x =

∫ ∞

−∞
f(t, x, v) dv −

√
π, (4.14)

on (t, x, v) ∈ [0,∞) × [−π, π] × (−∞,∞) with periodic boundary conditions in x. We

take the following source term:

ψ(t, x, v) =
1

2
sin(2x− 2πt)e−

1

4
(4v−1)2

{(
2
√
π + 1

) (
4v − 2

√
π
)

−
√
π (4v − 1) cos(2x− 2πt)

}

.

(4.15)

The exact solution in this case is

f(t, x, v) = {2− cos (2x− 2πt)} e− 1

4
(4v−1)2 , (4.16)

E(t, x) = −
√
π

4
sin (2x− 2πt) . (4.17)

The numerical scheme for this forced problem is the same as the one described in

§4.2 with two minor modifications. First, the two operators in the operator split scheme

are

Problem A: f,t + v f,x = ψ(t, x, v), (4.18)

Problem B: f,t + E(t, x) f,v = 0, (4.19)

105

which means that Problem A is slightly modified from the collisionless Vlasov-Poisson

system. In this case, problem A is solved through a classical RKDG framework. This

means, that for each RK stage, one simply projects the source term onto the basis

functions. This work can be done in parallel with sub-cycled lines. Problem B remains

identical to what was presented in Chapter 3, where we needed to add in the additional

correction terms to the Electric field. This is the case because it’s no longer true that

time derivatives of the Electric field come simply from moments of f . In this case, one

needs to consider moments, as well as derivatives of moments of the source term as well.

In Table 6 we present convergence studies for this problem using both Strang splitting

as well as Yoshida splitting on the hybrid method. The purpose is to demonstrate what

happens when we switch to high-order splitting. In Table 7, we compare two different

fourth order split methods. The purpose there is to explore whether or not it’s beneficial

to add extra stages.

4.3.3 Landau Damping

Here we present simulation results for weak landau damping. C.f. §3.5.4 for details on

the problem setup. In Figure 21 we present the linear decay of the L2 norm of the electric

field where our computed decay rate matches the linear decay rate of γ = −0.1533. In

Figure 22 we denote many plots of the distribution function. In these pictures, we

subtract out a normalized background Maxwellian, fM(v) = 1√
2π
e−

v2

2 .

106

(a) 0 10 20 30 40 50 60
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

(b) 0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

10
1

HSL4

Figure 21: The Landau damping problem. Both panels present semi-log plots of the L2

norm of the electric field. In panel (a), we present the linear decay for the Weak Landau
damping problem (α = 0.01). On top of our computed result we also plot the analytical
decay rate of γ = −0.1533. In panel (b), we present the Strong Landau damping problem
(α = 0.5). Here, we see linear decay of the electric field, followed shortly thereafter
by non-linear growth of the electric field due to particle trapping. Both simulations
used a constant global CFL number of 2.0, with a local CFL restriction of 0.1. and
are 4th order accurate both in space and time. The grid resolution for each run was
(mx,mv) = (64, 128). We observe that the hybrid semi-Lagrangian method (HSLDG)
closely matches the results for the full semi-Lagrangian method (SLDG).

107

Figure 22: The weak Landau damping problem. Shown in the panels are the distribution
function at various points in time, t ∈ {0, 5, 10, 15, 20, 30, 40, 50, 60}. This simulation
was run with a constant CFL number of 2.0 on a mesh of size (mx,mv) = (129, 129) using
4th order accuracy both in space and time. In each panel, we have subtracted out the
equilibrium distribution. It is clear from these plots that the high-order discontinuous
Galerkin method is able to capture much of the fine-scale structure for the solution.

108

Mesh HSL2 Error log2(Ratio) HSL4 Error log2(Ratio)

102 5.193× 10−1 – 1.085× 100 –

202 1.432× 10−1 1.858 2.725× 10−1 1.993

402 1.640× 10−2 3.126 1.652× 10−2 4.044

802 3.438× 10−3 2.255 7.058× 10−4 4.548

1602 8.333× 10−4 2.045 3.421× 10−5 4.367

3202 2.068× 10−4 2.011 1.953× 10−6 4.131

6402 5.161× 10−5 2.003 1.197× 10−7 4.028

12802 1.290× 10−5 2.001 7.470× 10−9 4.002

Table 6: Convergence study for the forced Vlasov-Poisson equation. All calculations
presented here are 4th order in space and were run with a constant CFL number of 5.0.
Shown are the relative errors computed via (A.14) at time t = 1. HSL2 refers to the
Strang split hybrid scheme and HSL4 to the fourth-order hybrid split semi-Lagrangian
scheme. The local time step chosen for each RKDG problem was fixed at a maximum
CFL number of 0.1.

4.3.4 Bump-on-Tail

Here, we present a problem that was not presented in Chapter 3, the bump-on-tail prob-

lem. Much like the two-stream instability problem, the initial conditions are prescribed

by two beams, one traveling to the left, and one traveling to the right. However, the

difference here is that one beam has much higher intensity than the other. Specifically,

the initial conditions are given by

f(t = 0, x, v) =
1√
2π

(1 + 0.04 cos (0.3x))
(

0.9e−
v2

2 + 0.2e−4(v−4.5)2
)

(4.20)

and solve on the domain (x, v) ∈ [−10π/3, 10π/3] × [−8, 8]. These are the same pa-

rameters used by Banks & Hittinger [3] [38]. Results for time t = 45 are presented in

109

Mesh HSL4 Error log2(Ratio) HRKN4 Error log2(Ratio)

102 1.085× 10+0 – 9.309× 10−1 –

202 2.725× 10−1 1.993 2.013× 10−1 2.209

402 1.652× 10−2 4.044 1.207× 10−2 4.060

802 7.058× 10−4 4.548 5.705× 10−4 4.403

1602 3.421× 10−5 4.367 3.018× 10−5 4.241

3202 1.953× 10−6 4.131 1.793× 10−6 4.073

6402 1.197× 10−7 4.028 1.111× 10−7 4.013

Table 7: Comparison of two high-order split methods. We run the forced Vlasov-Poisson
equation in order to compare errors incurred for Yoshida vs. Blanes and Moan operator
splitting. Both methods run the hybrid method, the only difference is which splitting
method we run. HSLDG refers to the Yoshida split, hybrid method, and HRKN4 uses
Runge-Kutta-Nystöm method in place of Yoshida splitting. All calculations presented
here are 4th order in space and time, and were run with a constant CFL number of 5.0.
Shown are the relative errors computed via (A.14) at time t = 1. The local time step
chosen for each RKDG problem was fixed at a maximum CFL number of 0.1. We note
that the method of Blanes and Moan offers slightly increased accuracy, at the cost of
adding extra stages (e.g. 13 stages vs. 7 stages).

110

Figure 23. We note that in this case, the integration constant J0 required to attain

4th-order accuracy is non-zero. For this problem only, we use the computed value of

J0 = 3.181980515339465× 10−1. This term gets added into both E,t and E,t,t,t.

4.3.5 Two Stream Instability

Here we present results for the two-stream instability problem. Again, we use the fol-

lowing initial distribution function

f(t = 0, x, v) =
v2√
8π

(

2− cos
(x

2

))

e−
v2

2 , (4.21)

and solve on the domain (x, v) ∈ [−2π, 2π]× [−2π, 2π]. These initial conditions produce

two beams, one traveling left and one traveling right. Results for time t = 45 are

presented in Figure 24 for various mesh sizes. The results for this two stream instability

problem are comparable to what was observed in Chapter 3.

111

Figure 23: The Bump on Tail problem. All simulations are 4th order in space, and
4th order in time, and use the hybrid algorithm. The mesh size for each picture is
(mx,mv) = (129, 129). The above sequence of figures were produced by plotting the
numerical solution at 5 × 5 uniform points in each mesh element. The local time step
restriction used a CFL number of at most 0.1. The global CFL number was 2.0. We note
that for this problem, the average momemtum is non-zero. The numerical value used
for these simulation is J0 = 3.181980515339465× 10−1. This constant value contributes
to both E,t and E,t,t,t.

112

Figure 24: The two-stream instability problem. Grid refinement for the two stream insta-
bility problem. The panel on the left was run with a grid resolution (mx,mv) = (65, 65),
and the panel on the right was run with a grid resolution of (mx,mv) = (129, 129). Both
simulations were run to a final time of t = 45. Both simulations used the 4th order
Yoshida split method, and both used a 4th order spatial discretization. Each picture was
produced by plotting exactly 52 uniformly chosen points per grid cell. Both photos used
a global CFL number of 2.00 for the simulations, and a local RK CFL number of 0.1 for
the hybrid scheme.

113

Chapter 5

Towards a Hybrid Semi-Lagrangian

Method for 2+2 Vlasov-Poisson

Efficient, high-order, positivity-preserving, stable, semi-Lagrangian DG methods are

incredibly difficult to construct on unstructured grids, and at this point, we are unaware

of any methods that retain all of these characteristics. Given that there are many

problems with interesting solutions which require working on unstructured physical grids,

we would like to create an efficient and accurate method which accommodates all of the

above. Much of the groundwork has been presented in Chapter 4, and the focus of this

chapter is to describe how those methods can be extended to higher dimensions. Here,

we describe a full implementation of a hybrid, split, semi-Lagrangian DG (HSLDG)

method based on a discontinuous Galerkin representation of the solution where one of

the primary goals of this method is to be able to run a high order, continuum Vlasov

solver on on an unstructured grid. Given the high dimensionality of the problem, a full

implementation is too computationally expensive to run on a single computer, and will

be the subject of future work. Here, we demonstrate that all of the necessary lower

dimensional building blocks for a full implementation are in place.

A list of the required routines to be written include the following:

1. A 2D solver for f,t + (v1f),x1 + (v2f),x2 = 0 that operates on an unstructured

114

grid. Here, we need only assume that the velocity field, v = (v1, v2) is constant.

Because there is no simple way to construct a stable semi-Lagrangian solver on

an unstructured grid, we choose to operate this problem using a classical Runge-

Kutta (RKDG) method of lines formulation. We can dramatically improve the

overall efficiency with the use of sub-cycling. In §5.2.1 we present an example of

this method that uses periodic boundary conditions on a square, and we present

a more complicated version of this in §5.2.2 on a circle. These two examples serve

to illustrate (a) the existence of a mesh generator, (b) order of accuracy as well as

(c) the existence of a working RKDG method on an unstructured grid.

2. A 2D Poisson solver that operates on an unstructured grid. This Poisson solver

can be LU-factored once at the start of the run, and will be the subject of future

work.

3. A 2D solver for f,t+(E1(t,x)f),v1+(E2(t,x)f),v2 = 0 that operates on a structured

grid. Here, we choose to extend the semi-Lagrangian methods presented in the

previous chapters. The purpose is to run a high-order method that operates with

a single step, with the added benefits of remaining unconditionally stable. Here,

we use the notation, E = (E1, E2) for the electric field.

5.1 Basic Scheme

The scheme for a 4D problem proceeds very close to the scheme developed for a quasi-

1D problem as presented in Section 4.2.1. In place of “Convert to 1D Problems” and

“Evolve 1D Problems”, we now “Convert to 2D Problems” and “Evolve 2D Problems.”

115

Additionally, in place of “Integrate 1D Problems”, we now “Integrate 2D Problems” up

to 4D coefficients. In this chapter, we focus on the “Convert to 2D Problems” step, as

well as the “Evolve 2D Problems” step.

We begin with describing a method for advancing the following quasi-2D advection

equation:

q,t + v · ∇xq = 0; (5.1)

where we are working on a structured grid cross an unstructured grid.

First, we present some notation that will be used for remainder of this section. With

a slight abuse of notation, denote each triangular element in an unstructured grid in

physical space x by Ti, and denote each Cartesian element in velocity space v by Tj,

with index j = (j1, j2). Here, the index (j1, j2) refers to the 2D grid element centered at

av1+(j1−1/2)∆v1 and av2+(j2−1/2)∆v2 where av1 and av2 refer to the left endpoint of

the Cartesian velocity mesh. Of course, indexing into a structured grid is much simpler

than indexing into a unstructured grid, so it is possible for us to write this formula down.

The mesh for the entire computational domain will then be denoted by

Tij := Ti ⊗ Tj ⊂ R
4 (5.2)

We will denote the list of MT quadrature points required for integration on a single 2D

triangle by ~ξm with their associated quadrature weights, ωT
m. We will denote the list of

M2 quadrature points and weights for each canonical velocity element by ~ηm and ωm.

Note that for each Cartesian slab, the list of points and weights are given simply by a

tensor product of 1D weights and points:

η := ξ1D ⊗ ξ1D; ω := ω1D ⊗ ω1D, (5.3)

116

(a) (b)

Figure 25: Diagram indicating evolution of 2D, unstructured equations. In this figure,
we present two ‘slices’ of the distribution function. This function is projected onto
finitely many slabs, and here we illustrate two such slabs. Each of these slabs receives
a constant velocity, vm, as cartooned in panel (a). In panel (b), we present what the
solution would look like at time tn+1 before projecting back onto the mesh elements, Tij.
The vertical axis represents a single 2D Cartesian velocity slab, Tj, and each triangle in
this picture comes from a single quadrature point chosen from the velocity slab.

and therefore there are exactly M2 of these points. We now direct the reader to the

complete algorithm described in Algorithm 5.1.

Algorithm 5.1 describes evolution for (5.1), but it is easily modified to account for

advection along characteristics defined by the electric field, E:

q,t + E(t,x) · ∇vq = 0. (5.7)

Step 0 is identical, and in Step 1, the projection onto 2D coefficients simply replaces

quadrature points for the velocity slab with quadrature points for the triangle. This

produces a list of equations for each triangle. Step 2 is evolution via a SLDG method:

for each equation m, this is an advection equation whose speeds depend only on time,

which can be evolved using methods from §3.3.

117

Algorithm 5.1 Hybrid SLDG Method for Quasi-2D Equations

0. Initial Projection: Start with the Galerkin representation of the solution. When
restricted to a single cell Tij, this is simply

fh(t,x,v)|Tij =
M4∑

k=1

F
(k)
ij ϕ

(k)(~ξ, ~η),

where the coefficients F
(k)
ij are a list of all M4 required 4D DG moments.

1. Convert to 2D Problems: For each index j, consider M2 planes provided by
the M2 quadrature points {v1,v2, . . . ,vM2}. For each of these planes, project 4D
Legendre moments onto 2D moments via

F
(k)
2D,i(t

n,m) :=
1

|Ti,·|

∫

φ
(k)
2D(

~ξ(x)) fh(tn,x,vm) dx. (5.4)

Each 2D integral can be evaluated exactly using enough quadrature points because
fh(·,vm) is simply a product of 2D polynomials.

2. Evolve 2D Problems: For each plane (henceforth referred to as equation),
m = 1, 2, . . . ,M2, take a step of length ∆t on f,t + vmf,x = 0, using the 2D method

and produce F
(k)
2D,i(t

n+1,m). In an RKDG setting, this will be accomplished through
parallelized RK integration.

3. Integrate 2D Problems: Integrate the 2D coefficients up to 4D coefficients.
This is accomplished through a tensor product of 2D quadrature points.

F
(ℓ)
ij (tn+1) =

1

|Tij|

∫∫

Tij
ϕ(ℓ)(~ξ(x), ~η(v))fh(tn+1,x,v) dx dv (5.5)

=
∑

k,m1,m2

ωm1
ωm2

s
F

(k)
2D,i(t

n+1,m2)ϕ
(ℓ)(~ξm1

, ~ηm2
)φ

(k)
2D(

~ξm1
). (5.6)

Here, s is the size of the canonical element, and the range of ω1 and ω2 are a fixed
number depending only on the number of quadrature points required for each triangle
and 2D Cartesian cell.

118

Initial Grid Spacing Error log2(Ratio)

h = 0.2 1.48765× 10−1 –

h = 0.1 9.05163× 10−3 4.04

h = 0.05 3.26820× 10−4 4.79

h = 0.025 2.07851× 10−5 3.97

h = 0.0125 1.41659× 10−6 3.86

Table 8: Convergence study for the constant coefficient linear advection equation. All
simulations were run with a constant CFL number of 0.1, and are 4th order accurate
both in space and time.

5.2 Numerical Examples

5.2.1 Periodic Advection

In this problem, we consider the domain [0, 1]× [0, 1] with an unstructured grid. Ghost

cells are padded with periodic boundary conditions, and we take equation (5.1) with

constant velocity field prescribed by v = (1, 1). We use this problem to demonstrate

high-order convergence of the unstructured DG solver. In Table 8 we present a conver-

gence study.

5.2.2 Solid Body Rotation

In this section we repeat the problem presented in §3.5.1, but this time with using

an unstructured grid. That is, we consider a linear advection under a divergence-free

velocity field:

q,t + u · ∇q = 0. (5.8)

119

Because this solver uses unstructured grids, we can now take the computational domain

to be the circle centered at (0.5, 0.5) with radius 0.5, in place of the square, [0, 1]× [0, 1].

The velocity field is chosen to produce a solid body rotation around its center:

u = (u(y), v(x)) = (π (2y − 1) , π (1− 2x))T . (5.9)

The initial condition is taken to be a smooth, compactly supported bump that is centered

at (x0, y0) = (0.4, 0.5):

q(0, x, y) =

cos6
(
5π
3
r
)

if r ≤ 0.3,

0 otherwise,

(5.10)

where

r =
√

(x− x0)2 + (y − y0)2. (5.11)

This problem, is solved via a RKDG approach. We run the initial condition out to time

t = 1, at which point it should return to its initial state.

120

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
q(t,x,y) at t = 0 [DoGPack]

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
q(t,x,y) at t = 0.2 [DoGPack]

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
q(t,x,y) at t = 0.4 [DoGPack]

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
q(t,x,y) at t = 0.6 [DoGPack]

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
q(t,x,y) at t = 0.8 [DoGPack]

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
q(t,x,y) at t = 1 [DoGPack]

Figure 26: Solid body rotation problem. The initial conditions are a smooth compactly
supported bump, and the problem is integrated until time t = 1, at which point it should
return to the initial conditions. Each element in this simulation uses a 4th order accurate
representation of the solution, and a 4th order time integrator was used.

121

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we have presented novel semi-Lagrangian methods based on a discontin-

uous Galerkin representation of the solution. We have presented two methods on the

(1+1)D Vlasov-Poisson system, and we have produced results indicating that the correct

ingredients are in place for solving a (2+2)D problem.

6.1.1 Semi-Lagrangian Discontinuous Galerkin

Our novel semi-Lagrangian discontinuous Galerkin (SLDG) numerical scheme for solving

the Vlasov-Poisson system is based on solving a series of quasi-1D advection equations.

We achieve unconditional stability by appealing to semi-Lagrangian time stepping, and

high-order time accuracy is accomplished through high-order operator splitting methods.

High-order spatial accuracy is attained through the use of a discontinuous Galerkin

representation in space. The Poisson equation is solved to high-order via a modified

local DG method, where the boundary conditions are set so that the discrete Laplacian

matrix is by construction LU factored, which makes the Poisson solver extremely fast.

In Chapter 3, we demonstrated the accuracy and robustness of the proposed SLDG

method on several classical test problems from the literature, where we have managed

122

to simultaneously accomplish all of the following:

1. Unconditional stability;

2. Mass conservation;

3. Positivity-preserving;

4. 4th order accuracy in time;

5. 5th order accuracy in space.

In its current state, the method is limited to operating on Cartesian grids.

6.1.2 Hybrid Semi-Lagrangian Discontinuous Galerkin

In chapter 4, we proposed a hybrid, semi-Lagrangian discontinuous Galerkin (HSLDG)

scheme for the Vlasov system. This scheme is based on classical RKDG methods as

well as our novel SLDG methods. This scheme utilizes semi-Lagrangian methods for

time stepping the electric field, and RK time stepping for solving problems in physical

space. In order to alleviate strict CFL conditions, the RK problems utilized sub-cycled

time stepping based on a local CFL condition, which allowed us to take larger time

steps for smaller velocities. We ran this scheme on several (1+1)D test problems from

the literature, and we argue that the results are promising. Many methods, such as

the Poisson solver, the high order expansion of the electric field and time stepping on

the electric field that were developed for the full SLDG method were utilized inside the

hybrid scheme.

We admit that the hybrid method is not as efficient as the full semi-Lagrangian

scheme for structured grids, however the real purpose of presenting the method there

123

was to demonstrate its efficacy on a reduced model (i.e. lower dimensions). Given its

success there, we argue that it will make for a useful scheme in higher dimensions.

6.1.3 Hybrid SLDG Methods for (2+2)D Unstructured Grids

The complete details for extensions of the HSLDG method to higher dimensions, and

in particular to unstructured grids was demonstrated in Chapter 5. There, we demon-

strated that the bulk of routines are in place for operating a (2+2)D Vlasov-Poisson

solver on unstructured grids. These ingredients include a description of the method,

and methods for evolving 2D problems. For our operator split approach, there are two

types of grids that need to be evolved: structured 2D grids for velocity space, and un-

structured 2D grids for physical space. We choose a structured velocity space grid in

order to incorporate semi-Lagrangian time stepping. We choose an unstructured grid

for physical space in order to accommodate irregular domains. We have demonstrated

that a 2D grid generator is in place, and we have run our high order RKDG method on

sample unstructured grid problems. The evolution step for the velocity coordinates is

identical to what has already been presented for the full SLDG method.

6.2 Future Work

Direct extensions of the full semi-Lagrangian (SLDG) method to higher dimensions can

certainly be accomplished. We could construct a method that permits unconditional

stability through semi-Lagrangian time stepping, but as of now, the method would be

limited to working on structured grids. We therefore would like to turn towards a method

124

that will accommodate unstructured grids, and therefore, the proposed hybrid semi-

Lagrangian discontinuous Galerkin (HSLDG) method presented in Chapter 5 proves to

be a promising avenue of research. Through the use of semi-Lagrangian time-stepping

and unstructured grids, we hope that ultimately the methods presented there will be

viewed as a bridge between particle and pure Eulerian methods, in the sense that we

retain the ability to take large time-steps (semi-Lagrangian) and can handle complex

geometries (unstructured meshes).

The complete method has been described in Chapter 5, but has not been completely

implemented. Given the constraints of working on a single computer with such large

data sets, full implementation will require the use of parallelization with MPI (Message

Passing Interface) communications and distributed computing. In short, when the the

complete scheme has been implemented, the full HSLDGmethod for the (2+2)D problem

will simultaneously accomplish all of the following:

1. Unstructured grids in physical space;

2. Mass conservative;

3. Positivity-preserving;

4. 4th order accurate in time;

5. 5th order accurate in space.

It will still retain its unconditional stability for advection in the velocity coordinates,

but we will use sub-cycling (as has already been presented in Chapter 4) to alleviate the

strict CFL condition present for advection over the physical coordinates.

125

Future work will focus not only on extending the results described in this paper

to higher-dimensional Vlasov-Poisson equations, but also modifications of the current

approach to both the non-relativistic and the relativistic Vlasov-Maxwell equations will

be considered.

126

Appendix A

Numerical evaluation of conserved

quantities

The conserved quantities defined in (1.49) (L1-norm), (1.50) (L2-norm), (1.51) (total

energy), and (1.52) (entropy) are used as diagnostics of the numerical methods proposed

in this work.

In order to evaluate all of these conserved quantities in the numerical evolution, we

define the following functional:

Ih
(
g(fh)

)
:=

∆x∆v

4

mx∑

i=1

mv∑

j=1

M2

∑

k=1

ωk g

(

fh

(

xi +
ξk∆x

2
, vj +

ηk∆v

2

))

, (A.1)

where mx is the number of elements in the x-direction, mv is the number of elements in

the v-direction, and ωk and (ξk, ηk) are the M
2 Gauss-Legendre quadrature weights and

points on [−1, 1]× [−1, 1], respectively. Expression (A.1) gives a numerical approxima-

tion to integrals of the form:

I (g(f)) :=

∫ L

−L

∫ ∞

−∞
g (f(x, v)) dv dx. (A.2)

Using (A.1) we define the following numerical approximations to the norms defined by

127

(1.49)–(1.52):

‖fh‖L1
:= Ih

(∣
∣fh

∣
∣
)
, (A.3)

‖fh‖L2
:=

∆x∆v

4

mx∑

i=1

mv∑

j=1

M(M+1)/2
∑

ℓ=1

[

F
(ℓ)
ij

]2

1

2

, (A.4)

Total energy :=
1

2
Ih

(
v2 fh

)
+

∆x

4

mx∑

i=1

M∑

ℓ=1

[

E
(ℓ)
i

]2

, (A.5)

Entropy := −Ih
(
fh log(fh)

)
. (A.6)

A.1 Relative L2-norm error in 1D

Let f(x) be the exact solution of some problem of interest. Let fh(x) denote an approx-

imation to f(x) using a discontinuous Galerkin method. On each element fh(x) and

f(x) can be written as

fh(x)

∣
∣
∣
∣
Ti
=

M∑

k=1

F
(k)
i ϕ(k)(ξ), (A.7)

f(x)

∣
∣
∣
∣
Ti
=

∞∑

k=1

F (k)
i ϕ(k)(ξ), (A.8)

respectively. The relative L2-norm of the difference on the domain x ∈ [a, b] between

the approximation, fh(x), and the exact solution, f(x), is given by

‖f(x)− fh(x)‖L2

‖f(x)‖L2

=

{∫ b

a

[
f(x)− fh(x)

]2
dx

∫ b

a
f(x)2 dx

} 1

2

=

∑N
i=1

∑M
k=1

[

F
(k)
i −F (k)

i

]2

∑N
i=1

∑M
k=1

[

F (k)
i

]2

1

2

+O
(
∆xM

)
,

(A.9)

128

where N is the total number of grid elements and ∆x = (b− a)/N . Therefore, we take

as our relative L2-norm indicator the following easily computable quantity:

E2(∆x,M) :=

∑N
i=1

∑M
k=1

[

F
(k)
i −F (k)

i

]2

∑N
i=1

∑M
k=1

[

F (k)
i

]2

1

2

. (A.10)

A.2 Relative L2-norm error in 2D

Let f(x, y) be the exact solution of some problem of interest. Let fh(x, y) denote an

approximation to f(x, y) using a discontinuous Galerkin method. On each element

fh(x, y) and f(x, y) can be written as

fh(x, y)

∣
∣
∣
∣
Tij

=

M(M+1)/2
∑

k=1

F
(k)
ij ϕ(k)(ξ, η), (A.11)

f(x, y)

∣
∣
∣
∣
Tij

=
∞∑

k=1

F (k)
ij ϕ(k)(ξ, η), (A.12)

respectively. The relative L2-norm of the difference on the domain (x, y) ∈ [ax, bx] ×

[ay, by] between the approximation, fh(x, y), and the exact solution, f(x, y), is given by

‖f(x, y)− fh(x, y)‖L2

‖f(x, y)‖L2

=

∫ bx
ax

∫ by
ay

[
f(x, y)− fh(x, y)

]2
dy dx

∫ bx
ax

∫ by
ay
f(x, y)2 dy dx

1

2

=

∑Nx

i=1

∑Ny

j=1

∑M(M+1)/2
k=1

[

F
(k)
ij −F

(k)
ij

]2

∑Nx

i=1

∑Ny

j=1

∑M(M+1)/2
k=1

[

F (k)
ij

]2

1

2

+O
(
∆xM ,∆yM

)
,

(A.13)

where Nx and Ny are the the number of grid elements in each coordinate direction,

∆x = (bx− ax)/Nx, and ∆y = (by − ay)/Ny. Therefore, we take as our relative L2-norm

indicator the following easily computable quantity:

E2(∆x,∆y,M) :=

∑Nx

i=1

∑Ny

j=1

∑M(M+1)/2
k=1

[

F
(k)
ij −F

(k)
ij

]2

∑Nx

i=1

∑Ny

j=1

∑M(M+1)/2
k=1

[

F (k)
ij

]2

1

2

. (A.14)

129

Appendix B

Numerical Integration

Quadrature Rules

Quadrature rules are used to numerically compute integrals of the form:

∫ 1

−1

q(ξ) dξ. (B.1)

Specifically, they are used as a method of approximating the above integral using a finite

set of points, and summing function values at these together with appropriate weights.

If we define a set of quadrature points, {ξ1, ξ2, . . . , ξn} together with their associated

quadrature weigths, {ω1, ω2, · · ·ωn}, we can approximate a finite integral with

n∑

m=1

ωmq(ξn) ≈
∫ 1

−1

q(ξ) dξ.

In Table 9 we present a complete list of Gauss-Legendre quadrature points, together with

their associated weights. Gauss-Legendre integration is built to optimize integration

of polynomials. This means that when n points are used, the approximate integral

integrates any polynomial of degree at most 2n− 1 exactly.

Numerical integration for 2D problems can be performed by taking a tensor product

of all the 1D numerical weights. If B = [−1, 1]× [−1, 1] is the unit box, then

∫∫

B

q(ξ, η) dξdη ≈
M∑

m1,m2=1

ωm1
ωm2

q(ξm1
, ηm2

). (B.2)

130

Quadrature Points: ξ1 ξ2 ξ3 ξ4 ξ5

1 0 – – – –
2 − 1√

3
1√
3

– – –

3 −
√

3
5

0
√

3
5

– –

4 −
√

3+
√
4.8√

7
−
√

3−
√
4.8√

7

√
3−

√
4.8√

7

√
3+

√
4.8√

7
–

5 −1
3

√
5 + γ −1

3

√
5− γ 0 1

3

√
5− γ 1

3

√
5 + γ

Quadrature Weights: ω1 ω2 ω3 ω4 ω5

1 2.0 – – – –
2 1.0 1.0 – – –

3 18−
√
30

36
18+

√
30

36
18+

√
30

36
18−

√
30

36
–

4 18−
√
30

36
18+

√
30

36
18+

√
30

36
18−

√
30

36
–

5 322−13
√
70

900
322+13

√
70

900
128
225

322+13
√
70

900
322−13

√
70

900

Table 9: List of 1D quadrature weights and points, listed in increasing order. Each row
containing M points will integrate polynomials of degree 2M − 1 exactly. The rules for
using five points use the constant γ = 2

√

10/7 in order to make the entire list fit on the
table.

131

Each ξi, ηj and ωm come from the list of 1D quadrature points and weights listed in

Table 9. This integral formula can be constructed from the 1D formula by integrating

each coordinate in turn.

132

Bibliography

[1] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontin-

uous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749–1779,

2002.

[2] J. W. Banks, R. L. Berger, S. Brunner, B. I. Cohen, and J. A. F. Hittinger. Two-

dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing,

self-focusing, and sideloss. Physics of Plasmas, 18(5):052102, 2011.

[3] J.W. Banks and J.A.F. Hittinger. A new class of nonlinear finite-volume methods

for Vlasov simulation. IEEE Transactions on Plasma Science, 38:2198–2207, 2010.

[4] J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Na-

ture, 324:446 – 449, 1986.

[5] R. Belaouar, N. Crouseilles, P. Degond, and E. Sonnendrücker. An asymptotically

stable semi-Lagrangian scheme in the quasi-neutral limit. J. Sci. Comput., 41:341–

365, 2009.

[6] N. Besse, J. Segre, and E. Sonnendrücker. Semi-Lagrangian schemes for the two-

dimensional Vlasov-Poisson system on unstructured meshes. Transp. Theory and

Stat. Phys., 34:311–332, 2005.

[7] N. Besse, J. Segré, and E. Sonnendrücker. Semi-Lagrangian schemes for the two-

dimensional Vlasov-Poisson system on unstructured meshes. Transport Theory and

Statistical Physics, 34:311–332, Aug 2005.

133

[8] N. Bessho and A. Bhattacharjee. Fast collisionless reconnection in electron-positron

plasmas. Physics of Plasmas, 14:056503, 2007.

[9] C.K. Birdsall and A.B. Langdon. Plasma physics via computer simulation. Taylor

& Francis Group, 1985.

[10] J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse,

M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, and P.L. Pritchett. Geospace

environmental modeling (GEM) magnetic reconnection challenge. Journal of Geo-

physical Research - Space Physics, 106(A3):3715–3719, 2001.

[11] S. Blanes and P.C. Moan. Practical symplectic partitioned Runge-Kutta and Runge-

Kutta-Nyström methods. Journal of Computational and Applied Mathematics,

142(2):313 – 330, 2002.

[12] C. Cheng and G. Knorr. The integration of the Vlasov equation in configuration

space. J. Comp. Phys., 22:330–351, 1976.

[13] A.J. Christlieb, W.N.G. Hitchon, and E.R. Keiter. A computational investigation of

the effects of varying discharge geometry for an inductively coupled plasma. IEEE

Transactions on Plasma Science, 28:2214–2231, 2000.

[14] A.J. Christlieb, R. Krasny, and J.P. Verboncoeur. Efficient particle simulation of

a virtual cathode using a grid-free treecode Poisson solver. IEEE Transactions on

Plasma Science, 32:384–389, 2004.

[15] A.J. Christlieb, R. Krasny, J.P. Verboncoeur, J.W. Emhoff, and I.D. Boyd. Grid-free

134

plasma simulation techniques. IEEE Transactions on Plasma Science, 34:149–165,

2006.

[16] A.J. Christlieb, R. Krasny, J.P. Verboncoeur, J.W. Emhoff, and I.D. Boyd. Grid-free

plasma simulation techniques. Plasma Science, IEEE Transactions on, 34(2):149 –

165, April 2006.

[17] B. Cockburn, S. Hou, and C.-W. Shu. TVB Runge-Kutta local projection discontin-

uous Galerkin finite element method for conservation laws IV: The multidimensional

case. Math. Comp., 54:545, 1990.

[18] B. Cockburn, S.Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discon-

tinuous Galerkin finite element method for conservation laws III: One dimensional

systems. J. Comp. Phys., 84:90, 1989.

[19] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for scalar conservation laws II: General framework.

Math. Comp., 52:411–435, 1989.

[20] B. Cockburn and C.-W. Shu. The Runge-Kutta discontinuous Galerkin method

for conservation laws V: Multidimensional systems. J. Comp. Phys., 141:199–224,

1998.

[21] Bernardo Cockburn and Chi-Wang Shu. The Runge-Kutta local projection P 1-

discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO

Modél. Math. Anal. Numér., 25(3):337–361, 1991.

135

[22] O. Coulaud, E. Sonnendrücker, E. Dillon, P. Bertrand, and A. Ghizzo. Paralleliza-

tion of semi-Lagrangian Vlasov codes. J. Plasma Phys., 61:435–448, 1999.

[23] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengle-

ichungen der mathematischen physik. Mathematische Annalen, 100:32–74, 1928.

10.1007/BF01448839.

[24] N. Crouseilles, G. Latu, and E. Sonnendrücker. Hermite spline interpolation on

patches for parallelly solving the Vlasov-Poisson equation. Int. J. Appl. Math. and

Comp. Sci., 17:335–349, 2007.

[25] N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker. Conservative semi-

Lagrangian schemes for Vlasov equations. J. Comp. Phys., 229:1927–1953, 2010.

[26] N. Crouseilles, T. Respaud, and E. Sonnendrücker. A forward semi-Lagrangian

method for the numerical solution of the Vlasov equation. Comp. Phys. Comm.,

180:1730–1745, 2009.

[27] Nicolas Crouseilles, Erwan Faou, and Michel Mehrenberger. High or-

der Runge-Kutta-Nyström splitting methods for the Vlasov-Poisson equation.

http://www.irisa.fr/ipso/perso/faou/publis/cfm2.pdf, 2011.

[28] Nicolas Crouseilles, Michel Mehrenberger, and Eric Sonnendrücker. Conservative

semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys., 229(6):1927–

1953, 2010.

[29] Bernd Einfeldt. On Godunov-type methods for gas dynamics. SIAM Journal on

Numerical Analysis, 25(2):294–318, 1988.

136

[30] F. Filbet and E. Sonnendrücker. Comparison of Eulerian Vlasov solvers. Comp.

Phys. Comm., 150:247–266, 2003.

[31] E. Forest and R.D. Ruth. Fourth-order symplectic integration. Physica D: Nonlinear

Phenomena, 43:105–117, 1990.

[32] R. Glassey. The Cauchy Problem in Kinetic Theory. Miscellaneous Titles Series.

Society for Industrial and Applied Mathematics, 1996.

[33] Sigal Gottlieb, David I. Ketcheson, and Chi-Wang Shu. High order strong stability

preserving time discretizations. J. Sci. Comput., 38(3):251–289, 2009.

[34] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp.

Phys., 73:325–348, 1987.

[35] Amiram Harten, Peter D. Lax, and Bram Van Leer. On upstream differencing and

Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):pp.

35–61, 1983.

[36] R.E. Heath, I.M. Gamba, P.J. Morrison, and C. Michler. A discontinuous Galerkin

method for the Vlasov—Poisson system. Journal of Computational Physics,

231(4):1140 – 1174, 2012.

[37] J.S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods: algo-

rithms, analysis, and applications. Springer, 2007.

[38] J. A. F. Hittinger and J. W. Banks. Block-structured adaptive mesh refinement

algorithms for vlasov simulation. CoRR, abs/1204.3853, 2012.

137

[39] R.W. Hockney and J.W. Eastwood. Computer simulation using particles. Institute

of Physics Publishing, 1988.

[40] Y. Idomura, M. Ida, and S. Tokuda. Conservative gyrokinetic Vlasov simulation.

Communications in Nonlinear Science and Numerical Simulation, 13:227–233, 2008.

[41] G. B. Jacobs and J. S. Hesthaven. Implicit-explicit time integration of a high-order

particle-in-cell method with hyperbolic divergence cleaning. Comput. Phys. Comm.,

180(10):1760–1767, 2009.

[42] G.B. Jacobs and J.S. Hesthaven. High-order nodal discontinuous Galerkin particle-

in-cell method on unstructured grids. J. Comp. Phys., 96–121(214), 2006.

[43] C.-W. Shu J.M. Qiu. Positivity preserving semi-Lagrangian discontinuous Galerkin

formulation: theoretical analysis and application to the Vlasov-Poisson system. J.

Comp. Phys., 230 (23), 2011.

[44] David I. Ketcheson. Runge-Kutta methods with minimum storage implementations.

J. Comput. Phys., 229(5):1763–1773, 2010.

[45] K. Lindsay and R. Krasny. A particle method and adaptive treecode for vortex

sheet motion in three-dimensional flow. J. Comp. Phys., 172:879–907, 2001.

[46] C. Mouhot and C. Villani. Landau damping. J. Math. Phys., 51(015204), 2010.

[47] Clément Mouhot and Cédric Villani. On Landau damping. Acta Math., 207(1):29–

201, 2011.

[48] G.J. Parker and W.N.G. Hitchon. Convected scheme simulations of the electron

138

distribution function in a positive column plasma. Jpn. J. Appl. Phys., 36:4799–

4807, 1997.

[49] Jing-Mei Qiu and Andrew Christlieb. A conservative high order semi-Lagrangian

WENO method for the Vlasov equation. J. Comput. Phys., 229(4):1130–1149, 2010.

[50] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport

equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

[51] M. Restelli, L. Bonaventura, and R. Sacco. A semi-Lagrangian discontinuous

Galerkin method for scalar advection by incompressible flows. J. Comput. Phys.,

216(1):195–215, Jul 2006.

[52] J.A. Rossmanith. DoGPack software. Available from

http://www.dogpack-code.org.

[53] James A. Rossmanith and David C. Seal. A positivity-preserving high-order semi-

Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J.

Comput. Phys., 230(16):6203–6232, 2011.

[54] Jack Schaeffer. Global existence of smooth solutions to the Vlasov Poisson system in

three dimensions. Communications in Partial Differential Equations, 16(8-9):1313–

1335, 1991.

[55] H. Schmitz and R. Grauer. Darwin–Vlasov simulations of magnetised plasmas. J.

Comp. Phys., 214:738—756, 2006.

[56] Q. Sheng. Solving linear partial differential equations by exponential splitting. IMA

Journal of Numerical Analysis, 9(2):199–212, 1989.

139

[57] Chi-Wang Shu. Total-variation-diminishing time discretizations. SIAM Journal on

Scientific and Statistical Computing, 9(6):1073–1084, 1988.

[58] N.J. Sircombe and T.D. Arber. Valis: A split-conservative scheme for the relativistic

2D Vlasov-Maxwell system. Journal of Computational Physics, 228(13):4773 – 4788,

2009.

[59] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo. The semi-Lagrangian

method for the numerical resolution of the Vlasov equation. J. Comp. Phys.,

149:201–220, 1999.

[60] G. Strang. On the construction and comparison of difference schemes. SIAM J.

Num. Anal., pages 506–517, 1968.

[61] H. F. Trotter. On the product of semi-groups of operators. Proceedings of the

American Mathematical Society, 10(4):pp. 545–551, 1959.

[62] J.-L. Vay, P. Colella, J.W. Kwan, P. McCorquodale, D.B. Serafini, A. Friedman,

D.P. Grote, G. Westenskow, J.-C. Adam, A. Héron, and I. Haber. Application

of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams.

Phys. Plasmas, 11(2928), 2004.

[63] H. Yoshida. Construction of higher order symplectic integrators. Phys. Lett. A,

150:262–268, 1990.

[64] Haruo Yoshida. Recent progress in the theory and application of symplectic inte-

grators. Celestial Mechanics and Dynamical Astronomy, 56:27–43, 1993.

140

[65] S.I Zaki, L.R.T Gardner, and T.J.M Boyd. A finite element code for the simulation

of one-dimensional Vlasov plasmas. I: Theory. Journal of Computational Physics,

79(1):184 – 199, 1988.

[66] X. Zhang and C.-W. Shu. On maximum-principle-satisfying high order schemes for

scalar conservation laws. J. Comp. Phys., 229:3091–3120, 2010.

[67] Xiangxiong Zhang and Chi-Wang Shu. Maximum-principle-satisfying and

positivity-preserving high-order schemes for conservation laws: Survey and new

developments. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467(2134):2752–

2776, 2011.

[68] Tie Zhou, Yan Guo, and Chi-Wang Shu. Numerical study on Landau damping.

Physica D: Nonlinear Phenomena, 157(4):322 – 333, 2001.

[69] Tie Zhou, Yinfan Li, and Chi-Wang Shu. Numerical comparison of WENO fi-

nite volume and Runge-Kutta discontinuous Galerkin methods. J. Sci. Comput.,

16(2):145–171, 2001.

